Only handle zero-extended DImode addresses
[gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Gary Funck (gary@intrepid.com).
6 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
7 Extensively modified by Jason Merrill (jason@cygnus.com).
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 /* DWARF2 Abbreviation Glossary:
38
39 CFA = Canonical Frame Address
40 a fixed address on the stack which identifies a call frame.
41 We define it to be the value of SP just before the call insn.
42 The CFA register and offset, which may change during the course
43 of the function, are used to calculate its value at runtime.
44
45 CFI = Call Frame Instruction
46 an instruction for the DWARF2 abstract machine
47
48 CIE = Common Information Entry
49 information describing information common to one or more FDEs
50
51 DIE = Debugging Information Entry
52
53 FDE = Frame Description Entry
54 information describing the stack call frame, in particular,
55 how to restore registers
56
57 DW_CFA_... = DWARF2 CFA call frame instruction
58 DW_TAG_... = DWARF2 DIE tag */
59
60 #include "config.h"
61 #include "system.h"
62 #include "coretypes.h"
63 #include "tm.h"
64 #include "tree.h"
65 #include "version.h"
66 #include "flags.h"
67 #include "rtl.h"
68 #include "hard-reg-set.h"
69 #include "regs.h"
70 #include "insn-config.h"
71 #include "reload.h"
72 #include "function.h"
73 #include "output.h"
74 #include "expr.h"
75 #include "libfuncs.h"
76 #include "except.h"
77 #include "dwarf2.h"
78 #include "dwarf2out.h"
79 #include "dwarf2asm.h"
80 #include "toplev.h"
81 #include "ggc.h"
82 #include "md5.h"
83 #include "tm_p.h"
84 #include "diagnostic.h"
85 #include "tree-pretty-print.h"
86 #include "debug.h"
87 #include "target.h"
88 #include "common/common-target.h"
89 #include "langhooks.h"
90 #include "hashtab.h"
91 #include "cgraph.h"
92 #include "input.h"
93 #include "gimple.h"
94 #include "tree-pass.h"
95 #include "tree-flow.h"
96 #include "cfglayout.h"
97 #include "opts.h"
98
99 static void dwarf2out_source_line (unsigned int, const char *, int, bool);
100 static rtx last_var_location_insn;
101 static rtx cached_next_real_insn;
102
103 #ifdef VMS_DEBUGGING_INFO
104 int vms_file_stats_name (const char *, long long *, long *, char *, int *);
105
106 /* Define this macro to be a nonzero value if the directory specifications
107 which are output in the debug info should end with a separator. */
108 #define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 1
109 /* Define this macro to evaluate to a nonzero value if GCC should refrain
110 from generating indirect strings in DWARF2 debug information, for instance
111 if your target is stuck with an old version of GDB that is unable to
112 process them properly or uses VMS Debug. */
113 #define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 1
114 #else
115 #define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 0
116 #define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 0
117 #endif
118
119 /* ??? Poison these here until it can be done generically. They've been
120 totally replaced in this file; make sure it stays that way. */
121 #undef DWARF2_UNWIND_INFO
122 #undef DWARF2_FRAME_INFO
123 #if (GCC_VERSION >= 3000)
124 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
125 #endif
126
127 /* The size of the target's pointer type. */
128 #ifndef PTR_SIZE
129 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
130 #endif
131
132 /* Array of RTXes referenced by the debugging information, which therefore
133 must be kept around forever. */
134 static GTY(()) VEC(rtx,gc) *used_rtx_array;
135
136 /* A pointer to the base of a list of incomplete types which might be
137 completed at some later time. incomplete_types_list needs to be a
138 VEC(tree,gc) because we want to tell the garbage collector about
139 it. */
140 static GTY(()) VEC(tree,gc) *incomplete_types;
141
142 /* A pointer to the base of a table of references to declaration
143 scopes. This table is a display which tracks the nesting
144 of declaration scopes at the current scope and containing
145 scopes. This table is used to find the proper place to
146 define type declaration DIE's. */
147 static GTY(()) VEC(tree,gc) *decl_scope_table;
148
149 /* Pointers to various DWARF2 sections. */
150 static GTY(()) section *debug_info_section;
151 static GTY(()) section *debug_abbrev_section;
152 static GTY(()) section *debug_aranges_section;
153 static GTY(()) section *debug_macinfo_section;
154 static GTY(()) section *debug_line_section;
155 static GTY(()) section *debug_loc_section;
156 static GTY(()) section *debug_pubnames_section;
157 static GTY(()) section *debug_pubtypes_section;
158 static GTY(()) section *debug_str_section;
159 static GTY(()) section *debug_ranges_section;
160 static GTY(()) section *debug_frame_section;
161
162 /* Maximum size (in bytes) of an artificially generated label. */
163 #define MAX_ARTIFICIAL_LABEL_BYTES 30
164
165 /* According to the (draft) DWARF 3 specification, the initial length
166 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
167 bytes are 0xffffffff, followed by the length stored in the next 8
168 bytes.
169
170 However, the SGI/MIPS ABI uses an initial length which is equal to
171 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
172
173 #ifndef DWARF_INITIAL_LENGTH_SIZE
174 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
175 #endif
176
177 /* Round SIZE up to the nearest BOUNDARY. */
178 #define DWARF_ROUND(SIZE,BOUNDARY) \
179 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
180
181 /* CIE identifier. */
182 #if HOST_BITS_PER_WIDE_INT >= 64
183 #define DWARF_CIE_ID \
184 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
185 #else
186 #define DWARF_CIE_ID DW_CIE_ID
187 #endif
188
189 DEF_VEC_P (dw_fde_ref);
190 DEF_VEC_ALLOC_P (dw_fde_ref, gc);
191
192 /* A vector for a table that contains frame description
193 information for each routine. */
194 static GTY(()) VEC(dw_fde_ref, gc) *fde_vec;
195
196 struct GTY(()) indirect_string_node {
197 const char *str;
198 unsigned int refcount;
199 enum dwarf_form form;
200 char *label;
201 };
202
203 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
204
205 static GTY(()) int dw2_string_counter;
206
207 /* True if the compilation unit places functions in more than one section. */
208 static GTY(()) bool have_multiple_function_sections = false;
209
210 /* Whether the default text and cold text sections have been used at all. */
211
212 static GTY(()) bool text_section_used = false;
213 static GTY(()) bool cold_text_section_used = false;
214
215 /* The default cold text section. */
216 static GTY(()) section *cold_text_section;
217
218 /* Forward declarations for functions defined in this file. */
219
220 static char *stripattributes (const char *);
221 static void output_call_frame_info (int);
222 static void dwarf2out_note_section_used (void);
223
224 /* Personality decl of current unit. Used only when assembler does not support
225 personality CFI. */
226 static GTY(()) rtx current_unit_personality;
227
228 /* Data and reference forms for relocatable data. */
229 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
230 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
231
232 #ifndef DEBUG_FRAME_SECTION
233 #define DEBUG_FRAME_SECTION ".debug_frame"
234 #endif
235
236 #ifndef FUNC_BEGIN_LABEL
237 #define FUNC_BEGIN_LABEL "LFB"
238 #endif
239
240 #ifndef FUNC_END_LABEL
241 #define FUNC_END_LABEL "LFE"
242 #endif
243
244 #ifndef PROLOGUE_END_LABEL
245 #define PROLOGUE_END_LABEL "LPE"
246 #endif
247
248 #ifndef EPILOGUE_BEGIN_LABEL
249 #define EPILOGUE_BEGIN_LABEL "LEB"
250 #endif
251
252 #ifndef FRAME_BEGIN_LABEL
253 #define FRAME_BEGIN_LABEL "Lframe"
254 #endif
255 #define CIE_AFTER_SIZE_LABEL "LSCIE"
256 #define CIE_END_LABEL "LECIE"
257 #define FDE_LABEL "LSFDE"
258 #define FDE_AFTER_SIZE_LABEL "LASFDE"
259 #define FDE_END_LABEL "LEFDE"
260 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
261 #define LINE_NUMBER_END_LABEL "LELT"
262 #define LN_PROLOG_AS_LABEL "LASLTP"
263 #define LN_PROLOG_END_LABEL "LELTP"
264 #define DIE_LABEL_PREFIX "DW"
265 \f
266 /* Match the base name of a file to the base name of a compilation unit. */
267
268 static int
269 matches_main_base (const char *path)
270 {
271 /* Cache the last query. */
272 static const char *last_path = NULL;
273 static int last_match = 0;
274 if (path != last_path)
275 {
276 const char *base;
277 int length = base_of_path (path, &base);
278 last_path = path;
279 last_match = (length == main_input_baselength
280 && memcmp (base, main_input_basename, length) == 0);
281 }
282 return last_match;
283 }
284
285 #ifdef DEBUG_DEBUG_STRUCT
286
287 static int
288 dump_struct_debug (tree type, enum debug_info_usage usage,
289 enum debug_struct_file criterion, int generic,
290 int matches, int result)
291 {
292 /* Find the type name. */
293 tree type_decl = TYPE_STUB_DECL (type);
294 tree t = type_decl;
295 const char *name = 0;
296 if (TREE_CODE (t) == TYPE_DECL)
297 t = DECL_NAME (t);
298 if (t)
299 name = IDENTIFIER_POINTER (t);
300
301 fprintf (stderr, " struct %d %s %s %s %s %d %p %s\n",
302 criterion,
303 DECL_IN_SYSTEM_HEADER (type_decl) ? "sys" : "usr",
304 matches ? "bas" : "hdr",
305 generic ? "gen" : "ord",
306 usage == DINFO_USAGE_DFN ? ";" :
307 usage == DINFO_USAGE_DIR_USE ? "." : "*",
308 result,
309 (void*) type_decl, name);
310 return result;
311 }
312 #define DUMP_GSTRUCT(type, usage, criterion, generic, matches, result) \
313 dump_struct_debug (type, usage, criterion, generic, matches, result)
314
315 #else
316
317 #define DUMP_GSTRUCT(type, usage, criterion, generic, matches, result) \
318 (result)
319
320 #endif
321
322 static bool
323 should_emit_struct_debug (tree type, enum debug_info_usage usage)
324 {
325 enum debug_struct_file criterion;
326 tree type_decl;
327 bool generic = lang_hooks.types.generic_p (type);
328
329 if (generic)
330 criterion = debug_struct_generic[usage];
331 else
332 criterion = debug_struct_ordinary[usage];
333
334 if (criterion == DINFO_STRUCT_FILE_NONE)
335 return DUMP_GSTRUCT (type, usage, criterion, generic, false, false);
336 if (criterion == DINFO_STRUCT_FILE_ANY)
337 return DUMP_GSTRUCT (type, usage, criterion, generic, false, true);
338
339 type_decl = TYPE_STUB_DECL (TYPE_MAIN_VARIANT (type));
340
341 if (criterion == DINFO_STRUCT_FILE_SYS && DECL_IN_SYSTEM_HEADER (type_decl))
342 return DUMP_GSTRUCT (type, usage, criterion, generic, false, true);
343
344 if (matches_main_base (DECL_SOURCE_FILE (type_decl)))
345 return DUMP_GSTRUCT (type, usage, criterion, generic, true, true);
346 return DUMP_GSTRUCT (type, usage, criterion, generic, false, false);
347 }
348 \f
349 /* Return a pointer to a copy of the section string name S with all
350 attributes stripped off, and an asterisk prepended (for assemble_name). */
351
352 static inline char *
353 stripattributes (const char *s)
354 {
355 char *stripped = XNEWVEC (char, strlen (s) + 2);
356 char *p = stripped;
357
358 *p++ = '*';
359
360 while (*s && *s != ',')
361 *p++ = *s++;
362
363 *p = '\0';
364 return stripped;
365 }
366
367 /* Switch [BACK] to eh_frame_section. If we don't have an eh_frame_section,
368 switch to the data section instead, and write out a synthetic start label
369 for collect2 the first time around. */
370
371 static void
372 switch_to_eh_frame_section (bool back)
373 {
374 tree label;
375
376 #ifdef EH_FRAME_SECTION_NAME
377 if (eh_frame_section == 0)
378 {
379 int flags;
380
381 if (EH_TABLES_CAN_BE_READ_ONLY)
382 {
383 int fde_encoding;
384 int per_encoding;
385 int lsda_encoding;
386
387 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
388 /*global=*/0);
389 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
390 /*global=*/1);
391 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
392 /*global=*/0);
393 flags = ((! flag_pic
394 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
395 && (fde_encoding & 0x70) != DW_EH_PE_aligned
396 && (per_encoding & 0x70) != DW_EH_PE_absptr
397 && (per_encoding & 0x70) != DW_EH_PE_aligned
398 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
399 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
400 ? 0 : SECTION_WRITE);
401 }
402 else
403 flags = SECTION_WRITE;
404 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
405 }
406 #endif /* EH_FRAME_SECTION_NAME */
407
408 if (eh_frame_section)
409 switch_to_section (eh_frame_section);
410 else
411 {
412 /* We have no special eh_frame section. Put the information in
413 the data section and emit special labels to guide collect2. */
414 switch_to_section (data_section);
415
416 if (!back)
417 {
418 label = get_file_function_name ("F");
419 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
420 targetm.asm_out.globalize_label (asm_out_file,
421 IDENTIFIER_POINTER (label));
422 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
423 }
424 }
425 }
426
427 /* Switch [BACK] to the eh or debug frame table section, depending on
428 FOR_EH. */
429
430 static void
431 switch_to_frame_table_section (int for_eh, bool back)
432 {
433 if (for_eh)
434 switch_to_eh_frame_section (back);
435 else
436 {
437 if (!debug_frame_section)
438 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
439 SECTION_DEBUG, NULL);
440 switch_to_section (debug_frame_section);
441 }
442 }
443
444 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
445
446 enum dw_cfi_oprnd_type
447 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
448 {
449 switch (cfi)
450 {
451 case DW_CFA_nop:
452 case DW_CFA_GNU_window_save:
453 case DW_CFA_remember_state:
454 case DW_CFA_restore_state:
455 return dw_cfi_oprnd_unused;
456
457 case DW_CFA_set_loc:
458 case DW_CFA_advance_loc1:
459 case DW_CFA_advance_loc2:
460 case DW_CFA_advance_loc4:
461 case DW_CFA_MIPS_advance_loc8:
462 return dw_cfi_oprnd_addr;
463
464 case DW_CFA_offset:
465 case DW_CFA_offset_extended:
466 case DW_CFA_def_cfa:
467 case DW_CFA_offset_extended_sf:
468 case DW_CFA_def_cfa_sf:
469 case DW_CFA_restore:
470 case DW_CFA_restore_extended:
471 case DW_CFA_undefined:
472 case DW_CFA_same_value:
473 case DW_CFA_def_cfa_register:
474 case DW_CFA_register:
475 case DW_CFA_expression:
476 return dw_cfi_oprnd_reg_num;
477
478 case DW_CFA_def_cfa_offset:
479 case DW_CFA_GNU_args_size:
480 case DW_CFA_def_cfa_offset_sf:
481 return dw_cfi_oprnd_offset;
482
483 case DW_CFA_def_cfa_expression:
484 return dw_cfi_oprnd_loc;
485
486 default:
487 gcc_unreachable ();
488 }
489 }
490
491 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
492
493 enum dw_cfi_oprnd_type
494 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
495 {
496 switch (cfi)
497 {
498 case DW_CFA_def_cfa:
499 case DW_CFA_def_cfa_sf:
500 case DW_CFA_offset:
501 case DW_CFA_offset_extended_sf:
502 case DW_CFA_offset_extended:
503 return dw_cfi_oprnd_offset;
504
505 case DW_CFA_register:
506 return dw_cfi_oprnd_reg_num;
507
508 case DW_CFA_expression:
509 return dw_cfi_oprnd_loc;
510
511 default:
512 return dw_cfi_oprnd_unused;
513 }
514 }
515
516 /* Output one FDE. */
517
518 static void
519 output_fde (dw_fde_ref fde, bool for_eh, bool second,
520 char *section_start_label, int fde_encoding, char *augmentation,
521 bool any_lsda_needed, int lsda_encoding)
522 {
523 const char *begin, *end;
524 static unsigned int j;
525 char l1[20], l2[20];
526
527 targetm.asm_out.emit_unwind_label (asm_out_file, fde->decl, for_eh,
528 /* empty */ 0);
529 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL,
530 for_eh + j);
531 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + j);
532 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + j);
533 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
534 dw2_asm_output_data (4, 0xffffffff, "Initial length escape value"
535 " indicating 64-bit DWARF extension");
536 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
537 "FDE Length");
538 ASM_OUTPUT_LABEL (asm_out_file, l1);
539
540 if (for_eh)
541 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
542 else
543 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
544 debug_frame_section, "FDE CIE offset");
545
546 begin = second ? fde->dw_fde_second_begin : fde->dw_fde_begin;
547 end = second ? fde->dw_fde_second_end : fde->dw_fde_end;
548
549 if (for_eh)
550 {
551 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, begin);
552 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
553 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref, false,
554 "FDE initial location");
555 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
556 end, begin, "FDE address range");
557 }
558 else
559 {
560 dw2_asm_output_addr (DWARF2_ADDR_SIZE, begin, "FDE initial location");
561 dw2_asm_output_delta (DWARF2_ADDR_SIZE, end, begin, "FDE address range");
562 }
563
564 if (augmentation[0])
565 {
566 if (any_lsda_needed)
567 {
568 int size = size_of_encoded_value (lsda_encoding);
569
570 if (lsda_encoding == DW_EH_PE_aligned)
571 {
572 int offset = ( 4 /* Length */
573 + 4 /* CIE offset */
574 + 2 * size_of_encoded_value (fde_encoding)
575 + 1 /* Augmentation size */ );
576 int pad = -offset & (PTR_SIZE - 1);
577
578 size += pad;
579 gcc_assert (size_of_uleb128 (size) == 1);
580 }
581
582 dw2_asm_output_data_uleb128 (size, "Augmentation size");
583
584 if (fde->uses_eh_lsda)
585 {
586 ASM_GENERATE_INTERNAL_LABEL (l1, second ? "LLSDAC" : "LLSDA",
587 fde->funcdef_number);
588 dw2_asm_output_encoded_addr_rtx (lsda_encoding,
589 gen_rtx_SYMBOL_REF (Pmode, l1),
590 false,
591 "Language Specific Data Area");
592 }
593 else
594 {
595 if (lsda_encoding == DW_EH_PE_aligned)
596 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
597 dw2_asm_output_data (size_of_encoded_value (lsda_encoding), 0,
598 "Language Specific Data Area (none)");
599 }
600 }
601 else
602 dw2_asm_output_data_uleb128 (0, "Augmentation size");
603 }
604
605 /* Loop through the Call Frame Instructions associated with this FDE. */
606 fde->dw_fde_current_label = begin;
607 {
608 size_t from, until, i;
609
610 from = 0;
611 until = VEC_length (dw_cfi_ref, fde->dw_fde_cfi);
612
613 if (fde->dw_fde_second_begin == NULL)
614 ;
615 else if (!second)
616 until = fde->dw_fde_switch_cfi_index;
617 else
618 from = fde->dw_fde_switch_cfi_index;
619
620 for (i = from; i < until; i++)
621 output_cfi (VEC_index (dw_cfi_ref, fde->dw_fde_cfi, i), fde, for_eh);
622 }
623
624 /* If we are to emit a ref/link from function bodies to their frame tables,
625 do it now. This is typically performed to make sure that tables
626 associated with functions are dragged with them and not discarded in
627 garbage collecting links. We need to do this on a per function basis to
628 cope with -ffunction-sections. */
629
630 #ifdef ASM_OUTPUT_DWARF_TABLE_REF
631 /* Switch to the function section, emit the ref to the tables, and
632 switch *back* into the table section. */
633 switch_to_section (function_section (fde->decl));
634 ASM_OUTPUT_DWARF_TABLE_REF (section_start_label);
635 switch_to_frame_table_section (for_eh, true);
636 #endif
637
638 /* Pad the FDE out to an address sized boundary. */
639 ASM_OUTPUT_ALIGN (asm_out_file,
640 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
641 ASM_OUTPUT_LABEL (asm_out_file, l2);
642
643 j += 2;
644 }
645
646 /* Return true if frame description entry FDE is needed for EH. */
647
648 static bool
649 fde_needed_for_eh_p (dw_fde_ref fde)
650 {
651 if (flag_asynchronous_unwind_tables)
652 return true;
653
654 if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde->decl))
655 return true;
656
657 if (fde->uses_eh_lsda)
658 return true;
659
660 /* If exceptions are enabled, we have collected nothrow info. */
661 if (flag_exceptions && (fde->all_throwers_are_sibcalls || fde->nothrow))
662 return false;
663
664 return true;
665 }
666
667 /* Output the call frame information used to record information
668 that relates to calculating the frame pointer, and records the
669 location of saved registers. */
670
671 static void
672 output_call_frame_info (int for_eh)
673 {
674 unsigned int i;
675 dw_fde_ref fde;
676 dw_cfi_ref cfi;
677 char l1[20], l2[20], section_start_label[20];
678 bool any_lsda_needed = false;
679 char augmentation[6];
680 int augmentation_size;
681 int fde_encoding = DW_EH_PE_absptr;
682 int per_encoding = DW_EH_PE_absptr;
683 int lsda_encoding = DW_EH_PE_absptr;
684 int return_reg;
685 rtx personality = NULL;
686 int dw_cie_version;
687
688 /* Don't emit a CIE if there won't be any FDEs. */
689 if (fde_vec == NULL)
690 return;
691
692 /* Nothing to do if the assembler's doing it all. */
693 if (dwarf2out_do_cfi_asm ())
694 return;
695
696 /* If we don't have any functions we'll want to unwind out of, don't emit
697 any EH unwind information. If we make FDEs linkonce, we may have to
698 emit an empty label for an FDE that wouldn't otherwise be emitted. We
699 want to avoid having an FDE kept around when the function it refers to
700 is discarded. Example where this matters: a primary function template
701 in C++ requires EH information, an explicit specialization doesn't. */
702 if (for_eh)
703 {
704 bool any_eh_needed = false;
705
706 FOR_EACH_VEC_ELT (dw_fde_ref, fde_vec, i, fde)
707 {
708 if (fde->uses_eh_lsda)
709 any_eh_needed = any_lsda_needed = true;
710 else if (fde_needed_for_eh_p (fde))
711 any_eh_needed = true;
712 else if (TARGET_USES_WEAK_UNWIND_INFO)
713 targetm.asm_out.emit_unwind_label (asm_out_file, fde->decl, 1, 1);
714 }
715
716 if (!any_eh_needed)
717 return;
718 }
719
720 /* We're going to be generating comments, so turn on app. */
721 if (flag_debug_asm)
722 app_enable ();
723
724 /* Switch to the proper frame section, first time. */
725 switch_to_frame_table_section (for_eh, false);
726
727 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
728 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
729
730 /* Output the CIE. */
731 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
732 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
733 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
734 dw2_asm_output_data (4, 0xffffffff,
735 "Initial length escape value indicating 64-bit DWARF extension");
736 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
737 "Length of Common Information Entry");
738 ASM_OUTPUT_LABEL (asm_out_file, l1);
739
740 /* Now that the CIE pointer is PC-relative for EH,
741 use 0 to identify the CIE. */
742 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
743 (for_eh ? 0 : DWARF_CIE_ID),
744 "CIE Identifier Tag");
745
746 /* Use the CIE version 3 for DWARF3; allow DWARF2 to continue to
747 use CIE version 1, unless that would produce incorrect results
748 due to overflowing the return register column. */
749 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
750 dw_cie_version = 1;
751 if (return_reg >= 256 || dwarf_version > 2)
752 dw_cie_version = 3;
753 dw2_asm_output_data (1, dw_cie_version, "CIE Version");
754
755 augmentation[0] = 0;
756 augmentation_size = 0;
757
758 personality = current_unit_personality;
759 if (for_eh)
760 {
761 char *p;
762
763 /* Augmentation:
764 z Indicates that a uleb128 is present to size the
765 augmentation section.
766 L Indicates the encoding (and thus presence) of
767 an LSDA pointer in the FDE augmentation.
768 R Indicates a non-default pointer encoding for
769 FDE code pointers.
770 P Indicates the presence of an encoding + language
771 personality routine in the CIE augmentation. */
772
773 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
774 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
775 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
776
777 p = augmentation + 1;
778 if (personality)
779 {
780 *p++ = 'P';
781 augmentation_size += 1 + size_of_encoded_value (per_encoding);
782 assemble_external_libcall (personality);
783 }
784 if (any_lsda_needed)
785 {
786 *p++ = 'L';
787 augmentation_size += 1;
788 }
789 if (fde_encoding != DW_EH_PE_absptr)
790 {
791 *p++ = 'R';
792 augmentation_size += 1;
793 }
794 if (p > augmentation + 1)
795 {
796 augmentation[0] = 'z';
797 *p = '\0';
798 }
799
800 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
801 if (personality && per_encoding == DW_EH_PE_aligned)
802 {
803 int offset = ( 4 /* Length */
804 + 4 /* CIE Id */
805 + 1 /* CIE version */
806 + strlen (augmentation) + 1 /* Augmentation */
807 + size_of_uleb128 (1) /* Code alignment */
808 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
809 + 1 /* RA column */
810 + 1 /* Augmentation size */
811 + 1 /* Personality encoding */ );
812 int pad = -offset & (PTR_SIZE - 1);
813
814 augmentation_size += pad;
815
816 /* Augmentations should be small, so there's scarce need to
817 iterate for a solution. Die if we exceed one uleb128 byte. */
818 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
819 }
820 }
821
822 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
823 if (dw_cie_version >= 4)
824 {
825 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "CIE Address Size");
826 dw2_asm_output_data (1, 0, "CIE Segment Size");
827 }
828 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
829 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
830 "CIE Data Alignment Factor");
831
832 if (dw_cie_version == 1)
833 dw2_asm_output_data (1, return_reg, "CIE RA Column");
834 else
835 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
836
837 if (augmentation[0])
838 {
839 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
840 if (personality)
841 {
842 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
843 eh_data_format_name (per_encoding));
844 dw2_asm_output_encoded_addr_rtx (per_encoding,
845 personality,
846 true, NULL);
847 }
848
849 if (any_lsda_needed)
850 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
851 eh_data_format_name (lsda_encoding));
852
853 if (fde_encoding != DW_EH_PE_absptr)
854 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
855 eh_data_format_name (fde_encoding));
856 }
857
858 FOR_EACH_VEC_ELT (dw_cfi_ref, cie_cfi_vec, i, cfi)
859 output_cfi (cfi, NULL, for_eh);
860
861 /* Pad the CIE out to an address sized boundary. */
862 ASM_OUTPUT_ALIGN (asm_out_file,
863 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
864 ASM_OUTPUT_LABEL (asm_out_file, l2);
865
866 /* Loop through all of the FDE's. */
867 FOR_EACH_VEC_ELT (dw_fde_ref, fde_vec, i, fde)
868 {
869 unsigned int k;
870
871 /* Don't emit EH unwind info for leaf functions that don't need it. */
872 if (for_eh && !fde_needed_for_eh_p (fde))
873 continue;
874
875 for (k = 0; k < (fde->dw_fde_second_begin ? 2 : 1); k++)
876 output_fde (fde, for_eh, k, section_start_label, fde_encoding,
877 augmentation, any_lsda_needed, lsda_encoding);
878 }
879
880 if (for_eh && targetm.terminate_dw2_eh_frame_info)
881 dw2_asm_output_data (4, 0, "End of Table");
882 #ifdef MIPS_DEBUGGING_INFO
883 /* Work around Irix 6 assembler bug whereby labels at the end of a section
884 get a value of 0. Putting .align 0 after the label fixes it. */
885 ASM_OUTPUT_ALIGN (asm_out_file, 0);
886 #endif
887
888 /* Turn off app to make assembly quicker. */
889 if (flag_debug_asm)
890 app_disable ();
891 }
892
893 /* Emit .cfi_startproc and .cfi_personality/.cfi_lsda if needed. */
894
895 static void
896 dwarf2out_do_cfi_startproc (bool second)
897 {
898 int enc;
899 rtx ref;
900 rtx personality = get_personality_function (current_function_decl);
901
902 fprintf (asm_out_file, "\t.cfi_startproc\n");
903
904 if (personality)
905 {
906 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
907 ref = personality;
908
909 /* ??? The GAS support isn't entirely consistent. We have to
910 handle indirect support ourselves, but PC-relative is done
911 in the assembler. Further, the assembler can't handle any
912 of the weirder relocation types. */
913 if (enc & DW_EH_PE_indirect)
914 ref = dw2_force_const_mem (ref, true);
915
916 fprintf (asm_out_file, "\t.cfi_personality %#x,", enc);
917 output_addr_const (asm_out_file, ref);
918 fputc ('\n', asm_out_file);
919 }
920
921 if (crtl->uses_eh_lsda)
922 {
923 char lab[20];
924
925 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
926 ASM_GENERATE_INTERNAL_LABEL (lab, second ? "LLSDAC" : "LLSDA",
927 current_function_funcdef_no);
928 ref = gen_rtx_SYMBOL_REF (Pmode, lab);
929 SYMBOL_REF_FLAGS (ref) = SYMBOL_FLAG_LOCAL;
930
931 if (enc & DW_EH_PE_indirect)
932 ref = dw2_force_const_mem (ref, true);
933
934 fprintf (asm_out_file, "\t.cfi_lsda %#x,", enc);
935 output_addr_const (asm_out_file, ref);
936 fputc ('\n', asm_out_file);
937 }
938 }
939
940 /* Allocate CURRENT_FDE. Immediately initialize all we can, noting that
941 this allocation may be done before pass_final. */
942
943 dw_fde_ref
944 dwarf2out_alloc_current_fde (void)
945 {
946 dw_fde_ref fde;
947
948 fde = ggc_alloc_cleared_dw_fde_node ();
949 fde->decl = current_function_decl;
950 fde->funcdef_number = current_function_funcdef_no;
951 fde->fde_index = VEC_length (dw_fde_ref, fde_vec);
952 fde->all_throwers_are_sibcalls = crtl->all_throwers_are_sibcalls;
953 fde->uses_eh_lsda = crtl->uses_eh_lsda;
954 fde->nothrow = crtl->nothrow;
955 fde->drap_reg = INVALID_REGNUM;
956 fde->vdrap_reg = INVALID_REGNUM;
957
958 /* Record the FDE associated with this function. */
959 cfun->fde = fde;
960 VEC_safe_push (dw_fde_ref, gc, fde_vec, fde);
961
962 return fde;
963 }
964
965 /* Output a marker (i.e. a label) for the beginning of a function, before
966 the prologue. */
967
968 void
969 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
970 const char *file ATTRIBUTE_UNUSED)
971 {
972 char label[MAX_ARTIFICIAL_LABEL_BYTES];
973 char * dup_label;
974 dw_fde_ref fde;
975 section *fnsec;
976 bool do_frame;
977
978 current_function_func_begin_label = NULL;
979
980 do_frame = dwarf2out_do_frame ();
981
982 /* ??? current_function_func_begin_label is also used by except.c for
983 call-site information. We must emit this label if it might be used. */
984 if (!do_frame
985 && (!flag_exceptions
986 || targetm_common.except_unwind_info (&global_options) != UI_TARGET))
987 return;
988
989 fnsec = function_section (current_function_decl);
990 switch_to_section (fnsec);
991 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
992 current_function_funcdef_no);
993 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
994 current_function_funcdef_no);
995 dup_label = xstrdup (label);
996 current_function_func_begin_label = dup_label;
997
998 /* We can elide the fde allocation if we're not emitting debug info. */
999 if (!do_frame)
1000 return;
1001
1002 /* Cater to the various TARGET_ASM_OUTPUT_MI_THUNK implementations that
1003 emit insns as rtx but bypass the bulk of rest_of_compilation, which
1004 would include pass_dwarf2_frame. If we've not created the FDE yet,
1005 do so now. */
1006 fde = cfun->fde;
1007 if (fde == NULL)
1008 fde = dwarf2out_alloc_current_fde ();
1009
1010 /* Initialize the bits of CURRENT_FDE that were not available earlier. */
1011 fde->dw_fde_begin = dup_label;
1012 fde->dw_fde_current_label = dup_label;
1013 fde->in_std_section = (fnsec == text_section
1014 || (cold_text_section && fnsec == cold_text_section));
1015
1016 /* We only want to output line number information for the genuine dwarf2
1017 prologue case, not the eh frame case. */
1018 #ifdef DWARF2_DEBUGGING_INFO
1019 if (file)
1020 dwarf2out_source_line (line, file, 0, true);
1021 #endif
1022
1023 if (dwarf2out_do_cfi_asm ())
1024 dwarf2out_do_cfi_startproc (false);
1025 else
1026 {
1027 rtx personality = get_personality_function (current_function_decl);
1028 if (!current_unit_personality)
1029 current_unit_personality = personality;
1030
1031 /* We cannot keep a current personality per function as without CFI
1032 asm, at the point where we emit the CFI data, there is no current
1033 function anymore. */
1034 if (personality && current_unit_personality != personality)
1035 sorry ("multiple EH personalities are supported only with assemblers "
1036 "supporting .cfi_personality directive");
1037 }
1038 }
1039
1040 /* Output a marker (i.e. a label) for the end of the generated code
1041 for a function prologue. This gets called *after* the prologue code has
1042 been generated. */
1043
1044 void
1045 dwarf2out_vms_end_prologue (unsigned int line ATTRIBUTE_UNUSED,
1046 const char *file ATTRIBUTE_UNUSED)
1047 {
1048 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1049
1050 /* Output a label to mark the endpoint of the code generated for this
1051 function. */
1052 ASM_GENERATE_INTERNAL_LABEL (label, PROLOGUE_END_LABEL,
1053 current_function_funcdef_no);
1054 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, PROLOGUE_END_LABEL,
1055 current_function_funcdef_no);
1056 cfun->fde->dw_fde_vms_end_prologue = xstrdup (label);
1057 }
1058
1059 /* Output a marker (i.e. a label) for the beginning of the generated code
1060 for a function epilogue. This gets called *before* the prologue code has
1061 been generated. */
1062
1063 void
1064 dwarf2out_vms_begin_epilogue (unsigned int line ATTRIBUTE_UNUSED,
1065 const char *file ATTRIBUTE_UNUSED)
1066 {
1067 dw_fde_ref fde = cfun->fde;
1068 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1069
1070 if (fde->dw_fde_vms_begin_epilogue)
1071 return;
1072
1073 /* Output a label to mark the endpoint of the code generated for this
1074 function. */
1075 ASM_GENERATE_INTERNAL_LABEL (label, EPILOGUE_BEGIN_LABEL,
1076 current_function_funcdef_no);
1077 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, EPILOGUE_BEGIN_LABEL,
1078 current_function_funcdef_no);
1079 fde->dw_fde_vms_begin_epilogue = xstrdup (label);
1080 }
1081
1082 /* Output a marker (i.e. a label) for the absolute end of the generated code
1083 for a function definition. This gets called *after* the epilogue code has
1084 been generated. */
1085
1086 void
1087 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
1088 const char *file ATTRIBUTE_UNUSED)
1089 {
1090 dw_fde_ref fde;
1091 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1092
1093 last_var_location_insn = NULL_RTX;
1094 cached_next_real_insn = NULL_RTX;
1095
1096 if (dwarf2out_do_cfi_asm ())
1097 fprintf (asm_out_file, "\t.cfi_endproc\n");
1098
1099 /* Output a label to mark the endpoint of the code generated for this
1100 function. */
1101 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
1102 current_function_funcdef_no);
1103 ASM_OUTPUT_LABEL (asm_out_file, label);
1104 fde = cfun->fde;
1105 gcc_assert (fde != NULL);
1106 if (fde->dw_fde_second_begin == NULL)
1107 fde->dw_fde_end = xstrdup (label);
1108 }
1109
1110 void
1111 dwarf2out_frame_finish (void)
1112 {
1113 /* Output call frame information. */
1114 if (targetm.debug_unwind_info () == UI_DWARF2)
1115 output_call_frame_info (0);
1116
1117 /* Output another copy for the unwinder. */
1118 if ((flag_unwind_tables || flag_exceptions)
1119 && targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
1120 output_call_frame_info (1);
1121 }
1122
1123 /* Note that the current function section is being used for code. */
1124
1125 static void
1126 dwarf2out_note_section_used (void)
1127 {
1128 section *sec = current_function_section ();
1129 if (sec == text_section)
1130 text_section_used = true;
1131 else if (sec == cold_text_section)
1132 cold_text_section_used = true;
1133 }
1134
1135 static void var_location_switch_text_section (void);
1136 static void set_cur_line_info_table (section *);
1137
1138 void
1139 dwarf2out_switch_text_section (void)
1140 {
1141 section *sect;
1142 dw_fde_ref fde = cfun->fde;
1143
1144 gcc_assert (cfun && fde && fde->dw_fde_second_begin == NULL);
1145
1146 if (!in_cold_section_p)
1147 {
1148 fde->dw_fde_end = crtl->subsections.cold_section_end_label;
1149 fde->dw_fde_second_begin = crtl->subsections.hot_section_label;
1150 fde->dw_fde_second_end = crtl->subsections.hot_section_end_label;
1151 }
1152 else
1153 {
1154 fde->dw_fde_end = crtl->subsections.hot_section_end_label;
1155 fde->dw_fde_second_begin = crtl->subsections.cold_section_label;
1156 fde->dw_fde_second_end = crtl->subsections.cold_section_end_label;
1157 }
1158 have_multiple_function_sections = true;
1159
1160 /* There is no need to mark used sections when not debugging. */
1161 if (cold_text_section != NULL)
1162 dwarf2out_note_section_used ();
1163
1164 if (dwarf2out_do_cfi_asm ())
1165 fprintf (asm_out_file, "\t.cfi_endproc\n");
1166
1167 /* Now do the real section switch. */
1168 sect = current_function_section ();
1169 switch_to_section (sect);
1170
1171 fde->second_in_std_section
1172 = (sect == text_section
1173 || (cold_text_section && sect == cold_text_section));
1174
1175 if (dwarf2out_do_cfi_asm ())
1176 dwarf2out_do_cfi_startproc (true);
1177
1178 var_location_switch_text_section ();
1179
1180 if (cold_text_section != NULL)
1181 set_cur_line_info_table (sect);
1182 }
1183 \f
1184 /* And now, the subset of the debugging information support code necessary
1185 for emitting location expressions. */
1186
1187 /* Data about a single source file. */
1188 struct GTY(()) dwarf_file_data {
1189 const char * filename;
1190 int emitted_number;
1191 };
1192
1193 typedef struct GTY(()) deferred_locations_struct
1194 {
1195 tree variable;
1196 dw_die_ref die;
1197 } deferred_locations;
1198
1199 DEF_VEC_O(deferred_locations);
1200 DEF_VEC_ALLOC_O(deferred_locations,gc);
1201
1202 static GTY(()) VEC(deferred_locations, gc) *deferred_locations_list;
1203
1204 DEF_VEC_P(dw_die_ref);
1205 DEF_VEC_ALLOC_P(dw_die_ref,heap);
1206
1207 /* Location lists are ranges + location descriptions for that range,
1208 so you can track variables that are in different places over
1209 their entire life. */
1210 typedef struct GTY(()) dw_loc_list_struct {
1211 dw_loc_list_ref dw_loc_next;
1212 const char *begin; /* Label for begin address of range */
1213 const char *end; /* Label for end address of range */
1214 char *ll_symbol; /* Label for beginning of location list.
1215 Only on head of list */
1216 const char *section; /* Section this loclist is relative to */
1217 dw_loc_descr_ref expr;
1218 hashval_t hash;
1219 /* True if all addresses in this and subsequent lists are known to be
1220 resolved. */
1221 bool resolved_addr;
1222 /* True if this list has been replaced by dw_loc_next. */
1223 bool replaced;
1224 bool emitted;
1225 /* True if the range should be emitted even if begin and end
1226 are the same. */
1227 bool force;
1228 } dw_loc_list_node;
1229
1230 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
1231
1232 /* Convert a DWARF stack opcode into its string name. */
1233
1234 static const char *
1235 dwarf_stack_op_name (unsigned int op)
1236 {
1237 switch (op)
1238 {
1239 case DW_OP_addr:
1240 return "DW_OP_addr";
1241 case DW_OP_deref:
1242 return "DW_OP_deref";
1243 case DW_OP_const1u:
1244 return "DW_OP_const1u";
1245 case DW_OP_const1s:
1246 return "DW_OP_const1s";
1247 case DW_OP_const2u:
1248 return "DW_OP_const2u";
1249 case DW_OP_const2s:
1250 return "DW_OP_const2s";
1251 case DW_OP_const4u:
1252 return "DW_OP_const4u";
1253 case DW_OP_const4s:
1254 return "DW_OP_const4s";
1255 case DW_OP_const8u:
1256 return "DW_OP_const8u";
1257 case DW_OP_const8s:
1258 return "DW_OP_const8s";
1259 case DW_OP_constu:
1260 return "DW_OP_constu";
1261 case DW_OP_consts:
1262 return "DW_OP_consts";
1263 case DW_OP_dup:
1264 return "DW_OP_dup";
1265 case DW_OP_drop:
1266 return "DW_OP_drop";
1267 case DW_OP_over:
1268 return "DW_OP_over";
1269 case DW_OP_pick:
1270 return "DW_OP_pick";
1271 case DW_OP_swap:
1272 return "DW_OP_swap";
1273 case DW_OP_rot:
1274 return "DW_OP_rot";
1275 case DW_OP_xderef:
1276 return "DW_OP_xderef";
1277 case DW_OP_abs:
1278 return "DW_OP_abs";
1279 case DW_OP_and:
1280 return "DW_OP_and";
1281 case DW_OP_div:
1282 return "DW_OP_div";
1283 case DW_OP_minus:
1284 return "DW_OP_minus";
1285 case DW_OP_mod:
1286 return "DW_OP_mod";
1287 case DW_OP_mul:
1288 return "DW_OP_mul";
1289 case DW_OP_neg:
1290 return "DW_OP_neg";
1291 case DW_OP_not:
1292 return "DW_OP_not";
1293 case DW_OP_or:
1294 return "DW_OP_or";
1295 case DW_OP_plus:
1296 return "DW_OP_plus";
1297 case DW_OP_plus_uconst:
1298 return "DW_OP_plus_uconst";
1299 case DW_OP_shl:
1300 return "DW_OP_shl";
1301 case DW_OP_shr:
1302 return "DW_OP_shr";
1303 case DW_OP_shra:
1304 return "DW_OP_shra";
1305 case DW_OP_xor:
1306 return "DW_OP_xor";
1307 case DW_OP_bra:
1308 return "DW_OP_bra";
1309 case DW_OP_eq:
1310 return "DW_OP_eq";
1311 case DW_OP_ge:
1312 return "DW_OP_ge";
1313 case DW_OP_gt:
1314 return "DW_OP_gt";
1315 case DW_OP_le:
1316 return "DW_OP_le";
1317 case DW_OP_lt:
1318 return "DW_OP_lt";
1319 case DW_OP_ne:
1320 return "DW_OP_ne";
1321 case DW_OP_skip:
1322 return "DW_OP_skip";
1323 case DW_OP_lit0:
1324 return "DW_OP_lit0";
1325 case DW_OP_lit1:
1326 return "DW_OP_lit1";
1327 case DW_OP_lit2:
1328 return "DW_OP_lit2";
1329 case DW_OP_lit3:
1330 return "DW_OP_lit3";
1331 case DW_OP_lit4:
1332 return "DW_OP_lit4";
1333 case DW_OP_lit5:
1334 return "DW_OP_lit5";
1335 case DW_OP_lit6:
1336 return "DW_OP_lit6";
1337 case DW_OP_lit7:
1338 return "DW_OP_lit7";
1339 case DW_OP_lit8:
1340 return "DW_OP_lit8";
1341 case DW_OP_lit9:
1342 return "DW_OP_lit9";
1343 case DW_OP_lit10:
1344 return "DW_OP_lit10";
1345 case DW_OP_lit11:
1346 return "DW_OP_lit11";
1347 case DW_OP_lit12:
1348 return "DW_OP_lit12";
1349 case DW_OP_lit13:
1350 return "DW_OP_lit13";
1351 case DW_OP_lit14:
1352 return "DW_OP_lit14";
1353 case DW_OP_lit15:
1354 return "DW_OP_lit15";
1355 case DW_OP_lit16:
1356 return "DW_OP_lit16";
1357 case DW_OP_lit17:
1358 return "DW_OP_lit17";
1359 case DW_OP_lit18:
1360 return "DW_OP_lit18";
1361 case DW_OP_lit19:
1362 return "DW_OP_lit19";
1363 case DW_OP_lit20:
1364 return "DW_OP_lit20";
1365 case DW_OP_lit21:
1366 return "DW_OP_lit21";
1367 case DW_OP_lit22:
1368 return "DW_OP_lit22";
1369 case DW_OP_lit23:
1370 return "DW_OP_lit23";
1371 case DW_OP_lit24:
1372 return "DW_OP_lit24";
1373 case DW_OP_lit25:
1374 return "DW_OP_lit25";
1375 case DW_OP_lit26:
1376 return "DW_OP_lit26";
1377 case DW_OP_lit27:
1378 return "DW_OP_lit27";
1379 case DW_OP_lit28:
1380 return "DW_OP_lit28";
1381 case DW_OP_lit29:
1382 return "DW_OP_lit29";
1383 case DW_OP_lit30:
1384 return "DW_OP_lit30";
1385 case DW_OP_lit31:
1386 return "DW_OP_lit31";
1387 case DW_OP_reg0:
1388 return "DW_OP_reg0";
1389 case DW_OP_reg1:
1390 return "DW_OP_reg1";
1391 case DW_OP_reg2:
1392 return "DW_OP_reg2";
1393 case DW_OP_reg3:
1394 return "DW_OP_reg3";
1395 case DW_OP_reg4:
1396 return "DW_OP_reg4";
1397 case DW_OP_reg5:
1398 return "DW_OP_reg5";
1399 case DW_OP_reg6:
1400 return "DW_OP_reg6";
1401 case DW_OP_reg7:
1402 return "DW_OP_reg7";
1403 case DW_OP_reg8:
1404 return "DW_OP_reg8";
1405 case DW_OP_reg9:
1406 return "DW_OP_reg9";
1407 case DW_OP_reg10:
1408 return "DW_OP_reg10";
1409 case DW_OP_reg11:
1410 return "DW_OP_reg11";
1411 case DW_OP_reg12:
1412 return "DW_OP_reg12";
1413 case DW_OP_reg13:
1414 return "DW_OP_reg13";
1415 case DW_OP_reg14:
1416 return "DW_OP_reg14";
1417 case DW_OP_reg15:
1418 return "DW_OP_reg15";
1419 case DW_OP_reg16:
1420 return "DW_OP_reg16";
1421 case DW_OP_reg17:
1422 return "DW_OP_reg17";
1423 case DW_OP_reg18:
1424 return "DW_OP_reg18";
1425 case DW_OP_reg19:
1426 return "DW_OP_reg19";
1427 case DW_OP_reg20:
1428 return "DW_OP_reg20";
1429 case DW_OP_reg21:
1430 return "DW_OP_reg21";
1431 case DW_OP_reg22:
1432 return "DW_OP_reg22";
1433 case DW_OP_reg23:
1434 return "DW_OP_reg23";
1435 case DW_OP_reg24:
1436 return "DW_OP_reg24";
1437 case DW_OP_reg25:
1438 return "DW_OP_reg25";
1439 case DW_OP_reg26:
1440 return "DW_OP_reg26";
1441 case DW_OP_reg27:
1442 return "DW_OP_reg27";
1443 case DW_OP_reg28:
1444 return "DW_OP_reg28";
1445 case DW_OP_reg29:
1446 return "DW_OP_reg29";
1447 case DW_OP_reg30:
1448 return "DW_OP_reg30";
1449 case DW_OP_reg31:
1450 return "DW_OP_reg31";
1451 case DW_OP_breg0:
1452 return "DW_OP_breg0";
1453 case DW_OP_breg1:
1454 return "DW_OP_breg1";
1455 case DW_OP_breg2:
1456 return "DW_OP_breg2";
1457 case DW_OP_breg3:
1458 return "DW_OP_breg3";
1459 case DW_OP_breg4:
1460 return "DW_OP_breg4";
1461 case DW_OP_breg5:
1462 return "DW_OP_breg5";
1463 case DW_OP_breg6:
1464 return "DW_OP_breg6";
1465 case DW_OP_breg7:
1466 return "DW_OP_breg7";
1467 case DW_OP_breg8:
1468 return "DW_OP_breg8";
1469 case DW_OP_breg9:
1470 return "DW_OP_breg9";
1471 case DW_OP_breg10:
1472 return "DW_OP_breg10";
1473 case DW_OP_breg11:
1474 return "DW_OP_breg11";
1475 case DW_OP_breg12:
1476 return "DW_OP_breg12";
1477 case DW_OP_breg13:
1478 return "DW_OP_breg13";
1479 case DW_OP_breg14:
1480 return "DW_OP_breg14";
1481 case DW_OP_breg15:
1482 return "DW_OP_breg15";
1483 case DW_OP_breg16:
1484 return "DW_OP_breg16";
1485 case DW_OP_breg17:
1486 return "DW_OP_breg17";
1487 case DW_OP_breg18:
1488 return "DW_OP_breg18";
1489 case DW_OP_breg19:
1490 return "DW_OP_breg19";
1491 case DW_OP_breg20:
1492 return "DW_OP_breg20";
1493 case DW_OP_breg21:
1494 return "DW_OP_breg21";
1495 case DW_OP_breg22:
1496 return "DW_OP_breg22";
1497 case DW_OP_breg23:
1498 return "DW_OP_breg23";
1499 case DW_OP_breg24:
1500 return "DW_OP_breg24";
1501 case DW_OP_breg25:
1502 return "DW_OP_breg25";
1503 case DW_OP_breg26:
1504 return "DW_OP_breg26";
1505 case DW_OP_breg27:
1506 return "DW_OP_breg27";
1507 case DW_OP_breg28:
1508 return "DW_OP_breg28";
1509 case DW_OP_breg29:
1510 return "DW_OP_breg29";
1511 case DW_OP_breg30:
1512 return "DW_OP_breg30";
1513 case DW_OP_breg31:
1514 return "DW_OP_breg31";
1515 case DW_OP_regx:
1516 return "DW_OP_regx";
1517 case DW_OP_fbreg:
1518 return "DW_OP_fbreg";
1519 case DW_OP_bregx:
1520 return "DW_OP_bregx";
1521 case DW_OP_piece:
1522 return "DW_OP_piece";
1523 case DW_OP_deref_size:
1524 return "DW_OP_deref_size";
1525 case DW_OP_xderef_size:
1526 return "DW_OP_xderef_size";
1527 case DW_OP_nop:
1528 return "DW_OP_nop";
1529
1530 case DW_OP_push_object_address:
1531 return "DW_OP_push_object_address";
1532 case DW_OP_call2:
1533 return "DW_OP_call2";
1534 case DW_OP_call4:
1535 return "DW_OP_call4";
1536 case DW_OP_call_ref:
1537 return "DW_OP_call_ref";
1538 case DW_OP_implicit_value:
1539 return "DW_OP_implicit_value";
1540 case DW_OP_stack_value:
1541 return "DW_OP_stack_value";
1542 case DW_OP_form_tls_address:
1543 return "DW_OP_form_tls_address";
1544 case DW_OP_call_frame_cfa:
1545 return "DW_OP_call_frame_cfa";
1546 case DW_OP_bit_piece:
1547 return "DW_OP_bit_piece";
1548
1549 case DW_OP_GNU_push_tls_address:
1550 return "DW_OP_GNU_push_tls_address";
1551 case DW_OP_GNU_uninit:
1552 return "DW_OP_GNU_uninit";
1553 case DW_OP_GNU_encoded_addr:
1554 return "DW_OP_GNU_encoded_addr";
1555 case DW_OP_GNU_implicit_pointer:
1556 return "DW_OP_GNU_implicit_pointer";
1557 case DW_OP_GNU_entry_value:
1558 return "DW_OP_GNU_entry_value";
1559 case DW_OP_GNU_const_type:
1560 return "DW_OP_GNU_const_type";
1561 case DW_OP_GNU_regval_type:
1562 return "DW_OP_GNU_regval_type";
1563 case DW_OP_GNU_deref_type:
1564 return "DW_OP_GNU_deref_type";
1565 case DW_OP_GNU_convert:
1566 return "DW_OP_GNU_convert";
1567 case DW_OP_GNU_reinterpret:
1568 return "DW_OP_GNU_reinterpret";
1569 case DW_OP_GNU_parameter_ref:
1570 return "DW_OP_GNU_parameter_ref";
1571
1572 default:
1573 return "OP_<unknown>";
1574 }
1575 }
1576
1577 /* Return a pointer to a newly allocated location description. Location
1578 descriptions are simple expression terms that can be strung
1579 together to form more complicated location (address) descriptions. */
1580
1581 static inline dw_loc_descr_ref
1582 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
1583 unsigned HOST_WIDE_INT oprnd2)
1584 {
1585 dw_loc_descr_ref descr = ggc_alloc_cleared_dw_loc_descr_node ();
1586
1587 descr->dw_loc_opc = op;
1588 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
1589 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
1590 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
1591 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
1592
1593 return descr;
1594 }
1595
1596 /* Return a pointer to a newly allocated location description for
1597 REG and OFFSET. */
1598
1599 static inline dw_loc_descr_ref
1600 new_reg_loc_descr (unsigned int reg, unsigned HOST_WIDE_INT offset)
1601 {
1602 if (reg <= 31)
1603 return new_loc_descr ((enum dwarf_location_atom) (DW_OP_breg0 + reg),
1604 offset, 0);
1605 else
1606 return new_loc_descr (DW_OP_bregx, reg, offset);
1607 }
1608
1609 /* Add a location description term to a location description expression. */
1610
1611 static inline void
1612 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
1613 {
1614 dw_loc_descr_ref *d;
1615
1616 /* Find the end of the chain. */
1617 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
1618 ;
1619
1620 *d = descr;
1621 }
1622
1623 /* Compare two location operands for exact equality. */
1624
1625 static bool
1626 dw_val_equal_p (dw_val_node *a, dw_val_node *b)
1627 {
1628 if (a->val_class != b->val_class)
1629 return false;
1630 switch (a->val_class)
1631 {
1632 case dw_val_class_none:
1633 return true;
1634 case dw_val_class_addr:
1635 return rtx_equal_p (a->v.val_addr, b->v.val_addr);
1636
1637 case dw_val_class_offset:
1638 case dw_val_class_unsigned_const:
1639 case dw_val_class_const:
1640 case dw_val_class_range_list:
1641 case dw_val_class_lineptr:
1642 case dw_val_class_macptr:
1643 /* These are all HOST_WIDE_INT, signed or unsigned. */
1644 return a->v.val_unsigned == b->v.val_unsigned;
1645
1646 case dw_val_class_loc:
1647 return a->v.val_loc == b->v.val_loc;
1648 case dw_val_class_loc_list:
1649 return a->v.val_loc_list == b->v.val_loc_list;
1650 case dw_val_class_die_ref:
1651 return a->v.val_die_ref.die == b->v.val_die_ref.die;
1652 case dw_val_class_fde_ref:
1653 return a->v.val_fde_index == b->v.val_fde_index;
1654 case dw_val_class_lbl_id:
1655 return strcmp (a->v.val_lbl_id, b->v.val_lbl_id) == 0;
1656 case dw_val_class_str:
1657 return a->v.val_str == b->v.val_str;
1658 case dw_val_class_flag:
1659 return a->v.val_flag == b->v.val_flag;
1660 case dw_val_class_file:
1661 return a->v.val_file == b->v.val_file;
1662 case dw_val_class_decl_ref:
1663 return a->v.val_decl_ref == b->v.val_decl_ref;
1664
1665 case dw_val_class_const_double:
1666 return (a->v.val_double.high == b->v.val_double.high
1667 && a->v.val_double.low == b->v.val_double.low);
1668
1669 case dw_val_class_vec:
1670 {
1671 size_t a_len = a->v.val_vec.elt_size * a->v.val_vec.length;
1672 size_t b_len = b->v.val_vec.elt_size * b->v.val_vec.length;
1673
1674 return (a_len == b_len
1675 && !memcmp (a->v.val_vec.array, b->v.val_vec.array, a_len));
1676 }
1677
1678 case dw_val_class_data8:
1679 return memcmp (a->v.val_data8, b->v.val_data8, 8) == 0;
1680
1681 case dw_val_class_vms_delta:
1682 return (!strcmp (a->v.val_vms_delta.lbl1, b->v.val_vms_delta.lbl1)
1683 && !strcmp (a->v.val_vms_delta.lbl1, b->v.val_vms_delta.lbl1));
1684 }
1685 gcc_unreachable ();
1686 }
1687
1688 /* Compare two location atoms for exact equality. */
1689
1690 static bool
1691 loc_descr_equal_p_1 (dw_loc_descr_ref a, dw_loc_descr_ref b)
1692 {
1693 if (a->dw_loc_opc != b->dw_loc_opc)
1694 return false;
1695
1696 /* ??? This is only ever set for DW_OP_constNu, for N equal to the
1697 address size, but since we always allocate cleared storage it
1698 should be zero for other types of locations. */
1699 if (a->dtprel != b->dtprel)
1700 return false;
1701
1702 return (dw_val_equal_p (&a->dw_loc_oprnd1, &b->dw_loc_oprnd1)
1703 && dw_val_equal_p (&a->dw_loc_oprnd2, &b->dw_loc_oprnd2));
1704 }
1705
1706 /* Compare two complete location expressions for exact equality. */
1707
1708 bool
1709 loc_descr_equal_p (dw_loc_descr_ref a, dw_loc_descr_ref b)
1710 {
1711 while (1)
1712 {
1713 if (a == b)
1714 return true;
1715 if (a == NULL || b == NULL)
1716 return false;
1717 if (!loc_descr_equal_p_1 (a, b))
1718 return false;
1719
1720 a = a->dw_loc_next;
1721 b = b->dw_loc_next;
1722 }
1723 }
1724
1725
1726 /* Add a constant OFFSET to a location expression. */
1727
1728 static void
1729 loc_descr_plus_const (dw_loc_descr_ref *list_head, HOST_WIDE_INT offset)
1730 {
1731 dw_loc_descr_ref loc;
1732 HOST_WIDE_INT *p;
1733
1734 gcc_assert (*list_head != NULL);
1735
1736 if (!offset)
1737 return;
1738
1739 /* Find the end of the chain. */
1740 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
1741 ;
1742
1743 p = NULL;
1744 if (loc->dw_loc_opc == DW_OP_fbreg
1745 || (loc->dw_loc_opc >= DW_OP_breg0 && loc->dw_loc_opc <= DW_OP_breg31))
1746 p = &loc->dw_loc_oprnd1.v.val_int;
1747 else if (loc->dw_loc_opc == DW_OP_bregx)
1748 p = &loc->dw_loc_oprnd2.v.val_int;
1749
1750 /* If the last operation is fbreg, breg{0..31,x}, optimize by adjusting its
1751 offset. Don't optimize if an signed integer overflow would happen. */
1752 if (p != NULL
1753 && ((offset > 0 && *p <= INTTYPE_MAXIMUM (HOST_WIDE_INT) - offset)
1754 || (offset < 0 && *p >= INTTYPE_MINIMUM (HOST_WIDE_INT) - offset)))
1755 *p += offset;
1756
1757 else if (offset > 0)
1758 loc->dw_loc_next = new_loc_descr (DW_OP_plus_uconst, offset, 0);
1759
1760 else
1761 {
1762 loc->dw_loc_next = int_loc_descriptor (-offset);
1763 add_loc_descr (&loc->dw_loc_next, new_loc_descr (DW_OP_minus, 0, 0));
1764 }
1765 }
1766
1767 /* Add a constant OFFSET to a location list. */
1768
1769 static void
1770 loc_list_plus_const (dw_loc_list_ref list_head, HOST_WIDE_INT offset)
1771 {
1772 dw_loc_list_ref d;
1773 for (d = list_head; d != NULL; d = d->dw_loc_next)
1774 loc_descr_plus_const (&d->expr, offset);
1775 }
1776
1777 #define DWARF_REF_SIZE \
1778 (dwarf_version == 2 ? DWARF2_ADDR_SIZE : DWARF_OFFSET_SIZE)
1779
1780 static unsigned long int get_base_type_offset (dw_die_ref);
1781
1782 /* Return the size of a location descriptor. */
1783
1784 static unsigned long
1785 size_of_loc_descr (dw_loc_descr_ref loc)
1786 {
1787 unsigned long size = 1;
1788
1789 switch (loc->dw_loc_opc)
1790 {
1791 case DW_OP_addr:
1792 size += DWARF2_ADDR_SIZE;
1793 break;
1794 case DW_OP_const1u:
1795 case DW_OP_const1s:
1796 size += 1;
1797 break;
1798 case DW_OP_const2u:
1799 case DW_OP_const2s:
1800 size += 2;
1801 break;
1802 case DW_OP_const4u:
1803 case DW_OP_const4s:
1804 size += 4;
1805 break;
1806 case DW_OP_const8u:
1807 case DW_OP_const8s:
1808 size += 8;
1809 break;
1810 case DW_OP_constu:
1811 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1812 break;
1813 case DW_OP_consts:
1814 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
1815 break;
1816 case DW_OP_pick:
1817 size += 1;
1818 break;
1819 case DW_OP_plus_uconst:
1820 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1821 break;
1822 case DW_OP_skip:
1823 case DW_OP_bra:
1824 size += 2;
1825 break;
1826 case DW_OP_breg0:
1827 case DW_OP_breg1:
1828 case DW_OP_breg2:
1829 case DW_OP_breg3:
1830 case DW_OP_breg4:
1831 case DW_OP_breg5:
1832 case DW_OP_breg6:
1833 case DW_OP_breg7:
1834 case DW_OP_breg8:
1835 case DW_OP_breg9:
1836 case DW_OP_breg10:
1837 case DW_OP_breg11:
1838 case DW_OP_breg12:
1839 case DW_OP_breg13:
1840 case DW_OP_breg14:
1841 case DW_OP_breg15:
1842 case DW_OP_breg16:
1843 case DW_OP_breg17:
1844 case DW_OP_breg18:
1845 case DW_OP_breg19:
1846 case DW_OP_breg20:
1847 case DW_OP_breg21:
1848 case DW_OP_breg22:
1849 case DW_OP_breg23:
1850 case DW_OP_breg24:
1851 case DW_OP_breg25:
1852 case DW_OP_breg26:
1853 case DW_OP_breg27:
1854 case DW_OP_breg28:
1855 case DW_OP_breg29:
1856 case DW_OP_breg30:
1857 case DW_OP_breg31:
1858 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
1859 break;
1860 case DW_OP_regx:
1861 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1862 break;
1863 case DW_OP_fbreg:
1864 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
1865 break;
1866 case DW_OP_bregx:
1867 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1868 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
1869 break;
1870 case DW_OP_piece:
1871 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1872 break;
1873 case DW_OP_bit_piece:
1874 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1875 size += size_of_uleb128 (loc->dw_loc_oprnd2.v.val_unsigned);
1876 break;
1877 case DW_OP_deref_size:
1878 case DW_OP_xderef_size:
1879 size += 1;
1880 break;
1881 case DW_OP_call2:
1882 size += 2;
1883 break;
1884 case DW_OP_call4:
1885 size += 4;
1886 break;
1887 case DW_OP_call_ref:
1888 size += DWARF_REF_SIZE;
1889 break;
1890 case DW_OP_implicit_value:
1891 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned)
1892 + loc->dw_loc_oprnd1.v.val_unsigned;
1893 break;
1894 case DW_OP_GNU_implicit_pointer:
1895 size += DWARF_REF_SIZE + size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
1896 break;
1897 case DW_OP_GNU_entry_value:
1898 {
1899 unsigned long op_size = size_of_locs (loc->dw_loc_oprnd1.v.val_loc);
1900 size += size_of_uleb128 (op_size) + op_size;
1901 break;
1902 }
1903 case DW_OP_GNU_const_type:
1904 {
1905 unsigned long o
1906 = get_base_type_offset (loc->dw_loc_oprnd1.v.val_die_ref.die);
1907 size += size_of_uleb128 (o) + 1;
1908 switch (loc->dw_loc_oprnd2.val_class)
1909 {
1910 case dw_val_class_vec:
1911 size += loc->dw_loc_oprnd2.v.val_vec.length
1912 * loc->dw_loc_oprnd2.v.val_vec.elt_size;
1913 break;
1914 case dw_val_class_const:
1915 size += HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT;
1916 break;
1917 case dw_val_class_const_double:
1918 size += 2 * HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT;
1919 break;
1920 default:
1921 gcc_unreachable ();
1922 }
1923 break;
1924 }
1925 case DW_OP_GNU_regval_type:
1926 {
1927 unsigned long o
1928 = get_base_type_offset (loc->dw_loc_oprnd2.v.val_die_ref.die);
1929 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned)
1930 + size_of_uleb128 (o);
1931 }
1932 break;
1933 case DW_OP_GNU_deref_type:
1934 {
1935 unsigned long o
1936 = get_base_type_offset (loc->dw_loc_oprnd2.v.val_die_ref.die);
1937 size += 1 + size_of_uleb128 (o);
1938 }
1939 break;
1940 case DW_OP_GNU_convert:
1941 case DW_OP_GNU_reinterpret:
1942 if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const)
1943 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1944 else
1945 {
1946 unsigned long o
1947 = get_base_type_offset (loc->dw_loc_oprnd1.v.val_die_ref.die);
1948 size += size_of_uleb128 (o);
1949 }
1950 break;
1951 case DW_OP_GNU_parameter_ref:
1952 size += 4;
1953 break;
1954 default:
1955 break;
1956 }
1957
1958 return size;
1959 }
1960
1961 /* Return the size of a series of location descriptors. */
1962
1963 unsigned long
1964 size_of_locs (dw_loc_descr_ref loc)
1965 {
1966 dw_loc_descr_ref l;
1967 unsigned long size;
1968
1969 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
1970 field, to avoid writing to a PCH file. */
1971 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
1972 {
1973 if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
1974 break;
1975 size += size_of_loc_descr (l);
1976 }
1977 if (! l)
1978 return size;
1979
1980 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
1981 {
1982 l->dw_loc_addr = size;
1983 size += size_of_loc_descr (l);
1984 }
1985
1986 return size;
1987 }
1988
1989 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
1990 static void get_ref_die_offset_label (char *, dw_die_ref);
1991 static unsigned long int get_ref_die_offset (dw_die_ref);
1992
1993 /* Output location description stack opcode's operands (if any).
1994 The for_eh_or_skip parameter controls whether register numbers are
1995 converted using DWARF2_FRAME_REG_OUT, which is needed in the case that
1996 hard reg numbers have been processed via DWARF_FRAME_REGNUM (i.e. for unwind
1997 info). This should be suppressed for the cases that have not been converted
1998 (i.e. symbolic debug info), by setting the parameter < 0. See PR47324. */
1999
2000 static void
2001 output_loc_operands (dw_loc_descr_ref loc, int for_eh_or_skip)
2002 {
2003 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2004 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2005
2006 switch (loc->dw_loc_opc)
2007 {
2008 #ifdef DWARF2_DEBUGGING_INFO
2009 case DW_OP_const2u:
2010 case DW_OP_const2s:
2011 dw2_asm_output_data (2, val1->v.val_int, NULL);
2012 break;
2013 case DW_OP_const4u:
2014 if (loc->dtprel)
2015 {
2016 gcc_assert (targetm.asm_out.output_dwarf_dtprel);
2017 targetm.asm_out.output_dwarf_dtprel (asm_out_file, 4,
2018 val1->v.val_addr);
2019 fputc ('\n', asm_out_file);
2020 break;
2021 }
2022 /* FALLTHRU */
2023 case DW_OP_const4s:
2024 dw2_asm_output_data (4, val1->v.val_int, NULL);
2025 break;
2026 case DW_OP_const8u:
2027 if (loc->dtprel)
2028 {
2029 gcc_assert (targetm.asm_out.output_dwarf_dtprel);
2030 targetm.asm_out.output_dwarf_dtprel (asm_out_file, 8,
2031 val1->v.val_addr);
2032 fputc ('\n', asm_out_file);
2033 break;
2034 }
2035 /* FALLTHRU */
2036 case DW_OP_const8s:
2037 gcc_assert (HOST_BITS_PER_WIDE_INT >= 64);
2038 dw2_asm_output_data (8, val1->v.val_int, NULL);
2039 break;
2040 case DW_OP_skip:
2041 case DW_OP_bra:
2042 {
2043 int offset;
2044
2045 gcc_assert (val1->val_class == dw_val_class_loc);
2046 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2047
2048 dw2_asm_output_data (2, offset, NULL);
2049 }
2050 break;
2051 case DW_OP_implicit_value:
2052 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2053 switch (val2->val_class)
2054 {
2055 case dw_val_class_const:
2056 dw2_asm_output_data (val1->v.val_unsigned, val2->v.val_int, NULL);
2057 break;
2058 case dw_val_class_vec:
2059 {
2060 unsigned int elt_size = val2->v.val_vec.elt_size;
2061 unsigned int len = val2->v.val_vec.length;
2062 unsigned int i;
2063 unsigned char *p;
2064
2065 if (elt_size > sizeof (HOST_WIDE_INT))
2066 {
2067 elt_size /= 2;
2068 len *= 2;
2069 }
2070 for (i = 0, p = val2->v.val_vec.array;
2071 i < len;
2072 i++, p += elt_size)
2073 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
2074 "fp or vector constant word %u", i);
2075 }
2076 break;
2077 case dw_val_class_const_double:
2078 {
2079 unsigned HOST_WIDE_INT first, second;
2080
2081 if (WORDS_BIG_ENDIAN)
2082 {
2083 first = val2->v.val_double.high;
2084 second = val2->v.val_double.low;
2085 }
2086 else
2087 {
2088 first = val2->v.val_double.low;
2089 second = val2->v.val_double.high;
2090 }
2091 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
2092 first, NULL);
2093 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
2094 second, NULL);
2095 }
2096 break;
2097 case dw_val_class_addr:
2098 gcc_assert (val1->v.val_unsigned == DWARF2_ADDR_SIZE);
2099 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val2->v.val_addr, NULL);
2100 break;
2101 default:
2102 gcc_unreachable ();
2103 }
2104 break;
2105 #else
2106 case DW_OP_const2u:
2107 case DW_OP_const2s:
2108 case DW_OP_const4u:
2109 case DW_OP_const4s:
2110 case DW_OP_const8u:
2111 case DW_OP_const8s:
2112 case DW_OP_skip:
2113 case DW_OP_bra:
2114 case DW_OP_implicit_value:
2115 /* We currently don't make any attempt to make sure these are
2116 aligned properly like we do for the main unwind info, so
2117 don't support emitting things larger than a byte if we're
2118 only doing unwinding. */
2119 gcc_unreachable ();
2120 #endif
2121 case DW_OP_const1u:
2122 case DW_OP_const1s:
2123 dw2_asm_output_data (1, val1->v.val_int, NULL);
2124 break;
2125 case DW_OP_constu:
2126 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2127 break;
2128 case DW_OP_consts:
2129 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2130 break;
2131 case DW_OP_pick:
2132 dw2_asm_output_data (1, val1->v.val_int, NULL);
2133 break;
2134 case DW_OP_plus_uconst:
2135 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2136 break;
2137 case DW_OP_breg0:
2138 case DW_OP_breg1:
2139 case DW_OP_breg2:
2140 case DW_OP_breg3:
2141 case DW_OP_breg4:
2142 case DW_OP_breg5:
2143 case DW_OP_breg6:
2144 case DW_OP_breg7:
2145 case DW_OP_breg8:
2146 case DW_OP_breg9:
2147 case DW_OP_breg10:
2148 case DW_OP_breg11:
2149 case DW_OP_breg12:
2150 case DW_OP_breg13:
2151 case DW_OP_breg14:
2152 case DW_OP_breg15:
2153 case DW_OP_breg16:
2154 case DW_OP_breg17:
2155 case DW_OP_breg18:
2156 case DW_OP_breg19:
2157 case DW_OP_breg20:
2158 case DW_OP_breg21:
2159 case DW_OP_breg22:
2160 case DW_OP_breg23:
2161 case DW_OP_breg24:
2162 case DW_OP_breg25:
2163 case DW_OP_breg26:
2164 case DW_OP_breg27:
2165 case DW_OP_breg28:
2166 case DW_OP_breg29:
2167 case DW_OP_breg30:
2168 case DW_OP_breg31:
2169 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2170 break;
2171 case DW_OP_regx:
2172 {
2173 unsigned r = val1->v.val_unsigned;
2174 if (for_eh_or_skip >= 0)
2175 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2176 gcc_assert (size_of_uleb128 (r)
2177 == size_of_uleb128 (val1->v.val_unsigned));
2178 dw2_asm_output_data_uleb128 (r, NULL);
2179 }
2180 break;
2181 case DW_OP_fbreg:
2182 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2183 break;
2184 case DW_OP_bregx:
2185 {
2186 unsigned r = val1->v.val_unsigned;
2187 if (for_eh_or_skip >= 0)
2188 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2189 gcc_assert (size_of_uleb128 (r)
2190 == size_of_uleb128 (val1->v.val_unsigned));
2191 dw2_asm_output_data_uleb128 (r, NULL);
2192 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
2193 }
2194 break;
2195 case DW_OP_piece:
2196 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2197 break;
2198 case DW_OP_bit_piece:
2199 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2200 dw2_asm_output_data_uleb128 (val2->v.val_unsigned, NULL);
2201 break;
2202 case DW_OP_deref_size:
2203 case DW_OP_xderef_size:
2204 dw2_asm_output_data (1, val1->v.val_int, NULL);
2205 break;
2206
2207 case DW_OP_addr:
2208 if (loc->dtprel)
2209 {
2210 if (targetm.asm_out.output_dwarf_dtprel)
2211 {
2212 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
2213 DWARF2_ADDR_SIZE,
2214 val1->v.val_addr);
2215 fputc ('\n', asm_out_file);
2216 }
2217 else
2218 gcc_unreachable ();
2219 }
2220 else
2221 {
2222 #ifdef DWARF2_DEBUGGING_INFO
2223 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2224 #else
2225 gcc_unreachable ();
2226 #endif
2227 }
2228 break;
2229
2230 case DW_OP_GNU_implicit_pointer:
2231 {
2232 char label[MAX_ARTIFICIAL_LABEL_BYTES
2233 + HOST_BITS_PER_WIDE_INT / 2 + 2];
2234 gcc_assert (val1->val_class == dw_val_class_die_ref);
2235 get_ref_die_offset_label (label, val1->v.val_die_ref.die);
2236 dw2_asm_output_offset (DWARF_REF_SIZE, label, debug_info_section, NULL);
2237 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
2238 }
2239 break;
2240
2241 case DW_OP_GNU_entry_value:
2242 dw2_asm_output_data_uleb128 (size_of_locs (val1->v.val_loc), NULL);
2243 output_loc_sequence (val1->v.val_loc, for_eh_or_skip);
2244 break;
2245
2246 case DW_OP_GNU_const_type:
2247 {
2248 unsigned long o = get_base_type_offset (val1->v.val_die_ref.die), l;
2249 gcc_assert (o);
2250 dw2_asm_output_data_uleb128 (o, NULL);
2251 switch (val2->val_class)
2252 {
2253 case dw_val_class_const:
2254 l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
2255 dw2_asm_output_data (1, l, NULL);
2256 dw2_asm_output_data (l, val2->v.val_int, NULL);
2257 break;
2258 case dw_val_class_vec:
2259 {
2260 unsigned int elt_size = val2->v.val_vec.elt_size;
2261 unsigned int len = val2->v.val_vec.length;
2262 unsigned int i;
2263 unsigned char *p;
2264
2265 l = len * elt_size;
2266 dw2_asm_output_data (1, l, NULL);
2267 if (elt_size > sizeof (HOST_WIDE_INT))
2268 {
2269 elt_size /= 2;
2270 len *= 2;
2271 }
2272 for (i = 0, p = val2->v.val_vec.array;
2273 i < len;
2274 i++, p += elt_size)
2275 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
2276 "fp or vector constant word %u", i);
2277 }
2278 break;
2279 case dw_val_class_const_double:
2280 {
2281 unsigned HOST_WIDE_INT first, second;
2282 l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
2283
2284 dw2_asm_output_data (1, 2 * l, NULL);
2285 if (WORDS_BIG_ENDIAN)
2286 {
2287 first = val2->v.val_double.high;
2288 second = val2->v.val_double.low;
2289 }
2290 else
2291 {
2292 first = val2->v.val_double.low;
2293 second = val2->v.val_double.high;
2294 }
2295 dw2_asm_output_data (l, first, NULL);
2296 dw2_asm_output_data (l, second, NULL);
2297 }
2298 break;
2299 default:
2300 gcc_unreachable ();
2301 }
2302 }
2303 break;
2304 case DW_OP_GNU_regval_type:
2305 {
2306 unsigned r = val1->v.val_unsigned;
2307 unsigned long o = get_base_type_offset (val2->v.val_die_ref.die);
2308 gcc_assert (o);
2309 if (for_eh_or_skip >= 0)
2310 {
2311 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2312 gcc_assert (size_of_uleb128 (r)
2313 == size_of_uleb128 (val1->v.val_unsigned));
2314 }
2315 dw2_asm_output_data_uleb128 (r, NULL);
2316 dw2_asm_output_data_uleb128 (o, NULL);
2317 }
2318 break;
2319 case DW_OP_GNU_deref_type:
2320 {
2321 unsigned long o = get_base_type_offset (val2->v.val_die_ref.die);
2322 gcc_assert (o);
2323 dw2_asm_output_data (1, val1->v.val_int, NULL);
2324 dw2_asm_output_data_uleb128 (o, NULL);
2325 }
2326 break;
2327 case DW_OP_GNU_convert:
2328 case DW_OP_GNU_reinterpret:
2329 if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const)
2330 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2331 else
2332 {
2333 unsigned long o = get_base_type_offset (val1->v.val_die_ref.die);
2334 gcc_assert (o);
2335 dw2_asm_output_data_uleb128 (o, NULL);
2336 }
2337 break;
2338
2339 case DW_OP_GNU_parameter_ref:
2340 {
2341 unsigned long o;
2342 gcc_assert (val1->val_class == dw_val_class_die_ref);
2343 o = get_ref_die_offset (val1->v.val_die_ref.die);
2344 dw2_asm_output_data (4, o, NULL);
2345 }
2346 break;
2347
2348 default:
2349 /* Other codes have no operands. */
2350 break;
2351 }
2352 }
2353
2354 /* Output a sequence of location operations.
2355 The for_eh_or_skip parameter controls whether register numbers are
2356 converted using DWARF2_FRAME_REG_OUT, which is needed in the case that
2357 hard reg numbers have been processed via DWARF_FRAME_REGNUM (i.e. for unwind
2358 info). This should be suppressed for the cases that have not been converted
2359 (i.e. symbolic debug info), by setting the parameter < 0. See PR47324. */
2360
2361 void
2362 output_loc_sequence (dw_loc_descr_ref loc, int for_eh_or_skip)
2363 {
2364 for (; loc != NULL; loc = loc->dw_loc_next)
2365 {
2366 enum dwarf_location_atom opc = loc->dw_loc_opc;
2367 /* Output the opcode. */
2368 if (for_eh_or_skip >= 0
2369 && opc >= DW_OP_breg0 && opc <= DW_OP_breg31)
2370 {
2371 unsigned r = (opc - DW_OP_breg0);
2372 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2373 gcc_assert (r <= 31);
2374 opc = (enum dwarf_location_atom) (DW_OP_breg0 + r);
2375 }
2376 else if (for_eh_or_skip >= 0
2377 && opc >= DW_OP_reg0 && opc <= DW_OP_reg31)
2378 {
2379 unsigned r = (opc - DW_OP_reg0);
2380 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2381 gcc_assert (r <= 31);
2382 opc = (enum dwarf_location_atom) (DW_OP_reg0 + r);
2383 }
2384
2385 dw2_asm_output_data (1, opc,
2386 "%s", dwarf_stack_op_name (opc));
2387
2388 /* Output the operand(s) (if any). */
2389 output_loc_operands (loc, for_eh_or_skip);
2390 }
2391 }
2392
2393 /* Output location description stack opcode's operands (if any).
2394 The output is single bytes on a line, suitable for .cfi_escape. */
2395
2396 static void
2397 output_loc_operands_raw (dw_loc_descr_ref loc)
2398 {
2399 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2400 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2401
2402 switch (loc->dw_loc_opc)
2403 {
2404 case DW_OP_addr:
2405 case DW_OP_implicit_value:
2406 /* We cannot output addresses in .cfi_escape, only bytes. */
2407 gcc_unreachable ();
2408
2409 case DW_OP_const1u:
2410 case DW_OP_const1s:
2411 case DW_OP_pick:
2412 case DW_OP_deref_size:
2413 case DW_OP_xderef_size:
2414 fputc (',', asm_out_file);
2415 dw2_asm_output_data_raw (1, val1->v.val_int);
2416 break;
2417
2418 case DW_OP_const2u:
2419 case DW_OP_const2s:
2420 fputc (',', asm_out_file);
2421 dw2_asm_output_data_raw (2, val1->v.val_int);
2422 break;
2423
2424 case DW_OP_const4u:
2425 case DW_OP_const4s:
2426 fputc (',', asm_out_file);
2427 dw2_asm_output_data_raw (4, val1->v.val_int);
2428 break;
2429
2430 case DW_OP_const8u:
2431 case DW_OP_const8s:
2432 gcc_assert (HOST_BITS_PER_WIDE_INT >= 64);
2433 fputc (',', asm_out_file);
2434 dw2_asm_output_data_raw (8, val1->v.val_int);
2435 break;
2436
2437 case DW_OP_skip:
2438 case DW_OP_bra:
2439 {
2440 int offset;
2441
2442 gcc_assert (val1->val_class == dw_val_class_loc);
2443 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2444
2445 fputc (',', asm_out_file);
2446 dw2_asm_output_data_raw (2, offset);
2447 }
2448 break;
2449
2450 case DW_OP_regx:
2451 {
2452 unsigned r = DWARF2_FRAME_REG_OUT (val1->v.val_unsigned, 1);
2453 gcc_assert (size_of_uleb128 (r)
2454 == size_of_uleb128 (val1->v.val_unsigned));
2455 fputc (',', asm_out_file);
2456 dw2_asm_output_data_uleb128_raw (r);
2457 }
2458 break;
2459
2460 case DW_OP_constu:
2461 case DW_OP_plus_uconst:
2462 case DW_OP_piece:
2463 fputc (',', asm_out_file);
2464 dw2_asm_output_data_uleb128_raw (val1->v.val_unsigned);
2465 break;
2466
2467 case DW_OP_bit_piece:
2468 fputc (',', asm_out_file);
2469 dw2_asm_output_data_uleb128_raw (val1->v.val_unsigned);
2470 dw2_asm_output_data_uleb128_raw (val2->v.val_unsigned);
2471 break;
2472
2473 case DW_OP_consts:
2474 case DW_OP_breg0:
2475 case DW_OP_breg1:
2476 case DW_OP_breg2:
2477 case DW_OP_breg3:
2478 case DW_OP_breg4:
2479 case DW_OP_breg5:
2480 case DW_OP_breg6:
2481 case DW_OP_breg7:
2482 case DW_OP_breg8:
2483 case DW_OP_breg9:
2484 case DW_OP_breg10:
2485 case DW_OP_breg11:
2486 case DW_OP_breg12:
2487 case DW_OP_breg13:
2488 case DW_OP_breg14:
2489 case DW_OP_breg15:
2490 case DW_OP_breg16:
2491 case DW_OP_breg17:
2492 case DW_OP_breg18:
2493 case DW_OP_breg19:
2494 case DW_OP_breg20:
2495 case DW_OP_breg21:
2496 case DW_OP_breg22:
2497 case DW_OP_breg23:
2498 case DW_OP_breg24:
2499 case DW_OP_breg25:
2500 case DW_OP_breg26:
2501 case DW_OP_breg27:
2502 case DW_OP_breg28:
2503 case DW_OP_breg29:
2504 case DW_OP_breg30:
2505 case DW_OP_breg31:
2506 case DW_OP_fbreg:
2507 fputc (',', asm_out_file);
2508 dw2_asm_output_data_sleb128_raw (val1->v.val_int);
2509 break;
2510
2511 case DW_OP_bregx:
2512 {
2513 unsigned r = DWARF2_FRAME_REG_OUT (val1->v.val_unsigned, 1);
2514 gcc_assert (size_of_uleb128 (r)
2515 == size_of_uleb128 (val1->v.val_unsigned));
2516 fputc (',', asm_out_file);
2517 dw2_asm_output_data_uleb128_raw (r);
2518 fputc (',', asm_out_file);
2519 dw2_asm_output_data_sleb128_raw (val2->v.val_int);
2520 }
2521 break;
2522
2523 case DW_OP_GNU_implicit_pointer:
2524 case DW_OP_GNU_entry_value:
2525 case DW_OP_GNU_const_type:
2526 case DW_OP_GNU_regval_type:
2527 case DW_OP_GNU_deref_type:
2528 case DW_OP_GNU_convert:
2529 case DW_OP_GNU_reinterpret:
2530 case DW_OP_GNU_parameter_ref:
2531 gcc_unreachable ();
2532 break;
2533
2534 default:
2535 /* Other codes have no operands. */
2536 break;
2537 }
2538 }
2539
2540 void
2541 output_loc_sequence_raw (dw_loc_descr_ref loc)
2542 {
2543 while (1)
2544 {
2545 enum dwarf_location_atom opc = loc->dw_loc_opc;
2546 /* Output the opcode. */
2547 if (opc >= DW_OP_breg0 && opc <= DW_OP_breg31)
2548 {
2549 unsigned r = (opc - DW_OP_breg0);
2550 r = DWARF2_FRAME_REG_OUT (r, 1);
2551 gcc_assert (r <= 31);
2552 opc = (enum dwarf_location_atom) (DW_OP_breg0 + r);
2553 }
2554 else if (opc >= DW_OP_reg0 && opc <= DW_OP_reg31)
2555 {
2556 unsigned r = (opc - DW_OP_reg0);
2557 r = DWARF2_FRAME_REG_OUT (r, 1);
2558 gcc_assert (r <= 31);
2559 opc = (enum dwarf_location_atom) (DW_OP_reg0 + r);
2560 }
2561 /* Output the opcode. */
2562 fprintf (asm_out_file, "%#x", opc);
2563 output_loc_operands_raw (loc);
2564
2565 if (!loc->dw_loc_next)
2566 break;
2567 loc = loc->dw_loc_next;
2568
2569 fputc (',', asm_out_file);
2570 }
2571 }
2572
2573 /* This function builds a dwarf location descriptor sequence from a
2574 dw_cfa_location, adding the given OFFSET to the result of the
2575 expression. */
2576
2577 struct dw_loc_descr_struct *
2578 build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
2579 {
2580 struct dw_loc_descr_struct *head, *tmp;
2581
2582 offset += cfa->offset;
2583
2584 if (cfa->indirect)
2585 {
2586 head = new_reg_loc_descr (cfa->reg, cfa->base_offset);
2587 head->dw_loc_oprnd1.val_class = dw_val_class_const;
2588 tmp = new_loc_descr (DW_OP_deref, 0, 0);
2589 add_loc_descr (&head, tmp);
2590 if (offset != 0)
2591 {
2592 tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
2593 add_loc_descr (&head, tmp);
2594 }
2595 }
2596 else
2597 head = new_reg_loc_descr (cfa->reg, offset);
2598
2599 return head;
2600 }
2601
2602 /* This function builds a dwarf location descriptor sequence for
2603 the address at OFFSET from the CFA when stack is aligned to
2604 ALIGNMENT byte. */
2605
2606 struct dw_loc_descr_struct *
2607 build_cfa_aligned_loc (dw_cfa_location *cfa,
2608 HOST_WIDE_INT offset, HOST_WIDE_INT alignment)
2609 {
2610 struct dw_loc_descr_struct *head;
2611 unsigned int dwarf_fp
2612 = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM);
2613
2614 /* When CFA is defined as FP+OFFSET, emulate stack alignment. */
2615 if (cfa->reg == HARD_FRAME_POINTER_REGNUM && cfa->indirect == 0)
2616 {
2617 head = new_reg_loc_descr (dwarf_fp, 0);
2618 add_loc_descr (&head, int_loc_descriptor (alignment));
2619 add_loc_descr (&head, new_loc_descr (DW_OP_and, 0, 0));
2620 loc_descr_plus_const (&head, offset);
2621 }
2622 else
2623 head = new_reg_loc_descr (dwarf_fp, offset);
2624 return head;
2625 }
2626 \f
2627 /* And now, the support for symbolic debugging information. */
2628
2629 /* .debug_str support. */
2630 static int output_indirect_string (void **, void *);
2631
2632 static void dwarf2out_init (const char *);
2633 static void dwarf2out_finish (const char *);
2634 static void dwarf2out_assembly_start (void);
2635 static void dwarf2out_define (unsigned int, const char *);
2636 static void dwarf2out_undef (unsigned int, const char *);
2637 static void dwarf2out_start_source_file (unsigned, const char *);
2638 static void dwarf2out_end_source_file (unsigned);
2639 static void dwarf2out_function_decl (tree);
2640 static void dwarf2out_begin_block (unsigned, unsigned);
2641 static void dwarf2out_end_block (unsigned, unsigned);
2642 static bool dwarf2out_ignore_block (const_tree);
2643 static void dwarf2out_global_decl (tree);
2644 static void dwarf2out_type_decl (tree, int);
2645 static void dwarf2out_imported_module_or_decl (tree, tree, tree, bool);
2646 static void dwarf2out_imported_module_or_decl_1 (tree, tree, tree,
2647 dw_die_ref);
2648 static void dwarf2out_abstract_function (tree);
2649 static void dwarf2out_var_location (rtx);
2650 static void dwarf2out_begin_function (tree);
2651 static void dwarf2out_set_name (tree, tree);
2652
2653 /* The debug hooks structure. */
2654
2655 const struct gcc_debug_hooks dwarf2_debug_hooks =
2656 {
2657 dwarf2out_init,
2658 dwarf2out_finish,
2659 dwarf2out_assembly_start,
2660 dwarf2out_define,
2661 dwarf2out_undef,
2662 dwarf2out_start_source_file,
2663 dwarf2out_end_source_file,
2664 dwarf2out_begin_block,
2665 dwarf2out_end_block,
2666 dwarf2out_ignore_block,
2667 dwarf2out_source_line,
2668 dwarf2out_begin_prologue,
2669 #if VMS_DEBUGGING_INFO
2670 dwarf2out_vms_end_prologue,
2671 dwarf2out_vms_begin_epilogue,
2672 #else
2673 debug_nothing_int_charstar,
2674 debug_nothing_int_charstar,
2675 #endif
2676 dwarf2out_end_epilogue,
2677 dwarf2out_begin_function,
2678 debug_nothing_int, /* end_function */
2679 dwarf2out_function_decl, /* function_decl */
2680 dwarf2out_global_decl,
2681 dwarf2out_type_decl, /* type_decl */
2682 dwarf2out_imported_module_or_decl,
2683 debug_nothing_tree, /* deferred_inline_function */
2684 /* The DWARF 2 backend tries to reduce debugging bloat by not
2685 emitting the abstract description of inline functions until
2686 something tries to reference them. */
2687 dwarf2out_abstract_function, /* outlining_inline_function */
2688 debug_nothing_rtx, /* label */
2689 debug_nothing_int, /* handle_pch */
2690 dwarf2out_var_location,
2691 dwarf2out_switch_text_section,
2692 dwarf2out_set_name,
2693 1, /* start_end_main_source_file */
2694 TYPE_SYMTAB_IS_DIE /* tree_type_symtab_field */
2695 };
2696 \f
2697 /* NOTE: In the comments in this file, many references are made to
2698 "Debugging Information Entries". This term is abbreviated as `DIE'
2699 throughout the remainder of this file. */
2700
2701 /* An internal representation of the DWARF output is built, and then
2702 walked to generate the DWARF debugging info. The walk of the internal
2703 representation is done after the entire program has been compiled.
2704 The types below are used to describe the internal representation. */
2705
2706 /* Whether to put type DIEs into their own section .debug_types instead
2707 of making them part of the .debug_info section. Only supported for
2708 Dwarf V4 or higher and the user didn't disable them through
2709 -fno-debug-types-section. It is more efficient to put them in a
2710 separate comdat sections since the linker will then be able to
2711 remove duplicates. But not all tools support .debug_types sections
2712 yet. */
2713
2714 #define use_debug_types (dwarf_version >= 4 && flag_debug_types_section)
2715
2716 /* Various DIE's use offsets relative to the beginning of the
2717 .debug_info section to refer to each other. */
2718
2719 typedef long int dw_offset;
2720
2721 /* Define typedefs here to avoid circular dependencies. */
2722
2723 typedef struct dw_attr_struct *dw_attr_ref;
2724 typedef struct dw_line_info_struct *dw_line_info_ref;
2725 typedef struct pubname_struct *pubname_ref;
2726 typedef struct dw_ranges_struct *dw_ranges_ref;
2727 typedef struct dw_ranges_by_label_struct *dw_ranges_by_label_ref;
2728 typedef struct comdat_type_struct *comdat_type_node_ref;
2729
2730 /* The entries in the line_info table more-or-less mirror the opcodes
2731 that are used in the real dwarf line table. Arrays of these entries
2732 are collected per section when DWARF2_ASM_LINE_DEBUG_INFO is not
2733 supported. */
2734
2735 enum dw_line_info_opcode {
2736 /* Emit DW_LNE_set_address; the operand is the label index. */
2737 LI_set_address,
2738
2739 /* Emit a row to the matrix with the given line. This may be done
2740 via any combination of DW_LNS_copy, DW_LNS_advance_line, and
2741 special opcodes. */
2742 LI_set_line,
2743
2744 /* Emit a DW_LNS_set_file. */
2745 LI_set_file,
2746
2747 /* Emit a DW_LNS_set_column. */
2748 LI_set_column,
2749
2750 /* Emit a DW_LNS_negate_stmt; the operand is ignored. */
2751 LI_negate_stmt,
2752
2753 /* Emit a DW_LNS_set_prologue_end/epilogue_begin; the operand is ignored. */
2754 LI_set_prologue_end,
2755 LI_set_epilogue_begin,
2756
2757 /* Emit a DW_LNE_set_discriminator. */
2758 LI_set_discriminator
2759 };
2760
2761 typedef struct GTY(()) dw_line_info_struct {
2762 enum dw_line_info_opcode opcode;
2763 unsigned int val;
2764 } dw_line_info_entry;
2765
2766 DEF_VEC_O(dw_line_info_entry);
2767 DEF_VEC_ALLOC_O(dw_line_info_entry, gc);
2768
2769 typedef struct GTY(()) dw_line_info_table_struct {
2770 /* The label that marks the end of this section. */
2771 const char *end_label;
2772
2773 /* The values for the last row of the matrix, as collected in the table.
2774 These are used to minimize the changes to the next row. */
2775 unsigned int file_num;
2776 unsigned int line_num;
2777 unsigned int column_num;
2778 int discrim_num;
2779 bool is_stmt;
2780 bool in_use;
2781
2782 VEC(dw_line_info_entry, gc) *entries;
2783 } dw_line_info_table;
2784
2785 typedef dw_line_info_table *dw_line_info_table_p;
2786
2787 DEF_VEC_P(dw_line_info_table_p);
2788 DEF_VEC_ALLOC_P(dw_line_info_table_p, gc);
2789
2790 /* Each DIE attribute has a field specifying the attribute kind,
2791 a link to the next attribute in the chain, and an attribute value.
2792 Attributes are typically linked below the DIE they modify. */
2793
2794 typedef struct GTY(()) dw_attr_struct {
2795 enum dwarf_attribute dw_attr;
2796 dw_val_node dw_attr_val;
2797 }
2798 dw_attr_node;
2799
2800 DEF_VEC_O(dw_attr_node);
2801 DEF_VEC_ALLOC_O(dw_attr_node,gc);
2802
2803 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
2804 The children of each node form a circular list linked by
2805 die_sib. die_child points to the node *before* the "first" child node. */
2806
2807 typedef struct GTY((chain_circular ("%h.die_sib"))) die_struct {
2808 union die_symbol_or_type_node
2809 {
2810 char * GTY ((tag ("0"))) die_symbol;
2811 comdat_type_node_ref GTY ((tag ("1"))) die_type_node;
2812 }
2813 GTY ((desc ("use_debug_types"))) die_id;
2814 VEC(dw_attr_node,gc) * die_attr;
2815 dw_die_ref die_parent;
2816 dw_die_ref die_child;
2817 dw_die_ref die_sib;
2818 dw_die_ref die_definition; /* ref from a specification to its definition */
2819 dw_offset die_offset;
2820 unsigned long die_abbrev;
2821 int die_mark;
2822 /* Die is used and must not be pruned as unused. */
2823 int die_perennial_p;
2824 unsigned int decl_id;
2825 enum dwarf_tag die_tag;
2826 }
2827 die_node;
2828
2829 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
2830 #define FOR_EACH_CHILD(die, c, expr) do { \
2831 c = die->die_child; \
2832 if (c) do { \
2833 c = c->die_sib; \
2834 expr; \
2835 } while (c != die->die_child); \
2836 } while (0)
2837
2838 /* The pubname structure */
2839
2840 typedef struct GTY(()) pubname_struct {
2841 dw_die_ref die;
2842 const char *name;
2843 }
2844 pubname_entry;
2845
2846 DEF_VEC_O(pubname_entry);
2847 DEF_VEC_ALLOC_O(pubname_entry, gc);
2848
2849 struct GTY(()) dw_ranges_struct {
2850 /* If this is positive, it's a block number, otherwise it's a
2851 bitwise-negated index into dw_ranges_by_label. */
2852 int num;
2853 };
2854
2855 /* A structure to hold a macinfo entry. */
2856
2857 typedef struct GTY(()) macinfo_struct {
2858 unsigned char code;
2859 unsigned HOST_WIDE_INT lineno;
2860 const char *info;
2861 }
2862 macinfo_entry;
2863
2864 DEF_VEC_O(macinfo_entry);
2865 DEF_VEC_ALLOC_O(macinfo_entry, gc);
2866
2867 struct GTY(()) dw_ranges_by_label_struct {
2868 const char *begin;
2869 const char *end;
2870 };
2871
2872 /* The comdat type node structure. */
2873 typedef struct GTY(()) comdat_type_struct
2874 {
2875 dw_die_ref root_die;
2876 dw_die_ref type_die;
2877 char signature[DWARF_TYPE_SIGNATURE_SIZE];
2878 struct comdat_type_struct *next;
2879 }
2880 comdat_type_node;
2881
2882 /* The limbo die list structure. */
2883 typedef struct GTY(()) limbo_die_struct {
2884 dw_die_ref die;
2885 tree created_for;
2886 struct limbo_die_struct *next;
2887 }
2888 limbo_die_node;
2889
2890 typedef struct skeleton_chain_struct
2891 {
2892 dw_die_ref old_die;
2893 dw_die_ref new_die;
2894 struct skeleton_chain_struct *parent;
2895 }
2896 skeleton_chain_node;
2897
2898 /* Define a macro which returns nonzero for a TYPE_DECL which was
2899 implicitly generated for a type.
2900
2901 Note that, unlike the C front-end (which generates a NULL named
2902 TYPE_DECL node for each complete tagged type, each array type,
2903 and each function type node created) the C++ front-end generates
2904 a _named_ TYPE_DECL node for each tagged type node created.
2905 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
2906 generate a DW_TAG_typedef DIE for them. Likewise with the Ada
2907 front-end, but for each type, tagged or not. */
2908
2909 #define TYPE_DECL_IS_STUB(decl) \
2910 (DECL_NAME (decl) == NULL_TREE \
2911 || (DECL_ARTIFICIAL (decl) \
2912 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
2913 /* This is necessary for stub decls that \
2914 appear in nested inline functions. */ \
2915 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
2916 && (decl_ultimate_origin (decl) \
2917 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
2918
2919 /* Information concerning the compilation unit's programming
2920 language, and compiler version. */
2921
2922 /* Fixed size portion of the DWARF compilation unit header. */
2923 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
2924 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
2925
2926 /* Fixed size portion of the DWARF comdat type unit header. */
2927 #define DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE \
2928 (DWARF_COMPILE_UNIT_HEADER_SIZE + DWARF_TYPE_SIGNATURE_SIZE \
2929 + DWARF_OFFSET_SIZE)
2930
2931 /* Fixed size portion of public names info. */
2932 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
2933
2934 /* Fixed size portion of the address range info. */
2935 #define DWARF_ARANGES_HEADER_SIZE \
2936 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
2937 DWARF2_ADDR_SIZE * 2) \
2938 - DWARF_INITIAL_LENGTH_SIZE)
2939
2940 /* Size of padding portion in the address range info. It must be
2941 aligned to twice the pointer size. */
2942 #define DWARF_ARANGES_PAD_SIZE \
2943 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
2944 DWARF2_ADDR_SIZE * 2) \
2945 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
2946
2947 /* Use assembler line directives if available. */
2948 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
2949 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
2950 #define DWARF2_ASM_LINE_DEBUG_INFO 1
2951 #else
2952 #define DWARF2_ASM_LINE_DEBUG_INFO 0
2953 #endif
2954 #endif
2955
2956 /* Minimum line offset in a special line info. opcode.
2957 This value was chosen to give a reasonable range of values. */
2958 #define DWARF_LINE_BASE -10
2959
2960 /* First special line opcode - leave room for the standard opcodes. */
2961 #define DWARF_LINE_OPCODE_BASE ((int)DW_LNS_set_isa + 1)
2962
2963 /* Range of line offsets in a special line info. opcode. */
2964 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
2965
2966 /* Flag that indicates the initial value of the is_stmt_start flag.
2967 In the present implementation, we do not mark any lines as
2968 the beginning of a source statement, because that information
2969 is not made available by the GCC front-end. */
2970 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
2971
2972 /* Maximum number of operations per instruction bundle. */
2973 #ifndef DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN
2974 #define DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN 1
2975 #endif
2976
2977 /* This location is used by calc_die_sizes() to keep track
2978 the offset of each DIE within the .debug_info section. */
2979 static unsigned long next_die_offset;
2980
2981 /* Record the root of the DIE's built for the current compilation unit. */
2982 static GTY(()) dw_die_ref single_comp_unit_die;
2983
2984 /* A list of type DIEs that have been separated into comdat sections. */
2985 static GTY(()) comdat_type_node *comdat_type_list;
2986
2987 /* A list of DIEs with a NULL parent waiting to be relocated. */
2988 static GTY(()) limbo_die_node *limbo_die_list;
2989
2990 /* A list of DIEs for which we may have to generate
2991 DW_AT_{,MIPS_}linkage_name once their DECL_ASSEMBLER_NAMEs are set. */
2992 static GTY(()) limbo_die_node *deferred_asm_name;
2993
2994 /* Filenames referenced by this compilation unit. */
2995 static GTY((param_is (struct dwarf_file_data))) htab_t file_table;
2996
2997 /* A hash table of references to DIE's that describe declarations.
