dwarf2out.c (dwarf2out_finish): Swap order of break_out_includes and prune_unused_typ...
[gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "real.h"
44 #include "rtl.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "reload.h"
49 #include "function.h"
50 #include "output.h"
51 #include "expr.h"
52 #include "libfuncs.h"
53 #include "except.h"
54 #include "dwarf2.h"
55 #include "dwarf2out.h"
56 #include "dwarf2asm.h"
57 #include "toplev.h"
58 #include "varray.h"
59 #include "ggc.h"
60 #include "md5.h"
61 #include "tm_p.h"
62 #include "diagnostic.h"
63 #include "debug.h"
64 #include "target.h"
65 #include "langhooks.h"
66 #include "hashtab.h"
67
68 #ifdef DWARF2_DEBUGGING_INFO
69 static void dwarf2out_source_line PARAMS ((unsigned int, const char *));
70 #endif
71
72 /* DWARF2 Abbreviation Glossary:
73 CFA = Canonical Frame Address
74 a fixed address on the stack which identifies a call frame.
75 We define it to be the value of SP just before the call insn.
76 The CFA register and offset, which may change during the course
77 of the function, are used to calculate its value at runtime.
78 CFI = Call Frame Instruction
79 an instruction for the DWARF2 abstract machine
80 CIE = Common Information Entry
81 information describing information common to one or more FDEs
82 DIE = Debugging Information Entry
83 FDE = Frame Description Entry
84 information describing the stack call frame, in particular,
85 how to restore registers
86
87 DW_CFA_... = DWARF2 CFA call frame instruction
88 DW_TAG_... = DWARF2 DIE tag */
89
90 /* Decide whether we want to emit frame unwind information for the current
91 translation unit. */
92
93 int
94 dwarf2out_do_frame ()
95 {
96 return (write_symbols == DWARF2_DEBUG
97 || write_symbols == VMS_AND_DWARF2_DEBUG
98 #ifdef DWARF2_FRAME_INFO
99 || DWARF2_FRAME_INFO
100 #endif
101 #ifdef DWARF2_UNWIND_INFO
102 || flag_unwind_tables
103 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
104 #endif
105 );
106 }
107
108 /* The size of the target's pointer type. */
109 #ifndef PTR_SIZE
110 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
111 #endif
112
113 /* Default version of targetm.eh_frame_section. Note this must appear
114 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro
115 guards. */
116
117 void
118 default_eh_frame_section ()
119 {
120 #ifdef EH_FRAME_SECTION_NAME
121 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
122 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
123 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
124 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
125 int flags;
126
127 flags = (! flag_pic
128 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
129 && (fde_encoding & 0x70) != DW_EH_PE_aligned
130 && (per_encoding & 0x70) != DW_EH_PE_absptr
131 && (per_encoding & 0x70) != DW_EH_PE_aligned
132 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
133 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
134 ? 0 : SECTION_WRITE;
135 named_section_flags (EH_FRAME_SECTION_NAME, flags);
136 #else
137 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
138 #endif
139 #else
140 tree label = get_file_function_name ('F');
141
142 data_section ();
143 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
144 (*targetm.asm_out.globalize_label) (asm_out_file, IDENTIFIER_POINTER (label));
145 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
146 #endif
147 }
148
149 /* Array of RTXes referenced by the debugging information, which therefore
150 must be kept around forever. */
151 static GTY(()) varray_type used_rtx_varray;
152
153 /* A pointer to the base of a list of incomplete types which might be
154 completed at some later time. incomplete_types_list needs to be a VARRAY
155 because we want to tell the garbage collector about it. */
156 static GTY(()) varray_type incomplete_types;
157
158 /* A pointer to the base of a table of references to declaration
159 scopes. This table is a display which tracks the nesting
160 of declaration scopes at the current scope and containing
161 scopes. This table is used to find the proper place to
162 define type declaration DIE's. */
163 static GTY(()) varray_type decl_scope_table;
164
165 /* How to start an assembler comment. */
166 #ifndef ASM_COMMENT_START
167 #define ASM_COMMENT_START ";#"
168 #endif
169
170 typedef struct dw_cfi_struct *dw_cfi_ref;
171 typedef struct dw_fde_struct *dw_fde_ref;
172 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
173
174 /* Call frames are described using a sequence of Call Frame
175 Information instructions. The register number, offset
176 and address fields are provided as possible operands;
177 their use is selected by the opcode field. */
178
179 enum dw_cfi_oprnd_type {
180 dw_cfi_oprnd_unused,
181 dw_cfi_oprnd_reg_num,
182 dw_cfi_oprnd_offset,
183 dw_cfi_oprnd_addr,
184 dw_cfi_oprnd_loc
185 };
186
187 typedef union dw_cfi_oprnd_struct GTY(())
188 {
189 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
190 long int GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
191 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
192 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
193 }
194 dw_cfi_oprnd;
195
196 typedef struct dw_cfi_struct GTY(())
197 {
198 dw_cfi_ref dw_cfi_next;
199 enum dwarf_call_frame_info dw_cfi_opc;
200 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
201 dw_cfi_oprnd1;
202 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
203 dw_cfi_oprnd2;
204 }
205 dw_cfi_node;
206
207 /* This is how we define the location of the CFA. We use to handle it
208 as REG + OFFSET all the time, but now it can be more complex.
209 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
210 Instead of passing around REG and OFFSET, we pass a copy
211 of this structure. */
212 typedef struct cfa_loc GTY(())
213 {
214 unsigned long reg;
215 long offset;
216 long base_offset;
217 int indirect; /* 1 if CFA is accessed via a dereference. */
218 } dw_cfa_location;
219
220 /* All call frame descriptions (FDE's) in the GCC generated DWARF
221 refer to a single Common Information Entry (CIE), defined at
222 the beginning of the .debug_frame section. This use of a single
223 CIE obviates the need to keep track of multiple CIE's
224 in the DWARF generation routines below. */
225
226 typedef struct dw_fde_struct GTY(())
227 {
228 const char *dw_fde_begin;
229 const char *dw_fde_current_label;
230 const char *dw_fde_end;
231 dw_cfi_ref dw_fde_cfi;
232 unsigned funcdef_number;
233 unsigned all_throwers_are_sibcalls : 1;
234 unsigned nothrow : 1;
235 unsigned uses_eh_lsda : 1;
236 }
237 dw_fde_node;
238
239 /* Maximum size (in bytes) of an artificially generated label. */
240 #define MAX_ARTIFICIAL_LABEL_BYTES 30
241
242 /* The size of addresses as they appear in the Dwarf 2 data.
243 Some architectures use word addresses to refer to code locations,
244 but Dwarf 2 info always uses byte addresses. On such machines,
245 Dwarf 2 addresses need to be larger than the architecture's
246 pointers. */
247 #ifndef DWARF2_ADDR_SIZE
248 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
249 #endif
250
251 /* The size in bytes of a DWARF field indicating an offset or length
252 relative to a debug info section, specified to be 4 bytes in the
253 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
254 as PTR_SIZE. */
255
256 #ifndef DWARF_OFFSET_SIZE
257 #define DWARF_OFFSET_SIZE 4
258 #endif
259
260 #define DWARF_VERSION 2
261
262 /* Round SIZE up to the nearest BOUNDARY. */
263 #define DWARF_ROUND(SIZE,BOUNDARY) \
264 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
265
266 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
267 #ifndef DWARF_CIE_DATA_ALIGNMENT
268 #ifdef STACK_GROWS_DOWNWARD
269 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
270 #else
271 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
272 #endif
273 #endif
274
275 /* A pointer to the base of a table that contains frame description
276 information for each routine. */
277 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
278
279 /* Number of elements currently allocated for fde_table. */
280 static unsigned fde_table_allocated;
281
282 /* Number of elements in fde_table currently in use. */
283 static GTY(()) unsigned fde_table_in_use;
284
285 /* Size (in elements) of increments by which we may expand the
286 fde_table. */
287 #define FDE_TABLE_INCREMENT 256
288
289 /* A list of call frame insns for the CIE. */
290 static GTY(()) dw_cfi_ref cie_cfi_head;
291
292 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
293 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
294 attribute that accelerates the lookup of the FDE associated
295 with the subprogram. This variable holds the table index of the FDE
296 associated with the current function (body) definition. */
297 static unsigned current_funcdef_fde;
298 #endif
299
300 struct indirect_string_node GTY(())
301 {
302 const char *str;
303 unsigned int refcount;
304 unsigned int form;
305 char *label;
306 };
307
308 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
309
310 static GTY(()) int dw2_string_counter;
311 static GTY(()) unsigned long dwarf2out_cfi_label_num;
312
313 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
314
315 /* Forward declarations for functions defined in this file. */
316
317 static char *stripattributes PARAMS ((const char *));
318 static const char *dwarf_cfi_name PARAMS ((unsigned));
319 static dw_cfi_ref new_cfi PARAMS ((void));
320 static void add_cfi PARAMS ((dw_cfi_ref *, dw_cfi_ref));
321 static void add_fde_cfi PARAMS ((const char *, dw_cfi_ref));
322 static void lookup_cfa_1 PARAMS ((dw_cfi_ref,
323 dw_cfa_location *));
324 static void lookup_cfa PARAMS ((dw_cfa_location *));
325 static void reg_save PARAMS ((const char *, unsigned,
326 unsigned, long));
327 static void initial_return_save PARAMS ((rtx));
328 static long stack_adjust_offset PARAMS ((rtx));
329 static void output_cfi PARAMS ((dw_cfi_ref, dw_fde_ref, int));
330 static void output_call_frame_info PARAMS ((int));
331 static void dwarf2out_stack_adjust PARAMS ((rtx));
332 static void queue_reg_save PARAMS ((const char *, rtx, long));
333 static void flush_queued_reg_saves PARAMS ((void));
334 static bool clobbers_queued_reg_save PARAMS ((rtx));
335 static void dwarf2out_frame_debug_expr PARAMS ((rtx, const char *));
336
337 /* Support for complex CFA locations. */
338 static void output_cfa_loc PARAMS ((dw_cfi_ref));
339 static void get_cfa_from_loc_descr PARAMS ((dw_cfa_location *,
340 struct dw_loc_descr_struct *));
341 static struct dw_loc_descr_struct *build_cfa_loc
342 PARAMS ((dw_cfa_location *));
343 static void def_cfa_1 PARAMS ((const char *,
344 dw_cfa_location *));
345
346 /* How to start an assembler comment. */
347 #ifndef ASM_COMMENT_START
348 #define ASM_COMMENT_START ";#"
349 #endif
350
351 /* Data and reference forms for relocatable data. */
352 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
353 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
354
355 #ifndef DEBUG_FRAME_SECTION
356 #define DEBUG_FRAME_SECTION ".debug_frame"
357 #endif
358
359 #ifndef FUNC_BEGIN_LABEL
360 #define FUNC_BEGIN_LABEL "LFB"
361 #endif
362
363 #ifndef FUNC_END_LABEL
364 #define FUNC_END_LABEL "LFE"
365 #endif
366
367 #define FRAME_BEGIN_LABEL "Lframe"
368 #define CIE_AFTER_SIZE_LABEL "LSCIE"
369 #define CIE_END_LABEL "LECIE"
370 #define FDE_LABEL "LSFDE"
371 #define FDE_AFTER_SIZE_LABEL "LASFDE"
372 #define FDE_END_LABEL "LEFDE"
373 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
374 #define LINE_NUMBER_END_LABEL "LELT"
375 #define LN_PROLOG_AS_LABEL "LASLTP"
376 #define LN_PROLOG_END_LABEL "LELTP"
377 #define DIE_LABEL_PREFIX "DW"
378
379 /* The DWARF 2 CFA column which tracks the return address. Normally this
380 is the column for PC, or the first column after all of the hard
381 registers. */
382 #ifndef DWARF_FRAME_RETURN_COLUMN
383 #ifdef PC_REGNUM
384 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
385 #else
386 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
387 #endif
388 #endif
389
390 /* The mapping from gcc register number to DWARF 2 CFA column number. By
391 default, we just provide columns for all registers. */
392 #ifndef DWARF_FRAME_REGNUM
393 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
394 #endif
395
396 /* The offset from the incoming value of %sp to the top of the stack frame
397 for the current function. */
398 #ifndef INCOMING_FRAME_SP_OFFSET
399 #define INCOMING_FRAME_SP_OFFSET 0
400 #endif
401 \f
402 /* Hook used by __throw. */
403
404 rtx
405 expand_builtin_dwarf_fp_regnum ()
406 {
407 return GEN_INT (DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM));
408 }
409
410 /* Return a pointer to a copy of the section string name S with all
411 attributes stripped off, and an asterisk prepended (for assemble_name). */
412
413 static inline char *
414 stripattributes (s)
415 const char *s;
416 {
417 char *stripped = xmalloc (strlen (s) + 2);
418 char *p = stripped;
419
420 *p++ = '*';
421
422 while (*s && *s != ',')
423 *p++ = *s++;
424
425 *p = '\0';
426 return stripped;
427 }
428
429 /* Generate code to initialize the register size table. */
430
431 void
432 expand_builtin_init_dwarf_reg_sizes (address)
433 tree address;
434 {
435 int i;
436 enum machine_mode mode = TYPE_MODE (char_type_node);
437 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
438 rtx mem = gen_rtx_MEM (BLKmode, addr);
439
440 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
441 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
442 {
443 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
444 HOST_WIDE_INT size = GET_MODE_SIZE (reg_raw_mode[i]);
445
446 if (offset < 0)
447 continue;
448
449 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
450 }
451 }
452
453 /* Convert a DWARF call frame info. operation to its string name */
454
455 static const char *
456 dwarf_cfi_name (cfi_opc)
457 unsigned cfi_opc;
458 {
459 switch (cfi_opc)
460 {
461 case DW_CFA_advance_loc:
462 return "DW_CFA_advance_loc";
463 case DW_CFA_offset:
464 return "DW_CFA_offset";
465 case DW_CFA_restore:
466 return "DW_CFA_restore";
467 case DW_CFA_nop:
468 return "DW_CFA_nop";
469 case DW_CFA_set_loc:
470 return "DW_CFA_set_loc";
471 case DW_CFA_advance_loc1:
472 return "DW_CFA_advance_loc1";
473 case DW_CFA_advance_loc2:
474 return "DW_CFA_advance_loc2";
475 case DW_CFA_advance_loc4:
476 return "DW_CFA_advance_loc4";
477 case DW_CFA_offset_extended:
478 return "DW_CFA_offset_extended";
479 case DW_CFA_restore_extended:
480 return "DW_CFA_restore_extended";
481 case DW_CFA_undefined:
482 return "DW_CFA_undefined";
483 case DW_CFA_same_value:
484 return "DW_CFA_same_value";
485 case DW_CFA_register:
486 return "DW_CFA_register";
487 case DW_CFA_remember_state:
488 return "DW_CFA_remember_state";
489 case DW_CFA_restore_state:
490 return "DW_CFA_restore_state";
491 case DW_CFA_def_cfa:
492 return "DW_CFA_def_cfa";
493 case DW_CFA_def_cfa_register:
494 return "DW_CFA_def_cfa_register";
495 case DW_CFA_def_cfa_offset:
496 return "DW_CFA_def_cfa_offset";
497
498 /* DWARF 3 */
499 case DW_CFA_def_cfa_expression:
500 return "DW_CFA_def_cfa_expression";
501 case DW_CFA_expression:
502 return "DW_CFA_expression";
503 case DW_CFA_offset_extended_sf:
504 return "DW_CFA_offset_extended_sf";
505 case DW_CFA_def_cfa_sf:
506 return "DW_CFA_def_cfa_sf";
507 case DW_CFA_def_cfa_offset_sf:
508 return "DW_CFA_def_cfa_offset_sf";
509
510 /* SGI/MIPS specific */
511 case DW_CFA_MIPS_advance_loc8:
512 return "DW_CFA_MIPS_advance_loc8";
513
514 /* GNU extensions */
515 case DW_CFA_GNU_window_save:
516 return "DW_CFA_GNU_window_save";
517 case DW_CFA_GNU_args_size:
518 return "DW_CFA_GNU_args_size";
519 case DW_CFA_GNU_negative_offset_extended:
520 return "DW_CFA_GNU_negative_offset_extended";
521
522 default:
523 return "DW_CFA_<unknown>";
524 }
525 }
526
527 /* Return a pointer to a newly allocated Call Frame Instruction. */
528
529 static inline dw_cfi_ref
530 new_cfi ()
531 {
532 dw_cfi_ref cfi = (dw_cfi_ref) ggc_alloc (sizeof (dw_cfi_node));
533
534 cfi->dw_cfi_next = NULL;
535 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
536 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
537
538 return cfi;
539 }
540
541 /* Add a Call Frame Instruction to list of instructions. */
542
543 static inline void
544 add_cfi (list_head, cfi)
545 dw_cfi_ref *list_head;
546 dw_cfi_ref cfi;
547 {
548 dw_cfi_ref *p;
549
550 /* Find the end of the chain. */
551 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
552 ;
553
554 *p = cfi;
555 }
556
557 /* Generate a new label for the CFI info to refer to. */
558
559 char *
560 dwarf2out_cfi_label ()
561 {
562 static char label[20];
563
564 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
565 ASM_OUTPUT_LABEL (asm_out_file, label);
566 return label;
567 }
568
569 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
570 or to the CIE if LABEL is NULL. */
571
572 static void
573 add_fde_cfi (label, cfi)
574 const char *label;
575 dw_cfi_ref cfi;
576 {
577 if (label)
578 {
579 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
580
581 if (*label == 0)
582 label = dwarf2out_cfi_label ();
583
584 if (fde->dw_fde_current_label == NULL
585 || strcmp (label, fde->dw_fde_current_label) != 0)
586 {
587 dw_cfi_ref xcfi;
588
589 fde->dw_fde_current_label = label = xstrdup (label);
590
591 /* Set the location counter to the new label. */
592 xcfi = new_cfi ();
593 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
594 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
595 add_cfi (&fde->dw_fde_cfi, xcfi);
596 }
597
598 add_cfi (&fde->dw_fde_cfi, cfi);
599 }
600
601 else
602 add_cfi (&cie_cfi_head, cfi);
603 }
604
605 /* Subroutine of lookup_cfa. */
606
607 static inline void
608 lookup_cfa_1 (cfi, loc)
609 dw_cfi_ref cfi;
610 dw_cfa_location *loc;
611 {
612 switch (cfi->dw_cfi_opc)
613 {
614 case DW_CFA_def_cfa_offset:
615 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
616 break;
617 case DW_CFA_def_cfa_register:
618 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
619 break;
620 case DW_CFA_def_cfa:
621 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
622 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
623 break;
624 case DW_CFA_def_cfa_expression:
625 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
626 break;
627 default:
628 break;
629 }
630 }
631
632 /* Find the previous value for the CFA. */
633
634 static void
635 lookup_cfa (loc)
636 dw_cfa_location *loc;
637 {
638 dw_cfi_ref cfi;
639
640 loc->reg = (unsigned long) -1;
641 loc->offset = 0;
642 loc->indirect = 0;
643 loc->base_offset = 0;
644
645 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
646 lookup_cfa_1 (cfi, loc);
647
648 if (fde_table_in_use)
649 {
650 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
651 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
652 lookup_cfa_1 (cfi, loc);
653 }
654 }
655
656 /* The current rule for calculating the DWARF2 canonical frame address. */
657 static dw_cfa_location cfa;
658
659 /* The register used for saving registers to the stack, and its offset
660 from the CFA. */
661 static dw_cfa_location cfa_store;
662
663 /* The running total of the size of arguments pushed onto the stack. */
664 static long args_size;
665
666 /* The last args_size we actually output. */
667 static long old_args_size;
668
669 /* Entry point to update the canonical frame address (CFA).
670 LABEL is passed to add_fde_cfi. The value of CFA is now to be
671 calculated from REG+OFFSET. */
672
673 void
674 dwarf2out_def_cfa (label, reg, offset)
675 const char *label;
676 unsigned reg;
677 long offset;
678 {
679 dw_cfa_location loc;
680 loc.indirect = 0;
681 loc.base_offset = 0;
682 loc.reg = reg;
683 loc.offset = offset;
684 def_cfa_1 (label, &loc);
685 }
686
687 /* This routine does the actual work. The CFA is now calculated from
688 the dw_cfa_location structure. */
689
690 static void
691 def_cfa_1 (label, loc_p)
692 const char *label;
693 dw_cfa_location *loc_p;
694 {
695 dw_cfi_ref cfi;
696 dw_cfa_location old_cfa, loc;
697
698 cfa = *loc_p;
699 loc = *loc_p;
700
701 if (cfa_store.reg == loc.reg && loc.indirect == 0)
702 cfa_store.offset = loc.offset;
703
704 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
705 lookup_cfa (&old_cfa);
706
707 /* If nothing changed, no need to issue any call frame instructions. */
708 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
709 && loc.indirect == old_cfa.indirect
710 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
711 return;
712
713 cfi = new_cfi ();
714
715 if (loc.reg == old_cfa.reg && !loc.indirect)
716 {
717 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
718 indicating the CFA register did not change but the offset
719 did. */
720 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
721 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
722 }
723
724 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
725 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
726 && !loc.indirect)
727 {
728 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
729 indicating the CFA register has changed to <register> but the
730 offset has not changed. */
731 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
732 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
733 }
734 #endif
735
736 else if (loc.indirect == 0)
737 {
738 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
739 indicating the CFA register has changed to <register> with
740 the specified offset. */
741 cfi->dw_cfi_opc = DW_CFA_def_cfa;
742 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
743 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
744 }
745 else
746 {
747 /* Construct a DW_CFA_def_cfa_expression instruction to
748 calculate the CFA using a full location expression since no
749 register-offset pair is available. */
750 struct dw_loc_descr_struct *loc_list;
751
752 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
753 loc_list = build_cfa_loc (&loc);
754 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
755 }
756
757 add_fde_cfi (label, cfi);
758 }
759
760 /* Add the CFI for saving a register. REG is the CFA column number.
761 LABEL is passed to add_fde_cfi.
762 If SREG is -1, the register is saved at OFFSET from the CFA;
763 otherwise it is saved in SREG. */
764
765 static void
766 reg_save (label, reg, sreg, offset)
767 const char *label;
768 unsigned reg;
769 unsigned sreg;
770 long offset;
771 {
772 dw_cfi_ref cfi = new_cfi ();
773
774 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
775
776 /* The following comparison is correct. -1 is used to indicate that
777 the value isn't a register number. */
778 if (sreg == (unsigned int) -1)
779 {
780 if (reg & ~0x3f)
781 /* The register number won't fit in 6 bits, so we have to use
782 the long form. */
783 cfi->dw_cfi_opc = DW_CFA_offset_extended;
784 else
785 cfi->dw_cfi_opc = DW_CFA_offset;
786
787 #ifdef ENABLE_CHECKING
788 {
789 /* If we get an offset that is not a multiple of
790 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
791 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
792 description. */
793 long check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
794
795 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
796 abort ();
797 }
798 #endif
799 offset /= DWARF_CIE_DATA_ALIGNMENT;
800 if (offset < 0)
801 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
802
803 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
804 }
805 else if (sreg == reg)
806 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
807 return;
808 else
809 {
810 cfi->dw_cfi_opc = DW_CFA_register;
811 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
812 }
813
814 add_fde_cfi (label, cfi);
815 }
816
817 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
818 This CFI tells the unwinder that it needs to restore the window registers
819 from the previous frame's window save area.
820
821 ??? Perhaps we should note in the CIE where windows are saved (instead of
822 assuming 0(cfa)) and what registers are in the window. */
823
824 void
825 dwarf2out_window_save (label)
826 const char *label;
827 {
828 dw_cfi_ref cfi = new_cfi ();
829
830 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
831 add_fde_cfi (label, cfi);
832 }
833
834 /* Add a CFI to update the running total of the size of arguments
835 pushed onto the stack. */
836
837 void
838 dwarf2out_args_size (label, size)
839 const char *label;
840 long size;
841 {
842 dw_cfi_ref cfi;
843
844 if (size == old_args_size)
845 return;
846
847 old_args_size = size;
848
849 cfi = new_cfi ();
850 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
851 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
852 add_fde_cfi (label, cfi);
853 }
854
855 /* Entry point for saving a register to the stack. REG is the GCC register
856 number. LABEL and OFFSET are passed to reg_save. */
857
858 void
859 dwarf2out_reg_save (label, reg, offset)
860 const char *label;
861 unsigned reg;
862 long offset;
863 {
864 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
865 }
866
867 /* Entry point for saving the return address in the stack.
868 LABEL and OFFSET are passed to reg_save. */
869
870 void
871 dwarf2out_return_save (label, offset)
872 const char *label;
873 long offset;
874 {
875 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
876 }
877
878 /* Entry point for saving the return address in a register.
879 LABEL and SREG are passed to reg_save. */
880
881 void
882 dwarf2out_return_reg (label, sreg)
883 const char *label;
884 unsigned sreg;
885 {
886 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
887 }
888
889 /* Record the initial position of the return address. RTL is
890 INCOMING_RETURN_ADDR_RTX. */
891
892 static void
893 initial_return_save (rtl)
894 rtx rtl;
895 {
896 unsigned int reg = (unsigned int) -1;
897 HOST_WIDE_INT offset = 0;
898
899 switch (GET_CODE (rtl))
900 {
901 case REG:
902 /* RA is in a register. */
903 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
904 break;
905
906 case MEM:
907 /* RA is on the stack. */
908 rtl = XEXP (rtl, 0);
909 switch (GET_CODE (rtl))
910 {
911 case REG:
912 if (REGNO (rtl) != STACK_POINTER_REGNUM)
913 abort ();
914 offset = 0;
915 break;
916
917 case PLUS:
918 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
919 abort ();
920 offset = INTVAL (XEXP (rtl, 1));
921 break;
922
923 case MINUS:
924 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
925 abort ();
926 offset = -INTVAL (XEXP (rtl, 1));
927 break;
928
929 default:
930 abort ();
931 }
932
933 break;
934
935 case PLUS:
936 /* The return address is at some offset from any value we can
937 actually load. For instance, on the SPARC it is in %i7+8. Just
938 ignore the offset for now; it doesn't matter for unwinding frames. */
939 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
940 abort ();
941 initial_return_save (XEXP (rtl, 0));
942 return;
943
944 default:
945 abort ();
946 }
947
948 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
949 }
950
951 /* Given a SET, calculate the amount of stack adjustment it
952 contains. */
953
954 static long
955 stack_adjust_offset (pattern)
956 rtx pattern;
957 {
958 rtx src = SET_SRC (pattern);
959 rtx dest = SET_DEST (pattern);
960 HOST_WIDE_INT offset = 0;
961 enum rtx_code code;
962
963 if (dest == stack_pointer_rtx)
964 {
965 /* (set (reg sp) (plus (reg sp) (const_int))) */
966 code = GET_CODE (src);
967 if (! (code == PLUS || code == MINUS)
968 || XEXP (src, 0) != stack_pointer_rtx
969 || GET_CODE (XEXP (src, 1)) != CONST_INT)
970 return 0;
971
972 offset = INTVAL (XEXP (src, 1));
973 if (code == PLUS)
974 offset = -offset;
975 }
976 else if (GET_CODE (dest) == MEM)
977 {
978 /* (set (mem (pre_dec (reg sp))) (foo)) */
979 src = XEXP (dest, 0);
980 code = GET_CODE (src);
981
982 switch (code)
983 {
984 case PRE_MODIFY:
985 case POST_MODIFY:
986 if (XEXP (src, 0) == stack_pointer_rtx)
987 {
988 rtx val = XEXP (XEXP (src, 1), 1);
989 /* We handle only adjustments by constant amount. */
990 if (GET_CODE (XEXP (src, 1)) != PLUS ||
991 GET_CODE (val) != CONST_INT)
992 abort ();
993 offset = -INTVAL (val);
994 break;
995 }
996 return 0;
997
998 case PRE_DEC:
999 case POST_DEC:
1000 if (XEXP (src, 0) == stack_pointer_rtx)
1001 {
1002 offset = GET_MODE_SIZE (GET_MODE (dest));
1003 break;
1004 }
1005 return 0;
1006
1007 case PRE_INC:
1008 case POST_INC:
1009 if (XEXP (src, 0) == stack_pointer_rtx)
1010 {
1011 offset = -GET_MODE_SIZE (GET_MODE (dest));
1012 break;
1013 }
1014 return 0;
1015
1016 default:
1017 return 0;
1018 }
1019 }
1020 else
1021 return 0;
1022
1023 return offset;
1024 }
1025
1026 /* Check INSN to see if it looks like a push or a stack adjustment, and
1027 make a note of it if it does. EH uses this information to find out how
1028 much extra space it needs to pop off the stack. */
1029
1030 static void
1031 dwarf2out_stack_adjust (insn)
1032 rtx insn;
1033 {
1034 HOST_WIDE_INT offset;
1035 const char *label;
1036 int i;
1037
1038 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1039 {
1040 /* Extract the size of the args from the CALL rtx itself. */
1041 insn = PATTERN (insn);
1042 if (GET_CODE (insn) == PARALLEL)
1043 insn = XVECEXP (insn, 0, 0);
1044 if (GET_CODE (insn) == SET)
1045 insn = SET_SRC (insn);
1046 if (GET_CODE (insn) != CALL)
1047 abort ();
1048
1049 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1050 return;
1051 }
1052
1053 /* If only calls can throw, and we have a frame pointer,
1054 save up adjustments until we see the CALL_INSN. */
1055 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1056 return;
1057
1058 if (GET_CODE (insn) == BARRIER)
1059 {
1060 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1061 the compiler will have already emitted a stack adjustment, but
1062 doesn't bother for calls to noreturn functions. */
1063 #ifdef STACK_GROWS_DOWNWARD
1064 offset = -args_size;
1065 #else
1066 offset = args_size;
1067 #endif
1068 }
1069 else if (GET_CODE (PATTERN (insn)) == SET)
1070 offset = stack_adjust_offset (PATTERN (insn));
1071 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1072 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1073 {
1074 /* There may be stack adjustments inside compound insns. Search
1075 for them. */
1076 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1077 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1078 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1079 }
1080 else
1081 return;
1082
1083 if (offset == 0)
1084 return;
1085
1086 if (cfa.reg == STACK_POINTER_REGNUM)
1087 cfa.offset += offset;
1088
1089 #ifndef STACK_GROWS_DOWNWARD
1090 offset = -offset;
1091 #endif
1092
1093 args_size += offset;
1094 if (args_size < 0)
1095 args_size = 0;
1096
1097 label = dwarf2out_cfi_label ();
1098 def_cfa_1 (label, &cfa);
1099 dwarf2out_args_size (label, args_size);
1100 }
1101
1102 #endif
1103
1104 /* We delay emitting a register save until either (a) we reach the end
1105 of the prologue or (b) the register is clobbered. This clusters
1106 register saves so that there are fewer pc advances. */
1107
1108 struct queued_reg_save GTY(())
1109 {
1110 struct queued_reg_save *next;
1111 rtx reg;
1112 long cfa_offset;
1113 };
1114
1115 static GTY(()) struct queued_reg_save *queued_reg_saves;
1116
1117 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1118 static const char *last_reg_save_label;
1119
1120 static void
1121 queue_reg_save (label, reg, offset)
1122 const char *label;
1123 rtx reg;
1124 long offset;
1125 {
1126 struct queued_reg_save *q = ggc_alloc (sizeof (*q));
1127
1128 q->next = queued_reg_saves;
1129 q->reg = reg;
1130 q->cfa_offset = offset;
1131 queued_reg_saves = q;
1132
1133 last_reg_save_label = label;
1134 }
1135
1136 static void
1137 flush_queued_reg_saves ()
1138 {
1139 struct queued_reg_save *q, *next;
1140
1141 for (q = queued_reg_saves; q; q = next)
1142 {
1143 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1144 next = q->next;
1145 }
1146
1147 queued_reg_saves = NULL;
1148 last_reg_save_label = NULL;
1149 }
1150
1151 static bool
1152 clobbers_queued_reg_save (insn)
1153 rtx insn;
1154 {
1155 struct queued_reg_save *q;
1156
1157 for (q = queued_reg_saves; q; q = q->next)
1158 if (modified_in_p (q->reg, insn))
1159 return true;
1160
1161 return false;
1162 }
1163
1164
1165 /* A temporary register holding an integral value used in adjusting SP
1166 or setting up the store_reg. The "offset" field holds the integer
1167 value, not an offset. */
1168 static dw_cfa_location cfa_temp;
1169
1170 /* Record call frame debugging information for an expression EXPR,
1171 which either sets SP or FP (adjusting how we calculate the frame
1172 address) or saves a register to the stack. LABEL indicates the
1173 address of EXPR.
1174
1175 This function encodes a state machine mapping rtxes to actions on
1176 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1177 users need not read the source code.
1178
1179 The High-Level Picture
1180
1181 Changes in the register we use to calculate the CFA: Currently we
1182 assume that if you copy the CFA register into another register, we
1183 should take the other one as the new CFA register; this seems to
1184 work pretty well. If it's wrong for some target, it's simple
1185 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1186
1187 Changes in the register we use for saving registers to the stack:
1188 This is usually SP, but not always. Again, we deduce that if you
1189 copy SP into another register (and SP is not the CFA register),
1190 then the new register is the one we will be using for register
1191 saves. This also seems to work.
1192
1193 Register saves: There's not much guesswork about this one; if
1194 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1195 register save, and the register used to calculate the destination
1196 had better be the one we think we're using for this purpose.
1197
1198 Except: If the register being saved is the CFA register, and the
1199 offset is nonzero, we are saving the CFA, so we assume we have to
1200 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1201 the intent is to save the value of SP from the previous frame.
1202
1203 Invariants / Summaries of Rules
1204
1205 cfa current rule for calculating the CFA. It usually
1206 consists of a register and an offset.
1207 cfa_store register used by prologue code to save things to the stack
1208 cfa_store.offset is the offset from the value of
1209 cfa_store.reg to the actual CFA
1210 cfa_temp register holding an integral value. cfa_temp.offset
1211 stores the value, which will be used to adjust the
1212 stack pointer. cfa_temp is also used like cfa_store,
1213 to track stores to the stack via fp or a temp reg.
1214
1215 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1216 with cfa.reg as the first operand changes the cfa.reg and its
1217 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1218 cfa_temp.offset.
1219
1220 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1221 expression yielding a constant. This sets cfa_temp.reg
1222 and cfa_temp.offset.
1223
1224 Rule 5: Create a new register cfa_store used to save items to the
1225 stack.
1226
1227 Rules 10-14: Save a register to the stack. Define offset as the
1228 difference of the original location and cfa_store's
1229 location (or cfa_temp's location if cfa_temp is used).
1230
1231 The Rules
1232
1233 "{a,b}" indicates a choice of a xor b.
1234 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1235
1236 Rule 1:
1237 (set <reg1> <reg2>:cfa.reg)
1238 effects: cfa.reg = <reg1>
1239 cfa.offset unchanged
1240 cfa_temp.reg = <reg1>
1241 cfa_temp.offset = cfa.offset
1242
1243 Rule 2:
1244 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1245 {<const_int>,<reg>:cfa_temp.reg}))
1246 effects: cfa.reg = sp if fp used
1247 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1248 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1249 if cfa_store.reg==sp
1250
1251 Rule 3:
1252 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1253 effects: cfa.reg = fp
1254 cfa_offset += +/- <const_int>
1255
1256 Rule 4:
1257 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1258 constraints: <reg1> != fp
1259 <reg1> != sp
1260 effects: cfa.reg = <reg1>
1261 cfa_temp.reg = <reg1>
1262 cfa_temp.offset = cfa.offset
1263
1264 Rule 5:
1265 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1266 constraints: <reg1> != fp
1267 <reg1> != sp
1268 effects: cfa_store.reg = <reg1>
1269 cfa_store.offset = cfa.offset - cfa_temp.offset
1270
1271 Rule 6:
1272 (set <reg> <const_int>)
1273 effects: cfa_temp.reg = <reg>
1274 cfa_temp.offset = <const_int>
1275
1276 Rule 7:
1277 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1278 effects: cfa_temp.reg = <reg1>
1279 cfa_temp.offset |= <const_int>
1280
1281 Rule 8:
1282 (set <reg> (high <exp>))
1283 effects: none
1284
1285 Rule 9:
1286 (set <reg> (lo_sum <exp> <const_int>))
1287 effects: cfa_temp.reg = <reg>
1288 cfa_temp.offset = <const_int>
1289
1290 Rule 10:
1291 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1292 effects: cfa_store.offset -= <const_int>
1293 cfa.offset = cfa_store.offset if cfa.reg == sp
1294 cfa.reg = sp
1295 cfa.base_offset = -cfa_store.offset
1296
1297 Rule 11:
1298 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1299 effects: cfa_store.offset += -/+ mode_size(mem)
1300 cfa.offset = cfa_store.offset if cfa.reg == sp
1301 cfa.reg = sp
1302 cfa.base_offset = -cfa_store.offset
1303
1304 Rule 12:
1305 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1306
1307 <reg2>)
1308 effects: cfa.reg = <reg1>
1309 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1310
1311 Rule 13:
1312 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1313 effects: cfa.reg = <reg1>
1314 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1315
1316 Rule 14:
1317 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1318 effects: cfa.reg = <reg1>
1319 cfa.base_offset = -cfa_temp.offset
1320 cfa_temp.offset -= mode_size(mem) */
1321
1322 static void
1323 dwarf2out_frame_debug_expr (expr, label)
1324 rtx expr;
1325 const char *label;
1326 {
1327 rtx src, dest;
1328 HOST_WIDE_INT offset;
1329
1330 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1331 the PARALLEL independently. The first element is always processed if
1332 it is a SET. This is for backward compatibility. Other elements
1333 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1334 flag is set in them. */
1335 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1336 {
1337 int par_index;
1338 int limit = XVECLEN (expr, 0);
1339
1340 for (par_index = 0; par_index < limit; par_index++)
1341 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1342 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1343 || par_index == 0))
1344 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1345
1346 return;
1347 }
1348
1349 if (GET_CODE (expr) != SET)
1350 abort ();
1351
1352 src = SET_SRC (expr);
1353 dest = SET_DEST (expr);
1354
1355 switch (GET_CODE (dest))
1356 {
1357 case REG:
1358 /* Rule 1 */
1359 /* Update the CFA rule wrt SP or FP. Make sure src is
1360 relative to the current CFA register. */
1361 switch (GET_CODE (src))
1362 {
1363 /* Setting FP from SP. */
1364 case REG:
1365 if (cfa.reg == (unsigned) REGNO (src))
1366 /* OK. */
1367 ;
1368 else
1369 abort ();
1370
1371 /* We used to require that dest be either SP or FP, but the
1372 ARM copies SP to a temporary register, and from there to
1373 FP. So we just rely on the backends to only set
1374 RTX_FRAME_RELATED_P on appropriate insns. */
1375 cfa.reg = REGNO (dest);
1376 cfa_temp.reg = cfa.reg;
1377 cfa_temp.offset = cfa.offset;
1378 break;
1379
1380 case PLUS:
1381 case MINUS:
1382 case LO_SUM:
1383 if (dest == stack_pointer_rtx)
1384 {
1385 /* Rule 2 */
1386 /* Adjusting SP. */
1387 switch (GET_CODE (XEXP (src, 1)))
1388 {
1389 case CONST_INT:
1390 offset = INTVAL (XEXP (src, 1));
1391 break;
1392 case REG:
1393 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1394 abort ();
1395 offset = cfa_temp.offset;
1396 break;
1397 default:
1398 abort ();
1399 }
1400
1401 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1402 {
1403 /* Restoring SP from FP in the epilogue. */
1404 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1405 abort ();
1406 cfa.reg = STACK_POINTER_REGNUM;
1407 }
1408 else if (GET_CODE (src) == LO_SUM)
1409 /* Assume we've set the source reg of the LO_SUM from sp. */
1410 ;
1411 else if (XEXP (src, 0) != stack_pointer_rtx)
1412 abort ();
1413
1414 if (GET_CODE (src) != MINUS)
1415 offset = -offset;
1416 if (cfa.reg == STACK_POINTER_REGNUM)
1417 cfa.offset += offset;
1418 if (cfa_store.reg == STACK_POINTER_REGNUM)
1419 cfa_store.offset += offset;
1420 }
1421 else if (dest == hard_frame_pointer_rtx)
1422 {
1423 /* Rule 3 */
1424 /* Either setting the FP from an offset of the SP,
1425 or adjusting the FP */
1426 if (! frame_pointer_needed)
1427 abort ();
1428
1429 if (GET_CODE (XEXP (src, 0)) == REG
1430 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1431 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1432 {
1433 offset = INTVAL (XEXP (src, 1));
1434 if (GET_CODE (src) != MINUS)
1435 offset = -offset;
1436 cfa.offset += offset;
1437 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1438 }
1439 else
1440 abort ();
1441 }
1442 else
1443 {
1444 if (GET_CODE (src) == MINUS)
1445 abort ();
1446
1447 /* Rule 4 */
1448 if (GET_CODE (XEXP (src, 0)) == REG
1449 && REGNO (XEXP (src, 0)) == cfa.reg
1450 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1451 {
1452 /* Setting a temporary CFA register that will be copied
1453 into the FP later on. */
1454 offset = - INTVAL (XEXP (src, 1));
1455 cfa.offset += offset;
1456 cfa.reg = REGNO (dest);
1457 /* Or used to save regs to the stack. */
1458 cfa_temp.reg = cfa.reg;
1459 cfa_temp.offset = cfa.offset;
1460 }
1461
1462 /* Rule 5 */
1463 else if (GET_CODE (XEXP (src, 0)) == REG
1464 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1465 && XEXP (src, 1) == stack_pointer_rtx)
1466 {
1467 /* Setting a scratch register that we will use instead
1468 of SP for saving registers to the stack. */
1469 if (cfa.reg != STACK_POINTER_REGNUM)
1470 abort ();
1471 cfa_store.reg = REGNO (dest);
1472 cfa_store.offset = cfa.offset - cfa_temp.offset;
1473 }
1474
1475 /* Rule 9 */
1476 else if (GET_CODE (src) == LO_SUM
1477 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1478 {
1479 cfa_temp.reg = REGNO (dest);
1480 cfa_temp.offset = INTVAL (XEXP (src, 1));
1481 }
1482 else
1483 abort ();
1484 }
1485 break;
1486
1487 /* Rule 6 */
1488 case CONST_INT:
1489 cfa_temp.reg = REGNO (dest);
1490 cfa_temp.offset = INTVAL (src);
1491 break;
1492
1493 /* Rule 7 */
1494 case IOR:
1495 if (GET_CODE (XEXP (src, 0)) != REG
1496 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1497 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1498 abort ();
1499
1500 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1501 cfa_temp.reg = REGNO (dest);
1502 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1503 break;
1504
1505 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1506 which will fill in all of the bits. */
1507 /* Rule 8 */
1508 case HIGH:
1509 break;
1510
1511 default:
1512 abort ();
1513 }
1514
1515 def_cfa_1 (label, &cfa);
1516 break;
1517
1518 case MEM:
1519 if (GET_CODE (src) != REG)
1520 abort ();
1521
1522 /* Saving a register to the stack. Make sure dest is relative to the
1523 CFA register. */
1524 switch (GET_CODE (XEXP (dest, 0)))
1525 {
1526 /* Rule 10 */
1527 /* With a push. */
1528 case PRE_MODIFY:
1529 /* We can't handle variable size modifications. */
1530 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1531 abort ();
1532 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1533
1534 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1535 || cfa_store.reg != STACK_POINTER_REGNUM)
1536 abort ();
1537
1538 cfa_store.offset += offset;
1539 if (cfa.reg == STACK_POINTER_REGNUM)
1540 cfa.offset = cfa_store.offset;
1541
1542 offset = -cfa_store.offset;
1543 break;
1544
1545 /* Rule 11 */
1546 case PRE_INC:
1547 case PRE_DEC:
1548 offset = GET_MODE_SIZE (GET_MODE (dest));
1549 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1550 offset = -offset;
1551
1552 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1553 || cfa_store.reg != STACK_POINTER_REGNUM)
1554 abort ();
1555
1556 cfa_store.offset += offset;
1557 if (cfa.reg == STACK_POINTER_REGNUM)
1558 cfa.offset = cfa_store.offset;
1559
1560 offset = -cfa_store.offset;
1561 break;
1562
1563 /* Rule 12 */
1564 /* With an offset. */
1565 case PLUS:
1566 case MINUS:
1567 case LO_SUM:
1568 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1569 abort ();
1570 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1571 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1572 offset = -offset;
1573
1574 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1575 offset -= cfa_store.offset;
1576 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1577 offset -= cfa_temp.offset;
1578 else
1579 abort ();
1580 break;
1581
1582 /* Rule 13 */
1583 /* Without an offset. */
1584 case REG:
1585 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1586 offset = -cfa_store.offset;
1587 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1588 offset = -cfa_temp.offset;
1589 else
1590 abort ();
1591 break;
1592
1593 /* Rule 14 */
1594 case POST_INC:
1595 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1596 abort ();
1597 offset = -cfa_temp.offset;
1598 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1599 break;
1600
1601 default:
1602 abort ();
1603 }
1604
1605 if (REGNO (src) != STACK_POINTER_REGNUM
1606 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1607 && (unsigned) REGNO (src) == cfa.reg)
1608 {
1609 /* We're storing the current CFA reg into the stack. */
1610
1611 if (cfa.offset == 0)
1612 {
1613 /* If the source register is exactly the CFA, assume
1614 we're saving SP like any other register; this happens
1615 on the ARM. */
1616 def_cfa_1 (label, &cfa);
1617 queue_reg_save (label, stack_pointer_rtx, offset);
1618 break;
1619 }
1620 else
1621 {
1622 /* Otherwise, we'll need to look in the stack to
1623 calculate the CFA. */
1624 rtx x = XEXP (dest, 0);
1625
1626 if (GET_CODE (x) != REG)
1627 x = XEXP (x, 0);
1628 if (GET_CODE (x) != REG)
1629 abort ();
1630
1631 cfa.reg = REGNO (x);
1632 cfa.base_offset = offset;
1633 cfa.indirect = 1;
1634 def_cfa_1 (label, &cfa);
1635 break;
1636 }
1637 }
1638
1639 def_cfa_1 (label, &cfa);
1640 queue_reg_save (label, src, offset);
1641 break;
1642
1643 default:
1644 abort ();
1645 }
1646 }
1647
1648 /* Record call frame debugging information for INSN, which either
1649 sets SP or FP (adjusting how we calculate the frame address) or saves a
1650 register to the stack. If INSN is NULL_RTX, initialize our state. */
1651
1652 void
1653 dwarf2out_frame_debug (insn)
1654 rtx insn;
1655 {
1656 const char *label;
1657 rtx src;
1658
1659 if (insn == NULL_RTX)
1660 {
1661 /* Flush any queued register saves. */
1662 flush_queued_reg_saves ();
1663
1664 /* Set up state for generating call frame debug info. */
1665 lookup_cfa (&cfa);
1666 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1667 abort ();
1668
1669 cfa.reg = STACK_POINTER_REGNUM;
1670 cfa_store = cfa;
1671 cfa_temp.reg = -1;
1672 cfa_temp.offset = 0;
1673 return;
1674 }
1675
1676 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1677 flush_queued_reg_saves ();
1678
1679 if (! RTX_FRAME_RELATED_P (insn))
1680 {
1681 if (!ACCUMULATE_OUTGOING_ARGS)
1682 dwarf2out_stack_adjust (insn);
1683
1684 return;
1685 }
1686
1687 label = dwarf2out_cfi_label ();
1688 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1689 if (src)
1690 insn = XEXP (src, 0);
1691 else
1692 insn = PATTERN (insn);
1693
1694 dwarf2out_frame_debug_expr (insn, label);
1695 }
1696
1697 #endif
1698
1699 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1700 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1701 PARAMS ((enum dwarf_call_frame_info cfi));
1702
1703 static enum dw_cfi_oprnd_type
1704 dw_cfi_oprnd1_desc (cfi)
1705 enum dwarf_call_frame_info cfi;
1706 {
1707 switch (cfi)
1708 {
1709 case DW_CFA_nop:
1710 case DW_CFA_GNU_window_save:
1711 return dw_cfi_oprnd_unused;
1712
1713 case DW_CFA_set_loc:
1714 case DW_CFA_advance_loc1:
1715 case DW_CFA_advance_loc2:
1716 case DW_CFA_advance_loc4:
1717 case DW_CFA_MIPS_advance_loc8:
1718 return dw_cfi_oprnd_addr;
1719
1720 case DW_CFA_offset:
1721 case DW_CFA_offset_extended:
1722 case DW_CFA_def_cfa:
1723 case DW_CFA_offset_extended_sf:
1724 case DW_CFA_def_cfa_sf:
1725 case DW_CFA_restore_extended:
1726 case DW_CFA_undefined:
1727 case DW_CFA_same_value:
1728 case DW_CFA_def_cfa_register:
1729 case DW_CFA_register:
1730 return dw_cfi_oprnd_reg_num;
1731
1732 case DW_CFA_def_cfa_offset:
1733 case DW_CFA_GNU_args_size:
1734 case DW_CFA_def_cfa_offset_sf:
1735 return dw_cfi_oprnd_offset;
1736
1737 case DW_CFA_def_cfa_expression:
1738 case DW_CFA_expression:
1739 return dw_cfi_oprnd_loc;
1740
1741 default:
1742 abort ();
1743 }
1744 }
1745
1746 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1747 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1748 PARAMS ((enum dwarf_call_frame_info cfi));
1749
1750 static enum dw_cfi_oprnd_type
1751 dw_cfi_oprnd2_desc (cfi)
1752 enum dwarf_call_frame_info cfi;
1753 {
1754 switch (cfi)
1755 {
1756 case DW_CFA_def_cfa:
1757 case DW_CFA_def_cfa_sf:
1758 case DW_CFA_offset:
1759 case DW_CFA_offset_extended_sf:
1760 case DW_CFA_offset_extended:
1761 return dw_cfi_oprnd_offset;
1762
1763 case DW_CFA_register:
1764 return dw_cfi_oprnd_reg_num;
1765
1766 default:
1767 return dw_cfi_oprnd_unused;
1768 }
1769 }
1770
1771 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1772
1773 /* Output a Call Frame Information opcode and its operand(s). */
1774
1775 static void
1776 output_cfi (cfi, fde, for_eh)
1777 dw_cfi_ref cfi;
1778 dw_fde_ref fde;
1779 int for_eh;
1780 {
1781 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1782 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1783 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1784 "DW_CFA_advance_loc 0x%lx",
1785 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1786 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1787 {
1788 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1789 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1790 "DW_CFA_offset, column 0x%lx",
1791 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1792 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1793 }
1794 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1795 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1796 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1797 "DW_CFA_restore, column 0x%lx",
1798 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1799 else
1800 {
1801 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1802 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1803
1804 switch (cfi->dw_cfi_opc)
1805 {
1806 case DW_CFA_set_loc:
1807 if (for_eh)
1808 dw2_asm_output_encoded_addr_rtx (
1809 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1810 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1811 NULL);
1812 else
1813 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1814 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1815 break;
1816
1817 case DW_CFA_advance_loc1:
1818 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1819 fde->dw_fde_current_label, NULL);
1820 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1821 break;
1822
1823 case DW_CFA_advance_loc2:
1824 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1825 fde->dw_fde_current_label, NULL);
1826 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1827 break;
1828
1829 case DW_CFA_advance_loc4:
1830 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1831 fde->dw_fde_current_label, NULL);
1832 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1833 break;
1834
1835 case DW_CFA_MIPS_advance_loc8:
1836 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1837 fde->dw_fde_current_label, NULL);
1838 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1839 break;
1840
1841 case DW_CFA_offset_extended:
1842 case DW_CFA_def_cfa:
1843 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1844 NULL);
1845 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1846 break;
1847
1848 case DW_CFA_offset_extended_sf:
1849 case DW_CFA_def_cfa_sf:
1850 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1851 NULL);
1852 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1853 break;
1854
1855 case DW_CFA_restore_extended:
1856 case DW_CFA_undefined:
1857 case DW_CFA_same_value:
1858 case DW_CFA_def_cfa_register:
1859 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1860 NULL);
1861 break;
1862
1863 case DW_CFA_register:
1864 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1865 NULL);
1866 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_reg_num,
1867 NULL);
1868 break;
1869
1870 case DW_CFA_def_cfa_offset:
1871 case DW_CFA_GNU_args_size:
1872 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1873 break;
1874
1875 case DW_CFA_def_cfa_offset_sf:
1876 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1877 break;
1878
1879 case DW_CFA_GNU_window_save:
1880 break;
1881
1882 case DW_CFA_def_cfa_expression:
1883 case DW_CFA_expression:
1884 output_cfa_loc (cfi);
1885 break;
1886
1887 case DW_CFA_GNU_negative_offset_extended:
1888 /* Obsoleted by DW_CFA_offset_extended_sf. */
1889 abort ();
1890
1891 default:
1892 break;
1893 }
1894 }
1895 }
1896
1897 /* Output the call frame information used to used to record information
1898 that relates to calculating the frame pointer, and records the
1899 location of saved registers. */
1900
1901 static void
1902 output_call_frame_info (for_eh)
1903 int for_eh;
1904 {
1905 unsigned int i;
1906 dw_fde_ref fde;
1907 dw_cfi_ref cfi;
1908 char l1[20], l2[20], section_start_label[20];
1909 int any_lsda_needed = 0;
1910 char augmentation[6];
1911 int augmentation_size;
1912 int fde_encoding = DW_EH_PE_absptr;
1913 int per_encoding = DW_EH_PE_absptr;
1914 int lsda_encoding = DW_EH_PE_absptr;
1915
1916 /* Don't emit a CIE if there won't be any FDEs. */
1917 if (fde_table_in_use == 0)
1918 return;
1919
1920 /* If we don't have any functions we'll want to unwind out of, don't emit any
1921 EH unwind information. */
1922 if (for_eh)
1923 {
1924 int any_eh_needed = flag_asynchronous_unwind_tables;
1925
1926 for (i = 0; i < fde_table_in_use; i++)
1927 if (fde_table[i].uses_eh_lsda)
1928 any_eh_needed = any_lsda_needed = 1;
1929 else if (! fde_table[i].nothrow)
1930 any_eh_needed = 1;
1931
1932 if (! any_eh_needed)
1933 return;
1934 }
1935
1936 /* We're going to be generating comments, so turn on app. */
1937 if (flag_debug_asm)
1938 app_enable ();
1939
1940 if (for_eh)
1941 (*targetm.asm_out.eh_frame_section) ();
1942 else
1943 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1944
1945 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1946 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1947
1948 /* Output the CIE. */
1949 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1950 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1951 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1952 "Length of Common Information Entry");
1953 ASM_OUTPUT_LABEL (asm_out_file, l1);
1954
1955 /* Now that the CIE pointer is PC-relative for EH,
1956 use 0 to identify the CIE. */
1957 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1958 (for_eh ? 0 : DW_CIE_ID),
1959 "CIE Identifier Tag");
1960
1961 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1962
1963 augmentation[0] = 0;
1964 augmentation_size = 0;
1965 if (for_eh)
1966 {
1967 char *p;
1968
1969 /* Augmentation:
1970 z Indicates that a uleb128 is present to size the
1971 augmentation section.
