arm.h (FUNCTION_ARG_ADVANCE): Only adjust iwmmxt_nregs if TARGET_IWMMXT_ABI.
[gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
70
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
74
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
89
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
92
93 #ifndef DWARF2_FRAME_INFO
94 # ifdef DWARF2_DEBUGGING_INFO
95 # define DWARF2_FRAME_INFO \
96 (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
97 # else
98 # define DWARF2_FRAME_INFO 0
99 # endif
100 #endif
101
102 /* Map register numbers held in the call frame info that gcc has
103 collected using DWARF_FRAME_REGNUM to those that should be output in
104 .debug_frame and .eh_frame. */
105 #ifndef DWARF2_FRAME_REG_OUT
106 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
107 #endif
108
109 /* Decide whether we want to emit frame unwind information for the current
110 translation unit. */
111
112 int
113 dwarf2out_do_frame (void)
114 {
115 /* We want to emit correct CFA location expressions or lists, so we
116 have to return true if we're going to output debug info, even if
117 we're not going to output frame or unwind info. */
118 return (write_symbols == DWARF2_DEBUG
119 || write_symbols == VMS_AND_DWARF2_DEBUG
120 || DWARF2_FRAME_INFO
121 #ifdef DWARF2_UNWIND_INFO
122 || (DWARF2_UNWIND_INFO
123 && (flag_unwind_tables
124 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)))
125 #endif
126 );
127 }
128
129 /* The size of the target's pointer type. */
130 #ifndef PTR_SIZE
131 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
132 #endif
133
134 /* Array of RTXes referenced by the debugging information, which therefore
135 must be kept around forever. */
136 static GTY(()) VEC(rtx,gc) *used_rtx_array;
137
138 /* A pointer to the base of a list of incomplete types which might be
139 completed at some later time. incomplete_types_list needs to be a
140 VEC(tree,gc) because we want to tell the garbage collector about
141 it. */
142 static GTY(()) VEC(tree,gc) *incomplete_types;
143
144 /* A pointer to the base of a table of references to declaration
145 scopes. This table is a display which tracks the nesting
146 of declaration scopes at the current scope and containing
147 scopes. This table is used to find the proper place to
148 define type declaration DIE's. */
149 static GTY(()) VEC(tree,gc) *decl_scope_table;
150
151 /* Pointers to various DWARF2 sections. */
152 static GTY(()) section *debug_info_section;
153 static GTY(()) section *debug_abbrev_section;
154 static GTY(()) section *debug_aranges_section;
155 static GTY(()) section *debug_macinfo_section;
156 static GTY(()) section *debug_line_section;
157 static GTY(()) section *debug_loc_section;
158 static GTY(()) section *debug_pubnames_section;
159 static GTY(()) section *debug_str_section;
160 static GTY(()) section *debug_ranges_section;
161 static GTY(()) section *debug_frame_section;
162
163 /* How to start an assembler comment. */
164 #ifndef ASM_COMMENT_START
165 #define ASM_COMMENT_START ";#"
166 #endif
167
168 typedef struct dw_cfi_struct *dw_cfi_ref;
169 typedef struct dw_fde_struct *dw_fde_ref;
170 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
171
172 /* Call frames are described using a sequence of Call Frame
173 Information instructions. The register number, offset
174 and address fields are provided as possible operands;
175 their use is selected by the opcode field. */
176
177 enum dw_cfi_oprnd_type {
178 dw_cfi_oprnd_unused,
179 dw_cfi_oprnd_reg_num,
180 dw_cfi_oprnd_offset,
181 dw_cfi_oprnd_addr,
182 dw_cfi_oprnd_loc
183 };
184
185 typedef union dw_cfi_oprnd_struct GTY(())
186 {
187 unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
188 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
189 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
190 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
191 }
192 dw_cfi_oprnd;
193
194 typedef struct dw_cfi_struct GTY(())
195 {
196 dw_cfi_ref dw_cfi_next;
197 enum dwarf_call_frame_info dw_cfi_opc;
198 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
199 dw_cfi_oprnd1;
200 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
201 dw_cfi_oprnd2;
202 }
203 dw_cfi_node;
204
205 /* This is how we define the location of the CFA. We use to handle it
206 as REG + OFFSET all the time, but now it can be more complex.
207 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
208 Instead of passing around REG and OFFSET, we pass a copy
209 of this structure. */
210 typedef struct cfa_loc GTY(())
211 {
212 HOST_WIDE_INT offset;
213 HOST_WIDE_INT base_offset;
214 unsigned int reg;
215 int indirect; /* 1 if CFA is accessed via a dereference. */
216 } dw_cfa_location;
217
218 /* All call frame descriptions (FDE's) in the GCC generated DWARF
219 refer to a single Common Information Entry (CIE), defined at
220 the beginning of the .debug_frame section. This use of a single
221 CIE obviates the need to keep track of multiple CIE's
222 in the DWARF generation routines below. */
223
224 typedef struct dw_fde_struct GTY(())
225 {
226 tree decl;
227 const char *dw_fde_begin;
228 const char *dw_fde_current_label;
229 const char *dw_fde_end;
230 const char *dw_fde_hot_section_label;
231 const char *dw_fde_hot_section_end_label;
232 const char *dw_fde_unlikely_section_label;
233 const char *dw_fde_unlikely_section_end_label;
234 bool dw_fde_switched_sections;
235 dw_cfi_ref dw_fde_cfi;
236 unsigned funcdef_number;
237 unsigned all_throwers_are_sibcalls : 1;
238 unsigned nothrow : 1;
239 unsigned uses_eh_lsda : 1;
240 }
241 dw_fde_node;
242
243 /* Maximum size (in bytes) of an artificially generated label. */
244 #define MAX_ARTIFICIAL_LABEL_BYTES 30
245
246 /* The size of addresses as they appear in the Dwarf 2 data.
247 Some architectures use word addresses to refer to code locations,
248 but Dwarf 2 info always uses byte addresses. On such machines,
249 Dwarf 2 addresses need to be larger than the architecture's
250 pointers. */
251 #ifndef DWARF2_ADDR_SIZE
252 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
253 #endif
254
255 /* The size in bytes of a DWARF field indicating an offset or length
256 relative to a debug info section, specified to be 4 bytes in the
257 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
258 as PTR_SIZE. */
259
260 #ifndef DWARF_OFFSET_SIZE
261 #define DWARF_OFFSET_SIZE 4
262 #endif
263
264 /* According to the (draft) DWARF 3 specification, the initial length
265 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
266 bytes are 0xffffffff, followed by the length stored in the next 8
267 bytes.
268
269 However, the SGI/MIPS ABI uses an initial length which is equal to
270 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
271
272 #ifndef DWARF_INITIAL_LENGTH_SIZE
273 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
274 #endif
275
276 #define DWARF_VERSION 2
277
278 /* Round SIZE up to the nearest BOUNDARY. */
279 #define DWARF_ROUND(SIZE,BOUNDARY) \
280 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
281
282 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
283 #ifndef DWARF_CIE_DATA_ALIGNMENT
284 #ifdef STACK_GROWS_DOWNWARD
285 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
286 #else
287 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
288 #endif
289 #endif
290
291 /* CIE identifier. */
292 #if HOST_BITS_PER_WIDE_INT >= 64
293 #define DWARF_CIE_ID \
294 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
295 #else
296 #define DWARF_CIE_ID DW_CIE_ID
297 #endif
298
299 /* A pointer to the base of a table that contains frame description
300 information for each routine. */
301 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
302
303 /* Number of elements currently allocated for fde_table. */
304 static GTY(()) unsigned fde_table_allocated;
305
306 /* Number of elements in fde_table currently in use. */
307 static GTY(()) unsigned fde_table_in_use;
308
309 /* Size (in elements) of increments by which we may expand the
310 fde_table. */
311 #define FDE_TABLE_INCREMENT 256
312
313 /* A list of call frame insns for the CIE. */
314 static GTY(()) dw_cfi_ref cie_cfi_head;
315
316 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
317 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
318 attribute that accelerates the lookup of the FDE associated
319 with the subprogram. This variable holds the table index of the FDE
320 associated with the current function (body) definition. */
321 static unsigned current_funcdef_fde;
322 #endif
323
324 struct indirect_string_node GTY(())
325 {
326 const char *str;
327 unsigned int refcount;
328 unsigned int form;
329 char *label;
330 };
331
332 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
333
334 static GTY(()) int dw2_string_counter;
335 static GTY(()) unsigned long dwarf2out_cfi_label_num;
336
337 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
338
339 /* Forward declarations for functions defined in this file. */
340
341 static char *stripattributes (const char *);
342 static const char *dwarf_cfi_name (unsigned);
343 static dw_cfi_ref new_cfi (void);
344 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
345 static void add_fde_cfi (const char *, dw_cfi_ref);
346 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
347 static void lookup_cfa (dw_cfa_location *);
348 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
349 static void initial_return_save (rtx);
350 static HOST_WIDE_INT stack_adjust_offset (rtx);
351 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
352 static void output_call_frame_info (int);
353 static void dwarf2out_stack_adjust (rtx, bool);
354 static void flush_queued_reg_saves (void);
355 static bool clobbers_queued_reg_save (rtx);
356 static void dwarf2out_frame_debug_expr (rtx, const char *);
357
358 /* Support for complex CFA locations. */
359 static void output_cfa_loc (dw_cfi_ref);
360 static void get_cfa_from_loc_descr (dw_cfa_location *,
361 struct dw_loc_descr_struct *);
362 static struct dw_loc_descr_struct *build_cfa_loc
363 (dw_cfa_location *, HOST_WIDE_INT);
364 static void def_cfa_1 (const char *, dw_cfa_location *);
365
366 /* How to start an assembler comment. */
367 #ifndef ASM_COMMENT_START
368 #define ASM_COMMENT_START ";#"
369 #endif
370
371 /* Data and reference forms for relocatable data. */
372 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
373 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
374
375 #ifndef DEBUG_FRAME_SECTION
376 #define DEBUG_FRAME_SECTION ".debug_frame"
377 #endif
378
379 #ifndef FUNC_BEGIN_LABEL
380 #define FUNC_BEGIN_LABEL "LFB"
381 #endif
382
383 #ifndef FUNC_END_LABEL
384 #define FUNC_END_LABEL "LFE"
385 #endif
386
387 #ifndef FRAME_BEGIN_LABEL
388 #define FRAME_BEGIN_LABEL "Lframe"
389 #endif
390 #define CIE_AFTER_SIZE_LABEL "LSCIE"
391 #define CIE_END_LABEL "LECIE"
392 #define FDE_LABEL "LSFDE"
393 #define FDE_AFTER_SIZE_LABEL "LASFDE"
394 #define FDE_END_LABEL "LEFDE"
395 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
396 #define LINE_NUMBER_END_LABEL "LELT"
397 #define LN_PROLOG_AS_LABEL "LASLTP"
398 #define LN_PROLOG_END_LABEL "LELTP"
399 #define DIE_LABEL_PREFIX "DW"
400
401 /* The DWARF 2 CFA column which tracks the return address. Normally this
402 is the column for PC, or the first column after all of the hard
403 registers. */
404 #ifndef DWARF_FRAME_RETURN_COLUMN
405 #ifdef PC_REGNUM
406 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
407 #else
408 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
409 #endif
410 #endif
411
412 /* The mapping from gcc register number to DWARF 2 CFA column number. By
413 default, we just provide columns for all registers. */
414 #ifndef DWARF_FRAME_REGNUM
415 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
416 #endif
417 \f
418 /* Hook used by __throw. */
419
420 rtx
421 expand_builtin_dwarf_sp_column (void)
422 {
423 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
424 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
425 }
426
427 /* Return a pointer to a copy of the section string name S with all
428 attributes stripped off, and an asterisk prepended (for assemble_name). */
429
430 static inline char *
431 stripattributes (const char *s)
432 {
433 char *stripped = XNEWVEC (char, strlen (s) + 2);
434 char *p = stripped;
435
436 *p++ = '*';
437
438 while (*s && *s != ',')
439 *p++ = *s++;
440
441 *p = '\0';
442 return stripped;
443 }
444
445 /* Generate code to initialize the register size table. */
446
447 void
448 expand_builtin_init_dwarf_reg_sizes (tree address)
449 {
450 unsigned int i;
451 enum machine_mode mode = TYPE_MODE (char_type_node);
452 rtx addr = expand_normal (address);
453 rtx mem = gen_rtx_MEM (BLKmode, addr);
454 bool wrote_return_column = false;
455
456 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
457 {
458 int rnum = DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), 1);
459
460 if (rnum < DWARF_FRAME_REGISTERS)
461 {
462 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
463 enum machine_mode save_mode = reg_raw_mode[i];
464 HOST_WIDE_INT size;
465
466 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
467 save_mode = choose_hard_reg_mode (i, 1, true);
468 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
469 {
470 if (save_mode == VOIDmode)
471 continue;
472 wrote_return_column = true;
473 }
474 size = GET_MODE_SIZE (save_mode);
475 if (offset < 0)
476 continue;
477
478 emit_move_insn (adjust_address (mem, mode, offset),
479 gen_int_mode (size, mode));
480 }
481 }
482
483 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
484 gcc_assert (wrote_return_column);
485 i = DWARF_ALT_FRAME_RETURN_COLUMN;
486 wrote_return_column = false;
487 #else
488 i = DWARF_FRAME_RETURN_COLUMN;
489 #endif
490
491 if (! wrote_return_column)
492 {
493 enum machine_mode save_mode = Pmode;
494 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
495 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
496 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
497 }
498 }
499
500 /* Convert a DWARF call frame info. operation to its string name */
501
502 static const char *
503 dwarf_cfi_name (unsigned int cfi_opc)
504 {
505 switch (cfi_opc)
506 {
507 case DW_CFA_advance_loc:
508 return "DW_CFA_advance_loc";
509 case DW_CFA_offset:
510 return "DW_CFA_offset";
511 case DW_CFA_restore:
512 return "DW_CFA_restore";
513 case DW_CFA_nop:
514 return "DW_CFA_nop";
515 case DW_CFA_set_loc:
516 return "DW_CFA_set_loc";
517 case DW_CFA_advance_loc1:
518 return "DW_CFA_advance_loc1";
519 case DW_CFA_advance_loc2:
520 return "DW_CFA_advance_loc2";
521 case DW_CFA_advance_loc4:
522 return "DW_CFA_advance_loc4";
523 case DW_CFA_offset_extended:
524 return "DW_CFA_offset_extended";
525 case DW_CFA_restore_extended:
526 return "DW_CFA_restore_extended";
527 case DW_CFA_undefined:
528 return "DW_CFA_undefined";
529 case DW_CFA_same_value:
530 return "DW_CFA_same_value";
531 case DW_CFA_register:
532 return "DW_CFA_register";
533 case DW_CFA_remember_state:
534 return "DW_CFA_remember_state";
535 case DW_CFA_restore_state:
536 return "DW_CFA_restore_state";
537 case DW_CFA_def_cfa:
538 return "DW_CFA_def_cfa";
539 case DW_CFA_def_cfa_register:
540 return "DW_CFA_def_cfa_register";
541 case DW_CFA_def_cfa_offset:
542 return "DW_CFA_def_cfa_offset";
543
544 /* DWARF 3 */
545 case DW_CFA_def_cfa_expression:
546 return "DW_CFA_def_cfa_expression";
547 case DW_CFA_expression:
548 return "DW_CFA_expression";
549 case DW_CFA_offset_extended_sf:
550 return "DW_CFA_offset_extended_sf";
551 case DW_CFA_def_cfa_sf:
552 return "DW_CFA_def_cfa_sf";
553 case DW_CFA_def_cfa_offset_sf:
554 return "DW_CFA_def_cfa_offset_sf";
555
556 /* SGI/MIPS specific */
557 case DW_CFA_MIPS_advance_loc8:
558 return "DW_CFA_MIPS_advance_loc8";
559
560 /* GNU extensions */
561 case DW_CFA_GNU_window_save:
562 return "DW_CFA_GNU_window_save";
563 case DW_CFA_GNU_args_size:
564 return "DW_CFA_GNU_args_size";
565 case DW_CFA_GNU_negative_offset_extended:
566 return "DW_CFA_GNU_negative_offset_extended";
567
568 default:
569 return "DW_CFA_<unknown>";
570 }
571 }
572
573 /* Return a pointer to a newly allocated Call Frame Instruction. */
574
575 static inline dw_cfi_ref
576 new_cfi (void)
577 {
578 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
579
580 cfi->dw_cfi_next = NULL;
581 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
582 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
583
584 return cfi;
585 }
586
587 /* Add a Call Frame Instruction to list of instructions. */
588
589 static inline void
590 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
591 {
592 dw_cfi_ref *p;
593
594 /* Find the end of the chain. */
595 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
596 ;
597
598 *p = cfi;
599 }
600
601 /* Generate a new label for the CFI info to refer to. */
602
603 char *
604 dwarf2out_cfi_label (void)
605 {
606 static char label[20];
607
608 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
609 ASM_OUTPUT_LABEL (asm_out_file, label);
610 return label;
611 }
612
613 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
614 or to the CIE if LABEL is NULL. */
615
616 static void
617 add_fde_cfi (const char *label, dw_cfi_ref cfi)
618 {
619 if (label)
620 {
621 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
622
623 if (*label == 0)
624 label = dwarf2out_cfi_label ();
625
626 if (fde->dw_fde_current_label == NULL
627 || strcmp (label, fde->dw_fde_current_label) != 0)
628 {
629 dw_cfi_ref xcfi;
630
631 label = xstrdup (label);
632
633 /* Set the location counter to the new label. */
634 xcfi = new_cfi ();
635 /* If we have a current label, advance from there, otherwise
636 set the location directly using set_loc. */
637 xcfi->dw_cfi_opc = fde->dw_fde_current_label
638 ? DW_CFA_advance_loc4
639 : DW_CFA_set_loc;
640 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
641 add_cfi (&fde->dw_fde_cfi, xcfi);
642
643 fde->dw_fde_current_label = label;
644 }
645
646 add_cfi (&fde->dw_fde_cfi, cfi);
647 }
648
649 else
650 add_cfi (&cie_cfi_head, cfi);
651 }
652
653 /* Subroutine of lookup_cfa. */
654
655 static void
656 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
657 {
658 switch (cfi->dw_cfi_opc)
659 {
660 case DW_CFA_def_cfa_offset:
661 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
662 break;
663 case DW_CFA_def_cfa_offset_sf:
664 loc->offset
665 = cfi->dw_cfi_oprnd1.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
666 break;
667 case DW_CFA_def_cfa_register:
668 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
669 break;
670 case DW_CFA_def_cfa:
671 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
672 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
673 break;
674 case DW_CFA_def_cfa_sf:
675 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
676 loc->offset
677 = cfi->dw_cfi_oprnd2.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
678 break;
679 case DW_CFA_def_cfa_expression:
680 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
681 break;
682 default:
683 break;
684 }
685 }
686
687 /* Find the previous value for the CFA. */
688
689 static void
690 lookup_cfa (dw_cfa_location *loc)
691 {
692 dw_cfi_ref cfi;
693
694 loc->reg = INVALID_REGNUM;
695 loc->offset = 0;
696 loc->indirect = 0;
697 loc->base_offset = 0;
698
699 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
700 lookup_cfa_1 (cfi, loc);
701
702 if (fde_table_in_use)
703 {
704 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
705 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
706 lookup_cfa_1 (cfi, loc);
707 }
708 }
709
710 /* The current rule for calculating the DWARF2 canonical frame address. */
711 static dw_cfa_location cfa;
712
713 /* The register used for saving registers to the stack, and its offset
714 from the CFA. */
715 static dw_cfa_location cfa_store;
716
717 /* The running total of the size of arguments pushed onto the stack. */
718 static HOST_WIDE_INT args_size;
719
720 /* The last args_size we actually output. */
721 static HOST_WIDE_INT old_args_size;
722
723 /* Entry point to update the canonical frame address (CFA).
724 LABEL is passed to add_fde_cfi. The value of CFA is now to be
725 calculated from REG+OFFSET. */
726
727 void
728 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
729 {
730 dw_cfa_location loc;
731 loc.indirect = 0;
732 loc.base_offset = 0;
733 loc.reg = reg;
734 loc.offset = offset;
735 def_cfa_1 (label, &loc);
736 }
737
738 /* Determine if two dw_cfa_location structures define the same data. */
739
740 static bool
741 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
742 {
743 return (loc1->reg == loc2->reg
744 && loc1->offset == loc2->offset
745 && loc1->indirect == loc2->indirect
746 && (loc1->indirect == 0
747 || loc1->base_offset == loc2->base_offset));
748 }
749
750 /* This routine does the actual work. The CFA is now calculated from
751 the dw_cfa_location structure. */
752
753 static void
754 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
755 {
756 dw_cfi_ref cfi;
757 dw_cfa_location old_cfa, loc;
758
759 cfa = *loc_p;
760 loc = *loc_p;
761
762 if (cfa_store.reg == loc.reg && loc.indirect == 0)
763 cfa_store.offset = loc.offset;
764
765 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
766 lookup_cfa (&old_cfa);
767
768 /* If nothing changed, no need to issue any call frame instructions. */
769 if (cfa_equal_p (&loc, &old_cfa))
770 return;
771
772 cfi = new_cfi ();
773
774 if (loc.reg == old_cfa.reg && !loc.indirect)
775 {
776 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
777 the CFA register did not change but the offset did. */
778 if (loc.offset < 0)
779 {
780 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
781 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
782
783 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
784 cfi->dw_cfi_oprnd1.dw_cfi_offset = f_offset;
785 }
786 else
787 {
788 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
789 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
790 }
791 }
792
793 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
794 else if (loc.offset == old_cfa.offset
795 && old_cfa.reg != INVALID_REGNUM
796 && !loc.indirect)
797 {
798 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
799 indicating the CFA register has changed to <register> but the
800 offset has not changed. */
801 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
802 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
803 }
804 #endif
805
806 else if (loc.indirect == 0)
807 {
808 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
809 indicating the CFA register has changed to <register> with
810 the specified offset. */
811 if (loc.offset < 0)
812 {
813 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
814 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
815
816 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
817 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
818 cfi->dw_cfi_oprnd2.dw_cfi_offset = f_offset;
819 }
820 else
821 {
822 cfi->dw_cfi_opc = DW_CFA_def_cfa;
823 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
824 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
825 }
826 }
827 else
828 {
829 /* Construct a DW_CFA_def_cfa_expression instruction to
830 calculate the CFA using a full location expression since no
831 register-offset pair is available. */
832 struct dw_loc_descr_struct *loc_list;
833
834 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
835 loc_list = build_cfa_loc (&loc, 0);
836 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
837 }
838
839 add_fde_cfi (label, cfi);
840 }
841
842 /* Add the CFI for saving a register. REG is the CFA column number.
843 LABEL is passed to add_fde_cfi.
844 If SREG is -1, the register is saved at OFFSET from the CFA;
845 otherwise it is saved in SREG. */
846
847 static void
848 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
849 {
850 dw_cfi_ref cfi = new_cfi ();
851
852 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
853
854 if (sreg == INVALID_REGNUM)
855 {
856 if (reg & ~0x3f)
857 /* The register number won't fit in 6 bits, so we have to use
858 the long form. */
859 cfi->dw_cfi_opc = DW_CFA_offset_extended;
860 else
861 cfi->dw_cfi_opc = DW_CFA_offset;
862
863 #ifdef ENABLE_CHECKING
864 {
865 /* If we get an offset that is not a multiple of
866 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
867 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
868 description. */
869 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
870
871 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
872 }
873 #endif
874 offset /= DWARF_CIE_DATA_ALIGNMENT;
875 if (offset < 0)
876 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
877
878 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
879 }
880 else if (sreg == reg)
881 cfi->dw_cfi_opc = DW_CFA_same_value;
882 else
883 {
884 cfi->dw_cfi_opc = DW_CFA_register;
885 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
886 }
887
888 add_fde_cfi (label, cfi);
889 }
890
891 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
892 This CFI tells the unwinder that it needs to restore the window registers
893 from the previous frame's window save area.
894
895 ??? Perhaps we should note in the CIE where windows are saved (instead of
896 assuming 0(cfa)) and what registers are in the window. */
897
898 void
899 dwarf2out_window_save (const char *label)
900 {
901 dw_cfi_ref cfi = new_cfi ();
902
903 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
904 add_fde_cfi (label, cfi);
905 }
906
907 /* Add a CFI to update the running total of the size of arguments
908 pushed onto the stack. */
909
910 void
911 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
912 {
913 dw_cfi_ref cfi;
914
915 if (size == old_args_size)
916 return;
917
918 old_args_size = size;
919
920 cfi = new_cfi ();
921 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
922 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
923 add_fde_cfi (label, cfi);
924 }
925
926 /* Entry point for saving a register to the stack. REG is the GCC register
927 number. LABEL and OFFSET are passed to reg_save. */
928
929 void
930 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
931 {
932 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
933 }
934
935 /* Entry point for saving the return address in the stack.
936 LABEL and OFFSET are passed to reg_save. */
937
938 void
939 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
940 {
941 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
942 }
943
944 /* Entry point for saving the return address in a register.
945 LABEL and SREG are passed to reg_save. */
946
947 void
948 dwarf2out_return_reg (const char *label, unsigned int sreg)
949 {
950 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
951 }
952
953 /* Record the initial position of the return address. RTL is
954 INCOMING_RETURN_ADDR_RTX. */
955
956 static void
957 initial_return_save (rtx rtl)
958 {
959 unsigned int reg = INVALID_REGNUM;
960 HOST_WIDE_INT offset = 0;
961
962 switch (GET_CODE (rtl))
963 {
964 case REG:
965 /* RA is in a register. */
966 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
967 break;
968
969 case MEM:
970 /* RA is on the stack. */
971 rtl = XEXP (rtl, 0);
972 switch (GET_CODE (rtl))
973 {
974 case REG:
975 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
976 offset = 0;
977 break;
978
979 case PLUS:
980 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
981 offset = INTVAL (XEXP (rtl, 1));
982 break;
983
984 case MINUS:
985 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
986 offset = -INTVAL (XEXP (rtl, 1));
987 break;
988
989 default:
990 gcc_unreachable ();
991 }
992
993 break;
994
995 case PLUS:
996 /* The return address is at some offset from any value we can
997 actually load. For instance, on the SPARC it is in %i7+8. Just
998 ignore the offset for now; it doesn't matter for unwinding frames. */
999 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
1000 initial_return_save (XEXP (rtl, 0));
1001 return;
1002
1003 default:
1004 gcc_unreachable ();
1005 }
1006
1007 if (reg != DWARF_FRAME_RETURN_COLUMN)
1008 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
1009 }
1010
1011 /* Given a SET, calculate the amount of stack adjustment it
1012 contains. */
1013
1014 static HOST_WIDE_INT
1015 stack_adjust_offset (rtx pattern)
1016 {
1017 rtx src = SET_SRC (pattern);
1018 rtx dest = SET_DEST (pattern);
1019 HOST_WIDE_INT offset = 0;
1020 enum rtx_code code;
1021
1022 if (dest == stack_pointer_rtx)
1023 {
1024 /* (set (reg sp) (plus (reg sp) (const_int))) */
1025 code = GET_CODE (src);
1026 if (! (code == PLUS || code == MINUS)
1027 || XEXP (src, 0) != stack_pointer_rtx
1028 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1029 return 0;
1030
1031 offset = INTVAL (XEXP (src, 1));
1032 if (code == PLUS)
1033 offset = -offset;
1034 }
1035 else if (MEM_P (dest))
1036 {
1037 /* (set (mem (pre_dec (reg sp))) (foo)) */
1038 src = XEXP (dest, 0);
1039 code = GET_CODE (src);
1040
1041 switch (code)
1042 {
1043 case PRE_MODIFY:
1044 case POST_MODIFY:
1045 if (XEXP (src, 0) == stack_pointer_rtx)
1046 {
1047 rtx val = XEXP (XEXP (src, 1), 1);
1048 /* We handle only adjustments by constant amount. */
1049 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1050 && GET_CODE (val) == CONST_INT);
1051 offset = -INTVAL (val);
1052 break;
1053 }
1054 return 0;
1055
1056 case PRE_DEC:
1057 case POST_DEC:
1058 if (XEXP (src, 0) == stack_pointer_rtx)
1059 {
1060 offset = GET_MODE_SIZE (GET_MODE (dest));
1061 break;
1062 }
1063 return 0;
1064
1065 case PRE_INC:
1066 case POST_INC:
1067 if (XEXP (src, 0) == stack_pointer_rtx)
1068 {
1069 offset = -GET_MODE_SIZE (GET_MODE (dest));
1070 break;
1071 }
1072 return 0;
1073
1074 default:
1075 return 0;
1076 }
1077 }
1078 else
1079 return 0;
1080
1081 return offset;
1082 }
1083
1084 /* Check INSN to see if it looks like a push or a stack adjustment, and
1085 make a note of it if it does. EH uses this information to find out how
1086 much extra space it needs to pop off the stack. */
1087
1088 static void
1089 dwarf2out_stack_adjust (rtx insn, bool after_p)
1090 {
1091 HOST_WIDE_INT offset;
1092 const char *label;
1093 int i;
1094
1095 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1096 with this function. Proper support would require all frame-related
1097 insns to be marked, and to be able to handle saving state around
1098 epilogues textually in the middle of the function. */
1099 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1100 return;
1101
1102 /* If only calls can throw, and we have a frame pointer,
1103 save up adjustments until we see the CALL_INSN. */
1104 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1105 {
1106 if (CALL_P (insn) && !after_p)
1107 {
1108 /* Extract the size of the args from the CALL rtx itself. */
1109 insn = PATTERN (insn);
1110 if (GET_CODE (insn) == PARALLEL)
1111 insn = XVECEXP (insn, 0, 0);
1112 if (GET_CODE (insn) == SET)
1113 insn = SET_SRC (insn);
1114 gcc_assert (GET_CODE (insn) == CALL);
1115 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1116 }
1117 return;
1118 }
1119
1120 if (CALL_P (insn) && !after_p)
1121 {
1122 if (!flag_asynchronous_unwind_tables)
1123 dwarf2out_args_size ("", args_size);
1124 return;
1125 }
1126 else if (BARRIER_P (insn))
1127 {
1128 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1129 the compiler will have already emitted a stack adjustment, but
1130 doesn't bother for calls to noreturn functions. */
1131 #ifdef STACK_GROWS_DOWNWARD
1132 offset = -args_size;
1133 #else
1134 offset = args_size;
1135 #endif
1136 }
1137 else if (GET_CODE (PATTERN (insn)) == SET)
1138 offset = stack_adjust_offset (PATTERN (insn));
1139 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1140 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1141 {
1142 /* There may be stack adjustments inside compound insns. Search
1143 for them. */
1144 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1145 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1146 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1147 }
1148 else
1149 return;
1150
1151 if (offset == 0)
1152 return;
1153
1154 if (cfa.reg == STACK_POINTER_REGNUM)
1155 cfa.offset += offset;
1156
1157 #ifndef STACK_GROWS_DOWNWARD
1158 offset = -offset;
1159 #endif
1160
1161 args_size += offset;
1162 if (args_size < 0)
1163 args_size = 0;
1164
1165 label = dwarf2out_cfi_label ();
1166 def_cfa_1 (label, &cfa);
1167 if (flag_asynchronous_unwind_tables)
1168 dwarf2out_args_size (label, args_size);
1169 }
1170
1171 #endif
1172
1173 /* We delay emitting a register save until either (a) we reach the end
1174 of the prologue or (b) the register is clobbered. This clusters
1175 register saves so that there are fewer pc advances. */
1176
1177 struct queued_reg_save GTY(())
1178 {
1179 struct queued_reg_save *next;
1180 rtx reg;
1181 HOST_WIDE_INT cfa_offset;
1182 rtx saved_reg;
1183 };
1184
1185 static GTY(()) struct queued_reg_save *queued_reg_saves;
1186
1187 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1188 struct reg_saved_in_data GTY(()) {
1189 rtx orig_reg;
1190 rtx saved_in_reg;
1191 };
1192
1193 /* A list of registers saved in other registers.
1194 The list intentionally has a small maximum capacity of 4; if your
1195 port needs more than that, you might consider implementing a
1196 more efficient data structure. */
1197 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1198 static GTY(()) size_t num_regs_saved_in_regs;
1199
1200 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1201 static const char *last_reg_save_label;
1202
1203 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1204 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1205
1206 static void
1207 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1208 {
1209 struct queued_reg_save *q;
1210
1211 /* Duplicates waste space, but it's also necessary to remove them
1212 for correctness, since the queue gets output in reverse
1213 order. */
1214 for (q = queued_reg_saves; q != NULL; q = q->next)
1215 if (REGNO (q->reg) == REGNO (reg))
1216 break;
1217
1218 if (q == NULL)
1219 {
1220 q = ggc_alloc (sizeof (*q));
1221 q->next = queued_reg_saves;
1222 queued_reg_saves = q;
1223 }
1224
1225 q->reg = reg;
1226 q->cfa_offset = offset;
1227 q->saved_reg = sreg;
1228
1229 last_reg_save_label = label;
1230 }
1231
1232 /* Output all the entries in QUEUED_REG_SAVES. */
1233
1234 static void
1235 flush_queued_reg_saves (void)
1236 {
1237 struct queued_reg_save *q;
1238
1239 for (q = queued_reg_saves; q; q = q->next)
1240 {
1241 size_t i;
1242 unsigned int reg, sreg;
1243
1244 for (i = 0; i < num_regs_saved_in_regs; i++)
1245 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1246 break;
1247 if (q->saved_reg && i == num_regs_saved_in_regs)
1248 {
1249 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1250 num_regs_saved_in_regs++;
1251 }
1252 if (i != num_regs_saved_in_regs)
1253 {
1254 regs_saved_in_regs[i].orig_reg = q->reg;
1255 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1256 }
1257
1258 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1259 if (q->saved_reg)
1260 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1261 else
1262 sreg = INVALID_REGNUM;
1263 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1264 }
1265
1266 queued_reg_saves = NULL;
1267 last_reg_save_label = NULL;
1268 }
1269
1270 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1271 location for? Or, does it clobber a register which we've previously
1272 said that some other register is saved in, and for which we now
1273 have a new location for? */
1274
1275 static bool
1276 clobbers_queued_reg_save (rtx insn)
1277 {
1278 struct queued_reg_save *q;
1279
1280 for (q = queued_reg_saves; q; q = q->next)
1281 {
1282 size_t i;
1283 if (modified_in_p (q->reg, insn))
1284 return true;
1285 for (i = 0; i < num_regs_saved_in_regs; i++)
1286 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1287 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1288 return true;
1289 }
1290
1291 return false;
1292 }
1293
1294 /* Entry point for saving the first register into the second. */
1295
1296 void
1297 dwarf2out_reg_save_reg (const char *label, rtx reg, rtx sreg)
1298 {
1299 size_t i;
1300 unsigned int regno, sregno;
1301
1302 for (i = 0; i < num_regs_saved_in_regs; i++)
1303 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (reg))
1304 break;
1305 if (i == num_regs_saved_in_regs)
1306 {
1307 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1308 num_regs_saved_in_regs++;
1309 }
1310 regs_saved_in_regs[i].orig_reg = reg;
1311 regs_saved_in_regs[i].saved_in_reg = sreg;
1312
1313 regno = DWARF_FRAME_REGNUM (REGNO (reg));
1314 sregno = DWARF_FRAME_REGNUM (REGNO (sreg));
1315 reg_save (label, regno, sregno, 0);
1316 }
1317
1318 /* What register, if any, is currently saved in REG? */
1319
1320 static rtx
1321 reg_saved_in (rtx reg)
1322 {
1323 unsigned int regn = REGNO (reg);
1324 size_t i;
1325 struct queued_reg_save *q;
1326
1327 for (q = queued_reg_saves; q; q = q->next)
1328 if (q->saved_reg && regn == REGNO (q->saved_reg))
1329 return q->reg;
1330
1331 for (i = 0; i < num_regs_saved_in_regs; i++)
1332 if (regs_saved_in_regs[i].saved_in_reg
1333 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1334 return regs_saved_in_regs[i].orig_reg;
1335
1336 return NULL_RTX;
1337 }
1338
1339
1340 /* A temporary register holding an integral value used in adjusting SP
1341 or setting up the store_reg. The "offset" field holds the integer
1342 value, not an offset. */
1343 static dw_cfa_location cfa_temp;
1344
1345 /* Record call frame debugging information for an expression EXPR,
1346 which either sets SP or FP (adjusting how we calculate the frame
1347 address) or saves a register to the stack or another register.
1348 LABEL indicates the address of EXPR.
1349
1350 This function encodes a state machine mapping rtxes to actions on
1351 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1352 users need not read the source code.
1353
1354 The High-Level Picture
1355
1356 Changes in the register we use to calculate the CFA: Currently we
1357 assume that if you copy the CFA register into another register, we
1358 should take the other one as the new CFA register; this seems to
1359 work pretty well. If it's wrong for some target, it's simple
1360 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1361
1362 Changes in the register we use for saving registers to the stack:
1363 This is usually SP, but not always. Again, we deduce that if you
1364 copy SP into another register (and SP is not the CFA register),
1365 then the new register is the one we will be using for register
1366 saves. This also seems to work.
1367
1368 Register saves: There's not much guesswork about this one; if
1369 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1370 register save, and the register used to calculate the destination
1371 had better be the one we think we're using for this purpose.
1372 It's also assumed that a copy from a call-saved register to another
1373 register is saving that register if RTX_FRAME_RELATED_P is set on
1374 that instruction. If the copy is from a call-saved register to
1375 the *same* register, that means that the register is now the same
1376 value as in the caller.
1377
1378 Except: If the register being saved is the CFA register, and the
1379 offset is nonzero, we are saving the CFA, so we assume we have to
1380 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1381 the intent is to save the value of SP from the previous frame.
1382
1383 In addition, if a register has previously been saved to a different
1384 register,
1385
1386 Invariants / Summaries of Rules
1387
1388 cfa current rule for calculating the CFA. It usually
1389 consists of a register and an offset.
1390 cfa_store register used by prologue code to save things to the stack
1391 cfa_store.offset is the offset from the value of
1392 cfa_store.reg to the actual CFA
1393 cfa_temp register holding an integral value. cfa_temp.offset
1394 stores the value, which will be used to adjust the
1395 stack pointer. cfa_temp is also used like cfa_store,
1396 to track stores to the stack via fp or a temp reg.
1397
1398 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1399 with cfa.reg as the first operand changes the cfa.reg and its
1400 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1401 cfa_temp.offset.
1402
1403 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1404 expression yielding a constant. This sets cfa_temp.reg
1405 and cfa_temp.offset.
1406
1407 Rule 5: Create a new register cfa_store used to save items to the
1408 stack.
1409
1410 Rules 10-14: Save a register to the stack. Define offset as the
1411 difference of the original location and cfa_store's
1412 location (or cfa_temp's location if cfa_temp is used).
1413
1414 The Rules
1415
1416 "{a,b}" indicates a choice of a xor b.
1417 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1418
1419 Rule 1:
1420 (set <reg1> <reg2>:cfa.reg)
1421 effects: cfa.reg = <reg1>
1422 cfa.offset unchanged
1423 cfa_temp.reg = <reg1>
1424 cfa_temp.offset = cfa.offset
1425
1426 Rule 2:
1427 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1428 {<const_int>,<reg>:cfa_temp.reg}))
1429 effects: cfa.reg = sp if fp used
1430 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1431 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1432 if cfa_store.reg==sp
1433
1434 Rule 3:
1435 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1436 effects: cfa.reg = fp
1437 cfa_offset += +/- <const_int>
1438
1439 Rule 4:
1440 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1441 constraints: <reg1> != fp
1442 <reg1> != sp
1443 effects: cfa.reg = <reg1>
1444 cfa_temp.reg = <reg1>
1445 cfa_temp.offset = cfa.offset
1446
1447 Rule 5:
1448 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1449 constraints: <reg1> != fp
1450 <reg1> != sp
1451 effects: cfa_store.reg = <reg1>
1452 cfa_store.offset = cfa.offset - cfa_temp.offset
1453
1454 Rule 6:
1455 (set <reg> <const_int>)
1456 effects: cfa_temp.reg = <reg>
1457 cfa_temp.offset = <const_int>
1458
1459 Rule 7:
1460 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1461 effects: cfa_temp.reg = <reg1>
1462 cfa_temp.offset |= <const_int>
1463
1464 Rule 8:
1465 (set <reg> (high <exp>))
1466 effects: none
1467
1468 Rule 9:
1469 (set <reg> (lo_sum <exp> <const_int>))
1470 effects: cfa_temp.reg = <reg>
1471 cfa_temp.offset = <const_int>
1472
1473 Rule 10:
1474 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1475 effects: cfa_store.offset -= <const_int>
1476 cfa.offset = cfa_store.offset if cfa.reg == sp
1477 cfa.reg = sp
1478 cfa.base_offset = -cfa_store.offset
1479
1480 Rule 11:
1481 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1482 effects: cfa_store.offset += -/+ mode_size(mem)
1483 cfa.offset = cfa_store.offset if cfa.reg == sp
1484 cfa.reg = sp
1485 cfa.base_offset = -cfa_store.offset
1486
1487 Rule 12:
1488 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1489
1490 <reg2>)
1491 effects: cfa.reg = <reg1>
1492 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1493
1494 Rule 13:
1495 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1496 effects: cfa.reg = <reg1>
1497 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1498
1499 Rule 14:
1500 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1501 effects: cfa.reg = <reg1>
1502 cfa.base_offset = -cfa_temp.offset
1503 cfa_temp.offset -= mode_size(mem)
1504
1505 Rule 15:
1506 (set <reg> {unspec, unspec_volatile})
1507 effects: target-dependent */
1508
1509 static void
1510 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1511 {
1512 rtx src, dest;
1513 HOST_WIDE_INT offset;
1514
1515 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1516 the PARALLEL independently. The first element is always processed if
1517 it is a SET. This is for backward compatibility. Other elements
1518 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1519 flag is set in them. */
1520 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1521 {
1522 int par_index;
1523 int limit = XVECLEN (expr, 0);
1524
1525 for (par_index = 0; par_index < limit; par_index++)
1526 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1527 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1528 || par_index == 0))
1529 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1530
1531 return;
1532 }
1533
1534 gcc_assert (GET_CODE (expr) == SET);
1535
1536 src = SET_SRC (expr);
1537 dest = SET_DEST (expr);
1538
1539 if (REG_P (src))
1540 {
1541 rtx rsi = reg_saved_in (src);
1542 if (rsi)
1543 src = rsi;
1544 }
1545
1546 switch (GET_CODE (dest))
1547 {
1548 case REG:
1549 switch (GET_CODE (src))
1550 {
1551 /* Setting FP from SP. */
1552 case REG:
1553 if (cfa.reg == (unsigned) REGNO (src))
1554 {
1555 /* Rule 1 */
1556 /* Update the CFA rule wrt SP or FP. Make sure src is
1557 relative to the current CFA register.
1558
1559 We used to require that dest be either SP or FP, but the
1560 ARM copies SP to a temporary register, and from there to
1561 FP. So we just rely on the backends to only set
1562 RTX_FRAME_RELATED_P on appropriate insns. */
1563 cfa.reg = REGNO (dest);
1564 cfa_temp.reg = cfa.reg;
1565 cfa_temp.offset = cfa.offset;
1566 }
1567 else
1568 {
1569 /* Saving a register in a register. */
1570 gcc_assert (!fixed_regs [REGNO (dest)]
1571 /* For the SPARC and its register window. */
1572 || (DWARF_FRAME_REGNUM (REGNO (src))
1573 == DWARF_FRAME_RETURN_COLUMN));
1574 queue_reg_save (label, src, dest, 0);
1575 }
1576 break;
1577
1578 case PLUS:
1579 case MINUS:
1580 case LO_SUM:
1581 if (dest == stack_pointer_rtx)
1582 {
1583 /* Rule 2 */
1584 /* Adjusting SP. */
1585 switch (GET_CODE (XEXP (src, 1)))
1586 {
1587 case CONST_INT:
1588 offset = INTVAL (XEXP (src, 1));
1589 break;
1590 case REG:
1591 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1592 == cfa_temp.reg);
1593 offset = cfa_temp.offset;
1594 break;
1595 default:
1596 gcc_unreachable ();
1597 }
1598
1599 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1600 {
1601 /* Restoring SP from FP in the epilogue. */
1602 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1603 cfa.reg = STACK_POINTER_REGNUM;
1604 }
1605 else if (GET_CODE (src) == LO_SUM)
1606 /* Assume we've set the source reg of the LO_SUM from sp. */
1607 ;
1608 else
1609 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1610
1611 if (GET_CODE (src) != MINUS)
1612 offset = -offset;
1613 if (cfa.reg == STACK_POINTER_REGNUM)
1614 cfa.offset += offset;
1615 if (cfa_store.reg == STACK_POINTER_REGNUM)
1616 cfa_store.offset += offset;
1617 }
1618 else if (dest == hard_frame_pointer_rtx)
1619 {
1620 /* Rule 3 */
1621 /* Either setting the FP from an offset of the SP,
1622 or adjusting the FP */
1623 gcc_assert (frame_pointer_needed);
1624
1625 gcc_assert (REG_P (XEXP (src, 0))
1626 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1627 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1628 offset = INTVAL (XEXP (src, 1));
1629 if (GET_CODE (src) != MINUS)
1630 offset = -offset;
1631 cfa.offset += offset;
1632 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1633 }
1634 else
1635 {
1636 gcc_assert (GET_CODE (src) != MINUS);
1637
1638 /* Rule 4 */
1639 if (REG_P (XEXP (src, 0))
1640 && REGNO (XEXP (src, 0)) == cfa.reg
1641 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1642 {
1643 /* Setting a temporary CFA register that will be copied
1644 into the FP later on. */
1645 offset = - INTVAL (XEXP (src, 1));
1646 cfa.offset += offset;
1647 cfa.reg = REGNO (dest);
1648 /* Or used to save regs to the stack. */
1649 cfa_temp.reg = cfa.reg;
1650 cfa_temp.offset = cfa.offset;
1651 }
1652
1653 /* Rule 5 */
1654 else if (REG_P (XEXP (src, 0))
1655 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1656 && XEXP (src, 1) == stack_pointer_rtx)
1657 {
1658 /* Setting a scratch register that we will use instead
1659 of SP for saving registers to the stack. */
1660 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1661 cfa_store.reg = REGNO (dest);
1662 cfa_store.offset = cfa.offset - cfa_temp.offset;
1663 }
1664
1665 /* Rule 9 */
1666 else if (GET_CODE (src) == LO_SUM
1667 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1668 {
1669 cfa_temp.reg = REGNO (dest);
1670 cfa_temp.offset = INTVAL (XEXP (src, 1));
1671 }
1672 else
1673 gcc_unreachable ();
1674 }
1675 break;
1676
1677 /* Rule 6 */
1678 case CONST_INT:
1679 cfa_temp.reg = REGNO (dest);
1680 cfa_temp.offset = INTVAL (src);
1681 break;
1682
1683 /* Rule 7 */
1684 case IOR:
1685 gcc_assert (REG_P (XEXP (src, 0))
1686 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1687 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1688
1689 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1690 cfa_temp.reg = REGNO (dest);
1691 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1692 break;
1693
1694 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1695 which will fill in all of the bits. */
1696 /* Rule 8 */
1697 case HIGH:
1698 break;
1699
1700 /* Rule 15 */
1701 case UNSPEC:
1702 case UNSPEC_VOLATILE:
1703 gcc_assert (targetm.dwarf_handle_frame_unspec);
1704 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1705 return;
1706
1707 default:
1708 gcc_unreachable ();
1709 }
1710
1711 def_cfa_1 (label, &cfa);
1712 break;
1713
1714 case MEM:
1715 gcc_assert (REG_P (src));
1716
1717 /* Saving a register to the stack. Make sure dest is relative to the
1718 CFA register. */
1719 switch (GET_CODE (XEXP (dest, 0)))
1720 {
1721 /* Rule 10 */
1722 /* With a push. */
1723 case PRE_MODIFY:
1724 /* We can't handle variable size modifications. */
1725 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1726 == CONST_INT);
1727 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1728
1729 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1730 && cfa_store.reg == STACK_POINTER_REGNUM);
1731
1732 cfa_store.offset += offset;
1733 if (cfa.reg == STACK_POINTER_REGNUM)
1734 cfa.offset = cfa_store.offset;
1735
1736 offset = -cfa_store.offset;
1737 break;
1738
1739 /* Rule 11 */
1740 case PRE_INC:
1741 case PRE_DEC:
1742 offset = GET_MODE_SIZE (GET_MODE (dest));
1743 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1744 offset = -offset;
1745
1746 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1747 && cfa_store.reg == STACK_POINTER_REGNUM);
1748
1749 cfa_store.offset += offset;
1750 if (cfa.reg == STACK_POINTER_REGNUM)
1751 cfa.offset = cfa_store.offset;
1752
1753 offset = -cfa_store.offset;
1754 break;
1755
1756 /* Rule 12 */
1757 /* With an offset. */
1758 case PLUS:
1759 case MINUS:
1760 case LO_SUM:
1761 {
1762 int regno;
1763
1764 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT
1765 && REG_P (XEXP (XEXP (dest, 0), 0)));
1766 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1767 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1768 offset = -offset;
1769
1770 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1771
1772 if (cfa_store.reg == (unsigned) regno)
1773 offset -= cfa_store.offset;
1774 else
1775 {
1776 gcc_assert (cfa_temp.reg == (unsigned) regno);
1777 offset -= cfa_temp.offset;
1778 }
1779 }
1780 break;
1781
1782 /* Rule 13 */
1783 /* Without an offset. */
1784 case REG:
1785 {
1786 int regno = REGNO (XEXP (dest, 0));
1787
1788 if (cfa_store.reg == (unsigned) regno)
1789 offset = -cfa_store.offset;
1790 else
1791 {
1792 gcc_assert (cfa_temp.reg == (unsigned) regno);
1793 offset = -cfa_temp.offset;
1794 }
1795 }
1796 break;
1797
1798 /* Rule 14 */
1799 case POST_INC:
1800 gcc_assert (cfa_temp.reg
1801 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1802 offset = -cfa_temp.offset;
1803 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1804 break;
1805
1806 default:
1807 gcc_unreachable ();
1808 }
1809
1810 if (REGNO (src) != STACK_POINTER_REGNUM
1811 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1812 && (unsigned) REGNO (src) == cfa.reg)
1813 {
1814 /* We're storing the current CFA reg into the stack. */
1815
1816 if (cfa.offset == 0)
1817 {
1818 /* If the source register is exactly the CFA, assume
1819 we're saving SP like any other register; this happens
1820 on the ARM. */
1821 def_cfa_1 (label, &cfa);
1822 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1823 break;
1824 }
1825 else
1826 {
1827 /* Otherwise, we'll need to look in the stack to
1828 calculate the CFA. */
1829 rtx x = XEXP (dest, 0);
1830
1831 if (!REG_P (x))
1832 x = XEXP (x, 0);
1833 gcc_assert (REG_P (x));
1834
1835 cfa.reg = REGNO (x);
1836 cfa.base_offset = offset;
1837 cfa.indirect = 1;
1838 def_cfa_1 (label, &cfa);
1839 break;
1840 }
1841 }
1842
1843 def_cfa_1 (label, &cfa);
1844 queue_reg_save (label, src, NULL_RTX, offset);
1845 break;
1846
1847 default:
1848 gcc_unreachable ();
1849 }
1850 }
1851
1852 /* Record call frame debugging information for INSN, which either
1853 sets SP or FP (adjusting how we calculate the frame address) or saves a
1854 register to the stack. If INSN is NULL_RTX, initialize our state.
