dwarf2out.c (output_loc_list): Don't use deltas if we have a separate line info table...
[gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "real.h"
44 #include "rtl.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "reload.h"
49 #include "function.h"
50 #include "output.h"
51 #include "expr.h"
52 #include "libfuncs.h"
53 #include "except.h"
54 #include "dwarf2.h"
55 #include "dwarf2out.h"
56 #include "dwarf2asm.h"
57 #include "toplev.h"
58 #include "varray.h"
59 #include "ggc.h"
60 #include "md5.h"
61 #include "tm_p.h"
62 #include "diagnostic.h"
63 #include "debug.h"
64 #include "target.h"
65 #include "langhooks.h"
66 #include "hashtab.h"
67 #include "cgraph.h"
68 #include "input.h"
69
70 #ifdef DWARF2_DEBUGGING_INFO
71 static void dwarf2out_source_line (unsigned int, const char *);
72 #endif
73
74 /* DWARF2 Abbreviation Glossary:
75 CFA = Canonical Frame Address
76 a fixed address on the stack which identifies a call frame.
77 We define it to be the value of SP just before the call insn.
78 The CFA register and offset, which may change during the course
79 of the function, are used to calculate its value at runtime.
80 CFI = Call Frame Instruction
81 an instruction for the DWARF2 abstract machine
82 CIE = Common Information Entry
83 information describing information common to one or more FDEs
84 DIE = Debugging Information Entry
85 FDE = Frame Description Entry
86 information describing the stack call frame, in particular,
87 how to restore registers
88
89 DW_CFA_... = DWARF2 CFA call frame instruction
90 DW_TAG_... = DWARF2 DIE tag */
91
92 /* Decide whether we want to emit frame unwind information for the current
93 translation unit. */
94
95 int
96 dwarf2out_do_frame (void)
97 {
98 return (write_symbols == DWARF2_DEBUG
99 || write_symbols == VMS_AND_DWARF2_DEBUG
100 #ifdef DWARF2_FRAME_INFO
101 || DWARF2_FRAME_INFO
102 #endif
103 #ifdef DWARF2_UNWIND_INFO
104 || flag_unwind_tables
105 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
106 #endif
107 );
108 }
109
110 /* The size of the target's pointer type. */
111 #ifndef PTR_SIZE
112 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
113 #endif
114
115 /* Various versions of targetm.eh_frame_section. Note these must appear
116 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
117
118 /* Version of targetm.eh_frame_section for systems with named sections. */
119 void
120 named_section_eh_frame_section (void)
121 {
122 #ifdef EH_FRAME_SECTION_NAME
123 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
124 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
125 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
126 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
127 int flags;
128
129 flags = (! flag_pic
130 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
131 && (fde_encoding & 0x70) != DW_EH_PE_aligned
132 && (per_encoding & 0x70) != DW_EH_PE_absptr
133 && (per_encoding & 0x70) != DW_EH_PE_aligned
134 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
135 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
136 ? 0 : SECTION_WRITE;
137 named_section_flags (EH_FRAME_SECTION_NAME, flags);
138 #else
139 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
140 #endif
141 #endif
142 }
143
144 /* Version of targetm.eh_frame_section for systems using collect2. */
145 void
146 collect2_eh_frame_section (void)
147 {
148 tree label = get_file_function_name ('F');
149
150 data_section ();
151 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
152 (*targetm.asm_out.globalize_label) (asm_out_file, IDENTIFIER_POINTER (label));
153 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
154 }
155
156 /* Default version of targetm.eh_frame_section. */
157 void
158 default_eh_frame_section (void)
159 {
160 #ifdef EH_FRAME_SECTION_NAME
161 named_section_eh_frame_section ();
162 #else
163 collect2_eh_frame_section ();
164 #endif
165 }
166
167 /* Array of RTXes referenced by the debugging information, which therefore
168 must be kept around forever. */
169 static GTY(()) varray_type used_rtx_varray;
170
171 /* A pointer to the base of a list of incomplete types which might be
172 completed at some later time. incomplete_types_list needs to be a VARRAY
173 because we want to tell the garbage collector about it. */
174 static GTY(()) varray_type incomplete_types;
175
176 /* A pointer to the base of a table of references to declaration
177 scopes. This table is a display which tracks the nesting
178 of declaration scopes at the current scope and containing
179 scopes. This table is used to find the proper place to
180 define type declaration DIE's. */
181 static GTY(()) varray_type decl_scope_table;
182
183 /* How to start an assembler comment. */
184 #ifndef ASM_COMMENT_START
185 #define ASM_COMMENT_START ";#"
186 #endif
187
188 typedef struct dw_cfi_struct *dw_cfi_ref;
189 typedef struct dw_fde_struct *dw_fde_ref;
190 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
191
192 /* Call frames are described using a sequence of Call Frame
193 Information instructions. The register number, offset
194 and address fields are provided as possible operands;
195 their use is selected by the opcode field. */
196
197 enum dw_cfi_oprnd_type {
198 dw_cfi_oprnd_unused,
199 dw_cfi_oprnd_reg_num,
200 dw_cfi_oprnd_offset,
201 dw_cfi_oprnd_addr,
202 dw_cfi_oprnd_loc
203 };
204
205 typedef union dw_cfi_oprnd_struct GTY(())
206 {
207 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
208 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
209 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
210 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
211 }
212 dw_cfi_oprnd;
213
214 typedef struct dw_cfi_struct GTY(())
215 {
216 dw_cfi_ref dw_cfi_next;
217 enum dwarf_call_frame_info dw_cfi_opc;
218 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
219 dw_cfi_oprnd1;
220 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
221 dw_cfi_oprnd2;
222 }
223 dw_cfi_node;
224
225 /* This is how we define the location of the CFA. We use to handle it
226 as REG + OFFSET all the time, but now it can be more complex.
227 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
228 Instead of passing around REG and OFFSET, we pass a copy
229 of this structure. */
230 typedef struct cfa_loc GTY(())
231 {
232 unsigned long reg;
233 HOST_WIDE_INT offset;
234 HOST_WIDE_INT base_offset;
235 int indirect; /* 1 if CFA is accessed via a dereference. */
236 } dw_cfa_location;
237
238 /* All call frame descriptions (FDE's) in the GCC generated DWARF
239 refer to a single Common Information Entry (CIE), defined at
240 the beginning of the .debug_frame section. This use of a single
241 CIE obviates the need to keep track of multiple CIE's
242 in the DWARF generation routines below. */
243
244 typedef struct dw_fde_struct GTY(())
245 {
246 const char *dw_fde_begin;
247 const char *dw_fde_current_label;
248 const char *dw_fde_end;
249 dw_cfi_ref dw_fde_cfi;
250 unsigned funcdef_number;
251 unsigned all_throwers_are_sibcalls : 1;
252 unsigned nothrow : 1;
253 unsigned uses_eh_lsda : 1;
254 }
255 dw_fde_node;
256
257 /* Maximum size (in bytes) of an artificially generated label. */
258 #define MAX_ARTIFICIAL_LABEL_BYTES 30
259
260 /* The size of addresses as they appear in the Dwarf 2 data.
261 Some architectures use word addresses to refer to code locations,
262 but Dwarf 2 info always uses byte addresses. On such machines,
263 Dwarf 2 addresses need to be larger than the architecture's
264 pointers. */
265 #ifndef DWARF2_ADDR_SIZE
266 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
267 #endif
268
269 /* The size in bytes of a DWARF field indicating an offset or length
270 relative to a debug info section, specified to be 4 bytes in the
271 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
272 as PTR_SIZE. */
273
274 #ifndef DWARF_OFFSET_SIZE
275 #define DWARF_OFFSET_SIZE 4
276 #endif
277
278 /* According to the (draft) DWARF 3 specification, the initial length
279 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
280 bytes are 0xffffffff, followed by the length stored in the next 8
281 bytes.
282
283 However, the SGI/MIPS ABI uses an initial length which is equal to
284 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
285
286 #ifndef DWARF_INITIAL_LENGTH_SIZE
287 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
288 #endif
289
290 #define DWARF_VERSION 2
291
292 /* Round SIZE up to the nearest BOUNDARY. */
293 #define DWARF_ROUND(SIZE,BOUNDARY) \
294 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
295
296 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
297 #ifndef DWARF_CIE_DATA_ALIGNMENT
298 #ifdef STACK_GROWS_DOWNWARD
299 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
300 #else
301 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
302 #endif
303 #endif
304
305 /* A pointer to the base of a table that contains frame description
306 information for each routine. */
307 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
308
309 /* Number of elements currently allocated for fde_table. */
310 static GTY(()) unsigned fde_table_allocated;
311
312 /* Number of elements in fde_table currently in use. */
313 static GTY(()) unsigned fde_table_in_use;
314
315 /* Size (in elements) of increments by which we may expand the
316 fde_table. */
317 #define FDE_TABLE_INCREMENT 256
318
319 /* A list of call frame insns for the CIE. */
320 static GTY(()) dw_cfi_ref cie_cfi_head;
321
322 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
323 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
324 attribute that accelerates the lookup of the FDE associated
325 with the subprogram. This variable holds the table index of the FDE
326 associated with the current function (body) definition. */
327 static unsigned current_funcdef_fde;
328 #endif
329
330 struct indirect_string_node GTY(())
331 {
332 const char *str;
333 unsigned int refcount;
334 unsigned int form;
335 char *label;
336 };
337
338 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
339
340 static GTY(()) int dw2_string_counter;
341 static GTY(()) unsigned long dwarf2out_cfi_label_num;
342
343 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
344
345 /* Forward declarations for functions defined in this file. */
346
347 static char *stripattributes (const char *);
348 static const char *dwarf_cfi_name (unsigned);
349 static dw_cfi_ref new_cfi (void);
350 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
351 static void add_fde_cfi (const char *, dw_cfi_ref);
352 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
353 static void lookup_cfa (dw_cfa_location *);
354 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
355 static void initial_return_save (rtx);
356 static HOST_WIDE_INT stack_adjust_offset (rtx);
357 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
358 static void output_call_frame_info (int);
359 static void dwarf2out_stack_adjust (rtx);
360 static void queue_reg_save (const char *, rtx, HOST_WIDE_INT);
361 static void flush_queued_reg_saves (void);
362 static bool clobbers_queued_reg_save (rtx);
363 static void dwarf2out_frame_debug_expr (rtx, const char *);
364
365 /* Support for complex CFA locations. */
366 static void output_cfa_loc (dw_cfi_ref);
367 static void get_cfa_from_loc_descr (dw_cfa_location *,
368 struct dw_loc_descr_struct *);
369 static struct dw_loc_descr_struct *build_cfa_loc
370 (dw_cfa_location *);
371 static void def_cfa_1 (const char *, dw_cfa_location *);
372
373 /* How to start an assembler comment. */
374 #ifndef ASM_COMMENT_START
375 #define ASM_COMMENT_START ";#"
376 #endif
377
378 /* Data and reference forms for relocatable data. */
379 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
380 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
381
382 #ifndef DEBUG_FRAME_SECTION
383 #define DEBUG_FRAME_SECTION ".debug_frame"
384 #endif
385
386 #ifndef FUNC_BEGIN_LABEL
387 #define FUNC_BEGIN_LABEL "LFB"
388 #endif
389
390 #ifndef FUNC_END_LABEL
391 #define FUNC_END_LABEL "LFE"
392 #endif
393
394 #define FRAME_BEGIN_LABEL "Lframe"
395 #define CIE_AFTER_SIZE_LABEL "LSCIE"
396 #define CIE_END_LABEL "LECIE"
397 #define FDE_LABEL "LSFDE"
398 #define FDE_AFTER_SIZE_LABEL "LASFDE"
399 #define FDE_END_LABEL "LEFDE"
400 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
401 #define LINE_NUMBER_END_LABEL "LELT"
402 #define LN_PROLOG_AS_LABEL "LASLTP"
403 #define LN_PROLOG_END_LABEL "LELTP"
404 #define DIE_LABEL_PREFIX "DW"
405
406 /* The DWARF 2 CFA column which tracks the return address. Normally this
407 is the column for PC, or the first column after all of the hard
408 registers. */
409 #ifndef DWARF_FRAME_RETURN_COLUMN
410 #ifdef PC_REGNUM
411 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
412 #else
413 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
414 #endif
415 #endif
416
417 /* The mapping from gcc register number to DWARF 2 CFA column number. By
418 default, we just provide columns for all registers. */
419 #ifndef DWARF_FRAME_REGNUM
420 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
421 #endif
422
423 /* The offset from the incoming value of %sp to the top of the stack frame
424 for the current function. */
425 #ifndef INCOMING_FRAME_SP_OFFSET
426 #define INCOMING_FRAME_SP_OFFSET 0
427 #endif
428 \f
429 /* Hook used by __throw. */
430
431 rtx
432 expand_builtin_dwarf_sp_column (void)
433 {
434 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
435 }
436
437 /* Return a pointer to a copy of the section string name S with all
438 attributes stripped off, and an asterisk prepended (for assemble_name). */
439
440 static inline char *
441 stripattributes (const char *s)
442 {
443 char *stripped = xmalloc (strlen (s) + 2);
444 char *p = stripped;
445
446 *p++ = '*';
447
448 while (*s && *s != ',')
449 *p++ = *s++;
450
451 *p = '\0';
452 return stripped;
453 }
454
455 /* Generate code to initialize the register size table. */
456
457 void
458 expand_builtin_init_dwarf_reg_sizes (tree address)
459 {
460 int i;
461 enum machine_mode mode = TYPE_MODE (char_type_node);
462 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
463 rtx mem = gen_rtx_MEM (BLKmode, addr);
464 bool wrote_return_column = false;
465
466 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
467 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
468 {
469 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
470 enum machine_mode save_mode = reg_raw_mode[i];
471 HOST_WIDE_INT size;
472
473 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
474 save_mode = choose_hard_reg_mode (i, 1, true);
475 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
476 {
477 if (save_mode == VOIDmode)
478 continue;
479 wrote_return_column = true;
480 }
481 size = GET_MODE_SIZE (save_mode);
482 if (offset < 0)
483 continue;
484
485 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
486 }
487
488 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
489 if (! wrote_return_column)
490 abort ();
491 i = DWARF_ALT_FRAME_RETURN_COLUMN;
492 wrote_return_column = false;
493 #else
494 i = DWARF_FRAME_RETURN_COLUMN;
495 #endif
496
497 if (! wrote_return_column)
498 {
499 enum machine_mode save_mode = Pmode;
500 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
501 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
502 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
503 }
504 }
505
506 /* Convert a DWARF call frame info. operation to its string name */
507
508 static const char *
509 dwarf_cfi_name (unsigned int cfi_opc)
510 {
511 switch (cfi_opc)
512 {
513 case DW_CFA_advance_loc:
514 return "DW_CFA_advance_loc";
515 case DW_CFA_offset:
516 return "DW_CFA_offset";
517 case DW_CFA_restore:
518 return "DW_CFA_restore";
519 case DW_CFA_nop:
520 return "DW_CFA_nop";
521 case DW_CFA_set_loc:
522 return "DW_CFA_set_loc";
523 case DW_CFA_advance_loc1:
524 return "DW_CFA_advance_loc1";
525 case DW_CFA_advance_loc2:
526 return "DW_CFA_advance_loc2";
527 case DW_CFA_advance_loc4:
528 return "DW_CFA_advance_loc4";
529 case DW_CFA_offset_extended:
530 return "DW_CFA_offset_extended";
531 case DW_CFA_restore_extended:
532 return "DW_CFA_restore_extended";
533 case DW_CFA_undefined:
534 return "DW_CFA_undefined";
535 case DW_CFA_same_value:
536 return "DW_CFA_same_value";
537 case DW_CFA_register:
538 return "DW_CFA_register";
539 case DW_CFA_remember_state:
540 return "DW_CFA_remember_state";
541 case DW_CFA_restore_state:
542 return "DW_CFA_restore_state";
543 case DW_CFA_def_cfa:
544 return "DW_CFA_def_cfa";
545 case DW_CFA_def_cfa_register:
546 return "DW_CFA_def_cfa_register";
547 case DW_CFA_def_cfa_offset:
548 return "DW_CFA_def_cfa_offset";
549
550 /* DWARF 3 */
551 case DW_CFA_def_cfa_expression:
552 return "DW_CFA_def_cfa_expression";
553 case DW_CFA_expression:
554 return "DW_CFA_expression";
555 case DW_CFA_offset_extended_sf:
556 return "DW_CFA_offset_extended_sf";
557 case DW_CFA_def_cfa_sf:
558 return "DW_CFA_def_cfa_sf";
559 case DW_CFA_def_cfa_offset_sf:
560 return "DW_CFA_def_cfa_offset_sf";
561
562 /* SGI/MIPS specific */
563 case DW_CFA_MIPS_advance_loc8:
564 return "DW_CFA_MIPS_advance_loc8";
565
566 /* GNU extensions */
567 case DW_CFA_GNU_window_save:
568 return "DW_CFA_GNU_window_save";
569 case DW_CFA_GNU_args_size:
570 return "DW_CFA_GNU_args_size";
571 case DW_CFA_GNU_negative_offset_extended:
572 return "DW_CFA_GNU_negative_offset_extended";
573
574 default:
575 return "DW_CFA_<unknown>";
576 }
577 }
578
579 /* Return a pointer to a newly allocated Call Frame Instruction. */
580
581 static inline dw_cfi_ref
582 new_cfi (void)
583 {
584 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
585
586 cfi->dw_cfi_next = NULL;
587 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
588 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
589
590 return cfi;
591 }
592
593 /* Add a Call Frame Instruction to list of instructions. */
594
595 static inline void
596 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
597 {
598 dw_cfi_ref *p;
599
600 /* Find the end of the chain. */
601 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
602 ;
603
604 *p = cfi;
605 }
606
607 /* Generate a new label for the CFI info to refer to. */
608
609 char *
610 dwarf2out_cfi_label (void)
611 {
612 static char label[20];
613
614 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
615 ASM_OUTPUT_LABEL (asm_out_file, label);
616 return label;
617 }
618
619 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
620 or to the CIE if LABEL is NULL. */
621
622 static void
623 add_fde_cfi (const char *label, dw_cfi_ref cfi)
624 {
625 if (label)
626 {
627 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
628
629 if (*label == 0)
630 label = dwarf2out_cfi_label ();
631
632 if (fde->dw_fde_current_label == NULL
633 || strcmp (label, fde->dw_fde_current_label) != 0)
634 {
635 dw_cfi_ref xcfi;
636
637 fde->dw_fde_current_label = label = xstrdup (label);
638
639 /* Set the location counter to the new label. */
640 xcfi = new_cfi ();
641 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
642 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
643 add_cfi (&fde->dw_fde_cfi, xcfi);
644 }
645
646 add_cfi (&fde->dw_fde_cfi, cfi);
647 }
648
649 else
650 add_cfi (&cie_cfi_head, cfi);
651 }
652
653 /* Subroutine of lookup_cfa. */
654
655 static inline void
656 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
657 {
658 switch (cfi->dw_cfi_opc)
659 {
660 case DW_CFA_def_cfa_offset:
661 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
662 break;
663 case DW_CFA_def_cfa_register:
664 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
665 break;
666 case DW_CFA_def_cfa:
667 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
668 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
669 break;
670 case DW_CFA_def_cfa_expression:
671 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
672 break;
673 default:
674 break;
675 }
676 }
677
678 /* Find the previous value for the CFA. */
679
680 static void
681 lookup_cfa (dw_cfa_location *loc)
682 {
683 dw_cfi_ref cfi;
684
685 loc->reg = (unsigned long) -1;
686 loc->offset = 0;
687 loc->indirect = 0;
688 loc->base_offset = 0;
689
690 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
691 lookup_cfa_1 (cfi, loc);
692
693 if (fde_table_in_use)
694 {
695 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
696 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
697 lookup_cfa_1 (cfi, loc);
698 }
699 }
700
701 /* The current rule for calculating the DWARF2 canonical frame address. */
702 static dw_cfa_location cfa;
703
704 /* The register used for saving registers to the stack, and its offset
705 from the CFA. */
706 static dw_cfa_location cfa_store;
707
708 /* The running total of the size of arguments pushed onto the stack. */
709 static HOST_WIDE_INT args_size;
710
711 /* The last args_size we actually output. */
712 static HOST_WIDE_INT old_args_size;
713
714 /* Entry point to update the canonical frame address (CFA).
715 LABEL is passed to add_fde_cfi. The value of CFA is now to be
716 calculated from REG+OFFSET. */
717
718 void
719 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
720 {
721 dw_cfa_location loc;
722 loc.indirect = 0;
723 loc.base_offset = 0;
724 loc.reg = reg;
725 loc.offset = offset;
726 def_cfa_1 (label, &loc);
727 }
728
729 /* This routine does the actual work. The CFA is now calculated from
730 the dw_cfa_location structure. */
731
732 static void
733 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
734 {
735 dw_cfi_ref cfi;
736 dw_cfa_location old_cfa, loc;
737
738 cfa = *loc_p;
739 loc = *loc_p;
740
741 if (cfa_store.reg == loc.reg && loc.indirect == 0)
742 cfa_store.offset = loc.offset;
743
744 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
745 lookup_cfa (&old_cfa);
746
747 /* If nothing changed, no need to issue any call frame instructions. */
748 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
749 && loc.indirect == old_cfa.indirect
750 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
751 return;
752
753 cfi = new_cfi ();
754
755 if (loc.reg == old_cfa.reg && !loc.indirect)
756 {
757 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
758 indicating the CFA register did not change but the offset
759 did. */
760 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
761 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
762 }
763
764 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
765 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
766 && !loc.indirect)
767 {
768 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
769 indicating the CFA register has changed to <register> but the
770 offset has not changed. */
771 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
772 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
773 }
774 #endif
775
776 else if (loc.indirect == 0)
777 {
778 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
779 indicating the CFA register has changed to <register> with
780 the specified offset. */
781 cfi->dw_cfi_opc = DW_CFA_def_cfa;
782 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
783 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
784 }
785 else
786 {
787 /* Construct a DW_CFA_def_cfa_expression instruction to
788 calculate the CFA using a full location expression since no
789 register-offset pair is available. */
790 struct dw_loc_descr_struct *loc_list;
791
792 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
793 loc_list = build_cfa_loc (&loc);
794 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
795 }
796
797 add_fde_cfi (label, cfi);
798 }
799
800 /* Add the CFI for saving a register. REG is the CFA column number.
801 LABEL is passed to add_fde_cfi.
802 If SREG is -1, the register is saved at OFFSET from the CFA;
803 otherwise it is saved in SREG. */
804
805 static void
806 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
807 {
808 dw_cfi_ref cfi = new_cfi ();
809
810 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
811
812 /* The following comparison is correct. -1 is used to indicate that
813 the value isn't a register number. */
814 if (sreg == (unsigned int) -1)
815 {
816 if (reg & ~0x3f)
817 /* The register number won't fit in 6 bits, so we have to use
818 the long form. */
819 cfi->dw_cfi_opc = DW_CFA_offset_extended;
820 else
821 cfi->dw_cfi_opc = DW_CFA_offset;
822
823 #ifdef ENABLE_CHECKING
824 {
825 /* If we get an offset that is not a multiple of
826 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
827 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
828 description. */
829 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
830
831 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
832 abort ();
833 }
834 #endif
835 offset /= DWARF_CIE_DATA_ALIGNMENT;
836 if (offset < 0)
837 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
838
839 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
840 }
841 else if (sreg == reg)
842 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
843 return;
844 else
845 {
846 cfi->dw_cfi_opc = DW_CFA_register;
847 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
848 }
849
850 add_fde_cfi (label, cfi);
851 }
852
853 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
854 This CFI tells the unwinder that it needs to restore the window registers
855 from the previous frame's window save area.