2998 The key is a DECL_UID() which is a unique number identifying each decl. */
2999 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3000
3001 /* A hash table of references to DIE's that describe COMMON blocks.
3002 The key is DECL_UID() ^ die_parent. */
3003 static GTY ((param_is (struct die_struct))) htab_t common_block_die_table;
3004
3005 typedef struct GTY(()) die_arg_entry_struct {
3006 dw_die_ref die;
3007 tree arg;
3008 } die_arg_entry;
3009
3010 DEF_VEC_O(die_arg_entry);
3011 DEF_VEC_ALLOC_O(die_arg_entry,gc);
3012
3013 /* Node of the variable location list. */
3014 struct GTY ((chain_next ("%h.next"))) var_loc_node {
3015 /* Either NOTE_INSN_VAR_LOCATION, or, for SRA optimized variables,
3016 EXPR_LIST chain. For small bitsizes, bitsize is encoded
3017 in mode of the EXPR_LIST node and first EXPR_LIST operand
3018 is either NOTE_INSN_VAR_LOCATION for a piece with a known
3019 location or NULL for padding. For larger bitsizes,
3020 mode is 0 and first operand is a CONCAT with bitsize
3021 as first CONCAT operand and NOTE_INSN_VAR_LOCATION resp.
3022 NULL as second operand. */
3023 rtx GTY (()) loc;
3024 const char * GTY (()) label;
3025 struct var_loc_node * GTY (()) next;
3026 };
3027
3028 /* Variable location list. */
3029 struct GTY (()) var_loc_list_def {
3030 struct var_loc_node * GTY (()) first;
3031
3032 /* Pointer to the last but one or last element of the
3033 chained list. If the list is empty, both first and
3034 last are NULL, if the list contains just one node
3035 or the last node certainly is not redundant, it points
3036 to the last node, otherwise points to the last but one.
3037 Do not mark it for GC because it is marked through the chain. */
3038 struct var_loc_node * GTY ((skip ("%h"))) last;
3039
3040 /* Pointer to the last element before section switch,
3041 if NULL, either sections weren't switched or first
3042 is after section switch. */
3043 struct var_loc_node * GTY ((skip ("%h"))) last_before_switch;
3044
3045 /* DECL_UID of the variable decl. */
3046 unsigned int decl_id;
3047 };
3048 typedef struct var_loc_list_def var_loc_list;
3049
3050 /* Call argument location list. */
3051 struct GTY ((chain_next ("%h.next"))) call_arg_loc_node {
3052 rtx GTY (()) call_arg_loc_note;
3053 const char * GTY (()) label;
3054 tree GTY (()) block;
3055 bool tail_call_p;
3056 rtx GTY (()) symbol_ref;
3057 struct call_arg_loc_node * GTY (()) next;
3058 };
3059
3060
3061 /* Table of decl location linked lists. */
3062 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3063
3064 /* Head and tail of call_arg_loc chain. */
3065 static GTY (()) struct call_arg_loc_node *call_arg_locations;
3066 static struct call_arg_loc_node *call_arg_loc_last;
3067
3068 /* Number of call sites in the current function. */
3069 static int call_site_count = -1;
3070 /* Number of tail call sites in the current function. */
3071 static int tail_call_site_count = -1;
3072
3073 /* Vector mapping block numbers to DW_TAG_{lexical_block,inlined_subroutine}
3074 DIEs. */
3075 static VEC (dw_die_ref, heap) *block_map;
3076
3077 /* A cached location list. */
3078 struct GTY (()) cached_dw_loc_list_def {
3079 /* The DECL_UID of the decl that this entry describes. */
3080 unsigned int decl_id;
3081
3082 /* The cached location list. */
3083 dw_loc_list_ref loc_list;
3084 };
3085 typedef struct cached_dw_loc_list_def cached_dw_loc_list;
3086
3087 /* Table of cached location lists. */
3088 static GTY ((param_is (cached_dw_loc_list))) htab_t cached_dw_loc_list_table;
3089
3090 /* A pointer to the base of a list of references to DIE's that
3091 are uniquely identified by their tag, presence/absence of
3092 children DIE's, and list of attribute/value pairs. */
3093 static GTY((length ("abbrev_die_table_allocated")))
3094 dw_die_ref *abbrev_die_table;
3095
3096 /* Number of elements currently allocated for abbrev_die_table. */
3097 static GTY(()) unsigned abbrev_die_table_allocated;
3098
3099 /* Number of elements in type_die_table currently in use. */
3100 static GTY(()) unsigned abbrev_die_table_in_use;
3101
3102 /* Size (in elements) of increments by which we may expand the
3103 abbrev_die_table. */
3104 #define ABBREV_DIE_TABLE_INCREMENT 256
3105
3106 /* A global counter for generating labels for line number data. */
3107 static unsigned int line_info_label_num;
3108
3109 /* The current table to which we should emit line number information
3110 for the current function. This will be set up at the beginning of
3111 assembly for the function. */
3112 static dw_line_info_table *cur_line_info_table;
3113
3114 /* The two default tables of line number info. */
3115 static GTY(()) dw_line_info_table *text_section_line_info;
3116 static GTY(()) dw_line_info_table *cold_text_section_line_info;
3117
3118 /* The set of all non-default tables of line number info. */
3119 static GTY(()) VEC (dw_line_info_table_p, gc) *separate_line_info;
3120
3121 /* A flag to tell pubnames/types export if there is an info section to
3122 refer to. */
3123 static bool info_section_emitted;
3124
3125 /* A pointer to the base of a table that contains a list of publicly
3126 accessible names. */
3127 static GTY (()) VEC (pubname_entry, gc) * pubname_table;
3128
3129 /* A pointer to the base of a table that contains a list of publicly
3130 accessible types. */
3131 static GTY (()) VEC (pubname_entry, gc) * pubtype_table;
3132
3133 /* A pointer to the base of a table that contains a list of macro
3134 defines/undefines (and file start/end markers). */
3135 static GTY (()) VEC (macinfo_entry, gc) * macinfo_table;
3136
3137 /* Array of dies for which we should generate .debug_ranges info. */
3138 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3139
3140 /* Number of elements currently allocated for ranges_table. */
3141 static GTY(()) unsigned ranges_table_allocated;
3142
3143 /* Number of elements in ranges_table currently in use. */
3144 static GTY(()) unsigned ranges_table_in_use;
3145
3146 /* Array of pairs of labels referenced in ranges_table. */
3147 static GTY ((length ("ranges_by_label_allocated")))
3148 dw_ranges_by_label_ref ranges_by_label;
3149
3150 /* Number of elements currently allocated for ranges_by_label. */
3151 static GTY(()) unsigned ranges_by_label_allocated;
3152
3153 /* Number of elements in ranges_by_label currently in use. */
3154 static GTY(()) unsigned ranges_by_label_in_use;
3155
3156 /* Size (in elements) of increments by which we may expand the
3157 ranges_table. */
3158 #define RANGES_TABLE_INCREMENT 64
3159
3160 /* Whether we have location lists that need outputting */
3161 static GTY(()) bool have_location_lists;
3162
3163 /* Unique label counter. */
3164 static GTY(()) unsigned int loclabel_num;
3165
3166 /* Unique label counter for point-of-call tables. */
3167 static GTY(()) unsigned int poc_label_num;
3168
3169 /* Record whether the function being analyzed contains inlined functions. */
3170 static int current_function_has_inlines;
3171
3172 /* The last file entry emitted by maybe_emit_file(). */
3173 static GTY(()) struct dwarf_file_data * last_emitted_file;
3174
3175 /* Number of internal labels generated by gen_internal_sym(). */
3176 static GTY(()) int label_num;
3177
3178 /* Cached result of previous call to lookup_filename. */
3179 static GTY(()) struct dwarf_file_data * file_table_last_lookup;
3180
3181 static GTY(()) VEC(die_arg_entry,gc) *tmpl_value_parm_die_table;
3182
3183 /* Instances of generic types for which we need to generate debug
3184 info that describe their generic parameters and arguments. That
3185 generation needs to happen once all types are properly laid out so
3186 we do it at the end of compilation. */
3187 static GTY(()) VEC(tree,gc) *generic_type_instances;
3188
3189 /* Offset from the "steady-state frame pointer" to the frame base,
3190 within the current function. */
3191 static HOST_WIDE_INT frame_pointer_fb_offset;
3192 static bool frame_pointer_fb_offset_valid;
3193
3194 static VEC (dw_die_ref, heap) *base_types;
3195
3196 /* Forward declarations for functions defined in this file. */
3197
3198 static int is_pseudo_reg (const_rtx);
3199 static tree type_main_variant (tree);
3200 static int is_tagged_type (const_tree);
3201 static const char *dwarf_tag_name (unsigned);
3202 static const char *dwarf_attr_name (unsigned);
3203 static const char *dwarf_form_name (unsigned);
3204 static tree decl_ultimate_origin (const_tree);
3205 static tree decl_class_context (tree);
3206 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3207 static inline enum dw_val_class AT_class (dw_attr_ref);
3208 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3209 static inline unsigned AT_flag (dw_attr_ref);
3210 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3211 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3212 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3213 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3214 static void add_AT_double (dw_die_ref, enum dwarf_attribute,
3215 HOST_WIDE_INT, unsigned HOST_WIDE_INT);
3216 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3217 unsigned int, unsigned char *);
3218 static void add_AT_data8 (dw_die_ref, enum dwarf_attribute, unsigned char *);
3219 static hashval_t debug_str_do_hash (const void *);
3220 static int debug_str_eq (const void *, const void *);
3221 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3222 static inline const char *AT_string (dw_attr_ref);
3223 static enum dwarf_form AT_string_form (dw_attr_ref);
3224 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3225 static void add_AT_specification (dw_die_ref, dw_die_ref);
3226 static inline dw_die_ref AT_ref (dw_attr_ref);
3227 static inline int AT_ref_external (dw_attr_ref);
3228 static inline void set_AT_ref_external (dw_attr_ref, int);
3229 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3230 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3231 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3232 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3233 dw_loc_list_ref);
3234 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3235 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3236 static inline rtx AT_addr (dw_attr_ref);
3237 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3238 static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
3239 static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
3240 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3241 unsigned HOST_WIDE_INT);
3242 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3243 unsigned long);
3244 static inline const char *AT_lbl (dw_attr_ref);
3245 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3246 static const char *get_AT_low_pc (dw_die_ref);
3247 static const char *get_AT_hi_pc (dw_die_ref);
3248 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3249 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3250 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3251 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3252 static bool is_cxx (void);
3253 static bool is_fortran (void);
3254 static bool is_ada (void);
3255 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3256 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3257 static void add_child_die (dw_die_ref, dw_die_ref);
3258 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3259 static dw_die_ref lookup_type_die (tree);
3260 static dw_die_ref strip_naming_typedef (tree, dw_die_ref);
3261 static dw_die_ref lookup_type_die_strip_naming_typedef (tree);
3262 static void equate_type_number_to_die (tree, dw_die_ref);
3263 static hashval_t decl_die_table_hash (const void *);
3264 static int decl_die_table_eq (const void *, const void *);
3265 static dw_die_ref lookup_decl_die (tree);
3266 static hashval_t common_block_die_table_hash (const void *);
3267 static int common_block_die_table_eq (const void *, const void *);
3268 static hashval_t decl_loc_table_hash (const void *);
3269 static int decl_loc_table_eq (const void *, const void *);
3270 static var_loc_list *lookup_decl_loc (const_tree);
3271 static void equate_decl_number_to_die (tree, dw_die_ref);
3272 static struct var_loc_node *add_var_loc_to_decl (tree, rtx, const char *);
3273 static void print_spaces (FILE *);
3274 static void print_die (dw_die_ref, FILE *);
3275 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3276 static dw_die_ref pop_compile_unit (dw_die_ref);
3277 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3278 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3279 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3280 static void checksum_sleb128 (HOST_WIDE_INT, struct md5_ctx *);
3281 static void checksum_uleb128 (unsigned HOST_WIDE_INT, struct md5_ctx *);
3282 static void loc_checksum_ordered (dw_loc_descr_ref, struct md5_ctx *);
3283 static void attr_checksum_ordered (enum dwarf_tag, dw_attr_ref,
3284 struct md5_ctx *, int *);
3285 struct checksum_attributes;
3286 static void collect_checksum_attributes (struct checksum_attributes *, dw_die_ref);
3287 static void die_checksum_ordered (dw_die_ref, struct md5_ctx *, int *);
3288 static void checksum_die_context (dw_die_ref, struct md5_ctx *);
3289 static void generate_type_signature (dw_die_ref, comdat_type_node *);
3290 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3291 static int same_dw_val_p (const dw_val_node *, const dw_val_node *, int *);
3292 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3293 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3294 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3295 static void compute_section_prefix (dw_die_ref);
3296 static int is_type_die (dw_die_ref);
3297 static int is_comdat_die (dw_die_ref);
3298 static int is_symbol_die (dw_die_ref);
3299 static void assign_symbol_names (dw_die_ref);
3300 static void break_out_includes (dw_die_ref);
3301 static int is_declaration_die (dw_die_ref);
3302 static int should_move_die_to_comdat (dw_die_ref);
3303 static dw_die_ref clone_as_declaration (dw_die_ref);
3304 static dw_die_ref clone_die (dw_die_ref);
3305 static dw_die_ref clone_tree (dw_die_ref);
3306 static dw_die_ref copy_declaration_context (dw_die_ref, dw_die_ref);
3307 static void generate_skeleton_ancestor_tree (skeleton_chain_node *);
3308 static void generate_skeleton_bottom_up (skeleton_chain_node *);
3309 static dw_die_ref generate_skeleton (dw_die_ref);
3310 static dw_die_ref remove_child_or_replace_with_skeleton (dw_die_ref,
3311 dw_die_ref,
3312 dw_die_ref);
3313 static void break_out_comdat_types (dw_die_ref);
3314 static dw_die_ref copy_ancestor_tree (dw_die_ref, dw_die_ref, htab_t);
3315 static void copy_decls_walk (dw_die_ref, dw_die_ref, htab_t);
3316 static void copy_decls_for_unworthy_types (dw_die_ref);
3317
3318 static hashval_t htab_cu_hash (const void *);
3319 static int htab_cu_eq (const void *, const void *);
3320 static void htab_cu_del (void *);
3321 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3322 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3323 static void add_sibling_attributes (dw_die_ref);
3324 static void build_abbrev_table (dw_die_ref);
3325 static void output_location_lists (dw_die_ref);
3326 static int constant_size (unsigned HOST_WIDE_INT);
3327 static unsigned long size_of_die (dw_die_ref);
3328 static void calc_die_sizes (dw_die_ref);
3329 static void calc_base_type_die_sizes (void);
3330 static void mark_dies (dw_die_ref);
3331 static void unmark_dies (dw_die_ref);
3332 static void unmark_all_dies (dw_die_ref);
3333 static unsigned long size_of_pubnames (VEC (pubname_entry,gc) *);
3334 static unsigned long size_of_aranges (void);
3335 static enum dwarf_form value_format (dw_attr_ref);
3336 static void output_value_format (dw_attr_ref);
3337 static void output_abbrev_section (void);
3338 static void output_die_symbol (dw_die_ref);
3339 static void output_die (dw_die_ref);
3340 static void output_compilation_unit_header (void);
3341 static void output_comp_unit (dw_die_ref, int);
3342 static void output_comdat_type_unit (comdat_type_node *);
3343 static const char *dwarf2_name (tree, int);
3344 static void add_pubname (tree, dw_die_ref);
3345 static void add_pubname_string (const char *, dw_die_ref);
3346 static void add_pubtype (tree, dw_die_ref);
3347 static void output_pubnames (VEC (pubname_entry,gc) *);
3348 static void output_aranges (unsigned long);
3349 static unsigned int add_ranges_num (int);
3350 static unsigned int add_ranges (const_tree);
3351 static void add_ranges_by_labels (dw_die_ref, const char *, const char *,
3352 bool *);
3353 static void output_ranges (void);
3354 static dw_line_info_table *new_line_info_table (void);
3355 static void output_line_info (void);
3356 static void output_file_names (void);
3357 static dw_die_ref base_type_die (tree);
3358 static int is_base_type (tree);
3359 static dw_die_ref subrange_type_die (tree, tree, tree, dw_die_ref);
3360 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3361 static dw_die_ref generic_parameter_die (tree, tree, bool, dw_die_ref);
3362 static dw_die_ref template_parameter_pack_die (tree, tree, dw_die_ref);
3363 static int type_is_enum (const_tree);
3364 static unsigned int dbx_reg_number (const_rtx);
3365 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
3366 static dw_loc_descr_ref reg_loc_descriptor (rtx, enum var_init_status);
3367 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int,
3368 enum var_init_status);
3369 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx,
3370 enum var_init_status);
3371 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT,
3372 enum var_init_status);
3373 static int is_based_loc (const_rtx);
3374 static int resolve_one_addr (rtx *, void *);
3375 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx,
3376 enum var_init_status);
3377 static dw_loc_descr_ref loc_descriptor (rtx, enum machine_mode mode,
3378 enum var_init_status);
3379 static dw_loc_list_ref loc_list_from_tree (tree, int);
3380 static dw_loc_descr_ref loc_descriptor_from_tree (tree, int);
3381 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3382 static tree field_type (const_tree);
3383 static unsigned int simple_type_align_in_bits (const_tree);
3384 static unsigned int simple_decl_align_in_bits (const_tree);
3385 static unsigned HOST_WIDE_INT simple_type_size_in_bits (const_tree);
3386 static HOST_WIDE_INT field_byte_offset (const_tree);
3387 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3388 dw_loc_list_ref);
3389 static void add_data_member_location_attribute (dw_die_ref, tree);
3390 static bool add_const_value_attribute (dw_die_ref, rtx);
3391 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
3392 static void insert_double (double_int, unsigned char *);
3393 static void insert_float (const_rtx, unsigned char *);
3394 static rtx rtl_for_decl_location (tree);
3395 static bool add_location_or_const_value_attribute (dw_die_ref, tree, bool,
3396 enum dwarf_attribute);
3397 static bool tree_add_const_value_attribute (dw_die_ref, tree);
3398 static bool tree_add_const_value_attribute_for_decl (dw_die_ref, tree);
3399 static void add_name_attribute (dw_die_ref, const char *);
3400 static void add_gnat_descriptive_type_attribute (dw_die_ref, tree, dw_die_ref);
3401 static void add_comp_dir_attribute (dw_die_ref);
3402 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
3403 static void add_subscript_info (dw_die_ref, tree, bool);
3404 static void add_byte_size_attribute (dw_die_ref, tree);
3405 static void add_bit_offset_attribute (dw_die_ref, tree);
3406 static void add_bit_size_attribute (dw_die_ref, tree);
3407 static void add_prototyped_attribute (dw_die_ref, tree);
3408 static dw_die_ref add_abstract_origin_attribute (dw_die_ref, tree);
3409 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3410 static void add_src_coords_attributes (dw_die_ref, tree);
3411 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3412 static void push_decl_scope (tree);
3413 static void pop_decl_scope (void);
3414 static dw_die_ref scope_die_for (tree, dw_die_ref);
3415 static inline int local_scope_p (dw_die_ref);
3416 static inline int class_scope_p (dw_die_ref);
3417 static inline int class_or_namespace_scope_p (dw_die_ref);
3418 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
3419 static void add_calling_convention_attribute (dw_die_ref, tree);
3420 static const char *type_tag (const_tree);
3421 static tree member_declared_type (const_tree);
3422 #if 0
3423 static const char *decl_start_label (tree);
3424 #endif
3425 static void gen_array_type_die (tree, dw_die_ref);
3426 static void gen_descr_array_type_die (tree, struct array_descr_info *, dw_die_ref);
3427 #if 0
3428 static void gen_entry_point_die (tree, dw_die_ref);
3429 #endif
3430 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
3431 static dw_die_ref gen_formal_parameter_die (tree, tree, bool, dw_die_ref);
3432 static dw_die_ref gen_formal_parameter_pack_die (tree, tree, dw_die_ref, tree*);
3433 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3434 static void gen_formal_types_die (tree, dw_die_ref);
3435 static void gen_subprogram_die (tree, dw_die_ref);
3436 static void gen_variable_die (tree, tree, dw_die_ref);
3437 static void gen_const_die (tree, dw_die_ref);
3438 static void gen_label_die (tree, dw_die_ref);
3439 static void gen_lexical_block_die (tree, dw_die_ref, int);
3440 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
3441 static void gen_field_die (tree, dw_die_ref);
3442 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3443 static dw_die_ref gen_compile_unit_die (const char *);
3444 static void gen_inheritance_die (tree, tree, dw_die_ref);
3445 static void gen_member_die (tree, dw_die_ref);
3446 static void gen_struct_or_union_type_die (tree, dw_die_ref,
3447 enum debug_info_usage);
3448 static void gen_subroutine_type_die (tree, dw_die_ref);
3449 static void gen_typedef_die (tree, dw_die_ref);
3450 static void gen_type_die (tree, dw_die_ref);
3451 static void gen_block_die (tree, dw_die_ref, int);
3452 static void decls_for_scope (tree, dw_die_ref, int);
3453 static inline int is_redundant_typedef (const_tree);
3454 static bool is_naming_typedef_decl (const_tree);
3455 static inline dw_die_ref get_context_die (tree);
3456 static void gen_namespace_die (tree, dw_die_ref);
3457 static dw_die_ref gen_decl_die (tree, tree, dw_die_ref);
3458 static dw_die_ref force_decl_die (tree);
3459 static dw_die_ref force_type_die (tree);
3460 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
3461 static dw_die_ref declare_in_namespace (tree, dw_die_ref);
3462 static struct dwarf_file_data * lookup_filename (const char *);
3463 static void retry_incomplete_types (void);
3464 static void gen_type_die_for_member (tree, tree, dw_die_ref);
3465 static void gen_generic_params_dies (tree);
3466 static void gen_tagged_type_die (tree, dw_die_ref, enum debug_info_usage);
3467 static void gen_type_die_with_usage (tree, dw_die_ref, enum debug_info_usage);
3468 static void splice_child_die (dw_die_ref, dw_die_ref);
3469 static int file_info_cmp (const void *, const void *);
3470 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
3471 const char *, const char *);
3472 static void output_loc_list (dw_loc_list_ref);
3473 static char *gen_internal_sym (const char *);
3474
3475 static void prune_unmark_dies (dw_die_ref);
3476 static void prune_unused_types_mark_generic_parms_dies (dw_die_ref);
3477 static void prune_unused_types_mark (dw_die_ref, int);
3478 static void prune_unused_types_walk (dw_die_ref);
3479 static void prune_unused_types_walk_attribs (dw_die_ref);
3480 static void prune_unused_types_prune (dw_die_ref);
3481 static void prune_unused_types (void);
3482 static int maybe_emit_file (struct dwarf_file_data *fd);
3483 static inline const char *AT_vms_delta1 (dw_attr_ref);
3484 static inline const char *AT_vms_delta2 (dw_attr_ref);
3485 static inline void add_AT_vms_delta (dw_die_ref, enum dwarf_attribute,
3486 const char *, const char *);
3487 static void append_entry_to_tmpl_value_parm_die_table (dw_die_ref, tree);
3488 static void gen_remaining_tmpl_value_param_die_attribute (void);
3489 static bool generic_type_p (tree);
3490 static void schedule_generic_params_dies_gen (tree t);
3491 static void gen_scheduled_generic_parms_dies (void);
3492
3493 /* Section names used to hold DWARF debugging information. */
3494 #ifndef DEBUG_INFO_SECTION
3495 #define DEBUG_INFO_SECTION ".debug_info"
3496 #endif
3497 #ifndef DEBUG_ABBREV_SECTION
3498 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3499 #endif
3500 #ifndef DEBUG_ARANGES_SECTION
3501 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3502 #endif
3503 #ifndef DEBUG_MACINFO_SECTION
3504 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3505 #endif
3506 #ifndef DEBUG_MACRO_SECTION
3507 #define DEBUG_MACRO_SECTION ".debug_macro"
3508 #endif
3509 #ifndef DEBUG_LINE_SECTION
3510 #define DEBUG_LINE_SECTION ".debug_line"
3511 #endif
3512 #ifndef DEBUG_LOC_SECTION
3513 #define DEBUG_LOC_SECTION ".debug_loc"
3514 #endif
3515 #ifndef DEBUG_PUBNAMES_SECTION
3516 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3517 #endif
3518 #ifndef DEBUG_PUBTYPES_SECTION
3519 #define DEBUG_PUBTYPES_SECTION ".debug_pubtypes"
3520 #endif
3521 #ifndef DEBUG_STR_SECTION
3522 #define DEBUG_STR_SECTION ".debug_str"
3523 #endif
3524 #ifndef DEBUG_RANGES_SECTION
3525 #define DEBUG_RANGES_SECTION ".debug_ranges"
3526 #endif
3527
3528 /* Standard ELF section names for compiled code and data. */
3529 #ifndef TEXT_SECTION_NAME
3530 #define TEXT_SECTION_NAME ".text"
3531 #endif
3532
3533 /* Section flags for .debug_str section. */
3534 #define DEBUG_STR_SECTION_FLAGS \
3535 (HAVE_GAS_SHF_MERGE && flag_merge_debug_strings \
3536 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
3537 : SECTION_DEBUG)
3538
3539 /* Labels we insert at beginning sections we can reference instead of
3540 the section names themselves. */
3541
3542 #ifndef TEXT_SECTION_LABEL
3543 #define TEXT_SECTION_LABEL "Ltext"
3544 #endif
3545 #ifndef COLD_TEXT_SECTION_LABEL
3546 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
3547 #endif
3548 #ifndef DEBUG_LINE_SECTION_LABEL
3549 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3550 #endif
3551 #ifndef DEBUG_INFO_SECTION_LABEL
3552 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3553 #endif
3554 #ifndef DEBUG_ABBREV_SECTION_LABEL
3555 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3556 #endif
3557 #ifndef DEBUG_LOC_SECTION_LABEL
3558 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3559 #endif
3560 #ifndef DEBUG_RANGES_SECTION_LABEL
3561 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3562 #endif
3563 #ifndef DEBUG_MACINFO_SECTION_LABEL
3564 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3565 #endif
3566 #ifndef DEBUG_MACRO_SECTION_LABEL
3567 #define DEBUG_MACRO_SECTION_LABEL "Ldebug_macro"
3568 #endif
3569
3570
3571 /* Definitions of defaults for formats and names of various special
3572 (artificial) labels which may be generated within this file (when the -g
3573 options is used and DWARF2_DEBUGGING_INFO is in effect.
3574 If necessary, these may be overridden from within the tm.h file, but
3575 typically, overriding these defaults is unnecessary. */
3576
3577 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3578 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3579 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3580 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3581 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3582 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3583 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3584 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3585 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3586 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3587
3588 #ifndef TEXT_END_LABEL
3589 #define TEXT_END_LABEL "Letext"
3590 #endif
3591 #ifndef COLD_END_LABEL
3592 #define COLD_END_LABEL "Letext_cold"
3593 #endif
3594 #ifndef BLOCK_BEGIN_LABEL
3595 #define BLOCK_BEGIN_LABEL "LBB"
3596 #endif
3597 #ifndef BLOCK_END_LABEL
3598 #define BLOCK_END_LABEL "LBE"
3599 #endif
3600 #ifndef LINE_CODE_LABEL
3601 #define LINE_CODE_LABEL "LM"
3602 #endif
3603
3604 \f
3605 /* Return the root of the DIE's built for the current compilation unit. */
3606 static dw_die_ref
3607 comp_unit_die (void)
3608 {
3609 if (!single_comp_unit_die)
3610 single_comp_unit_die = gen_compile_unit_die (NULL);
3611 return single_comp_unit_die;
3612 }
3613
3614 /* We allow a language front-end to designate a function that is to be
3615 called to "demangle" any name before it is put into a DIE. */
3616
3617 static const char *(*demangle_name_func) (const char *);
3618
3619 void
3620 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
3621 {
3622 demangle_name_func = func;
3623 }
3624
3625 /* Test if rtl node points to a pseudo register. */
3626
3627 static inline int
3628 is_pseudo_reg (const_rtx rtl)
3629 {
3630 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3631 || (GET_CODE (rtl) == SUBREG
3632 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3633 }
3634
3635 /* Return a reference to a type, with its const and volatile qualifiers
3636 removed. */
3637
3638 static inline tree
3639 type_main_variant (tree type)
3640 {
3641 type = TYPE_MAIN_VARIANT (type);
3642
3643 /* ??? There really should be only one main variant among any group of
3644 variants of a given type (and all of the MAIN_VARIANT values for all
3645 members of the group should point to that one type) but sometimes the C
3646 front-end messes this up for array types, so we work around that bug
3647 here. */
3648 if (TREE_CODE (type) == ARRAY_TYPE)
3649 while (type != TYPE_MAIN_VARIANT (type))
3650 type = TYPE_MAIN_VARIANT (type);
3651
3652 return type;
3653 }
3654
3655 /* Return nonzero if the given type node represents a tagged type. */
3656
3657 static inline int
3658 is_tagged_type (const_tree type)
3659 {
3660 enum tree_code code = TREE_CODE (type);
3661
3662 return (code == RECORD_TYPE || code == UNION_TYPE
3663 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
3664 }
3665
3666 /* Set label to debug_info_section_label + die_offset of a DIE reference. */
3667
3668 static void
3669 get_ref_die_offset_label (char *label, dw_die_ref ref)
3670 {
3671 sprintf (label, "%s+%ld", debug_info_section_label, ref->die_offset);
3672 }
3673
3674 /* Return die_offset of a DIE reference to a base type. */
3675
3676 static unsigned long int
3677 get_base_type_offset (dw_die_ref ref)
3678 {
3679 if (ref->die_offset)
3680 return ref->die_offset;
3681 if (comp_unit_die ()->die_abbrev)
3682 {
3683 calc_base_type_die_sizes ();
3684 gcc_assert (ref->die_offset);
3685 }
3686 return ref->die_offset;
3687 }
3688
3689 /* Return die_offset of a DIE reference other than base type. */
3690
3691 static unsigned long int
3692 get_ref_die_offset (dw_die_ref ref)
3693 {
3694 gcc_assert (ref->die_offset);
3695 return ref->die_offset;
3696 }
3697
3698 /* Convert a DIE tag into its string name. */
3699
3700 static const char *
3701 dwarf_tag_name (unsigned int tag)
3702 {
3703 switch (tag)
3704 {
3705 case DW_TAG_padding:
3706 return "DW_TAG_padding";
3707 case DW_TAG_array_type:
3708 return "DW_TAG_array_type";
3709 case DW_TAG_class_type:
3710 return "DW_TAG_class_type";
3711 case DW_TAG_entry_point:
3712 return "DW_TAG_entry_point";
3713 case DW_TAG_enumeration_type:
3714 return "DW_TAG_enumeration_type";
3715 case DW_TAG_formal_parameter:
3716 return "DW_TAG_formal_parameter";
3717 case DW_TAG_imported_declaration:
3718 return "DW_TAG_imported_declaration";
3719 case DW_TAG_label:
3720 return "DW_TAG_label";
3721 case DW_TAG_lexical_block:
3722 return "DW_TAG_lexical_block";
3723 case DW_TAG_member:
3724 return "DW_TAG_member";
3725 case DW_TAG_pointer_type:
3726 return "DW_TAG_pointer_type";
3727 case DW_TAG_reference_type:
3728 return "DW_TAG_reference_type";
3729 case DW_TAG_compile_unit:
3730 return "DW_TAG_compile_unit";
3731 case DW_TAG_string_type:
3732 return "DW_TAG_string_type";
3733 case DW_TAG_structure_type:
3734 return "DW_TAG_structure_type";
3735 case DW_TAG_subroutine_type:
3736 return "DW_TAG_subroutine_type";
3737 case DW_TAG_typedef:
3738 return "DW_TAG_typedef";
3739 case DW_TAG_union_type:
3740 return "DW_TAG_union_type";
3741 case DW_TAG_unspecified_parameters:
3742 return "DW_TAG_unspecified_parameters";
3743 case DW_TAG_variant:
3744 return "DW_TAG_variant";
3745 case DW_TAG_common_block:
3746 return "DW_TAG_common_block";
3747 case DW_TAG_common_inclusion:
3748 return "DW_TAG_common_inclusion";
3749 case DW_TAG_inheritance:
3750 return "DW_TAG_inheritance";
3751 case DW_TAG_inlined_subroutine:
3752 return "DW_TAG_inlined_subroutine";
3753 case DW_TAG_module:
3754 return "DW_TAG_module";
3755 case DW_TAG_ptr_to_member_type:
3756 return "DW_TAG_ptr_to_member_type";
3757 case DW_TAG_set_type:
3758 return "DW_TAG_set_type";
3759 case DW_TAG_subrange_type:
3760 return "DW_TAG_subrange_type";
3761 case DW_TAG_with_stmt:
3762 return "DW_TAG_with_stmt";
3763 case DW_TAG_access_declaration:
3764 return "DW_TAG_access_declaration";
3765 case DW_TAG_base_type:
3766 return "DW_TAG_base_type";
3767 case DW_TAG_catch_block:
3768 return "DW_TAG_catch_block";
3769 case DW_TAG_const_type:
3770 return "DW_TAG_const_type";
3771 case DW_TAG_constant:
3772 return "DW_TAG_constant";
3773 case DW_TAG_enumerator:
3774 return "DW_TAG_enumerator";
3775 case DW_TAG_file_type:
3776 return "DW_TAG_file_type";
3777 case DW_TAG_friend:
3778 return "DW_TAG_friend";
3779 case DW_TAG_namelist:
3780 return "DW_TAG_namelist";
3781 case DW_TAG_namelist_item:
3782 return "DW_TAG_namelist_item";
3783 case DW_TAG_packed_type:
3784 return "DW_TAG_packed_type";
3785 case DW_TAG_subprogram:
3786 return "DW_TAG_subprogram";
3787 case DW_TAG_template_type_param:
3788 return "DW_TAG_template_type_param";
3789 case DW_TAG_template_value_param:
3790 return "DW_TAG_template_value_param";
3791 case DW_TAG_thrown_type:
3792 return "DW_TAG_thrown_type";
3793 case DW_TAG_try_block:
3794 return "DW_TAG_try_block";
3795 case DW_TAG_variant_part:
3796 return "DW_TAG_variant_part";
3797 case DW_TAG_variable:
3798 return "DW_TAG_variable";
3799 case DW_TAG_volatile_type:
3800 return "DW_TAG_volatile_type";
3801 case DW_TAG_dwarf_procedure:
3802 return "DW_TAG_dwarf_procedure";
3803 case DW_TAG_restrict_type:
3804 return "DW_TAG_restrict_type";
3805 case DW_TAG_interface_type:
3806 return "DW_TAG_interface_type";
3807 case DW_TAG_namespace:
3808 return "DW_TAG_namespace";
3809 case DW_TAG_imported_module:
3810 return "DW_TAG_imported_module";
3811 case DW_TAG_unspecified_type:
3812 return "DW_TAG_unspecified_type";
3813 case DW_TAG_partial_unit:
3814 return "DW_TAG_partial_unit";
3815 case DW_TAG_imported_unit:
3816 return "DW_TAG_imported_unit";
3817 case DW_TAG_condition:
3818 return "DW_TAG_condition";
3819 case DW_TAG_shared_type:
3820 return "DW_TAG_shared_type";
3821 case DW_TAG_type_unit:
3822 return "DW_TAG_type_unit";
3823 case DW_TAG_rvalue_reference_type:
3824 return "DW_TAG_rvalue_reference_type";
3825 case DW_TAG_template_alias:
3826 return "DW_TAG_template_alias";
3827 case DW_TAG_GNU_template_parameter_pack:
3828 return "DW_TAG_GNU_template_parameter_pack";
3829 case DW_TAG_GNU_formal_parameter_pack:
3830 return "DW_TAG_GNU_formal_parameter_pack";
3831 case DW_TAG_MIPS_loop:
3832 return "DW_TAG_MIPS_loop";
3833 case DW_TAG_format_label:
3834 return "DW_TAG_format_label";
3835 case DW_TAG_function_template:
3836 return "DW_TAG_function_template";
3837 case DW_TAG_class_template:
3838 return "DW_TAG_class_template";
3839 case DW_TAG_GNU_BINCL:
3840 return "DW_TAG_GNU_BINCL";
3841 case DW_TAG_GNU_EINCL:
3842 return "DW_TAG_GNU_EINCL";
3843 case DW_TAG_GNU_template_template_param:
3844 return "DW_TAG_GNU_template_template_param";
3845 case DW_TAG_GNU_call_site:
3846 return "DW_TAG_GNU_call_site";
3847 case DW_TAG_GNU_call_site_parameter:
3848 return "DW_TAG_GNU_call_site_parameter";
3849 default:
3850 return "DW_TAG_<unknown>";
3851 }
3852 }
3853
3854 /* Convert a DWARF attribute code into its string name. */
3855
3856 static const char *
3857 dwarf_attr_name (unsigned int attr)
3858 {
3859 switch (attr)
3860 {
3861 case DW_AT_sibling:
3862 return "DW_AT_sibling";
3863 case DW_AT_location:
3864 return "DW_AT_location";
3865 case DW_AT_name:
3866 return "DW_AT_name";
3867 case DW_AT_ordering:
3868 return "DW_AT_ordering";
3869 case DW_AT_subscr_data:
3870 return "DW_AT_subscr_data";
3871 case DW_AT_byte_size:
3872 return "DW_AT_byte_size";
3873 case DW_AT_bit_offset:
3874 return "DW_AT_bit_offset";
3875 case DW_AT_bit_size:
3876 return "DW_AT_bit_size";
3877 case DW_AT_element_list:
3878 return "DW_AT_element_list";
3879 case DW_AT_stmt_list:
3880 return "DW_AT_stmt_list";
3881 case DW_AT_low_pc:
3882 return "DW_AT_low_pc";
3883 case DW_AT_high_pc:
3884 return "DW_AT_high_pc";
3885 case DW_AT_language:
3886 return "DW_AT_language";
3887 case DW_AT_member:
3888 return "DW_AT_member";
3889 case DW_AT_discr:
3890 return "DW_AT_discr";
3891 case DW_AT_discr_value:
3892 return "DW_AT_discr_value";
3893 case DW_AT_visibility:
3894 return "DW_AT_visibility";
3895 case DW_AT_import:
3896 return "DW_AT_import";
3897 case DW_AT_string_length:
3898 return "DW_AT_string_length";
3899 case DW_AT_common_reference:
3900 return "DW_AT_common_reference";
3901 case DW_AT_comp_dir:
3902 return "DW_AT_comp_dir";
3903 case DW_AT_const_value:
3904 return "DW_AT_const_value";
3905 case DW_AT_containing_type:
3906 return "DW_AT_containing_type";
3907 case DW_AT_default_value:
3908 return "DW_AT_default_value";
3909 case DW_AT_inline:
3910 return "DW_AT_inline";
3911 case DW_AT_is_optional:
3912 return "DW_AT_is_optional";
3913 case DW_AT_lower_bound:
3914 return "DW_AT_lower_bound";
3915 case DW_AT_producer:
3916 return "DW_AT_producer";
3917 case DW_AT_prototyped:
3918 return "DW_AT_prototyped";
3919 case DW_AT_return_addr:
3920 return "DW_AT_return_addr";
3921 case DW_AT_start_scope:
3922 return "DW_AT_start_scope";
3923 case DW_AT_bit_stride:
3924 return "DW_AT_bit_stride";
3925 case DW_AT_upper_bound:
3926 return "DW_AT_upper_bound";
3927 case DW_AT_abstract_origin:
3928 return "DW_AT_abstract_origin";
3929 case DW_AT_accessibility:
3930 return "DW_AT_accessibility";
3931 case DW_AT_address_class:
3932 return "DW_AT_address_class";
3933 case DW_AT_artificial:
3934 return "DW_AT_artificial";
3935 case DW_AT_base_types:
3936 return "DW_AT_base_types";
3937 case DW_AT_calling_convention:
3938 return "DW_AT_calling_convention";
3939 case DW_AT_count:
3940 return "DW_AT_count";
3941 case DW_AT_data_member_location:
3942 return "DW_AT_data_member_location";
3943 case DW_AT_decl_column:
3944 return "DW_AT_decl_column";
3945 case DW_AT_decl_file:
3946 return "DW_AT_decl_file";
3947 case DW_AT_decl_line:
3948 return "DW_AT_decl_line";
3949 case DW_AT_declaration:
3950 return "DW_AT_declaration";
3951 case DW_AT_discr_list:
3952 return "DW_AT_discr_list";
3953 case DW_AT_encoding:
3954 return "DW_AT_encoding";
3955 case DW_AT_external:
3956 return "DW_AT_external";
3957 case DW_AT_explicit:
3958 return "DW_AT_explicit";
3959 case DW_AT_frame_base:
3960 return "DW_AT_frame_base";
3961 case DW_AT_friend:
3962 return "DW_AT_friend";
3963 case DW_AT_identifier_case:
3964 return "DW_AT_identifier_case";
3965 case DW_AT_macro_info:
3966 return "DW_AT_macro_info";
3967 case DW_AT_namelist_items:
3968 return "DW_AT_namelist_items";
3969 case DW_AT_priority:
3970 return "DW_AT_priority";
3971 case DW_AT_segment:
3972 return "DW_AT_segment";
3973 case DW_AT_specification:
3974 return "DW_AT_specification";
3975 case DW_AT_static_link:
3976 return "DW_AT_static_link";
3977 case DW_AT_type:
3978 return "DW_AT_type";
3979 case DW_AT_use_location:
3980 return "DW_AT_use_location";
3981 case DW_AT_variable_parameter:
3982 return "DW_AT_variable_parameter";
3983 case DW_AT_virtuality:
3984 return "DW_AT_virtuality";
3985 case DW_AT_vtable_elem_location:
3986 return "DW_AT_vtable_elem_location";
3987
3988 case DW_AT_allocated:
3989 return "DW_AT_allocated";
3990 case DW_AT_associated:
3991 return "DW_AT_associated";
3992 case DW_AT_data_location:
3993 return "DW_AT_data_location";
3994 case DW_AT_byte_stride:
3995 return "DW_AT_byte_stride";
3996 case DW_AT_entry_pc:
3997 return "DW_AT_entry_pc";
3998 case DW_AT_use_UTF8:
3999 return "DW_AT_use_UTF8";
4000 case DW_AT_extension:
4001 return "DW_AT_extension";
4002 case DW_AT_ranges:
4003 return "DW_AT_ranges";
4004 case DW_AT_trampoline:
4005 return "DW_AT_trampoline";
4006 case DW_AT_call_column:
4007 return "DW_AT_call_column";
4008 case DW_AT_call_file:
4009 return "DW_AT_call_file";
4010 case DW_AT_call_line:
4011 return "DW_AT_call_line";
4012 case DW_AT_object_pointer:
4013 return "DW_AT_object_pointer";
4014
4015 case DW_AT_signature:
4016 return "DW_AT_signature";
4017 case DW_AT_main_subprogram:
4018 return "DW_AT_main_subprogram";
4019 case DW_AT_data_bit_offset:
4020 return "DW_AT_data_bit_offset";
4021 case DW_AT_const_expr:
4022 return "DW_AT_const_expr";
4023 case DW_AT_enum_class:
4024 return "DW_AT_enum_class";
4025 case DW_AT_linkage_name:
4026 return "DW_AT_linkage_name";
4027
4028 case DW_AT_MIPS_fde:
4029 return "DW_AT_MIPS_fde";
4030 case DW_AT_MIPS_loop_begin:
4031 return "DW_AT_MIPS_loop_begin";
4032 case DW_AT_MIPS_tail_loop_begin:
4033 return "DW_AT_MIPS_tail_loop_begin";
4034 case DW_AT_MIPS_epilog_begin:
4035 return "DW_AT_MIPS_epilog_begin";
4036 #if VMS_DEBUGGING_INFO
4037 case DW_AT_HP_prologue:
4038 return "DW_AT_HP_prologue";
4039 #else
4040 case DW_AT_MIPS_loop_unroll_factor:
4041 return "DW_AT_MIPS_loop_unroll_factor";
4042 #endif
4043 case DW_AT_MIPS_software_pipeline_depth:
4044 return "DW_AT_MIPS_software_pipeline_depth";
4045 case DW_AT_MIPS_linkage_name:
4046 return "DW_AT_MIPS_linkage_name";
4047 #if VMS_DEBUGGING_INFO
4048 case DW_AT_HP_epilogue:
4049 return "DW_AT_HP_epilogue";
4050 #else
4051 case DW_AT_MIPS_stride:
4052 return "DW_AT_MIPS_stride";
4053 #endif
4054 case DW_AT_MIPS_abstract_name:
4055 return "DW_AT_MIPS_abstract_name";
4056 case DW_AT_MIPS_clone_origin:
4057 return "DW_AT_MIPS_clone_origin";
4058 case DW_AT_MIPS_has_inlines:
4059 return "DW_AT_MIPS_has_inlines";
4060
4061 case DW_AT_sf_names:
4062 return "DW_AT_sf_names";
4063 case DW_AT_src_info:
4064 return "DW_AT_src_info";
4065 case DW_AT_mac_info:
4066 return "DW_AT_mac_info";
4067 case DW_AT_src_coords:
4068 return "DW_AT_src_coords";
4069 case DW_AT_body_begin:
4070 return "DW_AT_body_begin";
4071 case DW_AT_body_end:
4072 return "DW_AT_body_end";
4073
4074 case DW_AT_GNU_vector:
4075 return "DW_AT_GNU_vector";
4076 case DW_AT_GNU_guarded_by:
4077 return "DW_AT_GNU_guarded_by";
4078 case DW_AT_GNU_pt_guarded_by:
4079 return "DW_AT_GNU_pt_guarded_by";
4080 case DW_AT_GNU_guarded:
4081 return "DW_AT_GNU_guarded";
4082 case DW_AT_GNU_pt_guarded:
4083 return "DW_AT_GNU_pt_guarded";
4084 case DW_AT_GNU_locks_excluded:
4085 return "DW_AT_GNU_locks_excluded";
4086 case DW_AT_GNU_exclusive_locks_required:
4087 return "DW_AT_GNU_exclusive_locks_required";
4088 case DW_AT_GNU_shared_locks_required:
4089 return "DW_AT_GNU_shared_locks_required";
4090 case DW_AT_GNU_odr_signature:
4091 return "DW_AT_GNU_odr_signature";
4092 case DW_AT_GNU_template_name:
4093 return "DW_AT_GNU_template_name";
4094 case DW_AT_GNU_call_site_value:
4095 return "DW_AT_GNU_call_site_value";
4096 case DW_AT_GNU_call_site_data_value:
4097 return "DW_AT_GNU_call_site_data_value";
4098 case DW_AT_GNU_call_site_target:
4099 return "DW_AT_GNU_call_site_target";
4100 case DW_AT_GNU_call_site_target_clobbered:
4101 return "DW_AT_GNU_call_site_target_clobbered";
4102 case DW_AT_GNU_tail_call:
4103 return "DW_AT_GNU_tail_call";
4104 case DW_AT_GNU_all_tail_call_sites:
4105 return "DW_AT_GNU_all_tail_call_sites";
4106 case DW_AT_GNU_all_call_sites:
4107 return "DW_AT_GNU_all_call_sites";
4108 case DW_AT_GNU_all_source_call_sites:
4109 return "DW_AT_GNU_all_source_call_sites";
4110 case DW_AT_GNU_macros:
4111 return "DW_AT_GNU_macros";
4112
4113 case DW_AT_GNAT_descriptive_type:
4114 return "DW_AT_GNAT_descriptive_type";
4115
4116 case DW_AT_VMS_rtnbeg_pd_address:
4117 return "DW_AT_VMS_rtnbeg_pd_address";
4118
4119 default:
4120 return "DW_AT_<unknown>";
4121 }
4122 }
4123
4124 /* Convert a DWARF value form code into its string name. */
4125
4126 static const char *
4127 dwarf_form_name (unsigned int form)
4128 {
4129 switch (form)
4130 {
4131 case DW_FORM_addr:
4132 return "DW_FORM_addr";
4133 case DW_FORM_block2:
4134 return "DW_FORM_block2";
4135 case DW_FORM_block4:
4136 return "DW_FORM_block4";
4137 case DW_FORM_data2:
4138 return "DW_FORM_data2";
4139 case DW_FORM_data4:
4140 return "DW_FORM_data4";
4141 case DW_FORM_data8:
4142 return "DW_FORM_data8";
4143 case DW_FORM_string:
4144 return "DW_FORM_string";
4145 case DW_FORM_block:
4146 return "DW_FORM_block";
4147 case DW_FORM_block1:
4148 return "DW_FORM_block1";
4149 case DW_FORM_data1:
4150 return "DW_FORM_data1";
4151 case DW_FORM_flag:
4152 return "DW_FORM_flag";
4153 case DW_FORM_sdata:
4154 return "DW_FORM_sdata";
4155 case DW_FORM_strp:
4156 return "DW_FORM_strp";
4157 case DW_FORM_udata:
4158 return "DW_FORM_udata";
4159 case DW_FORM_ref_addr:
4160 return "DW_FORM_ref_addr";
4161 case DW_FORM_ref1:
4162 return "DW_FORM_ref1";
4163 case DW_FORM_ref2:
4164 return "DW_FORM_ref2";
4165 case DW_FORM_ref4:
4166 return "DW_FORM_ref4";
4167 case DW_FORM_ref8:
4168 return "DW_FORM_ref8";
4169 case DW_FORM_ref_udata:
4170 return "DW_FORM_ref_udata";
4171 case DW_FORM_indirect:
4172 return "DW_FORM_indirect";
4173 case DW_FORM_sec_offset:
4174 return "DW_FORM_sec_offset";
4175 case DW_FORM_exprloc:
4176 return "DW_FORM_exprloc";
4177 case DW_FORM_flag_present:
4178 return "DW_FORM_flag_present";
4179 case DW_FORM_ref_sig8:
4180 return "DW_FORM_ref_sig8";
4181 default:
4182 return "DW_FORM_<unknown>";
4183 }
4184 }
4185 \f
4186 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4187 instance of an inlined instance of a decl which is local to an inline
4188 function, so we have to trace all of the way back through the origin chain
4189 to find out what sort of node actually served as the original seed for the
4190 given block. */
4191
4192 static tree
4193 decl_ultimate_origin (const_tree decl)
4194 {
4195 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4196 return NULL_TREE;
4197
4198 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4199 nodes in the function to point to themselves; ignore that if
4200 we're trying to output the abstract instance of this function. */
4201 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4202 return NULL_TREE;
4203
4204 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4205 most distant ancestor, this should never happen. */
4206 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4207
4208 return DECL_ABSTRACT_ORIGIN (decl);
4209 }
4210
4211 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4212 of a virtual function may refer to a base class, so we check the 'this'
4213 parameter. */
4214
4215 static tree
4216 decl_class_context (tree decl)
4217 {
4218 tree context = NULL_TREE;
4219
4220 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4221 context = DECL_CONTEXT (decl);
4222 else
4223 context = TYPE_MAIN_VARIANT
4224 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4225
4226 if (context && !TYPE_P (context))
4227 context = NULL_TREE;
4228
4229 return context;
4230 }
4231 \f
4232 /* Add an attribute/value pair to a DIE. */
4233
4234 static inline void
4235 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4236 {
4237 /* Maybe this should be an assert? */
4238 if (die == NULL)
4239 return;
4240
4241 if (die->die_attr == NULL)
4242 die->die_attr = VEC_alloc (dw_attr_node, gc, 1);
4243 VEC_safe_push (dw_attr_node, gc, die->die_attr, attr);
4244 }
4245
4246 static inline enum dw_val_class
4247 AT_class (dw_attr_ref a)
4248 {
4249 return a->dw_attr_val.val_class;
4250 }
4251
4252 /* Add a flag value attribute to a DIE. */
4253
4254 static inline void
4255 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4256 {
4257 dw_attr_node attr;
4258
4259 attr.dw_attr = attr_kind;
4260 attr.dw_attr_val.val_class = dw_val_class_flag;
4261 attr.dw_attr_val.v.val_flag = flag;
4262 add_dwarf_attr (die, &attr);
4263 }
4264
4265 static inline unsigned
4266 AT_flag (dw_attr_ref a)
4267 {
4268 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4269 return a->dw_attr_val.v.val_flag;
4270 }
4271
4272 /* Add a signed integer attribute value to a DIE. */
4273
4274 static inline void
4275 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4276 {
4277 dw_attr_node attr;
4278
4279 attr.dw_attr = attr_kind;
4280 attr.dw_attr_val.val_class = dw_val_class_const;
4281 attr.dw_attr_val.v.val_int = int_val;
4282 add_dwarf_attr (die, &attr);
4283 }
4284
4285 static inline HOST_WIDE_INT
4286 AT_int (dw_attr_ref a)
4287 {
4288 gcc_assert (a && AT_class (a) == dw_val_class_const);
4289 return a->dw_attr_val.v.val_int;
4290 }
4291
4292 /* Add an unsigned integer attribute value to a DIE. */
4293
4294 static inline void
4295 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4296 unsigned HOST_WIDE_INT unsigned_val)
4297 {
4298 dw_attr_node attr;
4299
4300 attr.dw_attr = attr_kind;
4301 attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
4302 attr.dw_attr_val.v.val_unsigned = unsigned_val;
4303 add_dwarf_attr (die, &attr);
4304 }
4305
4306 static inline unsigned HOST_WIDE_INT
4307 AT_unsigned (dw_attr_ref a)
4308 {
4309 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4310 return a->dw_attr_val.v.val_unsigned;
4311 }
4312
4313 /* Add an unsigned double integer attribute value to a DIE. */
4314
4315 static inline void
4316 add_AT_double (dw_die_ref die, enum dwarf_attribute attr_kind,
4317 HOST_WIDE_INT high, unsigned HOST_WIDE_INT low)
4318 {
4319 dw_attr_node attr;
4320
4321 attr.dw_attr = attr_kind;
4322 attr.dw_attr_val.val_class = dw_val_class_const_double;
4323 attr.dw_attr_val.v.val_double.high = high;
4324 attr.dw_attr_val.v.val_double.low = low;
4325 add_dwarf_attr (die, &attr);
4326 }
4327
4328 /* Add a floating point attribute value to a DIE and return it. */
4329
4330 static inline void
4331 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4332 unsigned int length, unsigned int elt_size, unsigned char *array)
4333 {
4334 dw_attr_node attr;
4335
4336 attr.dw_attr = attr_kind;
4337 attr.dw_attr_val.val_class = dw_val_class_vec;
4338 attr.dw_attr_val.v.val_vec.length = length;
4339 attr.dw_attr_val.v.val_vec.elt_size = elt_size;
4340 attr.dw_attr_val.v.val_vec.array = array;
4341 add_dwarf_attr (die, &attr);
4342 }
4343
4344 /* Add an 8-byte data attribute value to a DIE. */
4345
4346 static inline void
4347 add_AT_data8 (dw_die_ref die, enum dwarf_attribute attr_kind,
4348 unsigned char data8[8])
4349 {
4350 dw_attr_node attr;
4351
4352 attr.dw_attr = attr_kind;
4353 attr.dw_attr_val.val_class = dw_val_class_data8;
4354 memcpy (attr.dw_attr_val.v.val_data8, data8, 8);
4355 add_dwarf_attr (die, &attr);
4356 }
4357
4358 /* Hash and equality functions for debug_str_hash. */
4359
4360 static hashval_t
4361 debug_str_do_hash (const void *x)
4362 {
4363 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4364 }
4365
4366 static int
4367 debug_str_eq (const void *x1, const void *x2)
4368 {
4369 return strcmp ((((const struct indirect_string_node *)x1)->str),
4370 (const char *)x2) == 0;
4371 }
4372
4373 /* Add STR to the indirect string hash table. */
4374
4375 static struct indirect_string_node *
4376 find_AT_string (const char *str)
4377 {
4378 struct indirect_string_node *node;
4379 void **slot;
4380
4381 if (! debug_str_hash)
4382 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4383 debug_str_eq, NULL);
4384
4385 slot = htab_find_slot_with_hash (debug_str_hash, str,
4386 htab_hash_string (str), INSERT);
4387 if (*slot == NULL)
4388 {
4389 node = ggc_alloc_cleared_indirect_string_node ();
4390 node->str = ggc_strdup (str);
4391 *slot = node;
4392 }
4393 else
4394 node = (struct indirect_string_node *) *slot;
4395
4396 node->refcount++;
4397 return node;
4398 }
4399
4400 /* Add a string attribute value to a DIE. */
4401
4402 static inline void
4403 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4404 {
4405 dw_attr_node attr;
4406 struct indirect_string_node *node;
4407
4408 node = find_AT_string (str);
4409
4410 attr.dw_attr = attr_kind;
4411 attr.dw_attr_val.val_class = dw_val_class_str;
4412 attr.dw_attr_val.v.val_str = node;
4413 add_dwarf_attr (die, &attr);
4414 }
4415
4416 static inline const char *
4417 AT_string (dw_attr_ref a)
4418 {
4419 gcc_assert (a && AT_class (a) == dw_val_class_str);
4420 return a->dw_attr_val.v.val_str->str;
4421 }
4422
4423 /* Find out whether a string should be output inline in DIE
4424 or out-of-line in .debug_str section. */
4425
4426 static enum dwarf_form
4427 AT_string_form (dw_attr_ref a)
4428 {
4429 struct indirect_string_node *node;
4430 unsigned int len;
4431 char label[32];
4432
4433 gcc_assert (a && AT_class (a) == dw_val_class_str);
4434
4435 node = a->dw_attr_val.v.val_str;
4436 if (node->form)
4437 return node->form;
4438
4439 len = strlen (node->str) + 1;
4440
4441 /* If the string is shorter or equal to the size of the reference, it is
4442 always better to put it inline. */
4443 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4444 return node->form = DW_FORM_string;
4445
4446 /* If we cannot expect the linker to merge strings in .debug_str
4447 section, only put it into .debug_str if it is worth even in this
4448 single module. */
4449 if (DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
4450 || ((debug_str_section->common.flags & SECTION_MERGE) == 0
4451 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len))
4452 return node->form = DW_FORM_string;
4453
4454 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4455 ++dw2_string_counter;
4456 node->label = xstrdup (label);
4457
4458 return node->form = DW_FORM_strp;
4459 }
4460
4461 /* Add a DIE reference attribute value to a DIE. */
4462
4463 static inline void
4464 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4465 {
4466 dw_attr_node attr;
4467
4468 #ifdef ENABLE_CHECKING
4469 gcc_assert (targ_die != NULL);
4470 #else
4471 /* With LTO we can end up trying to reference something we didn't create
4472 a DIE for. Avoid crashing later on a NULL referenced DIE. */
4473 if (targ_die == NULL)
4474 return;
4475 #endif
4476
4477 attr.dw_attr = attr_kind;
4478 attr.dw_attr_val.val_class = dw_val_class_die_ref;
4479 attr.dw_attr_val.v.val_die_ref.die = targ_die;
4480 attr.dw_attr_val.v.val_die_ref.external = 0;
4481 add_dwarf_attr (die, &attr);
4482 }
4483
4484 /* Add an AT_specification attribute to a DIE, and also make the back
4485 pointer from the specification to the definition. */
4486
4487 static inline void
4488 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4489 {
4490 add_AT_die_ref (die, DW_AT_specification, targ_die);
4491 gcc_assert (!targ_die->die_definition);
4492 targ_die->die_definition = die;
4493 }
4494
4495 static inline dw_die_ref
4496 AT_ref (dw_attr_ref a)
4497 {
4498 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4499 return a->dw_attr_val.v.val_die_ref.die;
4500 }
4501
4502 static inline int
4503 AT_ref_external (dw_attr_ref a)
4504 {
4505 if (a && AT_class (a) == dw_val_class_die_ref)
4506 return a->dw_attr_val.v.val_die_ref.external;
4507
4508 return 0;
4509 }
4510
4511 static inline void
4512 set_AT_ref_external (dw_attr_ref a, int i)
4513 {
4514 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4515 a->dw_attr_val.v.val_die_ref.external = i;
4516 }
4517
4518 /* Add an FDE reference attribute value to a DIE. */
4519
4520 static inline void
4521 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4522 {
4523 dw_attr_node attr;
4524
4525 attr.dw_attr = attr_kind;
4526 attr.dw_attr_val.val_class = dw_val_class_fde_ref;
4527 attr.dw_attr_val.v.val_fde_index = targ_fde;
4528 add_dwarf_attr (die, &attr);
4529 }
4530
4531 /* Add a location description attribute value to a DIE. */
4532
4533 static inline void
4534 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4535 {
4536 dw_attr_node attr;
4537
4538 attr.dw_attr = attr_kind;
4539 attr.dw_attr_val.val_class = dw_val_class_loc;
4540 attr.dw_attr_val.v.val_loc = loc;
4541 add_dwarf_attr (die, &attr);
4542 }
4543
4544 static inline dw_loc_descr_ref
4545 AT_loc (dw_attr_ref a)
4546 {
4547 gcc_assert (a && AT_class (a) == dw_val_class_loc);
4548 return a->dw_attr_val.v.val_loc;
4549 }
4550
4551 static inline void
4552 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4553 {
4554 dw_attr_node attr;
4555
4556 attr.dw_attr = attr_kind;
4557 attr.dw_attr_val.val_class = dw_val_class_loc_list;
4558 attr.dw_attr_val.v.val_loc_list = loc_list;
4559 add_dwarf_attr (die, &attr);
4560 have_location_lists = true;
4561 }
4562
4563 static inline dw_loc_list_ref
4564 AT_loc_list (dw_attr_ref a)
4565 {
4566 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
4567 return a->dw_attr_val.v.val_loc_list;
4568 }
4569
4570 static inline dw_loc_list_ref *
4571 AT_loc_list_ptr (dw_attr_ref a)
4572 {
4573 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
4574 return &a->dw_attr_val.v.val_loc_list;
4575 }
4576
4577 /* Add an address constant attribute value to a DIE. */
4578
4579 static inline void
4580 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
4581 {
4582 dw_attr_node attr;
4583
4584 attr.dw_attr = attr_kind;
4585 attr.dw_attr_val.val_class = dw_val_class_addr;
4586 attr.dw_attr_val.v.val_addr = addr;
4587 add_dwarf_attr (die, &attr);
4588 }
4589
4590 /* Get the RTX from to an address DIE attribute. */
4591
4592 static inline rtx
4593 AT_addr (dw_attr_ref a)
4594 {
4595 gcc_assert (a && AT_class (a) == dw_val_class_addr);
4596 return a->dw_attr_val.v.val_addr;
4597 }
4598
4599 /* Add a file attribute value to a DIE. */
4600
4601 static inline void
4602 add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
4603 struct dwarf_file_data *fd)
4604 {
4605 dw_attr_node attr;
4606
4607 attr.dw_attr = attr_kind;
4608 attr.dw_attr_val.val_class = dw_val_class_file;
4609 attr.dw_attr_val.v.val_file = fd;
4610 add_dwarf_attr (die, &attr);
4611 }
4612
4613 /* Get the dwarf_file_data from a file DIE attribute. */
4614
4615 static inline struct dwarf_file_data *
4616 AT_file (dw_attr_ref a)
4617 {
4618 gcc_assert (a && AT_class (a) == dw_val_class_file);
4619 return a->dw_attr_val.v.val_file;
4620 }
4621
4622 /* Add a vms delta attribute value to a DIE. */
4623
4624 static inline void
4625 add_AT_vms_delta (dw_die_ref die, enum dwarf_attribute attr_kind,
4626 const char *lbl1, const char *lbl2)
4627 {
4628 dw_attr_node attr;
4629
4630 attr.dw_attr = attr_kind;
4631 attr.dw_attr_val.val_class = dw_val_class_vms_delta;
4632 attr.dw_attr_val.v.val_vms_delta.lbl1 = xstrdup (lbl1);
4633 attr.dw_attr_val.v.val_vms_delta.lbl2 = xstrdup (lbl2);
4634 add_dwarf_attr (die, &attr);
4635 }
4636
4637 /* Add a label identifier attribute value to a DIE. */
4638
4639 static inline void
4640 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
4641 {
4642 dw_attr_node attr;
4643
4644 attr.dw_attr = attr_kind;
4645 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
4646 attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4647 add_dwarf_attr (die, &attr);
4648 }
4649
4650 /* Add a section offset attribute value to a DIE, an offset into the
4651 debug_line section. */
4652
4653 static inline void
4654 add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
4655 const char *label)
4656 {
4657 dw_attr_node attr;
4658
4659 attr.dw_attr = attr_kind;
4660 attr.dw_attr_val.val_class = dw_val_class_lineptr;
4661 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
4662 add_dwarf_attr (die, &attr);
4663 }
4664
4665 /* Add a section offset attribute value to a DIE, an offset into the
4666 debug_macinfo section. */
4667
4668 static inline void
4669 add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
4670 const char *label)
4671 {
4672 dw_attr_node attr;
4673
4674 attr.dw_attr = attr_kind;
4675 attr.dw_attr_val.val_class = dw_val_class_macptr;
4676 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
4677 add_dwarf_attr (die, &attr);
4678 }
4679
4680 /* Add an offset attribute value to a DIE. */
4681
4682 static inline void
4683 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
4684 unsigned HOST_WIDE_INT offset)
4685 {
4686 dw_attr_node attr;
4687
4688 attr.dw_attr = attr_kind;
4689 attr.dw_attr_val.val_class = dw_val_class_offset;
4690 attr.dw_attr_val.v.val_offset = offset;
4691 add_dwarf_attr (die, &attr);
4692 }
4693
4694 /* Add an range_list attribute value to a DIE. */
4695
4696 static void
4697 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
4698 long unsigned int offset)
4699 {
4700 dw_attr_node attr;
4701
4702 attr.dw_attr = attr_kind;
4703 attr.dw_attr_val.val_class = dw_val_class_range_list;
4704 attr.dw_attr_val.v.val_offset = offset;
4705 add_dwarf_attr (die, &attr);
4706 }
4707
4708 /* Return the start label of a delta attribute. */
4709
4710 static inline const char *
4711 AT_vms_delta1 (dw_attr_ref a)
4712 {
4713 gcc_assert (a && (AT_class (a) == dw_val_class_vms_delta));
4714 return a->dw_attr_val.v.val_vms_delta.lbl1;
4715 }
4716
4717 /* Return the end label of a delta attribute. */
4718
4719 static inline const char *
4720 AT_vms_delta2 (dw_attr_ref a)
4721 {
4722 gcc_assert (a && (AT_class (a) == dw_val_class_vms_delta));
4723 return a->dw_attr_val.v.val_vms_delta.lbl2;
4724 }
4725
4726 static inline const char *
4727 AT_lbl (dw_attr_ref a)
4728 {
4729 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
4730 || AT_class (a) == dw_val_class_lineptr
4731 || AT_class (a) == dw_val_class_macptr));
4732 return a->dw_attr_val.v.val_lbl_id;
4733 }
4734
4735 /* Get the attribute of type attr_kind. */
4736
4737 static dw_attr_ref
4738 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4739 {
4740 dw_attr_ref a;
4741 unsigned ix;
4742 dw_die_ref spec = NULL;
4743
4744 if (! die)
4745 return NULL;
4746
4747 FOR_EACH_VEC_ELT (dw_attr_node, die->die_attr, ix, a)
4748 if (a->dw_attr == attr_kind)
4749 return a;
4750 else if (a->dw_attr == DW_AT_specification
4751 || a->dw_attr == DW_AT_abstract_origin)
4752 spec = AT_ref (a);
4753
4754 if (spec)
4755 return get_AT (spec, attr_kind);
4756
4757 return NULL;
4758 }
4759
4760 /* Return the "low pc" attribute value, typically associated with a subprogram
4761 DIE. Return null if the "low pc" attribute is either not present, or if it
4762 cannot be represented as an assembler label identifier. */
4763
4764 static inline const char *
4765 get_AT_low_pc (dw_die_ref die)
4766 {
4767 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
4768
4769 return a ? AT_lbl (a) : NULL;
4770 }
4771
4772 /* Return the "high pc" attribute value, typically associated with a subprogram
4773 DIE. Return null if the "high pc" attribute is either not present, or if it
4774 cannot be represented as an assembler label identifier. */
4775
4776 static inline const char *
4777 get_AT_hi_pc (dw_die_ref die)
4778 {
4779 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
4780
4781 return a ? AT_lbl (a) : NULL;
4782 }
4783
4784 /* Return the value of the string attribute designated by ATTR_KIND, or
4785 NULL if it is not present. */
4786
4787 static inline const char *
4788 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
4789 {
4790 dw_attr_ref a = get_AT (die, attr_kind);
4791
4792 return a ? AT_string (a) : NULL;
4793 }
4794
4795 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
4796 if it is not present. */
4797
4798 static inline int
4799 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
4800 {
4801 dw_attr_ref a = get_AT (die, attr_kind);
4802
4803 return a ? AT_flag (a) : 0;
4804 }
4805
4806 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4807 if it is not present. */
4808
4809 static inline unsigned
4810 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
4811 {
4812 dw_attr_ref a = get_AT (die, attr_kind);
4813
4814 return a ? AT_unsigned (a) : 0;
4815 }
4816
4817 static inline dw_die_ref
4818 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
4819 {
4820 dw_attr_ref a = get_AT (die, attr_kind);
4821
4822 return a ? AT_ref (a) : NULL;
4823 }
4824
4825 static inline struct dwarf_file_data *
4826 get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
4827 {
4828 dw_attr_ref a = get_AT (die, attr_kind);
4829
4830 return a ? AT_file (a) : NULL;
4831 }
4832
4833 /* Return TRUE if the language is C++. */
4834
4835 static inline bool
4836 is_cxx (void)
4837 {
4838 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
4839
4840 return lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus;
4841 }
4842
4843 /* Return TRUE if the language is Fortran. */
4844
4845 static inline bool
4846 is_fortran (void)
4847 {
4848 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
4849
4850 return (lang == DW_LANG_Fortran77
4851 || lang == DW_LANG_Fortran90
4852 || lang == DW_LANG_Fortran95);
4853 }
4854
4855 /* Return TRUE if the language is Ada. */
4856
4857 static inline bool
4858 is_ada (void)
4859 {
4860 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
4861
4862 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
4863 }
4864
4865 /* Remove the specified attribute if present. */
4866
4867 static void
4868 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4869 {
4870 dw_attr_ref a;
4871 unsigned ix;
4872
4873 if (! die)
4874 return;
4875
4876 FOR_EACH_VEC_ELT (dw_attr_node, die->die_attr, ix, a)
4877 if (a->dw_attr == attr_kind)
4878 {
4879 if (AT_class (a) == dw_val_class_str)
4880 if (a->dw_attr_val.v.val_str->refcount)
4881 a->dw_attr_val.v.val_str->refcount--;
4882
4883 /* VEC_ordered_remove should help reduce the number of abbrevs
4884 that are needed. */
4885 VEC_ordered_remove (dw_attr_node, die->die_attr, ix);
4886 return;
4887 }
4888 }
4889
4890 /* Remove CHILD from its parent. PREV must have the property that
4891 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
4892
4893 static void
4894 remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
4895 {
4896 gcc_assert (child->die_parent == prev->die_parent);
4897 gcc_assert (prev->die_sib == child);
4898 if (prev == child)
4899 {
4900 gcc_assert (child->die_parent->die_child == child);
4901 prev = NULL;
4902 }
4903 else
4904 prev->die_sib = child->die_sib;
4905 if (child->die_parent->die_child == child)
4906 child->die_parent->die_child = prev;
4907 }
4908
4909 /* Replace OLD_CHILD with NEW_CHILD. PREV must have the property that
4910 PREV->DIE_SIB == OLD_CHILD. Does not alter OLD_CHILD. */
4911
4912 static void
4913 replace_child (dw_die_ref old_child, dw_die_ref new_child, dw_die_ref prev)
4914 {
4915 dw_die_ref parent = old_child->die_parent;
4916
4917 gcc_assert (parent == prev->die_parent);
4918 gcc_assert (prev->die_sib == old_child);
4919
4920 new_child->die_parent = parent;
4921 if (prev == old_child)
4922 {
4923 gcc_assert (parent->die_child == old_child);
4924 new_child->die_sib = new_child;
4925 }
4926 else
4927 {
4928 prev->die_sib = new_child;
4929 new_child->die_sib = old_child->die_sib;
4930 }
4931 if (old_child->die_parent->die_child == old_child)
4932 old_child->die_parent->die_child = new_child;
4933 }
4934
4935 /* Move all children from OLD_PARENT to NEW_PARENT. */
4936
4937 static void
4938 move_all_children (dw_die_ref old_parent, dw_die_ref new_parent)
4939 {
4940 dw_die_ref c;
4941 new_parent->die_child = old_parent->die_child;
4942 old_parent->die_child = NULL;
4943 FOR_EACH_CHILD (new_parent, c, c->die_parent = new_parent);
4944 }
4945
4946 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
4947 matches TAG. */
4948
4949 static void
4950 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
4951 {
4952 dw_die_ref c;
4953
4954 c = die->die_child;
4955 if (c) do {
4956 dw_die_ref prev = c;
4957 c = c->die_sib;
4958 while (c->die_tag == tag)
4959 {
4960 remove_child_with_prev (c, prev);
4961 /* Might have removed every child. */
4962 if (c == c->die_sib)
4963 return;
4964 c = c->die_sib;
4965 }
4966 } while (c != die->die_child);
4967 }
4968
4969 /* Add a CHILD_DIE as the last child of DIE. */
4970
4971 static void
4972 add_child_die (dw_die_ref die, dw_die_ref child_die)
4973 {
4974 /* FIXME this should probably be an assert. */
4975 if (! die || ! child_die)
4976 return;
4977 gcc_assert (die != child_die);
4978
4979 child_die->die_parent = die;
4980 if (die->die_child)
4981 {
4982 child_die->die_sib = die->die_child->die_sib;
4983 die->die_child->die_sib = child_die;
4984 }
4985 else
4986 child_die->die_sib = child_die;
4987 die->die_child = child_die;
4988 }
4989
4990 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
4991 is the specification, to the end of PARENT's list of children.
4992 This is done by removing and re-adding it. */
4993
4994 static void
4995 splice_child_die (dw_die_ref parent, dw_die_ref child)
4996 {
4997 dw_die_ref p;
4998
4999 /* We want the declaration DIE from inside the class, not the
5000 specification DIE at toplevel. */
5001 if (child->die_parent != parent)
5002 {
5003 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5004
5005 if (tmp)
5006 child = tmp;
5007 }
5008
5009 gcc_assert (child->die_parent == parent
5010 || (child->die_parent
5011 == get_AT_ref (parent, DW_AT_specification)));
5012
5013 for (p = child->die_parent->die_child; ; p = p->die_sib)
5014 if (p->die_sib == child)
5015 {
5016 remove_child_with_prev (child, p);
5017 break;
5018 }
5019
5020 add_child_die (parent, child);
5021 }
5022
5023 /* Return a pointer to a newly created DIE node. */
5024
5025 static inline dw_die_ref
5026 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5027 {
5028 dw_die_ref die = ggc_alloc_cleared_die_node ();
5029
5030 die->die_tag = tag_value;
5031
5032 if (parent_die != NULL)
5033 add_child_die (parent_die, die);
5034 else
5035 {
5036 limbo_die_node *limbo_node;
5037
5038 limbo_node = ggc_alloc_cleared_limbo_die_node ();
5039 limbo_node->die = die;
5040 limbo_node->created_for = t;
5041 limbo_node->next = limbo_die_list;
5042 limbo_die_list = limbo_node;
5043 }
5044
5045 return die;
5046 }
5047
5048 /* Return the DIE associated with the given type specifier. */
5049
5050 static inline dw_die_ref
5051 lookup_type_die (tree type)
5052 {
5053 return TYPE_SYMTAB_DIE (type);
5054 }
5055
5056 /* Given a TYPE_DIE representing the type TYPE, if TYPE is an
5057 anonymous type named by the typedef TYPE_DIE, return the DIE of the
5058 anonymous type instead the one of the naming typedef. */
5059
5060 static inline dw_die_ref
5061 strip_naming_typedef (tree type, dw_die_ref type_die)
5062 {
5063 if (type
5064 && TREE_CODE (type) == RECORD_TYPE
5065 && type_die
5066 && type_die->die_tag == DW_TAG_typedef
5067 && is_naming_typedef_decl (TYPE_NAME (type)))
5068 type_die = get_AT_ref (type_die, DW_AT_type);
5069 return type_die;
5070 }
5071
5072 /* Like lookup_type_die, but if type is an anonymous type named by a
5073 typedef[1], return the DIE of the anonymous type instead the one of
5074 the naming typedef. This is because in gen_typedef_die, we did
5075 equate the anonymous struct named by the typedef with the DIE of
5076 the naming typedef. So by default, lookup_type_die on an anonymous
5077 struct yields the DIE of the naming typedef.
5078
5079 [1]: Read the comment of is_naming_typedef_decl to learn about what
5080 a naming typedef is. */
5081
5082 static inline dw_die_ref
5083 lookup_type_die_strip_naming_typedef (tree type)
5084 {
5085 dw_die_ref die = lookup_type_die (type);
5086 return strip_naming_typedef (type, die);
5087 }
5088
5089 /* Equate a DIE to a given type specifier. */
5090
5091 static inline void
5092 equate_type_number_to_die (tree type, dw_die_ref type_die)
5093 {
5094 TYPE_SYMTAB_DIE (type) = type_die;
5095 }
5096
5097 /* Returns a hash value for X (which really is a die_struct). */
5098
5099 static hashval_t
5100 decl_die_table_hash (const void *x)
5101 {
5102 return (hashval_t) ((const_dw_die_ref) x)->decl_id;
5103 }
5104
5105 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5106
5107 static int
5108 decl_die_table_eq (const void *x, const void *y)
5109 {
5110 return (((const_dw_die_ref) x)->decl_id == DECL_UID ((const_tree) y));
5111 }
5112
5113 /* Return the DIE associated with a given declaration. */
5114
5115 static inline dw_die_ref
5116 lookup_decl_die (tree decl)
5117 {
5118 return (dw_die_ref) htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5119 }
5120
5121 /* Returns a hash value for X (which really is a var_loc_list). */
5122
5123 static hashval_t
5124 decl_loc_table_hash (const void *x)
5125 {
5126 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5127 }
5128
5129 /* Return nonzero if decl_id of var_loc_list X is the same as
5130 UID of decl *Y. */
5131
5132 static int
5133 decl_loc_table_eq (const void *x, const void *y)
5134 {
5135 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const_tree) y));
5136 }
5137
5138 /* Return the var_loc list associated with a given declaration. */
5139
5140 static inline var_loc_list *
5141 lookup_decl_loc (const_tree decl)
5142 {
5143 if (!decl_loc_table)
5144 return NULL;
5145 return (var_loc_list *)
5146 htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5147 }
5148
5149 /* Returns a hash value for X (which really is a cached_dw_loc_list_list). */
5150
5151 static hashval_t
5152 cached_dw_loc_list_table_hash (const void *x)
5153 {
5154 return (hashval_t) ((const cached_dw_loc_list *) x)->decl_id;
5155 }
5156
5157 /* Return nonzero if decl_id of cached_dw_loc_list X is the same as
5158 UID of decl *Y. */
5159
5160 static int
5161 cached_dw_loc_list_table_eq (const void *x, const void *y)
5162 {
5163 return (((const cached_dw_loc_list *) x)->decl_id
5164 == DECL_UID ((const_tree) y));
5165 }
5166
5167 /* Equate a DIE to a particular declaration. */
5168
5169 static void
5170 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5171 {
5172 unsigned int decl_id = DECL_UID (decl);
5173 void **slot;
5174
5175 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5176 *slot = decl_die;
5177 decl_die->decl_id = decl_id;
5178 }
5179
5180 /* Return how many bits covers PIECE EXPR_LIST. */
5181
5182 static int
5183 decl_piece_bitsize (rtx piece)
5184 {
5185 int ret = (int) GET_MODE (piece);
5186 if (ret)
5187 return ret;
5188 gcc_assert (GET_CODE (XEXP (piece, 0)) == CONCAT
5189 && CONST_INT_P (XEXP (XEXP (piece, 0), 0)));
5190 return INTVAL (XEXP (XEXP (piece, 0), 0));
5191 }
5192
5193 /* Return pointer to the location of location note in PIECE EXPR_LIST. */
5194
5195 static rtx *
5196 decl_piece_varloc_ptr (rtx piece)
5197 {
5198 if ((int) GET_MODE (piece))
5199 return &XEXP (piece, 0);
5200 else
5201 return &XEXP (XEXP (piece, 0), 1);
5202 }
5203
5204 /* Create an EXPR_LIST for location note LOC_NOTE covering BITSIZE bits.
5205 Next is the chain of following piece nodes. */
5206
5207 static rtx
5208 decl_piece_node (rtx loc_note, HOST_WIDE_INT bitsize, rtx next)
5209 {
5210 if (bitsize <= (int) MAX_MACHINE_MODE)
5211 return alloc_EXPR_LIST (bitsize, loc_note, next);
5212 else
5213 return alloc_EXPR_LIST (0, gen_rtx_CONCAT (VOIDmode,
5214 GEN_INT (bitsize),
5215 loc_note), next);
5216 }
5217
5218 /* Return rtx that should be stored into loc field for
5219 LOC_NOTE and BITPOS/BITSIZE. */
5220
5221 static rtx
5222 construct_piece_list (rtx loc_note, HOST_WIDE_INT bitpos,
5223 HOST_WIDE_INT bitsize)
5224 {
5225 if (bitsize != -1)
5226 {
5227 loc_note = decl_piece_node (loc_note, bitsize, NULL_RTX);
5228 if (bitpos != 0)
5229 loc_note = decl_piece_node (NULL_RTX, bitpos, loc_note);
5230 }
5231 return loc_note;
5232 }
5233
5234 /* This function either modifies location piece list *DEST in
5235 place (if SRC and INNER is NULL), or copies location piece list
5236 *SRC to *DEST while modifying it. Location BITPOS is modified
5237 to contain LOC_NOTE, any pieces overlapping it are removed resp.
5238 not copied and if needed some padding around it is added.
5239 When modifying in place, DEST should point to EXPR_LIST where
5240 earlier pieces cover PIECE_BITPOS bits, when copying SRC points
5241 to the start of the whole list and INNER points to the EXPR_LIST
5242 where earlier pieces cover PIECE_BITPOS bits. */
5243
5244 static void
5245 adjust_piece_list (rtx *dest, rtx *src, rtx *inner,
5246 HOST_WIDE_INT bitpos, HOST_WIDE_INT piece_bitpos,
5247 HOST_WIDE_INT bitsize, rtx loc_note)
5248 {
5249 int diff;
5250 bool copy = inner != NULL;
5251
5252 if (copy)
5253 {
5254 /* First copy all nodes preceeding the current bitpos. */
5255 while (src != inner)
5256 {
5257 *dest = decl_piece_node (*decl_piece_varloc_ptr (*src),
5258 decl_piece_bitsize (*src), NULL_RTX);
5259 dest = &XEXP (*dest, 1);
5260 src = &XEXP (*src, 1);
5261 }
5262 }
5263 /* Add padding if needed. */
5264 if (bitpos != piece_bitpos)
5265 {
5266 *dest = decl_piece_node (NULL_RTX, bitpos - piece_bitpos,
5267 copy ? NULL_RTX : *dest);
5268 dest = &XEXP (*dest, 1);
5269 }
5270 else if (*dest && decl_piece_bitsize (*dest) == bitsize)
5271 {
5272 gcc_assert (!copy);
5273 /* A piece with correct bitpos and bitsize already exist,
5274 just update the location for it and return. */
5275 *decl_piece_varloc_ptr (*dest) = loc_note;
5276 return;
5277 }
5278 /* Add the piece that changed. */
5279 *dest = decl_piece_node (loc_note, bitsize, copy ? NULL_RTX : *dest);
5280 dest = &XEXP (*dest, 1);
5281 /* Skip over pieces that overlap it. */
5282 diff = bitpos - piece_bitpos + bitsize;
5283 if (!copy)
5284 src = dest;
5285 while (diff > 0 && *src)
5286 {
5287 rtx piece = *src;
5288 diff -= decl_piece_bitsize (piece);
5289 if (copy)
5290 src = &XEXP (piece, 1);
5291 else
5292 {
5293 *src = XEXP (piece, 1);
5294 free_EXPR_LIST_node (piece);
5295 }
5296 }
5297 /* Add padding if needed. */
5298 if (diff < 0 && *src)
5299 {
5300 if (!copy)
5301 dest = src;
5302 *dest = decl_piece_node (NULL_RTX, -diff, copy ? NULL_RTX : *dest);
5303 dest = &XEXP (*dest, 1);
5304 }
5305 if (!copy)
5306 return;
5307 /* Finally copy all nodes following it. */
5308 while (*src)
5309 {
5310 *dest = decl_piece_node (*decl_piece_varloc_ptr (*src),
5311 decl_piece_bitsize (*src), NULL_RTX);
5312 dest = &XEXP (*dest, 1);
5313 src = &XEXP (*src, 1);
5314 }
5315 }
5316
5317 /* Add a variable location node to the linked list for DECL. */
5318
5319 static struct var_loc_node *
5320 add_var_loc_to_decl (tree decl, rtx loc_note, const char *label)
5321 {
5322 unsigned int decl_id;
5323 var_loc_list *temp;
5324 void **slot;
5325 struct var_loc_node *loc = NULL;
5326 HOST_WIDE_INT bitsize = -1, bitpos = -1;
5327
5328 if (DECL_DEBUG_EXPR_IS_FROM (decl))
5329 {
5330 tree realdecl = DECL_DEBUG_EXPR (decl);
5331 if (realdecl && handled_component_p (realdecl))
5332 {
5333 HOST_WIDE_INT maxsize;
5334 tree innerdecl;
5335 innerdecl
5336 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize, &maxsize);
5337 if (!DECL_P (innerdecl)
5338 || DECL_IGNORED_P (innerdecl)
5339 || TREE_STATIC (innerdecl)
5340 || bitsize <= 0
5341 || bitpos + bitsize > 256
5342 || bitsize != maxsize)
5343 return NULL;
5344 decl = innerdecl;
5345 }
5346 }
5347
5348 decl_id = DECL_UID (decl);
5349 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5350 if (*slot == NULL)
5351 {
5352 temp = ggc_alloc_cleared_var_loc_list ();
5353 temp->decl_id = decl_id;
5354 *slot = temp;
5355 }
5356 else
5357 temp = (var_loc_list *) *slot;
5358
5359 /* For PARM_DECLs try to keep around the original incoming value,
5360 even if that means we'll emit a zero-range .debug_loc entry. */
5361 if (temp->last
5362 && temp->first == temp->last
5363 && TREE_CODE (decl) == PARM_DECL
5364 && GET_CODE (temp->first->loc) == NOTE
5365 && NOTE_VAR_LOCATION_DECL (temp->first->loc) == decl
5366 && DECL_INCOMING_RTL (decl)
5367 && NOTE_VAR_LOCATION_LOC (temp->first->loc)
5368 && GET_CODE (NOTE_VAR_LOCATION_LOC (temp->first->loc))
5369 == GET_CODE (DECL_INCOMING_RTL (decl))
5370 && prev_real_insn (temp->first->loc) == NULL_RTX
5371 && (bitsize != -1
5372 || !rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->first->loc),
5373 NOTE_VAR_LOCATION_LOC (loc_note))
5374 || (NOTE_VAR_LOCATION_STATUS (temp->first->loc)
5375 != NOTE_VAR_LOCATION_STATUS (loc_note))))
5376 {
5377 loc = ggc_alloc_cleared_var_loc_node ();
5378 temp->first->next = loc;
5379 temp->last = loc;
5380 loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
5381 }
5382 else if (temp->last)
5383 {
5384 struct var_loc_node *last = temp->last, *unused = NULL;
5385 rtx *piece_loc = NULL, last_loc_note;
5386 int piece_bitpos = 0;
5387 if (last->next)
5388 {
5389 last = last->next;
5390 gcc_assert (last->next == NULL);
5391 }
5392 if (bitsize != -1 && GET_CODE (last->loc) == EXPR_LIST)
5393 {
5394 piece_loc = &last->loc;
5395 do
5396 {
5397 int cur_bitsize = decl_piece_bitsize (*piece_loc);
5398 if (piece_bitpos + cur_bitsize > bitpos)
5399 break;
5400 piece_bitpos += cur_bitsize;
5401 piece_loc = &XEXP (*piece_loc, 1);
5402 }
5403 while (*piece_loc);
5404 }
5405 /* TEMP->LAST here is either pointer to the last but one or
5406 last element in the chained list, LAST is pointer to the
5407 last element. */
5408 if (label && strcmp (last->label, label) == 0)
5409 {
5410 /* For SRA optimized variables if there weren't any real
5411 insns since last note, just modify the last node. */
5412 if (piece_loc != NULL)
5413 {
5414 adjust_piece_list (piece_loc, NULL, NULL,
5415 bitpos, piece_bitpos, bitsize, loc_note);
5416 return NULL;
5417 }
5418 /* If the last note doesn't cover any instructions, remove it. */
5419 if (temp->last != last)
5420 {
5421 temp->last->next = NULL;
5422 unused = last;
5423 last = temp->last;
5424 gcc_assert (strcmp (last->label, label) != 0);
5425 }
5426 else
5427 {
5428 gcc_assert (temp->first == temp->last
5429 || (temp->first->next == temp->last
5430 && TREE_CODE (decl) == PARM_DECL));
5431 memset (temp->last, '\0', sizeof (*temp->last));
5432 temp->last->loc = construct_piece_list (loc_note, bitpos, bitsize);
5433 return temp->last;
5434 }
5435 }
5436 if (bitsize == -1 && NOTE_P (last->loc))
5437 last_loc_note = last->loc;
5438 else if (piece_loc != NULL
5439 && *piece_loc != NULL_RTX
5440 && piece_bitpos == bitpos
5441 && decl_piece_bitsize (*piece_loc) == bitsize)
5442 last_loc_note = *decl_piece_varloc_ptr (*piece_loc);
5443 else
5444 last_loc_note = NULL_RTX;
5445 /* If the current location is the same as the end of the list,
5446 and either both or neither of the locations is uninitialized,
5447 we have nothing to do. */
5448 if (last_loc_note == NULL_RTX
5449 || (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (last_loc_note),
5450 NOTE_VAR_LOCATION_LOC (loc_note)))
5451 || ((NOTE_VAR_LOCATION_STATUS (last_loc_note)
5452 != NOTE_VAR_LOCATION_STATUS (loc_note))
5453 && ((NOTE_VAR_LOCATION_STATUS (last_loc_note)
5454 == VAR_INIT_STATUS_UNINITIALIZED)
5455 || (NOTE_VAR_LOCATION_STATUS (loc_note)
5456 == VAR_INIT_STATUS_UNINITIALIZED))))
5457 {
5458 /* Add LOC to the end of list and update LAST. If the last
5459 element of the list has been removed above, reuse its
5460 memory for the new node, otherwise allocate a new one. */
5461 if (unused)
5462 {
5463 loc = unused;
5464 memset (loc, '\0', sizeof (*loc));
5465 }
5466 else
5467 loc = ggc_alloc_cleared_var_loc_node ();
5468 if (bitsize == -1 || piece_loc == NULL)
5469 loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
5470 else
5471 adjust_piece_list (&loc->loc, &last->loc, piece_loc,
5472 bitpos, piece_bitpos, bitsize, loc_note);
5473 last->next = loc;
5474 /* Ensure TEMP->LAST will point either to the new last but one
5475 element of the chain, or to the last element in it. */
5476 if (last != temp->last)
5477 temp->last = last;
5478 }
5479 else if (unused)
5480 ggc_free (unused);
5481 }
5482 else
5483 {
5484 loc = ggc_alloc_cleared_var_loc_node ();
5485 temp->first = loc;
5486 temp->last = loc;
5487 loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
5488 }
5489 return loc;
5490 }
5491 \f
5492 /* Keep track of the number of spaces used to indent the
5493 output of the debugging routines that print the structure of
5494 the DIE internal representation. */
5495 static int print_indent;
5496
5497 /* Indent the line the number of spaces given by print_indent. */
5498
5499 static inline void
5500 print_spaces (FILE *outfile)
5501 {
5502 fprintf (outfile, "%*s", print_indent, "");
5503 }
5504
5505 /* Print a type signature in hex. */
5506
5507 static inline void
5508 print_signature (FILE *outfile, char *sig)
5509 {
5510 int i;
5511
5512 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
5513 fprintf (outfile, "%02x", sig[i] & 0xff);
5514 }
5515
5516 /* Print the information associated with a given DIE, and its children.
5517 This routine is a debugging aid only. */
5518
5519 static void
5520 print_die (dw_die_ref die, FILE *outfile)
5521 {
5522 dw_attr_ref a;
5523 dw_die_ref c;
5524 unsigned ix;
5525
5526 print_spaces (outfile);
5527 fprintf (outfile, "DIE %4ld: %s (%p)\n",
5528 die->die_offset, dwarf_tag_name (die->die_tag),
5529 (void*) die);
5530 print_spaces (outfile);
5531 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5532 fprintf (outfile, " offset: %ld", die->die_offset);
5533 fprintf (outfile, " mark: %d\n", die->die_mark);
5534
5535 if (use_debug_types && die->die_id.die_type_node)
5536 {
5537 print_spaces (outfile);
5538 fprintf (outfile, " signature: ");
5539 print_signature (outfile, die->die_id.die_type_node->signature);
5540 fprintf (outfile, "\n");
5541 }
5542
5543 FOR_EACH_VEC_ELT (dw_attr_node, die->die_attr, ix, a)
5544 {
5545 print_spaces (outfile);
5546 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5547
5548 switch (AT_class (a))
5549 {
5550 case dw_val_class_addr:
5551 fprintf (outfile, "address");
5552 break;
5553 case dw_val_class_offset:
5554 fprintf (outfile, "offset");
5555 break;
5556 case dw_val_class_loc:
5557 fprintf (outfile, "location descriptor");
5558 break;
5559 case dw_val_class_loc_list:
5560 fprintf (outfile, "location list -> label:%s",
5561 AT_loc_list (a)->ll_symbol);
5562 break;
5563 case dw_val_class_range_list:
5564 fprintf (outfile, "range list");
5565 break;
5566 case dw_val_class_const:
5567 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5568 break;
5569 case dw_val_class_unsigned_const:
5570 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5571 break;
5572 case dw_val_class_const_double:
5573 fprintf (outfile, "constant ("HOST_WIDE_INT_PRINT_DEC","\
5574 HOST_WIDE_INT_PRINT_UNSIGNED")",
5575 a->dw_attr_val.v.val_double.high,
5576 a->dw_attr_val.v.val_double.low);
5577 break;
5578 case dw_val_class_vec:
5579 fprintf (outfile, "floating-point or vector constant");
5580 break;
5581 case dw_val_class_flag:
5582 fprintf (outfile, "%u", AT_flag (a));
5583 break;
5584 case dw_val_class_die_ref:
5585 if (AT_ref (a) != NULL)
5586 {
5587 if (use_debug_types && AT_ref (a)->die_id.die_type_node)
5588 {
5589 fprintf (outfile, "die -> signature: ");
5590 print_signature (outfile,
5591 AT_ref (a)->die_id.die_type_node->signature);
5592 }
5593 else if (! use_debug_types && AT_ref (a)->die_id.die_symbol)
5594 fprintf (outfile, "die -> label: %s",
5595 AT_ref (a)->die_id.die_symbol);
5596 else
5597 fprintf (outfile, "die -> %ld", AT_ref (a)->die_offset);
5598 fprintf (outfile, " (%p)", (void *) AT_ref (a));
5599 }
5600 else
5601 fprintf (outfile, "die -> <null>");
5602 break;
5603 case dw_val_class_vms_delta:
5604 fprintf (outfile, "delta: @slotcount(%s-%s)",
5605 AT_vms_delta2 (a), AT_vms_delta1 (a));
5606 break;
5607 case dw_val_class_lbl_id:
5608 case dw_val_class_lineptr:
5609 case dw_val_class_macptr:
5610 fprintf (outfile, "label: %s", AT_lbl (a));
5611 break;
5612 case dw_val_class_str:
5613 if (AT_string (a) != NULL)
5614 fprintf (outfile, "\"%s\"", AT_string (a));
5615 else
5616 fprintf (outfile, "<null>");
5617 break;
5618 case dw_val_class_file:
5619 fprintf (outfile, "\"%s\" (%d)", AT_file (a)->filename,
5620 AT_file (a)->emitted_number);
5621 break;
5622 case dw_val_class_data8:
5623 {
5624 int i;
5625
5626 for (i = 0; i < 8; i++)
5627 fprintf (outfile, "%02x", a->dw_attr_val.v.val_data8[i]);
5628 break;
5629 }
5630 default:
5631 break;
5632 }
5633
5634 fprintf (outfile, "\n");
5635 }
5636
5637 if (die->die_child != NULL)
5638 {
5639 print_indent += 4;
5640 FOR_EACH_CHILD (die, c, print_die (c, outfile));
5641 print_indent -= 4;
5642 }
5643 if (print_indent == 0)
5644 fprintf (outfile, "\n");
5645 }
5646
5647 /* Print the information collected for a given DIE. */
5648
5649 DEBUG_FUNCTION void
5650 debug_dwarf_die (dw_die_ref die)
5651 {
5652 print_die (die, stderr);
5653 }
5654
5655 /* Print all DWARF information collected for the compilation unit.
5656 This routine is a debugging aid only. */
5657
5658 DEBUG_FUNCTION void
5659 debug_dwarf (void)
5660 {
5661 print_indent = 0;
5662 print_die (comp_unit_die (), stderr);
5663 }
5664 \f
5665 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5666 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5667 DIE that marks the start of the DIEs for this include file. */
5668
5669 static dw_die_ref
5670 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5671 {
5672 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5673 dw_die_ref new_unit = gen_compile_unit_die (filename);
5674
5675 new_unit->die_sib = old_unit;
5676 return new_unit;
5677 }
5678
5679 /* Close an include-file CU and reopen the enclosing one. */
5680
5681 static dw_die_ref
5682 pop_compile_unit (dw_die_ref old_unit)
5683 {
5684 dw_die_ref new_unit = old_unit->die_sib;
5685
5686 old_unit->die_sib = NULL;
5687 return new_unit;
5688 }
5689
5690 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5691 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5692
5693 /* Calculate the checksum of a location expression. */
5694
5695 static inline void
5696 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5697 {
5698 int tem;
5699
5700 tem = (loc->dtprel << 8) | ((unsigned int) loc->dw_loc_opc);
5701 CHECKSUM (tem);
5702 CHECKSUM (loc->dw_loc_oprnd1);
5703 CHECKSUM (loc->dw_loc_oprnd2);
5704 }
5705
5706 /* Calculate the checksum of an attribute. */
5707
5708 static void
5709 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5710 {
5711 dw_loc_descr_ref loc;
5712 rtx r;
5713
5714 CHECKSUM (at->dw_attr);
5715
5716 /* We don't care that this was compiled with a different compiler
5717 snapshot; if the output is the same, that's what matters. */
5718 if (at->dw_attr == DW_AT_producer)
5719 return;
5720
5721 switch (AT_class (at))
5722 {
5723 case dw_val_class_const:
5724 CHECKSUM (at->dw_attr_val.v.val_int);
5725 break;
5726 case dw_val_class_unsigned_const:
5727 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5728 break;
5729 case dw_val_class_const_double:
5730 CHECKSUM (at->dw_attr_val.v.val_double);
5731 break;
5732 case dw_val_class_vec:
5733 CHECKSUM (at->dw_attr_val.v.val_vec);
5734 break;
5735 case dw_val_class_flag:
5736 CHECKSUM (at->dw_attr_val.v.val_flag);
5737 break;
5738 case dw_val_class_str:
5739 CHECKSUM_STRING (AT_string (at));
5740 break;
5741
5742 case dw_val_class_addr:
5743 r = AT_addr (at);
5744 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5745 CHECKSUM_STRING (XSTR (r, 0));
5746 break;
5747
5748 case dw_val_class_offset:
5749 CHECKSUM (at->dw_attr_val.v.val_offset);
5750 break;
5751
5752 case dw_val_class_loc:
5753 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5754 loc_checksum (loc, ctx);
5755 break;
5756
5757 case dw_val_class_die_ref:
5758 die_checksum (AT_ref (at), ctx, mark);
5759 break;
5760
5761 case dw_val_class_fde_ref:
5762 case dw_val_class_vms_delta:
5763 case dw_val_class_lbl_id:
5764 case dw_val_class_lineptr:
5765 case dw_val_class_macptr:
5766 break;
5767
5768 case dw_val_class_file:
5769 CHECKSUM_STRING (AT_file (at)->filename);
5770 break;
5771
5772 case dw_val_class_data8:
5773 CHECKSUM (at->dw_attr_val.v.val_data8);
5774 break;
5775
5776 default:
5777 break;
5778 }
5779 }
5780
5781 /* Calculate the checksum of a DIE. */
5782
5783 static void
5784 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5785 {
5786 dw_die_ref c;
5787 dw_attr_ref a;
5788 unsigned ix;
5789
5790 /* To avoid infinite recursion. */
5791 if (die->die_mark)
5792 {
5793 CHECKSUM (die->die_mark);
5794 return;
5795 }
5796 die->die_mark = ++(*mark);
5797
5798 CHECKSUM (die->die_tag);
5799
5800 FOR_EACH_VEC_ELT (dw_attr_node, die->die_attr, ix, a)
5801 attr_checksum (a, ctx, mark);
5802
5803 FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
5804 }
5805
5806 #undef CHECKSUM
5807 #undef CHECKSUM_STRING
5808
5809 /* For DWARF-4 types, include the trailing NULL when checksumming strings. */
5810 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5811 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO) + 1, ctx)
5812 #define CHECKSUM_SLEB128(FOO) checksum_sleb128 ((FOO), ctx)
5813 #define CHECKSUM_ULEB128(FOO) checksum_uleb128 ((FOO), ctx)
5814 #define CHECKSUM_ATTR(FOO) \
5815 if (FOO) attr_checksum_ordered (die->die_tag, (FOO), ctx, mark)
5816
5817 /* Calculate the checksum of a number in signed LEB128 format. */
5818
5819 static void
5820 checksum_sleb128 (HOST_WIDE_INT value, struct md5_ctx *ctx)
5821 {
5822 unsigned char byte;
5823 bool more;
5824
5825 while (1)
5826 {
5827 byte = (value & 0x7f);
5828 value >>= 7;
5829 more = !((value == 0 && (byte & 0x40) == 0)
5830 || (value == -1 && (byte & 0x40) != 0));
5831 if (more)
5832 byte |= 0x80;
5833 CHECKSUM (byte);
5834 if (!more)
5835 break;
5836 }
5837 }
5838
5839 /* Calculate the checksum of a number in unsigned LEB128 format. */
5840
5841 static void
5842 checksum_uleb128 (unsigned HOST_WIDE_INT value, struct md5_ctx *ctx)
5843 {
5844 while (1)
5845 {
5846 unsigned char byte = (value & 0x7f);
5847 value >>= 7;
5848 if (value != 0)
5849 /* More bytes to follow. */
5850 byte |= 0x80;
5851 CHECKSUM (byte);
5852 if (value == 0)
5853 break;
5854 }
5855 }
5856
5857 /* Checksum the context of the DIE. This adds the names of any
5858 surrounding namespaces or structures to the checksum. */
5859
5860 static void
5861 checksum_die_context (dw_die_ref die, struct md5_ctx *ctx)
5862 {
5863 const char *name;
5864 dw_die_ref spec;
5865 int tag = die->die_tag;
5866
5867 if (tag != DW_TAG_namespace
5868 && tag != DW_TAG_structure_type
5869 && tag != DW_TAG_class_type)
5870 return;
5871
5872 name = get_AT_string (die, DW_AT_name);
5873
5874 spec = get_AT_ref (die, DW_AT_specification);
5875 if (spec != NULL)
5876 die = spec;
5877
5878 if (die->die_parent != NULL)
5879 checksum_die_context (die->die_parent, ctx);
5880
5881 CHECKSUM_ULEB128 ('C');
5882 CHECKSUM_ULEB128 (tag);
5883 if (name != NULL)
5884 CHECKSUM_STRING (name);
5885 }
5886
5887 /* Calculate the checksum of a location expression. */
5888
5889 static inline void
5890 loc_checksum_ordered (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5891 {
5892 /* Special case for lone DW_OP_plus_uconst: checksum as if the location
5893 were emitted as a DW_FORM_sdata instead of a location expression. */
5894 if (loc->dw_loc_opc == DW_OP_plus_uconst && loc->dw_loc_next == NULL)
5895 {
5896 CHECKSUM_ULEB128 (DW_FORM_sdata);
5897 CHECKSUM_SLEB128 ((HOST_WIDE_INT) loc->dw_loc_oprnd1.v.val_unsigned);
5898 return;
5899 }
5900
5901 /* Otherwise, just checksum the raw location expression. */
5902 while (loc != NULL)
5903 {
5904 CHECKSUM_ULEB128 (loc->dw_loc_opc);
5905 CHECKSUM (loc->dw_loc_oprnd1);
5906 CHECKSUM (loc->dw_loc_oprnd2);
5907 loc = loc->dw_loc_next;
5908 }
5909 }
5910
5911 /* Calculate the checksum of an attribute. */
5912
5913 static void
5914 attr_checksum_ordered (enum dwarf_tag tag, dw_attr_ref at,
5915 struct md5_ctx *ctx, int *mark)
5916 {
5917 dw_loc_descr_ref loc;
5918 rtx r;
5919
5920 if (AT_class (at) == dw_val_class_die_ref)
5921 {
5922 dw_die_ref target_die = AT_ref (at);
5923
5924 /* For pointer and reference types, we checksum only the (qualified)
5925 name of the target type (if there is a name). For friend entries,
5926 we checksum only the (qualified) name of the target type or function.
