intrinsic.h (gfc_check_selected_real_kind, [...]): Update prototypes.
[gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by Gary Funck (gary@intrepid.com).
6 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
7 Extensively modified by Jason Merrill (jason@cygnus.com).
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 /* DWARF2 Abbreviation Glossary:
38
39 CFA = Canonical Frame Address
40 a fixed address on the stack which identifies a call frame.
41 We define it to be the value of SP just before the call insn.
42 The CFA register and offset, which may change during the course
43 of the function, are used to calculate its value at runtime.
44
45 CFI = Call Frame Instruction
46 an instruction for the DWARF2 abstract machine
47
48 CIE = Common Information Entry
49 information describing information common to one or more FDEs
50
51 DIE = Debugging Information Entry
52
53 FDE = Frame Description Entry
54 information describing the stack call frame, in particular,
55 how to restore registers
56
57 DW_CFA_... = DWARF2 CFA call frame instruction
58 DW_TAG_... = DWARF2 DIE tag */
59
60 #include "config.h"
61 #include "system.h"
62 #include "coretypes.h"
63 #include "tm.h"
64 #include "tree.h"
65 #include "version.h"
66 #include "flags.h"
67 #include "rtl.h"
68 #include "hard-reg-set.h"
69 #include "regs.h"
70 #include "insn-config.h"
71 #include "reload.h"
72 #include "function.h"
73 #include "output.h"
74 #include "expr.h"
75 #include "libfuncs.h"
76 #include "except.h"
77 #include "dwarf2.h"
78 #include "dwarf2out.h"
79 #include "dwarf2asm.h"
80 #include "toplev.h"
81 #include "ggc.h"
82 #include "md5.h"
83 #include "tm_p.h"
84 #include "diagnostic.h"
85 #include "tree-pretty-print.h"
86 #include "debug.h"
87 #include "target.h"
88 #include "langhooks.h"
89 #include "hashtab.h"
90 #include "cgraph.h"
91 #include "input.h"
92 #include "gimple.h"
93 #include "tree-pass.h"
94 #include "tree-flow.h"
95
96 #ifdef DWARF2_DEBUGGING_INFO
97 static void dwarf2out_source_line (unsigned int, const char *, int, bool);
98
99 static rtx last_var_location_insn;
100 #endif
101
102 #ifdef VMS_DEBUGGING_INFO
103 int vms_file_stats_name (const char *, long long *, long *, char *, int *);
104
105 /* Define this macro to be a nonzero value if the directory specifications
106 which are output in the debug info should end with a separator. */
107 #define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 1
108 /* Define this macro to evaluate to a nonzero value if GCC should refrain
109 from generating indirect strings in DWARF2 debug information, for instance
110 if your target is stuck with an old version of GDB that is unable to
111 process them properly or uses VMS Debug. */
112 #define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 1
113 #else
114 #define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 0
115 #define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 0
116 #endif
117
118 #ifndef DWARF2_FRAME_INFO
119 # ifdef DWARF2_DEBUGGING_INFO
120 # define DWARF2_FRAME_INFO \
121 (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
122 # else
123 # define DWARF2_FRAME_INFO 0
124 # endif
125 #endif
126
127 /* Map register numbers held in the call frame info that gcc has
128 collected using DWARF_FRAME_REGNUM to those that should be output in
129 .debug_frame and .eh_frame. */
130 #ifndef DWARF2_FRAME_REG_OUT
131 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
132 #endif
133
134 /* Save the result of dwarf2out_do_frame across PCH. */
135 static GTY(()) bool saved_do_cfi_asm = 0;
136
137 /* Decide whether we want to emit frame unwind information for the current
138 translation unit. */
139
140 int
141 dwarf2out_do_frame (void)
142 {
143 /* We want to emit correct CFA location expressions or lists, so we
144 have to return true if we're going to output debug info, even if
145 we're not going to output frame or unwind info. */
146 return (write_symbols == DWARF2_DEBUG
147 || write_symbols == VMS_AND_DWARF2_DEBUG
148 || DWARF2_FRAME_INFO || saved_do_cfi_asm
149 #ifdef DWARF2_UNWIND_INFO
150 || (DWARF2_UNWIND_INFO
151 && (flag_unwind_tables
152 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)))
153 #endif
154 );
155 }
156
157 /* Decide whether to emit frame unwind via assembler directives. */
158
159 int
160 dwarf2out_do_cfi_asm (void)
161 {
162 int enc;
163
164 #ifdef MIPS_DEBUGGING_INFO
165 return false;
166 #endif
167 if (!flag_dwarf2_cfi_asm || !dwarf2out_do_frame ())
168 return false;
169 if (saved_do_cfi_asm)
170 return true;
171 if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE)
172 return false;
173
174 /* Make sure the personality encoding is one the assembler can support.
175 In particular, aligned addresses can't be handled. */
176 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,/*global=*/1);
177 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
178 return false;
179 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,/*global=*/0);
180 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
181 return false;
182
183 if (!HAVE_GAS_CFI_SECTIONS_DIRECTIVE)
184 {
185 #ifdef TARGET_UNWIND_INFO
186 return false;
187 #else
188 if (USING_SJLJ_EXCEPTIONS || (!flag_unwind_tables && !flag_exceptions))
189 return false;
190 #endif
191 }
192
193 saved_do_cfi_asm = true;
194 return true;
195 }
196
197 /* The size of the target's pointer type. */
198 #ifndef PTR_SIZE
199 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
200 #endif
201
202 /* Array of RTXes referenced by the debugging information, which therefore
203 must be kept around forever. */
204 static GTY(()) VEC(rtx,gc) *used_rtx_array;
205
206 /* A pointer to the base of a list of incomplete types which might be
207 completed at some later time. incomplete_types_list needs to be a
208 VEC(tree,gc) because we want to tell the garbage collector about
209 it. */
210 static GTY(()) VEC(tree,gc) *incomplete_types;
211
212 /* A pointer to the base of a table of references to declaration
213 scopes. This table is a display which tracks the nesting
214 of declaration scopes at the current scope and containing
215 scopes. This table is used to find the proper place to
216 define type declaration DIE's. */
217 static GTY(()) VEC(tree,gc) *decl_scope_table;
218
219 /* Pointers to various DWARF2 sections. */
220 static GTY(()) section *debug_info_section;
221 static GTY(()) section *debug_abbrev_section;
222 static GTY(()) section *debug_aranges_section;
223 static GTY(()) section *debug_macinfo_section;
224 static GTY(()) section *debug_line_section;
225 static GTY(()) section *debug_loc_section;
226 static GTY(()) section *debug_pubnames_section;
227 static GTY(()) section *debug_pubtypes_section;
228 static GTY(()) section *debug_dcall_section;
229 static GTY(()) section *debug_vcall_section;
230 static GTY(()) section *debug_str_section;
231 static GTY(()) section *debug_ranges_section;
232 static GTY(()) section *debug_frame_section;
233
234 /* Personality decl of current unit. Used only when assembler does not support
235 personality CFI. */
236 static GTY(()) rtx current_unit_personality;
237
238 /* How to start an assembler comment. */
239 #ifndef ASM_COMMENT_START
240 #define ASM_COMMENT_START ";#"
241 #endif
242
243 typedef struct dw_cfi_struct *dw_cfi_ref;
244 typedef struct dw_fde_struct *dw_fde_ref;
245 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
246
247 /* Call frames are described using a sequence of Call Frame
248 Information instructions. The register number, offset
249 and address fields are provided as possible operands;
250 their use is selected by the opcode field. */
251
252 enum dw_cfi_oprnd_type {
253 dw_cfi_oprnd_unused,
254 dw_cfi_oprnd_reg_num,
255 dw_cfi_oprnd_offset,
256 dw_cfi_oprnd_addr,
257 dw_cfi_oprnd_loc
258 };
259
260 typedef union GTY(()) dw_cfi_oprnd_struct {
261 unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
262 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
263 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
264 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
265 }
266 dw_cfi_oprnd;
267
268 typedef struct GTY(()) dw_cfi_struct {
269 dw_cfi_ref dw_cfi_next;
270 enum dwarf_call_frame_info dw_cfi_opc;
271 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
272 dw_cfi_oprnd1;
273 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
274 dw_cfi_oprnd2;
275 }
276 dw_cfi_node;
277
278 /* This is how we define the location of the CFA. We use to handle it
279 as REG + OFFSET all the time, but now it can be more complex.
280 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
281 Instead of passing around REG and OFFSET, we pass a copy
282 of this structure. */
283 typedef struct GTY(()) cfa_loc {
284 HOST_WIDE_INT offset;
285 HOST_WIDE_INT base_offset;
286 unsigned int reg;
287 BOOL_BITFIELD indirect : 1; /* 1 if CFA is accessed via a dereference. */
288 BOOL_BITFIELD in_use : 1; /* 1 if a saved cfa is stored here. */
289 } dw_cfa_location;
290
291 /* All call frame descriptions (FDE's) in the GCC generated DWARF
292 refer to a single Common Information Entry (CIE), defined at
293 the beginning of the .debug_frame section. This use of a single
294 CIE obviates the need to keep track of multiple CIE's
295 in the DWARF generation routines below. */
296
297 typedef struct GTY(()) dw_fde_struct {
298 tree decl;
299 const char *dw_fde_begin;
300 const char *dw_fde_current_label;
301 const char *dw_fde_end;
302 const char *dw_fde_vms_end_prologue;
303 const char *dw_fde_vms_begin_epilogue;
304 const char *dw_fde_hot_section_label;
305 const char *dw_fde_hot_section_end_label;
306 const char *dw_fde_unlikely_section_label;
307 const char *dw_fde_unlikely_section_end_label;
308 dw_cfi_ref dw_fde_cfi;
309 dw_cfi_ref dw_fde_switch_cfi; /* Last CFI before switching sections. */
310 HOST_WIDE_INT stack_realignment;
311 unsigned funcdef_number;
312 /* Dynamic realign argument pointer register. */
313 unsigned int drap_reg;
314 /* Virtual dynamic realign argument pointer register. */
315 unsigned int vdrap_reg;
316 /* These 3 flags are copied from rtl_data in function.h. */
317 unsigned all_throwers_are_sibcalls : 1;
318 unsigned uses_eh_lsda : 1;
319 unsigned nothrow : 1;
320 /* Whether we did stack realign in this call frame. */
321 unsigned stack_realign : 1;
322 /* Whether dynamic realign argument pointer register has been saved. */
323 unsigned drap_reg_saved: 1;
324 /* True iff dw_fde_begin label is in text_section or cold_text_section. */
325 unsigned in_std_section : 1;
326 /* True iff dw_fde_unlikely_section_label is in text_section or
327 cold_text_section. */
328 unsigned cold_in_std_section : 1;
329 /* True iff switched sections. */
330 unsigned dw_fde_switched_sections : 1;
331 /* True iff switching from cold to hot section. */
332 unsigned dw_fde_switched_cold_to_hot : 1;
333 }
334 dw_fde_node;
335
336 /* Maximum size (in bytes) of an artificially generated label. */
337 #define MAX_ARTIFICIAL_LABEL_BYTES 30
338
339 /* The size of addresses as they appear in the Dwarf 2 data.
340 Some architectures use word addresses to refer to code locations,
341 but Dwarf 2 info always uses byte addresses. On such machines,
342 Dwarf 2 addresses need to be larger than the architecture's
343 pointers. */
344 #ifndef DWARF2_ADDR_SIZE
345 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
346 #endif
347
348 /* The size in bytes of a DWARF field indicating an offset or length
349 relative to a debug info section, specified to be 4 bytes in the
350 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
351 as PTR_SIZE. */
352
353 #ifndef DWARF_OFFSET_SIZE
354 #define DWARF_OFFSET_SIZE 4
355 #endif
356
357 /* The size in bytes of a DWARF 4 type signature. */
358
359 #ifndef DWARF_TYPE_SIGNATURE_SIZE
360 #define DWARF_TYPE_SIGNATURE_SIZE 8
361 #endif
362
363 /* According to the (draft) DWARF 3 specification, the initial length
364 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
365 bytes are 0xffffffff, followed by the length stored in the next 8
366 bytes.
367
368 However, the SGI/MIPS ABI uses an initial length which is equal to
369 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
370
371 #ifndef DWARF_INITIAL_LENGTH_SIZE
372 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
373 #endif
374
375 /* Round SIZE up to the nearest BOUNDARY. */
376 #define DWARF_ROUND(SIZE,BOUNDARY) \
377 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
378
379 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
380 #ifndef DWARF_CIE_DATA_ALIGNMENT
381 #ifdef STACK_GROWS_DOWNWARD
382 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
383 #else
384 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
385 #endif
386 #endif
387
388 /* CIE identifier. */
389 #if HOST_BITS_PER_WIDE_INT >= 64
390 #define DWARF_CIE_ID \
391 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
392 #else
393 #define DWARF_CIE_ID DW_CIE_ID
394 #endif
395
396 /* A pointer to the base of a table that contains frame description
397 information for each routine. */
398 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
399
400 /* Number of elements currently allocated for fde_table. */
401 static GTY(()) unsigned fde_table_allocated;
402
403 /* Number of elements in fde_table currently in use. */
404 static GTY(()) unsigned fde_table_in_use;
405
406 /* Size (in elements) of increments by which we may expand the
407 fde_table. */
408 #define FDE_TABLE_INCREMENT 256
409
410 /* Get the current fde_table entry we should use. */
411
412 static inline dw_fde_ref
413 current_fde (void)
414 {
415 return fde_table_in_use ? &fde_table[fde_table_in_use - 1] : NULL;
416 }
417
418 /* A list of call frame insns for the CIE. */
419 static GTY(()) dw_cfi_ref cie_cfi_head;
420
421 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
422 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
423 attribute that accelerates the lookup of the FDE associated
424 with the subprogram. This variable holds the table index of the FDE
425 associated with the current function (body) definition. */
426 static unsigned current_funcdef_fde;
427 #endif
428
429 struct GTY(()) indirect_string_node {
430 const char *str;
431 unsigned int refcount;
432 enum dwarf_form form;
433 char *label;
434 };
435
436 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
437
438 /* True if the compilation unit has location entries that reference
439 debug strings. */
440 static GTY(()) bool debug_str_hash_forced = false;
441
442 static GTY(()) int dw2_string_counter;
443 static GTY(()) unsigned long dwarf2out_cfi_label_num;
444
445 /* True if the compilation unit places functions in more than one section. */
446 static GTY(()) bool have_multiple_function_sections = false;
447
448 /* Whether the default text and cold text sections have been used at all. */
449
450 static GTY(()) bool text_section_used = false;
451 static GTY(()) bool cold_text_section_used = false;
452
453 /* The default cold text section. */
454 static GTY(()) section *cold_text_section;
455
456 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
457
458 /* Forward declarations for functions defined in this file. */
459
460 static char *stripattributes (const char *);
461 static const char *dwarf_cfi_name (unsigned);
462 static dw_cfi_ref new_cfi (void);
463 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
464 static void add_fde_cfi (const char *, dw_cfi_ref);
465 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *, dw_cfa_location *);
466 static void lookup_cfa (dw_cfa_location *);
467 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
468 #ifdef DWARF2_UNWIND_INFO
469 static void initial_return_save (rtx);
470 #endif
471 static HOST_WIDE_INT stack_adjust_offset (const_rtx, HOST_WIDE_INT,
472 HOST_WIDE_INT);
473 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
474 static void output_cfi_directive (dw_cfi_ref);
475 static void output_call_frame_info (int);
476 static void dwarf2out_note_section_used (void);
477 static void flush_queued_reg_saves (void);
478 static bool clobbers_queued_reg_save (const_rtx);
479 static void dwarf2out_frame_debug_expr (rtx, const char *);
480
481 /* Support for complex CFA locations. */
482 static void output_cfa_loc (dw_cfi_ref);
483 static void output_cfa_loc_raw (dw_cfi_ref);
484 static void get_cfa_from_loc_descr (dw_cfa_location *,
485 struct dw_loc_descr_struct *);
486 static struct dw_loc_descr_struct *build_cfa_loc
487 (dw_cfa_location *, HOST_WIDE_INT);
488 static struct dw_loc_descr_struct *build_cfa_aligned_loc
489 (HOST_WIDE_INT, HOST_WIDE_INT);
490 static void def_cfa_1 (const char *, dw_cfa_location *);
491
492 /* How to start an assembler comment. */
493 #ifndef ASM_COMMENT_START
494 #define ASM_COMMENT_START ";#"
495 #endif
496
497 /* Data and reference forms for relocatable data. */
498 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
499 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
500
501 #ifndef DEBUG_FRAME_SECTION
502 #define DEBUG_FRAME_SECTION ".debug_frame"
503 #endif
504
505 #ifndef FUNC_BEGIN_LABEL
506 #define FUNC_BEGIN_LABEL "LFB"
507 #endif
508
509 #ifndef FUNC_END_LABEL
510 #define FUNC_END_LABEL "LFE"
511 #endif
512
513 #ifndef PROLOGUE_END_LABEL
514 #define PROLOGUE_END_LABEL "LPE"
515 #endif
516
517 #ifndef EPILOGUE_BEGIN_LABEL
518 #define EPILOGUE_BEGIN_LABEL "LEB"
519 #endif
520
521 #ifndef FRAME_BEGIN_LABEL
522 #define FRAME_BEGIN_LABEL "Lframe"
523 #endif
524 #define CIE_AFTER_SIZE_LABEL "LSCIE"
525 #define CIE_END_LABEL "LECIE"
526 #define FDE_LABEL "LSFDE"
527 #define FDE_AFTER_SIZE_LABEL "LASFDE"
528 #define FDE_END_LABEL "LEFDE"
529 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
530 #define LINE_NUMBER_END_LABEL "LELT"
531 #define LN_PROLOG_AS_LABEL "LASLTP"
532 #define LN_PROLOG_END_LABEL "LELTP"
533 #define DIE_LABEL_PREFIX "DW"
534
535 /* The DWARF 2 CFA column which tracks the return address. Normally this
536 is the column for PC, or the first column after all of the hard
537 registers. */
538 #ifndef DWARF_FRAME_RETURN_COLUMN
539 #ifdef PC_REGNUM
540 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
541 #else
542 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
543 #endif
544 #endif
545
546 /* The mapping from gcc register number to DWARF 2 CFA column number. By
547 default, we just provide columns for all registers. */
548 #ifndef DWARF_FRAME_REGNUM
549 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
550 #endif
551 \f
552 /* Hook used by __throw. */
553
554 rtx
555 expand_builtin_dwarf_sp_column (void)
556 {
557 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
558 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
559 }
560
561 /* Return a pointer to a copy of the section string name S with all
562 attributes stripped off, and an asterisk prepended (for assemble_name). */
563
564 static inline char *
565 stripattributes (const char *s)
566 {
567 char *stripped = XNEWVEC (char, strlen (s) + 2);
568 char *p = stripped;
569
570 *p++ = '*';
571
572 while (*s && *s != ',')
573 *p++ = *s++;
574
575 *p = '\0';
576 return stripped;
577 }
578
579 /* MEM is a memory reference for the register size table, each element of
580 which has mode MODE. Initialize column C as a return address column. */
581
582 static void
583 init_return_column_size (enum machine_mode mode, rtx mem, unsigned int c)
584 {
585 HOST_WIDE_INT offset = c * GET_MODE_SIZE (mode);
586 HOST_WIDE_INT size = GET_MODE_SIZE (Pmode);
587 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
588 }
589
590 /* Divide OFF by DWARF_CIE_DATA_ALIGNMENT, asserting no remainder. */
591
592 static inline HOST_WIDE_INT
593 div_data_align (HOST_WIDE_INT off)
594 {
595 HOST_WIDE_INT r = off / DWARF_CIE_DATA_ALIGNMENT;
596 gcc_assert (r * DWARF_CIE_DATA_ALIGNMENT == off);
597 return r;
598 }
599
600 /* Return true if we need a signed version of a given opcode
601 (e.g. DW_CFA_offset_extended_sf vs DW_CFA_offset_extended). */
602
603 static inline bool
604 need_data_align_sf_opcode (HOST_WIDE_INT off)
605 {
606 return DWARF_CIE_DATA_ALIGNMENT < 0 ? off > 0 : off < 0;
607 }
608
609 /* Generate code to initialize the register size table. */
610
611 void
612 expand_builtin_init_dwarf_reg_sizes (tree address)
613 {
614 unsigned int i;
615 enum machine_mode mode = TYPE_MODE (char_type_node);
616 rtx addr = expand_normal (address);
617 rtx mem = gen_rtx_MEM (BLKmode, addr);
618 bool wrote_return_column = false;
619
620 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
621 {
622 int rnum = DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), 1);
623
624 if (rnum < DWARF_FRAME_REGISTERS)
625 {
626 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
627 enum machine_mode save_mode = reg_raw_mode[i];
628 HOST_WIDE_INT size;
629
630 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
631 save_mode = choose_hard_reg_mode (i, 1, true);
632 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
633 {
634 if (save_mode == VOIDmode)
635 continue;
636 wrote_return_column = true;
637 }
638 size = GET_MODE_SIZE (save_mode);
639 if (offset < 0)
640 continue;
641
642 emit_move_insn (adjust_address (mem, mode, offset),
643 gen_int_mode (size, mode));
644 }
645 }
646
647 if (!wrote_return_column)
648 init_return_column_size (mode, mem, DWARF_FRAME_RETURN_COLUMN);
649
650 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
651 init_return_column_size (mode, mem, DWARF_ALT_FRAME_RETURN_COLUMN);
652 #endif
653
654 targetm.init_dwarf_reg_sizes_extra (address);
655 }
656
657 /* Convert a DWARF call frame info. operation to its string name */
658
659 static const char *
660 dwarf_cfi_name (unsigned int cfi_opc)
661 {
662 switch (cfi_opc)
663 {
664 case DW_CFA_advance_loc:
665 return "DW_CFA_advance_loc";
666 case DW_CFA_offset:
667 return "DW_CFA_offset";
668 case DW_CFA_restore:
669 return "DW_CFA_restore";
670 case DW_CFA_nop:
671 return "DW_CFA_nop";
672 case DW_CFA_set_loc:
673 return "DW_CFA_set_loc";
674 case DW_CFA_advance_loc1:
675 return "DW_CFA_advance_loc1";
676 case DW_CFA_advance_loc2:
677 return "DW_CFA_advance_loc2";
678 case DW_CFA_advance_loc4:
679 return "DW_CFA_advance_loc4";
680 case DW_CFA_offset_extended:
681 return "DW_CFA_offset_extended";
682 case DW_CFA_restore_extended:
683 return "DW_CFA_restore_extended";
684 case DW_CFA_undefined:
685 return "DW_CFA_undefined";
686 case DW_CFA_same_value:
687 return "DW_CFA_same_value";
688 case DW_CFA_register:
689 return "DW_CFA_register";
690 case DW_CFA_remember_state:
691 return "DW_CFA_remember_state";
692 case DW_CFA_restore_state:
693 return "DW_CFA_restore_state";
694 case DW_CFA_def_cfa:
695 return "DW_CFA_def_cfa";
696 case DW_CFA_def_cfa_register:
697 return "DW_CFA_def_cfa_register";
698 case DW_CFA_def_cfa_offset:
699 return "DW_CFA_def_cfa_offset";
700
701 /* DWARF 3 */
702 case DW_CFA_def_cfa_expression:
703 return "DW_CFA_def_cfa_expression";
704 case DW_CFA_expression:
705 return "DW_CFA_expression";
706 case DW_CFA_offset_extended_sf:
707 return "DW_CFA_offset_extended_sf";
708 case DW_CFA_def_cfa_sf:
709 return "DW_CFA_def_cfa_sf";
710 case DW_CFA_def_cfa_offset_sf:
711 return "DW_CFA_def_cfa_offset_sf";
712
713 /* SGI/MIPS specific */
714 case DW_CFA_MIPS_advance_loc8:
715 return "DW_CFA_MIPS_advance_loc8";
716
717 /* GNU extensions */
718 case DW_CFA_GNU_window_save:
719 return "DW_CFA_GNU_window_save";
720 case DW_CFA_GNU_args_size:
721 return "DW_CFA_GNU_args_size";
722 case DW_CFA_GNU_negative_offset_extended:
723 return "DW_CFA_GNU_negative_offset_extended";
724
725 default:
726 return "DW_CFA_<unknown>";
727 }
728 }
729
730 /* Return a pointer to a newly allocated Call Frame Instruction. */
731
732 static inline dw_cfi_ref
733 new_cfi (void)
734 {
735 dw_cfi_ref cfi = ggc_alloc_dw_cfi_node ();
736
737 cfi->dw_cfi_next = NULL;
738 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
739 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
740
741 return cfi;
742 }
743
744 /* Add a Call Frame Instruction to list of instructions. */
745
746 static inline void
747 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
748 {
749 dw_cfi_ref *p;
750 dw_fde_ref fde = current_fde ();
751
752 /* When DRAP is used, CFA is defined with an expression. Redefine
753 CFA may lead to a different CFA value. */
754 /* ??? Of course, this heuristic fails when we're annotating epilogues,
755 because of course we'll always want to redefine the CFA back to the
756 stack pointer on the way out. Where should we move this check? */
757 if (0 && fde && fde->drap_reg != INVALID_REGNUM)
758 switch (cfi->dw_cfi_opc)
759 {
760 case DW_CFA_def_cfa_register:
761 case DW_CFA_def_cfa_offset:
762 case DW_CFA_def_cfa_offset_sf:
763 case DW_CFA_def_cfa:
764 case DW_CFA_def_cfa_sf:
765 gcc_unreachable ();
766
767 default:
768 break;
769 }
770
771 /* Find the end of the chain. */
772 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
773 ;
774
775 *p = cfi;
776 }
777
778 /* Generate a new label for the CFI info to refer to. FORCE is true
779 if a label needs to be output even when using .cfi_* directives. */
780
781 char *
782 dwarf2out_cfi_label (bool force)
783 {
784 static char label[20];
785
786 if (!force && dwarf2out_do_cfi_asm ())
787 {
788 /* In this case, we will be emitting the asm directive instead of
789 the label, so just return a placeholder to keep the rest of the
790 interfaces happy. */
791 strcpy (label, "<do not output>");
792 }
793 else
794 {
795 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
796 ASM_OUTPUT_LABEL (asm_out_file, label);
797 }
798
799 return label;
800 }
801
802 /* True if remember_state should be emitted before following CFI directive. */
803 static bool emit_cfa_remember;
804
805 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
806 or to the CIE if LABEL is NULL. */
807
808 static void
809 add_fde_cfi (const char *label, dw_cfi_ref cfi)
810 {
811 dw_cfi_ref *list_head;
812
813 if (emit_cfa_remember)
814 {
815 dw_cfi_ref cfi_remember;
816
817 /* Emit the state save. */
818 emit_cfa_remember = false;
819 cfi_remember = new_cfi ();
820 cfi_remember->dw_cfi_opc = DW_CFA_remember_state;
821 add_fde_cfi (label, cfi_remember);
822 }
823
824 list_head = &cie_cfi_head;
825
826 if (dwarf2out_do_cfi_asm ())
827 {
828 if (label)
829 {
830 dw_fde_ref fde = current_fde ();
831
832 gcc_assert (fde != NULL);
833
834 /* We still have to add the cfi to the list so that lookup_cfa
835 works later on. When -g2 and above we even need to force
836 emitting of CFI labels and add to list a DW_CFA_set_loc for
837 convert_cfa_to_fb_loc_list purposes. If we're generating
838 DWARF3 output we use DW_OP_call_frame_cfa and so don't use
839 convert_cfa_to_fb_loc_list. */
840 if (dwarf_version == 2
841 && debug_info_level > DINFO_LEVEL_TERSE
842 && (write_symbols == DWARF2_DEBUG
843 || write_symbols == VMS_AND_DWARF2_DEBUG))
844 {
845 switch (cfi->dw_cfi_opc)
846 {
847 case DW_CFA_def_cfa_offset:
848 case DW_CFA_def_cfa_offset_sf:
849 case DW_CFA_def_cfa_register:
850 case DW_CFA_def_cfa:
851 case DW_CFA_def_cfa_sf:
852 case DW_CFA_def_cfa_expression:
853 case DW_CFA_restore_state:
854 if (*label == 0 || strcmp (label, "<do not output>") == 0)
855 label = dwarf2out_cfi_label (true);
856
857 if (fde->dw_fde_current_label == NULL
858 || strcmp (label, fde->dw_fde_current_label) != 0)
859 {
860 dw_cfi_ref xcfi;
861
862 label = xstrdup (label);
863
864 /* Set the location counter to the new label. */
865 xcfi = new_cfi ();
866 /* It doesn't metter whether DW_CFA_set_loc
867 or DW_CFA_advance_loc4 is added here, those aren't
868 emitted into assembly, only looked up by
869 convert_cfa_to_fb_loc_list. */
870 xcfi->dw_cfi_opc = DW_CFA_set_loc;
871 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
872 add_cfi (&fde->dw_fde_cfi, xcfi);
873 fde->dw_fde_current_label = label;
874 }
875 break;
876 default:
877 break;
878 }
879 }
880
881 output_cfi_directive (cfi);
882
883 list_head = &fde->dw_fde_cfi;
884 }
885 /* ??? If this is a CFI for the CIE, we don't emit. This
886 assumes that the standard CIE contents that the assembler
887 uses matches the standard CIE contents that the compiler
888 uses. This is probably a bad assumption. I'm not quite
889 sure how to address this for now. */
890 }
891 else if (label)
892 {
893 dw_fde_ref fde = current_fde ();
894
895 gcc_assert (fde != NULL);
896
897 if (*label == 0)
898 label = dwarf2out_cfi_label (false);
899
900 if (fde->dw_fde_current_label == NULL
901 || strcmp (label, fde->dw_fde_current_label) != 0)
902 {
903 dw_cfi_ref xcfi;
904
905 label = xstrdup (label);
906
907 /* Set the location counter to the new label. */
908 xcfi = new_cfi ();
909 /* If we have a current label, advance from there, otherwise
910 set the location directly using set_loc. */
911 xcfi->dw_cfi_opc = fde->dw_fde_current_label
912 ? DW_CFA_advance_loc4
913 : DW_CFA_set_loc;
914 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
915 add_cfi (&fde->dw_fde_cfi, xcfi);
916
917 fde->dw_fde_current_label = label;
918 }
919
920 list_head = &fde->dw_fde_cfi;
921 }
922
923 add_cfi (list_head, cfi);
924 }
925
926 /* Subroutine of lookup_cfa. */
927
928 static void
929 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc, dw_cfa_location *remember)
930 {
931 switch (cfi->dw_cfi_opc)
932 {
933 case DW_CFA_def_cfa_offset:
934 case DW_CFA_def_cfa_offset_sf:
935 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
936 break;
937 case DW_CFA_def_cfa_register:
938 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
939 break;
940 case DW_CFA_def_cfa:
941 case DW_CFA_def_cfa_sf:
942 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
943 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
944 break;
945 case DW_CFA_def_cfa_expression:
946 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
947 break;
948
949 case DW_CFA_remember_state:
950 gcc_assert (!remember->in_use);
951 *remember = *loc;
952 remember->in_use = 1;
953 break;
954 case DW_CFA_restore_state:
955 gcc_assert (remember->in_use);
956 *loc = *remember;
957 remember->in_use = 0;
958 break;
959
960 default:
961 break;
962 }
963 }
964
965 /* Find the previous value for the CFA. */
966
967 static void
968 lookup_cfa (dw_cfa_location *loc)
969 {
970 dw_cfi_ref cfi;
971 dw_fde_ref fde;
972 dw_cfa_location remember;
973
974 memset (loc, 0, sizeof (*loc));
975 loc->reg = INVALID_REGNUM;
976 remember = *loc;
977
978 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
979 lookup_cfa_1 (cfi, loc, &remember);
980
981 fde = current_fde ();
982 if (fde)
983 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
984 lookup_cfa_1 (cfi, loc, &remember);
985 }
986
987 /* The current rule for calculating the DWARF2 canonical frame address. */
988 static dw_cfa_location cfa;
989
990 /* The register used for saving registers to the stack, and its offset
991 from the CFA. */
992 static dw_cfa_location cfa_store;
993
994 /* The current save location around an epilogue. */
995 static dw_cfa_location cfa_remember;
996
997 /* The running total of the size of arguments pushed onto the stack. */
998 static HOST_WIDE_INT args_size;
999
1000 /* The last args_size we actually output. */
1001 static HOST_WIDE_INT old_args_size;
1002
1003 /* Entry point to update the canonical frame address (CFA).
1004 LABEL is passed to add_fde_cfi. The value of CFA is now to be
1005 calculated from REG+OFFSET. */
1006
1007 void
1008 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
1009 {
1010 dw_cfa_location loc;
1011 loc.indirect = 0;
1012 loc.base_offset = 0;
1013 loc.reg = reg;
1014 loc.offset = offset;
1015 def_cfa_1 (label, &loc);
1016 }
1017
1018 /* Determine if two dw_cfa_location structures define the same data. */
1019
1020 static bool
1021 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
1022 {
1023 return (loc1->reg == loc2->reg
1024 && loc1->offset == loc2->offset
1025 && loc1->indirect == loc2->indirect
1026 && (loc1->indirect == 0
1027 || loc1->base_offset == loc2->base_offset));
1028 }
1029
1030 /* This routine does the actual work. The CFA is now calculated from
1031 the dw_cfa_location structure. */
1032
1033 static void
1034 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
1035 {
1036 dw_cfi_ref cfi;
1037 dw_cfa_location old_cfa, loc;
1038
1039 cfa = *loc_p;
1040 loc = *loc_p;
1041
1042 if (cfa_store.reg == loc.reg && loc.indirect == 0)
1043 cfa_store.offset = loc.offset;
1044
1045 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
1046 lookup_cfa (&old_cfa);
1047
1048 /* If nothing changed, no need to issue any call frame instructions. */
1049 if (cfa_equal_p (&loc, &old_cfa))
1050 return;
1051
1052 cfi = new_cfi ();
1053
1054 if (loc.reg == old_cfa.reg && !loc.indirect && !old_cfa.indirect)
1055 {
1056 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
1057 the CFA register did not change but the offset did. The data
1058 factoring for DW_CFA_def_cfa_offset_sf happens in output_cfi, or
1059 in the assembler via the .cfi_def_cfa_offset directive. */
1060 if (loc.offset < 0)
1061 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
1062 else
1063 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
1064 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
1065 }
1066
1067 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
1068 else if (loc.offset == old_cfa.offset
1069 && old_cfa.reg != INVALID_REGNUM
1070 && !loc.indirect
1071 && !old_cfa.indirect)
1072 {
1073 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
1074 indicating the CFA register has changed to <register> but the
1075 offset has not changed. */
1076 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
1077 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
1078 }
1079 #endif
1080
1081 else if (loc.indirect == 0)
1082 {
1083 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
1084 indicating the CFA register has changed to <register> with
1085 the specified offset. The data factoring for DW_CFA_def_cfa_sf
1086 happens in output_cfi, or in the assembler via the .cfi_def_cfa
1087 directive. */
1088 if (loc.offset < 0)
1089 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
1090 else
1091 cfi->dw_cfi_opc = DW_CFA_def_cfa;
1092 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
1093 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
1094 }
1095 else
1096 {
1097 /* Construct a DW_CFA_def_cfa_expression instruction to
1098 calculate the CFA using a full location expression since no
1099 register-offset pair is available. */
1100 struct dw_loc_descr_struct *loc_list;
1101
1102 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
1103 loc_list = build_cfa_loc (&loc, 0);
1104 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
1105 }
1106
1107 add_fde_cfi (label, cfi);
1108 }
1109
1110 /* Add the CFI for saving a register. REG is the CFA column number.
1111 LABEL is passed to add_fde_cfi.
1112 If SREG is -1, the register is saved at OFFSET from the CFA;
1113 otherwise it is saved in SREG. */
1114
1115 static void
1116 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
1117 {
1118 dw_cfi_ref cfi = new_cfi ();
1119 dw_fde_ref fde = current_fde ();
1120
1121 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
1122
1123 /* When stack is aligned, store REG using DW_CFA_expression with
1124 FP. */
1125 if (fde
1126 && fde->stack_realign
1127 && sreg == INVALID_REGNUM)
1128 {
1129 cfi->dw_cfi_opc = DW_CFA_expression;
1130 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
1131 cfi->dw_cfi_oprnd2.dw_cfi_loc
1132 = build_cfa_aligned_loc (offset, fde->stack_realignment);
1133 }
1134 else if (sreg == INVALID_REGNUM)
1135 {
1136 if (need_data_align_sf_opcode (offset))
1137 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
1138 else if (reg & ~0x3f)
1139 cfi->dw_cfi_opc = DW_CFA_offset_extended;
1140 else
1141 cfi->dw_cfi_opc = DW_CFA_offset;
1142 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
1143 }
1144 else if (sreg == reg)
1145 cfi->dw_cfi_opc = DW_CFA_same_value;
1146 else
1147 {
1148 cfi->dw_cfi_opc = DW_CFA_register;
1149 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
1150 }
1151
1152 add_fde_cfi (label, cfi);
1153 }
1154
1155 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
1156 This CFI tells the unwinder that it needs to restore the window registers
1157 from the previous frame's window save area.
1158
1159 ??? Perhaps we should note in the CIE where windows are saved (instead of
1160 assuming 0(cfa)) and what registers are in the window. */
1161
1162 void
1163 dwarf2out_window_save (const char *label)
1164 {
1165 dw_cfi_ref cfi = new_cfi ();
1166
1167 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
1168 add_fde_cfi (label, cfi);
1169 }
1170
1171 /* Entry point for saving a register to the stack. REG is the GCC register
1172 number. LABEL and OFFSET are passed to reg_save. */
1173
1174 void
1175 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
1176 {
1177 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
1178 }
1179
1180 /* Entry point for saving the return address in the stack.
1181 LABEL and OFFSET are passed to reg_save. */
1182
1183 void
1184 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
1185 {
1186 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
1187 }
1188
1189 /* Entry point for saving the return address in a register.
1190 LABEL and SREG are passed to reg_save. */
1191
1192 void
1193 dwarf2out_return_reg (const char *label, unsigned int sreg)
1194 {
1195 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
1196 }
1197
1198 #ifdef DWARF2_UNWIND_INFO
1199 /* Record the initial position of the return address. RTL is
1200 INCOMING_RETURN_ADDR_RTX. */
1201
1202 static void
1203 initial_return_save (rtx rtl)
1204 {
1205 unsigned int reg = INVALID_REGNUM;
1206 HOST_WIDE_INT offset = 0;
1207
1208 switch (GET_CODE (rtl))
1209 {
1210 case REG:
1211 /* RA is in a register. */
1212 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
1213 break;
1214
1215 case MEM:
1216 /* RA is on the stack. */
1217 rtl = XEXP (rtl, 0);
1218 switch (GET_CODE (rtl))
1219 {
1220 case REG:
1221 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
1222 offset = 0;
1223 break;
1224
1225 case PLUS:
1226 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
1227 offset = INTVAL (XEXP (rtl, 1));
1228 break;
1229
1230 case MINUS:
1231 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
1232 offset = -INTVAL (XEXP (rtl, 1));
1233 break;
1234
1235 default:
1236 gcc_unreachable ();
1237 }
1238
1239 break;
1240
1241 case PLUS:
1242 /* The return address is at some offset from any value we can
1243 actually load. For instance, on the SPARC it is in %i7+8. Just
1244 ignore the offset for now; it doesn't matter for unwinding frames. */
1245 gcc_assert (CONST_INT_P (XEXP (rtl, 1)));
1246 initial_return_save (XEXP (rtl, 0));
1247 return;
1248
1249 default:
1250 gcc_unreachable ();
1251 }
1252
1253 if (reg != DWARF_FRAME_RETURN_COLUMN)
1254 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
1255 }
1256 #endif
1257
1258 /* Given a SET, calculate the amount of stack adjustment it
1259 contains. */
1260
1261 static HOST_WIDE_INT
1262 stack_adjust_offset (const_rtx pattern, HOST_WIDE_INT cur_args_size,
1263 HOST_WIDE_INT cur_offset)
1264 {
1265 const_rtx src = SET_SRC (pattern);
1266 const_rtx dest = SET_DEST (pattern);
1267 HOST_WIDE_INT offset = 0;
1268 enum rtx_code code;
1269
1270 if (dest == stack_pointer_rtx)
1271 {
1272 code = GET_CODE (src);
1273
1274 /* Assume (set (reg sp) (reg whatever)) sets args_size
1275 level to 0. */
1276 if (code == REG && src != stack_pointer_rtx)
1277 {
1278 offset = -cur_args_size;
1279 #ifndef STACK_GROWS_DOWNWARD
1280 offset = -offset;
1281 #endif
1282 return offset - cur_offset;
1283 }
1284
1285 if (! (code == PLUS || code == MINUS)
1286 || XEXP (src, 0) != stack_pointer_rtx
1287 || !CONST_INT_P (XEXP (src, 1)))
1288 return 0;
1289
1290 /* (set (reg sp) (plus (reg sp) (const_int))) */
1291 offset = INTVAL (XEXP (src, 1));
1292 if (code == PLUS)
1293 offset = -offset;
1294 return offset;
1295 }
1296
1297 if (MEM_P (src) && !MEM_P (dest))
1298 dest = src;
1299 if (MEM_P (dest))
1300 {
1301 /* (set (mem (pre_dec (reg sp))) (foo)) */
1302 src = XEXP (dest, 0);
1303 code = GET_CODE (src);
1304
1305 switch (code)
1306 {
1307 case PRE_MODIFY:
1308 case POST_MODIFY:
1309 if (XEXP (src, 0) == stack_pointer_rtx)
1310 {
1311 rtx val = XEXP (XEXP (src, 1), 1);
1312 /* We handle only adjustments by constant amount. */
1313 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1314 && CONST_INT_P (val));
1315 offset = -INTVAL (val);
1316 break;
1317 }
1318 return 0;
1319
1320 case PRE_DEC:
1321 case POST_DEC:
1322 if (XEXP (src, 0) == stack_pointer_rtx)
1323 {
1324 offset = GET_MODE_SIZE (GET_MODE (dest));
1325 break;
1326 }
1327 return 0;
1328
1329 case PRE_INC:
1330 case POST_INC:
1331 if (XEXP (src, 0) == stack_pointer_rtx)
1332 {
1333 offset = -GET_MODE_SIZE (GET_MODE (dest));
1334 break;
1335 }
1336 return 0;
1337
1338 default:
1339 return 0;
1340 }
1341 }
1342 else
1343 return 0;
1344
1345 return offset;
1346 }
1347
1348 /* Precomputed args_size for CODE_LABELs and BARRIERs preceeding them,
1349 indexed by INSN_UID. */
1350
1351 static HOST_WIDE_INT *barrier_args_size;
1352
1353 /* Helper function for compute_barrier_args_size. Handle one insn. */
1354
1355 static HOST_WIDE_INT
1356 compute_barrier_args_size_1 (rtx insn, HOST_WIDE_INT cur_args_size,
1357 VEC (rtx, heap) **next)
1358 {
1359 HOST_WIDE_INT offset = 0;
1360 int i;
1361
1362 if (! RTX_FRAME_RELATED_P (insn))
1363 {
1364 if (prologue_epilogue_contains (insn))
1365 /* Nothing */;
1366 else if (GET_CODE (PATTERN (insn)) == SET)
1367 offset = stack_adjust_offset (PATTERN (insn), cur_args_size, 0);
1368 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1369 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1370 {
1371 /* There may be stack adjustments inside compound insns. Search
1372 for them. */
1373 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1374 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1375 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i),
1376 cur_args_size, offset);
1377 }
1378 }
1379 else
1380 {
1381 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1382
1383 if (expr)
1384 {
1385 expr = XEXP (expr, 0);
1386 if (GET_CODE (expr) == PARALLEL
1387 || GET_CODE (expr) == SEQUENCE)
1388 for (i = 1; i < XVECLEN (expr, 0); i++)
1389 {
1390 rtx elem = XVECEXP (expr, 0, i);
1391
1392 if (GET_CODE (elem) == SET && !RTX_FRAME_RELATED_P (elem))
1393 offset += stack_adjust_offset (elem, cur_args_size, offset);
1394 }
1395 }
1396 }
1397
1398 #ifndef STACK_GROWS_DOWNWARD
1399 offset = -offset;
1400 #endif
1401
1402 cur_args_size += offset;
1403 if (cur_args_size < 0)
1404 cur_args_size = 0;
1405
1406 if (JUMP_P (insn))
1407 {
1408 rtx dest = JUMP_LABEL (insn);
1409
1410 if (dest)
1411 {
1412 if (barrier_args_size [INSN_UID (dest)] < 0)
1413 {
1414 barrier_args_size [INSN_UID (dest)] = cur_args_size;
1415 VEC_safe_push (rtx, heap, *next, dest);
1416 }
1417 }
1418 }
1419
1420 return cur_args_size;
1421 }
1422
1423 /* Walk the whole function and compute args_size on BARRIERs. */
1424
1425 static void
1426 compute_barrier_args_size (void)
1427 {
1428 int max_uid = get_max_uid (), i;
1429 rtx insn;
1430 VEC (rtx, heap) *worklist, *next, *tmp;
1431
1432 barrier_args_size = XNEWVEC (HOST_WIDE_INT, max_uid);
1433 for (i = 0; i < max_uid; i++)
1434 barrier_args_size[i] = -1;
1435
1436 worklist = VEC_alloc (rtx, heap, 20);
1437 next = VEC_alloc (rtx, heap, 20);
1438 insn = get_insns ();
1439 barrier_args_size[INSN_UID (insn)] = 0;
1440 VEC_quick_push (rtx, worklist, insn);
1441 for (;;)
1442 {
1443 while (!VEC_empty (rtx, worklist))
1444 {
1445 rtx prev, body, first_insn;
1446 HOST_WIDE_INT cur_args_size;
1447
1448 first_insn = insn = VEC_pop (rtx, worklist);
1449 cur_args_size = barrier_args_size[INSN_UID (insn)];
1450 prev = prev_nonnote_insn (insn);
1451 if (prev && BARRIER_P (prev))
1452 barrier_args_size[INSN_UID (prev)] = cur_args_size;
1453
1454 for (; insn; insn = NEXT_INSN (insn))
1455 {
1456 if (INSN_DELETED_P (insn) || NOTE_P (insn))
1457 continue;
1458 if (BARRIER_P (insn))
1459 break;
1460
1461 if (LABEL_P (insn))
1462 {
1463 if (insn == first_insn)
1464 continue;
1465 else if (barrier_args_size[INSN_UID (insn)] < 0)
1466 {
1467 barrier_args_size[INSN_UID (insn)] = cur_args_size;
1468 continue;
1469 }
1470 else
1471 {
1472 /* The insns starting with this label have been
1473 already scanned or are in the worklist. */
1474 break;
1475 }
1476 }
1477
1478 body = PATTERN (insn);
1479 if (GET_CODE (body) == SEQUENCE)
1480 {
1481 HOST_WIDE_INT dest_args_size = cur_args_size;
1482 for (i = 1; i < XVECLEN (body, 0); i++)
1483 if (INSN_ANNULLED_BRANCH_P (XVECEXP (body, 0, 0))
1484 && INSN_FROM_TARGET_P (XVECEXP (body, 0, i)))
1485 dest_args_size
1486 = compute_barrier_args_size_1 (XVECEXP (body, 0, i),
1487 dest_args_size, &next);
1488 else
1489 cur_args_size
1490 = compute_barrier_args_size_1 (XVECEXP (body, 0, i),
1491 cur_args_size, &next);
1492
1493 if (INSN_ANNULLED_BRANCH_P (XVECEXP (body, 0, 0)))
1494 compute_barrier_args_size_1 (XVECEXP (body, 0, 0),
1495 dest_args_size, &next);
1496 else
1497 cur_args_size
1498 = compute_barrier_args_size_1 (XVECEXP (body, 0, 0),
1499 cur_args_size, &next);
1500 }
1501 else
1502 cur_args_size
1503 = compute_barrier_args_size_1 (insn, cur_args_size, &next);
1504 }
1505 }
1506
1507 if (VEC_empty (rtx, next))
1508 break;
1509
1510 /* Swap WORKLIST with NEXT and truncate NEXT for next iteration. */
1511 tmp = next;
1512 next = worklist;
1513 worklist = tmp;
1514 VEC_truncate (rtx, next, 0);
1515 }
1516
1517 VEC_free (rtx, heap, worklist);
1518 VEC_free (rtx, heap, next);
1519 }
1520
1521 /* Add a CFI to update the running total of the size of arguments
1522 pushed onto the stack. */
1523
1524 static void
1525 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
1526 {
1527 dw_cfi_ref cfi;
1528
1529 if (size == old_args_size)
1530 return;
1531
1532 old_args_size = size;
1533
1534 cfi = new_cfi ();
1535 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
1536 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
1537 add_fde_cfi (label, cfi);
1538 }
1539
1540 /* Record a stack adjustment of OFFSET bytes. */
1541
1542 static void
1543 dwarf2out_stack_adjust (HOST_WIDE_INT offset, const char *label)
1544 {
1545 if (cfa.reg == STACK_POINTER_REGNUM)
1546 cfa.offset += offset;
1547
1548 if (cfa_store.reg == STACK_POINTER_REGNUM)
1549 cfa_store.offset += offset;
1550
1551 if (ACCUMULATE_OUTGOING_ARGS)
1552 return;
1553
1554 #ifndef STACK_GROWS_DOWNWARD
1555 offset = -offset;
1556 #endif
1557
1558 args_size += offset;
1559 if (args_size < 0)
1560 args_size = 0;
1561
1562 def_cfa_1 (label, &cfa);
1563 if (flag_asynchronous_unwind_tables)
1564 dwarf2out_args_size (label, args_size);
1565 }
1566
1567 /* Check INSN to see if it looks like a push or a stack adjustment, and
1568 make a note of it if it does. EH uses this information to find out
1569 how much extra space it needs to pop off the stack. */
1570
1571 static void
1572 dwarf2out_notice_stack_adjust (rtx insn, bool after_p)
1573 {
1574 HOST_WIDE_INT offset;
1575 const char *label;
1576 int i;
1577
1578 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1579 with this function. Proper support would require all frame-related
1580 insns to be marked, and to be able to handle saving state around
1581 epilogues textually in the middle of the function. */
1582 if (prologue_epilogue_contains (insn))
1583 return;
1584
1585 /* If INSN is an instruction from target of an annulled branch, the
1586 effects are for the target only and so current argument size
1587 shouldn't change at all. */
1588 if (final_sequence
1589 && INSN_ANNULLED_BRANCH_P (XVECEXP (final_sequence, 0, 0))
1590 && INSN_FROM_TARGET_P (insn))
1591 return;
1592
1593 /* If only calls can throw, and we have a frame pointer,
1594 save up adjustments until we see the CALL_INSN. */
1595 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1596 {
1597 if (CALL_P (insn) && !after_p)
1598 {
1599 /* Extract the size of the args from the CALL rtx itself. */
1600 insn = PATTERN (insn);
1601 if (GET_CODE (insn) == PARALLEL)
1602 insn = XVECEXP (insn, 0, 0);
1603 if (GET_CODE (insn) == SET)
1604 insn = SET_SRC (insn);
1605 gcc_assert (GET_CODE (insn) == CALL);
1606 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1607 }
1608 return;
1609 }
1610
1611 if (CALL_P (insn) && !after_p)
1612 {
1613 if (!flag_asynchronous_unwind_tables)
1614 dwarf2out_args_size ("", args_size);
1615 return;
1616 }
1617 else if (BARRIER_P (insn))
1618 {
1619 /* Don't call compute_barrier_args_size () if the only
1620 BARRIER is at the end of function. */
1621 if (barrier_args_size == NULL && next_nonnote_insn (insn))
1622 compute_barrier_args_size ();
1623 if (barrier_args_size == NULL)
1624 offset = 0;
1625 else
1626 {
1627 offset = barrier_args_size[INSN_UID (insn)];
1628 if (offset < 0)
1629 offset = 0;
1630 }
1631
1632 offset -= args_size;
1633 #ifndef STACK_GROWS_DOWNWARD
1634 offset = -offset;
1635 #endif
1636 }
1637 else if (GET_CODE (PATTERN (insn)) == SET)
1638 offset = stack_adjust_offset (PATTERN (insn), args_size, 0);
1639 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1640 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1641 {
1642 /* There may be stack adjustments inside compound insns. Search
1643 for them. */
1644 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1645 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1646 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i),
1647 args_size, offset);
1648 }
1649 else
1650 return;
1651
1652 if (offset == 0)
1653 return;
1654
1655 label = dwarf2out_cfi_label (false);
1656 dwarf2out_stack_adjust (offset, label);
1657 }
1658
1659 #endif
1660
1661 /* We delay emitting a register save until either (a) we reach the end
1662 of the prologue or (b) the register is clobbered. This clusters
1663 register saves so that there are fewer pc advances. */
1664
1665 struct GTY(()) queued_reg_save {
1666 struct queued_reg_save *next;
1667 rtx reg;
1668 HOST_WIDE_INT cfa_offset;
1669 rtx saved_reg;
1670 };
1671
1672 static GTY(()) struct queued_reg_save *queued_reg_saves;
1673
1674 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1675 struct GTY(()) reg_saved_in_data {
1676 rtx orig_reg;
1677 rtx saved_in_reg;
1678 };
1679
1680 /* A list of registers saved in other registers.
1681 The list intentionally has a small maximum capacity of 4; if your
1682 port needs more than that, you might consider implementing a
1683 more efficient data structure. */
1684 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1685 static GTY(()) size_t num_regs_saved_in_regs;
1686
1687 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1688 static const char *last_reg_save_label;
1689
1690 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1691 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1692
1693 static void
1694 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1695 {
1696 struct queued_reg_save *q;
1697
1698 /* Duplicates waste space, but it's also necessary to remove them
1699 for correctness, since the queue gets output in reverse
1700 order. */
1701 for (q = queued_reg_saves; q != NULL; q = q->next)
1702 if (REGNO (q->reg) == REGNO (reg))
1703 break;
1704
1705 if (q == NULL)
1706 {
1707 q = ggc_alloc_queued_reg_save ();
1708 q->next = queued_reg_saves;
1709 queued_reg_saves = q;
1710 }
1711
1712 q->reg = reg;
1713 q->cfa_offset = offset;
1714 q->saved_reg = sreg;
1715
1716 last_reg_save_label = label;
1717 }
1718
1719 /* Output all the entries in QUEUED_REG_SAVES. */
1720
1721 static void
1722 flush_queued_reg_saves (void)
1723 {
1724 struct queued_reg_save *q;
1725
1726 for (q = queued_reg_saves; q; q = q->next)
1727 {
1728 size_t i;
1729 unsigned int reg, sreg;
1730
1731 for (i = 0; i < num_regs_saved_in_regs; i++)
1732 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1733 break;
1734 if (q->saved_reg && i == num_regs_saved_in_regs)
1735 {
1736 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1737 num_regs_saved_in_regs++;
1738 }
1739 if (i != num_regs_saved_in_regs)
1740 {
1741 regs_saved_in_regs[i].orig_reg = q->reg;
1742 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1743 }
1744
1745 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1746 if (q->saved_reg)
1747 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1748 else
1749 sreg = INVALID_REGNUM;
1750 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1751 }
1752
1753 queued_reg_saves = NULL;
1754 last_reg_save_label = NULL;
1755 }
1756
1757 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1758 location for? Or, does it clobber a register which we've previously
1759 said that some other register is saved in, and for which we now
1760 have a new location for? */
1761
1762 static bool
1763 clobbers_queued_reg_save (const_rtx insn)
1764 {
1765 struct queued_reg_save *q;
1766
1767 for (q = queued_reg_saves; q; q = q->next)
1768 {
1769 size_t i;
1770 if (modified_in_p (q->reg, insn))
1771 return true;
1772 for (i = 0; i < num_regs_saved_in_regs; i++)
1773 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1774 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1775 return true;
1776 }
1777
1778 return false;
1779 }
1780
1781 /* Entry point for saving the first register into the second. */
1782
1783 void
1784 dwarf2out_reg_save_reg (const char *label, rtx reg, rtx sreg)
1785 {
1786 size_t i;
1787 unsigned int regno, sregno;
1788
1789 for (i = 0; i < num_regs_saved_in_regs; i++)
1790 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (reg))
1791 break;
1792 if (i == num_regs_saved_in_regs)
1793 {
1794 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1795 num_regs_saved_in_regs++;
1796 }
1797 regs_saved_in_regs[i].orig_reg = reg;
1798 regs_saved_in_regs[i].saved_in_reg = sreg;
1799
1800 regno = DWARF_FRAME_REGNUM (REGNO (reg));
1801 sregno = DWARF_FRAME_REGNUM (REGNO (sreg));
1802 reg_save (label, regno, sregno, 0);
1803 }
1804
1805 /* What register, if any, is currently saved in REG? */
1806
1807 static rtx
1808 reg_saved_in (rtx reg)
1809 {
1810 unsigned int regn = REGNO (reg);
1811 size_t i;
1812 struct queued_reg_save *q;
1813
1814 for (q = queued_reg_saves; q; q = q->next)
1815 if (q->saved_reg && regn == REGNO (q->saved_reg))
1816 return q->reg;
1817
1818 for (i = 0; i < num_regs_saved_in_regs; i++)
1819 if (regs_saved_in_regs[i].saved_in_reg
1820 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1821 return regs_saved_in_regs[i].orig_reg;
1822
1823 return NULL_RTX;
1824 }
1825
1826
1827 /* A temporary register holding an integral value used in adjusting SP
1828 or setting up the store_reg. The "offset" field holds the integer
1829 value, not an offset. */
1830 static dw_cfa_location cfa_temp;
1831
1832 /* A subroutine of dwarf2out_frame_debug, process a REG_DEF_CFA note. */
1833
1834 static void
1835 dwarf2out_frame_debug_def_cfa (rtx pat, const char *label)
1836 {
1837 memset (&cfa, 0, sizeof (cfa));
1838
1839 switch (GET_CODE (pat))
1840 {
1841 case PLUS:
1842 cfa.reg = REGNO (XEXP (pat, 0));
1843 cfa.offset = INTVAL (XEXP (pat, 1));
1844 break;
1845
1846 case REG:
1847 cfa.reg = REGNO (pat);
1848 break;
1849
1850 default:
1851 /* Recurse and define an expression. */
1852 gcc_unreachable ();
1853 }
1854
1855 def_cfa_1 (label, &cfa);
1856 }
1857
1858 /* A subroutine of dwarf2out_frame_debug, process a REG_ADJUST_CFA note. */
1859
1860 static void
1861 dwarf2out_frame_debug_adjust_cfa (rtx pat, const char *label)
1862 {
1863 rtx src, dest;
1864
1865 gcc_assert (GET_CODE (pat) == SET);
1866 dest = XEXP (pat, 0);
1867 src = XEXP (pat, 1);
1868
1869 switch (GET_CODE (src))
1870 {
1871 case PLUS:
1872 gcc_assert (REGNO (XEXP (src, 0)) == cfa.reg);
1873 cfa.offset -= INTVAL (XEXP (src, 1));
1874 break;
1875
1876 case REG:
1877 break;
1878
1879 default:
1880 gcc_unreachable ();
1881 }
1882
1883 cfa.reg = REGNO (dest);
1884 gcc_assert (cfa.indirect == 0);
1885
1886 def_cfa_1 (label, &cfa);
1887 }
1888
1889 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_OFFSET note. */
1890
1891 static void
1892 dwarf2out_frame_debug_cfa_offset (rtx set, const char *label)
1893 {
1894 HOST_WIDE_INT offset;
1895 rtx src, addr, span;
1896
1897 src = XEXP (set, 1);
1898 addr = XEXP (set, 0);
1899 gcc_assert (MEM_P (addr));
1900 addr = XEXP (addr, 0);
1901
1902 /* As documented, only consider extremely simple addresses. */
1903 switch (GET_CODE (addr))
1904 {
1905 case REG:
1906 gcc_assert (REGNO (addr) == cfa.reg);
1907 offset = -cfa.offset;
1908 break;
1909 case PLUS:
1910 gcc_assert (REGNO (XEXP (addr, 0)) == cfa.reg);
1911 offset = INTVAL (XEXP (addr, 1)) - cfa.offset;
1912 break;
1913 default:
1914 gcc_unreachable ();
1915 }
1916
1917 span = targetm.dwarf_register_span (src);
1918
1919 /* ??? We'd like to use queue_reg_save, but we need to come up with
1920 a different flushing heuristic for epilogues. */
1921 if (!span)
1922 reg_save (label, DWARF_FRAME_REGNUM (REGNO (src)), INVALID_REGNUM, offset);
1923 else
1924 {
1925 /* We have a PARALLEL describing where the contents of SRC live.
1926 Queue register saves for each piece of the PARALLEL. */
1927 int par_index;
1928 int limit;
1929 HOST_WIDE_INT span_offset = offset;
1930
1931 gcc_assert (GET_CODE (span) == PARALLEL);
1932
1933 limit = XVECLEN (span, 0);
1934 for (par_index = 0; par_index < limit; par_index++)
1935 {
1936 rtx elem = XVECEXP (span, 0, par_index);
1937
1938 reg_save (label, DWARF_FRAME_REGNUM (REGNO (elem)),
1939 INVALID_REGNUM, span_offset);
1940 span_offset += GET_MODE_SIZE (GET_MODE (elem));
1941 }
1942 }
1943 }
1944
1945 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_REGISTER note. */
1946
1947 static void
1948 dwarf2out_frame_debug_cfa_register (rtx set, const char *label)
1949 {
1950 rtx src, dest;
1951 unsigned sregno, dregno;
1952
1953 src = XEXP (set, 1);
1954 dest = XEXP (set, 0);
1955
1956 if (src == pc_rtx)
1957 sregno = DWARF_FRAME_RETURN_COLUMN;
1958 else
1959 sregno = DWARF_FRAME_REGNUM (REGNO (src));
1960
1961 dregno = DWARF_FRAME_REGNUM (REGNO (dest));
1962
1963 /* ??? We'd like to use queue_reg_save, but we need to come up with
1964 a different flushing heuristic for epilogues. */
1965 reg_save (label, sregno, dregno, 0);
1966 }
1967
1968 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_RESTORE note. */
1969
1970 static void
1971 dwarf2out_frame_debug_cfa_restore (rtx reg, const char *label)
1972 {
1973 dw_cfi_ref cfi = new_cfi ();
1974 unsigned int regno = DWARF_FRAME_REGNUM (REGNO (reg));
1975
1976 cfi->dw_cfi_opc = (regno & ~0x3f ? DW_CFA_restore_extended : DW_CFA_restore);
1977 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = regno;
1978
1979 add_fde_cfi (label, cfi);
1980 }
1981
1982 /* Record call frame debugging information for an expression EXPR,
1983 which either sets SP or FP (adjusting how we calculate the frame
1984 address) or saves a register to the stack or another register.
1985 LABEL indicates the address of EXPR.
1986
1987 This function encodes a state machine mapping rtxes to actions on
1988 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1989 users need not read the source code.
1990
1991 The High-Level Picture
1992
1993 Changes in the register we use to calculate the CFA: Currently we
1994 assume that if you copy the CFA register into another register, we
1995 should take the other one as the new CFA register; this seems to
1996 work pretty well. If it's wrong for some target, it's simple
1997 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1998
1999 Changes in the register we use for saving registers to the stack:
2000 This is usually SP, but not always. Again, we deduce that if you
2001 copy SP into another register (and SP is not the CFA register),
2002 then the new register is the one we will be using for register
2003 saves. This also seems to work.
2004
2005 Register saves: There's not much guesswork about this one; if
2006 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
2007 register save, and the register used to calculate the destination
2008 had better be the one we think we're using for this purpose.
2009 It's also assumed that a copy from a call-saved register to another
2010 register is saving that register if RTX_FRAME_RELATED_P is set on
2011 that instruction. If the copy is from a call-saved register to
2012 the *same* register, that means that the register is now the same
2013 value as in the caller.
2014
2015 Except: If the register being saved is the CFA register, and the
2016 offset is nonzero, we are saving the CFA, so we assume we have to
2017 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
2018 the intent is to save the value of SP from the previous frame.
2019
2020 In addition, if a register has previously been saved to a different
2021 register,
2022
2023 Invariants / Summaries of Rules
2024
2025 cfa current rule for calculating the CFA. It usually
2026 consists of a register and an offset.
2027 cfa_store register used by prologue code to save things to the stack
2028 cfa_store.offset is the offset from the value of
2029 cfa_store.reg to the actual CFA
2030 cfa_temp register holding an integral value. cfa_temp.offset
2031 stores the value, which will be used to adjust the
2032 stack pointer. cfa_temp is also used like cfa_store,
2033 to track stores to the stack via fp or a temp reg.
2034
2035 Rules 1- 4: Setting a register's value to cfa.reg or an expression
2036 with cfa.reg as the first operand changes the cfa.reg and its
2037 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
2038 cfa_temp.offset.
2039
2040 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
2041 expression yielding a constant. This sets cfa_temp.reg
2042 and cfa_temp.offset.
2043
2044 Rule 5: Create a new register cfa_store used to save items to the
2045 stack.
2046
2047 Rules 10-14: Save a register to the stack. Define offset as the
2048 difference of the original location and cfa_store's
2049 location (or cfa_temp's location if cfa_temp is used).
2050
2051 Rules 16-20: If AND operation happens on sp in prologue, we assume
2052 stack is realigned. We will use a group of DW_OP_XXX
2053 expressions to represent the location of the stored
2054 register instead of CFA+offset.
2055
2056 The Rules
2057
2058 "{a,b}" indicates a choice of a xor b.
2059 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
2060
2061 Rule 1:
2062 (set <reg1> <reg2>:cfa.reg)
2063 effects: cfa.reg = <reg1>
2064 cfa.offset unchanged
2065 cfa_temp.reg = <reg1>
2066 cfa_temp.offset = cfa.offset
2067
2068 Rule 2:
2069 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
2070 {<const_int>,<reg>:cfa_temp.reg}))
2071 effects: cfa.reg = sp if fp used
2072 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
2073 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
2074 if cfa_store.reg==sp
2075
2076 Rule 3:
2077 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
2078 effects: cfa.reg = fp
2079 cfa_offset += +/- <const_int>
2080
2081 Rule 4:
2082 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
2083 constraints: <reg1> != fp
2084 <reg1> != sp
2085 effects: cfa.reg = <reg1>
2086 cfa_temp.reg = <reg1>
2087 cfa_temp.offset = cfa.offset
2088
2089 Rule 5:
2090 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
2091 constraints: <reg1> != fp
2092 <reg1> != sp
2093 effects: cfa_store.reg = <reg1>
2094 cfa_store.offset = cfa.offset - cfa_temp.offset
2095
2096 Rule 6:
2097 (set <reg> <const_int>)
2098 effects: cfa_temp.reg = <reg>
2099 cfa_temp.offset = <const_int>
2100
2101 Rule 7:
2102 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
2103 effects: cfa_temp.reg = <reg1>
2104 cfa_temp.offset |= <const_int>
2105
2106 Rule 8:
2107 (set <reg> (high <exp>))
2108 effects: none
2109
2110 Rule 9:
2111 (set <reg> (lo_sum <exp> <const_int>))
2112 effects: cfa_temp.reg = <reg>
2113 cfa_temp.offset = <const_int>
2114
2115 Rule 10:
2116 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
2117 effects: cfa_store.offset -= <const_int>
2118 cfa.offset = cfa_store.offset if cfa.reg == sp
2119 cfa.reg = sp
2120 cfa.base_offset = -cfa_store.offset
2121
2122 Rule 11:
2123 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
2124 effects: cfa_store.offset += -/+ mode_size(mem)
2125 cfa.offset = cfa_store.offset if cfa.reg == sp
2126 cfa.reg = sp
2127 cfa.base_offset = -cfa_store.offset
2128
2129 Rule 12:
2130 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
2131
2132 <reg2>)
2133 effects: cfa.reg = <reg1>
2134 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
2135
2136 Rule 13:
2137 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
2138 effects: cfa.reg = <reg1>
2139 cfa.base_offset = -{cfa_store,cfa_temp}.offset
2140
2141 Rule 14:
2142 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
2143 effects: cfa.reg = <reg1>
2144 cfa.base_offset = -cfa_temp.offset
2145 cfa_temp.offset -= mode_size(mem)
2146
2147 Rule 15:
2148 (set <reg> {unspec, unspec_volatile})
2149 effects: target-dependent
2150
2151 Rule 16:
2152 (set sp (and: sp <const_int>))
2153 constraints: cfa_store.reg == sp
2154 effects: current_fde.stack_realign = 1
2155 cfa_store.offset = 0
2156 fde->drap_reg = cfa.reg if cfa.reg != sp and cfa.reg != fp
2157
2158 Rule 17:
2159 (set (mem ({pre_inc, pre_dec} sp)) (mem (plus (cfa.reg) (const_int))))
2160 effects: cfa_store.offset += -/+ mode_size(mem)
2161
2162 Rule 18:
2163 (set (mem ({pre_inc, pre_dec} sp)) fp)
2164 constraints: fde->stack_realign == 1
2165 effects: cfa_store.offset = 0
2166 cfa.reg != HARD_FRAME_POINTER_REGNUM
2167
2168 Rule 19:
2169 (set (mem ({pre_inc, pre_dec} sp)) cfa.reg)
2170 constraints: fde->stack_realign == 1
2171 && cfa.offset == 0
2172 && cfa.indirect == 0
2173 && cfa.reg != HARD_FRAME_POINTER_REGNUM
2174 effects: Use DW_CFA_def_cfa_expression to define cfa
2175 cfa.reg == fde->drap_reg */
2176
2177 static void
2178 dwarf2out_frame_debug_expr (rtx expr, const char *label)
2179 {
2180 rtx src, dest, span;
2181 HOST_WIDE_INT offset;
2182 dw_fde_ref fde;
2183
2184 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
2185 the PARALLEL independently. The first element is always processed if
2186 it is a SET. This is for backward compatibility. Other elements
2187 are processed only if they are SETs and the RTX_FRAME_RELATED_P
2188 flag is set in them. */
2189 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
2190 {
2191 int par_index;
2192 int limit = XVECLEN (expr, 0);
2193 rtx elem;
2194
2195 /* PARALLELs have strict read-modify-write semantics, so we
2196 ought to evaluate every rvalue before changing any lvalue.
2197 It's cumbersome to do that in general, but there's an
2198 easy approximation that is enough for all current users:
2199 handle register saves before register assignments. */
2200 if (GET_CODE (expr) == PARALLEL)
2201 for (par_index = 0; par_index < limit; par_index++)
2202 {
2203 elem = XVECEXP (expr, 0, par_index);
2204 if (GET_CODE (elem) == SET
2205 && MEM_P (SET_DEST (elem))
2206 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
2207 dwarf2out_frame_debug_expr (elem, label);
2208 }
2209
2210 for (par_index = 0; par_index < limit; par_index++)
2211 {
2212 elem = XVECEXP (expr, 0, par_index);
2213 if (GET_CODE (elem) == SET
2214 && (!MEM_P (SET_DEST (elem)) || GET_CODE (expr) == SEQUENCE)
2215 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
2216 dwarf2out_frame_debug_expr (elem, label);
2217 else if (GET_CODE (elem) == SET
2218 && par_index != 0
2219 && !RTX_FRAME_RELATED_P (elem))
2220 {
2221 /* Stack adjustment combining might combine some post-prologue
2222 stack adjustment into a prologue stack adjustment. */
2223 HOST_WIDE_INT offset = stack_adjust_offset (elem, args_size, 0);
2224
2225 if (offset != 0)
2226 dwarf2out_stack_adjust (offset, label);
2227 }
2228 }
2229 return;
2230 }
2231
2232 gcc_assert (GET_CODE (expr) == SET);
2233
2234 src = SET_SRC (expr);
2235 dest = SET_DEST (expr);
2236
2237 if (REG_P (src))
2238 {
2239 rtx rsi = reg_saved_in (src);
2240 if (rsi)
2241 src = rsi;
2242 }
2243
2244 fde = current_fde ();
2245
2246 switch (GET_CODE (dest))
2247 {
2248 case REG:
2249 switch (GET_CODE (src))
2250 {
2251 /* Setting FP from SP. */
2252 case REG:
2253 if (cfa.reg == (unsigned) REGNO (src))
2254 {
2255 /* Rule 1 */
2256 /* Update the CFA rule wrt SP or FP. Make sure src is
2257 relative to the current CFA register.
2258
2259 We used to require that dest be either SP or FP, but the
2260 ARM copies SP to a temporary register, and from there to
2261 FP. So we just rely on the backends to only set
2262 RTX_FRAME_RELATED_P on appropriate insns. */
2263 cfa.reg = REGNO (dest);
2264 cfa_temp.reg = cfa.reg;
2265 cfa_temp.offset = cfa.offset;
2266 }
2267 else
2268 {
2269 /* Saving a register in a register. */
2270 gcc_assert (!fixed_regs [REGNO (dest)]
2271 /* For the SPARC and its register window. */
2272 || (DWARF_FRAME_REGNUM (REGNO (src))
2273 == DWARF_FRAME_RETURN_COLUMN));
2274
2275 /* After stack is aligned, we can only save SP in FP
2276 if drap register is used. In this case, we have
2277 to restore stack pointer with the CFA value and we
2278 don't generate this DWARF information. */
2279 if (fde
2280 && fde->stack_realign
2281 && REGNO (src) == STACK_POINTER_REGNUM)
2282 gcc_assert (REGNO (dest) == HARD_FRAME_POINTER_REGNUM
2283 && fde->drap_reg != INVALID_REGNUM
2284 && cfa.reg != REGNO (src));
2285 else
2286 queue_reg_save (label, src, dest, 0);
2287 }
2288 break;
2289
2290 case PLUS:
2291 case MINUS:
2292 case LO_SUM:
2293 if (dest == stack_pointer_rtx)
2294 {
2295 /* Rule 2 */
2296 /* Adjusting SP. */
2297 switch (GET_CODE (XEXP (src, 1)))
2298 {
2299 case CONST_INT:
2300 offset = INTVAL (XEXP (src, 1));
2301 break;
2302 case REG:
2303 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
2304 == cfa_temp.reg);
2305 offset = cfa_temp.offset;
2306 break;
2307 default:
2308 gcc_unreachable ();
2309 }
2310
2311 if (XEXP (src, 0) == hard_frame_pointer_rtx)
2312 {
2313 /* Restoring SP from FP in the epilogue. */
2314 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
2315 cfa.reg = STACK_POINTER_REGNUM;
2316 }
2317 else if (GET_CODE (src) == LO_SUM)
2318 /* Assume we've set the source reg of the LO_SUM from sp. */
2319 ;
2320 else
2321 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
2322
2323 if (GET_CODE (src) != MINUS)
2324 offset = -offset;
2325 if (cfa.reg == STACK_POINTER_REGNUM)
2326 cfa.offset += offset;
2327 if (cfa_store.reg == STACK_POINTER_REGNUM)
2328 cfa_store.offset += offset;
2329 }
2330 else if (dest == hard_frame_pointer_rtx)
2331 {
2332 /* Rule 3 */
2333 /* Either setting the FP from an offset of the SP,
2334 or adjusting the FP */
2335 gcc_assert (frame_pointer_needed);
2336
2337 gcc_assert (REG_P (XEXP (src, 0))
2338 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
2339 && CONST_INT_P (XEXP (src, 1)));
2340 offset = INTVAL (XEXP (src, 1));
2341 if (GET_CODE (src) != MINUS)
2342 offset = -offset;
2343 cfa.offset += offset;
2344 cfa.reg = HARD_FRAME_POINTER_REGNUM;
2345 }
2346 else
2347 {
2348 gcc_assert (GET_CODE (src) != MINUS);
2349
2350 /* Rule 4 */
2351 if (REG_P (XEXP (src, 0))
2352 && REGNO (XEXP (src, 0)) == cfa.reg
2353 && CONST_INT_P (XEXP (src, 1)))
2354 {
2355 /* Setting a temporary CFA register that will be copied
2356 into the FP later on. */
2357 offset = - INTVAL (XEXP (src, 1));
2358 cfa.offset += offset;
2359 cfa.reg = REGNO (dest);
2360 /* Or used to save regs to the stack. */
2361 cfa_temp.reg = cfa.reg;
2362 cfa_temp.offset = cfa.offset;
2363 }
2364
2365 /* Rule 5 */
2366 else if (REG_P (XEXP (src, 0))
2367 && REGNO (XEXP (src, 0)) == cfa_temp.reg
2368 && XEXP (src, 1) == stack_pointer_rtx)
2369 {
2370 /* Setting a scratch register that we will use instead
2371 of SP for saving registers to the stack. */
2372 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
2373 cfa_store.reg = REGNO (dest);
2374 cfa_store.offset = cfa.offset - cfa_temp.offset;
2375 }
2376
2377 /* Rule 9 */
2378 else if (GET_CODE (src) == LO_SUM
2379 && CONST_INT_P (XEXP (src, 1)))
2380 {
2381 cfa_temp.reg = REGNO (dest);
2382 cfa_temp.offset = INTVAL (XEXP (src, 1));
2383 }
2384 else
2385 gcc_unreachable ();
2386 }
2387 break;
2388
2389 /* Rule 6 */
2390 case CONST_INT:
2391 cfa_temp.reg = REGNO (dest);
2392 cfa_temp.offset = INTVAL (src);
2393 break;
2394
2395 /* Rule 7 */
2396 case IOR:
2397 gcc_assert (REG_P (XEXP (src, 0))
2398 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
2399 && CONST_INT_P (XEXP (src, 1)));
2400
2401 if ((unsigned) REGNO (dest) != cfa_temp.reg)
2402 cfa_temp.reg = REGNO (dest);
2403 cfa_temp.offset |= INTVAL (XEXP (src, 1));
2404 break;
2405
2406 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
2407 which will fill in all of the bits. */
2408 /* Rule 8 */
2409 case HIGH:
2410 break;
2411
2412 /* Rule 15 */
2413 case UNSPEC:
2414 case UNSPEC_VOLATILE:
2415 gcc_assert (targetm.dwarf_handle_frame_unspec);
2416 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
2417 return;
2418
2419 /* Rule 16 */
2420 case AND:
2421 /* If this AND operation happens on stack pointer in prologue,
2422 we assume the stack is realigned and we extract the
2423 alignment. */
2424 if (fde && XEXP (src, 0) == stack_pointer_rtx)
2425 {
2426 gcc_assert (cfa_store.reg == REGNO (XEXP (src, 0)));
2427 fde->stack_realign = 1;
2428 fde->stack_realignment = INTVAL (XEXP (src, 1));
2429 cfa_store.offset = 0;
2430
2431 if (cfa.reg != STACK_POINTER_REGNUM
2432 && cfa.reg != HARD_FRAME_POINTER_REGNUM)
2433 fde->drap_reg = cfa.reg;
2434 }
2435 return;
2436
2437 default:
2438 gcc_unreachable ();
2439 }
2440
2441 def_cfa_1 (label, &cfa);
2442 break;
2443
2444 case MEM:
2445
2446 /* Saving a register to the stack. Make sure dest is relative to the
2447 CFA register. */
2448 switch (GET_CODE (XEXP (dest, 0)))
2449 {
2450 /* Rule 10 */
2451 /* With a push. */
2452 case PRE_MODIFY:
2453 /* We can't handle variable size modifications. */
2454 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
2455 == CONST_INT);
2456 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
2457
2458 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
2459 && cfa_store.reg == STACK_POINTER_REGNUM);
2460
2461 cfa_store.offset += offset;
2462 if (cfa.reg == STACK_POINTER_REGNUM)
2463 cfa.offset = cfa_store.offset;
2464
2465 offset = -cfa_store.offset;
2466 break;
2467
2468 /* Rule 11 */
2469 case PRE_INC:
2470 case PRE_DEC:
2471 offset = GET_MODE_SIZE (GET_MODE (dest));
2472 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
2473 offset = -offset;
2474
2475 gcc_assert ((REGNO (XEXP (XEXP (dest, 0), 0))
2476 == STACK_POINTER_REGNUM)
2477 && cfa_store.reg == STACK_POINTER_REGNUM);
2478
2479 cfa_store.offset += offset;
2480
2481 /* Rule 18: If stack is aligned, we will use FP as a
2482 reference to represent the address of the stored
2483 regiser. */
2484 if (fde
2485 && fde->stack_realign
2486 && src == hard_frame_pointer_rtx)
2487 {
2488 gcc_assert (cfa.reg != HARD_FRAME_POINTER_REGNUM);
2489 cfa_store.offset = 0;
2490 }
2491
2492 if (cfa.reg == STACK_POINTER_REGNUM)
2493 cfa.offset = cfa_store.offset;
2494
2495 offset = -cfa_store.offset;
2496 break;
2497
2498 /* Rule 12 */
2499 /* With an offset. */
2500 case PLUS:
2501 case MINUS:
2502 case LO_SUM:
2503 {
2504 int regno;
2505
2506 gcc_assert (CONST_INT_P (XEXP (XEXP (dest, 0), 1))
2507 && REG_P (XEXP (XEXP (dest, 0), 0)));
2508 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
2509 if (GET_CODE (XEXP (dest, 0)) == MINUS)
2510 offset = -offset;
2511
2512 regno = REGNO (XEXP (XEXP (dest, 0), 0));
2513
2514 if (cfa_store.reg == (unsigned) regno)
2515 offset -= cfa_store.offset;
2516 else
2517 {
2518 gcc_assert (cfa_temp.reg == (unsigned) regno);
2519 offset -= cfa_temp.offset;
2520 }
2521 }
2522 break;
2523
2524 /* Rule 13 */
2525 /* Without an offset. */
2526 case REG:
2527 {
2528 int regno = REGNO (XEXP (dest, 0));
2529
2530 if (cfa_store.reg == (unsigned) regno)
2531 offset = -cfa_store.offset;
2532 else
2533 {
2534 gcc_assert (cfa_temp.reg == (unsigned) regno);
2535 offset = -cfa_temp.offset;
2536 }
2537 }
2538 break;
2539
2540 /* Rule 14 */
2541 case POST_INC:
2542 gcc_assert (cfa_temp.reg
2543 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
2544 offset = -cfa_temp.offset;
2545 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
2546 break;
2547
2548 default:
2549 gcc_unreachable ();
2550 }
2551
2552 /* Rule 17 */
2553 /* If the source operand of this MEM operation is not a
2554 register, basically the source is return address. Here
2555 we only care how much stack grew and we don't save it. */
2556 if (!REG_P (src))
2557 break;
2558
2559 if (REGNO (src) != STACK_POINTER_REGNUM
2560 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
2561 && (unsigned) REGNO (src) == cfa.reg)
2562 {
2563 /* We're storing the current CFA reg into the stack. */
2564
2565 if (cfa.offset == 0)
2566 {
2567 /* Rule 19 */
2568 /* If stack is aligned, putting CFA reg into stack means
2569 we can no longer use reg + offset to represent CFA.
2570 Here we use DW_CFA_def_cfa_expression instead. The
2571 result of this expression equals to the original CFA
2572 value. */
2573 if (fde
2574 && fde->stack_realign
2575 && cfa.indirect == 0
2576 && cfa.reg != HARD_FRAME_POINTER_REGNUM)
2577 {
2578 dw_cfa_location cfa_exp;
2579
2580 gcc_assert (fde->drap_reg == cfa.reg);
2581
2582 cfa_exp.indirect = 1;
2583 cfa_exp.reg = HARD_FRAME_POINTER_REGNUM;
2584 cfa_exp.base_offset = offset;
2585 cfa_exp.offset = 0;
2586
2587 fde->drap_reg_saved = 1;
2588
2589 def_cfa_1 (label, &cfa_exp);
2590 break;
2591 }
2592
2593 /* If the source register is exactly the CFA, assume
2594 we're saving SP like any other register; this happens
2595 on the ARM. */
2596 def_cfa_1 (label, &cfa);
2597 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
2598 break;
2599 }
2600 else
2601 {
2602 /* Otherwise, we'll need to look in the stack to
2603 calculate the CFA. */
2604 rtx x = XEXP (dest, 0);
2605
2606 if (!REG_P (x))
2607 x = XEXP (x, 0);
2608 gcc_assert (REG_P (x));
2609
2610 cfa.reg = REGNO (x);
2611 cfa.base_offset = offset;
2612 cfa.indirect = 1;
2613 def_cfa_1 (label, &cfa);
2614 break;
2615 }
2616 }
2617
2618 def_cfa_1 (label, &cfa);
2619 {
2620 span = targetm.dwarf_register_span (src);
2621
2622 if (!span)
2623 queue_reg_save (label, src, NULL_RTX, offset);
2624 else
2625 {
2626 /* We have a PARALLEL describing where the contents of SRC
2627 live. Queue register saves for each piece of the
2628 PARALLEL. */
2629 int par_index;
2630 int limit;
2631 HOST_WIDE_INT span_offset = offset;
2632
2633 gcc_assert (GET_CODE (span) == PARALLEL);
2634
2635 limit = XVECLEN (span, 0);
2636 for (par_index = 0; par_index < limit; par_index++)
2637 {
2638 rtx elem = XVECEXP (span, 0, par_index);
2639
2640 queue_reg_save (label, elem, NULL_RTX, span_offset);
2641 span_offset += GET_MODE_SIZE (GET_MODE (elem));
2642 }
2643 }
2644 }
2645 break;
2646
2647 default:
2648 gcc_unreachable ();
2649 }
2650 }
2651
2652 /* Record call frame debugging information for INSN, which either
2653 sets SP or FP (adjusting how we calculate the frame address) or saves a
2654 register to the stack. If INSN is NULL_RTX, initialize our state.
