real.h (struct real_format): Split the signbit field into two two fields, signbit_ro...
[gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
70
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
74
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
89
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
92
93 /* Decide whether we want to emit frame unwind information for the current
94 translation unit. */
95
96 int
97 dwarf2out_do_frame (void)
98 {
99 return (write_symbols == DWARF2_DEBUG
100 || write_symbols == VMS_AND_DWARF2_DEBUG
101 #ifdef DWARF2_FRAME_INFO
102 || DWARF2_FRAME_INFO
103 #endif
104 #ifdef DWARF2_UNWIND_INFO
105 || flag_unwind_tables
106 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
107 #endif
108 );
109 }
110
111 /* The size of the target's pointer type. */
112 #ifndef PTR_SIZE
113 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
114 #endif
115
116 /* Various versions of targetm.eh_frame_section. Note these must appear
117 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
118
119 /* Version of targetm.eh_frame_section for systems with named sections. */
120 void
121 named_section_eh_frame_section (void)
122 {
123 #ifdef EH_FRAME_SECTION_NAME
124 int flags;
125
126 if (EH_TABLES_CAN_BE_READ_ONLY)
127 {
128 int fde_encoding;
129 int per_encoding;
130 int lsda_encoding;
131
132 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
133 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
134 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
135 flags = (! flag_pic
136 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
137 && (fde_encoding & 0x70) != DW_EH_PE_aligned
138 && (per_encoding & 0x70) != DW_EH_PE_absptr
139 && (per_encoding & 0x70) != DW_EH_PE_aligned
140 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
141 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
142 ? 0 : SECTION_WRITE;
143 }
144 else
145 flags = SECTION_WRITE;
146 named_section_flags (EH_FRAME_SECTION_NAME, flags);
147 #endif
148 }
149
150 /* Version of targetm.eh_frame_section for systems using collect2. */
151 void
152 collect2_eh_frame_section (void)
153 {
154 tree label = get_file_function_name ('F');
155
156 data_section ();
157 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
158 targetm.asm_out.globalize_label (asm_out_file, IDENTIFIER_POINTER (label));
159 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
160 }
161
162 /* Default version of targetm.eh_frame_section. */
163 void
164 default_eh_frame_section (void)
165 {
166 #ifdef EH_FRAME_SECTION_NAME
167 named_section_eh_frame_section ();
168 #else
169 collect2_eh_frame_section ();
170 #endif
171 }
172
173 /* Array of RTXes referenced by the debugging information, which therefore
174 must be kept around forever. */
175 static GTY(()) varray_type used_rtx_varray;
176
177 /* A pointer to the base of a list of incomplete types which might be
178 completed at some later time. incomplete_types_list needs to be a VARRAY
179 because we want to tell the garbage collector about it. */
180 static GTY(()) varray_type incomplete_types;
181
182 /* A pointer to the base of a table of references to declaration
183 scopes. This table is a display which tracks the nesting
184 of declaration scopes at the current scope and containing
185 scopes. This table is used to find the proper place to
186 define type declaration DIE's. */
187 static GTY(()) varray_type decl_scope_table;
188
189 /* How to start an assembler comment. */
190 #ifndef ASM_COMMENT_START
191 #define ASM_COMMENT_START ";#"
192 #endif
193
194 typedef struct dw_cfi_struct *dw_cfi_ref;
195 typedef struct dw_fde_struct *dw_fde_ref;
196 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
197
198 /* Call frames are described using a sequence of Call Frame
199 Information instructions. The register number, offset
200 and address fields are provided as possible operands;
201 their use is selected by the opcode field. */
202
203 enum dw_cfi_oprnd_type {
204 dw_cfi_oprnd_unused,
205 dw_cfi_oprnd_reg_num,
206 dw_cfi_oprnd_offset,
207 dw_cfi_oprnd_addr,
208 dw_cfi_oprnd_loc
209 };
210
211 typedef union dw_cfi_oprnd_struct GTY(())
212 {
213 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
214 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
215 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
216 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
217 }
218 dw_cfi_oprnd;
219
220 typedef struct dw_cfi_struct GTY(())
221 {
222 dw_cfi_ref dw_cfi_next;
223 enum dwarf_call_frame_info dw_cfi_opc;
224 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
225 dw_cfi_oprnd1;
226 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
227 dw_cfi_oprnd2;
228 }
229 dw_cfi_node;
230
231 /* This is how we define the location of the CFA. We use to handle it
232 as REG + OFFSET all the time, but now it can be more complex.
233 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
234 Instead of passing around REG and OFFSET, we pass a copy
235 of this structure. */
236 typedef struct cfa_loc GTY(())
237 {
238 unsigned long reg;
239 HOST_WIDE_INT offset;
240 HOST_WIDE_INT base_offset;
241 int indirect; /* 1 if CFA is accessed via a dereference. */
242 } dw_cfa_location;
243
244 /* All call frame descriptions (FDE's) in the GCC generated DWARF
245 refer to a single Common Information Entry (CIE), defined at
246 the beginning of the .debug_frame section. This use of a single
247 CIE obviates the need to keep track of multiple CIE's
248 in the DWARF generation routines below. */
249
250 typedef struct dw_fde_struct GTY(())
251 {
252 tree decl;
253 const char *dw_fde_begin;
254 const char *dw_fde_current_label;
255 const char *dw_fde_end;
256 dw_cfi_ref dw_fde_cfi;
257 unsigned funcdef_number;
258 unsigned all_throwers_are_sibcalls : 1;
259 unsigned nothrow : 1;
260 unsigned uses_eh_lsda : 1;
261 }
262 dw_fde_node;
263
264 /* Maximum size (in bytes) of an artificially generated label. */
265 #define MAX_ARTIFICIAL_LABEL_BYTES 30
266
267 /* The size of addresses as they appear in the Dwarf 2 data.
268 Some architectures use word addresses to refer to code locations,
269 but Dwarf 2 info always uses byte addresses. On such machines,
270 Dwarf 2 addresses need to be larger than the architecture's
271 pointers. */
272 #ifndef DWARF2_ADDR_SIZE
273 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
274 #endif
275
276 /* The size in bytes of a DWARF field indicating an offset or length
277 relative to a debug info section, specified to be 4 bytes in the
278 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
279 as PTR_SIZE. */
280
281 #ifndef DWARF_OFFSET_SIZE
282 #define DWARF_OFFSET_SIZE 4
283 #endif
284
285 /* According to the (draft) DWARF 3 specification, the initial length
286 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
287 bytes are 0xffffffff, followed by the length stored in the next 8
288 bytes.
289
290 However, the SGI/MIPS ABI uses an initial length which is equal to
291 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
292
293 #ifndef DWARF_INITIAL_LENGTH_SIZE
294 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
295 #endif
296
297 #define DWARF_VERSION 2
298
299 /* Round SIZE up to the nearest BOUNDARY. */
300 #define DWARF_ROUND(SIZE,BOUNDARY) \
301 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
302
303 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
304 #ifndef DWARF_CIE_DATA_ALIGNMENT
305 #ifdef STACK_GROWS_DOWNWARD
306 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
307 #else
308 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
309 #endif
310 #endif
311
312 /* A pointer to the base of a table that contains frame description
313 information for each routine. */
314 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
315
316 /* Number of elements currently allocated for fde_table. */
317 static GTY(()) unsigned fde_table_allocated;
318
319 /* Number of elements in fde_table currently in use. */
320 static GTY(()) unsigned fde_table_in_use;
321
322 /* Size (in elements) of increments by which we may expand the
323 fde_table. */
324 #define FDE_TABLE_INCREMENT 256
325
326 /* A list of call frame insns for the CIE. */
327 static GTY(()) dw_cfi_ref cie_cfi_head;
328
329 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
330 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
331 attribute that accelerates the lookup of the FDE associated
332 with the subprogram. This variable holds the table index of the FDE
333 associated with the current function (body) definition. */
334 static unsigned current_funcdef_fde;
335 #endif
336
337 struct indirect_string_node GTY(())
338 {
339 const char *str;
340 unsigned int refcount;
341 unsigned int form;
342 char *label;
343 };
344
345 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
346
347 static GTY(()) int dw2_string_counter;
348 static GTY(()) unsigned long dwarf2out_cfi_label_num;
349
350 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
351
352 /* Forward declarations for functions defined in this file. */
353
354 static char *stripattributes (const char *);
355 static const char *dwarf_cfi_name (unsigned);
356 static dw_cfi_ref new_cfi (void);
357 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
358 static void add_fde_cfi (const char *, dw_cfi_ref);
359 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
360 static void lookup_cfa (dw_cfa_location *);
361 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
362 static void initial_return_save (rtx);
363 static HOST_WIDE_INT stack_adjust_offset (rtx);
364 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
365 static void output_call_frame_info (int);
366 static void dwarf2out_stack_adjust (rtx, bool);
367 static void flush_queued_reg_saves (void);
368 static bool clobbers_queued_reg_save (rtx);
369 static void dwarf2out_frame_debug_expr (rtx, const char *);
370
371 /* Support for complex CFA locations. */
372 static void output_cfa_loc (dw_cfi_ref);
373 static void get_cfa_from_loc_descr (dw_cfa_location *,
374 struct dw_loc_descr_struct *);
375 static struct dw_loc_descr_struct *build_cfa_loc
376 (dw_cfa_location *);
377 static void def_cfa_1 (const char *, dw_cfa_location *);
378
379 /* How to start an assembler comment. */
380 #ifndef ASM_COMMENT_START
381 #define ASM_COMMENT_START ";#"
382 #endif
383
384 /* Data and reference forms for relocatable data. */
385 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
386 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
387
388 #ifndef DEBUG_FRAME_SECTION
389 #define DEBUG_FRAME_SECTION ".debug_frame"
390 #endif
391
392 #ifndef FUNC_BEGIN_LABEL
393 #define FUNC_BEGIN_LABEL "LFB"
394 #endif
395
396 #ifndef FUNC_END_LABEL
397 #define FUNC_END_LABEL "LFE"
398 #endif
399
400 #ifndef FRAME_BEGIN_LABEL
401 #define FRAME_BEGIN_LABEL "Lframe"
402 #endif
403 #define CIE_AFTER_SIZE_LABEL "LSCIE"
404 #define CIE_END_LABEL "LECIE"
405 #define FDE_LABEL "LSFDE"
406 #define FDE_AFTER_SIZE_LABEL "LASFDE"
407 #define FDE_END_LABEL "LEFDE"
408 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
409 #define LINE_NUMBER_END_LABEL "LELT"
410 #define LN_PROLOG_AS_LABEL "LASLTP"
411 #define LN_PROLOG_END_LABEL "LELTP"
412 #define DIE_LABEL_PREFIX "DW"
413
414 /* The DWARF 2 CFA column which tracks the return address. Normally this
415 is the column for PC, or the first column after all of the hard
416 registers. */
417 #ifndef DWARF_FRAME_RETURN_COLUMN
418 #ifdef PC_REGNUM
419 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
420 #else
421 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
422 #endif
423 #endif
424
425 /* The mapping from gcc register number to DWARF 2 CFA column number. By
426 default, we just provide columns for all registers. */
427 #ifndef DWARF_FRAME_REGNUM
428 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
429 #endif
430
431 /* The offset from the incoming value of %sp to the top of the stack frame
432 for the current function. */
433 #ifndef INCOMING_FRAME_SP_OFFSET
434 #define INCOMING_FRAME_SP_OFFSET 0
435 #endif
436 \f
437 /* Hook used by __throw. */
438
439 rtx
440 expand_builtin_dwarf_sp_column (void)
441 {
442 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
443 }
444
445 /* Return a pointer to a copy of the section string name S with all
446 attributes stripped off, and an asterisk prepended (for assemble_name). */
447
448 static inline char *
449 stripattributes (const char *s)
450 {
451 char *stripped = xmalloc (strlen (s) + 2);
452 char *p = stripped;
453
454 *p++ = '*';
455
456 while (*s && *s != ',')
457 *p++ = *s++;
458
459 *p = '\0';
460 return stripped;
461 }
462
463 /* Generate code to initialize the register size table. */
464
465 void
466 expand_builtin_init_dwarf_reg_sizes (tree address)
467 {
468 int i;
469 enum machine_mode mode = TYPE_MODE (char_type_node);
470 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
471 rtx mem = gen_rtx_MEM (BLKmode, addr);
472 bool wrote_return_column = false;
473
474 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
475 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
476 {
477 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
478 enum machine_mode save_mode = reg_raw_mode[i];
479 HOST_WIDE_INT size;
480
481 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
482 save_mode = choose_hard_reg_mode (i, 1, true);
483 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
484 {
485 if (save_mode == VOIDmode)
486 continue;
487 wrote_return_column = true;
488 }
489 size = GET_MODE_SIZE (save_mode);
490 if (offset < 0)
491 continue;
492
493 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
494 }
495
496 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
497 gcc_assert (wrote_return_column);
498 i = DWARF_ALT_FRAME_RETURN_COLUMN;
499 wrote_return_column = false;
500 #else
501 i = DWARF_FRAME_RETURN_COLUMN;
502 #endif
503
504 if (! wrote_return_column)
505 {
506 enum machine_mode save_mode = Pmode;
507 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
508 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
509 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
510 }
511 }
512
513 /* Convert a DWARF call frame info. operation to its string name */
514
515 static const char *
516 dwarf_cfi_name (unsigned int cfi_opc)
517 {
518 switch (cfi_opc)
519 {
520 case DW_CFA_advance_loc:
521 return "DW_CFA_advance_loc";
522 case DW_CFA_offset:
523 return "DW_CFA_offset";
524 case DW_CFA_restore:
525 return "DW_CFA_restore";
526 case DW_CFA_nop:
527 return "DW_CFA_nop";
528 case DW_CFA_set_loc:
529 return "DW_CFA_set_loc";
530 case DW_CFA_advance_loc1:
531 return "DW_CFA_advance_loc1";
532 case DW_CFA_advance_loc2:
533 return "DW_CFA_advance_loc2";
534 case DW_CFA_advance_loc4:
535 return "DW_CFA_advance_loc4";
536 case DW_CFA_offset_extended:
537 return "DW_CFA_offset_extended";
538 case DW_CFA_restore_extended:
539 return "DW_CFA_restore_extended";
540 case DW_CFA_undefined:
541 return "DW_CFA_undefined";
542 case DW_CFA_same_value:
543 return "DW_CFA_same_value";
544 case DW_CFA_register:
545 return "DW_CFA_register";
546 case DW_CFA_remember_state:
547 return "DW_CFA_remember_state";
548 case DW_CFA_restore_state:
549 return "DW_CFA_restore_state";
550 case DW_CFA_def_cfa:
551 return "DW_CFA_def_cfa";
552 case DW_CFA_def_cfa_register:
553 return "DW_CFA_def_cfa_register";
554 case DW_CFA_def_cfa_offset:
555 return "DW_CFA_def_cfa_offset";
556
557 /* DWARF 3 */
558 case DW_CFA_def_cfa_expression:
559 return "DW_CFA_def_cfa_expression";
560 case DW_CFA_expression:
561 return "DW_CFA_expression";
562 case DW_CFA_offset_extended_sf:
563 return "DW_CFA_offset_extended_sf";
564 case DW_CFA_def_cfa_sf:
565 return "DW_CFA_def_cfa_sf";
566 case DW_CFA_def_cfa_offset_sf:
567 return "DW_CFA_def_cfa_offset_sf";
568
569 /* SGI/MIPS specific */
570 case DW_CFA_MIPS_advance_loc8:
571 return "DW_CFA_MIPS_advance_loc8";
572
573 /* GNU extensions */
574 case DW_CFA_GNU_window_save:
575 return "DW_CFA_GNU_window_save";
576 case DW_CFA_GNU_args_size:
577 return "DW_CFA_GNU_args_size";
578 case DW_CFA_GNU_negative_offset_extended:
579 return "DW_CFA_GNU_negative_offset_extended";
580
581 default:
582 return "DW_CFA_<unknown>";
583 }
584 }
585
586 /* Return a pointer to a newly allocated Call Frame Instruction. */
587
588 static inline dw_cfi_ref
589 new_cfi (void)
590 {
591 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
592
593 cfi->dw_cfi_next = NULL;
594 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
595 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
596
597 return cfi;
598 }
599
600 /* Add a Call Frame Instruction to list of instructions. */
601
602 static inline void
603 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
604 {
605 dw_cfi_ref *p;
606
607 /* Find the end of the chain. */
608 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
609 ;
610
611 *p = cfi;
612 }
613
614 /* Generate a new label for the CFI info to refer to. */
615
616 char *
617 dwarf2out_cfi_label (void)
618 {
619 static char label[20];
620
621 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
622 ASM_OUTPUT_LABEL (asm_out_file, label);
623 return label;
624 }
625
626 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
627 or to the CIE if LABEL is NULL. */
628
629 static void
630 add_fde_cfi (const char *label, dw_cfi_ref cfi)
631 {
632 if (label)
633 {
634 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
635
636 if (*label == 0)
637 label = dwarf2out_cfi_label ();
638
639 if (fde->dw_fde_current_label == NULL
640 || strcmp (label, fde->dw_fde_current_label) != 0)
641 {
642 dw_cfi_ref xcfi;
643
644 fde->dw_fde_current_label = label = xstrdup (label);
645
646 /* Set the location counter to the new label. */
647 xcfi = new_cfi ();
648 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
649 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
650 add_cfi (&fde->dw_fde_cfi, xcfi);
651 }
652
653 add_cfi (&fde->dw_fde_cfi, cfi);
654 }
655
656 else
657 add_cfi (&cie_cfi_head, cfi);
658 }
659
660 /* Subroutine of lookup_cfa. */
661
662 static inline void
663 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
664 {
665 switch (cfi->dw_cfi_opc)
666 {
667 case DW_CFA_def_cfa_offset:
668 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
669 break;
670 case DW_CFA_def_cfa_register:
671 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
672 break;
673 case DW_CFA_def_cfa:
674 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
675 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
676 break;
677 case DW_CFA_def_cfa_expression:
678 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
679 break;
680 default:
681 break;
682 }
683 }
684
685 /* Find the previous value for the CFA. */
686
687 static void
688 lookup_cfa (dw_cfa_location *loc)
689 {
690 dw_cfi_ref cfi;
691
692 loc->reg = (unsigned long) -1;
693 loc->offset = 0;
694 loc->indirect = 0;
695 loc->base_offset = 0;
696
697 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
698 lookup_cfa_1 (cfi, loc);
699
700 if (fde_table_in_use)
701 {
702 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
703 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
704 lookup_cfa_1 (cfi, loc);
705 }
706 }
707
708 /* The current rule for calculating the DWARF2 canonical frame address. */
709 static dw_cfa_location cfa;
710
711 /* The register used for saving registers to the stack, and its offset
712 from the CFA. */
713 static dw_cfa_location cfa_store;
714
715 /* The running total of the size of arguments pushed onto the stack. */
716 static HOST_WIDE_INT args_size;
717
718 /* The last args_size we actually output. */
719 static HOST_WIDE_INT old_args_size;
720
721 /* Entry point to update the canonical frame address (CFA).
722 LABEL is passed to add_fde_cfi. The value of CFA is now to be
723 calculated from REG+OFFSET. */
724
725 void
726 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
727 {
728 dw_cfa_location loc;
729 loc.indirect = 0;
730 loc.base_offset = 0;
731 loc.reg = reg;
732 loc.offset = offset;
733 def_cfa_1 (label, &loc);
734 }
735
736 /* This routine does the actual work. The CFA is now calculated from
737 the dw_cfa_location structure. */
738
739 static void
740 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
741 {
742 dw_cfi_ref cfi;
743 dw_cfa_location old_cfa, loc;
744
745 cfa = *loc_p;
746 loc = *loc_p;
747
748 if (cfa_store.reg == loc.reg && loc.indirect == 0)
749 cfa_store.offset = loc.offset;
750
751 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
752 lookup_cfa (&old_cfa);
753
754 /* If nothing changed, no need to issue any call frame instructions. */
755 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
756 && loc.indirect == old_cfa.indirect
757 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
758 return;
759
760 cfi = new_cfi ();
761
762 if (loc.reg == old_cfa.reg && !loc.indirect)
763 {
764 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
765 indicating the CFA register did not change but the offset
766 did. */
767 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
768 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
769 }
770
771 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
772 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
773 && !loc.indirect)
774 {
775 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
776 indicating the CFA register has changed to <register> but the
777 offset has not changed. */
778 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
779 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
780 }
781 #endif
782
783 else if (loc.indirect == 0)
784 {
785 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
786 indicating the CFA register has changed to <register> with
787 the specified offset. */
788 cfi->dw_cfi_opc = DW_CFA_def_cfa;
789 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
790 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
791 }
792 else
793 {
794 /* Construct a DW_CFA_def_cfa_expression instruction to
795 calculate the CFA using a full location expression since no
796 register-offset pair is available. */
797 struct dw_loc_descr_struct *loc_list;
798
799 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
800 loc_list = build_cfa_loc (&loc);
801 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
802 }
803
804 add_fde_cfi (label, cfi);
805 }
806
807 /* Add the CFI for saving a register. REG is the CFA column number.
808 LABEL is passed to add_fde_cfi.
809 If SREG is -1, the register is saved at OFFSET from the CFA;
810 otherwise it is saved in SREG. */
811
812 static void
813 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
814 {
815 dw_cfi_ref cfi = new_cfi ();
816
817 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
818
819 if (sreg == INVALID_REGNUM)
820 {
821 if (reg & ~0x3f)
822 /* The register number won't fit in 6 bits, so we have to use
823 the long form. */
824 cfi->dw_cfi_opc = DW_CFA_offset_extended;
825 else
826 cfi->dw_cfi_opc = DW_CFA_offset;
827
828 #ifdef ENABLE_CHECKING
829 {
830 /* If we get an offset that is not a multiple of
831 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
832 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
833 description. */
834 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
835
836 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
837 }
838 #endif
839 offset /= DWARF_CIE_DATA_ALIGNMENT;
840 if (offset < 0)
841 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
842
843 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
844 }
845 else if (sreg == reg)
846 cfi->dw_cfi_opc = DW_CFA_same_value;
847 else
848 {
849 cfi->dw_cfi_opc = DW_CFA_register;
850 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
851 }
852
853 add_fde_cfi (label, cfi);
854 }
855
856 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
857 This CFI tells the unwinder that it needs to restore the window registers
858 from the previous frame's window save area.
859
860 ??? Perhaps we should note in the CIE where windows are saved (instead of
861 assuming 0(cfa)) and what registers are in the window. */
862
863 void
864 dwarf2out_window_save (const char *label)
865 {
866 dw_cfi_ref cfi = new_cfi ();
867
868 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
869 add_fde_cfi (label, cfi);
870 }
871
872 /* Add a CFI to update the running total of the size of arguments
873 pushed onto the stack. */
874
875 void
876 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
877 {
878 dw_cfi_ref cfi;
879
880 if (size == old_args_size)
881 return;
882
883 old_args_size = size;
884
885 cfi = new_cfi ();
886 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
887 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
888 add_fde_cfi (label, cfi);
889 }
890
891 /* Entry point for saving a register to the stack. REG is the GCC register
892 number. LABEL and OFFSET are passed to reg_save. */
893
894 void
895 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
896 {
897 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
898 }
899
900 /* Entry point for saving the return address in the stack.
901 LABEL and OFFSET are passed to reg_save. */
902
903 void
904 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
905 {
906 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
907 }
908
909 /* Entry point for saving the return address in a register.
910 LABEL and SREG are passed to reg_save. */
911
912 void
913 dwarf2out_return_reg (const char *label, unsigned int sreg)
914 {
915 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
916 }
917
918 /* Record the initial position of the return address. RTL is
919 INCOMING_RETURN_ADDR_RTX. */
920
921 static void
922 initial_return_save (rtx rtl)
923 {
924 unsigned int reg = INVALID_REGNUM;
925 HOST_WIDE_INT offset = 0;
926
927 switch (GET_CODE (rtl))
928 {
929 case REG:
930 /* RA is in a register. */
931 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
932 break;
933
934 case MEM:
935 /* RA is on the stack. */
936 rtl = XEXP (rtl, 0);
937 switch (GET_CODE (rtl))
938 {
939 case REG:
940 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
941 offset = 0;
942 break;
943
944 case PLUS:
945 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
946 offset = INTVAL (XEXP (rtl, 1));
947 break;
948
949 case MINUS:
950 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
951 offset = -INTVAL (XEXP (rtl, 1));
952 break;
953
954 default:
955 gcc_unreachable ();
956 }
957
958 break;
959
960 case PLUS:
961 /* The return address is at some offset from any value we can
962 actually load. For instance, on the SPARC it is in %i7+8. Just
963 ignore the offset for now; it doesn't matter for unwinding frames. */
964 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
965 initial_return_save (XEXP (rtl, 0));
966 return;
967
968 default:
969 gcc_unreachable ();
970 }
971
972 if (reg != DWARF_FRAME_RETURN_COLUMN)
973 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
974 }
975
976 /* Given a SET, calculate the amount of stack adjustment it
977 contains. */
978
979 static HOST_WIDE_INT
980 stack_adjust_offset (rtx pattern)
981 {
982 rtx src = SET_SRC (pattern);
983 rtx dest = SET_DEST (pattern);
984 HOST_WIDE_INT offset = 0;
985 enum rtx_code code;
986
987 if (dest == stack_pointer_rtx)
988 {
989 /* (set (reg sp) (plus (reg sp) (const_int))) */
990 code = GET_CODE (src);
991 if (! (code == PLUS || code == MINUS)
992 || XEXP (src, 0) != stack_pointer_rtx
993 || GET_CODE (XEXP (src, 1)) != CONST_INT)
994 return 0;
995
996 offset = INTVAL (XEXP (src, 1));
997 if (code == PLUS)
998 offset = -offset;
999 }
1000 else if (MEM_P (dest))
1001 {
1002 /* (set (mem (pre_dec (reg sp))) (foo)) */
1003 src = XEXP (dest, 0);
1004 code = GET_CODE (src);
1005
1006 switch (code)
1007 {
1008 case PRE_MODIFY:
1009 case POST_MODIFY:
1010 if (XEXP (src, 0) == stack_pointer_rtx)
1011 {
1012 rtx val = XEXP (XEXP (src, 1), 1);
1013 /* We handle only adjustments by constant amount. */
1014 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1015 && GET_CODE (val) == CONST_INT);
1016 offset = -INTVAL (val);
1017 break;
1018 }
1019 return 0;
1020
1021 case PRE_DEC:
1022 case POST_DEC:
1023 if (XEXP (src, 0) == stack_pointer_rtx)
1024 {
1025 offset = GET_MODE_SIZE (GET_MODE (dest));
1026 break;
1027 }
1028 return 0;
1029
1030 case PRE_INC:
1031 case POST_INC:
1032 if (XEXP (src, 0) == stack_pointer_rtx)
1033 {
1034 offset = -GET_MODE_SIZE (GET_MODE (dest));
1035 break;
1036 }
1037 return 0;
1038
1039 default:
1040 return 0;
1041 }
1042 }
1043 else
1044 return 0;
1045
1046 return offset;
1047 }
1048
1049 /* Check INSN to see if it looks like a push or a stack adjustment, and
1050 make a note of it if it does. EH uses this information to find out how
1051 much extra space it needs to pop off the stack. */
1052
1053 static void
1054 dwarf2out_stack_adjust (rtx insn, bool after_p)
1055 {
1056 HOST_WIDE_INT offset;
1057 const char *label;
1058 int i;
1059
1060 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1061 with this function. Proper support would require all frame-related
1062 insns to be marked, and to be able to handle saving state around
1063 epilogues textually in the middle of the function. */
1064 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1065 return;
1066
1067 /* If only calls can throw, and we have a frame pointer,
1068 save up adjustments until we see the CALL_INSN. */
1069 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1070 {
1071 if (CALL_P (insn) && !after_p)
1072 {
1073 /* Extract the size of the args from the CALL rtx itself. */
1074 insn = PATTERN (insn);
1075 if (GET_CODE (insn) == PARALLEL)
1076 insn = XVECEXP (insn, 0, 0);
1077 if (GET_CODE (insn) == SET)
1078 insn = SET_SRC (insn);
1079 gcc_assert (GET_CODE (insn) == CALL);
1080 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1081 }
1082 return;
1083 }
1084
1085 if (CALL_P (insn) && !after_p)
1086 {
1087 if (!flag_asynchronous_unwind_tables)
1088 dwarf2out_args_size ("", args_size);
1089 return;
1090 }
1091 else if (BARRIER_P (insn))
1092 {
1093 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1094 the compiler will have already emitted a stack adjustment, but
1095 doesn't bother for calls to noreturn functions. */
1096 #ifdef STACK_GROWS_DOWNWARD
1097 offset = -args_size;
1098 #else
1099 offset = args_size;
1100 #endif
1101 }
1102 else if (GET_CODE (PATTERN (insn)) == SET)
1103 offset = stack_adjust_offset (PATTERN (insn));
1104 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1105 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1106 {
1107 /* There may be stack adjustments inside compound insns. Search
1108 for them. */
1109 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1110 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1111 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1112 }
1113 else
1114 return;
1115
1116 if (offset == 0)
1117 return;
1118
1119 if (cfa.reg == STACK_POINTER_REGNUM)
1120 cfa.offset += offset;
1121
1122 #ifndef STACK_GROWS_DOWNWARD
1123 offset = -offset;
1124 #endif
1125
1126 args_size += offset;
1127 if (args_size < 0)
1128 args_size = 0;
1129
1130 label = dwarf2out_cfi_label ();
1131 def_cfa_1 (label, &cfa);
1132 if (flag_asynchronous_unwind_tables)
1133 dwarf2out_args_size (label, args_size);
1134 }
1135
1136 #endif
1137
1138 /* We delay emitting a register save until either (a) we reach the end
1139 of the prologue or (b) the register is clobbered. This clusters
1140 register saves so that there are fewer pc advances. */
1141
1142 struct queued_reg_save GTY(())
1143 {
1144 struct queued_reg_save *next;
1145 rtx reg;
1146 HOST_WIDE_INT cfa_offset;
1147 rtx saved_reg;
1148 };
1149
1150 static GTY(()) struct queued_reg_save *queued_reg_saves;
1151
1152 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1153 struct reg_saved_in_data GTY(()) {
1154 rtx orig_reg;
1155 rtx saved_in_reg;
1156 };
1157
1158 /* A list of registers saved in other registers.
1159 The list intentionally has a small maximum capacity of 4; if your
1160 port needs more than that, you might consider implementing a
1161 more efficient data structure. */
1162 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1163 static GTY(()) size_t num_regs_saved_in_regs;
1164
1165 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1166 static const char *last_reg_save_label;
1167
1168 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1169 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1170
1171 static void
1172 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1173 {
1174 struct queued_reg_save *q;
1175
1176 /* Duplicates waste space, but it's also necessary to remove them
1177 for correctness, since the queue gets output in reverse
1178 order. */
1179 for (q = queued_reg_saves; q != NULL; q = q->next)
1180 if (REGNO (q->reg) == REGNO (reg))
1181 break;
1182
1183 if (q == NULL)
1184 {
1185 q = ggc_alloc (sizeof (*q));
1186 q->next = queued_reg_saves;
1187 queued_reg_saves = q;
1188 }
1189
1190 q->reg = reg;
1191 q->cfa_offset = offset;
1192 q->saved_reg = sreg;
1193
1194 last_reg_save_label = label;
1195 }
1196
1197 /* Output all the entries in QUEUED_REG_SAVES. */
1198
1199 static void
1200 flush_queued_reg_saves (void)
1201 {
1202 struct queued_reg_save *q;
1203
1204 for (q = queued_reg_saves; q; q = q->next)
1205 {
1206 size_t i;
1207 unsigned int reg, sreg;
1208
1209 for (i = 0; i < num_regs_saved_in_regs; i++)
1210 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1211 break;
1212 if (q->saved_reg && i == num_regs_saved_in_regs)
1213 {
1214 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1215 num_regs_saved_in_regs++;
1216 }
1217 if (i != num_regs_saved_in_regs)
1218 {
1219 regs_saved_in_regs[i].orig_reg = q->reg;
1220 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1221 }
1222
1223 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1224 if (q->saved_reg)
1225 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1226 else
1227 sreg = INVALID_REGNUM;
1228 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1229 }
1230
1231 queued_reg_saves = NULL;
1232 last_reg_save_label = NULL;
1233 }
1234
1235 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1236 location for? Or, does it clobber a register which we've previously
1237 said that some other register is saved in, and for which we now
1238 have a new location for? */
1239
1240 static bool
1241 clobbers_queued_reg_save (rtx insn)
1242 {
1243 struct queued_reg_save *q;
1244
1245 for (q = queued_reg_saves; q; q = q->next)
1246 {
1247 size_t i;
1248 if (modified_in_p (q->reg, insn))
1249 return true;
1250 for (i = 0; i < num_regs_saved_in_regs; i++)
1251 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1252 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1253 return true;
1254 }
1255
1256 return false;
1257 }
1258
1259 /* What register, if any, is currently saved in REG? */
1260
1261 static rtx
1262 reg_saved_in (rtx reg)
1263 {
1264 unsigned int regn = REGNO (reg);
1265 size_t i;
1266 struct queued_reg_save *q;
1267
1268 for (q = queued_reg_saves; q; q = q->next)
1269 if (q->saved_reg && regn == REGNO (q->saved_reg))
1270 return q->reg;
1271
1272 for (i = 0; i < num_regs_saved_in_regs; i++)
1273 if (regs_saved_in_regs[i].saved_in_reg
1274 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1275 return regs_saved_in_regs[i].orig_reg;
1276
1277 return NULL_RTX;
1278 }
1279
1280
1281 /* A temporary register holding an integral value used in adjusting SP
1282 or setting up the store_reg. The "offset" field holds the integer
1283 value, not an offset. */
1284 static dw_cfa_location cfa_temp;
1285
1286 /* Record call frame debugging information for an expression EXPR,
1287 which either sets SP or FP (adjusting how we calculate the frame
1288 address) or saves a register to the stack or another register.
1289 LABEL indicates the address of EXPR.
1290
1291 This function encodes a state machine mapping rtxes to actions on
1292 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1293 users need not read the source code.
1294
1295 The High-Level Picture
1296
1297 Changes in the register we use to calculate the CFA: Currently we
1298 assume that if you copy the CFA register into another register, we
1299 should take the other one as the new CFA register; this seems to
1300 work pretty well. If it's wrong for some target, it's simple
1301 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1302
1303 Changes in the register we use for saving registers to the stack:
1304 This is usually SP, but not always. Again, we deduce that if you
1305 copy SP into another register (and SP is not the CFA register),
1306 then the new register is the one we will be using for register
1307 saves. This also seems to work.
1308
1309 Register saves: There's not much guesswork about this one; if
1310 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1311 register save, and the register used to calculate the destination
1312 had better be the one we think we're using for this purpose.
1313 It's also assumed that a copy from a call-saved register to another
1314 register is saving that register if RTX_FRAME_RELATED_P is set on
1315 that instruction. If the copy is from a call-saved register to
1316 the *same* register, that means that the register is now the same
1317 value as in the caller.
1318
1319 Except: If the register being saved is the CFA register, and the
1320 offset is nonzero, we are saving the CFA, so we assume we have to
1321 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1322 the intent is to save the value of SP from the previous frame.
1323
1324 In addition, if a register has previously been saved to a different
1325 register,
1326
1327 Invariants / Summaries of Rules
1328
1329 cfa current rule for calculating the CFA. It usually
1330 consists of a register and an offset.
1331 cfa_store register used by prologue code to save things to the stack
1332 cfa_store.offset is the offset from the value of
1333 cfa_store.reg to the actual CFA
1334 cfa_temp register holding an integral value. cfa_temp.offset
1335 stores the value, which will be used to adjust the
1336 stack pointer. cfa_temp is also used like cfa_store,
1337 to track stores to the stack via fp or a temp reg.
1338
1339 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1340 with cfa.reg as the first operand changes the cfa.reg and its
1341 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1342 cfa_temp.offset.
1343
1344 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1345 expression yielding a constant. This sets cfa_temp.reg
1346 and cfa_temp.offset.
1347
1348 Rule 5: Create a new register cfa_store used to save items to the
1349 stack.
1350
1351 Rules 10-14: Save a register to the stack. Define offset as the
1352 difference of the original location and cfa_store's
1353 location (or cfa_temp's location if cfa_temp is used).
1354
1355 The Rules
1356
1357 "{a,b}" indicates a choice of a xor b.
1358 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1359
1360 Rule 1:
1361 (set <reg1> <reg2>:cfa.reg)
1362 effects: cfa.reg = <reg1>
1363 cfa.offset unchanged
1364 cfa_temp.reg = <reg1>
1365 cfa_temp.offset = cfa.offset
1366
1367 Rule 2:
1368 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1369 {<const_int>,<reg>:cfa_temp.reg}))
1370 effects: cfa.reg = sp if fp used
1371 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1372 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1373 if cfa_store.reg==sp
1374
1375 Rule 3:
1376 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1377 effects: cfa.reg = fp
1378 cfa_offset += +/- <const_int>
1379
1380 Rule 4:
1381 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1382 constraints: <reg1> != fp
1383 <reg1> != sp
1384 effects: cfa.reg = <reg1>
1385 cfa_temp.reg = <reg1>
1386 cfa_temp.offset = cfa.offset
1387
1388 Rule 5:
1389 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1390 constraints: <reg1> != fp
1391 <reg1> != sp
1392 effects: cfa_store.reg = <reg1>
1393 cfa_store.offset = cfa.offset - cfa_temp.offset
1394
1395 Rule 6:
1396 (set <reg> <const_int>)
1397 effects: cfa_temp.reg = <reg>
1398 cfa_temp.offset = <const_int>
1399
1400 Rule 7:
1401 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1402 effects: cfa_temp.reg = <reg1>
1403 cfa_temp.offset |= <const_int>
1404
1405 Rule 8:
1406 (set <reg> (high <exp>))
1407 effects: none
1408
1409 Rule 9:
1410 (set <reg> (lo_sum <exp> <const_int>))
1411 effects: cfa_temp.reg = <reg>
1412 cfa_temp.offset = <const_int>
1413
1414 Rule 10:
1415 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1416 effects: cfa_store.offset -= <const_int>
1417 cfa.offset = cfa_store.offset if cfa.reg == sp
1418 cfa.reg = sp
1419 cfa.base_offset = -cfa_store.offset
1420
1421 Rule 11:
1422 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1423 effects: cfa_store.offset += -/+ mode_size(mem)
1424 cfa.offset = cfa_store.offset if cfa.reg == sp
1425 cfa.reg = sp
1426 cfa.base_offset = -cfa_store.offset
1427
1428 Rule 12:
1429 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1430
1431 <reg2>)
1432 effects: cfa.reg = <reg1>
1433 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1434
1435 Rule 13:
1436 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1437 effects: cfa.reg = <reg1>
1438 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1439
1440 Rule 14:
1441 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1442 effects: cfa.reg = <reg1>
1443 cfa.base_offset = -cfa_temp.offset
1444 cfa_temp.offset -= mode_size(mem)
1445
1446   Rule 15:
1447   (set <reg> {unspec, unspec_volatile})
1448   effects: target-dependent */
1449
1450 static void
1451 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1452 {
1453 rtx src, dest;
1454 HOST_WIDE_INT offset;
1455
1456 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1457 the PARALLEL independently. The first element is always processed if
1458 it is a SET. This is for backward compatibility. Other elements
1459 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1460 flag is set in them. */
1461 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1462 {
1463 int par_index;
1464 int limit = XVECLEN (expr, 0);
1465
1466 for (par_index = 0; par_index < limit; par_index++)
1467 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1468 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1469 || par_index == 0))
1470 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1471
1472 return;
1473 }
1474
1475 gcc_assert (GET_CODE (expr) == SET);
1476
1477 src = SET_SRC (expr);
1478 dest = SET_DEST (expr);
1479
1480 if (GET_CODE (src) == REG)
1481 {
1482 rtx rsi = reg_saved_in (src);
1483 if (rsi)
1484 src = rsi;
1485 }
1486
1487 switch (GET_CODE (dest))
1488 {
1489 case REG:
1490 switch (GET_CODE (src))
1491 {
1492 /* Setting FP from SP. */
1493 case REG:
1494 if (cfa.reg == (unsigned) REGNO (src))
1495 {
1496 /* Rule 1 */
1497 /* Update the CFA rule wrt SP or FP. Make sure src is
1498 relative to the current CFA register.
1499
1500 We used to require that dest be either SP or FP, but the
1501 ARM copies SP to a temporary register, and from there to
1502 FP. So we just rely on the backends to only set
1503 RTX_FRAME_RELATED_P on appropriate insns. */
1504 cfa.reg = REGNO (dest);
1505 cfa_temp.reg = cfa.reg;
1506 cfa_temp.offset = cfa.offset;
1507 }
1508 else
1509 {
1510 /* Saving a register in a register. */
1511 gcc_assert (call_used_regs [REGNO (dest)]
1512 && (!fixed_regs [REGNO (dest)]
1513 /* For the SPARC and its register window. */
1514 || DWARF_FRAME_REGNUM (REGNO (src))
1515 == DWARF_FRAME_RETURN_COLUMN));
1516 queue_reg_save (label, src, dest, 0);
1517 }
1518 break;
1519
1520 case PLUS:
1521 case MINUS:
1522 case LO_SUM:
1523 if (dest == stack_pointer_rtx)
1524 {
1525 /* Rule 2 */
1526 /* Adjusting SP. */
1527 switch (GET_CODE (XEXP (src, 1)))
1528 {
1529 case CONST_INT:
1530 offset = INTVAL (XEXP (src, 1));
1531 break;
1532 case REG:
1533 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1534 == cfa_temp.reg);
1535 offset = cfa_temp.offset;
1536 break;
1537 default:
1538 gcc_unreachable ();
1539 }
1540
1541 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1542 {
1543 /* Restoring SP from FP in the epilogue. */
1544 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1545 cfa.reg = STACK_POINTER_REGNUM;
1546 }
1547 else if (GET_CODE (src) == LO_SUM)
1548 /* Assume we've set the source reg of the LO_SUM from sp. */
1549 ;
1550 else
1551 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1552
1553 if (GET_CODE (src) != MINUS)
1554 offset = -offset;
1555 if (cfa.reg == STACK_POINTER_REGNUM)
1556 cfa.offset += offset;
1557 if (cfa_store.reg == STACK_POINTER_REGNUM)
1558 cfa_store.offset += offset;
1559 }
1560 else if (dest == hard_frame_pointer_rtx)
1561 {
1562 /* Rule 3 */
1563 /* Either setting the FP from an offset of the SP,
1564 or adjusting the FP */
1565 gcc_assert (frame_pointer_needed);
1566
1567 gcc_assert (REG_P (XEXP (src, 0))
1568 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1569 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1570 offset = INTVAL (XEXP (src, 1));
1571 if (GET_CODE (src) != MINUS)
1572 offset = -offset;
1573 cfa.offset += offset;
1574 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1575 }
1576 else
1577 {
1578 gcc_assert (GET_CODE (src) != MINUS);
1579
1580 /* Rule 4 */
1581 if (REG_P (XEXP (src, 0))
1582 && REGNO (XEXP (src, 0)) == cfa.reg
1583 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1584 {
1585 /* Setting a temporary CFA register that will be copied
1586 into the FP later on. */
1587 offset = - INTVAL (XEXP (src, 1));
1588 cfa.offset += offset;
1589 cfa.reg = REGNO (dest);
1590 /* Or used to save regs to the stack. */
1591 cfa_temp.reg = cfa.reg;
1592 cfa_temp.offset = cfa.offset;
1593 }
1594
1595 /* Rule 5 */
1596 else if (REG_P (XEXP (src, 0))
1597 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1598 && XEXP (src, 1) == stack_pointer_rtx)
1599 {
1600 /* Setting a scratch register that we will use instead
1601 of SP for saving registers to the stack. */
1602 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1603 cfa_store.reg = REGNO (dest);
1604 cfa_store.offset = cfa.offset - cfa_temp.offset;
1605 }
1606
1607 /* Rule 9 */
1608 else if (GET_CODE (src) == LO_SUM
1609 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1610 {
1611 cfa_temp.reg = REGNO (dest);
1612 cfa_temp.offset = INTVAL (XEXP (src, 1));
1613 }
1614 else
1615 gcc_unreachable ();
1616 }
1617 break;
1618
1619 /* Rule 6 */
1620 case CONST_INT:
1621 cfa_temp.reg = REGNO (dest);
1622 cfa_temp.offset = INTVAL (src);
1623 break;
1624
1625 /* Rule 7 */
1626 case IOR:
1627 gcc_assert (REG_P (XEXP (src, 0))
1628 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1629 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1630
1631 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1632 cfa_temp.reg = REGNO (dest);
1633 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1634 break;
1635
1636 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1637 which will fill in all of the bits. */
1638 /* Rule 8 */
1639 case HIGH:
1640 break;
1641
1642 /* Rule 15 */
1643 case UNSPEC:
1644 case UNSPEC_VOLATILE:
1645 gcc_assert (targetm.dwarf_handle_frame_unspec);
1646 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1647 break;
1648
1649 default:
1650 gcc_unreachable ();
1651 }
1652
1653 def_cfa_1 (label, &cfa);
1654 break;
1655
1656 case MEM:
1657 gcc_assert (REG_P (src));
1658
1659 /* Saving a register to the stack. Make sure dest is relative to the
1660 CFA register. */
1661 switch (GET_CODE (XEXP (dest, 0)))
1662 {
1663 /* Rule 10 */
1664 /* With a push. */
1665 case PRE_MODIFY:
1666 /* We can't handle variable size modifications. */
1667 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1668 == CONST_INT);
1669 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1670
1671 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1672 && cfa_store.reg == STACK_POINTER_REGNUM);
1673
1674 cfa_store.offset += offset;
1675 if (cfa.reg == STACK_POINTER_REGNUM)
1676 cfa.offset = cfa_store.offset;
1677
1678 offset = -cfa_store.offset;
1679 break;
1680
1681 /* Rule 11 */
1682 case PRE_INC:
1683 case PRE_DEC:
1684 offset = GET_MODE_SIZE (GET_MODE (dest));
1685 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1686 offset = -offset;
1687
1688 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1689 && cfa_store.reg == STACK_POINTER_REGNUM);
1690
1691 cfa_store.offset += offset;
1692 if (cfa.reg == STACK_POINTER_REGNUM)
1693 cfa.offset = cfa_store.offset;
1694
1695 offset = -cfa_store.offset;
1696 break;
1697
1698 /* Rule 12 */
1699 /* With an offset. */
1700 case PLUS:
1701 case MINUS:
1702 case LO_SUM:
1703 {
1704 int regno;
1705
1706 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT);
1707 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1708 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1709 offset = -offset;
1710
1711 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1712
1713 if (cfa_store.reg == (unsigned) regno)
1714 offset -= cfa_store.offset;
1715 else
1716 {
1717 gcc_assert (cfa_temp.reg == (unsigned) regno);
1718 offset -= cfa_temp.offset;
1719 }
1720 }
1721 break;
1722
1723 /* Rule 13 */
1724 /* Without an offset. */
1725 case REG:
1726 {
1727 int regno = REGNO (XEXP (dest, 0));
1728
1729 if (cfa_store.reg == (unsigned) regno)
1730 offset = -cfa_store.offset;
1731 else
1732 {
1733 gcc_assert (cfa_temp.reg == (unsigned) regno);
1734 offset = -cfa_temp.offset;
1735 }
1736 }
1737 break;
1738
1739 /* Rule 14 */
1740 case POST_INC:
1741 gcc_assert (cfa_temp.reg
1742 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1743 offset = -cfa_temp.offset;
1744 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1745 break;
1746
1747 default:
1748 gcc_unreachable ();
1749 }
1750
1751 if (REGNO (src) != STACK_POINTER_REGNUM
1752 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1753 && (unsigned) REGNO (src) == cfa.reg)
1754 {
1755 /* We're storing the current CFA reg into the stack. */
1756
1757 if (cfa.offset == 0)
1758 {
1759 /* If the source register is exactly the CFA, assume
1760 we're saving SP like any other register; this happens
1761 on the ARM. */
1762 def_cfa_1 (label, &cfa);
1763 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1764 break;
1765 }
1766 else
1767 {
1768 /* Otherwise, we'll need to look in the stack to
1769 calculate the CFA. */
1770 rtx x = XEXP (dest, 0);
1771
1772 if (!REG_P (x))
1773 x = XEXP (x, 0);
1774 gcc_assert (REG_P (x));
1775
1776 cfa.reg = REGNO (x);
1777 cfa.base_offset = offset;
1778 cfa.indirect = 1;
1779 def_cfa_1 (label, &cfa);
1780 break;
1781 }
1782 }
1783
1784 def_cfa_1 (label, &cfa);
1785 queue_reg_save (label, src, NULL_RTX, offset);
1786 break;
1787
1788 default:
1789 gcc_unreachable ();
1790 }
1791 }
1792
1793 /* Record call frame debugging information for INSN, which either
1794 sets SP or FP (adjusting how we calculate the frame address) or saves a
1795 register to the stack. If INSN is NULL_RTX, initialize our state.