1855
1856 If AFTER_P is false, we're being called before the insn is emitted,
1857 otherwise after. Call instructions get invoked twice. */
1858
1859 void
1860 dwarf2out_frame_debug (rtx insn, bool after_p)
1861 {
1862 const char *label;
1863 rtx src;
1864
1865 if (insn == NULL_RTX)
1866 {
1867 size_t i;
1868
1869 /* Flush any queued register saves. */
1870 flush_queued_reg_saves ();
1871
1872 /* Set up state for generating call frame debug info. */
1873 lookup_cfa (&cfa);
1874 gcc_assert (cfa.reg
1875 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1876
1877 cfa.reg = STACK_POINTER_REGNUM;
1878 cfa_store = cfa;
1879 cfa_temp.reg = -1;
1880 cfa_temp.offset = 0;
1881
1882 for (i = 0; i < num_regs_saved_in_regs; i++)
1883 {
1884 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1885 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1886 }
1887 num_regs_saved_in_regs = 0;
1888 return;
1889 }
1890
1891 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1892 flush_queued_reg_saves ();
1893
1894 if (! RTX_FRAME_RELATED_P (insn))
1895 {
1896 if (!ACCUMULATE_OUTGOING_ARGS)
1897 dwarf2out_stack_adjust (insn, after_p);
1898 return;
1899 }
1900
1901 label = dwarf2out_cfi_label ();
1902 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1903 if (src)
1904 insn = XEXP (src, 0);
1905 else
1906 insn = PATTERN (insn);
1907
1908 dwarf2out_frame_debug_expr (insn, label);
1909 }
1910
1911 #endif
1912
1913 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1914 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1915 (enum dwarf_call_frame_info cfi);
1916
1917 static enum dw_cfi_oprnd_type
1918 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1919 {
1920 switch (cfi)
1921 {
1922 case DW_CFA_nop:
1923 case DW_CFA_GNU_window_save:
1924 return dw_cfi_oprnd_unused;
1925
1926 case DW_CFA_set_loc:
1927 case DW_CFA_advance_loc1:
1928 case DW_CFA_advance_loc2:
1929 case DW_CFA_advance_loc4:
1930 case DW_CFA_MIPS_advance_loc8:
1931 return dw_cfi_oprnd_addr;
1932
1933 case DW_CFA_offset:
1934 case DW_CFA_offset_extended:
1935 case DW_CFA_def_cfa:
1936 case DW_CFA_offset_extended_sf:
1937 case DW_CFA_def_cfa_sf:
1938 case DW_CFA_restore_extended:
1939 case DW_CFA_undefined:
1940 case DW_CFA_same_value:
1941 case DW_CFA_def_cfa_register:
1942 case DW_CFA_register:
1943 return dw_cfi_oprnd_reg_num;
1944
1945 case DW_CFA_def_cfa_offset:
1946 case DW_CFA_GNU_args_size:
1947 case DW_CFA_def_cfa_offset_sf:
1948 return dw_cfi_oprnd_offset;
1949
1950 case DW_CFA_def_cfa_expression:
1951 case DW_CFA_expression:
1952 return dw_cfi_oprnd_loc;
1953
1954 default:
1955 gcc_unreachable ();
1956 }
1957 }
1958
1959 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1960 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1961 (enum dwarf_call_frame_info cfi);
1962
1963 static enum dw_cfi_oprnd_type
1964 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1965 {
1966 switch (cfi)
1967 {
1968 case DW_CFA_def_cfa:
1969 case DW_CFA_def_cfa_sf:
1970 case DW_CFA_offset:
1971 case DW_CFA_offset_extended_sf:
1972 case DW_CFA_offset_extended:
1973 return dw_cfi_oprnd_offset;
1974
1975 case DW_CFA_register:
1976 return dw_cfi_oprnd_reg_num;
1977
1978 default:
1979 return dw_cfi_oprnd_unused;
1980 }
1981 }
1982
1983 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1984
1985 /* Switch to eh_frame_section. If we don't have an eh_frame_section,
1986 switch to the data section instead, and write out a synthetic label
1987 for collect2. */
1988
1989 static void
1990 switch_to_eh_frame_section (void)
1991 {
1992 tree label;
1993
1994 #ifdef EH_FRAME_SECTION_NAME
1995 if (eh_frame_section == 0)
1996 {
1997 int flags;
1998
1999 if (EH_TABLES_CAN_BE_READ_ONLY)
2000 {
2001 int fde_encoding;
2002 int per_encoding;
2003 int lsda_encoding;
2004
2005 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
2006 /*global=*/0);
2007 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
2008 /*global=*/1);
2009 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
2010 /*global=*/0);
2011 flags = ((! flag_pic
2012 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
2013 && (fde_encoding & 0x70) != DW_EH_PE_aligned
2014 && (per_encoding & 0x70) != DW_EH_PE_absptr
2015 && (per_encoding & 0x70) != DW_EH_PE_aligned
2016 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
2017 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
2018 ? 0 : SECTION_WRITE);
2019 }
2020 else
2021 flags = SECTION_WRITE;
2022 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
2023 }
2024 #endif
2025
2026 if (eh_frame_section)
2027 switch_to_section (eh_frame_section);
2028 else
2029 {
2030 /* We have no special eh_frame section. Put the information in
2031 the data section and emit special labels to guide collect2. */
2032 switch_to_section (data_section);
2033 label = get_file_function_name ("F");
2034 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2035 targetm.asm_out.globalize_label (asm_out_file,
2036 IDENTIFIER_POINTER (label));
2037 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
2038 }
2039 }
2040
2041 /* Output a Call Frame Information opcode and its operand(s). */
2042
2043 static void
2044 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
2045 {
2046 unsigned long r;
2047 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
2048 dw2_asm_output_data (1, (cfi->dw_cfi_opc
2049 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
2050 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
2051 cfi->dw_cfi_oprnd1.dw_cfi_offset);
2052 else if (cfi->dw_cfi_opc == DW_CFA_offset)
2053 {
2054 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2055 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2056 "DW_CFA_offset, column 0x%lx", r);
2057 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2058 }
2059 else if (cfi->dw_cfi_opc == DW_CFA_restore)
2060 {
2061 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2062 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2063 "DW_CFA_restore, column 0x%lx", r);
2064 }
2065 else
2066 {
2067 dw2_asm_output_data (1, cfi->dw_cfi_opc,
2068 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
2069
2070 switch (cfi->dw_cfi_opc)
2071 {
2072 case DW_CFA_set_loc:
2073 if (for_eh)
2074 dw2_asm_output_encoded_addr_rtx (
2075 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
2076 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
2077 false, NULL);
2078 else
2079 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2080 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
2081 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2082 break;
2083
2084 case DW_CFA_advance_loc1:
2085 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2086 fde->dw_fde_current_label, NULL);
2087 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2088 break;
2089
2090 case DW_CFA_advance_loc2:
2091 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2092 fde->dw_fde_current_label, NULL);
2093 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2094 break;
2095
2096 case DW_CFA_advance_loc4:
2097 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2098 fde->dw_fde_current_label, NULL);
2099 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2100 break;
2101
2102 case DW_CFA_MIPS_advance_loc8:
2103 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2104 fde->dw_fde_current_label, NULL);
2105 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2106 break;
2107
2108 case DW_CFA_offset_extended:
2109 case DW_CFA_def_cfa:
2110 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2111 dw2_asm_output_data_uleb128 (r, NULL);
2112 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2113 break;
2114
2115 case DW_CFA_offset_extended_sf:
2116 case DW_CFA_def_cfa_sf:
2117 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2118 dw2_asm_output_data_uleb128 (r, NULL);
2119 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2120 break;
2121
2122 case DW_CFA_restore_extended:
2123 case DW_CFA_undefined:
2124 case DW_CFA_same_value:
2125 case DW_CFA_def_cfa_register:
2126 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2127 dw2_asm_output_data_uleb128 (r, NULL);
2128 break;
2129
2130 case DW_CFA_register:
2131 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2132 dw2_asm_output_data_uleb128 (r, NULL);
2133 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2134 dw2_asm_output_data_uleb128 (r, NULL);
2135 break;
2136
2137 case DW_CFA_def_cfa_offset:
2138 case DW_CFA_GNU_args_size:
2139 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2140 break;
2141
2142 case DW_CFA_def_cfa_offset_sf:
2143 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2144 break;
2145
2146 case DW_CFA_GNU_window_save:
2147 break;
2148
2149 case DW_CFA_def_cfa_expression:
2150 case DW_CFA_expression:
2151 output_cfa_loc (cfi);
2152 break;
2153
2154 case DW_CFA_GNU_negative_offset_extended:
2155 /* Obsoleted by DW_CFA_offset_extended_sf. */
2156 gcc_unreachable ();
2157
2158 default:
2159 break;
2160 }
2161 }
2162 }
2163
2164 /* Output the call frame information used to record information
2165 that relates to calculating the frame pointer, and records the
2166 location of saved registers. */
2167
2168 static void
2169 output_call_frame_info (int for_eh)
2170 {
2171 unsigned int i;
2172 dw_fde_ref fde;
2173 dw_cfi_ref cfi;
2174 char l1[20], l2[20], section_start_label[20];
2175 bool any_lsda_needed = false;
2176 char augmentation[6];
2177 int augmentation_size;
2178 int fde_encoding = DW_EH_PE_absptr;
2179 int per_encoding = DW_EH_PE_absptr;
2180 int lsda_encoding = DW_EH_PE_absptr;
2181 int return_reg;
2182
2183 /* Don't emit a CIE if there won't be any FDEs. */
2184 if (fde_table_in_use == 0)
2185 return;
2186
2187 /* If we make FDEs linkonce, we may have to emit an empty label for
2188 an FDE that wouldn't otherwise be emitted. We want to avoid
2189 having an FDE kept around when the function it refers to is
2190 discarded. Example where this matters: a primary function
2191 template in C++ requires EH information, but an explicit
2192 specialization doesn't. */
2193 if (TARGET_USES_WEAK_UNWIND_INFO
2194 && ! flag_asynchronous_unwind_tables
2195 && for_eh)
2196 for (i = 0; i < fde_table_in_use; i++)
2197 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2198 && !fde_table[i].uses_eh_lsda
2199 && ! DECL_WEAK (fde_table[i].decl))
2200 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2201 for_eh, /* empty */ 1);
2202
2203 /* If we don't have any functions we'll want to unwind out of, don't
2204 emit any EH unwind information. Note that if exceptions aren't
2205 enabled, we won't have collected nothrow information, and if we
2206 asked for asynchronous tables, we always want this info. */
2207 if (for_eh)
2208 {
2209 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2210
2211 for (i = 0; i < fde_table_in_use; i++)
2212 if (fde_table[i].uses_eh_lsda)
2213 any_eh_needed = any_lsda_needed = true;
2214 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2215 any_eh_needed = true;
2216 else if (! fde_table[i].nothrow
2217 && ! fde_table[i].all_throwers_are_sibcalls)
2218 any_eh_needed = true;
2219
2220 if (! any_eh_needed)
2221 return;
2222 }
2223
2224 /* We're going to be generating comments, so turn on app. */
2225 if (flag_debug_asm)
2226 app_enable ();
2227
2228 if (for_eh)
2229 switch_to_eh_frame_section ();
2230 else
2231 {
2232 if (!debug_frame_section)
2233 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
2234 SECTION_DEBUG, NULL);
2235 switch_to_section (debug_frame_section);
2236 }
2237
2238 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2239 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2240
2241 /* Output the CIE. */
2242 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2243 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2244 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2245 dw2_asm_output_data (4, 0xffffffff,
2246 "Initial length escape value indicating 64-bit DWARF extension");
2247 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2248 "Length of Common Information Entry");
2249 ASM_OUTPUT_LABEL (asm_out_file, l1);
2250
2251 /* Now that the CIE pointer is PC-relative for EH,
2252 use 0 to identify the CIE. */
2253 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2254 (for_eh ? 0 : DWARF_CIE_ID),
2255 "CIE Identifier Tag");
2256
2257 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2258
2259 augmentation[0] = 0;
2260 augmentation_size = 0;
2261 if (for_eh)
2262 {
2263 char *p;
2264
2265 /* Augmentation:
2266 z Indicates that a uleb128 is present to size the
2267 augmentation section.
2268 L Indicates the encoding (and thus presence) of
2269 an LSDA pointer in the FDE augmentation.
2270 R Indicates a non-default pointer encoding for
2271 FDE code pointers.
2272 P Indicates the presence of an encoding + language
2273 personality routine in the CIE augmentation. */
2274
2275 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2276 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2277 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2278
2279 p = augmentation + 1;
2280 if (eh_personality_libfunc)
2281 {
2282 *p++ = 'P';
2283 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2284 }
2285 if (any_lsda_needed)
2286 {
2287 *p++ = 'L';
2288 augmentation_size += 1;
2289 }
2290 if (fde_encoding != DW_EH_PE_absptr)
2291 {
2292 *p++ = 'R';
2293 augmentation_size += 1;
2294 }
2295 if (p > augmentation + 1)
2296 {
2297 augmentation[0] = 'z';
2298 *p = '\0';
2299 }
2300
2301 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2302 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2303 {
2304 int offset = ( 4 /* Length */
2305 + 4 /* CIE Id */
2306 + 1 /* CIE version */
2307 + strlen (augmentation) + 1 /* Augmentation */
2308 + size_of_uleb128 (1) /* Code alignment */
2309 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2310 + 1 /* RA column */
2311 + 1 /* Augmentation size */
2312 + 1 /* Personality encoding */ );
2313 int pad = -offset & (PTR_SIZE - 1);
2314
2315 augmentation_size += pad;
2316
2317 /* Augmentations should be small, so there's scarce need to
2318 iterate for a solution. Die if we exceed one uleb128 byte. */
2319 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2320 }
2321 }
2322
2323 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2324 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2325 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2326 "CIE Data Alignment Factor");
2327
2328 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
2329 if (DW_CIE_VERSION == 1)
2330 dw2_asm_output_data (1, return_reg, "CIE RA Column");
2331 else
2332 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
2333
2334 if (augmentation[0])
2335 {
2336 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2337 if (eh_personality_libfunc)
2338 {
2339 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2340 eh_data_format_name (per_encoding));
2341 dw2_asm_output_encoded_addr_rtx (per_encoding,
2342 eh_personality_libfunc,
2343 true, NULL);
2344 }
2345
2346 if (any_lsda_needed)
2347 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2348 eh_data_format_name (lsda_encoding));
2349
2350 if (fde_encoding != DW_EH_PE_absptr)
2351 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2352 eh_data_format_name (fde_encoding));
2353 }
2354
2355 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2356 output_cfi (cfi, NULL, for_eh);
2357
2358 /* Pad the CIE out to an address sized boundary. */
2359 ASM_OUTPUT_ALIGN (asm_out_file,
2360 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2361 ASM_OUTPUT_LABEL (asm_out_file, l2);
2362
2363 /* Loop through all of the FDE's. */
2364 for (i = 0; i < fde_table_in_use; i++)
2365 {
2366 fde = &fde_table[i];
2367
2368 /* Don't emit EH unwind info for leaf functions that don't need it. */
2369 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2370 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2371 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2372 && !fde->uses_eh_lsda)
2373 continue;
2374
2375 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2376 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2377 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2378 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2379 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2380 dw2_asm_output_data (4, 0xffffffff,
2381 "Initial length escape value indicating 64-bit DWARF extension");
2382 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2383 "FDE Length");
2384 ASM_OUTPUT_LABEL (asm_out_file, l1);
2385
2386 if (for_eh)
2387 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2388 else
2389 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2390 debug_frame_section, "FDE CIE offset");
2391
2392 if (for_eh)
2393 {
2394 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2395 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2396 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2397 sym_ref,
2398 false,
2399 "FDE initial location");
2400 if (fde->dw_fde_switched_sections)
2401 {
2402 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2403 fde->dw_fde_unlikely_section_label);
2404 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2405 fde->dw_fde_hot_section_label);
2406 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2407 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2408 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3, false,
2409 "FDE initial location");
2410 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2411 fde->dw_fde_hot_section_end_label,
2412 fde->dw_fde_hot_section_label,
2413 "FDE address range");
2414 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2, false,
2415 "FDE initial location");
2416 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2417 fde->dw_fde_unlikely_section_end_label,
2418 fde->dw_fde_unlikely_section_label,
2419 "FDE address range");
2420 }
2421 else
2422 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2423 fde->dw_fde_end, fde->dw_fde_begin,
2424 "FDE address range");
2425 }
2426 else
2427 {
2428 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2429 "FDE initial location");
2430 if (fde->dw_fde_switched_sections)
2431 {
2432 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2433 fde->dw_fde_hot_section_label,
2434 "FDE initial location");
2435 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2436 fde->dw_fde_hot_section_end_label,
2437 fde->dw_fde_hot_section_label,
2438 "FDE address range");
2439 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2440 fde->dw_fde_unlikely_section_label,
2441 "FDE initial location");
2442 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2443 fde->dw_fde_unlikely_section_end_label,
2444 fde->dw_fde_unlikely_section_label,
2445 "FDE address range");
2446 }
2447 else
2448 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2449 fde->dw_fde_end, fde->dw_fde_begin,
2450 "FDE address range");
2451 }
2452
2453 if (augmentation[0])
2454 {
2455 if (any_lsda_needed)
2456 {
2457 int size = size_of_encoded_value (lsda_encoding);
2458
2459 if (lsda_encoding == DW_EH_PE_aligned)
2460 {
2461 int offset = ( 4 /* Length */
2462 + 4 /* CIE offset */
2463 + 2 * size_of_encoded_value (fde_encoding)
2464 + 1 /* Augmentation size */ );
2465 int pad = -offset & (PTR_SIZE - 1);
2466
2467 size += pad;
2468 gcc_assert (size_of_uleb128 (size) == 1);
2469 }
2470
2471 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2472
2473 if (fde->uses_eh_lsda)
2474 {
2475 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2476 fde->funcdef_number);
2477 dw2_asm_output_encoded_addr_rtx (
2478 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2479 false, "Language Specific Data Area");
2480 }
2481 else
2482 {
2483 if (lsda_encoding == DW_EH_PE_aligned)
2484 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2485 dw2_asm_output_data
2486 (size_of_encoded_value (lsda_encoding), 0,
2487 "Language Specific Data Area (none)");
2488 }
2489 }
2490 else
2491 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2492 }
2493
2494 /* Loop through the Call Frame Instructions associated with
2495 this FDE. */
2496 fde->dw_fde_current_label = fde->dw_fde_begin;
2497 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2498 output_cfi (cfi, fde, for_eh);
2499
2500 /* Pad the FDE out to an address sized boundary. */
2501 ASM_OUTPUT_ALIGN (asm_out_file,
2502 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2503 ASM_OUTPUT_LABEL (asm_out_file, l2);
2504 }
2505
2506 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2507 dw2_asm_output_data (4, 0, "End of Table");
2508 #ifdef MIPS_DEBUGGING_INFO
2509 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2510 get a value of 0. Putting .align 0 after the label fixes it. */
2511 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2512 #endif
2513
2514 /* Turn off app to make assembly quicker. */
2515 if (flag_debug_asm)
2516 app_disable ();
2517 }
2518
2519 /* Output a marker (i.e. a label) for the beginning of a function, before
2520 the prologue. */
2521
2522 void
2523 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2524 const char *file ATTRIBUTE_UNUSED)
2525 {
2526 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2527 char * dup_label;
2528 dw_fde_ref fde;
2529
2530 current_function_func_begin_label = NULL;
2531
2532 #ifdef TARGET_UNWIND_INFO
2533 /* ??? current_function_func_begin_label is also used by except.c
2534 for call-site information. We must emit this label if it might
2535 be used. */
2536 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2537 && ! dwarf2out_do_frame ())
2538 return;
2539 #else
2540 if (! dwarf2out_do_frame ())
2541 return;
2542 #endif
2543
2544 switch_to_section (function_section (current_function_decl));
2545 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2546 current_function_funcdef_no);
2547 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2548 current_function_funcdef_no);
2549 dup_label = xstrdup (label);
2550 current_function_func_begin_label = dup_label;
2551
2552 #ifdef TARGET_UNWIND_INFO
2553 /* We can elide the fde allocation if we're not emitting debug info. */
2554 if (! dwarf2out_do_frame ())
2555 return;
2556 #endif
2557
2558 /* Expand the fde table if necessary. */
2559 if (fde_table_in_use == fde_table_allocated)
2560 {
2561 fde_table_allocated += FDE_TABLE_INCREMENT;
2562 fde_table = ggc_realloc (fde_table,
2563 fde_table_allocated * sizeof (dw_fde_node));
2564 memset (fde_table + fde_table_in_use, 0,
2565 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2566 }
2567
2568 /* Record the FDE associated with this function. */
2569 current_funcdef_fde = fde_table_in_use;
2570
2571 /* Add the new FDE at the end of the fde_table. */
2572 fde = &fde_table[fde_table_in_use++];
2573 fde->decl = current_function_decl;
2574 fde->dw_fde_begin = dup_label;
2575 fde->dw_fde_current_label = dup_label;
2576 fde->dw_fde_hot_section_label = NULL;
2577 fde->dw_fde_hot_section_end_label = NULL;
2578 fde->dw_fde_unlikely_section_label = NULL;
2579 fde->dw_fde_unlikely_section_end_label = NULL;
2580 fde->dw_fde_switched_sections = false;
2581 fde->dw_fde_end = NULL;
2582 fde->dw_fde_cfi = NULL;
2583 fde->funcdef_number = current_function_funcdef_no;
2584 fde->nothrow = TREE_NOTHROW (current_function_decl);
2585 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2586 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2587
2588 args_size = old_args_size = 0;
2589
2590 /* We only want to output line number information for the genuine dwarf2
2591 prologue case, not the eh frame case. */
2592 #ifdef DWARF2_DEBUGGING_INFO
2593 if (file)
2594 dwarf2out_source_line (line, file);
2595 #endif
2596 }
2597
2598 /* Output a marker (i.e. a label) for the absolute end of the generated code
2599 for a function definition. This gets called *after* the epilogue code has
2600 been generated. */
2601
2602 void
2603 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2604 const char *file ATTRIBUTE_UNUSED)
2605 {
2606 dw_fde_ref fde;
2607 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2608
2609 /* Output a label to mark the endpoint of the code generated for this
2610 function. */
2611 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2612 current_function_funcdef_no);
2613 ASM_OUTPUT_LABEL (asm_out_file, label);
2614 fde = &fde_table[fde_table_in_use - 1];
2615 fde->dw_fde_end = xstrdup (label);
2616 }
2617
2618 void
2619 dwarf2out_frame_init (void)
2620 {
2621 /* Allocate the initial hunk of the fde_table. */
2622 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2623 fde_table_allocated = FDE_TABLE_INCREMENT;
2624 fde_table_in_use = 0;
2625
2626 /* Generate the CFA instructions common to all FDE's. Do it now for the
2627 sake of lookup_cfa. */
2628
2629 /* On entry, the Canonical Frame Address is at SP. */
2630 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2631
2632 #ifdef DWARF2_UNWIND_INFO
2633 if (DWARF2_UNWIND_INFO)
2634 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2635 #endif
2636 }
2637
2638 void
2639 dwarf2out_frame_finish (void)
2640 {
2641 /* Output call frame information. */
2642 if (DWARF2_FRAME_INFO)
2643 output_call_frame_info (0);
2644
2645 #ifndef TARGET_UNWIND_INFO
2646 /* Output another copy for the unwinder. */
2647 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2648 output_call_frame_info (1);
2649 #endif
2650 }
2651 #endif
2652 \f
2653 /* And now, the subset of the debugging information support code necessary
2654 for emitting location expressions. */
2655
2656 /* Data about a single source file. */
2657 struct dwarf_file_data GTY(())
2658 {
2659 const char * filename;
2660 int emitted_number;
2661 };
2662
2663 /* We need some way to distinguish DW_OP_addr with a direct symbol
2664 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2665 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2666
2667
2668 typedef struct dw_val_struct *dw_val_ref;
2669 typedef struct die_struct *dw_die_ref;
2670 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2671 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2672
2673 /* Each DIE may have a series of attribute/value pairs. Values
2674 can take on several forms. The forms that are used in this
2675 implementation are listed below. */
2676
2677 enum dw_val_class
2678 {
2679 dw_val_class_addr,
2680 dw_val_class_offset,
2681 dw_val_class_loc,
2682 dw_val_class_loc_list,
2683 dw_val_class_range_list,
2684 dw_val_class_const,
2685 dw_val_class_unsigned_const,
2686 dw_val_class_long_long,
2687 dw_val_class_vec,
2688 dw_val_class_flag,
2689 dw_val_class_die_ref,
2690 dw_val_class_fde_ref,
2691 dw_val_class_lbl_id,
2692 dw_val_class_lineptr,
2693 dw_val_class_str,
2694 dw_val_class_macptr,
2695 dw_val_class_file
2696 };
2697
2698 /* Describe a double word constant value. */
2699 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2700
2701 typedef struct dw_long_long_struct GTY(())
2702 {
2703 unsigned long hi;
2704 unsigned long low;
2705 }
2706 dw_long_long_const;
2707
2708 /* Describe a floating point constant value, or a vector constant value. */
2709
2710 typedef struct dw_vec_struct GTY(())
2711 {
2712 unsigned char * GTY((length ("%h.length"))) array;
2713 unsigned length;
2714 unsigned elt_size;
2715 }
2716 dw_vec_const;
2717
2718 /* The dw_val_node describes an attribute's value, as it is
2719 represented internally. */
2720
2721 typedef struct dw_val_struct GTY(())
2722 {
2723 enum dw_val_class val_class;
2724 union dw_val_struct_union
2725 {
2726 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2727 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2728 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2729 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2730 HOST_WIDE_INT GTY ((default)) val_int;
2731 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2732 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2733 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2734 struct dw_val_die_union
2735 {
2736 dw_die_ref die;
2737 int external;
2738 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2739 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2740 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2741 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2742 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2743 struct dwarf_file_data * GTY ((tag ("dw_val_class_file"))) val_file;
2744 }
2745 GTY ((desc ("%1.val_class"))) v;
2746 }
2747 dw_val_node;
2748
2749 /* Locations in memory are described using a sequence of stack machine
2750 operations. */
2751
2752 typedef struct dw_loc_descr_struct GTY(())
2753 {
2754 dw_loc_descr_ref dw_loc_next;
2755 enum dwarf_location_atom dw_loc_opc;
2756 dw_val_node dw_loc_oprnd1;
2757 dw_val_node dw_loc_oprnd2;
2758 int dw_loc_addr;
2759 }
2760 dw_loc_descr_node;
2761
2762 /* Location lists are ranges + location descriptions for that range,
2763 so you can track variables that are in different places over
2764 their entire life. */
2765 typedef struct dw_loc_list_struct GTY(())
2766 {
2767 dw_loc_list_ref dw_loc_next;
2768 const char *begin; /* Label for begin address of range */
2769 const char *end; /* Label for end address of range */
2770 char *ll_symbol; /* Label for beginning of location list.
2771 Only on head of list */
2772 const char *section; /* Section this loclist is relative to */
2773 dw_loc_descr_ref expr;
2774 } dw_loc_list_node;
2775
2776 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2777
2778 static const char *dwarf_stack_op_name (unsigned);
2779 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2780 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2781 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2782 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2783 static unsigned long size_of_locs (dw_loc_descr_ref);
2784 static void output_loc_operands (dw_loc_descr_ref);
2785 static void output_loc_sequence (dw_loc_descr_ref);
2786
2787 /* Convert a DWARF stack opcode into its string name. */
2788
2789 static const char *
2790 dwarf_stack_op_name (unsigned int op)
2791 {
2792 switch (op)
2793 {
2794 case DW_OP_addr:
2795 case INTERNAL_DW_OP_tls_addr:
2796 return "DW_OP_addr";
2797 case DW_OP_deref:
2798 return "DW_OP_deref";
2799 case DW_OP_const1u:
2800 return "DW_OP_const1u";
2801 case DW_OP_const1s:
2802 return "DW_OP_const1s";
2803 case DW_OP_const2u:
2804 return "DW_OP_const2u";
2805 case DW_OP_const2s:
2806 return "DW_OP_const2s";
2807 case DW_OP_const4u:
2808 return "DW_OP_const4u";
2809 case DW_OP_const4s:
2810 return "DW_OP_const4s";
2811 case DW_OP_const8u:
2812 return "DW_OP_const8u";
2813 case DW_OP_const8s:
2814 return "DW_OP_const8s";
2815 case DW_OP_constu:
2816 return "DW_OP_constu";
2817 case DW_OP_consts:
2818 return "DW_OP_consts";
2819 case DW_OP_dup:
2820 return "DW_OP_dup";
2821 case DW_OP_drop:
2822 return "DW_OP_drop";
2823 case DW_OP_over:
2824 return "DW_OP_over";
2825 case DW_OP_pick:
2826 return "DW_OP_pick";
2827 case DW_OP_swap:
2828 return "DW_OP_swap";
2829 case DW_OP_rot:
2830 return "DW_OP_rot";
2831 case DW_OP_xderef:
2832 return "DW_OP_xderef";
2833 case DW_OP_abs:
2834 return "DW_OP_abs";
2835 case DW_OP_and:
2836 return "DW_OP_and";
2837 case DW_OP_div:
2838 return "DW_OP_div";
2839 case DW_OP_minus:
2840 return "DW_OP_minus";
2841 case DW_OP_mod:
2842 return "DW_OP_mod";
2843 case DW_OP_mul:
2844 return "DW_OP_mul";
2845 case DW_OP_neg:
2846 return "DW_OP_neg";
2847 case DW_OP_not:
2848 return "DW_OP_not";
2849 case DW_OP_or:
2850 return "DW_OP_or";
2851 case DW_OP_plus:
2852 return "DW_OP_plus";
2853 case DW_OP_plus_uconst:
2854 return "DW_OP_plus_uconst";
2855 case DW_OP_shl:
2856 return "DW_OP_shl";
2857 case DW_OP_shr:
2858 return "DW_OP_shr";
2859 case DW_OP_shra:
2860 return "DW_OP_shra";
2861 case DW_OP_xor:
2862 return "DW_OP_xor";
2863 case DW_OP_bra:
2864 return "DW_OP_bra";
2865 case DW_OP_eq:
2866 return "DW_OP_eq";
2867 case DW_OP_ge:
2868 return "DW_OP_ge";
2869 case DW_OP_gt:
2870 return "DW_OP_gt";
2871 case DW_OP_le:
2872 return "DW_OP_le";
2873 case DW_OP_lt:
2874 return "DW_OP_lt";
2875 case DW_OP_ne:
2876 return "DW_OP_ne";
2877 case DW_OP_skip:
2878 return "DW_OP_skip";
2879 case DW_OP_lit0:
2880 return "DW_OP_lit0";
2881 case DW_OP_lit1:
2882 return "DW_OP_lit1";
2883 case DW_OP_lit2:
2884 return "DW_OP_lit2";
2885 case DW_OP_lit3:
2886 return "DW_OP_lit3";
2887 case DW_OP_lit4:
2888 return "DW_OP_lit4";
2889 case DW_OP_lit5:
2890 return "DW_OP_lit5";
2891 case DW_OP_lit6:
2892 return "DW_OP_lit6";
2893 case DW_OP_lit7:
2894 return "DW_OP_lit7";
2895 case DW_OP_lit8:
2896 return "DW_OP_lit8";
2897 case DW_OP_lit9:
2898 return "DW_OP_lit9";
2899 case DW_OP_lit10:
2900 return "DW_OP_lit10";
2901 case DW_OP_lit11:
2902 return "DW_OP_lit11";
2903 case DW_OP_lit12:
2904 return "DW_OP_lit12";
2905 case DW_OP_lit13:
2906 return "DW_OP_lit13";
2907 case DW_OP_lit14:
2908 return "DW_OP_lit14";
2909 case DW_OP_lit15:
2910 return "DW_OP_lit15";
2911 case DW_OP_lit16:
2912 return "DW_OP_lit16";
2913 case DW_OP_lit17:
2914 return "DW_OP_lit17";
2915 case DW_OP_lit18:
2916 return "DW_OP_lit18";
2917 case DW_OP_lit19:
2918 return "DW_OP_lit19";
2919 case DW_OP_lit20:
2920 return "DW_OP_lit20";
2921 case DW_OP_lit21:
2922 return "DW_OP_lit21";
2923 case DW_OP_lit22:
2924 return "DW_OP_lit22";
2925 case DW_OP_lit23:
2926 return "DW_OP_lit23";
2927 case DW_OP_lit24:
2928 return "DW_OP_lit24";
2929 case DW_OP_lit25:
2930 return "DW_OP_lit25";
2931 case DW_OP_lit26:
2932 return "DW_OP_lit26";
2933 case DW_OP_lit27:
2934 return "DW_OP_lit27";
2935 case DW_OP_lit28:
2936 return "DW_OP_lit28";
2937 case DW_OP_lit29:
2938 return "DW_OP_lit29";
2939 case DW_OP_lit30:
2940 return "DW_OP_lit30";
2941 case DW_OP_lit31:
2942 return "DW_OP_lit31";
2943 case DW_OP_reg0:
2944 return "DW_OP_reg0";
2945 case DW_OP_reg1:
2946 return "DW_OP_reg1";
2947 case DW_OP_reg2:
2948 return "DW_OP_reg2";
2949 case DW_OP_reg3:
2950 return "DW_OP_reg3";
2951 case DW_OP_reg4:
2952 return "DW_OP_reg4";
2953 case DW_OP_reg5:
2954 return "DW_OP_reg5";
2955 case DW_OP_reg6:
2956 return "DW_OP_reg6";
2957 case DW_OP_reg7:
2958 return "DW_OP_reg7";
2959 case DW_OP_reg8:
2960 return "DW_OP_reg8";
2961 case DW_OP_reg9:
2962 return "DW_OP_reg9";
2963 case DW_OP_reg10:
2964 return "DW_OP_reg10";
2965 case DW_OP_reg11:
2966 return "DW_OP_reg11";
2967 case DW_OP_reg12:
2968 return "DW_OP_reg12";
2969 case DW_OP_reg13:
2970 return "DW_OP_reg13";
2971 case DW_OP_reg14:
2972 return "DW_OP_reg14";
2973 case DW_OP_reg15:
2974 return "DW_OP_reg15";
2975 case DW_OP_reg16:
2976 return "DW_OP_reg16";
2977 case DW_OP_reg17:
2978 return "DW_OP_reg17";
2979 case DW_OP_reg18:
2980 return "DW_OP_reg18";
2981 case DW_OP_reg19:
2982 return "DW_OP_reg19";
2983 case DW_OP_reg20:
2984 return "DW_OP_reg20";
2985 case DW_OP_reg21:
2986 return "DW_OP_reg21";
2987 case DW_OP_reg22:
2988 return "DW_OP_reg22";
2989 case DW_OP_reg23:
2990 return "DW_OP_reg23";
2991 case DW_OP_reg24:
2992 return "DW_OP_reg24";
2993 case DW_OP_reg25:
2994 return "DW_OP_reg25";
2995 case DW_OP_reg26:
2996 return "DW_OP_reg26";
2997 case DW_OP_reg27:
2998 return "DW_OP_reg27";
2999 case DW_OP_reg28:
3000 return "DW_OP_reg28";
3001 case DW_OP_reg29:
3002 return "DW_OP_reg29";
3003 case DW_OP_reg30:
3004 return "DW_OP_reg30";
3005 case DW_OP_reg31:
3006 return "DW_OP_reg31";
3007 case DW_OP_breg0:
3008 return "DW_OP_breg0";
3009 case DW_OP_breg1:
3010 return "DW_OP_breg1";
3011 case DW_OP_breg2:
3012 return "DW_OP_breg2";
3013 case DW_OP_breg3:
3014 return "DW_OP_breg3";
3015 case DW_OP_breg4:
3016 return "DW_OP_breg4";
3017 case DW_OP_breg5:
3018 return "DW_OP_breg5";
3019 case DW_OP_breg6:
3020 return "DW_OP_breg6";
3021 case DW_OP_breg7:
3022 return "DW_OP_breg7";
3023 case DW_OP_breg8:
3024 return "DW_OP_breg8";
3025 case DW_OP_breg9:
3026 return "DW_OP_breg9";
3027 case DW_OP_breg10:
3028 return "DW_OP_breg10";
3029 case DW_OP_breg11:
3030 return "DW_OP_breg11";
3031 case DW_OP_breg12:
3032 return "DW_OP_breg12";
3033 case DW_OP_breg13:
3034 return "DW_OP_breg13";
3035 case DW_OP_breg14:
3036 return "DW_OP_breg14";
3037 case DW_OP_breg15:
3038 return "DW_OP_breg15";
3039 case DW_OP_breg16:
3040 return "DW_OP_breg16";
3041 case DW_OP_breg17:
3042 return "DW_OP_breg17";
3043 case DW_OP_breg18:
3044 return "DW_OP_breg18";
3045 case DW_OP_breg19:
3046 return "DW_OP_breg19";
3047 case DW_OP_breg20:
3048 return "DW_OP_breg20";
3049 case DW_OP_breg21:
3050 return "DW_OP_breg21";
3051 case DW_OP_breg22:
3052 return "DW_OP_breg22";
3053 case DW_OP_breg23:
3054 return "DW_OP_breg23";
3055 case DW_OP_breg24:
3056 return "DW_OP_breg24";
3057 case DW_OP_breg25:
3058 return "DW_OP_breg25";
3059 case DW_OP_breg26:
3060 return "DW_OP_breg26";
3061 case DW_OP_breg27:
3062 return "DW_OP_breg27";
3063 case DW_OP_breg28:
3064 return "DW_OP_breg28";
3065 case DW_OP_breg29:
3066 return "DW_OP_breg29";
3067 case DW_OP_breg30:
3068 return "DW_OP_breg30";
3069 case DW_OP_breg31:
3070 return "DW_OP_breg31";
3071 case DW_OP_regx:
3072 return "DW_OP_regx";
3073 case DW_OP_fbreg:
3074 return "DW_OP_fbreg";
3075 case DW_OP_bregx:
3076 return "DW_OP_bregx";
3077 case DW_OP_piece:
3078 return "DW_OP_piece";
3079 case DW_OP_deref_size:
3080 return "DW_OP_deref_size";
3081 case DW_OP_xderef_size:
3082 return "DW_OP_xderef_size";
3083 case DW_OP_nop:
3084 return "DW_OP_nop";
3085 case DW_OP_push_object_address:
3086 return "DW_OP_push_object_address";
3087 case DW_OP_call2:
3088 return "DW_OP_call2";
3089 case DW_OP_call4:
3090 return "DW_OP_call4";
3091 case DW_OP_call_ref:
3092 return "DW_OP_call_ref";
3093 case DW_OP_GNU_push_tls_address:
3094 return "DW_OP_GNU_push_tls_address";
3095 default:
3096 return "OP_<unknown>";
3097 }
3098 }
3099
3100 /* Return a pointer to a newly allocated location description. Location
3101 descriptions are simple expression terms that can be strung
3102 together to form more complicated location (address) descriptions. */
3103
3104 static inline dw_loc_descr_ref
3105 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
3106 unsigned HOST_WIDE_INT oprnd2)
3107 {
3108 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
3109
3110 descr->dw_loc_opc = op;
3111 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
3112 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
3113 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
3114 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
3115
3116 return descr;
3117 }
3118
3119 /* Add a location description term to a location description expression. */
3120
3121 static inline void
3122 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
3123 {
3124 dw_loc_descr_ref *d;
3125
3126 /* Find the end of the chain. */
3127 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3128 ;
3129
3130 *d = descr;
3131 }
3132
3133 /* Return the size of a location descriptor. */
3134
3135 static unsigned long
3136 size_of_loc_descr (dw_loc_descr_ref loc)
3137 {
3138 unsigned long size = 1;
3139
3140 switch (loc->dw_loc_opc)
3141 {
3142 case DW_OP_addr:
3143 case INTERNAL_DW_OP_tls_addr:
3144 size += DWARF2_ADDR_SIZE;
3145 break;
3146 case DW_OP_const1u:
3147 case DW_OP_const1s:
3148 size += 1;
3149 break;
3150 case DW_OP_const2u:
3151 case DW_OP_const2s:
3152 size += 2;
3153 break;
3154 case DW_OP_const4u:
3155 case DW_OP_const4s:
3156 size += 4;
3157 break;
3158 case DW_OP_const8u:
3159 case DW_OP_const8s:
3160 size += 8;
3161 break;
3162 case DW_OP_constu:
3163 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3164 break;
3165 case DW_OP_consts:
3166 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3167 break;
3168 case DW_OP_pick:
3169 size += 1;
3170 break;
3171 case DW_OP_plus_uconst:
3172 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3173 break;
3174 case DW_OP_skip:
3175 case DW_OP_bra:
3176 size += 2;
3177 break;
3178 case DW_OP_breg0:
3179 case DW_OP_breg1:
3180 case DW_OP_breg2:
3181 case DW_OP_breg3:
3182 case DW_OP_breg4:
3183 case DW_OP_breg5:
3184 case DW_OP_breg6:
3185 case DW_OP_breg7:
3186 case DW_OP_breg8:
3187 case DW_OP_breg9:
3188 case DW_OP_breg10:
3189 case DW_OP_breg11:
3190 case DW_OP_breg12:
3191 case DW_OP_breg13:
3192 case DW_OP_breg14:
3193 case DW_OP_breg15:
3194 case DW_OP_breg16:
3195 case DW_OP_breg17:
3196 case DW_OP_breg18:
3197 case DW_OP_breg19:
3198 case DW_OP_breg20:
3199 case DW_OP_breg21:
3200 case DW_OP_breg22:
3201 case DW_OP_breg23:
3202 case DW_OP_breg24:
3203 case DW_OP_breg25:
3204 case DW_OP_breg26:
3205 case DW_OP_breg27:
3206 case DW_OP_breg28:
3207 case DW_OP_breg29:
3208 case DW_OP_breg30:
3209 case DW_OP_breg31:
3210 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3211 break;
3212 case DW_OP_regx:
3213 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3214 break;
3215 case DW_OP_fbreg:
3216 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3217 break;
3218 case DW_OP_bregx:
3219 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3220 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3221 break;
3222 case DW_OP_piece:
3223 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3224 break;
3225 case DW_OP_deref_size:
3226 case DW_OP_xderef_size:
3227 size += 1;
3228 break;
3229 case DW_OP_call2:
3230 size += 2;
3231 break;
3232 case DW_OP_call4:
3233 size += 4;
3234 break;
3235 case DW_OP_call_ref:
3236 size += DWARF2_ADDR_SIZE;
3237 break;
3238 default:
3239 break;
3240 }
3241
3242 return size;
3243 }
3244
3245 /* Return the size of a series of location descriptors. */
3246
3247 static unsigned long
3248 size_of_locs (dw_loc_descr_ref loc)
3249 {
3250 dw_loc_descr_ref l;
3251 unsigned long size;
3252
3253 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
3254 field, to avoid writing to a PCH file. */
3255 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3256 {
3257 if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
3258 break;
3259 size += size_of_loc_descr (l);
3260 }
3261 if (! l)
3262 return size;
3263
3264 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3265 {
3266 l->dw_loc_addr = size;
3267 size += size_of_loc_descr (l);
3268 }
3269
3270 return size;
3271 }
3272
3273 /* Output location description stack opcode's operands (if any). */
3274
3275 static void
3276 output_loc_operands (dw_loc_descr_ref loc)
3277 {
3278 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3279 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3280
3281 switch (loc->dw_loc_opc)
3282 {
3283 #ifdef DWARF2_DEBUGGING_INFO
3284 case DW_OP_addr:
3285 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3286 break;
3287 case DW_OP_const2u:
3288 case DW_OP_const2s:
3289 dw2_asm_output_data (2, val1->v.val_int, NULL);
3290 break;
3291 case DW_OP_const4u:
3292 case DW_OP_const4s:
3293 dw2_asm_output_data (4, val1->v.val_int, NULL);
3294 break;
3295 case DW_OP_const8u:
3296 case DW_OP_const8s:
3297 gcc_assert (HOST_BITS_PER_LONG >= 64);
3298 dw2_asm_output_data (8, val1->v.val_int, NULL);
3299 break;
3300 case DW_OP_skip:
3301 case DW_OP_bra:
3302 {
3303 int offset;
3304
3305 gcc_assert (val1->val_class == dw_val_class_loc);
3306 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3307
3308 dw2_asm_output_data (2, offset, NULL);
3309 }
3310 break;
3311 #else
3312 case DW_OP_addr:
3313 case DW_OP_const2u:
3314 case DW_OP_const2s:
3315 case DW_OP_const4u:
3316 case DW_OP_const4s:
3317 case DW_OP_const8u:
3318 case DW_OP_const8s:
3319 case DW_OP_skip:
3320 case DW_OP_bra:
3321 /* We currently don't make any attempt to make sure these are
3322 aligned properly like we do for the main unwind info, so
3323 don't support emitting things larger than a byte if we're
3324 only doing unwinding. */
3325 gcc_unreachable ();
3326 #endif
3327 case DW_OP_const1u:
3328 case DW_OP_const1s:
3329 dw2_asm_output_data (1, val1->v.val_int, NULL);
3330 break;
3331 case DW_OP_constu:
3332 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3333 break;
3334 case DW_OP_consts:
3335 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3336 break;
3337 case DW_OP_pick:
3338 dw2_asm_output_data (1, val1->v.val_int, NULL);
3339 break;
3340 case DW_OP_plus_uconst:
3341 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3342 break;
3343 case DW_OP_breg0:
3344 case DW_OP_breg1:
3345 case DW_OP_breg2:
3346 case DW_OP_breg3:
3347 case DW_OP_breg4:
3348 case DW_OP_breg5:
3349 case DW_OP_breg6:
3350 case DW_OP_breg7:
3351 case DW_OP_breg8:
3352 case DW_OP_breg9:
3353 case DW_OP_breg10:
3354 case DW_OP_breg11:
3355 case DW_OP_breg12:
3356 case DW_OP_breg13:
3357 case DW_OP_breg14:
3358 case DW_OP_breg15:
3359 case DW_OP_breg16:
3360 case DW_OP_breg17:
3361 case DW_OP_breg18:
3362 case DW_OP_breg19:
3363 case DW_OP_breg20:
3364 case DW_OP_breg21:
3365 case DW_OP_breg22:
3366 case DW_OP_breg23:
3367 case DW_OP_breg24:
3368 case DW_OP_breg25:
3369 case DW_OP_breg26:
3370 case DW_OP_breg27:
3371 case DW_OP_breg28:
3372 case DW_OP_breg29:
3373 case DW_OP_breg30:
3374 case DW_OP_breg31:
3375 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3376 break;
3377 case DW_OP_regx:
3378 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3379 break;
3380 case DW_OP_fbreg:
3381 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3382 break;
3383 case DW_OP_bregx:
3384 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3385 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3386 break;
3387 case DW_OP_piece:
3388 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3389 break;
3390 case DW_OP_deref_size:
3391 case DW_OP_xderef_size:
3392 dw2_asm_output_data (1, val1->v.val_int, NULL);
3393 break;
3394
3395 case INTERNAL_DW_OP_tls_addr:
3396 if (targetm.asm_out.output_dwarf_dtprel)
3397 {
3398 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3399 DWARF2_ADDR_SIZE,
3400 val1->v.val_addr);
3401 fputc ('\n', asm_out_file);
3402 }
3403 else
3404 gcc_unreachable ();
3405 break;
3406
3407 default:
3408 /* Other codes have no operands. */
3409 break;
3410 }
3411 }
3412
3413 /* Output a sequence of location operations. */
3414
3415 static void
3416 output_loc_sequence (dw_loc_descr_ref loc)
3417 {
3418 for (; loc != NULL; loc = loc->dw_loc_next)
3419 {
3420 /* Output the opcode. */
3421 dw2_asm_output_data (1, loc->dw_loc_opc,
3422 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3423
3424 /* Output the operand(s) (if any). */
3425 output_loc_operands (loc);
3426 }
3427 }
3428
3429 /* This routine will generate the correct assembly data for a location
3430 description based on a cfi entry with a complex address. */
3431
3432 static void
3433 output_cfa_loc (dw_cfi_ref cfi)
3434 {
3435 dw_loc_descr_ref loc;
3436 unsigned long size;
3437
3438 /* Output the size of the block. */
3439 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3440 size = size_of_locs (loc);
3441 dw2_asm_output_data_uleb128 (size, NULL);
3442
3443 /* Now output the operations themselves. */
3444 output_loc_sequence (loc);
3445 }
3446
3447 /* This function builds a dwarf location descriptor sequence from a
3448 dw_cfa_location, adding the given OFFSET to the result of the
3449 expression. */
3450
3451 static struct dw_loc_descr_struct *
3452 build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
3453 {
3454 struct dw_loc_descr_struct *head, *tmp;
3455
3456 offset += cfa->offset;
3457
3458 if (cfa->indirect)
3459 {
3460 if (cfa->base_offset)
3461 {
3462 if (cfa->reg <= 31)
3463 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3464 else
3465 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3466 }
3467 else if (cfa->reg <= 31)
3468 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3469 else
3470 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3471
3472 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3473 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3474 add_loc_descr (&head, tmp);
3475 if (offset != 0)
3476 {
3477 tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
3478 add_loc_descr (&head, tmp);
3479 }
3480 }
3481 else
3482 {
3483 if (offset == 0)
3484 if (cfa->reg <= 31)
3485 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3486 else
3487 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3488 else if (cfa->reg <= 31)
3489 head = new_loc_descr (DW_OP_breg0 + cfa->reg, offset, 0);
3490 else
3491 head = new_loc_descr (DW_OP_bregx, cfa->reg, offset);
3492 }
3493
3494 return head;
3495 }
3496
3497 /* This function fills in aa dw_cfa_location structure from a dwarf location
3498 descriptor sequence. */
3499
3500 static void
3501 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3502 {
3503 struct dw_loc_descr_struct *ptr;
3504 cfa->offset = 0;
3505 cfa->base_offset = 0;
3506 cfa->indirect = 0;
3507 cfa->reg = -1;
3508
3509 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3510 {
3511 enum dwarf_location_atom op = ptr->dw_loc_opc;
3512
3513 switch (op)
3514 {
3515 case DW_OP_reg0:
3516 case DW_OP_reg1:
3517 case DW_OP_reg2:
3518 case DW_OP_reg3:
3519 case DW_OP_reg4:
3520 case DW_OP_reg5:
3521 case DW_OP_reg6:
3522 case DW_OP_reg7:
3523 case DW_OP_reg8:
3524 case DW_OP_reg9:
3525 case DW_OP_reg10:
3526 case DW_OP_reg11:
3527 case DW_OP_reg12:
3528 case DW_OP_reg13:
3529 case DW_OP_reg14:
3530 case DW_OP_reg15:
3531 case DW_OP_reg16:
3532 case DW_OP_reg17:
3533 case DW_OP_reg18:
3534 case DW_OP_reg19:
3535 case DW_OP_reg20:
3536 case DW_OP_reg21:
3537 case DW_OP_reg22:
3538 case DW_OP_reg23:
3539 case DW_OP_reg24:
3540 case DW_OP_reg25:
3541 case DW_OP_reg26:
3542 case DW_OP_reg27:
3543 case DW_OP_reg28:
3544 case DW_OP_reg29:
3545 case DW_OP_reg30:
3546 case DW_OP_reg31:
3547 cfa->reg = op - DW_OP_reg0;
3548 break;
3549 case DW_OP_regx:
3550 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3551 break;
3552 case DW_OP_breg0:
3553 case DW_OP_breg1:
3554 case DW_OP_breg2:
3555 case DW_OP_breg3:
3556 case DW_OP_breg4:
3557 case DW_OP_breg5:
3558 case DW_OP_breg6:
3559 case DW_OP_breg7:
3560 case DW_OP_breg8:
3561 case DW_OP_breg9:
3562 case DW_OP_breg10:
3563 case DW_OP_breg11:
3564 case DW_OP_breg12:
3565 case DW_OP_breg13:
3566 case DW_OP_breg14:
3567 case DW_OP_breg15:
3568 case DW_OP_breg16:
3569 case DW_OP_breg17:
3570 case DW_OP_breg18:
3571 case DW_OP_breg19:
3572 case DW_OP_breg20:
3573 case DW_OP_breg21:
3574 case DW_OP_breg22:
3575 case DW_OP_breg23:
3576 case DW_OP_breg24:
3577 case DW_OP_breg25:
3578 case DW_OP_breg26:
3579 case DW_OP_breg27:
3580 case DW_OP_breg28:
3581 case DW_OP_breg29:
3582 case DW_OP_breg30:
3583 case DW_OP_breg31:
3584 cfa->reg = op - DW_OP_breg0;
3585 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3586 break;
3587 case DW_OP_bregx:
3588 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3589 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3590 break;
3591 case DW_OP_deref:
3592 cfa->indirect = 1;
3593 break;
3594 case DW_OP_plus_uconst:
3595 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3596 break;
3597 default:
3598 internal_error ("DW_LOC_OP %s not implemented",
3599 dwarf_stack_op_name (ptr->dw_loc_opc));
3600 }
3601 }
3602 }
3603 #endif /* .debug_frame support */
3604 \f
3605 /* And now, the support for symbolic debugging information. */
3606 #ifdef DWARF2_DEBUGGING_INFO
3607
3608 /* .debug_str support. */
3609 static int output_indirect_string (void **, void *);
3610
3611 static void dwarf2out_init (const char *);
3612 static void dwarf2out_finish (const char *);
3613 static void dwarf2out_define (unsigned int, const char *);
3614 static void dwarf2out_undef (unsigned int, const char *);
3615 static void dwarf2out_start_source_file (unsigned, const char *);
3616 static void dwarf2out_end_source_file (unsigned);
3617 static void dwarf2out_begin_block (unsigned, unsigned);
3618 static void dwarf2out_end_block (unsigned, unsigned);
3619 static bool dwarf2out_ignore_block (tree);
3620 static void dwarf2out_global_decl (tree);
3621 static void dwarf2out_type_decl (tree, int);
3622 static void dwarf2out_imported_module_or_decl (tree, tree);
3623 static void dwarf2out_abstract_function (tree);
3624 static void dwarf2out_var_location (rtx);
3625 static void dwarf2out_begin_function (tree);
3626 static void dwarf2out_switch_text_section (void);
3627
3628 /* The debug hooks structure. */
3629
3630 const struct gcc_debug_hooks dwarf2_debug_hooks =
3631 {
3632 dwarf2out_init,
3633 dwarf2out_finish,
3634 dwarf2out_define,
3635 dwarf2out_undef,
3636 dwarf2out_start_source_file,
3637 dwarf2out_end_source_file,
3638 dwarf2out_begin_block,
3639 dwarf2out_end_block,
3640 dwarf2out_ignore_block,
3641 dwarf2out_source_line,
3642 dwarf2out_begin_prologue,
3643 debug_nothing_int_charstar, /* end_prologue */
3644 dwarf2out_end_epilogue,
3645 dwarf2out_begin_function,
3646 debug_nothing_int, /* end_function */
3647 dwarf2out_decl, /* function_decl */
3648 dwarf2out_global_decl,
3649 dwarf2out_type_decl, /* type_decl */
3650 dwarf2out_imported_module_or_decl,
3651 debug_nothing_tree, /* deferred_inline_function */
3652 /* The DWARF 2 backend tries to reduce debugging bloat by not
3653 emitting the abstract description of inline functions until
3654 something tries to reference them. */
3655 dwarf2out_abstract_function, /* outlining_inline_function */
3656 debug_nothing_rtx, /* label */
3657 debug_nothing_int, /* handle_pch */
3658 dwarf2out_var_location,
3659 dwarf2out_switch_text_section,
3660 1 /* start_end_main_source_file */
3661 };
3662 #endif
3663 \f
3664 /* NOTE: In the comments in this file, many references are made to
3665 "Debugging Information Entries". This term is abbreviated as `DIE'
3666 throughout the remainder of this file. */
3667
3668 /* An internal representation of the DWARF output is built, and then
3669 walked to generate the DWARF debugging info. The walk of the internal
3670 representation is done after the entire program has been compiled.
3671 The types below are used to describe the internal representation. */
3672
3673 /* Various DIE's use offsets relative to the beginning of the
3674 .debug_info section to refer to each other. */
3675
3676 typedef long int dw_offset;
3677
3678 /* Define typedefs here to avoid circular dependencies. */
3679
3680 typedef struct dw_attr_struct *dw_attr_ref;
3681 typedef struct dw_line_info_struct *dw_line_info_ref;
3682 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3683 typedef struct pubname_struct *pubname_ref;
3684 typedef struct dw_ranges_struct *dw_ranges_ref;
3685
3686 /* Each entry in the line_info_table maintains the file and
3687 line number associated with the label generated for that
3688 entry. The label gives the PC value associated with
3689 the line number entry. */
3690
3691 typedef struct dw_line_info_struct GTY(())
3692 {
3693 unsigned long dw_file_num;
3694 unsigned long dw_line_num;
3695 }
3696 dw_line_info_entry;
3697
3698 /* Line information for functions in separate sections; each one gets its
3699 own sequence. */
3700 typedef struct dw_separate_line_info_struct GTY(())
3701 {
3702 unsigned long dw_file_num;
3703 unsigned long dw_line_num;
3704 unsigned long function;
3705 }
3706 dw_separate_line_info_entry;
3707
3708 /* Each DIE attribute has a field specifying the attribute kind,
3709 a link to the next attribute in the chain, and an attribute value.
