simplify-rtx.c (avoid_constant_pool_reference): Export.
[gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GNU CC.
9
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 /* TODO: Implement .debug_str handling, and share entries somehow.
26 Emit .debug_line header even when there are no functions, since
27 the file numbers are used by .debug_info. Alternately, leave
28 out locations for types and decls.
29 Avoid talking about ctors and op= for PODs.
30 Factor out common prologue sequences into multiple CIEs. */
31
32 /* The first part of this file deals with the DWARF 2 frame unwind
33 information, which is also used by the GCC efficient exception handling
34 mechanism. The second part, controlled only by an #ifdef
35 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
36 information. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "tree.h"
41 #include "flags.h"
42 #include "rtl.h"
43 #include "hard-reg-set.h"
44 #include "regs.h"
45 #include "insn-config.h"
46 #include "reload.h"
47 #include "function.h"
48 #include "output.h"
49 #include "expr.h"
50 #include "except.h"
51 #include "dwarf2.h"
52 #include "dwarf2out.h"
53 #include "dwarf2asm.h"
54 #include "toplev.h"
55 #include "varray.h"
56 #include "ggc.h"
57 #include "md5.h"
58 #include "tm_p.h"
59 #include "diagnostic.h"
60 #include "debug.h"
61
62 #ifdef DWARF2_DEBUGGING_INFO
63 static void dwarf2out_source_line PARAMS ((unsigned int, const char *));
64 #endif
65
66 /* DWARF2 Abbreviation Glossary:
67 CFA = Canonical Frame Address
68 a fixed address on the stack which identifies a call frame.
69 We define it to be the value of SP just before the call insn.
70 The CFA register and offset, which may change during the course
71 of the function, are used to calculate its value at runtime.
72 CFI = Call Frame Instruction
73 an instruction for the DWARF2 abstract machine
74 CIE = Common Information Entry
75 information describing information common to one or more FDEs
76 DIE = Debugging Information Entry
77 FDE = Frame Description Entry
78 information describing the stack call frame, in particular,
79 how to restore registers
80
81 DW_CFA_... = DWARF2 CFA call frame instruction
82 DW_TAG_... = DWARF2 DIE tag */
83
84 /* Decide whether we want to emit frame unwind information for the current
85 translation unit. */
86
87 int
88 dwarf2out_do_frame ()
89 {
90 return (write_symbols == DWARF2_DEBUG
91 #ifdef DWARF2_FRAME_INFO
92 || DWARF2_FRAME_INFO
93 #endif
94 #ifdef DWARF2_UNWIND_INFO
95 || flag_unwind_tables
96 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
97 #endif
98 );
99 }
100
101 /* The number of the current function definition for which debugging
102 information is being generated. These numbers range from 1 up to the
103 maximum number of function definitions contained within the current
104 compilation unit. These numbers are used to create unique label id's
105 unique to each function definition. */
106 unsigned current_funcdef_number = 0;
107
108 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
109
110 /* How to start an assembler comment. */
111 #ifndef ASM_COMMENT_START
112 #define ASM_COMMENT_START ";#"
113 #endif
114
115 typedef struct dw_cfi_struct *dw_cfi_ref;
116 typedef struct dw_fde_struct *dw_fde_ref;
117 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
118
119 /* Call frames are described using a sequence of Call Frame
120 Information instructions. The register number, offset
121 and address fields are provided as possible operands;
122 their use is selected by the opcode field. */
123
124 typedef union dw_cfi_oprnd_struct
125 {
126 unsigned long dw_cfi_reg_num;
127 long int dw_cfi_offset;
128 const char *dw_cfi_addr;
129 struct dw_loc_descr_struct *dw_cfi_loc;
130 }
131 dw_cfi_oprnd;
132
133 typedef struct dw_cfi_struct
134 {
135 dw_cfi_ref dw_cfi_next;
136 enum dwarf_call_frame_info dw_cfi_opc;
137 dw_cfi_oprnd dw_cfi_oprnd1;
138 dw_cfi_oprnd dw_cfi_oprnd2;
139 }
140 dw_cfi_node;
141
142 /* This is how we define the location of the CFA. We use to handle it
143 as REG + OFFSET all the time, but now it can be more complex.
144 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
145 Instead of passing around REG and OFFSET, we pass a copy
146 of this structure. */
147 typedef struct cfa_loc
148 {
149 unsigned long reg;
150 long offset;
151 long base_offset;
152 int indirect; /* 1 if CFA is accessed via a dereference. */
153 } dw_cfa_location;
154
155 /* All call frame descriptions (FDE's) in the GCC generated DWARF
156 refer to a single Common Information Entry (CIE), defined at
157 the beginning of the .debug_frame section. This used of a single
158 CIE obviates the need to keep track of multiple CIE's
159 in the DWARF generation routines below. */
160
161 typedef struct dw_fde_struct
162 {
163 const char *dw_fde_begin;
164 const char *dw_fde_current_label;
165 const char *dw_fde_end;
166 dw_cfi_ref dw_fde_cfi;
167 unsigned funcdef_number;
168 unsigned nothrow : 1;
169 unsigned uses_eh_lsda : 1;
170 }
171 dw_fde_node;
172
173 /* Maximum size (in bytes) of an artificially generated label. */
174 #define MAX_ARTIFICIAL_LABEL_BYTES 30
175
176 /* The size of the target's pointer type. */
177 #ifndef PTR_SIZE
178 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
179 #endif
180
181 /* The size of addresses as they appear in the Dwarf 2 data.
182 Some architectures use word addresses to refer to code locations,
183 but Dwarf 2 info always uses byte addresses. On such machines,
184 Dwarf 2 addresses need to be larger than the architecture's
185 pointers. */
186 #ifndef DWARF2_ADDR_SIZE
187 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
188 #endif
189
190 /* The size in bytes of a DWARF field indicating an offset or length
191 relative to a debug info section, specified to be 4 bytes in the
192 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
193 as PTR_SIZE. */
194
195 #ifndef DWARF_OFFSET_SIZE
196 #define DWARF_OFFSET_SIZE 4
197 #endif
198
199 #define DWARF_VERSION 2
200
201 /* Round SIZE up to the nearest BOUNDARY. */
202 #define DWARF_ROUND(SIZE,BOUNDARY) \
203 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
204
205 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
206 #ifndef DWARF_CIE_DATA_ALIGNMENT
207 #ifdef STACK_GROWS_DOWNWARD
208 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
209 #else
210 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
211 #endif
212 #endif /* not DWARF_CIE_DATA_ALIGNMENT */
213
214 /* A pointer to the base of a table that contains frame description
215 information for each routine. */
216 static dw_fde_ref fde_table;
217
218 /* Number of elements currently allocated for fde_table. */
219 static unsigned fde_table_allocated;
220
221 /* Number of elements in fde_table currently in use. */
222 static unsigned fde_table_in_use;
223
224 /* Size (in elements) of increments by which we may expand the
225 fde_table. */
226 #define FDE_TABLE_INCREMENT 256
227
228 /* A list of call frame insns for the CIE. */
229 static dw_cfi_ref cie_cfi_head;
230
231 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
232 attribute that accelerates the lookup of the FDE associated
233 with the subprogram. This variable holds the table index of the FDE
234 associated with the current function (body) definition. */
235 static unsigned current_funcdef_fde;
236
237 /* Forward declarations for functions defined in this file. */
238
239 static char *stripattributes PARAMS ((const char *));
240 static const char *dwarf_cfi_name PARAMS ((unsigned));
241 static dw_cfi_ref new_cfi PARAMS ((void));
242 static void add_cfi PARAMS ((dw_cfi_ref *, dw_cfi_ref));
243 static void add_fde_cfi PARAMS ((const char *, dw_cfi_ref));
244 static void lookup_cfa_1 PARAMS ((dw_cfi_ref, dw_cfa_location *));
245 static void lookup_cfa PARAMS ((dw_cfa_location *));
246 static void reg_save PARAMS ((const char *, unsigned,
247 unsigned, long));
248 static void initial_return_save PARAMS ((rtx));
249 static long stack_adjust_offset PARAMS ((rtx));
250 static void output_cfi PARAMS ((dw_cfi_ref, dw_fde_ref, int));
251 static void output_call_frame_info PARAMS ((int));
252 static void dwarf2out_stack_adjust PARAMS ((rtx));
253 static void queue_reg_save PARAMS ((const char *, rtx, long));
254 static void flush_queued_reg_saves PARAMS ((void));
255 static bool clobbers_queued_reg_save PARAMS ((rtx));
256 static void dwarf2out_frame_debug_expr PARAMS ((rtx, const char *));
257
258 /* Support for complex CFA locations. */
259 static void output_cfa_loc PARAMS ((dw_cfi_ref));
260 static void get_cfa_from_loc_descr PARAMS ((dw_cfa_location *,
261 struct dw_loc_descr_struct *));
262 static struct dw_loc_descr_struct *build_cfa_loc
263 PARAMS ((dw_cfa_location *));
264 static void def_cfa_1 PARAMS ((const char *, dw_cfa_location *));
265
266 /* How to start an assembler comment. */
267 #ifndef ASM_COMMENT_START
268 #define ASM_COMMENT_START ";#"
269 #endif
270
271 /* Data and reference forms for relocatable data. */
272 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
273 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
274
275 /* Pseudo-op for defining a new section. */
276 #ifndef SECTION_ASM_OP
277 #define SECTION_ASM_OP "\t.section\t"
278 #endif
279
280 /* The default format used by the ASM_OUTPUT_SECTION macro (see below) to
281 print the SECTION_ASM_OP and the section name. The default here works for
282 almost all svr4 assemblers, except for the sparc, where the section name
283 must be enclosed in double quotes. (See sparcv4.h). */
284 #ifndef SECTION_FORMAT
285 #ifdef PUSHSECTION_FORMAT
286 #define SECTION_FORMAT PUSHSECTION_FORMAT
287 #else
288 #define SECTION_FORMAT "%s%s\n"
289 #endif
290 #endif
291
292 #ifndef DEBUG_FRAME_SECTION
293 #define DEBUG_FRAME_SECTION ".debug_frame"
294 #endif
295
296 #ifndef FUNC_BEGIN_LABEL
297 #define FUNC_BEGIN_LABEL "LFB"
298 #endif
299 #ifndef FUNC_END_LABEL
300 #define FUNC_END_LABEL "LFE"
301 #endif
302 #define CIE_AFTER_SIZE_LABEL "LSCIE"
303 #define CIE_END_LABEL "LECIE"
304 #define CIE_LENGTH_LABEL "LLCIE"
305 #define FDE_LABEL "LSFDE"
306 #define FDE_AFTER_SIZE_LABEL "LASFDE"
307 #define FDE_END_LABEL "LEFDE"
308 #define FDE_LENGTH_LABEL "LLFDE"
309 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
310 #define LINE_NUMBER_END_LABEL "LELT"
311 #define LN_PROLOG_AS_LABEL "LASLTP"
312 #define LN_PROLOG_END_LABEL "LELTP"
313 #define DIE_LABEL_PREFIX "DW"
314
315 /* Definitions of defaults for various types of primitive assembly language
316 output operations. These may be overridden from within the tm.h file,
317 but typically, that is unnecessary. */
318
319 #ifndef ASM_OUTPUT_SECTION
320 #define ASM_OUTPUT_SECTION(FILE, SECTION) \
321 fprintf ((FILE), SECTION_FORMAT, SECTION_ASM_OP, SECTION)
322 #endif
323
324 #ifdef SET_ASM_OP
325 #ifndef ASM_OUTPUT_DEFINE_LABEL_DIFFERENCE_SYMBOL
326 #define ASM_OUTPUT_DEFINE_LABEL_DIFFERENCE_SYMBOL(FILE, SY, HI, LO) \
327 do { \
328 fprintf (FILE, "%s", SET_ASM_OP); \
329 assemble_name (FILE, SY); \
330 fputc (',', FILE); \
331 assemble_name (FILE, HI); \
332 fputc ('-', FILE); \
333 assemble_name (FILE, LO); \
334 } while (0)
335 #endif
336 #endif /* SET_ASM_OP */
337
338 /* The DWARF 2 CFA column which tracks the return address. Normally this
339 is the column for PC, or the first column after all of the hard
340 registers. */
341 #ifndef DWARF_FRAME_RETURN_COLUMN
342 #ifdef PC_REGNUM
343 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
344 #else
345 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
346 #endif
347 #endif
348
349 /* The mapping from gcc register number to DWARF 2 CFA column number. By
350 default, we just provide columns for all registers. */
351 #ifndef DWARF_FRAME_REGNUM
352 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
353 #endif
354
355 /* Hook used by __throw. */
356
357 rtx
358 expand_builtin_dwarf_fp_regnum ()
359 {
360 return GEN_INT (DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM));
361 }
362
363 /* The offset from the incoming value of %sp to the top of the stack frame
364 for the current function. */
365 #ifndef INCOMING_FRAME_SP_OFFSET
366 #define INCOMING_FRAME_SP_OFFSET 0
367 #endif
368 \f
369 /* Return a pointer to a copy of the section string name S with all
370 attributes stripped off, and an asterisk prepended (for assemble_name). */
371
372 static inline char *
373 stripattributes (s)
374 const char *s;
375 {
376 char *stripped = xmalloc (strlen (s) + 2);
377 char *p = stripped;
378
379 *p++ = '*';
380
381 while (*s && *s != ',')
382 *p++ = *s++;
383
384 *p = '\0';
385 return stripped;
386 }
387
388 /* Generate code to initialize the register size table. */
389
390 void
391 expand_builtin_init_dwarf_reg_sizes (address)
392 tree address;
393 {
394 int i;
395 enum machine_mode mode = TYPE_MODE (char_type_node);
396 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
397 rtx mem = gen_rtx_MEM (mode, addr);
398
399 for (i = 0; i < DWARF_FRAME_REGISTERS; ++i)
400 {
401 int offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
402 int size = GET_MODE_SIZE (reg_raw_mode[i]);
403
404 if (offset < 0)
405 continue;
406
407 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
408 }
409 }
410
411 /* Convert a DWARF call frame info. operation to its string name */
412
413 static const char *
414 dwarf_cfi_name (cfi_opc)
415 register unsigned cfi_opc;
416 {
417 switch (cfi_opc)
418 {
419 case DW_CFA_advance_loc:
420 return "DW_CFA_advance_loc";
421 case DW_CFA_offset:
422 return "DW_CFA_offset";
423 case DW_CFA_restore:
424 return "DW_CFA_restore";
425 case DW_CFA_nop:
426 return "DW_CFA_nop";
427 case DW_CFA_set_loc:
428 return "DW_CFA_set_loc";
429 case DW_CFA_advance_loc1:
430 return "DW_CFA_advance_loc1";
431 case DW_CFA_advance_loc2:
432 return "DW_CFA_advance_loc2";
433 case DW_CFA_advance_loc4:
434 return "DW_CFA_advance_loc4";
435 case DW_CFA_offset_extended:
436 return "DW_CFA_offset_extended";
437 case DW_CFA_restore_extended:
438 return "DW_CFA_restore_extended";
439 case DW_CFA_undefined:
440 return "DW_CFA_undefined";
441 case DW_CFA_same_value:
442 return "DW_CFA_same_value";
443 case DW_CFA_register:
444 return "DW_CFA_register";
445 case DW_CFA_remember_state:
446 return "DW_CFA_remember_state";
447 case DW_CFA_restore_state:
448 return "DW_CFA_restore_state";
449 case DW_CFA_def_cfa:
450 return "DW_CFA_def_cfa";
451 case DW_CFA_def_cfa_register:
452 return "DW_CFA_def_cfa_register";
453 case DW_CFA_def_cfa_offset:
454 return "DW_CFA_def_cfa_offset";
455 case DW_CFA_def_cfa_expression:
456 return "DW_CFA_def_cfa_expression";
457
458 /* SGI/MIPS specific */
459 case DW_CFA_MIPS_advance_loc8:
460 return "DW_CFA_MIPS_advance_loc8";
461
462 /* GNU extensions */
463 case DW_CFA_GNU_window_save:
464 return "DW_CFA_GNU_window_save";
465 case DW_CFA_GNU_args_size:
466 return "DW_CFA_GNU_args_size";
467 case DW_CFA_GNU_negative_offset_extended:
468 return "DW_CFA_GNU_negative_offset_extended";
469
470 default:
471 return "DW_CFA_<unknown>";
472 }
473 }
474
475 /* Return a pointer to a newly allocated Call Frame Instruction. */
476
477 static inline dw_cfi_ref
478 new_cfi ()
479 {
480 register dw_cfi_ref cfi = (dw_cfi_ref) xmalloc (sizeof (dw_cfi_node));
481
482 cfi->dw_cfi_next = NULL;
483 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
484 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
485
486 return cfi;
487 }
488
489 /* Add a Call Frame Instruction to list of instructions. */
490
491 static inline void
492 add_cfi (list_head, cfi)
493 register dw_cfi_ref *list_head;
494 register dw_cfi_ref cfi;
495 {
496 register dw_cfi_ref *p;
497
498 /* Find the end of the chain. */
499 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
500 ;
501
502 *p = cfi;
503 }
504
505 /* Generate a new label for the CFI info to refer to. */
506
507 char *
508 dwarf2out_cfi_label ()
509 {
510 static char label[20];
511 static unsigned long label_num = 0;
512
513 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", label_num++);
514 ASM_OUTPUT_LABEL (asm_out_file, label);
515
516 return label;
517 }
518
519 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
520 or to the CIE if LABEL is NULL. */
521
522 static void
523 add_fde_cfi (label, cfi)
524 register const char *label;
525 register dw_cfi_ref cfi;
526 {
527 if (label)
528 {
529 register dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
530
531 if (*label == 0)
532 label = dwarf2out_cfi_label ();
533
534 if (fde->dw_fde_current_label == NULL
535 || strcmp (label, fde->dw_fde_current_label) != 0)
536 {
537 register dw_cfi_ref xcfi;
538
539 fde->dw_fde_current_label = label = xstrdup (label);
540
541 /* Set the location counter to the new label. */
542 xcfi = new_cfi ();
543 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
544 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
545 add_cfi (&fde->dw_fde_cfi, xcfi);
546 }
547
548 add_cfi (&fde->dw_fde_cfi, cfi);
549 }
550
551 else
552 add_cfi (&cie_cfi_head, cfi);
553 }
554
555 /* Subroutine of lookup_cfa. */
556
557 static inline void
558 lookup_cfa_1 (cfi, loc)
559 register dw_cfi_ref cfi;
560 register dw_cfa_location *loc;
561 {
562 switch (cfi->dw_cfi_opc)
563 {
564 case DW_CFA_def_cfa_offset:
565 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
566 break;
567 case DW_CFA_def_cfa_register:
568 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
569 break;
570 case DW_CFA_def_cfa:
571 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
572 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
573 break;
574 case DW_CFA_def_cfa_expression:
575 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
576 break;
577 default:
578 break;
579 }
580 }
581
582 /* Find the previous value for the CFA. */
583
584 static void
585 lookup_cfa (loc)
586 register dw_cfa_location *loc;
587 {
588 register dw_cfi_ref cfi;
589
590 loc->reg = (unsigned long) -1;
591 loc->offset = 0;
592 loc->indirect = 0;
593 loc->base_offset = 0;
594
595 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
596 lookup_cfa_1 (cfi, loc);
597
598 if (fde_table_in_use)
599 {
600 register dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
601 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
602 lookup_cfa_1 (cfi, loc);
603 }
604 }
605
606 /* The current rule for calculating the DWARF2 canonical frame address. */
607 static dw_cfa_location cfa;
608
609 /* The register used for saving registers to the stack, and its offset
610 from the CFA. */
611 static dw_cfa_location cfa_store;
612
613 /* The running total of the size of arguments pushed onto the stack. */
614 static long args_size;
615
616 /* The last args_size we actually output. */
617 static long old_args_size;
618
619 /* Entry point to update the canonical frame address (CFA).
620 LABEL is passed to add_fde_cfi. The value of CFA is now to be
621 calculated from REG+OFFSET. */
622
623 void
624 dwarf2out_def_cfa (label, reg, offset)
625 register const char *label;
626 unsigned reg;
627 long offset;
628 {
629 dw_cfa_location loc;
630 loc.indirect = 0;
631 loc.base_offset = 0;
632 loc.reg = reg;
633 loc.offset = offset;
634 def_cfa_1 (label, &loc);
635 }
636
637 /* This routine does the actual work. The CFA is now calculated from
638 the dw_cfa_location structure. */
639 static void
640 def_cfa_1 (label, loc_p)
641 register const char *label;
642 dw_cfa_location *loc_p;
643 {
644 register dw_cfi_ref cfi;
645 dw_cfa_location old_cfa, loc;
646
647 cfa = *loc_p;
648 loc = *loc_p;
649
650 if (cfa_store.reg == loc.reg && loc.indirect == 0)
651 cfa_store.offset = loc.offset;
652
653 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
654 lookup_cfa (&old_cfa);
655
656 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset &&
657 loc.indirect == old_cfa.indirect)
658 {
659 if (loc.indirect == 0
660 || loc.base_offset == old_cfa.base_offset)
661 /* Nothing changed so no need to issue any call frame
662 instructions. */
663 return;
664 }
665
666 cfi = new_cfi ();
667
668 if (loc.reg == old_cfa.reg && !loc.indirect)
669 {
670 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
671 indicating the CFA register did not change but the offset
672 did. */
673 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
674 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
675 }
676
677 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
678 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
679 && !loc.indirect)
680 {
681 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
682 indicating the CFA register has changed to <register> but the
683 offset has not changed. */
684 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
685 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
686 }
687 #endif
688
689 else if (loc.indirect == 0)
690 {
691 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
692 indicating the CFA register has changed to <register> with
693 the specified offset. */
694 cfi->dw_cfi_opc = DW_CFA_def_cfa;
695 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
696 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
697 }
698 else
699 {
700 /* Construct a DW_CFA_def_cfa_expression instruction to
701 calculate the CFA using a full location expression since no
702 register-offset pair is available. */
703 struct dw_loc_descr_struct *loc_list;
704 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
705 loc_list = build_cfa_loc (&loc);
706 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
707 }
708
709 add_fde_cfi (label, cfi);
710 }
711
712 /* Add the CFI for saving a register. REG is the CFA column number.
713 LABEL is passed to add_fde_cfi.
714 If SREG is -1, the register is saved at OFFSET from the CFA;
715 otherwise it is saved in SREG. */
716
717 static void
718 reg_save (label, reg, sreg, offset)
719 register const char *label;
720 register unsigned reg;
721 register unsigned sreg;
722 register long offset;
723 {
724 register dw_cfi_ref cfi = new_cfi ();
725
726 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
727
728 /* The following comparison is correct. -1 is used to indicate that
729 the value isn't a register number. */
730 if (sreg == (unsigned int) -1)
731 {
732 if (reg & ~0x3f)
733 /* The register number won't fit in 6 bits, so we have to use
734 the long form. */
735 cfi->dw_cfi_opc = DW_CFA_offset_extended;
736 else
737 cfi->dw_cfi_opc = DW_CFA_offset;
738
739 #ifdef ENABLE_CHECKING
740 {
741 /* If we get an offset that is not a multiple of
742 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
743 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
744 description. */
745 long check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
746
747 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
748 abort ();
749 }
750 #endif
751 offset /= DWARF_CIE_DATA_ALIGNMENT;
752 if (offset < 0)
753 {
754 cfi->dw_cfi_opc = DW_CFA_GNU_negative_offset_extended;
755 offset = -offset;
756 }
757 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
758 }
759 else if (sreg == reg)
760 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
761 return;
762 else
763 {
764 cfi->dw_cfi_opc = DW_CFA_register;
765 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
766 }
767
768 add_fde_cfi (label, cfi);
769 }
770
771 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
772 This CFI tells the unwinder that it needs to restore the window registers
773 from the previous frame's window save area.
774
775 ??? Perhaps we should note in the CIE where windows are saved (instead of
776 assuming 0(cfa)) and what registers are in the window. */
777
778 void
779 dwarf2out_window_save (label)
780 register const char *label;
781 {
782 register dw_cfi_ref cfi = new_cfi ();
783 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
784 add_fde_cfi (label, cfi);
785 }
786
787 /* Add a CFI to update the running total of the size of arguments
788 pushed onto the stack. */
789
790 void
791 dwarf2out_args_size (label, size)
792 const char *label;
793 long size;
794 {
795 register dw_cfi_ref cfi;
796
797 if (size == old_args_size)
798 return;
799 old_args_size = size;
800
801 cfi = new_cfi ();
802 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
803 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
804 add_fde_cfi (label, cfi);
805 }
806
807 /* Entry point for saving a register to the stack. REG is the GCC register
808 number. LABEL and OFFSET are passed to reg_save. */
809
810 void
811 dwarf2out_reg_save (label, reg, offset)
812 register const char *label;
813 register unsigned reg;
814 register long offset;
815 {
816 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
817 }
818
819 /* Entry point for saving the return address in the stack.
820 LABEL and OFFSET are passed to reg_save. */
821
822 void
823 dwarf2out_return_save (label, offset)
824 register const char *label;
825 register long offset;
826 {
827 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
828 }
829
830 /* Entry point for saving the return address in a register.
831 LABEL and SREG are passed to reg_save. */
832
833 void
834 dwarf2out_return_reg (label, sreg)
835 register const char *label;
836 register unsigned sreg;
837 {
838 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
839 }
840
841 /* Record the initial position of the return address. RTL is
842 INCOMING_RETURN_ADDR_RTX. */
843
844 static void
845 initial_return_save (rtl)
846 register rtx rtl;
847 {
848 unsigned int reg = (unsigned int) -1;
849 long offset = 0;
850
851 switch (GET_CODE (rtl))
852 {
853 case REG:
854 /* RA is in a register. */
855 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
856 break;
857 case MEM:
858 /* RA is on the stack. */
859 rtl = XEXP (rtl, 0);
860 switch (GET_CODE (rtl))
861 {
862 case REG:
863 if (REGNO (rtl) != STACK_POINTER_REGNUM)
864 abort ();
865 offset = 0;
866 break;
867 case PLUS:
868 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
869 abort ();
870 offset = INTVAL (XEXP (rtl, 1));
871 break;
872 case MINUS:
873 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
874 abort ();
875 offset = -INTVAL (XEXP (rtl, 1));
876 break;
877 default:
878 abort ();
879 }
880 break;
881 case PLUS:
882 /* The return address is at some offset from any value we can
883 actually load. For instance, on the SPARC it is in %i7+8. Just
884 ignore the offset for now; it doesn't matter for unwinding frames. */
885 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
886 abort ();
887 initial_return_save (XEXP (rtl, 0));
888 return;
889 default:
890 abort ();
891 }
892
893 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
894 }
895
896 /* Given a SET, calculate the amount of stack adjustment it
897 contains. */
898
899 static long
900 stack_adjust_offset (pattern)
901 rtx pattern;
902 {
903 rtx src = SET_SRC (pattern);
904 rtx dest = SET_DEST (pattern);
905 long offset = 0;
906 enum rtx_code code;
907
908 if (dest == stack_pointer_rtx)
909 {
910 /* (set (reg sp) (plus (reg sp) (const_int))) */
911 code = GET_CODE (src);
912 if (! (code == PLUS || code == MINUS)
913 || XEXP (src, 0) != stack_pointer_rtx
914 || GET_CODE (XEXP (src, 1)) != CONST_INT)
915 return 0;
916
917 offset = INTVAL (XEXP (src, 1));
918 }
919 else if (GET_CODE (dest) == MEM)
920 {
921 /* (set (mem (pre_dec (reg sp))) (foo)) */
922 src = XEXP (dest, 0);
923 code = GET_CODE (src);
924
925 if (! (code == PRE_DEC || code == PRE_INC
926 || code == PRE_MODIFY)
927 || XEXP (src, 0) != stack_pointer_rtx)
928 return 0;
929
930 if (code == PRE_MODIFY)
931 {
932 rtx val = XEXP (XEXP (src, 1), 1);
933 /* We handle only adjustments by constant amount. */
934 if (GET_CODE (XEXP (src, 1)) != PLUS ||
935 GET_CODE (val) != CONST_INT)
936 abort();
937 offset = -INTVAL (val);
938 }
939 else offset = GET_MODE_SIZE (GET_MODE (dest));
940 }
941 else
942 return 0;
943
944 if (code == PLUS || code == PRE_INC)
945 offset = -offset;
946
947 return offset;
948 }
949
950 /* Check INSN to see if it looks like a push or a stack adjustment, and
951 make a note of it if it does. EH uses this information to find out how
952 much extra space it needs to pop off the stack. */
953
954 static void
955 dwarf2out_stack_adjust (insn)
956 rtx insn;
957 {
958 long offset;
959 const char *label;
960
961 if (! flag_non_call_exceptions && GET_CODE (insn) == CALL_INSN)
962 {
963 /* Extract the size of the args from the CALL rtx itself. */
964
965 insn = PATTERN (insn);
966 if (GET_CODE (insn) == PARALLEL)
967 insn = XVECEXP (insn, 0, 0);
968 if (GET_CODE (insn) == SET)
969 insn = SET_SRC (insn);
970 if (GET_CODE (insn) != CALL)
971 abort ();
972 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
973 return;
974 }
975
976 /* If only calls can throw, and we have a frame pointer,
977 save up adjustments until we see the CALL_INSN. */
978 else if (! flag_non_call_exceptions
979 && cfa.reg != STACK_POINTER_REGNUM)
980 return;
981
982 if (GET_CODE (insn) == BARRIER)
983 {
984 /* When we see a BARRIER, we know to reset args_size to 0. Usually
985 the compiler will have already emitted a stack adjustment, but
986 doesn't bother for calls to noreturn functions. */
987 #ifdef STACK_GROWS_DOWNWARD
988 offset = -args_size;
989 #else
990 offset = args_size;
991 #endif
992 }
993 else if (GET_CODE (PATTERN (insn)) == SET)
994 {
995 offset = stack_adjust_offset (PATTERN (insn));
996 }
997 else if (GET_CODE (PATTERN (insn)) == PARALLEL
998 || GET_CODE (PATTERN (insn)) == SEQUENCE)
999 {
1000 /* There may be stack adjustments inside compound insns. Search
1001 for them. */
1002 int j;
1003
1004 offset = 0;
1005 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1006 {
1007 rtx pattern = XVECEXP (PATTERN (insn), 0, j);
1008 if (GET_CODE (pattern) == SET)
1009 offset += stack_adjust_offset (pattern);
1010 }
1011 }
1012 else
1013 return;
1014
1015 if (offset == 0)
1016 return;
1017
1018 if (cfa.reg == STACK_POINTER_REGNUM)
1019 cfa.offset += offset;
1020
1021 #ifndef STACK_GROWS_DOWNWARD
1022 offset = -offset;
1023 #endif
1024 args_size += offset;
1025 if (args_size < 0)
1026 args_size = 0;
1027
1028 label = dwarf2out_cfi_label ();
1029 def_cfa_1 (label, &cfa);
1030 dwarf2out_args_size (label, args_size);
1031 }
1032
1033 /* We delay emitting a register save until either (a) we reach the end
1034 of the prologue or (b) the register is clobbered. This clusters
1035 register saves so that there are fewer pc advances. */
1036
1037 struct queued_reg_save
1038 {
1039 struct queued_reg_save *next;
1040 rtx reg;
1041 long cfa_offset;
1042 };
1043
1044 static struct queued_reg_save *queued_reg_saves;
1045 static const char *last_reg_save_label;
1046
1047 static void
1048 queue_reg_save (label, reg, offset)
1049 const char *label;
1050 rtx reg;
1051 long offset;
1052 {
1053 struct queued_reg_save *q = (struct queued_reg_save *) xmalloc (sizeof (*q));
1054
1055 q->next = queued_reg_saves;
1056 q->reg = reg;
1057 q->cfa_offset = offset;
1058 queued_reg_saves = q;
1059
1060 last_reg_save_label = label;
1061 }
1062
1063 static void
1064 flush_queued_reg_saves ()
1065 {
1066 struct queued_reg_save *q, *next;
1067
1068 for (q = queued_reg_saves; q ; q = next)
1069 {
1070 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1071 next = q->next;
1072 free (q);
1073 }
1074
1075 queued_reg_saves = NULL;
1076 last_reg_save_label = NULL;
1077 }
1078
1079 static bool
1080 clobbers_queued_reg_save (insn)
1081 rtx insn;
1082 {
1083 struct queued_reg_save *q;
1084
1085 for (q = queued_reg_saves; q ; q = q->next)
1086 if (modified_in_p (q->reg, insn))
1087 return true;
1088
1089 return false;
1090 }
1091
1092
1093 /* A temporary register holding an integral value used in adjusting SP
1094 or setting up the store_reg. The "offset" field holds the integer
1095 value, not an offset. */
1096 static dw_cfa_location cfa_temp;
1097
1098 /* Record call frame debugging information for an expression EXPR,
1099 which either sets SP or FP (adjusting how we calculate the frame
1100 address) or saves a register to the stack. LABEL indicates the
1101 address of EXPR.
1102
1103 This function encodes a state machine mapping rtxes to actions on
1104 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1105 users need not read the source code.
1106
1107 The High-Level Picture
1108
1109 Changes in the register we use to calculate the CFA: Currently we
1110 assume that if you copy the CFA register into another register, we
1111 should take the other one as the new CFA register; this seems to
1112 work pretty well. If it's wrong for some target, it's simple
1113 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1114
1115 Changes in the register we use for saving registers to the stack:
1116 This is usually SP, but not always. Again, we deduce that if you
1117 copy SP into another register (and SP is not the CFA register),
1118 then the new register is the one we will be using for register
1119 saves. This also seems to work.
1120
1121 Register saves: There's not much guesswork about this one; if
1122 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1123 register save, and the register used to calculate the destination
1124 had better be the one we think we're using for this purpose.
1125
1126 Except: If the register being saved is the CFA register, and the
1127 offset is non-zero, we are saving the CFA, so we assume we have to
1128 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1129 the intent is to save the value of SP from the previous frame.
1130
1131 Invariants / Summaries of Rules
1132
1133 cfa current rule for calculating the CFA. It usually
1134 consists of a register and an offset.
1135 cfa_store register used by prologue code to save things to the stack
1136 cfa_store.offset is the offset from the value of
1137 cfa_store.reg to the actual CFA
1138 cfa_temp register holding an integral value. cfa_temp.offset
1139 stores the value, which will be used to adjust the
1140 stack pointer. cfa_temp is also used like cfa_store,
1141 to track stores to the stack via fp or a temp reg.
1142
1143 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1144 with cfa.reg as the first operand changes the cfa.reg and its
1145 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1146 cfa_temp.offset.
1147
1148 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1149 expression yielding a constant. This sets cfa_temp.reg
1150 and cfa_temp.offset.
1151
1152 Rule 5: Create a new register cfa_store used to save items to the
1153 stack.
1154
1155 Rules 10-14: Save a register to the stack. Define offset as the
1156 difference of the original location and cfa_store's
1157 location (or cfa_temp's location if cfa_temp is used).
1158
1159 The Rules
1160
1161 "{a,b}" indicates a choice of a xor b.
1162 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1163
1164 Rule 1:
1165 (set <reg1> <reg2>:cfa.reg)
1166 effects: cfa.reg = <reg1>
1167 cfa.offset unchanged
1168 cfa_temp.reg = <reg1>
1169 cfa_temp.offset = cfa.offset
1170
1171 Rule 2:
1172 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg {<const_int>,<reg>:cfa_temp.reg}))
1173 effects: cfa.reg = sp if fp used
1174 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1175 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1176 if cfa_store.reg==sp
1177
1178 Rule 3:
1179 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1180 effects: cfa.reg = fp
1181 cfa_offset += +/- <const_int>
1182
1183 Rule 4:
1184 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1185 constraints: <reg1> != fp
1186 <reg1> != sp
1187 effects: cfa.reg = <reg1>
1188 cfa_temp.reg = <reg1>
1189 cfa_temp.offset = cfa.offset
1190
1191 Rule 5:
1192 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1193 constraints: <reg1> != fp
1194 <reg1> != sp
1195 effects: cfa_store.reg = <reg1>
1196 cfa_store.offset = cfa.offset - cfa_temp.offset
1197
1198 Rule 6:
1199 (set <reg> <const_int>)
1200 effects: cfa_temp.reg = <reg>
1201 cfa_temp.offset = <const_int>
1202
1203 Rule 7:
1204 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1205 effects: cfa_temp.reg = <reg1>
1206 cfa_temp.offset |= <const_int>
1207
1208 Rule 8:
1209 (set <reg> (high <exp>))
1210 effects: none
1211
1212 Rule 9:
1213 (set <reg> (lo_sum <exp> <const_int>))
1214 effects: cfa_temp.reg = <reg>
1215 cfa_temp.offset = <const_int>
1216
1217 Rule 10:
1218 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1219 effects: cfa_store.offset -= <const_int>
1220 cfa.offset = cfa_store.offset if cfa.reg == sp
1221 cfa.reg = sp
1222 cfa.base_offset = -cfa_store.offset
1223
1224 Rule 11:
1225 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1226 effects: cfa_store.offset += -/+ mode_size(mem)
1227 cfa.offset = cfa_store.offset if cfa.reg == sp
1228 cfa.reg = sp
1229 cfa.base_offset = -cfa_store.offset
1230
1231 Rule 12:
1232 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>)) <reg2>)
1233 effects: cfa.reg = <reg1>
1234 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1235
1236 Rule 13:
1237 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1238 effects: cfa.reg = <reg1>
1239 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1240
1241 Rule 14:
1242 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1243 effects: cfa.reg = <reg1>
1244 cfa.base_offset = -cfa_temp.offset
1245 cfa_temp.offset -= mode_size(mem) */
1246
1247 static void
1248 dwarf2out_frame_debug_expr (expr, label)
1249 rtx expr;
1250 const char *label;
1251 {
1252 rtx src, dest;
1253 long offset;
1254
1255 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1256 the PARALLEL independently. The first element is always processed if
1257 it is a SET. This is for backward compatibility. Other elements
1258 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1259 flag is set in them. */
1260
1261 if (GET_CODE (expr) == PARALLEL
1262 || GET_CODE (expr) == SEQUENCE)
1263 {
1264 int par_index;
1265 int limit = XVECLEN (expr, 0);
1266
1267 for (par_index = 0; par_index < limit; par_index++)
1268 {
1269 rtx x = XVECEXP (expr, 0, par_index);
1270
1271 if (GET_CODE (x) == SET &&
1272 (RTX_FRAME_RELATED_P (x) || par_index == 0))
1273 dwarf2out_frame_debug_expr (x, label);
1274 }
1275 return;
1276 }
1277
1278 if (GET_CODE (expr) != SET)
1279 abort ();
1280
1281 src = SET_SRC (expr);
1282 dest = SET_DEST (expr);
1283
1284 switch (GET_CODE (dest))
1285 {
1286 case REG:
1287 /* Rule 1 */
1288 /* Update the CFA rule wrt SP or FP. Make sure src is
1289 relative to the current CFA register. */
1290 switch (GET_CODE (src))
1291 {
1292 /* Setting FP from SP. */
1293 case REG:
1294 if (cfa.reg == (unsigned) REGNO (src))
1295 /* OK. */
1296 ;
1297 else
1298 abort ();
1299
1300 /* We used to require that dest be either SP or FP, but the
1301 ARM copies SP to a temporary register, and from there to
1302 FP. So we just rely on the backends to only set
1303 RTX_FRAME_RELATED_P on appropriate insns. */
1304 cfa.reg = REGNO (dest);
1305 cfa_temp.reg = cfa.reg;
1306 cfa_temp.offset = cfa.offset;
1307 break;
1308
1309 case PLUS:
1310 case MINUS:
1311 case LO_SUM:
1312 if (dest == stack_pointer_rtx)
1313 {
1314 /* Rule 2 */
1315 /* Adjusting SP. */
1316 switch (GET_CODE (XEXP (src, 1)))
1317 {
1318 case CONST_INT:
1319 offset = INTVAL (XEXP (src, 1));
1320 break;
1321 case REG:
1322 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1323 abort ();
1324 offset = cfa_temp.offset;
1325 break;
1326 default:
1327 abort ();
1328 }
1329
1330 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1331 {
1332 /* Restoring SP from FP in the epilogue. */
1333 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1334 abort ();
1335 cfa.reg = STACK_POINTER_REGNUM;
1336 }
1337 else if (GET_CODE (src) == LO_SUM)
1338 /* Assume we've set the source reg of the LO_SUM from sp. */
1339 ;
1340 else if (XEXP (src, 0) != stack_pointer_rtx)
1341 abort ();
1342
1343 if (GET_CODE (src) != MINUS)
1344 offset = -offset;
1345 if (cfa.reg == STACK_POINTER_REGNUM)
1346 cfa.offset += offset;
1347 if (cfa_store.reg == STACK_POINTER_REGNUM)
1348 cfa_store.offset += offset;
1349 }
1350 else if (dest == hard_frame_pointer_rtx)
1351 {
1352 /* Rule 3 */
1353 /* Either setting the FP from an offset of the SP,
1354 or adjusting the FP */
1355 if (! frame_pointer_needed)
1356 abort ();
1357
1358 if (GET_CODE (XEXP (src, 0)) == REG
1359 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1360 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1361 {
1362 offset = INTVAL (XEXP (src, 1));
1363 if (GET_CODE (src) != MINUS)
1364 offset = -offset;
1365 cfa.offset += offset;
1366 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1367 }
1368 else
1369 abort ();
1370 }
1371 else
1372 {
1373 if (GET_CODE (src) == MINUS)
1374 abort ();
1375
1376 /* Rule 4 */
1377 if (GET_CODE (XEXP (src, 0)) == REG
1378 && REGNO (XEXP (src, 0)) == cfa.reg
1379 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1380 {
1381 /* Setting a temporary CFA register that will be copied
1382 into the FP later on. */
1383 offset = - INTVAL (XEXP (src, 1));
1384 cfa.offset += offset;
1385 cfa.reg = REGNO (dest);
1386 /* Or used to save regs to the stack. */
1387 cfa_temp.reg = cfa.reg;
1388 cfa_temp.offset = cfa.offset;
1389 }
1390 /* Rule 5 */
1391 else if (GET_CODE (XEXP (src, 0)) == REG
1392 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1393 && XEXP (src, 1) == stack_pointer_rtx)
1394 {
1395 /* Setting a scratch register that we will use instead
1396 of SP for saving registers to the stack. */
1397 if (cfa.reg != STACK_POINTER_REGNUM)
1398 abort ();
1399 cfa_store.reg = REGNO (dest);
1400 cfa_store.offset = cfa.offset - cfa_temp.offset;
1401 }
1402 /* Rule 9 */
1403 else if (GET_CODE (src) == LO_SUM
1404 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1405 {
1406 cfa_temp.reg = REGNO (dest);
1407 cfa_temp.offset = INTVAL (XEXP (src, 1));
1408 }
1409 else
1410 abort ();
1411 }
1412 break;
1413
1414 /* Rule 6 */
1415 case CONST_INT:
1416 cfa_temp.reg = REGNO (dest);
1417 cfa_temp.offset = INTVAL (src);
1418 break;
1419
1420 /* Rule 7 */
1421 case IOR:
1422 if (GET_CODE (XEXP (src, 0)) != REG
1423 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1424 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1425 abort ();
1426 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1427 cfa_temp.reg = REGNO (dest);
1428 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1429 break;
1430
1431 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1432 which will fill in all of the bits. */
1433 /* Rule 8 */
1434 case HIGH:
1435 break;
1436
1437 default:
1438 abort ();
1439 }
1440 def_cfa_1 (label, &cfa);
1441 break;
1442
1443 case MEM:
1444 if (GET_CODE (src) != REG)
1445 abort ();
1446
1447 /* Saving a register to the stack. Make sure dest is relative to the
1448 CFA register. */
1449 switch (GET_CODE (XEXP (dest, 0)))
1450 {
1451 /* Rule 10 */
1452 /* With a push. */
1453 case PRE_MODIFY:
1454 /* We can't handle variable size modifications. */
1455 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1456 abort();
1457 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1458
1459 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1460 || cfa_store.reg != STACK_POINTER_REGNUM)
1461 abort ();
1462 cfa_store.offset += offset;
1463 if (cfa.reg == STACK_POINTER_REGNUM)
1464 cfa.offset = cfa_store.offset;
1465
1466 offset = -cfa_store.offset;
1467 break;
1468 /* Rule 11 */
1469 case PRE_INC:
1470 case PRE_DEC:
1471 offset = GET_MODE_SIZE (GET_MODE (dest));
1472 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1473 offset = -offset;
1474
1475 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1476 || cfa_store.reg != STACK_POINTER_REGNUM)
1477 abort ();
1478 cfa_store.offset += offset;
1479 if (cfa.reg == STACK_POINTER_REGNUM)
1480 cfa.offset = cfa_store.offset;
1481
1482 offset = -cfa_store.offset;
1483 break;
1484
1485 /* Rule 12 */
1486 /* With an offset. */
1487 case PLUS:
1488 case MINUS:
1489 case LO_SUM:
1490 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1491 abort ();
1492 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1493 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1494 offset = -offset;
1495
1496 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1497 offset -= cfa_store.offset;
1498 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1499 offset -= cfa_temp.offset;
1500 else
1501 abort ();
1502 break;
1503
1504 /* Rule 13 */
1505 /* Without an offset. */
1506 case REG:
1507 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1508 offset = -cfa_store.offset;
1509 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1510 offset = -cfa_temp.offset;
1511 else
1512 abort ();
1513 break;
1514
1515 /* Rule 14 */
1516 case POST_INC:
1517 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1518 abort ();
1519 offset = -cfa_temp.offset;
1520 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1521 break;
1522
1523 default:
1524 abort ();
1525 }
1526
1527 if (REGNO (src) != STACK_POINTER_REGNUM
1528 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1529 && (unsigned) REGNO (src) == cfa.reg)
1530 {
1531 /* We're storing the current CFA reg into the stack. */
1532
1533 if (cfa.offset == 0)
1534 {
1535 /* If the source register is exactly the CFA, assume
1536 we're saving SP like any other register; this happens
1537 on the ARM. */
1538
1539 def_cfa_1 (label, &cfa);
1540 queue_reg_save (label, stack_pointer_rtx, offset);
1541 break;
1542 }
1543 else
1544 {
1545 /* Otherwise, we'll need to look in the stack to
1546 calculate the CFA. */
1547
1548 rtx x = XEXP (dest, 0);
1549 if (GET_CODE (x) != REG)
1550 x = XEXP (x, 0);
1551 if (GET_CODE (x) != REG)
1552 abort ();
1553 cfa.reg = (unsigned) REGNO (x);
1554 cfa.base_offset = offset;
1555 cfa.indirect = 1;
1556 def_cfa_1 (label, &cfa);
1557 break;
1558 }
1559 }
1560
1561 def_cfa_1 (label, &cfa);
1562 queue_reg_save (label, src, offset);
1563 break;
1564
1565 default:
1566 abort ();
1567 }
1568 }
1569
1570 /* Record call frame debugging information for INSN, which either
1571 sets SP or FP (adjusting how we calculate the frame address) or saves a
1572 register to the stack. If INSN is NULL_RTX, initialize our state. */
1573
1574 void
1575 dwarf2out_frame_debug (insn)
1576 rtx insn;
1577 {
1578 const char *label;
1579 rtx src;
1580
1581 if (insn == NULL_RTX)
1582 {
1583 /* Flush any queued register saves. */
1584 flush_queued_reg_saves ();
1585
1586 /* Set up state for generating call frame debug info. */
1587 lookup_cfa (&cfa);
1588 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1589 abort ();
1590 cfa.reg = STACK_POINTER_REGNUM;
1591 cfa_store = cfa;
1592 cfa_temp.reg = -1;
1593 cfa_temp.offset = 0;
1594 return;
1595 }
1596
1597 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1598 flush_queued_reg_saves ();
1599
1600 if (! RTX_FRAME_RELATED_P (insn))
1601 {
1602 if (!ACCUMULATE_OUTGOING_ARGS)
1603 dwarf2out_stack_adjust (insn);
1604 return;
1605 }
1606
1607 label = dwarf2out_cfi_label ();
1608
1609 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1610 if (src)
1611 insn = XEXP (src, 0);
1612 else
1613 insn = PATTERN (insn);
1614
1615 dwarf2out_frame_debug_expr (insn, label);
1616 }
1617
1618 /* Output a Call Frame Information opcode and its operand(s). */
1619
1620 static void
1621 output_cfi (cfi, fde, for_eh)
1622 register dw_cfi_ref cfi;
1623 register dw_fde_ref fde;
1624 int for_eh;
1625 {
1626 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1627 {
1628 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1629 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1630 "DW_CFA_advance_loc 0x%lx",
1631 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1632 }
1633 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1634 {
1635 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1636 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1637 "DW_CFA_offset, column 0x%lx",
1638 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1639 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1640 }
1641 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1642 {
1643 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1644 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1645 "DW_CFA_restore, column 0x%lx",
1646 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1647 }
1648 else
1649 {
1650 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1651 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1652
1653 switch (cfi->dw_cfi_opc)
1654 {
1655 case DW_CFA_set_loc:
1656 if (for_eh)
1657 dw2_asm_output_encoded_addr_rtx (
1658 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1659 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1660 NULL);
1661 else
1662 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1663 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1664 break;
1665 case DW_CFA_advance_loc1:
1666 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1667 fde->dw_fde_current_label, NULL);
1668 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1669 break;
1670 case DW_CFA_advance_loc2:
1671 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1672 fde->dw_fde_current_label, NULL);
1673 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1674 break;
1675 case DW_CFA_advance_loc4:
1676 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1677 fde->dw_fde_current_label, NULL);
1678 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1679 break;
1680 case DW_CFA_MIPS_advance_loc8:
1681 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1682 fde->dw_fde_current_label, NULL);
1683 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1684 break;
1685 case DW_CFA_offset_extended:
1686 case DW_CFA_GNU_negative_offset_extended:
1687 case DW_CFA_def_cfa:
1688 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, NULL);
1689 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1690 break;
1691 case DW_CFA_restore_extended:
1692 case DW_CFA_undefined:
1693 case DW_CFA_same_value:
1694 case DW_CFA_def_cfa_register:
1695 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, NULL);
1696 break;
1697 case DW_CFA_register:
1698 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, NULL);
1699 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, NULL);
1700 break;
1701 case DW_CFA_def_cfa_offset:
1702 case DW_CFA_GNU_args_size:
1703 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1704 break;
1705 case DW_CFA_GNU_window_save:
1706 break;
1707 case DW_CFA_def_cfa_expression:
1708 output_cfa_loc (cfi);
1709 break;
1710 default:
1711 break;
1712 }
1713 }
1714 }
1715
1716 /* Output the call frame information used to used to record information
1717 that relates to calculating the frame pointer, and records the
1718 location of saved registers. */
1719
1720 static void
1721 output_call_frame_info (for_eh)
1722 int for_eh;
1723 {
1724 register unsigned int i;
1725 register dw_fde_ref fde;
1726 register dw_cfi_ref cfi;
1727 char l1[20], l2[20];
1728 int any_lsda_needed = 0;
1729 char augmentation[6];
1730 int augmentation_size;
1731 int fde_encoding = DW_EH_PE_absptr;
1732 int per_encoding = DW_EH_PE_absptr;
1733 int lsda_encoding = DW_EH_PE_absptr;
1734
1735 /* If we don't have any functions we'll want to unwind out of, don't
1736 emit any EH unwind information. */
1737 if (for_eh)
1738 {
1739 int any_eh_needed = 0;
1740 for (i = 0; i < fde_table_in_use; ++i)
1741 if (fde_table[i].uses_eh_lsda)
1742 any_eh_needed = any_lsda_needed = 1;
1743 else if (! fde_table[i].nothrow)
1744 any_eh_needed = 1;
1745
1746 if (! any_eh_needed)
1747 return;
1748 }
1749
1750 /* We're going to be generating comments, so turn on app. */
1751 if (flag_debug_asm)
1752 app_enable ();
1753
1754 if (for_eh)
1755 {
1756 #ifdef EH_FRAME_SECTION
1757 EH_FRAME_SECTION ();
1758 #else
1759 tree label = get_file_function_name ('F');
1760
1761 force_data_section ();
1762 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
1763 ASM_GLOBALIZE_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
1764 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
1765 #endif
1766 assemble_label ("__FRAME_BEGIN__");
1767 }
1768 else
1769 ASM_OUTPUT_SECTION (asm_out_file, DEBUG_FRAME_SECTION);
1770
1771 /* Output the CIE. */
1772 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1773 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1774 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1775 "Length of Common Information Entry");
1776 ASM_OUTPUT_LABEL (asm_out_file, l1);
1777
1778 /* Now that the CIE pointer is PC-relative for EH,
1779 use 0 to identify the CIE. */
1780 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1781 (for_eh ? 0 : DW_CIE_ID),
1782 "CIE Identifier Tag");
1783
1784 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1785
1786 augmentation[0] = 0;
1787 augmentation_size = 0;
1788 if (for_eh)
1789 {
1790 char *p;
1791
1792 /* Augmentation:
1793 z Indicates that a uleb128 is present to size the
1794 augmentation section.