1796
1797 If AFTER_P is false, we're being called before the insn is emitted,
1798 otherwise after. Call instructions get invoked twice. */
1799
1800 void
1801 dwarf2out_frame_debug (rtx insn, bool after_p)
1802 {
1803 const char *label;
1804 rtx src;
1805
1806 if (insn == NULL_RTX)
1807 {
1808 size_t i;
1809
1810 /* Flush any queued register saves. */
1811 flush_queued_reg_saves ();
1812
1813 /* Set up state for generating call frame debug info. */
1814 lookup_cfa (&cfa);
1815 gcc_assert (cfa.reg
1816 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1817
1818 cfa.reg = STACK_POINTER_REGNUM;
1819 cfa_store = cfa;
1820 cfa_temp.reg = -1;
1821 cfa_temp.offset = 0;
1822
1823 for (i = 0; i < num_regs_saved_in_regs; i++)
1824 {
1825 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1826 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1827 }
1828 num_regs_saved_in_regs = 0;
1829 return;
1830 }
1831
1832 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1833 flush_queued_reg_saves ();
1834
1835 if (! RTX_FRAME_RELATED_P (insn))
1836 {
1837 if (!ACCUMULATE_OUTGOING_ARGS)
1838 dwarf2out_stack_adjust (insn, after_p);
1839 return;
1840 }
1841
1842 label = dwarf2out_cfi_label ();
1843 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1844 if (src)
1845 insn = XEXP (src, 0);
1846 else
1847 insn = PATTERN (insn);
1848
1849 dwarf2out_frame_debug_expr (insn, label);
1850 }
1851
1852 #endif
1853
1854 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1855 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1856 (enum dwarf_call_frame_info cfi);
1857
1858 static enum dw_cfi_oprnd_type
1859 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1860 {
1861 switch (cfi)
1862 {
1863 case DW_CFA_nop:
1864 case DW_CFA_GNU_window_save:
1865 return dw_cfi_oprnd_unused;
1866
1867 case DW_CFA_set_loc:
1868 case DW_CFA_advance_loc1:
1869 case DW_CFA_advance_loc2:
1870 case DW_CFA_advance_loc4:
1871 case DW_CFA_MIPS_advance_loc8:
1872 return dw_cfi_oprnd_addr;
1873
1874 case DW_CFA_offset:
1875 case DW_CFA_offset_extended:
1876 case DW_CFA_def_cfa:
1877 case DW_CFA_offset_extended_sf:
1878 case DW_CFA_def_cfa_sf:
1879 case DW_CFA_restore_extended:
1880 case DW_CFA_undefined:
1881 case DW_CFA_same_value:
1882 case DW_CFA_def_cfa_register:
1883 case DW_CFA_register:
1884 return dw_cfi_oprnd_reg_num;
1885
1886 case DW_CFA_def_cfa_offset:
1887 case DW_CFA_GNU_args_size:
1888 case DW_CFA_def_cfa_offset_sf:
1889 return dw_cfi_oprnd_offset;
1890
1891 case DW_CFA_def_cfa_expression:
1892 case DW_CFA_expression:
1893 return dw_cfi_oprnd_loc;
1894
1895 default:
1896 gcc_unreachable ();
1897 }
1898 }
1899
1900 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1901 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1902 (enum dwarf_call_frame_info cfi);
1903
1904 static enum dw_cfi_oprnd_type
1905 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1906 {
1907 switch (cfi)
1908 {
1909 case DW_CFA_def_cfa:
1910 case DW_CFA_def_cfa_sf:
1911 case DW_CFA_offset:
1912 case DW_CFA_offset_extended_sf:
1913 case DW_CFA_offset_extended:
1914 return dw_cfi_oprnd_offset;
1915
1916 case DW_CFA_register:
1917 return dw_cfi_oprnd_reg_num;
1918
1919 default:
1920 return dw_cfi_oprnd_unused;
1921 }
1922 }
1923
1924 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1925
1926 /* Map register numbers held in the call frame info that gcc has
1927 collected using DWARF_FRAME_REGNUM to those that should be output in
1928 .debug_frame and .eh_frame. */
1929 #ifndef DWARF2_FRAME_REG_OUT
1930 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
1931 #endif
1932
1933 /* Output a Call Frame Information opcode and its operand(s). */
1934
1935 static void
1936 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1937 {
1938 unsigned long r;
1939 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1940 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1941 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1942 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1943 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1944 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1945 {
1946 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1947 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1948 "DW_CFA_offset, column 0x%lx", r);
1949 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1950 }
1951 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1952 {
1953 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1954 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1955 "DW_CFA_restore, column 0x%lx", r);
1956 }
1957 else
1958 {
1959 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1960 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1961
1962 switch (cfi->dw_cfi_opc)
1963 {
1964 case DW_CFA_set_loc:
1965 if (for_eh)
1966 dw2_asm_output_encoded_addr_rtx (
1967 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1968 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1969 NULL);
1970 else
1971 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1972 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1973 break;
1974
1975 case DW_CFA_advance_loc1:
1976 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1977 fde->dw_fde_current_label, NULL);
1978 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1979 break;
1980
1981 case DW_CFA_advance_loc2:
1982 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1983 fde->dw_fde_current_label, NULL);
1984 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1985 break;
1986
1987 case DW_CFA_advance_loc4:
1988 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1989 fde->dw_fde_current_label, NULL);
1990 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1991 break;
1992
1993 case DW_CFA_MIPS_advance_loc8:
1994 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1995 fde->dw_fde_current_label, NULL);
1996 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1997 break;
1998
1999 case DW_CFA_offset_extended:
2000 case DW_CFA_def_cfa:
2001 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2002 dw2_asm_output_data_uleb128 (r, NULL);
2003 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2004 break;
2005
2006 case DW_CFA_offset_extended_sf:
2007 case DW_CFA_def_cfa_sf:
2008 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2009 dw2_asm_output_data_uleb128 (r, NULL);
2010 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2011 break;
2012
2013 case DW_CFA_restore_extended:
2014 case DW_CFA_undefined:
2015 case DW_CFA_same_value:
2016 case DW_CFA_def_cfa_register:
2017 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2018 dw2_asm_output_data_uleb128 (r, NULL);
2019 break;
2020
2021 case DW_CFA_register:
2022 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2023 dw2_asm_output_data_uleb128 (r, NULL);
2024 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2025 dw2_asm_output_data_uleb128 (r, NULL);
2026 break;
2027
2028 case DW_CFA_def_cfa_offset:
2029 case DW_CFA_GNU_args_size:
2030 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2031 break;
2032
2033 case DW_CFA_def_cfa_offset_sf:
2034 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2035 break;
2036
2037 case DW_CFA_GNU_window_save:
2038 break;
2039
2040 case DW_CFA_def_cfa_expression:
2041 case DW_CFA_expression:
2042 output_cfa_loc (cfi);
2043 break;
2044
2045 case DW_CFA_GNU_negative_offset_extended:
2046 /* Obsoleted by DW_CFA_offset_extended_sf. */
2047 gcc_unreachable ();
2048
2049 default:
2050 break;
2051 }
2052 }
2053 }
2054
2055 /* Output the call frame information used to record information
2056 that relates to calculating the frame pointer, and records the
2057 location of saved registers. */
2058
2059 static void
2060 output_call_frame_info (int for_eh)
2061 {
2062 unsigned int i;
2063 dw_fde_ref fde;
2064 dw_cfi_ref cfi;
2065 char l1[20], l2[20], section_start_label[20];
2066 bool any_lsda_needed = false;
2067 char augmentation[6];
2068 int augmentation_size;
2069 int fde_encoding = DW_EH_PE_absptr;
2070 int per_encoding = DW_EH_PE_absptr;
2071 int lsda_encoding = DW_EH_PE_absptr;
2072
2073 /* Don't emit a CIE if there won't be any FDEs. */
2074 if (fde_table_in_use == 0)
2075 return;
2076
2077 /* If we make FDEs linkonce, we may have to emit an empty label for
2078 an FDE that wouldn't otherwise be emitted. We want to avoid
2079 having an FDE kept around when the function it refers to is
2080 discarded. Example where this matters: a primary function
2081 template in C++ requires EH information, but an explicit
2082 specialization doesn't. */
2083 if (TARGET_USES_WEAK_UNWIND_INFO
2084 && ! flag_asynchronous_unwind_tables
2085 && for_eh)
2086 for (i = 0; i < fde_table_in_use; i++)
2087 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2088 && !fde_table[i].uses_eh_lsda
2089 && ! DECL_WEAK (fde_table[i].decl))
2090 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2091 for_eh, /* empty */ 1);
2092
2093 /* If we don't have any functions we'll want to unwind out of, don't
2094 emit any EH unwind information. Note that if exceptions aren't
2095 enabled, we won't have collected nothrow information, and if we
2096 asked for asynchronous tables, we always want this info. */
2097 if (for_eh)
2098 {
2099 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2100
2101 for (i = 0; i < fde_table_in_use; i++)
2102 if (fde_table[i].uses_eh_lsda)
2103 any_eh_needed = any_lsda_needed = true;
2104 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2105 any_eh_needed = true;
2106 else if (! fde_table[i].nothrow
2107 && ! fde_table[i].all_throwers_are_sibcalls)
2108 any_eh_needed = true;
2109
2110 if (! any_eh_needed)
2111 return;
2112 }
2113
2114 /* We're going to be generating comments, so turn on app. */
2115 if (flag_debug_asm)
2116 app_enable ();
2117
2118 if (for_eh)
2119 targetm.asm_out.eh_frame_section ();
2120 else
2121 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
2122
2123 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2124 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2125
2126 /* Output the CIE. */
2127 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2128 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2129 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2130 "Length of Common Information Entry");
2131 ASM_OUTPUT_LABEL (asm_out_file, l1);
2132
2133 /* Now that the CIE pointer is PC-relative for EH,
2134 use 0 to identify the CIE. */
2135 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2136 (for_eh ? 0 : DW_CIE_ID),
2137 "CIE Identifier Tag");
2138
2139 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2140
2141 augmentation[0] = 0;
2142 augmentation_size = 0;
2143 if (for_eh)
2144 {
2145 char *p;
2146
2147 /* Augmentation:
2148 z Indicates that a uleb128 is present to size the
2149 augmentation section.
2150 L Indicates the encoding (and thus presence) of
2151 an LSDA pointer in the FDE augmentation.
2152 R Indicates a non-default pointer encoding for
2153 FDE code pointers.
2154 P Indicates the presence of an encoding + language
2155 personality routine in the CIE augmentation. */
2156
2157 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2158 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2159 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2160
2161 p = augmentation + 1;
2162 if (eh_personality_libfunc)
2163 {
2164 *p++ = 'P';
2165 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2166 }
2167 if (any_lsda_needed)
2168 {
2169 *p++ = 'L';
2170 augmentation_size += 1;
2171 }
2172 if (fde_encoding != DW_EH_PE_absptr)
2173 {
2174 *p++ = 'R';
2175 augmentation_size += 1;
2176 }
2177 if (p > augmentation + 1)
2178 {
2179 augmentation[0] = 'z';
2180 *p = '\0';
2181 }
2182
2183 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2184 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2185 {
2186 int offset = ( 4 /* Length */
2187 + 4 /* CIE Id */
2188 + 1 /* CIE version */
2189 + strlen (augmentation) + 1 /* Augmentation */
2190 + size_of_uleb128 (1) /* Code alignment */
2191 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2192 + 1 /* RA column */
2193 + 1 /* Augmentation size */
2194 + 1 /* Personality encoding */ );
2195 int pad = -offset & (PTR_SIZE - 1);
2196
2197 augmentation_size += pad;
2198
2199 /* Augmentations should be small, so there's scarce need to
2200 iterate for a solution. Die if we exceed one uleb128 byte. */
2201 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2202 }
2203 }
2204
2205 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2206 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2207 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2208 "CIE Data Alignment Factor");
2209
2210 if (DW_CIE_VERSION == 1)
2211 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2212 else
2213 dw2_asm_output_data_uleb128 (DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2214
2215 if (augmentation[0])
2216 {
2217 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2218 if (eh_personality_libfunc)
2219 {
2220 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2221 eh_data_format_name (per_encoding));
2222 dw2_asm_output_encoded_addr_rtx (per_encoding,
2223 eh_personality_libfunc, NULL);
2224 }
2225
2226 if (any_lsda_needed)
2227 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2228 eh_data_format_name (lsda_encoding));
2229
2230 if (fde_encoding != DW_EH_PE_absptr)
2231 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2232 eh_data_format_name (fde_encoding));
2233 }
2234
2235 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2236 output_cfi (cfi, NULL, for_eh);
2237
2238 /* Pad the CIE out to an address sized boundary. */
2239 ASM_OUTPUT_ALIGN (asm_out_file,
2240 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2241 ASM_OUTPUT_LABEL (asm_out_file, l2);
2242
2243 /* Loop through all of the FDE's. */
2244 for (i = 0; i < fde_table_in_use; i++)
2245 {
2246 fde = &fde_table[i];
2247
2248 /* Don't emit EH unwind info for leaf functions that don't need it. */
2249 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2250 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2251 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2252 && !fde->uses_eh_lsda)
2253 continue;
2254
2255 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2256 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2257 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2258 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2259 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2260 "FDE Length");
2261 ASM_OUTPUT_LABEL (asm_out_file, l1);
2262
2263 if (for_eh)
2264 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2265 else
2266 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2267 "FDE CIE offset");
2268
2269 if (for_eh)
2270 {
2271 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2272 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2273 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2274 sym_ref,
2275 "FDE initial location");
2276 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2277 fde->dw_fde_end, fde->dw_fde_begin,
2278 "FDE address range");
2279 }
2280 else
2281 {
2282 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2283 "FDE initial location");
2284 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2285 fde->dw_fde_end, fde->dw_fde_begin,
2286 "FDE address range");
2287 }
2288
2289 if (augmentation[0])
2290 {
2291 if (any_lsda_needed)
2292 {
2293 int size = size_of_encoded_value (lsda_encoding);
2294
2295 if (lsda_encoding == DW_EH_PE_aligned)
2296 {
2297 int offset = ( 4 /* Length */
2298 + 4 /* CIE offset */
2299 + 2 * size_of_encoded_value (fde_encoding)
2300 + 1 /* Augmentation size */ );
2301 int pad = -offset & (PTR_SIZE - 1);
2302
2303 size += pad;
2304 gcc_assert (size_of_uleb128 (size) == 1);
2305 }
2306
2307 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2308
2309 if (fde->uses_eh_lsda)
2310 {
2311 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2312 fde->funcdef_number);
2313 dw2_asm_output_encoded_addr_rtx (
2314 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2315 "Language Specific Data Area");
2316 }
2317 else
2318 {
2319 if (lsda_encoding == DW_EH_PE_aligned)
2320 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2321 dw2_asm_output_data
2322 (size_of_encoded_value (lsda_encoding), 0,
2323 "Language Specific Data Area (none)");
2324 }
2325 }
2326 else
2327 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2328 }
2329
2330 /* Loop through the Call Frame Instructions associated with
2331 this FDE. */
2332 fde->dw_fde_current_label = fde->dw_fde_begin;
2333 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2334 output_cfi (cfi, fde, for_eh);
2335
2336 /* Pad the FDE out to an address sized boundary. */
2337 ASM_OUTPUT_ALIGN (asm_out_file,
2338 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2339 ASM_OUTPUT_LABEL (asm_out_file, l2);
2340 }
2341
2342 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2343 dw2_asm_output_data (4, 0, "End of Table");
2344 #ifdef MIPS_DEBUGGING_INFO
2345 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2346 get a value of 0. Putting .align 0 after the label fixes it. */
2347 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2348 #endif
2349
2350 /* Turn off app to make assembly quicker. */
2351 if (flag_debug_asm)
2352 app_disable ();
2353 }
2354
2355 /* Output a marker (i.e. a label) for the beginning of a function, before
2356 the prologue. */
2357
2358 void
2359 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2360 const char *file ATTRIBUTE_UNUSED)
2361 {
2362 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2363 char * dup_label;
2364 dw_fde_ref fde;
2365
2366 current_function_func_begin_label = NULL;
2367
2368 #ifdef TARGET_UNWIND_INFO
2369 /* ??? current_function_func_begin_label is also used by except.c
2370 for call-site information. We must emit this label if it might
2371 be used. */
2372 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2373 && ! dwarf2out_do_frame ())
2374 return;
2375 #else
2376 if (! dwarf2out_do_frame ())
2377 return;
2378 #endif
2379
2380 function_section (current_function_decl);
2381 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2382 current_function_funcdef_no);
2383 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2384 current_function_funcdef_no);
2385 dup_label = xstrdup (label);
2386 current_function_func_begin_label = dup_label;
2387
2388 #ifdef TARGET_UNWIND_INFO
2389 /* We can elide the fde allocation if we're not emitting debug info. */
2390 if (! dwarf2out_do_frame ())
2391 return;
2392 #endif
2393
2394 /* Expand the fde table if necessary. */
2395 if (fde_table_in_use == fde_table_allocated)
2396 {
2397 fde_table_allocated += FDE_TABLE_INCREMENT;
2398 fde_table = ggc_realloc (fde_table,
2399 fde_table_allocated * sizeof (dw_fde_node));
2400 memset (fde_table + fde_table_in_use, 0,
2401 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2402 }
2403
2404 /* Record the FDE associated with this function. */
2405 current_funcdef_fde = fde_table_in_use;
2406
2407 /* Add the new FDE at the end of the fde_table. */
2408 fde = &fde_table[fde_table_in_use++];
2409 fde->decl = current_function_decl;
2410 fde->dw_fde_begin = dup_label;
2411 fde->dw_fde_current_label = NULL;
2412 fde->dw_fde_end = NULL;
2413 fde->dw_fde_cfi = NULL;
2414 fde->funcdef_number = current_function_funcdef_no;
2415 fde->nothrow = TREE_NOTHROW (current_function_decl);
2416 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2417 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2418
2419 args_size = old_args_size = 0;
2420
2421 /* We only want to output line number information for the genuine dwarf2
2422 prologue case, not the eh frame case. */
2423 #ifdef DWARF2_DEBUGGING_INFO
2424 if (file)
2425 dwarf2out_source_line (line, file);
2426 #endif
2427 }
2428
2429 /* Output a marker (i.e. a label) for the absolute end of the generated code
2430 for a function definition. This gets called *after* the epilogue code has
2431 been generated. */
2432
2433 void
2434 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2435 const char *file ATTRIBUTE_UNUSED)
2436 {
2437 dw_fde_ref fde;
2438 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2439
2440 /* Output a label to mark the endpoint of the code generated for this
2441 function. */
2442 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2443 current_function_funcdef_no);
2444 ASM_OUTPUT_LABEL (asm_out_file, label);
2445 fde = &fde_table[fde_table_in_use - 1];
2446 fde->dw_fde_end = xstrdup (label);
2447 }
2448
2449 void
2450 dwarf2out_frame_init (void)
2451 {
2452 /* Allocate the initial hunk of the fde_table. */
2453 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2454 fde_table_allocated = FDE_TABLE_INCREMENT;
2455 fde_table_in_use = 0;
2456
2457 /* Generate the CFA instructions common to all FDE's. Do it now for the
2458 sake of lookup_cfa. */
2459
2460 #ifdef DWARF2_UNWIND_INFO
2461 /* On entry, the Canonical Frame Address is at SP. */
2462 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2463 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2464 #endif
2465 }
2466
2467 void
2468 dwarf2out_frame_finish (void)
2469 {
2470 /* Output call frame information. */
2471 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2472 output_call_frame_info (0);
2473
2474 #ifndef TARGET_UNWIND_INFO
2475 /* Output another copy for the unwinder. */
2476 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2477 output_call_frame_info (1);
2478 #endif
2479 }
2480 #endif
2481 \f
2482 /* And now, the subset of the debugging information support code necessary
2483 for emitting location expressions. */
2484
2485 /* We need some way to distinguish DW_OP_addr with a direct symbol
2486 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2487 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2488
2489
2490 typedef struct dw_val_struct *dw_val_ref;
2491 typedef struct die_struct *dw_die_ref;
2492 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2493 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2494
2495 /* Each DIE may have a series of attribute/value pairs. Values
2496 can take on several forms. The forms that are used in this
2497 implementation are listed below. */
2498
2499 enum dw_val_class
2500 {
2501 dw_val_class_addr,
2502 dw_val_class_offset,
2503 dw_val_class_loc,
2504 dw_val_class_loc_list,
2505 dw_val_class_range_list,
2506 dw_val_class_const,
2507 dw_val_class_unsigned_const,
2508 dw_val_class_long_long,
2509 dw_val_class_vec,
2510 dw_val_class_flag,
2511 dw_val_class_die_ref,
2512 dw_val_class_fde_ref,
2513 dw_val_class_lbl_id,
2514 dw_val_class_lbl_offset,
2515 dw_val_class_str
2516 };
2517
2518 /* Describe a double word constant value. */
2519 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2520
2521 typedef struct dw_long_long_struct GTY(())
2522 {
2523 unsigned long hi;
2524 unsigned long low;
2525 }
2526 dw_long_long_const;
2527
2528 /* Describe a floating point constant value, or a vector constant value. */
2529
2530 typedef struct dw_vec_struct GTY(())
2531 {
2532 unsigned char * GTY((length ("%h.length"))) array;
2533 unsigned length;
2534 unsigned elt_size;
2535 }
2536 dw_vec_const;
2537
2538 /* The dw_val_node describes an attribute's value, as it is
2539 represented internally. */
2540
2541 typedef struct dw_val_struct GTY(())
2542 {
2543 enum dw_val_class val_class;
2544 union dw_val_struct_union
2545 {
2546 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2547 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2548 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2549 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2550 HOST_WIDE_INT GTY ((default)) val_int;
2551 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2552 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2553 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2554 struct dw_val_die_union
2555 {
2556 dw_die_ref die;
2557 int external;
2558 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2559 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2560 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2561 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2562 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2563 }
2564 GTY ((desc ("%1.val_class"))) v;
2565 }
2566 dw_val_node;
2567
2568 /* Locations in memory are described using a sequence of stack machine
2569 operations. */
2570
2571 typedef struct dw_loc_descr_struct GTY(())
2572 {
2573 dw_loc_descr_ref dw_loc_next;
2574 enum dwarf_location_atom dw_loc_opc;
2575 dw_val_node dw_loc_oprnd1;
2576 dw_val_node dw_loc_oprnd2;
2577 int dw_loc_addr;
2578 }
2579 dw_loc_descr_node;
2580
2581 /* Location lists are ranges + location descriptions for that range,
2582 so you can track variables that are in different places over
2583 their entire life. */
2584 typedef struct dw_loc_list_struct GTY(())
2585 {
2586 dw_loc_list_ref dw_loc_next;
2587 const char *begin; /* Label for begin address of range */
2588 const char *end; /* Label for end address of range */
2589 char *ll_symbol; /* Label for beginning of location list.
2590 Only on head of list */
2591 const char *section; /* Section this loclist is relative to */
2592 dw_loc_descr_ref expr;
2593 } dw_loc_list_node;
2594
2595 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2596
2597 static const char *dwarf_stack_op_name (unsigned);
2598 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2599 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2600 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2601 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2602 static unsigned long size_of_locs (dw_loc_descr_ref);
2603 static void output_loc_operands (dw_loc_descr_ref);
2604 static void output_loc_sequence (dw_loc_descr_ref);
2605
2606 /* Convert a DWARF stack opcode into its string name. */
2607
2608 static const char *
2609 dwarf_stack_op_name (unsigned int op)
2610 {
2611 switch (op)
2612 {
2613 case DW_OP_addr:
2614 case INTERNAL_DW_OP_tls_addr:
2615 return "DW_OP_addr";
2616 case DW_OP_deref:
2617 return "DW_OP_deref";
2618 case DW_OP_const1u:
2619 return "DW_OP_const1u";
2620 case DW_OP_const1s:
2621 return "DW_OP_const1s";
2622 case DW_OP_const2u:
2623 return "DW_OP_const2u";
2624 case DW_OP_const2s:
2625 return "DW_OP_const2s";
2626 case DW_OP_const4u:
2627 return "DW_OP_const4u";
2628 case DW_OP_const4s:
2629 return "DW_OP_const4s";
2630 case DW_OP_const8u:
2631 return "DW_OP_const8u";
2632 case DW_OP_const8s:
2633 return "DW_OP_const8s";
2634 case DW_OP_constu:
2635 return "DW_OP_constu";
2636 case DW_OP_consts:
2637 return "DW_OP_consts";
2638 case DW_OP_dup:
2639 return "DW_OP_dup";
2640 case DW_OP_drop:
2641 return "DW_OP_drop";
2642 case DW_OP_over:
2643 return "DW_OP_over";
2644 case DW_OP_pick:
2645 return "DW_OP_pick";
2646 case DW_OP_swap:
2647 return "DW_OP_swap";
2648 case DW_OP_rot:
2649 return "DW_OP_rot";
2650 case DW_OP_xderef:
2651 return "DW_OP_xderef";
2652 case DW_OP_abs:
2653 return "DW_OP_abs";
2654 case DW_OP_and:
2655 return "DW_OP_and";
2656 case DW_OP_div:
2657 return "DW_OP_div";
2658 case DW_OP_minus:
2659 return "DW_OP_minus";
2660 case DW_OP_mod:
2661 return "DW_OP_mod";
2662 case DW_OP_mul:
2663 return "DW_OP_mul";
2664 case DW_OP_neg:
2665 return "DW_OP_neg";
2666 case DW_OP_not:
2667 return "DW_OP_not";
2668 case DW_OP_or:
2669 return "DW_OP_or";
2670 case DW_OP_plus:
2671 return "DW_OP_plus";
2672 case DW_OP_plus_uconst:
2673 return "DW_OP_plus_uconst";
2674 case DW_OP_shl:
2675 return "DW_OP_shl";
2676 case DW_OP_shr:
2677 return "DW_OP_shr";
2678 case DW_OP_shra:
2679 return "DW_OP_shra";
2680 case DW_OP_xor:
2681 return "DW_OP_xor";
2682 case DW_OP_bra:
2683 return "DW_OP_bra";
2684 case DW_OP_eq:
2685 return "DW_OP_eq";
2686 case DW_OP_ge:
2687 return "DW_OP_ge";
2688 case DW_OP_gt:
2689 return "DW_OP_gt";
2690 case DW_OP_le:
2691 return "DW_OP_le";
2692 case DW_OP_lt:
2693 return "DW_OP_lt";
2694 case DW_OP_ne:
2695 return "DW_OP_ne";
2696 case DW_OP_skip:
2697 return "DW_OP_skip";
2698 case DW_OP_lit0:
2699 return "DW_OP_lit0";
2700 case DW_OP_lit1:
2701 return "DW_OP_lit1";
2702 case DW_OP_lit2:
2703 return "DW_OP_lit2";
2704 case DW_OP_lit3:
2705 return "DW_OP_lit3";
2706 case DW_OP_lit4:
2707 return "DW_OP_lit4";
2708 case DW_OP_lit5:
2709 return "DW_OP_lit5";
2710 case DW_OP_lit6:
2711 return "DW_OP_lit6";
2712 case DW_OP_lit7:
2713 return "DW_OP_lit7";
2714 case DW_OP_lit8:
2715 return "DW_OP_lit8";
2716 case DW_OP_lit9:
2717 return "DW_OP_lit9";
2718 case DW_OP_lit10:
2719 return "DW_OP_lit10";
2720 case DW_OP_lit11:
2721 return "DW_OP_lit11";
2722 case DW_OP_lit12:
2723 return "DW_OP_lit12";
2724 case DW_OP_lit13:
2725 return "DW_OP_lit13";
2726 case DW_OP_lit14:
2727 return "DW_OP_lit14";
2728 case DW_OP_lit15:
2729 return "DW_OP_lit15";
2730 case DW_OP_lit16:
2731 return "DW_OP_lit16";
2732 case DW_OP_lit17:
2733 return "DW_OP_lit17";
2734 case DW_OP_lit18:
2735 return "DW_OP_lit18";
2736 case DW_OP_lit19:
2737 return "DW_OP_lit19";
2738 case DW_OP_lit20:
2739 return "DW_OP_lit20";
2740 case DW_OP_lit21:
2741 return "DW_OP_lit21";
2742 case DW_OP_lit22:
2743 return "DW_OP_lit22";
2744 case DW_OP_lit23:
2745 return "DW_OP_lit23";
2746 case DW_OP_lit24:
2747 return "DW_OP_lit24";
2748 case DW_OP_lit25:
2749 return "DW_OP_lit25";
2750 case DW_OP_lit26:
2751 return "DW_OP_lit26";
2752 case DW_OP_lit27:
2753 return "DW_OP_lit27";
2754 case DW_OP_lit28:
2755 return "DW_OP_lit28";
2756 case DW_OP_lit29:
2757 return "DW_OP_lit29";
2758 case DW_OP_lit30:
2759 return "DW_OP_lit30";
2760 case DW_OP_lit31:
2761 return "DW_OP_lit31";
2762 case DW_OP_reg0:
2763 return "DW_OP_reg0";
2764 case DW_OP_reg1:
2765 return "DW_OP_reg1";
2766 case DW_OP_reg2:
2767 return "DW_OP_reg2";
2768 case DW_OP_reg3:
2769 return "DW_OP_reg3";
2770 case DW_OP_reg4:
2771 return "DW_OP_reg4";
2772 case DW_OP_reg5:
2773 return "DW_OP_reg5";
2774 case DW_OP_reg6:
2775 return "DW_OP_reg6";
2776 case DW_OP_reg7:
2777 return "DW_OP_reg7";
2778 case DW_OP_reg8:
2779 return "DW_OP_reg8";
2780 case DW_OP_reg9:
2781 return "DW_OP_reg9";
2782 case DW_OP_reg10:
2783 return "DW_OP_reg10";
2784 case DW_OP_reg11:
2785 return "DW_OP_reg11";
2786 case DW_OP_reg12:
2787 return "DW_OP_reg12";
2788 case DW_OP_reg13:
2789 return "DW_OP_reg13";
2790 case DW_OP_reg14:
2791 return "DW_OP_reg14";
2792 case DW_OP_reg15:
2793 return "DW_OP_reg15";
2794 case DW_OP_reg16:
2795 return "DW_OP_reg16";
2796 case DW_OP_reg17:
2797 return "DW_OP_reg17";
2798 case DW_OP_reg18:
2799 return "DW_OP_reg18";
2800 case DW_OP_reg19:
2801 return "DW_OP_reg19";
2802 case DW_OP_reg20:
2803 return "DW_OP_reg20";
2804 case DW_OP_reg21:
2805 return "DW_OP_reg21";
2806 case DW_OP_reg22:
2807 return "DW_OP_reg22";
2808 case DW_OP_reg23:
2809 return "DW_OP_reg23";
2810 case DW_OP_reg24:
2811 return "DW_OP_reg24";
2812 case DW_OP_reg25:
2813 return "DW_OP_reg25";
2814 case DW_OP_reg26:
2815 return "DW_OP_reg26";
2816 case DW_OP_reg27:
2817 return "DW_OP_reg27";
2818 case DW_OP_reg28:
2819 return "DW_OP_reg28";
2820 case DW_OP_reg29:
2821 return "DW_OP_reg29";
2822 case DW_OP_reg30:
2823 return "DW_OP_reg30";
2824 case DW_OP_reg31:
2825 return "DW_OP_reg31";
2826 case DW_OP_breg0:
2827 return "DW_OP_breg0";
2828 case DW_OP_breg1:
2829 return "DW_OP_breg1";
2830 case DW_OP_breg2:
2831 return "DW_OP_breg2";
2832 case DW_OP_breg3:
2833 return "DW_OP_breg3";
2834 case DW_OP_breg4:
2835 return "DW_OP_breg4";
2836 case DW_OP_breg5:
2837 return "DW_OP_breg5";
2838 case DW_OP_breg6:
2839 return "DW_OP_breg6";
2840 case DW_OP_breg7:
2841 return "DW_OP_breg7";
2842 case DW_OP_breg8:
2843 return "DW_OP_breg8";
2844 case DW_OP_breg9:
2845 return "DW_OP_breg9";
2846 case DW_OP_breg10:
2847 return "DW_OP_breg10";
2848 case DW_OP_breg11:
2849 return "DW_OP_breg11";
2850 case DW_OP_breg12:
2851 return "DW_OP_breg12";
2852 case DW_OP_breg13:
2853 return "DW_OP_breg13";
2854 case DW_OP_breg14:
2855 return "DW_OP_breg14";
2856 case DW_OP_breg15:
2857 return "DW_OP_breg15";
2858 case DW_OP_breg16:
2859 return "DW_OP_breg16";
2860 case DW_OP_breg17:
2861 return "DW_OP_breg17";
2862 case DW_OP_breg18:
2863 return "DW_OP_breg18";
2864 case DW_OP_breg19:
2865 return "DW_OP_breg19";
2866 case DW_OP_breg20:
2867 return "DW_OP_breg20";
2868 case DW_OP_breg21:
2869 return "DW_OP_breg21";
2870 case DW_OP_breg22:
2871 return "DW_OP_breg22";
2872 case DW_OP_breg23:
2873 return "DW_OP_breg23";
2874 case DW_OP_breg24:
2875 return "DW_OP_breg24";
2876 case DW_OP_breg25:
2877 return "DW_OP_breg25";
2878 case DW_OP_breg26:
2879 return "DW_OP_breg26";
2880 case DW_OP_breg27:
2881 return "DW_OP_breg27";
2882 case DW_OP_breg28:
2883 return "DW_OP_breg28";
2884 case DW_OP_breg29:
2885 return "DW_OP_breg29";
2886 case DW_OP_breg30:
2887 return "DW_OP_breg30";
2888 case DW_OP_breg31:
2889 return "DW_OP_breg31";
2890 case DW_OP_regx:
2891 return "DW_OP_regx";
2892 case DW_OP_fbreg:
2893 return "DW_OP_fbreg";
2894 case DW_OP_bregx:
2895 return "DW_OP_bregx";
2896 case DW_OP_piece:
2897 return "DW_OP_piece";
2898 case DW_OP_deref_size:
2899 return "DW_OP_deref_size";
2900 case DW_OP_xderef_size:
2901 return "DW_OP_xderef_size";
2902 case DW_OP_nop:
2903 return "DW_OP_nop";
2904 case DW_OP_push_object_address:
2905 return "DW_OP_push_object_address";
2906 case DW_OP_call2:
2907 return "DW_OP_call2";
2908 case DW_OP_call4:
2909 return "DW_OP_call4";
2910 case DW_OP_call_ref:
2911 return "DW_OP_call_ref";
2912 case DW_OP_GNU_push_tls_address:
2913 return "DW_OP_GNU_push_tls_address";
2914 default:
2915 return "OP_<unknown>";
2916 }
2917 }
2918
2919 /* Return a pointer to a newly allocated location description. Location
2920 descriptions are simple expression terms that can be strung
2921 together to form more complicated location (address) descriptions. */
2922
2923 static inline dw_loc_descr_ref
2924 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2925 unsigned HOST_WIDE_INT oprnd2)
2926 {
2927 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2928
2929 descr->dw_loc_opc = op;
2930 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2931 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2932 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2933 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2934
2935 return descr;
2936 }
2937
2938
2939 /* Add a location description term to a location description expression. */
2940
2941 static inline void
2942 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
2943 {
2944 dw_loc_descr_ref *d;
2945
2946 /* Find the end of the chain. */
2947 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2948 ;
2949
2950 *d = descr;
2951 }
2952
2953 /* Return the size of a location descriptor. */
2954
2955 static unsigned long
2956 size_of_loc_descr (dw_loc_descr_ref loc)
2957 {
2958 unsigned long size = 1;
2959
2960 switch (loc->dw_loc_opc)
2961 {
2962 case DW_OP_addr:
2963 case INTERNAL_DW_OP_tls_addr:
2964 size += DWARF2_ADDR_SIZE;
2965 break;
2966 case DW_OP_const1u:
2967 case DW_OP_const1s:
2968 size += 1;
2969 break;
2970 case DW_OP_const2u:
2971 case DW_OP_const2s:
2972 size += 2;
2973 break;
2974 case DW_OP_const4u:
2975 case DW_OP_const4s:
2976 size += 4;
2977 break;
2978 case DW_OP_const8u:
2979 case DW_OP_const8s:
2980 size += 8;
2981 break;
2982 case DW_OP_constu:
2983 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2984 break;
2985 case DW_OP_consts:
2986 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2987 break;
2988 case DW_OP_pick:
2989 size += 1;
2990 break;
2991 case DW_OP_plus_uconst:
2992 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2993 break;
2994 case DW_OP_skip:
2995 case DW_OP_bra:
2996 size += 2;
2997 break;
2998 case DW_OP_breg0:
2999 case DW_OP_breg1:
3000 case DW_OP_breg2:
3001 case DW_OP_breg3:
3002 case DW_OP_breg4:
3003 case DW_OP_breg5:
3004 case DW_OP_breg6:
3005 case DW_OP_breg7:
3006 case DW_OP_breg8:
3007 case DW_OP_breg9:
3008 case DW_OP_breg10:
3009 case DW_OP_breg11:
3010 case DW_OP_breg12:
3011 case DW_OP_breg13:
3012 case DW_OP_breg14:
3013 case DW_OP_breg15:
3014 case DW_OP_breg16:
3015 case DW_OP_breg17:
3016 case DW_OP_breg18:
3017 case DW_OP_breg19:
3018 case DW_OP_breg20:
3019 case DW_OP_breg21:
3020 case DW_OP_breg22:
3021 case DW_OP_breg23:
3022 case DW_OP_breg24:
3023 case DW_OP_breg25:
3024 case DW_OP_breg26:
3025 case DW_OP_breg27:
3026 case DW_OP_breg28:
3027 case DW_OP_breg29:
3028 case DW_OP_breg30:
3029 case DW_OP_breg31:
3030 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3031 break;
3032 case DW_OP_regx:
3033 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3034 break;
3035 case DW_OP_fbreg:
3036 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3037 break;
3038 case DW_OP_bregx:
3039 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3040 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3041 break;
3042 case DW_OP_piece:
3043 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3044 break;
3045 case DW_OP_deref_size:
3046 case DW_OP_xderef_size:
3047 size += 1;
3048 break;
3049 case DW_OP_call2:
3050 size += 2;
3051 break;
3052 case DW_OP_call4:
3053 size += 4;
3054 break;
3055 case DW_OP_call_ref:
3056 size += DWARF2_ADDR_SIZE;
3057 break;
3058 default:
3059 break;
3060 }
3061
3062 return size;
3063 }
3064
3065 /* Return the size of a series of location descriptors. */
3066
3067 static unsigned long
3068 size_of_locs (dw_loc_descr_ref loc)
3069 {
3070 unsigned long size;
3071
3072 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
3073 {
3074 loc->dw_loc_addr = size;
3075 size += size_of_loc_descr (loc);
3076 }
3077
3078 return size;
3079 }
3080
3081 /* Output location description stack opcode's operands (if any). */
3082
3083 static void
3084 output_loc_operands (dw_loc_descr_ref loc)
3085 {
3086 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3087 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3088
3089 switch (loc->dw_loc_opc)
3090 {
3091 #ifdef DWARF2_DEBUGGING_INFO
3092 case DW_OP_addr:
3093 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3094 break;
3095 case DW_OP_const2u:
3096 case DW_OP_const2s:
3097 dw2_asm_output_data (2, val1->v.val_int, NULL);
3098 break;
3099 case DW_OP_const4u:
3100 case DW_OP_const4s:
3101 dw2_asm_output_data (4, val1->v.val_int, NULL);
3102 break;
3103 case DW_OP_const8u:
3104 case DW_OP_const8s:
3105 gcc_assert (HOST_BITS_PER_LONG >= 64);
3106 dw2_asm_output_data (8, val1->v.val_int, NULL);
3107 break;
3108 case DW_OP_skip:
3109 case DW_OP_bra:
3110 {
3111 int offset;
3112
3113 gcc_assert (val1->val_class == dw_val_class_loc);
3114 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3115
3116 dw2_asm_output_data (2, offset, NULL);
3117 }
3118 break;
3119 #else
3120 case DW_OP_addr:
3121 case DW_OP_const2u:
3122 case DW_OP_const2s:
3123 case DW_OP_const4u:
3124 case DW_OP_const4s:
3125 case DW_OP_const8u:
3126 case DW_OP_const8s:
3127 case DW_OP_skip:
3128 case DW_OP_bra:
3129 /* We currently don't make any attempt to make sure these are
3130 aligned properly like we do for the main unwind info, so
3131 don't support emitting things larger than a byte if we're
3132 only doing unwinding. */
3133 gcc_unreachable ();
3134 #endif
3135 case DW_OP_const1u:
3136 case DW_OP_const1s:
3137 dw2_asm_output_data (1, val1->v.val_int, NULL);
3138 break;
3139 case DW_OP_constu:
3140 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3141 break;
3142 case DW_OP_consts:
3143 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3144 break;
3145 case DW_OP_pick:
3146 dw2_asm_output_data (1, val1->v.val_int, NULL);
3147 break;
3148 case DW_OP_plus_uconst:
3149 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3150 break;
3151 case DW_OP_breg0:
3152 case DW_OP_breg1:
3153 case DW_OP_breg2:
3154 case DW_OP_breg3:
3155 case DW_OP_breg4:
3156 case DW_OP_breg5:
3157 case DW_OP_breg6:
3158 case DW_OP_breg7:
3159 case DW_OP_breg8:
3160 case DW_OP_breg9:
3161 case DW_OP_breg10:
3162 case DW_OP_breg11:
3163 case DW_OP_breg12:
3164 case DW_OP_breg13:
3165 case DW_OP_breg14:
3166 case DW_OP_breg15:
3167 case DW_OP_breg16:
3168 case DW_OP_breg17:
3169 case DW_OP_breg18:
3170 case DW_OP_breg19:
3171 case DW_OP_breg20:
3172 case DW_OP_breg21:
3173 case DW_OP_breg22:
3174 case DW_OP_breg23:
3175 case DW_OP_breg24:
3176 case DW_OP_breg25:
3177 case DW_OP_breg26:
3178 case DW_OP_breg27:
3179 case DW_OP_breg28:
3180 case DW_OP_breg29:
3181 case DW_OP_breg30:
3182 case DW_OP_breg31:
3183 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3184 break;
3185 case DW_OP_regx:
3186 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3187 break;
3188 case DW_OP_fbreg:
3189 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3190 break;
3191 case DW_OP_bregx:
3192 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3193 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3194 break;
3195 case DW_OP_piece:
3196 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3197 break;
3198 case DW_OP_deref_size:
3199 case DW_OP_xderef_size:
3200 dw2_asm_output_data (1, val1->v.val_int, NULL);
3201 break;
3202
3203 case INTERNAL_DW_OP_tls_addr:
3204 #ifdef ASM_OUTPUT_DWARF_DTPREL
3205 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3206 val1->v.val_addr);
3207 fputc ('\n', asm_out_file);
3208 #else
3209 gcc_unreachable ();
3210 #endif
3211 break;
3212
3213 default:
3214 /* Other codes have no operands. */
3215 break;
3216 }
3217 }
3218
3219 /* Output a sequence of location operations. */
3220
3221 static void
3222 output_loc_sequence (dw_loc_descr_ref loc)
3223 {
3224 for (; loc != NULL; loc = loc->dw_loc_next)
3225 {
3226 /* Output the opcode. */
3227 dw2_asm_output_data (1, loc->dw_loc_opc,
3228 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3229
3230 /* Output the operand(s) (if any). */
3231 output_loc_operands (loc);
3232 }
3233 }
3234
3235 /* This routine will generate the correct assembly data for a location
3236 description based on a cfi entry with a complex address. */
3237
3238 static void
3239 output_cfa_loc (dw_cfi_ref cfi)
3240 {
3241 dw_loc_descr_ref loc;
3242 unsigned long size;
3243
3244 /* Output the size of the block. */
3245 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3246 size = size_of_locs (loc);
3247 dw2_asm_output_data_uleb128 (size, NULL);
3248
3249 /* Now output the operations themselves. */
3250 output_loc_sequence (loc);
3251 }
3252
3253 /* This function builds a dwarf location descriptor sequence from
3254 a dw_cfa_location. */
3255
3256 static struct dw_loc_descr_struct *
3257 build_cfa_loc (dw_cfa_location *cfa)
3258 {
3259 struct dw_loc_descr_struct *head, *tmp;
3260
3261 gcc_assert (cfa->indirect);
3262
3263 if (cfa->base_offset)
3264 {
3265 if (cfa->reg <= 31)
3266 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3267 else
3268 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3269 }
3270 else if (cfa->reg <= 31)
3271 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3272 else
3273 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3274
3275 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3276 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3277 add_loc_descr (&head, tmp);
3278 if (cfa->offset != 0)
3279 {
3280 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3281 add_loc_descr (&head, tmp);
3282 }
3283
3284 return head;
3285 }
3286
3287 /* This function fills in aa dw_cfa_location structure from a dwarf location
3288 descriptor sequence. */
3289
3290 static void
3291 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3292 {
3293 struct dw_loc_descr_struct *ptr;
3294 cfa->offset = 0;
3295 cfa->base_offset = 0;
3296 cfa->indirect = 0;
3297 cfa->reg = -1;
3298
3299 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3300 {
3301 enum dwarf_location_atom op = ptr->dw_loc_opc;
3302
3303 switch (op)
3304 {
3305 case DW_OP_reg0:
3306 case DW_OP_reg1:
3307 case DW_OP_reg2:
3308 case DW_OP_reg3:
3309 case DW_OP_reg4:
3310 case DW_OP_reg5:
3311 case DW_OP_reg6:
3312 case DW_OP_reg7:
3313 case DW_OP_reg8:
3314 case DW_OP_reg9:
3315 case DW_OP_reg10:
3316 case DW_OP_reg11:
3317 case DW_OP_reg12:
3318 case DW_OP_reg13:
3319 case DW_OP_reg14:
3320 case DW_OP_reg15:
3321 case DW_OP_reg16:
3322 case DW_OP_reg17:
3323 case DW_OP_reg18:
3324 case DW_OP_reg19:
3325 case DW_OP_reg20:
3326 case DW_OP_reg21:
3327 case DW_OP_reg22:
3328 case DW_OP_reg23:
3329 case DW_OP_reg24:
3330 case DW_OP_reg25:
3331 case DW_OP_reg26:
3332 case DW_OP_reg27:
3333 case DW_OP_reg28:
3334 case DW_OP_reg29:
3335 case DW_OP_reg30:
3336 case DW_OP_reg31:
3337 cfa->reg = op - DW_OP_reg0;
3338 break;
3339 case DW_OP_regx:
3340 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3341 break;
3342 case DW_OP_breg0:
3343 case DW_OP_breg1:
3344 case DW_OP_breg2:
3345 case DW_OP_breg3:
3346 case DW_OP_breg4:
3347 case DW_OP_breg5:
3348 case DW_OP_breg6:
3349 case DW_OP_breg7:
3350 case DW_OP_breg8:
3351 case DW_OP_breg9:
3352 case DW_OP_breg10:
3353 case DW_OP_breg11:
3354 case DW_OP_breg12:
3355 case DW_OP_breg13:
3356 case DW_OP_breg14:
3357 case DW_OP_breg15:
3358 case DW_OP_breg16:
3359 case DW_OP_breg17:
3360 case DW_OP_breg18:
3361 case DW_OP_breg19:
3362 case DW_OP_breg20:
3363 case DW_OP_breg21:
3364 case DW_OP_breg22:
3365 case DW_OP_breg23:
3366 case DW_OP_breg24:
3367 case DW_OP_breg25:
3368 case DW_OP_breg26:
3369 case DW_OP_breg27:
3370 case DW_OP_breg28:
3371 case DW_OP_breg29:
3372 case DW_OP_breg30:
3373 case DW_OP_breg31:
3374 cfa->reg = op - DW_OP_breg0;
3375 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3376 break;
3377 case DW_OP_bregx:
3378 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3379 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3380 break;
3381 case DW_OP_deref:
3382 cfa->indirect = 1;
3383 break;
3384 case DW_OP_plus_uconst:
3385 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3386 break;
3387 default:
3388 internal_error ("DW_LOC_OP %s not implemented\n",
3389 dwarf_stack_op_name (ptr->dw_loc_opc));
3390 }
3391 }
3392 }
3393 #endif /* .debug_frame support */
3394 \f
3395 /* And now, the support for symbolic debugging information. */
3396 #ifdef DWARF2_DEBUGGING_INFO
3397
3398 /* .debug_str support. */
3399 static int output_indirect_string (void **, void *);
3400
3401 static void dwarf2out_init (const char *);
3402 static void dwarf2out_finish (const char *);
3403 static void dwarf2out_define (unsigned int, const char *);
3404 static void dwarf2out_undef (unsigned int, const char *);
3405 static void dwarf2out_start_source_file (unsigned, const char *);
3406 static void dwarf2out_end_source_file (unsigned);
3407 static void dwarf2out_begin_block (unsigned, unsigned);
3408 static void dwarf2out_end_block (unsigned, unsigned);
3409 static bool dwarf2out_ignore_block (tree);
3410 static void dwarf2out_global_decl (tree);
3411 static void dwarf2out_type_decl (tree, int);
3412 static void dwarf2out_imported_module_or_decl (tree, tree);
3413 static void dwarf2out_abstract_function (tree);
3414 static void dwarf2out_var_location (rtx);
3415 static void dwarf2out_begin_function (tree);
3416
3417 /* The debug hooks structure. */
3418
3419 const struct gcc_debug_hooks dwarf2_debug_hooks =
3420 {
3421 dwarf2out_init,
3422 dwarf2out_finish,
3423 dwarf2out_define,
3424 dwarf2out_undef,
3425 dwarf2out_start_source_file,
3426 dwarf2out_end_source_file,
3427 dwarf2out_begin_block,
3428 dwarf2out_end_block,
3429 dwarf2out_ignore_block,
3430 dwarf2out_source_line,
3431 dwarf2out_begin_prologue,
3432 debug_nothing_int_charstar, /* end_prologue */
3433 dwarf2out_end_epilogue,
3434 dwarf2out_begin_function,
3435 debug_nothing_int, /* end_function */
3436 dwarf2out_decl, /* function_decl */
3437 dwarf2out_global_decl,
3438 dwarf2out_type_decl, /* type_decl */
3439 dwarf2out_imported_module_or_decl,
3440 debug_nothing_tree, /* deferred_inline_function */
3441 /* The DWARF 2 backend tries to reduce debugging bloat by not
3442 emitting the abstract description of inline functions until
3443 something tries to reference them. */
3444 dwarf2out_abstract_function, /* outlining_inline_function */
3445 debug_nothing_rtx, /* label */
3446 debug_nothing_int, /* handle_pch */
3447 dwarf2out_var_location
3448 };
3449 #endif
3450 \f
3451 /* NOTE: In the comments in this file, many references are made to
3452 "Debugging Information Entries". This term is abbreviated as `DIE'
3453 throughout the remainder of this file. */
3454
3455 /* An internal representation of the DWARF output is built, and then
3456 walked to generate the DWARF debugging info. The walk of the internal
3457 representation is done after the entire program has been compiled.
3458 The types below are used to describe the internal representation. */
3459
3460 /* Various DIE's use offsets relative to the beginning of the
3461 .debug_info section to refer to each other. */
3462
3463 typedef long int dw_offset;
3464
3465 /* Define typedefs here to avoid circular dependencies. */
3466
3467 typedef struct dw_attr_struct *dw_attr_ref;
3468 typedef struct dw_line_info_struct *dw_line_info_ref;
3469 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3470 typedef struct pubname_struct *pubname_ref;
3471 typedef struct dw_ranges_struct *dw_ranges_ref;
3472
3473 /* Each entry in the line_info_table maintains the file and
3474 line number associated with the label generated for that
3475 entry. The label gives the PC value associated with
3476 the line number entry. */
3477
3478 typedef struct dw_line_info_struct GTY(())
3479 {
3480 unsigned long dw_file_num;
3481 unsigned long dw_line_num;
3482 }
3483 dw_line_info_entry;
3484
3485 /* Line information for functions in separate sections; each one gets its
3486 own sequence. */
3487 typedef struct dw_separate_line_info_struct GTY(())
3488 {
3489 unsigned long dw_file_num;
3490 unsigned long dw_line_num;
3491 unsigned long function;
3492 }
3493 dw_separate_line_info_entry;
3494
3495 /* Each DIE attribute has a field specifying the attribute kind,
3496 a link to the next attribute in the chain, and an attribute value.
3497 Attributes are typically linked below the DIE they modify. */
3498
3499 typedef struct dw_attr_struct GTY(())
3500 {
3501 enum dwarf_attribute dw_attr;
3502 dw_attr_ref dw_attr_next;
3503 dw_val_node dw_attr_val;
3504 }
3505 dw_attr_node;
3506
3507 /* The Debugging Information Entry (DIE) structure */
3508
3509 typedef struct die_struct GTY(())
3510 {
3511 enum dwarf_tag die_tag;
3512 char *die_symbol;
3513 dw_attr_ref die_attr;
3514 dw_die_ref die_parent;
3515 dw_die_ref die_child;
3516 dw_die_ref die_sib;
3517 dw_die_ref die_definition; /* ref from a specification to its definition */
3518 dw_offset die_offset;
3519 unsigned long die_abbrev;
3520 int die_mark;
3521 unsigned int decl_id;
3522 }
3523 die_node;
3524
3525 /* The pubname structure */
3526
3527 typedef struct pubname_struct GTY(())
3528 {
3529 dw_die_ref die;
3530 char *name;
3531 }
3532 pubname_entry;
3533
3534 struct dw_ranges_struct GTY(())
3535 {
3536 int block_num;
3537 };
3538
3539 /* The limbo die list structure. */
3540 typedef struct limbo_die_struct GTY(())
3541 {
3542 dw_die_ref die;
3543 tree created_for;
3544 struct limbo_die_struct *next;
3545 }
3546 limbo_die_node;
3547
3548 /* How to start an assembler comment. */
3549 #ifndef ASM_COMMENT_START
3550 #define ASM_COMMENT_START ";#"
3551 #endif
3552
3553 /* Define a macro which returns nonzero for a TYPE_DECL which was
3554 implicitly generated for a tagged type.
3555
3556 Note that unlike the gcc front end (which generates a NULL named
3557 TYPE_DECL node for each complete tagged type, each array type, and
3558 each function type node created) the g++ front end generates a
3559 _named_ TYPE_DECL node for each tagged type node created.
3560 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3561 generate a DW_TAG_typedef DIE for them. */
3562
3563 #define TYPE_DECL_IS_STUB(decl) \
3564 (DECL_NAME (decl) == NULL_TREE \
3565 || (DECL_ARTIFICIAL (decl) \
3566 && is_tagged_type (TREE_TYPE (decl)) \
3567 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3568 /* This is necessary for stub decls that \
3569 appear in nested inline functions. */ \
3570 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3571 && (decl_ultimate_origin (decl) \
3572 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3573
3574 /* Information concerning the compilation unit's programming
3575 language, and compiler version. */
3576
3577 /* Fixed size portion of the DWARF compilation unit header. */
3578 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3579 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3580
3581 /* Fixed size portion of public names info. */
3582 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3583
3584 /* Fixed size portion of the address range info. */
3585 #define DWARF_ARANGES_HEADER_SIZE \
3586 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3587 DWARF2_ADDR_SIZE * 2) \
3588 - DWARF_INITIAL_LENGTH_SIZE)
3589
3590 /* Size of padding portion in the address range info. It must be
3591 aligned to twice the pointer size. */
3592 #define DWARF_ARANGES_PAD_SIZE \
3593 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3594 DWARF2_ADDR_SIZE * 2) \
3595 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3596
3597 /* Use assembler line directives if available. */
3598 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3599 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3600 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3601 #else
3602 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3603 #endif
3604 #endif
3605
3606 /* Minimum line offset in a special line info. opcode.