3710 Attributes are typically linked below the DIE they modify. */
3711
3712 typedef struct dw_attr_struct GTY(())
3713 {
3714 enum dwarf_attribute dw_attr;
3715 dw_val_node dw_attr_val;
3716 }
3717 dw_attr_node;
3718
3719 DEF_VEC_O(dw_attr_node);
3720 DEF_VEC_ALLOC_O(dw_attr_node,gc);
3721
3722 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
3723 The children of each node form a circular list linked by
3724 die_sib. die_child points to the node *before* the "first" child node. */
3725
3726 typedef struct die_struct GTY(())
3727 {
3728 enum dwarf_tag die_tag;
3729 char *die_symbol;
3730 VEC(dw_attr_node,gc) * die_attr;
3731 dw_die_ref die_parent;
3732 dw_die_ref die_child;
3733 dw_die_ref die_sib;
3734 dw_die_ref die_definition; /* ref from a specification to its definition */
3735 dw_offset die_offset;
3736 unsigned long die_abbrev;
3737 int die_mark;
3738 /* Die is used and must not be pruned as unused. */
3739 int die_perennial_p;
3740 unsigned int decl_id;
3741 }
3742 die_node;
3743
3744 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
3745 #define FOR_EACH_CHILD(die, c, expr) do { \
3746 c = die->die_child; \
3747 if (c) do { \
3748 c = c->die_sib; \
3749 expr; \
3750 } while (c != die->die_child); \
3751 } while (0)
3752
3753 /* The pubname structure */
3754
3755 typedef struct pubname_struct GTY(())
3756 {
3757 dw_die_ref die;
3758 char *name;
3759 }
3760 pubname_entry;
3761
3762 struct dw_ranges_struct GTY(())
3763 {
3764 int block_num;
3765 };
3766
3767 /* The limbo die list structure. */
3768 typedef struct limbo_die_struct GTY(())
3769 {
3770 dw_die_ref die;
3771 tree created_for;
3772 struct limbo_die_struct *next;
3773 }
3774 limbo_die_node;
3775
3776 /* How to start an assembler comment. */
3777 #ifndef ASM_COMMENT_START
3778 #define ASM_COMMENT_START ";#"
3779 #endif
3780
3781 /* Define a macro which returns nonzero for a TYPE_DECL which was
3782 implicitly generated for a tagged type.
3783
3784 Note that unlike the gcc front end (which generates a NULL named
3785 TYPE_DECL node for each complete tagged type, each array type, and
3786 each function type node created) the g++ front end generates a
3787 _named_ TYPE_DECL node for each tagged type node created.
3788 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3789 generate a DW_TAG_typedef DIE for them. */
3790
3791 #define TYPE_DECL_IS_STUB(decl) \
3792 (DECL_NAME (decl) == NULL_TREE \
3793 || (DECL_ARTIFICIAL (decl) \
3794 && is_tagged_type (TREE_TYPE (decl)) \
3795 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3796 /* This is necessary for stub decls that \
3797 appear in nested inline functions. */ \
3798 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3799 && (decl_ultimate_origin (decl) \
3800 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3801
3802 /* Information concerning the compilation unit's programming
3803 language, and compiler version. */
3804
3805 /* Fixed size portion of the DWARF compilation unit header. */
3806 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3807 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3808
3809 /* Fixed size portion of public names info. */
3810 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3811
3812 /* Fixed size portion of the address range info. */
3813 #define DWARF_ARANGES_HEADER_SIZE \
3814 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3815 DWARF2_ADDR_SIZE * 2) \
3816 - DWARF_INITIAL_LENGTH_SIZE)
3817
3818 /* Size of padding portion in the address range info. It must be
3819 aligned to twice the pointer size. */
3820 #define DWARF_ARANGES_PAD_SIZE \
3821 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3822 DWARF2_ADDR_SIZE * 2) \
3823 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3824
3825 /* Use assembler line directives if available. */
3826 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3827 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3828 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3829 #else
3830 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3831 #endif
3832 #endif
3833
3834 /* Minimum line offset in a special line info. opcode.
3835 This value was chosen to give a reasonable range of values. */
3836 #define DWARF_LINE_BASE -10
3837
3838 /* First special line opcode - leave room for the standard opcodes. */
3839 #define DWARF_LINE_OPCODE_BASE 10
3840
3841 /* Range of line offsets in a special line info. opcode. */
3842 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3843
3844 /* Flag that indicates the initial value of the is_stmt_start flag.
3845 In the present implementation, we do not mark any lines as
3846 the beginning of a source statement, because that information
3847 is not made available by the GCC front-end. */
3848 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3849
3850 #ifdef DWARF2_DEBUGGING_INFO
3851 /* This location is used by calc_die_sizes() to keep track
3852 the offset of each DIE within the .debug_info section. */
3853 static unsigned long next_die_offset;
3854 #endif
3855
3856 /* Record the root of the DIE's built for the current compilation unit. */
3857 static GTY(()) dw_die_ref comp_unit_die;
3858
3859 /* A list of DIEs with a NULL parent waiting to be relocated. */
3860 static GTY(()) limbo_die_node *limbo_die_list;
3861
3862 /* Filenames referenced by this compilation unit. */
3863 static GTY((param_is (struct dwarf_file_data))) htab_t file_table;
3864
3865 /* A hash table of references to DIE's that describe declarations.
3866 The key is a DECL_UID() which is a unique number identifying each decl. */
3867 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3868
3869 /* Node of the variable location list. */
3870 struct var_loc_node GTY ((chain_next ("%h.next")))
3871 {
3872 rtx GTY (()) var_loc_note;
3873 const char * GTY (()) label;
3874 const char * GTY (()) section_label;
3875 struct var_loc_node * GTY (()) next;
3876 };
3877
3878 /* Variable location list. */
3879 struct var_loc_list_def GTY (())
3880 {
3881 struct var_loc_node * GTY (()) first;
3882
3883 /* Do not mark the last element of the chained list because
3884 it is marked through the chain. */
3885 struct var_loc_node * GTY ((skip ("%h"))) last;
3886
3887 /* DECL_UID of the variable decl. */
3888 unsigned int decl_id;
3889 };
3890 typedef struct var_loc_list_def var_loc_list;
3891
3892
3893 /* Table of decl location linked lists. */
3894 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3895
3896 /* A pointer to the base of a list of references to DIE's that
3897 are uniquely identified by their tag, presence/absence of
3898 children DIE's, and list of attribute/value pairs. */
3899 static GTY((length ("abbrev_die_table_allocated")))
3900 dw_die_ref *abbrev_die_table;
3901
3902 /* Number of elements currently allocated for abbrev_die_table. */
3903 static GTY(()) unsigned abbrev_die_table_allocated;
3904
3905 /* Number of elements in type_die_table currently in use. */
3906 static GTY(()) unsigned abbrev_die_table_in_use;
3907
3908 /* Size (in elements) of increments by which we may expand the
3909 abbrev_die_table. */
3910 #define ABBREV_DIE_TABLE_INCREMENT 256
3911
3912 /* A pointer to the base of a table that contains line information
3913 for each source code line in .text in the compilation unit. */
3914 static GTY((length ("line_info_table_allocated")))
3915 dw_line_info_ref line_info_table;
3916
3917 /* Number of elements currently allocated for line_info_table. */
3918 static GTY(()) unsigned line_info_table_allocated;
3919
3920 /* Number of elements in line_info_table currently in use. */
3921 static GTY(()) unsigned line_info_table_in_use;
3922
3923 /* True if the compilation unit places functions in more than one section. */
3924 static GTY(()) bool have_multiple_function_sections = false;
3925
3926 /* A pointer to the base of a table that contains line information
3927 for each source code line outside of .text in the compilation unit. */
3928 static GTY ((length ("separate_line_info_table_allocated")))
3929 dw_separate_line_info_ref separate_line_info_table;
3930
3931 /* Number of elements currently allocated for separate_line_info_table. */
3932 static GTY(()) unsigned separate_line_info_table_allocated;
3933
3934 /* Number of elements in separate_line_info_table currently in use. */
3935 static GTY(()) unsigned separate_line_info_table_in_use;
3936
3937 /* Size (in elements) of increments by which we may expand the
3938 line_info_table. */
3939 #define LINE_INFO_TABLE_INCREMENT 1024
3940
3941 /* A pointer to the base of a table that contains a list of publicly
3942 accessible names. */
3943 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3944
3945 /* Number of elements currently allocated for pubname_table. */
3946 static GTY(()) unsigned pubname_table_allocated;
3947
3948 /* Number of elements in pubname_table currently in use. */
3949 static GTY(()) unsigned pubname_table_in_use;
3950
3951 /* Size (in elements) of increments by which we may expand the
3952 pubname_table. */
3953 #define PUBNAME_TABLE_INCREMENT 64
3954
3955 /* Array of dies for which we should generate .debug_arange info. */
3956 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3957
3958 /* Number of elements currently allocated for arange_table. */
3959 static GTY(()) unsigned arange_table_allocated;
3960
3961 /* Number of elements in arange_table currently in use. */
3962 static GTY(()) unsigned arange_table_in_use;
3963
3964 /* Size (in elements) of increments by which we may expand the
3965 arange_table. */
3966 #define ARANGE_TABLE_INCREMENT 64
3967
3968 /* Array of dies for which we should generate .debug_ranges info. */
3969 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3970
3971 /* Number of elements currently allocated for ranges_table. */
3972 static GTY(()) unsigned ranges_table_allocated;
3973
3974 /* Number of elements in ranges_table currently in use. */
3975 static GTY(()) unsigned ranges_table_in_use;
3976
3977 /* Size (in elements) of increments by which we may expand the
3978 ranges_table. */
3979 #define RANGES_TABLE_INCREMENT 64
3980
3981 /* Whether we have location lists that need outputting */
3982 static GTY(()) bool have_location_lists;
3983
3984 /* Unique label counter. */
3985 static GTY(()) unsigned int loclabel_num;
3986
3987 #ifdef DWARF2_DEBUGGING_INFO
3988 /* Record whether the function being analyzed contains inlined functions. */
3989 static int current_function_has_inlines;
3990 #endif
3991 #if 0 && defined (MIPS_DEBUGGING_INFO)
3992 static int comp_unit_has_inlines;
3993 #endif
3994
3995 /* The last file entry emitted by maybe_emit_file(). */
3996 static GTY(()) struct dwarf_file_data * last_emitted_file;
3997
3998 /* Number of internal labels generated by gen_internal_sym(). */
3999 static GTY(()) int label_num;
4000
4001 /* Cached result of previous call to lookup_filename. */
4002 static GTY(()) struct dwarf_file_data * file_table_last_lookup;
4003
4004 #ifdef DWARF2_DEBUGGING_INFO
4005
4006 /* Offset from the "steady-state frame pointer" to the frame base,
4007 within the current function. */
4008 static HOST_WIDE_INT frame_pointer_fb_offset;
4009
4010 /* Forward declarations for functions defined in this file. */
4011
4012 static int is_pseudo_reg (rtx);
4013 static tree type_main_variant (tree);
4014 static int is_tagged_type (tree);
4015 static const char *dwarf_tag_name (unsigned);
4016 static const char *dwarf_attr_name (unsigned);
4017 static const char *dwarf_form_name (unsigned);
4018 static tree decl_ultimate_origin (tree);
4019 static tree block_ultimate_origin (tree);
4020 static tree decl_class_context (tree);
4021 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
4022 static inline enum dw_val_class AT_class (dw_attr_ref);
4023 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
4024 static inline unsigned AT_flag (dw_attr_ref);
4025 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
4026 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
4027 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
4028 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
4029 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
4030 unsigned long);
4031 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
4032 unsigned int, unsigned char *);
4033 static hashval_t debug_str_do_hash (const void *);
4034 static int debug_str_eq (const void *, const void *);
4035 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
4036 static inline const char *AT_string (dw_attr_ref);
4037 static int AT_string_form (dw_attr_ref);
4038 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
4039 static void add_AT_specification (dw_die_ref, dw_die_ref);
4040 static inline dw_die_ref AT_ref (dw_attr_ref);
4041 static inline int AT_ref_external (dw_attr_ref);
4042 static inline void set_AT_ref_external (dw_attr_ref, int);
4043 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
4044 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
4045 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
4046 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
4047 dw_loc_list_ref);
4048 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
4049 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
4050 static inline rtx AT_addr (dw_attr_ref);
4051 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
4052 static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
4053 static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
4054 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
4055 unsigned HOST_WIDE_INT);
4056 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
4057 unsigned long);
4058 static inline const char *AT_lbl (dw_attr_ref);
4059 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
4060 static const char *get_AT_low_pc (dw_die_ref);
4061 static const char *get_AT_hi_pc (dw_die_ref);
4062 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
4063 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
4064 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
4065 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
4066 static bool is_c_family (void);
4067 static bool is_cxx (void);
4068 static bool is_java (void);
4069 static bool is_fortran (void);
4070 static bool is_ada (void);
4071 static void remove_AT (dw_die_ref, enum dwarf_attribute);
4072 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
4073 static void add_child_die (dw_die_ref, dw_die_ref);
4074 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
4075 static dw_die_ref lookup_type_die (tree);
4076 static void equate_type_number_to_die (tree, dw_die_ref);
4077 static hashval_t decl_die_table_hash (const void *);
4078 static int decl_die_table_eq (const void *, const void *);
4079 static dw_die_ref lookup_decl_die (tree);
4080 static hashval_t decl_loc_table_hash (const void *);
4081 static int decl_loc_table_eq (const void *, const void *);
4082 static var_loc_list *lookup_decl_loc (tree);
4083 static void equate_decl_number_to_die (tree, dw_die_ref);
4084 static void add_var_loc_to_decl (tree, struct var_loc_node *);
4085 static void print_spaces (FILE *);
4086 static void print_die (dw_die_ref, FILE *);
4087 static void print_dwarf_line_table (FILE *);
4088 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
4089 static dw_die_ref pop_compile_unit (dw_die_ref);
4090 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
4091 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
4092 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
4093 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
4094 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
4095 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
4096 static int same_die_p (dw_die_ref, dw_die_ref, int *);
4097 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
4098 static void compute_section_prefix (dw_die_ref);
4099 static int is_type_die (dw_die_ref);
4100 static int is_comdat_die (dw_die_ref);
4101 static int is_symbol_die (dw_die_ref);
4102 static void assign_symbol_names (dw_die_ref);
4103 static void break_out_includes (dw_die_ref);
4104 static hashval_t htab_cu_hash (const void *);
4105 static int htab_cu_eq (const void *, const void *);
4106 static void htab_cu_del (void *);
4107 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
4108 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
4109 static void add_sibling_attributes (dw_die_ref);
4110 static void build_abbrev_table (dw_die_ref);
4111 static void output_location_lists (dw_die_ref);
4112 static int constant_size (long unsigned);
4113 static unsigned long size_of_die (dw_die_ref);
4114 static void calc_die_sizes (dw_die_ref);
4115 static void mark_dies (dw_die_ref);
4116 static void unmark_dies (dw_die_ref);
4117 static void unmark_all_dies (dw_die_ref);
4118 static unsigned long size_of_pubnames (void);
4119 static unsigned long size_of_aranges (void);
4120 static enum dwarf_form value_format (dw_attr_ref);
4121 static void output_value_format (dw_attr_ref);
4122 static void output_abbrev_section (void);
4123 static void output_die_symbol (dw_die_ref);
4124 static void output_die (dw_die_ref);
4125 static void output_compilation_unit_header (void);
4126 static void output_comp_unit (dw_die_ref, int);
4127 static const char *dwarf2_name (tree, int);
4128 static void add_pubname (tree, dw_die_ref);
4129 static void output_pubnames (void);
4130 static void add_arange (tree, dw_die_ref);
4131 static void output_aranges (void);
4132 static unsigned int add_ranges (tree);
4133 static void output_ranges (void);
4134 static void output_line_info (void);
4135 static void output_file_names (void);
4136 static dw_die_ref base_type_die (tree);
4137 static tree root_type (tree);
4138 static int is_base_type (tree);
4139 static bool is_subrange_type (tree);
4140 static dw_die_ref subrange_type_die (tree, dw_die_ref);
4141 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
4142 static int type_is_enum (tree);
4143 static unsigned int dbx_reg_number (rtx);
4144 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
4145 static dw_loc_descr_ref reg_loc_descriptor (rtx);
4146 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
4147 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
4148 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
4149 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT);
4150 static int is_based_loc (rtx);
4151 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
4152 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
4153 static dw_loc_descr_ref loc_descriptor (rtx);
4154 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
4155 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
4156 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
4157 static tree field_type (tree);
4158 static unsigned int simple_type_align_in_bits (tree);
4159 static unsigned int simple_decl_align_in_bits (tree);
4160 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
4161 static HOST_WIDE_INT field_byte_offset (tree);
4162 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
4163 dw_loc_descr_ref);
4164 static void add_data_member_location_attribute (dw_die_ref, tree);
4165 static void add_const_value_attribute (dw_die_ref, rtx);
4166 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
4167 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4168 static void insert_float (rtx, unsigned char *);
4169 static rtx rtl_for_decl_location (tree);
4170 static void add_location_or_const_value_attribute (dw_die_ref, tree,
4171 enum dwarf_attribute);
4172 static void tree_add_const_value_attribute (dw_die_ref, tree);
4173 static void add_name_attribute (dw_die_ref, const char *);
4174 static void add_comp_dir_attribute (dw_die_ref);
4175 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4176 static void add_subscript_info (dw_die_ref, tree);
4177 static void add_byte_size_attribute (dw_die_ref, tree);
4178 static void add_bit_offset_attribute (dw_die_ref, tree);
4179 static void add_bit_size_attribute (dw_die_ref, tree);
4180 static void add_prototyped_attribute (dw_die_ref, tree);
4181 static void add_abstract_origin_attribute (dw_die_ref, tree);
4182 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4183 static void add_src_coords_attributes (dw_die_ref, tree);
4184 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4185 static void push_decl_scope (tree);
4186 static void pop_decl_scope (void);
4187 static dw_die_ref scope_die_for (tree, dw_die_ref);
4188 static inline int local_scope_p (dw_die_ref);
4189 static inline int class_or_namespace_scope_p (dw_die_ref);
4190 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4191 static void add_calling_convention_attribute (dw_die_ref, tree);
4192 static const char *type_tag (tree);
4193 static tree member_declared_type (tree);
4194 #if 0
4195 static const char *decl_start_label (tree);
4196 #endif
4197 static void gen_array_type_die (tree, dw_die_ref);
4198 #if 0
4199 static void gen_entry_point_die (tree, dw_die_ref);
4200 #endif
4201 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4202 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4203 static void gen_inlined_union_type_die (tree, dw_die_ref);
4204 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4205 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4206 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4207 static void gen_formal_types_die (tree, dw_die_ref);
4208 static void gen_subprogram_die (tree, dw_die_ref);
4209 static void gen_variable_die (tree, dw_die_ref);
4210 static void gen_label_die (tree, dw_die_ref);
4211 static void gen_lexical_block_die (tree, dw_die_ref, int);
4212 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4213 static void gen_field_die (tree, dw_die_ref);
4214 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4215 static dw_die_ref gen_compile_unit_die (const char *);
4216 static void gen_inheritance_die (tree, tree, dw_die_ref);
4217 static void gen_member_die (tree, dw_die_ref);
4218 static void gen_struct_or_union_type_die (tree, dw_die_ref);
4219 static void gen_subroutine_type_die (tree, dw_die_ref);
4220 static void gen_typedef_die (tree, dw_die_ref);
4221 static void gen_type_die (tree, dw_die_ref);
4222 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4223 static void gen_block_die (tree, dw_die_ref, int);
4224 static void decls_for_scope (tree, dw_die_ref, int);
4225 static int is_redundant_typedef (tree);
4226 static void gen_namespace_die (tree);
4227 static void gen_decl_die (tree, dw_die_ref);
4228 static dw_die_ref force_decl_die (tree);
4229 static dw_die_ref force_type_die (tree);
4230 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4231 static void declare_in_namespace (tree, dw_die_ref);
4232 static struct dwarf_file_data * lookup_filename (const char *);
4233 static void retry_incomplete_types (void);
4234 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4235 static void splice_child_die (dw_die_ref, dw_die_ref);
4236 static int file_info_cmp (const void *, const void *);
4237 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4238 const char *, const char *, unsigned);
4239 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4240 const char *, const char *,
4241 const char *);
4242 static void output_loc_list (dw_loc_list_ref);
4243 static char *gen_internal_sym (const char *);
4244
4245 static void prune_unmark_dies (dw_die_ref);
4246 static void prune_unused_types_mark (dw_die_ref, int);
4247 static void prune_unused_types_walk (dw_die_ref);
4248 static void prune_unused_types_walk_attribs (dw_die_ref);
4249 static void prune_unused_types_prune (dw_die_ref);
4250 static void prune_unused_types (void);
4251 static int maybe_emit_file (struct dwarf_file_data *fd);
4252
4253 /* Section names used to hold DWARF debugging information. */
4254 #ifndef DEBUG_INFO_SECTION
4255 #define DEBUG_INFO_SECTION ".debug_info"
4256 #endif
4257 #ifndef DEBUG_ABBREV_SECTION
4258 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4259 #endif
4260 #ifndef DEBUG_ARANGES_SECTION
4261 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4262 #endif
4263 #ifndef DEBUG_MACINFO_SECTION
4264 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4265 #endif
4266 #ifndef DEBUG_LINE_SECTION
4267 #define DEBUG_LINE_SECTION ".debug_line"
4268 #endif
4269 #ifndef DEBUG_LOC_SECTION
4270 #define DEBUG_LOC_SECTION ".debug_loc"
4271 #endif
4272 #ifndef DEBUG_PUBNAMES_SECTION
4273 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4274 #endif
4275 #ifndef DEBUG_STR_SECTION
4276 #define DEBUG_STR_SECTION ".debug_str"
4277 #endif
4278 #ifndef DEBUG_RANGES_SECTION
4279 #define DEBUG_RANGES_SECTION ".debug_ranges"
4280 #endif
4281
4282 /* Standard ELF section names for compiled code and data. */
4283 #ifndef TEXT_SECTION_NAME
4284 #define TEXT_SECTION_NAME ".text"
4285 #endif
4286
4287 /* Section flags for .debug_str section. */
4288 #define DEBUG_STR_SECTION_FLAGS \
4289 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4290 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4291 : SECTION_DEBUG)
4292
4293 /* Labels we insert at beginning sections we can reference instead of
4294 the section names themselves. */
4295
4296 #ifndef TEXT_SECTION_LABEL
4297 #define TEXT_SECTION_LABEL "Ltext"
4298 #endif
4299 #ifndef COLD_TEXT_SECTION_LABEL
4300 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4301 #endif
4302 #ifndef DEBUG_LINE_SECTION_LABEL
4303 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4304 #endif
4305 #ifndef DEBUG_INFO_SECTION_LABEL
4306 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4307 #endif
4308 #ifndef DEBUG_ABBREV_SECTION_LABEL
4309 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4310 #endif
4311 #ifndef DEBUG_LOC_SECTION_LABEL
4312 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4313 #endif
4314 #ifndef DEBUG_RANGES_SECTION_LABEL
4315 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4316 #endif
4317 #ifndef DEBUG_MACINFO_SECTION_LABEL
4318 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4319 #endif
4320
4321 /* Definitions of defaults for formats and names of various special
4322 (artificial) labels which may be generated within this file (when the -g
4323 options is used and DWARF2_DEBUGGING_INFO is in effect.
4324 If necessary, these may be overridden from within the tm.h file, but
4325 typically, overriding these defaults is unnecessary. */
4326
4327 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4328 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4329 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4330 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4331 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4332 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4333 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4334 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4335 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4336 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4337
4338 #ifndef TEXT_END_LABEL
4339 #define TEXT_END_LABEL "Letext"
4340 #endif
4341 #ifndef COLD_END_LABEL
4342 #define COLD_END_LABEL "Letext_cold"
4343 #endif
4344 #ifndef BLOCK_BEGIN_LABEL
4345 #define BLOCK_BEGIN_LABEL "LBB"
4346 #endif
4347 #ifndef BLOCK_END_LABEL
4348 #define BLOCK_END_LABEL "LBE"
4349 #endif
4350 #ifndef LINE_CODE_LABEL
4351 #define LINE_CODE_LABEL "LM"
4352 #endif
4353 #ifndef SEPARATE_LINE_CODE_LABEL
4354 #define SEPARATE_LINE_CODE_LABEL "LSM"
4355 #endif
4356 \f
4357 /* We allow a language front-end to designate a function that is to be
4358 called to "demangle" any name before it is put into a DIE. */
4359
4360 static const char *(*demangle_name_func) (const char *);
4361
4362 void
4363 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4364 {
4365 demangle_name_func = func;
4366 }
4367
4368 /* Test if rtl node points to a pseudo register. */
4369
4370 static inline int
4371 is_pseudo_reg (rtx rtl)
4372 {
4373 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4374 || (GET_CODE (rtl) == SUBREG
4375 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4376 }
4377
4378 /* Return a reference to a type, with its const and volatile qualifiers
4379 removed. */
4380
4381 static inline tree
4382 type_main_variant (tree type)
4383 {
4384 type = TYPE_MAIN_VARIANT (type);
4385
4386 /* ??? There really should be only one main variant among any group of
4387 variants of a given type (and all of the MAIN_VARIANT values for all
4388 members of the group should point to that one type) but sometimes the C
4389 front-end messes this up for array types, so we work around that bug
4390 here. */
4391 if (TREE_CODE (type) == ARRAY_TYPE)
4392 while (type != TYPE_MAIN_VARIANT (type))
4393 type = TYPE_MAIN_VARIANT (type);
4394
4395 return type;
4396 }
4397
4398 /* Return nonzero if the given type node represents a tagged type. */
4399
4400 static inline int
4401 is_tagged_type (tree type)
4402 {
4403 enum tree_code code = TREE_CODE (type);
4404
4405 return (code == RECORD_TYPE || code == UNION_TYPE
4406 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4407 }
4408
4409 /* Convert a DIE tag into its string name. */
4410
4411 static const char *
4412 dwarf_tag_name (unsigned int tag)
4413 {
4414 switch (tag)
4415 {
4416 case DW_TAG_padding:
4417 return "DW_TAG_padding";
4418 case DW_TAG_array_type:
4419 return "DW_TAG_array_type";
4420 case DW_TAG_class_type:
4421 return "DW_TAG_class_type";
4422 case DW_TAG_entry_point:
4423 return "DW_TAG_entry_point";
4424 case DW_TAG_enumeration_type:
4425 return "DW_TAG_enumeration_type";
4426 case DW_TAG_formal_parameter:
4427 return "DW_TAG_formal_parameter";
4428 case DW_TAG_imported_declaration:
4429 return "DW_TAG_imported_declaration";
4430 case DW_TAG_label:
4431 return "DW_TAG_label";
4432 case DW_TAG_lexical_block:
4433 return "DW_TAG_lexical_block";
4434 case DW_TAG_member:
4435 return "DW_TAG_member";
4436 case DW_TAG_pointer_type:
4437 return "DW_TAG_pointer_type";
4438 case DW_TAG_reference_type:
4439 return "DW_TAG_reference_type";
4440 case DW_TAG_compile_unit:
4441 return "DW_TAG_compile_unit";
4442 case DW_TAG_string_type:
4443 return "DW_TAG_string_type";
4444 case DW_TAG_structure_type:
4445 return "DW_TAG_structure_type";
4446 case DW_TAG_subroutine_type:
4447 return "DW_TAG_subroutine_type";
4448 case DW_TAG_typedef:
4449 return "DW_TAG_typedef";
4450 case DW_TAG_union_type:
4451 return "DW_TAG_union_type";
4452 case DW_TAG_unspecified_parameters:
4453 return "DW_TAG_unspecified_parameters";
4454 case DW_TAG_variant:
4455 return "DW_TAG_variant";
4456 case DW_TAG_common_block:
4457 return "DW_TAG_common_block";
4458 case DW_TAG_common_inclusion:
4459 return "DW_TAG_common_inclusion";
4460 case DW_TAG_inheritance:
4461 return "DW_TAG_inheritance";
4462 case DW_TAG_inlined_subroutine:
4463 return "DW_TAG_inlined_subroutine";
4464 case DW_TAG_module:
4465 return "DW_TAG_module";
4466 case DW_TAG_ptr_to_member_type:
4467 return "DW_TAG_ptr_to_member_type";
4468 case DW_TAG_set_type:
4469 return "DW_TAG_set_type";
4470 case DW_TAG_subrange_type:
4471 return "DW_TAG_subrange_type";
4472 case DW_TAG_with_stmt:
4473 return "DW_TAG_with_stmt";
4474 case DW_TAG_access_declaration:
4475 return "DW_TAG_access_declaration";
4476 case DW_TAG_base_type:
4477 return "DW_TAG_base_type";
4478 case DW_TAG_catch_block:
4479 return "DW_TAG_catch_block";
4480 case DW_TAG_const_type:
4481 return "DW_TAG_const_type";
4482 case DW_TAG_constant:
4483 return "DW_TAG_constant";
4484 case DW_TAG_enumerator:
4485 return "DW_TAG_enumerator";
4486 case DW_TAG_file_type:
4487 return "DW_TAG_file_type";
4488 case DW_TAG_friend:
4489 return "DW_TAG_friend";
4490 case DW_TAG_namelist:
4491 return "DW_TAG_namelist";
4492 case DW_TAG_namelist_item:
4493 return "DW_TAG_namelist_item";
4494 case DW_TAG_namespace:
4495 return "DW_TAG_namespace";
4496 case DW_TAG_packed_type:
4497 return "DW_TAG_packed_type";
4498 case DW_TAG_subprogram:
4499 return "DW_TAG_subprogram";
4500 case DW_TAG_template_type_param:
4501 return "DW_TAG_template_type_param";
4502 case DW_TAG_template_value_param:
4503 return "DW_TAG_template_value_param";
4504 case DW_TAG_thrown_type:
4505 return "DW_TAG_thrown_type";
4506 case DW_TAG_try_block:
4507 return "DW_TAG_try_block";
4508 case DW_TAG_variant_part:
4509 return "DW_TAG_variant_part";
4510 case DW_TAG_variable:
4511 return "DW_TAG_variable";
4512 case DW_TAG_volatile_type:
4513 return "DW_TAG_volatile_type";
4514 case DW_TAG_imported_module:
4515 return "DW_TAG_imported_module";
4516 case DW_TAG_MIPS_loop:
4517 return "DW_TAG_MIPS_loop";
4518 case DW_TAG_format_label:
4519 return "DW_TAG_format_label";
4520 case DW_TAG_function_template:
4521 return "DW_TAG_function_template";
4522 case DW_TAG_class_template:
4523 return "DW_TAG_class_template";
4524 case DW_TAG_GNU_BINCL:
4525 return "DW_TAG_GNU_BINCL";
4526 case DW_TAG_GNU_EINCL:
4527 return "DW_TAG_GNU_EINCL";
4528 default:
4529 return "DW_TAG_<unknown>";
4530 }
4531 }
4532
4533 /* Convert a DWARF attribute code into its string name. */
4534
4535 static const char *
4536 dwarf_attr_name (unsigned int attr)
4537 {
4538 switch (attr)
4539 {
4540 case DW_AT_sibling:
4541 return "DW_AT_sibling";
4542 case DW_AT_location:
4543 return "DW_AT_location";
4544 case DW_AT_name:
4545 return "DW_AT_name";
4546 case DW_AT_ordering:
4547 return "DW_AT_ordering";
4548 case DW_AT_subscr_data:
4549 return "DW_AT_subscr_data";
4550 case DW_AT_byte_size:
4551 return "DW_AT_byte_size";
4552 case DW_AT_bit_offset:
4553 return "DW_AT_bit_offset";
4554 case DW_AT_bit_size:
4555 return "DW_AT_bit_size";
4556 case DW_AT_element_list:
4557 return "DW_AT_element_list";
4558 case DW_AT_stmt_list:
4559 return "DW_AT_stmt_list";
4560 case DW_AT_low_pc:
4561 return "DW_AT_low_pc";
4562 case DW_AT_high_pc:
4563 return "DW_AT_high_pc";
4564 case DW_AT_language:
4565 return "DW_AT_language";
4566 case DW_AT_member:
4567 return "DW_AT_member";
4568 case DW_AT_discr:
4569 return "DW_AT_discr";
4570 case DW_AT_discr_value:
4571 return "DW_AT_discr_value";
4572 case DW_AT_visibility:
4573 return "DW_AT_visibility";
4574 case DW_AT_import:
4575 return "DW_AT_import";
4576 case DW_AT_string_length:
4577 return "DW_AT_string_length";
4578 case DW_AT_common_reference:
4579 return "DW_AT_common_reference";
4580 case DW_AT_comp_dir:
4581 return "DW_AT_comp_dir";
4582 case DW_AT_const_value:
4583 return "DW_AT_const_value";
4584 case DW_AT_containing_type:
4585 return "DW_AT_containing_type";
4586 case DW_AT_default_value:
4587 return "DW_AT_default_value";
4588 case DW_AT_inline:
4589 return "DW_AT_inline";
4590 case DW_AT_is_optional:
4591 return "DW_AT_is_optional";
4592 case DW_AT_lower_bound:
4593 return "DW_AT_lower_bound";
4594 case DW_AT_producer:
4595 return "DW_AT_producer";
4596 case DW_AT_prototyped:
4597 return "DW_AT_prototyped";
4598 case DW_AT_return_addr:
4599 return "DW_AT_return_addr";
4600 case DW_AT_start_scope:
4601 return "DW_AT_start_scope";
4602 case DW_AT_stride_size:
4603 return "DW_AT_stride_size";
4604 case DW_AT_upper_bound:
4605 return "DW_AT_upper_bound";
4606 case DW_AT_abstract_origin:
4607 return "DW_AT_abstract_origin";
4608 case DW_AT_accessibility:
4609 return "DW_AT_accessibility";
4610 case DW_AT_address_class:
4611 return "DW_AT_address_class";
4612 case DW_AT_artificial:
4613 return "DW_AT_artificial";
4614 case DW_AT_base_types:
4615 return "DW_AT_base_types";
4616 case DW_AT_calling_convention:
4617 return "DW_AT_calling_convention";
4618 case DW_AT_count:
4619 return "DW_AT_count";
4620 case DW_AT_data_member_location:
4621 return "DW_AT_data_member_location";
4622 case DW_AT_decl_column:
4623 return "DW_AT_decl_column";
4624 case DW_AT_decl_file:
4625 return "DW_AT_decl_file";
4626 case DW_AT_decl_line:
4627 return "DW_AT_decl_line";
4628 case DW_AT_declaration:
4629 return "DW_AT_declaration";
4630 case DW_AT_discr_list:
4631 return "DW_AT_discr_list";
4632 case DW_AT_encoding:
4633 return "DW_AT_encoding";
4634 case DW_AT_external:
4635 return "DW_AT_external";
4636 case DW_AT_frame_base:
4637 return "DW_AT_frame_base";
4638 case DW_AT_friend:
4639 return "DW_AT_friend";
4640 case DW_AT_identifier_case:
4641 return "DW_AT_identifier_case";
4642 case DW_AT_macro_info:
4643 return "DW_AT_macro_info";
4644 case DW_AT_namelist_items:
4645 return "DW_AT_namelist_items";
4646 case DW_AT_priority:
4647 return "DW_AT_priority";
4648 case DW_AT_segment:
4649 return "DW_AT_segment";
4650 case DW_AT_specification:
4651 return "DW_AT_specification";
4652 case DW_AT_static_link:
4653 return "DW_AT_static_link";
4654 case DW_AT_type:
4655 return "DW_AT_type";
4656 case DW_AT_use_location:
4657 return "DW_AT_use_location";
4658 case DW_AT_variable_parameter:
4659 return "DW_AT_variable_parameter";
4660 case DW_AT_virtuality:
4661 return "DW_AT_virtuality";
4662 case DW_AT_vtable_elem_location:
4663 return "DW_AT_vtable_elem_location";
4664
4665 case DW_AT_allocated:
4666 return "DW_AT_allocated";
4667 case DW_AT_associated:
4668 return "DW_AT_associated";
4669 case DW_AT_data_location:
4670 return "DW_AT_data_location";
4671 case DW_AT_stride:
4672 return "DW_AT_stride";
4673 case DW_AT_entry_pc:
4674 return "DW_AT_entry_pc";
4675 case DW_AT_use_UTF8:
4676 return "DW_AT_use_UTF8";
4677 case DW_AT_extension:
4678 return "DW_AT_extension";
4679 case DW_AT_ranges:
4680 return "DW_AT_ranges";
4681 case DW_AT_trampoline:
4682 return "DW_AT_trampoline";
4683 case DW_AT_call_column:
4684 return "DW_AT_call_column";
4685 case DW_AT_call_file:
4686 return "DW_AT_call_file";
4687 case DW_AT_call_line:
4688 return "DW_AT_call_line";
4689
4690 case DW_AT_MIPS_fde:
4691 return "DW_AT_MIPS_fde";
4692 case DW_AT_MIPS_loop_begin:
4693 return "DW_AT_MIPS_loop_begin";
4694 case DW_AT_MIPS_tail_loop_begin:
4695 return "DW_AT_MIPS_tail_loop_begin";
4696 case DW_AT_MIPS_epilog_begin:
4697 return "DW_AT_MIPS_epilog_begin";
4698 case DW_AT_MIPS_loop_unroll_factor:
4699 return "DW_AT_MIPS_loop_unroll_factor";
4700 case DW_AT_MIPS_software_pipeline_depth:
4701 return "DW_AT_MIPS_software_pipeline_depth";
4702 case DW_AT_MIPS_linkage_name:
4703 return "DW_AT_MIPS_linkage_name";
4704 case DW_AT_MIPS_stride:
4705 return "DW_AT_MIPS_stride";
4706 case DW_AT_MIPS_abstract_name:
4707 return "DW_AT_MIPS_abstract_name";
4708 case DW_AT_MIPS_clone_origin:
4709 return "DW_AT_MIPS_clone_origin";
4710 case DW_AT_MIPS_has_inlines:
4711 return "DW_AT_MIPS_has_inlines";
4712
4713 case DW_AT_sf_names:
4714 return "DW_AT_sf_names";
4715 case DW_AT_src_info:
4716 return "DW_AT_src_info";
4717 case DW_AT_mac_info:
4718 return "DW_AT_mac_info";
4719 case DW_AT_src_coords:
4720 return "DW_AT_src_coords";
4721 case DW_AT_body_begin:
4722 return "DW_AT_body_begin";
4723 case DW_AT_body_end:
4724 return "DW_AT_body_end";
4725 case DW_AT_GNU_vector:
4726 return "DW_AT_GNU_vector";
4727
4728 case DW_AT_VMS_rtnbeg_pd_address:
4729 return "DW_AT_VMS_rtnbeg_pd_address";
4730
4731 default:
4732 return "DW_AT_<unknown>";
4733 }
4734 }
4735
4736 /* Convert a DWARF value form code into its string name. */
4737
4738 static const char *
4739 dwarf_form_name (unsigned int form)
4740 {
4741 switch (form)
4742 {
4743 case DW_FORM_addr:
4744 return "DW_FORM_addr";
4745 case DW_FORM_block2:
4746 return "DW_FORM_block2";
4747 case DW_FORM_block4:
4748 return "DW_FORM_block4";
4749 case DW_FORM_data2:
4750 return "DW_FORM_data2";
4751 case DW_FORM_data4:
4752 return "DW_FORM_data4";
4753 case DW_FORM_data8:
4754 return "DW_FORM_data8";
4755 case DW_FORM_string:
4756 return "DW_FORM_string";
4757 case DW_FORM_block:
4758 return "DW_FORM_block";
4759 case DW_FORM_block1:
4760 return "DW_FORM_block1";
4761 case DW_FORM_data1:
4762 return "DW_FORM_data1";
4763 case DW_FORM_flag:
4764 return "DW_FORM_flag";
4765 case DW_FORM_sdata:
4766 return "DW_FORM_sdata";
4767 case DW_FORM_strp:
4768 return "DW_FORM_strp";
4769 case DW_FORM_udata:
4770 return "DW_FORM_udata";
4771 case DW_FORM_ref_addr:
4772 return "DW_FORM_ref_addr";
4773 case DW_FORM_ref1:
4774 return "DW_FORM_ref1";
4775 case DW_FORM_ref2:
4776 return "DW_FORM_ref2";
4777 case DW_FORM_ref4:
4778 return "DW_FORM_ref4";
4779 case DW_FORM_ref8:
4780 return "DW_FORM_ref8";
4781 case DW_FORM_ref_udata:
4782 return "DW_FORM_ref_udata";
4783 case DW_FORM_indirect:
4784 return "DW_FORM_indirect";
4785 default:
4786 return "DW_FORM_<unknown>";
4787 }
4788 }
4789 \f
4790 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4791 instance of an inlined instance of a decl which is local to an inline
4792 function, so we have to trace all of the way back through the origin chain
4793 to find out what sort of node actually served as the original seed for the
4794 given block. */
4795
4796 static tree
4797 decl_ultimate_origin (tree decl)
4798 {
4799 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4800 return NULL_TREE;
4801
4802 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4803 nodes in the function to point to themselves; ignore that if
4804 we're trying to output the abstract instance of this function. */
4805 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4806 return NULL_TREE;
4807
4808 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4809 most distant ancestor, this should never happen. */
4810 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4811
4812 return DECL_ABSTRACT_ORIGIN (decl);
4813 }
4814
4815 /* Determine the "ultimate origin" of a block. The block may be an inlined
4816 instance of an inlined instance of a block which is local to an inline
4817 function, so we have to trace all of the way back through the origin chain
4818 to find out what sort of node actually served as the original seed for the
4819 given block. */
4820
4821 static tree
4822 block_ultimate_origin (tree block)
4823 {
4824 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4825
4826 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4827 nodes in the function to point to themselves; ignore that if
4828 we're trying to output the abstract instance of this function. */
4829 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4830 return NULL_TREE;
4831
4832 if (immediate_origin == NULL_TREE)
4833 return NULL_TREE;
4834 else
4835 {
4836 tree ret_val;
4837 tree lookahead = immediate_origin;
4838
4839 do
4840 {
4841 ret_val = lookahead;
4842 lookahead = (TREE_CODE (ret_val) == BLOCK
4843 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4844 }
4845 while (lookahead != NULL && lookahead != ret_val);
4846
4847 /* The block's abstract origin chain may not be the *ultimate* origin of
4848 the block. It could lead to a DECL that has an abstract origin set.
4849 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4850 will give us if it has one). Note that DECL's abstract origins are
4851 supposed to be the most distant ancestor (or so decl_ultimate_origin
4852 claims), so we don't need to loop following the DECL origins. */
4853 if (DECL_P (ret_val))
4854 return DECL_ORIGIN (ret_val);
4855
4856 return ret_val;
4857 }
4858 }
4859
4860 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4861 of a virtual function may refer to a base class, so we check the 'this'
4862 parameter. */
4863
4864 static tree
4865 decl_class_context (tree decl)
4866 {
4867 tree context = NULL_TREE;
4868
4869 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4870 context = DECL_CONTEXT (decl);
4871 else
4872 context = TYPE_MAIN_VARIANT
4873 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4874
4875 if (context && !TYPE_P (context))
4876 context = NULL_TREE;
4877
4878 return context;
4879 }
4880 \f
4881 /* Add an attribute/value pair to a DIE. */
4882
4883 static inline void
4884 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4885 {
4886 /* Maybe this should be an assert? */
4887 if (die == NULL)
4888 return;
4889
4890 if (die->die_attr == NULL)
4891 die->die_attr = VEC_alloc (dw_attr_node, gc, 1);
4892 VEC_safe_push (dw_attr_node, gc, die->die_attr, attr);
4893 }
4894
4895 static inline enum dw_val_class
4896 AT_class (dw_attr_ref a)
4897 {
4898 return a->dw_attr_val.val_class;
4899 }
4900
4901 /* Add a flag value attribute to a DIE. */
4902
4903 static inline void
4904 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4905 {
4906 dw_attr_node attr;
4907
4908 attr.dw_attr = attr_kind;
4909 attr.dw_attr_val.val_class = dw_val_class_flag;
4910 attr.dw_attr_val.v.val_flag = flag;
4911 add_dwarf_attr (die, &attr);
4912 }
4913
4914 static inline unsigned
4915 AT_flag (dw_attr_ref a)
4916 {
4917 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4918 return a->dw_attr_val.v.val_flag;
4919 }
4920
4921 /* Add a signed integer attribute value to a DIE. */
4922
4923 static inline void
4924 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4925 {
4926 dw_attr_node attr;
4927
4928 attr.dw_attr = attr_kind;
4929 attr.dw_attr_val.val_class = dw_val_class_const;
4930 attr.dw_attr_val.v.val_int = int_val;
4931 add_dwarf_attr (die, &attr);
4932 }
4933
4934 static inline HOST_WIDE_INT
4935 AT_int (dw_attr_ref a)
4936 {
4937 gcc_assert (a && AT_class (a) == dw_val_class_const);
4938 return a->dw_attr_val.v.val_int;
4939 }
4940
4941 /* Add an unsigned integer attribute value to a DIE. */
4942
4943 static inline void
4944 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4945 unsigned HOST_WIDE_INT unsigned_val)
4946 {
4947 dw_attr_node attr;
4948
4949 attr.dw_attr = attr_kind;
4950 attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
4951 attr.dw_attr_val.v.val_unsigned = unsigned_val;
4952 add_dwarf_attr (die, &attr);
4953 }
4954
4955 static inline unsigned HOST_WIDE_INT
4956 AT_unsigned (dw_attr_ref a)
4957 {
4958 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4959 return a->dw_attr_val.v.val_unsigned;
4960 }
4961
4962 /* Add an unsigned double integer attribute value to a DIE. */
4963
4964 static inline void
4965 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4966 long unsigned int val_hi, long unsigned int val_low)
4967 {
4968 dw_attr_node attr;
4969
4970 attr.dw_attr = attr_kind;
4971 attr.dw_attr_val.val_class = dw_val_class_long_long;
4972 attr.dw_attr_val.v.val_long_long.hi = val_hi;
4973 attr.dw_attr_val.v.val_long_long.low = val_low;
4974 add_dwarf_attr (die, &attr);
4975 }
4976
4977 /* Add a floating point attribute value to a DIE and return it. */
4978
4979 static inline void
4980 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4981 unsigned int length, unsigned int elt_size, unsigned char *array)
4982 {
4983 dw_attr_node attr;
4984
4985 attr.dw_attr = attr_kind;
4986 attr.dw_attr_val.val_class = dw_val_class_vec;
4987 attr.dw_attr_val.v.val_vec.length = length;
4988 attr.dw_attr_val.v.val_vec.elt_size = elt_size;
4989 attr.dw_attr_val.v.val_vec.array = array;
4990 add_dwarf_attr (die, &attr);
4991 }
4992
4993 /* Hash and equality functions for debug_str_hash. */
4994
4995 static hashval_t
4996 debug_str_do_hash (const void *x)
4997 {
4998 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4999 }
5000
5001 static int
5002 debug_str_eq (const void *x1, const void *x2)
5003 {
5004 return strcmp ((((const struct indirect_string_node *)x1)->str),
5005 (const char *)x2) == 0;
5006 }
5007
5008 /* Add a string attribute value to a DIE. */
5009
5010 static inline void
5011 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
5012 {
5013 dw_attr_node attr;
5014 struct indirect_string_node *node;
5015 void **slot;
5016
5017 if (! debug_str_hash)
5018 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
5019 debug_str_eq, NULL);
5020
5021 slot = htab_find_slot_with_hash (debug_str_hash, str,
5022 htab_hash_string (str), INSERT);
5023 if (*slot == NULL)
5024 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
5025 node = (struct indirect_string_node *) *slot;
5026 node->str = ggc_strdup (str);
5027 node->refcount++;
5028
5029 attr.dw_attr = attr_kind;
5030 attr.dw_attr_val.val_class = dw_val_class_str;
5031 attr.dw_attr_val.v.val_str = node;
5032 add_dwarf_attr (die, &attr);
5033 }
5034
5035 static inline const char *
5036 AT_string (dw_attr_ref a)
5037 {
5038 gcc_assert (a && AT_class (a) == dw_val_class_str);
5039 return a->dw_attr_val.v.val_str->str;
5040 }
5041
5042 /* Find out whether a string should be output inline in DIE
5043 or out-of-line in .debug_str section. */
5044
5045 static int
5046 AT_string_form (dw_attr_ref a)
5047 {
5048 struct indirect_string_node *node;
5049 unsigned int len;
5050 char label[32];
5051
5052 gcc_assert (a && AT_class (a) == dw_val_class_str);
5053
5054 node = a->dw_attr_val.v.val_str;
5055 if (node->form)
5056 return node->form;
5057
5058 len = strlen (node->str) + 1;
5059
5060 /* If the string is shorter or equal to the size of the reference, it is
5061 always better to put it inline. */
5062 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
5063 return node->form = DW_FORM_string;
5064
5065 /* If we cannot expect the linker to merge strings in .debug_str
5066 section, only put it into .debug_str if it is worth even in this
5067 single module. */
5068 if ((debug_str_section->common.flags & SECTION_MERGE) == 0
5069 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
5070 return node->form = DW_FORM_string;
5071
5072 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
5073 ++dw2_string_counter;
5074 node->label = xstrdup (label);
5075
5076 return node->form = DW_FORM_strp;
5077 }
5078
5079 /* Add a DIE reference attribute value to a DIE. */
5080
5081 static inline void
5082 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
5083 {
5084 dw_attr_node attr;
5085
5086 attr.dw_attr = attr_kind;
5087 attr.dw_attr_val.val_class = dw_val_class_die_ref;
5088 attr.dw_attr_val.v.val_die_ref.die = targ_die;
5089 attr.dw_attr_val.v.val_die_ref.external = 0;
5090 add_dwarf_attr (die, &attr);
5091 }
5092
5093 /* Add an AT_specification attribute to a DIE, and also make the back
5094 pointer from the specification to the definition. */
5095
5096 static inline void
5097 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
5098 {
5099 add_AT_die_ref (die, DW_AT_specification, targ_die);
5100 gcc_assert (!targ_die->die_definition);
5101 targ_die->die_definition = die;
5102 }
5103
5104 static inline dw_die_ref
5105 AT_ref (dw_attr_ref a)
5106 {
5107 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5108 return a->dw_attr_val.v.val_die_ref.die;
5109 }
5110
5111 static inline int
5112 AT_ref_external (dw_attr_ref a)
5113 {
5114 if (a && AT_class (a) == dw_val_class_die_ref)
5115 return a->dw_attr_val.v.val_die_ref.external;
5116
5117 return 0;
5118 }
5119
5120 static inline void
5121 set_AT_ref_external (dw_attr_ref a, int i)
5122 {
5123 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5124 a->dw_attr_val.v.val_die_ref.external = i;
5125 }
5126
5127 /* Add an FDE reference attribute value to a DIE. */
5128
5129 static inline void
5130 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
5131 {
5132 dw_attr_node attr;
5133
5134 attr.dw_attr = attr_kind;
5135 attr.dw_attr_val.val_class = dw_val_class_fde_ref;
5136 attr.dw_attr_val.v.val_fde_index = targ_fde;
5137 add_dwarf_attr (die, &attr);
5138 }
5139
5140 /* Add a location description attribute value to a DIE. */
5141
5142 static inline void
5143 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
5144 {
5145 dw_attr_node attr;
5146
5147 attr.dw_attr = attr_kind;
5148 attr.dw_attr_val.val_class = dw_val_class_loc;
5149 attr.dw_attr_val.v.val_loc = loc;
5150 add_dwarf_attr (die, &attr);
5151 }
5152
5153 static inline dw_loc_descr_ref
5154 AT_loc (dw_attr_ref a)
5155 {
5156 gcc_assert (a && AT_class (a) == dw_val_class_loc);
5157 return a->dw_attr_val.v.val_loc;
5158 }
5159
5160 static inline void
5161 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
5162 {
5163 dw_attr_node attr;
5164
5165 attr.dw_attr = attr_kind;
5166 attr.dw_attr_val.val_class = dw_val_class_loc_list;
5167 attr.dw_attr_val.v.val_loc_list = loc_list;
5168 add_dwarf_attr (die, &attr);
5169 have_location_lists = true;
5170 }
5171
5172 static inline dw_loc_list_ref
5173 AT_loc_list (dw_attr_ref a)
5174 {
5175 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5176 return a->dw_attr_val.v.val_loc_list;
5177 }
5178
5179 /* Add an address constant attribute value to a DIE. */
5180
5181 static inline void
5182 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5183 {
5184 dw_attr_node attr;
5185
5186 attr.dw_attr = attr_kind;
5187 attr.dw_attr_val.val_class = dw_val_class_addr;
5188 attr.dw_attr_val.v.val_addr = addr;
5189 add_dwarf_attr (die, &attr);
5190 }
5191
5192 /* Get the RTX from to an address DIE attribute. */
5193
5194 static inline rtx
5195 AT_addr (dw_attr_ref a)
5196 {
5197 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5198 return a->dw_attr_val.v.val_addr;
5199 }
5200
5201 /* Add a file attribute value to a DIE. */
5202
5203 static inline void
5204 add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
5205 struct dwarf_file_data *fd)
5206 {
5207 dw_attr_node attr;
5208
5209 attr.dw_attr = attr_kind;
5210 attr.dw_attr_val.val_class = dw_val_class_file;
5211 attr.dw_attr_val.v.val_file = fd;
5212 add_dwarf_attr (die, &attr);
5213 }
5214
5215 /* Get the dwarf_file_data from a file DIE attribute. */
5216
5217 static inline struct dwarf_file_data *
5218 AT_file (dw_attr_ref a)
5219 {
5220 gcc_assert (a && AT_class (a) == dw_val_class_file);
5221 return a->dw_attr_val.v.val_file;
5222 }
5223
5224 /* Add a label identifier attribute value to a DIE. */
5225
5226 static inline void
5227 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5228 {
5229 dw_attr_node attr;
5230
5231 attr.dw_attr = attr_kind;
5232 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
5233 attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5234 add_dwarf_attr (die, &attr);
5235 }
5236
5237 /* Add a section offset attribute value to a DIE, an offset into the
5238 debug_line section. */
5239
5240 static inline void
5241 add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5242 const char *label)
5243 {
5244 dw_attr_node attr;
5245
5246 attr.dw_attr = attr_kind;
5247 attr.dw_attr_val.val_class = dw_val_class_lineptr;
5248 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5249 add_dwarf_attr (die, &attr);
5250 }
5251
5252 /* Add a section offset attribute value to a DIE, an offset into the
5253 debug_macinfo section. */
5254
5255 static inline void
5256 add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5257 const char *label)
5258 {
5259 dw_attr_node attr;
5260
5261 attr.dw_attr = attr_kind;
5262 attr.dw_attr_val.val_class = dw_val_class_macptr;
5263 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5264 add_dwarf_attr (die, &attr);
5265 }
5266
5267 /* Add an offset attribute value to a DIE. */
5268
5269 static inline void
5270 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5271 unsigned HOST_WIDE_INT offset)
5272 {
5273 dw_attr_node attr;
5274
5275 attr.dw_attr = attr_kind;
5276 attr.dw_attr_val.val_class = dw_val_class_offset;
5277 attr.dw_attr_val.v.val_offset = offset;
5278 add_dwarf_attr (die, &attr);
5279 }
5280
5281 /* Add an range_list attribute value to a DIE. */
5282
5283 static void
5284 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5285 long unsigned int offset)
5286 {
5287 dw_attr_node attr;
5288
5289 attr.dw_attr = attr_kind;
5290 attr.dw_attr_val.val_class = dw_val_class_range_list;
5291 attr.dw_attr_val.v.val_offset = offset;
5292 add_dwarf_attr (die, &attr);
5293 }
5294
5295 static inline const char *
5296 AT_lbl (dw_attr_ref a)
5297 {
5298 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5299 || AT_class (a) == dw_val_class_lineptr
5300 || AT_class (a) == dw_val_class_macptr));
5301 return a->dw_attr_val.v.val_lbl_id;
5302 }
5303
5304 /* Get the attribute of type attr_kind. */
5305
5306 static dw_attr_ref
5307 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5308 {
5309 dw_attr_ref a;
5310 unsigned ix;
5311 dw_die_ref spec = NULL;
5312
5313 if (! die)
5314 return NULL;
5315
5316 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5317 if (a->dw_attr == attr_kind)
5318 return a;
5319 else if (a->dw_attr == DW_AT_specification
5320 || a->dw_attr == DW_AT_abstract_origin)
5321 spec = AT_ref (a);
5322
5323 if (spec)
5324 return get_AT (spec, attr_kind);
5325
5326 return NULL;
5327 }
5328
5329 /* Return the "low pc" attribute value, typically associated with a subprogram
5330 DIE. Return null if the "low pc" attribute is either not present, or if it
5331 cannot be represented as an assembler label identifier. */
5332
5333 static inline const char *
5334 get_AT_low_pc (dw_die_ref die)
5335 {
5336 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5337
5338 return a ? AT_lbl (a) : NULL;
5339 }
5340
5341 /* Return the "high pc" attribute value, typically associated with a subprogram
5342 DIE. Return null if the "high pc" attribute is either not present, or if it
5343 cannot be represented as an assembler label identifier. */
5344
5345 static inline const char *
5346 get_AT_hi_pc (dw_die_ref die)
5347 {
5348 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5349
5350 return a ? AT_lbl (a) : NULL;
5351 }
5352
5353 /* Return the value of the string attribute designated by ATTR_KIND, or
5354 NULL if it is not present. */
5355
5356 static inline const char *
5357 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5358 {
5359 dw_attr_ref a = get_AT (die, attr_kind);
5360
5361 return a ? AT_string (a) : NULL;
5362 }
5363
5364 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5365 if it is not present. */
5366
5367 static inline int
5368 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5369 {
5370 dw_attr_ref a = get_AT (die, attr_kind);
5371
5372 return a ? AT_flag (a) : 0;
5373 }
5374
5375 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5376 if it is not present. */
5377
5378 static inline unsigned
5379 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5380 {
5381 dw_attr_ref a = get_AT (die, attr_kind);
5382
5383 return a ? AT_unsigned (a) : 0;
5384 }
5385
5386 static inline dw_die_ref
5387 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5388 {
5389 dw_attr_ref a = get_AT (die, attr_kind);
5390
5391 return a ? AT_ref (a) : NULL;
5392 }
5393
5394 static inline struct dwarf_file_data *
5395 get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
5396 {
5397 dw_attr_ref a = get_AT (die, attr_kind);
5398
5399 return a ? AT_file (a) : NULL;
5400 }
5401
5402 /* Return TRUE if the language is C or C++. */
5403
5404 static inline bool
5405 is_c_family (void)
5406 {
5407 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5408
5409 return (lang == DW_LANG_C || lang == DW_LANG_C89 || lang == DW_LANG_ObjC
5410 || lang == DW_LANG_C99
5411 || lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus);
5412 }
5413
5414 /* Return TRUE if the language is C++. */
5415
5416 static inline bool
5417 is_cxx (void)
5418 {
5419 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5420
5421 return lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus;
5422 }
5423
5424 /* Return TRUE if the language is Fortran. */
5425
5426 static inline bool
5427 is_fortran (void)
5428 {
5429 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5430
5431 return (lang == DW_LANG_Fortran77
5432 || lang == DW_LANG_Fortran90
5433 || lang == DW_LANG_Fortran95);
5434 }
5435
5436 /* Return TRUE if the language is Java. */
5437
5438 static inline bool
5439 is_java (void)
5440 {
5441 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5442
5443 return lang == DW_LANG_Java;
5444 }
5445
5446 /* Return TRUE if the language is Ada. */
5447
5448 static inline bool
5449 is_ada (void)
5450 {
5451 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5452
5453 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5454 }
5455
5456 /* Remove the specified attribute if present. */
5457
5458 static void
5459 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5460 {
5461 dw_attr_ref a;
5462 unsigned ix;
5463
5464 if (! die)
5465 return;
5466
5467 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5468 if (a->dw_attr == attr_kind)
5469 {
5470 if (AT_class (a) == dw_val_class_str)
5471 if (a->dw_attr_val.v.val_str->refcount)
5472 a->dw_attr_val.v.val_str->refcount--;
5473
5474 /* VEC_ordered_remove should help reduce the number of abbrevs
5475 that are needed. */
5476 VEC_ordered_remove (dw_attr_node, die->die_attr, ix);
5477 return;
5478 }
5479 }
5480
5481 /* Remove CHILD from its parent. PREV must have the property that
5482 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
5483
5484 static void
5485 remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
5486 {
5487 gcc_assert (child->die_parent == prev->die_parent);
5488 gcc_assert (prev->die_sib == child);
5489 if (prev == child)
5490 {
5491 gcc_assert (child->die_parent->die_child == child);
5492 prev = NULL;
5493 }
5494 else
5495 prev->die_sib = child->die_sib;
5496 if (child->die_parent->die_child == child)
5497 child->die_parent->die_child = prev;
5498 }
5499
5500 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
5501 matches TAG. */
5502
5503 static void
5504 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5505 {
5506 dw_die_ref c;
5507
5508 c = die->die_child;
5509 if (c) do {
5510 dw_die_ref prev = c;
5511 c = c->die_sib;
5512 while (c->die_tag == tag)
5513 {
5514 remove_child_with_prev (c, prev);
5515 /* Might have removed every child. */
5516 if (c == c->die_sib)
5517 return;
5518 c = c->die_sib;
5519 }
5520 } while (c != die->die_child);
5521 }
5522
5523 /* Add a CHILD_DIE as the last child of DIE. */
5524
5525 static void
5526 add_child_die (dw_die_ref die, dw_die_ref child_die)
5527 {
5528 /* FIXME this should probably be an assert. */
5529 if (! die || ! child_die)
5530 return;
5531 gcc_assert (die != child_die);
5532
5533 child_die->die_parent = die;
5534 if (die->die_child)
5535 {
5536 child_die->die_sib = die->die_child->die_sib;
5537 die->die_child->die_sib = child_die;
5538 }
5539 else
5540 child_die->die_sib = child_die;
5541 die->die_child = child_die;
5542 }
5543
5544 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5545 is the specification, to the end of PARENT's list of children.