1795 L Indicates the encoding (and thus presence) of
1796 an LSDA pointer in the FDE augmentation.
1797 R Indicates a non-default pointer encoding for
1798 FDE code pointers.
1799 P Indicates the presence of an encoding + language
1800 personality routine in the CIE augmentation. */
1801
1802 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1803 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
1804 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1805
1806 p = augmentation + 1;
1807 if (eh_personality_libfunc)
1808 {
1809 *p++ = 'P';
1810 augmentation_size += 1 + size_of_encoded_value (per_encoding);
1811 }
1812 if (any_lsda_needed)
1813 {
1814 *p++ = 'L';
1815 augmentation_size += 1;
1816 }
1817 if (fde_encoding != DW_EH_PE_absptr)
1818 {
1819 *p++ = 'R';
1820 augmentation_size += 1;
1821 }
1822 if (p > augmentation + 1)
1823 {
1824 augmentation[0] = 'z';
1825 *p = '\0';
1826 }
1827
1828 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
1829 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
1830 {
1831 int offset = ( 4 /* Length */
1832 + 4 /* CIE Id */
1833 + 1 /* CIE version */
1834 + strlen (augmentation) + 1 /* Augmentation */
1835 + size_of_uleb128 (1) /* Code alignment */
1836 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
1837 + 1 /* RA column */
1838 + 1 /* Augmentation size */
1839 + 1 /* Personality encoding */ );
1840 int pad = -offset & (PTR_SIZE - 1);
1841
1842 augmentation_size += pad;
1843
1844 /* Augmentations should be small, so there's scarce need to
1845 iterate for a solution. Die if we exceed one uleb128 byte. */
1846 if (size_of_uleb128 (augmentation_size) != 1)
1847 abort ();
1848 }
1849 }
1850 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
1851
1852 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
1853
1854 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
1855 "CIE Data Alignment Factor");
1856
1857 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
1858
1859 if (augmentation[0])
1860 {
1861 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
1862 if (eh_personality_libfunc)
1863 {
1864 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
1865 eh_data_format_name (per_encoding));
1866 dw2_asm_output_encoded_addr_rtx (per_encoding,
1867 eh_personality_libfunc, NULL);
1868 }
1869 if (any_lsda_needed)
1870 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
1871 eh_data_format_name (lsda_encoding));
1872 if (fde_encoding != DW_EH_PE_absptr)
1873 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
1874 eh_data_format_name (fde_encoding));
1875 }
1876
1877 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
1878 output_cfi (cfi, NULL, for_eh);
1879
1880 /* Pad the CIE out to an address sized boundary. */
1881 ASM_OUTPUT_ALIGN (asm_out_file,
1882 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
1883 ASM_OUTPUT_LABEL (asm_out_file, l2);
1884
1885 /* Loop through all of the FDE's. */
1886 for (i = 0; i < fde_table_in_use; ++i)
1887 {
1888 fde = &fde_table[i];
1889
1890 /* Don't emit EH unwind info for leaf functions that don't need it. */
1891 if (for_eh && fde->nothrow && ! fde->uses_eh_lsda)
1892 continue;
1893
1894 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, FDE_LABEL, for_eh + i * 2);
1895 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
1896 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
1897 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1898 "FDE Length");
1899 ASM_OUTPUT_LABEL (asm_out_file, l1);
1900
1901 /* ??? This always emits a 4 byte offset when for_eh is true, but it
1902 emits a target dependent sized offset when for_eh is not true.
1903 This inconsistency may confuse gdb. The only case where we need a
1904 non-4 byte offset is for the Irix6 N64 ABI, so we may lose SGI
1905 compatibility if we emit a 4 byte offset. We need a 4 byte offset
1906 though in order to be compatible with the dwarf_fde struct in frame.c.
1907 If the for_eh case is changed, then the struct in frame.c has
1908 to be adjusted appropriately. */
1909 if (for_eh)
1910 dw2_asm_output_delta (4, l1, "__FRAME_BEGIN__", "FDE CIE offset");
1911 else
1912 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
1913 stripattributes (DEBUG_FRAME_SECTION),
1914 "FDE CIE offset");
1915
1916 if (for_eh)
1917 {
1918 dw2_asm_output_encoded_addr_rtx (fde_encoding,
1919 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
1920 "FDE initial location");
1921 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
1922 fde->dw_fde_end, fde->dw_fde_begin,
1923 "FDE address range");
1924 }
1925 else
1926 {
1927 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
1928 "FDE initial location");
1929 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
1930 fde->dw_fde_end, fde->dw_fde_begin,
1931 "FDE address range");
1932 }
1933
1934 if (augmentation[0])
1935 {
1936 if (any_lsda_needed)
1937 {
1938 int size = size_of_encoded_value (lsda_encoding);
1939
1940 if (lsda_encoding == DW_EH_PE_aligned)
1941 {
1942 int offset = ( 4 /* Length */
1943 + 4 /* CIE offset */
1944 + 2 * size_of_encoded_value (fde_encoding)
1945 + 1 /* Augmentation size */ );
1946 int pad = -offset & (PTR_SIZE - 1);
1947
1948 size += pad;
1949 if (size_of_uleb128 (size) != 1)
1950 abort ();
1951 }
1952
1953 dw2_asm_output_data_uleb128 (size, "Augmentation size");
1954
1955 if (fde->uses_eh_lsda)
1956 {
1957 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
1958 fde->funcdef_number);
1959 dw2_asm_output_encoded_addr_rtx (
1960 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
1961 "Language Specific Data Area");
1962 }
1963 else
1964 {
1965 if (lsda_encoding == DW_EH_PE_aligned)
1966 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
1967 dw2_asm_output_data (size_of_encoded_value (lsda_encoding),
1968 0, "Language Specific Data Area (none)");
1969 }
1970 }
1971 else
1972 dw2_asm_output_data_uleb128 (0, "Augmentation size");
1973 }
1974
1975 /* Loop through the Call Frame Instructions associated with
1976 this FDE. */
1977 fde->dw_fde_current_label = fde->dw_fde_begin;
1978 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
1979 output_cfi (cfi, fde, for_eh);
1980
1981 /* Pad the FDE out to an address sized boundary. */
1982 ASM_OUTPUT_ALIGN (asm_out_file,
1983 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
1984 ASM_OUTPUT_LABEL (asm_out_file, l2);
1985 }
1986
1987 #ifndef EH_FRAME_SECTION
1988 if (for_eh)
1989 dw2_asm_output_data (4, 0, "End of Table");
1990 #endif
1991 #ifdef MIPS_DEBUGGING_INFO
1992 /* Work around Irix 6 assembler bug whereby labels at the end of a section
1993 get a value of 0. Putting .align 0 after the label fixes it. */
1994 ASM_OUTPUT_ALIGN (asm_out_file, 0);
1995 #endif
1996
1997 /* Turn off app to make assembly quicker. */
1998 if (flag_debug_asm)
1999 app_disable ();
2000 }
2001
2002 /* Output a marker (i.e. a label) for the beginning of a function, before
2003 the prologue. */
2004
2005 void
2006 dwarf2out_begin_prologue (line, file)
2007 unsigned int line ATTRIBUTE_UNUSED;
2008 const char *file ATTRIBUTE_UNUSED;
2009 {
2010 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2011 register dw_fde_ref fde;
2012
2013 current_function_func_begin_label = 0;
2014
2015 #ifdef IA64_UNWIND_INFO
2016 /* ??? current_function_func_begin_label is also used by except.c
2017 for call-site information. We must emit this label if it might
2018 be used. */
2019 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2020 && ! dwarf2out_do_frame ())
2021 return;
2022 #else
2023 if (! dwarf2out_do_frame ())
2024 return;
2025 #endif
2026
2027 ++current_funcdef_number;
2028
2029 function_section (current_function_decl);
2030 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2031 current_funcdef_number);
2032 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2033 current_funcdef_number);
2034 current_function_func_begin_label = get_identifier (label);
2035
2036 #ifdef IA64_UNWIND_INFO
2037 /* We can elide the fde allocation if we're not emitting debug info. */
2038 if (! dwarf2out_do_frame ())
2039 return;
2040 #endif
2041
2042 /* Expand the fde table if necessary. */
2043 if (fde_table_in_use == fde_table_allocated)
2044 {
2045 fde_table_allocated += FDE_TABLE_INCREMENT;
2046 fde_table
2047 = (dw_fde_ref) xrealloc (fde_table,
2048 fde_table_allocated * sizeof (dw_fde_node));
2049 }
2050
2051 /* Record the FDE associated with this function. */
2052 current_funcdef_fde = fde_table_in_use;
2053
2054 /* Add the new FDE at the end of the fde_table. */
2055 fde = &fde_table[fde_table_in_use++];
2056 fde->dw_fde_begin = xstrdup (label);
2057 fde->dw_fde_current_label = NULL;
2058 fde->dw_fde_end = NULL;
2059 fde->dw_fde_cfi = NULL;
2060 fde->funcdef_number = current_funcdef_number;
2061 fde->nothrow = current_function_nothrow;
2062 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2063
2064 args_size = old_args_size = 0;
2065
2066 /* We only want to output line number information for the genuine
2067 dwarf2 prologue case, not the eh frame case. */
2068 #ifdef DWARF2_DEBUGGING_INFO
2069 if (file)
2070 dwarf2out_source_line (line, file);
2071 #endif
2072 }
2073
2074 /* Output a marker (i.e. a label) for the absolute end of the generated code
2075 for a function definition. This gets called *after* the epilogue code has
2076 been generated. */
2077
2078 void
2079 dwarf2out_end_epilogue ()
2080 {
2081 dw_fde_ref fde;
2082 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2083
2084 /* Output a label to mark the endpoint of the code generated for this
2085 function. */
2086 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL, current_funcdef_number);
2087 ASM_OUTPUT_LABEL (asm_out_file, label);
2088 fde = &fde_table[fde_table_in_use - 1];
2089 fde->dw_fde_end = xstrdup (label);
2090 }
2091
2092 void
2093 dwarf2out_frame_init ()
2094 {
2095 /* Allocate the initial hunk of the fde_table. */
2096 fde_table = (dw_fde_ref) xcalloc (FDE_TABLE_INCREMENT, sizeof (dw_fde_node));
2097 fde_table_allocated = FDE_TABLE_INCREMENT;
2098 fde_table_in_use = 0;
2099
2100 /* Generate the CFA instructions common to all FDE's. Do it now for the
2101 sake of lookup_cfa. */
2102
2103 #ifdef DWARF2_UNWIND_INFO
2104 /* On entry, the Canonical Frame Address is at SP. */
2105 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2106 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2107 #endif
2108 }
2109
2110 void
2111 dwarf2out_frame_finish ()
2112 {
2113 /* Output call frame information. */
2114 #ifdef MIPS_DEBUGGING_INFO
2115 if (write_symbols == DWARF2_DEBUG)
2116 output_call_frame_info (0);
2117 if (flag_unwind_tables || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS))
2118 output_call_frame_info (1);
2119 #else
2120 if (write_symbols == DWARF2_DEBUG
2121 || flag_unwind_tables || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS))
2122 output_call_frame_info (1);
2123 #endif
2124 }
2125 \f
2126 /* And now, the subset of the debugging information support code necessary
2127 for emitting location expressions. */
2128
2129 typedef struct dw_val_struct *dw_val_ref;
2130 typedef struct die_struct *dw_die_ref;
2131 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2132 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2133
2134 /* Each DIE may have a series of attribute/value pairs. Values
2135 can take on several forms. The forms that are used in this
2136 implementation are listed below. */
2137
2138 typedef enum
2139 {
2140 dw_val_class_addr,
2141 dw_val_class_loc,
2142 dw_val_class_loc_list,
2143 dw_val_class_const,
2144 dw_val_class_unsigned_const,
2145 dw_val_class_long_long,
2146 dw_val_class_float,
2147 dw_val_class_flag,
2148 dw_val_class_die_ref,
2149 dw_val_class_fde_ref,
2150 dw_val_class_lbl_id,
2151 dw_val_class_lbl_offset,
2152 dw_val_class_str
2153 }
2154 dw_val_class;
2155
2156 /* Describe a double word constant value. */
2157 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2158
2159 typedef struct dw_long_long_struct
2160 {
2161 unsigned long hi;
2162 unsigned long low;
2163 }
2164 dw_long_long_const;
2165
2166 /* Describe a floating point constant value. */
2167
2168 typedef struct dw_fp_struct
2169 {
2170 long *array;
2171 unsigned length;
2172 }
2173 dw_float_const;
2174
2175 /* The dw_val_node describes an attribute's value, as it is
2176 represented internally. */
2177
2178 typedef struct dw_val_struct
2179 {
2180 dw_val_class val_class;
2181 union
2182 {
2183 rtx val_addr;
2184 dw_loc_list_ref val_loc_list;
2185 dw_loc_descr_ref val_loc;
2186 long int val_int;
2187 long unsigned val_unsigned;
2188 dw_long_long_const val_long_long;
2189 dw_float_const val_float;
2190 struct {
2191 dw_die_ref die;
2192 int external;
2193 } val_die_ref;
2194 unsigned val_fde_index;
2195 char *val_str;
2196 char *val_lbl_id;
2197 unsigned char val_flag;
2198 }
2199 v;
2200 }
2201 dw_val_node;
2202
2203 /* Locations in memory are described using a sequence of stack machine
2204 operations. */
2205
2206 typedef struct dw_loc_descr_struct
2207 {
2208 dw_loc_descr_ref dw_loc_next;
2209 enum dwarf_location_atom dw_loc_opc;
2210 dw_val_node dw_loc_oprnd1;
2211 dw_val_node dw_loc_oprnd2;
2212 int dw_loc_addr;
2213 }
2214 dw_loc_descr_node;
2215
2216 /* Location lists are ranges + location descriptions for that range,
2217 so you can track variables that are in different places over
2218 their entire life. */
2219 typedef struct dw_loc_list_struct
2220 {
2221 dw_loc_list_ref dw_loc_next;
2222 const char *begin; /* Label for begin address of range */
2223 const char *end; /* Label for end address of range */
2224 char *ll_symbol; /* Label for beginning of location list. Only on head of list */
2225 const char *section; /* Section this loclist is relative to */
2226 dw_loc_descr_ref expr;
2227 } dw_loc_list_node;
2228
2229 static const char *dwarf_stack_op_name PARAMS ((unsigned));
2230 static dw_loc_descr_ref new_loc_descr PARAMS ((enum dwarf_location_atom,
2231 unsigned long,
2232 unsigned long));
2233 static void add_loc_descr PARAMS ((dw_loc_descr_ref *,
2234 dw_loc_descr_ref));
2235 static unsigned long size_of_loc_descr PARAMS ((dw_loc_descr_ref));
2236 static unsigned long size_of_locs PARAMS ((dw_loc_descr_ref));
2237 static void output_loc_operands PARAMS ((dw_loc_descr_ref));
2238 static void output_loc_sequence PARAMS ((dw_loc_descr_ref));
2239
2240 /* Convert a DWARF stack opcode into its string name. */
2241
2242 static const char *
2243 dwarf_stack_op_name (op)
2244 register unsigned op;
2245 {
2246 switch (op)
2247 {
2248 case DW_OP_addr:
2249 return "DW_OP_addr";
2250 case DW_OP_deref:
2251 return "DW_OP_deref";
2252 case DW_OP_const1u:
2253 return "DW_OP_const1u";
2254 case DW_OP_const1s:
2255 return "DW_OP_const1s";
2256 case DW_OP_const2u:
2257 return "DW_OP_const2u";
2258 case DW_OP_const2s:
2259 return "DW_OP_const2s";
2260 case DW_OP_const4u:
2261 return "DW_OP_const4u";
2262 case DW_OP_const4s:
2263 return "DW_OP_const4s";
2264 case DW_OP_const8u:
2265 return "DW_OP_const8u";
2266 case DW_OP_const8s:
2267 return "DW_OP_const8s";
2268 case DW_OP_constu:
2269 return "DW_OP_constu";
2270 case DW_OP_consts:
2271 return "DW_OP_consts";
2272 case DW_OP_dup:
2273 return "DW_OP_dup";
2274 case DW_OP_drop:
2275 return "DW_OP_drop";
2276 case DW_OP_over:
2277 return "DW_OP_over";
2278 case DW_OP_pick:
2279 return "DW_OP_pick";
2280 case DW_OP_swap:
2281 return "DW_OP_swap";
2282 case DW_OP_rot:
2283 return "DW_OP_rot";
2284 case DW_OP_xderef:
2285 return "DW_OP_xderef";
2286 case DW_OP_abs:
2287 return "DW_OP_abs";
2288 case DW_OP_and:
2289 return "DW_OP_and";
2290 case DW_OP_div:
2291 return "DW_OP_div";
2292 case DW_OP_minus:
2293 return "DW_OP_minus";
2294 case DW_OP_mod:
2295 return "DW_OP_mod";
2296 case DW_OP_mul:
2297 return "DW_OP_mul";
2298 case DW_OP_neg:
2299 return "DW_OP_neg";
2300 case DW_OP_not:
2301 return "DW_OP_not";
2302 case DW_OP_or:
2303 return "DW_OP_or";
2304 case DW_OP_plus:
2305 return "DW_OP_plus";
2306 case DW_OP_plus_uconst:
2307 return "DW_OP_plus_uconst";
2308 case DW_OP_shl:
2309 return "DW_OP_shl";
2310 case DW_OP_shr:
2311 return "DW_OP_shr";
2312 case DW_OP_shra:
2313 return "DW_OP_shra";
2314 case DW_OP_xor:
2315 return "DW_OP_xor";
2316 case DW_OP_bra:
2317 return "DW_OP_bra";
2318 case DW_OP_eq:
2319 return "DW_OP_eq";
2320 case DW_OP_ge:
2321 return "DW_OP_ge";
2322 case DW_OP_gt:
2323 return "DW_OP_gt";
2324 case DW_OP_le:
2325 return "DW_OP_le";
2326 case DW_OP_lt:
2327 return "DW_OP_lt";
2328 case DW_OP_ne:
2329 return "DW_OP_ne";
2330 case DW_OP_skip:
2331 return "DW_OP_skip";
2332 case DW_OP_lit0:
2333 return "DW_OP_lit0";
2334 case DW_OP_lit1:
2335 return "DW_OP_lit1";
2336 case DW_OP_lit2:
2337 return "DW_OP_lit2";
2338 case DW_OP_lit3:
2339 return "DW_OP_lit3";
2340 case DW_OP_lit4:
2341 return "DW_OP_lit4";
2342 case DW_OP_lit5:
2343 return "DW_OP_lit5";
2344 case DW_OP_lit6:
2345 return "DW_OP_lit6";
2346 case DW_OP_lit7:
2347 return "DW_OP_lit7";
2348 case DW_OP_lit8:
2349 return "DW_OP_lit8";
2350 case DW_OP_lit9:
2351 return "DW_OP_lit9";
2352 case DW_OP_lit10:
2353 return "DW_OP_lit10";
2354 case DW_OP_lit11:
2355 return "DW_OP_lit11";
2356 case DW_OP_lit12:
2357 return "DW_OP_lit12";
2358 case DW_OP_lit13:
2359 return "DW_OP_lit13";
2360 case DW_OP_lit14:
2361 return "DW_OP_lit14";
2362 case DW_OP_lit15:
2363 return "DW_OP_lit15";
2364 case DW_OP_lit16:
2365 return "DW_OP_lit16";
2366 case DW_OP_lit17:
2367 return "DW_OP_lit17";
2368 case DW_OP_lit18:
2369 return "DW_OP_lit18";
2370 case DW_OP_lit19:
2371 return "DW_OP_lit19";
2372 case DW_OP_lit20:
2373 return "DW_OP_lit20";
2374 case DW_OP_lit21:
2375 return "DW_OP_lit21";
2376 case DW_OP_lit22:
2377 return "DW_OP_lit22";
2378 case DW_OP_lit23:
2379 return "DW_OP_lit23";
2380 case DW_OP_lit24:
2381 return "DW_OP_lit24";
2382 case DW_OP_lit25:
2383 return "DW_OP_lit25";
2384 case DW_OP_lit26:
2385 return "DW_OP_lit26";
2386 case DW_OP_lit27:
2387 return "DW_OP_lit27";
2388 case DW_OP_lit28:
2389 return "DW_OP_lit28";
2390 case DW_OP_lit29:
2391 return "DW_OP_lit29";
2392 case DW_OP_lit30:
2393 return "DW_OP_lit30";
2394 case DW_OP_lit31:
2395 return "DW_OP_lit31";
2396 case DW_OP_reg0:
2397 return "DW_OP_reg0";
2398 case DW_OP_reg1:
2399 return "DW_OP_reg1";
2400 case DW_OP_reg2:
2401 return "DW_OP_reg2";
2402 case DW_OP_reg3:
2403 return "DW_OP_reg3";
2404 case DW_OP_reg4:
2405 return "DW_OP_reg4";
2406 case DW_OP_reg5:
2407 return "DW_OP_reg5";
2408 case DW_OP_reg6:
2409 return "DW_OP_reg6";
2410 case DW_OP_reg7:
2411 return "DW_OP_reg7";
2412 case DW_OP_reg8:
2413 return "DW_OP_reg8";
2414 case DW_OP_reg9:
2415 return "DW_OP_reg9";
2416 case DW_OP_reg10:
2417 return "DW_OP_reg10";
2418 case DW_OP_reg11:
2419 return "DW_OP_reg11";
2420 case DW_OP_reg12:
2421 return "DW_OP_reg12";
2422 case DW_OP_reg13:
2423 return "DW_OP_reg13";
2424 case DW_OP_reg14:
2425 return "DW_OP_reg14";
2426 case DW_OP_reg15:
2427 return "DW_OP_reg15";
2428 case DW_OP_reg16:
2429 return "DW_OP_reg16";
2430 case DW_OP_reg17:
2431 return "DW_OP_reg17";
2432 case DW_OP_reg18:
2433 return "DW_OP_reg18";
2434 case DW_OP_reg19:
2435 return "DW_OP_reg19";
2436 case DW_OP_reg20:
2437 return "DW_OP_reg20";
2438 case DW_OP_reg21:
2439 return "DW_OP_reg21";
2440 case DW_OP_reg22:
2441 return "DW_OP_reg22";
2442 case DW_OP_reg23:
2443 return "DW_OP_reg23";
2444 case DW_OP_reg24:
2445 return "DW_OP_reg24";
2446 case DW_OP_reg25:
2447 return "DW_OP_reg25";
2448 case DW_OP_reg26:
2449 return "DW_OP_reg26";
2450 case DW_OP_reg27:
2451 return "DW_OP_reg27";
2452 case DW_OP_reg28:
2453 return "DW_OP_reg28";
2454 case DW_OP_reg29:
2455 return "DW_OP_reg29";
2456 case DW_OP_reg30:
2457 return "DW_OP_reg30";
2458 case DW_OP_reg31:
2459 return "DW_OP_reg31";
2460 case DW_OP_breg0:
2461 return "DW_OP_breg0";
2462 case DW_OP_breg1:
2463 return "DW_OP_breg1";
2464 case DW_OP_breg2:
2465 return "DW_OP_breg2";
2466 case DW_OP_breg3:
2467 return "DW_OP_breg3";
2468 case DW_OP_breg4:
2469 return "DW_OP_breg4";
2470 case DW_OP_breg5:
2471 return "DW_OP_breg5";
2472 case DW_OP_breg6:
2473 return "DW_OP_breg6";
2474 case DW_OP_breg7:
2475 return "DW_OP_breg7";
2476 case DW_OP_breg8:
2477 return "DW_OP_breg8";
2478 case DW_OP_breg9:
2479 return "DW_OP_breg9";
2480 case DW_OP_breg10:
2481 return "DW_OP_breg10";
2482 case DW_OP_breg11:
2483 return "DW_OP_breg11";
2484 case DW_OP_breg12:
2485 return "DW_OP_breg12";
2486 case DW_OP_breg13:
2487 return "DW_OP_breg13";
2488 case DW_OP_breg14:
2489 return "DW_OP_breg14";
2490 case DW_OP_breg15:
2491 return "DW_OP_breg15";
2492 case DW_OP_breg16:
2493 return "DW_OP_breg16";
2494 case DW_OP_breg17:
2495 return "DW_OP_breg17";
2496 case DW_OP_breg18:
2497 return "DW_OP_breg18";
2498 case DW_OP_breg19:
2499 return "DW_OP_breg19";
2500 case DW_OP_breg20:
2501 return "DW_OP_breg20";
2502 case DW_OP_breg21:
2503 return "DW_OP_breg21";
2504 case DW_OP_breg22:
2505 return "DW_OP_breg22";
2506 case DW_OP_breg23:
2507 return "DW_OP_breg23";
2508 case DW_OP_breg24:
2509 return "DW_OP_breg24";
2510 case DW_OP_breg25:
2511 return "DW_OP_breg25";
2512 case DW_OP_breg26:
2513 return "DW_OP_breg26";
2514 case DW_OP_breg27:
2515 return "DW_OP_breg27";
2516 case DW_OP_breg28:
2517 return "DW_OP_breg28";
2518 case DW_OP_breg29:
2519 return "DW_OP_breg29";
2520 case DW_OP_breg30:
2521 return "DW_OP_breg30";
2522 case DW_OP_breg31:
2523 return "DW_OP_breg31";
2524 case DW_OP_regx:
2525 return "DW_OP_regx";
2526 case DW_OP_fbreg:
2527 return "DW_OP_fbreg";
2528 case DW_OP_bregx:
2529 return "DW_OP_bregx";
2530 case DW_OP_piece:
2531 return "DW_OP_piece";
2532 case DW_OP_deref_size:
2533 return "DW_OP_deref_size";
2534 case DW_OP_xderef_size:
2535 return "DW_OP_xderef_size";
2536 case DW_OP_nop:
2537 return "DW_OP_nop";
2538 default:
2539 return "OP_<unknown>";
2540 }
2541 }
2542
2543 /* Return a pointer to a newly allocated location description. Location
2544 descriptions are simple expression terms that can be strung
2545 together to form more complicated location (address) descriptions. */
2546
2547 static inline dw_loc_descr_ref
2548 new_loc_descr (op, oprnd1, oprnd2)
2549 register enum dwarf_location_atom op;
2550 register unsigned long oprnd1;
2551 register unsigned long oprnd2;
2552 {
2553 /* Use xcalloc here so we clear out all of the long_long constant in
2554 the union. */
2555 register dw_loc_descr_ref descr
2556 = (dw_loc_descr_ref) xcalloc (1, sizeof (dw_loc_descr_node));
2557
2558 descr->dw_loc_opc = op;
2559 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2560 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2561 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2562 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2563
2564 return descr;
2565 }
2566
2567
2568 /* Add a location description term to a location description expression. */
2569
2570 static inline void
2571 add_loc_descr (list_head, descr)
2572 register dw_loc_descr_ref *list_head;
2573 register dw_loc_descr_ref descr;
2574 {
2575 register dw_loc_descr_ref *d;
2576
2577 /* Find the end of the chain. */
2578 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2579 ;
2580
2581 *d = descr;
2582 }
2583
2584 /* Return the size of a location descriptor. */
2585
2586 static unsigned long
2587 size_of_loc_descr (loc)
2588 register dw_loc_descr_ref loc;
2589 {
2590 register unsigned long size = 1;
2591
2592 switch (loc->dw_loc_opc)
2593 {
2594 case DW_OP_addr:
2595 size += DWARF2_ADDR_SIZE;
2596 break;
2597 case DW_OP_const1u:
2598 case DW_OP_const1s:
2599 size += 1;
2600 break;
2601 case DW_OP_const2u:
2602 case DW_OP_const2s:
2603 size += 2;
2604 break;
2605 case DW_OP_const4u:
2606 case DW_OP_const4s:
2607 size += 4;
2608 break;
2609 case DW_OP_const8u:
2610 case DW_OP_const8s:
2611 size += 8;
2612 break;
2613 case DW_OP_constu:
2614 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2615 break;
2616 case DW_OP_consts:
2617 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2618 break;
2619 case DW_OP_pick:
2620 size += 1;
2621 break;
2622 case DW_OP_plus_uconst:
2623 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2624 break;
2625 case DW_OP_skip:
2626 case DW_OP_bra:
2627 size += 2;
2628 break;
2629 case DW_OP_breg0:
2630 case DW_OP_breg1:
2631 case DW_OP_breg2:
2632 case DW_OP_breg3:
2633 case DW_OP_breg4:
2634 case DW_OP_breg5:
2635 case DW_OP_breg6:
2636 case DW_OP_breg7:
2637 case DW_OP_breg8:
2638 case DW_OP_breg9:
2639 case DW_OP_breg10:
2640 case DW_OP_breg11:
2641 case DW_OP_breg12:
2642 case DW_OP_breg13:
2643 case DW_OP_breg14:
2644 case DW_OP_breg15:
2645 case DW_OP_breg16:
2646 case DW_OP_breg17:
2647 case DW_OP_breg18:
2648 case DW_OP_breg19:
2649 case DW_OP_breg20:
2650 case DW_OP_breg21:
2651 case DW_OP_breg22:
2652 case DW_OP_breg23:
2653 case DW_OP_breg24:
2654 case DW_OP_breg25:
2655 case DW_OP_breg26:
2656 case DW_OP_breg27:
2657 case DW_OP_breg28:
2658 case DW_OP_breg29:
2659 case DW_OP_breg30:
2660 case DW_OP_breg31:
2661 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2662 break;
2663 case DW_OP_regx:
2664 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2665 break;
2666 case DW_OP_fbreg:
2667 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2668 break;
2669 case DW_OP_bregx:
2670 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2671 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2672 break;
2673 case DW_OP_piece:
2674 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2675 break;
2676 case DW_OP_deref_size:
2677 case DW_OP_xderef_size:
2678 size += 1;
2679 break;
2680 default:
2681 break;
2682 }
2683
2684 return size;
2685 }
2686
2687 /* Return the size of a series of location descriptors. */
2688
2689 static unsigned long
2690 size_of_locs (loc)
2691 register dw_loc_descr_ref loc;
2692 {
2693 register unsigned long size = 0;
2694
2695 for (; loc != NULL; loc = loc->dw_loc_next)
2696 {
2697 loc->dw_loc_addr = size;
2698 size += size_of_loc_descr (loc);
2699 }
2700
2701 return size;
2702 }
2703
2704 /* Output location description stack opcode's operands (if any). */
2705
2706 static void
2707 output_loc_operands (loc)
2708 register dw_loc_descr_ref loc;
2709 {
2710 register dw_val_ref val1 = &loc->dw_loc_oprnd1;
2711 register dw_val_ref val2 = &loc->dw_loc_oprnd2;
2712
2713 switch (loc->dw_loc_opc)
2714 {
2715 #ifdef DWARF2_DEBUGGING_INFO
2716 case DW_OP_addr:
2717 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2718 break;
2719 case DW_OP_const2u:
2720 case DW_OP_const2s:
2721 dw2_asm_output_data (2, val1->v.val_int, NULL);
2722 break;
2723 case DW_OP_const4u:
2724 case DW_OP_const4s:
2725 dw2_asm_output_data (4, val1->v.val_int, NULL);
2726 break;
2727 case DW_OP_const8u:
2728 case DW_OP_const8s:
2729 if (HOST_BITS_PER_LONG < 64)
2730 abort ();
2731 dw2_asm_output_data (8, val1->v.val_int, NULL);
2732 break;
2733 case DW_OP_skip:
2734 case DW_OP_bra:
2735 {
2736 int offset;
2737
2738 if (val1->val_class == dw_val_class_loc)
2739 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2740 else
2741 abort ();
2742
2743 dw2_asm_output_data (2, offset, NULL);
2744 }
2745 break;
2746 #else
2747 case DW_OP_addr:
2748 case DW_OP_const2u:
2749 case DW_OP_const2s:
2750 case DW_OP_const4u:
2751 case DW_OP_const4s:
2752 case DW_OP_const8u:
2753 case DW_OP_const8s:
2754 case DW_OP_skip:
2755 case DW_OP_bra:
2756 /* We currently don't make any attempt to make sure these are
2757 aligned properly like we do for the main unwind info, so
2758 don't support emitting things larger than a byte if we're
2759 only doing unwinding. */
2760 abort ();
2761 #endif
2762 case DW_OP_const1u:
2763 case DW_OP_const1s:
2764 dw2_asm_output_data (1, val1->v.val_int, NULL);
2765 break;
2766 case DW_OP_constu:
2767 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2768 break;
2769 case DW_OP_consts:
2770 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2771 break;
2772 case DW_OP_pick:
2773 dw2_asm_output_data (1, val1->v.val_int, NULL);
2774 break;
2775 case DW_OP_plus_uconst:
2776 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2777 break;
2778 case DW_OP_breg0:
2779 case DW_OP_breg1:
2780 case DW_OP_breg2:
2781 case DW_OP_breg3:
2782 case DW_OP_breg4:
2783 case DW_OP_breg5:
2784 case DW_OP_breg6:
2785 case DW_OP_breg7:
2786 case DW_OP_breg8:
2787 case DW_OP_breg9:
2788 case DW_OP_breg10:
2789 case DW_OP_breg11:
2790 case DW_OP_breg12:
2791 case DW_OP_breg13:
2792 case DW_OP_breg14:
2793 case DW_OP_breg15:
2794 case DW_OP_breg16:
2795 case DW_OP_breg17:
2796 case DW_OP_breg18:
2797 case DW_OP_breg19:
2798 case DW_OP_breg20:
2799 case DW_OP_breg21:
2800 case DW_OP_breg22:
2801 case DW_OP_breg23:
2802 case DW_OP_breg24:
2803 case DW_OP_breg25:
2804 case DW_OP_breg26:
2805 case DW_OP_breg27:
2806 case DW_OP_breg28:
2807 case DW_OP_breg29:
2808 case DW_OP_breg30:
2809 case DW_OP_breg31:
2810 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2811 break;
2812 case DW_OP_regx:
2813 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2814 break;
2815 case DW_OP_fbreg:
2816 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2817 break;
2818 case DW_OP_bregx:
2819 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2820 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
2821 break;
2822 case DW_OP_piece:
2823 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2824 break;
2825 case DW_OP_deref_size:
2826 case DW_OP_xderef_size:
2827 dw2_asm_output_data (1, val1->v.val_int, NULL);
2828 break;
2829 default:
2830 /* Other codes have no operands. */
2831 break;
2832 }
2833 }
2834
2835 /* Output a sequence of location operations. */
2836
2837 static void
2838 output_loc_sequence (loc)
2839 dw_loc_descr_ref loc;
2840 {
2841 for (; loc != NULL; loc = loc->dw_loc_next)
2842 {
2843 /* Output the opcode. */
2844 dw2_asm_output_data (1, loc->dw_loc_opc,
2845 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
2846
2847 /* Output the operand(s) (if any). */
2848 output_loc_operands (loc);
2849 }
2850 }
2851
2852 /* This routine will generate the correct assembly data for a location
2853 description based on a cfi entry with a complex address. */
2854
2855 static void
2856 output_cfa_loc (cfi)
2857 dw_cfi_ref cfi;
2858 {
2859 dw_loc_descr_ref loc;
2860 unsigned long size;
2861
2862 /* Output the size of the block. */
2863 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
2864 size = size_of_locs (loc);
2865 dw2_asm_output_data_uleb128 (size, NULL);
2866
2867 /* Now output the operations themselves. */
2868 output_loc_sequence (loc);
2869 }
2870
2871 /* This function builds a dwarf location descriptor seqeunce from
2872 a dw_cfa_location. */
2873
2874 static struct dw_loc_descr_struct *
2875 build_cfa_loc (cfa)
2876 dw_cfa_location *cfa;
2877 {
2878 struct dw_loc_descr_struct *head, *tmp;
2879
2880 if (cfa->indirect == 0)
2881 abort ();
2882
2883 if (cfa->base_offset)
2884 {
2885 if (cfa->reg <= 31)
2886 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
2887 else
2888 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
2889 }
2890 else if (cfa->reg <= 31)
2891 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
2892 else
2893 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
2894 head->dw_loc_oprnd1.val_class = dw_val_class_const;
2895 tmp = new_loc_descr (DW_OP_deref, 0, 0);
2896 add_loc_descr (&head, tmp);
2897 if (cfa->offset != 0)
2898 {
2899 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
2900 add_loc_descr (&head, tmp);
2901 }
2902 return head;
2903 }
2904
2905 /* This function fills in aa dw_cfa_location structure from a
2906 dwarf location descriptor sequence. */
2907
2908 static void
2909 get_cfa_from_loc_descr (cfa, loc)
2910 dw_cfa_location *cfa;
2911 struct dw_loc_descr_struct *loc;
2912 {
2913 struct dw_loc_descr_struct *ptr;
2914 cfa->offset = 0;
2915 cfa->base_offset = 0;
2916 cfa->indirect = 0;
2917 cfa->reg = -1;
2918
2919 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
2920 {
2921 enum dwarf_location_atom op = ptr->dw_loc_opc;
2922 switch (op)
2923 {
2924 case DW_OP_reg0:
2925 case DW_OP_reg1:
2926 case DW_OP_reg2:
2927 case DW_OP_reg3:
2928 case DW_OP_reg4:
2929 case DW_OP_reg5:
2930 case DW_OP_reg6:
2931 case DW_OP_reg7:
2932 case DW_OP_reg8:
2933 case DW_OP_reg9:
2934 case DW_OP_reg10:
2935 case DW_OP_reg11:
2936 case DW_OP_reg12:
2937 case DW_OP_reg13:
2938 case DW_OP_reg14:
2939 case DW_OP_reg15:
2940 case DW_OP_reg16:
2941 case DW_OP_reg17:
2942 case DW_OP_reg18:
2943 case DW_OP_reg19:
2944 case DW_OP_reg20:
2945 case DW_OP_reg21:
2946 case DW_OP_reg22:
2947 case DW_OP_reg23:
2948 case DW_OP_reg24:
2949 case DW_OP_reg25:
2950 case DW_OP_reg26:
2951 case DW_OP_reg27:
2952 case DW_OP_reg28:
2953 case DW_OP_reg29:
2954 case DW_OP_reg30:
2955 case DW_OP_reg31:
2956 cfa->reg = op - DW_OP_reg0;
2957 break;
2958 case DW_OP_regx:
2959 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
2960 break;
2961 case DW_OP_breg0:
2962 case DW_OP_breg1:
2963 case DW_OP_breg2:
2964 case DW_OP_breg3:
2965 case DW_OP_breg4:
2966 case DW_OP_breg5:
2967 case DW_OP_breg6:
2968 case DW_OP_breg7:
2969 case DW_OP_breg8:
2970 case DW_OP_breg9:
2971 case DW_OP_breg10:
2972 case DW_OP_breg11:
2973 case DW_OP_breg12:
2974 case DW_OP_breg13:
2975 case DW_OP_breg14:
2976 case DW_OP_breg15:
2977 case DW_OP_breg16:
2978 case DW_OP_breg17:
2979 case DW_OP_breg18:
2980 case DW_OP_breg19:
2981 case DW_OP_breg20:
2982 case DW_OP_breg21:
2983 case DW_OP_breg22:
2984 case DW_OP_breg23:
2985 case DW_OP_breg24:
2986 case DW_OP_breg25:
2987 case DW_OP_breg26:
2988 case DW_OP_breg27:
2989 case DW_OP_breg28:
2990 case DW_OP_breg29:
2991 case DW_OP_breg30:
2992 case DW_OP_breg31:
2993 cfa->reg = op - DW_OP_breg0;
2994 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
2995 break;
2996 case DW_OP_bregx:
2997 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
2998 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
2999 break;
3000 case DW_OP_deref:
3001 cfa->indirect = 1;
3002 break;
3003 case DW_OP_plus_uconst:
3004 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3005 break;
3006 default:
3007 internal_error ("DW_LOC_OP %s not implememnted\n",
3008 dwarf_stack_op_name (ptr->dw_loc_opc));
3009 }
3010 }
3011 }
3012 #endif /* .debug_frame support */
3013 \f
3014 /* And now, the support for symbolic debugging information. */
3015 #ifdef DWARF2_DEBUGGING_INFO
3016
3017 static void dwarf2out_init PARAMS ((const char *));
3018 static void dwarf2out_finish PARAMS ((const char *));
3019 static void dwarf2out_define PARAMS ((unsigned int, const char *));
3020 static void dwarf2out_undef PARAMS ((unsigned int, const char *));
3021 static void dwarf2out_start_source_file PARAMS ((unsigned, const char *));
3022 static void dwarf2out_end_source_file PARAMS ((unsigned));
3023 static void dwarf2out_begin_block PARAMS ((unsigned, unsigned));
3024 static void dwarf2out_end_block PARAMS ((unsigned, unsigned));
3025 static bool dwarf2out_ignore_block PARAMS ((tree));
3026 static void dwarf2out_global_decl PARAMS ((tree));
3027 static void dwarf2out_abstract_function PARAMS ((tree));
3028
3029 /* The debug hooks structure. */
3030
3031 struct gcc_debug_hooks dwarf2_debug_hooks =
3032 {
3033 dwarf2out_init,
3034 dwarf2out_finish,
3035 dwarf2out_define,
3036 dwarf2out_undef,
3037 dwarf2out_start_source_file,
3038 dwarf2out_end_source_file,
3039 dwarf2out_begin_block,
3040 dwarf2out_end_block,
3041 dwarf2out_ignore_block,
3042 dwarf2out_source_line,
3043 dwarf2out_begin_prologue,
3044 debug_nothing_int, /* end_prologue */
3045 dwarf2out_end_epilogue,
3046 debug_nothing_tree, /* begin_function */
3047 debug_nothing_int, /* end_function */
3048 dwarf2out_decl, /* function_decl */
3049 dwarf2out_global_decl,
3050 debug_nothing_tree, /* deferred_inline_function */
3051 /* The DWARF 2 backend tries to reduce debugging bloat by not
3052 emitting the abstract description of inline functions until
3053 something tries to reference them. */
3054 dwarf2out_abstract_function, /* outlining_inline_function */
3055 debug_nothing_rtx /* label */
3056 };
3057 \f
3058 /* NOTE: In the comments in this file, many references are made to
3059 "Debugging Information Entries". This term is abbreviated as `DIE'
3060 throughout the remainder of this file. */
3061
3062 /* An internal representation of the DWARF output is built, and then
3063 walked to generate the DWARF debugging info. The walk of the internal
3064 representation is done after the entire program has been compiled.