5927 This allows the checksum to remain the same whether the target type
5928 is complete or not. */
5929 if ((at->dw_attr == DW_AT_type
5930 && (tag == DW_TAG_pointer_type
5931 || tag == DW_TAG_reference_type
5932 || tag == DW_TAG_rvalue_reference_type
5933 || tag == DW_TAG_ptr_to_member_type))
5934 || (at->dw_attr == DW_AT_friend
5935 && tag == DW_TAG_friend))
5936 {
5937 dw_attr_ref name_attr = get_AT (target_die, DW_AT_name);
5938
5939 if (name_attr != NULL)
5940 {
5941 dw_die_ref decl = get_AT_ref (target_die, DW_AT_specification);
5942
5943 if (decl == NULL)
5944 decl = target_die;
5945 CHECKSUM_ULEB128 ('N');
5946 CHECKSUM_ULEB128 (at->dw_attr);
5947 if (decl->die_parent != NULL)
5948 checksum_die_context (decl->die_parent, ctx);
5949 CHECKSUM_ULEB128 ('E');
5950 CHECKSUM_STRING (AT_string (name_attr));
5951 return;
5952 }
5953 }
5954
5955 /* For all other references to another DIE, we check to see if the
5956 target DIE has already been visited. If it has, we emit a
5957 backward reference; if not, we descend recursively. */
5958 if (target_die->die_mark > 0)
5959 {
5960 CHECKSUM_ULEB128 ('R');
5961 CHECKSUM_ULEB128 (at->dw_attr);
5962 CHECKSUM_ULEB128 (target_die->die_mark);
5963 }
5964 else
5965 {
5966 dw_die_ref decl = get_AT_ref (target_die, DW_AT_specification);
5967
5968 if (decl == NULL)
5969 decl = target_die;
5970 target_die->die_mark = ++(*mark);
5971 CHECKSUM_ULEB128 ('T');
5972 CHECKSUM_ULEB128 (at->dw_attr);
5973 if (decl->die_parent != NULL)
5974 checksum_die_context (decl->die_parent, ctx);
5975 die_checksum_ordered (target_die, ctx, mark);
5976 }
5977 return;
5978 }
5979
5980 CHECKSUM_ULEB128 ('A');
5981 CHECKSUM_ULEB128 (at->dw_attr);
5982
5983 switch (AT_class (at))
5984 {
5985 case dw_val_class_const:
5986 CHECKSUM_ULEB128 (DW_FORM_sdata);
5987 CHECKSUM_SLEB128 (at->dw_attr_val.v.val_int);
5988 break;
5989
5990 case dw_val_class_unsigned_const:
5991 CHECKSUM_ULEB128 (DW_FORM_sdata);
5992 CHECKSUM_SLEB128 ((int) at->dw_attr_val.v.val_unsigned);
5993 break;
5994
5995 case dw_val_class_const_double:
5996 CHECKSUM_ULEB128 (DW_FORM_block);
5997 CHECKSUM_ULEB128 (sizeof (at->dw_attr_val.v.val_double));
5998 CHECKSUM (at->dw_attr_val.v.val_double);
5999 break;
6000
6001 case dw_val_class_vec:
6002 CHECKSUM_ULEB128 (DW_FORM_block);
6003 CHECKSUM_ULEB128 (sizeof (at->dw_attr_val.v.val_vec));
6004 CHECKSUM (at->dw_attr_val.v.val_vec);
6005 break;
6006
6007 case dw_val_class_flag:
6008 CHECKSUM_ULEB128 (DW_FORM_flag);
6009 CHECKSUM_ULEB128 (at->dw_attr_val.v.val_flag ? 1 : 0);
6010 break;
6011
6012 case dw_val_class_str:
6013 CHECKSUM_ULEB128 (DW_FORM_string);
6014 CHECKSUM_STRING (AT_string (at));
6015 break;
6016
6017 case dw_val_class_addr:
6018 r = AT_addr (at);
6019 gcc_assert (GET_CODE (r) == SYMBOL_REF);
6020 CHECKSUM_ULEB128 (DW_FORM_string);
6021 CHECKSUM_STRING (XSTR (r, 0));
6022 break;
6023
6024 case dw_val_class_offset:
6025 CHECKSUM_ULEB128 (DW_FORM_sdata);
6026 CHECKSUM_ULEB128 (at->dw_attr_val.v.val_offset);
6027 break;
6028
6029 case dw_val_class_loc:
6030 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
6031 loc_checksum_ordered (loc, ctx);
6032 break;
6033
6034 case dw_val_class_fde_ref:
6035 case dw_val_class_lbl_id:
6036 case dw_val_class_lineptr:
6037 case dw_val_class_macptr:
6038 break;
6039
6040 case dw_val_class_file:
6041 CHECKSUM_ULEB128 (DW_FORM_string);
6042 CHECKSUM_STRING (AT_file (at)->filename);
6043 break;
6044
6045 case dw_val_class_data8:
6046 CHECKSUM (at->dw_attr_val.v.val_data8);
6047 break;
6048
6049 default:
6050 break;
6051 }
6052 }
6053
6054 struct checksum_attributes
6055 {
6056 dw_attr_ref at_name;
6057 dw_attr_ref at_type;
6058 dw_attr_ref at_friend;
6059 dw_attr_ref at_accessibility;
6060 dw_attr_ref at_address_class;
6061 dw_attr_ref at_allocated;
6062 dw_attr_ref at_artificial;
6063 dw_attr_ref at_associated;
6064 dw_attr_ref at_binary_scale;
6065 dw_attr_ref at_bit_offset;
6066 dw_attr_ref at_bit_size;
6067 dw_attr_ref at_bit_stride;
6068 dw_attr_ref at_byte_size;
6069 dw_attr_ref at_byte_stride;
6070 dw_attr_ref at_const_value;
6071 dw_attr_ref at_containing_type;
6072 dw_attr_ref at_count;
6073 dw_attr_ref at_data_location;
6074 dw_attr_ref at_data_member_location;
6075 dw_attr_ref at_decimal_scale;
6076 dw_attr_ref at_decimal_sign;
6077 dw_attr_ref at_default_value;
6078 dw_attr_ref at_digit_count;
6079 dw_attr_ref at_discr;
6080 dw_attr_ref at_discr_list;
6081 dw_attr_ref at_discr_value;
6082 dw_attr_ref at_encoding;
6083 dw_attr_ref at_endianity;
6084 dw_attr_ref at_explicit;
6085 dw_attr_ref at_is_optional;
6086 dw_attr_ref at_location;
6087 dw_attr_ref at_lower_bound;
6088 dw_attr_ref at_mutable;
6089 dw_attr_ref at_ordering;
6090 dw_attr_ref at_picture_string;
6091 dw_attr_ref at_prototyped;
6092 dw_attr_ref at_small;
6093 dw_attr_ref at_segment;
6094 dw_attr_ref at_string_length;
6095 dw_attr_ref at_threads_scaled;
6096 dw_attr_ref at_upper_bound;
6097 dw_attr_ref at_use_location;
6098 dw_attr_ref at_use_UTF8;
6099 dw_attr_ref at_variable_parameter;
6100 dw_attr_ref at_virtuality;
6101 dw_attr_ref at_visibility;
6102 dw_attr_ref at_vtable_elem_location;
6103 };
6104
6105 /* Collect the attributes that we will want to use for the checksum. */
6106
6107 static void
6108 collect_checksum_attributes (struct checksum_attributes *attrs, dw_die_ref die)
6109 {
6110 dw_attr_ref a;
6111 unsigned ix;
6112
6113 FOR_EACH_VEC_ELT (dw_attr_node, die->die_attr, ix, a)
6114 {
6115 switch (a->dw_attr)
6116 {
6117 case DW_AT_name:
6118 attrs->at_name = a;
6119 break;
6120 case DW_AT_type:
6121 attrs->at_type = a;
6122 break;
6123 case DW_AT_friend:
6124 attrs->at_friend = a;
6125 break;
6126 case DW_AT_accessibility:
6127 attrs->at_accessibility = a;
6128 break;
6129 case DW_AT_address_class:
6130 attrs->at_address_class = a;
6131 break;
6132 case DW_AT_allocated:
6133 attrs->at_allocated = a;
6134 break;
6135 case DW_AT_artificial:
6136 attrs->at_artificial = a;
6137 break;
6138 case DW_AT_associated:
6139 attrs->at_associated = a;
6140 break;
6141 case DW_AT_binary_scale:
6142 attrs->at_binary_scale = a;
6143 break;
6144 case DW_AT_bit_offset:
6145 attrs->at_bit_offset = a;
6146 break;
6147 case DW_AT_bit_size:
6148 attrs->at_bit_size = a;
6149 break;
6150 case DW_AT_bit_stride:
6151 attrs->at_bit_stride = a;
6152 break;
6153 case DW_AT_byte_size:
6154 attrs->at_byte_size = a;
6155 break;
6156 case DW_AT_byte_stride:
6157 attrs->at_byte_stride = a;
6158 break;
6159 case DW_AT_const_value:
6160 attrs->at_const_value = a;
6161 break;
6162 case DW_AT_containing_type:
6163 attrs->at_containing_type = a;
6164 break;
6165 case DW_AT_count:
6166 attrs->at_count = a;
6167 break;
6168 case DW_AT_data_location:
6169 attrs->at_data_location = a;
6170 break;
6171 case DW_AT_data_member_location:
6172 attrs->at_data_member_location = a;
6173 break;
6174 case DW_AT_decimal_scale:
6175 attrs->at_decimal_scale = a;
6176 break;
6177 case DW_AT_decimal_sign:
6178 attrs->at_decimal_sign = a;
6179 break;
6180 case DW_AT_default_value:
6181 attrs->at_default_value = a;
6182 break;
6183 case DW_AT_digit_count:
6184 attrs->at_digit_count = a;
6185 break;
6186 case DW_AT_discr:
6187 attrs->at_discr = a;
6188 break;
6189 case DW_AT_discr_list:
6190 attrs->at_discr_list = a;
6191 break;
6192 case DW_AT_discr_value:
6193 attrs->at_discr_value = a;
6194 break;
6195 case DW_AT_encoding:
6196 attrs->at_encoding = a;
6197 break;
6198 case DW_AT_endianity:
6199 attrs->at_endianity = a;
6200 break;
6201 case DW_AT_explicit:
6202 attrs->at_explicit = a;
6203 break;
6204 case DW_AT_is_optional:
6205 attrs->at_is_optional = a;
6206 break;
6207 case DW_AT_location:
6208 attrs->at_location = a;
6209 break;
6210 case DW_AT_lower_bound:
6211 attrs->at_lower_bound = a;
6212 break;
6213 case DW_AT_mutable:
6214 attrs->at_mutable = a;
6215 break;
6216 case DW_AT_ordering:
6217 attrs->at_ordering = a;
6218 break;
6219 case DW_AT_picture_string:
6220 attrs->at_picture_string = a;
6221 break;
6222 case DW_AT_prototyped:
6223 attrs->at_prototyped = a;
6224 break;
6225 case DW_AT_small:
6226 attrs->at_small = a;
6227 break;
6228 case DW_AT_segment:
6229 attrs->at_segment = a;
6230 break;
6231 case DW_AT_string_length:
6232 attrs->at_string_length = a;
6233 break;
6234 case DW_AT_threads_scaled:
6235 attrs->at_threads_scaled = a;
6236 break;
6237 case DW_AT_upper_bound:
6238 attrs->at_upper_bound = a;
6239 break;
6240 case DW_AT_use_location:
6241 attrs->at_use_location = a;
6242 break;
6243 case DW_AT_use_UTF8:
6244 attrs->at_use_UTF8 = a;
6245 break;
6246 case DW_AT_variable_parameter:
6247 attrs->at_variable_parameter = a;
6248 break;
6249 case DW_AT_virtuality:
6250 attrs->at_virtuality = a;
6251 break;
6252 case DW_AT_visibility:
6253 attrs->at_visibility = a;
6254 break;
6255 case DW_AT_vtable_elem_location:
6256 attrs->at_vtable_elem_location = a;
6257 break;
6258 default:
6259 break;
6260 }
6261 }
6262 }
6263
6264 /* Calculate the checksum of a DIE, using an ordered subset of attributes. */
6265
6266 static void
6267 die_checksum_ordered (dw_die_ref die, struct md5_ctx *ctx, int *mark)
6268 {
6269 dw_die_ref c;
6270 dw_die_ref decl;
6271 struct checksum_attributes attrs;
6272
6273 CHECKSUM_ULEB128 ('D');
6274 CHECKSUM_ULEB128 (die->die_tag);
6275
6276 memset (&attrs, 0, sizeof (attrs));
6277
6278 decl = get_AT_ref (die, DW_AT_specification);
6279 if (decl != NULL)
6280 collect_checksum_attributes (&attrs, decl);
6281 collect_checksum_attributes (&attrs, die);
6282
6283 CHECKSUM_ATTR (attrs.at_name);
6284 CHECKSUM_ATTR (attrs.at_accessibility);
6285 CHECKSUM_ATTR (attrs.at_address_class);
6286 CHECKSUM_ATTR (attrs.at_allocated);
6287 CHECKSUM_ATTR (attrs.at_artificial);
6288 CHECKSUM_ATTR (attrs.at_associated);
6289 CHECKSUM_ATTR (attrs.at_binary_scale);
6290 CHECKSUM_ATTR (attrs.at_bit_offset);
6291 CHECKSUM_ATTR (attrs.at_bit_size);
6292 CHECKSUM_ATTR (attrs.at_bit_stride);
6293 CHECKSUM_ATTR (attrs.at_byte_size);
6294 CHECKSUM_ATTR (attrs.at_byte_stride);
6295 CHECKSUM_ATTR (attrs.at_const_value);
6296 CHECKSUM_ATTR (attrs.at_containing_type);
6297 CHECKSUM_ATTR (attrs.at_count);
6298 CHECKSUM_ATTR (attrs.at_data_location);
6299 CHECKSUM_ATTR (attrs.at_data_member_location);
6300 CHECKSUM_ATTR (attrs.at_decimal_scale);
6301 CHECKSUM_ATTR (attrs.at_decimal_sign);
6302 CHECKSUM_ATTR (attrs.at_default_value);
6303 CHECKSUM_ATTR (attrs.at_digit_count);
6304 CHECKSUM_ATTR (attrs.at_discr);
6305 CHECKSUM_ATTR (attrs.at_discr_list);
6306 CHECKSUM_ATTR (attrs.at_discr_value);
6307 CHECKSUM_ATTR (attrs.at_encoding);
6308 CHECKSUM_ATTR (attrs.at_endianity);
6309 CHECKSUM_ATTR (attrs.at_explicit);
6310 CHECKSUM_ATTR (attrs.at_is_optional);
6311 CHECKSUM_ATTR (attrs.at_location);
6312 CHECKSUM_ATTR (attrs.at_lower_bound);
6313 CHECKSUM_ATTR (attrs.at_mutable);
6314 CHECKSUM_ATTR (attrs.at_ordering);
6315 CHECKSUM_ATTR (attrs.at_picture_string);
6316 CHECKSUM_ATTR (attrs.at_prototyped);
6317 CHECKSUM_ATTR (attrs.at_small);
6318 CHECKSUM_ATTR (attrs.at_segment);
6319 CHECKSUM_ATTR (attrs.at_string_length);
6320 CHECKSUM_ATTR (attrs.at_threads_scaled);
6321 CHECKSUM_ATTR (attrs.at_upper_bound);
6322 CHECKSUM_ATTR (attrs.at_use_location);
6323 CHECKSUM_ATTR (attrs.at_use_UTF8);
6324 CHECKSUM_ATTR (attrs.at_variable_parameter);
6325 CHECKSUM_ATTR (attrs.at_virtuality);
6326 CHECKSUM_ATTR (attrs.at_visibility);
6327 CHECKSUM_ATTR (attrs.at_vtable_elem_location);
6328 CHECKSUM_ATTR (attrs.at_type);
6329 CHECKSUM_ATTR (attrs.at_friend);
6330
6331 /* Checksum the child DIEs, except for nested types and member functions. */
6332 c = die->die_child;
6333 if (c) do {
6334 dw_attr_ref name_attr;
6335
6336 c = c->die_sib;
6337 name_attr = get_AT (c, DW_AT_name);
6338 if ((is_type_die (c) || c->die_tag == DW_TAG_subprogram)
6339 && name_attr != NULL)
6340 {
6341 CHECKSUM_ULEB128 ('S');
6342 CHECKSUM_ULEB128 (c->die_tag);
6343 CHECKSUM_STRING (AT_string (name_attr));
6344 }
6345 else
6346 {
6347 /* Mark this DIE so it gets processed when unmarking. */
6348 if (c->die_mark == 0)
6349 c->die_mark = -1;
6350 die_checksum_ordered (c, ctx, mark);
6351 }
6352 } while (c != die->die_child);
6353
6354 CHECKSUM_ULEB128 (0);
6355 }
6356
6357 #undef CHECKSUM
6358 #undef CHECKSUM_STRING
6359 #undef CHECKSUM_ATTR
6360 #undef CHECKSUM_LEB128
6361 #undef CHECKSUM_ULEB128
6362
6363 /* Generate the type signature for DIE. This is computed by generating an
6364 MD5 checksum over the DIE's tag, its relevant attributes, and its
6365 children. Attributes that are references to other DIEs are processed
6366 by recursion, using the MARK field to prevent infinite recursion.
6367 If the DIE is nested inside a namespace or another type, we also
6368 need to include that context in the signature. The lower 64 bits
6369 of the resulting MD5 checksum comprise the signature. */
6370
6371 static void
6372 generate_type_signature (dw_die_ref die, comdat_type_node *type_node)
6373 {
6374 int mark;
6375 const char *name;
6376 unsigned char checksum[16];
6377 struct md5_ctx ctx;
6378 dw_die_ref decl;
6379
6380 name = get_AT_string (die, DW_AT_name);
6381 decl = get_AT_ref (die, DW_AT_specification);
6382
6383 /* First, compute a signature for just the type name (and its surrounding
6384 context, if any. This is stored in the type unit DIE for link-time
6385 ODR (one-definition rule) checking. */
6386
6387 if (is_cxx() && name != NULL)
6388 {
6389 md5_init_ctx (&ctx);
6390
6391 /* Checksum the names of surrounding namespaces and structures. */
6392 if (decl != NULL && decl->die_parent != NULL)
6393 checksum_die_context (decl->die_parent, &ctx);
6394
6395 md5_process_bytes (&die->die_tag, sizeof (die->die_tag), &ctx);
6396 md5_process_bytes (name, strlen (name) + 1, &ctx);
6397 md5_finish_ctx (&ctx, checksum);
6398
6399 add_AT_data8 (type_node->root_die, DW_AT_GNU_odr_signature, &checksum[8]);
6400 }
6401
6402 /* Next, compute the complete type signature. */
6403
6404 md5_init_ctx (&ctx);
6405 mark = 1;
6406 die->die_mark = mark;
6407
6408 /* Checksum the names of surrounding namespaces and structures. */
6409 if (decl != NULL && decl->die_parent != NULL)
6410 checksum_die_context (decl->die_parent, &ctx);
6411
6412 /* Checksum the DIE and its children. */
6413 die_checksum_ordered (die, &ctx, &mark);
6414 unmark_all_dies (die);
6415 md5_finish_ctx (&ctx, checksum);
6416
6417 /* Store the signature in the type node and link the type DIE and the
6418 type node together. */
6419 memcpy (type_node->signature, &checksum[16 - DWARF_TYPE_SIGNATURE_SIZE],
6420 DWARF_TYPE_SIGNATURE_SIZE);
6421 die->die_id.die_type_node = type_node;
6422 type_node->type_die = die;
6423
6424 /* If the DIE is a specification, link its declaration to the type node
6425 as well. */
6426 if (decl != NULL)
6427 decl->die_id.die_type_node = type_node;
6428 }
6429
6430 /* Do the location expressions look same? */
6431 static inline int
6432 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
6433 {
6434 return loc1->dw_loc_opc == loc2->dw_loc_opc
6435 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
6436 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
6437 }
6438
6439 /* Do the values look the same? */
6440 static int
6441 same_dw_val_p (const dw_val_node *v1, const dw_val_node *v2, int *mark)
6442 {
6443 dw_loc_descr_ref loc1, loc2;
6444 rtx r1, r2;
6445
6446 if (v1->val_class != v2->val_class)
6447 return 0;
6448
6449 switch (v1->val_class)
6450 {
6451 case dw_val_class_const:
6452 return v1->v.val_int == v2->v.val_int;
6453 case dw_val_class_unsigned_const:
6454 return v1->v.val_unsigned == v2->v.val_unsigned;
6455 case dw_val_class_const_double:
6456 return v1->v.val_double.high == v2->v.val_double.high
6457 && v1->v.val_double.low == v2->v.val_double.low;
6458 case dw_val_class_vec:
6459 if (v1->v.val_vec.length != v2->v.val_vec.length
6460 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
6461 return 0;
6462 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
6463 v1->v.val_vec.length * v1->v.val_vec.elt_size))
6464 return 0;
6465 return 1;
6466 case dw_val_class_flag:
6467 return v1->v.val_flag == v2->v.val_flag;
6468 case dw_val_class_str:
6469 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
6470
6471 case dw_val_class_addr:
6472 r1 = v1->v.val_addr;
6473 r2 = v2->v.val_addr;
6474 if (GET_CODE (r1) != GET_CODE (r2))
6475 return 0;
6476 return !rtx_equal_p (r1, r2);
6477
6478 case dw_val_class_offset:
6479 return v1->v.val_offset == v2->v.val_offset;
6480
6481 case dw_val_class_loc:
6482 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6483 loc1 && loc2;
6484 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6485 if (!same_loc_p (loc1, loc2, mark))
6486 return 0;
6487 return !loc1 && !loc2;
6488
6489 case dw_val_class_die_ref:
6490 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6491
6492 case dw_val_class_fde_ref:
6493 case dw_val_class_vms_delta:
6494 case dw_val_class_lbl_id:
6495 case dw_val_class_lineptr:
6496 case dw_val_class_macptr:
6497 return 1;
6498
6499 case dw_val_class_file:
6500 return v1->v.val_file == v2->v.val_file;
6501
6502 case dw_val_class_data8:
6503 return !memcmp (v1->v.val_data8, v2->v.val_data8, 8);
6504
6505 default:
6506 return 1;
6507 }
6508 }
6509
6510 /* Do the attributes look the same? */
6511
6512 static int
6513 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
6514 {
6515 if (at1->dw_attr != at2->dw_attr)
6516 return 0;
6517
6518 /* We don't care that this was compiled with a different compiler
6519 snapshot; if the output is the same, that's what matters. */
6520 if (at1->dw_attr == DW_AT_producer)
6521 return 1;
6522
6523 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6524 }
6525
6526 /* Do the dies look the same? */
6527
6528 static int
6529 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6530 {
6531 dw_die_ref c1, c2;
6532 dw_attr_ref a1;
6533 unsigned ix;
6534
6535 /* To avoid infinite recursion. */
6536 if (die1->die_mark)
6537 return die1->die_mark == die2->die_mark;
6538 die1->die_mark = die2->die_mark = ++(*mark);
6539
6540 if (die1->die_tag != die2->die_tag)
6541 return 0;
6542
6543 if (VEC_length (dw_attr_node, die1->die_attr)
6544 != VEC_length (dw_attr_node, die2->die_attr))
6545 return 0;
6546
6547 FOR_EACH_VEC_ELT (dw_attr_node, die1->die_attr, ix, a1)
6548 if (!same_attr_p (a1, VEC_index (dw_attr_node, die2->die_attr, ix), mark))
6549 return 0;
6550
6551 c1 = die1->die_child;
6552 c2 = die2->die_child;
6553 if (! c1)
6554 {
6555 if (c2)
6556 return 0;
6557 }
6558 else
6559 for (;;)
6560 {
6561 if (!same_die_p (c1, c2, mark))
6562 return 0;
6563 c1 = c1->die_sib;
6564 c2 = c2->die_sib;
6565 if (c1 == die1->die_child)
6566 {
6567 if (c2 == die2->die_child)
6568 break;
6569 else
6570 return 0;
6571 }
6572 }
6573
6574 return 1;
6575 }
6576
6577 /* Do the dies look the same? Wrapper around same_die_p. */
6578
6579 static int
6580 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6581 {
6582 int mark = 0;
6583 int ret = same_die_p (die1, die2, &mark);
6584
6585 unmark_all_dies (die1);
6586 unmark_all_dies (die2);
6587
6588 return ret;
6589 }
6590
6591 /* The prefix to attach to symbols on DIEs in the current comdat debug
6592 info section. */
6593 static char *comdat_symbol_id;
6594
6595 /* The index of the current symbol within the current comdat CU. */
6596 static unsigned int comdat_symbol_number;
6597
6598 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6599 children, and set comdat_symbol_id accordingly. */
6600
6601 static void
6602 compute_section_prefix (dw_die_ref unit_die)
6603 {
6604 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6605 const char *base = die_name ? lbasename (die_name) : "anonymous";
6606 char *name = XALLOCAVEC (char, strlen (base) + 64);
6607 char *p;
6608 int i, mark;
6609 unsigned char checksum[16];
6610 struct md5_ctx ctx;
6611
6612 /* Compute the checksum of the DIE, then append part of it as hex digits to
6613 the name filename of the unit. */
6614
6615 md5_init_ctx (&ctx);
6616 mark = 0;
6617 die_checksum (unit_die, &ctx, &mark);
6618 unmark_all_dies (unit_die);
6619 md5_finish_ctx (&ctx, checksum);
6620
6621 sprintf (name, "%s.", base);
6622 clean_symbol_name (name);
6623
6624 p = name + strlen (name);
6625 for (i = 0; i < 4; i++)
6626 {
6627 sprintf (p, "%.2x", checksum[i]);
6628 p += 2;
6629 }
6630
6631 comdat_symbol_id = unit_die->die_id.die_symbol = xstrdup (name);
6632 comdat_symbol_number = 0;
6633 }
6634
6635 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6636
6637 static int
6638 is_type_die (dw_die_ref die)
6639 {
6640 switch (die->die_tag)
6641 {
6642 case DW_TAG_array_type:
6643 case DW_TAG_class_type:
6644 case DW_TAG_interface_type:
6645 case DW_TAG_enumeration_type:
6646 case DW_TAG_pointer_type:
6647 case DW_TAG_reference_type:
6648 case DW_TAG_rvalue_reference_type:
6649 case DW_TAG_string_type:
6650 case DW_TAG_structure_type:
6651 case DW_TAG_subroutine_type:
6652 case DW_TAG_union_type:
6653 case DW_TAG_ptr_to_member_type:
6654 case DW_TAG_set_type:
6655 case DW_TAG_subrange_type:
6656 case DW_TAG_base_type:
6657 case DW_TAG_const_type:
6658 case DW_TAG_file_type:
6659 case DW_TAG_packed_type:
6660 case DW_TAG_volatile_type:
6661 case DW_TAG_typedef:
6662 return 1;
6663 default:
6664 return 0;
6665 }
6666 }
6667
6668 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6669 Basically, we want to choose the bits that are likely to be shared between
6670 compilations (types) and leave out the bits that are specific to individual
6671 compilations (functions). */
6672
6673 static int
6674 is_comdat_die (dw_die_ref c)
6675 {
6676 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6677 we do for stabs. The advantage is a greater likelihood of sharing between
6678 objects that don't include headers in the same order (and therefore would
6679 put the base types in a different comdat). jason 8/28/00 */
6680
6681 if (c->die_tag == DW_TAG_base_type)
6682 return 0;
6683
6684 if (c->die_tag == DW_TAG_pointer_type
6685 || c->die_tag == DW_TAG_reference_type
6686 || c->die_tag == DW_TAG_rvalue_reference_type
6687 || c->die_tag == DW_TAG_const_type
6688 || c->die_tag == DW_TAG_volatile_type)
6689 {
6690 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6691
6692 return t ? is_comdat_die (t) : 0;
6693 }
6694
6695 return is_type_die (c);
6696 }
6697
6698 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6699 compilation unit. */
6700
6701 static int
6702 is_symbol_die (dw_die_ref c)
6703 {
6704 return (is_type_die (c)
6705 || is_declaration_die (c)
6706 || c->die_tag == DW_TAG_namespace
6707 || c->die_tag == DW_TAG_module);
6708 }
6709
6710 /* Returns true iff C is a compile-unit DIE. */
6711
6712 static inline bool
6713 is_cu_die (dw_die_ref c)
6714 {
6715 return c && c->die_tag == DW_TAG_compile_unit;
6716 }
6717
6718 static char *
6719 gen_internal_sym (const char *prefix)
6720 {
6721 char buf[256];
6722
6723 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6724 return xstrdup (buf);
6725 }
6726
6727 /* Assign symbols to all worthy DIEs under DIE. */
6728
6729 static void
6730 assign_symbol_names (dw_die_ref die)
6731 {
6732 dw_die_ref c;
6733
6734 if (is_symbol_die (die))
6735 {
6736 if (comdat_symbol_id)
6737 {
6738 char *p = XALLOCAVEC (char, strlen (comdat_symbol_id) + 64);
6739
6740 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6741 comdat_symbol_id, comdat_symbol_number++);
6742 die->die_id.die_symbol = xstrdup (p);
6743 }
6744 else
6745 die->die_id.die_symbol = gen_internal_sym ("LDIE");
6746 }
6747
6748 FOR_EACH_CHILD (die, c, assign_symbol_names (c));
6749 }
6750
6751 struct cu_hash_table_entry
6752 {
6753 dw_die_ref cu;
6754 unsigned min_comdat_num, max_comdat_num;
6755 struct cu_hash_table_entry *next;
6756 };
6757
6758 /* Routines to manipulate hash table of CUs. */
6759 static hashval_t
6760 htab_cu_hash (const void *of)
6761 {
6762 const struct cu_hash_table_entry *const entry =
6763 (const struct cu_hash_table_entry *) of;
6764
6765 return htab_hash_string (entry->cu->die_id.die_symbol);
6766 }
6767
6768 static int
6769 htab_cu_eq (const void *of1, const void *of2)
6770 {
6771 const struct cu_hash_table_entry *const entry1 =
6772 (const struct cu_hash_table_entry *) of1;
6773 const struct die_struct *const entry2 = (const struct die_struct *) of2;
6774
6775 return !strcmp (entry1->cu->die_id.die_symbol, entry2->die_id.die_symbol);
6776 }
6777
6778 static void
6779 htab_cu_del (void *what)
6780 {
6781 struct cu_hash_table_entry *next,
6782 *entry = (struct cu_hash_table_entry *) what;
6783
6784 while (entry)
6785 {
6786 next = entry->next;
6787 free (entry);
6788 entry = next;
6789 }
6790 }
6791
6792 /* Check whether we have already seen this CU and set up SYM_NUM
6793 accordingly. */
6794 static int
6795 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6796 {
6797 struct cu_hash_table_entry dummy;
6798 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6799
6800 dummy.max_comdat_num = 0;
6801
6802 slot = (struct cu_hash_table_entry **)
6803 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_id.die_symbol),
6804 INSERT);
6805 entry = *slot;
6806
6807 for (; entry; last = entry, entry = entry->next)
6808 {
6809 if (same_die_p_wrap (cu, entry->cu))
6810 break;
6811 }
6812
6813 if (entry)
6814 {
6815 *sym_num = entry->min_comdat_num;
6816 return 1;
6817 }
6818
6819 entry = XCNEW (struct cu_hash_table_entry);
6820 entry->cu = cu;
6821 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6822 entry->next = *slot;
6823 *slot = entry;
6824
6825 return 0;
6826 }
6827
6828 /* Record SYM_NUM to record of CU in HTABLE. */
6829 static void
6830 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6831 {
6832 struct cu_hash_table_entry **slot, *entry;
6833
6834 slot = (struct cu_hash_table_entry **)
6835 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_id.die_symbol),
6836 NO_INSERT);
6837 entry = *slot;
6838
6839 entry->max_comdat_num = sym_num;
6840 }
6841
6842 /* Traverse the DIE (which is always comp_unit_die), and set up
6843 additional compilation units for each of the include files we see
6844 bracketed by BINCL/EINCL. */
6845
6846 static void
6847 break_out_includes (dw_die_ref die)
6848 {
6849 dw_die_ref c;
6850 dw_die_ref unit = NULL;
6851 limbo_die_node *node, **pnode;
6852 htab_t cu_hash_table;
6853
6854 c = die->die_child;
6855 if (c) do {
6856 dw_die_ref prev = c;
6857 c = c->die_sib;
6858 while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6859 || (unit && is_comdat_die (c)))
6860 {
6861 dw_die_ref next = c->die_sib;
6862
6863 /* This DIE is for a secondary CU; remove it from the main one. */
6864 remove_child_with_prev (c, prev);
6865
6866 if (c->die_tag == DW_TAG_GNU_BINCL)
6867 unit = push_new_compile_unit (unit, c);
6868 else if (c->die_tag == DW_TAG_GNU_EINCL)
6869 unit = pop_compile_unit (unit);
6870 else
6871 add_child_die (unit, c);
6872 c = next;
6873 if (c == die->die_child)
6874 break;
6875 }
6876 } while (c != die->die_child);
6877
6878 #if 0
6879 /* We can only use this in debugging, since the frontend doesn't check
6880 to make sure that we leave every include file we enter. */
6881 gcc_assert (!unit);
6882 #endif
6883
6884 assign_symbol_names (die);
6885 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6886 for (node = limbo_die_list, pnode = &limbo_die_list;
6887 node;
6888 node = node->next)
6889 {
6890 int is_dupl;
6891
6892 compute_section_prefix (node->die);
6893 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6894 &comdat_symbol_number);
6895 assign_symbol_names (node->die);
6896 if (is_dupl)
6897 *pnode = node->next;
6898 else
6899 {
6900 pnode = &node->next;
6901 record_comdat_symbol_number (node->die, cu_hash_table,
6902 comdat_symbol_number);
6903 }
6904 }
6905 htab_delete (cu_hash_table);
6906 }
6907
6908 /* Return non-zero if this DIE is a declaration. */
6909
6910 static int
6911 is_declaration_die (dw_die_ref die)
6912 {
6913 dw_attr_ref a;
6914 unsigned ix;
6915
6916 FOR_EACH_VEC_ELT (dw_attr_node, die->die_attr, ix, a)
6917 if (a->dw_attr == DW_AT_declaration)
6918 return 1;
6919
6920 return 0;
6921 }
6922
6923 /* Return non-zero if this DIE is nested inside a subprogram. */
6924
6925 static int
6926 is_nested_in_subprogram (dw_die_ref die)
6927 {
6928 dw_die_ref decl = get_AT_ref (die, DW_AT_specification);
6929
6930 if (decl == NULL)
6931 decl = die;
6932 return local_scope_p (decl);
6933 }
6934
6935 /* Return non-zero if this DIE contains a defining declaration of a
6936 subprogram. */
6937
6938 static int
6939 contains_subprogram_definition (dw_die_ref die)
6940 {
6941 dw_die_ref c;
6942
6943 if (die->die_tag == DW_TAG_subprogram && ! is_declaration_die (die))
6944 return 1;
6945 FOR_EACH_CHILD (die, c, if (contains_subprogram_definition(c)) return 1);
6946 return 0;
6947 }
6948
6949 /* Return non-zero if this is a type DIE that should be moved to a
6950 COMDAT .debug_types section. */
6951
6952 static int
6953 should_move_die_to_comdat (dw_die_ref die)
6954 {
6955 switch (die->die_tag)
6956 {
6957 case DW_TAG_class_type:
6958 case DW_TAG_structure_type:
6959 case DW_TAG_enumeration_type:
6960 case DW_TAG_union_type:
6961 /* Don't move declarations, inlined instances, or types nested in a
6962 subprogram. */
6963 if (is_declaration_die (die)
6964 || get_AT (die, DW_AT_abstract_origin)
6965 || is_nested_in_subprogram (die))
6966 return 0;
6967 /* A type definition should never contain a subprogram definition. */
6968 gcc_assert (!contains_subprogram_definition (die));
6969 return 1;
6970 case DW_TAG_array_type:
6971 case DW_TAG_interface_type:
6972 case DW_TAG_pointer_type:
6973 case DW_TAG_reference_type:
6974 case DW_TAG_rvalue_reference_type:
6975 case DW_TAG_string_type:
6976 case DW_TAG_subroutine_type:
6977 case DW_TAG_ptr_to_member_type:
6978 case DW_TAG_set_type:
6979 case DW_TAG_subrange_type:
6980 case DW_TAG_base_type:
6981 case DW_TAG_const_type:
6982 case DW_TAG_file_type:
6983 case DW_TAG_packed_type:
6984 case DW_TAG_volatile_type:
6985 case DW_TAG_typedef:
6986 default:
6987 return 0;
6988 }
6989 }
6990
6991 /* Make a clone of DIE. */
6992
6993 static dw_die_ref
6994 clone_die (dw_die_ref die)
6995 {
6996 dw_die_ref clone;
6997 dw_attr_ref a;
6998 unsigned ix;
6999
7000 clone = ggc_alloc_cleared_die_node ();
7001 clone->die_tag = die->die_tag;
7002
7003 FOR_EACH_VEC_ELT (dw_attr_node, die->die_attr, ix, a)
7004 add_dwarf_attr (clone, a);
7005
7006 return clone;
7007 }
7008
7009 /* Make a clone of the tree rooted at DIE. */
7010
7011 static dw_die_ref
7012 clone_tree (dw_die_ref die)
7013 {
7014 dw_die_ref c;
7015 dw_die_ref clone = clone_die (die);
7016
7017 FOR_EACH_CHILD (die, c, add_child_die (clone, clone_tree(c)));
7018
7019 return clone;
7020 }
7021
7022 /* Make a clone of DIE as a declaration. */
7023
7024 static dw_die_ref
7025 clone_as_declaration (dw_die_ref die)
7026 {
7027 dw_die_ref clone;
7028 dw_die_ref decl;
7029 dw_attr_ref a;
7030 unsigned ix;
7031
7032 /* If the DIE is already a declaration, just clone it. */
7033 if (is_declaration_die (die))
7034 return clone_die (die);
7035
7036 /* If the DIE is a specification, just clone its declaration DIE. */
7037 decl = get_AT_ref (die, DW_AT_specification);
7038 if (decl != NULL)
7039 return clone_die (decl);
7040
7041 clone = ggc_alloc_cleared_die_node ();
7042 clone->die_tag = die->die_tag;
7043
7044 FOR_EACH_VEC_ELT (dw_attr_node, die->die_attr, ix, a)
7045 {
7046 /* We don't want to copy over all attributes.
7047 For example we don't want DW_AT_byte_size because otherwise we will no
7048 longer have a declaration and GDB will treat it as a definition. */
7049
7050 switch (a->dw_attr)
7051 {
7052 case DW_AT_artificial:
7053 case DW_AT_containing_type:
7054 case DW_AT_external:
7055 case DW_AT_name:
7056 case DW_AT_type:
7057 case DW_AT_virtuality:
7058 case DW_AT_linkage_name:
7059 case DW_AT_MIPS_linkage_name:
7060 add_dwarf_attr (clone, a);
7061 break;
7062 case DW_AT_byte_size:
7063 default:
7064 break;
7065 }
7066 }
7067
7068 if (die->die_id.die_type_node)
7069 add_AT_die_ref (clone, DW_AT_signature, die);
7070
7071 add_AT_flag (clone, DW_AT_declaration, 1);
7072 return clone;
7073 }
7074
7075 /* Copy the declaration context to the new type unit DIE. This includes
7076 any surrounding namespace or type declarations. If the DIE has an
7077 AT_specification attribute, it also includes attributes and children
7078 attached to the specification, and returns a pointer to the original
7079 parent of the declaration DIE. Returns NULL otherwise. */
7080
7081 static dw_die_ref
7082 copy_declaration_context (dw_die_ref unit, dw_die_ref die)
7083 {
7084 dw_die_ref decl;
7085 dw_die_ref new_decl;
7086 dw_die_ref orig_parent = NULL;
7087
7088 decl = get_AT_ref (die, DW_AT_specification);
7089 if (decl == NULL)
7090 decl = die;
7091 else
7092 {
7093 unsigned ix;
7094 dw_die_ref c;
7095 dw_attr_ref a;
7096
7097 /* The original DIE will be changed to a declaration, and must
7098 be moved to be a child of the original declaration DIE. */
7099 orig_parent = decl->die_parent;
7100
7101 /* Copy the type node pointer from the new DIE to the original
7102 declaration DIE so we can forward references later. */
7103 decl->die_id.die_type_node = die->die_id.die_type_node;
7104
7105 remove_AT (die, DW_AT_specification);
7106
7107 FOR_EACH_VEC_ELT (dw_attr_node, decl->die_attr, ix, a)
7108 {
7109 if (a->dw_attr != DW_AT_name
7110 && a->dw_attr != DW_AT_declaration
7111 && a->dw_attr != DW_AT_external)
7112 add_dwarf_attr (die, a);
7113 }
7114
7115 FOR_EACH_CHILD (decl, c, add_child_die (die, clone_tree(c)));
7116 }
7117
7118 if (decl->die_parent != NULL
7119 && decl->die_parent->die_tag != DW_TAG_compile_unit
7120 && decl->die_parent->die_tag != DW_TAG_type_unit)
7121 {
7122 new_decl = copy_ancestor_tree (unit, decl, NULL);
7123 if (new_decl != NULL)
7124 {
7125 remove_AT (new_decl, DW_AT_signature);
7126 add_AT_specification (die, new_decl);
7127 }
7128 }
7129
7130 return orig_parent;
7131 }
7132
7133 /* Generate the skeleton ancestor tree for the given NODE, then clone
7134 the DIE and add the clone into the tree. */
7135
7136 static void
7137 generate_skeleton_ancestor_tree (skeleton_chain_node *node)
7138 {
7139 if (node->new_die != NULL)
7140 return;
7141
7142 node->new_die = clone_as_declaration (node->old_die);
7143
7144 if (node->parent != NULL)
7145 {
7146 generate_skeleton_ancestor_tree (node->parent);
7147 add_child_die (node->parent->new_die, node->new_die);
7148 }
7149 }
7150
7151 /* Generate a skeleton tree of DIEs containing any declarations that are
7152 found in the original tree. We traverse the tree looking for declaration
7153 DIEs, and construct the skeleton from the bottom up whenever we find one. */
7154
7155 static void
7156 generate_skeleton_bottom_up (skeleton_chain_node *parent)
7157 {
7158 skeleton_chain_node node;
7159 dw_die_ref c;
7160 dw_die_ref first;
7161 dw_die_ref prev = NULL;
7162 dw_die_ref next = NULL;
7163
7164 node.parent = parent;
7165
7166 first = c = parent->old_die->die_child;
7167 if (c)
7168 next = c->die_sib;
7169 if (c) do {
7170 if (prev == NULL || prev->die_sib == c)
7171 prev = c;
7172 c = next;
7173 next = (c == first ? NULL : c->die_sib);
7174 node.old_die = c;
7175 node.new_die = NULL;
7176 if (is_declaration_die (c))
7177 {
7178 /* Clone the existing DIE, move the original to the skeleton
7179 tree (which is in the main CU), and put the clone, with
7180 all the original's children, where the original came from. */
7181 dw_die_ref clone = clone_die (c);
7182 move_all_children (c, clone);
7183
7184 replace_child (c, clone, prev);
7185 generate_skeleton_ancestor_tree (parent);
7186 add_child_die (parent->new_die, c);
7187 node.new_die = c;
7188 c = clone;
7189 }
7190 generate_skeleton_bottom_up (&node);
7191 } while (next != NULL);
7192 }
7193
7194 /* Wrapper function for generate_skeleton_bottom_up. */
7195
7196 static dw_die_ref
7197 generate_skeleton (dw_die_ref die)
7198 {
7199 skeleton_chain_node node;
7200
7201 node.old_die = die;
7202 node.new_die = NULL;
7203 node.parent = NULL;
7204
7205 /* If this type definition is nested inside another type,
7206 always leave at least a declaration in its place. */
7207 if (die->die_parent != NULL && is_type_die (die->die_parent))
7208 node.new_die = clone_as_declaration (die);
7209
7210 generate_skeleton_bottom_up (&node);
7211 return node.new_die;
7212 }
7213
7214 /* Remove the CHILD DIE from its parent, possibly replacing it with a cloned
7215 declaration. The original DIE is moved to a new compile unit so that
7216 existing references to it follow it to the new location. If any of the
7217 original DIE's descendants is a declaration, we need to replace the
7218 original DIE with a skeleton tree and move the declarations back into the
7219 skeleton tree. */
7220
7221 static dw_die_ref
7222 remove_child_or_replace_with_skeleton (dw_die_ref unit, dw_die_ref child,
7223 dw_die_ref prev)
7224 {
7225 dw_die_ref skeleton, orig_parent;
7226
7227 /* Copy the declaration context to the type unit DIE. If the returned
7228 ORIG_PARENT is not NULL, the skeleton needs to be added as a child of
7229 that DIE. */
7230 orig_parent = copy_declaration_context (unit, child);
7231
7232 skeleton = generate_skeleton (child);
7233 if (skeleton == NULL)
7234 remove_child_with_prev (child, prev);
7235 else
7236 {
7237 skeleton->die_id.die_type_node = child->die_id.die_type_node;
7238
7239 /* If the original DIE was a specification, we need to put
7240 the skeleton under the parent DIE of the declaration.
7241 This leaves the original declaration in the tree, but
7242 it will be pruned later since there are no longer any
7243 references to it. */
7244 if (orig_parent != NULL)
7245 {
7246 remove_child_with_prev (child, prev);
7247 add_child_die (orig_parent, skeleton);
7248 }
7249 else
7250 replace_child (child, skeleton, prev);
7251 }
7252
7253 return skeleton;
7254 }
7255
7256 /* Traverse the DIE and set up additional .debug_types sections for each
7257 type worthy of being placed in a COMDAT section. */
7258
7259 static void
7260 break_out_comdat_types (dw_die_ref die)
7261 {
7262 dw_die_ref c;
7263 dw_die_ref first;
7264 dw_die_ref prev = NULL;
7265 dw_die_ref next = NULL;
7266 dw_die_ref unit = NULL;
7267
7268 first = c = die->die_child;
7269 if (c)
7270 next = c->die_sib;
7271 if (c) do {
7272 if (prev == NULL || prev->die_sib == c)
7273 prev = c;
7274 c = next;
7275 next = (c == first ? NULL : c->die_sib);
7276 if (should_move_die_to_comdat (c))
7277 {
7278 dw_die_ref replacement;
7279 comdat_type_node_ref type_node;
7280
7281 /* Create a new type unit DIE as the root for the new tree, and
7282 add it to the list of comdat types. */
7283 unit = new_die (DW_TAG_type_unit, NULL, NULL);
7284 add_AT_unsigned (unit, DW_AT_language,
7285 get_AT_unsigned (comp_unit_die (), DW_AT_language));
7286 type_node = ggc_alloc_cleared_comdat_type_node ();
7287 type_node->root_die = unit;
7288 type_node->next = comdat_type_list;
7289 comdat_type_list = type_node;
7290
7291 /* Generate the type signature. */
7292 generate_type_signature (c, type_node);
7293
7294 /* Copy the declaration context, attributes, and children of the
7295 declaration into the new type unit DIE, then remove this DIE
7296 from the main CU (or replace it with a skeleton if necessary). */
7297 replacement = remove_child_or_replace_with_skeleton (unit, c, prev);
7298
7299 /* Break out nested types into their own type units. */
7300 break_out_comdat_types (c);
7301
7302 /* Add the DIE to the new compunit. */
7303 add_child_die (unit, c);
7304
7305 if (replacement != NULL)
7306 c = replacement;
7307 }
7308 else if (c->die_tag == DW_TAG_namespace
7309 || c->die_tag == DW_TAG_class_type
7310 || c->die_tag == DW_TAG_structure_type
7311 || c->die_tag == DW_TAG_union_type)
7312 {
7313 /* Look for nested types that can be broken out. */
7314 break_out_comdat_types (c);
7315 }
7316 } while (next != NULL);
7317 }
7318
7319 /* Structure to map a DIE in one CU to its copy in a comdat type unit. */
7320
7321 struct decl_table_entry
7322 {
7323 dw_die_ref orig;
7324 dw_die_ref copy;
7325 };
7326
7327 /* Routines to manipulate hash table of copied declarations. */
7328
7329 static hashval_t
7330 htab_decl_hash (const void *of)
7331 {
7332 const struct decl_table_entry *const entry =
7333 (const struct decl_table_entry *) of;
7334
7335 return htab_hash_pointer (entry->orig);
7336 }
7337
7338 static int
7339 htab_decl_eq (const void *of1, const void *of2)
7340 {
7341 const struct decl_table_entry *const entry1 =
7342 (const struct decl_table_entry *) of1;
7343 const struct die_struct *const entry2 = (const struct die_struct *) of2;
7344
7345 return entry1->orig == entry2;
7346 }
7347
7348 static void
7349 htab_decl_del (void *what)
7350 {
7351 struct decl_table_entry *entry = (struct decl_table_entry *) what;
7352
7353 free (entry);
7354 }
7355
7356 /* Copy DIE and its ancestors, up to, but not including, the compile unit
7357 or type unit entry, to a new tree. Adds the new tree to UNIT and returns
7358 a pointer to the copy of DIE. If DECL_TABLE is provided, it is used
7359 to check if the ancestor has already been copied into UNIT. */
7360
7361 static dw_die_ref
7362 copy_ancestor_tree (dw_die_ref unit, dw_die_ref die, htab_t decl_table)
7363 {
7364 dw_die_ref parent = die->die_parent;
7365 dw_die_ref new_parent = unit;
7366 dw_die_ref copy;
7367 void **slot = NULL;
7368 struct decl_table_entry *entry = NULL;
7369
7370 if (decl_table)
7371 {
7372 /* Check if the entry has already been copied to UNIT. */
7373 slot = htab_find_slot_with_hash (decl_table, die,
7374 htab_hash_pointer (die), INSERT);
7375 if (*slot != HTAB_EMPTY_ENTRY)
7376 {
7377 entry = (struct decl_table_entry *) *slot;
7378 return entry->copy;
7379 }
7380
7381 /* Record in DECL_TABLE that DIE has been copied to UNIT. */
7382 entry = XCNEW (struct decl_table_entry);
7383 entry->orig = die;
7384 entry->copy = NULL;
7385 *slot = entry;
7386 }
7387
7388 if (parent != NULL)
7389 {
7390 dw_die_ref spec = get_AT_ref (parent, DW_AT_specification);
7391 if (spec != NULL)
7392 parent = spec;
7393 if (parent->die_tag != DW_TAG_compile_unit
7394 && parent->die_tag != DW_TAG_type_unit)
7395 new_parent = copy_ancestor_tree (unit, parent, decl_table);
7396 }
7397
7398 copy = clone_as_declaration (die);
7399 add_child_die (new_parent, copy);
7400
7401 if (decl_table != NULL)
7402 {
7403 /* Record the pointer to the copy. */
7404 entry->copy = copy;
7405 }
7406
7407 return copy;
7408 }
7409
7410 /* Like clone_tree, but additionally enter all the children into
7411 the hash table decl_table. */
7412
7413 static dw_die_ref
7414 clone_tree_hash (dw_die_ref die, htab_t decl_table)
7415 {
7416 dw_die_ref c;
7417 dw_die_ref clone = clone_die (die);
7418 struct decl_table_entry *entry;
7419 void **slot = htab_find_slot_with_hash (decl_table, die,
7420 htab_hash_pointer (die), INSERT);
7421 /* Assert that DIE isn't in the hash table yet. If it would be there
7422 before, the ancestors would be necessarily there as well, therefore
7423 clone_tree_hash wouldn't be called. */
7424 gcc_assert (*slot == HTAB_EMPTY_ENTRY);
7425 entry = XCNEW (struct decl_table_entry);
7426 entry->orig = die;
7427 entry->copy = clone;
7428 *slot = entry;
7429
7430 FOR_EACH_CHILD (die, c,
7431 add_child_die (clone, clone_tree_hash (c, decl_table)));
7432
7433 return clone;
7434 }
7435
7436 /* Walk the DIE and its children, looking for references to incomplete
7437 or trivial types that are unmarked (i.e., that are not in the current
7438 type_unit). */
7439
7440 static void
7441 copy_decls_walk (dw_die_ref unit, dw_die_ref die, htab_t decl_table)
7442 {
7443 dw_die_ref c;
7444 dw_attr_ref a;
7445 unsigned ix;
7446
7447 FOR_EACH_VEC_ELT (dw_attr_node, die->die_attr, ix, a)
7448 {
7449 if (AT_class (a) == dw_val_class_die_ref)
7450 {
7451 dw_die_ref targ = AT_ref (a);
7452 comdat_type_node_ref type_node = targ->die_id.die_type_node;
7453 void **slot;
7454 struct decl_table_entry *entry;
7455
7456 if (targ->die_mark != 0 || type_node != NULL)
7457 continue;
7458
7459 slot = htab_find_slot_with_hash (decl_table, targ,
7460 htab_hash_pointer (targ), INSERT);
7461
7462 if (*slot != HTAB_EMPTY_ENTRY)
7463 {
7464 /* TARG has already been copied, so we just need to
7465 modify the reference to point to the copy. */
7466 entry = (struct decl_table_entry *) *slot;
7467 a->dw_attr_val.v.val_die_ref.die = entry->copy;
7468 }
7469 else
7470 {
7471 dw_die_ref parent = unit;
7472 dw_die_ref copy = clone_die (targ);
7473
7474 /* Record in DECL_TABLE that TARG has been copied.
7475 Need to do this now, before the recursive call,
7476 because DECL_TABLE may be expanded and SLOT
7477 would no longer be a valid pointer. */
7478 entry = XCNEW (struct decl_table_entry);
7479 entry->orig = targ;
7480 entry->copy = copy;
7481 *slot = entry;
7482
7483 FOR_EACH_CHILD (targ, c,
7484 add_child_die (copy,
7485 clone_tree_hash (c, decl_table)));
7486
7487 /* Make sure the cloned tree is marked as part of the
7488 type unit. */
7489 mark_dies (copy);
7490
7491 /* If TARG has surrounding context, copy its ancestor tree
7492 into the new type unit. */
7493 if (targ->die_parent != NULL
7494 && targ->die_parent->die_tag != DW_TAG_compile_unit
7495 && targ->die_parent->die_tag != DW_TAG_type_unit)
7496 parent = copy_ancestor_tree (unit, targ->die_parent,
7497 decl_table);
7498
7499 add_child_die (parent, copy);
7500 a->dw_attr_val.v.val_die_ref.die = copy;
7501
7502 /* Make sure the newly-copied DIE is walked. If it was
7503 installed in a previously-added context, it won't
7504 get visited otherwise. */
7505 if (parent != unit)
7506 {
7507 /* Find the highest point of the newly-added tree,
7508 mark each node along the way, and walk from there. */
7509 parent->die_mark = 1;
7510 while (parent->die_parent
7511 && parent->die_parent->die_mark == 0)
7512 {
7513 parent = parent->die_parent;
7514 parent->die_mark = 1;
7515 }
7516 copy_decls_walk (unit, parent, decl_table);
7517 }
7518 }
7519 }
7520 }
7521
7522 FOR_EACH_CHILD (die, c, copy_decls_walk (unit, c, decl_table));
7523 }
7524
7525 /* Copy declarations for "unworthy" types into the new comdat section.
7526 Incomplete types, modified types, and certain other types aren't broken
7527 out into comdat sections of their own, so they don't have a signature,
7528 and we need to copy the declaration into the same section so that we
7529 don't have an external reference. */
7530
7531 static void
7532 copy_decls_for_unworthy_types (dw_die_ref unit)
7533 {
7534 htab_t decl_table;
7535
7536 mark_dies (unit);
7537 decl_table = htab_create (10, htab_decl_hash, htab_decl_eq, htab_decl_del);
7538 copy_decls_walk (unit, unit, decl_table);
7539 htab_delete (decl_table);
7540 unmark_dies (unit);
7541 }
7542
7543 /* Traverse the DIE and add a sibling attribute if it may have the
7544 effect of speeding up access to siblings. To save some space,
7545 avoid generating sibling attributes for DIE's without children. */
7546
7547 static void
7548 add_sibling_attributes (dw_die_ref die)
7549 {
7550 dw_die_ref c;
7551
7552 if (! die->die_child)
7553 return;
7554
7555 if (die->die_parent && die != die->die_parent->die_child)
7556 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
7557
7558 FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
7559 }
7560
7561 /* Output all location lists for the DIE and its children. */
7562
7563 static void
7564 output_location_lists (dw_die_ref die)
7565 {
7566 dw_die_ref c;
7567 dw_attr_ref a;
7568 unsigned ix;
7569
7570 FOR_EACH_VEC_ELT (dw_attr_node, die->die_attr, ix, a)
7571 if (AT_class (a) == dw_val_class_loc_list)
7572 output_loc_list (AT_loc_list (a));
7573
7574 FOR_EACH_CHILD (die, c, output_location_lists (c));
7575 }
7576
7577 /* The format of each DIE (and its attribute value pairs) is encoded in an
7578 abbreviation table. This routine builds the abbreviation table and assigns
7579 a unique abbreviation id for each abbreviation entry. The children of each
7580 die are visited recursively. */
7581
7582 static void
7583 build_abbrev_table (dw_die_ref die)
7584 {
7585 unsigned long abbrev_id;
7586 unsigned int n_alloc;
7587 dw_die_ref c;
7588 dw_attr_ref a;
7589 unsigned ix;
7590
7591 /* Scan the DIE references, and mark as external any that refer to
7592 DIEs from other CUs (i.e. those which are not marked). */
7593 FOR_EACH_VEC_ELT (dw_attr_node, die->die_attr, ix, a)
7594 if (AT_class (a) == dw_val_class_die_ref
7595 && AT_ref (a)->die_mark == 0)
7596 {
7597 gcc_assert (use_debug_types || AT_ref (a)->die_id.die_symbol);
7598 set_AT_ref_external (a, 1);
7599 }
7600
7601 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
7602 {
7603 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
7604 dw_attr_ref die_a, abbrev_a;
7605 unsigned ix;
7606 bool ok = true;
7607
7608 if (abbrev->die_tag != die->die_tag)
7609 continue;
7610 if ((abbrev->die_child != NULL) != (die->die_child != NULL))
7611 continue;
7612
7613 if (VEC_length (dw_attr_node, abbrev->die_attr)
7614 != VEC_length (dw_attr_node, die->die_attr))
7615 continue;
7616
7617 FOR_EACH_VEC_ELT (dw_attr_node, die->die_attr, ix, die_a)
7618 {
7619 abbrev_a = VEC_index (dw_attr_node, abbrev->die_attr, ix);
7620 if ((abbrev_a->dw_attr != die_a->dw_attr)
7621 || (value_format (abbrev_a) != value_format (die_a)))
7622 {
7623 ok = false;
7624 break;
7625 }
7626 }
7627 if (ok)
7628 break;
7629 }
7630
7631 if (abbrev_id >= abbrev_die_table_in_use)
7632 {
7633 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
7634 {
7635 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
7636 abbrev_die_table = GGC_RESIZEVEC (dw_die_ref, abbrev_die_table,
7637 n_alloc);
7638
7639 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
7640 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
7641 abbrev_die_table_allocated = n_alloc;
7642 }
7643
7644 ++abbrev_die_table_in_use;
7645 abbrev_die_table[abbrev_id] = die;
7646 }
7647
7648 die->die_abbrev = abbrev_id;
7649 FOR_EACH_CHILD (die, c, build_abbrev_table (c));
7650 }
7651 \f
7652 /* Return the power-of-two number of bytes necessary to represent VALUE. */
7653
7654 static int
7655 constant_size (unsigned HOST_WIDE_INT value)
7656 {
7657 int log;
7658
7659 if (value == 0)
7660 log = 0;
7661 else
7662 log = floor_log2 (value);
7663
7664 log = log / 8;
7665 log = 1 << (floor_log2 (log) + 1);
7666
7667 return log;
7668 }
7669
7670 /* Return the size of a DIE as it is represented in the
7671 .debug_info section. */
7672
7673 static unsigned long
7674 size_of_die (dw_die_ref die)
7675 {
7676 unsigned long size = 0;
7677 dw_attr_ref a;
7678 unsigned ix;
7679
7680 size += size_of_uleb128 (die->die_abbrev);
7681 FOR_EACH_VEC_ELT (dw_attr_node, die->die_attr, ix, a)
7682 {
7683 switch (AT_class (a))
7684 {
7685 case dw_val_class_addr:
7686 size += DWARF2_ADDR_SIZE;
7687 break;
7688 case dw_val_class_offset:
7689 size += DWARF_OFFSET_SIZE;
7690 break;
7691 case dw_val_class_loc:
7692 {
7693 unsigned long lsize = size_of_locs (AT_loc (a));
7694
7695 /* Block length. */
7696 if (dwarf_version >= 4)
7697 size += size_of_uleb128 (lsize);
7698 else
7699 size += constant_size (lsize);
7700 size += lsize;
7701 }
7702 break;
7703 case dw_val_class_loc_list:
7704 size += DWARF_OFFSET_SIZE;
7705 break;
7706 case dw_val_class_range_list:
7707 size += DWARF_OFFSET_SIZE;
7708 break;
7709 case dw_val_class_const:
7710 size += size_of_sleb128 (AT_int (a));
7711 break;
7712 case dw_val_class_unsigned_const:
7713 {
7714 int csize = constant_size (AT_unsigned (a));
7715 if (dwarf_version == 3
7716 && a->dw_attr == DW_AT_data_member_location
7717 && csize >= 4)
7718 size += size_of_uleb128 (AT_unsigned (a));
7719 else
7720 size += csize;
7721 }
7722 break;
7723 case dw_val_class_const_double:
7724 size += 2 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
7725 if (HOST_BITS_PER_WIDE_INT >= 64)
7726 size++; /* block */
7727 break;
7728 case dw_val_class_vec:
7729 size += constant_size (a->dw_attr_val.v.val_vec.length
7730 * a->dw_attr_val.v.val_vec.elt_size)
7731 + a->dw_attr_val.v.val_vec.length
7732 * a->dw_attr_val.v.val_vec.elt_size; /* block */
7733 break;
7734 case dw_val_class_flag:
7735 if (dwarf_version >= 4)
7736 /* Currently all add_AT_flag calls pass in 1 as last argument,
7737 so DW_FORM_flag_present can be used. If that ever changes,
7738 we'll need to use DW_FORM_flag and have some optimization
7739 in build_abbrev_table that will change those to
7740 DW_FORM_flag_present if it is set to 1 in all DIEs using
7741 the same abbrev entry. */
7742 gcc_assert (a->dw_attr_val.v.val_flag == 1);
7743 else
7744 size += 1;
7745 break;
7746 case dw_val_class_die_ref:
7747 if (AT_ref_external (a))
7748 {
7749 /* In DWARF4, we use DW_FORM_ref_sig8; for earlier versions
7750 we use DW_FORM_ref_addr. In DWARF2, DW_FORM_ref_addr
7751 is sized by target address length, whereas in DWARF3
7752 it's always sized as an offset. */
7753 if (use_debug_types)
7754 size += DWARF_TYPE_SIGNATURE_SIZE;
7755 else if (dwarf_version == 2)
7756 size += DWARF2_ADDR_SIZE;
7757 else
7758 size += DWARF_OFFSET_SIZE;
7759 }
7760 else
7761 size += DWARF_OFFSET_SIZE;
7762 break;
7763 case dw_val_class_fde_ref:
7764 size += DWARF_OFFSET_SIZE;
7765 break;
7766 case dw_val_class_lbl_id:
7767 size += DWARF2_ADDR_SIZE;
7768 break;
7769 case dw_val_class_lineptr:
7770 case dw_val_class_macptr:
7771 size += DWARF_OFFSET_SIZE;
7772 break;
7773 case dw_val_class_str:
7774 if (AT_string_form (a) == DW_FORM_strp)
7775 size += DWARF_OFFSET_SIZE;
7776 else
7777 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
7778 break;
7779 case dw_val_class_file:
7780 size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
7781 break;
7782 case dw_val_class_data8:
7783 size += 8;
7784 break;
7785 case dw_val_class_vms_delta:
7786 size += DWARF_OFFSET_SIZE;
7787 break;
7788 default:
7789 gcc_unreachable ();
7790 }
7791 }
7792
7793 return size;
7794 }
7795
7796 /* Size the debugging information associated with a given DIE. Visits the
7797 DIE's children recursively. Updates the global variable next_die_offset, on
7798 each time through. Uses the current value of next_die_offset to update the
7799 die_offset field in each DIE. */
7800
7801 static void
7802 calc_die_sizes (dw_die_ref die)
7803 {
7804 dw_die_ref c;
7805
7806 gcc_assert (die->die_offset == 0
7807 || (unsigned long int) die->die_offset == next_die_offset);
7808 die->die_offset = next_die_offset;
7809 next_die_offset += size_of_die (die);
7810
7811 FOR_EACH_CHILD (die, c, calc_die_sizes (c));
7812
7813 if (die->die_child != NULL)
7814 /* Count the null byte used to terminate sibling lists. */
7815 next_die_offset += 1;
7816 }
7817
7818 /* Size just the base type children at the start of the CU.
7819 This is needed because build_abbrev needs to size locs
7820 and sizing of type based stack ops needs to know die_offset
7821 values for the base types. */
7822
7823 static void
7824 calc_base_type_die_sizes (void)
7825 {
7826 unsigned long die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7827 unsigned int i;
7828 dw_die_ref base_type;
7829 #if ENABLE_ASSERT_CHECKING
7830 dw_die_ref prev = comp_unit_die ()->die_child;
7831 #endif
7832
7833 die_offset += size_of_die (comp_unit_die ());
7834 for (i = 0; VEC_iterate (dw_die_ref, base_types, i, base_type); i++)
7835 {
7836 #if ENABLE_ASSERT_CHECKING
7837 gcc_assert (base_type->die_offset == 0
7838 && prev->die_sib == base_type
7839 && base_type->die_child == NULL
7840 && base_type->die_abbrev);
7841 prev = base_type;
7842 #endif
7843 base_type->die_offset = die_offset;
7844 die_offset += size_of_die (base_type);
7845 }
7846 }
7847
7848 /* Set the marks for a die and its children. We do this so
7849 that we know whether or not a reference needs to use FORM_ref_addr; only
7850 DIEs in the same CU will be marked. We used to clear out the offset
7851 and use that as the flag, but ran into ordering problems. */
7852
7853 static void
7854 mark_dies (dw_die_ref die)
7855 {
7856 dw_die_ref c;
7857
7858 gcc_assert (!die->die_mark);
7859
7860 die->die_mark = 1;
7861 FOR_EACH_CHILD (die, c, mark_dies (c));
7862 }
7863
7864 /* Clear the marks for a die and its children. */
7865
7866 static void
7867 unmark_dies (dw_die_ref die)
7868 {
7869 dw_die_ref c;
7870
7871 if (! use_debug_types)
7872 gcc_assert (die->die_mark);
7873
7874 die->die_mark = 0;
7875 FOR_EACH_CHILD (die, c, unmark_dies (c));
7876 }
7877
7878 /* Clear the marks for a die, its children and referred dies. */
7879
7880 static void
7881 unmark_all_dies (dw_die_ref die)
7882 {
7883 dw_die_ref c;
7884 dw_attr_ref a;
7885 unsigned ix;
7886
7887 if (!die->die_mark)
7888 return;
7889 die->die_mark = 0;
7890
7891 FOR_EACH_CHILD (die, c, unmark_all_dies (c));
7892
7893 FOR_EACH_VEC_ELT (dw_attr_node, die->die_attr, ix, a)
7894 if (AT_class (a) == dw_val_class_die_ref)
7895 unmark_all_dies (AT_ref (a));
7896 }
7897
7898 /* Return the size of the .debug_pubnames or .debug_pubtypes table
7899 generated for the compilation unit. */
7900
7901 static unsigned long
7902 size_of_pubnames (VEC (pubname_entry, gc) * names)
7903 {
7904 unsigned long size;
7905 unsigned i;
7906 pubname_ref p;
7907
7908 size = DWARF_PUBNAMES_HEADER_SIZE;
7909 FOR_EACH_VEC_ELT (pubname_entry, names, i, p)
7910 if (names != pubtype_table
7911 || p->die->die_offset != 0
7912 || !flag_eliminate_unused_debug_types)
7913 size += strlen (p->name) + DWARF_OFFSET_SIZE + 1;
7914
7915 size += DWARF_OFFSET_SIZE;
7916 return size;
7917 }
7918
7919 /* Return the size of the information in the .debug_aranges section. */
7920
7921 static unsigned long
7922 size_of_aranges (void)
7923 {
7924 unsigned long size;
7925
7926 size = DWARF_ARANGES_HEADER_SIZE;
7927
7928 /* Count the address/length pair for this compilation unit. */
7929 if (text_section_used)
7930 size += 2 * DWARF2_ADDR_SIZE;
7931 if (cold_text_section_used)
7932 size += 2 * DWARF2_ADDR_SIZE;
7933 if (have_multiple_function_sections)
7934 {
7935 unsigned fde_idx;
7936 dw_fde_ref fde;
7937
7938 FOR_EACH_VEC_ELT (dw_fde_ref, fde_vec, fde_idx, fde)
7939 {
7940 if (!fde->in_std_section)
7941 size += 2 * DWARF2_ADDR_SIZE;
7942 if (fde->dw_fde_second_begin && !fde->second_in_std_section)
7943 size += 2 * DWARF2_ADDR_SIZE;
7944 }
7945 }
7946
7947 /* Count the two zero words used to terminated the address range table. */
7948 size += 2 * DWARF2_ADDR_SIZE;
7949 return size;
7950 }
7951 \f
7952 /* Select the encoding of an attribute value. */
7953
7954 static enum dwarf_form
7955 value_format (dw_attr_ref a)
7956 {
7957 switch (a->dw_attr_val.val_class)
7958 {
7959 case dw_val_class_addr:
7960 /* Only very few attributes allow DW_FORM_addr. */
7961 switch (a->dw_attr)
7962 {
7963 case DW_AT_low_pc:
7964 case DW_AT_high_pc:
7965 case DW_AT_entry_pc:
7966 case DW_AT_trampoline:
7967 return DW_FORM_addr;
7968 default:
7969 break;
7970 }
7971 switch (DWARF2_ADDR_SIZE)
7972 {
7973 case 1:
7974 return DW_FORM_data1;
7975 case 2:
7976 return DW_FORM_data2;
7977 case 4:
7978 return DW_FORM_data4;
7979 case 8:
7980 return DW_FORM_data8;
7981 default:
7982 gcc_unreachable ();
7983 }
7984 case dw_val_class_range_list:
7985 case dw_val_class_loc_list:
7986 if (dwarf_version >= 4)
7987 return DW_FORM_sec_offset;
7988 /* FALLTHRU */
7989 case dw_val_class_vms_delta:
7990 case dw_val_class_offset:
7991 switch (DWARF_OFFSET_SIZE)
7992 {
7993 case 4:
7994 return DW_FORM_data4;
7995 case 8:
7996 return DW_FORM_data8;
7997 default:
7998 gcc_unreachable ();
7999 }
8000 case dw_val_class_loc:
8001 if (dwarf_version >= 4)
8002 return DW_FORM_exprloc;
8003 switch (constant_size (size_of_locs (AT_loc (a))))
8004 {
8005 case 1:
8006 return DW_FORM_block1;
8007 case 2:
8008 return DW_FORM_block2;
8009 default:
8010 gcc_unreachable ();
8011 }
8012 case dw_val_class_const:
8013 return DW_FORM_sdata;
8014 case dw_val_class_unsigned_const:
8015 switch (constant_size (AT_unsigned (a)))
8016 {
8017 case 1:
8018 return DW_FORM_data1;
8019 case 2:
8020 return DW_FORM_data2;
8021 case 4:
8022 /* In DWARF3 DW_AT_data_member_location with
8023 DW_FORM_data4 or DW_FORM_data8 is a loclistptr, not
8024 constant, so we need to use DW_FORM_udata if we need
8025 a large constant. */
8026 if (dwarf_version == 3 && a->dw_attr == DW_AT_data_member_location)
8027 return DW_FORM_udata;
8028 return DW_FORM_data4;
8029 case 8:
8030 if (dwarf_version == 3 && a->dw_attr == DW_AT_data_member_location)
8031 return DW_FORM_udata;
8032 return DW_FORM_data8;
8033 default:
8034 gcc_unreachable ();
8035 }
8036 case dw_val_class_const_double:
8037 switch (HOST_BITS_PER_WIDE_INT)
8038 {
8039 case 8:
8040 return DW_FORM_data2;
8041 case 16:
8042 return DW_FORM_data4;
8043 case 32:
8044 return DW_FORM_data8;
8045 case 64:
8046 default:
8047 return DW_FORM_block1;
8048 }
8049 case dw_val_class_vec:
8050 switch (constant_size (a->dw_attr_val.v.val_vec.length
8051 * a->dw_attr_val.v.val_vec.elt_size))
8052 {
8053 case 1:
8054 return DW_FORM_block1;
8055 case 2:
8056 return DW_FORM_block2;
8057 case 4:
8058 return DW_FORM_block4;
8059 default:
8060 gcc_unreachable ();
8061 }
8062 case dw_val_class_flag:
8063 if (dwarf_version >= 4)
8064 {
8065 /* Currently all add_AT_flag calls pass in 1 as last argument,
8066 so DW_FORM_flag_present can be used. If that ever changes,
8067 we'll need to use DW_FORM_flag and have some optimization
8068 in build_abbrev_table that will change those to
8069 DW_FORM_flag_present if it is set to 1 in all DIEs using
8070 the same abbrev entry. */
8071 gcc_assert (a->dw_attr_val.v.val_flag == 1);
8072 return DW_FORM_flag_present;
8073 }
8074 return DW_FORM_flag;
8075 case dw_val_class_die_ref:
8076 if (AT_ref_external (a))
8077 return use_debug_types ? DW_FORM_ref_sig8 : DW_FORM_ref_addr;
8078 else
8079 return DW_FORM_ref;
8080 case dw_val_class_fde_ref:
8081 return DW_FORM_data;
8082 case dw_val_class_lbl_id:
8083 return DW_FORM_addr;
8084 case dw_val_class_lineptr:
8085 case dw_val_class_macptr:
8086 return dwarf_version >= 4 ? DW_FORM_sec_offset : DW_FORM_data;
8087 case dw_val_class_str:
8088 return AT_string_form (a);
8089 case dw_val_class_file:
8090 switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
8091 {
8092 case 1:
8093 return DW_FORM_data1;
8094 case 2:
8095 return DW_FORM_data2;
8096 case 4:
8097 return DW_FORM_data4;
8098 default:
8099 gcc_unreachable ();
8100 }
8101
8102 case dw_val_class_data8:
8103 return DW_FORM_data8;
8104
8105 default:
8106 gcc_unreachable ();
8107 }
8108 }
8109
8110 /* Output the encoding of an attribute value. */
8111
8112 static void
8113 output_value_format (dw_attr_ref a)
8114 {
8115 enum dwarf_form form = value_format (a);
8116
8117 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
8118 }
8119
8120 /* Output the .debug_abbrev section which defines the DIE abbreviation
8121 table. */
8122
8123 static void
8124 output_abbrev_section (void)
8125 {
8126 unsigned long abbrev_id;
8127
8128 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
8129 {
8130 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
8131 unsigned ix;
8132 dw_attr_ref a_attr;
8133
8134 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
8135 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
8136 dwarf_tag_name (abbrev->die_tag));
8137
8138 if (abbrev->die_child != NULL)
8139 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
8140 else
8141 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
8142
8143 for (ix = 0; VEC_iterate (dw_attr_node, abbrev->die_attr, ix, a_attr);
8144 ix++)
8145 {
8146 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
8147 dwarf_attr_name (a_attr->dw_attr));
8148 output_value_format (a_attr);
8149 }
8150
8151 dw2_asm_output_data (1, 0, NULL);
8152 dw2_asm_output_data (1, 0, NULL);
8153 }
8154
8155 /* Terminate the table. */
8156 dw2_asm_output_data (1, 0, NULL);
8157 }
8158
8159 /* Output a symbol we can use to refer to this DIE from another CU. */
8160
8161 static inline void
8162 output_die_symbol (dw_die_ref die)
8163 {
8164 char *sym = die->die_id.die_symbol;
8165
8166 if (sym == 0)
8167 return;
8168
8169 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
8170 /* We make these global, not weak; if the target doesn't support
8171 .linkonce, it doesn't support combining the sections, so debugging
8172 will break. */
8173 targetm.asm_out.globalize_label (asm_out_file, sym);
8174
8175 ASM_OUTPUT_LABEL (asm_out_file, sym);
8176 }
8177
8178 /* Return a new location list, given the begin and end range, and the
8179 expression. */
8180
8181 static inline dw_loc_list_ref
8182 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
8183 const char *section)
8184 {
8185 dw_loc_list_ref retlist = ggc_alloc_cleared_dw_loc_list_node ();
8186
8187 retlist->begin = begin;
8188 retlist->end = end;
8189 retlist->expr = expr;
8190 retlist->section = section;
8191
8192 return retlist;
8193 }
8194
8195 /* Generate a new internal symbol for this location list node, if it
8196 hasn't got one yet. */
8197
8198 static inline void
8199 gen_llsym (dw_loc_list_ref list)
8200 {
8201 gcc_assert (!list->ll_symbol);
8202 list->ll_symbol = gen_internal_sym ("LLST");
8203 }
8204
8205 /* Output the location list given to us. */
8206
8207 static void
8208 output_loc_list (dw_loc_list_ref list_head)
8209 {
8210 dw_loc_list_ref curr = list_head;
8211
8212 if (list_head->emitted)
8213 return;
8214 list_head->emitted = true;
8215
8216 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
8217
8218 /* Walk the location list, and output each range + expression. */
8219 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
8220 {
8221 unsigned long size;
8222 /* Don't output an entry that starts and ends at the same address. */
8223 if (strcmp (curr->begin, curr->end) == 0 && !curr->force)
8224 continue;
8225 size = size_of_locs (curr->expr);
8226 /* If the expression is too large, drop it on the floor. We could
8227 perhaps put it into DW_TAG_dwarf_procedure and refer to that
8228 in the expression, but >= 64KB expressions for a single value
8229 in a single range are unlikely very useful. */
8230 if (size > 0xffff)
8231 continue;
8232 if (!have_multiple_function_sections)
8233 {
8234 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
8235 "Location list begin address (%s)",
8236 list_head->ll_symbol);
8237 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
8238 "Location list end address (%s)",
8239 list_head->ll_symbol);
8240 }
8241 else
8242 {
8243 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
8244 "Location list begin address (%s)",
8245 list_head->ll_symbol);
8246 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
8247 "Location list end address (%s)",
8248 list_head->ll_symbol);
8249 }
8250
8251 /* Output the block length for this list of location operations. */
8252 gcc_assert (size <= 0xffff);
8253 dw2_asm_output_data (2, size, "%s", "Location expression size");
8254
8255 output_loc_sequence (curr->expr, -1);
8256 }
8257
8258 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
8259 "Location list terminator begin (%s)",
8260 list_head->ll_symbol);
8261 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
8262 "Location list terminator end (%s)",
8263 list_head->ll_symbol);
8264 }
8265
8266 /* Output a type signature. */
8267
8268 static inline void
8269 output_signature (const char *sig, const char *name)
8270 {
8271 int i;
8272
8273 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
8274 dw2_asm_output_data (1, sig[i], i == 0 ? "%s" : NULL, name);
8275 }
8276
8277 /* Output the DIE and its attributes. Called recursively to generate
8278 the definitions of each child DIE. */
8279
8280 static void
8281 output_die (dw_die_ref die)
8282 {
8283 dw_attr_ref a;
8284 dw_die_ref c;
8285 unsigned long size;
8286 unsigned ix;
8287
8288 /* If someone in another CU might refer to us, set up a symbol for
8289 them to point to. */
8290 if (! use_debug_types && die->die_id.die_symbol)
8291 output_die_symbol (die);
8292
8293 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (%#lx) %s)",
8294 (unsigned long)die->die_offset,
8295 dwarf_tag_name (die->die_tag));
8296
8297 FOR_EACH_VEC_ELT (dw_attr_node, die->die_attr, ix, a)
8298 {
8299 const char *name = dwarf_attr_name (a->dw_attr);
8300
8301 switch (AT_class (a))
8302 {
8303 case dw_val_class_addr:
8304 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
8305 break;
8306
8307 case dw_val_class_offset:
8308 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
8309 "%s", name);
8310 break;
8311
8312 case dw_val_class_range_list:
8313 {
8314 char *p = strchr (ranges_section_label, '\0');
8315
8316 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
8317 a->dw_attr_val.v.val_offset);
8318 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
8319 debug_ranges_section, "%s", name);
8320 *p = '\0';
8321 }
8322 break;
8323
8324 case dw_val_class_loc:
8325 size = size_of_locs (AT_loc (a));
8326
8327 /* Output the block length for this list of location operations. */
8328 if (dwarf_version >= 4)
8329 dw2_asm_output_data_uleb128 (size, "%s", name);
8330 else
8331 dw2_asm_output_data (constant_size (size), size, "%s", name);
8332
8333 output_loc_sequence (AT_loc (a), -1);
8334 break;
8335
8336 case dw_val_class_const:
8337 /* ??? It would be slightly more efficient to use a scheme like is
8338 used for unsigned constants below, but gdb 4.x does not sign
8339 extend. Gdb 5.x does sign extend. */
8340 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
8341 break;
8342
8343 case dw_val_class_unsigned_const:
8344 {
8345 int csize = constant_size (AT_unsigned (a));
8346 if (dwarf_version == 3
8347 && a->dw_attr == DW_AT_data_member_location
8348 && csize >= 4)
8349 dw2_asm_output_data_uleb128 (AT_unsigned (a), "%s", name);
8350 else
8351 dw2_asm_output_data (csize, AT_unsigned (a), "%s", name);
8352 }
8353 break;
8354
8355 case dw_val_class_const_double:
8356 {
8357 unsigned HOST_WIDE_INT first, second;
8358
8359 if (HOST_BITS_PER_WIDE_INT >= 64)
8360 dw2_asm_output_data (1,
8361 2 * HOST_BITS_PER_WIDE_INT
8362 / HOST_BITS_PER_CHAR,
8363 NULL);
8364
8365 if (WORDS_BIG_ENDIAN)
8366 {
8367 first = a->dw_attr_val.v.val_double.high;
8368 second = a->dw_attr_val.v.val_double.low;
8369 }
8370 else
8371 {
8372 first = a->dw_attr_val.v.val_double.low;
8373 second = a->dw_attr_val.v.val_double.high;
8374 }
8375
8376 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
8377 first, name);
8378 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
8379 second, NULL);
8380 }
8381 break;
8382
8383 case dw_val_class_vec:
8384 {
8385 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
8386 unsigned int len = a->dw_attr_val.v.val_vec.length;
8387 unsigned int i;
8388 unsigned char *p;
8389
8390 dw2_asm_output_data (constant_size (len * elt_size),
8391 len * elt_size, "%s", name);
8392 if (elt_size > sizeof (HOST_WIDE_INT))
8393 {
8394 elt_size /= 2;
8395 len *= 2;
8396 }
8397 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
8398 i < len;
8399 i++, p += elt_size)
8400 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
8401 "fp or vector constant word %u", i);
8402 break;
8403 }
8404
8405 case dw_val_class_flag:
8406 if (dwarf_version >= 4)
8407 {
8408 /* Currently all add_AT_flag calls pass in 1 as last argument,
8409 so DW_FORM_flag_present can be used. If that ever changes,
8410 we'll need to use DW_FORM_flag and have some optimization
8411 in build_abbrev_table that will change those to
8412 DW_FORM_flag_present if it is set to 1 in all DIEs using
8413 the same abbrev entry. */
8414 gcc_assert (AT_flag (a) == 1);
8415 if (flag_debug_asm)
8416 fprintf (asm_out_file, "\t\t\t%s %s\n",
8417 ASM_COMMENT_START, name);
8418 break;
8419 }
8420 dw2_asm_output_data (1, AT_flag (a), "%s", name);
8421 break;
8422
8423 case dw_val_class_loc_list:
8424 {
8425 char *sym = AT_loc_list (a)->ll_symbol;
8426
8427 gcc_assert (sym);
8428 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
8429 "%s", name);
8430 }
8431 break;
8432
8433 case dw_val_class_die_ref:
8434 if (AT_ref_external (a))
8435 {
8436 if (use_debug_types)
8437 {
8438 comdat_type_node_ref type_node =
8439 AT_ref (a)->die_id.die_type_node;
8440
8441 gcc_assert (type_node);
8442 output_signature (type_node->signature, name);
8443 }
8444 else
8445 {
8446 char *sym = AT_ref (a)->die_id.die_symbol;
8447 int size;
8448
8449 gcc_assert (sym);
8450 /* In DWARF2, DW_FORM_ref_addr is sized by target address
8451 length, whereas in DWARF3 it's always sized as an
8452 offset. */
8453 if (dwarf_version == 2)
8454 size = DWARF2_ADDR_SIZE;
8455 else
8456 size = DWARF_OFFSET_SIZE;
8457 dw2_asm_output_offset (size, sym, debug_info_section, "%s",
8458 name);
8459 }
8460 }
8461 else
8462 {
8463 gcc_assert (AT_ref (a)->die_offset);
8464 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
8465 "%s", name);
8466 }
8467 break;
8468
8469 case dw_val_class_fde_ref:
8470 {
8471 char l1[20];
8472
8473 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
8474 a->dw_attr_val.v.val_fde_index * 2);
8475 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
8476 "%s", name);
8477 }
8478 break;
8479
8480 case dw_val_class_vms_delta:
8481 dw2_asm_output_vms_delta (DWARF_OFFSET_SIZE,
8482 AT_vms_delta2 (a), AT_vms_delta1 (a),
8483 "%s", name);
8484 break;
8485
8486 case dw_val_class_lbl_id:
8487 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
8488 break;
8489
8490 case dw_val_class_lineptr:
8491 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
8492 debug_line_section, "%s", name);
8493 break;
8494
8495 case dw_val_class_macptr:
8496 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
8497 debug_macinfo_section, "%s", name);
8498 break;
8499
8500 case dw_val_class_str:
8501 if (AT_string_form (a) == DW_FORM_strp)
8502 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
8503 a->dw_attr_val.v.val_str->label,
8504 debug_str_section,
8505 "%s: \"%s\"", name, AT_string (a));
8506 else
8507 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
8508 break;
8509
8510 case dw_val_class_file:
8511 {
8512 int f = maybe_emit_file (a->dw_attr_val.v.val_file);
8513
8514 dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
8515 a->dw_attr_val.v.val_file->filename);
8516 break;
8517 }
8518
8519 case dw_val_class_data8:
8520 {
8521 int i;
8522
8523 for (i = 0; i < 8; i++)
8524 dw2_asm_output_data (1, a->dw_attr_val.v.val_data8[i],
8525 i == 0 ? "%s" : NULL, name);
8526 break;
8527 }
8528
8529 default:
8530 gcc_unreachable ();
8531 }
8532 }
8533
8534 FOR_EACH_CHILD (die, c, output_die (c));
8535
8536 /* Add null byte to terminate sibling list. */
8537 if (die->die_child != NULL)
8538 dw2_asm_output_data (1, 0, "end of children of DIE %#lx",
8539 (unsigned long) die->die_offset);
8540 }
8541
8542 /* Output the compilation unit that appears at the beginning of the
8543 .debug_info section, and precedes the DIE descriptions. */
8544
8545 static void
8546 output_compilation_unit_header (void)
8547 {
8548 int ver = dwarf_version;
8549
8550 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
8551 dw2_asm_output_data (4, 0xffffffff,
8552 "Initial length escape value indicating 64-bit DWARF extension");
8553 dw2_asm_output_data (DWARF_OFFSET_SIZE,
8554 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
8555 "Length of Compilation Unit Info");
8556 dw2_asm_output_data (2, ver, "DWARF version number");
8557 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
8558 debug_abbrev_section,
8559 "Offset Into Abbrev. Section");
8560 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
8561 }
8562
8563 /* Output the compilation unit DIE and its children. */
8564
8565 static void
8566 output_comp_unit (dw_die_ref die, int output_if_empty)
8567 {
8568 const char *secname;
8569 char *oldsym, *tmp;
8570
8571 /* Unless we are outputting main CU, we may throw away empty ones. */
8572 if (!output_if_empty && die->die_child == NULL)
8573 return;
8574
8575 /* Even if there are no children of this DIE, we must output the information
8576 about the compilation unit. Otherwise, on an empty translation unit, we
8577 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
8578 will then complain when examining the file. First mark all the DIEs in
8579 this CU so we know which get local refs. */
8580 mark_dies (die);
8581
8582 build_abbrev_table (die);
8583
8584 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
8585 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
8586 calc_die_sizes (die);
8587
8588 oldsym = die->die_id.die_symbol;
8589 if (oldsym)
8590 {
8591 tmp = XALLOCAVEC (char, strlen (oldsym) + 24);
8592
8593 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
8594 secname = tmp;
8595 die->die_id.die_symbol = NULL;
8596 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
8597 }
8598 else
8599 {
8600 switch_to_section (debug_info_section);
8601 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
8602 info_section_emitted = true;
8603 }
8604
8605 /* Output debugging information. */
8606 output_compilation_unit_header ();
8607 output_die (die);
8608
8609 /* Leave the marks on the main CU, so we can check them in
8610 output_pubnames. */
8611 if (oldsym)
8612 {
8613 unmark_dies (die);
8614 die->die_id.die_symbol = oldsym;
8615 }
8616 }
8617
8618 /* Output a comdat type unit DIE and its children. */
8619
8620 static void
8621 output_comdat_type_unit (comdat_type_node *node)
8622 {
8623 const char *secname;
8624 char *tmp;
8625 int i;
8626 #if defined (OBJECT_FORMAT_ELF)
8627 tree comdat_key;
8628 #endif
8629
8630 /* First mark all the DIEs in this CU so we know which get local refs. */
8631 mark_dies (node->root_die);
8632
8633 build_abbrev_table (node->root_die);
8634
8635 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
8636 next_die_offset = DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE;
8637 calc_die_sizes (node->root_die);
8638
8639 #if defined (OBJECT_FORMAT_ELF)
8640 secname = ".debug_types";
8641 tmp = XALLOCAVEC (char, 4 + DWARF_TYPE_SIGNATURE_SIZE * 2);
8642 sprintf (tmp, "wt.");
8643 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
8644 sprintf (tmp + 3 + i * 2, "%02x", node->signature[i] & 0xff);
8645 comdat_key = get_identifier (tmp);
8646 targetm.asm_out.named_section (secname,
8647 SECTION_DEBUG | SECTION_LINKONCE,
8648 comdat_key);
8649 #else
8650 tmp = XALLOCAVEC (char, 18 + DWARF_TYPE_SIGNATURE_SIZE * 2);
8651 sprintf (tmp, ".gnu.linkonce.wt.");
8652 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
8653 sprintf (tmp + 17 + i * 2, "%02x", node->signature[i] & 0xff);
8654 secname = tmp;
8655 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
8656 #endif
8657
8658 /* Output debugging information. */
8659 output_compilation_unit_header ();
8660 output_signature (node->signature, "Type Signature");
8661 dw2_asm_output_data (DWARF_OFFSET_SIZE, node->type_die->die_offset,
8662 "Offset to Type DIE");
8663 output_die (node->root_die);
8664
8665 unmark_dies (node->root_die);
8666 }
8667
8668 /* Return the DWARF2/3 pubname associated with a decl. */
8669
8670 static const char *
8671 dwarf2_name (tree decl, int scope)
8672 {
8673 if (DECL_NAMELESS (decl))
8674 return NULL;
8675 return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
8676 }
8677
8678 /* Add a new entry to .debug_pubnames if appropriate. */
8679
8680 static void
8681 add_pubname_string (const char *str, dw_die_ref die)
8682 {
8683 if (targetm.want_debug_pub_sections)
8684 {
8685 pubname_entry e;
8686
8687 e.die = die;
8688 e.name = xstrdup (str);
8689 VEC_safe_push (pubname_entry, gc, pubname_table, &e);
8690 }
8691 }
8692
8693 static void
8694 add_pubname (tree decl, dw_die_ref die)
8695 {
8696 if (targetm.want_debug_pub_sections && TREE_PUBLIC (decl))
8697 {
8698 const char *name = dwarf2_name (decl, 1);
8699 if (name)
8700 add_pubname_string (name, die);
8701 }
8702 }
8703
8704 /* Add a new entry to .debug_pubtypes if appropriate. */
8705
8706 static void
8707 add_pubtype (tree decl, dw_die_ref die)
8708 {
8709 pubname_entry e;
8710
8711 if (!targetm.want_debug_pub_sections)
8712 return;
8713
8714 e.name = NULL;
8715 if ((TREE_PUBLIC (decl)
8716 || is_cu_die (die->die_parent))
8717 && (die->die_tag == DW_TAG_typedef || COMPLETE_TYPE_P (decl)))
8718 {
8719 e.die = die;
8720 if (TYPE_P (decl))
8721 {
8722 if (TYPE_NAME (decl))
8723 {
8724 if (TREE_CODE (TYPE_NAME (decl)) == IDENTIFIER_NODE)
8725 e.name = IDENTIFIER_POINTER (TYPE_NAME (decl));
8726 else if (TREE_CODE (TYPE_NAME (decl)) == TYPE_DECL
8727 && DECL_NAME (TYPE_NAME (decl)))
8728 e.name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (decl)));
8729 else
8730 e.name = xstrdup ((const char *) get_AT_string (die, DW_AT_name));
8731 }
8732 }
8733 else
8734 {
8735 e.name = dwarf2_name (decl, 1);
8736 if (e.name)
8737 e.name = xstrdup (e.name);
8738 }
8739
8740 /* If we don't have a name for the type, there's no point in adding
8741 it to the table. */
8742 if (e.name && e.name[0] != '\0')
8743 VEC_safe_push (pubname_entry, gc, pubtype_table, &e);
8744 }
8745 }
8746
8747 /* Output the public names table used to speed up access to externally
8748 visible names; or the public types table used to find type definitions. */
8749
8750 static void
8751 output_pubnames (VEC (pubname_entry, gc) * names)
8752 {
8753 unsigned i;
8754 unsigned long pubnames_length = size_of_pubnames (names);
8755 pubname_ref pub;
8756
8757 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
8758 dw2_asm_output_data (4, 0xffffffff,
8759 "Initial length escape value indicating 64-bit DWARF extension");
8760 if (names == pubname_table)
8761 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
8762 "Length of Public Names Info");
8763 else
8764 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
8765 "Length of Public Type Names Info");
8766 /* Version number for pubnames/pubtypes is still 2, even in DWARF3. */
8767 dw2_asm_output_data (2, 2, "DWARF Version");
8768 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
8769 debug_info_section,
8770 "Offset of Compilation Unit Info");
8771 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
8772 "Compilation Unit Length");
8773
8774 FOR_EACH_VEC_ELT (pubname_entry, names, i, pub)
8775 {
8776 /* We shouldn't see pubnames for DIEs outside of the main CU. */
8777 if (names == pubname_table)
8778 gcc_assert (pub->die->die_mark);
8779
8780 if (names != pubtype_table
8781 || pub->die->die_offset != 0
8782 || !flag_eliminate_unused_debug_types)
8783 {
8784 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
8785 "DIE offset");
8786
8787 dw2_asm_output_nstring (pub->name, -1, "external name");
8788 }
8789 }
8790
8791 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
8792 }
8793
8794 /* Output the information that goes into the .debug_aranges table.