2655
2656 If AFTER_P is false, we're being called before the insn is emitted,
2657 otherwise after. Call instructions get invoked twice. */
2658
2659 void
2660 dwarf2out_frame_debug (rtx insn, bool after_p)
2661 {
2662 const char *label;
2663 rtx note, n;
2664 bool handled_one = false;
2665
2666 if (insn == NULL_RTX)
2667 {
2668 size_t i;
2669
2670 /* Flush any queued register saves. */
2671 flush_queued_reg_saves ();
2672
2673 /* Set up state for generating call frame debug info. */
2674 lookup_cfa (&cfa);
2675 gcc_assert (cfa.reg
2676 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
2677
2678 cfa.reg = STACK_POINTER_REGNUM;
2679 cfa_store = cfa;
2680 cfa_temp.reg = -1;
2681 cfa_temp.offset = 0;
2682
2683 for (i = 0; i < num_regs_saved_in_regs; i++)
2684 {
2685 regs_saved_in_regs[i].orig_reg = NULL_RTX;
2686 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
2687 }
2688 num_regs_saved_in_regs = 0;
2689
2690 if (barrier_args_size)
2691 {
2692 XDELETEVEC (barrier_args_size);
2693 barrier_args_size = NULL;
2694 }
2695 return;
2696 }
2697
2698 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
2699 flush_queued_reg_saves ();
2700
2701 if (!RTX_FRAME_RELATED_P (insn))
2702 {
2703 /* ??? This should be done unconditionally since stack adjustments
2704 matter if the stack pointer is not the CFA register anymore but
2705 is still used to save registers. */
2706 if (!ACCUMULATE_OUTGOING_ARGS)
2707 dwarf2out_notice_stack_adjust (insn, after_p);
2708 return;
2709 }
2710
2711 label = dwarf2out_cfi_label (false);
2712
2713 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2714 switch (REG_NOTE_KIND (note))
2715 {
2716 case REG_FRAME_RELATED_EXPR:
2717 insn = XEXP (note, 0);
2718 goto found;
2719
2720 case REG_CFA_DEF_CFA:
2721 dwarf2out_frame_debug_def_cfa (XEXP (note, 0), label);
2722 handled_one = true;
2723 break;
2724
2725 case REG_CFA_ADJUST_CFA:
2726 n = XEXP (note, 0);
2727 if (n == NULL)
2728 {
2729 n = PATTERN (insn);
2730 if (GET_CODE (n) == PARALLEL)
2731 n = XVECEXP (n, 0, 0);
2732 }
2733 dwarf2out_frame_debug_adjust_cfa (n, label);
2734 handled_one = true;
2735 break;
2736
2737 case REG_CFA_OFFSET:
2738 n = XEXP (note, 0);
2739 if (n == NULL)
2740 n = single_set (insn);
2741 dwarf2out_frame_debug_cfa_offset (n, label);
2742 handled_one = true;
2743 break;
2744
2745 case REG_CFA_REGISTER:
2746 n = XEXP (note, 0);
2747 if (n == NULL)
2748 {
2749 n = PATTERN (insn);
2750 if (GET_CODE (n) == PARALLEL)
2751 n = XVECEXP (n, 0, 0);
2752 }
2753 dwarf2out_frame_debug_cfa_register (n, label);
2754 handled_one = true;
2755 break;
2756
2757 case REG_CFA_RESTORE:
2758 n = XEXP (note, 0);
2759 if (n == NULL)
2760 {
2761 n = PATTERN (insn);
2762 if (GET_CODE (n) == PARALLEL)
2763 n = XVECEXP (n, 0, 0);
2764 n = XEXP (n, 0);
2765 }
2766 dwarf2out_frame_debug_cfa_restore (n, label);
2767 handled_one = true;
2768 break;
2769
2770 case REG_CFA_SET_VDRAP:
2771 n = XEXP (note, 0);
2772 if (REG_P (n))
2773 {
2774 dw_fde_ref fde = current_fde ();
2775 if (fde)
2776 {
2777 gcc_assert (fde->vdrap_reg == INVALID_REGNUM);
2778 if (REG_P (n))
2779 fde->vdrap_reg = REGNO (n);
2780 }
2781 }
2782 handled_one = true;
2783 break;
2784
2785 default:
2786 break;
2787 }
2788 if (handled_one)
2789 return;
2790
2791 insn = PATTERN (insn);
2792 found:
2793 dwarf2out_frame_debug_expr (insn, label);
2794 }
2795
2796 /* Determine if we need to save and restore CFI information around this
2797 epilogue. If SIBCALL is true, then this is a sibcall epilogue. If
2798 we do need to save/restore, then emit the save now, and insert a
2799 NOTE_INSN_CFA_RESTORE_STATE at the appropriate place in the stream. */
2800
2801 void
2802 dwarf2out_cfi_begin_epilogue (rtx insn)
2803 {
2804 bool saw_frp = false;
2805 rtx i;
2806
2807 /* Scan forward to the return insn, noticing if there are possible
2808 frame related insns. */
2809 for (i = NEXT_INSN (insn); i ; i = NEXT_INSN (i))
2810 {
2811 if (!INSN_P (i))
2812 continue;
2813
2814 /* Look for both regular and sibcalls to end the block. */
2815 if (returnjump_p (i))
2816 break;
2817 if (CALL_P (i) && SIBLING_CALL_P (i))
2818 break;
2819
2820 if (GET_CODE (PATTERN (i)) == SEQUENCE)
2821 {
2822 int idx;
2823 rtx seq = PATTERN (i);
2824
2825 if (returnjump_p (XVECEXP (seq, 0, 0)))
2826 break;
2827 if (CALL_P (XVECEXP (seq, 0, 0))
2828 && SIBLING_CALL_P (XVECEXP (seq, 0, 0)))
2829 break;
2830
2831 for (idx = 0; idx < XVECLEN (seq, 0); idx++)
2832 if (RTX_FRAME_RELATED_P (XVECEXP (seq, 0, idx)))
2833 saw_frp = true;
2834 }
2835
2836 if (RTX_FRAME_RELATED_P (i))
2837 saw_frp = true;
2838 }
2839
2840 /* If the port doesn't emit epilogue unwind info, we don't need a
2841 save/restore pair. */
2842 if (!saw_frp)
2843 return;
2844
2845 /* Otherwise, search forward to see if the return insn was the last
2846 basic block of the function. If so, we don't need save/restore. */
2847 gcc_assert (i != NULL);
2848 i = next_real_insn (i);
2849 if (i == NULL)
2850 return;
2851
2852 /* Insert the restore before that next real insn in the stream, and before
2853 a potential NOTE_INSN_EPILOGUE_BEG -- we do need these notes to be
2854 properly nested. This should be after any label or alignment. This
2855 will be pushed into the CFI stream by the function below. */
2856 while (1)
2857 {
2858 rtx p = PREV_INSN (i);
2859 if (!NOTE_P (p))
2860 break;
2861 if (NOTE_KIND (p) == NOTE_INSN_BASIC_BLOCK)
2862 break;
2863 i = p;
2864 }
2865 emit_note_before (NOTE_INSN_CFA_RESTORE_STATE, i);
2866
2867 emit_cfa_remember = true;
2868
2869 /* And emulate the state save. */
2870 gcc_assert (!cfa_remember.in_use);
2871 cfa_remember = cfa;
2872 cfa_remember.in_use = 1;
2873 }
2874
2875 /* A "subroutine" of dwarf2out_cfi_begin_epilogue. Emit the restore
2876 required. */
2877
2878 void
2879 dwarf2out_frame_debug_restore_state (void)
2880 {
2881 dw_cfi_ref cfi = new_cfi ();
2882 const char *label = dwarf2out_cfi_label (false);
2883
2884 cfi->dw_cfi_opc = DW_CFA_restore_state;
2885 add_fde_cfi (label, cfi);
2886
2887 gcc_assert (cfa_remember.in_use);
2888 cfa = cfa_remember;
2889 cfa_remember.in_use = 0;
2890 }
2891
2892 #endif
2893
2894 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
2895 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
2896 (enum dwarf_call_frame_info cfi);
2897
2898 static enum dw_cfi_oprnd_type
2899 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
2900 {
2901 switch (cfi)
2902 {
2903 case DW_CFA_nop:
2904 case DW_CFA_GNU_window_save:
2905 case DW_CFA_remember_state:
2906 case DW_CFA_restore_state:
2907 return dw_cfi_oprnd_unused;
2908
2909 case DW_CFA_set_loc:
2910 case DW_CFA_advance_loc1:
2911 case DW_CFA_advance_loc2:
2912 case DW_CFA_advance_loc4:
2913 case DW_CFA_MIPS_advance_loc8:
2914 return dw_cfi_oprnd_addr;
2915
2916 case DW_CFA_offset:
2917 case DW_CFA_offset_extended:
2918 case DW_CFA_def_cfa:
2919 case DW_CFA_offset_extended_sf:
2920 case DW_CFA_def_cfa_sf:
2921 case DW_CFA_restore:
2922 case DW_CFA_restore_extended:
2923 case DW_CFA_undefined:
2924 case DW_CFA_same_value:
2925 case DW_CFA_def_cfa_register:
2926 case DW_CFA_register:
2927 case DW_CFA_expression:
2928 return dw_cfi_oprnd_reg_num;
2929
2930 case DW_CFA_def_cfa_offset:
2931 case DW_CFA_GNU_args_size:
2932 case DW_CFA_def_cfa_offset_sf:
2933 return dw_cfi_oprnd_offset;
2934
2935 case DW_CFA_def_cfa_expression:
2936 return dw_cfi_oprnd_loc;
2937
2938 default:
2939 gcc_unreachable ();
2940 }
2941 }
2942
2943 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
2944 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
2945 (enum dwarf_call_frame_info cfi);
2946
2947 static enum dw_cfi_oprnd_type
2948 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
2949 {
2950 switch (cfi)
2951 {
2952 case DW_CFA_def_cfa:
2953 case DW_CFA_def_cfa_sf:
2954 case DW_CFA_offset:
2955 case DW_CFA_offset_extended_sf:
2956 case DW_CFA_offset_extended:
2957 return dw_cfi_oprnd_offset;
2958
2959 case DW_CFA_register:
2960 return dw_cfi_oprnd_reg_num;
2961
2962 case DW_CFA_expression:
2963 return dw_cfi_oprnd_loc;
2964
2965 default:
2966 return dw_cfi_oprnd_unused;
2967 }
2968 }
2969
2970 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2971
2972 /* Switch [BACK] to eh_frame_section. If we don't have an eh_frame_section,
2973 switch to the data section instead, and write out a synthetic start label
2974 for collect2 the first time around. */
2975
2976 static void
2977 switch_to_eh_frame_section (bool back)
2978 {
2979 tree label;
2980
2981 #ifdef EH_FRAME_SECTION_NAME
2982 if (eh_frame_section == 0)
2983 {
2984 int flags;
2985
2986 if (EH_TABLES_CAN_BE_READ_ONLY)
2987 {
2988 int fde_encoding;
2989 int per_encoding;
2990 int lsda_encoding;
2991
2992 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
2993 /*global=*/0);
2994 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
2995 /*global=*/1);
2996 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
2997 /*global=*/0);
2998 flags = ((! flag_pic
2999 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
3000 && (fde_encoding & 0x70) != DW_EH_PE_aligned
3001 && (per_encoding & 0x70) != DW_EH_PE_absptr
3002 && (per_encoding & 0x70) != DW_EH_PE_aligned
3003 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
3004 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
3005 ? 0 : SECTION_WRITE);
3006 }
3007 else
3008 flags = SECTION_WRITE;
3009 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
3010 }
3011 #endif
3012
3013 if (eh_frame_section)
3014 switch_to_section (eh_frame_section);
3015 else
3016 {
3017 /* We have no special eh_frame section. Put the information in
3018 the data section and emit special labels to guide collect2. */
3019 switch_to_section (data_section);
3020
3021 if (!back)
3022 {
3023 label = get_file_function_name ("F");
3024 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
3025 targetm.asm_out.globalize_label (asm_out_file,
3026 IDENTIFIER_POINTER (label));
3027 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
3028 }
3029 }
3030 }
3031
3032 /* Switch [BACK] to the eh or debug frame table section, depending on
3033 FOR_EH. */
3034
3035 static void
3036 switch_to_frame_table_section (int for_eh, bool back)
3037 {
3038 if (for_eh)
3039 switch_to_eh_frame_section (back);
3040 else
3041 {
3042 if (!debug_frame_section)
3043 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
3044 SECTION_DEBUG, NULL);
3045 switch_to_section (debug_frame_section);
3046 }
3047 }
3048
3049 /* Output a Call Frame Information opcode and its operand(s). */
3050
3051 static void
3052 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
3053 {
3054 unsigned long r;
3055 HOST_WIDE_INT off;
3056
3057 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
3058 dw2_asm_output_data (1, (cfi->dw_cfi_opc
3059 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
3060 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
3061 ((unsigned HOST_WIDE_INT)
3062 cfi->dw_cfi_oprnd1.dw_cfi_offset));
3063 else if (cfi->dw_cfi_opc == DW_CFA_offset)
3064 {
3065 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3066 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3067 "DW_CFA_offset, column %#lx", r);
3068 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3069 dw2_asm_output_data_uleb128 (off, NULL);
3070 }
3071 else if (cfi->dw_cfi_opc == DW_CFA_restore)
3072 {
3073 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3074 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3075 "DW_CFA_restore, column %#lx", r);
3076 }
3077 else
3078 {
3079 dw2_asm_output_data (1, cfi->dw_cfi_opc,
3080 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
3081
3082 switch (cfi->dw_cfi_opc)
3083 {
3084 case DW_CFA_set_loc:
3085 if (for_eh)
3086 dw2_asm_output_encoded_addr_rtx (
3087 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
3088 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
3089 false, NULL);
3090 else
3091 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
3092 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
3093 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3094 break;
3095
3096 case DW_CFA_advance_loc1:
3097 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3098 fde->dw_fde_current_label, NULL);
3099 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3100 break;
3101
3102 case DW_CFA_advance_loc2:
3103 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3104 fde->dw_fde_current_label, NULL);
3105 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3106 break;
3107
3108 case DW_CFA_advance_loc4:
3109 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3110 fde->dw_fde_current_label, NULL);
3111 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3112 break;
3113
3114 case DW_CFA_MIPS_advance_loc8:
3115 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3116 fde->dw_fde_current_label, NULL);
3117 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3118 break;
3119
3120 case DW_CFA_offset_extended:
3121 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3122 dw2_asm_output_data_uleb128 (r, NULL);
3123 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3124 dw2_asm_output_data_uleb128 (off, NULL);
3125 break;
3126
3127 case DW_CFA_def_cfa:
3128 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3129 dw2_asm_output_data_uleb128 (r, NULL);
3130 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
3131 break;
3132
3133 case DW_CFA_offset_extended_sf:
3134 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3135 dw2_asm_output_data_uleb128 (r, NULL);
3136 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3137 dw2_asm_output_data_sleb128 (off, NULL);
3138 break;
3139
3140 case DW_CFA_def_cfa_sf:
3141 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3142 dw2_asm_output_data_uleb128 (r, NULL);
3143 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3144 dw2_asm_output_data_sleb128 (off, NULL);
3145 break;
3146
3147 case DW_CFA_restore_extended:
3148 case DW_CFA_undefined:
3149 case DW_CFA_same_value:
3150 case DW_CFA_def_cfa_register:
3151 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3152 dw2_asm_output_data_uleb128 (r, NULL);
3153 break;
3154
3155 case DW_CFA_register:
3156 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3157 dw2_asm_output_data_uleb128 (r, NULL);
3158 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
3159 dw2_asm_output_data_uleb128 (r, NULL);
3160 break;
3161
3162 case DW_CFA_def_cfa_offset:
3163 case DW_CFA_GNU_args_size:
3164 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
3165 break;
3166
3167 case DW_CFA_def_cfa_offset_sf:
3168 off = div_data_align (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3169 dw2_asm_output_data_sleb128 (off, NULL);
3170 break;
3171
3172 case DW_CFA_GNU_window_save:
3173 break;
3174
3175 case DW_CFA_def_cfa_expression:
3176 case DW_CFA_expression:
3177 output_cfa_loc (cfi);
3178 break;
3179
3180 case DW_CFA_GNU_negative_offset_extended:
3181 /* Obsoleted by DW_CFA_offset_extended_sf. */
3182 gcc_unreachable ();
3183
3184 default:
3185 break;
3186 }
3187 }
3188 }
3189
3190 /* Similar, but do it via assembler directives instead. */
3191
3192 static void
3193 output_cfi_directive (dw_cfi_ref cfi)
3194 {
3195 unsigned long r, r2;
3196
3197 switch (cfi->dw_cfi_opc)
3198 {
3199 case DW_CFA_advance_loc:
3200 case DW_CFA_advance_loc1:
3201 case DW_CFA_advance_loc2:
3202 case DW_CFA_advance_loc4:
3203 case DW_CFA_MIPS_advance_loc8:
3204 case DW_CFA_set_loc:
3205 /* Should only be created by add_fde_cfi in a code path not
3206 followed when emitting via directives. The assembler is
3207 going to take care of this for us. */
3208 gcc_unreachable ();
3209
3210 case DW_CFA_offset:
3211 case DW_CFA_offset_extended:
3212 case DW_CFA_offset_extended_sf:
3213 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3214 fprintf (asm_out_file, "\t.cfi_offset %lu, "HOST_WIDE_INT_PRINT_DEC"\n",
3215 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3216 break;
3217
3218 case DW_CFA_restore:
3219 case DW_CFA_restore_extended:
3220 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3221 fprintf (asm_out_file, "\t.cfi_restore %lu\n", r);
3222 break;
3223
3224 case DW_CFA_undefined:
3225 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3226 fprintf (asm_out_file, "\t.cfi_undefined %lu\n", r);
3227 break;
3228
3229 case DW_CFA_same_value:
3230 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3231 fprintf (asm_out_file, "\t.cfi_same_value %lu\n", r);
3232 break;
3233
3234 case DW_CFA_def_cfa:
3235 case DW_CFA_def_cfa_sf:
3236 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3237 fprintf (asm_out_file, "\t.cfi_def_cfa %lu, "HOST_WIDE_INT_PRINT_DEC"\n",
3238 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3239 break;
3240
3241 case DW_CFA_def_cfa_register:
3242 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3243 fprintf (asm_out_file, "\t.cfi_def_cfa_register %lu\n", r);
3244 break;
3245
3246 case DW_CFA_register:
3247 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3248 r2 = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, 1);
3249 fprintf (asm_out_file, "\t.cfi_register %lu, %lu\n", r, r2);
3250 break;
3251
3252 case DW_CFA_def_cfa_offset:
3253 case DW_CFA_def_cfa_offset_sf:
3254 fprintf (asm_out_file, "\t.cfi_def_cfa_offset "
3255 HOST_WIDE_INT_PRINT_DEC"\n",
3256 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3257 break;
3258
3259 case DW_CFA_remember_state:
3260 fprintf (asm_out_file, "\t.cfi_remember_state\n");
3261 break;
3262 case DW_CFA_restore_state:
3263 fprintf (asm_out_file, "\t.cfi_restore_state\n");
3264 break;
3265
3266 case DW_CFA_GNU_args_size:
3267 fprintf (asm_out_file, "\t.cfi_escape %#x,", DW_CFA_GNU_args_size);
3268 dw2_asm_output_data_uleb128_raw (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3269 if (flag_debug_asm)
3270 fprintf (asm_out_file, "\t%s args_size "HOST_WIDE_INT_PRINT_DEC,
3271 ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_offset);
3272 fputc ('\n', asm_out_file);
3273 break;
3274
3275 case DW_CFA_GNU_window_save:
3276 fprintf (asm_out_file, "\t.cfi_window_save\n");
3277 break;
3278
3279 case DW_CFA_def_cfa_expression:
3280 case DW_CFA_expression:
3281 fprintf (asm_out_file, "\t.cfi_escape %#x,", cfi->dw_cfi_opc);
3282 output_cfa_loc_raw (cfi);
3283 fputc ('\n', asm_out_file);
3284 break;
3285
3286 default:
3287 gcc_unreachable ();
3288 }
3289 }
3290
3291 DEF_VEC_P (dw_cfi_ref);
3292 DEF_VEC_ALLOC_P (dw_cfi_ref, heap);
3293
3294 /* Output CFIs to bring current FDE to the same state as after executing
3295 CFIs in CFI chain. DO_CFI_ASM is true if .cfi_* directives shall
3296 be emitted, false otherwise. If it is false, FDE and FOR_EH are the
3297 other arguments to pass to output_cfi. */
3298
3299 static void
3300 output_cfis (dw_cfi_ref cfi, bool do_cfi_asm, dw_fde_ref fde, bool for_eh)
3301 {
3302 struct dw_cfi_struct cfi_buf;
3303 dw_cfi_ref cfi2;
3304 dw_cfi_ref cfi_args_size = NULL, cfi_cfa = NULL, cfi_cfa_offset = NULL;
3305 VEC (dw_cfi_ref, heap) *regs = VEC_alloc (dw_cfi_ref, heap, 32);
3306 unsigned int len, idx;
3307
3308 for (;; cfi = cfi->dw_cfi_next)
3309 switch (cfi ? cfi->dw_cfi_opc : DW_CFA_nop)
3310 {
3311 case DW_CFA_advance_loc:
3312 case DW_CFA_advance_loc1:
3313 case DW_CFA_advance_loc2:
3314 case DW_CFA_advance_loc4:
3315 case DW_CFA_MIPS_advance_loc8:
3316 case DW_CFA_set_loc:
3317 /* All advances should be ignored. */
3318 break;
3319 case DW_CFA_remember_state:
3320 {
3321 dw_cfi_ref args_size = cfi_args_size;
3322
3323 /* Skip everything between .cfi_remember_state and
3324 .cfi_restore_state. */
3325 for (cfi2 = cfi->dw_cfi_next; cfi2; cfi2 = cfi2->dw_cfi_next)
3326 if (cfi2->dw_cfi_opc == DW_CFA_restore_state)
3327 break;
3328 else if (cfi2->dw_cfi_opc == DW_CFA_GNU_args_size)
3329 args_size = cfi2;
3330 else
3331 gcc_assert (cfi2->dw_cfi_opc != DW_CFA_remember_state);
3332
3333 if (cfi2 == NULL)
3334 goto flush_all;
3335 else
3336 {
3337 cfi = cfi2;
3338 cfi_args_size = args_size;
3339 }
3340 break;
3341 }
3342 case DW_CFA_GNU_args_size:
3343 cfi_args_size = cfi;
3344 break;
3345 case DW_CFA_GNU_window_save:
3346 goto flush_all;
3347 case DW_CFA_offset:
3348 case DW_CFA_offset_extended:
3349 case DW_CFA_offset_extended_sf:
3350 case DW_CFA_restore:
3351 case DW_CFA_restore_extended:
3352 case DW_CFA_undefined:
3353 case DW_CFA_same_value:
3354 case DW_CFA_register:
3355 case DW_CFA_val_offset:
3356 case DW_CFA_val_offset_sf:
3357 case DW_CFA_expression:
3358 case DW_CFA_val_expression:
3359 case DW_CFA_GNU_negative_offset_extended:
3360 if (VEC_length (dw_cfi_ref, regs) <= cfi->dw_cfi_oprnd1.dw_cfi_reg_num)
3361 VEC_safe_grow_cleared (dw_cfi_ref, heap, regs,
3362 cfi->dw_cfi_oprnd1.dw_cfi_reg_num + 1);
3363 VEC_replace (dw_cfi_ref, regs, cfi->dw_cfi_oprnd1.dw_cfi_reg_num, cfi);
3364 break;
3365 case DW_CFA_def_cfa:
3366 case DW_CFA_def_cfa_sf:
3367 case DW_CFA_def_cfa_expression:
3368 cfi_cfa = cfi;
3369 cfi_cfa_offset = cfi;
3370 break;
3371 case DW_CFA_def_cfa_register:
3372 cfi_cfa = cfi;
3373 break;
3374 case DW_CFA_def_cfa_offset:
3375 case DW_CFA_def_cfa_offset_sf:
3376 cfi_cfa_offset = cfi;
3377 break;
3378 case DW_CFA_nop:
3379 gcc_assert (cfi == NULL);
3380 flush_all:
3381 len = VEC_length (dw_cfi_ref, regs);
3382 for (idx = 0; idx < len; idx++)
3383 {
3384 cfi2 = VEC_replace (dw_cfi_ref, regs, idx, NULL);
3385 if (cfi2 != NULL
3386 && cfi2->dw_cfi_opc != DW_CFA_restore
3387 && cfi2->dw_cfi_opc != DW_CFA_restore_extended)
3388 {
3389 if (do_cfi_asm)
3390 output_cfi_directive (cfi2);
3391 else
3392 output_cfi (cfi2, fde, for_eh);
3393 }
3394 }
3395 if (cfi_cfa && cfi_cfa_offset && cfi_cfa_offset != cfi_cfa)
3396 {
3397 gcc_assert (cfi_cfa->dw_cfi_opc != DW_CFA_def_cfa_expression);
3398 cfi_buf = *cfi_cfa;
3399 switch (cfi_cfa_offset->dw_cfi_opc)
3400 {
3401 case DW_CFA_def_cfa_offset:
3402 cfi_buf.dw_cfi_opc = DW_CFA_def_cfa;
3403 cfi_buf.dw_cfi_oprnd2 = cfi_cfa_offset->dw_cfi_oprnd1;
3404 break;
3405 case DW_CFA_def_cfa_offset_sf:
3406 cfi_buf.dw_cfi_opc = DW_CFA_def_cfa_sf;
3407 cfi_buf.dw_cfi_oprnd2 = cfi_cfa_offset->dw_cfi_oprnd1;
3408 break;
3409 case DW_CFA_def_cfa:
3410 case DW_CFA_def_cfa_sf:
3411 cfi_buf.dw_cfi_opc = cfi_cfa_offset->dw_cfi_opc;
3412 cfi_buf.dw_cfi_oprnd2 = cfi_cfa_offset->dw_cfi_oprnd2;
3413 break;
3414 default:
3415 gcc_unreachable ();
3416 }
3417 cfi_cfa = &cfi_buf;
3418 }
3419 else if (cfi_cfa_offset)
3420 cfi_cfa = cfi_cfa_offset;
3421 if (cfi_cfa)
3422 {
3423 if (do_cfi_asm)
3424 output_cfi_directive (cfi_cfa);
3425 else
3426 output_cfi (cfi_cfa, fde, for_eh);
3427 }
3428 cfi_cfa = NULL;
3429 cfi_cfa_offset = NULL;
3430 if (cfi_args_size
3431 && cfi_args_size->dw_cfi_oprnd1.dw_cfi_offset)
3432 {
3433 if (do_cfi_asm)
3434 output_cfi_directive (cfi_args_size);
3435 else
3436 output_cfi (cfi_args_size, fde, for_eh);
3437 }
3438 cfi_args_size = NULL;
3439 if (cfi == NULL)
3440 {
3441 VEC_free (dw_cfi_ref, heap, regs);
3442 return;
3443 }
3444 else if (do_cfi_asm)
3445 output_cfi_directive (cfi);
3446 else
3447 output_cfi (cfi, fde, for_eh);
3448 break;
3449 default:
3450 gcc_unreachable ();
3451 }
3452 }
3453
3454 /* Output one FDE. */
3455
3456 static void
3457 output_fde (dw_fde_ref fde, bool for_eh, bool second,
3458 char *section_start_label, int fde_encoding, char *augmentation,
3459 bool any_lsda_needed, int lsda_encoding)
3460 {
3461 const char *begin, *end;
3462 static unsigned int j;
3463 char l1[20], l2[20];
3464 dw_cfi_ref cfi;
3465
3466 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh,
3467 /* empty */ 0);
3468 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL,
3469 for_eh + j);
3470 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + j);
3471 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + j);
3472 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
3473 dw2_asm_output_data (4, 0xffffffff, "Initial length escape value"
3474 " indicating 64-bit DWARF extension");
3475 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
3476 "FDE Length");
3477 ASM_OUTPUT_LABEL (asm_out_file, l1);
3478
3479 if (for_eh)
3480 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
3481 else
3482 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
3483 debug_frame_section, "FDE CIE offset");
3484
3485 if (!fde->dw_fde_switched_sections)
3486 {
3487 begin = fde->dw_fde_begin;
3488 end = fde->dw_fde_end;
3489 }
3490 else
3491 {
3492 /* For the first section, prefer dw_fde_begin over
3493 dw_fde_{hot,cold}_section_label, as the latter
3494 might be separated from the real start of the
3495 function by alignment padding. */
3496 if (!second)
3497 begin = fde->dw_fde_begin;
3498 else if (fde->dw_fde_switched_cold_to_hot)
3499 begin = fde->dw_fde_hot_section_label;
3500 else
3501 begin = fde->dw_fde_unlikely_section_label;
3502 if (second ^ fde->dw_fde_switched_cold_to_hot)
3503 end = fde->dw_fde_unlikely_section_end_label;
3504 else
3505 end = fde->dw_fde_hot_section_end_label;
3506 }
3507
3508 if (for_eh)
3509 {
3510 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, begin);
3511 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
3512 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref, false,
3513 "FDE initial location");
3514 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
3515 end, begin, "FDE address range");
3516 }
3517 else
3518 {
3519 dw2_asm_output_addr (DWARF2_ADDR_SIZE, begin, "FDE initial location");
3520 dw2_asm_output_delta (DWARF2_ADDR_SIZE, end, begin, "FDE address range");
3521 }
3522
3523 if (augmentation[0])
3524 {
3525 if (any_lsda_needed)
3526 {
3527 int size = size_of_encoded_value (lsda_encoding);
3528
3529 if (lsda_encoding == DW_EH_PE_aligned)
3530 {
3531 int offset = ( 4 /* Length */
3532 + 4 /* CIE offset */
3533 + 2 * size_of_encoded_value (fde_encoding)
3534 + 1 /* Augmentation size */ );
3535 int pad = -offset & (PTR_SIZE - 1);
3536
3537 size += pad;
3538 gcc_assert (size_of_uleb128 (size) == 1);
3539 }
3540
3541 dw2_asm_output_data_uleb128 (size, "Augmentation size");
3542
3543 if (fde->uses_eh_lsda)
3544 {
3545 ASM_GENERATE_INTERNAL_LABEL (l1, second ? "LLSDAC" : "LLSDA",
3546 fde->funcdef_number);
3547 dw2_asm_output_encoded_addr_rtx (lsda_encoding,
3548 gen_rtx_SYMBOL_REF (Pmode, l1),
3549 false,
3550 "Language Specific Data Area");
3551 }
3552 else
3553 {
3554 if (lsda_encoding == DW_EH_PE_aligned)
3555 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
3556 dw2_asm_output_data (size_of_encoded_value (lsda_encoding), 0,
3557 "Language Specific Data Area (none)");
3558 }
3559 }
3560 else
3561 dw2_asm_output_data_uleb128 (0, "Augmentation size");
3562 }
3563
3564 /* Loop through the Call Frame Instructions associated with
3565 this FDE. */
3566 fde->dw_fde_current_label = begin;
3567 if (!fde->dw_fde_switched_sections)
3568 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
3569 output_cfi (cfi, fde, for_eh);
3570 else if (!second)
3571 {
3572 if (fde->dw_fde_switch_cfi)
3573 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
3574 {
3575 output_cfi (cfi, fde, for_eh);
3576 if (cfi == fde->dw_fde_switch_cfi)
3577 break;
3578 }
3579 }
3580 else
3581 {
3582 dw_cfi_ref cfi_next = fde->dw_fde_cfi;
3583
3584 if (fde->dw_fde_switch_cfi)
3585 {
3586 cfi_next = fde->dw_fde_switch_cfi->dw_cfi_next;
3587 fde->dw_fde_switch_cfi->dw_cfi_next = NULL;
3588 output_cfis (fde->dw_fde_cfi, false, fde, for_eh);
3589 fde->dw_fde_switch_cfi->dw_cfi_next = cfi_next;
3590 }
3591 for (cfi = cfi_next; cfi != NULL; cfi = cfi->dw_cfi_next)
3592 output_cfi (cfi, fde, for_eh);
3593 }
3594
3595 /* If we are to emit a ref/link from function bodies to their frame tables,
3596 do it now. This is typically performed to make sure that tables
3597 associated with functions are dragged with them and not discarded in
3598 garbage collecting links. We need to do this on a per function basis to
3599 cope with -ffunction-sections. */
3600
3601 #ifdef ASM_OUTPUT_DWARF_TABLE_REF
3602 /* Switch to the function section, emit the ref to the tables, and
3603 switch *back* into the table section. */
3604 switch_to_section (function_section (fde->decl));
3605 ASM_OUTPUT_DWARF_TABLE_REF (section_start_label);
3606 switch_to_frame_table_section (for_eh, true);
3607 #endif
3608
3609 /* Pad the FDE out to an address sized boundary. */
3610 ASM_OUTPUT_ALIGN (asm_out_file,
3611 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
3612 ASM_OUTPUT_LABEL (asm_out_file, l2);
3613
3614 j += 2;
3615 }
3616
3617 /* Return true if frame description entry FDE is needed for EH. */
3618
3619 static bool
3620 fde_needed_for_eh_p (dw_fde_ref fde)
3621 {
3622 if (flag_asynchronous_unwind_tables)
3623 return true;
3624
3625 if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde->decl))
3626 return true;
3627
3628 if (fde->uses_eh_lsda)
3629 return true;
3630
3631 /* If exceptions are enabled, we have collected nothrow info. */
3632 if (flag_exceptions && (fde->all_throwers_are_sibcalls || fde->nothrow))
3633 return false;
3634
3635 return true;
3636 }
3637
3638 /* Output the call frame information used to record information
3639 that relates to calculating the frame pointer, and records the
3640 location of saved registers. */
3641
3642 static void
3643 output_call_frame_info (int for_eh)
3644 {
3645 unsigned int i;
3646 dw_fde_ref fde;
3647 dw_cfi_ref cfi;
3648 char l1[20], l2[20], section_start_label[20];
3649 bool any_lsda_needed = false;
3650 char augmentation[6];
3651 int augmentation_size;
3652 int fde_encoding = DW_EH_PE_absptr;
3653 int per_encoding = DW_EH_PE_absptr;
3654 int lsda_encoding = DW_EH_PE_absptr;
3655 int return_reg;
3656 rtx personality = NULL;
3657 int dw_cie_version;
3658
3659 /* Don't emit a CIE if there won't be any FDEs. */
3660 if (fde_table_in_use == 0)
3661 return;
3662
3663 /* Nothing to do if the assembler's doing it all. */
3664 if (dwarf2out_do_cfi_asm ())
3665 return;
3666
3667 /* If we don't have any functions we'll want to unwind out of, don't emit
3668 any EH unwind information. If we make FDEs linkonce, we may have to
3669 emit an empty label for an FDE that wouldn't otherwise be emitted. We
3670 want to avoid having an FDE kept around when the function it refers to
3671 is discarded. Example where this matters: a primary function template
3672 in C++ requires EH information, an explicit specialization doesn't. */
3673 if (for_eh)
3674 {
3675 bool any_eh_needed = false;
3676
3677 for (i = 0; i < fde_table_in_use; i++)
3678 if (fde_table[i].uses_eh_lsda)
3679 any_eh_needed = any_lsda_needed = true;
3680 else if (fde_needed_for_eh_p (&fde_table[i]))
3681 any_eh_needed = true;
3682 else if (TARGET_USES_WEAK_UNWIND_INFO)
3683 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl, 1, 1);
3684
3685 if (!any_eh_needed)
3686 return;
3687 }
3688
3689 /* We're going to be generating comments, so turn on app. */
3690 if (flag_debug_asm)
3691 app_enable ();
3692
3693 /* Switch to the proper frame section, first time. */
3694 switch_to_frame_table_section (for_eh, false);
3695
3696 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
3697 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
3698
3699 /* Output the CIE. */
3700 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
3701 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
3702 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
3703 dw2_asm_output_data (4, 0xffffffff,
3704 "Initial length escape value indicating 64-bit DWARF extension");
3705 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
3706 "Length of Common Information Entry");
3707 ASM_OUTPUT_LABEL (asm_out_file, l1);
3708
3709 /* Now that the CIE pointer is PC-relative for EH,
3710 use 0 to identify the CIE. */
3711 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
3712 (for_eh ? 0 : DWARF_CIE_ID),
3713 "CIE Identifier Tag");
3714
3715 /* Use the CIE version 3 for DWARF3; allow DWARF2 to continue to
3716 use CIE version 1, unless that would produce incorrect results
3717 due to overflowing the return register column. */
3718 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
3719 dw_cie_version = 1;
3720 if (return_reg >= 256 || dwarf_version > 2)
3721 dw_cie_version = 3;
3722 dw2_asm_output_data (1, dw_cie_version, "CIE Version");
3723
3724 augmentation[0] = 0;
3725 augmentation_size = 0;
3726
3727 personality = current_unit_personality;
3728 if (for_eh)
3729 {
3730 char *p;
3731
3732 /* Augmentation:
3733 z Indicates that a uleb128 is present to size the
3734 augmentation section.
3735 L Indicates the encoding (and thus presence) of
3736 an LSDA pointer in the FDE augmentation.
3737 R Indicates a non-default pointer encoding for
3738 FDE code pointers.
3739 P Indicates the presence of an encoding + language
3740 personality routine in the CIE augmentation. */
3741
3742 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
3743 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
3744 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
3745
3746 p = augmentation + 1;
3747 if (personality)
3748 {
3749 *p++ = 'P';
3750 augmentation_size += 1 + size_of_encoded_value (per_encoding);
3751 assemble_external_libcall (personality);
3752 }
3753 if (any_lsda_needed)
3754 {
3755 *p++ = 'L';
3756 augmentation_size += 1;
3757 }
3758 if (fde_encoding != DW_EH_PE_absptr)
3759 {
3760 *p++ = 'R';
3761 augmentation_size += 1;
3762 }
3763 if (p > augmentation + 1)
3764 {
3765 augmentation[0] = 'z';
3766 *p = '\0';
3767 }
3768
3769 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
3770 if (personality && per_encoding == DW_EH_PE_aligned)
3771 {
3772 int offset = ( 4 /* Length */
3773 + 4 /* CIE Id */
3774 + 1 /* CIE version */
3775 + strlen (augmentation) + 1 /* Augmentation */
3776 + size_of_uleb128 (1) /* Code alignment */
3777 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
3778 + 1 /* RA column */
3779 + 1 /* Augmentation size */
3780 + 1 /* Personality encoding */ );
3781 int pad = -offset & (PTR_SIZE - 1);
3782
3783 augmentation_size += pad;
3784
3785 /* Augmentations should be small, so there's scarce need to
3786 iterate for a solution. Die if we exceed one uleb128 byte. */
3787 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
3788 }
3789 }
3790
3791 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
3792 if (dw_cie_version >= 4)
3793 {
3794 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "CIE Address Size");
3795 dw2_asm_output_data (1, 0, "CIE Segment Size");
3796 }
3797 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
3798 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
3799 "CIE Data Alignment Factor");
3800
3801 if (dw_cie_version == 1)
3802 dw2_asm_output_data (1, return_reg, "CIE RA Column");
3803 else
3804 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
3805
3806 if (augmentation[0])
3807 {
3808 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
3809 if (personality)
3810 {
3811 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
3812 eh_data_format_name (per_encoding));
3813 dw2_asm_output_encoded_addr_rtx (per_encoding,
3814 personality,
3815 true, NULL);
3816 }
3817
3818 if (any_lsda_needed)
3819 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
3820 eh_data_format_name (lsda_encoding));
3821
3822 if (fde_encoding != DW_EH_PE_absptr)
3823 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
3824 eh_data_format_name (fde_encoding));
3825 }
3826
3827 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
3828 output_cfi (cfi, NULL, for_eh);
3829
3830 /* Pad the CIE out to an address sized boundary. */
3831 ASM_OUTPUT_ALIGN (asm_out_file,
3832 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
3833 ASM_OUTPUT_LABEL (asm_out_file, l2);
3834
3835 /* Loop through all of the FDE's. */
3836 for (i = 0; i < fde_table_in_use; i++)
3837 {
3838 unsigned int k;
3839 fde = &fde_table[i];
3840
3841 /* Don't emit EH unwind info for leaf functions that don't need it. */
3842 if (for_eh && !fde_needed_for_eh_p (fde))
3843 continue;
3844
3845 for (k = 0; k < (fde->dw_fde_switched_sections ? 2 : 1); k++)
3846 output_fde (fde, for_eh, k, section_start_label, fde_encoding,
3847 augmentation, any_lsda_needed, lsda_encoding);
3848 }
3849
3850 if (for_eh && targetm.terminate_dw2_eh_frame_info)
3851 dw2_asm_output_data (4, 0, "End of Table");
3852 #ifdef MIPS_DEBUGGING_INFO
3853 /* Work around Irix 6 assembler bug whereby labels at the end of a section
3854 get a value of 0. Putting .align 0 after the label fixes it. */
3855 ASM_OUTPUT_ALIGN (asm_out_file, 0);
3856 #endif
3857
3858 /* Turn off app to make assembly quicker. */
3859 if (flag_debug_asm)
3860 app_disable ();
3861 }
3862
3863 /* Emit .cfi_startproc and .cfi_personality/.cfi_lsda if needed. */
3864
3865 static void
3866 dwarf2out_do_cfi_startproc (bool second)
3867 {
3868 int enc;
3869 rtx ref;
3870 rtx personality = get_personality_function (current_function_decl);
3871
3872 fprintf (asm_out_file, "\t.cfi_startproc\n");
3873
3874 if (personality)
3875 {
3876 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
3877 ref = personality;
3878
3879 /* ??? The GAS support isn't entirely consistent. We have to
3880 handle indirect support ourselves, but PC-relative is done
3881 in the assembler. Further, the assembler can't handle any
3882 of the weirder relocation types. */
3883 if (enc & DW_EH_PE_indirect)
3884 ref = dw2_force_const_mem (ref, true);
3885
3886 fprintf (asm_out_file, "\t.cfi_personality %#x,", enc);
3887 output_addr_const (asm_out_file, ref);
3888 fputc ('\n', asm_out_file);
3889 }
3890
3891 if (crtl->uses_eh_lsda)
3892 {
3893 char lab[20];
3894
3895 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
3896 ASM_GENERATE_INTERNAL_LABEL (lab, second ? "LLSDAC" : "LLSDA",
3897 current_function_funcdef_no);
3898 ref = gen_rtx_SYMBOL_REF (Pmode, lab);
3899 SYMBOL_REF_FLAGS (ref) = SYMBOL_FLAG_LOCAL;
3900
3901 if (enc & DW_EH_PE_indirect)
3902 ref = dw2_force_const_mem (ref, true);
3903
3904 fprintf (asm_out_file, "\t.cfi_lsda %#x,", enc);
3905 output_addr_const (asm_out_file, ref);
3906 fputc ('\n', asm_out_file);
3907 }
3908 }
3909
3910 /* Output a marker (i.e. a label) for the beginning of a function, before
3911 the prologue. */
3912
3913 void
3914 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
3915 const char *file ATTRIBUTE_UNUSED)
3916 {
3917 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3918 char * dup_label;
3919 dw_fde_ref fde;
3920 section *fnsec;
3921
3922 current_function_func_begin_label = NULL;
3923
3924 #ifdef TARGET_UNWIND_INFO
3925 /* ??? current_function_func_begin_label is also used by except.c
3926 for call-site information. We must emit this label if it might
3927 be used. */
3928 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
3929 && ! dwarf2out_do_frame ())
3930 return;
3931 #else
3932 if (! dwarf2out_do_frame ())
3933 return;
3934 #endif
3935
3936 fnsec = function_section (current_function_decl);
3937 switch_to_section (fnsec);
3938 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
3939 current_function_funcdef_no);
3940 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
3941 current_function_funcdef_no);
3942 dup_label = xstrdup (label);
3943 current_function_func_begin_label = dup_label;
3944
3945 #ifdef TARGET_UNWIND_INFO
3946 /* We can elide the fde allocation if we're not emitting debug info. */
3947 if (! dwarf2out_do_frame ())
3948 return;
3949 #endif
3950
3951 /* Expand the fde table if necessary. */
3952 if (fde_table_in_use == fde_table_allocated)
3953 {
3954 fde_table_allocated += FDE_TABLE_INCREMENT;
3955 fde_table = GGC_RESIZEVEC (dw_fde_node, fde_table, fde_table_allocated);
3956 memset (fde_table + fde_table_in_use, 0,
3957 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
3958 }
3959
3960 /* Record the FDE associated with this function. */
3961 current_funcdef_fde = fde_table_in_use;
3962
3963 /* Add the new FDE at the end of the fde_table. */
3964 fde = &fde_table[fde_table_in_use++];
3965 fde->decl = current_function_decl;
3966 fde->dw_fde_begin = dup_label;
3967 fde->dw_fde_current_label = dup_label;
3968 fde->dw_fde_hot_section_label = NULL;
3969 fde->dw_fde_hot_section_end_label = NULL;
3970 fde->dw_fde_unlikely_section_label = NULL;
3971 fde->dw_fde_unlikely_section_end_label = NULL;
3972 fde->dw_fde_switched_sections = 0;
3973 fde->dw_fde_switched_cold_to_hot = 0;
3974 fde->dw_fde_end = NULL;
3975 fde->dw_fde_vms_end_prologue = NULL;
3976 fde->dw_fde_vms_begin_epilogue = NULL;
3977 fde->dw_fde_cfi = NULL;
3978 fde->dw_fde_switch_cfi = NULL;
3979 fde->funcdef_number = current_function_funcdef_no;
3980 fde->all_throwers_are_sibcalls = crtl->all_throwers_are_sibcalls;
3981 fde->uses_eh_lsda = crtl->uses_eh_lsda;
3982 fde->nothrow = crtl->nothrow;
3983 fde->drap_reg = INVALID_REGNUM;
3984 fde->vdrap_reg = INVALID_REGNUM;
3985 if (flag_reorder_blocks_and_partition)
3986 {
3987 section *unlikelysec;
3988 if (first_function_block_is_cold)
3989 fde->in_std_section = 1;
3990 else
3991 fde->in_std_section
3992 = (fnsec == text_section
3993 || (cold_text_section && fnsec == cold_text_section));
3994 unlikelysec = unlikely_text_section ();
3995 fde->cold_in_std_section
3996 = (unlikelysec == text_section
3997 || (cold_text_section && unlikelysec == cold_text_section));
3998 }
3999 else
4000 {
4001 fde->in_std_section
4002 = (fnsec == text_section
4003 || (cold_text_section && fnsec == cold_text_section));
4004 fde->cold_in_std_section = 0;
4005 }
4006
4007 args_size = old_args_size = 0;
4008
4009 /* We only want to output line number information for the genuine dwarf2
4010 prologue case, not the eh frame case. */
4011 #ifdef DWARF2_DEBUGGING_INFO
4012 if (file)
4013 dwarf2out_source_line (line, file, 0, true);
4014 #endif
4015
4016 if (dwarf2out_do_cfi_asm ())
4017 dwarf2out_do_cfi_startproc (false);
4018 else
4019 {
4020 rtx personality = get_personality_function (current_function_decl);
4021 if (!current_unit_personality)
4022 current_unit_personality = personality;
4023
4024 /* We cannot keep a current personality per function as without CFI
4025 asm, at the point where we emit the CFI data, there is no current
4026 function anymore. */
4027 if (personality && current_unit_personality != personality)
4028 sorry ("multiple EH personalities are supported only with assemblers "
4029 "supporting .cfi_personality directive");
4030 }
4031 }
4032
4033 /* Output a marker (i.e. a label) for the end of the generated code
4034 for a function prologue. This gets called *after* the prologue code has
4035 been generated. */
4036
4037 void
4038 dwarf2out_vms_end_prologue (unsigned int line ATTRIBUTE_UNUSED,
4039 const char *file ATTRIBUTE_UNUSED)
4040 {
4041 dw_fde_ref fde;
4042 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4043
4044 /* Output a label to mark the endpoint of the code generated for this
4045 function. */
4046 ASM_GENERATE_INTERNAL_LABEL (label, PROLOGUE_END_LABEL,
4047 current_function_funcdef_no);
4048 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, PROLOGUE_END_LABEL,
4049 current_function_funcdef_no);
4050 fde = &fde_table[fde_table_in_use - 1];
4051 fde->dw_fde_vms_end_prologue = xstrdup (label);
4052 }
4053
4054 /* Output a marker (i.e. a label) for the beginning of the generated code
4055 for a function epilogue. This gets called *before* the prologue code has
4056 been generated. */
4057
4058 void
4059 dwarf2out_vms_begin_epilogue (unsigned int line ATTRIBUTE_UNUSED,
4060 const char *file ATTRIBUTE_UNUSED)
4061 {
4062 dw_fde_ref fde;
4063 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4064
4065 fde = &fde_table[fde_table_in_use - 1];
4066 if (fde->dw_fde_vms_begin_epilogue)
4067 return;
4068
4069 /* Output a label to mark the endpoint of the code generated for this
4070 function. */
4071 ASM_GENERATE_INTERNAL_LABEL (label, EPILOGUE_BEGIN_LABEL,
4072 current_function_funcdef_no);
4073 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, EPILOGUE_BEGIN_LABEL,
4074 current_function_funcdef_no);
4075 fde->dw_fde_vms_begin_epilogue = xstrdup (label);
4076 }
4077
4078 /* Output a marker (i.e. a label) for the absolute end of the generated code
4079 for a function definition. This gets called *after* the epilogue code has
4080 been generated. */
4081
4082 void
4083 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
4084 const char *file ATTRIBUTE_UNUSED)
4085 {
4086 dw_fde_ref fde;
4087 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4088
4089 #ifdef DWARF2_DEBUGGING_INFO
4090 last_var_location_insn = NULL_RTX;
4091 #endif
4092
4093 if (dwarf2out_do_cfi_asm ())
4094 fprintf (asm_out_file, "\t.cfi_endproc\n");
4095
4096 /* Output a label to mark the endpoint of the code generated for this
4097 function. */
4098 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
4099 current_function_funcdef_no);
4100 ASM_OUTPUT_LABEL (asm_out_file, label);
4101 fde = current_fde ();
4102 gcc_assert (fde != NULL);
4103 fde->dw_fde_end = xstrdup (label);
4104 }
4105
4106 void
4107 dwarf2out_frame_init (void)
4108 {
4109 /* Allocate the initial hunk of the fde_table. */
4110 fde_table = ggc_alloc_cleared_vec_dw_fde_node (FDE_TABLE_INCREMENT);
4111 fde_table_allocated = FDE_TABLE_INCREMENT;
4112 fde_table_in_use = 0;
4113
4114 /* Generate the CFA instructions common to all FDE's. Do it now for the
4115 sake of lookup_cfa. */
4116
4117 /* On entry, the Canonical Frame Address is at SP. */
4118 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
4119
4120 #ifdef DWARF2_UNWIND_INFO
4121 if (DWARF2_UNWIND_INFO || DWARF2_FRAME_INFO)
4122 initial_return_save (INCOMING_RETURN_ADDR_RTX);
4123 #endif
4124 }
4125
4126 void
4127 dwarf2out_frame_finish (void)
4128 {
4129 /* Output call frame information. */
4130 if (DWARF2_FRAME_INFO)
4131 output_call_frame_info (0);
4132
4133 #ifndef TARGET_UNWIND_INFO
4134 /* Output another copy for the unwinder. */
4135 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
4136 output_call_frame_info (1);
4137 #endif
4138 }
4139
4140 /* Note that the current function section is being used for code. */
4141
4142 static void
4143 dwarf2out_note_section_used (void)
4144 {
4145 section *sec = current_function_section ();
4146 if (sec == text_section)
4147 text_section_used = true;
4148 else if (sec == cold_text_section)
4149 cold_text_section_used = true;
4150 }
4151
4152 void
4153 dwarf2out_switch_text_section (void)
4154 {
4155 dw_fde_ref fde = current_fde ();
4156
4157 gcc_assert (cfun && fde && !fde->dw_fde_switched_sections);
4158
4159 fde->dw_fde_switched_sections = 1;
4160 fde->dw_fde_switched_cold_to_hot = !in_cold_section_p;
4161
4162 fde->dw_fde_hot_section_label = crtl->subsections.hot_section_label;
4163 fde->dw_fde_hot_section_end_label = crtl->subsections.hot_section_end_label;
4164 fde->dw_fde_unlikely_section_label = crtl->subsections.cold_section_label;
4165 fde->dw_fde_unlikely_section_end_label = crtl->subsections.cold_section_end_label;
4166 have_multiple_function_sections = true;
4167
4168 /* Reset the current label on switching text sections, so that we
4169 don't attempt to advance_loc4 between labels in different sections. */
4170 fde->dw_fde_current_label = NULL;
4171
4172 /* There is no need to mark used sections when not debugging. */
4173 if (cold_text_section != NULL)
4174 dwarf2out_note_section_used ();
4175
4176 if (dwarf2out_do_cfi_asm ())
4177 fprintf (asm_out_file, "\t.cfi_endproc\n");
4178
4179 /* Now do the real section switch. */
4180 switch_to_section (current_function_section ());
4181
4182 if (dwarf2out_do_cfi_asm ())
4183 {
4184 dwarf2out_do_cfi_startproc (true);
4185 /* As this is a different FDE, insert all current CFI instructions
4186 again. */
4187 output_cfis (fde->dw_fde_cfi, true, fde, true);
4188 }
4189 else
4190 {
4191 dw_cfi_ref cfi = fde->dw_fde_cfi;
4192
4193 cfi = fde->dw_fde_cfi;
4194 if (cfi)
4195 while (cfi->dw_cfi_next != NULL)
4196 cfi = cfi->dw_cfi_next;
4197 fde->dw_fde_switch_cfi = cfi;
4198 }
4199 }
4200 #endif
4201 \f
4202 /* And now, the subset of the debugging information support code necessary
4203 for emitting location expressions. */
4204
4205 /* Data about a single source file. */
4206 struct GTY(()) dwarf_file_data {
4207 const char * filename;
4208 int emitted_number;
4209 };
4210
4211 typedef struct dw_val_struct *dw_val_ref;
4212 typedef struct die_struct *dw_die_ref;
4213 typedef const struct die_struct *const_dw_die_ref;
4214 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
4215 typedef struct dw_loc_list_struct *dw_loc_list_ref;
4216
4217 typedef struct GTY(()) deferred_locations_struct
4218 {
4219 tree variable;
4220 dw_die_ref die;
4221 } deferred_locations;
4222
4223 DEF_VEC_O(deferred_locations);
4224 DEF_VEC_ALLOC_O(deferred_locations,gc);
4225
4226 static GTY(()) VEC(deferred_locations, gc) *deferred_locations_list;
4227
4228 DEF_VEC_P(dw_die_ref);
4229 DEF_VEC_ALLOC_P(dw_die_ref,heap);
4230
4231 /* Each DIE may have a series of attribute/value pairs. Values
4232 can take on several forms. The forms that are used in this
4233 implementation are listed below. */
4234
4235 enum dw_val_class
4236 {
4237 dw_val_class_addr,
4238 dw_val_class_offset,
4239 dw_val_class_loc,
4240 dw_val_class_loc_list,
4241 dw_val_class_range_list,
4242 dw_val_class_const,
4243 dw_val_class_unsigned_const,
4244 dw_val_class_const_double,
4245 dw_val_class_vec,
4246 dw_val_class_flag,
4247 dw_val_class_die_ref,
4248 dw_val_class_fde_ref,
4249 dw_val_class_lbl_id,
4250 dw_val_class_lineptr,
4251 dw_val_class_str,
4252 dw_val_class_macptr,
4253 dw_val_class_file,
4254 dw_val_class_data8,
4255 dw_val_class_vms_delta
4256 };
4257
4258 /* Describe a floating point constant value, or a vector constant value. */
4259
4260 typedef struct GTY(()) dw_vec_struct {
4261 unsigned char * GTY((length ("%h.length"))) array;
4262 unsigned length;
4263 unsigned elt_size;
4264 }
4265 dw_vec_const;
4266
4267 /* The dw_val_node describes an attribute's value, as it is
4268 represented internally. */
4269
4270 typedef struct GTY(()) dw_val_struct {
4271 enum dw_val_class val_class;
4272 union dw_val_struct_union
4273 {
4274 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
4275 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
4276 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
4277 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
4278 HOST_WIDE_INT GTY ((default)) val_int;
4279 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
4280 double_int GTY ((tag ("dw_val_class_const_double"))) val_double;
4281 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
4282 struct dw_val_die_union
4283 {
4284 dw_die_ref die;
4285 int external;
4286 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
4287 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
4288 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
4289 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
4290 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
4291 struct dwarf_file_data * GTY ((tag ("dw_val_class_file"))) val_file;
4292 unsigned char GTY ((tag ("dw_val_class_data8"))) val_data8[8];
4293 struct dw_val_vms_delta_union
4294 {
4295 char * lbl1;
4296 char * lbl2;
4297 } GTY ((tag ("dw_val_class_vms_delta"))) val_vms_delta;
4298 }
4299 GTY ((desc ("%1.val_class"))) v;
4300 }
4301 dw_val_node;
4302
4303 /* Locations in memory are described using a sequence of stack machine
4304 operations. */
4305
4306 typedef struct GTY(()) dw_loc_descr_struct {
4307 dw_loc_descr_ref dw_loc_next;
4308 ENUM_BITFIELD (dwarf_location_atom) dw_loc_opc : 8;
4309 /* Used to distinguish DW_OP_addr with a direct symbol relocation
4310 from DW_OP_addr with a dtp-relative symbol relocation. */
4311 unsigned int dtprel : 1;
4312 int dw_loc_addr;
4313 dw_val_node dw_loc_oprnd1;
4314 dw_val_node dw_loc_oprnd2;
4315 }
4316 dw_loc_descr_node;
4317
4318 /* Location lists are ranges + location descriptions for that range,
4319 so you can track variables that are in different places over
4320 their entire life. */
4321 typedef struct GTY(()) dw_loc_list_struct {
4322 dw_loc_list_ref dw_loc_next;
4323 const char *begin; /* Label for begin address of range */
4324 const char *end; /* Label for end address of range */
4325 char *ll_symbol; /* Label for beginning of location list.
4326 Only on head of list */
4327 const char *section; /* Section this loclist is relative to */
4328 dw_loc_descr_ref expr;
4329 } dw_loc_list_node;
4330
4331 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
4332
4333 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
4334
4335 /* Convert a DWARF stack opcode into its string name. */
4336
4337 static const char *
4338 dwarf_stack_op_name (unsigned int op)
4339 {
4340 switch (op)
4341 {
4342 case DW_OP_addr:
4343 return "DW_OP_addr";
4344 case DW_OP_deref:
4345 return "DW_OP_deref";
4346 case DW_OP_const1u:
4347 return "DW_OP_const1u";
4348 case DW_OP_const1s:
4349 return "DW_OP_const1s";
4350 case DW_OP_const2u:
4351 return "DW_OP_const2u";
4352 case DW_OP_const2s:
4353 return "DW_OP_const2s";
4354 case DW_OP_const4u:
4355 return "DW_OP_const4u";
4356 case DW_OP_const4s:
4357 return "DW_OP_const4s";
4358 case DW_OP_const8u:
4359 return "DW_OP_const8u";
4360 case DW_OP_const8s:
4361 return "DW_OP_const8s";
4362 case DW_OP_constu:
4363 return "DW_OP_constu";
4364 case DW_OP_consts:
4365 return "DW_OP_consts";
4366 case DW_OP_dup:
4367 return "DW_OP_dup";
4368 case DW_OP_drop:
4369 return "DW_OP_drop";
4370 case DW_OP_over:
4371 return "DW_OP_over";
4372 case DW_OP_pick:
4373 return "DW_OP_pick";
4374 case DW_OP_swap:
4375 return "DW_OP_swap";
4376 case DW_OP_rot:
4377 return "DW_OP_rot";
4378 case DW_OP_xderef:
4379 return "DW_OP_xderef";
4380 case DW_OP_abs:
4381 return "DW_OP_abs";
4382 case DW_OP_and:
4383 return "DW_OP_and";
4384 case DW_OP_div:
4385 return "DW_OP_div";
4386 case DW_OP_minus:
4387 return "DW_OP_minus";
4388 case DW_OP_mod:
4389 return "DW_OP_mod";
4390 case DW_OP_mul:
4391 return "DW_OP_mul";
4392 case DW_OP_neg:
4393 return "DW_OP_neg";
4394 case DW_OP_not:
4395 return "DW_OP_not";
4396 case DW_OP_or:
4397 return "DW_OP_or";
4398 case DW_OP_plus:
4399 return "DW_OP_plus";
4400 case DW_OP_plus_uconst:
4401 return "DW_OP_plus_uconst";
4402 case DW_OP_shl:
4403 return "DW_OP_shl";
4404 case DW_OP_shr:
4405 return "DW_OP_shr";
4406 case DW_OP_shra:
4407 return "DW_OP_shra";
4408 case DW_OP_xor:
4409 return "DW_OP_xor";
4410 case DW_OP_bra:
4411 return "DW_OP_bra";
4412 case DW_OP_eq:
4413 return "DW_OP_eq";
4414 case DW_OP_ge:
4415 return "DW_OP_ge";
4416 case DW_OP_gt:
4417 return "DW_OP_gt";
4418 case DW_OP_le:
4419 return "DW_OP_le";
4420 case DW_OP_lt:
4421 return "DW_OP_lt";
4422 case DW_OP_ne:
4423 return "DW_OP_ne";
4424 case DW_OP_skip:
4425 return "DW_OP_skip";
4426 case DW_OP_lit0:
4427 return "DW_OP_lit0";
4428 case DW_OP_lit1:
4429 return "DW_OP_lit1";
4430 case DW_OP_lit2:
4431 return "DW_OP_lit2";
4432 case DW_OP_lit3:
4433 return "DW_OP_lit3";
4434 case DW_OP_lit4:
4435 return "DW_OP_lit4";
4436 case DW_OP_lit5:
4437 return "DW_OP_lit5";
4438 case DW_OP_lit6:
4439 return "DW_OP_lit6";
4440 case DW_OP_lit7:
4441 return "DW_OP_lit7";
4442 case DW_OP_lit8:
4443 return "DW_OP_lit8";
4444 case DW_OP_lit9:
4445 return "DW_OP_lit9";
4446 case DW_OP_lit10:
4447 return "DW_OP_lit10";
4448 case DW_OP_lit11:
4449 return "DW_OP_lit11";
4450 case DW_OP_lit12:
4451 return "DW_OP_lit12";
4452 case DW_OP_lit13:
4453 return "DW_OP_lit13";
4454 case DW_OP_lit14:
4455 return "DW_OP_lit14";
4456 case DW_OP_lit15:
4457 return "DW_OP_lit15";
4458 case DW_OP_lit16:
4459 return "DW_OP_lit16";
4460 case DW_OP_lit17:
4461 return "DW_OP_lit17";
4462 case DW_OP_lit18:
4463 return "DW_OP_lit18";
4464 case DW_OP_lit19:
4465 return "DW_OP_lit19";
4466 case DW_OP_lit20:
4467 return "DW_OP_lit20";
4468 case DW_OP_lit21:
4469 return "DW_OP_lit21";
4470 case DW_OP_lit22:
4471 return "DW_OP_lit22";
4472 case DW_OP_lit23:
4473 return "DW_OP_lit23";
4474 case DW_OP_lit24:
4475 return "DW_OP_lit24";
4476 case DW_OP_lit25:
4477 return "DW_OP_lit25";
4478 case DW_OP_lit26:
4479 return "DW_OP_lit26";
4480 case DW_OP_lit27:
4481 return "DW_OP_lit27";
4482 case DW_OP_lit28:
4483 return "DW_OP_lit28";
4484 case DW_OP_lit29:
4485 return "DW_OP_lit29";
4486 case DW_OP_lit30:
4487 return "DW_OP_lit30";
4488 case DW_OP_lit31:
4489 return "DW_OP_lit31";
4490 case DW_OP_reg0:
4491 return "DW_OP_reg0";
4492 case DW_OP_reg1:
4493 return "DW_OP_reg1";
4494 case DW_OP_reg2:
4495 return "DW_OP_reg2";
4496 case DW_OP_reg3:
4497 return "DW_OP_reg3";
4498 case DW_OP_reg4:
4499 return "DW_OP_reg4";
4500 case DW_OP_reg5:
4501 return "DW_OP_reg5";
4502 case DW_OP_reg6:
4503 return "DW_OP_reg6";
4504 case DW_OP_reg7:
4505 return "DW_OP_reg7";
4506 case DW_OP_reg8:
4507 return "DW_OP_reg8";
4508 case DW_OP_reg9:
4509 return "DW_OP_reg9";
4510 case DW_OP_reg10:
4511 return "DW_OP_reg10";
4512 case DW_OP_reg11:
4513 return "DW_OP_reg11";
4514 case DW_OP_reg12:
4515 return "DW_OP_reg12";
4516 case DW_OP_reg13:
4517 return "DW_OP_reg13";
4518 case DW_OP_reg14:
4519 return "DW_OP_reg14";
4520 case DW_OP_reg15:
4521 return "DW_OP_reg15";
4522 case DW_OP_reg16:
4523 return "DW_OP_reg16";
4524 case DW_OP_reg17:
4525 return "DW_OP_reg17";
4526 case DW_OP_reg18:
4527 return "DW_OP_reg18";
4528 case DW_OP_reg19:
4529 return "DW_OP_reg19";
4530 case DW_OP_reg20:
4531 return "DW_OP_reg20";
4532 case DW_OP_reg21:
4533 return "DW_OP_reg21";
4534 case DW_OP_reg22:
4535 return "DW_OP_reg22";
4536 case DW_OP_reg23:
4537 return "DW_OP_reg23";
4538 case DW_OP_reg24:
4539 return "DW_OP_reg24";
4540 case DW_OP_reg25:
4541 return "DW_OP_reg25";
4542 case DW_OP_reg26:
4543 return "DW_OP_reg26";
4544 case DW_OP_reg27:
4545 return "DW_OP_reg27";
4546 case DW_OP_reg28:
4547 return "DW_OP_reg28";
4548 case DW_OP_reg29:
4549 return "DW_OP_reg29";
4550 case DW_OP_reg30:
4551 return "DW_OP_reg30";
4552 case DW_OP_reg31:
4553 return "DW_OP_reg31";
4554 case DW_OP_breg0:
4555 return "DW_OP_breg0";
4556 case DW_OP_breg1:
4557 return "DW_OP_breg1";
4558 case DW_OP_breg2:
4559 return "DW_OP_breg2";
4560 case DW_OP_breg3:
4561 return "DW_OP_breg3";
4562 case DW_OP_breg4:
4563 return "DW_OP_breg4";
4564 case DW_OP_breg5:
4565 return "DW_OP_breg5";
4566 case DW_OP_breg6:
4567 return "DW_OP_breg6";
4568 case DW_OP_breg7:
4569 return "DW_OP_breg7";
4570 case DW_OP_breg8:
4571 return "DW_OP_breg8";
4572 case DW_OP_breg9:
4573 return "DW_OP_breg9";
4574 case DW_OP_breg10:
4575 return "DW_OP_breg10";
4576 case DW_OP_breg11:
4577 return "DW_OP_breg11";
4578 case DW_OP_breg12:
4579 return "DW_OP_breg12";
4580 case DW_OP_breg13:
4581 return "DW_OP_breg13";
4582 case DW_OP_breg14:
4583 return "DW_OP_breg14";
4584 case DW_OP_breg15:
4585 return "DW_OP_breg15";
4586 case DW_OP_breg16:
4587 return "DW_OP_breg16";
4588 case DW_OP_breg17:
4589 return "DW_OP_breg17";
4590 case DW_OP_breg18:
4591 return "DW_OP_breg18";
4592 case DW_OP_breg19:
4593 return "DW_OP_breg19";
4594 case DW_OP_breg20:
4595 return "DW_OP_breg20";
4596 case DW_OP_breg21:
4597 return "DW_OP_breg21";
4598 case DW_OP_breg22:
4599 return "DW_OP_breg22";
4600 case DW_OP_breg23:
4601 return "DW_OP_breg23";
4602 case DW_OP_breg24:
4603 return "DW_OP_breg24";
4604 case DW_OP_breg25:
4605 return "DW_OP_breg25";
4606 case DW_OP_breg26:
4607 return "DW_OP_breg26";
4608 case DW_OP_breg27:
4609 return "DW_OP_breg27";
4610 case DW_OP_breg28:
4611 return "DW_OP_breg28";
4612 case DW_OP_breg29:
4613 return "DW_OP_breg29";
4614 case DW_OP_breg30:
4615 return "DW_OP_breg30";
4616 case DW_OP_breg31:
4617 return "DW_OP_breg31";
4618 case DW_OP_regx:
4619 return "DW_OP_regx";
4620 case DW_OP_fbreg:
4621 return "DW_OP_fbreg";
4622 case DW_OP_bregx:
4623 return "DW_OP_bregx";
4624 case DW_OP_piece:
4625 return "DW_OP_piece";
4626 case DW_OP_deref_size:
4627 return "DW_OP_deref_size";
4628 case DW_OP_xderef_size:
4629 return "DW_OP_xderef_size";
4630 case DW_OP_nop:
4631 return "DW_OP_nop";
4632
4633 case DW_OP_push_object_address:
4634 return "DW_OP_push_object_address";
4635 case DW_OP_call2:
4636 return "DW_OP_call2";
4637 case DW_OP_call4:
4638 return "DW_OP_call4";
4639 case DW_OP_call_ref:
4640 return "DW_OP_call_ref";
4641 case DW_OP_implicit_value:
4642 return "DW_OP_implicit_value";
4643 case DW_OP_stack_value:
4644 return "DW_OP_stack_value";
4645 case DW_OP_form_tls_address:
4646 return "DW_OP_form_tls_address";
4647 case DW_OP_call_frame_cfa:
4648 return "DW_OP_call_frame_cfa";
4649 case DW_OP_bit_piece:
4650 return "DW_OP_bit_piece";
4651
4652 case DW_OP_GNU_push_tls_address:
4653 return "DW_OP_GNU_push_tls_address";
4654 case DW_OP_GNU_uninit:
4655 return "DW_OP_GNU_uninit";
4656 case DW_OP_GNU_encoded_addr:
4657 return "DW_OP_GNU_encoded_addr";
4658
4659 default:
4660 return "OP_<unknown>";
4661 }
4662 }
4663
4664 /* Return a pointer to a newly allocated location description. Location
4665 descriptions are simple expression terms that can be strung
4666 together to form more complicated location (address) descriptions. */
4667
4668 static inline dw_loc_descr_ref
4669 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
4670 unsigned HOST_WIDE_INT oprnd2)
4671 {
4672 dw_loc_descr_ref descr = ggc_alloc_cleared_dw_loc_descr_node ();
4673
4674 descr->dw_loc_opc = op;
4675 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
4676 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
4677 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
4678 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
4679
4680 return descr;
4681 }
4682
4683 /* Return a pointer to a newly allocated location description for
4684 REG and OFFSET. */
4685
4686 static inline dw_loc_descr_ref
4687 new_reg_loc_descr (unsigned int reg, unsigned HOST_WIDE_INT offset)
4688 {
4689 if (reg <= 31)
4690 return new_loc_descr ((enum dwarf_location_atom) (DW_OP_breg0 + reg),
4691 offset, 0);
4692 else
4693 return new_loc_descr (DW_OP_bregx, reg, offset);
4694 }
4695
4696 /* Add a location description term to a location description expression. */
4697
4698 static inline void
4699 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
4700 {
4701 dw_loc_descr_ref *d;
4702
4703 /* Find the end of the chain. */
4704 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
4705 ;
4706
4707 *d = descr;
4708 }
4709
4710 /* Add a constant OFFSET to a location expression. */
4711
4712 static void
4713 loc_descr_plus_const (dw_loc_descr_ref *list_head, HOST_WIDE_INT offset)
4714 {
4715 dw_loc_descr_ref loc;
4716 HOST_WIDE_INT *p;
4717
4718 gcc_assert (*list_head != NULL);
4719
4720 if (!offset)
4721 return;
4722
4723 /* Find the end of the chain. */
4724 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
4725 ;
4726
4727 p = NULL;
4728 if (loc->dw_loc_opc == DW_OP_fbreg
4729 || (loc->dw_loc_opc >= DW_OP_breg0 && loc->dw_loc_opc <= DW_OP_breg31))
4730 p = &loc->dw_loc_oprnd1.v.val_int;
4731 else if (loc->dw_loc_opc == DW_OP_bregx)
4732 p = &loc->dw_loc_oprnd2.v.val_int;
4733
4734 /* If the last operation is fbreg, breg{0..31,x}, optimize by adjusting its
4735 offset. Don't optimize if an signed integer overflow would happen. */
4736 if (p != NULL
4737 && ((offset > 0 && *p <= INTTYPE_MAXIMUM (HOST_WIDE_INT) - offset)
4738 || (offset < 0 && *p >= INTTYPE_MINIMUM (HOST_WIDE_INT) - offset)))
4739 *p += offset;
4740
4741 else if (offset > 0)
4742 loc->dw_loc_next = new_loc_descr (DW_OP_plus_uconst, offset, 0);
4743
4744 else
4745 {
4746 loc->dw_loc_next = int_loc_descriptor (-offset);
4747 add_loc_descr (&loc->dw_loc_next, new_loc_descr (DW_OP_minus, 0, 0));
4748 }
4749 }
4750
4751 #ifdef DWARF2_DEBUGGING_INFO
4752 /* Add a constant OFFSET to a location list. */
4753
4754 static void
4755 loc_list_plus_const (dw_loc_list_ref list_head, HOST_WIDE_INT offset)
4756 {
4757 dw_loc_list_ref d;
4758 for (d = list_head; d != NULL; d = d->dw_loc_next)
4759 loc_descr_plus_const (&d->expr, offset);
4760 }
4761 #endif
4762
4763 /* Return the size of a location descriptor. */
4764
4765 static unsigned long
4766 size_of_loc_descr (dw_loc_descr_ref loc)
4767 {
4768 unsigned long size = 1;
4769
4770 switch (loc->dw_loc_opc)
4771 {
4772 case DW_OP_addr:
4773 size += DWARF2_ADDR_SIZE;
4774 break;
4775 case DW_OP_const1u:
4776 case DW_OP_const1s:
4777 size += 1;
4778 break;
4779 case DW_OP_const2u:
4780 case DW_OP_const2s:
4781 size += 2;
4782 break;
4783 case DW_OP_const4u:
4784 case DW_OP_const4s:
4785 size += 4;
4786 break;
4787 case DW_OP_const8u:
4788 case DW_OP_const8s:
4789 size += 8;
4790 break;
4791 case DW_OP_constu:
4792 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
4793 break;
4794 case DW_OP_consts:
4795 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
4796 break;
4797 case DW_OP_pick:
4798 size += 1;
4799 break;
4800 case DW_OP_plus_uconst:
4801 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
4802 break;
4803 case DW_OP_skip:
4804 case DW_OP_bra:
4805 size += 2;
4806 break;
4807 case DW_OP_breg0:
4808 case DW_OP_breg1:
4809 case DW_OP_breg2:
4810 case DW_OP_breg3:
4811 case DW_OP_breg4:
4812 case DW_OP_breg5:
4813 case DW_OP_breg6:
4814 case DW_OP_breg7:
4815 case DW_OP_breg8:
4816 case DW_OP_breg9:
4817 case DW_OP_breg10:
4818 case DW_OP_breg11:
4819 case DW_OP_breg12:
4820 case DW_OP_breg13:
4821 case DW_OP_breg14:
4822 case DW_OP_breg15:
4823 case DW_OP_breg16:
4824 case DW_OP_breg17:
4825 case DW_OP_breg18:
4826 case DW_OP_breg19:
4827 case DW_OP_breg20:
4828 case DW_OP_breg21:
4829 case DW_OP_breg22:
4830 case DW_OP_breg23:
4831 case DW_OP_breg24:
4832 case DW_OP_breg25:
4833 case DW_OP_breg26:
4834 case DW_OP_breg27:
4835 case DW_OP_breg28:
4836 case DW_OP_breg29:
4837 case DW_OP_breg30:
4838 case DW_OP_breg31:
4839 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
4840 break;
4841 case DW_OP_regx:
4842 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
4843 break;
4844 case DW_OP_fbreg:
4845 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
4846 break;
4847 case DW_OP_bregx:
4848 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
4849 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
4850 break;
4851 case DW_OP_piece:
4852 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
4853 break;
4854 case DW_OP_bit_piece:
4855 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
4856 size += size_of_uleb128 (loc->dw_loc_oprnd2.v.val_unsigned);
4857 break;
4858 case DW_OP_deref_size:
4859 case DW_OP_xderef_size:
4860 size += 1;
4861 break;
4862 case DW_OP_call2:
4863 size += 2;
4864 break;
4865 case DW_OP_call4:
4866 size += 4;
4867 break;
4868 case DW_OP_call_ref:
4869 size += DWARF2_ADDR_SIZE;
4870 break;
4871 case DW_OP_implicit_value:
4872 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned)
4873 + loc->dw_loc_oprnd1.v.val_unsigned;
4874 break;
4875 default:
4876 break;
4877 }
4878
4879 return size;
4880 }
4881
4882 /* Return the size of a series of location descriptors. */
4883
4884 static unsigned long
4885 size_of_locs (dw_loc_descr_ref loc)
4886 {
4887 dw_loc_descr_ref l;
4888 unsigned long size;
4889
4890 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
4891 field, to avoid writing to a PCH file. */
4892 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
4893 {
4894 if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
4895 break;
4896 size += size_of_loc_descr (l);
4897 }
4898 if (! l)
4899 return size;
4900
4901 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
4902 {
4903 l->dw_loc_addr = size;
4904 size += size_of_loc_descr (l);
4905 }
4906
4907 return size;
4908 }
4909
4910 #ifdef DWARF2_DEBUGGING_INFO
4911 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4912 #endif
4913
4914 /* Output location description stack opcode's operands (if any). */
4915
4916 static void
4917 output_loc_operands (dw_loc_descr_ref loc)
4918 {
4919 dw_val_ref val1 = &loc->dw_loc_oprnd1;
4920 dw_val_ref val2 = &loc->dw_loc_oprnd2;
4921
4922 switch (loc->dw_loc_opc)
4923 {
4924 #ifdef DWARF2_DEBUGGING_INFO
4925 case DW_OP_const2u:
4926 case DW_OP_const2s:
4927 dw2_asm_output_data (2, val1->v.val_int, NULL);
4928 break;
4929 case DW_OP_const4u:
4930 case DW_OP_const4s:
4931 dw2_asm_output_data (4, val1->v.val_int, NULL);
4932 break;
4933 case DW_OP_const8u:
4934 case DW_OP_const8s:
4935 gcc_assert (HOST_BITS_PER_WIDE_INT >= 64);
4936 dw2_asm_output_data (8, val1->v.val_int, NULL);
4937 break;
4938 case DW_OP_skip:
4939 case DW_OP_bra:
4940 {
4941 int offset;
4942
4943 gcc_assert (val1->val_class == dw_val_class_loc);
4944 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
4945
4946 dw2_asm_output_data (2, offset, NULL);
4947 }
4948 break;
4949 case DW_OP_implicit_value:
4950 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
4951 switch (val2->val_class)
4952 {
4953 case dw_val_class_const:
4954 dw2_asm_output_data (val1->v.val_unsigned, val2->v.val_int, NULL);
4955 break;
4956 case dw_val_class_vec:
4957 {
4958 unsigned int elt_size = val2->v.val_vec.elt_size;
4959 unsigned int len = val2->v.val_vec.length;
4960 unsigned int i;
4961 unsigned char *p;
4962
4963 if (elt_size > sizeof (HOST_WIDE_INT))
4964 {
4965 elt_size /= 2;
4966 len *= 2;
4967 }
4968 for (i = 0, p = val2->v.val_vec.array;
4969 i < len;
4970 i++, p += elt_size)
4971 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
4972 "fp or vector constant word %u", i);
4973 }
4974 break;
4975 case dw_val_class_const_double:
4976 {
4977 unsigned HOST_WIDE_INT first, second;
4978
4979 if (WORDS_BIG_ENDIAN)
4980 {
4981 first = val2->v.val_double.high;
4982 second = val2->v.val_double.low;
4983 }
4984 else
4985 {
4986 first = val2->v.val_double.low;
4987 second = val2->v.val_double.high;
4988 }
4989 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
4990 first, NULL);
4991 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
4992 second, NULL);
4993 }
4994 break;
4995 case dw_val_class_addr:
4996 gcc_assert (val1->v.val_unsigned == DWARF2_ADDR_SIZE);
4997 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val2->v.val_addr, NULL);
4998 break;
4999 default:
5000 gcc_unreachable ();
5001 }
5002 break;
5003 #else
5004 case DW_OP_const2u:
5005 case DW_OP_const2s:
5006 case DW_OP_const4u:
5007 case DW_OP_const4s:
5008 case DW_OP_const8u:
5009 case DW_OP_const8s:
5010 case DW_OP_skip:
5011 case DW_OP_bra:
5012 case DW_OP_implicit_value:
5013 /* We currently don't make any attempt to make sure these are
5014 aligned properly like we do for the main unwind info, so
5015 don't support emitting things larger than a byte if we're
5016 only doing unwinding. */
5017 gcc_unreachable ();
5018 #endif
5019 case DW_OP_const1u:
5020 case DW_OP_const1s:
5021 dw2_asm_output_data (1, val1->v.val_int, NULL);
5022 break;
5023 case DW_OP_constu:
5024 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
5025 break;
5026 case DW_OP_consts:
5027 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
5028 break;
5029 case DW_OP_pick:
5030 dw2_asm_output_data (1, val1->v.val_int, NULL);
5031 break;
5032 case DW_OP_plus_uconst:
5033 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
5034 break;
5035 case DW_OP_breg0:
5036 case DW_OP_breg1:
5037 case DW_OP_breg2:
5038 case DW_OP_breg3:
5039 case DW_OP_breg4:
5040 case DW_OP_breg5:
5041 case DW_OP_breg6:
5042 case DW_OP_breg7:
5043 case DW_OP_breg8:
5044 case DW_OP_breg9:
5045 case DW_OP_breg10:
5046 case DW_OP_breg11:
5047 case DW_OP_breg12:
5048 case DW_OP_breg13:
5049 case DW_OP_breg14:
5050 case DW_OP_breg15:
5051 case DW_OP_breg16:
5052 case DW_OP_breg17:
5053 case DW_OP_breg18:
5054 case DW_OP_breg19:
5055 case DW_OP_breg20:
5056 case DW_OP_breg21:
5057 case DW_OP_breg22:
5058 case DW_OP_breg23:
5059 case DW_OP_breg24:
5060 case DW_OP_breg25:
5061 case DW_OP_breg26:
5062 case DW_OP_breg27:
5063 case DW_OP_breg28:
5064 case DW_OP_breg29:
5065 case DW_OP_breg30:
5066 case DW_OP_breg31:
5067 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
5068 break;
5069 case DW_OP_regx:
5070 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
5071 break;
5072 case DW_OP_fbreg:
5073 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
5074 break;
5075 case DW_OP_bregx:
5076 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
5077 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
5078 break;
5079 case DW_OP_piece:
5080 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
5081 break;
5082 case DW_OP_bit_piece:
5083 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
5084 dw2_asm_output_data_uleb128 (val2->v.val_unsigned, NULL);
5085 break;
5086 case DW_OP_deref_size:
5087 case DW_OP_xderef_size:
5088 dw2_asm_output_data (1, val1->v.val_int, NULL);
5089 break;
5090
5091 case DW_OP_addr:
5092 if (loc->dtprel)
5093 {
5094 if (targetm.asm_out.output_dwarf_dtprel)
5095 {
5096 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
5097 DWARF2_ADDR_SIZE,
5098 val1->v.val_addr);
5099 fputc ('\n', asm_out_file);
5100 }
5101 else
5102 gcc_unreachable ();
5103 }
5104 else
5105 {
5106 #ifdef DWARF2_DEBUGGING_INFO
5107 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
5108 #else
5109 gcc_unreachable ();
5110 #endif
5111 }
5112 break;
5113
5114 default:
5115 /* Other codes have no operands. */
5116 break;
5117 }
5118 }
5119
5120 /* Output a sequence of location operations. */
5121
5122 static void
5123 output_loc_sequence (dw_loc_descr_ref loc)
5124 {
5125 for (; loc != NULL; loc = loc->dw_loc_next)
5126 {
5127 /* Output the opcode. */
5128 dw2_asm_output_data (1, loc->dw_loc_opc,
5129 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
5130
5131 /* Output the operand(s) (if any). */
5132 output_loc_operands (loc);
5133 }
5134 }
5135
5136 /* Output location description stack opcode's operands (if any).
5137 The output is single bytes on a line, suitable for .cfi_escape. */
5138
5139 static void
5140 output_loc_operands_raw (dw_loc_descr_ref loc)
5141 {
5142 dw_val_ref val1 = &loc->dw_loc_oprnd1;
5143 dw_val_ref val2 = &loc->dw_loc_oprnd2;
5144
5145 switch (loc->dw_loc_opc)
5146 {
5147 case DW_OP_addr:
5148 case DW_OP_implicit_value:
5149 /* We cannot output addresses in .cfi_escape, only bytes. */
5150 gcc_unreachable ();
5151
5152 case DW_OP_const1u:
5153 case DW_OP_const1s:
5154 case DW_OP_pick:
5155 case DW_OP_deref_size:
5156 case DW_OP_xderef_size:
5157 fputc (',', asm_out_file);
5158 dw2_asm_output_data_raw (1, val1->v.val_int);
5159 break;
5160
5161 case DW_OP_const2u:
5162 case DW_OP_const2s:
5163 fputc (',', asm_out_file);
5164 dw2_asm_output_data_raw (2, val1->v.val_int);
5165 break;
5166
5167 case DW_OP_const4u:
5168 case DW_OP_const4s:
5169 fputc (',', asm_out_file);
5170 dw2_asm_output_data_raw (4, val1->v.val_int);
5171 break;
5172
5173 case DW_OP_const8u:
5174 case DW_OP_const8s:
5175 gcc_assert (HOST_BITS_PER_WIDE_INT >= 64);
5176 fputc (',', asm_out_file);
5177 dw2_asm_output_data_raw (8, val1->v.val_int);
5178 break;
5179
5180 case DW_OP_skip:
5181 case DW_OP_bra:
5182 {
5183 int offset;
5184
5185 gcc_assert (val1->val_class == dw_val_class_loc);
5186 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
5187
5188 fputc (',', asm_out_file);
5189 dw2_asm_output_data_raw (2, offset);
5190 }
5191 break;
5192
5193 case DW_OP_constu:
5194 case DW_OP_plus_uconst:
5195 case DW_OP_regx:
5196 case DW_OP_piece:
5197 fputc (',', asm_out_file);
5198 dw2_asm_output_data_uleb128_raw (val1->v.val_unsigned);
5199 break;
5200
5201 case DW_OP_bit_piece:
5202 fputc (',', asm_out_file);
5203 dw2_asm_output_data_uleb128_raw (val1->v.val_unsigned);
5204 dw2_asm_output_data_uleb128_raw (val2->v.val_unsigned);
5205 break;
5206
5207 case DW_OP_consts:
5208 case DW_OP_breg0:
5209 case DW_OP_breg1:
5210 case DW_OP_breg2:
5211 case DW_OP_breg3:
5212 case DW_OP_breg4:
5213 case DW_OP_breg5:
5214 case DW_OP_breg6:
5215 case DW_OP_breg7:
5216 case DW_OP_breg8:
5217 case DW_OP_breg9:
5218 case DW_OP_breg10:
5219 case DW_OP_breg11:
5220 case DW_OP_breg12:
5221 case DW_OP_breg13:
5222 case DW_OP_breg14:
5223 case DW_OP_breg15:
5224 case DW_OP_breg16:
5225 case DW_OP_breg17:
5226 case DW_OP_breg18:
5227 case DW_OP_breg19:
5228 case DW_OP_breg20:
5229 case DW_OP_breg21:
5230 case DW_OP_breg22:
5231 case DW_OP_breg23:
5232 case DW_OP_breg24:
5233 case DW_OP_breg25:
5234 case DW_OP_breg26:
5235 case DW_OP_breg27:
5236 case DW_OP_breg28:
5237 case DW_OP_breg29:
5238 case DW_OP_breg30:
5239 case DW_OP_breg31:
5240 case DW_OP_fbreg:
5241 fputc (',', asm_out_file);
5242 dw2_asm_output_data_sleb128_raw (val1->v.val_int);
5243 break;
5244
5245 case DW_OP_bregx:
5246 fputc (',', asm_out_file);
5247 dw2_asm_output_data_uleb128_raw (val1->v.val_unsigned);
5248 fputc (',', asm_out_file);
5249 dw2_asm_output_data_sleb128_raw (val2->v.val_int);
5250 break;
5251
5252 default:
5253 /* Other codes have no operands. */
5254 break;
5255 }
5256 }
5257
5258 static void
5259 output_loc_sequence_raw (dw_loc_descr_ref loc)
5260 {
5261 while (1)
5262 {
5263 /* Output the opcode. */
5264 fprintf (asm_out_file, "%#x", loc->dw_loc_opc);
5265 output_loc_operands_raw (loc);
5266
5267 if (!loc->dw_loc_next)
5268 break;
5269 loc = loc->dw_loc_next;
5270
5271 fputc (',', asm_out_file);
5272 }
5273 }
5274
5275 /* This routine will generate the correct assembly data for a location
5276 description based on a cfi entry with a complex address. */
5277
5278 static void
5279 output_cfa_loc (dw_cfi_ref cfi)
5280 {
5281 dw_loc_descr_ref loc;
5282 unsigned long size;
5283
5284 if (cfi->dw_cfi_opc == DW_CFA_expression)
5285 {
5286 dw2_asm_output_data (1, cfi->dw_cfi_oprnd1.dw_cfi_reg_num, NULL);
5287 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
5288 }
5289 else
5290 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
5291
5292 /* Output the size of the block. */
5293 size = size_of_locs (loc);
5294 dw2_asm_output_data_uleb128 (size, NULL);
5295
5296 /* Now output the operations themselves. */
5297 output_loc_sequence (loc);
5298 }
5299
5300 /* Similar, but used for .cfi_escape. */
5301
5302 static void
5303 output_cfa_loc_raw (dw_cfi_ref cfi)
5304 {
5305 dw_loc_descr_ref loc;
5306 unsigned long size;
5307
5308 if (cfi->dw_cfi_opc == DW_CFA_expression)
5309 {
5310 fprintf (asm_out_file, "%#x,", cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
5311 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
5312 }
5313 else
5314 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
5315
5316 /* Output the size of the block. */
5317 size = size_of_locs (loc);
5318 dw2_asm_output_data_uleb128_raw (size);
5319 fputc (',', asm_out_file);
5320
5321 /* Now output the operations themselves. */
5322 output_loc_sequence_raw (loc);
5323 }
5324
5325 /* This function builds a dwarf location descriptor sequence from a
5326 dw_cfa_location, adding the given OFFSET to the result of the
5327 expression. */
5328
5329 static struct dw_loc_descr_struct *
5330 build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
5331 {
5332 struct dw_loc_descr_struct *head, *tmp;
5333
5334 offset += cfa->offset;
5335
5336 if (cfa->indirect)
5337 {
5338 head = new_reg_loc_descr (cfa->reg, cfa->base_offset);
5339 head->dw_loc_oprnd1.val_class = dw_val_class_const;
5340 tmp = new_loc_descr (DW_OP_deref, 0, 0);
5341 add_loc_descr (&head, tmp);
5342 if (offset != 0)
5343 {
5344 tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
5345 add_loc_descr (&head, tmp);
5346 }
5347 }
5348 else
5349 head = new_reg_loc_descr (cfa->reg, offset);
5350
5351 return head;
5352 }
5353
5354 /* This function builds a dwarf location descriptor sequence for
5355 the address at OFFSET from the CFA when stack is aligned to
5356 ALIGNMENT byte. */
5357
5358 static struct dw_loc_descr_struct *
5359 build_cfa_aligned_loc (HOST_WIDE_INT offset, HOST_WIDE_INT alignment)
5360 {
5361 struct dw_loc_descr_struct *head;
5362 unsigned int dwarf_fp
5363 = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM);
5364
5365 /* When CFA is defined as FP+OFFSET, emulate stack alignment. */
5366 if (cfa.reg == HARD_FRAME_POINTER_REGNUM && cfa.indirect == 0)
5367 {
5368 head = new_reg_loc_descr (dwarf_fp, 0);
5369 add_loc_descr (&head, int_loc_descriptor (alignment));
5370 add_loc_descr (&head, new_loc_descr (DW_OP_and, 0, 0));
5371 loc_descr_plus_const (&head, offset);
5372 }
5373 else
5374 head = new_reg_loc_descr (dwarf_fp, offset);
5375 return head;
5376 }
5377
5378 /* This function fills in aa dw_cfa_location structure from a dwarf location
5379 descriptor sequence. */
5380
5381 static void
5382 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
5383 {
5384 struct dw_loc_descr_struct *ptr;
5385 cfa->offset = 0;
5386 cfa->base_offset = 0;
5387 cfa->indirect = 0;
5388 cfa->reg = -1;
5389
5390 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
5391 {
5392 enum dwarf_location_atom op = ptr->dw_loc_opc;
5393
5394 switch (op)
5395 {
5396 case DW_OP_reg0:
5397 case DW_OP_reg1:
5398 case DW_OP_reg2:
5399 case DW_OP_reg3:
5400 case DW_OP_reg4:
5401 case DW_OP_reg5:
5402 case DW_OP_reg6:
5403 case DW_OP_reg7:
5404 case DW_OP_reg8:
5405 case DW_OP_reg9:
5406 case DW_OP_reg10:
5407 case DW_OP_reg11:
5408 case DW_OP_reg12:
5409 case DW_OP_reg13:
5410 case DW_OP_reg14:
5411 case DW_OP_reg15:
5412 case DW_OP_reg16:
5413 case DW_OP_reg17:
5414 case DW_OP_reg18:
5415 case DW_OP_reg19:
5416 case DW_OP_reg20:
5417 case DW_OP_reg21:
5418 case DW_OP_reg22:
5419 case DW_OP_reg23:
5420 case DW_OP_reg24:
5421 case DW_OP_reg25:
5422 case DW_OP_reg26:
5423 case DW_OP_reg27:
5424 case DW_OP_reg28:
5425 case DW_OP_reg29:
5426 case DW_OP_reg30:
5427 case DW_OP_reg31:
5428 cfa->reg = op - DW_OP_reg0;
5429 break;
5430 case DW_OP_regx:
5431 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
5432 break;
5433 case DW_OP_breg0:
5434 case DW_OP_breg1:
5435 case DW_OP_breg2:
5436 case DW_OP_breg3:
5437 case DW_OP_breg4:
5438 case DW_OP_breg5:
5439 case DW_OP_breg6:
5440 case DW_OP_breg7:
5441 case DW_OP_breg8:
5442 case DW_OP_breg9:
5443 case DW_OP_breg10:
5444 case DW_OP_breg11:
5445 case DW_OP_breg12:
5446 case DW_OP_breg13:
5447 case DW_OP_breg14:
5448 case DW_OP_breg15:
5449 case DW_OP_breg16:
5450 case DW_OP_breg17:
5451 case DW_OP_breg18:
5452 case DW_OP_breg19:
5453 case DW_OP_breg20:
5454 case DW_OP_breg21:
5455 case DW_OP_breg22:
5456 case DW_OP_breg23:
5457 case DW_OP_breg24:
5458 case DW_OP_breg25:
5459 case DW_OP_breg26:
5460 case DW_OP_breg27:
5461 case DW_OP_breg28:
5462 case DW_OP_breg29:
5463 case DW_OP_breg30:
5464 case DW_OP_breg31:
5465 cfa->reg = op - DW_OP_breg0;
5466 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
5467 break;
5468 case DW_OP_bregx:
5469 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
5470 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
5471 break;
5472 case DW_OP_deref:
5473 cfa->indirect = 1;
5474 break;
5475 case DW_OP_plus_uconst:
5476 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
5477 break;
5478 default:
5479 internal_error ("DW_LOC_OP %s not implemented",
5480 dwarf_stack_op_name (ptr->dw_loc_opc));
5481 }
5482 }
5483 }
5484 #endif /* .debug_frame support */
5485 \f
5486 /* And now, the support for symbolic debugging information. */
5487 #ifdef DWARF2_DEBUGGING_INFO
5488
5489 /* .debug_str support. */
5490 static int output_indirect_string (void **, void *);
5491
5492 static void dwarf2out_init (const char *);
5493 static void dwarf2out_finish (const char *);
5494 static void dwarf2out_assembly_start (void);
5495 static void dwarf2out_define (unsigned int, const char *);
5496 static void dwarf2out_undef (unsigned int, const char *);
5497 static void dwarf2out_start_source_file (unsigned, const char *);
5498 static void dwarf2out_end_source_file (unsigned);
5499 static void dwarf2out_function_decl (tree);
5500 static void dwarf2out_begin_block (unsigned, unsigned);
5501 static void dwarf2out_end_block (unsigned, unsigned);
5502 static bool dwarf2out_ignore_block (const_tree);
5503 static void dwarf2out_global_decl (tree);
5504 static void dwarf2out_type_decl (tree, int);
5505 static void dwarf2out_imported_module_or_decl (tree, tree, tree, bool);
5506 static void dwarf2out_imported_module_or_decl_1 (tree, tree, tree,
5507 dw_die_ref);
5508 static void dwarf2out_abstract_function (tree);
5509 static void dwarf2out_var_location (rtx);
5510 static void dwarf2out_direct_call (tree);
5511 static void dwarf2out_virtual_call_token (tree, int);
5512 static void dwarf2out_copy_call_info (rtx, rtx);
5513 static void dwarf2out_virtual_call (int);
5514 static void dwarf2out_begin_function (tree);
5515 static void dwarf2out_set_name (tree, tree);
5516
5517 /* The debug hooks structure. */
5518
5519 const struct gcc_debug_hooks dwarf2_debug_hooks =
5520 {
5521 dwarf2out_init,
5522 dwarf2out_finish,
5523 dwarf2out_assembly_start,
5524 dwarf2out_define,
5525 dwarf2out_undef,
5526 dwarf2out_start_source_file,
5527 dwarf2out_end_source_file,
5528 dwarf2out_begin_block,
5529 dwarf2out_end_block,
5530 dwarf2out_ignore_block,
5531 dwarf2out_source_line,
5532 dwarf2out_begin_prologue,
5533 #if VMS_DEBUGGING_INFO
5534 dwarf2out_vms_end_prologue,
5535 dwarf2out_vms_begin_epilogue,
5536 #else
5537 debug_nothing_int_charstar,
5538 debug_nothing_int_charstar,
5539 #endif
5540 dwarf2out_end_epilogue,
5541 dwarf2out_begin_function,
5542 debug_nothing_int, /* end_function */
5543 dwarf2out_function_decl, /* function_decl */
5544 dwarf2out_global_decl,
5545 dwarf2out_type_decl, /* type_decl */
5546 dwarf2out_imported_module_or_decl,
5547 debug_nothing_tree, /* deferred_inline_function */
5548 /* The DWARF 2 backend tries to reduce debugging bloat by not
5549 emitting the abstract description of inline functions until
5550 something tries to reference them. */
5551 dwarf2out_abstract_function, /* outlining_inline_function */
5552 debug_nothing_rtx, /* label */
5553 debug_nothing_int, /* handle_pch */
5554 dwarf2out_var_location,
5555 dwarf2out_switch_text_section,
5556 dwarf2out_direct_call,
5557 dwarf2out_virtual_call_token,
5558 dwarf2out_copy_call_info,
5559 dwarf2out_virtual_call,
5560 dwarf2out_set_name,
5561 1 /* start_end_main_source_file */
5562 };
5563 #endif
5564 \f
5565 /* NOTE: In the comments in this file, many references are made to
5566 "Debugging Information Entries". This term is abbreviated as `DIE'
5567 throughout the remainder of this file. */
5568
5569 /* An internal representation of the DWARF output is built, and then
5570 walked to generate the DWARF debugging info. The walk of the internal
5571 representation is done after the entire program has been compiled.
5572 The types below are used to describe the internal representation. */
5573
5574 /* Various DIE's use offsets relative to the beginning of the
5575 .debug_info section to refer to each other. */
5576
5577 typedef long int dw_offset;
5578
5579 /* Define typedefs here to avoid circular dependencies. */
5580
5581 typedef struct dw_attr_struct *dw_attr_ref;
5582 typedef struct dw_line_info_struct *dw_line_info_ref;
5583 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
5584 typedef struct pubname_struct *pubname_ref;
5585 typedef struct dw_ranges_struct *dw_ranges_ref;
5586 typedef struct dw_ranges_by_label_struct *dw_ranges_by_label_ref;
5587 typedef struct comdat_type_struct *comdat_type_node_ref;
5588
5589 /* Each entry in the line_info_table maintains the file and
5590 line number associated with the label generated for that
5591 entry. The label gives the PC value associated with
5592 the line number entry. */
5593
5594 typedef struct GTY(()) dw_line_info_struct {
5595 unsigned long dw_file_num;
5596 unsigned long dw_line_num;
5597 }
5598 dw_line_info_entry;
5599
5600 /* Line information for functions in separate sections; each one gets its
5601 own sequence. */
5602 typedef struct GTY(()) dw_separate_line_info_struct {
5603 unsigned long dw_file_num;
5604 unsigned long dw_line_num;
5605 unsigned long function;
5606 }
5607 dw_separate_line_info_entry;
5608
5609 /* Each DIE attribute has a field specifying the attribute kind,
5610 a link to the next attribute in the chain, and an attribute value.
5611 Attributes are typically linked below the DIE they modify. */
5612
5613 typedef struct GTY(()) dw_attr_struct {
5614 enum dwarf_attribute dw_attr;
5615 dw_val_node dw_attr_val;
5616 }
5617 dw_attr_node;
5618
5619 DEF_VEC_O(dw_attr_node);
5620 DEF_VEC_ALLOC_O(dw_attr_node,gc);
5621
5622 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
5623 The children of each node form a circular list linked by
5624 die_sib. die_child points to the node *before* the "first" child node. */
5625
5626 typedef struct GTY((chain_circular ("%h.die_sib"))) die_struct {
5627 enum dwarf_tag die_tag;
5628 union die_symbol_or_type_node
5629 {
5630 char * GTY ((tag ("0"))) die_symbol;
5631 comdat_type_node_ref GTY ((tag ("1"))) die_type_node;
5632 }
5633 GTY ((desc ("dwarf_version >= 4"))) die_id;
5634 VEC(dw_attr_node,gc) * die_attr;
5635 dw_die_ref die_parent;
5636 dw_die_ref die_child;
5637 dw_die_ref die_sib;
5638 dw_die_ref die_definition; /* ref from a specification to its definition */
5639 dw_offset die_offset;
5640 unsigned long die_abbrev;
5641 int die_mark;
5642 /* Die is used and must not be pruned as unused. */
5643 int die_perennial_p;
5644 unsigned int decl_id;
5645 }
5646 die_node;
5647
5648 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
5649 #define FOR_EACH_CHILD(die, c, expr) do { \
5650 c = die->die_child; \
5651 if (c) do { \
5652 c = c->die_sib; \
5653 expr; \
5654 } while (c != die->die_child); \
5655 } while (0)
5656
5657 /* The pubname structure */
5658
5659 typedef struct GTY(()) pubname_struct {
5660 dw_die_ref die;
5661 const char *name;
5662 }
5663 pubname_entry;
5664
5665 DEF_VEC_O(pubname_entry);
5666 DEF_VEC_ALLOC_O(pubname_entry, gc);
5667
5668 struct GTY(()) dw_ranges_struct {
5669 /* If this is positive, it's a block number, otherwise it's a
5670 bitwise-negated index into dw_ranges_by_label. */
5671 int num;
5672 };
5673
5674 struct GTY(()) dw_ranges_by_label_struct {
5675 const char *begin;
5676 const char *end;
5677 };
5678
5679 /* The comdat type node structure. */
5680 typedef struct GTY(()) comdat_type_struct
5681 {
5682 dw_die_ref root_die;
5683 dw_die_ref type_die;
5684 char signature[DWARF_TYPE_SIGNATURE_SIZE];
5685 struct comdat_type_struct *next;
5686 }
5687 comdat_type_node;
5688
5689 /* The limbo die list structure. */
5690 typedef struct GTY(()) limbo_die_struct {
5691 dw_die_ref die;
5692 tree created_for;
5693 struct limbo_die_struct *next;
5694 }
5695 limbo_die_node;
5696
5697 typedef struct GTY(()) skeleton_chain_struct
5698 {
5699 dw_die_ref old_die;
5700 dw_die_ref new_die;
5701 struct skeleton_chain_struct *parent;
5702 }
5703 skeleton_chain_node;
5704
5705 /* How to start an assembler comment. */
5706 #ifndef ASM_COMMENT_START
5707 #define ASM_COMMENT_START ";#"
5708 #endif
5709
5710 /* Define a macro which returns nonzero for a TYPE_DECL which was
5711 implicitly generated for a tagged type.
5712
5713 Note that unlike the gcc front end (which generates a NULL named
5714 TYPE_DECL node for each complete tagged type, each array type, and
5715 each function type node created) the g++ front end generates a
5716 _named_ TYPE_DECL node for each tagged type node created.
5717 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
5718 generate a DW_TAG_typedef DIE for them. */
5719
5720 #define TYPE_DECL_IS_STUB(decl) \
5721 (DECL_NAME (decl) == NULL_TREE \
5722 || (DECL_ARTIFICIAL (decl) \
5723 && is_tagged_type (TREE_TYPE (decl)) \
5724 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
5725 /* This is necessary for stub decls that \
5726 appear in nested inline functions. */ \
5727 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
5728 && (decl_ultimate_origin (decl) \
5729 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
5730
5731 /* Information concerning the compilation unit's programming
5732 language, and compiler version. */
5733
5734 /* Fixed size portion of the DWARF compilation unit header. */
5735 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
5736 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
5737
5738 /* Fixed size portion of the DWARF comdat type unit header. */
5739 #define DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE \
5740 (DWARF_COMPILE_UNIT_HEADER_SIZE + DWARF_TYPE_SIGNATURE_SIZE \
5741 + DWARF_OFFSET_SIZE)
5742
5743 /* Fixed size portion of public names info. */
5744 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
5745
5746 /* Fixed size portion of the address range info. */
5747 #define DWARF_ARANGES_HEADER_SIZE \
5748 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
5749 DWARF2_ADDR_SIZE * 2) \
5750 - DWARF_INITIAL_LENGTH_SIZE)
5751
5752 /* Size of padding portion in the address range info. It must be
5753 aligned to twice the pointer size. */
5754 #define DWARF_ARANGES_PAD_SIZE \
5755 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
5756 DWARF2_ADDR_SIZE * 2) \
5757 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
5758
5759 /* Use assembler line directives if available. */
5760 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
5761 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
5762 #define DWARF2_ASM_LINE_DEBUG_INFO 1
5763 #else
5764 #define DWARF2_ASM_LINE_DEBUG_INFO 0
5765 #endif
5766 #endif
5767
5768 /* Minimum line offset in a special line info. opcode.
5769 This value was chosen to give a reasonable range of values. */
5770 #define DWARF_LINE_BASE -10
5771
5772 /* First special line opcode - leave room for the standard opcodes. */
5773 #define DWARF_LINE_OPCODE_BASE 10
5774
5775 /* Range of line offsets in a special line info. opcode. */
5776 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
5777
5778 /* Flag that indicates the initial value of the is_stmt_start flag.