856
857 ??? Perhaps we should note in the CIE where windows are saved (instead of
858 assuming 0(cfa)) and what registers are in the window. */
859
860 void
861 dwarf2out_window_save (const char *label)
862 {
863 dw_cfi_ref cfi = new_cfi ();
864
865 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
866 add_fde_cfi (label, cfi);
867 }
868
869 /* Add a CFI to update the running total of the size of arguments
870 pushed onto the stack. */
871
872 void
873 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
874 {
875 dw_cfi_ref cfi;
876
877 if (size == old_args_size)
878 return;
879
880 old_args_size = size;
881
882 cfi = new_cfi ();
883 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
884 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
885 add_fde_cfi (label, cfi);
886 }
887
888 /* Entry point for saving a register to the stack. REG is the GCC register
889 number. LABEL and OFFSET are passed to reg_save. */
890
891 void
892 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
893 {
894 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
895 }
896
897 /* Entry point for saving the return address in the stack.
898 LABEL and OFFSET are passed to reg_save. */
899
900 void
901 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
902 {
903 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
904 }
905
906 /* Entry point for saving the return address in a register.
907 LABEL and SREG are passed to reg_save. */
908
909 void
910 dwarf2out_return_reg (const char *label, unsigned int sreg)
911 {
912 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
913 }
914
915 /* Record the initial position of the return address. RTL is
916 INCOMING_RETURN_ADDR_RTX. */
917
918 static void
919 initial_return_save (rtx rtl)
920 {
921 unsigned int reg = (unsigned int) -1;
922 HOST_WIDE_INT offset = 0;
923
924 switch (GET_CODE (rtl))
925 {
926 case REG:
927 /* RA is in a register. */
928 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
929 break;
930
931 case MEM:
932 /* RA is on the stack. */
933 rtl = XEXP (rtl, 0);
934 switch (GET_CODE (rtl))
935 {
936 case REG:
937 if (REGNO (rtl) != STACK_POINTER_REGNUM)
938 abort ();
939 offset = 0;
940 break;
941
942 case PLUS:
943 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
944 abort ();
945 offset = INTVAL (XEXP (rtl, 1));
946 break;
947
948 case MINUS:
949 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
950 abort ();
951 offset = -INTVAL (XEXP (rtl, 1));
952 break;
953
954 default:
955 abort ();
956 }
957
958 break;
959
960 case PLUS:
961 /* The return address is at some offset from any value we can
962 actually load. For instance, on the SPARC it is in %i7+8. Just
963 ignore the offset for now; it doesn't matter for unwinding frames. */
964 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
965 abort ();
966 initial_return_save (XEXP (rtl, 0));
967 return;
968
969 default:
970 abort ();
971 }
972
973 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
974 }
975
976 /* Given a SET, calculate the amount of stack adjustment it
977 contains. */
978
979 static HOST_WIDE_INT
980 stack_adjust_offset (rtx pattern)
981 {
982 rtx src = SET_SRC (pattern);
983 rtx dest = SET_DEST (pattern);
984 HOST_WIDE_INT offset = 0;
985 enum rtx_code code;
986
987 if (dest == stack_pointer_rtx)
988 {
989 /* (set (reg sp) (plus (reg sp) (const_int))) */
990 code = GET_CODE (src);
991 if (! (code == PLUS || code == MINUS)
992 || XEXP (src, 0) != stack_pointer_rtx
993 || GET_CODE (XEXP (src, 1)) != CONST_INT)
994 return 0;
995
996 offset = INTVAL (XEXP (src, 1));
997 if (code == PLUS)
998 offset = -offset;
999 }
1000 else if (GET_CODE (dest) == MEM)
1001 {
1002 /* (set (mem (pre_dec (reg sp))) (foo)) */
1003 src = XEXP (dest, 0);
1004 code = GET_CODE (src);
1005
1006 switch (code)
1007 {
1008 case PRE_MODIFY:
1009 case POST_MODIFY:
1010 if (XEXP (src, 0) == stack_pointer_rtx)
1011 {
1012 rtx val = XEXP (XEXP (src, 1), 1);
1013 /* We handle only adjustments by constant amount. */
1014 if (GET_CODE (XEXP (src, 1)) != PLUS ||
1015 GET_CODE (val) != CONST_INT)
1016 abort ();
1017 offset = -INTVAL (val);
1018 break;
1019 }
1020 return 0;
1021
1022 case PRE_DEC:
1023 case POST_DEC:
1024 if (XEXP (src, 0) == stack_pointer_rtx)
1025 {
1026 offset = GET_MODE_SIZE (GET_MODE (dest));
1027 break;
1028 }
1029 return 0;
1030
1031 case PRE_INC:
1032 case POST_INC:
1033 if (XEXP (src, 0) == stack_pointer_rtx)
1034 {
1035 offset = -GET_MODE_SIZE (GET_MODE (dest));
1036 break;
1037 }
1038 return 0;
1039
1040 default:
1041 return 0;
1042 }
1043 }
1044 else
1045 return 0;
1046
1047 return offset;
1048 }
1049
1050 /* Check INSN to see if it looks like a push or a stack adjustment, and
1051 make a note of it if it does. EH uses this information to find out how
1052 much extra space it needs to pop off the stack. */
1053
1054 static void
1055 dwarf2out_stack_adjust (rtx insn)
1056 {
1057 HOST_WIDE_INT offset;
1058 const char *label;
1059 int i;
1060
1061 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1062 with this function. Proper support would require all frame-related
1063 insns to be marked, and to be able to handle saving state around
1064 epilogues textually in the middle of the function. */
1065 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1066 return;
1067
1068 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1069 {
1070 /* Extract the size of the args from the CALL rtx itself. */
1071 insn = PATTERN (insn);
1072 if (GET_CODE (insn) == PARALLEL)
1073 insn = XVECEXP (insn, 0, 0);
1074 if (GET_CODE (insn) == SET)
1075 insn = SET_SRC (insn);
1076 if (GET_CODE (insn) != CALL)
1077 abort ();
1078
1079 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1080 return;
1081 }
1082
1083 /* If only calls can throw, and we have a frame pointer,
1084 save up adjustments until we see the CALL_INSN. */
1085 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1086 return;
1087
1088 if (GET_CODE (insn) == BARRIER)
1089 {
1090 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1091 the compiler will have already emitted a stack adjustment, but
1092 doesn't bother for calls to noreturn functions. */
1093 #ifdef STACK_GROWS_DOWNWARD
1094 offset = -args_size;
1095 #else
1096 offset = args_size;
1097 #endif
1098 }
1099 else if (GET_CODE (PATTERN (insn)) == SET)
1100 offset = stack_adjust_offset (PATTERN (insn));
1101 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1102 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1103 {
1104 /* There may be stack adjustments inside compound insns. Search
1105 for them. */
1106 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1107 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1108 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1109 }
1110 else
1111 return;
1112
1113 if (offset == 0)
1114 return;
1115
1116 if (cfa.reg == STACK_POINTER_REGNUM)
1117 cfa.offset += offset;
1118
1119 #ifndef STACK_GROWS_DOWNWARD
1120 offset = -offset;
1121 #endif
1122
1123 args_size += offset;
1124 if (args_size < 0)
1125 args_size = 0;
1126
1127 label = dwarf2out_cfi_label ();
1128 def_cfa_1 (label, &cfa);
1129 dwarf2out_args_size (label, args_size);
1130 }
1131
1132 #endif
1133
1134 /* We delay emitting a register save until either (a) we reach the end
1135 of the prologue or (b) the register is clobbered. This clusters
1136 register saves so that there are fewer pc advances. */
1137
1138 struct queued_reg_save GTY(())
1139 {
1140 struct queued_reg_save *next;
1141 rtx reg;
1142 HOST_WIDE_INT cfa_offset;
1143 };
1144
1145 static GTY(()) struct queued_reg_save *queued_reg_saves;
1146
1147 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1148 static const char *last_reg_save_label;
1149
1150 static void
1151 queue_reg_save (const char *label, rtx reg, HOST_WIDE_INT offset)
1152 {
1153 struct queued_reg_save *q = ggc_alloc (sizeof (*q));
1154
1155 q->next = queued_reg_saves;
1156 q->reg = reg;
1157 q->cfa_offset = offset;
1158 queued_reg_saves = q;
1159
1160 last_reg_save_label = label;
1161 }
1162
1163 static void
1164 flush_queued_reg_saves (void)
1165 {
1166 struct queued_reg_save *q, *next;
1167
1168 for (q = queued_reg_saves; q; q = next)
1169 {
1170 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1171 next = q->next;
1172 }
1173
1174 queued_reg_saves = NULL;
1175 last_reg_save_label = NULL;
1176 }
1177
1178 static bool
1179 clobbers_queued_reg_save (rtx insn)
1180 {
1181 struct queued_reg_save *q;
1182
1183 for (q = queued_reg_saves; q; q = q->next)
1184 if (modified_in_p (q->reg, insn))
1185 return true;
1186
1187 return false;
1188 }
1189
1190
1191 /* A temporary register holding an integral value used in adjusting SP
1192 or setting up the store_reg. The "offset" field holds the integer
1193 value, not an offset. */
1194 static dw_cfa_location cfa_temp;
1195
1196 /* Record call frame debugging information for an expression EXPR,
1197 which either sets SP or FP (adjusting how we calculate the frame
1198 address) or saves a register to the stack. LABEL indicates the
1199 address of EXPR.
1200
1201 This function encodes a state machine mapping rtxes to actions on
1202 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1203 users need not read the source code.
1204
1205 The High-Level Picture
1206
1207 Changes in the register we use to calculate the CFA: Currently we
1208 assume that if you copy the CFA register into another register, we
1209 should take the other one as the new CFA register; this seems to
1210 work pretty well. If it's wrong for some target, it's simple
1211 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1212
1213 Changes in the register we use for saving registers to the stack:
1214 This is usually SP, but not always. Again, we deduce that if you
1215 copy SP into another register (and SP is not the CFA register),
1216 then the new register is the one we will be using for register
1217 saves. This also seems to work.
1218
1219 Register saves: There's not much guesswork about this one; if
1220 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1221 register save, and the register used to calculate the destination
1222 had better be the one we think we're using for this purpose.
1223
1224 Except: If the register being saved is the CFA register, and the
1225 offset is nonzero, we are saving the CFA, so we assume we have to
1226 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1227 the intent is to save the value of SP from the previous frame.
1228
1229 Invariants / Summaries of Rules
1230
1231 cfa current rule for calculating the CFA. It usually
1232 consists of a register and an offset.
1233 cfa_store register used by prologue code to save things to the stack
1234 cfa_store.offset is the offset from the value of
1235 cfa_store.reg to the actual CFA
1236 cfa_temp register holding an integral value. cfa_temp.offset
1237 stores the value, which will be used to adjust the
1238 stack pointer. cfa_temp is also used like cfa_store,
1239 to track stores to the stack via fp or a temp reg.
1240
1241 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1242 with cfa.reg as the first operand changes the cfa.reg and its
1243 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1244 cfa_temp.offset.
1245
1246 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1247 expression yielding a constant. This sets cfa_temp.reg
1248 and cfa_temp.offset.
1249
1250 Rule 5: Create a new register cfa_store used to save items to the
1251 stack.
1252
1253 Rules 10-14: Save a register to the stack. Define offset as the
1254 difference of the original location and cfa_store's
1255 location (or cfa_temp's location if cfa_temp is used).
1256
1257 The Rules
1258
1259 "{a,b}" indicates a choice of a xor b.
1260 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1261
1262 Rule 1:
1263 (set <reg1> <reg2>:cfa.reg)
1264 effects: cfa.reg = <reg1>
1265 cfa.offset unchanged
1266 cfa_temp.reg = <reg1>
1267 cfa_temp.offset = cfa.offset
1268
1269 Rule 2:
1270 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1271 {<const_int>,<reg>:cfa_temp.reg}))
1272 effects: cfa.reg = sp if fp used
1273 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1274 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1275 if cfa_store.reg==sp
1276
1277 Rule 3:
1278 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1279 effects: cfa.reg = fp
1280 cfa_offset += +/- <const_int>
1281
1282 Rule 4:
1283 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1284 constraints: <reg1> != fp
1285 <reg1> != sp
1286 effects: cfa.reg = <reg1>
1287 cfa_temp.reg = <reg1>
1288 cfa_temp.offset = cfa.offset
1289
1290 Rule 5:
1291 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1292 constraints: <reg1> != fp
1293 <reg1> != sp
1294 effects: cfa_store.reg = <reg1>
1295 cfa_store.offset = cfa.offset - cfa_temp.offset
1296
1297 Rule 6:
1298 (set <reg> <const_int>)
1299 effects: cfa_temp.reg = <reg>
1300 cfa_temp.offset = <const_int>
1301
1302 Rule 7:
1303 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1304 effects: cfa_temp.reg = <reg1>
1305 cfa_temp.offset |= <const_int>
1306
1307 Rule 8:
1308 (set <reg> (high <exp>))
1309 effects: none
1310
1311 Rule 9:
1312 (set <reg> (lo_sum <exp> <const_int>))
1313 effects: cfa_temp.reg = <reg>
1314 cfa_temp.offset = <const_int>
1315
1316 Rule 10:
1317 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1318 effects: cfa_store.offset -= <const_int>
1319 cfa.offset = cfa_store.offset if cfa.reg == sp
1320 cfa.reg = sp
1321 cfa.base_offset = -cfa_store.offset
1322
1323 Rule 11:
1324 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1325 effects: cfa_store.offset += -/+ mode_size(mem)
1326 cfa.offset = cfa_store.offset if cfa.reg == sp
1327 cfa.reg = sp
1328 cfa.base_offset = -cfa_store.offset
1329
1330 Rule 12:
1331 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1332
1333 <reg2>)
1334 effects: cfa.reg = <reg1>
1335 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1336
1337 Rule 13:
1338 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1339 effects: cfa.reg = <reg1>
1340 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1341
1342 Rule 14:
1343 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1344 effects: cfa.reg = <reg1>
1345 cfa.base_offset = -cfa_temp.offset
1346 cfa_temp.offset -= mode_size(mem) */
1347
1348 static void
1349 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1350 {
1351 rtx src, dest;
1352 HOST_WIDE_INT offset;
1353
1354 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1355 the PARALLEL independently. The first element is always processed if
1356 it is a SET. This is for backward compatibility. Other elements
1357 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1358 flag is set in them. */
1359 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1360 {
1361 int par_index;
1362 int limit = XVECLEN (expr, 0);
1363
1364 for (par_index = 0; par_index < limit; par_index++)
1365 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1366 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1367 || par_index == 0))
1368 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1369
1370 return;
1371 }
1372
1373 if (GET_CODE (expr) != SET)
1374 abort ();
1375
1376 src = SET_SRC (expr);
1377 dest = SET_DEST (expr);
1378
1379 switch (GET_CODE (dest))
1380 {
1381 case REG:
1382 /* Rule 1 */
1383 /* Update the CFA rule wrt SP or FP. Make sure src is
1384 relative to the current CFA register. */
1385 switch (GET_CODE (src))
1386 {
1387 /* Setting FP from SP. */
1388 case REG:
1389 if (cfa.reg == (unsigned) REGNO (src))
1390 /* OK. */
1391 ;
1392 else
1393 abort ();
1394
1395 /* We used to require that dest be either SP or FP, but the
1396 ARM copies SP to a temporary register, and from there to
1397 FP. So we just rely on the backends to only set
1398 RTX_FRAME_RELATED_P on appropriate insns. */
1399 cfa.reg = REGNO (dest);
1400 cfa_temp.reg = cfa.reg;
1401 cfa_temp.offset = cfa.offset;
1402 break;
1403
1404 case PLUS:
1405 case MINUS:
1406 case LO_SUM:
1407 if (dest == stack_pointer_rtx)
1408 {
1409 /* Rule 2 */
1410 /* Adjusting SP. */
1411 switch (GET_CODE (XEXP (src, 1)))
1412 {
1413 case CONST_INT:
1414 offset = INTVAL (XEXP (src, 1));
1415 break;
1416 case REG:
1417 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1418 abort ();
1419 offset = cfa_temp.offset;
1420 break;
1421 default:
1422 abort ();
1423 }
1424
1425 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1426 {
1427 /* Restoring SP from FP in the epilogue. */
1428 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1429 abort ();
1430 cfa.reg = STACK_POINTER_REGNUM;
1431 }
1432 else if (GET_CODE (src) == LO_SUM)
1433 /* Assume we've set the source reg of the LO_SUM from sp. */
1434 ;
1435 else if (XEXP (src, 0) != stack_pointer_rtx)
1436 abort ();
1437
1438 if (GET_CODE (src) != MINUS)
1439 offset = -offset;
1440 if (cfa.reg == STACK_POINTER_REGNUM)
1441 cfa.offset += offset;
1442 if (cfa_store.reg == STACK_POINTER_REGNUM)
1443 cfa_store.offset += offset;
1444 }
1445 else if (dest == hard_frame_pointer_rtx)
1446 {
1447 /* Rule 3 */
1448 /* Either setting the FP from an offset of the SP,
1449 or adjusting the FP */
1450 if (! frame_pointer_needed)
1451 abort ();
1452
1453 if (GET_CODE (XEXP (src, 0)) == REG
1454 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1455 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1456 {
1457 offset = INTVAL (XEXP (src, 1));
1458 if (GET_CODE (src) != MINUS)
1459 offset = -offset;
1460 cfa.offset += offset;
1461 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1462 }
1463 else
1464 abort ();
1465 }
1466 else
1467 {
1468 if (GET_CODE (src) == MINUS)
1469 abort ();
1470
1471 /* Rule 4 */
1472 if (GET_CODE (XEXP (src, 0)) == REG
1473 && REGNO (XEXP (src, 0)) == cfa.reg
1474 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1475 {
1476 /* Setting a temporary CFA register that will be copied
1477 into the FP later on. */
1478 offset = - INTVAL (XEXP (src, 1));
1479 cfa.offset += offset;
1480 cfa.reg = REGNO (dest);
1481 /* Or used to save regs to the stack. */
1482 cfa_temp.reg = cfa.reg;
1483 cfa_temp.offset = cfa.offset;
1484 }
1485
1486 /* Rule 5 */
1487 else if (GET_CODE (XEXP (src, 0)) == REG
1488 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1489 && XEXP (src, 1) == stack_pointer_rtx)
1490 {
1491 /* Setting a scratch register that we will use instead
1492 of SP for saving registers to the stack. */
1493 if (cfa.reg != STACK_POINTER_REGNUM)
1494 abort ();
1495 cfa_store.reg = REGNO (dest);
1496 cfa_store.offset = cfa.offset - cfa_temp.offset;
1497 }
1498
1499 /* Rule 9 */
1500 else if (GET_CODE (src) == LO_SUM
1501 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1502 {
1503 cfa_temp.reg = REGNO (dest);
1504 cfa_temp.offset = INTVAL (XEXP (src, 1));
1505 }
1506 else
1507 abort ();
1508 }
1509 break;
1510
1511 /* Rule 6 */
1512 case CONST_INT:
1513 cfa_temp.reg = REGNO (dest);
1514 cfa_temp.offset = INTVAL (src);
1515 break;
1516
1517 /* Rule 7 */
1518 case IOR:
1519 if (GET_CODE (XEXP (src, 0)) != REG
1520 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1521 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1522 abort ();
1523
1524 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1525 cfa_temp.reg = REGNO (dest);
1526 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1527 break;
1528
1529 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1530 which will fill in all of the bits. */
1531 /* Rule 8 */
1532 case HIGH:
1533 break;
1534
1535 default:
1536 abort ();
1537 }
1538
1539 def_cfa_1 (label, &cfa);
1540 break;
1541
1542 case MEM:
1543 if (GET_CODE (src) != REG)
1544 abort ();
1545
1546 /* Saving a register to the stack. Make sure dest is relative to the
1547 CFA register. */
1548 switch (GET_CODE (XEXP (dest, 0)))
1549 {
1550 /* Rule 10 */
1551 /* With a push. */
1552 case PRE_MODIFY:
1553 /* We can't handle variable size modifications. */
1554 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1555 abort ();
1556 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1557
1558 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1559 || cfa_store.reg != STACK_POINTER_REGNUM)
1560 abort ();
1561
1562 cfa_store.offset += offset;
1563 if (cfa.reg == STACK_POINTER_REGNUM)
1564 cfa.offset = cfa_store.offset;
1565
1566 offset = -cfa_store.offset;
1567 break;
1568
1569 /* Rule 11 */
1570 case PRE_INC:
1571 case PRE_DEC:
1572 offset = GET_MODE_SIZE (GET_MODE (dest));
1573 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1574 offset = -offset;
1575
1576 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1577 || cfa_store.reg != STACK_POINTER_REGNUM)
1578 abort ();
1579
1580 cfa_store.offset += offset;
1581 if (cfa.reg == STACK_POINTER_REGNUM)
1582 cfa.offset = cfa_store.offset;
1583
1584 offset = -cfa_store.offset;
1585 break;
1586
1587 /* Rule 12 */
1588 /* With an offset. */
1589 case PLUS:
1590 case MINUS:
1591 case LO_SUM:
1592 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1593 abort ();
1594 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1595 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1596 offset = -offset;
1597
1598 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1599 offset -= cfa_store.offset;
1600 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1601 offset -= cfa_temp.offset;
1602 else
1603 abort ();
1604 break;
1605
1606 /* Rule 13 */
1607 /* Without an offset. */
1608 case REG:
1609 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1610 offset = -cfa_store.offset;
1611 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1612 offset = -cfa_temp.offset;
1613 else
1614 abort ();
1615 break;
1616
1617 /* Rule 14 */
1618 case POST_INC:
1619 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1620 abort ();
1621 offset = -cfa_temp.offset;
1622 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1623 break;
1624
1625 default:
1626 abort ();
1627 }
1628
1629 if (REGNO (src) != STACK_POINTER_REGNUM
1630 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1631 && (unsigned) REGNO (src) == cfa.reg)
1632 {
1633 /* We're storing the current CFA reg into the stack. */
1634
1635 if (cfa.offset == 0)
1636 {
1637 /* If the source register is exactly the CFA, assume
1638 we're saving SP like any other register; this happens
1639 on the ARM. */
1640 def_cfa_1 (label, &cfa);
1641 queue_reg_save (label, stack_pointer_rtx, offset);
1642 break;
1643 }
1644 else
1645 {
1646 /* Otherwise, we'll need to look in the stack to
1647 calculate the CFA. */
1648 rtx x = XEXP (dest, 0);
1649
1650 if (GET_CODE (x) != REG)
1651 x = XEXP (x, 0);
1652 if (GET_CODE (x) != REG)
1653 abort ();
1654
1655 cfa.reg = REGNO (x);
1656 cfa.base_offset = offset;
1657 cfa.indirect = 1;
1658 def_cfa_1 (label, &cfa);
1659 break;
1660 }
1661 }
1662
1663 def_cfa_1 (label, &cfa);
1664 queue_reg_save (label, src, offset);
1665 break;
1666
1667 default:
1668 abort ();
1669 }
1670 }
1671
1672 /* Record call frame debugging information for INSN, which either
1673 sets SP or FP (adjusting how we calculate the frame address) or saves a
1674 register to the stack. If INSN is NULL_RTX, initialize our state. */
1675
1676 void
1677 dwarf2out_frame_debug (rtx insn)
1678 {
1679 const char *label;
1680 rtx src;
1681
1682 if (insn == NULL_RTX)