3607 This value was chosen to give a reasonable range of values. */
3608 #define DWARF_LINE_BASE -10
3609
3610 /* First special line opcode - leave room for the standard opcodes. */
3611 #define DWARF_LINE_OPCODE_BASE 10
3612
3613 /* Range of line offsets in a special line info. opcode. */
3614 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3615
3616 /* Flag that indicates the initial value of the is_stmt_start flag.
3617 In the present implementation, we do not mark any lines as
3618 the beginning of a source statement, because that information
3619 is not made available by the GCC front-end. */
3620 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3621
3622 #ifdef DWARF2_DEBUGGING_INFO
3623 /* This location is used by calc_die_sizes() to keep track
3624 the offset of each DIE within the .debug_info section. */
3625 static unsigned long next_die_offset;
3626 #endif
3627
3628 /* Record the root of the DIE's built for the current compilation unit. */
3629 static GTY(()) dw_die_ref comp_unit_die;
3630
3631 /* A list of DIEs with a NULL parent waiting to be relocated. */
3632 static GTY(()) limbo_die_node *limbo_die_list;
3633
3634 /* Filenames referenced by this compilation unit. */
3635 static GTY(()) varray_type file_table;
3636 static GTY(()) varray_type file_table_emitted;
3637 static GTY(()) size_t file_table_last_lookup_index;
3638
3639 /* A hash table of references to DIE's that describe declarations.
3640 The key is a DECL_UID() which is a unique number identifying each decl. */
3641 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3642
3643 /* Node of the variable location list. */
3644 struct var_loc_node GTY ((chain_next ("%h.next")))
3645 {
3646 rtx GTY (()) var_loc_note;
3647 const char * GTY (()) label;
3648 struct var_loc_node * GTY (()) next;
3649 };
3650
3651 /* Variable location list. */
3652 struct var_loc_list_def GTY (())
3653 {
3654 struct var_loc_node * GTY (()) first;
3655
3656 /* Do not mark the last element of the chained list because
3657 it is marked through the chain. */
3658 struct var_loc_node * GTY ((skip ("%h"))) last;
3659
3660 /* DECL_UID of the variable decl. */
3661 unsigned int decl_id;
3662 };
3663 typedef struct var_loc_list_def var_loc_list;
3664
3665
3666 /* Table of decl location linked lists. */
3667 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3668
3669 /* A pointer to the base of a list of references to DIE's that
3670 are uniquely identified by their tag, presence/absence of
3671 children DIE's, and list of attribute/value pairs. */
3672 static GTY((length ("abbrev_die_table_allocated")))
3673 dw_die_ref *abbrev_die_table;
3674
3675 /* Number of elements currently allocated for abbrev_die_table. */
3676 static GTY(()) unsigned abbrev_die_table_allocated;
3677
3678 /* Number of elements in type_die_table currently in use. */
3679 static GTY(()) unsigned abbrev_die_table_in_use;
3680
3681 /* Size (in elements) of increments by which we may expand the
3682 abbrev_die_table. */
3683 #define ABBREV_DIE_TABLE_INCREMENT 256
3684
3685 /* A pointer to the base of a table that contains line information
3686 for each source code line in .text in the compilation unit. */
3687 static GTY((length ("line_info_table_allocated")))
3688 dw_line_info_ref line_info_table;
3689
3690 /* Number of elements currently allocated for line_info_table. */
3691 static GTY(()) unsigned line_info_table_allocated;
3692
3693 /* Number of elements in line_info_table currently in use. */
3694 static GTY(()) unsigned line_info_table_in_use;
3695
3696 /* A pointer to the base of a table that contains line information
3697 for each source code line outside of .text in the compilation unit. */
3698 static GTY ((length ("separate_line_info_table_allocated")))
3699 dw_separate_line_info_ref separate_line_info_table;
3700
3701 /* Number of elements currently allocated for separate_line_info_table. */
3702 static GTY(()) unsigned separate_line_info_table_allocated;
3703
3704 /* Number of elements in separate_line_info_table currently in use. */
3705 static GTY(()) unsigned separate_line_info_table_in_use;
3706
3707 /* Size (in elements) of increments by which we may expand the
3708 line_info_table. */
3709 #define LINE_INFO_TABLE_INCREMENT 1024
3710
3711 /* A pointer to the base of a table that contains a list of publicly
3712 accessible names. */
3713 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3714
3715 /* Number of elements currently allocated for pubname_table. */
3716 static GTY(()) unsigned pubname_table_allocated;
3717
3718 /* Number of elements in pubname_table currently in use. */
3719 static GTY(()) unsigned pubname_table_in_use;
3720
3721 /* Size (in elements) of increments by which we may expand the
3722 pubname_table. */
3723 #define PUBNAME_TABLE_INCREMENT 64
3724
3725 /* Array of dies for which we should generate .debug_arange info. */
3726 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3727
3728 /* Number of elements currently allocated for arange_table. */
3729 static GTY(()) unsigned arange_table_allocated;
3730
3731 /* Number of elements in arange_table currently in use. */
3732 static GTY(()) unsigned arange_table_in_use;
3733
3734 /* Size (in elements) of increments by which we may expand the
3735 arange_table. */
3736 #define ARANGE_TABLE_INCREMENT 64
3737
3738 /* Array of dies for which we should generate .debug_ranges info. */
3739 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3740
3741 /* Number of elements currently allocated for ranges_table. */
3742 static GTY(()) unsigned ranges_table_allocated;
3743
3744 /* Number of elements in ranges_table currently in use. */
3745 static GTY(()) unsigned ranges_table_in_use;
3746
3747 /* Size (in elements) of increments by which we may expand the
3748 ranges_table. */
3749 #define RANGES_TABLE_INCREMENT 64
3750
3751 /* Whether we have location lists that need outputting */
3752 static GTY(()) unsigned have_location_lists;
3753
3754 /* Unique label counter. */
3755 static GTY(()) unsigned int loclabel_num;
3756
3757 #ifdef DWARF2_DEBUGGING_INFO
3758 /* Record whether the function being analyzed contains inlined functions. */
3759 static int current_function_has_inlines;
3760 #endif
3761 #if 0 && defined (MIPS_DEBUGGING_INFO)
3762 static int comp_unit_has_inlines;
3763 #endif
3764
3765 /* Number of file tables emitted in maybe_emit_file(). */
3766 static GTY(()) int emitcount = 0;
3767
3768 /* Number of internal labels generated by gen_internal_sym(). */
3769 static GTY(()) int label_num;
3770
3771 #ifdef DWARF2_DEBUGGING_INFO
3772
3773 /* Forward declarations for functions defined in this file. */
3774
3775 static int is_pseudo_reg (rtx);
3776 static tree type_main_variant (tree);
3777 static int is_tagged_type (tree);
3778 static const char *dwarf_tag_name (unsigned);
3779 static const char *dwarf_attr_name (unsigned);
3780 static const char *dwarf_form_name (unsigned);
3781 #if 0
3782 static const char *dwarf_type_encoding_name (unsigned);
3783 #endif
3784 static tree decl_ultimate_origin (tree);
3785 static tree block_ultimate_origin (tree);
3786 static tree decl_class_context (tree);
3787 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3788 static inline enum dw_val_class AT_class (dw_attr_ref);
3789 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3790 static inline unsigned AT_flag (dw_attr_ref);
3791 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3792 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3793 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3794 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3795 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3796 unsigned long);
3797 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3798 unsigned int, unsigned char *);
3799 static hashval_t debug_str_do_hash (const void *);
3800 static int debug_str_eq (const void *, const void *);
3801 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3802 static inline const char *AT_string (dw_attr_ref);
3803 static int AT_string_form (dw_attr_ref);
3804 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3805 static void add_AT_specification (dw_die_ref, dw_die_ref);
3806 static inline dw_die_ref AT_ref (dw_attr_ref);
3807 static inline int AT_ref_external (dw_attr_ref);
3808 static inline void set_AT_ref_external (dw_attr_ref, int);
3809 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3810 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3811 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3812 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3813 dw_loc_list_ref);
3814 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3815 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3816 static inline rtx AT_addr (dw_attr_ref);
3817 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3818 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3819 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3820 unsigned HOST_WIDE_INT);
3821 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3822 unsigned long);
3823 static inline const char *AT_lbl (dw_attr_ref);
3824 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3825 static const char *get_AT_low_pc (dw_die_ref);
3826 static const char *get_AT_hi_pc (dw_die_ref);
3827 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3828 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3829 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3830 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3831 static bool is_c_family (void);
3832 static bool is_cxx (void);
3833 static bool is_java (void);
3834 static bool is_fortran (void);
3835 static bool is_ada (void);
3836 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3837 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3838 static inline void free_die (dw_die_ref);
3839 static void remove_children (dw_die_ref);
3840 static void add_child_die (dw_die_ref, dw_die_ref);
3841 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3842 static dw_die_ref lookup_type_die (tree);
3843 static void equate_type_number_to_die (tree, dw_die_ref);
3844 static hashval_t decl_die_table_hash (const void *);
3845 static int decl_die_table_eq (const void *, const void *);
3846 static dw_die_ref lookup_decl_die (tree);
3847 static hashval_t decl_loc_table_hash (const void *);
3848 static int decl_loc_table_eq (const void *, const void *);
3849 static var_loc_list *lookup_decl_loc (tree);
3850 static void equate_decl_number_to_die (tree, dw_die_ref);
3851 static void add_var_loc_to_decl (tree, struct var_loc_node *);
3852 static void print_spaces (FILE *);
3853 static void print_die (dw_die_ref, FILE *);
3854 static void print_dwarf_line_table (FILE *);
3855 static void reverse_die_lists (dw_die_ref);
3856 static void reverse_all_dies (dw_die_ref);
3857 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3858 static dw_die_ref pop_compile_unit (dw_die_ref);
3859 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3860 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3861 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3862 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3863 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3864 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3865 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3866 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3867 static void compute_section_prefix (dw_die_ref);
3868 static int is_type_die (dw_die_ref);
3869 static int is_comdat_die (dw_die_ref);
3870 static int is_symbol_die (dw_die_ref);
3871 static void assign_symbol_names (dw_die_ref);
3872 static void break_out_includes (dw_die_ref);
3873 static hashval_t htab_cu_hash (const void *);
3874 static int htab_cu_eq (const void *, const void *);
3875 static void htab_cu_del (void *);
3876 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3877 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3878 static void add_sibling_attributes (dw_die_ref);
3879 static void build_abbrev_table (dw_die_ref);
3880 static void output_location_lists (dw_die_ref);
3881 static int constant_size (long unsigned);
3882 static unsigned long size_of_die (dw_die_ref);
3883 static void calc_die_sizes (dw_die_ref);
3884 static void mark_dies (dw_die_ref);
3885 static void unmark_dies (dw_die_ref);
3886 static void unmark_all_dies (dw_die_ref);
3887 static unsigned long size_of_pubnames (void);
3888 static unsigned long size_of_aranges (void);
3889 static enum dwarf_form value_format (dw_attr_ref);
3890 static void output_value_format (dw_attr_ref);
3891 static void output_abbrev_section (void);
3892 static void output_die_symbol (dw_die_ref);
3893 static void output_die (dw_die_ref);
3894 static void output_compilation_unit_header (void);
3895 static void output_comp_unit (dw_die_ref, int);
3896 static const char *dwarf2_name (tree, int);
3897 static void add_pubname (tree, dw_die_ref);
3898 static void output_pubnames (void);
3899 static void add_arange (tree, dw_die_ref);
3900 static void output_aranges (void);
3901 static unsigned int add_ranges (tree);
3902 static void output_ranges (void);
3903 static void output_line_info (void);
3904 static void output_file_names (void);
3905 static dw_die_ref base_type_die (tree);
3906 static tree root_type (tree);
3907 static int is_base_type (tree);
3908 static bool is_subrange_type (tree);
3909 static dw_die_ref subrange_type_die (tree, dw_die_ref);
3910 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3911 static int type_is_enum (tree);
3912 static unsigned int dbx_reg_number (rtx);
3913 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3914 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3915 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3916 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3917 static dw_loc_descr_ref based_loc_descr (unsigned, HOST_WIDE_INT, bool);
3918 static int is_based_loc (rtx);
3919 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode, bool);
3920 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3921 static dw_loc_descr_ref loc_descriptor (rtx, bool);
3922 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
3923 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
3924 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3925 static tree field_type (tree);
3926 static unsigned int simple_type_align_in_bits (tree);
3927 static unsigned int simple_decl_align_in_bits (tree);
3928 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3929 static HOST_WIDE_INT field_byte_offset (tree);
3930 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3931 dw_loc_descr_ref);
3932 static void add_data_member_location_attribute (dw_die_ref, tree);
3933 static void add_const_value_attribute (dw_die_ref, rtx);
3934 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
3935 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
3936 static void insert_float (rtx, unsigned char *);
3937 static rtx rtl_for_decl_location (tree);
3938 static void add_location_or_const_value_attribute (dw_die_ref, tree,
3939 enum dwarf_attribute);
3940 static void tree_add_const_value_attribute (dw_die_ref, tree);
3941 static void add_name_attribute (dw_die_ref, const char *);
3942 static void add_comp_dir_attribute (dw_die_ref);
3943 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
3944 static void add_subscript_info (dw_die_ref, tree);
3945 static void add_byte_size_attribute (dw_die_ref, tree);
3946 static void add_bit_offset_attribute (dw_die_ref, tree);
3947 static void add_bit_size_attribute (dw_die_ref, tree);
3948 static void add_prototyped_attribute (dw_die_ref, tree);
3949 static void add_abstract_origin_attribute (dw_die_ref, tree);
3950 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3951 static void add_src_coords_attributes (dw_die_ref, tree);
3952 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3953 static void push_decl_scope (tree);
3954 static void pop_decl_scope (void);
3955 static dw_die_ref scope_die_for (tree, dw_die_ref);
3956 static inline int local_scope_p (dw_die_ref);
3957 static inline int class_or_namespace_scope_p (dw_die_ref);
3958 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
3959 static void add_calling_convention_attribute (dw_die_ref, tree);
3960 static const char *type_tag (tree);
3961 static tree member_declared_type (tree);
3962 #if 0
3963 static const char *decl_start_label (tree);
3964 #endif
3965 static void gen_array_type_die (tree, dw_die_ref);
3966 #if 0
3967 static void gen_entry_point_die (tree, dw_die_ref);
3968 #endif
3969 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
3970 static void gen_inlined_structure_type_die (tree, dw_die_ref);
3971 static void gen_inlined_union_type_die (tree, dw_die_ref);
3972 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
3973 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
3974 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3975 static void gen_formal_types_die (tree, dw_die_ref);
3976 static void gen_subprogram_die (tree, dw_die_ref);
3977 static void gen_variable_die (tree, dw_die_ref);
3978 static void gen_label_die (tree, dw_die_ref);
3979 static void gen_lexical_block_die (tree, dw_die_ref, int);
3980 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
3981 static void gen_field_die (tree, dw_die_ref);
3982 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3983 static dw_die_ref gen_compile_unit_die (const char *);
3984 static void gen_string_type_die (tree, dw_die_ref);
3985 static void gen_inheritance_die (tree, tree, dw_die_ref);
3986 static void gen_member_die (tree, dw_die_ref);
3987 static void gen_struct_or_union_type_die (tree, dw_die_ref);
3988 static void gen_subroutine_type_die (tree, dw_die_ref);
3989 static void gen_typedef_die (tree, dw_die_ref);
3990 static void gen_type_die (tree, dw_die_ref);
3991 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
3992 static void gen_block_die (tree, dw_die_ref, int);
3993 static void decls_for_scope (tree, dw_die_ref, int);
3994 static int is_redundant_typedef (tree);
3995 static void gen_namespace_die (tree);
3996 static void gen_decl_die (tree, dw_die_ref);
3997 static dw_die_ref force_decl_die (tree);
3998 static dw_die_ref force_type_die (tree);
3999 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4000 static void declare_in_namespace (tree, dw_die_ref);
4001 static unsigned lookup_filename (const char *);
4002 static void init_file_table (void);
4003 static void retry_incomplete_types (void);
4004 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4005 static void splice_child_die (dw_die_ref, dw_die_ref);
4006 static int file_info_cmp (const void *, const void *);
4007 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4008 const char *, const char *, unsigned);
4009 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4010 const char *, const char *,
4011 const char *);
4012 static void output_loc_list (dw_loc_list_ref);
4013 static char *gen_internal_sym (const char *);
4014
4015 static void prune_unmark_dies (dw_die_ref);
4016 static void prune_unused_types_mark (dw_die_ref, int);
4017 static void prune_unused_types_walk (dw_die_ref);
4018 static void prune_unused_types_walk_attribs (dw_die_ref);
4019 static void prune_unused_types_prune (dw_die_ref);
4020 static void prune_unused_types (void);
4021 static int maybe_emit_file (int);
4022
4023 /* Section names used to hold DWARF debugging information. */
4024 #ifndef DEBUG_INFO_SECTION
4025 #define DEBUG_INFO_SECTION ".debug_info"
4026 #endif
4027 #ifndef DEBUG_ABBREV_SECTION
4028 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4029 #endif
4030 #ifndef DEBUG_ARANGES_SECTION
4031 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4032 #endif
4033 #ifndef DEBUG_MACINFO_SECTION
4034 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4035 #endif
4036 #ifndef DEBUG_LINE_SECTION
4037 #define DEBUG_LINE_SECTION ".debug_line"
4038 #endif
4039 #ifndef DEBUG_LOC_SECTION
4040 #define DEBUG_LOC_SECTION ".debug_loc"
4041 #endif
4042 #ifndef DEBUG_PUBNAMES_SECTION
4043 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4044 #endif
4045 #ifndef DEBUG_STR_SECTION
4046 #define DEBUG_STR_SECTION ".debug_str"
4047 #endif
4048 #ifndef DEBUG_RANGES_SECTION
4049 #define DEBUG_RANGES_SECTION ".debug_ranges"
4050 #endif
4051
4052 /* Standard ELF section names for compiled code and data. */
4053 #ifndef TEXT_SECTION_NAME
4054 #define TEXT_SECTION_NAME ".text"
4055 #endif
4056
4057 /* Section flags for .debug_str section. */
4058 #define DEBUG_STR_SECTION_FLAGS \
4059 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4060 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4061 : SECTION_DEBUG)
4062
4063 /* Labels we insert at beginning sections we can reference instead of
4064 the section names themselves. */
4065
4066 #ifndef TEXT_SECTION_LABEL
4067 #define TEXT_SECTION_LABEL "Ltext"
4068 #endif
4069 #ifndef DEBUG_LINE_SECTION_LABEL
4070 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4071 #endif
4072 #ifndef DEBUG_INFO_SECTION_LABEL
4073 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4074 #endif
4075 #ifndef DEBUG_ABBREV_SECTION_LABEL
4076 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4077 #endif
4078 #ifndef DEBUG_LOC_SECTION_LABEL
4079 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4080 #endif
4081 #ifndef DEBUG_RANGES_SECTION_LABEL
4082 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4083 #endif
4084 #ifndef DEBUG_MACINFO_SECTION_LABEL
4085 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4086 #endif
4087
4088 /* Definitions of defaults for formats and names of various special
4089 (artificial) labels which may be generated within this file (when the -g
4090 options is used and DWARF2_DEBUGGING_INFO is in effect.
4091 If necessary, these may be overridden from within the tm.h file, but
4092 typically, overriding these defaults is unnecessary. */
4093
4094 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4095 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4096 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4097 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4098 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4099 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4100 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4101 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4102
4103 #ifndef TEXT_END_LABEL
4104 #define TEXT_END_LABEL "Letext"
4105 #endif
4106 #ifndef BLOCK_BEGIN_LABEL
4107 #define BLOCK_BEGIN_LABEL "LBB"
4108 #endif
4109 #ifndef BLOCK_END_LABEL
4110 #define BLOCK_END_LABEL "LBE"
4111 #endif
4112 #ifndef LINE_CODE_LABEL
4113 #define LINE_CODE_LABEL "LM"
4114 #endif
4115 #ifndef SEPARATE_LINE_CODE_LABEL
4116 #define SEPARATE_LINE_CODE_LABEL "LSM"
4117 #endif
4118 \f
4119 /* We allow a language front-end to designate a function that is to be
4120 called to "demangle" any name before it is put into a DIE. */
4121
4122 static const char *(*demangle_name_func) (const char *);
4123
4124 void
4125 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4126 {
4127 demangle_name_func = func;
4128 }
4129
4130 /* Test if rtl node points to a pseudo register. */
4131
4132 static inline int
4133 is_pseudo_reg (rtx rtl)
4134 {
4135 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4136 || (GET_CODE (rtl) == SUBREG
4137 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4138 }
4139
4140 /* Return a reference to a type, with its const and volatile qualifiers
4141 removed. */
4142
4143 static inline tree
4144 type_main_variant (tree type)
4145 {
4146 type = TYPE_MAIN_VARIANT (type);
4147
4148 /* ??? There really should be only one main variant among any group of
4149 variants of a given type (and all of the MAIN_VARIANT values for all
4150 members of the group should point to that one type) but sometimes the C
4151 front-end messes this up for array types, so we work around that bug
4152 here. */
4153 if (TREE_CODE (type) == ARRAY_TYPE)
4154 while (type != TYPE_MAIN_VARIANT (type))
4155 type = TYPE_MAIN_VARIANT (type);
4156
4157 return type;
4158 }
4159
4160 /* Return nonzero if the given type node represents a tagged type. */
4161
4162 static inline int
4163 is_tagged_type (tree type)
4164 {
4165 enum tree_code code = TREE_CODE (type);
4166
4167 return (code == RECORD_TYPE || code == UNION_TYPE
4168 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4169 }
4170
4171 /* Convert a DIE tag into its string name. */
4172
4173 static const char *
4174 dwarf_tag_name (unsigned int tag)
4175 {
4176 switch (tag)
4177 {
4178 case DW_TAG_padding:
4179 return "DW_TAG_padding";
4180 case DW_TAG_array_type:
4181 return "DW_TAG_array_type";
4182 case DW_TAG_class_type:
4183 return "DW_TAG_class_type";
4184 case DW_TAG_entry_point:
4185 return "DW_TAG_entry_point";
4186 case DW_TAG_enumeration_type:
4187 return "DW_TAG_enumeration_type";
4188 case DW_TAG_formal_parameter:
4189 return "DW_TAG_formal_parameter";
4190 case DW_TAG_imported_declaration:
4191 return "DW_TAG_imported_declaration";
4192 case DW_TAG_label:
4193 return "DW_TAG_label";
4194 case DW_TAG_lexical_block:
4195 return "DW_TAG_lexical_block";
4196 case DW_TAG_member:
4197 return "DW_TAG_member";
4198 case DW_TAG_pointer_type:
4199 return "DW_TAG_pointer_type";
4200 case DW_TAG_reference_type:
4201 return "DW_TAG_reference_type";
4202 case DW_TAG_compile_unit:
4203 return "DW_TAG_compile_unit";
4204 case DW_TAG_string_type:
4205 return "DW_TAG_string_type";
4206 case DW_TAG_structure_type:
4207 return "DW_TAG_structure_type";
4208 case DW_TAG_subroutine_type:
4209 return "DW_TAG_subroutine_type";
4210 case DW_TAG_typedef:
4211 return "DW_TAG_typedef";
4212 case DW_TAG_union_type:
4213 return "DW_TAG_union_type";
4214 case DW_TAG_unspecified_parameters:
4215 return "DW_TAG_unspecified_parameters";
4216 case DW_TAG_variant:
4217 return "DW_TAG_variant";
4218 case DW_TAG_common_block:
4219 return "DW_TAG_common_block";
4220 case DW_TAG_common_inclusion:
4221 return "DW_TAG_common_inclusion";
4222 case DW_TAG_inheritance:
4223 return "DW_TAG_inheritance";
4224 case DW_TAG_inlined_subroutine:
4225 return "DW_TAG_inlined_subroutine";
4226 case DW_TAG_module:
4227 return "DW_TAG_module";
4228 case DW_TAG_ptr_to_member_type:
4229 return "DW_TAG_ptr_to_member_type";
4230 case DW_TAG_set_type:
4231 return "DW_TAG_set_type";
4232 case DW_TAG_subrange_type:
4233 return "DW_TAG_subrange_type";
4234 case DW_TAG_with_stmt:
4235 return "DW_TAG_with_stmt";
4236 case DW_TAG_access_declaration:
4237 return "DW_TAG_access_declaration";
4238 case DW_TAG_base_type:
4239 return "DW_TAG_base_type";
4240 case DW_TAG_catch_block:
4241 return "DW_TAG_catch_block";
4242 case DW_TAG_const_type:
4243 return "DW_TAG_const_type";
4244 case DW_TAG_constant:
4245 return "DW_TAG_constant";
4246 case DW_TAG_enumerator:
4247 return "DW_TAG_enumerator";
4248 case DW_TAG_file_type:
4249 return "DW_TAG_file_type";
4250 case DW_TAG_friend:
4251 return "DW_TAG_friend";
4252 case DW_TAG_namelist:
4253 return "DW_TAG_namelist";
4254 case DW_TAG_namelist_item:
4255 return "DW_TAG_namelist_item";
4256 case DW_TAG_namespace:
4257 return "DW_TAG_namespace";
4258 case DW_TAG_packed_type:
4259 return "DW_TAG_packed_type";
4260 case DW_TAG_subprogram:
4261 return "DW_TAG_subprogram";
4262 case DW_TAG_template_type_param:
4263 return "DW_TAG_template_type_param";
4264 case DW_TAG_template_value_param:
4265 return "DW_TAG_template_value_param";
4266 case DW_TAG_thrown_type:
4267 return "DW_TAG_thrown_type";
4268 case DW_TAG_try_block:
4269 return "DW_TAG_try_block";
4270 case DW_TAG_variant_part:
4271 return "DW_TAG_variant_part";
4272 case DW_TAG_variable:
4273 return "DW_TAG_variable";
4274 case DW_TAG_volatile_type:
4275 return "DW_TAG_volatile_type";
4276 case DW_TAG_imported_module:
4277 return "DW_TAG_imported_module";
4278 case DW_TAG_MIPS_loop:
4279 return "DW_TAG_MIPS_loop";
4280 case DW_TAG_format_label:
4281 return "DW_TAG_format_label";
4282 case DW_TAG_function_template:
4283 return "DW_TAG_function_template";
4284 case DW_TAG_class_template:
4285 return "DW_TAG_class_template";
4286 case DW_TAG_GNU_BINCL:
4287 return "DW_TAG_GNU_BINCL";
4288 case DW_TAG_GNU_EINCL:
4289 return "DW_TAG_GNU_EINCL";
4290 default:
4291 return "DW_TAG_<unknown>";
4292 }
4293 }
4294
4295 /* Convert a DWARF attribute code into its string name. */
4296
4297 static const char *
4298 dwarf_attr_name (unsigned int attr)
4299 {
4300 switch (attr)
4301 {
4302 case DW_AT_sibling:
4303 return "DW_AT_sibling";
4304 case DW_AT_location:
4305 return "DW_AT_location";
4306 case DW_AT_name:
4307 return "DW_AT_name";
4308 case DW_AT_ordering:
4309 return "DW_AT_ordering";
4310 case DW_AT_subscr_data:
4311 return "DW_AT_subscr_data";
4312 case DW_AT_byte_size:
4313 return "DW_AT_byte_size";
4314 case DW_AT_bit_offset:
4315 return "DW_AT_bit_offset";
4316 case DW_AT_bit_size:
4317 return "DW_AT_bit_size";
4318 case DW_AT_element_list:
4319 return "DW_AT_element_list";
4320 case DW_AT_stmt_list:
4321 return "DW_AT_stmt_list";
4322 case DW_AT_low_pc:
4323 return "DW_AT_low_pc";
4324 case DW_AT_high_pc:
4325 return "DW_AT_high_pc";
4326 case DW_AT_language:
4327 return "DW_AT_language";
4328 case DW_AT_member:
4329 return "DW_AT_member";
4330 case DW_AT_discr:
4331 return "DW_AT_discr";
4332 case DW_AT_discr_value:
4333 return "DW_AT_discr_value";
4334 case DW_AT_visibility:
4335 return "DW_AT_visibility";
4336 case DW_AT_import:
4337 return "DW_AT_import";
4338 case DW_AT_string_length:
4339 return "DW_AT_string_length";
4340 case DW_AT_common_reference:
4341 return "DW_AT_common_reference";
4342 case DW_AT_comp_dir:
4343 return "DW_AT_comp_dir";
4344 case DW_AT_const_value:
4345 return "DW_AT_const_value";
4346 case DW_AT_containing_type:
4347 return "DW_AT_containing_type";
4348 case DW_AT_default_value:
4349 return "DW_AT_default_value";
4350 case DW_AT_inline:
4351 return "DW_AT_inline";
4352 case DW_AT_is_optional:
4353 return "DW_AT_is_optional";
4354 case DW_AT_lower_bound:
4355 return "DW_AT_lower_bound";
4356 case DW_AT_producer:
4357 return "DW_AT_producer";
4358 case DW_AT_prototyped:
4359 return "DW_AT_prototyped";
4360 case DW_AT_return_addr:
4361 return "DW_AT_return_addr";
4362 case DW_AT_start_scope:
4363 return "DW_AT_start_scope";
4364 case DW_AT_stride_size:
4365 return "DW_AT_stride_size";
4366 case DW_AT_upper_bound:
4367 return "DW_AT_upper_bound";
4368 case DW_AT_abstract_origin:
4369 return "DW_AT_abstract_origin";
4370 case DW_AT_accessibility:
4371 return "DW_AT_accessibility";
4372 case DW_AT_address_class:
4373 return "DW_AT_address_class";
4374 case DW_AT_artificial:
4375 return "DW_AT_artificial";
4376 case DW_AT_base_types:
4377 return "DW_AT_base_types";
4378 case DW_AT_calling_convention:
4379 return "DW_AT_calling_convention";
4380 case DW_AT_count:
4381 return "DW_AT_count";
4382 case DW_AT_data_member_location:
4383 return "DW_AT_data_member_location";
4384 case DW_AT_decl_column:
4385 return "DW_AT_decl_column";
4386 case DW_AT_decl_file:
4387 return "DW_AT_decl_file";
4388 case DW_AT_decl_line:
4389 return "DW_AT_decl_line";
4390 case DW_AT_declaration:
4391 return "DW_AT_declaration";
4392 case DW_AT_discr_list:
4393 return "DW_AT_discr_list";
4394 case DW_AT_encoding:
4395 return "DW_AT_encoding";
4396 case DW_AT_external:
4397 return "DW_AT_external";
4398 case DW_AT_frame_base:
4399 return "DW_AT_frame_base";
4400 case DW_AT_friend:
4401 return "DW_AT_friend";
4402 case DW_AT_identifier_case:
4403 return "DW_AT_identifier_case";
4404 case DW_AT_macro_info:
4405 return "DW_AT_macro_info";
4406 case DW_AT_namelist_items:
4407 return "DW_AT_namelist_items";
4408 case DW_AT_priority:
4409 return "DW_AT_priority";
4410 case DW_AT_segment:
4411 return "DW_AT_segment";
4412 case DW_AT_specification:
4413 return "DW_AT_specification";
4414 case DW_AT_static_link:
4415 return "DW_AT_static_link";
4416 case DW_AT_type:
4417 return "DW_AT_type";
4418 case DW_AT_use_location:
4419 return "DW_AT_use_location";
4420 case DW_AT_variable_parameter:
4421 return "DW_AT_variable_parameter";
4422 case DW_AT_virtuality:
4423 return "DW_AT_virtuality";
4424 case DW_AT_vtable_elem_location:
4425 return "DW_AT_vtable_elem_location";
4426
4427 case DW_AT_allocated:
4428 return "DW_AT_allocated";
4429 case DW_AT_associated:
4430 return "DW_AT_associated";
4431 case DW_AT_data_location:
4432 return "DW_AT_data_location";
4433 case DW_AT_stride:
4434 return "DW_AT_stride";
4435 case DW_AT_entry_pc:
4436 return "DW_AT_entry_pc";
4437 case DW_AT_use_UTF8:
4438 return "DW_AT_use_UTF8";
4439 case DW_AT_extension:
4440 return "DW_AT_extension";
4441 case DW_AT_ranges:
4442 return "DW_AT_ranges";
4443 case DW_AT_trampoline:
4444 return "DW_AT_trampoline";
4445 case DW_AT_call_column:
4446 return "DW_AT_call_column";
4447 case DW_AT_call_file:
4448 return "DW_AT_call_file";
4449 case DW_AT_call_line:
4450 return "DW_AT_call_line";
4451
4452 case DW_AT_MIPS_fde:
4453 return "DW_AT_MIPS_fde";
4454 case DW_AT_MIPS_loop_begin:
4455 return "DW_AT_MIPS_loop_begin";
4456 case DW_AT_MIPS_tail_loop_begin:
4457 return "DW_AT_MIPS_tail_loop_begin";
4458 case DW_AT_MIPS_epilog_begin:
4459 return "DW_AT_MIPS_epilog_begin";
4460 case DW_AT_MIPS_loop_unroll_factor:
4461 return "DW_AT_MIPS_loop_unroll_factor";
4462 case DW_AT_MIPS_software_pipeline_depth:
4463 return "DW_AT_MIPS_software_pipeline_depth";
4464 case DW_AT_MIPS_linkage_name:
4465 return "DW_AT_MIPS_linkage_name";
4466 case DW_AT_MIPS_stride:
4467 return "DW_AT_MIPS_stride";
4468 case DW_AT_MIPS_abstract_name:
4469 return "DW_AT_MIPS_abstract_name";
4470 case DW_AT_MIPS_clone_origin:
4471 return "DW_AT_MIPS_clone_origin";
4472 case DW_AT_MIPS_has_inlines:
4473 return "DW_AT_MIPS_has_inlines";
4474
4475 case DW_AT_sf_names:
4476 return "DW_AT_sf_names";
4477 case DW_AT_src_info:
4478 return "DW_AT_src_info";
4479 case DW_AT_mac_info:
4480 return "DW_AT_mac_info";
4481 case DW_AT_src_coords:
4482 return "DW_AT_src_coords";
4483 case DW_AT_body_begin:
4484 return "DW_AT_body_begin";
4485 case DW_AT_body_end:
4486 return "DW_AT_body_end";
4487 case DW_AT_GNU_vector:
4488 return "DW_AT_GNU_vector";
4489
4490 case DW_AT_VMS_rtnbeg_pd_address:
4491 return "DW_AT_VMS_rtnbeg_pd_address";
4492
4493 default:
4494 return "DW_AT_<unknown>";
4495 }
4496 }
4497
4498 /* Convert a DWARF value form code into its string name. */
4499
4500 static const char *
4501 dwarf_form_name (unsigned int form)
4502 {
4503 switch (form)
4504 {
4505 case DW_FORM_addr:
4506 return "DW_FORM_addr";
4507 case DW_FORM_block2:
4508 return "DW_FORM_block2";
4509 case DW_FORM_block4:
4510 return "DW_FORM_block4";
4511 case DW_FORM_data2:
4512 return "DW_FORM_data2";
4513 case DW_FORM_data4:
4514 return "DW_FORM_data4";
4515 case DW_FORM_data8:
4516 return "DW_FORM_data8";
4517 case DW_FORM_string:
4518 return "DW_FORM_string";
4519 case DW_FORM_block:
4520 return "DW_FORM_block";
4521 case DW_FORM_block1:
4522 return "DW_FORM_block1";
4523 case DW_FORM_data1:
4524 return "DW_FORM_data1";
4525 case DW_FORM_flag:
4526 return "DW_FORM_flag";
4527 case DW_FORM_sdata:
4528 return "DW_FORM_sdata";
4529 case DW_FORM_strp:
4530 return "DW_FORM_strp";
4531 case DW_FORM_udata:
4532 return "DW_FORM_udata";
4533 case DW_FORM_ref_addr:
4534 return "DW_FORM_ref_addr";
4535 case DW_FORM_ref1:
4536 return "DW_FORM_ref1";
4537 case DW_FORM_ref2:
4538 return "DW_FORM_ref2";
4539 case DW_FORM_ref4:
4540 return "DW_FORM_ref4";
4541 case DW_FORM_ref8:
4542 return "DW_FORM_ref8";
4543 case DW_FORM_ref_udata:
4544 return "DW_FORM_ref_udata";
4545 case DW_FORM_indirect:
4546 return "DW_FORM_indirect";
4547 default:
4548 return "DW_FORM_<unknown>";
4549 }
4550 }
4551
4552 /* Convert a DWARF type code into its string name. */
4553
4554 #if 0
4555 static const char *
4556 dwarf_type_encoding_name (unsigned enc)
4557 {
4558 switch (enc)
4559 {
4560 case DW_ATE_address:
4561 return "DW_ATE_address";
4562 case DW_ATE_boolean:
4563 return "DW_ATE_boolean";
4564 case DW_ATE_complex_float:
4565 return "DW_ATE_complex_float";
4566 case DW_ATE_float:
4567 return "DW_ATE_float";
4568 case DW_ATE_signed:
4569 return "DW_ATE_signed";
4570 case DW_ATE_signed_char:
4571 return "DW_ATE_signed_char";
4572 case DW_ATE_unsigned:
4573 return "DW_ATE_unsigned";
4574 case DW_ATE_unsigned_char:
4575 return "DW_ATE_unsigned_char";
4576 default:
4577 return "DW_ATE_<unknown>";
4578 }
4579 }
4580 #endif
4581 \f
4582 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4583 instance of an inlined instance of a decl which is local to an inline
4584 function, so we have to trace all of the way back through the origin chain
4585 to find out what sort of node actually served as the original seed for the
4586 given block. */
4587
4588 static tree
4589 decl_ultimate_origin (tree decl)
4590 {
4591 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4592 nodes in the function to point to themselves; ignore that if
4593 we're trying to output the abstract instance of this function. */
4594 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4595 return NULL_TREE;
4596
4597 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4598 most distant ancestor, this should never happen. */
4599 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4600
4601 return DECL_ABSTRACT_ORIGIN (decl);
4602 }
4603
4604 /* Determine the "ultimate origin" of a block. The block may be an inlined
4605 instance of an inlined instance of a block which is local to an inline
4606 function, so we have to trace all of the way back through the origin chain
4607 to find out what sort of node actually served as the original seed for the
4608 given block. */
4609
4610 static tree
4611 block_ultimate_origin (tree block)
4612 {
4613 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4614
4615 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4616 nodes in the function to point to themselves; ignore that if
4617 we're trying to output the abstract instance of this function. */
4618 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4619 return NULL_TREE;
4620
4621 if (immediate_origin == NULL_TREE)
4622 return NULL_TREE;
4623 else
4624 {
4625 tree ret_val;
4626 tree lookahead = immediate_origin;
4627
4628 do
4629 {
4630 ret_val = lookahead;
4631 lookahead = (TREE_CODE (ret_val) == BLOCK
4632 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4633 }
4634 while (lookahead != NULL && lookahead != ret_val);
4635
4636 /* The block's abstract origin chain may not be the *ultimate* origin of
4637 the block. It could lead to a DECL that has an abstract origin set.
4638 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4639 will give us if it has one). Note that DECL's abstract origins are
4640 supposed to be the most distant ancestor (or so decl_ultimate_origin
4641 claims), so we don't need to loop following the DECL origins. */
4642 if (DECL_P (ret_val))
4643 return DECL_ORIGIN (ret_val);
4644
4645 return ret_val;
4646 }
4647 }
4648
4649 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4650 of a virtual function may refer to a base class, so we check the 'this'
4651 parameter. */
4652
4653 static tree
4654 decl_class_context (tree decl)
4655 {
4656 tree context = NULL_TREE;
4657
4658 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4659 context = DECL_CONTEXT (decl);
4660 else
4661 context = TYPE_MAIN_VARIANT
4662 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4663
4664 if (context && !TYPE_P (context))
4665 context = NULL_TREE;
4666
4667 return context;
4668 }
4669 \f
4670 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4671 addition order, and correct that in reverse_all_dies. */
4672
4673 static inline void
4674 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4675 {
4676 if (die != NULL && attr != NULL)
4677 {
4678 attr->dw_attr_next = die->die_attr;
4679 die->die_attr = attr;
4680 }
4681 }
4682
4683 static inline enum dw_val_class
4684 AT_class (dw_attr_ref a)
4685 {
4686 return a->dw_attr_val.val_class;
4687 }
4688
4689 /* Add a flag value attribute to a DIE. */
4690
4691 static inline void
4692 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4693 {
4694 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4695
4696 attr->dw_attr_next = NULL;
4697 attr->dw_attr = attr_kind;
4698 attr->dw_attr_val.val_class = dw_val_class_flag;
4699 attr->dw_attr_val.v.val_flag = flag;
4700 add_dwarf_attr (die, attr);
4701 }
4702
4703 static inline unsigned
4704 AT_flag (dw_attr_ref a)
4705 {
4706 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4707 return a->dw_attr_val.v.val_flag;
4708 }
4709
4710 /* Add a signed integer attribute value to a DIE. */
4711
4712 static inline void
4713 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4714 {
4715 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4716
4717 attr->dw_attr_next = NULL;
4718 attr->dw_attr = attr_kind;
4719 attr->dw_attr_val.val_class = dw_val_class_const;
4720 attr->dw_attr_val.v.val_int = int_val;
4721 add_dwarf_attr (die, attr);
4722 }
4723
4724 static inline HOST_WIDE_INT
4725 AT_int (dw_attr_ref a)
4726 {
4727 gcc_assert (a && AT_class (a) == dw_val_class_const);
4728 return a->dw_attr_val.v.val_int;
4729 }
4730
4731 /* Add an unsigned integer attribute value to a DIE. */
4732
4733 static inline void
4734 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4735 unsigned HOST_WIDE_INT unsigned_val)
4736 {
4737 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4738
4739 attr->dw_attr_next = NULL;
4740 attr->dw_attr = attr_kind;
4741 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4742 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4743 add_dwarf_attr (die, attr);
4744 }
4745
4746 static inline unsigned HOST_WIDE_INT
4747 AT_unsigned (dw_attr_ref a)
4748 {
4749 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4750 return a->dw_attr_val.v.val_unsigned;
4751 }
4752
4753 /* Add an unsigned double integer attribute value to a DIE. */
4754
4755 static inline void
4756 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4757 long unsigned int val_hi, long unsigned int val_low)
4758 {
4759 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4760
4761 attr->dw_attr_next = NULL;
4762 attr->dw_attr = attr_kind;
4763 attr->dw_attr_val.val_class = dw_val_class_long_long;
4764 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4765 attr->dw_attr_val.v.val_long_long.low = val_low;
4766 add_dwarf_attr (die, attr);
4767 }
4768
4769 /* Add a floating point attribute value to a DIE and return it. */
4770
4771 static inline void
4772 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4773 unsigned int length, unsigned int elt_size, unsigned char *array)
4774 {
4775 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4776
4777 attr->dw_attr_next = NULL;
4778 attr->dw_attr = attr_kind;
4779 attr->dw_attr_val.val_class = dw_val_class_vec;
4780 attr->dw_attr_val.v.val_vec.length = length;
4781 attr->dw_attr_val.v.val_vec.elt_size = elt_size;
4782 attr->dw_attr_val.v.val_vec.array = array;
4783 add_dwarf_attr (die, attr);
4784 }
4785
4786 /* Hash and equality functions for debug_str_hash. */
4787
4788 static hashval_t
4789 debug_str_do_hash (const void *x)
4790 {
4791 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4792 }
4793
4794 static int
4795 debug_str_eq (const void *x1, const void *x2)
4796 {
4797 return strcmp ((((const struct indirect_string_node *)x1)->str),
4798 (const char *)x2) == 0;
4799 }
4800
4801 /* Add a string attribute value to a DIE. */
4802
4803 static inline void
4804 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4805 {
4806 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4807 struct indirect_string_node *node;
4808 void **slot;
4809
4810 if (! debug_str_hash)
4811 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4812 debug_str_eq, NULL);
4813
4814 slot = htab_find_slot_with_hash (debug_str_hash, str,
4815 htab_hash_string (str), INSERT);
4816 if (*slot == NULL)
4817 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4818 node = (struct indirect_string_node *) *slot;
4819 node->str = ggc_strdup (str);
4820 node->refcount++;
4821
4822 attr->dw_attr_next = NULL;
4823 attr->dw_attr = attr_kind;
4824 attr->dw_attr_val.val_class = dw_val_class_str;
4825 attr->dw_attr_val.v.val_str = node;
4826 add_dwarf_attr (die, attr);
4827 }
4828
4829 static inline const char *
4830 AT_string (dw_attr_ref a)
4831 {
4832 gcc_assert (a && AT_class (a) == dw_val_class_str);
4833 return a->dw_attr_val.v.val_str->str;
4834 }
4835
4836 /* Find out whether a string should be output inline in DIE
4837 or out-of-line in .debug_str section. */
4838
4839 static int
4840 AT_string_form (dw_attr_ref a)
4841 {
4842 struct indirect_string_node *node;
4843 unsigned int len;
4844 char label[32];
4845
4846 gcc_assert (a && AT_class (a) == dw_val_class_str);
4847
4848 node = a->dw_attr_val.v.val_str;
4849 if (node->form)
4850 return node->form;
4851
4852 len = strlen (node->str) + 1;
4853
4854 /* If the string is shorter or equal to the size of the reference, it is
4855 always better to put it inline. */
4856 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4857 return node->form = DW_FORM_string;
4858
4859 /* If we cannot expect the linker to merge strings in .debug_str
4860 section, only put it into .debug_str if it is worth even in this
4861 single module. */
4862 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4863 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4864 return node->form = DW_FORM_string;
4865
4866 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4867 ++dw2_string_counter;
4868 node->label = xstrdup (label);
4869
4870 return node->form = DW_FORM_strp;
4871 }
4872
4873 /* Add a DIE reference attribute value to a DIE. */
4874
4875 static inline void
4876 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4877 {
4878 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4879
4880 attr->dw_attr_next = NULL;
4881 attr->dw_attr = attr_kind;
4882 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4883 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4884 attr->dw_attr_val.v.val_die_ref.external = 0;
4885 add_dwarf_attr (die, attr);
4886 }
4887
4888 /* Add an AT_specification attribute to a DIE, and also make the back
4889 pointer from the specification to the definition. */
4890
4891 static inline void
4892 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4893 {
4894 add_AT_die_ref (die, DW_AT_specification, targ_die);
4895 gcc_assert (!targ_die->die_definition);
4896 targ_die->die_definition = die;
4897 }
4898
4899 static inline dw_die_ref
4900 AT_ref (dw_attr_ref a)
4901 {
4902 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4903 return a->dw_attr_val.v.val_die_ref.die;
4904 }
4905
4906 static inline int
4907 AT_ref_external (dw_attr_ref a)
4908 {
4909 if (a && AT_class (a) == dw_val_class_die_ref)
4910 return a->dw_attr_val.v.val_die_ref.external;
4911
4912 return 0;
4913 }
4914
4915 static inline void
4916 set_AT_ref_external (dw_attr_ref a, int i)
4917 {
4918 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4919 a->dw_attr_val.v.val_die_ref.external = i;
4920 }
4921
4922 /* Add an FDE reference attribute value to a DIE. */
4923
4924 static inline void
4925 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4926 {
4927 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4928
4929 attr->dw_attr_next = NULL;
4930 attr->dw_attr = attr_kind;
4931 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4932 attr->dw_attr_val.v.val_fde_index = targ_fde;
4933 add_dwarf_attr (die, attr);
4934 }
4935
4936 /* Add a location description attribute value to a DIE. */
4937
4938 static inline void
4939 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4940 {
4941 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4942
4943 attr->dw_attr_next = NULL;
4944 attr->dw_attr = attr_kind;
4945 attr->dw_attr_val.val_class = dw_val_class_loc;
4946 attr->dw_attr_val.v.val_loc = loc;
4947 add_dwarf_attr (die, attr);
4948 }
4949
4950 static inline dw_loc_descr_ref
4951 AT_loc (dw_attr_ref a)
4952 {
4953 gcc_assert (a && AT_class (a) == dw_val_class_loc);
4954 return a->dw_attr_val.v.val_loc;
4955 }
4956
4957 static inline void
4958 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4959 {
4960 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4961
4962 attr->dw_attr_next = NULL;
4963 attr->dw_attr = attr_kind;
4964 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4965 attr->dw_attr_val.v.val_loc_list = loc_list;
4966 add_dwarf_attr (die, attr);
4967 have_location_lists = 1;
4968 }
4969
4970 static inline dw_loc_list_ref
4971 AT_loc_list (dw_attr_ref a)
4972 {
4973 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
4974 return a->dw_attr_val.v.val_loc_list;
4975 }
4976
4977 /* Add an address constant attribute value to a DIE. */
4978
4979 static inline void
4980 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
4981 {
4982 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4983
4984 attr->dw_attr_next = NULL;
4985 attr->dw_attr = attr_kind;
4986 attr->dw_attr_val.val_class = dw_val_class_addr;
4987 attr->dw_attr_val.v.val_addr = addr;
4988 add_dwarf_attr (die, attr);
4989 }
4990
4991 static inline rtx
4992 AT_addr (dw_attr_ref a)
4993 {
4994 gcc_assert (a && AT_class (a) == dw_val_class_addr);
4995 return a->dw_attr_val.v.val_addr;
4996 }
4997
4998 /* Add a label identifier attribute value to a DIE. */
4999
5000 static inline void
5001 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5002 {
5003 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5004
5005 attr->dw_attr_next = NULL;
5006 attr->dw_attr = attr_kind;
5007 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
5008 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5009 add_dwarf_attr (die, attr);
5010 }
5011
5012 /* Add a section offset attribute value to a DIE. */
5013
5014 static inline void
5015 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
5016 {
5017 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5018
5019 attr->dw_attr_next = NULL;
5020 attr->dw_attr = attr_kind;
5021 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
5022 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
5023 add_dwarf_attr (die, attr);
5024 }
5025
5026 /* Add an offset attribute value to a DIE. */
5027
5028 static inline void
5029 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5030 unsigned HOST_WIDE_INT offset)
5031 {
5032 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5033
5034 attr->dw_attr_next = NULL;
5035 attr->dw_attr = attr_kind;
5036 attr->dw_attr_val.val_class = dw_val_class_offset;
5037 attr->dw_attr_val.v.val_offset = offset;
5038 add_dwarf_attr (die, attr);
5039 }
5040
5041 /* Add an range_list attribute value to a DIE. */
5042
5043 static void
5044 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5045 long unsigned int offset)
5046 {
5047 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5048
5049 attr->dw_attr_next = NULL;
5050 attr->dw_attr = attr_kind;
5051 attr->dw_attr_val.val_class = dw_val_class_range_list;
5052 attr->dw_attr_val.v.val_offset = offset;
5053 add_dwarf_attr (die, attr);
5054 }
5055
5056 static inline const char *
5057 AT_lbl (dw_attr_ref a)
5058 {
5059 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5060 || AT_class (a) == dw_val_class_lbl_offset));
5061 return a->dw_attr_val.v.val_lbl_id;
5062 }
5063
5064 /* Get the attribute of type attr_kind. */
5065
5066 static dw_attr_ref
5067 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5068 {
5069 dw_attr_ref a;
5070 dw_die_ref spec = NULL;
5071
5072 if (die != NULL)
5073 {
5074 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5075 if (a->dw_attr == attr_kind)
5076 return a;
5077 else if (a->dw_attr == DW_AT_specification
5078 || a->dw_attr == DW_AT_abstract_origin)
5079 spec = AT_ref (a);
5080
5081 if (spec)
5082 return get_AT (spec, attr_kind);
5083 }
5084
5085 return NULL;
5086 }
5087
5088 /* Return the "low pc" attribute value, typically associated with a subprogram
5089 DIE. Return null if the "low pc" attribute is either not present, or if it
5090 cannot be represented as an assembler label identifier. */
5091
5092 static inline const char *
5093 get_AT_low_pc (dw_die_ref die)
5094 {
5095 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5096
5097 return a ? AT_lbl (a) : NULL;
5098 }
5099
5100 /* Return the "high pc" attribute value, typically associated with a subprogram
5101 DIE. Return null if the "high pc" attribute is either not present, or if it
5102 cannot be represented as an assembler label identifier. */
5103
5104 static inline const char *
5105 get_AT_hi_pc (dw_die_ref die)
5106 {
5107 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5108
5109 return a ? AT_lbl (a) : NULL;
5110 }
5111
5112 /* Return the value of the string attribute designated by ATTR_KIND, or
5113 NULL if it is not present. */
5114
5115 static inline const char *
5116 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5117 {
5118 dw_attr_ref a = get_AT (die, attr_kind);
5119
5120 return a ? AT_string (a) : NULL;
5121 }
5122
5123 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5124 if it is not present. */
5125
5126 static inline int
5127 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5128 {
5129 dw_attr_ref a = get_AT (die, attr_kind);
5130
5131 return a ? AT_flag (a) : 0;
5132 }
5133
5134 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5135 if it is not present. */
5136
5137 static inline unsigned
5138 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5139 {
5140 dw_attr_ref a = get_AT (die, attr_kind);
5141
5142 return a ? AT_unsigned (a) : 0;
5143 }
5144
5145 static inline dw_die_ref
5146 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5147 {
5148 dw_attr_ref a = get_AT (die, attr_kind);
5149
5150 return a ? AT_ref (a) : NULL;
5151 }
5152
5153 /* Return TRUE if the language is C or C++. */
5154
5155 static inline bool
5156 is_c_family (void)
5157 {
5158 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5159
5160 return (lang == DW_LANG_C || lang == DW_LANG_C89
5161 || lang == DW_LANG_C_plus_plus);
5162 }
5163
5164 /* Return TRUE if the language is C++. */
5165
5166 static inline bool
5167 is_cxx (void)
5168 {
5169 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5170 == DW_LANG_C_plus_plus);
5171 }
5172
5173 /* Return TRUE if the language is Fortran. */
5174
5175 static inline bool
5176 is_fortran (void)
5177 {
5178 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5179
5180 return (lang == DW_LANG_Fortran77
5181 || lang == DW_LANG_Fortran90
5182 || lang == DW_LANG_Fortran95);
5183 }
5184
5185 /* Return TRUE if the language is Java. */
5186
5187 static inline bool
5188 is_java (void)
5189 {
5190 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5191
5192 return lang == DW_LANG_Java;
5193 }
5194
5195 /* Return TRUE if the language is Ada. */
5196
5197 static inline bool
5198 is_ada (void)
5199 {
5200 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5201
5202 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5203 }
5204
5205 /* Free up the memory used by A. */
5206
5207 static inline void free_AT (dw_attr_ref);
5208 static inline void
5209 free_AT (dw_attr_ref a)
5210 {
5211 if (AT_class (a) == dw_val_class_str)
5212 if (a->dw_attr_val.v.val_str->refcount)
5213 a->dw_attr_val.v.val_str->refcount--;
5214 }
5215
5216 /* Remove the specified attribute if present. */
5217
5218 static void
5219 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5220 {
5221 dw_attr_ref *p;
5222 dw_attr_ref removed = NULL;
5223
5224 if (die != NULL)
5225 {
5226 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5227 if ((*p)->dw_attr == attr_kind)
5228 {
5229 removed = *p;
5230 *p = (*p)->dw_attr_next;
5231 break;
5232 }
5233
5234 if (removed != 0)
5235 free_AT (removed);
5236 }
5237 }
5238
5239 /* Remove child die whose die_tag is specified tag. */
5240
5241 static void
5242 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5243 {
5244 dw_die_ref current, prev, next;
5245 current = die->die_child;
5246 prev = NULL;
5247 while (current != NULL)
5248 {
5249 if (current->die_tag == tag)
5250 {
5251 next = current->die_sib;
5252 if (prev == NULL)
5253 die->die_child = next;
5254 else
5255 prev->die_sib = next;
5256 free_die (current);
5257 current = next;
5258 }
5259 else
5260 {
5261 prev = current;
5262 current = current->die_sib;
5263 }
5264 }
5265 }
5266
5267 /* Free up the memory used by DIE. */
5268
5269 static inline void
5270 free_die (dw_die_ref die)
5271 {
5272 remove_children (die);
5273 }
5274
5275 /* Discard the children of this DIE. */
5276
5277 static void
5278 remove_children (dw_die_ref die)
5279 {
5280 dw_die_ref child_die = die->die_child;
5281
5282 die->die_child = NULL;
5283
5284 while (child_die != NULL)
5285 {
5286 dw_die_ref tmp_die = child_die;
5287 dw_attr_ref a;
5288
5289 child_die = child_die->die_sib;
5290
5291 for (a = tmp_die->die_attr; a != NULL;)
5292 {
5293 dw_attr_ref tmp_a = a;
5294
5295 a = a->dw_attr_next;
5296 free_AT (tmp_a);
5297 }
5298
5299 free_die (tmp_die);
5300 }
5301 }
5302
5303 /* Add a child DIE below its parent. We build the lists up in reverse
5304 addition order, and correct that in reverse_all_dies. */
5305
5306 static inline void
5307 add_child_die (dw_die_ref die, dw_die_ref child_die)
5308 {
5309 if (die != NULL && child_die != NULL)
5310 {
5311 gcc_assert (die != child_die);
5312
5313 child_die->die_parent = die;
5314 child_die->die_sib = die->die_child;
5315 die->die_child = child_die;
5316 }
5317 }
5318
5319 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5320 is the specification, to the front of PARENT's list of children. */
5321
5322 static void
5323 splice_child_die (dw_die_ref parent, dw_die_ref child)
5324 {
5325 dw_die_ref *p;
5326
5327 /* We want the declaration DIE from inside the class, not the
5328 specification DIE at toplevel. */
5329 if (child->die_parent != parent)
5330 {
5331 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5332
5333 if (tmp)
5334 child = tmp;
5335 }
5336
5337 gcc_assert (child->die_parent == parent
5338 || (child->die_parent
5339 == get_AT_ref (parent, DW_AT_specification)));
5340
5341 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5342 if (*p == child)
5343 {
5344 *p = child->die_sib;
5345 break;
5346 }
5347
5348 child->die_parent = parent;
5349 child->die_sib = parent->die_child;
5350 parent->die_child = child;
5351 }
5352
5353 /* Return a pointer to a newly created DIE node. */
5354
5355 static inline dw_die_ref
5356 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5357 {
5358 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5359
5360 die->die_tag = tag_value;
5361
5362 if (parent_die != NULL)
5363 add_child_die (parent_die, die);
5364 else
5365 {
5366 limbo_die_node *limbo_node;
5367
5368 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5369 limbo_node->die = die;
5370 limbo_node->created_for = t;
5371 limbo_node->next = limbo_die_list;
5372 limbo_die_list = limbo_node;
5373 }
5374
5375 return die;
5376 }
5377
5378 /* Return the DIE associated with the given type specifier. */
5379
5380 static inline dw_die_ref
5381 lookup_type_die (tree type)
5382 {
5383 return TYPE_SYMTAB_DIE (type);
5384 }
5385
5386 /* Equate a DIE to a given type specifier. */
5387
5388 static inline void
5389 equate_type_number_to_die (tree type, dw_die_ref type_die)
5390 {
5391 TYPE_SYMTAB_DIE (type) = type_die;
5392 }
5393
5394 /* Returns a hash value for X (which really is a die_struct). */
5395
5396 static hashval_t
5397 decl_die_table_hash (const void *x)
5398 {
5399 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5400 }
5401
5402 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5403
5404 static int
5405 decl_die_table_eq (const void *x, const void *y)
5406 {
5407 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5408 }
5409
5410 /* Return the DIE associated with a given declaration. */
5411
5412 static inline dw_die_ref
5413 lookup_decl_die (tree decl)
5414 {
5415 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5416 }
5417
5418 /* Returns a hash value for X (which really is a var_loc_list). */
5419
5420 static hashval_t
5421 decl_loc_table_hash (const void *x)
5422 {
5423 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5424 }
5425
5426 /* Return nonzero if decl_id of var_loc_list X is the same as
5427 UID of decl *Y. */
5428
5429 static int
5430 decl_loc_table_eq (const void *x, const void *y)
5431 {
5432 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5433 }
5434
5435 /* Return the var_loc list associated with a given declaration. */
5436
5437 static inline var_loc_list *
5438 lookup_decl_loc (tree decl)
5439 {
5440 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5441 }
5442
5443 /* Equate a DIE to a particular declaration. */
5444
5445 static void
5446 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5447 {
5448 unsigned int decl_id = DECL_UID (decl);
5449 void **slot;
5450
5451 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5452 *slot = decl_die;
5453 decl_die->decl_id = decl_id;
5454 }
5455
5456 /* Add a variable location node to the linked list for DECL. */
5457
5458 static void
5459 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5460 {
5461 unsigned int decl_id = DECL_UID (decl);
5462 var_loc_list *temp;
5463 void **slot;
5464
5465 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5466 if (*slot == NULL)
5467 {
5468 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5469 temp->decl_id = decl_id;
5470 *slot = temp;
5471 }
5472 else
5473 temp = *slot;
5474
5475 if (temp->last)
5476 {
5477 /* If the current location is the same as the end of the list,
5478 we have nothing to do. */
5479 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5480 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5481 {
5482 /* Add LOC to the end of list and update LAST. */
5483 temp->last->next = loc;
5484 temp->last = loc;
5485 }
5486 }
5487 /* Do not add empty location to the beginning of the list. */
5488 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5489 {
5490 temp->first = loc;
5491 temp->last = loc;
5492 }
5493 }
5494 \f
5495 /* Keep track of the number of spaces used to indent the
5496 output of the debugging routines that print the structure of
5497 the DIE internal representation. */
5498 static int print_indent;
5499
5500 /* Indent the line the number of spaces given by print_indent. */
5501
5502 static inline void
5503 print_spaces (FILE *outfile)
5504 {
5505 fprintf (outfile, "%*s", print_indent, "");
5506 }
5507
5508 /* Print the information associated with a given DIE, and its children.