5779 In the present implementation, we do not mark any lines as
5780 the beginning of a source statement, because that information
5781 is not made available by the GCC front-end. */
5782 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
5783
5784 /* Maximum number of operations per instruction bundle. */
5785 #ifndef DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN
5786 #define DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN 1
5787 #endif
5788
5789 #ifdef DWARF2_DEBUGGING_INFO
5790 /* This location is used by calc_die_sizes() to keep track
5791 the offset of each DIE within the .debug_info section. */
5792 static unsigned long next_die_offset;
5793 #endif
5794
5795 /* Record the root of the DIE's built for the current compilation unit. */
5796 static GTY(()) dw_die_ref comp_unit_die;
5797
5798 /* A list of type DIEs that have been separated into comdat sections. */
5799 static GTY(()) comdat_type_node *comdat_type_list;
5800
5801 /* A list of DIEs with a NULL parent waiting to be relocated. */
5802 static GTY(()) limbo_die_node *limbo_die_list;
5803
5804 /* A list of DIEs for which we may have to generate
5805 DW_AT_{,MIPS_}linkage_name once their DECL_ASSEMBLER_NAMEs are set. */
5806 static GTY(()) limbo_die_node *deferred_asm_name;
5807
5808 /* Filenames referenced by this compilation unit. */
5809 static GTY((param_is (struct dwarf_file_data))) htab_t file_table;
5810
5811 /* A hash table of references to DIE's that describe declarations.
5812 The key is a DECL_UID() which is a unique number identifying each decl. */
5813 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
5814
5815 /* A hash table of references to DIE's that describe COMMON blocks.
5816 The key is DECL_UID() ^ die_parent. */
5817 static GTY ((param_is (struct die_struct))) htab_t common_block_die_table;
5818
5819 typedef struct GTY(()) die_arg_entry_struct {
5820 dw_die_ref die;
5821 tree arg;
5822 } die_arg_entry;
5823
5824 DEF_VEC_O(die_arg_entry);
5825 DEF_VEC_ALLOC_O(die_arg_entry,gc);
5826
5827 /* Node of the variable location list. */
5828 struct GTY ((chain_next ("%h.next"))) var_loc_node {
5829 /* Either NOTE_INSN_VAR_LOCATION, or, for SRA optimized variables,
5830 EXPR_LIST chain. For small bitsizes, bitsize is encoded
5831 in mode of the EXPR_LIST node and first EXPR_LIST operand
5832 is either NOTE_INSN_VAR_LOCATION for a piece with a known
5833 location or NULL for padding. For larger bitsizes,
5834 mode is 0 and first operand is a CONCAT with bitsize
5835 as first CONCAT operand and NOTE_INSN_VAR_LOCATION resp.
5836 NULL as second operand. */
5837 rtx GTY (()) loc;
5838 const char * GTY (()) label;
5839 struct var_loc_node * GTY (()) next;
5840 };
5841
5842 /* Variable location list. */
5843 struct GTY (()) var_loc_list_def {
5844 struct var_loc_node * GTY (()) first;
5845
5846 /* Pointer to the last but one or last element of the
5847 chained list. If the list is empty, both first and
5848 last are NULL, if the list contains just one node
5849 or the last node certainly is not redundant, it points
5850 to the last node, otherwise points to the last but one.
5851 Do not mark it for GC because it is marked through the chain. */
5852 struct var_loc_node * GTY ((skip ("%h"))) last;
5853
5854 /* DECL_UID of the variable decl. */
5855 unsigned int decl_id;
5856 };
5857 typedef struct var_loc_list_def var_loc_list;
5858
5859
5860 /* Table of decl location linked lists. */
5861 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
5862
5863 /* A pointer to the base of a list of references to DIE's that
5864 are uniquely identified by their tag, presence/absence of
5865 children DIE's, and list of attribute/value pairs. */
5866 static GTY((length ("abbrev_die_table_allocated")))
5867 dw_die_ref *abbrev_die_table;
5868
5869 /* Number of elements currently allocated for abbrev_die_table. */
5870 static GTY(()) unsigned abbrev_die_table_allocated;
5871
5872 /* Number of elements in type_die_table currently in use. */
5873 static GTY(()) unsigned abbrev_die_table_in_use;
5874
5875 /* Size (in elements) of increments by which we may expand the
5876 abbrev_die_table. */
5877 #define ABBREV_DIE_TABLE_INCREMENT 256
5878
5879 /* A pointer to the base of a table that contains line information
5880 for each source code line in .text in the compilation unit. */
5881 static GTY((length ("line_info_table_allocated")))
5882 dw_line_info_ref line_info_table;
5883
5884 /* Number of elements currently allocated for line_info_table. */
5885 static GTY(()) unsigned line_info_table_allocated;
5886
5887 /* Number of elements in line_info_table currently in use. */
5888 static GTY(()) unsigned line_info_table_in_use;
5889
5890 /* A pointer to the base of a table that contains line information
5891 for each source code line outside of .text in the compilation unit. */
5892 static GTY ((length ("separate_line_info_table_allocated")))
5893 dw_separate_line_info_ref separate_line_info_table;
5894
5895 /* Number of elements currently allocated for separate_line_info_table. */
5896 static GTY(()) unsigned separate_line_info_table_allocated;
5897
5898 /* Number of elements in separate_line_info_table currently in use. */
5899 static GTY(()) unsigned separate_line_info_table_in_use;
5900
5901 /* Size (in elements) of increments by which we may expand the
5902 line_info_table. */
5903 #define LINE_INFO_TABLE_INCREMENT 1024
5904
5905 /* A pointer to the base of a table that contains a list of publicly
5906 accessible names. */
5907 static GTY (()) VEC (pubname_entry, gc) * pubname_table;
5908
5909 /* A pointer to the base of a table that contains a list of publicly
5910 accessible types. */
5911 static GTY (()) VEC (pubname_entry, gc) * pubtype_table;
5912
5913 /* Array of dies for which we should generate .debug_arange info. */
5914 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
5915
5916 /* Number of elements currently allocated for arange_table. */
5917 static GTY(()) unsigned arange_table_allocated;
5918
5919 /* Number of elements in arange_table currently in use. */
5920 static GTY(()) unsigned arange_table_in_use;
5921
5922 /* Size (in elements) of increments by which we may expand the
5923 arange_table. */
5924 #define ARANGE_TABLE_INCREMENT 64
5925
5926 /* Array of dies for which we should generate .debug_ranges info. */
5927 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
5928
5929 /* Number of elements currently allocated for ranges_table. */
5930 static GTY(()) unsigned ranges_table_allocated;
5931
5932 /* Number of elements in ranges_table currently in use. */
5933 static GTY(()) unsigned ranges_table_in_use;
5934
5935 /* Array of pairs of labels referenced in ranges_table. */
5936 static GTY ((length ("ranges_by_label_allocated")))
5937 dw_ranges_by_label_ref ranges_by_label;
5938
5939 /* Number of elements currently allocated for ranges_by_label. */
5940 static GTY(()) unsigned ranges_by_label_allocated;
5941
5942 /* Number of elements in ranges_by_label currently in use. */
5943 static GTY(()) unsigned ranges_by_label_in_use;
5944
5945 /* Size (in elements) of increments by which we may expand the
5946 ranges_table. */
5947 #define RANGES_TABLE_INCREMENT 64
5948
5949 /* Whether we have location lists that need outputting */
5950 static GTY(()) bool have_location_lists;
5951
5952 /* Unique label counter. */
5953 static GTY(()) unsigned int loclabel_num;
5954
5955 /* Unique label counter for point-of-call tables. */
5956 static GTY(()) unsigned int poc_label_num;
5957
5958 /* The direct call table structure. */
5959
5960 typedef struct GTY(()) dcall_struct {
5961 unsigned int poc_label_num;
5962 tree poc_decl;
5963 dw_die_ref targ_die;
5964 }
5965 dcall_entry;
5966
5967 DEF_VEC_O(dcall_entry);
5968 DEF_VEC_ALLOC_O(dcall_entry, gc);
5969
5970 /* The virtual call table structure. */
5971
5972 typedef struct GTY(()) vcall_struct {
5973 unsigned int poc_label_num;
5974 unsigned int vtable_slot;
5975 }
5976 vcall_entry;
5977
5978 DEF_VEC_O(vcall_entry);
5979 DEF_VEC_ALLOC_O(vcall_entry, gc);
5980
5981 /* Pointers to the direct and virtual call tables. */
5982 static GTY (()) VEC (dcall_entry, gc) * dcall_table = NULL;
5983 static GTY (()) VEC (vcall_entry, gc) * vcall_table = NULL;
5984
5985 /* A hash table to map INSN_UIDs to vtable slot indexes. */
5986
5987 struct GTY (()) vcall_insn {
5988 int insn_uid;
5989 unsigned int vtable_slot;
5990 };
5991
5992 static GTY ((param_is (struct vcall_insn))) htab_t vcall_insn_table;
5993
5994 #ifdef DWARF2_DEBUGGING_INFO
5995 /* Record whether the function being analyzed contains inlined functions. */
5996 static int current_function_has_inlines;
5997 #endif
5998 #if 0 && defined (MIPS_DEBUGGING_INFO)
5999 static int comp_unit_has_inlines;
6000 #endif
6001
6002 /* The last file entry emitted by maybe_emit_file(). */
6003 static GTY(()) struct dwarf_file_data * last_emitted_file;
6004
6005 /* Number of internal labels generated by gen_internal_sym(). */
6006 static GTY(()) int label_num;
6007
6008 /* Cached result of previous call to lookup_filename. */
6009 static GTY(()) struct dwarf_file_data * file_table_last_lookup;
6010
6011 static GTY(()) VEC(die_arg_entry,gc) *tmpl_value_parm_die_table;
6012
6013 #ifdef DWARF2_DEBUGGING_INFO
6014
6015 /* Offset from the "steady-state frame pointer" to the frame base,
6016 within the current function. */
6017 static HOST_WIDE_INT frame_pointer_fb_offset;
6018
6019 /* Forward declarations for functions defined in this file. */
6020
6021 static int is_pseudo_reg (const_rtx);
6022 static tree type_main_variant (tree);
6023 static int is_tagged_type (const_tree);
6024 static const char *dwarf_tag_name (unsigned);
6025 static const char *dwarf_attr_name (unsigned);
6026 static const char *dwarf_form_name (unsigned);
6027 static tree decl_ultimate_origin (const_tree);
6028 static tree decl_class_context (tree);
6029 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
6030 static inline enum dw_val_class AT_class (dw_attr_ref);
6031 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
6032 static inline unsigned AT_flag (dw_attr_ref);
6033 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
6034 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
6035 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
6036 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
6037 static void add_AT_double (dw_die_ref, enum dwarf_attribute,
6038 HOST_WIDE_INT, unsigned HOST_WIDE_INT);
6039 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
6040 unsigned int, unsigned char *);
6041 static void add_AT_data8 (dw_die_ref, enum dwarf_attribute, unsigned char *);
6042 static hashval_t debug_str_do_hash (const void *);
6043 static int debug_str_eq (const void *, const void *);
6044 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
6045 static inline const char *AT_string (dw_attr_ref);
6046 static enum dwarf_form AT_string_form (dw_attr_ref);
6047 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
6048 static void add_AT_specification (dw_die_ref, dw_die_ref);
6049 static inline dw_die_ref AT_ref (dw_attr_ref);
6050 static inline int AT_ref_external (dw_attr_ref);
6051 static inline void set_AT_ref_external (dw_attr_ref, int);
6052 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
6053 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
6054 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
6055 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
6056 dw_loc_list_ref);
6057 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
6058 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
6059 static inline rtx AT_addr (dw_attr_ref);
6060 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
6061 static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
6062 static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
6063 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
6064 unsigned HOST_WIDE_INT);
6065 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
6066 unsigned long);
6067 static inline const char *AT_lbl (dw_attr_ref);
6068 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
6069 static const char *get_AT_low_pc (dw_die_ref);
6070 static const char *get_AT_hi_pc (dw_die_ref);
6071 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
6072 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
6073 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
6074 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
6075 static bool is_cxx (void);
6076 static bool is_fortran (void);
6077 static bool is_ada (void);
6078 static void remove_AT (dw_die_ref, enum dwarf_attribute);
6079 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
6080 static void add_child_die (dw_die_ref, dw_die_ref);
6081 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
6082 static dw_die_ref lookup_type_die (tree);
6083 static void equate_type_number_to_die (tree, dw_die_ref);
6084 static hashval_t decl_die_table_hash (const void *);
6085 static int decl_die_table_eq (const void *, const void *);
6086 static dw_die_ref lookup_decl_die (tree);
6087 static hashval_t common_block_die_table_hash (const void *);
6088 static int common_block_die_table_eq (const void *, const void *);
6089 static hashval_t decl_loc_table_hash (const void *);
6090 static int decl_loc_table_eq (const void *, const void *);
6091 static var_loc_list *lookup_decl_loc (const_tree);
6092 static void equate_decl_number_to_die (tree, dw_die_ref);
6093 static struct var_loc_node *add_var_loc_to_decl (tree, rtx, const char *);
6094 static void print_spaces (FILE *);
6095 static void print_die (dw_die_ref, FILE *);
6096 static void print_dwarf_line_table (FILE *);
6097 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
6098 static dw_die_ref pop_compile_unit (dw_die_ref);
6099 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
6100 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
6101 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
6102 static void checksum_sleb128 (HOST_WIDE_INT, struct md5_ctx *);
6103 static void checksum_uleb128 (unsigned HOST_WIDE_INT, struct md5_ctx *);
6104 static void loc_checksum_ordered (dw_loc_descr_ref, struct md5_ctx *);
6105 static void attr_checksum_ordered (enum dwarf_tag, dw_attr_ref,
6106 struct md5_ctx *, int *);
6107 struct checksum_attributes;
6108 static void collect_checksum_attributes (struct checksum_attributes *, dw_die_ref);
6109 static void die_checksum_ordered (dw_die_ref, struct md5_ctx *, int *);
6110 static void checksum_die_context (dw_die_ref, struct md5_ctx *);
6111 static void generate_type_signature (dw_die_ref, comdat_type_node *);
6112 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
6113 static int same_dw_val_p (const dw_val_node *, const dw_val_node *, int *);
6114 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
6115 static int same_die_p (dw_die_ref, dw_die_ref, int *);
6116 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
6117 static void compute_section_prefix (dw_die_ref);
6118 static int is_type_die (dw_die_ref);
6119 static int is_comdat_die (dw_die_ref);
6120 static int is_symbol_die (dw_die_ref);
6121 static void assign_symbol_names (dw_die_ref);
6122 static void break_out_includes (dw_die_ref);
6123 static int is_declaration_die (dw_die_ref);
6124 static int should_move_die_to_comdat (dw_die_ref);
6125 static dw_die_ref clone_as_declaration (dw_die_ref);
6126 static dw_die_ref clone_die (dw_die_ref);
6127 static dw_die_ref clone_tree (dw_die_ref);
6128 static void copy_declaration_context (dw_die_ref, dw_die_ref);
6129 static void generate_skeleton_ancestor_tree (skeleton_chain_node *);
6130 static void generate_skeleton_bottom_up (skeleton_chain_node *);
6131 static dw_die_ref generate_skeleton (dw_die_ref);
6132 static dw_die_ref remove_child_or_replace_with_skeleton (dw_die_ref,
6133 dw_die_ref);
6134 static void break_out_comdat_types (dw_die_ref);
6135 static dw_die_ref copy_ancestor_tree (dw_die_ref, dw_die_ref, htab_t);
6136 static void copy_decls_walk (dw_die_ref, dw_die_ref, htab_t);
6137 static void copy_decls_for_unworthy_types (dw_die_ref);
6138
6139 static hashval_t htab_cu_hash (const void *);
6140 static int htab_cu_eq (const void *, const void *);
6141 static void htab_cu_del (void *);
6142 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
6143 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
6144 static void add_sibling_attributes (dw_die_ref);
6145 static void build_abbrev_table (dw_die_ref);
6146 static void output_location_lists (dw_die_ref);
6147 static int constant_size (unsigned HOST_WIDE_INT);
6148 static unsigned long size_of_die (dw_die_ref);
6149 static void calc_die_sizes (dw_die_ref);
6150 static void mark_dies (dw_die_ref);
6151 static void unmark_dies (dw_die_ref);
6152 static void unmark_all_dies (dw_die_ref);
6153 static unsigned long size_of_pubnames (VEC (pubname_entry,gc) *);
6154 static unsigned long size_of_aranges (void);
6155 static enum dwarf_form value_format (dw_attr_ref);
6156 static void output_value_format (dw_attr_ref);
6157 static void output_abbrev_section (void);
6158 static void output_die_symbol (dw_die_ref);
6159 static void output_die (dw_die_ref);
6160 static void output_compilation_unit_header (void);
6161 static void output_comp_unit (dw_die_ref, int);
6162 static void output_comdat_type_unit (comdat_type_node *);
6163 static const char *dwarf2_name (tree, int);
6164 static void add_pubname (tree, dw_die_ref);
6165 static void add_pubname_string (const char *, dw_die_ref);
6166 static void add_pubtype (tree, dw_die_ref);
6167 static void output_pubnames (VEC (pubname_entry,gc) *);
6168 static void add_arange (tree, dw_die_ref);
6169 static void output_aranges (void);
6170 static unsigned int add_ranges_num (int);
6171 static unsigned int add_ranges (const_tree);
6172 static void add_ranges_by_labels (dw_die_ref, const char *, const char *,
6173 bool *);
6174 static void output_ranges (void);
6175 static void output_line_info (void);
6176 static void output_file_names (void);
6177 static dw_die_ref base_type_die (tree);
6178 static int is_base_type (tree);
6179 static dw_die_ref subrange_type_die (tree, tree, tree, dw_die_ref);
6180 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
6181 static dw_die_ref generic_parameter_die (tree, tree, bool, dw_die_ref);
6182 static dw_die_ref template_parameter_pack_die (tree, tree, dw_die_ref);
6183 static int type_is_enum (const_tree);
6184 static unsigned int dbx_reg_number (const_rtx);
6185 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
6186 static dw_loc_descr_ref reg_loc_descriptor (rtx, enum var_init_status);
6187 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int,
6188 enum var_init_status);
6189 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx,
6190 enum var_init_status);
6191 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT,
6192 enum var_init_status);
6193 static int is_based_loc (const_rtx);
6194 static int resolve_one_addr (rtx *, void *);
6195 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode,
6196 enum var_init_status);
6197 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx,
6198 enum var_init_status);
6199 static dw_loc_descr_ref loc_descriptor (rtx, enum machine_mode mode,
6200 enum var_init_status);
6201 static dw_loc_list_ref loc_list_from_tree (tree, int);
6202 static dw_loc_descr_ref loc_descriptor_from_tree (tree, int);
6203 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
6204 static tree field_type (const_tree);
6205 static unsigned int simple_type_align_in_bits (const_tree);
6206 static unsigned int simple_decl_align_in_bits (const_tree);
6207 static unsigned HOST_WIDE_INT simple_type_size_in_bits (const_tree);
6208 static HOST_WIDE_INT field_byte_offset (const_tree);
6209 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
6210 dw_loc_list_ref);
6211 static void add_data_member_location_attribute (dw_die_ref, tree);
6212 static bool add_const_value_attribute (dw_die_ref, rtx);
6213 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
6214 static void insert_double (double_int, unsigned char *);
6215 static void insert_float (const_rtx, unsigned char *);
6216 static rtx rtl_for_decl_location (tree);
6217 static bool add_location_or_const_value_attribute (dw_die_ref, tree,
6218 enum dwarf_attribute);
6219 static bool tree_add_const_value_attribute (dw_die_ref, tree);
6220 static bool tree_add_const_value_attribute_for_decl (dw_die_ref, tree);
6221 static void add_name_attribute (dw_die_ref, const char *);
6222 static void add_comp_dir_attribute (dw_die_ref);
6223 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
6224 static void add_subscript_info (dw_die_ref, tree, bool);
6225 static void add_byte_size_attribute (dw_die_ref, tree);
6226 static void add_bit_offset_attribute (dw_die_ref, tree);
6227 static void add_bit_size_attribute (dw_die_ref, tree);
6228 static void add_prototyped_attribute (dw_die_ref, tree);
6229 static dw_die_ref add_abstract_origin_attribute (dw_die_ref, tree);
6230 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
6231 static void add_src_coords_attributes (dw_die_ref, tree);
6232 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
6233 static void push_decl_scope (tree);
6234 static void pop_decl_scope (void);
6235 static dw_die_ref scope_die_for (tree, dw_die_ref);
6236 static inline int local_scope_p (dw_die_ref);
6237 static inline int class_scope_p (dw_die_ref);
6238 static inline int class_or_namespace_scope_p (dw_die_ref);
6239 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
6240 static void add_calling_convention_attribute (dw_die_ref, tree);
6241 static const char *type_tag (const_tree);
6242 static tree member_declared_type (const_tree);
6243 #if 0
6244 static const char *decl_start_label (tree);
6245 #endif
6246 static void gen_array_type_die (tree, dw_die_ref);
6247 static void gen_descr_array_type_die (tree, struct array_descr_info *, dw_die_ref);
6248 #if 0
6249 static void gen_entry_point_die (tree, dw_die_ref);
6250 #endif
6251 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
6252 static dw_die_ref gen_formal_parameter_die (tree, tree, bool, dw_die_ref);
6253 static dw_die_ref gen_formal_parameter_pack_die (tree, tree, dw_die_ref, tree*);
6254 static void gen_unspecified_parameters_die (tree, dw_die_ref);
6255 static void gen_formal_types_die (tree, dw_die_ref);
6256 static void gen_subprogram_die (tree, dw_die_ref);
6257 static void gen_variable_die (tree, tree, dw_die_ref);
6258 static void gen_const_die (tree, dw_die_ref);
6259 static void gen_label_die (tree, dw_die_ref);
6260 static void gen_lexical_block_die (tree, dw_die_ref, int);
6261 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
6262 static void gen_field_die (tree, dw_die_ref);
6263 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
6264 static dw_die_ref gen_compile_unit_die (const char *);
6265 static void gen_inheritance_die (tree, tree, dw_die_ref);
6266 static void gen_member_die (tree, dw_die_ref);
6267 static void gen_struct_or_union_type_die (tree, dw_die_ref,
6268 enum debug_info_usage);
6269 static void gen_subroutine_type_die (tree, dw_die_ref);
6270 static void gen_typedef_die (tree, dw_die_ref);
6271 static void gen_type_die (tree, dw_die_ref);
6272 static void gen_block_die (tree, dw_die_ref, int);
6273 static void decls_for_scope (tree, dw_die_ref, int);
6274 static int is_redundant_typedef (const_tree);
6275 static bool is_naming_typedef_decl (const_tree);
6276 static inline dw_die_ref get_context_die (tree);
6277 static void gen_namespace_die (tree, dw_die_ref);
6278 static void gen_decl_die (tree, tree, dw_die_ref);
6279 static dw_die_ref force_decl_die (tree);
6280 static dw_die_ref force_type_die (tree);
6281 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
6282 static dw_die_ref declare_in_namespace (tree, dw_die_ref);
6283 static struct dwarf_file_data * lookup_filename (const char *);
6284 static void retry_incomplete_types (void);
6285 static void gen_type_die_for_member (tree, tree, dw_die_ref);
6286 static void gen_generic_params_dies (tree);
6287 static void gen_tagged_type_die (tree, dw_die_ref, enum debug_info_usage);
6288 static void gen_type_die_with_usage (tree, dw_die_ref, enum debug_info_usage);
6289 static void splice_child_die (dw_die_ref, dw_die_ref);
6290 static int file_info_cmp (const void *, const void *);
6291 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
6292 const char *, const char *);
6293 static void output_loc_list (dw_loc_list_ref);
6294 static char *gen_internal_sym (const char *);
6295
6296 static void prune_unmark_dies (dw_die_ref);
6297 static void prune_unused_types_mark (dw_die_ref, int);
6298 static void prune_unused_types_walk (dw_die_ref);
6299 static void prune_unused_types_walk_attribs (dw_die_ref);
6300 static void prune_unused_types_prune (dw_die_ref);
6301 static void prune_unused_types (void);
6302 static int maybe_emit_file (struct dwarf_file_data *fd);
6303 static inline const char *AT_vms_delta1 (dw_attr_ref);
6304 static inline const char *AT_vms_delta2 (dw_attr_ref);
6305 static inline void add_AT_vms_delta (dw_die_ref, enum dwarf_attribute,
6306 const char *, const char *);
6307 static void append_entry_to_tmpl_value_parm_die_table (dw_die_ref, tree);
6308 static void gen_remaining_tmpl_value_param_die_attribute (void);
6309
6310 /* Section names used to hold DWARF debugging information. */
6311 #ifndef DEBUG_INFO_SECTION
6312 #define DEBUG_INFO_SECTION ".debug_info"
6313 #endif
6314 #ifndef DEBUG_ABBREV_SECTION
6315 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
6316 #endif
6317 #ifndef DEBUG_ARANGES_SECTION
6318 #define DEBUG_ARANGES_SECTION ".debug_aranges"
6319 #endif
6320 #ifndef DEBUG_MACINFO_SECTION
6321 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
6322 #endif
6323 #ifndef DEBUG_LINE_SECTION
6324 #define DEBUG_LINE_SECTION ".debug_line"
6325 #endif
6326 #ifndef DEBUG_LOC_SECTION
6327 #define DEBUG_LOC_SECTION ".debug_loc"
6328 #endif
6329 #ifndef DEBUG_PUBNAMES_SECTION
6330 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
6331 #endif
6332 #ifndef DEBUG_PUBTYPES_SECTION
6333 #define DEBUG_PUBTYPES_SECTION ".debug_pubtypes"
6334 #endif
6335 #ifndef DEBUG_DCALL_SECTION
6336 #define DEBUG_DCALL_SECTION ".debug_dcall"
6337 #endif
6338 #ifndef DEBUG_VCALL_SECTION
6339 #define DEBUG_VCALL_SECTION ".debug_vcall"
6340 #endif
6341 #ifndef DEBUG_STR_SECTION
6342 #define DEBUG_STR_SECTION ".debug_str"
6343 #endif
6344 #ifndef DEBUG_RANGES_SECTION
6345 #define DEBUG_RANGES_SECTION ".debug_ranges"
6346 #endif
6347
6348 /* Standard ELF section names for compiled code and data. */
6349 #ifndef TEXT_SECTION_NAME
6350 #define TEXT_SECTION_NAME ".text"
6351 #endif
6352
6353 /* Section flags for .debug_str section. */
6354 #define DEBUG_STR_SECTION_FLAGS \
6355 (HAVE_GAS_SHF_MERGE && flag_merge_debug_strings \
6356 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
6357 : SECTION_DEBUG)
6358
6359 /* Labels we insert at beginning sections we can reference instead of
6360 the section names themselves. */
6361
6362 #ifndef TEXT_SECTION_LABEL
6363 #define TEXT_SECTION_LABEL "Ltext"
6364 #endif
6365 #ifndef COLD_TEXT_SECTION_LABEL
6366 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
6367 #endif
6368 #ifndef DEBUG_LINE_SECTION_LABEL
6369 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
6370 #endif
6371 #ifndef DEBUG_INFO_SECTION_LABEL
6372 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
6373 #endif
6374 #ifndef DEBUG_ABBREV_SECTION_LABEL
6375 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
6376 #endif
6377 #ifndef DEBUG_LOC_SECTION_LABEL
6378 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
6379 #endif
6380 #ifndef DEBUG_RANGES_SECTION_LABEL
6381 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
6382 #endif
6383 #ifndef DEBUG_MACINFO_SECTION_LABEL
6384 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
6385 #endif
6386
6387 /* Mangled name attribute to use. This used to be a vendor extension
6388 until DWARF 4 standardized it. */
6389 #define AT_linkage_name \
6390 (dwarf_version >= 4 ? DW_AT_linkage_name : DW_AT_MIPS_linkage_name)
6391
6392
6393 /* Definitions of defaults for formats and names of various special
6394 (artificial) labels which may be generated within this file (when the -g
6395 options is used and DWARF2_DEBUGGING_INFO is in effect.
6396 If necessary, these may be overridden from within the tm.h file, but
6397 typically, overriding these defaults is unnecessary. */
6398
6399 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
6400 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
6401 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
6402 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
6403 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
6404 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
6405 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
6406 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
6407 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
6408 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
6409
6410 #ifndef TEXT_END_LABEL
6411 #define TEXT_END_LABEL "Letext"
6412 #endif
6413 #ifndef COLD_END_LABEL
6414 #define COLD_END_LABEL "Letext_cold"
6415 #endif
6416 #ifndef BLOCK_BEGIN_LABEL
6417 #define BLOCK_BEGIN_LABEL "LBB"
6418 #endif
6419 #ifndef BLOCK_END_LABEL
6420 #define BLOCK_END_LABEL "LBE"
6421 #endif
6422 #ifndef LINE_CODE_LABEL
6423 #define LINE_CODE_LABEL "LM"
6424 #endif
6425 #ifndef SEPARATE_LINE_CODE_LABEL
6426 #define SEPARATE_LINE_CODE_LABEL "LSM"
6427 #endif
6428
6429 \f
6430 /* We allow a language front-end to designate a function that is to be
6431 called to "demangle" any name before it is put into a DIE. */
6432
6433 static const char *(*demangle_name_func) (const char *);
6434
6435 void
6436 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
6437 {
6438 demangle_name_func = func;
6439 }
6440
6441 /* Test if rtl node points to a pseudo register. */
6442
6443 static inline int
6444 is_pseudo_reg (const_rtx rtl)
6445 {
6446 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
6447 || (GET_CODE (rtl) == SUBREG
6448 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
6449 }
6450
6451 /* Return a reference to a type, with its const and volatile qualifiers
6452 removed. */
6453
6454 static inline tree
6455 type_main_variant (tree type)
6456 {
6457 type = TYPE_MAIN_VARIANT (type);
6458
6459 /* ??? There really should be only one main variant among any group of
6460 variants of a given type (and all of the MAIN_VARIANT values for all
6461 members of the group should point to that one type) but sometimes the C
6462 front-end messes this up for array types, so we work around that bug
6463 here. */
6464 if (TREE_CODE (type) == ARRAY_TYPE)
6465 while (type != TYPE_MAIN_VARIANT (type))
6466 type = TYPE_MAIN_VARIANT (type);
6467
6468 return type;
6469 }
6470
6471 /* Return nonzero if the given type node represents a tagged type. */
6472
6473 static inline int
6474 is_tagged_type (const_tree type)
6475 {
6476 enum tree_code code = TREE_CODE (type);
6477
6478 return (code == RECORD_TYPE || code == UNION_TYPE
6479 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
6480 }
6481
6482 /* Convert a DIE tag into its string name. */
6483
6484 static const char *
6485 dwarf_tag_name (unsigned int tag)
6486 {
6487 switch (tag)
6488 {
6489 case DW_TAG_padding:
6490 return "DW_TAG_padding";
6491 case DW_TAG_array_type:
6492 return "DW_TAG_array_type";
6493 case DW_TAG_class_type:
6494 return "DW_TAG_class_type";
6495 case DW_TAG_entry_point:
6496 return "DW_TAG_entry_point";
6497 case DW_TAG_enumeration_type:
6498 return "DW_TAG_enumeration_type";
6499 case DW_TAG_formal_parameter:
6500 return "DW_TAG_formal_parameter";
6501 case DW_TAG_imported_declaration:
6502 return "DW_TAG_imported_declaration";
6503 case DW_TAG_label:
6504 return "DW_TAG_label";
6505 case DW_TAG_lexical_block:
6506 return "DW_TAG_lexical_block";
6507 case DW_TAG_member:
6508 return "DW_TAG_member";
6509 case DW_TAG_pointer_type:
6510 return "DW_TAG_pointer_type";
6511 case DW_TAG_reference_type:
6512 return "DW_TAG_reference_type";
6513 case DW_TAG_compile_unit:
6514 return "DW_TAG_compile_unit";
6515 case DW_TAG_string_type:
6516 return "DW_TAG_string_type";
6517 case DW_TAG_structure_type:
6518 return "DW_TAG_structure_type";
6519 case DW_TAG_subroutine_type:
6520 return "DW_TAG_subroutine_type";
6521 case DW_TAG_typedef:
6522 return "DW_TAG_typedef";
6523 case DW_TAG_union_type:
6524 return "DW_TAG_union_type";
6525 case DW_TAG_unspecified_parameters:
6526 return "DW_TAG_unspecified_parameters";
6527 case DW_TAG_variant:
6528 return "DW_TAG_variant";
6529 case DW_TAG_common_block:
6530 return "DW_TAG_common_block";
6531 case DW_TAG_common_inclusion:
6532 return "DW_TAG_common_inclusion";
6533 case DW_TAG_inheritance:
6534 return "DW_TAG_inheritance";
6535 case DW_TAG_inlined_subroutine:
6536 return "DW_TAG_inlined_subroutine";
6537 case DW_TAG_module:
6538 return "DW_TAG_module";
6539 case DW_TAG_ptr_to_member_type:
6540 return "DW_TAG_ptr_to_member_type";
6541 case DW_TAG_set_type:
6542 return "DW_TAG_set_type";
6543 case DW_TAG_subrange_type:
6544 return "DW_TAG_subrange_type";
6545 case DW_TAG_with_stmt:
6546 return "DW_TAG_with_stmt";
6547 case DW_TAG_access_declaration:
6548 return "DW_TAG_access_declaration";
6549 case DW_TAG_base_type:
6550 return "DW_TAG_base_type";
6551 case DW_TAG_catch_block:
6552 return "DW_TAG_catch_block";
6553 case DW_TAG_const_type:
6554 return "DW_TAG_const_type";
6555 case DW_TAG_constant:
6556 return "DW_TAG_constant";
6557 case DW_TAG_enumerator:
6558 return "DW_TAG_enumerator";
6559 case DW_TAG_file_type:
6560 return "DW_TAG_file_type";
6561 case DW_TAG_friend:
6562 return "DW_TAG_friend";
6563 case DW_TAG_namelist:
6564 return "DW_TAG_namelist";
6565 case DW_TAG_namelist_item:
6566 return "DW_TAG_namelist_item";
6567 case DW_TAG_packed_type:
6568 return "DW_TAG_packed_type";
6569 case DW_TAG_subprogram:
6570 return "DW_TAG_subprogram";
6571 case DW_TAG_template_type_param:
6572 return "DW_TAG_template_type_param";
6573 case DW_TAG_template_value_param:
6574 return "DW_TAG_template_value_param";
6575 case DW_TAG_thrown_type:
6576 return "DW_TAG_thrown_type";
6577 case DW_TAG_try_block:
6578 return "DW_TAG_try_block";
6579 case DW_TAG_variant_part:
6580 return "DW_TAG_variant_part";
6581 case DW_TAG_variable:
6582 return "DW_TAG_variable";
6583 case DW_TAG_volatile_type:
6584 return "DW_TAG_volatile_type";
6585 case DW_TAG_dwarf_procedure:
6586 return "DW_TAG_dwarf_procedure";
6587 case DW_TAG_restrict_type:
6588 return "DW_TAG_restrict_type";
6589 case DW_TAG_interface_type:
6590 return "DW_TAG_interface_type";
6591 case DW_TAG_namespace:
6592 return "DW_TAG_namespace";
6593 case DW_TAG_imported_module:
6594 return "DW_TAG_imported_module";
6595 case DW_TAG_unspecified_type:
6596 return "DW_TAG_unspecified_type";
6597 case DW_TAG_partial_unit:
6598 return "DW_TAG_partial_unit";
6599 case DW_TAG_imported_unit:
6600 return "DW_TAG_imported_unit";
6601 case DW_TAG_condition:
6602 return "DW_TAG_condition";
6603 case DW_TAG_shared_type:
6604 return "DW_TAG_shared_type";
6605 case DW_TAG_type_unit:
6606 return "DW_TAG_type_unit";
6607 case DW_TAG_rvalue_reference_type:
6608 return "DW_TAG_rvalue_reference_type";
6609 case DW_TAG_template_alias:
6610 return "DW_TAG_template_alias";
6611 case DW_TAG_GNU_template_parameter_pack:
6612 return "DW_TAG_GNU_template_parameter_pack";
6613 case DW_TAG_GNU_formal_parameter_pack:
6614 return "DW_TAG_GNU_formal_parameter_pack";
6615 case DW_TAG_MIPS_loop:
6616 return "DW_TAG_MIPS_loop";
6617 case DW_TAG_format_label:
6618 return "DW_TAG_format_label";
6619 case DW_TAG_function_template:
6620 return "DW_TAG_function_template";
6621 case DW_TAG_class_template:
6622 return "DW_TAG_class_template";
6623 case DW_TAG_GNU_BINCL:
6624 return "DW_TAG_GNU_BINCL";
6625 case DW_TAG_GNU_EINCL:
6626 return "DW_TAG_GNU_EINCL";
6627 case DW_TAG_GNU_template_template_param:
6628 return "DW_TAG_GNU_template_template_param";
6629 default:
6630 return "DW_TAG_<unknown>";
6631 }
6632 }
6633
6634 /* Convert a DWARF attribute code into its string name. */
6635
6636 static const char *
6637 dwarf_attr_name (unsigned int attr)
6638 {
6639 switch (attr)
6640 {
6641 case DW_AT_sibling:
6642 return "DW_AT_sibling";
6643 case DW_AT_location:
6644 return "DW_AT_location";
6645 case DW_AT_name:
6646 return "DW_AT_name";
6647 case DW_AT_ordering:
6648 return "DW_AT_ordering";
6649 case DW_AT_subscr_data:
6650 return "DW_AT_subscr_data";
6651 case DW_AT_byte_size:
6652 return "DW_AT_byte_size";
6653 case DW_AT_bit_offset:
6654 return "DW_AT_bit_offset";
6655 case DW_AT_bit_size:
6656 return "DW_AT_bit_size";
6657 case DW_AT_element_list:
6658 return "DW_AT_element_list";
6659 case DW_AT_stmt_list:
6660 return "DW_AT_stmt_list";
6661 case DW_AT_low_pc:
6662 return "DW_AT_low_pc";
6663 case DW_AT_high_pc:
6664 return "DW_AT_high_pc";
6665 case DW_AT_language:
6666 return "DW_AT_language";
6667 case DW_AT_member:
6668 return "DW_AT_member";
6669 case DW_AT_discr:
6670 return "DW_AT_discr";
6671 case DW_AT_discr_value:
6672 return "DW_AT_discr_value";
6673 case DW_AT_visibility:
6674 return "DW_AT_visibility";
6675 case DW_AT_import:
6676 return "DW_AT_import";
6677 case DW_AT_string_length:
6678 return "DW_AT_string_length";
6679 case DW_AT_common_reference:
6680 return "DW_AT_common_reference";
6681 case DW_AT_comp_dir:
6682 return "DW_AT_comp_dir";
6683 case DW_AT_const_value:
6684 return "DW_AT_const_value";
6685 case DW_AT_containing_type:
6686 return "DW_AT_containing_type";
6687 case DW_AT_default_value:
6688 return "DW_AT_default_value";
6689 case DW_AT_inline:
6690 return "DW_AT_inline";
6691 case DW_AT_is_optional:
6692 return "DW_AT_is_optional";
6693 case DW_AT_lower_bound:
6694 return "DW_AT_lower_bound";
6695 case DW_AT_producer:
6696 return "DW_AT_producer";
6697 case DW_AT_prototyped:
6698 return "DW_AT_prototyped";
6699 case DW_AT_return_addr:
6700 return "DW_AT_return_addr";
6701 case DW_AT_start_scope:
6702 return "DW_AT_start_scope";
6703 case DW_AT_bit_stride:
6704 return "DW_AT_bit_stride";
6705 case DW_AT_upper_bound:
6706 return "DW_AT_upper_bound";
6707 case DW_AT_abstract_origin:
6708 return "DW_AT_abstract_origin";
6709 case DW_AT_accessibility:
6710 return "DW_AT_accessibility";
6711 case DW_AT_address_class:
6712 return "DW_AT_address_class";
6713 case DW_AT_artificial:
6714 return "DW_AT_artificial";
6715 case DW_AT_base_types:
6716 return "DW_AT_base_types";
6717 case DW_AT_calling_convention:
6718 return "DW_AT_calling_convention";
6719 case DW_AT_count:
6720 return "DW_AT_count";
6721 case DW_AT_data_member_location:
6722 return "DW_AT_data_member_location";
6723 case DW_AT_decl_column:
6724 return "DW_AT_decl_column";
6725 case DW_AT_decl_file:
6726 return "DW_AT_decl_file";
6727 case DW_AT_decl_line:
6728 return "DW_AT_decl_line";
6729 case DW_AT_declaration:
6730 return "DW_AT_declaration";
6731 case DW_AT_discr_list:
6732 return "DW_AT_discr_list";
6733 case DW_AT_encoding:
6734 return "DW_AT_encoding";
6735 case DW_AT_external:
6736 return "DW_AT_external";
6737 case DW_AT_explicit:
6738 return "DW_AT_explicit";
6739 case DW_AT_frame_base:
6740 return "DW_AT_frame_base";
6741 case DW_AT_friend:
6742 return "DW_AT_friend";
6743 case DW_AT_identifier_case:
6744 return "DW_AT_identifier_case";
6745 case DW_AT_macro_info:
6746 return "DW_AT_macro_info";
6747 case DW_AT_namelist_items:
6748 return "DW_AT_namelist_items";
6749 case DW_AT_priority:
6750 return "DW_AT_priority";
6751 case DW_AT_segment:
6752 return "DW_AT_segment";
6753 case DW_AT_specification:
6754 return "DW_AT_specification";
6755 case DW_AT_static_link:
6756 return "DW_AT_static_link";
6757 case DW_AT_type:
6758 return "DW_AT_type";
6759 case DW_AT_use_location:
6760 return "DW_AT_use_location";
6761 case DW_AT_variable_parameter:
6762 return "DW_AT_variable_parameter";
6763 case DW_AT_virtuality:
6764 return "DW_AT_virtuality";
6765 case DW_AT_vtable_elem_location:
6766 return "DW_AT_vtable_elem_location";
6767
6768 case DW_AT_allocated:
6769 return "DW_AT_allocated";
6770 case DW_AT_associated:
6771 return "DW_AT_associated";
6772 case DW_AT_data_location:
6773 return "DW_AT_data_location";
6774 case DW_AT_byte_stride:
6775 return "DW_AT_byte_stride";
6776 case DW_AT_entry_pc:
6777 return "DW_AT_entry_pc";
6778 case DW_AT_use_UTF8:
6779 return "DW_AT_use_UTF8";
6780 case DW_AT_extension:
6781 return "DW_AT_extension";
6782 case DW_AT_ranges:
6783 return "DW_AT_ranges";
6784 case DW_AT_trampoline:
6785 return "DW_AT_trampoline";
6786 case DW_AT_call_column:
6787 return "DW_AT_call_column";
6788 case DW_AT_call_file:
6789 return "DW_AT_call_file";
6790 case DW_AT_call_line:
6791 return "DW_AT_call_line";
6792
6793 case DW_AT_signature:
6794 return "DW_AT_signature";
6795 case DW_AT_main_subprogram:
6796 return "DW_AT_main_subprogram";
6797 case DW_AT_data_bit_offset:
6798 return "DW_AT_data_bit_offset";
6799 case DW_AT_const_expr:
6800 return "DW_AT_const_expr";
6801 case DW_AT_enum_class:
6802 return "DW_AT_enum_class";
6803 case DW_AT_linkage_name:
6804 return "DW_AT_linkage_name";
6805
6806 case DW_AT_MIPS_fde:
6807 return "DW_AT_MIPS_fde";
6808 case DW_AT_MIPS_loop_begin:
6809 return "DW_AT_MIPS_loop_begin";
6810 case DW_AT_MIPS_tail_loop_begin:
6811 return "DW_AT_MIPS_tail_loop_begin";
6812 case DW_AT_MIPS_epilog_begin:
6813 return "DW_AT_MIPS_epilog_begin";
6814 #if VMS_DEBUGGING_INFO
6815 case DW_AT_HP_prologue:
6816 return "DW_AT_HP_prologue";
6817 #else
6818 case DW_AT_MIPS_loop_unroll_factor:
6819 return "DW_AT_MIPS_loop_unroll_factor";
6820 #endif
6821 case DW_AT_MIPS_software_pipeline_depth:
6822 return "DW_AT_MIPS_software_pipeline_depth";
6823 case DW_AT_MIPS_linkage_name:
6824 return "DW_AT_MIPS_linkage_name";
6825 #if VMS_DEBUGGING_INFO
6826 case DW_AT_HP_epilogue:
6827 return "DW_AT_HP_epilogue";
6828 #else
6829 case DW_AT_MIPS_stride:
6830 return "DW_AT_MIPS_stride";
6831 #endif
6832 case DW_AT_MIPS_abstract_name:
6833 return "DW_AT_MIPS_abstract_name";
6834 case DW_AT_MIPS_clone_origin:
6835 return "DW_AT_MIPS_clone_origin";
6836 case DW_AT_MIPS_has_inlines:
6837 return "DW_AT_MIPS_has_inlines";
6838
6839 case DW_AT_sf_names:
6840 return "DW_AT_sf_names";
6841 case DW_AT_src_info:
6842 return "DW_AT_src_info";
6843 case DW_AT_mac_info:
6844 return "DW_AT_mac_info";
6845 case DW_AT_src_coords:
6846 return "DW_AT_src_coords";
6847 case DW_AT_body_begin:
6848 return "DW_AT_body_begin";
6849 case DW_AT_body_end:
6850 return "DW_AT_body_end";
6851 case DW_AT_GNU_vector:
6852 return "DW_AT_GNU_vector";
6853 case DW_AT_GNU_guarded_by:
6854 return "DW_AT_GNU_guarded_by";
6855 case DW_AT_GNU_pt_guarded_by:
6856 return "DW_AT_GNU_pt_guarded_by";
6857 case DW_AT_GNU_guarded:
6858 return "DW_AT_GNU_guarded";
6859 case DW_AT_GNU_pt_guarded:
6860 return "DW_AT_GNU_pt_guarded";
6861 case DW_AT_GNU_locks_excluded:
6862 return "DW_AT_GNU_locks_excluded";
6863 case DW_AT_GNU_exclusive_locks_required:
6864 return "DW_AT_GNU_exclusive_locks_required";
6865 case DW_AT_GNU_shared_locks_required:
6866 return "DW_AT_GNU_shared_locks_required";
6867 case DW_AT_GNU_odr_signature:
6868 return "DW_AT_GNU_odr_signature";
6869 case DW_AT_GNU_template_name:
6870 return "DW_AT_GNU_template_name";
6871
6872 case DW_AT_VMS_rtnbeg_pd_address:
6873 return "DW_AT_VMS_rtnbeg_pd_address";
6874
6875 default:
6876 return "DW_AT_<unknown>";
6877 }
6878 }
6879
6880 /* Convert a DWARF value form code into its string name. */
6881
6882 static const char *
6883 dwarf_form_name (unsigned int form)
6884 {
6885 switch (form)
6886 {
6887 case DW_FORM_addr:
6888 return "DW_FORM_addr";
6889 case DW_FORM_block2:
6890 return "DW_FORM_block2";
6891 case DW_FORM_block4:
6892 return "DW_FORM_block4";
6893 case DW_FORM_data2:
6894 return "DW_FORM_data2";
6895 case DW_FORM_data4:
6896 return "DW_FORM_data4";
6897 case DW_FORM_data8:
6898 return "DW_FORM_data8";
6899 case DW_FORM_string:
6900 return "DW_FORM_string";
6901 case DW_FORM_block:
6902 return "DW_FORM_block";
6903 case DW_FORM_block1:
6904 return "DW_FORM_block1";
6905 case DW_FORM_data1:
6906 return "DW_FORM_data1";
6907 case DW_FORM_flag:
6908 return "DW_FORM_flag";
6909 case DW_FORM_sdata:
6910 return "DW_FORM_sdata";
6911 case DW_FORM_strp:
6912 return "DW_FORM_strp";
6913 case DW_FORM_udata:
6914 return "DW_FORM_udata";
6915 case DW_FORM_ref_addr:
6916 return "DW_FORM_ref_addr";
6917 case DW_FORM_ref1:
6918 return "DW_FORM_ref1";
6919 case DW_FORM_ref2:
6920 return "DW_FORM_ref2";
6921 case DW_FORM_ref4:
6922 return "DW_FORM_ref4";
6923 case DW_FORM_ref8:
6924 return "DW_FORM_ref8";
6925 case DW_FORM_ref_udata:
6926 return "DW_FORM_ref_udata";
6927 case DW_FORM_indirect:
6928 return "DW_FORM_indirect";
6929 case DW_FORM_sec_offset:
6930 return "DW_FORM_sec_offset";
6931 case DW_FORM_exprloc:
6932 return "DW_FORM_exprloc";
6933 case DW_FORM_flag_present:
6934 return "DW_FORM_flag_present";
6935 case DW_FORM_ref_sig8:
6936 return "DW_FORM_ref_sig8";
6937 default:
6938 return "DW_FORM_<unknown>";
6939 }
6940 }
6941 \f
6942 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
6943 instance of an inlined instance of a decl which is local to an inline
6944 function, so we have to trace all of the way back through the origin chain
6945 to find out what sort of node actually served as the original seed for the
6946 given block. */
6947
6948 static tree
6949 decl_ultimate_origin (const_tree decl)
6950 {
6951 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
6952 return NULL_TREE;
6953
6954 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
6955 nodes in the function to point to themselves; ignore that if
6956 we're trying to output the abstract instance of this function. */
6957 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
6958 return NULL_TREE;
6959
6960 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
6961 most distant ancestor, this should never happen. */
6962 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
6963
6964 return DECL_ABSTRACT_ORIGIN (decl);
6965 }
6966
6967 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
6968 of a virtual function may refer to a base class, so we check the 'this'
6969 parameter. */
6970
6971 static tree
6972 decl_class_context (tree decl)
6973 {
6974 tree context = NULL_TREE;
6975
6976 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
6977 context = DECL_CONTEXT (decl);
6978 else
6979 context = TYPE_MAIN_VARIANT
6980 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
6981
6982 if (context && !TYPE_P (context))
6983 context = NULL_TREE;
6984
6985 return context;
6986 }
6987 \f
6988 /* Add an attribute/value pair to a DIE. */
6989
6990 static inline void
6991 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
6992 {
6993 /* Maybe this should be an assert? */
6994 if (die == NULL)
6995 return;
6996
6997 if (die->die_attr == NULL)
6998 die->die_attr = VEC_alloc (dw_attr_node, gc, 1);
6999 VEC_safe_push (dw_attr_node, gc, die->die_attr, attr);
7000 }
7001
7002 static inline enum dw_val_class
7003 AT_class (dw_attr_ref a)
7004 {
7005 return a->dw_attr_val.val_class;
7006 }
7007
7008 /* Add a flag value attribute to a DIE. */
7009
7010 static inline void
7011 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
7012 {
7013 dw_attr_node attr;
7014
7015 attr.dw_attr = attr_kind;
7016 attr.dw_attr_val.val_class = dw_val_class_flag;
7017 attr.dw_attr_val.v.val_flag = flag;
7018 add_dwarf_attr (die, &attr);
7019 }
7020
7021 static inline unsigned
7022 AT_flag (dw_attr_ref a)
7023 {
7024 gcc_assert (a && AT_class (a) == dw_val_class_flag);
7025 return a->dw_attr_val.v.val_flag;
7026 }
7027
7028 /* Add a signed integer attribute value to a DIE. */
7029
7030 static inline void
7031 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
7032 {
7033 dw_attr_node attr;
7034
7035 attr.dw_attr = attr_kind;
7036 attr.dw_attr_val.val_class = dw_val_class_const;
7037 attr.dw_attr_val.v.val_int = int_val;
7038 add_dwarf_attr (die, &attr);
7039 }
7040
7041 static inline HOST_WIDE_INT
7042 AT_int (dw_attr_ref a)
7043 {
7044 gcc_assert (a && AT_class (a) == dw_val_class_const);
7045 return a->dw_attr_val.v.val_int;
7046 }
7047
7048 /* Add an unsigned integer attribute value to a DIE. */
7049
7050 static inline void
7051 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
7052 unsigned HOST_WIDE_INT unsigned_val)
7053 {
7054 dw_attr_node attr;
7055
7056 attr.dw_attr = attr_kind;
7057 attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
7058 attr.dw_attr_val.v.val_unsigned = unsigned_val;
7059 add_dwarf_attr (die, &attr);
7060 }
7061
7062 static inline unsigned HOST_WIDE_INT
7063 AT_unsigned (dw_attr_ref a)
7064 {
7065 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
7066 return a->dw_attr_val.v.val_unsigned;
7067 }
7068
7069 /* Add an unsigned double integer attribute value to a DIE. */
7070
7071 static inline void
7072 add_AT_double (dw_die_ref die, enum dwarf_attribute attr_kind,
7073 HOST_WIDE_INT high, unsigned HOST_WIDE_INT low)
7074 {
7075 dw_attr_node attr;
7076
7077 attr.dw_attr = attr_kind;
7078 attr.dw_attr_val.val_class = dw_val_class_const_double;
7079 attr.dw_attr_val.v.val_double.high = high;
7080 attr.dw_attr_val.v.val_double.low = low;
7081 add_dwarf_attr (die, &attr);
7082 }
7083
7084 /* Add a floating point attribute value to a DIE and return it. */
7085
7086 static inline void
7087 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
7088 unsigned int length, unsigned int elt_size, unsigned char *array)
7089 {
7090 dw_attr_node attr;
7091
7092 attr.dw_attr = attr_kind;
7093 attr.dw_attr_val.val_class = dw_val_class_vec;
7094 attr.dw_attr_val.v.val_vec.length = length;
7095 attr.dw_attr_val.v.val_vec.elt_size = elt_size;
7096 attr.dw_attr_val.v.val_vec.array = array;
7097 add_dwarf_attr (die, &attr);
7098 }
7099
7100 /* Add an 8-byte data attribute value to a DIE. */
7101
7102 static inline void
7103 add_AT_data8 (dw_die_ref die, enum dwarf_attribute attr_kind,
7104 unsigned char data8[8])
7105 {
7106 dw_attr_node attr;
7107
7108 attr.dw_attr = attr_kind;
7109 attr.dw_attr_val.val_class = dw_val_class_data8;
7110 memcpy (attr.dw_attr_val.v.val_data8, data8, 8);
7111 add_dwarf_attr (die, &attr);
7112 }
7113
7114 /* Hash and equality functions for debug_str_hash. */
7115
7116 static hashval_t
7117 debug_str_do_hash (const void *x)
7118 {
7119 return htab_hash_string (((const struct indirect_string_node *)x)->str);
7120 }
7121
7122 static int
7123 debug_str_eq (const void *x1, const void *x2)
7124 {
7125 return strcmp ((((const struct indirect_string_node *)x1)->str),
7126 (const char *)x2) == 0;
7127 }
7128
7129 /* Add STR to the indirect string hash table. */
7130
7131 static struct indirect_string_node *
7132 find_AT_string (const char *str)
7133 {
7134 struct indirect_string_node *node;
7135 void **slot;
7136
7137 if (! debug_str_hash)
7138 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
7139 debug_str_eq, NULL);
7140
7141 slot = htab_find_slot_with_hash (debug_str_hash, str,
7142 htab_hash_string (str), INSERT);
7143 if (*slot == NULL)
7144 {
7145 node = ggc_alloc_cleared_indirect_string_node ();
7146 node->str = ggc_strdup (str);
7147 *slot = node;
7148 }
7149 else
7150 node = (struct indirect_string_node *) *slot;
7151
7152 node->refcount++;
7153 return node;
7154 }
7155
7156 /* Add a string attribute value to a DIE. */
7157
7158 static inline void
7159 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
7160 {
7161 dw_attr_node attr;
7162 struct indirect_string_node *node;
7163
7164 node = find_AT_string (str);
7165
7166 attr.dw_attr = attr_kind;
7167 attr.dw_attr_val.val_class = dw_val_class_str;
7168 attr.dw_attr_val.v.val_str = node;
7169 add_dwarf_attr (die, &attr);
7170 }
7171
7172 /* Create a label for an indirect string node, ensuring it is going to
7173 be output, unless its reference count goes down to zero. */
7174
7175 static inline void
7176 gen_label_for_indirect_string (struct indirect_string_node *node)
7177 {
7178 char label[32];
7179
7180 if (node->label)
7181 return;
7182
7183 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
7184 ++dw2_string_counter;
7185 node->label = xstrdup (label);
7186 }
7187
7188 /* Create a SYMBOL_REF rtx whose value is the initial address of a
7189 debug string STR. */
7190
7191 static inline rtx
7192 get_debug_string_label (const char *str)
7193 {
7194 struct indirect_string_node *node = find_AT_string (str);
7195
7196 debug_str_hash_forced = true;
7197
7198 gen_label_for_indirect_string (node);
7199
7200 return gen_rtx_SYMBOL_REF (Pmode, node->label);
7201 }
7202
7203 static inline const char *
7204 AT_string (dw_attr_ref a)
7205 {
7206 gcc_assert (a && AT_class (a) == dw_val_class_str);
7207 return a->dw_attr_val.v.val_str->str;
7208 }
7209
7210 /* Find out whether a string should be output inline in DIE
7211 or out-of-line in .debug_str section. */
7212
7213 static enum dwarf_form
7214 AT_string_form (dw_attr_ref a)
7215 {
7216 struct indirect_string_node *node;
7217 unsigned int len;
7218
7219 gcc_assert (a && AT_class (a) == dw_val_class_str);
7220
7221 node = a->dw_attr_val.v.val_str;
7222 if (node->form)
7223 return node->form;
7224
7225 len = strlen (node->str) + 1;
7226
7227 /* If the string is shorter or equal to the size of the reference, it is
7228 always better to put it inline. */
7229 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
7230 return node->form = DW_FORM_string;
7231
7232 /* If we cannot expect the linker to merge strings in .debug_str
7233 section, only put it into .debug_str if it is worth even in this
7234 single module. */
7235 if (DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
7236 || ((debug_str_section->common.flags & SECTION_MERGE) == 0
7237 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len))
7238 return node->form = DW_FORM_string;
7239
7240 gen_label_for_indirect_string (node);
7241
7242 return node->form = DW_FORM_strp;
7243 }
7244
7245 /* Add a DIE reference attribute value to a DIE. */
7246
7247 static inline void
7248 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
7249 {
7250 dw_attr_node attr;
7251
7252 attr.dw_attr = attr_kind;
7253 attr.dw_attr_val.val_class = dw_val_class_die_ref;
7254 attr.dw_attr_val.v.val_die_ref.die = targ_die;
7255 attr.dw_attr_val.v.val_die_ref.external = 0;
7256 add_dwarf_attr (die, &attr);
7257 }
7258
7259 /* Add an AT_specification attribute to a DIE, and also make the back
7260 pointer from the specification to the definition. */
7261
7262 static inline void
7263 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
7264 {
7265 add_AT_die_ref (die, DW_AT_specification, targ_die);
7266 gcc_assert (!targ_die->die_definition);
7267 targ_die->die_definition = die;
7268 }
7269
7270 static inline dw_die_ref
7271 AT_ref (dw_attr_ref a)
7272 {
7273 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
7274 return a->dw_attr_val.v.val_die_ref.die;
7275 }
7276
7277 static inline int
7278 AT_ref_external (dw_attr_ref a)
7279 {
7280 if (a && AT_class (a) == dw_val_class_die_ref)
7281 return a->dw_attr_val.v.val_die_ref.external;
7282
7283 return 0;
7284 }
7285
7286 static inline void
7287 set_AT_ref_external (dw_attr_ref a, int i)
7288 {
7289 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
7290 a->dw_attr_val.v.val_die_ref.external = i;
7291 }
7292
7293 /* Add an FDE reference attribute value to a DIE. */
7294
7295 static inline void
7296 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
7297 {
7298 dw_attr_node attr;
7299
7300 attr.dw_attr = attr_kind;
7301 attr.dw_attr_val.val_class = dw_val_class_fde_ref;
7302 attr.dw_attr_val.v.val_fde_index = targ_fde;
7303 add_dwarf_attr (die, &attr);
7304 }
7305
7306 /* Add a location description attribute value to a DIE. */
7307
7308 static inline void
7309 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
7310 {
7311 dw_attr_node attr;
7312
7313 attr.dw_attr = attr_kind;
7314 attr.dw_attr_val.val_class = dw_val_class_loc;
7315 attr.dw_attr_val.v.val_loc = loc;
7316 add_dwarf_attr (die, &attr);
7317 }
7318
7319 static inline dw_loc_descr_ref
7320 AT_loc (dw_attr_ref a)
7321 {
7322 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7323 return a->dw_attr_val.v.val_loc;
7324 }
7325
7326 static inline void
7327 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
7328 {
7329 dw_attr_node attr;
7330
7331 attr.dw_attr = attr_kind;
7332 attr.dw_attr_val.val_class = dw_val_class_loc_list;
7333 attr.dw_attr_val.v.val_loc_list = loc_list;
7334 add_dwarf_attr (die, &attr);
7335 have_location_lists = true;
7336 }
7337
7338 static inline dw_loc_list_ref
7339 AT_loc_list (dw_attr_ref a)
7340 {
7341 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
7342 return a->dw_attr_val.v.val_loc_list;
7343 }
7344
7345 static inline dw_loc_list_ref *
7346 AT_loc_list_ptr (dw_attr_ref a)
7347 {
7348 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
7349 return &a->dw_attr_val.v.val_loc_list;
7350 }
7351
7352 /* Add an address constant attribute value to a DIE. */
7353
7354 static inline void
7355 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
7356 {
7357 dw_attr_node attr;
7358
7359 attr.dw_attr = attr_kind;
7360 attr.dw_attr_val.val_class = dw_val_class_addr;
7361 attr.dw_attr_val.v.val_addr = addr;
7362 add_dwarf_attr (die, &attr);
7363 }
7364
7365 /* Get the RTX from to an address DIE attribute. */
7366
7367 static inline rtx
7368 AT_addr (dw_attr_ref a)
7369 {
7370 gcc_assert (a && AT_class (a) == dw_val_class_addr);
7371 return a->dw_attr_val.v.val_addr;
7372 }
7373
7374 /* Add a file attribute value to a DIE. */
7375
7376 static inline void
7377 add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
7378 struct dwarf_file_data *fd)
7379 {
7380 dw_attr_node attr;
7381
7382 attr.dw_attr = attr_kind;
7383 attr.dw_attr_val.val_class = dw_val_class_file;
7384 attr.dw_attr_val.v.val_file = fd;
7385 add_dwarf_attr (die, &attr);
7386 }
7387
7388 /* Get the dwarf_file_data from a file DIE attribute. */
7389
7390 static inline struct dwarf_file_data *
7391 AT_file (dw_attr_ref a)
7392 {
7393 gcc_assert (a && AT_class (a) == dw_val_class_file);
7394 return a->dw_attr_val.v.val_file;
7395 }
7396
7397 /* Add a vms delta attribute value to a DIE. */
7398
7399 static inline void
7400 add_AT_vms_delta (dw_die_ref die, enum dwarf_attribute attr_kind,
7401 const char *lbl1, const char *lbl2)
7402 {
7403 dw_attr_node attr;
7404
7405 attr.dw_attr = attr_kind;
7406 attr.dw_attr_val.val_class = dw_val_class_vms_delta;
7407 attr.dw_attr_val.v.val_vms_delta.lbl1 = xstrdup (lbl1);
7408 attr.dw_attr_val.v.val_vms_delta.lbl2 = xstrdup (lbl2);
7409 add_dwarf_attr (die, &attr);
7410 }
7411
7412 /* Add a label identifier attribute value to a DIE. */
7413
7414 static inline void
7415 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
7416 {
7417 dw_attr_node attr;
7418
7419 attr.dw_attr = attr_kind;
7420 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
7421 attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
7422 add_dwarf_attr (die, &attr);
7423 }
7424
7425 /* Add a section offset attribute value to a DIE, an offset into the
7426 debug_line section. */
7427
7428 static inline void
7429 add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
7430 const char *label)
7431 {
7432 dw_attr_node attr;
7433
7434 attr.dw_attr = attr_kind;
7435 attr.dw_attr_val.val_class = dw_val_class_lineptr;
7436 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
7437 add_dwarf_attr (die, &attr);
7438 }
7439
7440 /* Add a section offset attribute value to a DIE, an offset into the
7441 debug_macinfo section. */
7442
7443 static inline void
7444 add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
7445 const char *label)
7446 {
7447 dw_attr_node attr;
7448
7449 attr.dw_attr = attr_kind;
7450 attr.dw_attr_val.val_class = dw_val_class_macptr;
7451 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
7452 add_dwarf_attr (die, &attr);
7453 }
7454
7455 /* Add an offset attribute value to a DIE. */
7456
7457 static inline void
7458 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
7459 unsigned HOST_WIDE_INT offset)
7460 {
7461 dw_attr_node attr;
7462
7463 attr.dw_attr = attr_kind;
7464 attr.dw_attr_val.val_class = dw_val_class_offset;
7465 attr.dw_attr_val.v.val_offset = offset;
7466 add_dwarf_attr (die, &attr);
7467 }
7468
7469 /* Add an range_list attribute value to a DIE. */
7470
7471 static void
7472 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
7473 long unsigned int offset)
7474 {
7475 dw_attr_node attr;
7476
7477 attr.dw_attr = attr_kind;
7478 attr.dw_attr_val.val_class = dw_val_class_range_list;
7479 attr.dw_attr_val.v.val_offset = offset;
7480 add_dwarf_attr (die, &attr);
7481 }
7482
7483 /* Return the start label of a delta attribute. */
7484
7485 static inline const char *
7486 AT_vms_delta1 (dw_attr_ref a)
7487 {
7488 gcc_assert (a && (AT_class (a) == dw_val_class_vms_delta));
7489 return a->dw_attr_val.v.val_vms_delta.lbl1;
7490 }
7491
7492 /* Return the end label of a delta attribute. */
7493
7494 static inline const char *
7495 AT_vms_delta2 (dw_attr_ref a)
7496 {
7497 gcc_assert (a && (AT_class (a) == dw_val_class_vms_delta));
7498 return a->dw_attr_val.v.val_vms_delta.lbl2;
7499 }
7500
7501 static inline const char *
7502 AT_lbl (dw_attr_ref a)
7503 {
7504 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
7505 || AT_class (a) == dw_val_class_lineptr
7506 || AT_class (a) == dw_val_class_macptr));
7507 return a->dw_attr_val.v.val_lbl_id;
7508 }
7509
7510 /* Get the attribute of type attr_kind. */
7511
7512 static dw_attr_ref
7513 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
7514 {
7515 dw_attr_ref a;
7516 unsigned ix;
7517 dw_die_ref spec = NULL;
7518
7519 if (! die)
7520 return NULL;
7521
7522 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
7523 if (a->dw_attr == attr_kind)
7524 return a;
7525 else if (a->dw_attr == DW_AT_specification
7526 || a->dw_attr == DW_AT_abstract_origin)
7527 spec = AT_ref (a);
7528
7529 if (spec)
7530 return get_AT (spec, attr_kind);
7531
7532 return NULL;
7533 }
7534
7535 /* Return the "low pc" attribute value, typically associated with a subprogram
7536 DIE. Return null if the "low pc" attribute is either not present, or if it
7537 cannot be represented as an assembler label identifier. */
7538
7539 static inline const char *
7540 get_AT_low_pc (dw_die_ref die)
7541 {
7542 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
7543
7544 return a ? AT_lbl (a) : NULL;
7545 }
7546
7547 /* Return the "high pc" attribute value, typically associated with a subprogram
7548 DIE. Return null if the "high pc" attribute is either not present, or if it
7549 cannot be represented as an assembler label identifier. */
7550
7551 static inline const char *
7552 get_AT_hi_pc (dw_die_ref die)
7553 {
7554 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
7555
7556 return a ? AT_lbl (a) : NULL;
7557 }
7558
7559 /* Return the value of the string attribute designated by ATTR_KIND, or
7560 NULL if it is not present. */
7561
7562 static inline const char *
7563 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
7564 {
7565 dw_attr_ref a = get_AT (die, attr_kind);
7566
7567 return a ? AT_string (a) : NULL;
7568 }
7569
7570 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
7571 if it is not present. */
7572
7573 static inline int
7574 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
7575 {
7576 dw_attr_ref a = get_AT (die, attr_kind);
7577
7578 return a ? AT_flag (a) : 0;
7579 }
7580
7581 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
7582 if it is not present. */
7583
7584 static inline unsigned
7585 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
7586 {
7587 dw_attr_ref a = get_AT (die, attr_kind);
7588
7589 return a ? AT_unsigned (a) : 0;
7590 }
7591
7592 static inline dw_die_ref
7593 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
7594 {
7595 dw_attr_ref a = get_AT (die, attr_kind);
7596
7597 return a ? AT_ref (a) : NULL;
7598 }
7599
7600 static inline struct dwarf_file_data *
7601 get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
7602 {
7603 dw_attr_ref a = get_AT (die, attr_kind);
7604
7605 return a ? AT_file (a) : NULL;
7606 }
7607
7608 /* Return TRUE if the language is C++. */
7609
7610 static inline bool
7611 is_cxx (void)
7612 {
7613 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
7614
7615 return lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus;
7616 }
7617
7618 /* Return TRUE if the language is Fortran. */
7619
7620 static inline bool
7621 is_fortran (void)
7622 {
7623 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
7624
7625 return (lang == DW_LANG_Fortran77
7626 || lang == DW_LANG_Fortran90
7627 || lang == DW_LANG_Fortran95);
7628 }
7629
7630 /* Return TRUE if the language is Ada. */
7631
7632 static inline bool
7633 is_ada (void)
7634 {
7635 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
7636
7637 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
7638 }
7639
7640 /* Remove the specified attribute if present. */
7641
7642 static void
7643 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
7644 {
7645 dw_attr_ref a;
7646 unsigned ix;
7647
7648 if (! die)
7649 return;
7650
7651 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
7652 if (a->dw_attr == attr_kind)
7653 {
7654 if (AT_class (a) == dw_val_class_str)
7655 if (a->dw_attr_val.v.val_str->refcount)
7656 a->dw_attr_val.v.val_str->refcount--;
7657
7658 /* VEC_ordered_remove should help reduce the number of abbrevs
7659 that are needed. */
7660 VEC_ordered_remove (dw_attr_node, die->die_attr, ix);
7661 return;
7662 }
7663 }
7664
7665 /* Remove CHILD from its parent. PREV must have the property that
7666 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
7667
7668 static void
7669 remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
7670 {
7671 gcc_assert (child->die_parent == prev->die_parent);
7672 gcc_assert (prev->die_sib == child);
7673 if (prev == child)
7674 {
7675 gcc_assert (child->die_parent->die_child == child);
7676 prev = NULL;
7677 }
7678 else
7679 prev->die_sib = child->die_sib;
7680 if (child->die_parent->die_child == child)
7681 child->die_parent->die_child = prev;
7682 }
7683
7684 /* Replace OLD_CHILD with NEW_CHILD. PREV must have the property that
7685 PREV->DIE_SIB == OLD_CHILD. Does not alter OLD_CHILD. */
7686
7687 static void
7688 replace_child (dw_die_ref old_child, dw_die_ref new_child, dw_die_ref prev)
7689 {
7690 dw_die_ref parent = old_child->die_parent;
7691
7692 gcc_assert (parent == prev->die_parent);
7693 gcc_assert (prev->die_sib == old_child);
7694
7695 new_child->die_parent = parent;
7696 if (prev == old_child)
7697 {
7698 gcc_assert (parent->die_child == old_child);
7699 new_child->die_sib = new_child;
7700 }
7701 else
7702 {
7703 prev->die_sib = new_child;
7704 new_child->die_sib = old_child->die_sib;
7705 }
7706 if (old_child->die_parent->die_child == old_child)
7707 old_child->die_parent->die_child = new_child;
7708 }
7709
7710 /* Move all children from OLD_PARENT to NEW_PARENT. */
7711
7712 static void
7713 move_all_children (dw_die_ref old_parent, dw_die_ref new_parent)
7714 {
7715 dw_die_ref c;
7716 new_parent->die_child = old_parent->die_child;
7717 old_parent->die_child = NULL;
7718 FOR_EACH_CHILD (new_parent, c, c->die_parent = new_parent);
7719 }
7720
7721 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
7722 matches TAG. */
7723
7724 static void
7725 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
7726 {
7727 dw_die_ref c;
7728
7729 c = die->die_child;
7730 if (c) do {
7731 dw_die_ref prev = c;
7732 c = c->die_sib;
7733 while (c->die_tag == tag)
7734 {
7735 remove_child_with_prev (c, prev);
7736 /* Might have removed every child. */
7737 if (c == c->die_sib)
7738 return;
7739 c = c->die_sib;
7740 }
7741 } while (c != die->die_child);
7742 }
7743
7744 /* Add a CHILD_DIE as the last child of DIE. */
7745
7746 static void
7747 add_child_die (dw_die_ref die, dw_die_ref child_die)
7748 {
7749 /* FIXME this should probably be an assert. */
7750 if (! die || ! child_die)
7751 return;
7752 gcc_assert (die != child_die);
7753
7754 child_die->die_parent = die;
7755 if (die->die_child)
7756 {
7757 child_die->die_sib = die->die_child->die_sib;
7758 die->die_child->die_sib = child_die;
7759 }
7760 else
7761 child_die->die_sib = child_die;
7762 die->die_child = child_die;
7763 }
7764
7765 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
7766 is the specification, to the end of PARENT's list of children.
7767 This is done by removing and re-adding it. */
7768
7769 static void
7770 splice_child_die (dw_die_ref parent, dw_die_ref child)
7771 {
7772 dw_die_ref p;
7773
7774 /* We want the declaration DIE from inside the class, not the
7775 specification DIE at toplevel. */
7776 if (child->die_parent != parent)
7777 {
7778 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
7779
7780 if (tmp)
7781 child = tmp;
7782 }
7783
7784 gcc_assert (child->die_parent == parent
7785 || (child->die_parent
7786 == get_AT_ref (parent, DW_AT_specification)));
7787
7788 for (p = child->die_parent->die_child; ; p = p->die_sib)
7789 if (p->die_sib == child)
7790 {
7791 remove_child_with_prev (child, p);
7792 break;
7793 }
7794
7795 add_child_die (parent, child);
7796 }
7797
7798 /* Return a pointer to a newly created DIE node. */
7799
7800 static inline dw_die_ref
7801 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
7802 {
7803 dw_die_ref die = ggc_alloc_cleared_die_node ();
7804
7805 die->die_tag = tag_value;
7806
7807 if (parent_die != NULL)
7808 add_child_die (parent_die, die);
7809 else
7810 {
7811 limbo_die_node *limbo_node;
7812
7813 limbo_node = ggc_alloc_cleared_limbo_die_node ();
7814 limbo_node->die = die;
7815 limbo_node->created_for = t;
7816 limbo_node->next = limbo_die_list;
7817 limbo_die_list = limbo_node;
7818 }
7819
7820 return die;
7821 }
7822
7823 /* Return the DIE associated with the given type specifier. */
7824
7825 static inline dw_die_ref
7826 lookup_type_die (tree type)
7827 {
7828 return TYPE_SYMTAB_DIE (type);
7829 }
7830
7831 /* Equate a DIE to a given type specifier. */
7832
7833 static inline void
7834 equate_type_number_to_die (tree type, dw_die_ref type_die)
7835 {
7836 TYPE_SYMTAB_DIE (type) = type_die;
7837 }
7838
7839 /* Returns a hash value for X (which really is a die_struct). */
7840
7841 static hashval_t
7842 decl_die_table_hash (const void *x)
7843 {
7844 return (hashval_t) ((const_dw_die_ref) x)->decl_id;
7845 }
7846
7847 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
7848
7849 static int
7850 decl_die_table_eq (const void *x, const void *y)
7851 {
7852 return (((const_dw_die_ref) x)->decl_id == DECL_UID ((const_tree) y));
7853 }
7854
7855 /* Return the DIE associated with a given declaration. */
7856
7857 static inline dw_die_ref
7858 lookup_decl_die (tree decl)
7859 {
7860 return (dw_die_ref) htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
7861 }
7862
7863 /* Returns a hash value for X (which really is a var_loc_list). */
7864
7865 static hashval_t
7866 decl_loc_table_hash (const void *x)
7867 {
7868 return (hashval_t) ((const var_loc_list *) x)->decl_id;
7869 }
7870
7871 /* Return nonzero if decl_id of var_loc_list X is the same as
7872 UID of decl *Y. */
7873
7874 static int
7875 decl_loc_table_eq (const void *x, const void *y)
7876 {
7877 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const_tree) y));
7878 }
7879
7880 /* Return the var_loc list associated with a given declaration. */
7881
7882 static inline var_loc_list *
7883 lookup_decl_loc (const_tree decl)
7884 {
7885 if (!decl_loc_table)
7886 return NULL;
7887 return (var_loc_list *)
7888 htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
7889 }
7890
7891 /* Equate a DIE to a particular declaration. */
7892
7893 static void
7894 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
7895 {
7896 unsigned int decl_id = DECL_UID (decl);
7897 void **slot;
7898
7899 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
7900 *slot = decl_die;
7901 decl_die->decl_id = decl_id;
7902 }
7903
7904 /* Return how many bits covers PIECE EXPR_LIST. */
7905
7906 static int
7907 decl_piece_bitsize (rtx piece)
7908 {
7909 int ret = (int) GET_MODE (piece);
7910 if (ret)
7911 return ret;
7912 gcc_assert (GET_CODE (XEXP (piece, 0)) == CONCAT
7913 && CONST_INT_P (XEXP (XEXP (piece, 0), 0)));
7914 return INTVAL (XEXP (XEXP (piece, 0), 0));
7915 }
7916
7917 /* Return pointer to the location of location note in PIECE EXPR_LIST. */
7918
7919 static rtx *
7920 decl_piece_varloc_ptr (rtx piece)
7921 {
7922 if ((int) GET_MODE (piece))
7923 return &XEXP (piece, 0);
7924 else
7925 return &XEXP (XEXP (piece, 0), 1);
7926 }
7927
7928 /* Create an EXPR_LIST for location note LOC_NOTE covering BITSIZE bits.
7929 Next is the chain of following piece nodes. */
7930
7931 static rtx
7932 decl_piece_node (rtx loc_note, HOST_WIDE_INT bitsize, rtx next)
7933 {
7934 if (bitsize <= (int) MAX_MACHINE_MODE)
7935 return alloc_EXPR_LIST (bitsize, loc_note, next);
7936 else
7937 return alloc_EXPR_LIST (0, gen_rtx_CONCAT (VOIDmode,
7938 GEN_INT (bitsize),
7939 loc_note), next);
7940 }
7941
7942 /* Return rtx that should be stored into loc field for
7943 LOC_NOTE and BITPOS/BITSIZE. */
7944
7945 static rtx
7946 construct_piece_list (rtx loc_note, HOST_WIDE_INT bitpos,
7947 HOST_WIDE_INT bitsize)
7948 {
7949 if (bitsize != -1)
7950 {
7951 loc_note = decl_piece_node (loc_note, bitsize, NULL_RTX);
7952 if (bitpos != 0)
7953 loc_note = decl_piece_node (NULL_RTX, bitpos, loc_note);
7954 }
7955 return loc_note;
7956 }
7957
7958 /* This function either modifies location piece list *DEST in
7959 place (if SRC and INNER is NULL), or copies location piece list
7960 *SRC to *DEST while modifying it. Location BITPOS is modified
7961 to contain LOC_NOTE, any pieces overlapping it are removed resp.
7962 not copied and if needed some padding around it is added.
7963 When modifying in place, DEST should point to EXPR_LIST where
7964 earlier pieces cover PIECE_BITPOS bits, when copying SRC points
7965 to the start of the whole list and INNER points to the EXPR_LIST
7966 where earlier pieces cover PIECE_BITPOS bits. */
7967
7968 static void
7969 adjust_piece_list (rtx *dest, rtx *src, rtx *inner,
7970 HOST_WIDE_INT bitpos, HOST_WIDE_INT piece_bitpos,
7971 HOST_WIDE_INT bitsize, rtx loc_note)
7972 {
7973 int diff;
7974 bool copy = inner != NULL;
7975
7976 if (copy)
7977 {
7978 /* First copy all nodes preceeding the current bitpos. */
7979 while (src != inner)
7980 {
7981 *dest = decl_piece_node (*decl_piece_varloc_ptr (*src),
7982 decl_piece_bitsize (*src), NULL_RTX);
7983 dest = &XEXP (*dest, 1);
7984 src = &XEXP (*src, 1);
7985 }
7986 }
7987 /* Add padding if needed. */
7988 if (bitpos != piece_bitpos)
7989 {
7990 *dest = decl_piece_node (NULL_RTX, bitpos - piece_bitpos,
7991 copy ? NULL_RTX : *dest);
7992 dest = &XEXP (*dest, 1);
7993 }
7994 else if (*dest && decl_piece_bitsize (*dest) == bitsize)
7995 {
7996 gcc_assert (!copy);
7997 /* A piece with correct bitpos and bitsize already exist,
7998 just update the location for it and return. */
7999 *decl_piece_varloc_ptr (*dest) = loc_note;
8000 return;
8001 }
8002 /* Add the piece that changed. */
8003 *dest = decl_piece_node (loc_note, bitsize, copy ? NULL_RTX : *dest);
8004 dest = &XEXP (*dest, 1);
8005 /* Skip over pieces that overlap it. */
8006 diff = bitpos - piece_bitpos + bitsize;
8007 if (!copy)
8008 src = dest;
8009 while (diff > 0 && *src)
8010 {
8011 rtx piece = *src;
8012 diff -= decl_piece_bitsize (piece);
8013 if (copy)
8014 src = &XEXP (piece, 1);
8015 else
8016 {
8017 *src = XEXP (piece, 1);
8018 free_EXPR_LIST_node (piece);
8019 }
8020 }
8021 /* Add padding if needed. */
8022 if (diff < 0 && *src)
8023 {
8024 if (!copy)
8025 dest = src;
8026 *dest = decl_piece_node (NULL_RTX, -diff, copy ? NULL_RTX : *dest);
8027 dest = &XEXP (*dest, 1);
8028 }
8029 if (!copy)
8030 return;
8031 /* Finally copy all nodes following it. */
8032 while (*src)
8033 {
8034 *dest = decl_piece_node (*decl_piece_varloc_ptr (*src),
8035 decl_piece_bitsize (*src), NULL_RTX);
8036 dest = &XEXP (*dest, 1);
8037 src = &XEXP (*src, 1);
8038 }
8039 }
8040
8041 /* Add a variable location node to the linked list for DECL. */
8042
8043 static struct var_loc_node *
8044 add_var_loc_to_decl (tree decl, rtx loc_note, const char *label)
8045 {
8046 unsigned int decl_id;
8047 var_loc_list *temp;
8048 void **slot;
8049 struct var_loc_node *loc = NULL;
8050 HOST_WIDE_INT bitsize = -1, bitpos = -1;
8051
8052 if (DECL_DEBUG_EXPR_IS_FROM (decl))
8053 {
8054 tree realdecl = DECL_DEBUG_EXPR (decl);
8055 if (realdecl && handled_component_p (realdecl))
8056 {
8057 HOST_WIDE_INT maxsize;
8058 tree innerdecl;
8059 innerdecl
8060 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize, &maxsize);
8061 if (!DECL_P (innerdecl)
8062 || DECL_IGNORED_P (innerdecl)
8063 || TREE_STATIC (innerdecl)
8064 || bitsize <= 0
8065 || bitpos + bitsize > 256
8066 || bitsize != maxsize)
8067 return NULL;
8068 decl = innerdecl;
8069 }
8070 }
8071
8072 decl_id = DECL_UID (decl);
8073 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
8074 if (*slot == NULL)
8075 {
8076 temp = ggc_alloc_cleared_var_loc_list ();
8077 temp->decl_id = decl_id;
8078 *slot = temp;
8079 }
8080 else
8081 temp = (var_loc_list *) *slot;
8082
8083 if (temp->last)
8084 {
8085 struct var_loc_node *last = temp->last, *unused = NULL;
8086 rtx *piece_loc = NULL, last_loc_note;
8087 int piece_bitpos = 0;
8088 if (last->next)
8089 {
8090 last = last->next;
8091 gcc_assert (last->next == NULL);
8092 }
8093 if (bitsize != -1 && GET_CODE (last->loc) == EXPR_LIST)
8094 {
8095 piece_loc = &last->loc;
8096 do
8097 {
8098 int cur_bitsize = decl_piece_bitsize (*piece_loc);
8099 if (piece_bitpos + cur_bitsize > bitpos)
8100 break;
8101 piece_bitpos += cur_bitsize;
8102 piece_loc = &XEXP (*piece_loc, 1);
8103 }
8104 while (*piece_loc);
8105 }
8106 /* TEMP->LAST here is either pointer to the last but one or
8107 last element in the chained list, LAST is pointer to the
8108 last element. */
8109 if (label && strcmp (last->label, label) == 0)
8110 {
8111 /* For SRA optimized variables if there weren't any real
8112 insns since last note, just modify the last node. */
8113 if (piece_loc != NULL)
8114 {
8115 adjust_piece_list (piece_loc, NULL, NULL,
8116 bitpos, piece_bitpos, bitsize, loc_note);
8117 return NULL;
8118 }
8119 /* If the last note doesn't cover any instructions, remove it. */
8120 if (temp->last != last)
8121 {
8122 temp->last->next = NULL;
8123 unused = last;
8124 last = temp->last;
8125 gcc_assert (strcmp (last->label, label) != 0);
8126 }
8127 else
8128 {
8129 gcc_assert (temp->first == temp->last);
8130 memset (temp->last, '\0', sizeof (*temp->last));
8131 temp->last->loc = construct_piece_list (loc_note, bitpos, bitsize);
8132 return temp->last;
8133 }
8134 }
8135 if (bitsize == -1 && NOTE_P (last->loc))
8136 last_loc_note = last->loc;
8137 else if (piece_loc != NULL
8138 && *piece_loc != NULL_RTX
8139 && piece_bitpos == bitpos
8140 && decl_piece_bitsize (*piece_loc) == bitsize)
8141 last_loc_note = *decl_piece_varloc_ptr (*piece_loc);
8142 else
8143 last_loc_note = NULL_RTX;
8144 /* If the current location is the same as the end of the list,
8145 and either both or neither of the locations is uninitialized,
8146 we have nothing to do. */
8147 if (last_loc_note == NULL_RTX
8148 || (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (last_loc_note),
8149 NOTE_VAR_LOCATION_LOC (loc_note)))
8150 || ((NOTE_VAR_LOCATION_STATUS (last_loc_note)
8151 != NOTE_VAR_LOCATION_STATUS (loc_note))
8152 && ((NOTE_VAR_LOCATION_STATUS (last_loc_note)
8153 == VAR_INIT_STATUS_UNINITIALIZED)
8154 || (NOTE_VAR_LOCATION_STATUS (loc_note)
8155 == VAR_INIT_STATUS_UNINITIALIZED))))
8156 {
8157 /* Add LOC to the end of list and update LAST. If the last
8158 element of the list has been removed above, reuse its
8159 memory for the new node, otherwise allocate a new one. */
8160 if (unused)
8161 {
8162 loc = unused;
8163 memset (loc, '\0', sizeof (*loc));
8164 }
8165 else
8166 loc = ggc_alloc_cleared_var_loc_node ();
8167 if (bitsize == -1 || piece_loc == NULL)
8168 loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
8169 else
8170 adjust_piece_list (&loc->loc, &last->loc, piece_loc,
8171 bitpos, piece_bitpos, bitsize, loc_note);
8172 last->next = loc;
8173 /* Ensure TEMP->LAST will point either to the new last but one
8174 element of the chain, or to the last element in it. */
8175 if (last != temp->last)
8176 temp->last = last;
8177 }
8178 else if (unused)
8179 ggc_free (unused);
8180 }
8181 else
8182 {
8183 loc = ggc_alloc_cleared_var_loc_node ();
8184 temp->first = loc;
8185 temp->last = loc;
8186 loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
8187 }
8188 return loc;
8189 }
8190 \f
8191 /* Keep track of the number of spaces used to indent the
8192 output of the debugging routines that print the structure of
8193 the DIE internal representation. */
8194 static int print_indent;
8195
8196 /* Indent the line the number of spaces given by print_indent. */
8197
8198 static inline void
8199 print_spaces (FILE *outfile)
8200 {
8201 fprintf (outfile, "%*s", print_indent, "");
8202 }
8203
8204 /* Print a type signature in hex. */
8205
8206 static inline void
8207 print_signature (FILE *outfile, char *sig)
8208 {
8209 int i;
8210
8211 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
8212 fprintf (outfile, "%02x", sig[i] & 0xff);
8213 }
8214
8215 /* Print the information associated with a given DIE, and its children.
8216 This routine is a debugging aid only. */
8217
8218 static void
8219 print_die (dw_die_ref die, FILE *outfile)
8220 {
8221 dw_attr_ref a;
8222 dw_die_ref c;
8223 unsigned ix;
8224
8225 print_spaces (outfile);
8226 fprintf (outfile, "DIE %4ld: %s\n",
8227 die->die_offset, dwarf_tag_name (die->die_tag));
8228 print_spaces (outfile);
8229 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
8230 fprintf (outfile, " offset: %ld\n", die->die_offset);
8231 if (dwarf_version >= 4 && die->die_id.die_type_node)
8232 {
8233 print_spaces (outfile);
8234 fprintf (outfile, " signature: ");
8235 print_signature (outfile, die->die_id.die_type_node->signature);
8236 fprintf (outfile, "\n");
8237 }
8238
8239 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
8240 {
8241 print_spaces (outfile);
8242 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
8243
8244 switch (AT_class (a))
8245 {
8246 case dw_val_class_addr:
8247 fprintf (outfile, "address");
8248 break;
8249 case dw_val_class_offset:
8250 fprintf (outfile, "offset");
8251 break;
8252 case dw_val_class_loc:
8253 fprintf (outfile, "location descriptor");
8254 break;
8255 case dw_val_class_loc_list:
8256 fprintf (outfile, "location list -> label:%s",
8257 AT_loc_list (a)->ll_symbol);
8258 break;
8259 case dw_val_class_range_list:
8260 fprintf (outfile, "range list");
8261 break;
8262 case dw_val_class_const:
8263 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
8264 break;
8265 case dw_val_class_unsigned_const:
8266 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
8267 break;
8268 case dw_val_class_const_double:
8269 fprintf (outfile, "constant ("HOST_WIDE_INT_PRINT_DEC","\
8270 HOST_WIDE_INT_PRINT_UNSIGNED")",
8271 a->dw_attr_val.v.val_double.high,
8272 a->dw_attr_val.v.val_double.low);
8273 break;
8274 case dw_val_class_vec:
8275 fprintf (outfile, "floating-point or vector constant");
8276 break;
8277 case dw_val_class_flag:
8278 fprintf (outfile, "%u", AT_flag (a));
8279 break;
8280 case dw_val_class_die_ref:
8281 if (AT_ref (a) != NULL)
8282 {
8283 if (dwarf_version >= 4 && AT_ref (a)->die_id.die_type_node)
8284 {
8285 fprintf (outfile, "die -> signature: ");
8286 print_signature (outfile,
8287 AT_ref (a)->die_id.die_type_node->signature);
8288 }
8289 else if (dwarf_version < 4 && AT_ref (a)->die_id.die_symbol)
8290 fprintf (outfile, "die -> label: %s",
8291 AT_ref (a)->die_id.die_symbol);
8292 else
8293 fprintf (outfile, "die -> %ld", AT_ref (a)->die_offset);
8294 }
8295 else
8296 fprintf (outfile, "die -> <null>");
8297 break;
8298 case dw_val_class_vms_delta:
8299 fprintf (outfile, "delta: @slotcount(%s-%s)",
8300 AT_vms_delta2 (a), AT_vms_delta1 (a));
8301 break;
8302 case dw_val_class_lbl_id:
8303 case dw_val_class_lineptr:
8304 case dw_val_class_macptr:
8305 fprintf (outfile, "label: %s", AT_lbl (a));
8306 break;
8307 case dw_val_class_str:
8308 if (AT_string (a) != NULL)
8309 fprintf (outfile, "\"%s\"", AT_string (a));
8310 else
8311 fprintf (outfile, "<null>");
8312 break;
8313 case dw_val_class_file:
8314 fprintf (outfile, "\"%s\" (%d)", AT_file (a)->filename,
8315 AT_file (a)->emitted_number);
8316 break;
8317 case dw_val_class_data8:
8318 {
8319 int i;
8320
8321 for (i = 0; i < 8; i++)
8322 fprintf (outfile, "%02x", a->dw_attr_val.v.val_data8[i]);
8323 break;
8324 }
8325 default:
8326 break;
8327 }
8328
8329 fprintf (outfile, "\n");
8330 }
8331
8332 if (die->die_child != NULL)
8333 {
8334 print_indent += 4;
8335 FOR_EACH_CHILD (die, c, print_die (c, outfile));
8336 print_indent -= 4;
8337 }
8338 if (print_indent == 0)
8339 fprintf (outfile, "\n");
8340 }
8341
8342 /* Print the contents of the source code line number correspondence table.
8343 This routine is a debugging aid only. */
8344
8345 static void
8346 print_dwarf_line_table (FILE *outfile)
8347 {
8348 unsigned i;
8349 dw_line_info_ref line_info;
8350
8351 fprintf (outfile, "\n\nDWARF source line information\n");
8352 for (i = 1; i < line_info_table_in_use; i++)
8353 {
8354 line_info = &line_info_table[i];
8355 fprintf (outfile, "%5d: %4ld %6ld\n", i,
8356 line_info->dw_file_num,
8357 line_info->dw_line_num);
8358 }
8359
8360 fprintf (outfile, "\n\n");
8361 }
8362
8363 /* Print the information collected for a given DIE. */
8364
8365 DEBUG_FUNCTION void
8366 debug_dwarf_die (dw_die_ref die)
8367 {
8368 print_die (die, stderr);
8369 }
8370
8371 /* Print all DWARF information collected for the compilation unit.