1683 {
1684 /* Flush any queued register saves. */
1685 flush_queued_reg_saves ();
1686
1687 /* Set up state for generating call frame debug info. */
1688 lookup_cfa (&cfa);
1689 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1690 abort ();
1691
1692 cfa.reg = STACK_POINTER_REGNUM;
1693 cfa_store = cfa;
1694 cfa_temp.reg = -1;
1695 cfa_temp.offset = 0;
1696 return;
1697 }
1698
1699 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1700 flush_queued_reg_saves ();
1701
1702 if (! RTX_FRAME_RELATED_P (insn))
1703 {
1704 if (!ACCUMULATE_OUTGOING_ARGS)
1705 dwarf2out_stack_adjust (insn);
1706
1707 return;
1708 }
1709
1710 label = dwarf2out_cfi_label ();
1711 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1712 if (src)
1713 insn = XEXP (src, 0);
1714 else
1715 insn = PATTERN (insn);
1716
1717 dwarf2out_frame_debug_expr (insn, label);
1718 }
1719
1720 #endif
1721
1722 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1723 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1724 (enum dwarf_call_frame_info cfi);
1725
1726 static enum dw_cfi_oprnd_type
1727 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1728 {
1729 switch (cfi)
1730 {
1731 case DW_CFA_nop:
1732 case DW_CFA_GNU_window_save:
1733 return dw_cfi_oprnd_unused;
1734
1735 case DW_CFA_set_loc:
1736 case DW_CFA_advance_loc1:
1737 case DW_CFA_advance_loc2:
1738 case DW_CFA_advance_loc4:
1739 case DW_CFA_MIPS_advance_loc8:
1740 return dw_cfi_oprnd_addr;
1741
1742 case DW_CFA_offset:
1743 case DW_CFA_offset_extended:
1744 case DW_CFA_def_cfa:
1745 case DW_CFA_offset_extended_sf:
1746 case DW_CFA_def_cfa_sf:
1747 case DW_CFA_restore_extended:
1748 case DW_CFA_undefined:
1749 case DW_CFA_same_value:
1750 case DW_CFA_def_cfa_register:
1751 case DW_CFA_register:
1752 return dw_cfi_oprnd_reg_num;
1753
1754 case DW_CFA_def_cfa_offset:
1755 case DW_CFA_GNU_args_size:
1756 case DW_CFA_def_cfa_offset_sf:
1757 return dw_cfi_oprnd_offset;
1758
1759 case DW_CFA_def_cfa_expression:
1760 case DW_CFA_expression:
1761 return dw_cfi_oprnd_loc;
1762
1763 default:
1764 abort ();
1765 }
1766 }
1767
1768 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1769 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1770 (enum dwarf_call_frame_info cfi);
1771
1772 static enum dw_cfi_oprnd_type
1773 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1774 {
1775 switch (cfi)
1776 {
1777 case DW_CFA_def_cfa:
1778 case DW_CFA_def_cfa_sf:
1779 case DW_CFA_offset:
1780 case DW_CFA_offset_extended_sf:
1781 case DW_CFA_offset_extended:
1782 return dw_cfi_oprnd_offset;
1783
1784 case DW_CFA_register:
1785 return dw_cfi_oprnd_reg_num;
1786
1787 default:
1788 return dw_cfi_oprnd_unused;
1789 }
1790 }
1791
1792 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1793
1794 /* Map register numbers held in the call frame info that gcc has
1795 collected using DWARF_FRAME_REGNUM to those that should be output in
1796 .debug_frame and .eh_frame. */
1797 #ifndef DWARF2_FRAME_REG_OUT
1798 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
1799 #endif
1800
1801 /* Output a Call Frame Information opcode and its operand(s). */
1802
1803 static void
1804 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1805 {
1806 unsigned long r;
1807 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1808 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1809 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1810 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1811 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1812 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1813 {
1814 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1815 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1816 "DW_CFA_offset, column 0x%lx", r);
1817 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1818 }
1819 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1820 {
1821 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1822 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1823 "DW_CFA_restore, column 0x%lx", r);
1824 }
1825 else
1826 {
1827 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1828 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1829
1830 switch (cfi->dw_cfi_opc)
1831 {
1832 case DW_CFA_set_loc:
1833 if (for_eh)
1834 dw2_asm_output_encoded_addr_rtx (
1835 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1836 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1837 NULL);
1838 else
1839 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1840 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1841 break;
1842
1843 case DW_CFA_advance_loc1:
1844 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1845 fde->dw_fde_current_label, NULL);
1846 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1847 break;
1848
1849 case DW_CFA_advance_loc2:
1850 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1851 fde->dw_fde_current_label, NULL);
1852 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1853 break;
1854
1855 case DW_CFA_advance_loc4:
1856 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1857 fde->dw_fde_current_label, NULL);
1858 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1859 break;
1860
1861 case DW_CFA_MIPS_advance_loc8:
1862 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1863 fde->dw_fde_current_label, NULL);
1864 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1865 break;
1866
1867 case DW_CFA_offset_extended:
1868 case DW_CFA_def_cfa:
1869 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1870 dw2_asm_output_data_uleb128 (r, NULL);
1871 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1872 break;
1873
1874 case DW_CFA_offset_extended_sf:
1875 case DW_CFA_def_cfa_sf:
1876 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1877 dw2_asm_output_data_uleb128 (r, NULL);
1878 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1879 break;
1880
1881 case DW_CFA_restore_extended:
1882 case DW_CFA_undefined:
1883 case DW_CFA_same_value:
1884 case DW_CFA_def_cfa_register:
1885 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1886 dw2_asm_output_data_uleb128 (r, NULL);
1887 break;
1888
1889 case DW_CFA_register:
1890 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1891 dw2_asm_output_data_uleb128 (r, NULL);
1892 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
1893 dw2_asm_output_data_uleb128 (r, NULL);
1894 break;
1895
1896 case DW_CFA_def_cfa_offset:
1897 case DW_CFA_GNU_args_size:
1898 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1899 break;
1900
1901 case DW_CFA_def_cfa_offset_sf:
1902 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1903 break;
1904
1905 case DW_CFA_GNU_window_save:
1906 break;
1907
1908 case DW_CFA_def_cfa_expression:
1909 case DW_CFA_expression:
1910 output_cfa_loc (cfi);
1911 break;
1912
1913 case DW_CFA_GNU_negative_offset_extended:
1914 /* Obsoleted by DW_CFA_offset_extended_sf. */
1915 abort ();
1916
1917 default:
1918 break;
1919 }
1920 }
1921 }
1922
1923 /* Output the call frame information used to record information
1924 that relates to calculating the frame pointer, and records the
1925 location of saved registers. */
1926
1927 static void
1928 output_call_frame_info (int for_eh)
1929 {
1930 unsigned int i;
1931 dw_fde_ref fde;
1932 dw_cfi_ref cfi;
1933 char l1[20], l2[20], section_start_label[20];
1934 bool any_lsda_needed = false;
1935 char augmentation[6];
1936 int augmentation_size;
1937 int fde_encoding = DW_EH_PE_absptr;
1938 int per_encoding = DW_EH_PE_absptr;
1939 int lsda_encoding = DW_EH_PE_absptr;
1940
1941 /* Don't emit a CIE if there won't be any FDEs. */
1942 if (fde_table_in_use == 0)
1943 return;
1944
1945 /* If we don't have any functions we'll want to unwind out of, don't
1946 emit any EH unwind information. Note that if exceptions aren't
1947 enabled, we won't have collected nothrow information, and if we
1948 asked for asynchronous tables, we always want this info. */
1949 if (for_eh)
1950 {
1951 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
1952
1953 for (i = 0; i < fde_table_in_use; i++)
1954 if (fde_table[i].uses_eh_lsda)
1955 any_eh_needed = any_lsda_needed = true;
1956 else if (! fde_table[i].nothrow
1957 && ! fde_table[i].all_throwers_are_sibcalls)
1958 any_eh_needed = true;
1959
1960 if (! any_eh_needed)
1961 return;
1962 }
1963
1964 /* We're going to be generating comments, so turn on app. */
1965 if (flag_debug_asm)
1966 app_enable ();
1967
1968 if (for_eh)
1969 (*targetm.asm_out.eh_frame_section) ();
1970 else
1971 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1972
1973 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1974 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1975
1976 /* Output the CIE. */
1977 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1978 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1979 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1980 "Length of Common Information Entry");
1981 ASM_OUTPUT_LABEL (asm_out_file, l1);
1982
1983 /* Now that the CIE pointer is PC-relative for EH,
1984 use 0 to identify the CIE. */
1985 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1986 (for_eh ? 0 : DW_CIE_ID),
1987 "CIE Identifier Tag");
1988
1989 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1990
1991 augmentation[0] = 0;
1992 augmentation_size = 0;
1993 if (for_eh)
1994 {
1995 char *p;
1996
1997 /* Augmentation:
1998 z Indicates that a uleb128 is present to size the
1999 augmentation section.
2000 L Indicates the encoding (and thus presence) of
2001 an LSDA pointer in the FDE augmentation.
2002 R Indicates a non-default pointer encoding for
2003 FDE code pointers.
2004 P Indicates the presence of an encoding + language
2005 personality routine in the CIE augmentation. */
2006
2007 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2008 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2009 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2010
2011 p = augmentation + 1;
2012 if (eh_personality_libfunc)
2013 {
2014 *p++ = 'P';
2015 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2016 }
2017 if (any_lsda_needed)
2018 {
2019 *p++ = 'L';
2020 augmentation_size += 1;
2021 }
2022 if (fde_encoding != DW_EH_PE_absptr)
2023 {
2024 *p++ = 'R';
2025 augmentation_size += 1;
2026 }
2027 if (p > augmentation + 1)
2028 {
2029 augmentation[0] = 'z';
2030 *p = '\0';
2031 }
2032
2033 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2034 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2035 {
2036 int offset = ( 4 /* Length */
2037 + 4 /* CIE Id */
2038 + 1 /* CIE version */
2039 + strlen (augmentation) + 1 /* Augmentation */
2040 + size_of_uleb128 (1) /* Code alignment */
2041 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2042 + 1 /* RA column */
2043 + 1 /* Augmentation size */
2044 + 1 /* Personality encoding */ );
2045 int pad = -offset & (PTR_SIZE - 1);
2046
2047 augmentation_size += pad;
2048
2049 /* Augmentations should be small, so there's scarce need to
2050 iterate for a solution. Die if we exceed one uleb128 byte. */
2051 if (size_of_uleb128 (augmentation_size) != 1)
2052 abort ();
2053 }
2054 }
2055
2056 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2057 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2058 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2059 "CIE Data Alignment Factor");
2060 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2061
2062 if (augmentation[0])
2063 {
2064 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2065 if (eh_personality_libfunc)
2066 {
2067 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2068 eh_data_format_name (per_encoding));
2069 dw2_asm_output_encoded_addr_rtx (per_encoding,
2070 eh_personality_libfunc, NULL);
2071 }
2072
2073 if (any_lsda_needed)
2074 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2075 eh_data_format_name (lsda_encoding));
2076
2077 if (fde_encoding != DW_EH_PE_absptr)
2078 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2079 eh_data_format_name (fde_encoding));
2080 }
2081
2082 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2083 output_cfi (cfi, NULL, for_eh);
2084
2085 /* Pad the CIE out to an address sized boundary. */
2086 ASM_OUTPUT_ALIGN (asm_out_file,
2087 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2088 ASM_OUTPUT_LABEL (asm_out_file, l2);
2089
2090 /* Loop through all of the FDE's. */
2091 for (i = 0; i < fde_table_in_use; i++)
2092 {
2093 fde = &fde_table[i];
2094
2095 /* Don't emit EH unwind info for leaf functions that don't need it. */
2096 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2097 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2098 && !fde->uses_eh_lsda)
2099 continue;
2100
2101 (*targetm.asm_out.internal_label) (asm_out_file, FDE_LABEL, for_eh + i * 2);
2102 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2103 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2104 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2105 "FDE Length");
2106 ASM_OUTPUT_LABEL (asm_out_file, l1);
2107
2108 if (for_eh)
2109 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2110 else
2111 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2112 "FDE CIE offset");
2113
2114 if (for_eh)
2115 {
2116 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2117 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
2118 "FDE initial location");
2119 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2120 fde->dw_fde_end, fde->dw_fde_begin,
2121 "FDE address range");
2122 }
2123 else
2124 {
2125 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2126 "FDE initial location");
2127 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2128 fde->dw_fde_end, fde->dw_fde_begin,
2129 "FDE address range");
2130 }
2131
2132 if (augmentation[0])
2133 {
2134 if (any_lsda_needed)
2135 {
2136 int size = size_of_encoded_value (lsda_encoding);
2137
2138 if (lsda_encoding == DW_EH_PE_aligned)
2139 {
2140 int offset = ( 4 /* Length */
2141 + 4 /* CIE offset */
2142 + 2 * size_of_encoded_value (fde_encoding)
2143 + 1 /* Augmentation size */ );
2144 int pad = -offset & (PTR_SIZE - 1);
2145
2146 size += pad;
2147 if (size_of_uleb128 (size) != 1)
2148 abort ();
2149 }
2150
2151 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2152
2153 if (fde->uses_eh_lsda)
2154 {
2155 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2156 fde->funcdef_number);
2157 dw2_asm_output_encoded_addr_rtx (
2158 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2159 "Language Specific Data Area");
2160 }
2161 else
2162 {
2163 if (lsda_encoding == DW_EH_PE_aligned)
2164 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2165 dw2_asm_output_data
2166 (size_of_encoded_value (lsda_encoding), 0,
2167 "Language Specific Data Area (none)");
2168 }
2169 }
2170 else
2171 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2172 }
2173
2174 /* Loop through the Call Frame Instructions associated with
2175 this FDE. */
2176 fde->dw_fde_current_label = fde->dw_fde_begin;
2177 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2178 output_cfi (cfi, fde, for_eh);
2179
2180 /* Pad the FDE out to an address sized boundary. */
2181 ASM_OUTPUT_ALIGN (asm_out_file,
2182 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2183 ASM_OUTPUT_LABEL (asm_out_file, l2);
2184 }
2185
2186 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2187 dw2_asm_output_data (4, 0, "End of Table");
2188 #ifdef MIPS_DEBUGGING_INFO
2189 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2190 get a value of 0. Putting .align 0 after the label fixes it. */
2191 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2192 #endif
2193
2194 /* Turn off app to make assembly quicker. */
2195 if (flag_debug_asm)
2196 app_disable ();
2197 }
2198
2199 /* Output a marker (i.e. a label) for the beginning of a function, before
2200 the prologue. */
2201
2202 void
2203 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2204 const char *file ATTRIBUTE_UNUSED)
2205 {
2206 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2207 dw_fde_ref fde;
2208
2209 current_function_func_begin_label = 0;
2210
2211 #ifdef IA64_UNWIND_INFO
2212 /* ??? current_function_func_begin_label is also used by except.c
2213 for call-site information. We must emit this label if it might
2214 be used. */
2215 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2216 && ! dwarf2out_do_frame ())
2217 return;
2218 #else
2219 if (! dwarf2out_do_frame ())
2220 return;
2221 #endif
2222
2223 function_section (current_function_decl);
2224 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2225 current_function_funcdef_no);
2226 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2227 current_function_funcdef_no);
2228 current_function_func_begin_label = get_identifier (label);
2229
2230 #ifdef IA64_UNWIND_INFO
2231 /* We can elide the fde allocation if we're not emitting debug info. */
2232 if (! dwarf2out_do_frame ())
2233 return;
2234 #endif
2235
2236 /* Expand the fde table if necessary. */
2237 if (fde_table_in_use == fde_table_allocated)
2238 {
2239 fde_table_allocated += FDE_TABLE_INCREMENT;
2240 fde_table = ggc_realloc (fde_table,
2241 fde_table_allocated * sizeof (dw_fde_node));
2242 memset (fde_table + fde_table_in_use, 0,
2243 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2244 }
2245
2246 /* Record the FDE associated with this function. */
2247 current_funcdef_fde = fde_table_in_use;
2248
2249 /* Add the new FDE at the end of the fde_table. */
2250 fde = &fde_table[fde_table_in_use++];
2251 fde->dw_fde_begin = xstrdup (label);
2252 fde->dw_fde_current_label = NULL;
2253 fde->dw_fde_end = NULL;
2254 fde->dw_fde_cfi = NULL;
2255 fde->funcdef_number = current_function_funcdef_no;
2256 fde->nothrow = current_function_nothrow;
2257 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2258 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2259
2260 args_size = old_args_size = 0;
2261
2262 /* We only want to output line number information for the genuine dwarf2
2263 prologue case, not the eh frame case. */
2264 #ifdef DWARF2_DEBUGGING_INFO
2265 if (file)
2266 dwarf2out_source_line (line, file);
2267 #endif
2268 }
2269
2270 /* Output a marker (i.e. a label) for the absolute end of the generated code
2271 for a function definition. This gets called *after* the epilogue code has
2272 been generated. */
2273
2274 void
2275 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2276 const char *file ATTRIBUTE_UNUSED)
2277 {
2278 dw_fde_ref fde;
2279 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2280
2281 /* Output a label to mark the endpoint of the code generated for this
2282 function. */
2283 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2284 current_function_funcdef_no);
2285 ASM_OUTPUT_LABEL (asm_out_file, label);
2286 fde = &fde_table[fde_table_in_use - 1];
2287 fde->dw_fde_end = xstrdup (label);
2288 }
2289
2290 void
2291 dwarf2out_frame_init (void)
2292 {
2293 /* Allocate the initial hunk of the fde_table. */
2294 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2295 fde_table_allocated = FDE_TABLE_INCREMENT;
2296 fde_table_in_use = 0;
2297
2298 /* Generate the CFA instructions common to all FDE's. Do it now for the
2299 sake of lookup_cfa. */
2300
2301 #ifdef DWARF2_UNWIND_INFO
2302 /* On entry, the Canonical Frame Address is at SP. */
2303 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2304 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2305 #endif
2306 }
2307
2308 void
2309 dwarf2out_frame_finish (void)
2310 {
2311 /* Output call frame information. */
2312 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2313 output_call_frame_info (0);
2314
2315 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2316 output_call_frame_info (1);
2317 }
2318 #endif
2319 \f
2320 /* And now, the subset of the debugging information support code necessary
2321 for emitting location expressions. */
2322
2323 /* We need some way to distinguish DW_OP_addr with a direct symbol
2324 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2325 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2326
2327
2328 typedef struct dw_val_struct *dw_val_ref;
2329 typedef struct die_struct *dw_die_ref;
2330 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2331 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2332
2333 /* Each DIE may have a series of attribute/value pairs. Values
2334 can take on several forms. The forms that are used in this
2335 implementation are listed below. */
2336
2337 enum dw_val_class
2338 {
2339 dw_val_class_addr,
2340 dw_val_class_offset,
2341 dw_val_class_loc,
2342 dw_val_class_loc_list,
2343 dw_val_class_range_list,
2344 dw_val_class_const,
2345 dw_val_class_unsigned_const,
2346 dw_val_class_long_long,
2347 dw_val_class_float,
2348 dw_val_class_flag,
2349 dw_val_class_die_ref,
2350 dw_val_class_fde_ref,
2351 dw_val_class_lbl_id,
2352 dw_val_class_lbl_offset,
2353 dw_val_class_str
2354 };
2355
2356 /* Describe a double word constant value. */
2357 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2358
2359 typedef struct dw_long_long_struct GTY(())
2360 {
2361 unsigned long hi;
2362 unsigned long low;
2363 }
2364 dw_long_long_const;
2365
2366 /* Describe a floating point constant value. */
2367
2368 typedef struct dw_fp_struct GTY(())
2369 {
2370 long * GTY((length ("%h.length"))) array;
2371 unsigned length;
2372 }
2373 dw_float_const;
2374
2375 /* The dw_val_node describes an attribute's value, as it is
2376 represented internally. */
2377
2378 typedef struct dw_val_struct GTY(())
2379 {
2380 enum dw_val_class val_class;
2381 union dw_val_struct_union
2382 {
2383 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2384 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2385 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2386 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2387 HOST_WIDE_INT GTY ((default (""))) val_int;
2388 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2389 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2390 dw_float_const GTY ((tag ("dw_val_class_float"))) val_float;
2391 struct dw_val_die_union
2392 {
2393 dw_die_ref die;
2394 int external;
2395 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2396 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2397 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2398 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2399 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2400 }
2401 GTY ((desc ("%1.val_class"))) v;
2402 }
2403 dw_val_node;
2404
2405 /* Locations in memory are described using a sequence of stack machine
2406 operations. */
2407
2408 typedef struct dw_loc_descr_struct GTY(())
2409 {
2410 dw_loc_descr_ref dw_loc_next;
2411 enum dwarf_location_atom dw_loc_opc;
2412 dw_val_node dw_loc_oprnd1;
2413 dw_val_node dw_loc_oprnd2;
2414 int dw_loc_addr;
2415 }
2416 dw_loc_descr_node;
2417
2418 /* Location lists are ranges + location descriptions for that range,
2419 so you can track variables that are in different places over
2420 their entire life. */
2421 typedef struct dw_loc_list_struct GTY(())
2422 {
2423 dw_loc_list_ref dw_loc_next;
2424 const char *begin; /* Label for begin address of range */
2425 const char *end; /* Label for end address of range */
2426 char *ll_symbol; /* Label for beginning of location list.