8795 Namely, define the beginning and ending address range of the
8796 text section generated for this compilation unit. */
8797
8798 static void
8799 output_aranges (unsigned long aranges_length)
8800 {
8801 unsigned i;
8802
8803 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
8804 dw2_asm_output_data (4, 0xffffffff,
8805 "Initial length escape value indicating 64-bit DWARF extension");
8806 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
8807 "Length of Address Ranges Info");
8808 /* Version number for aranges is still 2, even in DWARF3. */
8809 dw2_asm_output_data (2, 2, "DWARF Version");
8810 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
8811 debug_info_section,
8812 "Offset of Compilation Unit Info");
8813 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
8814 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
8815
8816 /* We need to align to twice the pointer size here. */
8817 if (DWARF_ARANGES_PAD_SIZE)
8818 {
8819 /* Pad using a 2 byte words so that padding is correct for any
8820 pointer size. */
8821 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
8822 2 * DWARF2_ADDR_SIZE);
8823 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
8824 dw2_asm_output_data (2, 0, NULL);
8825 }
8826
8827 /* It is necessary not to output these entries if the sections were
8828 not used; if the sections were not used, the length will be 0 and
8829 the address may end up as 0 if the section is discarded by ld
8830 --gc-sections, leaving an invalid (0, 0) entry that can be
8831 confused with the terminator. */
8832 if (text_section_used)
8833 {
8834 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
8835 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
8836 text_section_label, "Length");
8837 }
8838 if (cold_text_section_used)
8839 {
8840 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
8841 "Address");
8842 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
8843 cold_text_section_label, "Length");
8844 }
8845
8846 if (have_multiple_function_sections)
8847 {
8848 unsigned fde_idx;
8849 dw_fde_ref fde;
8850
8851 FOR_EACH_VEC_ELT (dw_fde_ref, fde_vec, fde_idx, fde)
8852 {
8853 if (!fde->in_std_section)
8854 {
8855 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
8856 "Address");
8857 dw2_asm_output_delta (DWARF2_ADDR_SIZE, fde->dw_fde_end,
8858 fde->dw_fde_begin, "Length");
8859 }
8860 if (fde->dw_fde_second_begin && !fde->second_in_std_section)
8861 {
8862 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_second_begin,
8863 "Address");
8864 dw2_asm_output_delta (DWARF2_ADDR_SIZE, fde->dw_fde_second_end,
8865 fde->dw_fde_second_begin, "Length");
8866 }
8867 }
8868 }
8869
8870 /* Output the terminator words. */
8871 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
8872 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
8873 }
8874
8875 /* Add a new entry to .debug_ranges. Return the offset at which it
8876 was placed. */
8877
8878 static unsigned int
8879 add_ranges_num (int num)
8880 {
8881 unsigned int in_use = ranges_table_in_use;
8882
8883 if (in_use == ranges_table_allocated)
8884 {
8885 ranges_table_allocated += RANGES_TABLE_INCREMENT;
8886 ranges_table = GGC_RESIZEVEC (struct dw_ranges_struct, ranges_table,
8887 ranges_table_allocated);
8888 memset (ranges_table + ranges_table_in_use, 0,
8889 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
8890 }
8891
8892 ranges_table[in_use].num = num;
8893 ranges_table_in_use = in_use + 1;
8894
8895 return in_use * 2 * DWARF2_ADDR_SIZE;
8896 }
8897
8898 /* Add a new entry to .debug_ranges corresponding to a block, or a
8899 range terminator if BLOCK is NULL. */
8900
8901 static unsigned int
8902 add_ranges (const_tree block)
8903 {
8904 return add_ranges_num (block ? BLOCK_NUMBER (block) : 0);
8905 }
8906
8907 /* Add a new entry to .debug_ranges corresponding to a pair of
8908 labels. */
8909
8910 static void
8911 add_ranges_by_labels (dw_die_ref die, const char *begin, const char *end,
8912 bool *added)
8913 {
8914 unsigned int in_use = ranges_by_label_in_use;
8915 unsigned int offset;
8916
8917 if (in_use == ranges_by_label_allocated)
8918 {
8919 ranges_by_label_allocated += RANGES_TABLE_INCREMENT;
8920 ranges_by_label = GGC_RESIZEVEC (struct dw_ranges_by_label_struct,
8921 ranges_by_label,
8922 ranges_by_label_allocated);
8923 memset (ranges_by_label + ranges_by_label_in_use, 0,
8924 RANGES_TABLE_INCREMENT
8925 * sizeof (struct dw_ranges_by_label_struct));
8926 }
8927
8928 ranges_by_label[in_use].begin = begin;
8929 ranges_by_label[in_use].end = end;
8930 ranges_by_label_in_use = in_use + 1;
8931
8932 offset = add_ranges_num (-(int)in_use - 1);
8933 if (!*added)
8934 {
8935 add_AT_range_list (die, DW_AT_ranges, offset);
8936 *added = true;
8937 }
8938 }
8939
8940 static void
8941 output_ranges (void)
8942 {
8943 unsigned i;
8944 static const char *const start_fmt = "Offset %#x";
8945 const char *fmt = start_fmt;
8946
8947 for (i = 0; i < ranges_table_in_use; i++)
8948 {
8949 int block_num = ranges_table[i].num;
8950
8951 if (block_num > 0)
8952 {
8953 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
8954 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
8955
8956 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
8957 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
8958
8959 /* If all code is in the text section, then the compilation
8960 unit base address defaults to DW_AT_low_pc, which is the
8961 base of the text section. */
8962 if (!have_multiple_function_sections)
8963 {
8964 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
8965 text_section_label,
8966 fmt, i * 2 * DWARF2_ADDR_SIZE);
8967 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
8968 text_section_label, NULL);
8969 }
8970
8971 /* Otherwise, the compilation unit base address is zero,
8972 which allows us to use absolute addresses, and not worry
8973 about whether the target supports cross-section
8974 arithmetic. */
8975 else
8976 {
8977 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
8978 fmt, i * 2 * DWARF2_ADDR_SIZE);
8979 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
8980 }
8981
8982 fmt = NULL;
8983 }
8984
8985 /* Negative block_num stands for an index into ranges_by_label. */
8986 else if (block_num < 0)
8987 {
8988 int lab_idx = - block_num - 1;
8989
8990 if (!have_multiple_function_sections)
8991 {
8992 gcc_unreachable ();
8993 #if 0
8994 /* If we ever use add_ranges_by_labels () for a single
8995 function section, all we have to do is to take out
8996 the #if 0 above. */
8997 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
8998 ranges_by_label[lab_idx].begin,
8999 text_section_label,
9000 fmt, i * 2 * DWARF2_ADDR_SIZE);
9001 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
9002 ranges_by_label[lab_idx].end,
9003 text_section_label, NULL);
9004 #endif
9005 }
9006 else
9007 {
9008 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
9009 ranges_by_label[lab_idx].begin,
9010 fmt, i * 2 * DWARF2_ADDR_SIZE);
9011 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
9012 ranges_by_label[lab_idx].end,
9013 NULL);
9014 }
9015 }
9016 else
9017 {
9018 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
9019 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
9020 fmt = start_fmt;
9021 }
9022 }
9023 }
9024
9025 /* Data structure containing information about input files. */
9026 struct file_info
9027 {
9028 const char *path; /* Complete file name. */
9029 const char *fname; /* File name part. */
9030 int length; /* Length of entire string. */
9031 struct dwarf_file_data * file_idx; /* Index in input file table. */
9032 int dir_idx; /* Index in directory table. */
9033 };
9034
9035 /* Data structure containing information about directories with source
9036 files. */
9037 struct dir_info
9038 {
9039 const char *path; /* Path including directory name. */
9040 int length; /* Path length. */
9041 int prefix; /* Index of directory entry which is a prefix. */
9042 int count; /* Number of files in this directory. */
9043 int dir_idx; /* Index of directory used as base. */
9044 };
9045
9046 /* Callback function for file_info comparison. We sort by looking at
9047 the directories in the path. */
9048
9049 static int
9050 file_info_cmp (const void *p1, const void *p2)
9051 {
9052 const struct file_info *const s1 = (const struct file_info *) p1;
9053 const struct file_info *const s2 = (const struct file_info *) p2;
9054 const unsigned char *cp1;
9055 const unsigned char *cp2;
9056
9057 /* Take care of file names without directories. We need to make sure that
9058 we return consistent values to qsort since some will get confused if
9059 we return the same value when identical operands are passed in opposite
9060 orders. So if neither has a directory, return 0 and otherwise return
9061 1 or -1 depending on which one has the directory. */
9062 if ((s1->path == s1->fname || s2->path == s2->fname))
9063 return (s2->path == s2->fname) - (s1->path == s1->fname);
9064
9065 cp1 = (const unsigned char *) s1->path;
9066 cp2 = (const unsigned char *) s2->path;
9067
9068 while (1)
9069 {
9070 ++cp1;
9071 ++cp2;
9072 /* Reached the end of the first path? If so, handle like above. */
9073 if ((cp1 == (const unsigned char *) s1->fname)
9074 || (cp2 == (const unsigned char *) s2->fname))
9075 return ((cp2 == (const unsigned char *) s2->fname)
9076 - (cp1 == (const unsigned char *) s1->fname));
9077
9078 /* Character of current path component the same? */
9079 else if (*cp1 != *cp2)
9080 return *cp1 - *cp2;
9081 }
9082 }
9083
9084 struct file_name_acquire_data
9085 {
9086 struct file_info *files;
9087 int used_files;
9088 int max_files;
9089 };
9090
9091 /* Traversal function for the hash table. */
9092
9093 static int
9094 file_name_acquire (void ** slot, void *data)
9095 {
9096 struct file_name_acquire_data *fnad = (struct file_name_acquire_data *) data;
9097 struct dwarf_file_data *d = (struct dwarf_file_data *) *slot;
9098 struct file_info *fi;
9099 const char *f;
9100
9101 gcc_assert (fnad->max_files >= d->emitted_number);
9102
9103 if (! d->emitted_number)
9104 return 1;
9105
9106 gcc_assert (fnad->max_files != fnad->used_files);
9107
9108 fi = fnad->files + fnad->used_files++;
9109
9110 /* Skip all leading "./". */
9111 f = d->filename;
9112 while (f[0] == '.' && IS_DIR_SEPARATOR (f[1]))
9113 f += 2;
9114
9115 /* Create a new array entry. */
9116 fi->path = f;
9117 fi->length = strlen (f);
9118 fi->file_idx = d;
9119
9120 /* Search for the file name part. */
9121 f = strrchr (f, DIR_SEPARATOR);
9122 #if defined (DIR_SEPARATOR_2)
9123 {
9124 char *g = strrchr (fi->path, DIR_SEPARATOR_2);
9125
9126 if (g != NULL)
9127 {
9128 if (f == NULL || f < g)
9129 f = g;
9130 }
9131 }
9132 #endif
9133
9134 fi->fname = f == NULL ? fi->path : f + 1;
9135 return 1;
9136 }
9137
9138 /* Output the directory table and the file name table. We try to minimize
9139 the total amount of memory needed. A heuristic is used to avoid large
9140 slowdowns with many input files. */
9141
9142 static void
9143 output_file_names (void)
9144 {
9145 struct file_name_acquire_data fnad;
9146 int numfiles;
9147 struct file_info *files;
9148 struct dir_info *dirs;
9149 int *saved;
9150 int *savehere;
9151 int *backmap;
9152 int ndirs;
9153 int idx_offset;
9154 int i;
9155
9156 if (!last_emitted_file)
9157 {
9158 dw2_asm_output_data (1, 0, "End directory table");
9159 dw2_asm_output_data (1, 0, "End file name table");
9160 return;
9161 }
9162
9163 numfiles = last_emitted_file->emitted_number;
9164
9165 /* Allocate the various arrays we need. */
9166 files = XALLOCAVEC (struct file_info, numfiles);
9167 dirs = XALLOCAVEC (struct dir_info, numfiles);
9168
9169 fnad.files = files;
9170 fnad.used_files = 0;
9171 fnad.max_files = numfiles;
9172 htab_traverse (file_table, file_name_acquire, &fnad);
9173 gcc_assert (fnad.used_files == fnad.max_files);
9174
9175 qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
9176
9177 /* Find all the different directories used. */
9178 dirs[0].path = files[0].path;
9179 dirs[0].length = files[0].fname - files[0].path;
9180 dirs[0].prefix = -1;
9181 dirs[0].count = 1;
9182 dirs[0].dir_idx = 0;
9183 files[0].dir_idx = 0;
9184 ndirs = 1;
9185
9186 for (i = 1; i < numfiles; i++)
9187 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
9188 && memcmp (dirs[ndirs - 1].path, files[i].path,
9189 dirs[ndirs - 1].length) == 0)
9190 {
9191 /* Same directory as last entry. */
9192 files[i].dir_idx = ndirs - 1;
9193 ++dirs[ndirs - 1].count;
9194 }
9195 else
9196 {
9197 int j;
9198
9199 /* This is a new directory. */
9200 dirs[ndirs].path = files[i].path;
9201 dirs[ndirs].length = files[i].fname - files[i].path;
9202 dirs[ndirs].count = 1;
9203 dirs[ndirs].dir_idx = ndirs;
9204 files[i].dir_idx = ndirs;
9205
9206 /* Search for a prefix. */
9207 dirs[ndirs].prefix = -1;
9208 for (j = 0; j < ndirs; j++)
9209 if (dirs[j].length < dirs[ndirs].length
9210 && dirs[j].length > 1
9211 && (dirs[ndirs].prefix == -1
9212 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
9213 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
9214 dirs[ndirs].prefix = j;
9215
9216 ++ndirs;
9217 }
9218
9219 /* Now to the actual work. We have to find a subset of the directories which
9220 allow expressing the file name using references to the directory table
9221 with the least amount of characters. We do not do an exhaustive search
9222 where we would have to check out every combination of every single
9223 possible prefix. Instead we use a heuristic which provides nearly optimal
9224 results in most cases and never is much off. */
9225 saved = XALLOCAVEC (int, ndirs);
9226 savehere = XALLOCAVEC (int, ndirs);
9227
9228 memset (saved, '\0', ndirs * sizeof (saved[0]));
9229 for (i = 0; i < ndirs; i++)
9230 {
9231 int j;
9232 int total;
9233
9234 /* We can always save some space for the current directory. But this
9235 does not mean it will be enough to justify adding the directory. */
9236 savehere[i] = dirs[i].length;
9237 total = (savehere[i] - saved[i]) * dirs[i].count;
9238
9239 for (j = i + 1; j < ndirs; j++)
9240 {
9241 savehere[j] = 0;
9242 if (saved[j] < dirs[i].length)
9243 {
9244 /* Determine whether the dirs[i] path is a prefix of the
9245 dirs[j] path. */
9246 int k;
9247
9248 k = dirs[j].prefix;
9249 while (k != -1 && k != (int) i)
9250 k = dirs[k].prefix;
9251
9252 if (k == (int) i)
9253 {
9254 /* Yes it is. We can possibly save some memory by
9255 writing the filenames in dirs[j] relative to
9256 dirs[i]. */
9257 savehere[j] = dirs[i].length;
9258 total += (savehere[j] - saved[j]) * dirs[j].count;
9259 }
9260 }
9261 }
9262
9263 /* Check whether we can save enough to justify adding the dirs[i]
9264 directory. */
9265 if (total > dirs[i].length + 1)
9266 {
9267 /* It's worthwhile adding. */
9268 for (j = i; j < ndirs; j++)
9269 if (savehere[j] > 0)
9270 {
9271 /* Remember how much we saved for this directory so far. */
9272 saved[j] = savehere[j];
9273
9274 /* Remember the prefix directory. */
9275 dirs[j].dir_idx = i;
9276 }
9277 }
9278 }
9279
9280 /* Emit the directory name table. */
9281 idx_offset = dirs[0].length > 0 ? 1 : 0;
9282 for (i = 1 - idx_offset; i < ndirs; i++)
9283 dw2_asm_output_nstring (dirs[i].path,
9284 dirs[i].length
9285 - !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR,
9286 "Directory Entry: %#x", i + idx_offset);
9287
9288 dw2_asm_output_data (1, 0, "End directory table");
9289
9290 /* We have to emit them in the order of emitted_number since that's
9291 used in the debug info generation. To do this efficiently we
9292 generate a back-mapping of the indices first. */
9293 backmap = XALLOCAVEC (int, numfiles);
9294 for (i = 0; i < numfiles; i++)
9295 backmap[files[i].file_idx->emitted_number - 1] = i;
9296
9297 /* Now write all the file names. */
9298 for (i = 0; i < numfiles; i++)
9299 {
9300 int file_idx = backmap[i];
9301 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
9302
9303 #ifdef VMS_DEBUGGING_INFO
9304 #define MAX_VMS_VERSION_LEN 6 /* ";32768" */
9305
9306 /* Setting these fields can lead to debugger miscomparisons,
9307 but VMS Debug requires them to be set correctly. */
9308
9309 int ver;
9310 long long cdt;
9311 long siz;
9312 int maxfilelen = strlen (files[file_idx].path)
9313 + dirs[dir_idx].length
9314 + MAX_VMS_VERSION_LEN + 1;
9315 char *filebuf = XALLOCAVEC (char, maxfilelen);
9316
9317 vms_file_stats_name (files[file_idx].path, 0, 0, 0, &ver);
9318 snprintf (filebuf, maxfilelen, "%s;%d",
9319 files[file_idx].path + dirs[dir_idx].length, ver);
9320
9321 dw2_asm_output_nstring
9322 (filebuf, -1, "File Entry: %#x", (unsigned) i + 1);
9323
9324 /* Include directory index. */
9325 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
9326
9327 /* Modification time. */
9328 dw2_asm_output_data_uleb128
9329 ((vms_file_stats_name (files[file_idx].path, &cdt, 0, 0, 0) == 0)
9330 ? cdt : 0,
9331 NULL);
9332
9333 /* File length in bytes. */
9334 dw2_asm_output_data_uleb128
9335 ((vms_file_stats_name (files[file_idx].path, 0, &siz, 0, 0) == 0)
9336 ? siz : 0,
9337 NULL);
9338 #else
9339 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
9340 "File Entry: %#x", (unsigned) i + 1);
9341
9342 /* Include directory index. */
9343 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
9344
9345 /* Modification time. */
9346 dw2_asm_output_data_uleb128 (0, NULL);
9347
9348 /* File length in bytes. */
9349 dw2_asm_output_data_uleb128 (0, NULL);
9350 #endif /* VMS_DEBUGGING_INFO */
9351 }
9352
9353 dw2_asm_output_data (1, 0, "End file name table");
9354 }
9355
9356
9357 /* Output one line number table into the .debug_line section. */
9358
9359 static void
9360 output_one_line_info_table (dw_line_info_table *table)
9361 {
9362 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
9363 unsigned int current_line = 1;
9364 bool current_is_stmt = DWARF_LINE_DEFAULT_IS_STMT_START;
9365 dw_line_info_entry *ent;
9366 size_t i;
9367
9368 FOR_EACH_VEC_ELT (dw_line_info_entry, table->entries, i, ent)
9369 {
9370 switch (ent->opcode)
9371 {
9372 case LI_set_address:
9373 /* ??? Unfortunately, we have little choice here currently, and
9374 must always use the most general form. GCC does not know the
9375 address delta itself, so we can't use DW_LNS_advance_pc. Many
9376 ports do have length attributes which will give an upper bound
9377 on the address range. We could perhaps use length attributes
9378 to determine when it is safe to use DW_LNS_fixed_advance_pc. */
9379 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, ent->val);
9380
9381 /* This can handle any delta. This takes
9382 4+DWARF2_ADDR_SIZE bytes. */
9383 dw2_asm_output_data (1, 0, "set address %s", line_label);
9384 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
9385 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
9386 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
9387 break;
9388
9389 case LI_set_line:
9390 if (ent->val == current_line)
9391 {
9392 /* We still need to start a new row, so output a copy insn. */
9393 dw2_asm_output_data (1, DW_LNS_copy,
9394 "copy line %u", current_line);
9395 }
9396 else
9397 {
9398 int line_offset = ent->val - current_line;
9399 int line_delta = line_offset - DWARF_LINE_BASE;
9400
9401 current_line = ent->val;
9402 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
9403 {
9404 /* This can handle deltas from -10 to 234, using the current
9405 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE.
9406 This takes 1 byte. */
9407 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
9408 "line %u", current_line);
9409 }
9410 else
9411 {
9412 /* This can handle any delta. This takes at least 4 bytes,
9413 depending on the value being encoded. */
9414 dw2_asm_output_data (1, DW_LNS_advance_line,
9415 "advance to line %u", current_line);
9416 dw2_asm_output_data_sleb128 (line_offset, NULL);
9417 dw2_asm_output_data (1, DW_LNS_copy, NULL);
9418 }
9419 }
9420 break;
9421
9422 case LI_set_file:
9423 dw2_asm_output_data (1, DW_LNS_set_file, "set file %u", ent->val);
9424 dw2_asm_output_data_uleb128 (ent->val, "%u", ent->val);
9425 break;
9426
9427 case LI_set_column:
9428 dw2_asm_output_data (1, DW_LNS_set_column, "column %u", ent->val);
9429 dw2_asm_output_data_uleb128 (ent->val, "%u", ent->val);
9430 break;
9431
9432 case LI_negate_stmt:
9433 current_is_stmt = !current_is_stmt;
9434 dw2_asm_output_data (1, DW_LNS_negate_stmt,
9435 "is_stmt %d", current_is_stmt);
9436 break;
9437
9438 case LI_set_prologue_end:
9439 dw2_asm_output_data (1, DW_LNS_set_prologue_end,
9440 "set prologue end");
9441 break;
9442
9443 case LI_set_epilogue_begin:
9444 dw2_asm_output_data (1, DW_LNS_set_epilogue_begin,
9445 "set epilogue begin");
9446 break;
9447
9448 case LI_set_discriminator:
9449 dw2_asm_output_data (1, 0, "discriminator %u", ent->val);
9450 dw2_asm_output_data_uleb128 (1 + size_of_uleb128 (ent->val), NULL);
9451 dw2_asm_output_data (1, DW_LNE_set_discriminator, NULL);
9452 dw2_asm_output_data_uleb128 (ent->val, NULL);
9453 break;
9454 }
9455 }
9456
9457 /* Emit debug info for the address of the end of the table. */
9458 dw2_asm_output_data (1, 0, "set address %s", table->end_label);
9459 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
9460 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
9461 dw2_asm_output_addr (DWARF2_ADDR_SIZE, table->end_label, NULL);
9462
9463 dw2_asm_output_data (1, 0, "end sequence");
9464 dw2_asm_output_data_uleb128 (1, NULL);
9465 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
9466 }
9467
9468 /* Output the source line number correspondence information. This
9469 information goes into the .debug_line section. */
9470
9471 static void
9472 output_line_info (void)
9473 {
9474 char l1[20], l2[20], p1[20], p2[20];
9475 int ver = dwarf_version;
9476 bool saw_one = false;
9477 int opc;
9478
9479 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
9480 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
9481 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
9482 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
9483
9484 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
9485 dw2_asm_output_data (4, 0xffffffff,
9486 "Initial length escape value indicating 64-bit DWARF extension");
9487 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
9488 "Length of Source Line Info");
9489 ASM_OUTPUT_LABEL (asm_out_file, l1);
9490
9491 dw2_asm_output_data (2, ver, "DWARF Version");
9492 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
9493 ASM_OUTPUT_LABEL (asm_out_file, p1);
9494
9495 /* Define the architecture-dependent minimum instruction length (in bytes).
9496 In this implementation of DWARF, this field is used for information
9497 purposes only. Since GCC generates assembly language, we have no
9498 a priori knowledge of how many instruction bytes are generated for each
9499 source line, and therefore can use only the DW_LNE_set_address and
9500 DW_LNS_fixed_advance_pc line information commands. Accordingly, we fix
9501 this as '1', which is "correct enough" for all architectures,
9502 and don't let the target override. */
9503 dw2_asm_output_data (1, 1, "Minimum Instruction Length");
9504
9505 if (ver >= 4)
9506 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN,
9507 "Maximum Operations Per Instruction");
9508 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
9509 "Default is_stmt_start flag");
9510 dw2_asm_output_data (1, DWARF_LINE_BASE,
9511 "Line Base Value (Special Opcodes)");
9512 dw2_asm_output_data (1, DWARF_LINE_RANGE,
9513 "Line Range Value (Special Opcodes)");
9514 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
9515 "Special Opcode Base");
9516
9517 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
9518 {
9519 int n_op_args;
9520 switch (opc)
9521 {
9522 case DW_LNS_advance_pc:
9523 case DW_LNS_advance_line:
9524 case DW_LNS_set_file:
9525 case DW_LNS_set_column:
9526 case DW_LNS_fixed_advance_pc:
9527 case DW_LNS_set_isa:
9528 n_op_args = 1;
9529 break;
9530 default:
9531 n_op_args = 0;
9532 break;
9533 }
9534
9535 dw2_asm_output_data (1, n_op_args, "opcode: %#x has %d args",
9536 opc, n_op_args);
9537 }
9538
9539 /* Write out the information about the files we use. */
9540 output_file_names ();
9541 ASM_OUTPUT_LABEL (asm_out_file, p2);
9542
9543 if (separate_line_info)
9544 {
9545 dw_line_info_table *table;
9546 size_t i;
9547
9548 FOR_EACH_VEC_ELT (dw_line_info_table_p, separate_line_info, i, table)
9549 if (table->in_use)
9550 {
9551 output_one_line_info_table (table);
9552 saw_one = true;
9553 }
9554 }
9555 if (cold_text_section_line_info && cold_text_section_line_info->in_use)
9556 {
9557 output_one_line_info_table (cold_text_section_line_info);
9558 saw_one = true;
9559 }
9560
9561 /* ??? Some Darwin linkers crash on a .debug_line section with no
9562 sequences. Further, merely a DW_LNE_end_sequence entry is not
9563 sufficient -- the address column must also be initialized.
9564 Make sure to output at least one set_address/end_sequence pair,
9565 choosing .text since that section is always present. */
9566 if (text_section_line_info->in_use || !saw_one)
9567 output_one_line_info_table (text_section_line_info);
9568
9569 /* Output the marker for the end of the line number info. */
9570 ASM_OUTPUT_LABEL (asm_out_file, l2);
9571 }
9572 \f
9573 /* Given a pointer to a tree node for some base type, return a pointer to
9574 a DIE that describes the given type.
9575
9576 This routine must only be called for GCC type nodes that correspond to
9577 Dwarf base (fundamental) types. */
9578
9579 static dw_die_ref
9580 base_type_die (tree type)
9581 {
9582 dw_die_ref base_type_result;
9583 enum dwarf_type encoding;
9584
9585 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
9586 return 0;
9587
9588 /* If this is a subtype that should not be emitted as a subrange type,
9589 use the base type. See subrange_type_for_debug_p. */
9590 if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != NULL_TREE)
9591 type = TREE_TYPE (type);
9592
9593 switch (TREE_CODE (type))
9594 {
9595 case INTEGER_TYPE:
9596 if ((dwarf_version >= 4 || !dwarf_strict)
9597 && TYPE_NAME (type)
9598 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
9599 && DECL_IS_BUILTIN (TYPE_NAME (type))
9600 && DECL_NAME (TYPE_NAME (type)))
9601 {
9602 const char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
9603 if (strcmp (name, "char16_t") == 0
9604 || strcmp (name, "char32_t") == 0)
9605 {
9606 encoding = DW_ATE_UTF;
9607 break;
9608 }
9609 }
9610 if (TYPE_STRING_FLAG (type))
9611 {
9612 if (TYPE_UNSIGNED (type))
9613 encoding = DW_ATE_unsigned_char;
9614 else
9615 encoding = DW_ATE_signed_char;
9616 }
9617 else if (TYPE_UNSIGNED (type))
9618 encoding = DW_ATE_unsigned;
9619 else
9620 encoding = DW_ATE_signed;
9621 break;
9622
9623 case REAL_TYPE:
9624 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
9625 {
9626 if (dwarf_version >= 3 || !dwarf_strict)
9627 encoding = DW_ATE_decimal_float;
9628 else
9629 encoding = DW_ATE_lo_user;
9630 }
9631 else
9632 encoding = DW_ATE_float;
9633 break;
9634
9635 case FIXED_POINT_TYPE:
9636 if (!(dwarf_version >= 3 || !dwarf_strict))
9637 encoding = DW_ATE_lo_user;
9638 else if (TYPE_UNSIGNED (type))
9639 encoding = DW_ATE_unsigned_fixed;
9640 else
9641 encoding = DW_ATE_signed_fixed;
9642 break;
9643
9644 /* Dwarf2 doesn't know anything about complex ints, so use
9645 a user defined type for it. */
9646 case COMPLEX_TYPE:
9647 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
9648 encoding = DW_ATE_complex_float;
9649 else
9650 encoding = DW_ATE_lo_user;
9651 break;
9652
9653 case BOOLEAN_TYPE:
9654 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
9655 encoding = DW_ATE_boolean;
9656 break;
9657
9658 default:
9659 /* No other TREE_CODEs are Dwarf fundamental types. */
9660 gcc_unreachable ();
9661 }
9662
9663 base_type_result = new_die (DW_TAG_base_type, comp_unit_die (), type);
9664
9665 add_AT_unsigned (base_type_result, DW_AT_byte_size,
9666 int_size_in_bytes (type));
9667 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
9668
9669 return base_type_result;
9670 }
9671
9672 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
9673 given input type is a Dwarf "fundamental" type. Otherwise return null. */
9674
9675 static inline int
9676 is_base_type (tree type)
9677 {
9678 switch (TREE_CODE (type))
9679 {
9680 case ERROR_MARK:
9681 case VOID_TYPE:
9682 case INTEGER_TYPE:
9683 case REAL_TYPE:
9684 case FIXED_POINT_TYPE:
9685 case COMPLEX_TYPE:
9686 case BOOLEAN_TYPE:
9687 return 1;
9688
9689 case ARRAY_TYPE:
9690 case RECORD_TYPE:
9691 case UNION_TYPE:
9692 case QUAL_UNION_TYPE:
9693 case ENUMERAL_TYPE:
9694 case FUNCTION_TYPE:
9695 case METHOD_TYPE:
9696 case POINTER_TYPE:
9697 case REFERENCE_TYPE:
9698 case NULLPTR_TYPE:
9699 case OFFSET_TYPE:
9700 case LANG_TYPE:
9701 case VECTOR_TYPE:
9702 return 0;
9703
9704 default:
9705 gcc_unreachable ();
9706 }
9707
9708 return 0;
9709 }
9710
9711 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
9712 node, return the size in bits for the type if it is a constant, or else
9713 return the alignment for the type if the type's size is not constant, or
9714 else return BITS_PER_WORD if the type actually turns out to be an
9715 ERROR_MARK node. */
9716
9717 static inline unsigned HOST_WIDE_INT
9718 simple_type_size_in_bits (const_tree type)
9719 {
9720 if (TREE_CODE (type) == ERROR_MARK)
9721 return BITS_PER_WORD;
9722 else if (TYPE_SIZE (type) == NULL_TREE)
9723 return 0;
9724 else if (host_integerp (TYPE_SIZE (type), 1))
9725 return tree_low_cst (TYPE_SIZE (type), 1);
9726 else
9727 return TYPE_ALIGN (type);
9728 }
9729
9730 /* Similarly, but return a double_int instead of UHWI. */
9731
9732 static inline double_int
9733 double_int_type_size_in_bits (const_tree type)
9734 {
9735 if (TREE_CODE (type) == ERROR_MARK)
9736 return uhwi_to_double_int (BITS_PER_WORD);
9737 else if (TYPE_SIZE (type) == NULL_TREE)
9738 return double_int_zero;
9739 else if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
9740 return tree_to_double_int (TYPE_SIZE (type));
9741 else
9742 return uhwi_to_double_int (TYPE_ALIGN (type));
9743 }
9744
9745 /* Given a pointer to a tree node for a subrange type, return a pointer
9746 to a DIE that describes the given type. */
9747
9748 static dw_die_ref
9749 subrange_type_die (tree type, tree low, tree high, dw_die_ref context_die)
9750 {
9751 dw_die_ref subrange_die;
9752 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
9753
9754 if (context_die == NULL)
9755 context_die = comp_unit_die ();
9756
9757 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
9758
9759 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
9760 {
9761 /* The size of the subrange type and its base type do not match,
9762 so we need to generate a size attribute for the subrange type. */
9763 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
9764 }
9765
9766 if (low)
9767 add_bound_info (subrange_die, DW_AT_lower_bound, low);
9768 if (high)
9769 add_bound_info (subrange_die, DW_AT_upper_bound, high);
9770
9771 return subrange_die;
9772 }
9773
9774 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
9775 entry that chains various modifiers in front of the given type. */
9776
9777 static dw_die_ref
9778 modified_type_die (tree type, int is_const_type, int is_volatile_type,
9779 dw_die_ref context_die)
9780 {
9781 enum tree_code code = TREE_CODE (type);
9782 dw_die_ref mod_type_die;
9783 dw_die_ref sub_die = NULL;
9784 tree item_type = NULL;
9785 tree qualified_type;
9786 tree name, low, high;
9787
9788 if (code == ERROR_MARK)
9789 return NULL;
9790
9791 /* See if we already have the appropriately qualified variant of
9792 this type. */
9793 qualified_type
9794 = get_qualified_type (type,
9795 ((is_const_type ? TYPE_QUAL_CONST : 0)
9796 | (is_volatile_type ? TYPE_QUAL_VOLATILE : 0)));
9797
9798 if (qualified_type == sizetype
9799 && TYPE_NAME (qualified_type)
9800 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL)
9801 {
9802 tree t = TREE_TYPE (TYPE_NAME (qualified_type));
9803
9804 gcc_checking_assert (TREE_CODE (t) == INTEGER_TYPE
9805 && TYPE_PRECISION (t)
9806 == TYPE_PRECISION (qualified_type)
9807 && TYPE_UNSIGNED (t)
9808 == TYPE_UNSIGNED (qualified_type));
9809 qualified_type = t;
9810 }
9811
9812 /* If we do, then we can just use its DIE, if it exists. */
9813 if (qualified_type)
9814 {
9815 mod_type_die = lookup_type_die (qualified_type);
9816 if (mod_type_die)
9817 return mod_type_die;
9818 }
9819
9820 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
9821
9822 /* Handle C typedef types. */
9823 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name)
9824 && !DECL_ARTIFICIAL (name))
9825 {
9826 tree dtype = TREE_TYPE (name);
9827
9828 if (qualified_type == dtype)
9829 {
9830 /* For a named type, use the typedef. */
9831 gen_type_die (qualified_type, context_die);
9832 return lookup_type_die (qualified_type);
9833 }
9834 else if (is_const_type < TYPE_READONLY (dtype)
9835 || is_volatile_type < TYPE_VOLATILE (dtype)
9836 || (is_const_type <= TYPE_READONLY (dtype)
9837 && is_volatile_type <= TYPE_VOLATILE (dtype)
9838 && DECL_ORIGINAL_TYPE (name) != type))
9839 /* cv-unqualified version of named type. Just use the unnamed
9840 type to which it refers. */
9841 return modified_type_die (DECL_ORIGINAL_TYPE (name),
9842 is_const_type, is_volatile_type,
9843 context_die);
9844 /* Else cv-qualified version of named type; fall through. */
9845 }
9846
9847 if (is_const_type
9848 /* If both is_const_type and is_volatile_type, prefer the path
9849 which leads to a qualified type. */
9850 && (!is_volatile_type
9851 || get_qualified_type (type, TYPE_QUAL_CONST) == NULL_TREE
9852 || get_qualified_type (type, TYPE_QUAL_VOLATILE) != NULL_TREE))
9853 {
9854 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die (), type);
9855 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
9856 }
9857 else if (is_volatile_type)
9858 {
9859 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die (), type);
9860 sub_die = modified_type_die (type, is_const_type, 0, context_die);
9861 }
9862 else if (code == POINTER_TYPE)
9863 {
9864 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die (), type);
9865 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
9866 simple_type_size_in_bits (type) / BITS_PER_UNIT);
9867 item_type = TREE_TYPE (type);
9868 if (!ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (item_type)))
9869 add_AT_unsigned (mod_type_die, DW_AT_address_class,
9870 TYPE_ADDR_SPACE (item_type));
9871 }
9872 else if (code == REFERENCE_TYPE)
9873 {
9874 if (TYPE_REF_IS_RVALUE (type) && dwarf_version >= 4)
9875 mod_type_die = new_die (DW_TAG_rvalue_reference_type, comp_unit_die (),
9876 type);
9877 else
9878 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die (), type);
9879 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
9880 simple_type_size_in_bits (type) / BITS_PER_UNIT);
9881 item_type = TREE_TYPE (type);
9882 if (!ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (item_type)))
9883 add_AT_unsigned (mod_type_die, DW_AT_address_class,
9884 TYPE_ADDR_SPACE (item_type));
9885 }
9886 else if (code == INTEGER_TYPE
9887 && TREE_TYPE (type) != NULL_TREE
9888 && subrange_type_for_debug_p (type, &low, &high))
9889 {
9890 mod_type_die = subrange_type_die (type, low, high, context_die);
9891 item_type = TREE_TYPE (type);
9892 }
9893 else if (is_base_type (type))
9894 mod_type_die = base_type_die (type);
9895 else
9896 {
9897 gen_type_die (type, context_die);
9898
9899 /* We have to get the type_main_variant here (and pass that to the
9900 `lookup_type_die' routine) because the ..._TYPE node we have
9901 might simply be a *copy* of some original type node (where the
9902 copy was created to help us keep track of typedef names) and
9903 that copy might have a different TYPE_UID from the original
9904 ..._TYPE node. */
9905 if (TREE_CODE (type) != VECTOR_TYPE)
9906 return lookup_type_die (type_main_variant (type));
9907 else
9908 /* Vectors have the debugging information in the type,
9909 not the main variant. */
9910 return lookup_type_die (type);
9911 }
9912
9913 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
9914 don't output a DW_TAG_typedef, since there isn't one in the
9915 user's program; just attach a DW_AT_name to the type.
9916 Don't attach a DW_AT_name to DW_TAG_const_type or DW_TAG_volatile_type
9917 if the base type already has the same name. */
9918 if (name
9919 && ((TREE_CODE (name) != TYPE_DECL
9920 && (qualified_type == TYPE_MAIN_VARIANT (type)
9921 || (!is_const_type && !is_volatile_type)))
9922 || (TREE_CODE (name) == TYPE_DECL
9923 && TREE_TYPE (name) == qualified_type
9924 && DECL_NAME (name))))
9925 {
9926 if (TREE_CODE (name) == TYPE_DECL)
9927 /* Could just call add_name_and_src_coords_attributes here,
9928 but since this is a builtin type it doesn't have any
9929 useful source coordinates anyway. */
9930 name = DECL_NAME (name);
9931 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
9932 }
9933 /* This probably indicates a bug. */
9934 else if (mod_type_die && mod_type_die->die_tag == DW_TAG_base_type)
9935 {
9936 name = TYPE_NAME (type);
9937 if (name
9938 && TREE_CODE (name) == TYPE_DECL)
9939 name = DECL_NAME (name);
9940 add_name_attribute (mod_type_die,
9941 name ? IDENTIFIER_POINTER (name) : "__unknown__");
9942 }
9943
9944 if (qualified_type)
9945 equate_type_number_to_die (qualified_type, mod_type_die);
9946
9947 if (item_type)
9948 /* We must do this after the equate_type_number_to_die call, in case
9949 this is a recursive type. This ensures that the modified_type_die
9950 recursion will terminate even if the type is recursive. Recursive
9951 types are possible in Ada. */
9952 sub_die = modified_type_die (item_type,
9953 TYPE_READONLY (item_type),
9954 TYPE_VOLATILE (item_type),
9955 context_die);
9956
9957 if (sub_die != NULL)
9958 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
9959
9960 add_gnat_descriptive_type_attribute (mod_type_die, type, context_die);
9961 if (TYPE_ARTIFICIAL (type))
9962 add_AT_flag (mod_type_die, DW_AT_artificial, 1);
9963
9964 return mod_type_die;
9965 }
9966
9967 /* Generate DIEs for the generic parameters of T.
9968 T must be either a generic type or a generic function.
9969 See http://gcc.gnu.org/wiki/TemplateParmsDwarf for more. */
9970
9971 static void
9972 gen_generic_params_dies (tree t)
9973 {
9974 tree parms, args;
9975 int parms_num, i;
9976 dw_die_ref die = NULL;
9977
9978 if (!t || (TYPE_P (t) && !COMPLETE_TYPE_P (t)))
9979 return;
9980
9981 if (TYPE_P (t))
9982 die = lookup_type_die (t);
9983 else if (DECL_P (t))
9984 die = lookup_decl_die (t);
9985
9986 gcc_assert (die);
9987
9988 parms = lang_hooks.get_innermost_generic_parms (t);
9989 if (!parms)
9990 /* T has no generic parameter. It means T is neither a generic type
9991 or function. End of story. */
9992 return;
9993
9994 parms_num = TREE_VEC_LENGTH (parms);
9995 args = lang_hooks.get_innermost_generic_args (t);
9996 for (i = 0; i < parms_num; i++)
9997 {
9998 tree parm, arg, arg_pack_elems;
9999
10000 parm = TREE_VEC_ELT (parms, i);
10001 arg = TREE_VEC_ELT (args, i);
10002 arg_pack_elems = lang_hooks.types.get_argument_pack_elems (arg);
10003 gcc_assert (parm && TREE_VALUE (parm) && arg);
10004
10005 if (parm && TREE_VALUE (parm) && arg)
10006 {
10007 /* If PARM represents a template parameter pack,
10008 emit a DW_TAG_GNU_template_parameter_pack DIE, followed
10009 by DW_TAG_template_*_parameter DIEs for the argument
10010 pack elements of ARG. Note that ARG would then be
10011 an argument pack. */
10012 if (arg_pack_elems)
10013 template_parameter_pack_die (TREE_VALUE (parm),
10014 arg_pack_elems,
10015 die);
10016 else
10017 generic_parameter_die (TREE_VALUE (parm), arg,
10018 true /* Emit DW_AT_name */, die);
10019 }
10020 }
10021 }
10022
10023 /* Create and return a DIE for PARM which should be
10024 the representation of a generic type parameter.
10025 For instance, in the C++ front end, PARM would be a template parameter.
10026 ARG is the argument to PARM.
10027 EMIT_NAME_P if tree, the DIE will have DW_AT_name attribute set to the
10028 name of the PARM.
10029 PARENT_DIE is the parent DIE which the new created DIE should be added to,
10030 as a child node. */
10031
10032 static dw_die_ref
10033 generic_parameter_die (tree parm, tree arg,
10034 bool emit_name_p,
10035 dw_die_ref parent_die)
10036 {
10037 dw_die_ref tmpl_die = NULL;
10038 const char *name = NULL;
10039
10040 if (!parm || !DECL_NAME (parm) || !arg)
10041 return NULL;
10042
10043 /* We support non-type generic parameters and arguments,
10044 type generic parameters and arguments, as well as
10045 generic generic parameters (a.k.a. template template parameters in C++)
10046 and arguments. */
10047 if (TREE_CODE (parm) == PARM_DECL)
10048 /* PARM is a nontype generic parameter */
10049 tmpl_die = new_die (DW_TAG_template_value_param, parent_die, parm);
10050 else if (TREE_CODE (parm) == TYPE_DECL)
10051 /* PARM is a type generic parameter. */
10052 tmpl_die = new_die (DW_TAG_template_type_param, parent_die, parm);
10053 else if (lang_hooks.decls.generic_generic_parameter_decl_p (parm))
10054 /* PARM is a generic generic parameter.
10055 Its DIE is a GNU extension. It shall have a
10056 DW_AT_name attribute to represent the name of the template template
10057 parameter, and a DW_AT_GNU_template_name attribute to represent the
10058 name of the template template argument. */
10059 tmpl_die = new_die (DW_TAG_GNU_template_template_param,
10060 parent_die, parm);
10061 else
10062 gcc_unreachable ();
10063
10064 if (tmpl_die)
10065 {
10066 tree tmpl_type;
10067
10068 /* If PARM is a generic parameter pack, it means we are
10069 emitting debug info for a template argument pack element.
10070 In other terms, ARG is a template argument pack element.
10071 In that case, we don't emit any DW_AT_name attribute for
10072 the die. */
10073 if (emit_name_p)
10074 {
10075 name = IDENTIFIER_POINTER (DECL_NAME (parm));
10076 gcc_assert (name);
10077 add_AT_string (tmpl_die, DW_AT_name, name);
10078 }
10079
10080 if (!lang_hooks.decls.generic_generic_parameter_decl_p (parm))
10081 {
10082 /* DWARF3, 5.6.8 says if PARM is a non-type generic parameter
10083 TMPL_DIE should have a child DW_AT_type attribute that is set
10084 to the type of the argument to PARM, which is ARG.
10085 If PARM is a type generic parameter, TMPL_DIE should have a
10086 child DW_AT_type that is set to ARG. */
10087 tmpl_type = TYPE_P (arg) ? arg : TREE_TYPE (arg);
10088 add_type_attribute (tmpl_die, tmpl_type, 0,
10089 TREE_THIS_VOLATILE (tmpl_type),
10090 parent_die);
10091 }
10092 else
10093 {
10094 /* So TMPL_DIE is a DIE representing a
10095 a generic generic template parameter, a.k.a template template
10096 parameter in C++ and arg is a template. */
10097
10098 /* The DW_AT_GNU_template_name attribute of the DIE must be set
10099 to the name of the argument. */
10100 name = dwarf2_name (TYPE_P (arg) ? TYPE_NAME (arg) : arg, 1);
10101 if (name)
10102 add_AT_string (tmpl_die, DW_AT_GNU_template_name, name);
10103 }
10104
10105 if (TREE_CODE (parm) == PARM_DECL)
10106 /* So PARM is a non-type generic parameter.
10107 DWARF3 5.6.8 says we must set a DW_AT_const_value child
10108 attribute of TMPL_DIE which value represents the value
10109 of ARG.
10110 We must be careful here:
10111 The value of ARG might reference some function decls.
10112 We might currently be emitting debug info for a generic
10113 type and types are emitted before function decls, we don't
10114 know if the function decls referenced by ARG will actually be
10115 emitted after cgraph computations.
10116 So must defer the generation of the DW_AT_const_value to
10117 after cgraph is ready. */
10118 append_entry_to_tmpl_value_parm_die_table (tmpl_die, arg);
10119 }
10120
10121 return tmpl_die;
10122 }
10123
10124 /* Generate and return a DW_TAG_GNU_template_parameter_pack DIE representing.
10125 PARM_PACK must be a template parameter pack. The returned DIE
10126 will be child DIE of PARENT_DIE. */
10127
10128 static dw_die_ref
10129 template_parameter_pack_die (tree parm_pack,
10130 tree parm_pack_args,
10131 dw_die_ref parent_die)
10132 {
10133 dw_die_ref die;
10134 int j;
10135
10136 gcc_assert (parent_die && parm_pack);
10137
10138 die = new_die (DW_TAG_GNU_template_parameter_pack, parent_die, parm_pack);
10139 add_name_and_src_coords_attributes (die, parm_pack);
10140 for (j = 0; j < TREE_VEC_LENGTH (parm_pack_args); j++)
10141 generic_parameter_die (parm_pack,
10142 TREE_VEC_ELT (parm_pack_args, j),
10143 false /* Don't emit DW_AT_name */,
10144 die);
10145 return die;
10146 }
10147
10148 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
10149 an enumerated type. */
10150
10151 static inline int
10152 type_is_enum (const_tree type)
10153 {
10154 return TREE_CODE (type) == ENUMERAL_TYPE;
10155 }
10156
10157 /* Return the DBX register number described by a given RTL node. */
10158
10159 static unsigned int
10160 dbx_reg_number (const_rtx rtl)
10161 {
10162 unsigned regno = REGNO (rtl);
10163
10164 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
10165
10166 #ifdef LEAF_REG_REMAP
10167 if (current_function_uses_only_leaf_regs)
10168 {
10169 int leaf_reg = LEAF_REG_REMAP (regno);
10170 if (leaf_reg != -1)
10171 regno = (unsigned) leaf_reg;
10172 }
10173 #endif
10174
10175 return DBX_REGISTER_NUMBER (regno);
10176 }
10177
10178 /* Optionally add a DW_OP_piece term to a location description expression.
10179 DW_OP_piece is only added if the location description expression already
10180 doesn't end with DW_OP_piece. */
10181
10182 static void
10183 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
10184 {
10185 dw_loc_descr_ref loc;
10186
10187 if (*list_head != NULL)
10188 {
10189 /* Find the end of the chain. */
10190 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
10191 ;
10192
10193 if (loc->dw_loc_opc != DW_OP_piece)
10194 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
10195 }
10196 }
10197
10198 /* Return a location descriptor that designates a machine register or
10199 zero if there is none. */
10200
10201 static dw_loc_descr_ref
10202 reg_loc_descriptor (rtx rtl, enum var_init_status initialized)
10203 {
10204 rtx regs;
10205
10206 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
10207 return 0;
10208
10209 /* We only use "frame base" when we're sure we're talking about the
10210 post-prologue local stack frame. We do this by *not* running
10211 register elimination until this point, and recognizing the special
10212 argument pointer and soft frame pointer rtx's.
10213 Use DW_OP_fbreg offset DW_OP_stack_value in this case. */
10214 if ((rtl == arg_pointer_rtx || rtl == frame_pointer_rtx)
10215 && eliminate_regs (rtl, VOIDmode, NULL_RTX) != rtl)
10216 {
10217 dw_loc_descr_ref result = NULL;
10218
10219 if (dwarf_version >= 4 || !dwarf_strict)
10220 {
10221 result = mem_loc_descriptor (rtl, GET_MODE (rtl), VOIDmode,
10222 initialized);
10223 if (result)
10224 add_loc_descr (&result,
10225 new_loc_descr (DW_OP_stack_value, 0, 0));
10226 }
10227 return result;
10228 }
10229
10230 regs = targetm.dwarf_register_span (rtl);
10231
10232 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
10233 return multiple_reg_loc_descriptor (rtl, regs, initialized);
10234 else
10235 return one_reg_loc_descriptor (dbx_reg_number (rtl), initialized);
10236 }
10237
10238 /* Return a location descriptor that designates a machine register for
10239 a given hard register number. */
10240
10241 static dw_loc_descr_ref
10242 one_reg_loc_descriptor (unsigned int regno, enum var_init_status initialized)
10243 {
10244 dw_loc_descr_ref reg_loc_descr;
10245
10246 if (regno <= 31)
10247 reg_loc_descr
10248 = new_loc_descr ((enum dwarf_location_atom) (DW_OP_reg0 + regno), 0, 0);
10249 else
10250 reg_loc_descr = new_loc_descr (DW_OP_regx, regno, 0);
10251
10252 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
10253 add_loc_descr (&reg_loc_descr, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
10254
10255 return reg_loc_descr;
10256 }
10257
10258 /* Given an RTL of a register, return a location descriptor that
10259 designates a value that spans more than one register. */
10260
10261 static dw_loc_descr_ref
10262 multiple_reg_loc_descriptor (rtx rtl, rtx regs,
10263 enum var_init_status initialized)
10264 {
10265 int nregs, size, i;
10266 unsigned reg;
10267 dw_loc_descr_ref loc_result = NULL;
10268
10269 reg = REGNO (rtl);
10270 #ifdef LEAF_REG_REMAP
10271 if (current_function_uses_only_leaf_regs)
10272 {
10273 int leaf_reg = LEAF_REG_REMAP (reg);
10274 if (leaf_reg != -1)
10275 reg = (unsigned) leaf_reg;
10276 }
10277 #endif
10278 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
10279 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
10280
10281 /* Simple, contiguous registers. */
10282 if (regs == NULL_RTX)
10283 {
10284 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
10285
10286 loc_result = NULL;
10287 while (nregs--)
10288 {
10289 dw_loc_descr_ref t;
10290
10291 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg),
10292 VAR_INIT_STATUS_INITIALIZED);
10293 add_loc_descr (&loc_result, t);
10294 add_loc_descr_op_piece (&loc_result, size);
10295 ++reg;
10296 }
10297 return loc_result;
10298 }
10299
10300 /* Now onto stupid register sets in non contiguous locations. */
10301
10302 gcc_assert (GET_CODE (regs) == PARALLEL);
10303
10304 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
10305 loc_result = NULL;
10306
10307 for (i = 0; i < XVECLEN (regs, 0); ++i)
10308 {
10309 dw_loc_descr_ref t;
10310
10311 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)),
10312 VAR_INIT_STATUS_INITIALIZED);
10313 add_loc_descr (&loc_result, t);
10314 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
10315 add_loc_descr_op_piece (&loc_result, size);
10316 }
10317
10318 if (loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
10319 add_loc_descr (&loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
10320 return loc_result;
10321 }
10322
10323 static unsigned long size_of_int_loc_descriptor (HOST_WIDE_INT);
10324
10325 /* Return a location descriptor that designates a constant i,
10326 as a compound operation from constant (i >> shift), constant shift
10327 and DW_OP_shl. */
10328
10329 static dw_loc_descr_ref
10330 int_shift_loc_descriptor (HOST_WIDE_INT i, int shift)
10331 {
10332 dw_loc_descr_ref ret = int_loc_descriptor (i >> shift);
10333 add_loc_descr (&ret, int_loc_descriptor (shift));
10334 add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0));
10335 return ret;
10336 }
10337
10338 /* Return a location descriptor that designates a constant. */
10339
10340 static dw_loc_descr_ref
10341 int_loc_descriptor (HOST_WIDE_INT i)
10342 {
10343 enum dwarf_location_atom op;
10344
10345 /* Pick the smallest representation of a constant, rather than just
10346 defaulting to the LEB encoding. */
10347 if (i >= 0)
10348 {
10349 int clz = clz_hwi (i);
10350 int ctz = ctz_hwi (i);
10351 if (i <= 31)
10352 op = (enum dwarf_location_atom) (DW_OP_lit0 + i);
10353 else if (i <= 0xff)
10354 op = DW_OP_const1u;
10355 else if (i <= 0xffff)
10356 op = DW_OP_const2u;
10357 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 5
10358 && clz + 5 + 255 >= HOST_BITS_PER_WIDE_INT)
10359 /* DW_OP_litX DW_OP_litY DW_OP_shl takes just 3 bytes and
10360 DW_OP_litX DW_OP_const1u Y DW_OP_shl takes just 4 bytes,
10361 while DW_OP_const4u is 5 bytes. */
10362 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 5);
10363 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
10364 && clz + 8 + 31 >= HOST_BITS_PER_WIDE_INT)
10365 /* DW_OP_const1u X DW_OP_litY DW_OP_shl takes just 4 bytes,
10366 while DW_OP_const4u is 5 bytes. */
10367 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 8);
10368 else if (HOST_BITS_PER_WIDE_INT == 32 || i <= 0xffffffff)
10369 op = DW_OP_const4u;
10370 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
10371 && clz + 8 + 255 >= HOST_BITS_PER_WIDE_INT)
10372 /* DW_OP_const1u X DW_OP_const1u Y DW_OP_shl takes just 5 bytes,
10373 while DW_OP_constu of constant >= 0x100000000 takes at least
10374 6 bytes. */
10375 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 8);
10376 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 16
10377 && clz + 16 + (size_of_uleb128 (i) > 5 ? 255 : 31)
10378 >= HOST_BITS_PER_WIDE_INT)
10379 /* DW_OP_const2u X DW_OP_litY DW_OP_shl takes just 5 bytes,
10380 DW_OP_const2u X DW_OP_const1u Y DW_OP_shl takes 6 bytes,
10381 while DW_OP_constu takes in this case at least 6 bytes. */
10382 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 16);
10383 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 32
10384 && clz + 32 + 31 >= HOST_BITS_PER_WIDE_INT
10385 && size_of_uleb128 (i) > 6)
10386 /* DW_OP_const4u X DW_OP_litY DW_OP_shl takes just 7 bytes. */
10387 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 32);
10388 else
10389 op = DW_OP_constu;
10390 }
10391 else
10392 {
10393 if (i >= -0x80)
10394 op = DW_OP_const1s;
10395 else if (i >= -0x8000)
10396 op = DW_OP_const2s;
10397 else if (HOST_BITS_PER_WIDE_INT == 32 || i >= -0x80000000)
10398 {
10399 if (size_of_int_loc_descriptor (i) < 5)
10400 {
10401 dw_loc_descr_ref ret = int_loc_descriptor (-i);
10402 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
10403 return ret;
10404 }
10405 op = DW_OP_const4s;
10406 }
10407 else
10408 {
10409 if (size_of_int_loc_descriptor (i)
10410 < (unsigned long) 1 + size_of_sleb128 (i))
10411 {
10412 dw_loc_descr_ref ret = int_loc_descriptor (-i);
10413 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
10414 return ret;
10415 }
10416 op = DW_OP_consts;
10417 }
10418 }
10419
10420 return new_loc_descr (op, i, 0);
10421 }
10422
10423 /* Return size_of_locs (int_shift_loc_descriptor (i, shift))
10424 without actually allocating it. */
10425
10426 static unsigned long
10427 size_of_int_shift_loc_descriptor (HOST_WIDE_INT i, int shift)
10428 {
10429 return size_of_int_loc_descriptor (i >> shift)
10430 + size_of_int_loc_descriptor (shift)
10431 + 1;
10432 }
10433
10434 /* Return size_of_locs (int_loc_descriptor (i)) without
10435 actually allocating it. */
10436
10437 static unsigned long
10438 size_of_int_loc_descriptor (HOST_WIDE_INT i)
10439 {
10440 unsigned long s;
10441
10442 if (i >= 0)
10443 {
10444 int clz, ctz;
10445 if (i <= 31)
10446 return 1;
10447 else if (i <= 0xff)
10448 return 2;
10449 else if (i <= 0xffff)
10450 return 3;
10451 clz = clz_hwi (i);
10452 ctz = ctz_hwi (i);
10453 if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 5
10454 && clz + 5 + 255 >= HOST_BITS_PER_WIDE_INT)
10455 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
10456 - clz - 5);
10457 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
10458 && clz + 8 + 31 >= HOST_BITS_PER_WIDE_INT)
10459 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
10460 - clz - 8);
10461 else if (HOST_BITS_PER_WIDE_INT == 32 || i <= 0xffffffff)
10462 return 5;
10463 s = size_of_uleb128 ((unsigned HOST_WIDE_INT) i);
10464 if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
10465 && clz + 8 + 255 >= HOST_BITS_PER_WIDE_INT)
10466 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
10467 - clz - 8);
10468 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 16
10469 && clz + 16 + (s > 5 ? 255 : 31) >= HOST_BITS_PER_WIDE_INT)
10470 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
10471 - clz - 16);
10472 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 32
10473 && clz + 32 + 31 >= HOST_BITS_PER_WIDE_INT
10474 && s > 6)
10475 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
10476 - clz - 32);
10477 else
10478 return 1 + s;
10479 }
10480 else
10481 {
10482 if (i >= -0x80)
10483 return 2;
10484 else if (i >= -0x8000)
10485 return 3;
10486 else if (HOST_BITS_PER_WIDE_INT == 32 || i >= -0x80000000)
10487 {
10488 if (-(unsigned HOST_WIDE_INT) i != (unsigned HOST_WIDE_INT) i)
10489 {
10490 s = size_of_int_loc_descriptor (-i) + 1;
10491 if (s < 5)
10492 return s;
10493 }
10494 return 5;
10495 }
10496 else
10497 {
10498 unsigned long r = 1 + size_of_sleb128 (i);
10499 if (-(unsigned HOST_WIDE_INT) i != (unsigned HOST_WIDE_INT) i)
10500 {
10501 s = size_of_int_loc_descriptor (-i) + 1;
10502 if (s < r)
10503 return s;
10504 }
10505 return r;
10506 }
10507 }
10508 }
10509
10510 /* Return loc description representing "address" of integer value.
10511 This can appear only as toplevel expression. */
10512
10513 static dw_loc_descr_ref
10514 address_of_int_loc_descriptor (int size, HOST_WIDE_INT i)
10515 {
10516 int litsize;
10517 dw_loc_descr_ref loc_result = NULL;
10518
10519 if (!(dwarf_version >= 4 || !dwarf_strict))
10520 return NULL;
10521
10522 litsize = size_of_int_loc_descriptor (i);
10523 /* Determine if DW_OP_stack_value or DW_OP_implicit_value
10524 is more compact. For DW_OP_stack_value we need:
10525 litsize + 1 (DW_OP_stack_value)
10526 and for DW_OP_implicit_value:
10527 1 (DW_OP_implicit_value) + 1 (length) + size. */
10528 if ((int) DWARF2_ADDR_SIZE >= size && litsize + 1 <= 1 + 1 + size)
10529 {
10530 loc_result = int_loc_descriptor (i);
10531 add_loc_descr (&loc_result,
10532 new_loc_descr (DW_OP_stack_value, 0, 0));
10533 return loc_result;
10534 }
10535
10536 loc_result = new_loc_descr (DW_OP_implicit_value,
10537 size, 0);
10538 loc_result->dw_loc_oprnd2.val_class = dw_val_class_const;
10539 loc_result->dw_loc_oprnd2.v.val_int = i;
10540 return loc_result;
10541 }
10542
10543 /* Return a location descriptor that designates a base+offset location. */
10544
10545 static dw_loc_descr_ref
10546 based_loc_descr (rtx reg, HOST_WIDE_INT offset,
10547 enum var_init_status initialized)
10548 {
10549 unsigned int regno;
10550 dw_loc_descr_ref result;
10551 dw_fde_ref fde = cfun->fde;
10552
10553 /* We only use "frame base" when we're sure we're talking about the
10554 post-prologue local stack frame. We do this by *not* running
10555 register elimination until this point, and recognizing the special
10556 argument pointer and soft frame pointer rtx's. */
10557 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
10558 {
10559 rtx elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10560
10561 if (elim != reg)
10562 {
10563 if (GET_CODE (elim) == PLUS)
10564 {
10565 offset += INTVAL (XEXP (elim, 1));
10566 elim = XEXP (elim, 0);
10567 }
10568 gcc_assert ((SUPPORTS_STACK_ALIGNMENT
10569 && (elim == hard_frame_pointer_rtx
10570 || elim == stack_pointer_rtx))
10571 || elim == (frame_pointer_needed
10572 ? hard_frame_pointer_rtx
10573 : stack_pointer_rtx));
10574
10575 /* If drap register is used to align stack, use frame
10576 pointer + offset to access stack variables. If stack
10577 is aligned without drap, use stack pointer + offset to
10578 access stack variables. */
10579 if (crtl->stack_realign_tried
10580 && reg == frame_pointer_rtx)
10581 {
10582 int base_reg
10583 = DWARF_FRAME_REGNUM ((fde && fde->drap_reg != INVALID_REGNUM)
10584 ? HARD_FRAME_POINTER_REGNUM
10585 : REGNO (elim));
10586 return new_reg_loc_descr (base_reg, offset);
10587 }
10588
10589 gcc_assert (frame_pointer_fb_offset_valid);
10590 offset += frame_pointer_fb_offset;
10591 return new_loc_descr (DW_OP_fbreg, offset, 0);
10592 }
10593 }
10594
10595 regno = DWARF_FRAME_REGNUM (REGNO (reg));
10596
10597 if (!optimize && fde
10598 && (fde->drap_reg == regno || fde->vdrap_reg == regno))
10599 {
10600 /* Use cfa+offset to represent the location of arguments passed
10601 on the stack when drap is used to align stack.
10602 Only do this when not optimizing, for optimized code var-tracking
10603 is supposed to track where the arguments live and the register
10604 used as vdrap or drap in some spot might be used for something
10605 else in other part of the routine. */
10606 return new_loc_descr (DW_OP_fbreg, offset, 0);
10607 }
10608
10609 if (regno <= 31)
10610 result = new_loc_descr ((enum dwarf_location_atom) (DW_OP_breg0 + regno),
10611 offset, 0);
10612 else
10613 result = new_loc_descr (DW_OP_bregx, regno, offset);
10614
10615 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
10616 add_loc_descr (&result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
10617
10618 return result;
10619 }
10620
10621 /* Return true if this RTL expression describes a base+offset calculation. */
10622
10623 static inline int
10624 is_based_loc (const_rtx rtl)
10625 {
10626 return (GET_CODE (rtl) == PLUS
10627 && ((REG_P (XEXP (rtl, 0))
10628 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
10629 && CONST_INT_P (XEXP (rtl, 1)))));
10630 }
10631
10632 /* Try to handle TLS MEMs, for which mem_loc_descriptor on XEXP (mem, 0)
10633 failed. */
10634
10635 static dw_loc_descr_ref
10636 tls_mem_loc_descriptor (rtx mem)
10637 {
10638 tree base;
10639 dw_loc_descr_ref loc_result;
10640
10641 if (MEM_EXPR (mem) == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
10642 return NULL;
10643
10644 base = get_base_address (MEM_EXPR (mem));
10645 if (base == NULL
10646 || TREE_CODE (base) != VAR_DECL
10647 || !DECL_THREAD_LOCAL_P (base))
10648 return NULL;
10649
10650 loc_result = loc_descriptor_from_tree (MEM_EXPR (mem), 1);
10651 if (loc_result == NULL)
10652 return NULL;
10653
10654 if (MEM_OFFSET (mem))
10655 loc_descr_plus_const (&loc_result, MEM_OFFSET (mem));
10656
10657 return loc_result;
10658 }
10659
10660 /* Output debug info about reason why we failed to expand expression as dwarf
10661 expression. */
10662
10663 static void
10664 expansion_failed (tree expr, rtx rtl, char const *reason)
10665 {
10666 if (dump_file && (dump_flags & TDF_DETAILS))
10667 {
10668 fprintf (dump_file, "Failed to expand as dwarf: ");
10669 if (expr)
10670 print_generic_expr (dump_file, expr, dump_flags);
10671 if (rtl)
10672 {
10673 fprintf (dump_file, "\n");
10674 print_rtl (dump_file, rtl);
10675 }
10676 fprintf (dump_file, "\nReason: %s\n", reason);
10677 }
10678 }
10679
10680 /* Helper function for const_ok_for_output, called either directly
10681 or via for_each_rtx. */
10682
10683 static int
10684 const_ok_for_output_1 (rtx *rtlp, void *data ATTRIBUTE_UNUSED)
10685 {
10686 rtx rtl = *rtlp;
10687
10688 if (GET_CODE (rtl) == UNSPEC)
10689 {
10690 /* If delegitimize_address couldn't do anything with the UNSPEC, assume
10691 we can't express it in the debug info. */
10692 #ifdef ENABLE_CHECKING
10693 /* Don't complain about TLS UNSPECs, those are just too hard to
10694 delegitimize. */
10695 if (XVECLEN (rtl, 0) != 1
10696 || GET_CODE (XVECEXP (rtl, 0, 0)) != SYMBOL_REF
10697 || SYMBOL_REF_DECL (XVECEXP (rtl, 0, 0)) == NULL
10698 || TREE_CODE (SYMBOL_REF_DECL (XVECEXP (rtl, 0, 0))) != VAR_DECL
10699 || !DECL_THREAD_LOCAL_P (SYMBOL_REF_DECL (XVECEXP (rtl, 0, 0))))
10700 inform (current_function_decl
10701 ? DECL_SOURCE_LOCATION (current_function_decl)
10702 : UNKNOWN_LOCATION,
10703 #if NUM_UNSPEC_VALUES > 0
10704 "non-delegitimized UNSPEC %s (%d) found in variable location",
10705 ((XINT (rtl, 1) >= 0 && XINT (rtl, 1) < NUM_UNSPEC_VALUES)
10706 ? unspec_strings[XINT (rtl, 1)] : "unknown"),
10707 XINT (rtl, 1));
10708 #else
10709 "non-delegitimized UNSPEC %d found in variable location",
10710 XINT (rtl, 1));
10711 #endif
10712 #endif
10713 expansion_failed (NULL_TREE, rtl,
10714 "UNSPEC hasn't been delegitimized.\n");
10715 return 1;
10716 }
10717
10718 if (targetm.const_not_ok_for_debug_p (rtl))
10719 {
10720 expansion_failed (NULL_TREE, rtl,
10721 "Expression rejected for debug by the backend.\n");
10722 return 1;
10723 }
10724
10725 if (GET_CODE (rtl) != SYMBOL_REF)
10726 return 0;
10727
10728 if (CONSTANT_POOL_ADDRESS_P (rtl))
10729 {
10730 bool marked;
10731 get_pool_constant_mark (rtl, &marked);
10732 /* If all references to this pool constant were optimized away,
10733 it was not output and thus we can't represent it. */
10734 if (!marked)
10735 {
10736 expansion_failed (NULL_TREE, rtl,
10737 "Constant was removed from constant pool.\n");
10738 return 1;
10739 }
10740 }
10741
10742 if (SYMBOL_REF_TLS_MODEL (rtl) != TLS_MODEL_NONE)
10743 return 1;
10744
10745 /* Avoid references to external symbols in debug info, on several targets
10746 the linker might even refuse to link when linking a shared library,
10747 and in many other cases the relocations for .debug_info/.debug_loc are
10748 dropped, so the address becomes zero anyway. Hidden symbols, guaranteed
10749 to be defined within the same shared library or executable are fine. */
10750 if (SYMBOL_REF_EXTERNAL_P (rtl))
10751 {
10752 tree decl = SYMBOL_REF_DECL (rtl);
10753
10754 if (decl == NULL || !targetm.binds_local_p (decl))
10755 {
10756 expansion_failed (NULL_TREE, rtl,
10757 "Symbol not defined in current TU.\n");
10758 return 1;
10759 }
10760 }
10761
10762 return 0;
10763 }
10764
10765 /* Return true if constant RTL can be emitted in DW_OP_addr or
10766 DW_AT_const_value. TLS SYMBOL_REFs, external SYMBOL_REFs or
10767 non-marked constant pool SYMBOL_REFs can't be referenced in it. */
10768
10769 static bool
10770 const_ok_for_output (rtx rtl)
10771 {
10772 if (GET_CODE (rtl) == SYMBOL_REF)
10773 return const_ok_for_output_1 (&rtl, NULL) == 0;
10774
10775 if (GET_CODE (rtl) == CONST)
10776 return for_each_rtx (&XEXP (rtl, 0), const_ok_for_output_1, NULL) == 0;
10777
10778 return true;
10779 }
10780
10781 /* Return a reference to DW_TAG_base_type corresponding to MODE and UNSIGNEDP
10782 if possible, NULL otherwise. */
10783
10784 static dw_die_ref
10785 base_type_for_mode (enum machine_mode mode, bool unsignedp)
10786 {
10787 dw_die_ref type_die;
10788 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
10789
10790 if (type == NULL)
10791 return NULL;
10792 switch (TREE_CODE (type))
10793 {
10794 case INTEGER_TYPE:
10795 case REAL_TYPE:
10796 break;
10797 default:
10798 return NULL;
10799 }
10800 type_die = lookup_type_die (type);
10801 if (!type_die)
10802 type_die = modified_type_die (type, false, false, comp_unit_die ());
10803 if (type_die == NULL || type_die->die_tag != DW_TAG_base_type)
10804 return NULL;
10805 return type_die;
10806 }
10807
10808 /* For OP descriptor assumed to be in unsigned MODE, convert it to a unsigned
10809 type matching MODE, or, if MODE is narrower than or as wide as
10810 DWARF2_ADDR_SIZE, untyped. Return NULL if the conversion is not
10811 possible. */
10812
10813 static dw_loc_descr_ref
10814 convert_descriptor_to_mode (enum machine_mode mode, dw_loc_descr_ref op)
10815 {
10816 enum machine_mode outer_mode = mode;
10817 dw_die_ref type_die;
10818 dw_loc_descr_ref cvt;
10819
10820 if (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE)
10821 {
10822 add_loc_descr (&op, new_loc_descr (DW_OP_GNU_convert, 0, 0));
10823 return op;
10824 }
10825 type_die = base_type_for_mode (outer_mode, 1);
10826 if (type_die == NULL)
10827 return NULL;
10828 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
10829 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
10830 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
10831 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
10832 add_loc_descr (&op, cvt);
10833 return op;
10834 }
10835
10836 /* Return location descriptor for comparison OP with operands OP0 and OP1. */
10837
10838 static dw_loc_descr_ref
10839 compare_loc_descriptor (enum dwarf_location_atom op, dw_loc_descr_ref op0,
10840 dw_loc_descr_ref op1)
10841 {
10842 dw_loc_descr_ref ret = op0;
10843 add_loc_descr (&ret, op1);
10844 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
10845 if (STORE_FLAG_VALUE != 1)
10846 {
10847 add_loc_descr (&ret, int_loc_descriptor (STORE_FLAG_VALUE));
10848 add_loc_descr (&ret, new_loc_descr (DW_OP_mul, 0, 0));
10849 }
10850 return ret;
10851 }
10852
10853 /* Return location descriptor for signed comparison OP RTL. */
10854
10855 static dw_loc_descr_ref
10856 scompare_loc_descriptor (enum dwarf_location_atom op, rtx rtl,
10857 enum machine_mode mem_mode)
10858 {
10859 enum machine_mode op_mode = GET_MODE (XEXP (rtl, 0));
10860 dw_loc_descr_ref op0, op1;
10861 int shift;
10862
10863 if (op_mode == VOIDmode)
10864 op_mode = GET_MODE (XEXP (rtl, 1));
10865 if (op_mode == VOIDmode)
10866 return NULL;
10867
10868 if (dwarf_strict
10869 && (GET_MODE_CLASS (op_mode) != MODE_INT
10870 || GET_MODE_SIZE (op_mode) > DWARF2_ADDR_SIZE))
10871 return NULL;
10872
10873 op0 = mem_loc_descriptor (XEXP (rtl, 0), op_mode, mem_mode,
10874 VAR_INIT_STATUS_INITIALIZED);
10875 op1 = mem_loc_descriptor (XEXP (rtl, 1), op_mode, mem_mode,
10876 VAR_INIT_STATUS_INITIALIZED);
10877
10878 if (op0 == NULL || op1 == NULL)
10879 return NULL;
10880
10881 if (GET_MODE_CLASS (op_mode) != MODE_INT
10882 || GET_MODE_SIZE (op_mode) == DWARF2_ADDR_SIZE)
10883 return compare_loc_descriptor (op, op0, op1);
10884
10885 if (GET_MODE_SIZE (op_mode) > DWARF2_ADDR_SIZE)
10886 {
10887 dw_die_ref type_die = base_type_for_mode (op_mode, 0);
10888 dw_loc_descr_ref cvt;
10889
10890 if (type_die == NULL)
10891 return NULL;
10892 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
10893 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
10894 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
10895 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
10896 add_loc_descr (&op0, cvt);
10897 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
10898 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
10899 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
10900 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
10901 add_loc_descr (&op1, cvt);
10902 return compare_loc_descriptor (op, op0, op1);
10903 }
10904
10905 shift = (DWARF2_ADDR_SIZE - GET_MODE_SIZE (op_mode)) * BITS_PER_UNIT;
10906 /* For eq/ne, if the operands are known to be zero-extended,
10907 there is no need to do the fancy shifting up. */
10908 if (op == DW_OP_eq || op == DW_OP_ne)
10909 {
10910 dw_loc_descr_ref last0, last1;
10911 for (last0 = op0; last0->dw_loc_next != NULL; last0 = last0->dw_loc_next)
10912 ;
10913 for (last1 = op1; last1->dw_loc_next != NULL; last1 = last1->dw_loc_next)
10914 ;
10915 /* deref_size zero extends, and for constants we can check
10916 whether they are zero extended or not. */
10917 if (((last0->dw_loc_opc == DW_OP_deref_size
10918 && last0->dw_loc_oprnd1.v.val_int <= GET_MODE_SIZE (op_mode))
10919 || (CONST_INT_P (XEXP (rtl, 0))
10920 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (rtl, 0))
10921 == (INTVAL (XEXP (rtl, 0)) & GET_MODE_MASK (op_mode))))
10922 && ((last1->dw_loc_opc == DW_OP_deref_size
10923 && last1->dw_loc_oprnd1.v.val_int <= GET_MODE_SIZE (op_mode))
10924 || (CONST_INT_P (XEXP (rtl, 1))
10925 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (rtl, 1))
10926 == (INTVAL (XEXP (rtl, 1)) & GET_MODE_MASK (op_mode)))))
10927 return compare_loc_descriptor (op, op0, op1);
10928
10929 /* EQ/NE comparison against constant in narrower type than
10930 DWARF2_ADDR_SIZE can be performed either as
10931 DW_OP_const1u <shift> DW_OP_shl DW_OP_const* <cst << shift>
10932 DW_OP_{eq,ne}
10933 or
10934 DW_OP_const*u <mode_mask> DW_OP_and DW_OP_const* <cst & mode_mask>
10935 DW_OP_{eq,ne}. Pick whatever is shorter. */
10936 if (CONST_INT_P (XEXP (rtl, 1))
10937 && GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
10938 && (size_of_int_loc_descriptor (shift) + 1
10939 + size_of_int_loc_descriptor (INTVAL (XEXP (rtl, 1)) << shift)
10940 >= size_of_int_loc_descriptor (GET_MODE_MASK (op_mode)) + 1
10941 + size_of_int_loc_descriptor (INTVAL (XEXP (rtl, 1))
10942 & GET_MODE_MASK (op_mode))))
10943 {
10944 add_loc_descr (&op0, int_loc_descriptor (GET_MODE_MASK (op_mode)));
10945 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
10946 op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1))
10947 & GET_MODE_MASK (op_mode));
10948 return compare_loc_descriptor (op, op0, op1);
10949 }
10950 }
10951 add_loc_descr (&op0, int_loc_descriptor (shift));
10952 add_loc_descr (&op0, new_loc_descr (DW_OP_shl, 0, 0));
10953 if (CONST_INT_P (XEXP (rtl, 1)))
10954 op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1)) << shift);
10955 else
10956 {
10957 add_loc_descr (&op1, int_loc_descriptor (shift));
10958 add_loc_descr (&op1, new_loc_descr (DW_OP_shl, 0, 0));
10959 }
10960 return compare_loc_descriptor (op, op0, op1);
10961 }
10962
10963 /* Return location descriptor for unsigned comparison OP RTL. */
10964
10965 static dw_loc_descr_ref
10966 ucompare_loc_descriptor (enum dwarf_location_atom op, rtx rtl,
10967 enum machine_mode mem_mode)
10968 {
10969 enum machine_mode op_mode = GET_MODE (XEXP (rtl, 0));
10970 dw_loc_descr_ref op0, op1;
10971
10972 if (op_mode == VOIDmode)
10973 op_mode = GET_MODE (XEXP (rtl, 1));
10974 if (op_mode == VOIDmode)
10975 return NULL;
10976 if (GET_MODE_CLASS (op_mode) != MODE_INT)
10977 return NULL;
10978
10979 if (dwarf_strict && GET_MODE_SIZE (op_mode) > DWARF2_ADDR_SIZE)
10980 return NULL;
10981
10982 op0 = mem_loc_descriptor (XEXP (rtl, 0), op_mode, mem_mode,
10983 VAR_INIT_STATUS_INITIALIZED);
10984 op1 = mem_loc_descriptor (XEXP (rtl, 1), op_mode, mem_mode,
10985 VAR_INIT_STATUS_INITIALIZED);
10986
10987 if (op0 == NULL || op1 == NULL)
10988 return NULL;
10989
10990 if (GET_MODE_SIZE (op_mode) < DWARF2_ADDR_SIZE)
10991 {
10992 HOST_WIDE_INT mask = GET_MODE_MASK (op_mode);
10993 dw_loc_descr_ref last0, last1;
10994 for (last0 = op0; last0->dw_loc_next != NULL; last0 = last0->dw_loc_next)
10995 ;
10996 for (last1 = op1; last1->dw_loc_next != NULL; last1 = last1->dw_loc_next)
10997 ;
10998 if (CONST_INT_P (XEXP (rtl, 0)))
10999 op0 = int_loc_descriptor (INTVAL (XEXP (rtl, 0)) & mask);
11000 /* deref_size zero extends, so no need to mask it again. */
11001 else if (last0->dw_loc_opc != DW_OP_deref_size
11002 || last0->dw_loc_oprnd1.v.val_int > GET_MODE_SIZE (op_mode))
11003 {
11004 add_loc_descr (&op0, int_loc_descriptor (mask));
11005 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
11006 }
11007 if (CONST_INT_P (XEXP (rtl, 1)))
11008 op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1)) & mask);
11009 /* deref_size zero extends, so no need to mask it again. */
11010 else if (last1->dw_loc_opc != DW_OP_deref_size
11011 || last1->dw_loc_oprnd1.v.val_int > GET_MODE_SIZE (op_mode))
11012 {
11013 add_loc_descr (&op1, int_loc_descriptor (mask));
11014 add_loc_descr (&op1, new_loc_descr (DW_OP_and, 0, 0));
11015 }
11016 }
11017 else if (GET_MODE_SIZE (op_mode) == DWARF2_ADDR_SIZE)
11018 {
11019 HOST_WIDE_INT bias = 1;
11020 bias <<= (DWARF2_ADDR_SIZE * BITS_PER_UNIT - 1);
11021 add_loc_descr (&op0, new_loc_descr (DW_OP_plus_uconst, bias, 0));
11022 if (CONST_INT_P (XEXP (rtl, 1)))
11023 op1 = int_loc_descriptor ((unsigned HOST_WIDE_INT) bias
11024 + INTVAL (XEXP (rtl, 1)));
11025 else
11026 add_loc_descr (&op1, new_loc_descr (DW_OP_plus_uconst,
11027 bias, 0));
11028 }
11029 return compare_loc_descriptor (op, op0, op1);
11030 }
11031
11032 /* Return location descriptor for {U,S}{MIN,MAX}. */
11033
11034 static dw_loc_descr_ref
11035 minmax_loc_descriptor (rtx rtl, enum machine_mode mode,
11036 enum machine_mode mem_mode)
11037 {
11038 enum dwarf_location_atom op;
11039 dw_loc_descr_ref op0, op1, ret;
11040 dw_loc_descr_ref bra_node, drop_node;
11041
11042 if (dwarf_strict
11043 && (GET_MODE_CLASS (mode) != MODE_INT
11044 || GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE))
11045 return NULL;
11046
11047 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
11048 VAR_INIT_STATUS_INITIALIZED);
11049 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
11050 VAR_INIT_STATUS_INITIALIZED);
11051
11052 if (op0 == NULL || op1 == NULL)
11053 return NULL;
11054
11055 add_loc_descr (&op0, new_loc_descr (DW_OP_dup, 0, 0));
11056 add_loc_descr (&op1, new_loc_descr (DW_OP_swap, 0, 0));
11057 add_loc_descr (&op1, new_loc_descr (DW_OP_over, 0, 0));
11058 if (GET_CODE (rtl) == UMIN || GET_CODE (rtl) == UMAX)
11059 {
11060 if (GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE)
11061 {
11062 HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11063 add_loc_descr (&op0, int_loc_descriptor (mask));
11064 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
11065 add_loc_descr (&op1, int_loc_descriptor (mask));
11066 add_loc_descr (&op1, new_loc_descr (DW_OP_and, 0, 0));
11067 }
11068 else if (GET_MODE_SIZE (mode) == DWARF2_ADDR_SIZE)
11069 {
11070 HOST_WIDE_INT bias = 1;
11071 bias <<= (DWARF2_ADDR_SIZE * BITS_PER_UNIT - 1);
11072 add_loc_descr (&op0, new_loc_descr (DW_OP_plus_uconst, bias, 0));
11073 add_loc_descr (&op1, new_loc_descr (DW_OP_plus_uconst, bias, 0));
11074 }
11075 }
11076 else if (GET_MODE_CLASS (mode) == MODE_INT
11077 && GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE)
11078 {
11079 int shift = (DWARF2_ADDR_SIZE - GET_MODE_SIZE (mode)) * BITS_PER_UNIT;
11080 add_loc_descr (&op0, int_loc_descriptor (shift));
11081 add_loc_descr (&op0, new_loc_descr (DW_OP_shl, 0, 0));
11082 add_loc_descr (&op1, int_loc_descriptor (shift));
11083 add_loc_descr (&op1, new_loc_descr (DW_OP_shl, 0, 0));
11084 }
11085 else if (GET_MODE_CLASS (mode) == MODE_INT
11086 && GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE)
11087 {
11088 dw_die_ref type_die = base_type_for_mode (mode, 0);
11089 dw_loc_descr_ref cvt;
11090 if (type_die == NULL)
11091 return NULL;
11092 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
11093 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
11094 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
11095 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
11096 add_loc_descr (&op0, cvt);
11097 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
11098 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
11099 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
11100 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
11101 add_loc_descr (&op1, cvt);
11102 }
11103
11104 if (GET_CODE (rtl) == SMIN || GET_CODE (rtl) == UMIN)
11105 op = DW_OP_lt;
11106 else
11107 op = DW_OP_gt;
11108 ret = op0;
11109 add_loc_descr (&ret, op1);
11110 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
11111 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
11112 add_loc_descr (&ret, bra_node);
11113 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
11114 drop_node = new_loc_descr (DW_OP_drop, 0, 0);
11115 add_loc_descr (&ret, drop_node);
11116 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
11117 bra_node->dw_loc_oprnd1.v.val_loc = drop_node;
11118 if ((GET_CODE (rtl) == SMIN || GET_CODE (rtl) == SMAX)
11119 && GET_MODE_CLASS (mode) == MODE_INT
11120 && GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE)
11121 ret = convert_descriptor_to_mode (mode, ret);
11122 return ret;
11123 }
11124
11125 /* Helper function for mem_loc_descriptor. Perform OP binary op,
11126 but after converting arguments to type_die, afterwards
11127 convert back to unsigned. */
11128
11129 static dw_loc_descr_ref
11130 typed_binop (enum dwarf_location_atom op, rtx rtl, dw_die_ref type_die,
11131 enum machine_mode mode, enum machine_mode mem_mode)
11132 {
11133 dw_loc_descr_ref cvt, op0, op1;
11134
11135 if (type_die == NULL)
11136 return NULL;
11137 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
11138 VAR_INIT_STATUS_INITIALIZED);
11139 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
11140 VAR_INIT_STATUS_INITIALIZED);
11141 if (op0 == NULL || op1 == NULL)
11142 return NULL;
11143 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
11144 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
11145 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
11146 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
11147 add_loc_descr (&op0, cvt);
11148 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
11149 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
11150 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
11151 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
11152 add_loc_descr (&op1, cvt);
11153 add_loc_descr (&op0, op1);
11154 add_loc_descr (&op0, new_loc_descr (op, 0, 0));
11155 return convert_descriptor_to_mode (mode, op0);
11156 }
11157
11158 /* CLZ (where constV is CLZ_DEFINED_VALUE_AT_ZERO computed value,
11159 const0 is DW_OP_lit0 or corresponding typed constant,
11160 const1 is DW_OP_lit1 or corresponding typed constant
11161 and constMSB is constant with just the MSB bit set
11162 for the mode):
11163 DW_OP_dup DW_OP_bra <L1> DW_OP_drop constV DW_OP_skip <L4>
11164 L1: const0 DW_OP_swap
11165 L2: DW_OP_dup constMSB DW_OP_and DW_OP_bra <L3> const1 DW_OP_shl
11166 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
11167 L3: DW_OP_drop
11168 L4: DW_OP_nop
11169
11170 CTZ is similar:
11171 DW_OP_dup DW_OP_bra <L1> DW_OP_drop constV DW_OP_skip <L4>
11172 L1: const0 DW_OP_swap
11173 L2: DW_OP_dup const1 DW_OP_and DW_OP_bra <L3> const1 DW_OP_shr
11174 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
11175 L3: DW_OP_drop
11176 L4: DW_OP_nop
11177
11178 FFS is similar:
11179 DW_OP_dup DW_OP_bra <L1> DW_OP_drop const0 DW_OP_skip <L4>
11180 L1: const1 DW_OP_swap
11181 L2: DW_OP_dup const1 DW_OP_and DW_OP_bra <L3> const1 DW_OP_shr
11182 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
11183 L3: DW_OP_drop
11184 L4: DW_OP_nop */
11185
11186 static dw_loc_descr_ref
11187 clz_loc_descriptor (rtx rtl, enum machine_mode mode,
11188 enum machine_mode mem_mode)
11189 {
11190 dw_loc_descr_ref op0, ret, tmp;
11191 HOST_WIDE_INT valv;
11192 dw_loc_descr_ref l1jump, l1label;
11193 dw_loc_descr_ref l2jump, l2label;
11194 dw_loc_descr_ref l3jump, l3label;
11195 dw_loc_descr_ref l4jump, l4label;
11196 rtx msb;
11197
11198 if (GET_MODE_CLASS (mode) != MODE_INT
11199 || GET_MODE (XEXP (rtl, 0)) != mode
11200 || (GET_CODE (rtl) == CLZ
11201 && GET_MODE_BITSIZE (mode) > 2 * HOST_BITS_PER_WIDE_INT))
11202 return NULL;
11203
11204 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
11205 VAR_INIT_STATUS_INITIALIZED);
11206 if (op0 == NULL)
11207 return NULL;
11208 ret = op0;
11209 if (GET_CODE (rtl) == CLZ)
11210 {
11211 if (!CLZ_DEFINED_VALUE_AT_ZERO (mode, valv))
11212 valv = GET_MODE_BITSIZE (mode);
11213 }
11214 else if (GET_CODE (rtl) == FFS)
11215 valv = 0;
11216 else if (!CTZ_DEFINED_VALUE_AT_ZERO (mode, valv))
11217 valv = GET_MODE_BITSIZE (mode);
11218 add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0));
11219 l1jump = new_loc_descr (DW_OP_bra, 0, 0);
11220 add_loc_descr (&ret, l1jump);
11221 add_loc_descr (&ret, new_loc_descr (DW_OP_drop, 0, 0));
11222 tmp = mem_loc_descriptor (GEN_INT (valv), mode, mem_mode,
11223 VAR_INIT_STATUS_INITIALIZED);
11224 if (tmp == NULL)
11225 return NULL;
11226 add_loc_descr (&ret, tmp);
11227 l4jump = new_loc_descr (DW_OP_skip, 0, 0);
11228 add_loc_descr (&ret, l4jump);
11229 l1label = mem_loc_descriptor (GET_CODE (rtl) == FFS
11230 ? const1_rtx : const0_rtx,
11231 mode, mem_mode,
11232 VAR_INIT_STATUS_INITIALIZED);
11233 if (l1label == NULL)
11234 return NULL;
11235 add_loc_descr (&ret, l1label);
11236 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
11237 l2label = new_loc_descr (DW_OP_dup, 0, 0);
11238 add_loc_descr (&ret, l2label);
11239 if (GET_CODE (rtl) != CLZ)
11240 msb = const1_rtx;
11241 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11242 msb = GEN_INT ((unsigned HOST_WIDE_INT) 1
11243 << (GET_MODE_BITSIZE (mode) - 1));
11244 else
11245 msb = immed_double_const (0, (unsigned HOST_WIDE_INT) 1
11246 << (GET_MODE_BITSIZE (mode)
11247 - HOST_BITS_PER_WIDE_INT - 1), mode);
11248 if (GET_CODE (msb) == CONST_INT && INTVAL (msb) < 0)
11249 tmp = new_loc_descr (HOST_BITS_PER_WIDE_INT == 32
11250 ? DW_OP_const4u : HOST_BITS_PER_WIDE_INT == 64
11251 ? DW_OP_const8u : DW_OP_constu, INTVAL (msb), 0);
11252 else
11253 tmp = mem_loc_descriptor (msb, mode, mem_mode,
11254 VAR_INIT_STATUS_INITIALIZED);
11255 if (tmp == NULL)
11256 return NULL;
11257 add_loc_descr (&ret, tmp);
11258 add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0));
11259 l3jump = new_loc_descr (DW_OP_bra, 0, 0);
11260 add_loc_descr (&ret, l3jump);
11261 tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode,
11262 VAR_INIT_STATUS_INITIALIZED);
11263 if (tmp == NULL)
11264 return NULL;
11265 add_loc_descr (&ret, tmp);
11266 add_loc_descr (&ret, new_loc_descr (GET_CODE (rtl) == CLZ
11267 ? DW_OP_shl : DW_OP_shr, 0, 0));
11268 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
11269 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, 1, 0));
11270 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
11271 l2jump = new_loc_descr (DW_OP_skip, 0, 0);
11272 add_loc_descr (&ret, l2jump);
11273 l3label = new_loc_descr (DW_OP_drop, 0, 0);
11274 add_loc_descr (&ret, l3label);
11275 l4label = new_loc_descr (DW_OP_nop, 0, 0);
11276 add_loc_descr (&ret, l4label);
11277 l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
11278 l1jump->dw_loc_oprnd1.v.val_loc = l1label;
11279 l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
11280 l2jump->dw_loc_oprnd1.v.val_loc = l2label;
11281 l3jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
11282 l3jump->dw_loc_oprnd1.v.val_loc = l3label;
11283 l4jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
11284 l4jump->dw_loc_oprnd1.v.val_loc = l4label;
11285 return ret;
11286 }
11287
11288 /* POPCOUNT (const0 is DW_OP_lit0 or corresponding typed constant,
11289 const1 is DW_OP_lit1 or corresponding typed constant):
11290 const0 DW_OP_swap
11291 L1: DW_OP_dup DW_OP_bra <L2> DW_OP_dup DW_OP_rot const1 DW_OP_and
11292 DW_OP_plus DW_OP_swap const1 DW_OP_shr DW_OP_skip <L1>
11293 L2: DW_OP_drop
11294
11295 PARITY is similar:
11296 L1: DW_OP_dup DW_OP_bra <L2> DW_OP_dup DW_OP_rot const1 DW_OP_and
11297 DW_OP_xor DW_OP_swap const1 DW_OP_shr DW_OP_skip <L1>
11298 L2: DW_OP_drop */
11299
11300 static dw_loc_descr_ref
11301 popcount_loc_descriptor (rtx rtl, enum machine_mode mode,
11302 enum machine_mode mem_mode)
11303 {
11304 dw_loc_descr_ref op0, ret, tmp;
11305 dw_loc_descr_ref l1jump, l1label;
11306 dw_loc_descr_ref l2jump, l2label;
11307
11308 if (GET_MODE_CLASS (mode) != MODE_INT
11309 || GET_MODE (XEXP (rtl, 0)) != mode)
11310 return NULL;
11311
11312 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
11313 VAR_INIT_STATUS_INITIALIZED);
11314 if (op0 == NULL)
11315 return NULL;
11316 ret = op0;
11317 tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode,
11318 VAR_INIT_STATUS_INITIALIZED);
11319 if (tmp == NULL)
11320 return NULL;
11321 add_loc_descr (&ret, tmp);
11322 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
11323 l1label = new_loc_descr (DW_OP_dup, 0, 0);
11324 add_loc_descr (&ret, l1label);
11325 l2jump = new_loc_descr (DW_OP_bra, 0, 0);
11326 add_loc_descr (&ret, l2jump);
11327 add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0));
11328 add_loc_descr (&ret, new_loc_descr (DW_OP_rot, 0, 0));
11329 tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode,
11330 VAR_INIT_STATUS_INITIALIZED);
11331 if (tmp == NULL)
11332 return NULL;
11333 add_loc_descr (&ret, tmp);
11334 add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0));
11335 add_loc_descr (&ret, new_loc_descr (GET_CODE (rtl) == POPCOUNT
11336 ? DW_OP_plus : DW_OP_xor, 0, 0));
11337 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
11338 tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode,
11339 VAR_INIT_STATUS_INITIALIZED);
11340 add_loc_descr (&ret, tmp);
11341 add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
11342 l1jump = new_loc_descr (DW_OP_skip, 0, 0);
11343 add_loc_descr (&ret, l1jump);
11344 l2label = new_loc_descr (DW_OP_drop, 0, 0);
11345 add_loc_descr (&ret, l2label);
11346 l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
11347 l1jump->dw_loc_oprnd1.v.val_loc = l1label;
11348 l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
11349 l2jump->dw_loc_oprnd1.v.val_loc = l2label;
11350 return ret;
11351 }
11352
11353 /* BSWAP (constS is initial shift count, either 56 or 24):
11354 constS const0
11355 L1: DW_OP_pick <2> constS DW_OP_pick <3> DW_OP_minus DW_OP_shr
11356 const255 DW_OP_and DW_OP_pick <2> DW_OP_shl DW_OP_or
11357 DW_OP_swap DW_OP_dup const0 DW_OP_eq DW_OP_bra <L2> const8
11358 DW_OP_minus DW_OP_swap DW_OP_skip <L1>
11359 L2: DW_OP_drop DW_OP_swap DW_OP_drop */
11360
11361 static dw_loc_descr_ref
11362 bswap_loc_descriptor (rtx rtl, enum machine_mode mode,
11363 enum machine_mode mem_mode)
11364 {
11365 dw_loc_descr_ref op0, ret, tmp;
11366 dw_loc_descr_ref l1jump, l1label;
11367 dw_loc_descr_ref l2jump, l2label;
11368
11369 if (GET_MODE_CLASS (mode) != MODE_INT
11370 || BITS_PER_UNIT != 8
11371 || (GET_MODE_BITSIZE (mode) != 32
11372 && GET_MODE_BITSIZE (mode) != 64))
11373 return NULL;
11374
11375 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
11376 VAR_INIT_STATUS_INITIALIZED);
11377 if (op0 == NULL)
11378 return NULL;
11379
11380 ret = op0;
11381 tmp = mem_loc_descriptor (GEN_INT (GET_MODE_BITSIZE (mode) - 8),
11382 mode, mem_mode,
11383 VAR_INIT_STATUS_INITIALIZED);
11384 if (tmp == NULL)
11385 return NULL;
11386 add_loc_descr (&ret, tmp);
11387 tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode,
11388 VAR_INIT_STATUS_INITIALIZED);
11389 if (tmp == NULL)
11390 return NULL;
11391 add_loc_descr (&ret, tmp);
11392 l1label = new_loc_descr (DW_OP_pick, 2, 0);
11393 add_loc_descr (&ret, l1label);
11394 tmp = mem_loc_descriptor (GEN_INT (GET_MODE_BITSIZE (mode) - 8),
11395 mode, mem_mode,
11396 VAR_INIT_STATUS_INITIALIZED);
11397 add_loc_descr (&ret, tmp);
11398 add_loc_descr (&ret, new_loc_descr (DW_OP_pick, 3, 0));
11399 add_loc_descr (&ret, new_loc_descr (DW_OP_minus, 0, 0));
11400 add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
11401 tmp = mem_loc_descriptor (GEN_INT (255), mode, mem_mode,
11402 VAR_INIT_STATUS_INITIALIZED);
11403 if (tmp == NULL)
11404 return NULL;
11405 add_loc_descr (&ret, tmp);
11406 add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0));
11407 add_loc_descr (&ret, new_loc_descr (DW_OP_pick, 2, 0));
11408 add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0));
11409 add_loc_descr (&ret, new_loc_descr (DW_OP_or, 0, 0));
11410 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
11411 add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0));
11412 tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode,
11413 VAR_INIT_STATUS_INITIALIZED);
11414 add_loc_descr (&ret, tmp);
11415 add_loc_descr (&ret, new_loc_descr (DW_OP_eq, 0, 0));
11416 l2jump = new_loc_descr (DW_OP_bra, 0, 0);
11417 add_loc_descr (&ret, l2jump);
11418 tmp = mem_loc_descriptor (GEN_INT (8), mode, mem_mode,
11419 VAR_INIT_STATUS_INITIALIZED);
11420 add_loc_descr (&ret, tmp);
11421 add_loc_descr (&ret, new_loc_descr (DW_OP_minus, 0, 0));
11422 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
11423 l1jump = new_loc_descr (DW_OP_skip, 0, 0);
11424 add_loc_descr (&ret, l1jump);
11425 l2label = new_loc_descr (DW_OP_drop, 0, 0);
11426 add_loc_descr (&ret, l2label);
11427 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
11428 add_loc_descr (&ret, new_loc_descr (DW_OP_drop, 0, 0));
11429 l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
11430 l1jump->dw_loc_oprnd1.v.val_loc = l1label;
11431 l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
11432 l2jump->dw_loc_oprnd1.v.val_loc = l2label;
11433 return ret;
11434 }
11435
11436 /* ROTATE (constMASK is mode mask, BITSIZE is bitsize of mode):
11437 DW_OP_over DW_OP_over DW_OP_shl [ constMASK DW_OP_and ] DW_OP_rot
11438 [ DW_OP_swap constMASK DW_OP_and DW_OP_swap ] DW_OP_neg
11439 DW_OP_plus_uconst <BITSIZE> DW_OP_shr DW_OP_or
11440
11441 ROTATERT is similar:
11442 DW_OP_over DW_OP_over DW_OP_neg DW_OP_plus_uconst <BITSIZE>
11443 DW_OP_shl [ constMASK DW_OP_and ] DW_OP_rot
11444 [ DW_OP_swap constMASK DW_OP_and DW_OP_swap ] DW_OP_shr DW_OP_or */
11445
11446 static dw_loc_descr_ref
11447 rotate_loc_descriptor (rtx rtl, enum machine_mode mode,
11448 enum machine_mode mem_mode)
11449 {
11450 rtx rtlop1 = XEXP (rtl, 1);
11451 dw_loc_descr_ref op0, op1, ret, mask[2] = { NULL, NULL };
11452 int i;
11453
11454 if (GET_MODE_CLASS (mode) != MODE_INT)
11455 return NULL;
11456
11457 if (GET_MODE (rtlop1) != VOIDmode
11458 && GET_MODE_BITSIZE (GET_MODE (rtlop1)) < GET_MODE_BITSIZE (mode))
11459 rtlop1 = gen_rtx_ZERO_EXTEND (mode, rtlop1);
11460 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
11461 VAR_INIT_STATUS_INITIALIZED);
11462 op1 = mem_loc_descriptor (rtlop1, mode, mem_mode,
11463 VAR_INIT_STATUS_INITIALIZED);
11464 if (op0 == NULL || op1 == NULL)
11465 return NULL;
11466 if (GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE)
11467 for (i = 0; i < 2; i++)
11468 {
11469 if (GET_MODE_BITSIZE (mode) < HOST_BITS_PER_WIDE_INT)
11470 mask[i] = mem_loc_descriptor (GEN_INT (GET_MODE_MASK (mode)),
11471 mode, mem_mode,
11472 VAR_INIT_STATUS_INITIALIZED);
11473 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
11474 mask[i] = new_loc_descr (HOST_BITS_PER_WIDE_INT == 32
11475 ? DW_OP_const4u
11476 : HOST_BITS_PER_WIDE_INT == 64
11477 ? DW_OP_const8u : DW_OP_constu,
11478 GET_MODE_MASK (mode), 0);
11479 else
11480 mask[i] = NULL;
11481 if (mask[i] == NULL)
11482 return NULL;
11483 add_loc_descr (&mask[i], new_loc_descr (DW_OP_and, 0, 0));
11484 }
11485 ret = op0;
11486 add_loc_descr (&ret, op1);
11487 add_loc_descr (&ret, new_loc_descr (DW_OP_over, 0, 0));
11488 add_loc_descr (&ret, new_loc_descr (DW_OP_over, 0, 0));
11489 if (GET_CODE (rtl) == ROTATERT)
11490 {
11491 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
11492 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst,
11493 GET_MODE_BITSIZE (mode), 0));
11494 }
11495 add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0));
11496 if (mask[0] != NULL)
11497 add_loc_descr (&ret, mask[0]);
11498 add_loc_descr (&ret, new_loc_descr (DW_OP_rot, 0, 0));
11499 if (mask[1] != NULL)
11500 {
11501 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
11502 add_loc_descr (&ret, mask[1]);
11503 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
11504 }
11505 if (GET_CODE (rtl) == ROTATE)
11506 {
11507 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
11508 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst,
11509 GET_MODE_BITSIZE (mode), 0));
11510 }
11511 add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
11512 add_loc_descr (&ret, new_loc_descr (DW_OP_or, 0, 0));
11513 return ret;
11514 }
11515
11516 /* Helper function for mem_loc_descriptor. Return DW_OP_GNU_parameter_ref
11517 for DEBUG_PARAMETER_REF RTL. */
11518
11519 static dw_loc_descr_ref
11520 parameter_ref_descriptor (rtx rtl)
11521 {
11522 dw_loc_descr_ref ret;
11523 dw_die_ref ref;
11524
11525 if (dwarf_strict)
11526 return NULL;
11527 gcc_assert (TREE_CODE (DEBUG_PARAMETER_REF_DECL (rtl)) == PARM_DECL);
11528 ref = lookup_decl_die (DEBUG_PARAMETER_REF_DECL (rtl));
11529 ret = new_loc_descr (DW_OP_GNU_parameter_ref, 0, 0);
11530 if (ref)
11531 {
11532 ret->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
11533 ret->dw_loc_oprnd1.v.val_die_ref.die = ref;
11534 ret->dw_loc_oprnd1.v.val_die_ref.external = 0;
11535 }
11536 else
11537 {
11538 ret->dw_loc_oprnd1.val_class = dw_val_class_decl_ref;
11539 ret->dw_loc_oprnd1.v.val_decl_ref = DEBUG_PARAMETER_REF_DECL (rtl);
11540 }
11541 return ret;
11542 }
11543
11544 /* Helper function to get mode of MEM's address. */
11545
11546 enum machine_mode
11547 get_address_mode (rtx mem)
11548 {
11549 enum machine_mode mode = GET_MODE (XEXP (mem, 0));
11550 if (mode != VOIDmode)
11551 return mode;
11552 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
11553 }
11554
11555 /* The following routine converts the RTL for a variable or parameter
11556 (resident in memory) into an equivalent Dwarf representation of a
11557 mechanism for getting the address of that same variable onto the top of a
11558 hypothetical "address evaluation" stack.
11559
11560 When creating memory location descriptors, we are effectively transforming
11561 the RTL for a memory-resident object into its Dwarf postfix expression
11562 equivalent. This routine recursively descends an RTL tree, turning
11563 it into Dwarf postfix code as it goes.
11564
11565 MODE is the mode that should be assumed for the rtl if it is VOIDmode.
11566
11567 MEM_MODE is the mode of the memory reference, needed to handle some
11568 autoincrement addressing modes.