8372 This routine is a debugging aid only. */
8373
8374 DEBUG_FUNCTION void
8375 debug_dwarf (void)
8376 {
8377 print_indent = 0;
8378 print_die (comp_unit_die, stderr);
8379 if (! DWARF2_ASM_LINE_DEBUG_INFO)
8380 print_dwarf_line_table (stderr);
8381 }
8382 \f
8383 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
8384 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
8385 DIE that marks the start of the DIEs for this include file. */
8386
8387 static dw_die_ref
8388 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
8389 {
8390 const char *filename = get_AT_string (bincl_die, DW_AT_name);
8391 dw_die_ref new_unit = gen_compile_unit_die (filename);
8392
8393 new_unit->die_sib = old_unit;
8394 return new_unit;
8395 }
8396
8397 /* Close an include-file CU and reopen the enclosing one. */
8398
8399 static dw_die_ref
8400 pop_compile_unit (dw_die_ref old_unit)
8401 {
8402 dw_die_ref new_unit = old_unit->die_sib;
8403
8404 old_unit->die_sib = NULL;
8405 return new_unit;
8406 }
8407
8408 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
8409 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
8410
8411 /* Calculate the checksum of a location expression. */
8412
8413 static inline void
8414 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
8415 {
8416 int tem;
8417
8418 tem = (loc->dtprel << 8) | ((unsigned int) loc->dw_loc_opc);
8419 CHECKSUM (tem);
8420 CHECKSUM (loc->dw_loc_oprnd1);
8421 CHECKSUM (loc->dw_loc_oprnd2);
8422 }
8423
8424 /* Calculate the checksum of an attribute. */
8425
8426 static void
8427 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
8428 {
8429 dw_loc_descr_ref loc;
8430 rtx r;
8431
8432 CHECKSUM (at->dw_attr);
8433
8434 /* We don't care that this was compiled with a different compiler
8435 snapshot; if the output is the same, that's what matters. */
8436 if (at->dw_attr == DW_AT_producer)
8437 return;
8438
8439 switch (AT_class (at))
8440 {
8441 case dw_val_class_const:
8442 CHECKSUM (at->dw_attr_val.v.val_int);
8443 break;
8444 case dw_val_class_unsigned_const:
8445 CHECKSUM (at->dw_attr_val.v.val_unsigned);
8446 break;
8447 case dw_val_class_const_double:
8448 CHECKSUM (at->dw_attr_val.v.val_double);
8449 break;
8450 case dw_val_class_vec:
8451 CHECKSUM (at->dw_attr_val.v.val_vec);
8452 break;
8453 case dw_val_class_flag:
8454 CHECKSUM (at->dw_attr_val.v.val_flag);
8455 break;
8456 case dw_val_class_str:
8457 CHECKSUM_STRING (AT_string (at));
8458 break;
8459
8460 case dw_val_class_addr:
8461 r = AT_addr (at);
8462 gcc_assert (GET_CODE (r) == SYMBOL_REF);
8463 CHECKSUM_STRING (XSTR (r, 0));
8464 break;
8465
8466 case dw_val_class_offset:
8467 CHECKSUM (at->dw_attr_val.v.val_offset);
8468 break;
8469
8470 case dw_val_class_loc:
8471 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
8472 loc_checksum (loc, ctx);
8473 break;
8474
8475 case dw_val_class_die_ref:
8476 die_checksum (AT_ref (at), ctx, mark);
8477 break;
8478
8479 case dw_val_class_fde_ref:
8480 case dw_val_class_vms_delta:
8481 case dw_val_class_lbl_id:
8482 case dw_val_class_lineptr:
8483 case dw_val_class_macptr:
8484 break;
8485
8486 case dw_val_class_file:
8487 CHECKSUM_STRING (AT_file (at)->filename);
8488 break;
8489
8490 case dw_val_class_data8:
8491 CHECKSUM (at->dw_attr_val.v.val_data8);
8492 break;
8493
8494 default:
8495 break;
8496 }
8497 }
8498
8499 /* Calculate the checksum of a DIE. */
8500
8501 static void
8502 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
8503 {
8504 dw_die_ref c;
8505 dw_attr_ref a;
8506 unsigned ix;
8507
8508 /* To avoid infinite recursion. */
8509 if (die->die_mark)
8510 {
8511 CHECKSUM (die->die_mark);
8512 return;
8513 }
8514 die->die_mark = ++(*mark);
8515
8516 CHECKSUM (die->die_tag);
8517
8518 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
8519 attr_checksum (a, ctx, mark);
8520
8521 FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
8522 }
8523
8524 #undef CHECKSUM
8525 #undef CHECKSUM_STRING
8526
8527 /* For DWARF-4 types, include the trailing NULL when checksumming strings. */
8528 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
8529 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO) + 1, ctx)
8530 #define CHECKSUM_SLEB128(FOO) checksum_sleb128 ((FOO), ctx)
8531 #define CHECKSUM_ULEB128(FOO) checksum_uleb128 ((FOO), ctx)
8532 #define CHECKSUM_ATTR(FOO) \
8533 if (FOO) attr_checksum_ordered (die->die_tag, (FOO), ctx, mark)
8534
8535 /* Calculate the checksum of a number in signed LEB128 format. */
8536
8537 static void
8538 checksum_sleb128 (HOST_WIDE_INT value, struct md5_ctx *ctx)
8539 {
8540 unsigned char byte;
8541 bool more;
8542
8543 while (1)
8544 {
8545 byte = (value & 0x7f);
8546 value >>= 7;
8547 more = !((value == 0 && (byte & 0x40) == 0)
8548 || (value == -1 && (byte & 0x40) != 0));
8549 if (more)
8550 byte |= 0x80;
8551 CHECKSUM (byte);
8552 if (!more)
8553 break;
8554 }
8555 }
8556
8557 /* Calculate the checksum of a number in unsigned LEB128 format. */
8558
8559 static void
8560 checksum_uleb128 (unsigned HOST_WIDE_INT value, struct md5_ctx *ctx)
8561 {
8562 while (1)
8563 {
8564 unsigned char byte = (value & 0x7f);
8565 value >>= 7;
8566 if (value != 0)
8567 /* More bytes to follow. */
8568 byte |= 0x80;
8569 CHECKSUM (byte);
8570 if (value == 0)
8571 break;
8572 }
8573 }
8574
8575 /* Checksum the context of the DIE. This adds the names of any
8576 surrounding namespaces or structures to the checksum. */
8577
8578 static void
8579 checksum_die_context (dw_die_ref die, struct md5_ctx *ctx)
8580 {
8581 const char *name;
8582 dw_die_ref spec;
8583 int tag = die->die_tag;
8584
8585 if (tag != DW_TAG_namespace
8586 && tag != DW_TAG_structure_type
8587 && tag != DW_TAG_class_type)
8588 return;
8589
8590 name = get_AT_string (die, DW_AT_name);
8591
8592 spec = get_AT_ref (die, DW_AT_specification);
8593 if (spec != NULL)
8594 die = spec;
8595
8596 if (die->die_parent != NULL)
8597 checksum_die_context (die->die_parent, ctx);
8598
8599 CHECKSUM_ULEB128 ('C');
8600 CHECKSUM_ULEB128 (tag);
8601 if (name != NULL)
8602 CHECKSUM_STRING (name);
8603 }
8604
8605 /* Calculate the checksum of a location expression. */
8606
8607 static inline void
8608 loc_checksum_ordered (dw_loc_descr_ref loc, struct md5_ctx *ctx)
8609 {
8610 /* Special case for lone DW_OP_plus_uconst: checksum as if the location
8611 were emitted as a DW_FORM_sdata instead of a location expression. */
8612 if (loc->dw_loc_opc == DW_OP_plus_uconst && loc->dw_loc_next == NULL)
8613 {
8614 CHECKSUM_ULEB128 (DW_FORM_sdata);
8615 CHECKSUM_SLEB128 ((HOST_WIDE_INT) loc->dw_loc_oprnd1.v.val_unsigned);
8616 return;
8617 }
8618
8619 /* Otherwise, just checksum the raw location expression. */
8620 while (loc != NULL)
8621 {
8622 CHECKSUM_ULEB128 (loc->dw_loc_opc);
8623 CHECKSUM (loc->dw_loc_oprnd1);
8624 CHECKSUM (loc->dw_loc_oprnd2);
8625 loc = loc->dw_loc_next;
8626 }
8627 }
8628
8629 /* Calculate the checksum of an attribute. */
8630
8631 static void
8632 attr_checksum_ordered (enum dwarf_tag tag, dw_attr_ref at,
8633 struct md5_ctx *ctx, int *mark)
8634 {
8635 dw_loc_descr_ref loc;
8636 rtx r;
8637
8638 if (AT_class (at) == dw_val_class_die_ref)
8639 {
8640 dw_die_ref target_die = AT_ref (at);
8641
8642 /* For pointer and reference types, we checksum only the (qualified)
8643 name of the target type (if there is a name). For friend entries,
8644 we checksum only the (qualified) name of the target type or function.
8645 This allows the checksum to remain the same whether the target type
8646 is complete or not. */
8647 if ((at->dw_attr == DW_AT_type
8648 && (tag == DW_TAG_pointer_type
8649 || tag == DW_TAG_reference_type
8650 || tag == DW_TAG_rvalue_reference_type
8651 || tag == DW_TAG_ptr_to_member_type))
8652 || (at->dw_attr == DW_AT_friend
8653 && tag == DW_TAG_friend))
8654 {
8655 dw_attr_ref name_attr = get_AT (target_die, DW_AT_name);
8656
8657 if (name_attr != NULL)
8658 {
8659 dw_die_ref decl = get_AT_ref (target_die, DW_AT_specification);
8660
8661 if (decl == NULL)
8662 decl = target_die;
8663 CHECKSUM_ULEB128 ('N');
8664 CHECKSUM_ULEB128 (at->dw_attr);
8665 if (decl->die_parent != NULL)
8666 checksum_die_context (decl->die_parent, ctx);
8667 CHECKSUM_ULEB128 ('E');
8668 CHECKSUM_STRING (AT_string (name_attr));
8669 return;
8670 }
8671 }
8672
8673 /* For all other references to another DIE, we check to see if the
8674 target DIE has already been visited. If it has, we emit a
8675 backward reference; if not, we descend recursively. */
8676 if (target_die->die_mark > 0)
8677 {
8678 CHECKSUM_ULEB128 ('R');
8679 CHECKSUM_ULEB128 (at->dw_attr);
8680 CHECKSUM_ULEB128 (target_die->die_mark);
8681 }
8682 else
8683 {
8684 dw_die_ref decl = get_AT_ref (target_die, DW_AT_specification);
8685
8686 if (decl == NULL)
8687 decl = target_die;
8688 target_die->die_mark = ++(*mark);
8689 CHECKSUM_ULEB128 ('T');
8690 CHECKSUM_ULEB128 (at->dw_attr);
8691 if (decl->die_parent != NULL)
8692 checksum_die_context (decl->die_parent, ctx);
8693 die_checksum_ordered (target_die, ctx, mark);
8694 }
8695 return;
8696 }
8697
8698 CHECKSUM_ULEB128 ('A');
8699 CHECKSUM_ULEB128 (at->dw_attr);
8700
8701 switch (AT_class (at))
8702 {
8703 case dw_val_class_const:
8704 CHECKSUM_ULEB128 (DW_FORM_sdata);
8705 CHECKSUM_SLEB128 (at->dw_attr_val.v.val_int);
8706 break;
8707
8708 case dw_val_class_unsigned_const:
8709 CHECKSUM_ULEB128 (DW_FORM_sdata);
8710 CHECKSUM_SLEB128 ((int) at->dw_attr_val.v.val_unsigned);
8711 break;
8712
8713 case dw_val_class_const_double:
8714 CHECKSUM_ULEB128 (DW_FORM_block);
8715 CHECKSUM_ULEB128 (sizeof (at->dw_attr_val.v.val_double));
8716 CHECKSUM (at->dw_attr_val.v.val_double);
8717 break;
8718
8719 case dw_val_class_vec:
8720 CHECKSUM_ULEB128 (DW_FORM_block);
8721 CHECKSUM_ULEB128 (sizeof (at->dw_attr_val.v.val_vec));
8722 CHECKSUM (at->dw_attr_val.v.val_vec);
8723 break;
8724
8725 case dw_val_class_flag:
8726 CHECKSUM_ULEB128 (DW_FORM_flag);
8727 CHECKSUM_ULEB128 (at->dw_attr_val.v.val_flag ? 1 : 0);
8728 break;
8729
8730 case dw_val_class_str:
8731 CHECKSUM_ULEB128 (DW_FORM_string);
8732 CHECKSUM_STRING (AT_string (at));
8733 break;
8734
8735 case dw_val_class_addr:
8736 r = AT_addr (at);
8737 gcc_assert (GET_CODE (r) == SYMBOL_REF);
8738 CHECKSUM_ULEB128 (DW_FORM_string);
8739 CHECKSUM_STRING (XSTR (r, 0));
8740 break;
8741
8742 case dw_val_class_offset:
8743 CHECKSUM_ULEB128 (DW_FORM_sdata);
8744 CHECKSUM_ULEB128 (at->dw_attr_val.v.val_offset);
8745 break;
8746
8747 case dw_val_class_loc:
8748 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
8749 loc_checksum_ordered (loc, ctx);
8750 break;
8751
8752 case dw_val_class_fde_ref:
8753 case dw_val_class_lbl_id:
8754 case dw_val_class_lineptr:
8755 case dw_val_class_macptr:
8756 break;
8757
8758 case dw_val_class_file:
8759 CHECKSUM_ULEB128 (DW_FORM_string);
8760 CHECKSUM_STRING (AT_file (at)->filename);
8761 break;
8762
8763 case dw_val_class_data8:
8764 CHECKSUM (at->dw_attr_val.v.val_data8);
8765 break;
8766
8767 default:
8768 break;
8769 }
8770 }
8771
8772 struct checksum_attributes
8773 {
8774 dw_attr_ref at_name;
8775 dw_attr_ref at_type;
8776 dw_attr_ref at_friend;
8777 dw_attr_ref at_accessibility;
8778 dw_attr_ref at_address_class;
8779 dw_attr_ref at_allocated;
8780 dw_attr_ref at_artificial;
8781 dw_attr_ref at_associated;
8782 dw_attr_ref at_binary_scale;
8783 dw_attr_ref at_bit_offset;
8784 dw_attr_ref at_bit_size;
8785 dw_attr_ref at_bit_stride;
8786 dw_attr_ref at_byte_size;
8787 dw_attr_ref at_byte_stride;
8788 dw_attr_ref at_const_value;
8789 dw_attr_ref at_containing_type;
8790 dw_attr_ref at_count;
8791 dw_attr_ref at_data_location;
8792 dw_attr_ref at_data_member_location;
8793 dw_attr_ref at_decimal_scale;
8794 dw_attr_ref at_decimal_sign;
8795 dw_attr_ref at_default_value;
8796 dw_attr_ref at_digit_count;
8797 dw_attr_ref at_discr;
8798 dw_attr_ref at_discr_list;
8799 dw_attr_ref at_discr_value;
8800 dw_attr_ref at_encoding;
8801 dw_attr_ref at_endianity;
8802 dw_attr_ref at_explicit;
8803 dw_attr_ref at_is_optional;
8804 dw_attr_ref at_location;
8805 dw_attr_ref at_lower_bound;
8806 dw_attr_ref at_mutable;
8807 dw_attr_ref at_ordering;
8808 dw_attr_ref at_picture_string;
8809 dw_attr_ref at_prototyped;
8810 dw_attr_ref at_small;
8811 dw_attr_ref at_segment;
8812 dw_attr_ref at_string_length;
8813 dw_attr_ref at_threads_scaled;
8814 dw_attr_ref at_upper_bound;
8815 dw_attr_ref at_use_location;
8816 dw_attr_ref at_use_UTF8;
8817 dw_attr_ref at_variable_parameter;
8818 dw_attr_ref at_virtuality;
8819 dw_attr_ref at_visibility;
8820 dw_attr_ref at_vtable_elem_location;
8821 };
8822
8823 /* Collect the attributes that we will want to use for the checksum. */
8824
8825 static void
8826 collect_checksum_attributes (struct checksum_attributes *attrs, dw_die_ref die)
8827 {
8828 dw_attr_ref a;
8829 unsigned ix;
8830
8831 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
8832 {
8833 switch (a->dw_attr)
8834 {
8835 case DW_AT_name:
8836 attrs->at_name = a;
8837 break;
8838 case DW_AT_type:
8839 attrs->at_type = a;
8840 break;
8841 case DW_AT_friend:
8842 attrs->at_friend = a;
8843 break;
8844 case DW_AT_accessibility:
8845 attrs->at_accessibility = a;
8846 break;
8847 case DW_AT_address_class:
8848 attrs->at_address_class = a;
8849 break;
8850 case DW_AT_allocated:
8851 attrs->at_allocated = a;
8852 break;
8853 case DW_AT_artificial:
8854 attrs->at_artificial = a;
8855 break;
8856 case DW_AT_associated:
8857 attrs->at_associated = a;
8858 break;
8859 case DW_AT_binary_scale:
8860 attrs->at_binary_scale = a;
8861 break;
8862 case DW_AT_bit_offset:
8863 attrs->at_bit_offset = a;
8864 break;
8865 case DW_AT_bit_size:
8866 attrs->at_bit_size = a;
8867 break;
8868 case DW_AT_bit_stride:
8869 attrs->at_bit_stride = a;
8870 break;
8871 case DW_AT_byte_size:
8872 attrs->at_byte_size = a;
8873 break;
8874 case DW_AT_byte_stride:
8875 attrs->at_byte_stride = a;
8876 break;
8877 case DW_AT_const_value:
8878 attrs->at_const_value = a;
8879 break;
8880 case DW_AT_containing_type:
8881 attrs->at_containing_type = a;
8882 break;
8883 case DW_AT_count:
8884 attrs->at_count = a;
8885 break;
8886 case DW_AT_data_location:
8887 attrs->at_data_location = a;
8888 break;
8889 case DW_AT_data_member_location:
8890 attrs->at_data_member_location = a;
8891 break;
8892 case DW_AT_decimal_scale:
8893 attrs->at_decimal_scale = a;
8894 break;
8895 case DW_AT_decimal_sign:
8896 attrs->at_decimal_sign = a;
8897 break;
8898 case DW_AT_default_value:
8899 attrs->at_default_value = a;
8900 break;
8901 case DW_AT_digit_count:
8902 attrs->at_digit_count = a;
8903 break;
8904 case DW_AT_discr:
8905 attrs->at_discr = a;
8906 break;
8907 case DW_AT_discr_list:
8908 attrs->at_discr_list = a;
8909 break;
8910 case DW_AT_discr_value:
8911 attrs->at_discr_value = a;
8912 break;
8913 case DW_AT_encoding:
8914 attrs->at_encoding = a;
8915 break;
8916 case DW_AT_endianity:
8917 attrs->at_endianity = a;
8918 break;
8919 case DW_AT_explicit:
8920 attrs->at_explicit = a;
8921 break;
8922 case DW_AT_is_optional:
8923 attrs->at_is_optional = a;
8924 break;
8925 case DW_AT_location:
8926 attrs->at_location = a;
8927 break;
8928 case DW_AT_lower_bound:
8929 attrs->at_lower_bound = a;
8930 break;
8931 case DW_AT_mutable:
8932 attrs->at_mutable = a;
8933 break;
8934 case DW_AT_ordering:
8935 attrs->at_ordering = a;
8936 break;
8937 case DW_AT_picture_string:
8938 attrs->at_picture_string = a;
8939 break;
8940 case DW_AT_prototyped:
8941 attrs->at_prototyped = a;
8942 break;
8943 case DW_AT_small:
8944 attrs->at_small = a;
8945 break;
8946 case DW_AT_segment:
8947 attrs->at_segment = a;
8948 break;
8949 case DW_AT_string_length:
8950 attrs->at_string_length = a;
8951 break;
8952 case DW_AT_threads_scaled:
8953 attrs->at_threads_scaled = a;
8954 break;
8955 case DW_AT_upper_bound:
8956 attrs->at_upper_bound = a;
8957 break;
8958 case DW_AT_use_location:
8959 attrs->at_use_location = a;
8960 break;
8961 case DW_AT_use_UTF8:
8962 attrs->at_use_UTF8 = a;
8963 break;
8964 case DW_AT_variable_parameter:
8965 attrs->at_variable_parameter = a;
8966 break;
8967 case DW_AT_virtuality:
8968 attrs->at_virtuality = a;
8969 break;
8970 case DW_AT_visibility:
8971 attrs->at_visibility = a;
8972 break;
8973 case DW_AT_vtable_elem_location:
8974 attrs->at_vtable_elem_location = a;
8975 break;
8976 default:
8977 break;
8978 }
8979 }
8980 }
8981
8982 /* Calculate the checksum of a DIE, using an ordered subset of attributes. */
8983
8984 static void
8985 die_checksum_ordered (dw_die_ref die, struct md5_ctx *ctx, int *mark)
8986 {
8987 dw_die_ref c;
8988 dw_die_ref decl;
8989 struct checksum_attributes attrs;
8990
8991 CHECKSUM_ULEB128 ('D');
8992 CHECKSUM_ULEB128 (die->die_tag);
8993
8994 memset (&attrs, 0, sizeof (attrs));
8995
8996 decl = get_AT_ref (die, DW_AT_specification);
8997 if (decl != NULL)
8998 collect_checksum_attributes (&attrs, decl);
8999 collect_checksum_attributes (&attrs, die);
9000
9001 CHECKSUM_ATTR (attrs.at_name);
9002 CHECKSUM_ATTR (attrs.at_accessibility);
9003 CHECKSUM_ATTR (attrs.at_address_class);
9004 CHECKSUM_ATTR (attrs.at_allocated);
9005 CHECKSUM_ATTR (attrs.at_artificial);
9006 CHECKSUM_ATTR (attrs.at_associated);
9007 CHECKSUM_ATTR (attrs.at_binary_scale);
9008 CHECKSUM_ATTR (attrs.at_bit_offset);
9009 CHECKSUM_ATTR (attrs.at_bit_size);
9010 CHECKSUM_ATTR (attrs.at_bit_stride);
9011 CHECKSUM_ATTR (attrs.at_byte_size);
9012 CHECKSUM_ATTR (attrs.at_byte_stride);
9013 CHECKSUM_ATTR (attrs.at_const_value);
9014 CHECKSUM_ATTR (attrs.at_containing_type);
9015 CHECKSUM_ATTR (attrs.at_count);
9016 CHECKSUM_ATTR (attrs.at_data_location);
9017 CHECKSUM_ATTR (attrs.at_data_member_location);
9018 CHECKSUM_ATTR (attrs.at_decimal_scale);
9019 CHECKSUM_ATTR (attrs.at_decimal_sign);
9020 CHECKSUM_ATTR (attrs.at_default_value);
9021 CHECKSUM_ATTR (attrs.at_digit_count);
9022 CHECKSUM_ATTR (attrs.at_discr);
9023 CHECKSUM_ATTR (attrs.at_discr_list);
9024 CHECKSUM_ATTR (attrs.at_discr_value);
9025 CHECKSUM_ATTR (attrs.at_encoding);
9026 CHECKSUM_ATTR (attrs.at_endianity);
9027 CHECKSUM_ATTR (attrs.at_explicit);
9028 CHECKSUM_ATTR (attrs.at_is_optional);
9029 CHECKSUM_ATTR (attrs.at_location);
9030 CHECKSUM_ATTR (attrs.at_lower_bound);
9031 CHECKSUM_ATTR (attrs.at_mutable);
9032 CHECKSUM_ATTR (attrs.at_ordering);
9033 CHECKSUM_ATTR (attrs.at_picture_string);
9034 CHECKSUM_ATTR (attrs.at_prototyped);
9035 CHECKSUM_ATTR (attrs.at_small);
9036 CHECKSUM_ATTR (attrs.at_segment);
9037 CHECKSUM_ATTR (attrs.at_string_length);
9038 CHECKSUM_ATTR (attrs.at_threads_scaled);
9039 CHECKSUM_ATTR (attrs.at_upper_bound);
9040 CHECKSUM_ATTR (attrs.at_use_location);
9041 CHECKSUM_ATTR (attrs.at_use_UTF8);
9042 CHECKSUM_ATTR (attrs.at_variable_parameter);
9043 CHECKSUM_ATTR (attrs.at_virtuality);
9044 CHECKSUM_ATTR (attrs.at_visibility);
9045 CHECKSUM_ATTR (attrs.at_vtable_elem_location);
9046 CHECKSUM_ATTR (attrs.at_type);
9047 CHECKSUM_ATTR (attrs.at_friend);
9048
9049 /* Checksum the child DIEs, except for nested types and member functions. */
9050 c = die->die_child;
9051 if (c) do {
9052 dw_attr_ref name_attr;
9053
9054 c = c->die_sib;
9055 name_attr = get_AT (c, DW_AT_name);
9056 if ((is_type_die (c) || c->die_tag == DW_TAG_subprogram)
9057 && name_attr != NULL)
9058 {
9059 CHECKSUM_ULEB128 ('S');
9060 CHECKSUM_ULEB128 (c->die_tag);
9061 CHECKSUM_STRING (AT_string (name_attr));
9062 }
9063 else
9064 {
9065 /* Mark this DIE so it gets processed when unmarking. */
9066 if (c->die_mark == 0)
9067 c->die_mark = -1;
9068 die_checksum_ordered (c, ctx, mark);
9069 }
9070 } while (c != die->die_child);
9071
9072 CHECKSUM_ULEB128 (0);
9073 }
9074
9075 #undef CHECKSUM
9076 #undef CHECKSUM_STRING
9077 #undef CHECKSUM_ATTR
9078 #undef CHECKSUM_LEB128
9079 #undef CHECKSUM_ULEB128
9080
9081 /* Generate the type signature for DIE. This is computed by generating an
9082 MD5 checksum over the DIE's tag, its relevant attributes, and its
9083 children. Attributes that are references to other DIEs are processed
9084 by recursion, using the MARK field to prevent infinite recursion.
9085 If the DIE is nested inside a namespace or another type, we also
9086 need to include that context in the signature. The lower 64 bits
9087 of the resulting MD5 checksum comprise the signature. */
9088
9089 static void
9090 generate_type_signature (dw_die_ref die, comdat_type_node *type_node)
9091 {
9092 int mark;
9093 const char *name;
9094 unsigned char checksum[16];
9095 struct md5_ctx ctx;
9096 dw_die_ref decl;
9097
9098 name = get_AT_string (die, DW_AT_name);
9099 decl = get_AT_ref (die, DW_AT_specification);
9100
9101 /* First, compute a signature for just the type name (and its surrounding
9102 context, if any. This is stored in the type unit DIE for link-time
9103 ODR (one-definition rule) checking. */
9104
9105 if (is_cxx() && name != NULL)
9106 {
9107 md5_init_ctx (&ctx);
9108
9109 /* Checksum the names of surrounding namespaces and structures. */
9110 if (decl != NULL && decl->die_parent != NULL)
9111 checksum_die_context (decl->die_parent, &ctx);
9112
9113 md5_process_bytes (&die->die_tag, sizeof (die->die_tag), &ctx);
9114 md5_process_bytes (name, strlen (name) + 1, &ctx);
9115 md5_finish_ctx (&ctx, checksum);
9116
9117 add_AT_data8 (type_node->root_die, DW_AT_GNU_odr_signature, &checksum[8]);
9118 }
9119
9120 /* Next, compute the complete type signature. */
9121
9122 md5_init_ctx (&ctx);
9123 mark = 1;
9124 die->die_mark = mark;
9125
9126 /* Checksum the names of surrounding namespaces and structures. */
9127 if (decl != NULL && decl->die_parent != NULL)
9128 checksum_die_context (decl->die_parent, &ctx);
9129
9130 /* Checksum the DIE and its children. */
9131 die_checksum_ordered (die, &ctx, &mark);
9132 unmark_all_dies (die);
9133 md5_finish_ctx (&ctx, checksum);
9134
9135 /* Store the signature in the type node and link the type DIE and the
9136 type node together. */
9137 memcpy (type_node->signature, &checksum[16 - DWARF_TYPE_SIGNATURE_SIZE],
9138 DWARF_TYPE_SIGNATURE_SIZE);
9139 die->die_id.die_type_node = type_node;
9140 type_node->type_die = die;
9141
9142 /* If the DIE is a specification, link its declaration to the type node
9143 as well. */
9144 if (decl != NULL)
9145 decl->die_id.die_type_node = type_node;
9146 }
9147
9148 /* Do the location expressions look same? */
9149 static inline int
9150 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
9151 {
9152 return loc1->dw_loc_opc == loc2->dw_loc_opc
9153 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
9154 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
9155 }
9156
9157 /* Do the values look the same? */
9158 static int
9159 same_dw_val_p (const dw_val_node *v1, const dw_val_node *v2, int *mark)
9160 {
9161 dw_loc_descr_ref loc1, loc2;
9162 rtx r1, r2;
9163
9164 if (v1->val_class != v2->val_class)
9165 return 0;
9166
9167 switch (v1->val_class)
9168 {
9169 case dw_val_class_const:
9170 return v1->v.val_int == v2->v.val_int;
9171 case dw_val_class_unsigned_const:
9172 return v1->v.val_unsigned == v2->v.val_unsigned;
9173 case dw_val_class_const_double:
9174 return v1->v.val_double.high == v2->v.val_double.high
9175 && v1->v.val_double.low == v2->v.val_double.low;
9176 case dw_val_class_vec:
9177 if (v1->v.val_vec.length != v2->v.val_vec.length
9178 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
9179 return 0;
9180 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
9181 v1->v.val_vec.length * v1->v.val_vec.elt_size))
9182 return 0;
9183 return 1;
9184 case dw_val_class_flag:
9185 return v1->v.val_flag == v2->v.val_flag;
9186 case dw_val_class_str:
9187 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
9188
9189 case dw_val_class_addr:
9190 r1 = v1->v.val_addr;
9191 r2 = v2->v.val_addr;
9192 if (GET_CODE (r1) != GET_CODE (r2))
9193 return 0;
9194 return !rtx_equal_p (r1, r2);
9195
9196 case dw_val_class_offset:
9197 return v1->v.val_offset == v2->v.val_offset;
9198
9199 case dw_val_class_loc:
9200 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
9201 loc1 && loc2;
9202 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
9203 if (!same_loc_p (loc1, loc2, mark))
9204 return 0;
9205 return !loc1 && !loc2;
9206
9207 case dw_val_class_die_ref:
9208 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
9209
9210 case dw_val_class_fde_ref:
9211 case dw_val_class_vms_delta:
9212 case dw_val_class_lbl_id:
9213 case dw_val_class_lineptr:
9214 case dw_val_class_macptr:
9215 return 1;
9216
9217 case dw_val_class_file:
9218 return v1->v.val_file == v2->v.val_file;
9219
9220 case dw_val_class_data8:
9221 return !memcmp (v1->v.val_data8, v2->v.val_data8, 8);
9222
9223 default:
9224 return 1;
9225 }
9226 }
9227
9228 /* Do the attributes look the same? */
9229
9230 static int
9231 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
9232 {
9233 if (at1->dw_attr != at2->dw_attr)
9234 return 0;
9235
9236 /* We don't care that this was compiled with a different compiler
9237 snapshot; if the output is the same, that's what matters. */
9238 if (at1->dw_attr == DW_AT_producer)
9239 return 1;
9240
9241 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
9242 }
9243
9244 /* Do the dies look the same? */
9245
9246 static int
9247 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
9248 {
9249 dw_die_ref c1, c2;
9250 dw_attr_ref a1;
9251 unsigned ix;
9252
9253 /* To avoid infinite recursion. */
9254 if (die1->die_mark)
9255 return die1->die_mark == die2->die_mark;
9256 die1->die_mark = die2->die_mark = ++(*mark);
9257
9258 if (die1->die_tag != die2->die_tag)
9259 return 0;
9260
9261 if (VEC_length (dw_attr_node, die1->die_attr)
9262 != VEC_length (dw_attr_node, die2->die_attr))
9263 return 0;
9264
9265 for (ix = 0; VEC_iterate (dw_attr_node, die1->die_attr, ix, a1); ix++)
9266 if (!same_attr_p (a1, VEC_index (dw_attr_node, die2->die_attr, ix), mark))
9267 return 0;
9268
9269 c1 = die1->die_child;
9270 c2 = die2->die_child;
9271 if (! c1)
9272 {
9273 if (c2)
9274 return 0;
9275 }
9276 else
9277 for (;;)
9278 {
9279 if (!same_die_p (c1, c2, mark))
9280 return 0;
9281 c1 = c1->die_sib;
9282 c2 = c2->die_sib;
9283 if (c1 == die1->die_child)
9284 {
9285 if (c2 == die2->die_child)
9286 break;
9287 else
9288 return 0;
9289 }
9290 }
9291
9292 return 1;
9293 }
9294
9295 /* Do the dies look the same? Wrapper around same_die_p. */
9296
9297 static int
9298 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
9299 {
9300 int mark = 0;
9301 int ret = same_die_p (die1, die2, &mark);
9302
9303 unmark_all_dies (die1);
9304 unmark_all_dies (die2);
9305
9306 return ret;
9307 }
9308
9309 /* The prefix to attach to symbols on DIEs in the current comdat debug
9310 info section. */
9311 static char *comdat_symbol_id;
9312
9313 /* The index of the current symbol within the current comdat CU. */
9314 static unsigned int comdat_symbol_number;
9315
9316 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
9317 children, and set comdat_symbol_id accordingly. */
9318
9319 static void
9320 compute_section_prefix (dw_die_ref unit_die)
9321 {
9322 const char *die_name = get_AT_string (unit_die, DW_AT_name);
9323 const char *base = die_name ? lbasename (die_name) : "anonymous";
9324 char *name = XALLOCAVEC (char, strlen (base) + 64);
9325 char *p;
9326 int i, mark;
9327 unsigned char checksum[16];
9328 struct md5_ctx ctx;
9329
9330 /* Compute the checksum of the DIE, then append part of it as hex digits to
9331 the name filename of the unit. */
9332
9333 md5_init_ctx (&ctx);
9334 mark = 0;
9335 die_checksum (unit_die, &ctx, &mark);
9336 unmark_all_dies (unit_die);
9337 md5_finish_ctx (&ctx, checksum);
9338
9339 sprintf (name, "%s.", base);
9340 clean_symbol_name (name);
9341
9342 p = name + strlen (name);
9343 for (i = 0; i < 4; i++)
9344 {
9345 sprintf (p, "%.2x", checksum[i]);
9346 p += 2;
9347 }
9348
9349 comdat_symbol_id = unit_die->die_id.die_symbol = xstrdup (name);
9350 comdat_symbol_number = 0;
9351 }
9352
9353 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
9354
9355 static int
9356 is_type_die (dw_die_ref die)
9357 {
9358 switch (die->die_tag)
9359 {
9360 case DW_TAG_array_type:
9361 case DW_TAG_class_type:
9362 case DW_TAG_interface_type:
9363 case DW_TAG_enumeration_type:
9364 case DW_TAG_pointer_type:
9365 case DW_TAG_reference_type:
9366 case DW_TAG_rvalue_reference_type:
9367 case DW_TAG_string_type:
9368 case DW_TAG_structure_type:
9369 case DW_TAG_subroutine_type:
9370 case DW_TAG_union_type:
9371 case DW_TAG_ptr_to_member_type:
9372 case DW_TAG_set_type:
9373 case DW_TAG_subrange_type:
9374 case DW_TAG_base_type:
9375 case DW_TAG_const_type:
9376 case DW_TAG_file_type:
9377 case DW_TAG_packed_type:
9378 case DW_TAG_volatile_type:
9379 case DW_TAG_typedef:
9380 return 1;
9381 default:
9382 return 0;
9383 }
9384 }
9385
9386 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
9387 Basically, we want to choose the bits that are likely to be shared between
9388 compilations (types) and leave out the bits that are specific to individual
9389 compilations (functions). */
9390
9391 static int
9392 is_comdat_die (dw_die_ref c)
9393 {
9394 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
9395 we do for stabs. The advantage is a greater likelihood of sharing between
9396 objects that don't include headers in the same order (and therefore would
9397 put the base types in a different comdat). jason 8/28/00 */
9398
9399 if (c->die_tag == DW_TAG_base_type)
9400 return 0;
9401
9402 if (c->die_tag == DW_TAG_pointer_type
9403 || c->die_tag == DW_TAG_reference_type
9404 || c->die_tag == DW_TAG_rvalue_reference_type
9405 || c->die_tag == DW_TAG_const_type
9406 || c->die_tag == DW_TAG_volatile_type)
9407 {
9408 dw_die_ref t = get_AT_ref (c, DW_AT_type);
9409
9410 return t ? is_comdat_die (t) : 0;
9411 }
9412
9413 return is_type_die (c);
9414 }
9415
9416 /* Returns 1 iff C is the sort of DIE that might be referred to from another
9417 compilation unit. */
9418
9419 static int
9420 is_symbol_die (dw_die_ref c)
9421 {
9422 return (is_type_die (c)
9423 || is_declaration_die (c)
9424 || c->die_tag == DW_TAG_namespace
9425 || c->die_tag == DW_TAG_module);
9426 }
9427
9428 static char *
9429 gen_internal_sym (const char *prefix)
9430 {
9431 char buf[256];
9432
9433 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
9434 return xstrdup (buf);
9435 }
9436
9437 /* Assign symbols to all worthy DIEs under DIE. */
9438
9439 static void
9440 assign_symbol_names (dw_die_ref die)
9441 {
9442 dw_die_ref c;
9443
9444 if (is_symbol_die (die))
9445 {
9446 if (comdat_symbol_id)
9447 {
9448 char *p = XALLOCAVEC (char, strlen (comdat_symbol_id) + 64);
9449
9450 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
9451 comdat_symbol_id, comdat_symbol_number++);
9452 die->die_id.die_symbol = xstrdup (p);
9453 }
9454 else
9455 die->die_id.die_symbol = gen_internal_sym ("LDIE");
9456 }
9457
9458 FOR_EACH_CHILD (die, c, assign_symbol_names (c));
9459 }
9460
9461 struct cu_hash_table_entry
9462 {
9463 dw_die_ref cu;
9464 unsigned min_comdat_num, max_comdat_num;
9465 struct cu_hash_table_entry *next;
9466 };
9467
9468 /* Routines to manipulate hash table of CUs. */
9469 static hashval_t
9470 htab_cu_hash (const void *of)
9471 {
9472 const struct cu_hash_table_entry *const entry =
9473 (const struct cu_hash_table_entry *) of;
9474
9475 return htab_hash_string (entry->cu->die_id.die_symbol);
9476 }
9477
9478 static int
9479 htab_cu_eq (const void *of1, const void *of2)
9480 {
9481 const struct cu_hash_table_entry *const entry1 =
9482 (const struct cu_hash_table_entry *) of1;
9483 const struct die_struct *const entry2 = (const struct die_struct *) of2;
9484
9485 return !strcmp (entry1->cu->die_id.die_symbol, entry2->die_id.die_symbol);
9486 }
9487
9488 static void
9489 htab_cu_del (void *what)
9490 {
9491 struct cu_hash_table_entry *next,
9492 *entry = (struct cu_hash_table_entry *) what;
9493
9494 while (entry)
9495 {
9496 next = entry->next;
9497 free (entry);
9498 entry = next;
9499 }
9500 }
9501
9502 /* Check whether we have already seen this CU and set up SYM_NUM
9503 accordingly. */
9504 static int
9505 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
9506 {
9507 struct cu_hash_table_entry dummy;
9508 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
9509
9510 dummy.max_comdat_num = 0;
9511
9512 slot = (struct cu_hash_table_entry **)
9513 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_id.die_symbol),
9514 INSERT);
9515 entry = *slot;
9516
9517 for (; entry; last = entry, entry = entry->next)
9518 {
9519 if (same_die_p_wrap (cu, entry->cu))
9520 break;
9521 }
9522
9523 if (entry)
9524 {
9525 *sym_num = entry->min_comdat_num;
9526 return 1;
9527 }
9528
9529 entry = XCNEW (struct cu_hash_table_entry);
9530 entry->cu = cu;
9531 entry->min_comdat_num = *sym_num = last->max_comdat_num;
9532 entry->next = *slot;
9533 *slot = entry;
9534
9535 return 0;
9536 }
9537
9538 /* Record SYM_NUM to record of CU in HTABLE. */
9539 static void
9540 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
9541 {
9542 struct cu_hash_table_entry **slot, *entry;
9543
9544 slot = (struct cu_hash_table_entry **)
9545 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_id.die_symbol),
9546 NO_INSERT);
9547 entry = *slot;
9548
9549 entry->max_comdat_num = sym_num;
9550 }
9551
9552 /* Traverse the DIE (which is always comp_unit_die), and set up
9553 additional compilation units for each of the include files we see
9554 bracketed by BINCL/EINCL. */
9555
9556 static void
9557 break_out_includes (dw_die_ref die)
9558 {
9559 dw_die_ref c;
9560 dw_die_ref unit = NULL;
9561 limbo_die_node *node, **pnode;
9562 htab_t cu_hash_table;
9563
9564 c = die->die_child;
9565 if (c) do {
9566 dw_die_ref prev = c;
9567 c = c->die_sib;
9568 while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
9569 || (unit && is_comdat_die (c)))
9570 {
9571 dw_die_ref next = c->die_sib;
9572
9573 /* This DIE is for a secondary CU; remove it from the main one. */
9574 remove_child_with_prev (c, prev);
9575
9576 if (c->die_tag == DW_TAG_GNU_BINCL)
9577 unit = push_new_compile_unit (unit, c);
9578 else if (c->die_tag == DW_TAG_GNU_EINCL)
9579 unit = pop_compile_unit (unit);
9580 else
9581 add_child_die (unit, c);
9582 c = next;
9583 if (c == die->die_child)
9584 break;
9585 }
9586 } while (c != die->die_child);
9587
9588 #if 0
9589 /* We can only use this in debugging, since the frontend doesn't check
9590 to make sure that we leave every include file we enter. */
9591 gcc_assert (!unit);
9592 #endif
9593
9594 assign_symbol_names (die);
9595 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
9596 for (node = limbo_die_list, pnode = &limbo_die_list;
9597 node;
9598 node = node->next)
9599 {
9600 int is_dupl;
9601
9602 compute_section_prefix (node->die);
9603 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
9604 &comdat_symbol_number);
9605 assign_symbol_names (node->die);
9606 if (is_dupl)
9607 *pnode = node->next;
9608 else
9609 {
9610 pnode = &node->next;
9611 record_comdat_symbol_number (node->die, cu_hash_table,
9612 comdat_symbol_number);
9613 }
9614 }
9615 htab_delete (cu_hash_table);
9616 }
9617
9618 /* Return non-zero if this DIE is a declaration. */
9619
9620 static int
9621 is_declaration_die (dw_die_ref die)
9622 {
9623 dw_attr_ref a;
9624 unsigned ix;
9625
9626 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
9627 if (a->dw_attr == DW_AT_declaration)
9628 return 1;
9629
9630 return 0;
9631 }
9632
9633 /* Return non-zero if this DIE is nested inside a subprogram. */
9634
9635 static int
9636 is_nested_in_subprogram (dw_die_ref die)
9637 {
9638 dw_die_ref decl = get_AT_ref (die, DW_AT_specification);
9639
9640 if (decl == NULL)
9641 decl = die;
9642 return local_scope_p (decl);
9643 }
9644
9645 /* Return non-zero if this is a type DIE that should be moved to a
9646 COMDAT .debug_types section. */
9647
9648 static int
9649 should_move_die_to_comdat (dw_die_ref die)
9650 {
9651 switch (die->die_tag)
9652 {
9653 case DW_TAG_class_type:
9654 case DW_TAG_structure_type:
9655 case DW_TAG_enumeration_type:
9656 case DW_TAG_union_type:
9657 /* Don't move declarations, inlined instances, or types nested in a
9658 subprogram. */
9659 if (is_declaration_die (die)
9660 || get_AT (die, DW_AT_abstract_origin)
9661 || is_nested_in_subprogram (die))
9662 return 0;
9663 return 1;
9664 case DW_TAG_array_type:
9665 case DW_TAG_interface_type:
9666 case DW_TAG_pointer_type:
9667 case DW_TAG_reference_type:
9668 case DW_TAG_rvalue_reference_type:
9669 case DW_TAG_string_type:
9670 case DW_TAG_subroutine_type:
9671 case DW_TAG_ptr_to_member_type:
9672 case DW_TAG_set_type:
9673 case DW_TAG_subrange_type:
9674 case DW_TAG_base_type:
9675 case DW_TAG_const_type:
9676 case DW_TAG_file_type:
9677 case DW_TAG_packed_type:
9678 case DW_TAG_volatile_type:
9679 case DW_TAG_typedef:
9680 default:
9681 return 0;
9682 }
9683 }
9684
9685 /* Make a clone of DIE. */
9686
9687 static dw_die_ref
9688 clone_die (dw_die_ref die)
9689 {
9690 dw_die_ref clone;
9691 dw_attr_ref a;
9692 unsigned ix;
9693
9694 clone = ggc_alloc_cleared_die_node ();
9695 clone->die_tag = die->die_tag;
9696
9697 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
9698 add_dwarf_attr (clone, a);
9699
9700 return clone;
9701 }
9702
9703 /* Make a clone of the tree rooted at DIE. */
9704
9705 static dw_die_ref
9706 clone_tree (dw_die_ref die)
9707 {
9708 dw_die_ref c;
9709 dw_die_ref clone = clone_die (die);
9710
9711 FOR_EACH_CHILD (die, c, add_child_die (clone, clone_tree(c)));
9712
9713 return clone;
9714 }
9715
9716 /* Make a clone of DIE as a declaration. */
9717
9718 static dw_die_ref
9719 clone_as_declaration (dw_die_ref die)
9720 {
9721 dw_die_ref clone;
9722 dw_die_ref decl;
9723 dw_attr_ref a;
9724 unsigned ix;
9725
9726 /* If the DIE is already a declaration, just clone it. */
9727 if (is_declaration_die (die))
9728 return clone_die (die);
9729
9730 /* If the DIE is a specification, just clone its declaration DIE. */
9731 decl = get_AT_ref (die, DW_AT_specification);
9732 if (decl != NULL)
9733 return clone_die (decl);
9734
9735 clone = ggc_alloc_cleared_die_node ();
9736 clone->die_tag = die->die_tag;
9737
9738 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
9739 {
9740 /* We don't want to copy over all attributes.
9741 For example we don't want DW_AT_byte_size because otherwise we will no
9742 longer have a declaration and GDB will treat it as a definition. */
9743
9744 switch (a->dw_attr)
9745 {
9746 case DW_AT_artificial:
9747 case DW_AT_containing_type:
9748 case DW_AT_external:
9749 case DW_AT_name:
9750 case DW_AT_type:
9751 case DW_AT_virtuality:
9752 case DW_AT_linkage_name:
9753 case DW_AT_MIPS_linkage_name:
9754 add_dwarf_attr (clone, a);
9755 break;
9756 case DW_AT_byte_size:
9757 default:
9758 break;
9759 }
9760 }
9761
9762 if (die->die_id.die_type_node)
9763 add_AT_die_ref (clone, DW_AT_signature, die);
9764
9765 add_AT_flag (clone, DW_AT_declaration, 1);
9766 return clone;
9767 }
9768
9769 /* Copy the declaration context to the new compile unit DIE. This includes
9770 any surrounding namespace or type declarations. If the DIE has an
9771 AT_specification attribute, it also includes attributes and children
9772 attached to the specification. */
9773
9774 static void
9775 copy_declaration_context (dw_die_ref unit, dw_die_ref die)
9776 {
9777 dw_die_ref decl;
9778 dw_die_ref new_decl;
9779
9780 decl = get_AT_ref (die, DW_AT_specification);
9781 if (decl == NULL)
9782 decl = die;
9783 else
9784 {
9785 unsigned ix;
9786 dw_die_ref c;
9787 dw_attr_ref a;
9788
9789 /* Copy the type node pointer from the new DIE to the original
9790 declaration DIE so we can forward references later. */
9791 decl->die_id.die_type_node = die->die_id.die_type_node;
9792
9793 remove_AT (die, DW_AT_specification);
9794
9795 for (ix = 0; VEC_iterate (dw_attr_node, decl->die_attr, ix, a); ix++)
9796 {
9797 if (a->dw_attr != DW_AT_name
9798 && a->dw_attr != DW_AT_declaration
9799 && a->dw_attr != DW_AT_external)
9800 add_dwarf_attr (die, a);
9801 }
9802
9803 FOR_EACH_CHILD (decl, c, add_child_die (die, clone_tree(c)));
9804 }
9805
9806 if (decl->die_parent != NULL
9807 && decl->die_parent->die_tag != DW_TAG_compile_unit
9808 && decl->die_parent->die_tag != DW_TAG_type_unit)
9809 {
9810 new_decl = copy_ancestor_tree (unit, decl, NULL);
9811 if (new_decl != NULL)
9812 {
9813 remove_AT (new_decl, DW_AT_signature);
9814 add_AT_specification (die, new_decl);
9815 }
9816 }
9817 }
9818
9819 /* Generate the skeleton ancestor tree for the given NODE, then clone
9820 the DIE and add the clone into the tree. */
9821
9822 static void
9823 generate_skeleton_ancestor_tree (skeleton_chain_node *node)
9824 {
9825 if (node->new_die != NULL)
9826 return;
9827
9828 node->new_die = clone_as_declaration (node->old_die);
9829
9830 if (node->parent != NULL)
9831 {
9832 generate_skeleton_ancestor_tree (node->parent);
9833 add_child_die (node->parent->new_die, node->new_die);
9834 }
9835 }
9836
9837 /* Generate a skeleton tree of DIEs containing any declarations that are
9838 found in the original tree. We traverse the tree looking for declaration
9839 DIEs, and construct the skeleton from the bottom up whenever we find one. */
9840
9841 static void
9842 generate_skeleton_bottom_up (skeleton_chain_node *parent)
9843 {
9844 skeleton_chain_node node;
9845 dw_die_ref c;
9846 dw_die_ref first;
9847 dw_die_ref prev = NULL;
9848 dw_die_ref next = NULL;
9849
9850 node.parent = parent;
9851
9852 first = c = parent->old_die->die_child;
9853 if (c)
9854 next = c->die_sib;
9855 if (c) do {
9856 if (prev == NULL || prev->die_sib == c)
9857 prev = c;
9858 c = next;
9859 next = (c == first ? NULL : c->die_sib);
9860 node.old_die = c;
9861 node.new_die = NULL;
9862 if (is_declaration_die (c))
9863 {
9864 /* Clone the existing DIE, move the original to the skeleton
9865 tree (which is in the main CU), and put the clone, with
9866 all the original's children, where the original came from. */
9867 dw_die_ref clone = clone_die (c);
9868 move_all_children (c, clone);
9869
9870 replace_child (c, clone, prev);
9871 generate_skeleton_ancestor_tree (parent);
9872 add_child_die (parent->new_die, c);
9873 node.new_die = c;
9874 c = clone;
9875 }
9876 generate_skeleton_bottom_up (&node);
9877 } while (next != NULL);
9878 }
9879
9880 /* Wrapper function for generate_skeleton_bottom_up. */
9881
9882 static dw_die_ref
9883 generate_skeleton (dw_die_ref die)
9884 {
9885 skeleton_chain_node node;
9886
9887 node.old_die = die;
9888 node.new_die = NULL;
9889 node.parent = NULL;
9890
9891 /* If this type definition is nested inside another type,
9892 always leave at least a declaration in its place. */
9893 if (die->die_parent != NULL && is_type_die (die->die_parent))
9894 node.new_die = clone_as_declaration (die);
9895
9896 generate_skeleton_bottom_up (&node);
9897 return node.new_die;
9898 }
9899
9900 /* Remove the DIE from its parent, possibly replacing it with a cloned
9901 declaration. The original DIE will be moved to a new compile unit
9902 so that existing references to it follow it to the new location. If
9903 any of the original DIE's descendants is a declaration, we need to
9904 replace the original DIE with a skeleton tree and move the
9905 declarations back into the skeleton tree. */
9906
9907 static dw_die_ref
9908 remove_child_or_replace_with_skeleton (dw_die_ref child, dw_die_ref prev)
9909 {
9910 dw_die_ref skeleton;
9911
9912 skeleton = generate_skeleton (child);
9913 if (skeleton == NULL)
9914 remove_child_with_prev (child, prev);
9915 else
9916 {
9917 skeleton->die_id.die_type_node = child->die_id.die_type_node;
9918 replace_child (child, skeleton, prev);
9919 }
9920
9921 return skeleton;
9922 }
9923
9924 /* Traverse the DIE and set up additional .debug_types sections for each
9925 type worthy of being placed in a COMDAT section. */
9926
9927 static void
9928 break_out_comdat_types (dw_die_ref die)
9929 {
9930 dw_die_ref c;
9931 dw_die_ref first;
9932 dw_die_ref prev = NULL;
9933 dw_die_ref next = NULL;
9934 dw_die_ref unit = NULL;
9935
9936 first = c = die->die_child;
9937 if (c)
9938 next = c->die_sib;
9939 if (c) do {
9940 if (prev == NULL || prev->die_sib == c)
9941 prev = c;
9942 c = next;
9943 next = (c == first ? NULL : c->die_sib);
9944 if (should_move_die_to_comdat (c))
9945 {
9946 dw_die_ref replacement;
9947 comdat_type_node_ref type_node;
9948
9949 /* Create a new type unit DIE as the root for the new tree, and
9950 add it to the list of comdat types. */
9951 unit = new_die (DW_TAG_type_unit, NULL, NULL);
9952 add_AT_unsigned (unit, DW_AT_language,
9953 get_AT_unsigned (comp_unit_die, DW_AT_language));
9954 type_node = ggc_alloc_cleared_comdat_type_node ();
9955 type_node->root_die = unit;
9956 type_node->next = comdat_type_list;
9957 comdat_type_list = type_node;
9958
9959 /* Generate the type signature. */
9960 generate_type_signature (c, type_node);
9961
9962 /* Copy the declaration context, attributes, and children of the
9963 declaration into the new compile unit DIE. */
9964 copy_declaration_context (unit, c);
9965
9966 /* Remove this DIE from the main CU. */
9967 replacement = remove_child_or_replace_with_skeleton (c, prev);
9968
9969 /* Break out nested types into their own type units. */
9970 break_out_comdat_types (c);
9971
9972 /* Add the DIE to the new compunit. */
9973 add_child_die (unit, c);
9974
9975 if (replacement != NULL)
9976 c = replacement;
9977 }
9978 else if (c->die_tag == DW_TAG_namespace
9979 || c->die_tag == DW_TAG_class_type
9980 || c->die_tag == DW_TAG_structure_type
9981 || c->die_tag == DW_TAG_union_type)
9982 {
9983 /* Look for nested types that can be broken out. */
9984 break_out_comdat_types (c);
9985 }
9986 } while (next != NULL);
9987 }
9988
9989 /* Structure to map a DIE in one CU to its copy in a comdat type unit. */
9990
9991 struct decl_table_entry
9992 {
9993 dw_die_ref orig;
9994 dw_die_ref copy;
9995 };
9996
9997 /* Routines to manipulate hash table of copied declarations. */
9998
9999 static hashval_t
10000 htab_decl_hash (const void *of)
10001 {
10002 const struct decl_table_entry *const entry =
10003 (const struct decl_table_entry *) of;
10004
10005 return htab_hash_pointer (entry->orig);
10006 }
10007
10008 static int
10009 htab_decl_eq (const void *of1, const void *of2)
10010 {
10011 const struct decl_table_entry *const entry1 =
10012 (const struct decl_table_entry *) of1;
10013 const struct die_struct *const entry2 = (const struct die_struct *) of2;
10014
10015 return entry1->orig == entry2;
10016 }
10017
10018 static void
10019 htab_decl_del (void *what)
10020 {
10021 struct decl_table_entry *entry = (struct decl_table_entry *) what;
10022
10023 free (entry);
10024 }
10025
10026 /* Copy DIE and its ancestors, up to, but not including, the compile unit
10027 or type unit entry, to a new tree. Adds the new tree to UNIT and returns
10028 a pointer to the copy of DIE. If DECL_TABLE is provided, it is used
10029 to check if the ancestor has already been copied into UNIT. */
10030
10031 static dw_die_ref
10032 copy_ancestor_tree (dw_die_ref unit, dw_die_ref die, htab_t decl_table)
10033 {
10034 dw_die_ref parent = die->die_parent;
10035 dw_die_ref new_parent = unit;
10036 dw_die_ref copy;
10037 void **slot = NULL;
10038 struct decl_table_entry *entry = NULL;
10039
10040 if (decl_table)
10041 {
10042 /* Check if the entry has already been copied to UNIT. */
10043 slot = htab_find_slot_with_hash (decl_table, die,
10044 htab_hash_pointer (die), INSERT);
10045 if (*slot != HTAB_EMPTY_ENTRY)
10046 {
10047 entry = (struct decl_table_entry *) *slot;
10048 return entry->copy;
10049 }
10050
10051 /* Record in DECL_TABLE that DIE has been copied to UNIT. */
10052 entry = XCNEW (struct decl_table_entry);
10053 entry->orig = die;
10054 entry->copy = NULL;
10055 *slot = entry;
10056 }
10057
10058 if (parent != NULL)
10059 {
10060 dw_die_ref spec = get_AT_ref (parent, DW_AT_specification);
10061 if (spec != NULL)
10062 parent = spec;
10063 if (parent->die_tag != DW_TAG_compile_unit
10064 && parent->die_tag != DW_TAG_type_unit)
10065 new_parent = copy_ancestor_tree (unit, parent, decl_table);
10066 }
10067
10068 copy = clone_as_declaration (die);
10069 add_child_die (new_parent, copy);
10070
10071 if (decl_table != NULL)
10072 {
10073 /* Record the pointer to the copy. */
10074 entry->copy = copy;
10075 }
10076
10077 return copy;
10078 }
10079
10080 /* Walk the DIE and its children, looking for references to incomplete
10081 or trivial types that are unmarked (i.e., that are not in the current
10082 type_unit). */
10083
10084 static void
10085 copy_decls_walk (dw_die_ref unit, dw_die_ref die, htab_t decl_table)
10086 {
10087 dw_die_ref c;
10088 dw_attr_ref a;
10089 unsigned ix;
10090
10091 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
10092 {
10093 if (AT_class (a) == dw_val_class_die_ref)
10094 {
10095 dw_die_ref targ = AT_ref (a);
10096 comdat_type_node_ref type_node = targ->die_id.die_type_node;
10097 void **slot;
10098 struct decl_table_entry *entry;
10099
10100 if (targ->die_mark != 0 || type_node != NULL)
10101 continue;
10102
10103 slot = htab_find_slot_with_hash (decl_table, targ,
10104 htab_hash_pointer (targ), INSERT);
10105
10106 if (*slot != HTAB_EMPTY_ENTRY)
10107 {
10108 /* TARG has already been copied, so we just need to
10109 modify the reference to point to the copy. */
10110 entry = (struct decl_table_entry *) *slot;
10111 a->dw_attr_val.v.val_die_ref.die = entry->copy;
10112 }
10113 else
10114 {
10115 dw_die_ref parent = unit;
10116 dw_die_ref copy = clone_tree (targ);
10117
10118 /* Make sure the cloned tree is marked as part of the
10119 type unit. */
10120 mark_dies (copy);
10121
10122 /* Record in DECL_TABLE that TARG has been copied.
10123 Need to do this now, before the recursive call,
10124 because DECL_TABLE may be expanded and SLOT
10125 would no longer be a valid pointer. */
10126 entry = XCNEW (struct decl_table_entry);
10127 entry->orig = targ;
10128 entry->copy = copy;
10129 *slot = entry;
10130
10131 /* If TARG has surrounding context, copy its ancestor tree
10132 into the new type unit. */
10133 if (targ->die_parent != NULL
10134 && targ->die_parent->die_tag != DW_TAG_compile_unit
10135 && targ->die_parent->die_tag != DW_TAG_type_unit)
10136 parent = copy_ancestor_tree (unit, targ->die_parent,
10137 decl_table);
10138
10139 add_child_die (parent, copy);
10140 a->dw_attr_val.v.val_die_ref.die = copy;
10141
10142 /* Make sure the newly-copied DIE is walked. If it was
10143 installed in a previously-added context, it won't
10144 get visited otherwise. */
10145 if (parent != unit)
10146 {
10147 /* Find the highest point of the newly-added tree,
10148 mark each node along the way, and walk from there. */
10149 parent->die_mark = 1;
10150 while (parent->die_parent
10151 && parent->die_parent->die_mark == 0)
10152 {
10153 parent = parent->die_parent;
10154 parent->die_mark = 1;
10155 }
10156 copy_decls_walk (unit, parent, decl_table);
10157 }
10158 }
10159 }
10160 }
10161
10162 FOR_EACH_CHILD (die, c, copy_decls_walk (unit, c, decl_table));
10163 }
10164
10165 /* Copy declarations for "unworthy" types into the new comdat section.
10166 Incomplete types, modified types, and certain other types aren't broken
10167 out into comdat sections of their own, so they don't have a signature,
10168 and we need to copy the declaration into the same section so that we
10169 don't have an external reference. */
10170
10171 static void
10172 copy_decls_for_unworthy_types (dw_die_ref unit)
10173 {
10174 htab_t decl_table;
10175
10176 mark_dies (unit);
10177 decl_table = htab_create (10, htab_decl_hash, htab_decl_eq, htab_decl_del);
10178 copy_decls_walk (unit, unit, decl_table);
10179 htab_delete (decl_table);
10180 unmark_dies (unit);
10181 }
10182
10183 /* Traverse the DIE and add a sibling attribute if it may have the
10184 effect of speeding up access to siblings. To save some space,
10185 avoid generating sibling attributes for DIE's without children. */
10186
10187 static void
10188 add_sibling_attributes (dw_die_ref die)
10189 {
10190 dw_die_ref c;
10191
10192 if (! die->die_child)
10193 return;
10194
10195 if (die->die_parent && die != die->die_parent->die_child)
10196 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
10197
10198 FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
10199 }
10200
10201 /* Output all location lists for the DIE and its children. */
10202
10203 static void
10204 output_location_lists (dw_die_ref die)
10205 {
10206 dw_die_ref c;
10207 dw_attr_ref a;
10208 unsigned ix;
10209
10210 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
10211 if (AT_class (a) == dw_val_class_loc_list)
10212 output_loc_list (AT_loc_list (a));
10213
10214 FOR_EACH_CHILD (die, c, output_location_lists (c));
10215 }
10216
10217 /* The format of each DIE (and its attribute value pairs) is encoded in an
10218 abbreviation table. This routine builds the abbreviation table and assigns
10219 a unique abbreviation id for each abbreviation entry. The children of each
10220 die are visited recursively. */
10221
10222 static void
10223 build_abbrev_table (dw_die_ref die)
10224 {
10225 unsigned long abbrev_id;
10226 unsigned int n_alloc;
10227 dw_die_ref c;
10228 dw_attr_ref a;
10229 unsigned ix;
10230
10231 /* Scan the DIE references, and mark as external any that refer to
10232 DIEs from other CUs (i.e. those which are not marked). */
10233 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
10234 if (AT_class (a) == dw_val_class_die_ref
10235 && AT_ref (a)->die_mark == 0)
10236 {
10237 gcc_assert (dwarf_version >= 4 || AT_ref (a)->die_id.die_symbol);
10238 set_AT_ref_external (a, 1);
10239 }
10240
10241 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
10242 {
10243 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
10244 dw_attr_ref die_a, abbrev_a;
10245 unsigned ix;
10246 bool ok = true;
10247
10248 if (abbrev->die_tag != die->die_tag)
10249 continue;
10250 if ((abbrev->die_child != NULL) != (die->die_child != NULL))
10251 continue;
10252
10253 if (VEC_length (dw_attr_node, abbrev->die_attr)
10254 != VEC_length (dw_attr_node, die->die_attr))
10255 continue;
10256
10257 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, die_a); ix++)
10258 {
10259 abbrev_a = VEC_index (dw_attr_node, abbrev->die_attr, ix);
10260 if ((abbrev_a->dw_attr != die_a->dw_attr)
10261 || (value_format (abbrev_a) != value_format (die_a)))
10262 {
10263 ok = false;
10264 break;
10265 }
10266 }
10267 if (ok)
10268 break;
10269 }
10270
10271 if (abbrev_id >= abbrev_die_table_in_use)
10272 {
10273 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
10274 {
10275 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
10276 abbrev_die_table = GGC_RESIZEVEC (dw_die_ref, abbrev_die_table,
10277 n_alloc);
10278
10279 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
10280 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
10281 abbrev_die_table_allocated = n_alloc;
10282 }
10283
10284 ++abbrev_die_table_in_use;
10285 abbrev_die_table[abbrev_id] = die;
10286 }
10287
10288 die->die_abbrev = abbrev_id;
10289 FOR_EACH_CHILD (die, c, build_abbrev_table (c));
10290 }
10291 \f
10292 /* Return the power-of-two number of bytes necessary to represent VALUE. */
10293
10294 static int
10295 constant_size (unsigned HOST_WIDE_INT value)
10296 {
10297 int log;
10298
10299 if (value == 0)
10300 log = 0;
10301 else
10302 log = floor_log2 (value);
10303
10304 log = log / 8;
10305 log = 1 << (floor_log2 (log) + 1);
10306
10307 return log;
10308 }
10309
10310 /* Return the size of a DIE as it is represented in the
10311 .debug_info section. */
10312
10313 static unsigned long
10314 size_of_die (dw_die_ref die)
10315 {
10316 unsigned long size = 0;
10317 dw_attr_ref a;
10318 unsigned ix;
10319
10320 size += size_of_uleb128 (die->die_abbrev);
10321 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
10322 {
10323 switch (AT_class (a))
10324 {
10325 case dw_val_class_addr:
10326 size += DWARF2_ADDR_SIZE;
10327 break;
10328 case dw_val_class_offset:
10329 size += DWARF_OFFSET_SIZE;
10330 break;
10331 case dw_val_class_loc:
10332 {
10333 unsigned long lsize = size_of_locs (AT_loc (a));
10334
10335 /* Block length. */
10336 if (dwarf_version >= 4)
10337 size += size_of_uleb128 (lsize);
10338 else
10339 size += constant_size (lsize);
10340 size += lsize;
10341 }
10342 break;
10343 case dw_val_class_loc_list:
10344 size += DWARF_OFFSET_SIZE;
10345 break;
10346 case dw_val_class_range_list:
10347 size += DWARF_OFFSET_SIZE;
10348 break;
10349 case dw_val_class_const:
10350 size += size_of_sleb128 (AT_int (a));
10351 break;
10352 case dw_val_class_unsigned_const:
10353 size += constant_size (AT_unsigned (a));
10354 break;
10355 case dw_val_class_const_double:
10356 size += 2 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
10357 if (HOST_BITS_PER_WIDE_INT >= 64)
10358 size++; /* block */
10359 break;
10360 case dw_val_class_vec:
10361 size += constant_size (a->dw_attr_val.v.val_vec.length
10362 * a->dw_attr_val.v.val_vec.elt_size)
10363 + a->dw_attr_val.v.val_vec.length
10364 * a->dw_attr_val.v.val_vec.elt_size; /* block */
10365 break;
10366 case dw_val_class_flag:
10367 if (dwarf_version >= 4)
10368 /* Currently all add_AT_flag calls pass in 1 as last argument,
10369 so DW_FORM_flag_present can be used. If that ever changes,
10370 we'll need to use DW_FORM_flag and have some optimization
10371 in build_abbrev_table that will change those to
10372 DW_FORM_flag_present if it is set to 1 in all DIEs using
10373 the same abbrev entry. */
10374 gcc_assert (a->dw_attr_val.v.val_flag == 1);
10375 else
10376 size += 1;
10377 break;
10378 case dw_val_class_die_ref:
10379 if (AT_ref_external (a))
10380 {
10381 /* In DWARF4, we use DW_FORM_sig8; for earlier versions
10382 we use DW_FORM_ref_addr. In DWARF2, DW_FORM_ref_addr
10383 is sized by target address length, whereas in DWARF3
10384 it's always sized as an offset. */
10385 if (dwarf_version >= 4)
10386 size += DWARF_TYPE_SIGNATURE_SIZE;
10387 else if (dwarf_version == 2)
10388 size += DWARF2_ADDR_SIZE;
10389 else
10390 size += DWARF_OFFSET_SIZE;
10391 }
10392 else
10393 size += DWARF_OFFSET_SIZE;
10394 break;
10395 case dw_val_class_fde_ref:
10396 size += DWARF_OFFSET_SIZE;
10397 break;
10398 case dw_val_class_lbl_id:
10399 size += DWARF2_ADDR_SIZE;
10400 break;
10401 case dw_val_class_lineptr:
10402 case dw_val_class_macptr:
10403 size += DWARF_OFFSET_SIZE;
10404 break;
10405 case dw_val_class_str:
10406 if (AT_string_form (a) == DW_FORM_strp)
10407 size += DWARF_OFFSET_SIZE;
10408 else
10409 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
10410 break;
10411 case dw_val_class_file:
10412 size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
10413 break;
10414 case dw_val_class_data8:
10415 size += 8;
10416 break;
10417 case dw_val_class_vms_delta:
10418 size += DWARF_OFFSET_SIZE;
10419 break;
10420 default:
10421 gcc_unreachable ();
10422 }
10423 }
10424
10425 return size;
10426 }
10427
10428 /* Size the debugging information associated with a given DIE. Visits the
10429 DIE's children recursively. Updates the global variable next_die_offset, on
10430 each time through. Uses the current value of next_die_offset to update the
10431 die_offset field in each DIE. */
10432
10433 static void
10434 calc_die_sizes (dw_die_ref die)
10435 {
10436 dw_die_ref c;
10437
10438 die->die_offset = next_die_offset;
10439 next_die_offset += size_of_die (die);
10440
10441 FOR_EACH_CHILD (die, c, calc_die_sizes (c));
10442
10443 if (die->die_child != NULL)
10444 /* Count the null byte used to terminate sibling lists. */
10445 next_die_offset += 1;
10446 }
10447
10448 /* Set the marks for a die and its children. We do this so
10449 that we know whether or not a reference needs to use FORM_ref_addr; only
10450 DIEs in the same CU will be marked. We used to clear out the offset
10451 and use that as the flag, but ran into ordering problems. */
10452
10453 static void
10454 mark_dies (dw_die_ref die)
10455 {
10456 dw_die_ref c;
10457
10458 gcc_assert (!die->die_mark);
10459
10460 die->die_mark = 1;
10461 FOR_EACH_CHILD (die, c, mark_dies (c));
10462 }
10463
10464 /* Clear the marks for a die and its children. */
10465
10466 static void
10467 unmark_dies (dw_die_ref die)
10468 {
10469 dw_die_ref c;
10470
10471 if (dwarf_version < 4)
10472 gcc_assert (die->die_mark);
10473
10474 die->die_mark = 0;
10475 FOR_EACH_CHILD (die, c, unmark_dies (c));
10476 }
10477
10478 /* Clear the marks for a die, its children and referred dies. */
10479
10480 static void
10481 unmark_all_dies (dw_die_ref die)
10482 {
10483 dw_die_ref c;
10484 dw_attr_ref a;
10485 unsigned ix;
10486
10487 if (!die->die_mark)
10488 return;
10489 die->die_mark = 0;
10490
10491 FOR_EACH_CHILD (die, c, unmark_all_dies (c));
10492
10493 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
10494 if (AT_class (a) == dw_val_class_die_ref)
10495 unmark_all_dies (AT_ref (a));
10496 }
10497
10498 /* Return the size of the .debug_pubnames or .debug_pubtypes table
10499 generated for the compilation unit. */
10500
10501 static unsigned long
10502 size_of_pubnames (VEC (pubname_entry, gc) * names)
10503 {
10504 unsigned long size;
10505 unsigned i;
10506 pubname_ref p;
10507
10508 size = DWARF_PUBNAMES_HEADER_SIZE;
10509 for (i = 0; VEC_iterate (pubname_entry, names, i, p); i++)
10510 if (names != pubtype_table
10511 || p->die->die_offset != 0
10512 || !flag_eliminate_unused_debug_types)
10513 size += strlen (p->name) + DWARF_OFFSET_SIZE + 1;
10514
10515 size += DWARF_OFFSET_SIZE;
10516 return size;
10517 }
10518
10519 /* Return the size of the information in the .debug_aranges section. */
10520
10521 static unsigned long
10522 size_of_aranges (void)
10523 {
10524 unsigned long size;
10525
10526 size = DWARF_ARANGES_HEADER_SIZE;
10527
10528 /* Count the address/length pair for this compilation unit. */
10529 if (text_section_used)
10530 size += 2 * DWARF2_ADDR_SIZE;
10531 if (cold_text_section_used)
10532 size += 2 * DWARF2_ADDR_SIZE;
10533 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
10534
10535 /* Count the two zero words used to terminated the address range table. */
10536 size += 2 * DWARF2_ADDR_SIZE;
10537 return size;
10538 }
10539 \f
10540 /* Select the encoding of an attribute value. */
10541
10542 static enum dwarf_form
10543 value_format (dw_attr_ref a)
10544 {
10545 switch (a->dw_attr_val.val_class)
10546 {
10547 case dw_val_class_addr:
10548 /* Only very few attributes allow DW_FORM_addr. */
10549 switch (a->dw_attr)
10550 {
10551 case DW_AT_low_pc:
10552 case DW_AT_high_pc:
10553 case DW_AT_entry_pc:
10554 case DW_AT_trampoline:
10555 return DW_FORM_addr;
10556 default:
10557 break;
10558 }
10559 switch (DWARF2_ADDR_SIZE)
10560 {
10561 case 1:
10562 return DW_FORM_data1;
10563 case 2:
10564 return DW_FORM_data2;
10565 case 4:
10566 return DW_FORM_data4;
10567 case 8:
10568 return DW_FORM_data8;
10569 default:
10570 gcc_unreachable ();
10571 }
10572 case dw_val_class_range_list:
10573 case dw_val_class_loc_list:
10574 if (dwarf_version >= 4)
10575 return DW_FORM_sec_offset;
10576 /* FALLTHRU */
10577 case dw_val_class_vms_delta:
10578 case dw_val_class_offset:
10579 switch (DWARF_OFFSET_SIZE)
10580 {
10581 case 4:
10582 return DW_FORM_data4;
10583 case 8:
10584 return DW_FORM_data8;
10585 default:
10586 gcc_unreachable ();
10587 }
10588 case dw_val_class_loc:
10589 if (dwarf_version >= 4)
10590 return DW_FORM_exprloc;
10591 switch (constant_size (size_of_locs (AT_loc (a))))
10592 {
10593 case 1:
10594 return DW_FORM_block1;
10595 case 2:
10596 return DW_FORM_block2;
10597 default:
10598 gcc_unreachable ();
10599 }
10600 case dw_val_class_const:
10601 return DW_FORM_sdata;
10602 case dw_val_class_unsigned_const:
10603 switch (constant_size (AT_unsigned (a)))
10604 {
10605 case 1:
10606 return DW_FORM_data1;
10607 case 2:
10608 return DW_FORM_data2;
10609 case 4:
10610 return DW_FORM_data4;
10611 case 8:
10612 return DW_FORM_data8;
10613 default:
10614 gcc_unreachable ();
10615 }
10616 case dw_val_class_const_double:
10617 switch (HOST_BITS_PER_WIDE_INT)
10618 {
10619 case 8:
10620 return DW_FORM_data2;
10621 case 16:
10622 return DW_FORM_data4;
10623 case 32:
10624 return DW_FORM_data8;
10625 case 64:
10626 default:
10627 return DW_FORM_block1;
10628 }
10629 case dw_val_class_vec:
10630 switch (constant_size (a->dw_attr_val.v.val_vec.length
10631 * a->dw_attr_val.v.val_vec.elt_size))
10632 {
10633 case 1:
10634 return DW_FORM_block1;
10635 case 2:
10636 return DW_FORM_block2;
10637 case 4:
10638 return DW_FORM_block4;
10639 default:
10640 gcc_unreachable ();
10641 }
10642 case dw_val_class_flag:
10643 if (dwarf_version >= 4)
10644 {
10645 /* Currently all add_AT_flag calls pass in 1 as last argument,
10646 so DW_FORM_flag_present can be used. If that ever changes,
10647 we'll need to use DW_FORM_flag and have some optimization
10648 in build_abbrev_table that will change those to
10649 DW_FORM_flag_present if it is set to 1 in all DIEs using
10650 the same abbrev entry. */
10651 gcc_assert (a->dw_attr_val.v.val_flag == 1);
10652 return DW_FORM_flag_present;
10653 }
10654 return DW_FORM_flag;
10655 case dw_val_class_die_ref:
10656 if (AT_ref_external (a))
10657 return dwarf_version >= 4 ? DW_FORM_sig8 : DW_FORM_ref_addr;
10658 else
10659 return DW_FORM_ref;
10660 case dw_val_class_fde_ref:
10661 return DW_FORM_data;
10662 case dw_val_class_lbl_id:
10663 return DW_FORM_addr;
10664 case dw_val_class_lineptr:
10665 case dw_val_class_macptr:
10666 return dwarf_version >= 4 ? DW_FORM_sec_offset : DW_FORM_data;
10667 case dw_val_class_str:
10668 return AT_string_form (a);
10669 case dw_val_class_file:
10670 switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
10671 {
10672 case 1:
10673 return DW_FORM_data1;
10674 case 2:
10675 return DW_FORM_data2;
10676 case 4:
10677 return DW_FORM_data4;
10678 default:
10679 gcc_unreachable ();
10680 }
10681
10682 case dw_val_class_data8:
10683 return DW_FORM_data8;
10684
10685 default:
10686 gcc_unreachable ();
10687 }
10688 }
10689
10690 /* Output the encoding of an attribute value. */
10691
10692 static void
10693 output_value_format (dw_attr_ref a)
10694 {
10695 enum dwarf_form form = value_format (a);
10696
10697 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
10698 }
10699
10700 /* Output the .debug_abbrev section which defines the DIE abbreviation
10701 table. */
10702
10703 static void
10704 output_abbrev_section (void)
10705 {
10706 unsigned long abbrev_id;
10707
10708 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
10709 {
10710 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
10711 unsigned ix;
10712 dw_attr_ref a_attr;
10713
10714 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
10715 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
10716 dwarf_tag_name (abbrev->die_tag));
10717
10718 if (abbrev->die_child != NULL)
10719 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
10720 else
10721 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
10722
10723 for (ix = 0; VEC_iterate (dw_attr_node, abbrev->die_attr, ix, a_attr);
10724 ix++)
10725 {
10726 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
10727 dwarf_attr_name (a_attr->dw_attr));
10728 output_value_format (a_attr);
10729 }
10730
10731 dw2_asm_output_data (1, 0, NULL);
10732 dw2_asm_output_data (1, 0, NULL);
10733 }
10734
10735 /* Terminate the table. */
10736 dw2_asm_output_data (1, 0, NULL);
10737 }
10738
10739 /* Output a symbol we can use to refer to this DIE from another CU. */
10740
10741 static inline void
10742 output_die_symbol (dw_die_ref die)
10743 {
10744 char *sym = die->die_id.die_symbol;
10745
10746 if (sym == 0)
10747 return;
10748
10749 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
10750 /* We make these global, not weak; if the target doesn't support
10751 .linkonce, it doesn't support combining the sections, so debugging
10752 will break. */
10753 targetm.asm_out.globalize_label (asm_out_file, sym);
10754
10755 ASM_OUTPUT_LABEL (asm_out_file, sym);
10756 }
10757
10758 /* Return a new location list, given the begin and end range, and the
10759 expression. */
10760
10761 static inline dw_loc_list_ref
10762 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
10763 const char *section)
10764 {
10765 dw_loc_list_ref retlist = ggc_alloc_cleared_dw_loc_list_node ();
10766
10767 retlist->begin = begin;
10768 retlist->end = end;
10769 retlist->expr = expr;
10770 retlist->section = section;
10771
10772 return retlist;
10773 }
10774
10775 /* Generate a new internal symbol for this location list node, if it
10776 hasn't got one yet. */
10777
10778 static inline void
10779 gen_llsym (dw_loc_list_ref list)
10780 {
10781 gcc_assert (!list->ll_symbol);
10782 list->ll_symbol = gen_internal_sym ("LLST");
10783 }
10784
10785 /* Output the location list given to us. */
10786
10787 static void
10788 output_loc_list (dw_loc_list_ref list_head)
10789 {
10790 dw_loc_list_ref curr = list_head;
10791
10792 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
10793
10794 /* Walk the location list, and output each range + expression. */
10795 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
10796 {
10797 unsigned long size;
10798 /* Don't output an entry that starts and ends at the same address. */
10799 if (strcmp (curr->begin, curr->end) == 0)
10800 continue;
10801 if (!have_multiple_function_sections)
10802 {
10803 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
10804 "Location list begin address (%s)",
10805 list_head->ll_symbol);
10806 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
10807 "Location list end address (%s)",
10808 list_head->ll_symbol);
10809 }
10810 else
10811 {
10812 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
10813 "Location list begin address (%s)",
10814 list_head->ll_symbol);
10815 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
10816 "Location list end address (%s)",
10817 list_head->ll_symbol);
10818 }
10819 size = size_of_locs (curr->expr);
10820
10821 /* Output the block length for this list of location operations. */
10822 gcc_assert (size <= 0xffff);
10823 dw2_asm_output_data (2, size, "%s", "Location expression size");
10824
10825 output_loc_sequence (curr->expr);
10826 }
10827
10828 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
10829 "Location list terminator begin (%s)",
10830 list_head->ll_symbol);
10831 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
10832 "Location list terminator end (%s)",
10833 list_head->ll_symbol);
10834 }
10835
10836 /* Output a type signature. */
10837
10838 static inline void
10839 output_signature (const char *sig, const char *name)
10840 {
10841 int i;
10842
10843 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
10844 dw2_asm_output_data (1, sig[i], i == 0 ? "%s" : NULL, name);
10845 }
10846
10847 /* Output the DIE and its attributes. Called recursively to generate
10848 the definitions of each child DIE. */
10849
10850 static void
10851 output_die (dw_die_ref die)
10852 {
10853 dw_attr_ref a;
10854 dw_die_ref c;
10855 unsigned long size;
10856 unsigned ix;
10857
10858 /* If someone in another CU might refer to us, set up a symbol for
10859 them to point to. */
10860 if (dwarf_version < 4 && die->die_id.die_symbol)
10861 output_die_symbol (die);
10862
10863 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (%#lx) %s)",
10864 (unsigned long)die->die_offset,
10865 dwarf_tag_name (die->die_tag));
10866
10867 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
10868 {
10869 const char *name = dwarf_attr_name (a->dw_attr);
10870
10871 switch (AT_class (a))
10872 {
10873 case dw_val_class_addr:
10874 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
10875 break;
10876
10877 case dw_val_class_offset:
10878 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
10879 "%s", name);
10880 break;
10881
10882 case dw_val_class_range_list:
10883 {
10884 char *p = strchr (ranges_section_label, '\0');
10885
10886 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
10887 a->dw_attr_val.v.val_offset);
10888 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
10889 debug_ranges_section, "%s", name);
10890 *p = '\0';
10891 }
10892 break;
10893
10894 case dw_val_class_loc:
10895 size = size_of_locs (AT_loc (a));
10896
10897 /* Output the block length for this list of location operations. */
10898 if (dwarf_version >= 4)
10899 dw2_asm_output_data_uleb128 (size, "%s", name);
10900 else
10901 dw2_asm_output_data (constant_size (size), size, "%s", name);
10902
10903 output_loc_sequence (AT_loc (a));
10904 break;
10905
10906 case dw_val_class_const:
10907 /* ??? It would be slightly more efficient to use a scheme like is
10908 used for unsigned constants below, but gdb 4.x does not sign
10909 extend. Gdb 5.x does sign extend. */
10910 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
10911 break;
10912
10913 case dw_val_class_unsigned_const:
10914 dw2_asm_output_data (constant_size (AT_unsigned (a)),
10915 AT_unsigned (a), "%s", name);
10916 break;
10917
10918 case dw_val_class_const_double:
10919 {
10920 unsigned HOST_WIDE_INT first, second;
10921
10922 if (HOST_BITS_PER_WIDE_INT >= 64)
10923 dw2_asm_output_data (1,
10924 2 * HOST_BITS_PER_WIDE_INT
10925 / HOST_BITS_PER_CHAR,
10926 NULL);
10927
10928 if (WORDS_BIG_ENDIAN)
10929 {
10930 first = a->dw_attr_val.v.val_double.high;
10931 second = a->dw_attr_val.v.val_double.low;
10932 }
10933 else
10934 {
10935 first = a->dw_attr_val.v.val_double.low;
10936 second = a->dw_attr_val.v.val_double.high;
10937 }
10938
10939 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
10940 first, name);
10941 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
10942 second, NULL);
10943 }
10944 break;
10945
10946 case dw_val_class_vec:
10947 {
10948 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
10949 unsigned int len = a->dw_attr_val.v.val_vec.length;
10950 unsigned int i;
10951 unsigned char *p;
10952
10953 dw2_asm_output_data (constant_size (len * elt_size),
10954 len * elt_size, "%s", name);
10955 if (elt_size > sizeof (HOST_WIDE_INT))
10956 {
10957 elt_size /= 2;
10958 len *= 2;
10959 }
10960 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
10961 i < len;
10962 i++, p += elt_size)
10963 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
10964 "fp or vector constant word %u", i);
10965 break;
10966 }
10967
10968 case dw_val_class_flag:
10969 if (dwarf_version >= 4)
10970 {
10971 /* Currently all add_AT_flag calls pass in 1 as last argument,
10972 so DW_FORM_flag_present can be used. If that ever changes,
10973 we'll need to use DW_FORM_flag and have some optimization
10974 in build_abbrev_table that will change those to
10975 DW_FORM_flag_present if it is set to 1 in all DIEs using
10976 the same abbrev entry. */
10977 gcc_assert (AT_flag (a) == 1);
10978 if (flag_debug_asm)
10979 fprintf (asm_out_file, "\t\t\t%s %s\n",
10980 ASM_COMMENT_START, name);
10981 break;
10982 }
10983 dw2_asm_output_data (1, AT_flag (a), "%s", name);
10984 break;
10985
10986 case dw_val_class_loc_list:
10987 {
10988 char *sym = AT_loc_list (a)->ll_symbol;
10989
10990 gcc_assert (sym);
10991 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
10992 "%s", name);
10993 }
10994 break;
10995
10996 case dw_val_class_die_ref:
10997 if (AT_ref_external (a))
10998 {
10999 if (dwarf_version >= 4)
11000 {
11001 comdat_type_node_ref type_node =
11002 AT_ref (a)->die_id.die_type_node;
11003
11004 gcc_assert (type_node);
11005 output_signature (type_node->signature, name);
11006 }
11007 else
11008 {
11009 char *sym = AT_ref (a)->die_id.die_symbol;
11010 int size;
11011
11012 gcc_assert (sym);
11013 /* In DWARF2, DW_FORM_ref_addr is sized by target address
11014 length, whereas in DWARF3 it's always sized as an
11015 offset. */
11016 if (dwarf_version == 2)
11017 size = DWARF2_ADDR_SIZE;
11018 else
11019 size = DWARF_OFFSET_SIZE;
11020 dw2_asm_output_offset (size, sym, debug_info_section, "%s",
11021 name);
11022 }
11023 }
11024 else
11025 {
11026 gcc_assert (AT_ref (a)->die_offset);
11027 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
11028 "%s", name);
11029 }
11030 break;
11031
11032 case dw_val_class_fde_ref:
11033 {
11034 char l1[20];
11035
11036 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
11037 a->dw_attr_val.v.val_fde_index * 2);
11038 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
11039 "%s", name);
11040 }
11041 break;
11042
11043 case dw_val_class_vms_delta:
11044 dw2_asm_output_vms_delta (DWARF_OFFSET_SIZE,
11045 AT_vms_delta2 (a), AT_vms_delta1 (a),
11046 "%s", name);
11047 break;
11048
11049 case dw_val_class_lbl_id:
11050 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
11051 break;
11052
11053 case dw_val_class_lineptr:
11054 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
11055 debug_line_section, "%s", name);
11056 break;
11057
11058 case dw_val_class_macptr:
11059 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
11060 debug_macinfo_section, "%s", name);
11061 break;
11062
11063 case dw_val_class_str:
11064 if (AT_string_form (a) == DW_FORM_strp)
11065 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
11066 a->dw_attr_val.v.val_str->label,
11067 debug_str_section,
11068 "%s: \"%s\"", name, AT_string (a));
11069 else
11070 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
11071 break;
11072
11073 case dw_val_class_file:
11074 {
11075 int f = maybe_emit_file (a->dw_attr_val.v.val_file);
11076
11077 dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
11078 a->dw_attr_val.v.val_file->filename);
11079 break;
11080 }
11081
11082 case dw_val_class_data8:
11083 {
11084 int i;
11085
11086 for (i = 0; i < 8; i++)
11087 dw2_asm_output_data (1, a->dw_attr_val.v.val_data8[i],
11088 i == 0 ? "%s" : NULL, name);
11089 break;
11090 }
11091
11092 default:
11093 gcc_unreachable ();
11094 }
11095 }
11096
11097 FOR_EACH_CHILD (die, c, output_die (c));
11098
11099 /* Add null byte to terminate sibling list. */
11100 if (die->die_child != NULL)
11101 dw2_asm_output_data (1, 0, "end of children of DIE %#lx",
11102 (unsigned long) die->die_offset);
11103 }
11104
11105 /* Output the compilation unit that appears at the beginning of the
11106 .debug_info section, and precedes the DIE descriptions. */
11107
11108 static void
11109 output_compilation_unit_header (void)
11110 {
11111 int ver = dwarf_version;
11112
11113 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
11114 dw2_asm_output_data (4, 0xffffffff,
11115 "Initial length escape value indicating 64-bit DWARF extension");
11116 dw2_asm_output_data (DWARF_OFFSET_SIZE,
11117 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
11118 "Length of Compilation Unit Info");
11119 dw2_asm_output_data (2, ver, "DWARF version number");
11120 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
11121 debug_abbrev_section,
11122 "Offset Into Abbrev. Section");
11123 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
11124 }
11125
11126 /* Output the compilation unit DIE and its children. */
11127
11128 static void
11129 output_comp_unit (dw_die_ref die, int output_if_empty)
11130 {
11131 const char *secname;
11132 char *oldsym, *tmp;
11133
11134 /* Unless we are outputting main CU, we may throw away empty ones. */
11135 if (!output_if_empty && die->die_child == NULL)
11136 return;
11137
11138 /* Even if there are no children of this DIE, we must output the information
11139 about the compilation unit. Otherwise, on an empty translation unit, we
11140 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
11141 will then complain when examining the file. First mark all the DIEs in
11142 this CU so we know which get local refs. */
11143 mark_dies (die);
11144
11145 build_abbrev_table (die);
11146
11147 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
11148 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
11149 calc_die_sizes (die);
11150
11151 oldsym = die->die_id.die_symbol;
11152 if (oldsym)
11153 {
11154 tmp = XALLOCAVEC (char, strlen (oldsym) + 24);
11155
11156 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
11157 secname = tmp;
11158 die->die_id.die_symbol = NULL;
11159 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
11160 }
11161 else
11162 switch_to_section (debug_info_section);
11163
11164 /* Output debugging information. */
11165 output_compilation_unit_header ();
11166 output_die (die);
11167
11168 /* Leave the marks on the main CU, so we can check them in
11169 output_pubnames. */
11170 if (oldsym)
11171 {
11172 unmark_dies (die);
11173 die->die_id.die_symbol = oldsym;
11174 }
11175 }
11176
11177 /* Output a comdat type unit DIE and its children. */
11178
11179 static void
11180 output_comdat_type_unit (comdat_type_node *node)
11181 {
11182 const char *secname;
11183 char *tmp;
11184 int i;
11185 #if defined (OBJECT_FORMAT_ELF)
11186 tree comdat_key;
11187 #endif
11188
11189 /* First mark all the DIEs in this CU so we know which get local refs. */
11190 mark_dies (node->root_die);
11191
11192 build_abbrev_table (node->root_die);
11193
11194 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
11195 next_die_offset = DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE;
11196 calc_die_sizes (node->root_die);
11197
11198 #if defined (OBJECT_FORMAT_ELF)
11199 secname = ".debug_types";
11200 tmp = XALLOCAVEC (char, 4 + DWARF_TYPE_SIGNATURE_SIZE * 2);
11201 sprintf (tmp, "wt.");
11202 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
11203 sprintf (tmp + 3 + i * 2, "%02x", node->signature[i] & 0xff);
11204 comdat_key = get_identifier (tmp);
11205 targetm.asm_out.named_section (secname,
11206 SECTION_DEBUG | SECTION_LINKONCE,
11207 comdat_key);
11208 #else
11209 tmp = XALLOCAVEC (char, 18 + DWARF_TYPE_SIGNATURE_SIZE * 2);
11210 sprintf (tmp, ".gnu.linkonce.wt.");
11211 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
11212 sprintf (tmp + 17 + i * 2, "%02x", node->signature[i] & 0xff);
11213 secname = tmp;
11214 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
11215 #endif
11216
11217 /* Output debugging information. */
11218 output_compilation_unit_header ();
11219 output_signature (node->signature, "Type Signature");
11220 dw2_asm_output_data (DWARF_OFFSET_SIZE, node->type_die->die_offset,
11221 "Offset to Type DIE");
11222 output_die (node->root_die);
11223
11224 unmark_dies (node->root_die);
11225 }
11226
11227 /* Return the DWARF2/3 pubname associated with a decl. */
11228
11229 static const char *
11230 dwarf2_name (tree decl, int scope)
11231 {
11232 return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
11233 }
11234
11235 /* Add a new entry to .debug_pubnames if appropriate. */
11236
11237 static void
11238 add_pubname_string (const char *str, dw_die_ref die)
11239 {
11240 pubname_entry e;
11241
11242 e.die = die;
11243 e.name = xstrdup (str);
11244 VEC_safe_push (pubname_entry, gc, pubname_table, &e);
11245 }
11246
11247 static void
11248 add_pubname (tree decl, dw_die_ref die)
11249 {
11250 if (TREE_PUBLIC (decl))
11251 {
11252 const char *name = dwarf2_name (decl, 1);
11253 if (name)
11254 add_pubname_string (name, die);
11255 }
11256 }
11257
11258 /* Add a new entry to .debug_pubtypes if appropriate. */
11259
11260 static void
11261 add_pubtype (tree decl, dw_die_ref die)
11262 {
11263 pubname_entry e;
11264
11265 e.name = NULL;
11266 if ((TREE_PUBLIC (decl)
11267 || die->die_parent == comp_unit_die)
11268 && (die->die_tag == DW_TAG_typedef || COMPLETE_TYPE_P (decl)))
11269 {
11270 e.die = die;
11271 if (TYPE_P (decl))
11272 {
11273 if (TYPE_NAME (decl))
11274 {
11275 if (TREE_CODE (TYPE_NAME (decl)) == IDENTIFIER_NODE)
11276 e.name = IDENTIFIER_POINTER (TYPE_NAME (decl));
11277 else if (TREE_CODE (TYPE_NAME (decl)) == TYPE_DECL
11278 && DECL_NAME (TYPE_NAME (decl)))
11279 e.name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (decl)));
11280 else
11281 e.name = xstrdup ((const char *) get_AT_string (die, DW_AT_name));
11282 }
11283 }
11284 else
11285 {
11286 e.name = dwarf2_name (decl, 1);
11287 if (e.name)
11288 e.name = xstrdup (e.name);
11289 }
11290
11291 /* If we don't have a name for the type, there's no point in adding
11292 it to the table. */
11293 if (e.name && e.name[0] != '\0')
11294 VEC_safe_push (pubname_entry, gc, pubtype_table, &e);
11295 }
11296 }
11297
11298 /* Output the public names table used to speed up access to externally
11299 visible names; or the public types table used to find type definitions. */
11300
11301 static void
11302 output_pubnames (VEC (pubname_entry, gc) * names)
11303 {
11304 unsigned i;
11305 unsigned long pubnames_length = size_of_pubnames (names);
11306 pubname_ref pub;
11307
11308 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
11309 dw2_asm_output_data (4, 0xffffffff,
11310 "Initial length escape value indicating 64-bit DWARF extension");
11311 if (names == pubname_table)
11312 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
11313 "Length of Public Names Info");
11314 else
11315 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
11316 "Length of Public Type Names Info");
11317 /* Version number for pubnames/pubtypes is still 2, even in DWARF3. */
11318 dw2_asm_output_data (2, 2, "DWARF Version");
11319 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
11320 debug_info_section,
11321 "Offset of Compilation Unit Info");
11322 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
11323 "Compilation Unit Length");
11324
11325 for (i = 0; VEC_iterate (pubname_entry, names, i, pub); i++)
11326 {
11327 /* We shouldn't see pubnames for DIEs outside of the main CU. */
11328 if (names == pubname_table)
11329 gcc_assert (pub->die->die_mark);
11330
11331 if (names != pubtype_table
11332 || pub->die->die_offset != 0
11333 || !flag_eliminate_unused_debug_types)
11334 {
11335 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
11336 "DIE offset");
11337
11338 dw2_asm_output_nstring (pub->name, -1, "external name");
11339 }
11340 }
11341
11342 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
11343 }
11344
11345 /* Add a new entry to .debug_aranges if appropriate. */
11346
11347 static void
11348 add_arange (tree decl, dw_die_ref die)
11349 {
11350 if (! DECL_SECTION_NAME (decl))
11351 return;
11352
11353 if (arange_table_in_use == arange_table_allocated)
11354 {
11355 arange_table_allocated += ARANGE_TABLE_INCREMENT;
11356 arange_table = GGC_RESIZEVEC (dw_die_ref, arange_table,
11357 arange_table_allocated);
11358 memset (arange_table + arange_table_in_use, 0,
11359 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
11360 }
11361
11362 arange_table[arange_table_in_use++] = die;
11363 }
11364
11365 /* Output the information that goes into the .debug_aranges table.
11366 Namely, define the beginning and ending address range of the
11367 text section generated for this compilation unit. */
11368
11369 static void
11370 output_aranges (void)
11371 {
11372 unsigned i;
11373 unsigned long aranges_length = size_of_aranges ();
11374
11375 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
11376 dw2_asm_output_data (4, 0xffffffff,
11377 "Initial length escape value indicating 64-bit DWARF extension");
11378 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
11379 "Length of Address Ranges Info");
11380 /* Version number for aranges is still 2, even in DWARF3. */
11381 dw2_asm_output_data (2, 2, "DWARF Version");
11382 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
11383 debug_info_section,
11384 "Offset of Compilation Unit Info");
11385 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
11386 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
11387
11388 /* We need to align to twice the pointer size here. */
11389 if (DWARF_ARANGES_PAD_SIZE)
11390 {
11391 /* Pad using a 2 byte words so that padding is correct for any
11392 pointer size. */
11393 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
11394 2 * DWARF2_ADDR_SIZE);
11395 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
11396 dw2_asm_output_data (2, 0, NULL);
11397 }
11398
11399 /* It is necessary not to output these entries if the sections were
11400 not used; if the sections were not used, the length will be 0 and
11401 the address may end up as 0 if the section is discarded by ld
11402 --gc-sections, leaving an invalid (0, 0) entry that can be
11403 confused with the terminator. */
11404 if (text_section_used)
11405 {
11406 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
11407 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
11408 text_section_label, "Length");
11409 }
11410 if (cold_text_section_used)
11411 {
11412 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
11413 "Address");
11414 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
11415 cold_text_section_label, "Length");
11416 }
11417
11418 for (i = 0; i < arange_table_in_use; i++)
11419 {
11420 dw_die_ref die = arange_table[i];
11421
11422 /* We shouldn't see aranges for DIEs outside of the main CU. */
11423 gcc_assert (die->die_mark);
11424
11425 if (die->die_tag == DW_TAG_subprogram)
11426 {
11427 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
11428 "Address");
11429 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
11430 get_AT_low_pc (die), "Length");
11431 }
11432 else
11433 {
11434 /* A static variable; extract the symbol from DW_AT_location.