3065 The types below are used to describe the internal representation. */
3066
3067 /* Various DIE's use offsets relative to the beginning of the
3068 .debug_info section to refer to each other. */
3069
3070 typedef long int dw_offset;
3071
3072 /* Define typedefs here to avoid circular dependencies. */
3073
3074 typedef struct dw_attr_struct *dw_attr_ref;
3075 typedef struct dw_line_info_struct *dw_line_info_ref;
3076 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3077 typedef struct pubname_struct *pubname_ref;
3078 typedef dw_die_ref *arange_ref;
3079
3080 /* Each entry in the line_info_table maintains the file and
3081 line number associated with the label generated for that
3082 entry. The label gives the PC value associated with
3083 the line number entry. */
3084
3085 typedef struct dw_line_info_struct
3086 {
3087 unsigned long dw_file_num;
3088 unsigned long dw_line_num;
3089 }
3090 dw_line_info_entry;
3091
3092 /* Line information for functions in separate sections; each one gets its
3093 own sequence. */
3094 typedef struct dw_separate_line_info_struct
3095 {
3096 unsigned long dw_file_num;
3097 unsigned long dw_line_num;
3098 unsigned long function;
3099 }
3100 dw_separate_line_info_entry;
3101
3102 /* Each DIE attribute has a field specifying the attribute kind,
3103 a link to the next attribute in the chain, and an attribute value.
3104 Attributes are typically linked below the DIE they modify. */
3105
3106 typedef struct dw_attr_struct
3107 {
3108 enum dwarf_attribute dw_attr;
3109 dw_attr_ref dw_attr_next;
3110 dw_val_node dw_attr_val;
3111 }
3112 dw_attr_node;
3113
3114 /* The Debugging Information Entry (DIE) structure */
3115
3116 typedef struct die_struct
3117 {
3118 enum dwarf_tag die_tag;
3119 char *die_symbol;
3120 dw_attr_ref die_attr;
3121 dw_die_ref die_parent;
3122 dw_die_ref die_child;
3123 dw_die_ref die_sib;
3124 dw_offset die_offset;
3125 unsigned long die_abbrev;
3126 int die_mark;
3127 }
3128 die_node;
3129
3130 /* The pubname structure */
3131
3132 typedef struct pubname_struct
3133 {
3134 dw_die_ref die;
3135 char *name;
3136 }
3137 pubname_entry;
3138
3139 /* The limbo die list structure. */
3140 typedef struct limbo_die_struct
3141 {
3142 dw_die_ref die;
3143 struct limbo_die_struct *next;
3144 }
3145 limbo_die_node;
3146
3147 /* How to start an assembler comment. */
3148 #ifndef ASM_COMMENT_START
3149 #define ASM_COMMENT_START ";#"
3150 #endif
3151
3152 /* Define a macro which returns non-zero for a TYPE_DECL which was
3153 implicitly generated for a tagged type.
3154
3155 Note that unlike the gcc front end (which generates a NULL named
3156 TYPE_DECL node for each complete tagged type, each array type, and
3157 each function type node created) the g++ front end generates a
3158 _named_ TYPE_DECL node for each tagged type node created.
3159 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3160 generate a DW_TAG_typedef DIE for them. */
3161
3162 #define TYPE_DECL_IS_STUB(decl) \
3163 (DECL_NAME (decl) == NULL_TREE \
3164 || (DECL_ARTIFICIAL (decl) \
3165 && is_tagged_type (TREE_TYPE (decl)) \
3166 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3167 /* This is necessary for stub decls that \
3168 appear in nested inline functions. */ \
3169 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3170 && (decl_ultimate_origin (decl) \
3171 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3172
3173 /* Information concerning the compilation unit's programming
3174 language, and compiler version. */
3175
3176 extern int flag_traditional;
3177
3178 /* Fixed size portion of the DWARF compilation unit header. */
3179 #define DWARF_COMPILE_UNIT_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 3)
3180
3181 /* Fixed size portion of debugging line information prolog. */
3182 #define DWARF_LINE_PROLOG_HEADER_SIZE 5
3183
3184 /* Fixed size portion of public names info. */
3185 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3186
3187 /* Fixed size portion of the address range info. */
3188 #define DWARF_ARANGES_HEADER_SIZE \
3189 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3190 - DWARF_OFFSET_SIZE)
3191
3192 /* Size of padding portion in the address range info. It must be
3193 aligned to twice the pointer size. */
3194 #define DWARF_ARANGES_PAD_SIZE \
3195 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3196 - (2 * DWARF_OFFSET_SIZE + 4))
3197
3198 /* Use assembler line directives if available. */
3199 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3200 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3201 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3202 #else
3203 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3204 #endif
3205 #endif
3206
3207 /* Define the architecture-dependent minimum instruction length (in bytes).
3208 In this implementation of DWARF, this field is used for information
3209 purposes only. Since GCC generates assembly language, we have
3210 no a priori knowledge of how many instruction bytes are generated
3211 for each source line, and therefore can use only the DW_LNE_set_address
3212 and DW_LNS_fixed_advance_pc line information commands. */
3213
3214 #ifndef DWARF_LINE_MIN_INSTR_LENGTH
3215 #define DWARF_LINE_MIN_INSTR_LENGTH 4
3216 #endif
3217
3218 /* Minimum line offset in a special line info. opcode.
3219 This value was chosen to give a reasonable range of values. */
3220 #define DWARF_LINE_BASE -10
3221
3222 /* First special line opcde - leave room for the standard opcodes. */
3223 #define DWARF_LINE_OPCODE_BASE 10
3224
3225 /* Range of line offsets in a special line info. opcode. */
3226 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3227
3228 /* Flag that indicates the initial value of the is_stmt_start flag.
3229 In the present implementation, we do not mark any lines as
3230 the beginning of a source statement, because that information
3231 is not made available by the GCC front-end. */
3232 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3233
3234 /* This location is used by calc_die_sizes() to keep track
3235 the offset of each DIE within the .debug_info section. */
3236 static unsigned long next_die_offset;
3237
3238 /* Record the root of the DIE's built for the current compilation unit. */
3239 static dw_die_ref comp_unit_die;
3240
3241 /* A list of DIEs with a NULL parent waiting to be relocated. */
3242 static limbo_die_node *limbo_die_list = 0;
3243
3244 /* Structure used by lookup_filename to manage sets of filenames. */
3245 struct file_table
3246 {
3247 char **table;
3248 unsigned allocated;
3249 unsigned in_use;
3250 unsigned last_lookup_index;
3251 };
3252
3253 /* Size (in elements) of increments by which we may expand the filename
3254 table. */
3255 #define FILE_TABLE_INCREMENT 64
3256
3257 /* Filenames referenced by this compilation unit. */
3258 static struct file_table file_table;
3259
3260 /* Local pointer to the name of the main input file. Initialized in
3261 dwarf2out_init. */
3262 static const char *primary_filename;
3263
3264 /* A pointer to the base of a table of references to DIE's that describe
3265 declarations. The table is indexed by DECL_UID() which is a unique
3266 number identifying each decl. */
3267 static dw_die_ref *decl_die_table;
3268
3269 /* Number of elements currently allocated for the decl_die_table. */
3270 static unsigned decl_die_table_allocated;
3271
3272 /* Number of elements in decl_die_table currently in use. */
3273 static unsigned decl_die_table_in_use;
3274
3275 /* Size (in elements) of increments by which we may expand the
3276 decl_die_table. */
3277 #define DECL_DIE_TABLE_INCREMENT 256
3278
3279 /* A pointer to the base of a table of references to declaration
3280 scopes. This table is a display which tracks the nesting
3281 of declaration scopes at the current scope and containing
3282 scopes. This table is used to find the proper place to
3283 define type declaration DIE's. */
3284 static tree *decl_scope_table;
3285
3286 /* Number of elements currently allocated for the decl_scope_table. */
3287 static int decl_scope_table_allocated;
3288
3289 /* Current level of nesting of declaration scopes. */
3290 static int decl_scope_depth;
3291
3292 /* Size (in elements) of increments by which we may expand the
3293 decl_scope_table. */
3294 #define DECL_SCOPE_TABLE_INCREMENT 64
3295
3296 /* A pointer to the base of a list of references to DIE's that
3297 are uniquely identified by their tag, presence/absence of
3298 children DIE's, and list of attribute/value pairs. */
3299 static dw_die_ref *abbrev_die_table;
3300
3301 /* Number of elements currently allocated for abbrev_die_table. */
3302 static unsigned abbrev_die_table_allocated;
3303
3304 /* Number of elements in type_die_table currently in use. */
3305 static unsigned abbrev_die_table_in_use;
3306
3307 /* Size (in elements) of increments by which we may expand the
3308 abbrev_die_table. */
3309 #define ABBREV_DIE_TABLE_INCREMENT 256
3310
3311 /* A pointer to the base of a table that contains line information
3312 for each source code line in .text in the compilation unit. */
3313 static dw_line_info_ref line_info_table;
3314
3315 /* Number of elements currently allocated for line_info_table. */
3316 static unsigned line_info_table_allocated;
3317
3318 /* Number of elements in separate_line_info_table currently in use. */
3319 static unsigned separate_line_info_table_in_use;
3320
3321 /* A pointer to the base of a table that contains line information
3322 for each source code line outside of .text in the compilation unit. */
3323 static dw_separate_line_info_ref separate_line_info_table;
3324
3325 /* Number of elements currently allocated for separate_line_info_table. */
3326 static unsigned separate_line_info_table_allocated;
3327
3328 /* Number of elements in line_info_table currently in use. */
3329 static unsigned line_info_table_in_use;
3330
3331 /* Size (in elements) of increments by which we may expand the
3332 line_info_table. */
3333 #define LINE_INFO_TABLE_INCREMENT 1024
3334
3335 /* A pointer to the base of a table that contains a list of publicly
3336 accessible names. */
3337 static pubname_ref pubname_table;
3338
3339 /* Number of elements currently allocated for pubname_table. */
3340 static unsigned pubname_table_allocated;
3341
3342 /* Number of elements in pubname_table currently in use. */
3343 static unsigned pubname_table_in_use;
3344
3345 /* Size (in elements) of increments by which we may expand the
3346 pubname_table. */
3347 #define PUBNAME_TABLE_INCREMENT 64
3348
3349 /* A pointer to the base of a table that contains a list of publicly
3350 accessible names. */
3351 static arange_ref arange_table;
3352
3353 /* Number of elements currently allocated for arange_table. */
3354 static unsigned arange_table_allocated;
3355
3356 /* Number of elements in arange_table currently in use. */
3357 static unsigned arange_table_in_use;
3358
3359 /* Size (in elements) of increments by which we may expand the
3360 arange_table. */
3361 #define ARANGE_TABLE_INCREMENT 64
3362
3363 /* Whether we have location lists that need outputting */
3364 static unsigned have_location_lists;
3365
3366 /* A pointer to the base of a list of incomplete types which might be
3367 completed at some later time. */
3368
3369 static tree *incomplete_types_list;
3370
3371 /* Number of elements currently allocated for the incomplete_types_list. */
3372 static unsigned incomplete_types_allocated;
3373
3374 /* Number of elements of incomplete_types_list currently in use. */
3375 static unsigned incomplete_types;
3376
3377 /* Size (in elements) of increments by which we may expand the incomplete
3378 types list. Actually, a single hunk of space of this size should
3379 be enough for most typical programs. */
3380 #define INCOMPLETE_TYPES_INCREMENT 64
3381
3382 /* Record whether the function being analyzed contains inlined functions. */
3383 static int current_function_has_inlines;
3384 #if 0 && defined (MIPS_DEBUGGING_INFO)
3385 static int comp_unit_has_inlines;
3386 #endif
3387
3388 /* Array of RTXes referenced by the debugging information, which therefore
3389 must be kept around forever. We do this rather than perform GC on
3390 the dwarf info because almost all of the dwarf info lives forever, and
3391 it's easier to support non-GC frontends this way. */
3392 static varray_type used_rtx_varray;
3393
3394 /* Forward declarations for functions defined in this file. */
3395
3396 static int is_pseudo_reg PARAMS ((rtx));
3397 static tree type_main_variant PARAMS ((tree));
3398 static int is_tagged_type PARAMS ((tree));
3399 static const char *dwarf_tag_name PARAMS ((unsigned));
3400 static const char *dwarf_attr_name PARAMS ((unsigned));
3401 static const char *dwarf_form_name PARAMS ((unsigned));
3402 #if 0
3403 static const char *dwarf_type_encoding_name PARAMS ((unsigned));
3404 #endif
3405 static tree decl_ultimate_origin PARAMS ((tree));
3406 static tree block_ultimate_origin PARAMS ((tree));
3407 static tree decl_class_context PARAMS ((tree));
3408 static void add_dwarf_attr PARAMS ((dw_die_ref, dw_attr_ref));
3409 static void add_AT_flag PARAMS ((dw_die_ref,
3410 enum dwarf_attribute,
3411 unsigned));
3412 static void add_AT_int PARAMS ((dw_die_ref,
3413 enum dwarf_attribute, long));
3414 static void add_AT_unsigned PARAMS ((dw_die_ref,
3415 enum dwarf_attribute,
3416 unsigned long));
3417 static void add_AT_long_long PARAMS ((dw_die_ref,
3418 enum dwarf_attribute,
3419 unsigned long,
3420 unsigned long));
3421 static void add_AT_float PARAMS ((dw_die_ref,
3422 enum dwarf_attribute,
3423 unsigned, long *));
3424 static void add_AT_string PARAMS ((dw_die_ref,
3425 enum dwarf_attribute,
3426 const char *));
3427 static void add_AT_die_ref PARAMS ((dw_die_ref,
3428 enum dwarf_attribute,
3429 dw_die_ref));
3430 static void add_AT_fde_ref PARAMS ((dw_die_ref,
3431 enum dwarf_attribute,
3432 unsigned));
3433 static void add_AT_loc PARAMS ((dw_die_ref,
3434 enum dwarf_attribute,
3435 dw_loc_descr_ref));
3436 static void add_AT_loc_list PARAMS ((dw_die_ref,
3437 enum dwarf_attribute,
3438 dw_loc_list_ref));
3439 static void add_AT_addr PARAMS ((dw_die_ref,
3440 enum dwarf_attribute,
3441 rtx));
3442 static void add_AT_lbl_id PARAMS ((dw_die_ref,
3443 enum dwarf_attribute,
3444 const char *));
3445 static void add_AT_lbl_offset PARAMS ((dw_die_ref,
3446 enum dwarf_attribute,
3447 const char *));
3448 static dw_attr_ref get_AT PARAMS ((dw_die_ref,
3449 enum dwarf_attribute));
3450 static const char *get_AT_low_pc PARAMS ((dw_die_ref));
3451 static const char *get_AT_hi_pc PARAMS ((dw_die_ref));
3452 static const char *get_AT_string PARAMS ((dw_die_ref,
3453 enum dwarf_attribute));
3454 static int get_AT_flag PARAMS ((dw_die_ref,
3455 enum dwarf_attribute));
3456 static unsigned get_AT_unsigned PARAMS ((dw_die_ref,
3457 enum dwarf_attribute));
3458 static inline dw_die_ref get_AT_ref PARAMS ((dw_die_ref,
3459 enum dwarf_attribute));
3460 static int is_c_family PARAMS ((void));
3461 static int is_java PARAMS ((void));
3462 static int is_fortran PARAMS ((void));
3463 static void remove_AT PARAMS ((dw_die_ref,
3464 enum dwarf_attribute));
3465 static void remove_children PARAMS ((dw_die_ref));
3466 static void add_child_die PARAMS ((dw_die_ref, dw_die_ref));
3467 static dw_die_ref new_die PARAMS ((enum dwarf_tag, dw_die_ref));
3468 static dw_die_ref lookup_type_die PARAMS ((tree));
3469 static void equate_type_number_to_die PARAMS ((tree, dw_die_ref));
3470 static dw_die_ref lookup_decl_die PARAMS ((tree));
3471 static void equate_decl_number_to_die PARAMS ((tree, dw_die_ref));
3472 static void print_spaces PARAMS ((FILE *));
3473 static void print_die PARAMS ((dw_die_ref, FILE *));
3474 static void print_dwarf_line_table PARAMS ((FILE *));
3475 static void reverse_die_lists PARAMS ((dw_die_ref));
3476 static void reverse_all_dies PARAMS ((dw_die_ref));
3477 static dw_die_ref push_new_compile_unit PARAMS ((dw_die_ref, dw_die_ref));
3478 static dw_die_ref pop_compile_unit PARAMS ((dw_die_ref));
3479 static void loc_checksum PARAMS ((dw_loc_descr_ref, struct md5_ctx *));
3480 static void attr_checksum PARAMS ((dw_attr_ref, struct md5_ctx *));
3481 static void die_checksum PARAMS ((dw_die_ref, struct md5_ctx *));
3482 static void compute_section_prefix PARAMS ((dw_die_ref));
3483 static int is_type_die PARAMS ((dw_die_ref));
3484 static int is_comdat_die PARAMS ((dw_die_ref));
3485 static int is_symbol_die PARAMS ((dw_die_ref));
3486 static void assign_symbol_names PARAMS ((dw_die_ref));
3487 static void break_out_includes PARAMS ((dw_die_ref));
3488 static void add_sibling_attributes PARAMS ((dw_die_ref));
3489 static void build_abbrev_table PARAMS ((dw_die_ref));
3490 static void output_location_lists PARAMS ((dw_die_ref));
3491 static unsigned long size_of_string PARAMS ((const char *));
3492 static int constant_size PARAMS ((long unsigned));
3493 static unsigned long size_of_die PARAMS ((dw_die_ref));
3494 static void calc_die_sizes PARAMS ((dw_die_ref));
3495 static void mark_dies PARAMS ((dw_die_ref));
3496 static void unmark_dies PARAMS ((dw_die_ref));
3497 static unsigned long size_of_pubnames PARAMS ((void));
3498 static unsigned long size_of_aranges PARAMS ((void));
3499 static enum dwarf_form value_format PARAMS ((dw_attr_ref));
3500 static void output_value_format PARAMS ((dw_attr_ref));
3501 static void output_abbrev_section PARAMS ((void));
3502 static void output_die_symbol PARAMS ((dw_die_ref));
3503 static void output_die PARAMS ((dw_die_ref));
3504 static void output_compilation_unit_header PARAMS ((void));
3505 static void output_comp_unit PARAMS ((dw_die_ref));
3506 static const char *dwarf2_name PARAMS ((tree, int));
3507 static void add_pubname PARAMS ((tree, dw_die_ref));
3508 static void output_pubnames PARAMS ((void));
3509 static void add_arange PARAMS ((tree, dw_die_ref));
3510 static void output_aranges PARAMS ((void));
3511 static void output_line_info PARAMS ((void));
3512 static void output_file_names PARAMS ((void));
3513 static dw_die_ref base_type_die PARAMS ((tree));
3514 static tree root_type PARAMS ((tree));
3515 static int is_base_type PARAMS ((tree));
3516 static dw_die_ref modified_type_die PARAMS ((tree, int, int, dw_die_ref));
3517 static int type_is_enum PARAMS ((tree));
3518 static unsigned int reg_number PARAMS ((rtx));
3519 static dw_loc_descr_ref reg_loc_descriptor PARAMS ((rtx));
3520 static dw_loc_descr_ref int_loc_descriptor PARAMS ((HOST_WIDE_INT));
3521 static dw_loc_descr_ref based_loc_descr PARAMS ((unsigned, long));
3522 static int is_based_loc PARAMS ((rtx));
3523 static dw_loc_descr_ref mem_loc_descriptor PARAMS ((rtx, enum machine_mode mode));
3524 static dw_loc_descr_ref concat_loc_descriptor PARAMS ((rtx, rtx));
3525 static dw_loc_descr_ref loc_descriptor PARAMS ((rtx));
3526 static dw_loc_descr_ref loc_descriptor_from_tree PARAMS ((tree, int));
3527 static HOST_WIDE_INT ceiling PARAMS ((HOST_WIDE_INT, unsigned int));
3528 static tree field_type PARAMS ((tree));
3529 static unsigned int simple_type_align_in_bits PARAMS ((tree));
3530 static unsigned int simple_decl_align_in_bits PARAMS ((tree));
3531 static unsigned HOST_WIDE_INT simple_type_size_in_bits PARAMS ((tree));
3532 static HOST_WIDE_INT field_byte_offset PARAMS ((tree));
3533 static void add_AT_location_description PARAMS ((dw_die_ref,
3534 enum dwarf_attribute, rtx));
3535 static void add_data_member_location_attribute PARAMS ((dw_die_ref, tree));
3536 static void add_const_value_attribute PARAMS ((dw_die_ref, rtx));
3537 static rtx rtl_for_decl_location PARAMS ((tree));
3538 static void add_location_or_const_value_attribute PARAMS ((dw_die_ref, tree));
3539 static void tree_add_const_value_attribute PARAMS ((dw_die_ref, tree));
3540 static void add_name_attribute PARAMS ((dw_die_ref, const char *));
3541 static void add_bound_info PARAMS ((dw_die_ref,
3542 enum dwarf_attribute, tree));
3543 static void add_subscript_info PARAMS ((dw_die_ref, tree));
3544 static void add_byte_size_attribute PARAMS ((dw_die_ref, tree));
3545 static void add_bit_offset_attribute PARAMS ((dw_die_ref, tree));
3546 static void add_bit_size_attribute PARAMS ((dw_die_ref, tree));
3547 static void add_prototyped_attribute PARAMS ((dw_die_ref, tree));
3548 static void add_abstract_origin_attribute PARAMS ((dw_die_ref, tree));
3549 static void add_pure_or_virtual_attribute PARAMS ((dw_die_ref, tree));
3550 static void add_src_coords_attributes PARAMS ((dw_die_ref, tree));
3551 static void add_name_and_src_coords_attributes PARAMS ((dw_die_ref, tree));
3552 static void push_decl_scope PARAMS ((tree));
3553 static dw_die_ref scope_die_for PARAMS ((tree, dw_die_ref));
3554 static void pop_decl_scope PARAMS ((void));
3555 static void add_type_attribute PARAMS ((dw_die_ref, tree, int, int,
3556 dw_die_ref));
3557 static const char *type_tag PARAMS ((tree));
3558 static tree member_declared_type PARAMS ((tree));
3559 #if 0
3560 static const char *decl_start_label PARAMS ((tree));
3561 #endif
3562 static void gen_array_type_die PARAMS ((tree, dw_die_ref));
3563 static void gen_set_type_die PARAMS ((tree, dw_die_ref));
3564 #if 0
3565 static void gen_entry_point_die PARAMS ((tree, dw_die_ref));
3566 #endif
3567 static void gen_inlined_enumeration_type_die PARAMS ((tree, dw_die_ref));
3568 static void gen_inlined_structure_type_die PARAMS ((tree, dw_die_ref));
3569 static void gen_inlined_union_type_die PARAMS ((tree, dw_die_ref));
3570 static void gen_enumeration_type_die PARAMS ((tree, dw_die_ref));
3571 static dw_die_ref gen_formal_parameter_die PARAMS ((tree, dw_die_ref));
3572 static void gen_unspecified_parameters_die PARAMS ((tree, dw_die_ref));
3573 static void gen_formal_types_die PARAMS ((tree, dw_die_ref));
3574 static void gen_subprogram_die PARAMS ((tree, dw_die_ref));
3575 static void gen_variable_die PARAMS ((tree, dw_die_ref));
3576 static void gen_label_die PARAMS ((tree, dw_die_ref));
3577 static void gen_lexical_block_die PARAMS ((tree, dw_die_ref, int));
3578 static void gen_inlined_subroutine_die PARAMS ((tree, dw_die_ref, int));
3579 static void gen_field_die PARAMS ((tree, dw_die_ref));
3580 static void gen_ptr_to_mbr_type_die PARAMS ((tree, dw_die_ref));
3581 static dw_die_ref gen_compile_unit_die PARAMS ((const char *));
3582 static void gen_string_type_die PARAMS ((tree, dw_die_ref));
3583 static void gen_inheritance_die PARAMS ((tree, dw_die_ref));
3584 static void gen_member_die PARAMS ((tree, dw_die_ref));
3585 static void gen_struct_or_union_type_die PARAMS ((tree, dw_die_ref));
3586 static void gen_subroutine_type_die PARAMS ((tree, dw_die_ref));
3587 static void gen_typedef_die PARAMS ((tree, dw_die_ref));
3588 static void gen_type_die PARAMS ((tree, dw_die_ref));
3589 static void gen_tagged_type_instantiation_die PARAMS ((tree, dw_die_ref));
3590 static void gen_block_die PARAMS ((tree, dw_die_ref, int));
3591 static void decls_for_scope PARAMS ((tree, dw_die_ref, int));
3592 static int is_redundant_typedef PARAMS ((tree));
3593 static void gen_decl_die PARAMS ((tree, dw_die_ref));
3594 static unsigned lookup_filename PARAMS ((const char *));
3595 static void init_file_table PARAMS ((void));
3596 static void add_incomplete_type PARAMS ((tree));
3597 static void retry_incomplete_types PARAMS ((void));
3598 static void gen_type_die_for_member PARAMS ((tree, tree, dw_die_ref));
3599 static rtx save_rtx PARAMS ((rtx));
3600 static void splice_child_die PARAMS ((dw_die_ref, dw_die_ref));
3601 static int file_info_cmp PARAMS ((const void *, const void *));
3602 static dw_loc_list_ref new_loc_list PARAMS ((dw_loc_descr_ref,
3603 const char *, const char *,
3604 const char *, unsigned));
3605 static void add_loc_descr_to_loc_list PARAMS ((dw_loc_list_ref *,
3606 dw_loc_descr_ref,
3607 const char *, const char *, const char *));
3608 static void output_loc_list PARAMS ((dw_loc_list_ref));
3609 static char *gen_internal_sym PARAMS ((const char *));
3610
3611 /* Section names used to hold DWARF debugging information. */
3612 #ifndef DEBUG_INFO_SECTION
3613 #define DEBUG_INFO_SECTION ".debug_info"
3614 #endif
3615 #ifndef DEBUG_ABBREV_SECTION
3616 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3617 #endif
3618 #ifndef DEBUG_ARANGES_SECTION
3619 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3620 #endif
3621 #ifndef DEBUG_MACINFO_SECTION
3622 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3623 #endif
3624 #ifndef DEBUG_LINE_SECTION
3625 #define DEBUG_LINE_SECTION ".debug_line"
3626 #endif
3627 #ifndef DEBUG_LOC_SECTION
3628 #define DEBUG_LOC_SECTION ".debug_loc"
3629 #endif
3630 #ifndef DEBUG_PUBNAMES_SECTION
3631 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3632 #endif
3633 #ifndef DEBUG_STR_SECTION
3634 #define DEBUG_STR_SECTION ".debug_str"
3635 #endif
3636
3637 /* Standard ELF section names for compiled code and data. */
3638 #ifndef TEXT_SECTION
3639 #define TEXT_SECTION ".text"
3640 #endif
3641 #ifndef DATA_SECTION
3642 #define DATA_SECTION ".data"
3643 #endif
3644 #ifndef BSS_SECTION
3645 #define BSS_SECTION ".bss"
3646 #endif
3647
3648 /* Labels we insert at beginning sections we can reference instead of
3649 the section names themselves. */
3650
3651 #ifndef TEXT_SECTION_LABEL
3652 #define TEXT_SECTION_LABEL "Ltext"
3653 #endif
3654 #ifndef DEBUG_LINE_SECTION_LABEL
3655 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3656 #endif
3657 #ifndef DEBUG_INFO_SECTION_LABEL
3658 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3659 #endif
3660 #ifndef DEBUG_ABBREV_SECTION_LABEL
3661 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3662 #endif
3663 #ifndef DEBUG_LOC_SECTION_LABEL
3664 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3665 #endif
3666 #ifndef DEBUG_MACINFO_SECTION_LABEL
3667 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3668 #endif
3669 /* Definitions of defaults for formats and names of various special
3670 (artificial) labels which may be generated within this file (when the -g
3671 options is used and DWARF_DEBUGGING_INFO is in effect.
3672 If necessary, these may be overridden from within the tm.h file, but
3673 typically, overriding these defaults is unnecessary. */
3674
3675 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3676 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3677 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3678 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3679 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3680 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3681 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3682 #ifndef TEXT_END_LABEL
3683 #define TEXT_END_LABEL "Letext"
3684 #endif
3685 #ifndef DATA_END_LABEL
3686 #define DATA_END_LABEL "Ledata"
3687 #endif
3688 #ifndef BSS_END_LABEL
3689 #define BSS_END_LABEL "Lebss"
3690 #endif
3691 #ifndef BLOCK_BEGIN_LABEL
3692 #define BLOCK_BEGIN_LABEL "LBB"
3693 #endif
3694 #ifndef BLOCK_END_LABEL
3695 #define BLOCK_END_LABEL "LBE"
3696 #endif
3697 #ifndef BODY_BEGIN_LABEL
3698 #define BODY_BEGIN_LABEL "Lbb"
3699 #endif
3700 #ifndef BODY_END_LABEL
3701 #define BODY_END_LABEL "Lbe"
3702 #endif
3703 #ifndef LINE_CODE_LABEL
3704 #define LINE_CODE_LABEL "LM"
3705 #endif
3706 #ifndef SEPARATE_LINE_CODE_LABEL
3707 #define SEPARATE_LINE_CODE_LABEL "LSM"
3708 #endif
3709 \f
3710 /* We allow a language front-end to designate a function that is to be
3711 called to "demangle" any name before it it put into a DIE. */
3712
3713 static const char *(*demangle_name_func) PARAMS ((const char *));
3714
3715 void
3716 dwarf2out_set_demangle_name_func (func)
3717 const char *(*func) PARAMS ((const char *));
3718 {
3719 demangle_name_func = func;
3720 }
3721 \f
3722 /* Return an rtx like ORIG which lives forever. If we're doing GC,
3723 that means adding it to used_rtx_varray. If not, that means making
3724 a copy on the permanent_obstack. */
3725
3726 static rtx
3727 save_rtx (orig)
3728 register rtx orig;
3729 {
3730 VARRAY_PUSH_RTX (used_rtx_varray, orig);
3731
3732 return orig;
3733 }
3734
3735 /* Test if rtl node points to a pseudo register. */
3736
3737 static inline int
3738 is_pseudo_reg (rtl)
3739 register rtx rtl;
3740 {
3741 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3742 || (GET_CODE (rtl) == SUBREG
3743 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3744 }
3745
3746 /* Return a reference to a type, with its const and volatile qualifiers
3747 removed. */
3748
3749 static inline tree
3750 type_main_variant (type)
3751 register tree type;
3752 {
3753 type = TYPE_MAIN_VARIANT (type);
3754
3755 /* There really should be only one main variant among any group of variants
3756 of a given type (and all of the MAIN_VARIANT values for all members of
3757 the group should point to that one type) but sometimes the C front-end
3758 messes this up for array types, so we work around that bug here. */
3759
3760 if (TREE_CODE (type) == ARRAY_TYPE)
3761 while (type != TYPE_MAIN_VARIANT (type))
3762 type = TYPE_MAIN_VARIANT (type);
3763
3764 return type;
3765 }
3766
3767 /* Return non-zero if the given type node represents a tagged type. */
3768
3769 static inline int
3770 is_tagged_type (type)
3771 register tree type;
3772 {
3773 register enum tree_code code = TREE_CODE (type);
3774
3775 return (code == RECORD_TYPE || code == UNION_TYPE
3776 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
3777 }
3778
3779 /* Convert a DIE tag into its string name. */
3780
3781 static const char *
3782 dwarf_tag_name (tag)
3783 register unsigned tag;
3784 {
3785 switch (tag)
3786 {
3787 case DW_TAG_padding:
3788 return "DW_TAG_padding";
3789 case DW_TAG_array_type:
3790 return "DW_TAG_array_type";
3791 case DW_TAG_class_type:
3792 return "DW_TAG_class_type";
3793 case DW_TAG_entry_point:
3794 return "DW_TAG_entry_point";
3795 case DW_TAG_enumeration_type:
3796 return "DW_TAG_enumeration_type";
3797 case DW_TAG_formal_parameter:
3798 return "DW_TAG_formal_parameter";
3799 case DW_TAG_imported_declaration:
3800 return "DW_TAG_imported_declaration";
3801 case DW_TAG_label:
3802 return "DW_TAG_label";
3803 case DW_TAG_lexical_block:
3804 return "DW_TAG_lexical_block";
3805 case DW_TAG_member:
3806 return "DW_TAG_member";
3807 case DW_TAG_pointer_type:
3808 return "DW_TAG_pointer_type";
3809 case DW_TAG_reference_type:
3810 return "DW_TAG_reference_type";
3811 case DW_TAG_compile_unit:
3812 return "DW_TAG_compile_unit";
3813 case DW_TAG_string_type:
3814 return "DW_TAG_string_type";
3815 case DW_TAG_structure_type:
3816 return "DW_TAG_structure_type";
3817 case DW_TAG_subroutine_type:
3818 return "DW_TAG_subroutine_type";
3819 case DW_TAG_typedef:
3820 return "DW_TAG_typedef";
3821 case DW_TAG_union_type:
3822 return "DW_TAG_union_type";
3823 case DW_TAG_unspecified_parameters:
3824 return "DW_TAG_unspecified_parameters";
3825 case DW_TAG_variant:
3826 return "DW_TAG_variant";
3827 case DW_TAG_common_block:
3828 return "DW_TAG_common_block";
3829 case DW_TAG_common_inclusion:
3830 return "DW_TAG_common_inclusion";
3831 case DW_TAG_inheritance:
3832 return "DW_TAG_inheritance";
3833 case DW_TAG_inlined_subroutine:
3834 return "DW_TAG_inlined_subroutine";
3835 case DW_TAG_module:
3836 return "DW_TAG_module";
3837 case DW_TAG_ptr_to_member_type:
3838 return "DW_TAG_ptr_to_member_type";
3839 case DW_TAG_set_type:
3840 return "DW_TAG_set_type";
3841 case DW_TAG_subrange_type:
3842 return "DW_TAG_subrange_type";
3843 case DW_TAG_with_stmt:
3844 return "DW_TAG_with_stmt";
3845 case DW_TAG_access_declaration:
3846 return "DW_TAG_access_declaration";
3847 case DW_TAG_base_type:
3848 return "DW_TAG_base_type";
3849 case DW_TAG_catch_block:
3850 return "DW_TAG_catch_block";
3851 case DW_TAG_const_type:
3852 return "DW_TAG_const_type";
3853 case DW_TAG_constant:
3854 return "DW_TAG_constant";
3855 case DW_TAG_enumerator:
3856 return "DW_TAG_enumerator";
3857 case DW_TAG_file_type:
3858 return "DW_TAG_file_type";
3859 case DW_TAG_friend:
3860 return "DW_TAG_friend";
3861 case DW_TAG_namelist:
3862 return "DW_TAG_namelist";
3863 case DW_TAG_namelist_item:
3864 return "DW_TAG_namelist_item";
3865 case DW_TAG_packed_type:
3866 return "DW_TAG_packed_type";
3867 case DW_TAG_subprogram:
3868 return "DW_TAG_subprogram";
3869 case DW_TAG_template_type_param:
3870 return "DW_TAG_template_type_param";
3871 case DW_TAG_template_value_param:
3872 return "DW_TAG_template_value_param";
3873 case DW_TAG_thrown_type:
3874 return "DW_TAG_thrown_type";
3875 case DW_TAG_try_block:
3876 return "DW_TAG_try_block";
3877 case DW_TAG_variant_part:
3878 return "DW_TAG_variant_part";
3879 case DW_TAG_variable:
3880 return "DW_TAG_variable";
3881 case DW_TAG_volatile_type:
3882 return "DW_TAG_volatile_type";
3883 case DW_TAG_MIPS_loop:
3884 return "DW_TAG_MIPS_loop";
3885 case DW_TAG_format_label:
3886 return "DW_TAG_format_label";
3887 case DW_TAG_function_template:
3888 return "DW_TAG_function_template";
3889 case DW_TAG_class_template:
3890 return "DW_TAG_class_template";
3891 case DW_TAG_GNU_BINCL:
3892 return "DW_TAG_GNU_BINCL";
3893 case DW_TAG_GNU_EINCL:
3894 return "DW_TAG_GNU_EINCL";
3895 default:
3896 return "DW_TAG_<unknown>";
3897 }
3898 }
3899
3900 /* Convert a DWARF attribute code into its string name. */
3901
3902 static const char *
3903 dwarf_attr_name (attr)
3904 register unsigned attr;
3905 {
3906 switch (attr)
3907 {
3908 case DW_AT_sibling:
3909 return "DW_AT_sibling";
3910 case DW_AT_location:
3911 return "DW_AT_location";
3912 case DW_AT_name:
3913 return "DW_AT_name";
3914 case DW_AT_ordering:
3915 return "DW_AT_ordering";
3916 case DW_AT_subscr_data:
3917 return "DW_AT_subscr_data";
3918 case DW_AT_byte_size:
3919 return "DW_AT_byte_size";
3920 case DW_AT_bit_offset:
3921 return "DW_AT_bit_offset";
3922 case DW_AT_bit_size:
3923 return "DW_AT_bit_size";
3924 case DW_AT_element_list:
3925 return "DW_AT_element_list";
3926 case DW_AT_stmt_list:
3927 return "DW_AT_stmt_list";
3928 case DW_AT_low_pc:
3929 return "DW_AT_low_pc";
3930 case DW_AT_high_pc:
3931 return "DW_AT_high_pc";
3932 case DW_AT_language:
3933 return "DW_AT_language";
3934 case DW_AT_member:
3935 return "DW_AT_member";
3936 case DW_AT_discr:
3937 return "DW_AT_discr";
3938 case DW_AT_discr_value:
3939 return "DW_AT_discr_value";
3940 case DW_AT_visibility:
3941 return "DW_AT_visibility";
3942 case DW_AT_import:
3943 return "DW_AT_import";
3944 case DW_AT_string_length:
3945 return "DW_AT_string_length";
3946 case DW_AT_common_reference:
3947 return "DW_AT_common_reference";
3948 case DW_AT_comp_dir:
3949 return "DW_AT_comp_dir";
3950 case DW_AT_const_value:
3951 return "DW_AT_const_value";
3952 case DW_AT_containing_type:
3953 return "DW_AT_containing_type";
3954 case DW_AT_default_value:
3955 return "DW_AT_default_value";
3956 case DW_AT_inline:
3957 return "DW_AT_inline";
3958 case DW_AT_is_optional:
3959 return "DW_AT_is_optional";
3960 case DW_AT_lower_bound:
3961 return "DW_AT_lower_bound";
3962 case DW_AT_producer:
3963 return "DW_AT_producer";
3964 case DW_AT_prototyped:
3965 return "DW_AT_prototyped";
3966 case DW_AT_return_addr:
3967 return "DW_AT_return_addr";
3968 case DW_AT_start_scope:
3969 return "DW_AT_start_scope";
3970 case DW_AT_stride_size:
3971 return "DW_AT_stride_size";
3972 case DW_AT_upper_bound:
3973 return "DW_AT_upper_bound";
3974 case DW_AT_abstract_origin:
3975 return "DW_AT_abstract_origin";
3976 case DW_AT_accessibility:
3977 return "DW_AT_accessibility";
3978 case DW_AT_address_class:
3979 return "DW_AT_address_class";
3980 case DW_AT_artificial:
3981 return "DW_AT_artificial";
3982 case DW_AT_base_types:
3983 return "DW_AT_base_types";
3984 case DW_AT_calling_convention:
3985 return "DW_AT_calling_convention";
3986 case DW_AT_count:
3987 return "DW_AT_count";
3988 case DW_AT_data_member_location:
3989 return "DW_AT_data_member_location";
3990 case DW_AT_decl_column:
3991 return "DW_AT_decl_column";
3992 case DW_AT_decl_file:
3993 return "DW_AT_decl_file";
3994 case DW_AT_decl_line:
3995 return "DW_AT_decl_line";
3996 case DW_AT_declaration:
3997 return "DW_AT_declaration";
3998 case DW_AT_discr_list:
3999 return "DW_AT_discr_list";
4000 case DW_AT_encoding:
4001 return "DW_AT_encoding";
4002 case DW_AT_external:
4003 return "DW_AT_external";
4004 case DW_AT_frame_base:
4005 return "DW_AT_frame_base";
4006 case DW_AT_friend:
4007 return "DW_AT_friend";
4008 case DW_AT_identifier_case:
4009 return "DW_AT_identifier_case";
4010 case DW_AT_macro_info:
4011 return "DW_AT_macro_info";
4012 case DW_AT_namelist_items:
4013 return "DW_AT_namelist_items";
4014 case DW_AT_priority:
4015 return "DW_AT_priority";
4016 case DW_AT_segment:
4017 return "DW_AT_segment";
4018 case DW_AT_specification:
4019 return "DW_AT_specification";
4020 case DW_AT_static_link:
4021 return "DW_AT_static_link";
4022 case DW_AT_type:
4023 return "DW_AT_type";
4024 case DW_AT_use_location:
4025 return "DW_AT_use_location";
4026 case DW_AT_variable_parameter:
4027 return "DW_AT_variable_parameter";
4028 case DW_AT_virtuality:
4029 return "DW_AT_virtuality";
4030 case DW_AT_vtable_elem_location:
4031 return "DW_AT_vtable_elem_location";
4032
4033 case DW_AT_MIPS_fde:
4034 return "DW_AT_MIPS_fde";
4035 case DW_AT_MIPS_loop_begin:
4036 return "DW_AT_MIPS_loop_begin";
4037 case DW_AT_MIPS_tail_loop_begin:
4038 return "DW_AT_MIPS_tail_loop_begin";
4039 case DW_AT_MIPS_epilog_begin:
4040 return "DW_AT_MIPS_epilog_begin";
4041 case DW_AT_MIPS_loop_unroll_factor:
4042 return "DW_AT_MIPS_loop_unroll_factor";
4043 case DW_AT_MIPS_software_pipeline_depth:
4044 return "DW_AT_MIPS_software_pipeline_depth";
4045 case DW_AT_MIPS_linkage_name:
4046 return "DW_AT_MIPS_linkage_name";
4047 case DW_AT_MIPS_stride:
4048 return "DW_AT_MIPS_stride";
4049 case DW_AT_MIPS_abstract_name:
4050 return "DW_AT_MIPS_abstract_name";
4051 case DW_AT_MIPS_clone_origin:
4052 return "DW_AT_MIPS_clone_origin";
4053 case DW_AT_MIPS_has_inlines:
4054 return "DW_AT_MIPS_has_inlines";
4055
4056 case DW_AT_sf_names:
4057 return "DW_AT_sf_names";
4058 case DW_AT_src_info:
4059 return "DW_AT_src_info";
4060 case DW_AT_mac_info:
4061 return "DW_AT_mac_info";
4062 case DW_AT_src_coords:
4063 return "DW_AT_src_coords";
4064 case DW_AT_body_begin:
4065 return "DW_AT_body_begin";
4066 case DW_AT_body_end:
4067 return "DW_AT_body_end";
4068 default:
4069 return "DW_AT_<unknown>";
4070 }
4071 }
4072
4073 /* Convert a DWARF value form code into its string name. */
4074
4075 static const char *
4076 dwarf_form_name (form)
4077 register unsigned form;
4078 {
4079 switch (form)
4080 {
4081 case DW_FORM_addr:
4082 return "DW_FORM_addr";
4083 case DW_FORM_block2:
4084 return "DW_FORM_block2";
4085 case DW_FORM_block4:
4086 return "DW_FORM_block4";
4087 case DW_FORM_data2:
4088 return "DW_FORM_data2";
4089 case DW_FORM_data4:
4090 return "DW_FORM_data4";
4091 case DW_FORM_data8:
4092 return "DW_FORM_data8";
4093 case DW_FORM_string:
4094 return "DW_FORM_string";
4095 case DW_FORM_block:
4096 return "DW_FORM_block";
4097 case DW_FORM_block1:
4098 return "DW_FORM_block1";
4099 case DW_FORM_data1:
4100 return "DW_FORM_data1";
4101 case DW_FORM_flag:
4102 return "DW_FORM_flag";
4103 case DW_FORM_sdata:
4104 return "DW_FORM_sdata";
4105 case DW_FORM_strp:
4106 return "DW_FORM_strp";
4107 case DW_FORM_udata:
4108 return "DW_FORM_udata";
4109 case DW_FORM_ref_addr:
4110 return "DW_FORM_ref_addr";
4111 case DW_FORM_ref1:
4112 return "DW_FORM_ref1";
4113 case DW_FORM_ref2:
4114 return "DW_FORM_ref2";
4115 case DW_FORM_ref4:
4116 return "DW_FORM_ref4";
4117 case DW_FORM_ref8:
4118 return "DW_FORM_ref8";
4119 case DW_FORM_ref_udata:
4120 return "DW_FORM_ref_udata";
4121 case DW_FORM_indirect:
4122 return "DW_FORM_indirect";
4123 default:
4124 return "DW_FORM_<unknown>";
4125 }
4126 }
4127
4128 /* Convert a DWARF type code into its string name. */
4129
4130 #if 0
4131 static const char *
4132 dwarf_type_encoding_name (enc)
4133 register unsigned enc;
4134 {
4135 switch (enc)
4136 {
4137 case DW_ATE_address:
4138 return "DW_ATE_address";
4139 case DW_ATE_boolean:
4140 return "DW_ATE_boolean";
4141 case DW_ATE_complex_float:
4142 return "DW_ATE_complex_float";
4143 case DW_ATE_float:
4144 return "DW_ATE_float";
4145 case DW_ATE_signed:
4146 return "DW_ATE_signed";
4147 case DW_ATE_signed_char:
4148 return "DW_ATE_signed_char";
4149 case DW_ATE_unsigned:
4150 return "DW_ATE_unsigned";
4151 case DW_ATE_unsigned_char:
4152 return "DW_ATE_unsigned_char";
4153 default:
4154 return "DW_ATE_<unknown>";
4155 }
4156 }
4157 #endif
4158 \f
4159 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4160 instance of an inlined instance of a decl which is local to an inline
4161 function, so we have to trace all of the way back through the origin chain
4162 to find out what sort of node actually served as the original seed for the
4163 given block. */
4164
4165 static tree
4166 decl_ultimate_origin (decl)
4167 register tree decl;
4168 {
4169 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4170 nodes in the function to point to themselves; ignore that if
4171 we're trying to output the abstract instance of this function. */
4172 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4173 return NULL_TREE;
4174
4175 #ifdef ENABLE_CHECKING
4176 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4177 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4178 most distant ancestor, this should never happen. */
4179 abort ();
4180 #endif
4181
4182 return DECL_ABSTRACT_ORIGIN (decl);
4183 }
4184
4185 /* Determine the "ultimate origin" of a block. The block may be an inlined
4186 instance of an inlined instance of a block which is local to an inline
4187 function, so we have to trace all of the way back through the origin chain
4188 to find out what sort of node actually served as the original seed for the