5546 This is done by removing and re-adding it. */
5547
5548 static void
5549 splice_child_die (dw_die_ref parent, dw_die_ref child)
5550 {
5551 dw_die_ref p;
5552
5553 /* We want the declaration DIE from inside the class, not the
5554 specification DIE at toplevel. */
5555 if (child->die_parent != parent)
5556 {
5557 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5558
5559 if (tmp)
5560 child = tmp;
5561 }
5562
5563 gcc_assert (child->die_parent == parent
5564 || (child->die_parent
5565 == get_AT_ref (parent, DW_AT_specification)));
5566
5567 for (p = child->die_parent->die_child; ; p = p->die_sib)
5568 if (p->die_sib == child)
5569 {
5570 remove_child_with_prev (child, p);
5571 break;
5572 }
5573
5574 add_child_die (parent, child);
5575 }
5576
5577 /* Return a pointer to a newly created DIE node. */
5578
5579 static inline dw_die_ref
5580 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5581 {
5582 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5583
5584 die->die_tag = tag_value;
5585
5586 if (parent_die != NULL)
5587 add_child_die (parent_die, die);
5588 else
5589 {
5590 limbo_die_node *limbo_node;
5591
5592 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5593 limbo_node->die = die;
5594 limbo_node->created_for = t;
5595 limbo_node->next = limbo_die_list;
5596 limbo_die_list = limbo_node;
5597 }
5598
5599 return die;
5600 }
5601
5602 /* Return the DIE associated with the given type specifier. */
5603
5604 static inline dw_die_ref
5605 lookup_type_die (tree type)
5606 {
5607 return TYPE_SYMTAB_DIE (type);
5608 }
5609
5610 /* Equate a DIE to a given type specifier. */
5611
5612 static inline void
5613 equate_type_number_to_die (tree type, dw_die_ref type_die)
5614 {
5615 TYPE_SYMTAB_DIE (type) = type_die;
5616 }
5617
5618 /* Returns a hash value for X (which really is a die_struct). */
5619
5620 static hashval_t
5621 decl_die_table_hash (const void *x)
5622 {
5623 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5624 }
5625
5626 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5627
5628 static int
5629 decl_die_table_eq (const void *x, const void *y)
5630 {
5631 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5632 }
5633
5634 /* Return the DIE associated with a given declaration. */
5635
5636 static inline dw_die_ref
5637 lookup_decl_die (tree decl)
5638 {
5639 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5640 }
5641
5642 /* Returns a hash value for X (which really is a var_loc_list). */
5643
5644 static hashval_t
5645 decl_loc_table_hash (const void *x)
5646 {
5647 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5648 }
5649
5650 /* Return nonzero if decl_id of var_loc_list X is the same as
5651 UID of decl *Y. */
5652
5653 static int
5654 decl_loc_table_eq (const void *x, const void *y)
5655 {
5656 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5657 }
5658
5659 /* Return the var_loc list associated with a given declaration. */
5660
5661 static inline var_loc_list *
5662 lookup_decl_loc (tree decl)
5663 {
5664 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5665 }
5666
5667 /* Equate a DIE to a particular declaration. */
5668
5669 static void
5670 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5671 {
5672 unsigned int decl_id = DECL_UID (decl);
5673 void **slot;
5674
5675 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5676 *slot = decl_die;
5677 decl_die->decl_id = decl_id;
5678 }
5679
5680 /* Add a variable location node to the linked list for DECL. */
5681
5682 static void
5683 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5684 {
5685 unsigned int decl_id = DECL_UID (decl);
5686 var_loc_list *temp;
5687 void **slot;
5688
5689 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5690 if (*slot == NULL)
5691 {
5692 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5693 temp->decl_id = decl_id;
5694 *slot = temp;
5695 }
5696 else
5697 temp = *slot;
5698
5699 if (temp->last)
5700 {
5701 /* If the current location is the same as the end of the list,
5702 we have nothing to do. */
5703 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5704 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5705 {
5706 /* Add LOC to the end of list and update LAST. */
5707 temp->last->next = loc;
5708 temp->last = loc;
5709 }
5710 }
5711 /* Do not add empty location to the beginning of the list. */
5712 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5713 {
5714 temp->first = loc;
5715 temp->last = loc;
5716 }
5717 }
5718 \f
5719 /* Keep track of the number of spaces used to indent the
5720 output of the debugging routines that print the structure of
5721 the DIE internal representation. */
5722 static int print_indent;
5723
5724 /* Indent the line the number of spaces given by print_indent. */
5725
5726 static inline void
5727 print_spaces (FILE *outfile)
5728 {
5729 fprintf (outfile, "%*s", print_indent, "");
5730 }
5731
5732 /* Print the information associated with a given DIE, and its children.
5733 This routine is a debugging aid only. */
5734
5735 static void
5736 print_die (dw_die_ref die, FILE *outfile)
5737 {
5738 dw_attr_ref a;
5739 dw_die_ref c;
5740 unsigned ix;
5741
5742 print_spaces (outfile);
5743 fprintf (outfile, "DIE %4lu: %s\n",
5744 die->die_offset, dwarf_tag_name (die->die_tag));
5745 print_spaces (outfile);
5746 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5747 fprintf (outfile, " offset: %lu\n", die->die_offset);
5748
5749 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5750 {
5751 print_spaces (outfile);
5752 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5753
5754 switch (AT_class (a))
5755 {
5756 case dw_val_class_addr:
5757 fprintf (outfile, "address");
5758 break;
5759 case dw_val_class_offset:
5760 fprintf (outfile, "offset");
5761 break;
5762 case dw_val_class_loc:
5763 fprintf (outfile, "location descriptor");
5764 break;
5765 case dw_val_class_loc_list:
5766 fprintf (outfile, "location list -> label:%s",
5767 AT_loc_list (a)->ll_symbol);
5768 break;
5769 case dw_val_class_range_list:
5770 fprintf (outfile, "range list");
5771 break;
5772 case dw_val_class_const:
5773 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5774 break;
5775 case dw_val_class_unsigned_const:
5776 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5777 break;
5778 case dw_val_class_long_long:
5779 fprintf (outfile, "constant (%lu,%lu)",
5780 a->dw_attr_val.v.val_long_long.hi,
5781 a->dw_attr_val.v.val_long_long.low);
5782 break;
5783 case dw_val_class_vec:
5784 fprintf (outfile, "floating-point or vector constant");
5785 break;
5786 case dw_val_class_flag:
5787 fprintf (outfile, "%u", AT_flag (a));
5788 break;
5789 case dw_val_class_die_ref:
5790 if (AT_ref (a) != NULL)
5791 {
5792 if (AT_ref (a)->die_symbol)
5793 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5794 else
5795 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5796 }
5797 else
5798 fprintf (outfile, "die -> <null>");
5799 break;
5800 case dw_val_class_lbl_id:
5801 case dw_val_class_lineptr:
5802 case dw_val_class_macptr:
5803 fprintf (outfile, "label: %s", AT_lbl (a));
5804 break;
5805 case dw_val_class_str:
5806 if (AT_string (a) != NULL)
5807 fprintf (outfile, "\"%s\"", AT_string (a));
5808 else
5809 fprintf (outfile, "<null>");
5810 break;
5811 case dw_val_class_file:
5812 fprintf (outfile, "\"%s\" (%d)", AT_file (a)->filename,
5813 AT_file (a)->emitted_number);
5814 break;
5815 default:
5816 break;
5817 }
5818
5819 fprintf (outfile, "\n");
5820 }
5821
5822 if (die->die_child != NULL)
5823 {
5824 print_indent += 4;
5825 FOR_EACH_CHILD (die, c, print_die (c, outfile));
5826 print_indent -= 4;
5827 }
5828 if (print_indent == 0)
5829 fprintf (outfile, "\n");
5830 }
5831
5832 /* Print the contents of the source code line number correspondence table.
5833 This routine is a debugging aid only. */
5834
5835 static void
5836 print_dwarf_line_table (FILE *outfile)
5837 {
5838 unsigned i;
5839 dw_line_info_ref line_info;
5840
5841 fprintf (outfile, "\n\nDWARF source line information\n");
5842 for (i = 1; i < line_info_table_in_use; i++)
5843 {
5844 line_info = &line_info_table[i];
5845 fprintf (outfile, "%5d: %4ld %6ld\n", i,
5846 line_info->dw_file_num,
5847 line_info->dw_line_num);
5848 }
5849
5850 fprintf (outfile, "\n\n");
5851 }
5852
5853 /* Print the information collected for a given DIE. */
5854
5855 void
5856 debug_dwarf_die (dw_die_ref die)
5857 {
5858 print_die (die, stderr);
5859 }
5860
5861 /* Print all DWARF information collected for the compilation unit.
5862 This routine is a debugging aid only. */
5863
5864 void
5865 debug_dwarf (void)
5866 {
5867 print_indent = 0;
5868 print_die (comp_unit_die, stderr);
5869 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5870 print_dwarf_line_table (stderr);
5871 }
5872 \f
5873 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5874 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5875 DIE that marks the start of the DIEs for this include file. */
5876
5877 static dw_die_ref
5878 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5879 {
5880 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5881 dw_die_ref new_unit = gen_compile_unit_die (filename);
5882
5883 new_unit->die_sib = old_unit;
5884 return new_unit;
5885 }
5886
5887 /* Close an include-file CU and reopen the enclosing one. */
5888
5889 static dw_die_ref
5890 pop_compile_unit (dw_die_ref old_unit)
5891 {
5892 dw_die_ref new_unit = old_unit->die_sib;
5893
5894 old_unit->die_sib = NULL;
5895 return new_unit;
5896 }
5897
5898 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5899 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5900
5901 /* Calculate the checksum of a location expression. */
5902
5903 static inline void
5904 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5905 {
5906 CHECKSUM (loc->dw_loc_opc);
5907 CHECKSUM (loc->dw_loc_oprnd1);
5908 CHECKSUM (loc->dw_loc_oprnd2);
5909 }
5910
5911 /* Calculate the checksum of an attribute. */
5912
5913 static void
5914 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5915 {
5916 dw_loc_descr_ref loc;
5917 rtx r;
5918
5919 CHECKSUM (at->dw_attr);
5920
5921 /* We don't care that this was compiled with a different compiler
5922 snapshot; if the output is the same, that's what matters. */
5923 if (at->dw_attr == DW_AT_producer)
5924 return;
5925
5926 switch (AT_class (at))
5927 {
5928 case dw_val_class_const:
5929 CHECKSUM (at->dw_attr_val.v.val_int);
5930 break;
5931 case dw_val_class_unsigned_const:
5932 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5933 break;
5934 case dw_val_class_long_long:
5935 CHECKSUM (at->dw_attr_val.v.val_long_long);
5936 break;
5937 case dw_val_class_vec:
5938 CHECKSUM (at->dw_attr_val.v.val_vec);
5939 break;
5940 case dw_val_class_flag:
5941 CHECKSUM (at->dw_attr_val.v.val_flag);
5942 break;
5943 case dw_val_class_str:
5944 CHECKSUM_STRING (AT_string (at));
5945 break;
5946
5947 case dw_val_class_addr:
5948 r = AT_addr (at);
5949 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5950 CHECKSUM_STRING (XSTR (r, 0));
5951 break;
5952
5953 case dw_val_class_offset:
5954 CHECKSUM (at->dw_attr_val.v.val_offset);
5955 break;
5956
5957 case dw_val_class_loc:
5958 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5959 loc_checksum (loc, ctx);
5960 break;
5961
5962 case dw_val_class_die_ref:
5963 die_checksum (AT_ref (at), ctx, mark);
5964 break;
5965
5966 case dw_val_class_fde_ref:
5967 case dw_val_class_lbl_id:
5968 case dw_val_class_lineptr:
5969 case dw_val_class_macptr:
5970 break;
5971
5972 case dw_val_class_file:
5973 CHECKSUM_STRING (AT_file (at)->filename);
5974 break;
5975
5976 default:
5977 break;
5978 }
5979 }
5980
5981 /* Calculate the checksum of a DIE. */
5982
5983 static void
5984 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5985 {
5986 dw_die_ref c;
5987 dw_attr_ref a;
5988 unsigned ix;
5989
5990 /* To avoid infinite recursion. */
5991 if (die->die_mark)
5992 {
5993 CHECKSUM (die->die_mark);
5994 return;
5995 }
5996 die->die_mark = ++(*mark);
5997
5998 CHECKSUM (die->die_tag);
5999
6000 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6001 attr_checksum (a, ctx, mark);
6002
6003 FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
6004 }
6005
6006 #undef CHECKSUM
6007 #undef CHECKSUM_STRING
6008
6009 /* Do the location expressions look same? */
6010 static inline int
6011 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
6012 {
6013 return loc1->dw_loc_opc == loc2->dw_loc_opc
6014 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
6015 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
6016 }
6017
6018 /* Do the values look the same? */
6019 static int
6020 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
6021 {
6022 dw_loc_descr_ref loc1, loc2;
6023 rtx r1, r2;
6024
6025 if (v1->val_class != v2->val_class)
6026 return 0;
6027
6028 switch (v1->val_class)
6029 {
6030 case dw_val_class_const:
6031 return v1->v.val_int == v2->v.val_int;
6032 case dw_val_class_unsigned_const:
6033 return v1->v.val_unsigned == v2->v.val_unsigned;
6034 case dw_val_class_long_long:
6035 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
6036 && v1->v.val_long_long.low == v2->v.val_long_long.low;
6037 case dw_val_class_vec:
6038 if (v1->v.val_vec.length != v2->v.val_vec.length
6039 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
6040 return 0;
6041 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
6042 v1->v.val_vec.length * v1->v.val_vec.elt_size))
6043 return 0;
6044 return 1;
6045 case dw_val_class_flag:
6046 return v1->v.val_flag == v2->v.val_flag;
6047 case dw_val_class_str:
6048 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
6049
6050 case dw_val_class_addr:
6051 r1 = v1->v.val_addr;
6052 r2 = v2->v.val_addr;
6053 if (GET_CODE (r1) != GET_CODE (r2))
6054 return 0;
6055 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
6056 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
6057
6058 case dw_val_class_offset:
6059 return v1->v.val_offset == v2->v.val_offset;
6060
6061 case dw_val_class_loc:
6062 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6063 loc1 && loc2;
6064 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6065 if (!same_loc_p (loc1, loc2, mark))
6066 return 0;
6067 return !loc1 && !loc2;
6068
6069 case dw_val_class_die_ref:
6070 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6071
6072 case dw_val_class_fde_ref:
6073 case dw_val_class_lbl_id:
6074 case dw_val_class_lineptr:
6075 case dw_val_class_macptr:
6076 return 1;
6077
6078 case dw_val_class_file:
6079 return v1->v.val_file == v2->v.val_file;
6080
6081 default:
6082 return 1;
6083 }
6084 }
6085
6086 /* Do the attributes look the same? */
6087
6088 static int
6089 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
6090 {
6091 if (at1->dw_attr != at2->dw_attr)
6092 return 0;
6093
6094 /* We don't care that this was compiled with a different compiler
6095 snapshot; if the output is the same, that's what matters. */
6096 if (at1->dw_attr == DW_AT_producer)
6097 return 1;
6098
6099 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6100 }
6101
6102 /* Do the dies look the same? */
6103
6104 static int
6105 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6106 {
6107 dw_die_ref c1, c2;
6108 dw_attr_ref a1;
6109 unsigned ix;
6110
6111 /* To avoid infinite recursion. */
6112 if (die1->die_mark)
6113 return die1->die_mark == die2->die_mark;
6114 die1->die_mark = die2->die_mark = ++(*mark);
6115
6116 if (die1->die_tag != die2->die_tag)
6117 return 0;
6118
6119 if (VEC_length (dw_attr_node, die1->die_attr)
6120 != VEC_length (dw_attr_node, die2->die_attr))
6121 return 0;
6122
6123 for (ix = 0; VEC_iterate (dw_attr_node, die1->die_attr, ix, a1); ix++)
6124 if (!same_attr_p (a1, VEC_index (dw_attr_node, die2->die_attr, ix), mark))
6125 return 0;
6126
6127 c1 = die1->die_child;
6128 c2 = die2->die_child;
6129 if (! c1)
6130 {
6131 if (c2)
6132 return 0;
6133 }
6134 else
6135 for (;;)
6136 {
6137 if (!same_die_p (c1, c2, mark))
6138 return 0;
6139 c1 = c1->die_sib;
6140 c2 = c2->die_sib;
6141 if (c1 == die1->die_child)
6142 {
6143 if (c2 == die2->die_child)
6144 break;
6145 else
6146 return 0;
6147 }
6148 }
6149
6150 return 1;
6151 }
6152
6153 /* Do the dies look the same? Wrapper around same_die_p. */
6154
6155 static int
6156 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6157 {
6158 int mark = 0;
6159 int ret = same_die_p (die1, die2, &mark);
6160
6161 unmark_all_dies (die1);
6162 unmark_all_dies (die2);
6163
6164 return ret;
6165 }
6166
6167 /* The prefix to attach to symbols on DIEs in the current comdat debug
6168 info section. */
6169 static char *comdat_symbol_id;
6170
6171 /* The index of the current symbol within the current comdat CU. */
6172 static unsigned int comdat_symbol_number;
6173
6174 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6175 children, and set comdat_symbol_id accordingly. */
6176
6177 static void
6178 compute_section_prefix (dw_die_ref unit_die)
6179 {
6180 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6181 const char *base = die_name ? lbasename (die_name) : "anonymous";
6182 char *name = alloca (strlen (base) + 64);
6183 char *p;
6184 int i, mark;
6185 unsigned char checksum[16];
6186 struct md5_ctx ctx;
6187
6188 /* Compute the checksum of the DIE, then append part of it as hex digits to
6189 the name filename of the unit. */
6190
6191 md5_init_ctx (&ctx);
6192 mark = 0;
6193 die_checksum (unit_die, &ctx, &mark);
6194 unmark_all_dies (unit_die);
6195 md5_finish_ctx (&ctx, checksum);
6196
6197 sprintf (name, "%s.", base);
6198 clean_symbol_name (name);
6199
6200 p = name + strlen (name);
6201 for (i = 0; i < 4; i++)
6202 {
6203 sprintf (p, "%.2x", checksum[i]);
6204 p += 2;
6205 }
6206
6207 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6208 comdat_symbol_number = 0;
6209 }
6210
6211 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6212
6213 static int
6214 is_type_die (dw_die_ref die)
6215 {
6216 switch (die->die_tag)
6217 {
6218 case DW_TAG_array_type:
6219 case DW_TAG_class_type:
6220 case DW_TAG_enumeration_type:
6221 case DW_TAG_pointer_type:
6222 case DW_TAG_reference_type:
6223 case DW_TAG_string_type:
6224 case DW_TAG_structure_type:
6225 case DW_TAG_subroutine_type:
6226 case DW_TAG_union_type:
6227 case DW_TAG_ptr_to_member_type:
6228 case DW_TAG_set_type:
6229 case DW_TAG_subrange_type:
6230 case DW_TAG_base_type:
6231 case DW_TAG_const_type:
6232 case DW_TAG_file_type:
6233 case DW_TAG_packed_type:
6234 case DW_TAG_volatile_type:
6235 case DW_TAG_typedef:
6236 return 1;
6237 default:
6238 return 0;
6239 }
6240 }
6241
6242 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6243 Basically, we want to choose the bits that are likely to be shared between
6244 compilations (types) and leave out the bits that are specific to individual
6245 compilations (functions). */
6246
6247 static int
6248 is_comdat_die (dw_die_ref c)
6249 {
6250 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6251 we do for stabs. The advantage is a greater likelihood of sharing between
6252 objects that don't include headers in the same order (and therefore would
6253 put the base types in a different comdat). jason 8/28/00 */
6254
6255 if (c->die_tag == DW_TAG_base_type)
6256 return 0;
6257
6258 if (c->die_tag == DW_TAG_pointer_type
6259 || c->die_tag == DW_TAG_reference_type
6260 || c->die_tag == DW_TAG_const_type
6261 || c->die_tag == DW_TAG_volatile_type)
6262 {
6263 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6264
6265 return t ? is_comdat_die (t) : 0;
6266 }
6267
6268 return is_type_die (c);
6269 }
6270
6271 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6272 compilation unit. */
6273
6274 static int
6275 is_symbol_die (dw_die_ref c)
6276 {
6277 return (is_type_die (c)
6278 || (get_AT (c, DW_AT_declaration)
6279 && !get_AT (c, DW_AT_specification))
6280 || c->die_tag == DW_TAG_namespace);
6281 }
6282
6283 static char *
6284 gen_internal_sym (const char *prefix)
6285 {
6286 char buf[256];
6287
6288 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6289 return xstrdup (buf);
6290 }
6291
6292 /* Assign symbols to all worthy DIEs under DIE. */
6293
6294 static void
6295 assign_symbol_names (dw_die_ref die)
6296 {
6297 dw_die_ref c;
6298
6299 if (is_symbol_die (die))
6300 {
6301 if (comdat_symbol_id)
6302 {
6303 char *p = alloca (strlen (comdat_symbol_id) + 64);
6304
6305 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6306 comdat_symbol_id, comdat_symbol_number++);
6307 die->die_symbol = xstrdup (p);
6308 }
6309 else
6310 die->die_symbol = gen_internal_sym ("LDIE");
6311 }
6312
6313 FOR_EACH_CHILD (die, c, assign_symbol_names (c));
6314 }
6315
6316 struct cu_hash_table_entry
6317 {
6318 dw_die_ref cu;
6319 unsigned min_comdat_num, max_comdat_num;
6320 struct cu_hash_table_entry *next;
6321 };
6322
6323 /* Routines to manipulate hash table of CUs. */
6324 static hashval_t
6325 htab_cu_hash (const void *of)
6326 {
6327 const struct cu_hash_table_entry *entry = of;
6328
6329 return htab_hash_string (entry->cu->die_symbol);
6330 }
6331
6332 static int
6333 htab_cu_eq (const void *of1, const void *of2)
6334 {
6335 const struct cu_hash_table_entry *entry1 = of1;
6336 const struct die_struct *entry2 = of2;
6337
6338 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6339 }
6340
6341 static void
6342 htab_cu_del (void *what)
6343 {
6344 struct cu_hash_table_entry *next, *entry = what;
6345
6346 while (entry)
6347 {
6348 next = entry->next;
6349 free (entry);
6350 entry = next;
6351 }
6352 }
6353
6354 /* Check whether we have already seen this CU and set up SYM_NUM
6355 accordingly. */
6356 static int
6357 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6358 {
6359 struct cu_hash_table_entry dummy;
6360 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6361
6362 dummy.max_comdat_num = 0;
6363
6364 slot = (struct cu_hash_table_entry **)
6365 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6366 INSERT);
6367 entry = *slot;
6368
6369 for (; entry; last = entry, entry = entry->next)
6370 {
6371 if (same_die_p_wrap (cu, entry->cu))
6372 break;
6373 }
6374
6375 if (entry)
6376 {
6377 *sym_num = entry->min_comdat_num;
6378 return 1;
6379 }
6380
6381 entry = XCNEW (struct cu_hash_table_entry);
6382 entry->cu = cu;
6383 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6384 entry->next = *slot;
6385 *slot = entry;
6386
6387 return 0;
6388 }
6389
6390 /* Record SYM_NUM to record of CU in HTABLE. */
6391 static void
6392 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6393 {
6394 struct cu_hash_table_entry **slot, *entry;
6395
6396 slot = (struct cu_hash_table_entry **)
6397 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6398 NO_INSERT);
6399 entry = *slot;
6400
6401 entry->max_comdat_num = sym_num;
6402 }
6403
6404 /* Traverse the DIE (which is always comp_unit_die), and set up
6405 additional compilation units for each of the include files we see
6406 bracketed by BINCL/EINCL. */
6407
6408 static void
6409 break_out_includes (dw_die_ref die)
6410 {
6411 dw_die_ref c;
6412 dw_die_ref unit = NULL;
6413 limbo_die_node *node, **pnode;
6414 htab_t cu_hash_table;
6415
6416 c = die->die_child;
6417 if (c) do {
6418 dw_die_ref prev = c;
6419 c = c->die_sib;
6420 while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6421 || (unit && is_comdat_die (c)))
6422 {
6423 dw_die_ref next = c->die_sib;
6424
6425 /* This DIE is for a secondary CU; remove it from the main one. */
6426 remove_child_with_prev (c, prev);
6427
6428 if (c->die_tag == DW_TAG_GNU_BINCL)
6429 unit = push_new_compile_unit (unit, c);
6430 else if (c->die_tag == DW_TAG_GNU_EINCL)
6431 unit = pop_compile_unit (unit);
6432 else
6433 add_child_die (unit, c);
6434 c = next;
6435 if (c == die->die_child)
6436 break;
6437 }
6438 } while (c != die->die_child);
6439
6440 #if 0
6441 /* We can only use this in debugging, since the frontend doesn't check
6442 to make sure that we leave every include file we enter. */
6443 gcc_assert (!unit);
6444 #endif
6445
6446 assign_symbol_names (die);
6447 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6448 for (node = limbo_die_list, pnode = &limbo_die_list;
6449 node;
6450 node = node->next)
6451 {
6452 int is_dupl;
6453
6454 compute_section_prefix (node->die);
6455 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6456 &comdat_symbol_number);
6457 assign_symbol_names (node->die);
6458 if (is_dupl)
6459 *pnode = node->next;
6460 else
6461 {
6462 pnode = &node->next;
6463 record_comdat_symbol_number (node->die, cu_hash_table,
6464 comdat_symbol_number);
6465 }
6466 }
6467 htab_delete (cu_hash_table);
6468 }
6469
6470 /* Traverse the DIE and add a sibling attribute if it may have the
6471 effect of speeding up access to siblings. To save some space,
6472 avoid generating sibling attributes for DIE's without children. */
6473
6474 static void
6475 add_sibling_attributes (dw_die_ref die)
6476 {
6477 dw_die_ref c;
6478
6479 if (! die->die_child)
6480 return;
6481
6482 if (die->die_parent && die != die->die_parent->die_child)
6483 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6484
6485 FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
6486 }
6487
6488 /* Output all location lists for the DIE and its children. */
6489
6490 static void
6491 output_location_lists (dw_die_ref die)
6492 {
6493 dw_die_ref c;
6494 dw_attr_ref a;
6495 unsigned ix;
6496
6497 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6498 if (AT_class (a) == dw_val_class_loc_list)
6499 output_loc_list (AT_loc_list (a));
6500
6501 FOR_EACH_CHILD (die, c, output_location_lists (c));
6502 }
6503
6504 /* The format of each DIE (and its attribute value pairs) is encoded in an
6505 abbreviation table. This routine builds the abbreviation table and assigns
6506 a unique abbreviation id for each abbreviation entry. The children of each
6507 die are visited recursively. */
6508
6509 static void
6510 build_abbrev_table (dw_die_ref die)
6511 {
6512 unsigned long abbrev_id;
6513 unsigned int n_alloc;
6514 dw_die_ref c;
6515 dw_attr_ref a;
6516 unsigned ix;
6517
6518 /* Scan the DIE references, and mark as external any that refer to
6519 DIEs from other CUs (i.e. those which are not marked). */
6520 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6521 if (AT_class (a) == dw_val_class_die_ref
6522 && AT_ref (a)->die_mark == 0)
6523 {
6524 gcc_assert (AT_ref (a)->die_symbol);
6525
6526 set_AT_ref_external (a, 1);
6527 }
6528
6529 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6530 {
6531 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6532 dw_attr_ref die_a, abbrev_a;
6533 unsigned ix;
6534 bool ok = true;
6535
6536 if (abbrev->die_tag != die->die_tag)
6537 continue;
6538 if ((abbrev->die_child != NULL) != (die->die_child != NULL))
6539 continue;
6540
6541 if (VEC_length (dw_attr_node, abbrev->die_attr)
6542 != VEC_length (dw_attr_node, die->die_attr))
6543 continue;
6544
6545 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, die_a); ix++)
6546 {
6547 abbrev_a = VEC_index (dw_attr_node, abbrev->die_attr, ix);
6548 if ((abbrev_a->dw_attr != die_a->dw_attr)
6549 || (value_format (abbrev_a) != value_format (die_a)))
6550 {
6551 ok = false;
6552 break;
6553 }
6554 }
6555 if (ok)
6556 break;
6557 }
6558
6559 if (abbrev_id >= abbrev_die_table_in_use)
6560 {
6561 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6562 {
6563 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6564 abbrev_die_table = ggc_realloc (abbrev_die_table,
6565 sizeof (dw_die_ref) * n_alloc);
6566
6567 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6568 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6569 abbrev_die_table_allocated = n_alloc;
6570 }
6571
6572 ++abbrev_die_table_in_use;
6573 abbrev_die_table[abbrev_id] = die;
6574 }
6575
6576 die->die_abbrev = abbrev_id;
6577 FOR_EACH_CHILD (die, c, build_abbrev_table (c));
6578 }
6579 \f
6580 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6581
6582 static int
6583 constant_size (long unsigned int value)
6584 {
6585 int log;
6586
6587 if (value == 0)
6588 log = 0;
6589 else
6590 log = floor_log2 (value);
6591
6592 log = log / 8;
6593 log = 1 << (floor_log2 (log) + 1);
6594
6595 return log;
6596 }
6597
6598 /* Return the size of a DIE as it is represented in the
6599 .debug_info section. */
6600
6601 static unsigned long
6602 size_of_die (dw_die_ref die)
6603 {
6604 unsigned long size = 0;
6605 dw_attr_ref a;
6606 unsigned ix;
6607
6608 size += size_of_uleb128 (die->die_abbrev);
6609 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6610 {
6611 switch (AT_class (a))
6612 {
6613 case dw_val_class_addr:
6614 size += DWARF2_ADDR_SIZE;
6615 break;
6616 case dw_val_class_offset:
6617 size += DWARF_OFFSET_SIZE;
6618 break;
6619 case dw_val_class_loc:
6620 {
6621 unsigned long lsize = size_of_locs (AT_loc (a));
6622
6623 /* Block length. */
6624 size += constant_size (lsize);
6625 size += lsize;
6626 }
6627 break;
6628 case dw_val_class_loc_list:
6629 size += DWARF_OFFSET_SIZE;
6630 break;
6631 case dw_val_class_range_list:
6632 size += DWARF_OFFSET_SIZE;
6633 break;
6634 case dw_val_class_const:
6635 size += size_of_sleb128 (AT_int (a));
6636 break;
6637 case dw_val_class_unsigned_const:
6638 size += constant_size (AT_unsigned (a));
6639 break;
6640 case dw_val_class_long_long:
6641 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6642 break;
6643 case dw_val_class_vec:
6644 size += 1 + (a->dw_attr_val.v.val_vec.length
6645 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6646 break;
6647 case dw_val_class_flag:
6648 size += 1;
6649 break;
6650 case dw_val_class_die_ref:
6651 if (AT_ref_external (a))
6652 size += DWARF2_ADDR_SIZE;
6653 else
6654 size += DWARF_OFFSET_SIZE;
6655 break;
6656 case dw_val_class_fde_ref:
6657 size += DWARF_OFFSET_SIZE;
6658 break;
6659 case dw_val_class_lbl_id:
6660 size += DWARF2_ADDR_SIZE;
6661 break;
6662 case dw_val_class_lineptr:
6663 case dw_val_class_macptr:
6664 size += DWARF_OFFSET_SIZE;
6665 break;
6666 case dw_val_class_str:
6667 if (AT_string_form (a) == DW_FORM_strp)
6668 size += DWARF_OFFSET_SIZE;
6669 else
6670 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6671 break;
6672 case dw_val_class_file:
6673 size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
6674 break;
6675 default:
6676 gcc_unreachable ();
6677 }
6678 }
6679
6680 return size;
6681 }
6682
6683 /* Size the debugging information associated with a given DIE. Visits the
6684 DIE's children recursively. Updates the global variable next_die_offset, on
6685 each time through. Uses the current value of next_die_offset to update the
6686 die_offset field in each DIE. */
6687
6688 static void
6689 calc_die_sizes (dw_die_ref die)
6690 {
6691 dw_die_ref c;
6692
6693 die->die_offset = next_die_offset;
6694 next_die_offset += size_of_die (die);
6695
6696 FOR_EACH_CHILD (die, c, calc_die_sizes (c));
6697
6698 if (die->die_child != NULL)
6699 /* Count the null byte used to terminate sibling lists. */
6700 next_die_offset += 1;
6701 }
6702
6703 /* Set the marks for a die and its children. We do this so
6704 that we know whether or not a reference needs to use FORM_ref_addr; only
6705 DIEs in the same CU will be marked. We used to clear out the offset
6706 and use that as the flag, but ran into ordering problems. */
6707
6708 static void
6709 mark_dies (dw_die_ref die)
6710 {
6711 dw_die_ref c;
6712
6713 gcc_assert (!die->die_mark);
6714
6715 die->die_mark = 1;
6716 FOR_EACH_CHILD (die, c, mark_dies (c));
6717 }
6718
6719 /* Clear the marks for a die and its children. */
6720
6721 static void
6722 unmark_dies (dw_die_ref die)
6723 {
6724 dw_die_ref c;
6725
6726 gcc_assert (die->die_mark);
6727
6728 die->die_mark = 0;
6729 FOR_EACH_CHILD (die, c, unmark_dies (c));
6730 }
6731
6732 /* Clear the marks for a die, its children and referred dies. */
6733
6734 static void
6735 unmark_all_dies (dw_die_ref die)
6736 {
6737 dw_die_ref c;
6738 dw_attr_ref a;
6739 unsigned ix;
6740
6741 if (!die->die_mark)
6742 return;
6743 die->die_mark = 0;
6744
6745 FOR_EACH_CHILD (die, c, unmark_all_dies (c));
6746
6747 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6748 if (AT_class (a) == dw_val_class_die_ref)
6749 unmark_all_dies (AT_ref (a));
6750 }
6751
6752 /* Return the size of the .debug_pubnames table generated for the
6753 compilation unit. */
6754
6755 static unsigned long
6756 size_of_pubnames (void)
6757 {
6758 unsigned long size;
6759 unsigned i;
6760
6761 size = DWARF_PUBNAMES_HEADER_SIZE;
6762 for (i = 0; i < pubname_table_in_use; i++)
6763 {
6764 pubname_ref p = &pubname_table[i];
6765 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6766 }
6767
6768 size += DWARF_OFFSET_SIZE;
6769 return size;
6770 }
6771
6772 /* Return the size of the information in the .debug_aranges section. */
6773
6774 static unsigned long
6775 size_of_aranges (void)
6776 {
6777 unsigned long size;
6778
6779 size = DWARF_ARANGES_HEADER_SIZE;
6780
6781 /* Count the address/length pair for this compilation unit. */
6782 size += 2 * DWARF2_ADDR_SIZE;
6783 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6784
6785 /* Count the two zero words used to terminated the address range table. */
6786 size += 2 * DWARF2_ADDR_SIZE;
6787 return size;
6788 }
6789 \f
6790 /* Select the encoding of an attribute value. */
6791
6792 static enum dwarf_form
6793 value_format (dw_attr_ref a)
6794 {
6795 switch (a->dw_attr_val.val_class)
6796 {
6797 case dw_val_class_addr:
6798 return DW_FORM_addr;
6799 case dw_val_class_range_list:
6800 case dw_val_class_offset:
6801 case dw_val_class_loc_list:
6802 switch (DWARF_OFFSET_SIZE)
6803 {
6804 case 4:
6805 return DW_FORM_data4;
6806 case 8:
6807 return DW_FORM_data8;
6808 default:
6809 gcc_unreachable ();
6810 }
6811 case dw_val_class_loc:
6812 switch (constant_size (size_of_locs (AT_loc (a))))
6813 {
6814 case 1:
6815 return DW_FORM_block1;
6816 case 2:
6817 return DW_FORM_block2;
6818 default:
6819 gcc_unreachable ();
6820 }
6821 case dw_val_class_const:
6822 return DW_FORM_sdata;
6823 case dw_val_class_unsigned_const:
6824 switch (constant_size (AT_unsigned (a)))
6825 {
6826 case 1:
6827 return DW_FORM_data1;
6828 case 2:
6829 return DW_FORM_data2;
6830 case 4:
6831 return DW_FORM_data4;
6832 case 8:
6833 return DW_FORM_data8;
6834 default:
6835 gcc_unreachable ();
6836 }
6837 case dw_val_class_long_long:
6838 return DW_FORM_block1;
6839 case dw_val_class_vec:
6840 return DW_FORM_block1;
6841 case dw_val_class_flag:
6842 return DW_FORM_flag;
6843 case dw_val_class_die_ref:
6844 if (AT_ref_external (a))
6845 return DW_FORM_ref_addr;
6846 else
6847 return DW_FORM_ref;
6848 case dw_val_class_fde_ref:
6849 return DW_FORM_data;
6850 case dw_val_class_lbl_id:
6851 return DW_FORM_addr;
6852 case dw_val_class_lineptr:
6853 case dw_val_class_macptr:
6854 return DW_FORM_data;
6855 case dw_val_class_str:
6856 return AT_string_form (a);
6857 case dw_val_class_file:
6858 switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
6859 {
6860 case 1:
6861 return DW_FORM_data1;
6862 case 2:
6863 return DW_FORM_data2;
6864 case 4:
6865 return DW_FORM_data4;
6866 default:
6867 gcc_unreachable ();
6868 }
6869
6870 default:
6871 gcc_unreachable ();
6872 }
6873 }
6874
6875 /* Output the encoding of an attribute value. */
6876
6877 static void
6878 output_value_format (dw_attr_ref a)
6879 {
6880 enum dwarf_form form = value_format (a);
6881
6882 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6883 }
6884
6885 /* Output the .debug_abbrev section which defines the DIE abbreviation
6886 table. */
6887
6888 static void
6889 output_abbrev_section (void)
6890 {
6891 unsigned long abbrev_id;
6892
6893 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6894 {
6895 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6896 unsigned ix;
6897 dw_attr_ref a_attr;
6898
6899 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6900 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6901 dwarf_tag_name (abbrev->die_tag));
6902
6903 if (abbrev->die_child != NULL)
6904 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6905 else
6906 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6907
6908 for (ix = 0; VEC_iterate (dw_attr_node, abbrev->die_attr, ix, a_attr);
6909 ix++)
6910 {
6911 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6912 dwarf_attr_name (a_attr->dw_attr));
6913 output_value_format (a_attr);
6914 }
6915
6916 dw2_asm_output_data (1, 0, NULL);
6917 dw2_asm_output_data (1, 0, NULL);
6918 }
6919
6920 /* Terminate the table. */
6921 dw2_asm_output_data (1, 0, NULL);
6922 }
6923
6924 /* Output a symbol we can use to refer to this DIE from another CU. */
6925
6926 static inline void
6927 output_die_symbol (dw_die_ref die)
6928 {
6929 char *sym = die->die_symbol;
6930
6931 if (sym == 0)
6932 return;
6933
6934 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6935 /* We make these global, not weak; if the target doesn't support
6936 .linkonce, it doesn't support combining the sections, so debugging
6937 will break. */
6938 targetm.asm_out.globalize_label (asm_out_file, sym);
6939
6940 ASM_OUTPUT_LABEL (asm_out_file, sym);
6941 }
6942
6943 /* Return a new location list, given the begin and end range, and the
6944 expression. gensym tells us whether to generate a new internal symbol for
6945 this location list node, which is done for the head of the list only. */
6946
6947 static inline dw_loc_list_ref
6948 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6949 const char *section, unsigned int gensym)
6950 {
6951 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6952
6953 retlist->begin = begin;
6954 retlist->end = end;
6955 retlist->expr = expr;
6956 retlist->section = section;
6957 if (gensym)
6958 retlist->ll_symbol = gen_internal_sym ("LLST");
6959
6960 return retlist;
6961 }
6962
6963 /* Add a location description expression to a location list. */
6964
6965 static inline void
6966 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6967 const char *begin, const char *end,
6968 const char *section)
6969 {
6970 dw_loc_list_ref *d;
6971
6972 /* Find the end of the chain. */
6973 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6974 ;
6975
6976 /* Add a new location list node to the list. */
6977 *d = new_loc_list (descr, begin, end, section, 0);
6978 }
6979
6980 static void
6981 dwarf2out_switch_text_section (void)
6982 {
6983 dw_fde_ref fde;
6984
6985 gcc_assert (cfun);
6986
6987 fde = &fde_table[fde_table_in_use - 1];
6988 fde->dw_fde_switched_sections = true;
6989 fde->dw_fde_hot_section_label = cfun->hot_section_label;
6990 fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
6991 fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
6992 fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
6993 have_multiple_function_sections = true;
6994
6995 /* Reset the current label on switching text sections, so that we
6996 don't attempt to advance_loc4 between labels in different sections. */
6997 fde->dw_fde_current_label = NULL;
6998 }
6999
7000 /* Output the location list given to us. */
7001
7002 static void
7003 output_loc_list (dw_loc_list_ref list_head)
7004 {
7005 dw_loc_list_ref curr = list_head;
7006
7007 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
7008
7009 /* Walk the location list, and output each range + expression. */
7010 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
7011 {
7012 unsigned long size;
7013 if (!have_multiple_function_sections)
7014 {
7015 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
7016 "Location list begin address (%s)",
7017 list_head->ll_symbol);
7018 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
7019 "Location list end address (%s)",
7020 list_head->ll_symbol);
7021 }
7022 else
7023 {
7024 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
7025 "Location list begin address (%s)",
7026 list_head->ll_symbol);
7027 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
7028 "Location list end address (%s)",
7029 list_head->ll_symbol);
7030 }
7031 size = size_of_locs (curr->expr);
7032
7033 /* Output the block length for this list of location operations. */
7034 gcc_assert (size <= 0xffff);
7035 dw2_asm_output_data (2, size, "%s", "Location expression size");
7036
7037 output_loc_sequence (curr->expr);
7038 }
7039
7040 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7041 "Location list terminator begin (%s)",
7042 list_head->ll_symbol);
7043 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7044 "Location list terminator end (%s)",
7045 list_head->ll_symbol);
7046 }
7047
7048 /* Output the DIE and its attributes. Called recursively to generate
7049 the definitions of each child DIE. */
7050
7051 static void
7052 output_die (dw_die_ref die)
7053 {
7054 dw_attr_ref a;
7055 dw_die_ref c;
7056 unsigned long size;
7057 unsigned ix;
7058
7059 /* If someone in another CU might refer to us, set up a symbol for
7060 them to point to. */
7061 if (die->die_symbol)
7062 output_die_symbol (die);
7063
7064 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
7065 die->die_offset, dwarf_tag_name (die->die_tag));
7066
7067 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
7068 {
7069 const char *name = dwarf_attr_name (a->dw_attr);
7070
7071 switch (AT_class (a))
7072 {
7073 case dw_val_class_addr:
7074 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
7075 break;
7076
7077 case dw_val_class_offset:
7078 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
7079 "%s", name);
7080 break;
7081
7082 case dw_val_class_range_list:
7083 {
7084 char *p = strchr (ranges_section_label, '\0');
7085
7086 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
7087 a->dw_attr_val.v.val_offset);
7088 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
7089 debug_ranges_section, "%s", name);
7090 *p = '\0';
7091 }
7092 break;
7093
7094 case dw_val_class_loc:
7095 size = size_of_locs (AT_loc (a));
7096
7097 /* Output the block length for this list of location operations. */
7098 dw2_asm_output_data (constant_size (size), size, "%s", name);
7099
7100 output_loc_sequence (AT_loc (a));
7101 break;
7102
7103 case dw_val_class_const:
7104 /* ??? It would be slightly more efficient to use a scheme like is
7105 used for unsigned constants below, but gdb 4.x does not sign
7106 extend. Gdb 5.x does sign extend. */
7107 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
7108 break;
7109
7110 case dw_val_class_unsigned_const:
7111 dw2_asm_output_data (constant_size (AT_unsigned (a)),
7112 AT_unsigned (a), "%s", name);
7113 break;
7114
7115 case dw_val_class_long_long:
7116 {
7117 unsigned HOST_WIDE_INT first, second;
7118
7119 dw2_asm_output_data (1,
7120 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7121 "%s", name);
7122
7123 if (WORDS_BIG_ENDIAN)
7124 {
7125 first = a->dw_attr_val.v.val_long_long.hi;
7126 second = a->dw_attr_val.v.val_long_long.low;
7127 }
7128 else
7129 {
7130 first = a->dw_attr_val.v.val_long_long.low;
7131 second = a->dw_attr_val.v.val_long_long.hi;
7132 }
7133
7134 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7135 first, "long long constant");
7136 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7137 second, NULL);
7138 }
7139 break;
7140
7141 case dw_val_class_vec:
7142 {
7143 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
7144 unsigned int len = a->dw_attr_val.v.val_vec.length;
7145 unsigned int i;
7146 unsigned char *p;
7147
7148 dw2_asm_output_data (1, len * elt_size, "%s", name);
7149 if (elt_size > sizeof (HOST_WIDE_INT))
7150 {
7151 elt_size /= 2;
7152 len *= 2;
7153 }
7154 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
7155 i < len;
7156 i++, p += elt_size)
7157 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
7158 "fp or vector constant word %u", i);
7159 break;
7160 }
7161
7162 case dw_val_class_flag:
7163 dw2_asm_output_data (1, AT_flag (a), "%s", name);
7164 break;
7165
7166 case dw_val_class_loc_list:
7167 {
7168 char *sym = AT_loc_list (a)->ll_symbol;
7169
7170 gcc_assert (sym);
7171 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
7172 "%s", name);
7173 }
7174 break;
7175
7176 case dw_val_class_die_ref:
7177 if (AT_ref_external (a))
7178 {
7179 char *sym = AT_ref (a)->die_symbol;
7180
7181 gcc_assert (sym);
7182 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, debug_info_section,
7183 "%s", name);
7184 }
7185 else
7186 {
7187 gcc_assert (AT_ref (a)->die_offset);
7188 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7189 "%s", name);
7190 }
7191 break;
7192
7193 case dw_val_class_fde_ref:
7194 {
7195 char l1[20];
7196
7197 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7198 a->dw_attr_val.v.val_fde_index * 2);
7199 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
7200 "%s", name);
7201 }
7202 break;
7203
7204 case dw_val_class_lbl_id:
7205 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7206 break;
7207
7208 case dw_val_class_lineptr:
7209 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7210 debug_line_section, "%s", name);
7211 break;
7212
7213 case dw_val_class_macptr:
7214 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7215 debug_macinfo_section, "%s", name);
7216 break;
7217
7218 case dw_val_class_str:
7219 if (AT_string_form (a) == DW_FORM_strp)
7220 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7221 a->dw_attr_val.v.val_str->label,
7222 debug_str_section,
7223 "%s: \"%s\"", name, AT_string (a));
7224 else
7225 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7226 break;
7227
7228 case dw_val_class_file:
7229 {
7230 int f = maybe_emit_file (a->dw_attr_val.v.val_file);
7231
7232 dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
7233 a->dw_attr_val.v.val_file->filename);
7234 break;
7235 }
7236
7237 default:
7238 gcc_unreachable ();
7239 }
7240 }
7241
7242 FOR_EACH_CHILD (die, c, output_die (c));
7243
7244 /* Add null byte to terminate sibling list. */
7245 if (die->die_child != NULL)
7246 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7247 die->die_offset);
7248 }
7249
7250 /* Output the compilation unit that appears at the beginning of the
7251 .debug_info section, and precedes the DIE descriptions. */
7252
7253 static void
7254 output_compilation_unit_header (void)
7255 {
7256 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7257 dw2_asm_output_data (4, 0xffffffff,
7258 "Initial length escape value indicating 64-bit DWARF extension");
7259 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7260 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7261 "Length of Compilation Unit Info");
7262 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7263 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7264 debug_abbrev_section,
7265 "Offset Into Abbrev. Section");
7266 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7267 }
7268
7269 /* Output the compilation unit DIE and its children. */
7270
7271 static void
7272 output_comp_unit (dw_die_ref die, int output_if_empty)
7273 {
7274 const char *secname;
7275 char *oldsym, *tmp;
7276
7277 /* Unless we are outputting main CU, we may throw away empty ones. */
7278 if (!output_if_empty && die->die_child == NULL)
7279 return;
7280
7281 /* Even if there are no children of this DIE, we must output the information
7282 about the compilation unit. Otherwise, on an empty translation unit, we
7283 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7284 will then complain when examining the file. First mark all the DIEs in
7285 this CU so we know which get local refs. */
7286 mark_dies (die);
7287
7288 build_abbrev_table (die);
7289
7290 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7291 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7292 calc_die_sizes (die);
7293
7294 oldsym = die->die_symbol;
7295 if (oldsym)
7296 {
7297 tmp = alloca (strlen (oldsym) + 24);
7298
7299 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7300 secname = tmp;
7301 die->die_symbol = NULL;
7302 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
7303 }
7304 else
7305 switch_to_section (debug_info_section);
7306
7307 /* Output debugging information. */
7308 output_compilation_unit_header ();
7309 output_die (die);
7310
7311 /* Leave the marks on the main CU, so we can check them in
7312 output_pubnames. */
7313 if (oldsym)
7314 {
7315 unmark_dies (die);
7316 die->die_symbol = oldsym;
7317 }
7318 }
7319
7320 /* Return the DWARF2/3 pubname associated with a decl. */
7321
7322 static const char *
7323 dwarf2_name (tree decl, int scope)
7324 {
7325 return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
7326 }
7327
7328 /* Add a new entry to .debug_pubnames if appropriate. */
7329
7330 static void
7331 add_pubname (tree decl, dw_die_ref die)
7332 {
7333 pubname_ref p;
7334
7335 if (! TREE_PUBLIC (decl))
7336 return;
7337
7338 if (pubname_table_in_use == pubname_table_allocated)
7339 {
7340 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7341 pubname_table
7342 = ggc_realloc (pubname_table,
7343 (pubname_table_allocated * sizeof (pubname_entry)));
7344 memset (pubname_table + pubname_table_in_use, 0,
7345 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7346 }
7347
7348 p = &pubname_table[pubname_table_in_use++];
7349 p->die = die;
7350 p->name = xstrdup (dwarf2_name (decl, 1));
7351 }
7352
7353 /* Output the public names table used to speed up access to externally
7354 visible names. For now, only generate entries for externally
7355 visible procedures. */
7356
7357 static void
7358 output_pubnames (void)
7359 {
7360 unsigned i;
7361 unsigned long pubnames_length = size_of_pubnames ();
7362
7363 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7364 dw2_asm_output_data (4, 0xffffffff,
7365 "Initial length escape value indicating 64-bit DWARF extension");
7366 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7367 "Length of Public Names Info");
7368 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7369 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7370 debug_info_section,
7371 "Offset of Compilation Unit Info");
7372 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7373 "Compilation Unit Length");
7374
7375 for (i = 0; i < pubname_table_in_use; i++)
7376 {
7377 pubname_ref pub = &pubname_table[i];
7378
7379 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7380 gcc_assert (pub->die->die_mark);
7381
7382 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7383 "DIE offset");
7384
7385 dw2_asm_output_nstring (pub->name, -1, "external name");
7386 }
7387
7388 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7389 }
7390
7391 /* Add a new entry to .debug_aranges if appropriate. */
7392
7393 static void
7394 add_arange (tree decl, dw_die_ref die)
7395 {
7396 if (! DECL_SECTION_NAME (decl))
7397 return;
7398
7399 if (arange_table_in_use == arange_table_allocated)
7400 {
7401 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7402 arange_table = ggc_realloc (arange_table,
7403 (arange_table_allocated
7404 * sizeof (dw_die_ref)));
7405 memset (arange_table + arange_table_in_use, 0,
7406 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7407 }
7408
7409 arange_table[arange_table_in_use++] = die;
7410 }
7411
7412 /* Output the information that goes into the .debug_aranges table.