1972 L Indicates the encoding (and thus presence) of
1973 an LSDA pointer in the FDE augmentation.
1974 R Indicates a non-default pointer encoding for
1975 FDE code pointers.
1976 P Indicates the presence of an encoding + language
1977 personality routine in the CIE augmentation. */
1978
1979 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1980 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
1981 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1982
1983 p = augmentation + 1;
1984 if (eh_personality_libfunc)
1985 {
1986 *p++ = 'P';
1987 augmentation_size += 1 + size_of_encoded_value (per_encoding);
1988 }
1989 if (any_lsda_needed)
1990 {
1991 *p++ = 'L';
1992 augmentation_size += 1;
1993 }
1994 if (fde_encoding != DW_EH_PE_absptr)
1995 {
1996 *p++ = 'R';
1997 augmentation_size += 1;
1998 }
1999 if (p > augmentation + 1)
2000 {
2001 augmentation[0] = 'z';
2002 *p = '\0';
2003 }
2004
2005 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2006 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2007 {
2008 int offset = ( 4 /* Length */
2009 + 4 /* CIE Id */
2010 + 1 /* CIE version */
2011 + strlen (augmentation) + 1 /* Augmentation */
2012 + size_of_uleb128 (1) /* Code alignment */
2013 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2014 + 1 /* RA column */
2015 + 1 /* Augmentation size */
2016 + 1 /* Personality encoding */ );
2017 int pad = -offset & (PTR_SIZE - 1);
2018
2019 augmentation_size += pad;
2020
2021 /* Augmentations should be small, so there's scarce need to
2022 iterate for a solution. Die if we exceed one uleb128 byte. */
2023 if (size_of_uleb128 (augmentation_size) != 1)
2024 abort ();
2025 }
2026 }
2027
2028 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2029 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2030 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2031 "CIE Data Alignment Factor");
2032 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2033
2034 if (augmentation[0])
2035 {
2036 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2037 if (eh_personality_libfunc)
2038 {
2039 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2040 eh_data_format_name (per_encoding));
2041 dw2_asm_output_encoded_addr_rtx (per_encoding,
2042 eh_personality_libfunc, NULL);
2043 }
2044
2045 if (any_lsda_needed)
2046 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2047 eh_data_format_name (lsda_encoding));
2048
2049 if (fde_encoding != DW_EH_PE_absptr)
2050 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2051 eh_data_format_name (fde_encoding));
2052 }
2053
2054 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2055 output_cfi (cfi, NULL, for_eh);
2056
2057 /* Pad the CIE out to an address sized boundary. */
2058 ASM_OUTPUT_ALIGN (asm_out_file,
2059 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2060 ASM_OUTPUT_LABEL (asm_out_file, l2);
2061
2062 /* Loop through all of the FDE's. */
2063 for (i = 0; i < fde_table_in_use; i++)
2064 {
2065 fde = &fde_table[i];
2066
2067 /* Don't emit EH unwind info for leaf functions that don't need it. */
2068 if (!flag_asynchronous_unwind_tables && for_eh
2069 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2070 && !fde->uses_eh_lsda)
2071 continue;
2072
2073 (*targetm.asm_out.internal_label) (asm_out_file, FDE_LABEL, for_eh + i * 2);
2074 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2075 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2076 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2077 "FDE Length");
2078 ASM_OUTPUT_LABEL (asm_out_file, l1);
2079
2080 if (for_eh)
2081 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2082 else
2083 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2084 "FDE CIE offset");
2085
2086 if (for_eh)
2087 {
2088 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2089 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
2090 "FDE initial location");
2091 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2092 fde->dw_fde_end, fde->dw_fde_begin,
2093 "FDE address range");
2094 }
2095 else
2096 {
2097 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2098 "FDE initial location");
2099 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2100 fde->dw_fde_end, fde->dw_fde_begin,
2101 "FDE address range");
2102 }
2103
2104 if (augmentation[0])
2105 {
2106 if (any_lsda_needed)
2107 {
2108 int size = size_of_encoded_value (lsda_encoding);
2109
2110 if (lsda_encoding == DW_EH_PE_aligned)
2111 {
2112 int offset = ( 4 /* Length */
2113 + 4 /* CIE offset */
2114 + 2 * size_of_encoded_value (fde_encoding)
2115 + 1 /* Augmentation size */ );
2116 int pad = -offset & (PTR_SIZE - 1);
2117
2118 size += pad;
2119 if (size_of_uleb128 (size) != 1)
2120 abort ();
2121 }
2122
2123 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2124
2125 if (fde->uses_eh_lsda)
2126 {
2127 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2128 fde->funcdef_number);
2129 dw2_asm_output_encoded_addr_rtx (
2130 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2131 "Language Specific Data Area");
2132 }
2133 else
2134 {
2135 if (lsda_encoding == DW_EH_PE_aligned)
2136 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2137 dw2_asm_output_data
2138 (size_of_encoded_value (lsda_encoding), 0,
2139 "Language Specific Data Area (none)");
2140 }
2141 }
2142 else
2143 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2144 }
2145
2146 /* Loop through the Call Frame Instructions associated with
2147 this FDE. */
2148 fde->dw_fde_current_label = fde->dw_fde_begin;
2149 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2150 output_cfi (cfi, fde, for_eh);
2151
2152 /* Pad the FDE out to an address sized boundary. */
2153 ASM_OUTPUT_ALIGN (asm_out_file,
2154 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2155 ASM_OUTPUT_LABEL (asm_out_file, l2);
2156 }
2157
2158 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2159 dw2_asm_output_data (4, 0, "End of Table");
2160 #ifdef MIPS_DEBUGGING_INFO
2161 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2162 get a value of 0. Putting .align 0 after the label fixes it. */
2163 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2164 #endif
2165
2166 /* Turn off app to make assembly quicker. */
2167 if (flag_debug_asm)
2168 app_disable ();
2169 }
2170
2171 /* Output a marker (i.e. a label) for the beginning of a function, before
2172 the prologue. */
2173
2174 void
2175 dwarf2out_begin_prologue (line, file)
2176 unsigned int line ATTRIBUTE_UNUSED;
2177 const char *file ATTRIBUTE_UNUSED;
2178 {
2179 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2180 dw_fde_ref fde;
2181
2182 current_function_func_begin_label = 0;
2183
2184 #ifdef IA64_UNWIND_INFO
2185 /* ??? current_function_func_begin_label is also used by except.c
2186 for call-site information. We must emit this label if it might
2187 be used. */
2188 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2189 && ! dwarf2out_do_frame ())
2190 return;
2191 #else
2192 if (! dwarf2out_do_frame ())
2193 return;
2194 #endif
2195
2196 function_section (current_function_decl);
2197 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2198 current_function_funcdef_no);
2199 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2200 current_function_funcdef_no);
2201 current_function_func_begin_label = get_identifier (label);
2202
2203 #ifdef IA64_UNWIND_INFO
2204 /* We can elide the fde allocation if we're not emitting debug info. */
2205 if (! dwarf2out_do_frame ())
2206 return;
2207 #endif
2208
2209 /* Expand the fde table if necessary. */
2210 if (fde_table_in_use == fde_table_allocated)
2211 {
2212 fde_table_allocated += FDE_TABLE_INCREMENT;
2213 fde_table = ggc_realloc (fde_table,
2214 fde_table_allocated * sizeof (dw_fde_node));
2215 memset (fde_table + fde_table_in_use, 0,
2216 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2217 }
2218
2219 /* Record the FDE associated with this function. */
2220 current_funcdef_fde = fde_table_in_use;
2221
2222 /* Add the new FDE at the end of the fde_table. */
2223 fde = &fde_table[fde_table_in_use++];
2224 fde->dw_fde_begin = xstrdup (label);
2225 fde->dw_fde_current_label = NULL;
2226 fde->dw_fde_end = NULL;
2227 fde->dw_fde_cfi = NULL;
2228 fde->funcdef_number = current_function_funcdef_no;
2229 fde->nothrow = current_function_nothrow;
2230 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2231 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2232
2233 args_size = old_args_size = 0;
2234
2235 /* We only want to output line number information for the genuine dwarf2
2236 prologue case, not the eh frame case. */
2237 #ifdef DWARF2_DEBUGGING_INFO
2238 if (file)
2239 dwarf2out_source_line (line, file);
2240 #endif
2241 }
2242
2243 /* Output a marker (i.e. a label) for the absolute end of the generated code
2244 for a function definition. This gets called *after* the epilogue code has
2245 been generated. */
2246
2247 void
2248 dwarf2out_end_epilogue (line, file)
2249 unsigned int line ATTRIBUTE_UNUSED;
2250 const char *file ATTRIBUTE_UNUSED;
2251 {
2252 dw_fde_ref fde;
2253 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2254
2255 /* Output a label to mark the endpoint of the code generated for this
2256 function. */
2257 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2258 current_function_funcdef_no);
2259 ASM_OUTPUT_LABEL (asm_out_file, label);
2260 fde = &fde_table[fde_table_in_use - 1];
2261 fde->dw_fde_end = xstrdup (label);
2262 }
2263
2264 void
2265 dwarf2out_frame_init ()
2266 {
2267 /* Allocate the initial hunk of the fde_table. */
2268 fde_table = (dw_fde_ref) ggc_alloc_cleared (FDE_TABLE_INCREMENT
2269 * sizeof (dw_fde_node));
2270 fde_table_allocated = FDE_TABLE_INCREMENT;
2271 fde_table_in_use = 0;
2272
2273 /* Generate the CFA instructions common to all FDE's. Do it now for the
2274 sake of lookup_cfa. */
2275
2276 #ifdef DWARF2_UNWIND_INFO
2277 /* On entry, the Canonical Frame Address is at SP. */
2278 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2279 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2280 #endif
2281 }
2282
2283 void
2284 dwarf2out_frame_finish ()
2285 {
2286 /* Output call frame information. */
2287 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2288 output_call_frame_info (0);
2289
2290 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2291 output_call_frame_info (1);
2292 }
2293 #endif
2294 \f
2295 /* And now, the subset of the debugging information support code necessary
2296 for emitting location expressions. */
2297
2298 /* We need some way to distinguish DW_OP_addr with a direct symbol
2299 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2300 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2301
2302
2303 typedef struct dw_val_struct *dw_val_ref;
2304 typedef struct die_struct *dw_die_ref;
2305 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2306 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2307
2308 /* Each DIE may have a series of attribute/value pairs. Values
2309 can take on several forms. The forms that are used in this
2310 implementation are listed below. */
2311
2312 enum dw_val_class
2313 {
2314 dw_val_class_addr,
2315 dw_val_class_offset,
2316 dw_val_class_loc,
2317 dw_val_class_loc_list,
2318 dw_val_class_range_list,
2319 dw_val_class_const,
2320 dw_val_class_unsigned_const,
2321 dw_val_class_long_long,
2322 dw_val_class_float,
2323 dw_val_class_flag,
2324 dw_val_class_die_ref,
2325 dw_val_class_fde_ref,
2326 dw_val_class_lbl_id,
2327 dw_val_class_lbl_offset,
2328 dw_val_class_str
2329 };
2330
2331 /* Describe a double word constant value. */
2332 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2333
2334 typedef struct dw_long_long_struct GTY(())
2335 {
2336 unsigned long hi;
2337 unsigned long low;
2338 }
2339 dw_long_long_const;
2340
2341 /* Describe a floating point constant value. */
2342
2343 typedef struct dw_fp_struct GTY(())
2344 {
2345 long * GTY((length ("%h.length"))) array;
2346 unsigned length;
2347 }
2348 dw_float_const;
2349
2350 /* The dw_val_node describes an attribute's value, as it is
2351 represented internally. */
2352
2353 typedef struct dw_val_struct GTY(())
2354 {
2355 enum dw_val_class val_class;
2356 union dw_val_struct_union
2357 {
2358 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2359 long unsigned GTY ((tag ("dw_val_class_offset"))) val_offset;
2360 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2361 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2362 long int GTY ((default (""))) val_int;
2363 long unsigned GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2364 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2365 dw_float_const GTY ((tag ("dw_val_class_float"))) val_float;
2366 struct dw_val_die_union
2367 {
2368 dw_die_ref die;
2369 int external;
2370 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2371 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2372 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2373 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2374 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2375 }
2376 GTY ((desc ("%1.val_class"))) v;
2377 }
2378 dw_val_node;
2379
2380 /* Locations in memory are described using a sequence of stack machine
2381 operations. */
2382
2383 typedef struct dw_loc_descr_struct GTY(())
2384 {
2385 dw_loc_descr_ref dw_loc_next;
2386 enum dwarf_location_atom dw_loc_opc;
2387 dw_val_node dw_loc_oprnd1;
2388 dw_val_node dw_loc_oprnd2;
2389 int dw_loc_addr;
2390 }
2391 dw_loc_descr_node;
2392
2393 /* Location lists are ranges + location descriptions for that range,
2394 so you can track variables that are in different places over
2395 their entire life. */
2396 typedef struct dw_loc_list_struct GTY(())
2397 {
2398 dw_loc_list_ref dw_loc_next;
2399 const char *begin; /* Label for begin address of range */
2400 const char *end; /* Label for end address of range */
2401 char *ll_symbol; /* Label for beginning of location list.
2402 Only on head of list */
2403 const char *section; /* Section this loclist is relative to */
2404 dw_loc_descr_ref expr;
2405 } dw_loc_list_node;
2406
2407 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2408
2409 static const char *dwarf_stack_op_name PARAMS ((unsigned));
2410 static dw_loc_descr_ref new_loc_descr PARAMS ((enum dwarf_location_atom,
2411 unsigned long,
2412 unsigned long));
2413 static void add_loc_descr PARAMS ((dw_loc_descr_ref *,
2414 dw_loc_descr_ref));
2415 static unsigned long size_of_loc_descr PARAMS ((dw_loc_descr_ref));
2416 static unsigned long size_of_locs PARAMS ((dw_loc_descr_ref));
2417 static void output_loc_operands PARAMS ((dw_loc_descr_ref));
2418 static void output_loc_sequence PARAMS ((dw_loc_descr_ref));
2419
2420 /* Convert a DWARF stack opcode into its string name. */
2421
2422 static const char *
2423 dwarf_stack_op_name (op)
2424 unsigned op;
2425 {
2426 switch (op)
2427 {
2428 case DW_OP_addr:
2429 case INTERNAL_DW_OP_tls_addr:
2430 return "DW_OP_addr";
2431 case DW_OP_deref:
2432 return "DW_OP_deref";
2433 case DW_OP_const1u:
2434 return "DW_OP_const1u";
2435 case DW_OP_const1s:
2436 return "DW_OP_const1s";
2437 case DW_OP_const2u:
2438 return "DW_OP_const2u";
2439 case DW_OP_const2s:
2440 return "DW_OP_const2s";
2441 case DW_OP_const4u:
2442 return "DW_OP_const4u";
2443 case DW_OP_const4s:
2444 return "DW_OP_const4s";
2445 case DW_OP_const8u:
2446 return "DW_OP_const8u";
2447 case DW_OP_const8s:
2448 return "DW_OP_const8s";
2449 case DW_OP_constu:
2450 return "DW_OP_constu";
2451 case DW_OP_consts:
2452 return "DW_OP_consts";
2453 case DW_OP_dup:
2454 return "DW_OP_dup";
2455 case DW_OP_drop:
2456 return "DW_OP_drop";
2457 case DW_OP_over:
2458 return "DW_OP_over";
2459 case DW_OP_pick:
2460 return "DW_OP_pick";
2461 case DW_OP_swap:
2462 return "DW_OP_swap";
2463 case DW_OP_rot:
2464 return "DW_OP_rot";
2465 case DW_OP_xderef:
2466 return "DW_OP_xderef";
2467 case DW_OP_abs:
2468 return "DW_OP_abs";
2469 case DW_OP_and:
2470 return "DW_OP_and";
2471 case DW_OP_div:
2472 return "DW_OP_div";
2473 case DW_OP_minus:
2474 return "DW_OP_minus";
2475 case DW_OP_mod:
2476 return "DW_OP_mod";
2477 case DW_OP_mul:
2478 return "DW_OP_mul";
2479 case DW_OP_neg:
2480 return "DW_OP_neg";
2481 case DW_OP_not:
2482 return "DW_OP_not";
2483 case DW_OP_or:
2484 return "DW_OP_or";
2485 case DW_OP_plus:
2486 return "DW_OP_plus";
2487 case DW_OP_plus_uconst:
2488 return "DW_OP_plus_uconst";
2489 case DW_OP_shl:
2490 return "DW_OP_shl";
2491 case DW_OP_shr:
2492 return "DW_OP_shr";
2493 case DW_OP_shra:
2494 return "DW_OP_shra";
2495 case DW_OP_xor:
2496 return "DW_OP_xor";
2497 case DW_OP_bra:
2498 return "DW_OP_bra";
2499 case DW_OP_eq:
2500 return "DW_OP_eq";
2501 case DW_OP_ge:
2502 return "DW_OP_ge";
2503 case DW_OP_gt:
2504 return "DW_OP_gt";
2505 case DW_OP_le:
2506 return "DW_OP_le";
2507 case DW_OP_lt:
2508 return "DW_OP_lt";
2509 case DW_OP_ne:
2510 return "DW_OP_ne";
2511 case DW_OP_skip:
2512 return "DW_OP_skip";
2513 case DW_OP_lit0:
2514 return "DW_OP_lit0";
2515 case DW_OP_lit1:
2516 return "DW_OP_lit1";
2517 case DW_OP_lit2:
2518 return "DW_OP_lit2";
2519 case DW_OP_lit3:
2520 return "DW_OP_lit3";
2521 case DW_OP_lit4:
2522 return "DW_OP_lit4";
2523 case DW_OP_lit5:
2524 return "DW_OP_lit5";
2525 case DW_OP_lit6:
2526 return "DW_OP_lit6";
2527 case DW_OP_lit7:
2528 return "DW_OP_lit7";
2529 case DW_OP_lit8:
2530 return "DW_OP_lit8";
2531 case DW_OP_lit9:
2532 return "DW_OP_lit9";
2533 case DW_OP_lit10:
2534 return "DW_OP_lit10";
2535 case DW_OP_lit11:
2536 return "DW_OP_lit11";
2537 case DW_OP_lit12:
2538 return "DW_OP_lit12";
2539 case DW_OP_lit13:
2540 return "DW_OP_lit13";
2541 case DW_OP_lit14:
2542 return "DW_OP_lit14";
2543 case DW_OP_lit15:
2544 return "DW_OP_lit15";
2545 case DW_OP_lit16:
2546 return "DW_OP_lit16";
2547 case DW_OP_lit17:
2548 return "DW_OP_lit17";
2549 case DW_OP_lit18:
2550 return "DW_OP_lit18";
2551 case DW_OP_lit19:
2552 return "DW_OP_lit19";
2553 case DW_OP_lit20:
2554 return "DW_OP_lit20";
2555 case DW_OP_lit21:
2556 return "DW_OP_lit21";
2557 case DW_OP_lit22:
2558 return "DW_OP_lit22";
2559 case DW_OP_lit23:
2560 return "DW_OP_lit23";
2561 case DW_OP_lit24:
2562 return "DW_OP_lit24";
2563 case DW_OP_lit25:
2564 return "DW_OP_lit25";
2565 case DW_OP_lit26:
2566 return "DW_OP_lit26";
2567 case DW_OP_lit27:
2568 return "DW_OP_lit27";
2569 case DW_OP_lit28:
2570 return "DW_OP_lit28";
2571 case DW_OP_lit29:
2572 return "DW_OP_lit29";
2573 case DW_OP_lit30:
2574 return "DW_OP_lit30";
2575 case DW_OP_lit31:
2576 return "DW_OP_lit31";
2577 case DW_OP_reg0:
2578 return "DW_OP_reg0";
2579 case DW_OP_reg1:
2580 return "DW_OP_reg1";
2581 case DW_OP_reg2:
2582 return "DW_OP_reg2";
2583 case DW_OP_reg3:
2584 return "DW_OP_reg3";
2585 case DW_OP_reg4:
2586 return "DW_OP_reg4";
2587 case DW_OP_reg5:
2588 return "DW_OP_reg5";
2589 case DW_OP_reg6:
2590 return "DW_OP_reg6";
2591 case DW_OP_reg7:
2592 return "DW_OP_reg7";
2593 case DW_OP_reg8:
2594 return "DW_OP_reg8";
2595 case DW_OP_reg9:
2596 return "DW_OP_reg9";
2597 case DW_OP_reg10:
2598 return "DW_OP_reg10";
2599 case DW_OP_reg11:
2600 return "DW_OP_reg11";
2601 case DW_OP_reg12:
2602 return "DW_OP_reg12";
2603 case DW_OP_reg13:
2604 return "DW_OP_reg13";
2605 case DW_OP_reg14:
2606 return "DW_OP_reg14";
2607 case DW_OP_reg15:
2608 return "DW_OP_reg15";
2609 case DW_OP_reg16:
2610 return "DW_OP_reg16";
2611 case DW_OP_reg17:
2612 return "DW_OP_reg17";
2613 case DW_OP_reg18:
2614 return "DW_OP_reg18";
2615 case DW_OP_reg19:
2616 return "DW_OP_reg19";
2617 case DW_OP_reg20:
2618 return "DW_OP_reg20";
2619 case DW_OP_reg21:
2620 return "DW_OP_reg21";
2621 case DW_OP_reg22:
2622 return "DW_OP_reg22";
2623 case DW_OP_reg23:
2624 return "DW_OP_reg23";
2625 case DW_OP_reg24:
2626 return "DW_OP_reg24";
2627 case DW_OP_reg25:
2628 return "DW_OP_reg25";
2629 case DW_OP_reg26:
2630 return "DW_OP_reg26";
2631 case DW_OP_reg27:
2632 return "DW_OP_reg27";
2633 case DW_OP_reg28:
2634 return "DW_OP_reg28";
2635 case DW_OP_reg29:
2636 return "DW_OP_reg29";
2637 case DW_OP_reg30:
2638 return "DW_OP_reg30";
2639 case DW_OP_reg31:
2640 return "DW_OP_reg31";
2641 case DW_OP_breg0:
2642 return "DW_OP_breg0";
2643 case DW_OP_breg1:
2644 return "DW_OP_breg1";
2645 case DW_OP_breg2:
2646 return "DW_OP_breg2";
2647 case DW_OP_breg3:
2648 return "DW_OP_breg3";
2649 case DW_OP_breg4:
2650 return "DW_OP_breg4";
2651 case DW_OP_breg5:
2652 return "DW_OP_breg5";
2653 case DW_OP_breg6:
2654 return "DW_OP_breg6";
2655 case DW_OP_breg7:
2656 return "DW_OP_breg7";
2657 case DW_OP_breg8:
2658 return "DW_OP_breg8";
2659 case DW_OP_breg9:
2660 return "DW_OP_breg9";
2661 case DW_OP_breg10:
2662 return "DW_OP_breg10";
2663 case DW_OP_breg11:
2664 return "DW_OP_breg11";
2665 case DW_OP_breg12:
2666 return "DW_OP_breg12";
2667 case DW_OP_breg13:
2668 return "DW_OP_breg13";
2669 case DW_OP_breg14:
2670 return "DW_OP_breg14";
2671 case DW_OP_breg15:
2672 return "DW_OP_breg15";
2673 case DW_OP_breg16:
2674 return "DW_OP_breg16";
2675 case DW_OP_breg17:
2676 return "DW_OP_breg17";
2677 case DW_OP_breg18:
2678 return "DW_OP_breg18";
2679 case DW_OP_breg19:
2680 return "DW_OP_breg19";
2681 case DW_OP_breg20:
2682 return "DW_OP_breg20";
2683 case DW_OP_breg21:
2684 return "DW_OP_breg21";
2685 case DW_OP_breg22:
2686 return "DW_OP_breg22";
2687 case DW_OP_breg23:
2688 return "DW_OP_breg23";
2689 case DW_OP_breg24:
2690 return "DW_OP_breg24";
2691 case DW_OP_breg25:
2692 return "DW_OP_breg25";
2693 case DW_OP_breg26:
2694 return "DW_OP_breg26";
2695 case DW_OP_breg27:
2696 return "DW_OP_breg27";
2697 case DW_OP_breg28:
2698 return "DW_OP_breg28";
2699 case DW_OP_breg29:
2700 return "DW_OP_breg29";
2701 case DW_OP_breg30:
2702 return "DW_OP_breg30";
2703 case DW_OP_breg31:
2704 return "DW_OP_breg31";
2705 case DW_OP_regx:
2706 return "DW_OP_regx";
2707 case DW_OP_fbreg:
2708 return "DW_OP_fbreg";
2709 case DW_OP_bregx:
2710 return "DW_OP_bregx";
2711 case DW_OP_piece:
2712 return "DW_OP_piece";
2713 case DW_OP_deref_size:
2714 return "DW_OP_deref_size";
2715 case DW_OP_xderef_size:
2716 return "DW_OP_xderef_size";
2717 case DW_OP_nop:
2718 return "DW_OP_nop";
2719 case DW_OP_push_object_address:
2720 return "DW_OP_push_object_address";
2721 case DW_OP_call2:
2722 return "DW_OP_call2";
2723 case DW_OP_call4:
2724 return "DW_OP_call4";
2725 case DW_OP_call_ref:
2726 return "DW_OP_call_ref";
2727 case DW_OP_GNU_push_tls_address:
2728 return "DW_OP_GNU_push_tls_address";
2729 default:
2730 return "OP_<unknown>";
2731 }
2732 }
2733
2734 /* Return a pointer to a newly allocated location description. Location
2735 descriptions are simple expression terms that can be strung
2736 together to form more complicated location (address) descriptions. */
2737
2738 static inline dw_loc_descr_ref
2739 new_loc_descr (op, oprnd1, oprnd2)
2740 enum dwarf_location_atom op;
2741 unsigned long oprnd1;
2742 unsigned long oprnd2;
2743 {
2744 dw_loc_descr_ref descr
2745 = (dw_loc_descr_ref) ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2746
2747 descr->dw_loc_opc = op;
2748 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2749 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2750 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2751 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2752
2753 return descr;
2754 }
2755
2756
2757 /* Add a location description term to a location description expression. */
2758
2759 static inline void
2760 add_loc_descr (list_head, descr)
2761 dw_loc_descr_ref *list_head;
2762 dw_loc_descr_ref descr;
2763 {
2764 dw_loc_descr_ref *d;
2765
2766 /* Find the end of the chain. */
2767 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2768 ;
2769
2770 *d = descr;
2771 }
2772
2773 /* Return the size of a location descriptor. */
2774
2775 static unsigned long
2776 size_of_loc_descr (loc)
2777 dw_loc_descr_ref loc;
2778 {
2779 unsigned long size = 1;
2780
2781 switch (loc->dw_loc_opc)
2782 {
2783 case DW_OP_addr:
2784 case INTERNAL_DW_OP_tls_addr:
2785 size += DWARF2_ADDR_SIZE;
2786 break;
2787 case DW_OP_const1u:
2788 case DW_OP_const1s:
2789 size += 1;
2790 break;
2791 case DW_OP_const2u:
2792 case DW_OP_const2s:
2793 size += 2;
2794 break;
2795 case DW_OP_const4u:
2796 case DW_OP_const4s:
2797 size += 4;
2798 break;
2799 case DW_OP_const8u:
2800 case DW_OP_const8s:
2801 size += 8;
2802 break;
2803 case DW_OP_constu:
2804 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2805 break;
2806 case DW_OP_consts:
2807 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2808 break;
2809 case DW_OP_pick:
2810 size += 1;
2811 break;
2812 case DW_OP_plus_uconst:
2813 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2814 break;
2815 case DW_OP_skip:
2816 case DW_OP_bra:
2817 size += 2;
2818 break;
2819 case DW_OP_breg0:
2820 case DW_OP_breg1:
2821 case DW_OP_breg2:
2822 case DW_OP_breg3:
2823 case DW_OP_breg4:
2824 case DW_OP_breg5:
2825 case DW_OP_breg6:
2826 case DW_OP_breg7:
2827 case DW_OP_breg8:
2828 case DW_OP_breg9:
2829 case DW_OP_breg10:
2830 case DW_OP_breg11:
2831 case DW_OP_breg12:
2832 case DW_OP_breg13:
2833 case DW_OP_breg14:
2834 case DW_OP_breg15:
2835 case DW_OP_breg16:
2836 case DW_OP_breg17:
2837 case DW_OP_breg18:
2838 case DW_OP_breg19:
2839 case DW_OP_breg20:
2840 case DW_OP_breg21:
2841 case DW_OP_breg22:
2842 case DW_OP_breg23:
2843 case DW_OP_breg24:
2844 case DW_OP_breg25:
2845 case DW_OP_breg26:
2846 case DW_OP_breg27:
2847 case DW_OP_breg28:
2848 case DW_OP_breg29:
2849 case DW_OP_breg30:
2850 case DW_OP_breg31:
2851 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2852 break;
2853 case DW_OP_regx:
2854 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2855 break;
2856 case DW_OP_fbreg:
2857 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2858 break;
2859 case DW_OP_bregx:
2860 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2861 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2862 break;
2863 case DW_OP_piece:
2864 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2865 break;
2866 case DW_OP_deref_size:
2867 case DW_OP_xderef_size:
2868 size += 1;
2869 break;
2870 case DW_OP_call2:
2871 size += 2;
2872 break;
2873 case DW_OP_call4:
2874 size += 4;
2875 break;
2876 case DW_OP_call_ref:
2877 size += DWARF2_ADDR_SIZE;
2878 break;
2879 default:
2880 break;
2881 }
2882
2883 return size;
2884 }
2885
2886 /* Return the size of a series of location descriptors. */
2887
2888 static unsigned long
2889 size_of_locs (loc)
2890 dw_loc_descr_ref loc;
2891 {
2892 unsigned long size;
2893
2894 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2895 {
2896 loc->dw_loc_addr = size;
2897 size += size_of_loc_descr (loc);
2898 }
2899
2900 return size;
2901 }
2902
2903 /* Output location description stack opcode's operands (if any). */
2904
2905 static void
2906 output_loc_operands (loc)
2907 dw_loc_descr_ref loc;
2908 {
2909 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2910 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2911
2912 switch (loc->dw_loc_opc)
2913 {
2914 #ifdef DWARF2_DEBUGGING_INFO
2915 case DW_OP_addr:
2916 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2917 break;
2918 case DW_OP_const2u:
2919 case DW_OP_const2s:
2920 dw2_asm_output_data (2, val1->v.val_int, NULL);
2921 break;
2922 case DW_OP_const4u:
2923 case DW_OP_const4s:
2924 dw2_asm_output_data (4, val1->v.val_int, NULL);
2925 break;
2926 case DW_OP_const8u:
2927 case DW_OP_const8s:
2928 if (HOST_BITS_PER_LONG < 64)
2929 abort ();
2930 dw2_asm_output_data (8, val1->v.val_int, NULL);
2931 break;
2932 case DW_OP_skip:
2933 case DW_OP_bra:
2934 {
2935 int offset;
2936
2937 if (val1->val_class == dw_val_class_loc)
2938 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2939 else
2940 abort ();
2941
2942 dw2_asm_output_data (2, offset, NULL);
2943 }
2944 break;
2945 #else
2946 case DW_OP_addr:
2947 case DW_OP_const2u:
2948 case DW_OP_const2s:
2949 case DW_OP_const4u:
2950 case DW_OP_const4s:
2951 case DW_OP_const8u:
2952 case DW_OP_const8s:
2953 case DW_OP_skip:
2954 case DW_OP_bra:
2955 /* We currently don't make any attempt to make sure these are
2956 aligned properly like we do for the main unwind info, so
2957 don't support emitting things larger than a byte if we're
2958 only doing unwinding. */
2959 abort ();
2960 #endif
2961 case DW_OP_const1u:
2962 case DW_OP_const1s:
2963 dw2_asm_output_data (1, val1->v.val_int, NULL);
2964 break;
2965 case DW_OP_constu:
2966 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2967 break;
2968 case DW_OP_consts:
2969 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2970 break;
2971 case DW_OP_pick:
2972 dw2_asm_output_data (1, val1->v.val_int, NULL);
2973 break;
2974 case DW_OP_plus_uconst:
2975 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2976 break;
2977 case DW_OP_breg0:
2978 case DW_OP_breg1:
2979 case DW_OP_breg2:
2980 case DW_OP_breg3:
2981 case DW_OP_breg4:
2982 case DW_OP_breg5:
2983 case DW_OP_breg6:
2984 case DW_OP_breg7:
2985 case DW_OP_breg8:
2986 case DW_OP_breg9:
2987 case DW_OP_breg10:
2988 case DW_OP_breg11:
2989 case DW_OP_breg12:
2990 case DW_OP_breg13:
2991 case DW_OP_breg14:
2992 case DW_OP_breg15:
2993 case DW_OP_breg16:
2994 case DW_OP_breg17:
2995 case DW_OP_breg18:
2996 case DW_OP_breg19:
2997 case DW_OP_breg20:
2998 case DW_OP_breg21:
2999 case DW_OP_breg22:
3000 case DW_OP_breg23:
3001 case DW_OP_breg24:
3002 case DW_OP_breg25:
3003 case DW_OP_breg26:
3004 case DW_OP_breg27:
3005 case DW_OP_breg28:
3006 case DW_OP_breg29:
3007 case DW_OP_breg30:
3008 case DW_OP_breg31:
3009 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3010 break;
3011 case DW_OP_regx:
3012 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3013 break;
3014 case DW_OP_fbreg:
3015 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3016 break;
3017 case DW_OP_bregx:
3018 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3019 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3020 break;
3021 case DW_OP_piece:
3022 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3023 break;
3024 case DW_OP_deref_size:
3025 case DW_OP_xderef_size:
3026 dw2_asm_output_data (1, val1->v.val_int, NULL);
3027 break;
3028
3029 case INTERNAL_DW_OP_tls_addr:
3030 #ifdef ASM_OUTPUT_DWARF_DTPREL
3031 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3032 val1->v.val_addr);
3033 fputc ('\n', asm_out_file);
3034 #else
3035 abort ();
3036 #endif
3037 break;
3038
3039 default:
3040 /* Other codes have no operands. */
3041 break;
3042 }
3043 }
3044
3045 /* Output a sequence of location operations. */
3046
3047 static void
3048 output_loc_sequence (loc)
3049 dw_loc_descr_ref loc;
3050 {
3051 for (; loc != NULL; loc = loc->dw_loc_next)
3052 {
3053 /* Output the opcode. */
3054 dw2_asm_output_data (1, loc->dw_loc_opc,
3055 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3056
3057 /* Output the operand(s) (if any). */
3058 output_loc_operands (loc);
3059 }
3060 }
3061
3062 /* This routine will generate the correct assembly data for a location
3063 description based on a cfi entry with a complex address. */
3064
3065 static void
3066 output_cfa_loc (cfi)
3067 dw_cfi_ref cfi;
3068 {
3069 dw_loc_descr_ref loc;
3070 unsigned long size;
3071
3072 /* Output the size of the block. */
3073 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3074 size = size_of_locs (loc);
3075 dw2_asm_output_data_uleb128 (size, NULL);
3076
3077 /* Now output the operations themselves. */
3078 output_loc_sequence (loc);
3079 }
3080
3081 /* This function builds a dwarf location descriptor sequence from
3082 a dw_cfa_location. */
3083
3084 static struct dw_loc_descr_struct *
3085 build_cfa_loc (cfa)
3086 dw_cfa_location *cfa;
3087 {
3088 struct dw_loc_descr_struct *head, *tmp;
3089
3090 if (cfa->indirect == 0)
3091 abort ();
3092
3093 if (cfa->base_offset)
3094 {
3095 if (cfa->reg <= 31)
3096 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3097 else
3098 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3099 }
3100 else if (cfa->reg <= 31)
3101 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3102 else
3103 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3104
3105 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3106 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3107 add_loc_descr (&head, tmp);
3108 if (cfa->offset != 0)
3109 {
3110 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3111 add_loc_descr (&head, tmp);
3112 }
3113
3114 return head;
3115 }
3116
3117 /* This function fills in aa dw_cfa_location structure from a dwarf location
3118 descriptor sequence. */
3119
3120 static void
3121 get_cfa_from_loc_descr (cfa, loc)
3122 dw_cfa_location *cfa;
3123 struct dw_loc_descr_struct *loc;
3124 {
3125 struct dw_loc_descr_struct *ptr;
3126 cfa->offset = 0;
3127 cfa->base_offset = 0;
3128 cfa->indirect = 0;
3129 cfa->reg = -1;
3130
3131 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3132 {
3133 enum dwarf_location_atom op = ptr->dw_loc_opc;
3134
3135 switch (op)
3136 {
3137 case DW_OP_reg0:
3138 case DW_OP_reg1:
3139 case DW_OP_reg2:
3140 case DW_OP_reg3:
3141 case DW_OP_reg4:
3142 case DW_OP_reg5:
3143 case DW_OP_reg6:
3144 case DW_OP_reg7:
3145 case DW_OP_reg8:
3146 case DW_OP_reg9:
3147 case DW_OP_reg10:
3148 case DW_OP_reg11:
3149 case DW_OP_reg12:
3150 case DW_OP_reg13:
3151 case DW_OP_reg14:
3152 case DW_OP_reg15:
3153 case DW_OP_reg16:
3154 case DW_OP_reg17:
3155 case DW_OP_reg18:
3156 case DW_OP_reg19:
3157 case DW_OP_reg20:
3158 case DW_OP_reg21:
3159 case DW_OP_reg22:
3160 case DW_OP_reg23:
3161 case DW_OP_reg24:
3162 case DW_OP_reg25:
3163 case DW_OP_reg26:
3164 case DW_OP_reg27:
3165 case DW_OP_reg28:
3166 case DW_OP_reg29:
3167 case DW_OP_reg30:
3168 case DW_OP_reg31:
3169 cfa->reg = op - DW_OP_reg0;
3170 break;
3171 case DW_OP_regx:
3172 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3173 break;
3174 case DW_OP_breg0:
3175 case DW_OP_breg1:
3176 case DW_OP_breg2:
3177 case DW_OP_breg3:
3178 case DW_OP_breg4:
3179 case DW_OP_breg5:
3180 case DW_OP_breg6:
3181 case DW_OP_breg7:
3182 case DW_OP_breg8:
3183 case DW_OP_breg9:
3184 case DW_OP_breg10:
3185 case DW_OP_breg11:
3186 case DW_OP_breg12:
3187 case DW_OP_breg13:
3188 case DW_OP_breg14:
3189 case DW_OP_breg15:
3190 case DW_OP_breg16:
3191 case DW_OP_breg17:
3192 case DW_OP_breg18:
3193 case DW_OP_breg19:
3194 case DW_OP_breg20:
3195 case DW_OP_breg21:
3196 case DW_OP_breg22:
3197 case DW_OP_breg23:
3198 case DW_OP_breg24:
3199 case DW_OP_breg25:
3200 case DW_OP_breg26:
3201 case DW_OP_breg27:
3202 case DW_OP_breg28:
3203 case DW_OP_breg29:
3204 case DW_OP_breg30:
3205 case DW_OP_breg31:
3206 cfa->reg = op - DW_OP_breg0;
3207 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3208 break;
3209 case DW_OP_bregx:
3210 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3211 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3212 break;
3213 case DW_OP_deref:
3214 cfa->indirect = 1;
3215 break;
3216 case DW_OP_plus_uconst:
3217 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3218 break;
3219 default:
3220 internal_error ("DW_LOC_OP %s not implemented\n",
3221 dwarf_stack_op_name (ptr->dw_loc_opc));
3222 }
3223 }
3224 }
3225 #endif /* .debug_frame support */
3226 \f
3227 /* And now, the support for symbolic debugging information. */
3228 #ifdef DWARF2_DEBUGGING_INFO
3229
3230 /* .debug_str support. */
3231 static int output_indirect_string PARAMS ((void **, void *));
3232
3233 static void dwarf2out_init PARAMS ((const char *));
3234 static void dwarf2out_finish PARAMS ((const char *));
3235 static void dwarf2out_define PARAMS ((unsigned int, const char *));
3236 static void dwarf2out_undef PARAMS ((unsigned int, const char *));
3237 static void dwarf2out_start_source_file PARAMS ((unsigned, const char *));
3238 static void dwarf2out_end_source_file PARAMS ((unsigned));
3239 static void dwarf2out_begin_block PARAMS ((unsigned, unsigned));
3240 static void dwarf2out_end_block PARAMS ((unsigned, unsigned));
3241 static bool dwarf2out_ignore_block PARAMS ((tree));
3242 static void dwarf2out_global_decl PARAMS ((tree));
3243 static void dwarf2out_abstract_function PARAMS ((tree));
3244
3245 /* The debug hooks structure. */
3246
3247 const struct gcc_debug_hooks dwarf2_debug_hooks =
3248 {
3249 dwarf2out_init,
3250 dwarf2out_finish,
3251 dwarf2out_define,
3252 dwarf2out_undef,
3253 dwarf2out_start_source_file,
3254 dwarf2out_end_source_file,
3255 dwarf2out_begin_block,
3256 dwarf2out_end_block,
3257 dwarf2out_ignore_block,
3258 dwarf2out_source_line,
3259 dwarf2out_begin_prologue,
3260 debug_nothing_int_charstar, /* end_prologue */
3261 dwarf2out_end_epilogue,
3262 debug_nothing_tree, /* begin_function */
3263 debug_nothing_int, /* end_function */
3264 dwarf2out_decl, /* function_decl */
3265 dwarf2out_global_decl,
3266 debug_nothing_tree, /* deferred_inline_function */
3267 /* The DWARF 2 backend tries to reduce debugging bloat by not
3268 emitting the abstract description of inline functions until
3269 something tries to reference them. */
3270 dwarf2out_abstract_function, /* outlining_inline_function */
3271 debug_nothing_rtx /* label */
3272 };
3273 #endif
3274 \f
3275 /* NOTE: In the comments in this file, many references are made to
3276 "Debugging Information Entries". This term is abbreviated as `DIE'
3277 throughout the remainder of this file. */
3278
3279 /* An internal representation of the DWARF output is built, and then
3280 walked to generate the DWARF debugging info. The walk of the internal
3281 representation is done after the entire program has been compiled.
3282 The types below are used to describe the internal representation. */
3283
3284 /* Various DIE's use offsets relative to the beginning of the
3285 .debug_info section to refer to each other. */
3286
3287 typedef long int dw_offset;
3288
3289 /* Define typedefs here to avoid circular dependencies. */
3290
3291 typedef struct dw_attr_struct *dw_attr_ref;
3292 typedef struct dw_line_info_struct *dw_line_info_ref;
3293 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3294 typedef struct pubname_struct *pubname_ref;
3295 typedef struct dw_ranges_struct *dw_ranges_ref;
3296
3297 /* Each entry in the line_info_table maintains the file and
3298 line number associated with the label generated for that
3299 entry. The label gives the PC value associated with
3300 the line number entry. */
3301
3302 typedef struct dw_line_info_struct GTY(())
3303 {
3304 unsigned long dw_file_num;
3305 unsigned long dw_line_num;
3306 }
3307 dw_line_info_entry;
3308
3309 /* Line information for functions in separate sections; each one gets its
3310 own sequence. */
3311 typedef struct dw_separate_line_info_struct GTY(())
3312 {
3313 unsigned long dw_file_num;
3314 unsigned long dw_line_num;
3315 unsigned long function;
3316 }
3317 dw_separate_line_info_entry;
3318
3319 /* Each DIE attribute has a field specifying the attribute kind,
3320 a link to the next attribute in the chain, and an attribute value.
3321 Attributes are typically linked below the DIE they modify. */
3322
3323 typedef struct dw_attr_struct GTY(())
3324 {
3325 enum dwarf_attribute dw_attr;
3326 dw_attr_ref dw_attr_next;
3327 dw_val_node dw_attr_val;
3328 }
3329 dw_attr_node;
3330
3331 /* The Debugging Information Entry (DIE) structure */
3332
3333 typedef struct die_struct GTY(())
3334 {
3335 enum dwarf_tag die_tag;
3336 char *die_symbol;
3337 dw_attr_ref die_attr;
3338 dw_die_ref die_parent;
3339 dw_die_ref die_child;
3340 dw_die_ref die_sib;
3341 dw_offset die_offset;
3342 unsigned long die_abbrev;
3343 int die_mark;
3344 }
3345 die_node;
3346
3347 /* The pubname structure */
3348
3349 typedef struct pubname_struct GTY(())
3350 {
3351 dw_die_ref die;
3352 char *name;
3353 }
3354 pubname_entry;
3355
3356 struct dw_ranges_struct GTY(())
3357 {
3358 int block_num;
3359 };
3360
3361 /* The limbo die list structure. */
3362 typedef struct limbo_die_struct GTY(())
3363 {
3364 dw_die_ref die;
3365 tree created_for;
3366 struct limbo_die_struct *next;
3367 }
3368 limbo_die_node;
3369
3370 /* How to start an assembler comment. */
3371 #ifndef ASM_COMMENT_START
3372 #define ASM_COMMENT_START ";#"
3373 #endif
3374
3375 /* Define a macro which returns nonzero for a TYPE_DECL which was
3376 implicitly generated for a tagged type.
3377
3378 Note that unlike the gcc front end (which generates a NULL named
3379 TYPE_DECL node for each complete tagged type, each array type, and
3380 each function type node created) the g++ front end generates a
3381 _named_ TYPE_DECL node for each tagged type node created.
3382 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3383 generate a DW_TAG_typedef DIE for them. */
3384
3385 #define TYPE_DECL_IS_STUB(decl) \
3386 (DECL_NAME (decl) == NULL_TREE \
3387 || (DECL_ARTIFICIAL (decl) \
3388 && is_tagged_type (TREE_TYPE (decl)) \
3389 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3390 /* This is necessary for stub decls that \
3391 appear in nested inline functions. */ \
3392 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3393 && (decl_ultimate_origin (decl) \
3394 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3395
3396 /* Information concerning the compilation unit's programming
3397 language, and compiler version. */
3398
3399 /* Fixed size portion of the DWARF compilation unit header. */
3400 #define DWARF_COMPILE_UNIT_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 3)
3401
3402 /* Fixed size portion of public names info. */
3403 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3404
3405 /* Fixed size portion of the address range info. */
3406 #define DWARF_ARANGES_HEADER_SIZE \
3407 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3408 - DWARF_OFFSET_SIZE)
3409
3410 /* Size of padding portion in the address range info. It must be
3411 aligned to twice the pointer size. */
3412 #define DWARF_ARANGES_PAD_SIZE \
3413 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3414 - (2 * DWARF_OFFSET_SIZE + 4))
3415
3416 /* Use assembler line directives if available. */
3417 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3418 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3419 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3420 #else
3421 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3422 #endif
3423 #endif
3424
3425 /* Minimum line offset in a special line info. opcode.