11569
11570 Return 0 if we can't represent the location. */
11571
11572 dw_loc_descr_ref
11573 mem_loc_descriptor (rtx rtl, enum machine_mode mode,
11574 enum machine_mode mem_mode,
11575 enum var_init_status initialized)
11576 {
11577 dw_loc_descr_ref mem_loc_result = NULL;
11578 enum dwarf_location_atom op;
11579 dw_loc_descr_ref op0, op1;
11580
11581 if (mode == VOIDmode)
11582 mode = GET_MODE (rtl);
11583
11584 /* Note that for a dynamically sized array, the location we will generate a
11585 description of here will be the lowest numbered location which is
11586 actually within the array. That's *not* necessarily the same as the
11587 zeroth element of the array. */
11588
11589 rtl = targetm.delegitimize_address (rtl);
11590
11591 if (mode != GET_MODE (rtl) && GET_MODE (rtl) != VOIDmode)
11592 return NULL;
11593
11594 switch (GET_CODE (rtl))
11595 {
11596 case POST_INC:
11597 case POST_DEC:
11598 case POST_MODIFY:
11599 return mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode, initialized);
11600
11601 case SUBREG:
11602 /* The case of a subreg may arise when we have a local (register)
11603 variable or a formal (register) parameter which doesn't quite fill
11604 up an entire register. For now, just assume that it is
11605 legitimate to make the Dwarf info refer to the whole register which
11606 contains the given subreg. */
11607 if (!subreg_lowpart_p (rtl))
11608 break;
11609 if (GET_MODE_CLASS (mode) == MODE_INT
11610 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (rtl))) == MODE_INT
11611 && (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
11612 #ifdef POINTERS_EXTEND_UNSIGNED
11613 || (mode == Pmode && mem_mode != VOIDmode)
11614 #endif
11615 )
11616 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (rtl))) <= DWARF2_ADDR_SIZE)
11617 {
11618 mem_loc_result = mem_loc_descriptor (SUBREG_REG (rtl),
11619 GET_MODE (SUBREG_REG (rtl)),
11620 mem_mode, initialized);
11621 break;
11622 }
11623 if (dwarf_strict)
11624 break;
11625 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (rtl))))
11626 break;
11627 if (GET_MODE_SIZE (mode) != GET_MODE_SIZE (GET_MODE (SUBREG_REG (rtl)))
11628 && (GET_MODE_CLASS (mode) != MODE_INT
11629 || GET_MODE_CLASS (GET_MODE (SUBREG_REG (rtl))) != MODE_INT))
11630 break;
11631 else
11632 {
11633 dw_die_ref type_die;
11634 dw_loc_descr_ref cvt;
11635
11636 mem_loc_result = mem_loc_descriptor (SUBREG_REG (rtl),
11637 GET_MODE (SUBREG_REG (rtl)),
11638 mem_mode, initialized);
11639 if (mem_loc_result == NULL)
11640 break;
11641 type_die = base_type_for_mode (mode,
11642 GET_MODE_CLASS (mode) == MODE_INT);
11643 if (type_die == NULL)
11644 {
11645 mem_loc_result = NULL;
11646 break;
11647 }
11648 if (GET_MODE_SIZE (mode)
11649 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (rtl))))
11650 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
11651 else
11652 cvt = new_loc_descr (DW_OP_GNU_reinterpret, 0, 0);
11653 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
11654 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
11655 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
11656 add_loc_descr (&mem_loc_result, cvt);
11657 }
11658 break;
11659
11660 case REG:
11661 if (GET_MODE_CLASS (mode) != MODE_INT
11662 || (GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE
11663 #ifdef POINTERS_EXTEND_UNSIGNED
11664 && (mode != Pmode || mem_mode == VOIDmode)
11665 #endif
11666 ))
11667 {
11668 dw_die_ref type_die;
11669
11670 if (dwarf_strict)
11671 break;
11672 if (REGNO (rtl) > FIRST_PSEUDO_REGISTER)
11673 break;
11674 type_die = base_type_for_mode (mode,
11675 GET_MODE_CLASS (mode) == MODE_INT);
11676 if (type_die == NULL)
11677 break;
11678 mem_loc_result = new_loc_descr (DW_OP_GNU_regval_type,
11679 dbx_reg_number (rtl), 0);
11680 mem_loc_result->dw_loc_oprnd2.val_class = dw_val_class_die_ref;
11681 mem_loc_result->dw_loc_oprnd2.v.val_die_ref.die = type_die;
11682 mem_loc_result->dw_loc_oprnd2.v.val_die_ref.external = 0;
11683 break;
11684 }
11685 /* Whenever a register number forms a part of the description of the
11686 method for calculating the (dynamic) address of a memory resident
11687 object, DWARF rules require the register number be referred to as
11688 a "base register". This distinction is not based in any way upon
11689 what category of register the hardware believes the given register
11690 belongs to. This is strictly DWARF terminology we're dealing with
11691 here. Note that in cases where the location of a memory-resident
11692 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
11693 OP_CONST (0)) the actual DWARF location descriptor that we generate
11694 may just be OP_BASEREG (basereg). This may look deceptively like
11695 the object in question was allocated to a register (rather than in
11696 memory) so DWARF consumers need to be aware of the subtle
11697 distinction between OP_REG and OP_BASEREG. */
11698 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
11699 mem_loc_result = based_loc_descr (rtl, 0, VAR_INIT_STATUS_INITIALIZED);
11700 else if (stack_realign_drap
11701 && crtl->drap_reg
11702 && crtl->args.internal_arg_pointer == rtl
11703 && REGNO (crtl->drap_reg) < FIRST_PSEUDO_REGISTER)
11704 {
11705 /* If RTL is internal_arg_pointer, which has been optimized
11706 out, use DRAP instead. */
11707 mem_loc_result = based_loc_descr (crtl->drap_reg, 0,
11708 VAR_INIT_STATUS_INITIALIZED);
11709 }
11710 break;
11711
11712 case SIGN_EXTEND:
11713 case ZERO_EXTEND:
11714 if (GET_MODE_CLASS (mode) != MODE_INT)
11715 break;
11716 op0 = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (XEXP (rtl, 0)),
11717 mem_mode, VAR_INIT_STATUS_INITIALIZED);
11718 if (op0 == 0)
11719 break;
11720 else if (GET_CODE (rtl) == ZERO_EXTEND
11721 && GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
11722 && GET_MODE_BITSIZE (GET_MODE (XEXP (rtl, 0)))
11723 < HOST_BITS_PER_WIDE_INT
11724 /* If DW_OP_const{1,2,4}u won't be used, it is shorter
11725 to expand zero extend as two shifts instead of
11726 masking. */
11727 && GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0))) <= 4)
11728 {
11729 enum machine_mode imode = GET_MODE (XEXP (rtl, 0));
11730 mem_loc_result = op0;
11731 add_loc_descr (&mem_loc_result,
11732 int_loc_descriptor (GET_MODE_MASK (imode)));
11733 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_and, 0, 0));
11734 }
11735 else if (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE)
11736 {
11737 int shift = DWARF2_ADDR_SIZE
11738 - GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0)));
11739 shift *= BITS_PER_UNIT;
11740 if (GET_CODE (rtl) == SIGN_EXTEND)
11741 op = DW_OP_shra;
11742 else
11743 op = DW_OP_shr;
11744 mem_loc_result = op0;
11745 add_loc_descr (&mem_loc_result, int_loc_descriptor (shift));
11746 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_shl, 0, 0));
11747 add_loc_descr (&mem_loc_result, int_loc_descriptor (shift));
11748 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
11749 }
11750 else if (!dwarf_strict)
11751 {
11752 dw_die_ref type_die1, type_die2;
11753 dw_loc_descr_ref cvt;
11754
11755 type_die1 = base_type_for_mode (GET_MODE (XEXP (rtl, 0)),
11756 GET_CODE (rtl) == ZERO_EXTEND);
11757 if (type_die1 == NULL)
11758 break;
11759 type_die2 = base_type_for_mode (mode, 1);
11760 if (type_die2 == NULL)
11761 break;
11762 mem_loc_result = op0;
11763 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
11764 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
11765 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die1;
11766 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
11767 add_loc_descr (&mem_loc_result, cvt);
11768 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
11769 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
11770 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die2;
11771 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
11772 add_loc_descr (&mem_loc_result, cvt);
11773 }
11774 break;
11775
11776 case MEM:
11777 {
11778 rtx new_rtl = avoid_constant_pool_reference (rtl);
11779 if (new_rtl != rtl)
11780 {
11781 mem_loc_result = mem_loc_descriptor (new_rtl, mode, mem_mode,
11782 initialized);
11783 if (mem_loc_result != NULL)
11784 return mem_loc_result;
11785 }
11786 }
11787 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0),
11788 get_address_mode (rtl), mode,
11789 VAR_INIT_STATUS_INITIALIZED);
11790 if (mem_loc_result == NULL)
11791 mem_loc_result = tls_mem_loc_descriptor (rtl);
11792 if (mem_loc_result != NULL)
11793 {
11794 if (GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE
11795 || GET_MODE_CLASS (mode) != MODE_INT)
11796 {
11797 dw_die_ref type_die;
11798 dw_loc_descr_ref deref;
11799
11800 if (dwarf_strict)
11801 return NULL;
11802 type_die
11803 = base_type_for_mode (mode, GET_MODE_CLASS (mode) == MODE_INT);
11804 if (type_die == NULL)
11805 return NULL;
11806 deref = new_loc_descr (DW_OP_GNU_deref_type,
11807 GET_MODE_SIZE (mode), 0);
11808 deref->dw_loc_oprnd2.val_class = dw_val_class_die_ref;
11809 deref->dw_loc_oprnd2.v.val_die_ref.die = type_die;
11810 deref->dw_loc_oprnd2.v.val_die_ref.external = 0;
11811 add_loc_descr (&mem_loc_result, deref);
11812 }
11813 else if (GET_MODE_SIZE (mode) == DWARF2_ADDR_SIZE)
11814 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
11815 else
11816 add_loc_descr (&mem_loc_result,
11817 new_loc_descr (DW_OP_deref_size,
11818 GET_MODE_SIZE (mode), 0));
11819 }
11820 break;
11821
11822 case LO_SUM:
11823 return mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode, initialized);
11824
11825 case LABEL_REF:
11826 /* Some ports can transform a symbol ref into a label ref, because
11827 the symbol ref is too far away and has to be dumped into a constant
11828 pool. */
11829 case CONST:
11830 case SYMBOL_REF:
11831 if (GET_MODE_CLASS (mode) != MODE_INT
11832 || (GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE
11833 #ifdef POINTERS_EXTEND_UNSIGNED
11834 && (mode != Pmode || mem_mode == VOIDmode)
11835 #endif
11836 ))
11837 break;
11838 if (GET_CODE (rtl) == SYMBOL_REF
11839 && SYMBOL_REF_TLS_MODEL (rtl) != TLS_MODEL_NONE)
11840 {
11841 dw_loc_descr_ref temp;
11842
11843 /* If this is not defined, we have no way to emit the data. */
11844 if (!targetm.have_tls || !targetm.asm_out.output_dwarf_dtprel)
11845 break;
11846
11847 /* We used to emit DW_OP_addr here, but that's wrong, since
11848 DW_OP_addr should be relocated by the debug info consumer,
11849 while DW_OP_GNU_push_tls_address operand should not. */
11850 temp = new_loc_descr (DWARF2_ADDR_SIZE == 4
11851 ? DW_OP_const4u : DW_OP_const8u, 0, 0);
11852 temp->dw_loc_oprnd1.val_class = dw_val_class_addr;
11853 temp->dw_loc_oprnd1.v.val_addr = rtl;
11854 temp->dtprel = true;
11855
11856 mem_loc_result = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
11857 add_loc_descr (&mem_loc_result, temp);
11858
11859 break;
11860 }
11861
11862 if (!const_ok_for_output (rtl))
11863 break;
11864
11865 symref:
11866 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
11867 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
11868 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
11869 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
11870 break;
11871
11872 case CONCAT:
11873 case CONCATN:
11874 case VAR_LOCATION:
11875 case DEBUG_IMPLICIT_PTR:
11876 expansion_failed (NULL_TREE, rtl,
11877 "CONCAT/CONCATN/VAR_LOCATION is handled only by loc_descriptor");
11878 return 0;
11879
11880 case ENTRY_VALUE:
11881 if (dwarf_strict)
11882 return NULL;
11883 if (REG_P (ENTRY_VALUE_EXP (rtl)))
11884 {
11885 if (GET_MODE_CLASS (mode) != MODE_INT
11886 || GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE)
11887 op0 = mem_loc_descriptor (ENTRY_VALUE_EXP (rtl), mode,
11888 VOIDmode, VAR_INIT_STATUS_INITIALIZED);
11889 else
11890 op0
11891 = one_reg_loc_descriptor (dbx_reg_number (ENTRY_VALUE_EXP (rtl)),
11892 VAR_INIT_STATUS_INITIALIZED);
11893 }
11894 else if (MEM_P (ENTRY_VALUE_EXP (rtl))
11895 && REG_P (XEXP (ENTRY_VALUE_EXP (rtl), 0)))
11896 {
11897 op0 = mem_loc_descriptor (ENTRY_VALUE_EXP (rtl), mode,
11898 VOIDmode, VAR_INIT_STATUS_INITIALIZED);
11899 if (op0 && op0->dw_loc_opc == DW_OP_fbreg)
11900 return NULL;
11901 }
11902 else
11903 gcc_unreachable ();
11904 if (op0 == NULL)
11905 return NULL;
11906 mem_loc_result = new_loc_descr (DW_OP_GNU_entry_value, 0, 0);
11907 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_loc;
11908 mem_loc_result->dw_loc_oprnd1.v.val_loc = op0;
11909 break;
11910
11911 case DEBUG_PARAMETER_REF:
11912 mem_loc_result = parameter_ref_descriptor (rtl);
11913 break;
11914
11915 case PRE_MODIFY:
11916 /* Extract the PLUS expression nested inside and fall into
11917 PLUS code below. */
11918 rtl = XEXP (rtl, 1);
11919 goto plus;
11920
11921 case PRE_INC:
11922 case PRE_DEC:
11923 /* Turn these into a PLUS expression and fall into the PLUS code
11924 below. */
11925 rtl = gen_rtx_PLUS (mode, XEXP (rtl, 0),
11926 GEN_INT (GET_CODE (rtl) == PRE_INC
11927 ? GET_MODE_UNIT_SIZE (mem_mode)
11928 : -GET_MODE_UNIT_SIZE (mem_mode)));
11929
11930 /* ... fall through ... */
11931
11932 case PLUS:
11933 plus:
11934 if (is_based_loc (rtl)
11935 && GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
11936 && GET_MODE_CLASS (mode) == MODE_INT)
11937 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
11938 INTVAL (XEXP (rtl, 1)),
11939 VAR_INIT_STATUS_INITIALIZED);
11940 else
11941 {
11942 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
11943 VAR_INIT_STATUS_INITIALIZED);
11944 if (mem_loc_result == 0)
11945 break;
11946
11947 if (CONST_INT_P (XEXP (rtl, 1))
11948 && GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE)
11949 loc_descr_plus_const (&mem_loc_result, INTVAL (XEXP (rtl, 1)));
11950 else
11951 {
11952 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
11953 VAR_INIT_STATUS_INITIALIZED);
11954 if (op1 == 0)
11955 break;
11956 add_loc_descr (&mem_loc_result, op1);
11957 add_loc_descr (&mem_loc_result,
11958 new_loc_descr (DW_OP_plus, 0, 0));
11959 }
11960 }
11961 break;
11962
11963 /* If a pseudo-reg is optimized away, it is possible for it to
11964 be replaced with a MEM containing a multiply or shift. */
11965 case MINUS:
11966 op = DW_OP_minus;
11967 goto do_binop;
11968
11969 case MULT:
11970 op = DW_OP_mul;
11971 goto do_binop;
11972
11973 case DIV:
11974 if (!dwarf_strict
11975 && GET_MODE_CLASS (mode) == MODE_INT
11976 && GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE)
11977 {
11978 mem_loc_result = typed_binop (DW_OP_div, rtl,
11979 base_type_for_mode (mode, 0),
11980 mode, mem_mode);
11981 break;
11982 }
11983 op = DW_OP_div;
11984 goto do_binop;
11985
11986 case UMOD:
11987 op = DW_OP_mod;
11988 goto do_binop;
11989
11990 case ASHIFT:
11991 op = DW_OP_shl;
11992 goto do_shift;
11993
11994 case ASHIFTRT:
11995 op = DW_OP_shra;
11996 goto do_shift;
11997
11998 case LSHIFTRT:
11999 op = DW_OP_shr;
12000 goto do_shift;
12001
12002 do_shift:
12003 if (GET_MODE_CLASS (mode) != MODE_INT)
12004 break;
12005 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12006 VAR_INIT_STATUS_INITIALIZED);
12007 {
12008 rtx rtlop1 = XEXP (rtl, 1);
12009 if (GET_MODE (rtlop1) != VOIDmode
12010 && GET_MODE_BITSIZE (GET_MODE (rtlop1))
12011 < GET_MODE_BITSIZE (mode))
12012 rtlop1 = gen_rtx_ZERO_EXTEND (mode, rtlop1);
12013 op1 = mem_loc_descriptor (rtlop1, mode, mem_mode,
12014 VAR_INIT_STATUS_INITIALIZED);
12015 }
12016
12017 if (op0 == 0 || op1 == 0)
12018 break;
12019
12020 mem_loc_result = op0;
12021 add_loc_descr (&mem_loc_result, op1);
12022 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
12023 break;
12024
12025 case AND:
12026 op = DW_OP_and;
12027 goto do_binop;
12028
12029 case IOR:
12030 op = DW_OP_or;
12031 goto do_binop;
12032
12033 case XOR:
12034 op = DW_OP_xor;
12035 goto do_binop;
12036
12037 do_binop:
12038 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12039 VAR_INIT_STATUS_INITIALIZED);
12040 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
12041 VAR_INIT_STATUS_INITIALIZED);
12042
12043 if (op0 == 0 || op1 == 0)
12044 break;
12045
12046 mem_loc_result = op0;
12047 add_loc_descr (&mem_loc_result, op1);
12048 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
12049 break;
12050
12051 case MOD:
12052 if (GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE && !dwarf_strict)
12053 {
12054 mem_loc_result = typed_binop (DW_OP_mod, rtl,
12055 base_type_for_mode (mode, 0),
12056 mode, mem_mode);
12057 break;
12058 }
12059
12060 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12061 VAR_INIT_STATUS_INITIALIZED);
12062 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
12063 VAR_INIT_STATUS_INITIALIZED);
12064
12065 if (op0 == 0 || op1 == 0)
12066 break;
12067
12068 mem_loc_result = op0;
12069 add_loc_descr (&mem_loc_result, op1);
12070 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_over, 0, 0));
12071 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_over, 0, 0));
12072 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_div, 0, 0));
12073 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
12074 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_minus, 0, 0));
12075 break;
12076
12077 case UDIV:
12078 if (!dwarf_strict && GET_MODE_CLASS (mode) == MODE_INT)
12079 {
12080 if (GET_MODE_CLASS (mode) > DWARF2_ADDR_SIZE)
12081 {
12082 op = DW_OP_div;
12083 goto do_binop;
12084 }
12085 mem_loc_result = typed_binop (DW_OP_div, rtl,
12086 base_type_for_mode (mode, 1),
12087 mode, mem_mode);
12088 }
12089 break;
12090
12091 case NOT:
12092 op = DW_OP_not;
12093 goto do_unop;
12094
12095 case ABS:
12096 op = DW_OP_abs;
12097 goto do_unop;
12098
12099 case NEG:
12100 op = DW_OP_neg;
12101 goto do_unop;
12102
12103 do_unop:
12104 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12105 VAR_INIT_STATUS_INITIALIZED);
12106
12107 if (op0 == 0)
12108 break;
12109
12110 mem_loc_result = op0;
12111 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
12112 break;
12113
12114 case CONST_INT:
12115 if (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
12116 #ifdef POINTERS_EXTEND_UNSIGNED
12117 || (mode == Pmode
12118 && mem_mode != VOIDmode
12119 && trunc_int_for_mode (INTVAL (rtl), ptr_mode) == INTVAL (rtl))
12120 #endif
12121 )
12122 {
12123 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
12124 break;
12125 }
12126 if (!dwarf_strict
12127 && (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT
12128 || GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT))
12129 {
12130 dw_die_ref type_die = base_type_for_mode (mode, 1);
12131 enum machine_mode amode;
12132 if (type_die == NULL)
12133 return NULL;
12134 amode = mode_for_size (DWARF2_ADDR_SIZE * BITS_PER_UNIT,
12135 MODE_INT, 0);
12136 if (INTVAL (rtl) >= 0
12137 && amode != BLKmode
12138 && trunc_int_for_mode (INTVAL (rtl), amode) == INTVAL (rtl)
12139 /* const DW_OP_GNU_convert <XXX> vs.
12140 DW_OP_GNU_const_type <XXX, 1, const>. */
12141 && size_of_int_loc_descriptor (INTVAL (rtl)) + 1 + 1
12142 < (unsigned long) 1 + 1 + 1 + GET_MODE_SIZE (mode))
12143 {
12144 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
12145 op0 = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12146 op0->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12147 op0->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12148 op0->dw_loc_oprnd1.v.val_die_ref.external = 0;
12149 add_loc_descr (&mem_loc_result, op0);
12150 return mem_loc_result;
12151 }
12152 mem_loc_result = new_loc_descr (DW_OP_GNU_const_type, 0,
12153 INTVAL (rtl));
12154 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12155 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12156 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.external = 0;
12157 if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
12158 mem_loc_result->dw_loc_oprnd2.val_class = dw_val_class_const;
12159 else
12160 {
12161 mem_loc_result->dw_loc_oprnd2.val_class
12162 = dw_val_class_const_double;
12163 mem_loc_result->dw_loc_oprnd2.v.val_double
12164 = shwi_to_double_int (INTVAL (rtl));
12165 }
12166 }
12167 break;
12168
12169 case CONST_DOUBLE:
12170 if (!dwarf_strict)
12171 {
12172 dw_die_ref type_die;
12173
12174 /* Note that a CONST_DOUBLE rtx could represent either an integer
12175 or a floating-point constant. A CONST_DOUBLE is used whenever
12176 the constant requires more than one word in order to be
12177 adequately represented. We output CONST_DOUBLEs as blocks. */
12178 if (mode == VOIDmode
12179 || (GET_MODE (rtl) == VOIDmode
12180 && GET_MODE_BITSIZE (mode) != 2 * HOST_BITS_PER_WIDE_INT))
12181 break;
12182 type_die = base_type_for_mode (mode,
12183 GET_MODE_CLASS (mode) == MODE_INT);
12184 if (type_die == NULL)
12185 return NULL;
12186 mem_loc_result = new_loc_descr (DW_OP_GNU_const_type, 0, 0);
12187 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12188 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12189 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.external = 0;
12190 if (SCALAR_FLOAT_MODE_P (mode))
12191 {
12192 unsigned int length = GET_MODE_SIZE (mode);
12193 unsigned char *array
12194 = (unsigned char*) ggc_alloc_atomic (length);
12195
12196 insert_float (rtl, array);
12197 mem_loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
12198 mem_loc_result->dw_loc_oprnd2.v.val_vec.length = length / 4;
12199 mem_loc_result->dw_loc_oprnd2.v.val_vec.elt_size = 4;
12200 mem_loc_result->dw_loc_oprnd2.v.val_vec.array = array;
12201 }
12202 else
12203 {
12204 mem_loc_result->dw_loc_oprnd2.val_class
12205 = dw_val_class_const_double;
12206 mem_loc_result->dw_loc_oprnd2.v.val_double
12207 = rtx_to_double_int (rtl);
12208 }
12209 }
12210 break;
12211
12212 case EQ:
12213 mem_loc_result = scompare_loc_descriptor (DW_OP_eq, rtl, mem_mode);
12214 break;
12215
12216 case GE:
12217 mem_loc_result = scompare_loc_descriptor (DW_OP_ge, rtl, mem_mode);
12218 break;
12219
12220 case GT:
12221 mem_loc_result = scompare_loc_descriptor (DW_OP_gt, rtl, mem_mode);
12222 break;
12223
12224 case LE:
12225 mem_loc_result = scompare_loc_descriptor (DW_OP_le, rtl, mem_mode);
12226 break;
12227
12228 case LT:
12229 mem_loc_result = scompare_loc_descriptor (DW_OP_lt, rtl, mem_mode);
12230 break;
12231
12232 case NE:
12233 mem_loc_result = scompare_loc_descriptor (DW_OP_ne, rtl, mem_mode);
12234 break;
12235
12236 case GEU:
12237 mem_loc_result = ucompare_loc_descriptor (DW_OP_ge, rtl, mem_mode);
12238 break;
12239
12240 case GTU:
12241 mem_loc_result = ucompare_loc_descriptor (DW_OP_gt, rtl, mem_mode);
12242 break;
12243
12244 case LEU:
12245 mem_loc_result = ucompare_loc_descriptor (DW_OP_le, rtl, mem_mode);
12246 break;
12247
12248 case LTU:
12249 mem_loc_result = ucompare_loc_descriptor (DW_OP_lt, rtl, mem_mode);
12250 break;
12251
12252 case UMIN:
12253 case UMAX:
12254 if (GET_MODE_CLASS (mode) != MODE_INT)
12255 break;
12256 /* FALLTHRU */
12257 case SMIN:
12258 case SMAX:
12259 mem_loc_result = minmax_loc_descriptor (rtl, mode, mem_mode);
12260 break;
12261
12262 case ZERO_EXTRACT:
12263 case SIGN_EXTRACT:
12264 if (CONST_INT_P (XEXP (rtl, 1))
12265 && CONST_INT_P (XEXP (rtl, 2))
12266 && ((unsigned) INTVAL (XEXP (rtl, 1))
12267 + (unsigned) INTVAL (XEXP (rtl, 2))
12268 <= GET_MODE_BITSIZE (mode))
12269 && GET_MODE_CLASS (mode) == MODE_INT
12270 && GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
12271 && GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0))) <= DWARF2_ADDR_SIZE)
12272 {
12273 int shift, size;
12274 op0 = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (XEXP (rtl, 0)),
12275 mem_mode, VAR_INIT_STATUS_INITIALIZED);
12276 if (op0 == 0)
12277 break;
12278 if (GET_CODE (rtl) == SIGN_EXTRACT)
12279 op = DW_OP_shra;
12280 else
12281 op = DW_OP_shr;
12282 mem_loc_result = op0;
12283 size = INTVAL (XEXP (rtl, 1));
12284 shift = INTVAL (XEXP (rtl, 2));
12285 if (BITS_BIG_ENDIAN)
12286 shift = GET_MODE_BITSIZE (GET_MODE (XEXP (rtl, 0)))
12287 - shift - size;
12288 if (shift + size != (int) DWARF2_ADDR_SIZE)
12289 {
12290 add_loc_descr (&mem_loc_result,
12291 int_loc_descriptor (DWARF2_ADDR_SIZE
12292 - shift - size));
12293 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_shl, 0, 0));
12294 }
12295 if (size != (int) DWARF2_ADDR_SIZE)
12296 {
12297 add_loc_descr (&mem_loc_result,
12298 int_loc_descriptor (DWARF2_ADDR_SIZE - size));
12299 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
12300 }
12301 }
12302 break;
12303
12304 case IF_THEN_ELSE:
12305 {
12306 dw_loc_descr_ref op2, bra_node, drop_node;
12307 op0 = mem_loc_descriptor (XEXP (rtl, 0),
12308 GET_MODE (XEXP (rtl, 0)) == VOIDmode
12309 ? word_mode : GET_MODE (XEXP (rtl, 0)),
12310 mem_mode, VAR_INIT_STATUS_INITIALIZED);
12311 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
12312 VAR_INIT_STATUS_INITIALIZED);
12313 op2 = mem_loc_descriptor (XEXP (rtl, 2), mode, mem_mode,
12314 VAR_INIT_STATUS_INITIALIZED);
12315 if (op0 == NULL || op1 == NULL || op2 == NULL)
12316 break;
12317
12318 mem_loc_result = op1;
12319 add_loc_descr (&mem_loc_result, op2);
12320 add_loc_descr (&mem_loc_result, op0);
12321 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
12322 add_loc_descr (&mem_loc_result, bra_node);
12323 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_swap, 0, 0));
12324 drop_node = new_loc_descr (DW_OP_drop, 0, 0);
12325 add_loc_descr (&mem_loc_result, drop_node);
12326 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
12327 bra_node->dw_loc_oprnd1.v.val_loc = drop_node;
12328 }
12329 break;
12330
12331 case FLOAT_EXTEND:
12332 case FLOAT_TRUNCATE:
12333 case FLOAT:
12334 case UNSIGNED_FLOAT:
12335 case FIX:
12336 case UNSIGNED_FIX:
12337 if (!dwarf_strict)
12338 {
12339 dw_die_ref type_die;
12340 dw_loc_descr_ref cvt;
12341
12342 op0 = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (XEXP (rtl, 0)),
12343 mem_mode, VAR_INIT_STATUS_INITIALIZED);
12344 if (op0 == NULL)
12345 break;
12346 if (GET_MODE_CLASS (GET_MODE (XEXP (rtl, 0))) == MODE_INT
12347 && (GET_CODE (rtl) == FLOAT
12348 || GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0)))
12349 <= DWARF2_ADDR_SIZE))
12350 {
12351 type_die = base_type_for_mode (GET_MODE (XEXP (rtl, 0)),
12352 GET_CODE (rtl) == UNSIGNED_FLOAT);
12353 if (type_die == NULL)
12354 break;
12355 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12356 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12357 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12358 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12359 add_loc_descr (&op0, cvt);
12360 }
12361 type_die = base_type_for_mode (mode, GET_CODE (rtl) == UNSIGNED_FIX);
12362 if (type_die == NULL)
12363 break;
12364 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12365 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12366 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12367 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12368 add_loc_descr (&op0, cvt);
12369 if (GET_MODE_CLASS (mode) == MODE_INT
12370 && (GET_CODE (rtl) == FIX
12371 || GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE))
12372 {
12373 op0 = convert_descriptor_to_mode (mode, op0);
12374 if (op0 == NULL)
12375 break;
12376 }
12377 mem_loc_result = op0;
12378 }
12379 break;
12380
12381 case CLZ:
12382 case CTZ:
12383 case FFS:
12384 mem_loc_result = clz_loc_descriptor (rtl, mode, mem_mode);
12385 break;
12386
12387 case POPCOUNT:
12388 case PARITY:
12389 mem_loc_result = popcount_loc_descriptor (rtl, mode, mem_mode);
12390 break;
12391
12392 case BSWAP:
12393 mem_loc_result = bswap_loc_descriptor (rtl, mode, mem_mode);
12394 break;
12395
12396 case ROTATE:
12397 case ROTATERT:
12398 mem_loc_result = rotate_loc_descriptor (rtl, mode, mem_mode);
12399 break;
12400
12401 case COMPARE:
12402 case TRUNCATE:
12403 /* In theory, we could implement the above. */
12404 /* DWARF cannot represent the unsigned compare operations
12405 natively. */
12406 case SS_MULT:
12407 case US_MULT:
12408 case SS_DIV:
12409 case US_DIV:
12410 case SS_PLUS:
12411 case US_PLUS:
12412 case SS_MINUS:
12413 case US_MINUS:
12414 case SS_NEG:
12415 case US_NEG:
12416 case SS_ABS:
12417 case SS_ASHIFT:
12418 case US_ASHIFT:
12419 case SS_TRUNCATE:
12420 case US_TRUNCATE:
12421 case UNORDERED:
12422 case ORDERED:
12423 case UNEQ:
12424 case UNGE:
12425 case UNGT:
12426 case UNLE:
12427 case UNLT:
12428 case LTGT:
12429 case FRACT_CONVERT:
12430 case UNSIGNED_FRACT_CONVERT:
12431 case SAT_FRACT:
12432 case UNSIGNED_SAT_FRACT:
12433 case SQRT:
12434 case ASM_OPERANDS:
12435 case VEC_MERGE:
12436 case VEC_SELECT:
12437 case VEC_CONCAT:
12438 case VEC_DUPLICATE:
12439 case UNSPEC:
12440 case HIGH:
12441 case FMA:
12442 case STRICT_LOW_PART:
12443 case CONST_VECTOR:
12444 case CONST_FIXED:
12445 case CLRSB:
12446 /* If delegitimize_address couldn't do anything with the UNSPEC, we
12447 can't express it in the debug info. This can happen e.g. with some
12448 TLS UNSPECs. */
12449 break;
12450
12451 case CONST_STRING:
12452 resolve_one_addr (&rtl, NULL);
12453 goto symref;
12454
12455 default:
12456 #ifdef ENABLE_CHECKING
12457 print_rtl (stderr, rtl);
12458 gcc_unreachable ();
12459 #else
12460 break;
12461 #endif
12462 }
12463
12464 if (mem_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
12465 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
12466
12467 return mem_loc_result;
12468 }
12469
12470 /* Return a descriptor that describes the concatenation of two locations.
12471 This is typically a complex variable. */
12472
12473 static dw_loc_descr_ref
12474 concat_loc_descriptor (rtx x0, rtx x1, enum var_init_status initialized)
12475 {
12476 dw_loc_descr_ref cc_loc_result = NULL;
12477 dw_loc_descr_ref x0_ref
12478 = loc_descriptor (x0, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
12479 dw_loc_descr_ref x1_ref
12480 = loc_descriptor (x1, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
12481
12482 if (x0_ref == 0 || x1_ref == 0)
12483 return 0;
12484
12485 cc_loc_result = x0_ref;
12486 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
12487
12488 add_loc_descr (&cc_loc_result, x1_ref);
12489 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
12490
12491 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
12492 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
12493
12494 return cc_loc_result;
12495 }
12496
12497 /* Return a descriptor that describes the concatenation of N
12498 locations. */
12499
12500 static dw_loc_descr_ref
12501 concatn_loc_descriptor (rtx concatn, enum var_init_status initialized)
12502 {
12503 unsigned int i;
12504 dw_loc_descr_ref cc_loc_result = NULL;
12505 unsigned int n = XVECLEN (concatn, 0);
12506
12507 for (i = 0; i < n; ++i)
12508 {
12509 dw_loc_descr_ref ref;
12510 rtx x = XVECEXP (concatn, 0, i);
12511
12512 ref = loc_descriptor (x, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
12513 if (ref == NULL)
12514 return NULL;
12515
12516 add_loc_descr (&cc_loc_result, ref);
12517 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x)));
12518 }
12519
12520 if (cc_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
12521 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
12522
12523 return cc_loc_result;
12524 }
12525
12526 /* Helper function for loc_descriptor. Return DW_OP_GNU_implicit_pointer
12527 for DEBUG_IMPLICIT_PTR RTL. */
12528
12529 static dw_loc_descr_ref
12530 implicit_ptr_descriptor (rtx rtl, HOST_WIDE_INT offset)
12531 {
12532 dw_loc_descr_ref ret;
12533 dw_die_ref ref;
12534
12535 if (dwarf_strict)
12536 return NULL;
12537 gcc_assert (TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl)) == VAR_DECL
12538 || TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl)) == PARM_DECL
12539 || TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl)) == RESULT_DECL);
12540 ref = lookup_decl_die (DEBUG_IMPLICIT_PTR_DECL (rtl));
12541 ret = new_loc_descr (DW_OP_GNU_implicit_pointer, 0, offset);
12542 ret->dw_loc_oprnd2.val_class = dw_val_class_const;
12543 if (ref)
12544 {
12545 ret->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12546 ret->dw_loc_oprnd1.v.val_die_ref.die = ref;
12547 ret->dw_loc_oprnd1.v.val_die_ref.external = 0;
12548 }
12549 else
12550 {
12551 ret->dw_loc_oprnd1.val_class = dw_val_class_decl_ref;
12552 ret->dw_loc_oprnd1.v.val_decl_ref = DEBUG_IMPLICIT_PTR_DECL (rtl);
12553 }
12554 return ret;
12555 }
12556
12557 /* Output a proper Dwarf location descriptor for a variable or parameter
12558 which is either allocated in a register or in a memory location. For a
12559 register, we just generate an OP_REG and the register number. For a
12560 memory location we provide a Dwarf postfix expression describing how to
12561 generate the (dynamic) address of the object onto the address stack.
12562
12563 MODE is mode of the decl if this loc_descriptor is going to be used in
12564 .debug_loc section where DW_OP_stack_value and DW_OP_implicit_value are
12565 allowed, VOIDmode otherwise.
12566
12567 If we don't know how to describe it, return 0. */
12568
12569 static dw_loc_descr_ref
12570 loc_descriptor (rtx rtl, enum machine_mode mode,
12571 enum var_init_status initialized)
12572 {
12573 dw_loc_descr_ref loc_result = NULL;
12574
12575 switch (GET_CODE (rtl))
12576 {
12577 case SUBREG:
12578 /* The case of a subreg may arise when we have a local (register)
12579 variable or a formal (register) parameter which doesn't quite fill
12580 up an entire register. For now, just assume that it is
12581 legitimate to make the Dwarf info refer to the whole register which
12582 contains the given subreg. */
12583 if (REG_P (SUBREG_REG (rtl)) && subreg_lowpart_p (rtl))
12584 loc_result = loc_descriptor (SUBREG_REG (rtl),
12585 GET_MODE (SUBREG_REG (rtl)), initialized);
12586 else
12587 goto do_default;
12588 break;
12589
12590 case REG:
12591 loc_result = reg_loc_descriptor (rtl, initialized);
12592 break;
12593
12594 case MEM:
12595 loc_result = mem_loc_descriptor (XEXP (rtl, 0), get_address_mode (rtl),
12596 GET_MODE (rtl), initialized);
12597 if (loc_result == NULL)
12598 loc_result = tls_mem_loc_descriptor (rtl);
12599 if (loc_result == NULL)
12600 {
12601 rtx new_rtl = avoid_constant_pool_reference (rtl);
12602 if (new_rtl != rtl)
12603 loc_result = loc_descriptor (new_rtl, mode, initialized);
12604 }
12605 break;
12606
12607 case CONCAT:
12608 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1),
12609 initialized);
12610 break;
12611
12612 case CONCATN:
12613 loc_result = concatn_loc_descriptor (rtl, initialized);
12614 break;
12615
12616 case VAR_LOCATION:
12617 /* Single part. */
12618 if (GET_CODE (PAT_VAR_LOCATION_LOC (rtl)) != PARALLEL)
12619 {
12620 rtx loc = PAT_VAR_LOCATION_LOC (rtl);
12621 if (GET_CODE (loc) == EXPR_LIST)
12622 loc = XEXP (loc, 0);
12623 loc_result = loc_descriptor (loc, mode, initialized);
12624 break;
12625 }
12626
12627 rtl = XEXP (rtl, 1);
12628 /* FALLTHRU */
12629
12630 case PARALLEL:
12631 {
12632 rtvec par_elems = XVEC (rtl, 0);
12633 int num_elem = GET_NUM_ELEM (par_elems);
12634 enum machine_mode mode;
12635 int i;
12636
12637 /* Create the first one, so we have something to add to. */
12638 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
12639 VOIDmode, initialized);
12640 if (loc_result == NULL)
12641 return NULL;
12642 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
12643 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
12644 for (i = 1; i < num_elem; i++)
12645 {
12646 dw_loc_descr_ref temp;
12647
12648 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
12649 VOIDmode, initialized);
12650 if (temp == NULL)
12651 return NULL;
12652 add_loc_descr (&loc_result, temp);
12653 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
12654 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
12655 }
12656 }
12657 break;
12658
12659 case CONST_INT:
12660 if (mode != VOIDmode && mode != BLKmode)
12661 loc_result = address_of_int_loc_descriptor (GET_MODE_SIZE (mode),
12662 INTVAL (rtl));
12663 break;
12664
12665 case CONST_DOUBLE:
12666 if (mode == VOIDmode)
12667 mode = GET_MODE (rtl);
12668
12669 if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
12670 {
12671 gcc_assert (mode == GET_MODE (rtl) || VOIDmode == GET_MODE (rtl));
12672
12673 /* Note that a CONST_DOUBLE rtx could represent either an integer
12674 or a floating-point constant. A CONST_DOUBLE is used whenever
12675 the constant requires more than one word in order to be
12676 adequately represented. We output CONST_DOUBLEs as blocks. */
12677 loc_result = new_loc_descr (DW_OP_implicit_value,
12678 GET_MODE_SIZE (mode), 0);
12679 if (SCALAR_FLOAT_MODE_P (mode))
12680 {
12681 unsigned int length = GET_MODE_SIZE (mode);
12682 unsigned char *array
12683 = (unsigned char*) ggc_alloc_atomic (length);
12684
12685 insert_float (rtl, array);
12686 loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
12687 loc_result->dw_loc_oprnd2.v.val_vec.length = length / 4;
12688 loc_result->dw_loc_oprnd2.v.val_vec.elt_size = 4;
12689 loc_result->dw_loc_oprnd2.v.val_vec.array = array;
12690 }
12691 else
12692 {
12693 loc_result->dw_loc_oprnd2.val_class = dw_val_class_const_double;
12694 loc_result->dw_loc_oprnd2.v.val_double
12695 = rtx_to_double_int (rtl);
12696 }
12697 }
12698 break;
12699
12700 case CONST_VECTOR:
12701 if (mode == VOIDmode)
12702 mode = GET_MODE (rtl);
12703
12704 if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
12705 {
12706 unsigned int elt_size = GET_MODE_UNIT_SIZE (GET_MODE (rtl));
12707 unsigned int length = CONST_VECTOR_NUNITS (rtl);
12708 unsigned char *array = (unsigned char *)
12709 ggc_alloc_atomic (length * elt_size);
12710 unsigned int i;
12711 unsigned char *p;
12712
12713 gcc_assert (mode == GET_MODE (rtl) || VOIDmode == GET_MODE (rtl));
12714 switch (GET_MODE_CLASS (mode))
12715 {
12716 case MODE_VECTOR_INT:
12717 for (i = 0, p = array; i < length; i++, p += elt_size)
12718 {
12719 rtx elt = CONST_VECTOR_ELT (rtl, i);
12720 double_int val = rtx_to_double_int (elt);
12721
12722 if (elt_size <= sizeof (HOST_WIDE_INT))
12723 insert_int (double_int_to_shwi (val), elt_size, p);
12724 else
12725 {
12726 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
12727 insert_double (val, p);
12728 }
12729 }
12730 break;
12731
12732 case MODE_VECTOR_FLOAT:
12733 for (i = 0, p = array; i < length; i++, p += elt_size)
12734 {
12735 rtx elt = CONST_VECTOR_ELT (rtl, i);
12736 insert_float (elt, p);
12737 }
12738 break;
12739
12740 default:
12741 gcc_unreachable ();
12742 }
12743
12744 loc_result = new_loc_descr (DW_OP_implicit_value,
12745 length * elt_size, 0);
12746 loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
12747 loc_result->dw_loc_oprnd2.v.val_vec.length = length;
12748 loc_result->dw_loc_oprnd2.v.val_vec.elt_size = elt_size;
12749 loc_result->dw_loc_oprnd2.v.val_vec.array = array;
12750 }
12751 break;
12752
12753 case CONST:
12754 if (mode == VOIDmode
12755 || GET_CODE (XEXP (rtl, 0)) == CONST_INT
12756 || GET_CODE (XEXP (rtl, 0)) == CONST_DOUBLE
12757 || GET_CODE (XEXP (rtl, 0)) == CONST_VECTOR)
12758 {
12759 loc_result = loc_descriptor (XEXP (rtl, 0), mode, initialized);
12760 break;
12761 }
12762 /* FALLTHROUGH */
12763 case SYMBOL_REF:
12764 if (!const_ok_for_output (rtl))
12765 break;
12766 case LABEL_REF:
12767 if (mode != VOIDmode && GET_MODE_SIZE (mode) == DWARF2_ADDR_SIZE
12768 && (dwarf_version >= 4 || !dwarf_strict))
12769 {
12770 loc_result = new_loc_descr (DW_OP_addr, 0, 0);
12771 loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
12772 loc_result->dw_loc_oprnd1.v.val_addr = rtl;
12773 add_loc_descr (&loc_result, new_loc_descr (DW_OP_stack_value, 0, 0));
12774 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
12775 }
12776 break;
12777
12778 case DEBUG_IMPLICIT_PTR:
12779 loc_result = implicit_ptr_descriptor (rtl, 0);
12780 break;
12781
12782 case PLUS:
12783 if (GET_CODE (XEXP (rtl, 0)) == DEBUG_IMPLICIT_PTR
12784 && CONST_INT_P (XEXP (rtl, 1)))
12785 {
12786 loc_result
12787 = implicit_ptr_descriptor (XEXP (rtl, 0), INTVAL (XEXP (rtl, 1)));
12788 break;
12789 }
12790 /* FALLTHRU */
12791 do_default:
12792 default:
12793 if ((GET_MODE_CLASS (mode) == MODE_INT && GET_MODE (rtl) == mode
12794 && GET_MODE_SIZE (GET_MODE (rtl)) <= DWARF2_ADDR_SIZE
12795 && dwarf_version >= 4)
12796 || (!dwarf_strict && mode != VOIDmode && mode != BLKmode))
12797 {
12798 /* Value expression. */
12799 loc_result = mem_loc_descriptor (rtl, mode, VOIDmode, initialized);
12800 if (loc_result)
12801 add_loc_descr (&loc_result,
12802 new_loc_descr (DW_OP_stack_value, 0, 0));
12803 }
12804 break;
12805 }
12806
12807 return loc_result;
12808 }
12809
12810 /* We need to figure out what section we should use as the base for the
12811 address ranges where a given location is valid.
12812 1. If this particular DECL has a section associated with it, use that.
12813 2. If this function has a section associated with it, use that.
12814 3. Otherwise, use the text section.
12815 XXX: If you split a variable across multiple sections, we won't notice. */
12816
12817 static const char *
12818 secname_for_decl (const_tree decl)
12819 {
12820 const char *secname;
12821
12822 if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
12823 {
12824 tree sectree = DECL_SECTION_NAME (decl);
12825 secname = TREE_STRING_POINTER (sectree);
12826 }
12827 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
12828 {
12829 tree sectree = DECL_SECTION_NAME (current_function_decl);
12830 secname = TREE_STRING_POINTER (sectree);
12831 }
12832 else if (cfun && in_cold_section_p)
12833 secname = crtl->subsections.cold_section_label;
12834 else
12835 secname = text_section_label;
12836
12837 return secname;
12838 }
12839
12840 /* Return true when DECL_BY_REFERENCE is defined and set for DECL. */
12841
12842 static bool
12843 decl_by_reference_p (tree decl)
12844 {
12845 return ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == RESULT_DECL
12846 || TREE_CODE (decl) == VAR_DECL)
12847 && DECL_BY_REFERENCE (decl));
12848 }
12849
12850 /* Helper function for dw_loc_list. Compute proper Dwarf location descriptor
12851 for VARLOC. */
12852
12853 static dw_loc_descr_ref
12854 dw_loc_list_1 (tree loc, rtx varloc, int want_address,
12855 enum var_init_status initialized)
12856 {
12857 int have_address = 0;
12858 dw_loc_descr_ref descr;
12859 enum machine_mode mode;
12860
12861 if (want_address != 2)
12862 {
12863 gcc_assert (GET_CODE (varloc) == VAR_LOCATION);
12864 /* Single part. */
12865 if (GET_CODE (PAT_VAR_LOCATION_LOC (varloc)) != PARALLEL)
12866 {
12867 varloc = PAT_VAR_LOCATION_LOC (varloc);
12868 if (GET_CODE (varloc) == EXPR_LIST)
12869 varloc = XEXP (varloc, 0);
12870 mode = GET_MODE (varloc);
12871 if (MEM_P (varloc))
12872 {
12873 rtx addr = XEXP (varloc, 0);
12874 descr = mem_loc_descriptor (addr, get_address_mode (varloc),
12875 mode, initialized);
12876 if (descr)
12877 have_address = 1;
12878 else
12879 {
12880 rtx x = avoid_constant_pool_reference (varloc);
12881 if (x != varloc)
12882 descr = mem_loc_descriptor (x, mode, VOIDmode,
12883 initialized);
12884 }
12885 }
12886 else
12887 descr = mem_loc_descriptor (varloc, mode, VOIDmode, initialized);
12888 }
12889 else
12890 return 0;
12891 }
12892 else
12893 {
12894 if (GET_CODE (varloc) == VAR_LOCATION)
12895 mode = DECL_MODE (PAT_VAR_LOCATION_DECL (varloc));
12896 else
12897 mode = DECL_MODE (loc);
12898 descr = loc_descriptor (varloc, mode, initialized);
12899 have_address = 1;
12900 }
12901
12902 if (!descr)
12903 return 0;
12904
12905 if (want_address == 2 && !have_address
12906 && (dwarf_version >= 4 || !dwarf_strict))
12907 {
12908 if (int_size_in_bytes (TREE_TYPE (loc)) > DWARF2_ADDR_SIZE)
12909 {
12910 expansion_failed (loc, NULL_RTX,
12911 "DWARF address size mismatch");
12912 return 0;
12913 }
12914 add_loc_descr (&descr, new_loc_descr (DW_OP_stack_value, 0, 0));
12915 have_address = 1;
12916 }
12917 /* Show if we can't fill the request for an address. */
12918 if (want_address && !have_address)
12919 {
12920 expansion_failed (loc, NULL_RTX,
12921 "Want address and only have value");
12922 return 0;
12923 }
12924
12925 /* If we've got an address and don't want one, dereference. */
12926 if (!want_address && have_address)
12927 {
12928 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
12929 enum dwarf_location_atom op;
12930
12931 if (size > DWARF2_ADDR_SIZE || size == -1)
12932 {
12933 expansion_failed (loc, NULL_RTX,
12934 "DWARF address size mismatch");
12935 return 0;
12936 }
12937 else if (size == DWARF2_ADDR_SIZE)
12938 op = DW_OP_deref;
12939 else
12940 op = DW_OP_deref_size;
12941
12942 add_loc_descr (&descr, new_loc_descr (op, size, 0));
12943 }
12944
12945 return descr;
12946 }
12947
12948 /* Create a DW_OP_piece or DW_OP_bit_piece for bitsize, or return NULL
12949 if it is not possible. */
12950
12951 static dw_loc_descr_ref
12952 new_loc_descr_op_bit_piece (HOST_WIDE_INT bitsize, HOST_WIDE_INT offset)
12953 {
12954 if ((bitsize % BITS_PER_UNIT) == 0 && offset == 0)
12955 return new_loc_descr (DW_OP_piece, bitsize / BITS_PER_UNIT, 0);
12956 else if (dwarf_version >= 3 || !dwarf_strict)
12957 return new_loc_descr (DW_OP_bit_piece, bitsize, offset);
12958 else
12959 return NULL;
12960 }
12961
12962 /* Helper function for dw_loc_list. Compute proper Dwarf location descriptor
12963 for VAR_LOC_NOTE for variable DECL that has been optimized by SRA. */
12964
12965 static dw_loc_descr_ref
12966 dw_sra_loc_expr (tree decl, rtx loc)
12967 {
12968 rtx p;
12969 unsigned int padsize = 0;
12970 dw_loc_descr_ref descr, *descr_tail;
12971 unsigned HOST_WIDE_INT decl_size;
12972 rtx varloc;
12973 enum var_init_status initialized;
12974
12975 if (DECL_SIZE (decl) == NULL
12976 || !host_integerp (DECL_SIZE (decl), 1))
12977 return NULL;
12978
12979 decl_size = tree_low_cst (DECL_SIZE (decl), 1);
12980 descr = NULL;
12981 descr_tail = &descr;
12982
12983 for (p = loc; p; p = XEXP (p, 1))
12984 {
12985 unsigned int bitsize = decl_piece_bitsize (p);
12986 rtx loc_note = *decl_piece_varloc_ptr (p);
12987 dw_loc_descr_ref cur_descr;
12988 dw_loc_descr_ref *tail, last = NULL;
12989 unsigned int opsize = 0;
12990
12991 if (loc_note == NULL_RTX
12992 || NOTE_VAR_LOCATION_LOC (loc_note) == NULL_RTX)
12993 {
12994 padsize += bitsize;
12995 continue;
12996 }
12997 initialized = NOTE_VAR_LOCATION_STATUS (loc_note);
12998 varloc = NOTE_VAR_LOCATION (loc_note);
12999 cur_descr = dw_loc_list_1 (decl, varloc, 2, initialized);
13000 if (cur_descr == NULL)
13001 {
13002 padsize += bitsize;
13003 continue;
13004 }
13005
13006 /* Check that cur_descr either doesn't use
13007 DW_OP_*piece operations, or their sum is equal
13008 to bitsize. Otherwise we can't embed it. */
13009 for (tail = &cur_descr; *tail != NULL;
13010 tail = &(*tail)->dw_loc_next)
13011 if ((*tail)->dw_loc_opc == DW_OP_piece)
13012 {
13013 opsize += (*tail)->dw_loc_oprnd1.v.val_unsigned
13014 * BITS_PER_UNIT;
13015 last = *tail;
13016 }
13017 else if ((*tail)->dw_loc_opc == DW_OP_bit_piece)
13018 {
13019 opsize += (*tail)->dw_loc_oprnd1.v.val_unsigned;
13020 last = *tail;
13021 }
13022
13023 if (last != NULL && opsize != bitsize)
13024 {
13025 padsize += bitsize;
13026 continue;
13027 }
13028
13029 /* If there is a hole, add DW_OP_*piece after empty DWARF
13030 expression, which means that those bits are optimized out. */
13031 if (padsize)
13032 {
13033 if (padsize > decl_size)
13034 return NULL;
13035 decl_size -= padsize;
13036 *descr_tail = new_loc_descr_op_bit_piece (padsize, 0);
13037 if (*descr_tail == NULL)
13038 return NULL;
13039 descr_tail = &(*descr_tail)->dw_loc_next;
13040 padsize = 0;
13041 }
13042 *descr_tail = cur_descr;
13043 descr_tail = tail;
13044 if (bitsize > decl_size)
13045 return NULL;
13046 decl_size -= bitsize;
13047 if (last == NULL)
13048 {
13049 HOST_WIDE_INT offset = 0;
13050 if (GET_CODE (varloc) == VAR_LOCATION
13051 && GET_CODE (PAT_VAR_LOCATION_LOC (varloc)) != PARALLEL)
13052 {
13053 varloc = PAT_VAR_LOCATION_LOC (varloc);
13054 if (GET_CODE (varloc) == EXPR_LIST)
13055 varloc = XEXP (varloc, 0);
13056 }
13057 do
13058 {
13059 if (GET_CODE (varloc) == CONST
13060 || GET_CODE (varloc) == SIGN_EXTEND
13061 || GET_CODE (varloc) == ZERO_EXTEND)
13062 varloc = XEXP (varloc, 0);
13063 else if (GET_CODE (varloc) == SUBREG)
13064 varloc = SUBREG_REG (varloc);
13065 else
13066 break;
13067 }
13068 while (1);
13069 /* DW_OP_bit_size offset should be zero for register
13070 or implicit location descriptions and empty location
13071 descriptions, but for memory addresses needs big endian
13072 adjustment. */
13073 if (MEM_P (varloc))
13074 {
13075 unsigned HOST_WIDE_INT memsize
13076 = MEM_SIZE (varloc) * BITS_PER_UNIT;
13077 if (memsize != bitsize)
13078 {
13079 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN
13080 && (memsize > BITS_PER_WORD || bitsize > BITS_PER_WORD))
13081 return NULL;
13082 if (memsize < bitsize)
13083 return NULL;
13084 if (BITS_BIG_ENDIAN)
13085 offset = memsize - bitsize;
13086 }
13087 }
13088
13089 *descr_tail = new_loc_descr_op_bit_piece (bitsize, offset);
13090 if (*descr_tail == NULL)
13091 return NULL;
13092 descr_tail = &(*descr_tail)->dw_loc_next;
13093 }
13094 }
13095
13096 /* If there were any non-empty expressions, add padding till the end of
13097 the decl. */
13098 if (descr != NULL && decl_size != 0)
13099 {
13100 *descr_tail = new_loc_descr_op_bit_piece (decl_size, 0);
13101 if (*descr_tail == NULL)
13102 return NULL;
13103 }
13104 return descr;
13105 }
13106
13107 /* Return the dwarf representation of the location list LOC_LIST of
13108 DECL. WANT_ADDRESS has the same meaning as in loc_list_from_tree
13109 function. */
13110
13111 static dw_loc_list_ref
13112 dw_loc_list (var_loc_list *loc_list, tree decl, int want_address)
13113 {
13114 const char *endname, *secname;
13115 rtx varloc;
13116 enum var_init_status initialized;
13117 struct var_loc_node *node;
13118 dw_loc_descr_ref descr;
13119 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
13120 dw_loc_list_ref list = NULL;
13121 dw_loc_list_ref *listp = &list;
13122
13123 /* Now that we know what section we are using for a base,
13124 actually construct the list of locations.
13125 The first location information is what is passed to the
13126 function that creates the location list, and the remaining
13127 locations just get added on to that list.
13128 Note that we only know the start address for a location
13129 (IE location changes), so to build the range, we use
13130 the range [current location start, next location start].
13131 This means we have to special case the last node, and generate
13132 a range of [last location start, end of function label]. */
13133
13134 secname = secname_for_decl (decl);
13135
13136 for (node = loc_list->first; node; node = node->next)
13137 if (GET_CODE (node->loc) == EXPR_LIST
13138 || NOTE_VAR_LOCATION_LOC (node->loc) != NULL_RTX)
13139 {
13140 if (GET_CODE (node->loc) == EXPR_LIST)
13141 {
13142 /* This requires DW_OP_{,bit_}piece, which is not usable
13143 inside DWARF expressions. */
13144 if (want_address != 2)
13145 continue;
13146 descr = dw_sra_loc_expr (decl, node->loc);
13147 if (descr == NULL)
13148 continue;
13149 }
13150 else
13151 {
13152 initialized = NOTE_VAR_LOCATION_STATUS (node->loc);
13153 varloc = NOTE_VAR_LOCATION (node->loc);
13154 descr = dw_loc_list_1 (decl, varloc, want_address, initialized);
13155 }
13156 if (descr)
13157 {
13158 bool range_across_switch = false;
13159 /* If section switch happens in between node->label
13160 and node->next->label (or end of function) and
13161 we can't emit it as a single entry list,
13162 emit two ranges, first one ending at the end
13163 of first partition and second one starting at the
13164 beginning of second partition. */
13165 if (node == loc_list->last_before_switch
13166 && (node != loc_list->first || loc_list->first->next)
13167 && current_function_decl)
13168 {
13169 endname = cfun->fde->dw_fde_end;
13170 range_across_switch = true;
13171 }
13172 /* The variable has a location between NODE->LABEL and
13173 NODE->NEXT->LABEL. */
13174 else if (node->next)
13175 endname = node->next->label;
13176 /* If the variable has a location at the last label
13177 it keeps its location until the end of function. */
13178 else if (!current_function_decl)
13179 endname = text_end_label;
13180 else
13181 {
13182 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
13183 current_function_funcdef_no);
13184 endname = ggc_strdup (label_id);
13185 }
13186
13187 *listp = new_loc_list (descr, node->label, endname, secname);
13188 if (TREE_CODE (decl) == PARM_DECL
13189 && node == loc_list->first
13190 && GET_CODE (node->loc) == NOTE
13191 && strcmp (node->label, endname) == 0)
13192 (*listp)->force = true;
13193 listp = &(*listp)->dw_loc_next;
13194
13195 if (range_across_switch)
13196 {
13197 if (GET_CODE (node->loc) == EXPR_LIST)
13198 descr = dw_sra_loc_expr (decl, node->loc);
13199 else
13200 {
13201 initialized = NOTE_VAR_LOCATION_STATUS (node->loc);
13202 varloc = NOTE_VAR_LOCATION (node->loc);
13203 descr = dw_loc_list_1 (decl, varloc, want_address,
13204 initialized);
13205 }
13206 gcc_assert (descr);
13207 /* The variable has a location between NODE->LABEL and
13208 NODE->NEXT->LABEL. */
13209 if (node->next)
13210 endname = node->next->label;
13211 else
13212 endname = cfun->fde->dw_fde_second_end;
13213 *listp = new_loc_list (descr,
13214 cfun->fde->dw_fde_second_begin,
13215 endname, secname);
13216 listp = &(*listp)->dw_loc_next;
13217 }
13218 }
13219 }
13220
13221 /* Try to avoid the overhead of a location list emitting a location
13222 expression instead, but only if we didn't have more than one
13223 location entry in the first place. If some entries were not
13224 representable, we don't want to pretend a single entry that was
13225 applies to the entire scope in which the variable is
13226 available. */
13227 if (list && loc_list->first->next)
13228 gen_llsym (list);
13229
13230 return list;
13231 }
13232
13233 /* Return if the loc_list has only single element and thus can be represented
13234 as location description. */
13235
13236 static bool
13237 single_element_loc_list_p (dw_loc_list_ref list)
13238 {
13239 gcc_assert (!list->dw_loc_next || list->ll_symbol);
13240 return !list->ll_symbol;
13241 }
13242
13243 /* To each location in list LIST add loc descr REF. */
13244
13245 static void
13246 add_loc_descr_to_each (dw_loc_list_ref list, dw_loc_descr_ref ref)
13247 {
13248 dw_loc_descr_ref copy;
13249 add_loc_descr (&list->expr, ref);
13250 list = list->dw_loc_next;
13251 while (list)
13252 {
13253 copy = ggc_alloc_dw_loc_descr_node ();
13254 memcpy (copy, ref, sizeof (dw_loc_descr_node));
13255 add_loc_descr (&list->expr, copy);
13256 while (copy->dw_loc_next)
13257 {
13258 dw_loc_descr_ref new_copy = ggc_alloc_dw_loc_descr_node ();
13259 memcpy (new_copy, copy->dw_loc_next, sizeof (dw_loc_descr_node));
13260 copy->dw_loc_next = new_copy;
13261 copy = new_copy;
13262 }
13263 list = list->dw_loc_next;
13264 }
13265 }
13266
13267 /* Given two lists RET and LIST
13268 produce location list that is result of adding expression in LIST
13269 to expression in RET on each possition in program.
13270 Might be destructive on both RET and LIST.
13271
13272 TODO: We handle only simple cases of RET or LIST having at most one
13273 element. General case would inolve sorting the lists in program order
13274 and merging them that will need some additional work.
13275 Adding that will improve quality of debug info especially for SRA-ed
13276 structures. */
13277
13278 static void
13279 add_loc_list (dw_loc_list_ref *ret, dw_loc_list_ref list)
13280 {
13281 if (!list)
13282 return;
13283 if (!*ret)
13284 {
13285 *ret = list;
13286 return;
13287 }
13288 if (!list->dw_loc_next)
13289 {
13290 add_loc_descr_to_each (*ret, list->expr);
13291 return;
13292 }
13293 if (!(*ret)->dw_loc_next)
13294 {
13295 add_loc_descr_to_each (list, (*ret)->expr);
13296 *ret = list;
13297 return;
13298 }
13299 expansion_failed (NULL_TREE, NULL_RTX,
13300 "Don't know how to merge two non-trivial"
13301 " location lists.\n");
13302 *ret = NULL;
13303 return;
13304 }
13305
13306 /* LOC is constant expression. Try a luck, look it up in constant
13307 pool and return its loc_descr of its address. */
13308
13309 static dw_loc_descr_ref
13310 cst_pool_loc_descr (tree loc)
13311 {
13312 /* Get an RTL for this, if something has been emitted. */
13313 rtx rtl = lookup_constant_def (loc);
13314
13315 if (!rtl || !MEM_P (rtl))
13316 {
13317 gcc_assert (!rtl);
13318 return 0;
13319 }
13320 gcc_assert (GET_CODE (XEXP (rtl, 0)) == SYMBOL_REF);
13321
13322 /* TODO: We might get more coverage if we was actually delaying expansion
13323 of all expressions till end of compilation when constant pools are fully
13324 populated. */
13325 if (!TREE_ASM_WRITTEN (SYMBOL_REF_DECL (XEXP (rtl, 0))))
13326 {
13327 expansion_failed (loc, NULL_RTX,
13328 "CST value in contant pool but not marked.");
13329 return 0;
13330 }
13331 return mem_loc_descriptor (XEXP (rtl, 0), get_address_mode (rtl),
13332 GET_MODE (rtl), VAR_INIT_STATUS_INITIALIZED);
13333 }
13334
13335 /* Return dw_loc_list representing address of addr_expr LOC
13336 by looking for innder INDIRECT_REF expression and turing it
13337 into simple arithmetics. */
13338
13339 static dw_loc_list_ref
13340 loc_list_for_address_of_addr_expr_of_indirect_ref (tree loc, bool toplev)
13341 {
13342 tree obj, offset;
13343 HOST_WIDE_INT bitsize, bitpos, bytepos;
13344 enum machine_mode mode;
13345 int volatilep;
13346 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
13347 dw_loc_list_ref list_ret = NULL, list_ret1 = NULL;
13348
13349 obj = get_inner_reference (TREE_OPERAND (loc, 0),
13350 &bitsize, &bitpos, &offset, &mode,
13351 &unsignedp, &volatilep, false);
13352 STRIP_NOPS (obj);
13353 if (bitpos % BITS_PER_UNIT)
13354 {
13355 expansion_failed (loc, NULL_RTX, "bitfield access");
13356 return 0;
13357 }
13358 if (!INDIRECT_REF_P (obj))
13359 {
13360 expansion_failed (obj,
13361 NULL_RTX, "no indirect ref in inner refrence");
13362 return 0;
13363 }
13364 if (!offset && !bitpos)
13365 list_ret = loc_list_from_tree (TREE_OPERAND (obj, 0), toplev ? 2 : 1);
13366 else if (toplev
13367 && int_size_in_bytes (TREE_TYPE (loc)) <= DWARF2_ADDR_SIZE
13368 && (dwarf_version >= 4 || !dwarf_strict))
13369 {
13370 list_ret = loc_list_from_tree (TREE_OPERAND (obj, 0), 0);
13371 if (!list_ret)
13372 return 0;
13373 if (offset)
13374 {
13375 /* Variable offset. */
13376 list_ret1 = loc_list_from_tree (offset, 0);
13377 if (list_ret1 == 0)
13378 return 0;
13379 add_loc_list (&list_ret, list_ret1);
13380 if (!list_ret)
13381 return 0;
13382 add_loc_descr_to_each (list_ret,
13383 new_loc_descr (DW_OP_plus, 0, 0));
13384 }
13385 bytepos = bitpos / BITS_PER_UNIT;
13386 if (bytepos > 0)
13387 add_loc_descr_to_each (list_ret,
13388 new_loc_descr (DW_OP_plus_uconst,
13389 bytepos, 0));
13390 else if (bytepos < 0)
13391 loc_list_plus_const (list_ret, bytepos);
13392 add_loc_descr_to_each (list_ret,
13393 new_loc_descr (DW_OP_stack_value, 0, 0));
13394 }
13395 return list_ret;
13396 }
13397
13398
13399 /* Generate Dwarf location list representing LOC.
13400 If WANT_ADDRESS is false, expression computing LOC will be computed
13401 If WANT_ADDRESS is 1, expression computing address of LOC will be returned
13402 if WANT_ADDRESS is 2, expression computing address useable in location
13403 will be returned (i.e. DW_OP_reg can be used
13404 to refer to register values). */
13405
13406 static dw_loc_list_ref
13407 loc_list_from_tree (tree loc, int want_address)
13408 {
13409 dw_loc_descr_ref ret = NULL, ret1 = NULL;
13410 dw_loc_list_ref list_ret = NULL, list_ret1 = NULL;
13411 int have_address = 0;
13412 enum dwarf_location_atom op;
13413
13414 /* ??? Most of the time we do not take proper care for sign/zero
13415 extending the values properly. Hopefully this won't be a real
13416 problem... */
13417
13418 switch (TREE_CODE (loc))
13419 {
13420 case ERROR_MARK:
13421 expansion_failed (loc, NULL_RTX, "ERROR_MARK");
13422 return 0;
13423
13424 case PLACEHOLDER_EXPR:
13425 /* This case involves extracting fields from an object to determine the
13426 position of other fields. We don't try to encode this here. The
13427 only user of this is Ada, which encodes the needed information using
13428 the names of types. */
13429 expansion_failed (loc, NULL_RTX, "PLACEHOLDER_EXPR");
13430 return 0;
13431
13432 case CALL_EXPR:
13433 expansion_failed (loc, NULL_RTX, "CALL_EXPR");
13434 /* There are no opcodes for these operations. */
13435 return 0;
13436
13437 case PREINCREMENT_EXPR:
13438 case PREDECREMENT_EXPR:
13439 case POSTINCREMENT_EXPR:
13440 case POSTDECREMENT_EXPR:
13441 expansion_failed (loc, NULL_RTX, "PRE/POST INDCREMENT/DECREMENT");
13442 /* There are no opcodes for these operations. */
13443 return 0;
13444
13445 case ADDR_EXPR:
13446 /* If we already want an address, see if there is INDIRECT_REF inside
13447 e.g. for &this->field. */
13448 if (want_address)
13449 {
13450 list_ret = loc_list_for_address_of_addr_expr_of_indirect_ref
13451 (loc, want_address == 2);
13452 if (list_ret)
13453 have_address = 1;
13454 else if (decl_address_ip_invariant_p (TREE_OPERAND (loc, 0))
13455 && (ret = cst_pool_loc_descr (loc)))
13456 have_address = 1;
13457 }
13458 /* Otherwise, process the argument and look for the address. */
13459 if (!list_ret && !ret)
13460 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 1);
13461 else
13462 {
13463 if (want_address)
13464 expansion_failed (loc, NULL_RTX, "need address of ADDR_EXPR");
13465 return NULL;
13466 }
13467 break;
13468
13469 case VAR_DECL:
13470 if (DECL_THREAD_LOCAL_P (loc))
13471 {
13472 rtx rtl;
13473 enum dwarf_location_atom first_op;
13474 enum dwarf_location_atom second_op;
13475 bool dtprel = false;
13476
13477 if (targetm.have_tls)
13478 {
13479 /* If this is not defined, we have no way to emit the
13480 data. */
13481 if (!targetm.asm_out.output_dwarf_dtprel)
13482 return 0;
13483
13484 /* The way DW_OP_GNU_push_tls_address is specified, we
13485 can only look up addresses of objects in the current
13486 module. We used DW_OP_addr as first op, but that's
13487 wrong, because DW_OP_addr is relocated by the debug
13488 info consumer, while DW_OP_GNU_push_tls_address
13489 operand shouldn't be. */
13490 if (DECL_EXTERNAL (loc) && !targetm.binds_local_p (loc))
13491 return 0;
13492 first_op = DWARF2_ADDR_SIZE == 4 ? DW_OP_const4u : DW_OP_const8u;
13493 dtprel = true;
13494 second_op = DW_OP_GNU_push_tls_address;
13495 }
13496 else
13497 {
13498 if (!targetm.emutls.debug_form_tls_address
13499 || !(dwarf_version >= 3 || !dwarf_strict))
13500 return 0;
13501 /* We stuffed the control variable into the DECL_VALUE_EXPR
13502 to signal (via DECL_HAS_VALUE_EXPR_P) that the decl should
13503 no longer appear in gimple code. We used the control
13504 variable in specific so that we could pick it up here. */
13505 loc = DECL_VALUE_EXPR (loc);
13506 first_op = DW_OP_addr;
13507 second_op = DW_OP_form_tls_address;
13508 }
13509
13510 rtl = rtl_for_decl_location (loc);
13511 if (rtl == NULL_RTX)
13512 return 0;
13513
13514 if (!MEM_P (rtl))
13515 return 0;
13516 rtl = XEXP (rtl, 0);
13517 if (! CONSTANT_P (rtl))
13518 return 0;
13519
13520 ret = new_loc_descr (first_op, 0, 0);
13521 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
13522 ret->dw_loc_oprnd1.v.val_addr = rtl;
13523 ret->dtprel = dtprel;
13524
13525 ret1 = new_loc_descr (second_op, 0, 0);
13526 add_loc_descr (&ret, ret1);
13527
13528 have_address = 1;
13529 break;
13530 }
13531 /* FALLTHRU */
13532
13533 case PARM_DECL:
13534 case RESULT_DECL:
13535 if (DECL_HAS_VALUE_EXPR_P (loc))
13536 return loc_list_from_tree (DECL_VALUE_EXPR (loc),
13537 want_address);
13538 /* FALLTHRU */
13539
13540 case FUNCTION_DECL:
13541 {
13542 rtx rtl;
13543 var_loc_list *loc_list = lookup_decl_loc (loc);
13544
13545 if (loc_list && loc_list->first)
13546 {
13547 list_ret = dw_loc_list (loc_list, loc, want_address);
13548 have_address = want_address != 0;
13549 break;
13550 }
13551 rtl = rtl_for_decl_location (loc);
13552 if (rtl == NULL_RTX)
13553 {
13554 expansion_failed (loc, NULL_RTX, "DECL has no RTL");
13555 return 0;
13556 }
13557 else if (CONST_INT_P (rtl))
13558 {
13559 HOST_WIDE_INT val = INTVAL (rtl);
13560 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
13561 val &= GET_MODE_MASK (DECL_MODE (loc));
13562 ret = int_loc_descriptor (val);
13563 }
13564 else if (GET_CODE (rtl) == CONST_STRING)
13565 {
13566 expansion_failed (loc, NULL_RTX, "CONST_STRING");
13567 return 0;
13568 }
13569 else if (CONSTANT_P (rtl) && const_ok_for_output (rtl))
13570 {
13571 ret = new_loc_descr (DW_OP_addr, 0, 0);
13572 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
13573 ret->dw_loc_oprnd1.v.val_addr = rtl;
13574 }
13575 else
13576 {
13577 enum machine_mode mode, mem_mode;
13578
13579 /* Certain constructs can only be represented at top-level. */
13580 if (want_address == 2)
13581 {
13582 ret = loc_descriptor (rtl, VOIDmode,
13583 VAR_INIT_STATUS_INITIALIZED);
13584 have_address = 1;
13585 }
13586 else
13587 {
13588 mode = GET_MODE (rtl);
13589 mem_mode = VOIDmode;
13590 if (MEM_P (rtl))
13591 {
13592 mem_mode = mode;
13593 mode = get_address_mode (rtl);
13594 rtl = XEXP (rtl, 0);
13595 have_address = 1;
13596 }
13597 ret = mem_loc_descriptor (rtl, mode, mem_mode,
13598 VAR_INIT_STATUS_INITIALIZED);
13599 }
13600 if (!ret)
13601 expansion_failed (loc, rtl,
13602 "failed to produce loc descriptor for rtl");
13603 }
13604 }
13605 break;
13606
13607 case MEM_REF:
13608 /* ??? FIXME. */
13609 if (!integer_zerop (TREE_OPERAND (loc, 1)))
13610 return 0;
13611 /* Fallthru. */
13612 case INDIRECT_REF:
13613 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0);
13614 have_address = 1;
13615 break;
13616
13617 case COMPOUND_EXPR:
13618 return loc_list_from_tree (TREE_OPERAND (loc, 1), want_address);
13619
13620 CASE_CONVERT:
13621 case VIEW_CONVERT_EXPR:
13622 case SAVE_EXPR:
13623 case MODIFY_EXPR:
13624 return loc_list_from_tree (TREE_OPERAND (loc, 0), want_address);
13625
13626 case COMPONENT_REF:
13627 case BIT_FIELD_REF:
13628 case ARRAY_REF:
13629 case ARRAY_RANGE_REF:
13630 case REALPART_EXPR:
13631 case IMAGPART_EXPR:
13632 {
13633 tree obj, offset;
13634 HOST_WIDE_INT bitsize, bitpos, bytepos;
13635 enum machine_mode mode;
13636 int volatilep;
13637 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
13638
13639 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
13640 &unsignedp, &volatilep, false);
13641
13642 gcc_assert (obj != loc);
13643
13644 list_ret = loc_list_from_tree (obj,
13645 want_address == 2
13646 && !bitpos && !offset ? 2 : 1);
13647 /* TODO: We can extract value of the small expression via shifting even
13648 for nonzero bitpos. */
13649 if (list_ret == 0)
13650 return 0;
13651 if (bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
13652 {
13653 expansion_failed (loc, NULL_RTX,
13654 "bitfield access");
13655 return 0;
13656 }
13657
13658 if (offset != NULL_TREE)
13659 {
13660 /* Variable offset. */
13661 list_ret1 = loc_list_from_tree (offset, 0);
13662 if (list_ret1 == 0)
13663 return 0;
13664 add_loc_list (&list_ret, list_ret1);
13665 if (!list_ret)
13666 return 0;
13667 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_plus, 0, 0));
13668 }
13669
13670 bytepos = bitpos / BITS_PER_UNIT;
13671 if (bytepos > 0)
13672 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
13673 else if (bytepos < 0)
13674 loc_list_plus_const (list_ret, bytepos);
13675
13676 have_address = 1;
13677 break;
13678 }
13679
13680 case INTEGER_CST:
13681 if ((want_address || !host_integerp (loc, 0))
13682 && (ret = cst_pool_loc_descr (loc)))
13683 have_address = 1;
13684 else if (want_address == 2
13685 && host_integerp (loc, 0)
13686 && (ret = address_of_int_loc_descriptor
13687 (int_size_in_bytes (TREE_TYPE (loc)),
13688 tree_low_cst (loc, 0))))
13689 have_address = 1;
13690 else if (host_integerp (loc, 0))
13691 ret = int_loc_descriptor (tree_low_cst (loc, 0));
13692 else
13693 {
13694 expansion_failed (loc, NULL_RTX,
13695 "Integer operand is not host integer");
13696 return 0;
13697 }
13698 break;
13699
13700 case CONSTRUCTOR:
13701 case REAL_CST:
13702 case STRING_CST:
13703 case COMPLEX_CST:
13704 if ((ret = cst_pool_loc_descr (loc)))
13705 have_address = 1;
13706 else
13707 /* We can construct small constants here using int_loc_descriptor. */
13708 expansion_failed (loc, NULL_RTX,
13709 "constructor or constant not in constant pool");
13710 break;
13711
13712 case TRUTH_AND_EXPR:
13713 case TRUTH_ANDIF_EXPR:
13714 case BIT_AND_EXPR:
13715 op = DW_OP_and;
13716 goto do_binop;
13717
13718 case TRUTH_XOR_EXPR:
13719 case BIT_XOR_EXPR:
13720 op = DW_OP_xor;
13721 goto do_binop;
13722
13723 case TRUTH_OR_EXPR:
13724 case TRUTH_ORIF_EXPR:
13725 case BIT_IOR_EXPR:
13726 op = DW_OP_or;
13727 goto do_binop;
13728
13729 case FLOOR_DIV_EXPR:
13730 case CEIL_DIV_EXPR:
13731 case ROUND_DIV_EXPR:
13732 case TRUNC_DIV_EXPR:
13733 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
13734 return 0;
13735 op = DW_OP_div;
13736 goto do_binop;
13737
13738 case MINUS_EXPR:
13739 op = DW_OP_minus;
13740 goto do_binop;
13741
13742 case FLOOR_MOD_EXPR:
13743 case CEIL_MOD_EXPR:
13744 case ROUND_MOD_EXPR:
13745 case TRUNC_MOD_EXPR:
13746 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
13747 {
13748 op = DW_OP_mod;
13749 goto do_binop;
13750 }
13751 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0);
13752 list_ret1 = loc_list_from_tree (TREE_OPERAND (loc, 1), 0);
13753 if (list_ret == 0 || list_ret1 == 0)
13754 return 0;
13755
13756 add_loc_list (&list_ret, list_ret1);
13757 if (list_ret == 0)
13758 return 0;
13759 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_over, 0, 0));
13760 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_over, 0, 0));
13761 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_div, 0, 0));
13762 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_mul, 0, 0));
13763 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_minus, 0, 0));
13764 break;
13765
13766 case MULT_EXPR:
13767 op = DW_OP_mul;
13768 goto do_binop;
13769
13770 case LSHIFT_EXPR:
13771 op = DW_OP_shl;
13772 goto do_binop;
13773
13774 case RSHIFT_EXPR:
13775 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
13776 goto do_binop;
13777
13778 case POINTER_PLUS_EXPR:
13779 case PLUS_EXPR:
13780 if (host_integerp (TREE_OPERAND (loc, 1), 0))
13781 {
13782 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0);
13783 if (list_ret == 0)
13784 return 0;
13785
13786 loc_list_plus_const (list_ret, tree_low_cst (TREE_OPERAND (loc, 1), 0));
13787 break;
13788 }
13789
13790 op = DW_OP_plus;
13791 goto do_binop;
13792
13793 case LE_EXPR:
13794 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
13795 return 0;
13796
13797 op = DW_OP_le;
13798 goto do_binop;
13799
13800 case GE_EXPR:
13801 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
13802 return 0;
13803
13804 op = DW_OP_ge;
13805 goto do_binop;
13806
13807 case LT_EXPR:
13808 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
13809 return 0;
13810
13811 op = DW_OP_lt;
13812 goto do_binop;
13813
13814 case GT_EXPR:
13815 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
13816 return 0;
13817
13818 op = DW_OP_gt;
13819 goto do_binop;
13820
13821 case EQ_EXPR:
13822 op = DW_OP_eq;
13823 goto do_binop;
13824
13825 case NE_EXPR:
13826 op = DW_OP_ne;
13827 goto do_binop;
13828
13829 do_binop:
13830 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0);
13831 list_ret1 = loc_list_from_tree (TREE_OPERAND (loc, 1), 0);
13832 if (list_ret == 0 || list_ret1 == 0)
13833 return 0;
13834
13835 add_loc_list (&list_ret, list_ret1);
13836 if (list_ret == 0)
13837 return 0;
13838 add_loc_descr_to_each (list_ret, new_loc_descr (op, 0, 0));
13839 break;
13840
13841 case TRUTH_NOT_EXPR:
13842 case BIT_NOT_EXPR:
13843 op = DW_OP_not;
13844 goto do_unop;
13845
13846 case ABS_EXPR:
13847 op = DW_OP_abs;
13848 goto do_unop;
13849
13850 case NEGATE_EXPR:
13851 op = DW_OP_neg;
13852 goto do_unop;
13853
13854 do_unop:
13855 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0);
13856 if (list_ret == 0)
13857 return 0;
13858
13859 add_loc_descr_to_each (list_ret, new_loc_descr (op, 0, 0));
13860 break;
13861
13862 case MIN_EXPR:
13863 case MAX_EXPR:
13864 {
13865 const enum tree_code code =
13866 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
13867
13868 loc = build3 (COND_EXPR, TREE_TYPE (loc),
13869 build2 (code, integer_type_node,
13870 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
13871 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
13872 }
13873
13874 /* ... fall through ... */
13875
13876 case COND_EXPR:
13877 {
13878 dw_loc_descr_ref lhs
13879 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
13880 dw_loc_list_ref rhs
13881 = loc_list_from_tree (TREE_OPERAND (loc, 2), 0);
13882 dw_loc_descr_ref bra_node, jump_node, tmp;
13883
13884 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0);
13885 if (list_ret == 0 || lhs == 0 || rhs == 0)
13886 return 0;
13887
13888 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
13889 add_loc_descr_to_each (list_ret, bra_node);
13890
13891 add_loc_list (&list_ret, rhs);
13892 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
13893 add_loc_descr_to_each (list_ret, jump_node);
13894
13895 add_loc_descr_to_each (list_ret, lhs);
13896 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
13897 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
13898
13899 /* ??? Need a node to point the skip at. Use a nop. */
13900 tmp = new_loc_descr (DW_OP_nop, 0, 0);
13901 add_loc_descr_to_each (list_ret, tmp);
13902 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
13903 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
13904 }
13905 break;
13906
13907 case FIX_TRUNC_EXPR:
13908 return 0;
13909
13910 default:
13911 /* Leave front-end specific codes as simply unknown. This comes
13912 up, for instance, with the C STMT_EXPR. */
13913 if ((unsigned int) TREE_CODE (loc)
13914 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
13915 {
13916 expansion_failed (loc, NULL_RTX,
13917 "language specific tree node");
13918 return 0;
13919 }
13920
13921 #ifdef ENABLE_CHECKING
13922 /* Otherwise this is a generic code; we should just lists all of
13923 these explicitly. We forgot one. */
13924 gcc_unreachable ();
13925 #else
13926 /* In a release build, we want to degrade gracefully: better to
13927 generate incomplete debugging information than to crash. */
13928 return NULL;
13929 #endif
13930 }
13931
13932 if (!ret && !list_ret)
13933 return 0;
13934
13935 if (want_address == 2 && !have_address
13936 && (dwarf_version >= 4 || !dwarf_strict))
13937 {
13938 if (int_size_in_bytes (TREE_TYPE (loc)) > DWARF2_ADDR_SIZE)
13939 {
13940 expansion_failed (loc, NULL_RTX,
13941 "DWARF address size mismatch");
13942 return 0;
13943 }
13944 if (ret)
13945 add_loc_descr (&ret, new_loc_descr (DW_OP_stack_value, 0, 0));
13946 else
13947 add_loc_descr_to_each (list_ret,
13948 new_loc_descr (DW_OP_stack_value, 0, 0));
13949 have_address = 1;
13950 }
13951 /* Show if we can't fill the request for an address. */
13952 if (want_address && !have_address)
13953 {
13954 expansion_failed (loc, NULL_RTX,
13955 "Want address and only have value");
13956 return 0;
13957 }
13958
13959 gcc_assert (!ret || !list_ret);
13960
13961 /* If we've got an address and don't want one, dereference. */
13962 if (!want_address && have_address)
13963 {
13964 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
13965
13966 if (size > DWARF2_ADDR_SIZE || size == -1)
13967 {
13968 expansion_failed (loc, NULL_RTX,
13969 "DWARF address size mismatch");
13970 return 0;
13971 }
13972 else if (size == DWARF2_ADDR_SIZE)
13973 op = DW_OP_deref;
13974 else
13975 op = DW_OP_deref_size;
13976
13977 if (ret)
13978 add_loc_descr (&ret, new_loc_descr (op, size, 0));
13979 else
13980 add_loc_descr_to_each (list_ret, new_loc_descr (op, size, 0));
13981 }
13982 if (ret)
13983 list_ret = new_loc_list (ret, NULL, NULL, NULL);
13984
13985 return list_ret;
13986 }
13987
13988 /* Same as above but return only single location expression. */
13989 static dw_loc_descr_ref
13990 loc_descriptor_from_tree (tree loc, int want_address)
13991 {
13992 dw_loc_list_ref ret = loc_list_from_tree (loc, want_address);
13993 if (!ret)
13994 return NULL;
13995 if (ret->dw_loc_next)
13996 {
13997 expansion_failed (loc, NULL_RTX,
13998 "Location list where only loc descriptor needed");
13999 return NULL;
14000 }
14001 return ret->expr;
14002 }
14003
14004 /* Given a value, round it up to the lowest multiple of `boundary'
14005 which is not less than the value itself. */
14006
14007 static inline HOST_WIDE_INT
14008 ceiling (HOST_WIDE_INT value, unsigned int boundary)
14009 {
14010 return (((value + boundary - 1) / boundary) * boundary);
14011 }
14012
14013 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
14014 pointer to the declared type for the relevant field variable, or return
14015 `integer_type_node' if the given node turns out to be an
14016 ERROR_MARK node. */
14017
14018 static inline tree
14019 field_type (const_tree decl)
14020 {
14021 tree type;
14022
14023 if (TREE_CODE (decl) == ERROR_MARK)
14024 return integer_type_node;
14025
14026 type = DECL_BIT_FIELD_TYPE (decl);
14027 if (type == NULL_TREE)
14028 type = TREE_TYPE (decl);
14029
14030 return type;
14031 }
14032
14033 /* Given a pointer to a tree node, return the alignment in bits for
14034 it, or else return BITS_PER_WORD if the node actually turns out to
14035 be an ERROR_MARK node. */
14036
14037 static inline unsigned
14038 simple_type_align_in_bits (const_tree type)
14039 {
14040 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
14041 }
14042
14043 static inline unsigned
14044 simple_decl_align_in_bits (const_tree decl)
14045 {
14046 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
14047 }
14048
14049 /* Return the result of rounding T up to ALIGN. */
14050
14051 static inline double_int
14052 round_up_to_align (double_int t, unsigned int align)
14053 {
14054 double_int alignd = uhwi_to_double_int (align);
14055 t = double_int_add (t, alignd);
14056 t = double_int_add (t, double_int_minus_one);
14057 t = double_int_div (t, alignd, true, TRUNC_DIV_EXPR);
14058 t = double_int_mul (t, alignd);
14059 return t;
14060 }
14061
14062 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
14063 lowest addressed byte of the "containing object" for the given FIELD_DECL,
14064 or return 0 if we are unable to determine what that offset is, either
14065 because the argument turns out to be a pointer to an ERROR_MARK node, or
14066 because the offset is actually variable. (We can't handle the latter case
14067 just yet). */
14068
14069 static HOST_WIDE_INT
14070 field_byte_offset (const_tree decl)
14071 {
14072 double_int object_offset_in_bits;
14073 double_int object_offset_in_bytes;
14074 double_int bitpos_int;
14075
14076 if (TREE_CODE (decl) == ERROR_MARK)
14077 return 0;
14078
14079 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
14080
14081 /* We cannot yet cope with fields whose positions are variable, so
14082 for now, when we see such things, we simply return 0. Someday, we may
14083 be able to handle such cases, but it will be damn difficult. */
14084 if (TREE_CODE (bit_position (decl)) != INTEGER_CST)
14085 return 0;
14086
14087 bitpos_int = tree_to_double_int (bit_position (decl));
14088
14089 #ifdef PCC_BITFIELD_TYPE_MATTERS
14090 if (PCC_BITFIELD_TYPE_MATTERS)
14091 {
14092 tree type;
14093 tree field_size_tree;
14094 double_int deepest_bitpos;
14095 double_int field_size_in_bits;
14096 unsigned int type_align_in_bits;
14097 unsigned int decl_align_in_bits;
14098 double_int type_size_in_bits;
14099
14100 type = field_type (decl);
14101 type_size_in_bits = double_int_type_size_in_bits (type);
14102 type_align_in_bits = simple_type_align_in_bits (type);
14103
14104 field_size_tree = DECL_SIZE (decl);
14105
14106 /* The size could be unspecified if there was an error, or for
14107 a flexible array member. */
14108 if (!field_size_tree)
14109 field_size_tree = bitsize_zero_node;
14110
14111 /* If the size of the field is not constant, use the type size. */
14112 if (TREE_CODE (field_size_tree) == INTEGER_CST)
14113 field_size_in_bits = tree_to_double_int (field_size_tree);
14114 else
14115 field_size_in_bits = type_size_in_bits;
14116
14117 decl_align_in_bits = simple_decl_align_in_bits (decl);
14118
14119 /* The GCC front-end doesn't make any attempt to keep track of the
14120 starting bit offset (relative to the start of the containing
14121 structure type) of the hypothetical "containing object" for a
14122 bit-field. Thus, when computing the byte offset value for the
14123 start of the "containing object" of a bit-field, we must deduce
14124 this information on our own. This can be rather tricky to do in
14125 some cases. For example, handling the following structure type
14126 definition when compiling for an i386/i486 target (which only
14127 aligns long long's to 32-bit boundaries) can be very tricky:
14128
14129 struct S { int field1; long long field2:31; };
14130
14131 Fortunately, there is a simple rule-of-thumb which can be used
14132 in such cases. When compiling for an i386/i486, GCC will
14133 allocate 8 bytes for the structure shown above. It decides to
14134 do this based upon one simple rule for bit-field allocation.
14135 GCC allocates each "containing object" for each bit-field at
14136 the first (i.e. lowest addressed) legitimate alignment boundary
14137 (based upon the required minimum alignment for the declared
14138 type of the field) which it can possibly use, subject to the
14139 condition that there is still enough available space remaining
14140 in the containing object (when allocated at the selected point)
14141 to fully accommodate all of the bits of the bit-field itself.
14142
14143 This simple rule makes it obvious why GCC allocates 8 bytes for
14144 each object of the structure type shown above. When looking
14145 for a place to allocate the "containing object" for `field2',
14146 the compiler simply tries to allocate a 64-bit "containing
14147 object" at each successive 32-bit boundary (starting at zero)
14148 until it finds a place to allocate that 64- bit field such that
14149 at least 31 contiguous (and previously unallocated) bits remain
14150 within that selected 64 bit field. (As it turns out, for the
14151 example above, the compiler finds it is OK to allocate the
14152 "containing object" 64-bit field at bit-offset zero within the
14153 structure type.)
14154
14155 Here we attempt to work backwards from the limited set of facts
14156 we're given, and we try to deduce from those facts, where GCC
14157 must have believed that the containing object started (within
14158 the structure type). The value we deduce is then used (by the
14159 callers of this routine) to generate DW_AT_location and
14160 DW_AT_bit_offset attributes for fields (both bit-fields and, in
14161 the case of DW_AT_location, regular fields as well). */
14162
14163 /* Figure out the bit-distance from the start of the structure to
14164 the "deepest" bit of the bit-field. */
14165 deepest_bitpos = double_int_add (bitpos_int, field_size_in_bits);
14166
14167 /* This is the tricky part. Use some fancy footwork to deduce
14168 where the lowest addressed bit of the containing object must
14169 be. */
14170 object_offset_in_bits
14171 = double_int_sub (deepest_bitpos, type_size_in_bits);
14172
14173 /* Round up to type_align by default. This works best for
14174 bitfields. */
14175 object_offset_in_bits
14176 = round_up_to_align (object_offset_in_bits, type_align_in_bits);
14177
14178 if (double_int_ucmp (object_offset_in_bits, bitpos_int) > 0)
14179 {
14180 object_offset_in_bits
14181 = double_int_sub (deepest_bitpos, type_size_in_bits);
14182
14183 /* Round up to decl_align instead. */
14184 object_offset_in_bits
14185 = round_up_to_align (object_offset_in_bits, decl_align_in_bits);
14186 }
14187 }
14188 else
14189 #endif /* PCC_BITFIELD_TYPE_MATTERS */
14190 object_offset_in_bits = bitpos_int;
14191
14192 object_offset_in_bytes
14193 = double_int_div (object_offset_in_bits,
14194 uhwi_to_double_int (BITS_PER_UNIT), true,
14195 TRUNC_DIV_EXPR);
14196 return double_int_to_shwi (object_offset_in_bytes);
14197 }
14198 \f
14199 /* The following routines define various Dwarf attributes and any data
14200 associated with them. */
14201
14202 /* Add a location description attribute value to a DIE.
14203
14204 This emits location attributes suitable for whole variables and
14205 whole parameters. Note that the location attributes for struct fields are
14206 generated by the routine `data_member_location_attribute' below. */
14207
14208 static inline void
14209 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
14210 dw_loc_list_ref descr)
14211 {
14212 if (descr == 0)
14213 return;
14214 if (single_element_loc_list_p (descr))
14215 add_AT_loc (die, attr_kind, descr->expr);
14216 else
14217 add_AT_loc_list (die, attr_kind, descr);
14218 }
14219
14220 /* Add DW_AT_accessibility attribute to DIE if needed. */
14221
14222 static void
14223 add_accessibility_attribute (dw_die_ref die, tree decl)
14224 {
14225 /* In DWARF3+ the default is DW_ACCESS_private only in DW_TAG_class_type
14226 children, otherwise the default is DW_ACCESS_public. In DWARF2
14227 the default has always been DW_ACCESS_public. */
14228 if (TREE_PROTECTED (decl))
14229 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
14230 else if (TREE_PRIVATE (decl))
14231 {
14232 if (dwarf_version == 2
14233 || die->die_parent == NULL
14234 || die->die_parent->die_tag != DW_TAG_class_type)
14235 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_private);
14236 }
14237 else if (dwarf_version > 2
14238 && die->die_parent
14239 && die->die_parent->die_tag == DW_TAG_class_type)
14240 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
14241 }
14242
14243 /* Attach the specialized form of location attribute used for data members of
14244 struct and union types. In the special case of a FIELD_DECL node which
14245 represents a bit-field, the "offset" part of this special location
14246 descriptor must indicate the distance in bytes from the lowest-addressed
14247 byte of the containing struct or union type to the lowest-addressed byte of
14248 the "containing object" for the bit-field. (See the `field_byte_offset'
14249 function above).
14250
14251 For any given bit-field, the "containing object" is a hypothetical object
14252 (of some integral or enum type) within which the given bit-field lives. The
14253 type of this hypothetical "containing object" is always the same as the
14254 declared type of the individual bit-field itself (for GCC anyway... the
14255 DWARF spec doesn't actually mandate this). Note that it is the size (in
14256 bytes) of the hypothetical "containing object" which will be given in the
14257 DW_AT_byte_size attribute for this bit-field. (See the
14258 `byte_size_attribute' function below.) It is also used when calculating the
14259 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
14260 function below.) */
14261
14262 static void
14263 add_data_member_location_attribute (dw_die_ref die, tree decl)
14264 {
14265 HOST_WIDE_INT offset;
14266 dw_loc_descr_ref loc_descr = 0;
14267
14268 if (TREE_CODE (decl) == TREE_BINFO)
14269 {
14270 /* We're working on the TAG_inheritance for a base class. */
14271 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
14272 {
14273 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
14274 aren't at a fixed offset from all (sub)objects of the same
14275 type. We need to extract the appropriate offset from our
14276 vtable. The following dwarf expression means
14277
14278 BaseAddr = ObAddr + *((*ObAddr) - Offset)
14279
14280 This is specific to the V3 ABI, of course. */
14281
14282 dw_loc_descr_ref tmp;
14283
14284 /* Make a copy of the object address. */
14285 tmp = new_loc_descr (DW_OP_dup, 0, 0);
14286 add_loc_descr (&loc_descr, tmp);
14287
14288 /* Extract the vtable address. */
14289 tmp = new_loc_descr (DW_OP_deref, 0, 0);
14290 add_loc_descr (&loc_descr, tmp);
14291
14292 /* Calculate the address of the offset. */
14293 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
14294 gcc_assert (offset < 0);
14295
14296 tmp = int_loc_descriptor (-offset);
14297 add_loc_descr (&loc_descr, tmp);
14298 tmp = new_loc_descr (DW_OP_minus, 0, 0);
14299 add_loc_descr (&loc_descr, tmp);
14300
14301 /* Extract the offset. */
14302 tmp = new_loc_descr (DW_OP_deref, 0, 0);
14303 add_loc_descr (&loc_descr, tmp);
14304
14305 /* Add it to the object address. */
14306 tmp = new_loc_descr (DW_OP_plus, 0, 0);
14307 add_loc_descr (&loc_descr, tmp);
14308 }
14309 else
14310 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
14311 }
14312 else
14313 offset = field_byte_offset (decl);
14314
14315 if (! loc_descr)
14316 {
14317 if (dwarf_version > 2)
14318 {
14319 /* Don't need to output a location expression, just the constant. */
14320 if (offset < 0)
14321 add_AT_int (die, DW_AT_data_member_location, offset);
14322 else
14323 add_AT_unsigned (die, DW_AT_data_member_location, offset);
14324 return;
14325 }
14326 else
14327 {
14328 enum dwarf_location_atom op;
14329
14330 /* The DWARF2 standard says that we should assume that the structure
14331 address is already on the stack, so we can specify a structure
14332 field address by using DW_OP_plus_uconst. */
14333
14334 #ifdef MIPS_DEBUGGING_INFO
14335 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
14336 operator correctly. It works only if we leave the offset on the
14337 stack. */
14338 op = DW_OP_constu;
14339 #else
14340 op = DW_OP_plus_uconst;
14341 #endif
14342
14343 loc_descr = new_loc_descr (op, offset, 0);
14344 }
14345 }
14346
14347 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
14348 }
14349
14350 /* Writes integer values to dw_vec_const array. */
14351
14352 static void
14353 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
14354 {
14355 while (size != 0)
14356 {
14357 *dest++ = val & 0xff;
14358 val >>= 8;
14359 --size;
14360 }
14361 }
14362
14363 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
14364
14365 static HOST_WIDE_INT
14366 extract_int (const unsigned char *src, unsigned int size)
14367 {
14368 HOST_WIDE_INT val = 0;
14369
14370 src += size;
14371 while (size != 0)
14372 {
14373 val <<= 8;
14374 val |= *--src & 0xff;
14375 --size;
14376 }
14377 return val;
14378 }
14379
14380 /* Writes double_int values to dw_vec_const array. */
14381
14382 static void
14383 insert_double (double_int val, unsigned char *dest)
14384 {
14385 unsigned char *p0 = dest;
14386 unsigned char *p1 = dest + sizeof (HOST_WIDE_INT);
14387
14388 if (WORDS_BIG_ENDIAN)
14389 {
14390 p0 = p1;
14391 p1 = dest;
14392 }
14393
14394 insert_int ((HOST_WIDE_INT) val.low, sizeof (HOST_WIDE_INT), p0);
14395 insert_int ((HOST_WIDE_INT) val.high, sizeof (HOST_WIDE_INT), p1);
14396 }
14397
14398 /* Writes floating point values to dw_vec_const array. */
14399
14400 static void
14401 insert_float (const_rtx rtl, unsigned char *array)
14402 {
14403 REAL_VALUE_TYPE rv;
14404 long val[4];
14405 int i;
14406
14407 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
14408 real_to_target (val, &rv, GET_MODE (rtl));
14409
14410 /* real_to_target puts 32-bit pieces in each long. Pack them. */
14411 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
14412 {
14413 insert_int (val[i], 4, array);
14414 array += 4;
14415 }
14416 }
14417
14418 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
14419 does not have a "location" either in memory or in a register. These
14420 things can arise in GNU C when a constant is passed as an actual parameter
14421 to an inlined function. They can also arise in C++ where declared
14422 constants do not necessarily get memory "homes". */
14423
14424 static bool
14425 add_const_value_attribute (dw_die_ref die, rtx rtl)
14426 {
14427 switch (GET_CODE (rtl))
14428 {
14429 case CONST_INT:
14430 {
14431 HOST_WIDE_INT val = INTVAL (rtl);
14432
14433 if (val < 0)
14434 add_AT_int (die, DW_AT_const_value, val);
14435 else
14436 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
14437 }
14438 return true;
14439
14440 case CONST_DOUBLE:
14441 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
14442 floating-point constant. A CONST_DOUBLE is used whenever the
14443 constant requires more than one word in order to be adequately
14444 represented. */
14445 {
14446 enum machine_mode mode = GET_MODE (rtl);
14447
14448 if (SCALAR_FLOAT_MODE_P (mode))
14449 {
14450 unsigned int length = GET_MODE_SIZE (mode);
14451 unsigned char *array = (unsigned char *) ggc_alloc_atomic (length);
14452
14453 insert_float (rtl, array);
14454 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
14455 }
14456 else
14457 add_AT_double (die, DW_AT_const_value,
14458 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
14459 }
14460 return true;
14461
14462 case CONST_VECTOR:
14463 {
14464 enum machine_mode mode = GET_MODE (rtl);
14465 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
14466 unsigned int length = CONST_VECTOR_NUNITS (rtl);
14467 unsigned char *array = (unsigned char *) ggc_alloc_atomic
14468 (length * elt_size);
14469 unsigned int i;
14470 unsigned char *p;
14471
14472 switch (GET_MODE_CLASS (mode))
14473 {
14474 case MODE_VECTOR_INT:
14475 for (i = 0, p = array; i < length; i++, p += elt_size)
14476 {
14477 rtx elt = CONST_VECTOR_ELT (rtl, i);
14478 double_int val = rtx_to_double_int (elt);
14479
14480 if (elt_size <= sizeof (HOST_WIDE_INT))
14481 insert_int (double_int_to_shwi (val), elt_size, p);
14482 else
14483 {
14484 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
14485 insert_double (val, p);
14486 }
14487 }
14488 break;
14489
14490 case MODE_VECTOR_FLOAT:
14491 for (i = 0, p = array; i < length; i++, p += elt_size)
14492 {
14493 rtx elt = CONST_VECTOR_ELT (rtl, i);
14494 insert_float (elt, p);
14495 }
14496 break;
14497
14498 default:
14499 gcc_unreachable ();
14500 }
14501
14502 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
14503 }
14504 return true;
14505
14506 case CONST_STRING:
14507 if (dwarf_version >= 4 || !dwarf_strict)
14508 {
14509 dw_loc_descr_ref loc_result;
14510 resolve_one_addr (&rtl, NULL);
14511 rtl_addr:
14512 loc_result = new_loc_descr (DW_OP_addr, 0, 0);
14513 loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
14514 loc_result->dw_loc_oprnd1.v.val_addr = rtl;
14515 add_loc_descr (&loc_result, new_loc_descr (DW_OP_stack_value, 0, 0));
14516 add_AT_loc (die, DW_AT_location, loc_result);
14517 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
14518 return true;
14519 }
14520 return false;
14521
14522 case CONST:
14523 if (CONSTANT_P (XEXP (rtl, 0)))
14524 return add_const_value_attribute (die, XEXP (rtl, 0));
14525 /* FALLTHROUGH */
14526 case SYMBOL_REF:
14527 if (!const_ok_for_output (rtl))
14528 return false;
14529 case LABEL_REF:
14530 if (dwarf_version >= 4 || !dwarf_strict)
14531 goto rtl_addr;
14532 return false;
14533
14534 case PLUS:
14535 /* In cases where an inlined instance of an inline function is passed
14536 the address of an `auto' variable (which is local to the caller) we
14537 can get a situation where the DECL_RTL of the artificial local
14538 variable (for the inlining) which acts as a stand-in for the
14539 corresponding formal parameter (of the inline function) will look
14540 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
14541 exactly a compile-time constant expression, but it isn't the address
14542 of the (artificial) local variable either. Rather, it represents the
14543 *value* which the artificial local variable always has during its
14544 lifetime. We currently have no way to represent such quasi-constant
14545 values in Dwarf, so for now we just punt and generate nothing. */
14546 return false;
14547
14548 case HIGH:
14549 case CONST_FIXED:
14550 return false;
14551
14552 case MEM:
14553 if (GET_CODE (XEXP (rtl, 0)) == CONST_STRING
14554 && MEM_READONLY_P (rtl)
14555 && GET_MODE (rtl) == BLKmode)
14556 {
14557 add_AT_string (die, DW_AT_const_value, XSTR (XEXP (rtl, 0), 0));
14558 return true;
14559 }
14560 return false;
14561
14562 default:
14563 /* No other kinds of rtx should be possible here. */
14564 gcc_unreachable ();
14565 }
14566 return false;
14567 }
14568
14569 /* Determine whether the evaluation of EXPR references any variables
14570 or functions which aren't otherwise used (and therefore may not be
14571 output). */
14572 static tree
14573 reference_to_unused (tree * tp, int * walk_subtrees,
14574 void * data ATTRIBUTE_UNUSED)
14575 {
14576 if (! EXPR_P (*tp) && ! CONSTANT_CLASS_P (*tp))
14577 *walk_subtrees = 0;
14578
14579 if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
14580 && ! TREE_ASM_WRITTEN (*tp))
14581 return *tp;
14582 /* ??? The C++ FE emits debug information for using decls, so
14583 putting gcc_unreachable here falls over. See PR31899. For now
14584 be conservative. */
14585 else if (!cgraph_global_info_ready
14586 && (TREE_CODE (*tp) == VAR_DECL || TREE_CODE (*tp) == FUNCTION_DECL))
14587 return *tp;
14588 else if (TREE_CODE (*tp) == VAR_DECL)
14589 {
14590 struct varpool_node *node = varpool_get_node (*tp);
14591 if (!node || !node->needed)
14592 return *tp;
14593 }
14594 else if (TREE_CODE (*tp) == FUNCTION_DECL
14595 && (!DECL_EXTERNAL (*tp) || DECL_DECLARED_INLINE_P (*tp)))
14596 {
14597 /* The call graph machinery must have finished analyzing,
14598 optimizing and gimplifying the CU by now.