7413 Namely, define the beginning and ending address range of the
7414 text section generated for this compilation unit. */
7415
7416 static void
7417 output_aranges (void)
7418 {
7419 unsigned i;
7420 unsigned long aranges_length = size_of_aranges ();
7421
7422 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7423 dw2_asm_output_data (4, 0xffffffff,
7424 "Initial length escape value indicating 64-bit DWARF extension");
7425 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7426 "Length of Address Ranges Info");
7427 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7428 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7429 debug_info_section,
7430 "Offset of Compilation Unit Info");
7431 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7432 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7433
7434 /* We need to align to twice the pointer size here. */
7435 if (DWARF_ARANGES_PAD_SIZE)
7436 {
7437 /* Pad using a 2 byte words so that padding is correct for any
7438 pointer size. */
7439 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7440 2 * DWARF2_ADDR_SIZE);
7441 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7442 dw2_asm_output_data (2, 0, NULL);
7443 }
7444
7445 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7446 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7447 text_section_label, "Length");
7448 if (flag_reorder_blocks_and_partition)
7449 {
7450 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7451 "Address");
7452 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7453 cold_text_section_label, "Length");
7454 }
7455
7456 for (i = 0; i < arange_table_in_use; i++)
7457 {
7458 dw_die_ref die = arange_table[i];
7459
7460 /* We shouldn't see aranges for DIEs outside of the main CU. */
7461 gcc_assert (die->die_mark);
7462
7463 if (die->die_tag == DW_TAG_subprogram)
7464 {
7465 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7466 "Address");
7467 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7468 get_AT_low_pc (die), "Length");
7469 }
7470 else
7471 {
7472 /* A static variable; extract the symbol from DW_AT_location.
7473 Note that this code isn't currently hit, as we only emit
7474 aranges for functions (jason 9/23/99). */
7475 dw_attr_ref a = get_AT (die, DW_AT_location);
7476 dw_loc_descr_ref loc;
7477
7478 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7479
7480 loc = AT_loc (a);
7481 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7482
7483 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7484 loc->dw_loc_oprnd1.v.val_addr, "Address");
7485 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7486 get_AT_unsigned (die, DW_AT_byte_size),
7487 "Length");
7488 }
7489 }
7490
7491 /* Output the terminator words. */
7492 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7493 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7494 }
7495
7496 /* Add a new entry to .debug_ranges. Return the offset at which it
7497 was placed. */
7498
7499 static unsigned int
7500 add_ranges (tree block)
7501 {
7502 unsigned int in_use = ranges_table_in_use;
7503
7504 if (in_use == ranges_table_allocated)
7505 {
7506 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7507 ranges_table
7508 = ggc_realloc (ranges_table, (ranges_table_allocated
7509 * sizeof (struct dw_ranges_struct)));
7510 memset (ranges_table + ranges_table_in_use, 0,
7511 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7512 }
7513
7514 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7515 ranges_table_in_use = in_use + 1;
7516
7517 return in_use * 2 * DWARF2_ADDR_SIZE;
7518 }
7519
7520 static void
7521 output_ranges (void)
7522 {
7523 unsigned i;
7524 static const char *const start_fmt = "Offset 0x%x";
7525 const char *fmt = start_fmt;
7526
7527 for (i = 0; i < ranges_table_in_use; i++)
7528 {
7529 int block_num = ranges_table[i].block_num;
7530
7531 if (block_num)
7532 {
7533 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7534 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7535
7536 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7537 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7538
7539 /* If all code is in the text section, then the compilation
7540 unit base address defaults to DW_AT_low_pc, which is the
7541 base of the text section. */
7542 if (!have_multiple_function_sections)
7543 {
7544 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7545 text_section_label,
7546 fmt, i * 2 * DWARF2_ADDR_SIZE);
7547 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7548 text_section_label, NULL);
7549 }
7550
7551 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7552 compilation unit base address to zero, which allows us to
7553 use absolute addresses, and not worry about whether the
7554 target supports cross-section arithmetic. */
7555 else
7556 {
7557 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7558 fmt, i * 2 * DWARF2_ADDR_SIZE);
7559 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7560 }
7561
7562 fmt = NULL;
7563 }
7564 else
7565 {
7566 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7567 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7568 fmt = start_fmt;
7569 }
7570 }
7571 }
7572
7573 /* Data structure containing information about input files. */
7574 struct file_info
7575 {
7576 const char *path; /* Complete file name. */
7577 const char *fname; /* File name part. */
7578 int length; /* Length of entire string. */
7579 struct dwarf_file_data * file_idx; /* Index in input file table. */
7580 int dir_idx; /* Index in directory table. */
7581 };
7582
7583 /* Data structure containing information about directories with source
7584 files. */
7585 struct dir_info
7586 {
7587 const char *path; /* Path including directory name. */
7588 int length; /* Path length. */
7589 int prefix; /* Index of directory entry which is a prefix. */
7590 int count; /* Number of files in this directory. */
7591 int dir_idx; /* Index of directory used as base. */
7592 };
7593
7594 /* Callback function for file_info comparison. We sort by looking at
7595 the directories in the path. */
7596
7597 static int
7598 file_info_cmp (const void *p1, const void *p2)
7599 {
7600 const struct file_info *s1 = p1;
7601 const struct file_info *s2 = p2;
7602 unsigned char *cp1;
7603 unsigned char *cp2;
7604
7605 /* Take care of file names without directories. We need to make sure that
7606 we return consistent values to qsort since some will get confused if
7607 we return the same value when identical operands are passed in opposite
7608 orders. So if neither has a directory, return 0 and otherwise return
7609 1 or -1 depending on which one has the directory. */
7610 if ((s1->path == s1->fname || s2->path == s2->fname))
7611 return (s2->path == s2->fname) - (s1->path == s1->fname);
7612
7613 cp1 = (unsigned char *) s1->path;
7614 cp2 = (unsigned char *) s2->path;
7615
7616 while (1)
7617 {
7618 ++cp1;
7619 ++cp2;
7620 /* Reached the end of the first path? If so, handle like above. */
7621 if ((cp1 == (unsigned char *) s1->fname)
7622 || (cp2 == (unsigned char *) s2->fname))
7623 return ((cp2 == (unsigned char *) s2->fname)
7624 - (cp1 == (unsigned char *) s1->fname));
7625
7626 /* Character of current path component the same? */
7627 else if (*cp1 != *cp2)
7628 return *cp1 - *cp2;
7629 }
7630 }
7631
7632 struct file_name_acquire_data
7633 {
7634 struct file_info *files;
7635 int used_files;
7636 int max_files;
7637 };
7638
7639 /* Traversal function for the hash table. */
7640
7641 static int
7642 file_name_acquire (void ** slot, void *data)
7643 {
7644 struct file_name_acquire_data *fnad = data;
7645 struct dwarf_file_data *d = *slot;
7646 struct file_info *fi;
7647 const char *f;
7648
7649 gcc_assert (fnad->max_files >= d->emitted_number);
7650
7651 if (! d->emitted_number)
7652 return 1;
7653
7654 gcc_assert (fnad->max_files != fnad->used_files);
7655
7656 fi = fnad->files + fnad->used_files++;
7657
7658 /* Skip all leading "./". */
7659 f = d->filename;
7660 while (f[0] == '.' && IS_DIR_SEPARATOR (f[1]))
7661 f += 2;
7662
7663 /* Create a new array entry. */
7664 fi->path = f;
7665 fi->length = strlen (f);
7666 fi->file_idx = d;
7667
7668 /* Search for the file name part. */
7669 f = strrchr (f, DIR_SEPARATOR);
7670 #if defined (DIR_SEPARATOR_2)
7671 {
7672 char *g = strrchr (fi->path, DIR_SEPARATOR_2);
7673
7674 if (g != NULL)
7675 {
7676 if (f == NULL || f < g)
7677 f = g;
7678 }
7679 }
7680 #endif
7681
7682 fi->fname = f == NULL ? fi->path : f + 1;
7683 return 1;
7684 }
7685
7686 /* Output the directory table and the file name table. We try to minimize
7687 the total amount of memory needed. A heuristic is used to avoid large
7688 slowdowns with many input files. */
7689
7690 static void
7691 output_file_names (void)
7692 {
7693 struct file_name_acquire_data fnad;
7694 int numfiles;
7695 struct file_info *files;
7696 struct dir_info *dirs;
7697 int *saved;
7698 int *savehere;
7699 int *backmap;
7700 int ndirs;
7701 int idx_offset;
7702 int i;
7703 int idx;
7704
7705 if (!last_emitted_file)
7706 {
7707 dw2_asm_output_data (1, 0, "End directory table");
7708 dw2_asm_output_data (1, 0, "End file name table");
7709 return;
7710 }
7711
7712 numfiles = last_emitted_file->emitted_number;
7713
7714 /* Allocate the various arrays we need. */
7715 files = alloca (numfiles * sizeof (struct file_info));
7716 dirs = alloca (numfiles * sizeof (struct dir_info));
7717
7718 fnad.files = files;
7719 fnad.used_files = 0;
7720 fnad.max_files = numfiles;
7721 htab_traverse (file_table, file_name_acquire, &fnad);
7722 gcc_assert (fnad.used_files == fnad.max_files);
7723
7724 qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
7725
7726 /* Find all the different directories used. */
7727 dirs[0].path = files[0].path;
7728 dirs[0].length = files[0].fname - files[0].path;
7729 dirs[0].prefix = -1;
7730 dirs[0].count = 1;
7731 dirs[0].dir_idx = 0;
7732 files[0].dir_idx = 0;
7733 ndirs = 1;
7734
7735 for (i = 1; i < numfiles; i++)
7736 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7737 && memcmp (dirs[ndirs - 1].path, files[i].path,
7738 dirs[ndirs - 1].length) == 0)
7739 {
7740 /* Same directory as last entry. */
7741 files[i].dir_idx = ndirs - 1;
7742 ++dirs[ndirs - 1].count;
7743 }
7744 else
7745 {
7746 int j;
7747
7748 /* This is a new directory. */
7749 dirs[ndirs].path = files[i].path;
7750 dirs[ndirs].length = files[i].fname - files[i].path;
7751 dirs[ndirs].count = 1;
7752 dirs[ndirs].dir_idx = ndirs;
7753 files[i].dir_idx = ndirs;
7754
7755 /* Search for a prefix. */
7756 dirs[ndirs].prefix = -1;
7757 for (j = 0; j < ndirs; j++)
7758 if (dirs[j].length < dirs[ndirs].length
7759 && dirs[j].length > 1
7760 && (dirs[ndirs].prefix == -1
7761 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7762 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7763 dirs[ndirs].prefix = j;
7764
7765 ++ndirs;
7766 }
7767
7768 /* Now to the actual work. We have to find a subset of the directories which
7769 allow expressing the file name using references to the directory table
7770 with the least amount of characters. We do not do an exhaustive search
7771 where we would have to check out every combination of every single
7772 possible prefix. Instead we use a heuristic which provides nearly optimal
7773 results in most cases and never is much off. */
7774 saved = alloca (ndirs * sizeof (int));
7775 savehere = alloca (ndirs * sizeof (int));
7776
7777 memset (saved, '\0', ndirs * sizeof (saved[0]));
7778 for (i = 0; i < ndirs; i++)
7779 {
7780 int j;
7781 int total;
7782
7783 /* We can always save some space for the current directory. But this
7784 does not mean it will be enough to justify adding the directory. */
7785 savehere[i] = dirs[i].length;
7786 total = (savehere[i] - saved[i]) * dirs[i].count;
7787
7788 for (j = i + 1; j < ndirs; j++)
7789 {
7790 savehere[j] = 0;
7791 if (saved[j] < dirs[i].length)
7792 {
7793 /* Determine whether the dirs[i] path is a prefix of the
7794 dirs[j] path. */
7795 int k;
7796
7797 k = dirs[j].prefix;
7798 while (k != -1 && k != (int) i)
7799 k = dirs[k].prefix;
7800
7801 if (k == (int) i)
7802 {
7803 /* Yes it is. We can possibly save some memory by
7804 writing the filenames in dirs[j] relative to
7805 dirs[i]. */
7806 savehere[j] = dirs[i].length;
7807 total += (savehere[j] - saved[j]) * dirs[j].count;
7808 }
7809 }
7810 }
7811
7812 /* Check whether we can save enough to justify adding the dirs[i]
7813 directory. */
7814 if (total > dirs[i].length + 1)
7815 {
7816 /* It's worthwhile adding. */
7817 for (j = i; j < ndirs; j++)
7818 if (savehere[j] > 0)
7819 {
7820 /* Remember how much we saved for this directory so far. */
7821 saved[j] = savehere[j];
7822
7823 /* Remember the prefix directory. */
7824 dirs[j].dir_idx = i;
7825 }
7826 }
7827 }
7828
7829 /* Emit the directory name table. */
7830 idx = 1;
7831 idx_offset = dirs[0].length > 0 ? 1 : 0;
7832 for (i = 1 - idx_offset; i < ndirs; i++)
7833 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7834 "Directory Entry: 0x%x", i + idx_offset);
7835
7836 dw2_asm_output_data (1, 0, "End directory table");
7837
7838 /* We have to emit them in the order of emitted_number since that's
7839 used in the debug info generation. To do this efficiently we
7840 generate a back-mapping of the indices first. */
7841 backmap = alloca (numfiles * sizeof (int));
7842 for (i = 0; i < numfiles; i++)
7843 backmap[files[i].file_idx->emitted_number - 1] = i;
7844
7845 /* Now write all the file names. */
7846 for (i = 0; i < numfiles; i++)
7847 {
7848 int file_idx = backmap[i];
7849 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7850
7851 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7852 "File Entry: 0x%x", (unsigned) i + 1);
7853
7854 /* Include directory index. */
7855 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
7856
7857 /* Modification time. */
7858 dw2_asm_output_data_uleb128 (0, NULL);
7859
7860 /* File length in bytes. */
7861 dw2_asm_output_data_uleb128 (0, NULL);
7862 }
7863
7864 dw2_asm_output_data (1, 0, "End file name table");
7865 }
7866
7867
7868 /* Output the source line number correspondence information. This
7869 information goes into the .debug_line section. */
7870
7871 static void
7872 output_line_info (void)
7873 {
7874 char l1[20], l2[20], p1[20], p2[20];
7875 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7876 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7877 unsigned opc;
7878 unsigned n_op_args;
7879 unsigned long lt_index;
7880 unsigned long current_line;
7881 long line_offset;
7882 long line_delta;
7883 unsigned long current_file;
7884 unsigned long function;
7885
7886 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7887 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7888 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7889 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7890
7891 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7892 dw2_asm_output_data (4, 0xffffffff,
7893 "Initial length escape value indicating 64-bit DWARF extension");
7894 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7895 "Length of Source Line Info");
7896 ASM_OUTPUT_LABEL (asm_out_file, l1);
7897
7898 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7899 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7900 ASM_OUTPUT_LABEL (asm_out_file, p1);
7901
7902 /* Define the architecture-dependent minimum instruction length (in
7903 bytes). In this implementation of DWARF, this field is used for
7904 information purposes only. Since GCC generates assembly language,
7905 we have no a priori knowledge of how many instruction bytes are
7906 generated for each source line, and therefore can use only the
7907 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7908 commands. Accordingly, we fix this as `1', which is "correct
7909 enough" for all architectures, and don't let the target override. */
7910 dw2_asm_output_data (1, 1,
7911 "Minimum Instruction Length");
7912
7913 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7914 "Default is_stmt_start flag");
7915 dw2_asm_output_data (1, DWARF_LINE_BASE,
7916 "Line Base Value (Special Opcodes)");
7917 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7918 "Line Range Value (Special Opcodes)");
7919 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7920 "Special Opcode Base");
7921
7922 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7923 {
7924 switch (opc)
7925 {
7926 case DW_LNS_advance_pc:
7927 case DW_LNS_advance_line:
7928 case DW_LNS_set_file:
7929 case DW_LNS_set_column:
7930 case DW_LNS_fixed_advance_pc:
7931 n_op_args = 1;
7932 break;
7933 default:
7934 n_op_args = 0;
7935 break;
7936 }
7937
7938 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7939 opc, n_op_args);
7940 }
7941
7942 /* Write out the information about the files we use. */
7943 output_file_names ();
7944 ASM_OUTPUT_LABEL (asm_out_file, p2);
7945
7946 /* We used to set the address register to the first location in the text
7947 section here, but that didn't accomplish anything since we already
7948 have a line note for the opening brace of the first function. */
7949
7950 /* Generate the line number to PC correspondence table, encoded as
7951 a series of state machine operations. */
7952 current_file = 1;
7953 current_line = 1;
7954
7955 if (cfun && in_cold_section_p)
7956 strcpy (prev_line_label, cfun->cold_section_label);
7957 else
7958 strcpy (prev_line_label, text_section_label);
7959 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7960 {
7961 dw_line_info_ref line_info = &line_info_table[lt_index];
7962
7963 #if 0
7964 /* Disable this optimization for now; GDB wants to see two line notes
7965 at the beginning of a function so it can find the end of the
7966 prologue. */
7967
7968 /* Don't emit anything for redundant notes. Just updating the
7969 address doesn't accomplish anything, because we already assume
7970 that anything after the last address is this line. */
7971 if (line_info->dw_line_num == current_line
7972 && line_info->dw_file_num == current_file)
7973 continue;
7974 #endif
7975
7976 /* Emit debug info for the address of the current line.
7977
7978 Unfortunately, we have little choice here currently, and must always
7979 use the most general form. GCC does not know the address delta
7980 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7981 attributes which will give an upper bound on the address range. We
7982 could perhaps use length attributes to determine when it is safe to
7983 use DW_LNS_fixed_advance_pc. */
7984
7985 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7986 if (0)
7987 {
7988 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7989 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7990 "DW_LNS_fixed_advance_pc");
7991 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7992 }
7993 else
7994 {
7995 /* This can handle any delta. This takes
7996 4+DWARF2_ADDR_SIZE bytes. */
7997 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7998 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7999 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8000 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8001 }
8002
8003 strcpy (prev_line_label, line_label);
8004
8005 /* Emit debug info for the source file of the current line, if
8006 different from the previous line. */
8007 if (line_info->dw_file_num != current_file)
8008 {
8009 current_file = line_info->dw_file_num;
8010 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8011 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8012 }
8013
8014 /* Emit debug info for the current line number, choosing the encoding
8015 that uses the least amount of space. */
8016 if (line_info->dw_line_num != current_line)
8017 {
8018 line_offset = line_info->dw_line_num - current_line;
8019 line_delta = line_offset - DWARF_LINE_BASE;
8020 current_line = line_info->dw_line_num;
8021 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8022 /* This can handle deltas from -10 to 234, using the current
8023 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
8024 takes 1 byte. */
8025 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8026 "line %lu", current_line);
8027 else
8028 {
8029 /* This can handle any delta. This takes at least 4 bytes,
8030 depending on the value being encoded. */
8031 dw2_asm_output_data (1, DW_LNS_advance_line,
8032 "advance to line %lu", current_line);
8033 dw2_asm_output_data_sleb128 (line_offset, NULL);
8034 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8035 }
8036 }
8037 else
8038 /* We still need to start a new row, so output a copy insn. */
8039 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8040 }
8041
8042 /* Emit debug info for the address of the end of the function. */
8043 if (0)
8044 {
8045 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8046 "DW_LNS_fixed_advance_pc");
8047 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
8048 }
8049 else
8050 {
8051 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8052 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8053 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8054 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
8055 }
8056
8057 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8058 dw2_asm_output_data_uleb128 (1, NULL);
8059 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8060
8061 function = 0;
8062 current_file = 1;
8063 current_line = 1;
8064 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
8065 {
8066 dw_separate_line_info_ref line_info
8067 = &separate_line_info_table[lt_index];
8068
8069 #if 0
8070 /* Don't emit anything for redundant notes. */
8071 if (line_info->dw_line_num == current_line
8072 && line_info->dw_file_num == current_file
8073 && line_info->function == function)
8074 goto cont;
8075 #endif
8076
8077 /* Emit debug info for the address of the current line. If this is
8078 a new function, or the first line of a function, then we need
8079 to handle it differently. */
8080 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
8081 lt_index);
8082 if (function != line_info->function)
8083 {
8084 function = line_info->function;
8085
8086 /* Set the address register to the first line in the function. */
8087 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8088 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8089 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8090 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8091 }
8092 else
8093 {
8094 /* ??? See the DW_LNS_advance_pc comment above. */
8095 if (0)
8096 {
8097 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8098 "DW_LNS_fixed_advance_pc");
8099 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8100 }
8101 else
8102 {
8103 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8104 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8105 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8106 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8107 }
8108 }
8109
8110 strcpy (prev_line_label, line_label);
8111
8112 /* Emit debug info for the source file of the current line, if
8113 different from the previous line. */
8114 if (line_info->dw_file_num != current_file)
8115 {
8116 current_file = line_info->dw_file_num;
8117 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8118 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8119 }
8120
8121 /* Emit debug info for the current line number, choosing the encoding
8122 that uses the least amount of space. */
8123 if (line_info->dw_line_num != current_line)
8124 {
8125 line_offset = line_info->dw_line_num - current_line;
8126 line_delta = line_offset - DWARF_LINE_BASE;
8127 current_line = line_info->dw_line_num;
8128 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8129 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8130 "line %lu", current_line);
8131 else
8132 {
8133 dw2_asm_output_data (1, DW_LNS_advance_line,
8134 "advance to line %lu", current_line);
8135 dw2_asm_output_data_sleb128 (line_offset, NULL);
8136 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8137 }
8138 }
8139 else
8140 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8141
8142 #if 0
8143 cont:
8144 #endif
8145
8146 lt_index++;
8147
8148 /* If we're done with a function, end its sequence. */
8149 if (lt_index == separate_line_info_table_in_use
8150 || separate_line_info_table[lt_index].function != function)
8151 {
8152 current_file = 1;
8153 current_line = 1;
8154
8155 /* Emit debug info for the address of the end of the function. */
8156 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
8157 if (0)
8158 {
8159 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8160 "DW_LNS_fixed_advance_pc");
8161 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8162 }
8163 else
8164 {
8165 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8166 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8167 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8168 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8169 }
8170
8171 /* Output the marker for the end of this sequence. */
8172 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8173 dw2_asm_output_data_uleb128 (1, NULL);
8174 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8175 }
8176 }
8177
8178 /* Output the marker for the end of the line number info. */
8179 ASM_OUTPUT_LABEL (asm_out_file, l2);
8180 }
8181 \f
8182 /* Given a pointer to a tree node for some base type, return a pointer to
8183 a DIE that describes the given type.
8184
8185 This routine must only be called for GCC type nodes that correspond to
8186 Dwarf base (fundamental) types. */
8187
8188 static dw_die_ref
8189 base_type_die (tree type)
8190 {
8191 dw_die_ref base_type_result;
8192 enum dwarf_type encoding;
8193
8194 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
8195 return 0;
8196
8197 switch (TREE_CODE (type))
8198 {
8199 case INTEGER_TYPE:
8200 if (TYPE_STRING_FLAG (type))
8201 {
8202 if (TYPE_UNSIGNED (type))
8203 encoding = DW_ATE_unsigned_char;
8204 else
8205 encoding = DW_ATE_signed_char;
8206 }
8207 else if (TYPE_UNSIGNED (type))
8208 encoding = DW_ATE_unsigned;
8209 else
8210 encoding = DW_ATE_signed;
8211 break;
8212
8213 case REAL_TYPE:
8214 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
8215 encoding = DW_ATE_decimal_float;
8216 else
8217 encoding = DW_ATE_float;
8218 break;
8219
8220 /* Dwarf2 doesn't know anything about complex ints, so use
8221 a user defined type for it. */
8222 case COMPLEX_TYPE:
8223 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8224 encoding = DW_ATE_complex_float;
8225 else
8226 encoding = DW_ATE_lo_user;
8227 break;
8228
8229 case BOOLEAN_TYPE:
8230 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8231 encoding = DW_ATE_boolean;
8232 break;
8233
8234 default:
8235 /* No other TREE_CODEs are Dwarf fundamental types. */
8236 gcc_unreachable ();
8237 }
8238
8239 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8240
8241 /* This probably indicates a bug. */
8242 if (! TYPE_NAME (type))
8243 add_name_attribute (base_type_result, "__unknown__");
8244
8245 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8246 int_size_in_bytes (type));
8247 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8248
8249 return base_type_result;
8250 }
8251
8252 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8253 the Dwarf "root" type for the given input type. The Dwarf "root" type of
8254 a given type is generally the same as the given type, except that if the
8255 given type is a pointer or reference type, then the root type of the given
8256 type is the root type of the "basis" type for the pointer or reference
8257 type. (This definition of the "root" type is recursive.) Also, the root
8258 type of a `const' qualified type or a `volatile' qualified type is the
8259 root type of the given type without the qualifiers. */
8260
8261 static tree
8262 root_type (tree type)
8263 {
8264 if (TREE_CODE (type) == ERROR_MARK)
8265 return error_mark_node;
8266
8267 switch (TREE_CODE (type))
8268 {
8269 case ERROR_MARK:
8270 return error_mark_node;
8271
8272 case POINTER_TYPE:
8273 case REFERENCE_TYPE:
8274 return type_main_variant (root_type (TREE_TYPE (type)));
8275
8276 default:
8277 return type_main_variant (type);
8278 }
8279 }
8280
8281 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8282 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8283
8284 static inline int
8285 is_base_type (tree type)
8286 {
8287 switch (TREE_CODE (type))
8288 {
8289 case ERROR_MARK:
8290 case VOID_TYPE:
8291 case INTEGER_TYPE:
8292 case REAL_TYPE:
8293 case COMPLEX_TYPE:
8294 case BOOLEAN_TYPE:
8295 return 1;
8296
8297 case ARRAY_TYPE:
8298 case RECORD_TYPE:
8299 case UNION_TYPE:
8300 case QUAL_UNION_TYPE:
8301 case ENUMERAL_TYPE:
8302 case FUNCTION_TYPE:
8303 case METHOD_TYPE:
8304 case POINTER_TYPE:
8305 case REFERENCE_TYPE:
8306 case OFFSET_TYPE:
8307 case LANG_TYPE:
8308 case VECTOR_TYPE:
8309 return 0;
8310
8311 default:
8312 gcc_unreachable ();
8313 }
8314
8315 return 0;
8316 }
8317
8318 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8319 node, return the size in bits for the type if it is a constant, or else
8320 return the alignment for the type if the type's size is not constant, or
8321 else return BITS_PER_WORD if the type actually turns out to be an
8322 ERROR_MARK node. */
8323
8324 static inline unsigned HOST_WIDE_INT
8325 simple_type_size_in_bits (tree type)
8326 {
8327 if (TREE_CODE (type) == ERROR_MARK)
8328 return BITS_PER_WORD;
8329 else if (TYPE_SIZE (type) == NULL_TREE)
8330 return 0;
8331 else if (host_integerp (TYPE_SIZE (type), 1))
8332 return tree_low_cst (TYPE_SIZE (type), 1);
8333 else
8334 return TYPE_ALIGN (type);
8335 }
8336
8337 /* Return true if the debug information for the given type should be
8338 emitted as a subrange type. */
8339
8340 static inline bool
8341 is_subrange_type (tree type)
8342 {
8343 tree subtype = TREE_TYPE (type);
8344
8345 /* Subrange types are identified by the fact that they are integer
8346 types, and that they have a subtype which is either an integer type
8347 or an enumeral type. */
8348
8349 if (TREE_CODE (type) != INTEGER_TYPE
8350 || subtype == NULL_TREE)
8351 return false;
8352
8353 if (TREE_CODE (subtype) != INTEGER_TYPE
8354 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8355 return false;
8356
8357 if (TREE_CODE (type) == TREE_CODE (subtype)
8358 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8359 && TYPE_MIN_VALUE (type) != NULL
8360 && TYPE_MIN_VALUE (subtype) != NULL
8361 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8362 && TYPE_MAX_VALUE (type) != NULL
8363 && TYPE_MAX_VALUE (subtype) != NULL
8364 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8365 {
8366 /* The type and its subtype have the same representation. If in
8367 addition the two types also have the same name, then the given
8368 type is not a subrange type, but rather a plain base type. */
8369 /* FIXME: brobecker/2004-03-22:
8370 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8371 therefore be sufficient to check the TYPE_SIZE node pointers
8372 rather than checking the actual size. Unfortunately, we have
8373 found some cases, such as in the Ada "integer" type, where
8374 this is not the case. Until this problem is solved, we need to
8375 keep checking the actual size. */
8376 tree type_name = TYPE_NAME (type);
8377 tree subtype_name = TYPE_NAME (subtype);
8378
8379 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8380 type_name = DECL_NAME (type_name);
8381
8382 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8383 subtype_name = DECL_NAME (subtype_name);
8384
8385 if (type_name == subtype_name)
8386 return false;
8387 }
8388
8389 return true;
8390 }
8391
8392 /* Given a pointer to a tree node for a subrange type, return a pointer
8393 to a DIE that describes the given type. */
8394
8395 static dw_die_ref
8396 subrange_type_die (tree type, dw_die_ref context_die)
8397 {
8398 dw_die_ref subrange_die;
8399 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8400
8401 if (context_die == NULL)
8402 context_die = comp_unit_die;
8403
8404 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8405
8406 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
8407 {
8408 /* The size of the subrange type and its base type do not match,
8409 so we need to generate a size attribute for the subrange type. */
8410 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8411 }
8412
8413 if (TYPE_MIN_VALUE (type) != NULL)
8414 add_bound_info (subrange_die, DW_AT_lower_bound,
8415 TYPE_MIN_VALUE (type));
8416 if (TYPE_MAX_VALUE (type) != NULL)
8417 add_bound_info (subrange_die, DW_AT_upper_bound,
8418 TYPE_MAX_VALUE (type));
8419
8420 return subrange_die;
8421 }
8422
8423 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8424 entry that chains various modifiers in front of the given type. */
8425
8426 static dw_die_ref
8427 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8428 dw_die_ref context_die)
8429 {
8430 enum tree_code code = TREE_CODE (type);
8431 dw_die_ref mod_type_die;
8432 dw_die_ref sub_die = NULL;
8433 tree item_type = NULL;
8434 tree qualified_type;
8435 tree name;
8436
8437 if (code == ERROR_MARK)
8438 return NULL;
8439
8440 /* See if we already have the appropriately qualified variant of
8441 this type. */
8442 qualified_type
8443 = get_qualified_type (type,
8444 ((is_const_type ? TYPE_QUAL_CONST : 0)
8445 | (is_volatile_type ? TYPE_QUAL_VOLATILE : 0)));
8446
8447 /* If we do, then we can just use its DIE, if it exists. */
8448 if (qualified_type)
8449 {
8450 mod_type_die = lookup_type_die (qualified_type);
8451 if (mod_type_die)
8452 return mod_type_die;
8453 }
8454
8455 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
8456
8457 /* Handle C typedef types. */
8458 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name))
8459 {
8460 tree dtype = TREE_TYPE (name);
8461
8462 if (qualified_type == dtype)
8463 {
8464 /* For a named type, use the typedef. */
8465 gen_type_die (qualified_type, context_die);
8466 return lookup_type_die (qualified_type);
8467 }
8468 else if (DECL_ORIGINAL_TYPE (name)
8469 && (is_const_type < TYPE_READONLY (dtype)
8470 || is_volatile_type < TYPE_VOLATILE (dtype)))
8471 /* cv-unqualified version of named type. Just use the unnamed
8472 type to which it refers. */
8473 return modified_type_die (DECL_ORIGINAL_TYPE (name),
8474 is_const_type, is_volatile_type,
8475 context_die);
8476 /* Else cv-qualified version of named type; fall through. */
8477 }
8478
8479 if (is_const_type)
8480 {
8481 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8482 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8483 }
8484 else if (is_volatile_type)
8485 {
8486 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8487 sub_die = modified_type_die (type, 0, 0, context_die);
8488 }
8489 else if (code == POINTER_TYPE)
8490 {
8491 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8492 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8493 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8494 item_type = TREE_TYPE (type);
8495 }
8496 else if (code == REFERENCE_TYPE)
8497 {
8498 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8499 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8500 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8501 item_type = TREE_TYPE (type);
8502 }
8503 else if (is_subrange_type (type))
8504 {
8505 mod_type_die = subrange_type_die (type, context_die);
8506 item_type = TREE_TYPE (type);
8507 }
8508 else if (is_base_type (type))
8509 mod_type_die = base_type_die (type);
8510 else
8511 {
8512 gen_type_die (type, context_die);
8513
8514 /* We have to get the type_main_variant here (and pass that to the
8515 `lookup_type_die' routine) because the ..._TYPE node we have
8516 might simply be a *copy* of some original type node (where the
8517 copy was created to help us keep track of typedef names) and
8518 that copy might have a different TYPE_UID from the original
8519 ..._TYPE node. */
8520 if (TREE_CODE (type) != VECTOR_TYPE)
8521 return lookup_type_die (type_main_variant (type));
8522 else
8523 /* Vectors have the debugging information in the type,
8524 not the main variant. */
8525 return lookup_type_die (type);
8526 }
8527
8528 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
8529 don't output a DW_TAG_typedef, since there isn't one in the
8530 user's program; just attach a DW_AT_name to the type. */
8531 if (name
8532 && (TREE_CODE (name) != TYPE_DECL || TREE_TYPE (name) == qualified_type))
8533 {
8534 if (TREE_CODE (name) == TYPE_DECL)
8535 /* Could just call add_name_and_src_coords_attributes here,
8536 but since this is a builtin type it doesn't have any
8537 useful source coordinates anyway. */
8538 name = DECL_NAME (name);
8539 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
8540 }
8541
8542 if (qualified_type)
8543 equate_type_number_to_die (qualified_type, mod_type_die);
8544
8545 if (item_type)
8546 /* We must do this after the equate_type_number_to_die call, in case
8547 this is a recursive type. This ensures that the modified_type_die
8548 recursion will terminate even if the type is recursive. Recursive
8549 types are possible in Ada. */
8550 sub_die = modified_type_die (item_type,
8551 TYPE_READONLY (item_type),
8552 TYPE_VOLATILE (item_type),
8553 context_die);
8554
8555 if (sub_die != NULL)
8556 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8557
8558 return mod_type_die;
8559 }
8560
8561 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8562 an enumerated type. */
8563
8564 static inline int
8565 type_is_enum (tree type)
8566 {
8567 return TREE_CODE (type) == ENUMERAL_TYPE;
8568 }
8569
8570 /* Return the DBX register number described by a given RTL node. */
8571
8572 static unsigned int
8573 dbx_reg_number (rtx rtl)
8574 {
8575 unsigned regno = REGNO (rtl);
8576
8577 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8578
8579 #ifdef LEAF_REG_REMAP
8580 {
8581 int leaf_reg;
8582
8583 leaf_reg = LEAF_REG_REMAP (regno);
8584 if (leaf_reg != -1)
8585 regno = (unsigned) leaf_reg;
8586 }
8587 #endif
8588
8589 return DBX_REGISTER_NUMBER (regno);
8590 }
8591
8592 /* Optionally add a DW_OP_piece term to a location description expression.
8593 DW_OP_piece is only added if the location description expression already
8594 doesn't end with DW_OP_piece. */
8595
8596 static void
8597 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8598 {
8599 dw_loc_descr_ref loc;
8600
8601 if (*list_head != NULL)
8602 {
8603 /* Find the end of the chain. */
8604 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8605 ;
8606
8607 if (loc->dw_loc_opc != DW_OP_piece)
8608 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8609 }
8610 }
8611
8612 /* Return a location descriptor that designates a machine register or
8613 zero if there is none. */
8614
8615 static dw_loc_descr_ref
8616 reg_loc_descriptor (rtx rtl)
8617 {
8618 rtx regs;
8619
8620 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8621 return 0;
8622
8623 regs = targetm.dwarf_register_span (rtl);
8624
8625 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
8626 return multiple_reg_loc_descriptor (rtl, regs);
8627 else
8628 return one_reg_loc_descriptor (dbx_reg_number (rtl));
8629 }
8630
8631 /* Return a location descriptor that designates a machine register for
8632 a given hard register number. */
8633
8634 static dw_loc_descr_ref
8635 one_reg_loc_descriptor (unsigned int regno)
8636 {
8637 if (regno <= 31)
8638 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8639 else
8640 return new_loc_descr (DW_OP_regx, regno, 0);
8641 }
8642
8643 /* Given an RTL of a register, return a location descriptor that
8644 designates a value that spans more than one register. */
8645
8646 static dw_loc_descr_ref
8647 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8648 {
8649 int nregs, size, i;
8650 unsigned reg;
8651 dw_loc_descr_ref loc_result = NULL;
8652
8653 reg = REGNO (rtl);
8654 #ifdef LEAF_REG_REMAP
8655 {
8656 int leaf_reg;
8657
8658 leaf_reg = LEAF_REG_REMAP (reg);
8659 if (leaf_reg != -1)
8660 reg = (unsigned) leaf_reg;
8661 }
8662 #endif
8663 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
8664 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8665
8666 /* Simple, contiguous registers. */
8667 if (regs == NULL_RTX)
8668 {
8669 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8670
8671 loc_result = NULL;
8672 while (nregs--)
8673 {
8674 dw_loc_descr_ref t;
8675
8676 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg));
8677 add_loc_descr (&loc_result, t);
8678 add_loc_descr_op_piece (&loc_result, size);
8679 ++reg;
8680 }
8681 return loc_result;
8682 }
8683
8684 /* Now onto stupid register sets in non contiguous locations. */
8685
8686 gcc_assert (GET_CODE (regs) == PARALLEL);
8687
8688 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8689 loc_result = NULL;
8690
8691 for (i = 0; i < XVECLEN (regs, 0); ++i)
8692 {
8693 dw_loc_descr_ref t;
8694
8695 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8696 add_loc_descr (&loc_result, t);
8697 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8698 add_loc_descr_op_piece (&loc_result, size);
8699 }
8700 return loc_result;
8701 }
8702
8703 /* Return a location descriptor that designates a constant. */
8704
8705 static dw_loc_descr_ref
8706 int_loc_descriptor (HOST_WIDE_INT i)
8707 {
8708 enum dwarf_location_atom op;
8709
8710 /* Pick the smallest representation of a constant, rather than just
8711 defaulting to the LEB encoding. */
8712 if (i >= 0)
8713 {
8714 if (i <= 31)
8715 op = DW_OP_lit0 + i;
8716 else if (i <= 0xff)
8717 op = DW_OP_const1u;
8718 else if (i <= 0xffff)
8719 op = DW_OP_const2u;
8720 else if (HOST_BITS_PER_WIDE_INT == 32
8721 || i <= 0xffffffff)
8722 op = DW_OP_const4u;
8723 else
8724 op = DW_OP_constu;
8725 }
8726 else
8727 {
8728 if (i >= -0x80)
8729 op = DW_OP_const1s;
8730 else if (i >= -0x8000)
8731 op = DW_OP_const2s;
8732 else if (HOST_BITS_PER_WIDE_INT == 32
8733 || i >= -0x80000000)
8734 op = DW_OP_const4s;
8735 else
8736 op = DW_OP_consts;
8737 }
8738
8739 return new_loc_descr (op, i, 0);
8740 }
8741
8742 /* Return a location descriptor that designates a base+offset location. */
8743
8744 static dw_loc_descr_ref
8745 based_loc_descr (rtx reg, HOST_WIDE_INT offset)
8746 {
8747 unsigned int regno;
8748
8749 /* We only use "frame base" when we're sure we're talking about the
8750 post-prologue local stack frame. We do this by *not* running
8751 register elimination until this point, and recognizing the special
8752 argument pointer and soft frame pointer rtx's. */
8753 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
8754 {
8755 rtx elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8756
8757 if (elim != reg)
8758 {
8759 if (GET_CODE (elim) == PLUS)
8760 {
8761 offset += INTVAL (XEXP (elim, 1));
8762 elim = XEXP (elim, 0);
8763 }
8764 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
8765 : stack_pointer_rtx));
8766 offset += frame_pointer_fb_offset;
8767
8768 return new_loc_descr (DW_OP_fbreg, offset, 0);
8769 }
8770 }
8771
8772 regno = dbx_reg_number (reg);
8773 if (regno <= 31)
8774 return new_loc_descr (DW_OP_breg0 + regno, offset, 0);
8775 else
8776 return new_loc_descr (DW_OP_bregx, regno, offset);
8777 }
8778
8779 /* Return true if this RTL expression describes a base+offset calculation. */
8780
8781 static inline int
8782 is_based_loc (rtx rtl)
8783 {
8784 return (GET_CODE (rtl) == PLUS
8785 && ((REG_P (XEXP (rtl, 0))
8786 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8787 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8788 }
8789
8790 /* The following routine converts the RTL for a variable or parameter
8791 (resident in memory) into an equivalent Dwarf representation of a
8792 mechanism for getting the address of that same variable onto the top of a
8793 hypothetical "address evaluation" stack.
8794
8795 When creating memory location descriptors, we are effectively transforming
8796 the RTL for a memory-resident object into its Dwarf postfix expression
8797 equivalent. This routine recursively descends an RTL tree, turning
8798 it into Dwarf postfix code as it goes.
8799
8800 MODE is the mode of the memory reference, needed to handle some
8801 autoincrement addressing modes.
8802
8803 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
8804 location list for RTL.
8805
8806 Return 0 if we can't represent the location. */
8807
8808 static dw_loc_descr_ref
8809 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8810 {
8811 dw_loc_descr_ref mem_loc_result = NULL;
8812 enum dwarf_location_atom op;
8813
8814 /* Note that for a dynamically sized array, the location we will generate a
8815 description of here will be the lowest numbered location which is
8816 actually within the array. That's *not* necessarily the same as the
8817 zeroth element of the array. */
8818
8819 rtl = targetm.delegitimize_address (rtl);
8820
8821 switch (GET_CODE (rtl))
8822 {
8823 case POST_INC:
8824 case POST_DEC:
8825 case POST_MODIFY:
8826 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8827 just fall into the SUBREG code. */
8828
8829 /* ... fall through ... */
8830
8831 case SUBREG:
8832 /* The case of a subreg may arise when we have a local (register)
8833 variable or a formal (register) parameter which doesn't quite fill
8834 up an entire register. For now, just assume that it is
8835 legitimate to make the Dwarf info refer to the whole register which
8836 contains the given subreg. */
8837 rtl = XEXP (rtl, 0);
8838
8839 /* ... fall through ... */
8840
8841 case REG:
8842 /* Whenever a register number forms a part of the description of the
8843 method for calculating the (dynamic) address of a memory resident
8844 object, DWARF rules require the register number be referred to as
8845 a "base register". This distinction is not based in any way upon
8846 what category of register the hardware believes the given register
8847 belongs to. This is strictly DWARF terminology we're dealing with
8848 here. Note that in cases where the location of a memory-resident
8849 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8850 OP_CONST (0)) the actual DWARF location descriptor that we generate
8851 may just be OP_BASEREG (basereg). This may look deceptively like
8852 the object in question was allocated to a register (rather than in
8853 memory) so DWARF consumers need to be aware of the subtle
8854 distinction between OP_REG and OP_BASEREG. */
8855 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8856 mem_loc_result = based_loc_descr (rtl, 0);
8857 break;
8858
8859 case MEM:
8860 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8861 if (mem_loc_result != 0)
8862 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8863 break;
8864
8865 case LO_SUM:
8866 rtl = XEXP (rtl, 1);
8867
8868 /* ... fall through ... */
8869
8870 case LABEL_REF:
8871 /* Some ports can transform a symbol ref into a label ref, because
8872 the symbol ref is too far away and has to be dumped into a constant
8873 pool. */
8874 case CONST:
8875 case SYMBOL_REF:
8876 /* Alternatively, the symbol in the constant pool might be referenced
8877 by a different symbol. */
8878 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8879 {
8880 bool marked;
8881 rtx tmp = get_pool_constant_mark (rtl, &marked);
8882
8883 if (GET_CODE (tmp) == SYMBOL_REF)
8884 {
8885 rtl = tmp;
8886 if (CONSTANT_POOL_ADDRESS_P (tmp))
8887 get_pool_constant_mark (tmp, &marked);
8888 else
8889 marked = true;
8890 }
8891
8892 /* If all references to this pool constant were optimized away,
8893 it was not output and thus we can't represent it.
8894 FIXME: might try to use DW_OP_const_value here, though
8895 DW_OP_piece complicates it. */
8896 if (!marked)
8897 return 0;
8898 }
8899
8900 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8901 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8902 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8903 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
8904 break;
8905
8906 case PRE_MODIFY:
8907 /* Extract the PLUS expression nested inside and fall into
8908 PLUS code below. */
8909 rtl = XEXP (rtl, 1);
8910 goto plus;
8911
8912 case PRE_INC:
8913 case PRE_DEC:
8914 /* Turn these into a PLUS expression and fall into the PLUS code
8915 below. */
8916 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8917 GEN_INT (GET_CODE (rtl) == PRE_INC
8918 ? GET_MODE_UNIT_SIZE (mode)
8919 : -GET_MODE_UNIT_SIZE (mode)));
8920
8921 /* ... fall through ... */
8922
8923 case PLUS:
8924 plus:
8925 if (is_based_loc (rtl))
8926 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
8927 INTVAL (XEXP (rtl, 1)));
8928 else
8929 {
8930 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8931 if (mem_loc_result == 0)
8932 break;
8933
8934 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8935 && INTVAL (XEXP (rtl, 1)) >= 0)
8936 add_loc_descr (&mem_loc_result,
8937 new_loc_descr (DW_OP_plus_uconst,
8938 INTVAL (XEXP (rtl, 1)), 0));
8939 else
8940 {
8941 add_loc_descr (&mem_loc_result,
8942 mem_loc_descriptor (XEXP (rtl, 1), mode));
8943 add_loc_descr (&mem_loc_result,
8944 new_loc_descr (DW_OP_plus, 0, 0));
8945 }
8946 }
8947 break;
8948
8949 /* If a pseudo-reg is optimized away, it is possible for it to
8950 be replaced with a MEM containing a multiply or shift. */
8951 case MULT:
8952 op = DW_OP_mul;
8953 goto do_binop;
8954
8955 case ASHIFT:
8956 op = DW_OP_shl;
8957 goto do_binop;
8958
8959 case ASHIFTRT:
8960 op = DW_OP_shra;
8961 goto do_binop;
8962
8963 case LSHIFTRT:
8964 op = DW_OP_shr;
8965 goto do_binop;
8966
8967 do_binop:
8968 {
8969 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8970 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8971
8972 if (op0 == 0 || op1 == 0)
8973 break;
8974
8975 mem_loc_result = op0;
8976 add_loc_descr (&mem_loc_result, op1);
8977 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
8978 break;
8979 }
8980
8981 case CONST_INT:
8982 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8983 break;
8984
8985 default:
8986 gcc_unreachable ();
8987 }
8988
8989 return mem_loc_result;
8990 }
8991
8992 /* Return a descriptor that describes the concatenation of two locations.
8993 This is typically a complex variable. */
8994
8995 static dw_loc_descr_ref
8996 concat_loc_descriptor (rtx x0, rtx x1)
8997 {
8998 dw_loc_descr_ref cc_loc_result = NULL;
8999 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
9000 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
9001
9002 if (x0_ref == 0 || x1_ref == 0)
9003 return 0;
9004
9005 cc_loc_result = x0_ref;
9006 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
9007
9008 add_loc_descr (&cc_loc_result, x1_ref);
9009 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
9010
9011 return cc_loc_result;
9012 }
9013
9014 /* Output a proper Dwarf location descriptor for a variable or parameter
9015 which is either allocated in a register or in a memory location. For a
9016 register, we just generate an OP_REG and the register number. For a
9017 memory location we provide a Dwarf postfix expression describing how to
9018 generate the (dynamic) address of the object onto the address stack.