3426 This value was chosen to give a reasonable range of values. */
3427 #define DWARF_LINE_BASE -10
3428
3429 /* First special line opcode - leave room for the standard opcodes. */
3430 #define DWARF_LINE_OPCODE_BASE 10
3431
3432 /* Range of line offsets in a special line info. opcode. */
3433 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3434
3435 /* Flag that indicates the initial value of the is_stmt_start flag.
3436 In the present implementation, we do not mark any lines as
3437 the beginning of a source statement, because that information
3438 is not made available by the GCC front-end. */
3439 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3440
3441 #ifdef DWARF2_DEBUGGING_INFO
3442 /* This location is used by calc_die_sizes() to keep track
3443 the offset of each DIE within the .debug_info section. */
3444 static unsigned long next_die_offset;
3445 #endif
3446
3447 /* Record the root of the DIE's built for the current compilation unit. */
3448 static GTY(()) dw_die_ref comp_unit_die;
3449
3450 #ifdef DWARF2_DEBUGGING_INFO
3451 /* We need special handling in dwarf2out_start_source_file if it is
3452 first one. */
3453 static int is_main_source;
3454 #endif
3455
3456 /* A list of DIEs with a NULL parent waiting to be relocated. */
3457 static GTY(()) limbo_die_node *limbo_die_list;
3458
3459 /* Filenames referenced by this compilation unit. */
3460 static GTY(()) varray_type file_table;
3461 static GTY(()) varray_type file_table_emitted;
3462 static GTY(()) size_t file_table_last_lookup_index;
3463
3464 /* A pointer to the base of a table of references to DIE's that describe
3465 declarations. The table is indexed by DECL_UID() which is a unique
3466 number identifying each decl. */
3467 static GTY((length ("decl_die_table_allocated"))) dw_die_ref *decl_die_table;
3468
3469 /* Number of elements currently allocated for the decl_die_table. */
3470 static unsigned decl_die_table_allocated;
3471
3472 #ifdef DWARF2_DEBUGGING_INFO
3473 /* Number of elements in decl_die_table currently in use. */
3474 static unsigned decl_die_table_in_use;
3475 #endif
3476
3477 /* Size (in elements) of increments by which we may expand the
3478 decl_die_table. */
3479 #define DECL_DIE_TABLE_INCREMENT 256
3480
3481 /* A pointer to the base of a list of references to DIE's that
3482 are uniquely identified by their tag, presence/absence of
3483 children DIE's, and list of attribute/value pairs. */
3484 static GTY((length ("abbrev_die_table_allocated")))
3485 dw_die_ref *abbrev_die_table;
3486
3487 /* Number of elements currently allocated for abbrev_die_table. */
3488 static unsigned abbrev_die_table_allocated;
3489
3490 #ifdef DWARF2_DEBUGGING_INFO
3491 /* Number of elements in type_die_table currently in use. */
3492 static unsigned abbrev_die_table_in_use;
3493 #endif
3494
3495 /* Size (in elements) of increments by which we may expand the
3496 abbrev_die_table. */
3497 #define ABBREV_DIE_TABLE_INCREMENT 256
3498
3499 /* A pointer to the base of a table that contains line information
3500 for each source code line in .text in the compilation unit. */
3501 static GTY((length ("line_info_table_allocated")))
3502 dw_line_info_ref line_info_table;
3503
3504 /* Number of elements currently allocated for line_info_table. */
3505 static unsigned line_info_table_allocated;
3506
3507 #ifdef DWARF2_DEBUGGING_INFO
3508 /* Number of elements in line_info_table currently in use. */
3509 static unsigned line_info_table_in_use;
3510 #endif
3511
3512 /* A pointer to the base of a table that contains line information
3513 for each source code line outside of .text in the compilation unit. */
3514 static GTY ((length ("separate_line_info_table_allocated")))
3515 dw_separate_line_info_ref separate_line_info_table;
3516
3517 /* Number of elements currently allocated for separate_line_info_table. */
3518 static unsigned separate_line_info_table_allocated;
3519
3520 #ifdef DWARF2_DEBUGGING_INFO
3521 /* Number of elements in separate_line_info_table currently in use. */
3522 static unsigned separate_line_info_table_in_use;
3523 #endif
3524
3525 /* Size (in elements) of increments by which we may expand the
3526 line_info_table. */
3527 #define LINE_INFO_TABLE_INCREMENT 1024
3528
3529 /* A pointer to the base of a table that contains a list of publicly
3530 accessible names. */
3531 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3532
3533 /* Number of elements currently allocated for pubname_table. */
3534 static unsigned pubname_table_allocated;
3535
3536 #ifdef DWARF2_DEBUGGING_INFO
3537 /* Number of elements in pubname_table currently in use. */
3538 static unsigned pubname_table_in_use;
3539 #endif
3540
3541 /* Size (in elements) of increments by which we may expand the
3542 pubname_table. */
3543 #define PUBNAME_TABLE_INCREMENT 64
3544
3545 /* Array of dies for which we should generate .debug_arange info. */
3546 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3547
3548 /* Number of elements currently allocated for arange_table. */
3549 static unsigned arange_table_allocated;
3550
3551 #ifdef DWARF2_DEBUGGING_INFO
3552 /* Number of elements in arange_table currently in use. */
3553 static unsigned arange_table_in_use;
3554 #endif
3555
3556 /* Size (in elements) of increments by which we may expand the
3557 arange_table. */
3558 #define ARANGE_TABLE_INCREMENT 64
3559
3560 /* Array of dies for which we should generate .debug_ranges info. */
3561 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3562
3563 /* Number of elements currently allocated for ranges_table. */
3564 static unsigned ranges_table_allocated;
3565
3566 #ifdef DWARF2_DEBUGGING_INFO
3567 /* Number of elements in ranges_table currently in use. */
3568 static unsigned ranges_table_in_use;
3569
3570 /* Size (in elements) of increments by which we may expand the
3571 ranges_table. */
3572 #define RANGES_TABLE_INCREMENT 64
3573
3574 /* Whether we have location lists that need outputting */
3575 static unsigned have_location_lists;
3576
3577 /* Record whether the function being analyzed contains inlined functions. */
3578 static int current_function_has_inlines;
3579 #endif
3580 #if 0 && defined (MIPS_DEBUGGING_INFO)
3581 static int comp_unit_has_inlines;
3582 #endif
3583
3584 #ifdef DWARF2_DEBUGGING_INFO
3585
3586 /* Forward declarations for functions defined in this file. */
3587
3588 static int is_pseudo_reg PARAMS ((rtx));
3589 static tree type_main_variant PARAMS ((tree));
3590 static int is_tagged_type PARAMS ((tree));
3591 static const char *dwarf_tag_name PARAMS ((unsigned));
3592 static const char *dwarf_attr_name PARAMS ((unsigned));
3593 static const char *dwarf_form_name PARAMS ((unsigned));
3594 #if 0
3595 static const char *dwarf_type_encoding_name PARAMS ((unsigned));
3596 #endif
3597 static tree decl_ultimate_origin PARAMS ((tree));
3598 static tree block_ultimate_origin PARAMS ((tree));
3599 static tree decl_class_context PARAMS ((tree));
3600 static void add_dwarf_attr PARAMS ((dw_die_ref, dw_attr_ref));
3601 static inline enum dw_val_class AT_class PARAMS ((dw_attr_ref));
3602 static void add_AT_flag PARAMS ((dw_die_ref,
3603 enum dwarf_attribute,
3604 unsigned));
3605 static inline unsigned AT_flag PARAMS ((dw_attr_ref));
3606 static void add_AT_int PARAMS ((dw_die_ref,
3607 enum dwarf_attribute, long));
3608 static inline long int AT_int PARAMS ((dw_attr_ref));
3609 static void add_AT_unsigned PARAMS ((dw_die_ref,
3610 enum dwarf_attribute,
3611 unsigned long));
3612 static inline unsigned long AT_unsigned PARAMS ((dw_attr_ref));
3613 static void add_AT_long_long PARAMS ((dw_die_ref,
3614 enum dwarf_attribute,
3615 unsigned long,
3616 unsigned long));
3617 static void add_AT_float PARAMS ((dw_die_ref,
3618 enum dwarf_attribute,
3619 unsigned, long *));
3620 static hashval_t debug_str_do_hash PARAMS ((const void *));
3621 static int debug_str_eq PARAMS ((const void *, const void *));
3622 static void add_AT_string PARAMS ((dw_die_ref,
3623 enum dwarf_attribute,
3624 const char *));
3625 static inline const char *AT_string PARAMS ((dw_attr_ref));
3626 static int AT_string_form PARAMS ((dw_attr_ref));
3627 static void add_AT_die_ref PARAMS ((dw_die_ref,
3628 enum dwarf_attribute,
3629 dw_die_ref));
3630 static inline dw_die_ref AT_ref PARAMS ((dw_attr_ref));
3631 static inline int AT_ref_external PARAMS ((dw_attr_ref));
3632 static inline void set_AT_ref_external PARAMS ((dw_attr_ref, int));
3633 static void add_AT_fde_ref PARAMS ((dw_die_ref,
3634 enum dwarf_attribute,
3635 unsigned));
3636 static void add_AT_loc PARAMS ((dw_die_ref,
3637 enum dwarf_attribute,
3638 dw_loc_descr_ref));
3639 static inline dw_loc_descr_ref AT_loc PARAMS ((dw_attr_ref));
3640 static void add_AT_loc_list PARAMS ((dw_die_ref,
3641 enum dwarf_attribute,
3642 dw_loc_list_ref));
3643 static inline dw_loc_list_ref AT_loc_list PARAMS ((dw_attr_ref));
3644 static void add_AT_addr PARAMS ((dw_die_ref,
3645 enum dwarf_attribute,
3646 rtx));
3647 static inline rtx AT_addr PARAMS ((dw_attr_ref));
3648 static void add_AT_lbl_id PARAMS ((dw_die_ref,
3649 enum dwarf_attribute,
3650 const char *));
3651 static void add_AT_lbl_offset PARAMS ((dw_die_ref,
3652 enum dwarf_attribute,
3653 const char *));
3654 static void add_AT_offset PARAMS ((dw_die_ref,
3655 enum dwarf_attribute,
3656 unsigned long));
3657 static void add_AT_range_list PARAMS ((dw_die_ref,
3658 enum dwarf_attribute,
3659 unsigned long));
3660 static inline const char *AT_lbl PARAMS ((dw_attr_ref));
3661 static dw_attr_ref get_AT PARAMS ((dw_die_ref,
3662 enum dwarf_attribute));
3663 static const char *get_AT_low_pc PARAMS ((dw_die_ref));
3664 static const char *get_AT_hi_pc PARAMS ((dw_die_ref));
3665 static const char *get_AT_string PARAMS ((dw_die_ref,
3666 enum dwarf_attribute));
3667 static int get_AT_flag PARAMS ((dw_die_ref,
3668 enum dwarf_attribute));
3669 static unsigned get_AT_unsigned PARAMS ((dw_die_ref,
3670 enum dwarf_attribute));
3671 static inline dw_die_ref get_AT_ref PARAMS ((dw_die_ref,
3672 enum dwarf_attribute));
3673 static int is_c_family PARAMS ((void));
3674 static int is_cxx PARAMS ((void));
3675 static int is_java PARAMS ((void));
3676 static int is_fortran PARAMS ((void));
3677 static void remove_AT PARAMS ((dw_die_ref,
3678 enum dwarf_attribute));
3679 static inline void free_die PARAMS ((dw_die_ref));
3680 static void remove_children PARAMS ((dw_die_ref));
3681 static void add_child_die PARAMS ((dw_die_ref, dw_die_ref));
3682 static dw_die_ref new_die PARAMS ((enum dwarf_tag, dw_die_ref,
3683 tree));
3684 static dw_die_ref lookup_type_die PARAMS ((tree));
3685 static void equate_type_number_to_die PARAMS ((tree, dw_die_ref));
3686 static dw_die_ref lookup_decl_die PARAMS ((tree));
3687 static void equate_decl_number_to_die PARAMS ((tree, dw_die_ref));
3688 static void print_spaces PARAMS ((FILE *));
3689 static void print_die PARAMS ((dw_die_ref, FILE *));
3690 static void print_dwarf_line_table PARAMS ((FILE *));
3691 static void reverse_die_lists PARAMS ((dw_die_ref));
3692 static void reverse_all_dies PARAMS ((dw_die_ref));
3693 static dw_die_ref push_new_compile_unit PARAMS ((dw_die_ref, dw_die_ref));
3694 static dw_die_ref pop_compile_unit PARAMS ((dw_die_ref));
3695 static void loc_checksum PARAMS ((dw_loc_descr_ref,
3696 struct md5_ctx *));
3697 static void attr_checksum PARAMS ((dw_attr_ref,
3698 struct md5_ctx *,
3699 int *));
3700 static void die_checksum PARAMS ((dw_die_ref,
3701 struct md5_ctx *,
3702 int *));
3703 static int same_loc_p PARAMS ((dw_loc_descr_ref,
3704 dw_loc_descr_ref, int *));
3705 static int same_dw_val_p PARAMS ((dw_val_node *, dw_val_node *,
3706 int *));
3707 static int same_attr_p PARAMS ((dw_attr_ref, dw_attr_ref, int *));
3708 static int same_die_p PARAMS ((dw_die_ref, dw_die_ref, int *));
3709 static int same_die_p_wrap PARAMS ((dw_die_ref, dw_die_ref));
3710 static void compute_section_prefix PARAMS ((dw_die_ref));
3711 static int is_type_die PARAMS ((dw_die_ref));
3712 static int is_comdat_die PARAMS ((dw_die_ref));
3713 static int is_symbol_die PARAMS ((dw_die_ref));
3714 static void assign_symbol_names PARAMS ((dw_die_ref));
3715 static void break_out_includes PARAMS ((dw_die_ref));
3716 static hashval_t htab_cu_hash PARAMS ((const void *));
3717 static int htab_cu_eq PARAMS ((const void *, const void *));
3718 static void htab_cu_del PARAMS ((void *));
3719 static int check_duplicate_cu PARAMS ((dw_die_ref, htab_t, unsigned *));
3720 static void record_comdat_symbol_number PARAMS ((dw_die_ref, htab_t, unsigned));
3721 static void add_sibling_attributes PARAMS ((dw_die_ref));
3722 static void build_abbrev_table PARAMS ((dw_die_ref));
3723 static void output_location_lists PARAMS ((dw_die_ref));
3724 static int constant_size PARAMS ((long unsigned));
3725 static unsigned long size_of_die PARAMS ((dw_die_ref));
3726 static void calc_die_sizes PARAMS ((dw_die_ref));
3727 static void mark_dies PARAMS ((dw_die_ref));
3728 static void unmark_dies PARAMS ((dw_die_ref));
3729 static void unmark_all_dies PARAMS ((dw_die_ref));
3730 static unsigned long size_of_pubnames PARAMS ((void));
3731 static unsigned long size_of_aranges PARAMS ((void));
3732 static enum dwarf_form value_format PARAMS ((dw_attr_ref));
3733 static void output_value_format PARAMS ((dw_attr_ref));
3734 static void output_abbrev_section PARAMS ((void));
3735 static void output_die_symbol PARAMS ((dw_die_ref));
3736 static void output_die PARAMS ((dw_die_ref));
3737 static void output_compilation_unit_header PARAMS ((void));
3738 static void output_comp_unit PARAMS ((dw_die_ref, int));
3739 static const char *dwarf2_name PARAMS ((tree, int));
3740 static void add_pubname PARAMS ((tree, dw_die_ref));
3741 static void output_pubnames PARAMS ((void));
3742 static void add_arange PARAMS ((tree, dw_die_ref));
3743 static void output_aranges PARAMS ((void));
3744 static unsigned int add_ranges PARAMS ((tree));
3745 static void output_ranges PARAMS ((void));
3746 static void output_line_info PARAMS ((void));
3747 static void output_file_names PARAMS ((void));
3748 static dw_die_ref base_type_die PARAMS ((tree));
3749 static tree root_type PARAMS ((tree));
3750 static int is_base_type PARAMS ((tree));
3751 static dw_die_ref modified_type_die PARAMS ((tree, int, int, dw_die_ref));
3752 static int type_is_enum PARAMS ((tree));
3753 static unsigned int reg_number PARAMS ((rtx));
3754 static dw_loc_descr_ref reg_loc_descriptor PARAMS ((rtx));
3755 static dw_loc_descr_ref int_loc_descriptor PARAMS ((HOST_WIDE_INT));
3756 static dw_loc_descr_ref based_loc_descr PARAMS ((unsigned, long));
3757 static int is_based_loc PARAMS ((rtx));
3758 static dw_loc_descr_ref mem_loc_descriptor PARAMS ((rtx, enum machine_mode mode));
3759 static dw_loc_descr_ref concat_loc_descriptor PARAMS ((rtx, rtx));
3760 static dw_loc_descr_ref loc_descriptor PARAMS ((rtx));
3761 static dw_loc_descr_ref loc_descriptor_from_tree PARAMS ((tree, int));
3762 static HOST_WIDE_INT ceiling PARAMS ((HOST_WIDE_INT, unsigned int));
3763 static tree field_type PARAMS ((tree));
3764 static unsigned int simple_type_align_in_bits PARAMS ((tree));
3765 static unsigned int simple_decl_align_in_bits PARAMS ((tree));
3766 static unsigned HOST_WIDE_INT simple_type_size_in_bits PARAMS ((tree));
3767 static HOST_WIDE_INT field_byte_offset PARAMS ((tree));
3768 static void add_AT_location_description PARAMS ((dw_die_ref,
3769 enum dwarf_attribute,
3770 dw_loc_descr_ref));
3771 static void add_data_member_location_attribute PARAMS ((dw_die_ref, tree));
3772 static void add_const_value_attribute PARAMS ((dw_die_ref, rtx));
3773 static rtx rtl_for_decl_location PARAMS ((tree));
3774 static void add_location_or_const_value_attribute PARAMS ((dw_die_ref, tree));
3775 static void tree_add_const_value_attribute PARAMS ((dw_die_ref, tree));
3776 static void add_name_attribute PARAMS ((dw_die_ref, const char *));
3777 static void add_comp_dir_attribute PARAMS ((dw_die_ref));
3778 static void add_bound_info PARAMS ((dw_die_ref,
3779 enum dwarf_attribute, tree));
3780 static void add_subscript_info PARAMS ((dw_die_ref, tree));
3781 static void add_byte_size_attribute PARAMS ((dw_die_ref, tree));
3782 static void add_bit_offset_attribute PARAMS ((dw_die_ref, tree));
3783 static void add_bit_size_attribute PARAMS ((dw_die_ref, tree));
3784 static void add_prototyped_attribute PARAMS ((dw_die_ref, tree));
3785 static void add_abstract_origin_attribute PARAMS ((dw_die_ref, tree));
3786 static void add_pure_or_virtual_attribute PARAMS ((dw_die_ref, tree));
3787 static void add_src_coords_attributes PARAMS ((dw_die_ref, tree));
3788 static void add_name_and_src_coords_attributes PARAMS ((dw_die_ref, tree));
3789 static void push_decl_scope PARAMS ((tree));
3790 static void pop_decl_scope PARAMS ((void));
3791 static dw_die_ref scope_die_for PARAMS ((tree, dw_die_ref));
3792 static inline int local_scope_p PARAMS ((dw_die_ref));
3793 static inline int class_scope_p PARAMS ((dw_die_ref));
3794 static void add_type_attribute PARAMS ((dw_die_ref, tree, int, int,
3795 dw_die_ref));
3796 static const char *type_tag PARAMS ((tree));
3797 static tree member_declared_type PARAMS ((tree));
3798 #if 0
3799 static const char *decl_start_label PARAMS ((tree));
3800 #endif
3801 static void gen_array_type_die PARAMS ((tree, dw_die_ref));
3802 static void gen_set_type_die PARAMS ((tree, dw_die_ref));
3803 #if 0
3804 static void gen_entry_point_die PARAMS ((tree, dw_die_ref));
3805 #endif
3806 static void gen_inlined_enumeration_type_die PARAMS ((tree, dw_die_ref));
3807 static void gen_inlined_structure_type_die PARAMS ((tree, dw_die_ref));
3808 static void gen_inlined_union_type_die PARAMS ((tree, dw_die_ref));
3809 static void gen_enumeration_type_die PARAMS ((tree, dw_die_ref));
3810 static dw_die_ref gen_formal_parameter_die PARAMS ((tree, dw_die_ref));
3811 static void gen_unspecified_parameters_die PARAMS ((tree, dw_die_ref));
3812 static void gen_formal_types_die PARAMS ((tree, dw_die_ref));
3813 static void gen_subprogram_die PARAMS ((tree, dw_die_ref));
3814 static void gen_variable_die PARAMS ((tree, dw_die_ref));
3815 static void gen_label_die PARAMS ((tree, dw_die_ref));
3816 static void gen_lexical_block_die PARAMS ((tree, dw_die_ref, int));
3817 static void gen_inlined_subroutine_die PARAMS ((tree, dw_die_ref, int));
3818 static void gen_field_die PARAMS ((tree, dw_die_ref));
3819 static void gen_ptr_to_mbr_type_die PARAMS ((tree, dw_die_ref));
3820 static dw_die_ref gen_compile_unit_die PARAMS ((const char *));
3821 static void gen_string_type_die PARAMS ((tree, dw_die_ref));
3822 static void gen_inheritance_die PARAMS ((tree, tree, dw_die_ref));
3823 static void gen_member_die PARAMS ((tree, dw_die_ref));
3824 static void gen_struct_or_union_type_die PARAMS ((tree, dw_die_ref));
3825 static void gen_subroutine_type_die PARAMS ((tree, dw_die_ref));
3826 static void gen_typedef_die PARAMS ((tree, dw_die_ref));
3827 static void gen_type_die PARAMS ((tree, dw_die_ref));
3828 static void gen_tagged_type_instantiation_die PARAMS ((tree, dw_die_ref));
3829 static void gen_block_die PARAMS ((tree, dw_die_ref, int));
3830 static void decls_for_scope PARAMS ((tree, dw_die_ref, int));
3831 static int is_redundant_typedef PARAMS ((tree));
3832 static void gen_decl_die PARAMS ((tree, dw_die_ref));
3833 static unsigned lookup_filename PARAMS ((const char *));
3834 static void init_file_table PARAMS ((void));
3835 static void retry_incomplete_types PARAMS ((void));
3836 static void gen_type_die_for_member PARAMS ((tree, tree, dw_die_ref));
3837 static void splice_child_die PARAMS ((dw_die_ref, dw_die_ref));
3838 static int file_info_cmp PARAMS ((const void *, const void *));
3839 static dw_loc_list_ref new_loc_list PARAMS ((dw_loc_descr_ref,
3840 const char *, const char *,
3841 const char *, unsigned));
3842 static void add_loc_descr_to_loc_list PARAMS ((dw_loc_list_ref *,
3843 dw_loc_descr_ref,
3844 const char *, const char *, const char *));
3845 static void output_loc_list PARAMS ((dw_loc_list_ref));
3846 static char *gen_internal_sym PARAMS ((const char *));
3847
3848 static void prune_unmark_dies PARAMS ((dw_die_ref));
3849 static void prune_unused_types_mark PARAMS ((dw_die_ref, int));
3850 static void prune_unused_types_walk PARAMS ((dw_die_ref));
3851 static void prune_unused_types_walk_attribs PARAMS ((dw_die_ref));
3852 static void prune_unused_types_prune PARAMS ((dw_die_ref));
3853 static void prune_unused_types PARAMS ((void));
3854 static int maybe_emit_file PARAMS ((int));
3855
3856 /* Section names used to hold DWARF debugging information. */
3857 #ifndef DEBUG_INFO_SECTION
3858 #define DEBUG_INFO_SECTION ".debug_info"
3859 #endif
3860 #ifndef DEBUG_ABBREV_SECTION
3861 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3862 #endif
3863 #ifndef DEBUG_ARANGES_SECTION
3864 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3865 #endif
3866 #ifndef DEBUG_MACINFO_SECTION
3867 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3868 #endif
3869 #ifndef DEBUG_LINE_SECTION
3870 #define DEBUG_LINE_SECTION ".debug_line"
3871 #endif
3872 #ifndef DEBUG_LOC_SECTION
3873 #define DEBUG_LOC_SECTION ".debug_loc"
3874 #endif
3875 #ifndef DEBUG_PUBNAMES_SECTION
3876 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3877 #endif
3878 #ifndef DEBUG_STR_SECTION
3879 #define DEBUG_STR_SECTION ".debug_str"
3880 #endif
3881 #ifndef DEBUG_RANGES_SECTION
3882 #define DEBUG_RANGES_SECTION ".debug_ranges"
3883 #endif
3884
3885 /* Standard ELF section names for compiled code and data. */
3886 #ifndef TEXT_SECTION_NAME
3887 #define TEXT_SECTION_NAME ".text"
3888 #endif
3889
3890 /* Section flags for .debug_str section. */
3891 #ifdef HAVE_GAS_SHF_MERGE
3892 #define DEBUG_STR_SECTION_FLAGS \
3893 (SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1)
3894 #else
3895 #define DEBUG_STR_SECTION_FLAGS SECTION_DEBUG
3896 #endif
3897
3898 /* Labels we insert at beginning sections we can reference instead of
3899 the section names themselves. */
3900
3901 #ifndef TEXT_SECTION_LABEL
3902 #define TEXT_SECTION_LABEL "Ltext"
3903 #endif
3904 #ifndef DEBUG_LINE_SECTION_LABEL
3905 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3906 #endif
3907 #ifndef DEBUG_INFO_SECTION_LABEL
3908 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3909 #endif
3910 #ifndef DEBUG_ABBREV_SECTION_LABEL
3911 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3912 #endif
3913 #ifndef DEBUG_LOC_SECTION_LABEL
3914 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3915 #endif
3916 #ifndef DEBUG_RANGES_SECTION_LABEL
3917 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3918 #endif
3919 #ifndef DEBUG_MACINFO_SECTION_LABEL
3920 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3921 #endif
3922
3923 /* Definitions of defaults for formats and names of various special
3924 (artificial) labels which may be generated within this file (when the -g
3925 options is used and DWARF_DEBUGGING_INFO is in effect.
3926 If necessary, these may be overridden from within the tm.h file, but
3927 typically, overriding these defaults is unnecessary. */
3928
3929 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3930 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3931 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3932 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3933 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3934 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3935 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3936 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3937
3938 #ifndef TEXT_END_LABEL
3939 #define TEXT_END_LABEL "Letext"
3940 #endif
3941 #ifndef BLOCK_BEGIN_LABEL
3942 #define BLOCK_BEGIN_LABEL "LBB"
3943 #endif
3944 #ifndef BLOCK_END_LABEL
3945 #define BLOCK_END_LABEL "LBE"
3946 #endif
3947 #ifndef LINE_CODE_LABEL
3948 #define LINE_CODE_LABEL "LM"
3949 #endif
3950 #ifndef SEPARATE_LINE_CODE_LABEL
3951 #define SEPARATE_LINE_CODE_LABEL "LSM"
3952 #endif
3953 \f
3954 /* We allow a language front-end to designate a function that is to be
3955 called to "demangle" any name before it it put into a DIE. */
3956
3957 static const char *(*demangle_name_func) PARAMS ((const char *));
3958
3959 void
3960 dwarf2out_set_demangle_name_func (func)
3961 const char *(*func) PARAMS ((const char *));
3962 {
3963 demangle_name_func = func;
3964 }
3965
3966 /* Test if rtl node points to a pseudo register. */
3967
3968 static inline int
3969 is_pseudo_reg (rtl)
3970 rtx rtl;
3971 {
3972 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3973 || (GET_CODE (rtl) == SUBREG
3974 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3975 }
3976
3977 /* Return a reference to a type, with its const and volatile qualifiers
3978 removed. */
3979
3980 static inline tree
3981 type_main_variant (type)
3982 tree type;
3983 {
3984 type = TYPE_MAIN_VARIANT (type);
3985
3986 /* ??? There really should be only one main variant among any group of
3987 variants of a given type (and all of the MAIN_VARIANT values for all
3988 members of the group should point to that one type) but sometimes the C
3989 front-end messes this up for array types, so we work around that bug
3990 here. */
3991 if (TREE_CODE (type) == ARRAY_TYPE)
3992 while (type != TYPE_MAIN_VARIANT (type))
3993 type = TYPE_MAIN_VARIANT (type);
3994
3995 return type;
3996 }
3997
3998 /* Return nonzero if the given type node represents a tagged type. */
3999
4000 static inline int
4001 is_tagged_type (type)
4002 tree type;
4003 {
4004 enum tree_code code = TREE_CODE (type);
4005
4006 return (code == RECORD_TYPE || code == UNION_TYPE
4007 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4008 }
4009
4010 /* Convert a DIE tag into its string name. */
4011
4012 static const char *
4013 dwarf_tag_name (tag)
4014 unsigned tag;
4015 {
4016 switch (tag)
4017 {
4018 case DW_TAG_padding:
4019 return "DW_TAG_padding";
4020 case DW_TAG_array_type:
4021 return "DW_TAG_array_type";
4022 case DW_TAG_class_type:
4023 return "DW_TAG_class_type";
4024 case DW_TAG_entry_point:
4025 return "DW_TAG_entry_point";
4026 case DW_TAG_enumeration_type:
4027 return "DW_TAG_enumeration_type";
4028 case DW_TAG_formal_parameter:
4029 return "DW_TAG_formal_parameter";
4030 case DW_TAG_imported_declaration:
4031 return "DW_TAG_imported_declaration";
4032 case DW_TAG_label:
4033 return "DW_TAG_label";
4034 case DW_TAG_lexical_block:
4035 return "DW_TAG_lexical_block";
4036 case DW_TAG_member:
4037 return "DW_TAG_member";
4038 case DW_TAG_pointer_type:
4039 return "DW_TAG_pointer_type";
4040 case DW_TAG_reference_type:
4041 return "DW_TAG_reference_type";
4042 case DW_TAG_compile_unit:
4043 return "DW_TAG_compile_unit";
4044 case DW_TAG_string_type:
4045 return "DW_TAG_string_type";
4046 case DW_TAG_structure_type:
4047 return "DW_TAG_structure_type";
4048 case DW_TAG_subroutine_type:
4049 return "DW_TAG_subroutine_type";
4050 case DW_TAG_typedef:
4051 return "DW_TAG_typedef";
4052 case DW_TAG_union_type:
4053 return "DW_TAG_union_type";
4054 case DW_TAG_unspecified_parameters:
4055 return "DW_TAG_unspecified_parameters";
4056 case DW_TAG_variant:
4057 return "DW_TAG_variant";
4058 case DW_TAG_common_block:
4059 return "DW_TAG_common_block";
4060 case DW_TAG_common_inclusion:
4061 return "DW_TAG_common_inclusion";
4062 case DW_TAG_inheritance:
4063 return "DW_TAG_inheritance";
4064 case DW_TAG_inlined_subroutine:
4065 return "DW_TAG_inlined_subroutine";
4066 case DW_TAG_module:
4067 return "DW_TAG_module";
4068 case DW_TAG_ptr_to_member_type:
4069 return "DW_TAG_ptr_to_member_type";
4070 case DW_TAG_set_type:
4071 return "DW_TAG_set_type";
4072 case DW_TAG_subrange_type:
4073 return "DW_TAG_subrange_type";
4074 case DW_TAG_with_stmt:
4075 return "DW_TAG_with_stmt";
4076 case DW_TAG_access_declaration:
4077 return "DW_TAG_access_declaration";
4078 case DW_TAG_base_type:
4079 return "DW_TAG_base_type";
4080 case DW_TAG_catch_block:
4081 return "DW_TAG_catch_block";
4082 case DW_TAG_const_type:
4083 return "DW_TAG_const_type";
4084 case DW_TAG_constant:
4085 return "DW_TAG_constant";
4086 case DW_TAG_enumerator:
4087 return "DW_TAG_enumerator";
4088 case DW_TAG_file_type:
4089 return "DW_TAG_file_type";
4090 case DW_TAG_friend:
4091 return "DW_TAG_friend";
4092 case DW_TAG_namelist:
4093 return "DW_TAG_namelist";
4094 case DW_TAG_namelist_item:
4095 return "DW_TAG_namelist_item";
4096 case DW_TAG_packed_type:
4097 return "DW_TAG_packed_type";
4098 case DW_TAG_subprogram:
4099 return "DW_TAG_subprogram";
4100 case DW_TAG_template_type_param:
4101 return "DW_TAG_template_type_param";
4102 case DW_TAG_template_value_param:
4103 return "DW_TAG_template_value_param";
4104 case DW_TAG_thrown_type:
4105 return "DW_TAG_thrown_type";
4106 case DW_TAG_try_block:
4107 return "DW_TAG_try_block";
4108 case DW_TAG_variant_part:
4109 return "DW_TAG_variant_part";
4110 case DW_TAG_variable:
4111 return "DW_TAG_variable";
4112 case DW_TAG_volatile_type:
4113 return "DW_TAG_volatile_type";
4114 case DW_TAG_MIPS_loop:
4115 return "DW_TAG_MIPS_loop";
4116 case DW_TAG_format_label:
4117 return "DW_TAG_format_label";
4118 case DW_TAG_function_template:
4119 return "DW_TAG_function_template";
4120 case DW_TAG_class_template:
4121 return "DW_TAG_class_template";
4122 case DW_TAG_GNU_BINCL:
4123 return "DW_TAG_GNU_BINCL";
4124 case DW_TAG_GNU_EINCL:
4125 return "DW_TAG_GNU_EINCL";
4126 default:
4127 return "DW_TAG_<unknown>";
4128 }
4129 }
4130
4131 /* Convert a DWARF attribute code into its string name. */
4132
4133 static const char *
4134 dwarf_attr_name (attr)
4135 unsigned attr;
4136 {
4137 switch (attr)
4138 {
4139 case DW_AT_sibling:
4140 return "DW_AT_sibling";
4141 case DW_AT_location:
4142 return "DW_AT_location";
4143 case DW_AT_name:
4144 return "DW_AT_name";
4145 case DW_AT_ordering:
4146 return "DW_AT_ordering";
4147 case DW_AT_subscr_data:
4148 return "DW_AT_subscr_data";
4149 case DW_AT_byte_size:
4150 return "DW_AT_byte_size";
4151 case DW_AT_bit_offset:
4152 return "DW_AT_bit_offset";
4153 case DW_AT_bit_size:
4154 return "DW_AT_bit_size";
4155 case DW_AT_element_list:
4156 return "DW_AT_element_list";
4157 case DW_AT_stmt_list:
4158 return "DW_AT_stmt_list";
4159 case DW_AT_low_pc:
4160 return "DW_AT_low_pc";
4161 case DW_AT_high_pc:
4162 return "DW_AT_high_pc";
4163 case DW_AT_language:
4164 return "DW_AT_language";
4165 case DW_AT_member:
4166 return "DW_AT_member";
4167 case DW_AT_discr:
4168 return "DW_AT_discr";
4169 case DW_AT_discr_value:
4170 return "DW_AT_discr_value";
4171 case DW_AT_visibility:
4172 return "DW_AT_visibility";
4173 case DW_AT_import:
4174 return "DW_AT_import";
4175 case DW_AT_string_length:
4176 return "DW_AT_string_length";
4177 case DW_AT_common_reference:
4178 return "DW_AT_common_reference";
4179 case DW_AT_comp_dir:
4180 return "DW_AT_comp_dir";
4181 case DW_AT_const_value:
4182 return "DW_AT_const_value";
4183 case DW_AT_containing_type:
4184 return "DW_AT_containing_type";
4185 case DW_AT_default_value:
4186 return "DW_AT_default_value";
4187 case DW_AT_inline:
4188 return "DW_AT_inline";
4189 case DW_AT_is_optional:
4190 return "DW_AT_is_optional";
4191 case DW_AT_lower_bound:
4192 return "DW_AT_lower_bound";
4193 case DW_AT_producer:
4194 return "DW_AT_producer";
4195 case DW_AT_prototyped:
4196 return "DW_AT_prototyped";
4197 case DW_AT_return_addr:
4198 return "DW_AT_return_addr";
4199 case DW_AT_start_scope:
4200 return "DW_AT_start_scope";
4201 case DW_AT_stride_size:
4202 return "DW_AT_stride_size";
4203 case DW_AT_upper_bound:
4204 return "DW_AT_upper_bound";
4205 case DW_AT_abstract_origin:
4206 return "DW_AT_abstract_origin";
4207 case DW_AT_accessibility:
4208 return "DW_AT_accessibility";
4209 case DW_AT_address_class:
4210 return "DW_AT_address_class";
4211 case DW_AT_artificial:
4212 return "DW_AT_artificial";
4213 case DW_AT_base_types:
4214 return "DW_AT_base_types";
4215 case DW_AT_calling_convention:
4216 return "DW_AT_calling_convention";
4217 case DW_AT_count:
4218 return "DW_AT_count";
4219 case DW_AT_data_member_location:
4220 return "DW_AT_data_member_location";
4221 case DW_AT_decl_column:
4222 return "DW_AT_decl_column";
4223 case DW_AT_decl_file:
4224 return "DW_AT_decl_file";
4225 case DW_AT_decl_line:
4226 return "DW_AT_decl_line";
4227 case DW_AT_declaration:
4228 return "DW_AT_declaration";
4229 case DW_AT_discr_list:
4230 return "DW_AT_discr_list";
4231 case DW_AT_encoding:
4232 return "DW_AT_encoding";
4233 case DW_AT_external:
4234 return "DW_AT_external";
4235 case DW_AT_frame_base:
4236 return "DW_AT_frame_base";
4237 case DW_AT_friend:
4238 return "DW_AT_friend";
4239 case DW_AT_identifier_case:
4240 return "DW_AT_identifier_case";
4241 case DW_AT_macro_info:
4242 return "DW_AT_macro_info";
4243 case DW_AT_namelist_items:
4244 return "DW_AT_namelist_items";
4245 case DW_AT_priority:
4246 return "DW_AT_priority";
4247 case DW_AT_segment:
4248 return "DW_AT_segment";
4249 case DW_AT_specification:
4250 return "DW_AT_specification";
4251 case DW_AT_static_link:
4252 return "DW_AT_static_link";
4253 case DW_AT_type:
4254 return "DW_AT_type";
4255 case DW_AT_use_location:
4256 return "DW_AT_use_location";
4257 case DW_AT_variable_parameter:
4258 return "DW_AT_variable_parameter";
4259 case DW_AT_virtuality:
4260 return "DW_AT_virtuality";
4261 case DW_AT_vtable_elem_location:
4262 return "DW_AT_vtable_elem_location";
4263
4264 case DW_AT_allocated:
4265 return "DW_AT_allocated";
4266 case DW_AT_associated:
4267 return "DW_AT_associated";
4268 case DW_AT_data_location:
4269 return "DW_AT_data_location";
4270 case DW_AT_stride:
4271 return "DW_AT_stride";
4272 case DW_AT_entry_pc:
4273 return "DW_AT_entry_pc";
4274 case DW_AT_use_UTF8:
4275 return "DW_AT_use_UTF8";
4276 case DW_AT_extension:
4277 return "DW_AT_extension";
4278 case DW_AT_ranges:
4279 return "DW_AT_ranges";
4280 case DW_AT_trampoline:
4281 return "DW_AT_trampoline";
4282 case DW_AT_call_column:
4283 return "DW_AT_call_column";
4284 case DW_AT_call_file:
4285 return "DW_AT_call_file";
4286 case DW_AT_call_line:
4287 return "DW_AT_call_line";
4288
4289 case DW_AT_MIPS_fde:
4290 return "DW_AT_MIPS_fde";
4291 case DW_AT_MIPS_loop_begin:
4292 return "DW_AT_MIPS_loop_begin";
4293 case DW_AT_MIPS_tail_loop_begin:
4294 return "DW_AT_MIPS_tail_loop_begin";
4295 case DW_AT_MIPS_epilog_begin:
4296 return "DW_AT_MIPS_epilog_begin";
4297 case DW_AT_MIPS_loop_unroll_factor:
4298 return "DW_AT_MIPS_loop_unroll_factor";
4299 case DW_AT_MIPS_software_pipeline_depth:
4300 return "DW_AT_MIPS_software_pipeline_depth";
4301 case DW_AT_MIPS_linkage_name:
4302 return "DW_AT_MIPS_linkage_name";
4303 case DW_AT_MIPS_stride:
4304 return "DW_AT_MIPS_stride";
4305 case DW_AT_MIPS_abstract_name:
4306 return "DW_AT_MIPS_abstract_name";
4307 case DW_AT_MIPS_clone_origin:
4308 return "DW_AT_MIPS_clone_origin";
4309 case DW_AT_MIPS_has_inlines:
4310 return "DW_AT_MIPS_has_inlines";
4311
4312 case DW_AT_sf_names:
4313 return "DW_AT_sf_names";
4314 case DW_AT_src_info:
4315 return "DW_AT_src_info";
4316 case DW_AT_mac_info:
4317 return "DW_AT_mac_info";
4318 case DW_AT_src_coords:
4319 return "DW_AT_src_coords";
4320 case DW_AT_body_begin:
4321 return "DW_AT_body_begin";
4322 case DW_AT_body_end:
4323 return "DW_AT_body_end";
4324 case DW_AT_GNU_vector:
4325 return "DW_AT_GNU_vector";
4326
4327 case DW_AT_VMS_rtnbeg_pd_address:
4328 return "DW_AT_VMS_rtnbeg_pd_address";
4329
4330 default:
4331 return "DW_AT_<unknown>";
4332 }
4333 }
4334
4335 /* Convert a DWARF value form code into its string name. */
4336
4337 static const char *
4338 dwarf_form_name (form)
4339 unsigned form;
4340 {
4341 switch (form)
4342 {
4343 case DW_FORM_addr:
4344 return "DW_FORM_addr";
4345 case DW_FORM_block2:
4346 return "DW_FORM_block2";
4347 case DW_FORM_block4:
4348 return "DW_FORM_block4";
4349 case DW_FORM_data2:
4350 return "DW_FORM_data2";
4351 case DW_FORM_data4:
4352 return "DW_FORM_data4";
4353 case DW_FORM_data8:
4354 return "DW_FORM_data8";
4355 case DW_FORM_string:
4356 return "DW_FORM_string";
4357 case DW_FORM_block:
4358 return "DW_FORM_block";
4359 case DW_FORM_block1:
4360 return "DW_FORM_block1";
4361 case DW_FORM_data1:
4362 return "DW_FORM_data1";
4363 case DW_FORM_flag:
4364 return "DW_FORM_flag";
4365 case DW_FORM_sdata:
4366 return "DW_FORM_sdata";
4367 case DW_FORM_strp:
4368 return "DW_FORM_strp";
4369 case DW_FORM_udata:
4370 return "DW_FORM_udata";
4371 case DW_FORM_ref_addr:
4372 return "DW_FORM_ref_addr";
4373 case DW_FORM_ref1:
4374 return "DW_FORM_ref1";
4375 case DW_FORM_ref2:
4376 return "DW_FORM_ref2";
4377 case DW_FORM_ref4:
4378 return "DW_FORM_ref4";
4379 case DW_FORM_ref8:
4380 return "DW_FORM_ref8";
4381 case DW_FORM_ref_udata:
4382 return "DW_FORM_ref_udata";
4383 case DW_FORM_indirect:
4384 return "DW_FORM_indirect";
4385 default:
4386 return "DW_FORM_<unknown>";
4387 }
4388 }
4389
4390 /* Convert a DWARF type code into its string name. */
4391
4392 #if 0
4393 static const char *
4394 dwarf_type_encoding_name (enc)
4395 unsigned enc;
4396 {
4397 switch (enc)
4398 {
4399 case DW_ATE_address:
4400 return "DW_ATE_address";
4401 case DW_ATE_boolean:
4402 return "DW_ATE_boolean";
4403 case DW_ATE_complex_float:
4404 return "DW_ATE_complex_float";
4405 case DW_ATE_float:
4406 return "DW_ATE_float";
4407 case DW_ATE_signed:
4408 return "DW_ATE_signed";
4409 case DW_ATE_signed_char:
4410 return "DW_ATE_signed_char";
4411 case DW_ATE_unsigned:
4412 return "DW_ATE_unsigned";
4413 case DW_ATE_unsigned_char:
4414 return "DW_ATE_unsigned_char";
4415 default:
4416 return "DW_ATE_<unknown>";
4417 }
4418 }
4419 #endif
4420 \f
4421 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4422 instance of an inlined instance of a decl which is local to an inline
4423 function, so we have to trace all of the way back through the origin chain
4424 to find out what sort of node actually served as the original seed for the
4425 given block. */
4426
4427 static tree
4428 decl_ultimate_origin (decl)
4429 tree decl;
4430 {
4431 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4432 nodes in the function to point to themselves; ignore that if
4433 we're trying to output the abstract instance of this function. */
4434 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4435 return NULL_TREE;
4436
4437 #ifdef ENABLE_CHECKING
4438 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4439 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4440 most distant ancestor, this should never happen. */
4441 abort ();
4442 #endif
4443
4444 return DECL_ABSTRACT_ORIGIN (decl);
4445 }
4446
4447 /* Determine the "ultimate origin" of a block. The block may be an inlined
4448 instance of an inlined instance of a block which is local to an inline
4449 function, so we have to trace all of the way back through the origin chain
4450 to find out what sort of node actually served as the original seed for the
4451 given block. */
4452
4453 static tree
4454 block_ultimate_origin (block)
4455 tree block;
4456 {
4457 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4458
4459 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4460 nodes in the function to point to themselves; ignore that if
4461 we're trying to output the abstract instance of this function. */
4462 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4463 return NULL_TREE;
4464
4465 if (immediate_origin == NULL_TREE)
4466 return NULL_TREE;
4467 else
4468 {
4469 tree ret_val;
4470 tree lookahead = immediate_origin;
4471
4472 do
4473 {
4474 ret_val = lookahead;
4475 lookahead = (TREE_CODE (ret_val) == BLOCK
4476 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4477 }
4478 while (lookahead != NULL && lookahead != ret_val);
4479
4480 return ret_val;
4481 }
4482 }
4483
4484 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4485 of a virtual function may refer to a base class, so we check the 'this'
4486 parameter. */
4487
4488 static tree
4489 decl_class_context (decl)
4490 tree decl;
4491 {
4492 tree context = NULL_TREE;
4493
4494 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4495 context = DECL_CONTEXT (decl);
4496 else
4497 context = TYPE_MAIN_VARIANT
4498 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4499
4500 if (context && !TYPE_P (context))
4501 context = NULL_TREE;
4502
4503 return context;
4504 }
4505 \f
4506 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4507 addition order, and correct that in reverse_all_dies. */
4508
4509 static inline void
4510 add_dwarf_attr (die, attr)
4511 dw_die_ref die;
4512 dw_attr_ref attr;
4513 {
4514 if (die != NULL && attr != NULL)
4515 {
4516 attr->dw_attr_next = die->die_attr;
4517 die->die_attr = attr;
4518 }
4519 }
4520
4521 static inline enum dw_val_class
4522 AT_class (a)
4523 dw_attr_ref a;
4524 {
4525 return a->dw_attr_val.val_class;
4526 }
4527
4528 /* Add a flag value attribute to a DIE. */
4529
4530 static inline void
4531 add_AT_flag (die, attr_kind, flag)
4532 dw_die_ref die;
4533 enum dwarf_attribute attr_kind;
4534 unsigned flag;
4535 {
4536 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4537
4538 attr->dw_attr_next = NULL;
4539 attr->dw_attr = attr_kind;
4540 attr->dw_attr_val.val_class = dw_val_class_flag;
4541 attr->dw_attr_val.v.val_flag = flag;
4542 add_dwarf_attr (die, attr);
4543 }
4544
4545 static inline unsigned
4546 AT_flag (a)
4547 dw_attr_ref a;
4548 {
4549 if (a && AT_class (a) == dw_val_class_flag)
4550 return a->dw_attr_val.v.val_flag;
4551
4552 abort ();
4553 }
4554
4555 /* Add a signed integer attribute value to a DIE. */
4556
4557 static inline void
4558 add_AT_int (die, attr_kind, int_val)
4559 dw_die_ref die;
4560 enum dwarf_attribute attr_kind;
4561 long int int_val;
4562 {
4563 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4564
4565 attr->dw_attr_next = NULL;
4566 attr->dw_attr = attr_kind;
4567 attr->dw_attr_val.val_class = dw_val_class_const;
4568 attr->dw_attr_val.v.val_int = int_val;
4569 add_dwarf_attr (die, attr);
4570 }
4571
4572 static inline long int
4573 AT_int (a)
4574 dw_attr_ref a;
4575 {
4576 if (a && AT_class (a) == dw_val_class_const)
4577 return a->dw_attr_val.v.val_int;
4578
4579 abort ();
4580 }
4581
4582 /* Add an unsigned integer attribute value to a DIE. */
4583
4584 static inline void
4585 add_AT_unsigned (die, attr_kind, unsigned_val)
4586 dw_die_ref die;
4587 enum dwarf_attribute attr_kind;
4588 unsigned long unsigned_val;
4589 {
4590 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4591
4592 attr->dw_attr_next = NULL;
4593 attr->dw_attr = attr_kind;
4594 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4595 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4596 add_dwarf_attr (die, attr);
4597 }
4598
4599 static inline unsigned long
4600 AT_unsigned (a)
4601 dw_attr_ref a;
4602 {
4603 if (a && AT_class (a) == dw_val_class_unsigned_const)
4604 return a->dw_attr_val.v.val_unsigned;
4605
4606 abort ();
4607 }
4608
4609 /* Add an unsigned double integer attribute value to a DIE. */
4610
4611 static inline void
4612 add_AT_long_long (die, attr_kind, val_hi, val_low)
4613 dw_die_ref die;
4614 enum dwarf_attribute attr_kind;
4615 unsigned long val_hi;
4616 unsigned long val_low;
4617 {
4618 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4619
4620 attr->dw_attr_next = NULL;
4621 attr->dw_attr = attr_kind;
4622 attr->dw_attr_val.val_class = dw_val_class_long_long;
4623 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4624 attr->dw_attr_val.v.val_long_long.low = val_low;
4625 add_dwarf_attr (die, attr);
4626 }
4627
4628 /* Add a floating point attribute value to a DIE and return it. */
4629
4630 static inline void
4631 add_AT_float (die, attr_kind, length, array)
4632 dw_die_ref die;
4633 enum dwarf_attribute attr_kind;
4634 unsigned length;
4635 long *array;
4636 {
4637 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4638
4639 attr->dw_attr_next = NULL;
4640 attr->dw_attr = attr_kind;
4641 attr->dw_attr_val.val_class = dw_val_class_float;
4642 attr->dw_attr_val.v.val_float.length = length;
4643 attr->dw_attr_val.v.val_float.array = array;
4644 add_dwarf_attr (die, attr);
4645 }
4646
4647 /* Hash and equality functions for debug_str_hash. */
4648
4649 static hashval_t
4650 debug_str_do_hash (x)
4651 const void * x;
4652 {
4653 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4654 }
4655
4656 static int
4657 debug_str_eq (x1, x2)
4658 const void * x1;
4659 const void * x2;
4660 {
4661 return strcmp ((((const struct indirect_string_node *)x1)->str),
4662 (const char *)x2) == 0;
4663 }
4664
4665 /* Add a string attribute value to a DIE. */
4666
4667 static inline void
4668 add_AT_string (die, attr_kind, str)
4669 dw_die_ref die;
4670 enum dwarf_attribute attr_kind;
4671 const char *str;
4672 {
4673 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4674 struct indirect_string_node *node;
4675 PTR *slot;
4676
4677 if (! debug_str_hash)
4678 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4679 debug_str_eq, NULL);
4680
4681 slot = htab_find_slot_with_hash (debug_str_hash, str,
4682 htab_hash_string (str), INSERT);
4683 if (*slot == NULL)
4684 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4685 node = (struct indirect_string_node *) *slot;
4686 node->str = ggc_alloc_string (str, -1);
4687 node->refcount++;
4688
4689 attr->dw_attr_next = NULL;
4690 attr->dw_attr = attr_kind;
4691 attr->dw_attr_val.val_class = dw_val_class_str;
4692 attr->dw_attr_val.v.val_str = node;
4693 add_dwarf_attr (die, attr);
4694 }
4695
4696 static inline const char *
4697 AT_string (a)
4698 dw_attr_ref a;
4699 {
4700 if (a && AT_class (a) == dw_val_class_str)
4701 return a->dw_attr_val.v.val_str->str;
4702
4703 abort ();
4704 }
4705
4706 /* Find out whether a string should be output inline in DIE
4707 or out-of-line in .debug_str section. */
4708
4709 static int
4710 AT_string_form (a)
4711 dw_attr_ref a;
4712 {
4713 if (a && AT_class (a) == dw_val_class_str)
4714 {
4715 struct indirect_string_node *node;
4716 unsigned int len;
4717 char label[32];
4718
4719 node = a->dw_attr_val.v.val_str;
4720 if (node->form)
4721 return node->form;
4722
4723 len = strlen (node->str) + 1;
4724
4725 /* If the string is shorter or equal to the size of the reference, it is
4726 always better to put it inline. */
4727 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4728 return node->form = DW_FORM_string;
4729
4730 /* If we cannot expect the linker to merge strings in .debug_str
4731 section, only put it into .debug_str if it is worth even in this
4732 single module. */
4733 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4734 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4735 return node->form = DW_FORM_string;
4736
4737 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4738 ++dw2_string_counter;
4739 node->label = xstrdup (label);
4740
4741 return node->form = DW_FORM_strp;
4742 }
4743
4744 abort ();
4745 }
4746
4747 /* Add a DIE reference attribute value to a DIE. */
4748
4749 static inline void
4750 add_AT_die_ref (die, attr_kind, targ_die)
4751 dw_die_ref die;
4752 enum dwarf_attribute attr_kind;
4753 dw_die_ref targ_die;
4754 {
4755 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4756
4757 attr->dw_attr_next = NULL;
4758 attr->dw_attr = attr_kind;
4759 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4760 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4761 attr->dw_attr_val.v.val_die_ref.external = 0;
4762 add_dwarf_attr (die, attr);
4763 }
4764
4765 static inline dw_die_ref
4766 AT_ref (a)
4767 dw_attr_ref a;
4768 {
4769 if (a && AT_class (a) == dw_val_class_die_ref)
4770 return a->dw_attr_val.v.val_die_ref.die;
4771
4772 abort ();
4773 }
4774
4775 static inline int
4776 AT_ref_external (a)
4777 dw_attr_ref a;
4778 {
4779 if (a && AT_class (a) == dw_val_class_die_ref)
4780 return a->dw_attr_val.v.val_die_ref.external;
4781
4782 return 0;
4783 }
4784
4785 static inline void
4786 set_AT_ref_external (a, i)
4787 dw_attr_ref a;
4788 int i;
4789 {
4790 if (a && AT_class (a) == dw_val_class_die_ref)
4791 a->dw_attr_val.v.val_die_ref.external = i;
4792 else
4793 abort ();
4794 }
4795
4796 /* Add an FDE reference attribute value to a DIE. */
4797
4798 static inline void
4799 add_AT_fde_ref (die, attr_kind, targ_fde)
4800 dw_die_ref die;
4801 enum dwarf_attribute attr_kind;
4802 unsigned targ_fde;
4803 {
4804 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4805
4806 attr->dw_attr_next = NULL;
4807 attr->dw_attr = attr_kind;
4808 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4809 attr->dw_attr_val.v.val_fde_index = targ_fde;
4810 add_dwarf_attr (die, attr);
4811 }
4812