5509 This routine is a debugging aid only. */
5510
5511 static void
5512 print_die (dw_die_ref die, FILE *outfile)
5513 {
5514 dw_attr_ref a;
5515 dw_die_ref c;
5516
5517 print_spaces (outfile);
5518 fprintf (outfile, "DIE %4lu: %s\n",
5519 die->die_offset, dwarf_tag_name (die->die_tag));
5520 print_spaces (outfile);
5521 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5522 fprintf (outfile, " offset: %lu\n", die->die_offset);
5523
5524 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5525 {
5526 print_spaces (outfile);
5527 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5528
5529 switch (AT_class (a))
5530 {
5531 case dw_val_class_addr:
5532 fprintf (outfile, "address");
5533 break;
5534 case dw_val_class_offset:
5535 fprintf (outfile, "offset");
5536 break;
5537 case dw_val_class_loc:
5538 fprintf (outfile, "location descriptor");
5539 break;
5540 case dw_val_class_loc_list:
5541 fprintf (outfile, "location list -> label:%s",
5542 AT_loc_list (a)->ll_symbol);
5543 break;
5544 case dw_val_class_range_list:
5545 fprintf (outfile, "range list");
5546 break;
5547 case dw_val_class_const:
5548 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5549 break;
5550 case dw_val_class_unsigned_const:
5551 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5552 break;
5553 case dw_val_class_long_long:
5554 fprintf (outfile, "constant (%lu,%lu)",
5555 a->dw_attr_val.v.val_long_long.hi,
5556 a->dw_attr_val.v.val_long_long.low);
5557 break;
5558 case dw_val_class_vec:
5559 fprintf (outfile, "floating-point or vector constant");
5560 break;
5561 case dw_val_class_flag:
5562 fprintf (outfile, "%u", AT_flag (a));
5563 break;
5564 case dw_val_class_die_ref:
5565 if (AT_ref (a) != NULL)
5566 {
5567 if (AT_ref (a)->die_symbol)
5568 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5569 else
5570 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5571 }
5572 else
5573 fprintf (outfile, "die -> <null>");
5574 break;
5575 case dw_val_class_lbl_id:
5576 case dw_val_class_lbl_offset:
5577 fprintf (outfile, "label: %s", AT_lbl (a));
5578 break;
5579 case dw_val_class_str:
5580 if (AT_string (a) != NULL)
5581 fprintf (outfile, "\"%s\"", AT_string (a));
5582 else
5583 fprintf (outfile, "<null>");
5584 break;
5585 default:
5586 break;
5587 }
5588
5589 fprintf (outfile, "\n");
5590 }
5591
5592 if (die->die_child != NULL)
5593 {
5594 print_indent += 4;
5595 for (c = die->die_child; c != NULL; c = c->die_sib)
5596 print_die (c, outfile);
5597
5598 print_indent -= 4;
5599 }
5600 if (print_indent == 0)
5601 fprintf (outfile, "\n");
5602 }
5603
5604 /* Print the contents of the source code line number correspondence table.
5605 This routine is a debugging aid only. */
5606
5607 static void
5608 print_dwarf_line_table (FILE *outfile)
5609 {
5610 unsigned i;
5611 dw_line_info_ref line_info;
5612
5613 fprintf (outfile, "\n\nDWARF source line information\n");
5614 for (i = 1; i < line_info_table_in_use; i++)
5615 {
5616 line_info = &line_info_table[i];
5617 fprintf (outfile, "%5d: ", i);
5618 fprintf (outfile, "%-20s",
5619 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5620 fprintf (outfile, "%6ld", line_info->dw_line_num);
5621 fprintf (outfile, "\n");
5622 }
5623
5624 fprintf (outfile, "\n\n");
5625 }
5626
5627 /* Print the information collected for a given DIE. */
5628
5629 void
5630 debug_dwarf_die (dw_die_ref die)
5631 {
5632 print_die (die, stderr);
5633 }
5634
5635 /* Print all DWARF information collected for the compilation unit.
5636 This routine is a debugging aid only. */
5637
5638 void
5639 debug_dwarf (void)
5640 {
5641 print_indent = 0;
5642 print_die (comp_unit_die, stderr);
5643 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5644 print_dwarf_line_table (stderr);
5645 }
5646 \f
5647 /* We build up the lists of children and attributes by pushing new ones
5648 onto the beginning of the list. Reverse the lists for DIE so that
5649 they are in order of addition. */
5650
5651 static void
5652 reverse_die_lists (dw_die_ref die)
5653 {
5654 dw_die_ref c, cp, cn;
5655 dw_attr_ref a, ap, an;
5656
5657 for (a = die->die_attr, ap = 0; a; a = an)
5658 {
5659 an = a->dw_attr_next;
5660 a->dw_attr_next = ap;
5661 ap = a;
5662 }
5663
5664 die->die_attr = ap;
5665
5666 for (c = die->die_child, cp = 0; c; c = cn)
5667 {
5668 cn = c->die_sib;
5669 c->die_sib = cp;
5670 cp = c;
5671 }
5672
5673 die->die_child = cp;
5674 }
5675
5676 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5677 reverse all dies in add_sibling_attributes, which runs through all the dies,
5678 it would reverse all the dies. Now, however, since we don't call
5679 reverse_die_lists in add_sibling_attributes, we need a routine to
5680 recursively reverse all the dies. This is that routine. */
5681
5682 static void
5683 reverse_all_dies (dw_die_ref die)
5684 {
5685 dw_die_ref c;
5686
5687 reverse_die_lists (die);
5688
5689 for (c = die->die_child; c; c = c->die_sib)
5690 reverse_all_dies (c);
5691 }
5692
5693 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5694 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5695 DIE that marks the start of the DIEs for this include file. */
5696
5697 static dw_die_ref
5698 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5699 {
5700 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5701 dw_die_ref new_unit = gen_compile_unit_die (filename);
5702
5703 new_unit->die_sib = old_unit;
5704 return new_unit;
5705 }
5706
5707 /* Close an include-file CU and reopen the enclosing one. */
5708
5709 static dw_die_ref
5710 pop_compile_unit (dw_die_ref old_unit)
5711 {
5712 dw_die_ref new_unit = old_unit->die_sib;
5713
5714 old_unit->die_sib = NULL;
5715 return new_unit;
5716 }
5717
5718 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5719 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5720
5721 /* Calculate the checksum of a location expression. */
5722
5723 static inline void
5724 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5725 {
5726 CHECKSUM (loc->dw_loc_opc);
5727 CHECKSUM (loc->dw_loc_oprnd1);
5728 CHECKSUM (loc->dw_loc_oprnd2);
5729 }
5730
5731 /* Calculate the checksum of an attribute. */
5732
5733 static void
5734 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5735 {
5736 dw_loc_descr_ref loc;
5737 rtx r;
5738
5739 CHECKSUM (at->dw_attr);
5740
5741 /* We don't care about differences in file numbering. */
5742 if (at->dw_attr == DW_AT_decl_file
5743 /* Or that this was compiled with a different compiler snapshot; if
5744 the output is the same, that's what matters. */
5745 || at->dw_attr == DW_AT_producer)
5746 return;
5747
5748 switch (AT_class (at))
5749 {
5750 case dw_val_class_const:
5751 CHECKSUM (at->dw_attr_val.v.val_int);
5752 break;
5753 case dw_val_class_unsigned_const:
5754 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5755 break;
5756 case dw_val_class_long_long:
5757 CHECKSUM (at->dw_attr_val.v.val_long_long);
5758 break;
5759 case dw_val_class_vec:
5760 CHECKSUM (at->dw_attr_val.v.val_vec);
5761 break;
5762 case dw_val_class_flag:
5763 CHECKSUM (at->dw_attr_val.v.val_flag);
5764 break;
5765 case dw_val_class_str:
5766 CHECKSUM_STRING (AT_string (at));
5767 break;
5768
5769 case dw_val_class_addr:
5770 r = AT_addr (at);
5771 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5772 CHECKSUM_STRING (XSTR (r, 0));
5773 break;
5774
5775 case dw_val_class_offset:
5776 CHECKSUM (at->dw_attr_val.v.val_offset);
5777 break;
5778
5779 case dw_val_class_loc:
5780 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5781 loc_checksum (loc, ctx);
5782 break;
5783
5784 case dw_val_class_die_ref:
5785 die_checksum (AT_ref (at), ctx, mark);
5786 break;
5787
5788 case dw_val_class_fde_ref:
5789 case dw_val_class_lbl_id:
5790 case dw_val_class_lbl_offset:
5791 break;
5792
5793 default:
5794 break;
5795 }
5796 }
5797
5798 /* Calculate the checksum of a DIE. */
5799
5800 static void
5801 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5802 {
5803 dw_die_ref c;
5804 dw_attr_ref a;
5805
5806 /* To avoid infinite recursion. */
5807 if (die->die_mark)
5808 {
5809 CHECKSUM (die->die_mark);
5810 return;
5811 }
5812 die->die_mark = ++(*mark);
5813
5814 CHECKSUM (die->die_tag);
5815
5816 for (a = die->die_attr; a; a = a->dw_attr_next)
5817 attr_checksum (a, ctx, mark);
5818
5819 for (c = die->die_child; c; c = c->die_sib)
5820 die_checksum (c, ctx, mark);
5821 }
5822
5823 #undef CHECKSUM
5824 #undef CHECKSUM_STRING
5825
5826 /* Do the location expressions look same? */
5827 static inline int
5828 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5829 {
5830 return loc1->dw_loc_opc == loc2->dw_loc_opc
5831 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5832 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5833 }
5834
5835 /* Do the values look the same? */
5836 static int
5837 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5838 {
5839 dw_loc_descr_ref loc1, loc2;
5840 rtx r1, r2;
5841
5842 if (v1->val_class != v2->val_class)
5843 return 0;
5844
5845 switch (v1->val_class)
5846 {
5847 case dw_val_class_const:
5848 return v1->v.val_int == v2->v.val_int;
5849 case dw_val_class_unsigned_const:
5850 return v1->v.val_unsigned == v2->v.val_unsigned;
5851 case dw_val_class_long_long:
5852 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5853 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5854 case dw_val_class_vec:
5855 if (v1->v.val_vec.length != v2->v.val_vec.length
5856 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
5857 return 0;
5858 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
5859 v1->v.val_vec.length * v1->v.val_vec.elt_size))
5860 return 0;
5861 return 1;
5862 case dw_val_class_flag:
5863 return v1->v.val_flag == v2->v.val_flag;
5864 case dw_val_class_str:
5865 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5866
5867 case dw_val_class_addr:
5868 r1 = v1->v.val_addr;
5869 r2 = v2->v.val_addr;
5870 if (GET_CODE (r1) != GET_CODE (r2))
5871 return 0;
5872 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
5873 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5874
5875 case dw_val_class_offset:
5876 return v1->v.val_offset == v2->v.val_offset;
5877
5878 case dw_val_class_loc:
5879 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5880 loc1 && loc2;
5881 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5882 if (!same_loc_p (loc1, loc2, mark))
5883 return 0;
5884 return !loc1 && !loc2;
5885
5886 case dw_val_class_die_ref:
5887 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5888
5889 case dw_val_class_fde_ref:
5890 case dw_val_class_lbl_id:
5891 case dw_val_class_lbl_offset:
5892 return 1;
5893
5894 default:
5895 return 1;
5896 }
5897 }
5898
5899 /* Do the attributes look the same? */
5900
5901 static int
5902 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5903 {
5904 if (at1->dw_attr != at2->dw_attr)
5905 return 0;
5906
5907 /* We don't care about differences in file numbering. */
5908 if (at1->dw_attr == DW_AT_decl_file
5909 /* Or that this was compiled with a different compiler snapshot; if
5910 the output is the same, that's what matters. */
5911 || at1->dw_attr == DW_AT_producer)
5912 return 1;
5913
5914 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5915 }
5916
5917 /* Do the dies look the same? */
5918
5919 static int
5920 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5921 {
5922 dw_die_ref c1, c2;
5923 dw_attr_ref a1, a2;
5924
5925 /* To avoid infinite recursion. */
5926 if (die1->die_mark)
5927 return die1->die_mark == die2->die_mark;
5928 die1->die_mark = die2->die_mark = ++(*mark);
5929
5930 if (die1->die_tag != die2->die_tag)
5931 return 0;
5932
5933 for (a1 = die1->die_attr, a2 = die2->die_attr;
5934 a1 && a2;
5935 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5936 if (!same_attr_p (a1, a2, mark))
5937 return 0;
5938 if (a1 || a2)
5939 return 0;
5940
5941 for (c1 = die1->die_child, c2 = die2->die_child;
5942 c1 && c2;
5943 c1 = c1->die_sib, c2 = c2->die_sib)
5944 if (!same_die_p (c1, c2, mark))
5945 return 0;
5946 if (c1 || c2)
5947 return 0;
5948
5949 return 1;
5950 }
5951
5952 /* Do the dies look the same? Wrapper around same_die_p. */
5953
5954 static int
5955 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5956 {
5957 int mark = 0;
5958 int ret = same_die_p (die1, die2, &mark);
5959
5960 unmark_all_dies (die1);
5961 unmark_all_dies (die2);
5962
5963 return ret;
5964 }
5965
5966 /* The prefix to attach to symbols on DIEs in the current comdat debug
5967 info section. */
5968 static char *comdat_symbol_id;
5969
5970 /* The index of the current symbol within the current comdat CU. */
5971 static unsigned int comdat_symbol_number;
5972
5973 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5974 children, and set comdat_symbol_id accordingly. */
5975
5976 static void
5977 compute_section_prefix (dw_die_ref unit_die)
5978 {
5979 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5980 const char *base = die_name ? lbasename (die_name) : "anonymous";
5981 char *name = alloca (strlen (base) + 64);
5982 char *p;
5983 int i, mark;
5984 unsigned char checksum[16];
5985 struct md5_ctx ctx;
5986
5987 /* Compute the checksum of the DIE, then append part of it as hex digits to
5988 the name filename of the unit. */
5989
5990 md5_init_ctx (&ctx);
5991 mark = 0;
5992 die_checksum (unit_die, &ctx, &mark);
5993 unmark_all_dies (unit_die);
5994 md5_finish_ctx (&ctx, checksum);
5995
5996 sprintf (name, "%s.", base);
5997 clean_symbol_name (name);
5998
5999 p = name + strlen (name);
6000 for (i = 0; i < 4; i++)
6001 {
6002 sprintf (p, "%.2x", checksum[i]);
6003 p += 2;
6004 }
6005
6006 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6007 comdat_symbol_number = 0;
6008 }
6009
6010 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6011
6012 static int
6013 is_type_die (dw_die_ref die)
6014 {
6015 switch (die->die_tag)
6016 {
6017 case DW_TAG_array_type:
6018 case DW_TAG_class_type:
6019 case DW_TAG_enumeration_type:
6020 case DW_TAG_pointer_type:
6021 case DW_TAG_reference_type:
6022 case DW_TAG_string_type:
6023 case DW_TAG_structure_type:
6024 case DW_TAG_subroutine_type:
6025 case DW_TAG_union_type:
6026 case DW_TAG_ptr_to_member_type:
6027 case DW_TAG_set_type:
6028 case DW_TAG_subrange_type:
6029 case DW_TAG_base_type:
6030 case DW_TAG_const_type:
6031 case DW_TAG_file_type:
6032 case DW_TAG_packed_type:
6033 case DW_TAG_volatile_type:
6034 case DW_TAG_typedef:
6035 return 1;
6036 default:
6037 return 0;
6038 }
6039 }
6040
6041 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6042 Basically, we want to choose the bits that are likely to be shared between
6043 compilations (types) and leave out the bits that are specific to individual
6044 compilations (functions). */
6045
6046 static int
6047 is_comdat_die (dw_die_ref c)
6048 {
6049 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6050 we do for stabs. The advantage is a greater likelihood of sharing between
6051 objects that don't include headers in the same order (and therefore would
6052 put the base types in a different comdat). jason 8/28/00 */
6053
6054 if (c->die_tag == DW_TAG_base_type)
6055 return 0;
6056
6057 if (c->die_tag == DW_TAG_pointer_type
6058 || c->die_tag == DW_TAG_reference_type
6059 || c->die_tag == DW_TAG_const_type
6060 || c->die_tag == DW_TAG_volatile_type)
6061 {
6062 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6063
6064 return t ? is_comdat_die (t) : 0;
6065 }
6066
6067 return is_type_die (c);
6068 }
6069
6070 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6071 compilation unit. */
6072
6073 static int
6074 is_symbol_die (dw_die_ref c)
6075 {
6076 return (is_type_die (c)
6077 || (get_AT (c, DW_AT_declaration)
6078 && !get_AT (c, DW_AT_specification)));
6079 }
6080
6081 static char *
6082 gen_internal_sym (const char *prefix)
6083 {
6084 char buf[256];
6085
6086 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6087 return xstrdup (buf);
6088 }
6089
6090 /* Assign symbols to all worthy DIEs under DIE. */
6091
6092 static void
6093 assign_symbol_names (dw_die_ref die)
6094 {
6095 dw_die_ref c;
6096
6097 if (is_symbol_die (die))
6098 {
6099 if (comdat_symbol_id)
6100 {
6101 char *p = alloca (strlen (comdat_symbol_id) + 64);
6102
6103 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6104 comdat_symbol_id, comdat_symbol_number++);
6105 die->die_symbol = xstrdup (p);
6106 }
6107 else
6108 die->die_symbol = gen_internal_sym ("LDIE");
6109 }
6110
6111 for (c = die->die_child; c != NULL; c = c->die_sib)
6112 assign_symbol_names (c);
6113 }
6114
6115 struct cu_hash_table_entry
6116 {
6117 dw_die_ref cu;
6118 unsigned min_comdat_num, max_comdat_num;
6119 struct cu_hash_table_entry *next;
6120 };
6121
6122 /* Routines to manipulate hash table of CUs. */
6123 static hashval_t
6124 htab_cu_hash (const void *of)
6125 {
6126 const struct cu_hash_table_entry *entry = of;
6127
6128 return htab_hash_string (entry->cu->die_symbol);
6129 }
6130
6131 static int
6132 htab_cu_eq (const void *of1, const void *of2)
6133 {
6134 const struct cu_hash_table_entry *entry1 = of1;
6135 const struct die_struct *entry2 = of2;
6136
6137 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6138 }
6139
6140 static void
6141 htab_cu_del (void *what)
6142 {
6143 struct cu_hash_table_entry *next, *entry = what;
6144
6145 while (entry)
6146 {
6147 next = entry->next;
6148 free (entry);
6149 entry = next;
6150 }
6151 }
6152
6153 /* Check whether we have already seen this CU and set up SYM_NUM
6154 accordingly. */
6155 static int
6156 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6157 {
6158 struct cu_hash_table_entry dummy;
6159 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6160
6161 dummy.max_comdat_num = 0;
6162
6163 slot = (struct cu_hash_table_entry **)
6164 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6165 INSERT);
6166 entry = *slot;
6167
6168 for (; entry; last = entry, entry = entry->next)
6169 {
6170 if (same_die_p_wrap (cu, entry->cu))
6171 break;
6172 }
6173
6174 if (entry)
6175 {
6176 *sym_num = entry->min_comdat_num;
6177 return 1;
6178 }
6179
6180 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6181 entry->cu = cu;
6182 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6183 entry->next = *slot;
6184 *slot = entry;
6185
6186 return 0;
6187 }
6188
6189 /* Record SYM_NUM to record of CU in HTABLE. */
6190 static void
6191 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6192 {
6193 struct cu_hash_table_entry **slot, *entry;
6194
6195 slot = (struct cu_hash_table_entry **)
6196 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6197 NO_INSERT);
6198 entry = *slot;
6199
6200 entry->max_comdat_num = sym_num;
6201 }
6202
6203 /* Traverse the DIE (which is always comp_unit_die), and set up
6204 additional compilation units for each of the include files we see
6205 bracketed by BINCL/EINCL. */
6206
6207 static void
6208 break_out_includes (dw_die_ref die)
6209 {
6210 dw_die_ref *ptr;
6211 dw_die_ref unit = NULL;
6212 limbo_die_node *node, **pnode;
6213 htab_t cu_hash_table;
6214
6215 for (ptr = &(die->die_child); *ptr;)
6216 {
6217 dw_die_ref c = *ptr;
6218
6219 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6220 || (unit && is_comdat_die (c)))
6221 {
6222 /* This DIE is for a secondary CU; remove it from the main one. */
6223 *ptr = c->die_sib;
6224
6225 if (c->die_tag == DW_TAG_GNU_BINCL)
6226 {
6227 unit = push_new_compile_unit (unit, c);
6228 free_die (c);
6229 }
6230 else if (c->die_tag == DW_TAG_GNU_EINCL)
6231 {
6232 unit = pop_compile_unit (unit);
6233 free_die (c);
6234 }
6235 else
6236 add_child_die (unit, c);
6237 }
6238 else
6239 {
6240 /* Leave this DIE in the main CU. */
6241 ptr = &(c->die_sib);
6242 continue;
6243 }
6244 }
6245
6246 #if 0
6247 /* We can only use this in debugging, since the frontend doesn't check
6248 to make sure that we leave every include file we enter. */
6249 gcc_assert (!unit);
6250 #endif
6251
6252 assign_symbol_names (die);
6253 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6254 for (node = limbo_die_list, pnode = &limbo_die_list;
6255 node;
6256 node = node->next)
6257 {
6258 int is_dupl;
6259
6260 compute_section_prefix (node->die);
6261 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6262 &comdat_symbol_number);
6263 assign_symbol_names (node->die);
6264 if (is_dupl)
6265 *pnode = node->next;
6266 else
6267 {
6268 pnode = &node->next;
6269 record_comdat_symbol_number (node->die, cu_hash_table,
6270 comdat_symbol_number);
6271 }
6272 }
6273 htab_delete (cu_hash_table);
6274 }
6275
6276 /* Traverse the DIE and add a sibling attribute if it may have the
6277 effect of speeding up access to siblings. To save some space,
6278 avoid generating sibling attributes for DIE's without children. */
6279
6280 static void
6281 add_sibling_attributes (dw_die_ref die)
6282 {
6283 dw_die_ref c;
6284
6285 if (die->die_tag != DW_TAG_compile_unit
6286 && die->die_sib && die->die_child != NULL)
6287 /* Add the sibling link to the front of the attribute list. */
6288 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6289
6290 for (c = die->die_child; c != NULL; c = c->die_sib)
6291 add_sibling_attributes (c);
6292 }
6293
6294 /* Output all location lists for the DIE and its children. */
6295
6296 static void
6297 output_location_lists (dw_die_ref die)
6298 {
6299 dw_die_ref c;
6300 dw_attr_ref d_attr;
6301
6302 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6303 if (AT_class (d_attr) == dw_val_class_loc_list)
6304 output_loc_list (AT_loc_list (d_attr));
6305
6306 for (c = die->die_child; c != NULL; c = c->die_sib)
6307 output_location_lists (c);
6308
6309 }
6310
6311 /* The format of each DIE (and its attribute value pairs) is encoded in an
6312 abbreviation table. This routine builds the abbreviation table and assigns
6313 a unique abbreviation id for each abbreviation entry. The children of each
6314 die are visited recursively. */
6315
6316 static void
6317 build_abbrev_table (dw_die_ref die)
6318 {
6319 unsigned long abbrev_id;
6320 unsigned int n_alloc;
6321 dw_die_ref c;
6322 dw_attr_ref d_attr, a_attr;
6323
6324 /* Scan the DIE references, and mark as external any that refer to
6325 DIEs from other CUs (i.e. those which are not marked). */
6326 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6327 if (AT_class (d_attr) == dw_val_class_die_ref
6328 && AT_ref (d_attr)->die_mark == 0)
6329 {
6330 gcc_assert (AT_ref (d_attr)->die_symbol);
6331
6332 set_AT_ref_external (d_attr, 1);
6333 }
6334
6335 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6336 {
6337 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6338
6339 if (abbrev->die_tag == die->die_tag)
6340 {
6341 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6342 {
6343 a_attr = abbrev->die_attr;
6344 d_attr = die->die_attr;
6345
6346 while (a_attr != NULL && d_attr != NULL)
6347 {
6348 if ((a_attr->dw_attr != d_attr->dw_attr)
6349 || (value_format (a_attr) != value_format (d_attr)))
6350 break;
6351
6352 a_attr = a_attr->dw_attr_next;
6353 d_attr = d_attr->dw_attr_next;
6354 }
6355
6356 if (a_attr == NULL && d_attr == NULL)
6357 break;
6358 }
6359 }
6360 }
6361
6362 if (abbrev_id >= abbrev_die_table_in_use)
6363 {
6364 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6365 {
6366 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6367 abbrev_die_table = ggc_realloc (abbrev_die_table,
6368 sizeof (dw_die_ref) * n_alloc);
6369
6370 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6371 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6372 abbrev_die_table_allocated = n_alloc;
6373 }
6374
6375 ++abbrev_die_table_in_use;
6376 abbrev_die_table[abbrev_id] = die;
6377 }
6378
6379 die->die_abbrev = abbrev_id;
6380 for (c = die->die_child; c != NULL; c = c->die_sib)
6381 build_abbrev_table (c);
6382 }
6383 \f
6384 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6385
6386 static int
6387 constant_size (long unsigned int value)
6388 {
6389 int log;
6390
6391 if (value == 0)
6392 log = 0;
6393 else
6394 log = floor_log2 (value);
6395
6396 log = log / 8;
6397 log = 1 << (floor_log2 (log) + 1);
6398
6399 return log;
6400 }
6401
6402 /* Return the size of a DIE as it is represented in the
6403 .debug_info section. */
6404
6405 static unsigned long
6406 size_of_die (dw_die_ref die)
6407 {
6408 unsigned long size = 0;
6409 dw_attr_ref a;
6410
6411 size += size_of_uleb128 (die->die_abbrev);
6412 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6413 {
6414 switch (AT_class (a))
6415 {
6416 case dw_val_class_addr:
6417 size += DWARF2_ADDR_SIZE;
6418 break;
6419 case dw_val_class_offset:
6420 size += DWARF_OFFSET_SIZE;
6421 break;
6422 case dw_val_class_loc:
6423 {
6424 unsigned long lsize = size_of_locs (AT_loc (a));
6425
6426 /* Block length. */
6427 size += constant_size (lsize);
6428 size += lsize;
6429 }
6430 break;
6431 case dw_val_class_loc_list:
6432 size += DWARF_OFFSET_SIZE;
6433 break;
6434 case dw_val_class_range_list:
6435 size += DWARF_OFFSET_SIZE;
6436 break;
6437 case dw_val_class_const:
6438 size += size_of_sleb128 (AT_int (a));
6439 break;
6440 case dw_val_class_unsigned_const:
6441 size += constant_size (AT_unsigned (a));
6442 break;
6443 case dw_val_class_long_long:
6444 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6445 break;
6446 case dw_val_class_vec:
6447 size += 1 + (a->dw_attr_val.v.val_vec.length
6448 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6449 break;
6450 case dw_val_class_flag:
6451 size += 1;
6452 break;
6453 case dw_val_class_die_ref:
6454 if (AT_ref_external (a))
6455 size += DWARF2_ADDR_SIZE;
6456 else
6457 size += DWARF_OFFSET_SIZE;
6458 break;
6459 case dw_val_class_fde_ref:
6460 size += DWARF_OFFSET_SIZE;
6461 break;
6462 case dw_val_class_lbl_id:
6463 size += DWARF2_ADDR_SIZE;
6464 break;
6465 case dw_val_class_lbl_offset:
6466 size += DWARF_OFFSET_SIZE;
6467 break;
6468 case dw_val_class_str:
6469 if (AT_string_form (a) == DW_FORM_strp)
6470 size += DWARF_OFFSET_SIZE;
6471 else
6472 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6473 break;
6474 default:
6475 gcc_unreachable ();
6476 }
6477 }
6478
6479 return size;
6480 }
6481
6482 /* Size the debugging information associated with a given DIE. Visits the
6483 DIE's children recursively. Updates the global variable next_die_offset, on
6484 each time through. Uses the current value of next_die_offset to update the
6485 die_offset field in each DIE. */
6486
6487 static void
6488 calc_die_sizes (dw_die_ref die)
6489 {
6490 dw_die_ref c;
6491
6492 die->die_offset = next_die_offset;
6493 next_die_offset += size_of_die (die);
6494
6495 for (c = die->die_child; c != NULL; c = c->die_sib)
6496 calc_die_sizes (c);
6497
6498 if (die->die_child != NULL)
6499 /* Count the null byte used to terminate sibling lists. */
6500 next_die_offset += 1;
6501 }
6502
6503 /* Set the marks for a die and its children. We do this so
6504 that we know whether or not a reference needs to use FORM_ref_addr; only
6505 DIEs in the same CU will be marked. We used to clear out the offset
6506 and use that as the flag, but ran into ordering problems. */
6507
6508 static void
6509 mark_dies (dw_die_ref die)
6510 {
6511 dw_die_ref c;
6512
6513 gcc_assert (!die->die_mark);
6514
6515 die->die_mark = 1;
6516 for (c = die->die_child; c; c = c->die_sib)
6517 mark_dies (c);
6518 }
6519
6520 /* Clear the marks for a die and its children. */
6521
6522 static void
6523 unmark_dies (dw_die_ref die)
6524 {
6525 dw_die_ref c;
6526
6527 gcc_assert (die->die_mark);
6528
6529 die->die_mark = 0;
6530 for (c = die->die_child; c; c = c->die_sib)
6531 unmark_dies (c);
6532 }
6533
6534 /* Clear the marks for a die, its children and referred dies. */
6535
6536 static void
6537 unmark_all_dies (dw_die_ref die)
6538 {
6539 dw_die_ref c;
6540 dw_attr_ref a;
6541
6542 if (!die->die_mark)
6543 return;
6544 die->die_mark = 0;
6545
6546 for (c = die->die_child; c; c = c->die_sib)
6547 unmark_all_dies (c);
6548
6549 for (a = die->die_attr; a; a = a->dw_attr_next)
6550 if (AT_class (a) == dw_val_class_die_ref)
6551 unmark_all_dies (AT_ref (a));
6552 }
6553
6554 /* Return the size of the .debug_pubnames table generated for the
6555 compilation unit. */
6556
6557 static unsigned long
6558 size_of_pubnames (void)
6559 {
6560 unsigned long size;
6561 unsigned i;
6562
6563 size = DWARF_PUBNAMES_HEADER_SIZE;
6564 for (i = 0; i < pubname_table_in_use; i++)
6565 {
6566 pubname_ref p = &pubname_table[i];
6567 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6568 }
6569
6570 size += DWARF_OFFSET_SIZE;
6571 return size;
6572 }
6573
6574 /* Return the size of the information in the .debug_aranges section. */
6575
6576 static unsigned long
6577 size_of_aranges (void)
6578 {
6579 unsigned long size;
6580
6581 size = DWARF_ARANGES_HEADER_SIZE;
6582
6583 /* Count the address/length pair for this compilation unit. */
6584 size += 2 * DWARF2_ADDR_SIZE;
6585 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6586
6587 /* Count the two zero words used to terminated the address range table. */
6588 size += 2 * DWARF2_ADDR_SIZE;
6589 return size;
6590 }
6591 \f
6592 /* Select the encoding of an attribute value. */
6593
6594 static enum dwarf_form
6595 value_format (dw_attr_ref a)
6596 {
6597 switch (a->dw_attr_val.val_class)
6598 {
6599 case dw_val_class_addr:
6600 return DW_FORM_addr;
6601 case dw_val_class_range_list:
6602 case dw_val_class_offset:
6603 switch (DWARF_OFFSET_SIZE)
6604 {
6605 case 4:
6606 return DW_FORM_data4;
6607 case 8:
6608 return DW_FORM_data8;
6609 default:
6610 gcc_unreachable ();
6611 }
6612 case dw_val_class_loc_list:
6613 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6614 .debug_loc section */
6615 return DW_FORM_data4;
6616 case dw_val_class_loc:
6617 switch (constant_size (size_of_locs (AT_loc (a))))
6618 {
6619 case 1:
6620 return DW_FORM_block1;
6621 case 2:
6622 return DW_FORM_block2;
6623 default:
6624 gcc_unreachable ();
6625 }
6626 case dw_val_class_const:
6627 return DW_FORM_sdata;
6628 case dw_val_class_unsigned_const:
6629 switch (constant_size (AT_unsigned (a)))
6630 {
6631 case 1:
6632 return DW_FORM_data1;
6633 case 2:
6634 return DW_FORM_data2;
6635 case 4:
6636 return DW_FORM_data4;
6637 case 8:
6638 return DW_FORM_data8;
6639 default:
6640 gcc_unreachable ();
6641 }
6642 case dw_val_class_long_long:
6643 return DW_FORM_block1;
6644 case dw_val_class_vec:
6645 return DW_FORM_block1;
6646 case dw_val_class_flag:
6647 return DW_FORM_flag;
6648 case dw_val_class_die_ref:
6649 if (AT_ref_external (a))
6650 return DW_FORM_ref_addr;
6651 else
6652 return DW_FORM_ref;
6653 case dw_val_class_fde_ref:
6654 return DW_FORM_data;
6655 case dw_val_class_lbl_id:
6656 return DW_FORM_addr;
6657 case dw_val_class_lbl_offset:
6658 return DW_FORM_data;
6659 case dw_val_class_str:
6660 return AT_string_form (a);
6661
6662 default:
6663 gcc_unreachable ();
6664 }
6665 }
6666
6667 /* Output the encoding of an attribute value. */
6668
6669 static void
6670 output_value_format (dw_attr_ref a)
6671 {
6672 enum dwarf_form form = value_format (a);
6673
6674 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6675 }
6676
6677 /* Output the .debug_abbrev section which defines the DIE abbreviation
6678 table. */
6679
6680 static void
6681 output_abbrev_section (void)
6682 {
6683 unsigned long abbrev_id;
6684
6685 dw_attr_ref a_attr;
6686
6687 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6688 {
6689 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6690
6691 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6692 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6693 dwarf_tag_name (abbrev->die_tag));
6694
6695 if (abbrev->die_child != NULL)
6696 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6697 else
6698 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6699
6700 for (a_attr = abbrev->die_attr; a_attr != NULL;
6701 a_attr = a_attr->dw_attr_next)
6702 {
6703 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6704 dwarf_attr_name (a_attr->dw_attr));
6705 output_value_format (a_attr);
6706 }
6707
6708 dw2_asm_output_data (1, 0, NULL);
6709 dw2_asm_output_data (1, 0, NULL);
6710 }
6711
6712 /* Terminate the table. */
6713 dw2_asm_output_data (1, 0, NULL);
6714 }
6715
6716 /* Output a symbol we can use to refer to this DIE from another CU. */
6717
6718 static inline void
6719 output_die_symbol (dw_die_ref die)
6720 {
6721 char *sym = die->die_symbol;
6722
6723 if (sym == 0)
6724 return;
6725
6726 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6727 /* We make these global, not weak; if the target doesn't support
6728 .linkonce, it doesn't support combining the sections, so debugging
6729 will break. */
6730 targetm.asm_out.globalize_label (asm_out_file, sym);
6731
6732 ASM_OUTPUT_LABEL (asm_out_file, sym);
6733 }
6734
6735 /* Return a new location list, given the begin and end range, and the
6736 expression. gensym tells us whether to generate a new internal symbol for
6737 this location list node, which is done for the head of the list only. */
6738
6739 static inline dw_loc_list_ref
6740 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6741 const char *section, unsigned int gensym)
6742 {
6743 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6744
6745 retlist->begin = begin;
6746 retlist->end = end;
6747 retlist->expr = expr;
6748 retlist->section = section;
6749 if (gensym)
6750 retlist->ll_symbol = gen_internal_sym ("LLST");
6751
6752 return retlist;
6753 }
6754
6755 /* Add a location description expression to a location list. */
6756
6757 static inline void
6758 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6759 const char *begin, const char *end,
6760 const char *section)
6761 {
6762 dw_loc_list_ref *d;
6763
6764 /* Find the end of the chain. */
6765 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6766 ;
6767
6768 /* Add a new location list node to the list. */
6769 *d = new_loc_list (descr, begin, end, section, 0);
6770 }
6771
6772 /* Output the location list given to us. */
6773
6774 static void
6775 output_loc_list (dw_loc_list_ref list_head)
6776 {
6777 dw_loc_list_ref curr = list_head;
6778
6779 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6780
6781 /* Walk the location list, and output each range + expression. */
6782 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6783 {
6784 unsigned long size;
6785 if (separate_line_info_table_in_use == 0)
6786 {
6787 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6788 "Location list begin address (%s)",
6789 list_head->ll_symbol);
6790 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6791 "Location list end address (%s)",
6792 list_head->ll_symbol);
6793 }
6794 else
6795 {
6796 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
6797 "Location list begin address (%s)",
6798 list_head->ll_symbol);
6799 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
6800 "Location list end address (%s)",
6801 list_head->ll_symbol);
6802 }
6803 size = size_of_locs (curr->expr);
6804
6805 /* Output the block length for this list of location operations. */
6806 gcc_assert (size <= 0xffff);
6807 dw2_asm_output_data (2, size, "%s", "Location expression size");
6808
6809 output_loc_sequence (curr->expr);
6810 }
6811
6812 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6813 "Location list terminator begin (%s)",
6814 list_head->ll_symbol);
6815 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6816 "Location list terminator end (%s)",
6817 list_head->ll_symbol);
6818 }
6819
6820 /* Output the DIE and its attributes. Called recursively to generate
6821 the definitions of each child DIE. */
6822
6823 static void
6824 output_die (dw_die_ref die)
6825 {
6826 dw_attr_ref a;
6827 dw_die_ref c;
6828 unsigned long size;
6829
6830 /* If someone in another CU might refer to us, set up a symbol for
6831 them to point to. */
6832 if (die->die_symbol)
6833 output_die_symbol (die);
6834
6835 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6836 die->die_offset, dwarf_tag_name (die->die_tag));
6837
6838 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6839 {
6840 const char *name = dwarf_attr_name (a->dw_attr);
6841
6842 switch (AT_class (a))
6843 {
6844 case dw_val_class_addr:
6845 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6846 break;
6847
6848 case dw_val_class_offset:
6849 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6850 "%s", name);
6851 break;
6852
6853 case dw_val_class_range_list:
6854 {
6855 char *p = strchr (ranges_section_label, '\0');
6856
6857 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6858 a->dw_attr_val.v.val_offset);
6859 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6860 "%s", name);
6861 *p = '\0';
6862 }
6863 break;
6864
6865 case dw_val_class_loc:
6866 size = size_of_locs (AT_loc (a));
6867
6868 /* Output the block length for this list of location operations. */
6869 dw2_asm_output_data (constant_size (size), size, "%s", name);
6870
6871 output_loc_sequence (AT_loc (a));
6872 break;
6873
6874 case dw_val_class_const:
6875 /* ??? It would be slightly more efficient to use a scheme like is
6876 used for unsigned constants below, but gdb 4.x does not sign
6877 extend. Gdb 5.x does sign extend. */
6878 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6879 break;
6880
6881 case dw_val_class_unsigned_const:
6882 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6883 AT_unsigned (a), "%s", name);
6884 break;
6885
6886 case dw_val_class_long_long:
6887 {
6888 unsigned HOST_WIDE_INT first, second;
6889
6890 dw2_asm_output_data (1,
6891 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6892 "%s", name);
6893
6894 if (WORDS_BIG_ENDIAN)
6895 {
6896 first = a->dw_attr_val.v.val_long_long.hi;
6897 second = a->dw_attr_val.v.val_long_long.low;
6898 }
6899 else
6900 {
6901 first = a->dw_attr_val.v.val_long_long.low;
6902 second = a->dw_attr_val.v.val_long_long.hi;
6903 }
6904
6905 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6906 first, "long long constant");
6907 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6908 second, NULL);
6909 }
6910 break;
6911
6912 case dw_val_class_vec:
6913 {
6914 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
6915 unsigned int len = a->dw_attr_val.v.val_vec.length;
6916 unsigned int i;
6917 unsigned char *p;
6918
6919 dw2_asm_output_data (1, len * elt_size, "%s", name);
6920 if (elt_size > sizeof (HOST_WIDE_INT))
6921 {
6922 elt_size /= 2;
6923 len *= 2;
6924 }
6925 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
6926 i < len;
6927 i++, p += elt_size)
6928 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
6929 "fp or vector constant word %u", i);
6930 break;
6931 }
6932
6933 case dw_val_class_flag:
6934 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6935 break;
6936
6937 case dw_val_class_loc_list:
6938 {
6939 char *sym = AT_loc_list (a)->ll_symbol;
6940
6941 gcc_assert (sym);
6942 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, "%s", name);
6943 }
6944 break;
6945
6946 case dw_val_class_die_ref:
6947 if (AT_ref_external (a))
6948 {
6949 char *sym = AT_ref (a)->die_symbol;
6950
6951 gcc_assert (sym);
6952 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6953 }
6954 else
6955 {
6956 gcc_assert (AT_ref (a)->die_offset);
6957 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6958 "%s", name);
6959 }
6960 break;
6961
6962 case dw_val_class_fde_ref:
6963 {
6964 char l1[20];
6965
6966 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6967 a->dw_attr_val.v.val_fde_index * 2);
6968 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6969 }
6970 break;
6971
6972 case dw_val_class_lbl_id:
6973 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6974 break;
6975
6976 case dw_val_class_lbl_offset:
6977 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6978 break;
6979
6980 case dw_val_class_str:
6981 if (AT_string_form (a) == DW_FORM_strp)
6982 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6983 a->dw_attr_val.v.val_str->label,
6984 "%s: \"%s\"", name, AT_string (a));
6985 else
6986 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6987 break;
6988
6989 default:
6990 gcc_unreachable ();
6991 }
6992 }
6993
6994 for (c = die->die_child; c != NULL; c = c->die_sib)
6995 output_die (c);
6996
6997 /* Add null byte to terminate sibling list. */
6998 if (die->die_child != NULL)
6999 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7000 die->die_offset);
7001 }
7002
7003 /* Output the compilation unit that appears at the beginning of the
7004 .debug_info section, and precedes the DIE descriptions. */
7005
7006 static void
7007 output_compilation_unit_header (void)
7008 {
7009 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7010 dw2_asm_output_data (4, 0xffffffff,
7011 "Initial length escape value indicating 64-bit DWARF extension");
7012 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7013 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7014 "Length of Compilation Unit Info");
7015 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7016 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7017 "Offset Into Abbrev. Section");
7018 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7019 }
7020
7021 /* Output the compilation unit DIE and its children. */
7022
7023 static void
7024 output_comp_unit (dw_die_ref die, int output_if_empty)
7025 {
7026 const char *secname;
7027 char *oldsym, *tmp;
7028
7029 /* Unless we are outputting main CU, we may throw away empty ones. */
7030 if (!output_if_empty && die->die_child == NULL)
7031 return;
7032
7033 /* Even if there are no children of this DIE, we must output the information
7034 about the compilation unit. Otherwise, on an empty translation unit, we
7035 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7036 will then complain when examining the file. First mark all the DIEs in
7037 this CU so we know which get local refs. */
7038 mark_dies (die);
7039
7040 build_abbrev_table (die);
7041
7042 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7043 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7044 calc_die_sizes (die);
7045
7046 oldsym = die->die_symbol;
7047 if (oldsym)
7048 {
7049 tmp = alloca (strlen (oldsym) + 24);
7050
7051 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7052 secname = tmp;
7053 die->die_symbol = NULL;
7054 }
7055 else
7056 secname = (const char *) DEBUG_INFO_SECTION;
7057
7058 /* Output debugging information. */
7059 named_section_flags (secname, SECTION_DEBUG);
7060 output_compilation_unit_header ();
7061 output_die (die);
7062
7063 /* Leave the marks on the main CU, so we can check them in
7064 output_pubnames. */
7065 if (oldsym)
7066 {
7067 unmark_dies (die);
7068 die->die_symbol = oldsym;
7069 }
7070 }
7071
7072 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
7073 output of lang_hooks.decl_printable_name for C++ looks like
7074 "A::f(int)". Let's drop the argument list, and maybe the scope. */
7075
7076 static const char *
7077 dwarf2_name (tree decl, int scope)
7078 {
7079 return lang_hooks.decl_printable_name (decl, scope ? 1 : 0);
7080 }
7081
7082 /* Add a new entry to .debug_pubnames if appropriate. */
7083
7084 static void
7085 add_pubname (tree decl, dw_die_ref die)
7086 {
7087 pubname_ref p;
7088
7089 if (! TREE_PUBLIC (decl))
7090 return;
7091
7092 if (pubname_table_in_use == pubname_table_allocated)
7093 {
7094 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7095 pubname_table
7096 = ggc_realloc (pubname_table,
7097 (pubname_table_allocated * sizeof (pubname_entry)));
7098 memset (pubname_table + pubname_table_in_use, 0,
7099 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7100 }
7101
7102 p = &pubname_table[pubname_table_in_use++];
7103 p->die = die;
7104 p->name = xstrdup (dwarf2_name (decl, 1));
7105 }
7106
7107 /* Output the public names table used to speed up access to externally
7108 visible names. For now, only generate entries for externally
7109 visible procedures. */
7110
7111 static void
7112 output_pubnames (void)
7113 {
7114 unsigned i;
7115 unsigned long pubnames_length = size_of_pubnames ();
7116
7117 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7118 dw2_asm_output_data (4, 0xffffffff,
7119 "Initial length escape value indicating 64-bit DWARF extension");
7120 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7121 "Length of Public Names Info");
7122 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7123 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7124 "Offset of Compilation Unit Info");
7125 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7126 "Compilation Unit Length");
7127
7128 for (i = 0; i < pubname_table_in_use; i++)
7129 {
7130 pubname_ref pub = &pubname_table[i];
7131
7132 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7133 gcc_assert (pub->die->die_mark);
7134
7135 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7136 "DIE offset");
7137
7138 dw2_asm_output_nstring (pub->name, -1, "external name");
7139 }
7140
7141 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7142 }
7143
7144 /* Add a new entry to .debug_aranges if appropriate. */
7145
7146 static void
7147 add_arange (tree decl, dw_die_ref die)
7148 {
7149 if (! DECL_SECTION_NAME (decl))
7150 return;
7151
7152 if (arange_table_in_use == arange_table_allocated)
7153 {
7154 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7155 arange_table = ggc_realloc (arange_table,
7156 (arange_table_allocated
7157 * sizeof (dw_die_ref)));
7158 memset (arange_table + arange_table_in_use, 0,
7159 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7160 }
7161
7162 arange_table[arange_table_in_use++] = die;
7163 }
7164
7165 /* Output the information that goes into the .debug_aranges table.