4189 given block. */
4190
4191 static tree
4192 block_ultimate_origin (block)
4193 register tree block;
4194 {
4195 register tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4196
4197 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4198 nodes in the function to point to themselves; ignore that if
4199 we're trying to output the abstract instance of this function. */
4200 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4201 return NULL_TREE;
4202
4203 if (immediate_origin == NULL_TREE)
4204 return NULL_TREE;
4205 else
4206 {
4207 register tree ret_val;
4208 register tree lookahead = immediate_origin;
4209
4210 do
4211 {
4212 ret_val = lookahead;
4213 lookahead = (TREE_CODE (ret_val) == BLOCK)
4214 ? BLOCK_ABSTRACT_ORIGIN (ret_val)
4215 : NULL;
4216 }
4217 while (lookahead != NULL && lookahead != ret_val);
4218
4219 return ret_val;
4220 }
4221 }
4222
4223 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4224 of a virtual function may refer to a base class, so we check the 'this'
4225 parameter. */
4226
4227 static tree
4228 decl_class_context (decl)
4229 tree decl;
4230 {
4231 tree context = NULL_TREE;
4232
4233 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4234 context = DECL_CONTEXT (decl);
4235 else
4236 context = TYPE_MAIN_VARIANT
4237 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4238
4239 if (context && !TYPE_P (context))
4240 context = NULL_TREE;
4241
4242 return context;
4243 }
4244 \f
4245 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4246 addition order, and correct that in reverse_all_dies. */
4247
4248 static inline void
4249 add_dwarf_attr (die, attr)
4250 register dw_die_ref die;
4251 register dw_attr_ref attr;
4252 {
4253 if (die != NULL && attr != NULL)
4254 {
4255 attr->dw_attr_next = die->die_attr;
4256 die->die_attr = attr;
4257 }
4258 }
4259
4260 static inline dw_val_class AT_class PARAMS ((dw_attr_ref));
4261 static inline dw_val_class
4262 AT_class (a)
4263 dw_attr_ref a;
4264 {
4265 return a->dw_attr_val.val_class;
4266 }
4267
4268 /* Add a flag value attribute to a DIE. */
4269
4270 static inline void
4271 add_AT_flag (die, attr_kind, flag)
4272 register dw_die_ref die;
4273 register enum dwarf_attribute attr_kind;
4274 register unsigned flag;
4275 {
4276 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4277
4278 attr->dw_attr_next = NULL;
4279 attr->dw_attr = attr_kind;
4280 attr->dw_attr_val.val_class = dw_val_class_flag;
4281 attr->dw_attr_val.v.val_flag = flag;
4282 add_dwarf_attr (die, attr);
4283 }
4284
4285 static inline unsigned AT_flag PARAMS ((dw_attr_ref));
4286 static inline unsigned
4287 AT_flag (a)
4288 register dw_attr_ref a;
4289 {
4290 if (a && AT_class (a) == dw_val_class_flag)
4291 return a->dw_attr_val.v.val_flag;
4292
4293 abort ();
4294 }
4295
4296 /* Add a signed integer attribute value to a DIE. */
4297
4298 static inline void
4299 add_AT_int (die, attr_kind, int_val)
4300 register dw_die_ref die;
4301 register enum dwarf_attribute attr_kind;
4302 register long int int_val;
4303 {
4304 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4305
4306 attr->dw_attr_next = NULL;
4307 attr->dw_attr = attr_kind;
4308 attr->dw_attr_val.val_class = dw_val_class_const;
4309 attr->dw_attr_val.v.val_int = int_val;
4310 add_dwarf_attr (die, attr);
4311 }
4312
4313 static inline long int AT_int PARAMS ((dw_attr_ref));
4314 static inline long int
4315 AT_int (a)
4316 register dw_attr_ref a;
4317 {
4318 if (a && AT_class (a) == dw_val_class_const)
4319 return a->dw_attr_val.v.val_int;
4320
4321 abort ();
4322 }
4323
4324 /* Add an unsigned integer attribute value to a DIE. */
4325
4326 static inline void
4327 add_AT_unsigned (die, attr_kind, unsigned_val)
4328 register dw_die_ref die;
4329 register enum dwarf_attribute attr_kind;
4330 register unsigned long unsigned_val;
4331 {
4332 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4333
4334 attr->dw_attr_next = NULL;
4335 attr->dw_attr = attr_kind;
4336 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4337 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4338 add_dwarf_attr (die, attr);
4339 }
4340
4341 static inline unsigned long AT_unsigned PARAMS ((dw_attr_ref));
4342 static inline unsigned long
4343 AT_unsigned (a)
4344 register dw_attr_ref a;
4345 {
4346 if (a && AT_class (a) == dw_val_class_unsigned_const)
4347 return a->dw_attr_val.v.val_unsigned;
4348
4349 abort ();
4350 }
4351
4352 /* Add an unsigned double integer attribute value to a DIE. */
4353
4354 static inline void
4355 add_AT_long_long (die, attr_kind, val_hi, val_low)
4356 register dw_die_ref die;
4357 register enum dwarf_attribute attr_kind;
4358 register unsigned long val_hi;
4359 register unsigned long val_low;
4360 {
4361 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4362
4363 attr->dw_attr_next = NULL;
4364 attr->dw_attr = attr_kind;
4365 attr->dw_attr_val.val_class = dw_val_class_long_long;
4366 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4367 attr->dw_attr_val.v.val_long_long.low = val_low;
4368 add_dwarf_attr (die, attr);
4369 }
4370
4371 /* Add a floating point attribute value to a DIE and return it. */
4372
4373 static inline void
4374 add_AT_float (die, attr_kind, length, array)
4375 register dw_die_ref die;
4376 register enum dwarf_attribute attr_kind;
4377 register unsigned length;
4378 register long *array;
4379 {
4380 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4381
4382 attr->dw_attr_next = NULL;
4383 attr->dw_attr = attr_kind;
4384 attr->dw_attr_val.val_class = dw_val_class_float;
4385 attr->dw_attr_val.v.val_float.length = length;
4386 attr->dw_attr_val.v.val_float.array = array;
4387 add_dwarf_attr (die, attr);
4388 }
4389
4390 /* Add a string attribute value to a DIE. */
4391
4392 static inline void
4393 add_AT_string (die, attr_kind, str)
4394 register dw_die_ref die;
4395 register enum dwarf_attribute attr_kind;
4396 register const char *str;
4397 {
4398 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4399
4400 attr->dw_attr_next = NULL;
4401 attr->dw_attr = attr_kind;
4402 attr->dw_attr_val.val_class = dw_val_class_str;
4403 attr->dw_attr_val.v.val_str = xstrdup (str);
4404 add_dwarf_attr (die, attr);
4405 }
4406
4407 static inline const char *AT_string PARAMS ((dw_attr_ref));
4408 static inline const char *
4409 AT_string (a)
4410 register dw_attr_ref a;
4411 {
4412 if (a && AT_class (a) == dw_val_class_str)
4413 return a->dw_attr_val.v.val_str;
4414
4415 abort ();
4416 }
4417
4418 /* Add a DIE reference attribute value to a DIE. */
4419
4420 static inline void
4421 add_AT_die_ref (die, attr_kind, targ_die)
4422 register dw_die_ref die;
4423 register enum dwarf_attribute attr_kind;
4424 register dw_die_ref targ_die;
4425 {
4426 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4427
4428 attr->dw_attr_next = NULL;
4429 attr->dw_attr = attr_kind;
4430 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4431 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4432 attr->dw_attr_val.v.val_die_ref.external = 0;
4433 add_dwarf_attr (die, attr);
4434 }
4435
4436 static inline dw_die_ref AT_ref PARAMS ((dw_attr_ref));
4437 static inline dw_die_ref
4438 AT_ref (a)
4439 register dw_attr_ref a;
4440 {
4441 if (a && AT_class (a) == dw_val_class_die_ref)
4442 return a->dw_attr_val.v.val_die_ref.die;
4443
4444 abort ();
4445 }
4446
4447 static inline int AT_ref_external PARAMS ((dw_attr_ref));
4448 static inline int
4449 AT_ref_external (a)
4450 register dw_attr_ref a;
4451 {
4452 if (a && AT_class (a) == dw_val_class_die_ref)
4453 return a->dw_attr_val.v.val_die_ref.external;
4454
4455 return 0;
4456 }
4457
4458 static inline void set_AT_ref_external PARAMS ((dw_attr_ref, int));
4459 static inline void
4460 set_AT_ref_external (a, i)
4461 register dw_attr_ref a;
4462 int i;
4463 {
4464 if (a && AT_class (a) == dw_val_class_die_ref)
4465 a->dw_attr_val.v.val_die_ref.external = i;
4466 else
4467 abort ();
4468 }
4469
4470 /* Add an FDE reference attribute value to a DIE. */
4471
4472 static inline void
4473 add_AT_fde_ref (die, attr_kind, targ_fde)
4474 register dw_die_ref die;
4475 register enum dwarf_attribute attr_kind;
4476 register unsigned targ_fde;
4477 {
4478 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4479
4480 attr->dw_attr_next = NULL;
4481 attr->dw_attr = attr_kind;
4482 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4483 attr->dw_attr_val.v.val_fde_index = targ_fde;
4484 add_dwarf_attr (die, attr);
4485 }
4486
4487 /* Add a location description attribute value to a DIE. */
4488
4489 static inline void
4490 add_AT_loc (die, attr_kind, loc)
4491 register dw_die_ref die;
4492 register enum dwarf_attribute attr_kind;
4493 register dw_loc_descr_ref loc;
4494 {
4495 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4496
4497 attr->dw_attr_next = NULL;
4498 attr->dw_attr = attr_kind;
4499 attr->dw_attr_val.val_class = dw_val_class_loc;
4500 attr->dw_attr_val.v.val_loc = loc;
4501 add_dwarf_attr (die, attr);
4502 }
4503
4504 static inline dw_loc_descr_ref AT_loc PARAMS ((dw_attr_ref));
4505 static inline dw_loc_descr_ref
4506 AT_loc (a)
4507 register dw_attr_ref a;
4508 {
4509 if (a && AT_class (a) == dw_val_class_loc)
4510 return a->dw_attr_val.v.val_loc;
4511
4512 abort ();
4513 }
4514
4515 static inline void
4516 add_AT_loc_list (die, attr_kind, loc_list)
4517 register dw_die_ref die;
4518 register enum dwarf_attribute attr_kind;
4519 register dw_loc_list_ref loc_list;
4520 {
4521 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4522
4523 attr->dw_attr_next = NULL;
4524 attr->dw_attr = attr_kind;
4525 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4526 attr->dw_attr_val.v.val_loc_list = loc_list;
4527 add_dwarf_attr (die, attr);
4528 have_location_lists = 1;
4529 }
4530
4531 static inline dw_loc_list_ref AT_loc_list PARAMS ((dw_attr_ref));
4532
4533 static inline dw_loc_list_ref
4534 AT_loc_list (a)
4535 register dw_attr_ref a;
4536 {
4537 if (a && AT_class (a) == dw_val_class_loc_list)
4538 return a->dw_attr_val.v.val_loc_list;
4539
4540 abort ();
4541 }
4542
4543 /* Add an address constant attribute value to a DIE. */
4544
4545 static inline void
4546 add_AT_addr (die, attr_kind, addr)
4547 register dw_die_ref die;
4548 register enum dwarf_attribute attr_kind;
4549 rtx addr;
4550 {
4551 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4552
4553 attr->dw_attr_next = NULL;
4554 attr->dw_attr = attr_kind;
4555 attr->dw_attr_val.val_class = dw_val_class_addr;
4556 attr->dw_attr_val.v.val_addr = addr;
4557 add_dwarf_attr (die, attr);
4558 }
4559
4560 static inline rtx AT_addr PARAMS ((dw_attr_ref));
4561 static inline rtx
4562 AT_addr (a)
4563 register dw_attr_ref a;
4564 {
4565 if (a && AT_class (a) == dw_val_class_addr)
4566 return a->dw_attr_val.v.val_addr;
4567
4568 abort ();
4569 }
4570
4571 /* Add a label identifier attribute value to a DIE. */
4572
4573 static inline void
4574 add_AT_lbl_id (die, attr_kind, lbl_id)
4575 register dw_die_ref die;
4576 register enum dwarf_attribute attr_kind;
4577 register const char *lbl_id;
4578 {
4579 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4580
4581 attr->dw_attr_next = NULL;
4582 attr->dw_attr = attr_kind;
4583 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4584 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4585 add_dwarf_attr (die, attr);
4586 }
4587
4588 /* Add a section offset attribute value to a DIE. */
4589
4590 static inline void
4591 add_AT_lbl_offset (die, attr_kind, label)
4592 register dw_die_ref die;
4593 register enum dwarf_attribute attr_kind;
4594 register const char *label;
4595 {
4596 register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4597
4598 attr->dw_attr_next = NULL;
4599 attr->dw_attr = attr_kind;
4600 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4601 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4602 add_dwarf_attr (die, attr);
4603 }
4604
4605 static inline const char *AT_lbl PARAMS ((dw_attr_ref));
4606 static inline const char *
4607 AT_lbl (a)
4608 register dw_attr_ref a;
4609 {
4610 if (a && (AT_class (a) == dw_val_class_lbl_id
4611 || AT_class (a) == dw_val_class_lbl_offset))
4612 return a->dw_attr_val.v.val_lbl_id;
4613
4614 abort ();
4615 }
4616
4617 /* Get the attribute of type attr_kind. */
4618
4619 static inline dw_attr_ref
4620 get_AT (die, attr_kind)
4621 register dw_die_ref die;
4622 register enum dwarf_attribute attr_kind;
4623 {
4624 register dw_attr_ref a;
4625 register dw_die_ref spec = NULL;
4626
4627 if (die != NULL)
4628 {
4629 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
4630 {
4631 if (a->dw_attr == attr_kind)
4632 return a;
4633
4634 if (a->dw_attr == DW_AT_specification
4635 || a->dw_attr == DW_AT_abstract_origin)
4636 spec = AT_ref (a);
4637 }
4638
4639 if (spec)
4640 return get_AT (spec, attr_kind);
4641 }
4642
4643 return NULL;
4644 }
4645
4646 /* Return the "low pc" attribute value, typically associated with
4647 a subprogram DIE. Return null if the "low pc" attribute is
4648 either not prsent, or if it cannot be represented as an
4649 assembler label identifier. */
4650
4651 static inline const char *
4652 get_AT_low_pc (die)
4653 register dw_die_ref die;
4654 {
4655 register dw_attr_ref a = get_AT (die, DW_AT_low_pc);
4656 return a ? AT_lbl (a) : NULL;
4657 }
4658
4659 /* Return the "high pc" attribute value, typically associated with
4660 a subprogram DIE. Return null if the "high pc" attribute is
4661 either not prsent, or if it cannot be represented as an
4662 assembler label identifier. */
4663
4664 static inline const char *
4665 get_AT_hi_pc (die)
4666 register dw_die_ref die;
4667 {
4668 register dw_attr_ref a = get_AT (die, DW_AT_high_pc);
4669 return a ? AT_lbl (a) : NULL;
4670 }
4671
4672 /* Return the value of the string attribute designated by ATTR_KIND, or
4673 NULL if it is not present. */
4674
4675 static inline const char *
4676 get_AT_string (die, attr_kind)
4677 register dw_die_ref die;
4678 register enum dwarf_attribute attr_kind;
4679 {
4680 register dw_attr_ref a = get_AT (die, attr_kind);
4681 return a ? AT_string (a) : NULL;
4682 }
4683
4684 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
4685 if it is not present. */
4686
4687 static inline int
4688 get_AT_flag (die, attr_kind)
4689 register dw_die_ref die;
4690 register enum dwarf_attribute attr_kind;
4691 {
4692 register dw_attr_ref a = get_AT (die, attr_kind);
4693 return a ? AT_flag (a) : 0;
4694 }
4695
4696 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4697 if it is not present. */
4698
4699 static inline unsigned
4700 get_AT_unsigned (die, attr_kind)
4701 register dw_die_ref die;
4702 register enum dwarf_attribute attr_kind;
4703 {
4704 register dw_attr_ref a = get_AT (die, attr_kind);
4705 return a ? AT_unsigned (a) : 0;
4706 }
4707
4708 static inline dw_die_ref
4709 get_AT_ref (die, attr_kind)
4710 dw_die_ref die;
4711 register enum dwarf_attribute attr_kind;
4712 {
4713 register dw_attr_ref a = get_AT (die, attr_kind);
4714 return a ? AT_ref (a) : NULL;
4715 }
4716
4717 static inline int
4718 is_c_family ()
4719 {
4720 register unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4721
4722 return (lang == DW_LANG_C || lang == DW_LANG_C89
4723 || lang == DW_LANG_C_plus_plus);
4724 }
4725
4726 static inline int
4727 is_fortran ()
4728 {
4729 register unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4730
4731 return (lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90);
4732 }
4733
4734 static inline int
4735 is_java ()
4736 {
4737 register unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4738
4739 return (lang == DW_LANG_Java);
4740 }
4741
4742 /* Free up the memory used by A. */
4743
4744 static inline void free_AT PARAMS ((dw_attr_ref));
4745 static inline void
4746 free_AT (a)
4747 dw_attr_ref a;
4748 {
4749 switch (AT_class (a))
4750 {
4751 case dw_val_class_str:
4752 case dw_val_class_lbl_id:
4753 case dw_val_class_lbl_offset:
4754 free (a->dw_attr_val.v.val_str);
4755 break;
4756
4757 case dw_val_class_float:
4758 free (a->dw_attr_val.v.val_float.array);
4759 break;
4760
4761 default:
4762 break;
4763 }
4764
4765 free (a);
4766 }
4767
4768 /* Remove the specified attribute if present. */
4769
4770 static void
4771 remove_AT (die, attr_kind)
4772 register dw_die_ref die;
4773 register enum dwarf_attribute attr_kind;
4774 {
4775 register dw_attr_ref *p;
4776 register dw_attr_ref removed = NULL;
4777
4778 if (die != NULL)
4779 {
4780 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
4781 if ((*p)->dw_attr == attr_kind)
4782 {
4783 removed = *p;
4784 *p = (*p)->dw_attr_next;
4785 break;
4786 }
4787
4788 if (removed != 0)
4789 free_AT (removed);
4790 }
4791 }
4792
4793 /* Free up the memory used by DIE. */
4794
4795 static inline void free_die PARAMS ((dw_die_ref));
4796 static inline void
4797 free_die (die)
4798 dw_die_ref die;
4799 {
4800 remove_children (die);
4801 free (die);
4802 }
4803
4804 /* Discard the children of this DIE. */
4805
4806 static void
4807 remove_children (die)
4808 register dw_die_ref die;
4809 {
4810 register dw_die_ref child_die = die->die_child;
4811
4812 die->die_child = NULL;
4813
4814 while (child_die != NULL)
4815 {
4816 register dw_die_ref tmp_die = child_die;
4817 register dw_attr_ref a;
4818
4819 child_die = child_die->die_sib;
4820
4821 for (a = tmp_die->die_attr; a != NULL;)
4822 {
4823 register dw_attr_ref tmp_a = a;
4824
4825 a = a->dw_attr_next;
4826 free_AT (tmp_a);
4827 }
4828
4829 free_die (tmp_die);
4830 }
4831 }
4832
4833 /* Add a child DIE below its parent. We build the lists up in reverse
4834 addition order, and correct that in reverse_all_dies. */
4835
4836 static inline void
4837 add_child_die (die, child_die)
4838 register dw_die_ref die;
4839 register dw_die_ref child_die;
4840 {
4841 if (die != NULL && child_die != NULL)
4842 {
4843 if (die == child_die)
4844 abort ();
4845 child_die->die_parent = die;
4846 child_die->die_sib = die->die_child;
4847 die->die_child = child_die;
4848 }
4849 }
4850
4851 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
4852 is the specification, to the front of PARENT's list of children. */
4853
4854 static void
4855 splice_child_die (parent, child)
4856 dw_die_ref parent, child;
4857 {
4858 dw_die_ref *p;
4859
4860 /* We want the declaration DIE from inside the class, not the
4861 specification DIE at toplevel. */
4862 if (child->die_parent != parent)
4863 {
4864 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
4865 if (tmp)
4866 child = tmp;
4867 }
4868
4869 if (child->die_parent != parent
4870 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
4871 abort ();
4872
4873 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
4874 if (*p == child)
4875 {
4876 *p = child->die_sib;
4877 break;
4878 }
4879
4880 child->die_sib = parent->die_child;
4881 parent->die_child = child;
4882 }
4883
4884 /* Return a pointer to a newly created DIE node. */
4885
4886 static inline dw_die_ref
4887 new_die (tag_value, parent_die)
4888 register enum dwarf_tag tag_value;
4889 register dw_die_ref parent_die;
4890 {
4891 register dw_die_ref die = (dw_die_ref) xcalloc (1, sizeof (die_node));
4892
4893 die->die_tag = tag_value;
4894
4895 if (parent_die != NULL)
4896 add_child_die (parent_die, die);
4897 else
4898 {
4899 limbo_die_node *limbo_node;
4900
4901 limbo_node = (limbo_die_node *) xmalloc (sizeof (limbo_die_node));
4902 limbo_node->die = die;
4903 limbo_node->next = limbo_die_list;
4904 limbo_die_list = limbo_node;
4905 }
4906
4907 return die;
4908 }
4909
4910 /* Return the DIE associated with the given type specifier. */
4911
4912 static inline dw_die_ref
4913 lookup_type_die (type)
4914 register tree type;
4915 {
4916 if (TREE_CODE (type) == VECTOR_TYPE)
4917 type = TYPE_DEBUG_REPRESENTATION_TYPE (type);
4918 return (dw_die_ref) TYPE_SYMTAB_POINTER (type);
4919 }
4920
4921 /* Equate a DIE to a given type specifier. */
4922
4923 static inline void
4924 equate_type_number_to_die (type, type_die)
4925 register tree type;
4926 register dw_die_ref type_die;
4927 {
4928 TYPE_SYMTAB_POINTER (type) = (char *) type_die;
4929 }
4930
4931 /* Return the DIE associated with a given declaration. */
4932
4933 static inline dw_die_ref
4934 lookup_decl_die (decl)
4935 register tree decl;
4936 {
4937 register unsigned decl_id = DECL_UID (decl);
4938
4939 return (decl_id < decl_die_table_in_use
4940 ? decl_die_table[decl_id] : NULL);
4941 }
4942
4943 /* Equate a DIE to a particular declaration. */
4944
4945 static void
4946 equate_decl_number_to_die (decl, decl_die)
4947 register tree decl;
4948 register dw_die_ref decl_die;
4949 {
4950 register unsigned decl_id = DECL_UID (decl);
4951 register unsigned num_allocated;
4952
4953 if (decl_id >= decl_die_table_allocated)
4954 {
4955 num_allocated
4956 = ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
4957 / DECL_DIE_TABLE_INCREMENT)
4958 * DECL_DIE_TABLE_INCREMENT;
4959
4960 decl_die_table
4961 = (dw_die_ref *) xrealloc (decl_die_table,
4962 sizeof (dw_die_ref) * num_allocated);
4963
4964 memset ((char *) &decl_die_table[decl_die_table_allocated], 0,
4965 (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
4966 decl_die_table_allocated = num_allocated;
4967 }
4968
4969 if (decl_id >= decl_die_table_in_use)
4970 decl_die_table_in_use = (decl_id + 1);
4971
4972 decl_die_table[decl_id] = decl_die;
4973 }
4974 \f
4975 /* Keep track of the number of spaces used to indent the
4976 output of the debugging routines that print the structure of
4977 the DIE internal representation. */
4978 static int print_indent;
4979
4980 /* Indent the line the number of spaces given by print_indent. */
4981
4982 static inline void
4983 print_spaces (outfile)
4984 FILE *outfile;
4985 {
4986 fprintf (outfile, "%*s", print_indent, "");
4987 }
4988
4989 /* Print the information associated with a given DIE, and its children.
4990 This routine is a debugging aid only. */
4991
4992 static void
4993 print_die (die, outfile)
4994 dw_die_ref die;
4995 FILE *outfile;
4996 {
4997 register dw_attr_ref a;
4998 register dw_die_ref c;
4999
5000 print_spaces (outfile);
5001 fprintf (outfile, "DIE %4lu: %s\n",
5002 die->die_offset, dwarf_tag_name (die->die_tag));
5003 print_spaces (outfile);
5004 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5005 fprintf (outfile, " offset: %lu\n", die->die_offset);
5006
5007 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5008 {
5009 print_spaces (outfile);
5010 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5011
5012 switch (AT_class (a))
5013 {
5014 case dw_val_class_addr:
5015 fprintf (outfile, "address");
5016 break;
5017 case dw_val_class_loc:
5018 fprintf (outfile, "location descriptor");
5019 break;
5020 case dw_val_class_loc_list:
5021 fprintf (outfile, "location list -> label:%s", AT_loc_list (a)->ll_symbol);
5022 break;
5023 case dw_val_class_const:
5024 fprintf (outfile, "%ld", AT_int (a));
5025 break;
5026 case dw_val_class_unsigned_const:
5027 fprintf (outfile, "%lu", AT_unsigned (a));
5028 break;
5029 case dw_val_class_long_long:
5030 fprintf (outfile, "constant (%lu,%lu)",
5031 a->dw_attr_val.v.val_long_long.hi,
5032 a->dw_attr_val.v.val_long_long.low);
5033 break;
5034 case dw_val_class_float:
5035 fprintf (outfile, "floating-point constant");
5036 break;
5037 case dw_val_class_flag:
5038 fprintf (outfile, "%u", AT_flag (a));
5039 break;
5040 case dw_val_class_die_ref:
5041 if (AT_ref (a) != NULL)
5042 {
5043 if (AT_ref (a)->die_symbol)
5044 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5045 else
5046 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5047 }
5048 else
5049 fprintf (outfile, "die -> <null>");
5050 break;
5051 case dw_val_class_lbl_id:
5052 case dw_val_class_lbl_offset:
5053 fprintf (outfile, "label: %s", AT_lbl (a));
5054 break;
5055 case dw_val_class_str:
5056 if (AT_string (a) != NULL)
5057 fprintf (outfile, "\"%s\"", AT_string (a));
5058 else
5059 fprintf (outfile, "<null>");
5060 break;
5061 default:
5062 break;
5063 }
5064
5065 fprintf (outfile, "\n");
5066 }
5067
5068 if (die->die_child != NULL)
5069 {
5070 print_indent += 4;
5071 for (c = die->die_child; c != NULL; c = c->die_sib)
5072 print_die (c, outfile);
5073
5074 print_indent -= 4;
5075 }
5076 if (print_indent == 0)
5077 fprintf (outfile, "\n");
5078 }
5079
5080 /* Print the contents of the source code line number correspondence table.
5081 This routine is a debugging aid only. */
5082
5083 static void
5084 print_dwarf_line_table (outfile)
5085 FILE *outfile;
5086 {
5087 register unsigned i;
5088 register dw_line_info_ref line_info;
5089
5090 fprintf (outfile, "\n\nDWARF source line information\n");
5091 for (i = 1; i < line_info_table_in_use; ++i)
5092 {
5093 line_info = &line_info_table[i];
5094 fprintf (outfile, "%5d: ", i);
5095 fprintf (outfile, "%-20s", file_table.table[line_info->dw_file_num]);
5096 fprintf (outfile, "%6ld", line_info->dw_line_num);
5097 fprintf (outfile, "\n");
5098 }
5099
5100 fprintf (outfile, "\n\n");
5101 }
5102
5103 /* Print the information collected for a given DIE. */
5104
5105 void
5106 debug_dwarf_die (die)
5107 dw_die_ref die;
5108 {
5109 print_die (die, stderr);
5110 }
5111
5112 /* Print all DWARF information collected for the compilation unit.
5113 This routine is a debugging aid only. */
5114
5115 void
5116 debug_dwarf ()
5117 {
5118 print_indent = 0;
5119 print_die (comp_unit_die, stderr);
5120 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5121 print_dwarf_line_table (stderr);
5122 }
5123 \f
5124 /* We build up the lists of children and attributes by pushing new ones
5125 onto the beginning of the list. Reverse the lists for DIE so that
5126 they are in order of addition. */
5127
5128 static void
5129 reverse_die_lists (die)
5130 register dw_die_ref die;
5131 {
5132 register dw_die_ref c, cp, cn;
5133 register dw_attr_ref a, ap, an;
5134
5135 for (a = die->die_attr, ap = 0; a; a = an)
5136 {
5137 an = a->dw_attr_next;
5138 a->dw_attr_next = ap;
5139 ap = a;
5140 }
5141 die->die_attr = ap;
5142
5143 for (c = die->die_child, cp = 0; c; c = cn)
5144 {
5145 cn = c->die_sib;
5146 c->die_sib = cp;
5147 cp = c;
5148 }
5149 die->die_child = cp;
5150 }
5151
5152 /* reverse_die_lists only reverses the single die you pass it. Since
5153 we used to reverse all dies in add_sibling_attributes, which runs
5154 through all the dies, it would reverse all the dies. Now, however,
5155 since we don't call reverse_die_lists in add_sibling_attributes, we
5156 need a routine to recursively reverse all the dies. This is that
5157 routine. */
5158
5159 static void
5160 reverse_all_dies (die)
5161 register dw_die_ref die;
5162 {
5163 register dw_die_ref c;
5164
5165 reverse_die_lists (die);
5166
5167 for (c = die->die_child; c; c = c->die_sib)
5168 reverse_all_dies (c);
5169 }
5170
5171 /* Start a new compilation unit DIE for an include file. OLD_UNIT is
5172 the CU for the enclosing include file, if any. BINCL_DIE is the
5173 DW_TAG_GNU_BINCL DIE that marks the start of the DIEs for this
5174 include file. */
5175
5176 static dw_die_ref
5177 push_new_compile_unit (old_unit, bincl_die)
5178 dw_die_ref old_unit, bincl_die;
5179 {
5180 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5181 dw_die_ref new_unit = gen_compile_unit_die (filename);
5182 new_unit->die_sib = old_unit;
5183 return new_unit;
5184 }
5185
5186 /* Close an include-file CU and reopen the enclosing one. */
5187
5188 static dw_die_ref
5189 pop_compile_unit (old_unit)
5190 dw_die_ref old_unit;
5191 {
5192 dw_die_ref new_unit = old_unit->die_sib;
5193 old_unit->die_sib = NULL;
5194 return new_unit;
5195 }
5196
5197 #define PROCESS(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5198 #define PROCESS_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5199
5200 /* Calculate the checksum of a location expression. */
5201
5202 static inline void
5203 loc_checksum (loc, ctx)
5204 dw_loc_descr_ref loc;
5205 struct md5_ctx *ctx;
5206 {
5207 PROCESS (loc->dw_loc_opc);
5208 PROCESS (loc->dw_loc_oprnd1);
5209 PROCESS (loc->dw_loc_oprnd2);
5210 }
5211
5212 /* Calculate the checksum of an attribute. */
5213
5214 static void
5215 attr_checksum (at, ctx)
5216 dw_attr_ref at;
5217 struct md5_ctx *ctx;
5218 {
5219 dw_loc_descr_ref loc;
5220 rtx r;
5221
5222 PROCESS (at->dw_attr);
5223
5224 /* We don't care about differences in file numbering. */
5225 if (at->dw_attr == DW_AT_decl_file
5226 /* Or that this was compiled with a different compiler snapshot; if
5227 the output is the same, that's what matters. */
5228 || at->dw_attr == DW_AT_producer)
5229 return;
5230
5231 switch (AT_class (at))
5232 {
5233 case dw_val_class_const:
5234 PROCESS (at->dw_attr_val.v.val_int);
5235 break;
5236 case dw_val_class_unsigned_const:
5237 PROCESS (at->dw_attr_val.v.val_unsigned);
5238 break;
5239 case dw_val_class_long_long:
5240 PROCESS (at->dw_attr_val.v.val_long_long);
5241 break;
5242 case dw_val_class_float:
5243 PROCESS (at->dw_attr_val.v.val_float);
5244 break;
5245 case dw_val_class_flag:
5246 PROCESS (at->dw_attr_val.v.val_flag);
5247 break;
5248
5249 case dw_val_class_str:
5250 PROCESS_STRING (AT_string (at));
5251 break;
5252 case dw_val_class_addr:
5253 r = AT_addr (at);
5254 switch (GET_CODE (r))
5255 {
5256 case SYMBOL_REF:
5257 PROCESS_STRING (XSTR (r, 0));
5258 break;
5259
5260 default:
5261 abort ();
5262 }
5263 break;
5264
5265 case dw_val_class_loc:
5266 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5267 loc_checksum (loc, ctx);
5268 break;
5269
5270 case dw_val_class_die_ref:
5271 if (AT_ref (at)->die_offset)
5272 PROCESS (AT_ref (at)->die_offset);
5273 /* FIXME else use target die name or something. */
5274
5275 case dw_val_class_fde_ref:
5276 case dw_val_class_lbl_id:
5277 case dw_val_class_lbl_offset:
5278
5279 default:
5280 break;
5281 }
5282 }
5283
5284 /* Calculate the checksum of a DIE. */
5285
5286 static void
5287 die_checksum (die, ctx)
5288 dw_die_ref die;
5289 struct md5_ctx *ctx;
5290 {
5291 dw_die_ref c;
5292 dw_attr_ref a;
5293
5294 PROCESS (die->die_tag);
5295
5296 for (a = die->die_attr; a; a = a->dw_attr_next)
5297 attr_checksum (a, ctx);
5298
5299 for (c = die->die_child; c; c = c->die_sib)
5300 die_checksum (c, ctx);
5301 }
5302
5303 #undef PROCESS
5304 #undef PROCESS_STRING
5305
5306 /* The prefix to attach to symbols on DIEs in the current comdat debug
5307 info section. */
5308 static char *comdat_symbol_id;
5309
5310 /* The index of the current symbol within the current comdat CU. */
5311 static unsigned int comdat_symbol_number;
5312
5313 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5314 children, and set comdat_symbol_id accordingly. */
5315
5316 static void
5317 compute_section_prefix (unit_die)
5318 dw_die_ref unit_die;
5319 {
5320 char *p, *name;
5321 int i;
5322 unsigned char checksum[16];
5323 struct md5_ctx ctx;
5324
5325 md5_init_ctx (&ctx);
5326 die_checksum (unit_die, &ctx);
5327 md5_finish_ctx (&ctx, checksum);
5328
5329 p = lbasename (get_AT_string (unit_die, DW_AT_name));
5330 name = (char *) alloca (strlen (p) + 64);
5331 sprintf (name, "%s.", p);
5332
5333 clean_symbol_name (name);
5334
5335 p = name + strlen (name);
5336 for (i = 0; i < 4; ++i)
5337 {
5338 sprintf (p, "%.2x", checksum[i]);
5339 p += 2;
5340 }
5341
5342 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5343 comdat_symbol_number = 0;
5344 }
5345
5346 /* Returns nonzero iff DIE represents a type, in the sense of TYPE_P. */
5347
5348 static int
5349 is_type_die (die)
5350 dw_die_ref die;
5351 {
5352 switch (die->die_tag)
5353 {
5354 case DW_TAG_array_type:
5355 case DW_TAG_class_type:
5356 case DW_TAG_enumeration_type:
5357 case DW_TAG_pointer_type:
5358 case DW_TAG_reference_type:
5359 case DW_TAG_string_type:
5360 case DW_TAG_structure_type:
5361 case DW_TAG_subroutine_type:
5362 case DW_TAG_union_type:
5363 case DW_TAG_ptr_to_member_type:
5364 case DW_TAG_set_type:
5365 case DW_TAG_subrange_type:
5366 case DW_TAG_base_type:
5367 case DW_TAG_const_type:
5368 case DW_TAG_file_type:
5369 case DW_TAG_packed_type:
5370 case DW_TAG_volatile_type:
5371 return 1;
5372 default:
5373 return 0;
5374 }
5375 }
5376
5377 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5378 Basically, we want to choose the bits that are likely to be shared between
5379 compilations (types) and leave out the bits that are specific to individual
5380 compilations (functions). */
5381
5382 static int
5383 is_comdat_die (c)
5384 dw_die_ref c;
5385 {
5386 #if 1
5387 /* I think we want to leave base types and __vtbl_ptr_type in the
5388 main CU, as we do for stabs. The advantage is a greater
5389 likelihood of sharing between objects that don't include headers
5390 in the same order (and therefore would put the base types in a
5391 different comdat). jason 8/28/00 */
5392 if (c->die_tag == DW_TAG_base_type)
5393 return 0;
5394
5395 if (c->die_tag == DW_TAG_pointer_type
5396 || c->die_tag == DW_TAG_reference_type
5397 || c->die_tag == DW_TAG_const_type
5398 || c->die_tag == DW_TAG_volatile_type)
5399 {
5400 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5401 return t ? is_comdat_die (t) : 0;
5402 }
5403 #endif
5404
5405 return is_type_die (c);
5406 }
5407
5408 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5409 compilation unit. */
5410
5411 static int
5412 is_symbol_die (c)
5413 dw_die_ref c;
5414 {
5415 if (is_type_die (c))
5416 return 1;
5417 if (get_AT (c, DW_AT_declaration)
5418 && ! get_AT (c, DW_AT_specification))
5419 return 1;
5420 return 0;
5421 }
5422
5423 static char *
5424 gen_internal_sym (prefix)
5425 const char *prefix;
5426 {
5427 char buf[256];
5428 static int label_num;
5429 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5430 return xstrdup (buf);
5431 }
5432
5433 /* Assign symbols to all worthy DIEs under DIE. */
5434
5435 static void
5436 assign_symbol_names (die)
5437 register dw_die_ref die;
5438 {
5439 register dw_die_ref c;
5440
5441 if (is_symbol_die (die))
5442 {
5443 if (comdat_symbol_id)
5444 {
5445 char *p = alloca (strlen (comdat_symbol_id) + 64);
5446 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
5447 comdat_symbol_id, comdat_symbol_number++);
5448 die->die_symbol = xstrdup (p);
5449 }
5450 else
5451 die->die_symbol = gen_internal_sym ("LDIE");
5452 }
5453
5454 for (c = die->die_child; c != NULL; c = c->die_sib)
5455 assign_symbol_names (c);
5456 }
5457
5458 /* Traverse the DIE (which is always comp_unit_die), and set up
5459 additional compilation units for each of the include files we see
5460 bracketed by BINCL/EINCL. */
5461
5462 static void
5463 break_out_includes (die)
5464 register dw_die_ref die;
5465 {
5466 dw_die_ref *ptr;
5467 register dw_die_ref unit = NULL;
5468 limbo_die_node *node;
5469
5470 for (ptr = &(die->die_child); *ptr; )
5471 {
5472 register dw_die_ref c = *ptr;
5473
5474 if (c->die_tag == DW_TAG_GNU_BINCL
5475 || c->die_tag == DW_TAG_GNU_EINCL
5476 || (unit && is_comdat_die (c)))
5477 {
5478 /* This DIE is for a secondary CU; remove it from the main one. */
5479 *ptr = c->die_sib;
5480
5481 if (c->die_tag == DW_TAG_GNU_BINCL)
5482 {
5483 unit = push_new_compile_unit (unit, c);
5484 free_die (c);
5485 }
5486 else if (c->die_tag == DW_TAG_GNU_EINCL)
5487 {
5488 unit = pop_compile_unit (unit);
5489 free_die (c);
5490 }
5491 else
5492 add_child_die (unit, c);
5493 }
5494 else
5495 {
5496 /* Leave this DIE in the main CU. */
5497 ptr = &(c->die_sib);
5498 continue;
5499 }
5500 }
5501
5502 #if 0
5503 /* We can only use this in debugging, since the frontend doesn't check
5504 to make sure that we leave every include file we enter. */
5505 if (unit != NULL)
5506 abort ();
5507 #endif
5508
5509 assign_symbol_names (die);
5510 for (node = limbo_die_list; node; node = node->next)
5511 {
5512 compute_section_prefix (node->die);
5513 assign_symbol_names (node->die);
5514 }
5515 }
5516
5517 /* Traverse the DIE and add a sibling attribute if it may have the
5518 effect of speeding up access to siblings. To save some space,
5519 avoid generating sibling attributes for DIE's without children. */
5520
5521 static void
5522 add_sibling_attributes (die)
5523 register dw_die_ref die;
5524 {
5525 register dw_die_ref c;
5526
5527 if (die->die_tag != DW_TAG_compile_unit
5528 && die->die_sib && die->die_child != NULL)
5529 /* Add the sibling link to the front of the attribute list. */
5530 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
5531
5532 for (c = die->die_child; c != NULL; c = c->die_sib)
5533 add_sibling_attributes (c);
5534 }
5535
5536 /* Output all location lists for the DIE and it's children */
5537 static void
5538 output_location_lists (die)
5539 register dw_die_ref die;
5540 {
5541 dw_die_ref c;
5542 dw_attr_ref d_attr;
5543 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
5544 {
5545 if (AT_class (d_attr) == dw_val_class_loc_list)
5546 {
5547 output_loc_list (AT_loc_list (d_attr));
5548 }
5549 }
5550 for (c = die->die_child; c != NULL; c = c->die_sib)
5551 output_location_lists (c);
5552
5553 }
5554 /* The format of each DIE (and its attribute value pairs)
5555 is encoded in an abbreviation table. This routine builds the
5556 abbreviation table and assigns a unique abbreviation id for
5557 each abbreviation entry. The children of each die are visited
5558 recursively. */
5559
5560 static void
5561 build_abbrev_table (die)
5562 register dw_die_ref die;
5563 {
5564 register unsigned long abbrev_id;
5565 register unsigned int n_alloc;
5566 register dw_die_ref c;
5567 register dw_attr_ref d_attr, a_attr;
5568
5569 /* Scan the DIE references, and mark as external any that refer to
5570 DIEs from other CUs (i.e. those which are not marked). */
5571 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
5572 {
5573 if (AT_class (d_attr) == dw_val_class_die_ref
5574 && AT_ref (d_attr)->die_mark == 0)
5575 {
5576 if (AT_ref (d_attr)->die_symbol == 0)
5577 abort ();
5578 set_AT_ref_external (d_attr, 1);
5579 }
5580 }
5581
5582 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
5583 {
5584 register dw_die_ref abbrev = abbrev_die_table[abbrev_id];
5585
5586 if (abbrev->die_tag == die->die_tag)
5587 {
5588 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
5589 {
5590 a_attr = abbrev->die_attr;
5591 d_attr = die->die_attr;
5592
5593 while (a_attr != NULL && d_attr != NULL)
5594 {
5595 if ((a_attr->dw_attr != d_attr->dw_attr)
5596 || (value_format (a_attr) != value_format (d_attr)))
5597 break;
5598
5599 a_attr = a_attr->dw_attr_next;
5600 d_attr = d_attr->dw_attr_next;
5601 }
5602
5603 if (a_attr == NULL && d_attr == NULL)
5604 break;
5605 }
5606 }
5607 }
5608
5609 if (abbrev_id >= abbrev_die_table_in_use)
5610 {
5611 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
5612 {
5613 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
5614 abbrev_die_table
5615 = (dw_die_ref *) xrealloc (abbrev_die_table,
5616 sizeof (dw_die_ref) * n_alloc);
5617
5618 memset ((char *) &abbrev_die_table[abbrev_die_table_allocated], 0,
5619 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
5620 abbrev_die_table_allocated = n_alloc;
5621 }
5622
5623 ++abbrev_die_table_in_use;
5624 abbrev_die_table[abbrev_id] = die;
5625 }
5626
5627 die->die_abbrev = abbrev_id;
5628 for (c = die->die_child; c != NULL; c = c->die_sib)
5629 build_abbrev_table (c);
5630 }
5631 \f
5632 /* Return the size of a string, including the null byte.
5633
5634 This used to treat backslashes as escapes, and hence they were not included
5635 in the count. However, that conflicts with what ASM_OUTPUT_ASCII does,
5636 which treats a backslash as a backslash, escaping it if necessary, and hence
5637 we must include them in the count. */
5638
5639 static unsigned long
5640 size_of_string (str)
5641 register const char *str;
5642 {
5643 return strlen (str) + 1;
5644 }
5645
5646 /* Return the power-of-two number of bytes necessary to represent VALUE. */
5647
5648 static int
5649 constant_size (value)
5650 long unsigned value;
5651 {
5652 int log;
5653
5654 if (value == 0)
5655 log = 0;
5656 else
5657 log = floor_log2 (value);
5658
5659 log = log / 8;
5660 log = 1 << (floor_log2 (log) + 1);
5661
5662 return log;
5663 }
5664
5665 /* Return the size of a DIE, as it is represented in the
5666 .debug_info section. */
5667
5668 static unsigned long
5669 size_of_die (die)
5670 register dw_die_ref die;
5671 {
5672 register unsigned long size = 0;
5673 register dw_attr_ref a;
5674
5675 size += size_of_uleb128 (die->die_abbrev);
5676 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5677 {
5678 switch (AT_class (a))
5679 {
5680 case dw_val_class_addr:
5681 size += DWARF2_ADDR_SIZE;
5682 break;
5683 case dw_val_class_loc:
5684 {
5685 register unsigned long lsize = size_of_locs (AT_loc (a));
5686
5687 /* Block length. */
5688 size += constant_size (lsize);
5689 size += lsize;
5690 }
5691 break;
5692 case dw_val_class_loc_list:
5693 size += DWARF_OFFSET_SIZE;
5694 break;
5695 case dw_val_class_const:
5696 size += size_of_sleb128 (AT_int (a));
5697 break;
5698 case dw_val_class_unsigned_const:
5699 size += constant_size (AT_unsigned (a));
5700 break;
5701 case dw_val_class_long_long:
5702 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
5703 break;
5704 case dw_val_class_float:
5705 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
5706 break;
5707 case dw_val_class_flag:
5708 size += 1;
5709 break;
5710 case dw_val_class_die_ref:
5711 size += DWARF_OFFSET_SIZE;
5712 break;
5713 case dw_val_class_fde_ref:
5714 size += DWARF_OFFSET_SIZE;
5715 break;
5716 case dw_val_class_lbl_id:
5717 size += DWARF2_ADDR_SIZE;
5718 break;
5719 case dw_val_class_lbl_offset:
5720 size += DWARF_OFFSET_SIZE;
5721 break;
5722 case dw_val_class_str:
5723 size += size_of_string (AT_string (a));
5724 break;
5725 default:
5726 abort ();
5727 }
5728 }
5729
5730 return size;
5731 }
5732
5733 /* Size the debugging information associated with a given DIE.