9019
9020 If we don't know how to describe it, return 0. */
9021
9022 static dw_loc_descr_ref
9023 loc_descriptor (rtx rtl)
9024 {
9025 dw_loc_descr_ref loc_result = NULL;
9026
9027 switch (GET_CODE (rtl))
9028 {
9029 case SUBREG:
9030 /* The case of a subreg may arise when we have a local (register)
9031 variable or a formal (register) parameter which doesn't quite fill
9032 up an entire register. For now, just assume that it is
9033 legitimate to make the Dwarf info refer to the whole register which
9034 contains the given subreg. */
9035 rtl = SUBREG_REG (rtl);
9036
9037 /* ... fall through ... */
9038
9039 case REG:
9040 loc_result = reg_loc_descriptor (rtl);
9041 break;
9042
9043 case MEM:
9044 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
9045 break;
9046
9047 case CONCAT:
9048 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
9049 break;
9050
9051 case VAR_LOCATION:
9052 /* Single part. */
9053 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
9054 {
9055 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0));
9056 break;
9057 }
9058
9059 rtl = XEXP (rtl, 1);
9060 /* FALLTHRU */
9061
9062 case PARALLEL:
9063 {
9064 rtvec par_elems = XVEC (rtl, 0);
9065 int num_elem = GET_NUM_ELEM (par_elems);
9066 enum machine_mode mode;
9067 int i;
9068
9069 /* Create the first one, so we have something to add to. */
9070 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
9071 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
9072 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9073 for (i = 1; i < num_elem; i++)
9074 {
9075 dw_loc_descr_ref temp;
9076
9077 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
9078 add_loc_descr (&loc_result, temp);
9079 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
9080 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9081 }
9082 }
9083 break;
9084
9085 default:
9086 gcc_unreachable ();
9087 }
9088
9089 return loc_result;
9090 }
9091
9092 /* Similar, but generate the descriptor from trees instead of rtl. This comes
9093 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
9094 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
9095 top-level invocation, and we require the address of LOC; is 0 if we require
9096 the value of LOC. */
9097
9098 static dw_loc_descr_ref
9099 loc_descriptor_from_tree_1 (tree loc, int want_address)
9100 {
9101 dw_loc_descr_ref ret, ret1;
9102 int have_address = 0;
9103 enum dwarf_location_atom op;
9104
9105 /* ??? Most of the time we do not take proper care for sign/zero
9106 extending the values properly. Hopefully this won't be a real
9107 problem... */
9108
9109 switch (TREE_CODE (loc))
9110 {
9111 case ERROR_MARK:
9112 return 0;
9113
9114 case PLACEHOLDER_EXPR:
9115 /* This case involves extracting fields from an object to determine the
9116 position of other fields. We don't try to encode this here. The
9117 only user of this is Ada, which encodes the needed information using
9118 the names of types. */
9119 return 0;
9120
9121 case CALL_EXPR:
9122 return 0;
9123
9124 case PREINCREMENT_EXPR:
9125 case PREDECREMENT_EXPR:
9126 case POSTINCREMENT_EXPR:
9127 case POSTDECREMENT_EXPR:
9128 /* There are no opcodes for these operations. */
9129 return 0;
9130
9131 case ADDR_EXPR:
9132 /* If we already want an address, there's nothing we can do. */
9133 if (want_address)
9134 return 0;
9135
9136 /* Otherwise, process the argument and look for the address. */
9137 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
9138
9139 case VAR_DECL:
9140 if (DECL_THREAD_LOCAL_P (loc))
9141 {
9142 rtx rtl;
9143
9144 /* If this is not defined, we have no way to emit the data. */
9145 if (!targetm.asm_out.output_dwarf_dtprel)
9146 return 0;
9147
9148 /* The way DW_OP_GNU_push_tls_address is specified, we can only
9149 look up addresses of objects in the current module. */
9150 if (DECL_EXTERNAL (loc))
9151 return 0;
9152
9153 rtl = rtl_for_decl_location (loc);
9154 if (rtl == NULL_RTX)
9155 return 0;
9156
9157 if (!MEM_P (rtl))
9158 return 0;
9159 rtl = XEXP (rtl, 0);
9160 if (! CONSTANT_P (rtl))
9161 return 0;
9162
9163 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
9164 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9165 ret->dw_loc_oprnd1.v.val_addr = rtl;
9166
9167 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
9168 add_loc_descr (&ret, ret1);
9169
9170 have_address = 1;
9171 break;
9172 }
9173 /* FALLTHRU */
9174
9175 case PARM_DECL:
9176 if (DECL_HAS_VALUE_EXPR_P (loc))
9177 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
9178 want_address);
9179 /* FALLTHRU */
9180
9181 case RESULT_DECL:
9182 case FUNCTION_DECL:
9183 {
9184 rtx rtl = rtl_for_decl_location (loc);
9185
9186 if (rtl == NULL_RTX)
9187 return 0;
9188 else if (GET_CODE (rtl) == CONST_INT)
9189 {
9190 HOST_WIDE_INT val = INTVAL (rtl);
9191 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9192 val &= GET_MODE_MASK (DECL_MODE (loc));
9193 ret = int_loc_descriptor (val);
9194 }
9195 else if (GET_CODE (rtl) == CONST_STRING)
9196 return 0;
9197 else if (CONSTANT_P (rtl))
9198 {
9199 ret = new_loc_descr (DW_OP_addr, 0, 0);
9200 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9201 ret->dw_loc_oprnd1.v.val_addr = rtl;
9202 }
9203 else
9204 {
9205 enum machine_mode mode;
9206
9207 /* Certain constructs can only be represented at top-level. */
9208 if (want_address == 2)
9209 return loc_descriptor (rtl);
9210
9211 mode = GET_MODE (rtl);
9212 if (MEM_P (rtl))
9213 {
9214 rtl = XEXP (rtl, 0);
9215 have_address = 1;
9216 }
9217 ret = mem_loc_descriptor (rtl, mode);
9218 }
9219 }
9220 break;
9221
9222 case INDIRECT_REF:
9223 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9224 have_address = 1;
9225 break;
9226
9227 case COMPOUND_EXPR:
9228 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9229
9230 case NOP_EXPR:
9231 case CONVERT_EXPR:
9232 case NON_LVALUE_EXPR:
9233 case VIEW_CONVERT_EXPR:
9234 case SAVE_EXPR:
9235 case MODIFY_EXPR:
9236 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
9237
9238 case COMPONENT_REF:
9239 case BIT_FIELD_REF:
9240 case ARRAY_REF:
9241 case ARRAY_RANGE_REF:
9242 {
9243 tree obj, offset;
9244 HOST_WIDE_INT bitsize, bitpos, bytepos;
9245 enum machine_mode mode;
9246 int volatilep;
9247 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
9248
9249 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9250 &unsignedp, &volatilep, false);
9251
9252 if (obj == loc)
9253 return 0;
9254
9255 ret = loc_descriptor_from_tree_1 (obj, 1);
9256 if (ret == 0
9257 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9258 return 0;
9259
9260 if (offset != NULL_TREE)
9261 {
9262 /* Variable offset. */
9263 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9264 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9265 }
9266
9267 bytepos = bitpos / BITS_PER_UNIT;
9268 if (bytepos > 0)
9269 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9270 else if (bytepos < 0)
9271 {
9272 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9273 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9274 }
9275
9276 have_address = 1;
9277 break;
9278 }
9279
9280 case INTEGER_CST:
9281 if (host_integerp (loc, 0))
9282 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9283 else
9284 return 0;
9285 break;
9286
9287 case CONSTRUCTOR:
9288 {
9289 /* Get an RTL for this, if something has been emitted. */
9290 rtx rtl = lookup_constant_def (loc);
9291 enum machine_mode mode;
9292
9293 if (!rtl || !MEM_P (rtl))
9294 return 0;
9295 mode = GET_MODE (rtl);
9296 rtl = XEXP (rtl, 0);
9297 ret = mem_loc_descriptor (rtl, mode);
9298 have_address = 1;
9299 break;
9300 }
9301
9302 case TRUTH_AND_EXPR:
9303 case TRUTH_ANDIF_EXPR:
9304 case BIT_AND_EXPR:
9305 op = DW_OP_and;
9306 goto do_binop;
9307
9308 case TRUTH_XOR_EXPR:
9309 case BIT_XOR_EXPR:
9310 op = DW_OP_xor;
9311 goto do_binop;
9312
9313 case TRUTH_OR_EXPR:
9314 case TRUTH_ORIF_EXPR:
9315 case BIT_IOR_EXPR:
9316 op = DW_OP_or;
9317 goto do_binop;
9318
9319 case FLOOR_DIV_EXPR:
9320 case CEIL_DIV_EXPR:
9321 case ROUND_DIV_EXPR:
9322 case TRUNC_DIV_EXPR:
9323 op = DW_OP_div;
9324 goto do_binop;
9325
9326 case MINUS_EXPR:
9327 op = DW_OP_minus;
9328 goto do_binop;
9329
9330 case FLOOR_MOD_EXPR:
9331 case CEIL_MOD_EXPR:
9332 case ROUND_MOD_EXPR:
9333 case TRUNC_MOD_EXPR:
9334 op = DW_OP_mod;
9335 goto do_binop;
9336
9337 case MULT_EXPR:
9338 op = DW_OP_mul;
9339 goto do_binop;
9340
9341 case LSHIFT_EXPR:
9342 op = DW_OP_shl;
9343 goto do_binop;
9344
9345 case RSHIFT_EXPR:
9346 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
9347 goto do_binop;
9348
9349 case PLUS_EXPR:
9350 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9351 && host_integerp (TREE_OPERAND (loc, 1), 0))
9352 {
9353 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9354 if (ret == 0)
9355 return 0;
9356
9357 add_loc_descr (&ret,
9358 new_loc_descr (DW_OP_plus_uconst,
9359 tree_low_cst (TREE_OPERAND (loc, 1),
9360 0),
9361 0));
9362 break;
9363 }
9364
9365 op = DW_OP_plus;
9366 goto do_binop;
9367
9368 case LE_EXPR:
9369 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9370 return 0;
9371
9372 op = DW_OP_le;
9373 goto do_binop;
9374
9375 case GE_EXPR:
9376 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9377 return 0;
9378
9379 op = DW_OP_ge;
9380 goto do_binop;
9381
9382 case LT_EXPR:
9383 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9384 return 0;
9385
9386 op = DW_OP_lt;
9387 goto do_binop;
9388
9389 case GT_EXPR:
9390 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9391 return 0;
9392
9393 op = DW_OP_gt;
9394 goto do_binop;
9395
9396 case EQ_EXPR:
9397 op = DW_OP_eq;
9398 goto do_binop;
9399
9400 case NE_EXPR:
9401 op = DW_OP_ne;
9402 goto do_binop;
9403
9404 do_binop:
9405 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9406 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9407 if (ret == 0 || ret1 == 0)
9408 return 0;
9409
9410 add_loc_descr (&ret, ret1);
9411 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9412 break;
9413
9414 case TRUTH_NOT_EXPR:
9415 case BIT_NOT_EXPR:
9416 op = DW_OP_not;
9417 goto do_unop;
9418
9419 case ABS_EXPR:
9420 op = DW_OP_abs;
9421 goto do_unop;
9422
9423 case NEGATE_EXPR:
9424 op = DW_OP_neg;
9425 goto do_unop;
9426
9427 do_unop:
9428 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9429 if (ret == 0)
9430 return 0;
9431
9432 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9433 break;
9434
9435 case MIN_EXPR:
9436 case MAX_EXPR:
9437 {
9438 const enum tree_code code =
9439 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9440
9441 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9442 build2 (code, integer_type_node,
9443 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9444 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9445 }
9446
9447 /* ... fall through ... */
9448
9449 case COND_EXPR:
9450 {
9451 dw_loc_descr_ref lhs
9452 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9453 dw_loc_descr_ref rhs
9454 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9455 dw_loc_descr_ref bra_node, jump_node, tmp;
9456
9457 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9458 if (ret == 0 || lhs == 0 || rhs == 0)
9459 return 0;
9460
9461 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9462 add_loc_descr (&ret, bra_node);
9463
9464 add_loc_descr (&ret, rhs);
9465 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9466 add_loc_descr (&ret, jump_node);
9467
9468 add_loc_descr (&ret, lhs);
9469 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9470 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9471
9472 /* ??? Need a node to point the skip at. Use a nop. */
9473 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9474 add_loc_descr (&ret, tmp);
9475 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9476 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9477 }
9478 break;
9479
9480 case FIX_TRUNC_EXPR:
9481 return 0;
9482
9483 default:
9484 /* Leave front-end specific codes as simply unknown. This comes
9485 up, for instance, with the C STMT_EXPR. */
9486 if ((unsigned int) TREE_CODE (loc)
9487 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9488 return 0;
9489
9490 #ifdef ENABLE_CHECKING
9491 /* Otherwise this is a generic code; we should just lists all of
9492 these explicitly. We forgot one. */
9493 gcc_unreachable ();
9494 #else
9495 /* In a release build, we want to degrade gracefully: better to
9496 generate incomplete debugging information than to crash. */
9497 return NULL;
9498 #endif
9499 }
9500
9501 /* Show if we can't fill the request for an address. */
9502 if (want_address && !have_address)
9503 return 0;
9504
9505 /* If we've got an address and don't want one, dereference. */
9506 if (!want_address && have_address && ret)
9507 {
9508 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9509
9510 if (size > DWARF2_ADDR_SIZE || size == -1)
9511 return 0;
9512 else if (size == DWARF2_ADDR_SIZE)
9513 op = DW_OP_deref;
9514 else
9515 op = DW_OP_deref_size;
9516
9517 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9518 }
9519
9520 return ret;
9521 }
9522
9523 static inline dw_loc_descr_ref
9524 loc_descriptor_from_tree (tree loc)
9525 {
9526 return loc_descriptor_from_tree_1 (loc, 2);
9527 }
9528
9529 /* Given a value, round it up to the lowest multiple of `boundary'
9530 which is not less than the value itself. */
9531
9532 static inline HOST_WIDE_INT
9533 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9534 {
9535 return (((value + boundary - 1) / boundary) * boundary);
9536 }
9537
9538 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9539 pointer to the declared type for the relevant field variable, or return
9540 `integer_type_node' if the given node turns out to be an
9541 ERROR_MARK node. */
9542
9543 static inline tree
9544 field_type (tree decl)
9545 {
9546 tree type;
9547
9548 if (TREE_CODE (decl) == ERROR_MARK)
9549 return integer_type_node;
9550
9551 type = DECL_BIT_FIELD_TYPE (decl);
9552 if (type == NULL_TREE)
9553 type = TREE_TYPE (decl);
9554
9555 return type;
9556 }
9557
9558 /* Given a pointer to a tree node, return the alignment in bits for
9559 it, or else return BITS_PER_WORD if the node actually turns out to
9560 be an ERROR_MARK node. */
9561
9562 static inline unsigned
9563 simple_type_align_in_bits (tree type)
9564 {
9565 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9566 }
9567
9568 static inline unsigned
9569 simple_decl_align_in_bits (tree decl)
9570 {
9571 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9572 }
9573
9574 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9575 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9576 or return 0 if we are unable to determine what that offset is, either
9577 because the argument turns out to be a pointer to an ERROR_MARK node, or
9578 because the offset is actually variable. (We can't handle the latter case
9579 just yet). */
9580
9581 static HOST_WIDE_INT
9582 field_byte_offset (tree decl)
9583 {
9584 unsigned int type_align_in_bits;
9585 unsigned int decl_align_in_bits;
9586 unsigned HOST_WIDE_INT type_size_in_bits;
9587 HOST_WIDE_INT object_offset_in_bits;
9588 tree type;
9589 tree field_size_tree;
9590 HOST_WIDE_INT bitpos_int;
9591 HOST_WIDE_INT deepest_bitpos;
9592 unsigned HOST_WIDE_INT field_size_in_bits;
9593
9594 if (TREE_CODE (decl) == ERROR_MARK)
9595 return 0;
9596
9597 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9598
9599 type = field_type (decl);
9600 field_size_tree = DECL_SIZE (decl);
9601
9602 /* The size could be unspecified if there was an error, or for
9603 a flexible array member. */
9604 if (! field_size_tree)
9605 field_size_tree = bitsize_zero_node;
9606
9607 /* We cannot yet cope with fields whose positions are variable, so
9608 for now, when we see such things, we simply return 0. Someday, we may
9609 be able to handle such cases, but it will be damn difficult. */
9610 if (! host_integerp (bit_position (decl), 0))
9611 return 0;
9612
9613 bitpos_int = int_bit_position (decl);
9614
9615 /* If we don't know the size of the field, pretend it's a full word. */
9616 if (host_integerp (field_size_tree, 1))
9617 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9618 else
9619 field_size_in_bits = BITS_PER_WORD;
9620
9621 type_size_in_bits = simple_type_size_in_bits (type);
9622 type_align_in_bits = simple_type_align_in_bits (type);
9623 decl_align_in_bits = simple_decl_align_in_bits (decl);
9624
9625 /* The GCC front-end doesn't make any attempt to keep track of the starting
9626 bit offset (relative to the start of the containing structure type) of the
9627 hypothetical "containing object" for a bit-field. Thus, when computing
9628 the byte offset value for the start of the "containing object" of a
9629 bit-field, we must deduce this information on our own. This can be rather
9630 tricky to do in some cases. For example, handling the following structure
9631 type definition when compiling for an i386/i486 target (which only aligns
9632 long long's to 32-bit boundaries) can be very tricky:
9633
9634 struct S { int field1; long long field2:31; };
9635
9636 Fortunately, there is a simple rule-of-thumb which can be used in such
9637 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9638 structure shown above. It decides to do this based upon one simple rule
9639 for bit-field allocation. GCC allocates each "containing object" for each
9640 bit-field at the first (i.e. lowest addressed) legitimate alignment
9641 boundary (based upon the required minimum alignment for the declared type
9642 of the field) which it can possibly use, subject to the condition that
9643 there is still enough available space remaining in the containing object
9644 (when allocated at the selected point) to fully accommodate all of the
9645 bits of the bit-field itself.
9646
9647 This simple rule makes it obvious why GCC allocates 8 bytes for each
9648 object of the structure type shown above. When looking for a place to
9649 allocate the "containing object" for `field2', the compiler simply tries
9650 to allocate a 64-bit "containing object" at each successive 32-bit
9651 boundary (starting at zero) until it finds a place to allocate that 64-
9652 bit field such that at least 31 contiguous (and previously unallocated)
9653 bits remain within that selected 64 bit field. (As it turns out, for the
9654 example above, the compiler finds it is OK to allocate the "containing
9655 object" 64-bit field at bit-offset zero within the structure type.)
9656
9657 Here we attempt to work backwards from the limited set of facts we're
9658 given, and we try to deduce from those facts, where GCC must have believed
9659 that the containing object started (within the structure type). The value
9660 we deduce is then used (by the callers of this routine) to generate
9661 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9662 and, in the case of DW_AT_location, regular fields as well). */
9663
9664 /* Figure out the bit-distance from the start of the structure to the
9665 "deepest" bit of the bit-field. */
9666 deepest_bitpos = bitpos_int + field_size_in_bits;
9667
9668 /* This is the tricky part. Use some fancy footwork to deduce where the
9669 lowest addressed bit of the containing object must be. */
9670 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9671
9672 /* Round up to type_align by default. This works best for bitfields. */
9673 object_offset_in_bits += type_align_in_bits - 1;
9674 object_offset_in_bits /= type_align_in_bits;
9675 object_offset_in_bits *= type_align_in_bits;
9676
9677 if (object_offset_in_bits > bitpos_int)
9678 {
9679 /* Sigh, the decl must be packed. */
9680 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9681
9682 /* Round up to decl_align instead. */
9683 object_offset_in_bits += decl_align_in_bits - 1;
9684 object_offset_in_bits /= decl_align_in_bits;
9685 object_offset_in_bits *= decl_align_in_bits;
9686 }
9687
9688 return object_offset_in_bits / BITS_PER_UNIT;
9689 }
9690 \f
9691 /* The following routines define various Dwarf attributes and any data
9692 associated with them. */
9693
9694 /* Add a location description attribute value to a DIE.
9695
9696 This emits location attributes suitable for whole variables and
9697 whole parameters. Note that the location attributes for struct fields are
9698 generated by the routine `data_member_location_attribute' below. */
9699
9700 static inline void
9701 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9702 dw_loc_descr_ref descr)
9703 {
9704 if (descr != 0)
9705 add_AT_loc (die, attr_kind, descr);
9706 }
9707
9708 /* Attach the specialized form of location attribute used for data members of
9709 struct and union types. In the special case of a FIELD_DECL node which
9710 represents a bit-field, the "offset" part of this special location
9711 descriptor must indicate the distance in bytes from the lowest-addressed
9712 byte of the containing struct or union type to the lowest-addressed byte of
9713 the "containing object" for the bit-field. (See the `field_byte_offset'
9714 function above).
9715
9716 For any given bit-field, the "containing object" is a hypothetical object
9717 (of some integral or enum type) within which the given bit-field lives. The
9718 type of this hypothetical "containing object" is always the same as the
9719 declared type of the individual bit-field itself (for GCC anyway... the
9720 DWARF spec doesn't actually mandate this). Note that it is the size (in
9721 bytes) of the hypothetical "containing object" which will be given in the
9722 DW_AT_byte_size attribute for this bit-field. (See the
9723 `byte_size_attribute' function below.) It is also used when calculating the
9724 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9725 function below.) */
9726
9727 static void
9728 add_data_member_location_attribute (dw_die_ref die, tree decl)
9729 {
9730 HOST_WIDE_INT offset;
9731 dw_loc_descr_ref loc_descr = 0;
9732
9733 if (TREE_CODE (decl) == TREE_BINFO)
9734 {
9735 /* We're working on the TAG_inheritance for a base class. */
9736 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9737 {
9738 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9739 aren't at a fixed offset from all (sub)objects of the same
9740 type. We need to extract the appropriate offset from our
9741 vtable. The following dwarf expression means
9742
9743 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9744
9745 This is specific to the V3 ABI, of course. */
9746
9747 dw_loc_descr_ref tmp;
9748
9749 /* Make a copy of the object address. */
9750 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9751 add_loc_descr (&loc_descr, tmp);
9752
9753 /* Extract the vtable address. */
9754 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9755 add_loc_descr (&loc_descr, tmp);
9756
9757 /* Calculate the address of the offset. */
9758 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9759 gcc_assert (offset < 0);
9760
9761 tmp = int_loc_descriptor (-offset);
9762 add_loc_descr (&loc_descr, tmp);
9763 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9764 add_loc_descr (&loc_descr, tmp);
9765
9766 /* Extract the offset. */
9767 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9768 add_loc_descr (&loc_descr, tmp);
9769
9770 /* Add it to the object address. */
9771 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9772 add_loc_descr (&loc_descr, tmp);
9773 }
9774 else
9775 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9776 }
9777 else
9778 offset = field_byte_offset (decl);
9779
9780 if (! loc_descr)
9781 {
9782 enum dwarf_location_atom op;
9783
9784 /* The DWARF2 standard says that we should assume that the structure
9785 address is already on the stack, so we can specify a structure field
9786 address by using DW_OP_plus_uconst. */
9787
9788 #ifdef MIPS_DEBUGGING_INFO
9789 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9790 operator correctly. It works only if we leave the offset on the
9791 stack. */
9792 op = DW_OP_constu;
9793 #else
9794 op = DW_OP_plus_uconst;
9795 #endif
9796
9797 loc_descr = new_loc_descr (op, offset, 0);
9798 }
9799
9800 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9801 }
9802
9803 /* Writes integer values to dw_vec_const array. */
9804
9805 static void
9806 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9807 {
9808 while (size != 0)
9809 {
9810 *dest++ = val & 0xff;
9811 val >>= 8;
9812 --size;
9813 }
9814 }
9815
9816 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9817
9818 static HOST_WIDE_INT
9819 extract_int (const unsigned char *src, unsigned int size)
9820 {
9821 HOST_WIDE_INT val = 0;
9822
9823 src += size;
9824 while (size != 0)
9825 {
9826 val <<= 8;
9827 val |= *--src & 0xff;
9828 --size;
9829 }
9830 return val;
9831 }
9832
9833 /* Writes floating point values to dw_vec_const array. */
9834
9835 static void
9836 insert_float (rtx rtl, unsigned char *array)
9837 {
9838 REAL_VALUE_TYPE rv;
9839 long val[4];
9840 int i;
9841
9842 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9843 real_to_target (val, &rv, GET_MODE (rtl));
9844
9845 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9846 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9847 {
9848 insert_int (val[i], 4, array);
9849 array += 4;
9850 }
9851 }
9852
9853 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9854 does not have a "location" either in memory or in a register. These
9855 things can arise in GNU C when a constant is passed as an actual parameter
9856 to an inlined function. They can also arise in C++ where declared
9857 constants do not necessarily get memory "homes". */
9858
9859 static void
9860 add_const_value_attribute (dw_die_ref die, rtx rtl)
9861 {
9862 switch (GET_CODE (rtl))
9863 {
9864 case CONST_INT:
9865 {
9866 HOST_WIDE_INT val = INTVAL (rtl);
9867
9868 if (val < 0)
9869 add_AT_int (die, DW_AT_const_value, val);
9870 else
9871 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9872 }
9873 break;
9874
9875 case CONST_DOUBLE:
9876 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9877 floating-point constant. A CONST_DOUBLE is used whenever the
9878 constant requires more than one word in order to be adequately
9879 represented. We output CONST_DOUBLEs as blocks. */
9880 {
9881 enum machine_mode mode = GET_MODE (rtl);
9882
9883 if (SCALAR_FLOAT_MODE_P (mode))
9884 {
9885 unsigned int length = GET_MODE_SIZE (mode);
9886 unsigned char *array = ggc_alloc (length);
9887
9888 insert_float (rtl, array);
9889 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9890 }
9891 else
9892 {
9893 /* ??? We really should be using HOST_WIDE_INT throughout. */
9894 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9895
9896 add_AT_long_long (die, DW_AT_const_value,
9897 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9898 }
9899 }
9900 break;
9901
9902 case CONST_VECTOR:
9903 {
9904 enum machine_mode mode = GET_MODE (rtl);
9905 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9906 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9907 unsigned char *array = ggc_alloc (length * elt_size);
9908 unsigned int i;
9909 unsigned char *p;
9910
9911 switch (GET_MODE_CLASS (mode))
9912 {
9913 case MODE_VECTOR_INT:
9914 for (i = 0, p = array; i < length; i++, p += elt_size)
9915 {
9916 rtx elt = CONST_VECTOR_ELT (rtl, i);
9917 HOST_WIDE_INT lo, hi;
9918
9919 switch (GET_CODE (elt))
9920 {
9921 case CONST_INT:
9922 lo = INTVAL (elt);
9923 hi = -(lo < 0);
9924 break;
9925
9926 case CONST_DOUBLE:
9927 lo = CONST_DOUBLE_LOW (elt);
9928 hi = CONST_DOUBLE_HIGH (elt);
9929 break;
9930
9931 default:
9932 gcc_unreachable ();
9933 }
9934
9935 if (elt_size <= sizeof (HOST_WIDE_INT))
9936 insert_int (lo, elt_size, p);
9937 else
9938 {
9939 unsigned char *p0 = p;
9940 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9941
9942 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9943 if (WORDS_BIG_ENDIAN)
9944 {
9945 p0 = p1;
9946 p1 = p;
9947 }
9948 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9949 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9950 }
9951 }
9952 break;
9953
9954 case MODE_VECTOR_FLOAT:
9955 for (i = 0, p = array; i < length; i++, p += elt_size)
9956 {
9957 rtx elt = CONST_VECTOR_ELT (rtl, i);
9958 insert_float (elt, p);
9959 }
9960 break;
9961
9962 default:
9963 gcc_unreachable ();
9964 }
9965
9966 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9967 }
9968 break;
9969
9970 case CONST_STRING:
9971 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9972 break;
9973
9974 case SYMBOL_REF:
9975 case LABEL_REF:
9976 case CONST:
9977 add_AT_addr (die, DW_AT_const_value, rtl);
9978 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
9979 break;
9980
9981 case PLUS:
9982 /* In cases where an inlined instance of an inline function is passed
9983 the address of an `auto' variable (which is local to the caller) we
9984 can get a situation where the DECL_RTL of the artificial local
9985 variable (for the inlining) which acts as a stand-in for the
9986 corresponding formal parameter (of the inline function) will look
9987 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9988 exactly a compile-time constant expression, but it isn't the address
9989 of the (artificial) local variable either. Rather, it represents the
9990 *value* which the artificial local variable always has during its
9991 lifetime. We currently have no way to represent such quasi-constant
9992 values in Dwarf, so for now we just punt and generate nothing. */
9993 break;
9994
9995 default:
9996 /* No other kinds of rtx should be possible here. */
9997 gcc_unreachable ();
9998 }
9999
10000 }
10001
10002 /* Determine whether the evaluation of EXPR references any variables
10003 or functions which aren't otherwise used (and therefore may not be
10004 output). */
10005 static tree
10006 reference_to_unused (tree * tp, int * walk_subtrees,
10007 void * data ATTRIBUTE_UNUSED)
10008 {
10009 if (! EXPR_P (*tp) && ! CONSTANT_CLASS_P (*tp))
10010 *walk_subtrees = 0;
10011
10012 if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
10013 && ! TREE_ASM_WRITTEN (*tp))
10014 return *tp;
10015 else
10016 return NULL_TREE;
10017 }
10018
10019 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
10020 for use in a later add_const_value_attribute call. */
10021
10022 static rtx
10023 rtl_for_decl_init (tree init, tree type)
10024 {
10025 rtx rtl = NULL_RTX;
10026
10027 /* If a variable is initialized with a string constant without embedded
10028 zeros, build CONST_STRING. */
10029 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
10030 {
10031 tree enttype = TREE_TYPE (type);
10032 tree domain = TYPE_DOMAIN (type);
10033 enum machine_mode mode = TYPE_MODE (enttype);
10034
10035 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
10036 && domain
10037 && integer_zerop (TYPE_MIN_VALUE (domain))
10038 && compare_tree_int (TYPE_MAX_VALUE (domain),
10039 TREE_STRING_LENGTH (init) - 1) == 0
10040 && ((size_t) TREE_STRING_LENGTH (init)
10041 == strlen (TREE_STRING_POINTER (init)) + 1))
10042 rtl = gen_rtx_CONST_STRING (VOIDmode,
10043 ggc_strdup (TREE_STRING_POINTER (init)));
10044 }
10045 /* Other aggregates, and complex values, could be represented using
10046 CONCAT: FIXME! */
10047 else if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
10048 ;
10049 /* Vectors only work if their mode is supported by the target.
10050 FIXME: generic vectors ought to work too. */
10051 else if (TREE_CODE (type) == VECTOR_TYPE && TYPE_MODE (type) == BLKmode)
10052 ;
10053 /* If the initializer is something that we know will expand into an
10054 immediate RTL constant, expand it now. We must be careful not to
10055 reference variables which won't be output. */
10056 else if (initializer_constant_valid_p (init, type)
10057 && ! walk_tree (&init, reference_to_unused, NULL, NULL))
10058 {
10059 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
10060
10061 /* If expand_expr returns a MEM, it wasn't immediate. */
10062 gcc_assert (!rtl || !MEM_P (rtl));
10063 }
10064
10065 return rtl;
10066 }
10067
10068 /* Generate RTL for the variable DECL to represent its location. */
10069
10070 static rtx
10071 rtl_for_decl_location (tree decl)
10072 {
10073 rtx rtl;
10074
10075 /* Here we have to decide where we are going to say the parameter "lives"
10076 (as far as the debugger is concerned). We only have a couple of
10077 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
10078
10079 DECL_RTL normally indicates where the parameter lives during most of the
10080 activation of the function. If optimization is enabled however, this
10081 could be either NULL or else a pseudo-reg. Both of those cases indicate
10082 that the parameter doesn't really live anywhere (as far as the code
10083 generation parts of GCC are concerned) during most of the function's
10084 activation. That will happen (for example) if the parameter is never
10085 referenced within the function.
10086
10087 We could just generate a location descriptor here for all non-NULL
10088 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
10089 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
10090 where DECL_RTL is NULL or is a pseudo-reg.
10091
10092 Note however that we can only get away with using DECL_INCOMING_RTL as
10093 a backup substitute for DECL_RTL in certain limited cases. In cases
10094 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
10095 we can be sure that the parameter was passed using the same type as it is
10096 declared to have within the function, and that its DECL_INCOMING_RTL
10097 points us to a place where a value of that type is passed.
10098
10099 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
10100 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
10101 because in these cases DECL_INCOMING_RTL points us to a value of some
10102 type which is *different* from the type of the parameter itself. Thus,
10103 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
10104 such cases, the debugger would end up (for example) trying to fetch a
10105 `float' from a place which actually contains the first part of a
10106 `double'. That would lead to really incorrect and confusing
10107 output at debug-time.
10108
10109 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
10110 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
10111 are a couple of exceptions however. On little-endian machines we can
10112 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
10113 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
10114 an integral type that is smaller than TREE_TYPE (decl). These cases arise
10115 when (on a little-endian machine) a non-prototyped function has a
10116 parameter declared to be of type `short' or `char'. In such cases,
10117 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
10118 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
10119 passed `int' value. If the debugger then uses that address to fetch
10120 a `short' or a `char' (on a little-endian machine) the result will be
10121 the correct data, so we allow for such exceptional cases below.
10122
10123 Note that our goal here is to describe the place where the given formal
10124 parameter lives during most of the function's activation (i.e. between the
10125 end of the prologue and the start of the epilogue). We'll do that as best
10126 as we can. Note however that if the given formal parameter is modified
10127 sometime during the execution of the function, then a stack backtrace (at
10128 debug-time) will show the function as having been called with the *new*
10129 value rather than the value which was originally passed in. This happens
10130 rarely enough that it is not a major problem, but it *is* a problem, and
10131 I'd like to fix it.
10132
10133 A future version of dwarf2out.c may generate two additional attributes for
10134 any given DW_TAG_formal_parameter DIE which will describe the "passed
10135 type" and the "passed location" for the given formal parameter in addition
10136 to the attributes we now generate to indicate the "declared type" and the
10137 "active location" for each parameter. This additional set of attributes
10138 could be used by debuggers for stack backtraces. Separately, note that
10139 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
10140 This happens (for example) for inlined-instances of inline function formal
10141 parameters which are never referenced. This really shouldn't be
10142 happening. All PARM_DECL nodes should get valid non-NULL
10143 DECL_INCOMING_RTL values. FIXME. */
10144
10145 /* Use DECL_RTL as the "location" unless we find something better. */
10146 rtl = DECL_RTL_IF_SET (decl);
10147
10148 /* When generating abstract instances, ignore everything except
10149 constants, symbols living in memory, and symbols living in
10150 fixed registers. */
10151 if (! reload_completed)
10152 {
10153 if (rtl
10154 && (CONSTANT_P (rtl)
10155 || (MEM_P (rtl)
10156 && CONSTANT_P (XEXP (rtl, 0)))
10157 || (REG_P (rtl)
10158 && TREE_CODE (decl) == VAR_DECL
10159 && TREE_STATIC (decl))))
10160 {
10161 rtl = targetm.delegitimize_address (rtl);
10162 return rtl;
10163 }
10164 rtl = NULL_RTX;
10165 }
10166 else if (TREE_CODE (decl) == PARM_DECL)
10167 {
10168 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
10169 {
10170 tree declared_type = TREE_TYPE (decl);
10171 tree passed_type = DECL_ARG_TYPE (decl);
10172 enum machine_mode dmode = TYPE_MODE (declared_type);
10173 enum machine_mode pmode = TYPE_MODE (passed_type);
10174
10175 /* This decl represents a formal parameter which was optimized out.
10176 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
10177 all cases where (rtl == NULL_RTX) just below. */
10178 if (dmode == pmode)
10179 rtl = DECL_INCOMING_RTL (decl);
10180 else if (SCALAR_INT_MODE_P (dmode)
10181 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
10182 && DECL_INCOMING_RTL (decl))
10183 {
10184 rtx inc = DECL_INCOMING_RTL (decl);
10185 if (REG_P (inc))
10186 rtl = inc;
10187 else if (MEM_P (inc))
10188 {
10189 if (BYTES_BIG_ENDIAN)
10190 rtl = adjust_address_nv (inc, dmode,
10191 GET_MODE_SIZE (pmode)
10192 - GET_MODE_SIZE (dmode));
10193 else
10194 rtl = inc;
10195 }
10196 }
10197 }
10198
10199 /* If the parm was passed in registers, but lives on the stack, then
10200 make a big endian correction if the mode of the type of the
10201 parameter is not the same as the mode of the rtl. */
10202 /* ??? This is the same series of checks that are made in dbxout.c before
10203 we reach the big endian correction code there. It isn't clear if all
10204 of these checks are necessary here, but keeping them all is the safe
10205 thing to do. */
10206 else if (MEM_P (rtl)
10207 && XEXP (rtl, 0) != const0_rtx
10208 && ! CONSTANT_P (XEXP (rtl, 0))
10209 /* Not passed in memory. */
10210 && !MEM_P (DECL_INCOMING_RTL (decl))
10211 /* Not passed by invisible reference. */
10212 && (!REG_P (XEXP (rtl, 0))
10213 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10214 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10215 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10216 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10217 #endif
10218 )
10219 /* Big endian correction check. */
10220 && BYTES_BIG_ENDIAN
10221 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10222 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10223 < UNITS_PER_WORD))
10224 {
10225 int offset = (UNITS_PER_WORD
10226 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10227
10228 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10229 plus_constant (XEXP (rtl, 0), offset));
10230 }
10231 }
10232 else if (TREE_CODE (decl) == VAR_DECL
10233 && rtl
10234 && MEM_P (rtl)
10235 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10236 && BYTES_BIG_ENDIAN)
10237 {
10238 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10239 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10240
10241 /* If a variable is declared "register" yet is smaller than
10242 a register, then if we store the variable to memory, it
10243 looks like we're storing a register-sized value, when in
10244 fact we are not. We need to adjust the offset of the
10245 storage location to reflect the actual value's bytes,
10246 else gdb will not be able to display it. */
10247 if (rsize > dsize)
10248 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10249 plus_constant (XEXP (rtl, 0), rsize-dsize));
10250 }
10251
10252 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10253 and will have been substituted directly into all expressions that use it.
10254 C does not have such a concept, but C++ and other languages do. */
10255 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10256 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10257
10258 if (rtl)
10259 rtl = targetm.delegitimize_address (rtl);
10260
10261 /* If we don't look past the constant pool, we risk emitting a
10262 reference to a constant pool entry that isn't referenced from
10263 code, and thus is not emitted. */
10264 if (rtl)
10265 rtl = avoid_constant_pool_reference (rtl);
10266
10267 return rtl;
10268 }
10269
10270 /* We need to figure out what section we should use as the base for the
10271 address ranges where a given location is valid.
10272 1. If this particular DECL has a section associated with it, use that.
10273 2. If this function has a section associated with it, use that.
10274 3. Otherwise, use the text section.
10275 XXX: If you split a variable across multiple sections, we won't notice. */
10276
10277 static const char *
10278 secname_for_decl (tree decl)
10279 {
10280 const char *secname;
10281
10282 if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
10283 {
10284 tree sectree = DECL_SECTION_NAME (decl);
10285 secname = TREE_STRING_POINTER (sectree);
10286 }
10287 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
10288 {
10289 tree sectree = DECL_SECTION_NAME (current_function_decl);
10290 secname = TREE_STRING_POINTER (sectree);
10291 }
10292 else if (cfun && in_cold_section_p)
10293 secname = cfun->cold_section_label;
10294 else
10295 secname = text_section_label;
10296
10297 return secname;
10298 }
10299
10300 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10301 data attribute for a variable or a parameter. We generate the
10302 DW_AT_const_value attribute only in those cases where the given variable
10303 or parameter does not have a true "location" either in memory or in a
10304 register. This can happen (for example) when a constant is passed as an
10305 actual argument in a call to an inline function. (It's possible that
10306 these things can crop up in other ways also.) Note that one type of
10307 constant value which can be passed into an inlined function is a constant
10308 pointer. This can happen for example if an actual argument in an inlined
10309 function call evaluates to a compile-time constant address. */
10310
10311 static void
10312 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10313 enum dwarf_attribute attr)
10314 {
10315 rtx rtl;
10316 dw_loc_descr_ref descr;
10317 var_loc_list *loc_list;
10318 struct var_loc_node *node;
10319 if (TREE_CODE (decl) == ERROR_MARK)
10320 return;
10321
10322 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10323 || TREE_CODE (decl) == RESULT_DECL);
10324
10325 /* See if we possibly have multiple locations for this variable. */
10326 loc_list = lookup_decl_loc (decl);
10327
10328 /* If it truly has multiple locations, the first and last node will
10329 differ. */
10330 if (loc_list && loc_list->first != loc_list->last)
10331 {
10332 const char *endname, *secname;
10333 dw_loc_list_ref list;
10334 rtx varloc;
10335
10336 /* Now that we know what section we are using for a base,
10337 actually construct the list of locations.
10338 The first location information is what is passed to the
10339 function that creates the location list, and the remaining
10340 locations just get added on to that list.
10341 Note that we only know the start address for a location
10342 (IE location changes), so to build the range, we use
10343 the range [current location start, next location start].
10344 This means we have to special case the last node, and generate
10345 a range of [last location start, end of function label]. */
10346
10347 node = loc_list->first;
10348 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10349 secname = secname_for_decl (decl);
10350
10351 list = new_loc_list (loc_descriptor (varloc),
10352 node->label, node->next->label, secname, 1);
10353 node = node->next;
10354
10355 for (; node->next; node = node->next)
10356 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10357 {
10358 /* The variable has a location between NODE->LABEL and
10359 NODE->NEXT->LABEL. */
10360 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10361 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10362 node->label, node->next->label, secname);
10363 }
10364
10365 /* If the variable has a location at the last label
10366 it keeps its location until the end of function. */
10367 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10368 {
10369 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10370
10371 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10372 if (!current_function_decl)
10373 endname = text_end_label;
10374 else
10375 {
10376 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10377 current_function_funcdef_no);
10378 endname = ggc_strdup (label_id);
10379 }
10380 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10381 node->label, endname, secname);
10382 }
10383
10384 /* Finally, add the location list to the DIE, and we are done. */
10385 add_AT_loc_list (die, attr, list);
10386 return;
10387 }
10388
10389 /* Try to get some constant RTL for this decl, and use that as the value of
10390 the location. */
10391
10392 rtl = rtl_for_decl_location (decl);
10393 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10394 {
10395 add_const_value_attribute (die, rtl);
10396 return;
10397 }
10398
10399 /* If we have tried to generate the location otherwise, and it
10400 didn't work out (we wouldn't be here if we did), and we have a one entry
10401 location list, try generating a location from that. */
10402 if (loc_list && loc_list->first)
10403 {
10404 node = loc_list->first;
10405 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note));
10406 if (descr)
10407 {
10408 add_AT_location_description (die, attr, descr);
10409 return;
10410 }
10411 }
10412
10413 /* We couldn't get any rtl, so try directly generating the location
10414 description from the tree. */
10415 descr = loc_descriptor_from_tree (decl);
10416 if (descr)
10417 {
10418 add_AT_location_description (die, attr, descr);
10419 return;
10420 }
10421 /* None of that worked, so it must not really have a location;
10422 try adding a constant value attribute from the DECL_INITIAL. */
10423 tree_add_const_value_attribute (die, decl);
10424 }
10425
10426 /* If we don't have a copy of this variable in memory for some reason (such
10427 as a C++ member constant that doesn't have an out-of-line definition),
10428 we should tell the debugger about the constant value. */
10429
10430 static void
10431 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10432 {
10433 tree init = DECL_INITIAL (decl);
10434 tree type = TREE_TYPE (decl);
10435 rtx rtl;
10436
10437 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10438 /* OK */;
10439 else
10440 return;
10441
10442 rtl = rtl_for_decl_init (init, type);
10443 if (rtl)
10444 add_const_value_attribute (var_die, rtl);
10445 }
10446
10447 /* Convert the CFI instructions for the current function into a
10448 location list. This is used for DW_AT_frame_base when we targeting
10449 a dwarf2 consumer that does not support the dwarf3
10450 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
10451 expressions. */
10452
10453 static dw_loc_list_ref
10454 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
10455 {
10456 dw_fde_ref fde;
10457 dw_loc_list_ref list, *list_tail;
10458 dw_cfi_ref cfi;
10459 dw_cfa_location last_cfa, next_cfa;
10460 const char *start_label, *last_label, *section;
10461
10462 fde = &fde_table[fde_table_in_use - 1];
10463
10464 section = secname_for_decl (current_function_decl);
10465 list_tail = &list;
10466 list = NULL;
10467
10468 next_cfa.reg = INVALID_REGNUM;
10469 next_cfa.offset = 0;
10470 next_cfa.indirect = 0;
10471 next_cfa.base_offset = 0;
10472
10473 start_label = fde->dw_fde_begin;
10474
10475 /* ??? Bald assumption that the CIE opcode list does not contain
10476 advance opcodes. */
10477 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
10478 lookup_cfa_1 (cfi, &next_cfa);
10479
10480 last_cfa = next_cfa;
10481 last_label = start_label;
10482
10483 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
10484 switch (cfi->dw_cfi_opc)
10485 {
10486 case DW_CFA_set_loc:
10487 case DW_CFA_advance_loc1:
10488 case DW_CFA_advance_loc2:
10489 case DW_CFA_advance_loc4:
10490 if (!cfa_equal_p (&last_cfa, &next_cfa))
10491 {
10492 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10493 start_label, last_label, section,
10494 list == NULL);
10495
10496 list_tail = &(*list_tail)->dw_loc_next;
10497 last_cfa = next_cfa;
10498 start_label = last_label;
10499 }
10500 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
10501 break;
10502
10503 case DW_CFA_advance_loc:
10504 /* The encoding is complex enough that we should never emit this. */
10505 case DW_CFA_remember_state:
10506 case DW_CFA_restore_state:
10507 /* We don't handle these two in this function. It would be possible
10508 if it were to be required. */
10509 gcc_unreachable ();
10510
10511 default:
10512 lookup_cfa_1 (cfi, &next_cfa);
10513 break;
10514 }
10515
10516 if (!cfa_equal_p (&last_cfa, &next_cfa))
10517 {
10518 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10519 start_label, last_label, section,
10520 list == NULL);
10521 list_tail = &(*list_tail)->dw_loc_next;
10522 start_label = last_label;
10523 }
10524 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
10525 start_label, fde->dw_fde_end, section,
10526 list == NULL);
10527
10528 return list;
10529 }
10530
10531 /* Compute a displacement from the "steady-state frame pointer" to the
10532 frame base (often the same as the CFA), and store it in
10533 frame_pointer_fb_offset. OFFSET is added to the displacement
10534 before the latter is negated. */
10535
10536 static void
10537 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
10538 {
10539 rtx reg, elim;
10540
10541 #ifdef FRAME_POINTER_CFA_OFFSET
10542 reg = frame_pointer_rtx;
10543 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
10544 #else
10545 reg = arg_pointer_rtx;
10546 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
10547 #endif
10548
10549 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10550 if (GET_CODE (elim) == PLUS)
10551 {
10552 offset += INTVAL (XEXP (elim, 1));
10553 elim = XEXP (elim, 0);
10554 }
10555 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
10556 : stack_pointer_rtx));
10557
10558 frame_pointer_fb_offset = -offset;
10559 }
10560
10561 /* Generate a DW_AT_name attribute given some string value to be included as
10562 the value of the attribute. */
10563
10564 static void
10565 add_name_attribute (dw_die_ref die, const char *name_string)
10566 {
10567 if (name_string != NULL && *name_string != 0)
10568 {
10569 if (demangle_name_func)
10570 name_string = (*demangle_name_func) (name_string);
10571
10572 add_AT_string (die, DW_AT_name, name_string);
10573 }
10574 }
10575
10576 /* Generate a DW_AT_comp_dir attribute for DIE. */
10577
10578 static void
10579 add_comp_dir_attribute (dw_die_ref die)
10580 {
10581 const char *wd = get_src_pwd ();
10582 if (wd != NULL)
10583 add_AT_string (die, DW_AT_comp_dir, wd);
10584 }
10585
10586 /* Given a tree node describing an array bound (either lower or upper) output
10587 a representation for that bound. */
10588
10589 static void
10590 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10591 {
10592 switch (TREE_CODE (bound))
10593 {
10594 case ERROR_MARK:
10595 return;
10596
10597 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10598 case INTEGER_CST:
10599 if (! host_integerp (bound, 0)
10600 || (bound_attr == DW_AT_lower_bound
10601 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10602 || (is_fortran () && integer_onep (bound)))))
10603 /* Use the default. */
10604 ;
10605 else
10606 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10607 break;
10608
10609 case CONVERT_EXPR:
10610 case NOP_EXPR:
10611 case NON_LVALUE_EXPR:
10612 case VIEW_CONVERT_EXPR:
10613 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10614 break;
10615
10616 case SAVE_EXPR:
10617 break;
10618
10619 case VAR_DECL:
10620 case PARM_DECL:
10621 case RESULT_DECL:
10622 {
10623 dw_die_ref decl_die = lookup_decl_die (bound);
10624
10625 /* ??? Can this happen, or should the variable have been bound
10626 first? Probably it can, since I imagine that we try to create
10627 the types of parameters in the order in which they exist in
10628 the list, and won't have created a forward reference to a
10629 later parameter. */
10630 if (decl_die != NULL)
10631 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10632 break;
10633 }
10634
10635 default:
10636 {
10637 /* Otherwise try to create a stack operation procedure to
10638 evaluate the value of the array bound. */
10639
10640 dw_die_ref ctx, decl_die;
10641 dw_loc_descr_ref loc;
10642
10643 loc = loc_descriptor_from_tree (bound);
10644 if (loc == NULL)
10645 break;
10646
10647 if (current_function_decl == 0)
10648 ctx = comp_unit_die;
10649 else
10650 ctx = lookup_decl_die (current_function_decl);
10651
10652 decl_die = new_die (DW_TAG_variable, ctx, bound);
10653 add_AT_flag (decl_die, DW_AT_artificial, 1);
10654 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10655 add_AT_loc (decl_die, DW_AT_location, loc);
10656
10657 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10658 break;
10659 }
10660 }
10661 }
10662
10663 /* Note that the block of subscript information for an array type also
10664 includes information about the element type of type given array type. */
10665
10666 static void
10667 add_subscript_info (dw_die_ref type_die, tree type)
10668 {
10669 #ifndef MIPS_DEBUGGING_INFO
10670 unsigned dimension_number;
10671 #endif
10672 tree lower, upper;
10673 dw_die_ref subrange_die;
10674
10675 /* The GNU compilers represent multidimensional array types as sequences of
10676 one dimensional array types whose element types are themselves array
10677 types. Here we squish that down, so that each multidimensional array
10678 type gets only one array_type DIE in the Dwarf debugging info. The draft
10679 Dwarf specification say that we are allowed to do this kind of
10680 compression in C (because there is no difference between an array or
10681 arrays and a multidimensional array in C) but for other source languages
10682 (e.g. Ada) we probably shouldn't do this. */
10683
10684 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10685 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10686 We work around this by disabling this feature. See also
10687 gen_array_type_die. */
10688 #ifndef MIPS_DEBUGGING_INFO
10689 for (dimension_number = 0;
10690 TREE_CODE (type) == ARRAY_TYPE;
10691 type = TREE_TYPE (type), dimension_number++)
10692 #endif
10693 {
10694 tree domain = TYPE_DOMAIN (type);
10695
10696 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10697 and (in GNU C only) variable bounds. Handle all three forms
10698 here. */
10699 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10700 if (domain)
10701 {
10702 /* We have an array type with specified bounds. */
10703 lower = TYPE_MIN_VALUE (domain);
10704 upper = TYPE_MAX_VALUE (domain);
10705
10706 /* Define the index type. */
10707 if (TREE_TYPE (domain))
10708 {
10709 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10710 TREE_TYPE field. We can't emit debug info for this
10711 because it is an unnamed integral type. */
10712 if (TREE_CODE (domain) == INTEGER_TYPE
10713 && TYPE_NAME (domain) == NULL_TREE
10714 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10715 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10716 ;
10717 else
10718 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10719 type_die);
10720 }
10721
10722 /* ??? If upper is NULL, the array has unspecified length,
10723 but it does have a lower bound. This happens with Fortran
10724 dimension arr(N:*)
10725 Since the debugger is definitely going to need to know N
10726 to produce useful results, go ahead and output the lower
10727 bound solo, and hope the debugger can cope. */
10728
10729 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10730 if (upper)
10731 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10732 }
10733
10734 /* Otherwise we have an array type with an unspecified length. The
10735 DWARF-2 spec does not say how to handle this; let's just leave out the
10736 bounds. */
10737 }
10738 }
10739
10740 static void
10741 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10742 {
10743 unsigned size;
10744
10745 switch (TREE_CODE (tree_node))
10746 {
10747 case ERROR_MARK:
10748 size = 0;
10749 break;
10750 case ENUMERAL_TYPE:
10751 case RECORD_TYPE:
10752 case UNION_TYPE:
10753 case QUAL_UNION_TYPE:
10754 size = int_size_in_bytes (tree_node);
10755 break;
10756 case FIELD_DECL:
10757 /* For a data member of a struct or union, the DW_AT_byte_size is
10758 generally given as the number of bytes normally allocated for an
10759 object of the *declared* type of the member itself. This is true
10760 even for bit-fields. */
10761 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10762 break;
10763 default:
10764 gcc_unreachable ();
10765 }
10766
10767 /* Note that `size' might be -1 when we get to this point. If it is, that
10768 indicates that the byte size of the entity in question is variable. We
10769 have no good way of expressing this fact in Dwarf at the present time,
10770 so just let the -1 pass on through. */
10771 add_AT_unsigned (die, DW_AT_byte_size, size);
10772 }
10773
10774 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10775 which specifies the distance in bits from the highest order bit of the
10776 "containing object" for the bit-field to the highest order bit of the
10777 bit-field itself.
10778
10779 For any given bit-field, the "containing object" is a hypothetical object
10780 (of some integral or enum type) within which the given bit-field lives. The
10781 type of this hypothetical "containing object" is always the same as the
10782 declared type of the individual bit-field itself. The determination of the
10783 exact location of the "containing object" for a bit-field is rather
10784 complicated. It's handled by the `field_byte_offset' function (above).
10785
10786 Note that it is the size (in bytes) of the hypothetical "containing object"
10787 which will be given in the DW_AT_byte_size attribute for this bit-field.
10788 (See `byte_size_attribute' above). */
10789
10790 static inline void
10791 add_bit_offset_attribute (dw_die_ref die, tree decl)
10792 {
10793 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10794 tree type = DECL_BIT_FIELD_TYPE (decl);
10795 HOST_WIDE_INT bitpos_int;
10796 HOST_WIDE_INT highest_order_object_bit_offset;
10797 HOST_WIDE_INT highest_order_field_bit_offset;
10798 HOST_WIDE_INT unsigned bit_offset;
10799
10800 /* Must be a field and a bit field. */
10801 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10802
10803 /* We can't yet handle bit-fields whose offsets are variable, so if we
10804 encounter such things, just return without generating any attribute
10805 whatsoever. Likewise for variable or too large size. */
10806 if (! host_integerp (bit_position (decl), 0)
10807 || ! host_integerp (DECL_SIZE (decl), 1))
10808 return;
10809
10810 bitpos_int = int_bit_position (decl);
10811
10812 /* Note that the bit offset is always the distance (in bits) from the
10813 highest-order bit of the "containing object" to the highest-order bit of
10814 the bit-field itself. Since the "high-order end" of any object or field
10815 is different on big-endian and little-endian machines, the computation
10816 below must take account of these differences. */
10817 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10818 highest_order_field_bit_offset = bitpos_int;
10819
10820 if (! BYTES_BIG_ENDIAN)
10821 {
10822 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10823 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10824 }
10825
10826 bit_offset
10827 = (! BYTES_BIG_ENDIAN
10828 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10829 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10830
10831 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10832 }
10833
10834 /* For a FIELD_DECL node which represents a bit field, output an attribute
10835 which specifies the length in bits of the given field. */
10836
10837 static inline void
10838 add_bit_size_attribute (dw_die_ref die, tree decl)
10839 {
10840 /* Must be a field and a bit field. */
10841 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10842 && DECL_BIT_FIELD_TYPE (decl));
10843
10844 if (host_integerp (DECL_SIZE (decl), 1))
10845 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10846 }
10847
10848 /* If the compiled language is ANSI C, then add a 'prototyped'
10849 attribute, if arg types are given for the parameters of a function. */
10850
10851 static inline void
10852 add_prototyped_attribute (dw_die_ref die, tree func_type)
10853 {
10854 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10855 && TYPE_ARG_TYPES (func_type) != NULL)
10856 add_AT_flag (die, DW_AT_prototyped, 1);
10857 }
10858
10859 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10860 by looking in either the type declaration or object declaration
10861 equate table. */
10862
10863 static inline void
10864 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10865 {
10866 dw_die_ref origin_die = NULL;
10867
10868 if (TREE_CODE (origin) != FUNCTION_DECL)
10869 {
10870 /* We may have gotten separated from the block for the inlined
10871 function, if we're in an exception handler or some such; make
10872 sure that the abstract function has been written out.
10873
10874 Doing this for nested functions is wrong, however; functions are
10875 distinct units, and our context might not even be inline. */
10876 tree fn = origin;
10877
10878 if (TYPE_P (fn))
10879 fn = TYPE_STUB_DECL (fn);
10880
10881 fn = decl_function_context (fn);
10882 if (fn)
10883 dwarf2out_abstract_function (fn);
10884 }
10885
10886 if (DECL_P (origin))
10887 origin_die = lookup_decl_die (origin);
10888 else if (TYPE_P (origin))
10889 origin_die = lookup_type_die (origin);
10890
10891 /* XXX: Functions that are never lowered don't always have correct block
10892 trees (in the case of java, they simply have no block tree, in some other
10893 languages). For these functions, there is nothing we can really do to
10894 output correct debug info for inlined functions in all cases. Rather
10895 than die, we'll just produce deficient debug info now, in that we will
10896 have variables without a proper abstract origin. In the future, when all
10897 functions are lowered, we should re-add a gcc_assert (origin_die)
10898 here. */
10899
10900 if (origin_die)
10901 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10902 }
10903
10904 /* We do not currently support the pure_virtual attribute. */
10905
10906 static inline void
10907 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10908 {
10909 if (DECL_VINDEX (func_decl))
10910 {
10911 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10912
10913 if (host_integerp (DECL_VINDEX (func_decl), 0))
10914 add_AT_loc (die, DW_AT_vtable_elem_location,
10915 new_loc_descr (DW_OP_constu,
10916 tree_low_cst (DECL_VINDEX (func_decl), 0),
10917 0));
10918
10919 /* GNU extension: Record what type this method came from originally. */
10920 if (debug_info_level > DINFO_LEVEL_TERSE)
10921 add_AT_die_ref (die, DW_AT_containing_type,
10922 lookup_type_die (DECL_CONTEXT (func_decl)));
10923 }
10924 }
10925 \f
10926 /* Add source coordinate attributes for the given decl. */
10927
10928 static void
10929 add_src_coords_attributes (dw_die_ref die, tree decl)
10930 {
10931 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10932
10933 add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
10934 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10935 }
10936
10937 /* Add a DW_AT_name attribute and source coordinate attribute for the
10938 given decl, but only if it actually has a name. */
10939
10940 static void
10941 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10942 {
10943 tree decl_name;
10944
10945 decl_name = DECL_NAME (decl);
10946 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10947 {
10948 add_name_attribute (die, dwarf2_name (decl, 0));
10949 if (! DECL_ARTIFICIAL (decl))
10950 add_src_coords_attributes (die, decl);
10951
10952 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10953 && TREE_PUBLIC (decl)
10954 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10955 && !DECL_ABSTRACT (decl)
10956 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl)))
10957 add_AT_string (die, DW_AT_MIPS_linkage_name,
10958 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10959 }
10960
10961 #ifdef VMS_DEBUGGING_INFO
10962 /* Get the function's name, as described by its RTL. This may be different
10963 from the DECL_NAME name used in the source file. */
10964 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10965 {
10966 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10967 XEXP (DECL_RTL (decl), 0));
10968 VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
10969 }
10970 #endif
10971 }
10972
10973 /* Push a new declaration scope. */
10974
10975 static void
10976 push_decl_scope (tree scope)
10977 {
10978 VEC_safe_push (tree, gc, decl_scope_table, scope);
10979 }
10980
10981 /* Pop a declaration scope. */
10982
10983 static inline void
10984 pop_decl_scope (void)
10985 {
10986 VEC_pop (tree, decl_scope_table);
10987 }
10988
10989 /* Return the DIE for the scope that immediately contains this type.