14599 So if *TP has no call graph node associated
14600 to it, it means *TP will not be emitted. */
14601 if (!cgraph_get_node (*tp))
14602 return *tp;
14603 }
14604 else if (TREE_CODE (*tp) == STRING_CST && !TREE_ASM_WRITTEN (*tp))
14605 return *tp;
14606
14607 return NULL_TREE;
14608 }
14609
14610 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
14611 for use in a later add_const_value_attribute call. */
14612
14613 static rtx
14614 rtl_for_decl_init (tree init, tree type)
14615 {
14616 rtx rtl = NULL_RTX;
14617
14618 STRIP_NOPS (init);
14619
14620 /* If a variable is initialized with a string constant without embedded
14621 zeros, build CONST_STRING. */
14622 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
14623 {
14624 tree enttype = TREE_TYPE (type);
14625 tree domain = TYPE_DOMAIN (type);
14626 enum machine_mode mode = TYPE_MODE (enttype);
14627
14628 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
14629 && domain
14630 && integer_zerop (TYPE_MIN_VALUE (domain))
14631 && compare_tree_int (TYPE_MAX_VALUE (domain),
14632 TREE_STRING_LENGTH (init) - 1) == 0
14633 && ((size_t) TREE_STRING_LENGTH (init)
14634 == strlen (TREE_STRING_POINTER (init)) + 1))
14635 {
14636 rtl = gen_rtx_CONST_STRING (VOIDmode,
14637 ggc_strdup (TREE_STRING_POINTER (init)));
14638 rtl = gen_rtx_MEM (BLKmode, rtl);
14639 MEM_READONLY_P (rtl) = 1;
14640 }
14641 }
14642 /* Other aggregates, and complex values, could be represented using
14643 CONCAT: FIXME! */
14644 else if (AGGREGATE_TYPE_P (type)
14645 || (TREE_CODE (init) == VIEW_CONVERT_EXPR
14646 && AGGREGATE_TYPE_P (TREE_TYPE (TREE_OPERAND (init, 0))))
14647 || TREE_CODE (type) == COMPLEX_TYPE)
14648 ;
14649 /* Vectors only work if their mode is supported by the target.
14650 FIXME: generic vectors ought to work too. */
14651 else if (TREE_CODE (type) == VECTOR_TYPE
14652 && !VECTOR_MODE_P (TYPE_MODE (type)))
14653 ;
14654 /* If the initializer is something that we know will expand into an
14655 immediate RTL constant, expand it now. We must be careful not to
14656 reference variables which won't be output. */
14657 else if (initializer_constant_valid_p (init, type)
14658 && ! walk_tree (&init, reference_to_unused, NULL, NULL))
14659 {
14660 /* Convert vector CONSTRUCTOR initializers to VECTOR_CST if
14661 possible. */
14662 if (TREE_CODE (type) == VECTOR_TYPE)
14663 switch (TREE_CODE (init))
14664 {
14665 case VECTOR_CST:
14666 break;
14667 case CONSTRUCTOR:
14668 if (TREE_CONSTANT (init))
14669 {
14670 VEC(constructor_elt,gc) *elts = CONSTRUCTOR_ELTS (init);
14671 bool constant_p = true;
14672 tree value;
14673 unsigned HOST_WIDE_INT ix;
14674
14675 /* Even when ctor is constant, it might contain non-*_CST
14676 elements (e.g. { 1.0/0.0 - 1.0/0.0, 0.0 }) and those don't
14677 belong into VECTOR_CST nodes. */
14678 FOR_EACH_CONSTRUCTOR_VALUE (elts, ix, value)
14679 if (!CONSTANT_CLASS_P (value))
14680 {
14681 constant_p = false;
14682 break;
14683 }
14684
14685 if (constant_p)
14686 {
14687 init = build_vector_from_ctor (type, elts);
14688 break;
14689 }
14690 }
14691 /* FALLTHRU */
14692
14693 default:
14694 return NULL;
14695 }
14696
14697 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
14698
14699 /* If expand_expr returns a MEM, it wasn't immediate. */
14700 gcc_assert (!rtl || !MEM_P (rtl));
14701 }
14702
14703 return rtl;
14704 }
14705
14706 /* Generate RTL for the variable DECL to represent its location. */
14707
14708 static rtx
14709 rtl_for_decl_location (tree decl)
14710 {
14711 rtx rtl;
14712
14713 /* Here we have to decide where we are going to say the parameter "lives"
14714 (as far as the debugger is concerned). We only have a couple of
14715 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
14716
14717 DECL_RTL normally indicates where the parameter lives during most of the
14718 activation of the function. If optimization is enabled however, this
14719 could be either NULL or else a pseudo-reg. Both of those cases indicate
14720 that the parameter doesn't really live anywhere (as far as the code
14721 generation parts of GCC are concerned) during most of the function's
14722 activation. That will happen (for example) if the parameter is never
14723 referenced within the function.
14724
14725 We could just generate a location descriptor here for all non-NULL
14726 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
14727 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
14728 where DECL_RTL is NULL or is a pseudo-reg.
14729
14730 Note however that we can only get away with using DECL_INCOMING_RTL as
14731 a backup substitute for DECL_RTL in certain limited cases. In cases
14732 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
14733 we can be sure that the parameter was passed using the same type as it is
14734 declared to have within the function, and that its DECL_INCOMING_RTL
14735 points us to a place where a value of that type is passed.
14736
14737 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
14738 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
14739 because in these cases DECL_INCOMING_RTL points us to a value of some
14740 type which is *different* from the type of the parameter itself. Thus,
14741 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
14742 such cases, the debugger would end up (for example) trying to fetch a
14743 `float' from a place which actually contains the first part of a
14744 `double'. That would lead to really incorrect and confusing
14745 output at debug-time.
14746
14747 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
14748 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
14749 are a couple of exceptions however. On little-endian machines we can
14750 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
14751 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
14752 an integral type that is smaller than TREE_TYPE (decl). These cases arise
14753 when (on a little-endian machine) a non-prototyped function has a
14754 parameter declared to be of type `short' or `char'. In such cases,
14755 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
14756 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
14757 passed `int' value. If the debugger then uses that address to fetch
14758 a `short' or a `char' (on a little-endian machine) the result will be
14759 the correct data, so we allow for such exceptional cases below.
14760
14761 Note that our goal here is to describe the place where the given formal
14762 parameter lives during most of the function's activation (i.e. between the
14763 end of the prologue and the start of the epilogue). We'll do that as best
14764 as we can. Note however that if the given formal parameter is modified
14765 sometime during the execution of the function, then a stack backtrace (at
14766 debug-time) will show the function as having been called with the *new*
14767 value rather than the value which was originally passed in. This happens
14768 rarely enough that it is not a major problem, but it *is* a problem, and
14769 I'd like to fix it.
14770
14771 A future version of dwarf2out.c may generate two additional attributes for
14772 any given DW_TAG_formal_parameter DIE which will describe the "passed
14773 type" and the "passed location" for the given formal parameter in addition
14774 to the attributes we now generate to indicate the "declared type" and the
14775 "active location" for each parameter. This additional set of attributes
14776 could be used by debuggers for stack backtraces. Separately, note that
14777 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
14778 This happens (for example) for inlined-instances of inline function formal
14779 parameters which are never referenced. This really shouldn't be
14780 happening. All PARM_DECL nodes should get valid non-NULL
14781 DECL_INCOMING_RTL values. FIXME. */
14782
14783 /* Use DECL_RTL as the "location" unless we find something better. */
14784 rtl = DECL_RTL_IF_SET (decl);
14785
14786 /* When generating abstract instances, ignore everything except
14787 constants, symbols living in memory, and symbols living in
14788 fixed registers. */
14789 if (! reload_completed)
14790 {
14791 if (rtl
14792 && (CONSTANT_P (rtl)
14793 || (MEM_P (rtl)
14794 && CONSTANT_P (XEXP (rtl, 0)))
14795 || (REG_P (rtl)
14796 && TREE_CODE (decl) == VAR_DECL
14797 && TREE_STATIC (decl))))
14798 {
14799 rtl = targetm.delegitimize_address (rtl);
14800 return rtl;
14801 }
14802 rtl = NULL_RTX;
14803 }
14804 else if (TREE_CODE (decl) == PARM_DECL)
14805 {
14806 if (rtl == NULL_RTX
14807 || is_pseudo_reg (rtl)
14808 || (MEM_P (rtl)
14809 && is_pseudo_reg (XEXP (rtl, 0))
14810 && DECL_INCOMING_RTL (decl)
14811 && MEM_P (DECL_INCOMING_RTL (decl))
14812 && GET_MODE (rtl) == GET_MODE (DECL_INCOMING_RTL (decl))))
14813 {
14814 tree declared_type = TREE_TYPE (decl);
14815 tree passed_type = DECL_ARG_TYPE (decl);
14816 enum machine_mode dmode = TYPE_MODE (declared_type);
14817 enum machine_mode pmode = TYPE_MODE (passed_type);
14818
14819 /* This decl represents a formal parameter which was optimized out.
14820 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
14821 all cases where (rtl == NULL_RTX) just below. */
14822 if (dmode == pmode)
14823 rtl = DECL_INCOMING_RTL (decl);
14824 else if ((rtl == NULL_RTX || is_pseudo_reg (rtl))
14825 && SCALAR_INT_MODE_P (dmode)
14826 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
14827 && DECL_INCOMING_RTL (decl))
14828 {
14829 rtx inc = DECL_INCOMING_RTL (decl);
14830 if (REG_P (inc))
14831 rtl = inc;
14832 else if (MEM_P (inc))
14833 {
14834 if (BYTES_BIG_ENDIAN)
14835 rtl = adjust_address_nv (inc, dmode,
14836 GET_MODE_SIZE (pmode)
14837 - GET_MODE_SIZE (dmode));
14838 else
14839 rtl = inc;
14840 }
14841 }
14842 }
14843
14844 /* If the parm was passed in registers, but lives on the stack, then
14845 make a big endian correction if the mode of the type of the
14846 parameter is not the same as the mode of the rtl. */
14847 /* ??? This is the same series of checks that are made in dbxout.c before
14848 we reach the big endian correction code there. It isn't clear if all
14849 of these checks are necessary here, but keeping them all is the safe
14850 thing to do. */
14851 else if (MEM_P (rtl)
14852 && XEXP (rtl, 0) != const0_rtx
14853 && ! CONSTANT_P (XEXP (rtl, 0))
14854 /* Not passed in memory. */
14855 && !MEM_P (DECL_INCOMING_RTL (decl))
14856 /* Not passed by invisible reference. */
14857 && (!REG_P (XEXP (rtl, 0))
14858 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
14859 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
14860 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
14861 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
14862 #endif
14863 )
14864 /* Big endian correction check. */
14865 && BYTES_BIG_ENDIAN
14866 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
14867 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
14868 < UNITS_PER_WORD))
14869 {
14870 int offset = (UNITS_PER_WORD
14871 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
14872
14873 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
14874 plus_constant (XEXP (rtl, 0), offset));
14875 }
14876 }
14877 else if (TREE_CODE (decl) == VAR_DECL
14878 && rtl
14879 && MEM_P (rtl)
14880 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
14881 && BYTES_BIG_ENDIAN)
14882 {
14883 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
14884 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
14885
14886 /* If a variable is declared "register" yet is smaller than
14887 a register, then if we store the variable to memory, it
14888 looks like we're storing a register-sized value, when in
14889 fact we are not. We need to adjust the offset of the
14890 storage location to reflect the actual value's bytes,
14891 else gdb will not be able to display it. */
14892 if (rsize > dsize)
14893 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
14894 plus_constant (XEXP (rtl, 0), rsize-dsize));
14895 }
14896
14897 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
14898 and will have been substituted directly into all expressions that use it.
14899 C does not have such a concept, but C++ and other languages do. */
14900 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
14901 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
14902
14903 if (rtl)
14904 rtl = targetm.delegitimize_address (rtl);
14905
14906 /* If we don't look past the constant pool, we risk emitting a
14907 reference to a constant pool entry that isn't referenced from
14908 code, and thus is not emitted. */
14909 if (rtl)
14910 rtl = avoid_constant_pool_reference (rtl);
14911
14912 /* Try harder to get a rtl. If this symbol ends up not being emitted
14913 in the current CU, resolve_addr will remove the expression referencing
14914 it. */
14915 if (rtl == NULL_RTX
14916 && TREE_CODE (decl) == VAR_DECL
14917 && !DECL_EXTERNAL (decl)
14918 && TREE_STATIC (decl)
14919 && DECL_NAME (decl)
14920 && !DECL_HARD_REGISTER (decl)
14921 && DECL_MODE (decl) != VOIDmode)
14922 {
14923 rtl = make_decl_rtl_for_debug (decl);
14924 if (!MEM_P (rtl)
14925 || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF
14926 || SYMBOL_REF_DECL (XEXP (rtl, 0)) != decl)
14927 rtl = NULL_RTX;
14928 }
14929
14930 return rtl;
14931 }
14932
14933 /* Check whether decl is a Fortran COMMON symbol. If not, NULL_TREE is
14934 returned. If so, the decl for the COMMON block is returned, and the
14935 value is the offset into the common block for the symbol. */
14936
14937 static tree
14938 fortran_common (tree decl, HOST_WIDE_INT *value)
14939 {
14940 tree val_expr, cvar;
14941 enum machine_mode mode;
14942 HOST_WIDE_INT bitsize, bitpos;
14943 tree offset;
14944 int volatilep = 0, unsignedp = 0;
14945
14946 /* If the decl isn't a VAR_DECL, or if it isn't static, or if
14947 it does not have a value (the offset into the common area), or if it
14948 is thread local (as opposed to global) then it isn't common, and shouldn't
14949 be handled as such. */
14950 if (TREE_CODE (decl) != VAR_DECL
14951 || !TREE_STATIC (decl)
14952 || !DECL_HAS_VALUE_EXPR_P (decl)
14953 || !is_fortran ())
14954 return NULL_TREE;
14955
14956 val_expr = DECL_VALUE_EXPR (decl);
14957 if (TREE_CODE (val_expr) != COMPONENT_REF)
14958 return NULL_TREE;
14959
14960 cvar = get_inner_reference (val_expr, &bitsize, &bitpos, &offset,
14961 &mode, &unsignedp, &volatilep, true);
14962
14963 if (cvar == NULL_TREE
14964 || TREE_CODE (cvar) != VAR_DECL
14965 || DECL_ARTIFICIAL (cvar)
14966 || !TREE_PUBLIC (cvar))
14967 return NULL_TREE;
14968
14969 *value = 0;
14970 if (offset != NULL)
14971 {
14972 if (!host_integerp (offset, 0))
14973 return NULL_TREE;
14974 *value = tree_low_cst (offset, 0);
14975 }
14976 if (bitpos != 0)
14977 *value += bitpos / BITS_PER_UNIT;
14978
14979 return cvar;
14980 }
14981
14982 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
14983 data attribute for a variable or a parameter. We generate the
14984 DW_AT_const_value attribute only in those cases where the given variable
14985 or parameter does not have a true "location" either in memory or in a
14986 register. This can happen (for example) when a constant is passed as an
14987 actual argument in a call to an inline function. (It's possible that
14988 these things can crop up in other ways also.) Note that one type of
14989 constant value which can be passed into an inlined function is a constant
14990 pointer. This can happen for example if an actual argument in an inlined
14991 function call evaluates to a compile-time constant address.
14992
14993 CACHE_P is true if it is worth caching the location list for DECL,
14994 so that future calls can reuse it rather than regenerate it from scratch.
14995 This is true for BLOCK_NONLOCALIZED_VARS in inlined subroutines,
14996 since we will need to refer to them each time the function is inlined. */
14997
14998 static bool
14999 add_location_or_const_value_attribute (dw_die_ref die, tree decl, bool cache_p,
15000 enum dwarf_attribute attr)
15001 {
15002 rtx rtl;
15003 dw_loc_list_ref list;
15004 var_loc_list *loc_list;
15005 cached_dw_loc_list *cache;
15006 void **slot;
15007
15008 if (TREE_CODE (decl) == ERROR_MARK)
15009 return false;
15010
15011 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
15012 || TREE_CODE (decl) == RESULT_DECL);
15013
15014 /* Try to get some constant RTL for this decl, and use that as the value of
15015 the location. */
15016
15017 rtl = rtl_for_decl_location (decl);
15018 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING)
15019 && add_const_value_attribute (die, rtl))
15020 return true;
15021
15022 /* See if we have single element location list that is equivalent to
15023 a constant value. That way we are better to use add_const_value_attribute
15024 rather than expanding constant value equivalent. */
15025 loc_list = lookup_decl_loc (decl);
15026 if (loc_list
15027 && loc_list->first
15028 && loc_list->first->next == NULL
15029 && NOTE_P (loc_list->first->loc)
15030 && NOTE_VAR_LOCATION (loc_list->first->loc)
15031 && NOTE_VAR_LOCATION_LOC (loc_list->first->loc))
15032 {
15033 struct var_loc_node *node;
15034
15035 node = loc_list->first;
15036 rtl = NOTE_VAR_LOCATION_LOC (node->loc);
15037 if (GET_CODE (rtl) == EXPR_LIST)
15038 rtl = XEXP (rtl, 0);
15039 if ((CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING)
15040 && add_const_value_attribute (die, rtl))
15041 return true;
15042 }
15043 /* If this decl is from BLOCK_NONLOCALIZED_VARS, we might need its
15044 list several times. See if we've already cached the contents. */
15045 list = NULL;
15046 if (loc_list == NULL || cached_dw_loc_list_table == NULL)
15047 cache_p = false;
15048 if (cache_p)
15049 {
15050 cache = (cached_dw_loc_list *)
15051 htab_find_with_hash (cached_dw_loc_list_table, decl, DECL_UID (decl));
15052 if (cache)
15053 list = cache->loc_list;
15054 }
15055 if (list == NULL)
15056 {
15057 list = loc_list_from_tree (decl, decl_by_reference_p (decl) ? 0 : 2);
15058 /* It is usually worth caching this result if the decl is from
15059 BLOCK_NONLOCALIZED_VARS and if the list has at least two elements. */
15060 if (cache_p && list && list->dw_loc_next)
15061 {
15062 slot = htab_find_slot_with_hash (cached_dw_loc_list_table, decl,
15063 DECL_UID (decl), INSERT);
15064 cache = ggc_alloc_cleared_cached_dw_loc_list ();
15065 cache->decl_id = DECL_UID (decl);
15066 cache->loc_list = list;
15067 *slot = cache;
15068 }
15069 }
15070 if (list)
15071 {
15072 add_AT_location_description (die, attr, list);
15073 return true;
15074 }
15075 /* None of that worked, so it must not really have a location;
15076 try adding a constant value attribute from the DECL_INITIAL. */
15077 return tree_add_const_value_attribute_for_decl (die, decl);
15078 }
15079
15080 /* Add VARIABLE and DIE into deferred locations list. */
15081
15082 static void
15083 defer_location (tree variable, dw_die_ref die)
15084 {
15085 deferred_locations entry;
15086 entry.variable = variable;
15087 entry.die = die;
15088 VEC_safe_push (deferred_locations, gc, deferred_locations_list, &entry);
15089 }
15090
15091 /* Helper function for tree_add_const_value_attribute. Natively encode
15092 initializer INIT into an array. Return true if successful. */
15093
15094 static bool
15095 native_encode_initializer (tree init, unsigned char *array, int size)
15096 {
15097 tree type;
15098
15099 if (init == NULL_TREE)
15100 return false;
15101
15102 STRIP_NOPS (init);
15103 switch (TREE_CODE (init))
15104 {
15105 case STRING_CST:
15106 type = TREE_TYPE (init);
15107 if (TREE_CODE (type) == ARRAY_TYPE)
15108 {
15109 tree enttype = TREE_TYPE (type);
15110 enum machine_mode mode = TYPE_MODE (enttype);
15111
15112 if (GET_MODE_CLASS (mode) != MODE_INT || GET_MODE_SIZE (mode) != 1)
15113 return false;
15114 if (int_size_in_bytes (type) != size)
15115 return false;
15116 if (size > TREE_STRING_LENGTH (init))
15117 {
15118 memcpy (array, TREE_STRING_POINTER (init),
15119 TREE_STRING_LENGTH (init));
15120 memset (array + TREE_STRING_LENGTH (init),
15121 '\0', size - TREE_STRING_LENGTH (init));
15122 }
15123 else
15124 memcpy (array, TREE_STRING_POINTER (init), size);
15125 return true;
15126 }
15127 return false;
15128 case CONSTRUCTOR:
15129 type = TREE_TYPE (init);
15130 if (int_size_in_bytes (type) != size)
15131 return false;
15132 if (TREE_CODE (type) == ARRAY_TYPE)
15133 {
15134 HOST_WIDE_INT min_index;
15135 unsigned HOST_WIDE_INT cnt;
15136 int curpos = 0, fieldsize;
15137 constructor_elt *ce;
15138
15139 if (TYPE_DOMAIN (type) == NULL_TREE
15140 || !host_integerp (TYPE_MIN_VALUE (TYPE_DOMAIN (type)), 0))
15141 return false;
15142
15143 fieldsize = int_size_in_bytes (TREE_TYPE (type));
15144 if (fieldsize <= 0)
15145 return false;
15146
15147 min_index = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (type)), 0);
15148 memset (array, '\0', size);
15149 FOR_EACH_VEC_ELT (constructor_elt, CONSTRUCTOR_ELTS (init), cnt, ce)
15150 {
15151 tree val = ce->value;
15152 tree index = ce->index;
15153 int pos = curpos;
15154 if (index && TREE_CODE (index) == RANGE_EXPR)
15155 pos = (tree_low_cst (TREE_OPERAND (index, 0), 0) - min_index)
15156 * fieldsize;
15157 else if (index)
15158 pos = (tree_low_cst (index, 0) - min_index) * fieldsize;
15159
15160 if (val)
15161 {
15162 STRIP_NOPS (val);
15163 if (!native_encode_initializer (val, array + pos, fieldsize))
15164 return false;
15165 }
15166 curpos = pos + fieldsize;
15167 if (index && TREE_CODE (index) == RANGE_EXPR)
15168 {
15169 int count = tree_low_cst (TREE_OPERAND (index, 1), 0)
15170 - tree_low_cst (TREE_OPERAND (index, 0), 0);
15171 while (count-- > 0)
15172 {
15173 if (val)
15174 memcpy (array + curpos, array + pos, fieldsize);
15175 curpos += fieldsize;
15176 }
15177 }
15178 gcc_assert (curpos <= size);
15179 }
15180 return true;
15181 }
15182 else if (TREE_CODE (type) == RECORD_TYPE
15183 || TREE_CODE (type) == UNION_TYPE)
15184 {
15185 tree field = NULL_TREE;
15186 unsigned HOST_WIDE_INT cnt;
15187 constructor_elt *ce;
15188
15189 if (int_size_in_bytes (type) != size)
15190 return false;
15191
15192 if (TREE_CODE (type) == RECORD_TYPE)
15193 field = TYPE_FIELDS (type);
15194
15195 FOR_EACH_VEC_ELT (constructor_elt, CONSTRUCTOR_ELTS (init), cnt, ce)
15196 {
15197 tree val = ce->value;
15198 int pos, fieldsize;
15199
15200 if (ce->index != 0)
15201 field = ce->index;
15202
15203 if (val)
15204 STRIP_NOPS (val);
15205
15206 if (field == NULL_TREE || DECL_BIT_FIELD (field))
15207 return false;
15208
15209 if (TREE_CODE (TREE_TYPE (field)) == ARRAY_TYPE
15210 && TYPE_DOMAIN (TREE_TYPE (field))
15211 && ! TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (field))))
15212 return false;
15213 else if (DECL_SIZE_UNIT (field) == NULL_TREE
15214 || !host_integerp (DECL_SIZE_UNIT (field), 0))
15215 return false;
15216 fieldsize = tree_low_cst (DECL_SIZE_UNIT (field), 0);
15217 pos = int_byte_position (field);
15218 gcc_assert (pos + fieldsize <= size);
15219 if (val
15220 && !native_encode_initializer (val, array + pos, fieldsize))
15221 return false;
15222 }
15223 return true;
15224 }
15225 return false;
15226 case VIEW_CONVERT_EXPR:
15227 case NON_LVALUE_EXPR:
15228 return native_encode_initializer (TREE_OPERAND (init, 0), array, size);
15229 default:
15230 return native_encode_expr (init, array, size) == size;
15231 }
15232 }
15233
15234 /* Attach a DW_AT_const_value attribute to DIE. The value of the
15235 attribute is the const value T. */
15236
15237 static bool
15238 tree_add_const_value_attribute (dw_die_ref die, tree t)
15239 {
15240 tree init;
15241 tree type = TREE_TYPE (t);
15242 rtx rtl;
15243
15244 if (!t || !TREE_TYPE (t) || TREE_TYPE (t) == error_mark_node)
15245 return false;
15246
15247 init = t;
15248 gcc_assert (!DECL_P (init));
15249
15250 rtl = rtl_for_decl_init (init, type);
15251 if (rtl)
15252 return add_const_value_attribute (die, rtl);
15253 /* If the host and target are sane, try harder. */
15254 else if (CHAR_BIT == 8 && BITS_PER_UNIT == 8
15255 && initializer_constant_valid_p (init, type))
15256 {
15257 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (init));
15258 if (size > 0 && (int) size == size)
15259 {
15260 unsigned char *array = (unsigned char *)
15261 ggc_alloc_cleared_atomic (size);
15262
15263 if (native_encode_initializer (init, array, size))
15264 {
15265 add_AT_vec (die, DW_AT_const_value, size, 1, array);
15266 return true;
15267 }
15268 }
15269 }
15270 return false;
15271 }
15272
15273 /* Attach a DW_AT_const_value attribute to VAR_DIE. The value of the
15274 attribute is the const value of T, where T is an integral constant
15275 variable with static storage duration
15276 (so it can't be a PARM_DECL or a RESULT_DECL). */
15277
15278 static bool
15279 tree_add_const_value_attribute_for_decl (dw_die_ref var_die, tree decl)
15280 {
15281
15282 if (!decl
15283 || (TREE_CODE (decl) != VAR_DECL
15284 && TREE_CODE (decl) != CONST_DECL)
15285 || (TREE_CODE (decl) == VAR_DECL
15286 && !TREE_STATIC (decl)))
15287 return false;
15288
15289 if (TREE_READONLY (decl)
15290 && ! TREE_THIS_VOLATILE (decl)
15291 && DECL_INITIAL (decl))
15292 /* OK */;
15293 else
15294 return false;
15295
15296 /* Don't add DW_AT_const_value if abstract origin already has one. */
15297 if (get_AT (var_die, DW_AT_const_value))
15298 return false;
15299
15300 return tree_add_const_value_attribute (var_die, DECL_INITIAL (decl));
15301 }
15302
15303 /* Convert the CFI instructions for the current function into a
15304 location list. This is used for DW_AT_frame_base when we targeting
15305 a dwarf2 consumer that does not support the dwarf3
15306 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
15307 expressions. */
15308
15309 static dw_loc_list_ref
15310 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
15311 {
15312 int ix;
15313 dw_fde_ref fde;
15314 dw_loc_list_ref list, *list_tail;
15315 dw_cfi_ref cfi;
15316 dw_cfa_location last_cfa, next_cfa;
15317 const char *start_label, *last_label, *section;
15318 dw_cfa_location remember;
15319
15320 fde = cfun->fde;
15321 gcc_assert (fde != NULL);
15322
15323 section = secname_for_decl (current_function_decl);
15324 list_tail = &list;
15325 list = NULL;
15326
15327 memset (&next_cfa, 0, sizeof (next_cfa));
15328 next_cfa.reg = INVALID_REGNUM;
15329 remember = next_cfa;
15330
15331 start_label = fde->dw_fde_begin;
15332
15333 /* ??? Bald assumption that the CIE opcode list does not contain
15334 advance opcodes. */
15335 FOR_EACH_VEC_ELT (dw_cfi_ref, cie_cfi_vec, ix, cfi)
15336 lookup_cfa_1 (cfi, &next_cfa, &remember);
15337
15338 last_cfa = next_cfa;
15339 last_label = start_label;
15340
15341 if (fde->dw_fde_second_begin && fde->dw_fde_switch_cfi_index == 0)
15342 {
15343 /* If the first partition contained no CFI adjustments, the
15344 CIE opcodes apply to the whole first partition. */
15345 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
15346 fde->dw_fde_begin, fde->dw_fde_end, section);
15347 list_tail =&(*list_tail)->dw_loc_next;
15348 start_label = last_label = fde->dw_fde_second_begin;
15349 }
15350
15351 FOR_EACH_VEC_ELT (dw_cfi_ref, fde->dw_fde_cfi, ix, cfi)
15352 {
15353 switch (cfi->dw_cfi_opc)
15354 {
15355 case DW_CFA_set_loc:
15356 case DW_CFA_advance_loc1:
15357 case DW_CFA_advance_loc2:
15358 case DW_CFA_advance_loc4:
15359 if (!cfa_equal_p (&last_cfa, &next_cfa))
15360 {
15361 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
15362 start_label, last_label, section);
15363
15364 list_tail = &(*list_tail)->dw_loc_next;
15365 last_cfa = next_cfa;
15366 start_label = last_label;
15367 }
15368 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
15369 break;
15370
15371 case DW_CFA_advance_loc:
15372 /* The encoding is complex enough that we should never emit this. */
15373 gcc_unreachable ();
15374
15375 default:
15376 lookup_cfa_1 (cfi, &next_cfa, &remember);
15377 break;
15378 }
15379 if (ix + 1 == fde->dw_fde_switch_cfi_index)
15380 {
15381 if (!cfa_equal_p (&last_cfa, &next_cfa))
15382 {
15383 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
15384 start_label, last_label, section);
15385
15386 list_tail = &(*list_tail)->dw_loc_next;
15387 last_cfa = next_cfa;
15388 start_label = last_label;
15389 }
15390 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
15391 start_label, fde->dw_fde_end, section);
15392 list_tail = &(*list_tail)->dw_loc_next;
15393 start_label = last_label = fde->dw_fde_second_begin;
15394 }
15395 }
15396
15397 if (!cfa_equal_p (&last_cfa, &next_cfa))
15398 {
15399 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
15400 start_label, last_label, section);
15401 list_tail = &(*list_tail)->dw_loc_next;
15402 start_label = last_label;
15403 }
15404
15405 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
15406 start_label,
15407 fde->dw_fde_second_begin
15408 ? fde->dw_fde_second_end : fde->dw_fde_end,
15409 section);
15410
15411 if (list && list->dw_loc_next)
15412 gen_llsym (list);
15413
15414 return list;
15415 }
15416
15417 /* Compute a displacement from the "steady-state frame pointer" to the
15418 frame base (often the same as the CFA), and store it in
15419 frame_pointer_fb_offset. OFFSET is added to the displacement
15420 before the latter is negated. */
15421
15422 static void
15423 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
15424 {
15425 rtx reg, elim;
15426
15427 #ifdef FRAME_POINTER_CFA_OFFSET
15428 reg = frame_pointer_rtx;
15429 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
15430 #else
15431 reg = arg_pointer_rtx;
15432 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
15433 #endif
15434
15435 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
15436 if (GET_CODE (elim) == PLUS)
15437 {
15438 offset += INTVAL (XEXP (elim, 1));
15439 elim = XEXP (elim, 0);
15440 }
15441
15442 frame_pointer_fb_offset = -offset;
15443
15444 /* ??? AVR doesn't set up valid eliminations when there is no stack frame
15445 in which to eliminate. This is because it's stack pointer isn't
15446 directly accessible as a register within the ISA. To work around
15447 this, assume that while we cannot provide a proper value for
15448 frame_pointer_fb_offset, we won't need one either. */
15449 frame_pointer_fb_offset_valid
15450 = ((SUPPORTS_STACK_ALIGNMENT
15451 && (elim == hard_frame_pointer_rtx
15452 || elim == stack_pointer_rtx))
15453 || elim == (frame_pointer_needed
15454 ? hard_frame_pointer_rtx
15455 : stack_pointer_rtx));
15456 }
15457
15458 /* Generate a DW_AT_name attribute given some string value to be included as
15459 the value of the attribute. */
15460
15461 static void
15462 add_name_attribute (dw_die_ref die, const char *name_string)
15463 {
15464 if (name_string != NULL && *name_string != 0)
15465 {
15466 if (demangle_name_func)
15467 name_string = (*demangle_name_func) (name_string);
15468
15469 add_AT_string (die, DW_AT_name, name_string);
15470 }
15471 }
15472
15473 /* Retrieve the descriptive type of TYPE, if any, make sure it has a
15474 DIE and attach a DW_AT_GNAT_descriptive_type attribute to the DIE
15475 of TYPE accordingly.
15476
15477 ??? This is a temporary measure until after we're able to generate
15478 regular DWARF for the complex Ada type system. */
15479
15480 static void
15481 add_gnat_descriptive_type_attribute (dw_die_ref die, tree type,
15482 dw_die_ref context_die)
15483 {
15484 tree dtype;
15485 dw_die_ref dtype_die;
15486
15487 if (!lang_hooks.types.descriptive_type)
15488 return;
15489
15490 dtype = lang_hooks.types.descriptive_type (type);
15491 if (!dtype)
15492 return;
15493
15494 dtype_die = lookup_type_die (dtype);
15495 if (!dtype_die)
15496 {
15497 gen_type_die (dtype, context_die);
15498 dtype_die = lookup_type_die (dtype);
15499 gcc_assert (dtype_die);
15500 }
15501
15502 add_AT_die_ref (die, DW_AT_GNAT_descriptive_type, dtype_die);
15503 }
15504
15505 /* Generate a DW_AT_comp_dir attribute for DIE. */
15506
15507 static void
15508 add_comp_dir_attribute (dw_die_ref die)
15509 {
15510 const char *wd = get_src_pwd ();
15511 char *wd1;
15512
15513 if (wd == NULL)
15514 return;
15515
15516 if (DWARF2_DIR_SHOULD_END_WITH_SEPARATOR)
15517 {
15518 int wdlen;
15519
15520 wdlen = strlen (wd);
15521 wd1 = (char *) ggc_alloc_atomic (wdlen + 2);
15522 strcpy (wd1, wd);
15523 wd1 [wdlen] = DIR_SEPARATOR;
15524 wd1 [wdlen + 1] = 0;
15525 wd = wd1;
15526 }
15527
15528 add_AT_string (die, DW_AT_comp_dir, remap_debug_filename (wd));
15529 }
15530
15531 /* Return the default for DW_AT_lower_bound, or -1 if there is not any
15532 default. */
15533
15534 static int
15535 lower_bound_default (void)
15536 {
15537 switch (get_AT_unsigned (comp_unit_die (), DW_AT_language))
15538 {
15539 case DW_LANG_C:
15540 case DW_LANG_C89:
15541 case DW_LANG_C99:
15542 case DW_LANG_C_plus_plus:
15543 case DW_LANG_ObjC:
15544 case DW_LANG_ObjC_plus_plus:
15545 case DW_LANG_Java:
15546 return 0;
15547 case DW_LANG_Fortran77:
15548 case DW_LANG_Fortran90:
15549 case DW_LANG_Fortran95:
15550 return 1;
15551 case DW_LANG_UPC:
15552 case DW_LANG_D:
15553 case DW_LANG_Python:
15554 return dwarf_version >= 4 ? 0 : -1;
15555 case DW_LANG_Ada95:
15556 case DW_LANG_Ada83:
15557 case DW_LANG_Cobol74:
15558 case DW_LANG_Cobol85:
15559 case DW_LANG_Pascal83:
15560 case DW_LANG_Modula2:
15561 case DW_LANG_PLI:
15562 return dwarf_version >= 4 ? 1 : -1;
15563 default:
15564 return -1;
15565 }
15566 }
15567
15568 /* Given a tree node describing an array bound (either lower or upper) output
15569 a representation for that bound. */
15570
15571 static void
15572 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
15573 {
15574 switch (TREE_CODE (bound))
15575 {
15576 case ERROR_MARK:
15577 return;
15578
15579 /* All fixed-bounds are represented by INTEGER_CST nodes. */
15580 case INTEGER_CST:
15581 {
15582 unsigned int prec = simple_type_size_in_bits (TREE_TYPE (bound));
15583 int dflt;
15584
15585 /* Use the default if possible. */
15586 if (bound_attr == DW_AT_lower_bound
15587 && host_integerp (bound, 0)
15588 && (dflt = lower_bound_default ()) != -1
15589 && tree_low_cst (bound, 0) == dflt)
15590 ;
15591
15592 /* Otherwise represent the bound as an unsigned value with the
15593 precision of its type. The precision and signedness of the
15594 type will be necessary to re-interpret it unambiguously. */
15595 else if (prec < HOST_BITS_PER_WIDE_INT)
15596 {
15597 unsigned HOST_WIDE_INT mask
15598 = ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
15599 add_AT_unsigned (subrange_die, bound_attr,
15600 TREE_INT_CST_LOW (bound) & mask);
15601 }
15602 else if (prec == HOST_BITS_PER_WIDE_INT
15603 || TREE_INT_CST_HIGH (bound) == 0)
15604 add_AT_unsigned (subrange_die, bound_attr,
15605 TREE_INT_CST_LOW (bound));
15606 else
15607 add_AT_double (subrange_die, bound_attr, TREE_INT_CST_HIGH (bound),
15608 TREE_INT_CST_LOW (bound));
15609 }
15610 break;
15611
15612 CASE_CONVERT:
15613 case VIEW_CONVERT_EXPR:
15614 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
15615 break;
15616
15617 case SAVE_EXPR:
15618 break;
15619
15620 case VAR_DECL:
15621 case PARM_DECL:
15622 case RESULT_DECL:
15623 {
15624 dw_die_ref decl_die = lookup_decl_die (bound);
15625
15626 /* ??? Can this happen, or should the variable have been bound
15627 first? Probably it can, since I imagine that we try to create
15628 the types of parameters in the order in which they exist in
15629 the list, and won't have created a forward reference to a
15630 later parameter. */
15631 if (decl_die != NULL)
15632 {
15633 add_AT_die_ref (subrange_die, bound_attr, decl_die);
15634 break;
15635 }
15636 }
15637 /* FALLTHRU */
15638
15639 default:
15640 {
15641 /* Otherwise try to create a stack operation procedure to
15642 evaluate the value of the array bound. */
15643
15644 dw_die_ref ctx, decl_die;
15645 dw_loc_list_ref list;
15646
15647 list = loc_list_from_tree (bound, 2);
15648 if (list == NULL || single_element_loc_list_p (list))
15649 {
15650 /* If DW_AT_*bound is not a reference nor constant, it is
15651 a DWARF expression rather than location description.
15652 For that loc_list_from_tree (bound, 0) is needed.
15653 If that fails to give a single element list,
15654 fall back to outputting this as a reference anyway. */
15655 dw_loc_list_ref list2 = loc_list_from_tree (bound, 0);
15656 if (list2 && single_element_loc_list_p (list2))
15657 {
15658 add_AT_loc (subrange_die, bound_attr, list2->expr);
15659 break;
15660 }
15661 }
15662 if (list == NULL)
15663 break;
15664
15665 if (current_function_decl == 0)
15666 ctx = comp_unit_die ();
15667 else
15668 ctx = lookup_decl_die (current_function_decl);
15669
15670 decl_die = new_die (DW_TAG_variable, ctx, bound);
15671 add_AT_flag (decl_die, DW_AT_artificial, 1);
15672 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
15673 add_AT_location_description (decl_die, DW_AT_location, list);
15674 add_AT_die_ref (subrange_die, bound_attr, decl_die);
15675 break;
15676 }
15677 }
15678 }
15679
15680 /* Add subscript info to TYPE_DIE, describing an array TYPE, collapsing
15681 possibly nested array subscripts in a flat sequence if COLLAPSE_P is true.
15682 Note that the block of subscript information for an array type also
15683 includes information about the element type of the given array type. */
15684
15685 static void
15686 add_subscript_info (dw_die_ref type_die, tree type, bool collapse_p)
15687 {
15688 unsigned dimension_number;
15689 tree lower, upper;
15690 dw_die_ref subrange_die;
15691
15692 for (dimension_number = 0;
15693 TREE_CODE (type) == ARRAY_TYPE && (dimension_number == 0 || collapse_p);
15694 type = TREE_TYPE (type), dimension_number++)
15695 {
15696 tree domain = TYPE_DOMAIN (type);
15697
15698 if (TYPE_STRING_FLAG (type) && is_fortran () && dimension_number > 0)
15699 break;
15700
15701 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
15702 and (in GNU C only) variable bounds. Handle all three forms
15703 here. */
15704 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
15705 if (domain)
15706 {
15707 /* We have an array type with specified bounds. */
15708 lower = TYPE_MIN_VALUE (domain);
15709 upper = TYPE_MAX_VALUE (domain);
15710
15711 /* Define the index type. */
15712 if (TREE_TYPE (domain))
15713 {
15714 /* ??? This is probably an Ada unnamed subrange type. Ignore the
15715 TREE_TYPE field. We can't emit debug info for this
15716 because it is an unnamed integral type. */
15717 if (TREE_CODE (domain) == INTEGER_TYPE
15718 && TYPE_NAME (domain) == NULL_TREE
15719 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
15720 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
15721 ;
15722 else
15723 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
15724 type_die);
15725 }
15726
15727 /* ??? If upper is NULL, the array has unspecified length,
15728 but it does have a lower bound. This happens with Fortran
15729 dimension arr(N:*)
15730 Since the debugger is definitely going to need to know N
15731 to produce useful results, go ahead and output the lower
15732 bound solo, and hope the debugger can cope. */
15733
15734 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
15735 if (upper)
15736 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
15737 }
15738
15739 /* Otherwise we have an array type with an unspecified length. The
15740 DWARF-2 spec does not say how to handle this; let's just leave out the
15741 bounds. */
15742 }
15743 }
15744
15745 static void
15746 add_byte_size_attribute (dw_die_ref die, tree tree_node)
15747 {
15748 unsigned size;
15749
15750 switch (TREE_CODE (tree_node))
15751 {
15752 case ERROR_MARK:
15753 size = 0;
15754 break;
15755 case ENUMERAL_TYPE:
15756 case RECORD_TYPE:
15757 case UNION_TYPE:
15758 case QUAL_UNION_TYPE:
15759 size = int_size_in_bytes (tree_node);
15760 break;
15761 case FIELD_DECL:
15762 /* For a data member of a struct or union, the DW_AT_byte_size is
15763 generally given as the number of bytes normally allocated for an
15764 object of the *declared* type of the member itself. This is true
15765 even for bit-fields. */
15766 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
15767 break;
15768 default:
15769 gcc_unreachable ();
15770 }
15771
15772 /* Note that `size' might be -1 when we get to this point. If it is, that
15773 indicates that the byte size of the entity in question is variable. We
15774 have no good way of expressing this fact in Dwarf at the present time,
15775 so just let the -1 pass on through. */
15776 add_AT_unsigned (die, DW_AT_byte_size, size);
15777 }
15778
15779 /* For a FIELD_DECL node which represents a bit-field, output an attribute
15780 which specifies the distance in bits from the highest order bit of the
15781 "containing object" for the bit-field to the highest order bit of the
15782 bit-field itself.
15783
15784 For any given bit-field, the "containing object" is a hypothetical object
15785 (of some integral or enum type) within which the given bit-field lives. The
15786 type of this hypothetical "containing object" is always the same as the
15787 declared type of the individual bit-field itself. The determination of the
15788 exact location of the "containing object" for a bit-field is rather
15789 complicated. It's handled by the `field_byte_offset' function (above).
15790
15791 Note that it is the size (in bytes) of the hypothetical "containing object"
15792 which will be given in the DW_AT_byte_size attribute for this bit-field.
15793 (See `byte_size_attribute' above). */
15794
15795 static inline void
15796 add_bit_offset_attribute (dw_die_ref die, tree decl)
15797 {
15798 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
15799 tree type = DECL_BIT_FIELD_TYPE (decl);
15800 HOST_WIDE_INT bitpos_int;
15801 HOST_WIDE_INT highest_order_object_bit_offset;
15802 HOST_WIDE_INT highest_order_field_bit_offset;
15803 HOST_WIDE_INT bit_offset;
15804
15805 /* Must be a field and a bit field. */
15806 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
15807
15808 /* We can't yet handle bit-fields whose offsets are variable, so if we
15809 encounter such things, just return without generating any attribute
15810 whatsoever. Likewise for variable or too large size. */
15811 if (! host_integerp (bit_position (decl), 0)
15812 || ! host_integerp (DECL_SIZE (decl), 1))
15813 return;
15814
15815 bitpos_int = int_bit_position (decl);
15816
15817 /* Note that the bit offset is always the distance (in bits) from the
15818 highest-order bit of the "containing object" to the highest-order bit of
15819 the bit-field itself. Since the "high-order end" of any object or field
15820 is different on big-endian and little-endian machines, the computation
15821 below must take account of these differences. */
15822 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
15823 highest_order_field_bit_offset = bitpos_int;
15824
15825 if (! BYTES_BIG_ENDIAN)
15826 {
15827 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
15828 highest_order_object_bit_offset += simple_type_size_in_bits (type);
15829 }
15830
15831 bit_offset
15832 = (! BYTES_BIG_ENDIAN
15833 ? highest_order_object_bit_offset - highest_order_field_bit_offset
15834 : highest_order_field_bit_offset - highest_order_object_bit_offset);
15835
15836 if (bit_offset < 0)
15837 add_AT_int (die, DW_AT_bit_offset, bit_offset);
15838 else
15839 add_AT_unsigned (die, DW_AT_bit_offset, (unsigned HOST_WIDE_INT) bit_offset);
15840 }
15841
15842 /* For a FIELD_DECL node which represents a bit field, output an attribute
15843 which specifies the length in bits of the given field. */
15844
15845 static inline void
15846 add_bit_size_attribute (dw_die_ref die, tree decl)
15847 {
15848 /* Must be a field and a bit field. */
15849 gcc_assert (TREE_CODE (decl) == FIELD_DECL
15850 && DECL_BIT_FIELD_TYPE (decl));
15851
15852 if (host_integerp (DECL_SIZE (decl), 1))
15853 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
15854 }
15855
15856 /* If the compiled language is ANSI C, then add a 'prototyped'
15857 attribute, if arg types are given for the parameters of a function. */
15858
15859 static inline void
15860 add_prototyped_attribute (dw_die_ref die, tree func_type)
15861 {
15862 if (get_AT_unsigned (comp_unit_die (), DW_AT_language) == DW_LANG_C89
15863 && prototype_p (func_type))
15864 add_AT_flag (die, DW_AT_prototyped, 1);
15865 }
15866
15867 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
15868 by looking in either the type declaration or object declaration
15869 equate table. */
15870
15871 static inline dw_die_ref
15872 add_abstract_origin_attribute (dw_die_ref die, tree origin)
15873 {
15874 dw_die_ref origin_die = NULL;
15875
15876 if (TREE_CODE (origin) != FUNCTION_DECL)
15877 {
15878 /* We may have gotten separated from the block for the inlined
15879 function, if we're in an exception handler or some such; make
15880 sure that the abstract function has been written out.
15881
15882 Doing this for nested functions is wrong, however; functions are
15883 distinct units, and our context might not even be inline. */
15884 tree fn = origin;
15885
15886 if (TYPE_P (fn))
15887 fn = TYPE_STUB_DECL (fn);
15888
15889 fn = decl_function_context (fn);
15890 if (fn)
15891 dwarf2out_abstract_function (fn);
15892 }
15893
15894 if (DECL_P (origin))
15895 origin_die = lookup_decl_die (origin);
15896 else if (TYPE_P (origin))
15897 origin_die = lookup_type_die (origin);
15898
15899 /* XXX: Functions that are never lowered don't always have correct block
15900 trees (in the case of java, they simply have no block tree, in some other
15901 languages). For these functions, there is nothing we can really do to
15902 output correct debug info for inlined functions in all cases. Rather
15903 than die, we'll just produce deficient debug info now, in that we will
15904 have variables without a proper abstract origin. In the future, when all
15905 functions are lowered, we should re-add a gcc_assert (origin_die)
15906 here. */
15907
15908 if (origin_die)
15909 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
15910 return origin_die;
15911 }
15912
15913 /* We do not currently support the pure_virtual attribute. */
15914
15915 static inline void
15916 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
15917 {
15918 if (DECL_VINDEX (func_decl))
15919 {
15920 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
15921
15922 if (host_integerp (DECL_VINDEX (func_decl), 0))
15923 add_AT_loc (die, DW_AT_vtable_elem_location,
15924 new_loc_descr (DW_OP_constu,
15925 tree_low_cst (DECL_VINDEX (func_decl), 0),
15926 0));
15927
15928 /* GNU extension: Record what type this method came from originally. */
15929 if (debug_info_level > DINFO_LEVEL_TERSE
15930 && DECL_CONTEXT (func_decl))
15931 add_AT_die_ref (die, DW_AT_containing_type,
15932 lookup_type_die (DECL_CONTEXT (func_decl)));
15933 }
15934 }
15935 \f
15936 /* Add a DW_AT_linkage_name or DW_AT_MIPS_linkage_name attribute for the
15937 given decl. This used to be a vendor extension until after DWARF 4
15938 standardized it. */
15939
15940 static void
15941 add_linkage_attr (dw_die_ref die, tree decl)
15942 {
15943 const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
15944
15945 /* Mimic what assemble_name_raw does with a leading '*'. */
15946 if (name[0] == '*')
15947 name = &name[1];
15948
15949 if (dwarf_version >= 4)
15950 add_AT_string (die, DW_AT_linkage_name, name);
15951 else
15952 add_AT_string (die, DW_AT_MIPS_linkage_name, name);
15953 }
15954
15955 /* Add source coordinate attributes for the given decl. */
15956
15957 static void
15958 add_src_coords_attributes (dw_die_ref die, tree decl)
15959 {
15960 expanded_location s;
15961
15962 if (DECL_SOURCE_LOCATION (decl) == UNKNOWN_LOCATION)
15963 return;
15964 s = expand_location (DECL_SOURCE_LOCATION (decl));
15965 add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
15966 add_AT_unsigned (die, DW_AT_decl_line, s.line);
15967 }
15968
15969 /* Add DW_AT_{,MIPS_}linkage_name attribute for the given decl. */
15970
15971 static void
15972 add_linkage_name (dw_die_ref die, tree decl)
15973 {
15974 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
15975 && TREE_PUBLIC (decl)
15976 && !DECL_ABSTRACT (decl)
15977 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl))
15978 && die->die_tag != DW_TAG_member)
15979 {
15980 /* Defer until we have an assembler name set. */
15981 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
15982 {
15983 limbo_die_node *asm_name;
15984
15985 asm_name = ggc_alloc_cleared_limbo_die_node ();
15986 asm_name->die = die;
15987 asm_name->created_for = decl;
15988 asm_name->next = deferred_asm_name;
15989 deferred_asm_name = asm_name;
15990 }
15991 else if (DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl))
15992 add_linkage_attr (die, decl);
15993 }
15994 }
15995
15996 /* Add a DW_AT_name attribute and source coordinate attribute for the
15997 given decl, but only if it actually has a name. */
15998
15999 static void
16000 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
16001 {
16002 tree decl_name;
16003
16004 decl_name = DECL_NAME (decl);
16005 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
16006 {
16007 const char *name = dwarf2_name (decl, 0);
16008 if (name)
16009 add_name_attribute (die, name);
16010 if (! DECL_ARTIFICIAL (decl))
16011 add_src_coords_attributes (die, decl);
16012
16013 add_linkage_name (die, decl);
16014 }
16015
16016 #ifdef VMS_DEBUGGING_INFO
16017 /* Get the function's name, as described by its RTL. This may be different
16018 from the DECL_NAME name used in the source file. */
16019 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
16020 {
16021 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
16022 XEXP (DECL_RTL (decl), 0));
16023 VEC_safe_push (rtx, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
16024 }
16025 #endif /* VMS_DEBUGGING_INFO */
16026 }
16027
16028 #ifdef VMS_DEBUGGING_INFO
16029 /* Output the debug main pointer die for VMS */
16030
16031 void
16032 dwarf2out_vms_debug_main_pointer (void)
16033 {
16034 char label[MAX_ARTIFICIAL_LABEL_BYTES];
16035 dw_die_ref die;
16036
16037 /* Allocate the VMS debug main subprogram die. */
16038 die = ggc_alloc_cleared_die_node ();
16039 die->die_tag = DW_TAG_subprogram;
16040 add_name_attribute (die, VMS_DEBUG_MAIN_POINTER);
16041 ASM_GENERATE_INTERNAL_LABEL (label, PROLOGUE_END_LABEL,
16042 current_function_funcdef_no);
16043 add_AT_lbl_id (die, DW_AT_entry_pc, label);
16044
16045 /* Make it the first child of comp_unit_die (). */
16046 die->die_parent = comp_unit_die ();
16047 if (comp_unit_die ()->die_child)
16048 {
16049 die->die_sib = comp_unit_die ()->die_child->die_sib;
16050 comp_unit_die ()->die_child->die_sib = die;
16051 }
16052 else
16053 {
16054 die->die_sib = die;
16055 comp_unit_die ()->die_child = die;
16056 }
16057 }
16058 #endif /* VMS_DEBUGGING_INFO */
16059
16060 /* Push a new declaration scope. */
16061
16062 static void
16063 push_decl_scope (tree scope)
16064 {
16065 VEC_safe_push (tree, gc, decl_scope_table, scope);
16066 }
16067
16068 /* Pop a declaration scope. */
16069
16070 static inline void
16071 pop_decl_scope (void)
16072 {
16073 VEC_pop (tree, decl_scope_table);
16074 }
16075
16076 /* Return the DIE for the scope that immediately contains this type.
16077 Non-named types get global scope. Named types nested in other
16078 types get their containing scope if it's open, or global scope
16079 otherwise. All other types (i.e. function-local named types) get
16080 the current active scope. */
16081
16082 static dw_die_ref
16083 scope_die_for (tree t, dw_die_ref context_die)
16084 {
16085 dw_die_ref scope_die = NULL;
16086 tree containing_scope;
16087 int i;
16088
16089 /* Non-types always go in the current scope. */
16090 gcc_assert (TYPE_P (t));
16091
16092 containing_scope = TYPE_CONTEXT (t);
16093
16094 /* Use the containing namespace if it was passed in (for a declaration). */
16095 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
16096 {
16097 if (context_die == lookup_decl_die (containing_scope))
16098 /* OK */;
16099 else
16100 containing_scope = NULL_TREE;
16101 }
16102
16103 /* Ignore function type "scopes" from the C frontend. They mean that
16104 a tagged type is local to a parmlist of a function declarator, but
16105 that isn't useful to DWARF. */
16106 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
16107 containing_scope = NULL_TREE;
16108
16109 if (SCOPE_FILE_SCOPE_P (containing_scope))
16110 scope_die = comp_unit_die ();
16111 else if (TYPE_P (containing_scope))
16112 {
16113 /* For types, we can just look up the appropriate DIE. But
16114 first we check to see if we're in the middle of emitting it
16115 so we know where the new DIE should go. */
16116 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
16117 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
16118 break;
16119
16120 if (i < 0)
16121 {
16122 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
16123 || TREE_ASM_WRITTEN (containing_scope));
16124 /*We are not in the middle of emitting the type
16125 CONTAINING_SCOPE. Let's see if it's emitted already. */
16126 scope_die = lookup_type_die (containing_scope);
16127
16128 /* If none of the current dies are suitable, we get file scope. */
16129 if (scope_die == NULL)
16130 scope_die = comp_unit_die ();
16131 }
16132 else
16133 scope_die = lookup_type_die_strip_naming_typedef (containing_scope);
16134 }
16135 else
16136 scope_die = context_die;
16137
16138 return scope_die;
16139 }
16140
16141 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
16142
16143 static inline int
16144 local_scope_p (dw_die_ref context_die)
16145 {
16146 for (; context_die; context_die = context_die->die_parent)
16147 if (context_die->die_tag == DW_TAG_inlined_subroutine
16148 || context_die->die_tag == DW_TAG_subprogram)
16149 return 1;
16150
16151 return 0;
16152 }
16153
16154 /* Returns nonzero if CONTEXT_DIE is a class. */
16155
16156 static inline int
16157 class_scope_p (dw_die_ref context_die)
16158 {
16159 return (context_die
16160 && (context_die->die_tag == DW_TAG_structure_type
16161 || context_die->die_tag == DW_TAG_class_type
16162 || context_die->die_tag == DW_TAG_interface_type
16163 || context_die->die_tag == DW_TAG_union_type));
16164 }
16165
16166 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
16167 whether or not to treat a DIE in this context as a declaration. */
16168
16169 static inline int
16170 class_or_namespace_scope_p (dw_die_ref context_die)
16171 {
16172 return (class_scope_p (context_die)
16173 || (context_die && context_die->die_tag == DW_TAG_namespace));
16174 }
16175
16176 /* Many forms of DIEs require a "type description" attribute. This
16177 routine locates the proper "type descriptor" die for the type given
16178 by 'type', and adds a DW_AT_type attribute below the given die. */
16179
16180 static void
16181 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
16182 int decl_volatile, dw_die_ref context_die)
16183 {
16184 enum tree_code code = TREE_CODE (type);
16185 dw_die_ref type_die = NULL;
16186
16187 /* ??? If this type is an unnamed subrange type of an integral, floating-point
16188 or fixed-point type, use the inner type. This is because we have no
16189 support for unnamed types in base_type_die. This can happen if this is
16190 an Ada subrange type. Correct solution is emit a subrange type die. */
16191 if ((code == INTEGER_TYPE || code == REAL_TYPE || code == FIXED_POINT_TYPE)
16192 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
16193 type = TREE_TYPE (type), code = TREE_CODE (type);
16194
16195 if (code == ERROR_MARK
16196 /* Handle a special case. For functions whose return type is void, we
16197 generate *no* type attribute. (Note that no object may have type
16198 `void', so this only applies to function return types). */
16199 || code == VOID_TYPE)
16200 return;
16201
16202 type_die = modified_type_die (type,
16203 decl_const || TYPE_READONLY (type),
16204 decl_volatile || TYPE_VOLATILE (type),
16205 context_die);
16206
16207 if (type_die != NULL)
16208 add_AT_die_ref (object_die, DW_AT_type, type_die);
16209 }
16210
16211 /* Given an object die, add the calling convention attribute for the
16212 function call type. */
16213 static void
16214 add_calling_convention_attribute (dw_die_ref subr_die, tree decl)
16215 {
16216 enum dwarf_calling_convention value = DW_CC_normal;
16217
16218 value = ((enum dwarf_calling_convention)
16219 targetm.dwarf_calling_convention (TREE_TYPE (decl)));
16220
16221 if (is_fortran ()
16222 && !strcmp (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)), "MAIN__"))
16223 {
16224 /* DWARF 2 doesn't provide a way to identify a program's source-level
16225 entry point. DW_AT_calling_convention attributes are only meant
16226 to describe functions' calling conventions. However, lacking a
16227 better way to signal the Fortran main program, we used this for
16228 a long time, following existing custom. Now, DWARF 4 has
16229 DW_AT_main_subprogram, which we add below, but some tools still
16230 rely on the old way, which we thus keep. */
16231 value = DW_CC_program;
16232
16233 if (dwarf_version >= 4 || !dwarf_strict)
16234 add_AT_flag (subr_die, DW_AT_main_subprogram, 1);
16235 }
16236
16237 /* Only add the attribute if the backend requests it, and
16238 is not DW_CC_normal. */
16239 if (value && (value != DW_CC_normal))
16240 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
16241 }
16242
16243 /* Given a tree pointer to a struct, class, union, or enum type node, return
16244 a pointer to the (string) tag name for the given type, or zero if the type
16245 was declared without a tag. */
16246
16247 static const char *
16248 type_tag (const_tree type)
16249 {
16250 const char *name = 0;
16251
16252 if (TYPE_NAME (type) != 0)
16253 {
16254 tree t = 0;
16255
16256 /* Find the IDENTIFIER_NODE for the type name. */
16257 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE
16258 && !TYPE_NAMELESS (type))
16259 t = TYPE_NAME (type);
16260
16261 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
16262 a TYPE_DECL node, regardless of whether or not a `typedef' was
16263 involved. */
16264 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
16265 && ! DECL_IGNORED_P (TYPE_NAME (type)))
16266 {
16267 /* We want to be extra verbose. Don't call dwarf_name if
16268 DECL_NAME isn't set. The default hook for decl_printable_name
16269 doesn't like that, and in this context it's correct to return
16270 0, instead of "<anonymous>" or the like. */
16271 if (DECL_NAME (TYPE_NAME (type))
16272 && !DECL_NAMELESS (TYPE_NAME (type)))
16273 name = lang_hooks.dwarf_name (TYPE_NAME (type), 2);
16274 }
16275
16276 /* Now get the name as a string, or invent one. */
16277 if (!name && t != 0)
16278 name = IDENTIFIER_POINTER (t);
16279 }
16280
16281 return (name == 0 || *name == '\0') ? 0 : name;
16282 }
16283
16284 /* Return the type associated with a data member, make a special check
16285 for bit field types. */
16286
16287 static inline tree
16288 member_declared_type (const_tree member)
16289 {
16290 return (DECL_BIT_FIELD_TYPE (member)
16291 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
16292 }
16293
16294 /* Get the decl's label, as described by its RTL. This may be different
16295 from the DECL_NAME name used in the source file. */
16296
16297 #if 0
16298 static const char *
16299 decl_start_label (tree decl)
16300 {
16301 rtx x;
16302 const char *fnname;
16303
16304 x = DECL_RTL (decl);
16305 gcc_assert (MEM_P (x));
16306
16307 x = XEXP (x, 0);
16308 gcc_assert (GET_CODE (x) == SYMBOL_REF);
16309
16310 fnname = XSTR (x, 0);
16311 return fnname;
16312 }
16313 #endif
16314 \f
16315 /* These routines generate the internal representation of the DIE's for
16316 the compilation unit. Debugging information is collected by walking
16317 the declaration trees passed in from dwarf2out_decl(). */
16318
16319 static void
16320 gen_array_type_die (tree type, dw_die_ref context_die)
16321 {
16322 dw_die_ref scope_die = scope_die_for (type, context_die);
16323 dw_die_ref array_die;
16324
16325 /* GNU compilers represent multidimensional array types as sequences of one
16326 dimensional array types whose element types are themselves array types.
16327 We sometimes squish that down to a single array_type DIE with multiple
16328 subscripts in the Dwarf debugging info. The draft Dwarf specification
16329 say that we are allowed to do this kind of compression in C, because
16330 there is no difference between an array of arrays and a multidimensional
16331 array. We don't do this for Ada to remain as close as possible to the
16332 actual representation, which is especially important against the language
16333 flexibilty wrt arrays of variable size. */
16334
16335 bool collapse_nested_arrays = !is_ada ();
16336 tree element_type;
16337
16338 /* Emit DW_TAG_string_type for Fortran character types (with kind 1 only, as
16339 DW_TAG_string_type doesn't have DW_AT_type attribute). */
16340 if (TYPE_STRING_FLAG (type)
16341 && TREE_CODE (type) == ARRAY_TYPE
16342 && is_fortran ()
16343 && TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (char_type_node))
16344 {
16345 HOST_WIDE_INT size;
16346
16347 array_die = new_die (DW_TAG_string_type, scope_die, type);
16348 add_name_attribute (array_die, type_tag (type));
16349 equate_type_number_to_die (type, array_die);
16350 size = int_size_in_bytes (type);
16351 if (size >= 0)
16352 add_AT_unsigned (array_die, DW_AT_byte_size, size);
16353 else if (TYPE_DOMAIN (type) != NULL_TREE
16354 && TYPE_MAX_VALUE (TYPE_DOMAIN (type)) != NULL_TREE
16355 && DECL_P (TYPE_MAX_VALUE (TYPE_DOMAIN (type))))
16356 {
16357 tree szdecl = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
16358 dw_loc_list_ref loc = loc_list_from_tree (szdecl, 2);
16359
16360 size = int_size_in_bytes (TREE_TYPE (szdecl));
16361 if (loc && size > 0)
16362 {
16363 add_AT_location_description (array_die, DW_AT_string_length, loc);
16364 if (size != DWARF2_ADDR_SIZE)
16365 add_AT_unsigned (array_die, DW_AT_byte_size, size);
16366 }
16367 }
16368 return;
16369 }
16370
16371 /* ??? The SGI dwarf reader fails for array of array of enum types
16372 (e.g. const enum machine_mode insn_operand_mode[2][10]) unless the inner
16373 array type comes before the outer array type. We thus call gen_type_die
16374 before we new_die and must prevent nested array types collapsing for this
16375 target. */
16376
16377 #ifdef MIPS_DEBUGGING_INFO
16378 gen_type_die (TREE_TYPE (type), context_die);
16379 collapse_nested_arrays = false;
16380 #endif
16381
16382 array_die = new_die (DW_TAG_array_type, scope_die, type);
16383 add_name_attribute (array_die, type_tag (type));
16384 equate_type_number_to_die (type, array_die);
16385
16386 if (TREE_CODE (type) == VECTOR_TYPE)
16387 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
16388
16389 /* For Fortran multidimensional arrays use DW_ORD_col_major ordering. */
16390 if (is_fortran ()
16391 && TREE_CODE (type) == ARRAY_TYPE
16392 && TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE
16393 && !TYPE_STRING_FLAG (TREE_TYPE (type)))
16394 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
16395
16396 #if 0
16397 /* We default the array ordering. SDB will probably do
16398 the right things even if DW_AT_ordering is not present. It's not even
16399 an issue until we start to get into multidimensional arrays anyway. If
16400 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
16401 then we'll have to put the DW_AT_ordering attribute back in. (But if
16402 and when we find out that we need to put these in, we will only do so
16403 for multidimensional arrays. */
16404 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
16405 #endif
16406
16407 #ifdef MIPS_DEBUGGING_INFO
16408 /* The SGI compilers handle arrays of unknown bound by setting
16409 AT_declaration and not emitting any subrange DIEs. */
16410 if (TREE_CODE (type) == ARRAY_TYPE
16411 && ! TYPE_DOMAIN (type))
16412 add_AT_flag (array_die, DW_AT_declaration, 1);
16413 else
16414 #endif
16415 if (TREE_CODE (type) == VECTOR_TYPE)
16416 {
16417 /* For VECTOR_TYPEs we use an array die with appropriate bounds. */
16418 dw_die_ref subrange_die = new_die (DW_TAG_subrange_type, array_die, NULL);
16419 add_bound_info (subrange_die, DW_AT_lower_bound, size_zero_node);
16420 add_bound_info (subrange_die, DW_AT_upper_bound,
16421 size_int (TYPE_VECTOR_SUBPARTS (type) - 1));
16422 }
16423 else
16424 add_subscript_info (array_die, type, collapse_nested_arrays);
16425
16426 /* Add representation of the type of the elements of this array type and
16427 emit the corresponding DIE if we haven't done it already. */
16428 element_type = TREE_TYPE (type);
16429 if (collapse_nested_arrays)
16430 while (TREE_CODE (element_type) == ARRAY_TYPE)
16431 {
16432 if (TYPE_STRING_FLAG (element_type) && is_fortran ())
16433 break;
16434 element_type = TREE_TYPE (element_type);
16435 }
16436
16437 #ifndef MIPS_DEBUGGING_INFO
16438 gen_type_die (element_type, context_die);
16439 #endif
16440
16441 add_type_attribute (array_die, element_type, 0, 0, context_die);
16442
16443 add_gnat_descriptive_type_attribute (array_die, type, context_die);
16444 if (TYPE_ARTIFICIAL (type))
16445 add_AT_flag (array_die, DW_AT_artificial, 1);
16446
16447 if (get_AT (array_die, DW_AT_name))
16448 add_pubtype (type, array_die);
16449 }
16450
16451 static dw_loc_descr_ref
16452 descr_info_loc (tree val, tree base_decl)
16453 {
16454 HOST_WIDE_INT size;
16455 dw_loc_descr_ref loc, loc2;
16456 enum dwarf_location_atom op;
16457
16458 if (val == base_decl)
16459 return new_loc_descr (DW_OP_push_object_address, 0, 0);
16460
16461 switch (TREE_CODE (val))
16462 {
16463 CASE_CONVERT:
16464 return descr_info_loc (TREE_OPERAND (val, 0), base_decl);
16465 case VAR_DECL:
16466 return loc_descriptor_from_tree (val, 0);
16467 case INTEGER_CST:
16468 if (host_integerp (val, 0))
16469 return int_loc_descriptor (tree_low_cst (val, 0));
16470 break;
16471 case INDIRECT_REF:
16472 size = int_size_in_bytes (TREE_TYPE (val));
16473 if (size < 0)
16474 break;
16475 loc = descr_info_loc (TREE_OPERAND (val, 0), base_decl);
16476 if (!loc)
16477 break;
16478 if (size == DWARF2_ADDR_SIZE)
16479 add_loc_descr (&loc, new_loc_descr (DW_OP_deref, 0, 0));
16480 else
16481 add_loc_descr (&loc, new_loc_descr (DW_OP_deref_size, size, 0));
16482 return loc;
16483 case POINTER_PLUS_EXPR:
16484 case PLUS_EXPR:
16485 if (host_integerp (TREE_OPERAND (val, 1), 1)
16486 && (unsigned HOST_WIDE_INT) tree_low_cst (TREE_OPERAND (val, 1), 1)
16487 < 16384)
16488 {
16489 loc = descr_info_loc (TREE_OPERAND (val, 0), base_decl);
16490 if (!loc)
16491 break;
16492 loc_descr_plus_const (&loc, tree_low_cst (TREE_OPERAND (val, 1), 0));
16493 }
16494 else
16495 {
16496 op = DW_OP_plus;
16497 do_binop:
16498 loc = descr_info_loc (TREE_OPERAND (val, 0), base_decl);
16499 if (!loc)
16500 break;
16501 loc2 = descr_info_loc (TREE_OPERAND (val, 1), base_decl);
16502 if (!loc2)
16503 break;
16504 add_loc_descr (&loc, loc2);
16505 add_loc_descr (&loc2, new_loc_descr (op, 0, 0));
16506 }
16507 return loc;
16508 case MINUS_EXPR:
16509 op = DW_OP_minus;
16510 goto do_binop;
16511 case MULT_EXPR:
16512 op = DW_OP_mul;
16513 goto do_binop;
16514 case EQ_EXPR:
16515 op = DW_OP_eq;
16516 goto do_binop;
16517 case NE_EXPR:
16518 op = DW_OP_ne;
16519 goto do_binop;
16520 default:
16521 break;
16522 }
16523 return NULL;
16524 }
16525
16526 static void
16527 add_descr_info_field (dw_die_ref die, enum dwarf_attribute attr,
16528 tree val, tree base_decl)
16529 {
16530 dw_loc_descr_ref loc;
16531
16532 if (host_integerp (val, 0))
16533 {
16534 add_AT_unsigned (die, attr, tree_low_cst (val, 0));
16535 return;
16536 }
16537
16538 loc = descr_info_loc (val, base_decl);
16539 if (!loc)
16540 return;
16541
16542 add_AT_loc (die, attr, loc);
16543 }
16544
16545 /* This routine generates DIE for array with hidden descriptor, details
16546 are filled into *info by a langhook. */
16547
16548 static void
16549 gen_descr_array_type_die (tree type, struct array_descr_info *info,
16550 dw_die_ref context_die)
16551 {
16552 dw_die_ref scope_die = scope_die_for (type, context_die);
16553 dw_die_ref array_die;
16554 int dim;
16555
16556 array_die = new_die (DW_TAG_array_type, scope_die, type);
16557 add_name_attribute (array_die, type_tag (type));
16558 equate_type_number_to_die (type, array_die);
16559
16560 /* For Fortran multidimensional arrays use DW_ORD_col_major ordering. */
16561 if (is_fortran ()
16562 && info->ndimensions >= 2)
16563 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
16564
16565 if (info->data_location)
16566 add_descr_info_field (array_die, DW_AT_data_location, info->data_location,
16567 info->base_decl);
16568 if (info->associated)
16569 add_descr_info_field (array_die, DW_AT_associated, info->associated,
16570 info->base_decl);
16571 if (info->allocated)
16572 add_descr_info_field (array_die, DW_AT_allocated, info->allocated,
16573 info->base_decl);
16574
16575 for (dim = 0; dim < info->ndimensions; dim++)
16576 {
16577 dw_die_ref subrange_die
16578 = new_die (DW_TAG_subrange_type, array_die, NULL);
16579
16580 if (info->dimen[dim].lower_bound)
16581 {
16582 /* If it is the default value, omit it. */
16583 int dflt;
16584
16585 if (host_integerp (info->dimen[dim].lower_bound, 0)
16586 && (dflt = lower_bound_default ()) != -1
16587 && tree_low_cst (info->dimen[dim].lower_bound, 0) == dflt)
16588 ;
16589 else
16590 add_descr_info_field (subrange_die, DW_AT_lower_bound,
16591 info->dimen[dim].lower_bound,
16592 info->base_decl);
16593 }
16594 if (info->dimen[dim].upper_bound)
16595 add_descr_info_field (subrange_die, DW_AT_upper_bound,
16596 info->dimen[dim].upper_bound,
16597 info->base_decl);
16598 if (info->dimen[dim].stride)
16599 add_descr_info_field (subrange_die, DW_AT_byte_stride,
16600 info->dimen[dim].stride,
16601 info->base_decl);
16602 }
16603
16604 gen_type_die (info->element_type, context_die);
16605 add_type_attribute (array_die, info->element_type, 0, 0, context_die);
16606
16607 if (get_AT (array_die, DW_AT_name))
16608 add_pubtype (type, array_die);
16609 }
16610
16611 #if 0
16612 static void
16613 gen_entry_point_die (tree decl, dw_die_ref context_die)
16614 {
16615 tree origin = decl_ultimate_origin (decl);
16616 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
16617
16618 if (origin != NULL)
16619 add_abstract_origin_attribute (decl_die, origin);
16620 else
16621 {
16622 add_name_and_src_coords_attributes (decl_die, decl);
16623 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
16624 0, 0, context_die);
16625 }
16626
16627 if (DECL_ABSTRACT (decl))
16628 equate_decl_number_to_die (decl, decl_die);
16629 else
16630 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
16631 }
16632 #endif
16633
16634 /* Walk through the list of incomplete types again, trying once more to
16635 emit full debugging info for them. */
16636
16637 static void
16638 retry_incomplete_types (void)
16639 {
16640 int i;
16641
16642 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
16643 if (should_emit_struct_debug (VEC_index (tree, incomplete_types, i),
16644 DINFO_USAGE_DIR_USE))
16645 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die ());
16646 }
16647
16648 /* Determine what tag to use for a record type. */
16649
16650 static enum dwarf_tag
16651 record_type_tag (tree type)
16652 {
16653 if (! lang_hooks.types.classify_record)
16654 return DW_TAG_structure_type;
16655
16656 switch (lang_hooks.types.classify_record (type))
16657 {
16658 case RECORD_IS_STRUCT:
16659 return DW_TAG_structure_type;
16660
16661 case RECORD_IS_CLASS:
16662 return DW_TAG_class_type;
16663
16664 case RECORD_IS_INTERFACE:
16665 if (dwarf_version >= 3 || !dwarf_strict)
16666 return DW_TAG_interface_type;
16667 return DW_TAG_structure_type;
16668
16669 default:
16670 gcc_unreachable ();
16671 }
16672 }
16673
16674 /* Generate a DIE to represent an enumeration type. Note that these DIEs
16675 include all of the information about the enumeration values also. Each
16676 enumerated type name/value is listed as a child of the enumerated type
16677 DIE. */
16678
16679 static dw_die_ref
16680 gen_enumeration_type_die (tree type, dw_die_ref context_die)
16681 {
16682 dw_die_ref type_die = lookup_type_die (type);
16683
16684 if (type_die == NULL)
16685 {
16686 type_die = new_die (DW_TAG_enumeration_type,
16687 scope_die_for (type, context_die), type);
16688 equate_type_number_to_die (type, type_die);
16689 add_name_attribute (type_die, type_tag (type));
16690 if (dwarf_version >= 4 || !dwarf_strict)
16691 {
16692 if (ENUM_IS_SCOPED (type))
16693 add_AT_flag (type_die, DW_AT_enum_class, 1);
16694 if (ENUM_IS_OPAQUE (type))
16695 add_AT_flag (type_die, DW_AT_declaration, 1);
16696 }
16697 }
16698 else if (! TYPE_SIZE (type))
16699 return type_die;
16700 else
16701 remove_AT (type_die, DW_AT_declaration);
16702
16703 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
16704 given enum type is incomplete, do not generate the DW_AT_byte_size
16705 attribute or the DW_AT_element_list attribute. */
16706 if (TYPE_SIZE (type))
16707 {
16708 tree link;
16709
16710 TREE_ASM_WRITTEN (type) = 1;
16711 add_byte_size_attribute (type_die, type);
16712 if (TYPE_STUB_DECL (type) != NULL_TREE)
16713 {
16714 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
16715 add_accessibility_attribute (type_die, TYPE_STUB_DECL (type));
16716 }
16717
16718 /* If the first reference to this type was as the return type of an
16719 inline function, then it may not have a parent. Fix this now. */
16720 if (type_die->die_parent == NULL)
16721 add_child_die (scope_die_for (type, context_die), type_die);
16722
16723 for (link = TYPE_VALUES (type);
16724 link != NULL; link = TREE_CHAIN (link))
16725 {
16726 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
16727 tree value = TREE_VALUE (link);
16728
16729 add_name_attribute (enum_die,
16730 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
16731
16732 if (TREE_CODE (value) == CONST_DECL)
16733 value = DECL_INITIAL (value);
16734
16735 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
16736 /* DWARF2 does not provide a way of indicating whether or
16737 not enumeration constants are signed or unsigned. GDB
16738 always assumes the values are signed, so we output all
16739 values as if they were signed. That means that
16740 enumeration constants with very large unsigned values
16741 will appear to have negative values in the debugger. */
16742 add_AT_int (enum_die, DW_AT_const_value,
16743 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
16744 }
16745
16746 add_gnat_descriptive_type_attribute (type_die, type, context_die);
16747 if (TYPE_ARTIFICIAL (type))
16748 add_AT_flag (type_die, DW_AT_artificial, 1);
16749 }
16750 else
16751 add_AT_flag (type_die, DW_AT_declaration, 1);
16752
16753 if (get_AT (type_die, DW_AT_name))
16754 add_pubtype (type, type_die);
16755
16756 return type_die;
16757 }
16758
16759 /* Generate a DIE to represent either a real live formal parameter decl or to
16760 represent just the type of some formal parameter position in some function
16761 type.
16762
16763 Note that this routine is a bit unusual because its argument may be a
16764 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
16765 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
16766 node. If it's the former then this function is being called to output a
16767 DIE to represent a formal parameter object (or some inlining thereof). If
16768 it's the latter, then this function is only being called to output a
16769 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
16770 argument type of some subprogram type.
16771 If EMIT_NAME_P is true, name and source coordinate attributes
16772 are emitted. */
16773
16774 static dw_die_ref
16775 gen_formal_parameter_die (tree node, tree origin, bool emit_name_p,
16776 dw_die_ref context_die)
16777 {
16778 tree node_or_origin = node ? node : origin;
16779 tree ultimate_origin;
16780 dw_die_ref parm_die
16781 = new_die (DW_TAG_formal_parameter, context_die, node);
16782
16783 switch (TREE_CODE_CLASS (TREE_CODE (node_or_origin)))
16784 {
16785 case tcc_declaration:
16786 ultimate_origin = decl_ultimate_origin (node_or_origin);
16787 if (node || ultimate_origin)
16788 origin = ultimate_origin;
16789 if (origin != NULL)
16790 add_abstract_origin_attribute (parm_die, origin);
16791 else if (emit_name_p)
16792 add_name_and_src_coords_attributes (parm_die, node);
16793 if (origin == NULL
16794 || (! DECL_ABSTRACT (node_or_origin)
16795 && variably_modified_type_p (TREE_TYPE (node_or_origin),
16796 decl_function_context
16797 (node_or_origin))))
16798 {
16799 tree type = TREE_TYPE (node_or_origin);
16800 if (decl_by_reference_p (node_or_origin))
16801 add_type_attribute (parm_die, TREE_TYPE (type), 0, 0,
16802 context_die);
16803 else
16804 add_type_attribute (parm_die, type,
16805 TREE_READONLY (node_or_origin),
16806 TREE_THIS_VOLATILE (node_or_origin),
16807 context_die);
16808 }
16809 if (origin == NULL && DECL_ARTIFICIAL (node))
16810 add_AT_flag (parm_die, DW_AT_artificial, 1);
16811
16812 if (node && node != origin)
16813 equate_decl_number_to_die (node, parm_die);
16814 if (! DECL_ABSTRACT (node_or_origin))
16815 add_location_or_const_value_attribute (parm_die, node_or_origin,
16816 node == NULL, DW_AT_location);
16817
16818 break;
16819
16820 case tcc_type:
16821 /* We were called with some kind of a ..._TYPE node. */
16822 add_type_attribute (parm_die, node_or_origin, 0, 0, context_die);
16823 break;
16824
16825 default:
16826 gcc_unreachable ();
16827 }
16828
16829 return parm_die;
16830 }
16831
16832 /* Generate and return a DW_TAG_GNU_formal_parameter_pack. Also generate
16833 children DW_TAG_formal_parameter DIEs representing the arguments of the
16834 parameter pack.
16835
16836 PARM_PACK must be a function parameter pack.
16837 PACK_ARG is the first argument of the parameter pack. Its TREE_CHAIN
16838 must point to the subsequent arguments of the function PACK_ARG belongs to.
16839 SUBR_DIE is the DIE of the function PACK_ARG belongs to.
16840 If NEXT_ARG is non NULL, *NEXT_ARG is set to the function argument
16841 following the last one for which a DIE was generated. */
16842
16843 static dw_die_ref
16844 gen_formal_parameter_pack_die (tree parm_pack,
16845 tree pack_arg,
16846 dw_die_ref subr_die,
16847 tree *next_arg)
16848 {
16849 tree arg;
16850 dw_die_ref parm_pack_die;
16851
16852 gcc_assert (parm_pack
16853 && lang_hooks.function_parameter_pack_p (parm_pack)
16854 && subr_die);
16855
16856 parm_pack_die = new_die (DW_TAG_GNU_formal_parameter_pack, subr_die, parm_pack);
16857 add_src_coords_attributes (parm_pack_die, parm_pack);
16858
16859 for (arg = pack_arg; arg; arg = DECL_CHAIN (arg))
16860 {
16861 if (! lang_hooks.decls.function_parm_expanded_from_pack_p (arg,
16862 parm_pack))
16863 break;
16864 gen_formal_parameter_die (arg, NULL,
16865 false /* Don't emit name attribute. */,
16866 parm_pack_die);
16867 }
16868 if (next_arg)
16869 *next_arg = arg;
16870 return parm_pack_die;
16871 }
16872
16873 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
16874 at the end of an (ANSI prototyped) formal parameters list. */
16875
16876 static void
16877 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
16878 {
16879 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
16880 }
16881
16882 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
16883 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
16884 parameters as specified in some function type specification (except for
16885 those which appear as part of a function *definition*). */
16886
16887 static void
16888 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
16889 {
16890 tree link;
16891 tree formal_type = NULL;
16892 tree first_parm_type;
16893 tree arg;
16894
16895 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
16896 {
16897 arg = DECL_ARGUMENTS (function_or_method_type);
16898 function_or_method_type = TREE_TYPE (function_or_method_type);
16899 }
16900 else
16901 arg = NULL_TREE;
16902
16903 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
16904
16905 /* Make our first pass over the list of formal parameter types and output a
16906 DW_TAG_formal_parameter DIE for each one. */
16907 for (link = first_parm_type; link; )
16908 {
16909 dw_die_ref parm_die;
16910
16911 formal_type = TREE_VALUE (link);
16912 if (formal_type == void_type_node)
16913 break;
16914
16915 /* Output a (nameless) DIE to represent the formal parameter itself. */
16916 parm_die = gen_formal_parameter_die (formal_type, NULL,
16917 true /* Emit name attribute. */,
16918 context_die);
16919 if (TREE_CODE (function_or_method_type) == METHOD_TYPE
16920 && link == first_parm_type)
16921 {
16922 add_AT_flag (parm_die, DW_AT_artificial, 1);
16923 if (dwarf_version >= 3 || !dwarf_strict)
16924 add_AT_die_ref (context_die, DW_AT_object_pointer, parm_die);
16925 }
16926 else if (arg && DECL_ARTIFICIAL (arg))
16927 add_AT_flag (parm_die, DW_AT_artificial, 1);
16928
16929 link = TREE_CHAIN (link);
16930 if (arg)
16931 arg = DECL_CHAIN (arg);
16932 }
16933
16934 /* If this function type has an ellipsis, add a
16935 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
16936 if (formal_type != void_type_node)
16937 gen_unspecified_parameters_die (function_or_method_type, context_die);
16938
16939 /* Make our second (and final) pass over the list of formal parameter types
16940 and output DIEs to represent those types (as necessary). */
16941 for (link = TYPE_ARG_TYPES (function_or_method_type);
16942 link && TREE_VALUE (link);
16943 link = TREE_CHAIN (link))
16944 gen_type_die (TREE_VALUE (link), context_die);
16945 }
16946
16947 /* We want to generate the DIE for TYPE so that we can generate the
16948 die for MEMBER, which has been defined; we will need to refer back
16949 to the member declaration nested within TYPE. If we're trying to
16950 generate minimal debug info for TYPE, processing TYPE won't do the
16951 trick; we need to attach the member declaration by hand. */
16952
16953 static void
16954 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
16955 {
16956 gen_type_die (type, context_die);
16957
16958 /* If we're trying to avoid duplicate debug info, we may not have
16959 emitted the member decl for this function. Emit it now. */
16960 if (TYPE_STUB_DECL (type)
16961 && TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
16962 && ! lookup_decl_die (member))
16963 {
16964 dw_die_ref type_die;
16965 gcc_assert (!decl_ultimate_origin (member));
16966
16967 push_decl_scope (type);
16968 type_die = lookup_type_die_strip_naming_typedef (type);
16969 if (TREE_CODE (member) == FUNCTION_DECL)
16970 gen_subprogram_die (member, type_die);
16971 else if (TREE_CODE (member) == FIELD_DECL)
16972 {
16973 /* Ignore the nameless fields that are used to skip bits but handle
16974 C++ anonymous unions and structs. */
16975 if (DECL_NAME (member) != NULL_TREE
16976 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
16977 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
16978 {
16979 gen_type_die (member_declared_type (member), type_die);
16980 gen_field_die (member, type_die);
16981 }
16982 }
16983 else
16984 gen_variable_die (member, NULL_TREE, type_die);
16985
16986 pop_decl_scope ();
16987 }
16988 }
16989
16990 /* Generate the DWARF2 info for the "abstract" instance of a function which we
16991 may later generate inlined and/or out-of-line instances of. */
16992
16993 static void
16994 dwarf2out_abstract_function (tree decl)
16995 {
16996 dw_die_ref old_die;
16997 tree save_fn;
16998 tree context;
16999 int was_abstract;
17000 htab_t old_decl_loc_table;
17001 htab_t old_cached_dw_loc_list_table;
17002 int old_call_site_count, old_tail_call_site_count;
17003 struct call_arg_loc_node *old_call_arg_locations;
17004
17005 /* Make sure we have the actual abstract inline, not a clone. */
17006 decl = DECL_ORIGIN (decl);
17007
17008 old_die = lookup_decl_die (decl);
17009 if (old_die && get_AT (old_die, DW_AT_inline))
17010 /* We've already generated the abstract instance. */
17011 return;
17012
17013 /* We can be called while recursively when seeing block defining inlined subroutine
17014 DIE. Be sure to not clobber the outer location table nor use it or we would
17015 get locations in abstract instantces. */
17016 old_decl_loc_table = decl_loc_table;
17017 decl_loc_table = NULL;
17018 old_cached_dw_loc_list_table = cached_dw_loc_list_table;
17019 cached_dw_loc_list_table = NULL;
17020 old_call_arg_locations = call_arg_locations;
17021 call_arg_locations = NULL;
17022 old_call_site_count = call_site_count;
17023 call_site_count = -1;
17024 old_tail_call_site_count = tail_call_site_count;
17025 tail_call_site_count = -1;
17026
17027 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
17028 we don't get confused by DECL_ABSTRACT. */
17029 if (debug_info_level > DINFO_LEVEL_TERSE)
17030 {
17031 context = decl_class_context (decl);
17032 if (context)
17033 gen_type_die_for_member
17034 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die ());
17035 }
17036
17037 /* Pretend we've just finished compiling this function. */
17038 save_fn = current_function_decl;
17039 current_function_decl = decl;
17040 push_cfun (DECL_STRUCT_FUNCTION (decl));
17041
17042 was_abstract = DECL_ABSTRACT (decl);
17043 set_decl_abstract_flags (decl, 1);
17044 dwarf2out_decl (decl);
17045 if (! was_abstract)
17046 set_decl_abstract_flags (decl, 0);
17047
17048 current_function_decl = save_fn;
17049 decl_loc_table = old_decl_loc_table;
17050 cached_dw_loc_list_table = old_cached_dw_loc_list_table;
17051 call_arg_locations = old_call_arg_locations;
17052 call_site_count = old_call_site_count;
17053 tail_call_site_count = old_tail_call_site_count;
17054 pop_cfun ();
17055 }
17056
17057 /* Helper function of premark_used_types() which gets called through
17058 htab_traverse.
17059
17060 Marks the DIE of a given type in *SLOT as perennial, so it never gets
17061 marked as unused by prune_unused_types. */
17062
17063 static int
17064 premark_used_types_helper (void **slot, void *data ATTRIBUTE_UNUSED)
17065 {
17066 tree type;
17067 dw_die_ref die;
17068
17069 type = (tree) *slot;
17070 die = lookup_type_die (type);
17071 if (die != NULL)
17072 die->die_perennial_p = 1;
17073 return 1;
17074 }
17075
17076 /* Helper function of premark_types_used_by_global_vars which gets called
17077 through htab_traverse.
17078
17079 Marks the DIE of a given type in *SLOT as perennial, so it never gets
17080 marked as unused by prune_unused_types. The DIE of the type is marked
17081 only if the global variable using the type will actually be emitted. */
17082
17083 static int
17084 premark_types_used_by_global_vars_helper (void **slot,
17085 void *data ATTRIBUTE_UNUSED)
17086 {
17087 struct types_used_by_vars_entry *entry;
17088 dw_die_ref die;
17089
17090 entry = (struct types_used_by_vars_entry *) *slot;
17091 gcc_assert (entry->type != NULL
17092 && entry->var_decl != NULL);
17093 die = lookup_type_die (entry->type);
17094 if (die)
17095 {
17096 /* Ask cgraph if the global variable really is to be emitted.
17097 If yes, then we'll keep the DIE of ENTRY->TYPE. */
17098 struct varpool_node *node = varpool_get_node (entry->var_decl);
17099 if (node && node->needed)
17100 {
17101 die->die_perennial_p = 1;
17102 /* Keep the parent DIEs as well. */
17103 while ((die = die->die_parent) && die->die_perennial_p == 0)
17104 die->die_perennial_p = 1;
17105 }
17106 }
17107 return 1;
17108 }
17109
17110 /* Mark all members of used_types_hash as perennial. */
17111
17112 static void
17113 premark_used_types (void)
17114 {
17115 if (cfun && cfun->used_types_hash)
17116 htab_traverse (cfun->used_types_hash, premark_used_types_helper, NULL);
17117 }
17118
17119 /* Mark all members of types_used_by_vars_entry as perennial. */
17120
17121 static void
17122 premark_types_used_by_global_vars (void)
17123 {
17124 if (types_used_by_vars_hash)
17125 htab_traverse (types_used_by_vars_hash,
17126 premark_types_used_by_global_vars_helper, NULL);
17127 }
17128
17129 /* Generate a DW_TAG_GNU_call_site DIE in function DECL under SUBR_DIE
17130 for CA_LOC call arg loc node. */
17131
17132 static dw_die_ref
17133 gen_call_site_die (tree decl, dw_die_ref subr_die,
17134 struct call_arg_loc_node *ca_loc)
17135 {
17136 dw_die_ref stmt_die = NULL, die;
17137 tree block = ca_loc->block;
17138
17139 while (block
17140 && block != DECL_INITIAL (decl)
17141 && TREE_CODE (block) == BLOCK)
17142 {
17143 if (VEC_length (dw_die_ref, block_map) > BLOCK_NUMBER (block))
17144 stmt_die = VEC_index (dw_die_ref, block_map, BLOCK_NUMBER (block));
17145 if (stmt_die)
17146 break;
17147 block = BLOCK_SUPERCONTEXT (block);
17148 }
17149 if (stmt_die == NULL)
17150 stmt_die = subr_die;
17151 die = new_die (DW_TAG_GNU_call_site, stmt_die, NULL_TREE);
17152 add_AT_lbl_id (die, DW_AT_low_pc, ca_loc->label);
17153 if (ca_loc->tail_call_p)
17154 add_AT_flag (die, DW_AT_GNU_tail_call, 1);
17155 if (ca_loc->symbol_ref)
17156 {
17157 dw_die_ref tdie = lookup_decl_die (SYMBOL_REF_DECL (ca_loc->symbol_ref));
17158 if (tdie)
17159 add_AT_die_ref (die, DW_AT_abstract_origin, tdie);
17160 else
17161 add_AT_addr (die, DW_AT_abstract_origin, ca_loc->symbol_ref);
17162 }
17163 return die;
17164 }
17165
17166 /* Generate a DIE to represent a declared function (either file-scope or
17167 block-local). */
17168
17169 static void
17170 gen_subprogram_die (tree decl, dw_die_ref context_die)
17171 {
17172 tree origin = decl_ultimate_origin (decl);
17173 dw_die_ref subr_die;
17174 tree outer_scope;
17175 dw_die_ref old_die = lookup_decl_die (decl);
17176 int declaration = (current_function_decl != decl
17177 || class_or_namespace_scope_p (context_die));
17178
17179 premark_used_types ();
17180
17181 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
17182 started to generate the abstract instance of an inline, decided to output
17183 its containing class, and proceeded to emit the declaration of the inline
17184 from the member list for the class. If so, DECLARATION takes priority;
17185 we'll get back to the abstract instance when done with the class. */
17186
17187 /* The class-scope declaration DIE must be the primary DIE. */
17188 if (origin && declaration && class_or_namespace_scope_p (context_die))
17189 {
17190 origin = NULL;
17191 gcc_assert (!old_die);
17192 }
17193
17194 /* Now that the C++ front end lazily declares artificial member fns, we
17195 might need to retrofit the declaration into its class. */
17196 if (!declaration && !origin && !old_die
17197 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
17198 && !class_or_namespace_scope_p (context_die)
17199 && debug_info_level > DINFO_LEVEL_TERSE)
17200 old_die = force_decl_die (decl);
17201
17202 if (origin != NULL)
17203 {
17204 gcc_assert (!declaration || local_scope_p (context_die));
17205
17206 /* Fixup die_parent for the abstract instance of a nested
17207 inline function. */
17208 if (old_die && old_die->die_parent == NULL)
17209 add_child_die (context_die, old_die);
17210
17211 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
17212 add_abstract_origin_attribute (subr_die, origin);
17213 /* This is where the actual code for a cloned function is.
17214 Let's emit linkage name attribute for it. This helps
17215 debuggers to e.g, set breakpoints into
17216 constructors/destructors when the user asks "break
17217 K::K". */
17218 add_linkage_name (subr_die, decl);
17219 }
17220 else if (old_die)
17221 {
17222 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
17223 struct dwarf_file_data * file_index = lookup_filename (s.file);
17224
17225 if (!get_AT_flag (old_die, DW_AT_declaration)
17226 /* We can have a normal definition following an inline one in the
17227 case of redefinition of GNU C extern inlines.
17228 It seems reasonable to use AT_specification in this case. */
17229 && !get_AT (old_die, DW_AT_inline))
17230 {
17231 /* Detect and ignore this case, where we are trying to output
17232 something we have already output. */
17233 return;
17234 }
17235
17236 /* If the definition comes from the same place as the declaration,
17237 maybe use the old DIE. We always want the DIE for this function
17238 that has the *_pc attributes to be under comp_unit_die so the
17239 debugger can find it. We also need to do this for abstract
17240 instances of inlines, since the spec requires the out-of-line copy
17241 to have the same parent. For local class methods, this doesn't
17242 apply; we just use the old DIE. */
17243 if ((is_cu_die (old_die->die_parent) || context_die == NULL)
17244 && (DECL_ARTIFICIAL (decl)
17245 || (get_AT_file (old_die, DW_AT_decl_file) == file_index
17246 && (get_AT_unsigned (old_die, DW_AT_decl_line)
17247 == (unsigned) s.line))))
17248 {
17249 subr_die = old_die;
17250
17251 /* Clear out the declaration attribute and the formal parameters.
17252 Do not remove all children, because it is possible that this
17253 declaration die was forced using force_decl_die(). In such
17254 cases die that forced declaration die (e.g. TAG_imported_module)
17255 is one of the children that we do not want to remove. */
17256 remove_AT (subr_die, DW_AT_declaration);
17257 remove_AT (subr_die, DW_AT_object_pointer);
17258 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
17259 }
17260 else
17261 {
17262 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
17263 add_AT_specification (subr_die, old_die);
17264 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
17265 add_AT_file (subr_die, DW_AT_decl_file, file_index);
17266 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
17267 add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
17268 }
17269 }
17270 else
17271 {
17272 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
17273
17274 if (TREE_PUBLIC (decl))
17275 add_AT_flag (subr_die, DW_AT_external, 1);
17276
17277 add_name_and_src_coords_attributes (subr_die, decl);
17278 if (debug_info_level > DINFO_LEVEL_TERSE)
17279 {
17280 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
17281 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
17282 0, 0, context_die);
17283 }
17284
17285 add_pure_or_virtual_attribute (subr_die, decl);
17286 if (DECL_ARTIFICIAL (decl))
17287 add_AT_flag (subr_die, DW_AT_artificial, 1);
17288
17289 add_accessibility_attribute (subr_die, decl);
17290 }
17291
17292 if (declaration)
17293 {
17294 if (!old_die || !get_AT (old_die, DW_AT_inline))
17295 {
17296 add_AT_flag (subr_die, DW_AT_declaration, 1);
17297
17298 /* If this is an explicit function declaration then generate
17299 a DW_AT_explicit attribute. */
17300 if (lang_hooks.decls.function_decl_explicit_p (decl)
17301 && (dwarf_version >= 3 || !dwarf_strict))
17302 add_AT_flag (subr_die, DW_AT_explicit, 1);
17303
17304 /* The first time we see a member function, it is in the context of
17305 the class to which it belongs. We make sure of this by emitting
17306 the class first. The next time is the definition, which is
17307 handled above. The two may come from the same source text.