5734 Visits the DIE's children recursively. Updates the global
5735 variable next_die_offset, on each time through. Uses the
5736 current value of next_die_offset to update the die_offset
5737 field in each DIE. */
5738
5739 static void
5740 calc_die_sizes (die)
5741 dw_die_ref die;
5742 {
5743 register dw_die_ref c;
5744 die->die_offset = next_die_offset;
5745 next_die_offset += size_of_die (die);
5746
5747 for (c = die->die_child; c != NULL; c = c->die_sib)
5748 calc_die_sizes (c);
5749
5750 if (die->die_child != NULL)
5751 /* Count the null byte used to terminate sibling lists. */
5752 next_die_offset += 1;
5753 }
5754
5755 /* Set the marks for a die and its children. We do this so
5756 that we know whether or not a reference needs to use FORM_ref_addr; only
5757 DIEs in the same CU will be marked. We used to clear out the offset
5758 and use that as the flag, but ran into ordering problems. */
5759
5760 static void
5761 mark_dies (die)
5762 dw_die_ref die;
5763 {
5764 register dw_die_ref c;
5765 die->die_mark = 1;
5766 for (c = die->die_child; c; c = c->die_sib)
5767 mark_dies (c);
5768 }
5769
5770 /* Clear the marks for a die and its children. */
5771
5772 static void
5773 unmark_dies (die)
5774 dw_die_ref die;
5775 {
5776 register dw_die_ref c;
5777 die->die_mark = 0;
5778 for (c = die->die_child; c; c = c->die_sib)
5779 unmark_dies (c);
5780 }
5781
5782 /* Return the size of the .debug_pubnames table generated for the
5783 compilation unit. */
5784
5785 static unsigned long
5786 size_of_pubnames ()
5787 {
5788 register unsigned long size;
5789 register unsigned i;
5790
5791 size = DWARF_PUBNAMES_HEADER_SIZE;
5792 for (i = 0; i < pubname_table_in_use; ++i)
5793 {
5794 register pubname_ref p = &pubname_table[i];
5795 size += DWARF_OFFSET_SIZE + size_of_string (p->name);
5796 }
5797
5798 size += DWARF_OFFSET_SIZE;
5799 return size;
5800 }
5801
5802 /* Return the size of the information in the .debug_aranges section. */
5803
5804 static unsigned long
5805 size_of_aranges ()
5806 {
5807 register unsigned long size;
5808
5809 size = DWARF_ARANGES_HEADER_SIZE;
5810
5811 /* Count the address/length pair for this compilation unit. */
5812 size += 2 * DWARF2_ADDR_SIZE;
5813 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
5814
5815 /* Count the two zero words used to terminated the address range table. */
5816 size += 2 * DWARF2_ADDR_SIZE;
5817 return size;
5818 }
5819 \f
5820 /* Select the encoding of an attribute value. */
5821
5822 static enum dwarf_form
5823 value_format (a)
5824 dw_attr_ref a;
5825 {
5826 switch (a->dw_attr_val.val_class)
5827 {
5828 case dw_val_class_addr:
5829 return DW_FORM_addr;
5830 case dw_val_class_loc_list:
5831 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
5832 .debug_loc section */
5833 return DW_FORM_data4;
5834 case dw_val_class_loc:
5835 switch (constant_size (size_of_locs (AT_loc (a))))
5836 {
5837 case 1:
5838 return DW_FORM_block1;
5839 case 2:
5840 return DW_FORM_block2;
5841 default:
5842 abort ();
5843 }
5844 case dw_val_class_const:
5845 return DW_FORM_sdata;
5846 case dw_val_class_unsigned_const:
5847 switch (constant_size (AT_unsigned (a)))
5848 {
5849 case 1:
5850 return DW_FORM_data1;
5851 case 2:
5852 return DW_FORM_data2;
5853 case 4:
5854 return DW_FORM_data4;
5855 case 8:
5856 return DW_FORM_data8;
5857 default:
5858 abort ();
5859 }
5860 case dw_val_class_long_long:
5861 return DW_FORM_block1;
5862 case dw_val_class_float:
5863 return DW_FORM_block1;
5864 case dw_val_class_flag:
5865 return DW_FORM_flag;
5866 case dw_val_class_die_ref:
5867 if (AT_ref_external (a))
5868 return DW_FORM_ref_addr;
5869 else
5870 return DW_FORM_ref;
5871 case dw_val_class_fde_ref:
5872 return DW_FORM_data;
5873 case dw_val_class_lbl_id:
5874 return DW_FORM_addr;
5875 case dw_val_class_lbl_offset:
5876 return DW_FORM_data;
5877 case dw_val_class_str:
5878 return DW_FORM_string;
5879 default:
5880 abort ();
5881 }
5882 }
5883
5884 /* Output the encoding of an attribute value. */
5885
5886 static void
5887 output_value_format (a)
5888 dw_attr_ref a;
5889 {
5890 enum dwarf_form form = value_format (a);
5891 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
5892 }
5893
5894 /* Output the .debug_abbrev section which defines the DIE abbreviation
5895 table. */
5896
5897 static void
5898 output_abbrev_section ()
5899 {
5900 unsigned long abbrev_id;
5901
5902 dw_attr_ref a_attr;
5903 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
5904 {
5905 register dw_die_ref abbrev = abbrev_die_table[abbrev_id];
5906
5907 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
5908
5909 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
5910 dwarf_tag_name (abbrev->die_tag));
5911
5912 if (abbrev->die_child != NULL)
5913 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
5914 else
5915 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
5916
5917 for (a_attr = abbrev->die_attr; a_attr != NULL;
5918 a_attr = a_attr->dw_attr_next)
5919 {
5920 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
5921 dwarf_attr_name (a_attr->dw_attr));
5922 output_value_format (a_attr);
5923 }
5924
5925 dw2_asm_output_data (1, 0, NULL);
5926 dw2_asm_output_data (1, 0, NULL);
5927 }
5928
5929 /* Terminate the table. */
5930 dw2_asm_output_data (1, 0, NULL);
5931 }
5932
5933 /* Output a symbol we can use to refer to this DIE from another CU. */
5934
5935 static inline void
5936 output_die_symbol (die)
5937 register dw_die_ref die;
5938 {
5939 char *sym = die->die_symbol;
5940
5941 if (sym == 0)
5942 return;
5943
5944 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
5945 /* We make these global, not weak; if the target doesn't support
5946 .linkonce, it doesn't support combining the sections, so debugging
5947 will break. */
5948 ASM_GLOBALIZE_LABEL (asm_out_file, sym);
5949 ASM_OUTPUT_LABEL (asm_out_file, sym);
5950 }
5951
5952 /* Return a new location list, given the begin and end range, and the
5953 expression. gensym tells us whether to generate a new internal
5954 symbol for this location list node, which is done for the head of
5955 the list only. */
5956 static inline dw_loc_list_ref
5957 new_loc_list (expr, begin, end, section, gensym)
5958 register dw_loc_descr_ref expr;
5959 register const char *begin;
5960 register const char *end;
5961 register const char *section;
5962 register unsigned gensym;
5963 {
5964 register dw_loc_list_ref retlist
5965 = (dw_loc_list_ref) xcalloc (1, sizeof (dw_loc_list_node));
5966 retlist->begin = begin;
5967 retlist->end = end;
5968 retlist->expr = expr;
5969 retlist->section = section;
5970 if (gensym)
5971 retlist->ll_symbol = gen_internal_sym ("LLST");
5972 return retlist;
5973 }
5974
5975 /* Add a location description expression to a location list */
5976 static inline void
5977 add_loc_descr_to_loc_list (list_head, descr, begin, end, section)
5978 register dw_loc_list_ref *list_head;
5979 register dw_loc_descr_ref descr;
5980 register const char *begin;
5981 register const char *end;
5982 register const char *section;
5983 {
5984 register dw_loc_list_ref *d;
5985
5986 /* Find the end of the chain. */
5987 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
5988 ;
5989 /* Add a new location list node to the list */
5990 *d = new_loc_list (descr, begin, end, section, 0);
5991 }
5992
5993
5994
5995 /* Output the location list given to us */
5996 static void
5997 output_loc_list (list_head)
5998 register dw_loc_list_ref list_head;
5999 {
6000 register dw_loc_list_ref curr=list_head;
6001 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6002 if (strcmp (curr->section, ".text") == 0)
6003 {
6004 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6005 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT)0,
6006 "Location list base address specifier fake entry");
6007 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6008 "Location list base address specifier base");
6009 }
6010 for (curr = list_head; curr != NULL; curr=curr->dw_loc_next)
6011 {
6012 int size;
6013 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6014 "Location list begin address (%s)",
6015 list_head->ll_symbol);
6016 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6017 "Location list end address (%s)",
6018 list_head->ll_symbol);
6019 size = size_of_locs (curr->expr);
6020
6021 /* Output the block length for this list of location operations. */
6022 dw2_asm_output_data (constant_size (size), size, "%s",
6023 "Location expression size");
6024
6025 output_loc_sequence (curr->expr);
6026 }
6027 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6028 "Location list terminator begin (%s)",
6029 list_head->ll_symbol);
6030 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6031 "Location list terminator end (%s)",
6032 list_head->ll_symbol);
6033 }
6034 /* Output the DIE and its attributes. Called recursively to generate
6035 the definitions of each child DIE. */
6036
6037 static void
6038 output_die (die)
6039 register dw_die_ref die;
6040 {
6041 register dw_attr_ref a;
6042 register dw_die_ref c;
6043 register unsigned long size;
6044
6045 /* If someone in another CU might refer to us, set up a symbol for
6046 them to point to. */
6047 if (die->die_symbol)
6048 output_die_symbol (die);
6049
6050 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6051 die->die_offset, dwarf_tag_name (die->die_tag));
6052
6053 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6054 {
6055 const char *name = dwarf_attr_name (a->dw_attr);
6056
6057 switch (AT_class (a))
6058 {
6059 case dw_val_class_addr:
6060 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6061 break;
6062
6063 case dw_val_class_loc:
6064 size = size_of_locs (AT_loc (a));
6065
6066 /* Output the block length for this list of location operations. */
6067 dw2_asm_output_data (constant_size (size), size, "%s", name);
6068
6069 output_loc_sequence (AT_loc (a));
6070 break;
6071
6072 case dw_val_class_const:
6073 /* ??? It would be slightly more efficient to use a scheme like is
6074 used for unsigned constants below, but gdb 4.x does not sign
6075 extend. Gdb 5.x does sign extend. */
6076 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6077 break;
6078
6079 case dw_val_class_unsigned_const:
6080 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6081 AT_unsigned (a), "%s", name);
6082 break;
6083
6084 case dw_val_class_long_long:
6085 {
6086 unsigned HOST_WIDE_INT first, second;
6087
6088 dw2_asm_output_data (1, 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR,
6089 "%s", name);
6090
6091 if (WORDS_BIG_ENDIAN)
6092 {
6093 first = a->dw_attr_val.v.val_long_long.hi;
6094 second = a->dw_attr_val.v.val_long_long.low;
6095 }
6096 else
6097 {
6098 first = a->dw_attr_val.v.val_long_long.low;
6099 second = a->dw_attr_val.v.val_long_long.hi;
6100 }
6101 dw2_asm_output_data (HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR,
6102 first, "long long constant");
6103 dw2_asm_output_data (HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR,
6104 second, NULL);
6105 }
6106 break;
6107
6108 case dw_val_class_float:
6109 {
6110 register unsigned int i;
6111
6112 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6113 "%s", name);
6114
6115 for (i = 0; i < a->dw_attr_val.v.val_float.length; ++i)
6116 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6117 "fp constant word %u", i);
6118 break;
6119 }
6120
6121 case dw_val_class_flag:
6122 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6123 break;
6124 case dw_val_class_loc_list:
6125 {
6126 char *sym = AT_loc_list (a)->ll_symbol;
6127 if (sym == 0)
6128 abort();
6129 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym, loc_section_label, name);
6130 }
6131 break;
6132 case dw_val_class_die_ref:
6133 if (AT_ref_external (a))
6134 {
6135 char *sym = AT_ref (a)->die_symbol;
6136 if (sym == 0)
6137 abort ();
6138 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6139 }
6140 else if (AT_ref (a)->die_offset == 0)
6141 abort ();
6142 else
6143 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6144 "%s", name);
6145 break;
6146
6147 case dw_val_class_fde_ref:
6148 {
6149 char l1[20];
6150 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6151 a->dw_attr_val.v.val_fde_index * 2);
6152 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6153 }
6154 break;
6155
6156 case dw_val_class_lbl_id:
6157 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6158 break;
6159
6160 case dw_val_class_lbl_offset:
6161 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6162 break;
6163
6164 case dw_val_class_str:
6165 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6166 break;
6167
6168 default:
6169 abort ();
6170 }
6171 }
6172
6173 for (c = die->die_child; c != NULL; c = c->die_sib)
6174 output_die (c);
6175
6176 if (die->die_child != NULL)
6177 {
6178 /* Add null byte to terminate sibling list. */
6179 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6180 die->die_offset);
6181 }
6182 }
6183
6184 /* Output the compilation unit that appears at the beginning of the
6185 .debug_info section, and precedes the DIE descriptions. */
6186
6187 static void
6188 output_compilation_unit_header ()
6189 {
6190 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset - DWARF_OFFSET_SIZE,
6191 "Length of Compilation Unit Info");
6192
6193 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6194
6195 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6196 "Offset Into Abbrev. Section");
6197
6198 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6199 }
6200
6201 /* Output the compilation unit DIE and its children. */
6202
6203 static void
6204 output_comp_unit (die)
6205 dw_die_ref die;
6206 {
6207 const char *secname;
6208
6209 /* Even if there are no children of this DIE, we must output the
6210 information about the compilation unit. Otherwise, on an empty
6211 translation unit, we will generate a present, but empty,
6212 .debug_info section. IRIX 6.5 `nm' will then complain when
6213 examining the file.
6214
6215 Mark all the DIEs in this CU so we know which get local refs. */
6216 mark_dies (die);
6217
6218 build_abbrev_table (die);
6219
6220 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6221 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6222 calc_die_sizes (die);
6223
6224 if (die->die_symbol)
6225 {
6226 char *tmp = (char *) alloca (strlen (die->die_symbol) + 24);
6227 sprintf (tmp, ".gnu.linkonce.wi.%s", die->die_symbol);
6228 secname = tmp;
6229 die->die_symbol = NULL;
6230 }
6231 else
6232 secname = (const char *) DEBUG_INFO_SECTION;
6233
6234 /* Output debugging information. */
6235 ASM_OUTPUT_SECTION (asm_out_file, secname);
6236 output_compilation_unit_header ();
6237 output_die (die);
6238
6239 /* Leave the marks on the main CU, so we can check them in
6240 output_pubnames. */
6241 if (die->die_symbol)
6242 unmark_dies (die);
6243 }
6244
6245 /* The DWARF2 pubname for a nested thingy looks like "A::f". The output
6246 of decl_printable_name for C++ looks like "A::f(int)". Let's drop the
6247 argument list, and maybe the scope. */
6248
6249 static const char *
6250 dwarf2_name (decl, scope)
6251 tree decl;
6252 int scope;
6253 {
6254 return (*decl_printable_name) (decl, scope ? 1 : 0);
6255 }
6256
6257 /* Add a new entry to .debug_pubnames if appropriate. */
6258
6259 static void
6260 add_pubname (decl, die)
6261 tree decl;
6262 dw_die_ref die;
6263 {
6264 pubname_ref p;
6265
6266 if (! TREE_PUBLIC (decl))
6267 return;
6268
6269 if (pubname_table_in_use == pubname_table_allocated)
6270 {
6271 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
6272 pubname_table = (pubname_ref) xrealloc
6273 (pubname_table, pubname_table_allocated * sizeof (pubname_entry));
6274 }
6275
6276 p = &pubname_table[pubname_table_in_use++];
6277 p->die = die;
6278
6279 p->name = xstrdup (dwarf2_name (decl, 1));
6280 }
6281
6282 /* Output the public names table used to speed up access to externally
6283 visible names. For now, only generate entries for externally
6284 visible procedures. */
6285
6286 static void
6287 output_pubnames ()
6288 {
6289 register unsigned i;
6290 register unsigned long pubnames_length = size_of_pubnames ();
6291
6292 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
6293 "Length of Public Names Info");
6294
6295 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6296
6297 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6298 "Offset of Compilation Unit Info");
6299
6300 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
6301 "Compilation Unit Length");
6302
6303 for (i = 0; i < pubname_table_in_use; ++i)
6304 {
6305 register pubname_ref pub = &pubname_table[i];
6306
6307 /* We shouldn't see pubnames for DIEs outside of the main CU. */
6308 if (pub->die->die_mark == 0)
6309 abort ();
6310
6311 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
6312 "DIE offset");
6313
6314 dw2_asm_output_nstring (pub->name, -1, "external name");
6315 }
6316
6317 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
6318 }
6319
6320 /* Add a new entry to .debug_aranges if appropriate. */
6321
6322 static void
6323 add_arange (decl, die)
6324 tree decl;
6325 dw_die_ref die;
6326 {
6327 if (! DECL_SECTION_NAME (decl))
6328 return;
6329
6330 if (arange_table_in_use == arange_table_allocated)
6331 {
6332 arange_table_allocated += ARANGE_TABLE_INCREMENT;
6333 arange_table
6334 = (arange_ref) xrealloc (arange_table,
6335 arange_table_allocated * sizeof (dw_die_ref));
6336 }
6337
6338 arange_table[arange_table_in_use++] = die;
6339 }
6340
6341 /* Output the information that goes into the .debug_aranges table.
6342 Namely, define the beginning and ending address range of the
6343 text section generated for this compilation unit. */
6344
6345 static void
6346 output_aranges ()
6347 {
6348 register unsigned i;
6349 register unsigned long aranges_length = size_of_aranges ();
6350
6351 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
6352 "Length of Address Ranges Info");
6353
6354 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6355
6356 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6357 "Offset of Compilation Unit Info");
6358
6359 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
6360
6361 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
6362
6363 /* We need to align to twice the pointer size here. */
6364 if (DWARF_ARANGES_PAD_SIZE)
6365 {
6366 /* Pad using a 2 byte words so that padding is correct for any
6367 pointer size. */
6368 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
6369 2 * DWARF2_ADDR_SIZE);
6370 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
6371 dw2_asm_output_data (2, 0, NULL);
6372 }
6373
6374 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
6375 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
6376 text_section_label, "Length");
6377
6378 for (i = 0; i < arange_table_in_use; ++i)
6379 {
6380 dw_die_ref die = arange_table[i];
6381
6382 /* We shouldn't see aranges for DIEs outside of the main CU. */
6383 if (die->die_mark == 0)
6384 abort ();
6385
6386 if (die->die_tag == DW_TAG_subprogram)
6387 {
6388 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
6389 "Address");
6390 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
6391 get_AT_low_pc (die), "Length");
6392 }
6393 else
6394 {
6395 /* A static variable; extract the symbol from DW_AT_location.
6396 Note that this code isn't currently hit, as we only emit
6397 aranges for functions (jason 9/23/99). */
6398
6399 dw_attr_ref a = get_AT (die, DW_AT_location);
6400 dw_loc_descr_ref loc;
6401 if (! a || AT_class (a) != dw_val_class_loc)
6402 abort ();
6403
6404 loc = AT_loc (a);
6405 if (loc->dw_loc_opc != DW_OP_addr)
6406 abort ();
6407
6408 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
6409 loc->dw_loc_oprnd1.v.val_addr, "Address");
6410 dw2_asm_output_data (DWARF2_ADDR_SIZE,
6411 get_AT_unsigned (die, DW_AT_byte_size),
6412 "Length");
6413 }
6414 }
6415
6416 /* Output the terminator words. */
6417 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6418 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6419 }
6420
6421
6422 /* Data structure containing information about input files. */
6423 struct file_info
6424 {
6425 char *path; /* Complete file name. */
6426 char *fname; /* File name part. */
6427 int length; /* Length of entire string. */
6428 int file_idx; /* Index in input file table. */
6429 int dir_idx; /* Index in directory table. */
6430 };
6431
6432 /* Data structure containing information about directories with source
6433 files. */
6434 struct dir_info
6435 {
6436 char *path; /* Path including directory name. */
6437 int length; /* Path length. */
6438 int prefix; /* Index of directory entry which is a prefix. */
6439 int count; /* Number of files in this directory. */
6440 int dir_idx; /* Index of directory used as base. */
6441 int used; /* Used in the end? */
6442 };
6443
6444 /* Callback function for file_info comparison. We sort by looking at
6445 the directories in the path. */
6446 static int
6447 file_info_cmp (p1, p2)
6448 const void *p1;
6449 const void *p2;
6450 {
6451 const struct file_info *s1 = p1;
6452 const struct file_info *s2 = p2;
6453 unsigned char *cp1;
6454 unsigned char *cp2;
6455
6456 /* Take care of file names without directories. */
6457 if (s1->path == s1->fname)
6458 return -1;
6459 else if (s2->path == s2->fname)
6460 return 1;
6461
6462 cp1 = (unsigned char *) s1->path;
6463 cp2 = (unsigned char *) s2->path;
6464
6465 while (1)
6466 {
6467 ++cp1;
6468 ++cp2;
6469 /* Reached the end of the first path? */
6470 if (cp1 == (unsigned char *) s1->fname)
6471 /* It doesn't really matter in which order files from the
6472 same directory are sorted in. Therefore don't test for
6473 the second path reaching the end. */
6474 return -1;
6475 else if (cp2 == (unsigned char *) s2->fname)
6476 return 1;
6477
6478 /* Character of current path component the same? */
6479 if (*cp1 != *cp2)
6480 return *cp1 - *cp2;
6481 }
6482 }
6483
6484 /* Output the directory table and the file name table. We try to minimize
6485 the total amount of memory needed. A heuristic is used to avoid large
6486 slowdowns with many input files. */
6487 static void
6488 output_file_names ()
6489 {
6490 struct file_info *files;
6491 struct dir_info *dirs;
6492 int *saved;
6493 int *savehere;
6494 int *backmap;
6495 int ndirs;
6496 int idx_offset;
6497 int i;
6498 int idx;
6499
6500 /* Allocate the various arrays we need. */
6501 files = (struct file_info *) alloca (file_table.in_use
6502 * sizeof (struct file_info));
6503 dirs = (struct dir_info *) alloca (file_table.in_use
6504 * sizeof (struct dir_info));
6505
6506 /* Sort the file names. */
6507 for (i = 1; i < (int) file_table.in_use; ++i)
6508 {
6509 char *f;
6510
6511 /* Skip all leading "./". */
6512 f = file_table.table[i];
6513 while (f[0] == '.' && f[1] == '/')
6514 f += 2;
6515
6516 /* Create a new array entry. */
6517 files[i].path = f;
6518 files[i].length = strlen (f);
6519 files[i].file_idx = i;
6520
6521 /* Search for the file name part. */
6522 f = strrchr (f, '/');
6523 files[i].fname = f == NULL ? files[i].path : f + 1;
6524 }
6525 qsort (files + 1, file_table.in_use - 1, sizeof (files[0]), file_info_cmp);
6526
6527 /* Find all the different directories used. */
6528 dirs[0].path = files[1].path;
6529 dirs[0].length = files[1].fname - files[1].path;
6530 dirs[0].prefix = -1;
6531 dirs[0].count = 1;
6532 dirs[0].dir_idx = 0;
6533 dirs[0].used = 0;
6534 files[1].dir_idx = 0;
6535 ndirs = 1;
6536
6537 for (i = 2; i < (int) file_table.in_use; ++i)
6538 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
6539 && memcmp (dirs[ndirs - 1].path, files[i].path,
6540 dirs[ndirs - 1].length) == 0)
6541 {
6542 /* Same directory as last entry. */
6543 files[i].dir_idx = ndirs - 1;
6544 ++dirs[ndirs - 1].count;
6545 }
6546 else
6547 {
6548 int j;
6549
6550 /* This is a new directory. */
6551 dirs[ndirs].path = files[i].path;
6552 dirs[ndirs].length = files[i].fname - files[i].path;
6553 dirs[ndirs].count = 1;
6554 dirs[ndirs].dir_idx = ndirs;
6555 dirs[ndirs].used = 0;
6556 files[i].dir_idx = ndirs;
6557
6558 /* Search for a prefix. */
6559 dirs[ndirs].prefix = -1;
6560 for (j = 0; j < ndirs; ++j)
6561 if (dirs[j].length < dirs[ndirs].length
6562 && dirs[j].length > 1
6563 && (dirs[ndirs].prefix == -1
6564 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
6565 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
6566 dirs[ndirs].prefix = j;
6567
6568 ++ndirs;
6569 }
6570
6571 /* Now to the actual work. We have to find a subset of the
6572 directories which allow expressing the file name using references
6573 to the directory table with the least amount of characters. We
6574 do not do an exhaustive search where we would have to check out
6575 every combination of every single possible prefix. Instead we
6576 use a heuristic which provides nearly optimal results in most
6577 cases and never is much off. */
6578 saved = (int *) alloca (ndirs * sizeof (int));
6579 savehere = (int *) alloca (ndirs * sizeof (int));
6580
6581 memset (saved, '\0', ndirs * sizeof (saved[0]));
6582 for (i = 0; i < ndirs; ++i)
6583 {
6584 int j;
6585 int total;
6586
6587 /* We can always save some space for the current directory. But
6588 this does not mean it will be enough to justify adding the
6589 directory. */
6590 savehere[i] = dirs[i].length;
6591 total = (savehere[i] - saved[i]) * dirs[i].count;
6592
6593 for (j = i + 1; j < ndirs; ++j)
6594 {
6595 savehere[j] = 0;
6596
6597 if (saved[j] < dirs[i].length)
6598 {
6599 /* Determine whether the dirs[i] path is a prefix of the
6600 dirs[j] path. */
6601 int k;
6602
6603 k = dirs[j].prefix;
6604 while (k != -1 && k != i)
6605 k = dirs[k].prefix;
6606
6607 if (k == i)
6608 {
6609 /* Yes it is. We can possibly safe some memory but
6610 writing the filenames in dirs[j] relative to
6611 dirs[i]. */
6612 savehere[j] = dirs[i].length;
6613 total += (savehere[j] - saved[j]) * dirs[j].count;
6614 }
6615 }
6616 }
6617
6618 /* Check whether we can safe enough to justify adding the dirs[i]
6619 directory. */
6620 if (total > dirs[i].length + 1)
6621 {
6622 /* It's worthwhile adding. */
6623 for (j = i; j < ndirs; ++j)
6624 if (savehere[j] > 0)
6625 {
6626 /* Remember how much we saved for this directory so far. */
6627 saved[j] = savehere[j];
6628
6629 /* Remember the prefix directory. */
6630 dirs[j].dir_idx = i;
6631 }
6632 }
6633 }
6634
6635 /* We have to emit them in the order they appear in the file_table
6636 array since the index is used in the debug info generation. To
6637 do this efficiently we generate a back-mapping of the indices
6638 first. */
6639 backmap = (int *) alloca (file_table.in_use * sizeof (int));
6640 for (i = 1; i < (int) file_table.in_use; ++i)
6641 {
6642 backmap[files[i].file_idx] = i;
6643 /* Mark this directory as used. */
6644 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
6645 }
6646
6647 /* That was it. We are ready to emit the information. First the
6648 directory name table. Here we have to make sure that the first
6649 actually emitted directory name has the index one. Zero is
6650 reserved for the current working directory. Make sure we do not
6651 confuse these indices with the one for the constructed table
6652 (even though most of the time they are identical). */
6653 idx = 1;
6654 idx_offset = dirs[0].length > 0 ? 1 : 0;
6655 for (i = 1 - idx_offset; i < ndirs; ++i)
6656 if (dirs[i].used != 0)
6657 {
6658 dirs[i].used = idx++;
6659 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
6660 "Directory Entry: 0x%x", dirs[i].used);
6661 }
6662 dw2_asm_output_data (1, 0, "End directory table");
6663
6664 /* Correct the index for the current working directory entry if it
6665 exists. */
6666 if (idx_offset == 0)
6667 dirs[0].used = 0;
6668
6669 /* Now write all the file names. */
6670 for (i = 1; i < (int) file_table.in_use; ++i)
6671 {
6672 int file_idx = backmap[i];
6673 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
6674
6675 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
6676 "File Entry: 0x%x", i);
6677
6678 /* Include directory index. */
6679 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
6680
6681 /* Modification time. */
6682 dw2_asm_output_data_uleb128 (0, NULL);
6683
6684 /* File length in bytes. */
6685 dw2_asm_output_data_uleb128 (0, NULL);
6686 }
6687 dw2_asm_output_data (1, 0, "End file name table");
6688 }
6689
6690
6691 /* Output the source line number correspondence information. This
6692 information goes into the .debug_line section. */
6693
6694 static void
6695 output_line_info ()
6696 {
6697 char l1[20], l2[20], p1[20], p2[20];
6698 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
6699 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
6700 register unsigned opc;
6701 register unsigned n_op_args;
6702 register unsigned long lt_index;
6703 register unsigned long current_line;
6704 register long line_offset;
6705 register long line_delta;
6706 register unsigned long current_file;
6707 register unsigned long function;
6708
6709 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
6710 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
6711 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
6712 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
6713
6714 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
6715 "Length of Source Line Info");
6716 ASM_OUTPUT_LABEL (asm_out_file, l1);
6717
6718 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6719
6720 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
6721 ASM_OUTPUT_LABEL (asm_out_file, p1);
6722
6723 dw2_asm_output_data (1, DWARF_LINE_MIN_INSTR_LENGTH,
6724 "Minimum Instruction Length");
6725
6726 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
6727 "Default is_stmt_start flag");
6728
6729 dw2_asm_output_data (1, DWARF_LINE_BASE,
6730 "Line Base Value (Special Opcodes)");
6731
6732 dw2_asm_output_data (1, DWARF_LINE_RANGE,
6733 "Line Range Value (Special Opcodes)");
6734
6735 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
6736 "Special Opcode Base");
6737
6738 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; ++opc)
6739 {
6740 switch (opc)
6741 {
6742 case DW_LNS_advance_pc:
6743 case DW_LNS_advance_line:
6744 case DW_LNS_set_file:
6745 case DW_LNS_set_column:
6746 case DW_LNS_fixed_advance_pc:
6747 n_op_args = 1;
6748 break;
6749 default:
6750 n_op_args = 0;
6751 break;
6752 }
6753
6754 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
6755 opc, n_op_args);
6756 }
6757
6758 /* Write out the information about the files we use. */
6759 output_file_names ();
6760 ASM_OUTPUT_LABEL (asm_out_file, p2);
6761
6762 /* We used to set the address register to the first location in the text
6763 section here, but that didn't accomplish anything since we already
6764 have a line note for the opening brace of the first function. */
6765
6766 /* Generate the line number to PC correspondence table, encoded as
6767 a series of state machine operations. */
6768 current_file = 1;
6769 current_line = 1;
6770 strcpy (prev_line_label, text_section_label);
6771 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
6772 {
6773 register dw_line_info_ref line_info = &line_info_table[lt_index];
6774
6775 #if 0
6776 /* Disable this optimization for now; GDB wants to see two line notes
6777 at the beginning of a function so it can find the end of the
6778 prologue. */
6779
6780 /* Don't emit anything for redundant notes. Just updating the
6781 address doesn't accomplish anything, because we already assume
6782 that anything after the last address is this line. */
6783 if (line_info->dw_line_num == current_line
6784 && line_info->dw_file_num == current_file)
6785 continue;
6786 #endif
6787
6788 /* Emit debug info for the address of the current line.
6789
6790 Unfortunately, we have little choice here currently, and must always
6791 use the most general form. Gcc does not know the address delta
6792 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
6793 attributes which will give an upper bound on the address range. We
6794 could perhaps use length attributes to determine when it is safe to
6795 use DW_LNS_fixed_advance_pc. */
6796
6797 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
6798 if (0)
6799 {
6800 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
6801 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
6802 "DW_LNS_fixed_advance_pc");
6803 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
6804 }
6805 else
6806 {
6807 /* This can handle any delta. This takes
6808 4+DWARF2_ADDR_SIZE bytes. */
6809 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
6810 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
6811 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
6812 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
6813 }
6814 strcpy (prev_line_label, line_label);
6815
6816 /* Emit debug info for the source file of the current line, if
6817 different from the previous line. */
6818 if (line_info->dw_file_num != current_file)
6819 {
6820 current_file = line_info->dw_file_num;
6821 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
6822 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
6823 file_table.table[current_file]);
6824 }
6825
6826 /* Emit debug info for the current line number, choosing the encoding
6827 that uses the least amount of space. */
6828 if (line_info->dw_line_num != current_line)
6829 {
6830 line_offset = line_info->dw_line_num - current_line;
6831 line_delta = line_offset - DWARF_LINE_BASE;
6832 current_line = line_info->dw_line_num;
6833 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
6834 {
6835 /* This can handle deltas from -10 to 234, using the current
6836 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
6837 takes 1 byte. */
6838 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
6839 "line %lu", current_line);
6840 }
6841 else
6842 {
6843 /* This can handle any delta. This takes at least 4 bytes,
6844 depending on the value being encoded. */
6845 dw2_asm_output_data (1, DW_LNS_advance_line,
6846 "advance to line %lu", current_line);
6847 dw2_asm_output_data_sleb128 (line_offset, NULL);
6848 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
6849 }
6850 }
6851 else
6852 {
6853 /* We still need to start a new row, so output a copy insn. */
6854 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
6855 }
6856 }
6857
6858 /* Emit debug info for the address of the end of the function. */
6859 if (0)
6860 {
6861 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
6862 "DW_LNS_fixed_advance_pc");
6863 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
6864 }
6865 else
6866 {
6867 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
6868 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
6869 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
6870 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
6871 }
6872
6873 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
6874 dw2_asm_output_data_uleb128 (1, NULL);
6875 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
6876
6877 function = 0;
6878 current_file = 1;
6879 current_line = 1;
6880 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
6881 {
6882 register dw_separate_line_info_ref line_info
6883 = &separate_line_info_table[lt_index];
6884
6885 #if 0
6886 /* Don't emit anything for redundant notes. */
6887 if (line_info->dw_line_num == current_line
6888 && line_info->dw_file_num == current_file
6889 && line_info->function == function)
6890 goto cont;
6891 #endif
6892
6893 /* Emit debug info for the address of the current line. If this is
6894 a new function, or the first line of a function, then we need
6895 to handle it differently. */
6896 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
6897 lt_index);
6898 if (function != line_info->function)
6899 {
6900 function = line_info->function;
6901
6902 /* Set the address register to the first line in the function */
6903 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
6904 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
6905 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
6906 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
6907 }
6908 else
6909 {
6910 /* ??? See the DW_LNS_advance_pc comment above. */
6911 if (0)
6912 {
6913 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
6914 "DW_LNS_fixed_advance_pc");
6915 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
6916 }
6917 else
6918 {
6919 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
6920 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
6921 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
6922 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
6923 }
6924 }
6925 strcpy (prev_line_label, line_label);
6926
6927 /* Emit debug info for the source file of the current line, if
6928 different from the previous line. */
6929 if (line_info->dw_file_num != current_file)
6930 {
6931 current_file = line_info->dw_file_num;
6932 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
6933 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
6934 file_table.table[current_file]);
6935 }
6936
6937 /* Emit debug info for the current line number, choosing the encoding
6938 that uses the least amount of space. */
6939 if (line_info->dw_line_num != current_line)
6940 {
6941 line_offset = line_info->dw_line_num - current_line;
6942 line_delta = line_offset - DWARF_LINE_BASE;
6943 current_line = line_info->dw_line_num;
6944 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
6945 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
6946 "line %lu", current_line);
6947 else
6948 {
6949 dw2_asm_output_data (1, DW_LNS_advance_line,
6950 "advance to line %lu", current_line);
6951 dw2_asm_output_data_sleb128 (line_offset, NULL);
6952 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
6953 }
6954 }
6955 else
6956 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
6957
6958 #if 0
6959 cont:
6960 #endif
6961 ++lt_index;
6962
6963 /* If we're done with a function, end its sequence. */
6964 if (lt_index == separate_line_info_table_in_use
6965 || separate_line_info_table[lt_index].function != function)
6966 {
6967 current_file = 1;
6968 current_line = 1;
6969
6970 /* Emit debug info for the address of the end of the function. */
6971 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
6972 if (0)
6973 {
6974 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
6975 "DW_LNS_fixed_advance_pc");
6976 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
6977 }
6978 else
6979 {
6980 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
6981 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
6982 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
6983 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
6984 }
6985
6986 /* Output the marker for the end of this sequence. */
6987 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
6988 dw2_asm_output_data_uleb128 (1, NULL);
6989 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
6990 }
6991 }
6992
6993 /* Output the marker for the end of the line number info. */
6994 ASM_OUTPUT_LABEL (asm_out_file, l2);
6995 }
6996 \f
6997 /* Given a pointer to a tree node for some base type, return a pointer to
6998 a DIE that describes the given type.
6999
7000 This routine must only be called for GCC type nodes that correspond to
7001 Dwarf base (fundamental) types. */
7002
7003 static dw_die_ref
7004 base_type_die (type)
7005 register tree type;
7006 {
7007 register dw_die_ref base_type_result;
7008 register const char *type_name;
7009 register enum dwarf_type encoding;
7010 register tree name = TYPE_NAME (type);
7011
7012 if (TREE_CODE (type) == ERROR_MARK
7013 || TREE_CODE (type) == VOID_TYPE)
7014 return 0;
7015
7016 if (name)
7017 {
7018 if (TREE_CODE (name) == TYPE_DECL)
7019 name = DECL_NAME (name);
7020
7021 type_name = IDENTIFIER_POINTER (name);
7022 }
7023 else
7024 type_name = "__unknown__";
7025
7026 switch (TREE_CODE (type))
7027 {
7028 case INTEGER_TYPE:
7029 /* Carefully distinguish the C character types, without messing
7030 up if the language is not C. Note that we check only for the names
7031 that contain spaces; other names might occur by coincidence in other
7032 languages. */
7033 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7034 && (type == char_type_node
7035 || ! strcmp (type_name, "signed char")
7036 || ! strcmp (type_name, "unsigned char"))))
7037 {
7038 if (TREE_UNSIGNED (type))
7039 encoding = DW_ATE_unsigned;
7040 else
7041 encoding = DW_ATE_signed;
7042 break;
7043 }
7044 /* else fall through. */
7045
7046 case CHAR_TYPE:
7047 /* GNU Pascal/Ada CHAR type. Not used in C. */
7048 if (TREE_UNSIGNED (type))
7049 encoding = DW_ATE_unsigned_char;
7050 else
7051 encoding = DW_ATE_signed_char;
7052 break;
7053
7054 case REAL_TYPE:
7055 encoding = DW_ATE_float;
7056 break;
7057
7058 /* Dwarf2 doesn't know anything about complex ints, so use
7059 a user defined type for it. */
7060 case COMPLEX_TYPE:
7061 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7062 encoding = DW_ATE_complex_float;
7063 else
7064 encoding = DW_ATE_lo_user;
7065 break;
7066
7067 case BOOLEAN_TYPE:
7068 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7069 encoding = DW_ATE_boolean;
7070 break;
7071
7072 default:
7073 abort (); /* No other TREE_CODEs are Dwarf fundamental types. */
7074 }
7075
7076 base_type_result = new_die (DW_TAG_base_type, comp_unit_die);
7077 if (demangle_name_func)
7078 type_name = (*demangle_name_func) (type_name);
7079
7080 add_AT_string (base_type_result, DW_AT_name, type_name);
7081 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7082 int_size_in_bytes (type));
7083 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7084
7085 return base_type_result;
7086 }
7087
7088 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7089 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7090 a given type is generally the same as the given type, except that if the
7091 given type is a pointer or reference type, then the root type of the given
7092 type is the root type of the "basis" type for the pointer or reference
7093 type. (This definition of the "root" type is recursive.) Also, the root
7094 type of a `const' qualified type or a `volatile' qualified type is the
7095 root type of the given type without the qualifiers. */
7096
7097 static tree
7098 root_type (type)
7099 register tree type;
7100 {
7101 if (TREE_CODE (type) == ERROR_MARK)
7102 return error_mark_node;
7103
7104 switch (TREE_CODE (type))
7105 {
7106 case ERROR_MARK:
7107 return error_mark_node;
7108
7109 case POINTER_TYPE:
7110 case REFERENCE_TYPE:
7111 return type_main_variant (root_type (TREE_TYPE (type)));
7112
7113 default:
7114 return type_main_variant (type);
7115 }
7116 }
7117
7118 /* Given a pointer to an arbitrary ..._TYPE tree node, return non-zero if the
7119 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7120
7121 static inline int
7122 is_base_type (type)
7123 register tree type;
7124 {
7125 switch (TREE_CODE (type))
7126 {
7127 case ERROR_MARK:
7128 case VOID_TYPE:
7129 case INTEGER_TYPE:
7130 case REAL_TYPE:
7131 case COMPLEX_TYPE:
7132 case BOOLEAN_TYPE:
7133 case CHAR_TYPE:
7134 return 1;
7135
7136 case SET_TYPE:
7137 case ARRAY_TYPE:
7138 case RECORD_TYPE:
7139 case UNION_TYPE:
7140 case QUAL_UNION_TYPE:
7141 case ENUMERAL_TYPE:
7142 case FUNCTION_TYPE:
7143 case METHOD_TYPE:
7144 case POINTER_TYPE:
7145 case REFERENCE_TYPE:
7146 case FILE_TYPE:
7147 case OFFSET_TYPE:
7148 case LANG_TYPE:
7149 case VECTOR_TYPE:
7150 return 0;
7151
7152 default:
7153 abort ();
7154 }
7155
7156 return 0;
7157 }
7158
7159 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
7160 entry that chains various modifiers in front of the given type. */
7161
7162 static dw_die_ref
7163 modified_type_die (type, is_const_type, is_volatile_type, context_die)
7164 register tree type;
7165 register int is_const_type;
7166 register int is_volatile_type;
7167 register dw_die_ref context_die;
7168 {
7169 register enum tree_code code = TREE_CODE (type);
7170 register dw_die_ref mod_type_die = NULL;
7171 register dw_die_ref sub_die = NULL;
7172 register tree item_type = NULL;
7173
7174 if (code != ERROR_MARK)
7175 {
7176 tree qualified_type;
7177
7178 /* See if we already have the appropriately qualified variant of
7179 this type. */
7180 qualified_type
7181 = get_qualified_type (type,
7182 ((is_const_type ? TYPE_QUAL_CONST : 0)
7183 | (is_volatile_type
7184 ? TYPE_QUAL_VOLATILE : 0)));
7185 /* If we do, then we can just use its DIE, if it exists. */
7186 if (qualified_type)
7187 {
7188 mod_type_die = lookup_type_die (qualified_type);
7189 if (mod_type_die)
7190 return mod_type_die;
7191 }
7192
7193 /* Handle C typedef types. */
7194 if (qualified_type && TYPE_NAME (qualified_type)
7195 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
7196 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
7197 {
7198 tree type_name = TYPE_NAME (qualified_type);
7199 tree dtype = TREE_TYPE (type_name);
7200 if (qualified_type == dtype)
7201 {
7202 /* For a named type, use the typedef. */
7203 gen_type_die (qualified_type, context_die);
7204 mod_type_die = lookup_type_die (qualified_type);
7205 }
7206
7207 else if (is_const_type < TYPE_READONLY (dtype)
7208 || is_volatile_type < TYPE_VOLATILE (dtype))
7209 /* cv-unqualified version of named type. Just use the unnamed
7210 type to which it refers. */
7211 mod_type_die
7212 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
7213 is_const_type, is_volatile_type,
7214 context_die);
7215 /* Else cv-qualified version of named type; fall through. */
7216 }
7217
7218 if (mod_type_die)
7219 /* OK. */
7220 ;
7221 else if (is_const_type)
7222 {
7223 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die);
7224 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
7225 }
7226 else if (is_volatile_type)
7227 {
7228 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die);
7229 sub_die = modified_type_die (type, 0, 0, context_die);
7230 }
7231 else if (code == POINTER_TYPE)
7232 {
7233 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die);
7234 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
7235 #if 0
7236 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7237 #endif
7238 item_type = TREE_TYPE (type);
7239 }
7240 else if (code == REFERENCE_TYPE)
7241 {
7242 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die);
7243 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
7244 #if 0
7245 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7246 #endif
7247 item_type = TREE_TYPE (type);
7248 }
7249 else if (is_base_type (type))
7250 mod_type_die = base_type_die (type);
7251 else
7252 {
7253 gen_type_die (type, context_die);
7254
7255 /* We have to get the type_main_variant here (and pass that to the
7256 `lookup_type_die' routine) because the ..._TYPE node we have
7257 might simply be a *copy* of some original type node (where the
7258 copy was created to help us keep track of typedef names) and
7259 that copy might have a different TYPE_UID from the original
7260 ..._TYPE node. */
7261 mod_type_die = lookup_type_die (type_main_variant (type));
7262 if (mod_type_die == NULL)
7263 abort ();
7264 }
7265
7266 /* We want to equate the qualified type to the die below. */
7267 if (qualified_type)
7268 type = qualified_type;
7269 }
7270
7271 equate_type_number_to_die (type, mod_type_die);
7272 if (item_type)
7273 /* We must do this after the equate_type_number_to_die call, in case
7274 this is a recursive type. This ensures that the modified_type_die
7275 recursion will terminate even if the type is recursive. Recursive
7276 types are possible in Ada. */
7277 sub_die = modified_type_die (item_type,
7278 TYPE_READONLY (item_type),
7279 TYPE_VOLATILE (item_type),
7280 context_die);
7281
7282 if (sub_die != NULL)
7283 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
7284
7285 return mod_type_die;
7286 }
7287
7288 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
7289 an enumerated type. */
7290
7291 static inline int
7292 type_is_enum (type)
7293 register tree type;
7294 {
7295 return TREE_CODE (type) == ENUMERAL_TYPE;
7296 }
7297
7298 /* Return the register number described by a given RTL node. */
7299
7300 static unsigned int
7301 reg_number (rtl)
7302 register rtx rtl;
7303 {
7304 register unsigned regno = REGNO (rtl);
7305
7306 if (regno >= FIRST_PSEUDO_REGISTER)
7307 {
7308 warning ("internal regno botch: regno = %d\n", regno);
7309 regno = 0;
7310 }
7311
7312 regno = DBX_REGISTER_NUMBER (regno);
7313 return regno;
7314 }
7315
7316 /* Return a location descriptor that designates a machine register. */
7317
7318 static dw_loc_descr_ref
7319 reg_loc_descriptor (rtl)
7320 register rtx rtl;
7321 {
7322 register dw_loc_descr_ref loc_result = NULL;
7323 register unsigned reg = reg_number (rtl);
7324
7325 if (reg <= 31)
7326 loc_result = new_loc_descr (DW_OP_reg0 + reg, 0, 0);
7327 else
7328 loc_result = new_loc_descr (DW_OP_regx, reg, 0);
7329
7330 return loc_result;
7331 }
7332
7333 /* Return a location descriptor that designates a constant. */
7334
7335 static dw_loc_descr_ref
7336 int_loc_descriptor (i)
7337 HOST_WIDE_INT i;
7338 {
7339 enum dwarf_location_atom op;
7340
7341 /* Pick the smallest representation of a constant, rather than just
7342 defaulting to the LEB encoding. */
7343 if (i >= 0)
7344 {
7345 if (i <= 31)
7346 op = DW_OP_lit0 + i;
7347 else if (i <= 0xff)
7348 op = DW_OP_const1u;
7349 else if (i <= 0xffff)
7350 op = DW_OP_const2u;
7351 else if (HOST_BITS_PER_WIDE_INT == 32
7352 || i <= 0xffffffff)
7353 op = DW_OP_const4u;
7354 else
7355 op = DW_OP_constu;
7356 }
7357 else
7358 {
7359 if (i >= -0x80)
7360 op = DW_OP_const1s;
7361 else if (i >= -0x8000)
7362 op = DW_OP_const2s;
7363 else if (HOST_BITS_PER_WIDE_INT == 32
7364 || i >= -0x80000000)
7365 op = DW_OP_const4s;
7366 else
7367 op = DW_OP_consts;
7368 }
7369
7370 return new_loc_descr (op, i, 0);
7371 }
7372
7373 /* Return a location descriptor that designates a base+offset location. */
7374
7375 static dw_loc_descr_ref
7376 based_loc_descr (reg, offset)
7377 unsigned reg;
7378 long int offset;
7379 {
7380 register dw_loc_descr_ref loc_result;
7381 /* For the "frame base", we use the frame pointer or stack pointer
7382 registers, since the RTL for local variables is relative to one of
7383 them. */
7384 register unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
7385 ? HARD_FRAME_POINTER_REGNUM
7386 : STACK_POINTER_REGNUM);
7387
7388 if (reg == fp_reg)
7389 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
7390 else if (reg <= 31)
7391 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
7392 else
7393 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
7394
7395 return loc_result;
7396 }
7397
7398 /* Return true if this RTL expression describes a base+offset calculation. */
7399
7400 static inline int
7401 is_based_loc (rtl)
7402 register rtx rtl;
7403 {
7404 return (GET_CODE (rtl) == PLUS
7405 && ((GET_CODE (XEXP (rtl, 0)) == REG
7406 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
7407 }
7408
7409 /* The following routine converts the RTL for a variable or parameter
7410 (resident in memory) into an equivalent Dwarf representation of a
7411 mechanism for getting the address of that same variable onto the top of a
7412 hypothetical "address evaluation" stack.
7413
7414 When creating memory location descriptors, we are effectively transforming
7415 the RTL for a memory-resident object into its Dwarf postfix expression
7416 equivalent. This routine recursively descends an RTL tree, turning
7417 it into Dwarf postfix code as it goes.