7166 Namely, define the beginning and ending address range of the
7167 text section generated for this compilation unit. */
7168
7169 static void
7170 output_aranges (void)
7171 {
7172 unsigned i;
7173 unsigned long aranges_length = size_of_aranges ();
7174
7175 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7176 dw2_asm_output_data (4, 0xffffffff,
7177 "Initial length escape value indicating 64-bit DWARF extension");
7178 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7179 "Length of Address Ranges Info");
7180 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7181 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7182 "Offset of Compilation Unit Info");
7183 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7184 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7185
7186 /* We need to align to twice the pointer size here. */
7187 if (DWARF_ARANGES_PAD_SIZE)
7188 {
7189 /* Pad using a 2 byte words so that padding is correct for any
7190 pointer size. */
7191 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7192 2 * DWARF2_ADDR_SIZE);
7193 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7194 dw2_asm_output_data (2, 0, NULL);
7195 }
7196
7197 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7198 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7199 text_section_label, "Length");
7200
7201 for (i = 0; i < arange_table_in_use; i++)
7202 {
7203 dw_die_ref die = arange_table[i];
7204
7205 /* We shouldn't see aranges for DIEs outside of the main CU. */
7206 gcc_assert (die->die_mark);
7207
7208 if (die->die_tag == DW_TAG_subprogram)
7209 {
7210 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7211 "Address");
7212 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7213 get_AT_low_pc (die), "Length");
7214 }
7215 else
7216 {
7217 /* A static variable; extract the symbol from DW_AT_location.
7218 Note that this code isn't currently hit, as we only emit
7219 aranges for functions (jason 9/23/99). */
7220 dw_attr_ref a = get_AT (die, DW_AT_location);
7221 dw_loc_descr_ref loc;
7222
7223 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7224
7225 loc = AT_loc (a);
7226 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7227
7228 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7229 loc->dw_loc_oprnd1.v.val_addr, "Address");
7230 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7231 get_AT_unsigned (die, DW_AT_byte_size),
7232 "Length");
7233 }
7234 }
7235
7236 /* Output the terminator words. */
7237 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7238 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7239 }
7240
7241 /* Add a new entry to .debug_ranges. Return the offset at which it
7242 was placed. */
7243
7244 static unsigned int
7245 add_ranges (tree block)
7246 {
7247 unsigned int in_use = ranges_table_in_use;
7248
7249 if (in_use == ranges_table_allocated)
7250 {
7251 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7252 ranges_table
7253 = ggc_realloc (ranges_table, (ranges_table_allocated
7254 * sizeof (struct dw_ranges_struct)));
7255 memset (ranges_table + ranges_table_in_use, 0,
7256 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7257 }
7258
7259 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7260 ranges_table_in_use = in_use + 1;
7261
7262 return in_use * 2 * DWARF2_ADDR_SIZE;
7263 }
7264
7265 static void
7266 output_ranges (void)
7267 {
7268 unsigned i;
7269 static const char *const start_fmt = "Offset 0x%x";
7270 const char *fmt = start_fmt;
7271
7272 for (i = 0; i < ranges_table_in_use; i++)
7273 {
7274 int block_num = ranges_table[i].block_num;
7275
7276 if (block_num)
7277 {
7278 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7279 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7280
7281 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7282 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7283
7284 /* If all code is in the text section, then the compilation
7285 unit base address defaults to DW_AT_low_pc, which is the
7286 base of the text section. */
7287 if (separate_line_info_table_in_use == 0)
7288 {
7289 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7290 text_section_label,
7291 fmt, i * 2 * DWARF2_ADDR_SIZE);
7292 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7293 text_section_label, NULL);
7294 }
7295
7296 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7297 compilation unit base address to zero, which allows us to
7298 use absolute addresses, and not worry about whether the
7299 target supports cross-section arithmetic. */
7300 else
7301 {
7302 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7303 fmt, i * 2 * DWARF2_ADDR_SIZE);
7304 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7305 }
7306
7307 fmt = NULL;
7308 }
7309 else
7310 {
7311 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7312 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7313 fmt = start_fmt;
7314 }
7315 }
7316 }
7317
7318 /* Data structure containing information about input files. */
7319 struct file_info
7320 {
7321 char *path; /* Complete file name. */
7322 char *fname; /* File name part. */
7323 int length; /* Length of entire string. */
7324 int file_idx; /* Index in input file table. */
7325 int dir_idx; /* Index in directory table. */
7326 };
7327
7328 /* Data structure containing information about directories with source
7329 files. */
7330 struct dir_info
7331 {
7332 char *path; /* Path including directory name. */
7333 int length; /* Path length. */
7334 int prefix; /* Index of directory entry which is a prefix. */
7335 int count; /* Number of files in this directory. */
7336 int dir_idx; /* Index of directory used as base. */
7337 int used; /* Used in the end? */
7338 };
7339
7340 /* Callback function for file_info comparison. We sort by looking at
7341 the directories in the path. */
7342
7343 static int
7344 file_info_cmp (const void *p1, const void *p2)
7345 {
7346 const struct file_info *s1 = p1;
7347 const struct file_info *s2 = p2;
7348 unsigned char *cp1;
7349 unsigned char *cp2;
7350
7351 /* Take care of file names without directories. We need to make sure that
7352 we return consistent values to qsort since some will get confused if
7353 we return the same value when identical operands are passed in opposite
7354 orders. So if neither has a directory, return 0 and otherwise return
7355 1 or -1 depending on which one has the directory. */
7356 if ((s1->path == s1->fname || s2->path == s2->fname))
7357 return (s2->path == s2->fname) - (s1->path == s1->fname);
7358
7359 cp1 = (unsigned char *) s1->path;
7360 cp2 = (unsigned char *) s2->path;
7361
7362 while (1)
7363 {
7364 ++cp1;
7365 ++cp2;
7366 /* Reached the end of the first path? If so, handle like above. */
7367 if ((cp1 == (unsigned char *) s1->fname)
7368 || (cp2 == (unsigned char *) s2->fname))
7369 return ((cp2 == (unsigned char *) s2->fname)
7370 - (cp1 == (unsigned char *) s1->fname));
7371
7372 /* Character of current path component the same? */
7373 else if (*cp1 != *cp2)
7374 return *cp1 - *cp2;
7375 }
7376 }
7377
7378 /* Output the directory table and the file name table. We try to minimize
7379 the total amount of memory needed. A heuristic is used to avoid large
7380 slowdowns with many input files. */
7381
7382 static void
7383 output_file_names (void)
7384 {
7385 struct file_info *files;
7386 struct dir_info *dirs;
7387 int *saved;
7388 int *savehere;
7389 int *backmap;
7390 size_t ndirs;
7391 int idx_offset;
7392 size_t i;
7393 int idx;
7394
7395 /* Handle the case where file_table is empty. */
7396 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7397 {
7398 dw2_asm_output_data (1, 0, "End directory table");
7399 dw2_asm_output_data (1, 0, "End file name table");
7400 return;
7401 }
7402
7403 /* Allocate the various arrays we need. */
7404 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7405 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7406
7407 /* Sort the file names. */
7408 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7409 {
7410 char *f;
7411
7412 /* Skip all leading "./". */
7413 f = VARRAY_CHAR_PTR (file_table, i);
7414 while (f[0] == '.' && f[1] == '/')
7415 f += 2;
7416
7417 /* Create a new array entry. */
7418 files[i].path = f;
7419 files[i].length = strlen (f);
7420 files[i].file_idx = i;
7421
7422 /* Search for the file name part. */
7423 f = strrchr (f, '/');
7424 files[i].fname = f == NULL ? files[i].path : f + 1;
7425 }
7426
7427 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7428 sizeof (files[0]), file_info_cmp);
7429
7430 /* Find all the different directories used. */
7431 dirs[0].path = files[1].path;
7432 dirs[0].length = files[1].fname - files[1].path;
7433 dirs[0].prefix = -1;
7434 dirs[0].count = 1;
7435 dirs[0].dir_idx = 0;
7436 dirs[0].used = 0;
7437 files[1].dir_idx = 0;
7438 ndirs = 1;
7439
7440 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7441 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7442 && memcmp (dirs[ndirs - 1].path, files[i].path,
7443 dirs[ndirs - 1].length) == 0)
7444 {
7445 /* Same directory as last entry. */
7446 files[i].dir_idx = ndirs - 1;
7447 ++dirs[ndirs - 1].count;
7448 }
7449 else
7450 {
7451 size_t j;
7452
7453 /* This is a new directory. */
7454 dirs[ndirs].path = files[i].path;
7455 dirs[ndirs].length = files[i].fname - files[i].path;
7456 dirs[ndirs].count = 1;
7457 dirs[ndirs].dir_idx = ndirs;
7458 dirs[ndirs].used = 0;
7459 files[i].dir_idx = ndirs;
7460
7461 /* Search for a prefix. */
7462 dirs[ndirs].prefix = -1;
7463 for (j = 0; j < ndirs; j++)
7464 if (dirs[j].length < dirs[ndirs].length
7465 && dirs[j].length > 1
7466 && (dirs[ndirs].prefix == -1
7467 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7468 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7469 dirs[ndirs].prefix = j;
7470
7471 ++ndirs;
7472 }
7473
7474 /* Now to the actual work. We have to find a subset of the directories which
7475 allow expressing the file name using references to the directory table
7476 with the least amount of characters. We do not do an exhaustive search
7477 where we would have to check out every combination of every single
7478 possible prefix. Instead we use a heuristic which provides nearly optimal
7479 results in most cases and never is much off. */
7480 saved = alloca (ndirs * sizeof (int));
7481 savehere = alloca (ndirs * sizeof (int));
7482
7483 memset (saved, '\0', ndirs * sizeof (saved[0]));
7484 for (i = 0; i < ndirs; i++)
7485 {
7486 size_t j;
7487 int total;
7488
7489 /* We can always save some space for the current directory. But this
7490 does not mean it will be enough to justify adding the directory. */
7491 savehere[i] = dirs[i].length;
7492 total = (savehere[i] - saved[i]) * dirs[i].count;
7493
7494 for (j = i + 1; j < ndirs; j++)
7495 {
7496 savehere[j] = 0;
7497 if (saved[j] < dirs[i].length)
7498 {
7499 /* Determine whether the dirs[i] path is a prefix of the
7500 dirs[j] path. */
7501 int k;
7502
7503 k = dirs[j].prefix;
7504 while (k != -1 && k != (int) i)
7505 k = dirs[k].prefix;
7506
7507 if (k == (int) i)
7508 {
7509 /* Yes it is. We can possibly safe some memory but
7510 writing the filenames in dirs[j] relative to
7511 dirs[i]. */
7512 savehere[j] = dirs[i].length;
7513 total += (savehere[j] - saved[j]) * dirs[j].count;
7514 }
7515 }
7516 }
7517
7518 /* Check whether we can safe enough to justify adding the dirs[i]
7519 directory. */
7520 if (total > dirs[i].length + 1)
7521 {
7522 /* It's worthwhile adding. */
7523 for (j = i; j < ndirs; j++)
7524 if (savehere[j] > 0)
7525 {
7526 /* Remember how much we saved for this directory so far. */
7527 saved[j] = savehere[j];
7528
7529 /* Remember the prefix directory. */
7530 dirs[j].dir_idx = i;
7531 }
7532 }
7533 }
7534
7535 /* We have to emit them in the order they appear in the file_table array
7536 since the index is used in the debug info generation. To do this
7537 efficiently we generate a back-mapping of the indices first. */
7538 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7539 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7540 {
7541 backmap[files[i].file_idx] = i;
7542
7543 /* Mark this directory as used. */
7544 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7545 }
7546
7547 /* That was it. We are ready to emit the information. First emit the
7548 directory name table. We have to make sure the first actually emitted
7549 directory name has index one; zero is reserved for the current working
7550 directory. Make sure we do not confuse these indices with the one for the
7551 constructed table (even though most of the time they are identical). */
7552 idx = 1;
7553 idx_offset = dirs[0].length > 0 ? 1 : 0;
7554 for (i = 1 - idx_offset; i < ndirs; i++)
7555 if (dirs[i].used != 0)
7556 {
7557 dirs[i].used = idx++;
7558 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7559 "Directory Entry: 0x%x", dirs[i].used);
7560 }
7561
7562 dw2_asm_output_data (1, 0, "End directory table");
7563
7564 /* Correct the index for the current working directory entry if it
7565 exists. */
7566 if (idx_offset == 0)
7567 dirs[0].used = 0;
7568
7569 /* Now write all the file names. */
7570 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7571 {
7572 int file_idx = backmap[i];
7573 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7574
7575 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7576 "File Entry: 0x%lx", (unsigned long) i);
7577
7578 /* Include directory index. */
7579 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7580
7581 /* Modification time. */
7582 dw2_asm_output_data_uleb128 (0, NULL);
7583
7584 /* File length in bytes. */
7585 dw2_asm_output_data_uleb128 (0, NULL);
7586 }
7587
7588 dw2_asm_output_data (1, 0, "End file name table");
7589 }
7590
7591
7592 /* Output the source line number correspondence information. This
7593 information goes into the .debug_line section. */
7594
7595 static void
7596 output_line_info (void)
7597 {
7598 char l1[20], l2[20], p1[20], p2[20];
7599 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7600 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7601 unsigned opc;
7602 unsigned n_op_args;
7603 unsigned long lt_index;
7604 unsigned long current_line;
7605 long line_offset;
7606 long line_delta;
7607 unsigned long current_file;
7608 unsigned long function;
7609
7610 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7611 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7612 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7613 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7614
7615 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7616 dw2_asm_output_data (4, 0xffffffff,
7617 "Initial length escape value indicating 64-bit DWARF extension");
7618 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7619 "Length of Source Line Info");
7620 ASM_OUTPUT_LABEL (asm_out_file, l1);
7621
7622 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7623 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7624 ASM_OUTPUT_LABEL (asm_out_file, p1);
7625
7626 /* Define the architecture-dependent minimum instruction length (in
7627 bytes). In this implementation of DWARF, this field is used for
7628 information purposes only. Since GCC generates assembly language,
7629 we have no a priori knowledge of how many instruction bytes are
7630 generated for each source line, and therefore can use only the
7631 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7632 commands. Accordingly, we fix this as `1', which is "correct
7633 enough" for all architectures, and don't let the target override. */
7634 dw2_asm_output_data (1, 1,
7635 "Minimum Instruction Length");
7636
7637 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7638 "Default is_stmt_start flag");
7639 dw2_asm_output_data (1, DWARF_LINE_BASE,
7640 "Line Base Value (Special Opcodes)");
7641 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7642 "Line Range Value (Special Opcodes)");
7643 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7644 "Special Opcode Base");
7645
7646 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7647 {
7648 switch (opc)
7649 {
7650 case DW_LNS_advance_pc:
7651 case DW_LNS_advance_line:
7652 case DW_LNS_set_file:
7653 case DW_LNS_set_column:
7654 case DW_LNS_fixed_advance_pc:
7655 n_op_args = 1;
7656 break;
7657 default:
7658 n_op_args = 0;
7659 break;
7660 }
7661
7662 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7663 opc, n_op_args);
7664 }
7665
7666 /* Write out the information about the files we use. */
7667 output_file_names ();
7668 ASM_OUTPUT_LABEL (asm_out_file, p2);
7669
7670 /* We used to set the address register to the first location in the text
7671 section here, but that didn't accomplish anything since we already
7672 have a line note for the opening brace of the first function. */
7673
7674 /* Generate the line number to PC correspondence table, encoded as
7675 a series of state machine operations. */
7676 current_file = 1;
7677 current_line = 1;
7678 strcpy (prev_line_label, text_section_label);
7679 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7680 {
7681 dw_line_info_ref line_info = &line_info_table[lt_index];
7682
7683 #if 0
7684 /* Disable this optimization for now; GDB wants to see two line notes
7685 at the beginning of a function so it can find the end of the
7686 prologue. */
7687
7688 /* Don't emit anything for redundant notes. Just updating the
7689 address doesn't accomplish anything, because we already assume
7690 that anything after the last address is this line. */
7691 if (line_info->dw_line_num == current_line
7692 && line_info->dw_file_num == current_file)
7693 continue;
7694 #endif
7695
7696 /* Emit debug info for the address of the current line.
7697
7698 Unfortunately, we have little choice here currently, and must always
7699 use the most general form. GCC does not know the address delta
7700 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7701 attributes which will give an upper bound on the address range. We
7702 could perhaps use length attributes to determine when it is safe to
7703 use DW_LNS_fixed_advance_pc. */
7704
7705 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7706 if (0)
7707 {
7708 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7709 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7710 "DW_LNS_fixed_advance_pc");
7711 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7712 }
7713 else
7714 {
7715 /* This can handle any delta. This takes
7716 4+DWARF2_ADDR_SIZE bytes. */
7717 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7718 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7719 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7720 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7721 }
7722
7723 strcpy (prev_line_label, line_label);
7724
7725 /* Emit debug info for the source file of the current line, if
7726 different from the previous line. */
7727 if (line_info->dw_file_num != current_file)
7728 {
7729 current_file = line_info->dw_file_num;
7730 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7731 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7732 VARRAY_CHAR_PTR (file_table,
7733 current_file));
7734 }
7735
7736 /* Emit debug info for the current line number, choosing the encoding
7737 that uses the least amount of space. */
7738 if (line_info->dw_line_num != current_line)
7739 {
7740 line_offset = line_info->dw_line_num - current_line;
7741 line_delta = line_offset - DWARF_LINE_BASE;
7742 current_line = line_info->dw_line_num;
7743 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7744 /* This can handle deltas from -10 to 234, using the current
7745 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7746 takes 1 byte. */
7747 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7748 "line %lu", current_line);
7749 else
7750 {
7751 /* This can handle any delta. This takes at least 4 bytes,
7752 depending on the value being encoded. */
7753 dw2_asm_output_data (1, DW_LNS_advance_line,
7754 "advance to line %lu", current_line);
7755 dw2_asm_output_data_sleb128 (line_offset, NULL);
7756 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7757 }
7758 }
7759 else
7760 /* We still need to start a new row, so output a copy insn. */
7761 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7762 }
7763
7764 /* Emit debug info for the address of the end of the function. */
7765 if (0)
7766 {
7767 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7768 "DW_LNS_fixed_advance_pc");
7769 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7770 }
7771 else
7772 {
7773 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7774 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7775 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7776 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7777 }
7778
7779 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7780 dw2_asm_output_data_uleb128 (1, NULL);
7781 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7782
7783 function = 0;
7784 current_file = 1;
7785 current_line = 1;
7786 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7787 {
7788 dw_separate_line_info_ref line_info
7789 = &separate_line_info_table[lt_index];
7790
7791 #if 0
7792 /* Don't emit anything for redundant notes. */
7793 if (line_info->dw_line_num == current_line
7794 && line_info->dw_file_num == current_file
7795 && line_info->function == function)
7796 goto cont;
7797 #endif
7798
7799 /* Emit debug info for the address of the current line. If this is
7800 a new function, or the first line of a function, then we need
7801 to handle it differently. */
7802 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7803 lt_index);
7804 if (function != line_info->function)
7805 {
7806 function = line_info->function;
7807
7808 /* Set the address register to the first line in the function. */
7809 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7810 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7811 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7812 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7813 }
7814 else
7815 {
7816 /* ??? See the DW_LNS_advance_pc comment above. */
7817 if (0)
7818 {
7819 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7820 "DW_LNS_fixed_advance_pc");
7821 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7822 }
7823 else
7824 {
7825 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7826 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7827 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7828 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7829 }
7830 }
7831
7832 strcpy (prev_line_label, line_label);
7833
7834 /* Emit debug info for the source file of the current line, if
7835 different from the previous line. */
7836 if (line_info->dw_file_num != current_file)
7837 {
7838 current_file = line_info->dw_file_num;
7839 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7840 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7841 VARRAY_CHAR_PTR (file_table,
7842 current_file));
7843 }
7844
7845 /* Emit debug info for the current line number, choosing the encoding
7846 that uses the least amount of space. */
7847 if (line_info->dw_line_num != current_line)
7848 {
7849 line_offset = line_info->dw_line_num - current_line;
7850 line_delta = line_offset - DWARF_LINE_BASE;
7851 current_line = line_info->dw_line_num;
7852 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7853 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7854 "line %lu", current_line);
7855 else
7856 {
7857 dw2_asm_output_data (1, DW_LNS_advance_line,
7858 "advance to line %lu", current_line);
7859 dw2_asm_output_data_sleb128 (line_offset, NULL);
7860 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7861 }
7862 }
7863 else
7864 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7865
7866 #if 0
7867 cont:
7868 #endif
7869
7870 lt_index++;
7871
7872 /* If we're done with a function, end its sequence. */
7873 if (lt_index == separate_line_info_table_in_use
7874 || separate_line_info_table[lt_index].function != function)
7875 {
7876 current_file = 1;
7877 current_line = 1;
7878
7879 /* Emit debug info for the address of the end of the function. */
7880 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7881 if (0)
7882 {
7883 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7884 "DW_LNS_fixed_advance_pc");
7885 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7886 }
7887 else
7888 {
7889 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7890 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7891 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7892 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7893 }
7894
7895 /* Output the marker for the end of this sequence. */
7896 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7897 dw2_asm_output_data_uleb128 (1, NULL);
7898 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7899 }
7900 }
7901
7902 /* Output the marker for the end of the line number info. */
7903 ASM_OUTPUT_LABEL (asm_out_file, l2);
7904 }
7905 \f
7906 /* Given a pointer to a tree node for some base type, return a pointer to
7907 a DIE that describes the given type.
7908
7909 This routine must only be called for GCC type nodes that correspond to
7910 Dwarf base (fundamental) types. */
7911
7912 static dw_die_ref
7913 base_type_die (tree type)
7914 {
7915 dw_die_ref base_type_result;
7916 const char *type_name;
7917 enum dwarf_type encoding;
7918 tree name = TYPE_NAME (type);
7919
7920 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7921 return 0;
7922
7923 if (name)
7924 {
7925 if (TREE_CODE (name) == TYPE_DECL)
7926 name = DECL_NAME (name);
7927
7928 type_name = IDENTIFIER_POINTER (name);
7929 }
7930 else
7931 type_name = "__unknown__";
7932
7933 switch (TREE_CODE (type))
7934 {
7935 case INTEGER_TYPE:
7936 /* Carefully distinguish the C character types, without messing
7937 up if the language is not C. Note that we check only for the names
7938 that contain spaces; other names might occur by coincidence in other
7939 languages. */
7940 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7941 && (type == char_type_node
7942 || ! strcmp (type_name, "signed char")
7943 || ! strcmp (type_name, "unsigned char"))))
7944 {
7945 if (TYPE_UNSIGNED (type))
7946 encoding = DW_ATE_unsigned;
7947 else
7948 encoding = DW_ATE_signed;
7949 break;
7950 }
7951 /* else fall through. */
7952
7953 case CHAR_TYPE:
7954 /* GNU Pascal/Ada CHAR type. Not used in C. */
7955 if (TYPE_UNSIGNED (type))
7956 encoding = DW_ATE_unsigned_char;
7957 else
7958 encoding = DW_ATE_signed_char;
7959 break;
7960
7961 case REAL_TYPE:
7962 encoding = DW_ATE_float;
7963 break;
7964
7965 /* Dwarf2 doesn't know anything about complex ints, so use
7966 a user defined type for it. */
7967 case COMPLEX_TYPE:
7968 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7969 encoding = DW_ATE_complex_float;
7970 else
7971 encoding = DW_ATE_lo_user;
7972 break;
7973
7974 case BOOLEAN_TYPE:
7975 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7976 encoding = DW_ATE_boolean;
7977 break;
7978
7979 default:
7980 /* No other TREE_CODEs are Dwarf fundamental types. */
7981 gcc_unreachable ();
7982 }
7983
7984 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7985 if (demangle_name_func)
7986 type_name = (*demangle_name_func) (type_name);
7987
7988 add_AT_string (base_type_result, DW_AT_name, type_name);
7989 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7990 int_size_in_bytes (type));
7991 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7992
7993 return base_type_result;
7994 }
7995
7996 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7997 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7998 a given type is generally the same as the given type, except that if the
7999 given type is a pointer or reference type, then the root type of the given
8000 type is the root type of the "basis" type for the pointer or reference
8001 type. (This definition of the "root" type is recursive.) Also, the root
8002 type of a `const' qualified type or a `volatile' qualified type is the
8003 root type of the given type without the qualifiers. */
8004
8005 static tree
8006 root_type (tree type)
8007 {
8008 if (TREE_CODE (type) == ERROR_MARK)
8009 return error_mark_node;
8010
8011 switch (TREE_CODE (type))
8012 {
8013 case ERROR_MARK:
8014 return error_mark_node;
8015
8016 case POINTER_TYPE:
8017 case REFERENCE_TYPE:
8018 return type_main_variant (root_type (TREE_TYPE (type)));
8019
8020 default:
8021 return type_main_variant (type);
8022 }
8023 }
8024
8025 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8026 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8027
8028 static inline int
8029 is_base_type (tree type)
8030 {
8031 switch (TREE_CODE (type))
8032 {
8033 case ERROR_MARK:
8034 case VOID_TYPE:
8035 case INTEGER_TYPE:
8036 case REAL_TYPE:
8037 case COMPLEX_TYPE:
8038 case BOOLEAN_TYPE:
8039 case CHAR_TYPE:
8040 return 1;
8041
8042 case ARRAY_TYPE:
8043 case RECORD_TYPE:
8044 case UNION_TYPE:
8045 case QUAL_UNION_TYPE:
8046 case ENUMERAL_TYPE:
8047 case FUNCTION_TYPE:
8048 case METHOD_TYPE:
8049 case POINTER_TYPE:
8050 case REFERENCE_TYPE:
8051 case FILE_TYPE:
8052 case OFFSET_TYPE:
8053 case LANG_TYPE:
8054 case VECTOR_TYPE:
8055 return 0;
8056
8057 default:
8058 gcc_unreachable ();
8059 }
8060
8061 return 0;
8062 }
8063
8064 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8065 node, return the size in bits for the type if it is a constant, or else
8066 return the alignment for the type if the type's size is not constant, or
8067 else return BITS_PER_WORD if the type actually turns out to be an
8068 ERROR_MARK node. */
8069
8070 static inline unsigned HOST_WIDE_INT
8071 simple_type_size_in_bits (tree type)
8072 {
8073 if (TREE_CODE (type) == ERROR_MARK)
8074 return BITS_PER_WORD;
8075 else if (TYPE_SIZE (type) == NULL_TREE)
8076 return 0;
8077 else if (host_integerp (TYPE_SIZE (type), 1))
8078 return tree_low_cst (TYPE_SIZE (type), 1);
8079 else
8080 return TYPE_ALIGN (type);
8081 }
8082
8083 /* Return true if the debug information for the given type should be
8084 emitted as a subrange type. */
8085
8086 static inline bool
8087 is_subrange_type (tree type)
8088 {
8089 tree subtype = TREE_TYPE (type);
8090
8091 /* Subrange types are identified by the fact that they are integer
8092 types, and that they have a subtype which is either an integer type
8093 or an enumeral type. */
8094
8095 if (TREE_CODE (type) != INTEGER_TYPE
8096 || subtype == NULL_TREE)
8097 return false;
8098
8099 if (TREE_CODE (subtype) != INTEGER_TYPE
8100 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8101 return false;
8102
8103 if (TREE_CODE (type) == TREE_CODE (subtype)
8104 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8105 && TYPE_MIN_VALUE (type) != NULL
8106 && TYPE_MIN_VALUE (subtype) != NULL
8107 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8108 && TYPE_MAX_VALUE (type) != NULL
8109 && TYPE_MAX_VALUE (subtype) != NULL
8110 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8111 {
8112 /* The type and its subtype have the same representation. If in
8113 addition the two types also have the same name, then the given
8114 type is not a subrange type, but rather a plain base type. */
8115 /* FIXME: brobecker/2004-03-22:
8116 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8117 therefore be sufficient to check the TYPE_SIZE node pointers
8118 rather than checking the actual size. Unfortunately, we have
8119 found some cases, such as in the Ada "integer" type, where
8120 this is not the case. Until this problem is solved, we need to
8121 keep checking the actual size. */
8122 tree type_name = TYPE_NAME (type);
8123 tree subtype_name = TYPE_NAME (subtype);
8124
8125 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8126 type_name = DECL_NAME (type_name);
8127
8128 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8129 subtype_name = DECL_NAME (subtype_name);
8130
8131 if (type_name == subtype_name)
8132 return false;
8133 }
8134
8135 return true;
8136 }
8137
8138 /* Given a pointer to a tree node for a subrange type, return a pointer
8139 to a DIE that describes the given type. */
8140
8141 static dw_die_ref
8142 subrange_type_die (tree type, dw_die_ref context_die)
8143 {
8144 dw_die_ref subtype_die;
8145 dw_die_ref subrange_die;
8146 tree name = TYPE_NAME (type);
8147 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8148 tree subtype = TREE_TYPE (type);
8149
8150 if (context_die == NULL)
8151 context_die = comp_unit_die;
8152
8153 if (TREE_CODE (subtype) == ENUMERAL_TYPE)
8154 subtype_die = gen_enumeration_type_die (subtype, context_die);
8155 else
8156 subtype_die = base_type_die (subtype);
8157
8158 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8159
8160 if (name != NULL)
8161 {
8162 if (TREE_CODE (name) == TYPE_DECL)
8163 name = DECL_NAME (name);
8164 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
8165 }
8166
8167 if (int_size_in_bytes (subtype) != size_in_bytes)
8168 {
8169 /* The size of the subrange type and its base type do not match,
8170 so we need to generate a size attribute for the subrange type. */
8171 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8172 }
8173
8174 if (TYPE_MIN_VALUE (type) != NULL)
8175 add_bound_info (subrange_die, DW_AT_lower_bound,
8176 TYPE_MIN_VALUE (type));
8177 if (TYPE_MAX_VALUE (type) != NULL)
8178 add_bound_info (subrange_die, DW_AT_upper_bound,
8179 TYPE_MAX_VALUE (type));
8180 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
8181
8182 return subrange_die;
8183 }
8184
8185 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8186 entry that chains various modifiers in front of the given type. */
8187
8188 static dw_die_ref
8189 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8190 dw_die_ref context_die)
8191 {
8192 enum tree_code code = TREE_CODE (type);
8193 dw_die_ref mod_type_die = NULL;
8194 dw_die_ref sub_die = NULL;
8195 tree item_type = NULL;
8196
8197 if (code != ERROR_MARK)
8198 {
8199 tree qualified_type;
8200
8201 /* See if we already have the appropriately qualified variant of
8202 this type. */
8203 qualified_type
8204 = get_qualified_type (type,
8205 ((is_const_type ? TYPE_QUAL_CONST : 0)
8206 | (is_volatile_type
8207 ? TYPE_QUAL_VOLATILE : 0)));
8208
8209 /* If we do, then we can just use its DIE, if it exists. */
8210 if (qualified_type)
8211 {
8212 mod_type_die = lookup_type_die (qualified_type);
8213 if (mod_type_die)
8214 return mod_type_die;
8215 }
8216
8217 /* Handle C typedef types. */
8218 if (qualified_type && TYPE_NAME (qualified_type)
8219 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8220 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8221 {
8222 tree type_name = TYPE_NAME (qualified_type);
8223 tree dtype = TREE_TYPE (type_name);
8224
8225 if (qualified_type == dtype)
8226 {
8227 /* For a named type, use the typedef. */
8228 gen_type_die (qualified_type, context_die);
8229 mod_type_die = lookup_type_die (qualified_type);
8230 }
8231 else if (is_const_type < TYPE_READONLY (dtype)
8232 || is_volatile_type < TYPE_VOLATILE (dtype))
8233 /* cv-unqualified version of named type. Just use the unnamed
8234 type to which it refers. */
8235 mod_type_die
8236 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8237 is_const_type, is_volatile_type,
8238 context_die);
8239
8240 /* Else cv-qualified version of named type; fall through. */
8241 }
8242
8243 if (mod_type_die)
8244 /* OK. */
8245 ;
8246 else if (is_const_type)
8247 {
8248 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8249 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8250 }
8251 else if (is_volatile_type)
8252 {
8253 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8254 sub_die = modified_type_die (type, 0, 0, context_die);
8255 }
8256 else if (code == POINTER_TYPE)
8257 {
8258 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8259 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8260 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8261 #if 0
8262 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8263 #endif
8264 item_type = TREE_TYPE (type);
8265 }
8266 else if (code == REFERENCE_TYPE)
8267 {
8268 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8269 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8270 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8271 #if 0
8272 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8273 #endif
8274 item_type = TREE_TYPE (type);
8275 }
8276 else if (is_subrange_type (type))
8277 mod_type_die = subrange_type_die (type, context_die);
8278 else if (is_base_type (type))
8279 mod_type_die = base_type_die (type);
8280 else
8281 {
8282 gen_type_die (type, context_die);
8283
8284 /* We have to get the type_main_variant here (and pass that to the
8285 `lookup_type_die' routine) because the ..._TYPE node we have
8286 might simply be a *copy* of some original type node (where the
8287 copy was created to help us keep track of typedef names) and
8288 that copy might have a different TYPE_UID from the original
8289 ..._TYPE node. */
8290 if (TREE_CODE (type) != VECTOR_TYPE)
8291 mod_type_die = lookup_type_die (type_main_variant (type));
8292 else
8293 /* Vectors have the debugging information in the type,
8294 not the main variant. */
8295 mod_type_die = lookup_type_die (type);
8296 gcc_assert (mod_type_die);
8297 }
8298
8299 /* We want to equate the qualified type to the die below. */
8300 type = qualified_type;
8301 }
8302
8303 if (type)
8304 equate_type_number_to_die (type, mod_type_die);
8305 if (item_type)
8306 /* We must do this after the equate_type_number_to_die call, in case
8307 this is a recursive type. This ensures that the modified_type_die
8308 recursion will terminate even if the type is recursive. Recursive
8309 types are possible in Ada. */
8310 sub_die = modified_type_die (item_type,
8311 TYPE_READONLY (item_type),
8312 TYPE_VOLATILE (item_type),
8313 context_die);
8314
8315 if (sub_die != NULL)
8316 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8317
8318 return mod_type_die;
8319 }
8320
8321 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8322 an enumerated type. */
8323
8324 static inline int
8325 type_is_enum (tree type)
8326 {
8327 return TREE_CODE (type) == ENUMERAL_TYPE;
8328 }
8329
8330 /* Return the DBX register number described by a given RTL node. */
8331
8332 static unsigned int
8333 dbx_reg_number (rtx rtl)
8334 {
8335 unsigned regno = REGNO (rtl);
8336
8337 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8338
8339 return DBX_REGISTER_NUMBER (regno);
8340 }
8341
8342 /* Return a location descriptor that designates a machine register or
8343 zero if there is none. */
8344
8345 static dw_loc_descr_ref
8346 reg_loc_descriptor (rtx rtl)
8347 {
8348 unsigned reg;
8349 rtx regs;
8350
8351 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8352 return 0;
8353
8354 reg = dbx_reg_number (rtl);
8355 regs = targetm.dwarf_register_span (rtl);
8356
8357 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1
8358 || regs)
8359 return multiple_reg_loc_descriptor (rtl, regs);
8360 else
8361 return one_reg_loc_descriptor (reg);
8362 }
8363
8364 /* Return a location descriptor that designates a machine register for
8365 a given hard register number. */
8366
8367 static dw_loc_descr_ref
8368 one_reg_loc_descriptor (unsigned int regno)
8369 {
8370 if (regno <= 31)
8371 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8372 else
8373 return new_loc_descr (DW_OP_regx, regno, 0);
8374 }
8375
8376 /* Given an RTL of a register, return a location descriptor that
8377 designates a value that spans more than one register. */
8378
8379 static dw_loc_descr_ref
8380 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8381 {
8382 int nregs, size, i;
8383 unsigned reg;
8384 dw_loc_descr_ref loc_result = NULL;
8385
8386 reg = dbx_reg_number (rtl);
8387 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8388
8389 /* Simple, contiguous registers. */
8390 if (regs == NULL_RTX)
8391 {
8392 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8393
8394 loc_result = NULL;
8395 while (nregs--)
8396 {
8397 dw_loc_descr_ref t;
8398
8399 t = one_reg_loc_descriptor (reg);
8400 add_loc_descr (&loc_result, t);
8401 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8402 ++reg;
8403 }
8404 return loc_result;
8405 }
8406
8407 /* Now onto stupid register sets in non contiguous locations. */
8408
8409 gcc_assert (GET_CODE (regs) == PARALLEL);
8410
8411 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8412 loc_result = NULL;
8413
8414 for (i = 0; i < XVECLEN (regs, 0); ++i)
8415 {
8416 dw_loc_descr_ref t;
8417
8418 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8419 add_loc_descr (&loc_result, t);
8420 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8421 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8422 }
8423 return loc_result;
8424 }
8425
8426 /* Return a location descriptor that designates a constant. */
8427
8428 static dw_loc_descr_ref
8429 int_loc_descriptor (HOST_WIDE_INT i)
8430 {
8431 enum dwarf_location_atom op;
8432
8433 /* Pick the smallest representation of a constant, rather than just
8434 defaulting to the LEB encoding. */
8435 if (i >= 0)
8436 {
8437 if (i <= 31)
8438 op = DW_OP_lit0 + i;
8439 else if (i <= 0xff)
8440 op = DW_OP_const1u;
8441 else if (i <= 0xffff)
8442 op = DW_OP_const2u;
8443 else if (HOST_BITS_PER_WIDE_INT == 32
8444 || i <= 0xffffffff)
8445 op = DW_OP_const4u;
8446 else
8447 op = DW_OP_constu;
8448 }
8449 else
8450 {
8451 if (i >= -0x80)
8452 op = DW_OP_const1s;
8453 else if (i >= -0x8000)
8454 op = DW_OP_const2s;
8455 else if (HOST_BITS_PER_WIDE_INT == 32
8456 || i >= -0x80000000)
8457 op = DW_OP_const4s;
8458 else
8459 op = DW_OP_consts;
8460 }
8461
8462 return new_loc_descr (op, i, 0);
8463 }
8464
8465 /* Return a location descriptor that designates a base+offset location. */
8466
8467 static dw_loc_descr_ref
8468 based_loc_descr (unsigned int reg, HOST_WIDE_INT offset, bool can_use_fbreg)
8469 {
8470 dw_loc_descr_ref loc_result;
8471 /* For the "frame base", we use the frame pointer or stack pointer
8472 registers, since the RTL for local variables is relative to one of
8473 them. */
8474 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8475 ? HARD_FRAME_POINTER_REGNUM
8476 : STACK_POINTER_REGNUM);
8477
8478 if (reg == fp_reg && can_use_fbreg)
8479 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8480 else if (reg <= 31)
8481 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8482 else
8483 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8484
8485 return loc_result;
8486 }
8487
8488 /* Return true if this RTL expression describes a base+offset calculation. */
8489
8490 static inline int
8491 is_based_loc (rtx rtl)
8492 {
8493 return (GET_CODE (rtl) == PLUS
8494 && ((REG_P (XEXP (rtl, 0))
8495 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8496 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8497 }
8498
8499 /* The following routine converts the RTL for a variable or parameter
8500 (resident in memory) into an equivalent Dwarf representation of a
8501 mechanism for getting the address of that same variable onto the top of a
8502 hypothetical "address evaluation" stack.
8503
8504 When creating memory location descriptors, we are effectively transforming
8505 the RTL for a memory-resident object into its Dwarf postfix expression
8506 equivalent. This routine recursively descends an RTL tree, turning
8507 it into Dwarf postfix code as it goes.
8508
8509 MODE is the mode of the memory reference, needed to handle some
8510 autoincrement addressing modes.
8511
8512 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the location
8513 list for RTL. We can't use it when we are emitting location list for
8514 virtual variable frame_base_decl (i.e. a location list for DW_AT_frame_base)
8515 which describes how frame base changes when !frame_pointer_needed.
8516
8517 Return 0 if we can't represent the location. */
8518
8519 static dw_loc_descr_ref
8520 mem_loc_descriptor (rtx rtl, enum machine_mode mode, bool can_use_fbreg)
8521 {
8522 dw_loc_descr_ref mem_loc_result = NULL;
8523 enum dwarf_location_atom op;
8524
8525 /* Note that for a dynamically sized array, the location we will generate a
8526 description of here will be the lowest numbered location which is
8527 actually within the array. That's *not* necessarily the same as the
8528 zeroth element of the array. */
8529
8530 rtl = targetm.delegitimize_address (rtl);
8531
8532 switch (GET_CODE (rtl))
8533 {
8534 case POST_INC:
8535 case POST_DEC:
8536 case POST_MODIFY:
8537 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8538 just fall into the SUBREG code. */
8539
8540 /* ... fall through ... */
8541
8542 case SUBREG:
8543 /* The case of a subreg may arise when we have a local (register)
8544 variable or a formal (register) parameter which doesn't quite fill
8545 up an entire register. For now, just assume that it is
8546 legitimate to make the Dwarf info refer to the whole register which
8547 contains the given subreg. */
8548 rtl = SUBREG_REG (rtl);
8549
8550 /* ... fall through ... */
8551
8552 case REG:
8553 /* Whenever a register number forms a part of the description of the
8554 method for calculating the (dynamic) address of a memory resident
8555 object, DWARF rules require the register number be referred to as
8556 a "base register". This distinction is not based in any way upon
8557 what category of register the hardware believes the given register
8558 belongs to. This is strictly DWARF terminology we're dealing with
8559 here. Note that in cases where the location of a memory-resident
8560 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8561 OP_CONST (0)) the actual DWARF location descriptor that we generate
8562 may just be OP_BASEREG (basereg). This may look deceptively like
8563 the object in question was allocated to a register (rather than in
8564 memory) so DWARF consumers need to be aware of the subtle
8565 distinction between OP_REG and OP_BASEREG. */
8566 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8567 mem_loc_result = based_loc_descr (dbx_reg_number (rtl), 0,
8568 can_use_fbreg);
8569 break;
8570
8571 case MEM:
8572 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8573 can_use_fbreg);
8574 if (mem_loc_result != 0)
8575 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8576 break;
8577
8578 case LO_SUM:
8579 rtl = XEXP (rtl, 1);
8580
8581 /* ... fall through ... */
8582
8583 case LABEL_REF:
8584 /* Some ports can transform a symbol ref into a label ref, because
8585 the symbol ref is too far away and has to be dumped into a constant
8586 pool. */
8587 case CONST:
8588 case SYMBOL_REF:
8589 /* Alternatively, the symbol in the constant pool might be referenced
8590 by a different symbol. */
8591 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8592 {
8593 bool marked;
8594 rtx tmp = get_pool_constant_mark (rtl, &marked);
8595
8596 if (GET_CODE (tmp) == SYMBOL_REF)
8597 {
8598 rtl = tmp;
8599 if (CONSTANT_POOL_ADDRESS_P (tmp))
8600 get_pool_constant_mark (tmp, &marked);
8601 else
8602 marked = true;
8603 }
8604
8605 /* If all references to this pool constant were optimized away,
8606 it was not output and thus we can't represent it.
8607 FIXME: might try to use DW_OP_const_value here, though
8608 DW_OP_piece complicates it. */
8609 if (!marked)
8610 return 0;
8611 }
8612
8613 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8614 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8615 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8616 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8617 break;
8618
8619 case PRE_MODIFY:
8620 /* Extract the PLUS expression nested inside and fall into
8621 PLUS code below. */
8622 rtl = XEXP (rtl, 1);
8623 goto plus;
8624
8625 case PRE_INC:
8626 case PRE_DEC:
8627 /* Turn these into a PLUS expression and fall into the PLUS code
8628 below. */
8629 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8630 GEN_INT (GET_CODE (rtl) == PRE_INC
8631 ? GET_MODE_UNIT_SIZE (mode)
8632 : -GET_MODE_UNIT_SIZE (mode)));
8633
8634 /* ... fall through ... */
8635
8636 case PLUS:
8637 plus:
8638 if (is_based_loc (rtl))
8639 mem_loc_result = based_loc_descr (dbx_reg_number (XEXP (rtl, 0)),
8640 INTVAL (XEXP (rtl, 1)),
8641 can_use_fbreg);
8642 else
8643 {
8644 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode,
8645 can_use_fbreg);
8646 if (mem_loc_result == 0)
8647 break;
8648
8649 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8650 && INTVAL (XEXP (rtl, 1)) >= 0)
8651 add_loc_descr (&mem_loc_result,
8652 new_loc_descr (DW_OP_plus_uconst,
8653 INTVAL (XEXP (rtl, 1)), 0));
8654 else
8655 {
8656 add_loc_descr (&mem_loc_result,
8657 mem_loc_descriptor (XEXP (rtl, 1), mode,
8658 can_use_fbreg));
8659 add_loc_descr (&mem_loc_result,
8660 new_loc_descr (DW_OP_plus, 0, 0));
8661 }
8662 }
8663 break;
8664
8665 /* If a pseudo-reg is optimized away, it is possible for it to
8666 be replaced with a MEM containing a multiply or shift. */
8667 case MULT:
8668 op = DW_OP_mul;
8669 goto do_binop;
8670
8671 case ASHIFT:
8672 op = DW_OP_shl;
8673 goto do_binop;
8674
8675 case ASHIFTRT:
8676 op = DW_OP_shra;
8677 goto do_binop;
8678
8679 case LSHIFTRT:
8680 op = DW_OP_shr;
8681 goto do_binop;
8682
8683 do_binop:
8684 {
8685 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
8686 can_use_fbreg);
8687 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
8688 can_use_fbreg);
8689
8690 if (op0 == 0 || op1 == 0)
8691 break;
8692
8693 mem_loc_result = op0;
8694 add_loc_descr (&mem_loc_result, op1);
8695 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
8696 break;
8697 }
8698
8699 case CONST_INT:
8700 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8701 break;
8702
8703 default:
8704 gcc_unreachable ();
8705 }
8706
8707 return mem_loc_result;
8708 }
8709
8710 /* Return a descriptor that describes the concatenation of two locations.
8711 This is typically a complex variable. */
8712
8713 static dw_loc_descr_ref
8714 concat_loc_descriptor (rtx x0, rtx x1)
8715 {
8716 dw_loc_descr_ref cc_loc_result = NULL;
8717 dw_loc_descr_ref x0_ref = loc_descriptor (x0, false);
8718 dw_loc_descr_ref x1_ref = loc_descriptor (x1, false);
8719
8720 if (x0_ref == 0 || x1_ref == 0)
8721 return 0;
8722
8723 cc_loc_result = x0_ref;
8724 add_loc_descr (&cc_loc_result,
8725 new_loc_descr (DW_OP_piece,
8726 GET_MODE_SIZE (GET_MODE (x0)), 0));
8727
8728 add_loc_descr (&cc_loc_result, x1_ref);
8729 add_loc_descr (&cc_loc_result,
8730 new_loc_descr (DW_OP_piece,
8731 GET_MODE_SIZE (GET_MODE (x1)), 0));
8732
8733 return cc_loc_result;
8734 }
8735
8736 /* Output a proper Dwarf location descriptor for a variable or parameter
8737 which is either allocated in a register or in a memory location. For a
8738 register, we just generate an OP_REG and the register number. For a
8739 memory location we provide a Dwarf postfix expression describing how to
8740 generate the (dynamic) address of the object onto the address stack.