10990 Non-named types get global scope. Named types nested in other
10991 types get their containing scope if it's open, or global scope
10992 otherwise. All other types (i.e. function-local named types) get
10993 the current active scope. */
10994
10995 static dw_die_ref
10996 scope_die_for (tree t, dw_die_ref context_die)
10997 {
10998 dw_die_ref scope_die = NULL;
10999 tree containing_scope;
11000 int i;
11001
11002 /* Non-types always go in the current scope. */
11003 gcc_assert (TYPE_P (t));
11004
11005 containing_scope = TYPE_CONTEXT (t);
11006
11007 /* Use the containing namespace if it was passed in (for a declaration). */
11008 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
11009 {
11010 if (context_die == lookup_decl_die (containing_scope))
11011 /* OK */;
11012 else
11013 containing_scope = NULL_TREE;
11014 }
11015
11016 /* Ignore function type "scopes" from the C frontend. They mean that
11017 a tagged type is local to a parmlist of a function declarator, but
11018 that isn't useful to DWARF. */
11019 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
11020 containing_scope = NULL_TREE;
11021
11022 if (containing_scope == NULL_TREE)
11023 scope_die = comp_unit_die;
11024 else if (TYPE_P (containing_scope))
11025 {
11026 /* For types, we can just look up the appropriate DIE. But
11027 first we check to see if we're in the middle of emitting it
11028 so we know where the new DIE should go. */
11029 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
11030 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
11031 break;
11032
11033 if (i < 0)
11034 {
11035 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
11036 || TREE_ASM_WRITTEN (containing_scope));
11037
11038 /* If none of the current dies are suitable, we get file scope. */
11039 scope_die = comp_unit_die;
11040 }
11041 else
11042 scope_die = lookup_type_die (containing_scope);
11043 }
11044 else
11045 scope_die = context_die;
11046
11047 return scope_die;
11048 }
11049
11050 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
11051
11052 static inline int
11053 local_scope_p (dw_die_ref context_die)
11054 {
11055 for (; context_die; context_die = context_die->die_parent)
11056 if (context_die->die_tag == DW_TAG_inlined_subroutine
11057 || context_die->die_tag == DW_TAG_subprogram)
11058 return 1;
11059
11060 return 0;
11061 }
11062
11063 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
11064 whether or not to treat a DIE in this context as a declaration. */
11065
11066 static inline int
11067 class_or_namespace_scope_p (dw_die_ref context_die)
11068 {
11069 return (context_die
11070 && (context_die->die_tag == DW_TAG_structure_type
11071 || context_die->die_tag == DW_TAG_union_type
11072 || context_die->die_tag == DW_TAG_namespace));
11073 }
11074
11075 /* Many forms of DIEs require a "type description" attribute. This
11076 routine locates the proper "type descriptor" die for the type given
11077 by 'type', and adds a DW_AT_type attribute below the given die. */
11078
11079 static void
11080 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
11081 int decl_volatile, dw_die_ref context_die)
11082 {
11083 enum tree_code code = TREE_CODE (type);
11084 dw_die_ref type_die = NULL;
11085
11086 /* ??? If this type is an unnamed subrange type of an integral or
11087 floating-point type, use the inner type. This is because we have no
11088 support for unnamed types in base_type_die. This can happen if this is
11089 an Ada subrange type. Correct solution is emit a subrange type die. */
11090 if ((code == INTEGER_TYPE || code == REAL_TYPE)
11091 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
11092 type = TREE_TYPE (type), code = TREE_CODE (type);
11093
11094 if (code == ERROR_MARK
11095 /* Handle a special case. For functions whose return type is void, we
11096 generate *no* type attribute. (Note that no object may have type
11097 `void', so this only applies to function return types). */
11098 || code == VOID_TYPE)
11099 return;
11100
11101 type_die = modified_type_die (type,
11102 decl_const || TYPE_READONLY (type),
11103 decl_volatile || TYPE_VOLATILE (type),
11104 context_die);
11105
11106 if (type_die != NULL)
11107 add_AT_die_ref (object_die, DW_AT_type, type_die);
11108 }
11109
11110 /* Given an object die, add the calling convention attribute for the
11111 function call type. */
11112 static void
11113 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
11114 {
11115 enum dwarf_calling_convention value = DW_CC_normal;
11116
11117 value = targetm.dwarf_calling_convention (type);
11118
11119 /* Only add the attribute if the backend requests it, and
11120 is not DW_CC_normal. */
11121 if (value && (value != DW_CC_normal))
11122 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
11123 }
11124
11125 /* Given a tree pointer to a struct, class, union, or enum type node, return
11126 a pointer to the (string) tag name for the given type, or zero if the type
11127 was declared without a tag. */
11128
11129 static const char *
11130 type_tag (tree type)
11131 {
11132 const char *name = 0;
11133
11134 if (TYPE_NAME (type) != 0)
11135 {
11136 tree t = 0;
11137
11138 /* Find the IDENTIFIER_NODE for the type name. */
11139 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
11140 t = TYPE_NAME (type);
11141
11142 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
11143 a TYPE_DECL node, regardless of whether or not a `typedef' was
11144 involved. */
11145 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11146 && ! DECL_IGNORED_P (TYPE_NAME (type)))
11147 t = DECL_NAME (TYPE_NAME (type));
11148
11149 /* Now get the name as a string, or invent one. */
11150 if (t != 0)
11151 name = IDENTIFIER_POINTER (t);
11152 }
11153
11154 return (name == 0 || *name == '\0') ? 0 : name;
11155 }
11156
11157 /* Return the type associated with a data member, make a special check
11158 for bit field types. */
11159
11160 static inline tree
11161 member_declared_type (tree member)
11162 {
11163 return (DECL_BIT_FIELD_TYPE (member)
11164 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
11165 }
11166
11167 /* Get the decl's label, as described by its RTL. This may be different
11168 from the DECL_NAME name used in the source file. */
11169
11170 #if 0
11171 static const char *
11172 decl_start_label (tree decl)
11173 {
11174 rtx x;
11175 const char *fnname;
11176
11177 x = DECL_RTL (decl);
11178 gcc_assert (MEM_P (x));
11179
11180 x = XEXP (x, 0);
11181 gcc_assert (GET_CODE (x) == SYMBOL_REF);
11182
11183 fnname = XSTR (x, 0);
11184 return fnname;
11185 }
11186 #endif
11187 \f
11188 /* These routines generate the internal representation of the DIE's for
11189 the compilation unit. Debugging information is collected by walking
11190 the declaration trees passed in from dwarf2out_decl(). */
11191
11192 static void
11193 gen_array_type_die (tree type, dw_die_ref context_die)
11194 {
11195 dw_die_ref scope_die = scope_die_for (type, context_die);
11196 dw_die_ref array_die;
11197 tree element_type;
11198
11199 /* ??? The SGI dwarf reader fails for array of array of enum types unless
11200 the inner array type comes before the outer array type. Thus we must
11201 call gen_type_die before we call new_die. See below also. */
11202 #ifdef MIPS_DEBUGGING_INFO
11203 gen_type_die (TREE_TYPE (type), context_die);
11204 #endif
11205
11206 array_die = new_die (DW_TAG_array_type, scope_die, type);
11207 add_name_attribute (array_die, type_tag (type));
11208 equate_type_number_to_die (type, array_die);
11209
11210 if (TREE_CODE (type) == VECTOR_TYPE)
11211 {
11212 /* The frontend feeds us a representation for the vector as a struct
11213 containing an array. Pull out the array type. */
11214 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
11215 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
11216 }
11217
11218 #if 0
11219 /* We default the array ordering. SDB will probably do
11220 the right things even if DW_AT_ordering is not present. It's not even
11221 an issue until we start to get into multidimensional arrays anyway. If
11222 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11223 then we'll have to put the DW_AT_ordering attribute back in. (But if
11224 and when we find out that we need to put these in, we will only do so
11225 for multidimensional arrays. */
11226 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
11227 #endif
11228
11229 #ifdef MIPS_DEBUGGING_INFO
11230 /* The SGI compilers handle arrays of unknown bound by setting
11231 AT_declaration and not emitting any subrange DIEs. */
11232 if (! TYPE_DOMAIN (type))
11233 add_AT_flag (array_die, DW_AT_declaration, 1);
11234 else
11235 #endif
11236 add_subscript_info (array_die, type);
11237
11238 /* Add representation of the type of the elements of this array type. */
11239 element_type = TREE_TYPE (type);
11240
11241 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11242 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11243 We work around this by disabling this feature. See also
11244 add_subscript_info. */
11245 #ifndef MIPS_DEBUGGING_INFO
11246 while (TREE_CODE (element_type) == ARRAY_TYPE)
11247 element_type = TREE_TYPE (element_type);
11248
11249 gen_type_die (element_type, context_die);
11250 #endif
11251
11252 add_type_attribute (array_die, element_type, 0, 0, context_die);
11253 }
11254
11255 #if 0
11256 static void
11257 gen_entry_point_die (tree decl, dw_die_ref context_die)
11258 {
11259 tree origin = decl_ultimate_origin (decl);
11260 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
11261
11262 if (origin != NULL)
11263 add_abstract_origin_attribute (decl_die, origin);
11264 else
11265 {
11266 add_name_and_src_coords_attributes (decl_die, decl);
11267 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
11268 0, 0, context_die);
11269 }
11270
11271 if (DECL_ABSTRACT (decl))
11272 equate_decl_number_to_die (decl, decl_die);
11273 else
11274 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
11275 }
11276 #endif
11277
11278 /* Walk through the list of incomplete types again, trying once more to
11279 emit full debugging info for them. */
11280
11281 static void
11282 retry_incomplete_types (void)
11283 {
11284 int i;
11285
11286 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
11287 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
11288 }
11289
11290 /* Generate a DIE to represent an inlined instance of an enumeration type. */
11291
11292 static void
11293 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
11294 {
11295 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
11296
11297 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11298 be incomplete and such types are not marked. */
11299 add_abstract_origin_attribute (type_die, type);
11300 }
11301
11302 /* Generate a DIE to represent an inlined instance of a structure type. */
11303
11304 static void
11305 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
11306 {
11307 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
11308
11309 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11310 be incomplete and such types are not marked. */
11311 add_abstract_origin_attribute (type_die, type);
11312 }
11313
11314 /* Generate a DIE to represent an inlined instance of a union type. */
11315
11316 static void
11317 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11318 {
11319 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11320
11321 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11322 be incomplete and such types are not marked. */
11323 add_abstract_origin_attribute (type_die, type);
11324 }
11325
11326 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11327 include all of the information about the enumeration values also. Each
11328 enumerated type name/value is listed as a child of the enumerated type
11329 DIE. */
11330
11331 static dw_die_ref
11332 gen_enumeration_type_die (tree type, dw_die_ref context_die)
11333 {
11334 dw_die_ref type_die = lookup_type_die (type);
11335
11336 if (type_die == NULL)
11337 {
11338 type_die = new_die (DW_TAG_enumeration_type,
11339 scope_die_for (type, context_die), type);
11340 equate_type_number_to_die (type, type_die);
11341 add_name_attribute (type_die, type_tag (type));
11342 }
11343 else if (! TYPE_SIZE (type))
11344 return type_die;
11345 else
11346 remove_AT (type_die, DW_AT_declaration);
11347
11348 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11349 given enum type is incomplete, do not generate the DW_AT_byte_size
11350 attribute or the DW_AT_element_list attribute. */
11351 if (TYPE_SIZE (type))
11352 {
11353 tree link;
11354
11355 TREE_ASM_WRITTEN (type) = 1;
11356 add_byte_size_attribute (type_die, type);
11357 if (TYPE_STUB_DECL (type) != NULL_TREE)
11358 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11359
11360 /* If the first reference to this type was as the return type of an
11361 inline function, then it may not have a parent. Fix this now. */
11362 if (type_die->die_parent == NULL)
11363 add_child_die (scope_die_for (type, context_die), type_die);
11364
11365 for (link = TYPE_VALUES (type);
11366 link != NULL; link = TREE_CHAIN (link))
11367 {
11368 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11369 tree value = TREE_VALUE (link);
11370
11371 add_name_attribute (enum_die,
11372 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11373
11374 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11375 /* DWARF2 does not provide a way of indicating whether or
11376 not enumeration constants are signed or unsigned. GDB
11377 always assumes the values are signed, so we output all
11378 values as if they were signed. That means that
11379 enumeration constants with very large unsigned values
11380 will appear to have negative values in the debugger. */
11381 add_AT_int (enum_die, DW_AT_const_value,
11382 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11383 }
11384 }
11385 else
11386 add_AT_flag (type_die, DW_AT_declaration, 1);
11387
11388 return type_die;
11389 }
11390
11391 /* Generate a DIE to represent either a real live formal parameter decl or to
11392 represent just the type of some formal parameter position in some function
11393 type.
11394
11395 Note that this routine is a bit unusual because its argument may be a
11396 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11397 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11398 node. If it's the former then this function is being called to output a
11399 DIE to represent a formal parameter object (or some inlining thereof). If
11400 it's the latter, then this function is only being called to output a
11401 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11402 argument type of some subprogram type. */
11403
11404 static dw_die_ref
11405 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11406 {
11407 dw_die_ref parm_die
11408 = new_die (DW_TAG_formal_parameter, context_die, node);
11409 tree origin;
11410
11411 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11412 {
11413 case tcc_declaration:
11414 origin = decl_ultimate_origin (node);
11415 if (origin != NULL)
11416 add_abstract_origin_attribute (parm_die, origin);
11417 else
11418 {
11419 add_name_and_src_coords_attributes (parm_die, node);
11420 add_type_attribute (parm_die, TREE_TYPE (node),
11421 TREE_READONLY (node),
11422 TREE_THIS_VOLATILE (node),
11423 context_die);
11424 if (DECL_ARTIFICIAL (node))
11425 add_AT_flag (parm_die, DW_AT_artificial, 1);
11426 }
11427
11428 equate_decl_number_to_die (node, parm_die);
11429 if (! DECL_ABSTRACT (node))
11430 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11431
11432 break;
11433
11434 case tcc_type:
11435 /* We were called with some kind of a ..._TYPE node. */
11436 add_type_attribute (parm_die, node, 0, 0, context_die);
11437 break;
11438
11439 default:
11440 gcc_unreachable ();
11441 }
11442
11443 return parm_die;
11444 }
11445
11446 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11447 at the end of an (ANSI prototyped) formal parameters list. */
11448
11449 static void
11450 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11451 {
11452 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11453 }
11454
11455 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11456 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11457 parameters as specified in some function type specification (except for
11458 those which appear as part of a function *definition*). */
11459
11460 static void
11461 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11462 {
11463 tree link;
11464 tree formal_type = NULL;
11465 tree first_parm_type;
11466 tree arg;
11467
11468 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11469 {
11470 arg = DECL_ARGUMENTS (function_or_method_type);
11471 function_or_method_type = TREE_TYPE (function_or_method_type);
11472 }
11473 else
11474 arg = NULL_TREE;
11475
11476 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11477
11478 /* Make our first pass over the list of formal parameter types and output a
11479 DW_TAG_formal_parameter DIE for each one. */
11480 for (link = first_parm_type; link; )
11481 {
11482 dw_die_ref parm_die;
11483
11484 formal_type = TREE_VALUE (link);
11485 if (formal_type == void_type_node)
11486 break;
11487
11488 /* Output a (nameless) DIE to represent the formal parameter itself. */
11489 parm_die = gen_formal_parameter_die (formal_type, context_die);
11490 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11491 && link == first_parm_type)
11492 || (arg && DECL_ARTIFICIAL (arg)))
11493 add_AT_flag (parm_die, DW_AT_artificial, 1);
11494
11495 link = TREE_CHAIN (link);
11496 if (arg)
11497 arg = TREE_CHAIN (arg);
11498 }
11499
11500 /* If this function type has an ellipsis, add a
11501 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11502 if (formal_type != void_type_node)
11503 gen_unspecified_parameters_die (function_or_method_type, context_die);
11504
11505 /* Make our second (and final) pass over the list of formal parameter types
11506 and output DIEs to represent those types (as necessary). */
11507 for (link = TYPE_ARG_TYPES (function_or_method_type);
11508 link && TREE_VALUE (link);
11509 link = TREE_CHAIN (link))
11510 gen_type_die (TREE_VALUE (link), context_die);
11511 }
11512
11513 /* We want to generate the DIE for TYPE so that we can generate the
11514 die for MEMBER, which has been defined; we will need to refer back
11515 to the member declaration nested within TYPE. If we're trying to
11516 generate minimal debug info for TYPE, processing TYPE won't do the
11517 trick; we need to attach the member declaration by hand. */
11518
11519 static void
11520 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11521 {
11522 gen_type_die (type, context_die);
11523
11524 /* If we're trying to avoid duplicate debug info, we may not have
11525 emitted the member decl for this function. Emit it now. */
11526 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11527 && ! lookup_decl_die (member))
11528 {
11529 dw_die_ref type_die;
11530 gcc_assert (!decl_ultimate_origin (member));
11531
11532 push_decl_scope (type);
11533 type_die = lookup_type_die (type);
11534 if (TREE_CODE (member) == FUNCTION_DECL)
11535 gen_subprogram_die (member, type_die);
11536 else if (TREE_CODE (member) == FIELD_DECL)
11537 {
11538 /* Ignore the nameless fields that are used to skip bits but handle
11539 C++ anonymous unions and structs. */
11540 if (DECL_NAME (member) != NULL_TREE
11541 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11542 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11543 {
11544 gen_type_die (member_declared_type (member), type_die);
11545 gen_field_die (member, type_die);
11546 }
11547 }
11548 else
11549 gen_variable_die (member, type_die);
11550
11551 pop_decl_scope ();
11552 }
11553 }
11554
11555 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11556 may later generate inlined and/or out-of-line instances of. */
11557
11558 static void
11559 dwarf2out_abstract_function (tree decl)
11560 {
11561 dw_die_ref old_die;
11562 tree save_fn;
11563 struct function *save_cfun;
11564 tree context;
11565 int was_abstract = DECL_ABSTRACT (decl);
11566
11567 /* Make sure we have the actual abstract inline, not a clone. */
11568 decl = DECL_ORIGIN (decl);
11569
11570 old_die = lookup_decl_die (decl);
11571 if (old_die && get_AT (old_die, DW_AT_inline))
11572 /* We've already generated the abstract instance. */
11573 return;
11574
11575 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11576 we don't get confused by DECL_ABSTRACT. */
11577 if (debug_info_level > DINFO_LEVEL_TERSE)
11578 {
11579 context = decl_class_context (decl);
11580 if (context)
11581 gen_type_die_for_member
11582 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11583 }
11584
11585 /* Pretend we've just finished compiling this function. */
11586 save_fn = current_function_decl;
11587 save_cfun = cfun;
11588 current_function_decl = decl;
11589 cfun = DECL_STRUCT_FUNCTION (decl);
11590
11591 set_decl_abstract_flags (decl, 1);
11592 dwarf2out_decl (decl);
11593 if (! was_abstract)
11594 set_decl_abstract_flags (decl, 0);
11595
11596 current_function_decl = save_fn;
11597 cfun = save_cfun;
11598 }
11599
11600 /* Helper function of premark_used_types() which gets called through
11601 htab_traverse_resize().
11602
11603 Marks the DIE of a given type in *SLOT as perennial, so it never gets
11604 marked as unused by prune_unused_types. */
11605 static int
11606 premark_used_types_helper (void **slot, void *data ATTRIBUTE_UNUSED)
11607 {
11608 tree type;
11609 dw_die_ref die;
11610
11611 type = *slot;
11612 die = lookup_type_die (type);
11613 if (die != NULL)
11614 die->die_perennial_p = 1;
11615 return 1;
11616 }
11617
11618 /* Mark all members of used_types_hash as perennial. */
11619 static void
11620 premark_used_types (void)
11621 {
11622 if (cfun && cfun->used_types_hash)
11623 htab_traverse (cfun->used_types_hash, premark_used_types_helper, NULL);
11624 }
11625
11626 /* Generate a DIE to represent a declared function (either file-scope or
11627 block-local). */
11628
11629 static void
11630 gen_subprogram_die (tree decl, dw_die_ref context_die)
11631 {
11632 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11633 tree origin = decl_ultimate_origin (decl);
11634 dw_die_ref subr_die;
11635 tree fn_arg_types;
11636 tree outer_scope;
11637 dw_die_ref old_die = lookup_decl_die (decl);
11638 int declaration = (current_function_decl != decl
11639 || class_or_namespace_scope_p (context_die));
11640
11641 premark_used_types ();
11642
11643 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11644 started to generate the abstract instance of an inline, decided to output
11645 its containing class, and proceeded to emit the declaration of the inline
11646 from the member list for the class. If so, DECLARATION takes priority;
11647 we'll get back to the abstract instance when done with the class. */
11648
11649 /* The class-scope declaration DIE must be the primary DIE. */
11650 if (origin && declaration && class_or_namespace_scope_p (context_die))
11651 {
11652 origin = NULL;
11653 gcc_assert (!old_die);
11654 }
11655
11656 /* Now that the C++ front end lazily declares artificial member fns, we
11657 might need to retrofit the declaration into its class. */
11658 if (!declaration && !origin && !old_die
11659 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
11660 && !class_or_namespace_scope_p (context_die)
11661 && debug_info_level > DINFO_LEVEL_TERSE)
11662 old_die = force_decl_die (decl);
11663
11664 if (origin != NULL)
11665 {
11666 gcc_assert (!declaration || local_scope_p (context_die));
11667
11668 /* Fixup die_parent for the abstract instance of a nested
11669 inline function. */
11670 if (old_die && old_die->die_parent == NULL)
11671 add_child_die (context_die, old_die);
11672
11673 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11674 add_abstract_origin_attribute (subr_die, origin);
11675 }
11676 else if (old_die)
11677 {
11678 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11679 struct dwarf_file_data * file_index = lookup_filename (s.file);
11680
11681 if (!get_AT_flag (old_die, DW_AT_declaration)
11682 /* We can have a normal definition following an inline one in the
11683 case of redefinition of GNU C extern inlines.
11684 It seems reasonable to use AT_specification in this case. */
11685 && !get_AT (old_die, DW_AT_inline))
11686 {
11687 /* Detect and ignore this case, where we are trying to output
11688 something we have already output. */
11689 return;
11690 }
11691
11692 /* If the definition comes from the same place as the declaration,
11693 maybe use the old DIE. We always want the DIE for this function
11694 that has the *_pc attributes to be under comp_unit_die so the
11695 debugger can find it. We also need to do this for abstract
11696 instances of inlines, since the spec requires the out-of-line copy
11697 to have the same parent. For local class methods, this doesn't
11698 apply; we just use the old DIE. */
11699 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11700 && (DECL_ARTIFICIAL (decl)
11701 || (get_AT_file (old_die, DW_AT_decl_file) == file_index
11702 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11703 == (unsigned) s.line))))
11704 {
11705 subr_die = old_die;
11706
11707 /* Clear out the declaration attribute and the formal parameters.
11708 Do not remove all children, because it is possible that this
11709 declaration die was forced using force_decl_die(). In such
11710 cases die that forced declaration die (e.g. TAG_imported_module)
11711 is one of the children that we do not want to remove. */
11712 remove_AT (subr_die, DW_AT_declaration);
11713 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11714 }
11715 else
11716 {
11717 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11718 add_AT_specification (subr_die, old_die);
11719 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
11720 add_AT_file (subr_die, DW_AT_decl_file, file_index);
11721 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
11722 add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
11723 }
11724 }
11725 else
11726 {
11727 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11728
11729 if (TREE_PUBLIC (decl))
11730 add_AT_flag (subr_die, DW_AT_external, 1);
11731
11732 add_name_and_src_coords_attributes (subr_die, decl);
11733 if (debug_info_level > DINFO_LEVEL_TERSE)
11734 {
11735 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11736 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11737 0, 0, context_die);
11738 }
11739
11740 add_pure_or_virtual_attribute (subr_die, decl);
11741 if (DECL_ARTIFICIAL (decl))
11742 add_AT_flag (subr_die, DW_AT_artificial, 1);
11743
11744 if (TREE_PROTECTED (decl))
11745 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11746 else if (TREE_PRIVATE (decl))
11747 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11748 }
11749
11750 if (declaration)
11751 {
11752 if (!old_die || !get_AT (old_die, DW_AT_inline))
11753 {
11754 add_AT_flag (subr_die, DW_AT_declaration, 1);
11755
11756 /* The first time we see a member function, it is in the context of
11757 the class to which it belongs. We make sure of this by emitting
11758 the class first. The next time is the definition, which is
11759 handled above. The two may come from the same source text.
11760
11761 Note that force_decl_die() forces function declaration die. It is
11762 later reused to represent definition. */
11763 equate_decl_number_to_die (decl, subr_die);
11764 }
11765 }
11766 else if (DECL_ABSTRACT (decl))
11767 {
11768 if (DECL_DECLARED_INLINE_P (decl))
11769 {
11770 if (cgraph_function_possibly_inlined_p (decl))
11771 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11772 else
11773 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11774 }
11775 else
11776 {
11777 if (cgraph_function_possibly_inlined_p (decl))
11778 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11779 else
11780 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11781 }
11782
11783 equate_decl_number_to_die (decl, subr_die);
11784 }
11785 else if (!DECL_EXTERNAL (decl))
11786 {
11787 HOST_WIDE_INT cfa_fb_offset;
11788
11789 if (!old_die || !get_AT (old_die, DW_AT_inline))
11790 equate_decl_number_to_die (decl, subr_die);
11791
11792 if (!flag_reorder_blocks_and_partition)
11793 {
11794 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11795 current_function_funcdef_no);
11796 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11797 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11798 current_function_funcdef_no);
11799 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11800
11801 add_pubname (decl, subr_die);
11802 add_arange (decl, subr_die);
11803 }
11804 else
11805 { /* Do nothing for now; maybe need to duplicate die, one for
11806 hot section and ond for cold section, then use the hot/cold
11807 section begin/end labels to generate the aranges... */
11808 /*
11809 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11810 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11811 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11812 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11813
11814 add_pubname (decl, subr_die);
11815 add_arange (decl, subr_die);
11816 add_arange (decl, subr_die);
11817 */
11818 }
11819
11820 #ifdef MIPS_DEBUGGING_INFO
11821 /* Add a reference to the FDE for this routine. */
11822 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11823 #endif
11824
11825 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
11826
11827 /* We define the "frame base" as the function's CFA. This is more
11828 convenient for several reasons: (1) It's stable across the prologue
11829 and epilogue, which makes it better than just a frame pointer,
11830 (2) With dwarf3, there exists a one-byte encoding that allows us
11831 to reference the .debug_frame data by proxy, but failing that,
11832 (3) We can at least reuse the code inspection and interpretation
11833 code that determines the CFA position at various points in the
11834 function. */
11835 /* ??? Use some command-line or configury switch to enable the use
11836 of dwarf3 DW_OP_call_frame_cfa. At present there are no dwarf
11837 consumers that understand it; fall back to "pure" dwarf2 and
11838 convert the CFA data into a location list. */
11839 {
11840 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
11841 if (list->dw_loc_next)
11842 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
11843 else
11844 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
11845 }
11846
11847 /* Compute a displacement from the "steady-state frame pointer" to
11848 the CFA. The former is what all stack slots and argument slots
11849 will reference in the rtl; the later is what we've told the
11850 debugger about. We'll need to adjust all frame_base references
11851 by this displacement. */
11852 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
11853
11854 if (cfun->static_chain_decl)
11855 add_AT_location_description (subr_die, DW_AT_static_link,
11856 loc_descriptor_from_tree (cfun->static_chain_decl));
11857 }
11858
11859 /* Now output descriptions of the arguments for this function. This gets
11860 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11861 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11862 `...' at the end of the formal parameter list. In order to find out if
11863 there was a trailing ellipsis or not, we must instead look at the type
11864 associated with the FUNCTION_DECL. This will be a node of type
11865 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11866 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11867 an ellipsis at the end. */
11868
11869 /* In the case where we are describing a mere function declaration, all we
11870 need to do here (and all we *can* do here) is to describe the *types* of
11871 its formal parameters. */
11872 if (debug_info_level <= DINFO_LEVEL_TERSE)
11873 ;
11874 else if (declaration)
11875 gen_formal_types_die (decl, subr_die);
11876 else
11877 {
11878 /* Generate DIEs to represent all known formal parameters. */
11879 tree arg_decls = DECL_ARGUMENTS (decl);
11880 tree parm;
11881
11882 /* When generating DIEs, generate the unspecified_parameters DIE
11883 instead if we come across the arg "__builtin_va_alist" */
11884 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11885 if (TREE_CODE (parm) == PARM_DECL)
11886 {
11887 if (DECL_NAME (parm)
11888 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11889 "__builtin_va_alist"))
11890 gen_unspecified_parameters_die (parm, subr_die);
11891 else
11892 gen_decl_die (parm, subr_die);
11893 }
11894
11895 /* Decide whether we need an unspecified_parameters DIE at the end.
11896 There are 2 more cases to do this for: 1) the ansi ... declaration -
11897 this is detectable when the end of the arg list is not a
11898 void_type_node 2) an unprototyped function declaration (not a
11899 definition). This just means that we have no info about the
11900 parameters at all. */
11901 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11902 if (fn_arg_types != NULL)
11903 {
11904 /* This is the prototyped case, check for.... */
11905 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11906 gen_unspecified_parameters_die (decl, subr_die);
11907 }
11908 else if (DECL_INITIAL (decl) == NULL_TREE)
11909 gen_unspecified_parameters_die (decl, subr_die);
11910 }
11911
11912 /* Output Dwarf info for all of the stuff within the body of the function
11913 (if it has one - it may be just a declaration). */
11914 outer_scope = DECL_INITIAL (decl);
11915
11916 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11917 a function. This BLOCK actually represents the outermost binding contour
11918 for the function, i.e. the contour in which the function's formal
11919 parameters and labels get declared. Curiously, it appears that the front
11920 end doesn't actually put the PARM_DECL nodes for the current function onto
11921 the BLOCK_VARS list for this outer scope, but are strung off of the
11922 DECL_ARGUMENTS list for the function instead.
11923
11924 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11925 the LABEL_DECL nodes for the function however, and we output DWARF info
11926 for those in decls_for_scope. Just within the `outer_scope' there will be
11927 a BLOCK node representing the function's outermost pair of curly braces,
11928 and any blocks used for the base and member initializers of a C++
11929 constructor function. */
11930 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11931 {
11932 /* Emit a DW_TAG_variable DIE for a named return value. */
11933 if (DECL_NAME (DECL_RESULT (decl)))
11934 gen_decl_die (DECL_RESULT (decl), subr_die);
11935
11936 current_function_has_inlines = 0;
11937 decls_for_scope (outer_scope, subr_die, 0);
11938
11939 #if 0 && defined (MIPS_DEBUGGING_INFO)
11940 if (current_function_has_inlines)
11941 {
11942 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11943 if (! comp_unit_has_inlines)
11944 {
11945 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11946 comp_unit_has_inlines = 1;
11947 }
11948 }
11949 #endif
11950 }
11951 /* Add the calling convention attribute if requested. */
11952 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11953
11954 }
11955
11956 /* Generate a DIE to represent a declared data object. */
11957
11958 static void
11959 gen_variable_die (tree decl, dw_die_ref context_die)
11960 {
11961 tree origin = decl_ultimate_origin (decl);
11962 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11963
11964 dw_die_ref old_die = lookup_decl_die (decl);
11965 int declaration = (DECL_EXTERNAL (decl)
11966 /* If DECL is COMDAT and has not actually been
11967 emitted, we cannot take its address; there
11968 might end up being no definition anywhere in
11969 the program. For example, consider the C++
11970 test case:
11971
11972 template <class T>
11973 struct S { static const int i = 7; };
11974
11975 template <class T>
11976 const int S<T>::i;
11977
11978 int f() { return S<int>::i; }
11979
11980 Here, S<int>::i is not DECL_EXTERNAL, but no
11981 definition is required, so the compiler will
11982 not emit a definition. */
11983 || (TREE_CODE (decl) == VAR_DECL
11984 && DECL_COMDAT (decl) && !TREE_ASM_WRITTEN (decl))
11985 || class_or_namespace_scope_p (context_die));
11986
11987 if (origin != NULL)
11988 add_abstract_origin_attribute (var_die, origin);
11989
11990 /* Loop unrolling can create multiple blocks that refer to the same
11991 static variable, so we must test for the DW_AT_declaration flag.
11992
11993 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11994 copy decls and set the DECL_ABSTRACT flag on them instead of
11995 sharing them.
11996
11997 ??? Duplicated blocks have been rewritten to use .debug_ranges.
11998
11999 ??? The declare_in_namespace support causes us to get two DIEs for one
12000 variable, both of which are declarations. We want to avoid considering
12001 one to be a specification, so we must test that this DIE is not a
12002 declaration. */
12003 else if (old_die && TREE_STATIC (decl) && ! declaration
12004 && get_AT_flag (old_die, DW_AT_declaration) == 1)
12005 {
12006 /* This is a definition of a C++ class level static. */
12007 add_AT_specification (var_die, old_die);
12008 if (DECL_NAME (decl))
12009 {
12010 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
12011 struct dwarf_file_data * file_index = lookup_filename (s.file);
12012
12013 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
12014 add_AT_file (var_die, DW_AT_decl_file, file_index);
12015
12016 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
12017 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
12018 }
12019 }
12020 else
12021 {
12022 add_name_and_src_coords_attributes (var_die, decl);
12023 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
12024 TREE_THIS_VOLATILE (decl), context_die);
12025
12026 if (TREE_PUBLIC (decl))
12027 add_AT_flag (var_die, DW_AT_external, 1);
12028
12029 if (DECL_ARTIFICIAL (decl))
12030 add_AT_flag (var_die, DW_AT_artificial, 1);
12031
12032 if (TREE_PROTECTED (decl))
12033 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
12034 else if (TREE_PRIVATE (decl))
12035 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
12036 }
12037
12038 if (declaration)
12039 add_AT_flag (var_die, DW_AT_declaration, 1);
12040
12041 if (DECL_ABSTRACT (decl) || declaration)
12042 equate_decl_number_to_die (decl, var_die);
12043
12044 if (! declaration && ! DECL_ABSTRACT (decl))
12045 {
12046 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
12047 add_pubname (decl, var_die);
12048 }
12049 else
12050 tree_add_const_value_attribute (var_die, decl);
12051 }
12052
12053 /* Generate a DIE to represent a label identifier. */
12054
12055 static void
12056 gen_label_die (tree decl, dw_die_ref context_die)
12057 {
12058 tree origin = decl_ultimate_origin (decl);
12059 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
12060 rtx insn;
12061 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12062
12063 if (origin != NULL)
12064 add_abstract_origin_attribute (lbl_die, origin);
12065 else
12066 add_name_and_src_coords_attributes (lbl_die, decl);
12067
12068 if (DECL_ABSTRACT (decl))
12069 equate_decl_number_to_die (decl, lbl_die);
12070 else
12071 {
12072 insn = DECL_RTL_IF_SET (decl);
12073
12074 /* Deleted labels are programmer specified labels which have been
12075 eliminated because of various optimizations. We still emit them
12076 here so that it is possible to put breakpoints on them. */
12077 if (insn
12078 && (LABEL_P (insn)
12079 || ((NOTE_P (insn)
12080 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
12081 {
12082 /* When optimization is enabled (via -O) some parts of the compiler
12083 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
12084 represent source-level labels which were explicitly declared by
12085 the user. This really shouldn't be happening though, so catch
12086 it if it ever does happen. */
12087 gcc_assert (!INSN_DELETED_P (insn));
12088
12089 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
12090 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
12091 }
12092 }
12093 }
12094
12095 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
12096 attributes to the DIE for a block STMT, to describe where the inlined
12097 function was called from. This is similar to add_src_coords_attributes. */
12098
12099 static inline void
12100 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
12101 {
12102 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
12103
12104 add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
12105 add_AT_unsigned (die, DW_AT_call_line, s.line);
12106 }
12107
12108 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
12109 Add low_pc and high_pc attributes to the DIE for a block STMT. */
12110
12111 static inline void
12112 add_high_low_attributes (tree stmt, dw_die_ref die)
12113 {
12114 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12115
12116 if (BLOCK_FRAGMENT_CHAIN (stmt))
12117 {
12118 tree chain;
12119
12120 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
12121
12122 chain = BLOCK_FRAGMENT_CHAIN (stmt);
12123 do
12124 {
12125 add_ranges (chain);
12126 chain = BLOCK_FRAGMENT_CHAIN (chain);
12127 }
12128 while (chain);
12129 add_ranges (NULL);
12130 }
12131 else
12132 {
12133 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
12134 BLOCK_NUMBER (stmt));
12135 add_AT_lbl_id (die, DW_AT_low_pc, label);
12136 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
12137 BLOCK_NUMBER (stmt));
12138 add_AT_lbl_id (die, DW_AT_high_pc, label);
12139 }
12140 }
12141
12142 /* Generate a DIE for a lexical block. */
12143
12144 static void
12145 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
12146 {
12147 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
12148
12149 if (! BLOCK_ABSTRACT (stmt))
12150 add_high_low_attributes (stmt, stmt_die);
12151
12152 decls_for_scope (stmt, stmt_die, depth);
12153 }
12154
12155 /* Generate a DIE for an inlined subprogram. */
12156
12157 static void
12158 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
12159 {
12160 tree decl = block_ultimate_origin (stmt);
12161
12162 /* Emit info for the abstract instance first, if we haven't yet. We
12163 must emit this even if the block is abstract, otherwise when we
12164 emit the block below (or elsewhere), we may end up trying to emit
12165 a die whose origin die hasn't been emitted, and crashing. */
12166 dwarf2out_abstract_function (decl);
12167
12168 if (! BLOCK_ABSTRACT (stmt))
12169 {
12170 dw_die_ref subr_die
12171 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
12172
12173 add_abstract_origin_attribute (subr_die, decl);
12174 add_high_low_attributes (stmt, subr_die);
12175 add_call_src_coords_attributes (stmt, subr_die);
12176
12177 decls_for_scope (stmt, subr_die, depth);
12178 current_function_has_inlines = 1;
12179 }
12180 else
12181 /* We may get here if we're the outer block of function A that was
12182 inlined into function B that was inlined into function C. When
12183 generating debugging info for C, dwarf2out_abstract_function(B)
12184 would mark all inlined blocks as abstract, including this one.
12185 So, we wouldn't (and shouldn't) expect labels to be generated
12186 for this one. Instead, just emit debugging info for
12187 declarations within the block. This is particularly important
12188 in the case of initializers of arguments passed from B to us:
12189 if they're statement expressions containing declarations, we
12190 wouldn't generate dies for their abstract variables, and then,
12191 when generating dies for the real variables, we'd die (pun
12192 intended :-) */
12193 gen_lexical_block_die (stmt, context_die, depth);
12194 }
12195
12196 /* Generate a DIE for a field in a record, or structure. */
12197
12198 static void
12199 gen_field_die (tree decl, dw_die_ref context_die)
12200 {
12201 dw_die_ref decl_die;
12202
12203 if (TREE_TYPE (decl) == error_mark_node)
12204 return;
12205
12206 decl_die = new_die (DW_TAG_member, context_die, decl);
12207 add_name_and_src_coords_attributes (decl_die, decl);
12208 add_type_attribute (decl_die, member_declared_type (decl),
12209 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
12210 context_die);
12211
12212 if (DECL_BIT_FIELD_TYPE (decl))
12213 {
12214 add_byte_size_attribute (decl_die, decl);
12215 add_bit_size_attribute (decl_die, decl);
12216 add_bit_offset_attribute (decl_die, decl);
12217 }
12218
12219 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
12220 add_data_member_location_attribute (decl_die, decl);
12221
12222 if (DECL_ARTIFICIAL (decl))
12223 add_AT_flag (decl_die, DW_AT_artificial, 1);
12224
12225 if (TREE_PROTECTED (decl))
12226 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
12227 else if (TREE_PRIVATE (decl))
12228 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
12229
12230 /* Equate decl number to die, so that we can look up this decl later on. */
12231 equate_decl_number_to_die (decl, decl_die);
12232 }
12233
12234 #if 0
12235 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12236 Use modified_type_die instead.
12237 We keep this code here just in case these types of DIEs may be needed to
12238 represent certain things in other languages (e.g. Pascal) someday. */
12239
12240 static void
12241 gen_pointer_type_die (tree type, dw_die_ref context_die)
12242 {
12243 dw_die_ref ptr_die
12244 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
12245
12246 equate_type_number_to_die (type, ptr_die);
12247 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12248 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12249 }
12250
12251 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12252 Use modified_type_die instead.
12253 We keep this code here just in case these types of DIEs may be needed to
12254 represent certain things in other languages (e.g. Pascal) someday. */
12255
12256 static void
12257 gen_reference_type_die (tree type, dw_die_ref context_die)
12258 {
12259 dw_die_ref ref_die
12260 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
12261
12262 equate_type_number_to_die (type, ref_die);
12263 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
12264 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12265 }
12266 #endif
12267
12268 /* Generate a DIE for a pointer to a member type. */
12269
12270 static void
12271 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
12272 {
12273 dw_die_ref ptr_die
12274 = new_die (DW_TAG_ptr_to_member_type,
12275 scope_die_for (type, context_die), type);
12276
12277 equate_type_number_to_die (type, ptr_die);
12278 add_AT_die_ref (ptr_die, DW_AT_containing_type,
12279 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
12280 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12281 }
12282
12283 /* Generate the DIE for the compilation unit. */
12284
12285 static dw_die_ref
12286 gen_compile_unit_die (const char *filename)
12287 {
12288 dw_die_ref die;
12289 char producer[250];
12290 const char *language_string = lang_hooks.name;
12291 int language;
12292
12293 die = new_die (DW_TAG_compile_unit, NULL, NULL);
12294
12295 if (filename)
12296 {
12297 add_name_attribute (die, filename);
12298 /* Don't add cwd for <built-in>. */
12299 if (!IS_ABSOLUTE_PATH (filename) && filename[0] != '<')
12300 add_comp_dir_attribute (die);
12301 }
12302
12303 sprintf (producer, "%s %s", language_string, version_string);
12304
12305 #ifdef MIPS_DEBUGGING_INFO
12306 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
12307 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
12308 not appear in the producer string, the debugger reaches the conclusion
12309 that the object file is stripped and has no debugging information.
12310 To get the MIPS/SGI debugger to believe that there is debugging
12311 information in the object file, we add a -g to the producer string. */
12312 if (debug_info_level > DINFO_LEVEL_TERSE)
12313 strcat (producer, " -g");
12314 #endif
12315
12316 add_AT_string (die, DW_AT_producer, producer);
12317
12318 if (strcmp (language_string, "GNU C++") == 0)
12319 language = DW_LANG_C_plus_plus;
12320 else if (strcmp (language_string, "GNU Ada") == 0)
12321 language = DW_LANG_Ada95;
12322 else if (strcmp (language_string, "GNU F77") == 0)
12323 language = DW_LANG_Fortran77;
12324 else if (strcmp (language_string, "GNU F95") == 0)
12325 language = DW_LANG_Fortran95;
12326 else if (strcmp (language_string, "GNU Pascal") == 0)
12327 language = DW_LANG_Pascal83;
12328 else if (strcmp (language_string, "GNU Java") == 0)
12329 language = DW_LANG_Java;
12330 else if (strcmp (language_string, "GNU Objective-C") == 0)
12331 language = DW_LANG_ObjC;
12332 else if (strcmp (language_string, "GNU Objective-C++") == 0)
12333 language = DW_LANG_ObjC_plus_plus;
12334 else
12335 language = DW_LANG_C89;
12336
12337 add_AT_unsigned (die, DW_AT_language, language);
12338 return die;
12339 }
12340
12341 /* Generate the DIE for a base class. */
12342
12343 static void
12344 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
12345 {
12346 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
12347
12348 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
12349 add_data_member_location_attribute (die, binfo);
12350
12351 if (BINFO_VIRTUAL_P (binfo))
12352 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
12353
12354 if (access == access_public_node)
12355 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
12356 else if (access == access_protected_node)
12357 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
12358 }
12359
12360 /* Generate a DIE for a class member. */
12361
12362 static void
12363 gen_member_die (tree type, dw_die_ref context_die)
12364 {
12365 tree member;
12366 tree binfo = TYPE_BINFO (type);
12367 dw_die_ref child;
12368
12369 /* If this is not an incomplete type, output descriptions of each of its
12370 members. Note that as we output the DIEs necessary to represent the
12371 members of this record or union type, we will also be trying to output
12372 DIEs to represent the *types* of those members. However the `type'
12373 function (above) will specifically avoid generating type DIEs for member
12374 types *within* the list of member DIEs for this (containing) type except
12375 for those types (of members) which are explicitly marked as also being
12376 members of this (containing) type themselves. The g++ front- end can
12377 force any given type to be treated as a member of some other (containing)
12378 type by setting the TYPE_CONTEXT of the given (member) type to point to
12379 the TREE node representing the appropriate (containing) type. */
12380
12381 /* First output info about the base classes. */
12382 if (binfo)
12383 {
12384 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
12385 int i;
12386 tree base;
12387
12388 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12389 gen_inheritance_die (base,
12390 (accesses ? VEC_index (tree, accesses, i)
12391 : access_public_node), context_die);
12392 }
12393
12394 /* Now output info about the data members and type members. */
12395 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
12396 {
12397 /* If we thought we were generating minimal debug info for TYPE
12398 and then changed our minds, some of the member declarations
12399 may have already been defined. Don't define them again, but
12400 do put them in the right order. */
12401
12402 child = lookup_decl_die (member);
12403 if (child)
12404 splice_child_die (context_die, child);
12405 else
12406 gen_decl_die (member, context_die);
12407 }
12408
12409 /* Now output info about the function members (if any). */
12410 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
12411 {
12412 /* Don't include clones in the member list. */
12413 if (DECL_ABSTRACT_ORIGIN (member))
12414 continue;
12415
12416 child = lookup_decl_die (member);
12417 if (child)
12418 splice_child_die (context_die, child);
12419 else
12420 gen_decl_die (member, context_die);
12421 }
12422 }
12423
12424 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12425 is set, we pretend that the type was never defined, so we only get the
12426 member DIEs needed by later specification DIEs. */
12427
12428 static void
12429 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
12430 {
12431 dw_die_ref type_die = lookup_type_die (type);
12432 dw_die_ref scope_die = 0;
12433 int nested = 0;
12434 int complete = (TYPE_SIZE (type)
12435 && (! TYPE_STUB_DECL (type)
12436 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
12437 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
12438
12439 if (type_die && ! complete)
12440 return;
12441
12442 if (TYPE_CONTEXT (type) != NULL_TREE
12443 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12444 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
12445 nested = 1;
12446
12447 scope_die = scope_die_for (type, context_die);
12448
12449 if (! type_die || (nested && scope_die == comp_unit_die))
12450 /* First occurrence of type or toplevel definition of nested class. */
12451 {
12452 dw_die_ref old_die = type_die;
12453
12454 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12455 ? DW_TAG_structure_type : DW_TAG_union_type,
12456 scope_die, type);
12457 equate_type_number_to_die (type, type_die);
12458 if (old_die)
12459 add_AT_specification (type_die, old_die);
12460 else
12461 add_name_attribute (type_die, type_tag (type));
12462 }
12463 else
12464 remove_AT (type_die, DW_AT_declaration);
12465
12466 /* If this type has been completed, then give it a byte_size attribute and
12467 then give a list of members. */
12468 if (complete && !ns_decl)
12469 {
12470 /* Prevent infinite recursion in cases where the type of some member of
12471 this type is expressed in terms of this type itself. */
12472 TREE_ASM_WRITTEN (type) = 1;
12473 add_byte_size_attribute (type_die, type);
12474 if (TYPE_STUB_DECL (type) != NULL_TREE)
12475 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12476
12477 /* If the first reference to this type was as the return type of an
12478 inline function, then it may not have a parent. Fix this now. */
12479 if (type_die->die_parent == NULL)
12480 add_child_die (scope_die, type_die);
12481
12482 push_decl_scope (type);
12483 gen_member_die (type, type_die);
12484 pop_decl_scope ();
12485
12486 /* GNU extension: Record what type our vtable lives in. */
12487 if (TYPE_VFIELD (type))
12488 {
12489 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12490
12491 gen_type_die (vtype, context_die);
12492 add_AT_die_ref (type_die, DW_AT_containing_type,
12493 lookup_type_die (vtype));
12494 }
12495 }
12496 else
12497 {
12498 add_AT_flag (type_die, DW_AT_declaration, 1);
12499
12500 /* We don't need to do this for function-local types. */
12501 if (TYPE_STUB_DECL (type)
12502 && ! decl_function_context (TYPE_STUB_DECL (type)))
12503 VEC_safe_push (tree, gc, incomplete_types, type);
12504 }
12505 }
12506
12507 /* Generate a DIE for a subroutine _type_. */
12508
12509 static void
12510 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12511 {
12512 tree return_type = TREE_TYPE (type);
12513 dw_die_ref subr_die
12514 = new_die (DW_TAG_subroutine_type,
12515 scope_die_for (type, context_die), type);
12516
12517 equate_type_number_to_die (type, subr_die);
12518 add_prototyped_attribute (subr_die, type);
12519 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12520 gen_formal_types_die (type, subr_die);
12521 }
12522
12523 /* Generate a DIE for a type definition. */
12524
12525 static void
12526 gen_typedef_die (tree decl, dw_die_ref context_die)
12527 {
12528 dw_die_ref type_die;
12529 tree origin;
12530
12531 if (TREE_ASM_WRITTEN (decl))
12532 return;
12533
12534 TREE_ASM_WRITTEN (decl) = 1;
12535 type_die = new_die (DW_TAG_typedef, context_die, decl);
12536 origin = decl_ultimate_origin (decl);
12537 if (origin != NULL)
12538 add_abstract_origin_attribute (type_die, origin);
12539 else
12540 {
12541 tree type;
12542
12543 add_name_and_src_coords_attributes (type_die, decl);
12544 if (DECL_ORIGINAL_TYPE (decl))
12545 {
12546 type = DECL_ORIGINAL_TYPE (decl);
12547
12548 gcc_assert (type != TREE_TYPE (decl));
12549 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12550 }
12551 else
12552 type = TREE_TYPE (decl);
12553
12554 add_type_attribute (type_die, type, TREE_READONLY (decl),
12555 TREE_THIS_VOLATILE (decl), context_die);
12556 }
12557
12558 if (DECL_ABSTRACT (decl))
12559 equate_decl_number_to_die (decl, type_die);
12560 }
12561
12562 /* Generate a type description DIE. */
12563
12564 static void
12565 gen_type_die (tree type, dw_die_ref context_die)
12566 {
12567 int need_pop;
12568
12569 if (type == NULL_TREE || type == error_mark_node)
12570 return;
12571
12572 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12573 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12574 {
12575 if (TREE_ASM_WRITTEN (type))
12576 return;
12577
12578 /* Prevent broken recursion; we can't hand off to the same type. */
12579 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12580
12581 TREE_ASM_WRITTEN (type) = 1;
12582 gen_decl_die (TYPE_NAME (type), context_die);
12583 return;
12584 }
12585
12586 /* We are going to output a DIE to represent the unqualified version
12587 of this type (i.e. without any const or volatile qualifiers) so
12588 get the main variant (i.e. the unqualified version) of this type
12589 now. (Vectors are special because the debugging info is in the
12590 cloned type itself). */
12591 if (TREE_CODE (type) != VECTOR_TYPE)
12592 type = type_main_variant (type);
12593
12594 if (TREE_ASM_WRITTEN (type))
12595 return;
12596
12597 switch (TREE_CODE (type))
12598 {
12599 case ERROR_MARK:
12600 break;
12601
12602 case POINTER_TYPE:
12603 case REFERENCE_TYPE:
12604 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12605 ensures that the gen_type_die recursion will terminate even if the
12606 type is recursive. Recursive types are possible in Ada. */
12607 /* ??? We could perhaps do this for all types before the switch
12608 statement. */
12609 TREE_ASM_WRITTEN (type) = 1;
12610
12611 /* For these types, all that is required is that we output a DIE (or a
12612 set of DIEs) to represent the "basis" type. */
12613 gen_type_die (TREE_TYPE (type), context_die);
12614 break;
12615
12616 case OFFSET_TYPE:
12617 /* This code is used for C++ pointer-to-data-member types.