4813 /* Add a location description attribute value to a DIE. */
4814
4815 static inline void
4816 add_AT_loc (die, attr_kind, loc)
4817 dw_die_ref die;
4818 enum dwarf_attribute attr_kind;
4819 dw_loc_descr_ref loc;
4820 {
4821 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4822
4823 attr->dw_attr_next = NULL;
4824 attr->dw_attr = attr_kind;
4825 attr->dw_attr_val.val_class = dw_val_class_loc;
4826 attr->dw_attr_val.v.val_loc = loc;
4827 add_dwarf_attr (die, attr);
4828 }
4829
4830 static inline dw_loc_descr_ref
4831 AT_loc (a)
4832 dw_attr_ref a;
4833 {
4834 if (a && AT_class (a) == dw_val_class_loc)
4835 return a->dw_attr_val.v.val_loc;
4836
4837 abort ();
4838 }
4839
4840 static inline void
4841 add_AT_loc_list (die, attr_kind, loc_list)
4842 dw_die_ref die;
4843 enum dwarf_attribute attr_kind;
4844 dw_loc_list_ref loc_list;
4845 {
4846 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4847
4848 attr->dw_attr_next = NULL;
4849 attr->dw_attr = attr_kind;
4850 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4851 attr->dw_attr_val.v.val_loc_list = loc_list;
4852 add_dwarf_attr (die, attr);
4853 have_location_lists = 1;
4854 }
4855
4856 static inline dw_loc_list_ref
4857 AT_loc_list (a)
4858 dw_attr_ref a;
4859 {
4860 if (a && AT_class (a) == dw_val_class_loc_list)
4861 return a->dw_attr_val.v.val_loc_list;
4862
4863 abort ();
4864 }
4865
4866 /* Add an address constant attribute value to a DIE. */
4867
4868 static inline void
4869 add_AT_addr (die, attr_kind, addr)
4870 dw_die_ref die;
4871 enum dwarf_attribute attr_kind;
4872 rtx addr;
4873 {
4874 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4875
4876 attr->dw_attr_next = NULL;
4877 attr->dw_attr = attr_kind;
4878 attr->dw_attr_val.val_class = dw_val_class_addr;
4879 attr->dw_attr_val.v.val_addr = addr;
4880 add_dwarf_attr (die, attr);
4881 }
4882
4883 static inline rtx
4884 AT_addr (a)
4885 dw_attr_ref a;
4886 {
4887 if (a && AT_class (a) == dw_val_class_addr)
4888 return a->dw_attr_val.v.val_addr;
4889
4890 abort ();
4891 }
4892
4893 /* Add a label identifier attribute value to a DIE. */
4894
4895 static inline void
4896 add_AT_lbl_id (die, attr_kind, lbl_id)
4897 dw_die_ref die;
4898 enum dwarf_attribute attr_kind;
4899 const char *lbl_id;
4900 {
4901 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4902
4903 attr->dw_attr_next = NULL;
4904 attr->dw_attr = attr_kind;
4905 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4906 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4907 add_dwarf_attr (die, attr);
4908 }
4909
4910 /* Add a section offset attribute value to a DIE. */
4911
4912 static inline void
4913 add_AT_lbl_offset (die, attr_kind, label)
4914 dw_die_ref die;
4915 enum dwarf_attribute attr_kind;
4916 const char *label;
4917 {
4918 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4919
4920 attr->dw_attr_next = NULL;
4921 attr->dw_attr = attr_kind;
4922 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4923 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4924 add_dwarf_attr (die, attr);
4925 }
4926
4927 /* Add an offset attribute value to a DIE. */
4928
4929 static inline void
4930 add_AT_offset (die, attr_kind, offset)
4931 dw_die_ref die;
4932 enum dwarf_attribute attr_kind;
4933 unsigned long offset;
4934 {
4935 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4936
4937 attr->dw_attr_next = NULL;
4938 attr->dw_attr = attr_kind;
4939 attr->dw_attr_val.val_class = dw_val_class_offset;
4940 attr->dw_attr_val.v.val_offset = offset;
4941 add_dwarf_attr (die, attr);
4942 }
4943
4944 /* Add an range_list attribute value to a DIE. */
4945
4946 static void
4947 add_AT_range_list (die, attr_kind, offset)
4948 dw_die_ref die;
4949 enum dwarf_attribute attr_kind;
4950 unsigned long offset;
4951 {
4952 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4953
4954 attr->dw_attr_next = NULL;
4955 attr->dw_attr = attr_kind;
4956 attr->dw_attr_val.val_class = dw_val_class_range_list;
4957 attr->dw_attr_val.v.val_offset = offset;
4958 add_dwarf_attr (die, attr);
4959 }
4960
4961 static inline const char *
4962 AT_lbl (a)
4963 dw_attr_ref a;
4964 {
4965 if (a && (AT_class (a) == dw_val_class_lbl_id
4966 || AT_class (a) == dw_val_class_lbl_offset))
4967 return a->dw_attr_val.v.val_lbl_id;
4968
4969 abort ();
4970 }
4971
4972 /* Get the attribute of type attr_kind. */
4973
4974 static inline dw_attr_ref
4975 get_AT (die, attr_kind)
4976 dw_die_ref die;
4977 enum dwarf_attribute attr_kind;
4978 {
4979 dw_attr_ref a;
4980 dw_die_ref spec = NULL;
4981
4982 if (die != NULL)
4983 {
4984 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
4985 if (a->dw_attr == attr_kind)
4986 return a;
4987 else if (a->dw_attr == DW_AT_specification
4988 || a->dw_attr == DW_AT_abstract_origin)
4989 spec = AT_ref (a);
4990
4991 if (spec)
4992 return get_AT (spec, attr_kind);
4993 }
4994
4995 return NULL;
4996 }
4997
4998 /* Return the "low pc" attribute value, typically associated with a subprogram
4999 DIE. Return null if the "low pc" attribute is either not present, or if it
5000 cannot be represented as an assembler label identifier. */
5001
5002 static inline const char *
5003 get_AT_low_pc (die)
5004 dw_die_ref die;
5005 {
5006 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5007
5008 return a ? AT_lbl (a) : NULL;
5009 }
5010
5011 /* Return the "high pc" attribute value, typically associated with a subprogram
5012 DIE. Return null if the "high pc" attribute is either not present, or if it
5013 cannot be represented as an assembler label identifier. */
5014
5015 static inline const char *
5016 get_AT_hi_pc (die)
5017 dw_die_ref die;
5018 {
5019 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5020
5021 return a ? AT_lbl (a) : NULL;
5022 }
5023
5024 /* Return the value of the string attribute designated by ATTR_KIND, or
5025 NULL if it is not present. */
5026
5027 static inline const char *
5028 get_AT_string (die, attr_kind)
5029 dw_die_ref die;
5030 enum dwarf_attribute attr_kind;
5031 {
5032 dw_attr_ref a = get_AT (die, attr_kind);
5033
5034 return a ? AT_string (a) : NULL;
5035 }
5036
5037 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5038 if it is not present. */
5039
5040 static inline int
5041 get_AT_flag (die, attr_kind)
5042 dw_die_ref die;
5043 enum dwarf_attribute attr_kind;
5044 {
5045 dw_attr_ref a = get_AT (die, attr_kind);
5046
5047 return a ? AT_flag (a) : 0;
5048 }
5049
5050 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5051 if it is not present. */
5052
5053 static inline unsigned
5054 get_AT_unsigned (die, attr_kind)
5055 dw_die_ref die;
5056 enum dwarf_attribute attr_kind;
5057 {
5058 dw_attr_ref a = get_AT (die, attr_kind);
5059
5060 return a ? AT_unsigned (a) : 0;
5061 }
5062
5063 static inline dw_die_ref
5064 get_AT_ref (die, attr_kind)
5065 dw_die_ref die;
5066 enum dwarf_attribute attr_kind;
5067 {
5068 dw_attr_ref a = get_AT (die, attr_kind);
5069
5070 return a ? AT_ref (a) : NULL;
5071 }
5072
5073 static inline int
5074 is_c_family ()
5075 {
5076 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5077
5078 return (lang == DW_LANG_C || lang == DW_LANG_C89
5079 || lang == DW_LANG_C_plus_plus);
5080 }
5081
5082 static inline int
5083 is_cxx ()
5084 {
5085 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5086 == DW_LANG_C_plus_plus);
5087 }
5088
5089 static inline int
5090 is_fortran ()
5091 {
5092 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5093
5094 return (lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90);
5095 }
5096
5097 static inline int
5098 is_java ()
5099 {
5100 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5101
5102 return (lang == DW_LANG_Java);
5103 }
5104
5105 /* Free up the memory used by A. */
5106
5107 static inline void free_AT PARAMS ((dw_attr_ref));
5108 static inline void
5109 free_AT (a)
5110 dw_attr_ref a;
5111 {
5112 if (AT_class (a) == dw_val_class_str)
5113 if (a->dw_attr_val.v.val_str->refcount)
5114 a->dw_attr_val.v.val_str->refcount--;
5115 }
5116
5117 /* Remove the specified attribute if present. */
5118
5119 static void
5120 remove_AT (die, attr_kind)
5121 dw_die_ref die;
5122 enum dwarf_attribute attr_kind;
5123 {
5124 dw_attr_ref *p;
5125 dw_attr_ref removed = NULL;
5126
5127 if (die != NULL)
5128 {
5129 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5130 if ((*p)->dw_attr == attr_kind)
5131 {
5132 removed = *p;
5133 *p = (*p)->dw_attr_next;
5134 break;
5135 }
5136
5137 if (removed != 0)
5138 free_AT (removed);
5139 }
5140 }
5141
5142 /* Free up the memory used by DIE. */
5143
5144 static inline void
5145 free_die (die)
5146 dw_die_ref die;
5147 {
5148 remove_children (die);
5149 }
5150
5151 /* Discard the children of this DIE. */
5152
5153 static void
5154 remove_children (die)
5155 dw_die_ref die;
5156 {
5157 dw_die_ref child_die = die->die_child;
5158
5159 die->die_child = NULL;
5160
5161 while (child_die != NULL)
5162 {
5163 dw_die_ref tmp_die = child_die;
5164 dw_attr_ref a;
5165
5166 child_die = child_die->die_sib;
5167
5168 for (a = tmp_die->die_attr; a != NULL;)
5169 {
5170 dw_attr_ref tmp_a = a;
5171
5172 a = a->dw_attr_next;
5173 free_AT (tmp_a);
5174 }
5175
5176 free_die (tmp_die);
5177 }
5178 }
5179
5180 /* Add a child DIE below its parent. We build the lists up in reverse
5181 addition order, and correct that in reverse_all_dies. */
5182
5183 static inline void
5184 add_child_die (die, child_die)
5185 dw_die_ref die;
5186 dw_die_ref child_die;
5187 {
5188 if (die != NULL && child_die != NULL)
5189 {
5190 if (die == child_die)
5191 abort ();
5192
5193 child_die->die_parent = die;
5194 child_die->die_sib = die->die_child;
5195 die->die_child = child_die;
5196 }
5197 }
5198
5199 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5200 is the specification, to the front of PARENT's list of children. */
5201
5202 static void
5203 splice_child_die (parent, child)
5204 dw_die_ref parent, child;
5205 {
5206 dw_die_ref *p;
5207
5208 /* We want the declaration DIE from inside the class, not the
5209 specification DIE at toplevel. */
5210 if (child->die_parent != parent)
5211 {
5212 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5213
5214 if (tmp)
5215 child = tmp;
5216 }
5217
5218 if (child->die_parent != parent
5219 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5220 abort ();
5221
5222 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5223 if (*p == child)
5224 {
5225 *p = child->die_sib;
5226 break;
5227 }
5228
5229 child->die_parent = parent;
5230 child->die_sib = parent->die_child;
5231 parent->die_child = child;
5232 }
5233
5234 /* Return a pointer to a newly created DIE node. */
5235
5236 static inline dw_die_ref
5237 new_die (tag_value, parent_die, t)
5238 enum dwarf_tag tag_value;
5239 dw_die_ref parent_die;
5240 tree t;
5241 {
5242 dw_die_ref die = (dw_die_ref) ggc_alloc_cleared (sizeof (die_node));
5243
5244 die->die_tag = tag_value;
5245
5246 if (parent_die != NULL)
5247 add_child_die (parent_die, die);
5248 else
5249 {
5250 limbo_die_node *limbo_node;
5251
5252 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5253 limbo_node->die = die;
5254 limbo_node->created_for = t;
5255 limbo_node->next = limbo_die_list;
5256 limbo_die_list = limbo_node;
5257 }
5258
5259 return die;
5260 }
5261
5262 /* Return the DIE associated with the given type specifier. */
5263
5264 static inline dw_die_ref
5265 lookup_type_die (type)
5266 tree type;
5267 {
5268 return TYPE_SYMTAB_DIE (type);
5269 }
5270
5271 /* Equate a DIE to a given type specifier. */
5272
5273 static inline void
5274 equate_type_number_to_die (type, type_die)
5275 tree type;
5276 dw_die_ref type_die;
5277 {
5278 TYPE_SYMTAB_DIE (type) = type_die;
5279 }
5280
5281 /* Return the DIE associated with a given declaration. */
5282
5283 static inline dw_die_ref
5284 lookup_decl_die (decl)
5285 tree decl;
5286 {
5287 unsigned decl_id = DECL_UID (decl);
5288
5289 return (decl_id < decl_die_table_in_use ? decl_die_table[decl_id] : NULL);
5290 }
5291
5292 /* Equate a DIE to a particular declaration. */
5293
5294 static void
5295 equate_decl_number_to_die (decl, decl_die)
5296 tree decl;
5297 dw_die_ref decl_die;
5298 {
5299 unsigned int decl_id = DECL_UID (decl);
5300 unsigned int num_allocated;
5301
5302 if (decl_id >= decl_die_table_allocated)
5303 {
5304 num_allocated
5305 = ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
5306 / DECL_DIE_TABLE_INCREMENT)
5307 * DECL_DIE_TABLE_INCREMENT;
5308
5309 decl_die_table = ggc_realloc (decl_die_table,
5310 sizeof (dw_die_ref) * num_allocated);
5311
5312 memset ((char *) &decl_die_table[decl_die_table_allocated], 0,
5313 (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
5314 decl_die_table_allocated = num_allocated;
5315 }
5316
5317 if (decl_id >= decl_die_table_in_use)
5318 decl_die_table_in_use = (decl_id + 1);
5319
5320 decl_die_table[decl_id] = decl_die;
5321 }
5322 \f
5323 /* Keep track of the number of spaces used to indent the
5324 output of the debugging routines that print the structure of
5325 the DIE internal representation. */
5326 static int print_indent;
5327
5328 /* Indent the line the number of spaces given by print_indent. */
5329
5330 static inline void
5331 print_spaces (outfile)
5332 FILE *outfile;
5333 {
5334 fprintf (outfile, "%*s", print_indent, "");
5335 }
5336
5337 /* Print the information associated with a given DIE, and its children.
5338 This routine is a debugging aid only. */
5339
5340 static void
5341 print_die (die, outfile)
5342 dw_die_ref die;
5343 FILE *outfile;
5344 {
5345 dw_attr_ref a;
5346 dw_die_ref c;
5347
5348 print_spaces (outfile);
5349 fprintf (outfile, "DIE %4lu: %s\n",
5350 die->die_offset, dwarf_tag_name (die->die_tag));
5351 print_spaces (outfile);
5352 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5353 fprintf (outfile, " offset: %lu\n", die->die_offset);
5354
5355 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5356 {
5357 print_spaces (outfile);
5358 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5359
5360 switch (AT_class (a))
5361 {
5362 case dw_val_class_addr:
5363 fprintf (outfile, "address");
5364 break;
5365 case dw_val_class_offset:
5366 fprintf (outfile, "offset");
5367 break;
5368 case dw_val_class_loc:
5369 fprintf (outfile, "location descriptor");
5370 break;
5371 case dw_val_class_loc_list:
5372 fprintf (outfile, "location list -> label:%s",
5373 AT_loc_list (a)->ll_symbol);
5374 break;
5375 case dw_val_class_range_list:
5376 fprintf (outfile, "range list");
5377 break;
5378 case dw_val_class_const:
5379 fprintf (outfile, "%ld", AT_int (a));
5380 break;
5381 case dw_val_class_unsigned_const:
5382 fprintf (outfile, "%lu", AT_unsigned (a));
5383 break;
5384 case dw_val_class_long_long:
5385 fprintf (outfile, "constant (%lu,%lu)",
5386 a->dw_attr_val.v.val_long_long.hi,
5387 a->dw_attr_val.v.val_long_long.low);
5388 break;
5389 case dw_val_class_float:
5390 fprintf (outfile, "floating-point constant");
5391 break;
5392 case dw_val_class_flag:
5393 fprintf (outfile, "%u", AT_flag (a));
5394 break;
5395 case dw_val_class_die_ref:
5396 if (AT_ref (a) != NULL)
5397 {
5398 if (AT_ref (a)->die_symbol)
5399 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5400 else
5401 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5402 }
5403 else
5404 fprintf (outfile, "die -> <null>");
5405 break;
5406 case dw_val_class_lbl_id:
5407 case dw_val_class_lbl_offset:
5408 fprintf (outfile, "label: %s", AT_lbl (a));
5409 break;
5410 case dw_val_class_str:
5411 if (AT_string (a) != NULL)
5412 fprintf (outfile, "\"%s\"", AT_string (a));
5413 else
5414 fprintf (outfile, "<null>");
5415 break;
5416 default:
5417 break;
5418 }
5419
5420 fprintf (outfile, "\n");
5421 }
5422
5423 if (die->die_child != NULL)
5424 {
5425 print_indent += 4;
5426 for (c = die->die_child; c != NULL; c = c->die_sib)
5427 print_die (c, outfile);
5428
5429 print_indent -= 4;
5430 }
5431 if (print_indent == 0)
5432 fprintf (outfile, "\n");
5433 }
5434
5435 /* Print the contents of the source code line number correspondence table.
5436 This routine is a debugging aid only. */
5437
5438 static void
5439 print_dwarf_line_table (outfile)
5440 FILE *outfile;
5441 {
5442 unsigned i;
5443 dw_line_info_ref line_info;
5444
5445 fprintf (outfile, "\n\nDWARF source line information\n");
5446 for (i = 1; i < line_info_table_in_use; i++)
5447 {
5448 line_info = &line_info_table[i];
5449 fprintf (outfile, "%5d: ", i);
5450 fprintf (outfile, "%-20s",
5451 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5452 fprintf (outfile, "%6ld", line_info->dw_line_num);
5453 fprintf (outfile, "\n");
5454 }
5455
5456 fprintf (outfile, "\n\n");
5457 }
5458
5459 /* Print the information collected for a given DIE. */
5460
5461 void
5462 debug_dwarf_die (die)
5463 dw_die_ref die;
5464 {
5465 print_die (die, stderr);
5466 }
5467
5468 /* Print all DWARF information collected for the compilation unit.
5469 This routine is a debugging aid only. */
5470
5471 void
5472 debug_dwarf ()
5473 {
5474 print_indent = 0;
5475 print_die (comp_unit_die, stderr);
5476 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5477 print_dwarf_line_table (stderr);
5478 }
5479 \f
5480 /* We build up the lists of children and attributes by pushing new ones
5481 onto the beginning of the list. Reverse the lists for DIE so that
5482 they are in order of addition. */
5483
5484 static void
5485 reverse_die_lists (die)
5486 dw_die_ref die;
5487 {
5488 dw_die_ref c, cp, cn;
5489 dw_attr_ref a, ap, an;
5490
5491 for (a = die->die_attr, ap = 0; a; a = an)
5492 {
5493 an = a->dw_attr_next;
5494 a->dw_attr_next = ap;
5495 ap = a;
5496 }
5497
5498 die->die_attr = ap;
5499
5500 for (c = die->die_child, cp = 0; c; c = cn)
5501 {
5502 cn = c->die_sib;
5503 c->die_sib = cp;
5504 cp = c;
5505 }
5506
5507 die->die_child = cp;
5508 }
5509
5510 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5511 reverse all dies in add_sibling_attributes, which runs through all the dies,
5512 it would reverse all the dies. Now, however, since we don't call
5513 reverse_die_lists in add_sibling_attributes, we need a routine to
5514 recursively reverse all the dies. This is that routine. */
5515
5516 static void
5517 reverse_all_dies (die)
5518 dw_die_ref die;
5519 {
5520 dw_die_ref c;
5521
5522 reverse_die_lists (die);
5523
5524 for (c = die->die_child; c; c = c->die_sib)
5525 reverse_all_dies (c);
5526 }
5527
5528 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5529 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5530 DIE that marks the start of the DIEs for this include file. */
5531
5532 static dw_die_ref
5533 push_new_compile_unit (old_unit, bincl_die)
5534 dw_die_ref old_unit, bincl_die;
5535 {
5536 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5537 dw_die_ref new_unit = gen_compile_unit_die (filename);
5538
5539 new_unit->die_sib = old_unit;
5540 return new_unit;
5541 }
5542
5543 /* Close an include-file CU and reopen the enclosing one. */
5544
5545 static dw_die_ref
5546 pop_compile_unit (old_unit)
5547 dw_die_ref old_unit;
5548 {
5549 dw_die_ref new_unit = old_unit->die_sib;
5550
5551 old_unit->die_sib = NULL;
5552 return new_unit;
5553 }
5554
5555 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5556 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5557
5558 /* Calculate the checksum of a location expression. */
5559
5560 static inline void
5561 loc_checksum (loc, ctx)
5562 dw_loc_descr_ref loc;
5563 struct md5_ctx *ctx;
5564 {
5565 CHECKSUM (loc->dw_loc_opc);
5566 CHECKSUM (loc->dw_loc_oprnd1);
5567 CHECKSUM (loc->dw_loc_oprnd2);
5568 }
5569
5570 /* Calculate the checksum of an attribute. */
5571
5572 static void
5573 attr_checksum (at, ctx, mark)
5574 dw_attr_ref at;
5575 struct md5_ctx *ctx;
5576 int *mark;
5577 {
5578 dw_loc_descr_ref loc;
5579 rtx r;
5580
5581 CHECKSUM (at->dw_attr);
5582
5583 /* We don't care about differences in file numbering. */
5584 if (at->dw_attr == DW_AT_decl_file
5585 /* Or that this was compiled with a different compiler snapshot; if
5586 the output is the same, that's what matters. */
5587 || at->dw_attr == DW_AT_producer)
5588 return;
5589
5590 switch (AT_class (at))
5591 {
5592 case dw_val_class_const:
5593 CHECKSUM (at->dw_attr_val.v.val_int);
5594 break;
5595 case dw_val_class_unsigned_const:
5596 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5597 break;
5598 case dw_val_class_long_long:
5599 CHECKSUM (at->dw_attr_val.v.val_long_long);
5600 break;
5601 case dw_val_class_float:
5602 CHECKSUM (at->dw_attr_val.v.val_float);
5603 break;
5604 case dw_val_class_flag:
5605 CHECKSUM (at->dw_attr_val.v.val_flag);
5606 break;
5607 case dw_val_class_str:
5608 CHECKSUM_STRING (AT_string (at));
5609 break;
5610
5611 case dw_val_class_addr:
5612 r = AT_addr (at);
5613 switch (GET_CODE (r))
5614 {
5615 case SYMBOL_REF:
5616 CHECKSUM_STRING (XSTR (r, 0));
5617 break;
5618
5619 default:
5620 abort ();
5621 }
5622 break;
5623
5624 case dw_val_class_offset:
5625 CHECKSUM (at->dw_attr_val.v.val_offset);
5626 break;
5627
5628 case dw_val_class_loc:
5629 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5630 loc_checksum (loc, ctx);
5631 break;
5632
5633 case dw_val_class_die_ref:
5634 die_checksum (AT_ref (at), ctx, mark);
5635 break;
5636
5637 case dw_val_class_fde_ref:
5638 case dw_val_class_lbl_id:
5639 case dw_val_class_lbl_offset:
5640 break;
5641
5642 default:
5643 break;
5644 }
5645 }
5646
5647 /* Calculate the checksum of a DIE. */
5648
5649 static void
5650 die_checksum (die, ctx, mark)
5651 dw_die_ref die;
5652 struct md5_ctx *ctx;
5653 int *mark;
5654 {
5655 dw_die_ref c;
5656 dw_attr_ref a;
5657
5658 /* To avoid infinite recursion. */
5659 if (die->die_mark)
5660 {
5661 CHECKSUM (die->die_mark);
5662 return;
5663 }
5664 die->die_mark = ++(*mark);
5665
5666 CHECKSUM (die->die_tag);
5667
5668 for (a = die->die_attr; a; a = a->dw_attr_next)
5669 attr_checksum (a, ctx, mark);
5670
5671 for (c = die->die_child; c; c = c->die_sib)
5672 die_checksum (c, ctx, mark);
5673 }
5674
5675 #undef CHECKSUM
5676 #undef CHECKSUM_STRING
5677
5678 /* Do the location expressions look same? */
5679 static inline int
5680 same_loc_p (loc1, loc2, mark)
5681 dw_loc_descr_ref loc1;
5682 dw_loc_descr_ref loc2;
5683 int *mark;
5684 {
5685 return loc1->dw_loc_opc == loc2->dw_loc_opc
5686 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5687 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5688 }
5689
5690 /* Do the values look the same? */
5691 static int
5692 same_dw_val_p (v1, v2, mark)
5693 dw_val_node *v1;
5694 dw_val_node *v2;
5695 int *mark;
5696 {
5697 dw_loc_descr_ref loc1, loc2;
5698 rtx r1, r2;
5699 unsigned i;
5700
5701 if (v1->val_class != v2->val_class)
5702 return 0;
5703
5704 switch (v1->val_class)
5705 {
5706 case dw_val_class_const:
5707 return v1->v.val_int == v2->v.val_int;
5708 case dw_val_class_unsigned_const:
5709 return v1->v.val_unsigned == v2->v.val_unsigned;
5710 case dw_val_class_long_long:
5711 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5712 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5713 case dw_val_class_float:
5714 if (v1->v.val_float.length != v2->v.val_float.length)
5715 return 0;
5716 for (i = 0; i < v1->v.val_float.length; i++)
5717 if (v1->v.val_float.array[i] != v2->v.val_float.array[i])
5718 return 0;
5719 return 1;
5720 case dw_val_class_flag:
5721 return v1->v.val_flag == v2->v.val_flag;
5722 case dw_val_class_str:
5723 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5724
5725 case dw_val_class_addr:
5726 r1 = v1->v.val_addr;
5727 r2 = v2->v.val_addr;
5728 if (GET_CODE (r1) != GET_CODE (r2))
5729 return 0;
5730 switch (GET_CODE (r1))
5731 {
5732 case SYMBOL_REF:
5733 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5734
5735 default:
5736 abort ();
5737 }
5738
5739 case dw_val_class_offset:
5740 return v1->v.val_offset == v2->v.val_offset;
5741
5742 case dw_val_class_loc:
5743 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5744 loc1 && loc2;
5745 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5746 if (!same_loc_p (loc1, loc2, mark))
5747 return 0;
5748 return !loc1 && !loc2;
5749
5750 case dw_val_class_die_ref:
5751 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5752
5753 case dw_val_class_fde_ref:
5754 case dw_val_class_lbl_id:
5755 case dw_val_class_lbl_offset:
5756 return 1;
5757
5758 default:
5759 return 1;
5760 }
5761 }
5762
5763 /* Do the attributes look the same? */
5764
5765 static int
5766 same_attr_p (at1, at2, mark)
5767 dw_attr_ref at1;
5768 dw_attr_ref at2;
5769 int *mark;
5770 {
5771 if (at1->dw_attr != at2->dw_attr)
5772 return 0;
5773
5774 /* We don't care about differences in file numbering. */
5775 if (at1->dw_attr == DW_AT_decl_file
5776 /* Or that this was compiled with a different compiler snapshot; if
5777 the output is the same, that's what matters. */
5778 || at1->dw_attr == DW_AT_producer)
5779 return 1;
5780
5781 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5782 }
5783
5784 /* Do the dies look the same? */
5785
5786 static int
5787 same_die_p (die1, die2, mark)
5788 dw_die_ref die1;
5789 dw_die_ref die2;
5790 int *mark;
5791 {
5792 dw_die_ref c1, c2;
5793 dw_attr_ref a1, a2;
5794
5795 /* To avoid infinite recursion. */
5796 if (die1->die_mark)
5797 return die1->die_mark == die2->die_mark;
5798 die1->die_mark = die2->die_mark = ++(*mark);
5799
5800 if (die1->die_tag != die2->die_tag)
5801 return 0;
5802
5803 for (a1 = die1->die_attr, a2 = die2->die_attr;
5804 a1 && a2;
5805 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5806 if (!same_attr_p (a1, a2, mark))
5807 return 0;
5808 if (a1 || a2)
5809 return 0;
5810
5811 for (c1 = die1->die_child, c2 = die2->die_child;
5812 c1 && c2;
5813 c1 = c1->die_sib, c2 = c2->die_sib)
5814 if (!same_die_p (c1, c2, mark))
5815 return 0;
5816 if (c1 || c2)
5817 return 0;
5818
5819 return 1;
5820 }
5821
5822 /* Do the dies look the same? Wrapper around same_die_p. */
5823
5824 static int
5825 same_die_p_wrap (die1, die2)
5826 dw_die_ref die1;
5827 dw_die_ref die2;
5828 {
5829 int mark = 0;
5830 int ret = same_die_p (die1, die2, &mark);
5831
5832 unmark_all_dies (die1);
5833 unmark_all_dies (die2);
5834
5835 return ret;
5836 }
5837
5838 /* The prefix to attach to symbols on DIEs in the current comdat debug
5839 info section. */
5840 static char *comdat_symbol_id;
5841
5842 /* The index of the current symbol within the current comdat CU. */
5843 static unsigned int comdat_symbol_number;
5844
5845 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5846 children, and set comdat_symbol_id accordingly. */
5847
5848 static void
5849 compute_section_prefix (unit_die)
5850 dw_die_ref unit_die;
5851 {
5852 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5853 const char *base = die_name ? lbasename (die_name) : "anonymous";
5854 char *name = (char *) alloca (strlen (base) + 64);
5855 char *p;
5856 int i, mark;
5857 unsigned char checksum[16];
5858 struct md5_ctx ctx;
5859
5860 /* Compute the checksum of the DIE, then append part of it as hex digits to
5861 the name filename of the unit. */
5862
5863 md5_init_ctx (&ctx);
5864 mark = 0;
5865 die_checksum (unit_die, &ctx, &mark);
5866 unmark_all_dies (unit_die);
5867 md5_finish_ctx (&ctx, checksum);
5868
5869 sprintf (name, "%s.", base);
5870 clean_symbol_name (name);
5871
5872 p = name + strlen (name);
5873 for (i = 0; i < 4; i++)
5874 {
5875 sprintf (p, "%.2x", checksum[i]);
5876 p += 2;
5877 }
5878
5879 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5880 comdat_symbol_number = 0;
5881 }
5882
5883 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5884
5885 static int
5886 is_type_die (die)
5887 dw_die_ref die;
5888 {
5889 switch (die->die_tag)
5890 {
5891 case DW_TAG_array_type:
5892 case DW_TAG_class_type:
5893 case DW_TAG_enumeration_type:
5894 case DW_TAG_pointer_type:
5895 case DW_TAG_reference_type:
5896 case DW_TAG_string_type:
5897 case DW_TAG_structure_type:
5898 case DW_TAG_subroutine_type:
5899 case DW_TAG_union_type:
5900 case DW_TAG_ptr_to_member_type:
5901 case DW_TAG_set_type:
5902 case DW_TAG_subrange_type:
5903 case DW_TAG_base_type:
5904 case DW_TAG_const_type:
5905 case DW_TAG_file_type:
5906 case DW_TAG_packed_type:
5907 case DW_TAG_volatile_type:
5908 case DW_TAG_typedef:
5909 return 1;
5910 default:
5911 return 0;
5912 }
5913 }
5914
5915 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5916 Basically, we want to choose the bits that are likely to be shared between
5917 compilations (types) and leave out the bits that are specific to individual
5918 compilations (functions). */
5919
5920 static int
5921 is_comdat_die (c)
5922 dw_die_ref c;
5923 {
5924 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5925 we do for stabs. The advantage is a greater likelihood of sharing between
5926 objects that don't include headers in the same order (and therefore would
5927 put the base types in a different comdat). jason 8/28/00 */
5928
5929 if (c->die_tag == DW_TAG_base_type)
5930 return 0;
5931
5932 if (c->die_tag == DW_TAG_pointer_type
5933 || c->die_tag == DW_TAG_reference_type
5934 || c->die_tag == DW_TAG_const_type
5935 || c->die_tag == DW_TAG_volatile_type)
5936 {
5937 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5938
5939 return t ? is_comdat_die (t) : 0;
5940 }
5941
5942 return is_type_die (c);
5943 }
5944
5945 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5946 compilation unit. */
5947
5948 static int
5949 is_symbol_die (c)
5950 dw_die_ref c;
5951 {
5952 return (is_type_die (c)
5953 || (get_AT (c, DW_AT_declaration)
5954 && !get_AT (c, DW_AT_specification)));
5955 }
5956
5957 static char *
5958 gen_internal_sym (prefix)
5959 const char *prefix;
5960 {
5961 char buf[256];
5962 static int label_num;
5963
5964 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5965 return xstrdup (buf);
5966 }
5967
5968 /* Assign symbols to all worthy DIEs under DIE. */
5969
5970 static void
5971 assign_symbol_names (die)
5972 dw_die_ref die;
5973 {
5974 dw_die_ref c;
5975
5976 if (is_symbol_die (die))
5977 {
5978 if (comdat_symbol_id)
5979 {
5980 char *p = alloca (strlen (comdat_symbol_id) + 64);
5981
5982 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
5983 comdat_symbol_id, comdat_symbol_number++);
5984 die->die_symbol = xstrdup (p);
5985 }
5986 else
5987 die->die_symbol = gen_internal_sym ("LDIE");
5988 }
5989
5990 for (c = die->die_child; c != NULL; c = c->die_sib)
5991 assign_symbol_names (c);
5992 }
5993
5994 struct cu_hash_table_entry
5995 {
5996 dw_die_ref cu;
5997 unsigned min_comdat_num, max_comdat_num;
5998 struct cu_hash_table_entry *next;
5999 };
6000
6001 /* Routines to manipulate hash table of CUs. */
6002 static hashval_t
6003 htab_cu_hash (of)
6004 const void *of;
6005 {
6006 const struct cu_hash_table_entry *entry = of;
6007
6008 return htab_hash_string (entry->cu->die_symbol);
6009 }
6010
6011 static int
6012 htab_cu_eq (of1, of2)
6013 const void *of1;
6014 const void *of2;
6015 {
6016 const struct cu_hash_table_entry *entry1 = of1;
6017 const struct die_struct *entry2 = of2;
6018
6019 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6020 }
6021
6022 static void
6023 htab_cu_del (what)
6024 void *what;
6025 {
6026 struct cu_hash_table_entry *next, *entry = what;
6027
6028 while (entry)
6029 {
6030 next = entry->next;
6031 free (entry);
6032 entry = next;
6033 }
6034 }
6035
6036 /* Check whether we have already seen this CU and set up SYM_NUM
6037 accordingly. */
6038 static int
6039 check_duplicate_cu (cu, htable, sym_num)
6040 dw_die_ref cu;
6041 htab_t htable;
6042 unsigned *sym_num;
6043 {
6044 struct cu_hash_table_entry dummy;
6045 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6046
6047 dummy.max_comdat_num = 0;
6048
6049 slot = (struct cu_hash_table_entry **)
6050 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6051 INSERT);
6052 entry = *slot;
6053
6054 for (; entry; last = entry, entry = entry->next)
6055 {
6056 if (same_die_p_wrap (cu, entry->cu))
6057 break;
6058 }
6059
6060 if (entry)
6061 {
6062 *sym_num = entry->min_comdat_num;
6063 return 1;
6064 }
6065
6066 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6067 entry->cu = cu;
6068 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6069 entry->next = *slot;
6070 *slot = entry;
6071
6072 return 0;
6073 }
6074
6075 /* Record SYM_NUM to record of CU in HTABLE. */
6076 static void
6077 record_comdat_symbol_number (cu, htable, sym_num)
6078 dw_die_ref cu;
6079 htab_t htable;
6080 unsigned sym_num;
6081 {
6082 struct cu_hash_table_entry **slot, *entry;
6083
6084 slot = (struct cu_hash_table_entry **)
6085 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6086 NO_INSERT);
6087 entry = *slot;
6088
6089 entry->max_comdat_num = sym_num;
6090 }
6091
6092 /* Traverse the DIE (which is always comp_unit_die), and set up
6093 additional compilation units for each of the include files we see
6094 bracketed by BINCL/EINCL. */
6095
6096 static void
6097 break_out_includes (die)
6098 dw_die_ref die;
6099 {
6100 dw_die_ref *ptr;
6101 dw_die_ref unit = NULL;
6102 limbo_die_node *node, **pnode;
6103 htab_t cu_hash_table;
6104
6105 for (ptr = &(die->die_child); *ptr;)
6106 {
6107 dw_die_ref c = *ptr;
6108
6109 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6110 || (unit && is_comdat_die (c)))
6111 {
6112 /* This DIE is for a secondary CU; remove it from the main one. */
6113 *ptr = c->die_sib;
6114
6115 if (c->die_tag == DW_TAG_GNU_BINCL)
6116 {
6117 unit = push_new_compile_unit (unit, c);
6118 free_die (c);
6119 }
6120 else if (c->die_tag == DW_TAG_GNU_EINCL)
6121 {
6122 unit = pop_compile_unit (unit);
6123 free_die (c);
6124 }
6125 else
6126 add_child_die (unit, c);
6127 }
6128 else
6129 {
6130 /* Leave this DIE in the main CU. */
6131 ptr = &(c->die_sib);
6132 continue;
6133 }
6134 }
6135
6136 #if 0
6137 /* We can only use this in debugging, since the frontend doesn't check
6138 to make sure that we leave every include file we enter. */
6139 if (unit != NULL)
6140 abort ();
6141 #endif
6142
6143 assign_symbol_names (die);
6144 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6145 for (node = limbo_die_list, pnode = &limbo_die_list;
6146 node;
6147 node = node->next)
6148 {
6149 int is_dupl;
6150
6151 compute_section_prefix (node->die);
6152 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6153 &comdat_symbol_number);
6154 assign_symbol_names (node->die);
6155 if (is_dupl)
6156 *pnode = node->next;
6157 else
6158 {
6159 pnode = &node->next;
6160 record_comdat_symbol_number (node->die, cu_hash_table,
6161 comdat_symbol_number);
6162 }
6163 }
6164 htab_delete (cu_hash_table);
6165 }
6166
6167 /* Traverse the DIE and add a sibling attribute if it may have the
6168 effect of speeding up access to siblings. To save some space,
6169 avoid generating sibling attributes for DIE's without children. */
6170
6171 static void
6172 add_sibling_attributes (die)
6173 dw_die_ref die;
6174 {
6175 dw_die_ref c;
6176
6177 if (die->die_tag != DW_TAG_compile_unit
6178 && die->die_sib && die->die_child != NULL)
6179 /* Add the sibling link to the front of the attribute list. */
6180 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6181
6182 for (c = die->die_child; c != NULL; c = c->die_sib)
6183 add_sibling_attributes (c);
6184 }
6185
6186 /* Output all location lists for the DIE and its children. */
6187
6188 static void
6189 output_location_lists (die)
6190 dw_die_ref die;
6191 {
6192 dw_die_ref c;
6193 dw_attr_ref d_attr;
6194
6195 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6196 if (AT_class (d_attr) == dw_val_class_loc_list)
6197 output_loc_list (AT_loc_list (d_attr));
6198
6199 for (c = die->die_child; c != NULL; c = c->die_sib)
6200 output_location_lists (c);
6201
6202 }
6203
6204 /* The format of each DIE (and its attribute value pairs) is encoded in an
6205 abbreviation table. This routine builds the abbreviation table and assigns
6206 a unique abbreviation id for each abbreviation entry. The children of each
6207 die are visited recursively. */
6208
6209 static void
6210 build_abbrev_table (die)
6211 dw_die_ref die;
6212 {
6213 unsigned long abbrev_id;
6214 unsigned int n_alloc;
6215 dw_die_ref c;
6216 dw_attr_ref d_attr, a_attr;
6217
6218 /* Scan the DIE references, and mark as external any that refer to
6219 DIEs from other CUs (i.e. those which are not marked). */
6220 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6221 if (AT_class (d_attr) == dw_val_class_die_ref
6222 && AT_ref (d_attr)->die_mark == 0)
6223 {
6224 if (AT_ref (d_attr)->die_symbol == 0)
6225 abort ();
6226
6227 set_AT_ref_external (d_attr, 1);
6228 }
6229
6230 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6231 {
6232 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6233
6234 if (abbrev->die_tag == die->die_tag)
6235 {
6236 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6237 {
6238 a_attr = abbrev->die_attr;
6239 d_attr = die->die_attr;
6240
6241 while (a_attr != NULL && d_attr != NULL)
6242 {
6243 if ((a_attr->dw_attr != d_attr->dw_attr)
6244 || (value_format (a_attr) != value_format (d_attr)))
6245 break;
6246
6247 a_attr = a_attr->dw_attr_next;
6248 d_attr = d_attr->dw_attr_next;
6249 }
6250
6251 if (a_attr == NULL && d_attr == NULL)
6252 break;
6253 }
6254 }
6255 }
6256
6257 if (abbrev_id >= abbrev_die_table_in_use)
6258 {
6259 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6260 {
6261 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6262 abbrev_die_table = ggc_realloc (abbrev_die_table,
6263 sizeof (dw_die_ref) * n_alloc);
6264
6265 memset ((char *) &abbrev_die_table[abbrev_die_table_allocated], 0,
6266 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6267 abbrev_die_table_allocated = n_alloc;
6268 }
6269
6270 ++abbrev_die_table_in_use;
6271 abbrev_die_table[abbrev_id] = die;
6272 }
6273
6274 die->die_abbrev = abbrev_id;
6275 for (c = die->die_child; c != NULL; c = c->die_sib)
6276 build_abbrev_table (c);
6277 }
6278 \f
6279 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6280
6281 static int
6282 constant_size (value)
6283 long unsigned value;
6284 {
6285 int log;
6286
6287 if (value == 0)
6288 log = 0;
6289 else
6290 log = floor_log2 (value);
6291
6292 log = log / 8;
6293 log = 1 << (floor_log2 (log) + 1);
6294
6295 return log;
6296 }
6297
6298 /* Return the size of a DIE as it is represented in the
6299 .debug_info section. */
6300
6301 static unsigned long
6302 size_of_die (die)
6303 dw_die_ref die;
6304 {
6305 unsigned long size = 0;
6306 dw_attr_ref a;
6307
6308 size += size_of_uleb128 (die->die_abbrev);
6309 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6310 {
6311 switch (AT_class (a))
6312 {
6313 case dw_val_class_addr:
6314 size += DWARF2_ADDR_SIZE;
6315 break;
6316 case dw_val_class_offset:
6317 size += DWARF_OFFSET_SIZE;
6318 break;
6319 case dw_val_class_loc:
6320 {
6321 unsigned long lsize = size_of_locs (AT_loc (a));
6322
6323 /* Block length. */
6324 size += constant_size (lsize);
6325 size += lsize;
6326 }
6327 break;
6328 case dw_val_class_loc_list:
6329 size += DWARF_OFFSET_SIZE;
6330 break;
6331 case dw_val_class_range_list:
6332 size += DWARF_OFFSET_SIZE;
6333 break;
6334 case dw_val_class_const:
6335 size += size_of_sleb128 (AT_int (a));
6336 break;
6337 case dw_val_class_unsigned_const:
6338 size += constant_size (AT_unsigned (a));
6339 break;
6340 case dw_val_class_long_long:
6341 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6342 break;
6343 case dw_val_class_float:
6344 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
6345 break;
6346 case dw_val_class_flag:
6347 size += 1;
6348 break;
6349 case dw_val_class_die_ref:
6350 size += DWARF_OFFSET_SIZE;
6351 break;
6352 case dw_val_class_fde_ref:
6353 size += DWARF_OFFSET_SIZE;
6354 break;
6355 case dw_val_class_lbl_id:
6356 size += DWARF2_ADDR_SIZE;
6357 break;
6358 case dw_val_class_lbl_offset:
6359 size += DWARF_OFFSET_SIZE;
6360 break;
6361 case dw_val_class_str:
6362 if (AT_string_form (a) == DW_FORM_strp)
6363 size += DWARF_OFFSET_SIZE;
6364 else
6365 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6366 break;
6367 default:
6368 abort ();
6369 }
6370 }
6371
6372 return size;
6373 }
6374
6375 /* Size the debugging information associated with a given DIE. Visits the
6376 DIE's children recursively. Updates the global variable next_die_offset, on
6377 each time through. Uses the current value of next_die_offset to update the
6378 die_offset field in each DIE. */
6379
6380 static void
6381 calc_die_sizes (die)
6382 dw_die_ref die;
6383 {
6384 dw_die_ref c;
6385
6386 die->die_offset = next_die_offset;
6387 next_die_offset += size_of_die (die);
6388
6389 for (c = die->die_child; c != NULL; c = c->die_sib)
6390 calc_die_sizes (c);
6391
6392 if (die->die_child != NULL)
6393 /* Count the null byte used to terminate sibling lists. */
6394 next_die_offset += 1;
6395 }
6396
6397 /* Set the marks for a die and its children. We do this so
6398 that we know whether or not a reference needs to use FORM_ref_addr; only
6399 DIEs in the same CU will be marked. We used to clear out the offset
6400 and use that as the flag, but ran into ordering problems. */
6401
6402 static void
6403 mark_dies (die)
6404 dw_die_ref die;
6405 {
6406 dw_die_ref c;
6407
6408 if (die->die_mark)
6409 abort ();
6410
6411 die->die_mark = 1;
6412 for (c = die->die_child; c; c = c->die_sib)
6413 mark_dies (c);
6414 }
6415
6416 /* Clear the marks for a die and its children. */
6417
6418 static void
6419 unmark_dies (die)
6420 dw_die_ref die;
6421 {
6422 dw_die_ref c;
6423
6424 if (!die->die_mark)
6425 abort ();
6426
6427 die->die_mark = 0;
6428 for (c = die->die_child; c; c = c->die_sib)
6429 unmark_dies (c);
6430 }
6431
6432 /* Clear the marks for a die, its children and referred dies. */
6433
6434 static void
6435 unmark_all_dies (die)
6436 dw_die_ref die;
6437 {
6438 dw_die_ref c;
6439 dw_attr_ref a;
6440
6441 if (!die->die_mark)
6442 return;
6443 die->die_mark = 0;
6444
6445 for (c = die->die_child; c; c = c->die_sib)
6446 unmark_all_dies (c);
6447
6448 for (a = die->die_attr; a; a = a->dw_attr_next)
6449 if (AT_class (a) == dw_val_class_die_ref)
6450 unmark_all_dies (AT_ref (a));
6451 }
6452
6453 /* Return the size of the .debug_pubnames table generated for the
6454 compilation unit. */
6455
6456 static unsigned long
6457 size_of_pubnames ()
6458 {
6459 unsigned long size;
6460 unsigned i;
6461
6462 size = DWARF_PUBNAMES_HEADER_SIZE;
6463 for (i = 0; i < pubname_table_in_use; i++)
6464 {
6465 pubname_ref p = &pubname_table[i];
6466 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6467 }
6468
6469 size += DWARF_OFFSET_SIZE;
6470 return size;
6471 }
6472
6473 /* Return the size of the information in the .debug_aranges section. */
6474
6475 static unsigned long
6476 size_of_aranges ()
6477 {
6478 unsigned long size;
6479
6480 size = DWARF_ARANGES_HEADER_SIZE;
6481
6482 /* Count the address/length pair for this compilation unit. */
6483 size += 2 * DWARF2_ADDR_SIZE;
6484 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6485
6486 /* Count the two zero words used to terminated the address range table. */
6487 size += 2 * DWARF2_ADDR_SIZE;
6488 return size;
6489 }
6490 \f
6491 /* Select the encoding of an attribute value. */
6492
6493 static enum dwarf_form
6494 value_format (a)
6495 dw_attr_ref a;
6496 {
6497 switch (a->dw_attr_val.val_class)
6498 {
6499 case dw_val_class_addr:
6500 return DW_FORM_addr;
6501 case dw_val_class_range_list:
6502 case dw_val_class_offset:
6503 if (DWARF_OFFSET_SIZE == 4)
6504 return DW_FORM_data4;
6505 if (DWARF_OFFSET_SIZE == 8)
6506 return DW_FORM_data8;
6507 abort ();
6508 case dw_val_class_loc_list:
6509 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6510 .debug_loc section */
6511 return DW_FORM_data4;
6512 case dw_val_class_loc:
6513 switch (constant_size (size_of_locs (AT_loc (a))))
6514 {
6515 case 1:
6516 return DW_FORM_block1;
6517 case 2:
6518 return DW_FORM_block2;
6519 default:
6520 abort ();
6521 }
6522 case dw_val_class_const:
6523 return DW_FORM_sdata;
6524 case dw_val_class_unsigned_const:
6525 switch (constant_size (AT_unsigned (a)))
6526 {
6527 case 1:
6528 return DW_FORM_data1;
6529 case 2:
6530 return DW_FORM_data2;
6531 case 4:
6532 return DW_FORM_data4;
6533 case 8:
6534 return DW_FORM_data8;
6535 default:
6536 abort ();
6537 }
6538 case dw_val_class_long_long:
6539 return DW_FORM_block1;
6540 case dw_val_class_float:
6541 return DW_FORM_block1;
6542 case dw_val_class_flag:
6543 return DW_FORM_flag;
6544 case dw_val_class_die_ref:
6545 if (AT_ref_external (a))
6546 return DW_FORM_ref_addr;
6547 else
6548 return DW_FORM_ref;
6549 case dw_val_class_fde_ref:
6550 return DW_FORM_data;
6551 case dw_val_class_lbl_id:
6552 return DW_FORM_addr;
6553 case dw_val_class_lbl_offset:
6554 return DW_FORM_data;
6555 case dw_val_class_str:
6556 return AT_string_form (a);
6557
6558 default:
6559 abort ();
6560 }
6561 }
6562
6563 /* Output the encoding of an attribute value. */
6564
6565 static void
6566 output_value_format (a)
6567 dw_attr_ref a;
6568 {
6569 enum dwarf_form form = value_format (a);
6570
6571 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6572 }
6573
6574 /* Output the .debug_abbrev section which defines the DIE abbreviation
6575 table. */
6576
6577 static void
6578 output_abbrev_section ()
6579 {
6580 unsigned long abbrev_id;
6581
6582 dw_attr_ref a_attr;
6583
6584 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6585 {
6586 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6587
6588 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6589 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6590 dwarf_tag_name (abbrev->die_tag));
6591
6592 if (abbrev->die_child != NULL)
6593 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6594 else
6595 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6596
6597 for (a_attr = abbrev->die_attr; a_attr != NULL;
6598 a_attr = a_attr->dw_attr_next)
6599 {
6600 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6601 dwarf_attr_name (a_attr->dw_attr));
6602 output_value_format (a_attr);
6603 }
6604
6605 dw2_asm_output_data (1, 0, NULL);
6606 dw2_asm_output_data (1, 0, NULL);
6607 }
6608
6609 /* Terminate the table. */
6610 dw2_asm_output_data (1, 0, NULL);
6611 }
6612
6613 /* Output a symbol we can use to refer to this DIE from another CU. */
6614
6615 static inline void
6616 output_die_symbol (die)
6617 dw_die_ref die;
6618 {
6619 char *sym = die->die_symbol;
6620
6621 if (sym == 0)
6622 return;
6623
6624 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6625 /* We make these global, not weak; if the target doesn't support
6626 .linkonce, it doesn't support combining the sections, so debugging
6627 will break. */
6628 (*targetm.asm_out.globalize_label) (asm_out_file, sym);
6629
6630 ASM_OUTPUT_LABEL (asm_out_file, sym);
6631 }
6632
6633 /* Return a new location list, given the begin and end range, and the
6634 expression. gensym tells us whether to generate a new internal symbol for
6635 this location list node, which is done for the head of the list only. */
6636
6637 static inline dw_loc_list_ref
6638 new_loc_list (expr, begin, end, section, gensym)
6639 dw_loc_descr_ref expr;
6640 const char *begin;
6641 const char *end;
6642 const char *section;
6643 unsigned gensym;
6644 {
6645 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6646
6647 retlist->begin = begin;
6648 retlist->end = end;
6649 retlist->expr = expr;
6650 retlist->section = section;
6651 if (gensym)
6652 retlist->ll_symbol = gen_internal_sym ("LLST");
6653
6654 return retlist;
6655 }
6656
6657 /* Add a location description expression to a location list */
6658
6659 static inline void
6660 add_loc_descr_to_loc_list (list_head, descr, begin, end, section)
6661 dw_loc_list_ref *list_head;
6662 dw_loc_descr_ref descr;
6663 const char *begin;
6664 const char *end;
6665 const char *section;
6666 {
6667 dw_loc_list_ref *d;
6668
6669 /* Find the end of the chain. */
6670 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6671 ;
6672
6673 /* Add a new location list node to the list */
6674 *d = new_loc_list (descr, begin, end, section, 0);
6675 }
6676
6677 /* Output the location list given to us */
6678
6679 static void
6680 output_loc_list (list_head)
6681 dw_loc_list_ref list_head;
6682 {
6683 dw_loc_list_ref curr = list_head;
6684
6685 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6686
6687 /* ??? This shouldn't be needed now that we've forced the
6688 compilation unit base address to zero when there is code
6689 in more than one section. */
6690 if (strcmp (curr->section, ".text") == 0)
6691 {
6692 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6693 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT) 0,