17308
17309 Note that force_decl_die() forces function declaration die. It is
17310 later reused to represent definition. */
17311 equate_decl_number_to_die (decl, subr_die);
17312 }
17313 }
17314 else if (DECL_ABSTRACT (decl))
17315 {
17316 if (DECL_DECLARED_INLINE_P (decl))
17317 {
17318 if (cgraph_function_possibly_inlined_p (decl))
17319 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
17320 else
17321 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
17322 }
17323 else
17324 {
17325 if (cgraph_function_possibly_inlined_p (decl))
17326 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
17327 else
17328 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
17329 }
17330
17331 if (DECL_DECLARED_INLINE_P (decl)
17332 && lookup_attribute ("artificial", DECL_ATTRIBUTES (decl)))
17333 add_AT_flag (subr_die, DW_AT_artificial, 1);
17334
17335 equate_decl_number_to_die (decl, subr_die);
17336 }
17337 else if (!DECL_EXTERNAL (decl))
17338 {
17339 HOST_WIDE_INT cfa_fb_offset;
17340
17341 if (!old_die || !get_AT (old_die, DW_AT_inline))
17342 equate_decl_number_to_die (decl, subr_die);
17343
17344 if (!flag_reorder_blocks_and_partition)
17345 {
17346 dw_fde_ref fde = cfun->fde;
17347 if (fde->dw_fde_begin)
17348 {
17349 /* We have already generated the labels. */
17350 add_AT_lbl_id (subr_die, DW_AT_low_pc, fde->dw_fde_begin);
17351 add_AT_lbl_id (subr_die, DW_AT_high_pc, fde->dw_fde_end);
17352 }
17353 else
17354 {
17355 /* Create start/end labels and add the range. */
17356 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
17357 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
17358 current_function_funcdef_no);
17359 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
17360 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
17361 current_function_funcdef_no);
17362 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
17363 }
17364
17365 #if VMS_DEBUGGING_INFO
17366 /* HP OpenVMS Industry Standard 64: DWARF Extensions
17367 Section 2.3 Prologue and Epilogue Attributes:
17368 When a breakpoint is set on entry to a function, it is generally
17369 desirable for execution to be suspended, not on the very first
17370 instruction of the function, but rather at a point after the
17371 function's frame has been set up, after any language defined local
17372 declaration processing has been completed, and before execution of
17373 the first statement of the function begins. Debuggers generally
17374 cannot properly determine where this point is. Similarly for a
17375 breakpoint set on exit from a function. The prologue and epilogue
17376 attributes allow a compiler to communicate the location(s) to use. */
17377
17378 {
17379 if (fde->dw_fde_vms_end_prologue)
17380 add_AT_vms_delta (subr_die, DW_AT_HP_prologue,
17381 fde->dw_fde_begin, fde->dw_fde_vms_end_prologue);
17382
17383 if (fde->dw_fde_vms_begin_epilogue)
17384 add_AT_vms_delta (subr_die, DW_AT_HP_epilogue,
17385 fde->dw_fde_begin, fde->dw_fde_vms_begin_epilogue);
17386 }
17387 #endif
17388
17389 add_pubname (decl, subr_die);
17390 }
17391 else
17392 {
17393 /* Generate pubnames entries for the split function code ranges. */
17394 dw_fde_ref fde = cfun->fde;
17395
17396 if (fde->dw_fde_second_begin)
17397 {
17398 if (dwarf_version >= 3 || !dwarf_strict)
17399 {
17400 /* We should use ranges for non-contiguous code section
17401 addresses. Use the actual code range for the initial
17402 section, since the HOT/COLD labels might precede an
17403 alignment offset. */
17404 bool range_list_added = false;
17405 add_ranges_by_labels (subr_die, fde->dw_fde_begin,
17406 fde->dw_fde_end, &range_list_added);
17407 add_ranges_by_labels (subr_die, fde->dw_fde_second_begin,
17408 fde->dw_fde_second_end,
17409 &range_list_added);
17410 add_pubname (decl, subr_die);
17411 if (range_list_added)
17412 add_ranges (NULL);
17413 }
17414 else
17415 {
17416 /* There is no real support in DW2 for this .. so we make
17417 a work-around. First, emit the pub name for the segment
17418 containing the function label. Then make and emit a
17419 simplified subprogram DIE for the second segment with the
17420 name pre-fixed by __hot/cold_sect_of_. We use the same
17421 linkage name for the second die so that gdb will find both
17422 sections when given "b foo". */
17423 const char *name = NULL;
17424 tree decl_name = DECL_NAME (decl);
17425 dw_die_ref seg_die;
17426
17427 /* Do the 'primary' section. */
17428 add_AT_lbl_id (subr_die, DW_AT_low_pc,
17429 fde->dw_fde_begin);
17430 add_AT_lbl_id (subr_die, DW_AT_high_pc,
17431 fde->dw_fde_end);
17432 /* Add it. */
17433 add_pubname (decl, subr_die);
17434
17435 /* Build a minimal DIE for the secondary section. */
17436 seg_die = new_die (DW_TAG_subprogram,
17437 subr_die->die_parent, decl);
17438
17439 if (TREE_PUBLIC (decl))
17440 add_AT_flag (seg_die, DW_AT_external, 1);
17441
17442 if (decl_name != NULL
17443 && IDENTIFIER_POINTER (decl_name) != NULL)
17444 {
17445 name = dwarf2_name (decl, 1);
17446 if (! DECL_ARTIFICIAL (decl))
17447 add_src_coords_attributes (seg_die, decl);
17448
17449 add_linkage_name (seg_die, decl);
17450 }
17451 gcc_assert (name != NULL);
17452 add_pure_or_virtual_attribute (seg_die, decl);
17453 if (DECL_ARTIFICIAL (decl))
17454 add_AT_flag (seg_die, DW_AT_artificial, 1);
17455
17456 name = concat ("__second_sect_of_", name, NULL);
17457 add_AT_lbl_id (seg_die, DW_AT_low_pc,
17458 fde->dw_fde_second_begin);
17459 add_AT_lbl_id (seg_die, DW_AT_high_pc,
17460 fde->dw_fde_second_end);
17461 add_name_attribute (seg_die, name);
17462 add_pubname_string (name, seg_die);
17463 }
17464 }
17465 else
17466 {
17467 add_AT_lbl_id (subr_die, DW_AT_low_pc, fde->dw_fde_begin);
17468 add_AT_lbl_id (subr_die, DW_AT_high_pc, fde->dw_fde_end);
17469 add_pubname (decl, subr_die);
17470 }
17471 }
17472
17473 #ifdef MIPS_DEBUGGING_INFO
17474 /* Add a reference to the FDE for this routine. */
17475 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, cfun->fde->fde_index);
17476 #endif
17477
17478 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
17479
17480 /* We define the "frame base" as the function's CFA. This is more
17481 convenient for several reasons: (1) It's stable across the prologue
17482 and epilogue, which makes it better than just a frame pointer,
17483 (2) With dwarf3, there exists a one-byte encoding that allows us
17484 to reference the .debug_frame data by proxy, but failing that,
17485 (3) We can at least reuse the code inspection and interpretation
17486 code that determines the CFA position at various points in the
17487 function. */
17488 if (dwarf_version >= 3)
17489 {
17490 dw_loc_descr_ref op = new_loc_descr (DW_OP_call_frame_cfa, 0, 0);
17491 add_AT_loc (subr_die, DW_AT_frame_base, op);
17492 }
17493 else
17494 {
17495 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
17496 if (list->dw_loc_next)
17497 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
17498 else
17499 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
17500 }
17501
17502 /* Compute a displacement from the "steady-state frame pointer" to
17503 the CFA. The former is what all stack slots and argument slots
17504 will reference in the rtl; the later is what we've told the
17505 debugger about. We'll need to adjust all frame_base references
17506 by this displacement. */
17507 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
17508
17509 if (cfun->static_chain_decl)
17510 add_AT_location_description (subr_die, DW_AT_static_link,
17511 loc_list_from_tree (cfun->static_chain_decl, 2));
17512 }
17513
17514 /* Generate child dies for template paramaters. */
17515 if (debug_info_level > DINFO_LEVEL_TERSE)
17516 gen_generic_params_dies (decl);
17517
17518 /* Now output descriptions of the arguments for this function. This gets
17519 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
17520 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
17521 `...' at the end of the formal parameter list. In order to find out if
17522 there was a trailing ellipsis or not, we must instead look at the type
17523 associated with the FUNCTION_DECL. This will be a node of type
17524 FUNCTION_TYPE. If the chain of type nodes hanging off of this
17525 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
17526 an ellipsis at the end. */
17527
17528 /* In the case where we are describing a mere function declaration, all we
17529 need to do here (and all we *can* do here) is to describe the *types* of
17530 its formal parameters. */
17531 if (debug_info_level <= DINFO_LEVEL_TERSE)
17532 ;
17533 else if (declaration)
17534 gen_formal_types_die (decl, subr_die);
17535 else
17536 {
17537 /* Generate DIEs to represent all known formal parameters. */
17538 tree parm = DECL_ARGUMENTS (decl);
17539 tree generic_decl = lang_hooks.decls.get_generic_function_decl (decl);
17540 tree generic_decl_parm = generic_decl
17541 ? DECL_ARGUMENTS (generic_decl)
17542 : NULL;
17543
17544 /* Now we want to walk the list of parameters of the function and
17545 emit their relevant DIEs.
17546
17547 We consider the case of DECL being an instance of a generic function
17548 as well as it being a normal function.
17549
17550 If DECL is an instance of a generic function we walk the
17551 parameters of the generic function declaration _and_ the parameters of
17552 DECL itself. This is useful because we want to emit specific DIEs for
17553 function parameter packs and those are declared as part of the
17554 generic function declaration. In that particular case,
17555 the parameter pack yields a DW_TAG_GNU_formal_parameter_pack DIE.
17556 That DIE has children DIEs representing the set of arguments
17557 of the pack. Note that the set of pack arguments can be empty.
17558 In that case, the DW_TAG_GNU_formal_parameter_pack DIE will not have any
17559 children DIE.
17560
17561 Otherwise, we just consider the parameters of DECL. */
17562 while (generic_decl_parm || parm)
17563 {
17564 if (generic_decl_parm
17565 && lang_hooks.function_parameter_pack_p (generic_decl_parm))
17566 gen_formal_parameter_pack_die (generic_decl_parm,
17567 parm, subr_die,
17568 &parm);
17569 else if (parm)
17570 {
17571 dw_die_ref parm_die = gen_decl_die (parm, NULL, subr_die);
17572
17573 if (parm == DECL_ARGUMENTS (decl)
17574 && TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE
17575 && parm_die
17576 && (dwarf_version >= 3 || !dwarf_strict))
17577 add_AT_die_ref (subr_die, DW_AT_object_pointer, parm_die);
17578
17579 parm = DECL_CHAIN (parm);
17580 }
17581
17582 if (generic_decl_parm)
17583 generic_decl_parm = DECL_CHAIN (generic_decl_parm);
17584 }
17585
17586 /* Decide whether we need an unspecified_parameters DIE at the end.
17587 There are 2 more cases to do this for: 1) the ansi ... declaration -
17588 this is detectable when the end of the arg list is not a
17589 void_type_node 2) an unprototyped function declaration (not a
17590 definition). This just means that we have no info about the
17591 parameters at all. */
17592 if (prototype_p (TREE_TYPE (decl)))
17593 {
17594 /* This is the prototyped case, check for.... */
17595 if (stdarg_p (TREE_TYPE (decl)))
17596 gen_unspecified_parameters_die (decl, subr_die);
17597 }
17598 else if (DECL_INITIAL (decl) == NULL_TREE)
17599 gen_unspecified_parameters_die (decl, subr_die);
17600 }
17601
17602 /* Output Dwarf info for all of the stuff within the body of the function
17603 (if it has one - it may be just a declaration). */
17604 outer_scope = DECL_INITIAL (decl);
17605
17606 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
17607 a function. This BLOCK actually represents the outermost binding contour
17608 for the function, i.e. the contour in which the function's formal
17609 parameters and labels get declared. Curiously, it appears that the front
17610 end doesn't actually put the PARM_DECL nodes for the current function onto
17611 the BLOCK_VARS list for this outer scope, but are strung off of the
17612 DECL_ARGUMENTS list for the function instead.
17613
17614 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
17615 the LABEL_DECL nodes for the function however, and we output DWARF info
17616 for those in decls_for_scope. Just within the `outer_scope' there will be
17617 a BLOCK node representing the function's outermost pair of curly braces,
17618 and any blocks used for the base and member initializers of a C++
17619 constructor function. */
17620 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
17621 {
17622 int call_site_note_count = 0;
17623 int tail_call_site_note_count = 0;
17624
17625 /* Emit a DW_TAG_variable DIE for a named return value. */
17626 if (DECL_NAME (DECL_RESULT (decl)))
17627 gen_decl_die (DECL_RESULT (decl), NULL, subr_die);
17628
17629 current_function_has_inlines = 0;
17630 decls_for_scope (outer_scope, subr_die, 0);
17631
17632 if (call_arg_locations && !dwarf_strict)
17633 {
17634 struct call_arg_loc_node *ca_loc;
17635 for (ca_loc = call_arg_locations; ca_loc; ca_loc = ca_loc->next)
17636 {
17637 dw_die_ref die = NULL;
17638 rtx tloc = NULL_RTX, tlocc = NULL_RTX;
17639 rtx arg, next_arg;
17640
17641 for (arg = NOTE_VAR_LOCATION (ca_loc->call_arg_loc_note);
17642 arg; arg = next_arg)
17643 {
17644 dw_loc_descr_ref reg, val;
17645 enum machine_mode mode = GET_MODE (XEXP (XEXP (arg, 0), 1));
17646 dw_die_ref cdie, tdie = NULL;
17647
17648 next_arg = XEXP (arg, 1);
17649 if (REG_P (XEXP (XEXP (arg, 0), 0))
17650 && next_arg
17651 && MEM_P (XEXP (XEXP (next_arg, 0), 0))
17652 && REG_P (XEXP (XEXP (XEXP (next_arg, 0), 0), 0))
17653 && REGNO (XEXP (XEXP (arg, 0), 0))
17654 == REGNO (XEXP (XEXP (XEXP (next_arg, 0), 0), 0)))
17655 next_arg = XEXP (next_arg, 1);
17656 if (mode == VOIDmode)
17657 {
17658 mode = GET_MODE (XEXP (XEXP (arg, 0), 0));
17659 if (mode == VOIDmode)
17660 mode = GET_MODE (XEXP (arg, 0));
17661 }
17662 if (mode == VOIDmode || mode == BLKmode)
17663 continue;
17664 if (XEXP (XEXP (arg, 0), 0) == pc_rtx)
17665 {
17666 gcc_assert (ca_loc->symbol_ref == NULL_RTX);
17667 tloc = XEXP (XEXP (arg, 0), 1);
17668 continue;
17669 }
17670 else if (GET_CODE (XEXP (XEXP (arg, 0), 0)) == CLOBBER
17671 && XEXP (XEXP (XEXP (arg, 0), 0), 0) == pc_rtx)
17672 {
17673 gcc_assert (ca_loc->symbol_ref == NULL_RTX);
17674 tlocc = XEXP (XEXP (arg, 0), 1);
17675 continue;
17676 }
17677 reg = NULL;
17678 if (REG_P (XEXP (XEXP (arg, 0), 0)))
17679 reg = reg_loc_descriptor (XEXP (XEXP (arg, 0), 0),
17680 VAR_INIT_STATUS_INITIALIZED);
17681 else if (MEM_P (XEXP (XEXP (arg, 0), 0)))
17682 {
17683 rtx mem = XEXP (XEXP (arg, 0), 0);
17684 reg = mem_loc_descriptor (XEXP (mem, 0),
17685 get_address_mode (mem),
17686 GET_MODE (mem),
17687 VAR_INIT_STATUS_INITIALIZED);
17688 }
17689 else if (GET_CODE (XEXP (XEXP (arg, 0), 0))
17690 == DEBUG_PARAMETER_REF)
17691 {
17692 tree tdecl
17693 = DEBUG_PARAMETER_REF_DECL (XEXP (XEXP (arg, 0), 0));
17694 tdie = lookup_decl_die (tdecl);
17695 if (tdie == NULL)
17696 continue;
17697 }
17698 else
17699 continue;
17700 if (reg == NULL
17701 && GET_CODE (XEXP (XEXP (arg, 0), 0))
17702 != DEBUG_PARAMETER_REF)
17703 continue;
17704 val = mem_loc_descriptor (XEXP (XEXP (arg, 0), 1), mode,
17705 VOIDmode,
17706 VAR_INIT_STATUS_INITIALIZED);
17707 if (val == NULL)
17708 continue;
17709 if (die == NULL)
17710 die = gen_call_site_die (decl, subr_die, ca_loc);
17711 cdie = new_die (DW_TAG_GNU_call_site_parameter, die,
17712 NULL_TREE);
17713 if (reg != NULL)
17714 add_AT_loc (cdie, DW_AT_location, reg);
17715 else if (tdie != NULL)
17716 add_AT_die_ref (cdie, DW_AT_abstract_origin, tdie);
17717 add_AT_loc (cdie, DW_AT_GNU_call_site_value, val);
17718 if (next_arg != XEXP (arg, 1))
17719 {
17720 mode = GET_MODE (XEXP (XEXP (XEXP (arg, 1), 0), 1));
17721 if (mode == VOIDmode)
17722 mode = GET_MODE (XEXP (XEXP (XEXP (arg, 1), 0), 0));
17723 val = mem_loc_descriptor (XEXP (XEXP (XEXP (arg, 1),
17724 0), 1),
17725 mode, VOIDmode,
17726 VAR_INIT_STATUS_INITIALIZED);
17727 if (val != NULL)
17728 add_AT_loc (cdie, DW_AT_GNU_call_site_data_value, val);
17729 }
17730 }
17731 if (die == NULL
17732 && (ca_loc->symbol_ref || tloc))
17733 die = gen_call_site_die (decl, subr_die, ca_loc);
17734 if (die != NULL && (tloc != NULL_RTX || tlocc != NULL_RTX))
17735 {
17736 dw_loc_descr_ref tval = NULL;
17737
17738 if (tloc != NULL_RTX)
17739 tval = mem_loc_descriptor (tloc,
17740 GET_MODE (tloc) == VOIDmode
17741 ? Pmode : GET_MODE (tloc),
17742 VOIDmode,
17743 VAR_INIT_STATUS_INITIALIZED);
17744 if (tval)
17745 add_AT_loc (die, DW_AT_GNU_call_site_target, tval);
17746 else if (tlocc != NULL_RTX)
17747 {
17748 tval = mem_loc_descriptor (tlocc,
17749 GET_MODE (tlocc) == VOIDmode
17750 ? Pmode : GET_MODE (tlocc),
17751 VOIDmode,
17752 VAR_INIT_STATUS_INITIALIZED);
17753 if (tval)
17754 add_AT_loc (die, DW_AT_GNU_call_site_target_clobbered,
17755 tval);
17756 }
17757 }
17758 if (die != NULL)
17759 {
17760 call_site_note_count++;
17761 if (ca_loc->tail_call_p)
17762 tail_call_site_note_count++;
17763 }
17764 }
17765 }
17766 call_arg_locations = NULL;
17767 call_arg_loc_last = NULL;
17768 if (tail_call_site_count >= 0
17769 && tail_call_site_count == tail_call_site_note_count
17770 && !dwarf_strict)
17771 {
17772 if (call_site_count >= 0
17773 && call_site_count == call_site_note_count)
17774 add_AT_flag (subr_die, DW_AT_GNU_all_call_sites, 1);
17775 else
17776 add_AT_flag (subr_die, DW_AT_GNU_all_tail_call_sites, 1);
17777 }
17778 call_site_count = -1;
17779 tail_call_site_count = -1;
17780 }
17781 /* Add the calling convention attribute if requested. */
17782 add_calling_convention_attribute (subr_die, decl);
17783
17784 }
17785
17786 /* Returns a hash value for X (which really is a die_struct). */
17787
17788 static hashval_t
17789 common_block_die_table_hash (const void *x)
17790 {
17791 const_dw_die_ref d = (const_dw_die_ref) x;
17792 return (hashval_t) d->decl_id ^ htab_hash_pointer (d->die_parent);
17793 }
17794
17795 /* Return nonzero if decl_id and die_parent of die_struct X is the same
17796 as decl_id and die_parent of die_struct Y. */
17797
17798 static int
17799 common_block_die_table_eq (const void *x, const void *y)
17800 {
17801 const_dw_die_ref d = (const_dw_die_ref) x;
17802 const_dw_die_ref e = (const_dw_die_ref) y;
17803 return d->decl_id == e->decl_id && d->die_parent == e->die_parent;
17804 }
17805
17806 /* Generate a DIE to represent a declared data object.
17807 Either DECL or ORIGIN must be non-null. */
17808
17809 static void
17810 gen_variable_die (tree decl, tree origin, dw_die_ref context_die)
17811 {
17812 HOST_WIDE_INT off;
17813 tree com_decl;
17814 tree decl_or_origin = decl ? decl : origin;
17815 tree ultimate_origin;
17816 dw_die_ref var_die;
17817 dw_die_ref old_die = decl ? lookup_decl_die (decl) : NULL;
17818 dw_die_ref origin_die;
17819 bool declaration = (DECL_EXTERNAL (decl_or_origin)
17820 || class_or_namespace_scope_p (context_die));
17821 bool specialization_p = false;
17822
17823 ultimate_origin = decl_ultimate_origin (decl_or_origin);
17824 if (decl || ultimate_origin)
17825 origin = ultimate_origin;
17826 com_decl = fortran_common (decl_or_origin, &off);
17827
17828 /* Symbol in common gets emitted as a child of the common block, in the form
17829 of a data member. */
17830 if (com_decl)
17831 {
17832 dw_die_ref com_die;
17833 dw_loc_list_ref loc;
17834 die_node com_die_arg;
17835
17836 var_die = lookup_decl_die (decl_or_origin);
17837 if (var_die)
17838 {
17839 if (get_AT (var_die, DW_AT_location) == NULL)
17840 {
17841 loc = loc_list_from_tree (com_decl, off ? 1 : 2);
17842 if (loc)
17843 {
17844 if (off)
17845 {
17846 /* Optimize the common case. */
17847 if (single_element_loc_list_p (loc)
17848 && loc->expr->dw_loc_opc == DW_OP_addr
17849 && loc->expr->dw_loc_next == NULL
17850 && GET_CODE (loc->expr->dw_loc_oprnd1.v.val_addr)
17851 == SYMBOL_REF)
17852 loc->expr->dw_loc_oprnd1.v.val_addr
17853 = plus_constant (loc->expr->dw_loc_oprnd1.v.val_addr, off);
17854 else
17855 loc_list_plus_const (loc, off);
17856 }
17857 add_AT_location_description (var_die, DW_AT_location, loc);
17858 remove_AT (var_die, DW_AT_declaration);
17859 }
17860 }
17861 return;
17862 }
17863
17864 if (common_block_die_table == NULL)
17865 common_block_die_table
17866 = htab_create_ggc (10, common_block_die_table_hash,
17867 common_block_die_table_eq, NULL);
17868
17869 com_die_arg.decl_id = DECL_UID (com_decl);
17870 com_die_arg.die_parent = context_die;
17871 com_die = (dw_die_ref) htab_find (common_block_die_table, &com_die_arg);
17872 loc = loc_list_from_tree (com_decl, 2);
17873 if (com_die == NULL)
17874 {
17875 const char *cnam
17876 = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (com_decl));
17877 void **slot;
17878
17879 com_die = new_die (DW_TAG_common_block, context_die, decl);
17880 add_name_and_src_coords_attributes (com_die, com_decl);
17881 if (loc)
17882 {
17883 add_AT_location_description (com_die, DW_AT_location, loc);
17884 /* Avoid sharing the same loc descriptor between
17885 DW_TAG_common_block and DW_TAG_variable. */
17886 loc = loc_list_from_tree (com_decl, 2);
17887 }
17888 else if (DECL_EXTERNAL (decl))
17889 add_AT_flag (com_die, DW_AT_declaration, 1);
17890 add_pubname_string (cnam, com_die); /* ??? needed? */
17891 com_die->decl_id = DECL_UID (com_decl);
17892 slot = htab_find_slot (common_block_die_table, com_die, INSERT);
17893 *slot = (void *) com_die;
17894 }
17895 else if (get_AT (com_die, DW_AT_location) == NULL && loc)
17896 {
17897 add_AT_location_description (com_die, DW_AT_location, loc);
17898 loc = loc_list_from_tree (com_decl, 2);
17899 remove_AT (com_die, DW_AT_declaration);
17900 }
17901 var_die = new_die (DW_TAG_variable, com_die, decl);
17902 add_name_and_src_coords_attributes (var_die, decl);
17903 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
17904 TREE_THIS_VOLATILE (decl), context_die);
17905 add_AT_flag (var_die, DW_AT_external, 1);
17906 if (loc)
17907 {
17908 if (off)
17909 {
17910 /* Optimize the common case. */
17911 if (single_element_loc_list_p (loc)
17912 && loc->expr->dw_loc_opc == DW_OP_addr
17913 && loc->expr->dw_loc_next == NULL
17914 && GET_CODE (loc->expr->dw_loc_oprnd1.v.val_addr) == SYMBOL_REF)
17915 loc->expr->dw_loc_oprnd1.v.val_addr
17916 = plus_constant (loc->expr->dw_loc_oprnd1.v.val_addr, off);
17917 else
17918 loc_list_plus_const (loc, off);
17919 }
17920 add_AT_location_description (var_die, DW_AT_location, loc);
17921 }
17922 else if (DECL_EXTERNAL (decl))
17923 add_AT_flag (var_die, DW_AT_declaration, 1);
17924 equate_decl_number_to_die (decl, var_die);
17925 return;
17926 }
17927
17928 /* If the compiler emitted a definition for the DECL declaration
17929 and if we already emitted a DIE for it, don't emit a second
17930 DIE for it again. Allow re-declarations of DECLs that are
17931 inside functions, though. */
17932 if (old_die && declaration && !local_scope_p (context_die))
17933 return;
17934
17935 /* For static data members, the declaration in the class is supposed
17936 to have DW_TAG_member tag; the specification should still be
17937 DW_TAG_variable referencing the DW_TAG_member DIE. */
17938 if (declaration && class_scope_p (context_die))
17939 var_die = new_die (DW_TAG_member, context_die, decl);
17940 else
17941 var_die = new_die (DW_TAG_variable, context_die, decl);
17942
17943 origin_die = NULL;
17944 if (origin != NULL)
17945 origin_die = add_abstract_origin_attribute (var_die, origin);
17946
17947 /* Loop unrolling can create multiple blocks that refer to the same
17948 static variable, so we must test for the DW_AT_declaration flag.
17949
17950 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
17951 copy decls and set the DECL_ABSTRACT flag on them instead of
17952 sharing them.
17953
17954 ??? Duplicated blocks have been rewritten to use .debug_ranges.
17955
17956 ??? The declare_in_namespace support causes us to get two DIEs for one
17957 variable, both of which are declarations. We want to avoid considering
17958 one to be a specification, so we must test that this DIE is not a
17959 declaration. */
17960 else if (old_die && TREE_STATIC (decl) && ! declaration
17961 && get_AT_flag (old_die, DW_AT_declaration) == 1)
17962 {
17963 /* This is a definition of a C++ class level static. */
17964 add_AT_specification (var_die, old_die);
17965 specialization_p = true;
17966 if (DECL_NAME (decl))
17967 {
17968 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
17969 struct dwarf_file_data * file_index = lookup_filename (s.file);
17970
17971 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
17972 add_AT_file (var_die, DW_AT_decl_file, file_index);
17973
17974 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
17975 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
17976
17977 if (old_die->die_tag == DW_TAG_member)
17978 add_linkage_name (var_die, decl);
17979 }
17980 }
17981 else
17982 add_name_and_src_coords_attributes (var_die, decl);
17983
17984 if ((origin == NULL && !specialization_p)
17985 || (origin != NULL
17986 && !DECL_ABSTRACT (decl_or_origin)
17987 && variably_modified_type_p (TREE_TYPE (decl_or_origin),
17988 decl_function_context
17989 (decl_or_origin))))
17990 {
17991 tree type = TREE_TYPE (decl_or_origin);
17992
17993 if (decl_by_reference_p (decl_or_origin))
17994 add_type_attribute (var_die, TREE_TYPE (type), 0, 0, context_die);
17995 else
17996 add_type_attribute (var_die, type, TREE_READONLY (decl_or_origin),
17997 TREE_THIS_VOLATILE (decl_or_origin), context_die);
17998 }
17999
18000 if (origin == NULL && !specialization_p)
18001 {
18002 if (TREE_PUBLIC (decl))
18003 add_AT_flag (var_die, DW_AT_external, 1);
18004
18005 if (DECL_ARTIFICIAL (decl))
18006 add_AT_flag (var_die, DW_AT_artificial, 1);
18007
18008 add_accessibility_attribute (var_die, decl);
18009 }
18010
18011 if (declaration)
18012 add_AT_flag (var_die, DW_AT_declaration, 1);
18013
18014 if (decl && (DECL_ABSTRACT (decl) || declaration || old_die == NULL))
18015 equate_decl_number_to_die (decl, var_die);
18016
18017 if (! declaration
18018 && (! DECL_ABSTRACT (decl_or_origin)
18019 /* Local static vars are shared between all clones/inlines,
18020 so emit DW_AT_location on the abstract DIE if DECL_RTL is
18021 already set. */
18022 || (TREE_CODE (decl_or_origin) == VAR_DECL
18023 && TREE_STATIC (decl_or_origin)
18024 && DECL_RTL_SET_P (decl_or_origin)))
18025 /* When abstract origin already has DW_AT_location attribute, no need
18026 to add it again. */
18027 && (origin_die == NULL || get_AT (origin_die, DW_AT_location) == NULL))
18028 {
18029 if (TREE_CODE (decl_or_origin) == VAR_DECL && TREE_STATIC (decl_or_origin)
18030 && !TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl_or_origin)))
18031 defer_location (decl_or_origin, var_die);
18032 else
18033 add_location_or_const_value_attribute (var_die, decl_or_origin,
18034 decl == NULL, DW_AT_location);
18035 add_pubname (decl_or_origin, var_die);
18036 }
18037 else
18038 tree_add_const_value_attribute_for_decl (var_die, decl_or_origin);
18039 }
18040
18041 /* Generate a DIE to represent a named constant. */
18042
18043 static void
18044 gen_const_die (tree decl, dw_die_ref context_die)
18045 {
18046 dw_die_ref const_die;
18047 tree type = TREE_TYPE (decl);
18048
18049 const_die = new_die (DW_TAG_constant, context_die, decl);
18050 add_name_and_src_coords_attributes (const_die, decl);
18051 add_type_attribute (const_die, type, 1, 0, context_die);
18052 if (TREE_PUBLIC (decl))
18053 add_AT_flag (const_die, DW_AT_external, 1);
18054 if (DECL_ARTIFICIAL (decl))
18055 add_AT_flag (const_die, DW_AT_artificial, 1);
18056 tree_add_const_value_attribute_for_decl (const_die, decl);
18057 }
18058
18059 /* Generate a DIE to represent a label identifier. */
18060
18061 static void
18062 gen_label_die (tree decl, dw_die_ref context_die)
18063 {
18064 tree origin = decl_ultimate_origin (decl);
18065 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
18066 rtx insn;
18067 char label[MAX_ARTIFICIAL_LABEL_BYTES];
18068
18069 if (origin != NULL)
18070 add_abstract_origin_attribute (lbl_die, origin);
18071 else
18072 add_name_and_src_coords_attributes (lbl_die, decl);
18073
18074 if (DECL_ABSTRACT (decl))
18075 equate_decl_number_to_die (decl, lbl_die);
18076 else
18077 {
18078 insn = DECL_RTL_IF_SET (decl);
18079
18080 /* Deleted labels are programmer specified labels which have been
18081 eliminated because of various optimizations. We still emit them
18082 here so that it is possible to put breakpoints on them. */
18083 if (insn
18084 && (LABEL_P (insn)
18085 || ((NOTE_P (insn)
18086 && NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL))))
18087 {
18088 /* When optimization is enabled (via -O) some parts of the compiler
18089 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
18090 represent source-level labels which were explicitly declared by
18091 the user. This really shouldn't be happening though, so catch
18092 it if it ever does happen. */
18093 gcc_assert (!INSN_DELETED_P (insn));
18094
18095 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
18096 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
18097 }
18098 else if (insn
18099 && NOTE_P (insn)
18100 && NOTE_KIND (insn) == NOTE_INSN_DELETED_DEBUG_LABEL
18101 && CODE_LABEL_NUMBER (insn) != -1)
18102 {
18103 ASM_GENERATE_INTERNAL_LABEL (label, "LDL", CODE_LABEL_NUMBER (insn));
18104 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
18105 }
18106 }
18107 }
18108
18109 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
18110 attributes to the DIE for a block STMT, to describe where the inlined
18111 function was called from. This is similar to add_src_coords_attributes. */
18112
18113 static inline void
18114 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
18115 {
18116 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
18117
18118 if (dwarf_version >= 3 || !dwarf_strict)
18119 {
18120 add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
18121 add_AT_unsigned (die, DW_AT_call_line, s.line);
18122 }
18123 }
18124
18125
18126 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
18127 Add low_pc and high_pc attributes to the DIE for a block STMT. */
18128
18129 static inline void
18130 add_high_low_attributes (tree stmt, dw_die_ref die)
18131 {
18132 char label[MAX_ARTIFICIAL_LABEL_BYTES];
18133
18134 if (BLOCK_FRAGMENT_CHAIN (stmt)
18135 && (dwarf_version >= 3 || !dwarf_strict))
18136 {
18137 tree chain;
18138
18139 if (inlined_function_outer_scope_p (stmt))
18140 {
18141 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
18142 BLOCK_NUMBER (stmt));
18143 add_AT_lbl_id (die, DW_AT_entry_pc, label);
18144 }
18145
18146 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
18147
18148 chain = BLOCK_FRAGMENT_CHAIN (stmt);
18149 do
18150 {
18151 add_ranges (chain);
18152 chain = BLOCK_FRAGMENT_CHAIN (chain);
18153 }
18154 while (chain);
18155 add_ranges (NULL);
18156 }
18157 else
18158 {
18159 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
18160 BLOCK_NUMBER (stmt));
18161 add_AT_lbl_id (die, DW_AT_low_pc, label);
18162 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
18163 BLOCK_NUMBER (stmt));
18164 add_AT_lbl_id (die, DW_AT_high_pc, label);
18165 }
18166 }
18167
18168 /* Generate a DIE for a lexical block. */
18169
18170 static void
18171 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
18172 {
18173 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
18174
18175 if (call_arg_locations)
18176 {
18177 if (VEC_length (dw_die_ref, block_map) <= BLOCK_NUMBER (stmt))
18178 VEC_safe_grow_cleared (dw_die_ref, heap, block_map,
18179 BLOCK_NUMBER (stmt) + 1);
18180 VEC_replace (dw_die_ref, block_map, BLOCK_NUMBER (stmt), stmt_die);
18181 }
18182
18183 if (! BLOCK_ABSTRACT (stmt) && TREE_ASM_WRITTEN (stmt))
18184 add_high_low_attributes (stmt, stmt_die);
18185
18186 decls_for_scope (stmt, stmt_die, depth);
18187 }
18188
18189 /* Generate a DIE for an inlined subprogram. */
18190
18191 static void
18192 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
18193 {
18194 tree decl;
18195
18196 /* The instance of function that is effectively being inlined shall not
18197 be abstract. */
18198 gcc_assert (! BLOCK_ABSTRACT (stmt));
18199
18200 decl = block_ultimate_origin (stmt);
18201
18202 /* Emit info for the abstract instance first, if we haven't yet. We
18203 must emit this even if the block is abstract, otherwise when we
18204 emit the block below (or elsewhere), we may end up trying to emit
18205 a die whose origin die hasn't been emitted, and crashing. */
18206 dwarf2out_abstract_function (decl);
18207
18208 if (! BLOCK_ABSTRACT (stmt))
18209 {
18210 dw_die_ref subr_die
18211 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
18212
18213 if (call_arg_locations)
18214 {
18215 if (VEC_length (dw_die_ref, block_map) <= BLOCK_NUMBER (stmt))
18216 VEC_safe_grow_cleared (dw_die_ref, heap, block_map,
18217 BLOCK_NUMBER (stmt) + 1);
18218 VEC_replace (dw_die_ref, block_map, BLOCK_NUMBER (stmt), subr_die);
18219 }
18220 add_abstract_origin_attribute (subr_die, decl);
18221 if (TREE_ASM_WRITTEN (stmt))
18222 add_high_low_attributes (stmt, subr_die);
18223 add_call_src_coords_attributes (stmt, subr_die);
18224
18225 decls_for_scope (stmt, subr_die, depth);
18226 current_function_has_inlines = 1;
18227 }
18228 }
18229
18230 /* Generate a DIE for a field in a record, or structure. */
18231
18232 static void
18233 gen_field_die (tree decl, dw_die_ref context_die)
18234 {
18235 dw_die_ref decl_die;
18236
18237 if (TREE_TYPE (decl) == error_mark_node)
18238 return;
18239
18240 decl_die = new_die (DW_TAG_member, context_die, decl);
18241 add_name_and_src_coords_attributes (decl_die, decl);
18242 add_type_attribute (decl_die, member_declared_type (decl),
18243 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
18244 context_die);
18245
18246 if (DECL_BIT_FIELD_TYPE (decl))
18247 {
18248 add_byte_size_attribute (decl_die, decl);
18249 add_bit_size_attribute (decl_die, decl);
18250 add_bit_offset_attribute (decl_die, decl);
18251 }
18252
18253 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
18254 add_data_member_location_attribute (decl_die, decl);
18255
18256 if (DECL_ARTIFICIAL (decl))
18257 add_AT_flag (decl_die, DW_AT_artificial, 1);
18258
18259 add_accessibility_attribute (decl_die, decl);
18260
18261 /* Equate decl number to die, so that we can look up this decl later on. */
18262 equate_decl_number_to_die (decl, decl_die);
18263 }
18264
18265 #if 0
18266 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
18267 Use modified_type_die instead.
18268 We keep this code here just in case these types of DIEs may be needed to
18269 represent certain things in other languages (e.g. Pascal) someday. */
18270
18271 static void
18272 gen_pointer_type_die (tree type, dw_die_ref context_die)
18273 {
18274 dw_die_ref ptr_die
18275 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
18276
18277 equate_type_number_to_die (type, ptr_die);
18278 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
18279 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
18280 }
18281
18282 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
18283 Use modified_type_die instead.
18284 We keep this code here just in case these types of DIEs may be needed to
18285 represent certain things in other languages (e.g. Pascal) someday. */
18286
18287 static void
18288 gen_reference_type_die (tree type, dw_die_ref context_die)
18289 {
18290 dw_die_ref ref_die, scope_die = scope_die_for (type, context_die);
18291
18292 if (TYPE_REF_IS_RVALUE (type) && dwarf_version >= 4)
18293 ref_die = new_die (DW_TAG_rvalue_reference_type, scope_die, type);
18294 else
18295 ref_die = new_die (DW_TAG_reference_type, scope_die, type);
18296
18297 equate_type_number_to_die (type, ref_die);
18298 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
18299 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
18300 }
18301 #endif
18302
18303 /* Generate a DIE for a pointer to a member type. */
18304
18305 static void
18306 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
18307 {
18308 dw_die_ref ptr_die
18309 = new_die (DW_TAG_ptr_to_member_type,
18310 scope_die_for (type, context_die), type);
18311
18312 equate_type_number_to_die (type, ptr_die);
18313 add_AT_die_ref (ptr_die, DW_AT_containing_type,
18314 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
18315 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
18316 }
18317
18318 typedef const char *dchar_p; /* For DEF_VEC_P. */
18319 DEF_VEC_P(dchar_p);
18320 DEF_VEC_ALLOC_P(dchar_p,heap);
18321
18322 static char *producer_string;
18323
18324 /* Return a heap allocated producer string including command line options
18325 if -grecord-gcc-switches. */
18326
18327 static char *
18328 gen_producer_string (void)
18329 {
18330 size_t j;
18331 VEC(dchar_p, heap) *switches = NULL;
18332 const char *language_string = lang_hooks.name;
18333 char *producer, *tail;
18334 const char *p;
18335 size_t len = dwarf_record_gcc_switches ? 0 : 3;
18336 size_t plen = strlen (language_string) + 1 + strlen (version_string);
18337
18338 for (j = 1; dwarf_record_gcc_switches && j < save_decoded_options_count; j++)
18339 switch (save_decoded_options[j].opt_index)
18340 {
18341 case OPT_o:
18342 case OPT_d:
18343 case OPT_dumpbase:
18344 case OPT_dumpdir:
18345 case OPT_auxbase:
18346 case OPT_auxbase_strip:
18347 case OPT_quiet:
18348 case OPT_version:
18349 case OPT_v:
18350 case OPT_w:
18351 case OPT_L:
18352 case OPT_D:
18353 case OPT_I:
18354 case OPT_U:
18355 case OPT_SPECIAL_unknown:
18356 case OPT_SPECIAL_ignore:
18357 case OPT_SPECIAL_program_name:
18358 case OPT_SPECIAL_input_file:
18359 case OPT_grecord_gcc_switches:
18360 case OPT_gno_record_gcc_switches:
18361 case OPT__output_pch_:
18362 case OPT_fdiagnostics_show_location_:
18363 case OPT_fdiagnostics_show_option:
18364 case OPT_fverbose_asm:
18365 case OPT____:
18366 case OPT__sysroot_:
18367 case OPT_nostdinc:
18368 case OPT_nostdinc__:
18369 /* Ignore these. */
18370 continue;
18371 default:
18372 gcc_checking_assert (save_decoded_options[j].canonical_option[0][0]
18373 == '-');
18374 switch (save_decoded_options[j].canonical_option[0][1])
18375 {
18376 case 'M':
18377 case 'i':
18378 case 'W':
18379 continue;
18380 case 'f':
18381 if (strncmp (save_decoded_options[j].canonical_option[0] + 2,
18382 "dump", 4) == 0)
18383 continue;
18384 break;
18385 default:
18386 break;
18387 }
18388 VEC_safe_push (dchar_p, heap, switches,
18389 save_decoded_options[j].orig_option_with_args_text);
18390 len += strlen (save_decoded_options[j].orig_option_with_args_text) + 1;
18391 break;
18392 }
18393
18394 producer = XNEWVEC (char, plen + 1 + len + 1);
18395 tail = producer;
18396 sprintf (tail, "%s %s", language_string, version_string);
18397 tail += plen;
18398
18399 if (!dwarf_record_gcc_switches)
18400 {
18401 #ifdef MIPS_DEBUGGING_INFO
18402 /* The MIPS/SGI compilers place the 'cc' command line options in the
18403 producer string. The SGI debugger looks for -g, -g1, -g2, or -g3;
18404 if they do not appear in the producer string, the debugger reaches
18405 the conclusion that the object file is stripped and has no debugging
18406 information. To get the MIPS/SGI debugger to believe that there is
18407 debugging information in the object file, we add a -g to the producer
18408 string. */
18409 if (debug_info_level > DINFO_LEVEL_TERSE)
18410 {
18411 memcpy (tail, " -g", 3);
18412 tail += 3;
18413 }
18414 #endif
18415 }
18416
18417 FOR_EACH_VEC_ELT (dchar_p, switches, j, p)
18418 {
18419 len = strlen (p);
18420 *tail = ' ';
18421 memcpy (tail + 1, p, len);
18422 tail += len + 1;
18423 }
18424
18425 *tail = '\0';
18426 VEC_free (dchar_p, heap, switches);
18427 return producer;
18428 }
18429
18430 /* Generate the DIE for the compilation unit. */
18431
18432 static dw_die_ref
18433 gen_compile_unit_die (const char *filename)
18434 {
18435 dw_die_ref die;
18436 const char *language_string = lang_hooks.name;
18437 int language;
18438
18439 die = new_die (DW_TAG_compile_unit, NULL, NULL);
18440
18441 if (filename)
18442 {
18443 add_name_attribute (die, filename);
18444 /* Don't add cwd for <built-in>. */
18445 if (!IS_ABSOLUTE_PATH (filename) && filename[0] != '<')
18446 add_comp_dir_attribute (die);
18447 }
18448
18449 if (producer_string == NULL)
18450 producer_string = gen_producer_string ();
18451 add_AT_string (die, DW_AT_producer, producer_string);
18452
18453 /* If our producer is LTO try to figure out a common language to use
18454 from the global list of translation units. */
18455 if (strcmp (language_string, "GNU GIMPLE") == 0)
18456 {
18457 unsigned i;
18458 tree t;
18459 const char *common_lang = NULL;
18460
18461 FOR_EACH_VEC_ELT (tree, all_translation_units, i, t)
18462 {
18463 if (!TRANSLATION_UNIT_LANGUAGE (t))
18464 continue;
18465 if (!common_lang)
18466 common_lang = TRANSLATION_UNIT_LANGUAGE (t);
18467 else if (strcmp (common_lang, TRANSLATION_UNIT_LANGUAGE (t)) == 0)
18468 ;
18469 else if (strncmp (common_lang, "GNU C", 5) == 0
18470 && strncmp (TRANSLATION_UNIT_LANGUAGE (t), "GNU C", 5) == 0)
18471 /* Mixing C and C++ is ok, use C++ in that case. */
18472 common_lang = "GNU C++";
18473 else
18474 {
18475 /* Fall back to C. */
18476 common_lang = NULL;
18477 break;
18478 }
18479 }
18480
18481 if (common_lang)
18482 language_string = common_lang;
18483 }
18484
18485 language = DW_LANG_C89;
18486 if (strcmp (language_string, "GNU C++") == 0)
18487 language = DW_LANG_C_plus_plus;
18488 else if (strcmp (language_string, "GNU F77") == 0)
18489 language = DW_LANG_Fortran77;
18490 else if (strcmp (language_string, "GNU Pascal") == 0)
18491 language = DW_LANG_Pascal83;
18492 else if (dwarf_version >= 3 || !dwarf_strict)
18493 {
18494 if (strcmp (language_string, "GNU Ada") == 0)
18495 language = DW_LANG_Ada95;
18496 else if (strcmp (language_string, "GNU Fortran") == 0)
18497 language = DW_LANG_Fortran95;
18498 else if (strcmp (language_string, "GNU Java") == 0)
18499 language = DW_LANG_Java;
18500 else if (strcmp (language_string, "GNU Objective-C") == 0)
18501 language = DW_LANG_ObjC;
18502 else if (strcmp (language_string, "GNU Objective-C++") == 0)
18503 language = DW_LANG_ObjC_plus_plus;
18504 else if (dwarf_version >= 5 || !dwarf_strict)
18505 {
18506 if (strcmp (language_string, "GNU Go") == 0)
18507 language = DW_LANG_Go;
18508 }
18509 }
18510
18511 add_AT_unsigned (die, DW_AT_language, language);
18512
18513 switch (language)
18514 {
18515 case DW_LANG_Fortran77:
18516 case DW_LANG_Fortran90:
18517 case DW_LANG_Fortran95:
18518 /* Fortran has case insensitive identifiers and the front-end
18519 lowercases everything. */
18520 add_AT_unsigned (die, DW_AT_identifier_case, DW_ID_down_case);
18521 break;
18522 default:
18523 /* The default DW_ID_case_sensitive doesn't need to be specified. */
18524 break;
18525 }
18526 return die;
18527 }
18528
18529 /* Generate the DIE for a base class. */
18530
18531 static void
18532 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
18533 {
18534 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
18535
18536 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
18537 add_data_member_location_attribute (die, binfo);
18538
18539 if (BINFO_VIRTUAL_P (binfo))
18540 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
18541
18542 /* In DWARF3+ the default is DW_ACCESS_private only in DW_TAG_class_type
18543 children, otherwise the default is DW_ACCESS_public. In DWARF2
18544 the default has always been DW_ACCESS_private. */
18545 if (access == access_public_node)
18546 {
18547 if (dwarf_version == 2
18548 || context_die->die_tag == DW_TAG_class_type)
18549 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
18550 }
18551 else if (access == access_protected_node)
18552 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
18553 else if (dwarf_version > 2
18554 && context_die->die_tag != DW_TAG_class_type)
18555 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_private);
18556 }
18557
18558 /* Generate a DIE for a class member. */
18559
18560 static void
18561 gen_member_die (tree type, dw_die_ref context_die)
18562 {
18563 tree member;
18564 tree binfo = TYPE_BINFO (type);
18565 dw_die_ref child;
18566
18567 /* If this is not an incomplete type, output descriptions of each of its
18568 members. Note that as we output the DIEs necessary to represent the
18569 members of this record or union type, we will also be trying to output
18570 DIEs to represent the *types* of those members. However the `type'
18571 function (above) will specifically avoid generating type DIEs for member
18572 types *within* the list of member DIEs for this (containing) type except
18573 for those types (of members) which are explicitly marked as also being
18574 members of this (containing) type themselves. The g++ front- end can
18575 force any given type to be treated as a member of some other (containing)
18576 type by setting the TYPE_CONTEXT of the given (member) type to point to
18577 the TREE node representing the appropriate (containing) type. */
18578
18579 /* First output info about the base classes. */
18580 if (binfo)
18581 {
18582 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
18583 int i;
18584 tree base;
18585
18586 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
18587 gen_inheritance_die (base,
18588 (accesses ? VEC_index (tree, accesses, i)
18589 : access_public_node), context_die);
18590 }
18591
18592 /* Now output info about the data members and type members. */
18593 for (member = TYPE_FIELDS (type); member; member = DECL_CHAIN (member))
18594 {
18595 /* If we thought we were generating minimal debug info for TYPE
18596 and then changed our minds, some of the member declarations
18597 may have already been defined. Don't define them again, but
18598 do put them in the right order. */
18599
18600 child = lookup_decl_die (member);
18601 if (child)
18602 splice_child_die (context_die, child);
18603 else
18604 gen_decl_die (member, NULL, context_die);
18605 }
18606
18607 /* Now output info about the function members (if any). */
18608 for (member = TYPE_METHODS (type); member; member = DECL_CHAIN (member))
18609 {
18610 /* Don't include clones in the member list. */
18611 if (DECL_ABSTRACT_ORIGIN (member))
18612 continue;
18613
18614 child = lookup_decl_die (member);
18615 if (child)
18616 splice_child_die (context_die, child);
18617 else
18618 gen_decl_die (member, NULL, context_die);
18619 }
18620 }
18621
18622 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
18623 is set, we pretend that the type was never defined, so we only get the
18624 member DIEs needed by later specification DIEs. */
18625
18626 static void
18627 gen_struct_or_union_type_die (tree type, dw_die_ref context_die,
18628 enum debug_info_usage usage)
18629 {
18630 dw_die_ref type_die = lookup_type_die (type);
18631 dw_die_ref scope_die = 0;
18632 int nested = 0;
18633 int complete = (TYPE_SIZE (type)
18634 && (! TYPE_STUB_DECL (type)
18635 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
18636 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
18637 complete = complete && should_emit_struct_debug (type, usage);
18638
18639 if (type_die && ! complete)
18640 return;
18641
18642 if (TYPE_CONTEXT (type) != NULL_TREE
18643 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
18644 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
18645 nested = 1;
18646
18647 scope_die = scope_die_for (type, context_die);
18648
18649 if (! type_die || (nested && is_cu_die (scope_die)))
18650 /* First occurrence of type or toplevel definition of nested class. */
18651 {
18652 dw_die_ref old_die = type_die;
18653
18654 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
18655 ? record_type_tag (type) : DW_TAG_union_type,
18656 scope_die, type);
18657 equate_type_number_to_die (type, type_die);
18658 if (old_die)
18659 add_AT_specification (type_die, old_die);
18660 else
18661 add_name_attribute (type_die, type_tag (type));
18662 }
18663 else
18664 remove_AT (type_die, DW_AT_declaration);
18665
18666 /* Generate child dies for template paramaters. */
18667 if (debug_info_level > DINFO_LEVEL_TERSE
18668 && COMPLETE_TYPE_P (type))
18669 schedule_generic_params_dies_gen (type);
18670
18671 /* If this type has been completed, then give it a byte_size attribute and
18672 then give a list of members. */
18673 if (complete && !ns_decl)
18674 {
18675 /* Prevent infinite recursion in cases where the type of some member of
18676 this type is expressed in terms of this type itself. */
18677 TREE_ASM_WRITTEN (type) = 1;
18678 add_byte_size_attribute (type_die, type);
18679 if (TYPE_STUB_DECL (type) != NULL_TREE)
18680 {
18681 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
18682 add_accessibility_attribute (type_die, TYPE_STUB_DECL (type));
18683 }
18684
18685 /* If the first reference to this type was as the return type of an
18686 inline function, then it may not have a parent. Fix this now. */
18687 if (type_die->die_parent == NULL)
18688 add_child_die (scope_die, type_die);
18689
18690 push_decl_scope (type);
18691 gen_member_die (type, type_die);
18692 pop_decl_scope ();
18693
18694 add_gnat_descriptive_type_attribute (type_die, type, context_die);
18695 if (TYPE_ARTIFICIAL (type))
18696 add_AT_flag (type_die, DW_AT_artificial, 1);
18697
18698 /* GNU extension: Record what type our vtable lives in. */
18699 if (TYPE_VFIELD (type))
18700 {
18701 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
18702
18703 gen_type_die (vtype, context_die);
18704 add_AT_die_ref (type_die, DW_AT_containing_type,
18705 lookup_type_die (vtype));
18706 }
18707 }
18708 else
18709 {
18710 add_AT_flag (type_die, DW_AT_declaration, 1);
18711
18712 /* We don't need to do this for function-local types. */
18713 if (TYPE_STUB_DECL (type)
18714 && ! decl_function_context (TYPE_STUB_DECL (type)))
18715 VEC_safe_push (tree, gc, incomplete_types, type);
18716 }
18717
18718 if (get_AT (type_die, DW_AT_name))
18719 add_pubtype (type, type_die);
18720 }
18721
18722 /* Generate a DIE for a subroutine _type_. */
18723
18724 static void
18725 gen_subroutine_type_die (tree type, dw_die_ref context_die)
18726 {
18727 tree return_type = TREE_TYPE (type);
18728 dw_die_ref subr_die
18729 = new_die (DW_TAG_subroutine_type,
18730 scope_die_for (type, context_die), type);
18731
18732 equate_type_number_to_die (type, subr_die);
18733 add_prototyped_attribute (subr_die, type);
18734 add_type_attribute (subr_die, return_type, 0, 0, context_die);
18735 gen_formal_types_die (type, subr_die);
18736
18737 if (get_AT (subr_die, DW_AT_name))
18738 add_pubtype (type, subr_die);
18739 }
18740
18741 /* Generate a DIE for a type definition. */
18742
18743 static void
18744 gen_typedef_die (tree decl, dw_die_ref context_die)
18745 {
18746 dw_die_ref type_die;
18747 tree origin;
18748
18749 if (TREE_ASM_WRITTEN (decl))
18750 return;
18751
18752 TREE_ASM_WRITTEN (decl) = 1;
18753 type_die = new_die (DW_TAG_typedef, context_die, decl);
18754 origin = decl_ultimate_origin (decl);
18755 if (origin != NULL)
18756 add_abstract_origin_attribute (type_die, origin);
18757 else
18758 {
18759 tree type;
18760
18761 add_name_and_src_coords_attributes (type_die, decl);
18762 if (DECL_ORIGINAL_TYPE (decl))
18763 {
18764 type = DECL_ORIGINAL_TYPE (decl);
18765
18766 gcc_assert (type != TREE_TYPE (decl));
18767 equate_type_number_to_die (TREE_TYPE (decl), type_die);
18768 }
18769 else
18770 {
18771 type = TREE_TYPE (decl);
18772
18773 if (is_naming_typedef_decl (TYPE_NAME (type)))
18774 {
18775 /* Here, we are in the case of decl being a typedef naming
18776 an anonymous type, e.g:
18777 typedef struct {...} foo;
18778 In that case TREE_TYPE (decl) is not a typedef variant
18779 type and TYPE_NAME of the anonymous type is set to the
18780 TYPE_DECL of the typedef. This construct is emitted by
18781 the C++ FE.
18782
18783 TYPE is the anonymous struct named by the typedef
18784 DECL. As we need the DW_AT_type attribute of the
18785 DW_TAG_typedef to point to the DIE of TYPE, let's
18786 generate that DIE right away. add_type_attribute
18787 called below will then pick (via lookup_type_die) that
18788 anonymous struct DIE. */
18789 if (!TREE_ASM_WRITTEN (type))
18790 gen_tagged_type_die (type, context_die, DINFO_USAGE_DIR_USE);
18791
18792 /* This is a GNU Extension. We are adding a
18793 DW_AT_linkage_name attribute to the DIE of the
18794 anonymous struct TYPE. The value of that attribute
18795 is the name of the typedef decl naming the anonymous
18796 struct. This greatly eases the work of consumers of
18797 this debug info. */
18798 add_linkage_attr (lookup_type_die (type), decl);
18799 }
18800 }
18801
18802 add_type_attribute (type_die, type, TREE_READONLY (decl),
18803 TREE_THIS_VOLATILE (decl), context_die);
18804
18805 if (is_naming_typedef_decl (decl))
18806 /* We want that all subsequent calls to lookup_type_die with
18807 TYPE in argument yield the DW_TAG_typedef we have just
18808 created. */
18809 equate_type_number_to_die (type, type_die);
18810
18811 add_accessibility_attribute (type_die, decl);
18812 }
18813
18814 if (DECL_ABSTRACT (decl))
18815 equate_decl_number_to_die (decl, type_die);
18816
18817 if (get_AT (type_die, DW_AT_name))
18818 add_pubtype (decl, type_die);
18819 }
18820
18821 /* Generate a DIE for a struct, class, enum or union type. */
18822
18823 static void
18824 gen_tagged_type_die (tree type,
18825 dw_die_ref context_die,
18826 enum debug_info_usage usage)
18827 {
18828 int need_pop;
18829
18830 if (type == NULL_TREE
18831 || !is_tagged_type (type))
18832 return;
18833
18834 /* If this is a nested type whose containing class hasn't been written
18835 out yet, writing it out will cover this one, too. This does not apply
18836 to instantiations of member class templates; they need to be added to
18837 the containing class as they are generated. FIXME: This hurts the
18838 idea of combining type decls from multiple TUs, since we can't predict
18839 what set of template instantiations we'll get. */
18840 if (TYPE_CONTEXT (type)
18841 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
18842 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
18843 {
18844 gen_type_die_with_usage (TYPE_CONTEXT (type), context_die, usage);
18845
18846 if (TREE_ASM_WRITTEN (type))
18847 return;
18848
18849 /* If that failed, attach ourselves to the stub. */
18850 push_decl_scope (TYPE_CONTEXT (type));
18851 context_die = lookup_type_die (TYPE_CONTEXT (type));
18852 need_pop = 1;
18853 }
18854 else if (TYPE_CONTEXT (type) != NULL_TREE
18855 && (TREE_CODE (TYPE_CONTEXT (type)) == FUNCTION_DECL))
18856 {
18857 /* If this type is local to a function that hasn't been written
18858 out yet, use a NULL context for now; it will be fixed up in
18859 decls_for_scope. */
18860 context_die = lookup_decl_die (TYPE_CONTEXT (type));
18861 /* A declaration DIE doesn't count; nested types need to go in the
18862 specification. */
18863 if (context_die && is_declaration_die (context_die))
18864 context_die = NULL;
18865 need_pop = 0;
18866 }
18867 else
18868 {
18869 context_die = declare_in_namespace (type, context_die);
18870 need_pop = 0;
18871 }
18872
18873 if (TREE_CODE (type) == ENUMERAL_TYPE)
18874 {
18875 /* This might have been written out by the call to
18876 declare_in_namespace. */
18877 if (!TREE_ASM_WRITTEN (type))
18878 gen_enumeration_type_die (type, context_die);
18879 }
18880 else
18881 gen_struct_or_union_type_die (type, context_die, usage);
18882
18883 if (need_pop)
18884 pop_decl_scope ();
18885
18886 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
18887 it up if it is ever completed. gen_*_type_die will set it for us
18888 when appropriate. */
18889 }
18890
18891 /* Generate a type description DIE. */
18892
18893 static void
18894 gen_type_die_with_usage (tree type, dw_die_ref context_die,
18895 enum debug_info_usage usage)
18896 {
18897 struct array_descr_info info;
18898
18899 if (type == NULL_TREE || type == error_mark_node)
18900 return;
18901
18902 if (TYPE_NAME (type) != NULL_TREE
18903 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
18904 && is_redundant_typedef (TYPE_NAME (type))
18905 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
18906 /* The DECL of this type is a typedef we don't want to emit debug
18907 info for but we want debug info for its underlying typedef.
18908 This can happen for e.g, the injected-class-name of a C++
18909 type. */
18910 type = DECL_ORIGINAL_TYPE (TYPE_NAME (type));
18911
18912 /* If TYPE is a typedef type variant, let's generate debug info
18913 for the parent typedef which TYPE is a type of. */
18914 if (typedef_variant_p (type))
18915 {
18916 if (TREE_ASM_WRITTEN (type))
18917 return;
18918
18919 /* Prevent broken recursion; we can't hand off to the same type. */
18920 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
18921
18922 /* Use the DIE of the containing namespace as the parent DIE of
18923 the type description DIE we want to generate. */
18924 if (DECL_FILE_SCOPE_P (TYPE_NAME (type))
18925 || (DECL_CONTEXT (TYPE_NAME (type))
18926 && TREE_CODE (DECL_CONTEXT (TYPE_NAME (type))) == NAMESPACE_DECL))
18927 context_die = get_context_die (DECL_CONTEXT (TYPE_NAME (type)));
18928
18929 TREE_ASM_WRITTEN (type) = 1;
18930
18931 gen_decl_die (TYPE_NAME (type), NULL, context_die);
18932 return;
18933 }
18934
18935 /* If type is an anonymous tagged type named by a typedef, let's
18936 generate debug info for the typedef. */
18937 if (is_naming_typedef_decl (TYPE_NAME (type)))
18938 {
18939 /* Use the DIE of the containing namespace as the parent DIE of
18940 the type description DIE we want to generate. */
18941 if (DECL_CONTEXT (TYPE_NAME (type))
18942 && TREE_CODE (DECL_CONTEXT (TYPE_NAME (type))) == NAMESPACE_DECL)
18943 context_die = get_context_die (DECL_CONTEXT (TYPE_NAME (type)));
18944
18945 gen_decl_die (TYPE_NAME (type), NULL, context_die);
18946 return;
18947 }
18948
18949 /* If this is an array type with hidden descriptor, handle it first. */
18950 if (!TREE_ASM_WRITTEN (type)
18951 && lang_hooks.types.get_array_descr_info
18952 && lang_hooks.types.get_array_descr_info (type, &info)
18953 && (dwarf_version >= 3 || !dwarf_strict))
18954 {
18955 gen_descr_array_type_die (type, &info, context_die);
18956 TREE_ASM_WRITTEN (type) = 1;
18957 return;
18958 }
18959
18960 /* We are going to output a DIE to represent the unqualified version
18961 of this type (i.e. without any const or volatile qualifiers) so
18962 get the main variant (i.e. the unqualified version) of this type
18963 now. (Vectors are special because the debugging info is in the
18964 cloned type itself). */
18965 if (TREE_CODE (type) != VECTOR_TYPE)
18966 type = type_main_variant (type);
18967
18968 if (TREE_ASM_WRITTEN (type))
18969 return;
18970
18971 switch (TREE_CODE (type))
18972 {
18973 case ERROR_MARK:
18974 break;
18975
18976 case POINTER_TYPE:
18977 case REFERENCE_TYPE:
18978 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
18979 ensures that the gen_type_die recursion will terminate even if the
18980 type is recursive. Recursive types are possible in Ada. */
18981 /* ??? We could perhaps do this for all types before the switch
18982 statement. */
18983 TREE_ASM_WRITTEN (type) = 1;
18984
18985 /* For these types, all that is required is that we output a DIE (or a
18986 set of DIEs) to represent the "basis" type. */
18987 gen_type_die_with_usage (TREE_TYPE (type), context_die,
18988 DINFO_USAGE_IND_USE);
18989 break;
18990
18991 case OFFSET_TYPE:
18992 /* This code is used for C++ pointer-to-data-member types.
18993 Output a description of the relevant class type. */
18994 gen_type_die_with_usage (TYPE_OFFSET_BASETYPE (type), context_die,
18995 DINFO_USAGE_IND_USE);
18996
18997 /* Output a description of the type of the object pointed to. */
18998 gen_type_die_with_usage (TREE_TYPE (type), context_die,
18999 DINFO_USAGE_IND_USE);
19000
19001 /* Now output a DIE to represent this pointer-to-data-member type
19002 itself. */
19003 gen_ptr_to_mbr_type_die (type, context_die);
19004 break;
19005
19006 case FUNCTION_TYPE:
19007 /* Force out return type (in case it wasn't forced out already). */
19008 gen_type_die_with_usage (TREE_TYPE (type), context_die,
19009 DINFO_USAGE_DIR_USE);
19010 gen_subroutine_type_die (type, context_die);
19011 break;
19012
19013 case METHOD_TYPE:
19014 /* Force out return type (in case it wasn't forced out already). */
19015 gen_type_die_with_usage (TREE_TYPE (type), context_die,
19016 DINFO_USAGE_DIR_USE);
19017 gen_subroutine_type_die (type, context_die);
19018 break;
19019
19020 case ARRAY_TYPE:
19021 gen_array_type_die (type, context_die);
19022 break;
19023
19024 case VECTOR_TYPE:
19025 gen_array_type_die (type, context_die);
19026 break;
19027
19028 case ENUMERAL_TYPE:
19029 case RECORD_TYPE:
19030 case UNION_TYPE:
19031 case QUAL_UNION_TYPE:
19032 gen_tagged_type_die (type, context_die, usage);
19033 return;
19034
19035 case VOID_TYPE:
19036 case INTEGER_TYPE:
19037 case REAL_TYPE:
19038 case FIXED_POINT_TYPE:
19039 case COMPLEX_TYPE:
19040 case BOOLEAN_TYPE:
19041 /* No DIEs needed for fundamental types. */
19042 break;
19043
19044 case NULLPTR_TYPE:
19045 case LANG_TYPE:
19046 /* Just use DW_TAG_unspecified_type. */
19047 {
19048 dw_die_ref type_die = lookup_type_die (type);
19049 if (type_die == NULL)
19050 {
19051 tree name = TYPE_NAME (type);
19052 if (TREE_CODE (name) == TYPE_DECL)
19053 name = DECL_NAME (name);
19054 type_die = new_die (DW_TAG_unspecified_type, comp_unit_die (), type);
19055 add_name_attribute (type_die, IDENTIFIER_POINTER (name));
19056 equate_type_number_to_die (type, type_die);
19057 }
19058 }
19059 break;
19060
19061 default:
19062 gcc_unreachable ();
19063 }
19064
19065 TREE_ASM_WRITTEN (type) = 1;
19066 }
19067
19068 static void
19069 gen_type_die (tree type, dw_die_ref context_die)
19070 {
19071 gen_type_die_with_usage (type, context_die, DINFO_USAGE_DIR_USE);
19072 }
19073
19074 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
19075 things which are local to the given block. */
19076
19077 static void
19078 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
19079 {
19080 int must_output_die = 0;
19081 bool inlined_func;
19082
19083 /* Ignore blocks that are NULL. */
19084 if (stmt == NULL_TREE)
19085 return;
19086
19087 inlined_func = inlined_function_outer_scope_p (stmt);
19088
19089 /* If the block is one fragment of a non-contiguous block, do not
19090 process the variables, since they will have been done by the
19091 origin block. Do process subblocks. */
19092 if (BLOCK_FRAGMENT_ORIGIN (stmt))
19093 {
19094 tree sub;
19095
19096 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
19097 gen_block_die (sub, context_die, depth + 1);
19098
19099 return;
19100 }
19101
19102 /* Determine if we need to output any Dwarf DIEs at all to represent this
19103 block. */
19104 if (inlined_func)
19105 /* The outer scopes for inlinings *must* always be represented. We
19106 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
19107 must_output_die = 1;
19108 else
19109 {
19110 /* Determine if this block directly contains any "significant"
19111 local declarations which we will need to output DIEs for. */
19112 if (debug_info_level > DINFO_LEVEL_TERSE)
19113 /* We are not in terse mode so *any* local declaration counts
19114 as being a "significant" one. */
19115 must_output_die = ((BLOCK_VARS (stmt) != NULL
19116 || BLOCK_NUM_NONLOCALIZED_VARS (stmt))
19117 && (TREE_USED (stmt)
19118 || TREE_ASM_WRITTEN (stmt)
19119 || BLOCK_ABSTRACT (stmt)));
19120 else if ((TREE_USED (stmt)
19121 || TREE_ASM_WRITTEN (stmt)
19122 || BLOCK_ABSTRACT (stmt))
19123 && !dwarf2out_ignore_block (stmt))
19124 must_output_die = 1;
19125 }
19126
19127 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
19128 DIE for any block which contains no significant local declarations at
19129 all. Rather, in such cases we just call `decls_for_scope' so that any
19130 needed Dwarf info for any sub-blocks will get properly generated. Note
19131 that in terse mode, our definition of what constitutes a "significant"
19132 local declaration gets restricted to include only inlined function
19133 instances and local (nested) function definitions. */
19134 if (must_output_die)
19135 {
19136 if (inlined_func)
19137 {
19138 /* If STMT block is abstract, that means we have been called
19139 indirectly from dwarf2out_abstract_function.
19140 That function rightfully marks the descendent blocks (of
19141 the abstract function it is dealing with) as being abstract,
19142 precisely to prevent us from emitting any
19143 DW_TAG_inlined_subroutine DIE as a descendent
19144 of an abstract function instance. So in that case, we should
19145 not call gen_inlined_subroutine_die.
19146
19147 Later though, when cgraph asks dwarf2out to emit info
19148 for the concrete instance of the function decl into which
19149 the concrete instance of STMT got inlined, the later will lead
19150 to the generation of a DW_TAG_inlined_subroutine DIE. */
19151 if (! BLOCK_ABSTRACT (stmt))
19152 gen_inlined_subroutine_die (stmt, context_die, depth);
19153 }
19154 else
19155 gen_lexical_block_die (stmt, context_die, depth);
19156 }
19157 else
19158 decls_for_scope (stmt, context_die, depth);
19159 }
19160
19161 /* Process variable DECL (or variable with origin ORIGIN) within
19162 block STMT and add it to CONTEXT_DIE. */
19163 static void
19164 process_scope_var (tree stmt, tree decl, tree origin, dw_die_ref context_die)
19165 {
19166 dw_die_ref die;
19167 tree decl_or_origin = decl ? decl : origin;
19168
19169 if (TREE_CODE (decl_or_origin) == FUNCTION_DECL)
19170 die = lookup_decl_die (decl_or_origin);
19171 else if (TREE_CODE (decl_or_origin) == TYPE_DECL
19172 && TYPE_DECL_IS_STUB (decl_or_origin))
19173 die = lookup_type_die (TREE_TYPE (decl_or_origin));
19174 else
19175 die = NULL;
19176
19177 if (die != NULL && die->die_parent == NULL)
19178 add_child_die (context_die, die);
19179 else if (TREE_CODE (decl_or_origin) == IMPORTED_DECL)
19180 dwarf2out_imported_module_or_decl_1 (decl_or_origin, DECL_NAME (decl_or_origin),
19181 stmt, context_die);
19182 else
19183 gen_decl_die (decl, origin, context_die);
19184 }
19185
19186 /* Generate all of the decls declared within a given scope and (recursively)
19187 all of its sub-blocks. */
19188
19189 static void
19190 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
19191 {
19192 tree decl;
19193 unsigned int i;
19194 tree subblocks;
19195
19196 /* Ignore NULL blocks. */
19197 if (stmt == NULL_TREE)
19198 return;
19199
19200 /* Output the DIEs to represent all of the data objects and typedefs
19201 declared directly within this block but not within any nested
19202 sub-blocks. Also, nested function and tag DIEs have been
19203 generated with a parent of NULL; fix that up now. */
19204 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = DECL_CHAIN (decl))
19205 process_scope_var (stmt, decl, NULL_TREE, context_die);
19206 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (stmt); i++)
19207 process_scope_var (stmt, NULL, BLOCK_NONLOCALIZED_VAR (stmt, i),
19208 context_die);
19209
19210 /* If we're at -g1, we're not interested in subblocks. */
19211 if (debug_info_level <= DINFO_LEVEL_TERSE)
19212 return;
19213
19214 /* Output the DIEs to represent all sub-blocks (and the items declared
19215 therein) of this block. */
19216 for (subblocks = BLOCK_SUBBLOCKS (stmt);
19217 subblocks != NULL;
19218 subblocks = BLOCK_CHAIN (subblocks))
19219 gen_block_die (subblocks, context_die, depth + 1);
19220 }
19221
19222 /* Is this a typedef we can avoid emitting? */
19223
19224 static inline int
19225 is_redundant_typedef (const_tree decl)
19226 {
19227 if (TYPE_DECL_IS_STUB (decl))
19228 return 1;
19229
19230 if (DECL_ARTIFICIAL (decl)
19231 && DECL_CONTEXT (decl)
19232 && is_tagged_type (DECL_CONTEXT (decl))
19233 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
19234 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
19235 /* Also ignore the artificial member typedef for the class name. */
19236 return 1;
19237
19238 return 0;
19239 }
19240
19241 /* Return TRUE if TYPE is a typedef that names a type for linkage
19242 purposes. This kind of typedefs is produced by the C++ FE for
19243 constructs like:
19244
19245 typedef struct {...} foo;
19246
19247 In that case, there is no typedef variant type produced for foo.
19248 Rather, the TREE_TYPE of the TYPE_DECL of foo is the anonymous
19249 struct type. */
19250
19251 static bool
19252 is_naming_typedef_decl (const_tree decl)
19253 {
19254 if (decl == NULL_TREE
19255 || TREE_CODE (decl) != TYPE_DECL
19256 || !is_tagged_type (TREE_TYPE (decl))
19257 || DECL_IS_BUILTIN (decl)
19258 || is_redundant_typedef (decl)
19259 /* It looks like Ada produces TYPE_DECLs that are very similar
19260 to C++ naming typedefs but that have different
19261 semantics. Let's be specific to c++ for now. */
19262 || !is_cxx ())
19263 return FALSE;
19264
19265 return (DECL_ORIGINAL_TYPE (decl) == NULL_TREE
19266 && TYPE_NAME (TREE_TYPE (decl)) == decl
19267 && (TYPE_STUB_DECL (TREE_TYPE (decl))
19268 != TYPE_NAME (TREE_TYPE (decl))));
19269 }
19270
19271 /* Returns the DIE for a context. */
19272
19273 static inline dw_die_ref
19274 get_context_die (tree context)
19275 {
19276 if (context)
19277 {
19278 /* Find die that represents this context. */
19279 if (TYPE_P (context))
19280 {
19281 context = TYPE_MAIN_VARIANT (context);
19282 return strip_naming_typedef (context, force_type_die (context));
19283 }
19284 else
19285 return force_decl_die (context);
19286 }
19287 return comp_unit_die ();
19288 }
19289
19290 /* Returns the DIE for decl. A DIE will always be returned. */
19291
19292 static dw_die_ref
19293 force_decl_die (tree decl)
19294 {
19295 dw_die_ref decl_die;
19296 unsigned saved_external_flag;
19297 tree save_fn = NULL_TREE;
19298 decl_die = lookup_decl_die (decl);
19299 if (!decl_die)
19300 {
19301 dw_die_ref context_die = get_context_die (DECL_CONTEXT (decl));
19302
19303 decl_die = lookup_decl_die (decl);
19304 if (decl_die)
19305 return decl_die;
19306
19307 switch (TREE_CODE (decl))
19308 {
19309 case FUNCTION_DECL:
19310 /* Clear current_function_decl, so that gen_subprogram_die thinks
19311 that this is a declaration. At this point, we just want to force
19312 declaration die. */
19313 save_fn = current_function_decl;
19314 current_function_decl = NULL_TREE;
19315 gen_subprogram_die (decl, context_die);
19316 current_function_decl = save_fn;
19317 break;
19318
19319 case VAR_DECL:
19320 /* Set external flag to force declaration die. Restore it after
19321 gen_decl_die() call. */
19322 saved_external_flag = DECL_EXTERNAL (decl);
19323 DECL_EXTERNAL (decl) = 1;
19324 gen_decl_die (decl, NULL, context_die);
19325 DECL_EXTERNAL (decl) = saved_external_flag;
19326 break;
19327
19328 case NAMESPACE_DECL:
19329 if (dwarf_version >= 3 || !dwarf_strict)
19330 dwarf2out_decl (decl);
19331 else
19332 /* DWARF2 has neither DW_TAG_module, nor DW_TAG_namespace. */
19333 decl_die = comp_unit_die ();
19334 break;
19335
19336 case TRANSLATION_UNIT_DECL:
19337 decl_die = comp_unit_die ();
19338 break;
19339
19340 default:
19341 gcc_unreachable ();
19342 }
19343
19344 /* We should be able to find the DIE now. */
19345 if (!decl_die)
19346 decl_die = lookup_decl_die (decl);
19347 gcc_assert (decl_die);
19348 }
19349
19350 return decl_die;
19351 }
19352
19353 /* Returns the DIE for TYPE, that must not be a base type. A DIE is
19354 always returned. */
19355
19356 static dw_die_ref
19357 force_type_die (tree type)
19358 {
19359 dw_die_ref type_die;
19360
19361 type_die = lookup_type_die (type);
19362 if (!type_die)
19363 {
19364 dw_die_ref context_die = get_context_die (TYPE_CONTEXT (type));
19365
19366 type_die = modified_type_die (type, TYPE_READONLY (type),
19367 TYPE_VOLATILE (type), context_die);
19368 gcc_assert (type_die);
19369 }
19370 return type_die;
19371 }
19372
19373 /* Force out any required namespaces to be able to output DECL,
19374 and return the new context_die for it, if it's changed. */
19375
19376 static dw_die_ref
19377 setup_namespace_context (tree thing, dw_die_ref context_die)
19378 {
19379 tree context = (DECL_P (thing)
19380 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
19381 if (context && TREE_CODE (context) == NAMESPACE_DECL)
19382 /* Force out the namespace. */
19383 context_die = force_decl_die (context);
19384
19385 return context_die;
19386 }
19387
19388 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
19389 type) within its namespace, if appropriate.
19390
19391 For compatibility with older debuggers, namespace DIEs only contain
19392 declarations; all definitions are emitted at CU scope. */
19393
19394 static dw_die_ref
19395 declare_in_namespace (tree thing, dw_die_ref context_die)
19396 {
19397 dw_die_ref ns_context;
19398
19399 if (debug_info_level <= DINFO_LEVEL_TERSE)
19400 return context_die;
19401
19402 /* If this decl is from an inlined function, then don't try to emit it in its
19403 namespace, as we will get confused. It would have already been emitted
19404 when the abstract instance of the inline function was emitted anyways. */
19405 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
19406 return context_die;
19407
19408 ns_context = setup_namespace_context (thing, context_die);
19409
19410 if (ns_context != context_die)
19411 {
19412 if (is_fortran ())
19413 return ns_context;
19414 if (DECL_P (thing))
19415 gen_decl_die (thing, NULL, ns_context);
19416 else
19417 gen_type_die (thing, ns_context);
19418 }
19419 return context_die;
19420 }
19421
19422 /* Generate a DIE for a namespace or namespace alias. */
19423
19424 static void
19425 gen_namespace_die (tree decl, dw_die_ref context_die)
19426 {
19427 dw_die_ref namespace_die;
19428
19429 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
19430 they are an alias of. */
19431 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
19432 {
19433 /* Output a real namespace or module. */
19434 context_die = setup_namespace_context (decl, comp_unit_die ());
19435 namespace_die = new_die (is_fortran ()
19436 ? DW_TAG_module : DW_TAG_namespace,
19437 context_die, decl);
19438 /* For Fortran modules defined in different CU don't add src coords. */
19439 if (namespace_die->die_tag == DW_TAG_module && DECL_EXTERNAL (decl))
19440 {
19441 const char *name = dwarf2_name (decl, 0);
19442 if (name)
19443 add_name_attribute (namespace_die, name);
19444 }
19445 else
19446 add_name_and_src_coords_attributes (namespace_die, decl);
19447 if (DECL_EXTERNAL (decl))
19448 add_AT_flag (namespace_die, DW_AT_declaration, 1);
19449 equate_decl_number_to_die (decl, namespace_die);
19450 }
19451 else
19452 {
19453 /* Output a namespace alias. */
19454
19455 /* Force out the namespace we are an alias of, if necessary. */
19456 dw_die_ref origin_die
19457 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
19458
19459 if (DECL_FILE_SCOPE_P (decl)
19460 || TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL)
19461 context_die = setup_namespace_context (decl, comp_unit_die ());
19462 /* Now create the namespace alias DIE. */
19463 namespace_die = new_die (DW_TAG_imported_declaration, context_die, decl);
19464 add_name_and_src_coords_attributes (namespace_die, decl);
19465 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
19466 equate_decl_number_to_die (decl, namespace_die);
19467 }
19468 }
19469
19470 /* Generate Dwarf debug information for a decl described by DECL.
19471 The return value is currently only meaningful for PARM_DECLs,
19472 for all other decls it returns NULL. */
19473
19474 static dw_die_ref
19475 gen_decl_die (tree decl, tree origin, dw_die_ref context_die)
19476 {
19477 tree decl_or_origin = decl ? decl : origin;
19478 tree class_origin = NULL, ultimate_origin;
19479
19480 if (DECL_P (decl_or_origin) && DECL_IGNORED_P (decl_or_origin))
19481 return NULL;
19482
19483 switch (TREE_CODE (decl_or_origin))
19484 {
19485 case ERROR_MARK:
19486 break;
19487
19488 case CONST_DECL:
19489 if (!is_fortran () && !is_ada ())
19490 {
19491 /* The individual enumerators of an enum type get output when we output
19492 the Dwarf representation of the relevant enum type itself. */
19493 break;
19494 }
19495
19496 /* Emit its type. */
19497 gen_type_die (TREE_TYPE (decl), context_die);
19498
19499 /* And its containing namespace. */
19500 context_die = declare_in_namespace (decl, context_die);
19501
19502 gen_const_die (decl, context_die);
19503 break;
19504
19505 case FUNCTION_DECL:
19506 /* Don't output any DIEs to represent mere function declarations,
19507 unless they are class members or explicit block externs. */
19508 if (DECL_INITIAL (decl_or_origin) == NULL_TREE
19509 && DECL_FILE_SCOPE_P (decl_or_origin)
19510 && (current_function_decl == NULL_TREE
19511 || DECL_ARTIFICIAL (decl_or_origin)))
19512 break;
19513
19514 #if 0
19515 /* FIXME */
19516 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
19517 on local redeclarations of global functions. That seems broken. */
19518 if (current_function_decl != decl)
19519 /* This is only a declaration. */;
19520 #endif
19521
19522 /* If we're emitting a clone, emit info for the abstract instance. */
19523 if (origin || DECL_ORIGIN (decl) != decl)
19524 dwarf2out_abstract_function (origin
19525 ? DECL_ORIGIN (origin)
19526 : DECL_ABSTRACT_ORIGIN (decl));
19527
19528 /* If we're emitting an out-of-line copy of an inline function,
19529 emit info for the abstract instance and set up to refer to it. */
19530 else if (cgraph_function_possibly_inlined_p (decl)
19531 && ! DECL_ABSTRACT (decl)
19532 && ! class_or_namespace_scope_p (context_die)
19533 /* dwarf2out_abstract_function won't emit a die if this is just
19534 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
19535 that case, because that works only if we have a die. */
19536 && DECL_INITIAL (decl) != NULL_TREE)
19537 {
19538 dwarf2out_abstract_function (decl);
19539 set_decl_origin_self (decl);
19540 }
19541
19542 /* Otherwise we're emitting the primary DIE for this decl. */
19543 else if (debug_info_level > DINFO_LEVEL_TERSE)
19544 {
19545 /* Before we describe the FUNCTION_DECL itself, make sure that we
19546 have its containing type. */
19547 if (!origin)
19548 origin = decl_class_context (decl);
19549 if (origin != NULL_TREE)
19550 gen_type_die (origin, context_die);
19551
19552 /* And its return type. */
19553 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
19554
19555 /* And its virtual context. */
19556 if (DECL_VINDEX (decl) != NULL_TREE)
19557 gen_type_die (DECL_CONTEXT (decl), context_die);
19558
19559 /* Make sure we have a member DIE for decl. */
19560 if (origin != NULL_TREE)
19561 gen_type_die_for_member (origin, decl, context_die);
19562
19563 /* And its containing namespace. */
19564 context_die = declare_in_namespace (decl, context_die);
19565 }
19566
19567 /* Now output a DIE to represent the function itself. */
19568 if (decl)
19569 gen_subprogram_die (decl, context_die);
19570 break;
19571
19572 case TYPE_DECL:
19573 /* If we are in terse mode, don't generate any DIEs to represent any
19574 actual typedefs. */
19575 if (debug_info_level <= DINFO_LEVEL_TERSE)
19576 break;
19577
19578 /* In the special case of a TYPE_DECL node representing the declaration
19579 of some type tag, if the given TYPE_DECL is marked as having been
19580 instantiated from some other (original) TYPE_DECL node (e.g. one which
19581 was generated within the original definition of an inline function) we
19582 used to generate a special (abbreviated) DW_TAG_structure_type,
19583 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. But nothing
19584 should be actually referencing those DIEs, as variable DIEs with that
19585 type would be emitted already in the abstract origin, so it was always
19586 removed during unused type prunning. Don't add anything in this
19587 case. */
19588 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
19589 break;
19590
19591 if (is_redundant_typedef (decl))
19592 gen_type_die (TREE_TYPE (decl), context_die);
19593 else
19594 /* Output a DIE to represent the typedef itself. */
19595 gen_typedef_die (decl, context_die);
19596 break;
19597
19598 case LABEL_DECL:
19599 if (debug_info_level >= DINFO_LEVEL_NORMAL)
19600 gen_label_die (decl, context_die);
19601 break;
19602
19603 case VAR_DECL:
19604 case RESULT_DECL:
19605 /* If we are in terse mode, don't generate any DIEs to represent any
19606 variable declarations or definitions. */
19607 if (debug_info_level <= DINFO_LEVEL_TERSE)
19608 break;
19609
19610 /* Output any DIEs that are needed to specify the type of this data
19611 object. */
19612 if (decl_by_reference_p (decl_or_origin))
19613 gen_type_die (TREE_TYPE (TREE_TYPE (decl_or_origin)), context_die);
19614 else
19615 gen_type_die (TREE_TYPE (decl_or_origin), context_die);
19616
19617 /* And its containing type. */
19618 class_origin = decl_class_context (decl_or_origin);
19619 if (class_origin != NULL_TREE)
19620 gen_type_die_for_member (class_origin, decl_or_origin, context_die);
19621
19622 /* And its containing namespace. */
19623 context_die = declare_in_namespace (decl_or_origin, context_die);
19624
19625 /* Now output the DIE to represent the data object itself. This gets
19626 complicated because of the possibility that the VAR_DECL really
19627 represents an inlined instance of a formal parameter for an inline
19628 function. */
19629 ultimate_origin = decl_ultimate_origin (decl_or_origin);
19630 if (ultimate_origin != NULL_TREE
19631 && TREE_CODE (ultimate_origin) == PARM_DECL)
19632 gen_formal_parameter_die (decl, origin,
19633 true /* Emit name attribute. */,
19634 context_die);
19635 else
19636 gen_variable_die (decl, origin, context_die);
19637 break;
19638
19639 case FIELD_DECL:
19640 /* Ignore the nameless fields that are used to skip bits but handle C++
19641 anonymous unions and structs. */
19642 if (DECL_NAME (decl) != NULL_TREE
19643 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
19644 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
19645 {
19646 gen_type_die (member_declared_type (decl), context_die);
19647 gen_field_die (decl, context_die);
19648 }
19649 break;
19650
19651 case PARM_DECL:
19652 if (DECL_BY_REFERENCE (decl_or_origin))
19653 gen_type_die (TREE_TYPE (TREE_TYPE (decl_or_origin)), context_die);
19654 else
19655 gen_type_die (TREE_TYPE (decl_or_origin), context_die);
19656 return gen_formal_parameter_die (decl, origin,
19657 true /* Emit name attribute. */,
19658 context_die);
19659
19660 case NAMESPACE_DECL:
19661 case IMPORTED_DECL:
19662 if (dwarf_version >= 3 || !dwarf_strict)
19663 gen_namespace_die (decl, context_die);
19664 break;
19665
19666 default:
19667 /* Probably some frontend-internal decl. Assume we don't care. */
19668 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
19669 break;
19670 }
19671
19672 return NULL;
19673 }
19674 \f
19675 /* Output debug information for global decl DECL. Called from toplev.c after
19676 compilation proper has finished. */
19677
19678 static void
19679 dwarf2out_global_decl (tree decl)
19680 {
19681 /* Output DWARF2 information for file-scope tentative data object
19682 declarations, file-scope (extern) function declarations (which
19683 had no corresponding body) and file-scope tagged type declarations
19684 and definitions which have not yet been forced out. */
19685 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
19686 dwarf2out_decl (decl);
19687 }
19688
19689 /* Output debug information for type decl DECL. Called from toplev.c
19690 and from language front ends (to record built-in types). */
19691 static void
19692 dwarf2out_type_decl (tree decl, int local)
19693 {
19694 if (!local)
19695 dwarf2out_decl (decl);
19696 }
19697
19698 /* Output debug information for imported module or decl DECL.
19699 NAME is non-NULL name in the lexical block if the decl has been renamed.
19700 LEXICAL_BLOCK is the lexical block (which TREE_CODE is a BLOCK)
19701 that DECL belongs to.
19702 LEXICAL_BLOCK_DIE is the DIE of LEXICAL_BLOCK. */
19703 static void
19704 dwarf2out_imported_module_or_decl_1 (tree decl,
19705 tree name,
19706 tree lexical_block,
19707 dw_die_ref lexical_block_die)
19708 {
19709 expanded_location xloc;
19710 dw_die_ref imported_die = NULL;
19711 dw_die_ref at_import_die;
19712
19713 if (TREE_CODE (decl) == IMPORTED_DECL)
19714 {
19715 xloc = expand_location (DECL_SOURCE_LOCATION (decl));
19716 decl = IMPORTED_DECL_ASSOCIATED_DECL (decl);
19717 gcc_assert (decl);
19718 }
19719 else
19720 xloc = expand_location (input_location);
19721
19722 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
19723 {
19724 at_import_die = force_type_die (TREE_TYPE (decl));
19725 /* For namespace N { typedef void T; } using N::T; base_type_die
19726 returns NULL, but DW_TAG_imported_declaration requires
19727 the DW_AT_import tag. Force creation of DW_TAG_typedef. */
19728 if (!at_import_die)
19729 {
19730 gcc_assert (TREE_CODE (decl) == TYPE_DECL);
19731 gen_typedef_die (decl, get_context_die (DECL_CONTEXT (decl)));
19732 at_import_die = lookup_type_die (TREE_TYPE (decl));
19733 gcc_assert (at_import_die);
19734 }
19735 }
19736 else
19737 {
19738 at_import_die = lookup_decl_die (decl);
19739 if (!at_import_die)
19740 {
19741 /* If we're trying to avoid duplicate debug info, we may not have
19742 emitted the member decl for this field. Emit it now. */
19743 if (TREE_CODE (decl) == FIELD_DECL)
19744 {
19745 tree type = DECL_CONTEXT (decl);
19746
19747 if (TYPE_CONTEXT (type)
19748 && TYPE_P (TYPE_CONTEXT (type))
19749 && !should_emit_struct_debug (TYPE_CONTEXT (type),
19750 DINFO_USAGE_DIR_USE))
19751 return;
19752 gen_type_die_for_member (type, decl,
19753 get_context_die (TYPE_CONTEXT (type)));
19754 }
19755 at_import_die = force_decl_die (decl);
19756 }
19757 }
19758
19759 if (TREE_CODE (decl) == NAMESPACE_DECL)
19760 {
19761 if (dwarf_version >= 3 || !dwarf_strict)
19762 imported_die = new_die (DW_TAG_imported_module,
19763 lexical_block_die,
19764 lexical_block);
19765 else
19766 return;
19767 }
19768 else
19769 imported_die = new_die (DW_TAG_imported_declaration,
19770 lexical_block_die,
19771 lexical_block);
19772
19773 add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
19774 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
19775 if (name)
19776 add_AT_string (imported_die, DW_AT_name,
19777 IDENTIFIER_POINTER (name));
19778 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
19779 }
19780
19781 /* Output debug information for imported module or decl DECL.
19782 NAME is non-NULL name in context if the decl has been renamed.
19783 CHILD is true if decl is one of the renamed decls as part of
19784 importing whole module. */
19785
19786 static void
19787 dwarf2out_imported_module_or_decl (tree decl, tree name, tree context,
19788 bool child)
19789 {
19790 /* dw_die_ref at_import_die; */
19791 dw_die_ref scope_die;
19792
19793 if (debug_info_level <= DINFO_LEVEL_TERSE)
19794 return;
19795
19796 gcc_assert (decl);
19797
19798 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
19799 We need decl DIE for reference and scope die. First, get DIE for the decl
19800 itself. */
19801
19802 /* Get the scope die for decl context. Use comp_unit_die for global module
19803 or decl. If die is not found for non globals, force new die. */
19804 if (context
19805 && TYPE_P (context)
19806 && !should_emit_struct_debug (context, DINFO_USAGE_DIR_USE))
19807 return;
19808
19809 if (!(dwarf_version >= 3 || !dwarf_strict))
19810 return;
19811
19812 scope_die = get_context_die (context);
19813
19814 if (child)
19815 {
19816 gcc_assert (scope_die->die_child);
19817 gcc_assert (scope_die->die_child->die_tag == DW_TAG_imported_module);
19818 gcc_assert (TREE_CODE (decl) != NAMESPACE_DECL);
19819 scope_die = scope_die->die_child;
19820 }
19821
19822 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
19823 dwarf2out_imported_module_or_decl_1 (decl, name, context, scope_die);
19824
19825 }
19826
19827 /* Write the debugging output for DECL. */
19828
19829 void
19830 dwarf2out_decl (tree decl)
19831 {
19832 dw_die_ref context_die = comp_unit_die ();
19833
19834 switch (TREE_CODE (decl))
19835 {
19836 case ERROR_MARK:
19837 return;
19838
19839 case FUNCTION_DECL:
19840 /* What we would really like to do here is to filter out all mere
19841 file-scope declarations of file-scope functions which are never
19842 referenced later within this translation unit (and keep all of ones
19843 that *are* referenced later on) but we aren't clairvoyant, so we have
19844 no idea which functions will be referenced in the future (i.e. later
19845 on within the current translation unit). So here we just ignore all
19846 file-scope function declarations which are not also definitions. If
19847 and when the debugger needs to know something about these functions,
19848 it will have to hunt around and find the DWARF information associated
19849 with the definition of the function.
19850
19851 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
19852 nodes represent definitions and which ones represent mere
19853 declarations. We have to check DECL_INITIAL instead. That's because
19854 the C front-end supports some weird semantics for "extern inline"
19855 function definitions. These can get inlined within the current
19856 translation unit (and thus, we need to generate Dwarf info for their
19857 abstract instances so that the Dwarf info for the concrete inlined
19858 instances can have something to refer to) but the compiler never
19859 generates any out-of-lines instances of such things (despite the fact
19860 that they *are* definitions).
19861
19862 The important point is that the C front-end marks these "extern
19863 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
19864 them anyway. Note that the C++ front-end also plays some similar games
19865 for inline function definitions appearing within include files which
19866 also contain `#pragma interface' pragmas. */
19867 if (DECL_INITIAL (decl) == NULL_TREE)
19868 return;
19869
19870 /* If we're a nested function, initially use a parent of NULL; if we're
19871 a plain function, this will be fixed up in decls_for_scope. If
19872 we're a method, it will be ignored, since we already have a DIE. */
19873 if (decl_function_context (decl)
19874 /* But if we're in terse mode, we don't care about scope. */
19875 && debug_info_level > DINFO_LEVEL_TERSE)
19876 context_die = NULL;
19877 break;
19878
19879 case VAR_DECL:
19880 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
19881 declaration and if the declaration was never even referenced from
19882 within this entire compilation unit. We suppress these DIEs in
19883 order to save space in the .debug section (by eliminating entries
19884 which are probably useless). Note that we must not suppress
19885 block-local extern declarations (whether used or not) because that
19886 would screw-up the debugger's name lookup mechanism and cause it to
19887 miss things which really ought to be in scope at a given point. */
19888 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
19889 return;
19890
19891 /* For local statics lookup proper context die. */
19892 if (TREE_STATIC (decl) && decl_function_context (decl))
19893 context_die = lookup_decl_die (DECL_CONTEXT (decl));
19894
19895 /* If we are in terse mode, don't generate any DIEs to represent any
19896 variable declarations or definitions. */
19897 if (debug_info_level <= DINFO_LEVEL_TERSE)
19898 return;
19899 break;
19900
19901 case CONST_DECL:
19902 if (debug_info_level <= DINFO_LEVEL_TERSE)
19903 return;
19904 if (!is_fortran () && !is_ada ())
19905 return;
19906 if (TREE_STATIC (decl) && decl_function_context (decl))
19907 context_die = lookup_decl_die (DECL_CONTEXT (decl));
19908 break;
19909
19910 case NAMESPACE_DECL:
19911 case IMPORTED_DECL:
19912 if (debug_info_level <= DINFO_LEVEL_TERSE)
19913 return;
19914 if (lookup_decl_die (decl) != NULL)
19915 return;
19916 break;
19917
19918 case TYPE_DECL:
19919 /* Don't emit stubs for types unless they are needed by other DIEs. */
19920 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
19921 return;
19922
19923 /* Don't bother trying to generate any DIEs to represent any of the
19924 normal built-in types for the language we are compiling. */
19925 if (DECL_IS_BUILTIN (decl))
19926 return;
19927
19928 /* If we are in terse mode, don't generate any DIEs for types. */
19929 if (debug_info_level <= DINFO_LEVEL_TERSE)
19930 return;
19931
19932 /* If we're a function-scope tag, initially use a parent of NULL;
19933 this will be fixed up in decls_for_scope. */
19934 if (decl_function_context (decl))
19935 context_die = NULL;
19936
19937 break;
19938
19939 default:
19940 return;
19941 }
19942
19943 gen_decl_die (decl, NULL, context_die);
19944 }
19945
19946 /* Write the debugging output for DECL. */
19947
19948 static void
19949 dwarf2out_function_decl (tree decl)
19950 {
19951 dwarf2out_decl (decl);
19952 call_arg_locations = NULL;
19953 call_arg_loc_last = NULL;
19954 call_site_count = -1;
19955 tail_call_site_count = -1;
19956 VEC_free (dw_die_ref, heap, block_map);
19957 htab_empty (decl_loc_table);
19958 htab_empty (cached_dw_loc_list_table);
19959 }
19960
19961 /* Output a marker (i.e. a label) for the beginning of the generated code for
19962 a lexical block. */
19963
19964 static void
19965 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
19966 unsigned int blocknum)
19967 {
19968 switch_to_section (current_function_section ());
19969 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
19970 }
19971
19972 /* Output a marker (i.e. a label) for the end of the generated code for a
19973 lexical block. */
19974
19975 static void
19976 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
19977 {
19978 switch_to_section (current_function_section ());
19979 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
19980 }
19981
19982 /* Returns nonzero if it is appropriate not to emit any debugging
19983 information for BLOCK, because it doesn't contain any instructions.
19984
19985 Don't allow this for blocks with nested functions or local classes
19986 as we would end up with orphans, and in the presence of scheduling
19987 we may end up calling them anyway. */
19988
19989 static bool
19990 dwarf2out_ignore_block (const_tree block)
19991 {
19992 tree decl;
19993 unsigned int i;
19994
19995 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
19996 if (TREE_CODE (decl) == FUNCTION_DECL
19997 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
19998 return 0;
19999 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (block); i++)
20000 {
20001 decl = BLOCK_NONLOCALIZED_VAR (block, i);
20002 if (TREE_CODE (decl) == FUNCTION_DECL
20003 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
20004 return 0;
20005 }
20006
20007 return 1;
20008 }
20009
20010 /* Hash table routines for file_hash. */
20011
20012 static int
20013 file_table_eq (const void *p1_p, const void *p2_p)
20014 {
20015 const struct dwarf_file_data *const p1 =
20016 (const struct dwarf_file_data *) p1_p;
20017 const char *const p2 = (const char *) p2_p;
20018 return filename_cmp (p1->filename, p2) == 0;
20019 }
20020
20021 static hashval_t
20022 file_table_hash (const void *p_p)
20023 {
20024 const struct dwarf_file_data *const p = (const struct dwarf_file_data *) p_p;
20025 return htab_hash_string (p->filename);
20026 }
20027
20028 /* Lookup FILE_NAME (in the list of filenames that we know about here in
20029 dwarf2out.c) and return its "index". The index of each (known) filename is
20030 just a unique number which is associated with only that one filename. We
20031 need such numbers for the sake of generating labels (in the .debug_sfnames
20032 section) and references to those files numbers (in the .debug_srcinfo
20033 and.debug_macinfo sections). If the filename given as an argument is not
20034 found in our current list, add it to the list and assign it the next
20035 available unique index number. In order to speed up searches, we remember
20036 the index of the filename was looked up last. This handles the majority of
20037 all searches. */
20038
20039 static struct dwarf_file_data *
20040 lookup_filename (const char *file_name)
20041 {
20042 void ** slot;
20043 struct dwarf_file_data * created;
20044
20045 /* Check to see if the file name that was searched on the previous
20046 call matches this file name. If so, return the index. */
20047 if (file_table_last_lookup
20048 && (file_name == file_table_last_lookup->filename
20049 || filename_cmp (file_table_last_lookup->filename, file_name) == 0))
20050 return file_table_last_lookup;
20051
20052 /* Didn't match the previous lookup, search the table. */
20053 slot = htab_find_slot_with_hash (file_table, file_name,
20054 htab_hash_string (file_name), INSERT);
20055 if (*slot)
20056 return (struct dwarf_file_data *) *slot;
20057
20058 created = ggc_alloc_dwarf_file_data ();
20059 created->filename = file_name;
20060 created->emitted_number = 0;
20061 *slot = created;
20062 return created;
20063 }
20064
20065 /* If the assembler will construct the file table, then translate the compiler
20066 internal file table number into the assembler file table number, and emit
20067 a .file directive if we haven't already emitted one yet. The file table
20068 numbers are different because we prune debug info for unused variables and
20069 types, which may include filenames. */
20070
20071 static int
20072 maybe_emit_file (struct dwarf_file_data * fd)
20073 {
20074 if (! fd->emitted_number)
20075 {
20076 if (last_emitted_file)
20077 fd->emitted_number = last_emitted_file->emitted_number + 1;
20078 else
20079 fd->emitted_number = 1;
20080 last_emitted_file = fd;
20081
20082 if (DWARF2_ASM_LINE_DEBUG_INFO)
20083 {
20084 fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
20085 output_quoted_string (asm_out_file,
20086 remap_debug_filename (fd->filename));
20087 fputc ('\n', asm_out_file);
20088 }
20089 }
20090
20091 return fd->emitted_number;
20092 }
20093
20094 /* Schedule generation of a DW_AT_const_value attribute to DIE.