2427 Only on head of list */
2428 const char *section; /* Section this loclist is relative to */
2429 dw_loc_descr_ref expr;
2430 } dw_loc_list_node;
2431
2432 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2433
2434 static const char *dwarf_stack_op_name (unsigned);
2435 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2436 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2437 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2438 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2439 static unsigned long size_of_locs (dw_loc_descr_ref);
2440 static void output_loc_operands (dw_loc_descr_ref);
2441 static void output_loc_sequence (dw_loc_descr_ref);
2442
2443 /* Convert a DWARF stack opcode into its string name. */
2444
2445 static const char *
2446 dwarf_stack_op_name (unsigned int op)
2447 {
2448 switch (op)
2449 {
2450 case DW_OP_addr:
2451 case INTERNAL_DW_OP_tls_addr:
2452 return "DW_OP_addr";
2453 case DW_OP_deref:
2454 return "DW_OP_deref";
2455 case DW_OP_const1u:
2456 return "DW_OP_const1u";
2457 case DW_OP_const1s:
2458 return "DW_OP_const1s";
2459 case DW_OP_const2u:
2460 return "DW_OP_const2u";
2461 case DW_OP_const2s:
2462 return "DW_OP_const2s";
2463 case DW_OP_const4u:
2464 return "DW_OP_const4u";
2465 case DW_OP_const4s:
2466 return "DW_OP_const4s";
2467 case DW_OP_const8u:
2468 return "DW_OP_const8u";
2469 case DW_OP_const8s:
2470 return "DW_OP_const8s";
2471 case DW_OP_constu:
2472 return "DW_OP_constu";
2473 case DW_OP_consts:
2474 return "DW_OP_consts";
2475 case DW_OP_dup:
2476 return "DW_OP_dup";
2477 case DW_OP_drop:
2478 return "DW_OP_drop";
2479 case DW_OP_over:
2480 return "DW_OP_over";
2481 case DW_OP_pick:
2482 return "DW_OP_pick";
2483 case DW_OP_swap:
2484 return "DW_OP_swap";
2485 case DW_OP_rot:
2486 return "DW_OP_rot";
2487 case DW_OP_xderef:
2488 return "DW_OP_xderef";
2489 case DW_OP_abs:
2490 return "DW_OP_abs";
2491 case DW_OP_and:
2492 return "DW_OP_and";
2493 case DW_OP_div:
2494 return "DW_OP_div";
2495 case DW_OP_minus:
2496 return "DW_OP_minus";
2497 case DW_OP_mod:
2498 return "DW_OP_mod";
2499 case DW_OP_mul:
2500 return "DW_OP_mul";
2501 case DW_OP_neg:
2502 return "DW_OP_neg";
2503 case DW_OP_not:
2504 return "DW_OP_not";
2505 case DW_OP_or:
2506 return "DW_OP_or";
2507 case DW_OP_plus:
2508 return "DW_OP_plus";
2509 case DW_OP_plus_uconst:
2510 return "DW_OP_plus_uconst";
2511 case DW_OP_shl:
2512 return "DW_OP_shl";
2513 case DW_OP_shr:
2514 return "DW_OP_shr";
2515 case DW_OP_shra:
2516 return "DW_OP_shra";
2517 case DW_OP_xor:
2518 return "DW_OP_xor";
2519 case DW_OP_bra:
2520 return "DW_OP_bra";
2521 case DW_OP_eq:
2522 return "DW_OP_eq";
2523 case DW_OP_ge:
2524 return "DW_OP_ge";
2525 case DW_OP_gt:
2526 return "DW_OP_gt";
2527 case DW_OP_le:
2528 return "DW_OP_le";
2529 case DW_OP_lt:
2530 return "DW_OP_lt";
2531 case DW_OP_ne:
2532 return "DW_OP_ne";
2533 case DW_OP_skip:
2534 return "DW_OP_skip";
2535 case DW_OP_lit0:
2536 return "DW_OP_lit0";
2537 case DW_OP_lit1:
2538 return "DW_OP_lit1";
2539 case DW_OP_lit2:
2540 return "DW_OP_lit2";
2541 case DW_OP_lit3:
2542 return "DW_OP_lit3";
2543 case DW_OP_lit4:
2544 return "DW_OP_lit4";
2545 case DW_OP_lit5:
2546 return "DW_OP_lit5";
2547 case DW_OP_lit6:
2548 return "DW_OP_lit6";
2549 case DW_OP_lit7:
2550 return "DW_OP_lit7";
2551 case DW_OP_lit8:
2552 return "DW_OP_lit8";
2553 case DW_OP_lit9:
2554 return "DW_OP_lit9";
2555 case DW_OP_lit10:
2556 return "DW_OP_lit10";
2557 case DW_OP_lit11:
2558 return "DW_OP_lit11";
2559 case DW_OP_lit12:
2560 return "DW_OP_lit12";
2561 case DW_OP_lit13:
2562 return "DW_OP_lit13";
2563 case DW_OP_lit14:
2564 return "DW_OP_lit14";
2565 case DW_OP_lit15:
2566 return "DW_OP_lit15";
2567 case DW_OP_lit16:
2568 return "DW_OP_lit16";
2569 case DW_OP_lit17:
2570 return "DW_OP_lit17";
2571 case DW_OP_lit18:
2572 return "DW_OP_lit18";
2573 case DW_OP_lit19:
2574 return "DW_OP_lit19";
2575 case DW_OP_lit20:
2576 return "DW_OP_lit20";
2577 case DW_OP_lit21:
2578 return "DW_OP_lit21";
2579 case DW_OP_lit22:
2580 return "DW_OP_lit22";
2581 case DW_OP_lit23:
2582 return "DW_OP_lit23";
2583 case DW_OP_lit24:
2584 return "DW_OP_lit24";
2585 case DW_OP_lit25:
2586 return "DW_OP_lit25";
2587 case DW_OP_lit26:
2588 return "DW_OP_lit26";
2589 case DW_OP_lit27:
2590 return "DW_OP_lit27";
2591 case DW_OP_lit28:
2592 return "DW_OP_lit28";
2593 case DW_OP_lit29:
2594 return "DW_OP_lit29";
2595 case DW_OP_lit30:
2596 return "DW_OP_lit30";
2597 case DW_OP_lit31:
2598 return "DW_OP_lit31";
2599 case DW_OP_reg0:
2600 return "DW_OP_reg0";
2601 case DW_OP_reg1:
2602 return "DW_OP_reg1";
2603 case DW_OP_reg2:
2604 return "DW_OP_reg2";
2605 case DW_OP_reg3:
2606 return "DW_OP_reg3";
2607 case DW_OP_reg4:
2608 return "DW_OP_reg4";
2609 case DW_OP_reg5:
2610 return "DW_OP_reg5";
2611 case DW_OP_reg6:
2612 return "DW_OP_reg6";
2613 case DW_OP_reg7:
2614 return "DW_OP_reg7";
2615 case DW_OP_reg8:
2616 return "DW_OP_reg8";
2617 case DW_OP_reg9:
2618 return "DW_OP_reg9";
2619 case DW_OP_reg10:
2620 return "DW_OP_reg10";
2621 case DW_OP_reg11:
2622 return "DW_OP_reg11";
2623 case DW_OP_reg12:
2624 return "DW_OP_reg12";
2625 case DW_OP_reg13:
2626 return "DW_OP_reg13";
2627 case DW_OP_reg14:
2628 return "DW_OP_reg14";
2629 case DW_OP_reg15:
2630 return "DW_OP_reg15";
2631 case DW_OP_reg16:
2632 return "DW_OP_reg16";
2633 case DW_OP_reg17:
2634 return "DW_OP_reg17";
2635 case DW_OP_reg18:
2636 return "DW_OP_reg18";
2637 case DW_OP_reg19:
2638 return "DW_OP_reg19";
2639 case DW_OP_reg20:
2640 return "DW_OP_reg20";
2641 case DW_OP_reg21:
2642 return "DW_OP_reg21";
2643 case DW_OP_reg22:
2644 return "DW_OP_reg22";
2645 case DW_OP_reg23:
2646 return "DW_OP_reg23";
2647 case DW_OP_reg24:
2648 return "DW_OP_reg24";
2649 case DW_OP_reg25:
2650 return "DW_OP_reg25";
2651 case DW_OP_reg26:
2652 return "DW_OP_reg26";
2653 case DW_OP_reg27:
2654 return "DW_OP_reg27";
2655 case DW_OP_reg28:
2656 return "DW_OP_reg28";
2657 case DW_OP_reg29:
2658 return "DW_OP_reg29";
2659 case DW_OP_reg30:
2660 return "DW_OP_reg30";
2661 case DW_OP_reg31:
2662 return "DW_OP_reg31";
2663 case DW_OP_breg0:
2664 return "DW_OP_breg0";
2665 case DW_OP_breg1:
2666 return "DW_OP_breg1";
2667 case DW_OP_breg2:
2668 return "DW_OP_breg2";
2669 case DW_OP_breg3:
2670 return "DW_OP_breg3";
2671 case DW_OP_breg4:
2672 return "DW_OP_breg4";
2673 case DW_OP_breg5:
2674 return "DW_OP_breg5";
2675 case DW_OP_breg6:
2676 return "DW_OP_breg6";
2677 case DW_OP_breg7:
2678 return "DW_OP_breg7";
2679 case DW_OP_breg8:
2680 return "DW_OP_breg8";
2681 case DW_OP_breg9:
2682 return "DW_OP_breg9";
2683 case DW_OP_breg10:
2684 return "DW_OP_breg10";
2685 case DW_OP_breg11:
2686 return "DW_OP_breg11";
2687 case DW_OP_breg12:
2688 return "DW_OP_breg12";
2689 case DW_OP_breg13:
2690 return "DW_OP_breg13";
2691 case DW_OP_breg14:
2692 return "DW_OP_breg14";
2693 case DW_OP_breg15:
2694 return "DW_OP_breg15";
2695 case DW_OP_breg16:
2696 return "DW_OP_breg16";
2697 case DW_OP_breg17:
2698 return "DW_OP_breg17";
2699 case DW_OP_breg18:
2700 return "DW_OP_breg18";
2701 case DW_OP_breg19:
2702 return "DW_OP_breg19";
2703 case DW_OP_breg20:
2704 return "DW_OP_breg20";
2705 case DW_OP_breg21:
2706 return "DW_OP_breg21";
2707 case DW_OP_breg22:
2708 return "DW_OP_breg22";
2709 case DW_OP_breg23:
2710 return "DW_OP_breg23";
2711 case DW_OP_breg24:
2712 return "DW_OP_breg24";
2713 case DW_OP_breg25:
2714 return "DW_OP_breg25";
2715 case DW_OP_breg26:
2716 return "DW_OP_breg26";
2717 case DW_OP_breg27:
2718 return "DW_OP_breg27";
2719 case DW_OP_breg28:
2720 return "DW_OP_breg28";
2721 case DW_OP_breg29:
2722 return "DW_OP_breg29";
2723 case DW_OP_breg30:
2724 return "DW_OP_breg30";
2725 case DW_OP_breg31:
2726 return "DW_OP_breg31";
2727 case DW_OP_regx:
2728 return "DW_OP_regx";
2729 case DW_OP_fbreg:
2730 return "DW_OP_fbreg";
2731 case DW_OP_bregx:
2732 return "DW_OP_bregx";
2733 case DW_OP_piece:
2734 return "DW_OP_piece";
2735 case DW_OP_deref_size:
2736 return "DW_OP_deref_size";
2737 case DW_OP_xderef_size:
2738 return "DW_OP_xderef_size";
2739 case DW_OP_nop:
2740 return "DW_OP_nop";
2741 case DW_OP_push_object_address:
2742 return "DW_OP_push_object_address";
2743 case DW_OP_call2:
2744 return "DW_OP_call2";
2745 case DW_OP_call4:
2746 return "DW_OP_call4";
2747 case DW_OP_call_ref:
2748 return "DW_OP_call_ref";
2749 case DW_OP_GNU_push_tls_address:
2750 return "DW_OP_GNU_push_tls_address";
2751 default:
2752 return "OP_<unknown>";
2753 }
2754 }
2755
2756 /* Return a pointer to a newly allocated location description. Location
2757 descriptions are simple expression terms that can be strung
2758 together to form more complicated location (address) descriptions. */
2759
2760 static inline dw_loc_descr_ref
2761 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2762 unsigned HOST_WIDE_INT oprnd2)
2763 {
2764 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2765
2766 descr->dw_loc_opc = op;
2767 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2768 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2769 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2770 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2771
2772 return descr;
2773 }
2774
2775
2776 /* Add a location description term to a location description expression. */
2777
2778 static inline void
2779 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
2780 {
2781 dw_loc_descr_ref *d;
2782
2783 /* Find the end of the chain. */
2784 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2785 ;
2786
2787 *d = descr;
2788 }
2789
2790 /* Return the size of a location descriptor. */
2791
2792 static unsigned long
2793 size_of_loc_descr (dw_loc_descr_ref loc)
2794 {
2795 unsigned long size = 1;
2796
2797 switch (loc->dw_loc_opc)
2798 {
2799 case DW_OP_addr:
2800 case INTERNAL_DW_OP_tls_addr:
2801 size += DWARF2_ADDR_SIZE;
2802 break;
2803 case DW_OP_const1u:
2804 case DW_OP_const1s:
2805 size += 1;
2806 break;
2807 case DW_OP_const2u:
2808 case DW_OP_const2s:
2809 size += 2;
2810 break;
2811 case DW_OP_const4u:
2812 case DW_OP_const4s:
2813 size += 4;
2814 break;
2815 case DW_OP_const8u:
2816 case DW_OP_const8s:
2817 size += 8;
2818 break;
2819 case DW_OP_constu:
2820 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2821 break;
2822 case DW_OP_consts:
2823 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2824 break;
2825 case DW_OP_pick:
2826 size += 1;
2827 break;
2828 case DW_OP_plus_uconst:
2829 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2830 break;
2831 case DW_OP_skip:
2832 case DW_OP_bra:
2833 size += 2;
2834 break;
2835 case DW_OP_breg0:
2836 case DW_OP_breg1:
2837 case DW_OP_breg2:
2838 case DW_OP_breg3:
2839 case DW_OP_breg4:
2840 case DW_OP_breg5:
2841 case DW_OP_breg6:
2842 case DW_OP_breg7:
2843 case DW_OP_breg8:
2844 case DW_OP_breg9:
2845 case DW_OP_breg10:
2846 case DW_OP_breg11:
2847 case DW_OP_breg12:
2848 case DW_OP_breg13:
2849 case DW_OP_breg14:
2850 case DW_OP_breg15:
2851 case DW_OP_breg16:
2852 case DW_OP_breg17:
2853 case DW_OP_breg18:
2854 case DW_OP_breg19:
2855 case DW_OP_breg20:
2856 case DW_OP_breg21:
2857 case DW_OP_breg22:
2858 case DW_OP_breg23:
2859 case DW_OP_breg24:
2860 case DW_OP_breg25:
2861 case DW_OP_breg26:
2862 case DW_OP_breg27:
2863 case DW_OP_breg28:
2864 case DW_OP_breg29:
2865 case DW_OP_breg30:
2866 case DW_OP_breg31:
2867 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2868 break;
2869 case DW_OP_regx:
2870 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2871 break;
2872 case DW_OP_fbreg:
2873 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2874 break;
2875 case DW_OP_bregx:
2876 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2877 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2878 break;
2879 case DW_OP_piece:
2880 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2881 break;
2882 case DW_OP_deref_size:
2883 case DW_OP_xderef_size:
2884 size += 1;
2885 break;
2886 case DW_OP_call2:
2887 size += 2;
2888 break;
2889 case DW_OP_call4:
2890 size += 4;
2891 break;
2892 case DW_OP_call_ref:
2893 size += DWARF2_ADDR_SIZE;
2894 break;
2895 default:
2896 break;
2897 }
2898
2899 return size;
2900 }
2901
2902 /* Return the size of a series of location descriptors. */
2903
2904 static unsigned long
2905 size_of_locs (dw_loc_descr_ref loc)
2906 {
2907 unsigned long size;
2908
2909 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2910 {
2911 loc->dw_loc_addr = size;
2912 size += size_of_loc_descr (loc);
2913 }
2914
2915 return size;
2916 }
2917
2918 /* Output location description stack opcode's operands (if any). */
2919
2920 static void
2921 output_loc_operands (dw_loc_descr_ref loc)
2922 {
2923 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2924 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2925
2926 switch (loc->dw_loc_opc)
2927 {
2928 #ifdef DWARF2_DEBUGGING_INFO
2929 case DW_OP_addr:
2930 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2931 break;
2932 case DW_OP_const2u:
2933 case DW_OP_const2s:
2934 dw2_asm_output_data (2, val1->v.val_int, NULL);
2935 break;
2936 case DW_OP_const4u:
2937 case DW_OP_const4s:
2938 dw2_asm_output_data (4, val1->v.val_int, NULL);
2939 break;
2940 case DW_OP_const8u:
2941 case DW_OP_const8s:
2942 if (HOST_BITS_PER_LONG < 64)
2943 abort ();
2944 dw2_asm_output_data (8, val1->v.val_int, NULL);
2945 break;
2946 case DW_OP_skip:
2947 case DW_OP_bra:
2948 {
2949 int offset;
2950
2951 if (val1->val_class == dw_val_class_loc)
2952 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2953 else
2954 abort ();
2955
2956 dw2_asm_output_data (2, offset, NULL);
2957 }
2958 break;
2959 #else
2960 case DW_OP_addr:
2961 case DW_OP_const2u:
2962 case DW_OP_const2s:
2963 case DW_OP_const4u:
2964 case DW_OP_const4s:
2965 case DW_OP_const8u:
2966 case DW_OP_const8s:
2967 case DW_OP_skip:
2968 case DW_OP_bra:
2969 /* We currently don't make any attempt to make sure these are
2970 aligned properly like we do for the main unwind info, so
2971 don't support emitting things larger than a byte if we're
2972 only doing unwinding. */
2973 abort ();
2974 #endif
2975 case DW_OP_const1u:
2976 case DW_OP_const1s:
2977 dw2_asm_output_data (1, val1->v.val_int, NULL);
2978 break;
2979 case DW_OP_constu:
2980 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2981 break;
2982 case DW_OP_consts:
2983 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2984 break;
2985 case DW_OP_pick:
2986 dw2_asm_output_data (1, val1->v.val_int, NULL);
2987 break;
2988 case DW_OP_plus_uconst:
2989 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2990 break;
2991 case DW_OP_breg0:
2992 case DW_OP_breg1:
2993 case DW_OP_breg2:
2994 case DW_OP_breg3:
2995 case DW_OP_breg4:
2996 case DW_OP_breg5:
2997 case DW_OP_breg6:
2998 case DW_OP_breg7:
2999 case DW_OP_breg8:
3000 case DW_OP_breg9:
3001 case DW_OP_breg10:
3002 case DW_OP_breg11:
3003 case DW_OP_breg12:
3004 case DW_OP_breg13:
3005 case DW_OP_breg14:
3006 case DW_OP_breg15:
3007 case DW_OP_breg16:
3008 case DW_OP_breg17:
3009 case DW_OP_breg18:
3010 case DW_OP_breg19:
3011 case DW_OP_breg20:
3012 case DW_OP_breg21:
3013 case DW_OP_breg22:
3014 case DW_OP_breg23:
3015 case DW_OP_breg24:
3016 case DW_OP_breg25:
3017 case DW_OP_breg26:
3018 case DW_OP_breg27:
3019 case DW_OP_breg28:
3020 case DW_OP_breg29:
3021 case DW_OP_breg30:
3022 case DW_OP_breg31:
3023 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3024 break;
3025 case DW_OP_regx:
3026 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3027 break;
3028 case DW_OP_fbreg:
3029 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3030 break;
3031 case DW_OP_bregx:
3032 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3033 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3034 break;
3035 case DW_OP_piece:
3036 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3037 break;
3038 case DW_OP_deref_size:
3039 case DW_OP_xderef_size:
3040 dw2_asm_output_data (1, val1->v.val_int, NULL);
3041 break;
3042
3043 case INTERNAL_DW_OP_tls_addr:
3044 #ifdef ASM_OUTPUT_DWARF_DTPREL
3045 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3046 val1->v.val_addr);
3047 fputc ('\n', asm_out_file);
3048 #else
3049 abort ();
3050 #endif
3051 break;
3052
3053 default:
3054 /* Other codes have no operands. */
3055 break;
3056 }
3057 }
3058
3059 /* Output a sequence of location operations. */
3060
3061 static void
3062 output_loc_sequence (dw_loc_descr_ref loc)
3063 {
3064 for (; loc != NULL; loc = loc->dw_loc_next)
3065 {
3066 /* Output the opcode. */
3067 dw2_asm_output_data (1, loc->dw_loc_opc,
3068 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3069
3070 /* Output the operand(s) (if any). */
3071 output_loc_operands (loc);
3072 }
3073 }
3074
3075 /* This routine will generate the correct assembly data for a location
3076 description based on a cfi entry with a complex address. */
3077
3078 static void
3079 output_cfa_loc (dw_cfi_ref cfi)
3080 {
3081 dw_loc_descr_ref loc;
3082 unsigned long size;
3083
3084 /* Output the size of the block. */
3085 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3086 size = size_of_locs (loc);
3087 dw2_asm_output_data_uleb128 (size, NULL);
3088
3089 /* Now output the operations themselves. */
3090 output_loc_sequence (loc);
3091 }
3092
3093 /* This function builds a dwarf location descriptor sequence from
3094 a dw_cfa_location. */
3095
3096 static struct dw_loc_descr_struct *
3097 build_cfa_loc (dw_cfa_location *cfa)
3098 {
3099 struct dw_loc_descr_struct *head, *tmp;
3100
3101 if (cfa->indirect == 0)
3102 abort ();
3103
3104 if (cfa->base_offset)
3105 {
3106 if (cfa->reg <= 31)
3107 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3108 else
3109 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3110 }
3111 else if (cfa->reg <= 31)
3112 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3113 else
3114 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3115
3116 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3117 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3118 add_loc_descr (&head, tmp);
3119 if (cfa->offset != 0)
3120 {
3121 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3122 add_loc_descr (&head, tmp);
3123 }
3124
3125 return head;
3126 }
3127
3128 /* This function fills in aa dw_cfa_location structure from a dwarf location
3129 descriptor sequence. */
3130
3131 static void
3132 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3133 {
3134 struct dw_loc_descr_struct *ptr;
3135 cfa->offset = 0;
3136 cfa->base_offset = 0;
3137 cfa->indirect = 0;
3138 cfa->reg = -1;
3139
3140 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3141 {
3142 enum dwarf_location_atom op = ptr->dw_loc_opc;
3143
3144 switch (op)
3145 {
3146 case DW_OP_reg0:
3147 case DW_OP_reg1:
3148 case DW_OP_reg2:
3149 case DW_OP_reg3:
3150 case DW_OP_reg4:
3151 case DW_OP_reg5:
3152 case DW_OP_reg6:
3153 case DW_OP_reg7:
3154 case DW_OP_reg8:
3155 case DW_OP_reg9:
3156 case DW_OP_reg10:
3157 case DW_OP_reg11:
3158 case DW_OP_reg12:
3159 case DW_OP_reg13:
3160 case DW_OP_reg14:
3161 case DW_OP_reg15:
3162 case DW_OP_reg16:
3163 case DW_OP_reg17:
3164 case DW_OP_reg18:
3165 case DW_OP_reg19:
3166 case DW_OP_reg20:
3167 case DW_OP_reg21:
3168 case DW_OP_reg22:
3169 case DW_OP_reg23:
3170 case DW_OP_reg24:
3171 case DW_OP_reg25:
3172 case DW_OP_reg26:
3173 case DW_OP_reg27:
3174 case DW_OP_reg28:
3175 case DW_OP_reg29:
3176 case DW_OP_reg30:
3177 case DW_OP_reg31:
3178 cfa->reg = op - DW_OP_reg0;
3179 break;
3180 case DW_OP_regx:
3181 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3182 break;
3183 case DW_OP_breg0:
3184 case DW_OP_breg1:
3185 case DW_OP_breg2:
3186 case DW_OP_breg3:
3187 case DW_OP_breg4:
3188 case DW_OP_breg5:
3189 case DW_OP_breg6:
3190 case DW_OP_breg7:
3191 case DW_OP_breg8:
3192 case DW_OP_breg9:
3193 case DW_OP_breg10:
3194 case DW_OP_breg11:
3195 case DW_OP_breg12:
3196 case DW_OP_breg13:
3197 case DW_OP_breg14:
3198 case DW_OP_breg15:
3199 case DW_OP_breg16:
3200 case DW_OP_breg17:
3201 case DW_OP_breg18:
3202 case DW_OP_breg19:
3203 case DW_OP_breg20:
3204 case DW_OP_breg21:
3205 case DW_OP_breg22:
3206 case DW_OP_breg23:
3207 case DW_OP_breg24:
3208 case DW_OP_breg25:
3209 case DW_OP_breg26:
3210 case DW_OP_breg27:
3211 case DW_OP_breg28:
3212 case DW_OP_breg29:
3213 case DW_OP_breg30:
3214 case DW_OP_breg31:
3215 cfa->reg = op - DW_OP_breg0;
3216 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3217 break;
3218 case DW_OP_bregx:
3219 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3220 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3221 break;
3222 case DW_OP_deref:
3223 cfa->indirect = 1;
3224 break;
3225 case DW_OP_plus_uconst:
3226 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3227 break;
3228 default:
3229 internal_error ("DW_LOC_OP %s not implemented\n",
3230 dwarf_stack_op_name (ptr->dw_loc_opc));
3231 }
3232 }
3233 }
3234 #endif /* .debug_frame support */
3235 \f
3236 /* And now, the support for symbolic debugging information. */
3237 #ifdef DWARF2_DEBUGGING_INFO
3238
3239 /* .debug_str support. */
3240 static int output_indirect_string (void **, void *);
3241
3242 static void dwarf2out_init (const char *);
3243 static void dwarf2out_finish (const char *);
3244 static void dwarf2out_define (unsigned int, const char *);
3245 static void dwarf2out_undef (unsigned int, const char *);
3246 static void dwarf2out_start_source_file (unsigned, const char *);
3247 static void dwarf2out_end_source_file (unsigned);
3248 static void dwarf2out_begin_block (unsigned, unsigned);
3249 static void dwarf2out_end_block (unsigned, unsigned);
3250 static bool dwarf2out_ignore_block (tree);
3251 static void dwarf2out_global_decl (tree);
3252 static void dwarf2out_imported_module_or_decl (tree, tree);
3253 static void dwarf2out_abstract_function (tree);
3254
3255 /* The debug hooks structure. */
3256
3257 const struct gcc_debug_hooks dwarf2_debug_hooks =
3258 {
3259 dwarf2out_init,
3260 dwarf2out_finish,
3261 dwarf2out_define,
3262 dwarf2out_undef,
3263 dwarf2out_start_source_file,
3264 dwarf2out_end_source_file,
3265 dwarf2out_begin_block,
3266 dwarf2out_end_block,
3267 dwarf2out_ignore_block,
3268 dwarf2out_source_line,
3269 dwarf2out_begin_prologue,
3270 debug_nothing_int_charstar, /* end_prologue */
3271 dwarf2out_end_epilogue,
3272 debug_nothing_tree, /* begin_function */
3273 debug_nothing_int, /* end_function */
3274 dwarf2out_decl, /* function_decl */
3275 dwarf2out_global_decl,
3276 dwarf2out_imported_module_or_decl,
3277 debug_nothing_tree, /* deferred_inline_function */
3278 /* The DWARF 2 backend tries to reduce debugging bloat by not
3279 emitting the abstract description of inline functions until
3280 something tries to reference them. */
3281 dwarf2out_abstract_function, /* outlining_inline_function */
3282 debug_nothing_rtx, /* label */
3283 debug_nothing_int /* handle_pch */
3284 };
3285 #endif
3286 \f
3287 /* NOTE: In the comments in this file, many references are made to
3288 "Debugging Information Entries". This term is abbreviated as `DIE'
3289 throughout the remainder of this file. */
3290
3291 /* An internal representation of the DWARF output is built, and then
3292 walked to generate the DWARF debugging info. The walk of the internal
3293 representation is done after the entire program has been compiled.