7418
7419 MODE is the mode of the memory reference, needed to handle some
7420 autoincrement addressing modes. */
7421
7422 static dw_loc_descr_ref
7423 mem_loc_descriptor (rtl, mode)
7424 register rtx rtl;
7425 enum machine_mode mode;
7426 {
7427 dw_loc_descr_ref mem_loc_result = NULL;
7428 /* Note that for a dynamically sized array, the location we will generate a
7429 description of here will be the lowest numbered location which is
7430 actually within the array. That's *not* necessarily the same as the
7431 zeroth element of the array. */
7432
7433 #ifdef ASM_SIMPLIFY_DWARF_ADDR
7434 rtl = ASM_SIMPLIFY_DWARF_ADDR (rtl);
7435 #endif
7436
7437 switch (GET_CODE (rtl))
7438 {
7439 case POST_INC:
7440 case POST_DEC:
7441 case POST_MODIFY:
7442 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
7443 just fall into the SUBREG code. */
7444
7445 /* Fall through. */
7446
7447 case SUBREG:
7448 /* The case of a subreg may arise when we have a local (register)
7449 variable or a formal (register) parameter which doesn't quite fill
7450 up an entire register. For now, just assume that it is
7451 legitimate to make the Dwarf info refer to the whole register which
7452 contains the given subreg. */
7453 rtl = SUBREG_REG (rtl);
7454
7455 /* Fall through. */
7456
7457 case REG:
7458 /* Whenever a register number forms a part of the description of the
7459 method for calculating the (dynamic) address of a memory resident
7460 object, DWARF rules require the register number be referred to as
7461 a "base register". This distinction is not based in any way upon
7462 what category of register the hardware believes the given register
7463 belongs to. This is strictly DWARF terminology we're dealing with
7464 here. Note that in cases where the location of a memory-resident
7465 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
7466 OP_CONST (0)) the actual DWARF location descriptor that we generate
7467 may just be OP_BASEREG (basereg). This may look deceptively like
7468 the object in question was allocated to a register (rather than in
7469 memory) so DWARF consumers need to be aware of the subtle
7470 distinction between OP_REG and OP_BASEREG. */
7471 mem_loc_result = based_loc_descr (reg_number (rtl), 0);
7472 break;
7473
7474 case MEM:
7475 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
7476 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
7477 break;
7478
7479 case LABEL_REF:
7480 /* Some ports can transform a symbol ref into a label ref, because
7481 the symbol ref is too far away and has to be dumped into a constant
7482 pool. */
7483 case CONST:
7484 case SYMBOL_REF:
7485 /* Alternatively, the symbol in the constant pool might be referenced
7486 by a different symbol. */
7487 if (GET_CODE (rtl) == SYMBOL_REF
7488 && CONSTANT_POOL_ADDRESS_P (rtl))
7489 {
7490 rtx tmp = get_pool_constant (rtl);
7491 if (GET_CODE (tmp) == SYMBOL_REF)
7492 rtl = tmp;
7493 }
7494
7495 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
7496 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
7497 mem_loc_result->dw_loc_oprnd1.v.val_addr = save_rtx (rtl);
7498 break;
7499
7500 case PRE_MODIFY:
7501 /* Extract the PLUS expression nested inside and fall into
7502 PLUS code below. */
7503 rtl = XEXP (rtl, 1);
7504 goto plus;
7505
7506 case PRE_INC:
7507 case PRE_DEC:
7508 /* Turn these into a PLUS expression and fall into the PLUS code
7509 below. */
7510 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
7511 GEN_INT (GET_CODE (rtl) == PRE_INC
7512 ? GET_MODE_UNIT_SIZE (mode)
7513 : -GET_MODE_UNIT_SIZE (mode)));
7514
7515 /* Fall through. */
7516
7517 case PLUS:
7518 plus:
7519 if (is_based_loc (rtl))
7520 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
7521 INTVAL (XEXP (rtl, 1)));
7522 else
7523 {
7524 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
7525
7526 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
7527 && INTVAL (XEXP (rtl, 1)) >= 0)
7528 {
7529 add_loc_descr (&mem_loc_result,
7530 new_loc_descr (DW_OP_plus_uconst,
7531 INTVAL (XEXP (rtl, 1)), 0));
7532 }
7533 else
7534 {
7535 add_loc_descr (&mem_loc_result,
7536 mem_loc_descriptor (XEXP (rtl, 1), mode));
7537 add_loc_descr (&mem_loc_result,
7538 new_loc_descr (DW_OP_plus, 0, 0));
7539 }
7540 }
7541 break;
7542
7543 case MULT:
7544 /* If a pseudo-reg is optimized away, it is possible for it to
7545 be replaced with a MEM containing a multiply. */
7546 add_loc_descr (&mem_loc_result,
7547 mem_loc_descriptor (XEXP (rtl, 0), mode));
7548 add_loc_descr (&mem_loc_result,
7549 mem_loc_descriptor (XEXP (rtl, 1), mode));
7550 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
7551 break;
7552
7553 case CONST_INT:
7554 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
7555 break;
7556
7557 default:
7558 abort ();
7559 }
7560
7561 return mem_loc_result;
7562 }
7563
7564 /* Return a descriptor that describes the concatenation of two locations.
7565 This is typically a complex variable. */
7566
7567 static dw_loc_descr_ref
7568 concat_loc_descriptor (x0, x1)
7569 register rtx x0, x1;
7570 {
7571 dw_loc_descr_ref cc_loc_result = NULL;
7572
7573 if (!is_pseudo_reg (x0)
7574 && (GET_CODE (x0) != MEM || !is_pseudo_reg (XEXP (x0, 0))))
7575 add_loc_descr (&cc_loc_result, loc_descriptor (x0));
7576 add_loc_descr (&cc_loc_result,
7577 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (GET_MODE (x0)), 0));
7578
7579 if (!is_pseudo_reg (x1)
7580 && (GET_CODE (x1) != MEM || !is_pseudo_reg (XEXP (x1, 0))))
7581 add_loc_descr (&cc_loc_result, loc_descriptor (x1));
7582 add_loc_descr (&cc_loc_result,
7583 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (GET_MODE (x1)), 0));
7584
7585 return cc_loc_result;
7586 }
7587
7588 /* Output a proper Dwarf location descriptor for a variable or parameter
7589 which is either allocated in a register or in a memory location. For a
7590 register, we just generate an OP_REG and the register number. For a
7591 memory location we provide a Dwarf postfix expression describing how to
7592 generate the (dynamic) address of the object onto the address stack. */
7593
7594 static dw_loc_descr_ref
7595 loc_descriptor (rtl)
7596 register rtx rtl;
7597 {
7598 dw_loc_descr_ref loc_result = NULL;
7599 switch (GET_CODE (rtl))
7600 {
7601 case SUBREG:
7602 /* The case of a subreg may arise when we have a local (register)
7603 variable or a formal (register) parameter which doesn't quite fill
7604 up an entire register. For now, just assume that it is
7605 legitimate to make the Dwarf info refer to the whole register which
7606 contains the given subreg. */
7607 rtl = SUBREG_REG (rtl);
7608
7609 /* Fall through. */
7610
7611 case REG:
7612 loc_result = reg_loc_descriptor (rtl);
7613 break;
7614
7615 case MEM:
7616 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
7617 break;
7618
7619 case CONCAT:
7620 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
7621 break;
7622
7623 default:
7624 abort ();
7625 }
7626
7627 return loc_result;
7628 }
7629
7630 /* Similar, but generate the descriptor from trees instead of rtl.
7631 This comes up particularly with variable length arrays. */
7632
7633 static dw_loc_descr_ref
7634 loc_descriptor_from_tree (loc, addressp)
7635 tree loc;
7636 int addressp;
7637 {
7638 dw_loc_descr_ref ret = NULL;
7639 int indirect_size = 0;
7640 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
7641 enum dwarf_location_atom op;
7642
7643 /* ??? Most of the time we do not take proper care for sign/zero
7644 extending the values properly. Hopefully this won't be a real
7645 problem... */
7646
7647 switch (TREE_CODE (loc))
7648 {
7649 case ERROR_MARK:
7650 break;
7651
7652 case WITH_RECORD_EXPR:
7653 /* This case involves extracting fields from an object to determine the
7654 position of other fields. We don't try to encode this here. The
7655 only user of this is Ada, which encodes the needed information using
7656 the names of types. */
7657 return ret;
7658
7659 case VAR_DECL:
7660 case PARM_DECL:
7661 {
7662 rtx rtl = rtl_for_decl_location (loc);
7663 enum machine_mode mode = DECL_MODE (loc);
7664
7665 if (rtl == NULL_RTX)
7666 break;
7667 else if (CONSTANT_P (rtl))
7668 {
7669 ret = new_loc_descr (DW_OP_addr, 0, 0);
7670 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
7671 ret->dw_loc_oprnd1.v.val_addr = rtl;
7672 indirect_size = GET_MODE_SIZE (mode);
7673 }
7674 else
7675 {
7676 if (GET_CODE (rtl) == MEM)
7677 {
7678 indirect_size = GET_MODE_SIZE (mode);
7679 rtl = XEXP (rtl, 0);
7680 }
7681 ret = mem_loc_descriptor (rtl, mode);
7682 }
7683 }
7684 break;
7685
7686 case INDIRECT_REF:
7687 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
7688 indirect_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (loc)));
7689 break;
7690
7691 case NOP_EXPR:
7692 case CONVERT_EXPR:
7693 case NON_LVALUE_EXPR:
7694 case SAVE_EXPR:
7695 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
7696
7697 case COMPONENT_REF:
7698 case BIT_FIELD_REF:
7699 case ARRAY_REF:
7700 case ARRAY_RANGE_REF:
7701 {
7702 tree obj, offset;
7703 HOST_WIDE_INT bitsize, bitpos, bytepos;
7704 enum machine_mode mode;
7705 int volatilep;
7706 unsigned int alignment;
7707
7708 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
7709 &unsignedp, &volatilep, &alignment);
7710 ret = loc_descriptor_from_tree (obj, 1);
7711
7712 if (offset != NULL_TREE)
7713 {
7714 /* Variable offset. */
7715 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
7716 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
7717 }
7718
7719 if (addressp)
7720 {
7721 /* We cannot address anything not on a unit boundary. */
7722 if (bitpos % BITS_PER_UNIT != 0)
7723 abort ();
7724 }
7725 else
7726 {
7727 if (bitpos % BITS_PER_UNIT != 0
7728 || bitsize % BITS_PER_UNIT != 0)
7729 {
7730 /* ??? We could handle this by loading and shifting etc.
7731 Wait until someone needs it before expending the effort. */
7732 abort ();
7733 }
7734
7735 indirect_size = bitsize / BITS_PER_UNIT;
7736 }
7737
7738 bytepos = bitpos / BITS_PER_UNIT;
7739 if (bytepos > 0)
7740 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
7741 else if (bytepos < 0)
7742 {
7743 add_loc_descr (&ret, int_loc_descriptor (bytepos));
7744 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
7745 }
7746 break;
7747 }
7748
7749 case INTEGER_CST:
7750 if (host_integerp (loc, 0))
7751 ret = int_loc_descriptor (tree_low_cst (loc, 0));
7752 break;
7753
7754 case BIT_AND_EXPR:
7755 op = DW_OP_and;
7756 goto do_binop;
7757 case BIT_XOR_EXPR:
7758 op = DW_OP_xor;
7759 goto do_binop;
7760 case BIT_IOR_EXPR:
7761 op = DW_OP_or;
7762 goto do_binop;
7763 case TRUNC_DIV_EXPR:
7764 op = DW_OP_div;
7765 goto do_binop;
7766 case MINUS_EXPR:
7767 op = DW_OP_minus;
7768 goto do_binop;
7769 case TRUNC_MOD_EXPR:
7770 op = DW_OP_mod;
7771 goto do_binop;
7772 case MULT_EXPR:
7773 op = DW_OP_mul;
7774 goto do_binop;
7775 case LSHIFT_EXPR:
7776 op = DW_OP_shl;
7777 goto do_binop;
7778 case RSHIFT_EXPR:
7779 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
7780 goto do_binop;
7781 case PLUS_EXPR:
7782 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
7783 && host_integerp (TREE_OPERAND (loc, 1), 0))
7784 {
7785 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
7786 add_loc_descr (&ret,
7787 new_loc_descr (DW_OP_plus_uconst,
7788 tree_low_cst (TREE_OPERAND (loc, 1),
7789 0),
7790 0));
7791 break;
7792 }
7793 op = DW_OP_plus;
7794 goto do_binop;
7795 case LE_EXPR:
7796 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
7797 break;
7798 op = DW_OP_le;
7799 goto do_binop;
7800 case GE_EXPR:
7801 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
7802 break;
7803 op = DW_OP_ge;
7804 goto do_binop;
7805 case LT_EXPR:
7806 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
7807 break;
7808 op = DW_OP_lt;
7809 goto do_binop;
7810 case GT_EXPR:
7811 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
7812 break;
7813 op = DW_OP_gt;
7814 goto do_binop;
7815 case EQ_EXPR:
7816 op = DW_OP_eq;
7817 goto do_binop;
7818 case NE_EXPR:
7819 op = DW_OP_ne;
7820 goto do_binop;
7821
7822 do_binop:
7823 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
7824 add_loc_descr (&ret, loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0));
7825 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
7826 break;
7827
7828 case BIT_NOT_EXPR:
7829 op = DW_OP_not;
7830 goto do_unop;
7831 case ABS_EXPR:
7832 op = DW_OP_abs;
7833 goto do_unop;
7834 case NEGATE_EXPR:
7835 op = DW_OP_neg;
7836 goto do_unop;
7837
7838 do_unop:
7839 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
7840 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
7841 break;
7842
7843 case MAX_EXPR:
7844 loc = build (COND_EXPR, TREE_TYPE (loc),
7845 build (LT_EXPR, integer_type_node,
7846 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
7847 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
7848 /* FALLTHRU */
7849
7850 case COND_EXPR:
7851 {
7852 dw_loc_descr_ref bra_node, jump_node, tmp;
7853
7854 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
7855 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
7856 add_loc_descr (&ret, bra_node);
7857
7858 tmp = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
7859 add_loc_descr (&ret, tmp);
7860 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
7861 add_loc_descr (&ret, jump_node);
7862
7863 tmp = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
7864 add_loc_descr (&ret, tmp);
7865 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
7866 bra_node->dw_loc_oprnd1.v.val_loc = tmp;
7867
7868 /* ??? Need a node to point the skip at. Use a nop. */
7869 tmp = new_loc_descr (DW_OP_nop, 0, 0);
7870 add_loc_descr (&ret, tmp);
7871 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
7872 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
7873 }
7874 break;
7875
7876 default:
7877 abort ();
7878 }
7879
7880 /* If we can't fill the request for an address, die. */
7881 if (addressp && indirect_size == 0)
7882 abort ();
7883
7884 /* If we've got an address and don't want one, dereference. */
7885 if (!addressp && indirect_size > 0)
7886 {
7887 if (indirect_size > DWARF2_ADDR_SIZE)
7888 abort ();
7889 if (indirect_size == DWARF2_ADDR_SIZE)
7890 op = DW_OP_deref;
7891 else
7892 op = DW_OP_deref_size;
7893 add_loc_descr (&ret, new_loc_descr (op, indirect_size, 0));
7894 }
7895
7896 return ret;
7897 }
7898
7899 /* Given a value, round it up to the lowest multiple of `boundary'
7900 which is not less than the value itself. */
7901
7902 static inline HOST_WIDE_INT
7903 ceiling (value, boundary)
7904 HOST_WIDE_INT value;
7905 unsigned int boundary;
7906 {
7907 return (((value + boundary - 1) / boundary) * boundary);
7908 }
7909
7910 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
7911 pointer to the declared type for the relevant field variable, or return
7912 `integer_type_node' if the given node turns out to be an
7913 ERROR_MARK node. */
7914
7915 static inline tree
7916 field_type (decl)
7917 register tree decl;
7918 {
7919 register tree type;
7920
7921 if (TREE_CODE (decl) == ERROR_MARK)
7922 return integer_type_node;
7923
7924 type = DECL_BIT_FIELD_TYPE (decl);
7925 if (type == NULL_TREE)
7926 type = TREE_TYPE (decl);
7927
7928 return type;
7929 }
7930
7931 /* Given a pointer to a tree node, return the alignment in bits for
7932 it, or else return BITS_PER_WORD if the node actually turns out to
7933 be an ERROR_MARK node. */
7934
7935 static inline unsigned
7936 simple_type_align_in_bits (type)
7937 register tree type;
7938 {
7939 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
7940 }
7941
7942 static inline unsigned
7943 simple_decl_align_in_bits (decl)
7944 register tree decl;
7945 {
7946 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
7947 }
7948
7949 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
7950 node, return the size in bits for the type if it is a constant, or else
7951 return the alignment for the type if the type's size is not constant, or
7952 else return BITS_PER_WORD if the type actually turns out to be an
7953 ERROR_MARK node. */
7954
7955 static inline unsigned HOST_WIDE_INT
7956 simple_type_size_in_bits (type)
7957 register tree type;
7958 {
7959 tree type_size_tree;
7960
7961 if (TREE_CODE (type) == ERROR_MARK)
7962 return BITS_PER_WORD;
7963 type_size_tree = TYPE_SIZE (type);
7964
7965 if (type_size_tree == NULL_TREE)
7966 return 0;
7967 if (! host_integerp (type_size_tree, 1))
7968 return TYPE_ALIGN (type);
7969 return tree_low_cst (type_size_tree, 1);
7970 }
7971
7972 /* Given a pointer to what is assumed to be a FIELD_DECL node, compute and
7973 return the byte offset of the lowest addressed byte of the "containing
7974 object" for the given FIELD_DECL, or return 0 if we are unable to
7975 determine what that offset is, either because the argument turns out to
7976 be a pointer to an ERROR_MARK node, or because the offset is actually
7977 variable. (We can't handle the latter case just yet). */
7978
7979 static HOST_WIDE_INT
7980 field_byte_offset (decl)
7981 register tree decl;
7982 {
7983 unsigned int type_align_in_bits;
7984 unsigned int decl_align_in_bits;
7985 unsigned HOST_WIDE_INT type_size_in_bits;
7986 HOST_WIDE_INT object_offset_in_bits;
7987 HOST_WIDE_INT object_offset_in_bytes;
7988 tree type;
7989 tree field_size_tree;
7990 HOST_WIDE_INT bitpos_int;
7991 HOST_WIDE_INT deepest_bitpos;
7992 unsigned HOST_WIDE_INT field_size_in_bits;
7993
7994 if (TREE_CODE (decl) == ERROR_MARK)
7995 return 0;
7996
7997 if (TREE_CODE (decl) != FIELD_DECL)
7998 abort ();
7999
8000 type = field_type (decl);
8001 field_size_tree = DECL_SIZE (decl);
8002
8003 /* The size could be unspecified if there was an error, or for
8004 a flexible array member. */
8005 if (! field_size_tree)
8006 field_size_tree = bitsize_zero_node;
8007
8008 /* We cannot yet cope with fields whose positions are variable, so
8009 for now, when we see such things, we simply return 0. Someday, we may
8010 be able to handle such cases, but it will be damn difficult. */
8011 if (! host_integerp (bit_position (decl), 0))
8012 return 0;
8013
8014 bitpos_int = int_bit_position (decl);
8015
8016 /* If we don't know the size of the field, pretend it's a full word. */
8017 if (host_integerp (field_size_tree, 1))
8018 field_size_in_bits = tree_low_cst (field_size_tree, 1);
8019 else
8020 field_size_in_bits = BITS_PER_WORD;
8021
8022 type_size_in_bits = simple_type_size_in_bits (type);
8023 type_align_in_bits = simple_type_align_in_bits (type);
8024 decl_align_in_bits = simple_decl_align_in_bits (decl);
8025
8026 /* Note that the GCC front-end doesn't make any attempt to keep track of
8027 the starting bit offset (relative to the start of the containing
8028 structure type) of the hypothetical "containing object" for a bit-
8029 field. Thus, when computing the byte offset value for the start of the
8030 "containing object" of a bit-field, we must deduce this information on
8031 our own. This can be rather tricky to do in some cases. For example,
8032 handling the following structure type definition when compiling for an
8033 i386/i486 target (which only aligns long long's to 32-bit boundaries)
8034 can be very tricky:
8035
8036 struct S { int field1; long long field2:31; };
8037
8038 Fortunately, there is a simple rule-of-thumb which can be
8039 used in such cases. When compiling for an i386/i486, GCC will allocate
8040 8 bytes for the structure shown above. It decides to do this based upon
8041 one simple rule for bit-field allocation. Quite simply, GCC allocates
8042 each "containing object" for each bit-field at the first (i.e. lowest
8043 addressed) legitimate alignment boundary (based upon the required
8044 minimum alignment for the declared type of the field) which it can
8045 possibly use, subject to the condition that there is still enough
8046 available space remaining in the containing object (when allocated at
8047 the selected point) to fully accommodate all of the bits of the
8048 bit-field itself. This simple rule makes it obvious why GCC allocates
8049 8 bytes for each object of the structure type shown above. When looking
8050 for a place to allocate the "containing object" for `field2', the
8051 compiler simply tries to allocate a 64-bit "containing object" at each
8052 successive 32-bit boundary (starting at zero) until it finds a place to
8053 allocate that 64- bit field such that at least 31 contiguous (and
8054 previously unallocated) bits remain within that selected 64 bit field.
8055 (As it turns out, for the example above, the compiler finds that it is
8056 OK to allocate the "containing object" 64-bit field at bit-offset zero
8057 within the structure type.) Here we attempt to work backwards from the
8058 limited set of facts we're given, and we try to deduce from those facts,
8059 where GCC must have believed that the containing object started (within
8060 the structure type). The value we deduce is then used (by the callers of
8061 this routine) to generate DW_AT_location and DW_AT_bit_offset attributes
8062 for fields (both bit-fields and, in the case of DW_AT_location, regular
8063 fields as well). */
8064
8065 /* Figure out the bit-distance from the start of the structure to the
8066 "deepest" bit of the bit-field. */
8067 deepest_bitpos = bitpos_int + field_size_in_bits;
8068
8069 /* This is the tricky part. Use some fancy footwork to deduce where the
8070 lowest addressed bit of the containing object must be. */
8071 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8072
8073 /* Round up to type_align by default. This works best for bitfields. */
8074 object_offset_in_bits += type_align_in_bits - 1;
8075 object_offset_in_bits /= type_align_in_bits;
8076 object_offset_in_bits *= type_align_in_bits;
8077
8078 if (object_offset_in_bits > bitpos_int)
8079 {
8080 /* Sigh, the decl must be packed. */
8081 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8082
8083 /* Round up to decl_align instead. */
8084 object_offset_in_bits += decl_align_in_bits - 1;
8085 object_offset_in_bits /= decl_align_in_bits;
8086 object_offset_in_bits *= decl_align_in_bits;
8087 }
8088
8089 object_offset_in_bytes = object_offset_in_bits / BITS_PER_UNIT;
8090
8091 return object_offset_in_bytes;
8092 }
8093 \f
8094 /* The following routines define various Dwarf attributes and any data
8095 associated with them. */
8096
8097 /* Add a location description attribute value to a DIE.
8098
8099 This emits location attributes suitable for whole variables and
8100 whole parameters. Note that the location attributes for struct fields are
8101 generated by the routine `data_member_location_attribute' below. */
8102
8103 static void
8104 add_AT_location_description (die, attr_kind, rtl)
8105 dw_die_ref die;
8106 enum dwarf_attribute attr_kind;
8107 register rtx rtl;
8108 {
8109 /* Handle a special case. If we are about to output a location descriptor
8110 for a variable or parameter which has been optimized out of existence,
8111 don't do that. A variable which has been optimized out
8112 of existence will have a DECL_RTL value which denotes a pseudo-reg.
8113 Currently, in some rare cases, variables can have DECL_RTL values which
8114 look like (MEM (REG pseudo-reg#)). These cases are due to bugs
8115 elsewhere in the compiler. We treat such cases as if the variable(s) in
8116 question had been optimized out of existence. */
8117
8118 if (is_pseudo_reg (rtl)
8119 || (GET_CODE (rtl) == MEM
8120 && is_pseudo_reg (XEXP (rtl, 0)))
8121 /* This can happen for a PARM_DECL with a DECL_INCOMING_RTL which
8122 references the internal argument pointer (a pseudo) in a function
8123 where all references to the internal argument pointer were
8124 eliminated via the optimizers. */
8125 || (GET_CODE (rtl) == MEM
8126 && GET_CODE (XEXP (rtl, 0)) == PLUS
8127 && is_pseudo_reg (XEXP (XEXP (rtl, 0), 0)))
8128 || (GET_CODE (rtl) == CONCAT
8129 && is_pseudo_reg (XEXP (rtl, 0))
8130 && is_pseudo_reg (XEXP (rtl, 1))))
8131 return;
8132
8133 add_AT_loc (die, attr_kind, loc_descriptor (rtl));
8134 }
8135
8136 /* Attach the specialized form of location attribute used for data
8137 members of struct and union types. In the special case of a
8138 FIELD_DECL node which represents a bit-field, the "offset" part
8139 of this special location descriptor must indicate the distance
8140 in bytes from the lowest-addressed byte of the containing struct
8141 or union type to the lowest-addressed byte of the "containing
8142 object" for the bit-field. (See the `field_byte_offset' function
8143 above).. For any given bit-field, the "containing object" is a
8144 hypothetical object (of some integral or enum type) within which
8145 the given bit-field lives. The type of this hypothetical
8146 "containing object" is always the same as the declared type of
8147 the individual bit-field itself (for GCC anyway... the DWARF
8148 spec doesn't actually mandate this). Note that it is the size
8149 (in bytes) of the hypothetical "containing object" which will
8150 be given in the DW_AT_byte_size attribute for this bit-field.
8151 (See the `byte_size_attribute' function below.) It is also used
8152 when calculating the value of the DW_AT_bit_offset attribute.
8153 (See the `bit_offset_attribute' function below). */
8154
8155 static void
8156 add_data_member_location_attribute (die, decl)
8157 register dw_die_ref die;
8158 register tree decl;
8159 {
8160 register unsigned long offset;
8161 register dw_loc_descr_ref loc_descr;
8162 register enum dwarf_location_atom op;
8163
8164 if (TREE_CODE (decl) == TREE_VEC)
8165 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
8166 else
8167 offset = field_byte_offset (decl);
8168
8169 /* The DWARF2 standard says that we should assume that the structure address
8170 is already on the stack, so we can specify a structure field address
8171 by using DW_OP_plus_uconst. */
8172
8173 #ifdef MIPS_DEBUGGING_INFO
8174 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst operator
8175 correctly. It works only if we leave the offset on the stack. */
8176 op = DW_OP_constu;
8177 #else
8178 op = DW_OP_plus_uconst;
8179 #endif
8180
8181 loc_descr = new_loc_descr (op, offset, 0);
8182 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
8183 }
8184
8185 /* Attach an DW_AT_const_value attribute for a variable or a parameter which
8186 does not have a "location" either in memory or in a register. These
8187 things can arise in GNU C when a constant is passed as an actual parameter
8188 to an inlined function. They can also arise in C++ where declared
8189 constants do not necessarily get memory "homes". */
8190
8191 static void
8192 add_const_value_attribute (die, rtl)
8193 register dw_die_ref die;
8194 register rtx rtl;
8195 {
8196 switch (GET_CODE (rtl))
8197 {
8198 case CONST_INT:
8199 /* Note that a CONST_INT rtx could represent either an integer
8200 or a floating-point constant. A CONST_INT is used whenever
8201 the constant will fit into a single word. In all such
8202 cases, the original mode of the constant value is wiped
8203 out, and the CONST_INT rtx is assigned VOIDmode. */
8204 {
8205 HOST_WIDE_INT val = INTVAL (rtl);
8206
8207 /* ??? We really should be using HOST_WIDE_INT throughout. */
8208 if (val < 0)
8209 {
8210 if ((long) val != val)
8211 abort ();
8212 add_AT_int (die, DW_AT_const_value, (long) val);
8213 }
8214 else
8215 {
8216 if ((unsigned long) val != (unsigned HOST_WIDE_INT) val)
8217 abort ();
8218 add_AT_unsigned (die, DW_AT_const_value, (unsigned long) val);
8219 }
8220 }
8221 break;
8222
8223 case CONST_DOUBLE:
8224 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
8225 floating-point constant. A CONST_DOUBLE is used whenever the
8226 constant requires more than one word in order to be adequately
8227 represented. We output CONST_DOUBLEs as blocks. */
8228 {
8229 register enum machine_mode mode = GET_MODE (rtl);
8230
8231 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
8232 {
8233 register unsigned length = GET_MODE_SIZE (mode) / 4;
8234 long *array = (long *) xmalloc (sizeof (long) * length);
8235 REAL_VALUE_TYPE rv;
8236
8237 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
8238 switch (mode)
8239 {
8240 case SFmode:
8241 REAL_VALUE_TO_TARGET_SINGLE (rv, array[0]);
8242 break;
8243
8244 case DFmode:
8245 REAL_VALUE_TO_TARGET_DOUBLE (rv, array);
8246 break;
8247
8248 case XFmode:
8249 case TFmode:
8250 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, array);
8251 break;
8252
8253 default:
8254 abort ();
8255 }
8256
8257 add_AT_float (die, DW_AT_const_value, length, array);
8258 }
8259 else
8260 {
8261 /* ??? We really should be using HOST_WIDE_INT throughout. */
8262 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
8263 abort ();
8264 add_AT_long_long (die, DW_AT_const_value,
8265 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
8266 }
8267 }
8268 break;
8269
8270 case CONST_STRING:
8271 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
8272 break;
8273
8274 case SYMBOL_REF:
8275 case LABEL_REF:
8276 case CONST:
8277 add_AT_addr (die, DW_AT_const_value, save_rtx (rtl));
8278 break;
8279
8280 case PLUS:
8281 /* In cases where an inlined instance of an inline function is passed
8282 the address of an `auto' variable (which is local to the caller) we
8283 can get a situation where the DECL_RTL of the artificial local
8284 variable (for the inlining) which acts as a stand-in for the
8285 corresponding formal parameter (of the inline function) will look
8286 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
8287 exactly a compile-time constant expression, but it isn't the address
8288 of the (artificial) local variable either. Rather, it represents the
8289 *value* which the artificial local variable always has during its
8290 lifetime. We currently have no way to represent such quasi-constant
8291 values in Dwarf, so for now we just punt and generate nothing. */
8292 break;
8293
8294 default:
8295 /* No other kinds of rtx should be possible here. */
8296 abort ();
8297 }
8298
8299 }
8300
8301 static rtx
8302 rtl_for_decl_location (decl)
8303 tree decl;
8304 {
8305 register rtx rtl;
8306
8307 /* Here we have to decide where we are going to say the parameter "lives"
8308 (as far as the debugger is concerned). We only have a couple of
8309 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
8310
8311 DECL_RTL normally indicates where the parameter lives during most of the
8312 activation of the function. If optimization is enabled however, this
8313 could be either NULL or else a pseudo-reg. Both of those cases indicate
8314 that the parameter doesn't really live anywhere (as far as the code
8315 generation parts of GCC are concerned) during most of the function's
8316 activation. That will happen (for example) if the parameter is never
8317 referenced within the function.
8318
8319 We could just generate a location descriptor here for all non-NULL
8320 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
8321 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
8322 where DECL_RTL is NULL or is a pseudo-reg.
8323
8324 Note however that we can only get away with using DECL_INCOMING_RTL as
8325 a backup substitute for DECL_RTL in certain limited cases. In cases
8326 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
8327 we can be sure that the parameter was passed using the same type as it is
8328 declared to have within the function, and that its DECL_INCOMING_RTL
8329 points us to a place where a value of that type is passed.
8330
8331 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
8332 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
8333 because in these cases DECL_INCOMING_RTL points us to a value of some
8334 type which is *different* from the type of the parameter itself. Thus,
8335 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
8336 such cases, the debugger would end up (for example) trying to fetch a
8337 `float' from a place which actually contains the first part of a
8338 `double'. That would lead to really incorrect and confusing
8339 output at debug-time.
8340
8341 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
8342 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
8343 are a couple of exceptions however. On little-endian machines we can
8344 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
8345 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
8346 an integral type that is smaller than TREE_TYPE (decl). These cases arise
8347 when (on a little-endian machine) a non-prototyped function has a
8348 parameter declared to be of type `short' or `char'. In such cases,
8349 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
8350 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
8351 passed `int' value. If the debugger then uses that address to fetch
8352 a `short' or a `char' (on a little-endian machine) the result will be
8353 the correct data, so we allow for such exceptional cases below.
8354
8355 Note that our goal here is to describe the place where the given formal
8356 parameter lives during most of the function's activation (i.e. between
8357 the end of the prologue and the start of the epilogue). We'll do that
8358 as best as we can. Note however that if the given formal parameter is
8359 modified sometime during the execution of the function, then a stack
8360 backtrace (at debug-time) will show the function as having been
8361 called with the *new* value rather than the value which was
8362 originally passed in. This happens rarely enough that it is not
8363 a major problem, but it *is* a problem, and I'd like to fix it.
8364
8365 A future version of dwarf2out.c may generate two additional
8366 attributes for any given DW_TAG_formal_parameter DIE which will
8367 describe the "passed type" and the "passed location" for the
8368 given formal parameter in addition to the attributes we now
8369 generate to indicate the "declared type" and the "active
8370 location" for each parameter. This additional set of attributes
8371 could be used by debuggers for stack backtraces. Separately, note
8372 that sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be
8373 NULL also. This happens (for example) for inlined-instances of
8374 inline function formal parameters which are never referenced.
8375 This really shouldn't be happening. All PARM_DECL nodes should
8376 get valid non-NULL DECL_INCOMING_RTL values, but integrate.c
8377 doesn't currently generate these values for inlined instances of
8378 inline function parameters, so when we see such cases, we are
8379 just out-of-luck for the time being (until integrate.c
8380 gets fixed). */
8381
8382 /* Use DECL_RTL as the "location" unless we find something better. */
8383 rtl = DECL_RTL_IF_SET (decl);
8384
8385 if (TREE_CODE (decl) == PARM_DECL)
8386 {
8387 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
8388 {
8389 tree declared_type = type_main_variant (TREE_TYPE (decl));
8390 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
8391
8392 /* This decl represents a formal parameter which was optimized out.
8393 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
8394 all* cases where (rtl == NULL_RTX) just below. */
8395 if (declared_type == passed_type)
8396 rtl = DECL_INCOMING_RTL (decl);
8397 else if (! BYTES_BIG_ENDIAN
8398 && TREE_CODE (declared_type) == INTEGER_TYPE
8399 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
8400 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
8401 rtl = DECL_INCOMING_RTL (decl);
8402 }
8403
8404 /* If the parm was passed in registers, but lives on the stack, then
8405 make a big endian correction if the mode of the type of the
8406 parameter is not the same as the mode of the rtl. */
8407 /* ??? This is the same series of checks that are made in dbxout.c before
8408 we reach the big endian correction code there. It isn't clear if all
8409 of these checks are necessary here, but keeping them all is the safe
8410 thing to do. */
8411 else if (GET_CODE (rtl) == MEM
8412 && XEXP (rtl, 0) != const0_rtx
8413 && ! CONSTANT_P (XEXP (rtl, 0))
8414 /* Not passed in memory. */
8415 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
8416 /* Not passed by invisible reference. */
8417 && (GET_CODE (XEXP (rtl, 0)) != REG
8418 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
8419 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
8420 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
8421 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
8422 #endif
8423 )
8424 /* Big endian correction check. */
8425 && BYTES_BIG_ENDIAN
8426 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
8427 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
8428 < UNITS_PER_WORD))
8429 {
8430 int offset = (UNITS_PER_WORD
8431 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
8432 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
8433 plus_constant (XEXP (rtl, 0), offset));
8434 }
8435 }
8436
8437 if (rtl != NULL_RTX)
8438 {
8439 rtl = eliminate_regs (rtl, 0, NULL_RTX);
8440 #ifdef LEAF_REG_REMAP
8441 if (current_function_uses_only_leaf_regs)
8442 leaf_renumber_regs_insn (rtl);
8443 #endif
8444 }
8445
8446 return rtl;
8447 }
8448
8449 /* Generate *either* an DW_AT_location attribute or else an DW_AT_const_value
8450 data attribute for a variable or a parameter. We generate the
8451 DW_AT_const_value attribute only in those cases where the given variable
8452 or parameter does not have a true "location" either in memory or in a
8453 register. This can happen (for example) when a constant is passed as an
8454 actual argument in a call to an inline function. (It's possible that
8455 these things can crop up in other ways also.) Note that one type of
8456 constant value which can be passed into an inlined function is a constant
8457 pointer. This can happen for example if an actual argument in an inlined
8458 function call evaluates to a compile-time constant address. */
8459
8460 static void
8461 add_location_or_const_value_attribute (die, decl)
8462 register dw_die_ref die;
8463 register tree decl;
8464 {
8465 register rtx rtl;
8466
8467 if (TREE_CODE (decl) == ERROR_MARK)
8468 return;
8469
8470 if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
8471 abort ();
8472
8473 rtl = rtl_for_decl_location (decl);
8474 if (rtl == NULL_RTX)
8475 return;
8476
8477 /* If we don't look past the constant pool, we risk emitting a
8478 reference to a constant pool entry that isn't referenced from
8479 code, and thus is not emitted. */
8480 rtl = avoid_constant_pool_reference (rtl);
8481
8482 switch (GET_CODE (rtl))
8483 {
8484 case ADDRESSOF:
8485 /* The address of a variable that was optimized away; don't emit
8486 anything. */
8487 break;
8488
8489 case CONST_INT:
8490 case CONST_DOUBLE:
8491 case CONST_STRING:
8492 case SYMBOL_REF:
8493 case LABEL_REF:
8494 case CONST:
8495 case PLUS:
8496 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
8497 add_const_value_attribute (die, rtl);
8498 break;
8499
8500 case MEM:
8501 case REG:
8502 case SUBREG:
8503 case CONCAT:
8504 add_AT_location_description (die, DW_AT_location, rtl);
8505 break;
8506
8507 default:
8508 abort ();
8509 }
8510 }
8511
8512 /* If we don't have a copy of this variable in memory for some reason (such
8513 as a C++ member constant that doesn't have an out-of-line definition),
8514 we should tell the debugger about the constant value. */
8515
8516 static void
8517 tree_add_const_value_attribute (var_die, decl)
8518 dw_die_ref var_die;
8519 tree decl;
8520 {
8521 tree init = DECL_INITIAL (decl);
8522 tree type = TREE_TYPE (decl);
8523
8524 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
8525 && initializer_constant_valid_p (init, type) == null_pointer_node)
8526 /* OK */;
8527 else
8528 return;
8529
8530 switch (TREE_CODE (type))
8531 {
8532 case INTEGER_TYPE:
8533 if (host_integerp (init, 0))
8534 add_AT_unsigned (var_die, DW_AT_const_value,
8535 TREE_INT_CST_LOW (init));
8536 else
8537 add_AT_long_long (var_die, DW_AT_const_value,
8538 TREE_INT_CST_HIGH (init),
8539 TREE_INT_CST_LOW (init));
8540 break;
8541
8542 default:;
8543 }
8544 }
8545
8546 /* Generate an DW_AT_name attribute given some string value to be included as
8547 the value of the attribute. */
8548
8549 static inline void
8550 add_name_attribute (die, name_string)
8551 register dw_die_ref die;
8552 register const char *name_string;
8553 {
8554 if (name_string != NULL && *name_string != 0)
8555 {
8556 if (demangle_name_func)
8557 name_string = (*demangle_name_func) (name_string);
8558
8559 add_AT_string (die, DW_AT_name, name_string);
8560 }
8561 }
8562
8563 /* Given a tree node describing an array bound (either lower or upper) output
8564 a representation for that bound. */
8565
8566 static void
8567 add_bound_info (subrange_die, bound_attr, bound)
8568 register dw_die_ref subrange_die;
8569 register enum dwarf_attribute bound_attr;
8570 register tree bound;
8571 {
8572 /* If this is an Ada unconstrained array type, then don't emit any debug
8573 info because the array bounds are unknown. They are parameterized when
8574 the type is instantiated. */
8575 if (contains_placeholder_p (bound))
8576 return;
8577
8578 switch (TREE_CODE (bound))
8579 {
8580 case ERROR_MARK:
8581 return;
8582
8583 /* All fixed-bounds are represented by INTEGER_CST nodes. */
8584 case INTEGER_CST:
8585 if (! host_integerp (bound, 0)
8586 || (bound_attr == DW_AT_lower_bound
8587 && (((is_c_family () || is_java ()) && integer_zerop (bound))
8588 || (is_fortran () && integer_onep (bound)))))
8589 /* use the default */
8590 ;
8591 else
8592 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
8593 break;
8594
8595 case CONVERT_EXPR:
8596 case NOP_EXPR:
8597 case NON_LVALUE_EXPR:
8598 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
8599 break;
8600
8601 case SAVE_EXPR:
8602 /* If optimization is turned on, the SAVE_EXPRs that describe how to
8603 access the upper bound values may be bogus. If they refer to a
8604 register, they may only describe how to get at these values at the
8605 points in the generated code right after they have just been
8606 computed. Worse yet, in the typical case, the upper bound values
8607 will not even *be* computed in the optimized code (though the
8608 number of elements will), so these SAVE_EXPRs are entirely
8609 bogus. In order to compensate for this fact, we check here to see
8610 if optimization is enabled, and if so, we don't add an attribute
8611 for the (unknown and unknowable) upper bound. This should not
8612 cause too much trouble for existing (stupid?) debuggers because
8613 they have to deal with empty upper bounds location descriptions
8614 anyway in order to be able to deal with incomplete array types.
8615 Of course an intelligent debugger (GDB?) should be able to
8616 comprehend that a missing upper bound specification in a array
8617 type used for a storage class `auto' local array variable
8618 indicates that the upper bound is both unknown (at compile- time)
8619 and unknowable (at run-time) due to optimization.
8620
8621 We assume that a MEM rtx is safe because gcc wouldn't put the
8622 value there unless it was going to be used repeatedly in the
8623 function, i.e. for cleanups. */
8624 if (SAVE_EXPR_RTL (bound)
8625 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
8626 {
8627 register dw_die_ref ctx = lookup_decl_die (current_function_decl);
8628 register dw_die_ref decl_die = new_die (DW_TAG_variable, ctx);
8629 register rtx loc = SAVE_EXPR_RTL (bound);
8630
8631 /* If the RTL for the SAVE_EXPR is memory, handle the case where
8632 it references an outer function's frame. */
8633
8634 if (GET_CODE (loc) == MEM)
8635 {
8636 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
8637
8638 if (XEXP (loc, 0) != new_addr)
8639 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
8640 }
8641
8642 add_AT_flag (decl_die, DW_AT_artificial, 1);
8643 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
8644 add_AT_location_description (decl_die, DW_AT_location, loc);
8645 add_AT_die_ref (subrange_die, bound_attr, decl_die);
8646 }
8647
8648 /* Else leave out the attribute. */
8649 break;
8650
8651 case VAR_DECL:
8652 case PARM_DECL:
8653 {
8654 dw_die_ref decl_die = lookup_decl_die (bound);
8655
8656 /* ??? Can this happen, or should the variable have been bound
8657 first? Probably it can, since I imagine that we try to create
8658 the types of parameters in the order in which they exist in
8659 the list, and won't have created a forward reference to a
8660 later parameter. */
8661 if (decl_die != NULL)
8662 add_AT_die_ref (subrange_die, bound_attr, decl_die);
8663 break;
8664 }
8665
8666 default:
8667 {
8668 /* Otherwise try to create a stack operation procedure to
8669 evaluate the value of the array bound. */
8670
8671 dw_die_ref ctx, decl_die;
8672 dw_loc_descr_ref loc;
8673
8674 loc = loc_descriptor_from_tree (bound, 0);
8675 if (loc == NULL)
8676 break;
8677
8678 ctx = lookup_decl_die (current_function_decl);
8679
8680 decl_die = new_die (DW_TAG_variable, ctx);
8681 add_AT_flag (decl_die, DW_AT_artificial, 1);
8682 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
8683 add_AT_loc (decl_die, DW_AT_location, loc);
8684
8685 add_AT_die_ref (subrange_die, bound_attr, decl_die);
8686 break;
8687 }
8688 }
8689 }
8690
8691 /* Note that the block of subscript information for an array type also
8692 includes information about the element type of type given array type. */
8693
8694 static void
8695 add_subscript_info (type_die, type)
8696 register dw_die_ref type_die;
8697 register tree type;
8698 {
8699 #ifndef MIPS_DEBUGGING_INFO
8700 register unsigned dimension_number;
8701 #endif
8702 register tree lower, upper;
8703 register dw_die_ref subrange_die;
8704
8705 /* The GNU compilers represent multidimensional array types as sequences of
8706 one dimensional array types whose element types are themselves array
8707 types. Here we squish that down, so that each multidimensional array
8708 type gets only one array_type DIE in the Dwarf debugging info. The draft
8709 Dwarf specification say that we are allowed to do this kind of
8710 compression in C (because there is no difference between an array or
8711 arrays and a multidimensional array in C) but for other source languages
8712 (e.g. Ada) we probably shouldn't do this. */
8713
8714 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
8715 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
8716 We work around this by disabling this feature. See also
8717 gen_array_type_die. */
8718 #ifndef MIPS_DEBUGGING_INFO
8719 for (dimension_number = 0;
8720 TREE_CODE (type) == ARRAY_TYPE;
8721 type = TREE_TYPE (type), dimension_number++)
8722 {
8723 #endif
8724 register tree domain = TYPE_DOMAIN (type);
8725
8726 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
8727 and (in GNU C only) variable bounds. Handle all three forms
8728 here. */
8729 subrange_die = new_die (DW_TAG_subrange_type, type_die);
8730 if (domain)
8731 {
8732 /* We have an array type with specified bounds. */
8733 lower = TYPE_MIN_VALUE (domain);
8734 upper = TYPE_MAX_VALUE (domain);
8735
8736 /* define the index type. */
8737 if (TREE_TYPE (domain))
8738 {
8739 /* ??? This is probably an Ada unnamed subrange type. Ignore the
8740 TREE_TYPE field. We can't emit debug info for this
8741 because it is an unnamed integral type. */
8742 if (TREE_CODE (domain) == INTEGER_TYPE
8743 && TYPE_NAME (domain) == NULL_TREE
8744 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
8745 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
8746 ;
8747 else
8748 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
8749 type_die);
8750 }
8751
8752 /* ??? If upper is NULL, the array has unspecified length,
8753 but it does have a lower bound. This happens with Fortran
8754 dimension arr(N:*)
8755 Since the debugger is definitely going to need to know N
8756 to produce useful results, go ahead and output the lower
8757 bound solo, and hope the debugger can cope. */
8758
8759 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
8760 if (upper)
8761 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
8762 }
8763 else
8764 /* We have an array type with an unspecified length. The DWARF-2
8765 spec does not say how to handle this; let's just leave out the
8766 bounds. */
8767 {;}
8768
8769 #ifndef MIPS_DEBUGGING_INFO
8770 }
8771 #endif
8772 }
8773
8774 static void
8775 add_byte_size_attribute (die, tree_node)
8776 dw_die_ref die;
8777 register tree tree_node;
8778 {
8779 register unsigned size;
8780
8781 switch (TREE_CODE (tree_node))
8782 {
8783 case ERROR_MARK:
8784 size = 0;
8785 break;
8786 case ENUMERAL_TYPE:
8787 case RECORD_TYPE:
8788 case UNION_TYPE:
8789 case QUAL_UNION_TYPE:
8790 size = int_size_in_bytes (tree_node);
8791 break;
8792 case FIELD_DECL:
8793 /* For a data member of a struct or union, the DW_AT_byte_size is
8794 generally given as the number of bytes normally allocated for an
8795 object of the *declared* type of the member itself. This is true
8796 even for bit-fields. */
8797 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
8798 break;
8799 default:
8800 abort ();
8801 }
8802
8803 /* Note that `size' might be -1 when we get to this point. If it is, that
8804 indicates that the byte size of the entity in question is variable. We
8805 have no good way of expressing this fact in Dwarf at the present time,
8806 so just let the -1 pass on through. */
8807
8808 add_AT_unsigned (die, DW_AT_byte_size, size);
8809 }
8810
8811 /* For a FIELD_DECL node which represents a bit-field, output an attribute
8812 which specifies the distance in bits from the highest order bit of the
8813 "containing object" for the bit-field to the highest order bit of the
8814 bit-field itself.
8815
8816 For any given bit-field, the "containing object" is a hypothetical
8817 object (of some integral or enum type) within which the given bit-field
8818 lives. The type of this hypothetical "containing object" is always the
8819 same as the declared type of the individual bit-field itself. The
8820 determination of the exact location of the "containing object" for a
8821 bit-field is rather complicated. It's handled by the
8822 `field_byte_offset' function (above).
8823
8824 Note that it is the size (in bytes) of the hypothetical "containing object"
8825 which will be given in the DW_AT_byte_size attribute for this bit-field.