20095 That generation should happen after function debug info has been
20096 generated. The value of the attribute is the constant value of ARG. */
20097
20098 static void
20099 append_entry_to_tmpl_value_parm_die_table (dw_die_ref die, tree arg)
20100 {
20101 die_arg_entry entry;
20102
20103 if (!die || !arg)
20104 return;
20105
20106 if (!tmpl_value_parm_die_table)
20107 tmpl_value_parm_die_table
20108 = VEC_alloc (die_arg_entry, gc, 32);
20109
20110 entry.die = die;
20111 entry.arg = arg;
20112 VEC_safe_push (die_arg_entry, gc,
20113 tmpl_value_parm_die_table,
20114 &entry);
20115 }
20116
20117 /* Return TRUE if T is an instance of generic type, FALSE
20118 otherwise. */
20119
20120 static bool
20121 generic_type_p (tree t)
20122 {
20123 if (t == NULL_TREE || !TYPE_P (t))
20124 return false;
20125 return lang_hooks.get_innermost_generic_parms (t) != NULL_TREE;
20126 }
20127
20128 /* Schedule the generation of the generic parameter dies for the
20129 instance of generic type T. The proper generation itself is later
20130 done by gen_scheduled_generic_parms_dies. */
20131
20132 static void
20133 schedule_generic_params_dies_gen (tree t)
20134 {
20135 if (!generic_type_p (t))
20136 return;
20137
20138 if (generic_type_instances == NULL)
20139 generic_type_instances = VEC_alloc (tree, gc, 256);
20140
20141 VEC_safe_push (tree, gc, generic_type_instances, t);
20142 }
20143
20144 /* Add a DW_AT_const_value attribute to DIEs that were scheduled
20145 by append_entry_to_tmpl_value_parm_die_table. This function must
20146 be called after function DIEs have been generated. */
20147
20148 static void
20149 gen_remaining_tmpl_value_param_die_attribute (void)
20150 {
20151 if (tmpl_value_parm_die_table)
20152 {
20153 unsigned i;
20154 die_arg_entry *e;
20155
20156 FOR_EACH_VEC_ELT (die_arg_entry, tmpl_value_parm_die_table, i, e)
20157 tree_add_const_value_attribute (e->die, e->arg);
20158 }
20159 }
20160
20161 /* Generate generic parameters DIEs for instances of generic types
20162 that have been previously scheduled by
20163 schedule_generic_params_dies_gen. This function must be called
20164 after all the types of the CU have been laid out. */
20165
20166 static void
20167 gen_scheduled_generic_parms_dies (void)
20168 {
20169 unsigned i;
20170 tree t;
20171
20172 if (generic_type_instances == NULL)
20173 return;
20174
20175 FOR_EACH_VEC_ELT (tree, generic_type_instances, i, t)
20176 gen_generic_params_dies (t);
20177 }
20178
20179
20180 /* Replace DW_AT_name for the decl with name. */
20181
20182 static void
20183 dwarf2out_set_name (tree decl, tree name)
20184 {
20185 dw_die_ref die;
20186 dw_attr_ref attr;
20187 const char *dname;
20188
20189 die = TYPE_SYMTAB_DIE (decl);
20190 if (!die)
20191 return;
20192
20193 dname = dwarf2_name (name, 0);
20194 if (!dname)
20195 return;
20196
20197 attr = get_AT (die, DW_AT_name);
20198 if (attr)
20199 {
20200 struct indirect_string_node *node;
20201
20202 node = find_AT_string (dname);
20203 /* replace the string. */
20204 attr->dw_attr_val.v.val_str = node;
20205 }
20206
20207 else
20208 add_name_attribute (die, dname);
20209 }
20210
20211 /* Called by the final INSN scan whenever we see a var location. We
20212 use it to drop labels in the right places, and throw the location in
20213 our lookup table. */
20214
20215 static void
20216 dwarf2out_var_location (rtx loc_note)
20217 {
20218 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES + 2];
20219 struct var_loc_node *newloc;
20220 rtx next_real, next_note;
20221 static const char *last_label;
20222 static const char *last_postcall_label;
20223 static bool last_in_cold_section_p;
20224 static rtx expected_next_loc_note;
20225 tree decl;
20226 bool var_loc_p;
20227
20228 if (!NOTE_P (loc_note))
20229 {
20230 if (CALL_P (loc_note))
20231 {
20232 call_site_count++;
20233 if (SIBLING_CALL_P (loc_note))
20234 tail_call_site_count++;
20235 }
20236 return;
20237 }
20238
20239 var_loc_p = NOTE_KIND (loc_note) == NOTE_INSN_VAR_LOCATION;
20240 if (var_loc_p && !DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
20241 return;
20242
20243 /* Optimize processing a large consecutive sequence of location
20244 notes so we don't spend too much time in next_real_insn. If the
20245 next insn is another location note, remember the next_real_insn
20246 calculation for next time. */
20247 next_real = cached_next_real_insn;
20248 if (next_real)
20249 {
20250 if (expected_next_loc_note != loc_note)
20251 next_real = NULL_RTX;
20252 }
20253
20254 next_note = NEXT_INSN (loc_note);
20255 if (! next_note
20256 || INSN_DELETED_P (next_note)
20257 || GET_CODE (next_note) != NOTE
20258 || (NOTE_KIND (next_note) != NOTE_INSN_VAR_LOCATION
20259 && NOTE_KIND (next_note) != NOTE_INSN_CALL_ARG_LOCATION))
20260 next_note = NULL_RTX;
20261
20262 if (! next_real)
20263 next_real = next_real_insn (loc_note);
20264
20265 if (next_note)
20266 {
20267 expected_next_loc_note = next_note;
20268 cached_next_real_insn = next_real;
20269 }
20270 else
20271 cached_next_real_insn = NULL_RTX;
20272
20273 /* If there are no instructions which would be affected by this note,
20274 don't do anything. */
20275 if (var_loc_p
20276 && next_real == NULL_RTX
20277 && !NOTE_DURING_CALL_P (loc_note))
20278 return;
20279
20280 if (next_real == NULL_RTX)
20281 next_real = get_last_insn ();
20282
20283 /* If there were any real insns between note we processed last time
20284 and this note (or if it is the first note), clear
20285 last_{,postcall_}label so that they are not reused this time. */
20286 if (last_var_location_insn == NULL_RTX
20287 || last_var_location_insn != next_real
20288 || last_in_cold_section_p != in_cold_section_p)
20289 {
20290 last_label = NULL;
20291 last_postcall_label = NULL;
20292 }
20293
20294 if (var_loc_p)
20295 {
20296 decl = NOTE_VAR_LOCATION_DECL (loc_note);
20297 newloc = add_var_loc_to_decl (decl, loc_note,
20298 NOTE_DURING_CALL_P (loc_note)
20299 ? last_postcall_label : last_label);
20300 if (newloc == NULL)
20301 return;
20302 }
20303 else
20304 {
20305 decl = NULL_TREE;
20306 newloc = NULL;
20307 }
20308
20309 /* If there were no real insns between note we processed last time
20310 and this note, use the label we emitted last time. Otherwise
20311 create a new label and emit it. */
20312 if (last_label == NULL)
20313 {
20314 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
20315 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
20316 loclabel_num++;
20317 last_label = ggc_strdup (loclabel);
20318 }
20319
20320 if (!var_loc_p)
20321 {
20322 struct call_arg_loc_node *ca_loc
20323 = ggc_alloc_cleared_call_arg_loc_node ();
20324 rtx prev = prev_real_insn (loc_note), x;
20325 ca_loc->call_arg_loc_note = loc_note;
20326 ca_loc->next = NULL;
20327 ca_loc->label = last_label;
20328 gcc_assert (prev
20329 && (CALL_P (prev)
20330 || (NONJUMP_INSN_P (prev)
20331 && GET_CODE (PATTERN (prev)) == SEQUENCE
20332 && CALL_P (XVECEXP (PATTERN (prev), 0, 0)))));
20333 if (!CALL_P (prev))
20334 prev = XVECEXP (PATTERN (prev), 0, 0);
20335 ca_loc->tail_call_p = SIBLING_CALL_P (prev);
20336 x = PATTERN (prev);
20337 if (GET_CODE (x) == PARALLEL)
20338 x = XVECEXP (x, 0, 0);
20339 if (GET_CODE (x) == SET)
20340 x = SET_SRC (x);
20341 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
20342 {
20343 x = XEXP (XEXP (x, 0), 0);
20344 if (GET_CODE (x) == SYMBOL_REF
20345 && SYMBOL_REF_DECL (x)
20346 && TREE_CODE (SYMBOL_REF_DECL (x)) == FUNCTION_DECL)
20347 ca_loc->symbol_ref = x;
20348 }
20349 ca_loc->block = insn_scope (prev);
20350 if (call_arg_locations)
20351 call_arg_loc_last->next = ca_loc;
20352 else
20353 call_arg_locations = ca_loc;
20354 call_arg_loc_last = ca_loc;
20355 }
20356 else if (!NOTE_DURING_CALL_P (loc_note))
20357 newloc->label = last_label;
20358 else
20359 {
20360 if (!last_postcall_label)
20361 {
20362 sprintf (loclabel, "%s-1", last_label);
20363 last_postcall_label = ggc_strdup (loclabel);
20364 }
20365 newloc->label = last_postcall_label;
20366 }
20367
20368 last_var_location_insn = next_real;
20369 last_in_cold_section_p = in_cold_section_p;
20370 }
20371
20372 /* Note in one location list that text section has changed. */
20373
20374 static int
20375 var_location_switch_text_section_1 (void **slot, void *data ATTRIBUTE_UNUSED)
20376 {
20377 var_loc_list *list = (var_loc_list *) *slot;
20378 if (list->first)
20379 list->last_before_switch
20380 = list->last->next ? list->last->next : list->last;
20381 return 1;
20382 }
20383
20384 /* Note in all location lists that text section has changed. */
20385
20386 static void
20387 var_location_switch_text_section (void)
20388 {
20389 if (decl_loc_table == NULL)
20390 return;
20391
20392 htab_traverse (decl_loc_table, var_location_switch_text_section_1, NULL);
20393 }
20394
20395 /* Create a new line number table. */
20396
20397 static dw_line_info_table *
20398 new_line_info_table (void)
20399 {
20400 dw_line_info_table *table;
20401
20402 table = ggc_alloc_cleared_dw_line_info_table_struct ();
20403 table->file_num = 1;
20404 table->line_num = 1;
20405 table->is_stmt = DWARF_LINE_DEFAULT_IS_STMT_START;
20406
20407 return table;
20408 }
20409
20410 /* Lookup the "current" table into which we emit line info, so
20411 that we don't have to do it for every source line. */
20412
20413 static void
20414 set_cur_line_info_table (section *sec)
20415 {
20416 dw_line_info_table *table;
20417
20418 if (sec == text_section)
20419 table = text_section_line_info;
20420 else if (sec == cold_text_section)
20421 {
20422 table = cold_text_section_line_info;
20423 if (!table)
20424 {
20425 cold_text_section_line_info = table = new_line_info_table ();
20426 table->end_label = cold_end_label;
20427 }
20428 }
20429 else
20430 {
20431 const char *end_label;
20432
20433 if (flag_reorder_blocks_and_partition)
20434 {
20435 if (in_cold_section_p)
20436 end_label = crtl->subsections.cold_section_end_label;
20437 else
20438 end_label = crtl->subsections.hot_section_end_label;
20439 }
20440 else
20441 {
20442 char label[MAX_ARTIFICIAL_LABEL_BYTES];
20443 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
20444 current_function_funcdef_no);
20445 end_label = ggc_strdup (label);
20446 }
20447
20448 table = new_line_info_table ();
20449 table->end_label = end_label;
20450
20451 VEC_safe_push (dw_line_info_table_p, gc, separate_line_info, table);
20452 }
20453
20454 if (DWARF2_ASM_LINE_DEBUG_INFO)
20455 table->is_stmt = (cur_line_info_table
20456 ? cur_line_info_table->is_stmt
20457 : DWARF_LINE_DEFAULT_IS_STMT_START);
20458 cur_line_info_table = table;
20459 }
20460
20461
20462 /* We need to reset the locations at the beginning of each
20463 function. We can't do this in the end_function hook, because the
20464 declarations that use the locations won't have been output when
20465 that hook is called. Also compute have_multiple_function_sections here. */
20466
20467 static void
20468 dwarf2out_begin_function (tree fun)
20469 {
20470 section *sec = function_section (fun);
20471
20472 if (sec != text_section)
20473 have_multiple_function_sections = true;
20474
20475 if (flag_reorder_blocks_and_partition && !cold_text_section)
20476 {
20477 gcc_assert (current_function_decl == fun);
20478 cold_text_section = unlikely_text_section ();
20479 switch_to_section (cold_text_section);
20480 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
20481 switch_to_section (sec);
20482 }
20483
20484 dwarf2out_note_section_used ();
20485 call_site_count = 0;
20486 tail_call_site_count = 0;
20487
20488 set_cur_line_info_table (sec);
20489 }
20490
20491 /* Add OPCODE+VAL as an entry at the end of the opcode array in TABLE. */
20492
20493 static void
20494 push_dw_line_info_entry (dw_line_info_table *table,
20495 enum dw_line_info_opcode opcode, unsigned int val)
20496 {
20497 dw_line_info_entry e;
20498 e.opcode = opcode;
20499 e.val = val;
20500 VEC_safe_push (dw_line_info_entry, gc, table->entries, &e);
20501 }
20502
20503 /* Output a label to mark the beginning of a source code line entry
20504 and record information relating to this source line, in
20505 'line_info_table' for later output of the .debug_line section. */
20506 /* ??? The discriminator parameter ought to be unsigned. */
20507
20508 static void
20509 dwarf2out_source_line (unsigned int line, const char *filename,
20510 int discriminator, bool is_stmt)
20511 {
20512 unsigned int file_num;
20513 dw_line_info_table *table;
20514
20515 if (debug_info_level < DINFO_LEVEL_NORMAL || line == 0)
20516 return;
20517
20518 /* The discriminator column was added in dwarf4. Simplify the below
20519 by simply removing it if we're not supposed to output it. */
20520 if (dwarf_version < 4 && dwarf_strict)
20521 discriminator = 0;
20522
20523 table = cur_line_info_table;
20524 file_num = maybe_emit_file (lookup_filename (filename));
20525
20526 /* ??? TODO: Elide duplicate line number entries. Traditionally,
20527 the debugger has used the second (possibly duplicate) line number
20528 at the beginning of the function to mark the end of the prologue.
20529 We could eliminate any other duplicates within the function. For
20530 Dwarf3, we ought to include the DW_LNS_set_prologue_end mark in
20531 that second line number entry. */
20532 /* Recall that this end-of-prologue indication is *not* the same thing
20533 as the end_prologue debug hook. The NOTE_INSN_PROLOGUE_END note,
20534 to which the hook corresponds, follows the last insn that was
20535 emitted by gen_prologue. What we need is to preceed the first insn
20536 that had been emitted after NOTE_INSN_FUNCTION_BEG, i.e. the first
20537 insn that corresponds to something the user wrote. These may be
20538 very different locations once scheduling is enabled. */
20539
20540 if (0 && file_num == table->file_num
20541 && line == table->line_num
20542 && discriminator == table->discrim_num
20543 && is_stmt == table->is_stmt)
20544 return;
20545
20546 switch_to_section (current_function_section ());
20547
20548 /* If requested, emit something human-readable. */
20549 if (flag_debug_asm)
20550 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START, filename, line);
20551
20552 if (DWARF2_ASM_LINE_DEBUG_INFO)
20553 {
20554 /* Emit the .loc directive understood by GNU as. */
20555 /* "\t.loc %u %u 0 is_stmt %u discriminator %u",
20556 file_num, line, is_stmt, discriminator */
20557 fputs ("\t.loc ", asm_out_file);
20558 fprint_ul (asm_out_file, file_num);
20559 putc (' ', asm_out_file);
20560 fprint_ul (asm_out_file, line);
20561 putc (' ', asm_out_file);
20562 putc ('0', asm_out_file);
20563
20564 if (is_stmt != table->is_stmt)
20565 {
20566 fputs (" is_stmt ", asm_out_file);
20567 putc (is_stmt ? '1' : '0', asm_out_file);
20568 }
20569 if (SUPPORTS_DISCRIMINATOR && discriminator != 0)
20570 {
20571 gcc_assert (discriminator > 0);
20572 fputs (" discriminator ", asm_out_file);
20573 fprint_ul (asm_out_file, (unsigned long) discriminator);
20574 }
20575 putc ('\n', asm_out_file);
20576 }
20577 else
20578 {
20579 unsigned int label_num = ++line_info_label_num;
20580
20581 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL, label_num);
20582
20583 push_dw_line_info_entry (table, LI_set_address, label_num);
20584 if (file_num != table->file_num)
20585 push_dw_line_info_entry (table, LI_set_file, file_num);
20586 if (discriminator != table->discrim_num)
20587 push_dw_line_info_entry (table, LI_set_discriminator, discriminator);
20588 if (is_stmt != table->is_stmt)
20589 push_dw_line_info_entry (table, LI_negate_stmt, 0);
20590 push_dw_line_info_entry (table, LI_set_line, line);
20591 }
20592
20593 table->file_num = file_num;
20594 table->line_num = line;
20595 table->discrim_num = discriminator;
20596 table->is_stmt = is_stmt;
20597 table->in_use = true;
20598 }
20599
20600 /* Record the beginning of a new source file. */
20601
20602 static void
20603 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
20604 {
20605 if (flag_eliminate_dwarf2_dups && ! use_debug_types)
20606 {
20607 /* Record the beginning of the file for break_out_includes. */
20608 dw_die_ref bincl_die;
20609
20610 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die (), NULL);
20611 add_AT_string (bincl_die, DW_AT_name, remap_debug_filename (filename));
20612 }
20613
20614 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
20615 {
20616 macinfo_entry e;
20617 e.code = DW_MACINFO_start_file;
20618 e.lineno = lineno;
20619 e.info = ggc_strdup (filename);
20620 VEC_safe_push (macinfo_entry, gc, macinfo_table, &e);
20621 }
20622 }
20623
20624 /* Record the end of a source file. */
20625
20626 static void
20627 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
20628 {
20629 if (flag_eliminate_dwarf2_dups && ! use_debug_types)
20630 /* Record the end of the file for break_out_includes. */
20631 new_die (DW_TAG_GNU_EINCL, comp_unit_die (), NULL);
20632
20633 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
20634 {
20635 macinfo_entry e;
20636 e.code = DW_MACINFO_end_file;
20637 e.lineno = lineno;
20638 e.info = NULL;
20639 VEC_safe_push (macinfo_entry, gc, macinfo_table, &e);
20640 }
20641 }
20642
20643 /* Called from debug_define in toplev.c. The `buffer' parameter contains
20644 the tail part of the directive line, i.e. the part which is past the
20645 initial whitespace, #, whitespace, directive-name, whitespace part. */
20646
20647 static void
20648 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
20649 const char *buffer ATTRIBUTE_UNUSED)
20650 {
20651 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
20652 {
20653 macinfo_entry e;
20654 /* Insert a dummy first entry to be able to optimize the whole
20655 predefined macro block using DW_MACRO_GNU_transparent_include. */
20656 if (VEC_empty (macinfo_entry, macinfo_table) && lineno == 0)
20657 {
20658 e.code = 0;
20659 e.lineno = 0;
20660 e.info = NULL;
20661 VEC_safe_push (macinfo_entry, gc, macinfo_table, &e);
20662 }
20663 e.code = DW_MACINFO_define;
20664 e.lineno = lineno;
20665 e.info = ggc_strdup (buffer);
20666 VEC_safe_push (macinfo_entry, gc, macinfo_table, &e);
20667 }
20668 }
20669
20670 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
20671 the tail part of the directive line, i.e. the part which is past the
20672 initial whitespace, #, whitespace, directive-name, whitespace part. */
20673
20674 static void
20675 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
20676 const char *buffer ATTRIBUTE_UNUSED)
20677 {
20678 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
20679 {
20680 macinfo_entry e;
20681 /* Insert a dummy first entry to be able to optimize the whole
20682 predefined macro block using DW_MACRO_GNU_transparent_include. */
20683 if (VEC_empty (macinfo_entry, macinfo_table) && lineno == 0)
20684 {
20685 e.code = 0;
20686 e.lineno = 0;
20687 e.info = NULL;
20688 VEC_safe_push (macinfo_entry, gc, macinfo_table, &e);
20689 }
20690 e.code = DW_MACINFO_undef;
20691 e.lineno = lineno;
20692 e.info = ggc_strdup (buffer);
20693 VEC_safe_push (macinfo_entry, gc, macinfo_table, &e);
20694 }
20695 }
20696
20697 /* Routines to manipulate hash table of CUs. */
20698
20699 static hashval_t
20700 htab_macinfo_hash (const void *of)
20701 {
20702 const macinfo_entry *const entry =
20703 (const macinfo_entry *) of;
20704
20705 return htab_hash_string (entry->info);
20706 }
20707
20708 static int
20709 htab_macinfo_eq (const void *of1, const void *of2)
20710 {
20711 const macinfo_entry *const entry1 = (const macinfo_entry *) of1;
20712 const macinfo_entry *const entry2 = (const macinfo_entry *) of2;
20713
20714 return !strcmp (entry1->info, entry2->info);
20715 }
20716
20717 /* Output a single .debug_macinfo entry. */
20718
20719 static void
20720 output_macinfo_op (macinfo_entry *ref)
20721 {
20722 int file_num;
20723 size_t len;
20724 struct indirect_string_node *node;
20725 char label[MAX_ARTIFICIAL_LABEL_BYTES];
20726 struct dwarf_file_data *fd;
20727
20728 switch (ref->code)
20729 {
20730 case DW_MACINFO_start_file:
20731 fd = lookup_filename (ref->info);
20732 file_num = maybe_emit_file (fd);
20733 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
20734 dw2_asm_output_data_uleb128 (ref->lineno,
20735 "Included from line number %lu",
20736 (unsigned long) ref->lineno);
20737 dw2_asm_output_data_uleb128 (file_num, "file %s", ref->info);
20738 break;
20739 case DW_MACINFO_end_file:
20740 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
20741 break;
20742 case DW_MACINFO_define:
20743 case DW_MACINFO_undef:
20744 len = strlen (ref->info) + 1;
20745 if (!dwarf_strict
20746 && len > DWARF_OFFSET_SIZE
20747 && !DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
20748 && (debug_str_section->common.flags & SECTION_MERGE) != 0)
20749 {
20750 ref->code = ref->code == DW_MACINFO_define
20751 ? DW_MACRO_GNU_define_indirect
20752 : DW_MACRO_GNU_undef_indirect;
20753 output_macinfo_op (ref);
20754 return;
20755 }
20756 dw2_asm_output_data (1, ref->code,
20757 ref->code == DW_MACINFO_define
20758 ? "Define macro" : "Undefine macro");
20759 dw2_asm_output_data_uleb128 (ref->lineno, "At line number %lu",
20760 (unsigned long) ref->lineno);
20761 dw2_asm_output_nstring (ref->info, -1, "The macro");
20762 break;
20763 case DW_MACRO_GNU_define_indirect:
20764 case DW_MACRO_GNU_undef_indirect:
20765 node = find_AT_string (ref->info);
20766 if (node->form != DW_FORM_strp)
20767 {
20768 char label[32];
20769 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
20770 ++dw2_string_counter;
20771 node->label = xstrdup (label);
20772 node->form = DW_FORM_strp;
20773 }
20774 dw2_asm_output_data (1, ref->code,
20775 ref->code == DW_MACRO_GNU_define_indirect
20776 ? "Define macro indirect"
20777 : "Undefine macro indirect");
20778 dw2_asm_output_data_uleb128 (ref->lineno, "At line number %lu",
20779 (unsigned long) ref->lineno);
20780 dw2_asm_output_offset (DWARF_OFFSET_SIZE, node->label,
20781 debug_str_section, "The macro: \"%s\"",
20782 ref->info);
20783 break;
20784 case DW_MACRO_GNU_transparent_include:
20785 dw2_asm_output_data (1, ref->code, "Transparent include");
20786 ASM_GENERATE_INTERNAL_LABEL (label,
20787 DEBUG_MACRO_SECTION_LABEL, ref->lineno);
20788 dw2_asm_output_offset (DWARF_OFFSET_SIZE, label, NULL, NULL);
20789 break;
20790 default:
20791 fprintf (asm_out_file, "%s unrecognized macinfo code %lu\n",
20792 ASM_COMMENT_START, (unsigned long) ref->code);
20793 break;
20794 }
20795 }
20796
20797 /* Attempt to make a sequence of define/undef macinfo ops shareable with
20798 other compilation unit .debug_macinfo sections. IDX is the first
20799 index of a define/undef, return the number of ops that should be
20800 emitted in a comdat .debug_macinfo section and emit
20801 a DW_MACRO_GNU_transparent_include entry referencing it.
20802 If the define/undef entry should be emitted normally, return 0. */
20803
20804 static unsigned
20805 optimize_macinfo_range (unsigned int idx, VEC (macinfo_entry, gc) *files,
20806 htab_t *macinfo_htab)
20807 {
20808 macinfo_entry *first, *second, *cur, *inc;
20809 char linebuf[sizeof (HOST_WIDE_INT) * 3 + 1];
20810 unsigned char checksum[16];
20811 struct md5_ctx ctx;
20812 char *grp_name, *tail;
20813 const char *base;
20814 unsigned int i, count, encoded_filename_len, linebuf_len;
20815 void **slot;
20816
20817 first = VEC_index (macinfo_entry, macinfo_table, idx);
20818 second = VEC_index (macinfo_entry, macinfo_table, idx + 1);
20819
20820 /* Optimize only if there are at least two consecutive define/undef ops,
20821 and either all of them are before first DW_MACINFO_start_file
20822 with lineno 0 (i.e. predefined macro block), or all of them are
20823 in some included header file. */
20824 if (second->code != DW_MACINFO_define && second->code != DW_MACINFO_undef)
20825 return 0;
20826 if (VEC_empty (macinfo_entry, files))
20827 {
20828 if (first->lineno != 0 || second->lineno != 0)
20829 return 0;
20830 }
20831 else if (first->lineno == 0)
20832 return 0;
20833
20834 /* Find the last define/undef entry that can be grouped together
20835 with first and at the same time compute md5 checksum of their
20836 codes, linenumbers and strings. */
20837 md5_init_ctx (&ctx);
20838 for (i = idx; VEC_iterate (macinfo_entry, macinfo_table, i, cur); i++)
20839 if (cur->code != DW_MACINFO_define && cur->code != DW_MACINFO_undef)
20840 break;
20841 else if (first->lineno == 0 && cur->lineno != 0)
20842 break;
20843 else
20844 {
20845 unsigned char code = cur->code;
20846 md5_process_bytes (&code, 1, &ctx);
20847 checksum_uleb128 (cur->lineno, &ctx);
20848 md5_process_bytes (cur->info, strlen (cur->info) + 1, &ctx);
20849 }
20850 md5_finish_ctx (&ctx, checksum);
20851 count = i - idx;
20852
20853 /* From the containing include filename (if any) pick up just
20854 usable characters from its basename. */
20855 if (first->lineno == 0)
20856 base = "";
20857 else
20858 base = lbasename (VEC_last (macinfo_entry, files)->info);
20859 for (encoded_filename_len = 0, i = 0; base[i]; i++)
20860 if (ISIDNUM (base[i]) || base[i] == '.')
20861 encoded_filename_len++;
20862 /* Count . at the end. */
20863 if (encoded_filename_len)
20864 encoded_filename_len++;
20865
20866 sprintf (linebuf, HOST_WIDE_INT_PRINT_UNSIGNED, first->lineno);
20867 linebuf_len = strlen (linebuf);
20868
20869 /* The group name format is: wmN.[<encoded filename>.]<lineno>.<md5sum> */
20870 grp_name = XALLOCAVEC (char, 4 + encoded_filename_len + linebuf_len + 1
20871 + 16 * 2 + 1);
20872 memcpy (grp_name, DWARF_OFFSET_SIZE == 4 ? "wm4." : "wm8.", 4);
20873 tail = grp_name + 4;
20874 if (encoded_filename_len)
20875 {
20876 for (i = 0; base[i]; i++)
20877 if (ISIDNUM (base[i]) || base[i] == '.')
20878 *tail++ = base[i];
20879 *tail++ = '.';
20880 }
20881 memcpy (tail, linebuf, linebuf_len);
20882 tail += linebuf_len;
20883 *tail++ = '.';
20884 for (i = 0; i < 16; i++)
20885 sprintf (tail + i * 2, "%02x", checksum[i] & 0xff);
20886
20887 /* Construct a macinfo_entry for DW_MACRO_GNU_transparent_include
20888 in the empty vector entry before the first define/undef. */
20889 inc = VEC_index (macinfo_entry, macinfo_table, idx - 1);
20890 inc->code = DW_MACRO_GNU_transparent_include;
20891 inc->lineno = 0;
20892 inc->info = ggc_strdup (grp_name);
20893 if (*macinfo_htab == NULL)
20894 *macinfo_htab = htab_create (10, htab_macinfo_hash, htab_macinfo_eq, NULL);
20895 /* Avoid emitting duplicates. */
20896 slot = htab_find_slot (*macinfo_htab, inc, INSERT);
20897 if (*slot != NULL)
20898 {
20899 inc->code = 0;
20900 inc->info = NULL;
20901 /* If such an entry has been used before, just emit
20902 a DW_MACRO_GNU_transparent_include op. */
20903 inc = (macinfo_entry *) *slot;
20904 output_macinfo_op (inc);
20905 /* And clear all macinfo_entry in the range to avoid emitting them
20906 in the second pass. */
20907 for (i = idx;
20908 VEC_iterate (macinfo_entry, macinfo_table, i, cur)
20909 && i < idx + count;
20910 i++)
20911 {
20912 cur->code = 0;
20913 cur->info = NULL;
20914 }
20915 }
20916 else
20917 {
20918 *slot = inc;
20919 inc->lineno = htab_elements (*macinfo_htab);
20920 output_macinfo_op (inc);
20921 }
20922 return count;
20923 }
20924
20925 /* Output macinfo section(s). */
20926
20927 static void
20928 output_macinfo (void)
20929 {
20930 unsigned i;
20931 unsigned long length = VEC_length (macinfo_entry, macinfo_table);
20932 macinfo_entry *ref;
20933 VEC (macinfo_entry, gc) *files = NULL;
20934 htab_t macinfo_htab = NULL;
20935
20936 if (! length)
20937 return;
20938
20939 /* output_macinfo* uses these interchangeably. */
20940 gcc_assert ((int) DW_MACINFO_define == (int) DW_MACRO_GNU_define
20941 && (int) DW_MACINFO_undef == (int) DW_MACRO_GNU_undef
20942 && (int) DW_MACINFO_start_file == (int) DW_MACRO_GNU_start_file
20943 && (int) DW_MACINFO_end_file == (int) DW_MACRO_GNU_end_file);
20944
20945 /* For .debug_macro emit the section header. */
20946 if (!dwarf_strict)
20947 {
20948 dw2_asm_output_data (2, 4, "DWARF macro version number");
20949 if (DWARF_OFFSET_SIZE == 8)
20950 dw2_asm_output_data (1, 3, "Flags: 64-bit, lineptr present");
20951 else
20952 dw2_asm_output_data (1, 2, "Flags: 32-bit, lineptr present");
20953 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_line_section_label,
20954 debug_line_section, NULL);
20955 }
20956
20957 /* In the first loop, it emits the primary .debug_macinfo section
20958 and after each emitted op the macinfo_entry is cleared.
20959 If a longer range of define/undef ops can be optimized using
20960 DW_MACRO_GNU_transparent_include, the
20961 DW_MACRO_GNU_transparent_include op is emitted and kept in
20962 the vector before the first define/undef in the range and the
20963 whole range of define/undef ops is not emitted and kept. */
20964 for (i = 0; VEC_iterate (macinfo_entry, macinfo_table, i, ref); i++)
20965 {
20966 switch (ref->code)
20967 {
20968 case DW_MACINFO_start_file:
20969 VEC_safe_push (macinfo_entry, gc, files, ref);
20970 break;
20971 case DW_MACINFO_end_file:
20972 if (!VEC_empty (macinfo_entry, files))
20973 VEC_pop (macinfo_entry, files);
20974 break;
20975 case DW_MACINFO_define:
20976 case DW_MACINFO_undef:
20977 if (!dwarf_strict
20978 && HAVE_COMDAT_GROUP
20979 && VEC_length (macinfo_entry, files) != 1
20980 && i > 0
20981 && i + 1 < length
20982 && VEC_index (macinfo_entry, macinfo_table, i - 1)->code == 0)
20983 {
20984 unsigned count = optimize_macinfo_range (i, files, &macinfo_htab);
20985 if (count)
20986 {
20987 i += count - 1;
20988 continue;
20989 }
20990 }
20991 break;
20992 case 0:
20993 /* A dummy entry may be inserted at the beginning to be able
20994 to optimize the whole block of predefined macros. */
20995 if (i == 0)
20996 continue;
20997 default:
20998 break;
20999 }
21000 output_macinfo_op (ref);
21001 ref->info = NULL;
21002 ref->code = 0;
21003 }
21004
21005 if (macinfo_htab == NULL)
21006 return;
21007
21008 htab_delete (macinfo_htab);
21009
21010 /* If any DW_MACRO_GNU_transparent_include were used, on those
21011 DW_MACRO_GNU_transparent_include entries terminate the
21012 current chain and switch to a new comdat .debug_macinfo
21013 section and emit the define/undef entries within it. */
21014 for (i = 0; VEC_iterate (macinfo_entry, macinfo_table, i, ref); i++)
21015 switch (ref->code)
21016 {
21017 case 0:
21018 continue;
21019 case DW_MACRO_GNU_transparent_include:
21020 {
21021 char label[MAX_ARTIFICIAL_LABEL_BYTES];
21022 tree comdat_key = get_identifier (ref->info);
21023 /* Terminate the previous .debug_macinfo section. */
21024 dw2_asm_output_data (1, 0, "End compilation unit");
21025 targetm.asm_out.named_section (DEBUG_MACRO_SECTION,
21026 SECTION_DEBUG
21027 | SECTION_LINKONCE,
21028 comdat_key);
21029 ASM_GENERATE_INTERNAL_LABEL (label,
21030 DEBUG_MACRO_SECTION_LABEL,
21031 ref->lineno);
21032 ASM_OUTPUT_LABEL (asm_out_file, label);
21033 ref->code = 0;
21034 ref->info = NULL;
21035 dw2_asm_output_data (2, 4, "DWARF macro version number");
21036 if (DWARF_OFFSET_SIZE == 8)
21037 dw2_asm_output_data (1, 1, "Flags: 64-bit");
21038 else
21039 dw2_asm_output_data (1, 0, "Flags: 32-bit");
21040 }
21041 break;
21042 case DW_MACINFO_define:
21043 case DW_MACINFO_undef:
21044 output_macinfo_op (ref);
21045 ref->code = 0;
21046 ref->info = NULL;
21047 break;
21048 default:
21049 gcc_unreachable ();
21050 }
21051 }
21052
21053 /* Set up for Dwarf output at the start of compilation. */
21054
21055 static void
21056 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
21057 {
21058 /* Allocate the file_table. */
21059 file_table = htab_create_ggc (50, file_table_hash,
21060 file_table_eq, NULL);
21061
21062 /* Allocate the decl_die_table. */
21063 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
21064 decl_die_table_eq, NULL);
21065
21066 /* Allocate the decl_loc_table. */
21067 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
21068 decl_loc_table_eq, NULL);
21069
21070 /* Allocate the cached_dw_loc_list_table. */
21071 cached_dw_loc_list_table
21072 = htab_create_ggc (10, cached_dw_loc_list_table_hash,
21073 cached_dw_loc_list_table_eq, NULL);
21074
21075 /* Allocate the initial hunk of the decl_scope_table. */
21076 decl_scope_table = VEC_alloc (tree, gc, 256);
21077
21078 /* Allocate the initial hunk of the abbrev_die_table. */
21079 abbrev_die_table = ggc_alloc_cleared_vec_dw_die_ref
21080 (ABBREV_DIE_TABLE_INCREMENT);
21081 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
21082 /* Zero-th entry is allocated, but unused. */
21083 abbrev_die_table_in_use = 1;
21084
21085 /* Allocate the pubtypes and pubnames vectors. */
21086 pubname_table = VEC_alloc (pubname_entry, gc, 32);
21087 pubtype_table = VEC_alloc (pubname_entry, gc, 32);
21088
21089 incomplete_types = VEC_alloc (tree, gc, 64);
21090
21091 used_rtx_array = VEC_alloc (rtx, gc, 32);
21092
21093 debug_info_section = get_section (DEBUG_INFO_SECTION,
21094 SECTION_DEBUG, NULL);
21095 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
21096 SECTION_DEBUG, NULL);
21097 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
21098 SECTION_DEBUG, NULL);
21099 debug_macinfo_section = get_section (dwarf_strict
21100 ? DEBUG_MACINFO_SECTION
21101 : DEBUG_MACRO_SECTION,
21102 SECTION_DEBUG, NULL);
21103 debug_line_section = get_section (DEBUG_LINE_SECTION,
21104 SECTION_DEBUG, NULL);
21105 debug_loc_section = get_section (DEBUG_LOC_SECTION,
21106 SECTION_DEBUG, NULL);
21107 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
21108 SECTION_DEBUG, NULL);
21109 debug_pubtypes_section = get_section (DEBUG_PUBTYPES_SECTION,
21110 SECTION_DEBUG, NULL);
21111 debug_str_section = get_section (DEBUG_STR_SECTION,
21112 DEBUG_STR_SECTION_FLAGS, NULL);
21113 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
21114 SECTION_DEBUG, NULL);
21115 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
21116 SECTION_DEBUG, NULL);
21117
21118 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
21119 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
21120 DEBUG_ABBREV_SECTION_LABEL, 0);
21121 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
21122 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
21123 COLD_TEXT_SECTION_LABEL, 0);
21124 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
21125
21126 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
21127 DEBUG_INFO_SECTION_LABEL, 0);
21128 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
21129 DEBUG_LINE_SECTION_LABEL, 0);
21130 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
21131 DEBUG_RANGES_SECTION_LABEL, 0);
21132 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
21133 dwarf_strict
21134 ? DEBUG_MACINFO_SECTION_LABEL
21135 : DEBUG_MACRO_SECTION_LABEL, 0);
21136
21137 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
21138 macinfo_table = VEC_alloc (macinfo_entry, gc, 64);
21139
21140 switch_to_section (text_section);
21141 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
21142
21143 /* Make sure the line number table for .text always exists. */
21144 text_section_line_info = new_line_info_table ();
21145 text_section_line_info->end_label = text_end_label;
21146 }
21147
21148 /* Called before cgraph_optimize starts outputtting functions, variables
21149 and toplevel asms into assembly. */
21150
21151 static void
21152 dwarf2out_assembly_start (void)
21153 {
21154 if (HAVE_GAS_CFI_SECTIONS_DIRECTIVE
21155 && dwarf2out_do_cfi_asm ()
21156 && (!(flag_unwind_tables || flag_exceptions)
21157 || targetm_common.except_unwind_info (&global_options) != UI_DWARF2))
21158 fprintf (asm_out_file, "\t.cfi_sections\t.debug_frame\n");
21159 }
21160
21161 /* A helper function for dwarf2out_finish called through
21162 htab_traverse. Emit one queued .debug_str string. */
21163
21164 static int
21165 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
21166 {
21167 struct indirect_string_node *node = (struct indirect_string_node *) *h;
21168
21169 if (node->form == DW_FORM_strp)
21170 {
21171 switch_to_section (debug_str_section);
21172 ASM_OUTPUT_LABEL (asm_out_file, node->label);
21173 assemble_string (node->str, strlen (node->str) + 1);
21174 }
21175
21176 return 1;
21177 }
21178
21179 #if ENABLE_ASSERT_CHECKING
21180 /* Verify that all marks are clear. */
21181
21182 static void
21183 verify_marks_clear (dw_die_ref die)
21184 {
21185 dw_die_ref c;
21186
21187 gcc_assert (! die->die_mark);
21188 FOR_EACH_CHILD (die, c, verify_marks_clear (c));
21189 }
21190 #endif /* ENABLE_ASSERT_CHECKING */
21191
21192 /* Clear the marks for a die and its children.
21193 Be cool if the mark isn't set. */
21194
21195 static void
21196 prune_unmark_dies (dw_die_ref die)
21197 {
21198 dw_die_ref c;
21199
21200 if (die->die_mark)
21201 die->die_mark = 0;
21202 FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
21203 }
21204
21205 /* Given DIE that we're marking as used, find any other dies
21206 it references as attributes and mark them as used. */
21207
21208 static void
21209 prune_unused_types_walk_attribs (dw_die_ref die)
21210 {
21211 dw_attr_ref a;
21212 unsigned ix;
21213
21214 FOR_EACH_VEC_ELT (dw_attr_node, die->die_attr, ix, a)
21215 {
21216 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
21217 {
21218 /* A reference to another DIE.
21219 Make sure that it will get emitted.
21220 If it was broken out into a comdat group, don't follow it. */
21221 if (! use_debug_types
21222 || a->dw_attr == DW_AT_specification
21223 || a->dw_attr_val.v.val_die_ref.die->die_id.die_type_node == NULL)
21224 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
21225 }
21226 /* Set the string's refcount to 0 so that prune_unused_types_mark
21227 accounts properly for it. */
21228 if (AT_class (a) == dw_val_class_str)
21229 a->dw_attr_val.v.val_str->refcount = 0;
21230 }
21231 }
21232
21233 /* Mark the generic parameters and arguments children DIEs of DIE. */
21234
21235 static void
21236 prune_unused_types_mark_generic_parms_dies (dw_die_ref die)
21237 {
21238 dw_die_ref c;
21239
21240 if (die == NULL || die->die_child == NULL)
21241 return;
21242 c = die->die_child;
21243 do
21244 {
21245 switch (c->die_tag)
21246 {
21247 case DW_TAG_template_type_param:
21248 case DW_TAG_template_value_param:
21249 case DW_TAG_GNU_template_template_param:
21250 case DW_TAG_GNU_template_parameter_pack:
21251 prune_unused_types_mark (c, 1);
21252 break;
21253 default:
21254 break;
21255 }
21256 c = c->die_sib;
21257 } while (c && c != die->die_child);
21258 }
21259
21260 /* Mark DIE as being used. If DOKIDS is true, then walk down
21261 to DIE's children. */
21262
21263 static void
21264 prune_unused_types_mark (dw_die_ref die, int dokids)
21265 {
21266 dw_die_ref c;
21267
21268 if (die->die_mark == 0)
21269 {
21270 /* We haven't done this node yet. Mark it as used. */
21271 die->die_mark = 1;
21272 /* If this is the DIE of a generic type instantiation,
21273 mark the children DIEs that describe its generic parms and
21274 args. */
21275 prune_unused_types_mark_generic_parms_dies (die);
21276
21277 /* We also have to mark its parents as used.
21278 (But we don't want to mark our parents' kids due to this.) */
21279 if (die->die_parent)
21280 prune_unused_types_mark (die->die_parent, 0);
21281
21282 /* Mark any referenced nodes. */
21283 prune_unused_types_walk_attribs (die);
21284
21285 /* If this node is a specification,
21286 also mark the definition, if it exists. */
21287 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
21288 prune_unused_types_mark (die->die_definition, 1);
21289 }
21290
21291 if (dokids && die->die_mark != 2)
21292 {
21293 /* We need to walk the children, but haven't done so yet.
21294 Remember that we've walked the kids. */
21295 die->die_mark = 2;
21296
21297 /* If this is an array type, we need to make sure our
21298 kids get marked, even if they're types. If we're
21299 breaking out types into comdat sections, do this
21300 for all type definitions. */
21301 if (die->die_tag == DW_TAG_array_type
21302 || (use_debug_types
21303 && is_type_die (die) && ! is_declaration_die (die)))
21304 FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
21305 else
21306 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
21307 }
21308 }
21309
21310 /* For local classes, look if any static member functions were emitted
21311 and if so, mark them. */
21312
21313 static void
21314 prune_unused_types_walk_local_classes (dw_die_ref die)
21315 {
21316 dw_die_ref c;
21317
21318 if (die->die_mark == 2)
21319 return;
21320
21321 switch (die->die_tag)
21322 {
21323 case DW_TAG_structure_type:
21324 case DW_TAG_union_type:
21325 case DW_TAG_class_type:
21326 break;
21327
21328 case DW_TAG_subprogram:
21329 if (!get_AT_flag (die, DW_AT_declaration)
21330 || die->die_definition != NULL)
21331 prune_unused_types_mark (die, 1);
21332 return;
21333
21334 default:
21335 return;
21336 }
21337
21338 /* Mark children. */
21339 FOR_EACH_CHILD (die, c, prune_unused_types_walk_local_classes (c));
21340 }
21341
21342 /* Walk the tree DIE and mark types that we actually use. */
21343
21344 static void
21345 prune_unused_types_walk (dw_die_ref die)
21346 {
21347 dw_die_ref c;
21348
21349 /* Don't do anything if this node is already marked and
21350 children have been marked as well. */
21351 if (die->die_mark == 2)
21352 return;
21353
21354 switch (die->die_tag)
21355 {
21356 case DW_TAG_structure_type:
21357 case DW_TAG_union_type:
21358 case DW_TAG_class_type:
21359 if (die->die_perennial_p)
21360 break;
21361
21362 for (c = die->die_parent; c; c = c->die_parent)
21363 if (c->die_tag == DW_TAG_subprogram)
21364 break;
21365
21366 /* Finding used static member functions inside of classes
21367 is needed just for local classes, because for other classes
21368 static member function DIEs with DW_AT_specification
21369 are emitted outside of the DW_TAG_*_type. If we ever change
21370 it, we'd need to call this even for non-local classes. */
21371 if (c)
21372 prune_unused_types_walk_local_classes (die);
21373
21374 /* It's a type node --- don't mark it. */
21375 return;
21376
21377 case DW_TAG_const_type:
21378 case DW_TAG_packed_type:
21379 case DW_TAG_pointer_type:
21380 case DW_TAG_reference_type:
21381 case DW_TAG_rvalue_reference_type:
21382 case DW_TAG_volatile_type:
21383 case DW_TAG_typedef:
21384 case DW_TAG_array_type:
21385 case DW_TAG_interface_type:
21386 case DW_TAG_friend:
21387 case DW_TAG_variant_part:
21388 case DW_TAG_enumeration_type:
21389 case DW_TAG_subroutine_type:
21390 case DW_TAG_string_type:
21391 case DW_TAG_set_type:
21392 case DW_TAG_subrange_type:
21393 case DW_TAG_ptr_to_member_type:
21394 case DW_TAG_file_type:
21395 if (die->die_perennial_p)
21396 break;
21397
21398 /* It's a type node --- don't mark it. */
21399 return;
21400
21401 default:
21402 /* Mark everything else. */
21403 break;
21404 }
21405
21406 if (die->die_mark == 0)
21407 {
21408 die->die_mark = 1;
21409
21410 /* Now, mark any dies referenced from here. */
21411 prune_unused_types_walk_attribs (die);
21412 }
21413
21414 die->die_mark = 2;
21415
21416 /* Mark children. */
21417 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
21418 }
21419
21420 /* Increment the string counts on strings referred to from DIE's
21421 attributes. */
21422
21423 static void
21424 prune_unused_types_update_strings (dw_die_ref die)
21425 {
21426 dw_attr_ref a;
21427 unsigned ix;
21428
21429 FOR_EACH_VEC_ELT (dw_attr_node, die->die_attr, ix, a)
21430 if (AT_class (a) == dw_val_class_str)
21431 {
21432 struct indirect_string_node *s = a->dw_attr_val.v.val_str;
21433 s->refcount++;
21434 /* Avoid unnecessarily putting strings that are used less than
21435 twice in the hash table. */
21436 if (s->refcount
21437 == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
21438 {
21439 void ** slot;
21440 slot = htab_find_slot_with_hash (debug_str_hash, s->str,
21441 htab_hash_string (s->str),
21442 INSERT);
21443 gcc_assert (*slot == NULL);
21444 *slot = s;
21445 }
21446 }
21447 }
21448
21449 /* Remove from the tree DIE any dies that aren't marked. */
21450
21451 static void
21452 prune_unused_types_prune (dw_die_ref die)
21453 {
21454 dw_die_ref c;
21455
21456 gcc_assert (die->die_mark);
21457 prune_unused_types_update_strings (die);
21458
21459 if (! die->die_child)
21460 return;
21461
21462 c = die->die_child;
21463 do {
21464 dw_die_ref prev = c;
21465 for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
21466 if (c == die->die_child)
21467 {
21468 /* No marked children between 'prev' and the end of the list. */
21469 if (prev == c)
21470 /* No marked children at all. */
21471 die->die_child = NULL;
21472 else
21473 {
21474 prev->die_sib = c->die_sib;
21475 die->die_child = prev;
21476 }
21477 return;
21478 }
21479
21480 if (c != prev->die_sib)
21481 prev->die_sib = c;
21482 prune_unused_types_prune (c);
21483 } while (c != die->die_child);
21484 }
21485
21486 /* Remove dies representing declarations that we never use. */
21487
21488 static void
21489 prune_unused_types (void)
21490 {
21491 unsigned int i;
21492 limbo_die_node *node;
21493 comdat_type_node *ctnode;
21494 pubname_ref pub;
21495 dw_die_ref base_type;
21496
21497 #if ENABLE_ASSERT_CHECKING
21498 /* All the marks should already be clear. */
21499 verify_marks_clear (comp_unit_die ());
21500 for (node = limbo_die_list; node; node = node->next)
21501 verify_marks_clear (node->die);
21502 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
21503 verify_marks_clear (ctnode->root_die);
21504 #endif /* ENABLE_ASSERT_CHECKING */
21505
21506 /* Mark types that are used in global variables. */
21507 premark_types_used_by_global_vars ();
21508
21509 /* Set the mark on nodes that are actually used. */
21510 prune_unused_types_walk (comp_unit_die ());
21511 for (node = limbo_die_list; node; node = node->next)
21512 prune_unused_types_walk (node->die);
21513 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
21514 {
21515 prune_unused_types_walk (ctnode->root_die);
21516 prune_unused_types_mark (ctnode->type_die, 1);
21517 }
21518
21519 /* Also set the mark on nodes referenced from the
21520 pubname_table. */
21521 FOR_EACH_VEC_ELT (pubname_entry, pubname_table, i, pub)
21522 prune_unused_types_mark (pub->die, 1);
21523 for (i = 0; VEC_iterate (dw_die_ref, base_types, i, base_type); i++)
21524 prune_unused_types_mark (base_type, 1);
21525
21526 if (debug_str_hash)
21527 htab_empty (debug_str_hash);
21528 prune_unused_types_prune (comp_unit_die ());
21529 for (node = limbo_die_list; node; node = node->next)
21530 prune_unused_types_prune (node->die);
21531 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
21532 prune_unused_types_prune (ctnode->root_die);
21533
21534 /* Leave the marks clear. */
21535 prune_unmark_dies (comp_unit_die ());
21536 for (node = limbo_die_list; node; node = node->next)
21537 prune_unmark_dies (node->die);
21538 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
21539 prune_unmark_dies (ctnode->root_die);
21540 }
21541
21542 /* Set the parameter to true if there are any relative pathnames in
21543 the file table. */
21544 static int
21545 file_table_relative_p (void ** slot, void *param)
21546 {
21547 bool *p = (bool *) param;
21548 struct dwarf_file_data *d = (struct dwarf_file_data *) *slot;
21549 if (!IS_ABSOLUTE_PATH (d->filename))
21550 {
21551 *p = true;
21552 return 0;
21553 }
21554 return 1;
21555 }
21556
21557 /* Routines to manipulate hash table of comdat type units. */
21558
21559 static hashval_t
21560 htab_ct_hash (const void *of)
21561 {
21562 hashval_t h;
21563 const comdat_type_node *const type_node = (const comdat_type_node *) of;
21564
21565 memcpy (&h, type_node->signature, sizeof (h));
21566 return h;
21567 }
21568
21569 static int
21570 htab_ct_eq (const void *of1, const void *of2)
21571 {
21572 const comdat_type_node *const type_node_1 = (const comdat_type_node *) of1;
21573 const comdat_type_node *const type_node_2 = (const comdat_type_node *) of2;
21574
21575 return (! memcmp (type_node_1->signature, type_node_2->signature,
21576 DWARF_TYPE_SIGNATURE_SIZE));
21577 }
21578
21579 /* Move a DW_AT_{,MIPS_}linkage_name attribute just added to dw_die_ref
21580 to the location it would have been added, should we know its
21581 DECL_ASSEMBLER_NAME when we added other attributes. This will
21582 probably improve compactness of debug info, removing equivalent
21583 abbrevs, and hide any differences caused by deferring the
21584 computation of the assembler name, triggered by e.g. PCH. */
21585
21586 static inline void
21587 move_linkage_attr (dw_die_ref die)
21588 {
21589 unsigned ix = VEC_length (dw_attr_node, die->die_attr);
21590 dw_attr_node linkage = *VEC_index (dw_attr_node, die->die_attr, ix - 1);
21591
21592 gcc_assert (linkage.dw_attr == DW_AT_linkage_name
21593 || linkage.dw_attr == DW_AT_MIPS_linkage_name);
21594
21595 while (--ix > 0)
21596 {
21597 dw_attr_node *prev = VEC_index (dw_attr_node, die->die_attr, ix - 1);
21598
21599 if (prev->dw_attr == DW_AT_decl_line || prev->dw_attr == DW_AT_name)
21600 break;
21601 }
21602
21603 if (ix != VEC_length (dw_attr_node, die->die_attr) - 1)
21604 {
21605 VEC_pop (dw_attr_node, die->die_attr);
21606 VEC_quick_insert (dw_attr_node, die->die_attr, ix, &linkage);
21607 }
21608 }
21609
21610 /* Helper function for resolve_addr, mark DW_TAG_base_type nodes
21611 referenced from typed stack ops and count how often they are used. */
21612
21613 static void
21614 mark_base_types (dw_loc_descr_ref loc)
21615 {
21616 dw_die_ref base_type = NULL;
21617
21618 for (; loc; loc = loc->dw_loc_next)
21619 {
21620 switch (loc->dw_loc_opc)
21621 {
21622 case DW_OP_GNU_regval_type:
21623 case DW_OP_GNU_deref_type:
21624 base_type = loc->dw_loc_oprnd2.v.val_die_ref.die;
21625 break;
21626 case DW_OP_GNU_convert:
21627 case DW_OP_GNU_reinterpret:
21628 if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const)
21629 continue;
21630 /* FALLTHRU */
21631 case DW_OP_GNU_const_type:
21632 base_type = loc->dw_loc_oprnd1.v.val_die_ref.die;
21633 break;
21634 case DW_OP_GNU_entry_value:
21635 mark_base_types (loc->dw_loc_oprnd1.v.val_loc);
21636 continue;
21637 default:
21638 continue;
21639 }
21640 gcc_assert (base_type->die_parent == comp_unit_die ());
21641 if (base_type->die_mark)
21642 base_type->die_mark++;
21643 else
21644 {
21645 VEC_safe_push (dw_die_ref, heap, base_types, base_type);
21646 base_type->die_mark = 1;
21647 }
21648 }
21649 }
21650
21651 /* Comparison function for sorting marked base types. */
21652
21653 static int
21654 base_type_cmp (const void *x, const void *y)
21655 {
21656 dw_die_ref dx = *(const dw_die_ref *) x;
21657 dw_die_ref dy = *(const dw_die_ref *) y;
21658 unsigned int byte_size1, byte_size2;
21659 unsigned int encoding1, encoding2;
21660 if (dx->die_mark > dy->die_mark)
21661 return -1;
21662 if (dx->die_mark < dy->die_mark)
21663 return 1;
21664 byte_size1 = get_AT_unsigned (dx, DW_AT_byte_size);
21665 byte_size2 = get_AT_unsigned (dy, DW_AT_byte_size);
21666 if (byte_size1 < byte_size2)
21667 return 1;
21668 if (byte_size1 > byte_size2)
21669 return -1;
21670 encoding1 = get_AT_unsigned (dx, DW_AT_encoding);
21671 encoding2 = get_AT_unsigned (dy, DW_AT_encoding);
21672 if (encoding1 < encoding2)
21673 return 1;
21674 if (encoding1 > encoding2)
21675 return -1;
21676 return 0;
21677 }
21678
21679 /* Move base types marked by mark_base_types as early as possible
21680 in the CU, sorted by decreasing usage count both to make the
21681 uleb128 references as small as possible and to make sure they
21682 will have die_offset already computed by calc_die_sizes when
21683 sizes of typed stack loc ops is computed. */
21684
21685 static void
21686 move_marked_base_types (void)
21687 {
21688 unsigned int i;
21689 dw_die_ref base_type, die, c;
21690
21691 if (VEC_empty (dw_die_ref, base_types))
21692 return;
21693
21694 /* Sort by decreasing usage count, they will be added again in that
21695 order later on. */
21696 VEC_qsort (dw_die_ref, base_types, base_type_cmp);
21697 die = comp_unit_die ();
21698 c = die->die_child;
21699 do
21700 {
21701 dw_die_ref prev = c;
21702 c = c->die_sib;
21703 while (c->die_mark)
21704 {
21705 remove_child_with_prev (c, prev);
21706 /* As base types got marked, there must be at least
21707 one node other than DW_TAG_base_type. */
21708 gcc_assert (c != c->die_sib);
21709 c = c->die_sib;
21710 }
21711 }
21712 while (c != die->die_child);
21713 gcc_assert (die->die_child);
21714 c = die->die_child;
21715 for (i = 0; VEC_iterate (dw_die_ref, base_types, i, base_type); i++)
21716 {
21717 base_type->die_mark = 0;
21718 base_type->die_sib = c->die_sib;
21719 c->die_sib = base_type;
21720 c = base_type;
21721 }
21722 }
21723
21724 /* Helper function for resolve_addr, attempt to resolve
21725 one CONST_STRING, return non-zero if not successful. Similarly verify that
21726 SYMBOL_REFs refer to variables emitted in the current CU. */
21727
21728 static int
21729 resolve_one_addr (rtx *addr, void *data ATTRIBUTE_UNUSED)
21730 {
21731 rtx rtl = *addr;
21732
21733 if (GET_CODE (rtl) == CONST_STRING)
21734 {
21735 size_t len = strlen (XSTR (rtl, 0)) + 1;
21736 tree t = build_string (len, XSTR (rtl, 0));
21737 tree tlen = size_int (len - 1);
21738 TREE_TYPE (t)
21739 = build_array_type (char_type_node, build_index_type (tlen));
21740 rtl = lookup_constant_def (t);
21741 if (!rtl || !MEM_P (rtl))
21742 return 1;
21743 rtl = XEXP (rtl, 0);
21744 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
21745 *addr = rtl;
21746 return 0;
21747 }
21748
21749 if (GET_CODE (rtl) == SYMBOL_REF
21750 && SYMBOL_REF_DECL (rtl))
21751 {
21752 if (TREE_CONSTANT_POOL_ADDRESS_P (rtl))
21753 {
21754 if (!TREE_ASM_WRITTEN (DECL_INITIAL (SYMBOL_REF_DECL (rtl))))
21755 return 1;
21756 }
21757 else if (!TREE_ASM_WRITTEN (SYMBOL_REF_DECL (rtl)))
21758 return 1;
21759 }
21760
21761 if (GET_CODE (rtl) == CONST
21762 && for_each_rtx (&XEXP (rtl, 0), resolve_one_addr, NULL))
21763 return 1;
21764
21765 return 0;
21766 }
21767
21768 /* Helper function for resolve_addr, handle one location
21769 expression, return false if at least one CONST_STRING or SYMBOL_REF in
21770 the location list couldn't be resolved. */
21771
21772 static bool
21773 resolve_addr_in_expr (dw_loc_descr_ref loc)
21774 {
21775 dw_loc_descr_ref keep = NULL;
21776 for (; loc; loc = loc->dw_loc_next)
21777 switch (loc->dw_loc_opc)
21778 {
21779 case DW_OP_addr:
21780 if (resolve_one_addr (&loc->dw_loc_oprnd1.v.val_addr, NULL))
21781 return false;
21782 break;
21783 case DW_OP_const4u:
21784 case DW_OP_const8u:
21785 if (loc->dtprel
21786 && resolve_one_addr (&loc->dw_loc_oprnd1.v.val_addr, NULL))
21787 return false;
21788 break;
21789 case DW_OP_plus_uconst:
21790 if (size_of_loc_descr (loc)
21791 > size_of_int_loc_descriptor (loc->dw_loc_oprnd1.v.val_unsigned)
21792 + 1
21793 && loc->dw_loc_oprnd1.v.val_unsigned > 0)
21794 {
21795 dw_loc_descr_ref repl
21796 = int_loc_descriptor (loc->dw_loc_oprnd1.v.val_unsigned);
21797 add_loc_descr (&repl, new_loc_descr (DW_OP_plus, 0, 0));
21798 add_loc_descr (&repl, loc->dw_loc_next);
21799 *loc = *repl;
21800 }
21801 break;
21802 case DW_OP_implicit_value:
21803 if (loc->dw_loc_oprnd2.val_class == dw_val_class_addr
21804 && resolve_one_addr (&loc->dw_loc_oprnd2.v.val_addr, NULL))
21805 return false;
21806 break;
21807 case DW_OP_GNU_implicit_pointer:
21808 case DW_OP_GNU_parameter_ref:
21809 if (loc->dw_loc_oprnd1.val_class == dw_val_class_decl_ref)
21810 {
21811 dw_die_ref ref
21812 = lookup_decl_die (loc->dw_loc_oprnd1.v.val_decl_ref);
21813 if (ref == NULL)
21814 return false;
21815 loc->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
21816 loc->dw_loc_oprnd1.v.val_die_ref.die = ref;
21817 loc->dw_loc_oprnd1.v.val_die_ref.external = 0;
21818 }
21819 break;
21820 case DW_OP_GNU_const_type:
21821 case DW_OP_GNU_regval_type:
21822 case DW_OP_GNU_deref_type:
21823 case DW_OP_GNU_convert:
21824 case DW_OP_GNU_reinterpret:
21825 while (loc->dw_loc_next
21826 && loc->dw_loc_next->dw_loc_opc == DW_OP_GNU_convert)
21827 {
21828 dw_die_ref base1, base2;
21829 unsigned enc1, enc2, size1, size2;
21830 if (loc->dw_loc_opc == DW_OP_GNU_regval_type
21831 || loc->dw_loc_opc == DW_OP_GNU_deref_type)
21832 base1 = loc->dw_loc_oprnd2.v.val_die_ref.die;
21833 else if (loc->dw_loc_oprnd1.val_class
21834 == dw_val_class_unsigned_const)
21835 break;
21836 else
21837 base1 = loc->dw_loc_oprnd1.v.val_die_ref.die;
21838 if (loc->dw_loc_next->dw_loc_oprnd1.val_class
21839 == dw_val_class_unsigned_const)
21840 break;
21841 base2 = loc->dw_loc_next->dw_loc_oprnd1.v.val_die_ref.die;
21842 gcc_assert (base1->die_tag == DW_TAG_base_type
21843 && base2->die_tag == DW_TAG_base_type);
21844 enc1 = get_AT_unsigned (base1, DW_AT_encoding);
21845 enc2 = get_AT_unsigned (base2, DW_AT_encoding);
21846 size1 = get_AT_unsigned (base1, DW_AT_byte_size);
21847 size2 = get_AT_unsigned (base2, DW_AT_byte_size);
21848 if (size1 == size2
21849 && (((enc1 == DW_ATE_unsigned || enc1 == DW_ATE_signed)
21850 && (enc2 == DW_ATE_unsigned || enc2 == DW_ATE_signed)
21851 && loc != keep)
21852 || enc1 == enc2))
21853 {
21854 /* Optimize away next DW_OP_GNU_convert after
21855 adjusting LOC's base type die reference. */
21856 if (loc->dw_loc_opc == DW_OP_GNU_regval_type
21857 || loc->dw_loc_opc == DW_OP_GNU_deref_type)
21858 loc->dw_loc_oprnd2.v.val_die_ref.die = base2;
21859 else
21860 loc->dw_loc_oprnd1.v.val_die_ref.die = base2;
21861 loc->dw_loc_next = loc->dw_loc_next->dw_loc_next;
21862 continue;
21863 }
21864 /* Don't change integer DW_OP_GNU_convert after e.g. floating
21865 point typed stack entry. */
21866 else if (enc1 != DW_ATE_unsigned && enc1 != DW_ATE_signed)
21867 keep = loc->dw_loc_next;
21868 break;
21869 }
21870 break;
21871 default:
21872 break;
21873 }
21874 return true;
21875 }
21876
21877 /* Resolve DW_OP_addr and DW_AT_const_value CONST_STRING arguments to
21878 an address in .rodata section if the string literal is emitted there,
21879 or remove the containing location list or replace DW_AT_const_value
21880 with DW_AT_location and empty location expression, if it isn't found
21881 in .rodata. Similarly for SYMBOL_REFs, keep only those that refer
21882 to something that has been emitted in the current CU. */
21883
21884 static void
21885 resolve_addr (dw_die_ref die)
21886 {
21887 dw_die_ref c;
21888 dw_attr_ref a;
21889 dw_loc_list_ref *curr, *start, loc;
21890 unsigned ix;
21891
21892 FOR_EACH_VEC_ELT (dw_attr_node, die->die_attr, ix, a)
21893 switch (AT_class (a))
21894 {
21895 case dw_val_class_loc_list:
21896 start = curr = AT_loc_list_ptr (a);
21897 loc = *curr;
21898 gcc_assert (loc);
21899 /* The same list can be referenced more than once. See if we have
21900 already recorded the result from a previous pass. */
21901 if (loc->replaced)
21902 *curr = loc->dw_loc_next;
21903 else if (!loc->resolved_addr)
21904 {
21905 /* As things stand, we do not expect or allow one die to
21906 reference a suffix of another die's location list chain.
21907 References must be identical or completely separate.
21908 There is therefore no need to cache the result of this
21909 pass on any list other than the first; doing so
21910 would lead to unnecessary writes. */
21911 while (*curr)
21912 {
21913 gcc_assert (!(*curr)->replaced && !(*curr)->resolved_addr);
21914 if (!resolve_addr_in_expr ((*curr)->expr))
21915 {
21916 dw_loc_list_ref next = (*curr)->dw_loc_next;
21917 if (next && (*curr)->ll_symbol)
21918 {
21919 gcc_assert (!next->ll_symbol);
21920 next->ll_symbol = (*curr)->ll_symbol;
21921 }
21922 *curr = next;
21923 }
21924 else
21925 {
21926 mark_base_types ((*curr)->expr);
21927 curr = &(*curr)->dw_loc_next;
21928 }
21929 }
21930 if (loc == *start)
21931 loc->resolved_addr = 1;
21932 else
21933 {
21934 loc->replaced = 1;
21935 loc->dw_loc_next = *start;
21936 }
21937 }
21938 if (!*start)
21939 {
21940 remove_AT (die, a->dw_attr);
21941 ix--;
21942 }
21943 break;
21944 case dw_val_class_loc:
21945 {
21946 dw_loc_descr_ref l = AT_loc (a);
21947 /* For -gdwarf-2 don't attempt to optimize
21948 DW_AT_data_member_location containing
21949 DW_OP_plus_uconst - older consumers might
21950 rely on it being that op instead of a more complex,
21951 but shorter, location description. */
21952 if ((dwarf_version > 2
21953 || a->dw_attr != DW_AT_data_member_location
21954 || l == NULL
21955 || l->dw_loc_opc != DW_OP_plus_uconst
21956 || l->dw_loc_next != NULL)
21957 && !resolve_addr_in_expr (l))
21958 {
21959 remove_AT (die, a->dw_attr);
21960 ix--;
21961 }
21962 else
21963 mark_base_types (l);
21964 }
21965 break;
21966 case dw_val_class_addr:
21967 if (a->dw_attr == DW_AT_const_value
21968 && resolve_one_addr (&a->dw_attr_val.v.val_addr, NULL))
21969 {
21970 remove_AT (die, a->dw_attr);
21971 ix--;
21972 }
21973 if (die->die_tag == DW_TAG_GNU_call_site
21974 && a->dw_attr == DW_AT_abstract_origin)
21975 {
21976 tree tdecl = SYMBOL_REF_DECL (a->dw_attr_val.v.val_addr);
21977 dw_die_ref tdie = lookup_decl_die (tdecl);
21978 if (tdie == NULL
21979 && DECL_EXTERNAL (tdecl)
21980 && DECL_ABSTRACT_ORIGIN (tdecl) == NULL_TREE)
21981 {
21982 force_decl_die (tdecl);
21983 tdie = lookup_decl_die (tdecl);
21984 }
21985 if (tdie)
21986 {
21987 a->dw_attr_val.val_class = dw_val_class_die_ref;
21988 a->dw_attr_val.v.val_die_ref.die = tdie;
21989 a->dw_attr_val.v.val_die_ref.external = 0;
21990 }
21991 else
21992 {
21993 remove_AT (die, a->dw_attr);
21994 ix--;
21995 }
21996 }
21997 break;
21998 default:
21999 break;
22000 }
22001
22002 FOR_EACH_CHILD (die, c, resolve_addr (c));
22003 }
22004 \f
22005 /* Helper routines for optimize_location_lists.
22006 This pass tries to share identical local lists in .debug_loc
22007 section. */
22008
22009 /* Iteratively hash operands of LOC opcode. */
22010
22011 static inline hashval_t
22012 hash_loc_operands (dw_loc_descr_ref loc, hashval_t hash)
22013 {
22014 dw_val_ref val1 = &loc->dw_loc_oprnd1;
22015 dw_val_ref val2 = &loc->dw_loc_oprnd2;
22016
22017 switch (loc->dw_loc_opc)
22018 {
22019 case DW_OP_const4u:
22020 case DW_OP_const8u:
22021 if (loc->dtprel)
22022 goto hash_addr;
22023 /* FALLTHRU */
22024 case DW_OP_const1u:
22025 case DW_OP_const1s:
22026 case DW_OP_const2u:
22027 case DW_OP_const2s:
22028 case DW_OP_const4s:
22029 case DW_OP_const8s:
22030 case DW_OP_constu:
22031 case DW_OP_consts:
22032 case DW_OP_pick:
22033 case DW_OP_plus_uconst:
22034 case DW_OP_breg0:
22035 case DW_OP_breg1:
22036 case DW_OP_breg2:
22037 case DW_OP_breg3:
22038 case DW_OP_breg4:
22039 case DW_OP_breg5:
22040 case DW_OP_breg6:
22041 case DW_OP_breg7:
22042 case DW_OP_breg8:
22043 case DW_OP_breg9:
22044 case DW_OP_breg10:
22045 case DW_OP_breg11:
22046 case DW_OP_breg12:
22047 case DW_OP_breg13:
22048 case DW_OP_breg14:
22049 case DW_OP_breg15:
22050 case DW_OP_breg16:
22051 case DW_OP_breg17:
22052 case DW_OP_breg18:
22053 case DW_OP_breg19:
22054 case DW_OP_breg20:
22055 case DW_OP_breg21:
22056 case DW_OP_breg22:
22057 case DW_OP_breg23:
22058 case DW_OP_breg24:
22059 case DW_OP_breg25:
22060 case DW_OP_breg26:
22061 case DW_OP_breg27:
22062 case DW_OP_breg28:
22063 case DW_OP_breg29:
22064 case DW_OP_breg30:
22065 case DW_OP_breg31:
22066 case DW_OP_regx:
22067 case DW_OP_fbreg:
22068 case DW_OP_piece:
22069 case DW_OP_deref_size:
22070 case DW_OP_xderef_size:
22071 hash = iterative_hash_object (val1->v.val_int, hash);
22072 break;
22073 case DW_OP_skip:
22074 case DW_OP_bra:
22075 {
22076 int offset;
22077
22078 gcc_assert (val1->val_class == dw_val_class_loc);
22079 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
22080 hash = iterative_hash_object (offset, hash);
22081 }
22082 break;
22083 case DW_OP_implicit_value:
22084 hash = iterative_hash_object (val1->v.val_unsigned, hash);
22085 switch (val2->val_class)
22086 {
22087 case dw_val_class_const:
22088 hash = iterative_hash_object (val2->v.val_int, hash);
22089 break;
22090 case dw_val_class_vec:
22091 {
22092 unsigned int elt_size = val2->v.val_vec.elt_size;
22093 unsigned int len = val2->v.val_vec.length;
22094
22095 hash = iterative_hash_object (elt_size, hash);
22096 hash = iterative_hash_object (len, hash);
22097 hash = iterative_hash (val2->v.val_vec.array,
22098 len * elt_size, hash);
22099 }
22100 break;
22101 case dw_val_class_const_double:
22102 hash = iterative_hash_object (val2->v.val_double.low, hash);
22103 hash = iterative_hash_object (val2->v.val_double.high, hash);
22104 break;
22105 case dw_val_class_addr:
22106 hash = iterative_hash_rtx (val2->v.val_addr, hash);
22107 break;
22108 default:
22109 gcc_unreachable ();
22110 }
22111 break;
22112 case DW_OP_bregx:
22113 case DW_OP_bit_piece:
22114 hash = iterative_hash_object (val1->v.val_int, hash);
22115 hash = iterative_hash_object (val2->v.val_int, hash);
22116 break;
22117 case DW_OP_addr:
22118 hash_addr:
22119 if (loc->dtprel)
22120 {
22121 unsigned char dtprel = 0xd1;
22122 hash = iterative_hash_object (dtprel, hash);
22123 }
22124 hash = iterative_hash_rtx (val1->v.val_addr, hash);
22125 break;
22126 case DW_OP_GNU_implicit_pointer:
22127 hash = iterative_hash_object (val2->v.val_int, hash);
22128 break;
22129 case DW_OP_GNU_entry_value:
22130 hash = hash_loc_operands (val1->v.val_loc, hash);
22131 break;
22132 case DW_OP_GNU_regval_type:
22133 case DW_OP_GNU_deref_type:
22134 {
22135 unsigned int byte_size
22136 = get_AT_unsigned (val2->v.val_die_ref.die, DW_AT_byte_size);
22137 unsigned int encoding
22138 = get_AT_unsigned (val2->v.val_die_ref.die, DW_AT_encoding);
22139 hash = iterative_hash_object (val1->v.val_int, hash);
22140 hash = iterative_hash_object (byte_size, hash);
22141 hash = iterative_hash_object (encoding, hash);
22142 }
22143 break;
22144 case DW_OP_GNU_convert:
22145 case DW_OP_GNU_reinterpret:
22146 if (val1->val_class == dw_val_class_unsigned_const)
22147 {
22148 hash = iterative_hash_object (val1->v.val_unsigned, hash);
22149 break;
22150 }
22151 /* FALLTHRU */
22152 case DW_OP_GNU_const_type:
22153 {
22154 unsigned int byte_size
22155 = get_AT_unsigned (val1->v.val_die_ref.die, DW_AT_byte_size);
22156 unsigned int encoding
22157 = get_AT_unsigned (val1->v.val_die_ref.die, DW_AT_encoding);
22158 hash = iterative_hash_object (byte_size, hash);
22159 hash = iterative_hash_object (encoding, hash);
22160 if (loc->dw_loc_opc != DW_OP_GNU_const_type)
22161 break;
22162 hash = iterative_hash_object (val2->val_class, hash);
22163 switch (val2->val_class)
22164 {
22165 case dw_val_class_const:
22166 hash = iterative_hash_object (val2->v.val_int, hash);
22167 break;
22168 case dw_val_class_vec:
22169 {
22170 unsigned int elt_size = val2->v.val_vec.elt_size;
22171 unsigned int len = val2->v.val_vec.length;
22172
22173 hash = iterative_hash_object (elt_size, hash);
22174 hash = iterative_hash_object (len, hash);
22175 hash = iterative_hash (val2->v.val_vec.array,
22176 len * elt_size, hash);
22177 }
22178 break;
22179 case dw_val_class_const_double:
22180 hash = iterative_hash_object (val2->v.val_double.low, hash);
22181 hash = iterative_hash_object (val2->v.val_double.high, hash);
22182 break;
22183 default:
22184 gcc_unreachable ();
22185 }
22186 }
22187 break;
22188
22189 default:
22190 /* Other codes have no operands. */
22191 break;
22192 }
22193 return hash;
22194 }
22195
22196 /* Iteratively hash the whole DWARF location expression LOC. */
22197
22198 static inline hashval_t
22199 hash_locs (dw_loc_descr_ref loc, hashval_t hash)
22200 {
22201 dw_loc_descr_ref l;
22202 bool sizes_computed = false;
22203 /* Compute sizes, so that DW_OP_skip/DW_OP_bra can be checksummed. */
22204 size_of_locs (loc);
22205
22206 for (l = loc; l != NULL; l = l->dw_loc_next)
22207 {
22208 enum dwarf_location_atom opc = l->dw_loc_opc;
22209 hash = iterative_hash_object (opc, hash);
22210 if ((opc == DW_OP_skip || opc == DW_OP_bra) && !sizes_computed)
22211 {
22212 size_of_locs (loc);
22213 sizes_computed = true;
22214 }
22215 hash = hash_loc_operands (l, hash);
22216 }
22217 return hash;
22218 }
22219
22220 /* Compute hash of the whole location list LIST_HEAD. */
22221
22222 static inline void
22223 hash_loc_list (dw_loc_list_ref list_head)
22224 {
22225 dw_loc_list_ref curr = list_head;
22226 hashval_t hash = 0;
22227
22228 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
22229 {
22230 hash = iterative_hash (curr->begin, strlen (curr->begin) + 1, hash);
22231 hash = iterative_hash (curr->end, strlen (curr->end) + 1, hash);
22232 if (curr->section)
22233 hash = iterative_hash (curr->section, strlen (curr->section) + 1,
22234 hash);
22235 hash = hash_locs (curr->expr, hash);
22236 }
22237 list_head->hash = hash;
22238 }
22239
22240 /* Return true if X and Y opcodes have the same operands. */
22241
22242 static inline bool
22243 compare_loc_operands (dw_loc_descr_ref x, dw_loc_descr_ref y)
22244 {
22245 dw_val_ref valx1 = &x->dw_loc_oprnd1;
22246 dw_val_ref valx2 = &x->dw_loc_oprnd2;
22247 dw_val_ref valy1 = &y->dw_loc_oprnd1;
22248 dw_val_ref valy2 = &y->dw_loc_oprnd2;
22249
22250 switch (x->dw_loc_opc)
22251 {
22252 case DW_OP_const4u:
22253 case DW_OP_const8u:
22254 if (x->dtprel)
22255 goto hash_addr;
22256 /* FALLTHRU */
22257 case DW_OP_const1u:
22258 case DW_OP_const1s:
22259 case DW_OP_const2u:
22260 case DW_OP_const2s:
22261 case DW_OP_const4s:
22262 case DW_OP_const8s:
22263 case DW_OP_constu:
22264 case DW_OP_consts:
22265 case DW_OP_pick:
22266 case DW_OP_plus_uconst:
22267 case DW_OP_breg0:
22268 case DW_OP_breg1:
22269 case DW_OP_breg2:
22270 case DW_OP_breg3:
22271 case DW_OP_breg4:
22272 case DW_OP_breg5:
22273 case DW_OP_breg6:
22274 case DW_OP_breg7:
22275 case DW_OP_breg8:
22276 case DW_OP_breg9:
22277 case DW_OP_breg10:
22278 case DW_OP_breg11:
22279 case DW_OP_breg12:
22280 case DW_OP_breg13:
22281 case DW_OP_breg14:
22282 case DW_OP_breg15:
22283 case DW_OP_breg16:
22284 case DW_OP_breg17:
22285 case DW_OP_breg18:
22286 case DW_OP_breg19:
22287 case DW_OP_breg20:
22288 case DW_OP_breg21:
22289 case DW_OP_breg22:
22290 case DW_OP_breg23:
22291 case DW_OP_breg24:
22292 case DW_OP_breg25:
22293 case DW_OP_breg26:
22294 case DW_OP_breg27:
22295 case DW_OP_breg28:
22296 case DW_OP_breg29:
22297 case DW_OP_breg30:
22298 case DW_OP_breg31:
22299 case DW_OP_regx:
22300 case DW_OP_fbreg:
22301 case DW_OP_piece:
22302 case DW_OP_deref_size:
22303 case DW_OP_xderef_size:
22304 return valx1->v.val_int == valy1->v.val_int;
22305 case DW_OP_skip:
22306 case DW_OP_bra:
22307 gcc_assert (valx1->val_class == dw_val_class_loc
22308 && valy1->val_class == dw_val_class_loc
22309 && x->dw_loc_addr == y->dw_loc_addr);
22310 return valx1->v.val_loc->dw_loc_addr == valy1->v.val_loc->dw_loc_addr;
22311 case DW_OP_implicit_value:
22312 if (valx1->v.val_unsigned != valy1->v.val_unsigned
22313 || valx2->val_class != valy2->val_class)
22314 return false;
22315 switch (valx2->val_class)
22316 {
22317 case dw_val_class_const:
22318 return valx2->v.val_int == valy2->v.val_int;
22319 case dw_val_class_vec:
22320 return valx2->v.val_vec.elt_size == valy2->v.val_vec.elt_size
22321 && valx2->v.val_vec.length == valy2->v.val_vec.length
22322 && memcmp (valx2->v.val_vec.array, valy2->v.val_vec.array,
22323 valx2->v.val_vec.elt_size
22324 * valx2->v.val_vec.length) == 0;
22325 case dw_val_class_const_double:
22326 return valx2->v.val_double.low == valy2->v.val_double.low
22327 && valx2->v.val_double.high == valy2->v.val_double.high;
22328 case dw_val_class_addr:
22329 return rtx_equal_p (valx2->v.val_addr, valy2->v.val_addr);
22330 default:
22331 gcc_unreachable ();
22332 }
22333 case DW_OP_bregx:
22334 case DW_OP_bit_piece:
22335 return valx1->v.val_int == valy1->v.val_int
22336 && valx2->v.val_int == valy2->v.val_int;
22337 case DW_OP_addr:
22338 hash_addr:
22339 return rtx_equal_p (valx1->v.val_addr, valy1->v.val_addr);
22340 case DW_OP_GNU_implicit_pointer:
22341 return valx1->val_class == dw_val_class_die_ref
22342 && valx1->val_class == valy1->val_class
22343 && valx1->v.val_die_ref.die == valy1->v.val_die_ref.die
22344 && valx2->v.val_int == valy2->v.val_int;
22345 case DW_OP_GNU_entry_value:
22346 return compare_loc_operands (valx1->v.val_loc, valy1->v.val_loc);
22347 case DW_OP_GNU_const_type:
22348 if (valx1->v.val_die_ref.die != valy1->v.val_die_ref.die
22349 || valx2->val_class != valy2->val_class)
22350 return false;
22351 switch (valx2->val_class)
22352 {
22353 case dw_val_class_const:
22354 return valx2->v.val_int == valy2->v.val_int;
22355 case dw_val_class_vec:
22356 return valx2->v.val_vec.elt_size == valy2->v.val_vec.elt_size
22357 && valx2->v.val_vec.length == valy2->v.val_vec.length
22358 && memcmp (valx2->v.val_vec.array, valy2->v.val_vec.array,
22359 valx2->v.val_vec.elt_size
22360 * valx2->v.val_vec.length) == 0;
22361 case dw_val_class_const_double:
22362 return valx2->v.val_double.low == valy2->v.val_double.low
22363 && valx2->v.val_double.high == valy2->v.val_double.high;
22364 default:
22365 gcc_unreachable ();
22366 }
22367 case DW_OP_GNU_regval_type:
22368 case DW_OP_GNU_deref_type:
22369 return valx1->v.val_int == valy1->v.val_int
22370 && valx2->v.val_die_ref.die == valy2->v.val_die_ref.die;
22371 case DW_OP_GNU_convert:
22372 case DW_OP_GNU_reinterpret:
22373 if (valx1->val_class != valy1->val_class)
22374 return false;
22375 if (valx1->val_class == dw_val_class_unsigned_const)
22376 return valx1->v.val_unsigned == valy1->v.val_unsigned;
22377 return valx1->v.val_die_ref.die == valy1->v.val_die_ref.die;
22378 case DW_OP_GNU_parameter_ref:
22379 return valx1->val_class == dw_val_class_die_ref
22380 && valx1->val_class == valy1->val_class
22381 && valx1->v.val_die_ref.die == valy1->v.val_die_ref.die;
22382 default:
22383 /* Other codes have no operands. */
22384 return true;
22385 }
22386 }
22387
22388 /* Return true if DWARF location expressions X and Y are the same. */
22389
22390 static inline bool
22391 compare_locs (dw_loc_descr_ref x, dw_loc_descr_ref y)
22392 {
22393 for (; x != NULL && y != NULL; x = x->dw_loc_next, y = y->dw_loc_next)
22394 if (x->dw_loc_opc != y->dw_loc_opc
22395 || x->dtprel != y->dtprel
22396 || !compare_loc_operands (x, y))
22397 break;
22398 return x == NULL && y == NULL;
22399 }
22400
22401 /* Return precomputed hash of location list X. */
22402
22403 static hashval_t
22404 loc_list_hash (const void *x)
22405 {
22406 return ((const struct dw_loc_list_struct *) x)->hash;
22407 }
22408
22409 /* Return 1 if location lists X and Y are the same. */
22410
22411 static int
22412 loc_list_eq (const void *x, const void *y)
22413 {
22414 const struct dw_loc_list_struct *a = (const struct dw_loc_list_struct *) x;
22415 const struct dw_loc_list_struct *b = (const struct dw_loc_list_struct *) y;
22416 if (a == b)
22417 return 1;
22418 if (a->hash != b->hash)
22419 return 0;
22420 for (; a != NULL && b != NULL; a = a->dw_loc_next, b = b->dw_loc_next)
22421 if (strcmp (a->begin, b->begin) != 0
22422 || strcmp (a->end, b->end) != 0
22423 || (a->section == NULL) != (b->section == NULL)
22424 || (a->section && strcmp (a->section, b->section) != 0)
22425 || !compare_locs (a->expr, b->expr))
22426 break;
22427 return a == NULL && b == NULL;
22428 }
22429
22430 /* Recursively optimize location lists referenced from DIE
22431 children and share them whenever possible. */
22432
22433 static void
22434 optimize_location_lists_1 (dw_die_ref die, htab_t htab)
22435 {
22436 dw_die_ref c;
22437 dw_attr_ref a;
22438 unsigned ix;
22439 void **slot;
22440
22441 FOR_EACH_VEC_ELT (dw_attr_node, die->die_attr, ix, a)
22442 if (AT_class (a) == dw_val_class_loc_list)
22443 {
22444 dw_loc_list_ref list = AT_loc_list (a);
22445 /* TODO: perform some optimizations here, before hashing
22446 it and storing into the hash table. */
22447 hash_loc_list (list);
22448 slot = htab_find_slot_with_hash (htab, list, list->hash,
22449 INSERT);
22450 if (*slot == NULL)
22451 *slot = (void *) list;
22452 else
22453 a->dw_attr_val.v.val_loc_list = (dw_loc_list_ref) *slot;
22454 }
22455
22456 FOR_EACH_CHILD (die, c, optimize_location_lists_1 (c, htab));
22457 }
22458
22459 /* Optimize location lists referenced from DIE
22460 children and share them whenever possible. */
22461
22462 static void
22463 optimize_location_lists (dw_die_ref die)
22464 {
22465 htab_t htab = htab_create (500, loc_list_hash, loc_list_eq, NULL);
22466 optimize_location_lists_1 (die, htab);
22467 htab_delete (htab);
22468 }
22469 \f
22470 /* Output stuff that dwarf requires at the end of every file,
22471 and generate the DWARF-2 debugging info. */
22472
22473 static void
22474 dwarf2out_finish (const char *filename)
22475 {
22476 limbo_die_node *node, *next_node;
22477 comdat_type_node *ctnode;
22478 htab_t comdat_type_table;
22479 unsigned int i;
22480
22481 /* PCH might result in DW_AT_producer string being restored from the
22482 header compilation, fix it up if needed. */
22483 dw_attr_ref producer = get_AT (comp_unit_die (), DW_AT_producer);
22484 if (strcmp (AT_string (producer), producer_string) != 0)
22485 {
22486 struct indirect_string_node *node = find_AT_string (producer_string);
22487 producer->dw_attr_val.v.val_str = node;
22488 }
22489
22490 gen_scheduled_generic_parms_dies ();
22491 gen_remaining_tmpl_value_param_die_attribute ();
22492
22493 /* Add the name for the main input file now. We delayed this from
22494 dwarf2out_init to avoid complications with PCH. */
22495 add_name_attribute (comp_unit_die (), remap_debug_filename (filename));
22496 if (!IS_ABSOLUTE_PATH (filename))
22497 add_comp_dir_attribute (comp_unit_die ());
22498 else if (get_AT (comp_unit_die (), DW_AT_comp_dir) == NULL)
22499 {
22500 bool p = false;
22501 htab_traverse (file_table, file_table_relative_p, &p);
22502 if (p)
22503 add_comp_dir_attribute (comp_unit_die ());
22504 }
22505
22506 for (i = 0; i < VEC_length (deferred_locations, deferred_locations_list); i++)
22507 {
22508 add_location_or_const_value_attribute (
22509 VEC_index (deferred_locations, deferred_locations_list, i)->die,
22510 VEC_index (deferred_locations, deferred_locations_list, i)->variable,
22511 false,
22512 DW_AT_location);
22513 }
22514
22515 /* Traverse the limbo die list, and add parent/child links. The only
22516 dies without parents that should be here are concrete instances of
22517 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
22518 For concrete instances, we can get the parent die from the abstract
22519 instance. */
22520 for (node = limbo_die_list; node; node = next_node)
22521 {
22522 dw_die_ref die = node->die;
22523 next_node = node->next;
22524
22525 if (die->die_parent == NULL)
22526 {
22527 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
22528
22529 if (origin && origin->die_parent)
22530 add_child_die (origin->die_parent, die);
22531 else if (is_cu_die (die))
22532 ;
22533 else if (seen_error ())
22534 /* It's OK to be confused by errors in the input. */
22535 add_child_die (comp_unit_die (), die);
22536 else
22537 {
22538 /* In certain situations, the lexical block containing a
22539 nested function can be optimized away, which results
22540 in the nested function die being orphaned. Likewise
22541 with the return type of that nested function. Force
22542 this to be a child of the containing function.
22543
22544 It may happen that even the containing function got fully
22545 inlined and optimized out. In that case we are lost and
22546 assign the empty child. This should not be big issue as
22547 the function is likely unreachable too. */
22548 tree context = NULL_TREE;
22549
22550 gcc_assert (node->created_for);
22551
22552 if (DECL_P (node->created_for))
22553 context = DECL_CONTEXT (node->created_for);
22554 else if (TYPE_P (node->created_for))
22555 context = TYPE_CONTEXT (node->created_for);
22556
22557 origin = get_context_die (context);
22558 add_child_die (origin, die);
22559 }
22560 }
22561 }
22562
22563 limbo_die_list = NULL;
22564
22565 #if ENABLE_ASSERT_CHECKING
22566 {
22567 dw_die_ref die = comp_unit_die (), c;
22568 FOR_EACH_CHILD (die, c, gcc_assert (! c->die_mark));
22569 }
22570 #endif
22571 resolve_addr (comp_unit_die ());
22572 move_marked_base_types ();
22573
22574 for (node = deferred_asm_name; node; node = node->next)
22575 {
22576 tree decl = node->created_for;
22577 if (DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl))
22578 {
22579 add_linkage_attr (node->die, decl);
22580 move_linkage_attr (node->die);
22581 }
22582 }
22583
22584 deferred_asm_name = NULL;
22585
22586 /* Walk through the list of incomplete types again, trying once more to
22587 emit full debugging info for them. */
22588 retry_incomplete_types ();
22589
22590 if (flag_eliminate_unused_debug_types)
22591 prune_unused_types ();
22592
22593 /* Generate separate CUs for each of the include files we've seen.
22594 They will go into limbo_die_list. */
22595 if (flag_eliminate_dwarf2_dups && ! use_debug_types)
22596 break_out_includes (comp_unit_die ());
22597
22598 /* Generate separate COMDAT sections for type DIEs. */
22599 if (use_debug_types)
22600 {
22601 break_out_comdat_types (comp_unit_die ());
22602
22603 /* Each new type_unit DIE was added to the limbo die list when created.
22604 Since these have all been added to comdat_type_list, clear the
22605 limbo die list. */
22606 limbo_die_list = NULL;
22607
22608 /* For each new comdat type unit, copy declarations for incomplete
22609 types to make the new unit self-contained (i.e., no direct
22610 references to the main compile unit). */
22611 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
22612 copy_decls_for_unworthy_types (ctnode->root_die);
22613 copy_decls_for_unworthy_types (comp_unit_die ());
22614
22615 /* In the process of copying declarations from one unit to another,
22616 we may have left some declarations behind that are no longer
22617 referenced. Prune them. */
22618 prune_unused_types ();
22619 }
22620
22621 /* Traverse the DIE's and add add sibling attributes to those DIE's
22622 that have children. */
22623 add_sibling_attributes (comp_unit_die ());
22624 for (node = limbo_die_list; node; node = node->next)
22625 add_sibling_attributes (node->die);
22626 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
22627 add_sibling_attributes (ctnode->root_die);
22628
22629 /* Output a terminator label for the .text section. */
22630 switch_to_section (text_section);
22631 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
22632 if (cold_text_section)
22633 {
22634 switch_to_section (cold_text_section);
22635 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
22636 }
22637
22638 /* We can only use the low/high_pc attributes if all of the code was
22639 in .text. */
22640 if (!have_multiple_function_sections
22641 || (dwarf_version < 3 && dwarf_strict))
22642 {
22643 /* Don't add if the CU has no associated code. */
22644 if (text_section_used)
22645 {
22646 add_AT_lbl_id (comp_unit_die (), DW_AT_low_pc, text_section_label);
22647 add_AT_lbl_id (comp_unit_die (), DW_AT_high_pc, text_end_label);
22648 }
22649 }
22650 else
22651 {
22652 unsigned fde_idx;
22653 dw_fde_ref fde;
22654 bool range_list_added = false;
22655
22656 if (text_section_used)
22657 add_ranges_by_labels (comp_unit_die (), text_section_label,
22658 text_end_label, &range_list_added);
22659 if (cold_text_section_used)
22660 add_ranges_by_labels (comp_unit_die (), cold_text_section_label,
22661 cold_end_label, &range_list_added);
22662
22663 FOR_EACH_VEC_ELT (dw_fde_ref, fde_vec, fde_idx, fde)
22664 {
22665 if (!fde->in_std_section)
22666 add_ranges_by_labels (comp_unit_die (), fde->dw_fde_begin,
22667 fde->dw_fde_end, &range_list_added);
22668 if (fde->dw_fde_second_begin && !fde->second_in_std_section)
22669 add_ranges_by_labels (comp_unit_die (), fde->dw_fde_second_begin,
22670 fde->dw_fde_second_end, &range_list_added);
22671 }
22672
22673 if (range_list_added)
22674 {
22675 /* We need to give .debug_loc and .debug_ranges an appropriate
22676 "base address". Use zero so that these addresses become
22677 absolute. Historically, we've emitted the unexpected
22678 DW_AT_entry_pc instead of DW_AT_low_pc for this purpose.
22679 Emit both to give time for other tools to adapt. */
22680 add_AT_addr (comp_unit_die (), DW_AT_low_pc, const0_rtx);
22681 if (! dwarf_strict && dwarf_version < 4)
22682 add_AT_addr (comp_unit_die (), DW_AT_entry_pc, const0_rtx);
22683
22684 add_ranges (NULL);
22685 }
22686 }
22687
22688 if (debug_info_level >= DINFO_LEVEL_NORMAL)
22689 add_AT_lineptr (comp_unit_die (), DW_AT_stmt_list,
22690 debug_line_section_label);
22691
22692 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
22693 add_AT_macptr (comp_unit_die (),
22694 dwarf_strict ? DW_AT_macro_info : DW_AT_GNU_macros,
22695 macinfo_section_label);
22696
22697 if (have_location_lists)
22698 optimize_location_lists (comp_unit_die ());
22699
22700 /* Output all of the compilation units. We put the main one last so that
22701 the offsets are available to output_pubnames. */
22702 for (node = limbo_die_list; node; node = node->next)
22703 output_comp_unit (node->die, 0);
22704
22705 comdat_type_table = htab_create (100, htab_ct_hash, htab_ct_eq, NULL);
22706 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
22707 {
22708 void **slot = htab_find_slot (comdat_type_table, ctnode, INSERT);
22709
22710 /* Don't output duplicate types. */
22711 if (*slot != HTAB_EMPTY_ENTRY)
22712 continue;
22713
22714 /* Add a pointer to the line table for the main compilation unit
22715 so that the debugger can make sense of DW_AT_decl_file
22716 attributes. */
22717 if (debug_info_level >= DINFO_LEVEL_NORMAL)
22718 add_AT_lineptr (ctnode->root_die, DW_AT_stmt_list,
22719 debug_line_section_label);
22720
22721 output_comdat_type_unit (ctnode);
22722 *slot = ctnode;
22723 }
22724 htab_delete (comdat_type_table);
22725
22726 /* Output the main compilation unit if non-empty or if .debug_macinfo
22727 will be emitted. */
22728 output_comp_unit (comp_unit_die (), debug_info_level >= DINFO_LEVEL_VERBOSE);
22729
22730 /* Output the abbreviation table. */
22731 if (abbrev_die_table_in_use != 1)
22732 {
22733 switch_to_section (debug_abbrev_section);
22734 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
22735 output_abbrev_section ();
22736 }
22737
22738 /* Output location list section if necessary. */
22739 if (have_location_lists)
22740 {
22741 /* Output the location lists info. */
22742 switch_to_section (debug_loc_section);
22743 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
22744 DEBUG_LOC_SECTION_LABEL, 0);
22745 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
22746 output_location_lists (comp_unit_die ());
22747 }
22748
22749 /* Output public names table if necessary. */
22750 if (!VEC_empty (pubname_entry, pubname_table))
22751 {
22752 gcc_assert (info_section_emitted);
22753 switch_to_section (debug_pubnames_section);
22754 output_pubnames (pubname_table);
22755 }
22756
22757 /* Output public types table if necessary. */
22758 /* ??? Only defined by DWARF3, but emitted by Darwin for DWARF2.
22759 It shouldn't hurt to emit it always, since pure DWARF2 consumers
22760 simply won't look for the section. */
22761 if (!VEC_empty (pubname_entry, pubtype_table))
22762 {
22763 bool empty = false;
22764
22765 if (flag_eliminate_unused_debug_types)
22766 {
22767 /* The pubtypes table might be emptied by pruning unused items. */
22768 unsigned i;
22769 pubname_ref p;
22770 empty = true;
22771 FOR_EACH_VEC_ELT (pubname_entry, pubtype_table, i, p)
22772 if (p->die->die_offset != 0)
22773 {
22774 empty = false;
22775 break;
22776 }
22777 }
22778 if (!empty)
22779 {
22780 gcc_assert (info_section_emitted);
22781 switch_to_section (debug_pubtypes_section);
22782 output_pubnames (pubtype_table);
22783 }
22784 }
22785
22786 /* Output the address range information if a CU (.debug_info section)
22787 was emitted. We output an empty table even if we had no functions
22788 to put in it. This because the consumer has no way to tell the
22789 difference between an empty table that we omitted and failure to
22790 generate a table that would have contained data. */
22791 if (info_section_emitted)
22792 {
22793 unsigned long aranges_length = size_of_aranges ();
22794
22795 switch_to_section (debug_aranges_section);
22796 output_aranges (aranges_length);
22797 }
22798
22799 /* Output ranges section if necessary. */
22800 if (ranges_table_in_use)
22801 {
22802 switch_to_section (debug_ranges_section);
22803 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
22804 output_ranges ();
22805 }
22806
22807 /* Have to end the macro section. */
22808 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
22809 {
22810 switch_to_section (debug_macinfo_section);
22811 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
22812 if (!VEC_empty (macinfo_entry, macinfo_table))
22813 output_macinfo ();
22814 dw2_asm_output_data (1, 0, "End compilation unit");
22815 }
22816
22817 /* Output the source line correspondence table. We must do this
22818 even if there is no line information. Otherwise, on an empty
22819 translation unit, we will generate a present, but empty,
22820 .debug_info section. IRIX 6.5 `nm' will then complain when
22821 examining the file. This is done late so that any filenames
22822 used by the debug_info section are marked as 'used'. */
22823 switch_to_section (debug_line_section);
22824 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
22825 if (! DWARF2_ASM_LINE_DEBUG_INFO)
22826 output_line_info ();
22827
22828 /* If we emitted any DW_FORM_strp form attribute, output the string
22829 table too. */
22830 if (debug_str_hash)
22831 htab_traverse (debug_str_hash, output_indirect_string, NULL);
22832 }
22833
22834 #include "gt-dwarf2out.h"