3294 The types below are used to describe the internal representation. */
3295
3296 /* Various DIE's use offsets relative to the beginning of the
3297 .debug_info section to refer to each other. */
3298
3299 typedef long int dw_offset;
3300
3301 /* Define typedefs here to avoid circular dependencies. */
3302
3303 typedef struct dw_attr_struct *dw_attr_ref;
3304 typedef struct dw_line_info_struct *dw_line_info_ref;
3305 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3306 typedef struct pubname_struct *pubname_ref;
3307 typedef struct dw_ranges_struct *dw_ranges_ref;
3308
3309 /* Each entry in the line_info_table maintains the file and
3310 line number associated with the label generated for that
3311 entry. The label gives the PC value associated with
3312 the line number entry. */
3313
3314 typedef struct dw_line_info_struct GTY(())
3315 {
3316 unsigned long dw_file_num;
3317 unsigned long dw_line_num;
3318 }
3319 dw_line_info_entry;
3320
3321 /* Line information for functions in separate sections; each one gets its
3322 own sequence. */
3323 typedef struct dw_separate_line_info_struct GTY(())
3324 {
3325 unsigned long dw_file_num;
3326 unsigned long dw_line_num;
3327 unsigned long function;
3328 }
3329 dw_separate_line_info_entry;
3330
3331 /* Each DIE attribute has a field specifying the attribute kind,
3332 a link to the next attribute in the chain, and an attribute value.
3333 Attributes are typically linked below the DIE they modify. */
3334
3335 typedef struct dw_attr_struct GTY(())
3336 {
3337 enum dwarf_attribute dw_attr;
3338 dw_attr_ref dw_attr_next;
3339 dw_val_node dw_attr_val;
3340 }
3341 dw_attr_node;
3342
3343 /* The Debugging Information Entry (DIE) structure */
3344
3345 typedef struct die_struct GTY(())
3346 {
3347 enum dwarf_tag die_tag;
3348 char *die_symbol;
3349 dw_attr_ref die_attr;
3350 dw_die_ref die_parent;
3351 dw_die_ref die_child;
3352 dw_die_ref die_sib;
3353 dw_die_ref die_definition; /* ref from a specification to its definition */
3354 dw_offset die_offset;
3355 unsigned long die_abbrev;
3356 int die_mark;
3357 unsigned int decl_id;
3358 }
3359 die_node;
3360
3361 /* The pubname structure */
3362
3363 typedef struct pubname_struct GTY(())
3364 {
3365 dw_die_ref die;
3366 char *name;
3367 }
3368 pubname_entry;
3369
3370 struct dw_ranges_struct GTY(())
3371 {
3372 int block_num;
3373 };
3374
3375 /* The limbo die list structure. */
3376 typedef struct limbo_die_struct GTY(())
3377 {
3378 dw_die_ref die;
3379 tree created_for;
3380 struct limbo_die_struct *next;
3381 }
3382 limbo_die_node;
3383
3384 /* How to start an assembler comment. */
3385 #ifndef ASM_COMMENT_START
3386 #define ASM_COMMENT_START ";#"
3387 #endif
3388
3389 /* Define a macro which returns nonzero for a TYPE_DECL which was
3390 implicitly generated for a tagged type.
3391
3392 Note that unlike the gcc front end (which generates a NULL named
3393 TYPE_DECL node for each complete tagged type, each array type, and
3394 each function type node created) the g++ front end generates a
3395 _named_ TYPE_DECL node for each tagged type node created.
3396 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3397 generate a DW_TAG_typedef DIE for them. */
3398
3399 #define TYPE_DECL_IS_STUB(decl) \
3400 (DECL_NAME (decl) == NULL_TREE \
3401 || (DECL_ARTIFICIAL (decl) \
3402 && is_tagged_type (TREE_TYPE (decl)) \
3403 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3404 /* This is necessary for stub decls that \
3405 appear in nested inline functions. */ \
3406 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3407 && (decl_ultimate_origin (decl) \
3408 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3409
3410 /* Information concerning the compilation unit's programming
3411 language, and compiler version. */
3412
3413 /* Fixed size portion of the DWARF compilation unit header. */
3414 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3415 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3416
3417 /* Fixed size portion of public names info. */
3418 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3419
3420 /* Fixed size portion of the address range info. */
3421 #define DWARF_ARANGES_HEADER_SIZE \
3422 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3423 DWARF2_ADDR_SIZE * 2) \
3424 - DWARF_INITIAL_LENGTH_SIZE)
3425
3426 /* Size of padding portion in the address range info. It must be
3427 aligned to twice the pointer size. */
3428 #define DWARF_ARANGES_PAD_SIZE \
3429 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3430 DWARF2_ADDR_SIZE * 2) \
3431 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3432
3433 /* Use assembler line directives if available. */
3434 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3435 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3436 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3437 #else
3438 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3439 #endif
3440 #endif
3441
3442 /* Minimum line offset in a special line info. opcode.
3443 This value was chosen to give a reasonable range of values. */
3444 #define DWARF_LINE_BASE -10
3445
3446 /* First special line opcode - leave room for the standard opcodes. */
3447 #define DWARF_LINE_OPCODE_BASE 10
3448
3449 /* Range of line offsets in a special line info. opcode. */
3450 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3451
3452 /* Flag that indicates the initial value of the is_stmt_start flag.
3453 In the present implementation, we do not mark any lines as
3454 the beginning of a source statement, because that information
3455 is not made available by the GCC front-end. */
3456 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3457
3458 #ifdef DWARF2_DEBUGGING_INFO
3459 /* This location is used by calc_die_sizes() to keep track
3460 the offset of each DIE within the .debug_info section. */
3461 static unsigned long next_die_offset;
3462 #endif
3463
3464 /* Record the root of the DIE's built for the current compilation unit. */
3465 static GTY(()) dw_die_ref comp_unit_die;
3466
3467 /* A list of DIEs with a NULL parent waiting to be relocated. */
3468 static GTY(()) limbo_die_node *limbo_die_list;
3469
3470 /* Filenames referenced by this compilation unit. */
3471 static GTY(()) varray_type file_table;
3472 static GTY(()) varray_type file_table_emitted;
3473 static GTY(()) size_t file_table_last_lookup_index;
3474
3475 /* A hash table of references to DIE's that describe declarations.
3476 The key is a DECL_UID() which is a unique number identifying each decl. */
3477 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3478
3479 /* A pointer to the base of a list of references to DIE's that
3480 are uniquely identified by their tag, presence/absence of
3481 children DIE's, and list of attribute/value pairs. */
3482 static GTY((length ("abbrev_die_table_allocated")))
3483 dw_die_ref *abbrev_die_table;
3484
3485 /* Number of elements currently allocated for abbrev_die_table. */
3486 static GTY(()) unsigned abbrev_die_table_allocated;
3487
3488 /* Number of elements in type_die_table currently in use. */
3489 static GTY(()) unsigned abbrev_die_table_in_use;
3490
3491 /* Size (in elements) of increments by which we may expand the
3492 abbrev_die_table. */
3493 #define ABBREV_DIE_TABLE_INCREMENT 256
3494
3495 /* A pointer to the base of a table that contains line information
3496 for each source code line in .text in the compilation unit. */
3497 static GTY((length ("line_info_table_allocated")))
3498 dw_line_info_ref line_info_table;
3499
3500 /* Number of elements currently allocated for line_info_table. */
3501 static GTY(()) unsigned line_info_table_allocated;
3502
3503 /* Number of elements in line_info_table currently in use. */
3504 static GTY(()) unsigned line_info_table_in_use;
3505
3506 /* A pointer to the base of a table that contains line information
3507 for each source code line outside of .text in the compilation unit. */
3508 static GTY ((length ("separate_line_info_table_allocated")))
3509 dw_separate_line_info_ref separate_line_info_table;
3510
3511 /* Number of elements currently allocated for separate_line_info_table. */
3512 static GTY(()) unsigned separate_line_info_table_allocated;
3513
3514 /* Number of elements in separate_line_info_table currently in use. */
3515 static GTY(()) unsigned separate_line_info_table_in_use;
3516
3517 /* Size (in elements) of increments by which we may expand the
3518 line_info_table. */
3519 #define LINE_INFO_TABLE_INCREMENT 1024
3520
3521 /* A pointer to the base of a table that contains a list of publicly
3522 accessible names. */
3523 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3524
3525 /* Number of elements currently allocated for pubname_table. */
3526 static GTY(()) unsigned pubname_table_allocated;
3527
3528 /* Number of elements in pubname_table currently in use. */
3529 static GTY(()) unsigned pubname_table_in_use;
3530
3531 /* Size (in elements) of increments by which we may expand the
3532 pubname_table. */
3533 #define PUBNAME_TABLE_INCREMENT 64
3534
3535 /* Array of dies for which we should generate .debug_arange info. */
3536 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3537
3538 /* Number of elements currently allocated for arange_table. */
3539 static GTY(()) unsigned arange_table_allocated;
3540
3541 /* Number of elements in arange_table currently in use. */
3542 static GTY(()) unsigned arange_table_in_use;
3543
3544 /* Size (in elements) of increments by which we may expand the
3545 arange_table. */
3546 #define ARANGE_TABLE_INCREMENT 64
3547
3548 /* Array of dies for which we should generate .debug_ranges info. */
3549 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3550
3551 /* Number of elements currently allocated for ranges_table. */
3552 static GTY(()) unsigned ranges_table_allocated;
3553
3554 /* Number of elements in ranges_table currently in use. */
3555 static GTY(()) unsigned ranges_table_in_use;
3556
3557 /* Size (in elements) of increments by which we may expand the
3558 ranges_table. */
3559 #define RANGES_TABLE_INCREMENT 64
3560
3561 /* Whether we have location lists that need outputting */
3562 static GTY(()) unsigned have_location_lists;
3563
3564 #ifdef DWARF2_DEBUGGING_INFO
3565 /* Record whether the function being analyzed contains inlined functions. */
3566 static int current_function_has_inlines;
3567 #endif
3568 #if 0 && defined (MIPS_DEBUGGING_INFO)
3569 static int comp_unit_has_inlines;
3570 #endif
3571
3572 /* Number of file tables emitted in maybe_emit_file(). */
3573 static GTY(()) int emitcount = 0;
3574
3575 /* Number of internal labels generated by gen_internal_sym(). */
3576 static GTY(()) int label_num;
3577
3578 #ifdef DWARF2_DEBUGGING_INFO
3579
3580 /* Forward declarations for functions defined in this file. */
3581
3582 static int is_pseudo_reg (rtx);
3583 static tree type_main_variant (tree);
3584 static int is_tagged_type (tree);
3585 static const char *dwarf_tag_name (unsigned);
3586 static const char *dwarf_attr_name (unsigned);
3587 static const char *dwarf_form_name (unsigned);
3588 #if 0
3589 static const char *dwarf_type_encoding_name (unsigned);
3590 #endif
3591 static tree decl_ultimate_origin (tree);
3592 static tree block_ultimate_origin (tree);
3593 static tree decl_class_context (tree);
3594 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3595 static inline enum dw_val_class AT_class (dw_attr_ref);
3596 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3597 static inline unsigned AT_flag (dw_attr_ref);
3598 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3599 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3600 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3601 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3602 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3603 unsigned long);
3604 static void add_AT_float (dw_die_ref, enum dwarf_attribute, unsigned, long *);
3605 static hashval_t debug_str_do_hash (const void *);
3606 static int debug_str_eq (const void *, const void *);
3607 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3608 static inline const char *AT_string (dw_attr_ref);
3609 static int AT_string_form (dw_attr_ref);
3610 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3611 static void add_AT_specification (dw_die_ref, dw_die_ref);
3612 static inline dw_die_ref AT_ref (dw_attr_ref);
3613 static inline int AT_ref_external (dw_attr_ref);
3614 static inline void set_AT_ref_external (dw_attr_ref, int);
3615 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3616 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3617 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3618 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3619 dw_loc_list_ref);
3620 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3621 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3622 static inline rtx AT_addr (dw_attr_ref);
3623 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3624 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3625 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3626 unsigned HOST_WIDE_INT);
3627 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3628 unsigned long);
3629 static inline const char *AT_lbl (dw_attr_ref);
3630 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3631 static const char *get_AT_low_pc (dw_die_ref);
3632 static const char *get_AT_hi_pc (dw_die_ref);
3633 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3634 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3635 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3636 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3637 static bool is_c_family (void);
3638 static bool is_cxx (void);
3639 static bool is_java (void);
3640 static bool is_fortran (void);
3641 static bool is_ada (void);
3642 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3643 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3644 static inline void free_die (dw_die_ref);
3645 static void remove_children (dw_die_ref);
3646 static void add_child_die (dw_die_ref, dw_die_ref);
3647 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3648 static dw_die_ref lookup_type_die (tree);
3649 static void equate_type_number_to_die (tree, dw_die_ref);
3650 static hashval_t decl_die_table_hash (const void *);
3651 static int decl_die_table_eq (const void *, const void *);
3652 static dw_die_ref lookup_decl_die (tree);
3653 static void equate_decl_number_to_die (tree, dw_die_ref);
3654 static void print_spaces (FILE *);
3655 static void print_die (dw_die_ref, FILE *);
3656 static void print_dwarf_line_table (FILE *);
3657 static void reverse_die_lists (dw_die_ref);
3658 static void reverse_all_dies (dw_die_ref);
3659 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3660 static dw_die_ref pop_compile_unit (dw_die_ref);
3661 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3662 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3663 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3664 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3665 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3666 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3667 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3668 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3669 static void compute_section_prefix (dw_die_ref);
3670 static int is_type_die (dw_die_ref);
3671 static int is_comdat_die (dw_die_ref);
3672 static int is_symbol_die (dw_die_ref);
3673 static void assign_symbol_names (dw_die_ref);
3674 static void break_out_includes (dw_die_ref);
3675 static hashval_t htab_cu_hash (const void *);
3676 static int htab_cu_eq (const void *, const void *);
3677 static void htab_cu_del (void *);
3678 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3679 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3680 static void add_sibling_attributes (dw_die_ref);
3681 static void build_abbrev_table (dw_die_ref);
3682 static void output_location_lists (dw_die_ref);
3683 static int constant_size (long unsigned);
3684 static unsigned long size_of_die (dw_die_ref);
3685 static void calc_die_sizes (dw_die_ref);
3686 static void mark_dies (dw_die_ref);
3687 static void unmark_dies (dw_die_ref);
3688 static void unmark_all_dies (dw_die_ref);
3689 static unsigned long size_of_pubnames (void);
3690 static unsigned long size_of_aranges (void);
3691 static enum dwarf_form value_format (dw_attr_ref);
3692 static void output_value_format (dw_attr_ref);
3693 static void output_abbrev_section (void);
3694 static void output_die_symbol (dw_die_ref);
3695 static void output_die (dw_die_ref);
3696 static void output_compilation_unit_header (void);
3697 static void output_comp_unit (dw_die_ref, int);
3698 static const char *dwarf2_name (tree, int);
3699 static void add_pubname (tree, dw_die_ref);
3700 static void output_pubnames (void);
3701 static void add_arange (tree, dw_die_ref);
3702 static void output_aranges (void);
3703 static unsigned int add_ranges (tree);
3704 static void output_ranges (void);
3705 static void output_line_info (void);
3706 static void output_file_names (void);
3707 static dw_die_ref base_type_die (tree);
3708 static tree root_type (tree);
3709 static int is_base_type (tree);
3710 static bool is_subrange_type (tree);
3711 static dw_die_ref subrange_type_die (tree, dw_die_ref);
3712 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3713 static int type_is_enum (tree);
3714 static unsigned int reg_number (rtx);
3715 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3716 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3717 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3718 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3719 static dw_loc_descr_ref based_loc_descr (unsigned, HOST_WIDE_INT);
3720 static int is_based_loc (rtx);
3721 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
3722 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3723 static dw_loc_descr_ref loc_descriptor (rtx);
3724 static dw_loc_descr_ref loc_descriptor_from_tree (tree, int);
3725 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3726 static tree field_type (tree);
3727 static unsigned int simple_type_align_in_bits (tree);
3728 static unsigned int simple_decl_align_in_bits (tree);
3729 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3730 static HOST_WIDE_INT field_byte_offset (tree);
3731 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3732 dw_loc_descr_ref);
3733 static void add_data_member_location_attribute (dw_die_ref, tree);
3734 static void add_const_value_attribute (dw_die_ref, rtx);
3735 static rtx rtl_for_decl_location (tree);
3736 static void add_location_or_const_value_attribute (dw_die_ref, tree);
3737 static void tree_add_const_value_attribute (dw_die_ref, tree);
3738 static void add_name_attribute (dw_die_ref, const char *);
3739 static void add_comp_dir_attribute (dw_die_ref);
3740 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
3741 static void add_subscript_info (dw_die_ref, tree);
3742 static void add_byte_size_attribute (dw_die_ref, tree);
3743 static void add_bit_offset_attribute (dw_die_ref, tree);
3744 static void add_bit_size_attribute (dw_die_ref, tree);
3745 static void add_prototyped_attribute (dw_die_ref, tree);
3746 static void add_abstract_origin_attribute (dw_die_ref, tree);
3747 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3748 static void add_src_coords_attributes (dw_die_ref, tree);
3749 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3750 static void push_decl_scope (tree);
3751 static void pop_decl_scope (void);
3752 static dw_die_ref scope_die_for (tree, dw_die_ref);
3753 static inline int local_scope_p (dw_die_ref);
3754 static inline int class_or_namespace_scope_p (dw_die_ref);
3755 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
3756 static const char *type_tag (tree);
3757 static tree member_declared_type (tree);
3758 #if 0
3759 static const char *decl_start_label (tree);
3760 #endif
3761 static void gen_array_type_die (tree, dw_die_ref);
3762 static void gen_set_type_die (tree, dw_die_ref);
3763 #if 0
3764 static void gen_entry_point_die (tree, dw_die_ref);
3765 #endif
3766 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
3767 static void gen_inlined_structure_type_die (tree, dw_die_ref);
3768 static void gen_inlined_union_type_die (tree, dw_die_ref);
3769 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
3770 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
3771 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3772 static void gen_formal_types_die (tree, dw_die_ref);
3773 static void gen_subprogram_die (tree, dw_die_ref);
3774 static void gen_variable_die (tree, dw_die_ref);
3775 static void gen_label_die (tree, dw_die_ref);
3776 static void gen_lexical_block_die (tree, dw_die_ref, int);
3777 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
3778 static void gen_field_die (tree, dw_die_ref);
3779 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3780 static dw_die_ref gen_compile_unit_die (const char *);
3781 static void gen_string_type_die (tree, dw_die_ref);
3782 static void gen_inheritance_die (tree, tree, dw_die_ref);
3783 static void gen_member_die (tree, dw_die_ref);
3784 static void gen_struct_or_union_type_die (tree, dw_die_ref);
3785 static void gen_subroutine_type_die (tree, dw_die_ref);
3786 static void gen_typedef_die (tree, dw_die_ref);
3787 static void gen_type_die (tree, dw_die_ref);
3788 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
3789 static void gen_block_die (tree, dw_die_ref, int);
3790 static void decls_for_scope (tree, dw_die_ref, int);
3791 static int is_redundant_typedef (tree);
3792 static void gen_namespace_die (tree);
3793 static void gen_decl_die (tree, dw_die_ref);
3794 static dw_die_ref force_decl_die (tree);
3795 static dw_die_ref force_type_die (tree);
3796 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
3797 static void declare_in_namespace (tree, dw_die_ref);
3798 static unsigned lookup_filename (const char *);
3799 static void init_file_table (void);
3800 static void retry_incomplete_types (void);
3801 static void gen_type_die_for_member (tree, tree, dw_die_ref);
3802 static void splice_child_die (dw_die_ref, dw_die_ref);
3803 static int file_info_cmp (const void *, const void *);
3804 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
3805 const char *, const char *, unsigned);
3806 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
3807 const char *, const char *,
3808 const char *);
3809 static void output_loc_list (dw_loc_list_ref);
3810 static char *gen_internal_sym (const char *);
3811
3812 static void prune_unmark_dies (dw_die_ref);
3813 static void prune_unused_types_mark (dw_die_ref, int);
3814 static void prune_unused_types_walk (dw_die_ref);
3815 static void prune_unused_types_walk_attribs (dw_die_ref);
3816 static void prune_unused_types_prune (dw_die_ref);
3817 static void prune_unused_types (void);
3818 static int maybe_emit_file (int);
3819
3820 /* Section names used to hold DWARF debugging information. */
3821 #ifndef DEBUG_INFO_SECTION
3822 #define DEBUG_INFO_SECTION ".debug_info"
3823 #endif
3824 #ifndef DEBUG_ABBREV_SECTION
3825 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3826 #endif
3827 #ifndef DEBUG_ARANGES_SECTION
3828 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3829 #endif
3830 #ifndef DEBUG_MACINFO_SECTION
3831 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3832 #endif
3833 #ifndef DEBUG_LINE_SECTION
3834 #define DEBUG_LINE_SECTION ".debug_line"
3835 #endif
3836 #ifndef DEBUG_LOC_SECTION
3837 #define DEBUG_LOC_SECTION ".debug_loc"
3838 #endif
3839 #ifndef DEBUG_PUBNAMES_SECTION
3840 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3841 #endif
3842 #ifndef DEBUG_STR_SECTION
3843 #define DEBUG_STR_SECTION ".debug_str"
3844 #endif
3845 #ifndef DEBUG_RANGES_SECTION
3846 #define DEBUG_RANGES_SECTION ".debug_ranges"
3847 #endif
3848
3849 /* Standard ELF section names for compiled code and data. */
3850 #ifndef TEXT_SECTION_NAME
3851 #define TEXT_SECTION_NAME ".text"
3852 #endif
3853
3854 /* Section flags for .debug_str section. */
3855 #define DEBUG_STR_SECTION_FLAGS \
3856 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
3857 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
3858 : SECTION_DEBUG)
3859
3860 /* Labels we insert at beginning sections we can reference instead of
3861 the section names themselves. */
3862
3863 #ifndef TEXT_SECTION_LABEL
3864 #define TEXT_SECTION_LABEL "Ltext"
3865 #endif
3866 #ifndef DEBUG_LINE_SECTION_LABEL
3867 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3868 #endif
3869 #ifndef DEBUG_INFO_SECTION_LABEL
3870 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3871 #endif
3872 #ifndef DEBUG_ABBREV_SECTION_LABEL
3873 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3874 #endif
3875 #ifndef DEBUG_LOC_SECTION_LABEL
3876 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3877 #endif
3878 #ifndef DEBUG_RANGES_SECTION_LABEL
3879 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3880 #endif
3881 #ifndef DEBUG_MACINFO_SECTION_LABEL
3882 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3883 #endif
3884
3885 /* Definitions of defaults for formats and names of various special
3886 (artificial) labels which may be generated within this file (when the -g
3887 options is used and DWARF2_DEBUGGING_INFO is in effect.