12618 Output a description of the relevant class type. */
12619 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12620
12621 /* Output a description of the type of the object pointed to. */
12622 gen_type_die (TREE_TYPE (type), context_die);
12623
12624 /* Now output a DIE to represent this pointer-to-data-member type
12625 itself. */
12626 gen_ptr_to_mbr_type_die (type, context_die);
12627 break;
12628
12629 case FUNCTION_TYPE:
12630 /* Force out return type (in case it wasn't forced out already). */
12631 gen_type_die (TREE_TYPE (type), context_die);
12632 gen_subroutine_type_die (type, context_die);
12633 break;
12634
12635 case METHOD_TYPE:
12636 /* Force out return type (in case it wasn't forced out already). */
12637 gen_type_die (TREE_TYPE (type), context_die);
12638 gen_subroutine_type_die (type, context_die);
12639 break;
12640
12641 case ARRAY_TYPE:
12642 gen_array_type_die (type, context_die);
12643 break;
12644
12645 case VECTOR_TYPE:
12646 gen_array_type_die (type, context_die);
12647 break;
12648
12649 case ENUMERAL_TYPE:
12650 case RECORD_TYPE:
12651 case UNION_TYPE:
12652 case QUAL_UNION_TYPE:
12653 /* If this is a nested type whose containing class hasn't been written
12654 out yet, writing it out will cover this one, too. This does not apply
12655 to instantiations of member class templates; they need to be added to
12656 the containing class as they are generated. FIXME: This hurts the
12657 idea of combining type decls from multiple TUs, since we can't predict
12658 what set of template instantiations we'll get. */
12659 if (TYPE_CONTEXT (type)
12660 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12661 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12662 {
12663 gen_type_die (TYPE_CONTEXT (type), context_die);
12664
12665 if (TREE_ASM_WRITTEN (type))
12666 return;
12667
12668 /* If that failed, attach ourselves to the stub. */
12669 push_decl_scope (TYPE_CONTEXT (type));
12670 context_die = lookup_type_die (TYPE_CONTEXT (type));
12671 need_pop = 1;
12672 }
12673 else
12674 {
12675 declare_in_namespace (type, context_die);
12676 need_pop = 0;
12677 }
12678
12679 if (TREE_CODE (type) == ENUMERAL_TYPE)
12680 gen_enumeration_type_die (type, context_die);
12681 else
12682 gen_struct_or_union_type_die (type, context_die);
12683
12684 if (need_pop)
12685 pop_decl_scope ();
12686
12687 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12688 it up if it is ever completed. gen_*_type_die will set it for us
12689 when appropriate. */
12690 return;
12691
12692 case VOID_TYPE:
12693 case INTEGER_TYPE:
12694 case REAL_TYPE:
12695 case COMPLEX_TYPE:
12696 case BOOLEAN_TYPE:
12697 /* No DIEs needed for fundamental types. */
12698 break;
12699
12700 case LANG_TYPE:
12701 /* No Dwarf representation currently defined. */
12702 break;
12703
12704 default:
12705 gcc_unreachable ();
12706 }
12707
12708 TREE_ASM_WRITTEN (type) = 1;
12709 }
12710
12711 /* Generate a DIE for a tagged type instantiation. */
12712
12713 static void
12714 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12715 {
12716 if (type == NULL_TREE || type == error_mark_node)
12717 return;
12718
12719 /* We are going to output a DIE to represent the unqualified version of
12720 this type (i.e. without any const or volatile qualifiers) so make sure
12721 that we have the main variant (i.e. the unqualified version) of this
12722 type now. */
12723 gcc_assert (type == type_main_variant (type));
12724
12725 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12726 an instance of an unresolved type. */
12727
12728 switch (TREE_CODE (type))
12729 {
12730 case ERROR_MARK:
12731 break;
12732
12733 case ENUMERAL_TYPE:
12734 gen_inlined_enumeration_type_die (type, context_die);
12735 break;
12736
12737 case RECORD_TYPE:
12738 gen_inlined_structure_type_die (type, context_die);
12739 break;
12740
12741 case UNION_TYPE:
12742 case QUAL_UNION_TYPE:
12743 gen_inlined_union_type_die (type, context_die);
12744 break;
12745
12746 default:
12747 gcc_unreachable ();
12748 }
12749 }
12750
12751 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12752 things which are local to the given block. */
12753
12754 static void
12755 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12756 {
12757 int must_output_die = 0;
12758 tree origin;
12759 tree decl;
12760 enum tree_code origin_code;
12761
12762 /* Ignore blocks that are NULL. */
12763 if (stmt == NULL_TREE)
12764 return;
12765
12766 /* If the block is one fragment of a non-contiguous block, do not
12767 process the variables, since they will have been done by the
12768 origin block. Do process subblocks. */
12769 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12770 {
12771 tree sub;
12772
12773 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12774 gen_block_die (sub, context_die, depth + 1);
12775
12776 return;
12777 }
12778
12779 /* Determine the "ultimate origin" of this block. This block may be an
12780 inlined instance of an inlined instance of inline function, so we have
12781 to trace all of the way back through the origin chain to find out what
12782 sort of node actually served as the original seed for the creation of
12783 the current block. */
12784 origin = block_ultimate_origin (stmt);
12785 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12786
12787 /* Determine if we need to output any Dwarf DIEs at all to represent this
12788 block. */
12789 if (origin_code == FUNCTION_DECL)
12790 /* The outer scopes for inlinings *must* always be represented. We
12791 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12792 must_output_die = 1;
12793 else
12794 {
12795 /* In the case where the current block represents an inlining of the
12796 "body block" of an inline function, we must *NOT* output any DIE for
12797 this block because we have already output a DIE to represent the whole
12798 inlined function scope and the "body block" of any function doesn't
12799 really represent a different scope according to ANSI C rules. So we
12800 check here to make sure that this block does not represent a "body
12801 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12802 if (! is_body_block (origin ? origin : stmt))
12803 {
12804 /* Determine if this block directly contains any "significant"
12805 local declarations which we will need to output DIEs for. */
12806 if (debug_info_level > DINFO_LEVEL_TERSE)
12807 /* We are not in terse mode so *any* local declaration counts
12808 as being a "significant" one. */
12809 must_output_die = (BLOCK_VARS (stmt) != NULL
12810 && (TREE_USED (stmt)
12811 || TREE_ASM_WRITTEN (stmt)
12812 || BLOCK_ABSTRACT (stmt)));
12813 else
12814 /* We are in terse mode, so only local (nested) function
12815 definitions count as "significant" local declarations. */
12816 for (decl = BLOCK_VARS (stmt);
12817 decl != NULL; decl = TREE_CHAIN (decl))
12818 if (TREE_CODE (decl) == FUNCTION_DECL
12819 && DECL_INITIAL (decl))
12820 {
12821 must_output_die = 1;
12822 break;
12823 }
12824 }
12825 }
12826
12827 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12828 DIE for any block which contains no significant local declarations at
12829 all. Rather, in such cases we just call `decls_for_scope' so that any
12830 needed Dwarf info for any sub-blocks will get properly generated. Note
12831 that in terse mode, our definition of what constitutes a "significant"
12832 local declaration gets restricted to include only inlined function
12833 instances and local (nested) function definitions. */
12834 if (must_output_die)
12835 {
12836 if (origin_code == FUNCTION_DECL)
12837 gen_inlined_subroutine_die (stmt, context_die, depth);
12838 else
12839 gen_lexical_block_die (stmt, context_die, depth);
12840 }
12841 else
12842 decls_for_scope (stmt, context_die, depth);
12843 }
12844
12845 /* Generate all of the decls declared within a given scope and (recursively)
12846 all of its sub-blocks. */
12847
12848 static void
12849 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12850 {
12851 tree decl;
12852 tree subblocks;
12853
12854 /* Ignore NULL blocks. */
12855 if (stmt == NULL_TREE)
12856 return;
12857
12858 if (TREE_USED (stmt))
12859 {
12860 /* Output the DIEs to represent all of the data objects and typedefs
12861 declared directly within this block but not within any nested
12862 sub-blocks. Also, nested function and tag DIEs have been
12863 generated with a parent of NULL; fix that up now. */
12864 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12865 {
12866 dw_die_ref die;
12867
12868 if (TREE_CODE (decl) == FUNCTION_DECL)
12869 die = lookup_decl_die (decl);
12870 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12871 die = lookup_type_die (TREE_TYPE (decl));
12872 else
12873 die = NULL;
12874
12875 if (die != NULL && die->die_parent == NULL)
12876 add_child_die (context_die, die);
12877 /* Do not produce debug information for static variables since
12878 these might be optimized out. We are called for these later
12879 in cgraph_varpool_analyze_pending_decls. */
12880 if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
12881 ;
12882 else
12883 gen_decl_die (decl, context_die);
12884 }
12885 }
12886
12887 /* If we're at -g1, we're not interested in subblocks. */
12888 if (debug_info_level <= DINFO_LEVEL_TERSE)
12889 return;
12890
12891 /* Output the DIEs to represent all sub-blocks (and the items declared
12892 therein) of this block. */
12893 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12894 subblocks != NULL;
12895 subblocks = BLOCK_CHAIN (subblocks))
12896 gen_block_die (subblocks, context_die, depth + 1);
12897 }
12898
12899 /* Is this a typedef we can avoid emitting? */
12900
12901 static inline int
12902 is_redundant_typedef (tree decl)
12903 {
12904 if (TYPE_DECL_IS_STUB (decl))
12905 return 1;
12906
12907 if (DECL_ARTIFICIAL (decl)
12908 && DECL_CONTEXT (decl)
12909 && is_tagged_type (DECL_CONTEXT (decl))
12910 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12911 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12912 /* Also ignore the artificial member typedef for the class name. */
12913 return 1;
12914
12915 return 0;
12916 }
12917
12918 /* Returns the DIE for decl. A DIE will always be returned. */
12919
12920 static dw_die_ref
12921 force_decl_die (tree decl)
12922 {
12923 dw_die_ref decl_die;
12924 unsigned saved_external_flag;
12925 tree save_fn = NULL_TREE;
12926 decl_die = lookup_decl_die (decl);
12927 if (!decl_die)
12928 {
12929 dw_die_ref context_die;
12930 tree decl_context = DECL_CONTEXT (decl);
12931 if (decl_context)
12932 {
12933 /* Find die that represents this context. */
12934 if (TYPE_P (decl_context))
12935 context_die = force_type_die (decl_context);
12936 else
12937 context_die = force_decl_die (decl_context);
12938 }
12939 else
12940 context_die = comp_unit_die;
12941
12942 decl_die = lookup_decl_die (decl);
12943 if (decl_die)
12944 return decl_die;
12945
12946 switch (TREE_CODE (decl))
12947 {
12948 case FUNCTION_DECL:
12949 /* Clear current_function_decl, so that gen_subprogram_die thinks
12950 that this is a declaration. At this point, we just want to force
12951 declaration die. */
12952 save_fn = current_function_decl;
12953 current_function_decl = NULL_TREE;
12954 gen_subprogram_die (decl, context_die);
12955 current_function_decl = save_fn;
12956 break;
12957
12958 case VAR_DECL:
12959 /* Set external flag to force declaration die. Restore it after
12960 gen_decl_die() call. */
12961 saved_external_flag = DECL_EXTERNAL (decl);
12962 DECL_EXTERNAL (decl) = 1;
12963 gen_decl_die (decl, context_die);
12964 DECL_EXTERNAL (decl) = saved_external_flag;
12965 break;
12966
12967 case NAMESPACE_DECL:
12968 dwarf2out_decl (decl);
12969 break;
12970
12971 default:
12972 gcc_unreachable ();
12973 }
12974
12975 /* We should be able to find the DIE now. */
12976 if (!decl_die)
12977 decl_die = lookup_decl_die (decl);
12978 gcc_assert (decl_die);
12979 }
12980
12981 return decl_die;
12982 }
12983
12984 /* Returns the DIE for TYPE. A DIE is always returned. */
12985
12986 static dw_die_ref
12987 force_type_die (tree type)
12988 {
12989 dw_die_ref type_die;
12990
12991 type_die = lookup_type_die (type);
12992 if (!type_die)
12993 {
12994 dw_die_ref context_die;
12995 if (TYPE_CONTEXT (type))
12996 {
12997 if (TYPE_P (TYPE_CONTEXT (type)))
12998 context_die = force_type_die (TYPE_CONTEXT (type));
12999 else
13000 context_die = force_decl_die (TYPE_CONTEXT (type));
13001 }
13002 else
13003 context_die = comp_unit_die;
13004
13005 type_die = lookup_type_die (type);
13006 if (type_die)
13007 return type_die;
13008 gen_type_die (type, context_die);
13009 type_die = lookup_type_die (type);
13010 gcc_assert (type_die);
13011 }
13012 return type_die;
13013 }
13014
13015 /* Force out any required namespaces to be able to output DECL,
13016 and return the new context_die for it, if it's changed. */
13017
13018 static dw_die_ref
13019 setup_namespace_context (tree thing, dw_die_ref context_die)
13020 {
13021 tree context = (DECL_P (thing)
13022 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
13023 if (context && TREE_CODE (context) == NAMESPACE_DECL)
13024 /* Force out the namespace. */
13025 context_die = force_decl_die (context);
13026
13027 return context_die;
13028 }
13029
13030 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
13031 type) within its namespace, if appropriate.
13032
13033 For compatibility with older debuggers, namespace DIEs only contain
13034 declarations; all definitions are emitted at CU scope. */
13035
13036 static void
13037 declare_in_namespace (tree thing, dw_die_ref context_die)
13038 {
13039 dw_die_ref ns_context;
13040
13041 if (debug_info_level <= DINFO_LEVEL_TERSE)
13042 return;
13043
13044 /* If this decl is from an inlined function, then don't try to emit it in its
13045 namespace, as we will get confused. It would have already been emitted
13046 when the abstract instance of the inline function was emitted anyways. */
13047 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
13048 return;
13049
13050 ns_context = setup_namespace_context (thing, context_die);
13051
13052 if (ns_context != context_die)
13053 {
13054 if (DECL_P (thing))
13055 gen_decl_die (thing, ns_context);
13056 else
13057 gen_type_die (thing, ns_context);
13058 }
13059 }
13060
13061 /* Generate a DIE for a namespace or namespace alias. */
13062
13063 static void
13064 gen_namespace_die (tree decl)
13065 {
13066 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
13067
13068 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
13069 they are an alias of. */
13070 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
13071 {
13072 /* Output a real namespace. */
13073 dw_die_ref namespace_die
13074 = new_die (DW_TAG_namespace, context_die, decl);
13075 add_name_and_src_coords_attributes (namespace_die, decl);
13076 equate_decl_number_to_die (decl, namespace_die);
13077 }
13078 else
13079 {
13080 /* Output a namespace alias. */
13081
13082 /* Force out the namespace we are an alias of, if necessary. */
13083 dw_die_ref origin_die
13084 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
13085
13086 /* Now create the namespace alias DIE. */
13087 dw_die_ref namespace_die
13088 = new_die (DW_TAG_imported_declaration, context_die, decl);
13089 add_name_and_src_coords_attributes (namespace_die, decl);
13090 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
13091 equate_decl_number_to_die (decl, namespace_die);
13092 }
13093 }
13094
13095 /* Generate Dwarf debug information for a decl described by DECL. */
13096
13097 static void
13098 gen_decl_die (tree decl, dw_die_ref context_die)
13099 {
13100 tree origin;
13101
13102 if (DECL_P (decl) && DECL_IGNORED_P (decl))
13103 return;
13104
13105 switch (TREE_CODE (decl))
13106 {
13107 case ERROR_MARK:
13108 break;
13109
13110 case CONST_DECL:
13111 /* The individual enumerators of an enum type get output when we output
13112 the Dwarf representation of the relevant enum type itself. */
13113 break;
13114
13115 case FUNCTION_DECL:
13116 /* Don't output any DIEs to represent mere function declarations,
13117 unless they are class members or explicit block externs. */
13118 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
13119 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
13120 break;
13121
13122 #if 0
13123 /* FIXME */
13124 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
13125 on local redeclarations of global functions. That seems broken. */
13126 if (current_function_decl != decl)
13127 /* This is only a declaration. */;
13128 #endif
13129
13130 /* If we're emitting a clone, emit info for the abstract instance. */
13131 if (DECL_ORIGIN (decl) != decl)
13132 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
13133
13134 /* If we're emitting an out-of-line copy of an inline function,
13135 emit info for the abstract instance and set up to refer to it. */
13136 else if (cgraph_function_possibly_inlined_p (decl)
13137 && ! DECL_ABSTRACT (decl)
13138 && ! class_or_namespace_scope_p (context_die)
13139 /* dwarf2out_abstract_function won't emit a die if this is just
13140 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
13141 that case, because that works only if we have a die. */
13142 && DECL_INITIAL (decl) != NULL_TREE)
13143 {
13144 dwarf2out_abstract_function (decl);
13145 set_decl_origin_self (decl);
13146 }
13147
13148 /* Otherwise we're emitting the primary DIE for this decl. */
13149 else if (debug_info_level > DINFO_LEVEL_TERSE)
13150 {
13151 /* Before we describe the FUNCTION_DECL itself, make sure that we
13152 have described its return type. */
13153 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
13154
13155 /* And its virtual context. */
13156 if (DECL_VINDEX (decl) != NULL_TREE)
13157 gen_type_die (DECL_CONTEXT (decl), context_die);
13158
13159 /* And its containing type. */
13160 origin = decl_class_context (decl);
13161 if (origin != NULL_TREE)
13162 gen_type_die_for_member (origin, decl, context_die);
13163
13164 /* And its containing namespace. */
13165 declare_in_namespace (decl, context_die);
13166 }
13167
13168 /* Now output a DIE to represent the function itself. */
13169 gen_subprogram_die (decl, context_die);
13170 break;
13171
13172 case TYPE_DECL:
13173 /* If we are in terse mode, don't generate any DIEs to represent any
13174 actual typedefs. */
13175 if (debug_info_level <= DINFO_LEVEL_TERSE)
13176 break;
13177
13178 /* In the special case of a TYPE_DECL node representing the declaration
13179 of some type tag, if the given TYPE_DECL is marked as having been
13180 instantiated from some other (original) TYPE_DECL node (e.g. one which
13181 was generated within the original definition of an inline function) we
13182 have to generate a special (abbreviated) DW_TAG_structure_type,
13183 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
13184 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
13185 {
13186 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
13187 break;
13188 }
13189
13190 if (is_redundant_typedef (decl))
13191 gen_type_die (TREE_TYPE (decl), context_die);
13192 else
13193 /* Output a DIE to represent the typedef itself. */
13194 gen_typedef_die (decl, context_die);
13195 break;
13196
13197 case LABEL_DECL:
13198 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13199 gen_label_die (decl, context_die);
13200 break;
13201
13202 case VAR_DECL:
13203 case RESULT_DECL:
13204 /* If we are in terse mode, don't generate any DIEs to represent any
13205 variable declarations or definitions. */
13206 if (debug_info_level <= DINFO_LEVEL_TERSE)
13207 break;
13208
13209 /* Output any DIEs that are needed to specify the type of this data
13210 object. */
13211 gen_type_die (TREE_TYPE (decl), context_die);
13212
13213 /* And its containing type. */
13214 origin = decl_class_context (decl);
13215 if (origin != NULL_TREE)
13216 gen_type_die_for_member (origin, decl, context_die);
13217
13218 /* And its containing namespace. */
13219 declare_in_namespace (decl, context_die);
13220
13221 /* Now output the DIE to represent the data object itself. This gets
13222 complicated because of the possibility that the VAR_DECL really
13223 represents an inlined instance of a formal parameter for an inline
13224 function. */
13225 origin = decl_ultimate_origin (decl);
13226 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
13227 gen_formal_parameter_die (decl, context_die);
13228 else
13229 gen_variable_die (decl, context_die);
13230 break;
13231
13232 case FIELD_DECL:
13233 /* Ignore the nameless fields that are used to skip bits but handle C++
13234 anonymous unions and structs. */
13235 if (DECL_NAME (decl) != NULL_TREE
13236 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
13237 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
13238 {
13239 gen_type_die (member_declared_type (decl), context_die);
13240 gen_field_die (decl, context_die);
13241 }
13242 break;
13243
13244 case PARM_DECL:
13245 gen_type_die (TREE_TYPE (decl), context_die);
13246 gen_formal_parameter_die (decl, context_die);
13247 break;
13248
13249 case NAMESPACE_DECL:
13250 gen_namespace_die (decl);
13251 break;
13252
13253 default:
13254 /* Probably some frontend-internal decl. Assume we don't care. */
13255 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
13256 break;
13257 }
13258 }
13259 \f
13260 /* Output debug information for global decl DECL. Called from toplev.c after
13261 compilation proper has finished. */
13262
13263 static void
13264 dwarf2out_global_decl (tree decl)
13265 {
13266 /* Output DWARF2 information for file-scope tentative data object
13267 declarations, file-scope (extern) function declarations (which had no
13268 corresponding body) and file-scope tagged type declarations and
13269 definitions which have not yet been forced out. */
13270 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
13271 dwarf2out_decl (decl);
13272 }
13273
13274 /* Output debug information for type decl DECL. Called from toplev.c
13275 and from language front ends (to record built-in types). */
13276 static void
13277 dwarf2out_type_decl (tree decl, int local)
13278 {
13279 if (!local)
13280 dwarf2out_decl (decl);
13281 }
13282
13283 /* Output debug information for imported module or decl. */
13284
13285 static void
13286 dwarf2out_imported_module_or_decl (tree decl, tree context)
13287 {
13288 dw_die_ref imported_die, at_import_die;
13289 dw_die_ref scope_die;
13290 expanded_location xloc;
13291
13292 if (debug_info_level <= DINFO_LEVEL_TERSE)
13293 return;
13294
13295 gcc_assert (decl);
13296
13297 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
13298 We need decl DIE for reference and scope die. First, get DIE for the decl
13299 itself. */
13300
13301 /* Get the scope die for decl context. Use comp_unit_die for global module
13302 or decl. If die is not found for non globals, force new die. */
13303 if (!context)
13304 scope_die = comp_unit_die;
13305 else if (TYPE_P (context))
13306 scope_die = force_type_die (context);
13307 else
13308 scope_die = force_decl_die (context);
13309
13310 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
13311 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
13312 at_import_die = force_type_die (TREE_TYPE (decl));
13313 else
13314 {
13315 at_import_die = lookup_decl_die (decl);
13316 if (!at_import_die)
13317 {
13318 /* If we're trying to avoid duplicate debug info, we may not have
13319 emitted the member decl for this field. Emit it now. */
13320 if (TREE_CODE (decl) == FIELD_DECL)
13321 {
13322 tree type = DECL_CONTEXT (decl);
13323 dw_die_ref type_context_die;
13324
13325 if (TYPE_CONTEXT (type))
13326 if (TYPE_P (TYPE_CONTEXT (type)))
13327 type_context_die = force_type_die (TYPE_CONTEXT (type));
13328 else
13329 type_context_die = force_decl_die (TYPE_CONTEXT (type));
13330 else
13331 type_context_die = comp_unit_die;
13332 gen_type_die_for_member (type, decl, type_context_die);
13333 }
13334 at_import_die = force_decl_die (decl);
13335 }
13336 }
13337
13338 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
13339 if (TREE_CODE (decl) == NAMESPACE_DECL)
13340 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
13341 else
13342 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
13343
13344 xloc = expand_location (input_location);
13345 add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
13346 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
13347 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
13348 }
13349
13350 /* Write the debugging output for DECL. */
13351
13352 void
13353 dwarf2out_decl (tree decl)
13354 {
13355 dw_die_ref context_die = comp_unit_die;
13356
13357 switch (TREE_CODE (decl))
13358 {
13359 case ERROR_MARK:
13360 return;
13361
13362 case FUNCTION_DECL:
13363 /* What we would really like to do here is to filter out all mere
13364 file-scope declarations of file-scope functions which are never
13365 referenced later within this translation unit (and keep all of ones
13366 that *are* referenced later on) but we aren't clairvoyant, so we have
13367 no idea which functions will be referenced in the future (i.e. later
13368 on within the current translation unit). So here we just ignore all
13369 file-scope function declarations which are not also definitions. If
13370 and when the debugger needs to know something about these functions,
13371 it will have to hunt around and find the DWARF information associated
13372 with the definition of the function.
13373
13374 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13375 nodes represent definitions and which ones represent mere
13376 declarations. We have to check DECL_INITIAL instead. That's because
13377 the C front-end supports some weird semantics for "extern inline"
13378 function definitions. These can get inlined within the current
13379 translation unit (and thus, we need to generate Dwarf info for their
13380 abstract instances so that the Dwarf info for the concrete inlined
13381 instances can have something to refer to) but the compiler never
13382 generates any out-of-lines instances of such things (despite the fact
13383 that they *are* definitions).
13384
13385 The important point is that the C front-end marks these "extern
13386 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13387 them anyway. Note that the C++ front-end also plays some similar games
13388 for inline function definitions appearing within include files which
13389 also contain `#pragma interface' pragmas. */
13390 if (DECL_INITIAL (decl) == NULL_TREE)
13391 return;
13392
13393 /* If we're a nested function, initially use a parent of NULL; if we're
13394 a plain function, this will be fixed up in decls_for_scope. If
13395 we're a method, it will be ignored, since we already have a DIE. */
13396 if (decl_function_context (decl)
13397 /* But if we're in terse mode, we don't care about scope. */
13398 && debug_info_level > DINFO_LEVEL_TERSE)
13399 context_die = NULL;
13400 break;
13401
13402 case VAR_DECL:
13403 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13404 declaration and if the declaration was never even referenced from
13405 within this entire compilation unit. We suppress these DIEs in
13406 order to save space in the .debug section (by eliminating entries
13407 which are probably useless). Note that we must not suppress
13408 block-local extern declarations (whether used or not) because that
13409 would screw-up the debugger's name lookup mechanism and cause it to
13410 miss things which really ought to be in scope at a given point. */
13411 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
13412 return;
13413
13414 /* For local statics lookup proper context die. */
13415 if (TREE_STATIC (decl) && decl_function_context (decl))
13416 context_die = lookup_decl_die (DECL_CONTEXT (decl));
13417
13418 /* If we are in terse mode, don't generate any DIEs to represent any
13419 variable declarations or definitions. */
13420 if (debug_info_level <= DINFO_LEVEL_TERSE)
13421 return;
13422 break;
13423
13424 case NAMESPACE_DECL:
13425 if (debug_info_level <= DINFO_LEVEL_TERSE)
13426 return;
13427 if (lookup_decl_die (decl) != NULL)
13428 return;
13429 break;
13430
13431 case TYPE_DECL:
13432 /* Don't emit stubs for types unless they are needed by other DIEs. */
13433 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13434 return;
13435
13436 /* Don't bother trying to generate any DIEs to represent any of the
13437 normal built-in types for the language we are compiling. */
13438 if (DECL_IS_BUILTIN (decl))
13439 {
13440 /* OK, we need to generate one for `bool' so GDB knows what type
13441 comparisons have. */
13442 if (is_cxx ()
13443 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13444 && ! DECL_IGNORED_P (decl))
13445 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
13446
13447 return;
13448 }
13449
13450 /* If we are in terse mode, don't generate any DIEs for types. */
13451 if (debug_info_level <= DINFO_LEVEL_TERSE)
13452 return;
13453
13454 /* If we're a function-scope tag, initially use a parent of NULL;
13455 this will be fixed up in decls_for_scope. */
13456 if (decl_function_context (decl))
13457 context_die = NULL;
13458
13459 break;
13460
13461 default:
13462 return;
13463 }
13464
13465 gen_decl_die (decl, context_die);
13466 }
13467
13468 /* Output a marker (i.e. a label) for the beginning of the generated code for
13469 a lexical block. */
13470
13471 static void
13472 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13473 unsigned int blocknum)
13474 {
13475 switch_to_section (current_function_section ());
13476 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13477 }
13478
13479 /* Output a marker (i.e. a label) for the end of the generated code for a
13480 lexical block. */
13481
13482 static void
13483 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13484 {
13485 switch_to_section (current_function_section ());
13486 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13487 }
13488
13489 /* Returns nonzero if it is appropriate not to emit any debugging
13490 information for BLOCK, because it doesn't contain any instructions.
13491
13492 Don't allow this for blocks with nested functions or local classes
13493 as we would end up with orphans, and in the presence of scheduling
13494 we may end up calling them anyway. */
13495
13496 static bool
13497 dwarf2out_ignore_block (tree block)
13498 {
13499 tree decl;
13500
13501 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13502 if (TREE_CODE (decl) == FUNCTION_DECL
13503 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13504 return 0;
13505
13506 return 1;
13507 }
13508
13509 /* Hash table routines for file_hash. */
13510
13511 static int
13512 file_table_eq (const void *p1_p, const void *p2_p)
13513 {
13514 const struct dwarf_file_data * p1 = p1_p;
13515 const char * p2 = p2_p;
13516 return strcmp (p1->filename, p2) == 0;
13517 }
13518
13519 static hashval_t
13520 file_table_hash (const void *p_p)
13521 {
13522 const struct dwarf_file_data * p = p_p;
13523 return htab_hash_string (p->filename);
13524 }
13525
13526 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13527 dwarf2out.c) and return its "index". The index of each (known) filename is
13528 just a unique number which is associated with only that one filename. We
13529 need such numbers for the sake of generating labels (in the .debug_sfnames
13530 section) and references to those files numbers (in the .debug_srcinfo
13531 and.debug_macinfo sections). If the filename given as an argument is not
13532 found in our current list, add it to the list and assign it the next
13533 available unique index number. In order to speed up searches, we remember
13534 the index of the filename was looked up last. This handles the majority of
13535 all searches. */
13536
13537 static struct dwarf_file_data *
13538 lookup_filename (const char *file_name)
13539 {
13540 void ** slot;
13541 struct dwarf_file_data * created;
13542
13543 /* Check to see if the file name that was searched on the previous
13544 call matches this file name. If so, return the index. */
13545 if (file_table_last_lookup
13546 && (file_name == file_table_last_lookup->filename
13547 || strcmp (file_table_last_lookup->filename, file_name) == 0))
13548 return file_table_last_lookup;
13549
13550 /* Didn't match the previous lookup, search the table. */
13551 slot = htab_find_slot_with_hash (file_table, file_name,
13552 htab_hash_string (file_name), INSERT);
13553 if (*slot)
13554 return *slot;
13555
13556 created = ggc_alloc (sizeof (struct dwarf_file_data));
13557 created->filename = file_name;
13558 created->emitted_number = 0;
13559 *slot = created;
13560 return created;
13561 }
13562
13563 /* If the assembler will construct the file table, then translate the compiler
13564 internal file table number into the assembler file table number, and emit
13565 a .file directive if we haven't already emitted one yet. The file table
13566 numbers are different because we prune debug info for unused variables and
13567 types, which may include filenames. */
13568
13569 static int
13570 maybe_emit_file (struct dwarf_file_data * fd)
13571 {
13572 if (! fd->emitted_number)
13573 {
13574 if (last_emitted_file)
13575 fd->emitted_number = last_emitted_file->emitted_number + 1;
13576 else
13577 fd->emitted_number = 1;
13578 last_emitted_file = fd;
13579
13580 if (DWARF2_ASM_LINE_DEBUG_INFO)
13581 {
13582 fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
13583 output_quoted_string (asm_out_file, fd->filename);
13584 fputc ('\n', asm_out_file);
13585 }
13586 }
13587
13588 return fd->emitted_number;
13589 }
13590
13591 /* Called by the final INSN scan whenever we see a var location. We
13592 use it to drop labels in the right places, and throw the location in
13593 our lookup table. */
13594
13595 static void
13596 dwarf2out_var_location (rtx loc_note)
13597 {
13598 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13599 struct var_loc_node *newloc;
13600 rtx prev_insn;
13601 static rtx last_insn;
13602 static const char *last_label;
13603 tree decl;
13604
13605 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13606 return;
13607 prev_insn = PREV_INSN (loc_note);
13608
13609 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13610 /* If the insn we processed last time is the previous insn
13611 and it is also a var location note, use the label we emitted
13612 last time. */
13613 if (last_insn != NULL_RTX
13614 && last_insn == prev_insn
13615 && NOTE_P (prev_insn)
13616 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13617 {
13618 newloc->label = last_label;
13619 }
13620 else
13621 {
13622 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13623 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13624 loclabel_num++;
13625 newloc->label = ggc_strdup (loclabel);
13626 }
13627 newloc->var_loc_note = loc_note;
13628 newloc->next = NULL;
13629
13630 if (cfun && in_cold_section_p)
13631 newloc->section_label = cfun->cold_section_label;
13632 else
13633 newloc->section_label = text_section_label;
13634
13635 last_insn = loc_note;
13636 last_label = newloc->label;
13637 decl = NOTE_VAR_LOCATION_DECL (loc_note);
13638 add_var_loc_to_decl (decl, newloc);
13639 }
13640
13641 /* We need to reset the locations at the beginning of each
13642 function. We can't do this in the end_function hook, because the
13643 declarations that use the locations won't have been output when
13644 that hook is called. Also compute have_multiple_function_sections here. */
13645
13646 static void
13647 dwarf2out_begin_function (tree fun)
13648 {
13649 htab_empty (decl_loc_table);
13650
13651 if (function_section (fun) != text_section)
13652 have_multiple_function_sections = true;
13653 }
13654
13655 /* Output a label to mark the beginning of a source code line entry
13656 and record information relating to this source line, in
13657 'line_info_table' for later output of the .debug_line section. */
13658
13659 static void
13660 dwarf2out_source_line (unsigned int line, const char *filename)
13661 {
13662 if (debug_info_level >= DINFO_LEVEL_NORMAL
13663 && line != 0)
13664 {
13665 int file_num = maybe_emit_file (lookup_filename (filename));
13666
13667 switch_to_section (current_function_section ());
13668
13669 /* If requested, emit something human-readable. */
13670 if (flag_debug_asm)
13671 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13672 filename, line);
13673
13674 if (DWARF2_ASM_LINE_DEBUG_INFO)
13675 {
13676 /* Emit the .loc directive understood by GNU as. */
13677 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13678
13679 /* Indicate that line number info exists. */
13680 line_info_table_in_use++;
13681 }
13682 else if (function_section (current_function_decl) != text_section)
13683 {
13684 dw_separate_line_info_ref line_info;
13685 targetm.asm_out.internal_label (asm_out_file,
13686 SEPARATE_LINE_CODE_LABEL,
13687 separate_line_info_table_in_use);
13688
13689 /* Expand the line info table if necessary. */
13690 if (separate_line_info_table_in_use
13691 == separate_line_info_table_allocated)
13692 {
13693 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13694 separate_line_info_table
13695 = ggc_realloc (separate_line_info_table,
13696 separate_line_info_table_allocated
13697 * sizeof (dw_separate_line_info_entry));
13698 memset (separate_line_info_table
13699 + separate_line_info_table_in_use,
13700 0,
13701 (LINE_INFO_TABLE_INCREMENT
13702 * sizeof (dw_separate_line_info_entry)));
13703 }
13704
13705 /* Add the new entry at the end of the line_info_table. */
13706 line_info
13707 = &separate_line_info_table[separate_line_info_table_in_use++];
13708 line_info->dw_file_num = file_num;
13709 line_info->dw_line_num = line;
13710 line_info->function = current_function_funcdef_no;
13711 }
13712 else
13713 {
13714 dw_line_info_ref line_info;
13715
13716 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13717 line_info_table_in_use);
13718
13719 /* Expand the line info table if necessary. */
13720 if (line_info_table_in_use == line_info_table_allocated)
13721 {
13722 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13723 line_info_table
13724 = ggc_realloc (line_info_table,
13725 (line_info_table_allocated
13726 * sizeof (dw_line_info_entry)));
13727 memset (line_info_table + line_info_table_in_use, 0,
13728 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13729 }
13730
13731 /* Add the new entry at the end of the line_info_table. */
13732 line_info = &line_info_table[line_info_table_in_use++];
13733 line_info->dw_file_num = file_num;
13734 line_info->dw_line_num = line;
13735 }
13736 }
13737 }
13738
13739 /* Record the beginning of a new source file. */
13740
13741 static void
13742 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13743 {
13744 if (flag_eliminate_dwarf2_dups)
13745 {
13746 /* Record the beginning of the file for break_out_includes. */
13747 dw_die_ref bincl_die;
13748
13749 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13750 add_AT_string (bincl_die, DW_AT_name, filename);
13751 }
13752
13753 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13754 {
13755 int file_num = maybe_emit_file (lookup_filename (filename));
13756
13757 switch_to_section (debug_macinfo_section);
13758 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13759 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13760 lineno);
13761
13762 dw2_asm_output_data_uleb128 (file_num, "file %s", filename);
13763 }
13764 }
13765
13766 /* Record the end of a source file. */
13767
13768 static void
13769 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13770 {
13771 if (flag_eliminate_dwarf2_dups)
13772 /* Record the end of the file for break_out_includes. */
13773 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13774
13775 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13776 {
13777 switch_to_section (debug_macinfo_section);
13778 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13779 }
13780 }
13781
13782 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13783 the tail part of the directive line, i.e. the part which is past the
13784 initial whitespace, #, whitespace, directive-name, whitespace part. */
13785
13786 static void
13787 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13788 const char *buffer ATTRIBUTE_UNUSED)
13789 {
13790 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13791 {
13792 switch_to_section (debug_macinfo_section);
13793 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13794 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13795 dw2_asm_output_nstring (buffer, -1, "The macro");
13796 }
13797 }
13798
13799 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13800 the tail part of the directive line, i.e. the part which is past the
13801 initial whitespace, #, whitespace, directive-name, whitespace part. */
13802
13803 static void
13804 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13805 const char *buffer ATTRIBUTE_UNUSED)
13806 {
13807 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13808 {
13809 switch_to_section (debug_macinfo_section);
13810 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13811 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13812 dw2_asm_output_nstring (buffer, -1, "The macro");
13813 }
13814 }
13815
13816 /* Set up for Dwarf output at the start of compilation. */
13817
13818 static void
13819 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13820 {
13821 /* Allocate the file_table. */
13822 file_table = htab_create_ggc (50, file_table_hash,
13823 file_table_eq, NULL);
13824
13825 /* Allocate the decl_die_table. */
13826 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13827 decl_die_table_eq, NULL);
13828
13829 /* Allocate the decl_loc_table. */
13830 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13831 decl_loc_table_eq, NULL);
13832
13833 /* Allocate the initial hunk of the decl_scope_table. */
13834 decl_scope_table = VEC_alloc (tree, gc, 256);
13835
13836 /* Allocate the initial hunk of the abbrev_die_table. */
13837 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13838 * sizeof (dw_die_ref));
13839 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13840 /* Zero-th entry is allocated, but unused. */
13841 abbrev_die_table_in_use = 1;
13842
13843 /* Allocate the initial hunk of the line_info_table. */
13844 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13845 * sizeof (dw_line_info_entry));
13846 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13847
13848 /* Zero-th entry is allocated, but unused. */
13849 line_info_table_in_use = 1;
13850
13851 /* Generate the initial DIE for the .debug section. Note that the (string)
13852 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13853 will (typically) be a relative pathname and that this pathname should be
13854 taken as being relative to the directory from which the compiler was
13855 invoked when the given (base) source file was compiled. We will fill
13856 in this value in dwarf2out_finish. */
13857 comp_unit_die = gen_compile_unit_die (NULL);
13858
13859 incomplete_types = VEC_alloc (tree, gc, 64);
13860
13861 used_rtx_array = VEC_alloc (rtx, gc, 32);
13862
13863 debug_info_section = get_section (DEBUG_INFO_SECTION,
13864 SECTION_DEBUG, NULL);
13865 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
13866 SECTION_DEBUG, NULL);
13867 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
13868 SECTION_DEBUG, NULL);
13869 debug_macinfo_section = get_section (DEBUG_MACINFO_SECTION,
13870 SECTION_DEBUG, NULL);
13871 debug_line_section = get_section (DEBUG_LINE_SECTION,
13872 SECTION_DEBUG, NULL);
13873 debug_loc_section = get_section (DEBUG_LOC_SECTION,
13874 SECTION_DEBUG, NULL);
13875 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
13876 SECTION_DEBUG, NULL);
13877 debug_str_section = get_section (DEBUG_STR_SECTION,
13878 DEBUG_STR_SECTION_FLAGS, NULL);
13879 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
13880 SECTION_DEBUG, NULL);
13881 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
13882 SECTION_DEBUG, NULL);
13883
13884 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13885 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13886 DEBUG_ABBREV_SECTION_LABEL, 0);
13887 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13888 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
13889 COLD_TEXT_SECTION_LABEL, 0);
13890 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
13891
13892 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13893 DEBUG_INFO_SECTION_LABEL, 0);
13894 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13895 DEBUG_LINE_SECTION_LABEL, 0);
13896 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13897 DEBUG_RANGES_SECTION_LABEL, 0);
13898 switch_to_section (debug_abbrev_section);
13899 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13900 switch_to_section (debug_info_section);
13901 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13902 switch_to_section (debug_line_section);
13903 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13904
13905 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13906 {
13907 switch_to_section (debug_macinfo_section);
13908 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13909 DEBUG_MACINFO_SECTION_LABEL, 0);
13910 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13911 }
13912
13913 switch_to_section (text_section);
13914 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13915 if (flag_reorder_blocks_and_partition)
13916 {
13917 switch_to_section (unlikely_text_section ());
13918 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
13919 }
13920 }
13921
13922 /* A helper function for dwarf2out_finish called through
13923 ht_forall. Emit one queued .debug_str string. */
13924
13925 static int
13926 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13927 {
13928 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13929
13930 if (node->form == DW_FORM_strp)
13931 {
13932 switch_to_section (debug_str_section);
13933 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13934 assemble_string (node->str, strlen (node->str) + 1);
13935 }
13936
13937 return 1;
13938 }
13939
13940 #if ENABLE_ASSERT_CHECKING
13941 /* Verify that all marks are clear. */
13942
13943 static void
13944 verify_marks_clear (dw_die_ref die)
13945 {
13946 dw_die_ref c;
13947
13948 gcc_assert (! die->die_mark);
13949 FOR_EACH_CHILD (die, c, verify_marks_clear (c));
13950 }
13951 #endif /* ENABLE_ASSERT_CHECKING */
13952
13953 /* Clear the marks for a die and its children.
13954 Be cool if the mark isn't set. */
13955
13956 static void
13957 prune_unmark_dies (dw_die_ref die)
13958 {
13959 dw_die_ref c;
13960
13961 if (die->die_mark)
13962 die->die_mark = 0;
13963 FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
13964 }
13965
13966 /* Given DIE that we're marking as used, find any other dies
13967 it references as attributes and mark them as used. */
13968
13969 static void
13970 prune_unused_types_walk_attribs (dw_die_ref die)
13971 {
13972 dw_attr_ref a;
13973 unsigned ix;
13974
13975 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
13976 {
13977 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13978 {
13979 /* A reference to another DIE.
13980 Make sure that it will get emitted. */
13981 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13982 }
13983 /* Set the string's refcount to 0 so that prune_unused_types_mark
13984 accounts properly for it. */
13985 if (AT_class (a) == dw_val_class_str)
13986 a->dw_attr_val.v.val_str->refcount = 0;
13987 }
13988 }
13989
13990
13991 /* Mark DIE as being used. If DOKIDS is true, then walk down
13992 to DIE's children. */
13993
13994 static void
13995 prune_unused_types_mark (dw_die_ref die, int dokids)
13996 {
13997 dw_die_ref c;
13998
13999 if (die->die_mark == 0)
14000 {
14001 /* We haven't done this node yet. Mark it as used. */
14002 die->die_mark = 1;
14003
14004 /* We also have to mark its parents as used.
14005 (But we don't want to mark our parents' kids due to this.) */
14006 if (die->die_parent)
14007 prune_unused_types_mark (die->die_parent, 0);
14008
14009 /* Mark any referenced nodes. */
14010 prune_unused_types_walk_attribs (die);
14011
14012 /* If this node is a specification,
14013 also mark the definition, if it exists. */
14014 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
14015 prune_unused_types_mark (die->die_definition, 1);
14016 }
14017
14018 if (dokids && die->die_mark != 2)
14019 {
14020 /* We need to walk the children, but haven't done so yet.
14021 Remember that we've walked the kids. */
14022 die->die_mark = 2;
14023
14024 /* If this is an array type, we need to make sure our
14025 kids get marked, even if they're types. */
14026 if (die->die_tag == DW_TAG_array_type)
14027 FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
14028 else
14029 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14030 }
14031 }
14032
14033
14034 /* Walk the tree DIE and mark types that we actually use. */
14035
14036 static void
14037 prune_unused_types_walk (dw_die_ref die)
14038 {
14039 dw_die_ref c;
14040
14041 /* Don't do anything if this node is already marked. */
14042 if (die->die_mark)
14043 return;
14044
14045 switch (die->die_tag)
14046 {
14047 case DW_TAG_const_type:
14048 case DW_TAG_packed_type:
14049 case DW_TAG_pointer_type:
14050 case DW_TAG_reference_type:
14051 case DW_TAG_volatile_type:
14052 case DW_TAG_typedef:
14053 case DW_TAG_array_type:
14054 case DW_TAG_structure_type:
14055 case DW_TAG_union_type:
14056 case DW_TAG_class_type:
14057 case DW_TAG_friend:
14058 case DW_TAG_variant_part:
14059 case DW_TAG_enumeration_type:
14060 case DW_TAG_subroutine_type:
14061 case DW_TAG_string_type:
14062 case DW_TAG_set_type:
14063 case DW_TAG_subrange_type:
14064 case DW_TAG_ptr_to_member_type:
14065 case DW_TAG_file_type:
14066 if (die->die_perennial_p)
14067 break;
14068
14069 /* It's a type node --- don't mark it. */
14070 return;
14071
14072 default:
14073 /* Mark everything else. */
14074 break;
14075 }
14076
14077 die->die_mark = 1;
14078
14079 /* Now, mark any dies referenced from here. */
14080 prune_unused_types_walk_attribs (die);
14081
14082 /* Mark children. */
14083 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14084 }
14085
14086 /* Increment the string counts on strings referred to from DIE's
14087 attributes. */
14088
14089 static void
14090 prune_unused_types_update_strings (dw_die_ref die)
14091 {
14092 dw_attr_ref a;
14093 unsigned ix;
14094
14095 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14096 if (AT_class (a) == dw_val_class_str)
14097 {
14098 struct indirect_string_node *s = a->dw_attr_val.v.val_str;
14099 s->refcount++;
14100 /* Avoid unnecessarily putting strings that are used less than
14101 twice in the hash table. */
14102 if (s->refcount
14103 == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
14104 {
14105 void ** slot;
14106 slot = htab_find_slot_with_hash (debug_str_hash, s->str,
14107 htab_hash_string (s->str),
14108 INSERT);
14109 gcc_assert (*slot == NULL);
14110 *slot = s;
14111 }
14112 }
14113 }
14114
14115 /* Remove from the tree DIE any dies that aren't marked. */
14116
14117 static void
14118 prune_unused_types_prune (dw_die_ref die)
14119 {
14120 dw_die_ref c;
14121
14122 gcc_assert (die->die_mark);
14123 prune_unused_types_update_strings (die);
14124
14125 if (! die->die_child)
14126 return;
14127
14128 c = die->die_child;
14129 do {
14130 dw_die_ref prev = c;
14131 for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
14132 if (c == die->die_child)
14133 {
14134 /* No marked children between 'prev' and the end of the list. */
14135 if (prev == c)
14136 /* No marked children at all. */
14137 die->die_child = NULL;
14138 else
14139 {
14140 prev->die_sib = c->die_sib;
14141 die->die_child = prev;
14142 }
14143 return;
14144 }
14145
14146 if (c != prev->die_sib)
14147 prev->die_sib = c;
14148 prune_unused_types_prune (c);
14149 } while (c != die->die_child);
14150 }
14151
14152
14153 /* Remove dies representing declarations that we never use. */
14154
14155 static void
14156 prune_unused_types (void)
14157 {
14158 unsigned int i;
14159 limbo_die_node *node;
14160
14161 #if ENABLE_ASSERT_CHECKING
14162 /* All the marks should already be clear. */
14163 verify_marks_clear (comp_unit_die);
14164 for (node = limbo_die_list; node; node = node->next)
14165 verify_marks_clear (node->die);
14166 #endif /* ENABLE_ASSERT_CHECKING */
14167
14168 /* Set the mark on nodes that are actually used. */
14169 prune_unused_types_walk (comp_unit_die);
14170 for (node = limbo_die_list; node; node = node->next)
14171 prune_unused_types_walk (node->die);
14172
14173 /* Also set the mark on nodes referenced from the
14174 pubname_table or arange_table. */
14175 for (i = 0; i < pubname_table_in_use; i++)
14176 prune_unused_types_mark (pubname_table[i].die, 1);
14177 for (i = 0; i < arange_table_in_use; i++)
14178 prune_unused_types_mark (arange_table[i], 1);
14179
14180 /* Get rid of nodes that aren't marked; and update the string counts. */
14181 if (debug_str_hash)
14182 htab_empty (debug_str_hash);
14183 prune_unused_types_prune (comp_unit_die);
14184 for (node = limbo_die_list; node; node = node->next)
14185 prune_unused_types_prune (node->die);
14186
14187 /* Leave the marks clear. */
14188 prune_unmark_dies (comp_unit_die);
14189 for (node = limbo_die_list; node; node = node->next)
14190 prune_unmark_dies (node->die);
14191 }
14192
14193 /* Set the parameter to true if there are any relative pathnames in
14194 the file table. */
14195 static int
14196 file_table_relative_p (void ** slot, void *param)
14197 {
14198 bool *p = param;
14199 struct dwarf_file_data *d = *slot;
14200 if (d->emitted_number && !IS_ABSOLUTE_PATH (d->filename))
14201 {
14202 *p = true;
14203 return 0;
14204 }
14205 return 1;
14206 }
14207
14208 /* Output stuff that dwarf requires at the end of every file,
14209 and generate the DWARF-2 debugging info. */
14210
14211 static void
14212 dwarf2out_finish (const char *filename)
14213 {
14214 limbo_die_node *node, *next_node;
14215 dw_die_ref die = 0;
14216
14217 /* Add the name for the main input file now. We delayed this from
14218 dwarf2out_init to avoid complications with PCH. */
14219 add_name_attribute (comp_unit_die, filename);
14220 if (!IS_ABSOLUTE_PATH (filename))
14221 add_comp_dir_attribute (comp_unit_die);
14222 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
14223 {
14224 bool p = false;
14225 htab_traverse (file_table, file_table_relative_p, &p);
14226 if (p)
14227 add_comp_dir_attribute (comp_unit_die);
14228 }
14229
14230 /* Traverse the limbo die list, and add parent/child links. The only
14231 dies without parents that should be here are concrete instances of
14232 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
14233 For concrete instances, we can get the parent die from the abstract
14234 instance. */
14235 for (node = limbo_die_list; node; node = next_node)
14236 {
14237 next_node = node->next;
14238 die = node->die;
14239
14240 if (die->die_parent == NULL)
14241 {
14242 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
14243
14244 if (origin)
14245 add_child_die (origin->die_parent, die);
14246 else if (die == comp_unit_die)
14247 ;
14248 else if (errorcount > 0 || sorrycount > 0)
14249 /* It's OK to be confused by errors in the input. */
14250 add_child_die (comp_unit_die, die);
14251 else
14252 {
14253 /* In certain situations, the lexical block containing a
14254 nested function can be optimized away, which results
14255 in the nested function die being orphaned. Likewise
14256 with the return type of that nested function. Force
14257 this to be a child of the containing function.
14258
14259 It may happen that even the containing function got fully
14260 inlined and optimized out. In that case we are lost and
14261 assign the empty child. This should not be big issue as
14262 the function is likely unreachable too. */
14263 tree context = NULL_TREE;
14264
14265 gcc_assert (node->created_for);
14266
14267 if (DECL_P (node->created_for))
14268 context = DECL_CONTEXT (node->created_for);
14269 else if (TYPE_P (node->created_for))
14270 context = TYPE_CONTEXT (node->created_for);
14271
14272 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
14273
14274 origin = lookup_decl_die (context);
14275 if (origin)
14276 add_child_die (origin, die);
14277 else
14278 add_child_die (comp_unit_die, die);
14279 }
14280 }
14281 }
14282
14283 limbo_die_list = NULL;
14284
14285 /* Walk through the list of incomplete types again, trying once more to
14286 emit full debugging info for them. */
14287 retry_incomplete_types ();
14288
14289 if (flag_eliminate_unused_debug_types)
14290 prune_unused_types ();
14291
14292 /* Generate separate CUs for each of the include files we've seen.
14293 They will go into limbo_die_list. */
14294 if (flag_eliminate_dwarf2_dups)
14295 break_out_includes (comp_unit_die);
14296
14297 /* Traverse the DIE's and add add sibling attributes to those DIE's
14298 that have children. */
14299 add_sibling_attributes (comp_unit_die);
14300 for (node = limbo_die_list; node; node = node->next)
14301 add_sibling_attributes (node->die);
14302
14303 /* Output a terminator label for the .text section. */
14304 switch_to_section (text_section);
14305 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
14306 if (flag_reorder_blocks_and_partition)
14307 {
14308 switch_to_section (unlikely_text_section ());
14309 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
14310 }
14311
14312 /* We can only use the low/high_pc attributes if all of the code was
14313 in .text. */
14314 if (!have_multiple_function_sections)
14315 {
14316 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
14317 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
14318 }
14319
14320 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
14321 "base address". Use zero so that these addresses become absolute. */
14322 else if (have_location_lists || ranges_table_in_use)
14323 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
14324
14325 /* Output location list section if necessary. */
14326 if (have_location_lists)
14327 {
14328 /* Output the location lists info. */
14329 switch_to_section (debug_loc_section);
14330 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
14331 DEBUG_LOC_SECTION_LABEL, 0);
14332 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
14333 output_location_lists (die);
14334 }
14335
14336 if (debug_info_level >= DINFO_LEVEL_NORMAL)
14337 add_AT_lineptr (comp_unit_die, DW_AT_stmt_list,
14338 debug_line_section_label);
14339
14340 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14341 add_AT_macptr (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
14342
14343 /* Output all of the compilation units. We put the main one last so that
14344 the offsets are available to output_pubnames. */
14345 for (node = limbo_die_list; node; node = node->next)
14346 output_comp_unit (node->die, 0);
14347
14348 output_comp_unit (comp_unit_die, 0);
14349
14350 /* Output the abbreviation table. */
14351 switch_to_section (debug_abbrev_section);
14352 output_abbrev_section ();
14353
14354 /* Output public names table if necessary. */
14355 if (pubname_table_in_use)
14356 {
14357 switch_to_section (debug_pubnames_section);
14358 output_pubnames ();
14359 }
14360
14361 /* Output the address range information. We only put functions in the arange
14362 table, so don't write it out if we don't have any. */
14363 if (fde_table_in_use)
14364 {
14365 switch_to_section (debug_aranges_section);
14366 output_aranges ();
14367 }
14368
14369 /* Output ranges section if necessary. */
14370 if (ranges_table_in_use)
14371 {
14372 switch_to_section (debug_ranges_section);
14373 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
14374 output_ranges ();
14375 }
14376
14377 /* Output the source line correspondence table. We must do this
14378 even if there is no line information. Otherwise, on an empty
14379 translation unit, we will generate a present, but empty,
14380 .debug_info section. IRIX 6.5 `nm' will then complain when
14381 examining the file. This is done late so that any filenames
14382 used by the debug_info section are marked as 'used'. */
14383 if (! DWARF2_ASM_LINE_DEBUG_INFO)
14384 {
14385 switch_to_section (debug_line_section);
14386 output_line_info ();
14387 }
14388
14389 /* Have to end the macro section. */
14390 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14391 {
14392 switch_to_section (debug_macinfo_section);
14393 dw2_asm_output_data (1, 0, "End compilation unit");
14394 }
14395
14396 /* If we emitted any DW_FORM_strp form attribute, output the string
14397 table too. */
14398 if (debug_str_hash)
14399 htab_traverse (debug_str_hash, output_indirect_string, NULL);
14400 }
14401 #else
14402
14403 /* This should never be used, but its address is needed for comparisons. */
14404 const struct gcc_debug_hooks dwarf2_debug_hooks;
14405
14406 #endif /* DWARF2_DEBUGGING_INFO */
14407
14408 #include "gt-dwarf2out.h"