11435 Note that this code isn't currently hit, as we only emit
11436 aranges for functions (jason 9/23/99). */
11437 dw_attr_ref a = get_AT (die, DW_AT_location);
11438 dw_loc_descr_ref loc;
11439
11440 gcc_assert (a && AT_class (a) == dw_val_class_loc);
11441
11442 loc = AT_loc (a);
11443 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
11444
11445 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
11446 loc->dw_loc_oprnd1.v.val_addr, "Address");
11447 dw2_asm_output_data (DWARF2_ADDR_SIZE,
11448 get_AT_unsigned (die, DW_AT_byte_size),
11449 "Length");
11450 }
11451 }
11452
11453 /* Output the terminator words. */
11454 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
11455 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
11456 }
11457
11458 /* Add a new entry to .debug_ranges. Return the offset at which it
11459 was placed. */
11460
11461 static unsigned int
11462 add_ranges_num (int num)
11463 {
11464 unsigned int in_use = ranges_table_in_use;
11465
11466 if (in_use == ranges_table_allocated)
11467 {
11468 ranges_table_allocated += RANGES_TABLE_INCREMENT;
11469 ranges_table = GGC_RESIZEVEC (struct dw_ranges_struct, ranges_table,
11470 ranges_table_allocated);
11471 memset (ranges_table + ranges_table_in_use, 0,
11472 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
11473 }
11474
11475 ranges_table[in_use].num = num;
11476 ranges_table_in_use = in_use + 1;
11477
11478 return in_use * 2 * DWARF2_ADDR_SIZE;
11479 }
11480
11481 /* Add a new entry to .debug_ranges corresponding to a block, or a
11482 range terminator if BLOCK is NULL. */
11483
11484 static unsigned int
11485 add_ranges (const_tree block)
11486 {
11487 return add_ranges_num (block ? BLOCK_NUMBER (block) : 0);
11488 }
11489
11490 /* Add a new entry to .debug_ranges corresponding to a pair of
11491 labels. */
11492
11493 static void
11494 add_ranges_by_labels (dw_die_ref die, const char *begin, const char *end,
11495 bool *added)
11496 {
11497 unsigned int in_use = ranges_by_label_in_use;
11498 unsigned int offset;
11499
11500 if (in_use == ranges_by_label_allocated)
11501 {
11502 ranges_by_label_allocated += RANGES_TABLE_INCREMENT;
11503 ranges_by_label = GGC_RESIZEVEC (struct dw_ranges_by_label_struct,
11504 ranges_by_label,
11505 ranges_by_label_allocated);
11506 memset (ranges_by_label + ranges_by_label_in_use, 0,
11507 RANGES_TABLE_INCREMENT
11508 * sizeof (struct dw_ranges_by_label_struct));
11509 }
11510
11511 ranges_by_label[in_use].begin = begin;
11512 ranges_by_label[in_use].end = end;
11513 ranges_by_label_in_use = in_use + 1;
11514
11515 offset = add_ranges_num (-(int)in_use - 1);
11516 if (!*added)
11517 {
11518 add_AT_range_list (die, DW_AT_ranges, offset);
11519 *added = true;
11520 }
11521 }
11522
11523 static void
11524 output_ranges (void)
11525 {
11526 unsigned i;
11527 static const char *const start_fmt = "Offset %#x";
11528 const char *fmt = start_fmt;
11529
11530 for (i = 0; i < ranges_table_in_use; i++)
11531 {
11532 int block_num = ranges_table[i].num;
11533
11534 if (block_num > 0)
11535 {
11536 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
11537 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
11538
11539 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
11540 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
11541
11542 /* If all code is in the text section, then the compilation
11543 unit base address defaults to DW_AT_low_pc, which is the
11544 base of the text section. */
11545 if (!have_multiple_function_sections)
11546 {
11547 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
11548 text_section_label,
11549 fmt, i * 2 * DWARF2_ADDR_SIZE);
11550 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
11551 text_section_label, NULL);
11552 }
11553
11554 /* Otherwise, the compilation unit base address is zero,
11555 which allows us to use absolute addresses, and not worry
11556 about whether the target supports cross-section
11557 arithmetic. */
11558 else
11559 {
11560 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
11561 fmt, i * 2 * DWARF2_ADDR_SIZE);
11562 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
11563 }
11564
11565 fmt = NULL;
11566 }
11567
11568 /* Negative block_num stands for an index into ranges_by_label. */
11569 else if (block_num < 0)
11570 {
11571 int lab_idx = - block_num - 1;
11572
11573 if (!have_multiple_function_sections)
11574 {
11575 gcc_unreachable ();
11576 #if 0
11577 /* If we ever use add_ranges_by_labels () for a single
11578 function section, all we have to do is to take out
11579 the #if 0 above. */
11580 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
11581 ranges_by_label[lab_idx].begin,
11582 text_section_label,
11583 fmt, i * 2 * DWARF2_ADDR_SIZE);
11584 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
11585 ranges_by_label[lab_idx].end,
11586 text_section_label, NULL);
11587 #endif
11588 }
11589 else
11590 {
11591 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
11592 ranges_by_label[lab_idx].begin,
11593 fmt, i * 2 * DWARF2_ADDR_SIZE);
11594 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
11595 ranges_by_label[lab_idx].end,
11596 NULL);
11597 }
11598 }
11599 else
11600 {
11601 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
11602 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
11603 fmt = start_fmt;
11604 }
11605 }
11606 }
11607
11608 /* Data structure containing information about input files. */
11609 struct file_info
11610 {
11611 const char *path; /* Complete file name. */
11612 const char *fname; /* File name part. */
11613 int length; /* Length of entire string. */
11614 struct dwarf_file_data * file_idx; /* Index in input file table. */
11615 int dir_idx; /* Index in directory table. */
11616 };
11617
11618 /* Data structure containing information about directories with source
11619 files. */
11620 struct dir_info
11621 {
11622 const char *path; /* Path including directory name. */
11623 int length; /* Path length. */
11624 int prefix; /* Index of directory entry which is a prefix. */
11625 int count; /* Number of files in this directory. */
11626 int dir_idx; /* Index of directory used as base. */
11627 };
11628
11629 /* Callback function for file_info comparison. We sort by looking at
11630 the directories in the path. */
11631
11632 static int
11633 file_info_cmp (const void *p1, const void *p2)
11634 {
11635 const struct file_info *const s1 = (const struct file_info *) p1;
11636 const struct file_info *const s2 = (const struct file_info *) p2;
11637 const unsigned char *cp1;
11638 const unsigned char *cp2;
11639
11640 /* Take care of file names without directories. We need to make sure that
11641 we return consistent values to qsort since some will get confused if
11642 we return the same value when identical operands are passed in opposite
11643 orders. So if neither has a directory, return 0 and otherwise return
11644 1 or -1 depending on which one has the directory. */
11645 if ((s1->path == s1->fname || s2->path == s2->fname))
11646 return (s2->path == s2->fname) - (s1->path == s1->fname);
11647
11648 cp1 = (const unsigned char *) s1->path;
11649 cp2 = (const unsigned char *) s2->path;
11650
11651 while (1)
11652 {
11653 ++cp1;
11654 ++cp2;
11655 /* Reached the end of the first path? If so, handle like above. */
11656 if ((cp1 == (const unsigned char *) s1->fname)
11657 || (cp2 == (const unsigned char *) s2->fname))
11658 return ((cp2 == (const unsigned char *) s2->fname)
11659 - (cp1 == (const unsigned char *) s1->fname));
11660
11661 /* Character of current path component the same? */
11662 else if (*cp1 != *cp2)
11663 return *cp1 - *cp2;
11664 }
11665 }
11666
11667 struct file_name_acquire_data
11668 {
11669 struct file_info *files;
11670 int used_files;
11671 int max_files;
11672 };
11673
11674 /* Traversal function for the hash table. */
11675
11676 static int
11677 file_name_acquire (void ** slot, void *data)
11678 {
11679 struct file_name_acquire_data *fnad = (struct file_name_acquire_data *) data;
11680 struct dwarf_file_data *d = (struct dwarf_file_data *) *slot;
11681 struct file_info *fi;
11682 const char *f;
11683
11684 gcc_assert (fnad->max_files >= d->emitted_number);
11685
11686 if (! d->emitted_number)
11687 return 1;
11688
11689 gcc_assert (fnad->max_files != fnad->used_files);
11690
11691 fi = fnad->files + fnad->used_files++;
11692
11693 /* Skip all leading "./". */
11694 f = d->filename;
11695 while (f[0] == '.' && IS_DIR_SEPARATOR (f[1]))
11696 f += 2;
11697
11698 /* Create a new array entry. */
11699 fi->path = f;
11700 fi->length = strlen (f);
11701 fi->file_idx = d;
11702
11703 /* Search for the file name part. */
11704 f = strrchr (f, DIR_SEPARATOR);
11705 #if defined (DIR_SEPARATOR_2)
11706 {
11707 char *g = strrchr (fi->path, DIR_SEPARATOR_2);
11708
11709 if (g != NULL)
11710 {
11711 if (f == NULL || f < g)
11712 f = g;
11713 }
11714 }
11715 #endif
11716
11717 fi->fname = f == NULL ? fi->path : f + 1;
11718 return 1;
11719 }
11720
11721 /* Output the directory table and the file name table. We try to minimize
11722 the total amount of memory needed. A heuristic is used to avoid large
11723 slowdowns with many input files. */
11724
11725 static void
11726 output_file_names (void)
11727 {
11728 struct file_name_acquire_data fnad;
11729 int numfiles;
11730 struct file_info *files;
11731 struct dir_info *dirs;
11732 int *saved;
11733 int *savehere;
11734 int *backmap;
11735 int ndirs;
11736 int idx_offset;
11737 int i;
11738
11739 if (!last_emitted_file)
11740 {
11741 dw2_asm_output_data (1, 0, "End directory table");
11742 dw2_asm_output_data (1, 0, "End file name table");
11743 return;
11744 }
11745
11746 numfiles = last_emitted_file->emitted_number;
11747
11748 /* Allocate the various arrays we need. */
11749 files = XALLOCAVEC (struct file_info, numfiles);
11750 dirs = XALLOCAVEC (struct dir_info, numfiles);
11751
11752 fnad.files = files;
11753 fnad.used_files = 0;
11754 fnad.max_files = numfiles;
11755 htab_traverse (file_table, file_name_acquire, &fnad);
11756 gcc_assert (fnad.used_files == fnad.max_files);
11757
11758 qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
11759
11760 /* Find all the different directories used. */
11761 dirs[0].path = files[0].path;
11762 dirs[0].length = files[0].fname - files[0].path;
11763 dirs[0].prefix = -1;
11764 dirs[0].count = 1;
11765 dirs[0].dir_idx = 0;
11766 files[0].dir_idx = 0;
11767 ndirs = 1;
11768
11769 for (i = 1; i < numfiles; i++)
11770 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
11771 && memcmp (dirs[ndirs - 1].path, files[i].path,
11772 dirs[ndirs - 1].length) == 0)
11773 {
11774 /* Same directory as last entry. */
11775 files[i].dir_idx = ndirs - 1;
11776 ++dirs[ndirs - 1].count;
11777 }
11778 else
11779 {
11780 int j;
11781
11782 /* This is a new directory. */
11783 dirs[ndirs].path = files[i].path;
11784 dirs[ndirs].length = files[i].fname - files[i].path;
11785 dirs[ndirs].count = 1;
11786 dirs[ndirs].dir_idx = ndirs;
11787 files[i].dir_idx = ndirs;
11788
11789 /* Search for a prefix. */
11790 dirs[ndirs].prefix = -1;
11791 for (j = 0; j < ndirs; j++)
11792 if (dirs[j].length < dirs[ndirs].length
11793 && dirs[j].length > 1
11794 && (dirs[ndirs].prefix == -1
11795 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
11796 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
11797 dirs[ndirs].prefix = j;
11798
11799 ++ndirs;
11800 }
11801
11802 /* Now to the actual work. We have to find a subset of the directories which
11803 allow expressing the file name using references to the directory table
11804 with the least amount of characters. We do not do an exhaustive search
11805 where we would have to check out every combination of every single
11806 possible prefix. Instead we use a heuristic which provides nearly optimal
11807 results in most cases and never is much off. */
11808 saved = XALLOCAVEC (int, ndirs);
11809 savehere = XALLOCAVEC (int, ndirs);
11810
11811 memset (saved, '\0', ndirs * sizeof (saved[0]));
11812 for (i = 0; i < ndirs; i++)
11813 {
11814 int j;
11815 int total;
11816
11817 /* We can always save some space for the current directory. But this
11818 does not mean it will be enough to justify adding the directory. */
11819 savehere[i] = dirs[i].length;
11820 total = (savehere[i] - saved[i]) * dirs[i].count;
11821
11822 for (j = i + 1; j < ndirs; j++)
11823 {
11824 savehere[j] = 0;
11825 if (saved[j] < dirs[i].length)
11826 {
11827 /* Determine whether the dirs[i] path is a prefix of the
11828 dirs[j] path. */
11829 int k;
11830
11831 k = dirs[j].prefix;
11832 while (k != -1 && k != (int) i)
11833 k = dirs[k].prefix;
11834
11835 if (k == (int) i)
11836 {
11837 /* Yes it is. We can possibly save some memory by
11838 writing the filenames in dirs[j] relative to
11839 dirs[i]. */
11840 savehere[j] = dirs[i].length;
11841 total += (savehere[j] - saved[j]) * dirs[j].count;
11842 }
11843 }
11844 }
11845
11846 /* Check whether we can save enough to justify adding the dirs[i]
11847 directory. */
11848 if (total > dirs[i].length + 1)
11849 {
11850 /* It's worthwhile adding. */
11851 for (j = i; j < ndirs; j++)
11852 if (savehere[j] > 0)
11853 {
11854 /* Remember how much we saved for this directory so far. */
11855 saved[j] = savehere[j];
11856
11857 /* Remember the prefix directory. */
11858 dirs[j].dir_idx = i;
11859 }
11860 }
11861 }
11862
11863 /* Emit the directory name table. */
11864 idx_offset = dirs[0].length > 0 ? 1 : 0;
11865 for (i = 1 - idx_offset; i < ndirs; i++)
11866 dw2_asm_output_nstring (dirs[i].path,
11867 dirs[i].length
11868 - !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR,
11869 "Directory Entry: %#x", i + idx_offset);
11870
11871 dw2_asm_output_data (1, 0, "End directory table");
11872
11873 /* We have to emit them in the order of emitted_number since that's
11874 used in the debug info generation. To do this efficiently we
11875 generate a back-mapping of the indices first. */
11876 backmap = XALLOCAVEC (int, numfiles);
11877 for (i = 0; i < numfiles; i++)
11878 backmap[files[i].file_idx->emitted_number - 1] = i;
11879
11880 /* Now write all the file names. */
11881 for (i = 0; i < numfiles; i++)
11882 {
11883 int file_idx = backmap[i];
11884 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
11885
11886 #ifdef VMS_DEBUGGING_INFO
11887 #define MAX_VMS_VERSION_LEN 6 /* ";32768" */
11888
11889 /* Setting these fields can lead to debugger miscomparisons,
11890 but VMS Debug requires them to be set correctly. */
11891
11892 int ver;
11893 long long cdt;
11894 long siz;
11895 int maxfilelen = strlen (files[file_idx].path)
11896 + dirs[dir_idx].length
11897 + MAX_VMS_VERSION_LEN + 1;
11898 char *filebuf = XALLOCAVEC (char, maxfilelen);
11899
11900 vms_file_stats_name (files[file_idx].path, 0, 0, 0, &ver);
11901 snprintf (filebuf, maxfilelen, "%s;%d",
11902 files[file_idx].path + dirs[dir_idx].length, ver);
11903
11904 dw2_asm_output_nstring
11905 (filebuf, -1, "File Entry: %#x", (unsigned) i + 1);
11906
11907 /* Include directory index. */
11908 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
11909
11910 /* Modification time. */
11911 dw2_asm_output_data_uleb128
11912 ((vms_file_stats_name (files[file_idx].path, &cdt, 0, 0, 0) == 0)
11913 ? cdt : 0,
11914 NULL);
11915
11916 /* File length in bytes. */
11917 dw2_asm_output_data_uleb128
11918 ((vms_file_stats_name (files[file_idx].path, 0, &siz, 0, 0) == 0)
11919 ? siz : 0,
11920 NULL);
11921 #else
11922 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
11923 "File Entry: %#x", (unsigned) i + 1);
11924
11925 /* Include directory index. */
11926 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
11927
11928 /* Modification time. */
11929 dw2_asm_output_data_uleb128 (0, NULL);
11930
11931 /* File length in bytes. */
11932 dw2_asm_output_data_uleb128 (0, NULL);
11933 #endif
11934 }
11935
11936 dw2_asm_output_data (1, 0, "End file name table");
11937 }
11938
11939
11940 /* Output the source line number correspondence information. This
11941 information goes into the .debug_line section. */
11942
11943 static void
11944 output_line_info (void)
11945 {
11946 char l1[20], l2[20], p1[20], p2[20];
11947 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
11948 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
11949 unsigned opc;
11950 unsigned n_op_args;
11951 unsigned long lt_index;
11952 unsigned long current_line;
11953 long line_offset;
11954 long line_delta;
11955 unsigned long current_file;
11956 unsigned long function;
11957 int ver = dwarf_version;
11958
11959 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
11960 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
11961 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
11962 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
11963
11964 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
11965 dw2_asm_output_data (4, 0xffffffff,
11966 "Initial length escape value indicating 64-bit DWARF extension");
11967 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
11968 "Length of Source Line Info");
11969 ASM_OUTPUT_LABEL (asm_out_file, l1);
11970
11971 dw2_asm_output_data (2, ver, "DWARF Version");
11972 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
11973 ASM_OUTPUT_LABEL (asm_out_file, p1);
11974
11975 /* Define the architecture-dependent minimum instruction length (in
11976 bytes). In this implementation of DWARF, this field is used for
11977 information purposes only. Since GCC generates assembly language,
11978 we have no a priori knowledge of how many instruction bytes are
11979 generated for each source line, and therefore can use only the
11980 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
11981 commands. Accordingly, we fix this as `1', which is "correct
11982 enough" for all architectures, and don't let the target override. */
11983 dw2_asm_output_data (1, 1,
11984 "Minimum Instruction Length");
11985
11986 if (ver >= 4)
11987 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN,
11988 "Maximum Operations Per Instruction");
11989 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
11990 "Default is_stmt_start flag");
11991 dw2_asm_output_data (1, DWARF_LINE_BASE,
11992 "Line Base Value (Special Opcodes)");
11993 dw2_asm_output_data (1, DWARF_LINE_RANGE,
11994 "Line Range Value (Special Opcodes)");
11995 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
11996 "Special Opcode Base");
11997
11998 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
11999 {
12000 switch (opc)
12001 {
12002 case DW_LNS_advance_pc:
12003 case DW_LNS_advance_line:
12004 case DW_LNS_set_file:
12005 case DW_LNS_set_column:
12006 case DW_LNS_fixed_advance_pc:
12007 n_op_args = 1;
12008 break;
12009 default:
12010 n_op_args = 0;
12011 break;
12012 }
12013
12014 dw2_asm_output_data (1, n_op_args, "opcode: %#x has %d args",
12015 opc, n_op_args);
12016 }
12017
12018 /* Write out the information about the files we use. */
12019 output_file_names ();
12020 ASM_OUTPUT_LABEL (asm_out_file, p2);
12021
12022 /* We used to set the address register to the first location in the text
12023 section here, but that didn't accomplish anything since we already
12024 have a line note for the opening brace of the first function. */
12025
12026 /* Generate the line number to PC correspondence table, encoded as
12027 a series of state machine operations. */
12028 current_file = 1;
12029 current_line = 1;
12030
12031 if (cfun && in_cold_section_p)
12032 strcpy (prev_line_label, crtl->subsections.cold_section_label);
12033 else
12034 strcpy (prev_line_label, text_section_label);
12035 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
12036 {
12037 dw_line_info_ref line_info = &line_info_table[lt_index];
12038
12039 #if 0
12040 /* Disable this optimization for now; GDB wants to see two line notes
12041 at the beginning of a function so it can find the end of the
12042 prologue. */
12043
12044 /* Don't emit anything for redundant notes. Just updating the
12045 address doesn't accomplish anything, because we already assume
12046 that anything after the last address is this line. */
12047 if (line_info->dw_line_num == current_line
12048 && line_info->dw_file_num == current_file)
12049 continue;
12050 #endif
12051
12052 /* Emit debug info for the address of the current line.
12053
12054 Unfortunately, we have little choice here currently, and must always
12055 use the most general form. GCC does not know the address delta
12056 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
12057 attributes which will give an upper bound on the address range. We
12058 could perhaps use length attributes to determine when it is safe to
12059 use DW_LNS_fixed_advance_pc. */
12060
12061 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
12062 if (0)
12063 {
12064 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
12065 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
12066 "DW_LNS_fixed_advance_pc");
12067 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
12068 }
12069 else
12070 {
12071 /* This can handle any delta. This takes
12072 4+DWARF2_ADDR_SIZE bytes. */
12073 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
12074 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
12075 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
12076 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
12077 }
12078
12079 strcpy (prev_line_label, line_label);
12080
12081 /* Emit debug info for the source file of the current line, if
12082 different from the previous line. */
12083 if (line_info->dw_file_num != current_file)
12084 {
12085 current_file = line_info->dw_file_num;
12086 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
12087 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
12088 }
12089
12090 /* Emit debug info for the current line number, choosing the encoding
12091 that uses the least amount of space. */
12092 if (line_info->dw_line_num != current_line)
12093 {
12094 line_offset = line_info->dw_line_num - current_line;
12095 line_delta = line_offset - DWARF_LINE_BASE;
12096 current_line = line_info->dw_line_num;
12097 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
12098 /* This can handle deltas from -10 to 234, using the current
12099 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
12100 takes 1 byte. */
12101 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
12102 "line %lu", current_line);
12103 else
12104 {
12105 /* This can handle any delta. This takes at least 4 bytes,
12106 depending on the value being encoded. */
12107 dw2_asm_output_data (1, DW_LNS_advance_line,
12108 "advance to line %lu", current_line);
12109 dw2_asm_output_data_sleb128 (line_offset, NULL);
12110 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
12111 }
12112 }
12113 else
12114 /* We still need to start a new row, so output a copy insn. */
12115 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
12116 }
12117
12118 /* Emit debug info for the address of the end of the function. */
12119 if (0)
12120 {
12121 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
12122 "DW_LNS_fixed_advance_pc");
12123 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
12124 }
12125 else
12126 {
12127 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
12128 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
12129 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
12130 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
12131 }
12132
12133 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
12134 dw2_asm_output_data_uleb128 (1, NULL);
12135 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
12136
12137 function = 0;
12138 current_file = 1;
12139 current_line = 1;
12140 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
12141 {
12142 dw_separate_line_info_ref line_info
12143 = &separate_line_info_table[lt_index];
12144
12145 #if 0
12146 /* Don't emit anything for redundant notes. */
12147 if (line_info->dw_line_num == current_line
12148 && line_info->dw_file_num == current_file
12149 && line_info->function == function)
12150 goto cont;
12151 #endif
12152
12153 /* Emit debug info for the address of the current line. If this is
12154 a new function, or the first line of a function, then we need
12155 to handle it differently. */
12156 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
12157 lt_index);
12158 if (function != line_info->function)
12159 {
12160 function = line_info->function;
12161
12162 /* Set the address register to the first line in the function. */
12163 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
12164 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
12165 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
12166 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
12167 }
12168 else
12169 {
12170 /* ??? See the DW_LNS_advance_pc comment above. */
12171 if (0)
12172 {
12173 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
12174 "DW_LNS_fixed_advance_pc");
12175 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
12176 }
12177 else
12178 {
12179 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
12180 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
12181 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
12182 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
12183 }
12184 }
12185
12186 strcpy (prev_line_label, line_label);
12187
12188 /* Emit debug info for the source file of the current line, if
12189 different from the previous line. */
12190 if (line_info->dw_file_num != current_file)
12191 {
12192 current_file = line_info->dw_file_num;
12193 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
12194 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
12195 }
12196
12197 /* Emit debug info for the current line number, choosing the encoding
12198 that uses the least amount of space. */
12199 if (line_info->dw_line_num != current_line)
12200 {
12201 line_offset = line_info->dw_line_num - current_line;
12202 line_delta = line_offset - DWARF_LINE_BASE;
12203 current_line = line_info->dw_line_num;
12204 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
12205 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
12206 "line %lu", current_line);
12207 else
12208 {
12209 dw2_asm_output_data (1, DW_LNS_advance_line,
12210 "advance to line %lu", current_line);
12211 dw2_asm_output_data_sleb128 (line_offset, NULL);
12212 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
12213 }
12214 }
12215 else
12216 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
12217
12218 #if 0
12219 cont:
12220 #endif
12221
12222 lt_index++;
12223
12224 /* If we're done with a function, end its sequence. */
12225 if (lt_index == separate_line_info_table_in_use
12226 || separate_line_info_table[lt_index].function != function)
12227 {
12228 current_file = 1;
12229 current_line = 1;
12230
12231 /* Emit debug info for the address of the end of the function. */
12232 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
12233 if (0)
12234 {
12235 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
12236 "DW_LNS_fixed_advance_pc");
12237 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
12238 }
12239 else
12240 {
12241 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
12242 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
12243 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
12244 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
12245 }
12246
12247 /* Output the marker for the end of this sequence. */
12248 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
12249 dw2_asm_output_data_uleb128 (1, NULL);
12250 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
12251 }
12252 }
12253
12254 /* Output the marker for the end of the line number info. */
12255 ASM_OUTPUT_LABEL (asm_out_file, l2);
12256 }
12257
12258 /* Return the size of the .debug_dcall table for the compilation unit. */
12259
12260 static unsigned long
12261 size_of_dcall_table (void)
12262 {
12263 unsigned long size;
12264 unsigned int i;
12265 dcall_entry *p;
12266 tree last_poc_decl = NULL;
12267
12268 /* Header: version + debug info section pointer + pointer size. */
12269 size = 2 + DWARF_OFFSET_SIZE + 1;
12270
12271 /* Each entry: code label + DIE offset. */
12272 for (i = 0; VEC_iterate (dcall_entry, dcall_table, i, p); i++)
12273 {
12274 gcc_assert (p->targ_die != NULL);
12275 /* Insert a "from" entry when the point-of-call DIE offset changes. */
12276 if (p->poc_decl != last_poc_decl)
12277 {
12278 dw_die_ref poc_die = lookup_decl_die (p->poc_decl);
12279 gcc_assert (poc_die);
12280 last_poc_decl = p->poc_decl;
12281 if (poc_die)
12282 size += (DWARF_OFFSET_SIZE
12283 + size_of_uleb128 (poc_die->die_offset));
12284 }
12285 size += DWARF_OFFSET_SIZE + size_of_uleb128 (p->targ_die->die_offset);
12286 }
12287
12288 return size;
12289 }
12290
12291 /* Output the direct call table used to disambiguate PC values when
12292 identical function have been merged. */
12293
12294 static void
12295 output_dcall_table (void)
12296 {
12297 unsigned i;
12298 unsigned long dcall_length = size_of_dcall_table ();
12299 dcall_entry *p;
12300 char poc_label[MAX_ARTIFICIAL_LABEL_BYTES];
12301 tree last_poc_decl = NULL;
12302
12303 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
12304 dw2_asm_output_data (4, 0xffffffff,
12305 "Initial length escape value indicating 64-bit DWARF extension");
12306 dw2_asm_output_data (DWARF_OFFSET_SIZE, dcall_length,
12307 "Length of Direct Call Table");
12308 dw2_asm_output_data (2, 4, "Version number");
12309 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
12310 debug_info_section,
12311 "Offset of Compilation Unit Info");
12312 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
12313
12314 for (i = 0; VEC_iterate (dcall_entry, dcall_table, i, p); i++)
12315 {
12316 /* Insert a "from" entry when the point-of-call DIE offset changes. */
12317 if (p->poc_decl != last_poc_decl)
12318 {
12319 dw_die_ref poc_die = lookup_decl_die (p->poc_decl);
12320 last_poc_decl = p->poc_decl;
12321 if (poc_die)
12322 {
12323 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, "New caller");
12324 dw2_asm_output_data_uleb128 (poc_die->die_offset,
12325 "Caller DIE offset");
12326 }
12327 }
12328 ASM_GENERATE_INTERNAL_LABEL (poc_label, "LPOC", p->poc_label_num);
12329 dw2_asm_output_addr (DWARF_OFFSET_SIZE, poc_label, "Point of call");
12330 dw2_asm_output_data_uleb128 (p->targ_die->die_offset,
12331 "Callee DIE offset");
12332 }
12333 }
12334 \f
12335 /* Return the size of the .debug_vcall table for the compilation unit. */
12336
12337 static unsigned long
12338 size_of_vcall_table (void)
12339 {
12340 unsigned long size;
12341 unsigned int i;
12342 vcall_entry *p;
12343
12344 /* Header: version + pointer size. */
12345 size = 2 + 1;
12346
12347 /* Each entry: code label + vtable slot index. */
12348 for (i = 0; VEC_iterate (vcall_entry, vcall_table, i, p); i++)
12349 size += DWARF_OFFSET_SIZE + size_of_uleb128 (p->vtable_slot);
12350
12351 return size;
12352 }
12353
12354 /* Output the virtual call table used to disambiguate PC values when
12355 identical function have been merged. */
12356
12357 static void
12358 output_vcall_table (void)
12359 {
12360 unsigned i;
12361 unsigned long vcall_length = size_of_vcall_table ();
12362 vcall_entry *p;
12363 char poc_label[MAX_ARTIFICIAL_LABEL_BYTES];
12364
12365 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
12366 dw2_asm_output_data (4, 0xffffffff,
12367 "Initial length escape value indicating 64-bit DWARF extension");
12368 dw2_asm_output_data (DWARF_OFFSET_SIZE, vcall_length,
12369 "Length of Virtual Call Table");
12370 dw2_asm_output_data (2, 4, "Version number");
12371 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
12372
12373 for (i = 0; VEC_iterate (vcall_entry, vcall_table, i, p); i++)
12374 {
12375 ASM_GENERATE_INTERNAL_LABEL (poc_label, "LPOC", p->poc_label_num);
12376 dw2_asm_output_addr (DWARF_OFFSET_SIZE, poc_label, "Point of call");
12377 dw2_asm_output_data_uleb128 (p->vtable_slot, "Vtable slot");
12378 }
12379 }
12380 \f
12381 /* Given a pointer to a tree node for some base type, return a pointer to
12382 a DIE that describes the given type.
12383
12384 This routine must only be called for GCC type nodes that correspond to
12385 Dwarf base (fundamental) types. */
12386
12387 static dw_die_ref
12388 base_type_die (tree type)
12389 {
12390 dw_die_ref base_type_result;
12391 enum dwarf_type encoding;
12392
12393 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
12394 return 0;
12395
12396 /* If this is a subtype that should not be emitted as a subrange type,
12397 use the base type. See subrange_type_for_debug_p. */
12398 if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != NULL_TREE)
12399 type = TREE_TYPE (type);
12400
12401 switch (TREE_CODE (type))
12402 {
12403 case INTEGER_TYPE:
12404 if ((dwarf_version >= 4 || !dwarf_strict)
12405 && TYPE_NAME (type)
12406 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12407 && DECL_IS_BUILTIN (TYPE_NAME (type))
12408 && DECL_NAME (TYPE_NAME (type)))
12409 {
12410 const char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
12411 if (strcmp (name, "char16_t") == 0
12412 || strcmp (name, "char32_t") == 0)
12413 {
12414 encoding = DW_ATE_UTF;
12415 break;
12416 }
12417 }
12418 if (TYPE_STRING_FLAG (type))
12419 {
12420 if (TYPE_UNSIGNED (type))
12421 encoding = DW_ATE_unsigned_char;
12422 else
12423 encoding = DW_ATE_signed_char;
12424 }
12425 else if (TYPE_UNSIGNED (type))
12426 encoding = DW_ATE_unsigned;
12427 else
12428 encoding = DW_ATE_signed;
12429 break;
12430
12431 case REAL_TYPE:
12432 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
12433 {
12434 if (dwarf_version >= 3 || !dwarf_strict)
12435 encoding = DW_ATE_decimal_float;
12436 else
12437 encoding = DW_ATE_lo_user;
12438 }
12439 else
12440 encoding = DW_ATE_float;
12441 break;
12442
12443 case FIXED_POINT_TYPE:
12444 if (!(dwarf_version >= 3 || !dwarf_strict))
12445 encoding = DW_ATE_lo_user;
12446 else if (TYPE_UNSIGNED (type))
12447 encoding = DW_ATE_unsigned_fixed;
12448 else
12449 encoding = DW_ATE_signed_fixed;
12450 break;
12451
12452 /* Dwarf2 doesn't know anything about complex ints, so use
12453 a user defined type for it. */
12454 case COMPLEX_TYPE:
12455 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
12456 encoding = DW_ATE_complex_float;
12457 else
12458 encoding = DW_ATE_lo_user;
12459 break;
12460
12461 case BOOLEAN_TYPE:
12462 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
12463 encoding = DW_ATE_boolean;
12464 break;
12465
12466 default:
12467 /* No other TREE_CODEs are Dwarf fundamental types. */
12468 gcc_unreachable ();
12469 }
12470
12471 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
12472
12473 add_AT_unsigned (base_type_result, DW_AT_byte_size,
12474 int_size_in_bytes (type));
12475 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
12476
12477 return base_type_result;
12478 }
12479
12480 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
12481 given input type is a Dwarf "fundamental" type. Otherwise return null. */
12482
12483 static inline int
12484 is_base_type (tree type)
12485 {
12486 switch (TREE_CODE (type))
12487 {
12488 case ERROR_MARK:
12489 case VOID_TYPE:
12490 case INTEGER_TYPE:
12491 case REAL_TYPE:
12492 case FIXED_POINT_TYPE:
12493 case COMPLEX_TYPE:
12494 case BOOLEAN_TYPE:
12495 return 1;
12496
12497 case ARRAY_TYPE:
12498 case RECORD_TYPE:
12499 case UNION_TYPE:
12500 case QUAL_UNION_TYPE:
12501 case ENUMERAL_TYPE:
12502 case FUNCTION_TYPE:
12503 case METHOD_TYPE:
12504 case POINTER_TYPE:
12505 case REFERENCE_TYPE:
12506 case OFFSET_TYPE:
12507 case LANG_TYPE:
12508 case VECTOR_TYPE:
12509 return 0;
12510
12511 default:
12512 gcc_unreachable ();
12513 }
12514
12515 return 0;
12516 }
12517
12518 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
12519 node, return the size in bits for the type if it is a constant, or else
12520 return the alignment for the type if the type's size is not constant, or
12521 else return BITS_PER_WORD if the type actually turns out to be an
12522 ERROR_MARK node. */
12523
12524 static inline unsigned HOST_WIDE_INT
12525 simple_type_size_in_bits (const_tree type)
12526 {
12527 if (TREE_CODE (type) == ERROR_MARK)
12528 return BITS_PER_WORD;
12529 else if (TYPE_SIZE (type) == NULL_TREE)
12530 return 0;
12531 else if (host_integerp (TYPE_SIZE (type), 1))
12532 return tree_low_cst (TYPE_SIZE (type), 1);
12533 else
12534 return TYPE_ALIGN (type);
12535 }
12536
12537 /* Similarly, but return a double_int instead of UHWI. */
12538
12539 static inline double_int
12540 double_int_type_size_in_bits (const_tree type)
12541 {
12542 if (TREE_CODE (type) == ERROR_MARK)
12543 return uhwi_to_double_int (BITS_PER_WORD);
12544 else if (TYPE_SIZE (type) == NULL_TREE)
12545 return double_int_zero;
12546 else if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
12547 return tree_to_double_int (TYPE_SIZE (type));
12548 else
12549 return uhwi_to_double_int (TYPE_ALIGN (type));
12550 }
12551
12552 /* Given a pointer to a tree node for a subrange type, return a pointer
12553 to a DIE that describes the given type. */
12554
12555 static dw_die_ref
12556 subrange_type_die (tree type, tree low, tree high, dw_die_ref context_die)
12557 {
12558 dw_die_ref subrange_die;
12559 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
12560
12561 if (context_die == NULL)
12562 context_die = comp_unit_die;
12563
12564 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
12565
12566 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
12567 {
12568 /* The size of the subrange type and its base type do not match,
12569 so we need to generate a size attribute for the subrange type. */
12570 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
12571 }
12572
12573 if (low)
12574 add_bound_info (subrange_die, DW_AT_lower_bound, low);
12575 if (high)
12576 add_bound_info (subrange_die, DW_AT_upper_bound, high);
12577
12578 return subrange_die;
12579 }
12580
12581 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
12582 entry that chains various modifiers in front of the given type. */
12583
12584 static dw_die_ref
12585 modified_type_die (tree type, int is_const_type, int is_volatile_type,
12586 dw_die_ref context_die)
12587 {
12588 enum tree_code code = TREE_CODE (type);
12589 dw_die_ref mod_type_die;
12590 dw_die_ref sub_die = NULL;
12591 tree item_type = NULL;
12592 tree qualified_type;
12593 tree name, low, high;
12594
12595 if (code == ERROR_MARK)
12596 return NULL;
12597
12598 /* See if we already have the appropriately qualified variant of
12599 this type. */
12600 qualified_type
12601 = get_qualified_type (type,
12602 ((is_const_type ? TYPE_QUAL_CONST : 0)
12603 | (is_volatile_type ? TYPE_QUAL_VOLATILE : 0)));
12604
12605 if (qualified_type == sizetype
12606 && TYPE_NAME (qualified_type)
12607 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL)
12608 {
12609 #ifdef ENABLE_CHECKING
12610 gcc_assert (TREE_CODE (TREE_TYPE (TYPE_NAME (qualified_type)))
12611 == INTEGER_TYPE
12612 && TYPE_PRECISION (TREE_TYPE (TYPE_NAME (qualified_type)))
12613 == TYPE_PRECISION (qualified_type)
12614 && TYPE_UNSIGNED (TREE_TYPE (TYPE_NAME (qualified_type)))
12615 == TYPE_UNSIGNED (qualified_type));
12616 #endif
12617 qualified_type = TREE_TYPE (TYPE_NAME (qualified_type));
12618 }
12619
12620 /* If we do, then we can just use its DIE, if it exists. */
12621 if (qualified_type)
12622 {
12623 mod_type_die = lookup_type_die (qualified_type);
12624 if (mod_type_die)
12625 return mod_type_die;
12626 }
12627
12628 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
12629
12630 /* Handle C typedef types. */
12631 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name)
12632 && !DECL_ARTIFICIAL (name))
12633 {
12634 tree dtype = TREE_TYPE (name);
12635
12636 if (qualified_type == dtype)
12637 {
12638 /* For a named type, use the typedef. */
12639 gen_type_die (qualified_type, context_die);
12640 return lookup_type_die (qualified_type);
12641 }
12642 else if (is_const_type < TYPE_READONLY (dtype)
12643 || is_volatile_type < TYPE_VOLATILE (dtype)
12644 || (is_const_type <= TYPE_READONLY (dtype)
12645 && is_volatile_type <= TYPE_VOLATILE (dtype)
12646 && DECL_ORIGINAL_TYPE (name) != type))
12647 /* cv-unqualified version of named type. Just use the unnamed
12648 type to which it refers. */
12649 return modified_type_die (DECL_ORIGINAL_TYPE (name),
12650 is_const_type, is_volatile_type,
12651 context_die);
12652 /* Else cv-qualified version of named type; fall through. */
12653 }
12654
12655 if (is_const_type)
12656 {
12657 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
12658 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
12659 }
12660 else if (is_volatile_type)
12661 {
12662 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
12663 sub_die = modified_type_die (type, 0, 0, context_die);
12664 }
12665 else if (code == POINTER_TYPE)
12666 {
12667 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
12668 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
12669 simple_type_size_in_bits (type) / BITS_PER_UNIT);
12670 item_type = TREE_TYPE (type);
12671 if (!ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (item_type)))
12672 add_AT_unsigned (mod_type_die, DW_AT_address_class,
12673 TYPE_ADDR_SPACE (item_type));
12674 }
12675 else if (code == REFERENCE_TYPE)
12676 {
12677 if (TYPE_REF_IS_RVALUE (type) && dwarf_version >= 4)
12678 mod_type_die = new_die (DW_TAG_rvalue_reference_type, comp_unit_die,
12679 type);
12680 else
12681 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
12682 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
12683 simple_type_size_in_bits (type) / BITS_PER_UNIT);
12684 item_type = TREE_TYPE (type);
12685 if (!ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (item_type)))
12686 add_AT_unsigned (mod_type_die, DW_AT_address_class,
12687 TYPE_ADDR_SPACE (item_type));
12688 }
12689 else if (code == INTEGER_TYPE
12690 && TREE_TYPE (type) != NULL_TREE
12691 && subrange_type_for_debug_p (type, &low, &high))
12692 {
12693 mod_type_die = subrange_type_die (type, low, high, context_die);
12694 item_type = TREE_TYPE (type);
12695 }
12696 else if (is_base_type (type))
12697 mod_type_die = base_type_die (type);
12698 else
12699 {
12700 gen_type_die (type, context_die);
12701
12702 /* We have to get the type_main_variant here (and pass that to the
12703 `lookup_type_die' routine) because the ..._TYPE node we have
12704 might simply be a *copy* of some original type node (where the
12705 copy was created to help us keep track of typedef names) and
12706 that copy might have a different TYPE_UID from the original
12707 ..._TYPE node. */
12708 if (TREE_CODE (type) != VECTOR_TYPE)
12709 return lookup_type_die (type_main_variant (type));
12710 else
12711 /* Vectors have the debugging information in the type,
12712 not the main variant. */
12713 return lookup_type_die (type);
12714 }
12715
12716 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
12717 don't output a DW_TAG_typedef, since there isn't one in the
12718 user's program; just attach a DW_AT_name to the type.
12719 Don't attach a DW_AT_name to DW_TAG_const_type or DW_TAG_volatile_type
12720 if the base type already has the same name. */
12721 if (name
12722 && ((TREE_CODE (name) != TYPE_DECL
12723 && (qualified_type == TYPE_MAIN_VARIANT (type)
12724 || (!is_const_type && !is_volatile_type)))
12725 || (TREE_CODE (name) == TYPE_DECL
12726 && TREE_TYPE (name) == qualified_type
12727 && DECL_NAME (name))))
12728 {
12729 if (TREE_CODE (name) == TYPE_DECL)
12730 /* Could just call add_name_and_src_coords_attributes here,
12731 but since this is a builtin type it doesn't have any
12732 useful source coordinates anyway. */
12733 name = DECL_NAME (name);
12734 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
12735 }
12736 /* This probably indicates a bug. */
12737 else if (mod_type_die && mod_type_die->die_tag == DW_TAG_base_type)
12738 add_name_attribute (mod_type_die, "__unknown__");
12739
12740 if (qualified_type)
12741 equate_type_number_to_die (qualified_type, mod_type_die);
12742
12743 if (item_type)
12744 /* We must do this after the equate_type_number_to_die call, in case
12745 this is a recursive type. This ensures that the modified_type_die
12746 recursion will terminate even if the type is recursive. Recursive
12747 types are possible in Ada. */
12748 sub_die = modified_type_die (item_type,
12749 TYPE_READONLY (item_type),
12750 TYPE_VOLATILE (item_type),
12751 context_die);
12752
12753 if (sub_die != NULL)
12754 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
12755
12756 return mod_type_die;
12757 }
12758
12759 /* Generate DIEs for the generic parameters of T.
12760 T must be either a generic type or a generic function.
12761 See http://gcc.gnu.org/wiki/TemplateParmsDwarf for more. */
12762
12763 static void
12764 gen_generic_params_dies (tree t)
12765 {
12766 tree parms, args;
12767 int parms_num, i;
12768 dw_die_ref die = NULL;
12769
12770 if (!t || (TYPE_P (t) && !COMPLETE_TYPE_P (t)))
12771 return;
12772
12773 if (TYPE_P (t))
12774 die = lookup_type_die (t);
12775 else if (DECL_P (t))
12776 die = lookup_decl_die (t);
12777
12778 gcc_assert (die);
12779
12780 parms = lang_hooks.get_innermost_generic_parms (t);
12781 if (!parms)
12782 /* T has no generic parameter. It means T is neither a generic type
12783 or function. End of story. */
12784 return;
12785
12786 parms_num = TREE_VEC_LENGTH (parms);
12787 args = lang_hooks.get_innermost_generic_args (t);
12788 for (i = 0; i < parms_num; i++)
12789 {
12790 tree parm, arg, arg_pack_elems;
12791
12792 parm = TREE_VEC_ELT (parms, i);
12793 arg = TREE_VEC_ELT (args, i);
12794 arg_pack_elems = lang_hooks.types.get_argument_pack_elems (arg);
12795 gcc_assert (parm && TREE_VALUE (parm) && arg);
12796
12797 if (parm && TREE_VALUE (parm) && arg)
12798 {
12799 /* If PARM represents a template parameter pack,
12800 emit a DW_TAG_GNU_template_parameter_pack DIE, followed
12801 by DW_TAG_template_*_parameter DIEs for the argument
12802 pack elements of ARG. Note that ARG would then be
12803 an argument pack. */
12804 if (arg_pack_elems)
12805 template_parameter_pack_die (TREE_VALUE (parm),
12806 arg_pack_elems,
12807 die);
12808 else
12809 generic_parameter_die (TREE_VALUE (parm), arg,
12810 true /* Emit DW_AT_name */, die);
12811 }
12812 }
12813 }
12814
12815 /* Create and return a DIE for PARM which should be
12816 the representation of a generic type parameter.
12817 For instance, in the C++ front end, PARM would be a template parameter.
12818 ARG is the argument to PARM.
12819 EMIT_NAME_P if tree, the DIE will have DW_AT_name attribute set to the
12820 name of the PARM.
12821 PARENT_DIE is the parent DIE which the new created DIE should be added to,
12822 as a child node. */
12823
12824 static dw_die_ref
12825 generic_parameter_die (tree parm, tree arg,
12826 bool emit_name_p,
12827 dw_die_ref parent_die)
12828 {
12829 dw_die_ref tmpl_die = NULL;
12830 const char *name = NULL;
12831
12832 if (!parm || !DECL_NAME (parm) || !arg)
12833 return NULL;
12834
12835 /* We support non-type generic parameters and arguments,
12836 type generic parameters and arguments, as well as
12837 generic generic parameters (a.k.a. template template parameters in C++)
12838 and arguments. */
12839 if (TREE_CODE (parm) == PARM_DECL)
12840 /* PARM is a nontype generic parameter */
12841 tmpl_die = new_die (DW_TAG_template_value_param, parent_die, parm);
12842 else if (TREE_CODE (parm) == TYPE_DECL)
12843 /* PARM is a type generic parameter. */
12844 tmpl_die = new_die (DW_TAG_template_type_param, parent_die, parm);
12845 else if (lang_hooks.decls.generic_generic_parameter_decl_p (parm))
12846 /* PARM is a generic generic parameter.
12847 Its DIE is a GNU extension. It shall have a
12848 DW_AT_name attribute to represent the name of the template template
12849 parameter, and a DW_AT_GNU_template_name attribute to represent the
12850 name of the template template argument. */
12851 tmpl_die = new_die (DW_TAG_GNU_template_template_param,
12852 parent_die, parm);
12853 else
12854 gcc_unreachable ();
12855
12856 if (tmpl_die)
12857 {
12858 tree tmpl_type;
12859
12860 /* If PARM is a generic parameter pack, it means we are
12861 emitting debug info for a template argument pack element.
12862 In other terms, ARG is a template argument pack element.
12863 In that case, we don't emit any DW_AT_name attribute for
12864 the die. */
12865 if (emit_name_p)
12866 {
12867 name = IDENTIFIER_POINTER (DECL_NAME (parm));
12868 gcc_assert (name);
12869 add_AT_string (tmpl_die, DW_AT_name, name);
12870 }
12871
12872 if (!lang_hooks.decls.generic_generic_parameter_decl_p (parm))
12873 {
12874 /* DWARF3, 5.6.8 says if PARM is a non-type generic parameter
12875 TMPL_DIE should have a child DW_AT_type attribute that is set
12876 to the type of the argument to PARM, which is ARG.
12877 If PARM is a type generic parameter, TMPL_DIE should have a
12878 child DW_AT_type that is set to ARG. */
12879 tmpl_type = TYPE_P (arg) ? arg : TREE_TYPE (arg);
12880 add_type_attribute (tmpl_die, tmpl_type, 0,
12881 TREE_THIS_VOLATILE (tmpl_type),
12882 parent_die);
12883 }
12884 else
12885 {
12886 /* So TMPL_DIE is a DIE representing a
12887 a generic generic template parameter, a.k.a template template
12888 parameter in C++ and arg is a template. */
12889
12890 /* The DW_AT_GNU_template_name attribute of the DIE must be set
12891 to the name of the argument. */
12892 name = dwarf2_name (TYPE_P (arg) ? TYPE_NAME (arg) : arg, 1);
12893 if (name)
12894 add_AT_string (tmpl_die, DW_AT_GNU_template_name, name);
12895 }
12896
12897 if (TREE_CODE (parm) == PARM_DECL)
12898 /* So PARM is a non-type generic parameter.
12899 DWARF3 5.6.8 says we must set a DW_AT_const_value child
12900 attribute of TMPL_DIE which value represents the value
12901 of ARG.
12902 We must be careful here:
12903 The value of ARG might reference some function decls.
12904 We might currently be emitting debug info for a generic
12905 type and types are emitted before function decls, we don't
12906 know if the function decls referenced by ARG will actually be
12907 emitted after cgraph computations.
12908 So must defer the generation of the DW_AT_const_value to
12909 after cgraph is ready. */
12910 append_entry_to_tmpl_value_parm_die_table (tmpl_die, arg);
12911 }
12912
12913 return tmpl_die;
12914 }
12915
12916 /* Generate and return a DW_TAG_GNU_template_parameter_pack DIE representing.
12917 PARM_PACK must be a template parameter pack. The returned DIE
12918 will be child DIE of PARENT_DIE. */
12919
12920 static dw_die_ref
12921 template_parameter_pack_die (tree parm_pack,
12922 tree parm_pack_args,
12923 dw_die_ref parent_die)
12924 {
12925 dw_die_ref die;
12926 int j;
12927
12928 gcc_assert (parent_die && parm_pack);
12929
12930 die = new_die (DW_TAG_GNU_template_parameter_pack, parent_die, parm_pack);
12931 add_name_and_src_coords_attributes (die, parm_pack);
12932 for (j = 0; j < TREE_VEC_LENGTH (parm_pack_args); j++)
12933 generic_parameter_die (parm_pack,
12934 TREE_VEC_ELT (parm_pack_args, j),
12935 false /* Don't emit DW_AT_name */,
12936 die);
12937 return die;
12938 }
12939
12940 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
12941 an enumerated type. */
12942
12943 static inline int
12944 type_is_enum (const_tree type)
12945 {
12946 return TREE_CODE (type) == ENUMERAL_TYPE;
12947 }
12948
12949 /* Return the DBX register number described by a given RTL node. */
12950
12951 static unsigned int
12952 dbx_reg_number (const_rtx rtl)
12953 {
12954 unsigned regno = REGNO (rtl);
12955
12956 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
12957
12958 #ifdef LEAF_REG_REMAP
12959 if (current_function_uses_only_leaf_regs)
12960 {
12961 int leaf_reg = LEAF_REG_REMAP (regno);
12962 if (leaf_reg != -1)
12963 regno = (unsigned) leaf_reg;
12964 }
12965 #endif
12966
12967 return DBX_REGISTER_NUMBER (regno);
12968 }
12969
12970 /* Optionally add a DW_OP_piece term to a location description expression.
12971 DW_OP_piece is only added if the location description expression already
12972 doesn't end with DW_OP_piece. */
12973
12974 static void
12975 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
12976 {
12977 dw_loc_descr_ref loc;
12978
12979 if (*list_head != NULL)
12980 {
12981 /* Find the end of the chain. */
12982 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
12983 ;
12984
12985 if (loc->dw_loc_opc != DW_OP_piece)
12986 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
12987 }
12988 }
12989
12990 /* Return a location descriptor that designates a machine register or
12991 zero if there is none. */
12992
12993 static dw_loc_descr_ref
12994 reg_loc_descriptor (rtx rtl, enum var_init_status initialized)
12995 {
12996 rtx regs;
12997
12998 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
12999 return 0;
13000
13001 regs = targetm.dwarf_register_span (rtl);
13002
13003 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
13004 return multiple_reg_loc_descriptor (rtl, regs, initialized);
13005 else
13006 return one_reg_loc_descriptor (dbx_reg_number (rtl), initialized);
13007 }
13008
13009 /* Return a location descriptor that designates a machine register for
13010 a given hard register number. */
13011
13012 static dw_loc_descr_ref
13013 one_reg_loc_descriptor (unsigned int regno, enum var_init_status initialized)
13014 {
13015 dw_loc_descr_ref reg_loc_descr;
13016
13017 if (regno <= 31)
13018 reg_loc_descr
13019 = new_loc_descr ((enum dwarf_location_atom) (DW_OP_reg0 + regno), 0, 0);
13020 else
13021 reg_loc_descr = new_loc_descr (DW_OP_regx, regno, 0);
13022
13023 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
13024 add_loc_descr (&reg_loc_descr, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
13025
13026 return reg_loc_descr;
13027 }
13028
13029 /* Given an RTL of a register, return a location descriptor that
13030 designates a value that spans more than one register. */
13031
13032 static dw_loc_descr_ref
13033 multiple_reg_loc_descriptor (rtx rtl, rtx regs,
13034 enum var_init_status initialized)
13035 {
13036 int nregs, size, i;
13037 unsigned reg;
13038 dw_loc_descr_ref loc_result = NULL;
13039
13040 reg = REGNO (rtl);
13041 #ifdef LEAF_REG_REMAP
13042 if (current_function_uses_only_leaf_regs)
13043 {
13044 int leaf_reg = LEAF_REG_REMAP (reg);
13045 if (leaf_reg != -1)
13046 reg = (unsigned) leaf_reg;
13047 }
13048 #endif
13049 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
13050 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
13051
13052 /* Simple, contiguous registers. */
13053 if (regs == NULL_RTX)
13054 {
13055 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
13056
13057 loc_result = NULL;
13058 while (nregs--)
13059 {
13060 dw_loc_descr_ref t;
13061
13062 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg),
13063 VAR_INIT_STATUS_INITIALIZED);
13064 add_loc_descr (&loc_result, t);
13065 add_loc_descr_op_piece (&loc_result, size);
13066 ++reg;
13067 }
13068 return loc_result;
13069 }
13070
13071 /* Now onto stupid register sets in non contiguous locations. */
13072
13073 gcc_assert (GET_CODE (regs) == PARALLEL);
13074
13075 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
13076 loc_result = NULL;
13077
13078 for (i = 0; i < XVECLEN (regs, 0); ++i)
13079 {
13080 dw_loc_descr_ref t;
13081
13082 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)),
13083 VAR_INIT_STATUS_INITIALIZED);
13084 add_loc_descr (&loc_result, t);
13085 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
13086 add_loc_descr_op_piece (&loc_result, size);
13087 }
13088
13089 if (loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
13090 add_loc_descr (&loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
13091 return loc_result;
13092 }
13093
13094 #endif /* DWARF2_DEBUGGING_INFO */
13095
13096 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
13097
13098 /* Return a location descriptor that designates a constant. */
13099
13100 static dw_loc_descr_ref
13101 int_loc_descriptor (HOST_WIDE_INT i)
13102 {
13103 enum dwarf_location_atom op;
13104
13105 /* Pick the smallest representation of a constant, rather than just
13106 defaulting to the LEB encoding. */
13107 if (i >= 0)
13108 {
13109 if (i <= 31)
13110 op = (enum dwarf_location_atom) (DW_OP_lit0 + i);
13111 else if (i <= 0xff)
13112 op = DW_OP_const1u;
13113 else if (i <= 0xffff)
13114 op = DW_OP_const2u;
13115 else if (HOST_BITS_PER_WIDE_INT == 32
13116 || i <= 0xffffffff)
13117 op = DW_OP_const4u;
13118 else
13119 op = DW_OP_constu;
13120 }
13121 else
13122 {
13123 if (i >= -0x80)
13124 op = DW_OP_const1s;
13125 else if (i >= -0x8000)
13126 op = DW_OP_const2s;
13127 else if (HOST_BITS_PER_WIDE_INT == 32
13128 || i >= -0x80000000)
13129 op = DW_OP_const4s;
13130 else
13131 op = DW_OP_consts;
13132 }
13133
13134 return new_loc_descr (op, i, 0);
13135 }
13136 #endif
13137
13138 #ifdef DWARF2_DEBUGGING_INFO
13139 /* Return loc description representing "address" of integer value.
13140 This can appear only as toplevel expression. */
13141
13142 static dw_loc_descr_ref
13143 address_of_int_loc_descriptor (int size, HOST_WIDE_INT i)
13144 {
13145 int litsize;
13146 dw_loc_descr_ref loc_result = NULL;
13147
13148 if (!(dwarf_version >= 4 || !dwarf_strict))
13149 return NULL;
13150
13151 if (i >= 0)
13152 {
13153 if (i <= 31)
13154 litsize = 1;
13155 else if (i <= 0xff)
13156 litsize = 2;
13157 else if (i <= 0xffff)
13158 litsize = 3;
13159 else if (HOST_BITS_PER_WIDE_INT == 32
13160 || i <= 0xffffffff)
13161 litsize = 5;
13162 else
13163 litsize = 1 + size_of_uleb128 ((unsigned HOST_WIDE_INT) i);
13164 }
13165 else
13166 {
13167 if (i >= -0x80)
13168 litsize = 2;
13169 else if (i >= -0x8000)
13170 litsize = 3;
13171 else if (HOST_BITS_PER_WIDE_INT == 32
13172 || i >= -0x80000000)
13173 litsize = 5;
13174 else
13175 litsize = 1 + size_of_sleb128 (i);
13176 }
13177 /* Determine if DW_OP_stack_value or DW_OP_implicit_value
13178 is more compact. For DW_OP_stack_value we need:
13179 litsize + 1 (DW_OP_stack_value)
13180 and for DW_OP_implicit_value:
13181 1 (DW_OP_implicit_value) + 1 (length) + size. */
13182 if ((int) DWARF2_ADDR_SIZE >= size && litsize + 1 <= 1 + 1 + size)
13183 {
13184 loc_result = int_loc_descriptor (i);
13185 add_loc_descr (&loc_result,
13186 new_loc_descr (DW_OP_stack_value, 0, 0));
13187 return loc_result;
13188 }
13189
13190 loc_result = new_loc_descr (DW_OP_implicit_value,
13191 size, 0);
13192 loc_result->dw_loc_oprnd2.val_class = dw_val_class_const;
13193 loc_result->dw_loc_oprnd2.v.val_int = i;
13194 return loc_result;
13195 }
13196
13197 /* Return a location descriptor that designates a base+offset location. */
13198
13199 static dw_loc_descr_ref
13200 based_loc_descr (rtx reg, HOST_WIDE_INT offset,
13201 enum var_init_status initialized)
13202 {
13203 unsigned int regno;
13204 dw_loc_descr_ref result;
13205 dw_fde_ref fde = current_fde ();
13206
13207 /* We only use "frame base" when we're sure we're talking about the
13208 post-prologue local stack frame. We do this by *not* running
13209 register elimination until this point, and recognizing the special
13210 argument pointer and soft frame pointer rtx's. */
13211 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
13212 {
13213 rtx elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
13214
13215 if (elim != reg)
13216 {
13217 if (GET_CODE (elim) == PLUS)
13218 {
13219 offset += INTVAL (XEXP (elim, 1));
13220 elim = XEXP (elim, 0);
13221 }
13222 gcc_assert ((SUPPORTS_STACK_ALIGNMENT
13223 && (elim == hard_frame_pointer_rtx
13224 || elim == stack_pointer_rtx))
13225 || elim == (frame_pointer_needed
13226 ? hard_frame_pointer_rtx
13227 : stack_pointer_rtx));
13228
13229 /* If drap register is used to align stack, use frame
13230 pointer + offset to access stack variables. If stack
13231 is aligned without drap, use stack pointer + offset to
13232 access stack variables. */
13233 if (crtl->stack_realign_tried
13234 && reg == frame_pointer_rtx)
13235 {
13236 int base_reg
13237 = DWARF_FRAME_REGNUM ((fde && fde->drap_reg != INVALID_REGNUM)
13238 ? HARD_FRAME_POINTER_REGNUM
13239 : STACK_POINTER_REGNUM);
13240 return new_reg_loc_descr (base_reg, offset);
13241 }
13242
13243 offset += frame_pointer_fb_offset;
13244 return new_loc_descr (DW_OP_fbreg, offset, 0);
13245 }
13246 }
13247 else if (!optimize
13248 && fde
13249 && (fde->drap_reg == REGNO (reg)
13250 || fde->vdrap_reg == REGNO (reg)))
13251 {
13252 /* Use cfa+offset to represent the location of arguments passed
13253 on the stack when drap is used to align stack.
13254 Only do this when not optimizing, for optimized code var-tracking
13255 is supposed to track where the arguments live and the register
13256 used as vdrap or drap in some spot might be used for something
13257 else in other part of the routine. */
13258 return new_loc_descr (DW_OP_fbreg, offset, 0);
13259 }
13260
13261 regno = dbx_reg_number (reg);
13262 if (regno <= 31)
13263 result = new_loc_descr ((enum dwarf_location_atom) (DW_OP_breg0 + regno),
13264 offset, 0);
13265 else
13266 result = new_loc_descr (DW_OP_bregx, regno, offset);
13267
13268 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
13269 add_loc_descr (&result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
13270
13271 return result;
13272 }
13273
13274 /* Return true if this RTL expression describes a base+offset calculation. */
13275
13276 static inline int
13277 is_based_loc (const_rtx rtl)
13278 {
13279 return (GET_CODE (rtl) == PLUS
13280 && ((REG_P (XEXP (rtl, 0))
13281 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
13282 && CONST_INT_P (XEXP (rtl, 1)))));
13283 }
13284
13285 /* Try to handle TLS MEMs, for which mem_loc_descriptor on XEXP (mem, 0)
13286 failed. */
13287
13288 static dw_loc_descr_ref
13289 tls_mem_loc_descriptor (rtx mem)
13290 {
13291 tree base;
13292 dw_loc_descr_ref loc_result;
13293
13294 if (MEM_EXPR (mem) == NULL_TREE || MEM_OFFSET (mem) == NULL_RTX)
13295 return NULL;
13296
13297 base = get_base_address (MEM_EXPR (mem));
13298 if (base == NULL
13299 || TREE_CODE (base) != VAR_DECL
13300 || !DECL_THREAD_LOCAL_P (base))
13301 return NULL;
13302
13303 loc_result = loc_descriptor_from_tree (MEM_EXPR (mem), 1);
13304 if (loc_result == NULL)
13305 return NULL;
13306
13307 if (INTVAL (MEM_OFFSET (mem)))
13308 loc_descr_plus_const (&loc_result, INTVAL (MEM_OFFSET (mem)));
13309
13310 return loc_result;
13311 }
13312
13313 /* Output debug info about reason why we failed to expand expression as dwarf
13314 expression. */
13315
13316 static void
13317 expansion_failed (tree expr, rtx rtl, char const *reason)
13318 {
13319 if (dump_file && (dump_flags & TDF_DETAILS))
13320 {
13321 fprintf (dump_file, "Failed to expand as dwarf: ");
13322 if (expr)
13323 print_generic_expr (dump_file, expr, dump_flags);
13324 if (rtl)
13325 {
13326 fprintf (dump_file, "\n");
13327 print_rtl (dump_file, rtl);
13328 }
13329 fprintf (dump_file, "\nReason: %s\n", reason);
13330 }
13331 }
13332
13333 /* Helper function for const_ok_for_output, called either directly
13334 or via for_each_rtx. */
13335
13336 static int
13337 const_ok_for_output_1 (rtx *rtlp, void *data ATTRIBUTE_UNUSED)
13338 {
13339 rtx rtl = *rtlp;
13340
13341 if (GET_CODE (rtl) == UNSPEC)
13342 {
13343 /* If delegitimize_address couldn't do anything with the UNSPEC, assume
13344 we can't express it in the debug info. */
13345 #ifdef ENABLE_CHECKING
13346 inform (current_function_decl
13347 ? DECL_SOURCE_LOCATION (current_function_decl)
13348 : UNKNOWN_LOCATION,
13349 "non-delegitimized UNSPEC %d found in variable location",
13350 XINT (rtl, 1));
13351 #endif
13352 expansion_failed (NULL_TREE, rtl,
13353 "UNSPEC hasn't been delegitimized.\n");
13354 return 1;
13355 }
13356
13357 if (GET_CODE (rtl) != SYMBOL_REF)
13358 return 0;
13359
13360 if (CONSTANT_POOL_ADDRESS_P (rtl))
13361 {
13362 bool marked;
13363 get_pool_constant_mark (rtl, &marked);
13364 /* If all references to this pool constant were optimized away,
13365 it was not output and thus we can't represent it. */
13366 if (!marked)
13367 {
13368 expansion_failed (NULL_TREE, rtl,
13369 "Constant was removed from constant pool.\n");
13370 return 1;
13371 }
13372 }
13373
13374 if (SYMBOL_REF_TLS_MODEL (rtl) != TLS_MODEL_NONE)
13375 return 1;
13376
13377 /* Avoid references to external symbols in debug info, on several targets
13378 the linker might even refuse to link when linking a shared library,
13379 and in many other cases the relocations for .debug_info/.debug_loc are
13380 dropped, so the address becomes zero anyway. Hidden symbols, guaranteed
13381 to be defined within the same shared library or executable are fine. */
13382 if (SYMBOL_REF_EXTERNAL_P (rtl))
13383 {
13384 tree decl = SYMBOL_REF_DECL (rtl);
13385
13386 if (decl == NULL || !targetm.binds_local_p (decl))
13387 {
13388 expansion_failed (NULL_TREE, rtl,
13389 "Symbol not defined in current TU.\n");
13390 return 1;
13391 }
13392 }
13393
13394 return 0;
13395 }
13396
13397 /* Return true if constant RTL can be emitted in DW_OP_addr or
13398 DW_AT_const_value. TLS SYMBOL_REFs, external SYMBOL_REFs or
13399 non-marked constant pool SYMBOL_REFs can't be referenced in it. */
13400
13401 static bool
13402 const_ok_for_output (rtx rtl)
13403 {
13404 if (GET_CODE (rtl) == SYMBOL_REF)
13405 return const_ok_for_output_1 (&rtl, NULL) == 0;
13406
13407 if (GET_CODE (rtl) == CONST)
13408 return for_each_rtx (&XEXP (rtl, 0), const_ok_for_output_1, NULL) == 0;
13409
13410 return true;
13411 }
13412
13413 /* The following routine converts the RTL for a variable or parameter
13414 (resident in memory) into an equivalent Dwarf representation of a
13415 mechanism for getting the address of that same variable onto the top of a
13416 hypothetical "address evaluation" stack.
13417
13418 When creating memory location descriptors, we are effectively transforming
13419 the RTL for a memory-resident object into its Dwarf postfix expression
13420 equivalent. This routine recursively descends an RTL tree, turning
13421 it into Dwarf postfix code as it goes.
13422
13423 MODE is the mode of the memory reference, needed to handle some
13424 autoincrement addressing modes.
13425
13426 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
13427 location list for RTL.
13428
13429 Return 0 if we can't represent the location. */
13430
13431 static dw_loc_descr_ref
13432 mem_loc_descriptor (rtx rtl, enum machine_mode mode,
13433 enum var_init_status initialized)
13434 {
13435 dw_loc_descr_ref mem_loc_result = NULL;
13436 enum dwarf_location_atom op;
13437 dw_loc_descr_ref op0, op1;
13438
13439 /* Note that for a dynamically sized array, the location we will generate a
13440 description of here will be the lowest numbered location which is
13441 actually within the array. That's *not* necessarily the same as the
13442 zeroth element of the array. */
13443
13444 rtl = targetm.delegitimize_address (rtl);
13445
13446 switch (GET_CODE (rtl))
13447 {
13448 case POST_INC:
13449 case POST_DEC:
13450 case POST_MODIFY:
13451 return mem_loc_descriptor (XEXP (rtl, 0), mode, initialized);
13452
13453 case SUBREG:
13454 /* The case of a subreg may arise when we have a local (register)
13455 variable or a formal (register) parameter which doesn't quite fill
13456 up an entire register. For now, just assume that it is
13457 legitimate to make the Dwarf info refer to the whole register which
13458 contains the given subreg. */
13459 if (!subreg_lowpart_p (rtl))
13460 break;
13461 rtl = SUBREG_REG (rtl);
13462 if (GET_MODE_SIZE (GET_MODE (rtl)) > DWARF2_ADDR_SIZE)
13463 break;
13464 if (GET_MODE_CLASS (GET_MODE (rtl)) != MODE_INT)
13465 break;
13466 mem_loc_result = mem_loc_descriptor (rtl, mode, initialized);
13467 break;
13468
13469 case REG:
13470 /* Whenever a register number forms a part of the description of the
13471 method for calculating the (dynamic) address of a memory resident
13472 object, DWARF rules require the register number be referred to as
13473 a "base register". This distinction is not based in any way upon
13474 what category of register the hardware believes the given register
13475 belongs to. This is strictly DWARF terminology we're dealing with
13476 here. Note that in cases where the location of a memory-resident
13477 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
13478 OP_CONST (0)) the actual DWARF location descriptor that we generate
13479 may just be OP_BASEREG (basereg). This may look deceptively like
13480 the object in question was allocated to a register (rather than in
13481 memory) so DWARF consumers need to be aware of the subtle
13482 distinction between OP_REG and OP_BASEREG. */
13483 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
13484 mem_loc_result = based_loc_descr (rtl, 0, VAR_INIT_STATUS_INITIALIZED);
13485 else if (stack_realign_drap
13486 && crtl->drap_reg
13487 && crtl->args.internal_arg_pointer == rtl
13488 && REGNO (crtl->drap_reg) < FIRST_PSEUDO_REGISTER)
13489 {
13490 /* If RTL is internal_arg_pointer, which has been optimized
13491 out, use DRAP instead. */
13492 mem_loc_result = based_loc_descr (crtl->drap_reg, 0,
13493 VAR_INIT_STATUS_INITIALIZED);
13494 }
13495 break;
13496
13497 case SIGN_EXTEND:
13498 case ZERO_EXTEND:
13499 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
13500 VAR_INIT_STATUS_INITIALIZED);
13501 if (op0 == 0)
13502 break;
13503 else
13504 {
13505 int shift = DWARF2_ADDR_SIZE
13506 - GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0)));
13507 shift *= BITS_PER_UNIT;
13508 if (GET_CODE (rtl) == SIGN_EXTEND)
13509 op = DW_OP_shra;
13510 else
13511 op = DW_OP_shr;
13512 mem_loc_result = op0;
13513 add_loc_descr (&mem_loc_result, int_loc_descriptor (shift));
13514 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_shl, 0, 0));
13515 add_loc_descr (&mem_loc_result, int_loc_descriptor (shift));
13516 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
13517 }
13518 break;
13519
13520 case MEM:
13521 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
13522 VAR_INIT_STATUS_INITIALIZED);
13523 if (mem_loc_result == NULL)
13524 mem_loc_result = tls_mem_loc_descriptor (rtl);
13525 if (mem_loc_result != 0)
13526 {
13527 if (GET_MODE_SIZE (GET_MODE (rtl)) > DWARF2_ADDR_SIZE)
13528 {
13529 expansion_failed (NULL_TREE, rtl, "DWARF address size mismatch");
13530 return 0;
13531 }
13532 else if (GET_MODE_SIZE (GET_MODE (rtl)) == DWARF2_ADDR_SIZE)
13533 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
13534 else
13535 add_loc_descr (&mem_loc_result,
13536 new_loc_descr (DW_OP_deref_size,
13537 GET_MODE_SIZE (GET_MODE (rtl)), 0));
13538 }
13539 else
13540 {
13541 rtx new_rtl = avoid_constant_pool_reference (rtl);
13542 if (new_rtl != rtl)
13543 return mem_loc_descriptor (new_rtl, mode, initialized);
13544 }
13545 break;
13546
13547 case LO_SUM:
13548 rtl = XEXP (rtl, 1);
13549
13550 /* ... fall through ... */
13551
13552 case LABEL_REF:
13553 /* Some ports can transform a symbol ref into a label ref, because
13554 the symbol ref is too far away and has to be dumped into a constant
13555 pool. */
13556 case CONST:
13557 case SYMBOL_REF:
13558 if (GET_CODE (rtl) == SYMBOL_REF
13559 && SYMBOL_REF_TLS_MODEL (rtl) != TLS_MODEL_NONE)
13560 {
13561 dw_loc_descr_ref temp;
13562
13563 /* If this is not defined, we have no way to emit the data. */
13564 if (!targetm.have_tls || !targetm.asm_out.output_dwarf_dtprel)
13565 break;
13566
13567 temp = new_loc_descr (DW_OP_addr, 0, 0);
13568 temp->dw_loc_oprnd1.val_class = dw_val_class_addr;
13569 temp->dw_loc_oprnd1.v.val_addr = rtl;
13570 temp->dtprel = true;
13571
13572 mem_loc_result = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
13573 add_loc_descr (&mem_loc_result, temp);
13574
13575 break;
13576 }
13577
13578 if (!const_ok_for_output (rtl))
13579 break;
13580
13581 symref:
13582 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
13583 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
13584 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
13585 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
13586 break;
13587
13588 case CONCAT:
13589 case CONCATN:
13590 case VAR_LOCATION:
13591 expansion_failed (NULL_TREE, rtl,
13592 "CONCAT/CONCATN/VAR_LOCATION is handled only by loc_descriptor");
13593 return 0;
13594
13595 case PRE_MODIFY:
13596 /* Extract the PLUS expression nested inside and fall into
13597 PLUS code below. */
13598 rtl = XEXP (rtl, 1);
13599 goto plus;
13600
13601 case PRE_INC:
13602 case PRE_DEC:
13603 /* Turn these into a PLUS expression and fall into the PLUS code
13604 below. */
13605 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
13606 GEN_INT (GET_CODE (rtl) == PRE_INC
13607 ? GET_MODE_UNIT_SIZE (mode)
13608 : -GET_MODE_UNIT_SIZE (mode)));
13609
13610 /* ... fall through ... */
13611
13612 case PLUS:
13613 plus:
13614 if (is_based_loc (rtl))
13615 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
13616 INTVAL (XEXP (rtl, 1)),
13617 VAR_INIT_STATUS_INITIALIZED);
13618 else
13619 {
13620 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode,
13621 VAR_INIT_STATUS_INITIALIZED);
13622 if (mem_loc_result == 0)
13623 break;
13624
13625 if (CONST_INT_P (XEXP (rtl, 1)))
13626 loc_descr_plus_const (&mem_loc_result, INTVAL (XEXP (rtl, 1)));
13627 else
13628 {
13629 dw_loc_descr_ref mem_loc_result2
13630 = mem_loc_descriptor (XEXP (rtl, 1), mode,
13631 VAR_INIT_STATUS_INITIALIZED);
13632 if (mem_loc_result2 == 0)
13633 break;
13634 add_loc_descr (&mem_loc_result, mem_loc_result2);
13635 add_loc_descr (&mem_loc_result,
13636 new_loc_descr (DW_OP_plus, 0, 0));
13637 }
13638 }
13639 break;
13640
13641 /* If a pseudo-reg is optimized away, it is possible for it to
13642 be replaced with a MEM containing a multiply or shift. */
13643 case MINUS:
13644 op = DW_OP_minus;
13645 goto do_binop;
13646
13647 case MULT:
13648 op = DW_OP_mul;
13649 goto do_binop;
13650
13651 case DIV:
13652 op = DW_OP_div;
13653 goto do_binop;
13654
13655 case UMOD:
13656 op = DW_OP_mod;
13657 goto do_binop;
13658
13659 case ASHIFT:
13660 op = DW_OP_shl;
13661 goto do_binop;
13662
13663 case ASHIFTRT:
13664 op = DW_OP_shra;
13665 goto do_binop;
13666
13667 case LSHIFTRT:
13668 op = DW_OP_shr;
13669 goto do_binop;
13670
13671 case AND:
13672 op = DW_OP_and;
13673 goto do_binop;
13674
13675 case IOR:
13676 op = DW_OP_or;
13677 goto do_binop;
13678
13679 case XOR:
13680 op = DW_OP_xor;
13681 goto do_binop;
13682
13683 do_binop:
13684 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
13685 VAR_INIT_STATUS_INITIALIZED);
13686 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
13687 VAR_INIT_STATUS_INITIALIZED);
13688
13689 if (op0 == 0 || op1 == 0)
13690 break;
13691
13692 mem_loc_result = op0;
13693 add_loc_descr (&mem_loc_result, op1);
13694 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
13695 break;
13696
13697 case MOD:
13698 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
13699 VAR_INIT_STATUS_INITIALIZED);
13700 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
13701 VAR_INIT_STATUS_INITIALIZED);
13702
13703 if (op0 == 0 || op1 == 0)
13704 break;
13705
13706 mem_loc_result = op0;
13707 add_loc_descr (&mem_loc_result, op1);
13708 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_over, 0, 0));
13709 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_over, 0, 0));
13710 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_div, 0, 0));
13711 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
13712 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_minus, 0, 0));
13713 break;
13714
13715 case NOT:
13716 op = DW_OP_not;
13717 goto do_unop;
13718
13719 case ABS:
13720 op = DW_OP_abs;
13721 goto do_unop;
13722
13723 case NEG:
13724 op = DW_OP_neg;
13725 goto do_unop;
13726
13727 do_unop:
13728 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
13729 VAR_INIT_STATUS_INITIALIZED);
13730
13731 if (op0 == 0)
13732 break;
13733
13734 mem_loc_result = op0;
13735 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
13736 break;
13737
13738 case CONST_INT:
13739 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
13740 break;
13741
13742 case EQ:
13743 op = DW_OP_eq;
13744 goto do_scompare;
13745
13746 case GE:
13747 op = DW_OP_ge;
13748 goto do_scompare;
13749
13750 case GT:
13751 op = DW_OP_gt;
13752 goto do_scompare;
13753
13754 case LE:
13755 op = DW_OP_le;
13756 goto do_scompare;
13757
13758 case LT:
13759 op = DW_OP_lt;
13760 goto do_scompare;
13761
13762 case NE:
13763 op = DW_OP_ne;
13764 goto do_scompare;
13765
13766 do_scompare:
13767 if (GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0))) > DWARF2_ADDR_SIZE
13768 || GET_MODE_SIZE (GET_MODE (XEXP (rtl, 1))) > DWARF2_ADDR_SIZE)
13769 break;
13770 else
13771 {
13772 enum machine_mode op_mode = GET_MODE (XEXP (rtl, 0));
13773
13774 if (op_mode == VOIDmode)
13775 op_mode = GET_MODE (XEXP (rtl, 1));
13776 if (op_mode != VOIDmode && GET_MODE_CLASS (op_mode) != MODE_INT)
13777 break;
13778
13779 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
13780 VAR_INIT_STATUS_INITIALIZED);
13781 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
13782 VAR_INIT_STATUS_INITIALIZED);
13783
13784 if (op0 == 0 || op1 == 0)
13785 break;
13786
13787 if (op_mode != VOIDmode
13788 && GET_MODE_SIZE (op_mode) < DWARF2_ADDR_SIZE)
13789 {
13790 int shift = DWARF2_ADDR_SIZE - GET_MODE_SIZE (op_mode);
13791 shift *= BITS_PER_UNIT;
13792 /* For eq/ne, if the operands are known to be zero-extended,
13793 there is no need to do the fancy shifting up. */
13794 if (op == DW_OP_eq || op == DW_OP_ne)
13795 {
13796 dw_loc_descr_ref last0, last1;
13797 for (last0 = op0;
13798 last0->dw_loc_next != NULL;
13799 last0 = last0->dw_loc_next)
13800 ;
13801 for (last1 = op1;
13802 last1->dw_loc_next != NULL;
13803 last1 = last1->dw_loc_next)
13804 ;
13805 /* deref_size zero extends, and for constants we can check
13806 whether they are zero extended or not. */
13807 if (((last0->dw_loc_opc == DW_OP_deref_size
13808 && last0->dw_loc_oprnd1.v.val_int
13809 <= GET_MODE_SIZE (op_mode))
13810 || (CONST_INT_P (XEXP (rtl, 0))
13811 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (rtl, 0))
13812 == (INTVAL (XEXP (rtl, 0))
13813 & GET_MODE_MASK (op_mode))))
13814 && ((last1->dw_loc_opc == DW_OP_deref_size
13815 && last1->dw_loc_oprnd1.v.val_int
13816 <= GET_MODE_SIZE (op_mode))
13817 || (CONST_INT_P (XEXP (rtl, 1))
13818 && (unsigned HOST_WIDE_INT)
13819 INTVAL (XEXP (rtl, 1))
13820 == (INTVAL (XEXP (rtl, 1))
13821 & GET_MODE_MASK (op_mode)))))
13822 goto do_compare;
13823 }
13824 add_loc_descr (&op0, int_loc_descriptor (shift));
13825 add_loc_descr (&op0, new_loc_descr (DW_OP_shl, 0, 0));
13826 if (CONST_INT_P (XEXP (rtl, 1)))
13827 op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1)) << shift);
13828 else
13829 {
13830 add_loc_descr (&op1, int_loc_descriptor (shift));
13831 add_loc_descr (&op1, new_loc_descr (DW_OP_shl, 0, 0));
13832 }
13833 }
13834 }
13835
13836 do_compare:
13837 mem_loc_result = op0;
13838 add_loc_descr (&mem_loc_result, op1);
13839 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
13840 if (STORE_FLAG_VALUE != 1)
13841 {
13842 add_loc_descr (&mem_loc_result,
13843 int_loc_descriptor (STORE_FLAG_VALUE));
13844 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
13845 }
13846 break;
13847
13848 case GEU:
13849 op = DW_OP_ge;
13850 goto do_ucompare;
13851
13852 case GTU:
13853 op = DW_OP_gt;
13854 goto do_ucompare;
13855
13856 case LEU:
13857 op = DW_OP_le;
13858 goto do_ucompare;
13859
13860 case LTU:
13861 op = DW_OP_lt;
13862 goto do_ucompare;
13863
13864 do_ucompare:
13865 if (GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0))) > DWARF2_ADDR_SIZE
13866 || GET_MODE_SIZE (GET_MODE (XEXP (rtl, 1))) > DWARF2_ADDR_SIZE)
13867 break;
13868 else
13869 {
13870 enum machine_mode op_mode = GET_MODE (XEXP (rtl, 0));
13871
13872 if (op_mode == VOIDmode)
13873 op_mode = GET_MODE (XEXP (rtl, 1));
13874 if (op_mode != VOIDmode && GET_MODE_CLASS (op_mode) != MODE_INT)
13875 break;
13876
13877 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
13878 VAR_INIT_STATUS_INITIALIZED);
13879 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
13880 VAR_INIT_STATUS_INITIALIZED);
13881
13882 if (op0 == 0 || op1 == 0)
13883 break;
13884
13885 if (op_mode != VOIDmode
13886 && GET_MODE_SIZE (op_mode) < DWARF2_ADDR_SIZE)
13887 {
13888 HOST_WIDE_INT mask = GET_MODE_MASK (op_mode);
13889 dw_loc_descr_ref last0, last1;
13890 for (last0 = op0;
13891 last0->dw_loc_next != NULL;
13892 last0 = last0->dw_loc_next)
13893 ;
13894 for (last1 = op1;
13895 last1->dw_loc_next != NULL;
13896 last1 = last1->dw_loc_next)
13897 ;
13898 if (CONST_INT_P (XEXP (rtl, 0)))
13899 op0 = int_loc_descriptor (INTVAL (XEXP (rtl, 0)) & mask);
13900 /* deref_size zero extends, so no need to mask it again. */
13901 else if (last0->dw_loc_opc != DW_OP_deref_size
13902 || last0->dw_loc_oprnd1.v.val_int
13903 > GET_MODE_SIZE (op_mode))
13904 {
13905 add_loc_descr (&op0, int_loc_descriptor (mask));
13906 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
13907 }
13908 if (CONST_INT_P (XEXP (rtl, 1)))
13909 op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1)) & mask);
13910 /* deref_size zero extends, so no need to mask it again. */
13911 else if (last1->dw_loc_opc != DW_OP_deref_size
13912 || last1->dw_loc_oprnd1.v.val_int
13913 > GET_MODE_SIZE (op_mode))
13914 {
13915 add_loc_descr (&op1, int_loc_descriptor (mask));
13916 add_loc_descr (&op1, new_loc_descr (DW_OP_and, 0, 0));
13917 }
13918 }
13919 else
13920 {
13921 HOST_WIDE_INT bias = 1;
13922 bias <<= (DWARF2_ADDR_SIZE * BITS_PER_UNIT - 1);
13923 add_loc_descr (&op0, new_loc_descr (DW_OP_plus_uconst, bias, 0));
13924 if (CONST_INT_P (XEXP (rtl, 1)))
13925 op1 = int_loc_descriptor ((unsigned HOST_WIDE_INT) bias
13926 + INTVAL (XEXP (rtl, 1)));
13927 else
13928 add_loc_descr (&op1, new_loc_descr (DW_OP_plus_uconst,
13929 bias, 0));
13930 }
13931 }
13932 goto do_compare;
13933
13934 case SMIN:
13935 case SMAX:
13936 case UMIN:
13937 case UMAX:
13938 if (GET_MODE_CLASS (GET_MODE (XEXP (rtl, 0))) != MODE_INT
13939 || GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0))) > DWARF2_ADDR_SIZE
13940 || GET_MODE (XEXP (rtl, 0)) != GET_MODE (XEXP (rtl, 1)))
13941 break;
13942
13943 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
13944 VAR_INIT_STATUS_INITIALIZED);
13945 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
13946 VAR_INIT_STATUS_INITIALIZED);
13947
13948 if (op0 == 0 || op1 == 0)
13949 break;
13950
13951 add_loc_descr (&op0, new_loc_descr (DW_OP_dup, 0, 0));
13952 add_loc_descr (&op1, new_loc_descr (DW_OP_swap, 0, 0));
13953 add_loc_descr (&op1, new_loc_descr (DW_OP_over, 0, 0));
13954 if (GET_CODE (rtl) == UMIN || GET_CODE (rtl) == UMAX)
13955 {
13956 if (GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0))) < DWARF2_ADDR_SIZE)
13957 {
13958 HOST_WIDE_INT mask = GET_MODE_MASK (GET_MODE (XEXP (rtl, 0)));
13959 add_loc_descr (&op0, int_loc_descriptor (mask));
13960 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
13961 add_loc_descr (&op1, int_loc_descriptor (mask));
13962 add_loc_descr (&op1, new_loc_descr (DW_OP_and, 0, 0));
13963 }
13964 else
13965 {
13966 HOST_WIDE_INT bias = 1;
13967 bias <<= (DWARF2_ADDR_SIZE * BITS_PER_UNIT - 1);
13968 add_loc_descr (&op0, new_loc_descr (DW_OP_plus_uconst, bias, 0));
13969 add_loc_descr (&op1, new_loc_descr (DW_OP_plus_uconst, bias, 0));
13970 }
13971 }
13972 else if (GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0))) < DWARF2_ADDR_SIZE)
13973 {
13974 int shift = DWARF2_ADDR_SIZE
13975 - GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0)));
13976 shift *= BITS_PER_UNIT;
13977 add_loc_descr (&op0, int_loc_descriptor (shift));
13978 add_loc_descr (&op0, new_loc_descr (DW_OP_shl, 0, 0));
13979 add_loc_descr (&op1, int_loc_descriptor (shift));
13980 add_loc_descr (&op1, new_loc_descr (DW_OP_shl, 0, 0));
13981 }
13982
13983 if (GET_CODE (rtl) == SMIN || GET_CODE (rtl) == UMIN)
13984 op = DW_OP_lt;
13985 else
13986 op = DW_OP_gt;
13987 mem_loc_result = op0;
13988 add_loc_descr (&mem_loc_result, op1);
13989 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
13990 {
13991 dw_loc_descr_ref bra_node, drop_node;
13992
13993 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
13994 add_loc_descr (&mem_loc_result, bra_node);
13995 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_swap, 0, 0));
13996 drop_node = new_loc_descr (DW_OP_drop, 0, 0);
13997 add_loc_descr (&mem_loc_result, drop_node);
13998 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
13999 bra_node->dw_loc_oprnd1.v.val_loc = drop_node;
14000 }
14001 break;
14002
14003 case ZERO_EXTRACT:
14004 case SIGN_EXTRACT:
14005 if (CONST_INT_P (XEXP (rtl, 1))
14006 && CONST_INT_P (XEXP (rtl, 2))
14007 && ((unsigned) INTVAL (XEXP (rtl, 1))
14008 + (unsigned) INTVAL (XEXP (rtl, 2))
14009 <= GET_MODE_BITSIZE (GET_MODE (rtl)))
14010 && GET_MODE_BITSIZE (GET_MODE (rtl)) <= DWARF2_ADDR_SIZE
14011 && GET_MODE_BITSIZE (GET_MODE (XEXP (rtl, 0))) <= DWARF2_ADDR_SIZE)
14012 {
14013 int shift, size;
14014 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
14015 VAR_INIT_STATUS_INITIALIZED);
14016 if (op0 == 0)
14017 break;
14018 if (GET_CODE (rtl) == SIGN_EXTRACT)
14019 op = DW_OP_shra;
14020 else
14021 op = DW_OP_shr;
14022 mem_loc_result = op0;
14023 size = INTVAL (XEXP (rtl, 1));
14024 shift = INTVAL (XEXP (rtl, 2));
14025 if (BITS_BIG_ENDIAN)
14026 shift = GET_MODE_BITSIZE (GET_MODE (XEXP (rtl, 0)))
14027 - shift - size;
14028 if (shift + size != (int) DWARF2_ADDR_SIZE)
14029 {
14030 add_loc_descr (&mem_loc_result,
14031 int_loc_descriptor (DWARF2_ADDR_SIZE
14032 - shift - size));
14033 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_shl, 0, 0));
14034 }
14035 if (size != (int) DWARF2_ADDR_SIZE)
14036 {
14037 add_loc_descr (&mem_loc_result,
14038 int_loc_descriptor (DWARF2_ADDR_SIZE - size));
14039 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
14040 }
14041 }
14042 break;
14043
14044 case COMPARE:
14045 case IF_THEN_ELSE:
14046 case ROTATE:
14047 case ROTATERT:
14048 case TRUNCATE:
14049 /* In theory, we could implement the above. */
14050 /* DWARF cannot represent the unsigned compare operations
14051 natively. */
14052 case SS_MULT:
14053 case US_MULT:
14054 case SS_DIV:
14055 case US_DIV:
14056 case SS_PLUS:
14057 case US_PLUS:
14058 case SS_MINUS:
14059 case US_MINUS:
14060 case SS_NEG:
14061 case US_NEG:
14062 case SS_ABS:
14063 case SS_ASHIFT:
14064 case US_ASHIFT:
14065 case SS_TRUNCATE:
14066 case US_TRUNCATE:
14067 case UDIV:
14068 case UNORDERED:
14069 case ORDERED:
14070 case UNEQ:
14071 case UNGE:
14072 case UNGT:
14073 case UNLE:
14074 case UNLT:
14075 case LTGT:
14076 case FLOAT_EXTEND:
14077 case FLOAT_TRUNCATE:
14078 case FLOAT:
14079 case UNSIGNED_FLOAT:
14080 case FIX:
14081 case UNSIGNED_FIX:
14082 case FRACT_CONVERT:
14083 case UNSIGNED_FRACT_CONVERT:
14084 case SAT_FRACT:
14085 case UNSIGNED_SAT_FRACT:
14086 case SQRT:
14087 case BSWAP:
14088 case FFS:
14089 case CLZ:
14090 case CTZ:
14091 case POPCOUNT:
14092 case PARITY:
14093 case ASM_OPERANDS:
14094 case VEC_MERGE:
14095 case VEC_SELECT:
14096 case VEC_CONCAT:
14097 case VEC_DUPLICATE:
14098 case UNSPEC:
14099 case HIGH:
14100 /* If delegitimize_address couldn't do anything with the UNSPEC, we
14101 can't express it in the debug info. This can happen e.g. with some
14102 TLS UNSPECs. */
14103 break;
14104
14105 case CONST_STRING:
14106 resolve_one_addr (&rtl, NULL);
14107 goto symref;
14108
14109 default:
14110 #ifdef ENABLE_CHECKING
14111 print_rtl (stderr, rtl);
14112 gcc_unreachable ();
14113 #else
14114 break;
14115 #endif
14116 }
14117
14118 if (mem_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
14119 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
14120
14121 return mem_loc_result;
14122 }
14123
14124 /* Return a descriptor that describes the concatenation of two locations.
14125 This is typically a complex variable. */
14126
14127 static dw_loc_descr_ref
14128 concat_loc_descriptor (rtx x0, rtx x1, enum var_init_status initialized)
14129 {
14130 dw_loc_descr_ref cc_loc_result = NULL;
14131 dw_loc_descr_ref x0_ref
14132 = loc_descriptor (x0, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
14133 dw_loc_descr_ref x1_ref
14134 = loc_descriptor (x1, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
14135
14136 if (x0_ref == 0 || x1_ref == 0)
14137 return 0;
14138
14139 cc_loc_result = x0_ref;
14140 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
14141
14142 add_loc_descr (&cc_loc_result, x1_ref);
14143 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
14144
14145 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
14146 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
14147
14148 return cc_loc_result;
14149 }
14150
14151 /* Return a descriptor that describes the concatenation of N
14152 locations. */
14153
14154 static dw_loc_descr_ref
14155 concatn_loc_descriptor (rtx concatn, enum var_init_status initialized)
14156 {
14157 unsigned int i;
14158 dw_loc_descr_ref cc_loc_result = NULL;
14159 unsigned int n = XVECLEN (concatn, 0);
14160
14161 for (i = 0; i < n; ++i)
14162 {
14163 dw_loc_descr_ref ref;
14164 rtx x = XVECEXP (concatn, 0, i);
14165
14166 ref = loc_descriptor (x, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
14167 if (ref == NULL)
14168 return NULL;
14169
14170 add_loc_descr (&cc_loc_result, ref);
14171 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x)));
14172 }
14173
14174 if (cc_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
14175 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
14176
14177 return cc_loc_result;
14178 }
14179
14180 /* Output a proper Dwarf location descriptor for a variable or parameter
14181 which is either allocated in a register or in a memory location. For a
14182 register, we just generate an OP_REG and the register number. For a
14183 memory location we provide a Dwarf postfix expression describing how to
14184 generate the (dynamic) address of the object onto the address stack.
14185
14186 MODE is mode of the decl if this loc_descriptor is going to be used in
14187 .debug_loc section where DW_OP_stack_value and DW_OP_implicit_value are
14188 allowed, VOIDmode otherwise.