3888 If necessary, these may be overridden from within the tm.h file, but
3889 typically, overriding these defaults is unnecessary. */
3890
3891 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3892 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3893 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3894 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3895 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3896 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3897 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3898 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3899
3900 #ifndef TEXT_END_LABEL
3901 #define TEXT_END_LABEL "Letext"
3902 #endif
3903 #ifndef BLOCK_BEGIN_LABEL
3904 #define BLOCK_BEGIN_LABEL "LBB"
3905 #endif
3906 #ifndef BLOCK_END_LABEL
3907 #define BLOCK_END_LABEL "LBE"
3908 #endif
3909 #ifndef LINE_CODE_LABEL
3910 #define LINE_CODE_LABEL "LM"
3911 #endif
3912 #ifndef SEPARATE_LINE_CODE_LABEL
3913 #define SEPARATE_LINE_CODE_LABEL "LSM"
3914 #endif
3915 \f
3916 /* We allow a language front-end to designate a function that is to be
3917 called to "demangle" any name before it it put into a DIE. */
3918
3919 static const char *(*demangle_name_func) (const char *);
3920
3921 void
3922 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
3923 {
3924 demangle_name_func = func;
3925 }
3926
3927 /* Test if rtl node points to a pseudo register. */
3928
3929 static inline int
3930 is_pseudo_reg (rtx rtl)
3931 {
3932 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3933 || (GET_CODE (rtl) == SUBREG
3934 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3935 }
3936
3937 /* Return a reference to a type, with its const and volatile qualifiers
3938 removed. */
3939
3940 static inline tree
3941 type_main_variant (tree type)
3942 {
3943 type = TYPE_MAIN_VARIANT (type);
3944
3945 /* ??? There really should be only one main variant among any group of
3946 variants of a given type (and all of the MAIN_VARIANT values for all
3947 members of the group should point to that one type) but sometimes the C
3948 front-end messes this up for array types, so we work around that bug
3949 here. */
3950 if (TREE_CODE (type) == ARRAY_TYPE)
3951 while (type != TYPE_MAIN_VARIANT (type))
3952 type = TYPE_MAIN_VARIANT (type);
3953
3954 return type;
3955 }
3956
3957 /* Return nonzero if the given type node represents a tagged type. */
3958
3959 static inline int
3960 is_tagged_type (tree type)
3961 {
3962 enum tree_code code = TREE_CODE (type);
3963
3964 return (code == RECORD_TYPE || code == UNION_TYPE
3965 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
3966 }
3967
3968 /* Convert a DIE tag into its string name. */
3969
3970 static const char *
3971 dwarf_tag_name (unsigned int tag)
3972 {
3973 switch (tag)
3974 {
3975 case DW_TAG_padding:
3976 return "DW_TAG_padding";
3977 case DW_TAG_array_type:
3978 return "DW_TAG_array_type";
3979 case DW_TAG_class_type:
3980 return "DW_TAG_class_type";
3981 case DW_TAG_entry_point:
3982 return "DW_TAG_entry_point";
3983 case DW_TAG_enumeration_type:
3984 return "DW_TAG_enumeration_type";
3985 case DW_TAG_formal_parameter:
3986 return "DW_TAG_formal_parameter";
3987 case DW_TAG_imported_declaration:
3988 return "DW_TAG_imported_declaration";
3989 case DW_TAG_label:
3990 return "DW_TAG_label";
3991 case DW_TAG_lexical_block:
3992 return "DW_TAG_lexical_block";
3993 case DW_TAG_member:
3994 return "DW_TAG_member";
3995 case DW_TAG_pointer_type:
3996 return "DW_TAG_pointer_type";
3997 case DW_TAG_reference_type:
3998 return "DW_TAG_reference_type";
3999 case DW_TAG_compile_unit:
4000 return "DW_TAG_compile_unit";
4001 case DW_TAG_string_type:
4002 return "DW_TAG_string_type";
4003 case DW_TAG_structure_type:
4004 return "DW_TAG_structure_type";
4005 case DW_TAG_subroutine_type:
4006 return "DW_TAG_subroutine_type";
4007 case DW_TAG_typedef:
4008 return "DW_TAG_typedef";
4009 case DW_TAG_union_type:
4010 return "DW_TAG_union_type";
4011 case DW_TAG_unspecified_parameters:
4012 return "DW_TAG_unspecified_parameters";
4013 case DW_TAG_variant:
4014 return "DW_TAG_variant";
4015 case DW_TAG_common_block:
4016 return "DW_TAG_common_block";
4017 case DW_TAG_common_inclusion:
4018 return "DW_TAG_common_inclusion";
4019 case DW_TAG_inheritance:
4020 return "DW_TAG_inheritance";
4021 case DW_TAG_inlined_subroutine:
4022 return "DW_TAG_inlined_subroutine";
4023 case DW_TAG_module:
4024 return "DW_TAG_module";
4025 case DW_TAG_ptr_to_member_type:
4026 return "DW_TAG_ptr_to_member_type";
4027 case DW_TAG_set_type:
4028 return "DW_TAG_set_type";
4029 case DW_TAG_subrange_type:
4030 return "DW_TAG_subrange_type";
4031 case DW_TAG_with_stmt:
4032 return "DW_TAG_with_stmt";
4033 case DW_TAG_access_declaration:
4034 return "DW_TAG_access_declaration";
4035 case DW_TAG_base_type:
4036 return "DW_TAG_base_type";
4037 case DW_TAG_catch_block:
4038 return "DW_TAG_catch_block";
4039 case DW_TAG_const_type:
4040 return "DW_TAG_const_type";
4041 case DW_TAG_constant:
4042 return "DW_TAG_constant";
4043 case DW_TAG_enumerator:
4044 return "DW_TAG_enumerator";
4045 case DW_TAG_file_type:
4046 return "DW_TAG_file_type";
4047 case DW_TAG_friend:
4048 return "DW_TAG_friend";
4049 case DW_TAG_namelist:
4050 return "DW_TAG_namelist";
4051 case DW_TAG_namelist_item:
4052 return "DW_TAG_namelist_item";
4053 case DW_TAG_namespace:
4054 return "DW_TAG_namespace";
4055 case DW_TAG_packed_type:
4056 return "DW_TAG_packed_type";
4057 case DW_TAG_subprogram:
4058 return "DW_TAG_subprogram";
4059 case DW_TAG_template_type_param:
4060 return "DW_TAG_template_type_param";
4061 case DW_TAG_template_value_param:
4062 return "DW_TAG_template_value_param";
4063 case DW_TAG_thrown_type:
4064 return "DW_TAG_thrown_type";
4065 case DW_TAG_try_block:
4066 return "DW_TAG_try_block";
4067 case DW_TAG_variant_part:
4068 return "DW_TAG_variant_part";
4069 case DW_TAG_variable:
4070 return "DW_TAG_variable";
4071 case DW_TAG_volatile_type:
4072 return "DW_TAG_volatile_type";
4073 case DW_TAG_imported_module:
4074 return "DW_TAG_imported_module";
4075 case DW_TAG_MIPS_loop:
4076 return "DW_TAG_MIPS_loop";
4077 case DW_TAG_format_label:
4078 return "DW_TAG_format_label";
4079 case DW_TAG_function_template:
4080 return "DW_TAG_function_template";
4081 case DW_TAG_class_template:
4082 return "DW_TAG_class_template";
4083 case DW_TAG_GNU_BINCL:
4084 return "DW_TAG_GNU_BINCL";
4085 case DW_TAG_GNU_EINCL:
4086 return "DW_TAG_GNU_EINCL";
4087 default:
4088 return "DW_TAG_<unknown>";
4089 }
4090 }
4091
4092 /* Convert a DWARF attribute code into its string name. */
4093
4094 static const char *
4095 dwarf_attr_name (unsigned int attr)
4096 {
4097 switch (attr)
4098 {
4099 case DW_AT_sibling:
4100 return "DW_AT_sibling";
4101 case DW_AT_location:
4102 return "DW_AT_location";
4103 case DW_AT_name:
4104 return "DW_AT_name";
4105 case DW_AT_ordering:
4106 return "DW_AT_ordering";
4107 case DW_AT_subscr_data:
4108 return "DW_AT_subscr_data";
4109 case DW_AT_byte_size:
4110 return "DW_AT_byte_size";
4111 case DW_AT_bit_offset:
4112 return "DW_AT_bit_offset";
4113 case DW_AT_bit_size:
4114 return "DW_AT_bit_size";
4115 case DW_AT_element_list:
4116 return "DW_AT_element_list";
4117 case DW_AT_stmt_list:
4118 return "DW_AT_stmt_list";
4119 case DW_AT_low_pc:
4120 return "DW_AT_low_pc";
4121 case DW_AT_high_pc:
4122 return "DW_AT_high_pc";
4123 case DW_AT_language:
4124 return "DW_AT_language";
4125 case DW_AT_member:
4126 return "DW_AT_member";
4127 case DW_AT_discr:
4128 return "DW_AT_discr";
4129 case DW_AT_discr_value:
4130 return "DW_AT_discr_value";
4131 case DW_AT_visibility:
4132 return "DW_AT_visibility";
4133 case DW_AT_import:
4134 return "DW_AT_import";
4135 case DW_AT_string_length:
4136 return "DW_AT_string_length";
4137 case DW_AT_common_reference:
4138 return "DW_AT_common_reference";
4139 case DW_AT_comp_dir:
4140 return "DW_AT_comp_dir";
4141 case DW_AT_const_value:
4142 return "DW_AT_const_value";
4143 case DW_AT_containing_type:
4144 return "DW_AT_containing_type";
4145 case DW_AT_default_value:
4146 return "DW_AT_default_value";
4147 case DW_AT_inline:
4148 return "DW_AT_inline";
4149 case DW_AT_is_optional:
4150 return "DW_AT_is_optional";
4151 case DW_AT_lower_bound:
4152 return "DW_AT_lower_bound";
4153 case DW_AT_producer:
4154 return "DW_AT_producer";
4155 case DW_AT_prototyped:
4156 return "DW_AT_prototyped";
4157 case DW_AT_return_addr:
4158 return "DW_AT_return_addr";
4159 case DW_AT_start_scope:
4160 return "DW_AT_start_scope";
4161 case DW_AT_stride_size:
4162 return "DW_AT_stride_size";
4163 case DW_AT_upper_bound:
4164 return "DW_AT_upper_bound";
4165 case DW_AT_abstract_origin:
4166 return "DW_AT_abstract_origin";
4167 case DW_AT_accessibility:
4168 return "DW_AT_accessibility";
4169 case DW_AT_address_class:
4170 return "DW_AT_address_class";
4171 case DW_AT_artificial:
4172 return "DW_AT_artificial";
4173 case DW_AT_base_types:
4174 return "DW_AT_base_types";
4175 case DW_AT_calling_convention:
4176 return "DW_AT_calling_convention";
4177 case DW_AT_count:
4178 return "DW_AT_count";
4179 case DW_AT_data_member_location:
4180 return "DW_AT_data_member_location";
4181 case DW_AT_decl_column:
4182 return "DW_AT_decl_column";
4183 case DW_AT_decl_file:
4184 return "DW_AT_decl_file";
4185 case DW_AT_decl_line:
4186 return "DW_AT_decl_line";
4187 case DW_AT_declaration:
4188 return "DW_AT_declaration";
4189 case DW_AT_discr_list:
4190 return "DW_AT_discr_list";
4191 case DW_AT_encoding:
4192 return "DW_AT_encoding";
4193 case DW_AT_external:
4194 return "DW_AT_external";
4195 case DW_AT_frame_base:
4196 return "DW_AT_frame_base";
4197 case DW_AT_friend:
4198 return "DW_AT_friend";
4199 case DW_AT_identifier_case:
4200 return "DW_AT_identifier_case";
4201 case DW_AT_macro_info:
4202 return "DW_AT_macro_info";
4203 case DW_AT_namelist_items:
4204 return "DW_AT_namelist_items";
4205 case DW_AT_priority:
4206 return "DW_AT_priority";
4207 case DW_AT_segment:
4208 return "DW_AT_segment";
4209 case DW_AT_specification:
4210 return "DW_AT_specification";
4211 case DW_AT_static_link:
4212 return "DW_AT_static_link";
4213 case DW_AT_type:
4214 return "DW_AT_type";
4215 case DW_AT_use_location:
4216 return "DW_AT_use_location";
4217 case DW_AT_variable_parameter:
4218 return "DW_AT_variable_parameter";
4219 case DW_AT_virtuality:
4220 return "DW_AT_virtuality";
4221 case DW_AT_vtable_elem_location:
4222 return "DW_AT_vtable_elem_location";
4223
4224 case DW_AT_allocated:
4225 return "DW_AT_allocated";
4226 case DW_AT_associated:
4227 return "DW_AT_associated";
4228 case DW_AT_data_location:
4229 return "DW_AT_data_location";
4230 case DW_AT_stride:
4231 return "DW_AT_stride";
4232 case DW_AT_entry_pc:
4233 return "DW_AT_entry_pc";
4234 case DW_AT_use_UTF8:
4235 return "DW_AT_use_UTF8";
4236 case DW_AT_extension:
4237 return "DW_AT_extension";
4238 case DW_AT_ranges:
4239 return "DW_AT_ranges";
4240 case DW_AT_trampoline:
4241 return "DW_AT_trampoline";
4242 case DW_AT_call_column:
4243 return "DW_AT_call_column";
4244 case DW_AT_call_file:
4245 return "DW_AT_call_file";
4246 case DW_AT_call_line:
4247 return "DW_AT_call_line";
4248
4249 case DW_AT_MIPS_fde:
4250 return "DW_AT_MIPS_fde";
4251 case DW_AT_MIPS_loop_begin:
4252 return "DW_AT_MIPS_loop_begin";
4253 case DW_AT_MIPS_tail_loop_begin:
4254 return "DW_AT_MIPS_tail_loop_begin";
4255 case DW_AT_MIPS_epilog_begin:
4256 return "DW_AT_MIPS_epilog_begin";
4257 case DW_AT_MIPS_loop_unroll_factor:
4258 return "DW_AT_MIPS_loop_unroll_factor";
4259 case DW_AT_MIPS_software_pipeline_depth:
4260 return "DW_AT_MIPS_software_pipeline_depth";
4261 case DW_AT_MIPS_linkage_name:
4262 return "DW_AT_MIPS_linkage_name";
4263 case DW_AT_MIPS_stride:
4264 return "DW_AT_MIPS_stride";
4265 case DW_AT_MIPS_abstract_name:
4266 return "DW_AT_MIPS_abstract_name";
4267 case DW_AT_MIPS_clone_origin:
4268 return "DW_AT_MIPS_clone_origin";
4269 case DW_AT_MIPS_has_inlines:
4270 return "DW_AT_MIPS_has_inlines";
4271
4272 case DW_AT_sf_names:
4273 return "DW_AT_sf_names";
4274 case DW_AT_src_info:
4275 return "DW_AT_src_info";
4276 case DW_AT_mac_info:
4277 return "DW_AT_mac_info";
4278 case DW_AT_src_coords:
4279 return "DW_AT_src_coords";
4280 case DW_AT_body_begin:
4281 return "DW_AT_body_begin";
4282 case DW_AT_body_end:
4283 return "DW_AT_body_end";
4284 case DW_AT_GNU_vector:
4285 return "DW_AT_GNU_vector";
4286
4287 case DW_AT_VMS_rtnbeg_pd_address:
4288 return "DW_AT_VMS_rtnbeg_pd_address";
4289
4290 default:
4291 return "DW_AT_<unknown>";
4292 }
4293 }
4294
4295 /* Convert a DWARF value form code into its string name. */
4296
4297 static const char *
4298 dwarf_form_name (unsigned int form)
4299 {
4300 switch (form)
4301 {
4302 case DW_FORM_addr:
4303 return "DW_FORM_addr";
4304 case DW_FORM_block2:
4305 return "DW_FORM_block2";
4306 case DW_FORM_block4:
4307 return "DW_FORM_block4";
4308 case DW_FORM_data2:
4309 return "DW_FORM_data2";
4310 case DW_FORM_data4:
4311 return "DW_FORM_data4";
4312 case DW_FORM_data8:
4313 return "DW_FORM_data8";
4314 case DW_FORM_string:
4315 return "DW_FORM_string";
4316 case DW_FORM_block:
4317 return "DW_FORM_block";
4318 case DW_FORM_block1:
4319 return "DW_FORM_block1";
4320 case DW_FORM_data1:
4321 return "DW_FORM_data1";
4322 case DW_FORM_flag:
4323 return "DW_FORM_flag";
4324 case DW_FORM_sdata:
4325 return "DW_FORM_sdata";
4326 case DW_FORM_strp:
4327 return "DW_FORM_strp";
4328 case DW_FORM_udata:
4329 return "DW_FORM_udata";
4330 case DW_FORM_ref_addr:
4331 return "DW_FORM_ref_addr";
4332 case DW_FORM_ref1:
4333 return "DW_FORM_ref1";
4334 case DW_FORM_ref2:
4335 return "DW_FORM_ref2";
4336 case DW_FORM_ref4:
4337 return "DW_FORM_ref4";
4338 case DW_FORM_ref8:
4339 return "DW_FORM_ref8";
4340 case DW_FORM_ref_udata:
4341 return "DW_FORM_ref_udata";
4342 case DW_FORM_indirect:
4343 return "DW_FORM_indirect";
4344 default:
4345 return "DW_FORM_<unknown>";
4346 }
4347 }
4348
4349 /* Convert a DWARF type code into its string name. */
4350
4351 #if 0
4352 static const char *
4353 dwarf_type_encoding_name (unsigned enc)
4354 {
4355 switch (enc)
4356 {
4357 case DW_ATE_address:
4358 return "DW_ATE_address";
4359 case DW_ATE_boolean:
4360 return "DW_ATE_boolean";
4361 case DW_ATE_complex_float:
4362 return "DW_ATE_complex_float";
4363 case DW_ATE_float:
4364 return "DW_ATE_float";
4365 case DW_ATE_signed:
4366 return "DW_ATE_signed";
4367 case DW_ATE_signed_char:
4368 return "DW_ATE_signed_char";
4369 case DW_ATE_unsigned:
4370 return "DW_ATE_unsigned";
4371 case DW_ATE_unsigned_char:
4372 return "DW_ATE_unsigned_char";
4373 default:
4374 return "DW_ATE_<unknown>";
4375 }
4376 }
4377 #endif
4378 \f
4379 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4380 instance of an inlined instance of a decl which is local to an inline
4381 function, so we have to trace all of the way back through the origin chain
4382 to find out what sort of node actually served as the original seed for the
4383 given block. */
4384
4385 static tree
4386 decl_ultimate_origin (tree decl)
4387 {
4388 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4389 nodes in the function to point to themselves; ignore that if
4390 we're trying to output the abstract instance of this function. */
4391 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4392 return NULL_TREE;
4393
4394 #ifdef ENABLE_CHECKING
4395 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4396 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4397 most distant ancestor, this should never happen. */
4398 abort ();
4399 #endif
4400
4401 return DECL_ABSTRACT_ORIGIN (decl);
4402 }
4403
4404 /* Determine the "ultimate origin" of a block. The block may be an inlined
4405 instance of an inlined instance of a block which is local to an inline
4406 function, so we have to trace all of the way back through the origin chain
4407 to find out what sort of node actually served as the original seed for the
4408 given block. */
4409
4410 static tree
4411 block_ultimate_origin (tree block)
4412 {
4413 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4414
4415 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4416 nodes in the function to point to themselves; ignore that if
4417 we're trying to output the abstract instance of this function. */
4418 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4419 return NULL_TREE;
4420
4421 if (immediate_origin == NULL_TREE)
4422 return NULL_TREE;
4423 else
4424 {
4425 tree ret_val;
4426 tree lookahead = immediate_origin;
4427
4428 do
4429 {
4430 ret_val = lookahead;
4431 lookahead = (TREE_CODE (ret_val) == BLOCK
4432 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4433 }
4434 while (lookahead != NULL && lookahead != ret_val);
4435
4436 return ret_val;
4437 }
4438 }
4439
4440 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4441 of a virtual function may refer to a base class, so we check the 'this'
4442 parameter. */
4443
4444 static tree
4445 decl_class_context (tree decl)
4446 {
4447 tree context = NULL_TREE;
4448
4449 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4450 context = DECL_CONTEXT (decl);
4451 else
4452 context = TYPE_MAIN_VARIANT
4453 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4454
4455 if (context && !TYPE_P (context))
4456 context = NULL_TREE;
4457
4458 return context;
4459 }
4460 \f
4461 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4462 addition order, and correct that in reverse_all_dies. */
4463
4464 static inline void
4465 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4466 {
4467 if (die != NULL && attr != NULL)
4468 {
4469 attr->dw_attr_next = die->die_attr;
4470 die->die_attr = attr;
4471 }
4472 }
4473
4474 static inline enum dw_val_class
4475 AT_class (dw_attr_ref a)
4476 {
4477 return a->dw_attr_val.val_class;
4478 }
4479
4480 /* Add a flag value attribute to a DIE. */
4481
4482 static inline void
4483 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4484 {
4485 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4486
4487 attr->dw_attr_next = NULL;
4488 attr->dw_attr = attr_kind;
4489 attr->dw_attr_val.val_class = dw_val_class_flag;
4490 attr->dw_attr_val.v.val_flag = flag;
4491 add_dwarf_attr (die, attr);
4492 }
4493
4494 static inline unsigned
4495 AT_flag (dw_attr_ref a)
4496 {
4497 if (a && AT_class (a) == dw_val_class_flag)
4498 return a->dw_attr_val.v.val_flag;
4499
4500 abort ();
4501 }
4502
4503 /* Add a signed integer attribute value to a DIE. */
4504
4505 static inline void
4506 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4507 {
4508 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4509
4510 attr->dw_attr_next = NULL;
4511 attr->dw_attr = attr_kind;
4512 attr->dw_attr_val.val_class = dw_val_class_const;
4513 attr->dw_attr_val.v.val_int = int_val;
4514 add_dwarf_attr (die, attr);
4515 }
4516
4517 static inline HOST_WIDE_INT
4518 AT_int (dw_attr_ref a)
4519 {
4520 if (a && AT_class (a) == dw_val_class_const)
4521 return a->dw_attr_val.v.val_int;
4522
4523 abort ();
4524 }
4525
4526 /* Add an unsigned integer attribute value to a DIE. */
4527
4528 static inline void
4529 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4530 unsigned HOST_WIDE_INT unsigned_val)
4531 {
4532 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4533
4534 attr->dw_attr_next = NULL;
4535 attr->dw_attr = attr_kind;
4536 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4537 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4538 add_dwarf_attr (die, attr);
4539 }
4540
4541 static inline unsigned HOST_WIDE_INT
4542 AT_unsigned (dw_attr_ref a)
4543 {
4544 if (a && AT_class (a) == dw_val_class_unsigned_const)
4545 return a->dw_attr_val.v.val_unsigned;
4546
4547 abort ();
4548 }
4549
4550 /* Add an unsigned double integer attribute value to a DIE. */
4551
4552 static inline void
4553 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4554 long unsigned int val_hi, long unsigned int val_low)
4555 {
4556 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4557
4558 attr->dw_attr_next = NULL;
4559 attr->dw_attr = attr_kind;
4560 attr->dw_attr_val.val_class = dw_val_class_long_long;
4561 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4562 attr->dw_attr_val.v.val_long_long.low = val_low;
4563 add_dwarf_attr (die, attr);
4564 }
4565
4566 /* Add a floating point attribute value to a DIE and return it. */
4567
4568 static inline void
4569 add_AT_float (dw_die_ref die, enum dwarf_attribute attr_kind,
4570 unsigned int length, long int *array)
4571 {
4572 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4573
4574 attr->dw_attr_next = NULL;
4575 attr->dw_attr = attr_kind;
4576 attr->dw_attr_val.val_class = dw_val_class_float;
4577 attr->dw_attr_val.v.val_float.length = length;
4578 attr->dw_attr_val.v.val_float.array = array;
4579 add_dwarf_attr (die, attr);
4580 }
4581
4582 /* Hash and equality functions for debug_str_hash. */
4583
4584 static hashval_t
4585 debug_str_do_hash (const void *x)
4586 {
4587 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4588 }
4589
4590 static int
4591 debug_str_eq (const void *x1, const void *x2)
4592 {