8826 (See `byte_size_attribute' above). */
8827
8828 static inline void
8829 add_bit_offset_attribute (die, decl)
8830 register dw_die_ref die;
8831 register tree decl;
8832 {
8833 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
8834 tree type = DECL_BIT_FIELD_TYPE (decl);
8835 HOST_WIDE_INT bitpos_int;
8836 HOST_WIDE_INT highest_order_object_bit_offset;
8837 HOST_WIDE_INT highest_order_field_bit_offset;
8838 HOST_WIDE_INT unsigned bit_offset;
8839
8840 /* Must be a field and a bit field. */
8841 if (!type
8842 || TREE_CODE (decl) != FIELD_DECL)
8843 abort ();
8844
8845 /* We can't yet handle bit-fields whose offsets are variable, so if we
8846 encounter such things, just return without generating any attribute
8847 whatsoever. Likewise for variable or too large size. */
8848 if (! host_integerp (bit_position (decl), 0)
8849 || ! host_integerp (DECL_SIZE (decl), 1))
8850 return;
8851
8852 bitpos_int = int_bit_position (decl);
8853
8854 /* Note that the bit offset is always the distance (in bits) from the
8855 highest-order bit of the "containing object" to the highest-order bit of
8856 the bit-field itself. Since the "high-order end" of any object or field
8857 is different on big-endian and little-endian machines, the computation
8858 below must take account of these differences. */
8859 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
8860 highest_order_field_bit_offset = bitpos_int;
8861
8862 if (! BYTES_BIG_ENDIAN)
8863 {
8864 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
8865 highest_order_object_bit_offset += simple_type_size_in_bits (type);
8866 }
8867
8868 bit_offset
8869 = (! BYTES_BIG_ENDIAN
8870 ? highest_order_object_bit_offset - highest_order_field_bit_offset
8871 : highest_order_field_bit_offset - highest_order_object_bit_offset);
8872
8873 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
8874 }
8875
8876 /* For a FIELD_DECL node which represents a bit field, output an attribute
8877 which specifies the length in bits of the given field. */
8878
8879 static inline void
8880 add_bit_size_attribute (die, decl)
8881 register dw_die_ref die;
8882 register tree decl;
8883 {
8884 /* Must be a field and a bit field. */
8885 if (TREE_CODE (decl) != FIELD_DECL
8886 || ! DECL_BIT_FIELD_TYPE (decl))
8887 abort ();
8888
8889 if (host_integerp (DECL_SIZE (decl), 1))
8890 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
8891 }
8892
8893 /* If the compiled language is ANSI C, then add a 'prototyped'
8894 attribute, if arg types are given for the parameters of a function. */
8895
8896 static inline void
8897 add_prototyped_attribute (die, func_type)
8898 register dw_die_ref die;
8899 register tree func_type;
8900 {
8901 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
8902 && TYPE_ARG_TYPES (func_type) != NULL)
8903 add_AT_flag (die, DW_AT_prototyped, 1);
8904 }
8905
8906 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
8907 by looking in either the type declaration or object declaration
8908 equate table. */
8909
8910 static inline void
8911 add_abstract_origin_attribute (die, origin)
8912 register dw_die_ref die;
8913 register tree origin;
8914 {
8915 dw_die_ref origin_die = NULL;
8916
8917 if (TREE_CODE (origin) != FUNCTION_DECL)
8918 {
8919 /* We may have gotten separated from the block for the inlined
8920 function, if we're in an exception handler or some such; make
8921 sure that the abstract function has been written out.
8922
8923 Doing this for nested functions is wrong, however; functions are
8924 distinct units, and our context might not even be inline. */
8925 tree fn = origin;
8926 if (TYPE_P (fn))
8927 fn = TYPE_STUB_DECL (fn);
8928 fn = decl_function_context (fn);
8929 if (fn)
8930 dwarf2out_abstract_function (fn);
8931 }
8932
8933 if (DECL_P (origin))
8934 origin_die = lookup_decl_die (origin);
8935 else if (TYPE_P (origin))
8936 origin_die = lookup_type_die (origin);
8937
8938 if (origin_die == NULL)
8939 abort ();
8940
8941 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
8942 }
8943
8944 /* We do not currently support the pure_virtual attribute. */
8945
8946 static inline void
8947 add_pure_or_virtual_attribute (die, func_decl)
8948 register dw_die_ref die;
8949 register tree func_decl;
8950 {
8951 if (DECL_VINDEX (func_decl))
8952 {
8953 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
8954
8955 if (host_integerp (DECL_VINDEX (func_decl), 0))
8956 add_AT_loc (die, DW_AT_vtable_elem_location,
8957 new_loc_descr (DW_OP_constu,
8958 tree_low_cst (DECL_VINDEX (func_decl), 0),
8959 0));
8960
8961 /* GNU extension: Record what type this method came from originally. */
8962 if (debug_info_level > DINFO_LEVEL_TERSE)
8963 add_AT_die_ref (die, DW_AT_containing_type,
8964 lookup_type_die (DECL_CONTEXT (func_decl)));
8965 }
8966 }
8967 \f
8968 /* Add source coordinate attributes for the given decl. */
8969
8970 static void
8971 add_src_coords_attributes (die, decl)
8972 register dw_die_ref die;
8973 register tree decl;
8974 {
8975 register unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
8976
8977 add_AT_unsigned (die, DW_AT_decl_file, file_index);
8978 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
8979 }
8980
8981 /* Add an DW_AT_name attribute and source coordinate attribute for the
8982 given decl, but only if it actually has a name. */
8983
8984 static void
8985 add_name_and_src_coords_attributes (die, decl)
8986 register dw_die_ref die;
8987 register tree decl;
8988 {
8989 register tree decl_name;
8990
8991 decl_name = DECL_NAME (decl);
8992 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
8993 {
8994 add_name_attribute (die, dwarf2_name (decl, 0));
8995 if (! DECL_ARTIFICIAL (decl))
8996 add_src_coords_attributes (die, decl);
8997
8998 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
8999 && TREE_PUBLIC (decl)
9000 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
9001 && !DECL_ABSTRACT (decl))
9002 add_AT_string (die, DW_AT_MIPS_linkage_name,
9003 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
9004 }
9005 }
9006
9007 /* Push a new declaration scope. */
9008
9009 static void
9010 push_decl_scope (scope)
9011 tree scope;
9012 {
9013 /* Make room in the decl_scope_table, if necessary. */
9014 if (decl_scope_table_allocated == decl_scope_depth)
9015 {
9016 decl_scope_table_allocated += DECL_SCOPE_TABLE_INCREMENT;
9017 decl_scope_table
9018 = (tree *) xrealloc (decl_scope_table,
9019 decl_scope_table_allocated * sizeof (tree));
9020 }
9021
9022 decl_scope_table[decl_scope_depth] = scope;
9023 decl_scope_depth++;
9024 }
9025
9026 /* Pop a declaration scope. */
9027 static inline void
9028 pop_decl_scope ()
9029 {
9030 if (decl_scope_depth <= 0)
9031 abort ();
9032 --decl_scope_depth;
9033 }
9034
9035 /* Return the DIE for the scope that immediately contains this type.
9036 Non-named types get global scope. Named types nested in other
9037 types get their containing scope if it's open, or global scope
9038 otherwise. All other types (i.e. function-local named types) get
9039 the current active scope. */
9040
9041 static dw_die_ref
9042 scope_die_for (t, context_die)
9043 register tree t;
9044 register dw_die_ref context_die;
9045 {
9046 register dw_die_ref scope_die = NULL;
9047 register tree containing_scope;
9048 register int i;
9049
9050 /* Non-types always go in the current scope. */
9051 if (! TYPE_P (t))
9052 abort ();
9053
9054 containing_scope = TYPE_CONTEXT (t);
9055
9056 /* Ignore namespaces for the moment. */
9057 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
9058 containing_scope = NULL_TREE;
9059
9060 /* Ignore function type "scopes" from the C frontend. They mean that
9061 a tagged type is local to a parmlist of a function declarator, but
9062 that isn't useful to DWARF. */
9063 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
9064 containing_scope = NULL_TREE;
9065
9066 if (containing_scope == NULL_TREE)
9067 scope_die = comp_unit_die;
9068 else if (TYPE_P (containing_scope))
9069 {
9070 /* For types, we can just look up the appropriate DIE. But
9071 first we check to see if we're in the middle of emitting it
9072 so we know where the new DIE should go. */
9073
9074 for (i = decl_scope_depth - 1; i >= 0; --i)
9075 if (decl_scope_table[i] == containing_scope)
9076 break;
9077
9078 if (i < 0)
9079 {
9080 if (debug_info_level > DINFO_LEVEL_TERSE
9081 && !TREE_ASM_WRITTEN (containing_scope))
9082 abort ();
9083
9084 /* If none of the current dies are suitable, we get file scope. */
9085 scope_die = comp_unit_die;
9086 }
9087 else
9088 scope_die = lookup_type_die (containing_scope);
9089 }
9090 else
9091 scope_die = context_die;
9092
9093 return scope_die;
9094 }
9095
9096 /* Returns nonzero iff CONTEXT_DIE is internal to a function. */
9097
9098 static inline int local_scope_p PARAMS ((dw_die_ref));
9099 static inline int
9100 local_scope_p (context_die)
9101 dw_die_ref context_die;
9102 {
9103 for (; context_die; context_die = context_die->die_parent)
9104 if (context_die->die_tag == DW_TAG_inlined_subroutine
9105 || context_die->die_tag == DW_TAG_subprogram)
9106 return 1;
9107 return 0;
9108 }
9109
9110 /* Returns nonzero iff CONTEXT_DIE is a class. */
9111
9112 static inline int class_scope_p PARAMS ((dw_die_ref));
9113 static inline int
9114 class_scope_p (context_die)
9115 dw_die_ref context_die;
9116 {
9117 return (context_die
9118 && (context_die->die_tag == DW_TAG_structure_type
9119 || context_die->die_tag == DW_TAG_union_type));
9120 }
9121
9122 /* Many forms of DIEs require a "type description" attribute. This
9123 routine locates the proper "type descriptor" die for the type given
9124 by 'type', and adds an DW_AT_type attribute below the given die. */
9125
9126 static void
9127 add_type_attribute (object_die, type, decl_const, decl_volatile, context_die)
9128 register dw_die_ref object_die;
9129 register tree type;
9130 register int decl_const;
9131 register int decl_volatile;
9132 register dw_die_ref context_die;
9133 {
9134 register enum tree_code code = TREE_CODE (type);
9135 register dw_die_ref type_die = NULL;
9136
9137 /* ??? If this type is an unnamed subrange type of an integral or
9138 floating-point type, use the inner type. This is because we have no
9139 support for unnamed types in base_type_die. This can happen if this is
9140 an Ada subrange type. Correct solution is emit a subrange type die. */
9141 if ((code == INTEGER_TYPE || code == REAL_TYPE)
9142 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
9143 type = TREE_TYPE (type), code = TREE_CODE (type);
9144
9145 if (code == ERROR_MARK)
9146 return;
9147
9148 /* Handle a special case. For functions whose return type is void, we
9149 generate *no* type attribute. (Note that no object may have type
9150 `void', so this only applies to function return types). */
9151 if (code == VOID_TYPE)
9152 return;
9153
9154 type_die = modified_type_die (type,
9155 decl_const || TYPE_READONLY (type),
9156 decl_volatile || TYPE_VOLATILE (type),
9157 context_die);
9158 if (type_die != NULL)
9159 add_AT_die_ref (object_die, DW_AT_type, type_die);
9160 }
9161
9162 /* Given a tree pointer to a struct, class, union, or enum type node, return
9163 a pointer to the (string) tag name for the given type, or zero if the type
9164 was declared without a tag. */
9165
9166 static const char *
9167 type_tag (type)
9168 register tree type;
9169 {
9170 register const char *name = 0;
9171
9172 if (TYPE_NAME (type) != 0)
9173 {
9174 register tree t = 0;
9175
9176 /* Find the IDENTIFIER_NODE for the type name. */
9177 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
9178 t = TYPE_NAME (type);
9179
9180 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
9181 a TYPE_DECL node, regardless of whether or not a `typedef' was
9182 involved. */
9183 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
9184 && ! DECL_IGNORED_P (TYPE_NAME (type)))
9185 t = DECL_NAME (TYPE_NAME (type));
9186
9187 /* Now get the name as a string, or invent one. */
9188 if (t != 0)
9189 name = IDENTIFIER_POINTER (t);
9190 }
9191
9192 return (name == 0 || *name == '\0') ? 0 : name;
9193 }
9194
9195 /* Return the type associated with a data member, make a special check
9196 for bit field types. */
9197
9198 static inline tree
9199 member_declared_type (member)
9200 register tree member;
9201 {
9202 return (DECL_BIT_FIELD_TYPE (member)
9203 ? DECL_BIT_FIELD_TYPE (member)
9204 : TREE_TYPE (member));
9205 }
9206
9207 /* Get the decl's label, as described by its RTL. This may be different
9208 from the DECL_NAME name used in the source file. */
9209
9210 #if 0
9211 static const char *
9212 decl_start_label (decl)
9213 register tree decl;
9214 {
9215 rtx x;
9216 const char *fnname;
9217 x = DECL_RTL (decl);
9218 if (GET_CODE (x) != MEM)
9219 abort ();
9220
9221 x = XEXP (x, 0);
9222 if (GET_CODE (x) != SYMBOL_REF)
9223 abort ();
9224
9225 fnname = XSTR (x, 0);
9226 return fnname;
9227 }
9228 #endif
9229 \f
9230 /* These routines generate the internal representation of the DIE's for
9231 the compilation unit. Debugging information is collected by walking
9232 the declaration trees passed in from dwarf2out_decl(). */
9233
9234 static void
9235 gen_array_type_die (type, context_die)
9236 register tree type;
9237 register dw_die_ref context_die;
9238 {
9239 register dw_die_ref scope_die = scope_die_for (type, context_die);
9240 register dw_die_ref array_die;
9241 register tree element_type;
9242
9243 /* ??? The SGI dwarf reader fails for array of array of enum types unless
9244 the inner array type comes before the outer array type. Thus we must
9245 call gen_type_die before we call new_die. See below also. */
9246 #ifdef MIPS_DEBUGGING_INFO
9247 gen_type_die (TREE_TYPE (type), context_die);
9248 #endif
9249
9250 array_die = new_die (DW_TAG_array_type, scope_die);
9251
9252 #if 0
9253 /* We default the array ordering. SDB will probably do
9254 the right things even if DW_AT_ordering is not present. It's not even
9255 an issue until we start to get into multidimensional arrays anyway. If
9256 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
9257 then we'll have to put the DW_AT_ordering attribute back in. (But if
9258 and when we find out that we need to put these in, we will only do so
9259 for multidimensional arrays. */
9260 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
9261 #endif
9262
9263 #ifdef MIPS_DEBUGGING_INFO
9264 /* The SGI compilers handle arrays of unknown bound by setting
9265 AT_declaration and not emitting any subrange DIEs. */
9266 if (! TYPE_DOMAIN (type))
9267 add_AT_unsigned (array_die, DW_AT_declaration, 1);
9268 else
9269 #endif
9270 add_subscript_info (array_die, type);
9271
9272 add_name_attribute (array_die, type_tag (type));
9273 equate_type_number_to_die (type, array_die);
9274
9275 /* Add representation of the type of the elements of this array type. */
9276 element_type = TREE_TYPE (type);
9277
9278 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9279 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9280 We work around this by disabling this feature. See also
9281 add_subscript_info. */
9282 #ifndef MIPS_DEBUGGING_INFO
9283 while (TREE_CODE (element_type) == ARRAY_TYPE)
9284 element_type = TREE_TYPE (element_type);
9285
9286 gen_type_die (element_type, context_die);
9287 #endif
9288
9289 add_type_attribute (array_die, element_type, 0, 0, context_die);
9290 }
9291
9292 static void
9293 gen_set_type_die (type, context_die)
9294 register tree type;
9295 register dw_die_ref context_die;
9296 {
9297 register dw_die_ref type_die
9298 = new_die (DW_TAG_set_type, scope_die_for (type, context_die));
9299
9300 equate_type_number_to_die (type, type_die);
9301 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
9302 }
9303
9304 #if 0
9305 static void
9306 gen_entry_point_die (decl, context_die)
9307 register tree decl;
9308 register dw_die_ref context_die;
9309 {
9310 register tree origin = decl_ultimate_origin (decl);
9311 register dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die);
9312 if (origin != NULL)
9313 add_abstract_origin_attribute (decl_die, origin);
9314 else
9315 {
9316 add_name_and_src_coords_attributes (decl_die, decl);
9317 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
9318 0, 0, context_die);
9319 }
9320
9321 if (DECL_ABSTRACT (decl))
9322 equate_decl_number_to_die (decl, decl_die);
9323 else
9324 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
9325 }
9326 #endif
9327
9328 /* Remember a type in the incomplete_types_list. */
9329
9330 static void
9331 add_incomplete_type (type)
9332 tree type;
9333 {
9334 if (incomplete_types == incomplete_types_allocated)
9335 {
9336 incomplete_types_allocated += INCOMPLETE_TYPES_INCREMENT;
9337 incomplete_types_list
9338 = (tree *) xrealloc (incomplete_types_list,
9339 sizeof (tree) * incomplete_types_allocated);
9340 }
9341
9342 incomplete_types_list[incomplete_types++] = type;
9343 }
9344
9345 /* Walk through the list of incomplete types again, trying once more to
9346 emit full debugging info for them. */
9347
9348 static void
9349 retry_incomplete_types ()
9350 {
9351 register tree type;
9352
9353 while (incomplete_types)
9354 {
9355 --incomplete_types;
9356 type = incomplete_types_list[incomplete_types];
9357 gen_type_die (type, comp_unit_die);
9358 }
9359 }
9360
9361 /* Generate a DIE to represent an inlined instance of an enumeration type. */
9362
9363 static void
9364 gen_inlined_enumeration_type_die (type, context_die)
9365 register tree type;
9366 register dw_die_ref context_die;
9367 {
9368 register dw_die_ref type_die = new_die (DW_TAG_enumeration_type,
9369 context_die);
9370 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
9371 be incomplete and such types are not marked. */
9372 add_abstract_origin_attribute (type_die, type);
9373 }
9374
9375 /* Generate a DIE to represent an inlined instance of a structure type. */
9376
9377 static void
9378 gen_inlined_structure_type_die (type, context_die)
9379 register tree type;
9380 register dw_die_ref context_die;
9381 {
9382 register dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die);
9383
9384 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
9385 be incomplete and such types are not marked. */
9386 add_abstract_origin_attribute (type_die, type);
9387 }
9388
9389 /* Generate a DIE to represent an inlined instance of a union type. */
9390
9391 static void
9392 gen_inlined_union_type_die (type, context_die)
9393 register tree type;
9394 register dw_die_ref context_die;
9395 {
9396 register dw_die_ref type_die = new_die (DW_TAG_union_type, context_die);
9397
9398 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
9399 be incomplete and such types are not marked. */
9400 add_abstract_origin_attribute (type_die, type);
9401 }
9402
9403 /* Generate a DIE to represent an enumeration type. Note that these DIEs
9404 include all of the information about the enumeration values also. Each
9405 enumerated type name/value is listed as a child of the enumerated type
9406 DIE. */
9407
9408 static void
9409 gen_enumeration_type_die (type, context_die)
9410 register tree type;
9411 register dw_die_ref context_die;
9412 {
9413 register dw_die_ref type_die = lookup_type_die (type);
9414
9415 if (type_die == NULL)
9416 {
9417 type_die = new_die (DW_TAG_enumeration_type,
9418 scope_die_for (type, context_die));
9419 equate_type_number_to_die (type, type_die);
9420 add_name_attribute (type_die, type_tag (type));
9421 }
9422 else if (! TYPE_SIZE (type))
9423 return;
9424 else
9425 remove_AT (type_die, DW_AT_declaration);
9426
9427 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
9428 given enum type is incomplete, do not generate the DW_AT_byte_size
9429 attribute or the DW_AT_element_list attribute. */
9430 if (TYPE_SIZE (type))
9431 {
9432 register tree link;
9433
9434 TREE_ASM_WRITTEN (type) = 1;
9435 add_byte_size_attribute (type_die, type);
9436 if (TYPE_STUB_DECL (type) != NULL_TREE)
9437 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
9438
9439 /* If the first reference to this type was as the return type of an
9440 inline function, then it may not have a parent. Fix this now. */
9441 if (type_die->die_parent == NULL)
9442 add_child_die (scope_die_for (type, context_die), type_die);
9443
9444 for (link = TYPE_FIELDS (type);
9445 link != NULL; link = TREE_CHAIN (link))
9446 {
9447 register dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die);
9448
9449 add_name_attribute (enum_die,
9450 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
9451
9452 if (host_integerp (TREE_VALUE (link), 0))
9453 {
9454 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
9455 add_AT_int (enum_die, DW_AT_const_value,
9456 tree_low_cst (TREE_VALUE (link), 0));
9457 else
9458 add_AT_unsigned (enum_die, DW_AT_const_value,
9459 tree_low_cst (TREE_VALUE (link), 0));
9460 }
9461 }
9462 }
9463 else
9464 add_AT_flag (type_die, DW_AT_declaration, 1);
9465 }
9466
9467 /* Generate a DIE to represent either a real live formal parameter decl or to
9468 represent just the type of some formal parameter position in some function
9469 type.
9470
9471 Note that this routine is a bit unusual because its argument may be a
9472 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
9473 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
9474 node. If it's the former then this function is being called to output a
9475 DIE to represent a formal parameter object (or some inlining thereof). If
9476 it's the latter, then this function is only being called to output a
9477 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
9478 argument type of some subprogram type. */
9479
9480 static dw_die_ref
9481 gen_formal_parameter_die (node, context_die)
9482 register tree node;
9483 register dw_die_ref context_die;
9484 {
9485 register dw_die_ref parm_die
9486 = new_die (DW_TAG_formal_parameter, context_die);
9487 register tree origin;
9488
9489 switch (TREE_CODE_CLASS (TREE_CODE (node)))
9490 {
9491 case 'd':
9492 origin = decl_ultimate_origin (node);
9493 if (origin != NULL)
9494 add_abstract_origin_attribute (parm_die, origin);
9495 else
9496 {
9497 add_name_and_src_coords_attributes (parm_die, node);
9498 add_type_attribute (parm_die, TREE_TYPE (node),
9499 TREE_READONLY (node),
9500 TREE_THIS_VOLATILE (node),
9501 context_die);
9502 if (DECL_ARTIFICIAL (node))
9503 add_AT_flag (parm_die, DW_AT_artificial, 1);
9504 }
9505
9506 equate_decl_number_to_die (node, parm_die);
9507 if (! DECL_ABSTRACT (node))
9508 add_location_or_const_value_attribute (parm_die, node);
9509
9510 break;
9511
9512 case 't':
9513 /* We were called with some kind of a ..._TYPE node. */
9514 add_type_attribute (parm_die, node, 0, 0, context_die);
9515 break;
9516
9517 default:
9518 abort ();
9519 }
9520
9521 return parm_die;
9522 }
9523
9524 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
9525 at the end of an (ANSI prototyped) formal parameters list. */
9526
9527 static void
9528 gen_unspecified_parameters_die (decl_or_type, context_die)
9529 register tree decl_or_type ATTRIBUTE_UNUSED;
9530 register dw_die_ref context_die;
9531 {
9532 new_die (DW_TAG_unspecified_parameters, context_die);
9533 }
9534
9535 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
9536 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
9537 parameters as specified in some function type specification (except for
9538 those which appear as part of a function *definition*). */
9539
9540 static void
9541 gen_formal_types_die (function_or_method_type, context_die)
9542 register tree function_or_method_type;
9543 register dw_die_ref context_die;
9544 {
9545 register tree link;
9546 register tree formal_type = NULL;
9547 register tree first_parm_type;
9548 tree arg;
9549
9550 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
9551 {
9552 arg = DECL_ARGUMENTS (function_or_method_type);
9553 function_or_method_type = TREE_TYPE (function_or_method_type);
9554 }
9555 else
9556 arg = NULL_TREE;
9557
9558 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
9559
9560 /* Make our first pass over the list of formal parameter types and output a
9561 DW_TAG_formal_parameter DIE for each one. */
9562 for (link = first_parm_type; link; )
9563 {
9564 register dw_die_ref parm_die;
9565
9566 formal_type = TREE_VALUE (link);
9567 if (formal_type == void_type_node)
9568 break;
9569
9570 /* Output a (nameless) DIE to represent the formal parameter itself. */
9571 parm_die = gen_formal_parameter_die (formal_type, context_die);
9572 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
9573 && link == first_parm_type)
9574 || (arg && DECL_ARTIFICIAL (arg)))
9575 add_AT_flag (parm_die, DW_AT_artificial, 1);
9576
9577 link = TREE_CHAIN (link);
9578 if (arg)
9579 arg = TREE_CHAIN (arg);
9580 }
9581
9582 /* If this function type has an ellipsis, add a
9583 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
9584 if (formal_type != void_type_node)
9585 gen_unspecified_parameters_die (function_or_method_type, context_die);
9586
9587 /* Make our second (and final) pass over the list of formal parameter types
9588 and output DIEs to represent those types (as necessary). */
9589 for (link = TYPE_ARG_TYPES (function_or_method_type);
9590 link;
9591 link = TREE_CHAIN (link))
9592 {
9593 formal_type = TREE_VALUE (link);
9594 if (formal_type == void_type_node)
9595 break;
9596
9597 gen_type_die (formal_type, context_die);
9598 }
9599 }
9600
9601 /* We want to generate the DIE for TYPE so that we can generate the
9602 die for MEMBER, which has been defined; we will need to refer back
9603 to the member declaration nested within TYPE. If we're trying to
9604 generate minimal debug info for TYPE, processing TYPE won't do the
9605 trick; we need to attach the member declaration by hand. */
9606
9607 static void
9608 gen_type_die_for_member (type, member, context_die)
9609 tree type, member;
9610 dw_die_ref context_die;
9611 {
9612 gen_type_die (type, context_die);
9613
9614 /* If we're trying to avoid duplicate debug info, we may not have
9615 emitted the member decl for this function. Emit it now. */
9616 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
9617 && ! lookup_decl_die (member))
9618 {
9619 if (decl_ultimate_origin (member))
9620 abort ();
9621
9622 push_decl_scope (type);
9623 if (TREE_CODE (member) == FUNCTION_DECL)
9624 gen_subprogram_die (member, lookup_type_die (type));
9625 else
9626 gen_variable_die (member, lookup_type_die (type));
9627 pop_decl_scope ();
9628 }
9629 }
9630
9631 /* Generate the DWARF2 info for the "abstract" instance
9632 of a function which we may later generate inlined and/or
9633 out-of-line instances of. */
9634
9635 static void
9636 dwarf2out_abstract_function (decl)
9637 tree decl;
9638 {
9639 register dw_die_ref old_die;
9640 tree save_fn;
9641 tree context;
9642 int was_abstract = DECL_ABSTRACT (decl);
9643
9644 /* Make sure we have the actual abstract inline, not a clone. */
9645 decl = DECL_ORIGIN (decl);
9646
9647 old_die = lookup_decl_die (decl);
9648 if (old_die && get_AT_unsigned (old_die, DW_AT_inline))
9649 /* We've already generated the abstract instance. */
9650 return;
9651
9652 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
9653 we don't get confused by DECL_ABSTRACT. */
9654 if (debug_info_level > DINFO_LEVEL_TERSE)
9655 {
9656 context = decl_class_context (decl);
9657 if (context)
9658 gen_type_die_for_member
9659 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
9660 }
9661
9662 /* Pretend we've just finished compiling this function. */
9663 save_fn = current_function_decl;
9664 current_function_decl = decl;
9665
9666 set_decl_abstract_flags (decl, 1);
9667 dwarf2out_decl (decl);
9668 if (! was_abstract)
9669 set_decl_abstract_flags (decl, 0);
9670
9671 current_function_decl = save_fn;
9672 }
9673
9674 /* Generate a DIE to represent a declared function (either file-scope or
9675 block-local). */
9676
9677 static void
9678 gen_subprogram_die (decl, context_die)
9679 register tree decl;
9680 register dw_die_ref context_die;
9681 {
9682 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
9683 register tree origin = decl_ultimate_origin (decl);
9684 register dw_die_ref subr_die;
9685 register rtx fp_reg;
9686 register tree fn_arg_types;
9687 register tree outer_scope;
9688 register dw_die_ref old_die = lookup_decl_die (decl);
9689 register int declaration = (current_function_decl != decl
9690 || class_scope_p (context_die));
9691
9692 /* Note that it is possible to have both DECL_ABSTRACT and `declaration'
9693 be true, if we started to generate the abstract instance of an inline,
9694 decided to output its containing class, and proceeded to emit the
9695 declaration of the inline from the member list for the class. In that
9696 case, `declaration' takes priority; we'll get back to the abstract
9697 instance when we're done with the class. */
9698
9699 /* The class-scope declaration DIE must be the primary DIE. */
9700 if (origin && declaration && class_scope_p (context_die))
9701 {
9702 origin = NULL;
9703 if (old_die)
9704 abort ();
9705 }
9706
9707 if (origin != NULL)
9708 {
9709 if (declaration && ! local_scope_p (context_die))
9710 abort ();
9711
9712 /* Fixup die_parent for the abstract instance of a nested
9713 inline function. */
9714 if (old_die && old_die->die_parent == NULL)
9715 add_child_die (context_die, old_die);
9716
9717 subr_die = new_die (DW_TAG_subprogram, context_die);
9718 add_abstract_origin_attribute (subr_die, origin);
9719 }
9720 else if (old_die)
9721 {
9722 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
9723
9724 if (!get_AT_flag (old_die, DW_AT_declaration)
9725 /* We can have a normal definition following an inline one in the
9726 case of redefinition of GNU C extern inlines.
9727 It seems reasonable to use AT_specification in this case. */
9728 && !get_AT_unsigned (old_die, DW_AT_inline))
9729 {
9730 /* ??? This can happen if there is a bug in the program, for
9731 instance, if it has duplicate function definitions. Ideally,
9732 we should detect this case and ignore it. For now, if we have
9733 already reported an error, any error at all, then assume that
9734 we got here because of a input error, not a dwarf2 bug. */
9735 if (errorcount)
9736 return;
9737 abort ();
9738 }
9739
9740 /* If the definition comes from the same place as the declaration,
9741 maybe use the old DIE. We always want the DIE for this function
9742 that has the *_pc attributes to be under comp_unit_die so the
9743 debugger can find it. We also need to do this for abstract
9744 instances of inlines, since the spec requires the out-of-line copy
9745 to have the same parent. For local class methods, this doesn't
9746 apply; we just use the old DIE. */
9747 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
9748 && (DECL_ARTIFICIAL (decl)
9749 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
9750 && (get_AT_unsigned (old_die, DW_AT_decl_line)
9751 == (unsigned) DECL_SOURCE_LINE (decl)))))
9752 {
9753 subr_die = old_die;
9754
9755 /* Clear out the declaration attribute and the parm types. */
9756 remove_AT (subr_die, DW_AT_declaration);
9757 remove_children (subr_die);
9758 }
9759 else
9760 {
9761 subr_die = new_die (DW_TAG_subprogram, context_die);
9762 add_AT_die_ref (subr_die, DW_AT_specification, old_die);
9763 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
9764 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
9765 if (get_AT_unsigned (old_die, DW_AT_decl_line)
9766 != (unsigned) DECL_SOURCE_LINE (decl))
9767 add_AT_unsigned
9768 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
9769 }
9770 }
9771 else
9772 {
9773 subr_die = new_die (DW_TAG_subprogram, context_die);
9774
9775 if (TREE_PUBLIC (decl))
9776 add_AT_flag (subr_die, DW_AT_external, 1);
9777
9778 add_name_and_src_coords_attributes (subr_die, decl);
9779 if (debug_info_level > DINFO_LEVEL_TERSE)
9780 {
9781 register tree type = TREE_TYPE (decl);
9782
9783 add_prototyped_attribute (subr_die, type);
9784 add_type_attribute (subr_die, TREE_TYPE (type), 0, 0, context_die);
9785 }
9786
9787 add_pure_or_virtual_attribute (subr_die, decl);
9788 if (DECL_ARTIFICIAL (decl))
9789 add_AT_flag (subr_die, DW_AT_artificial, 1);
9790 if (TREE_PROTECTED (decl))
9791 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
9792 else if (TREE_PRIVATE (decl))
9793 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
9794 }
9795
9796 if (declaration)
9797 {
9798 if (!(old_die && get_AT_unsigned (old_die, DW_AT_inline)))
9799 {
9800 add_AT_flag (subr_die, DW_AT_declaration, 1);
9801
9802 /* The first time we see a member function, it is in the context of
9803 the class to which it belongs. We make sure of this by emitting
9804 the class first. The next time is the definition, which is
9805 handled above. The two may come from the same source text. */
9806 if (DECL_CONTEXT (decl) || DECL_ABSTRACT (decl))
9807 equate_decl_number_to_die (decl, subr_die);
9808 }
9809 }
9810 else if (DECL_ABSTRACT (decl))
9811 {
9812 if (DECL_INLINE (decl) && !flag_no_inline)
9813 {
9814 /* ??? Checking DECL_DEFER_OUTPUT is correct for static
9815 inline functions, but not for extern inline functions.
9816 We can't get this completely correct because information
9817 about whether the function was declared inline is not
9818 saved anywhere. */
9819 if (DECL_DEFER_OUTPUT (decl))
9820 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
9821 else
9822 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
9823 }
9824 else
9825 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
9826
9827 equate_decl_number_to_die (decl, subr_die);
9828 }
9829 else if (!DECL_EXTERNAL (decl))
9830 {
9831 if (!(old_die && get_AT_unsigned (old_die, DW_AT_inline)))
9832 equate_decl_number_to_die (decl, subr_die);
9833
9834 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
9835 current_funcdef_number);
9836 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
9837 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
9838 current_funcdef_number);
9839 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
9840
9841 add_pubname (decl, subr_die);
9842 add_arange (decl, subr_die);
9843
9844 #ifdef MIPS_DEBUGGING_INFO
9845 /* Add a reference to the FDE for this routine. */
9846 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
9847 #endif
9848
9849 /* Define the "frame base" location for this routine. We use the
9850 frame pointer or stack pointer registers, since the RTL for local
9851 variables is relative to one of them. */
9852 fp_reg
9853 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
9854 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
9855
9856 #if 0
9857 /* ??? This fails for nested inline functions, because context_display
9858 is not part of the state saved/restored for inline functions. */
9859 if (current_function_needs_context)
9860 add_AT_location_description (subr_die, DW_AT_static_link,
9861 lookup_static_chain (decl));
9862 #endif
9863 }
9864
9865 /* Now output descriptions of the arguments for this function. This gets
9866 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
9867 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
9868 `...' at the end of the formal parameter list. In order to find out if
9869 there was a trailing ellipsis or not, we must instead look at the type
9870 associated with the FUNCTION_DECL. This will be a node of type
9871 FUNCTION_TYPE. If the chain of type nodes hanging off of this
9872 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
9873 an ellipsis at the end. */
9874
9875 /* In the case where we are describing a mere function declaration, all we
9876 need to do here (and all we *can* do here) is to describe the *types* of
9877 its formal parameters. */
9878 if (debug_info_level <= DINFO_LEVEL_TERSE)
9879 ;
9880 else if (declaration)
9881 gen_formal_types_die (decl, subr_die);
9882 else
9883 {
9884 /* Generate DIEs to represent all known formal parameters */
9885 register tree arg_decls = DECL_ARGUMENTS (decl);
9886 register tree parm;
9887
9888 /* When generating DIEs, generate the unspecified_parameters DIE
9889 instead if we come across the arg "__builtin_va_alist" */
9890 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
9891 if (TREE_CODE (parm) == PARM_DECL)
9892 {
9893 if (DECL_NAME (parm)
9894 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
9895 "__builtin_va_alist"))
9896 gen_unspecified_parameters_die (parm, subr_die);
9897 else
9898 gen_decl_die (parm, subr_die);
9899 }
9900
9901 /* Decide whether we need a unspecified_parameters DIE at the end.
9902 There are 2 more cases to do this for: 1) the ansi ... declaration -
9903 this is detectable when the end of the arg list is not a
9904 void_type_node 2) an unprototyped function declaration (not a
9905 definition). This just means that we have no info about the
9906 parameters at all. */
9907 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
9908 if (fn_arg_types != NULL)
9909 {
9910 /* this is the prototyped case, check for ... */
9911 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
9912 gen_unspecified_parameters_die (decl, subr_die);
9913 }
9914 else if (DECL_INITIAL (decl) == NULL_TREE)
9915 gen_unspecified_parameters_die (decl, subr_die);
9916 }
9917
9918 /* Output Dwarf info for all of the stuff within the body of the function
9919 (if it has one - it may be just a declaration). */
9920 outer_scope = DECL_INITIAL (decl);
9921
9922 /* Note that here, `outer_scope' is a pointer to the outermost BLOCK
9923 node created to represent a function. This outermost BLOCK actually
9924 represents the outermost binding contour for the function, i.e. the
9925 contour in which the function's formal parameters and labels get
9926 declared. Curiously, it appears that the front end doesn't actually
9927 put the PARM_DECL nodes for the current function onto the BLOCK_VARS
9928 list for this outer scope. (They are strung off of the DECL_ARGUMENTS
9929 list for the function instead.) The BLOCK_VARS list for the
9930 `outer_scope' does provide us with a list of the LABEL_DECL nodes for
9931 the function however, and we output DWARF info for those in
9932 decls_for_scope. Just within the `outer_scope' there will be a BLOCK
9933 node representing the function's outermost pair of curly braces, and
9934 any blocks used for the base and member initializers of a C++
9935 constructor function. */
9936 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
9937 {
9938 current_function_has_inlines = 0;
9939 decls_for_scope (outer_scope, subr_die, 0);
9940
9941 #if 0 && defined (MIPS_DEBUGGING_INFO)
9942 if (current_function_has_inlines)
9943 {
9944 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
9945 if (! comp_unit_has_inlines)
9946 {
9947 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
9948 comp_unit_has_inlines = 1;
9949 }
9950 }
9951 #endif
9952 }
9953 }
9954
9955 /* Generate a DIE to represent a declared data object. */
9956
9957 static void
9958 gen_variable_die (decl, context_die)
9959 register tree decl;
9960 register dw_die_ref context_die;
9961 {
9962 register tree origin = decl_ultimate_origin (decl);
9963 register dw_die_ref var_die = new_die (DW_TAG_variable, context_die);
9964
9965 dw_die_ref old_die = lookup_decl_die (decl);
9966 int declaration = (DECL_EXTERNAL (decl)
9967 || class_scope_p (context_die));
9968
9969 if (origin != NULL)
9970 add_abstract_origin_attribute (var_die, origin);
9971 /* Loop unrolling can create multiple blocks that refer to the same
9972 static variable, so we must test for the DW_AT_declaration flag. */
9973 /* ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
9974 copy decls and set the DECL_ABSTRACT flag on them instead of
9975 sharing them. */
9976 else if (old_die && TREE_STATIC (decl)
9977 && get_AT_flag (old_die, DW_AT_declaration) == 1)
9978 {
9979 /* This is a definition of a C++ class level static. */
9980 add_AT_die_ref (var_die, DW_AT_specification, old_die);
9981 if (DECL_NAME (decl))
9982 {
9983 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
9984
9985 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
9986 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
9987
9988 if (get_AT_unsigned (old_die, DW_AT_decl_line)
9989 != (unsigned) DECL_SOURCE_LINE (decl))
9990
9991 add_AT_unsigned (var_die, DW_AT_decl_line,
9992 DECL_SOURCE_LINE (decl));
9993 }
9994 }
9995 else
9996 {
9997 add_name_and_src_coords_attributes (var_die, decl);
9998 add_type_attribute (var_die, TREE_TYPE (decl),
9999 TREE_READONLY (decl),
10000 TREE_THIS_VOLATILE (decl), context_die);
10001
10002 if (TREE_PUBLIC (decl))
10003 add_AT_flag (var_die, DW_AT_external, 1);
10004
10005 if (DECL_ARTIFICIAL (decl))
10006 add_AT_flag (var_die, DW_AT_artificial, 1);
10007
10008 if (TREE_PROTECTED (decl))
10009 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
10010
10011 else if (TREE_PRIVATE (decl))
10012 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
10013 }
10014
10015 if (declaration)
10016 add_AT_flag (var_die, DW_AT_declaration, 1);
10017
10018 if (class_scope_p (context_die) || DECL_ABSTRACT (decl))
10019 equate_decl_number_to_die (decl, var_die);
10020
10021 if (! declaration && ! DECL_ABSTRACT (decl))
10022 {
10023 add_location_or_const_value_attribute (var_die, decl);
10024 add_pubname (decl, var_die);
10025 }
10026 else
10027 tree_add_const_value_attribute (var_die, decl);
10028 }
10029
10030 /* Generate a DIE to represent a label identifier. */
10031
10032 static void
10033 gen_label_die (decl, context_die)
10034 register tree decl;
10035 register dw_die_ref context_die;
10036 {
10037 register tree origin = decl_ultimate_origin (decl);
10038 register dw_die_ref lbl_die = new_die (DW_TAG_label, context_die);
10039 register rtx insn;
10040 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10041
10042 if (origin != NULL)
10043 add_abstract_origin_attribute (lbl_die, origin);
10044 else
10045 add_name_and_src_coords_attributes (lbl_die, decl);
10046
10047 if (DECL_ABSTRACT (decl))
10048 equate_decl_number_to_die (decl, lbl_die);
10049 else
10050 {
10051 insn = DECL_RTL (decl);
10052
10053 /* Deleted labels are programmer specified labels which have been
10054 eliminated because of various optimisations. We still emit them
10055 here so that it is possible to put breakpoints on them. */
10056 if (GET_CODE (insn) == CODE_LABEL
10057 || ((GET_CODE (insn) == NOTE
10058 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
10059 {
10060 /* When optimization is enabled (via -O) some parts of the compiler
10061 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
10062 represent source-level labels which were explicitly declared by
10063 the user. This really shouldn't be happening though, so catch
10064 it if it ever does happen. */
10065 if (INSN_DELETED_P (insn))
10066 abort ();
10067
10068 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
10069 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
10070 }
10071 }
10072 }
10073
10074 /* Generate a DIE for a lexical block. */
10075
10076 static void
10077 gen_lexical_block_die (stmt, context_die, depth)
10078 register tree stmt;
10079 register dw_die_ref context_die;
10080 int depth;
10081 {
10082 register dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die);
10083 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10084
10085 if (! BLOCK_ABSTRACT (stmt))
10086 {
10087 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
10088 BLOCK_NUMBER (stmt));
10089 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
10090 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
10091 BLOCK_NUMBER (stmt));
10092 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
10093 }
10094
10095 decls_for_scope (stmt, stmt_die, depth);
10096 }
10097
10098 /* Generate a DIE for an inlined subprogram. */
10099
10100 static void
10101 gen_inlined_subroutine_die (stmt, context_die, depth)
10102 register tree stmt;
10103 register dw_die_ref context_die;
10104 int depth;
10105 {
10106 if (! BLOCK_ABSTRACT (stmt))
10107 {
10108 register dw_die_ref subr_die
10109 = new_die (DW_TAG_inlined_subroutine, context_die);
10110 register tree decl = block_ultimate_origin (stmt);
10111 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10112
10113 /* Emit info for the abstract instance first, if we haven't yet. */
10114 dwarf2out_abstract_function (decl);
10115
10116 add_abstract_origin_attribute (subr_die, decl);
10117 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
10118 BLOCK_NUMBER (stmt));
10119 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
10120 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
10121 BLOCK_NUMBER (stmt));
10122 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
10123 decls_for_scope (stmt, subr_die, depth);
10124 current_function_has_inlines = 1;
10125 }
10126 }
10127
10128 /* Generate a DIE for a field in a record, or structure. */
10129
10130 static void
10131 gen_field_die (decl, context_die)
10132 register tree decl;
10133 register dw_die_ref context_die;
10134 {
10135 register dw_die_ref decl_die = new_die (DW_TAG_member, context_die);
10136
10137 add_name_and_src_coords_attributes (decl_die, decl);
10138 add_type_attribute (decl_die, member_declared_type (decl),
10139 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
10140 context_die);
10141
10142 /* If this is a bit field... */
10143 if (DECL_BIT_FIELD_TYPE (decl))
10144 {
10145 add_byte_size_attribute (decl_die, decl);
10146 add_bit_size_attribute (decl_die, decl);
10147 add_bit_offset_attribute (decl_die, decl);
10148 }
10149
10150 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
10151 add_data_member_location_attribute (decl_die, decl);
10152
10153 if (DECL_ARTIFICIAL (decl))
10154 add_AT_flag (decl_die, DW_AT_artificial, 1);
10155
10156 if (TREE_PROTECTED (decl))
10157 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
10158
10159 else if (TREE_PRIVATE (decl))
10160 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
10161 }
10162
10163 #if 0
10164 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
10165 Use modified_type_die instead.
10166 We keep this code here just in case these types of DIEs may be needed to
10167 represent certain things in other languages (e.g. Pascal) someday. */
10168 static void
10169 gen_pointer_type_die (type, context_die)
10170 register tree type;
10171 register dw_die_ref context_die;
10172 {
10173 register dw_die_ref ptr_die
10174 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die));
10175
10176 equate_type_number_to_die (type, ptr_die);
10177 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
10178 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
10179 }
10180
10181 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
10182 Use modified_type_die instead.
10183 We keep this code here just in case these types of DIEs may be needed to
10184 represent certain things in other languages (e.g. Pascal) someday. */
10185 static void
10186 gen_reference_type_die (type, context_die)
10187 register tree type;
10188 register dw_die_ref context_die;
10189 {
10190 register dw_die_ref ref_die
10191 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die));
10192
10193 equate_type_number_to_die (type, ref_die);
10194 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
10195 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
10196 }
10197 #endif
10198
10199 /* Generate a DIE for a pointer to a member type. */
10200 static void
10201 gen_ptr_to_mbr_type_die (type, context_die)
10202 register tree type;
10203 register dw_die_ref context_die;
10204 {
10205 register dw_die_ref ptr_die
10206 = new_die (DW_TAG_ptr_to_member_type, scope_die_for (type, context_die));
10207
10208 equate_type_number_to_die (type, ptr_die);
10209 add_AT_die_ref (ptr_die, DW_AT_containing_type,
10210 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
10211 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
10212 }
10213
10214 /* Generate the DIE for the compilation unit. */
10215
10216 static dw_die_ref
10217 gen_compile_unit_die (filename)
10218 register const char *filename;
10219 {
10220 register dw_die_ref die;
10221 char producer[250];
10222 const char *wd = getpwd ();
10223 int language;
10224
10225 die = new_die (DW_TAG_compile_unit, NULL);
10226 add_name_attribute (die, filename);
10227
10228 if (wd != NULL && filename[0] != DIR_SEPARATOR)
10229 add_AT_string (die, DW_AT_comp_dir, wd);
10230
10231 sprintf (producer, "%s %s", language_string, version_string);
10232
10233 #ifdef MIPS_DEBUGGING_INFO
10234 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
10235 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
10236 not appear in the producer string, the debugger reaches the conclusion
10237 that the object file is stripped and has no debugging information.
10238 To get the MIPS/SGI debugger to believe that there is debugging
10239 information in the object file, we add a -g to the producer string. */
10240 if (debug_info_level > DINFO_LEVEL_TERSE)
10241 strcat (producer, " -g");
10242 #endif
10243
10244 add_AT_string (die, DW_AT_producer, producer);
10245
10246 if (strcmp (language_string, "GNU C++") == 0)
10247 language = DW_LANG_C_plus_plus;
10248 else if (strcmp (language_string, "GNU Ada") == 0)
10249 language = DW_LANG_Ada83;
10250 else if (strcmp (language_string, "GNU F77") == 0)
10251 language = DW_LANG_Fortran77;
10252 else if (strcmp (language_string, "GNU Pascal") == 0)
10253 language = DW_LANG_Pascal83;
10254 else if (strcmp (language_string, "GNU Java") == 0)
10255 language = DW_LANG_Java;
10256 else if (flag_traditional)
10257 language = DW_LANG_C;
10258 else
10259 language = DW_LANG_C89;
10260
10261 add_AT_unsigned (die, DW_AT_language, language);
10262
10263 return die;
10264 }
10265
10266 /* Generate a DIE for a string type. */
10267
10268 static void
10269 gen_string_type_die (type, context_die)
10270 register tree type;
10271 register dw_die_ref context_die;
10272 {
10273 register dw_die_ref type_die
10274 = new_die (DW_TAG_string_type, scope_die_for (type, context_die));
10275
10276 equate_type_number_to_die (type, type_die);
10277
10278 /* Fudge the string length attribute for now. */
10279
10280 /* TODO: add string length info.