8741
8742 If we don't know how to describe it, return 0. */
8743
8744 static dw_loc_descr_ref
8745 loc_descriptor (rtx rtl, bool can_use_fbreg)
8746 {
8747 dw_loc_descr_ref loc_result = NULL;
8748
8749 switch (GET_CODE (rtl))
8750 {
8751 case SUBREG:
8752 /* The case of a subreg may arise when we have a local (register)
8753 variable or a formal (register) parameter which doesn't quite fill
8754 up an entire register. For now, just assume that it is
8755 legitimate to make the Dwarf info refer to the whole register which
8756 contains the given subreg. */
8757 rtl = SUBREG_REG (rtl);
8758
8759 /* ... fall through ... */
8760
8761 case REG:
8762 loc_result = reg_loc_descriptor (rtl);
8763 break;
8764
8765 case MEM:
8766 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8767 can_use_fbreg);
8768 break;
8769
8770 case CONCAT:
8771 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8772 break;
8773
8774 case VAR_LOCATION:
8775 /* Single part. */
8776 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
8777 {
8778 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0), can_use_fbreg);
8779 break;
8780 }
8781
8782 rtl = XEXP (rtl, 1);
8783 /* FALLTHRU */
8784
8785 case PARALLEL:
8786 {
8787 rtvec par_elems = XVEC (rtl, 0);
8788 int num_elem = GET_NUM_ELEM (par_elems);
8789 enum machine_mode mode;
8790 int i;
8791
8792 /* Create the first one, so we have something to add to. */
8793 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
8794 can_use_fbreg);
8795 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
8796 add_loc_descr (&loc_result,
8797 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
8798 for (i = 1; i < num_elem; i++)
8799 {
8800 dw_loc_descr_ref temp;
8801
8802 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
8803 can_use_fbreg);
8804 add_loc_descr (&loc_result, temp);
8805 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
8806 add_loc_descr (&loc_result,
8807 new_loc_descr (DW_OP_piece,
8808 GET_MODE_SIZE (mode), 0));
8809 }
8810 }
8811 break;
8812
8813 default:
8814 gcc_unreachable ();
8815 }
8816
8817 return loc_result;
8818 }
8819
8820 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8821 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
8822 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
8823 top-level invocation, and we require the address of LOC; is 0 if we require
8824 the value of LOC. */
8825
8826 static dw_loc_descr_ref
8827 loc_descriptor_from_tree_1 (tree loc, int want_address)
8828 {
8829 dw_loc_descr_ref ret, ret1;
8830 int have_address = 0;
8831 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
8832 enum dwarf_location_atom op;
8833
8834 /* ??? Most of the time we do not take proper care for sign/zero
8835 extending the values properly. Hopefully this won't be a real
8836 problem... */
8837
8838 switch (TREE_CODE (loc))
8839 {
8840 case ERROR_MARK:
8841 return 0;
8842
8843 case PLACEHOLDER_EXPR:
8844 /* This case involves extracting fields from an object to determine the
8845 position of other fields. We don't try to encode this here. The
8846 only user of this is Ada, which encodes the needed information using
8847 the names of types. */
8848 return 0;
8849
8850 case CALL_EXPR:
8851 return 0;
8852
8853 case PREINCREMENT_EXPR:
8854 case PREDECREMENT_EXPR:
8855 case POSTINCREMENT_EXPR:
8856 case POSTDECREMENT_EXPR:
8857 /* There are no opcodes for these operations. */
8858 return 0;
8859
8860 case ADDR_EXPR:
8861 /* If we already want an address, there's nothing we can do. */
8862 if (want_address)
8863 return 0;
8864
8865 /* Otherwise, process the argument and look for the address. */
8866 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
8867
8868 case VAR_DECL:
8869 if (DECL_THREAD_LOCAL (loc))
8870 {
8871 rtx rtl;
8872
8873 #ifndef ASM_OUTPUT_DWARF_DTPREL
8874 /* If this is not defined, we have no way to emit the data. */
8875 return 0;
8876 #endif
8877
8878 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8879 look up addresses of objects in the current module. */
8880 if (DECL_EXTERNAL (loc))
8881 return 0;
8882
8883 rtl = rtl_for_decl_location (loc);
8884 if (rtl == NULL_RTX)
8885 return 0;
8886
8887 if (!MEM_P (rtl))
8888 return 0;
8889 rtl = XEXP (rtl, 0);
8890 if (! CONSTANT_P (rtl))
8891 return 0;
8892
8893 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8894 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8895 ret->dw_loc_oprnd1.v.val_addr = rtl;
8896
8897 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8898 add_loc_descr (&ret, ret1);
8899
8900 have_address = 1;
8901 break;
8902 }
8903 /* FALLTHRU */
8904
8905 case PARM_DECL:
8906 if (DECL_VALUE_EXPR (loc))
8907 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc), want_address);
8908 /* FALLTHRU */
8909
8910 case RESULT_DECL:
8911 {
8912 rtx rtl = rtl_for_decl_location (loc);
8913
8914 if (rtl == NULL_RTX)
8915 return 0;
8916 else if (GET_CODE (rtl) == CONST_INT)
8917 {
8918 HOST_WIDE_INT val = INTVAL (rtl);
8919 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
8920 val &= GET_MODE_MASK (DECL_MODE (loc));
8921 ret = int_loc_descriptor (val);
8922 }
8923 else if (GET_CODE (rtl) == CONST_STRING)
8924 return 0;
8925 else if (CONSTANT_P (rtl))
8926 {
8927 ret = new_loc_descr (DW_OP_addr, 0, 0);
8928 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8929 ret->dw_loc_oprnd1.v.val_addr = rtl;
8930 }
8931 else
8932 {
8933 enum machine_mode mode;
8934
8935 /* Certain constructs can only be represented at top-level. */
8936 if (want_address == 2)
8937 return loc_descriptor (rtl, false);
8938
8939 mode = GET_MODE (rtl);
8940 if (MEM_P (rtl))
8941 {
8942 rtl = XEXP (rtl, 0);
8943 have_address = 1;
8944 }
8945 ret = mem_loc_descriptor (rtl, mode, false);
8946 }
8947 }
8948 break;
8949
8950 case INDIRECT_REF:
8951 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
8952 have_address = 1;
8953 break;
8954
8955 case COMPOUND_EXPR:
8956 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
8957
8958 case NOP_EXPR:
8959 case CONVERT_EXPR:
8960 case NON_LVALUE_EXPR:
8961 case VIEW_CONVERT_EXPR:
8962 case SAVE_EXPR:
8963 case MODIFY_EXPR:
8964 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
8965
8966 case COMPONENT_REF:
8967 case BIT_FIELD_REF:
8968 case ARRAY_REF:
8969 case ARRAY_RANGE_REF:
8970 {
8971 tree obj, offset;
8972 HOST_WIDE_INT bitsize, bitpos, bytepos;
8973 enum machine_mode mode;
8974 int volatilep;
8975
8976 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8977 &unsignedp, &volatilep, false);
8978
8979 if (obj == loc)
8980 return 0;
8981
8982 ret = loc_descriptor_from_tree_1 (obj, 1);
8983 if (ret == 0
8984 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8985 return 0;
8986
8987 if (offset != NULL_TREE)
8988 {
8989 /* Variable offset. */
8990 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
8991 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8992 }
8993
8994 bytepos = bitpos / BITS_PER_UNIT;
8995 if (bytepos > 0)
8996 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8997 else if (bytepos < 0)
8998 {
8999 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9000 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9001 }
9002
9003 have_address = 1;
9004 break;
9005 }
9006
9007 case INTEGER_CST:
9008 if (host_integerp (loc, 0))
9009 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9010 else
9011 return 0;
9012 break;
9013
9014 case CONSTRUCTOR:
9015 {
9016 /* Get an RTL for this, if something has been emitted. */
9017 rtx rtl = lookup_constant_def (loc);
9018 enum machine_mode mode;
9019
9020 if (!rtl || !MEM_P (rtl))
9021 return 0;
9022 mode = GET_MODE (rtl);
9023 rtl = XEXP (rtl, 0);
9024 ret = mem_loc_descriptor (rtl, mode, false);
9025 have_address = 1;
9026 break;
9027 }
9028
9029 case TRUTH_AND_EXPR:
9030 case TRUTH_ANDIF_EXPR:
9031 case BIT_AND_EXPR:
9032 op = DW_OP_and;
9033 goto do_binop;
9034
9035 case TRUTH_XOR_EXPR:
9036 case BIT_XOR_EXPR:
9037 op = DW_OP_xor;
9038 goto do_binop;
9039
9040 case TRUTH_OR_EXPR:
9041 case TRUTH_ORIF_EXPR:
9042 case BIT_IOR_EXPR:
9043 op = DW_OP_or;
9044 goto do_binop;
9045
9046 case FLOOR_DIV_EXPR:
9047 case CEIL_DIV_EXPR:
9048 case ROUND_DIV_EXPR:
9049 case TRUNC_DIV_EXPR:
9050 op = DW_OP_div;
9051 goto do_binop;
9052
9053 case MINUS_EXPR:
9054 op = DW_OP_minus;
9055 goto do_binop;
9056
9057 case FLOOR_MOD_EXPR:
9058 case CEIL_MOD_EXPR:
9059 case ROUND_MOD_EXPR:
9060 case TRUNC_MOD_EXPR:
9061 op = DW_OP_mod;
9062 goto do_binop;
9063
9064 case MULT_EXPR:
9065 op = DW_OP_mul;
9066 goto do_binop;
9067
9068 case LSHIFT_EXPR:
9069 op = DW_OP_shl;
9070 goto do_binop;
9071
9072 case RSHIFT_EXPR:
9073 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
9074 goto do_binop;
9075
9076 case PLUS_EXPR:
9077 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9078 && host_integerp (TREE_OPERAND (loc, 1), 0))
9079 {
9080 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9081 if (ret == 0)
9082 return 0;
9083
9084 add_loc_descr (&ret,
9085 new_loc_descr (DW_OP_plus_uconst,
9086 tree_low_cst (TREE_OPERAND (loc, 1),
9087 0),
9088 0));
9089 break;
9090 }
9091
9092 op = DW_OP_plus;
9093 goto do_binop;
9094
9095 case LE_EXPR:
9096 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9097 return 0;
9098
9099 op = DW_OP_le;
9100 goto do_binop;
9101
9102 case GE_EXPR:
9103 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9104 return 0;
9105
9106 op = DW_OP_ge;
9107 goto do_binop;
9108
9109 case LT_EXPR:
9110 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9111 return 0;
9112
9113 op = DW_OP_lt;
9114 goto do_binop;
9115
9116 case GT_EXPR:
9117 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9118 return 0;
9119
9120 op = DW_OP_gt;
9121 goto do_binop;
9122
9123 case EQ_EXPR:
9124 op = DW_OP_eq;
9125 goto do_binop;
9126
9127 case NE_EXPR:
9128 op = DW_OP_ne;
9129 goto do_binop;
9130
9131 do_binop:
9132 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9133 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9134 if (ret == 0 || ret1 == 0)
9135 return 0;
9136
9137 add_loc_descr (&ret, ret1);
9138 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9139 break;
9140
9141 case TRUTH_NOT_EXPR:
9142 case BIT_NOT_EXPR:
9143 op = DW_OP_not;
9144 goto do_unop;
9145
9146 case ABS_EXPR:
9147 op = DW_OP_abs;
9148 goto do_unop;
9149
9150 case NEGATE_EXPR:
9151 op = DW_OP_neg;
9152 goto do_unop;
9153
9154 do_unop:
9155 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9156 if (ret == 0)
9157 return 0;
9158
9159 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9160 break;
9161
9162 case MIN_EXPR:
9163 case MAX_EXPR:
9164 {
9165 const enum tree_code code =
9166 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9167
9168 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9169 build2 (code, integer_type_node,
9170 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9171 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9172 }
9173
9174 /* ... fall through ... */
9175
9176 case COND_EXPR:
9177 {
9178 dw_loc_descr_ref lhs
9179 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9180 dw_loc_descr_ref rhs
9181 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9182 dw_loc_descr_ref bra_node, jump_node, tmp;
9183
9184 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9185 if (ret == 0 || lhs == 0 || rhs == 0)
9186 return 0;
9187
9188 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9189 add_loc_descr (&ret, bra_node);
9190
9191 add_loc_descr (&ret, rhs);
9192 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9193 add_loc_descr (&ret, jump_node);
9194
9195 add_loc_descr (&ret, lhs);
9196 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9197 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9198
9199 /* ??? Need a node to point the skip at. Use a nop. */
9200 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9201 add_loc_descr (&ret, tmp);
9202 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9203 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9204 }
9205 break;
9206
9207 case FIX_TRUNC_EXPR:
9208 case FIX_CEIL_EXPR:
9209 case FIX_FLOOR_EXPR:
9210 case FIX_ROUND_EXPR:
9211 return 0;
9212
9213 default:
9214 /* Leave front-end specific codes as simply unknown. This comes
9215 up, for instance, with the C STMT_EXPR. */
9216 if ((unsigned int) TREE_CODE (loc)
9217 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9218 return 0;
9219
9220 #ifdef ENABLE_CHECKING
9221 /* Otherwise this is a generic code; we should just lists all of
9222 these explicitly. Aborting means we forgot one. */
9223 gcc_unreachable ();
9224 #else
9225 /* In a release build, we want to degrade gracefully: better to
9226 generate incomplete debugging information than to crash. */
9227 return NULL;
9228 #endif
9229 }
9230
9231 /* Show if we can't fill the request for an address. */
9232 if (want_address && !have_address)
9233 return 0;
9234
9235 /* If we've got an address and don't want one, dereference. */
9236 if (!want_address && have_address)
9237 {
9238 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9239
9240 if (size > DWARF2_ADDR_SIZE || size == -1)
9241 return 0;
9242 else if (size == DWARF2_ADDR_SIZE)
9243 op = DW_OP_deref;
9244 else
9245 op = DW_OP_deref_size;
9246
9247 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9248 }
9249
9250 return ret;
9251 }
9252
9253 static inline dw_loc_descr_ref
9254 loc_descriptor_from_tree (tree loc)
9255 {
9256 return loc_descriptor_from_tree_1 (loc, 2);
9257 }
9258
9259 /* Given a value, round it up to the lowest multiple of `boundary'
9260 which is not less than the value itself. */
9261
9262 static inline HOST_WIDE_INT
9263 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9264 {
9265 return (((value + boundary - 1) / boundary) * boundary);
9266 }
9267
9268 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9269 pointer to the declared type for the relevant field variable, or return
9270 `integer_type_node' if the given node turns out to be an
9271 ERROR_MARK node. */
9272
9273 static inline tree
9274 field_type (tree decl)
9275 {
9276 tree type;
9277
9278 if (TREE_CODE (decl) == ERROR_MARK)
9279 return integer_type_node;
9280
9281 type = DECL_BIT_FIELD_TYPE (decl);
9282 if (type == NULL_TREE)
9283 type = TREE_TYPE (decl);
9284
9285 return type;
9286 }
9287
9288 /* Given a pointer to a tree node, return the alignment in bits for
9289 it, or else return BITS_PER_WORD if the node actually turns out to
9290 be an ERROR_MARK node. */
9291
9292 static inline unsigned
9293 simple_type_align_in_bits (tree type)
9294 {
9295 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9296 }
9297
9298 static inline unsigned
9299 simple_decl_align_in_bits (tree decl)
9300 {
9301 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9302 }
9303
9304 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9305 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9306 or return 0 if we are unable to determine what that offset is, either
9307 because the argument turns out to be a pointer to an ERROR_MARK node, or
9308 because the offset is actually variable. (We can't handle the latter case
9309 just yet). */
9310
9311 static HOST_WIDE_INT
9312 field_byte_offset (tree decl)
9313 {
9314 unsigned int type_align_in_bits;
9315 unsigned int decl_align_in_bits;
9316 unsigned HOST_WIDE_INT type_size_in_bits;
9317 HOST_WIDE_INT object_offset_in_bits;
9318 tree type;
9319 tree field_size_tree;
9320 HOST_WIDE_INT bitpos_int;
9321 HOST_WIDE_INT deepest_bitpos;
9322 unsigned HOST_WIDE_INT field_size_in_bits;
9323
9324 if (TREE_CODE (decl) == ERROR_MARK)
9325 return 0;
9326
9327 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9328
9329 type = field_type (decl);
9330 field_size_tree = DECL_SIZE (decl);
9331
9332 /* The size could be unspecified if there was an error, or for
9333 a flexible array member. */
9334 if (! field_size_tree)
9335 field_size_tree = bitsize_zero_node;
9336
9337 /* We cannot yet cope with fields whose positions are variable, so
9338 for now, when we see such things, we simply return 0. Someday, we may
9339 be able to handle such cases, but it will be damn difficult. */
9340 if (! host_integerp (bit_position (decl), 0))
9341 return 0;
9342
9343 bitpos_int = int_bit_position (decl);
9344
9345 /* If we don't know the size of the field, pretend it's a full word. */
9346 if (host_integerp (field_size_tree, 1))
9347 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9348 else
9349 field_size_in_bits = BITS_PER_WORD;
9350
9351 type_size_in_bits = simple_type_size_in_bits (type);
9352 type_align_in_bits = simple_type_align_in_bits (type);
9353 decl_align_in_bits = simple_decl_align_in_bits (decl);
9354
9355 /* The GCC front-end doesn't make any attempt to keep track of the starting
9356 bit offset (relative to the start of the containing structure type) of the
9357 hypothetical "containing object" for a bit-field. Thus, when computing
9358 the byte offset value for the start of the "containing object" of a
9359 bit-field, we must deduce this information on our own. This can be rather
9360 tricky to do in some cases. For example, handling the following structure
9361 type definition when compiling for an i386/i486 target (which only aligns
9362 long long's to 32-bit boundaries) can be very tricky:
9363
9364 struct S { int field1; long long field2:31; };
9365
9366 Fortunately, there is a simple rule-of-thumb which can be used in such
9367 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9368 structure shown above. It decides to do this based upon one simple rule
9369 for bit-field allocation. GCC allocates each "containing object" for each
9370 bit-field at the first (i.e. lowest addressed) legitimate alignment
9371 boundary (based upon the required minimum alignment for the declared type
9372 of the field) which it can possibly use, subject to the condition that
9373 there is still enough available space remaining in the containing object
9374 (when allocated at the selected point) to fully accommodate all of the
9375 bits of the bit-field itself.
9376
9377 This simple rule makes it obvious why GCC allocates 8 bytes for each
9378 object of the structure type shown above. When looking for a place to
9379 allocate the "containing object" for `field2', the compiler simply tries
9380 to allocate a 64-bit "containing object" at each successive 32-bit
9381 boundary (starting at zero) until it finds a place to allocate that 64-
9382 bit field such that at least 31 contiguous (and previously unallocated)
9383 bits remain within that selected 64 bit field. (As it turns out, for the
9384 example above, the compiler finds it is OK to allocate the "containing
9385 object" 64-bit field at bit-offset zero within the structure type.)
9386
9387 Here we attempt to work backwards from the limited set of facts we're
9388 given, and we try to deduce from those facts, where GCC must have believed
9389 that the containing object started (within the structure type). The value
9390 we deduce is then used (by the callers of this routine) to generate
9391 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9392 and, in the case of DW_AT_location, regular fields as well). */
9393
9394 /* Figure out the bit-distance from the start of the structure to the
9395 "deepest" bit of the bit-field. */
9396 deepest_bitpos = bitpos_int + field_size_in_bits;
9397
9398 /* This is the tricky part. Use some fancy footwork to deduce where the
9399 lowest addressed bit of the containing object must be. */
9400 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9401
9402 /* Round up to type_align by default. This works best for bitfields. */
9403 object_offset_in_bits += type_align_in_bits - 1;
9404 object_offset_in_bits /= type_align_in_bits;
9405 object_offset_in_bits *= type_align_in_bits;
9406
9407 if (object_offset_in_bits > bitpos_int)
9408 {
9409 /* Sigh, the decl must be packed. */
9410 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9411
9412 /* Round up to decl_align instead. */
9413 object_offset_in_bits += decl_align_in_bits - 1;
9414 object_offset_in_bits /= decl_align_in_bits;
9415 object_offset_in_bits *= decl_align_in_bits;
9416 }
9417
9418 return object_offset_in_bits / BITS_PER_UNIT;
9419 }
9420 \f
9421 /* The following routines define various Dwarf attributes and any data
9422 associated with them. */
9423
9424 /* Add a location description attribute value to a DIE.
9425
9426 This emits location attributes suitable for whole variables and
9427 whole parameters. Note that the location attributes for struct fields are
9428 generated by the routine `data_member_location_attribute' below. */
9429
9430 static inline void
9431 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9432 dw_loc_descr_ref descr)
9433 {
9434 if (descr != 0)
9435 add_AT_loc (die, attr_kind, descr);
9436 }
9437
9438 /* Attach the specialized form of location attribute used for data members of
9439 struct and union types. In the special case of a FIELD_DECL node which
9440 represents a bit-field, the "offset" part of this special location
9441 descriptor must indicate the distance in bytes from the lowest-addressed
9442 byte of the containing struct or union type to the lowest-addressed byte of
9443 the "containing object" for the bit-field. (See the `field_byte_offset'
9444 function above).
9445
9446 For any given bit-field, the "containing object" is a hypothetical object
9447 (of some integral or enum type) within which the given bit-field lives. The
9448 type of this hypothetical "containing object" is always the same as the
9449 declared type of the individual bit-field itself (for GCC anyway... the
9450 DWARF spec doesn't actually mandate this). Note that it is the size (in
9451 bytes) of the hypothetical "containing object" which will be given in the
9452 DW_AT_byte_size attribute for this bit-field. (See the
9453 `byte_size_attribute' function below.) It is also used when calculating the
9454 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9455 function below.) */
9456
9457 static void
9458 add_data_member_location_attribute (dw_die_ref die, tree decl)
9459 {
9460 HOST_WIDE_INT offset;
9461 dw_loc_descr_ref loc_descr = 0;
9462
9463 if (TREE_CODE (decl) == TREE_BINFO)
9464 {
9465 /* We're working on the TAG_inheritance for a base class. */
9466 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9467 {
9468 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9469 aren't at a fixed offset from all (sub)objects of the same
9470 type. We need to extract the appropriate offset from our
9471 vtable. The following dwarf expression means
9472
9473 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9474
9475 This is specific to the V3 ABI, of course. */
9476
9477 dw_loc_descr_ref tmp;
9478
9479 /* Make a copy of the object address. */
9480 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9481 add_loc_descr (&loc_descr, tmp);
9482
9483 /* Extract the vtable address. */
9484 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9485 add_loc_descr (&loc_descr, tmp);
9486
9487 /* Calculate the address of the offset. */
9488 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9489 gcc_assert (offset < 0);
9490
9491 tmp = int_loc_descriptor (-offset);
9492 add_loc_descr (&loc_descr, tmp);
9493 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9494 add_loc_descr (&loc_descr, tmp);
9495
9496 /* Extract the offset. */
9497 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9498 add_loc_descr (&loc_descr, tmp);
9499
9500 /* Add it to the object address. */
9501 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9502 add_loc_descr (&loc_descr, tmp);
9503 }
9504 else
9505 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9506 }
9507 else
9508 offset = field_byte_offset (decl);
9509
9510 if (! loc_descr)
9511 {
9512 enum dwarf_location_atom op;
9513
9514 /* The DWARF2 standard says that we should assume that the structure
9515 address is already on the stack, so we can specify a structure field
9516 address by using DW_OP_plus_uconst. */
9517
9518 #ifdef MIPS_DEBUGGING_INFO
9519 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9520 operator correctly. It works only if we leave the offset on the
9521 stack. */
9522 op = DW_OP_constu;
9523 #else
9524 op = DW_OP_plus_uconst;
9525 #endif
9526
9527 loc_descr = new_loc_descr (op, offset, 0);
9528 }
9529
9530 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9531 }
9532
9533 /* Writes integer values to dw_vec_const array. */
9534
9535 static void
9536 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9537 {
9538 while (size != 0)
9539 {
9540 *dest++ = val & 0xff;
9541 val >>= 8;
9542 --size;
9543 }
9544 }
9545
9546 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9547
9548 static HOST_WIDE_INT
9549 extract_int (const unsigned char *src, unsigned int size)
9550 {
9551 HOST_WIDE_INT val = 0;
9552
9553 src += size;
9554 while (size != 0)
9555 {
9556 val <<= 8;
9557 val |= *--src & 0xff;
9558 --size;
9559 }
9560 return val;
9561 }
9562
9563 /* Writes floating point values to dw_vec_const array. */
9564
9565 static void
9566 insert_float (rtx rtl, unsigned char *array)
9567 {
9568 REAL_VALUE_TYPE rv;
9569 long val[4];
9570 int i;
9571
9572 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9573 real_to_target (val, &rv, GET_MODE (rtl));
9574
9575 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9576 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9577 {
9578 insert_int (val[i], 4, array);
9579 array += 4;
9580 }
9581 }
9582
9583 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9584 does not have a "location" either in memory or in a register. These
9585 things can arise in GNU C when a constant is passed as an actual parameter
9586 to an inlined function. They can also arise in C++ where declared
9587 constants do not necessarily get memory "homes". */
9588
9589 static void
9590 add_const_value_attribute (dw_die_ref die, rtx rtl)
9591 {
9592 switch (GET_CODE (rtl))
9593 {
9594 case CONST_INT:
9595 {
9596 HOST_WIDE_INT val = INTVAL (rtl);
9597
9598 if (val < 0)
9599 add_AT_int (die, DW_AT_const_value, val);
9600 else
9601 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9602 }
9603 break;
9604
9605 case CONST_DOUBLE:
9606 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9607 floating-point constant. A CONST_DOUBLE is used whenever the
9608 constant requires more than one word in order to be adequately
9609 represented. We output CONST_DOUBLEs as blocks. */
9610 {
9611 enum machine_mode mode = GET_MODE (rtl);
9612
9613 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9614 {
9615 unsigned int length = GET_MODE_SIZE (mode);
9616 unsigned char *array = ggc_alloc (length);
9617
9618 insert_float (rtl, array);
9619 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9620 }
9621 else
9622 {
9623 /* ??? We really should be using HOST_WIDE_INT throughout. */
9624 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9625
9626 add_AT_long_long (die, DW_AT_const_value,
9627 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9628 }
9629 }
9630 break;
9631
9632 case CONST_VECTOR:
9633 {
9634 enum machine_mode mode = GET_MODE (rtl);
9635 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9636 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9637 unsigned char *array = ggc_alloc (length * elt_size);
9638 unsigned int i;
9639 unsigned char *p;
9640
9641 switch (GET_MODE_CLASS (mode))
9642 {
9643 case MODE_VECTOR_INT:
9644 for (i = 0, p = array; i < length; i++, p += elt_size)
9645 {
9646 rtx elt = CONST_VECTOR_ELT (rtl, i);
9647 HOST_WIDE_INT lo, hi;
9648
9649 switch (GET_CODE (elt))
9650 {
9651 case CONST_INT:
9652 lo = INTVAL (elt);
9653 hi = -(lo < 0);
9654 break;
9655
9656 case CONST_DOUBLE:
9657 lo = CONST_DOUBLE_LOW (elt);
9658 hi = CONST_DOUBLE_HIGH (elt);
9659 break;
9660
9661 default:
9662 gcc_unreachable ();
9663 }
9664
9665 if (elt_size <= sizeof (HOST_WIDE_INT))
9666 insert_int (lo, elt_size, p);
9667 else
9668 {
9669 unsigned char *p0 = p;
9670 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9671
9672 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9673 if (WORDS_BIG_ENDIAN)
9674 {
9675 p0 = p1;
9676 p1 = p;
9677 }
9678 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9679 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9680 }
9681 }
9682 break;
9683
9684 case MODE_VECTOR_FLOAT:
9685 for (i = 0, p = array; i < length; i++, p += elt_size)
9686 {
9687 rtx elt = CONST_VECTOR_ELT (rtl, i);
9688 insert_float (elt, p);
9689 }
9690 break;
9691
9692 default:
9693 gcc_unreachable ();
9694 }
9695
9696 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9697 }
9698 break;
9699
9700 case CONST_STRING:
9701 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9702 break;
9703
9704 case SYMBOL_REF:
9705 case LABEL_REF:
9706 case CONST:
9707 add_AT_addr (die, DW_AT_const_value, rtl);
9708 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9709 break;
9710
9711 case PLUS:
9712 /* In cases where an inlined instance of an inline function is passed
9713 the address of an `auto' variable (which is local to the caller) we
9714 can get a situation where the DECL_RTL of the artificial local
9715 variable (for the inlining) which acts as a stand-in for the
9716 corresponding formal parameter (of the inline function) will look
9717 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9718 exactly a compile-time constant expression, but it isn't the address
9719 of the (artificial) local variable either. Rather, it represents the
9720 *value* which the artificial local variable always has during its
9721 lifetime. We currently have no way to represent such quasi-constant
9722 values in Dwarf, so for now we just punt and generate nothing. */
9723 break;
9724
9725 default:
9726 /* No other kinds of rtx should be possible here. */
9727 gcc_unreachable ();
9728 }
9729
9730 }
9731
9732 static rtx
9733 rtl_for_decl_location (tree decl)
9734 {
9735 rtx rtl;
9736
9737 /* Here we have to decide where we are going to say the parameter "lives"
9738 (as far as the debugger is concerned). We only have a couple of
9739 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9740
9741 DECL_RTL normally indicates where the parameter lives during most of the
9742 activation of the function. If optimization is enabled however, this
9743 could be either NULL or else a pseudo-reg. Both of those cases indicate
9744 that the parameter doesn't really live anywhere (as far as the code
9745 generation parts of GCC are concerned) during most of the function's
9746 activation. That will happen (for example) if the parameter is never
9747 referenced within the function.
9748
9749 We could just generate a location descriptor here for all non-NULL
9750 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9751 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9752 where DECL_RTL is NULL or is a pseudo-reg.
9753
9754 Note however that we can only get away with using DECL_INCOMING_RTL as
9755 a backup substitute for DECL_RTL in certain limited cases. In cases
9756 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9757 we can be sure that the parameter was passed using the same type as it is
9758 declared to have within the function, and that its DECL_INCOMING_RTL
9759 points us to a place where a value of that type is passed.
9760
9761 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9762 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9763 because in these cases DECL_INCOMING_RTL points us to a value of some
9764 type which is *different* from the type of the parameter itself. Thus,
9765 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9766 such cases, the debugger would end up (for example) trying to fetch a
9767 `float' from a place which actually contains the first part of a
9768 `double'. That would lead to really incorrect and confusing
9769 output at debug-time.
9770
9771 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9772 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9773 are a couple of exceptions however. On little-endian machines we can
9774 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9775 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9776 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9777 when (on a little-endian machine) a non-prototyped function has a
9778 parameter declared to be of type `short' or `char'. In such cases,
9779 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9780 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9781 passed `int' value. If the debugger then uses that address to fetch
9782 a `short' or a `char' (on a little-endian machine) the result will be
9783 the correct data, so we allow for such exceptional cases below.
9784
9785 Note that our goal here is to describe the place where the given formal
9786 parameter lives during most of the function's activation (i.e. between the
9787 end of the prologue and the start of the epilogue). We'll do that as best
9788 as we can. Note however that if the given formal parameter is modified
9789 sometime during the execution of the function, then a stack backtrace (at
9790 debug-time) will show the function as having been called with the *new*
9791 value rather than the value which was originally passed in. This happens
9792 rarely enough that it is not a major problem, but it *is* a problem, and
9793 I'd like to fix it.
9794
9795 A future version of dwarf2out.c may generate two additional attributes for
9796 any given DW_TAG_formal_parameter DIE which will describe the "passed
9797 type" and the "passed location" for the given formal parameter in addition
9798 to the attributes we now generate to indicate the "declared type" and the
9799 "active location" for each parameter. This additional set of attributes
9800 could be used by debuggers for stack backtraces. Separately, note that
9801 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9802 This happens (for example) for inlined-instances of inline function formal
9803 parameters which are never referenced. This really shouldn't be
9804 happening. All PARM_DECL nodes should get valid non-NULL
9805 DECL_INCOMING_RTL values. FIXME. */
9806
9807 /* Use DECL_RTL as the "location" unless we find something better. */
9808 rtl = DECL_RTL_IF_SET (decl);
9809
9810 /* When generating abstract instances, ignore everything except
9811 constants, symbols living in memory, and symbols living in
9812 fixed registers. */
9813 if (! reload_completed)
9814 {
9815 if (rtl
9816 && (CONSTANT_P (rtl)
9817 || (MEM_P (rtl)
9818 && CONSTANT_P (XEXP (rtl, 0)))
9819 || (REG_P (rtl)
9820 && TREE_CODE (decl) == VAR_DECL
9821 && TREE_STATIC (decl))))
9822 {
9823 rtl = targetm.delegitimize_address (rtl);
9824 return rtl;
9825 }
9826 rtl = NULL_RTX;
9827 }
9828 else if (TREE_CODE (decl) == PARM_DECL)
9829 {
9830 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9831 {
9832 tree declared_type = TREE_TYPE (decl);
9833 tree passed_type = DECL_ARG_TYPE (decl);
9834 enum machine_mode dmode = TYPE_MODE (declared_type);
9835 enum machine_mode pmode = TYPE_MODE (passed_type);
9836
9837 /* This decl represents a formal parameter which was optimized out.
9838 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9839 all cases where (rtl == NULL_RTX) just below. */
9840 if (dmode == pmode)
9841 rtl = DECL_INCOMING_RTL (decl);
9842 else if (SCALAR_INT_MODE_P (dmode)
9843 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
9844 && DECL_INCOMING_RTL (decl))
9845 {
9846 rtx inc = DECL_INCOMING_RTL (decl);
9847 if (REG_P (inc))
9848 rtl = inc;
9849 else if (MEM_P (inc))
9850 {
9851 if (BYTES_BIG_ENDIAN)
9852 rtl = adjust_address_nv (inc, dmode,
9853 GET_MODE_SIZE (pmode)
9854 - GET_MODE_SIZE (dmode));
9855 else
9856 rtl = inc;
9857 }
9858 }
9859 }
9860
9861 /* If the parm was passed in registers, but lives on the stack, then
9862 make a big endian correction if the mode of the type of the
9863 parameter is not the same as the mode of the rtl. */
9864 /* ??? This is the same series of checks that are made in dbxout.c before
9865 we reach the big endian correction code there. It isn't clear if all
9866 of these checks are necessary here, but keeping them all is the safe
9867 thing to do. */
9868 else if (MEM_P (rtl)
9869 && XEXP (rtl, 0) != const0_rtx
9870 && ! CONSTANT_P (XEXP (rtl, 0))
9871 /* Not passed in memory. */
9872 && !MEM_P (DECL_INCOMING_RTL (decl))
9873 /* Not passed by invisible reference. */
9874 && (!REG_P (XEXP (rtl, 0))
9875 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9876 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9877 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9878 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9879 #endif
9880 )
9881 /* Big endian correction check. */
9882 && BYTES_BIG_ENDIAN
9883 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9884 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9885 < UNITS_PER_WORD))
9886 {
9887 int offset = (UNITS_PER_WORD
9888 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9889
9890 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9891 plus_constant (XEXP (rtl, 0), offset));
9892 }
9893 }
9894 else if (TREE_CODE (decl) == VAR_DECL
9895 && rtl
9896 && MEM_P (rtl)
9897 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
9898 && BYTES_BIG_ENDIAN)
9899 {
9900 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
9901 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
9902
9903 /* If a variable is declared "register" yet is smaller than
9904 a register, then if we store the variable to memory, it
9905 looks like we're storing a register-sized value, when in
9906 fact we are not. We need to adjust the offset of the
9907 storage location to reflect the actual value's bytes,
9908 else gdb will not be able to display it. */
9909 if (rsize > dsize)
9910 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9911 plus_constant (XEXP (rtl, 0), rsize-dsize));
9912 }
9913
9914 if (rtl != NULL_RTX)
9915 {
9916 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9917 #ifdef LEAF_REG_REMAP
9918 if (current_function_uses_only_leaf_regs)
9919 leaf_renumber_regs_insn (rtl);
9920 #endif
9921 }
9922
9923 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9924 and will have been substituted directly into all expressions that use it.
9925 C does not have such a concept, but C++ and other languages do. */
9926 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9927 {
9928 /* If a variable is initialized with a string constant without embedded
9929 zeros, build CONST_STRING. */
9930 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9931 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9932 {
9933 tree arrtype = TREE_TYPE (decl);
9934 tree enttype = TREE_TYPE (arrtype);
9935 tree domain = TYPE_DOMAIN (arrtype);
9936 tree init = DECL_INITIAL (decl);
9937 enum machine_mode mode = TYPE_MODE (enttype);
9938
9939 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9940 && domain
9941 && integer_zerop (TYPE_MIN_VALUE (domain))
9942 && compare_tree_int (TYPE_MAX_VALUE (domain),
9943 TREE_STRING_LENGTH (init) - 1) == 0
9944 && ((size_t) TREE_STRING_LENGTH (init)
9945 == strlen (TREE_STRING_POINTER (init)) + 1))
9946 rtl = gen_rtx_CONST_STRING (VOIDmode,
9947 ggc_strdup (TREE_STRING_POINTER (init)));
9948 }
9949 /* If the initializer is something that we know will expand into an
9950 immediate RTL constant, expand it now. Expanding anything else
9951 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9952 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9953 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9954 {
9955 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9956 EXPAND_INITIALIZER);
9957 /* If expand_expr returns a MEM, it wasn't immediate. */
9958 gcc_assert (!rtl || !MEM_P (rtl));
9959 }
9960 }
9961
9962 if (rtl)
9963 rtl = targetm.delegitimize_address (rtl);
9964
9965 /* If we don't look past the constant pool, we risk emitting a
9966 reference to a constant pool entry that isn't referenced from
9967 code, and thus is not emitted. */
9968 if (rtl)
9969 rtl = avoid_constant_pool_reference (rtl);
9970
9971 return rtl;
9972 }
9973
9974 /* Return true if DECL's containing function has a frame base attribute.
9975 Return false otherwise. */
9976
9977 static bool
9978 containing_function_has_frame_base (tree decl)
9979 {
9980 tree declcontext = decl_function_context (decl);
9981 dw_die_ref context;
9982 dw_attr_ref attr;
9983
9984 if (!declcontext)
9985 return false;
9986
9987 context = lookup_decl_die (declcontext);
9988 if (!context)
9989 return false;
9990
9991 for (attr = context->die_attr; attr; attr = attr->dw_attr_next)
9992 if (attr->dw_attr == DW_AT_frame_base)
9993 return true;
9994 return false;
9995 }
9996
9997 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
9998 data attribute for a variable or a parameter. We generate the
9999 DW_AT_const_value attribute only in those cases where the given variable
10000 or parameter does not have a true "location" either in memory or in a
10001 register. This can happen (for example) when a constant is passed as an
10002 actual argument in a call to an inline function. (It's possible that
10003 these things can crop up in other ways also.) Note that one type of
10004 constant value which can be passed into an inlined function is a constant
10005 pointer. This can happen for example if an actual argument in an inlined
10006 function call evaluates to a compile-time constant address. */
10007
10008 static void
10009 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10010 enum dwarf_attribute attr)
10011 {
10012 rtx rtl;
10013 dw_loc_descr_ref descr;
10014 var_loc_list *loc_list;
10015 bool can_use_fb;
10016 struct var_loc_node *node;
10017 if (TREE_CODE (decl) == ERROR_MARK)
10018 return;
10019
10020 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10021 || TREE_CODE (decl) == RESULT_DECL);
10022
10023 can_use_fb = containing_function_has_frame_base (decl);
10024
10025 /* See if we possibly have multiple locations for this variable. */
10026 loc_list = lookup_decl_loc (decl);
10027
10028 /* If it truly has multiple locations, the first and last node will
10029 differ. */
10030 if (loc_list && loc_list->first != loc_list->last)
10031 {
10032 const char *secname;
10033 const char *endname;
10034 dw_loc_list_ref list;
10035 rtx varloc;
10036
10037
10038 /* We need to figure out what section we should use as the base
10039 for the address ranges where a given location is valid.
10040 1. If this particular DECL has a section associated with it,
10041 use that.
10042 2. If this function has a section associated with it, use
10043 that.
10044 3. Otherwise, use the text section.
10045 XXX: If you split a variable across multiple sections, this
10046 won't notice. */
10047
10048 if (DECL_SECTION_NAME (decl))
10049 {
10050 tree sectree = DECL_SECTION_NAME (decl);
10051 secname = TREE_STRING_POINTER (sectree);
10052 }
10053 else if (current_function_decl
10054 && DECL_SECTION_NAME (current_function_decl))
10055 {
10056 tree sectree = DECL_SECTION_NAME (current_function_decl);
10057 secname = TREE_STRING_POINTER (sectree);
10058 }
10059 else
10060 secname = text_section_label;
10061
10062 /* Now that we know what section we are using for a base,
10063 actually construct the list of locations.
10064 The first location information is what is passed to the
10065 function that creates the location list, and the remaining
10066 locations just get added on to that list.
10067 Note that we only know the start address for a location
10068 (IE location changes), so to build the range, we use
10069 the range [current location start, next location start].
10070 This means we have to special case the last node, and generate
10071 a range of [last location start, end of function label]. */
10072
10073 node = loc_list->first;
10074 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10075 list = new_loc_list (loc_descriptor (varloc, can_use_fb),
10076 node->label, node->next->label, secname, 1);
10077 node = node->next;
10078
10079 for (; node->next; node = node->next)
10080 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10081 {
10082 /* The variable has a location between NODE->LABEL and
10083 NODE->NEXT->LABEL. */
10084 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10085 add_loc_descr_to_loc_list (&list,
10086 loc_descriptor (varloc,
10087 can_use_fb),
10088 node->label, node->next->label, secname);
10089 }
10090
10091 /* If the variable has a location at the last label
10092 it keeps its location until the end of function. */
10093 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10094 {
10095 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10096
10097 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10098 if (!current_function_decl)
10099 endname = text_end_label;
10100 else
10101 {
10102 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10103 current_function_funcdef_no);
10104 endname = ggc_strdup (label_id);
10105 }
10106 add_loc_descr_to_loc_list (&list,
10107 loc_descriptor (varloc,
10108 can_use_fb),
10109 node->label, endname, secname);
10110 }
10111
10112 /* Finally, add the location list to the DIE, and we are done. */
10113 add_AT_loc_list (die, attr, list);
10114 return;
10115 }
10116
10117 /* Try to get some constant RTL for this decl, and use that as the value of
10118 the location. */
10119
10120 rtl = rtl_for_decl_location (decl);
10121 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10122 {
10123 add_const_value_attribute (die, rtl);
10124 return;
10125 }
10126
10127 /* We couldn't get any rtl, and we had no >1 element location list, so try
10128 directly generating the location description from the tree. */
10129 descr = loc_descriptor_from_tree (decl);
10130 if (descr)
10131 {
10132 add_AT_location_description (die, attr, descr);
10133 return;
10134 }
10135
10136 /* Lastly, if we have tried to generate the location otherwise, and it
10137 didn't work out (we wouldn't be here if we did), and we have a one entry
10138 location list, try generating a location from that. */
10139 if (loc_list && loc_list->first)
10140 {
10141 node = loc_list->first;
10142 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note),
10143 can_use_fb);
10144 if (descr)
10145 add_AT_location_description (die, attr, descr);
10146 }
10147 }
10148
10149 /* If we don't have a copy of this variable in memory for some reason (such
10150 as a C++ member constant that doesn't have an out-of-line definition),
10151 we should tell the debugger about the constant value. */
10152
10153 static void
10154 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10155 {
10156 tree init = DECL_INITIAL (decl);
10157 tree type = TREE_TYPE (decl);
10158
10159 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
10160 && initializer_constant_valid_p (init, type) == null_pointer_node)
10161 /* OK */;
10162 else
10163 return;
10164
10165 switch (TREE_CODE (type))
10166 {
10167 case INTEGER_TYPE:
10168 if (host_integerp (init, 0))
10169 add_AT_unsigned (var_die, DW_AT_const_value,
10170 tree_low_cst (init, 0));
10171 else
10172 add_AT_long_long (var_die, DW_AT_const_value,
10173 TREE_INT_CST_HIGH (init),
10174 TREE_INT_CST_LOW (init));
10175 break;
10176
10177 default:;
10178 }
10179 }
10180
10181 /* Generate a DW_AT_name attribute given some string value to be included as
10182 the value of the attribute. */
10183
10184 static void
10185 add_name_attribute (dw_die_ref die, const char *name_string)
10186 {
10187 if (name_string != NULL && *name_string != 0)
10188 {
10189 if (demangle_name_func)
10190 name_string = (*demangle_name_func) (name_string);
10191
10192 add_AT_string (die, DW_AT_name, name_string);
10193 }
10194 }
10195
10196 /* Generate a DW_AT_comp_dir attribute for DIE. */
10197
10198 static void
10199 add_comp_dir_attribute (dw_die_ref die)
10200 {
10201 const char *wd = get_src_pwd ();
10202 if (wd != NULL)
10203 add_AT_string (die, DW_AT_comp_dir, wd);
10204 }
10205
10206 /* Given a tree node describing an array bound (either lower or upper) output
10207 a representation for that bound. */
10208
10209 static void
10210 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10211 {
10212 switch (TREE_CODE (bound))
10213 {
10214 case ERROR_MARK:
10215 return;
10216
10217 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10218 case INTEGER_CST:
10219 if (! host_integerp (bound, 0)
10220 || (bound_attr == DW_AT_lower_bound
10221 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10222 || (is_fortran () && integer_onep (bound)))))
10223 /* Use the default. */
10224 ;
10225 else
10226 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10227 break;
10228
10229 case CONVERT_EXPR:
10230 case NOP_EXPR:
10231 case NON_LVALUE_EXPR:
10232 case VIEW_CONVERT_EXPR:
10233 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10234 break;
10235
10236 case SAVE_EXPR:
10237 break;
10238
10239 case VAR_DECL:
10240 case PARM_DECL:
10241 case RESULT_DECL:
10242 {
10243 dw_die_ref decl_die = lookup_decl_die (bound);
10244
10245 /* ??? Can this happen, or should the variable have been bound
10246 first? Probably it can, since I imagine that we try to create
10247 the types of parameters in the order in which they exist in
10248 the list, and won't have created a forward reference to a
10249 later parameter. */
10250 if (decl_die != NULL)
10251 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10252 break;
10253 }
10254
10255 default:
10256 {
10257 /* Otherwise try to create a stack operation procedure to
10258 evaluate the value of the array bound. */
10259
10260 dw_die_ref ctx, decl_die;
10261 dw_loc_descr_ref loc;
10262
10263 loc = loc_descriptor_from_tree (bound);
10264 if (loc == NULL)
10265 break;
10266
10267 if (current_function_decl == 0)
10268 ctx = comp_unit_die;
10269 else
10270 ctx = lookup_decl_die (current_function_decl);
10271
10272 decl_die = new_die (DW_TAG_variable, ctx, bound);
10273 add_AT_flag (decl_die, DW_AT_artificial, 1);
10274 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10275 add_AT_loc (decl_die, DW_AT_location, loc);
10276
10277 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10278 break;
10279 }
10280 }
10281 }
10282
10283 /* Note that the block of subscript information for an array type also
10284 includes information about the element type of type given array type. */
10285
10286 static void
10287 add_subscript_info (dw_die_ref type_die, tree type)
10288 {
10289 #ifndef MIPS_DEBUGGING_INFO
10290 unsigned dimension_number;
10291 #endif
10292 tree lower, upper;
10293 dw_die_ref subrange_die;
10294
10295 /* The GNU compilers represent multidimensional array types as sequences of
10296 one dimensional array types whose element types are themselves array
10297 types. Here we squish that down, so that each multidimensional array
10298 type gets only one array_type DIE in the Dwarf debugging info. The draft
10299 Dwarf specification say that we are allowed to do this kind of
10300 compression in C (because there is no difference between an array or
10301 arrays and a multidimensional array in C) but for other source languages
10302 (e.g. Ada) we probably shouldn't do this. */
10303
10304 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10305 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10306 We work around this by disabling this feature. See also
10307 gen_array_type_die. */
10308 #ifndef MIPS_DEBUGGING_INFO
10309 for (dimension_number = 0;
10310 TREE_CODE (type) == ARRAY_TYPE;
10311 type = TREE_TYPE (type), dimension_number++)
10312 #endif
10313 {
10314 tree domain = TYPE_DOMAIN (type);
10315
10316 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10317 and (in GNU C only) variable bounds. Handle all three forms
10318 here. */
10319 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10320 if (domain)
10321 {
10322 /* We have an array type with specified bounds. */
10323 lower = TYPE_MIN_VALUE (domain);
10324 upper = TYPE_MAX_VALUE (domain);
10325
10326 /* Define the index type. */
10327 if (TREE_TYPE (domain))
10328 {
10329 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10330 TREE_TYPE field. We can't emit debug info for this
10331 because it is an unnamed integral type. */
10332 if (TREE_CODE (domain) == INTEGER_TYPE
10333 && TYPE_NAME (domain) == NULL_TREE
10334 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10335 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10336 ;
10337 else
10338 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10339 type_die);
10340 }
10341
10342 /* ??? If upper is NULL, the array has unspecified length,
10343 but it does have a lower bound. This happens with Fortran
10344 dimension arr(N:*)
10345 Since the debugger is definitely going to need to know N
10346 to produce useful results, go ahead and output the lower
10347 bound solo, and hope the debugger can cope. */
10348
10349 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10350 if (upper)
10351 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10352 }
10353
10354 /* Otherwise we have an array type with an unspecified length. The
10355 DWARF-2 spec does not say how to handle this; let's just leave out the
10356 bounds. */
10357 }
10358 }
10359
10360 static void
10361 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10362 {
10363 unsigned size;
10364
10365 switch (TREE_CODE (tree_node))
10366 {
10367 case ERROR_MARK:
10368 size = 0;
10369 break;
10370 case ENUMERAL_TYPE:
10371 case RECORD_TYPE:
10372 case UNION_TYPE:
10373 case QUAL_UNION_TYPE:
10374 size = int_size_in_bytes (tree_node);
10375 break;
10376 case FIELD_DECL:
10377 /* For a data member of a struct or union, the DW_AT_byte_size is
10378 generally given as the number of bytes normally allocated for an
10379 object of the *declared* type of the member itself. This is true
10380 even for bit-fields. */
10381 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10382 break;
10383 default:
10384 gcc_unreachable ();
10385 }
10386
10387 /* Note that `size' might be -1 when we get to this point. If it is, that
10388 indicates that the byte size of the entity in question is variable. We
10389 have no good way of expressing this fact in Dwarf at the present time,
10390 so just let the -1 pass on through. */
10391 add_AT_unsigned (die, DW_AT_byte_size, size);
10392 }
10393
10394 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10395 which specifies the distance in bits from the highest order bit of the
10396 "containing object" for the bit-field to the highest order bit of the
10397 bit-field itself.
10398
10399 For any given bit-field, the "containing object" is a hypothetical object
10400 (of some integral or enum type) within which the given bit-field lives. The
10401 type of this hypothetical "containing object" is always the same as the
10402 declared type of the individual bit-field itself. The determination of the
10403 exact location of the "containing object" for a bit-field is rather
10404 complicated. It's handled by the `field_byte_offset' function (above).
10405
10406 Note that it is the size (in bytes) of the hypothetical "containing object"
10407 which will be given in the DW_AT_byte_size attribute for this bit-field.