4593 return strcmp ((((const struct indirect_string_node *)x1)->str),
4594 (const char *)x2) == 0;
4595 }
4596
4597 /* Add a string attribute value to a DIE. */
4598
4599 static inline void
4600 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4601 {
4602 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4603 struct indirect_string_node *node;
4604 void **slot;
4605
4606 if (! debug_str_hash)
4607 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4608 debug_str_eq, NULL);
4609
4610 slot = htab_find_slot_with_hash (debug_str_hash, str,
4611 htab_hash_string (str), INSERT);
4612 if (*slot == NULL)
4613 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4614 node = (struct indirect_string_node *) *slot;
4615 node->str = ggc_strdup (str);
4616 node->refcount++;
4617
4618 attr->dw_attr_next = NULL;
4619 attr->dw_attr = attr_kind;
4620 attr->dw_attr_val.val_class = dw_val_class_str;
4621 attr->dw_attr_val.v.val_str = node;
4622 add_dwarf_attr (die, attr);
4623 }
4624
4625 static inline const char *
4626 AT_string (dw_attr_ref a)
4627 {
4628 if (a && AT_class (a) == dw_val_class_str)
4629 return a->dw_attr_val.v.val_str->str;
4630
4631 abort ();
4632 }
4633
4634 /* Find out whether a string should be output inline in DIE
4635 or out-of-line in .debug_str section. */
4636
4637 static int
4638 AT_string_form (dw_attr_ref a)
4639 {
4640 if (a && AT_class (a) == dw_val_class_str)
4641 {
4642 struct indirect_string_node *node;
4643 unsigned int len;
4644 char label[32];
4645
4646 node = a->dw_attr_val.v.val_str;
4647 if (node->form)
4648 return node->form;
4649
4650 len = strlen (node->str) + 1;
4651
4652 /* If the string is shorter or equal to the size of the reference, it is
4653 always better to put it inline. */
4654 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4655 return node->form = DW_FORM_string;
4656
4657 /* If we cannot expect the linker to merge strings in .debug_str
4658 section, only put it into .debug_str if it is worth even in this
4659 single module. */
4660 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4661 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4662 return node->form = DW_FORM_string;
4663
4664 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4665 ++dw2_string_counter;
4666 node->label = xstrdup (label);
4667
4668 return node->form = DW_FORM_strp;
4669 }
4670
4671 abort ();
4672 }
4673
4674 /* Add a DIE reference attribute value to a DIE. */
4675
4676 static inline void
4677 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4678 {
4679 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4680
4681 attr->dw_attr_next = NULL;
4682 attr->dw_attr = attr_kind;
4683 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4684 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4685 attr->dw_attr_val.v.val_die_ref.external = 0;
4686 add_dwarf_attr (die, attr);
4687 }
4688
4689 /* Add an AT_specification attribute to a DIE, and also make the back
4690 pointer from the specification to the definition. */
4691
4692 static inline void
4693 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4694 {
4695 add_AT_die_ref (die, DW_AT_specification, targ_die);
4696 if (targ_die->die_definition)
4697 abort ();
4698 targ_die->die_definition = die;
4699 }
4700
4701 static inline dw_die_ref
4702 AT_ref (dw_attr_ref a)
4703 {
4704 if (a && AT_class (a) == dw_val_class_die_ref)
4705 return a->dw_attr_val.v.val_die_ref.die;
4706
4707 abort ();
4708 }
4709
4710 static inline int
4711 AT_ref_external (dw_attr_ref a)
4712 {
4713 if (a && AT_class (a) == dw_val_class_die_ref)
4714 return a->dw_attr_val.v.val_die_ref.external;
4715
4716 return 0;
4717 }
4718
4719 static inline void
4720 set_AT_ref_external (dw_attr_ref a, int i)
4721 {
4722 if (a && AT_class (a) == dw_val_class_die_ref)
4723 a->dw_attr_val.v.val_die_ref.external = i;
4724 else
4725 abort ();
4726 }
4727
4728 /* Add an FDE reference attribute value to a DIE. */
4729
4730 static inline void
4731 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4732 {
4733 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4734
4735 attr->dw_attr_next = NULL;
4736 attr->dw_attr = attr_kind;
4737 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4738 attr->dw_attr_val.v.val_fde_index = targ_fde;
4739 add_dwarf_attr (die, attr);
4740 }
4741
4742 /* Add a location description attribute value to a DIE. */
4743
4744 static inline void
4745 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4746 {
4747 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4748
4749 attr->dw_attr_next = NULL;
4750 attr->dw_attr = attr_kind;
4751 attr->dw_attr_val.val_class = dw_val_class_loc;
4752 attr->dw_attr_val.v.val_loc = loc;
4753 add_dwarf_attr (die, attr);
4754 }
4755
4756 static inline dw_loc_descr_ref
4757 AT_loc (dw_attr_ref a)
4758 {
4759 if (a && AT_class (a) == dw_val_class_loc)
4760 return a->dw_attr_val.v.val_loc;
4761
4762 abort ();
4763 }
4764
4765 static inline void
4766 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4767 {
4768 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4769
4770 attr->dw_attr_next = NULL;
4771 attr->dw_attr = attr_kind;
4772 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4773 attr->dw_attr_val.v.val_loc_list = loc_list;
4774 add_dwarf_attr (die, attr);
4775 have_location_lists = 1;
4776 }
4777
4778 static inline dw_loc_list_ref
4779 AT_loc_list (dw_attr_ref a)
4780 {
4781 if (a && AT_class (a) == dw_val_class_loc_list)
4782 return a->dw_attr_val.v.val_loc_list;
4783
4784 abort ();
4785 }
4786
4787 /* Add an address constant attribute value to a DIE. */
4788
4789 static inline void
4790 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
4791 {
4792 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4793
4794 attr->dw_attr_next = NULL;
4795 attr->dw_attr = attr_kind;
4796 attr->dw_attr_val.val_class = dw_val_class_addr;
4797 attr->dw_attr_val.v.val_addr = addr;
4798 add_dwarf_attr (die, attr);
4799 }
4800
4801 static inline rtx
4802 AT_addr (dw_attr_ref a)
4803 {
4804 if (a && AT_class (a) == dw_val_class_addr)
4805 return a->dw_attr_val.v.val_addr;
4806
4807 abort ();
4808 }
4809
4810 /* Add a label identifier attribute value to a DIE. */
4811
4812 static inline void
4813 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
4814 {
4815 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4816
4817 attr->dw_attr_next = NULL;
4818 attr->dw_attr = attr_kind;
4819 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4820 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4821 add_dwarf_attr (die, attr);
4822 }
4823
4824 /* Add a section offset attribute value to a DIE. */
4825
4826 static inline void
4827 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
4828 {
4829 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4830
4831 attr->dw_attr_next = NULL;
4832 attr->dw_attr = attr_kind;
4833 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4834 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4835 add_dwarf_attr (die, attr);
4836 }
4837
4838 /* Add an offset attribute value to a DIE. */
4839
4840 static inline void
4841 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
4842 unsigned HOST_WIDE_INT offset)
4843 {
4844 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4845
4846 attr->dw_attr_next = NULL;
4847 attr->dw_attr = attr_kind;
4848 attr->dw_attr_val.val_class = dw_val_class_offset;
4849 attr->dw_attr_val.v.val_offset = offset;
4850 add_dwarf_attr (die, attr);
4851 }
4852
4853 /* Add an range_list attribute value to a DIE. */
4854
4855 static void
4856 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
4857 long unsigned int offset)
4858 {
4859 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4860
4861 attr->dw_attr_next = NULL;
4862 attr->dw_attr = attr_kind;
4863 attr->dw_attr_val.val_class = dw_val_class_range_list;
4864 attr->dw_attr_val.v.val_offset = offset;
4865 add_dwarf_attr (die, attr);
4866 }
4867
4868 static inline const char *
4869 AT_lbl (dw_attr_ref a)
4870 {
4871 if (a && (AT_class (a) == dw_val_class_lbl_id
4872 || AT_class (a) == dw_val_class_lbl_offset))
4873 return a->dw_attr_val.v.val_lbl_id;
4874
4875 abort ();
4876 }
4877
4878 /* Get the attribute of type attr_kind. */
4879
4880 static dw_attr_ref
4881 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4882 {
4883 dw_attr_ref a;
4884 dw_die_ref spec = NULL;
4885
4886 if (die != NULL)
4887 {
4888 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
4889 if (a->dw_attr == attr_kind)
4890 return a;
4891 else if (a->dw_attr == DW_AT_specification
4892 || a->dw_attr == DW_AT_abstract_origin)
4893 spec = AT_ref (a);
4894
4895 if (spec)
4896 return get_AT (spec, attr_kind);
4897 }
4898
4899 return NULL;
4900 }
4901
4902 /* Return the "low pc" attribute value, typically associated with a subprogram
4903 DIE. Return null if the "low pc" attribute is either not present, or if it
4904 cannot be represented as an assembler label identifier. */
4905
4906 static inline const char *
4907 get_AT_low_pc (dw_die_ref die)
4908 {
4909 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
4910
4911 return a ? AT_lbl (a) : NULL;
4912 }
4913
4914 /* Return the "high pc" attribute value, typically associated with a subprogram
4915 DIE. Return null if the "high pc" attribute is either not present, or if it
4916 cannot be represented as an assembler label identifier. */
4917
4918 static inline const char *
4919 get_AT_hi_pc (dw_die_ref die)
4920 {
4921 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
4922
4923 return a ? AT_lbl (a) : NULL;
4924 }
4925
4926 /* Return the value of the string attribute designated by ATTR_KIND, or
4927 NULL if it is not present. */
4928
4929 static inline const char *
4930 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
4931 {
4932 dw_attr_ref a = get_AT (die, attr_kind);
4933
4934 return a ? AT_string (a) : NULL;
4935 }
4936
4937 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
4938 if it is not present. */
4939
4940 static inline int
4941 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
4942 {
4943 dw_attr_ref a = get_AT (die, attr_kind);
4944
4945 return a ? AT_flag (a) : 0;
4946 }
4947
4948 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4949 if it is not present. */
4950
4951 static inline unsigned
4952 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
4953 {
4954 dw_attr_ref a = get_AT (die, attr_kind);
4955
4956 return a ? AT_unsigned (a) : 0;
4957 }
4958
4959 static inline dw_die_ref
4960 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
4961 {
4962 dw_attr_ref a = get_AT (die, attr_kind);
4963
4964 return a ? AT_ref (a) : NULL;
4965 }
4966
4967 /* Return TRUE if the language is C or C++. */
4968
4969 static inline bool
4970 is_c_family (void)
4971 {
4972 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4973
4974 return (lang == DW_LANG_C || lang == DW_LANG_C89
4975 || lang == DW_LANG_C_plus_plus);
4976 }
4977
4978 /* Return TRUE if the language is C++. */
4979
4980 static inline bool
4981 is_cxx (void)
4982 {
4983 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
4984 == DW_LANG_C_plus_plus);
4985 }
4986
4987 /* Return TRUE if the language is Fortran. */
4988
4989 static inline bool
4990 is_fortran (void)
4991 {
4992 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4993
4994 return lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90;
4995 }
4996
4997 /* Return TRUE if the language is Java. */
4998
4999 static inline bool
5000 is_java (void)
5001 {
5002 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5003
5004 return lang == DW_LANG_Java;
5005 }
5006
5007 /* Return TRUE if the language is Ada. */
5008
5009 static inline bool
5010 is_ada (void)
5011 {
5012 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5013
5014 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5015 }
5016
5017 /* Free up the memory used by A. */
5018
5019 static inline void free_AT (dw_attr_ref);
5020 static inline void
5021 free_AT (dw_attr_ref a)
5022 {
5023 if (AT_class (a) == dw_val_class_str)
5024 if (a->dw_attr_val.v.val_str->refcount)
5025 a->dw_attr_val.v.val_str->refcount--;
5026 }
5027
5028 /* Remove the specified attribute if present. */
5029
5030 static void
5031 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5032 {
5033 dw_attr_ref *p;
5034 dw_attr_ref removed = NULL;
5035
5036 if (die != NULL)
5037 {
5038 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5039 if ((*p)->dw_attr == attr_kind)
5040 {
5041 removed = *p;
5042 *p = (*p)->dw_attr_next;
5043 break;
5044 }
5045
5046 if (removed != 0)
5047 free_AT (removed);
5048 }
5049 }
5050
5051 /* Remove child die whose die_tag is specified tag. */
5052
5053 static void
5054 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5055 {
5056 dw_die_ref current, prev, next;
5057 current = die->die_child;
5058 prev = NULL;
5059 while (current != NULL)
5060 {
5061 if (current->die_tag == tag)
5062 {
5063 next = current->die_sib;
5064 if (prev == NULL)
5065 die->die_child = next;
5066 else
5067 prev->die_sib = next;
5068 free_die (current);
5069 current = next;
5070 }
5071 else
5072 {
5073 prev = current;
5074 current = current->die_sib;
5075 }
5076 }
5077 }
5078
5079 /* Free up the memory used by DIE. */
5080
5081 static inline void
5082 free_die (dw_die_ref die)
5083 {
5084 remove_children (die);
5085 }
5086
5087 /* Discard the children of this DIE. */
5088
5089 static void
5090 remove_children (dw_die_ref die)
5091 {
5092 dw_die_ref child_die = die->die_child;
5093
5094 die->die_child = NULL;
5095
5096 while (child_die != NULL)
5097 {
5098 dw_die_ref tmp_die = child_die;
5099 dw_attr_ref a;
5100
5101 child_die = child_die->die_sib;
5102
5103 for (a = tmp_die->die_attr; a != NULL;)
5104 {
5105 dw_attr_ref tmp_a = a;
5106
5107 a = a->dw_attr_next;
5108 free_AT (tmp_a);
5109 }
5110
5111 free_die (tmp_die);
5112 }
5113 }
5114
5115 /* Add a child DIE below its parent. We build the lists up in reverse
5116 addition order, and correct that in reverse_all_dies. */
5117
5118 static inline void
5119 add_child_die (dw_die_ref die, dw_die_ref child_die)
5120 {
5121 if (die != NULL && child_die != NULL)
5122 {
5123 if (die == child_die)
5124 abort ();
5125
5126 child_die->die_parent = die;
5127 child_die->die_sib = die->die_child;
5128 die->die_child = child_die;
5129 }
5130 }
5131
5132 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5133 is the specification, to the front of PARENT's list of children. */
5134
5135 static void
5136 splice_child_die (dw_die_ref parent, dw_die_ref child)
5137 {
5138 dw_die_ref *p;
5139
5140 /* We want the declaration DIE from inside the class, not the
5141 specification DIE at toplevel. */
5142 if (child->die_parent != parent)
5143 {
5144 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5145
5146 if (tmp)
5147 child = tmp;
5148 }
5149
5150 if (child->die_parent != parent
5151 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5152 abort ();
5153
5154 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5155 if (*p == child)
5156 {
5157 *p = child->die_sib;
5158 break;
5159 }
5160
5161 child->die_parent = parent;
5162 child->die_sib = parent->die_child;
5163 parent->die_child = child;
5164 }
5165
5166 /* Return a pointer to a newly created DIE node. */
5167
5168 static inline dw_die_ref
5169 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5170 {
5171 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5172
5173 die->die_tag = tag_value;
5174
5175 if (parent_die != NULL)
5176 add_child_die (parent_die, die);
5177 else
5178 {
5179 limbo_die_node *limbo_node;
5180
5181 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5182 limbo_node->die = die;
5183 limbo_node->created_for = t;
5184 limbo_node->next = limbo_die_list;
5185 limbo_die_list = limbo_node;
5186 }
5187
5188 return die;
5189 }
5190
5191 /* Return the DIE associated with the given type specifier. */
5192
5193 static inline dw_die_ref
5194 lookup_type_die (tree type)
5195 {
5196 return TYPE_SYMTAB_DIE (type);
5197 }
5198
5199 /* Equate a DIE to a given type specifier. */
5200
5201 static inline void
5202 equate_type_number_to_die (tree type, dw_die_ref type_die)
5203 {
5204 TYPE_SYMTAB_DIE (type) = type_die;
5205 }
5206
5207 /* Returns a hash value for X (which really is a die_struct). */
5208
5209 static hashval_t
5210 decl_die_table_hash (const void *x)
5211 {
5212 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5213 }
5214
5215 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5216
5217 static int
5218 decl_die_table_eq (const void *x, const void *y)
5219 {
5220 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5221 }
5222
5223 /* Return the DIE associated with a given declaration. */
5224
5225 static inline dw_die_ref
5226 lookup_decl_die (tree decl)
5227 {
5228 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5229 }
5230
5231 /* Equate a DIE to a particular declaration. */
5232
5233 static void
5234 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5235 {
5236 unsigned int decl_id = DECL_UID (decl);
5237 void **slot;
5238
5239 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5240 *slot = decl_die;
5241 decl_die->decl_id = decl_id;
5242 }
5243 \f
5244 /* Keep track of the number of spaces used to indent the
5245 output of the debugging routines that print the structure of
5246 the DIE internal representation. */
5247 static int print_indent;
5248
5249 /* Indent the line the number of spaces given by print_indent. */
5250
5251 static inline void
5252 print_spaces (FILE *outfile)
5253 {
5254 fprintf (outfile, "%*s", print_indent, "");
5255 }
5256
5257 /* Print the information associated with a given DIE, and its children.
5258 This routine is a debugging aid only. */
5259
5260 static void
5261 print_die (dw_die_ref die, FILE *outfile)
5262 {
5263 dw_attr_ref a;
5264 dw_die_ref c;
5265
5266 print_spaces (outfile);
5267 fprintf (outfile, "DIE %4lu: %s\n",
5268 die->die_offset, dwarf_tag_name (die->die_tag));
5269 print_spaces (outfile);
5270 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5271 fprintf (outfile, " offset: %lu\n", die->die_offset);
5272
5273 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5274 {
5275 print_spaces (outfile);
5276 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5277
5278 switch (AT_class (a))
5279 {
5280 case dw_val_class_addr:
5281 fprintf (outfile, "address");
5282 break;
5283 case dw_val_class_offset:
5284 fprintf (outfile, "offset");
5285 break;
5286 case dw_val_class_loc:
5287 fprintf (outfile, "location descriptor");
5288 break;
5289 case dw_val_class_loc_list:
5290 fprintf (outfile, "location list -> label:%s",
5291 AT_loc_list (a)->ll_symbol);
5292 break;
5293 case dw_val_class_range_list:
5294 fprintf (outfile, "range list");
5295 break;
5296 case dw_val_class_const:
5297 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5298 break;
5299 case dw_val_class_unsigned_const:
5300 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5301 break;
5302 case dw_val_class_long_long:
5303 fprintf (outfile, "constant (%lu,%lu)",
5304 a->dw_attr_val.v.val_long_long.hi,
5305 a->dw_attr_val.v.val_long_long.low);
5306 break;
5307 case dw_val_class_float:
5308 fprintf (outfile, "floating-point constant");
5309 break;
5310 case dw_val_class_flag:
5311 fprintf (outfile, "%u", AT_flag (a));
5312 break;
5313 case dw_val_class_die_ref:
5314 if (AT_ref (a) != NULL)
5315 {
5316 if (AT_ref (a)->die_symbol)
5317 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5318 else
5319 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5320 }
5321 else
5322 fprintf (outfile, "die -> <null>");
5323 break;
5324 case dw_val_class_lbl_id:
5325 case dw_val_class_lbl_offset:
5326 fprintf (outfile, "label: %s", AT_lbl (a));
5327 break;
5328 case dw_val_class_str:
5329 if (AT_string (a) != NULL)
5330 fprintf (outfile, "\"%s\"", AT_string (a));
5331 else
5332 fprintf (outfile, "<null>");
5333 break;
5334 default:
5335 break;
5336 }
5337
5338 fprintf (outfile, "\n");
5339 }
5340
5341 if (die->die_child != NULL)
5342 {
5343 print_indent += 4;
5344 for (c = die->die_child; c != NULL; c = c->die_sib)
5345 print_die (c, outfile);
5346
5347 print_indent -= 4;
5348 }
5349 if (print_indent == 0)
5350 fprintf (outfile, "\n");
5351 }
5352
5353 /* Print the contents of the source code line number correspondence table.
5354 This routine is a debugging aid only. */
5355
5356 static void
5357 print_dwarf_line_table (FILE *outfile)
5358 {
5359 unsigned i;
5360 dw_line_info_ref line_info;
5361
5362 fprintf (outfile, "\n\nDWARF source line information\n");
5363 for (i = 1; i < line_info_table_in_use; i++)
5364 {
5365 line_info = &line_info_table[i];
5366 fprintf (outfile, "%5d: ", i);
5367 fprintf (outfile, "%-20s",
5368 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5369 fprintf (outfile, "%6ld", line_info->dw_line_num);
5370 fprintf (outfile, "\n");
5371 }
5372
5373 fprintf (outfile, "\n\n");
5374 }
5375
5376 /* Print the information collected for a given DIE. */
5377
5378 void
5379 debug_dwarf_die (dw_die_ref die)
5380 {
5381 print_die (die, stderr);
5382 }
5383
5384 /* Print all DWARF information collected for the compilation unit.