6694 "Location list base address specifier fake entry");
6695 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6696 "Location list base address specifier base");
6697 }
6698
6699 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6700 {
6701 unsigned long size;
6702
6703 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6704 "Location list begin address (%s)",
6705 list_head->ll_symbol);
6706 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6707 "Location list end address (%s)",
6708 list_head->ll_symbol);
6709 size = size_of_locs (curr->expr);
6710
6711 /* Output the block length for this list of location operations. */
6712 if (size > 0xffff)
6713 abort ();
6714 dw2_asm_output_data (2, size, "%s", "Location expression size");
6715
6716 output_loc_sequence (curr->expr);
6717 }
6718
6719 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6720 "Location list terminator begin (%s)",
6721 list_head->ll_symbol);
6722 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6723 "Location list terminator end (%s)",
6724 list_head->ll_symbol);
6725 }
6726
6727 /* Output the DIE and its attributes. Called recursively to generate
6728 the definitions of each child DIE. */
6729
6730 static void
6731 output_die (die)
6732 dw_die_ref die;
6733 {
6734 dw_attr_ref a;
6735 dw_die_ref c;
6736 unsigned long size;
6737
6738 /* If someone in another CU might refer to us, set up a symbol for
6739 them to point to. */
6740 if (die->die_symbol)
6741 output_die_symbol (die);
6742
6743 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6744 die->die_offset, dwarf_tag_name (die->die_tag));
6745
6746 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6747 {
6748 const char *name = dwarf_attr_name (a->dw_attr);
6749
6750 switch (AT_class (a))
6751 {
6752 case dw_val_class_addr:
6753 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6754 break;
6755
6756 case dw_val_class_offset:
6757 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6758 "%s", name);
6759 break;
6760
6761 case dw_val_class_range_list:
6762 {
6763 char *p = strchr (ranges_section_label, '\0');
6764
6765 sprintf (p, "+0x%lx", a->dw_attr_val.v.val_offset);
6766 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6767 "%s", name);
6768 *p = '\0';
6769 }
6770 break;
6771
6772 case dw_val_class_loc:
6773 size = size_of_locs (AT_loc (a));
6774
6775 /* Output the block length for this list of location operations. */
6776 dw2_asm_output_data (constant_size (size), size, "%s", name);
6777
6778 output_loc_sequence (AT_loc (a));
6779 break;
6780
6781 case dw_val_class_const:
6782 /* ??? It would be slightly more efficient to use a scheme like is
6783 used for unsigned constants below, but gdb 4.x does not sign
6784 extend. Gdb 5.x does sign extend. */
6785 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6786 break;
6787
6788 case dw_val_class_unsigned_const:
6789 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6790 AT_unsigned (a), "%s", name);
6791 break;
6792
6793 case dw_val_class_long_long:
6794 {
6795 unsigned HOST_WIDE_INT first, second;
6796
6797 dw2_asm_output_data (1,
6798 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6799 "%s", name);
6800
6801 if (WORDS_BIG_ENDIAN)
6802 {
6803 first = a->dw_attr_val.v.val_long_long.hi;
6804 second = a->dw_attr_val.v.val_long_long.low;
6805 }
6806 else
6807 {
6808 first = a->dw_attr_val.v.val_long_long.low;
6809 second = a->dw_attr_val.v.val_long_long.hi;
6810 }
6811
6812 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6813 first, "long long constant");
6814 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6815 second, NULL);
6816 }
6817 break;
6818
6819 case dw_val_class_float:
6820 {
6821 unsigned int i;
6822
6823 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6824 "%s", name);
6825
6826 for (i = 0; i < a->dw_attr_val.v.val_float.length; i++)
6827 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6828 "fp constant word %u", i);
6829 break;
6830 }
6831
6832 case dw_val_class_flag:
6833 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6834 break;
6835
6836 case dw_val_class_loc_list:
6837 {
6838 char *sym = AT_loc_list (a)->ll_symbol;
6839
6840 if (sym == 0)
6841 abort ();
6842 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym,
6843 loc_section_label, "%s", name);
6844 }
6845 break;
6846
6847 case dw_val_class_die_ref:
6848 if (AT_ref_external (a))
6849 {
6850 char *sym = AT_ref (a)->die_symbol;
6851
6852 if (sym == 0)
6853 abort ();
6854 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6855 }
6856 else if (AT_ref (a)->die_offset == 0)
6857 abort ();
6858 else
6859 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6860 "%s", name);
6861 break;
6862
6863 case dw_val_class_fde_ref:
6864 {
6865 char l1[20];
6866
6867 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6868 a->dw_attr_val.v.val_fde_index * 2);
6869 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6870 }
6871 break;
6872
6873 case dw_val_class_lbl_id:
6874 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6875 break;
6876
6877 case dw_val_class_lbl_offset:
6878 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6879 break;
6880
6881 case dw_val_class_str:
6882 if (AT_string_form (a) == DW_FORM_strp)
6883 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6884 a->dw_attr_val.v.val_str->label,
6885 "%s: \"%s\"", name, AT_string (a));
6886 else
6887 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6888 break;
6889
6890 default:
6891 abort ();
6892 }
6893 }
6894
6895 for (c = die->die_child; c != NULL; c = c->die_sib)
6896 output_die (c);
6897
6898 /* Add null byte to terminate sibling list. */
6899 if (die->die_child != NULL)
6900 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6901 die->die_offset);
6902 }
6903
6904 /* Output the compilation unit that appears at the beginning of the
6905 .debug_info section, and precedes the DIE descriptions. */
6906
6907 static void
6908 output_compilation_unit_header ()
6909 {
6910 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset - DWARF_OFFSET_SIZE,
6911 "Length of Compilation Unit Info");
6912 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6913 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6914 "Offset Into Abbrev. Section");
6915 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6916 }
6917
6918 /* Output the compilation unit DIE and its children. */
6919
6920 static void
6921 output_comp_unit (die, output_if_empty)
6922 dw_die_ref die;
6923 int output_if_empty;
6924 {
6925 const char *secname;
6926 char *oldsym, *tmp;
6927
6928 /* Unless we are outputting main CU, we may throw away empty ones. */
6929 if (!output_if_empty && die->die_child == NULL)
6930 return;
6931
6932 /* Even if there are no children of this DIE, we must output the information
6933 about the compilation unit. Otherwise, on an empty translation unit, we
6934 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6935 will then complain when examining the file. First mark all the DIEs in
6936 this CU so we know which get local refs. */
6937 mark_dies (die);
6938
6939 build_abbrev_table (die);
6940
6941 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6942 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6943 calc_die_sizes (die);
6944
6945 oldsym = die->die_symbol;
6946 if (oldsym)
6947 {
6948 tmp = (char *) alloca (strlen (oldsym) + 24);
6949
6950 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
6951 secname = tmp;
6952 die->die_symbol = NULL;
6953 }
6954 else
6955 secname = (const char *) DEBUG_INFO_SECTION;
6956
6957 /* Output debugging information. */
6958 named_section_flags (secname, SECTION_DEBUG);
6959 output_compilation_unit_header ();
6960 output_die (die);
6961
6962 /* Leave the marks on the main CU, so we can check them in
6963 output_pubnames. */
6964 if (oldsym)
6965 {
6966 unmark_dies (die);
6967 die->die_symbol = oldsym;
6968 }
6969 }
6970
6971 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
6972 output of lang_hooks.decl_printable_name for C++ looks like
6973 "A::f(int)". Let's drop the argument list, and maybe the scope. */
6974
6975 static const char *
6976 dwarf2_name (decl, scope)
6977 tree decl;
6978 int scope;
6979 {
6980 return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
6981 }
6982
6983 /* Add a new entry to .debug_pubnames if appropriate. */
6984
6985 static void
6986 add_pubname (decl, die)
6987 tree decl;
6988 dw_die_ref die;
6989 {
6990 pubname_ref p;
6991
6992 if (! TREE_PUBLIC (decl))
6993 return;
6994
6995 if (pubname_table_in_use == pubname_table_allocated)
6996 {
6997 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
6998 pubname_table
6999 = (pubname_ref) ggc_realloc (pubname_table,
7000 (pubname_table_allocated
7001 * sizeof (pubname_entry)));
7002 memset (pubname_table + pubname_table_in_use, 0,
7003 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7004 }
7005
7006 p = &pubname_table[pubname_table_in_use++];
7007 p->die = die;
7008 p->name = xstrdup (dwarf2_name (decl, 1));
7009 }
7010
7011 /* Output the public names table used to speed up access to externally
7012 visible names. For now, only generate entries for externally
7013 visible procedures. */
7014
7015 static void
7016 output_pubnames ()
7017 {
7018 unsigned i;
7019 unsigned long pubnames_length = size_of_pubnames ();
7020
7021 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7022 "Length of Public Names Info");
7023 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7024 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7025 "Offset of Compilation Unit Info");
7026 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7027 "Compilation Unit Length");
7028
7029 for (i = 0; i < pubname_table_in_use; i++)
7030 {
7031 pubname_ref pub = &pubname_table[i];
7032
7033 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7034 if (pub->die->die_mark == 0)
7035 abort ();
7036
7037 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7038 "DIE offset");
7039
7040 dw2_asm_output_nstring (pub->name, -1, "external name");
7041 }
7042
7043 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7044 }
7045
7046 /* Add a new entry to .debug_aranges if appropriate. */
7047
7048 static void
7049 add_arange (decl, die)
7050 tree decl;
7051 dw_die_ref die;
7052 {
7053 if (! DECL_SECTION_NAME (decl))
7054 return;
7055
7056 if (arange_table_in_use == arange_table_allocated)
7057 {
7058 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7059 arange_table = ggc_realloc (arange_table,
7060 (arange_table_allocated
7061 * sizeof (dw_die_ref)));
7062 memset (arange_table + arange_table_in_use, 0,
7063 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7064 }
7065
7066 arange_table[arange_table_in_use++] = die;
7067 }
7068
7069 /* Output the information that goes into the .debug_aranges table.
7070 Namely, define the beginning and ending address range of the
7071 text section generated for this compilation unit. */
7072
7073 static void
7074 output_aranges ()
7075 {
7076 unsigned i;
7077 unsigned long aranges_length = size_of_aranges ();
7078
7079 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7080 "Length of Address Ranges Info");
7081 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7082 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7083 "Offset of Compilation Unit Info");
7084 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7085 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7086
7087 /* We need to align to twice the pointer size here. */
7088 if (DWARF_ARANGES_PAD_SIZE)
7089 {
7090 /* Pad using a 2 byte words so that padding is correct for any
7091 pointer size. */
7092 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7093 2 * DWARF2_ADDR_SIZE);
7094 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7095 dw2_asm_output_data (2, 0, NULL);
7096 }
7097
7098 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7099 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7100 text_section_label, "Length");
7101
7102 for (i = 0; i < arange_table_in_use; i++)
7103 {
7104 dw_die_ref die = arange_table[i];
7105
7106 /* We shouldn't see aranges for DIEs outside of the main CU. */
7107 if (die->die_mark == 0)
7108 abort ();
7109
7110 if (die->die_tag == DW_TAG_subprogram)
7111 {
7112 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7113 "Address");
7114 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7115 get_AT_low_pc (die), "Length");
7116 }
7117 else
7118 {
7119 /* A static variable; extract the symbol from DW_AT_location.
7120 Note that this code isn't currently hit, as we only emit
7121 aranges for functions (jason 9/23/99). */
7122 dw_attr_ref a = get_AT (die, DW_AT_location);
7123 dw_loc_descr_ref loc;
7124
7125 if (! a || AT_class (a) != dw_val_class_loc)
7126 abort ();
7127
7128 loc = AT_loc (a);
7129 if (loc->dw_loc_opc != DW_OP_addr)
7130 abort ();
7131
7132 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7133 loc->dw_loc_oprnd1.v.val_addr, "Address");
7134 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7135 get_AT_unsigned (die, DW_AT_byte_size),
7136 "Length");
7137 }
7138 }
7139
7140 /* Output the terminator words. */
7141 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7142 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7143 }
7144
7145 /* Add a new entry to .debug_ranges. Return the offset at which it
7146 was placed. */
7147
7148 static unsigned int
7149 add_ranges (block)
7150 tree block;
7151 {
7152 unsigned int in_use = ranges_table_in_use;
7153
7154 if (in_use == ranges_table_allocated)
7155 {
7156 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7157 ranges_table = (dw_ranges_ref)
7158 ggc_realloc (ranges_table, (ranges_table_allocated
7159 * sizeof (struct dw_ranges_struct)));
7160 memset (ranges_table + ranges_table_in_use, 0,
7161 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7162 }
7163
7164 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7165 ranges_table_in_use = in_use + 1;
7166
7167 return in_use * 2 * DWARF2_ADDR_SIZE;
7168 }
7169
7170 static void
7171 output_ranges ()
7172 {
7173 unsigned i;
7174 static const char *const start_fmt = "Offset 0x%x";
7175 const char *fmt = start_fmt;
7176
7177 for (i = 0; i < ranges_table_in_use; i++)
7178 {
7179 int block_num = ranges_table[i].block_num;
7180
7181 if (block_num)
7182 {
7183 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7184 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7185
7186 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7187 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7188
7189 /* If all code is in the text section, then the compilation
7190 unit base address defaults to DW_AT_low_pc, which is the
7191 base of the text section. */
7192 if (separate_line_info_table_in_use == 0)
7193 {
7194 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7195 text_section_label,
7196 fmt, i * 2 * DWARF2_ADDR_SIZE);
7197 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7198 text_section_label, NULL);
7199 }
7200
7201 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7202 compilation unit base address to zero, which allows us to
7203 use absolute addresses, and not worry about whether the
7204 target supports cross-section arithmetic. */
7205 else
7206 {
7207 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7208 fmt, i * 2 * DWARF2_ADDR_SIZE);
7209 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7210 }
7211
7212 fmt = NULL;
7213 }
7214 else
7215 {
7216 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7217 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7218 fmt = start_fmt;
7219 }
7220 }
7221 }
7222
7223 /* Data structure containing information about input files. */
7224 struct file_info
7225 {
7226 char *path; /* Complete file name. */
7227 char *fname; /* File name part. */
7228 int length; /* Length of entire string. */
7229 int file_idx; /* Index in input file table. */
7230 int dir_idx; /* Index in directory table. */
7231 };
7232
7233 /* Data structure containing information about directories with source
7234 files. */
7235 struct dir_info
7236 {
7237 char *path; /* Path including directory name. */
7238 int length; /* Path length. */
7239 int prefix; /* Index of directory entry which is a prefix. */
7240 int count; /* Number of files in this directory. */
7241 int dir_idx; /* Index of directory used as base. */
7242 int used; /* Used in the end? */
7243 };
7244
7245 /* Callback function for file_info comparison. We sort by looking at
7246 the directories in the path. */
7247
7248 static int
7249 file_info_cmp (p1, p2)
7250 const void *p1;
7251 const void *p2;
7252 {
7253 const struct file_info *s1 = p1;
7254 const struct file_info *s2 = p2;
7255 unsigned char *cp1;
7256 unsigned char *cp2;
7257
7258 /* Take care of file names without directories. We need to make sure that
7259 we return consistent values to qsort since some will get confused if
7260 we return the same value when identical operands are passed in opposite
7261 orders. So if neither has a directory, return 0 and otherwise return
7262 1 or -1 depending on which one has the directory. */
7263 if ((s1->path == s1->fname || s2->path == s2->fname))
7264 return (s2->path == s2->fname) - (s1->path == s1->fname);
7265
7266 cp1 = (unsigned char *) s1->path;
7267 cp2 = (unsigned char *) s2->path;
7268
7269 while (1)
7270 {
7271 ++cp1;
7272 ++cp2;
7273 /* Reached the end of the first path? If so, handle like above. */
7274 if ((cp1 == (unsigned char *) s1->fname)
7275 || (cp2 == (unsigned char *) s2->fname))
7276 return ((cp2 == (unsigned char *) s2->fname)
7277 - (cp1 == (unsigned char *) s1->fname));
7278
7279 /* Character of current path component the same? */
7280 else if (*cp1 != *cp2)
7281 return *cp1 - *cp2;
7282 }
7283 }
7284
7285 /* Output the directory table and the file name table. We try to minimize
7286 the total amount of memory needed. A heuristic is used to avoid large
7287 slowdowns with many input files. */
7288
7289 static void
7290 output_file_names ()
7291 {
7292 struct file_info *files;
7293 struct dir_info *dirs;
7294 int *saved;
7295 int *savehere;
7296 int *backmap;
7297 size_t ndirs;
7298 int idx_offset;
7299 size_t i;
7300 int idx;
7301
7302 /* Handle the case where file_table is empty. */
7303 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7304 {
7305 dw2_asm_output_data (1, 0, "End directory table");
7306 dw2_asm_output_data (1, 0, "End file name table");
7307 return;
7308 }
7309
7310 /* Allocate the various arrays we need. */
7311 files = (struct file_info *) alloca (VARRAY_ACTIVE_SIZE (file_table)
7312 * sizeof (struct file_info));
7313 dirs = (struct dir_info *) alloca (VARRAY_ACTIVE_SIZE (file_table)
7314 * sizeof (struct dir_info));
7315
7316 /* Sort the file names. */
7317 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7318 {
7319 char *f;
7320
7321 /* Skip all leading "./". */
7322 f = VARRAY_CHAR_PTR (file_table, i);
7323 while (f[0] == '.' && f[1] == '/')
7324 f += 2;
7325
7326 /* Create a new array entry. */
7327 files[i].path = f;
7328 files[i].length = strlen (f);
7329 files[i].file_idx = i;
7330
7331 /* Search for the file name part. */
7332 f = strrchr (f, '/');
7333 files[i].fname = f == NULL ? files[i].path : f + 1;
7334 }
7335
7336 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7337 sizeof (files[0]), file_info_cmp);
7338
7339 /* Find all the different directories used. */
7340 dirs[0].path = files[1].path;
7341 dirs[0].length = files[1].fname - files[1].path;
7342 dirs[0].prefix = -1;
7343 dirs[0].count = 1;
7344 dirs[0].dir_idx = 0;
7345 dirs[0].used = 0;
7346 files[1].dir_idx = 0;
7347 ndirs = 1;
7348
7349 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7350 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7351 && memcmp (dirs[ndirs - 1].path, files[i].path,
7352 dirs[ndirs - 1].length) == 0)
7353 {
7354 /* Same directory as last entry. */
7355 files[i].dir_idx = ndirs - 1;
7356 ++dirs[ndirs - 1].count;
7357 }
7358 else
7359 {
7360 size_t j;
7361
7362 /* This is a new directory. */
7363 dirs[ndirs].path = files[i].path;
7364 dirs[ndirs].length = files[i].fname - files[i].path;
7365 dirs[ndirs].count = 1;
7366 dirs[ndirs].dir_idx = ndirs;
7367 dirs[ndirs].used = 0;
7368 files[i].dir_idx = ndirs;
7369
7370 /* Search for a prefix. */
7371 dirs[ndirs].prefix = -1;
7372 for (j = 0; j < ndirs; j++)
7373 if (dirs[j].length < dirs[ndirs].length
7374 && dirs[j].length > 1
7375 && (dirs[ndirs].prefix == -1
7376 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7377 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7378 dirs[ndirs].prefix = j;
7379
7380 ++ndirs;
7381 }
7382
7383 /* Now to the actual work. We have to find a subset of the directories which
7384 allow expressing the file name using references to the directory table
7385 with the least amount of characters. We do not do an exhaustive search
7386 where we would have to check out every combination of every single
7387 possible prefix. Instead we use a heuristic which provides nearly optimal
7388 results in most cases and never is much off. */
7389 saved = (int *) alloca (ndirs * sizeof (int));
7390 savehere = (int *) alloca (ndirs * sizeof (int));
7391
7392 memset (saved, '\0', ndirs * sizeof (saved[0]));
7393 for (i = 0; i < ndirs; i++)
7394 {
7395 size_t j;
7396 int total;
7397
7398 /* We can always save some space for the current directory. But this
7399 does not mean it will be enough to justify adding the directory. */
7400 savehere[i] = dirs[i].length;
7401 total = (savehere[i] - saved[i]) * dirs[i].count;
7402
7403 for (j = i + 1; j < ndirs; j++)
7404 {
7405 savehere[j] = 0;
7406 if (saved[j] < dirs[i].length)
7407 {
7408 /* Determine whether the dirs[i] path is a prefix of the
7409 dirs[j] path. */
7410 int k;
7411
7412 k = dirs[j].prefix;
7413 while (k != -1 && k != (int) i)
7414 k = dirs[k].prefix;
7415
7416 if (k == (int) i)
7417 {
7418 /* Yes it is. We can possibly safe some memory but
7419 writing the filenames in dirs[j] relative to
7420 dirs[i]. */
7421 savehere[j] = dirs[i].length;
7422 total += (savehere[j] - saved[j]) * dirs[j].count;
7423 }
7424 }
7425 }
7426
7427 /* Check whether we can safe enough to justify adding the dirs[i]
7428 directory. */
7429 if (total > dirs[i].length + 1)
7430 {
7431 /* It's worthwhile adding. */
7432 for (j = i; j < ndirs; j++)
7433 if (savehere[j] > 0)
7434 {
7435 /* Remember how much we saved for this directory so far. */
7436 saved[j] = savehere[j];
7437
7438 /* Remember the prefix directory. */
7439 dirs[j].dir_idx = i;
7440 }
7441 }
7442 }
7443
7444 /* We have to emit them in the order they appear in the file_table array
7445 since the index is used in the debug info generation. To do this
7446 efficiently we generate a back-mapping of the indices first. */
7447 backmap = (int *) alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7448 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7449 {
7450 backmap[files[i].file_idx] = i;
7451
7452 /* Mark this directory as used. */
7453 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7454 }
7455
7456 /* That was it. We are ready to emit the information. First emit the
7457 directory name table. We have to make sure the first actually emitted
7458 directory name has index one; zero is reserved for the current working
7459 directory. Make sure we do not confuse these indices with the one for the
7460 constructed table (even though most of the time they are identical). */
7461 idx = 1;
7462 idx_offset = dirs[0].length > 0 ? 1 : 0;
7463 for (i = 1 - idx_offset; i < ndirs; i++)
7464 if (dirs[i].used != 0)
7465 {
7466 dirs[i].used = idx++;
7467 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7468 "Directory Entry: 0x%x", dirs[i].used);
7469 }
7470
7471 dw2_asm_output_data (1, 0, "End directory table");
7472
7473 /* Correct the index for the current working directory entry if it
7474 exists. */
7475 if (idx_offset == 0)
7476 dirs[0].used = 0;
7477
7478 /* Now write all the file names. */
7479 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7480 {
7481 int file_idx = backmap[i];
7482 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7483
7484 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7485 "File Entry: 0x%x", i);
7486
7487 /* Include directory index. */
7488 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7489
7490 /* Modification time. */
7491 dw2_asm_output_data_uleb128 (0, NULL);
7492
7493 /* File length in bytes. */
7494 dw2_asm_output_data_uleb128 (0, NULL);
7495 }
7496
7497 dw2_asm_output_data (1, 0, "End file name table");
7498 }
7499
7500
7501 /* Output the source line number correspondence information. This
7502 information goes into the .debug_line section. */
7503
7504 static void
7505 output_line_info ()
7506 {
7507 char l1[20], l2[20], p1[20], p2[20];
7508 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7509 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7510 unsigned opc;
7511 unsigned n_op_args;
7512 unsigned long lt_index;
7513 unsigned long current_line;
7514 long line_offset;
7515 long line_delta;
7516 unsigned long current_file;
7517 unsigned long function;
7518
7519 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7520 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7521 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7522 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7523
7524 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7525 "Length of Source Line Info");
7526 ASM_OUTPUT_LABEL (asm_out_file, l1);
7527
7528 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7529 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7530 ASM_OUTPUT_LABEL (asm_out_file, p1);
7531
7532 /* Define the architecture-dependent minimum instruction length (in
7533 bytes). In this implementation of DWARF, this field is used for
7534 information purposes only. Since GCC generates assembly language,
7535 we have no a priori knowledge of how many instruction bytes are
7536 generated for each source line, and therefore can use only the
7537 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7538 commands. Accordingly, we fix this as `1', which is "correct
7539 enough" for all architectures, and don't let the target override. */
7540 dw2_asm_output_data (1, 1,
7541 "Minimum Instruction Length");
7542
7543 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7544 "Default is_stmt_start flag");
7545 dw2_asm_output_data (1, DWARF_LINE_BASE,
7546 "Line Base Value (Special Opcodes)");
7547 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7548 "Line Range Value (Special Opcodes)");
7549 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7550 "Special Opcode Base");
7551
7552 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7553 {
7554 switch (opc)
7555 {
7556 case DW_LNS_advance_pc:
7557 case DW_LNS_advance_line:
7558 case DW_LNS_set_file:
7559 case DW_LNS_set_column:
7560 case DW_LNS_fixed_advance_pc:
7561 n_op_args = 1;
7562 break;
7563 default:
7564 n_op_args = 0;
7565 break;
7566 }
7567
7568 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7569 opc, n_op_args);
7570 }
7571
7572 /* Write out the information about the files we use. */
7573 output_file_names ();
7574 ASM_OUTPUT_LABEL (asm_out_file, p2);
7575
7576 /* We used to set the address register to the first location in the text
7577 section here, but that didn't accomplish anything since we already
7578 have a line note for the opening brace of the first function. */
7579
7580 /* Generate the line number to PC correspondence table, encoded as
7581 a series of state machine operations. */
7582 current_file = 1;
7583 current_line = 1;
7584 strcpy (prev_line_label, text_section_label);
7585 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7586 {
7587 dw_line_info_ref line_info = &line_info_table[lt_index];
7588
7589 #if 0
7590 /* Disable this optimization for now; GDB wants to see two line notes
7591 at the beginning of a function so it can find the end of the
7592 prologue. */
7593
7594 /* Don't emit anything for redundant notes. Just updating the
7595 address doesn't accomplish anything, because we already assume
7596 that anything after the last address is this line. */
7597 if (line_info->dw_line_num == current_line
7598 && line_info->dw_file_num == current_file)
7599 continue;
7600 #endif
7601
7602 /* Emit debug info for the address of the current line.
7603
7604 Unfortunately, we have little choice here currently, and must always
7605 use the most general form. GCC does not know the address delta
7606 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7607 attributes which will give an upper bound on the address range. We
7608 could perhaps use length attributes to determine when it is safe to
7609 use DW_LNS_fixed_advance_pc. */
7610
7611 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7612 if (0)
7613 {
7614 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7615 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7616 "DW_LNS_fixed_advance_pc");
7617 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7618 }
7619 else
7620 {
7621 /* This can handle any delta. This takes
7622 4+DWARF2_ADDR_SIZE bytes. */
7623 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7624 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7625 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7626 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7627 }
7628
7629 strcpy (prev_line_label, line_label);
7630
7631 /* Emit debug info for the source file of the current line, if
7632 different from the previous line. */
7633 if (line_info->dw_file_num != current_file)
7634 {
7635 current_file = line_info->dw_file_num;
7636 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7637 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7638 VARRAY_CHAR_PTR (file_table,
7639 current_file));
7640 }
7641
7642 /* Emit debug info for the current line number, choosing the encoding
7643 that uses the least amount of space. */
7644 if (line_info->dw_line_num != current_line)
7645 {
7646 line_offset = line_info->dw_line_num - current_line;
7647 line_delta = line_offset - DWARF_LINE_BASE;
7648 current_line = line_info->dw_line_num;
7649 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7650 /* This can handle deltas from -10 to 234, using the current
7651 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7652 takes 1 byte. */
7653 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7654 "line %lu", current_line);
7655 else
7656 {
7657 /* This can handle any delta. This takes at least 4 bytes,
7658 depending on the value being encoded. */
7659 dw2_asm_output_data (1, DW_LNS_advance_line,
7660 "advance to line %lu", current_line);
7661 dw2_asm_output_data_sleb128 (line_offset, NULL);
7662 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7663 }
7664 }
7665 else
7666 /* We still need to start a new row, so output a copy insn. */
7667 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7668 }
7669
7670 /* Emit debug info for the address of the end of the function. */
7671 if (0)
7672 {
7673 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7674 "DW_LNS_fixed_advance_pc");
7675 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7676 }
7677 else
7678 {
7679 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7680 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7681 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7682 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7683 }
7684
7685 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7686 dw2_asm_output_data_uleb128 (1, NULL);
7687 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7688
7689 function = 0;
7690 current_file = 1;
7691 current_line = 1;
7692 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7693 {
7694 dw_separate_line_info_ref line_info
7695 = &separate_line_info_table[lt_index];
7696
7697 #if 0
7698 /* Don't emit anything for redundant notes. */
7699 if (line_info->dw_line_num == current_line
7700 && line_info->dw_file_num == current_file
7701 && line_info->function == function)
7702 goto cont;
7703 #endif
7704
7705 /* Emit debug info for the address of the current line. If this is
7706 a new function, or the first line of a function, then we need
7707 to handle it differently. */
7708 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7709 lt_index);
7710 if (function != line_info->function)
7711 {
7712 function = line_info->function;
7713
7714 /* Set the address register to the first line in the function */
7715 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7716 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7717 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7718 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7719 }
7720 else
7721 {
7722 /* ??? See the DW_LNS_advance_pc comment above. */
7723 if (0)
7724 {
7725 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7726 "DW_LNS_fixed_advance_pc");
7727 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7728 }
7729 else
7730 {
7731 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7732 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7733 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7734 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7735 }
7736 }
7737
7738 strcpy (prev_line_label, line_label);
7739
7740 /* Emit debug info for the source file of the current line, if
7741 different from the previous line. */
7742 if (line_info->dw_file_num != current_file)
7743 {
7744 current_file = line_info->dw_file_num;
7745 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7746 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7747 VARRAY_CHAR_PTR (file_table,
7748 current_file));
7749 }
7750
7751 /* Emit debug info for the current line number, choosing the encoding
7752 that uses the least amount of space. */
7753 if (line_info->dw_line_num != current_line)
7754 {
7755 line_offset = line_info->dw_line_num - current_line;
7756 line_delta = line_offset - DWARF_LINE_BASE;
7757 current_line = line_info->dw_line_num;
7758 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7759 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7760 "line %lu", current_line);
7761 else
7762 {
7763 dw2_asm_output_data (1, DW_LNS_advance_line,
7764 "advance to line %lu", current_line);
7765 dw2_asm_output_data_sleb128 (line_offset, NULL);
7766 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7767 }
7768 }
7769 else
7770 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7771
7772 #if 0
7773 cont:
7774 #endif
7775
7776 lt_index++;
7777
7778 /* If we're done with a function, end its sequence. */
7779 if (lt_index == separate_line_info_table_in_use
7780 || separate_line_info_table[lt_index].function != function)
7781 {
7782 current_file = 1;
7783 current_line = 1;
7784
7785 /* Emit debug info for the address of the end of the function. */
7786 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7787 if (0)
7788 {
7789 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7790 "DW_LNS_fixed_advance_pc");
7791 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7792 }
7793 else
7794 {
7795 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7796 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7797 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7798 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7799 }
7800
7801 /* Output the marker for the end of this sequence. */
7802 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7803 dw2_asm_output_data_uleb128 (1, NULL);
7804 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7805 }
7806 }
7807
7808 /* Output the marker for the end of the line number info. */
7809 ASM_OUTPUT_LABEL (asm_out_file, l2);
7810 }
7811 \f
7812 /* Given a pointer to a tree node for some base type, return a pointer to
7813 a DIE that describes the given type.
7814
7815 This routine must only be called for GCC type nodes that correspond to
7816 Dwarf base (fundamental) types. */
7817
7818 static dw_die_ref
7819 base_type_die (type)
7820 tree type;
7821 {
7822 dw_die_ref base_type_result;
7823 const char *type_name;
7824 enum dwarf_type encoding;
7825 tree name = TYPE_NAME (type);
7826
7827 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7828 return 0;
7829
7830 if (name)
7831 {
7832 if (TREE_CODE (name) == TYPE_DECL)
7833 name = DECL_NAME (name);
7834
7835 type_name = IDENTIFIER_POINTER (name);
7836 }
7837 else
7838 type_name = "__unknown__";
7839
7840 switch (TREE_CODE (type))
7841 {
7842 case INTEGER_TYPE:
7843 /* Carefully distinguish the C character types, without messing
7844 up if the language is not C. Note that we check only for the names
7845 that contain spaces; other names might occur by coincidence in other
7846 languages. */
7847 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7848 && (type == char_type_node
7849 || ! strcmp (type_name, "signed char")
7850 || ! strcmp (type_name, "unsigned char"))))
7851 {
7852 if (TREE_UNSIGNED (type))
7853 encoding = DW_ATE_unsigned;
7854 else
7855 encoding = DW_ATE_signed;
7856 break;
7857 }
7858 /* else fall through. */
7859
7860 case CHAR_TYPE:
7861 /* GNU Pascal/Ada CHAR type. Not used in C. */
7862 if (TREE_UNSIGNED (type))
7863 encoding = DW_ATE_unsigned_char;
7864 else
7865 encoding = DW_ATE_signed_char;
7866 break;
7867
7868 case REAL_TYPE:
7869 encoding = DW_ATE_float;
7870 break;
7871
7872 /* Dwarf2 doesn't know anything about complex ints, so use
7873 a user defined type for it. */
7874 case COMPLEX_TYPE:
7875 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7876 encoding = DW_ATE_complex_float;
7877 else
7878 encoding = DW_ATE_lo_user;
7879 break;
7880
7881 case BOOLEAN_TYPE:
7882 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7883 encoding = DW_ATE_boolean;
7884 break;
7885
7886 default:
7887 /* No other TREE_CODEs are Dwarf fundamental types. */
7888 abort ();
7889 }
7890
7891 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7892 if (demangle_name_func)
7893 type_name = (*demangle_name_func) (type_name);
7894
7895 add_AT_string (base_type_result, DW_AT_name, type_name);
7896 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7897 int_size_in_bytes (type));
7898 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7899
7900 return base_type_result;
7901 }
7902
7903 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7904 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7905 a given type is generally the same as the given type, except that if the
7906 given type is a pointer or reference type, then the root type of the given
7907 type is the root type of the "basis" type for the pointer or reference
7908 type. (This definition of the "root" type is recursive.) Also, the root
7909 type of a `const' qualified type or a `volatile' qualified type is the
7910 root type of the given type without the qualifiers. */
7911
7912 static tree
7913 root_type (type)
7914 tree type;
7915 {
7916 if (TREE_CODE (type) == ERROR_MARK)
7917 return error_mark_node;
7918
7919 switch (TREE_CODE (type))
7920 {
7921 case ERROR_MARK:
7922 return error_mark_node;
7923
7924 case POINTER_TYPE:
7925 case REFERENCE_TYPE:
7926 return type_main_variant (root_type (TREE_TYPE (type)));
7927
7928 default:
7929 return type_main_variant (type);
7930 }
7931 }
7932
7933 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7934 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7935
7936 static inline int
7937 is_base_type (type)
7938 tree type;
7939 {
7940 switch (TREE_CODE (type))
7941 {
7942 case ERROR_MARK:
7943 case VOID_TYPE:
7944 case INTEGER_TYPE:
7945 case REAL_TYPE:
7946 case COMPLEX_TYPE:
7947 case BOOLEAN_TYPE:
7948 case CHAR_TYPE:
7949 return 1;
7950
7951 case SET_TYPE:
7952 case ARRAY_TYPE:
7953 case RECORD_TYPE:
7954 case UNION_TYPE:
7955 case QUAL_UNION_TYPE:
7956 case ENUMERAL_TYPE:
7957 case FUNCTION_TYPE:
7958 case METHOD_TYPE:
7959 case POINTER_TYPE:
7960 case REFERENCE_TYPE:
7961 case FILE_TYPE:
7962 case OFFSET_TYPE:
7963 case LANG_TYPE:
7964 case VECTOR_TYPE:
7965 return 0;
7966
7967 default:
7968 abort ();
7969 }
7970
7971 return 0;
7972 }
7973
7974 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
7975 node, return the size in bits for the type if it is a constant, or else
7976 return the alignment for the type if the type's size is not constant, or
7977 else return BITS_PER_WORD if the type actually turns out to be an
7978 ERROR_MARK node. */
7979
7980 static inline unsigned HOST_WIDE_INT
7981 simple_type_size_in_bits (type)
7982 tree type;
7983 {
7984
7985 if (TREE_CODE (type) == ERROR_MARK)
7986 return BITS_PER_WORD;
7987 else if (TYPE_SIZE (type) == NULL_TREE)
7988 return 0;
7989 else if (host_integerp (TYPE_SIZE (type), 1))
7990 return tree_low_cst (TYPE_SIZE (type), 1);
7991 else
7992 return TYPE_ALIGN (type);
7993 }
7994
7995 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
7996 entry that chains various modifiers in front of the given type. */
7997
7998 static dw_die_ref
7999 modified_type_die (type, is_const_type, is_volatile_type, context_die)
8000 tree type;
8001 int is_const_type;
8002 int is_volatile_type;
8003 dw_die_ref context_die;
8004 {
8005 enum tree_code code = TREE_CODE (type);
8006 dw_die_ref mod_type_die = NULL;
8007 dw_die_ref sub_die = NULL;
8008 tree item_type = NULL;
8009
8010 if (code != ERROR_MARK)
8011 {
8012 tree qualified_type;
8013
8014 /* See if we already have the appropriately qualified variant of
8015 this type. */
8016 qualified_type
8017 = get_qualified_type (type,
8018 ((is_const_type ? TYPE_QUAL_CONST : 0)
8019 | (is_volatile_type
8020 ? TYPE_QUAL_VOLATILE : 0)));
8021
8022 /* If we do, then we can just use its DIE, if it exists. */
8023 if (qualified_type)
8024 {
8025 mod_type_die = lookup_type_die (qualified_type);
8026 if (mod_type_die)
8027 return mod_type_die;
8028 }
8029
8030 /* Handle C typedef types. */
8031 if (qualified_type && TYPE_NAME (qualified_type)
8032 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8033 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8034 {
8035 tree type_name = TYPE_NAME (qualified_type);
8036 tree dtype = TREE_TYPE (type_name);
8037
8038 if (qualified_type == dtype)
8039 {
8040 /* For a named type, use the typedef. */
8041 gen_type_die (qualified_type, context_die);
8042 mod_type_die = lookup_type_die (qualified_type);
8043 }
8044 else if (is_const_type < TYPE_READONLY (dtype)
8045 || is_volatile_type < TYPE_VOLATILE (dtype))
8046 /* cv-unqualified version of named type. Just use the unnamed
8047 type to which it refers. */
8048 mod_type_die
8049 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8050 is_const_type, is_volatile_type,
8051 context_die);
8052
8053 /* Else cv-qualified version of named type; fall through. */
8054 }
8055
8056 if (mod_type_die)
8057 /* OK. */
8058 ;
8059 else if (is_const_type)
8060 {
8061 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8062 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8063 }
8064 else if (is_volatile_type)
8065 {
8066 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8067 sub_die = modified_type_die (type, 0, 0, context_die);
8068 }
8069 else if (code == POINTER_TYPE)
8070 {
8071 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8072 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8073 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8074 #if 0
8075 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8076 #endif
8077 item_type = TREE_TYPE (type);
8078 }
8079 else if (code == REFERENCE_TYPE)
8080 {
8081 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8082 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8083 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8084 #if 0
8085 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8086 #endif
8087 item_type = TREE_TYPE (type);
8088 }
8089 else if (is_base_type (type))
8090 mod_type_die = base_type_die (type);
8091 else
8092 {
8093 gen_type_die (type, context_die);
8094
8095 /* We have to get the type_main_variant here (and pass that to the
8096 `lookup_type_die' routine) because the ..._TYPE node we have
8097 might simply be a *copy* of some original type node (where the
8098 copy was created to help us keep track of typedef names) and
8099 that copy might have a different TYPE_UID from the original
8100 ..._TYPE node. */
8101 if (TREE_CODE (type) != VECTOR_TYPE)
8102 mod_type_die = lookup_type_die (type_main_variant (type));
8103 else
8104 /* Vectors have the debugging information in the type,
8105 not the main variant. */
8106 mod_type_die = lookup_type_die (type);
8107 if (mod_type_die == NULL)
8108 abort ();
8109 }
8110
8111 /* We want to equate the qualified type to the die below. */
8112 type = qualified_type;
8113 }
8114
8115 if (type)
8116 equate_type_number_to_die (type, mod_type_die);
8117 if (item_type)
8118 /* We must do this after the equate_type_number_to_die call, in case
8119 this is a recursive type. This ensures that the modified_type_die
8120 recursion will terminate even if the type is recursive. Recursive
8121 types are possible in Ada. */
8122 sub_die = modified_type_die (item_type,
8123 TYPE_READONLY (item_type),
8124 TYPE_VOLATILE (item_type),
8125 context_die);
8126
8127 if (sub_die != NULL)
8128 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8129
8130 return mod_type_die;
8131 }
8132
8133 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8134 an enumerated type. */
8135
8136 static inline int
8137 type_is_enum (type)
8138 tree type;
8139 {
8140 return TREE_CODE (type) == ENUMERAL_TYPE;
8141 }
8142
8143 /* Return the register number described by a given RTL node. */
8144
8145 static unsigned int
8146 reg_number (rtl)
8147 rtx rtl;
8148 {
8149 unsigned regno = REGNO (rtl);
8150
8151 if (regno >= FIRST_PSEUDO_REGISTER)
8152 abort ();
8153
8154 return DBX_REGISTER_NUMBER (regno);
8155 }
8156
8157 /* Return a location descriptor that designates a machine register or
8158 zero if there is no such. */
8159
8160 static dw_loc_descr_ref
8161 reg_loc_descriptor (rtl)
8162 rtx rtl;
8163 {
8164 dw_loc_descr_ref loc_result = NULL;
8165 unsigned reg;
8166
8167 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8168 return 0;
8169
8170 reg = reg_number (rtl);
8171 if (reg <= 31)
8172 loc_result = new_loc_descr (DW_OP_reg0 + reg, 0, 0);
8173 else
8174 loc_result = new_loc_descr (DW_OP_regx, reg, 0);
8175
8176 return loc_result;
8177 }
8178
8179 /* Return a location descriptor that designates a constant. */
8180
8181 static dw_loc_descr_ref
8182 int_loc_descriptor (i)
8183 HOST_WIDE_INT i;
8184 {
8185 enum dwarf_location_atom op;
8186
8187 /* Pick the smallest representation of a constant, rather than just
8188 defaulting to the LEB encoding. */
8189 if (i >= 0)
8190 {
8191 if (i <= 31)
8192 op = DW_OP_lit0 + i;
8193 else if (i <= 0xff)
8194 op = DW_OP_const1u;
8195 else if (i <= 0xffff)
8196 op = DW_OP_const2u;
8197 else if (HOST_BITS_PER_WIDE_INT == 32
8198 || i <= 0xffffffff)
8199 op = DW_OP_const4u;
8200 else
8201 op = DW_OP_constu;
8202 }
8203 else
8204 {
8205 if (i >= -0x80)
8206 op = DW_OP_const1s;
8207 else if (i >= -0x8000)
8208 op = DW_OP_const2s;
8209 else if (HOST_BITS_PER_WIDE_INT == 32
8210 || i >= -0x80000000)
8211 op = DW_OP_const4s;
8212 else
8213 op = DW_OP_consts;
8214 }
8215
8216 return new_loc_descr (op, i, 0);
8217 }
8218
8219 /* Return a location descriptor that designates a base+offset location. */
8220
8221 static dw_loc_descr_ref
8222 based_loc_descr (reg, offset)
8223 unsigned reg;
8224 long int offset;
8225 {
8226 dw_loc_descr_ref loc_result;
8227 /* For the "frame base", we use the frame pointer or stack pointer
8228 registers, since the RTL for local variables is relative to one of
8229 them. */
8230 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8231 ? HARD_FRAME_POINTER_REGNUM
8232 : STACK_POINTER_REGNUM);
8233
8234 if (reg == fp_reg)
8235 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8236 else if (reg <= 31)
8237 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8238 else
8239 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8240
8241 return loc_result;
8242 }
8243
8244 /* Return true if this RTL expression describes a base+offset calculation. */
8245
8246 static inline int
8247 is_based_loc (rtl)
8248 rtx rtl;
8249 {
8250 return (GET_CODE (rtl) == PLUS
8251 && ((GET_CODE (XEXP (rtl, 0)) == REG
8252 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8253 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8254 }
8255
8256 /* The following routine converts the RTL for a variable or parameter
8257 (resident in memory) into an equivalent Dwarf representation of a
8258 mechanism for getting the address of that same variable onto the top of a
8259 hypothetical "address evaluation" stack.