14189
14190 If we don't know how to describe it, return 0. */
14191
14192 static dw_loc_descr_ref
14193 loc_descriptor (rtx rtl, enum machine_mode mode,
14194 enum var_init_status initialized)
14195 {
14196 dw_loc_descr_ref loc_result = NULL;
14197
14198 switch (GET_CODE (rtl))
14199 {
14200 case SUBREG:
14201 /* The case of a subreg may arise when we have a local (register)
14202 variable or a formal (register) parameter which doesn't quite fill
14203 up an entire register. For now, just assume that it is
14204 legitimate to make the Dwarf info refer to the whole register which
14205 contains the given subreg. */
14206 loc_result = loc_descriptor (SUBREG_REG (rtl), mode, initialized);
14207 break;
14208
14209 case REG:
14210 loc_result = reg_loc_descriptor (rtl, initialized);
14211 break;
14212
14213 case SIGN_EXTEND:
14214 case ZERO_EXTEND:
14215 loc_result = loc_descriptor (XEXP (rtl, 0), mode, initialized);
14216 break;
14217
14218 case MEM:
14219 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
14220 initialized);
14221 if (loc_result == NULL)
14222 loc_result = tls_mem_loc_descriptor (rtl);
14223 if (loc_result == NULL)
14224 {
14225 rtx new_rtl = avoid_constant_pool_reference (rtl);
14226 if (new_rtl != rtl)
14227 loc_result = loc_descriptor (new_rtl, mode, initialized);
14228 }
14229 break;
14230
14231 case CONCAT:
14232 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1),
14233 initialized);
14234 break;
14235
14236 case CONCATN:
14237 loc_result = concatn_loc_descriptor (rtl, initialized);
14238 break;
14239
14240 case VAR_LOCATION:
14241 /* Single part. */
14242 if (GET_CODE (PAT_VAR_LOCATION_LOC (rtl)) != PARALLEL)
14243 {
14244 rtx loc = PAT_VAR_LOCATION_LOC (rtl);
14245 if (GET_CODE (loc) == EXPR_LIST)
14246 loc = XEXP (loc, 0);
14247 loc_result = loc_descriptor (loc, mode, initialized);
14248 break;
14249 }
14250
14251 rtl = XEXP (rtl, 1);
14252 /* FALLTHRU */
14253
14254 case PARALLEL:
14255 {
14256 rtvec par_elems = XVEC (rtl, 0);
14257 int num_elem = GET_NUM_ELEM (par_elems);
14258 enum machine_mode mode;
14259 int i;
14260
14261 /* Create the first one, so we have something to add to. */
14262 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
14263 VOIDmode, initialized);
14264 if (loc_result == NULL)
14265 return NULL;
14266 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
14267 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
14268 for (i = 1; i < num_elem; i++)
14269 {
14270 dw_loc_descr_ref temp;
14271
14272 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
14273 VOIDmode, initialized);
14274 if (temp == NULL)
14275 return NULL;
14276 add_loc_descr (&loc_result, temp);
14277 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
14278 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
14279 }
14280 }
14281 break;
14282
14283 case CONST_INT:
14284 if (mode != VOIDmode && mode != BLKmode)
14285 loc_result = address_of_int_loc_descriptor (GET_MODE_SIZE (mode),
14286 INTVAL (rtl));
14287 break;
14288
14289 case CONST_DOUBLE:
14290 if (mode == VOIDmode)
14291 mode = GET_MODE (rtl);
14292
14293 if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
14294 {
14295 gcc_assert (mode == GET_MODE (rtl) || VOIDmode == GET_MODE (rtl));
14296
14297 /* Note that a CONST_DOUBLE rtx could represent either an integer
14298 or a floating-point constant. A CONST_DOUBLE is used whenever
14299 the constant requires more than one word in order to be
14300 adequately represented. We output CONST_DOUBLEs as blocks. */
14301 loc_result = new_loc_descr (DW_OP_implicit_value,
14302 GET_MODE_SIZE (mode), 0);
14303 if (SCALAR_FLOAT_MODE_P (mode))
14304 {
14305 unsigned int length = GET_MODE_SIZE (mode);
14306 unsigned char *array
14307 = (unsigned char*) ggc_alloc_atomic (length);
14308
14309 insert_float (rtl, array);
14310 loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
14311 loc_result->dw_loc_oprnd2.v.val_vec.length = length / 4;
14312 loc_result->dw_loc_oprnd2.v.val_vec.elt_size = 4;
14313 loc_result->dw_loc_oprnd2.v.val_vec.array = array;
14314 }
14315 else
14316 {
14317 loc_result->dw_loc_oprnd2.val_class = dw_val_class_const_double;
14318 loc_result->dw_loc_oprnd2.v.val_double
14319 = rtx_to_double_int (rtl);
14320 }
14321 }
14322 break;
14323
14324 case CONST_VECTOR:
14325 if (mode == VOIDmode)
14326 mode = GET_MODE (rtl);
14327
14328 if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
14329 {
14330 unsigned int elt_size = GET_MODE_UNIT_SIZE (GET_MODE (rtl));
14331 unsigned int length = CONST_VECTOR_NUNITS (rtl);
14332 unsigned char *array = (unsigned char *)
14333 ggc_alloc_atomic (length * elt_size);
14334 unsigned int i;
14335 unsigned char *p;
14336
14337 gcc_assert (mode == GET_MODE (rtl) || VOIDmode == GET_MODE (rtl));
14338 switch (GET_MODE_CLASS (mode))
14339 {
14340 case MODE_VECTOR_INT:
14341 for (i = 0, p = array; i < length; i++, p += elt_size)
14342 {
14343 rtx elt = CONST_VECTOR_ELT (rtl, i);
14344 double_int val = rtx_to_double_int (elt);
14345
14346 if (elt_size <= sizeof (HOST_WIDE_INT))
14347 insert_int (double_int_to_shwi (val), elt_size, p);
14348 else
14349 {
14350 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
14351 insert_double (val, p);
14352 }
14353 }
14354 break;
14355
14356 case MODE_VECTOR_FLOAT:
14357 for (i = 0, p = array; i < length; i++, p += elt_size)
14358 {
14359 rtx elt = CONST_VECTOR_ELT (rtl, i);
14360 insert_float (elt, p);
14361 }
14362 break;
14363
14364 default:
14365 gcc_unreachable ();
14366 }
14367
14368 loc_result = new_loc_descr (DW_OP_implicit_value,
14369 length * elt_size, 0);
14370 loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
14371 loc_result->dw_loc_oprnd2.v.val_vec.length = length;
14372 loc_result->dw_loc_oprnd2.v.val_vec.elt_size = elt_size;
14373 loc_result->dw_loc_oprnd2.v.val_vec.array = array;
14374 }
14375 break;
14376
14377 case CONST:
14378 if (mode == VOIDmode
14379 || GET_CODE (XEXP (rtl, 0)) == CONST_INT
14380 || GET_CODE (XEXP (rtl, 0)) == CONST_DOUBLE
14381 || GET_CODE (XEXP (rtl, 0)) == CONST_VECTOR)
14382 {
14383 loc_result = loc_descriptor (XEXP (rtl, 0), mode, initialized);
14384 break;
14385 }
14386 /* FALLTHROUGH */
14387 case SYMBOL_REF:
14388 if (!const_ok_for_output (rtl))
14389 break;
14390 case LABEL_REF:
14391 if (mode != VOIDmode && GET_MODE_SIZE (mode) == DWARF2_ADDR_SIZE
14392 && (dwarf_version >= 4 || !dwarf_strict))
14393 {
14394 loc_result = new_loc_descr (DW_OP_addr, 0, 0);
14395 loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
14396 loc_result->dw_loc_oprnd1.v.val_addr = rtl;
14397 add_loc_descr (&loc_result, new_loc_descr (DW_OP_stack_value, 0, 0));
14398 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
14399 }
14400 break;
14401
14402 default:
14403 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE (rtl) == mode
14404 && GET_MODE_SIZE (GET_MODE (rtl)) <= DWARF2_ADDR_SIZE
14405 && (dwarf_version >= 4 || !dwarf_strict))
14406 {
14407 /* Value expression. */
14408 loc_result = mem_loc_descriptor (rtl, VOIDmode, initialized);
14409 if (loc_result)
14410 add_loc_descr (&loc_result,
14411 new_loc_descr (DW_OP_stack_value, 0, 0));
14412 }
14413 break;
14414 }
14415
14416 return loc_result;
14417 }
14418
14419 /* We need to figure out what section we should use as the base for the
14420 address ranges where a given location is valid.
14421 1. If this particular DECL has a section associated with it, use that.
14422 2. If this function has a section associated with it, use that.
14423 3. Otherwise, use the text section.
14424 XXX: If you split a variable across multiple sections, we won't notice. */
14425
14426 static const char *
14427 secname_for_decl (const_tree decl)
14428 {
14429 const char *secname;
14430
14431 if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
14432 {
14433 tree sectree = DECL_SECTION_NAME (decl);
14434 secname = TREE_STRING_POINTER (sectree);
14435 }
14436 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
14437 {
14438 tree sectree = DECL_SECTION_NAME (current_function_decl);
14439 secname = TREE_STRING_POINTER (sectree);
14440 }
14441 else if (cfun && in_cold_section_p)
14442 secname = crtl->subsections.cold_section_label;
14443 else
14444 secname = text_section_label;
14445
14446 return secname;
14447 }
14448
14449 /* Return true when DECL_BY_REFERENCE is defined and set for DECL. */
14450
14451 static bool
14452 decl_by_reference_p (tree decl)
14453 {
14454 return ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == RESULT_DECL
14455 || TREE_CODE (decl) == VAR_DECL)
14456 && DECL_BY_REFERENCE (decl));
14457 }
14458
14459 /* Helper function for dw_loc_list. Compute proper Dwarf location descriptor
14460 for VARLOC. */
14461
14462 static dw_loc_descr_ref
14463 dw_loc_list_1 (tree loc, rtx varloc, int want_address,
14464 enum var_init_status initialized)
14465 {
14466 int have_address = 0;
14467 dw_loc_descr_ref descr;
14468 enum machine_mode mode;
14469
14470 if (want_address != 2)
14471 {
14472 gcc_assert (GET_CODE (varloc) == VAR_LOCATION);
14473 /* Single part. */
14474 if (GET_CODE (PAT_VAR_LOCATION_LOC (varloc)) != PARALLEL)
14475 {
14476 varloc = PAT_VAR_LOCATION_LOC (varloc);
14477 if (GET_CODE (varloc) == EXPR_LIST)
14478 varloc = XEXP (varloc, 0);
14479 mode = GET_MODE (varloc);
14480 if (MEM_P (varloc))
14481 {
14482 rtx addr = XEXP (varloc, 0);
14483 descr = mem_loc_descriptor (addr, mode, initialized);
14484 if (descr)
14485 have_address = 1;
14486 else
14487 {
14488 rtx x = avoid_constant_pool_reference (varloc);
14489 if (x != varloc)
14490 descr = mem_loc_descriptor (x, mode, initialized);
14491 }
14492 }
14493 else
14494 descr = mem_loc_descriptor (varloc, mode, initialized);
14495 }
14496 else
14497 return 0;
14498 }
14499 else
14500 {
14501 if (GET_CODE (varloc) == VAR_LOCATION)
14502 mode = DECL_MODE (PAT_VAR_LOCATION_DECL (varloc));
14503 else
14504 mode = DECL_MODE (loc);
14505 descr = loc_descriptor (varloc, mode, initialized);
14506 have_address = 1;
14507 }
14508
14509 if (!descr)
14510 return 0;
14511
14512 if (want_address == 2 && !have_address
14513 && (dwarf_version >= 4 || !dwarf_strict))
14514 {
14515 if (int_size_in_bytes (TREE_TYPE (loc)) > DWARF2_ADDR_SIZE)
14516 {
14517 expansion_failed (loc, NULL_RTX,
14518 "DWARF address size mismatch");
14519 return 0;
14520 }
14521 add_loc_descr (&descr, new_loc_descr (DW_OP_stack_value, 0, 0));
14522 have_address = 1;
14523 }
14524 /* Show if we can't fill the request for an address. */
14525 if (want_address && !have_address)
14526 {
14527 expansion_failed (loc, NULL_RTX,
14528 "Want address and only have value");
14529 return 0;
14530 }
14531
14532 /* If we've got an address and don't want one, dereference. */
14533 if (!want_address && have_address)
14534 {
14535 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
14536 enum dwarf_location_atom op;
14537
14538 if (size > DWARF2_ADDR_SIZE || size == -1)
14539 {
14540 expansion_failed (loc, NULL_RTX,
14541 "DWARF address size mismatch");
14542 return 0;
14543 }
14544 else if (size == DWARF2_ADDR_SIZE)
14545 op = DW_OP_deref;
14546 else
14547 op = DW_OP_deref_size;
14548
14549 add_loc_descr (&descr, new_loc_descr (op, size, 0));
14550 }
14551
14552 return descr;
14553 }
14554
14555 /* Create a DW_OP_piece or DW_OP_bit_piece for bitsize, or return NULL
14556 if it is not possible. */
14557
14558 static dw_loc_descr_ref
14559 new_loc_descr_op_bit_piece (HOST_WIDE_INT bitsize, HOST_WIDE_INT offset)
14560 {
14561 if ((bitsize % BITS_PER_UNIT) == 0 && offset == 0)
14562 return new_loc_descr (DW_OP_piece, bitsize / BITS_PER_UNIT, 0);
14563 else if (dwarf_version >= 3 || !dwarf_strict)
14564 return new_loc_descr (DW_OP_bit_piece, bitsize, offset);
14565 else
14566 return NULL;
14567 }
14568
14569 /* Helper function for dw_loc_list. Compute proper Dwarf location descriptor
14570 for VAR_LOC_NOTE for variable DECL that has been optimized by SRA. */
14571
14572 static dw_loc_descr_ref
14573 dw_sra_loc_expr (tree decl, rtx loc)
14574 {
14575 rtx p;
14576 unsigned int padsize = 0;
14577 dw_loc_descr_ref descr, *descr_tail;
14578 unsigned HOST_WIDE_INT decl_size;
14579 rtx varloc;
14580 enum var_init_status initialized;
14581
14582 if (DECL_SIZE (decl) == NULL
14583 || !host_integerp (DECL_SIZE (decl), 1))
14584 return NULL;
14585
14586 decl_size = tree_low_cst (DECL_SIZE (decl), 1);
14587 descr = NULL;
14588 descr_tail = &descr;
14589
14590 for (p = loc; p; p = XEXP (p, 1))
14591 {
14592 unsigned int bitsize = decl_piece_bitsize (p);
14593 rtx loc_note = *decl_piece_varloc_ptr (p);
14594 dw_loc_descr_ref cur_descr;
14595 dw_loc_descr_ref *tail, last = NULL;
14596 unsigned int opsize = 0;
14597
14598 if (loc_note == NULL_RTX
14599 || NOTE_VAR_LOCATION_LOC (loc_note) == NULL_RTX)
14600 {
14601 padsize += bitsize;
14602 continue;
14603 }
14604 initialized = NOTE_VAR_LOCATION_STATUS (loc_note);
14605 varloc = NOTE_VAR_LOCATION (loc_note);
14606 cur_descr = dw_loc_list_1 (decl, varloc, 2, initialized);
14607 if (cur_descr == NULL)
14608 {
14609 padsize += bitsize;
14610 continue;
14611 }
14612
14613 /* Check that cur_descr either doesn't use
14614 DW_OP_*piece operations, or their sum is equal
14615 to bitsize. Otherwise we can't embed it. */
14616 for (tail = &cur_descr; *tail != NULL;
14617 tail = &(*tail)->dw_loc_next)
14618 if ((*tail)->dw_loc_opc == DW_OP_piece)
14619 {
14620 opsize += (*tail)->dw_loc_oprnd1.v.val_unsigned
14621 * BITS_PER_UNIT;
14622 last = *tail;
14623 }
14624 else if ((*tail)->dw_loc_opc == DW_OP_bit_piece)
14625 {
14626 opsize += (*tail)->dw_loc_oprnd1.v.val_unsigned;
14627 last = *tail;
14628 }
14629
14630 if (last != NULL && opsize != bitsize)
14631 {
14632 padsize += bitsize;
14633 continue;
14634 }
14635
14636 /* If there is a hole, add DW_OP_*piece after empty DWARF
14637 expression, which means that those bits are optimized out. */
14638 if (padsize)
14639 {
14640 if (padsize > decl_size)
14641 return NULL;
14642 decl_size -= padsize;
14643 *descr_tail = new_loc_descr_op_bit_piece (padsize, 0);
14644 if (*descr_tail == NULL)
14645 return NULL;
14646 descr_tail = &(*descr_tail)->dw_loc_next;
14647 padsize = 0;
14648 }
14649 *descr_tail = cur_descr;
14650 descr_tail = tail;
14651 if (bitsize > decl_size)
14652 return NULL;
14653 decl_size -= bitsize;
14654 if (last == NULL)
14655 {
14656 HOST_WIDE_INT offset = 0;
14657 if (GET_CODE (varloc) == VAR_LOCATION
14658 && GET_CODE (PAT_VAR_LOCATION_LOC (varloc)) != PARALLEL)
14659 {
14660 varloc = PAT_VAR_LOCATION_LOC (varloc);
14661 if (GET_CODE (varloc) == EXPR_LIST)
14662 varloc = XEXP (varloc, 0);
14663 }
14664 do
14665 {
14666 if (GET_CODE (varloc) == CONST
14667 || GET_CODE (varloc) == SIGN_EXTEND
14668 || GET_CODE (varloc) == ZERO_EXTEND)
14669 varloc = XEXP (varloc, 0);
14670 else if (GET_CODE (varloc) == SUBREG)
14671 varloc = SUBREG_REG (varloc);
14672 else
14673 break;
14674 }
14675 while (1);
14676 /* DW_OP_bit_size offset should be zero for register
14677 or implicit location descriptions and empty location
14678 descriptions, but for memory addresses needs big endian
14679 adjustment. */
14680 if (MEM_P (varloc))
14681 {
14682 unsigned HOST_WIDE_INT memsize
14683 = INTVAL (MEM_SIZE (varloc)) * BITS_PER_UNIT;
14684 if (memsize != bitsize)
14685 {
14686 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN
14687 && (memsize > BITS_PER_WORD || bitsize > BITS_PER_WORD))
14688 return NULL;
14689 if (memsize < bitsize)
14690 return NULL;
14691 if (BITS_BIG_ENDIAN)
14692 offset = memsize - bitsize;
14693 }
14694 }
14695
14696 *descr_tail = new_loc_descr_op_bit_piece (bitsize, offset);
14697 if (*descr_tail == NULL)
14698 return NULL;
14699 descr_tail = &(*descr_tail)->dw_loc_next;
14700 }
14701 }
14702
14703 /* If there were any non-empty expressions, add padding till the end of
14704 the decl. */
14705 if (descr != NULL && decl_size != 0)
14706 {
14707 *descr_tail = new_loc_descr_op_bit_piece (decl_size, 0);
14708 if (*descr_tail == NULL)
14709 return NULL;
14710 }
14711 return descr;
14712 }
14713
14714 /* Return the dwarf representation of the location list LOC_LIST of
14715 DECL. WANT_ADDRESS has the same meaning as in loc_list_from_tree
14716 function. */
14717
14718 static dw_loc_list_ref
14719 dw_loc_list (var_loc_list *loc_list, tree decl, int want_address)
14720 {
14721 const char *endname, *secname;
14722 rtx varloc;
14723 enum var_init_status initialized;
14724 struct var_loc_node *node;
14725 dw_loc_descr_ref descr;
14726 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
14727 dw_loc_list_ref list = NULL;
14728 dw_loc_list_ref *listp = &list;
14729
14730 /* Now that we know what section we are using for a base,
14731 actually construct the list of locations.
14732 The first location information is what is passed to the
14733 function that creates the location list, and the remaining
14734 locations just get added on to that list.
14735 Note that we only know the start address for a location
14736 (IE location changes), so to build the range, we use
14737 the range [current location start, next location start].
14738 This means we have to special case the last node, and generate
14739 a range of [last location start, end of function label]. */
14740
14741 secname = secname_for_decl (decl);
14742
14743 for (node = loc_list->first; node; node = node->next)
14744 if (GET_CODE (node->loc) == EXPR_LIST
14745 || NOTE_VAR_LOCATION_LOC (node->loc) != NULL_RTX)
14746 {
14747 if (GET_CODE (node->loc) == EXPR_LIST)
14748 {
14749 /* This requires DW_OP_{,bit_}piece, which is not usable
14750 inside DWARF expressions. */
14751 if (want_address != 2)
14752 continue;
14753 descr = dw_sra_loc_expr (decl, node->loc);
14754 if (descr == NULL)
14755 continue;
14756 }
14757 else
14758 {
14759 initialized = NOTE_VAR_LOCATION_STATUS (node->loc);
14760 varloc = NOTE_VAR_LOCATION (node->loc);
14761 descr = dw_loc_list_1 (decl, varloc, want_address, initialized);
14762 }
14763 if (descr)
14764 {
14765 /* The variable has a location between NODE->LABEL and
14766 NODE->NEXT->LABEL. */
14767 if (node->next)
14768 endname = node->next->label;
14769 /* If the variable has a location at the last label
14770 it keeps its location until the end of function. */
14771 else if (!current_function_decl)
14772 endname = text_end_label;
14773 else
14774 {
14775 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
14776 current_function_funcdef_no);
14777 endname = ggc_strdup (label_id);
14778 }
14779
14780 *listp = new_loc_list (descr, node->label, endname, secname);
14781 listp = &(*listp)->dw_loc_next;
14782 }
14783 }
14784
14785 /* Try to avoid the overhead of a location list emitting a location
14786 expression instead, but only if we didn't have more than one
14787 location entry in the first place. If some entries were not
14788 representable, we don't want to pretend a single entry that was
14789 applies to the entire scope in which the variable is
14790 available. */
14791 if (list && loc_list->first->next)
14792 gen_llsym (list);
14793
14794 return list;
14795 }
14796
14797 /* Return if the loc_list has only single element and thus can be represented
14798 as location description. */
14799
14800 static bool
14801 single_element_loc_list_p (dw_loc_list_ref list)
14802 {
14803 gcc_assert (!list->dw_loc_next || list->ll_symbol);
14804 return !list->ll_symbol;
14805 }
14806
14807 /* To each location in list LIST add loc descr REF. */
14808
14809 static void
14810 add_loc_descr_to_each (dw_loc_list_ref list, dw_loc_descr_ref ref)
14811 {
14812 dw_loc_descr_ref copy;
14813 add_loc_descr (&list->expr, ref);
14814 list = list->dw_loc_next;
14815 while (list)
14816 {
14817 copy = ggc_alloc_dw_loc_descr_node ();
14818 memcpy (copy, ref, sizeof (dw_loc_descr_node));
14819 add_loc_descr (&list->expr, copy);
14820 while (copy->dw_loc_next)
14821 {
14822 dw_loc_descr_ref new_copy = ggc_alloc_dw_loc_descr_node ();
14823 memcpy (new_copy, copy->dw_loc_next, sizeof (dw_loc_descr_node));
14824 copy->dw_loc_next = new_copy;
14825 copy = new_copy;
14826 }
14827 list = list->dw_loc_next;
14828 }
14829 }
14830
14831 /* Given two lists RET and LIST
14832 produce location list that is result of adding expression in LIST
14833 to expression in RET on each possition in program.
14834 Might be destructive on both RET and LIST.
14835
14836 TODO: We handle only simple cases of RET or LIST having at most one
14837 element. General case would inolve sorting the lists in program order
14838 and merging them that will need some additional work.
14839 Adding that will improve quality of debug info especially for SRA-ed
14840 structures. */
14841
14842 static void
14843 add_loc_list (dw_loc_list_ref *ret, dw_loc_list_ref list)
14844 {
14845 if (!list)
14846 return;
14847 if (!*ret)
14848 {
14849 *ret = list;
14850 return;
14851 }
14852 if (!list->dw_loc_next)
14853 {
14854 add_loc_descr_to_each (*ret, list->expr);
14855 return;
14856 }
14857 if (!(*ret)->dw_loc_next)
14858 {
14859 add_loc_descr_to_each (list, (*ret)->expr);
14860 *ret = list;
14861 return;
14862 }
14863 expansion_failed (NULL_TREE, NULL_RTX,
14864 "Don't know how to merge two non-trivial"
14865 " location lists.\n");
14866 *ret = NULL;
14867 return;
14868 }
14869
14870 /* LOC is constant expression. Try a luck, look it up in constant
14871 pool and return its loc_descr of its address. */
14872
14873 static dw_loc_descr_ref
14874 cst_pool_loc_descr (tree loc)
14875 {
14876 /* Get an RTL for this, if something has been emitted. */
14877 rtx rtl = lookup_constant_def (loc);
14878 enum machine_mode mode;
14879
14880 if (!rtl || !MEM_P (rtl))
14881 {
14882 gcc_assert (!rtl);
14883 return 0;
14884 }
14885 gcc_assert (GET_CODE (XEXP (rtl, 0)) == SYMBOL_REF);
14886
14887 /* TODO: We might get more coverage if we was actually delaying expansion
14888 of all expressions till end of compilation when constant pools are fully
14889 populated. */
14890 if (!TREE_ASM_WRITTEN (SYMBOL_REF_DECL (XEXP (rtl, 0))))
14891 {
14892 expansion_failed (loc, NULL_RTX,
14893 "CST value in contant pool but not marked.");
14894 return 0;
14895 }
14896 mode = GET_MODE (rtl);
14897 rtl = XEXP (rtl, 0);
14898 return mem_loc_descriptor (rtl, mode, VAR_INIT_STATUS_INITIALIZED);
14899 }
14900
14901 /* Return dw_loc_list representing address of addr_expr LOC
14902 by looking for innder INDIRECT_REF expression and turing it
14903 into simple arithmetics. */
14904
14905 static dw_loc_list_ref
14906 loc_list_for_address_of_addr_expr_of_indirect_ref (tree loc, bool toplev)
14907 {
14908 tree obj, offset;
14909 HOST_WIDE_INT bitsize, bitpos, bytepos;
14910 enum machine_mode mode;
14911 int volatilep;
14912 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
14913 dw_loc_list_ref list_ret = NULL, list_ret1 = NULL;
14914
14915 obj = get_inner_reference (TREE_OPERAND (loc, 0),
14916 &bitsize, &bitpos, &offset, &mode,
14917 &unsignedp, &volatilep, false);
14918 STRIP_NOPS (obj);
14919 if (bitpos % BITS_PER_UNIT)
14920 {
14921 expansion_failed (loc, NULL_RTX, "bitfield access");
14922 return 0;
14923 }
14924 if (!INDIRECT_REF_P (obj))
14925 {
14926 expansion_failed (obj,
14927 NULL_RTX, "no indirect ref in inner refrence");
14928 return 0;
14929 }
14930 if (!offset && !bitpos)
14931 list_ret = loc_list_from_tree (TREE_OPERAND (obj, 0), toplev ? 2 : 1);
14932 else if (toplev
14933 && int_size_in_bytes (TREE_TYPE (loc)) <= DWARF2_ADDR_SIZE
14934 && (dwarf_version >= 4 || !dwarf_strict))
14935 {
14936 list_ret = loc_list_from_tree (TREE_OPERAND (obj, 0), 0);
14937 if (!list_ret)
14938 return 0;
14939 if (offset)
14940 {
14941 /* Variable offset. */
14942 list_ret1 = loc_list_from_tree (offset, 0);
14943 if (list_ret1 == 0)
14944 return 0;
14945 add_loc_list (&list_ret, list_ret1);
14946 if (!list_ret)
14947 return 0;
14948 add_loc_descr_to_each (list_ret,
14949 new_loc_descr (DW_OP_plus, 0, 0));
14950 }
14951 bytepos = bitpos / BITS_PER_UNIT;
14952 if (bytepos > 0)
14953 add_loc_descr_to_each (list_ret,
14954 new_loc_descr (DW_OP_plus_uconst,
14955 bytepos, 0));
14956 else if (bytepos < 0)
14957 loc_list_plus_const (list_ret, bytepos);
14958 add_loc_descr_to_each (list_ret,
14959 new_loc_descr (DW_OP_stack_value, 0, 0));
14960 }
14961 return list_ret;
14962 }
14963
14964
14965 /* Generate Dwarf location list representing LOC.
14966 If WANT_ADDRESS is false, expression computing LOC will be computed
14967 If WANT_ADDRESS is 1, expression computing address of LOC will be returned
14968 if WANT_ADDRESS is 2, expression computing address useable in location
14969 will be returned (i.e. DW_OP_reg can be used
14970 to refer to register values). */
14971
14972 static dw_loc_list_ref
14973 loc_list_from_tree (tree loc, int want_address)
14974 {
14975 dw_loc_descr_ref ret = NULL, ret1 = NULL;
14976 dw_loc_list_ref list_ret = NULL, list_ret1 = NULL;
14977 int have_address = 0;
14978 enum dwarf_location_atom op;
14979
14980 /* ??? Most of the time we do not take proper care for sign/zero
14981 extending the values properly. Hopefully this won't be a real
14982 problem... */
14983
14984 switch (TREE_CODE (loc))
14985 {
14986 case ERROR_MARK:
14987 expansion_failed (loc, NULL_RTX, "ERROR_MARK");
14988 return 0;
14989
14990 case PLACEHOLDER_EXPR:
14991 /* This case involves extracting fields from an object to determine the
14992 position of other fields. We don't try to encode this here. The
14993 only user of this is Ada, which encodes the needed information using
14994 the names of types. */
14995 expansion_failed (loc, NULL_RTX, "PLACEHOLDER_EXPR");
14996 return 0;
14997
14998 case CALL_EXPR:
14999 expansion_failed (loc, NULL_RTX, "CALL_EXPR");
15000 /* There are no opcodes for these operations. */
15001 return 0;
15002
15003 case PREINCREMENT_EXPR:
15004 case PREDECREMENT_EXPR:
15005 case POSTINCREMENT_EXPR:
15006 case POSTDECREMENT_EXPR:
15007 expansion_failed (loc, NULL_RTX, "PRE/POST INDCREMENT/DECREMENT");
15008 /* There are no opcodes for these operations. */
15009 return 0;
15010
15011 case ADDR_EXPR:
15012 /* If we already want an address, see if there is INDIRECT_REF inside
15013 e.g. for &this->field. */
15014 if (want_address)
15015 {
15016 list_ret = loc_list_for_address_of_addr_expr_of_indirect_ref
15017 (loc, want_address == 2);
15018 if (list_ret)
15019 have_address = 1;
15020 else if (decl_address_ip_invariant_p (TREE_OPERAND (loc, 0))
15021 && (ret = cst_pool_loc_descr (loc)))
15022 have_address = 1;
15023 }
15024 /* Otherwise, process the argument and look for the address. */
15025 if (!list_ret && !ret)
15026 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 1);
15027 else
15028 {
15029 if (want_address)
15030 expansion_failed (loc, NULL_RTX, "need address of ADDR_EXPR");
15031 return NULL;
15032 }
15033 break;
15034
15035 case VAR_DECL:
15036 if (DECL_THREAD_LOCAL_P (loc))
15037 {
15038 rtx rtl;
15039 enum dwarf_location_atom first_op;
15040 enum dwarf_location_atom second_op;
15041 bool dtprel = false;
15042
15043 if (targetm.have_tls)
15044 {
15045 /* If this is not defined, we have no way to emit the
15046 data. */
15047 if (!targetm.asm_out.output_dwarf_dtprel)
15048 return 0;
15049
15050 /* The way DW_OP_GNU_push_tls_address is specified, we
15051 can only look up addresses of objects in the current
15052 module. */
15053 if (DECL_EXTERNAL (loc) && !targetm.binds_local_p (loc))
15054 return 0;
15055 first_op = DW_OP_addr;
15056 dtprel = true;
15057 second_op = DW_OP_GNU_push_tls_address;
15058 }
15059 else
15060 {
15061 if (!targetm.emutls.debug_form_tls_address
15062 || !(dwarf_version >= 3 || !dwarf_strict))
15063 return 0;
15064 loc = emutls_decl (loc);
15065 first_op = DW_OP_addr;
15066 second_op = DW_OP_form_tls_address;
15067 }
15068
15069 rtl = rtl_for_decl_location (loc);
15070 if (rtl == NULL_RTX)
15071 return 0;
15072
15073 if (!MEM_P (rtl))
15074 return 0;
15075 rtl = XEXP (rtl, 0);
15076 if (! CONSTANT_P (rtl))
15077 return 0;
15078
15079 ret = new_loc_descr (first_op, 0, 0);
15080 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
15081 ret->dw_loc_oprnd1.v.val_addr = rtl;
15082 ret->dtprel = dtprel;
15083
15084 ret1 = new_loc_descr (second_op, 0, 0);
15085 add_loc_descr (&ret, ret1);
15086
15087 have_address = 1;
15088 break;
15089 }
15090 /* FALLTHRU */
15091
15092 case PARM_DECL:
15093 if (DECL_HAS_VALUE_EXPR_P (loc))
15094 return loc_list_from_tree (DECL_VALUE_EXPR (loc),
15095 want_address);
15096 /* FALLTHRU */
15097
15098 case RESULT_DECL:
15099 case FUNCTION_DECL:
15100 {
15101 rtx rtl;
15102 var_loc_list *loc_list = lookup_decl_loc (loc);
15103
15104 if (loc_list && loc_list->first)
15105 {
15106 list_ret = dw_loc_list (loc_list, loc, want_address);
15107 have_address = want_address != 0;
15108 break;
15109 }
15110 rtl = rtl_for_decl_location (loc);
15111 if (rtl == NULL_RTX)
15112 {
15113 expansion_failed (loc, NULL_RTX, "DECL has no RTL");
15114 return 0;
15115 }
15116 else if (CONST_INT_P (rtl))
15117 {
15118 HOST_WIDE_INT val = INTVAL (rtl);
15119 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
15120 val &= GET_MODE_MASK (DECL_MODE (loc));
15121 ret = int_loc_descriptor (val);
15122 }
15123 else if (GET_CODE (rtl) == CONST_STRING)
15124 {
15125 expansion_failed (loc, NULL_RTX, "CONST_STRING");
15126 return 0;
15127 }
15128 else if (CONSTANT_P (rtl) && const_ok_for_output (rtl))
15129 {
15130 ret = new_loc_descr (DW_OP_addr, 0, 0);
15131 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
15132 ret->dw_loc_oprnd1.v.val_addr = rtl;
15133 }
15134 else
15135 {
15136 enum machine_mode mode;
15137
15138 /* Certain constructs can only be represented at top-level. */
15139 if (want_address == 2)
15140 {
15141 ret = loc_descriptor (rtl, VOIDmode,
15142 VAR_INIT_STATUS_INITIALIZED);
15143 have_address = 1;
15144 }
15145 else
15146 {
15147 mode = GET_MODE (rtl);
15148 if (MEM_P (rtl))
15149 {
15150 rtl = XEXP (rtl, 0);
15151 have_address = 1;
15152 }
15153 ret = mem_loc_descriptor (rtl, mode, VAR_INIT_STATUS_INITIALIZED);
15154 }
15155 if (!ret)
15156 expansion_failed (loc, rtl,
15157 "failed to produce loc descriptor for rtl");
15158 }
15159 }
15160 break;
15161
15162 case INDIRECT_REF:
15163 case ALIGN_INDIRECT_REF:
15164 case MISALIGNED_INDIRECT_REF:
15165 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0);
15166 have_address = 1;
15167 break;
15168
15169 case COMPOUND_EXPR:
15170 return loc_list_from_tree (TREE_OPERAND (loc, 1), want_address);
15171
15172 CASE_CONVERT:
15173 case VIEW_CONVERT_EXPR:
15174 case SAVE_EXPR:
15175 case MODIFY_EXPR:
15176 return loc_list_from_tree (TREE_OPERAND (loc, 0), want_address);
15177
15178 case COMPONENT_REF:
15179 case BIT_FIELD_REF:
15180 case ARRAY_REF:
15181 case ARRAY_RANGE_REF:
15182 case REALPART_EXPR:
15183 case IMAGPART_EXPR:
15184 {
15185 tree obj, offset;
15186 HOST_WIDE_INT bitsize, bitpos, bytepos;
15187 enum machine_mode mode;
15188 int volatilep;
15189 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
15190
15191 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
15192 &unsignedp, &volatilep, false);
15193
15194 gcc_assert (obj != loc);
15195
15196 list_ret = loc_list_from_tree (obj,
15197 want_address == 2
15198 && !bitpos && !offset ? 2 : 1);
15199 /* TODO: We can extract value of the small expression via shifting even
15200 for nonzero bitpos. */
15201 if (list_ret == 0)
15202 return 0;
15203 if (bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
15204 {
15205 expansion_failed (loc, NULL_RTX,
15206 "bitfield access");
15207 return 0;
15208 }
15209
15210 if (offset != NULL_TREE)
15211 {
15212 /* Variable offset. */
15213 list_ret1 = loc_list_from_tree (offset, 0);
15214 if (list_ret1 == 0)
15215 return 0;
15216 add_loc_list (&list_ret, list_ret1);
15217 if (!list_ret)
15218 return 0;
15219 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_plus, 0, 0));
15220 }
15221
15222 bytepos = bitpos / BITS_PER_UNIT;
15223 if (bytepos > 0)
15224 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
15225 else if (bytepos < 0)
15226 loc_list_plus_const (list_ret, bytepos);
15227
15228 have_address = 1;
15229 break;
15230 }
15231
15232 case INTEGER_CST:
15233 if ((want_address || !host_integerp (loc, 0))
15234 && (ret = cst_pool_loc_descr (loc)))
15235 have_address = 1;
15236 else if (want_address == 2
15237 && host_integerp (loc, 0)
15238 && (ret = address_of_int_loc_descriptor
15239 (int_size_in_bytes (TREE_TYPE (loc)),
15240 tree_low_cst (loc, 0))))
15241 have_address = 1;
15242 else if (host_integerp (loc, 0))
15243 ret = int_loc_descriptor (tree_low_cst (loc, 0));
15244 else
15245 {
15246 expansion_failed (loc, NULL_RTX,
15247 "Integer operand is not host integer");
15248 return 0;
15249 }
15250 break;
15251
15252 case CONSTRUCTOR:
15253 case REAL_CST:
15254 case STRING_CST:
15255 case COMPLEX_CST:
15256 if ((ret = cst_pool_loc_descr (loc)))
15257 have_address = 1;
15258 else
15259 /* We can construct small constants here using int_loc_descriptor. */
15260 expansion_failed (loc, NULL_RTX,
15261 "constructor or constant not in constant pool");
15262 break;
15263
15264 case TRUTH_AND_EXPR:
15265 case TRUTH_ANDIF_EXPR:
15266 case BIT_AND_EXPR:
15267 op = DW_OP_and;
15268 goto do_binop;
15269
15270 case TRUTH_XOR_EXPR:
15271 case BIT_XOR_EXPR:
15272 op = DW_OP_xor;
15273 goto do_binop;
15274
15275 case TRUTH_OR_EXPR:
15276 case TRUTH_ORIF_EXPR:
15277 case BIT_IOR_EXPR:
15278 op = DW_OP_or;
15279 goto do_binop;
15280
15281 case FLOOR_DIV_EXPR:
15282 case CEIL_DIV_EXPR:
15283 case ROUND_DIV_EXPR:
15284 case TRUNC_DIV_EXPR:
15285 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
15286 return 0;
15287 op = DW_OP_div;
15288 goto do_binop;
15289
15290 case MINUS_EXPR:
15291 op = DW_OP_minus;
15292 goto do_binop;
15293
15294 case FLOOR_MOD_EXPR:
15295 case CEIL_MOD_EXPR:
15296 case ROUND_MOD_EXPR:
15297 case TRUNC_MOD_EXPR:
15298 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
15299 {
15300 op = DW_OP_mod;
15301 goto do_binop;
15302 }
15303 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0);
15304 list_ret1 = loc_list_from_tree (TREE_OPERAND (loc, 1), 0);
15305 if (list_ret == 0 || list_ret1 == 0)
15306 return 0;
15307
15308 add_loc_list (&list_ret, list_ret1);
15309 if (list_ret == 0)
15310 return 0;
15311 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_over, 0, 0));
15312 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_over, 0, 0));
15313 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_div, 0, 0));
15314 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_mul, 0, 0));
15315 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_minus, 0, 0));
15316 break;
15317
15318 case MULT_EXPR:
15319 op = DW_OP_mul;
15320 goto do_binop;
15321
15322 case LSHIFT_EXPR:
15323 op = DW_OP_shl;
15324 goto do_binop;
15325
15326 case RSHIFT_EXPR:
15327 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
15328 goto do_binop;
15329
15330 case POINTER_PLUS_EXPR:
15331 case PLUS_EXPR:
15332 if (host_integerp (TREE_OPERAND (loc, 1), 0))
15333 {
15334 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0);
15335 if (list_ret == 0)
15336 return 0;
15337
15338 loc_list_plus_const (list_ret, tree_low_cst (TREE_OPERAND (loc, 1), 0));
15339 break;
15340 }
15341
15342 op = DW_OP_plus;
15343 goto do_binop;
15344
15345 case LE_EXPR:
15346 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
15347 return 0;
15348
15349 op = DW_OP_le;
15350 goto do_binop;
15351
15352 case GE_EXPR:
15353 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
15354 return 0;
15355
15356 op = DW_OP_ge;
15357 goto do_binop;
15358
15359 case LT_EXPR:
15360 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
15361 return 0;
15362
15363 op = DW_OP_lt;
15364 goto do_binop;
15365
15366 case GT_EXPR:
15367 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
15368 return 0;
15369
15370 op = DW_OP_gt;
15371 goto do_binop;
15372
15373 case EQ_EXPR:
15374 op = DW_OP_eq;
15375 goto do_binop;
15376
15377 case NE_EXPR:
15378 op = DW_OP_ne;
15379 goto do_binop;
15380
15381 do_binop:
15382 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0);
15383 list_ret1 = loc_list_from_tree (TREE_OPERAND (loc, 1), 0);
15384 if (list_ret == 0 || list_ret1 == 0)
15385 return 0;
15386
15387 add_loc_list (&list_ret, list_ret1);
15388 if (list_ret == 0)
15389 return 0;
15390 add_loc_descr_to_each (list_ret, new_loc_descr (op, 0, 0));
15391 break;
15392
15393 case TRUTH_NOT_EXPR:
15394 case BIT_NOT_EXPR:
15395 op = DW_OP_not;
15396 goto do_unop;
15397
15398 case ABS_EXPR:
15399 op = DW_OP_abs;
15400 goto do_unop;
15401
15402 case NEGATE_EXPR:
15403 op = DW_OP_neg;
15404 goto do_unop;
15405
15406 do_unop:
15407 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0);
15408 if (list_ret == 0)
15409 return 0;
15410
15411 add_loc_descr_to_each (list_ret, new_loc_descr (op, 0, 0));
15412 break;
15413
15414 case MIN_EXPR:
15415 case MAX_EXPR:
15416 {
15417 const enum tree_code code =
15418 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
15419
15420 loc = build3 (COND_EXPR, TREE_TYPE (loc),
15421 build2 (code, integer_type_node,
15422 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
15423 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
15424 }
15425
15426 /* ... fall through ... */
15427
15428 case COND_EXPR:
15429 {
15430 dw_loc_descr_ref lhs
15431 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
15432 dw_loc_list_ref rhs
15433 = loc_list_from_tree (TREE_OPERAND (loc, 2), 0);
15434 dw_loc_descr_ref bra_node, jump_node, tmp;
15435
15436 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0);
15437 if (list_ret == 0 || lhs == 0 || rhs == 0)
15438 return 0;
15439
15440 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
15441 add_loc_descr_to_each (list_ret, bra_node);
15442
15443 add_loc_list (&list_ret, rhs);
15444 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
15445 add_loc_descr_to_each (list_ret, jump_node);
15446
15447 add_loc_descr_to_each (list_ret, lhs);
15448 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
15449 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
15450
15451 /* ??? Need a node to point the skip at. Use a nop. */
15452 tmp = new_loc_descr (DW_OP_nop, 0, 0);
15453 add_loc_descr_to_each (list_ret, tmp);
15454 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
15455 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
15456 }
15457 break;
15458
15459 case FIX_TRUNC_EXPR:
15460 return 0;
15461
15462 default:
15463 /* Leave front-end specific codes as simply unknown. This comes
15464 up, for instance, with the C STMT_EXPR. */
15465 if ((unsigned int) TREE_CODE (loc)
15466 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
15467 {
15468 expansion_failed (loc, NULL_RTX,
15469 "language specific tree node");
15470 return 0;
15471 }
15472
15473 #ifdef ENABLE_CHECKING
15474 /* Otherwise this is a generic code; we should just lists all of
15475 these explicitly. We forgot one. */
15476 gcc_unreachable ();
15477 #else
15478 /* In a release build, we want to degrade gracefully: better to
15479 generate incomplete debugging information than to crash. */
15480 return NULL;
15481 #endif
15482 }
15483
15484 if (!ret && !list_ret)
15485 return 0;
15486
15487 if (want_address == 2 && !have_address
15488 && (dwarf_version >= 4 || !dwarf_strict))
15489 {
15490 if (int_size_in_bytes (TREE_TYPE (loc)) > DWARF2_ADDR_SIZE)
15491 {
15492 expansion_failed (loc, NULL_RTX,
15493 "DWARF address size mismatch");
15494 return 0;
15495 }
15496 if (ret)
15497 add_loc_descr (&ret, new_loc_descr (DW_OP_stack_value, 0, 0));
15498 else
15499 add_loc_descr_to_each (list_ret,
15500 new_loc_descr (DW_OP_stack_value, 0, 0));
15501 have_address = 1;
15502 }
15503 /* Show if we can't fill the request for an address. */
15504 if (want_address && !have_address)
15505 {
15506 expansion_failed (loc, NULL_RTX,
15507 "Want address and only have value");
15508 return 0;
15509 }
15510
15511 gcc_assert (!ret || !list_ret);
15512
15513 /* If we've got an address and don't want one, dereference. */
15514 if (!want_address && have_address)
15515 {
15516 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
15517
15518 if (size > DWARF2_ADDR_SIZE || size == -1)
15519 {
15520 expansion_failed (loc, NULL_RTX,
15521 "DWARF address size mismatch");
15522 return 0;
15523 }
15524 else if (size == DWARF2_ADDR_SIZE)
15525 op = DW_OP_deref;
15526 else
15527 op = DW_OP_deref_size;
15528
15529 if (ret)
15530 add_loc_descr (&ret, new_loc_descr (op, size, 0));
15531 else
15532 add_loc_descr_to_each (list_ret, new_loc_descr (op, size, 0));
15533 }
15534 if (ret)
15535 list_ret = new_loc_list (ret, NULL, NULL, NULL);
15536
15537 return list_ret;
15538 }
15539
15540 /* Same as above but return only single location expression. */
15541 static dw_loc_descr_ref
15542 loc_descriptor_from_tree (tree loc, int want_address)
15543 {
15544 dw_loc_list_ref ret = loc_list_from_tree (loc, want_address);
15545 if (!ret)
15546 return NULL;
15547 if (ret->dw_loc_next)
15548 {
15549 expansion_failed (loc, NULL_RTX,
15550 "Location list where only loc descriptor needed");
15551 return NULL;
15552 }
15553 return ret->expr;
15554 }
15555
15556 /* Given a value, round it up to the lowest multiple of `boundary'
15557 which is not less than the value itself. */
15558
15559 static inline HOST_WIDE_INT
15560 ceiling (HOST_WIDE_INT value, unsigned int boundary)
15561 {
15562 return (((value + boundary - 1) / boundary) * boundary);
15563 }
15564
15565 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
15566 pointer to the declared type for the relevant field variable, or return
15567 `integer_type_node' if the given node turns out to be an
15568 ERROR_MARK node. */
15569
15570 static inline tree
15571 field_type (const_tree decl)
15572 {
15573 tree type;
15574
15575 if (TREE_CODE (decl) == ERROR_MARK)
15576 return integer_type_node;
15577
15578 type = DECL_BIT_FIELD_TYPE (decl);
15579 if (type == NULL_TREE)
15580 type = TREE_TYPE (decl);
15581
15582 return type;
15583 }
15584
15585 /* Given a pointer to a tree node, return the alignment in bits for
15586 it, or else return BITS_PER_WORD if the node actually turns out to
15587 be an ERROR_MARK node. */
15588
15589 static inline unsigned
15590 simple_type_align_in_bits (const_tree type)
15591 {
15592 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
15593 }
15594
15595 static inline unsigned
15596 simple_decl_align_in_bits (const_tree decl)
15597 {
15598 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
15599 }
15600
15601 /* Return the result of rounding T up to ALIGN. */
15602
15603 static inline double_int
15604 round_up_to_align (double_int t, unsigned int align)
15605 {
15606 double_int alignd = uhwi_to_double_int (align);
15607 t = double_int_add (t, alignd);
15608 t = double_int_add (t, double_int_minus_one);
15609 t = double_int_div (t, alignd, true, TRUNC_DIV_EXPR);
15610 t = double_int_mul (t, alignd);
15611 return t;
15612 }
15613
15614 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
15615 lowest addressed byte of the "containing object" for the given FIELD_DECL,
15616 or return 0 if we are unable to determine what that offset is, either
15617 because the argument turns out to be a pointer to an ERROR_MARK node, or
15618 because the offset is actually variable. (We can't handle the latter case
15619 just yet). */
15620
15621 static HOST_WIDE_INT
15622 field_byte_offset (const_tree decl)
15623 {
15624 double_int object_offset_in_bits;
15625 double_int object_offset_in_bytes;
15626 double_int bitpos_int;
15627
15628 if (TREE_CODE (decl) == ERROR_MARK)
15629 return 0;
15630
15631 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
15632
15633 /* We cannot yet cope with fields whose positions are variable, so
15634 for now, when we see such things, we simply return 0. Someday, we may
15635 be able to handle such cases, but it will be damn difficult. */
15636 if (TREE_CODE (bit_position (decl)) != INTEGER_CST)
15637 return 0;
15638
15639 bitpos_int = tree_to_double_int (bit_position (decl));
15640
15641 #ifdef PCC_BITFIELD_TYPE_MATTERS
15642 if (PCC_BITFIELD_TYPE_MATTERS)
15643 {
15644 tree type;
15645 tree field_size_tree;
15646 double_int deepest_bitpos;
15647 double_int field_size_in_bits;
15648 unsigned int type_align_in_bits;
15649 unsigned int decl_align_in_bits;
15650 double_int type_size_in_bits;
15651
15652 type = field_type (decl);
15653 type_size_in_bits = double_int_type_size_in_bits (type);
15654 type_align_in_bits = simple_type_align_in_bits (type);
15655
15656 field_size_tree = DECL_SIZE (decl);
15657
15658 /* The size could be unspecified if there was an error, or for
15659 a flexible array member. */
15660 if (!field_size_tree)
15661 field_size_tree = bitsize_zero_node;
15662
15663 /* If the size of the field is not constant, use the type size. */
15664 if (TREE_CODE (field_size_tree) == INTEGER_CST)
15665 field_size_in_bits = tree_to_double_int (field_size_tree);
15666 else
15667 field_size_in_bits = type_size_in_bits;
15668
15669 decl_align_in_bits = simple_decl_align_in_bits (decl);
15670
15671 /* The GCC front-end doesn't make any attempt to keep track of the
15672 starting bit offset (relative to the start of the containing
15673 structure type) of the hypothetical "containing object" for a
15674 bit-field. Thus, when computing the byte offset value for the
15675 start of the "containing object" of a bit-field, we must deduce
15676 this information on our own. This can be rather tricky to do in
15677 some cases. For example, handling the following structure type
15678 definition when compiling for an i386/i486 target (which only
15679 aligns long long's to 32-bit boundaries) can be very tricky:
15680
15681 struct S { int field1; long long field2:31; };
15682
15683 Fortunately, there is a simple rule-of-thumb which can be used
15684 in such cases. When compiling for an i386/i486, GCC will
15685 allocate 8 bytes for the structure shown above. It decides to
15686 do this based upon one simple rule for bit-field allocation.
15687 GCC allocates each "containing object" for each bit-field at
15688 the first (i.e. lowest addressed) legitimate alignment boundary
15689 (based upon the required minimum alignment for the declared
15690 type of the field) which it can possibly use, subject to the
15691 condition that there is still enough available space remaining
15692 in the containing object (when allocated at the selected point)
15693 to fully accommodate all of the bits of the bit-field itself.
15694
15695 This simple rule makes it obvious why GCC allocates 8 bytes for
15696 each object of the structure type shown above. When looking
15697 for a place to allocate the "containing object" for `field2',
15698 the compiler simply tries to allocate a 64-bit "containing
15699 object" at each successive 32-bit boundary (starting at zero)
15700 until it finds a place to allocate that 64- bit field such that
15701 at least 31 contiguous (and previously unallocated) bits remain
15702 within that selected 64 bit field. (As it turns out, for the
15703 example above, the compiler finds it is OK to allocate the
15704 "containing object" 64-bit field at bit-offset zero within the
15705 structure type.)
15706
15707 Here we attempt to work backwards from the limited set of facts
15708 we're given, and we try to deduce from those facts, where GCC
15709 must have believed that the containing object started (within
15710 the structure type). The value we deduce is then used (by the
15711 callers of this routine) to generate DW_AT_location and
15712 DW_AT_bit_offset attributes for fields (both bit-fields and, in
15713 the case of DW_AT_location, regular fields as well). */
15714
15715 /* Figure out the bit-distance from the start of the structure to
15716 the "deepest" bit of the bit-field. */
15717 deepest_bitpos = double_int_add (bitpos_int, field_size_in_bits);
15718
15719 /* This is the tricky part. Use some fancy footwork to deduce
15720 where the lowest addressed bit of the containing object must
15721 be. */
15722 object_offset_in_bits
15723 = double_int_add (deepest_bitpos, double_int_neg (type_size_in_bits));
15724
15725 /* Round up to type_align by default. This works best for
15726 bitfields. */
15727 object_offset_in_bits
15728 = round_up_to_align (object_offset_in_bits, type_align_in_bits);
15729
15730 if (double_int_ucmp (object_offset_in_bits, bitpos_int) > 0)
15731 {
15732 object_offset_in_bits
15733 = double_int_add (deepest_bitpos,
15734 double_int_neg (type_size_in_bits));
15735
15736 /* Round up to decl_align instead. */
15737 object_offset_in_bits
15738 = round_up_to_align (object_offset_in_bits, decl_align_in_bits);
15739 }
15740 }
15741 else
15742 #endif
15743 object_offset_in_bits = bitpos_int;
15744
15745 object_offset_in_bytes
15746 = double_int_div (object_offset_in_bits,
15747 uhwi_to_double_int (BITS_PER_UNIT), true,
15748 TRUNC_DIV_EXPR);
15749 return double_int_to_shwi (object_offset_in_bytes);
15750 }
15751 \f
15752 /* The following routines define various Dwarf attributes and any data
15753 associated with them. */
15754
15755 /* Add a location description attribute value to a DIE.
15756
15757 This emits location attributes suitable for whole variables and
15758 whole parameters. Note that the location attributes for struct fields are
15759 generated by the routine `data_member_location_attribute' below. */
15760
15761 static inline void
15762 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
15763 dw_loc_list_ref descr)
15764 {
15765 if (descr == 0)
15766 return;
15767 if (single_element_loc_list_p (descr))
15768 add_AT_loc (die, attr_kind, descr->expr);
15769 else
15770 add_AT_loc_list (die, attr_kind, descr);
15771 }
15772
15773 /* Attach the specialized form of location attribute used for data members of
15774 struct and union types. In the special case of a FIELD_DECL node which
15775 represents a bit-field, the "offset" part of this special location
15776 descriptor must indicate the distance in bytes from the lowest-addressed
15777 byte of the containing struct or union type to the lowest-addressed byte of
15778 the "containing object" for the bit-field. (See the `field_byte_offset'
15779 function above).
15780
15781 For any given bit-field, the "containing object" is a hypothetical object
15782 (of some integral or enum type) within which the given bit-field lives. The
15783 type of this hypothetical "containing object" is always the same as the
15784 declared type of the individual bit-field itself (for GCC anyway... the
15785 DWARF spec doesn't actually mandate this). Note that it is the size (in
15786 bytes) of the hypothetical "containing object" which will be given in the
15787 DW_AT_byte_size attribute for this bit-field. (See the
15788 `byte_size_attribute' function below.) It is also used when calculating the
15789 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
15790 function below.) */
15791
15792 static void
15793 add_data_member_location_attribute (dw_die_ref die, tree decl)
15794 {
15795 HOST_WIDE_INT offset;
15796 dw_loc_descr_ref loc_descr = 0;
15797
15798 if (TREE_CODE (decl) == TREE_BINFO)
15799 {
15800 /* We're working on the TAG_inheritance for a base class. */
15801 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
15802 {
15803 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
15804 aren't at a fixed offset from all (sub)objects of the same
15805 type. We need to extract the appropriate offset from our
15806 vtable. The following dwarf expression means
15807
15808 BaseAddr = ObAddr + *((*ObAddr) - Offset)
15809
15810 This is specific to the V3 ABI, of course. */
15811
15812 dw_loc_descr_ref tmp;
15813
15814 /* Make a copy of the object address. */
15815 tmp = new_loc_descr (DW_OP_dup, 0, 0);
15816 add_loc_descr (&loc_descr, tmp);
15817
15818 /* Extract the vtable address. */
15819 tmp = new_loc_descr (DW_OP_deref, 0, 0);
15820 add_loc_descr (&loc_descr, tmp);
15821
15822 /* Calculate the address of the offset. */
15823 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
15824 gcc_assert (offset < 0);
15825
15826 tmp = int_loc_descriptor (-offset);
15827 add_loc_descr (&loc_descr, tmp);
15828 tmp = new_loc_descr (DW_OP_minus, 0, 0);
15829 add_loc_descr (&loc_descr, tmp);
15830
15831 /* Extract the offset. */
15832 tmp = new_loc_descr (DW_OP_deref, 0, 0);
15833 add_loc_descr (&loc_descr, tmp);
15834
15835 /* Add it to the object address. */
15836 tmp = new_loc_descr (DW_OP_plus, 0, 0);
15837 add_loc_descr (&loc_descr, tmp);
15838 }
15839 else
15840 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
15841 }
15842 else
15843 offset = field_byte_offset (decl);
15844
15845 if (! loc_descr)
15846 {
15847 if (dwarf_version > 2)
15848 {
15849 /* Don't need to output a location expression, just the constant. */
15850 add_AT_int (die, DW_AT_data_member_location, offset);
15851 return;
15852 }
15853 else
15854 {
15855 enum dwarf_location_atom op;
15856
15857 /* The DWARF2 standard says that we should assume that the structure
15858 address is already on the stack, so we can specify a structure
15859 field address by using DW_OP_plus_uconst. */
15860
15861 #ifdef MIPS_DEBUGGING_INFO
15862 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
15863 operator correctly. It works only if we leave the offset on the
15864 stack. */
15865 op = DW_OP_constu;
15866 #else
15867 op = DW_OP_plus_uconst;
15868 #endif
15869
15870 loc_descr = new_loc_descr (op, offset, 0);
15871 }
15872 }
15873
15874 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
15875 }
15876
15877 /* Writes integer values to dw_vec_const array. */
15878
15879 static void
15880 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
15881 {
15882 while (size != 0)
15883 {
15884 *dest++ = val & 0xff;
15885 val >>= 8;
15886 --size;
15887 }
15888 }
15889
15890 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
15891
15892 static HOST_WIDE_INT
15893 extract_int (const unsigned char *src, unsigned int size)
15894 {
15895 HOST_WIDE_INT val = 0;
15896
15897 src += size;
15898 while (size != 0)
15899 {
15900 val <<= 8;
15901 val |= *--src & 0xff;
15902 --size;
15903 }
15904 return val;
15905 }
15906
15907 /* Writes double_int values to dw_vec_const array. */
15908
15909 static void
15910 insert_double (double_int val, unsigned char *dest)
15911 {
15912 unsigned char *p0 = dest;
15913 unsigned char *p1 = dest + sizeof (HOST_WIDE_INT);
15914
15915 if (WORDS_BIG_ENDIAN)
15916 {
15917 p0 = p1;
15918 p1 = dest;
15919 }
15920
15921 insert_int ((HOST_WIDE_INT) val.low, sizeof (HOST_WIDE_INT), p0);
15922 insert_int ((HOST_WIDE_INT) val.high, sizeof (HOST_WIDE_INT), p1);
15923 }
15924
15925 /* Writes floating point values to dw_vec_const array. */
15926
15927 static void
15928 insert_float (const_rtx rtl, unsigned char *array)
15929 {
15930 REAL_VALUE_TYPE rv;
15931 long val[4];
15932 int i;
15933
15934 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
15935 real_to_target (val, &rv, GET_MODE (rtl));
15936
15937 /* real_to_target puts 32-bit pieces in each long. Pack them. */
15938 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
15939 {
15940 insert_int (val[i], 4, array);
15941 array += 4;
15942 }
15943 }
15944
15945 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
15946 does not have a "location" either in memory or in a register. These
15947 things can arise in GNU C when a constant is passed as an actual parameter
15948 to an inlined function. They can also arise in C++ where declared
15949 constants do not necessarily get memory "homes". */
15950
15951 static bool
15952 add_const_value_attribute (dw_die_ref die, rtx rtl)
15953 {
15954 switch (GET_CODE (rtl))
15955 {
15956 case CONST_INT:
15957 {
15958 HOST_WIDE_INT val = INTVAL (rtl);
15959
15960 if (val < 0)
15961 add_AT_int (die, DW_AT_const_value, val);
15962 else
15963 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
15964 }
15965 return true;
15966
15967 case CONST_DOUBLE:
15968 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
15969 floating-point constant. A CONST_DOUBLE is used whenever the
15970 constant requires more than one word in order to be adequately
15971 represented. */
15972 {
15973 enum machine_mode mode = GET_MODE (rtl);
15974
15975 if (SCALAR_FLOAT_MODE_P (mode))
15976 {
15977 unsigned int length = GET_MODE_SIZE (mode);
15978 unsigned char *array = (unsigned char *) ggc_alloc_atomic (length);
15979
15980 insert_float (rtl, array);
15981 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
15982 }
15983 else
15984 add_AT_double (die, DW_AT_const_value,
15985 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
15986 }
15987 return true;
15988
15989 case CONST_VECTOR:
15990 {
15991 enum machine_mode mode = GET_MODE (rtl);
15992 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
15993 unsigned int length = CONST_VECTOR_NUNITS (rtl);
15994 unsigned char *array = (unsigned char *) ggc_alloc_atomic
15995 (length * elt_size);
15996 unsigned int i;
15997 unsigned char *p;
15998
15999 switch (GET_MODE_CLASS (mode))
16000 {
16001 case MODE_VECTOR_INT:
16002 for (i = 0, p = array; i < length; i++, p += elt_size)
16003 {
16004 rtx elt = CONST_VECTOR_ELT (rtl, i);
16005 double_int val = rtx_to_double_int (elt);
16006
16007 if (elt_size <= sizeof (HOST_WIDE_INT))
16008 insert_int (double_int_to_shwi (val), elt_size, p);
16009 else
16010 {
16011 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
16012 insert_double (val, p);
16013 }
16014 }
16015 break;
16016
16017 case MODE_VECTOR_FLOAT:
16018 for (i = 0, p = array; i < length; i++, p += elt_size)
16019 {
16020 rtx elt = CONST_VECTOR_ELT (rtl, i);
16021 insert_float (elt, p);
16022 }
16023 break;
16024
16025 default:
16026 gcc_unreachable ();
16027 }
16028
16029 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
16030 }
16031 return true;
16032
16033 case CONST_STRING:
16034 if (dwarf_version >= 4 || !dwarf_strict)
16035 {
16036 dw_loc_descr_ref loc_result;
16037 resolve_one_addr (&rtl, NULL);
16038 rtl_addr:
16039 loc_result = new_loc_descr (DW_OP_addr, 0, 0);
16040 loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
16041 loc_result->dw_loc_oprnd1.v.val_addr = rtl;
16042 add_loc_descr (&loc_result, new_loc_descr (DW_OP_stack_value, 0, 0));
16043 add_AT_loc (die, DW_AT_location, loc_result);
16044 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
16045 return true;
16046 }
16047 return false;
16048
16049 case CONST:
16050 if (CONSTANT_P (XEXP (rtl, 0)))
16051 return add_const_value_attribute (die, XEXP (rtl, 0));
16052 /* FALLTHROUGH */
16053 case SYMBOL_REF:
16054 if (!const_ok_for_output (rtl))
16055 return false;
16056 case LABEL_REF:
16057 if (dwarf_version >= 4 || !dwarf_strict)
16058 goto rtl_addr;
16059 return false;
16060
16061 case PLUS:
16062 /* In cases where an inlined instance of an inline function is passed
16063 the address of an `auto' variable (which is local to the caller) we
16064 can get a situation where the DECL_RTL of the artificial local
16065 variable (for the inlining) which acts as a stand-in for the
16066 corresponding formal parameter (of the inline function) will look
16067 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
16068 exactly a compile-time constant expression, but it isn't the address
16069 of the (artificial) local variable either. Rather, it represents the
16070 *value* which the artificial local variable always has during its
16071 lifetime. We currently have no way to represent such quasi-constant
16072 values in Dwarf, so for now we just punt and generate nothing. */
16073 return false;
16074
16075 case HIGH:
16076 case CONST_FIXED:
16077 return false;
16078
16079 case MEM:
16080 if (GET_CODE (XEXP (rtl, 0)) == CONST_STRING
16081 && MEM_READONLY_P (rtl)
16082 && GET_MODE (rtl) == BLKmode)
16083 {
16084 add_AT_string (die, DW_AT_const_value, XSTR (XEXP (rtl, 0), 0));
16085 return true;
16086 }
16087 return false;
16088
16089 default:
16090 /* No other kinds of rtx should be possible here. */
16091 gcc_unreachable ();
16092 }
16093 return false;
16094 }
16095
16096 /* Determine whether the evaluation of EXPR references any variables
16097 or functions which aren't otherwise used (and therefore may not be
16098 output). */
16099 static tree
16100 reference_to_unused (tree * tp, int * walk_subtrees,
16101 void * data ATTRIBUTE_UNUSED)
16102 {
16103 if (! EXPR_P (*tp) && ! CONSTANT_CLASS_P (*tp))
16104 *walk_subtrees = 0;
16105
16106 if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
16107 && ! TREE_ASM_WRITTEN (*tp))
16108 return *tp;
16109 /* ??? The C++ FE emits debug information for using decls, so
16110 putting gcc_unreachable here falls over. See PR31899. For now
16111 be conservative. */
16112 else if (!cgraph_global_info_ready
16113 && (TREE_CODE (*tp) == VAR_DECL || TREE_CODE (*tp) == FUNCTION_DECL))
16114 return *tp;
16115 else if (TREE_CODE (*tp) == VAR_DECL)
16116 {
16117 struct varpool_node *node = varpool_get_node (*tp);
16118 if (!node || !node->needed)
16119 return *tp;
16120 }
16121 else if (TREE_CODE (*tp) == FUNCTION_DECL
16122 && (!DECL_EXTERNAL (*tp) || DECL_DECLARED_INLINE_P (*tp)))
16123 {
16124 /* The call graph machinery must have finished analyzing,
16125 optimizing and gimplifying the CU by now.
16126 So if *TP has no call graph node associated
16127 to it, it means *TP will not be emitted. */
16128 if (!cgraph_get_node (*tp))
16129 return *tp;
16130 }
16131 else if (TREE_CODE (*tp) == STRING_CST && !TREE_ASM_WRITTEN (*tp))
16132 return *tp;
16133
16134 return NULL_TREE;
16135 }
16136
16137 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
16138 for use in a later add_const_value_attribute call. */
16139
16140 static rtx
16141 rtl_for_decl_init (tree init, tree type)
16142 {
16143 rtx rtl = NULL_RTX;
16144
16145 /* If a variable is initialized with a string constant without embedded
16146 zeros, build CONST_STRING. */
16147 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
16148 {
16149 tree enttype = TREE_TYPE (type);
16150 tree domain = TYPE_DOMAIN (type);
16151 enum machine_mode mode = TYPE_MODE (enttype);
16152
16153 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
16154 && domain
16155 && integer_zerop (TYPE_MIN_VALUE (domain))
16156 && compare_tree_int (TYPE_MAX_VALUE (domain),
16157 TREE_STRING_LENGTH (init) - 1) == 0
16158 && ((size_t) TREE_STRING_LENGTH (init)
16159 == strlen (TREE_STRING_POINTER (init)) + 1))
16160 {
16161 rtl = gen_rtx_CONST_STRING (VOIDmode,
16162 ggc_strdup (TREE_STRING_POINTER (init)));
16163 rtl = gen_rtx_MEM (BLKmode, rtl);
16164 MEM_READONLY_P (rtl) = 1;
16165 }
16166 }
16167 /* Other aggregates, and complex values, could be represented using
16168 CONCAT: FIXME! */
16169 else if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
16170 ;
16171 /* Vectors only work if their mode is supported by the target.
16172 FIXME: generic vectors ought to work too. */
16173 else if (TREE_CODE (type) == VECTOR_TYPE && TYPE_MODE (type) == BLKmode)
16174 ;
16175 /* If the initializer is something that we know will expand into an
16176 immediate RTL constant, expand it now. We must be careful not to
16177 reference variables which won't be output. */
16178 else if (initializer_constant_valid_p (init, type)
16179 && ! walk_tree (&init, reference_to_unused, NULL, NULL))
16180 {
16181 /* Convert vector CONSTRUCTOR initializers to VECTOR_CST if
16182 possible. */
16183 if (TREE_CODE (type) == VECTOR_TYPE)
16184 switch (TREE_CODE (init))
16185 {
16186 case VECTOR_CST:
16187 break;
16188 case CONSTRUCTOR:
16189 if (TREE_CONSTANT (init))
16190 {
16191 VEC(constructor_elt,gc) *elts = CONSTRUCTOR_ELTS (init);
16192 bool constant_p = true;
16193 tree value;
16194 unsigned HOST_WIDE_INT ix;
16195
16196 /* Even when ctor is constant, it might contain non-*_CST
16197 elements (e.g. { 1.0/0.0 - 1.0/0.0, 0.0 }) and those don't
16198 belong into VECTOR_CST nodes. */
16199 FOR_EACH_CONSTRUCTOR_VALUE (elts, ix, value)
16200 if (!CONSTANT_CLASS_P (value))
16201 {
16202 constant_p = false;
16203 break;
16204 }
16205
16206 if (constant_p)
16207 {
16208 init = build_vector_from_ctor (type, elts);
16209 break;
16210 }
16211 }
16212 /* FALLTHRU */
16213
16214 default:
16215 return NULL;
16216 }
16217
16218 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
16219
16220 /* If expand_expr returns a MEM, it wasn't immediate. */
16221 gcc_assert (!rtl || !MEM_P (rtl));
16222 }
16223
16224 return rtl;
16225 }
16226
16227 /* Generate RTL for the variable DECL to represent its location. */
16228
16229 static rtx
16230 rtl_for_decl_location (tree decl)
16231 {
16232 rtx rtl;
16233
16234 /* Here we have to decide where we are going to say the parameter "lives"
16235 (as far as the debugger is concerned). We only have a couple of
16236 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
16237
16238 DECL_RTL normally indicates where the parameter lives during most of the
16239 activation of the function. If optimization is enabled however, this
16240 could be either NULL or else a pseudo-reg. Both of those cases indicate
16241 that the parameter doesn't really live anywhere (as far as the code
16242 generation parts of GCC are concerned) during most of the function's
16243 activation. That will happen (for example) if the parameter is never
16244 referenced within the function.
16245
16246 We could just generate a location descriptor here for all non-NULL
16247 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
16248 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
16249 where DECL_RTL is NULL or is a pseudo-reg.
16250
16251 Note however that we can only get away with using DECL_INCOMING_RTL as
16252 a backup substitute for DECL_RTL in certain limited cases. In cases
16253 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
16254 we can be sure that the parameter was passed using the same type as it is
16255 declared to have within the function, and that its DECL_INCOMING_RTL
16256 points us to a place where a value of that type is passed.
16257
16258 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
16259 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
16260 because in these cases DECL_INCOMING_RTL points us to a value of some
16261 type which is *different* from the type of the parameter itself. Thus,
16262 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
16263 such cases, the debugger would end up (for example) trying to fetch a
16264 `float' from a place which actually contains the first part of a
16265 `double'. That would lead to really incorrect and confusing
16266 output at debug-time.
16267
16268 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
16269 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
16270 are a couple of exceptions however. On little-endian machines we can
16271 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
16272 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
16273 an integral type that is smaller than TREE_TYPE (decl). These cases arise
16274 when (on a little-endian machine) a non-prototyped function has a
16275 parameter declared to be of type `short' or `char'. In such cases,
16276 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
16277 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
16278 passed `int' value. If the debugger then uses that address to fetch
16279 a `short' or a `char' (on a little-endian machine) the result will be
16280 the correct data, so we allow for such exceptional cases below.
16281
16282 Note that our goal here is to describe the place where the given formal
16283 parameter lives during most of the function's activation (i.e. between the
16284 end of the prologue and the start of the epilogue). We'll do that as best
16285 as we can. Note however that if the given formal parameter is modified
16286 sometime during the execution of the function, then a stack backtrace (at
16287 debug-time) will show the function as having been called with the *new*
16288 value rather than the value which was originally passed in. This happens
16289 rarely enough that it is not a major problem, but it *is* a problem, and
16290 I'd like to fix it.
16291
16292 A future version of dwarf2out.c may generate two additional attributes for
16293 any given DW_TAG_formal_parameter DIE which will describe the "passed
16294 type" and the "passed location" for the given formal parameter in addition
16295 to the attributes we now generate to indicate the "declared type" and the
16296 "active location" for each parameter. This additional set of attributes
16297 could be used by debuggers for stack backtraces. Separately, note that
16298 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
16299 This happens (for example) for inlined-instances of inline function formal
16300 parameters which are never referenced. This really shouldn't be
16301 happening. All PARM_DECL nodes should get valid non-NULL
16302 DECL_INCOMING_RTL values. FIXME. */
16303
16304 /* Use DECL_RTL as the "location" unless we find something better. */
16305 rtl = DECL_RTL_IF_SET (decl);
16306
16307 /* When generating abstract instances, ignore everything except
16308 constants, symbols living in memory, and symbols living in
16309 fixed registers. */
16310 if (! reload_completed)
16311 {
16312 if (rtl
16313 && (CONSTANT_P (rtl)
16314 || (MEM_P (rtl)
16315 && CONSTANT_P (XEXP (rtl, 0)))
16316 || (REG_P (rtl)
16317 && TREE_CODE (decl) == VAR_DECL
16318 && TREE_STATIC (decl))))
16319 {
16320 rtl = targetm.delegitimize_address (rtl);
16321 return rtl;
16322 }
16323 rtl = NULL_RTX;
16324 }
16325 else if (TREE_CODE (decl) == PARM_DECL)
16326 {
16327 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
16328 {
16329 tree declared_type = TREE_TYPE (decl);
16330 tree passed_type = DECL_ARG_TYPE (decl);
16331 enum machine_mode dmode = TYPE_MODE (declared_type);
16332 enum machine_mode pmode = TYPE_MODE (passed_type);
16333
16334 /* This decl represents a formal parameter which was optimized out.
16335 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
16336 all cases where (rtl == NULL_RTX) just below. */
16337 if (dmode == pmode)
16338 rtl = DECL_INCOMING_RTL (decl);
16339 else if (SCALAR_INT_MODE_P (dmode)
16340 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
16341 && DECL_INCOMING_RTL (decl))
16342 {
16343 rtx inc = DECL_INCOMING_RTL (decl);
16344 if (REG_P (inc))
16345 rtl = inc;
16346 else if (MEM_P (inc))
16347 {
16348 if (BYTES_BIG_ENDIAN)
16349 rtl = adjust_address_nv (inc, dmode,
16350 GET_MODE_SIZE (pmode)
16351 - GET_MODE_SIZE (dmode));
16352 else
16353 rtl = inc;
16354 }
16355 }
16356 }
16357
16358 /* If the parm was passed in registers, but lives on the stack, then
16359 make a big endian correction if the mode of the type of the
16360 parameter is not the same as the mode of the rtl. */
16361 /* ??? This is the same series of checks that are made in dbxout.c before
16362 we reach the big endian correction code there. It isn't clear if all
16363 of these checks are necessary here, but keeping them all is the safe
16364 thing to do. */
16365 else if (MEM_P (rtl)
16366 && XEXP (rtl, 0) != const0_rtx
16367 && ! CONSTANT_P (XEXP (rtl, 0))
16368 /* Not passed in memory. */
16369 && !MEM_P (DECL_INCOMING_RTL (decl))
16370 /* Not passed by invisible reference. */
16371 && (!REG_P (XEXP (rtl, 0))
16372 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
16373 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
16374 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
16375 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
16376 #endif
16377 )
16378 /* Big endian correction check. */
16379 && BYTES_BIG_ENDIAN
16380 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
16381 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
16382 < UNITS_PER_WORD))
16383 {
16384 int offset = (UNITS_PER_WORD
16385 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
16386
16387 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
16388 plus_constant (XEXP (rtl, 0), offset));
16389 }
16390 }
16391 else if (TREE_CODE (decl) == VAR_DECL
16392 && rtl
16393 && MEM_P (rtl)
16394 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
16395 && BYTES_BIG_ENDIAN)
16396 {
16397 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
16398 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
16399
16400 /* If a variable is declared "register" yet is smaller than
16401 a register, then if we store the variable to memory, it
16402 looks like we're storing a register-sized value, when in
16403 fact we are not. We need to adjust the offset of the
16404 storage location to reflect the actual value's bytes,
16405 else gdb will not be able to display it. */
16406 if (rsize > dsize)
16407 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
16408 plus_constant (XEXP (rtl, 0), rsize-dsize));
16409 }
16410
16411 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
16412 and will have been substituted directly into all expressions that use it.
16413 C does not have such a concept, but C++ and other languages do. */
16414 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
16415 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
16416
16417 if (rtl)
16418 rtl = targetm.delegitimize_address (rtl);
16419
16420 /* If we don't look past the constant pool, we risk emitting a
16421 reference to a constant pool entry that isn't referenced from
16422 code, and thus is not emitted. */
16423 if (rtl)
16424 rtl = avoid_constant_pool_reference (rtl);
16425
16426 /* Try harder to get a rtl. If this symbol ends up not being emitted
16427 in the current CU, resolve_addr will remove the expression referencing
16428 it. */
16429 if (rtl == NULL_RTX
16430 && TREE_CODE (decl) == VAR_DECL
16431 && !DECL_EXTERNAL (decl)
16432 && TREE_STATIC (decl)
16433 && DECL_NAME (decl)
16434 && !DECL_HARD_REGISTER (decl)
16435 && DECL_MODE (decl) != VOIDmode)
16436 {
16437 rtl = make_decl_rtl_for_debug (decl);
16438 if (!MEM_P (rtl)
16439 || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF
16440 || SYMBOL_REF_DECL (XEXP (rtl, 0)) != decl)
16441 rtl = NULL_RTX;
16442 }
16443
16444 return rtl;
16445 }
16446
16447 /* Check whether decl is a Fortran COMMON symbol. If not, NULL_TREE is
16448 returned. If so, the decl for the COMMON block is returned, and the
16449 value is the offset into the common block for the symbol. */
16450
16451 static tree
16452 fortran_common (tree decl, HOST_WIDE_INT *value)
16453 {
16454 tree val_expr, cvar;
16455 enum machine_mode mode;
16456 HOST_WIDE_INT bitsize, bitpos;
16457 tree offset;
16458 int volatilep = 0, unsignedp = 0;
16459
16460 /* If the decl isn't a VAR_DECL, or if it isn't static, or if
16461 it does not have a value (the offset into the common area), or if it
16462 is thread local (as opposed to global) then it isn't common, and shouldn't
16463 be handled as such. */
16464 if (TREE_CODE (decl) != VAR_DECL
16465 || !TREE_STATIC (decl)
16466 || !DECL_HAS_VALUE_EXPR_P (decl)
16467 || !is_fortran ())
16468 return NULL_TREE;
16469
16470 val_expr = DECL_VALUE_EXPR (decl);
16471 if (TREE_CODE (val_expr) != COMPONENT_REF)
16472 return NULL_TREE;
16473
16474 cvar = get_inner_reference (val_expr, &bitsize, &bitpos, &offset,
16475 &mode, &unsignedp, &volatilep, true);
16476
16477 if (cvar == NULL_TREE
16478 || TREE_CODE (cvar) != VAR_DECL
16479 || DECL_ARTIFICIAL (cvar)
16480 || !TREE_PUBLIC (cvar))
16481 return NULL_TREE;
16482
16483 *value = 0;
16484 if (offset != NULL)
16485 {
16486 if (!host_integerp (offset, 0))
16487 return NULL_TREE;
16488 *value = tree_low_cst (offset, 0);
16489 }
16490 if (bitpos != 0)
16491 *value += bitpos / BITS_PER_UNIT;
16492
16493 return cvar;
16494 }
16495
16496 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
16497 data attribute for a variable or a parameter. We generate the
16498 DW_AT_const_value attribute only in those cases where the given variable
16499 or parameter does not have a true "location" either in memory or in a
16500 register. This can happen (for example) when a constant is passed as an
16501 actual argument in a call to an inline function. (It's possible that
16502 these things can crop up in other ways also.) Note that one type of
16503 constant value which can be passed into an inlined function is a constant
16504 pointer. This can happen for example if an actual argument in an inlined
16505 function call evaluates to a compile-time constant address. */
16506
16507 static bool
16508 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
16509 enum dwarf_attribute attr)
16510 {
16511 rtx rtl;
16512 dw_loc_list_ref list;
16513 var_loc_list *loc_list;
16514
16515 if (TREE_CODE (decl) == ERROR_MARK)
16516 return false;
16517
16518 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
16519 || TREE_CODE (decl) == RESULT_DECL);
16520
16521 /* Try to get some constant RTL for this decl, and use that as the value of
16522 the location. */
16523
16524 rtl = rtl_for_decl_location (decl);
16525 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING)
16526 && add_const_value_attribute (die, rtl))
16527 return true;
16528
16529 /* See if we have single element location list that is equivalent to
16530 a constant value. That way we are better to use add_const_value_attribute
16531 rather than expanding constant value equivalent. */
16532 loc_list = lookup_decl_loc (decl);
16533 if (loc_list
16534 && loc_list->first
16535 && loc_list->first->next == NULL
16536 && NOTE_P (loc_list->first->loc)
16537 && NOTE_VAR_LOCATION (loc_list->first->loc)
16538 && NOTE_VAR_LOCATION_LOC (loc_list->first->loc))
16539 {
16540 struct var_loc_node *node;
16541
16542 node = loc_list->first;
16543 rtl = NOTE_VAR_LOCATION_LOC (node->loc);
16544 if (GET_CODE (rtl) == EXPR_LIST)
16545 rtl = XEXP (rtl, 0);
16546 if ((CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING)
16547 && add_const_value_attribute (die, rtl))
16548 return true;
16549 }
16550 list = loc_list_from_tree (decl, decl_by_reference_p (decl) ? 0 : 2);
16551 if (list)
16552 {
16553 add_AT_location_description (die, attr, list);
16554 return true;
16555 }
16556 /* None of that worked, so it must not really have a location;
16557 try adding a constant value attribute from the DECL_INITIAL. */
16558 return tree_add_const_value_attribute_for_decl (die, decl);
16559 }
16560
16561 /* Add VARIABLE and DIE into deferred locations list. */
16562
16563 static void
16564 defer_location (tree variable, dw_die_ref die)
16565 {
16566 deferred_locations entry;
16567 entry.variable = variable;
16568 entry.die = die;
16569 VEC_safe_push (deferred_locations, gc, deferred_locations_list, &entry);
16570 }
16571
16572 /* Helper function for tree_add_const_value_attribute. Natively encode
16573 initializer INIT into an array. Return true if successful. */
16574
16575 static bool
16576 native_encode_initializer (tree init, unsigned char *array, int size)
16577 {
16578 tree type;
16579
16580 if (init == NULL_TREE)
16581 return false;
16582
16583 STRIP_NOPS (init);
16584 switch (TREE_CODE (init))
16585 {
16586 case STRING_CST:
16587 type = TREE_TYPE (init);
16588 if (TREE_CODE (type) == ARRAY_TYPE)
16589 {
16590 tree enttype = TREE_TYPE (type);
16591 enum machine_mode mode = TYPE_MODE (enttype);
16592
16593 if (GET_MODE_CLASS (mode) != MODE_INT || GET_MODE_SIZE (mode) != 1)
16594 return false;
16595 if (int_size_in_bytes (type) != size)
16596 return false;
16597 if (size > TREE_STRING_LENGTH (init))
16598 {
16599 memcpy (array, TREE_STRING_POINTER (init),
16600 TREE_STRING_LENGTH (init));
16601 memset (array + TREE_STRING_LENGTH (init),
16602 '\0', size - TREE_STRING_LENGTH (init));
16603 }
16604 else
16605 memcpy (array, TREE_STRING_POINTER (init), size);
16606 return true;
16607 }
16608 return false;
16609 case CONSTRUCTOR:
16610 type = TREE_TYPE (init);
16611 if (int_size_in_bytes (type) != size)
16612 return false;
16613 if (TREE_CODE (type) == ARRAY_TYPE)
16614 {
16615 HOST_WIDE_INT min_index;
16616 unsigned HOST_WIDE_INT cnt;
16617 int curpos = 0, fieldsize;
16618 constructor_elt *ce;
16619
16620 if (TYPE_DOMAIN (type) == NULL_TREE
16621 || !host_integerp (TYPE_MIN_VALUE (TYPE_DOMAIN (type)), 0))
16622 return false;
16623
16624 fieldsize = int_size_in_bytes (TREE_TYPE (type));
16625 if (fieldsize <= 0)
16626 return false;
16627
16628 min_index = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (type)), 0);
16629 memset (array, '\0', size);
16630 for (cnt = 0;
16631 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (init), cnt, ce);
16632 cnt++)
16633 {
16634 tree val = ce->value;
16635 tree index = ce->index;
16636 int pos = curpos;
16637 if (index && TREE_CODE (index) == RANGE_EXPR)
16638 pos = (tree_low_cst (TREE_OPERAND (index, 0), 0) - min_index)
16639 * fieldsize;
16640 else if (index)
16641 pos = (tree_low_cst (index, 0) - min_index) * fieldsize;
16642
16643 if (val)
16644 {
16645 STRIP_NOPS (val);
16646 if (!native_encode_initializer (val, array + pos, fieldsize))
16647 return false;
16648 }
16649 curpos = pos + fieldsize;
16650 if (index && TREE_CODE (index) == RANGE_EXPR)
16651 {
16652 int count = tree_low_cst (TREE_OPERAND (index, 1), 0)
16653 - tree_low_cst (TREE_OPERAND (index, 0), 0);
16654 while (count > 0)
16655 {
16656 if (val)
16657 memcpy (array + curpos, array + pos, fieldsize);
16658 curpos += fieldsize;
16659 }
16660 }
16661 gcc_assert (curpos <= size);
16662 }
16663 return true;
16664 }
16665 else if (TREE_CODE (type) == RECORD_TYPE
16666 || TREE_CODE (type) == UNION_TYPE)
16667 {
16668 tree field = NULL_TREE;
16669 unsigned HOST_WIDE_INT cnt;
16670 constructor_elt *ce;
16671
16672 if (int_size_in_bytes (type) != size)
16673 return false;
16674
16675 if (TREE_CODE (type) == RECORD_TYPE)
16676 field = TYPE_FIELDS (type);
16677
16678 for (cnt = 0;
16679 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (init), cnt, ce);
16680 cnt++, field = field ? TREE_CHAIN (field) : 0)
16681 {
16682 tree val = ce->value;
16683 int pos, fieldsize;
16684
16685 if (ce->index != 0)
16686 field = ce->index;
16687
16688 if (val)
16689 STRIP_NOPS (val);
16690
16691 if (field == NULL_TREE || DECL_BIT_FIELD (field))
16692 return false;
16693
16694 if (TREE_CODE (TREE_TYPE (field)) == ARRAY_TYPE
16695 && TYPE_DOMAIN (TREE_TYPE (field))
16696 && ! TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (field))))
16697 return false;
16698 else if (DECL_SIZE_UNIT (field) == NULL_TREE
16699 || !host_integerp (DECL_SIZE_UNIT (field), 0))
16700 return false;
16701 fieldsize = tree_low_cst (DECL_SIZE_UNIT (field), 0);
16702 pos = int_byte_position (field);
16703 gcc_assert (pos + fieldsize <= size);
16704 if (val
16705 && !native_encode_initializer (val, array + pos, fieldsize))
16706 return false;
16707 }
16708 return true;
16709 }
16710 return false;
16711 case VIEW_CONVERT_EXPR:
16712 case NON_LVALUE_EXPR:
16713 return native_encode_initializer (TREE_OPERAND (init, 0), array, size);
16714 default:
16715 return native_encode_expr (init, array, size) == size;
16716 }
16717 }
16718
16719 /* Attach a DW_AT_const_value attribute to DIE. The value of the
16720 attribute is the const value T. */
16721
16722 static bool
16723 tree_add_const_value_attribute (dw_die_ref die, tree t)
16724 {
16725 tree init;
16726 tree type = TREE_TYPE (t);
16727 rtx rtl;
16728
16729 if (!t || !TREE_TYPE (t) || TREE_TYPE (t) == error_mark_node)
16730 return false;
16731
16732 init = t;
16733 gcc_assert (!DECL_P (init));
16734
16735 rtl = rtl_for_decl_init (init, type);
16736 if (rtl)
16737 return add_const_value_attribute (die, rtl);
16738 /* If the host and target are sane, try harder. */
16739 else if (CHAR_BIT == 8 && BITS_PER_UNIT == 8
16740 && initializer_constant_valid_p (init, type))
16741 {
16742 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (init));
16743 if (size > 0 && (int) size == size)
16744 {
16745 unsigned char *array = (unsigned char *)
16746 ggc_alloc_cleared_atomic (size);
16747
16748 if (native_encode_initializer (init, array, size))
16749 {
16750 add_AT_vec (die, DW_AT_const_value, size, 1, array);
16751 return true;
16752 }
16753 }
16754 }
16755 return false;
16756 }
16757
16758 /* Attach a DW_AT_const_value attribute to VAR_DIE. The value of the
16759 attribute is the const value of T, where T is an integral constant
16760 variable with static storage duration
16761 (so it can't be a PARM_DECL or a RESULT_DECL). */
16762
16763 static bool
16764 tree_add_const_value_attribute_for_decl (dw_die_ref var_die, tree decl)
16765 {
16766
16767 if (!decl
16768 || (TREE_CODE (decl) != VAR_DECL
16769 && TREE_CODE (decl) != CONST_DECL))
16770 return false;
16771
16772 if (TREE_READONLY (decl)
16773 && ! TREE_THIS_VOLATILE (decl)
16774 && DECL_INITIAL (decl))
16775 /* OK */;
16776 else
16777 return false;
16778
16779 /* Don't add DW_AT_const_value if abstract origin already has one. */
16780 if (get_AT (var_die, DW_AT_const_value))
16781 return false;
16782
16783 return tree_add_const_value_attribute (var_die, DECL_INITIAL (decl));
16784 }
16785
16786 /* Convert the CFI instructions for the current function into a
16787 location list. This is used for DW_AT_frame_base when we targeting
16788 a dwarf2 consumer that does not support the dwarf3
16789 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
16790 expressions. */
16791
16792 static dw_loc_list_ref
16793 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
16794 {
16795 dw_fde_ref fde;
16796 dw_loc_list_ref list, *list_tail;
16797 dw_cfi_ref cfi;
16798 dw_cfa_location last_cfa, next_cfa;
16799 const char *start_label, *last_label, *section;
16800 dw_cfa_location remember;
16801
16802 fde = current_fde ();
16803 gcc_assert (fde != NULL);
16804
16805 section = secname_for_decl (current_function_decl);
16806 list_tail = &list;
16807 list = NULL;
16808
16809 memset (&next_cfa, 0, sizeof (next_cfa));
16810 next_cfa.reg = INVALID_REGNUM;
16811 remember = next_cfa;
16812
16813 start_label = fde->dw_fde_begin;
16814
16815 /* ??? Bald assumption that the CIE opcode list does not contain
16816 advance opcodes. */
16817 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
16818 lookup_cfa_1 (cfi, &next_cfa, &remember);
16819
16820 last_cfa = next_cfa;
16821 last_label = start_label;
16822
16823 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
16824 switch (cfi->dw_cfi_opc)
16825 {
16826 case DW_CFA_set_loc:
16827 case DW_CFA_advance_loc1:
16828 case DW_CFA_advance_loc2:
16829 case DW_CFA_advance_loc4:
16830 if (!cfa_equal_p (&last_cfa, &next_cfa))
16831 {
16832 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
16833 start_label, last_label, section);
16834
16835 list_tail = &(*list_tail)->dw_loc_next;
16836 last_cfa = next_cfa;
16837 start_label = last_label;
16838 }
16839 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
16840 break;
16841
16842 case DW_CFA_advance_loc:
16843 /* The encoding is complex enough that we should never emit this. */
16844 gcc_unreachable ();
16845
16846 default:
16847 lookup_cfa_1 (cfi, &next_cfa, &remember);
16848 break;
16849 }
16850
16851 if (!cfa_equal_p (&last_cfa, &next_cfa))
16852 {
16853 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
16854 start_label, last_label, section);
16855 list_tail = &(*list_tail)->dw_loc_next;
16856 start_label = last_label;
16857 }
16858
16859 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
16860 start_label, fde->dw_fde_end, section);
16861
16862 if (list && list->dw_loc_next)
16863 gen_llsym (list);
16864
16865 return list;
16866 }
16867
16868 /* Compute a displacement from the "steady-state frame pointer" to the
16869 frame base (often the same as the CFA), and store it in
16870 frame_pointer_fb_offset. OFFSET is added to the displacement
16871 before the latter is negated. */
16872
16873 static void
16874 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
16875 {
16876 rtx reg, elim;
16877
16878 #ifdef FRAME_POINTER_CFA_OFFSET
16879 reg = frame_pointer_rtx;
16880 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
16881 #else
16882 reg = arg_pointer_rtx;
16883 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
16884 #endif
16885
16886 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
16887 if (GET_CODE (elim) == PLUS)
16888 {
16889 offset += INTVAL (XEXP (elim, 1));
16890 elim = XEXP (elim, 0);
16891 }
16892
16893 gcc_assert ((SUPPORTS_STACK_ALIGNMENT
16894 && (elim == hard_frame_pointer_rtx
16895 || elim == stack_pointer_rtx))
16896 || elim == (frame_pointer_needed
16897 ? hard_frame_pointer_rtx
16898 : stack_pointer_rtx));
16899
16900 frame_pointer_fb_offset = -offset;
16901 }
16902
16903 /* Generate a DW_AT_name attribute given some string value to be included as
16904 the value of the attribute. */
16905
16906 static void
16907 add_name_attribute (dw_die_ref die, const char *name_string)
16908 {
16909 if (name_string != NULL && *name_string != 0)
16910 {
16911 if (demangle_name_func)
16912 name_string = (*demangle_name_func) (name_string);
16913
16914 add_AT_string (die, DW_AT_name, name_string);
16915 }
16916 }
16917
16918 /* Generate a DW_AT_comp_dir attribute for DIE. */
16919
16920 static void
16921 add_comp_dir_attribute (dw_die_ref die)
16922 {
16923 const char *wd = get_src_pwd ();
16924 char *wd1;
16925
16926 if (wd == NULL)
16927 return;
16928
16929 if (DWARF2_DIR_SHOULD_END_WITH_SEPARATOR)
16930 {
16931 int wdlen;
16932
16933 wdlen = strlen (wd);
16934 wd1 = (char *) ggc_alloc_atomic (wdlen + 2);
16935 strcpy (wd1, wd);
16936 wd1 [wdlen] = DIR_SEPARATOR;
16937 wd1 [wdlen + 1] = 0;
16938 wd = wd1;
16939 }
16940
16941 add_AT_string (die, DW_AT_comp_dir, remap_debug_filename (wd));
16942 }
16943
16944 /* Return the default for DW_AT_lower_bound, or -1 if there is not any
16945 default. */
16946
16947 static int
16948 lower_bound_default (void)
16949 {
16950 switch (get_AT_unsigned (comp_unit_die, DW_AT_language))
16951 {
16952 case DW_LANG_C:
16953 case DW_LANG_C89:
16954 case DW_LANG_C99:
16955 case DW_LANG_C_plus_plus:
16956 case DW_LANG_ObjC:
16957 case DW_LANG_ObjC_plus_plus:
16958 case DW_LANG_Java:
16959 return 0;
16960 case DW_LANG_Fortran77:
16961 case DW_LANG_Fortran90:
16962 case DW_LANG_Fortran95:
16963 return 1;
16964 case DW_LANG_UPC:
16965 case DW_LANG_D:
16966 case DW_LANG_Python:
16967 return dwarf_version >= 4 ? 0 : -1;
16968 case DW_LANG_Ada95:
16969 case DW_LANG_Ada83:
16970 case DW_LANG_Cobol74:
16971 case DW_LANG_Cobol85:
16972 case DW_LANG_Pascal83:
16973 case DW_LANG_Modula2:
16974 case DW_LANG_PLI:
16975 return dwarf_version >= 4 ? 1 : -1;
16976 default:
16977 return -1;
16978 }
16979 }
16980
16981 /* Given a tree node describing an array bound (either lower or upper) output
16982 a representation for that bound. */
16983
16984 static void
16985 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
16986 {
16987 switch (TREE_CODE (bound))
16988 {
16989 case ERROR_MARK:
16990 return;
16991
16992 /* All fixed-bounds are represented by INTEGER_CST nodes. */
16993 case INTEGER_CST:
16994 {
16995 unsigned int prec = simple_type_size_in_bits (TREE_TYPE (bound));
16996 int dflt;
16997
16998 /* Use the default if possible. */
16999 if (bound_attr == DW_AT_lower_bound
17000 && host_integerp (bound, 0)
17001 && (dflt = lower_bound_default ()) != -1
17002 && tree_low_cst (bound, 0) == dflt)
17003 ;
17004
17005 /* Otherwise represent the bound as an unsigned value with the
17006 precision of its type. The precision and signedness of the
17007 type will be necessary to re-interpret it unambiguously. */
17008 else if (prec < HOST_BITS_PER_WIDE_INT)
17009 {
17010 unsigned HOST_WIDE_INT mask
17011 = ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
17012 add_AT_unsigned (subrange_die, bound_attr,
17013 TREE_INT_CST_LOW (bound) & mask);
17014 }
17015 else if (prec == HOST_BITS_PER_WIDE_INT
17016 || TREE_INT_CST_HIGH (bound) == 0)
17017 add_AT_unsigned (subrange_die, bound_attr,
17018 TREE_INT_CST_LOW (bound));
17019 else
17020 add_AT_double (subrange_die, bound_attr, TREE_INT_CST_HIGH (bound),
17021 TREE_INT_CST_LOW (bound));
17022 }
17023 break;
17024
17025 CASE_CONVERT:
17026 case VIEW_CONVERT_EXPR:
17027 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
17028 break;
17029
17030 case SAVE_EXPR:
17031 break;
17032
17033 case VAR_DECL:
17034 case PARM_DECL:
17035 case RESULT_DECL:
17036 {
17037 dw_die_ref decl_die = lookup_decl_die (bound);
17038
17039 /* ??? Can this happen, or should the variable have been bound
17040 first? Probably it can, since I imagine that we try to create
17041 the types of parameters in the order in which they exist in
17042 the list, and won't have created a forward reference to a
17043 later parameter. */
17044 if (decl_die != NULL)
17045 {
17046 add_AT_die_ref (subrange_die, bound_attr, decl_die);
17047 break;
17048 }
17049 }
17050 /* FALLTHRU */
17051
17052 default:
17053 {
17054 /* Otherwise try to create a stack operation procedure to
17055 evaluate the value of the array bound. */
17056
17057 dw_die_ref ctx, decl_die;
17058 dw_loc_list_ref list;
17059
17060 list = loc_list_from_tree (bound, 2);
17061 if (list == NULL || single_element_loc_list_p (list))
17062 {
17063 /* If DW_AT_*bound is not a reference nor constant, it is
17064 a DWARF expression rather than location description.