10281 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
10282 bound_representation (upper_bound, 0, 'u'); */
10283 }
10284
10285 /* Generate the DIE for a base class. */
10286
10287 static void
10288 gen_inheritance_die (binfo, context_die)
10289 register tree binfo;
10290 register dw_die_ref context_die;
10291 {
10292 dw_die_ref die = new_die (DW_TAG_inheritance, context_die);
10293
10294 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
10295 add_data_member_location_attribute (die, binfo);
10296
10297 if (TREE_VIA_VIRTUAL (binfo))
10298 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10299 if (TREE_VIA_PUBLIC (binfo))
10300 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
10301 else if (TREE_VIA_PROTECTED (binfo))
10302 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
10303 }
10304
10305 /* Generate a DIE for a class member. */
10306
10307 static void
10308 gen_member_die (type, context_die)
10309 register tree type;
10310 register dw_die_ref context_die;
10311 {
10312 register tree member;
10313 dw_die_ref child;
10314
10315 /* If this is not an incomplete type, output descriptions of each of its
10316 members. Note that as we output the DIEs necessary to represent the
10317 members of this record or union type, we will also be trying to output
10318 DIEs to represent the *types* of those members. However the `type'
10319 function (above) will specifically avoid generating type DIEs for member
10320 types *within* the list of member DIEs for this (containing) type execpt
10321 for those types (of members) which are explicitly marked as also being
10322 members of this (containing) type themselves. The g++ front- end can
10323 force any given type to be treated as a member of some other
10324 (containing) type by setting the TYPE_CONTEXT of the given (member) type
10325 to point to the TREE node representing the appropriate (containing)
10326 type. */
10327
10328 /* First output info about the base classes. */
10329 if (TYPE_BINFO (type) && TYPE_BINFO_BASETYPES (type))
10330 {
10331 register tree bases = TYPE_BINFO_BASETYPES (type);
10332 register int n_bases = TREE_VEC_LENGTH (bases);
10333 register int i;
10334
10335 for (i = 0; i < n_bases; i++)
10336 gen_inheritance_die (TREE_VEC_ELT (bases, i), context_die);
10337 }
10338
10339 /* Now output info about the data members and type members. */
10340 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
10341 {
10342 /* If we thought we were generating minimal debug info for TYPE
10343 and then changed our minds, some of the member declarations
10344 may have already been defined. Don't define them again, but
10345 do put them in the right order. */
10346
10347 child = lookup_decl_die (member);
10348 if (child)
10349 splice_child_die (context_die, child);
10350 else
10351 gen_decl_die (member, context_die);
10352 }
10353
10354 /* Now output info about the function members (if any). */
10355 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
10356 {
10357 /* Don't include clones in the member list. */
10358 if (DECL_ABSTRACT_ORIGIN (member))
10359 continue;
10360
10361 child = lookup_decl_die (member);
10362 if (child)
10363 splice_child_die (context_die, child);
10364 else
10365 gen_decl_die (member, context_die);
10366 }
10367 }
10368
10369 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
10370 is set, we pretend that the type was never defined, so we only get the
10371 member DIEs needed by later specification DIEs. */
10372
10373 static void
10374 gen_struct_or_union_type_die (type, context_die)
10375 register tree type;
10376 register dw_die_ref context_die;
10377 {
10378 register dw_die_ref type_die = lookup_type_die (type);
10379 register dw_die_ref scope_die = 0;
10380 register int nested = 0;
10381 int complete = (TYPE_SIZE (type)
10382 && (! TYPE_STUB_DECL (type)
10383 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
10384
10385 if (type_die && ! complete)
10386 return;
10387
10388 if (TYPE_CONTEXT (type) != NULL_TREE
10389 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type)))
10390 nested = 1;
10391
10392 scope_die = scope_die_for (type, context_die);
10393
10394 if (! type_die || (nested && scope_die == comp_unit_die))
10395 /* First occurrence of type or toplevel definition of nested class. */
10396 {
10397 register dw_die_ref old_die = type_die;
10398
10399 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
10400 ? DW_TAG_structure_type : DW_TAG_union_type,
10401 scope_die);
10402 equate_type_number_to_die (type, type_die);
10403 if (old_die)
10404 add_AT_die_ref (type_die, DW_AT_specification, old_die);
10405 else
10406 add_name_attribute (type_die, type_tag (type));
10407 }
10408 else
10409 remove_AT (type_die, DW_AT_declaration);
10410
10411 /* If this type has been completed, then give it a byte_size attribute and
10412 then give a list of members. */
10413 if (complete)
10414 {
10415 /* Prevent infinite recursion in cases where the type of some member of
10416 this type is expressed in terms of this type itself. */
10417 TREE_ASM_WRITTEN (type) = 1;
10418 add_byte_size_attribute (type_die, type);
10419 if (TYPE_STUB_DECL (type) != NULL_TREE)
10420 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10421
10422 /* If the first reference to this type was as the return type of an
10423 inline function, then it may not have a parent. Fix this now. */
10424 if (type_die->die_parent == NULL)
10425 add_child_die (scope_die, type_die);
10426
10427 push_decl_scope (type);
10428 gen_member_die (type, type_die);
10429 pop_decl_scope ();
10430
10431 /* GNU extension: Record what type our vtable lives in. */
10432 if (TYPE_VFIELD (type))
10433 {
10434 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
10435
10436 gen_type_die (vtype, context_die);
10437 add_AT_die_ref (type_die, DW_AT_containing_type,
10438 lookup_type_die (vtype));
10439 }
10440 }
10441 else
10442 {
10443 add_AT_flag (type_die, DW_AT_declaration, 1);
10444
10445 /* We don't need to do this for function-local types. */
10446 if (! decl_function_context (TYPE_STUB_DECL (type)))
10447 add_incomplete_type (type);
10448 }
10449 }
10450
10451 /* Generate a DIE for a subroutine _type_. */
10452
10453 static void
10454 gen_subroutine_type_die (type, context_die)
10455 register tree type;
10456 register dw_die_ref context_die;
10457 {
10458 register tree return_type = TREE_TYPE (type);
10459 register dw_die_ref subr_die
10460 = new_die (DW_TAG_subroutine_type, scope_die_for (type, context_die));
10461
10462 equate_type_number_to_die (type, subr_die);
10463 add_prototyped_attribute (subr_die, type);
10464 add_type_attribute (subr_die, return_type, 0, 0, context_die);
10465 gen_formal_types_die (type, subr_die);
10466 }
10467
10468 /* Generate a DIE for a type definition */
10469
10470 static void
10471 gen_typedef_die (decl, context_die)
10472 register tree decl;
10473 register dw_die_ref context_die;
10474 {
10475 register dw_die_ref type_die;
10476 register tree origin;
10477
10478 if (TREE_ASM_WRITTEN (decl))
10479 return;
10480 TREE_ASM_WRITTEN (decl) = 1;
10481
10482 type_die = new_die (DW_TAG_typedef, context_die);
10483 origin = decl_ultimate_origin (decl);
10484 if (origin != NULL)
10485 add_abstract_origin_attribute (type_die, origin);
10486 else
10487 {
10488 register tree type;
10489 add_name_and_src_coords_attributes (type_die, decl);
10490 if (DECL_ORIGINAL_TYPE (decl))
10491 {
10492 type = DECL_ORIGINAL_TYPE (decl);
10493
10494 if (type == TREE_TYPE (decl))
10495 abort ();
10496 else
10497 equate_type_number_to_die (TREE_TYPE (decl), type_die);
10498 }
10499 else
10500 type = TREE_TYPE (decl);
10501 add_type_attribute (type_die, type, TREE_READONLY (decl),
10502 TREE_THIS_VOLATILE (decl), context_die);
10503 }
10504
10505 if (DECL_ABSTRACT (decl))
10506 equate_decl_number_to_die (decl, type_die);
10507 }
10508
10509 /* Generate a type description DIE. */
10510
10511 static void
10512 gen_type_die (type, context_die)
10513 register tree type;
10514 register dw_die_ref context_die;
10515 {
10516 int need_pop;
10517
10518 if (type == NULL_TREE || type == error_mark_node)
10519 return;
10520
10521 /* We are going to output a DIE to represent the unqualified version of
10522 this type (i.e. without any const or volatile qualifiers) so get the
10523 main variant (i.e. the unqualified version) of this type now. */
10524 type = type_main_variant (type);
10525
10526 if (TREE_ASM_WRITTEN (type))
10527 return;
10528
10529 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10530 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
10531 {
10532 TREE_ASM_WRITTEN (type) = 1;
10533 gen_decl_die (TYPE_NAME (type), context_die);
10534 return;
10535 }
10536
10537 switch (TREE_CODE (type))
10538 {
10539 case ERROR_MARK:
10540 break;
10541
10542 case POINTER_TYPE:
10543 case REFERENCE_TYPE:
10544 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
10545 ensures that the gen_type_die recursion will terminate even if the
10546 type is recursive. Recursive types are possible in Ada. */
10547 /* ??? We could perhaps do this for all types before the switch
10548 statement. */
10549 TREE_ASM_WRITTEN (type) = 1;
10550
10551 /* For these types, all that is required is that we output a DIE (or a
10552 set of DIEs) to represent the "basis" type. */
10553 gen_type_die (TREE_TYPE (type), context_die);
10554 break;
10555
10556 case OFFSET_TYPE:
10557 /* This code is used for C++ pointer-to-data-member types.
10558 Output a description of the relevant class type. */
10559 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
10560
10561 /* Output a description of the type of the object pointed to. */
10562 gen_type_die (TREE_TYPE (type), context_die);
10563
10564 /* Now output a DIE to represent this pointer-to-data-member type
10565 itself. */
10566 gen_ptr_to_mbr_type_die (type, context_die);
10567 break;
10568
10569 case SET_TYPE:
10570 gen_type_die (TYPE_DOMAIN (type), context_die);
10571 gen_set_type_die (type, context_die);
10572 break;
10573
10574 case FILE_TYPE:
10575 gen_type_die (TREE_TYPE (type), context_die);
10576 abort (); /* No way to represent these in Dwarf yet! */
10577 break;
10578
10579 case FUNCTION_TYPE:
10580 /* Force out return type (in case it wasn't forced out already). */
10581 gen_type_die (TREE_TYPE (type), context_die);
10582 gen_subroutine_type_die (type, context_die);
10583 break;
10584
10585 case METHOD_TYPE:
10586 /* Force out return type (in case it wasn't forced out already). */
10587 gen_type_die (TREE_TYPE (type), context_die);
10588 gen_subroutine_type_die (type, context_die);
10589 break;
10590
10591 case ARRAY_TYPE:
10592 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
10593 {
10594 gen_type_die (TREE_TYPE (type), context_die);
10595 gen_string_type_die (type, context_die);
10596 }
10597 else
10598 gen_array_type_die (type, context_die);
10599 break;
10600
10601 case VECTOR_TYPE:
10602 gen_type_die (TYPE_DEBUG_REPRESENTATION_TYPE (type), context_die);
10603 break;
10604
10605 case ENUMERAL_TYPE:
10606 case RECORD_TYPE:
10607 case UNION_TYPE:
10608 case QUAL_UNION_TYPE:
10609 /* If this is a nested type whose containing class hasn't been
10610 written out yet, writing it out will cover this one, too.
10611 This does not apply to instantiations of member class templates;
10612 they need to be added to the containing class as they are
10613 generated. FIXME: This hurts the idea of combining type decls
10614 from multiple TUs, since we can't predict what set of template
10615 instantiations we'll get. */
10616 if (TYPE_CONTEXT (type)
10617 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
10618 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
10619 {
10620 gen_type_die (TYPE_CONTEXT (type), context_die);
10621
10622 if (TREE_ASM_WRITTEN (type))
10623 return;
10624
10625 /* If that failed, attach ourselves to the stub. */
10626 push_decl_scope (TYPE_CONTEXT (type));
10627 context_die = lookup_type_die (TYPE_CONTEXT (type));
10628 need_pop = 1;
10629 }
10630 else
10631 need_pop = 0;
10632
10633 if (TREE_CODE (type) == ENUMERAL_TYPE)
10634 gen_enumeration_type_die (type, context_die);
10635 else
10636 gen_struct_or_union_type_die (type, context_die);
10637
10638 if (need_pop)
10639 pop_decl_scope ();
10640
10641 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
10642 it up if it is ever completed. gen_*_type_die will set it for us
10643 when appropriate. */
10644 return;
10645
10646 case VOID_TYPE:
10647 case INTEGER_TYPE:
10648 case REAL_TYPE:
10649 case COMPLEX_TYPE:
10650 case BOOLEAN_TYPE:
10651 case CHAR_TYPE:
10652 /* No DIEs needed for fundamental types. */
10653 break;
10654
10655 case LANG_TYPE:
10656 /* No Dwarf representation currently defined. */
10657 break;
10658
10659 default:
10660 abort ();
10661 }
10662
10663 TREE_ASM_WRITTEN (type) = 1;
10664 }
10665
10666 /* Generate a DIE for a tagged type instantiation. */
10667
10668 static void
10669 gen_tagged_type_instantiation_die (type, context_die)
10670 register tree type;
10671 register dw_die_ref context_die;
10672 {
10673 if (type == NULL_TREE || type == error_mark_node)
10674 return;
10675
10676 /* We are going to output a DIE to represent the unqualified version of
10677 this type (i.e. without any const or volatile qualifiers) so make sure
10678 that we have the main variant (i.e. the unqualified version) of this
10679 type now. */
10680 if (type != type_main_variant (type))
10681 abort ();
10682
10683 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
10684 an instance of an unresolved type. */
10685
10686 switch (TREE_CODE (type))
10687 {
10688 case ERROR_MARK:
10689 break;
10690
10691 case ENUMERAL_TYPE:
10692 gen_inlined_enumeration_type_die (type, context_die);
10693 break;
10694
10695 case RECORD_TYPE:
10696 gen_inlined_structure_type_die (type, context_die);
10697 break;
10698
10699 case UNION_TYPE:
10700 case QUAL_UNION_TYPE:
10701 gen_inlined_union_type_die (type, context_die);
10702 break;
10703
10704 default:
10705 abort ();
10706 }
10707 }
10708
10709 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
10710 things which are local to the given block. */
10711
10712 static void
10713 gen_block_die (stmt, context_die, depth)
10714 register tree stmt;
10715 register dw_die_ref context_die;
10716 int depth;
10717 {
10718 register int must_output_die = 0;
10719 register tree origin;
10720 register tree decl;
10721 register enum tree_code origin_code;
10722
10723 /* Ignore blocks never really used to make RTL. */
10724
10725 if (stmt == NULL_TREE || !TREE_USED (stmt)
10726 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
10727 return;
10728
10729 /* Determine the "ultimate origin" of this block. This block may be an
10730 inlined instance of an inlined instance of inline function, so we have
10731 to trace all of the way back through the origin chain to find out what
10732 sort of node actually served as the original seed for the creation of
10733 the current block. */
10734 origin = block_ultimate_origin (stmt);
10735 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
10736
10737 /* Determine if we need to output any Dwarf DIEs at all to represent this
10738 block. */
10739 if (origin_code == FUNCTION_DECL)
10740 /* The outer scopes for inlinings *must* always be represented. We
10741 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
10742 must_output_die = 1;
10743 else
10744 {
10745 /* In the case where the current block represents an inlining of the
10746 "body block" of an inline function, we must *NOT* output any DIE for
10747 this block because we have already output a DIE to represent the
10748 whole inlined function scope and the "body block" of any function
10749 doesn't really represent a different scope according to ANSI C
10750 rules. So we check here to make sure that this block does not
10751 represent a "body block inlining" before trying to set the
10752 `must_output_die' flag. */
10753 if (! is_body_block (origin ? origin : stmt))
10754 {
10755 /* Determine if this block directly contains any "significant"
10756 local declarations which we will need to output DIEs for. */
10757 if (debug_info_level > DINFO_LEVEL_TERSE)
10758 /* We are not in terse mode so *any* local declaration counts
10759 as being a "significant" one. */
10760 must_output_die = (BLOCK_VARS (stmt) != NULL);
10761 else
10762 /* We are in terse mode, so only local (nested) function
10763 definitions count as "significant" local declarations. */
10764 for (decl = BLOCK_VARS (stmt);
10765 decl != NULL; decl = TREE_CHAIN (decl))
10766 if (TREE_CODE (decl) == FUNCTION_DECL
10767 && DECL_INITIAL (decl))
10768 {
10769 must_output_die = 1;
10770 break;
10771 }
10772 }
10773 }
10774
10775 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
10776 DIE for any block which contains no significant local declarations at
10777 all. Rather, in such cases we just call `decls_for_scope' so that any
10778 needed Dwarf info for any sub-blocks will get properly generated. Note
10779 that in terse mode, our definition of what constitutes a "significant"
10780 local declaration gets restricted to include only inlined function
10781 instances and local (nested) function definitions. */
10782 if (must_output_die)
10783 {
10784 if (origin_code == FUNCTION_DECL)
10785 gen_inlined_subroutine_die (stmt, context_die, depth);
10786 else
10787 gen_lexical_block_die (stmt, context_die, depth);
10788 }
10789 else
10790 decls_for_scope (stmt, context_die, depth);
10791 }
10792
10793 /* Generate all of the decls declared within a given scope and (recursively)
10794 all of its sub-blocks. */
10795
10796 static void
10797 decls_for_scope (stmt, context_die, depth)
10798 register tree stmt;
10799 register dw_die_ref context_die;
10800 int depth;
10801 {
10802 register tree decl;
10803 register tree subblocks;
10804
10805 /* Ignore blocks never really used to make RTL. */
10806 if (stmt == NULL_TREE || ! TREE_USED (stmt))
10807 return;
10808
10809 /* Output the DIEs to represent all of the data objects and typedefs
10810 declared directly within this block but not within any nested
10811 sub-blocks. Also, nested function and tag DIEs have been
10812 generated with a parent of NULL; fix that up now. */
10813 for (decl = BLOCK_VARS (stmt);
10814 decl != NULL; decl = TREE_CHAIN (decl))
10815 {
10816 register dw_die_ref die;
10817
10818 if (TREE_CODE (decl) == FUNCTION_DECL)
10819 die = lookup_decl_die (decl);
10820 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
10821 die = lookup_type_die (TREE_TYPE (decl));
10822 else
10823 die = NULL;
10824
10825 if (die != NULL && die->die_parent == NULL)
10826 add_child_die (context_die, die);
10827 else
10828 gen_decl_die (decl, context_die);
10829 }
10830
10831 /* Output the DIEs to represent all sub-blocks (and the items declared
10832 therein) of this block. */
10833 for (subblocks = BLOCK_SUBBLOCKS (stmt);
10834 subblocks != NULL;
10835 subblocks = BLOCK_CHAIN (subblocks))
10836 gen_block_die (subblocks, context_die, depth + 1);
10837 }
10838
10839 /* Is this a typedef we can avoid emitting? */
10840
10841 static inline int
10842 is_redundant_typedef (decl)
10843 register tree decl;
10844 {
10845 if (TYPE_DECL_IS_STUB (decl))
10846 return 1;
10847
10848 if (DECL_ARTIFICIAL (decl)
10849 && DECL_CONTEXT (decl)
10850 && is_tagged_type (DECL_CONTEXT (decl))
10851 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
10852 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
10853 /* Also ignore the artificial member typedef for the class name. */
10854 return 1;
10855
10856 return 0;
10857 }
10858
10859 /* Generate Dwarf debug information for a decl described by DECL. */
10860
10861 static void
10862 gen_decl_die (decl, context_die)
10863 register tree decl;
10864 register dw_die_ref context_die;
10865 {
10866 register tree origin;
10867
10868 if (TREE_CODE (decl) == ERROR_MARK)
10869 return;
10870
10871 /* If this ..._DECL node is marked to be ignored, then ignore it. */
10872 if (DECL_IGNORED_P (decl))
10873 return;
10874
10875 switch (TREE_CODE (decl))
10876 {
10877 case CONST_DECL:
10878 /* The individual enumerators of an enum type get output when we output
10879 the Dwarf representation of the relevant enum type itself. */
10880 break;
10881
10882 case FUNCTION_DECL:
10883 /* Don't output any DIEs to represent mere function declarations,
10884 unless they are class members or explicit block externs. */
10885 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
10886 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
10887 break;
10888
10889 /* If we're emitting a clone, emit info for the abstract instance. */
10890 if (DECL_ORIGIN (decl) != decl)
10891 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
10892 /* If we're emitting an out-of-line copy of an inline function,
10893 emit info for the abstract instance and set up to refer to it. */
10894 else if (DECL_INLINE (decl) && ! DECL_ABSTRACT (decl)
10895 && ! class_scope_p (context_die)
10896 /* dwarf2out_abstract_function won't emit a die if this is just
10897 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
10898 that case, because that works only if we have a die. */
10899 && DECL_INITIAL (decl) != NULL_TREE)
10900 {
10901 dwarf2out_abstract_function (decl);
10902 set_decl_origin_self (decl);
10903 }
10904 /* Otherwise we're emitting the primary DIE for this decl. */
10905 else if (debug_info_level > DINFO_LEVEL_TERSE)
10906 {
10907 /* Before we describe the FUNCTION_DECL itself, make sure that we
10908 have described its return type. */
10909 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
10910
10911 /* And its virtual context. */
10912 if (DECL_VINDEX (decl) != NULL_TREE)
10913 gen_type_die (DECL_CONTEXT (decl), context_die);
10914
10915 /* And its containing type. */
10916 origin = decl_class_context (decl);
10917 if (origin != NULL_TREE)
10918 gen_type_die_for_member (origin, decl, context_die);
10919 }
10920
10921 /* Now output a DIE to represent the function itself. */
10922 gen_subprogram_die (decl, context_die);
10923 break;
10924
10925 case TYPE_DECL:
10926 /* If we are in terse mode, don't generate any DIEs to represent any
10927 actual typedefs. */
10928 if (debug_info_level <= DINFO_LEVEL_TERSE)
10929 break;
10930
10931 /* In the special case of a TYPE_DECL node representing the
10932 declaration of some type tag, if the given TYPE_DECL is marked as
10933 having been instantiated from some other (original) TYPE_DECL node
10934 (e.g. one which was generated within the original definition of an
10935 inline function) we have to generate a special (abbreviated)
10936 DW_TAG_structure_type, DW_TAG_union_type, or DW_TAG_enumeration_type
10937 DIE here. */
10938 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
10939 {
10940 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
10941 break;
10942 }
10943
10944 if (is_redundant_typedef (decl))
10945 gen_type_die (TREE_TYPE (decl), context_die);
10946 else
10947 /* Output a DIE to represent the typedef itself. */
10948 gen_typedef_die (decl, context_die);
10949 break;
10950
10951 case LABEL_DECL:
10952 if (debug_info_level >= DINFO_LEVEL_NORMAL)
10953 gen_label_die (decl, context_die);
10954 break;
10955
10956 case VAR_DECL:
10957 /* If we are in terse mode, don't generate any DIEs to represent any
10958 variable declarations or definitions. */
10959 if (debug_info_level <= DINFO_LEVEL_TERSE)
10960 break;
10961
10962 /* Output any DIEs that are needed to specify the type of this data
10963 object. */
10964 gen_type_die (TREE_TYPE (decl), context_die);
10965
10966 /* And its containing type. */
10967 origin = decl_class_context (decl);
10968 if (origin != NULL_TREE)
10969 gen_type_die_for_member (origin, decl, context_die);
10970
10971 /* Now output the DIE to represent the data object itself. This gets
10972 complicated because of the possibility that the VAR_DECL really
10973 represents an inlined instance of a formal parameter for an inline
10974 function. */
10975 origin = decl_ultimate_origin (decl);
10976 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
10977 gen_formal_parameter_die (decl, context_die);
10978 else
10979 gen_variable_die (decl, context_die);
10980 break;
10981
10982 case FIELD_DECL:
10983 /* Ignore the nameless fields that are used to skip bits, but
10984 handle C++ anonymous unions. */
10985 if (DECL_NAME (decl) != NULL_TREE
10986 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
10987 {
10988 gen_type_die (member_declared_type (decl), context_die);
10989 gen_field_die (decl, context_die);
10990 }
10991 break;
10992
10993 case PARM_DECL:
10994 gen_type_die (TREE_TYPE (decl), context_die);
10995 gen_formal_parameter_die (decl, context_die);
10996 break;
10997
10998 case NAMESPACE_DECL:
10999 /* Ignore for now. */
11000 break;
11001
11002 default:
11003 abort ();
11004 }
11005 }
11006 \f
11007 /* Add Ada "use" clause information for SGI Workshop debugger. */
11008
11009 void
11010 dwarf2out_add_library_unit_info (filename, context_list)
11011 const char *filename;
11012 const char *context_list;
11013 {
11014 unsigned int file_index;
11015
11016 if (filename != NULL)
11017 {
11018 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die);
11019 tree context_list_decl
11020 = build_decl (LABEL_DECL, get_identifier (context_list),
11021 void_type_node);
11022
11023 TREE_PUBLIC (context_list_decl) = TRUE;
11024 add_name_attribute (unit_die, context_list);
11025 file_index = lookup_filename (filename);
11026 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
11027 add_pubname (context_list_decl, unit_die);
11028 }
11029 }
11030
11031 /* Debug information for a global DECL. Called from toplev.c after
11032 compilation proper has finished. */
11033 static void
11034 dwarf2out_global_decl (decl)
11035 tree decl;
11036 {
11037 /* Output DWARF2 information for file-scope tentative data object
11038 declarations, file-scope (extern) function declarations (which
11039 had no corresponding body) and file-scope tagged type
11040 declarations and definitions which have not yet been forced out. */
11041
11042 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
11043 dwarf2out_decl (decl);
11044 }
11045
11046 /* Write the debugging output for DECL. */
11047
11048 void
11049 dwarf2out_decl (decl)
11050 register tree decl;
11051 {
11052 register dw_die_ref context_die = comp_unit_die;
11053
11054 if (TREE_CODE (decl) == ERROR_MARK)
11055 return;
11056
11057 /* If this ..._DECL node is marked to be ignored, then ignore it. */
11058 if (DECL_IGNORED_P (decl))
11059 return;
11060
11061 switch (TREE_CODE (decl))
11062 {
11063 case FUNCTION_DECL:
11064 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
11065 builtin function. Explicit programmer-supplied declarations of
11066 these same functions should NOT be ignored however. */
11067 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
11068 return;
11069
11070 /* What we would really like to do here is to filter out all mere
11071 file-scope declarations of file-scope functions which are never
11072 referenced later within this translation unit (and keep all of ones
11073 that *are* referenced later on) but we aren't clairvoyant, so we have
11074 no idea which functions will be referenced in the future (i.e. later
11075 on within the current translation unit). So here we just ignore all
11076 file-scope function declarations which are not also definitions. If
11077 and when the debugger needs to know something about these functions,
11078 it will have to hunt around and find the DWARF information associated
11079 with the definition of the function. Note that we can't just check
11080 `DECL_EXTERNAL' to find out which FUNCTION_DECL nodes represent
11081 definitions and which ones represent mere declarations. We have to
11082 check `DECL_INITIAL' instead. That's because the C front-end
11083 supports some weird semantics for "extern inline" function
11084 definitions. These can get inlined within the current translation
11085 unit (an thus, we need to generate DWARF info for their abstract
11086 instances so that the DWARF info for the concrete inlined instances
11087 can have something to refer to) but the compiler never generates any
11088 out-of-lines instances of such things (despite the fact that they
11089 *are* definitions). The important point is that the C front-end
11090 marks these "extern inline" functions as DECL_EXTERNAL, but we need
11091 to generate DWARF for them anyway. Note that the C++ front-end also
11092 plays some similar games for inline function definitions appearing
11093 within include files which also contain
11094 `#pragma interface' pragmas. */
11095 if (DECL_INITIAL (decl) == NULL_TREE)
11096 return;
11097
11098 /* If we're a nested function, initially use a parent of NULL; if we're
11099 a plain function, this will be fixed up in decls_for_scope. If
11100 we're a method, it will be ignored, since we already have a DIE. */
11101 if (decl_function_context (decl))
11102 context_die = NULL;
11103
11104 break;
11105
11106 case VAR_DECL:
11107 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
11108 declaration and if the declaration was never even referenced from
11109 within this entire compilation unit. We suppress these DIEs in
11110 order to save space in the .debug section (by eliminating entries
11111 which are probably useless). Note that we must not suppress
11112 block-local extern declarations (whether used or not) because that
11113 would screw-up the debugger's name lookup mechanism and cause it to
11114 miss things which really ought to be in scope at a given point. */
11115 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
11116 return;
11117
11118 /* If we are in terse mode, don't generate any DIEs to represent any
11119 variable declarations or definitions. */
11120 if (debug_info_level <= DINFO_LEVEL_TERSE)
11121 return;
11122 break;
11123
11124 case TYPE_DECL:
11125 /* Don't emit stubs for types unless they are needed by other DIEs. */
11126 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
11127 return;
11128
11129 /* Don't bother trying to generate any DIEs to represent any of the
11130 normal built-in types for the language we are compiling. */
11131 if (DECL_SOURCE_LINE (decl) == 0)
11132 {
11133 /* OK, we need to generate one for `bool' so GDB knows what type
11134 comparisons have. */
11135 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
11136 == DW_LANG_C_plus_plus)
11137 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE)
11138 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
11139
11140 return;
11141 }
11142
11143 /* If we are in terse mode, don't generate any DIEs for types. */
11144 if (debug_info_level <= DINFO_LEVEL_TERSE)
11145 return;
11146
11147 /* If we're a function-scope tag, initially use a parent of NULL;
11148 this will be fixed up in decls_for_scope. */
11149 if (decl_function_context (decl))
11150 context_die = NULL;
11151
11152 break;
11153
11154 default:
11155 return;
11156 }
11157
11158 gen_decl_die (decl, context_die);
11159 }
11160
11161 /* Output a marker (i.e. a label) for the beginning of the generated code for
11162 a lexical block. */
11163
11164 static void
11165 dwarf2out_begin_block (line, blocknum)
11166 unsigned int line ATTRIBUTE_UNUSED;
11167 unsigned int blocknum;
11168 {
11169 function_section (current_function_decl);
11170 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
11171 }
11172
11173 /* Output a marker (i.e. a label) for the end of the generated code for a
11174 lexical block. */
11175
11176 static void
11177 dwarf2out_end_block (line, blocknum)
11178 unsigned int line ATTRIBUTE_UNUSED;
11179 unsigned int blocknum;
11180 {
11181 function_section (current_function_decl);
11182 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
11183 }
11184
11185 /* Returns nonzero if it is appropriate not to emit any debugging
11186 information for BLOCK, because it doesn't contain any instructions.
11187
11188 Don't allow this for blocks with nested functions or local classes
11189 as we would end up with orphans, and in the presence of scheduling
11190 we may end up calling them anyway. */
11191
11192 static bool
11193 dwarf2out_ignore_block (block)
11194 tree block;
11195 {
11196 tree decl;
11197 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
11198 if (TREE_CODE (decl) == FUNCTION_DECL
11199 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
11200 return 0;
11201 return 1;
11202 }
11203
11204 /* Lookup a filename (in the list of filenames that we know about here in
11205 dwarf2out.c) and return its "index". The index of each (known) filename is
11206 just a unique number which is associated with only that one filename.
11207 We need such numbers for the sake of generating labels
11208 (in the .debug_sfnames section) and references to those
11209 files numbers (in the .debug_srcinfo and.debug_macinfo sections).
11210 If the filename given as an argument is not found in our current list,
11211 add it to the list and assign it the next available unique index number.
11212 In order to speed up searches, we remember the index of the filename
11213 was looked up last. This handles the majority of all searches. */
11214
11215 static unsigned
11216 lookup_filename (file_name)
11217 const char *file_name;
11218 {
11219 register unsigned i;
11220
11221 /* ??? Why isn't DECL_SOURCE_FILE left null instead. */
11222 if (strcmp (file_name, "<internal>") == 0
11223 || strcmp (file_name, "<built-in>") == 0)
11224 return 0;
11225
11226 /* Check to see if the file name that was searched on the previous
11227 call matches this file name. If so, return the index. */
11228 if (file_table.last_lookup_index != 0)
11229 if (strcmp (file_name, file_table.table[file_table.last_lookup_index]) == 0)
11230 return file_table.last_lookup_index;
11231
11232 /* Didn't match the previous lookup, search the table */
11233 for (i = 1; i < file_table.in_use; ++i)
11234 if (strcmp (file_name, file_table.table[i]) == 0)
11235 {
11236 file_table.last_lookup_index = i;
11237 return i;
11238 }
11239
11240 /* Prepare to add a new table entry by making sure there is enough space in
11241 the table to do so. If not, expand the current table. */
11242 if (i == file_table.allocated)
11243 {
11244 file_table.allocated = i + FILE_TABLE_INCREMENT;
11245 file_table.table = (char **)
11246 xrealloc (file_table.table, file_table.allocated * sizeof (char *));
11247 }
11248
11249 /* Add the new entry to the end of the filename table. */
11250 file_table.table[i] = xstrdup (file_name);
11251 file_table.in_use = i + 1;
11252 file_table.last_lookup_index = i;
11253
11254 if (DWARF2_ASM_LINE_DEBUG_INFO)
11255 fprintf (asm_out_file, "\t.file %u \"%s\"\n", i, file_name);
11256
11257 return i;
11258 }
11259
11260 static void
11261 init_file_table ()
11262 {
11263 /* Allocate the initial hunk of the file_table. */
11264 file_table.table = (char **) xcalloc (FILE_TABLE_INCREMENT, sizeof (char *));
11265 file_table.allocated = FILE_TABLE_INCREMENT;
11266
11267 /* Skip the first entry - file numbers begin at 1. */
11268 file_table.in_use = 1;
11269 file_table.last_lookup_index = 0;
11270 }
11271
11272 /* Output a label to mark the beginning of a source code line entry
11273 and record information relating to this source line, in
11274 'line_info_table' for later output of the .debug_line section. */
11275
11276 static void
11277 dwarf2out_source_line (line, filename)
11278 unsigned int line;
11279 register const char *filename;
11280 {
11281 if (debug_info_level >= DINFO_LEVEL_NORMAL)
11282 {
11283 function_section (current_function_decl);
11284
11285 /* If requested, emit something human-readable. */
11286 if (flag_debug_asm)
11287 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
11288 filename, line);
11289
11290 if (DWARF2_ASM_LINE_DEBUG_INFO)
11291 {
11292 unsigned file_num = lookup_filename (filename);
11293
11294 /* Emit the .loc directive understood by GNU as. */
11295 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
11296
11297 /* Indicate that line number info exists. */
11298 ++line_info_table_in_use;
11299
11300 /* Indicate that multiple line number tables exist. */
11301 if (DECL_SECTION_NAME (current_function_decl))
11302 ++separate_line_info_table_in_use;
11303 }
11304 else if (DECL_SECTION_NAME (current_function_decl))
11305 {
11306 register dw_separate_line_info_ref line_info;
11307 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, SEPARATE_LINE_CODE_LABEL,
11308 separate_line_info_table_in_use);
11309
11310 /* expand the line info table if necessary */
11311 if (separate_line_info_table_in_use
11312 == separate_line_info_table_allocated)
11313 {
11314 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
11315 separate_line_info_table
11316 = (dw_separate_line_info_ref)
11317 xrealloc (separate_line_info_table,
11318 separate_line_info_table_allocated
11319 * sizeof (dw_separate_line_info_entry));
11320 }
11321
11322 /* Add the new entry at the end of the line_info_table. */
11323 line_info
11324 = &separate_line_info_table[separate_line_info_table_in_use++];
11325 line_info->dw_file_num = lookup_filename (filename);
11326 line_info->dw_line_num = line;
11327 line_info->function = current_funcdef_number;
11328 }
11329 else
11330 {
11331 register dw_line_info_ref line_info;
11332
11333 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, LINE_CODE_LABEL,
11334 line_info_table_in_use);
11335
11336 /* Expand the line info table if necessary. */
11337 if (line_info_table_in_use == line_info_table_allocated)
11338 {
11339 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
11340 line_info_table
11341 = (dw_line_info_ref)
11342 xrealloc (line_info_table,
11343 (line_info_table_allocated
11344 * sizeof (dw_line_info_entry)));
11345 }
11346
11347 /* Add the new entry at the end of the line_info_table. */
11348 line_info = &line_info_table[line_info_table_in_use++];
11349 line_info->dw_file_num = lookup_filename (filename);
11350 line_info->dw_line_num = line;
11351 }
11352 }
11353 }
11354
11355 /* Record the beginning of a new source file. */
11356
11357 static void
11358 dwarf2out_start_source_file (lineno, filename)
11359 register unsigned int lineno;
11360 register const char *filename;
11361 {
11362 if (flag_eliminate_dwarf2_dups)
11363 {
11364 /* Record the beginning of the file for break_out_includes. */
11365 dw_die_ref bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die);
11366 add_AT_string (bincl_die, DW_AT_name, filename);
11367 }
11368 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11369 {
11370 ASM_OUTPUT_SECTION (asm_out_file, DEBUG_MACINFO_SECTION);
11371 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
11372 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d", lineno);
11373 dw2_asm_output_data_uleb128 (lookup_filename (filename), "Filename we just started");
11374 }
11375 }
11376
11377 /* Record the end of a source file. */
11378
11379 static void
11380 dwarf2out_end_source_file (lineno)
11381 unsigned int lineno ATTRIBUTE_UNUSED;
11382 {
11383 if (flag_eliminate_dwarf2_dups)
11384 {
11385 /* Record the end of the file for break_out_includes. */
11386 new_die (DW_TAG_GNU_EINCL, comp_unit_die);
11387 }
11388 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11389 {
11390 ASM_OUTPUT_SECTION (asm_out_file, DEBUG_MACINFO_SECTION);
11391 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
11392 }
11393 }
11394
11395 /* Called from debug_define in toplev.c. The `buffer' parameter contains
11396 the tail part of the directive line, i.e. the part which is past the
11397 initial whitespace, #, whitespace, directive-name, whitespace part. */
11398
11399 static void
11400 dwarf2out_define (lineno, buffer)
11401 register unsigned lineno ATTRIBUTE_UNUSED;
11402 register const char *buffer ATTRIBUTE_UNUSED;
11403 {
11404 static int initialized = 0;
11405 if (!initialized)
11406 {
11407 dwarf2out_start_source_file (0, primary_filename);
11408 initialized = 1;
11409 }
11410 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11411 {
11412 ASM_OUTPUT_SECTION (asm_out_file, DEBUG_MACINFO_SECTION);
11413 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
11414 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
11415 dw2_asm_output_nstring (buffer, -1, "The macro");
11416 }
11417 }
11418
11419 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
11420 the tail part of the directive line, i.e. the part which is past the
11421 initial whitespace, #, whitespace, directive-name, whitespace part. */
11422
11423 static void
11424 dwarf2out_undef (lineno, buffer)
11425 register unsigned lineno ATTRIBUTE_UNUSED;
11426 register const char *buffer ATTRIBUTE_UNUSED;
11427 {
11428 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11429 {
11430 ASM_OUTPUT_SECTION (asm_out_file, DEBUG_MACINFO_SECTION);
11431 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
11432 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
11433 dw2_asm_output_nstring (buffer, -1, "The macro");
11434 }
11435 }
11436
11437 /* Set up for Dwarf output at the start of compilation. */
11438
11439 static void
11440 dwarf2out_init (main_input_filename)
11441 register const char *main_input_filename;
11442 {
11443 init_file_table ();
11444
11445 /* Remember the name of the primary input file. */
11446 primary_filename = main_input_filename;
11447
11448 /* Add it to the file table first, under the assumption that we'll
11449 be emitting line number data for it first, which avoids having
11450 to add an initial DW_LNS_set_file. */
11451 lookup_filename (main_input_filename);
11452
11453 /* Allocate the initial hunk of the decl_die_table. */
11454 decl_die_table
11455 = (dw_die_ref *) xcalloc (DECL_DIE_TABLE_INCREMENT, sizeof (dw_die_ref));
11456 decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
11457 decl_die_table_in_use = 0;
11458
11459 /* Allocate the initial hunk of the decl_scope_table. */
11460 decl_scope_table
11461 = (tree *) xcalloc (DECL_SCOPE_TABLE_INCREMENT, sizeof (tree));
11462 decl_scope_table_allocated = DECL_SCOPE_TABLE_INCREMENT;
11463 decl_scope_depth = 0;
11464
11465 /* Allocate the initial hunk of the abbrev_die_table. */
11466 abbrev_die_table
11467 = (dw_die_ref *) xcalloc (ABBREV_DIE_TABLE_INCREMENT,
11468 sizeof (dw_die_ref));
11469 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
11470 /* Zero-th entry is allocated, but unused */
11471 abbrev_die_table_in_use = 1;
11472
11473 /* Allocate the initial hunk of the line_info_table. */
11474 line_info_table
11475 = (dw_line_info_ref) xcalloc (LINE_INFO_TABLE_INCREMENT,
11476 sizeof (dw_line_info_entry));
11477 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
11478 /* Zero-th entry is allocated, but unused */
11479 line_info_table_in_use = 1;
11480
11481 /* Generate the initial DIE for the .debug section. Note that the (string)
11482 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
11483 will (typically) be a relative pathname and that this pathname should be
11484 taken as being relative to the directory from which the compiler was
11485 invoked when the given (base) source file was compiled. */
11486 comp_unit_die = gen_compile_unit_die (main_input_filename);
11487
11488 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
11489 ggc_add_rtx_varray_root (&used_rtx_varray, 1);
11490
11491 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
11492 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
11493 DEBUG_ABBREV_SECTION_LABEL, 0);
11494 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
11495 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
11496 else
11497 strcpy (text_section_label, stripattributes (TEXT_SECTION));
11498 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
11499 DEBUG_INFO_SECTION_LABEL, 0);
11500 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
11501 DEBUG_LINE_SECTION_LABEL, 0);
11502 ASM_GENERATE_INTERNAL_LABEL (loc_section_label, DEBUG_LOC_SECTION_LABEL, 0);
11503 ASM_OUTPUT_SECTION (asm_out_file, DEBUG_LOC_SECTION);
11504 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
11505 ASM_OUTPUT_SECTION (asm_out_file, DEBUG_ABBREV_SECTION);
11506 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
11507 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
11508 {
11509 ASM_OUTPUT_SECTION (asm_out_file, TEXT_SECTION);
11510 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
11511 }
11512 ASM_OUTPUT_SECTION (asm_out_file, DEBUG_INFO_SECTION);
11513 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
11514 ASM_OUTPUT_SECTION (asm_out_file, DEBUG_LINE_SECTION);
11515 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
11516 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11517 {
11518 ASM_OUTPUT_SECTION (asm_out_file, DEBUG_MACINFO_SECTION);
11519 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
11520 DEBUG_MACINFO_SECTION_LABEL, 0);
11521 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
11522 }
11523 }
11524
11525 /* Output stuff that dwarf requires at the end of every file,
11526 and generate the DWARF-2 debugging info. */
11527
11528 static void
11529 dwarf2out_finish (input_filename)
11530 register const char *input_filename ATTRIBUTE_UNUSED;
11531 {
11532 limbo_die_node *node, *next_node;
11533 dw_die_ref die = 0;
11534
11535 /* Traverse the limbo die list, and add parent/child links. The only
11536 dies without parents that should be here are concrete instances of
11537 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
11538 For concrete instances, we can get the parent die from the abstract
11539 instance. */
11540 for (node = limbo_die_list; node; node = next_node)
11541 {
11542 next_node = node->next;
11543 die = node->die;
11544
11545 if (die->die_parent == NULL)
11546 {
11547 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
11548 if (origin)
11549 add_child_die (origin->die_parent, die);
11550 else if (die == comp_unit_die)
11551 ;
11552 else
11553 abort ();
11554 }
11555 free (node);
11556 }
11557 limbo_die_list = NULL;
11558
11559 /* Walk through the list of incomplete types again, trying once more to
11560 emit full debugging info for them. */
11561 retry_incomplete_types ();
11562
11563 /* We need to reverse all the dies before break_out_includes, or
11564 we'll see the end of an include file before the beginning. */
11565 reverse_all_dies (comp_unit_die);
11566
11567 /* Generate separate CUs for each of the include files we've seen.
11568 They will go into limbo_die_list. */
11569 if (flag_eliminate_dwarf2_dups)
11570 break_out_includes (comp_unit_die);
11571
11572 /* Traverse the DIE's and add add sibling attributes to those DIE's
11573 that have children. */
11574 add_sibling_attributes (comp_unit_die);
11575 for (node = limbo_die_list; node; node = node->next)
11576 add_sibling_attributes (node->die);
11577
11578 /* Output a terminator label for the .text section. */
11579 ASM_OUTPUT_SECTION (asm_out_file, TEXT_SECTION);
11580 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, TEXT_END_LABEL, 0);
11581
11582 #if 0
11583 /* Output a terminator label for the .data section. */
11584 ASM_OUTPUT_SECTION (asm_out_file, DATA_SECTION);
11585 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, DATA_END_LABEL, 0);
11586
11587 /* Output a terminator label for the .bss section. */
11588 ASM_OUTPUT_SECTION (asm_out_file, BSS_SECTION);
11589 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, BSS_END_LABEL, 0);
11590 #endif
11591
11592 /* Output the source line correspondence table. We must do this
11593 even if there is no line information. Otherwise, on an empty
11594 translation unit, we will generate a present, but empty,
11595 .debug_info section. IRIX 6.5 `nm' will then complain when
11596 examining the file. */
11597 if (! DWARF2_ASM_LINE_DEBUG_INFO)
11598 {
11599 ASM_OUTPUT_SECTION (asm_out_file, DEBUG_LINE_SECTION);
11600 output_line_info ();
11601 }
11602
11603 /* We can only use the low/high_pc attributes if all of the code was
11604 in .text. */
11605 if (separate_line_info_table_in_use == 0)
11606 {
11607 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
11608 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
11609 }
11610
11611 if (debug_info_level >= DINFO_LEVEL_NORMAL)
11612 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
11613 debug_line_section_label);
11614
11615 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11616 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
11617
11618 /* Output all of the compilation units. We put the main one last so that
11619 the offsets are available to output_pubnames. */
11620 for (node = limbo_die_list; node; node = node->next)
11621 output_comp_unit (node->die);
11622 output_comp_unit (comp_unit_die);
11623
11624 /* Output the abbreviation table. */
11625 ASM_OUTPUT_SECTION (asm_out_file, DEBUG_ABBREV_SECTION);
11626 output_abbrev_section ();
11627
11628 if (pubname_table_in_use)
11629 {
11630 /* Output public names table. */
11631 ASM_OUTPUT_SECTION (asm_out_file, DEBUG_PUBNAMES_SECTION);
11632 output_pubnames ();
11633 }
11634
11635 /* We only put functions in the arange table, so don't write it out if
11636 we don't have any. */
11637 if (fde_table_in_use)
11638 {
11639 /* Output the address range information. */
11640 ASM_OUTPUT_SECTION (asm_out_file, DEBUG_ARANGES_SECTION);
11641 output_aranges ();
11642 }
11643 /* Output location list section if necessary */
11644 if (have_location_lists)
11645 {
11646 /* Output the location lists info. */
11647 ASM_OUTPUT_SECTION (asm_out_file, DEBUG_LOC_SECTION);
11648 output_location_lists (die);
11649 have_location_lists = 0;
11650 }
11651
11652 /* Have to end the primary source file. */
11653 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11654 {
11655 ASM_OUTPUT_SECTION (asm_out_file, DEBUG_MACINFO_SECTION);
11656 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
11657 }
11658
11659 }
11660 #endif /* DWARF2_DEBUGGING_INFO */