8260
8261 When creating memory location descriptors, we are effectively transforming
8262 the RTL for a memory-resident object into its Dwarf postfix expression
8263 equivalent. This routine recursively descends an RTL tree, turning
8264 it into Dwarf postfix code as it goes.
8265
8266 MODE is the mode of the memory reference, needed to handle some
8267 autoincrement addressing modes.
8268
8269 Return 0 if we can't represent the location. */
8270
8271 static dw_loc_descr_ref
8272 mem_loc_descriptor (rtl, mode)
8273 rtx rtl;
8274 enum machine_mode mode;
8275 {
8276 dw_loc_descr_ref mem_loc_result = NULL;
8277
8278 /* Note that for a dynamically sized array, the location we will generate a
8279 description of here will be the lowest numbered location which is
8280 actually within the array. That's *not* necessarily the same as the
8281 zeroth element of the array. */
8282
8283 rtl = (*targetm.delegitimize_address) (rtl);
8284
8285 switch (GET_CODE (rtl))
8286 {
8287 case POST_INC:
8288 case POST_DEC:
8289 case POST_MODIFY:
8290 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8291 just fall into the SUBREG code. */
8292
8293 /* ... fall through ... */
8294
8295 case SUBREG:
8296 /* The case of a subreg may arise when we have a local (register)
8297 variable or a formal (register) parameter which doesn't quite fill
8298 up an entire register. For now, just assume that it is
8299 legitimate to make the Dwarf info refer to the whole register which
8300 contains the given subreg. */
8301 rtl = SUBREG_REG (rtl);
8302
8303 /* ... fall through ... */
8304
8305 case REG:
8306 /* Whenever a register number forms a part of the description of the
8307 method for calculating the (dynamic) address of a memory resident
8308 object, DWARF rules require the register number be referred to as
8309 a "base register". This distinction is not based in any way upon
8310 what category of register the hardware believes the given register
8311 belongs to. This is strictly DWARF terminology we're dealing with
8312 here. Note that in cases where the location of a memory-resident
8313 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8314 OP_CONST (0)) the actual DWARF location descriptor that we generate
8315 may just be OP_BASEREG (basereg). This may look deceptively like
8316 the object in question was allocated to a register (rather than in
8317 memory) so DWARF consumers need to be aware of the subtle
8318 distinction between OP_REG and OP_BASEREG. */
8319 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8320 mem_loc_result = based_loc_descr (reg_number (rtl), 0);
8321 break;
8322
8323 case MEM:
8324 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8325 if (mem_loc_result != 0)
8326 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8327 break;
8328
8329 case LABEL_REF:
8330 /* Some ports can transform a symbol ref into a label ref, because
8331 the symbol ref is too far away and has to be dumped into a constant
8332 pool. */
8333 case CONST:
8334 case SYMBOL_REF:
8335 /* Alternatively, the symbol in the constant pool might be referenced
8336 by a different symbol. */
8337 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8338 {
8339 bool marked;
8340 rtx tmp = get_pool_constant_mark (rtl, &marked);
8341
8342 if (GET_CODE (tmp) == SYMBOL_REF)
8343 {
8344 rtl = tmp;
8345 if (CONSTANT_POOL_ADDRESS_P (tmp))
8346 get_pool_constant_mark (tmp, &marked);
8347 else
8348 marked = true;
8349 }
8350
8351 /* If all references to this pool constant were optimized away,
8352 it was not output and thus we can't represent it.
8353 FIXME: might try to use DW_OP_const_value here, though
8354 DW_OP_piece complicates it. */
8355 if (!marked)
8356 return 0;
8357 }
8358
8359 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8360 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8361 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8362 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8363 break;
8364
8365 case PRE_MODIFY:
8366 /* Extract the PLUS expression nested inside and fall into
8367 PLUS code below. */
8368 rtl = XEXP (rtl, 1);
8369 goto plus;
8370
8371 case PRE_INC:
8372 case PRE_DEC:
8373 /* Turn these into a PLUS expression and fall into the PLUS code
8374 below. */
8375 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8376 GEN_INT (GET_CODE (rtl) == PRE_INC
8377 ? GET_MODE_UNIT_SIZE (mode)
8378 : -GET_MODE_UNIT_SIZE (mode)));
8379
8380 /* ... fall through ... */
8381
8382 case PLUS:
8383 plus:
8384 if (is_based_loc (rtl))
8385 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
8386 INTVAL (XEXP (rtl, 1)));
8387 else
8388 {
8389 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8390 if (mem_loc_result == 0)
8391 break;
8392
8393 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8394 && INTVAL (XEXP (rtl, 1)) >= 0)
8395 add_loc_descr (&mem_loc_result,
8396 new_loc_descr (DW_OP_plus_uconst,
8397 INTVAL (XEXP (rtl, 1)), 0));
8398 else
8399 {
8400 add_loc_descr (&mem_loc_result,
8401 mem_loc_descriptor (XEXP (rtl, 1), mode));
8402 add_loc_descr (&mem_loc_result,
8403 new_loc_descr (DW_OP_plus, 0, 0));
8404 }
8405 }
8406 break;
8407
8408 case MULT:
8409 {
8410 /* If a pseudo-reg is optimized away, it is possible for it to
8411 be replaced with a MEM containing a multiply. */
8412 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8413 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8414
8415 if (op0 == 0 || op1 == 0)
8416 break;
8417
8418 mem_loc_result = op0;
8419 add_loc_descr (&mem_loc_result, op1);
8420 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
8421 break;
8422 }
8423
8424 case CONST_INT:
8425 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8426 break;
8427
8428 case ADDRESSOF:
8429 /* If this is a MEM, return its address. Otherwise, we can't
8430 represent this. */
8431 if (GET_CODE (XEXP (rtl, 0)) == MEM)
8432 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode);
8433 else
8434 return 0;
8435
8436 default:
8437 abort ();
8438 }
8439
8440 return mem_loc_result;
8441 }
8442
8443 /* Return a descriptor that describes the concatenation of two locations.
8444 This is typically a complex variable. */
8445
8446 static dw_loc_descr_ref
8447 concat_loc_descriptor (x0, x1)
8448 rtx x0, x1;
8449 {
8450 dw_loc_descr_ref cc_loc_result = NULL;
8451 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8452 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8453
8454 if (x0_ref == 0 || x1_ref == 0)
8455 return 0;
8456
8457 cc_loc_result = x0_ref;
8458 add_loc_descr (&cc_loc_result,
8459 new_loc_descr (DW_OP_piece,
8460 GET_MODE_SIZE (GET_MODE (x0)), 0));
8461
8462 add_loc_descr (&cc_loc_result, x1_ref);
8463 add_loc_descr (&cc_loc_result,
8464 new_loc_descr (DW_OP_piece,
8465 GET_MODE_SIZE (GET_MODE (x1)), 0));
8466
8467 return cc_loc_result;
8468 }
8469
8470 /* Output a proper Dwarf location descriptor for a variable or parameter
8471 which is either allocated in a register or in a memory location. For a
8472 register, we just generate an OP_REG and the register number. For a
8473 memory location we provide a Dwarf postfix expression describing how to
8474 generate the (dynamic) address of the object onto the address stack.
8475
8476 If we don't know how to describe it, return 0. */
8477
8478 static dw_loc_descr_ref
8479 loc_descriptor (rtl)
8480 rtx rtl;
8481 {
8482 dw_loc_descr_ref loc_result = NULL;
8483
8484 switch (GET_CODE (rtl))
8485 {
8486 case SUBREG:
8487 /* The case of a subreg may arise when we have a local (register)
8488 variable or a formal (register) parameter which doesn't quite fill
8489 up an entire register. For now, just assume that it is
8490 legitimate to make the Dwarf info refer to the whole register which
8491 contains the given subreg. */
8492 rtl = SUBREG_REG (rtl);
8493
8494 /* ... fall through ... */
8495
8496 case REG:
8497 loc_result = reg_loc_descriptor (rtl);
8498 break;
8499
8500 case MEM:
8501 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8502 break;
8503
8504 case CONCAT:
8505 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8506 break;
8507
8508 default:
8509 abort ();
8510 }
8511
8512 return loc_result;
8513 }
8514
8515 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8516 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8517 looking for an address. Otherwise, we return a value. If we can't make a
8518 descriptor, return 0. */
8519
8520 static dw_loc_descr_ref
8521 loc_descriptor_from_tree (loc, addressp)
8522 tree loc;
8523 int addressp;
8524 {
8525 dw_loc_descr_ref ret, ret1;
8526 int indirect_p = 0;
8527 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8528 enum dwarf_location_atom op;
8529
8530 /* ??? Most of the time we do not take proper care for sign/zero
8531 extending the values properly. Hopefully this won't be a real
8532 problem... */
8533
8534 switch (TREE_CODE (loc))
8535 {
8536 case ERROR_MARK:
8537 return 0;
8538
8539 case WITH_RECORD_EXPR:
8540 case PLACEHOLDER_EXPR:
8541 /* This case involves extracting fields from an object to determine the
8542 position of other fields. We don't try to encode this here. The
8543 only user of this is Ada, which encodes the needed information using
8544 the names of types. */
8545 return 0;
8546
8547 case CALL_EXPR:
8548 return 0;
8549
8550 case ADDR_EXPR:
8551 /* We can support this only if we can look through conversions and
8552 find an INDIRECT_EXPR. */
8553 for (loc = TREE_OPERAND (loc, 0);
8554 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8555 || TREE_CODE (loc) == NON_LVALUE_EXPR
8556 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8557 || TREE_CODE (loc) == SAVE_EXPR;
8558 loc = TREE_OPERAND (loc, 0))
8559 ;
8560
8561 return (TREE_CODE (loc) == INDIRECT_REF
8562 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8563 : 0);
8564
8565 case VAR_DECL:
8566 if (DECL_THREAD_LOCAL (loc))
8567 {
8568 rtx rtl;
8569
8570 #ifndef ASM_OUTPUT_DWARF_DTPREL
8571 /* If this is not defined, we have no way to emit the data. */
8572 return 0;
8573 #endif
8574
8575 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8576 look up addresses of objects in the current module. */
8577 if (DECL_EXTERNAL (loc))
8578 return 0;
8579
8580 rtl = rtl_for_decl_location (loc);
8581 if (rtl == NULL_RTX)
8582 return 0;
8583
8584 if (GET_CODE (rtl) != MEM)
8585 return 0;
8586 rtl = XEXP (rtl, 0);
8587 if (! CONSTANT_P (rtl))
8588 return 0;
8589
8590 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8591 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8592 ret->dw_loc_oprnd1.v.val_addr = rtl;
8593
8594 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8595 add_loc_descr (&ret, ret1);
8596
8597 indirect_p = 1;
8598 break;
8599 }
8600 /* FALLTHRU */
8601
8602 case PARM_DECL:
8603 {
8604 rtx rtl = rtl_for_decl_location (loc);
8605
8606 if (rtl == NULL_RTX)
8607 return 0;
8608 else if (CONSTANT_P (rtl))
8609 {
8610 ret = new_loc_descr (DW_OP_addr, 0, 0);
8611 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8612 ret->dw_loc_oprnd1.v.val_addr = rtl;
8613 indirect_p = 1;
8614 }
8615 else
8616 {
8617 enum machine_mode mode = GET_MODE (rtl);
8618
8619 if (GET_CODE (rtl) == MEM)
8620 {
8621 indirect_p = 1;
8622 rtl = XEXP (rtl, 0);
8623 }
8624
8625 ret = mem_loc_descriptor (rtl, mode);
8626 }
8627 }
8628 break;
8629
8630 case INDIRECT_REF:
8631 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8632 indirect_p = 1;
8633 break;
8634
8635 case COMPOUND_EXPR:
8636 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8637
8638 case NOP_EXPR:
8639 case CONVERT_EXPR:
8640 case NON_LVALUE_EXPR:
8641 case VIEW_CONVERT_EXPR:
8642 case SAVE_EXPR:
8643 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8644
8645 case COMPONENT_REF:
8646 case BIT_FIELD_REF:
8647 case ARRAY_REF:
8648 case ARRAY_RANGE_REF:
8649 {
8650 tree obj, offset;
8651 HOST_WIDE_INT bitsize, bitpos, bytepos;
8652 enum machine_mode mode;
8653 int volatilep;
8654
8655 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8656 &unsignedp, &volatilep);
8657
8658 if (obj == loc)
8659 return 0;
8660
8661 ret = loc_descriptor_from_tree (obj, 1);
8662 if (ret == 0
8663 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8664 return 0;
8665
8666 if (offset != NULL_TREE)
8667 {
8668 /* Variable offset. */
8669 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8670 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8671 }
8672
8673 if (!addressp)
8674 indirect_p = 1;
8675
8676 bytepos = bitpos / BITS_PER_UNIT;
8677 if (bytepos > 0)
8678 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8679 else if (bytepos < 0)
8680 {
8681 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8682 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8683 }
8684 break;
8685 }
8686
8687 case INTEGER_CST:
8688 if (host_integerp (loc, 0))
8689 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8690 else
8691 return 0;
8692 break;
8693
8694 case TRUTH_AND_EXPR:
8695 case TRUTH_ANDIF_EXPR:
8696 case BIT_AND_EXPR:
8697 op = DW_OP_and;
8698 goto do_binop;
8699
8700 case TRUTH_XOR_EXPR:
8701 case BIT_XOR_EXPR:
8702 op = DW_OP_xor;
8703 goto do_binop;
8704
8705 case TRUTH_OR_EXPR:
8706 case TRUTH_ORIF_EXPR:
8707 case BIT_IOR_EXPR:
8708 op = DW_OP_or;
8709 goto do_binop;
8710
8711 case TRUNC_DIV_EXPR:
8712 op = DW_OP_div;
8713 goto do_binop;
8714
8715 case MINUS_EXPR:
8716 op = DW_OP_minus;
8717 goto do_binop;
8718
8719 case TRUNC_MOD_EXPR:
8720 op = DW_OP_mod;
8721 goto do_binop;
8722
8723 case MULT_EXPR:
8724 op = DW_OP_mul;
8725 goto do_binop;
8726
8727 case LSHIFT_EXPR:
8728 op = DW_OP_shl;
8729 goto do_binop;
8730
8731 case RSHIFT_EXPR:
8732 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8733 goto do_binop;
8734
8735 case PLUS_EXPR:
8736 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8737 && host_integerp (TREE_OPERAND (loc, 1), 0))
8738 {
8739 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8740 if (ret == 0)
8741 return 0;
8742
8743 add_loc_descr (&ret,
8744 new_loc_descr (DW_OP_plus_uconst,
8745 tree_low_cst (TREE_OPERAND (loc, 1),
8746 0),
8747 0));
8748 break;
8749 }
8750
8751 op = DW_OP_plus;
8752 goto do_binop;
8753
8754 case LE_EXPR:
8755 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8756 return 0;
8757
8758 op = DW_OP_le;
8759 goto do_binop;
8760
8761 case GE_EXPR:
8762 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8763 return 0;
8764
8765 op = DW_OP_ge;
8766 goto do_binop;
8767
8768 case LT_EXPR:
8769 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8770 return 0;
8771
8772 op = DW_OP_lt;
8773 goto do_binop;
8774
8775 case GT_EXPR:
8776 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8777 return 0;
8778
8779 op = DW_OP_gt;
8780 goto do_binop;
8781
8782 case EQ_EXPR:
8783 op = DW_OP_eq;
8784 goto do_binop;
8785
8786 case NE_EXPR:
8787 op = DW_OP_ne;
8788 goto do_binop;
8789
8790 do_binop:
8791 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8792 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8793 if (ret == 0 || ret1 == 0)
8794 return 0;
8795
8796 add_loc_descr (&ret, ret1);
8797 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8798 break;
8799
8800 case TRUTH_NOT_EXPR:
8801 case BIT_NOT_EXPR:
8802 op = DW_OP_not;
8803 goto do_unop;
8804
8805 case ABS_EXPR:
8806 op = DW_OP_abs;
8807 goto do_unop;
8808
8809 case NEGATE_EXPR:
8810 op = DW_OP_neg;
8811 goto do_unop;
8812
8813 do_unop:
8814 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8815 if (ret == 0)
8816 return 0;
8817
8818 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8819 break;
8820
8821 case MAX_EXPR:
8822 loc = build (COND_EXPR, TREE_TYPE (loc),
8823 build (LT_EXPR, integer_type_node,
8824 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8825 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
8826
8827 /* ... fall through ... */
8828
8829 case COND_EXPR:
8830 {
8831 dw_loc_descr_ref lhs
8832 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8833 dw_loc_descr_ref rhs
8834 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
8835 dw_loc_descr_ref bra_node, jump_node, tmp;
8836
8837 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8838 if (ret == 0 || lhs == 0 || rhs == 0)
8839 return 0;
8840
8841 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
8842 add_loc_descr (&ret, bra_node);
8843
8844 add_loc_descr (&ret, rhs);
8845 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
8846 add_loc_descr (&ret, jump_node);
8847
8848 add_loc_descr (&ret, lhs);
8849 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8850 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
8851
8852 /* ??? Need a node to point the skip at. Use a nop. */
8853 tmp = new_loc_descr (DW_OP_nop, 0, 0);
8854 add_loc_descr (&ret, tmp);
8855 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8856 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
8857 }
8858 break;
8859
8860 default:
8861 abort ();
8862 }
8863
8864 /* Show if we can't fill the request for an address. */
8865 if (addressp && indirect_p == 0)
8866 return 0;
8867
8868 /* If we've got an address and don't want one, dereference. */
8869 if (!addressp && indirect_p > 0)
8870 {
8871 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
8872
8873 if (size > DWARF2_ADDR_SIZE || size == -1)
8874 return 0;
8875 else if (size == DWARF2_ADDR_SIZE)
8876 op = DW_OP_deref;
8877 else
8878 op = DW_OP_deref_size;
8879
8880 add_loc_descr (&ret, new_loc_descr (op, size, 0));
8881 }
8882
8883 return ret;
8884 }
8885
8886 /* Given a value, round it up to the lowest multiple of `boundary'
8887 which is not less than the value itself. */
8888
8889 static inline HOST_WIDE_INT
8890 ceiling (value, boundary)
8891 HOST_WIDE_INT value;
8892 unsigned int boundary;
8893 {
8894 return (((value + boundary - 1) / boundary) * boundary);
8895 }
8896
8897 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
8898 pointer to the declared type for the relevant field variable, or return
8899 `integer_type_node' if the given node turns out to be an
8900 ERROR_MARK node. */
8901
8902 static inline tree
8903 field_type (decl)
8904 tree decl;
8905 {
8906 tree type;
8907
8908 if (TREE_CODE (decl) == ERROR_MARK)
8909 return integer_type_node;
8910
8911 type = DECL_BIT_FIELD_TYPE (decl);
8912 if (type == NULL_TREE)
8913 type = TREE_TYPE (decl);
8914
8915 return type;
8916 }
8917
8918 /* Given a pointer to a tree node, return the alignment in bits for
8919 it, or else return BITS_PER_WORD if the node actually turns out to
8920 be an ERROR_MARK node. */
8921
8922 static inline unsigned
8923 simple_type_align_in_bits (type)
8924 tree type;
8925 {
8926 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
8927 }
8928
8929 static inline unsigned
8930 simple_decl_align_in_bits (decl)
8931 tree decl;
8932 {
8933 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
8934 }
8935
8936 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
8937 lowest addressed byte of the "containing object" for the given FIELD_DECL,
8938 or return 0 if we are unable to determine what that offset is, either
8939 because the argument turns out to be a pointer to an ERROR_MARK node, or
8940 because the offset is actually variable. (We can't handle the latter case
8941 just yet). */
8942
8943 static HOST_WIDE_INT
8944 field_byte_offset (decl)
8945 tree decl;
8946 {
8947 unsigned int type_align_in_bits;
8948 unsigned int decl_align_in_bits;
8949 unsigned HOST_WIDE_INT type_size_in_bits;
8950 HOST_WIDE_INT object_offset_in_bits;
8951 tree type;
8952 tree field_size_tree;
8953 HOST_WIDE_INT bitpos_int;
8954 HOST_WIDE_INT deepest_bitpos;
8955 unsigned HOST_WIDE_INT field_size_in_bits;
8956
8957 if (TREE_CODE (decl) == ERROR_MARK)
8958 return 0;
8959 else if (TREE_CODE (decl) != FIELD_DECL)
8960 abort ();
8961
8962 type = field_type (decl);
8963 field_size_tree = DECL_SIZE (decl);
8964
8965 /* The size could be unspecified if there was an error, or for
8966 a flexible array member. */
8967 if (! field_size_tree)
8968 field_size_tree = bitsize_zero_node;
8969
8970 /* We cannot yet cope with fields whose positions are variable, so
8971 for now, when we see such things, we simply return 0. Someday, we may
8972 be able to handle such cases, but it will be damn difficult. */
8973 if (! host_integerp (bit_position (decl), 0))
8974 return 0;
8975
8976 bitpos_int = int_bit_position (decl);
8977
8978 /* If we don't know the size of the field, pretend it's a full word. */
8979 if (host_integerp (field_size_tree, 1))
8980 field_size_in_bits = tree_low_cst (field_size_tree, 1);
8981 else
8982 field_size_in_bits = BITS_PER_WORD;
8983
8984 type_size_in_bits = simple_type_size_in_bits (type);
8985 type_align_in_bits = simple_type_align_in_bits (type);
8986 decl_align_in_bits = simple_decl_align_in_bits (decl);
8987
8988 /* The GCC front-end doesn't make any attempt to keep track of the starting
8989 bit offset (relative to the start of the containing structure type) of the
8990 hypothetical "containing object" for a bit-field. Thus, when computing
8991 the byte offset value for the start of the "containing object" of a
8992 bit-field, we must deduce this information on our own. This can be rather
8993 tricky to do in some cases. For example, handling the following structure
8994 type definition when compiling for an i386/i486 target (which only aligns
8995 long long's to 32-bit boundaries) can be very tricky:
8996
8997 struct S { int field1; long long field2:31; };
8998
8999 Fortunately, there is a simple rule-of-thumb which can be used in such
9000 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9001 structure shown above. It decides to do this based upon one simple rule
9002 for bit-field allocation. GCC allocates each "containing object" for each
9003 bit-field at the first (i.e. lowest addressed) legitimate alignment
9004 boundary (based upon the required minimum alignment for the declared type
9005 of the field) which it can possibly use, subject to the condition that
9006 there is still enough available space remaining in the containing object
9007 (when allocated at the selected point) to fully accommodate all of the
9008 bits of the bit-field itself.
9009
9010 This simple rule makes it obvious why GCC allocates 8 bytes for each
9011 object of the structure type shown above. When looking for a place to
9012 allocate the "containing object" for `field2', the compiler simply tries
9013 to allocate a 64-bit "containing object" at each successive 32-bit
9014 boundary (starting at zero) until it finds a place to allocate that 64-
9015 bit field such that at least 31 contiguous (and previously unallocated)
9016 bits remain within that selected 64 bit field. (As it turns out, for the
9017 example above, the compiler finds it is OK to allocate the "containing
9018 object" 64-bit field at bit-offset zero within the structure type.)
9019
9020 Here we attempt to work backwards from the limited set of facts we're
9021 given, and we try to deduce from those facts, where GCC must have believed
9022 that the containing object started (within the structure type). The value
9023 we deduce is then used (by the callers of this routine) to generate
9024 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9025 and, in the case of DW_AT_location, regular fields as well). */
9026
9027 /* Figure out the bit-distance from the start of the structure to the
9028 "deepest" bit of the bit-field. */
9029 deepest_bitpos = bitpos_int + field_size_in_bits;
9030
9031 /* This is the tricky part. Use some fancy footwork to deduce where the
9032 lowest addressed bit of the containing object must be. */
9033 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9034
9035 /* Round up to type_align by default. This works best for bitfields. */
9036 object_offset_in_bits += type_align_in_bits - 1;
9037 object_offset_in_bits /= type_align_in_bits;
9038 object_offset_in_bits *= type_align_in_bits;
9039
9040 if (object_offset_in_bits > bitpos_int)
9041 {
9042 /* Sigh, the decl must be packed. */
9043 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9044
9045 /* Round up to decl_align instead. */
9046 object_offset_in_bits += decl_align_in_bits - 1;
9047 object_offset_in_bits /= decl_align_in_bits;
9048 object_offset_in_bits *= decl_align_in_bits;
9049 }
9050
9051 return object_offset_in_bits / BITS_PER_UNIT;
9052 }
9053 \f
9054 /* The following routines define various Dwarf attributes and any data
9055 associated with them. */
9056
9057 /* Add a location description attribute value to a DIE.
9058
9059 This emits location attributes suitable for whole variables and
9060 whole parameters. Note that the location attributes for struct fields are
9061 generated by the routine `data_member_location_attribute' below. */
9062
9063 static inline void
9064 add_AT_location_description (die, attr_kind, descr)
9065 dw_die_ref die;
9066 enum dwarf_attribute attr_kind;
9067 dw_loc_descr_ref descr;
9068 {
9069 if (descr != 0)
9070 add_AT_loc (die, attr_kind, descr);
9071 }
9072
9073 /* Attach the specialized form of location attribute used for data members of
9074 struct and union types. In the special case of a FIELD_DECL node which
9075 represents a bit-field, the "offset" part of this special location
9076 descriptor must indicate the distance in bytes from the lowest-addressed
9077 byte of the containing struct or union type to the lowest-addressed byte of
9078 the "containing object" for the bit-field. (See the `field_byte_offset'
9079 function above).
9080
9081 For any given bit-field, the "containing object" is a hypothetical object
9082 (of some integral or enum type) within which the given bit-field lives. The
9083 type of this hypothetical "containing object" is always the same as the
9084 declared type of the individual bit-field itself (for GCC anyway... the
9085 DWARF spec doesn't actually mandate this). Note that it is the size (in
9086 bytes) of the hypothetical "containing object" which will be given in the
9087 DW_AT_byte_size attribute for this bit-field. (See the
9088 `byte_size_attribute' function below.) It is also used when calculating the
9089 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9090 function below.) */
9091
9092 static void
9093 add_data_member_location_attribute (die, decl)
9094 dw_die_ref die;
9095 tree decl;
9096 {
9097 long offset;
9098 dw_loc_descr_ref loc_descr = 0;
9099
9100 if (TREE_CODE (decl) == TREE_VEC)
9101 {
9102 /* We're working on the TAG_inheritance for a base class. */
9103 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
9104 {
9105 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9106 aren't at a fixed offset from all (sub)objects of the same
9107 type. We need to extract the appropriate offset from our
9108 vtable. The following dwarf expression means
9109
9110 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9111
9112 This is specific to the V3 ABI, of course. */
9113
9114 dw_loc_descr_ref tmp;
9115
9116 /* Make a copy of the object address. */
9117 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9118 add_loc_descr (&loc_descr, tmp);
9119
9120 /* Extract the vtable address. */
9121 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9122 add_loc_descr (&loc_descr, tmp);
9123
9124 /* Calculate the address of the offset. */
9125 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9126 if (offset >= 0)
9127 abort ();
9128
9129 tmp = int_loc_descriptor (-offset);
9130 add_loc_descr (&loc_descr, tmp);
9131 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9132 add_loc_descr (&loc_descr, tmp);
9133
9134 /* Extract the offset. */
9135 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9136 add_loc_descr (&loc_descr, tmp);
9137
9138 /* Add it to the object address. */
9139 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9140 add_loc_descr (&loc_descr, tmp);
9141 }
9142 else
9143 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9144 }
9145 else
9146 offset = field_byte_offset (decl);
9147
9148 if (! loc_descr)
9149 {
9150 enum dwarf_location_atom op;
9151
9152 /* The DWARF2 standard says that we should assume that the structure
9153 address is already on the stack, so we can specify a structure field
9154 address by using DW_OP_plus_uconst. */
9155
9156 #ifdef MIPS_DEBUGGING_INFO
9157 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9158 operator correctly. It works only if we leave the offset on the
9159 stack. */
9160 op = DW_OP_constu;
9161 #else
9162 op = DW_OP_plus_uconst;
9163 #endif
9164
9165 loc_descr = new_loc_descr (op, offset, 0);
9166 }
9167
9168 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9169 }
9170
9171 /* Attach an DW_AT_const_value attribute for a variable or a parameter which
9172 does not have a "location" either in memory or in a register. These
9173 things can arise in GNU C when a constant is passed as an actual parameter
9174 to an inlined function. They can also arise in C++ where declared
9175 constants do not necessarily get memory "homes". */
9176
9177 static void
9178 add_const_value_attribute (die, rtl)
9179 dw_die_ref die;
9180 rtx rtl;
9181 {
9182 switch (GET_CODE (rtl))
9183 {
9184 case CONST_INT:
9185 /* Note that a CONST_INT rtx could represent either an integer
9186 or a floating-point constant. A CONST_INT is used whenever
9187 the constant will fit into a single word. In all such
9188 cases, the original mode of the constant value is wiped
9189 out, and the CONST_INT rtx is assigned VOIDmode. */
9190 {
9191 HOST_WIDE_INT val = INTVAL (rtl);
9192
9193 /* ??? We really should be using HOST_WIDE_INT throughout. */
9194 if (val < 0 && (long) val == val)
9195 add_AT_int (die, DW_AT_const_value, (long) val);
9196 else if ((unsigned long) val == (unsigned HOST_WIDE_INT) val)
9197 add_AT_unsigned (die, DW_AT_const_value, (unsigned long) val);
9198 else
9199 {
9200 #if HOST_BITS_PER_LONG * 2 == HOST_BITS_PER_WIDE_INT
9201 add_AT_long_long (die, DW_AT_const_value,
9202 val >> HOST_BITS_PER_LONG, val);
9203 #else
9204 abort ();
9205 #endif
9206 }
9207 }
9208 break;
9209
9210 case CONST_DOUBLE:
9211 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9212 floating-point constant. A CONST_DOUBLE is used whenever the
9213 constant requires more than one word in order to be adequately
9214 represented. We output CONST_DOUBLEs as blocks. */
9215 {
9216 enum machine_mode mode = GET_MODE (rtl);
9217
9218 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9219 {
9220 unsigned length = GET_MODE_SIZE (mode) / 4;
9221 long *array = (long *) ggc_alloc (sizeof (long) * length);
9222 REAL_VALUE_TYPE rv;
9223
9224 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9225 switch (mode)
9226 {
9227 case SFmode:
9228 REAL_VALUE_TO_TARGET_SINGLE (rv, array[0]);
9229 break;
9230
9231 case DFmode:
9232 REAL_VALUE_TO_TARGET_DOUBLE (rv, array);
9233 break;
9234
9235 case XFmode:
9236 case TFmode:
9237 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, array);
9238 break;
9239
9240 default:
9241 abort ();
9242 }
9243
9244 add_AT_float (die, DW_AT_const_value, length, array);
9245 }
9246 else
9247 {
9248 /* ??? We really should be using HOST_WIDE_INT throughout. */
9249 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9250 abort ();
9251
9252 add_AT_long_long (die, DW_AT_const_value,
9253 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9254 }
9255 }
9256 break;
9257
9258 case CONST_STRING:
9259 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9260 break;
9261
9262 case SYMBOL_REF:
9263 case LABEL_REF:
9264 case CONST:
9265 add_AT_addr (die, DW_AT_const_value, rtl);
9266 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9267 break;
9268
9269 case PLUS:
9270 /* In cases where an inlined instance of an inline function is passed
9271 the address of an `auto' variable (which is local to the caller) we
9272 can get a situation where the DECL_RTL of the artificial local
9273 variable (for the inlining) which acts as a stand-in for the
9274 corresponding formal parameter (of the inline function) will look
9275 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9276 exactly a compile-time constant expression, but it isn't the address
9277 of the (artificial) local variable either. Rather, it represents the
9278 *value* which the artificial local variable always has during its
9279 lifetime. We currently have no way to represent such quasi-constant
9280 values in Dwarf, so for now we just punt and generate nothing. */
9281 break;
9282
9283 default:
9284 /* No other kinds of rtx should be possible here. */
9285 abort ();
9286 }
9287
9288 }
9289
9290 static rtx
9291 rtl_for_decl_location (decl)
9292 tree decl;
9293 {
9294 rtx rtl;
9295
9296 /* Here we have to decide where we are going to say the parameter "lives"
9297 (as far as the debugger is concerned). We only have a couple of
9298 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9299
9300 DECL_RTL normally indicates where the parameter lives during most of the
9301 activation of the function. If optimization is enabled however, this
9302 could be either NULL or else a pseudo-reg. Both of those cases indicate
9303 that the parameter doesn't really live anywhere (as far as the code
9304 generation parts of GCC are concerned) during most of the function's
9305 activation. That will happen (for example) if the parameter is never
9306 referenced within the function.
9307
9308 We could just generate a location descriptor here for all non-NULL
9309 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9310 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9311 where DECL_RTL is NULL or is a pseudo-reg.
9312
9313 Note however that we can only get away with using DECL_INCOMING_RTL as
9314 a backup substitute for DECL_RTL in certain limited cases. In cases
9315 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9316 we can be sure that the parameter was passed using the same type as it is
9317 declared to have within the function, and that its DECL_INCOMING_RTL
9318 points us to a place where a value of that type is passed.
9319
9320 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9321 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9322 because in these cases DECL_INCOMING_RTL points us to a value of some
9323 type which is *different* from the type of the parameter itself. Thus,
9324 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9325 such cases, the debugger would end up (for example) trying to fetch a
9326 `float' from a place which actually contains the first part of a
9327 `double'. That would lead to really incorrect and confusing
9328 output at debug-time.
9329
9330 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9331 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9332 are a couple of exceptions however. On little-endian machines we can
9333 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9334 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9335 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9336 when (on a little-endian machine) a non-prototyped function has a
9337 parameter declared to be of type `short' or `char'. In such cases,
9338 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9339 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9340 passed `int' value. If the debugger then uses that address to fetch
9341 a `short' or a `char' (on a little-endian machine) the result will be
9342 the correct data, so we allow for such exceptional cases below.
9343
9344 Note that our goal here is to describe the place where the given formal
9345 parameter lives during most of the function's activation (i.e. between the
9346 end of the prologue and the start of the epilogue). We'll do that as best
9347 as we can. Note however that if the given formal parameter is modified
9348 sometime during the execution of the function, then a stack backtrace (at
9349 debug-time) will show the function as having been called with the *new*
9350 value rather than the value which was originally passed in. This happens
9351 rarely enough that it is not a major problem, but it *is* a problem, and
9352 I'd like to fix it.
9353
9354 A future version of dwarf2out.c may generate two additional attributes for
9355 any given DW_TAG_formal_parameter DIE which will describe the "passed
9356 type" and the "passed location" for the given formal parameter in addition
9357 to the attributes we now generate to indicate the "declared type" and the
9358 "active location" for each parameter. This additional set of attributes
9359 could be used by debuggers for stack backtraces. Separately, note that
9360 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9361 This happens (for example) for inlined-instances of inline function formal
9362 parameters which are never referenced. This really shouldn't be
9363 happening. All PARM_DECL nodes should get valid non-NULL
9364 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9365 values for inlined instances of inline function parameters, so when we see
9366 such cases, we are just out-of-luck for the time being (until integrate.c
9367 gets fixed). */
9368
9369 /* Use DECL_RTL as the "location" unless we find something better. */
9370 rtl = DECL_RTL_IF_SET (decl);
9371
9372 /* When generating abstract instances, ignore everything except
9373 constants and symbols living in memory. */
9374 if (! reload_completed)
9375 {
9376 if (rtl
9377 && (CONSTANT_P (rtl)
9378 || (GET_CODE (rtl) == MEM
9379 && CONSTANT_P (XEXP (rtl, 0)))))
9380 {
9381 rtl = (*targetm.delegitimize_address) (rtl);
9382 return rtl;
9383 }
9384 rtl = NULL_RTX;
9385 }
9386 else if (TREE_CODE (decl) == PARM_DECL)
9387 {
9388 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9389 {
9390 tree declared_type = type_main_variant (TREE_TYPE (decl));
9391 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9392
9393 /* This decl represents a formal parameter which was optimized out.
9394 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9395 all cases where (rtl == NULL_RTX) just below. */
9396 if (declared_type == passed_type)
9397 rtl = DECL_INCOMING_RTL (decl);
9398 else if (! BYTES_BIG_ENDIAN
9399 && TREE_CODE (declared_type) == INTEGER_TYPE
9400 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9401 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9402 rtl = DECL_INCOMING_RTL (decl);
9403 }
9404
9405 /* If the parm was passed in registers, but lives on the stack, then
9406 make a big endian correction if the mode of the type of the
9407 parameter is not the same as the mode of the rtl. */
9408 /* ??? This is the same series of checks that are made in dbxout.c before
9409 we reach the big endian correction code there. It isn't clear if all
9410 of these checks are necessary here, but keeping them all is the safe
9411 thing to do. */
9412 else if (GET_CODE (rtl) == MEM
9413 && XEXP (rtl, 0) != const0_rtx
9414 && ! CONSTANT_P (XEXP (rtl, 0))
9415 /* Not passed in memory. */
9416 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
9417 /* Not passed by invisible reference. */
9418 && (GET_CODE (XEXP (rtl, 0)) != REG
9419 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9420 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9421 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9422 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9423 #endif
9424 )
9425 /* Big endian correction check. */
9426 && BYTES_BIG_ENDIAN
9427 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9428 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9429 < UNITS_PER_WORD))
9430 {
9431 int offset = (UNITS_PER_WORD
9432 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9433
9434 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9435 plus_constant (XEXP (rtl, 0), offset));
9436 }
9437 }
9438
9439 if (rtl != NULL_RTX)
9440 {
9441 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9442 #ifdef LEAF_REG_REMAP
9443 if (current_function_uses_only_leaf_regs)
9444 leaf_renumber_regs_insn (rtl);
9445 #endif
9446 }
9447
9448 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9449 and will have been substituted directly into all expressions that use it.
9450 C does not have such a concept, but C++ and other languages do. */
9451 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9452 {
9453 /* If a variable is initialized with a string constant without embedded
9454 zeros, build CONST_STRING. */
9455 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9456 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9457 {
9458 tree arrtype = TREE_TYPE (decl);
9459 tree enttype = TREE_TYPE (arrtype);
9460 tree domain = TYPE_DOMAIN (arrtype);
9461 tree init = DECL_INITIAL (decl);
9462 enum machine_mode mode = TYPE_MODE (enttype);
9463
9464 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9465 && domain
9466 && integer_zerop (TYPE_MIN_VALUE (domain))
9467 && compare_tree_int (TYPE_MAX_VALUE (domain),
9468 TREE_STRING_LENGTH (init) - 1) == 0
9469 && ((size_t) TREE_STRING_LENGTH (init)
9470 == strlen (TREE_STRING_POINTER (init)) + 1))
9471 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9472 }
9473 /* If the initializer is something that we know will expand into an
9474 immediate RTL constant, expand it now. Expanding anything else
9475 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9476 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9477 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9478 {
9479 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9480 EXPAND_INITIALIZER);
9481 /* If expand_expr returns a MEM, it wasn't immediate. */
9482 if (rtl && GET_CODE (rtl) == MEM)
9483 abort ();
9484 }
9485 }
9486
9487 if (rtl)
9488 rtl = (*targetm.delegitimize_address) (rtl);
9489
9490 /* If we don't look past the constant pool, we risk emitting a
9491 reference to a constant pool entry that isn't referenced from
9492 code, and thus is not emitted. */
9493 if (rtl)
9494 rtl = avoid_constant_pool_reference (rtl);
9495
9496 return rtl;
9497 }
9498
9499 /* Generate *either* an DW_AT_location attribute or else an DW_AT_const_value
9500 data attribute for a variable or a parameter. We generate the
9501 DW_AT_const_value attribute only in those cases where the given variable
9502 or parameter does not have a true "location" either in memory or in a
9503 register. This can happen (for example) when a constant is passed as an
9504 actual argument in a call to an inline function. (It's possible that
9505 these things can crop up in other ways also.) Note that one type of
9506 constant value which can be passed into an inlined function is a constant
9507 pointer. This can happen for example if an actual argument in an inlined
9508 function call evaluates to a compile-time constant address. */
9509
9510 static void
9511 add_location_or_const_value_attribute (die, decl)
9512 dw_die_ref die;
9513 tree decl;
9514 {
9515 rtx rtl;
9516 dw_loc_descr_ref descr;
9517
9518 if (TREE_CODE (decl) == ERROR_MARK)
9519 return;
9520 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
9521 abort ();
9522
9523 rtl = rtl_for_decl_location (decl);
9524 if (rtl == NULL_RTX)
9525 return;
9526
9527 switch (GET_CODE (rtl))
9528 {
9529 case ADDRESSOF:
9530 /* The address of a variable that was optimized away;
9531 don't emit anything. */
9532 break;
9533
9534 case CONST_INT:
9535 case CONST_DOUBLE:
9536 case CONST_STRING:
9537 case SYMBOL_REF:
9538 case LABEL_REF:
9539 case CONST:
9540 case PLUS:
9541 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9542 add_const_value_attribute (die, rtl);
9543 break;
9544
9545 case MEM:
9546 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
9547 {
9548 /* Need loc_descriptor_from_tree since that's where we know
9549 how to handle TLS variables. Want the object's address
9550 since the top-level DW_AT_location assumes such. See
9551 the confusion in loc_descriptor for reference. */
9552 descr = loc_descriptor_from_tree (decl, 1);
9553 }
9554 else
9555 {
9556 case REG:
9557 case SUBREG:
9558 case CONCAT:
9559 descr = loc_descriptor (rtl);
9560 }
9561 add_AT_location_description (die, DW_AT_location, descr);
9562 break;
9563
9564 default:
9565 abort ();
9566 }
9567 }
9568
9569 /* If we don't have a copy of this variable in memory for some reason (such
9570 as a C++ member constant that doesn't have an out-of-line definition),
9571 we should tell the debugger about the constant value. */
9572
9573 static void
9574 tree_add_const_value_attribute (var_die, decl)
9575 dw_die_ref var_die;
9576 tree decl;
9577 {
9578 tree init = DECL_INITIAL (decl);
9579 tree type = TREE_TYPE (decl);
9580
9581 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9582 && initializer_constant_valid_p (init, type) == null_pointer_node)
9583 /* OK */;
9584 else
9585 return;
9586
9587 switch (TREE_CODE (type))
9588 {
9589 case INTEGER_TYPE:
9590 if (host_integerp (init, 0))
9591 add_AT_unsigned (var_die, DW_AT_const_value,
9592 tree_low_cst (init, 0));
9593 else
9594 add_AT_long_long (var_die, DW_AT_const_value,
9595 TREE_INT_CST_HIGH (init),
9596 TREE_INT_CST_LOW (init));
9597 break;
9598
9599 default:;
9600 }
9601 }
9602
9603 /* Generate an DW_AT_name attribute given some string value to be included as
9604 the value of the attribute. */
9605
9606 static void
9607 add_name_attribute (die, name_string)
9608 dw_die_ref die;
9609 const char *name_string;
9610 {
9611 if (name_string != NULL && *name_string != 0)
9612 {
9613 if (demangle_name_func)
9614 name_string = (*demangle_name_func) (name_string);
9615
9616 add_AT_string (die, DW_AT_name, name_string);
9617 }
9618 }
9619
9620 /* Generate an DW_AT_comp_dir attribute for DIE. */
9621
9622 static void
9623 add_comp_dir_attribute (die)
9624 dw_die_ref die;
9625 {
9626 const char *wd = getpwd ();
9627 if (wd != NULL)
9628 add_AT_string (die, DW_AT_comp_dir, wd);
9629 }
9630
9631 /* Given a tree node describing an array bound (either lower or upper) output
9632 a representation for that bound. */
9633
9634 static void
9635 add_bound_info (subrange_die, bound_attr, bound)
9636 dw_die_ref subrange_die;
9637 enum dwarf_attribute bound_attr;
9638 tree bound;
9639 {
9640 switch (TREE_CODE (bound))
9641 {
9642 case ERROR_MARK:
9643 return;
9644
9645 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9646 case INTEGER_CST:
9647 if (! host_integerp (bound, 0)
9648 || (bound_attr == DW_AT_lower_bound
9649 && (((is_c_family () || is_java ()) && integer_zerop (bound))
9650 || (is_fortran () && integer_onep (bound)))))
9651 /* use the default */
9652 ;
9653 else
9654 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
9655 break;
9656
9657 case CONVERT_EXPR:
9658 case NOP_EXPR:
9659 case NON_LVALUE_EXPR:
9660 case VIEW_CONVERT_EXPR:
9661 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9662 break;
9663
9664 case SAVE_EXPR:
9665 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9666 access the upper bound values may be bogus. If they refer to a
9667 register, they may only describe how to get at these values at the
9668 points in the generated code right after they have just been
9669 computed. Worse yet, in the typical case, the upper bound values
9670 will not even *be* computed in the optimized code (though the
9671 number of elements will), so these SAVE_EXPRs are entirely
9672 bogus. In order to compensate for this fact, we check here to see
9673 if optimization is enabled, and if so, we don't add an attribute
9674 for the (unknown and unknowable) upper bound. This should not
9675 cause too much trouble for existing (stupid?) debuggers because
9676 they have to deal with empty upper bounds location descriptions
9677 anyway in order to be able to deal with incomplete array types.
9678 Of course an intelligent debugger (GDB?) should be able to
9679 comprehend that a missing upper bound specification in an array
9680 type used for a storage class `auto' local array variable
9681 indicates that the upper bound is both unknown (at compile- time)
9682 and unknowable (at run-time) due to optimization.
9683
9684 We assume that a MEM rtx is safe because gcc wouldn't put the
9685 value there unless it was going to be used repeatedly in the
9686 function, i.e. for cleanups. */
9687 if (SAVE_EXPR_RTL (bound)
9688 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
9689 {
9690 dw_die_ref ctx = lookup_decl_die (current_function_decl);
9691 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
9692 rtx loc = SAVE_EXPR_RTL (bound);
9693
9694 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9695 it references an outer function's frame. */
9696 if (GET_CODE (loc) == MEM)
9697 {
9698 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9699
9700 if (XEXP (loc, 0) != new_addr)
9701 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
9702 }
9703
9704 add_AT_flag (decl_die, DW_AT_artificial, 1);
9705 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9706 add_AT_location_description (decl_die, DW_AT_location,
9707 loc_descriptor (loc));
9708 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9709 }
9710
9711 /* Else leave out the attribute. */
9712 break;
9713
9714 case VAR_DECL:
9715 case PARM_DECL:
9716 {
9717 dw_die_ref decl_die = lookup_decl_die (bound);
9718
9719 /* ??? Can this happen, or should the variable have been bound
9720 first? Probably it can, since I imagine that we try to create
9721 the types of parameters in the order in which they exist in
9722 the list, and won't have created a forward reference to a
9723 later parameter. */
9724 if (decl_die != NULL)
9725 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9726 break;
9727 }
9728
9729 default:
9730 {
9731 /* Otherwise try to create a stack operation procedure to
9732 evaluate the value of the array bound. */
9733
9734 dw_die_ref ctx, decl_die;
9735 dw_loc_descr_ref loc;
9736
9737 loc = loc_descriptor_from_tree (bound, 0);
9738 if (loc == NULL)
9739 break;
9740
9741 if (current_function_decl == 0)
9742 ctx = comp_unit_die;
9743 else
9744 ctx = lookup_decl_die (current_function_decl);
9745
9746 /* If we weren't able to find a context, it's most likely the case
9747 that we are processing the return type of the function. So
9748 make a SAVE_EXPR to point to it and have the limbo DIE code
9749 find the proper die. The save_expr function doesn't always
9750 make a SAVE_EXPR, so do it ourselves. */
9751 if (ctx == 0)
9752 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9753 current_function_decl, NULL_TREE);
9754
9755 decl_die = new_die (DW_TAG_variable, ctx, bound);
9756 add_AT_flag (decl_die, DW_AT_artificial, 1);
9757 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9758 add_AT_loc (decl_die, DW_AT_location, loc);
9759
9760 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9761 break;
9762 }
9763 }
9764 }
9765
9766 /* Note that the block of subscript information for an array type also
9767 includes information about the element type of type given array type. */
9768
9769 static void
9770 add_subscript_info (type_die, type)
9771 dw_die_ref type_die;
9772 tree type;
9773 {
9774 #ifndef MIPS_DEBUGGING_INFO
9775 unsigned dimension_number;
9776 #endif
9777 tree lower, upper;
9778 dw_die_ref subrange_die;
9779
9780 /* The GNU compilers represent multidimensional array types as sequences of
9781 one dimensional array types whose element types are themselves array
9782 types. Here we squish that down, so that each multidimensional array
9783 type gets only one array_type DIE in the Dwarf debugging info. The draft
9784 Dwarf specification say that we are allowed to do this kind of
9785 compression in C (because there is no difference between an array or
9786 arrays and a multidimensional array in C) but for other source languages
9787 (e.g. Ada) we probably shouldn't do this. */
9788
9789 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9790 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9791 We work around this by disabling this feature. See also
9792 gen_array_type_die. */
9793 #ifndef MIPS_DEBUGGING_INFO
9794 for (dimension_number = 0;
9795 TREE_CODE (type) == ARRAY_TYPE;
9796 type = TREE_TYPE (type), dimension_number++)
9797 #endif
9798 {
9799 tree domain = TYPE_DOMAIN (type);
9800
9801 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
9802 and (in GNU C only) variable bounds. Handle all three forms
9803 here. */
9804 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
9805 if (domain)
9806 {
9807 /* We have an array type with specified bounds. */
9808 lower = TYPE_MIN_VALUE (domain);
9809 upper = TYPE_MAX_VALUE (domain);
9810
9811 /* define the index type. */
9812 if (TREE_TYPE (domain))
9813 {
9814 /* ??? This is probably an Ada unnamed subrange type. Ignore the
9815 TREE_TYPE field. We can't emit debug info for this
9816 because it is an unnamed integral type. */
9817 if (TREE_CODE (domain) == INTEGER_TYPE
9818 && TYPE_NAME (domain) == NULL_TREE
9819 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
9820 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
9821 ;
9822 else
9823 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
9824 type_die);
9825 }
9826
9827 /* ??? If upper is NULL, the array has unspecified length,
9828 but it does have a lower bound. This happens with Fortran
9829 dimension arr(N:*)
9830 Since the debugger is definitely going to need to know N
9831 to produce useful results, go ahead and output the lower
9832 bound solo, and hope the debugger can cope. */
9833
9834 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
9835 if (upper)
9836 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
9837 }
9838
9839 /* Otherwise we have an array type with an unspecified length. The
9840 DWARF-2 spec does not say how to handle this; let's just leave out the
9841 bounds. */
9842 }
9843 }
9844
9845 static void
9846 add_byte_size_attribute (die, tree_node)
9847 dw_die_ref die;
9848 tree tree_node;
9849 {
9850 unsigned size;
9851
9852 switch (TREE_CODE (tree_node))
9853 {
9854 case ERROR_MARK:
9855 size = 0;
9856 break;
9857 case ENUMERAL_TYPE:
9858 case RECORD_TYPE:
9859 case UNION_TYPE:
9860 case QUAL_UNION_TYPE:
9861 size = int_size_in_bytes (tree_node);
9862 break;
9863 case FIELD_DECL:
9864 /* For a data member of a struct or union, the DW_AT_byte_size is
9865 generally given as the number of bytes normally allocated for an
9866 object of the *declared* type of the member itself. This is true
9867 even for bit-fields. */
9868 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
9869 break;
9870 default:
9871 abort ();
9872 }
9873
9874 /* Note that `size' might be -1 when we get to this point. If it is, that
9875 indicates that the byte size of the entity in question is variable. We
9876 have no good way of expressing this fact in Dwarf at the present time,
9877 so just let the -1 pass on through. */
9878 add_AT_unsigned (die, DW_AT_byte_size, size);
9879 }
9880
9881 /* For a FIELD_DECL node which represents a bit-field, output an attribute
9882 which specifies the distance in bits from the highest order bit of the
9883 "containing object" for the bit-field to the highest order bit of the
9884 bit-field itself.