10408 (See `byte_size_attribute' above). */
10409
10410 static inline void
10411 add_bit_offset_attribute (dw_die_ref die, tree decl)
10412 {
10413 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10414 tree type = DECL_BIT_FIELD_TYPE (decl);
10415 HOST_WIDE_INT bitpos_int;
10416 HOST_WIDE_INT highest_order_object_bit_offset;
10417 HOST_WIDE_INT highest_order_field_bit_offset;
10418 HOST_WIDE_INT unsigned bit_offset;
10419
10420 /* Must be a field and a bit field. */
10421 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10422
10423 /* We can't yet handle bit-fields whose offsets are variable, so if we
10424 encounter such things, just return without generating any attribute
10425 whatsoever. Likewise for variable or too large size. */
10426 if (! host_integerp (bit_position (decl), 0)
10427 || ! host_integerp (DECL_SIZE (decl), 1))
10428 return;
10429
10430 bitpos_int = int_bit_position (decl);
10431
10432 /* Note that the bit offset is always the distance (in bits) from the
10433 highest-order bit of the "containing object" to the highest-order bit of
10434 the bit-field itself. Since the "high-order end" of any object or field
10435 is different on big-endian and little-endian machines, the computation
10436 below must take account of these differences. */
10437 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10438 highest_order_field_bit_offset = bitpos_int;
10439
10440 if (! BYTES_BIG_ENDIAN)
10441 {
10442 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10443 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10444 }
10445
10446 bit_offset
10447 = (! BYTES_BIG_ENDIAN
10448 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10449 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10450
10451 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10452 }
10453
10454 /* For a FIELD_DECL node which represents a bit field, output an attribute
10455 which specifies the length in bits of the given field. */
10456
10457 static inline void
10458 add_bit_size_attribute (dw_die_ref die, tree decl)
10459 {
10460 /* Must be a field and a bit field. */
10461 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10462 && DECL_BIT_FIELD_TYPE (decl));
10463
10464 if (host_integerp (DECL_SIZE (decl), 1))
10465 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10466 }
10467
10468 /* If the compiled language is ANSI C, then add a 'prototyped'
10469 attribute, if arg types are given for the parameters of a function. */
10470
10471 static inline void
10472 add_prototyped_attribute (dw_die_ref die, tree func_type)
10473 {
10474 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10475 && TYPE_ARG_TYPES (func_type) != NULL)
10476 add_AT_flag (die, DW_AT_prototyped, 1);
10477 }
10478
10479 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10480 by looking in either the type declaration or object declaration
10481 equate table. */
10482
10483 static inline void
10484 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10485 {
10486 dw_die_ref origin_die = NULL;
10487
10488 if (TREE_CODE (origin) != FUNCTION_DECL)
10489 {
10490 /* We may have gotten separated from the block for the inlined
10491 function, if we're in an exception handler or some such; make
10492 sure that the abstract function has been written out.
10493
10494 Doing this for nested functions is wrong, however; functions are
10495 distinct units, and our context might not even be inline. */
10496 tree fn = origin;
10497
10498 if (TYPE_P (fn))
10499 fn = TYPE_STUB_DECL (fn);
10500
10501 /* TYPE_STUB_DECL may have given us a NULL, which decl_function_context
10502 won't like. */
10503 if (fn)
10504 fn = decl_function_context (fn);
10505
10506 if (fn)
10507 dwarf2out_abstract_function (fn);
10508 }
10509
10510 if (DECL_P (origin))
10511 origin_die = lookup_decl_die (origin);
10512 else if (TYPE_P (origin))
10513 origin_die = lookup_type_die (origin);
10514
10515 /* XXX: Functions that are never lowered don't always have correct block
10516 trees (in the case of java, they simply have no block tree, in some other
10517 languages). For these functions, there is nothing we can really do to
10518 output correct debug info for inlined functions in all cases. Rather
10519 than abort, we'll just produce deficient debug info now, in that we will
10520 have variables without a proper abstract origin. In the future, when all
10521 functions are lowered, we should re-add a gcc_assert (origin_die)
10522 here. */
10523
10524 if (origin_die)
10525 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10526 }
10527
10528 /* We do not currently support the pure_virtual attribute. */
10529
10530 static inline void
10531 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10532 {
10533 if (DECL_VINDEX (func_decl))
10534 {
10535 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10536
10537 if (host_integerp (DECL_VINDEX (func_decl), 0))
10538 add_AT_loc (die, DW_AT_vtable_elem_location,
10539 new_loc_descr (DW_OP_constu,
10540 tree_low_cst (DECL_VINDEX (func_decl), 0),
10541 0));
10542
10543 /* GNU extension: Record what type this method came from originally. */
10544 if (debug_info_level > DINFO_LEVEL_TERSE)
10545 add_AT_die_ref (die, DW_AT_containing_type,
10546 lookup_type_die (DECL_CONTEXT (func_decl)));
10547 }
10548 }
10549 \f
10550 /* Add source coordinate attributes for the given decl. */
10551
10552 static void
10553 add_src_coords_attributes (dw_die_ref die, tree decl)
10554 {
10555 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10556 unsigned file_index = lookup_filename (s.file);
10557
10558 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10559 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10560 }
10561
10562 /* Add a DW_AT_name attribute and source coordinate attribute for the
10563 given decl, but only if it actually has a name. */
10564
10565 static void
10566 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10567 {
10568 tree decl_name;
10569
10570 decl_name = DECL_NAME (decl);
10571 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10572 {
10573 add_name_attribute (die, dwarf2_name (decl, 0));
10574 if (! DECL_ARTIFICIAL (decl))
10575 add_src_coords_attributes (die, decl);
10576
10577 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10578 && TREE_PUBLIC (decl)
10579 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10580 && !DECL_ABSTRACT (decl))
10581 add_AT_string (die, DW_AT_MIPS_linkage_name,
10582 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10583 }
10584
10585 #ifdef VMS_DEBUGGING_INFO
10586 /* Get the function's name, as described by its RTL. This may be different
10587 from the DECL_NAME name used in the source file. */
10588 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10589 {
10590 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10591 XEXP (DECL_RTL (decl), 0));
10592 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10593 }
10594 #endif
10595 }
10596
10597 /* Push a new declaration scope. */
10598
10599 static void
10600 push_decl_scope (tree scope)
10601 {
10602 VARRAY_PUSH_TREE (decl_scope_table, scope);
10603 }
10604
10605 /* Pop a declaration scope. */
10606
10607 static inline void
10608 pop_decl_scope (void)
10609 {
10610 gcc_assert (VARRAY_ACTIVE_SIZE (decl_scope_table) > 0);
10611
10612 VARRAY_POP (decl_scope_table);
10613 }
10614
10615 /* Return the DIE for the scope that immediately contains this type.
10616 Non-named types get global scope. Named types nested in other
10617 types get their containing scope if it's open, or global scope
10618 otherwise. All other types (i.e. function-local named types) get
10619 the current active scope. */
10620
10621 static dw_die_ref
10622 scope_die_for (tree t, dw_die_ref context_die)
10623 {
10624 dw_die_ref scope_die = NULL;
10625 tree containing_scope;
10626 int i;
10627
10628 /* Non-types always go in the current scope. */
10629 gcc_assert (TYPE_P (t));
10630
10631 containing_scope = TYPE_CONTEXT (t);
10632
10633 /* Use the containing namespace if it was passed in (for a declaration). */
10634 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10635 {
10636 if (context_die == lookup_decl_die (containing_scope))
10637 /* OK */;
10638 else
10639 containing_scope = NULL_TREE;
10640 }
10641
10642 /* Ignore function type "scopes" from the C frontend. They mean that
10643 a tagged type is local to a parmlist of a function declarator, but
10644 that isn't useful to DWARF. */
10645 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10646 containing_scope = NULL_TREE;
10647
10648 if (containing_scope == NULL_TREE)
10649 scope_die = comp_unit_die;
10650 else if (TYPE_P (containing_scope))
10651 {
10652 /* For types, we can just look up the appropriate DIE. But
10653 first we check to see if we're in the middle of emitting it
10654 so we know where the new DIE should go. */
10655 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10656 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10657 break;
10658
10659 if (i < 0)
10660 {
10661 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
10662 || TREE_ASM_WRITTEN (containing_scope));
10663
10664 /* If none of the current dies are suitable, we get file scope. */
10665 scope_die = comp_unit_die;
10666 }
10667 else
10668 scope_die = lookup_type_die (containing_scope);
10669 }
10670 else
10671 scope_die = context_die;
10672
10673 return scope_die;
10674 }
10675
10676 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10677
10678 static inline int
10679 local_scope_p (dw_die_ref context_die)
10680 {
10681 for (; context_die; context_die = context_die->die_parent)
10682 if (context_die->die_tag == DW_TAG_inlined_subroutine
10683 || context_die->die_tag == DW_TAG_subprogram)
10684 return 1;
10685
10686 return 0;
10687 }
10688
10689 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10690 whether or not to treat a DIE in this context as a declaration. */
10691
10692 static inline int
10693 class_or_namespace_scope_p (dw_die_ref context_die)
10694 {
10695 return (context_die
10696 && (context_die->die_tag == DW_TAG_structure_type
10697 || context_die->die_tag == DW_TAG_union_type
10698 || context_die->die_tag == DW_TAG_namespace));
10699 }
10700
10701 /* Many forms of DIEs require a "type description" attribute. This
10702 routine locates the proper "type descriptor" die for the type given
10703 by 'type', and adds a DW_AT_type attribute below the given die. */
10704
10705 static void
10706 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10707 int decl_volatile, dw_die_ref context_die)
10708 {
10709 enum tree_code code = TREE_CODE (type);
10710 dw_die_ref type_die = NULL;
10711
10712 /* ??? If this type is an unnamed subrange type of an integral or
10713 floating-point type, use the inner type. This is because we have no
10714 support for unnamed types in base_type_die. This can happen if this is
10715 an Ada subrange type. Correct solution is emit a subrange type die. */
10716 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10717 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10718 type = TREE_TYPE (type), code = TREE_CODE (type);
10719
10720 if (code == ERROR_MARK
10721 /* Handle a special case. For functions whose return type is void, we
10722 generate *no* type attribute. (Note that no object may have type
10723 `void', so this only applies to function return types). */
10724 || code == VOID_TYPE)
10725 return;
10726
10727 type_die = modified_type_die (type,
10728 decl_const || TYPE_READONLY (type),
10729 decl_volatile || TYPE_VOLATILE (type),
10730 context_die);
10731
10732 if (type_die != NULL)
10733 add_AT_die_ref (object_die, DW_AT_type, type_die);
10734 }
10735
10736 /* Given an object die, add the calling convention attribute for the
10737 function call type. */
10738 static void
10739 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
10740 {
10741 enum dwarf_calling_convention value = DW_CC_normal;
10742
10743 value = targetm.dwarf_calling_convention (type);
10744
10745 /* Only add the attribute if the backend requests it, and
10746 is not DW_CC_normal. */
10747 if (value && (value != DW_CC_normal))
10748 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
10749 }
10750
10751 /* Given a tree pointer to a struct, class, union, or enum type node, return
10752 a pointer to the (string) tag name for the given type, or zero if the type
10753 was declared without a tag. */
10754
10755 static const char *
10756 type_tag (tree type)
10757 {
10758 const char *name = 0;
10759
10760 if (TYPE_NAME (type) != 0)
10761 {
10762 tree t = 0;
10763
10764 /* Find the IDENTIFIER_NODE for the type name. */
10765 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10766 t = TYPE_NAME (type);
10767
10768 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10769 a TYPE_DECL node, regardless of whether or not a `typedef' was
10770 involved. */
10771 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10772 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10773 t = DECL_NAME (TYPE_NAME (type));
10774
10775 /* Now get the name as a string, or invent one. */
10776 if (t != 0)
10777 name = IDENTIFIER_POINTER (t);
10778 }
10779
10780 return (name == 0 || *name == '\0') ? 0 : name;
10781 }
10782
10783 /* Return the type associated with a data member, make a special check
10784 for bit field types. */
10785
10786 static inline tree
10787 member_declared_type (tree member)
10788 {
10789 return (DECL_BIT_FIELD_TYPE (member)
10790 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10791 }
10792
10793 /* Get the decl's label, as described by its RTL. This may be different
10794 from the DECL_NAME name used in the source file. */
10795
10796 #if 0
10797 static const char *
10798 decl_start_label (tree decl)
10799 {
10800 rtx x;
10801 const char *fnname;
10802
10803 x = DECL_RTL (decl);
10804 gcc_assert (MEM_P (x));
10805
10806 x = XEXP (x, 0);
10807 gcc_assert (GET_CODE (x) == SYMBOL_REF);
10808
10809 fnname = XSTR (x, 0);
10810 return fnname;
10811 }
10812 #endif
10813 \f
10814 /* These routines generate the internal representation of the DIE's for
10815 the compilation unit. Debugging information is collected by walking
10816 the declaration trees passed in from dwarf2out_decl(). */
10817
10818 static void
10819 gen_array_type_die (tree type, dw_die_ref context_die)
10820 {
10821 dw_die_ref scope_die = scope_die_for (type, context_die);
10822 dw_die_ref array_die;
10823 tree element_type;
10824
10825 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10826 the inner array type comes before the outer array type. Thus we must
10827 call gen_type_die before we call new_die. See below also. */
10828 #ifdef MIPS_DEBUGGING_INFO
10829 gen_type_die (TREE_TYPE (type), context_die);
10830 #endif
10831
10832 array_die = new_die (DW_TAG_array_type, scope_die, type);
10833 add_name_attribute (array_die, type_tag (type));
10834 equate_type_number_to_die (type, array_die);
10835
10836 if (TREE_CODE (type) == VECTOR_TYPE)
10837 {
10838 /* The frontend feeds us a representation for the vector as a struct
10839 containing an array. Pull out the array type. */
10840 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10841 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10842 }
10843
10844 #if 0
10845 /* We default the array ordering. SDB will probably do
10846 the right things even if DW_AT_ordering is not present. It's not even
10847 an issue until we start to get into multidimensional arrays anyway. If
10848 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10849 then we'll have to put the DW_AT_ordering attribute back in. (But if
10850 and when we find out that we need to put these in, we will only do so
10851 for multidimensional arrays. */
10852 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10853 #endif
10854
10855 #ifdef MIPS_DEBUGGING_INFO
10856 /* The SGI compilers handle arrays of unknown bound by setting
10857 AT_declaration and not emitting any subrange DIEs. */
10858 if (! TYPE_DOMAIN (type))
10859 add_AT_flag (array_die, DW_AT_declaration, 1);
10860 else
10861 #endif
10862 add_subscript_info (array_die, type);
10863
10864 /* Add representation of the type of the elements of this array type. */
10865 element_type = TREE_TYPE (type);
10866
10867 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10868 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10869 We work around this by disabling this feature. See also
10870 add_subscript_info. */
10871 #ifndef MIPS_DEBUGGING_INFO
10872 while (TREE_CODE (element_type) == ARRAY_TYPE)
10873 element_type = TREE_TYPE (element_type);
10874
10875 gen_type_die (element_type, context_die);
10876 #endif
10877
10878 add_type_attribute (array_die, element_type, 0, 0, context_die);
10879 }
10880
10881 #if 0
10882 static void
10883 gen_entry_point_die (tree decl, dw_die_ref context_die)
10884 {
10885 tree origin = decl_ultimate_origin (decl);
10886 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10887
10888 if (origin != NULL)
10889 add_abstract_origin_attribute (decl_die, origin);
10890 else
10891 {
10892 add_name_and_src_coords_attributes (decl_die, decl);
10893 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10894 0, 0, context_die);
10895 }
10896
10897 if (DECL_ABSTRACT (decl))
10898 equate_decl_number_to_die (decl, decl_die);
10899 else
10900 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10901 }
10902 #endif
10903
10904 /* Walk through the list of incomplete types again, trying once more to
10905 emit full debugging info for them. */
10906
10907 static void
10908 retry_incomplete_types (void)
10909 {
10910 int i;
10911
10912 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10913 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10914 }
10915
10916 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10917
10918 static void
10919 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
10920 {
10921 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10922
10923 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10924 be incomplete and such types are not marked. */
10925 add_abstract_origin_attribute (type_die, type);
10926 }
10927
10928 /* Generate a DIE to represent an inlined instance of a structure type. */
10929
10930 static void
10931 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
10932 {
10933 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10934
10935 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10936 be incomplete and such types are not marked. */
10937 add_abstract_origin_attribute (type_die, type);
10938 }
10939
10940 /* Generate a DIE to represent an inlined instance of a union type. */
10941
10942 static void
10943 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
10944 {
10945 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10946
10947 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10948 be incomplete and such types are not marked. */
10949 add_abstract_origin_attribute (type_die, type);
10950 }
10951
10952 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10953 include all of the information about the enumeration values also. Each
10954 enumerated type name/value is listed as a child of the enumerated type
10955 DIE. */
10956
10957 static dw_die_ref
10958 gen_enumeration_type_die (tree type, dw_die_ref context_die)
10959 {
10960 dw_die_ref type_die = lookup_type_die (type);
10961
10962 if (type_die == NULL)
10963 {
10964 type_die = new_die (DW_TAG_enumeration_type,
10965 scope_die_for (type, context_die), type);
10966 equate_type_number_to_die (type, type_die);
10967 add_name_attribute (type_die, type_tag (type));
10968 }
10969 else if (! TYPE_SIZE (type))
10970 return type_die;
10971 else
10972 remove_AT (type_die, DW_AT_declaration);
10973
10974 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10975 given enum type is incomplete, do not generate the DW_AT_byte_size
10976 attribute or the DW_AT_element_list attribute. */
10977 if (TYPE_SIZE (type))
10978 {
10979 tree link;
10980
10981 TREE_ASM_WRITTEN (type) = 1;
10982 add_byte_size_attribute (type_die, type);
10983 if (TYPE_STUB_DECL (type) != NULL_TREE)
10984 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10985
10986 /* If the first reference to this type was as the return type of an
10987 inline function, then it may not have a parent. Fix this now. */
10988 if (type_die->die_parent == NULL)
10989 add_child_die (scope_die_for (type, context_die), type_die);
10990
10991 for (link = TYPE_VALUES (type);
10992 link != NULL; link = TREE_CHAIN (link))
10993 {
10994 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10995 tree value = TREE_VALUE (link);
10996
10997 add_name_attribute (enum_die,
10998 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10999
11000 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11001 /* DWARF2 does not provide a way of indicating whether or
11002 not enumeration constants are signed or unsigned. GDB
11003 always assumes the values are signed, so we output all
11004 values as if they were signed. That means that
11005 enumeration constants with very large unsigned values
11006 will appear to have negative values in the debugger. */
11007 add_AT_int (enum_die, DW_AT_const_value,
11008 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11009 }
11010 }
11011 else
11012 add_AT_flag (type_die, DW_AT_declaration, 1);
11013
11014 return type_die;
11015 }
11016
11017 /* Generate a DIE to represent either a real live formal parameter decl or to
11018 represent just the type of some formal parameter position in some function
11019 type.
11020
11021 Note that this routine is a bit unusual because its argument may be a
11022 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11023 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11024 node. If it's the former then this function is being called to output a
11025 DIE to represent a formal parameter object (or some inlining thereof). If
11026 it's the latter, then this function is only being called to output a
11027 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11028 argument type of some subprogram type. */
11029
11030 static dw_die_ref
11031 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11032 {
11033 dw_die_ref parm_die
11034 = new_die (DW_TAG_formal_parameter, context_die, node);
11035 tree origin;
11036
11037 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11038 {
11039 case tcc_declaration:
11040 origin = decl_ultimate_origin (node);
11041 if (origin != NULL)
11042 add_abstract_origin_attribute (parm_die, origin);
11043 else
11044 {
11045 add_name_and_src_coords_attributes (parm_die, node);
11046 add_type_attribute (parm_die, TREE_TYPE (node),
11047 TREE_READONLY (node),
11048 TREE_THIS_VOLATILE (node),
11049 context_die);
11050 if (DECL_ARTIFICIAL (node))
11051 add_AT_flag (parm_die, DW_AT_artificial, 1);
11052 }
11053
11054 equate_decl_number_to_die (node, parm_die);
11055 if (! DECL_ABSTRACT (node))
11056 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11057
11058 break;
11059
11060 case tcc_type:
11061 /* We were called with some kind of a ..._TYPE node. */
11062 add_type_attribute (parm_die, node, 0, 0, context_die);
11063 break;
11064
11065 default:
11066 gcc_unreachable ();
11067 }
11068
11069 return parm_die;
11070 }
11071
11072 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11073 at the end of an (ANSI prototyped) formal parameters list. */
11074
11075 static void
11076 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11077 {
11078 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11079 }
11080
11081 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11082 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11083 parameters as specified in some function type specification (except for
11084 those which appear as part of a function *definition*). */
11085
11086 static void
11087 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11088 {
11089 tree link;
11090 tree formal_type = NULL;
11091 tree first_parm_type;
11092 tree arg;
11093
11094 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11095 {
11096 arg = DECL_ARGUMENTS (function_or_method_type);
11097 function_or_method_type = TREE_TYPE (function_or_method_type);
11098 }
11099 else
11100 arg = NULL_TREE;
11101
11102 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11103
11104 /* Make our first pass over the list of formal parameter types and output a
11105 DW_TAG_formal_parameter DIE for each one. */
11106 for (link = first_parm_type; link; )
11107 {
11108 dw_die_ref parm_die;
11109
11110 formal_type = TREE_VALUE (link);
11111 if (formal_type == void_type_node)
11112 break;
11113
11114 /* Output a (nameless) DIE to represent the formal parameter itself. */
11115 parm_die = gen_formal_parameter_die (formal_type, context_die);
11116 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11117 && link == first_parm_type)
11118 || (arg && DECL_ARTIFICIAL (arg)))
11119 add_AT_flag (parm_die, DW_AT_artificial, 1);
11120
11121 link = TREE_CHAIN (link);
11122 if (arg)
11123 arg = TREE_CHAIN (arg);
11124 }
11125
11126 /* If this function type has an ellipsis, add a
11127 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11128 if (formal_type != void_type_node)
11129 gen_unspecified_parameters_die (function_or_method_type, context_die);
11130
11131 /* Make our second (and final) pass over the list of formal parameter types
11132 and output DIEs to represent those types (as necessary). */
11133 for (link = TYPE_ARG_TYPES (function_or_method_type);
11134 link && TREE_VALUE (link);
11135 link = TREE_CHAIN (link))
11136 gen_type_die (TREE_VALUE (link), context_die);
11137 }
11138
11139 /* We want to generate the DIE for TYPE so that we can generate the
11140 die for MEMBER, which has been defined; we will need to refer back
11141 to the member declaration nested within TYPE. If we're trying to
11142 generate minimal debug info for TYPE, processing TYPE won't do the
11143 trick; we need to attach the member declaration by hand. */
11144
11145 static void
11146 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11147 {
11148 gen_type_die (type, context_die);
11149
11150 /* If we're trying to avoid duplicate debug info, we may not have
11151 emitted the member decl for this function. Emit it now. */
11152 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11153 && ! lookup_decl_die (member))
11154 {
11155 gcc_assert (!decl_ultimate_origin (member));
11156
11157 push_decl_scope (type);
11158 if (TREE_CODE (member) == FUNCTION_DECL)
11159 gen_subprogram_die (member, lookup_type_die (type));
11160 else
11161 gen_variable_die (member, lookup_type_die (type));
11162
11163 pop_decl_scope ();
11164 }
11165 }
11166
11167 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11168 may later generate inlined and/or out-of-line instances of. */
11169
11170 static void
11171 dwarf2out_abstract_function (tree decl)
11172 {
11173 dw_die_ref old_die;
11174 tree save_fn;
11175 tree context;
11176 int was_abstract = DECL_ABSTRACT (decl);
11177
11178 /* Make sure we have the actual abstract inline, not a clone. */
11179 decl = DECL_ORIGIN (decl);
11180
11181 old_die = lookup_decl_die (decl);
11182 if (old_die && get_AT (old_die, DW_AT_inline))
11183 /* We've already generated the abstract instance. */
11184 return;
11185
11186 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11187 we don't get confused by DECL_ABSTRACT. */
11188 if (debug_info_level > DINFO_LEVEL_TERSE)
11189 {
11190 context = decl_class_context (decl);
11191 if (context)
11192 gen_type_die_for_member
11193 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11194 }
11195
11196 /* Pretend we've just finished compiling this function. */
11197 save_fn = current_function_decl;
11198 current_function_decl = decl;
11199
11200 set_decl_abstract_flags (decl, 1);
11201 dwarf2out_decl (decl);
11202 if (! was_abstract)
11203 set_decl_abstract_flags (decl, 0);
11204
11205 current_function_decl = save_fn;
11206 }
11207
11208 /* Generate a DIE to represent a declared function (either file-scope or
11209 block-local). */
11210
11211 static void
11212 gen_subprogram_die (tree decl, dw_die_ref context_die)
11213 {
11214 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11215 tree origin = decl_ultimate_origin (decl);
11216 dw_die_ref subr_die;
11217 rtx fp_reg;
11218 tree fn_arg_types;
11219 tree outer_scope;
11220 dw_die_ref old_die = lookup_decl_die (decl);
11221 int declaration = (current_function_decl != decl
11222 || class_or_namespace_scope_p (context_die));
11223
11224 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11225 started to generate the abstract instance of an inline, decided to output
11226 its containing class, and proceeded to emit the declaration of the inline
11227 from the member list for the class. If so, DECLARATION takes priority;
11228 we'll get back to the abstract instance when done with the class. */
11229
11230 /* The class-scope declaration DIE must be the primary DIE. */
11231 if (origin && declaration && class_or_namespace_scope_p (context_die))
11232 {
11233 origin = NULL;
11234 gcc_assert (!old_die);
11235 }
11236
11237 if (origin != NULL)
11238 {
11239 gcc_assert (!declaration || local_scope_p (context_die));
11240
11241 /* Fixup die_parent for the abstract instance of a nested
11242 inline function. */
11243 if (old_die && old_die->die_parent == NULL)
11244 add_child_die (context_die, old_die);
11245
11246 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11247 add_abstract_origin_attribute (subr_die, origin);
11248 }
11249 else if (old_die)
11250 {
11251 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11252 unsigned file_index = lookup_filename (s.file);
11253
11254 if (!get_AT_flag (old_die, DW_AT_declaration)
11255 /* We can have a normal definition following an inline one in the
11256 case of redefinition of GNU C extern inlines.
11257 It seems reasonable to use AT_specification in this case. */
11258 && !get_AT (old_die, DW_AT_inline))
11259 {
11260 /* Detect and ignore this case, where we are trying to output
11261 something we have already output. */
11262 return;
11263 }
11264
11265 /* If the definition comes from the same place as the declaration,
11266 maybe use the old DIE. We always want the DIE for this function
11267 that has the *_pc attributes to be under comp_unit_die so the
11268 debugger can find it. We also need to do this for abstract
11269 instances of inlines, since the spec requires the out-of-line copy
11270 to have the same parent. For local class methods, this doesn't
11271 apply; we just use the old DIE. */
11272 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11273 && (DECL_ARTIFICIAL (decl)
11274 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
11275 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11276 == (unsigned) s.line))))
11277 {
11278 subr_die = old_die;
11279
11280 /* Clear out the declaration attribute and the formal parameters.
11281 Do not remove all children, because it is possible that this
11282 declaration die was forced using force_decl_die(). In such
11283 cases die that forced declaration die (e.g. TAG_imported_module)
11284 is one of the children that we do not want to remove. */
11285 remove_AT (subr_die, DW_AT_declaration);
11286 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11287 }
11288 else
11289 {
11290 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11291 add_AT_specification (subr_die, old_die);
11292 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11293 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
11294 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11295 != (unsigned) s.line)
11296 add_AT_unsigned
11297 (subr_die, DW_AT_decl_line, s.line);
11298 }
11299 }
11300 else
11301 {
11302 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11303
11304 if (TREE_PUBLIC (decl))
11305 add_AT_flag (subr_die, DW_AT_external, 1);
11306
11307 add_name_and_src_coords_attributes (subr_die, decl);
11308 if (debug_info_level > DINFO_LEVEL_TERSE)
11309 {
11310 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11311 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11312 0, 0, context_die);
11313 }
11314
11315 add_pure_or_virtual_attribute (subr_die, decl);
11316 if (DECL_ARTIFICIAL (decl))
11317 add_AT_flag (subr_die, DW_AT_artificial, 1);
11318
11319 if (TREE_PROTECTED (decl))
11320 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11321 else if (TREE_PRIVATE (decl))
11322 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11323 }
11324
11325 if (declaration)
11326 {
11327 if (!old_die || !get_AT (old_die, DW_AT_inline))
11328 {
11329 add_AT_flag (subr_die, DW_AT_declaration, 1);
11330
11331 /* The first time we see a member function, it is in the context of
11332 the class to which it belongs. We make sure of this by emitting
11333 the class first. The next time is the definition, which is
11334 handled above. The two may come from the same source text.
11335
11336 Note that force_decl_die() forces function declaration die. It is
11337 later reused to represent definition. */
11338 equate_decl_number_to_die (decl, subr_die);
11339 }
11340 }
11341 else if (DECL_ABSTRACT (decl))
11342 {
11343 if (DECL_DECLARED_INLINE_P (decl))
11344 {
11345 if (cgraph_function_possibly_inlined_p (decl))
11346 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11347 else
11348 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11349 }
11350 else
11351 {
11352 if (cgraph_function_possibly_inlined_p (decl))
11353 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11354 else
11355 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11356 }
11357
11358 equate_decl_number_to_die (decl, subr_die);
11359 }
11360 else if (!DECL_EXTERNAL (decl))
11361 {
11362 if (!old_die || !get_AT (old_die, DW_AT_inline))
11363 equate_decl_number_to_die (decl, subr_die);
11364
11365 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11366 current_function_funcdef_no);
11367 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11368 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11369 current_function_funcdef_no);
11370 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11371
11372 add_pubname (decl, subr_die);
11373 add_arange (decl, subr_die);
11374
11375 #ifdef MIPS_DEBUGGING_INFO
11376 /* Add a reference to the FDE for this routine. */
11377 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11378 #endif
11379
11380 /* Define the "frame base" location for this routine. We use the
11381 frame pointer or stack pointer registers, since the RTL for local
11382 variables is relative to one of them. */
11383 if (frame_base_decl && lookup_decl_loc (frame_base_decl) != NULL)
11384 {
11385 add_location_or_const_value_attribute (subr_die, frame_base_decl,
11386 DW_AT_frame_base);
11387 }
11388 else
11389 {
11390 fp_reg
11391 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11392 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11393 }
11394
11395 if (cfun->static_chain_decl)
11396 add_AT_location_description (subr_die, DW_AT_static_link,
11397 loc_descriptor_from_tree (cfun->static_chain_decl));
11398 }
11399
11400 /* Now output descriptions of the arguments for this function. This gets
11401 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11402 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11403 `...' at the end of the formal parameter list. In order to find out if
11404 there was a trailing ellipsis or not, we must instead look at the type
11405 associated with the FUNCTION_DECL. This will be a node of type
11406 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11407 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11408 an ellipsis at the end. */
11409
11410 /* In the case where we are describing a mere function declaration, all we
11411 need to do here (and all we *can* do here) is to describe the *types* of
11412 its formal parameters. */
11413 if (debug_info_level <= DINFO_LEVEL_TERSE)
11414 ;
11415 else if (declaration)
11416 gen_formal_types_die (decl, subr_die);
11417 else
11418 {
11419 /* Generate DIEs to represent all known formal parameters. */
11420 tree arg_decls = DECL_ARGUMENTS (decl);
11421 tree parm;
11422
11423 /* When generating DIEs, generate the unspecified_parameters DIE
11424 instead if we come across the arg "__builtin_va_alist" */
11425 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11426 if (TREE_CODE (parm) == PARM_DECL)
11427 {
11428 if (DECL_NAME (parm)
11429 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11430 "__builtin_va_alist"))
11431 gen_unspecified_parameters_die (parm, subr_die);
11432 else
11433 gen_decl_die (parm, subr_die);
11434 }
11435
11436 /* Decide whether we need an unspecified_parameters DIE at the end.
11437 There are 2 more cases to do this for: 1) the ansi ... declaration -
11438 this is detectable when the end of the arg list is not a
11439 void_type_node 2) an unprototyped function declaration (not a
11440 definition). This just means that we have no info about the
11441 parameters at all. */
11442 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11443 if (fn_arg_types != NULL)
11444 {
11445 /* This is the prototyped case, check for.... */
11446 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11447 gen_unspecified_parameters_die (decl, subr_die);
11448 }
11449 else if (DECL_INITIAL (decl) == NULL_TREE)
11450 gen_unspecified_parameters_die (decl, subr_die);
11451 }
11452
11453 /* Output Dwarf info for all of the stuff within the body of the function
11454 (if it has one - it may be just a declaration). */
11455 outer_scope = DECL_INITIAL (decl);
11456
11457 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11458 a function. This BLOCK actually represents the outermost binding contour
11459 for the function, i.e. the contour in which the function's formal
11460 parameters and labels get declared. Curiously, it appears that the front
11461 end doesn't actually put the PARM_DECL nodes for the current function onto
11462 the BLOCK_VARS list for this outer scope, but are strung off of the
11463 DECL_ARGUMENTS list for the function instead.
11464
11465 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11466 the LABEL_DECL nodes for the function however, and we output DWARF info
11467 for those in decls_for_scope. Just within the `outer_scope' there will be
11468 a BLOCK node representing the function's outermost pair of curly braces,
11469 and any blocks used for the base and member initializers of a C++
11470 constructor function. */
11471 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11472 {
11473 /* Emit a DW_TAG_variable DIE for a named return value. */
11474 if (DECL_NAME (DECL_RESULT (decl)))
11475 gen_decl_die (DECL_RESULT (decl), subr_die);
11476
11477 current_function_has_inlines = 0;
11478 decls_for_scope (outer_scope, subr_die, 0);
11479
11480 #if 0 && defined (MIPS_DEBUGGING_INFO)
11481 if (current_function_has_inlines)
11482 {
11483 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11484 if (! comp_unit_has_inlines)
11485 {
11486 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11487 comp_unit_has_inlines = 1;
11488 }
11489 }
11490 #endif
11491 }
11492 /* Add the calling convention attribute if requested. */
11493 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11494
11495 }
11496
11497 /* Generate a DIE to represent a declared data object. */
11498
11499 static void
11500 gen_variable_die (tree decl, dw_die_ref context_die)
11501 {
11502 tree origin = decl_ultimate_origin (decl);
11503 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11504
11505 dw_die_ref old_die = lookup_decl_die (decl);
11506 int declaration = (DECL_EXTERNAL (decl)
11507 || class_or_namespace_scope_p (context_die));
11508
11509 if (origin != NULL)
11510 add_abstract_origin_attribute (var_die, origin);
11511
11512 /* Loop unrolling can create multiple blocks that refer to the same
11513 static variable, so we must test for the DW_AT_declaration flag.
11514
11515 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11516 copy decls and set the DECL_ABSTRACT flag on them instead of
11517 sharing them.
11518
11519 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11520 else if (old_die && TREE_STATIC (decl)
11521 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11522 {
11523 /* This is a definition of a C++ class level static. */
11524 add_AT_specification (var_die, old_die);
11525 if (DECL_NAME (decl))
11526 {
11527 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11528 unsigned file_index = lookup_filename (s.file);
11529
11530 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11531 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11532
11533 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11534 != (unsigned) s.line)
11535
11536 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
11537 }
11538 }
11539 else
11540 {
11541 add_name_and_src_coords_attributes (var_die, decl);
11542 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11543 TREE_THIS_VOLATILE (decl), context_die);
11544
11545 if (TREE_PUBLIC (decl))
11546 add_AT_flag (var_die, DW_AT_external, 1);
11547
11548 if (DECL_ARTIFICIAL (decl))
11549 add_AT_flag (var_die, DW_AT_artificial, 1);
11550
11551 if (TREE_PROTECTED (decl))
11552 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11553 else if (TREE_PRIVATE (decl))
11554 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11555 }
11556
11557 if (declaration)
11558 add_AT_flag (var_die, DW_AT_declaration, 1);
11559
11560 if (DECL_ABSTRACT (decl) || declaration)
11561 equate_decl_number_to_die (decl, var_die);
11562
11563 if (! declaration && ! DECL_ABSTRACT (decl))
11564 {
11565 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
11566 add_pubname (decl, var_die);
11567 }
11568 else
11569 tree_add_const_value_attribute (var_die, decl);
11570 }
11571
11572 /* Generate a DIE to represent a label identifier. */
11573
11574 static void
11575 gen_label_die (tree decl, dw_die_ref context_die)
11576 {
11577 tree origin = decl_ultimate_origin (decl);
11578 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11579 rtx insn;
11580 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11581
11582 if (origin != NULL)
11583 add_abstract_origin_attribute (lbl_die, origin);
11584 else
11585 add_name_and_src_coords_attributes (lbl_die, decl);
11586
11587 if (DECL_ABSTRACT (decl))
11588 equate_decl_number_to_die (decl, lbl_die);
11589 else
11590 {
11591 insn = DECL_RTL_IF_SET (decl);
11592
11593 /* Deleted labels are programmer specified labels which have been
11594 eliminated because of various optimizations. We still emit them
11595 here so that it is possible to put breakpoints on them. */
11596 if (insn
11597 && (LABEL_P (insn)
11598 || ((NOTE_P (insn)
11599 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11600 {
11601 /* When optimization is enabled (via -O) some parts of the compiler
11602 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11603 represent source-level labels which were explicitly declared by
11604 the user. This really shouldn't be happening though, so catch
11605 it if it ever does happen. */
11606 gcc_assert (!INSN_DELETED_P (insn));
11607
11608 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11609 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11610 }
11611 }
11612 }
11613
11614 /* Generate a DIE for a lexical block. */
11615
11616 static void
11617 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11618 {
11619 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11620 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11621
11622 if (! BLOCK_ABSTRACT (stmt))
11623 {
11624 if (BLOCK_FRAGMENT_CHAIN (stmt))
11625 {
11626 tree chain;
11627
11628 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11629
11630 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11631 do
11632 {
11633 add_ranges (chain);
11634 chain = BLOCK_FRAGMENT_CHAIN (chain);
11635 }
11636 while (chain);
11637 add_ranges (NULL);
11638 }
11639 else
11640 {
11641 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11642 BLOCK_NUMBER (stmt));
11643 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11644 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11645 BLOCK_NUMBER (stmt));
11646 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11647 }
11648 }
11649
11650 decls_for_scope (stmt, stmt_die, depth);
11651 }
11652
11653 /* Generate a DIE for an inlined subprogram. */
11654
11655 static void
11656 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11657 {
11658 tree decl = block_ultimate_origin (stmt);
11659
11660 /* Emit info for the abstract instance first, if we haven't yet. We
11661 must emit this even if the block is abstract, otherwise when we
11662 emit the block below (or elsewhere), we may end up trying to emit
11663 a die whose origin die hasn't been emitted, and crashing. */
11664 dwarf2out_abstract_function (decl);
11665
11666 if (! BLOCK_ABSTRACT (stmt))
11667 {
11668 dw_die_ref subr_die
11669 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11670 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11671
11672 add_abstract_origin_attribute (subr_die, decl);
11673 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11674 BLOCK_NUMBER (stmt));
11675 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11676 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11677 BLOCK_NUMBER (stmt));
11678 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11679 decls_for_scope (stmt, subr_die, depth);
11680 current_function_has_inlines = 1;
11681 }
11682 else
11683 /* We may get here if we're the outer block of function A that was
11684 inlined into function B that was inlined into function C. When
11685 generating debugging info for C, dwarf2out_abstract_function(B)
11686 would mark all inlined blocks as abstract, including this one.
11687 So, we wouldn't (and shouldn't) expect labels to be generated
11688 for this one. Instead, just emit debugging info for
11689 declarations within the block. This is particularly important
11690 in the case of initializers of arguments passed from B to us:
11691 if they're statement expressions containing declarations, we
11692 wouldn't generate dies for their abstract variables, and then,
11693 when generating dies for the real variables, we'd die (pun
11694 intended :-) */
11695 gen_lexical_block_die (stmt, context_die, depth);
11696 }
11697
11698 /* Generate a DIE for a field in a record, or structure. */
11699
11700 static void
11701 gen_field_die (tree decl, dw_die_ref context_die)
11702 {
11703 dw_die_ref decl_die;
11704
11705 if (TREE_TYPE (decl) == error_mark_node)
11706 return;
11707
11708 decl_die = new_die (DW_TAG_member, context_die, decl);
11709 add_name_and_src_coords_attributes (decl_die, decl);
11710 add_type_attribute (decl_die, member_declared_type (decl),
11711 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11712 context_die);
11713
11714 if (DECL_BIT_FIELD_TYPE (decl))
11715 {
11716 add_byte_size_attribute (decl_die, decl);
11717 add_bit_size_attribute (decl_die, decl);
11718 add_bit_offset_attribute (decl_die, decl);
11719 }
11720
11721 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11722 add_data_member_location_attribute (decl_die, decl);
11723
11724 if (DECL_ARTIFICIAL (decl))
11725 add_AT_flag (decl_die, DW_AT_artificial, 1);
11726
11727 if (TREE_PROTECTED (decl))
11728 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11729 else if (TREE_PRIVATE (decl))
11730 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11731
11732 /* Equate decl number to die, so that we can look up this decl later on. */
11733 equate_decl_number_to_die (decl, decl_die);
11734 }
11735
11736 #if 0
11737 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11738 Use modified_type_die instead.
11739 We keep this code here just in case these types of DIEs may be needed to
11740 represent certain things in other languages (e.g. Pascal) someday. */
11741
11742 static void
11743 gen_pointer_type_die (tree type, dw_die_ref context_die)
11744 {
11745 dw_die_ref ptr_die
11746 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11747
11748 equate_type_number_to_die (type, ptr_die);
11749 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11750 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11751 }
11752
11753 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11754 Use modified_type_die instead.
11755 We keep this code here just in case these types of DIEs may be needed to
11756 represent certain things in other languages (e.g. Pascal) someday. */
11757
11758 static void
11759 gen_reference_type_die (tree type, dw_die_ref context_die)
11760 {
11761 dw_die_ref ref_die
11762 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11763
11764 equate_type_number_to_die (type, ref_die);
11765 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11766 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11767 }
11768 #endif
11769
11770 /* Generate a DIE for a pointer to a member type. */
11771
11772 static void
11773 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11774 {
11775 dw_die_ref ptr_die
11776 = new_die (DW_TAG_ptr_to_member_type,
11777 scope_die_for (type, context_die), type);
11778
11779 equate_type_number_to_die (type, ptr_die);
11780 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11781 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11782 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11783 }
11784
11785 /* Generate the DIE for the compilation unit. */
11786
11787 static dw_die_ref
11788 gen_compile_unit_die (const char *filename)
11789 {
11790 dw_die_ref die;
11791 char producer[250];
11792 const char *language_string = lang_hooks.name;
11793 int language;
11794
11795 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11796
11797 if (filename)
11798 {
11799 add_name_attribute (die, filename);
11800 /* Don't add cwd for <built-in>. */
11801 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11802 add_comp_dir_attribute (die);
11803 }
11804
11805 sprintf (producer, "%s %s", language_string, version_string);
11806
11807 #ifdef MIPS_DEBUGGING_INFO
11808 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11809 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11810 not appear in the producer string, the debugger reaches the conclusion
11811 that the object file is stripped and has no debugging information.
11812 To get the MIPS/SGI debugger to believe that there is debugging
11813 information in the object file, we add a -g to the producer string. */
11814 if (debug_info_level > DINFO_LEVEL_TERSE)
11815 strcat (producer, " -g");
11816 #endif
11817
11818 add_AT_string (die, DW_AT_producer, producer);
11819
11820 if (strcmp (language_string, "GNU C++") == 0)
11821 language = DW_LANG_C_plus_plus;
11822 else if (strcmp (language_string, "GNU Ada") == 0)
11823 language = DW_LANG_Ada95;
11824 else if (strcmp (language_string, "GNU F77") == 0)
11825 language = DW_LANG_Fortran77;
11826 else if (strcmp (language_string, "GNU F95") == 0)
11827 language = DW_LANG_Fortran95;
11828 else if (strcmp (language_string, "GNU Pascal") == 0)
11829 language = DW_LANG_Pascal83;
11830 else if (strcmp (language_string, "GNU Java") == 0)
11831 language = DW_LANG_Java;
11832 else
11833 language = DW_LANG_C89;
11834
11835 add_AT_unsigned (die, DW_AT_language, language);
11836 return die;
11837 }
11838
11839 /* Generate a DIE for a string type. */
11840
11841 static void
11842 gen_string_type_die (tree type, dw_die_ref context_die)
11843 {
11844 dw_die_ref type_die
11845 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11846
11847 equate_type_number_to_die (type, type_die);
11848
11849 /* ??? Fudge the string length attribute for now.
11850 TODO: add string length info. */
11851 #if 0
11852 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11853 bound_representation (upper_bound, 0, 'u');
11854 #endif
11855 }
11856
11857 /* Generate the DIE for a base class. */
11858
11859 static void
11860 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11861 {
11862 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11863
11864 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11865 add_data_member_location_attribute (die, binfo);
11866
11867 if (BINFO_VIRTUAL_P (binfo))
11868 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11869
11870 if (access == access_public_node)
11871 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11872 else if (access == access_protected_node)
11873 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11874 }
11875
11876 /* Generate a DIE for a class member. */
11877
11878 static void
11879 gen_member_die (tree type, dw_die_ref context_die)
11880 {
11881 tree member;
11882 tree binfo = TYPE_BINFO (type);
11883 dw_die_ref child;
11884
11885 /* If this is not an incomplete type, output descriptions of each of its
11886 members. Note that as we output the DIEs necessary to represent the
11887 members of this record or union type, we will also be trying to output
11888 DIEs to represent the *types* of those members. However the `type'
11889 function (above) will specifically avoid generating type DIEs for member
11890 types *within* the list of member DIEs for this (containing) type except
11891 for those types (of members) which are explicitly marked as also being
11892 members of this (containing) type themselves. The g++ front- end can
11893 force any given type to be treated as a member of some other (containing)
11894 type by setting the TYPE_CONTEXT of the given (member) type to point to
11895 the TREE node representing the appropriate (containing) type. */
11896
11897 /* First output info about the base classes. */
11898 if (binfo)
11899 {
11900 VEC (tree) *accesses = BINFO_BASE_ACCESSES (binfo);
11901 int i;
11902 tree base;
11903
11904 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
11905 gen_inheritance_die (base,
11906 (accesses ? VEC_index (tree, accesses, i)
11907 : access_public_node), context_die);
11908 }
11909
11910 /* Now output info about the data members and type members. */
11911 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11912 {
11913 /* If we thought we were generating minimal debug info for TYPE
11914 and then changed our minds, some of the member declarations
11915 may have already been defined. Don't define them again, but
11916 do put them in the right order. */
11917
11918 child = lookup_decl_die (member);
11919 if (child)
11920 splice_child_die (context_die, child);
11921 else
11922 gen_decl_die (member, context_die);
11923 }
11924
11925 /* Now output info about the function members (if any). */
11926 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11927 {
11928 /* Don't include clones in the member list. */
11929 if (DECL_ABSTRACT_ORIGIN (member))
11930 continue;
11931
11932 child = lookup_decl_die (member);
11933 if (child)
11934 splice_child_die (context_die, child);
11935 else
11936 gen_decl_die (member, context_die);
11937 }
11938 }
11939
11940 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11941 is set, we pretend that the type was never defined, so we only get the
11942 member DIEs needed by later specification DIEs. */
11943
11944 static void
11945 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
11946 {
11947 dw_die_ref type_die = lookup_type_die (type);
11948 dw_die_ref scope_die = 0;
11949 int nested = 0;
11950 int complete = (TYPE_SIZE (type)
11951 && (! TYPE_STUB_DECL (type)
11952 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11953 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
11954
11955 if (type_die && ! complete)
11956 return;
11957
11958 if (TYPE_CONTEXT (type) != NULL_TREE
11959 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11960 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
11961 nested = 1;
11962
11963 scope_die = scope_die_for (type, context_die);
11964
11965 if (! type_die || (nested && scope_die == comp_unit_die))
11966 /* First occurrence of type or toplevel definition of nested class. */
11967 {
11968 dw_die_ref old_die = type_die;
11969
11970 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11971 ? DW_TAG_structure_type : DW_TAG_union_type,
11972 scope_die, type);
11973 equate_type_number_to_die (type, type_die);
11974 if (old_die)
11975 add_AT_specification (type_die, old_die);
11976 else
11977 add_name_attribute (type_die, type_tag (type));
11978 }
11979 else
11980 remove_AT (type_die, DW_AT_declaration);
11981
11982 /* If this type has been completed, then give it a byte_size attribute and
11983 then give a list of members. */
11984 if (complete && !ns_decl)
11985 {
11986 /* Prevent infinite recursion in cases where the type of some member of
11987 this type is expressed in terms of this type itself. */
11988 TREE_ASM_WRITTEN (type) = 1;
11989 add_byte_size_attribute (type_die, type);
11990 if (TYPE_STUB_DECL (type) != NULL_TREE)
11991 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11992
11993 /* If the first reference to this type was as the return type of an
11994 inline function, then it may not have a parent. Fix this now. */
11995 if (type_die->die_parent == NULL)
11996 add_child_die (scope_die, type_die);
11997
11998 push_decl_scope (type);
11999 gen_member_die (type, type_die);
12000 pop_decl_scope ();
12001
12002 /* GNU extension: Record what type our vtable lives in. */
12003 if (TYPE_VFIELD (type))
12004 {
12005 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12006
12007 gen_type_die (vtype, context_die);
12008 add_AT_die_ref (type_die, DW_AT_containing_type,
12009 lookup_type_die (vtype));
12010 }
12011 }
12012 else
12013 {
12014 add_AT_flag (type_die, DW_AT_declaration, 1);
12015
12016 /* We don't need to do this for function-local types. */
12017 if (TYPE_STUB_DECL (type)
12018 && ! decl_function_context (TYPE_STUB_DECL (type)))
12019 VARRAY_PUSH_TREE (incomplete_types, type);
12020 }
12021 }
12022
12023 /* Generate a DIE for a subroutine _type_. */
12024
12025 static void
12026 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12027 {
12028 tree return_type = TREE_TYPE (type);
12029 dw_die_ref subr_die
12030 = new_die (DW_TAG_subroutine_type,
12031 scope_die_for (type, context_die), type);
12032
12033 equate_type_number_to_die (type, subr_die);
12034 add_prototyped_attribute (subr_die, type);
12035 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12036 gen_formal_types_die (type, subr_die);
12037 }
12038
12039 /* Generate a DIE for a type definition. */
12040
12041 static void
12042 gen_typedef_die (tree decl, dw_die_ref context_die)
12043 {
12044 dw_die_ref type_die;
12045 tree origin;
12046
12047 if (TREE_ASM_WRITTEN (decl))
12048 return;
12049
12050 TREE_ASM_WRITTEN (decl) = 1;
12051 type_die = new_die (DW_TAG_typedef, context_die, decl);
12052 origin = decl_ultimate_origin (decl);
12053 if (origin != NULL)
12054 add_abstract_origin_attribute (type_die, origin);
12055 else
12056 {
12057 tree type;
12058
12059 add_name_and_src_coords_attributes (type_die, decl);
12060 if (DECL_ORIGINAL_TYPE (decl))
12061 {
12062 type = DECL_ORIGINAL_TYPE (decl);
12063
12064 gcc_assert (type != TREE_TYPE (decl));
12065 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12066 }
12067 else
12068 type = TREE_TYPE (decl);
12069
12070 add_type_attribute (type_die, type, TREE_READONLY (decl),
12071 TREE_THIS_VOLATILE (decl), context_die);
12072 }
12073
12074 if (DECL_ABSTRACT (decl))
12075 equate_decl_number_to_die (decl, type_die);
12076 }
12077
12078 /* Generate a type description DIE. */
12079
12080 static void
12081 gen_type_die (tree type, dw_die_ref context_die)
12082 {
12083 int need_pop;
12084
12085 if (type == NULL_TREE || type == error_mark_node)
12086 return;
12087
12088 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12089 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12090 {
12091 if (TREE_ASM_WRITTEN (type))
12092 return;
12093
12094 /* Prevent broken recursion; we can't hand off to the same type. */
12095 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12096
12097 TREE_ASM_WRITTEN (type) = 1;
12098 gen_decl_die (TYPE_NAME (type), context_die);
12099 return;
12100 }
12101
12102 /* We are going to output a DIE to represent the unqualified version
12103 of this type (i.e. without any const or volatile qualifiers) so
12104 get the main variant (i.e. the unqualified version) of this type
12105 now. (Vectors are special because the debugging info is in the
12106 cloned type itself). */
12107 if (TREE_CODE (type) != VECTOR_TYPE)
12108 type = type_main_variant (type);
12109
12110 if (TREE_ASM_WRITTEN (type))
12111 return;
12112
12113 switch (TREE_CODE (type))
12114 {
12115 case ERROR_MARK:
12116 break;
12117
12118 case POINTER_TYPE:
12119 case REFERENCE_TYPE:
12120 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12121 ensures that the gen_type_die recursion will terminate even if the
12122 type is recursive. Recursive types are possible in Ada. */
12123 /* ??? We could perhaps do this for all types before the switch
12124 statement. */
12125 TREE_ASM_WRITTEN (type) = 1;
12126
12127 /* For these types, all that is required is that we output a DIE (or a
12128 set of DIEs) to represent the "basis" type. */
12129 gen_type_die (TREE_TYPE (type), context_die);
12130 break;
12131
12132 case OFFSET_TYPE:
12133 /* This code is used for C++ pointer-to-data-member types.