17065 For that loc_list_from_tree (bound, 0) is needed.
17066 If that fails to give a single element list,
17067 fall back to outputting this as a reference anyway. */
17068 dw_loc_list_ref list2 = loc_list_from_tree (bound, 0);
17069 if (list2 && single_element_loc_list_p (list2))
17070 {
17071 add_AT_loc (subrange_die, bound_attr, list2->expr);
17072 break;
17073 }
17074 }
17075 if (list == NULL)
17076 break;
17077
17078 if (current_function_decl == 0)
17079 ctx = comp_unit_die;
17080 else
17081 ctx = lookup_decl_die (current_function_decl);
17082
17083 decl_die = new_die (DW_TAG_variable, ctx, bound);
17084 add_AT_flag (decl_die, DW_AT_artificial, 1);
17085 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
17086 add_AT_location_description (decl_die, DW_AT_location, list);
17087 add_AT_die_ref (subrange_die, bound_attr, decl_die);
17088 break;
17089 }
17090 }
17091 }
17092
17093 /* Add subscript info to TYPE_DIE, describing an array TYPE, collapsing
17094 possibly nested array subscripts in a flat sequence if COLLAPSE_P is true.
17095 Note that the block of subscript information for an array type also
17096 includes information about the element type of the given array type. */
17097
17098 static void
17099 add_subscript_info (dw_die_ref type_die, tree type, bool collapse_p)
17100 {
17101 unsigned dimension_number;
17102 tree lower, upper;
17103 dw_die_ref subrange_die;
17104
17105 for (dimension_number = 0;
17106 TREE_CODE (type) == ARRAY_TYPE && (dimension_number == 0 || collapse_p);
17107 type = TREE_TYPE (type), dimension_number++)
17108 {
17109 tree domain = TYPE_DOMAIN (type);
17110
17111 if (TYPE_STRING_FLAG (type) && is_fortran () && dimension_number > 0)
17112 break;
17113
17114 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
17115 and (in GNU C only) variable bounds. Handle all three forms
17116 here. */
17117 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
17118 if (domain)
17119 {
17120 /* We have an array type with specified bounds. */
17121 lower = TYPE_MIN_VALUE (domain);
17122 upper = TYPE_MAX_VALUE (domain);
17123
17124 /* Define the index type. */
17125 if (TREE_TYPE (domain))
17126 {
17127 /* ??? This is probably an Ada unnamed subrange type. Ignore the
17128 TREE_TYPE field. We can't emit debug info for this
17129 because it is an unnamed integral type. */
17130 if (TREE_CODE (domain) == INTEGER_TYPE
17131 && TYPE_NAME (domain) == NULL_TREE
17132 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
17133 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
17134 ;
17135 else
17136 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
17137 type_die);
17138 }
17139
17140 /* ??? If upper is NULL, the array has unspecified length,
17141 but it does have a lower bound. This happens with Fortran
17142 dimension arr(N:*)
17143 Since the debugger is definitely going to need to know N
17144 to produce useful results, go ahead and output the lower
17145 bound solo, and hope the debugger can cope. */
17146
17147 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
17148 if (upper)
17149 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
17150 }
17151
17152 /* Otherwise we have an array type with an unspecified length. The
17153 DWARF-2 spec does not say how to handle this; let's just leave out the
17154 bounds. */
17155 }
17156 }
17157
17158 static void
17159 add_byte_size_attribute (dw_die_ref die, tree tree_node)
17160 {
17161 unsigned size;
17162
17163 switch (TREE_CODE (tree_node))
17164 {
17165 case ERROR_MARK:
17166 size = 0;
17167 break;
17168 case ENUMERAL_TYPE:
17169 case RECORD_TYPE:
17170 case UNION_TYPE:
17171 case QUAL_UNION_TYPE:
17172 size = int_size_in_bytes (tree_node);
17173 break;
17174 case FIELD_DECL:
17175 /* For a data member of a struct or union, the DW_AT_byte_size is
17176 generally given as the number of bytes normally allocated for an
17177 object of the *declared* type of the member itself. This is true
17178 even for bit-fields. */
17179 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
17180 break;
17181 default:
17182 gcc_unreachable ();
17183 }
17184
17185 /* Note that `size' might be -1 when we get to this point. If it is, that
17186 indicates that the byte size of the entity in question is variable. We
17187 have no good way of expressing this fact in Dwarf at the present time,
17188 so just let the -1 pass on through. */
17189 add_AT_unsigned (die, DW_AT_byte_size, size);
17190 }
17191
17192 /* For a FIELD_DECL node which represents a bit-field, output an attribute
17193 which specifies the distance in bits from the highest order bit of the
17194 "containing object" for the bit-field to the highest order bit of the
17195 bit-field itself.
17196
17197 For any given bit-field, the "containing object" is a hypothetical object
17198 (of some integral or enum type) within which the given bit-field lives. The
17199 type of this hypothetical "containing object" is always the same as the
17200 declared type of the individual bit-field itself. The determination of the
17201 exact location of the "containing object" for a bit-field is rather
17202 complicated. It's handled by the `field_byte_offset' function (above).
17203
17204 Note that it is the size (in bytes) of the hypothetical "containing object"
17205 which will be given in the DW_AT_byte_size attribute for this bit-field.
17206 (See `byte_size_attribute' above). */
17207
17208 static inline void
17209 add_bit_offset_attribute (dw_die_ref die, tree decl)
17210 {
17211 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
17212 tree type = DECL_BIT_FIELD_TYPE (decl);
17213 HOST_WIDE_INT bitpos_int;
17214 HOST_WIDE_INT highest_order_object_bit_offset;
17215 HOST_WIDE_INT highest_order_field_bit_offset;
17216 HOST_WIDE_INT unsigned bit_offset;
17217
17218 /* Must be a field and a bit field. */
17219 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
17220
17221 /* We can't yet handle bit-fields whose offsets are variable, so if we
17222 encounter such things, just return without generating any attribute
17223 whatsoever. Likewise for variable or too large size. */
17224 if (! host_integerp (bit_position (decl), 0)
17225 || ! host_integerp (DECL_SIZE (decl), 1))
17226 return;
17227
17228 bitpos_int = int_bit_position (decl);
17229
17230 /* Note that the bit offset is always the distance (in bits) from the
17231 highest-order bit of the "containing object" to the highest-order bit of
17232 the bit-field itself. Since the "high-order end" of any object or field
17233 is different on big-endian and little-endian machines, the computation
17234 below must take account of these differences. */
17235 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
17236 highest_order_field_bit_offset = bitpos_int;
17237
17238 if (! BYTES_BIG_ENDIAN)
17239 {
17240 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
17241 highest_order_object_bit_offset += simple_type_size_in_bits (type);
17242 }
17243
17244 bit_offset
17245 = (! BYTES_BIG_ENDIAN
17246 ? highest_order_object_bit_offset - highest_order_field_bit_offset
17247 : highest_order_field_bit_offset - highest_order_object_bit_offset);
17248
17249 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
17250 }
17251
17252 /* For a FIELD_DECL node which represents a bit field, output an attribute
17253 which specifies the length in bits of the given field. */
17254
17255 static inline void
17256 add_bit_size_attribute (dw_die_ref die, tree decl)
17257 {
17258 /* Must be a field and a bit field. */
17259 gcc_assert (TREE_CODE (decl) == FIELD_DECL
17260 && DECL_BIT_FIELD_TYPE (decl));
17261
17262 if (host_integerp (DECL_SIZE (decl), 1))
17263 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
17264 }
17265
17266 /* If the compiled language is ANSI C, then add a 'prototyped'
17267 attribute, if arg types are given for the parameters of a function. */
17268
17269 static inline void
17270 add_prototyped_attribute (dw_die_ref die, tree func_type)
17271 {
17272 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
17273 && TYPE_ARG_TYPES (func_type) != NULL)
17274 add_AT_flag (die, DW_AT_prototyped, 1);
17275 }
17276
17277 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
17278 by looking in either the type declaration or object declaration
17279 equate table. */
17280
17281 static inline dw_die_ref
17282 add_abstract_origin_attribute (dw_die_ref die, tree origin)
17283 {
17284 dw_die_ref origin_die = NULL;
17285
17286 if (TREE_CODE (origin) != FUNCTION_DECL)
17287 {
17288 /* We may have gotten separated from the block for the inlined
17289 function, if we're in an exception handler or some such; make
17290 sure that the abstract function has been written out.
17291
17292 Doing this for nested functions is wrong, however; functions are
17293 distinct units, and our context might not even be inline. */
17294 tree fn = origin;
17295
17296 if (TYPE_P (fn))
17297 fn = TYPE_STUB_DECL (fn);
17298
17299 fn = decl_function_context (fn);
17300 if (fn)
17301 dwarf2out_abstract_function (fn);
17302 }
17303
17304 if (DECL_P (origin))
17305 origin_die = lookup_decl_die (origin);
17306 else if (TYPE_P (origin))
17307 origin_die = lookup_type_die (origin);
17308
17309 /* XXX: Functions that are never lowered don't always have correct block
17310 trees (in the case of java, they simply have no block tree, in some other
17311 languages). For these functions, there is nothing we can really do to
17312 output correct debug info for inlined functions in all cases. Rather
17313 than die, we'll just produce deficient debug info now, in that we will
17314 have variables without a proper abstract origin. In the future, when all
17315 functions are lowered, we should re-add a gcc_assert (origin_die)
17316 here. */
17317
17318 if (origin_die)
17319 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
17320 return origin_die;
17321 }
17322
17323 /* We do not currently support the pure_virtual attribute. */
17324
17325 static inline void
17326 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
17327 {
17328 if (DECL_VINDEX (func_decl))
17329 {
17330 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
17331
17332 if (host_integerp (DECL_VINDEX (func_decl), 0))
17333 add_AT_loc (die, DW_AT_vtable_elem_location,
17334 new_loc_descr (DW_OP_constu,
17335 tree_low_cst (DECL_VINDEX (func_decl), 0),
17336 0));
17337
17338 /* GNU extension: Record what type this method came from originally. */
17339 if (debug_info_level > DINFO_LEVEL_TERSE
17340 && DECL_CONTEXT (func_decl))
17341 add_AT_die_ref (die, DW_AT_containing_type,
17342 lookup_type_die (DECL_CONTEXT (func_decl)));
17343 }
17344 }
17345 \f
17346 /* Add source coordinate attributes for the given decl. */
17347
17348 static void
17349 add_src_coords_attributes (dw_die_ref die, tree decl)
17350 {
17351 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
17352
17353 add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
17354 add_AT_unsigned (die, DW_AT_decl_line, s.line);
17355 }
17356
17357 /* Add DW_AT_{,MIPS_}linkage_name attribute for the given decl. */
17358
17359 static void
17360 add_linkage_name (dw_die_ref die, tree decl)
17361 {
17362 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
17363 && TREE_PUBLIC (decl)
17364 && !DECL_ABSTRACT (decl)
17365 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl))
17366 && die->die_tag != DW_TAG_member)
17367 {
17368 /* Defer until we have an assembler name set. */
17369 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
17370 {
17371 limbo_die_node *asm_name;
17372
17373 asm_name = ggc_alloc_cleared_limbo_die_node ();
17374 asm_name->die = die;
17375 asm_name->created_for = decl;
17376 asm_name->next = deferred_asm_name;
17377 deferred_asm_name = asm_name;
17378 }
17379 else if (DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl))
17380 add_AT_string (die, AT_linkage_name,
17381 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
17382 }
17383 }
17384
17385 /* Add a DW_AT_name attribute and source coordinate attribute for the
17386 given decl, but only if it actually has a name. */
17387
17388 static void
17389 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
17390 {
17391 tree decl_name;
17392
17393 decl_name = DECL_NAME (decl);
17394 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
17395 {
17396 const char *name = dwarf2_name (decl, 0);
17397 if (name)
17398 add_name_attribute (die, name);
17399 if (! DECL_ARTIFICIAL (decl))
17400 add_src_coords_attributes (die, decl);
17401
17402 add_linkage_name (die, decl);
17403 }
17404
17405 #ifdef VMS_DEBUGGING_INFO
17406 /* Get the function's name, as described by its RTL. This may be different
17407 from the DECL_NAME name used in the source file. */
17408 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
17409 {
17410 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
17411 XEXP (DECL_RTL (decl), 0));
17412 VEC_safe_push (rtx, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
17413 }
17414 #endif
17415 }
17416
17417 #ifdef VMS_DEBUGGING_INFO
17418
17419 /* Output the debug main pointer die for VMS */
17420
17421 void
17422 dwarf2out_vms_debug_main_pointer (void)
17423 {
17424 char label[MAX_ARTIFICIAL_LABEL_BYTES];
17425 dw_die_ref die;
17426
17427 /* Allocate the VMS debug main subprogram die. */
17428 die = ggc_alloc_cleared_die_node ();
17429 die->die_tag = DW_TAG_subprogram;
17430 add_name_attribute (die, VMS_DEBUG_MAIN_POINTER);
17431 ASM_GENERATE_INTERNAL_LABEL (label, PROLOGUE_END_LABEL,
17432 current_function_funcdef_no);
17433 add_AT_lbl_id (die, DW_AT_entry_pc, label);
17434
17435 /* Make it the first child of comp_unit_die. */
17436 die->die_parent = comp_unit_die;
17437 if (comp_unit_die->die_child)
17438 {
17439 die->die_sib = comp_unit_die->die_child->die_sib;
17440 comp_unit_die->die_child->die_sib = die;
17441 }
17442 else
17443 {
17444 die->die_sib = die;
17445 comp_unit_die->die_child = die;
17446 }
17447 }
17448 #endif
17449
17450 /* Push a new declaration scope. */
17451
17452 static void
17453 push_decl_scope (tree scope)
17454 {
17455 VEC_safe_push (tree, gc, decl_scope_table, scope);
17456 }
17457
17458 /* Pop a declaration scope. */
17459
17460 static inline void
17461 pop_decl_scope (void)
17462 {
17463 VEC_pop (tree, decl_scope_table);
17464 }
17465
17466 /* Return the DIE for the scope that immediately contains this type.
17467 Non-named types get global scope. Named types nested in other
17468 types get their containing scope if it's open, or global scope
17469 otherwise. All other types (i.e. function-local named types) get
17470 the current active scope. */
17471
17472 static dw_die_ref
17473 scope_die_for (tree t, dw_die_ref context_die)
17474 {
17475 dw_die_ref scope_die = NULL;
17476 tree containing_scope;
17477 int i;
17478
17479 /* Non-types always go in the current scope. */
17480 gcc_assert (TYPE_P (t));
17481
17482 containing_scope = TYPE_CONTEXT (t);
17483
17484 /* Use the containing namespace if it was passed in (for a declaration). */
17485 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
17486 {
17487 if (context_die == lookup_decl_die (containing_scope))
17488 /* OK */;
17489 else
17490 containing_scope = NULL_TREE;
17491 }
17492
17493 /* Ignore function type "scopes" from the C frontend. They mean that
17494 a tagged type is local to a parmlist of a function declarator, but
17495 that isn't useful to DWARF. */
17496 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
17497 containing_scope = NULL_TREE;
17498
17499 if (containing_scope == NULL_TREE)
17500 scope_die = comp_unit_die;
17501 else if (TYPE_P (containing_scope))
17502 {
17503 /* For types, we can just look up the appropriate DIE. But
17504 first we check to see if we're in the middle of emitting it
17505 so we know where the new DIE should go. */
17506 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
17507 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
17508 break;
17509
17510 if (i < 0)
17511 {
17512 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
17513 || TREE_ASM_WRITTEN (containing_scope));
17514
17515 /* If none of the current dies are suitable, we get file scope. */
17516 scope_die = comp_unit_die;
17517 }
17518 else
17519 scope_die = lookup_type_die (containing_scope);
17520 }
17521 else
17522 scope_die = context_die;
17523
17524 return scope_die;
17525 }
17526
17527 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
17528
17529 static inline int
17530 local_scope_p (dw_die_ref context_die)
17531 {
17532 for (; context_die; context_die = context_die->die_parent)
17533 if (context_die->die_tag == DW_TAG_inlined_subroutine
17534 || context_die->die_tag == DW_TAG_subprogram)
17535 return 1;
17536
17537 return 0;
17538 }
17539
17540 /* Returns nonzero if CONTEXT_DIE is a class. */
17541
17542 static inline int
17543 class_scope_p (dw_die_ref context_die)
17544 {
17545 return (context_die
17546 && (context_die->die_tag == DW_TAG_structure_type
17547 || context_die->die_tag == DW_TAG_class_type
17548 || context_die->die_tag == DW_TAG_interface_type
17549 || context_die->die_tag == DW_TAG_union_type));
17550 }
17551
17552 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
17553 whether or not to treat a DIE in this context as a declaration. */
17554
17555 static inline int
17556 class_or_namespace_scope_p (dw_die_ref context_die)
17557 {
17558 return (class_scope_p (context_die)
17559 || (context_die && context_die->die_tag == DW_TAG_namespace));
17560 }
17561
17562 /* Many forms of DIEs require a "type description" attribute. This
17563 routine locates the proper "type descriptor" die for the type given
17564 by 'type', and adds a DW_AT_type attribute below the given die. */
17565
17566 static void
17567 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
17568 int decl_volatile, dw_die_ref context_die)
17569 {
17570 enum tree_code code = TREE_CODE (type);
17571 dw_die_ref type_die = NULL;
17572
17573 /* ??? If this type is an unnamed subrange type of an integral, floating-point
17574 or fixed-point type, use the inner type. This is because we have no
17575 support for unnamed types in base_type_die. This can happen if this is
17576 an Ada subrange type. Correct solution is emit a subrange type die. */
17577 if ((code == INTEGER_TYPE || code == REAL_TYPE || code == FIXED_POINT_TYPE)
17578 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
17579 type = TREE_TYPE (type), code = TREE_CODE (type);
17580
17581 if (code == ERROR_MARK
17582 /* Handle a special case. For functions whose return type is void, we
17583 generate *no* type attribute. (Note that no object may have type
17584 `void', so this only applies to function return types). */
17585 || code == VOID_TYPE)
17586 return;
17587
17588 type_die = modified_type_die (type,
17589 decl_const || TYPE_READONLY (type),
17590 decl_volatile || TYPE_VOLATILE (type),
17591 context_die);
17592
17593 if (type_die != NULL)
17594 add_AT_die_ref (object_die, DW_AT_type, type_die);
17595 }
17596
17597 /* Given an object die, add the calling convention attribute for the
17598 function call type. */
17599 static void
17600 add_calling_convention_attribute (dw_die_ref subr_die, tree decl)
17601 {
17602 enum dwarf_calling_convention value = DW_CC_normal;
17603
17604 value = ((enum dwarf_calling_convention)
17605 targetm.dwarf_calling_convention (TREE_TYPE (decl)));
17606
17607 /* DWARF doesn't provide a way to identify a program's source-level
17608 entry point. DW_AT_calling_convention attributes are only meant
17609 to describe functions' calling conventions. However, lacking a
17610 better way to signal the Fortran main program, we use this for the
17611 time being, following existing custom. */
17612 if (is_fortran ()
17613 && !strcmp (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)), "MAIN__"))
17614 value = DW_CC_program;
17615
17616 /* Only add the attribute if the backend requests it, and
17617 is not DW_CC_normal. */
17618 if (value && (value != DW_CC_normal))
17619 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
17620 }
17621
17622 /* Given a tree pointer to a struct, class, union, or enum type node, return
17623 a pointer to the (string) tag name for the given type, or zero if the type
17624 was declared without a tag. */
17625
17626 static const char *
17627 type_tag (const_tree type)
17628 {
17629 const char *name = 0;
17630
17631 if (TYPE_NAME (type) != 0)
17632 {
17633 tree t = 0;
17634
17635 /* Find the IDENTIFIER_NODE for the type name. */
17636 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
17637 t = TYPE_NAME (type);
17638
17639 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
17640 a TYPE_DECL node, regardless of whether or not a `typedef' was
17641 involved. */
17642 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
17643 && ! DECL_IGNORED_P (TYPE_NAME (type)))
17644 {
17645 /* We want to be extra verbose. Don't call dwarf_name if
17646 DECL_NAME isn't set. The default hook for decl_printable_name
17647 doesn't like that, and in this context it's correct to return
17648 0, instead of "<anonymous>" or the like. */
17649 if (DECL_NAME (TYPE_NAME (type)))
17650 name = lang_hooks.dwarf_name (TYPE_NAME (type), 2);
17651 }
17652
17653 /* Now get the name as a string, or invent one. */
17654 if (!name && t != 0)
17655 name = IDENTIFIER_POINTER (t);
17656 }
17657
17658 return (name == 0 || *name == '\0') ? 0 : name;
17659 }
17660
17661 /* Return the type associated with a data member, make a special check
17662 for bit field types. */
17663
17664 static inline tree
17665 member_declared_type (const_tree member)
17666 {
17667 return (DECL_BIT_FIELD_TYPE (member)
17668 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
17669 }
17670
17671 /* Get the decl's label, as described by its RTL. This may be different
17672 from the DECL_NAME name used in the source file. */
17673
17674 #if 0
17675 static const char *
17676 decl_start_label (tree decl)
17677 {
17678 rtx x;
17679 const char *fnname;
17680
17681 x = DECL_RTL (decl);
17682 gcc_assert (MEM_P (x));
17683
17684 x = XEXP (x, 0);
17685 gcc_assert (GET_CODE (x) == SYMBOL_REF);
17686
17687 fnname = XSTR (x, 0);
17688 return fnname;
17689 }
17690 #endif
17691 \f
17692 /* These routines generate the internal representation of the DIE's for
17693 the compilation unit. Debugging information is collected by walking
17694 the declaration trees passed in from dwarf2out_decl(). */
17695
17696 static void
17697 gen_array_type_die (tree type, dw_die_ref context_die)
17698 {
17699 dw_die_ref scope_die = scope_die_for (type, context_die);
17700 dw_die_ref array_die;
17701
17702 /* GNU compilers represent multidimensional array types as sequences of one
17703 dimensional array types whose element types are themselves array types.
17704 We sometimes squish that down to a single array_type DIE with multiple
17705 subscripts in the Dwarf debugging info. The draft Dwarf specification
17706 say that we are allowed to do this kind of compression in C, because
17707 there is no difference between an array of arrays and a multidimensional
17708 array. We don't do this for Ada to remain as close as possible to the
17709 actual representation, which is especially important against the language
17710 flexibilty wrt arrays of variable size. */
17711
17712 bool collapse_nested_arrays = !is_ada ();
17713 tree element_type;
17714
17715 /* Emit DW_TAG_string_type for Fortran character types (with kind 1 only, as
17716 DW_TAG_string_type doesn't have DW_AT_type attribute). */
17717 if (TYPE_STRING_FLAG (type)
17718 && TREE_CODE (type) == ARRAY_TYPE
17719 && is_fortran ()
17720 && TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (char_type_node))
17721 {
17722 HOST_WIDE_INT size;
17723
17724 array_die = new_die (DW_TAG_string_type, scope_die, type);
17725 add_name_attribute (array_die, type_tag (type));
17726 equate_type_number_to_die (type, array_die);
17727 size = int_size_in_bytes (type);
17728 if (size >= 0)
17729 add_AT_unsigned (array_die, DW_AT_byte_size, size);
17730 else if (TYPE_DOMAIN (type) != NULL_TREE
17731 && TYPE_MAX_VALUE (TYPE_DOMAIN (type)) != NULL_TREE
17732 && DECL_P (TYPE_MAX_VALUE (TYPE_DOMAIN (type))))
17733 {
17734 tree szdecl = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
17735 dw_loc_list_ref loc = loc_list_from_tree (szdecl, 2);
17736
17737 size = int_size_in_bytes (TREE_TYPE (szdecl));
17738 if (loc && size > 0)
17739 {
17740 add_AT_location_description (array_die, DW_AT_string_length, loc);
17741 if (size != DWARF2_ADDR_SIZE)
17742 add_AT_unsigned (array_die, DW_AT_byte_size, size);
17743 }
17744 }
17745 return;
17746 }
17747
17748 /* ??? The SGI dwarf reader fails for array of array of enum types
17749 (e.g. const enum machine_mode insn_operand_mode[2][10]) unless the inner
17750 array type comes before the outer array type. We thus call gen_type_die
17751 before we new_die and must prevent nested array types collapsing for this
17752 target. */
17753
17754 #ifdef MIPS_DEBUGGING_INFO
17755 gen_type_die (TREE_TYPE (type), context_die);
17756 collapse_nested_arrays = false;
17757 #endif
17758
17759 array_die = new_die (DW_TAG_array_type, scope_die, type);
17760 add_name_attribute (array_die, type_tag (type));
17761 equate_type_number_to_die (type, array_die);
17762
17763 if (TREE_CODE (type) == VECTOR_TYPE)
17764 {
17765 /* The frontend feeds us a representation for the vector as a struct
17766 containing an array. Pull out the array type. */
17767 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
17768 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
17769 }
17770
17771 /* For Fortran multidimensional arrays use DW_ORD_col_major ordering. */
17772 if (is_fortran ()
17773 && TREE_CODE (type) == ARRAY_TYPE
17774 && TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE
17775 && !TYPE_STRING_FLAG (TREE_TYPE (type)))
17776 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
17777
17778 #if 0
17779 /* We default the array ordering. SDB will probably do
17780 the right things even if DW_AT_ordering is not present. It's not even
17781 an issue until we start to get into multidimensional arrays anyway. If
17782 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
17783 then we'll have to put the DW_AT_ordering attribute back in. (But if
17784 and when we find out that we need to put these in, we will only do so
17785 for multidimensional arrays. */
17786 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
17787 #endif
17788
17789 #ifdef MIPS_DEBUGGING_INFO
17790 /* The SGI compilers handle arrays of unknown bound by setting
17791 AT_declaration and not emitting any subrange DIEs. */
17792 if (! TYPE_DOMAIN (type))
17793 add_AT_flag (array_die, DW_AT_declaration, 1);
17794 else
17795 #endif
17796 add_subscript_info (array_die, type, collapse_nested_arrays);
17797
17798 /* Add representation of the type of the elements of this array type and
17799 emit the corresponding DIE if we haven't done it already. */
17800 element_type = TREE_TYPE (type);
17801 if (collapse_nested_arrays)
17802 while (TREE_CODE (element_type) == ARRAY_TYPE)
17803 {
17804 if (TYPE_STRING_FLAG (element_type) && is_fortran ())
17805 break;
17806 element_type = TREE_TYPE (element_type);
17807 }
17808
17809 #ifndef MIPS_DEBUGGING_INFO
17810 gen_type_die (element_type, context_die);
17811 #endif
17812
17813 add_type_attribute (array_die, element_type, 0, 0, context_die);
17814
17815 if (get_AT (array_die, DW_AT_name))
17816 add_pubtype (type, array_die);
17817 }
17818
17819 static dw_loc_descr_ref
17820 descr_info_loc (tree val, tree base_decl)
17821 {
17822 HOST_WIDE_INT size;
17823 dw_loc_descr_ref loc, loc2;
17824 enum dwarf_location_atom op;
17825
17826 if (val == base_decl)
17827 return new_loc_descr (DW_OP_push_object_address, 0, 0);
17828
17829 switch (TREE_CODE (val))
17830 {
17831 CASE_CONVERT:
17832 return descr_info_loc (TREE_OPERAND (val, 0), base_decl);
17833 case VAR_DECL:
17834 return loc_descriptor_from_tree (val, 0);
17835 case INTEGER_CST:
17836 if (host_integerp (val, 0))
17837 return int_loc_descriptor (tree_low_cst (val, 0));
17838 break;
17839 case INDIRECT_REF:
17840 size = int_size_in_bytes (TREE_TYPE (val));
17841 if (size < 0)
17842 break;
17843 loc = descr_info_loc (TREE_OPERAND (val, 0), base_decl);
17844 if (!loc)
17845 break;
17846 if (size == DWARF2_ADDR_SIZE)
17847 add_loc_descr (&loc, new_loc_descr (DW_OP_deref, 0, 0));
17848 else
17849 add_loc_descr (&loc, new_loc_descr (DW_OP_deref_size, size, 0));
17850 return loc;
17851 case POINTER_PLUS_EXPR:
17852 case PLUS_EXPR:
17853 if (host_integerp (TREE_OPERAND (val, 1), 1)
17854 && (unsigned HOST_WIDE_INT) tree_low_cst (TREE_OPERAND (val, 1), 1)
17855 < 16384)
17856 {
17857 loc = descr_info_loc (TREE_OPERAND (val, 0), base_decl);
17858 if (!loc)
17859 break;
17860 loc_descr_plus_const (&loc, tree_low_cst (TREE_OPERAND (val, 1), 0));
17861 }
17862 else
17863 {
17864 op = DW_OP_plus;
17865 do_binop:
17866 loc = descr_info_loc (TREE_OPERAND (val, 0), base_decl);
17867 if (!loc)
17868 break;
17869 loc2 = descr_info_loc (TREE_OPERAND (val, 1), base_decl);
17870 if (!loc2)
17871 break;
17872 add_loc_descr (&loc, loc2);
17873 add_loc_descr (&loc2, new_loc_descr (op, 0, 0));
17874 }
17875 return loc;
17876 case MINUS_EXPR:
17877 op = DW_OP_minus;
17878 goto do_binop;
17879 case MULT_EXPR:
17880 op = DW_OP_mul;
17881 goto do_binop;
17882 case EQ_EXPR:
17883 op = DW_OP_eq;
17884 goto do_binop;
17885 case NE_EXPR:
17886 op = DW_OP_ne;
17887 goto do_binop;
17888 default:
17889 break;
17890 }
17891 return NULL;
17892 }
17893
17894 static void
17895 add_descr_info_field (dw_die_ref die, enum dwarf_attribute attr,
17896 tree val, tree base_decl)
17897 {
17898 dw_loc_descr_ref loc;
17899
17900 if (host_integerp (val, 0))
17901 {
17902 add_AT_unsigned (die, attr, tree_low_cst (val, 0));
17903 return;
17904 }
17905
17906 loc = descr_info_loc (val, base_decl);
17907 if (!loc)
17908 return;
17909
17910 add_AT_loc (die, attr, loc);
17911 }
17912
17913 /* This routine generates DIE for array with hidden descriptor, details
17914 are filled into *info by a langhook. */
17915
17916 static void
17917 gen_descr_array_type_die (tree type, struct array_descr_info *info,
17918 dw_die_ref context_die)
17919 {
17920 dw_die_ref scope_die = scope_die_for (type, context_die);
17921 dw_die_ref array_die;
17922 int dim;
17923
17924 array_die = new_die (DW_TAG_array_type, scope_die, type);
17925 add_name_attribute (array_die, type_tag (type));
17926 equate_type_number_to_die (type, array_die);
17927
17928 /* For Fortran multidimensional arrays use DW_ORD_col_major ordering. */
17929 if (is_fortran ()
17930 && info->ndimensions >= 2)
17931 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
17932
17933 if (info->data_location)
17934 add_descr_info_field (array_die, DW_AT_data_location, info->data_location,
17935 info->base_decl);
17936 if (info->associated)
17937 add_descr_info_field (array_die, DW_AT_associated, info->associated,
17938 info->base_decl);
17939 if (info->allocated)
17940 add_descr_info_field (array_die, DW_AT_allocated, info->allocated,
17941 info->base_decl);
17942
17943 for (dim = 0; dim < info->ndimensions; dim++)
17944 {
17945 dw_die_ref subrange_die
17946 = new_die (DW_TAG_subrange_type, array_die, NULL);
17947
17948 if (info->dimen[dim].lower_bound)
17949 {
17950 /* If it is the default value, omit it. */
17951 int dflt;
17952
17953 if (host_integerp (info->dimen[dim].lower_bound, 0)
17954 && (dflt = lower_bound_default ()) != -1
17955 && tree_low_cst (info->dimen[dim].lower_bound, 0) == dflt)
17956 ;
17957 else
17958 add_descr_info_field (subrange_die, DW_AT_lower_bound,
17959 info->dimen[dim].lower_bound,
17960 info->base_decl);
17961 }
17962 if (info->dimen[dim].upper_bound)
17963 add_descr_info_field (subrange_die, DW_AT_upper_bound,
17964 info->dimen[dim].upper_bound,
17965 info->base_decl);
17966 if (info->dimen[dim].stride)
17967 add_descr_info_field (subrange_die, DW_AT_byte_stride,
17968 info->dimen[dim].stride,
17969 info->base_decl);
17970 }
17971
17972 gen_type_die (info->element_type, context_die);
17973 add_type_attribute (array_die, info->element_type, 0, 0, context_die);
17974
17975 if (get_AT (array_die, DW_AT_name))
17976 add_pubtype (type, array_die);
17977 }
17978
17979 #if 0
17980 static void
17981 gen_entry_point_die (tree decl, dw_die_ref context_die)
17982 {
17983 tree origin = decl_ultimate_origin (decl);
17984 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
17985
17986 if (origin != NULL)
17987 add_abstract_origin_attribute (decl_die, origin);
17988 else
17989 {
17990 add_name_and_src_coords_attributes (decl_die, decl);
17991 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
17992 0, 0, context_die);
17993 }
17994
17995 if (DECL_ABSTRACT (decl))
17996 equate_decl_number_to_die (decl, decl_die);
17997 else
17998 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
17999 }
18000 #endif
18001
18002 /* Walk through the list of incomplete types again, trying once more to
18003 emit full debugging info for them. */
18004
18005 static void
18006 retry_incomplete_types (void)
18007 {
18008 int i;
18009
18010 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
18011 if (should_emit_struct_debug (VEC_index (tree, incomplete_types, i),
18012 DINFO_USAGE_DIR_USE))
18013 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
18014 }
18015
18016 /* Determine what tag to use for a record type. */
18017
18018 static enum dwarf_tag
18019 record_type_tag (tree type)
18020 {
18021 if (! lang_hooks.types.classify_record)
18022 return DW_TAG_structure_type;
18023
18024 switch (lang_hooks.types.classify_record (type))
18025 {
18026 case RECORD_IS_STRUCT:
18027 return DW_TAG_structure_type;
18028
18029 case RECORD_IS_CLASS:
18030 return DW_TAG_class_type;
18031
18032 case RECORD_IS_INTERFACE:
18033 if (dwarf_version >= 3 || !dwarf_strict)
18034 return DW_TAG_interface_type;
18035 return DW_TAG_structure_type;
18036
18037 default:
18038 gcc_unreachable ();
18039 }
18040 }
18041
18042 /* Generate a DIE to represent an enumeration type. Note that these DIEs
18043 include all of the information about the enumeration values also. Each
18044 enumerated type name/value is listed as a child of the enumerated type
18045 DIE. */
18046
18047 static dw_die_ref
18048 gen_enumeration_type_die (tree type, dw_die_ref context_die)
18049 {
18050 dw_die_ref type_die = lookup_type_die (type);
18051
18052 if (type_die == NULL)
18053 {
18054 type_die = new_die (DW_TAG_enumeration_type,
18055 scope_die_for (type, context_die), type);
18056 equate_type_number_to_die (type, type_die);
18057 add_name_attribute (type_die, type_tag (type));
18058 if ((dwarf_version >= 4 || !dwarf_strict)
18059 && ENUM_IS_SCOPED (type))
18060 add_AT_flag (type_die, DW_AT_enum_class, 1);
18061 }
18062 else if (! TYPE_SIZE (type))
18063 return type_die;
18064 else
18065 remove_AT (type_die, DW_AT_declaration);
18066
18067 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
18068 given enum type is incomplete, do not generate the DW_AT_byte_size
18069 attribute or the DW_AT_element_list attribute. */
18070 if (TYPE_SIZE (type))
18071 {
18072 tree link;
18073
18074 TREE_ASM_WRITTEN (type) = 1;
18075 add_byte_size_attribute (type_die, type);
18076 if (TYPE_STUB_DECL (type) != NULL_TREE)
18077 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
18078
18079 /* If the first reference to this type was as the return type of an
18080 inline function, then it may not have a parent. Fix this now. */
18081 if (type_die->die_parent == NULL)
18082 add_child_die (scope_die_for (type, context_die), type_die);
18083
18084 for (link = TYPE_VALUES (type);
18085 link != NULL; link = TREE_CHAIN (link))
18086 {
18087 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
18088 tree value = TREE_VALUE (link);
18089
18090 add_name_attribute (enum_die,
18091 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
18092
18093 if (TREE_CODE (value) == CONST_DECL)
18094 value = DECL_INITIAL (value);
18095
18096 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
18097 /* DWARF2 does not provide a way of indicating whether or
18098 not enumeration constants are signed or unsigned. GDB
18099 always assumes the values are signed, so we output all
18100 values as if they were signed. That means that
18101 enumeration constants with very large unsigned values
18102 will appear to have negative values in the debugger. */
18103 add_AT_int (enum_die, DW_AT_const_value,
18104 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
18105 }
18106 }
18107 else
18108 add_AT_flag (type_die, DW_AT_declaration, 1);
18109
18110 if (get_AT (type_die, DW_AT_name))
18111 add_pubtype (type, type_die);
18112
18113 return type_die;
18114 }
18115
18116 /* Generate a DIE to represent either a real live formal parameter decl or to
18117 represent just the type of some formal parameter position in some function
18118 type.
18119
18120 Note that this routine is a bit unusual because its argument may be a
18121 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
18122 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
18123 node. If it's the former then this function is being called to output a
18124 DIE to represent a formal parameter object (or some inlining thereof). If
18125 it's the latter, then this function is only being called to output a
18126 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
18127 argument type of some subprogram type.
18128 If EMIT_NAME_P is true, name and source coordinate attributes
18129 are emitted. */
18130
18131 static dw_die_ref
18132 gen_formal_parameter_die (tree node, tree origin, bool emit_name_p,
18133 dw_die_ref context_die)
18134 {
18135 tree node_or_origin = node ? node : origin;
18136 tree ultimate_origin;
18137 dw_die_ref parm_die
18138 = new_die (DW_TAG_formal_parameter, context_die, node);
18139
18140 switch (TREE_CODE_CLASS (TREE_CODE (node_or_origin)))
18141 {
18142 case tcc_declaration:
18143 ultimate_origin = decl_ultimate_origin (node_or_origin);
18144 if (node || ultimate_origin)
18145 origin = ultimate_origin;
18146 if (origin != NULL)
18147 add_abstract_origin_attribute (parm_die, origin);
18148 else if (emit_name_p)
18149 add_name_and_src_coords_attributes (parm_die, node);
18150 if (origin == NULL
18151 || (! DECL_ABSTRACT (node_or_origin)
18152 && variably_modified_type_p (TREE_TYPE (node_or_origin),
18153 decl_function_context
18154 (node_or_origin))))
18155 {
18156 tree type = TREE_TYPE (node_or_origin);
18157 if (decl_by_reference_p (node_or_origin))
18158 add_type_attribute (parm_die, TREE_TYPE (type), 0, 0,
18159 context_die);
18160 else
18161 add_type_attribute (parm_die, type,
18162 TREE_READONLY (node_or_origin),
18163 TREE_THIS_VOLATILE (node_or_origin),
18164 context_die);
18165 }
18166 if (origin == NULL && DECL_ARTIFICIAL (node))
18167 add_AT_flag (parm_die, DW_AT_artificial, 1);
18168
18169 if (node && node != origin)
18170 equate_decl_number_to_die (node, parm_die);
18171 if (! DECL_ABSTRACT (node_or_origin))
18172 add_location_or_const_value_attribute (parm_die, node_or_origin,
18173 DW_AT_location);
18174
18175 break;
18176
18177 case tcc_type:
18178 /* We were called with some kind of a ..._TYPE node. */
18179 add_type_attribute (parm_die, node_or_origin, 0, 0, context_die);
18180 break;
18181
18182 default:
18183 gcc_unreachable ();
18184 }
18185
18186 return parm_die;
18187 }
18188
18189 /* Generate and return a DW_TAG_GNU_formal_parameter_pack. Also generate
18190 children DW_TAG_formal_parameter DIEs representing the arguments of the
18191 parameter pack.
18192
18193 PARM_PACK must be a function parameter pack.
18194 PACK_ARG is the first argument of the parameter pack. Its TREE_CHAIN
18195 must point to the subsequent arguments of the function PACK_ARG belongs to.
18196 SUBR_DIE is the DIE of the function PACK_ARG belongs to.
18197 If NEXT_ARG is non NULL, *NEXT_ARG is set to the function argument
18198 following the last one for which a DIE was generated. */
18199
18200 static dw_die_ref
18201 gen_formal_parameter_pack_die (tree parm_pack,
18202 tree pack_arg,
18203 dw_die_ref subr_die,
18204 tree *next_arg)
18205 {
18206 tree arg;
18207 dw_die_ref parm_pack_die;
18208
18209 gcc_assert (parm_pack
18210 && lang_hooks.function_parameter_pack_p (parm_pack)
18211 && subr_die);
18212
18213 parm_pack_die = new_die (DW_TAG_GNU_formal_parameter_pack, subr_die, parm_pack);
18214 add_src_coords_attributes (parm_pack_die, parm_pack);
18215
18216 for (arg = pack_arg; arg; arg = TREE_CHAIN (arg))
18217 {
18218 if (! lang_hooks.decls.function_parm_expanded_from_pack_p (arg,
18219 parm_pack))
18220 break;
18221 gen_formal_parameter_die (arg, NULL,
18222 false /* Don't emit name attribute. */,
18223 parm_pack_die);
18224 }
18225 if (next_arg)
18226 *next_arg = arg;
18227 return parm_pack_die;
18228 }
18229
18230 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
18231 at the end of an (ANSI prototyped) formal parameters list. */
18232
18233 static void
18234 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
18235 {
18236 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
18237 }
18238
18239 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
18240 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
18241 parameters as specified in some function type specification (except for
18242 those which appear as part of a function *definition*). */
18243
18244 static void
18245 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
18246 {
18247 tree link;
18248 tree formal_type = NULL;
18249 tree first_parm_type;
18250 tree arg;
18251
18252 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
18253 {
18254 arg = DECL_ARGUMENTS (function_or_method_type);
18255 function_or_method_type = TREE_TYPE (function_or_method_type);
18256 }
18257 else
18258 arg = NULL_TREE;
18259
18260 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
18261
18262 /* Make our first pass over the list of formal parameter types and output a
18263 DW_TAG_formal_parameter DIE for each one. */
18264 for (link = first_parm_type; link; )
18265 {
18266 dw_die_ref parm_die;
18267
18268 formal_type = TREE_VALUE (link);
18269 if (formal_type == void_type_node)
18270 break;
18271
18272 /* Output a (nameless) DIE to represent the formal parameter itself. */
18273 parm_die = gen_formal_parameter_die (formal_type, NULL,
18274 true /* Emit name attribute. */,
18275 context_die);
18276 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
18277 && link == first_parm_type)
18278 || (arg && DECL_ARTIFICIAL (arg)))
18279 add_AT_flag (parm_die, DW_AT_artificial, 1);
18280
18281 link = TREE_CHAIN (link);
18282 if (arg)
18283 arg = TREE_CHAIN (arg);
18284 }
18285
18286 /* If this function type has an ellipsis, add a
18287 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
18288 if (formal_type != void_type_node)
18289 gen_unspecified_parameters_die (function_or_method_type, context_die);
18290
18291 /* Make our second (and final) pass over the list of formal parameter types
18292 and output DIEs to represent those types (as necessary). */
18293 for (link = TYPE_ARG_TYPES (function_or_method_type);
18294 link && TREE_VALUE (link);
18295 link = TREE_CHAIN (link))
18296 gen_type_die (TREE_VALUE (link), context_die);
18297 }
18298
18299 /* We want to generate the DIE for TYPE so that we can generate the
18300 die for MEMBER, which has been defined; we will need to refer back
18301 to the member declaration nested within TYPE. If we're trying to
18302 generate minimal debug info for TYPE, processing TYPE won't do the
18303 trick; we need to attach the member declaration by hand. */
18304
18305 static void
18306 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
18307 {
18308 gen_type_die (type, context_die);
18309
18310 /* If we're trying to avoid duplicate debug info, we may not have
18311 emitted the member decl for this function. Emit it now. */
18312 if (TYPE_STUB_DECL (type)
18313 && TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
18314 && ! lookup_decl_die (member))
18315 {
18316 dw_die_ref type_die;
18317 gcc_assert (!decl_ultimate_origin (member));
18318
18319 push_decl_scope (type);
18320 type_die = lookup_type_die (type);
18321 if (TREE_CODE (member) == FUNCTION_DECL)
18322 gen_subprogram_die (member, type_die);
18323 else if (TREE_CODE (member) == FIELD_DECL)
18324 {
18325 /* Ignore the nameless fields that are used to skip bits but handle
18326 C++ anonymous unions and structs. */
18327 if (DECL_NAME (member) != NULL_TREE
18328 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
18329 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
18330 {
18331 gen_type_die (member_declared_type (member), type_die);
18332 gen_field_die (member, type_die);
18333 }
18334 }
18335 else
18336 gen_variable_die (member, NULL_TREE, type_die);
18337
18338 pop_decl_scope ();
18339 }
18340 }
18341
18342 /* Generate the DWARF2 info for the "abstract" instance of a function which we
18343 may later generate inlined and/or out-of-line instances of. */
18344
18345 static void
18346 dwarf2out_abstract_function (tree decl)
18347 {
18348 dw_die_ref old_die;
18349 tree save_fn;
18350 tree context;
18351 int was_abstract;
18352 htab_t old_decl_loc_table;
18353
18354 /* Make sure we have the actual abstract inline, not a clone. */
18355 decl = DECL_ORIGIN (decl);
18356
18357 old_die = lookup_decl_die (decl);
18358 if (old_die && get_AT (old_die, DW_AT_inline))
18359 /* We've already generated the abstract instance. */
18360 return;
18361
18362 /* We can be called while recursively when seeing block defining inlined subroutine
18363 DIE. Be sure to not clobber the outer location table nor use it or we would
18364 get locations in abstract instantces. */
18365 old_decl_loc_table = decl_loc_table;
18366 decl_loc_table = NULL;
18367
18368 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
18369 we don't get confused by DECL_ABSTRACT. */
18370 if (debug_info_level > DINFO_LEVEL_TERSE)
18371 {
18372 context = decl_class_context (decl);
18373 if (context)
18374 gen_type_die_for_member
18375 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
18376 }
18377
18378 /* Pretend we've just finished compiling this function. */
18379 save_fn = current_function_decl;
18380 current_function_decl = decl;
18381 push_cfun (DECL_STRUCT_FUNCTION (decl));
18382
18383 was_abstract = DECL_ABSTRACT (decl);
18384 set_decl_abstract_flags (decl, 1);
18385 dwarf2out_decl (decl);
18386 if (! was_abstract)
18387 set_decl_abstract_flags (decl, 0);
18388
18389 current_function_decl = save_fn;
18390 decl_loc_table = old_decl_loc_table;
18391 pop_cfun ();
18392 }
18393
18394 /* Helper function of premark_used_types() which gets called through
18395 htab_traverse.
18396
18397 Marks the DIE of a given type in *SLOT as perennial, so it never gets
18398 marked as unused by prune_unused_types. */
18399
18400 static int
18401 premark_used_types_helper (void **slot, void *data ATTRIBUTE_UNUSED)
18402 {
18403 tree type;
18404 dw_die_ref die;
18405
18406 type = (tree) *slot;
18407 die = lookup_type_die (type);
18408 if (die != NULL)
18409 die->die_perennial_p = 1;
18410 return 1;
18411 }
18412
18413 /* Helper function of premark_types_used_by_global_vars which gets called
18414 through htab_traverse.
18415
18416 Marks the DIE of a given type in *SLOT as perennial, so it never gets
18417 marked as unused by prune_unused_types. The DIE of the type is marked
18418 only if the global variable using the type will actually be emitted. */
18419
18420 static int
18421 premark_types_used_by_global_vars_helper (void **slot,
18422 void *data ATTRIBUTE_UNUSED)
18423 {
18424 struct types_used_by_vars_entry *entry;
18425 dw_die_ref die;
18426
18427 entry = (struct types_used_by_vars_entry *) *slot;
18428 gcc_assert (entry->type != NULL
18429 && entry->var_decl != NULL);
18430 die = lookup_type_die (entry->type);
18431 if (die)
18432 {
18433 /* Ask cgraph if the global variable really is to be emitted.
18434 If yes, then we'll keep the DIE of ENTRY->TYPE. */
18435 struct varpool_node *node = varpool_get_node (entry->var_decl);
18436 if (node && node->needed)
18437 {
18438 die->die_perennial_p = 1;
18439 /* Keep the parent DIEs as well. */
18440 while ((die = die->die_parent) && die->die_perennial_p == 0)
18441 die->die_perennial_p = 1;
18442 }
18443 }
18444 return 1;
18445 }
18446
18447 /* Mark all members of used_types_hash as perennial. */
18448
18449 static void
18450 premark_used_types (void)
18451 {
18452 if (cfun && cfun->used_types_hash)
18453 htab_traverse (cfun->used_types_hash, premark_used_types_helper, NULL);
18454 }
18455
18456 /* Mark all members of types_used_by_vars_entry as perennial. */
18457
18458 static void
18459 premark_types_used_by_global_vars (void)
18460 {
18461 if (types_used_by_vars_hash)
18462 htab_traverse (types_used_by_vars_hash,
18463 premark_types_used_by_global_vars_helper, NULL);
18464 }
18465
18466 /* Generate a DIE to represent a declared function (either file-scope or
18467 block-local). */
18468
18469 static void
18470 gen_subprogram_die (tree decl, dw_die_ref context_die)
18471 {
18472 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
18473 tree origin = decl_ultimate_origin (decl);
18474 dw_die_ref subr_die;
18475 tree fn_arg_types;
18476 tree outer_scope;
18477 dw_die_ref old_die = lookup_decl_die (decl);
18478 int declaration = (current_function_decl != decl
18479 || class_or_namespace_scope_p (context_die));
18480
18481 premark_used_types ();
18482
18483 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
18484 started to generate the abstract instance of an inline, decided to output
18485 its containing class, and proceeded to emit the declaration of the inline
18486 from the member list for the class. If so, DECLARATION takes priority;
18487 we'll get back to the abstract instance when done with the class. */
18488
18489 /* The class-scope declaration DIE must be the primary DIE. */
18490 if (origin && declaration && class_or_namespace_scope_p (context_die))
18491 {
18492 origin = NULL;
18493 gcc_assert (!old_die);
18494 }
18495
18496 /* Now that the C++ front end lazily declares artificial member fns, we
18497 might need to retrofit the declaration into its class. */
18498 if (!declaration && !origin && !old_die
18499 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
18500 && !class_or_namespace_scope_p (context_die)
18501 && debug_info_level > DINFO_LEVEL_TERSE)
18502 old_die = force_decl_die (decl);
18503
18504 if (origin != NULL)
18505 {
18506 gcc_assert (!declaration || local_scope_p (context_die));
18507
18508 /* Fixup die_parent for the abstract instance of a nested
18509 inline function. */
18510 if (old_die && old_die->die_parent == NULL)
18511 add_child_die (context_die, old_die);
18512
18513 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
18514 add_abstract_origin_attribute (subr_die, origin);
18515 }
18516 else if (old_die)
18517 {
18518 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
18519 struct dwarf_file_data * file_index = lookup_filename (s.file);
18520
18521 if (!get_AT_flag (old_die, DW_AT_declaration)
18522 /* We can have a normal definition following an inline one in the
18523 case of redefinition of GNU C extern inlines.
18524 It seems reasonable to use AT_specification in this case. */
18525 && !get_AT (old_die, DW_AT_inline))
18526 {
18527 /* Detect and ignore this case, where we are trying to output
18528 something we have already output. */
18529 return;
18530 }
18531
18532 /* If the definition comes from the same place as the declaration,
18533 maybe use the old DIE. We always want the DIE for this function
18534 that has the *_pc attributes to be under comp_unit_die so the
18535 debugger can find it. We also need to do this for abstract
18536 instances of inlines, since the spec requires the out-of-line copy
18537 to have the same parent. For local class methods, this doesn't
18538 apply; we just use the old DIE. */
18539 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
18540 && (DECL_ARTIFICIAL (decl)
18541 || (get_AT_file (old_die, DW_AT_decl_file) == file_index
18542 && (get_AT_unsigned (old_die, DW_AT_decl_line)
18543 == (unsigned) s.line))))
18544 {
18545 subr_die = old_die;
18546
18547 /* Clear out the declaration attribute and the formal parameters.
18548 Do not remove all children, because it is possible that this
18549 declaration die was forced using force_decl_die(). In such
18550 cases die that forced declaration die (e.g. TAG_imported_module)
18551 is one of the children that we do not want to remove. */
18552 remove_AT (subr_die, DW_AT_declaration);
18553 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
18554 }
18555 else
18556 {
18557 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
18558 add_AT_specification (subr_die, old_die);
18559 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
18560 add_AT_file (subr_die, DW_AT_decl_file, file_index);
18561 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
18562 add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
18563 }
18564 }
18565 else
18566 {
18567 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
18568
18569 if (TREE_PUBLIC (decl))
18570 add_AT_flag (subr_die, DW_AT_external, 1);
18571
18572 add_name_and_src_coords_attributes (subr_die, decl);
18573 if (debug_info_level > DINFO_LEVEL_TERSE)
18574 {
18575 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
18576 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
18577 0, 0, context_die);
18578 }
18579
18580 add_pure_or_virtual_attribute (subr_die, decl);
18581 if (DECL_ARTIFICIAL (decl))
18582 add_AT_flag (subr_die, DW_AT_artificial, 1);
18583
18584 if (TREE_PROTECTED (decl))
18585 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
18586 else if (TREE_PRIVATE (decl))
18587 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
18588 }
18589
18590 if (declaration)
18591 {
18592 if (!old_die || !get_AT (old_die, DW_AT_inline))
18593 {
18594 add_AT_flag (subr_die, DW_AT_declaration, 1);
18595
18596 /* If this is an explicit function declaration then generate
18597 a DW_AT_explicit attribute. */
18598 if (lang_hooks.decls.function_decl_explicit_p (decl)
18599 && (dwarf_version >= 3 || !dwarf_strict))
18600 add_AT_flag (subr_die, DW_AT_explicit, 1);
18601
18602 /* The first time we see a member function, it is in the context of
18603 the class to which it belongs. We make sure of this by emitting
18604 the class first. The next time is the definition, which is
18605 handled above. The two may come from the same source text.
18606
18607 Note that force_decl_die() forces function declaration die. It is
18608 later reused to represent definition. */
18609 equate_decl_number_to_die (decl, subr_die);
18610 }
18611 }
18612 else if (DECL_ABSTRACT (decl))
18613 {
18614 if (DECL_DECLARED_INLINE_P (decl))
18615 {
18616 if (cgraph_function_possibly_inlined_p (decl))
18617 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
18618 else
18619 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
18620 }
18621 else
18622 {
18623 if (cgraph_function_possibly_inlined_p (decl))
18624 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
18625 else
18626 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
18627 }
18628
18629 if (DECL_DECLARED_INLINE_P (decl)
18630 && lookup_attribute ("artificial", DECL_ATTRIBUTES (decl)))
18631 add_AT_flag (subr_die, DW_AT_artificial, 1);
18632
18633 equate_decl_number_to_die (decl, subr_die);
18634 }
18635 else if (!DECL_EXTERNAL (decl))
18636 {
18637 HOST_WIDE_INT cfa_fb_offset;
18638
18639 if (!old_die || !get_AT (old_die, DW_AT_inline))
18640 equate_decl_number_to_die (decl, subr_die);
18641
18642 if (!flag_reorder_blocks_and_partition)
18643 {
18644 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
18645 current_function_funcdef_no);
18646 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
18647 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
18648 current_function_funcdef_no);
18649 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
18650
18651 #if VMS_DEBUGGING_INFO
18652 /* HP OpenVMS Industry Standard 64: DWARF Extensions
18653 Section 2.3 Prologue and Epilogue Attributes:
18654 When a breakpoint is set on entry to a function, it is generally
18655 desirable for execution to be suspended, not on the very first
18656 instruction of the function, but rather at a point after the
18657 function's frame has been set up, after any language defined local
18658 declaration processing has been completed, and before execution of
18659 the first statement of the function begins. Debuggers generally
18660 cannot properly determine where this point is. Similarly for a
18661 breakpoint set on exit from a function. The prologue and epilogue
18662 attributes allow a compiler to communicate the location(s) to use. */
18663
18664 {
18665 dw_fde_ref fde = &fde_table[current_funcdef_fde];
18666
18667 if (fde->dw_fde_vms_end_prologue)
18668 add_AT_vms_delta (subr_die, DW_AT_HP_prologue,
18669 fde->dw_fde_begin, fde->dw_fde_vms_end_prologue);
18670
18671 if (fde->dw_fde_vms_begin_epilogue)
18672 add_AT_vms_delta (subr_die, DW_AT_HP_epilogue,
18673 fde->dw_fde_begin, fde->dw_fde_vms_begin_epilogue);
18674 }
18675 #endif
18676
18677 add_pubname (decl, subr_die);
18678 add_arange (decl, subr_die);
18679 }
18680 else
18681 { /* Do nothing for now; maybe need to duplicate die, one for
18682 hot section and one for cold section, then use the hot/cold
18683 section begin/end labels to generate the aranges... */
18684 /*
18685 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
18686 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
18687 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
18688 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
18689
18690 add_pubname (decl, subr_die);
18691 add_arange (decl, subr_die);
18692 add_arange (decl, subr_die);
18693 */
18694 }
18695
18696 #ifdef MIPS_DEBUGGING_INFO
18697 /* Add a reference to the FDE for this routine. */
18698 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
18699 #endif
18700
18701 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
18702
18703 /* We define the "frame base" as the function's CFA. This is more
18704 convenient for several reasons: (1) It's stable across the prologue
18705 and epilogue, which makes it better than just a frame pointer,
18706 (2) With dwarf3, there exists a one-byte encoding that allows us
18707 to reference the .debug_frame data by proxy, but failing that,
18708 (3) We can at least reuse the code inspection and interpretation
18709 code that determines the CFA position at various points in the
18710 function. */
18711 if (dwarf_version >= 3)
18712 {
18713 dw_loc_descr_ref op = new_loc_descr (DW_OP_call_frame_cfa, 0, 0);
18714 add_AT_loc (subr_die, DW_AT_frame_base, op);
18715 }
18716 else
18717 {
18718 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
18719 if (list->dw_loc_next)
18720 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
18721 else
18722 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
18723 }
18724
18725 /* Compute a displacement from the "steady-state frame pointer" to
18726 the CFA. The former is what all stack slots and argument slots
18727 will reference in the rtl; the later is what we've told the
18728 debugger about. We'll need to adjust all frame_base references
18729 by this displacement. */
18730 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
18731
18732 if (cfun->static_chain_decl)
18733 add_AT_location_description (subr_die, DW_AT_static_link,
18734 loc_list_from_tree (cfun->static_chain_decl, 2));
18735 }
18736
18737 /* Generate child dies for template paramaters. */
18738 if (debug_info_level > DINFO_LEVEL_TERSE)
18739 gen_generic_params_dies (decl);
18740
18741 /* Now output descriptions of the arguments for this function. This gets
18742 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
18743 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
18744 `...' at the end of the formal parameter list. In order to find out if
18745 there was a trailing ellipsis or not, we must instead look at the type
18746 associated with the FUNCTION_DECL. This will be a node of type
18747 FUNCTION_TYPE. If the chain of type nodes hanging off of this
18748 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
18749 an ellipsis at the end. */
18750
18751 /* In the case where we are describing a mere function declaration, all we
18752 need to do here (and all we *can* do here) is to describe the *types* of
18753 its formal parameters. */
18754 if (debug_info_level <= DINFO_LEVEL_TERSE)
18755 ;
18756 else if (declaration)
18757 gen_formal_types_die (decl, subr_die);
18758 else
18759 {
18760 /* Generate DIEs to represent all known formal parameters. */
18761 tree parm = DECL_ARGUMENTS (decl);
18762 tree generic_decl = lang_hooks.decls.get_generic_function_decl (decl);
18763 tree generic_decl_parm = generic_decl
18764 ? DECL_ARGUMENTS (generic_decl)
18765 : NULL;
18766
18767 /* Now we want to walk the list of parameters of the function and
18768 emit their relevant DIEs.
18769
18770 We consider the case of DECL being an instance of a generic function
18771 as well as it being a normal function.
18772
18773 If DECL is an instance of a generic function we walk the
18774 parameters of the generic function declaration _and_ the parameters of
18775 DECL itself. This is useful because we want to emit specific DIEs for
18776 function parameter packs and those are declared as part of the
18777 generic function declaration. In that particular case,
18778 the parameter pack yields a DW_TAG_GNU_formal_parameter_pack DIE.
18779 That DIE has children DIEs representing the set of arguments
18780 of the pack. Note that the set of pack arguments can be empty.
18781 In that case, the DW_TAG_GNU_formal_parameter_pack DIE will not have any
18782 children DIE.
18783
18784 Otherwise, we just consider the parameters of DECL. */
18785 while (generic_decl_parm || parm)
18786 {
18787 if (generic_decl_parm
18788 && lang_hooks.function_parameter_pack_p (generic_decl_parm))
18789 gen_formal_parameter_pack_die (generic_decl_parm,
18790 parm, subr_die,
18791 &parm);
18792 else if (parm)
18793 {
18794 gen_decl_die (parm, NULL, subr_die);
18795 parm = TREE_CHAIN (parm);
18796 }
18797
18798 if (generic_decl_parm)
18799 generic_decl_parm = TREE_CHAIN (generic_decl_parm);
18800 }
18801
18802 /* Decide whether we need an unspecified_parameters DIE at the end.
18803 There are 2 more cases to do this for: 1) the ansi ... declaration -
18804 this is detectable when the end of the arg list is not a
18805 void_type_node 2) an unprototyped function declaration (not a
18806 definition). This just means that we have no info about the
18807 parameters at all. */
18808 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
18809 if (fn_arg_types != NULL)
18810 {
18811 /* This is the prototyped case, check for.... */
18812 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
18813 gen_unspecified_parameters_die (decl, subr_die);
18814 }
18815 else if (DECL_INITIAL (decl) == NULL_TREE)
18816 gen_unspecified_parameters_die (decl, subr_die);
18817 }
18818
18819 /* Output Dwarf info for all of the stuff within the body of the function
18820 (if it has one - it may be just a declaration). */
18821 outer_scope = DECL_INITIAL (decl);
18822
18823 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
18824 a function. This BLOCK actually represents the outermost binding contour
18825 for the function, i.e. the contour in which the function's formal
18826 parameters and labels get declared. Curiously, it appears that the front
18827 end doesn't actually put the PARM_DECL nodes for the current function onto
18828 the BLOCK_VARS list for this outer scope, but are strung off of the
18829 DECL_ARGUMENTS list for the function instead.
18830
18831 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
18832 the LABEL_DECL nodes for the function however, and we output DWARF info
18833 for those in decls_for_scope. Just within the `outer_scope' there will be
18834 a BLOCK node representing the function's outermost pair of curly braces,
18835 and any blocks used for the base and member initializers of a C++
18836 constructor function. */
18837 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
18838 {
18839 /* Emit a DW_TAG_variable DIE for a named return value. */
18840 if (DECL_NAME (DECL_RESULT (decl)))
18841 gen_decl_die (DECL_RESULT (decl), NULL, subr_die);
18842
18843 current_function_has_inlines = 0;
18844 decls_for_scope (outer_scope, subr_die, 0);
18845
18846 #if 0 && defined (MIPS_DEBUGGING_INFO)
18847 if (current_function_has_inlines)
18848 {
18849 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
18850 if (! comp_unit_has_inlines)
18851 {
18852 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
18853 comp_unit_has_inlines = 1;
18854 }
18855 }
18856 #endif
18857 }
18858 /* Add the calling convention attribute if requested. */
18859 add_calling_convention_attribute (subr_die, decl);
18860
18861 }
18862
18863 /* Returns a hash value for X (which really is a die_struct). */
18864
18865 static hashval_t
18866 common_block_die_table_hash (const void *x)
18867 {
18868 const_dw_die_ref d = (const_dw_die_ref) x;
18869 return (hashval_t) d->decl_id ^ htab_hash_pointer (d->die_parent);
18870 }
18871
18872 /* Return nonzero if decl_id and die_parent of die_struct X is the same
18873 as decl_id and die_parent of die_struct Y. */
18874
18875 static int
18876 common_block_die_table_eq (const void *x, const void *y)
18877 {
18878 const_dw_die_ref d = (const_dw_die_ref) x;
18879 const_dw_die_ref e = (const_dw_die_ref) y;
18880 return d->decl_id == e->decl_id && d->die_parent == e->die_parent;
18881 }
18882
18883 /* Generate a DIE to represent a declared data object.
18884 Either DECL or ORIGIN must be non-null. */
18885
18886 static void
18887 gen_variable_die (tree decl, tree origin, dw_die_ref context_die)
18888 {
18889 HOST_WIDE_INT off;
18890 tree com_decl;
18891 tree decl_or_origin = decl ? decl : origin;
18892 tree ultimate_origin;
18893 dw_die_ref var_die;
18894 dw_die_ref old_die = decl ? lookup_decl_die (decl) : NULL;
18895 dw_die_ref origin_die;
18896 bool declaration = (DECL_EXTERNAL (decl_or_origin)
18897 || class_or_namespace_scope_p (context_die));
18898 bool specialization_p = false;
18899
18900 ultimate_origin = decl_ultimate_origin (decl_or_origin);
18901 if (decl || ultimate_origin)
18902 origin = ultimate_origin;
18903 com_decl = fortran_common (decl_or_origin, &off);
18904
18905 /* Symbol in common gets emitted as a child of the common block, in the form
18906 of a data member. */
18907 if (com_decl)
18908 {
18909 dw_die_ref com_die;
18910 dw_loc_list_ref loc;
18911 die_node com_die_arg;
18912
18913 var_die = lookup_decl_die (decl_or_origin);
18914 if (var_die)
18915 {
18916 if (get_AT (var_die, DW_AT_location) == NULL)
18917 {
18918 loc = loc_list_from_tree (com_decl, off ? 1 : 2);
18919 if (loc)
18920 {
18921 if (off)
18922 {
18923 /* Optimize the common case. */
18924 if (single_element_loc_list_p (loc)
18925 && loc->expr->dw_loc_opc == DW_OP_addr
18926 && loc->expr->dw_loc_next == NULL
18927 && GET_CODE (loc->expr->dw_loc_oprnd1.v.val_addr)
18928 == SYMBOL_REF)
18929 loc->expr->dw_loc_oprnd1.v.val_addr
18930 = plus_constant (loc->expr->dw_loc_oprnd1.v.val_addr, off);
18931 else
18932 loc_list_plus_const (loc, off);
18933 }
18934 add_AT_location_description (var_die, DW_AT_location, loc);
18935 remove_AT (var_die, DW_AT_declaration);
18936 }
18937 }
18938 return;
18939 }
18940
18941 if (common_block_die_table == NULL)
18942 common_block_die_table
18943 = htab_create_ggc (10, common_block_die_table_hash,
18944 common_block_die_table_eq, NULL);
18945
18946 com_die_arg.decl_id = DECL_UID (com_decl);
18947 com_die_arg.die_parent = context_die;
18948 com_die = (dw_die_ref) htab_find (common_block_die_table, &com_die_arg);
18949 loc = loc_list_from_tree (com_decl, 2);
18950 if (com_die == NULL)
18951 {
18952 const char *cnam
18953 = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (com_decl));
18954 void **slot;
18955
18956 com_die = new_die (DW_TAG_common_block, context_die, decl);
18957 add_name_and_src_coords_attributes (com_die, com_decl);
18958 if (loc)
18959 {
18960 add_AT_location_description (com_die, DW_AT_location, loc);
18961 /* Avoid sharing the same loc descriptor between
18962 DW_TAG_common_block and DW_TAG_variable. */
18963 loc = loc_list_from_tree (com_decl, 2);
18964 }
18965 else if (DECL_EXTERNAL (decl))
18966 add_AT_flag (com_die, DW_AT_declaration, 1);
18967 add_pubname_string (cnam, com_die); /* ??? needed? */
18968 com_die->decl_id = DECL_UID (com_decl);
18969 slot = htab_find_slot (common_block_die_table, com_die, INSERT);
18970 *slot = (void *) com_die;
18971 }
18972 else if (get_AT (com_die, DW_AT_location) == NULL && loc)
18973 {
18974 add_AT_location_description (com_die, DW_AT_location, loc);
18975 loc = loc_list_from_tree (com_decl, 2);
18976 remove_AT (com_die, DW_AT_declaration);
18977 }
18978 var_die = new_die (DW_TAG_variable, com_die, decl);
18979 add_name_and_src_coords_attributes (var_die, decl);
18980 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
18981 TREE_THIS_VOLATILE (decl), context_die);
18982 add_AT_flag (var_die, DW_AT_external, 1);
18983 if (loc)
18984 {
18985 if (off)
18986 {
18987 /* Optimize the common case. */
18988 if (single_element_loc_list_p (loc)
18989 && loc->expr->dw_loc_opc == DW_OP_addr
18990 && loc->expr->dw_loc_next == NULL
18991 && GET_CODE (loc->expr->dw_loc_oprnd1.v.val_addr) == SYMBOL_REF)
18992 loc->expr->dw_loc_oprnd1.v.val_addr
18993 = plus_constant (loc->expr->dw_loc_oprnd1.v.val_addr, off);
18994 else
18995 loc_list_plus_const (loc, off);
18996 }
18997 add_AT_location_description (var_die, DW_AT_location, loc);
18998 }
18999 else if (DECL_EXTERNAL (decl))
19000 add_AT_flag (var_die, DW_AT_declaration, 1);
19001 equate_decl_number_to_die (decl, var_die);
19002 return;
19003 }
19004
19005 /* If the compiler emitted a definition for the DECL declaration
19006 and if we already emitted a DIE for it, don't emit a second
19007 DIE for it again. Allow re-declarations of DECLs that are
19008 inside functions, though. */
19009 if (old_die && declaration && !local_scope_p (context_die))
19010 return;
19011
19012 /* For static data members, the declaration in the class is supposed
19013 to have DW_TAG_member tag; the specification should still be
19014 DW_TAG_variable referencing the DW_TAG_member DIE. */
19015 if (declaration && class_scope_p (context_die))
19016 var_die = new_die (DW_TAG_member, context_die, decl);
19017 else
19018 var_die = new_die (DW_TAG_variable, context_die, decl);
19019
19020 origin_die = NULL;
19021 if (origin != NULL)
19022 origin_die = add_abstract_origin_attribute (var_die, origin);
19023
19024 /* Loop unrolling can create multiple blocks that refer to the same
19025 static variable, so we must test for the DW_AT_declaration flag.
19026
19027 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
19028 copy decls and set the DECL_ABSTRACT flag on them instead of
19029 sharing them.
19030
19031 ??? Duplicated blocks have been rewritten to use .debug_ranges.
19032
19033 ??? The declare_in_namespace support causes us to get two DIEs for one
19034 variable, both of which are declarations. We want to avoid considering
19035 one to be a specification, so we must test that this DIE is not a
19036 declaration. */
19037 else if (old_die && TREE_STATIC (decl) && ! declaration
19038 && get_AT_flag (old_die, DW_AT_declaration) == 1)
19039 {
19040 /* This is a definition of a C++ class level static. */
19041 add_AT_specification (var_die, old_die);
19042 specialization_p = true;
19043 if (DECL_NAME (decl))
19044 {
19045 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
19046 struct dwarf_file_data * file_index = lookup_filename (s.file);
19047
19048 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
19049 add_AT_file (var_die, DW_AT_decl_file, file_index);
19050
19051 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
19052 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
19053
19054 if (old_die->die_tag == DW_TAG_member)
19055 add_linkage_name (var_die, decl);
19056 }
19057 }
19058 else
19059 add_name_and_src_coords_attributes (var_die, decl);
19060
19061 if ((origin == NULL && !specialization_p)
19062 || (origin != NULL
19063 && !DECL_ABSTRACT (decl_or_origin)
19064 && variably_modified_type_p (TREE_TYPE (decl_or_origin),
19065 decl_function_context
19066 (decl_or_origin))))
19067 {
19068 tree type = TREE_TYPE (decl_or_origin);
19069
19070 if (decl_by_reference_p (decl_or_origin))
19071 add_type_attribute (var_die, TREE_TYPE (type), 0, 0, context_die);
19072 else
19073 add_type_attribute (var_die, type, TREE_READONLY (decl_or_origin),
19074 TREE_THIS_VOLATILE (decl_or_origin), context_die);
19075 }
19076
19077 if (origin == NULL && !specialization_p)
19078 {
19079 if (TREE_PUBLIC (decl))
19080 add_AT_flag (var_die, DW_AT_external, 1);
19081
19082 if (DECL_ARTIFICIAL (decl))
19083 add_AT_flag (var_die, DW_AT_artificial, 1);
19084
19085 if (TREE_PROTECTED (decl))
19086 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
19087 else if (TREE_PRIVATE (decl))
19088 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
19089 }
19090
19091 if (declaration)
19092 add_AT_flag (var_die, DW_AT_declaration, 1);
19093
19094 if (decl && (DECL_ABSTRACT (decl) || declaration))
19095 equate_decl_number_to_die (decl, var_die);
19096
19097 if (! declaration
19098 && (! DECL_ABSTRACT (decl_or_origin)
19099 /* Local static vars are shared between all clones/inlines,
19100 so emit DW_AT_location on the abstract DIE if DECL_RTL is
19101 already set. */
19102 || (TREE_CODE (decl_or_origin) == VAR_DECL
19103 && TREE_STATIC (decl_or_origin)
19104 && DECL_RTL_SET_P (decl_or_origin)))
19105 /* When abstract origin already has DW_AT_location attribute, no need
19106 to add it again. */
19107 && (origin_die == NULL || get_AT (origin_die, DW_AT_location) == NULL))
19108 {
19109 if (TREE_CODE (decl_or_origin) == VAR_DECL && TREE_STATIC (decl_or_origin)
19110 && !TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl_or_origin)))
19111 defer_location (decl_or_origin, var_die);
19112 else
19113 add_location_or_const_value_attribute (var_die,
19114 decl_or_origin,
19115 DW_AT_location);
19116 add_pubname (decl_or_origin, var_die);
19117 }
19118 else
19119 tree_add_const_value_attribute_for_decl (var_die, decl_or_origin);
19120 }
19121
19122 /* Generate a DIE to represent a named constant. */
19123
19124 static void
19125 gen_const_die (tree decl, dw_die_ref context_die)
19126 {
19127 dw_die_ref const_die;
19128 tree type = TREE_TYPE (decl);
19129
19130 const_die = new_die (DW_TAG_constant, context_die, decl);
19131 add_name_and_src_coords_attributes (const_die, decl);
19132 add_type_attribute (const_die, type, 1, 0, context_die);
19133 if (TREE_PUBLIC (decl))
19134 add_AT_flag (const_die, DW_AT_external, 1);
19135 if (DECL_ARTIFICIAL (decl))
19136 add_AT_flag (const_die, DW_AT_artificial, 1);
19137 tree_add_const_value_attribute_for_decl (const_die, decl);
19138 }
19139
19140 /* Generate a DIE to represent a label identifier. */
19141
19142 static void
19143 gen_label_die (tree decl, dw_die_ref context_die)
19144 {
19145 tree origin = decl_ultimate_origin (decl);
19146 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
19147 rtx insn;
19148 char label[MAX_ARTIFICIAL_LABEL_BYTES];
19149
19150 if (origin != NULL)
19151 add_abstract_origin_attribute (lbl_die, origin);
19152 else
19153 add_name_and_src_coords_attributes (lbl_die, decl);
19154
19155 if (DECL_ABSTRACT (decl))
19156 equate_decl_number_to_die (decl, lbl_die);
19157 else
19158 {
19159 insn = DECL_RTL_IF_SET (decl);
19160
19161 /* Deleted labels are programmer specified labels which have been
19162 eliminated because of various optimizations. We still emit them
19163 here so that it is possible to put breakpoints on them. */
19164 if (insn
19165 && (LABEL_P (insn)
19166 || ((NOTE_P (insn)
19167 && NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL))))
19168 {
19169 /* When optimization is enabled (via -O) some parts of the compiler
19170 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
19171 represent source-level labels which were explicitly declared by
19172 the user. This really shouldn't be happening though, so catch
19173 it if it ever does happen. */
19174 gcc_assert (!INSN_DELETED_P (insn));
19175
19176 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
19177 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
19178 }
19179 }
19180 }
19181
19182 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
19183 attributes to the DIE for a block STMT, to describe where the inlined
19184 function was called from. This is similar to add_src_coords_attributes. */
19185
19186 static inline void
19187 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
19188 {
19189 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
19190
19191 if (dwarf_version >= 3 || !dwarf_strict)
19192 {
19193 add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
19194 add_AT_unsigned (die, DW_AT_call_line, s.line);
19195 }
19196 }
19197
19198
19199 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
19200 Add low_pc and high_pc attributes to the DIE for a block STMT. */
19201
19202 static inline void
19203 add_high_low_attributes (tree stmt, dw_die_ref die)
19204 {
19205 char label[MAX_ARTIFICIAL_LABEL_BYTES];
19206
19207 if (BLOCK_FRAGMENT_CHAIN (stmt)
19208 && (dwarf_version >= 3 || !dwarf_strict))
19209 {
19210 tree chain;
19211
19212 if (inlined_function_outer_scope_p (stmt))
19213 {
19214 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
19215 BLOCK_NUMBER (stmt));
19216 add_AT_lbl_id (die, DW_AT_entry_pc, label);
19217 }
19218
19219 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
19220
19221 chain = BLOCK_FRAGMENT_CHAIN (stmt);
19222 do
19223 {
19224 add_ranges (chain);
19225 chain = BLOCK_FRAGMENT_CHAIN (chain);
19226 }
19227 while (chain);
19228 add_ranges (NULL);
19229 }
19230 else
19231 {
19232 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
19233 BLOCK_NUMBER (stmt));
19234 add_AT_lbl_id (die, DW_AT_low_pc, label);
19235 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
19236 BLOCK_NUMBER (stmt));
19237 add_AT_lbl_id (die, DW_AT_high_pc, label);
19238 }
19239 }
19240
19241 /* Generate a DIE for a lexical block. */
19242
19243 static void
19244 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
19245 {
19246 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
19247
19248 if (! BLOCK_ABSTRACT (stmt) && TREE_ASM_WRITTEN (stmt))
19249 add_high_low_attributes (stmt, stmt_die);
19250
19251 decls_for_scope (stmt, stmt_die, depth);
19252 }
19253
19254 /* Generate a DIE for an inlined subprogram. */
19255
19256 static void
19257 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
19258 {
19259 tree decl;
19260
19261 /* The instance of function that is effectively being inlined shall not
19262 be abstract. */
19263 gcc_assert (! BLOCK_ABSTRACT (stmt));
19264
19265 decl = block_ultimate_origin (stmt);
19266
19267 /* Emit info for the abstract instance first, if we haven't yet. We
19268 must emit this even if the block is abstract, otherwise when we
19269 emit the block below (or elsewhere), we may end up trying to emit
19270 a die whose origin die hasn't been emitted, and crashing. */
19271 dwarf2out_abstract_function (decl);
19272
19273 if (! BLOCK_ABSTRACT (stmt))
19274 {
19275 dw_die_ref subr_die
19276 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
19277
19278 add_abstract_origin_attribute (subr_die, decl);
19279 if (TREE_ASM_WRITTEN (stmt))
19280 add_high_low_attributes (stmt, subr_die);
19281 add_call_src_coords_attributes (stmt, subr_die);
19282
19283 decls_for_scope (stmt, subr_die, depth);
19284 current_function_has_inlines = 1;
19285 }
19286 }
19287
19288 /* Generate a DIE for a field in a record, or structure. */
19289
19290 static void
19291 gen_field_die (tree decl, dw_die_ref context_die)
19292 {
19293 dw_die_ref decl_die;
19294
19295 if (TREE_TYPE (decl) == error_mark_node)
19296 return;
19297
19298 decl_die = new_die (DW_TAG_member, context_die, decl);
19299 add_name_and_src_coords_attributes (decl_die, decl);
19300 add_type_attribute (decl_die, member_declared_type (decl),
19301 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
19302 context_die);
19303
19304 if (DECL_BIT_FIELD_TYPE (decl))
19305 {
19306 add_byte_size_attribute (decl_die, decl);
19307 add_bit_size_attribute (decl_die, decl);
19308 add_bit_offset_attribute (decl_die, decl);
19309 }
19310
19311 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
19312 add_data_member_location_attribute (decl_die, decl);
19313
19314 if (DECL_ARTIFICIAL (decl))
19315 add_AT_flag (decl_die, DW_AT_artificial, 1);
19316
19317 if (TREE_PROTECTED (decl))
19318 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
19319 else if (TREE_PRIVATE (decl))
19320 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
19321
19322 /* Equate decl number to die, so that we can look up this decl later on. */
19323 equate_decl_number_to_die (decl, decl_die);
19324 }
19325
19326 #if 0
19327 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
19328 Use modified_type_die instead.
19329 We keep this code here just in case these types of DIEs may be needed to
19330 represent certain things in other languages (e.g. Pascal) someday. */
19331
19332 static void
19333 gen_pointer_type_die (tree type, dw_die_ref context_die)
19334 {
19335 dw_die_ref ptr_die
19336 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
19337
19338 equate_type_number_to_die (type, ptr_die);
19339 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
19340 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
19341 }
19342
19343 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
19344 Use modified_type_die instead.
19345 We keep this code here just in case these types of DIEs may be needed to
19346 represent certain things in other languages (e.g. Pascal) someday. */
19347
19348 static void
19349 gen_reference_type_die (tree type, dw_die_ref context_die)
19350 {
19351 dw_die_ref ref_die, scope_die = scope_die_for (type, context_die);
19352
19353 if (TYPE_REF_IS_RVALUE (type) && dwarf_version >= 4)
19354 ref_die = new_die (DW_TAG_rvalue_reference_type, scope_die, type);
19355 else
19356 ref_die = new_die (DW_TAG_reference_type, scope_die, type);
19357
19358 equate_type_number_to_die (type, ref_die);
19359 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
19360 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
19361 }
19362 #endif
19363
19364 /* Generate a DIE for a pointer to a member type. */
19365
19366 static void
19367 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
19368 {
19369 dw_die_ref ptr_die
19370 = new_die (DW_TAG_ptr_to_member_type,
19371 scope_die_for (type, context_die), type);
19372
19373 equate_type_number_to_die (type, ptr_die);
19374 add_AT_die_ref (ptr_die, DW_AT_containing_type,
19375 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
19376 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
19377 }
19378
19379 /* Generate the DIE for the compilation unit. */
19380
19381 static dw_die_ref
19382 gen_compile_unit_die (const char *filename)
19383 {
19384 dw_die_ref die;
19385 char producer[250];
19386 const char *language_string = lang_hooks.name;
19387 int language;
19388
19389 die = new_die (DW_TAG_compile_unit, NULL, NULL);
19390
19391 if (filename)
19392 {
19393 add_name_attribute (die, filename);
19394 /* Don't add cwd for <built-in>. */
19395 if (!IS_ABSOLUTE_PATH (filename) && filename[0] != '<')
19396 add_comp_dir_attribute (die);
19397 }
19398
19399 sprintf (producer, "%s %s", language_string, version_string);
19400
19401 #ifdef MIPS_DEBUGGING_INFO
19402 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
19403 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
19404 not appear in the producer string, the debugger reaches the conclusion
19405 that the object file is stripped and has no debugging information.
19406 To get the MIPS/SGI debugger to believe that there is debugging
19407 information in the object file, we add a -g to the producer string. */
19408 if (debug_info_level > DINFO_LEVEL_TERSE)
19409 strcat (producer, " -g");
19410 #endif
19411
19412 add_AT_string (die, DW_AT_producer, producer);
19413
19414 language = DW_LANG_C89;
19415 if (strcmp (language_string, "GNU C++") == 0)
19416 language = DW_LANG_C_plus_plus;
19417 else if (strcmp (language_string, "GNU F77") == 0)
19418 language = DW_LANG_Fortran77;
19419 else if (strcmp (language_string, "GNU Pascal") == 0)
19420 language = DW_LANG_Pascal83;
19421 else if (dwarf_version >= 3 || !dwarf_strict)
19422 {
19423 if (strcmp (language_string, "GNU Ada") == 0)
19424 language = DW_LANG_Ada95;
19425 else if (strcmp (language_string, "GNU Fortran") == 0)
19426 language = DW_LANG_Fortran95;
19427 else if (strcmp (language_string, "GNU Java") == 0)
19428 language = DW_LANG_Java;
19429 else if (strcmp (language_string, "GNU Objective-C") == 0)
19430 language = DW_LANG_ObjC;
19431 else if (strcmp (language_string, "GNU Objective-C++") == 0)
19432 language = DW_LANG_ObjC_plus_plus;
19433 }
19434
19435 add_AT_unsigned (die, DW_AT_language, language);
19436
19437 switch (language)
19438 {
19439 case DW_LANG_Fortran77:
19440 case DW_LANG_Fortran90:
19441 case DW_LANG_Fortran95:
19442 /* Fortran has case insensitive identifiers and the front-end
19443 lowercases everything. */
19444 add_AT_unsigned (die, DW_AT_identifier_case, DW_ID_down_case);
19445 break;
19446 default:
19447 /* The default DW_ID_case_sensitive doesn't need to be specified. */
19448 break;
19449 }
19450 return die;
19451 }
19452
19453 /* Generate the DIE for a base class. */
19454
19455 static void
19456 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
19457 {
19458 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
19459
19460 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
19461 add_data_member_location_attribute (die, binfo);
19462
19463 if (BINFO_VIRTUAL_P (binfo))
19464 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
19465
19466 if (access == access_public_node)
19467 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
19468 else if (access == access_protected_node)
19469 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
19470 }
19471
19472 /* Generate a DIE for a class member. */
19473
19474 static void
19475 gen_member_die (tree type, dw_die_ref context_die)
19476 {
19477 tree member;
19478 tree binfo = TYPE_BINFO (type);
19479 dw_die_ref child;
19480
19481 /* If this is not an incomplete type, output descriptions of each of its
19482 members. Note that as we output the DIEs necessary to represent the
19483 members of this record or union type, we will also be trying to output
19484 DIEs to represent the *types* of those members. However the `type'
19485 function (above) will specifically avoid generating type DIEs for member
19486 types *within* the list of member DIEs for this (containing) type except
19487 for those types (of members) which are explicitly marked as also being
19488 members of this (containing) type themselves. The g++ front- end can
19489 force any given type to be treated as a member of some other (containing)
19490 type by setting the TYPE_CONTEXT of the given (member) type to point to
19491 the TREE node representing the appropriate (containing) type. */
19492
19493 /* First output info about the base classes. */
19494 if (binfo)
19495 {
19496 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
19497 int i;
19498 tree base;
19499
19500 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
19501 gen_inheritance_die (base,
19502 (accesses ? VEC_index (tree, accesses, i)
19503 : access_public_node), context_die);
19504 }
19505
19506 /* Now output info about the data members and type members. */
19507 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
19508 {
19509 /* If we thought we were generating minimal debug info for TYPE
19510 and then changed our minds, some of the member declarations
19511 may have already been defined. Don't define them again, but
19512 do put them in the right order. */
19513
19514 child = lookup_decl_die (member);
19515 if (child)
19516 splice_child_die (context_die, child);
19517 else
19518 gen_decl_die (member, NULL, context_die);
19519 }
19520
19521 /* Now output info about the function members (if any). */
19522 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
19523 {
19524 /* Don't include clones in the member list. */
19525 if (DECL_ABSTRACT_ORIGIN (member))
19526 continue;
19527
19528 child = lookup_decl_die (member);
19529 if (child)
19530 splice_child_die (context_die, child);
19531 else
19532 gen_decl_die (member, NULL, context_die);
19533 }
19534 }
19535
19536 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
19537 is set, we pretend that the type was never defined, so we only get the
19538 member DIEs needed by later specification DIEs. */
19539
19540 static void
19541 gen_struct_or_union_type_die (tree type, dw_die_ref context_die,
19542 enum debug_info_usage usage)
19543 {
19544 dw_die_ref type_die = lookup_type_die (type);
19545 dw_die_ref scope_die = 0;
19546 int nested = 0;
19547 int complete = (TYPE_SIZE (type)
19548 && (! TYPE_STUB_DECL (type)
19549 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
19550 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
19551 complete = complete && should_emit_struct_debug (type, usage);
19552
19553 if (type_die && ! complete)
19554 return;
19555
19556 if (TYPE_CONTEXT (type) != NULL_TREE
19557 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
19558 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
19559 nested = 1;
19560
19561 scope_die = scope_die_for (type, context_die);
19562
19563 if (! type_die || (nested && scope_die == comp_unit_die))
19564 /* First occurrence of type or toplevel definition of nested class. */
19565 {
19566 dw_die_ref old_die = type_die;
19567
19568 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
19569 ? record_type_tag (type) : DW_TAG_union_type,
19570 scope_die, type);
19571 equate_type_number_to_die (type, type_die);
19572 if (old_die)
19573 add_AT_specification (type_die, old_die);
19574 else
19575 add_name_attribute (type_die, type_tag (type));
19576 }
19577 else
19578 remove_AT (type_die, DW_AT_declaration);
19579
19580 /* Generate child dies for template paramaters. */
19581 if (debug_info_level > DINFO_LEVEL_TERSE
19582 && COMPLETE_TYPE_P (type))
19583 gen_generic_params_dies (type);
19584
19585 /* If this type has been completed, then give it a byte_size attribute and
19586 then give a list of members. */
19587 if (complete && !ns_decl)
19588 {
19589 /* Prevent infinite recursion in cases where the type of some member of
19590 this type is expressed in terms of this type itself. */
19591 TREE_ASM_WRITTEN (type) = 1;
19592 add_byte_size_attribute (type_die, type);
19593 if (TYPE_STUB_DECL (type) != NULL_TREE)
19594 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
19595
19596 /* If the first reference to this type was as the return type of an
19597 inline function, then it may not have a parent. Fix this now. */
19598 if (type_die->die_parent == NULL)
19599 add_child_die (scope_die, type_die);
19600
19601 push_decl_scope (type);
19602 gen_member_die (type, type_die);
19603 pop_decl_scope ();
19604
19605 /* GNU extension: Record what type our vtable lives in. */
19606 if (TYPE_VFIELD (type))
19607 {
19608 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
19609
19610 gen_type_die (vtype, context_die);
19611 add_AT_die_ref (type_die, DW_AT_containing_type,
19612 lookup_type_die (vtype));
19613 }
19614 }
19615 else
19616 {
19617 add_AT_flag (type_die, DW_AT_declaration, 1);
19618
19619 /* We don't need to do this for function-local types. */
19620 if (TYPE_STUB_DECL (type)
19621 && ! decl_function_context (TYPE_STUB_DECL (type)))
19622 VEC_safe_push (tree, gc, incomplete_types, type);
19623 }
19624
19625 if (get_AT (type_die, DW_AT_name))
19626 add_pubtype (type, type_die);
19627 }
19628
19629 /* Generate a DIE for a subroutine _type_. */
19630
19631 static void
19632 gen_subroutine_type_die (tree type, dw_die_ref context_die)
19633 {
19634 tree return_type = TREE_TYPE (type);
19635 dw_die_ref subr_die
19636 = new_die (DW_TAG_subroutine_type,
19637 scope_die_for (type, context_die), type);
19638
19639 equate_type_number_to_die (type, subr_die);
19640 add_prototyped_attribute (subr_die, type);
19641 add_type_attribute (subr_die, return_type, 0, 0, context_die);
19642 gen_formal_types_die (type, subr_die);
19643
19644 if (get_AT (subr_die, DW_AT_name))
19645 add_pubtype (type, subr_die);
19646 }
19647
19648 /* Generate a DIE for a type definition. */
19649
19650 static void
19651 gen_typedef_die (tree decl, dw_die_ref context_die)
19652 {
19653 dw_die_ref type_die;
19654 tree origin;
19655
19656 if (TREE_ASM_WRITTEN (decl))
19657 return;
19658
19659 TREE_ASM_WRITTEN (decl) = 1;
19660 type_die = new_die (DW_TAG_typedef, context_die, decl);
19661 origin = decl_ultimate_origin (decl);
19662 if (origin != NULL)
19663 add_abstract_origin_attribute (type_die, origin);
19664 else
19665 {
19666 tree type;
19667
19668 add_name_and_src_coords_attributes (type_die, decl);
19669 if (DECL_ORIGINAL_TYPE (decl))
19670 {
19671 type = DECL_ORIGINAL_TYPE (decl);
19672
19673 gcc_assert (type != TREE_TYPE (decl));
19674 equate_type_number_to_die (TREE_TYPE (decl), type_die);
19675 }
19676 else
19677 {
19678 type = TREE_TYPE (decl);
19679
19680 if (is_naming_typedef_decl (TYPE_NAME (type)))
19681 /*
19682 Here, we are in the case of decl being a typedef naming
19683 an anonymous type, e.g:
19684 typedef struct {...} foo;
19685 In that case TREE_TYPE (decl) is not a typedef variant
19686 type and TYPE_NAME of the anonymous type is set to the
19687 TYPE_DECL of the typedef. This construct is emitted by
19688 the C++ FE.