9885
9886 For any given bit-field, the "containing object" is a hypothetical object
9887 (of some integral or enum type) within which the given bit-field lives. The
9888 type of this hypothetical "containing object" is always the same as the
9889 declared type of the individual bit-field itself. The determination of the
9890 exact location of the "containing object" for a bit-field is rather
9891 complicated. It's handled by the `field_byte_offset' function (above).
9892
9893 Note that it is the size (in bytes) of the hypothetical "containing object"
9894 which will be given in the DW_AT_byte_size attribute for this bit-field.
9895 (See `byte_size_attribute' above). */
9896
9897 static inline void
9898 add_bit_offset_attribute (die, decl)
9899 dw_die_ref die;
9900 tree decl;
9901 {
9902 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
9903 tree type = DECL_BIT_FIELD_TYPE (decl);
9904 HOST_WIDE_INT bitpos_int;
9905 HOST_WIDE_INT highest_order_object_bit_offset;
9906 HOST_WIDE_INT highest_order_field_bit_offset;
9907 HOST_WIDE_INT unsigned bit_offset;
9908
9909 /* Must be a field and a bit field. */
9910 if (!type
9911 || TREE_CODE (decl) != FIELD_DECL)
9912 abort ();
9913
9914 /* We can't yet handle bit-fields whose offsets are variable, so if we
9915 encounter such things, just return without generating any attribute
9916 whatsoever. Likewise for variable or too large size. */
9917 if (! host_integerp (bit_position (decl), 0)
9918 || ! host_integerp (DECL_SIZE (decl), 1))
9919 return;
9920
9921 bitpos_int = int_bit_position (decl);
9922
9923 /* Note that the bit offset is always the distance (in bits) from the
9924 highest-order bit of the "containing object" to the highest-order bit of
9925 the bit-field itself. Since the "high-order end" of any object or field
9926 is different on big-endian and little-endian machines, the computation
9927 below must take account of these differences. */
9928 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
9929 highest_order_field_bit_offset = bitpos_int;
9930
9931 if (! BYTES_BIG_ENDIAN)
9932 {
9933 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
9934 highest_order_object_bit_offset += simple_type_size_in_bits (type);
9935 }
9936
9937 bit_offset
9938 = (! BYTES_BIG_ENDIAN
9939 ? highest_order_object_bit_offset - highest_order_field_bit_offset
9940 : highest_order_field_bit_offset - highest_order_object_bit_offset);
9941
9942 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
9943 }
9944
9945 /* For a FIELD_DECL node which represents a bit field, output an attribute
9946 which specifies the length in bits of the given field. */
9947
9948 static inline void
9949 add_bit_size_attribute (die, decl)
9950 dw_die_ref die;
9951 tree decl;
9952 {
9953 /* Must be a field and a bit field. */
9954 if (TREE_CODE (decl) != FIELD_DECL
9955 || ! DECL_BIT_FIELD_TYPE (decl))
9956 abort ();
9957
9958 if (host_integerp (DECL_SIZE (decl), 1))
9959 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
9960 }
9961
9962 /* If the compiled language is ANSI C, then add a 'prototyped'
9963 attribute, if arg types are given for the parameters of a function. */
9964
9965 static inline void
9966 add_prototyped_attribute (die, func_type)
9967 dw_die_ref die;
9968 tree func_type;
9969 {
9970 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
9971 && TYPE_ARG_TYPES (func_type) != NULL)
9972 add_AT_flag (die, DW_AT_prototyped, 1);
9973 }
9974
9975 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
9976 by looking in either the type declaration or object declaration
9977 equate table. */
9978
9979 static inline void
9980 add_abstract_origin_attribute (die, origin)
9981 dw_die_ref die;
9982 tree origin;
9983 {
9984 dw_die_ref origin_die = NULL;
9985
9986 if (TREE_CODE (origin) != FUNCTION_DECL)
9987 {
9988 /* We may have gotten separated from the block for the inlined
9989 function, if we're in an exception handler or some such; make
9990 sure that the abstract function has been written out.
9991
9992 Doing this for nested functions is wrong, however; functions are
9993 distinct units, and our context might not even be inline. */
9994 tree fn = origin;
9995
9996 if (TYPE_P (fn))
9997 fn = TYPE_STUB_DECL (fn);
9998
9999 fn = decl_function_context (fn);
10000 if (fn)
10001 dwarf2out_abstract_function (fn);
10002 }
10003
10004 if (DECL_P (origin))
10005 origin_die = lookup_decl_die (origin);
10006 else if (TYPE_P (origin))
10007 origin_die = lookup_type_die (origin);
10008
10009 if (origin_die == NULL)
10010 abort ();
10011
10012 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10013 }
10014
10015 /* We do not currently support the pure_virtual attribute. */
10016
10017 static inline void
10018 add_pure_or_virtual_attribute (die, func_decl)
10019 dw_die_ref die;
10020 tree func_decl;
10021 {
10022 if (DECL_VINDEX (func_decl))
10023 {
10024 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10025
10026 if (host_integerp (DECL_VINDEX (func_decl), 0))
10027 add_AT_loc (die, DW_AT_vtable_elem_location,
10028 new_loc_descr (DW_OP_constu,
10029 tree_low_cst (DECL_VINDEX (func_decl), 0),
10030 0));
10031
10032 /* GNU extension: Record what type this method came from originally. */
10033 if (debug_info_level > DINFO_LEVEL_TERSE)
10034 add_AT_die_ref (die, DW_AT_containing_type,
10035 lookup_type_die (DECL_CONTEXT (func_decl)));
10036 }
10037 }
10038 \f
10039 /* Add source coordinate attributes for the given decl. */
10040
10041 static void
10042 add_src_coords_attributes (die, decl)
10043 dw_die_ref die;
10044 tree decl;
10045 {
10046 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10047
10048 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10049 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10050 }
10051
10052 /* Add an DW_AT_name attribute and source coordinate attribute for the
10053 given decl, but only if it actually has a name. */
10054
10055 static void
10056 add_name_and_src_coords_attributes (die, decl)
10057 dw_die_ref die;
10058 tree decl;
10059 {
10060 tree decl_name;
10061
10062 decl_name = DECL_NAME (decl);
10063 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10064 {
10065 add_name_attribute (die, dwarf2_name (decl, 0));
10066 if (! DECL_ARTIFICIAL (decl))
10067 add_src_coords_attributes (die, decl);
10068
10069 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10070 && TREE_PUBLIC (decl)
10071 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10072 && !DECL_ABSTRACT (decl))
10073 add_AT_string (die, DW_AT_MIPS_linkage_name,
10074 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10075 }
10076
10077 #ifdef VMS_DEBUGGING_INFO
10078 /* Get the function's name, as described by its RTL. This may be different
10079 from the DECL_NAME name used in the source file. */
10080 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10081 {
10082 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10083 XEXP (DECL_RTL (decl), 0));
10084 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10085 }
10086 #endif
10087 }
10088
10089 /* Push a new declaration scope. */
10090
10091 static void
10092 push_decl_scope (scope)
10093 tree scope;
10094 {
10095 VARRAY_PUSH_TREE (decl_scope_table, scope);
10096 }
10097
10098 /* Pop a declaration scope. */
10099
10100 static inline void
10101 pop_decl_scope ()
10102 {
10103 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
10104 abort ();
10105
10106 VARRAY_POP (decl_scope_table);
10107 }
10108
10109 /* Return the DIE for the scope that immediately contains this type.
10110 Non-named types get global scope. Named types nested in other
10111 types get their containing scope if it's open, or global scope
10112 otherwise. All other types (i.e. function-local named types) get
10113 the current active scope. */
10114
10115 static dw_die_ref
10116 scope_die_for (t, context_die)
10117 tree t;
10118 dw_die_ref context_die;
10119 {
10120 dw_die_ref scope_die = NULL;
10121 tree containing_scope;
10122 int i;
10123
10124 /* Non-types always go in the current scope. */
10125 if (! TYPE_P (t))
10126 abort ();
10127
10128 containing_scope = TYPE_CONTEXT (t);
10129
10130 /* Ignore namespaces for the moment. */
10131 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10132 containing_scope = NULL_TREE;
10133
10134 /* Ignore function type "scopes" from the C frontend. They mean that
10135 a tagged type is local to a parmlist of a function declarator, but
10136 that isn't useful to DWARF. */
10137 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10138 containing_scope = NULL_TREE;
10139
10140 if (containing_scope == NULL_TREE)
10141 scope_die = comp_unit_die;
10142 else if (TYPE_P (containing_scope))
10143 {
10144 /* For types, we can just look up the appropriate DIE. But
10145 first we check to see if we're in the middle of emitting it
10146 so we know where the new DIE should go. */
10147 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10148 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10149 break;
10150
10151 if (i < 0)
10152 {
10153 if (debug_info_level > DINFO_LEVEL_TERSE
10154 && !TREE_ASM_WRITTEN (containing_scope))
10155 abort ();
10156
10157 /* If none of the current dies are suitable, we get file scope. */
10158 scope_die = comp_unit_die;
10159 }
10160 else
10161 scope_die = lookup_type_die (containing_scope);
10162 }
10163 else
10164 scope_die = context_die;
10165
10166 return scope_die;
10167 }
10168
10169 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10170
10171 static inline int
10172 local_scope_p (context_die)
10173 dw_die_ref context_die;
10174 {
10175 for (; context_die; context_die = context_die->die_parent)
10176 if (context_die->die_tag == DW_TAG_inlined_subroutine
10177 || context_die->die_tag == DW_TAG_subprogram)
10178 return 1;
10179
10180 return 0;
10181 }
10182
10183 /* Returns nonzero if CONTEXT_DIE is a class. */
10184
10185 static inline int
10186 class_scope_p (context_die)
10187 dw_die_ref context_die;
10188 {
10189 return (context_die
10190 && (context_die->die_tag == DW_TAG_structure_type
10191 || context_die->die_tag == DW_TAG_union_type));
10192 }
10193
10194 /* Many forms of DIEs require a "type description" attribute. This
10195 routine locates the proper "type descriptor" die for the type given
10196 by 'type', and adds an DW_AT_type attribute below the given die. */
10197
10198 static void
10199 add_type_attribute (object_die, type, decl_const, decl_volatile, context_die)
10200 dw_die_ref object_die;
10201 tree type;
10202 int decl_const;
10203 int decl_volatile;
10204 dw_die_ref context_die;
10205 {
10206 enum tree_code code = TREE_CODE (type);
10207 dw_die_ref type_die = NULL;
10208
10209 /* ??? If this type is an unnamed subrange type of an integral or
10210 floating-point type, use the inner type. This is because we have no
10211 support for unnamed types in base_type_die. This can happen if this is
10212 an Ada subrange type. Correct solution is emit a subrange type die. */
10213 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10214 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10215 type = TREE_TYPE (type), code = TREE_CODE (type);
10216
10217 if (code == ERROR_MARK
10218 /* Handle a special case. For functions whose return type is void, we
10219 generate *no* type attribute. (Note that no object may have type
10220 `void', so this only applies to function return types). */
10221 || code == VOID_TYPE)
10222 return;
10223
10224 type_die = modified_type_die (type,
10225 decl_const || TYPE_READONLY (type),
10226 decl_volatile || TYPE_VOLATILE (type),
10227 context_die);
10228
10229 if (type_die != NULL)
10230 add_AT_die_ref (object_die, DW_AT_type, type_die);
10231 }
10232
10233 /* Given a tree pointer to a struct, class, union, or enum type node, return
10234 a pointer to the (string) tag name for the given type, or zero if the type
10235 was declared without a tag. */
10236
10237 static const char *
10238 type_tag (type)
10239 tree type;
10240 {
10241 const char *name = 0;
10242
10243 if (TYPE_NAME (type) != 0)
10244 {
10245 tree t = 0;
10246
10247 /* Find the IDENTIFIER_NODE for the type name. */
10248 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10249 t = TYPE_NAME (type);
10250
10251 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10252 a TYPE_DECL node, regardless of whether or not a `typedef' was
10253 involved. */
10254 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10255 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10256 t = DECL_NAME (TYPE_NAME (type));
10257
10258 /* Now get the name as a string, or invent one. */
10259 if (t != 0)
10260 name = IDENTIFIER_POINTER (t);
10261 }
10262
10263 return (name == 0 || *name == '\0') ? 0 : name;
10264 }
10265
10266 /* Return the type associated with a data member, make a special check
10267 for bit field types. */
10268
10269 static inline tree
10270 member_declared_type (member)
10271 tree member;
10272 {
10273 return (DECL_BIT_FIELD_TYPE (member)
10274 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10275 }
10276
10277 /* Get the decl's label, as described by its RTL. This may be different
10278 from the DECL_NAME name used in the source file. */
10279
10280 #if 0
10281 static const char *
10282 decl_start_label (decl)
10283 tree decl;
10284 {
10285 rtx x;
10286 const char *fnname;
10287
10288 x = DECL_RTL (decl);
10289 if (GET_CODE (x) != MEM)
10290 abort ();
10291
10292 x = XEXP (x, 0);
10293 if (GET_CODE (x) != SYMBOL_REF)
10294 abort ();
10295
10296 fnname = XSTR (x, 0);
10297 return fnname;
10298 }
10299 #endif
10300 \f
10301 /* These routines generate the internal representation of the DIE's for
10302 the compilation unit. Debugging information is collected by walking
10303 the declaration trees passed in from dwarf2out_decl(). */
10304
10305 static void
10306 gen_array_type_die (type, context_die)
10307 tree type;
10308 dw_die_ref context_die;
10309 {
10310 dw_die_ref scope_die = scope_die_for (type, context_die);
10311 dw_die_ref array_die;
10312 tree element_type;
10313
10314 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10315 the inner array type comes before the outer array type. Thus we must
10316 call gen_type_die before we call new_die. See below also. */
10317 #ifdef MIPS_DEBUGGING_INFO
10318 gen_type_die (TREE_TYPE (type), context_die);
10319 #endif
10320
10321 array_die = new_die (DW_TAG_array_type, scope_die, type);
10322 add_name_attribute (array_die, type_tag (type));
10323 equate_type_number_to_die (type, array_die);
10324
10325 if (TREE_CODE (type) == VECTOR_TYPE)
10326 {
10327 /* The frontend feeds us a representation for the vector as a struct
10328 containing an array. Pull out the array type. */
10329 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10330 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10331 }
10332
10333 #if 0
10334 /* We default the array ordering. SDB will probably do
10335 the right things even if DW_AT_ordering is not present. It's not even
10336 an issue until we start to get into multidimensional arrays anyway. If
10337 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10338 then we'll have to put the DW_AT_ordering attribute back in. (But if
10339 and when we find out that we need to put these in, we will only do so
10340 for multidimensional arrays. */
10341 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10342 #endif
10343
10344 #ifdef MIPS_DEBUGGING_INFO
10345 /* The SGI compilers handle arrays of unknown bound by setting
10346 AT_declaration and not emitting any subrange DIEs. */
10347 if (! TYPE_DOMAIN (type))
10348 add_AT_unsigned (array_die, DW_AT_declaration, 1);
10349 else
10350 #endif
10351 add_subscript_info (array_die, type);
10352
10353 /* Add representation of the type of the elements of this array type. */
10354 element_type = TREE_TYPE (type);
10355
10356 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10357 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10358 We work around this by disabling this feature. See also
10359 add_subscript_info. */
10360 #ifndef MIPS_DEBUGGING_INFO
10361 while (TREE_CODE (element_type) == ARRAY_TYPE)
10362 element_type = TREE_TYPE (element_type);
10363
10364 gen_type_die (element_type, context_die);
10365 #endif
10366
10367 add_type_attribute (array_die, element_type, 0, 0, context_die);
10368 }
10369
10370 static void
10371 gen_set_type_die (type, context_die)
10372 tree type;
10373 dw_die_ref context_die;
10374 {
10375 dw_die_ref type_die
10376 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10377
10378 equate_type_number_to_die (type, type_die);
10379 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10380 }
10381
10382 #if 0
10383 static void
10384 gen_entry_point_die (decl, context_die)
10385 tree decl;
10386 dw_die_ref context_die;
10387 {
10388 tree origin = decl_ultimate_origin (decl);
10389 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10390
10391 if (origin != NULL)
10392 add_abstract_origin_attribute (decl_die, origin);
10393 else
10394 {
10395 add_name_and_src_coords_attributes (decl_die, decl);
10396 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10397 0, 0, context_die);
10398 }
10399
10400 if (DECL_ABSTRACT (decl))
10401 equate_decl_number_to_die (decl, decl_die);
10402 else
10403 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10404 }
10405 #endif
10406
10407 /* Walk through the list of incomplete types again, trying once more to
10408 emit full debugging info for them. */
10409
10410 static void
10411 retry_incomplete_types ()
10412 {
10413 int i;
10414
10415 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10416 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10417 }
10418
10419 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10420
10421 static void
10422 gen_inlined_enumeration_type_die (type, context_die)
10423 tree type;
10424 dw_die_ref context_die;
10425 {
10426 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10427
10428 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10429 be incomplete and such types are not marked. */
10430 add_abstract_origin_attribute (type_die, type);
10431 }
10432
10433 /* Generate a DIE to represent an inlined instance of a structure type. */
10434
10435 static void
10436 gen_inlined_structure_type_die (type, context_die)
10437 tree type;
10438 dw_die_ref context_die;
10439 {
10440 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10441
10442 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10443 be incomplete and such types are not marked. */
10444 add_abstract_origin_attribute (type_die, type);
10445 }
10446
10447 /* Generate a DIE to represent an inlined instance of a union type. */
10448
10449 static void
10450 gen_inlined_union_type_die (type, context_die)
10451 tree type;
10452 dw_die_ref context_die;
10453 {
10454 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10455
10456 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10457 be incomplete and such types are not marked. */
10458 add_abstract_origin_attribute (type_die, type);
10459 }
10460
10461 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10462 include all of the information about the enumeration values also. Each
10463 enumerated type name/value is listed as a child of the enumerated type
10464 DIE. */
10465
10466 static void
10467 gen_enumeration_type_die (type, context_die)
10468 tree type;
10469 dw_die_ref context_die;
10470 {
10471 dw_die_ref type_die = lookup_type_die (type);
10472
10473 if (type_die == NULL)
10474 {
10475 type_die = new_die (DW_TAG_enumeration_type,
10476 scope_die_for (type, context_die), type);
10477 equate_type_number_to_die (type, type_die);
10478 add_name_attribute (type_die, type_tag (type));
10479 }
10480 else if (! TYPE_SIZE (type))
10481 return;
10482 else
10483 remove_AT (type_die, DW_AT_declaration);
10484
10485 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10486 given enum type is incomplete, do not generate the DW_AT_byte_size
10487 attribute or the DW_AT_element_list attribute. */
10488 if (TYPE_SIZE (type))
10489 {
10490 tree link;
10491
10492 TREE_ASM_WRITTEN (type) = 1;
10493 add_byte_size_attribute (type_die, type);
10494 if (TYPE_STUB_DECL (type) != NULL_TREE)
10495 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10496
10497 /* If the first reference to this type was as the return type of an
10498 inline function, then it may not have a parent. Fix this now. */
10499 if (type_die->die_parent == NULL)
10500 add_child_die (scope_die_for (type, context_die), type_die);
10501
10502 for (link = TYPE_FIELDS (type);
10503 link != NULL; link = TREE_CHAIN (link))
10504 {
10505 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10506
10507 add_name_attribute (enum_die,
10508 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10509
10510 if (host_integerp (TREE_VALUE (link), 0))
10511 {
10512 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
10513 add_AT_int (enum_die, DW_AT_const_value,
10514 tree_low_cst (TREE_VALUE (link), 0));
10515 else
10516 add_AT_unsigned (enum_die, DW_AT_const_value,
10517 tree_low_cst (TREE_VALUE (link), 0));
10518 }
10519 }
10520 }
10521 else
10522 add_AT_flag (type_die, DW_AT_declaration, 1);
10523 }
10524
10525 /* Generate a DIE to represent either a real live formal parameter decl or to
10526 represent just the type of some formal parameter position in some function
10527 type.
10528
10529 Note that this routine is a bit unusual because its argument may be a
10530 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10531 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10532 node. If it's the former then this function is being called to output a
10533 DIE to represent a formal parameter object (or some inlining thereof). If
10534 it's the latter, then this function is only being called to output a
10535 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10536 argument type of some subprogram type. */
10537
10538 static dw_die_ref
10539 gen_formal_parameter_die (node, context_die)
10540 tree node;
10541 dw_die_ref context_die;
10542 {
10543 dw_die_ref parm_die
10544 = new_die (DW_TAG_formal_parameter, context_die, node);
10545 tree origin;
10546
10547 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10548 {
10549 case 'd':
10550 origin = decl_ultimate_origin (node);
10551 if (origin != NULL)
10552 add_abstract_origin_attribute (parm_die, origin);
10553 else
10554 {
10555 add_name_and_src_coords_attributes (parm_die, node);
10556 add_type_attribute (parm_die, TREE_TYPE (node),
10557 TREE_READONLY (node),
10558 TREE_THIS_VOLATILE (node),
10559 context_die);
10560 if (DECL_ARTIFICIAL (node))
10561 add_AT_flag (parm_die, DW_AT_artificial, 1);
10562 }
10563
10564 equate_decl_number_to_die (node, parm_die);
10565 if (! DECL_ABSTRACT (node))
10566 add_location_or_const_value_attribute (parm_die, node);
10567
10568 break;
10569
10570 case 't':
10571 /* We were called with some kind of a ..._TYPE node. */
10572 add_type_attribute (parm_die, node, 0, 0, context_die);
10573 break;
10574
10575 default:
10576 abort ();
10577 }
10578
10579 return parm_die;
10580 }
10581
10582 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10583 at the end of an (ANSI prototyped) formal parameters list. */
10584
10585 static void
10586 gen_unspecified_parameters_die (decl_or_type, context_die)
10587 tree decl_or_type;
10588 dw_die_ref context_die;
10589 {
10590 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10591 }
10592
10593 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10594 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10595 parameters as specified in some function type specification (except for
10596 those which appear as part of a function *definition*). */
10597
10598 static void
10599 gen_formal_types_die (function_or_method_type, context_die)
10600 tree function_or_method_type;
10601 dw_die_ref context_die;
10602 {
10603 tree link;
10604 tree formal_type = NULL;
10605 tree first_parm_type;
10606 tree arg;
10607
10608 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10609 {
10610 arg = DECL_ARGUMENTS (function_or_method_type);
10611 function_or_method_type = TREE_TYPE (function_or_method_type);
10612 }
10613 else
10614 arg = NULL_TREE;
10615
10616 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10617
10618 /* Make our first pass over the list of formal parameter types and output a
10619 DW_TAG_formal_parameter DIE for each one. */
10620 for (link = first_parm_type; link; )
10621 {
10622 dw_die_ref parm_die;
10623
10624 formal_type = TREE_VALUE (link);
10625 if (formal_type == void_type_node)
10626 break;
10627
10628 /* Output a (nameless) DIE to represent the formal parameter itself. */
10629 parm_die = gen_formal_parameter_die (formal_type, context_die);
10630 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10631 && link == first_parm_type)
10632 || (arg && DECL_ARTIFICIAL (arg)))
10633 add_AT_flag (parm_die, DW_AT_artificial, 1);
10634
10635 link = TREE_CHAIN (link);
10636 if (arg)
10637 arg = TREE_CHAIN (arg);
10638 }
10639
10640 /* If this function type has an ellipsis, add a
10641 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10642 if (formal_type != void_type_node)
10643 gen_unspecified_parameters_die (function_or_method_type, context_die);
10644
10645 /* Make our second (and final) pass over the list of formal parameter types
10646 and output DIEs to represent those types (as necessary). */
10647 for (link = TYPE_ARG_TYPES (function_or_method_type);
10648 link && TREE_VALUE (link);
10649 link = TREE_CHAIN (link))
10650 gen_type_die (TREE_VALUE (link), context_die);
10651 }
10652
10653 /* We want to generate the DIE for TYPE so that we can generate the
10654 die for MEMBER, which has been defined; we will need to refer back
10655 to the member declaration nested within TYPE. If we're trying to
10656 generate minimal debug info for TYPE, processing TYPE won't do the
10657 trick; we need to attach the member declaration by hand. */
10658
10659 static void
10660 gen_type_die_for_member (type, member, context_die)
10661 tree type, member;
10662 dw_die_ref context_die;
10663 {
10664 gen_type_die (type, context_die);
10665
10666 /* If we're trying to avoid duplicate debug info, we may not have
10667 emitted the member decl for this function. Emit it now. */
10668 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10669 && ! lookup_decl_die (member))
10670 {
10671 if (decl_ultimate_origin (member))
10672 abort ();
10673
10674 push_decl_scope (type);
10675 if (TREE_CODE (member) == FUNCTION_DECL)
10676 gen_subprogram_die (member, lookup_type_die (type));
10677 else
10678 gen_variable_die (member, lookup_type_die (type));
10679
10680 pop_decl_scope ();
10681 }
10682 }
10683
10684 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10685 may later generate inlined and/or out-of-line instances of. */
10686
10687 static void
10688 dwarf2out_abstract_function (decl)
10689 tree decl;
10690 {
10691 dw_die_ref old_die;
10692 tree save_fn;
10693 tree context;
10694 int was_abstract = DECL_ABSTRACT (decl);
10695
10696 /* Make sure we have the actual abstract inline, not a clone. */
10697 decl = DECL_ORIGIN (decl);
10698
10699 old_die = lookup_decl_die (decl);
10700 if (old_die && get_AT_unsigned (old_die, DW_AT_inline))
10701 /* We've already generated the abstract instance. */
10702 return;
10703
10704 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10705 we don't get confused by DECL_ABSTRACT. */
10706 if (debug_info_level > DINFO_LEVEL_TERSE)
10707 {
10708 context = decl_class_context (decl);
10709 if (context)
10710 gen_type_die_for_member
10711 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10712 }
10713
10714 /* Pretend we've just finished compiling this function. */
10715 save_fn = current_function_decl;
10716 current_function_decl = decl;
10717
10718 set_decl_abstract_flags (decl, 1);
10719 dwarf2out_decl (decl);
10720 if (! was_abstract)
10721 set_decl_abstract_flags (decl, 0);
10722
10723 current_function_decl = save_fn;
10724 }
10725
10726 /* Generate a DIE to represent a declared function (either file-scope or
10727 block-local). */
10728
10729 static void
10730 gen_subprogram_die (decl, context_die)
10731 tree decl;
10732 dw_die_ref context_die;
10733 {
10734 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10735 tree origin = decl_ultimate_origin (decl);
10736 dw_die_ref subr_die;
10737 rtx fp_reg;
10738 tree fn_arg_types;
10739 tree outer_scope;
10740 dw_die_ref old_die = lookup_decl_die (decl);
10741 int declaration = (current_function_decl != decl
10742 || class_scope_p (context_die));
10743
10744 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10745 started to generate the abstract instance of an inline, decided to output
10746 its containing class, and proceeded to emit the declaration of the inline
10747 from the member list for the class. If so, DECLARATION takes priority;
10748 we'll get back to the abstract instance when done with the class. */
10749
10750 /* The class-scope declaration DIE must be the primary DIE. */
10751 if (origin && declaration && class_scope_p (context_die))
10752 {
10753 origin = NULL;
10754 if (old_die)
10755 abort ();
10756 }
10757
10758 if (origin != NULL)
10759 {
10760 if (declaration && ! local_scope_p (context_die))
10761 abort ();
10762
10763 /* Fixup die_parent for the abstract instance of a nested
10764 inline function. */
10765 if (old_die && old_die->die_parent == NULL)
10766 add_child_die (context_die, old_die);
10767
10768 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10769 add_abstract_origin_attribute (subr_die, origin);
10770 }
10771 else if (old_die)
10772 {
10773 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10774
10775 if (!get_AT_flag (old_die, DW_AT_declaration)
10776 /* We can have a normal definition following an inline one in the
10777 case of redefinition of GNU C extern inlines.
10778 It seems reasonable to use AT_specification in this case. */
10779 && !get_AT_unsigned (old_die, DW_AT_inline))
10780 {
10781 /* ??? This can happen if there is a bug in the program, for
10782 instance, if it has duplicate function definitions. Ideally,
10783 we should detect this case and ignore it. For now, if we have
10784 already reported an error, any error at all, then assume that
10785 we got here because of an input error, not a dwarf2 bug. */
10786 if (errorcount)
10787 return;
10788 abort ();
10789 }
10790
10791 /* If the definition comes from the same place as the declaration,
10792 maybe use the old DIE. We always want the DIE for this function
10793 that has the *_pc attributes to be under comp_unit_die so the
10794 debugger can find it. We also need to do this for abstract
10795 instances of inlines, since the spec requires the out-of-line copy
10796 to have the same parent. For local class methods, this doesn't
10797 apply; we just use the old DIE. */
10798 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
10799 && (DECL_ARTIFICIAL (decl)
10800 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10801 && (get_AT_unsigned (old_die, DW_AT_decl_line)
10802 == (unsigned) DECL_SOURCE_LINE (decl)))))
10803 {
10804 subr_die = old_die;
10805
10806 /* Clear out the declaration attribute and the parm types. */
10807 remove_AT (subr_die, DW_AT_declaration);
10808 remove_children (subr_die);
10809 }
10810 else
10811 {
10812 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10813 add_AT_die_ref (subr_die, DW_AT_specification, old_die);
10814 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10815 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
10816 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10817 != (unsigned) DECL_SOURCE_LINE (decl))
10818 add_AT_unsigned
10819 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10820 }
10821 }
10822 else
10823 {
10824 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10825
10826 if (TREE_PUBLIC (decl))
10827 add_AT_flag (subr_die, DW_AT_external, 1);
10828
10829 add_name_and_src_coords_attributes (subr_die, decl);
10830 if (debug_info_level > DINFO_LEVEL_TERSE)
10831 {
10832 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
10833 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
10834 0, 0, context_die);
10835 }
10836
10837 add_pure_or_virtual_attribute (subr_die, decl);
10838 if (DECL_ARTIFICIAL (decl))
10839 add_AT_flag (subr_die, DW_AT_artificial, 1);
10840
10841 if (TREE_PROTECTED (decl))
10842 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
10843 else if (TREE_PRIVATE (decl))
10844 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
10845 }
10846
10847 if (declaration)
10848 {
10849 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
10850 {
10851 add_AT_flag (subr_die, DW_AT_declaration, 1);
10852
10853 /* The first time we see a member function, it is in the context of
10854 the class to which it belongs. We make sure of this by emitting
10855 the class first. The next time is the definition, which is
10856 handled above. The two may come from the same source text. */
10857 if (DECL_CONTEXT (decl) || DECL_ABSTRACT (decl))
10858 equate_decl_number_to_die (decl, subr_die);
10859 }
10860 }
10861 else if (DECL_ABSTRACT (decl))
10862 {
10863 if (DECL_INLINE (decl) && !flag_no_inline)
10864 {
10865 /* ??? Checking DECL_DEFER_OUTPUT is correct for static
10866 inline functions, but not for extern inline functions.
10867 We can't get this completely correct because information
10868 about whether the function was declared inline is not
10869 saved anywhere. */
10870 if (DECL_DEFER_OUTPUT (decl))
10871 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
10872 else
10873 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
10874 }
10875 else
10876 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
10877
10878 equate_decl_number_to_die (decl, subr_die);
10879 }
10880 else if (!DECL_EXTERNAL (decl))
10881 {
10882 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
10883 equate_decl_number_to_die (decl, subr_die);
10884
10885 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
10886 current_function_funcdef_no);
10887 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
10888 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10889 current_function_funcdef_no);
10890 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
10891
10892 add_pubname (decl, subr_die);
10893 add_arange (decl, subr_die);
10894
10895 #ifdef MIPS_DEBUGGING_INFO
10896 /* Add a reference to the FDE for this routine. */
10897 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
10898 #endif
10899
10900 /* Define the "frame base" location for this routine. We use the
10901 frame pointer or stack pointer registers, since the RTL for local
10902 variables is relative to one of them. */
10903 fp_reg
10904 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
10905 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
10906
10907 #if 0
10908 /* ??? This fails for nested inline functions, because context_display
10909 is not part of the state saved/restored for inline functions. */
10910 if (current_function_needs_context)
10911 add_AT_location_description (subr_die, DW_AT_static_link,
10912 loc_descriptor (lookup_static_chain (decl)));
10913 #endif
10914 }
10915
10916 /* Now output descriptions of the arguments for this function. This gets
10917 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
10918 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
10919 `...' at the end of the formal parameter list. In order to find out if
10920 there was a trailing ellipsis or not, we must instead look at the type
10921 associated with the FUNCTION_DECL. This will be a node of type
10922 FUNCTION_TYPE. If the chain of type nodes hanging off of this
10923 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
10924 an ellipsis at the end. */
10925
10926 /* In the case where we are describing a mere function declaration, all we
10927 need to do here (and all we *can* do here) is to describe the *types* of
10928 its formal parameters. */
10929 if (debug_info_level <= DINFO_LEVEL_TERSE)
10930 ;
10931 else if (declaration)
10932 gen_formal_types_die (decl, subr_die);
10933 else
10934 {
10935 /* Generate DIEs to represent all known formal parameters */
10936 tree arg_decls = DECL_ARGUMENTS (decl);
10937 tree parm;
10938
10939 /* When generating DIEs, generate the unspecified_parameters DIE
10940 instead if we come across the arg "__builtin_va_alist" */
10941 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
10942 if (TREE_CODE (parm) == PARM_DECL)
10943 {
10944 if (DECL_NAME (parm)
10945 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
10946 "__builtin_va_alist"))
10947 gen_unspecified_parameters_die (parm, subr_die);
10948 else
10949 gen_decl_die (parm, subr_die);
10950 }
10951
10952 /* Decide whether we need an unspecified_parameters DIE at the end.
10953 There are 2 more cases to do this for: 1) the ansi ... declaration -
10954 this is detectable when the end of the arg list is not a
10955 void_type_node 2) an unprototyped function declaration (not a
10956 definition). This just means that we have no info about the
10957 parameters at all. */
10958 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
10959 if (fn_arg_types != NULL)
10960 {
10961 /* this is the prototyped case, check for ... */
10962 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
10963 gen_unspecified_parameters_die (decl, subr_die);
10964 }
10965 else if (DECL_INITIAL (decl) == NULL_TREE)
10966 gen_unspecified_parameters_die (decl, subr_die);
10967 }
10968
10969 /* Output Dwarf info for all of the stuff within the body of the function
10970 (if it has one - it may be just a declaration). */
10971 outer_scope = DECL_INITIAL (decl);
10972
10973 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
10974 a function. This BLOCK actually represents the outermost binding contour
10975 for the function, i.e. the contour in which the function's formal
10976 parameters and labels get declared. Curiously, it appears that the front
10977 end doesn't actually put the PARM_DECL nodes for the current function onto
10978 the BLOCK_VARS list for this outer scope, but are strung off of the
10979 DECL_ARGUMENTS list for the function instead.
10980
10981 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
10982 the LABEL_DECL nodes for the function however, and we output DWARF info
10983 for those in decls_for_scope. Just within the `outer_scope' there will be
10984 a BLOCK node representing the function's outermost pair of curly braces,
10985 and any blocks used for the base and member initializers of a C++
10986 constructor function. */
10987 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
10988 {
10989 current_function_has_inlines = 0;
10990 decls_for_scope (outer_scope, subr_die, 0);
10991
10992 #if 0 && defined (MIPS_DEBUGGING_INFO)
10993 if (current_function_has_inlines)
10994 {
10995 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
10996 if (! comp_unit_has_inlines)
10997 {
10998 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
10999 comp_unit_has_inlines = 1;
11000 }
11001 }
11002 #endif
11003 }
11004 }
11005
11006 /* Generate a DIE to represent a declared data object. */
11007
11008 static void
11009 gen_variable_die (decl, context_die)
11010 tree decl;
11011 dw_die_ref context_die;
11012 {
11013 tree origin = decl_ultimate_origin (decl);
11014 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11015
11016 dw_die_ref old_die = lookup_decl_die (decl);
11017 int declaration = (DECL_EXTERNAL (decl)
11018 || class_scope_p (context_die));
11019
11020 if (origin != NULL)
11021 add_abstract_origin_attribute (var_die, origin);
11022
11023 /* Loop unrolling can create multiple blocks that refer to the same
11024 static variable, so we must test for the DW_AT_declaration flag.
11025
11026 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11027 copy decls and set the DECL_ABSTRACT flag on them instead of
11028 sharing them.
11029
11030 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11031 else if (old_die && TREE_STATIC (decl)
11032 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11033 {
11034 /* This is a definition of a C++ class level static. */
11035 add_AT_die_ref (var_die, DW_AT_specification, old_die);
11036 if (DECL_NAME (decl))
11037 {
11038 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
11039
11040 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11041 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11042
11043 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11044 != (unsigned) DECL_SOURCE_LINE (decl))
11045
11046 add_AT_unsigned (var_die, DW_AT_decl_line,
11047 DECL_SOURCE_LINE (decl));
11048 }
11049 }
11050 else
11051 {
11052 add_name_and_src_coords_attributes (var_die, decl);
11053 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11054 TREE_THIS_VOLATILE (decl), context_die);
11055
11056 if (TREE_PUBLIC (decl))
11057 add_AT_flag (var_die, DW_AT_external, 1);
11058
11059 if (DECL_ARTIFICIAL (decl))
11060 add_AT_flag (var_die, DW_AT_artificial, 1);
11061
11062 if (TREE_PROTECTED (decl))
11063 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11064 else if (TREE_PRIVATE (decl))
11065 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11066 }
11067
11068 if (declaration)
11069 add_AT_flag (var_die, DW_AT_declaration, 1);
11070
11071 if (class_scope_p (context_die) || DECL_ABSTRACT (decl))
11072 equate_decl_number_to_die (decl, var_die);
11073
11074 if (! declaration && ! DECL_ABSTRACT (decl))
11075 {
11076 add_location_or_const_value_attribute (var_die, decl);
11077 add_pubname (decl, var_die);
11078 }
11079 else
11080 tree_add_const_value_attribute (var_die, decl);
11081 }
11082
11083 /* Generate a DIE to represent a label identifier. */
11084
11085 static void
11086 gen_label_die (decl, context_die)
11087 tree decl;
11088 dw_die_ref context_die;
11089 {
11090 tree origin = decl_ultimate_origin (decl);
11091 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11092 rtx insn;
11093 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11094
11095 if (origin != NULL)
11096 add_abstract_origin_attribute (lbl_die, origin);
11097 else
11098 add_name_and_src_coords_attributes (lbl_die, decl);
11099
11100 if (DECL_ABSTRACT (decl))
11101 equate_decl_number_to_die (decl, lbl_die);
11102 else
11103 {
11104 insn = DECL_RTL (decl);
11105
11106 /* Deleted labels are programmer specified labels which have been
11107 eliminated because of various optimisations. We still emit them
11108 here so that it is possible to put breakpoints on them. */
11109 if (GET_CODE (insn) == CODE_LABEL
11110 || ((GET_CODE (insn) == NOTE
11111 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
11112 {
11113 /* When optimization is enabled (via -O) some parts of the compiler
11114 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11115 represent source-level labels which were explicitly declared by
11116 the user. This really shouldn't be happening though, so catch
11117 it if it ever does happen. */
11118 if (INSN_DELETED_P (insn))
11119 abort ();
11120
11121 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11122 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11123 }
11124 }
11125 }
11126
11127 /* Generate a DIE for a lexical block. */
11128
11129 static void
11130 gen_lexical_block_die (stmt, context_die, depth)
11131 tree stmt;
11132 dw_die_ref context_die;
11133 int depth;
11134 {
11135 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11136 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11137
11138 if (! BLOCK_ABSTRACT (stmt))
11139 {
11140 if (BLOCK_FRAGMENT_CHAIN (stmt))
11141 {
11142 tree chain;
11143
11144 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11145
11146 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11147 do
11148 {
11149 add_ranges (chain);
11150 chain = BLOCK_FRAGMENT_CHAIN (chain);
11151 }
11152 while (chain);
11153 add_ranges (NULL);
11154 }
11155 else
11156 {
11157 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11158 BLOCK_NUMBER (stmt));
11159 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11160 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11161 BLOCK_NUMBER (stmt));
11162 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11163 }
11164 }
11165
11166 decls_for_scope (stmt, stmt_die, depth);
11167 }
11168
11169 /* Generate a DIE for an inlined subprogram. */
11170
11171 static void
11172 gen_inlined_subroutine_die (stmt, context_die, depth)
11173 tree stmt;
11174 dw_die_ref context_die;
11175 int depth;
11176 {
11177 if (! BLOCK_ABSTRACT (stmt))
11178 {
11179 dw_die_ref subr_die
11180 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11181 tree decl = block_ultimate_origin (stmt);
11182 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11183
11184 /* Emit info for the abstract instance first, if we haven't yet. */
11185 dwarf2out_abstract_function (decl);
11186
11187 add_abstract_origin_attribute (subr_die, decl);
11188 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11189 BLOCK_NUMBER (stmt));
11190 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11191 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11192 BLOCK_NUMBER (stmt));
11193 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11194 decls_for_scope (stmt, subr_die, depth);
11195 current_function_has_inlines = 1;
11196 }
11197 else
11198 /* We may get here if we're the outer block of function A that was
11199 inlined into function B that was inlined into function C. When
11200 generating debugging info for C, dwarf2out_abstract_function(B)
11201 would mark all inlined blocks as abstract, including this one.
11202 So, we wouldn't (and shouldn't) expect labels to be generated
11203 for this one. Instead, just emit debugging info for
11204 declarations within the block. This is particularly important
11205 in the case of initializers of arguments passed from B to us:
11206 if they're statement expressions containing declarations, we
11207 wouldn't generate dies for their abstract variables, and then,
11208 when generating dies for the real variables, we'd die (pun
11209 intended :-) */
11210 gen_lexical_block_die (stmt, context_die, depth);
11211 }
11212
11213 /* Generate a DIE for a field in a record, or structure. */
11214
11215 static void
11216 gen_field_die (decl, context_die)
11217 tree decl;
11218 dw_die_ref context_die;
11219 {
11220 dw_die_ref decl_die = new_die (DW_TAG_member, context_die, decl);
11221
11222 add_name_and_src_coords_attributes (decl_die, decl);
11223 add_type_attribute (decl_die, member_declared_type (decl),
11224 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11225 context_die);
11226
11227 if (DECL_BIT_FIELD_TYPE (decl))
11228 {
11229 add_byte_size_attribute (decl_die, decl);
11230 add_bit_size_attribute (decl_die, decl);
11231 add_bit_offset_attribute (decl_die, decl);
11232 }
11233
11234 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11235 add_data_member_location_attribute (decl_die, decl);
11236
11237 if (DECL_ARTIFICIAL (decl))
11238 add_AT_flag (decl_die, DW_AT_artificial, 1);
11239
11240 if (TREE_PROTECTED (decl))
11241 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11242 else if (TREE_PRIVATE (decl))
11243 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11244 }
11245
11246 #if 0
11247 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11248 Use modified_type_die instead.
11249 We keep this code here just in case these types of DIEs may be needed to
11250 represent certain things in other languages (e.g. Pascal) someday. */
11251
11252 static void
11253 gen_pointer_type_die (type, context_die)
11254 tree type;
11255 dw_die_ref context_die;
11256 {
11257 dw_die_ref ptr_die
11258 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11259
11260 equate_type_number_to_die (type, ptr_die);
11261 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11262 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11263 }
11264
11265 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11266 Use modified_type_die instead.
11267 We keep this code here just in case these types of DIEs may be needed to
11268 represent certain things in other languages (e.g. Pascal) someday. */
11269
11270 static void
11271 gen_reference_type_die (type, context_die)
11272 tree type;
11273 dw_die_ref context_die;
11274 {
11275 dw_die_ref ref_die
11276 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11277
11278 equate_type_number_to_die (type, ref_die);
11279 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11280 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11281 }
11282 #endif
11283
11284 /* Generate a DIE for a pointer to a member type. */
11285
11286 static void
11287 gen_ptr_to_mbr_type_die (type, context_die)
11288 tree type;
11289 dw_die_ref context_die;
11290 {
11291 dw_die_ref ptr_die
11292 = new_die (DW_TAG_ptr_to_member_type,
11293 scope_die_for (type, context_die), type);
11294
11295 equate_type_number_to_die (type, ptr_die);
11296 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11297 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11298 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11299 }
11300
11301 /* Generate the DIE for the compilation unit. */
11302
11303 static dw_die_ref
11304 gen_compile_unit_die (filename)
11305 const char *filename;
11306 {
11307 dw_die_ref die;
11308 char producer[250];
11309 const char *language_string = lang_hooks.name;
11310 int language;
11311
11312 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11313
11314 if (filename)
11315 {
11316 add_name_attribute (die, filename);
11317 if (filename[0] != DIR_SEPARATOR)
11318 add_comp_dir_attribute (die);
11319 }
11320
11321 sprintf (producer, "%s %s", language_string, version_string);
11322
11323 #ifdef MIPS_DEBUGGING_INFO
11324 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11325 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11326 not appear in the producer string, the debugger reaches the conclusion
11327 that the object file is stripped and has no debugging information.
11328 To get the MIPS/SGI debugger to believe that there is debugging
11329 information in the object file, we add a -g to the producer string. */
11330 if (debug_info_level > DINFO_LEVEL_TERSE)
11331 strcat (producer, " -g");
11332 #endif
11333
11334 add_AT_string (die, DW_AT_producer, producer);
11335
11336 if (strcmp (language_string, "GNU C++") == 0)
11337 language = DW_LANG_C_plus_plus;
11338 else if (strcmp (language_string, "GNU Ada") == 0)
11339 language = DW_LANG_Ada83;
11340 else if (strcmp (language_string, "GNU F77") == 0)
11341 language = DW_LANG_Fortran77;
11342 else if (strcmp (language_string, "GNU Pascal") == 0)
11343 language = DW_LANG_Pascal83;
11344 else if (strcmp (language_string, "GNU Java") == 0)
11345 language = DW_LANG_Java;
11346 else
11347 language = DW_LANG_C89;
11348
11349 add_AT_unsigned (die, DW_AT_language, language);
11350 return die;
11351 }
11352
11353 /* Generate a DIE for a string type. */
11354
11355 static void
11356 gen_string_type_die (type, context_die)
11357 tree type;
11358 dw_die_ref context_die;
11359 {
11360 dw_die_ref type_die
11361 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11362
11363 equate_type_number_to_die (type, type_die);
11364
11365 /* ??? Fudge the string length attribute for now.