12134 Output a description of the relevant class type. */
12135 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12136
12137 /* Output a description of the type of the object pointed to. */
12138 gen_type_die (TREE_TYPE (type), context_die);
12139
12140 /* Now output a DIE to represent this pointer-to-data-member type
12141 itself. */
12142 gen_ptr_to_mbr_type_die (type, context_die);
12143 break;
12144
12145 case FILE_TYPE:
12146 gen_type_die (TREE_TYPE (type), context_die);
12147 /* No way to represent these in Dwarf yet! */
12148 gcc_unreachable ();
12149 break;
12150
12151 case FUNCTION_TYPE:
12152 /* Force out return type (in case it wasn't forced out already). */
12153 gen_type_die (TREE_TYPE (type), context_die);
12154 gen_subroutine_type_die (type, context_die);
12155 break;
12156
12157 case METHOD_TYPE:
12158 /* Force out return type (in case it wasn't forced out already). */
12159 gen_type_die (TREE_TYPE (type), context_die);
12160 gen_subroutine_type_die (type, context_die);
12161 break;
12162
12163 case ARRAY_TYPE:
12164 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
12165 {
12166 gen_type_die (TREE_TYPE (type), context_die);
12167 gen_string_type_die (type, context_die);
12168 }
12169 else
12170 gen_array_type_die (type, context_die);
12171 break;
12172
12173 case VECTOR_TYPE:
12174 gen_array_type_die (type, context_die);
12175 break;
12176
12177 case ENUMERAL_TYPE:
12178 case RECORD_TYPE:
12179 case UNION_TYPE:
12180 case QUAL_UNION_TYPE:
12181 /* If this is a nested type whose containing class hasn't been written
12182 out yet, writing it out will cover this one, too. This does not apply
12183 to instantiations of member class templates; they need to be added to
12184 the containing class as they are generated. FIXME: This hurts the
12185 idea of combining type decls from multiple TUs, since we can't predict
12186 what set of template instantiations we'll get. */
12187 if (TYPE_CONTEXT (type)
12188 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12189 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12190 {
12191 gen_type_die (TYPE_CONTEXT (type), context_die);
12192
12193 if (TREE_ASM_WRITTEN (type))
12194 return;
12195
12196 /* If that failed, attach ourselves to the stub. */
12197 push_decl_scope (TYPE_CONTEXT (type));
12198 context_die = lookup_type_die (TYPE_CONTEXT (type));
12199 need_pop = 1;
12200 }
12201 else
12202 {
12203 declare_in_namespace (type, context_die);
12204 need_pop = 0;
12205 }
12206
12207 if (TREE_CODE (type) == ENUMERAL_TYPE)
12208 gen_enumeration_type_die (type, context_die);
12209 else
12210 gen_struct_or_union_type_die (type, context_die);
12211
12212 if (need_pop)
12213 pop_decl_scope ();
12214
12215 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12216 it up if it is ever completed. gen_*_type_die will set it for us
12217 when appropriate. */
12218 return;
12219
12220 case VOID_TYPE:
12221 case INTEGER_TYPE:
12222 case REAL_TYPE:
12223 case COMPLEX_TYPE:
12224 case BOOLEAN_TYPE:
12225 case CHAR_TYPE:
12226 /* No DIEs needed for fundamental types. */
12227 break;
12228
12229 case LANG_TYPE:
12230 /* No Dwarf representation currently defined. */
12231 break;
12232
12233 default:
12234 gcc_unreachable ();
12235 }
12236
12237 TREE_ASM_WRITTEN (type) = 1;
12238 }
12239
12240 /* Generate a DIE for a tagged type instantiation. */
12241
12242 static void
12243 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12244 {
12245 if (type == NULL_TREE || type == error_mark_node)
12246 return;
12247
12248 /* We are going to output a DIE to represent the unqualified version of
12249 this type (i.e. without any const or volatile qualifiers) so make sure
12250 that we have the main variant (i.e. the unqualified version) of this
12251 type now. */
12252 gcc_assert (type == type_main_variant (type));
12253
12254 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12255 an instance of an unresolved type. */
12256
12257 switch (TREE_CODE (type))
12258 {
12259 case ERROR_MARK:
12260 break;
12261
12262 case ENUMERAL_TYPE:
12263 gen_inlined_enumeration_type_die (type, context_die);
12264 break;
12265
12266 case RECORD_TYPE:
12267 gen_inlined_structure_type_die (type, context_die);
12268 break;
12269
12270 case UNION_TYPE:
12271 case QUAL_UNION_TYPE:
12272 gen_inlined_union_type_die (type, context_die);
12273 break;
12274
12275 default:
12276 gcc_unreachable ();
12277 }
12278 }
12279
12280 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12281 things which are local to the given block. */
12282
12283 static void
12284 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12285 {
12286 int must_output_die = 0;
12287 tree origin;
12288 tree decl;
12289 enum tree_code origin_code;
12290
12291 /* Ignore blocks that are NULL. */
12292 if (stmt == NULL_TREE)
12293 return;
12294
12295 /* If the block is one fragment of a non-contiguous block, do not
12296 process the variables, since they will have been done by the
12297 origin block. Do process subblocks. */
12298 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12299 {
12300 tree sub;
12301
12302 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12303 gen_block_die (sub, context_die, depth + 1);
12304
12305 return;
12306 }
12307
12308 /* Determine the "ultimate origin" of this block. This block may be an
12309 inlined instance of an inlined instance of inline function, so we have
12310 to trace all of the way back through the origin chain to find out what
12311 sort of node actually served as the original seed for the creation of
12312 the current block. */
12313 origin = block_ultimate_origin (stmt);
12314 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12315
12316 /* Determine if we need to output any Dwarf DIEs at all to represent this
12317 block. */
12318 if (origin_code == FUNCTION_DECL)
12319 /* The outer scopes for inlinings *must* always be represented. We
12320 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12321 must_output_die = 1;
12322 else
12323 {
12324 /* In the case where the current block represents an inlining of the
12325 "body block" of an inline function, we must *NOT* output any DIE for
12326 this block because we have already output a DIE to represent the whole
12327 inlined function scope and the "body block" of any function doesn't
12328 really represent a different scope according to ANSI C rules. So we
12329 check here to make sure that this block does not represent a "body
12330 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12331 if (! is_body_block (origin ? origin : stmt))
12332 {
12333 /* Determine if this block directly contains any "significant"
12334 local declarations which we will need to output DIEs for. */
12335 if (debug_info_level > DINFO_LEVEL_TERSE)
12336 /* We are not in terse mode so *any* local declaration counts
12337 as being a "significant" one. */
12338 must_output_die = (BLOCK_VARS (stmt) != NULL
12339 && (TREE_USED (stmt)
12340 || TREE_ASM_WRITTEN (stmt)
12341 || BLOCK_ABSTRACT (stmt)));
12342 else
12343 /* We are in terse mode, so only local (nested) function
12344 definitions count as "significant" local declarations. */
12345 for (decl = BLOCK_VARS (stmt);
12346 decl != NULL; decl = TREE_CHAIN (decl))
12347 if (TREE_CODE (decl) == FUNCTION_DECL
12348 && DECL_INITIAL (decl))
12349 {
12350 must_output_die = 1;
12351 break;
12352 }
12353 }
12354 }
12355
12356 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12357 DIE for any block which contains no significant local declarations at
12358 all. Rather, in such cases we just call `decls_for_scope' so that any
12359 needed Dwarf info for any sub-blocks will get properly generated. Note
12360 that in terse mode, our definition of what constitutes a "significant"
12361 local declaration gets restricted to include only inlined function
12362 instances and local (nested) function definitions. */
12363 if (must_output_die)
12364 {
12365 if (origin_code == FUNCTION_DECL)
12366 gen_inlined_subroutine_die (stmt, context_die, depth);
12367 else
12368 gen_lexical_block_die (stmt, context_die, depth);
12369 }
12370 else
12371 decls_for_scope (stmt, context_die, depth);
12372 }
12373
12374 /* Generate all of the decls declared within a given scope and (recursively)
12375 all of its sub-blocks. */
12376
12377 static void
12378 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12379 {
12380 tree decl;
12381 tree subblocks;
12382
12383 /* Ignore NULL blocks. */
12384 if (stmt == NULL_TREE)
12385 return;
12386
12387 if (TREE_USED (stmt))
12388 {
12389 /* Output the DIEs to represent all of the data objects and typedefs
12390 declared directly within this block but not within any nested
12391 sub-blocks. Also, nested function and tag DIEs have been
12392 generated with a parent of NULL; fix that up now. */
12393 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12394 {
12395 dw_die_ref die;
12396
12397 if (TREE_CODE (decl) == FUNCTION_DECL)
12398 die = lookup_decl_die (decl);
12399 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12400 die = lookup_type_die (TREE_TYPE (decl));
12401 else
12402 die = NULL;
12403
12404 if (die != NULL && die->die_parent == NULL)
12405 add_child_die (context_die, die);
12406 else
12407 gen_decl_die (decl, context_die);
12408 }
12409 }
12410
12411 /* If we're at -g1, we're not interested in subblocks. */
12412 if (debug_info_level <= DINFO_LEVEL_TERSE)
12413 return;
12414
12415 /* Output the DIEs to represent all sub-blocks (and the items declared
12416 therein) of this block. */
12417 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12418 subblocks != NULL;
12419 subblocks = BLOCK_CHAIN (subblocks))
12420 gen_block_die (subblocks, context_die, depth + 1);
12421 }
12422
12423 /* Is this a typedef we can avoid emitting? */
12424
12425 static inline int
12426 is_redundant_typedef (tree decl)
12427 {
12428 if (TYPE_DECL_IS_STUB (decl))
12429 return 1;
12430
12431 if (DECL_ARTIFICIAL (decl)
12432 && DECL_CONTEXT (decl)
12433 && is_tagged_type (DECL_CONTEXT (decl))
12434 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12435 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12436 /* Also ignore the artificial member typedef for the class name. */
12437 return 1;
12438
12439 return 0;
12440 }
12441
12442 /* Returns the DIE for decl or aborts. */
12443
12444 static dw_die_ref
12445 force_decl_die (tree decl)
12446 {
12447 dw_die_ref decl_die;
12448 unsigned saved_external_flag;
12449 tree save_fn = NULL_TREE;
12450 decl_die = lookup_decl_die (decl);
12451 if (!decl_die)
12452 {
12453 dw_die_ref context_die;
12454 tree decl_context = DECL_CONTEXT (decl);
12455 if (decl_context)
12456 {
12457 /* Find die that represents this context. */
12458 if (TYPE_P (decl_context))
12459 context_die = force_type_die (decl_context);
12460 else
12461 context_die = force_decl_die (decl_context);
12462 }
12463 else
12464 context_die = comp_unit_die;
12465
12466 switch (TREE_CODE (decl))
12467 {
12468 case FUNCTION_DECL:
12469 /* Clear current_function_decl, so that gen_subprogram_die thinks
12470 that this is a declaration. At this point, we just want to force
12471 declaration die. */
12472 save_fn = current_function_decl;
12473 current_function_decl = NULL_TREE;
12474 gen_subprogram_die (decl, context_die);
12475 current_function_decl = save_fn;
12476 break;
12477
12478 case VAR_DECL:
12479 /* Set external flag to force declaration die. Restore it after
12480 gen_decl_die() call. */
12481 saved_external_flag = DECL_EXTERNAL (decl);
12482 DECL_EXTERNAL (decl) = 1;
12483 gen_decl_die (decl, context_die);
12484 DECL_EXTERNAL (decl) = saved_external_flag;
12485 break;
12486
12487 case NAMESPACE_DECL:
12488 dwarf2out_decl (decl);
12489 break;
12490
12491 default:
12492 gcc_unreachable ();
12493 }
12494
12495 /* See if we can find the die for this deci now.
12496 If not then abort. */
12497 if (!decl_die)
12498 decl_die = lookup_decl_die (decl);
12499 gcc_assert (decl_die);
12500 }
12501
12502 return decl_die;
12503 }
12504
12505 /* Returns the DIE for decl or aborts. */
12506
12507 static dw_die_ref
12508 force_type_die (tree type)
12509 {
12510 dw_die_ref type_die;
12511
12512 type_die = lookup_type_die (type);
12513 if (!type_die)
12514 {
12515 dw_die_ref context_die;
12516 if (TYPE_CONTEXT (type))
12517 if (TYPE_P (TYPE_CONTEXT (type)))
12518 context_die = force_type_die (TYPE_CONTEXT (type));
12519 else
12520 context_die = force_decl_die (TYPE_CONTEXT (type));
12521 else
12522 context_die = comp_unit_die;
12523
12524 gen_type_die (type, context_die);
12525 type_die = lookup_type_die (type);
12526 gcc_assert (type_die);
12527 }
12528 return type_die;
12529 }
12530
12531 /* Force out any required namespaces to be able to output DECL,
12532 and return the new context_die for it, if it's changed. */
12533
12534 static dw_die_ref
12535 setup_namespace_context (tree thing, dw_die_ref context_die)
12536 {
12537 tree context = (DECL_P (thing)
12538 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
12539 if (context && TREE_CODE (context) == NAMESPACE_DECL)
12540 /* Force out the namespace. */
12541 context_die = force_decl_die (context);
12542
12543 return context_die;
12544 }
12545
12546 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12547 type) within its namespace, if appropriate.
12548
12549 For compatibility with older debuggers, namespace DIEs only contain
12550 declarations; all definitions are emitted at CU scope. */
12551
12552 static void
12553 declare_in_namespace (tree thing, dw_die_ref context_die)
12554 {
12555 dw_die_ref ns_context;
12556
12557 if (debug_info_level <= DINFO_LEVEL_TERSE)
12558 return;
12559
12560 ns_context = setup_namespace_context (thing, context_die);
12561
12562 if (ns_context != context_die)
12563 {
12564 if (DECL_P (thing))
12565 gen_decl_die (thing, ns_context);
12566 else
12567 gen_type_die (thing, ns_context);
12568 }
12569 }
12570
12571 /* Generate a DIE for a namespace or namespace alias. */
12572
12573 static void
12574 gen_namespace_die (tree decl)
12575 {
12576 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12577
12578 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12579 they are an alias of. */
12580 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12581 {
12582 /* Output a real namespace. */
12583 dw_die_ref namespace_die
12584 = new_die (DW_TAG_namespace, context_die, decl);
12585 add_name_and_src_coords_attributes (namespace_die, decl);
12586 equate_decl_number_to_die (decl, namespace_die);
12587 }
12588 else
12589 {
12590 /* Output a namespace alias. */
12591
12592 /* Force out the namespace we are an alias of, if necessary. */
12593 dw_die_ref origin_die
12594 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
12595
12596 /* Now create the namespace alias DIE. */
12597 dw_die_ref namespace_die
12598 = new_die (DW_TAG_imported_declaration, context_die, decl);
12599 add_name_and_src_coords_attributes (namespace_die, decl);
12600 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12601 equate_decl_number_to_die (decl, namespace_die);
12602 }
12603 }
12604
12605 /* Generate Dwarf debug information for a decl described by DECL. */
12606
12607 static void
12608 gen_decl_die (tree decl, dw_die_ref context_die)
12609 {
12610 tree origin;
12611
12612 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12613 return;
12614
12615 switch (TREE_CODE (decl))
12616 {
12617 case ERROR_MARK:
12618 break;
12619
12620 case CONST_DECL:
12621 /* The individual enumerators of an enum type get output when we output
12622 the Dwarf representation of the relevant enum type itself. */
12623 break;
12624
12625 case FUNCTION_DECL:
12626 /* Don't output any DIEs to represent mere function declarations,
12627 unless they are class members or explicit block externs. */
12628 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12629 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12630 break;
12631
12632 #if 0
12633 /* FIXME */
12634 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
12635 on local redeclarations of global functions. That seems broken. */
12636 if (current_function_decl != decl)
12637 /* This is only a declaration. */;
12638 #endif
12639
12640 /* If we're emitting a clone, emit info for the abstract instance. */
12641 if (DECL_ORIGIN (decl) != decl)
12642 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12643
12644 /* If we're emitting an out-of-line copy of an inline function,
12645 emit info for the abstract instance and set up to refer to it. */
12646 else if (cgraph_function_possibly_inlined_p (decl)
12647 && ! DECL_ABSTRACT (decl)
12648 && ! class_or_namespace_scope_p (context_die)
12649 /* dwarf2out_abstract_function won't emit a die if this is just
12650 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12651 that case, because that works only if we have a die. */
12652 && DECL_INITIAL (decl) != NULL_TREE)
12653 {
12654 dwarf2out_abstract_function (decl);
12655 set_decl_origin_self (decl);
12656 }
12657
12658 /* Otherwise we're emitting the primary DIE for this decl. */
12659 else if (debug_info_level > DINFO_LEVEL_TERSE)
12660 {
12661 /* Before we describe the FUNCTION_DECL itself, make sure that we
12662 have described its return type. */
12663 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12664
12665 /* And its virtual context. */
12666 if (DECL_VINDEX (decl) != NULL_TREE)
12667 gen_type_die (DECL_CONTEXT (decl), context_die);
12668
12669 /* And its containing type. */
12670 origin = decl_class_context (decl);
12671 if (origin != NULL_TREE)
12672 gen_type_die_for_member (origin, decl, context_die);
12673
12674 /* And its containing namespace. */
12675 declare_in_namespace (decl, context_die);
12676 }
12677
12678 /* Now output a DIE to represent the function itself. */
12679 gen_subprogram_die (decl, context_die);
12680 break;
12681
12682 case TYPE_DECL:
12683 /* If we are in terse mode, don't generate any DIEs to represent any
12684 actual typedefs. */
12685 if (debug_info_level <= DINFO_LEVEL_TERSE)
12686 break;
12687
12688 /* In the special case of a TYPE_DECL node representing the declaration
12689 of some type tag, if the given TYPE_DECL is marked as having been
12690 instantiated from some other (original) TYPE_DECL node (e.g. one which
12691 was generated within the original definition of an inline function) we
12692 have to generate a special (abbreviated) DW_TAG_structure_type,
12693 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12694 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12695 {
12696 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12697 break;
12698 }
12699
12700 if (is_redundant_typedef (decl))
12701 gen_type_die (TREE_TYPE (decl), context_die);
12702 else
12703 /* Output a DIE to represent the typedef itself. */
12704 gen_typedef_die (decl, context_die);
12705 break;
12706
12707 case LABEL_DECL:
12708 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12709 gen_label_die (decl, context_die);
12710 break;
12711
12712 case VAR_DECL:
12713 case RESULT_DECL:
12714 /* If we are in terse mode, don't generate any DIEs to represent any
12715 variable declarations or definitions. */
12716 if (debug_info_level <= DINFO_LEVEL_TERSE)
12717 break;
12718
12719 /* Output any DIEs that are needed to specify the type of this data
12720 object. */
12721 gen_type_die (TREE_TYPE (decl), context_die);
12722
12723 /* And its containing type. */
12724 origin = decl_class_context (decl);
12725 if (origin != NULL_TREE)
12726 gen_type_die_for_member (origin, decl, context_die);
12727
12728 /* And its containing namespace. */
12729 declare_in_namespace (decl, context_die);
12730
12731 /* Now output the DIE to represent the data object itself. This gets
12732 complicated because of the possibility that the VAR_DECL really
12733 represents an inlined instance of a formal parameter for an inline
12734 function. */
12735 origin = decl_ultimate_origin (decl);
12736 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12737 gen_formal_parameter_die (decl, context_die);
12738 else
12739 gen_variable_die (decl, context_die);
12740 break;
12741
12742 case FIELD_DECL:
12743 /* Ignore the nameless fields that are used to skip bits but handle C++
12744 anonymous unions and structs. */
12745 if (DECL_NAME (decl) != NULL_TREE
12746 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
12747 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
12748 {
12749 gen_type_die (member_declared_type (decl), context_die);
12750 gen_field_die (decl, context_die);
12751 }
12752 break;
12753
12754 case PARM_DECL:
12755 gen_type_die (TREE_TYPE (decl), context_die);
12756 gen_formal_parameter_die (decl, context_die);
12757 break;
12758
12759 case NAMESPACE_DECL:
12760 gen_namespace_die (decl);
12761 break;
12762
12763 default:
12764 /* Probably some frontend-internal decl. Assume we don't care. */
12765 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
12766 break;
12767 }
12768 }
12769 \f
12770 /* Add Ada "use" clause information for SGI Workshop debugger. */
12771
12772 void
12773 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
12774 {
12775 unsigned int file_index;
12776
12777 if (filename != NULL)
12778 {
12779 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12780 tree context_list_decl
12781 = build_decl (LABEL_DECL, get_identifier (context_list),
12782 void_type_node);
12783
12784 TREE_PUBLIC (context_list_decl) = TRUE;
12785 add_name_attribute (unit_die, context_list);
12786 file_index = lookup_filename (filename);
12787 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12788 add_pubname (context_list_decl, unit_die);
12789 }
12790 }
12791
12792 /* Output debug information for global decl DECL. Called from toplev.c after
12793 compilation proper has finished. */
12794
12795 static void
12796 dwarf2out_global_decl (tree decl)
12797 {
12798 /* Output DWARF2 information for file-scope tentative data object
12799 declarations, file-scope (extern) function declarations (which had no
12800 corresponding body) and file-scope tagged type declarations and
12801 definitions which have not yet been forced out. */
12802 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12803 dwarf2out_decl (decl);
12804 }
12805
12806 /* Output debug information for type decl DECL. Called from toplev.c
12807 and from language front ends (to record built-in types). */
12808 static void
12809 dwarf2out_type_decl (tree decl, int local)
12810 {
12811 if (!local)
12812 dwarf2out_decl (decl);
12813 }
12814
12815 /* Output debug information for imported module or decl. */
12816
12817 static void
12818 dwarf2out_imported_module_or_decl (tree decl, tree context)
12819 {
12820 dw_die_ref imported_die, at_import_die;
12821 dw_die_ref scope_die;
12822 unsigned file_index;
12823 expanded_location xloc;
12824
12825 if (debug_info_level <= DINFO_LEVEL_TERSE)
12826 return;
12827
12828 gcc_assert (decl);
12829
12830 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
12831 We need decl DIE for reference and scope die. First, get DIE for the decl
12832 itself. */
12833
12834 /* Get the scope die for decl context. Use comp_unit_die for global module
12835 or decl. If die is not found for non globals, force new die. */
12836 if (!context)
12837 scope_die = comp_unit_die;
12838 else if (TYPE_P (context))
12839 scope_die = force_type_die (context);
12840 else
12841 scope_die = force_decl_die (context);
12842
12843 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
12844 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
12845 at_import_die = force_type_die (TREE_TYPE (decl));
12846 else
12847 at_import_die = force_decl_die (decl);
12848
12849 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
12850 if (TREE_CODE (decl) == NAMESPACE_DECL)
12851 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
12852 else
12853 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
12854
12855 xloc = expand_location (input_location);
12856 file_index = lookup_filename (xloc.file);
12857 add_AT_unsigned (imported_die, DW_AT_decl_file, file_index);
12858 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
12859 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
12860 }
12861
12862 /* Write the debugging output for DECL. */
12863
12864 void
12865 dwarf2out_decl (tree decl)
12866 {
12867 dw_die_ref context_die = comp_unit_die;
12868
12869 switch (TREE_CODE (decl))
12870 {
12871 case ERROR_MARK:
12872 return;
12873
12874 case FUNCTION_DECL:
12875 /* What we would really like to do here is to filter out all mere
12876 file-scope declarations of file-scope functions which are never
12877 referenced later within this translation unit (and keep all of ones
12878 that *are* referenced later on) but we aren't clairvoyant, so we have
12879 no idea which functions will be referenced in the future (i.e. later
12880 on within the current translation unit). So here we just ignore all
12881 file-scope function declarations which are not also definitions. If
12882 and when the debugger needs to know something about these functions,
12883 it will have to hunt around and find the DWARF information associated
12884 with the definition of the function.
12885
12886 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12887 nodes represent definitions and which ones represent mere
12888 declarations. We have to check DECL_INITIAL instead. That's because
12889 the C front-end supports some weird semantics for "extern inline"
12890 function definitions. These can get inlined within the current
12891 translation unit (an thus, we need to generate Dwarf info for their
12892 abstract instances so that the Dwarf info for the concrete inlined
12893 instances can have something to refer to) but the compiler never
12894 generates any out-of-lines instances of such things (despite the fact
12895 that they *are* definitions).
12896
12897 The important point is that the C front-end marks these "extern
12898 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12899 them anyway. Note that the C++ front-end also plays some similar games
12900 for inline function definitions appearing within include files which
12901 also contain `#pragma interface' pragmas. */
12902 if (DECL_INITIAL (decl) == NULL_TREE)
12903 return;
12904
12905 /* If we're a nested function, initially use a parent of NULL; if we're
12906 a plain function, this will be fixed up in decls_for_scope. If
12907 we're a method, it will be ignored, since we already have a DIE. */
12908 if (decl_function_context (decl)
12909 /* But if we're in terse mode, we don't care about scope. */
12910 && debug_info_level > DINFO_LEVEL_TERSE)
12911 context_die = NULL;
12912 break;
12913
12914 case VAR_DECL:
12915 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12916 declaration and if the declaration was never even referenced from
12917 within this entire compilation unit. We suppress these DIEs in
12918 order to save space in the .debug section (by eliminating entries
12919 which are probably useless). Note that we must not suppress
12920 block-local extern declarations (whether used or not) because that
12921 would screw-up the debugger's name lookup mechanism and cause it to
12922 miss things which really ought to be in scope at a given point. */
12923 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12924 return;
12925
12926 /* If we are in terse mode, don't generate any DIEs to represent any
12927 variable declarations or definitions. */
12928 if (debug_info_level <= DINFO_LEVEL_TERSE)
12929 return;
12930 break;
12931
12932 case NAMESPACE_DECL:
12933 if (debug_info_level <= DINFO_LEVEL_TERSE)
12934 return;
12935 if (lookup_decl_die (decl) != NULL)
12936 return;
12937 break;
12938
12939 case TYPE_DECL:
12940 /* Don't emit stubs for types unless they are needed by other DIEs. */
12941 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12942 return;
12943
12944 /* Don't bother trying to generate any DIEs to represent any of the
12945 normal built-in types for the language we are compiling. */
12946 if (DECL_IS_BUILTIN (decl))
12947 {
12948 /* OK, we need to generate one for `bool' so GDB knows what type
12949 comparisons have. */
12950 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12951 == DW_LANG_C_plus_plus)
12952 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12953 && ! DECL_IGNORED_P (decl))
12954 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12955
12956 return;
12957 }
12958
12959 /* If we are in terse mode, don't generate any DIEs for types. */
12960 if (debug_info_level <= DINFO_LEVEL_TERSE)
12961 return;
12962
12963 /* If we're a function-scope tag, initially use a parent of NULL;
12964 this will be fixed up in decls_for_scope. */
12965 if (decl_function_context (decl))
12966 context_die = NULL;
12967
12968 break;
12969
12970 default:
12971 return;
12972 }
12973
12974 gen_decl_die (decl, context_die);
12975 }
12976
12977 /* Output a marker (i.e. a label) for the beginning of the generated code for
12978 a lexical block. */
12979
12980 static void
12981 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
12982 unsigned int blocknum)
12983 {
12984 function_section (current_function_decl);
12985 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12986 }
12987
12988 /* Output a marker (i.e. a label) for the end of the generated code for a
12989 lexical block. */
12990
12991 static void
12992 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
12993 {
12994 function_section (current_function_decl);
12995 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12996 }
12997
12998 /* Returns nonzero if it is appropriate not to emit any debugging
12999 information for BLOCK, because it doesn't contain any instructions.
13000
13001 Don't allow this for blocks with nested functions or local classes
13002 as we would end up with orphans, and in the presence of scheduling
13003 we may end up calling them anyway. */
13004
13005 static bool
13006 dwarf2out_ignore_block (tree block)
13007 {
13008 tree decl;
13009
13010 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13011 if (TREE_CODE (decl) == FUNCTION_DECL
13012 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13013 return 0;
13014
13015 return 1;
13016 }
13017
13018 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13019 dwarf2out.c) and return its "index". The index of each (known) filename is
13020 just a unique number which is associated with only that one filename. We
13021 need such numbers for the sake of generating labels (in the .debug_sfnames
13022 section) and references to those files numbers (in the .debug_srcinfo
13023 and.debug_macinfo sections). If the filename given as an argument is not
13024 found in our current list, add it to the list and assign it the next
13025 available unique index number. In order to speed up searches, we remember
13026 the index of the filename was looked up last. This handles the majority of
13027 all searches. */
13028
13029 static unsigned
13030 lookup_filename (const char *file_name)
13031 {
13032 size_t i, n;
13033 char *save_file_name;
13034
13035 /* Check to see if the file name that was searched on the previous
13036 call matches this file name. If so, return the index. */
13037 if (file_table_last_lookup_index != 0)
13038 {
13039 const char *last
13040 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
13041 if (strcmp (file_name, last) == 0)
13042 return file_table_last_lookup_index;
13043 }
13044
13045 /* Didn't match the previous lookup, search the table. */
13046 n = VARRAY_ACTIVE_SIZE (file_table);
13047 for (i = 1; i < n; i++)
13048 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
13049 {
13050 file_table_last_lookup_index = i;
13051 return i;
13052 }
13053
13054 /* Add the new entry to the end of the filename table. */
13055 file_table_last_lookup_index = n;
13056 save_file_name = (char *) ggc_strdup (file_name);
13057 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
13058 VARRAY_PUSH_UINT (file_table_emitted, 0);
13059
13060 return i;
13061 }
13062
13063 static int
13064 maybe_emit_file (int fileno)
13065 {
13066 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
13067 {
13068 if (!VARRAY_UINT (file_table_emitted, fileno))
13069 {
13070 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
13071 fprintf (asm_out_file, "\t.file %u ",
13072 VARRAY_UINT (file_table_emitted, fileno));
13073 output_quoted_string (asm_out_file,
13074 VARRAY_CHAR_PTR (file_table, fileno));
13075 fputc ('\n', asm_out_file);
13076 }
13077 return VARRAY_UINT (file_table_emitted, fileno);
13078 }
13079 else
13080 return fileno;
13081 }
13082
13083 static void
13084 init_file_table (void)
13085 {
13086 /* Allocate the initial hunk of the file_table. */
13087 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
13088 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
13089
13090 /* Skip the first entry - file numbers begin at 1. */
13091 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
13092 VARRAY_PUSH_UINT (file_table_emitted, 0);
13093 file_table_last_lookup_index = 0;
13094 }
13095
13096 /* Called by the final INSN scan whenever we see a var location. We
13097 use it to drop labels in the right places, and throw the location in
13098 our lookup table. */
13099
13100 static void
13101 dwarf2out_var_location (rtx loc_note)
13102 {
13103 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13104 struct var_loc_node *newloc;
13105 rtx prev_insn;
13106 static rtx last_insn;
13107 static const char *last_label;
13108 tree decl;
13109
13110 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13111 return;
13112 prev_insn = PREV_INSN (loc_note);
13113
13114 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13115 /* If the insn we processed last time is the previous insn
13116 and it is also a var location note, use the label we emitted
13117 last time. */
13118 if (last_insn != NULL_RTX
13119 && last_insn == prev_insn
13120 && NOTE_P (prev_insn)
13121 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13122 {
13123 newloc->label = last_label;
13124 }
13125 else
13126 {
13127 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13128 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13129 loclabel_num++;
13130 newloc->label = ggc_strdup (loclabel);
13131 }
13132 newloc->var_loc_note = loc_note;
13133 newloc->next = NULL;
13134
13135 last_insn = loc_note;
13136 last_label = newloc->label;
13137 decl = NOTE_VAR_LOCATION_DECL (loc_note);
13138 if (DECL_DEBUG_EXPR (decl) && DECL_DEBUG_EXPR_IS_FROM (decl)
13139 && DECL_P (DECL_DEBUG_EXPR (decl)))
13140 decl = DECL_DEBUG_EXPR (decl);
13141 add_var_loc_to_decl (decl, newloc);
13142 }
13143
13144 /* We need to reset the locations at the beginning of each
13145 function. We can't do this in the end_function hook, because the
13146 declarations that use the locations won't have been outputted when
13147 that hook is called. */
13148
13149 static void
13150 dwarf2out_begin_function (tree unused ATTRIBUTE_UNUSED)
13151 {
13152 htab_empty (decl_loc_table);
13153 }
13154
13155 /* Output a label to mark the beginning of a source code line entry
13156 and record information relating to this source line, in
13157 'line_info_table' for later output of the .debug_line section. */
13158
13159 static void
13160 dwarf2out_source_line (unsigned int line, const char *filename)
13161 {
13162 if (debug_info_level >= DINFO_LEVEL_NORMAL
13163 && line != 0)
13164 {
13165 function_section (current_function_decl);
13166
13167 /* If requested, emit something human-readable. */
13168 if (flag_debug_asm)
13169 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13170 filename, line);
13171
13172 if (DWARF2_ASM_LINE_DEBUG_INFO)
13173 {
13174 unsigned file_num = lookup_filename (filename);
13175
13176 file_num = maybe_emit_file (file_num);
13177
13178 /* Emit the .loc directive understood by GNU as. */
13179 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13180
13181 /* Indicate that line number info exists. */
13182 line_info_table_in_use++;
13183
13184 /* Indicate that multiple line number tables exist. */
13185 if (DECL_SECTION_NAME (current_function_decl))
13186 separate_line_info_table_in_use++;
13187 }
13188 else if (DECL_SECTION_NAME (current_function_decl))
13189 {
13190 dw_separate_line_info_ref line_info;
13191 targetm.asm_out.internal_label (asm_out_file, SEPARATE_LINE_CODE_LABEL,
13192 separate_line_info_table_in_use);
13193
13194 /* Expand the line info table if necessary. */
13195 if (separate_line_info_table_in_use
13196 == separate_line_info_table_allocated)
13197 {
13198 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13199 separate_line_info_table
13200 = ggc_realloc (separate_line_info_table,
13201 separate_line_info_table_allocated
13202 * sizeof (dw_separate_line_info_entry));
13203 memset (separate_line_info_table
13204 + separate_line_info_table_in_use,
13205 0,
13206 (LINE_INFO_TABLE_INCREMENT
13207 * sizeof (dw_separate_line_info_entry)));
13208 }
13209
13210 /* Add the new entry at the end of the line_info_table. */
13211 line_info
13212 = &separate_line_info_table[separate_line_info_table_in_use++];
13213 line_info->dw_file_num = lookup_filename (filename);
13214 line_info->dw_line_num = line;
13215 line_info->function = current_function_funcdef_no;
13216 }
13217 else
13218 {
13219 dw_line_info_ref line_info;
13220
13221 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13222 line_info_table_in_use);
13223
13224 /* Expand the line info table if necessary. */
13225 if (line_info_table_in_use == line_info_table_allocated)
13226 {
13227 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13228 line_info_table
13229 = ggc_realloc (line_info_table,
13230 (line_info_table_allocated
13231 * sizeof (dw_line_info_entry)));
13232 memset (line_info_table + line_info_table_in_use, 0,
13233 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13234 }
13235
13236 /* Add the new entry at the end of the line_info_table. */
13237 line_info = &line_info_table[line_info_table_in_use++];
13238 line_info->dw_file_num = lookup_filename (filename);
13239 line_info->dw_line_num = line;
13240 }
13241 }
13242 }
13243
13244 /* Record the beginning of a new source file. */
13245
13246 static void
13247 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13248 {
13249 if (flag_eliminate_dwarf2_dups)
13250 {
13251 /* Record the beginning of the file for break_out_includes. */
13252 dw_die_ref bincl_die;
13253
13254 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13255 add_AT_string (bincl_die, DW_AT_name, filename);
13256 }
13257
13258 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13259 {
13260 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13261 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13262 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13263 lineno);
13264 maybe_emit_file (lookup_filename (filename));
13265 dw2_asm_output_data_uleb128 (lookup_filename (filename),
13266 "Filename we just started");
13267 }
13268 }
13269
13270 /* Record the end of a source file. */
13271
13272 static void
13273 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13274 {
13275 if (flag_eliminate_dwarf2_dups)
13276 /* Record the end of the file for break_out_includes. */
13277 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13278
13279 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13280 {
13281 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13282 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13283 }
13284 }
13285
13286 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13287 the tail part of the directive line, i.e. the part which is past the
13288 initial whitespace, #, whitespace, directive-name, whitespace part. */
13289
13290 static void
13291 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13292 const char *buffer ATTRIBUTE_UNUSED)
13293 {
13294 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13295 {
13296 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13297 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13298 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13299 dw2_asm_output_nstring (buffer, -1, "The macro");
13300 }
13301 }
13302
13303 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13304 the tail part of the directive line, i.e. the part which is past the
13305 initial whitespace, #, whitespace, directive-name, whitespace part. */
13306
13307 static void
13308 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13309 const char *buffer ATTRIBUTE_UNUSED)
13310 {
13311 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13312 {
13313 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13314 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13315 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13316 dw2_asm_output_nstring (buffer, -1, "The macro");
13317 }
13318 }
13319
13320 /* Set up for Dwarf output at the start of compilation. */
13321
13322 static void
13323 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13324 {
13325 init_file_table ();
13326
13327 /* Allocate the decl_die_table. */
13328 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13329 decl_die_table_eq, NULL);
13330
13331 /* Allocate the decl_loc_table. */
13332 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13333 decl_loc_table_eq, NULL);
13334
13335 /* Allocate the initial hunk of the decl_scope_table. */
13336 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
13337
13338 /* Allocate the initial hunk of the abbrev_die_table. */
13339 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13340 * sizeof (dw_die_ref));
13341 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13342 /* Zero-th entry is allocated, but unused. */
13343 abbrev_die_table_in_use = 1;
13344
13345 /* Allocate the initial hunk of the line_info_table. */
13346 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13347 * sizeof (dw_line_info_entry));
13348 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13349
13350 /* Zero-th entry is allocated, but unused. */
13351 line_info_table_in_use = 1;
13352
13353 /* Generate the initial DIE for the .debug section. Note that the (string)
13354 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13355 will (typically) be a relative pathname and that this pathname should be
13356 taken as being relative to the directory from which the compiler was
13357 invoked when the given (base) source file was compiled. We will fill
13358 in this value in dwarf2out_finish. */
13359 comp_unit_die = gen_compile_unit_die (NULL);
13360
13361 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
13362
13363 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
13364
13365 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13366 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13367 DEBUG_ABBREV_SECTION_LABEL, 0);
13368 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13369
13370 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13371 DEBUG_INFO_SECTION_LABEL, 0);
13372 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13373 DEBUG_LINE_SECTION_LABEL, 0);
13374 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13375 DEBUG_RANGES_SECTION_LABEL, 0);
13376 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13377 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13378 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
13379 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13380 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13381 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13382
13383 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13384 {
13385 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13386 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13387 DEBUG_MACINFO_SECTION_LABEL, 0);
13388 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13389 }
13390
13391 text_section ();
13392 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13393 }
13394
13395 /* A helper function for dwarf2out_finish called through
13396 ht_forall. Emit one queued .debug_str string. */
13397
13398 static int
13399 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13400 {
13401 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13402
13403 if (node->form == DW_FORM_strp)
13404 {
13405 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
13406 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13407 assemble_string (node->str, strlen (node->str) + 1);
13408 }
13409
13410 return 1;
13411 }
13412
13413
13414
13415 /* Clear the marks for a die and its children.
13416 Be cool if the mark isn't set. */
13417
13418 static void
13419 prune_unmark_dies (dw_die_ref die)
13420 {
13421 dw_die_ref c;
13422 die->die_mark = 0;
13423 for (c = die->die_child; c; c = c->die_sib)
13424 prune_unmark_dies (c);
13425 }
13426
13427
13428 /* Given DIE that we're marking as used, find any other dies
13429 it references as attributes and mark them as used. */
13430
13431 static void
13432 prune_unused_types_walk_attribs (dw_die_ref die)
13433 {
13434 dw_attr_ref a;
13435
13436 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
13437 {
13438 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13439 {
13440 /* A reference to another DIE.
13441 Make sure that it will get emitted. */
13442 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13443 }
13444 else if (a->dw_attr == DW_AT_decl_file)
13445 {
13446 /* A reference to a file. Make sure the file name is emitted. */
13447 a->dw_attr_val.v.val_unsigned =
13448 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
13449 }
13450 }
13451 }
13452
13453
13454 /* Mark DIE as being used. If DOKIDS is true, then walk down
13455 to DIE's children. */
13456
13457 static void
13458 prune_unused_types_mark (dw_die_ref die, int dokids)
13459 {
13460 dw_die_ref c;
13461
13462 if (die->die_mark == 0)
13463 {
13464 /* We haven't done this node yet. Mark it as used. */
13465 die->die_mark = 1;
13466
13467 /* We also have to mark its parents as used.
13468 (But we don't want to mark our parents' kids due to this.) */
13469 if (die->die_parent)
13470 prune_unused_types_mark (die->die_parent, 0);
13471
13472 /* Mark any referenced nodes. */
13473 prune_unused_types_walk_attribs (die);
13474
13475 /* If this node is a specification,
13476 also mark the definition, if it exists. */
13477 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
13478 prune_unused_types_mark (die->die_definition, 1);
13479 }
13480
13481 if (dokids && die->die_mark != 2)
13482 {
13483 /* We need to walk the children, but haven't done so yet.
13484 Remember that we've walked the kids. */
13485 die->die_mark = 2;
13486
13487 /* Walk them. */
13488 for (c = die->die_child; c; c = c->die_sib)
13489 {
13490 /* If this is an array type, we need to make sure our
13491 kids get marked, even if they're types. */
13492 if (die->die_tag == DW_TAG_array_type)
13493 prune_unused_types_mark (c, 1);
13494 else
13495 prune_unused_types_walk (c);
13496 }
13497 }
13498 }
13499
13500
13501 /* Walk the tree DIE and mark types that we actually use. */
13502
13503 static void
13504 prune_unused_types_walk (dw_die_ref die)
13505 {
13506 dw_die_ref c;
13507
13508 /* Don't do anything if this node is already marked. */
13509 if (die->die_mark)
13510 return;
13511
13512 switch (die->die_tag) {
13513 case DW_TAG_const_type:
13514 case DW_TAG_packed_type:
13515 case DW_TAG_pointer_type:
13516 case DW_TAG_reference_type:
13517 case DW_TAG_volatile_type:
13518 case DW_TAG_typedef:
13519 case DW_TAG_array_type:
13520 case DW_TAG_structure_type:
13521 case DW_TAG_union_type:
13522 case DW_TAG_class_type:
13523 case DW_TAG_friend:
13524 case DW_TAG_variant_part:
13525 case DW_TAG_enumeration_type:
13526 case DW_TAG_subroutine_type:
13527 case DW_TAG_string_type:
13528 case DW_TAG_set_type:
13529 case DW_TAG_subrange_type:
13530 case DW_TAG_ptr_to_member_type:
13531 case DW_TAG_file_type:
13532 /* It's a type node --- don't mark it. */
13533 return;
13534
13535 default:
13536 /* Mark everything else. */
13537 break;
13538 }
13539
13540 die->die_mark = 1;
13541
13542 /* Now, mark any dies referenced from here. */
13543 prune_unused_types_walk_attribs (die);
13544
13545 /* Mark children. */
13546 for (c = die->die_child; c; c = c->die_sib)
13547 prune_unused_types_walk (c);
13548 }
13549
13550
13551 /* Remove from the tree DIE any dies that aren't marked. */
13552
13553 static void
13554 prune_unused_types_prune (dw_die_ref die)
13555 {
13556 dw_die_ref c, p, n;
13557
13558 gcc_assert (die->die_mark);
13559
13560 p = NULL;
13561 for (c = die->die_child; c; c = n)
13562 {
13563 n = c->die_sib;
13564 if (c->die_mark)
13565 {
13566 prune_unused_types_prune (c);
13567 p = c;
13568 }
13569 else
13570 {
13571 if (p)
13572 p->die_sib = n;
13573 else
13574 die->die_child = n;
13575 free_die (c);
13576 }
13577 }
13578 }
13579
13580
13581 /* Remove dies representing declarations that we never use. */
13582
13583 static void
13584 prune_unused_types (void)
13585 {
13586 unsigned int i;
13587 limbo_die_node *node;
13588
13589 /* Clear all the marks. */
13590 prune_unmark_dies (comp_unit_die);
13591 for (node = limbo_die_list; node; node = node->next)
13592 prune_unmark_dies (node->die);
13593
13594 /* Set the mark on nodes that are actually used. */
13595 prune_unused_types_walk (comp_unit_die);
13596 for (node = limbo_die_list; node; node = node->next)
13597 prune_unused_types_walk (node->die);
13598
13599 /* Also set the mark on nodes referenced from the
13600 pubname_table or arange_table. */
13601 for (i = 0; i < pubname_table_in_use; i++)
13602 prune_unused_types_mark (pubname_table[i].die, 1);
13603 for (i = 0; i < arange_table_in_use; i++)
13604 prune_unused_types_mark (arange_table[i], 1);
13605
13606 /* Get rid of nodes that aren't marked. */
13607 prune_unused_types_prune (comp_unit_die);
13608 for (node = limbo_die_list; node; node = node->next)
13609 prune_unused_types_prune (node->die);
13610
13611 /* Leave the marks clear. */
13612 prune_unmark_dies (comp_unit_die);
13613 for (node = limbo_die_list; node; node = node->next)
13614 prune_unmark_dies (node->die);
13615 }
13616
13617 /* Output stuff that dwarf requires at the end of every file,
13618 and generate the DWARF-2 debugging info. */
13619
13620 static void
13621 dwarf2out_finish (const char *filename)
13622 {
13623 limbo_die_node *node, *next_node;
13624 dw_die_ref die = 0;
13625
13626 /* Add the name for the main input file now. We delayed this from
13627 dwarf2out_init to avoid complications with PCH. */
13628 add_name_attribute (comp_unit_die, filename);
13629 if (filename[0] != DIR_SEPARATOR)
13630 add_comp_dir_attribute (comp_unit_die);
13631 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13632 {
13633 size_t i;
13634 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13635 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
13636 /* Don't add cwd for <built-in>. */
13637 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
13638 {
13639 add_comp_dir_attribute (comp_unit_die);
13640 break;
13641 }
13642 }
13643
13644 /* Traverse the limbo die list, and add parent/child links. The only
13645 dies without parents that should be here are concrete instances of
13646 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13647 For concrete instances, we can get the parent die from the abstract
13648 instance. */
13649 for (node = limbo_die_list; node; node = next_node)
13650 {
13651 next_node = node->next;
13652 die = node->die;
13653
13654 if (die->die_parent == NULL)
13655 {
13656 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13657
13658 if (origin)
13659 add_child_die (origin->die_parent, die);
13660 else if (die == comp_unit_die)
13661 ;
13662 else if (errorcount > 0 || sorrycount > 0)
13663 /* It's OK to be confused by errors in the input. */
13664 add_child_die (comp_unit_die, die);
13665 else
13666 {
13667 /* In certain situations, the lexical block containing a
13668 nested function can be optimized away, which results
13669 in the nested function die being orphaned. Likewise
13670 with the return type of that nested function. Force
13671 this to be a child of the containing function.
13672
13673 It may happen that even the containing function got fully
13674 inlined and optimized out. In that case we are lost and
13675 assign the empty child. This should not be big issue as
13676 the function is likely unreachable too. */
13677 tree context = NULL_TREE;
13678
13679 gcc_assert (node->created_for);
13680
13681 if (DECL_P (node->created_for))
13682 context = DECL_CONTEXT (node->created_for);
13683 else if (TYPE_P (node->created_for))
13684 context = TYPE_CONTEXT (node->created_for);
13685
13686 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
13687
13688 origin = lookup_decl_die (context);
13689 if (origin)
13690 add_child_die (origin, die);
13691 else
13692 add_child_die (comp_unit_die, die);
13693 }
13694 }
13695 }
13696
13697 limbo_die_list = NULL;
13698
13699 /* Walk through the list of incomplete types again, trying once more to
13700 emit full debugging info for them. */
13701 retry_incomplete_types ();
13702
13703 /* We need to reverse all the dies before break_out_includes, or
13704 we'll see the end of an include file before the beginning. */
13705 reverse_all_dies (comp_unit_die);
13706
13707 if (flag_eliminate_unused_debug_types)
13708 prune_unused_types ();
13709
13710 /* Generate separate CUs for each of the include files we've seen.
13711 They will go into limbo_die_list. */
13712 if (flag_eliminate_dwarf2_dups)
13713 break_out_includes (comp_unit_die);
13714
13715 /* Traverse the DIE's and add add sibling attributes to those DIE's
13716 that have children. */
13717 add_sibling_attributes (comp_unit_die);
13718 for (node = limbo_die_list; node; node = node->next)
13719 add_sibling_attributes (node->die);
13720
13721 /* Output a terminator label for the .text section. */
13722 text_section ();
13723 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
13724
13725 /* Output the source line correspondence table. We must do this
13726 even if there is no line information. Otherwise, on an empty
13727 translation unit, we will generate a present, but empty,
13728 .debug_info section. IRIX 6.5 `nm' will then complain when
13729 examining the file. */
13730 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13731 {
13732 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13733 output_line_info ();
13734 }
13735
13736 /* Output location list section if necessary. */
13737 if (have_location_lists)
13738 {
13739 /* Output the location lists info. */
13740 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13741 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13742 DEBUG_LOC_SECTION_LABEL, 0);
13743 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13744 output_location_lists (die);
13745 have_location_lists = 0;
13746 }
13747
13748 /* We can only use the low/high_pc attributes if all of the code was
13749 in .text. */
13750 if (separate_line_info_table_in_use == 0)
13751 {
13752 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13753 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13754 }
13755
13756 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13757 "base address". Use zero so that these addresses become absolute. */
13758 else if (have_location_lists || ranges_table_in_use)
13759 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13760
13761 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13762 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13763 debug_line_section_label);
13764
13765 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13766 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13767
13768 /* Output all of the compilation units. We put the main one last so that
13769 the offsets are available to output_pubnames. */
13770 for (node = limbo_die_list; node; node = node->next)
13771 output_comp_unit (node->die, 0);
13772
13773 output_comp_unit (comp_unit_die, 0);
13774
13775 /* Output the abbreviation table. */
13776 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13777 output_abbrev_section ();
13778
13779 /* Output public names table if necessary. */
13780 if (pubname_table_in_use)
13781 {
13782 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13783 output_pubnames ();
13784 }
13785
13786 /* Output the address range information. We only put functions in the arange
13787 table, so don't write it out if we don't have any. */
13788 if (fde_table_in_use)
13789 {
13790 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13791 output_aranges ();
13792 }
13793
13794 /* Output ranges section if necessary. */
13795 if (ranges_table_in_use)
13796 {
13797 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13798 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13799 output_ranges ();
13800 }
13801
13802 /* Have to end the macro section. */
13803 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13804 {
13805 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13806 dw2_asm_output_data (1, 0, "End compilation unit");
13807 }
13808
13809 /* If we emitted any DW_FORM_strp form attribute, output the string
13810 table too. */
13811 if (debug_str_hash)
13812 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13813 }
13814 #else
13815
13816 /* This should never be used, but its address is needed for comparisons. */
13817 const struct gcc_debug_hooks dwarf2_debug_hooks;
13818
13819 #endif /* DWARF2_DEBUGGING_INFO */
13820
13821 #include "gt-dwarf2out.h"