19689
19690 TYPE is the anonymous struct named by the typedef
19691 DECL. As we need the DW_AT_type attribute of the
19692 DW_TAG_typedef to point to the DIE of TYPE, let's
19693 generate that DIE right away. add_type_attribute
19694 called below will then pick (via lookup_type_die) that
19695 anonymous struct DIE. */
19696 gen_tagged_type_die (type, context_die, DINFO_USAGE_DIR_USE);
19697 }
19698
19699 add_type_attribute (type_die, type, TREE_READONLY (decl),
19700 TREE_THIS_VOLATILE (decl), context_die);
19701
19702 if (is_naming_typedef_decl (decl))
19703 /* We want that all subsequent calls to lookup_type_die with
19704 TYPE in argument yield the DW_TAG_typedef we have just
19705 created. */
19706 equate_type_number_to_die (type, type_die);
19707 }
19708
19709 if (DECL_ABSTRACT (decl))
19710 equate_decl_number_to_die (decl, type_die);
19711
19712 if (get_AT (type_die, DW_AT_name))
19713 add_pubtype (decl, type_die);
19714 }
19715
19716 /* Generate a DIE for a struct, class, enum or union type. */
19717
19718 static void
19719 gen_tagged_type_die (tree type,
19720 dw_die_ref context_die,
19721 enum debug_info_usage usage)
19722 {
19723 int need_pop;
19724
19725 if (type == NULL_TREE
19726 || !is_tagged_type (type))
19727 return;
19728
19729 /* If this is a nested type whose containing class hasn't been written
19730 out yet, writing it out will cover this one, too. This does not apply
19731 to instantiations of member class templates; they need to be added to
19732 the containing class as they are generated. FIXME: This hurts the
19733 idea of combining type decls from multiple TUs, since we can't predict
19734 what set of template instantiations we'll get. */
19735 if (TYPE_CONTEXT (type)
19736 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
19737 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
19738 {
19739 gen_type_die_with_usage (TYPE_CONTEXT (type), context_die, usage);
19740
19741 if (TREE_ASM_WRITTEN (type))
19742 return;
19743
19744 /* If that failed, attach ourselves to the stub. */
19745 push_decl_scope (TYPE_CONTEXT (type));
19746 context_die = lookup_type_die (TYPE_CONTEXT (type));
19747 need_pop = 1;
19748 }
19749 else if (TYPE_CONTEXT (type) != NULL_TREE
19750 && (TREE_CODE (TYPE_CONTEXT (type)) == FUNCTION_DECL))
19751 {
19752 /* If this type is local to a function that hasn't been written
19753 out yet, use a NULL context for now; it will be fixed up in
19754 decls_for_scope. */
19755 context_die = lookup_decl_die (TYPE_CONTEXT (type));
19756 need_pop = 0;
19757 }
19758 else
19759 {
19760 context_die = declare_in_namespace (type, context_die);
19761 need_pop = 0;
19762 }
19763
19764 if (TREE_CODE (type) == ENUMERAL_TYPE)
19765 {
19766 /* This might have been written out by the call to
19767 declare_in_namespace. */
19768 if (!TREE_ASM_WRITTEN (type))
19769 gen_enumeration_type_die (type, context_die);
19770 }
19771 else
19772 gen_struct_or_union_type_die (type, context_die, usage);
19773
19774 if (need_pop)
19775 pop_decl_scope ();
19776
19777 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
19778 it up if it is ever completed. gen_*_type_die will set it for us
19779 when appropriate. */
19780 }
19781
19782 /* Generate a type description DIE. */
19783
19784 static void
19785 gen_type_die_with_usage (tree type, dw_die_ref context_die,
19786 enum debug_info_usage usage)
19787 {
19788 struct array_descr_info info;
19789
19790 if (type == NULL_TREE || type == error_mark_node)
19791 return;
19792
19793 /* If TYPE is a typedef type variant, let's generate debug info
19794 for the parent typedef which TYPE is a type of. */
19795 if (typedef_variant_p (type))
19796 {
19797 if (TREE_ASM_WRITTEN (type))
19798 return;
19799
19800 /* Prevent broken recursion; we can't hand off to the same type. */
19801 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
19802
19803 /* Use the DIE of the containing namespace as the parent DIE of
19804 the type description DIE we want to generate. */
19805 if (DECL_CONTEXT (TYPE_NAME (type))
19806 && TREE_CODE (DECL_CONTEXT (TYPE_NAME (type))) == NAMESPACE_DECL)
19807 context_die = get_context_die (DECL_CONTEXT (TYPE_NAME (type)));
19808
19809 TREE_ASM_WRITTEN (type) = 1;
19810
19811 gen_decl_die (TYPE_NAME (type), NULL, context_die);
19812 return;
19813 }
19814
19815 /* If type is an anonymous tagged type named by a typedef, let's
19816 generate debug info for the typedef. */
19817 if (is_naming_typedef_decl (TYPE_NAME (type)))
19818 {
19819 /* Use the DIE of the containing namespace as the parent DIE of
19820 the type description DIE we want to generate. */
19821 if (DECL_CONTEXT (TYPE_NAME (type))
19822 && TREE_CODE (DECL_CONTEXT (TYPE_NAME (type))) == NAMESPACE_DECL)
19823 context_die = get_context_die (DECL_CONTEXT (TYPE_NAME (type)));
19824
19825 gen_decl_die (TYPE_NAME (type), NULL, context_die);
19826 return;
19827 }
19828
19829 /* If this is an array type with hidden descriptor, handle it first. */
19830 if (!TREE_ASM_WRITTEN (type)
19831 && lang_hooks.types.get_array_descr_info
19832 && lang_hooks.types.get_array_descr_info (type, &info)
19833 && (dwarf_version >= 3 || !dwarf_strict))
19834 {
19835 gen_descr_array_type_die (type, &info, context_die);
19836 TREE_ASM_WRITTEN (type) = 1;
19837 return;
19838 }
19839
19840 /* We are going to output a DIE to represent the unqualified version
19841 of this type (i.e. without any const or volatile qualifiers) so
19842 get the main variant (i.e. the unqualified version) of this type
19843 now. (Vectors are special because the debugging info is in the
19844 cloned type itself). */
19845 if (TREE_CODE (type) != VECTOR_TYPE)
19846 type = type_main_variant (type);
19847
19848 if (TREE_ASM_WRITTEN (type))
19849 return;
19850
19851 switch (TREE_CODE (type))
19852 {
19853 case ERROR_MARK:
19854 break;
19855
19856 case POINTER_TYPE:
19857 case REFERENCE_TYPE:
19858 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
19859 ensures that the gen_type_die recursion will terminate even if the
19860 type is recursive. Recursive types are possible in Ada. */
19861 /* ??? We could perhaps do this for all types before the switch
19862 statement. */
19863 TREE_ASM_WRITTEN (type) = 1;
19864
19865 /* For these types, all that is required is that we output a DIE (or a
19866 set of DIEs) to represent the "basis" type. */
19867 gen_type_die_with_usage (TREE_TYPE (type), context_die,
19868 DINFO_USAGE_IND_USE);
19869 break;
19870
19871 case OFFSET_TYPE:
19872 /* This code is used for C++ pointer-to-data-member types.
19873 Output a description of the relevant class type. */
19874 gen_type_die_with_usage (TYPE_OFFSET_BASETYPE (type), context_die,
19875 DINFO_USAGE_IND_USE);
19876
19877 /* Output a description of the type of the object pointed to. */
19878 gen_type_die_with_usage (TREE_TYPE (type), context_die,
19879 DINFO_USAGE_IND_USE);
19880
19881 /* Now output a DIE to represent this pointer-to-data-member type
19882 itself. */
19883 gen_ptr_to_mbr_type_die (type, context_die);
19884 break;
19885
19886 case FUNCTION_TYPE:
19887 /* Force out return type (in case it wasn't forced out already). */
19888 gen_type_die_with_usage (TREE_TYPE (type), context_die,
19889 DINFO_USAGE_DIR_USE);
19890 gen_subroutine_type_die (type, context_die);
19891 break;
19892
19893 case METHOD_TYPE:
19894 /* Force out return type (in case it wasn't forced out already). */
19895 gen_type_die_with_usage (TREE_TYPE (type), context_die,
19896 DINFO_USAGE_DIR_USE);
19897 gen_subroutine_type_die (type, context_die);
19898 break;
19899
19900 case ARRAY_TYPE:
19901 gen_array_type_die (type, context_die);
19902 break;
19903
19904 case VECTOR_TYPE:
19905 gen_array_type_die (type, context_die);
19906 break;
19907
19908 case ENUMERAL_TYPE:
19909 case RECORD_TYPE:
19910 case UNION_TYPE:
19911 case QUAL_UNION_TYPE:
19912 gen_tagged_type_die (type, context_die, usage);
19913 return;
19914
19915 case VOID_TYPE:
19916 case INTEGER_TYPE:
19917 case REAL_TYPE:
19918 case FIXED_POINT_TYPE:
19919 case COMPLEX_TYPE:
19920 case BOOLEAN_TYPE:
19921 /* No DIEs needed for fundamental types. */
19922 break;
19923
19924 case LANG_TYPE:
19925 /* Just use DW_TAG_unspecified_type. */
19926 {
19927 dw_die_ref type_die = lookup_type_die (type);
19928 if (type_die == NULL)
19929 {
19930 tree name = TYPE_NAME (type);
19931 if (TREE_CODE (name) == TYPE_DECL)
19932 name = DECL_NAME (name);
19933 type_die = new_die (DW_TAG_unspecified_type, comp_unit_die, type);
19934 add_name_attribute (type_die, IDENTIFIER_POINTER (name));
19935 equate_type_number_to_die (type, type_die);
19936 }
19937 }
19938 break;
19939
19940 default:
19941 gcc_unreachable ();
19942 }
19943
19944 TREE_ASM_WRITTEN (type) = 1;
19945 }
19946
19947 static void
19948 gen_type_die (tree type, dw_die_ref context_die)
19949 {
19950 gen_type_die_with_usage (type, context_die, DINFO_USAGE_DIR_USE);
19951 }
19952
19953 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
19954 things which are local to the given block. */
19955
19956 static void
19957 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
19958 {
19959 int must_output_die = 0;
19960 bool inlined_func;
19961
19962 /* Ignore blocks that are NULL. */
19963 if (stmt == NULL_TREE)
19964 return;
19965
19966 inlined_func = inlined_function_outer_scope_p (stmt);
19967
19968 /* If the block is one fragment of a non-contiguous block, do not
19969 process the variables, since they will have been done by the
19970 origin block. Do process subblocks. */
19971 if (BLOCK_FRAGMENT_ORIGIN (stmt))
19972 {
19973 tree sub;
19974
19975 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
19976 gen_block_die (sub, context_die, depth + 1);
19977
19978 return;
19979 }
19980
19981 /* Determine if we need to output any Dwarf DIEs at all to represent this
19982 block. */
19983 if (inlined_func)
19984 /* The outer scopes for inlinings *must* always be represented. We
19985 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
19986 must_output_die = 1;
19987 else
19988 {
19989 /* Determine if this block directly contains any "significant"
19990 local declarations which we will need to output DIEs for. */
19991 if (debug_info_level > DINFO_LEVEL_TERSE)
19992 /* We are not in terse mode so *any* local declaration counts
19993 as being a "significant" one. */
19994 must_output_die = ((BLOCK_VARS (stmt) != NULL
19995 || BLOCK_NUM_NONLOCALIZED_VARS (stmt))
19996 && (TREE_USED (stmt)
19997 || TREE_ASM_WRITTEN (stmt)
19998 || BLOCK_ABSTRACT (stmt)));
19999 else if ((TREE_USED (stmt)
20000 || TREE_ASM_WRITTEN (stmt)
20001 || BLOCK_ABSTRACT (stmt))
20002 && !dwarf2out_ignore_block (stmt))
20003 must_output_die = 1;
20004 }
20005
20006 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
20007 DIE for any block which contains no significant local declarations at
20008 all. Rather, in such cases we just call `decls_for_scope' so that any
20009 needed Dwarf info for any sub-blocks will get properly generated. Note
20010 that in terse mode, our definition of what constitutes a "significant"
20011 local declaration gets restricted to include only inlined function
20012 instances and local (nested) function definitions. */
20013 if (must_output_die)
20014 {
20015 if (inlined_func)
20016 {
20017 /* If STMT block is abstract, that means we have been called
20018 indirectly from dwarf2out_abstract_function.
20019 That function rightfully marks the descendent blocks (of
20020 the abstract function it is dealing with) as being abstract,
20021 precisely to prevent us from emitting any
20022 DW_TAG_inlined_subroutine DIE as a descendent
20023 of an abstract function instance. So in that case, we should
20024 not call gen_inlined_subroutine_die.
20025
20026 Later though, when cgraph asks dwarf2out to emit info
20027 for the concrete instance of the function decl into which
20028 the concrete instance of STMT got inlined, the later will lead
20029 to the generation of a DW_TAG_inlined_subroutine DIE. */
20030 if (! BLOCK_ABSTRACT (stmt))
20031 gen_inlined_subroutine_die (stmt, context_die, depth);
20032 }
20033 else
20034 gen_lexical_block_die (stmt, context_die, depth);
20035 }
20036 else
20037 decls_for_scope (stmt, context_die, depth);
20038 }
20039
20040 /* Process variable DECL (or variable with origin ORIGIN) within
20041 block STMT and add it to CONTEXT_DIE. */
20042 static void
20043 process_scope_var (tree stmt, tree decl, tree origin, dw_die_ref context_die)
20044 {
20045 dw_die_ref die;
20046 tree decl_or_origin = decl ? decl : origin;
20047
20048 if (TREE_CODE (decl_or_origin) == FUNCTION_DECL)
20049 die = lookup_decl_die (decl_or_origin);
20050 else if (TREE_CODE (decl_or_origin) == TYPE_DECL
20051 && TYPE_DECL_IS_STUB (decl_or_origin))
20052 die = lookup_type_die (TREE_TYPE (decl_or_origin));
20053 else
20054 die = NULL;
20055
20056 if (die != NULL && die->die_parent == NULL)
20057 add_child_die (context_die, die);
20058 else if (TREE_CODE (decl_or_origin) == IMPORTED_DECL)
20059 dwarf2out_imported_module_or_decl_1 (decl_or_origin, DECL_NAME (decl_or_origin),
20060 stmt, context_die);
20061 else
20062 gen_decl_die (decl, origin, context_die);
20063 }
20064
20065 /* Generate all of the decls declared within a given scope and (recursively)
20066 all of its sub-blocks. */
20067
20068 static void
20069 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
20070 {
20071 tree decl;
20072 unsigned int i;
20073 tree subblocks;
20074
20075 /* Ignore NULL blocks. */
20076 if (stmt == NULL_TREE)
20077 return;
20078
20079 /* Output the DIEs to represent all of the data objects and typedefs
20080 declared directly within this block but not within any nested
20081 sub-blocks. Also, nested function and tag DIEs have been
20082 generated with a parent of NULL; fix that up now. */
20083 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
20084 process_scope_var (stmt, decl, NULL_TREE, context_die);
20085 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (stmt); i++)
20086 process_scope_var (stmt, NULL, BLOCK_NONLOCALIZED_VAR (stmt, i),
20087 context_die);
20088
20089 /* If we're at -g1, we're not interested in subblocks. */
20090 if (debug_info_level <= DINFO_LEVEL_TERSE)
20091 return;
20092
20093 /* Output the DIEs to represent all sub-blocks (and the items declared
20094 therein) of this block. */
20095 for (subblocks = BLOCK_SUBBLOCKS (stmt);
20096 subblocks != NULL;
20097 subblocks = BLOCK_CHAIN (subblocks))
20098 gen_block_die (subblocks, context_die, depth + 1);
20099 }
20100
20101 /* Is this a typedef we can avoid emitting? */
20102
20103 static inline int
20104 is_redundant_typedef (const_tree decl)
20105 {
20106 if (TYPE_DECL_IS_STUB (decl))
20107 return 1;
20108
20109 if (DECL_ARTIFICIAL (decl)
20110 && DECL_CONTEXT (decl)
20111 && is_tagged_type (DECL_CONTEXT (decl))
20112 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
20113 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
20114 /* Also ignore the artificial member typedef for the class name. */
20115 return 1;
20116
20117 return 0;
20118 }
20119
20120 /* Return TRUE if TYPE is a typedef that names a type for linkage
20121 purposes. This kind of typedefs is produced by the C++ FE for
20122 constructs like:
20123
20124 typedef struct {...} foo;
20125
20126 In that case, there is no typedef variant type produced for foo.
20127 Rather, the TREE_TYPE of the TYPE_DECL of foo is the anonymous
20128 struct type. */
20129
20130 static bool
20131 is_naming_typedef_decl (const_tree decl)
20132 {
20133 if (decl == NULL_TREE
20134 || TREE_CODE (decl) != TYPE_DECL
20135 || !is_tagged_type (TREE_TYPE (decl))
20136 || DECL_IS_BUILTIN (decl)
20137 || is_redundant_typedef (decl)
20138 /* It looks like Ada produces TYPE_DECLs that are very similar
20139 to C++ naming typedefs but that have different
20140 semantics. Let's be specific to c++ for now. */
20141 || !is_cxx ())
20142 return FALSE;
20143
20144 return (DECL_ORIGINAL_TYPE (decl) == NULL_TREE
20145 && TYPE_NAME (TREE_TYPE (decl)) == decl
20146 && (TYPE_STUB_DECL (TREE_TYPE (decl))
20147 != TYPE_NAME (TREE_TYPE (decl))));
20148 }
20149
20150 /* Returns the DIE for a context. */
20151
20152 static inline dw_die_ref
20153 get_context_die (tree context)
20154 {
20155 if (context)
20156 {
20157 /* Find die that represents this context. */
20158 if (TYPE_P (context))
20159 return force_type_die (TYPE_MAIN_VARIANT (context));
20160 else
20161 return force_decl_die (context);
20162 }
20163 return comp_unit_die;
20164 }
20165
20166 /* Returns the DIE for decl. A DIE will always be returned. */
20167
20168 static dw_die_ref
20169 force_decl_die (tree decl)
20170 {
20171 dw_die_ref decl_die;
20172 unsigned saved_external_flag;
20173 tree save_fn = NULL_TREE;
20174 decl_die = lookup_decl_die (decl);
20175 if (!decl_die)
20176 {
20177 dw_die_ref context_die = get_context_die (DECL_CONTEXT (decl));
20178
20179 decl_die = lookup_decl_die (decl);
20180 if (decl_die)
20181 return decl_die;
20182
20183 switch (TREE_CODE (decl))
20184 {
20185 case FUNCTION_DECL:
20186 /* Clear current_function_decl, so that gen_subprogram_die thinks
20187 that this is a declaration. At this point, we just want to force
20188 declaration die. */
20189 save_fn = current_function_decl;
20190 current_function_decl = NULL_TREE;
20191 gen_subprogram_die (decl, context_die);
20192 current_function_decl = save_fn;
20193 break;
20194
20195 case VAR_DECL:
20196 /* Set external flag to force declaration die. Restore it after
20197 gen_decl_die() call. */
20198 saved_external_flag = DECL_EXTERNAL (decl);
20199 DECL_EXTERNAL (decl) = 1;
20200 gen_decl_die (decl, NULL, context_die);
20201 DECL_EXTERNAL (decl) = saved_external_flag;
20202 break;
20203
20204 case NAMESPACE_DECL:
20205 if (dwarf_version >= 3 || !dwarf_strict)
20206 dwarf2out_decl (decl);
20207 else
20208 /* DWARF2 has neither DW_TAG_module, nor DW_TAG_namespace. */
20209 decl_die = comp_unit_die;
20210 break;
20211
20212 default:
20213 gcc_unreachable ();
20214 }
20215
20216 /* We should be able to find the DIE now. */
20217 if (!decl_die)
20218 decl_die = lookup_decl_die (decl);
20219 gcc_assert (decl_die);
20220 }
20221
20222 return decl_die;
20223 }
20224
20225 /* Returns the DIE for TYPE, that must not be a base type. A DIE is
20226 always returned. */
20227
20228 static dw_die_ref
20229 force_type_die (tree type)
20230 {
20231 dw_die_ref type_die;
20232
20233 type_die = lookup_type_die (type);
20234 if (!type_die)
20235 {
20236 dw_die_ref context_die = get_context_die (TYPE_CONTEXT (type));
20237
20238 type_die = modified_type_die (type, TYPE_READONLY (type),
20239 TYPE_VOLATILE (type), context_die);
20240 gcc_assert (type_die);
20241 }
20242 return type_die;
20243 }
20244
20245 /* Force out any required namespaces to be able to output DECL,
20246 and return the new context_die for it, if it's changed. */
20247
20248 static dw_die_ref
20249 setup_namespace_context (tree thing, dw_die_ref context_die)
20250 {
20251 tree context = (DECL_P (thing)
20252 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
20253 if (context && TREE_CODE (context) == NAMESPACE_DECL)
20254 /* Force out the namespace. */
20255 context_die = force_decl_die (context);
20256
20257 return context_die;
20258 }
20259
20260 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
20261 type) within its namespace, if appropriate.
20262
20263 For compatibility with older debuggers, namespace DIEs only contain
20264 declarations; all definitions are emitted at CU scope. */
20265
20266 static dw_die_ref
20267 declare_in_namespace (tree thing, dw_die_ref context_die)
20268 {
20269 dw_die_ref ns_context;
20270
20271 if (debug_info_level <= DINFO_LEVEL_TERSE)
20272 return context_die;
20273
20274 /* If this decl is from an inlined function, then don't try to emit it in its
20275 namespace, as we will get confused. It would have already been emitted
20276 when the abstract instance of the inline function was emitted anyways. */
20277 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
20278 return context_die;
20279
20280 ns_context = setup_namespace_context (thing, context_die);
20281
20282 if (ns_context != context_die)
20283 {
20284 if (is_fortran ())
20285 return ns_context;
20286 if (DECL_P (thing))
20287 gen_decl_die (thing, NULL, ns_context);
20288 else
20289 gen_type_die (thing, ns_context);
20290 }
20291 return context_die;
20292 }
20293
20294 /* Generate a DIE for a namespace or namespace alias. */
20295
20296 static void
20297 gen_namespace_die (tree decl, dw_die_ref context_die)
20298 {
20299 dw_die_ref namespace_die;
20300
20301 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
20302 they are an alias of. */
20303 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
20304 {
20305 /* Output a real namespace or module. */
20306 context_die = setup_namespace_context (decl, comp_unit_die);
20307 namespace_die = new_die (is_fortran ()
20308 ? DW_TAG_module : DW_TAG_namespace,
20309 context_die, decl);
20310 /* For Fortran modules defined in different CU don't add src coords. */
20311 if (namespace_die->die_tag == DW_TAG_module && DECL_EXTERNAL (decl))
20312 {
20313 const char *name = dwarf2_name (decl, 0);
20314 if (name)
20315 add_name_attribute (namespace_die, name);
20316 }
20317 else
20318 add_name_and_src_coords_attributes (namespace_die, decl);
20319 if (DECL_EXTERNAL (decl))
20320 add_AT_flag (namespace_die, DW_AT_declaration, 1);
20321 equate_decl_number_to_die (decl, namespace_die);
20322 }
20323 else
20324 {
20325 /* Output a namespace alias. */
20326
20327 /* Force out the namespace we are an alias of, if necessary. */
20328 dw_die_ref origin_die
20329 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
20330
20331 if (DECL_CONTEXT (decl) == NULL_TREE
20332 || TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL)
20333 context_die = setup_namespace_context (decl, comp_unit_die);
20334 /* Now create the namespace alias DIE. */
20335 namespace_die = new_die (DW_TAG_imported_declaration, context_die, decl);
20336 add_name_and_src_coords_attributes (namespace_die, decl);
20337 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
20338 equate_decl_number_to_die (decl, namespace_die);
20339 }
20340 }
20341
20342 /* Generate Dwarf debug information for a decl described by DECL. */
20343
20344 static void
20345 gen_decl_die (tree decl, tree origin, dw_die_ref context_die)
20346 {
20347 tree decl_or_origin = decl ? decl : origin;
20348 tree class_origin = NULL, ultimate_origin;
20349
20350 if (DECL_P (decl_or_origin) && DECL_IGNORED_P (decl_or_origin))
20351 return;
20352
20353 switch (TREE_CODE (decl_or_origin))
20354 {
20355 case ERROR_MARK:
20356 break;
20357
20358 case CONST_DECL:
20359 if (!is_fortran ())
20360 {
20361 /* The individual enumerators of an enum type get output when we output
20362 the Dwarf representation of the relevant enum type itself. */
20363 break;
20364 }
20365
20366 /* Emit its type. */
20367 gen_type_die (TREE_TYPE (decl), context_die);
20368
20369 /* And its containing namespace. */
20370 context_die = declare_in_namespace (decl, context_die);
20371
20372 gen_const_die (decl, context_die);
20373 break;
20374
20375 case FUNCTION_DECL:
20376 /* Don't output any DIEs to represent mere function declarations,
20377 unless they are class members or explicit block externs. */
20378 if (DECL_INITIAL (decl_or_origin) == NULL_TREE
20379 && DECL_CONTEXT (decl_or_origin) == NULL_TREE
20380 && (current_function_decl == NULL_TREE
20381 || DECL_ARTIFICIAL (decl_or_origin)))
20382 break;
20383
20384 #if 0
20385 /* FIXME */
20386 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
20387 on local redeclarations of global functions. That seems broken. */
20388 if (current_function_decl != decl)
20389 /* This is only a declaration. */;
20390 #endif
20391
20392 /* If we're emitting a clone, emit info for the abstract instance. */
20393 if (origin || DECL_ORIGIN (decl) != decl)
20394 dwarf2out_abstract_function (origin
20395 ? DECL_ORIGIN (origin)
20396 : DECL_ABSTRACT_ORIGIN (decl));
20397
20398 /* If we're emitting an out-of-line copy of an inline function,
20399 emit info for the abstract instance and set up to refer to it. */
20400 else if (cgraph_function_possibly_inlined_p (decl)
20401 && ! DECL_ABSTRACT (decl)
20402 && ! class_or_namespace_scope_p (context_die)
20403 /* dwarf2out_abstract_function won't emit a die if this is just
20404 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
20405 that case, because that works only if we have a die. */
20406 && DECL_INITIAL (decl) != NULL_TREE)
20407 {
20408 dwarf2out_abstract_function (decl);
20409 set_decl_origin_self (decl);
20410 }
20411
20412 /* Otherwise we're emitting the primary DIE for this decl. */
20413 else if (debug_info_level > DINFO_LEVEL_TERSE)
20414 {
20415 /* Before we describe the FUNCTION_DECL itself, make sure that we
20416 have described its return type. */
20417 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
20418
20419 /* And its virtual context. */
20420 if (DECL_VINDEX (decl) != NULL_TREE)
20421 gen_type_die (DECL_CONTEXT (decl), context_die);
20422
20423 /* And its containing type. */
20424 if (!origin)
20425 origin = decl_class_context (decl);
20426 if (origin != NULL_TREE)
20427 gen_type_die_for_member (origin, decl, context_die);
20428
20429 /* And its containing namespace. */
20430 context_die = declare_in_namespace (decl, context_die);
20431 }
20432
20433 /* Now output a DIE to represent the function itself. */
20434 if (decl)
20435 gen_subprogram_die (decl, context_die);
20436 break;
20437
20438 case TYPE_DECL:
20439 /* If we are in terse mode, don't generate any DIEs to represent any
20440 actual typedefs. */
20441 if (debug_info_level <= DINFO_LEVEL_TERSE)
20442 break;
20443
20444 /* In the special case of a TYPE_DECL node representing the declaration
20445 of some type tag, if the given TYPE_DECL is marked as having been
20446 instantiated from some other (original) TYPE_DECL node (e.g. one which
20447 was generated within the original definition of an inline function) we
20448 used to generate a special (abbreviated) DW_TAG_structure_type,
20449 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. But nothing
20450 should be actually referencing those DIEs, as variable DIEs with that
20451 type would be emitted already in the abstract origin, so it was always
20452 removed during unused type prunning. Don't add anything in this
20453 case. */
20454 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
20455 break;
20456
20457 if (is_redundant_typedef (decl))
20458 gen_type_die (TREE_TYPE (decl), context_die);
20459 else
20460 /* Output a DIE to represent the typedef itself. */
20461 gen_typedef_die (decl, context_die);
20462 break;
20463
20464 case LABEL_DECL:
20465 if (debug_info_level >= DINFO_LEVEL_NORMAL)
20466 gen_label_die (decl, context_die);
20467 break;
20468
20469 case VAR_DECL:
20470 case RESULT_DECL:
20471 /* If we are in terse mode, don't generate any DIEs to represent any
20472 variable declarations or definitions. */
20473 if (debug_info_level <= DINFO_LEVEL_TERSE)
20474 break;
20475
20476 /* Output any DIEs that are needed to specify the type of this data
20477 object. */
20478 if (decl_by_reference_p (decl_or_origin))
20479 gen_type_die (TREE_TYPE (TREE_TYPE (decl_or_origin)), context_die);
20480 else
20481 gen_type_die (TREE_TYPE (decl_or_origin), context_die);
20482
20483 /* And its containing type. */
20484 class_origin = decl_class_context (decl_or_origin);
20485 if (class_origin != NULL_TREE)
20486 gen_type_die_for_member (class_origin, decl_or_origin, context_die);
20487
20488 /* And its containing namespace. */
20489 context_die = declare_in_namespace (decl_or_origin, context_die);
20490
20491 /* Now output the DIE to represent the data object itself. This gets
20492 complicated because of the possibility that the VAR_DECL really
20493 represents an inlined instance of a formal parameter for an inline
20494 function. */
20495 ultimate_origin = decl_ultimate_origin (decl_or_origin);
20496 if (ultimate_origin != NULL_TREE
20497 && TREE_CODE (ultimate_origin) == PARM_DECL)
20498 gen_formal_parameter_die (decl, origin,
20499 true /* Emit name attribute. */,
20500 context_die);
20501 else
20502 gen_variable_die (decl, origin, context_die);
20503 break;
20504
20505 case FIELD_DECL:
20506 /* Ignore the nameless fields that are used to skip bits but handle C++
20507 anonymous unions and structs. */
20508 if (DECL_NAME (decl) != NULL_TREE
20509 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
20510 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
20511 {
20512 gen_type_die (member_declared_type (decl), context_die);
20513 gen_field_die (decl, context_die);
20514 }
20515 break;
20516
20517 case PARM_DECL:
20518 if (DECL_BY_REFERENCE (decl_or_origin))
20519 gen_type_die (TREE_TYPE (TREE_TYPE (decl_or_origin)), context_die);
20520 else
20521 gen_type_die (TREE_TYPE (decl_or_origin), context_die);
20522 gen_formal_parameter_die (decl, origin,
20523 true /* Emit name attribute. */,
20524 context_die);
20525 break;
20526
20527 case NAMESPACE_DECL:
20528 case IMPORTED_DECL:
20529 if (dwarf_version >= 3 || !dwarf_strict)
20530 gen_namespace_die (decl, context_die);
20531 break;
20532
20533 default:
20534 /* Probably some frontend-internal decl. Assume we don't care. */
20535 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
20536 break;
20537 }
20538 }
20539 \f
20540 /* Output debug information for global decl DECL. Called from toplev.c after
20541 compilation proper has finished. */
20542
20543 static void
20544 dwarf2out_global_decl (tree decl)
20545 {
20546 /* Output DWARF2 information for file-scope tentative data object
20547 declarations, file-scope (extern) function declarations (which
20548 had no corresponding body) and file-scope tagged type declarations
20549 and definitions which have not yet been forced out. */
20550 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
20551 dwarf2out_decl (decl);
20552 }
20553
20554 /* Output debug information for type decl DECL. Called from toplev.c
20555 and from language front ends (to record built-in types). */
20556 static void
20557 dwarf2out_type_decl (tree decl, int local)
20558 {
20559 if (!local)
20560 dwarf2out_decl (decl);
20561 }
20562
20563 /* Output debug information for imported module or decl DECL.
20564 NAME is non-NULL name in the lexical block if the decl has been renamed.
20565 LEXICAL_BLOCK is the lexical block (which TREE_CODE is a BLOCK)
20566 that DECL belongs to.
20567 LEXICAL_BLOCK_DIE is the DIE of LEXICAL_BLOCK. */
20568 static void
20569 dwarf2out_imported_module_or_decl_1 (tree decl,
20570 tree name,
20571 tree lexical_block,
20572 dw_die_ref lexical_block_die)
20573 {
20574 expanded_location xloc;
20575 dw_die_ref imported_die = NULL;
20576 dw_die_ref at_import_die;
20577
20578 if (TREE_CODE (decl) == IMPORTED_DECL)
20579 {
20580 xloc = expand_location (DECL_SOURCE_LOCATION (decl));
20581 decl = IMPORTED_DECL_ASSOCIATED_DECL (decl);
20582 gcc_assert (decl);
20583 }
20584 else
20585 xloc = expand_location (input_location);
20586
20587 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
20588 {
20589 at_import_die = force_type_die (TREE_TYPE (decl));
20590 /* For namespace N { typedef void T; } using N::T; base_type_die
20591 returns NULL, but DW_TAG_imported_declaration requires
20592 the DW_AT_import tag. Force creation of DW_TAG_typedef. */
20593 if (!at_import_die)
20594 {
20595 gcc_assert (TREE_CODE (decl) == TYPE_DECL);
20596 gen_typedef_die (decl, get_context_die (DECL_CONTEXT (decl)));
20597 at_import_die = lookup_type_die (TREE_TYPE (decl));
20598 gcc_assert (at_import_die);
20599 }
20600 }
20601 else
20602 {
20603 at_import_die = lookup_decl_die (decl);
20604 if (!at_import_die)
20605 {
20606 /* If we're trying to avoid duplicate debug info, we may not have
20607 emitted the member decl for this field. Emit it now. */
20608 if (TREE_CODE (decl) == FIELD_DECL)
20609 {
20610 tree type = DECL_CONTEXT (decl);
20611
20612 if (TYPE_CONTEXT (type)
20613 && TYPE_P (TYPE_CONTEXT (type))
20614 && !should_emit_struct_debug (TYPE_CONTEXT (type),
20615 DINFO_USAGE_DIR_USE))
20616 return;
20617 gen_type_die_for_member (type, decl,
20618 get_context_die (TYPE_CONTEXT (type)));
20619 }
20620 at_import_die = force_decl_die (decl);
20621 }
20622 }
20623
20624 if (TREE_CODE (decl) == NAMESPACE_DECL)
20625 {
20626 if (dwarf_version >= 3 || !dwarf_strict)
20627 imported_die = new_die (DW_TAG_imported_module,
20628 lexical_block_die,
20629 lexical_block);
20630 else
20631 return;
20632 }
20633 else
20634 imported_die = new_die (DW_TAG_imported_declaration,
20635 lexical_block_die,
20636 lexical_block);
20637
20638 add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
20639 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
20640 if (name)
20641 add_AT_string (imported_die, DW_AT_name,
20642 IDENTIFIER_POINTER (name));
20643 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
20644 }
20645
20646 /* Output debug information for imported module or decl DECL.
20647 NAME is non-NULL name in context if the decl has been renamed.
20648 CHILD is true if decl is one of the renamed decls as part of
20649 importing whole module. */
20650
20651 static void
20652 dwarf2out_imported_module_or_decl (tree decl, tree name, tree context,
20653 bool child)
20654 {
20655 /* dw_die_ref at_import_die; */
20656 dw_die_ref scope_die;
20657
20658 if (debug_info_level <= DINFO_LEVEL_TERSE)
20659 return;
20660
20661 gcc_assert (decl);
20662
20663 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
20664 We need decl DIE for reference and scope die. First, get DIE for the decl
20665 itself. */
20666
20667 /* Get the scope die for decl context. Use comp_unit_die for global module
20668 or decl. If die is not found for non globals, force new die. */
20669 if (context
20670 && TYPE_P (context)
20671 && !should_emit_struct_debug (context, DINFO_USAGE_DIR_USE))
20672 return;
20673
20674 if (!(dwarf_version >= 3 || !dwarf_strict))
20675 return;
20676
20677 scope_die = get_context_die (context);
20678
20679 if (child)
20680 {
20681 gcc_assert (scope_die->die_child);
20682 gcc_assert (scope_die->die_child->die_tag == DW_TAG_imported_module);
20683 gcc_assert (TREE_CODE (decl) != NAMESPACE_DECL);
20684 scope_die = scope_die->die_child;
20685 }
20686
20687 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
20688 dwarf2out_imported_module_or_decl_1 (decl, name, context, scope_die);
20689
20690 }
20691
20692 /* Write the debugging output for DECL. */
20693
20694 void
20695 dwarf2out_decl (tree decl)
20696 {
20697 dw_die_ref context_die = comp_unit_die;
20698
20699 switch (TREE_CODE (decl))
20700 {
20701 case ERROR_MARK:
20702 return;
20703
20704 case FUNCTION_DECL:
20705 /* What we would really like to do here is to filter out all mere
20706 file-scope declarations of file-scope functions which are never
20707 referenced later within this translation unit (and keep all of ones
20708 that *are* referenced later on) but we aren't clairvoyant, so we have
20709 no idea which functions will be referenced in the future (i.e. later
20710 on within the current translation unit). So here we just ignore all
20711 file-scope function declarations which are not also definitions. If
20712 and when the debugger needs to know something about these functions,
20713 it will have to hunt around and find the DWARF information associated
20714 with the definition of the function.
20715
20716 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
20717 nodes represent definitions and which ones represent mere
20718 declarations. We have to check DECL_INITIAL instead. That's because
20719 the C front-end supports some weird semantics for "extern inline"
20720 function definitions. These can get inlined within the current
20721 translation unit (and thus, we need to generate Dwarf info for their
20722 abstract instances so that the Dwarf info for the concrete inlined
20723 instances can have something to refer to) but the compiler never
20724 generates any out-of-lines instances of such things (despite the fact
20725 that they *are* definitions).
20726
20727 The important point is that the C front-end marks these "extern
20728 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
20729 them anyway. Note that the C++ front-end also plays some similar games
20730 for inline function definitions appearing within include files which
20731 also contain `#pragma interface' pragmas. */
20732 if (DECL_INITIAL (decl) == NULL_TREE)
20733 return;
20734
20735 /* If we're a nested function, initially use a parent of NULL; if we're
20736 a plain function, this will be fixed up in decls_for_scope. If
20737 we're a method, it will be ignored, since we already have a DIE. */
20738 if (decl_function_context (decl)
20739 /* But if we're in terse mode, we don't care about scope. */
20740 && debug_info_level > DINFO_LEVEL_TERSE)
20741 context_die = NULL;
20742 break;
20743
20744 case VAR_DECL:
20745 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
20746 declaration and if the declaration was never even referenced from
20747 within this entire compilation unit. We suppress these DIEs in
20748 order to save space in the .debug section (by eliminating entries
20749 which are probably useless). Note that we must not suppress
20750 block-local extern declarations (whether used or not) because that
20751 would screw-up the debugger's name lookup mechanism and cause it to
20752 miss things which really ought to be in scope at a given point. */
20753 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
20754 return;
20755
20756 /* For local statics lookup proper context die. */
20757 if (TREE_STATIC (decl) && decl_function_context (decl))
20758 context_die = lookup_decl_die (DECL_CONTEXT (decl));
20759
20760 /* If we are in terse mode, don't generate any DIEs to represent any
20761 variable declarations or definitions. */
20762 if (debug_info_level <= DINFO_LEVEL_TERSE)
20763 return;
20764 break;
20765
20766 case CONST_DECL:
20767 if (debug_info_level <= DINFO_LEVEL_TERSE)
20768 return;
20769 if (!is_fortran ())
20770 return;
20771 if (TREE_STATIC (decl) && decl_function_context (decl))
20772 context_die = lookup_decl_die (DECL_CONTEXT (decl));
20773 break;
20774
20775 case NAMESPACE_DECL:
20776 case IMPORTED_DECL:
20777 if (debug_info_level <= DINFO_LEVEL_TERSE)
20778 return;
20779 if (lookup_decl_die (decl) != NULL)
20780 return;
20781 break;
20782
20783 case TYPE_DECL:
20784 /* Don't emit stubs for types unless they are needed by other DIEs. */
20785 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
20786 return;
20787
20788 /* Don't bother trying to generate any DIEs to represent any of the
20789 normal built-in types for the language we are compiling. */
20790 if (DECL_IS_BUILTIN (decl))
20791 {
20792 /* OK, we need to generate one for `bool' so GDB knows what type
20793 comparisons have. */
20794 if (is_cxx ()
20795 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
20796 && ! DECL_IGNORED_P (decl))
20797 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
20798
20799 return;
20800 }
20801
20802 /* If we are in terse mode, don't generate any DIEs for types. */
20803 if (debug_info_level <= DINFO_LEVEL_TERSE)
20804 return;
20805
20806 /* If we're a function-scope tag, initially use a parent of NULL;
20807 this will be fixed up in decls_for_scope. */
20808 if (decl_function_context (decl))
20809 context_die = NULL;
20810
20811 break;
20812
20813 default:
20814 return;
20815 }
20816
20817 gen_decl_die (decl, NULL, context_die);
20818 }
20819
20820 /* Write the debugging output for DECL. */
20821
20822 static void
20823 dwarf2out_function_decl (tree decl)
20824 {
20825 dwarf2out_decl (decl);
20826
20827 htab_empty (decl_loc_table);
20828 }
20829
20830 /* Output a marker (i.e. a label) for the beginning of the generated code for
20831 a lexical block. */
20832
20833 static void
20834 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
20835 unsigned int blocknum)
20836 {
20837 switch_to_section (current_function_section ());
20838 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
20839 }
20840
20841 /* Output a marker (i.e. a label) for the end of the generated code for a
20842 lexical block. */
20843
20844 static void
20845 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
20846 {
20847 switch_to_section (current_function_section ());
20848 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
20849 }
20850
20851 /* Returns nonzero if it is appropriate not to emit any debugging
20852 information for BLOCK, because it doesn't contain any instructions.
20853
20854 Don't allow this for blocks with nested functions or local classes
20855 as we would end up with orphans, and in the presence of scheduling
20856 we may end up calling them anyway. */
20857
20858 static bool
20859 dwarf2out_ignore_block (const_tree block)
20860 {
20861 tree decl;
20862 unsigned int i;
20863
20864 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
20865 if (TREE_CODE (decl) == FUNCTION_DECL
20866 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
20867 return 0;
20868 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (block); i++)
20869 {
20870 decl = BLOCK_NONLOCALIZED_VAR (block, i);
20871 if (TREE_CODE (decl) == FUNCTION_DECL
20872 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
20873 return 0;
20874 }
20875
20876 return 1;
20877 }
20878
20879 /* Hash table routines for file_hash. */
20880
20881 static int
20882 file_table_eq (const void *p1_p, const void *p2_p)
20883 {
20884 const struct dwarf_file_data *const p1 =
20885 (const struct dwarf_file_data *) p1_p;
20886 const char *const p2 = (const char *) p2_p;
20887 return strcmp (p1->filename, p2) == 0;
20888 }
20889
20890 static hashval_t
20891 file_table_hash (const void *p_p)
20892 {
20893 const struct dwarf_file_data *const p = (const struct dwarf_file_data *) p_p;
20894 return htab_hash_string (p->filename);
20895 }
20896
20897 /* Lookup FILE_NAME (in the list of filenames that we know about here in
20898 dwarf2out.c) and return its "index". The index of each (known) filename is
20899 just a unique number which is associated with only that one filename. We
20900 need such numbers for the sake of generating labels (in the .debug_sfnames
20901 section) and references to those files numbers (in the .debug_srcinfo
20902 and.debug_macinfo sections). If the filename given as an argument is not
20903 found in our current list, add it to the list and assign it the next
20904 available unique index number. In order to speed up searches, we remember
20905 the index of the filename was looked up last. This handles the majority of
20906 all searches. */
20907
20908 static struct dwarf_file_data *
20909 lookup_filename (const char *file_name)
20910 {
20911 void ** slot;
20912 struct dwarf_file_data * created;
20913
20914 /* Check to see if the file name that was searched on the previous
20915 call matches this file name. If so, return the index. */
20916 if (file_table_last_lookup
20917 && (file_name == file_table_last_lookup->filename
20918 || strcmp (file_table_last_lookup->filename, file_name) == 0))
20919 return file_table_last_lookup;
20920
20921 /* Didn't match the previous lookup, search the table. */
20922 slot = htab_find_slot_with_hash (file_table, file_name,
20923 htab_hash_string (file_name), INSERT);
20924 if (*slot)
20925 return (struct dwarf_file_data *) *slot;
20926
20927 created = ggc_alloc_dwarf_file_data ();
20928 created->filename = file_name;
20929 created->emitted_number = 0;
20930 *slot = created;
20931 return created;
20932 }
20933
20934 /* If the assembler will construct the file table, then translate the compiler
20935 internal file table number into the assembler file table number, and emit
20936 a .file directive if we haven't already emitted one yet. The file table
20937 numbers are different because we prune debug info for unused variables and
20938 types, which may include filenames. */
20939
20940 static int
20941 maybe_emit_file (struct dwarf_file_data * fd)
20942 {
20943 if (! fd->emitted_number)
20944 {
20945 if (last_emitted_file)
20946 fd->emitted_number = last_emitted_file->emitted_number + 1;
20947 else
20948 fd->emitted_number = 1;
20949 last_emitted_file = fd;
20950
20951 if (DWARF2_ASM_LINE_DEBUG_INFO)
20952 {
20953 fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
20954 output_quoted_string (asm_out_file,
20955 remap_debug_filename (fd->filename));
20956 fputc ('\n', asm_out_file);
20957 }
20958 }
20959
20960 return fd->emitted_number;
20961 }
20962
20963 /* Schedule generation of a DW_AT_const_value attribute to DIE.
20964 That generation should happen after function debug info has been
20965 generated. The value of the attribute is the constant value of ARG. */
20966
20967 static void
20968 append_entry_to_tmpl_value_parm_die_table (dw_die_ref die, tree arg)
20969 {
20970 die_arg_entry entry;
20971
20972 if (!die || !arg)
20973 return;
20974
20975 if (!tmpl_value_parm_die_table)
20976 tmpl_value_parm_die_table
20977 = VEC_alloc (die_arg_entry, gc, 32);
20978
20979 entry.die = die;
20980 entry.arg = arg;
20981 VEC_safe_push (die_arg_entry, gc,
20982 tmpl_value_parm_die_table,
20983 &entry);
20984 }
20985
20986 /* Add a DW_AT_const_value attribute to DIEs that were scheduled
20987 by append_entry_to_tmpl_value_parm_die_table. This function must
20988 be called after function DIEs have been generated. */
20989
20990 static void
20991 gen_remaining_tmpl_value_param_die_attribute (void)
20992 {
20993 if (tmpl_value_parm_die_table)
20994 {
20995 unsigned i;
20996 die_arg_entry *e;
20997
20998 for (i = 0;
20999 VEC_iterate (die_arg_entry, tmpl_value_parm_die_table, i, e);
21000 i++)
21001 tree_add_const_value_attribute (e->die, e->arg);
21002 }
21003 }
21004
21005
21006 /* Replace DW_AT_name for the decl with name. */
21007
21008 static void
21009 dwarf2out_set_name (tree decl, tree name)
21010 {
21011 dw_die_ref die;
21012 dw_attr_ref attr;
21013 const char *dname;
21014
21015 die = TYPE_SYMTAB_DIE (decl);
21016 if (!die)
21017 return;
21018
21019 dname = dwarf2_name (name, 0);
21020 if (!dname)
21021 return;
21022
21023 attr = get_AT (die, DW_AT_name);
21024 if (attr)
21025 {
21026 struct indirect_string_node *node;
21027
21028 node = find_AT_string (dname);
21029 /* replace the string. */
21030 attr->dw_attr_val.v.val_str = node;
21031 }
21032
21033 else
21034 add_name_attribute (die, dname);
21035 }
21036
21037 /* Called by the final INSN scan whenever we see a direct function call.
21038 Make an entry into the direct call table, recording the point of call
21039 and a reference to the target function's debug entry. */
21040
21041 static void
21042 dwarf2out_direct_call (tree targ)
21043 {
21044 dcall_entry e;
21045 tree origin = decl_ultimate_origin (targ);
21046
21047 /* If this is a clone, use the abstract origin as the target. */
21048 if (origin)
21049 targ = origin;
21050
21051 e.poc_label_num = poc_label_num++;
21052 e.poc_decl = current_function_decl;
21053 e.targ_die = force_decl_die (targ);
21054 VEC_safe_push (dcall_entry, gc, dcall_table, &e);
21055
21056 /* Drop a label at the return point to mark the point of call. */
21057 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LPOC", e.poc_label_num);
21058 }
21059
21060 /* Returns a hash value for X (which really is a struct vcall_insn). */
21061
21062 static hashval_t
21063 vcall_insn_table_hash (const void *x)
21064 {
21065 return (hashval_t) ((const struct vcall_insn *) x)->insn_uid;
21066 }
21067
21068 /* Return nonzero if insn_uid of struct vcall_insn *X is the same as
21069 insnd_uid of *Y. */
21070
21071 static int
21072 vcall_insn_table_eq (const void *x, const void *y)
21073 {
21074 return (((const struct vcall_insn *) x)->insn_uid
21075 == ((const struct vcall_insn *) y)->insn_uid);
21076 }
21077
21078 /* Associate VTABLE_SLOT with INSN_UID in the VCALL_INSN_TABLE. */
21079
21080 static void
21081 store_vcall_insn (unsigned int vtable_slot, int insn_uid)
21082 {
21083 struct vcall_insn *item = ggc_alloc_vcall_insn ();
21084 struct vcall_insn **slot;
21085
21086 gcc_assert (item);
21087 item->insn_uid = insn_uid;
21088 item->vtable_slot = vtable_slot;
21089 slot = (struct vcall_insn **)
21090 htab_find_slot_with_hash (vcall_insn_table, &item,
21091 (hashval_t) insn_uid, INSERT);
21092 *slot = item;
21093 }
21094
21095 /* Return the VTABLE_SLOT associated with INSN_UID. */
21096
21097 static unsigned int
21098 lookup_vcall_insn (unsigned int insn_uid)
21099 {
21100 struct vcall_insn item;
21101 struct vcall_insn *p;
21102
21103 item.insn_uid = insn_uid;
21104 item.vtable_slot = 0;
21105 p = (struct vcall_insn *) htab_find_with_hash (vcall_insn_table,
21106 (void *) &item,
21107 (hashval_t) insn_uid);
21108 if (p == NULL)
21109 return (unsigned int) -1;
21110 return p->vtable_slot;
21111 }
21112
21113
21114 /* Called when lowering indirect calls to RTL. We make a note of INSN_UID
21115 and the OBJ_TYPE_REF_TOKEN from ADDR. For C++ virtual calls, the token
21116 is the vtable slot index that we will need to put in the virtual call
21117 table later. */
21118
21119 static void
21120 dwarf2out_virtual_call_token (tree addr, int insn_uid)
21121 {
21122 if (is_cxx() && TREE_CODE (addr) == OBJ_TYPE_REF)
21123 {
21124 tree token = OBJ_TYPE_REF_TOKEN (addr);
21125 if (TREE_CODE (token) == INTEGER_CST)
21126 store_vcall_insn (TREE_INT_CST_LOW (token), insn_uid);
21127 }
21128 }
21129
21130 /* Called when scheduling RTL, when a CALL_INSN is split. Copies the
21131 OBJ_TYPE_REF_TOKEN previously associated with OLD_INSN and associates it
21132 with NEW_INSN. */
21133
21134 static void
21135 dwarf2out_copy_call_info (rtx old_insn, rtx new_insn)
21136 {
21137 unsigned int vtable_slot = lookup_vcall_insn (INSN_UID (old_insn));
21138
21139 if (vtable_slot != (unsigned int) -1)
21140 store_vcall_insn (vtable_slot, INSN_UID (new_insn));
21141 }
21142
21143 /* Called by the final INSN scan whenever we see a virtual function call.
21144 Make an entry into the virtual call table, recording the point of call
21145 and the slot index of the vtable entry used to call the virtual member
21146 function. The slot index was associated with the INSN_UID during the
21147 lowering to RTL. */
21148
21149 static void
21150 dwarf2out_virtual_call (int insn_uid)
21151 {
21152 unsigned int vtable_slot = lookup_vcall_insn (insn_uid);
21153 vcall_entry e;
21154
21155 if (vtable_slot == (unsigned int) -1)
21156 return;
21157
21158 e.poc_label_num = poc_label_num++;
21159 e.vtable_slot = vtable_slot;
21160 VEC_safe_push (vcall_entry, gc, vcall_table, &e);
21161
21162 /* Drop a label at the return point to mark the point of call. */
21163 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LPOC", e.poc_label_num);
21164 }
21165
21166 /* Called by the final INSN scan whenever we see a var location. We
21167 use it to drop labels in the right places, and throw the location in
21168 our lookup table. */
21169
21170 static void
21171 dwarf2out_var_location (rtx loc_note)
21172 {
21173 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES + 2];
21174 struct var_loc_node *newloc;
21175 rtx next_real;
21176 static const char *last_label;
21177 static const char *last_postcall_label;
21178 static bool last_in_cold_section_p;
21179 tree decl;
21180
21181 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
21182 return;
21183
21184 next_real = next_real_insn (loc_note);
21185 /* If there are no instructions which would be affected by this note,
21186 don't do anything. */
21187 if (next_real == NULL_RTX)
21188 return;
21189
21190 /* If there were any real insns between note we processed last time
21191 and this note (or if it is the first note), clear
21192 last_{,postcall_}label so that they are not reused this time. */
21193 if (last_var_location_insn == NULL_RTX
21194 || last_var_location_insn != next_real
21195 || last_in_cold_section_p != in_cold_section_p)
21196 {
21197 last_label = NULL;
21198 last_postcall_label = NULL;
21199 }
21200
21201 decl = NOTE_VAR_LOCATION_DECL (loc_note);
21202 newloc = add_var_loc_to_decl (decl, loc_note,
21203 NOTE_DURING_CALL_P (loc_note)
21204 ? last_postcall_label : last_label);
21205 if (newloc == NULL)
21206 return;
21207
21208 /* If there were no real insns between note we processed last time
21209 and this note, use the label we emitted last time. Otherwise
21210 create a new label and emit it. */
21211 if (last_label == NULL)
21212 {
21213 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
21214 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
21215 loclabel_num++;
21216 last_label = ggc_strdup (loclabel);
21217 }
21218
21219 if (!NOTE_DURING_CALL_P (loc_note))
21220 newloc->label = last_label;
21221 else
21222 {
21223 if (!last_postcall_label)
21224 {
21225 sprintf (loclabel, "%s-1", last_label);
21226 last_postcall_label = ggc_strdup (loclabel);
21227 }
21228 newloc->label = last_postcall_label;
21229 }
21230
21231 last_var_location_insn = next_real;
21232 last_in_cold_section_p = in_cold_section_p;
21233 }
21234
21235 /* We need to reset the locations at the beginning of each
21236 function. We can't do this in the end_function hook, because the
21237 declarations that use the locations won't have been output when
21238 that hook is called. Also compute have_multiple_function_sections here. */
21239
21240 static void
21241 dwarf2out_begin_function (tree fun)
21242 {
21243 if (function_section (fun) != text_section)
21244 have_multiple_function_sections = true;
21245
21246 dwarf2out_note_section_used ();
21247 }
21248
21249 /* Output a label to mark the beginning of a source code line entry
21250 and record information relating to this source line, in
21251 'line_info_table' for later output of the .debug_line section. */
21252
21253 static void
21254 dwarf2out_source_line (unsigned int line, const char *filename,
21255 int discriminator, bool is_stmt)
21256 {
21257 static bool last_is_stmt = true;
21258
21259 if (debug_info_level >= DINFO_LEVEL_NORMAL
21260 && line != 0)
21261 {
21262 int file_num = maybe_emit_file (lookup_filename (filename));
21263
21264 switch_to_section (current_function_section ());
21265
21266 /* If requested, emit something human-readable. */
21267 if (flag_debug_asm)
21268 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
21269 filename, line);
21270
21271 if (DWARF2_ASM_LINE_DEBUG_INFO)
21272 {
21273 /* Emit the .loc directive understood by GNU as. */
21274 fprintf (asm_out_file, "\t.loc %d %d 0", file_num, line);
21275 if (is_stmt != last_is_stmt)
21276 {
21277 fprintf (asm_out_file, " is_stmt %d", is_stmt ? 1 : 0);
21278 last_is_stmt = is_stmt;
21279 }
21280 if (SUPPORTS_DISCRIMINATOR && discriminator != 0)
21281 fprintf (asm_out_file, " discriminator %d", discriminator);
21282 fputc ('\n', asm_out_file);
21283
21284 /* Indicate that line number info exists. */
21285 line_info_table_in_use++;
21286 }
21287 else if (function_section (current_function_decl) != text_section)
21288 {
21289 dw_separate_line_info_ref line_info;
21290 targetm.asm_out.internal_label (asm_out_file,
21291 SEPARATE_LINE_CODE_LABEL,
21292 separate_line_info_table_in_use);
21293
21294 /* Expand the line info table if necessary. */
21295 if (separate_line_info_table_in_use
21296 == separate_line_info_table_allocated)
21297 {
21298 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
21299 separate_line_info_table
21300 = GGC_RESIZEVEC (dw_separate_line_info_entry,
21301 separate_line_info_table,
21302 separate_line_info_table_allocated);
21303 memset (separate_line_info_table
21304 + separate_line_info_table_in_use,
21305 0,
21306 (LINE_INFO_TABLE_INCREMENT
21307 * sizeof (dw_separate_line_info_entry)));
21308 }
21309
21310 /* Add the new entry at the end of the line_info_table. */
21311 line_info
21312 = &separate_line_info_table[separate_line_info_table_in_use++];
21313 line_info->dw_file_num = file_num;
21314 line_info->dw_line_num = line;
21315 line_info->function = current_function_funcdef_no;
21316 }
21317 else
21318 {
21319 dw_line_info_ref line_info;
21320
21321 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
21322 line_info_table_in_use);
21323
21324 /* Expand the line info table if necessary. */
21325 if (line_info_table_in_use == line_info_table_allocated)
21326 {
21327 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
21328 line_info_table
21329 = GGC_RESIZEVEC (dw_line_info_entry, line_info_table,
21330 line_info_table_allocated);
21331 memset (line_info_table + line_info_table_in_use, 0,
21332 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
21333 }
21334
21335 /* Add the new entry at the end of the line_info_table. */
21336 line_info = &line_info_table[line_info_table_in_use++];
21337 line_info->dw_file_num = file_num;
21338 line_info->dw_line_num = line;
21339 }
21340 }
21341 }
21342
21343 /* Record the beginning of a new source file. */
21344
21345 static void
21346 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
21347 {
21348 if (flag_eliminate_dwarf2_dups && dwarf_version < 4)
21349 {
21350 /* Record the beginning of the file for break_out_includes. */
21351 dw_die_ref bincl_die;
21352
21353 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
21354 add_AT_string (bincl_die, DW_AT_name, remap_debug_filename (filename));
21355 }
21356
21357 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
21358 {
21359 int file_num = maybe_emit_file (lookup_filename (filename));
21360
21361 switch_to_section (debug_macinfo_section);
21362 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
21363 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
21364 lineno);
21365
21366 dw2_asm_output_data_uleb128 (file_num, "file %s", filename);
21367 }
21368 }
21369
21370 /* Record the end of a source file. */
21371
21372 static void
21373 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
21374 {
21375 if (flag_eliminate_dwarf2_dups && dwarf_version < 4)
21376 /* Record the end of the file for break_out_includes. */
21377 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
21378
21379 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
21380 {
21381 switch_to_section (debug_macinfo_section);
21382 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
21383 }
21384 }
21385
21386 /* Called from debug_define in toplev.c. The `buffer' parameter contains
21387 the tail part of the directive line, i.e. the part which is past the
21388 initial whitespace, #, whitespace, directive-name, whitespace part. */
21389
21390 static void
21391 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
21392 const char *buffer ATTRIBUTE_UNUSED)
21393 {
21394 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
21395 {
21396 switch_to_section (debug_macinfo_section);
21397 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
21398 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
21399 dw2_asm_output_nstring (buffer, -1, "The macro");
21400 }
21401 }
21402
21403 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
21404 the tail part of the directive line, i.e. the part which is past the
21405 initial whitespace, #, whitespace, directive-name, whitespace part. */
21406
21407 static void
21408 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
21409 const char *buffer ATTRIBUTE_UNUSED)
21410 {
21411 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
21412 {
21413 switch_to_section (debug_macinfo_section);
21414 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
21415 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
21416 dw2_asm_output_nstring (buffer, -1, "The macro");
21417 }
21418 }
21419
21420 /* Set up for Dwarf output at the start of compilation. */
21421
21422 static void
21423 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
21424 {
21425 /* Allocate the file_table. */
21426 file_table = htab_create_ggc (50, file_table_hash,
21427 file_table_eq, NULL);
21428
21429 /* Allocate the decl_die_table. */
21430 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
21431 decl_die_table_eq, NULL);
21432
21433 /* Allocate the decl_loc_table. */
21434 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
21435 decl_loc_table_eq, NULL);
21436
21437 /* Allocate the initial hunk of the decl_scope_table. */
21438 decl_scope_table = VEC_alloc (tree, gc, 256);
21439
21440 /* Allocate the initial hunk of the abbrev_die_table. */
21441 abbrev_die_table = ggc_alloc_cleared_vec_dw_die_ref
21442 (ABBREV_DIE_TABLE_INCREMENT);
21443 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
21444 /* Zero-th entry is allocated, but unused. */
21445 abbrev_die_table_in_use = 1;
21446
21447 /* Allocate the initial hunk of the line_info_table. */
21448 line_info_table = ggc_alloc_cleared_vec_dw_line_info_entry
21449 (LINE_INFO_TABLE_INCREMENT);
21450 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
21451
21452 /* Zero-th entry is allocated, but unused. */
21453 line_info_table_in_use = 1;
21454
21455 /* Allocate the pubtypes and pubnames vectors. */
21456 pubname_table = VEC_alloc (pubname_entry, gc, 32);
21457 pubtype_table = VEC_alloc (pubname_entry, gc, 32);
21458
21459 /* Allocate the table that maps insn UIDs to vtable slot indexes. */
21460 vcall_insn_table = htab_create_ggc (10, vcall_insn_table_hash,
21461 vcall_insn_table_eq, NULL);
21462
21463 /* Generate the initial DIE for the .debug section. Note that the (string)
21464 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
21465 will (typically) be a relative pathname and that this pathname should be
21466 taken as being relative to the directory from which the compiler was
21467 invoked when the given (base) source file was compiled. We will fill
21468 in this value in dwarf2out_finish. */
21469 comp_unit_die = gen_compile_unit_die (NULL);
21470
21471 incomplete_types = VEC_alloc (tree, gc, 64);
21472
21473 used_rtx_array = VEC_alloc (rtx, gc, 32);
21474
21475 debug_info_section = get_section (DEBUG_INFO_SECTION,
21476 SECTION_DEBUG, NULL);
21477 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
21478 SECTION_DEBUG, NULL);
21479 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
21480 SECTION_DEBUG, NULL);
21481 debug_macinfo_section = get_section (DEBUG_MACINFO_SECTION,
21482 SECTION_DEBUG, NULL);
21483 debug_line_section = get_section (DEBUG_LINE_SECTION,
21484 SECTION_DEBUG, NULL);
21485 debug_loc_section = get_section (DEBUG_LOC_SECTION,
21486 SECTION_DEBUG, NULL);
21487 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
21488 SECTION_DEBUG, NULL);
21489 debug_pubtypes_section = get_section (DEBUG_PUBTYPES_SECTION,
21490 SECTION_DEBUG, NULL);
21491 debug_dcall_section = get_section (DEBUG_DCALL_SECTION,
21492 SECTION_DEBUG, NULL);
21493 debug_vcall_section = get_section (DEBUG_VCALL_SECTION,
21494 SECTION_DEBUG, NULL);
21495 debug_str_section = get_section (DEBUG_STR_SECTION,
21496 DEBUG_STR_SECTION_FLAGS, NULL);
21497 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
21498 SECTION_DEBUG, NULL);
21499 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
21500 SECTION_DEBUG, NULL);
21501
21502 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
21503 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
21504 DEBUG_ABBREV_SECTION_LABEL, 0);
21505 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
21506 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
21507 COLD_TEXT_SECTION_LABEL, 0);
21508 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
21509
21510 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
21511 DEBUG_INFO_SECTION_LABEL, 0);
21512 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
21513 DEBUG_LINE_SECTION_LABEL, 0);
21514 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
21515 DEBUG_RANGES_SECTION_LABEL, 0);
21516 switch_to_section (debug_abbrev_section);
21517 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
21518 switch_to_section (debug_info_section);
21519 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
21520 switch_to_section (debug_line_section);
21521 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
21522
21523 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
21524 {
21525 switch_to_section (debug_macinfo_section);
21526 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
21527 DEBUG_MACINFO_SECTION_LABEL, 0);
21528 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
21529 }
21530
21531 switch_to_section (text_section);
21532 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
21533 if (flag_reorder_blocks_and_partition)
21534 {
21535 cold_text_section = unlikely_text_section ();
21536 switch_to_section (cold_text_section);
21537 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
21538 }
21539
21540 }
21541
21542 /* Called before cgraph_optimize starts outputtting functions, variables
21543 and toplevel asms into assembly. */
21544
21545 static void
21546 dwarf2out_assembly_start (void)
21547 {
21548 if (HAVE_GAS_CFI_SECTIONS_DIRECTIVE && dwarf2out_do_cfi_asm ())
21549 {
21550 #ifndef TARGET_UNWIND_INFO
21551 if (USING_SJLJ_EXCEPTIONS || (!flag_unwind_tables && !flag_exceptions))
21552 #endif
21553 fprintf (asm_out_file, "\t.cfi_sections\t.debug_frame\n");
21554 }
21555 }
21556
21557 /* A helper function for dwarf2out_finish called through
21558 htab_traverse. Emit one queued .debug_str string. */
21559
21560 static int
21561 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
21562 {
21563 struct indirect_string_node *node = (struct indirect_string_node *) *h;
21564
21565 if (node->label && node->refcount)
21566 {
21567 switch_to_section (debug_str_section);
21568 ASM_OUTPUT_LABEL (asm_out_file, node->label);
21569 assemble_string (node->str, strlen (node->str) + 1);
21570 }
21571
21572 return 1;
21573 }
21574
21575 #if ENABLE_ASSERT_CHECKING
21576 /* Verify that all marks are clear. */
21577
21578 static void
21579 verify_marks_clear (dw_die_ref die)
21580 {
21581 dw_die_ref c;
21582
21583 gcc_assert (! die->die_mark);
21584 FOR_EACH_CHILD (die, c, verify_marks_clear (c));
21585 }
21586 #endif /* ENABLE_ASSERT_CHECKING */
21587
21588 /* Clear the marks for a die and its children.
21589 Be cool if the mark isn't set. */
21590
21591 static void
21592 prune_unmark_dies (dw_die_ref die)
21593 {
21594 dw_die_ref c;
21595
21596 if (die->die_mark)
21597 die->die_mark = 0;
21598 FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
21599 }
21600
21601 /* Given DIE that we're marking as used, find any other dies
21602 it references as attributes and mark them as used. */
21603
21604 static void
21605 prune_unused_types_walk_attribs (dw_die_ref die)
21606 {
21607 dw_attr_ref a;
21608 unsigned ix;
21609
21610 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
21611 {
21612 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
21613 {
21614 /* A reference to another DIE.
21615 Make sure that it will get emitted.
21616 If it was broken out into a comdat group, don't follow it. */
21617 if (dwarf_version < 4
21618 || a->dw_attr == DW_AT_specification
21619 || a->dw_attr_val.v.val_die_ref.die->die_id.die_type_node == NULL)
21620 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
21621 }
21622 /* Set the string's refcount to 0 so that prune_unused_types_mark
21623 accounts properly for it. */
21624 if (AT_class (a) == dw_val_class_str)
21625 a->dw_attr_val.v.val_str->refcount = 0;
21626 }
21627 }
21628
21629
21630 /* Mark DIE as being used. If DOKIDS is true, then walk down
21631 to DIE's children. */
21632
21633 static void
21634 prune_unused_types_mark (dw_die_ref die, int dokids)
21635 {
21636 dw_die_ref c;
21637
21638 if (die->die_mark == 0)
21639 {
21640 /* We haven't done this node yet. Mark it as used. */
21641 die->die_mark = 1;
21642
21643 /* We also have to mark its parents as used.
21644 (But we don't want to mark our parents' kids due to this.) */
21645 if (die->die_parent)
21646 prune_unused_types_mark (die->die_parent, 0);
21647
21648 /* Mark any referenced nodes. */
21649 prune_unused_types_walk_attribs (die);
21650
21651 /* If this node is a specification,
21652 also mark the definition, if it exists. */
21653 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
21654 prune_unused_types_mark (die->die_definition, 1);
21655 }
21656
21657 if (dokids && die->die_mark != 2)
21658 {
21659 /* We need to walk the children, but haven't done so yet.
21660 Remember that we've walked the kids. */
21661 die->die_mark = 2;
21662
21663 /* If this is an array type, we need to make sure our
21664 kids get marked, even if they're types. If we're
21665 breaking out types into comdat sections, do this
21666 for all type definitions. */
21667 if (die->die_tag == DW_TAG_array_type
21668 || (dwarf_version >= 4
21669 && is_type_die (die) && ! is_declaration_die (die)))
21670 FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
21671 else
21672 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
21673 }
21674 }
21675
21676 /* For local classes, look if any static member functions were emitted
21677 and if so, mark them. */
21678
21679 static void
21680 prune_unused_types_walk_local_classes (dw_die_ref die)
21681 {
21682 dw_die_ref c;
21683
21684 if (die->die_mark == 2)
21685 return;
21686
21687 switch (die->die_tag)
21688 {
21689 case DW_TAG_structure_type:
21690 case DW_TAG_union_type:
21691 case DW_TAG_class_type:
21692 break;
21693
21694 case DW_TAG_subprogram:
21695 if (!get_AT_flag (die, DW_AT_declaration)
21696 || die->die_definition != NULL)
21697 prune_unused_types_mark (die, 1);
21698 return;
21699
21700 default:
21701 return;
21702 }
21703
21704 /* Mark children. */
21705 FOR_EACH_CHILD (die, c, prune_unused_types_walk_local_classes (c));
21706 }
21707
21708 /* Walk the tree DIE and mark types that we actually use. */
21709
21710 static void
21711 prune_unused_types_walk (dw_die_ref die)
21712 {
21713 dw_die_ref c;
21714
21715 /* Don't do anything if this node is already marked and
21716 children have been marked as well. */
21717 if (die->die_mark == 2)
21718 return;
21719
21720 switch (die->die_tag)
21721 {
21722 case DW_TAG_structure_type:
21723 case DW_TAG_union_type:
21724 case DW_TAG_class_type:
21725 if (die->die_perennial_p)
21726 break;
21727
21728 for (c = die->die_parent; c; c = c->die_parent)
21729 if (c->die_tag == DW_TAG_subprogram)
21730 break;
21731
21732 /* Finding used static member functions inside of classes
21733 is needed just for local classes, because for other classes
21734 static member function DIEs with DW_AT_specification
21735 are emitted outside of the DW_TAG_*_type. If we ever change
21736 it, we'd need to call this even for non-local classes. */
21737 if (c)
21738 prune_unused_types_walk_local_classes (die);
21739
21740 /* It's a type node --- don't mark it. */
21741 return;
21742
21743 case DW_TAG_const_type:
21744 case DW_TAG_packed_type:
21745 case DW_TAG_pointer_type:
21746 case DW_TAG_reference_type:
21747 case DW_TAG_rvalue_reference_type:
21748 case DW_TAG_volatile_type:
21749 case DW_TAG_typedef:
21750 case DW_TAG_array_type:
21751 case DW_TAG_interface_type:
21752 case DW_TAG_friend:
21753 case DW_TAG_variant_part:
21754 case DW_TAG_enumeration_type:
21755 case DW_TAG_subroutine_type:
21756 case DW_TAG_string_type:
21757 case DW_TAG_set_type:
21758 case DW_TAG_subrange_type:
21759 case DW_TAG_ptr_to_member_type:
21760 case DW_TAG_file_type:
21761 if (die->die_perennial_p)
21762 break;
21763
21764 /* It's a type node --- don't mark it. */
21765 return;
21766
21767 default:
21768 /* Mark everything else. */
21769 break;
21770 }
21771
21772 if (die->die_mark == 0)
21773 {
21774 die->die_mark = 1;
21775
21776 /* Now, mark any dies referenced from here. */
21777 prune_unused_types_walk_attribs (die);
21778 }
21779
21780 die->die_mark = 2;
21781
21782 /* Mark children. */
21783 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
21784 }
21785
21786 /* Increment the string counts on strings referred to from DIE's
21787 attributes. */
21788
21789 static void
21790 prune_unused_types_update_strings (dw_die_ref die)
21791 {
21792 dw_attr_ref a;
21793 unsigned ix;
21794
21795 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
21796 if (AT_class (a) == dw_val_class_str)
21797 {
21798 struct indirect_string_node *s = a->dw_attr_val.v.val_str;
21799 s->refcount++;
21800 /* Avoid unnecessarily putting strings that are used less than
21801 twice in the hash table. */
21802 if (s->refcount
21803 == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
21804 {
21805 void ** slot;
21806 slot = htab_find_slot_with_hash (debug_str_hash, s->str,
21807 htab_hash_string (s->str),
21808 INSERT);
21809 gcc_assert (*slot == NULL);
21810 *slot = s;
21811 }
21812 }
21813 }
21814
21815 /* Remove from the tree DIE any dies that aren't marked. */
21816
21817 static void
21818 prune_unused_types_prune (dw_die_ref die)
21819 {
21820 dw_die_ref c;
21821
21822 gcc_assert (die->die_mark);
21823 prune_unused_types_update_strings (die);
21824
21825 if (! die->die_child)
21826 return;
21827
21828 c = die->die_child;
21829 do {
21830 dw_die_ref prev = c;
21831 for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
21832 if (c == die->die_child)
21833 {
21834 /* No marked children between 'prev' and the end of the list. */
21835 if (prev == c)
21836 /* No marked children at all. */
21837 die->die_child = NULL;
21838 else
21839 {
21840 prev->die_sib = c->die_sib;
21841 die->die_child = prev;
21842 }
21843 return;
21844 }
21845
21846 if (c != prev->die_sib)
21847 prev->die_sib = c;
21848 prune_unused_types_prune (c);
21849 } while (c != die->die_child);
21850 }
21851
21852 /* A helper function for dwarf2out_finish called through
21853 htab_traverse. Clear .debug_str strings that we haven't already
21854 decided to emit. */
21855
21856 static int
21857 prune_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
21858 {
21859 struct indirect_string_node *node = (struct indirect_string_node *) *h;
21860
21861 if (!node->label || !node->refcount)
21862 htab_clear_slot (debug_str_hash, h);
21863
21864 return 1;
21865 }
21866
21867 /* Remove dies representing declarations that we never use. */
21868
21869 static void
21870 prune_unused_types (void)
21871 {
21872 unsigned int i;
21873 limbo_die_node *node;
21874 comdat_type_node *ctnode;
21875 pubname_ref pub;
21876 dcall_entry *dcall;
21877
21878 #if ENABLE_ASSERT_CHECKING
21879 /* All the marks should already be clear. */
21880 verify_marks_clear (comp_unit_die);
21881 for (node = limbo_die_list; node; node = node->next)
21882 verify_marks_clear (node->die);
21883 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
21884 verify_marks_clear (ctnode->root_die);
21885 #endif /* ENABLE_ASSERT_CHECKING */
21886
21887 /* Mark types that are used in global variables. */
21888 premark_types_used_by_global_vars ();
21889
21890 /* Set the mark on nodes that are actually used. */
21891 prune_unused_types_walk (comp_unit_die);
21892 for (node = limbo_die_list; node; node = node->next)
21893 prune_unused_types_walk (node->die);
21894 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
21895 {
21896 prune_unused_types_walk (ctnode->root_die);
21897 prune_unused_types_mark (ctnode->type_die, 1);
21898 }
21899
21900 /* Also set the mark on nodes referenced from the
21901 pubname_table or arange_table. */
21902 for (i = 0; VEC_iterate (pubname_entry, pubname_table, i, pub); i++)
21903 prune_unused_types_mark (pub->die, 1);
21904 for (i = 0; i < arange_table_in_use; i++)
21905 prune_unused_types_mark (arange_table[i], 1);
21906
21907 /* Mark nodes referenced from the direct call table. */
21908 for (i = 0; VEC_iterate (dcall_entry, dcall_table, i, dcall); i++)
21909 prune_unused_types_mark (dcall->targ_die, 1);
21910
21911 /* Get rid of nodes that aren't marked; and update the string counts. */
21912 if (debug_str_hash && debug_str_hash_forced)
21913 htab_traverse (debug_str_hash, prune_indirect_string, NULL);
21914 else if (debug_str_hash)
21915 htab_empty (debug_str_hash);
21916 prune_unused_types_prune (comp_unit_die);
21917 for (node = limbo_die_list; node; node = node->next)
21918 prune_unused_types_prune (node->die);
21919 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
21920 prune_unused_types_prune (ctnode->root_die);
21921
21922 /* Leave the marks clear. */
21923 prune_unmark_dies (comp_unit_die);
21924 for (node = limbo_die_list; node; node = node->next)
21925 prune_unmark_dies (node->die);
21926 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
21927 prune_unmark_dies (ctnode->root_die);
21928 }
21929
21930 /* Set the parameter to true if there are any relative pathnames in
21931 the file table. */
21932 static int
21933 file_table_relative_p (void ** slot, void *param)
21934 {
21935 bool *p = (bool *) param;
21936 struct dwarf_file_data *d = (struct dwarf_file_data *) *slot;
21937 if (!IS_ABSOLUTE_PATH (d->filename))
21938 {
21939 *p = true;
21940 return 0;
21941 }
21942 return 1;
21943 }
21944
21945 /* Routines to manipulate hash table of comdat type units. */
21946
21947 static hashval_t
21948 htab_ct_hash (const void *of)
21949 {
21950 hashval_t h;
21951 const comdat_type_node *const type_node = (const comdat_type_node *) of;
21952
21953 memcpy (&h, type_node->signature, sizeof (h));
21954 return h;
21955 }
21956
21957 static int
21958 htab_ct_eq (const void *of1, const void *of2)
21959 {
21960 const comdat_type_node *const type_node_1 = (const comdat_type_node *) of1;
21961 const comdat_type_node *const type_node_2 = (const comdat_type_node *) of2;
21962
21963 return (! memcmp (type_node_1->signature, type_node_2->signature,
21964 DWARF_TYPE_SIGNATURE_SIZE));
21965 }
21966
21967 /* Move a DW_AT_{,MIPS_}linkage_name attribute just added to dw_die_ref
21968 to the location it would have been added, should we know its
21969 DECL_ASSEMBLER_NAME when we added other attributes. This will
21970 probably improve compactness of debug info, removing equivalent
21971 abbrevs, and hide any differences caused by deferring the
21972 computation of the assembler name, triggered by e.g. PCH. */
21973
21974 static inline void
21975 move_linkage_attr (dw_die_ref die)
21976 {
21977 unsigned ix = VEC_length (dw_attr_node, die->die_attr);
21978 dw_attr_node linkage = *VEC_index (dw_attr_node, die->die_attr, ix - 1);
21979
21980 gcc_assert (linkage.dw_attr == AT_linkage_name);
21981
21982 while (--ix > 0)
21983 {
21984 dw_attr_node *prev = VEC_index (dw_attr_node, die->die_attr, ix - 1);
21985
21986 if (prev->dw_attr == DW_AT_decl_line || prev->dw_attr == DW_AT_name)
21987 break;
21988 }
21989
21990 if (ix != VEC_length (dw_attr_node, die->die_attr) - 1)
21991 {
21992 VEC_pop (dw_attr_node, die->die_attr);
21993 VEC_quick_insert (dw_attr_node, die->die_attr, ix, &linkage);
21994 }
21995 }
21996
21997 /* Helper function for resolve_addr, attempt to resolve
21998 one CONST_STRING, return non-zero if not successful. Similarly verify that
21999 SYMBOL_REFs refer to variables emitted in the current CU. */
22000
22001 static int
22002 resolve_one_addr (rtx *addr, void *data ATTRIBUTE_UNUSED)
22003 {
22004 rtx rtl = *addr;
22005
22006 if (GET_CODE (rtl) == CONST_STRING)
22007 {
22008 size_t len = strlen (XSTR (rtl, 0)) + 1;
22009 tree t = build_string (len, XSTR (rtl, 0));
22010 tree tlen = build_int_cst (NULL_TREE, len - 1);
22011 TREE_TYPE (t)
22012 = build_array_type (char_type_node, build_index_type (tlen));
22013 rtl = lookup_constant_def (t);
22014 if (!rtl || !MEM_P (rtl))
22015 return 1;
22016 rtl = XEXP (rtl, 0);
22017 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
22018 *addr = rtl;
22019 return 0;
22020 }
22021
22022 if (GET_CODE (rtl) == SYMBOL_REF
22023 && SYMBOL_REF_DECL (rtl)
22024 && !TREE_ASM_WRITTEN (SYMBOL_REF_DECL (rtl)))
22025 return 1;
22026
22027 if (GET_CODE (rtl) == CONST
22028 && for_each_rtx (&XEXP (rtl, 0), resolve_one_addr, NULL))
22029 return 1;
22030
22031 return 0;
22032 }
22033
22034 /* Helper function for resolve_addr, handle one location
22035 expression, return false if at least one CONST_STRING or SYMBOL_REF in
22036 the location list couldn't be resolved. */
22037
22038 static bool
22039 resolve_addr_in_expr (dw_loc_descr_ref loc)
22040 {
22041 for (; loc; loc = loc->dw_loc_next)
22042 if ((loc->dw_loc_opc == DW_OP_addr
22043 && resolve_one_addr (&loc->dw_loc_oprnd1.v.val_addr, NULL))
22044 || (loc->dw_loc_opc == DW_OP_implicit_value
22045 && loc->dw_loc_oprnd2.val_class == dw_val_class_addr
22046 && resolve_one_addr (&loc->dw_loc_oprnd2.v.val_addr, NULL)))
22047 return false;
22048 return true;
22049 }
22050
22051 /* Resolve DW_OP_addr and DW_AT_const_value CONST_STRING arguments to
22052 an address in .rodata section if the string literal is emitted there,
22053 or remove the containing location list or replace DW_AT_const_value
22054 with DW_AT_location and empty location expression, if it isn't found
22055 in .rodata. Similarly for SYMBOL_REFs, keep only those that refer
22056 to something that has been emitted in the current CU. */
22057
22058 static void
22059 resolve_addr (dw_die_ref die)
22060 {
22061 dw_die_ref c;
22062 dw_attr_ref a;
22063 dw_loc_list_ref *curr;
22064 unsigned ix;
22065
22066 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
22067 switch (AT_class (a))
22068 {
22069 case dw_val_class_loc_list:
22070 curr = AT_loc_list_ptr (a);
22071 while (*curr)
22072 {
22073 if (!resolve_addr_in_expr ((*curr)->expr))
22074 {
22075 dw_loc_list_ref next = (*curr)->dw_loc_next;
22076 if (next && (*curr)->ll_symbol)
22077 {
22078 gcc_assert (!next->ll_symbol);
22079 next->ll_symbol = (*curr)->ll_symbol;
22080 }
22081 *curr = next;
22082 }
22083 else
22084 curr = &(*curr)->dw_loc_next;
22085 }
22086 if (!AT_loc_list (a))
22087 {
22088 remove_AT (die, a->dw_attr);
22089 ix--;
22090 }
22091 break;
22092 case dw_val_class_loc:
22093 if (!resolve_addr_in_expr (AT_loc (a)))
22094 {
22095 remove_AT (die, a->dw_attr);
22096 ix--;
22097 }
22098 break;
22099 case dw_val_class_addr:
22100 if (a->dw_attr == DW_AT_const_value
22101 && resolve_one_addr (&a->dw_attr_val.v.val_addr, NULL))
22102 {
22103 remove_AT (die, a->dw_attr);
22104 ix--;
22105 }
22106 break;
22107 default:
22108 break;
22109 }
22110
22111 FOR_EACH_CHILD (die, c, resolve_addr (c));
22112 }
22113
22114 /* Output stuff that dwarf requires at the end of every file,
22115 and generate the DWARF-2 debugging info. */
22116
22117 static void
22118 dwarf2out_finish (const char *filename)
22119 {
22120 limbo_die_node *node, *next_node;
22121 comdat_type_node *ctnode;
22122 htab_t comdat_type_table;
22123 dw_die_ref die = 0;
22124 unsigned int i;
22125
22126 gen_remaining_tmpl_value_param_die_attribute ();
22127
22128 /* Add the name for the main input file now. We delayed this from
22129 dwarf2out_init to avoid complications with PCH. */
22130 add_name_attribute (comp_unit_die, remap_debug_filename (filename));
22131 if (!IS_ABSOLUTE_PATH (filename))
22132 add_comp_dir_attribute (comp_unit_die);
22133 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
22134 {
22135 bool p = false;
22136 htab_traverse (file_table, file_table_relative_p, &p);
22137 if (p)
22138 add_comp_dir_attribute (comp_unit_die);
22139 }
22140
22141 for (i = 0; i < VEC_length (deferred_locations, deferred_locations_list); i++)
22142 {
22143 add_location_or_const_value_attribute (
22144 VEC_index (deferred_locations, deferred_locations_list, i)->die,
22145 VEC_index (deferred_locations, deferred_locations_list, i)->variable,
22146 DW_AT_location);
22147 }
22148
22149 /* Traverse the limbo die list, and add parent/child links. The only
22150 dies without parents that should be here are concrete instances of
22151 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
22152 For concrete instances, we can get the parent die from the abstract
22153 instance. */
22154 for (node = limbo_die_list; node; node = next_node)
22155 {
22156 next_node = node->next;
22157 die = node->die;
22158
22159 if (die->die_parent == NULL)
22160 {
22161 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
22162
22163 if (origin)
22164 add_child_die (origin->die_parent, die);
22165 else if (die == comp_unit_die)
22166 ;
22167 else if (seen_error ())
22168 /* It's OK to be confused by errors in the input. */
22169 add_child_die (comp_unit_die, die);
22170 else
22171 {
22172 /* In certain situations, the lexical block containing a
22173 nested function can be optimized away, which results
22174 in the nested function die being orphaned. Likewise
22175 with the return type of that nested function. Force
22176 this to be a child of the containing function.
22177
22178 It may happen that even the containing function got fully
22179 inlined and optimized out. In that case we are lost and
22180 assign the empty child. This should not be big issue as
22181 the function is likely unreachable too. */
22182 tree context = NULL_TREE;
22183
22184 gcc_assert (node->created_for);
22185
22186 if (DECL_P (node->created_for))
22187 context = DECL_CONTEXT (node->created_for);
22188 else if (TYPE_P (node->created_for))
22189 context = TYPE_CONTEXT (node->created_for);
22190
22191 gcc_assert (context
22192 && (TREE_CODE (context) == FUNCTION_DECL
22193 || TREE_CODE (context) == NAMESPACE_DECL));
22194
22195 origin = lookup_decl_die (context);
22196 if (origin)
22197 add_child_die (origin, die);
22198 else
22199 add_child_die (comp_unit_die, die);
22200 }
22201 }
22202 }
22203
22204 limbo_die_list = NULL;
22205
22206 resolve_addr (comp_unit_die);
22207
22208 for (node = deferred_asm_name; node; node = node->next)
22209 {
22210 tree decl = node->created_for;
22211 if (DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl))
22212 {
22213 add_AT_string (node->die, AT_linkage_name,
22214 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
22215 move_linkage_attr (node->die);
22216 }
22217 }
22218
22219 deferred_asm_name = NULL;
22220
22221 /* Walk through the list of incomplete types again, trying once more to
22222 emit full debugging info for them. */
22223 retry_incomplete_types ();
22224
22225 if (flag_eliminate_unused_debug_types)
22226 prune_unused_types ();
22227
22228 /* Generate separate CUs for each of the include files we've seen.
22229 They will go into limbo_die_list. */
22230 if (flag_eliminate_dwarf2_dups && dwarf_version < 4)
22231 break_out_includes (comp_unit_die);
22232
22233 /* Generate separate COMDAT sections for type DIEs. */
22234 if (dwarf_version >= 4)
22235 {
22236 break_out_comdat_types (comp_unit_die);
22237
22238 /* Each new type_unit DIE was added to the limbo die list when created.
22239 Since these have all been added to comdat_type_list, clear the
22240 limbo die list. */
22241 limbo_die_list = NULL;
22242
22243 /* For each new comdat type unit, copy declarations for incomplete
22244 types to make the new unit self-contained (i.e., no direct
22245 references to the main compile unit). */
22246 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
22247 copy_decls_for_unworthy_types (ctnode->root_die);
22248 copy_decls_for_unworthy_types (comp_unit_die);
22249
22250 /* In the process of copying declarations from one unit to another,
22251 we may have left some declarations behind that are no longer
22252 referenced. Prune them. */
22253 prune_unused_types ();
22254 }
22255
22256 /* Traverse the DIE's and add add sibling attributes to those DIE's
22257 that have children. */
22258 add_sibling_attributes (comp_unit_die);
22259 for (node = limbo_die_list; node; node = node->next)
22260 add_sibling_attributes (node->die);
22261 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
22262 add_sibling_attributes (ctnode->root_die);
22263
22264 /* Output a terminator label for the .text section. */
22265 switch_to_section (text_section);
22266 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
22267 if (flag_reorder_blocks_and_partition)
22268 {
22269 switch_to_section (unlikely_text_section ());
22270 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
22271 }
22272
22273 /* We can only use the low/high_pc attributes if all of the code was
22274 in .text. */
22275 if (!have_multiple_function_sections
22276 || !(dwarf_version >= 3 || !dwarf_strict))
22277 {
22278 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
22279 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
22280 }
22281
22282 else
22283 {
22284 unsigned fde_idx = 0;
22285 bool range_list_added = false;
22286
22287 /* We need to give .debug_loc and .debug_ranges an appropriate
22288 "base address". Use zero so that these addresses become
22289 absolute. Historically, we've emitted the unexpected
22290 DW_AT_entry_pc instead of DW_AT_low_pc for this purpose.
22291 Emit both to give time for other tools to adapt. */
22292 add_AT_addr (comp_unit_die, DW_AT_low_pc, const0_rtx);
22293 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
22294
22295 if (text_section_used)
22296 add_ranges_by_labels (comp_unit_die, text_section_label,
22297 text_end_label, &range_list_added);
22298 if (flag_reorder_blocks_and_partition && cold_text_section_used)
22299 add_ranges_by_labels (comp_unit_die, cold_text_section_label,
22300 cold_end_label, &range_list_added);
22301
22302 for (fde_idx = 0; fde_idx < fde_table_in_use; fde_idx++)
22303 {
22304 dw_fde_ref fde = &fde_table[fde_idx];
22305
22306 if (fde->dw_fde_switched_sections)
22307 {
22308 if (!fde->in_std_section)
22309 add_ranges_by_labels (comp_unit_die,
22310 fde->dw_fde_hot_section_label,
22311 fde->dw_fde_hot_section_end_label,
22312 &range_list_added);
22313 if (!fde->cold_in_std_section)
22314 add_ranges_by_labels (comp_unit_die,
22315 fde->dw_fde_unlikely_section_label,
22316 fde->dw_fde_unlikely_section_end_label,
22317 &range_list_added);
22318 }
22319 else if (!fde->in_std_section)
22320 add_ranges_by_labels (comp_unit_die, fde->dw_fde_begin,
22321 fde->dw_fde_end, &range_list_added);
22322 }
22323
22324 if (range_list_added)
22325 add_ranges (NULL);
22326 }
22327
22328 /* Output location list section if necessary. */
22329 if (have_location_lists)
22330 {
22331 /* Output the location lists info. */
22332 switch_to_section (debug_loc_section);
22333 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
22334 DEBUG_LOC_SECTION_LABEL, 0);
22335 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
22336 output_location_lists (die);
22337 }
22338
22339 if (debug_info_level >= DINFO_LEVEL_NORMAL)
22340 add_AT_lineptr (comp_unit_die, DW_AT_stmt_list,
22341 debug_line_section_label);
22342
22343 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
22344 add_AT_macptr (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
22345
22346 /* Output all of the compilation units. We put the main one last so that
22347 the offsets are available to output_pubnames. */
22348 for (node = limbo_die_list; node; node = node->next)
22349 output_comp_unit (node->die, 0);
22350
22351 comdat_type_table = htab_create (100, htab_ct_hash, htab_ct_eq, NULL);
22352 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
22353 {
22354 void **slot = htab_find_slot (comdat_type_table, ctnode, INSERT);
22355
22356 /* Don't output duplicate types. */
22357 if (*slot != HTAB_EMPTY_ENTRY)
22358 continue;
22359
22360 /* Add a pointer to the line table for the main compilation unit
22361 so that the debugger can make sense of DW_AT_decl_file
22362 attributes. */
22363 if (debug_info_level >= DINFO_LEVEL_NORMAL)
22364 add_AT_lineptr (ctnode->root_die, DW_AT_stmt_list,
22365 debug_line_section_label);
22366
22367 output_comdat_type_unit (ctnode);
22368 *slot = ctnode;
22369 }
22370 htab_delete (comdat_type_table);
22371
22372 /* Output the main compilation unit if non-empty or if .debug_macinfo
22373 has been emitted. */
22374 output_comp_unit (comp_unit_die, debug_info_level >= DINFO_LEVEL_VERBOSE);
22375
22376 /* Output the abbreviation table. */
22377 switch_to_section (debug_abbrev_section);
22378 output_abbrev_section ();
22379
22380 /* Output public names table if necessary. */
22381 if (!VEC_empty (pubname_entry, pubname_table))
22382 {
22383 switch_to_section (debug_pubnames_section);
22384 output_pubnames (pubname_table);
22385 }
22386
22387 /* Output public types table if necessary. */
22388 /* ??? Only defined by DWARF3, but emitted by Darwin for DWARF2.
22389 It shouldn't hurt to emit it always, since pure DWARF2 consumers
22390 simply won't look for the section. */
22391 if (!VEC_empty (pubname_entry, pubtype_table))
22392 {
22393 switch_to_section (debug_pubtypes_section);
22394 output_pubnames (pubtype_table);
22395 }
22396
22397 /* Output direct and virtual call tables if necessary. */
22398 if (!VEC_empty (dcall_entry, dcall_table))
22399 {
22400 switch_to_section (debug_dcall_section);
22401 output_dcall_table ();
22402 }
22403 if (!VEC_empty (vcall_entry, vcall_table))
22404 {
22405 switch_to_section (debug_vcall_section);
22406 output_vcall_table ();
22407 }
22408
22409 /* Output the address range information. We only put functions in the arange
22410 table, so don't write it out if we don't have any. */
22411 if (fde_table_in_use)
22412 {
22413 switch_to_section (debug_aranges_section);
22414 output_aranges ();
22415 }
22416
22417 /* Output ranges section if necessary. */
22418 if (ranges_table_in_use)
22419 {
22420 switch_to_section (debug_ranges_section);
22421 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
22422 output_ranges ();
22423 }
22424
22425 /* Output the source line correspondence table. We must do this
22426 even if there is no line information. Otherwise, on an empty
22427 translation unit, we will generate a present, but empty,
22428 .debug_info section. IRIX 6.5 `nm' will then complain when
22429 examining the file. This is done late so that any filenames
22430 used by the debug_info section are marked as 'used'. */
22431 if (! DWARF2_ASM_LINE_DEBUG_INFO)
22432 {
22433 switch_to_section (debug_line_section);
22434 output_line_info ();
22435 }
22436
22437 /* Have to end the macro section. */
22438 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
22439 {
22440 switch_to_section (debug_macinfo_section);
22441 dw2_asm_output_data (1, 0, "End compilation unit");
22442 }
22443
22444 /* If we emitted any DW_FORM_strp form attribute, output the string
22445 table too. */
22446 if (debug_str_hash)
22447 htab_traverse (debug_str_hash, output_indirect_string, NULL);
22448 }
22449 #else
22450
22451 /* This should never be used, but its address is needed for comparisons. */
22452 const struct gcc_debug_hooks dwarf2_debug_hooks =
22453 {
22454 0, /* init */
22455 0, /* finish */
22456 0, /* assembly_start */
22457 0, /* define */
22458 0, /* undef */
22459 0, /* start_source_file */
22460 0, /* end_source_file */
22461 0, /* begin_block */
22462 0, /* end_block */
22463 0, /* ignore_block */
22464 0, /* source_line */
22465 0, /* begin_prologue */
22466 0, /* end_prologue */
22467 0, /* begin_epilogue */
22468 0, /* end_epilogue */
22469 0, /* begin_function */
22470 0, /* end_function */
22471 0, /* function_decl */
22472 0, /* global_decl */
22473 0, /* type_decl */
22474 0, /* imported_module_or_decl */
22475 0, /* deferred_inline_function */
22476 0, /* outlining_inline_function */
22477 0, /* label */
22478 0, /* handle_pch */
22479 0, /* var_location */
22480 0, /* switch_text_section */
22481 0, /* direct_call */
22482 0, /* virtual_call_token */
22483 0, /* copy_call_info */
22484 0, /* virtual_call */
22485 0, /* set_name */
22486 0 /* start_end_main_source_file */
22487 };
22488
22489 #endif /* DWARF2_DEBUGGING_INFO */
22490
22491 #include "gt-dwarf2out.h"