11366 TODO: add string length info. */
11367 #if 0
11368 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11369 bound_representation (upper_bound, 0, 'u');
11370 #endif
11371 }
11372
11373 /* Generate the DIE for a base class. */
11374
11375 static void
11376 gen_inheritance_die (binfo, access, context_die)
11377 tree binfo, access;
11378 dw_die_ref context_die;
11379 {
11380 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11381
11382 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11383 add_data_member_location_attribute (die, binfo);
11384
11385 if (TREE_VIA_VIRTUAL (binfo))
11386 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11387
11388 if (access == access_public_node)
11389 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11390 else if (access == access_protected_node)
11391 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11392 }
11393
11394 /* Generate a DIE for a class member. */
11395
11396 static void
11397 gen_member_die (type, context_die)
11398 tree type;
11399 dw_die_ref context_die;
11400 {
11401 tree member;
11402 tree binfo = TYPE_BINFO (type);
11403 dw_die_ref child;
11404
11405 /* If this is not an incomplete type, output descriptions of each of its
11406 members. Note that as we output the DIEs necessary to represent the
11407 members of this record or union type, we will also be trying to output
11408 DIEs to represent the *types* of those members. However the `type'
11409 function (above) will specifically avoid generating type DIEs for member
11410 types *within* the list of member DIEs for this (containing) type except
11411 for those types (of members) which are explicitly marked as also being
11412 members of this (containing) type themselves. The g++ front- end can
11413 force any given type to be treated as a member of some other (containing)
11414 type by setting the TYPE_CONTEXT of the given (member) type to point to
11415 the TREE node representing the appropriate (containing) type. */
11416
11417 /* First output info about the base classes. */
11418 if (binfo && BINFO_BASETYPES (binfo))
11419 {
11420 tree bases = BINFO_BASETYPES (binfo);
11421 tree accesses = BINFO_BASEACCESSES (binfo);
11422 int n_bases = TREE_VEC_LENGTH (bases);
11423 int i;
11424
11425 for (i = 0; i < n_bases; i++)
11426 gen_inheritance_die (TREE_VEC_ELT (bases, i),
11427 (accesses ? TREE_VEC_ELT (accesses, i)
11428 : access_public_node), context_die);
11429 }
11430
11431 /* Now output info about the data members and type members. */
11432 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11433 {
11434 /* If we thought we were generating minimal debug info for TYPE
11435 and then changed our minds, some of the member declarations
11436 may have already been defined. Don't define them again, but
11437 do put them in the right order. */
11438
11439 child = lookup_decl_die (member);
11440 if (child)
11441 splice_child_die (context_die, child);
11442 else
11443 gen_decl_die (member, context_die);
11444 }
11445
11446 /* Now output info about the function members (if any). */
11447 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11448 {
11449 /* Don't include clones in the member list. */
11450 if (DECL_ABSTRACT_ORIGIN (member))
11451 continue;
11452
11453 child = lookup_decl_die (member);
11454 if (child)
11455 splice_child_die (context_die, child);
11456 else
11457 gen_decl_die (member, context_die);
11458 }
11459 }
11460
11461 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11462 is set, we pretend that the type was never defined, so we only get the
11463 member DIEs needed by later specification DIEs. */
11464
11465 static void
11466 gen_struct_or_union_type_die (type, context_die)
11467 tree type;
11468 dw_die_ref context_die;
11469 {
11470 dw_die_ref type_die = lookup_type_die (type);
11471 dw_die_ref scope_die = 0;
11472 int nested = 0;
11473 int complete = (TYPE_SIZE (type)
11474 && (! TYPE_STUB_DECL (type)
11475 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11476
11477 if (type_die && ! complete)
11478 return;
11479
11480 if (TYPE_CONTEXT (type) != NULL_TREE
11481 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type)))
11482 nested = 1;
11483
11484 scope_die = scope_die_for (type, context_die);
11485
11486 if (! type_die || (nested && scope_die == comp_unit_die))
11487 /* First occurrence of type or toplevel definition of nested class. */
11488 {
11489 dw_die_ref old_die = type_die;
11490
11491 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11492 ? DW_TAG_structure_type : DW_TAG_union_type,
11493 scope_die, type);
11494 equate_type_number_to_die (type, type_die);
11495 if (old_die)
11496 add_AT_die_ref (type_die, DW_AT_specification, old_die);
11497 else
11498 add_name_attribute (type_die, type_tag (type));
11499 }
11500 else
11501 remove_AT (type_die, DW_AT_declaration);
11502
11503 /* If this type has been completed, then give it a byte_size attribute and
11504 then give a list of members. */
11505 if (complete)
11506 {
11507 /* Prevent infinite recursion in cases where the type of some member of
11508 this type is expressed in terms of this type itself. */
11509 TREE_ASM_WRITTEN (type) = 1;
11510 add_byte_size_attribute (type_die, type);
11511 if (TYPE_STUB_DECL (type) != NULL_TREE)
11512 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11513
11514 /* If the first reference to this type was as the return type of an
11515 inline function, then it may not have a parent. Fix this now. */
11516 if (type_die->die_parent == NULL)
11517 add_child_die (scope_die, type_die);
11518
11519 push_decl_scope (type);
11520 gen_member_die (type, type_die);
11521 pop_decl_scope ();
11522
11523 /* GNU extension: Record what type our vtable lives in. */
11524 if (TYPE_VFIELD (type))
11525 {
11526 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11527
11528 gen_type_die (vtype, context_die);
11529 add_AT_die_ref (type_die, DW_AT_containing_type,
11530 lookup_type_die (vtype));
11531 }
11532 }
11533 else
11534 {
11535 add_AT_flag (type_die, DW_AT_declaration, 1);
11536
11537 /* We don't need to do this for function-local types. */
11538 if (TYPE_STUB_DECL (type)
11539 && ! decl_function_context (TYPE_STUB_DECL (type)))
11540 VARRAY_PUSH_TREE (incomplete_types, type);
11541 }
11542 }
11543
11544 /* Generate a DIE for a subroutine _type_. */
11545
11546 static void
11547 gen_subroutine_type_die (type, context_die)
11548 tree type;
11549 dw_die_ref context_die;
11550 {
11551 tree return_type = TREE_TYPE (type);
11552 dw_die_ref subr_die
11553 = new_die (DW_TAG_subroutine_type,
11554 scope_die_for (type, context_die), type);
11555
11556 equate_type_number_to_die (type, subr_die);
11557 add_prototyped_attribute (subr_die, type);
11558 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11559 gen_formal_types_die (type, subr_die);
11560 }
11561
11562 /* Generate a DIE for a type definition */
11563
11564 static void
11565 gen_typedef_die (decl, context_die)
11566 tree decl;
11567 dw_die_ref context_die;
11568 {
11569 dw_die_ref type_die;
11570 tree origin;
11571
11572 if (TREE_ASM_WRITTEN (decl))
11573 return;
11574
11575 TREE_ASM_WRITTEN (decl) = 1;
11576 type_die = new_die (DW_TAG_typedef, context_die, decl);
11577 origin = decl_ultimate_origin (decl);
11578 if (origin != NULL)
11579 add_abstract_origin_attribute (type_die, origin);
11580 else
11581 {
11582 tree type;
11583
11584 add_name_and_src_coords_attributes (type_die, decl);
11585 if (DECL_ORIGINAL_TYPE (decl))
11586 {
11587 type = DECL_ORIGINAL_TYPE (decl);
11588
11589 if (type == TREE_TYPE (decl))
11590 abort ();
11591 else
11592 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11593 }
11594 else
11595 type = TREE_TYPE (decl);
11596
11597 add_type_attribute (type_die, type, TREE_READONLY (decl),
11598 TREE_THIS_VOLATILE (decl), context_die);
11599 }
11600
11601 if (DECL_ABSTRACT (decl))
11602 equate_decl_number_to_die (decl, type_die);
11603 }
11604
11605 /* Generate a type description DIE. */
11606
11607 static void
11608 gen_type_die (type, context_die)
11609 tree type;
11610 dw_die_ref context_die;
11611 {
11612 int need_pop;
11613
11614 if (type == NULL_TREE || type == error_mark_node)
11615 return;
11616
11617 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11618 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11619 {
11620 if (TREE_ASM_WRITTEN (type))
11621 return;
11622
11623 /* Prevent broken recursion; we can't hand off to the same type. */
11624 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
11625 abort ();
11626
11627 TREE_ASM_WRITTEN (type) = 1;
11628 gen_decl_die (TYPE_NAME (type), context_die);
11629 return;
11630 }
11631
11632 /* We are going to output a DIE to represent the unqualified version
11633 of this type (i.e. without any const or volatile qualifiers) so
11634 get the main variant (i.e. the unqualified version) of this type
11635 now. (Vectors are special because the debugging info is in the
11636 cloned type itself). */
11637 if (TREE_CODE (type) != VECTOR_TYPE)
11638 type = type_main_variant (type);
11639
11640 if (TREE_ASM_WRITTEN (type))
11641 return;
11642
11643 switch (TREE_CODE (type))
11644 {
11645 case ERROR_MARK:
11646 break;
11647
11648 case POINTER_TYPE:
11649 case REFERENCE_TYPE:
11650 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11651 ensures that the gen_type_die recursion will terminate even if the
11652 type is recursive. Recursive types are possible in Ada. */
11653 /* ??? We could perhaps do this for all types before the switch
11654 statement. */
11655 TREE_ASM_WRITTEN (type) = 1;
11656
11657 /* For these types, all that is required is that we output a DIE (or a
11658 set of DIEs) to represent the "basis" type. */
11659 gen_type_die (TREE_TYPE (type), context_die);
11660 break;
11661
11662 case OFFSET_TYPE:
11663 /* This code is used for C++ pointer-to-data-member types.
11664 Output a description of the relevant class type. */
11665 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
11666
11667 /* Output a description of the type of the object pointed to. */
11668 gen_type_die (TREE_TYPE (type), context_die);
11669
11670 /* Now output a DIE to represent this pointer-to-data-member type
11671 itself. */
11672 gen_ptr_to_mbr_type_die (type, context_die);
11673 break;
11674
11675 case SET_TYPE:
11676 gen_type_die (TYPE_DOMAIN (type), context_die);
11677 gen_set_type_die (type, context_die);
11678 break;
11679
11680 case FILE_TYPE:
11681 gen_type_die (TREE_TYPE (type), context_die);
11682 abort (); /* No way to represent these in Dwarf yet! */
11683 break;
11684
11685 case FUNCTION_TYPE:
11686 /* Force out return type (in case it wasn't forced out already). */
11687 gen_type_die (TREE_TYPE (type), context_die);
11688 gen_subroutine_type_die (type, context_die);
11689 break;
11690
11691 case METHOD_TYPE:
11692 /* Force out return type (in case it wasn't forced out already). */
11693 gen_type_die (TREE_TYPE (type), context_die);
11694 gen_subroutine_type_die (type, context_die);
11695 break;
11696
11697 case ARRAY_TYPE:
11698 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11699 {
11700 gen_type_die (TREE_TYPE (type), context_die);
11701 gen_string_type_die (type, context_die);
11702 }
11703 else
11704 gen_array_type_die (type, context_die);
11705 break;
11706
11707 case VECTOR_TYPE:
11708 gen_array_type_die (type, context_die);
11709 break;
11710
11711 case ENUMERAL_TYPE:
11712 case RECORD_TYPE:
11713 case UNION_TYPE:
11714 case QUAL_UNION_TYPE:
11715 /* If this is a nested type whose containing class hasn't been written
11716 out yet, writing it out will cover this one, too. This does not apply
11717 to instantiations of member class templates; they need to be added to
11718 the containing class as they are generated. FIXME: This hurts the
11719 idea of combining type decls from multiple TUs, since we can't predict
11720 what set of template instantiations we'll get. */
11721 if (TYPE_CONTEXT (type)
11722 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11723 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
11724 {
11725 gen_type_die (TYPE_CONTEXT (type), context_die);
11726
11727 if (TREE_ASM_WRITTEN (type))
11728 return;
11729
11730 /* If that failed, attach ourselves to the stub. */
11731 push_decl_scope (TYPE_CONTEXT (type));
11732 context_die = lookup_type_die (TYPE_CONTEXT (type));
11733 need_pop = 1;
11734 }
11735 else
11736 need_pop = 0;
11737
11738 if (TREE_CODE (type) == ENUMERAL_TYPE)
11739 gen_enumeration_type_die (type, context_die);
11740 else
11741 gen_struct_or_union_type_die (type, context_die);
11742
11743 if (need_pop)
11744 pop_decl_scope ();
11745
11746 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11747 it up if it is ever completed. gen_*_type_die will set it for us
11748 when appropriate. */
11749 return;
11750
11751 case VOID_TYPE:
11752 case INTEGER_TYPE:
11753 case REAL_TYPE:
11754 case COMPLEX_TYPE:
11755 case BOOLEAN_TYPE:
11756 case CHAR_TYPE:
11757 /* No DIEs needed for fundamental types. */
11758 break;
11759
11760 case LANG_TYPE:
11761 /* No Dwarf representation currently defined. */
11762 break;
11763
11764 default:
11765 abort ();
11766 }
11767
11768 TREE_ASM_WRITTEN (type) = 1;
11769 }
11770
11771 /* Generate a DIE for a tagged type instantiation. */
11772
11773 static void
11774 gen_tagged_type_instantiation_die (type, context_die)
11775 tree type;
11776 dw_die_ref context_die;
11777 {
11778 if (type == NULL_TREE || type == error_mark_node)
11779 return;
11780
11781 /* We are going to output a DIE to represent the unqualified version of
11782 this type (i.e. without any const or volatile qualifiers) so make sure
11783 that we have the main variant (i.e. the unqualified version) of this
11784 type now. */
11785 if (type != type_main_variant (type))
11786 abort ();
11787
11788 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11789 an instance of an unresolved type. */
11790
11791 switch (TREE_CODE (type))
11792 {
11793 case ERROR_MARK:
11794 break;
11795
11796 case ENUMERAL_TYPE:
11797 gen_inlined_enumeration_type_die (type, context_die);
11798 break;
11799
11800 case RECORD_TYPE:
11801 gen_inlined_structure_type_die (type, context_die);
11802 break;
11803
11804 case UNION_TYPE:
11805 case QUAL_UNION_TYPE:
11806 gen_inlined_union_type_die (type, context_die);
11807 break;
11808
11809 default:
11810 abort ();
11811 }
11812 }
11813
11814 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11815 things which are local to the given block. */
11816
11817 static void
11818 gen_block_die (stmt, context_die, depth)
11819 tree stmt;
11820 dw_die_ref context_die;
11821 int depth;
11822 {
11823 int must_output_die = 0;
11824 tree origin;
11825 tree decl;
11826 enum tree_code origin_code;
11827
11828 /* Ignore blocks never really used to make RTL. */
11829 if (stmt == NULL_TREE || !TREE_USED (stmt)
11830 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
11831 return;
11832
11833 /* If the block is one fragment of a non-contiguous block, do not
11834 process the variables, since they will have been done by the
11835 origin block. Do process subblocks. */
11836 if (BLOCK_FRAGMENT_ORIGIN (stmt))
11837 {
11838 tree sub;
11839
11840 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
11841 gen_block_die (sub, context_die, depth + 1);
11842
11843 return;
11844 }
11845
11846 /* Determine the "ultimate origin" of this block. This block may be an
11847 inlined instance of an inlined instance of inline function, so we have
11848 to trace all of the way back through the origin chain to find out what
11849 sort of node actually served as the original seed for the creation of
11850 the current block. */
11851 origin = block_ultimate_origin (stmt);
11852 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
11853
11854 /* Determine if we need to output any Dwarf DIEs at all to represent this
11855 block. */
11856 if (origin_code == FUNCTION_DECL)
11857 /* The outer scopes for inlinings *must* always be represented. We
11858 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
11859 must_output_die = 1;
11860 else
11861 {
11862 /* In the case where the current block represents an inlining of the
11863 "body block" of an inline function, we must *NOT* output any DIE for
11864 this block because we have already output a DIE to represent the whole
11865 inlined function scope and the "body block" of any function doesn't
11866 really represent a different scope according to ANSI C rules. So we
11867 check here to make sure that this block does not represent a "body
11868 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
11869 if (! is_body_block (origin ? origin : stmt))
11870 {
11871 /* Determine if this block directly contains any "significant"
11872 local declarations which we will need to output DIEs for. */
11873 if (debug_info_level > DINFO_LEVEL_TERSE)
11874 /* We are not in terse mode so *any* local declaration counts
11875 as being a "significant" one. */
11876 must_output_die = (BLOCK_VARS (stmt) != NULL);
11877 else
11878 /* We are in terse mode, so only local (nested) function
11879 definitions count as "significant" local declarations. */
11880 for (decl = BLOCK_VARS (stmt);
11881 decl != NULL; decl = TREE_CHAIN (decl))
11882 if (TREE_CODE (decl) == FUNCTION_DECL
11883 && DECL_INITIAL (decl))
11884 {
11885 must_output_die = 1;
11886 break;
11887 }
11888 }
11889 }
11890
11891 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
11892 DIE for any block which contains no significant local declarations at
11893 all. Rather, in such cases we just call `decls_for_scope' so that any
11894 needed Dwarf info for any sub-blocks will get properly generated. Note
11895 that in terse mode, our definition of what constitutes a "significant"
11896 local declaration gets restricted to include only inlined function
11897 instances and local (nested) function definitions. */
11898 if (must_output_die)
11899 {
11900 if (origin_code == FUNCTION_DECL)
11901 gen_inlined_subroutine_die (stmt, context_die, depth);
11902 else
11903 gen_lexical_block_die (stmt, context_die, depth);
11904 }
11905 else
11906 decls_for_scope (stmt, context_die, depth);
11907 }
11908
11909 /* Generate all of the decls declared within a given scope and (recursively)
11910 all of its sub-blocks. */
11911
11912 static void
11913 decls_for_scope (stmt, context_die, depth)
11914 tree stmt;
11915 dw_die_ref context_die;
11916 int depth;
11917 {
11918 tree decl;
11919 tree subblocks;
11920
11921 /* Ignore blocks never really used to make RTL. */
11922 if (stmt == NULL_TREE || ! TREE_USED (stmt))
11923 return;
11924
11925 /* Output the DIEs to represent all of the data objects and typedefs
11926 declared directly within this block but not within any nested
11927 sub-blocks. Also, nested function and tag DIEs have been
11928 generated with a parent of NULL; fix that up now. */
11929 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
11930 {
11931 dw_die_ref die;
11932
11933 if (TREE_CODE (decl) == FUNCTION_DECL)
11934 die = lookup_decl_die (decl);
11935 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
11936 die = lookup_type_die (TREE_TYPE (decl));
11937 else
11938 die = NULL;
11939
11940 if (die != NULL && die->die_parent == NULL)
11941 add_child_die (context_die, die);
11942 else
11943 gen_decl_die (decl, context_die);
11944 }
11945
11946 /* Output the DIEs to represent all sub-blocks (and the items declared
11947 therein) of this block. */
11948 for (subblocks = BLOCK_SUBBLOCKS (stmt);
11949 subblocks != NULL;
11950 subblocks = BLOCK_CHAIN (subblocks))
11951 gen_block_die (subblocks, context_die, depth + 1);
11952 }
11953
11954 /* Is this a typedef we can avoid emitting? */
11955
11956 static inline int
11957 is_redundant_typedef (decl)
11958 tree decl;
11959 {
11960 if (TYPE_DECL_IS_STUB (decl))
11961 return 1;
11962
11963 if (DECL_ARTIFICIAL (decl)
11964 && DECL_CONTEXT (decl)
11965 && is_tagged_type (DECL_CONTEXT (decl))
11966 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
11967 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
11968 /* Also ignore the artificial member typedef for the class name. */
11969 return 1;
11970
11971 return 0;
11972 }
11973
11974 /* Generate Dwarf debug information for a decl described by DECL. */
11975
11976 static void
11977 gen_decl_die (decl, context_die)
11978 tree decl;
11979 dw_die_ref context_die;
11980 {
11981 tree origin;
11982
11983 if (DECL_P (decl) && DECL_IGNORED_P (decl))
11984 return;
11985
11986 switch (TREE_CODE (decl))
11987 {
11988 case ERROR_MARK:
11989 break;
11990
11991 case CONST_DECL:
11992 /* The individual enumerators of an enum type get output when we output
11993 the Dwarf representation of the relevant enum type itself. */
11994 break;
11995
11996 case FUNCTION_DECL:
11997 /* Don't output any DIEs to represent mere function declarations,
11998 unless they are class members or explicit block externs. */
11999 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12000 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12001 break;
12002
12003 /* If we're emitting a clone, emit info for the abstract instance. */
12004 if (DECL_ORIGIN (decl) != decl)
12005 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12006
12007 /* If we're emitting an out-of-line copy of an inline function,
12008 emit info for the abstract instance and set up to refer to it. */
12009 else if (DECL_INLINE (decl) && ! DECL_ABSTRACT (decl)
12010 && ! class_scope_p (context_die)
12011 /* dwarf2out_abstract_function won't emit a die if this is just
12012 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12013 that case, because that works only if we have a die. */
12014 && DECL_INITIAL (decl) != NULL_TREE)
12015 {
12016 dwarf2out_abstract_function (decl);
12017 set_decl_origin_self (decl);
12018 }
12019
12020 /* Otherwise we're emitting the primary DIE for this decl. */
12021 else if (debug_info_level > DINFO_LEVEL_TERSE)
12022 {
12023 /* Before we describe the FUNCTION_DECL itself, make sure that we
12024 have described its return type. */
12025 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12026
12027 /* And its virtual context. */
12028 if (DECL_VINDEX (decl) != NULL_TREE)
12029 gen_type_die (DECL_CONTEXT (decl), context_die);
12030
12031 /* And its containing type. */
12032 origin = decl_class_context (decl);
12033 if (origin != NULL_TREE)
12034 gen_type_die_for_member (origin, decl, context_die);
12035 }
12036
12037 /* Now output a DIE to represent the function itself. */
12038 gen_subprogram_die (decl, context_die);
12039 break;
12040
12041 case TYPE_DECL:
12042 /* If we are in terse mode, don't generate any DIEs to represent any
12043 actual typedefs. */
12044 if (debug_info_level <= DINFO_LEVEL_TERSE)
12045 break;
12046
12047 /* In the special case of a TYPE_DECL node representing the declaration
12048 of some type tag, if the given TYPE_DECL is marked as having been
12049 instantiated from some other (original) TYPE_DECL node (e.g. one which
12050 was generated within the original definition of an inline function) we
12051 have to generate a special (abbreviated) DW_TAG_structure_type,
12052 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12053 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12054 {
12055 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12056 break;
12057 }
12058
12059 if (is_redundant_typedef (decl))
12060 gen_type_die (TREE_TYPE (decl), context_die);
12061 else
12062 /* Output a DIE to represent the typedef itself. */
12063 gen_typedef_die (decl, context_die);
12064 break;
12065
12066 case LABEL_DECL:
12067 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12068 gen_label_die (decl, context_die);
12069 break;
12070
12071 case VAR_DECL:
12072 /* If we are in terse mode, don't generate any DIEs to represent any
12073 variable declarations or definitions. */
12074 if (debug_info_level <= DINFO_LEVEL_TERSE)
12075 break;
12076
12077 /* Output any DIEs that are needed to specify the type of this data
12078 object. */
12079 gen_type_die (TREE_TYPE (decl), context_die);
12080
12081 /* And its containing type. */
12082 origin = decl_class_context (decl);
12083 if (origin != NULL_TREE)
12084 gen_type_die_for_member (origin, decl, context_die);
12085
12086 /* Now output the DIE to represent the data object itself. This gets
12087 complicated because of the possibility that the VAR_DECL really
12088 represents an inlined instance of a formal parameter for an inline
12089 function. */
12090 origin = decl_ultimate_origin (decl);
12091 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12092 gen_formal_parameter_die (decl, context_die);
12093 else
12094 gen_variable_die (decl, context_die);
12095 break;
12096
12097 case FIELD_DECL:
12098 /* Ignore the nameless fields that are used to skip bits but handle C++
12099 anonymous unions. */
12100 if (DECL_NAME (decl) != NULL_TREE
12101 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
12102 {
12103 gen_type_die (member_declared_type (decl), context_die);
12104 gen_field_die (decl, context_die);
12105 }
12106 break;
12107
12108 case PARM_DECL:
12109 gen_type_die (TREE_TYPE (decl), context_die);
12110 gen_formal_parameter_die (decl, context_die);
12111 break;
12112
12113 case NAMESPACE_DECL:
12114 /* Ignore for now. */
12115 break;
12116
12117 default:
12118 abort ();
12119 }
12120 }
12121 \f
12122 /* Add Ada "use" clause information for SGI Workshop debugger. */
12123
12124 void
12125 dwarf2out_add_library_unit_info (filename, context_list)
12126 const char *filename;
12127 const char *context_list;
12128 {
12129 unsigned int file_index;
12130
12131 if (filename != NULL)
12132 {
12133 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12134 tree context_list_decl
12135 = build_decl (LABEL_DECL, get_identifier (context_list),
12136 void_type_node);
12137
12138 TREE_PUBLIC (context_list_decl) = TRUE;
12139 add_name_attribute (unit_die, context_list);
12140 file_index = lookup_filename (filename);
12141 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12142 add_pubname (context_list_decl, unit_die);
12143 }
12144 }
12145
12146 /* Output debug information for global decl DECL. Called from toplev.c after
12147 compilation proper has finished. */
12148
12149 static void
12150 dwarf2out_global_decl (decl)
12151 tree decl;
12152 {
12153 /* Output DWARF2 information for file-scope tentative data object
12154 declarations, file-scope (extern) function declarations (which had no
12155 corresponding body) and file-scope tagged type declarations and
12156 definitions which have not yet been forced out. */
12157 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12158 dwarf2out_decl (decl);
12159 }
12160
12161 /* Write the debugging output for DECL. */
12162
12163 void
12164 dwarf2out_decl (decl)
12165 tree decl;
12166 {
12167 dw_die_ref context_die = comp_unit_die;
12168
12169 switch (TREE_CODE (decl))
12170 {
12171 case ERROR_MARK:
12172 return;
12173
12174 case FUNCTION_DECL:
12175 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
12176 builtin function. Explicit programmer-supplied declarations of
12177 these same functions should NOT be ignored however. */
12178 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
12179 return;
12180
12181 /* What we would really like to do here is to filter out all mere
12182 file-scope declarations of file-scope functions which are never
12183 referenced later within this translation unit (and keep all of ones
12184 that *are* referenced later on) but we aren't clairvoyant, so we have
12185 no idea which functions will be referenced in the future (i.e. later
12186 on within the current translation unit). So here we just ignore all
12187 file-scope function declarations which are not also definitions. If
12188 and when the debugger needs to know something about these functions,
12189 it will have to hunt around and find the DWARF information associated
12190 with the definition of the function.
12191
12192 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12193 nodes represent definitions and which ones represent mere
12194 declarations. We have to check DECL_INITIAL instead. That's because
12195 the C front-end supports some weird semantics for "extern inline"
12196 function definitions. These can get inlined within the current
12197 translation unit (an thus, we need to generate Dwarf info for their
12198 abstract instances so that the Dwarf info for the concrete inlined
12199 instances can have something to refer to) but the compiler never
12200 generates any out-of-lines instances of such things (despite the fact
12201 that they *are* definitions).
12202
12203 The important point is that the C front-end marks these "extern
12204 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12205 them anyway. Note that the C++ front-end also plays some similar games
12206 for inline function definitions appearing within include files which
12207 also contain `#pragma interface' pragmas. */
12208 if (DECL_INITIAL (decl) == NULL_TREE)
12209 return;
12210
12211 /* If we're a nested function, initially use a parent of NULL; if we're
12212 a plain function, this will be fixed up in decls_for_scope. If
12213 we're a method, it will be ignored, since we already have a DIE. */
12214 if (decl_function_context (decl))
12215 context_die = NULL;
12216 break;
12217
12218 case VAR_DECL:
12219 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12220 declaration and if the declaration was never even referenced from
12221 within this entire compilation unit. We suppress these DIEs in
12222 order to save space in the .debug section (by eliminating entries
12223 which are probably useless). Note that we must not suppress
12224 block-local extern declarations (whether used or not) because that
12225 would screw-up the debugger's name lookup mechanism and cause it to
12226 miss things which really ought to be in scope at a given point. */
12227 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12228 return;
12229
12230 /* If we are in terse mode, don't generate any DIEs to represent any
12231 variable declarations or definitions. */
12232 if (debug_info_level <= DINFO_LEVEL_TERSE)
12233 return;
12234 break;
12235
12236 case TYPE_DECL:
12237 /* Don't emit stubs for types unless they are needed by other DIEs. */
12238 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12239 return;
12240
12241 /* Don't bother trying to generate any DIEs to represent any of the
12242 normal built-in types for the language we are compiling. */
12243 if (DECL_SOURCE_LINE (decl) == 0)
12244 {
12245 /* OK, we need to generate one for `bool' so GDB knows what type
12246 comparisons have. */
12247 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12248 == DW_LANG_C_plus_plus)
12249 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12250 && ! DECL_IGNORED_P (decl))
12251 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12252
12253 return;
12254 }
12255
12256 /* If we are in terse mode, don't generate any DIEs for types. */
12257 if (debug_info_level <= DINFO_LEVEL_TERSE)
12258 return;
12259
12260 /* If we're a function-scope tag, initially use a parent of NULL;
12261 this will be fixed up in decls_for_scope. */
12262 if (decl_function_context (decl))
12263 context_die = NULL;
12264
12265 break;
12266
12267 default:
12268 return;
12269 }
12270
12271 gen_decl_die (decl, context_die);
12272 }
12273
12274 /* Output a marker (i.e. a label) for the beginning of the generated code for
12275 a lexical block. */
12276
12277 static void
12278 dwarf2out_begin_block (line, blocknum)
12279 unsigned int line ATTRIBUTE_UNUSED;
12280 unsigned int blocknum;
12281 {
12282 function_section (current_function_decl);
12283 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12284 }
12285
12286 /* Output a marker (i.e. a label) for the end of the generated code for a
12287 lexical block. */
12288
12289 static void
12290 dwarf2out_end_block (line, blocknum)
12291 unsigned int line ATTRIBUTE_UNUSED;
12292 unsigned int blocknum;
12293 {
12294 function_section (current_function_decl);
12295 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12296 }
12297
12298 /* Returns nonzero if it is appropriate not to emit any debugging
12299 information for BLOCK, because it doesn't contain any instructions.
12300
12301 Don't allow this for blocks with nested functions or local classes
12302 as we would end up with orphans, and in the presence of scheduling
12303 we may end up calling them anyway. */
12304
12305 static bool
12306 dwarf2out_ignore_block (block)
12307 tree block;
12308 {
12309 tree decl;
12310
12311 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12312 if (TREE_CODE (decl) == FUNCTION_DECL
12313 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12314 return 0;
12315
12316 return 1;
12317 }
12318
12319 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12320 dwarf2out.c) and return its "index". The index of each (known) filename is
12321 just a unique number which is associated with only that one filename. We
12322 need such numbers for the sake of generating labels (in the .debug_sfnames
12323 section) and references to those files numbers (in the .debug_srcinfo
12324 and.debug_macinfo sections). If the filename given as an argument is not
12325 found in our current list, add it to the list and assign it the next
12326 available unique index number. In order to speed up searches, we remember
12327 the index of the filename was looked up last. This handles the majority of
12328 all searches. */
12329
12330 static unsigned
12331 lookup_filename (file_name)
12332 const char *file_name;
12333 {
12334 size_t i, n;
12335 char *save_file_name;
12336
12337 /* ??? Why isn't DECL_SOURCE_FILE left null instead. */
12338 if (strcmp (file_name, "<internal>") == 0
12339 || strcmp (file_name, "<built-in>") == 0)
12340 return 0;
12341
12342 /* Check to see if the file name that was searched on the previous
12343 call matches this file name. If so, return the index. */
12344 if (file_table_last_lookup_index != 0)
12345 {
12346 const char *last
12347 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12348 if (strcmp (file_name, last) == 0)
12349 return file_table_last_lookup_index;
12350 }
12351
12352 /* Didn't match the previous lookup, search the table */
12353 n = VARRAY_ACTIVE_SIZE (file_table);
12354 for (i = 1; i < n; i++)
12355 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12356 {
12357 file_table_last_lookup_index = i;
12358 return i;
12359 }
12360
12361 /* Add the new entry to the end of the filename table. */
12362 file_table_last_lookup_index = n;
12363 save_file_name = (char *) ggc_strdup (file_name);
12364 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12365 VARRAY_PUSH_UINT (file_table_emitted, 0);
12366
12367 return i;
12368 }
12369
12370 static int
12371 maybe_emit_file (fileno)
12372 int fileno;
12373 {
12374 static int emitcount = 0;
12375 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12376 {
12377 if (!VARRAY_UINT (file_table_emitted, fileno))
12378 {
12379 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12380 fprintf (asm_out_file, "\t.file %u ",
12381 VARRAY_UINT (file_table_emitted, fileno));
12382 output_quoted_string (asm_out_file,
12383 VARRAY_CHAR_PTR (file_table, fileno));
12384 fputc ('\n', asm_out_file);
12385 }
12386 return VARRAY_UINT (file_table_emitted, fileno);
12387 }
12388 else
12389 return fileno;
12390 }
12391
12392 static void
12393 init_file_table ()
12394 {
12395 /* Allocate the initial hunk of the file_table. */
12396 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
12397 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
12398
12399 /* Skip the first entry - file numbers begin at 1. */
12400 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
12401 VARRAY_PUSH_UINT (file_table_emitted, 0);
12402 file_table_last_lookup_index = 0;
12403 }
12404
12405 /* Output a label to mark the beginning of a source code line entry
12406 and record information relating to this source line, in
12407 'line_info_table' for later output of the .debug_line section. */
12408
12409 static void
12410 dwarf2out_source_line (line, filename)
12411 unsigned int line;
12412 const char *filename;
12413 {
12414 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12415 {
12416 function_section (current_function_decl);
12417
12418 /* If requested, emit something human-readable. */
12419 if (flag_debug_asm)
12420 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
12421 filename, line);
12422
12423 if (DWARF2_ASM_LINE_DEBUG_INFO)
12424 {
12425 unsigned file_num = lookup_filename (filename);
12426
12427 file_num = maybe_emit_file (file_num);
12428
12429 /* Emit the .loc directive understood by GNU as. */
12430 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
12431
12432 /* Indicate that line number info exists. */
12433 line_info_table_in_use++;
12434
12435 /* Indicate that multiple line number tables exist. */
12436 if (DECL_SECTION_NAME (current_function_decl))
12437 separate_line_info_table_in_use++;
12438 }
12439 else if (DECL_SECTION_NAME (current_function_decl))
12440 {
12441 dw_separate_line_info_ref line_info;
12442 (*targetm.asm_out.internal_label) (asm_out_file, SEPARATE_LINE_CODE_LABEL,
12443 separate_line_info_table_in_use);
12444
12445 /* expand the line info table if necessary */
12446 if (separate_line_info_table_in_use
12447 == separate_line_info_table_allocated)
12448 {
12449 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12450 separate_line_info_table
12451 = (dw_separate_line_info_ref)
12452 ggc_realloc (separate_line_info_table,
12453 separate_line_info_table_allocated
12454 * sizeof (dw_separate_line_info_entry));
12455 memset ((separate_line_info_table
12456 + separate_line_info_table_in_use),
12457 0,
12458 (LINE_INFO_TABLE_INCREMENT
12459 * sizeof (dw_separate_line_info_entry)));
12460 }
12461
12462 /* Add the new entry at the end of the line_info_table. */
12463 line_info
12464 = &separate_line_info_table[separate_line_info_table_in_use++];
12465 line_info->dw_file_num = lookup_filename (filename);
12466 line_info->dw_line_num = line;
12467 line_info->function = current_function_funcdef_no;
12468 }
12469 else
12470 {
12471 dw_line_info_ref line_info;
12472
12473 (*targetm.asm_out.internal_label) (asm_out_file, LINE_CODE_LABEL,
12474 line_info_table_in_use);
12475
12476 /* Expand the line info table if necessary. */
12477 if (line_info_table_in_use == line_info_table_allocated)
12478 {
12479 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12480 line_info_table
12481 = ggc_realloc (line_info_table,
12482 (line_info_table_allocated
12483 * sizeof (dw_line_info_entry)));
12484 memset (line_info_table + line_info_table_in_use, 0,
12485 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
12486 }
12487
12488 /* Add the new entry at the end of the line_info_table. */
12489 line_info = &line_info_table[line_info_table_in_use++];
12490 line_info->dw_file_num = lookup_filename (filename);
12491 line_info->dw_line_num = line;
12492 }
12493 }
12494 }
12495
12496 /* Record the beginning of a new source file. */
12497
12498 static void
12499 dwarf2out_start_source_file (lineno, filename)
12500 unsigned int lineno;
12501 const char *filename;
12502 {
12503 if (flag_eliminate_dwarf2_dups && !is_main_source)
12504 {
12505 /* Record the beginning of the file for break_out_includes. */
12506 dw_die_ref bincl_die;
12507
12508 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
12509 add_AT_string (bincl_die, DW_AT_name, filename);
12510 }
12511
12512 is_main_source = 0;
12513
12514 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12515 {
12516 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12517 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
12518 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
12519 lineno);
12520 maybe_emit_file (lookup_filename (filename));
12521 dw2_asm_output_data_uleb128 (lookup_filename (filename),
12522 "Filename we just started");
12523 }
12524 }
12525
12526 /* Record the end of a source file. */
12527
12528 static void
12529 dwarf2out_end_source_file (lineno)
12530 unsigned int lineno ATTRIBUTE_UNUSED;
12531 {
12532 if (flag_eliminate_dwarf2_dups)
12533 /* Record the end of the file for break_out_includes. */
12534 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
12535
12536 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12537 {
12538 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12539 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12540 }
12541 }
12542
12543 /* Called from debug_define in toplev.c. The `buffer' parameter contains
12544 the tail part of the directive line, i.e. the part which is past the
12545 initial whitespace, #, whitespace, directive-name, whitespace part. */
12546
12547 static void
12548 dwarf2out_define (lineno, buffer)
12549 unsigned lineno ATTRIBUTE_UNUSED;
12550 const char *buffer ATTRIBUTE_UNUSED;
12551 {
12552 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12553 {
12554 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12555 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
12556 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12557 dw2_asm_output_nstring (buffer, -1, "The macro");
12558 }
12559 }
12560
12561 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
12562 the tail part of the directive line, i.e. the part which is past the
12563 initial whitespace, #, whitespace, directive-name, whitespace part. */
12564
12565 static void
12566 dwarf2out_undef (lineno, buffer)
12567 unsigned lineno ATTRIBUTE_UNUSED;
12568 const char *buffer ATTRIBUTE_UNUSED;
12569 {
12570 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12571 {
12572 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12573 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
12574 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12575 dw2_asm_output_nstring (buffer, -1, "The macro");
12576 }
12577 }
12578
12579 /* Set up for Dwarf output at the start of compilation. */
12580
12581 static void
12582 dwarf2out_init (input_filename)
12583 const char *input_filename ATTRIBUTE_UNUSED;
12584 {
12585 init_file_table ();
12586
12587 /* Allocate the initial hunk of the decl_die_table. */
12588 decl_die_table = ggc_alloc_cleared (DECL_DIE_TABLE_INCREMENT
12589 * sizeof (dw_die_ref));
12590 decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
12591 decl_die_table_in_use = 0;
12592
12593 /* Allocate the initial hunk of the decl_scope_table. */
12594 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
12595
12596 /* Allocate the initial hunk of the abbrev_die_table. */
12597 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
12598 * sizeof (dw_die_ref));
12599 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
12600 /* Zero-th entry is allocated, but unused */
12601 abbrev_die_table_in_use = 1;
12602
12603 /* Allocate the initial hunk of the line_info_table. */
12604 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
12605 * sizeof (dw_line_info_entry));
12606 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
12607
12608 /* Zero-th entry is allocated, but unused */
12609 line_info_table_in_use = 1;
12610
12611 /* Generate the initial DIE for the .debug section. Note that the (string)
12612 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
12613 will (typically) be a relative pathname and that this pathname should be
12614 taken as being relative to the directory from which the compiler was
12615 invoked when the given (base) source file was compiled. We will fill
12616 in this value in dwarf2out_finish. */
12617 comp_unit_die = gen_compile_unit_die (NULL);
12618 is_main_source = 1;
12619
12620 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
12621
12622 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
12623
12624 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
12625 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
12626 DEBUG_ABBREV_SECTION_LABEL, 0);
12627 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12628 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
12629 else
12630 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
12631
12632 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
12633 DEBUG_INFO_SECTION_LABEL, 0);
12634 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
12635 DEBUG_LINE_SECTION_LABEL, 0);
12636 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
12637 DEBUG_RANGES_SECTION_LABEL, 0);
12638 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12639 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
12640 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
12641 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
12642 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12643 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
12644
12645 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12646 {
12647 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12648 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
12649 DEBUG_MACINFO_SECTION_LABEL, 0);
12650 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
12651 }
12652
12653 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12654 {
12655 text_section ();
12656 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
12657 }
12658 }
12659
12660 /* A helper function for dwarf2out_finish called through
12661 ht_forall. Emit one queued .debug_str string. */
12662
12663 static int
12664 output_indirect_string (h, v)
12665 void **h;
12666 void *v ATTRIBUTE_UNUSED;
12667 {
12668 struct indirect_string_node *node = (struct indirect_string_node *) *h;
12669
12670 if (node->form == DW_FORM_strp)
12671 {
12672 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
12673 ASM_OUTPUT_LABEL (asm_out_file, node->label);
12674 assemble_string (node->str, strlen (node->str) + 1);
12675 }
12676
12677 return 1;
12678 }
12679
12680
12681
12682 /* Clear the marks for a die and its children.
12683 Be cool if the mark isn't set. */
12684
12685 static void
12686 prune_unmark_dies (die)
12687 dw_die_ref die;
12688 {
12689 dw_die_ref c;
12690 die->die_mark = 0;
12691 for (c = die->die_child; c; c = c->die_sib)
12692 prune_unmark_dies (c);
12693 }
12694
12695
12696 /* Given DIE that we're marking as used, find any other dies
12697 it references as attributes and mark them as used. */
12698
12699 static void
12700 prune_unused_types_walk_attribs (die)
12701 dw_die_ref die;
12702 {
12703 dw_attr_ref a;
12704
12705 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
12706 {
12707 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
12708 {
12709 /* A reference to another DIE.
12710 Make sure that it will get emitted. */
12711 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
12712 }
12713 else if (a->dw_attr == DW_AT_decl_file)
12714 {
12715 /* A reference to a file. Make sure the file name is emitted. */
12716 a->dw_attr_val.v.val_unsigned =
12717 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
12718 }
12719 }
12720 }
12721
12722
12723 /* Mark DIE as being used. If DOKIDS is true, then walk down
12724 to DIE's children. */
12725
12726 static void
12727 prune_unused_types_mark (die, dokids)
12728 dw_die_ref die;
12729 int dokids;
12730 {
12731 dw_die_ref c;
12732
12733 if (die->die_mark == 0)
12734 {
12735 /* We haven't done this node yet. Mark it as used. */
12736 die->die_mark = 1;
12737
12738 /* We also have to mark its parents as used.
12739 (But we don't want to mark our parents' kids due to this.) */
12740 if (die->die_parent)
12741 prune_unused_types_mark (die->die_parent, 0);
12742
12743 /* Mark any referenced nodes. */
12744 prune_unused_types_walk_attribs (die);
12745 }
12746
12747 if (dokids && die->die_mark != 2)
12748 {
12749 /* We need to walk the children, but haven't done so yet.
12750 Remember that we've walked the kids. */
12751 die->die_mark = 2;
12752
12753 /* Walk them. */
12754 for (c = die->die_child; c; c = c->die_sib)
12755 {
12756 /* If this is an array type, we need to make sure our
12757 kids get marked, even if they're types. */
12758 if (die->die_tag == DW_TAG_array_type)
12759 prune_unused_types_mark (c, 1);
12760 else
12761 prune_unused_types_walk (c);
12762 }
12763 }
12764 }
12765
12766
12767 /* Walk the tree DIE and mark types that we actually use. */
12768
12769 static void
12770 prune_unused_types_walk (die)
12771 dw_die_ref die;
12772 {
12773 dw_die_ref c;
12774
12775 /* Don't do anything if this node is already marked. */
12776 if (die->die_mark)
12777 return;
12778
12779 switch (die->die_tag) {
12780 case DW_TAG_const_type:
12781 case DW_TAG_packed_type:
12782 case DW_TAG_pointer_type:
12783 case DW_TAG_reference_type:
12784 case DW_TAG_volatile_type:
12785 case DW_TAG_typedef:
12786 case DW_TAG_array_type:
12787 case DW_TAG_structure_type:
12788 case DW_TAG_union_type:
12789 case DW_TAG_class_type:
12790 case DW_TAG_friend:
12791 case DW_TAG_variant_part:
12792 case DW_TAG_enumeration_type:
12793 case DW_TAG_subroutine_type:
12794 case DW_TAG_string_type:
12795 case DW_TAG_set_type:
12796 case DW_TAG_subrange_type:
12797 case DW_TAG_ptr_to_member_type:
12798 case DW_TAG_file_type:
12799 /* It's a type node --- don't mark it. */
12800 return;
12801
12802 default:
12803 /* Mark everything else. */
12804 break;
12805 }
12806
12807 die->die_mark = 1;
12808
12809 /* Now, mark any dies referenced from here. */
12810 prune_unused_types_walk_attribs (die);
12811
12812 /* Mark children. */
12813 for (c = die->die_child; c; c = c->die_sib)
12814 prune_unused_types_walk (c);
12815 }
12816
12817
12818 /* Remove from the tree DIE any dies that aren't marked. */
12819
12820 static void
12821 prune_unused_types_prune (die)
12822 dw_die_ref die;
12823 {
12824 dw_die_ref c, p, n;
12825 if (!die->die_mark)
12826 abort();
12827
12828 p = NULL;
12829 for (c = die->die_child; c; c = n)
12830 {
12831 n = c->die_sib;
12832 if (c->die_mark)
12833 {
12834 prune_unused_types_prune (c);
12835 p = c;
12836 }
12837 else
12838 {
12839 if (p)
12840 p->die_sib = n;
12841 else
12842 die->die_child = n;
12843 free_die (c);
12844 }
12845 }
12846 }
12847
12848
12849 /* Remove dies representing declarations that we never use. */
12850
12851 static void
12852 prune_unused_types ()
12853 {
12854 unsigned int i;
12855 limbo_die_node *node;
12856
12857 /* Clear all the marks. */
12858 prune_unmark_dies (comp_unit_die);
12859 for (node = limbo_die_list; node; node = node->next)
12860 prune_unmark_dies (node->die);
12861
12862 /* Set the mark on nodes that are actually used. */
12863 prune_unused_types_walk (comp_unit_die);
12864 for (node = limbo_die_list; node; node = node->next)
12865 prune_unused_types_walk (node->die);
12866
12867 /* Also set the mark on nodes referenced from the
12868 pubname_table or arange_table. */
12869 for (i=0; i < pubname_table_in_use; i++)
12870 {
12871 prune_unused_types_mark (pubname_table[i].die, 1);
12872 }
12873 for (i=0; i < arange_table_in_use; i++)
12874 {
12875 prune_unused_types_mark (arange_table[i], 1);
12876 }
12877
12878 /* Get rid of nodes that aren't marked. */
12879 prune_unused_types_prune (comp_unit_die);
12880 for (node = limbo_die_list; node; node = node->next)
12881 prune_unused_types_prune (node->die);
12882
12883 /* Leave the marks clear. */
12884 prune_unmark_dies (comp_unit_die);
12885 for (node = limbo_die_list; node; node = node->next)
12886 prune_unmark_dies (node->die);
12887 }
12888
12889 /* Output stuff that dwarf requires at the end of every file,
12890 and generate the DWARF-2 debugging info. */
12891
12892 static void
12893 dwarf2out_finish (input_filename)
12894 const char *input_filename;
12895 {
12896 limbo_die_node *node, *next_node;
12897 dw_die_ref die = 0;
12898
12899 /* Add the name for the main input file now. We delayed this from
12900 dwarf2out_init to avoid complications with PCH. */
12901 add_name_attribute (comp_unit_die, input_filename);
12902 if (input_filename[0] != DIR_SEPARATOR)
12903 add_comp_dir_attribute (comp_unit_die);
12904 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
12905 {
12906 size_t i;
12907 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
12908 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR)
12909 {
12910 add_comp_dir_attribute (comp_unit_die);
12911 break;
12912 }
12913 }
12914
12915 /* Traverse the limbo die list, and add parent/child links. The only
12916 dies without parents that should be here are concrete instances of
12917 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
12918 For concrete instances, we can get the parent die from the abstract
12919 instance. */
12920 for (node = limbo_die_list; node; node = next_node)
12921 {
12922 next_node = node->next;
12923 die = node->die;
12924
12925 if (die->die_parent == NULL)
12926 {
12927 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
12928 tree context;
12929
12930 if (origin)
12931 add_child_die (origin->die_parent, die);
12932 else if (die == comp_unit_die)
12933 ;
12934 /* If this was an expression for a bound involved in a function
12935 return type, it may be a SAVE_EXPR for which we weren't able
12936 to find a DIE previously. So try now. */
12937 else if (node->created_for
12938 && TREE_CODE (node->created_for) == SAVE_EXPR
12939 && 0 != (origin = (lookup_decl_die
12940 (SAVE_EXPR_CONTEXT
12941 (node->created_for)))))
12942 add_child_die (origin, die);
12943 else if (errorcount > 0 || sorrycount > 0)
12944 /* It's OK to be confused by errors in the input. */
12945 add_child_die (comp_unit_die, die);
12946 else if (node->created_for
12947 && ((DECL_P (node->created_for)
12948 && (context = DECL_CONTEXT (node->created_for)))
12949 || (TYPE_P (node->created_for)
12950 && (context = TYPE_CONTEXT (node->created_for))))
12951 && TREE_CODE (context) == FUNCTION_DECL)
12952 {
12953 /* In certain situations, the lexical block containing a
12954 nested function can be optimized away, which results
12955 in the nested function die being orphaned. Likewise
12956 with the return type of that nested function. Force
12957 this to be a child of the containing function. */
12958 origin = lookup_decl_die (context);
12959 if (! origin)
12960 abort ();
12961 add_child_die (origin, die);
12962 }
12963 else
12964 abort ();
12965 }
12966 }
12967
12968 limbo_die_list = NULL;
12969
12970 /* Walk through the list of incomplete types again, trying once more to
12971 emit full debugging info for them. */
12972 retry_incomplete_types ();
12973
12974 /* We need to reverse all the dies before break_out_includes, or
12975 we'll see the end of an include file before the beginning. */
12976 reverse_all_dies (comp_unit_die);
12977
12978 if (flag_eliminate_unused_debug_types)
12979 prune_unused_types ();
12980
12981 /* Generate separate CUs for each of the include files we've seen.
12982 They will go into limbo_die_list. */
12983 if (flag_eliminate_dwarf2_dups)
12984 break_out_includes (comp_unit_die);
12985
12986 /* Traverse the DIE's and add add sibling attributes to those DIE's
12987 that have children. */
12988 add_sibling_attributes (comp_unit_die);
12989 for (node = limbo_die_list; node; node = node->next)
12990 add_sibling_attributes (node->die);
12991
12992 /* Output a terminator label for the .text section. */
12993 text_section ();
12994 (*targetm.asm_out.internal_label) (asm_out_file, TEXT_END_LABEL, 0);
12995
12996 /* Output the source line correspondence table. We must do this
12997 even if there is no line information. Otherwise, on an empty
12998 translation unit, we will generate a present, but empty,
12999 .debug_info section. IRIX 6.5 `nm' will then complain when
13000 examining the file. */
13001 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13002 {
13003 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13004 output_line_info ();
13005 }
13006
13007 /* Output location list section if necessary. */
13008 if (have_location_lists)
13009 {
13010 /* Output the location lists info. */
13011 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13012 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13013 DEBUG_LOC_SECTION_LABEL, 0);
13014 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13015 output_location_lists (die);
13016 have_location_lists = 0;
13017 }
13018
13019 /* We can only use the low/high_pc attributes if all of the code was
13020 in .text. */
13021 if (separate_line_info_table_in_use == 0)
13022 {
13023 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13024 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13025 }
13026
13027 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13028 "base address". Use zero so that these addresses become absolute. */
13029 else if (have_location_lists || ranges_table_in_use)
13030 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13031
13032 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13033 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13034 debug_line_section_label);
13035
13036 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13037 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13038
13039 /* Output all of the compilation units. We put the main one last so that
13040 the offsets are available to output_pubnames. */
13041 for (node = limbo_die_list; node; node = node->next)
13042 output_comp_unit (node->die, 0);
13043
13044 output_comp_unit (comp_unit_die, 0);
13045
13046 /* Output the abbreviation table. */
13047 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13048 output_abbrev_section ();
13049
13050 /* Output public names table if necessary. */
13051 if (pubname_table_in_use)
13052 {
13053 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13054 output_pubnames ();
13055 }
13056
13057 /* Output the address range information. We only put functions in the arange
13058 table, so don't write it out if we don't have any. */
13059 if (fde_table_in_use)
13060 {
13061 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13062 output_aranges ();
13063 }
13064
13065 /* Output ranges section if necessary. */
13066 if (ranges_table_in_use)
13067 {
13068 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13069 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13070 output_ranges ();
13071 }
13072
13073 /* Have to end the primary source file. */
13074 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13075 {
13076 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13077 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13078 dw2_asm_output_data (1, 0, "End compilation unit");
13079 }
13080
13081 /* If we emitted any DW_FORM_strp form attribute, output the string
13082 table too. */
13083 if (debug_str_hash)
13084 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13085 }
13086 #else
13087
13088 /* This should never be used, but its address is needed for comparisons. */
13089 const struct gcc_debug_hooks dwarf2_debug_hooks;
13090
13091 #endif /* DWARF2_DEBUGGING_INFO */
13092
13093 #include "gt-dwarf2out.h"