5385 This routine is a debugging aid only. */
5386
5387 void
5388 debug_dwarf (void)
5389 {
5390 print_indent = 0;
5391 print_die (comp_unit_die, stderr);
5392 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5393 print_dwarf_line_table (stderr);
5394 }
5395 \f
5396 /* We build up the lists of children and attributes by pushing new ones
5397 onto the beginning of the list. Reverse the lists for DIE so that
5398 they are in order of addition. */
5399
5400 static void
5401 reverse_die_lists (dw_die_ref die)
5402 {
5403 dw_die_ref c, cp, cn;
5404 dw_attr_ref a, ap, an;
5405
5406 for (a = die->die_attr, ap = 0; a; a = an)
5407 {
5408 an = a->dw_attr_next;
5409 a->dw_attr_next = ap;
5410 ap = a;
5411 }
5412
5413 die->die_attr = ap;
5414
5415 for (c = die->die_child, cp = 0; c; c = cn)
5416 {
5417 cn = c->die_sib;
5418 c->die_sib = cp;
5419 cp = c;
5420 }
5421
5422 die->die_child = cp;
5423 }
5424
5425 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5426 reverse all dies in add_sibling_attributes, which runs through all the dies,
5427 it would reverse all the dies. Now, however, since we don't call
5428 reverse_die_lists in add_sibling_attributes, we need a routine to
5429 recursively reverse all the dies. This is that routine. */
5430
5431 static void
5432 reverse_all_dies (dw_die_ref die)
5433 {
5434 dw_die_ref c;
5435
5436 reverse_die_lists (die);
5437
5438 for (c = die->die_child; c; c = c->die_sib)
5439 reverse_all_dies (c);
5440 }
5441
5442 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5443 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5444 DIE that marks the start of the DIEs for this include file. */
5445
5446 static dw_die_ref
5447 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5448 {
5449 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5450 dw_die_ref new_unit = gen_compile_unit_die (filename);
5451
5452 new_unit->die_sib = old_unit;
5453 return new_unit;
5454 }
5455
5456 /* Close an include-file CU and reopen the enclosing one. */
5457
5458 static dw_die_ref
5459 pop_compile_unit (dw_die_ref old_unit)
5460 {
5461 dw_die_ref new_unit = old_unit->die_sib;
5462
5463 old_unit->die_sib = NULL;
5464 return new_unit;
5465 }
5466
5467 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5468 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5469
5470 /* Calculate the checksum of a location expression. */
5471
5472 static inline void
5473 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5474 {
5475 CHECKSUM (loc->dw_loc_opc);
5476 CHECKSUM (loc->dw_loc_oprnd1);
5477 CHECKSUM (loc->dw_loc_oprnd2);
5478 }
5479
5480 /* Calculate the checksum of an attribute. */
5481
5482 static void
5483 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5484 {
5485 dw_loc_descr_ref loc;
5486 rtx r;
5487
5488 CHECKSUM (at->dw_attr);
5489
5490 /* We don't care about differences in file numbering. */
5491 if (at->dw_attr == DW_AT_decl_file
5492 /* Or that this was compiled with a different compiler snapshot; if
5493 the output is the same, that's what matters. */
5494 || at->dw_attr == DW_AT_producer)
5495 return;
5496
5497 switch (AT_class (at))
5498 {
5499 case dw_val_class_const:
5500 CHECKSUM (at->dw_attr_val.v.val_int);
5501 break;
5502 case dw_val_class_unsigned_const:
5503 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5504 break;
5505 case dw_val_class_long_long:
5506 CHECKSUM (at->dw_attr_val.v.val_long_long);
5507 break;
5508 case dw_val_class_float:
5509 CHECKSUM (at->dw_attr_val.v.val_float);
5510 break;
5511 case dw_val_class_flag:
5512 CHECKSUM (at->dw_attr_val.v.val_flag);
5513 break;
5514 case dw_val_class_str:
5515 CHECKSUM_STRING (AT_string (at));
5516 break;
5517
5518 case dw_val_class_addr:
5519 r = AT_addr (at);
5520 switch (GET_CODE (r))
5521 {
5522 case SYMBOL_REF:
5523 CHECKSUM_STRING (XSTR (r, 0));
5524 break;
5525
5526 default:
5527 abort ();
5528 }
5529 break;
5530
5531 case dw_val_class_offset:
5532 CHECKSUM (at->dw_attr_val.v.val_offset);
5533 break;
5534
5535 case dw_val_class_loc:
5536 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5537 loc_checksum (loc, ctx);
5538 break;
5539
5540 case dw_val_class_die_ref:
5541 die_checksum (AT_ref (at), ctx, mark);
5542 break;
5543
5544 case dw_val_class_fde_ref:
5545 case dw_val_class_lbl_id:
5546 case dw_val_class_lbl_offset:
5547 break;
5548
5549 default:
5550 break;
5551 }
5552 }
5553
5554 /* Calculate the checksum of a DIE. */
5555
5556 static void
5557 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5558 {
5559 dw_die_ref c;
5560 dw_attr_ref a;
5561
5562 /* To avoid infinite recursion. */
5563 if (die->die_mark)
5564 {
5565 CHECKSUM (die->die_mark);
5566 return;
5567 }
5568 die->die_mark = ++(*mark);
5569
5570 CHECKSUM (die->die_tag);
5571
5572 for (a = die->die_attr; a; a = a->dw_attr_next)
5573 attr_checksum (a, ctx, mark);
5574
5575 for (c = die->die_child; c; c = c->die_sib)
5576 die_checksum (c, ctx, mark);
5577 }
5578
5579 #undef CHECKSUM
5580 #undef CHECKSUM_STRING
5581
5582 /* Do the location expressions look same? */
5583 static inline int
5584 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5585 {
5586 return loc1->dw_loc_opc == loc2->dw_loc_opc
5587 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5588 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5589 }
5590
5591 /* Do the values look the same? */
5592 static int
5593 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5594 {
5595 dw_loc_descr_ref loc1, loc2;
5596 rtx r1, r2;
5597 unsigned i;
5598
5599 if (v1->val_class != v2->val_class)
5600 return 0;
5601
5602 switch (v1->val_class)
5603 {
5604 case dw_val_class_const:
5605 return v1->v.val_int == v2->v.val_int;
5606 case dw_val_class_unsigned_const:
5607 return v1->v.val_unsigned == v2->v.val_unsigned;
5608 case dw_val_class_long_long:
5609 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5610 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5611 case dw_val_class_float:
5612 if (v1->v.val_float.length != v2->v.val_float.length)
5613 return 0;
5614 for (i = 0; i < v1->v.val_float.length; i++)
5615 if (v1->v.val_float.array[i] != v2->v.val_float.array[i])
5616 return 0;
5617 return 1;
5618 case dw_val_class_flag:
5619 return v1->v.val_flag == v2->v.val_flag;
5620 case dw_val_class_str:
5621 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5622
5623 case dw_val_class_addr:
5624 r1 = v1->v.val_addr;
5625 r2 = v2->v.val_addr;
5626 if (GET_CODE (r1) != GET_CODE (r2))
5627 return 0;
5628 switch (GET_CODE (r1))
5629 {
5630 case SYMBOL_REF:
5631 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5632
5633 default:
5634 abort ();
5635 }
5636
5637 case dw_val_class_offset:
5638 return v1->v.val_offset == v2->v.val_offset;
5639
5640 case dw_val_class_loc:
5641 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5642 loc1 && loc2;
5643 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5644 if (!same_loc_p (loc1, loc2, mark))
5645 return 0;
5646 return !loc1 && !loc2;
5647
5648 case dw_val_class_die_ref:
5649 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5650
5651 case dw_val_class_fde_ref:
5652 case dw_val_class_lbl_id:
5653 case dw_val_class_lbl_offset:
5654 return 1;
5655
5656 default:
5657 return 1;
5658 }
5659 }
5660
5661 /* Do the attributes look the same? */
5662
5663 static int
5664 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5665 {
5666 if (at1->dw_attr != at2->dw_attr)
5667 return 0;
5668
5669 /* We don't care about differences in file numbering. */
5670 if (at1->dw_attr == DW_AT_decl_file
5671 /* Or that this was compiled with a different compiler snapshot; if
5672 the output is the same, that's what matters. */
5673 || at1->dw_attr == DW_AT_producer)
5674 return 1;
5675
5676 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5677 }
5678
5679 /* Do the dies look the same? */
5680
5681 static int
5682 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5683 {
5684 dw_die_ref c1, c2;
5685 dw_attr_ref a1, a2;
5686
5687 /* To avoid infinite recursion. */
5688 if (die1->die_mark)
5689 return die1->die_mark == die2->die_mark;
5690 die1->die_mark = die2->die_mark = ++(*mark);
5691
5692 if (die1->die_tag != die2->die_tag)
5693 return 0;
5694
5695 for (a1 = die1->die_attr, a2 = die2->die_attr;
5696 a1 && a2;
5697 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5698 if (!same_attr_p (a1, a2, mark))
5699 return 0;
5700 if (a1 || a2)
5701 return 0;
5702
5703 for (c1 = die1->die_child, c2 = die2->die_child;
5704 c1 && c2;
5705 c1 = c1->die_sib, c2 = c2->die_sib)
5706 if (!same_die_p (c1, c2, mark))
5707 return 0;
5708 if (c1 || c2)
5709 return 0;
5710
5711 return 1;
5712 }
5713
5714 /* Do the dies look the same? Wrapper around same_die_p. */
5715
5716 static int
5717 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5718 {
5719 int mark = 0;
5720 int ret = same_die_p (die1, die2, &mark);
5721
5722 unmark_all_dies (die1);
5723 unmark_all_dies (die2);
5724
5725 return ret;
5726 }
5727
5728 /* The prefix to attach to symbols on DIEs in the current comdat debug
5729 info section. */
5730 static char *comdat_symbol_id;
5731
5732 /* The index of the current symbol within the current comdat CU. */
5733 static unsigned int comdat_symbol_number;
5734
5735 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5736 children, and set comdat_symbol_id accordingly. */
5737
5738 static void
5739 compute_section_prefix (dw_die_ref unit_die)
5740 {
5741 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5742 const char *base = die_name ? lbasename (die_name) : "anonymous";
5743 char *name = alloca (strlen (base) + 64);
5744 char *p;
5745 int i, mark;
5746 unsigned char checksum[16];
5747 struct md5_ctx ctx;
5748
5749 /* Compute the checksum of the DIE, then append part of it as hex digits to
5750 the name filename of the unit. */
5751
5752 md5_init_ctx (&ctx);
5753 mark = 0;
5754 die_checksum (unit_die, &ctx, &mark);
5755 unmark_all_dies (unit_die);
5756 md5_finish_ctx (&ctx, checksum);
5757
5758 sprintf (name, "%s.", base);
5759 clean_symbol_name (name);
5760
5761 p = name + strlen (name);
5762 for (i = 0; i < 4; i++)
5763 {
5764 sprintf (p, "%.2x", checksum[i]);
5765 p += 2;
5766 }
5767
5768 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5769 comdat_symbol_number = 0;
5770 }
5771
5772 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5773
5774 static int
5775 is_type_die (dw_die_ref die)
5776 {
5777 switch (die->die_tag)
5778 {
5779 case DW_TAG_array_type:
5780 case DW_TAG_class_type:
5781 case DW_TAG_enumeration_type:
5782 case DW_TAG_pointer_type:
5783 case DW_TAG_reference_type:
5784 case DW_TAG_string_type:
5785 case DW_TAG_structure_type:
5786 case DW_TAG_subroutine_type:
5787 case DW_TAG_union_type:
5788 case DW_TAG_ptr_to_member_type:
5789 case DW_TAG_set_type:
5790 case DW_TAG_subrange_type:
5791 case DW_TAG_base_type:
5792 case DW_TAG_const_type:
5793 case DW_TAG_file_type:
5794 case DW_TAG_packed_type:
5795 case DW_TAG_volatile_type:
5796 case DW_TAG_typedef:
5797 return 1;
5798 default:
5799 return 0;
5800 }
5801 }
5802
5803 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5804 Basically, we want to choose the bits that are likely to be shared between
5805 compilations (types) and leave out the bits that are specific to individual
5806 compilations (functions). */
5807
5808 static int
5809 is_comdat_die (dw_die_ref c)
5810 {
5811 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5812 we do for stabs. The advantage is a greater likelihood of sharing between
5813 objects that don't include headers in the same order (and therefore would
5814 put the base types in a different comdat). jason 8/28/00 */
5815
5816 if (c->die_tag == DW_TAG_base_type)
5817 return 0;
5818
5819 if (c->die_tag == DW_TAG_pointer_type
5820 || c->die_tag == DW_TAG_reference_type
5821 || c->die_tag == DW_TAG_const_type
5822 || c->die_tag == DW_TAG_volatile_type)
5823 {
5824 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5825
5826 return t ? is_comdat_die (t) : 0;
5827 }
5828
5829 return is_type_die (c);
5830 }
5831
5832 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5833 compilation unit. */
5834
5835 static int
5836 is_symbol_die (dw_die_ref c)
5837 {
5838 return (is_type_die (c)
5839 || (get_AT (c, DW_AT_declaration)
5840 && !get_AT (c, DW_AT_specification)));
5841 }
5842
5843 static char *
5844 gen_internal_sym (const char *prefix)
5845 {
5846 char buf[256];
5847
5848 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5849 return xstrdup (buf);
5850 }
5851
5852 /* Assign symbols to all worthy DIEs under DIE. */
5853
5854 static void
5855 assign_symbol_names (dw_die_ref die)
5856 {
5857 dw_die_ref c;
5858
5859 if (is_symbol_die (die))
5860 {
5861 if (comdat_symbol_id)
5862 {
5863 char *p = alloca (strlen (comdat_symbol_id) + 64);
5864
5865 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
5866 comdat_symbol_id, comdat_symbol_number++);
5867 die->die_symbol = xstrdup (p);
5868 }
5869 else
5870 die->die_symbol = gen_internal_sym ("LDIE");
5871 }
5872
5873 for (c = die->die_child; c != NULL; c = c->die_sib)
5874 assign_symbol_names (c);
5875 }
5876
5877 struct cu_hash_table_entry
5878 {
5879 dw_die_ref cu;
5880 unsigned min_comdat_num, max_comdat_num;
5881 struct cu_hash_table_entry *next;
5882 };
5883
5884 /* Routines to manipulate hash table of CUs. */
5885 static hashval_t
5886 htab_cu_hash (const void *of)
5887 {
5888 const struct cu_hash_table_entry *entry = of;
5889
5890 return htab_hash_string (entry->cu->die_symbol);
5891 }
5892
5893 static int
5894 htab_cu_eq (const void *of1, const void *of2)
5895 {
5896 const struct cu_hash_table_entry *entry1 = of1;
5897 const struct die_struct *entry2 = of2;
5898
5899 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
5900 }
5901
5902 static void
5903 htab_cu_del (void *what)
5904 {
5905 struct cu_hash_table_entry *next, *entry = what;
5906
5907 while (entry)
5908 {
5909 next = entry->next;
5910 free (entry);
5911 entry = next;
5912 }
5913 }
5914
5915 /* Check whether we have already seen this CU and set up SYM_NUM
5916 accordingly. */
5917 static int
5918 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
5919 {
5920 struct cu_hash_table_entry dummy;
5921 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
5922
5923 dummy.max_comdat_num = 0;
5924
5925 slot = (struct cu_hash_table_entry **)
5926 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
5927 INSERT);
5928 entry = *slot;
5929
5930 for (; entry; last = entry, entry = entry->next)
5931 {
5932 if (same_die_p_wrap (cu, entry->cu))
5933 break;
5934 }
5935
5936 if (entry)
5937 {
5938 *sym_num = entry->min_comdat_num;
5939 return 1;
5940 }
5941
5942 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
5943 entry->cu = cu;
5944 entry->min_comdat_num = *sym_num = last->max_comdat_num;
5945 entry->next = *slot;
5946 *slot = entry;
5947
5948 return 0;
5949 }
5950
5951 /* Record SYM_NUM to record of CU in HTABLE. */
5952 static void
5953 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
5954 {
5955 struct cu_hash_table_entry **slot, *entry;
5956
5957 slot = (struct cu_hash_table_entry **)
5958 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
5959 NO_INSERT);
5960 entry = *slot;
5961
5962 entry->max_comdat_num = sym_num;
5963 }
5964
5965 /* Traverse the DIE (which is always comp_unit_die), and set up
5966 additional compilation units for each of the include files we see
5967 bracketed by BINCL/EINCL. */
5968
5969 static void
5970 break_out_includes (dw_die_ref die)
5971 {
5972 dw_die_ref *ptr;
5973 dw_die_ref unit = NULL;
5974 limbo_die_node *node, **pnode;
5975 htab_t cu_hash_table;
5976
5977 for (ptr = &(die->die_child); *ptr;)
5978 {
5979 dw_die_ref c = *ptr;
5980
5981 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
5982 || (unit && is_comdat_die (c)))
5983 {
5984 /* This DIE is for a secondary CU; remove it from the main one. */
5985 *ptr = c->die_sib;
5986
5987 if (c->die_tag == DW_TAG_GNU_BINCL)
5988 {
5989 unit = push_new_compile_unit (unit, c);
5990 free_die (c);
5991 }
5992 else if (c->die_tag == DW_TAG_GNU_EINCL)
5993 {
5994 unit = pop_compile_unit (unit);
5995 free_die (c);
5996 }
5997 else
5998 add_child_die (unit, c);
5999 }
6000 else
6001 {
6002 /* Leave this DIE in the main CU. */
6003 ptr = &(c->die_sib);
6004 continue;
6005 }
6006 }
6007
6008 #if 0
6009 /* We can only use this in debugging, since the frontend doesn't check
6010 to make sure that we leave every include file we enter. */
6011 if (unit != NULL)
6012 abort ();
6013 #endif
6014
6015 assign_symbol_names (die);
6016 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6017 for (node = limbo_die_list, pnode = &limbo_die_list;
6018 node;
6019 node = node->next)
6020 {
6021 int is_dupl;
6022
6023 compute_section_prefix (node->die);
6024 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6025 &comdat_symbol_number);
6026 assign_symbol_names (node->die);
6027 if (is_dupl)
6028 *pnode = node->next;
6029 else
6030 {
6031 pnode = &node->next;
6032 record_comdat_symbol_number (node->die, cu_hash_table,
6033 comdat_symbol_number);
6034 }
6035 }
6036 htab_delete (cu_hash_table);
6037 }
6038
6039 /* Traverse the DIE and add a sibling attribute if it may have the
6040 effect of speeding up access to siblings. To save some space,
6041 avoid generating sibling attributes for DIE's without children. */
6042
6043 static void
6044 add_sibling_attributes (dw_die_ref die)
6045 {
6046 dw_die_ref c;
6047
6048 if (die->die_tag != DW_TAG_compile_unit
6049 && die->die_sib && die->die_child != NULL)
6050 /* Add the sibling link to the front of the attribute list. */
6051 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6052
6053 for (c = die->die_child; c != NULL; c = c->die_sib)
6054 add_sibling_attributes (c);
6055 }
6056
6057 /* Output all location lists for the DIE and its children. */
6058
6059 static void
6060 output_location_lists (dw_die_ref die)
6061 {
6062 dw_die_ref c;
6063 dw_attr_ref d_attr;
6064
6065 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6066 if (AT_class (d_attr) == dw_val_class_loc_list)
6067 output_loc_list (AT_loc_list (d_attr));
6068
6069 for (c = die->die_child; c != NULL; c = c->die_sib)
6070 output_location_lists (c);
6071
6072 }
6073
6074 /* The format of each DIE (and its attribute value pairs) is encoded in an
6075 abbreviation table. This routine builds the abbreviation table and assigns
6076 a unique abbreviation id for each abbreviation entry. The children of each
6077 die are visited recursively. */
6078
6079 static void
6080 build_abbrev_table (dw_die_ref die)
6081 {
6082 unsigned long abbrev_id;
6083 unsigned int n_alloc;
6084 dw_die_ref c;
6085 dw_attr_ref d_attr, a_attr;
6086
6087 /* Scan the DIE references, and mark as external any that refer to
6088 DIEs from other CUs (i.e. those which are not marked). */
6089 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6090 if (AT_class (d_attr) == dw_val_class_die_ref
6091 && AT_ref (d_attr)->die_mark == 0)
6092 {
6093 if (AT_ref (d_attr)->die_symbol == 0)
6094 abort ();
6095
6096 set_AT_ref_external (d_attr, 1);
6097 }
6098
6099 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6100 {
6101 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6102
6103 if (abbrev->die_tag == die->die_tag)
6104 {
6105 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6106 {
6107 a_attr = abbrev->die_attr;
6108 d_attr = die->die_attr;
6109
6110 while (a_attr != NULL && d_attr != NULL)
6111 {
6112 if ((a_attr->dw_attr != d_attr->dw_attr)
6113 || (value_format (a_attr) != value_format (d_attr)))
6114 break;
6115
6116 a_attr = a_attr->dw_attr_next;
6117 d_attr = d_attr->dw_attr_next;
6118 }
6119
6120 if (a_attr == NULL && d_attr == NULL)
6121 break;
6122 }
6123 }
6124 }
6125
6126 if (abbrev_id >= abbrev_die_table_in_use)
6127 {
6128 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6129 {
6130 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6131 abbrev_die_table = ggc_realloc (abbrev_die_table,
6132 sizeof (dw_die_ref) * n_alloc);
6133
6134 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6135 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6136 abbrev_die_table_allocated = n_alloc;
6137 }
6138
6139 ++abbrev_die_table_in_use;
6140 abbrev_die_table[abbrev_id] = die;
6141 }
6142
6143 die->die_abbrev = abbrev_id;
6144 for (c = die->die_child; c != NULL; c = c->die_sib)
6145 build_abbrev_table (c);
6146 }
6147 \f
6148 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6149
6150 static int
6151 constant_size (long unsigned int value)
6152 {
6153 int log;
6154
6155 if (value == 0)
6156 log = 0;
6157 else
6158 log = floor_log2 (value);
6159
6160 log = log / 8;
6161 log = 1 << (floor_log2 (log) + 1);
6162
6163 return log;
6164 }
6165
6166 /* Return the size of a DIE as it is represented in the
6167 .debug_info section. */
6168
6169 static unsigned long
6170 size_of_die (dw_die_ref die)
6171 {
6172 unsigned long size = 0;
6173 dw_attr_ref a;
6174
6175 size += size_of_uleb128 (die->die_abbrev);
6176 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6177 {
6178 switch (AT_class (a))
6179 {
6180 case dw_val_class_addr:
6181 size += DWARF2_ADDR_SIZE;
6182 break;
6183 case dw_val_class_offset:
6184 size += DWARF_OFFSET_SIZE;
6185 break;
6186 case dw_val_class_loc:
6187 {
6188 unsigned long lsize = size_of_locs (AT_loc (a));
6189
6190 /* Block length. */
6191 size += constant_size (lsize);
6192 size += lsize;
6193 }
6194 break;
6195 case dw_val_class_loc_list:
6196 size += DWARF_OFFSET_SIZE;
6197 break;
6198 case dw_val_class_range_list:
6199 size += DWARF_OFFSET_SIZE;
6200 break;
6201 case dw_val_class_const:
6202 size += size_of_sleb128 (AT_int (a));
6203 break;
6204 case dw_val_class_unsigned_const:
6205 size += constant_size (AT_unsigned (a));
6206 break;
6207 case dw_val_class_long_long:
6208 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6209 break;
6210 case dw_val_class_float:
6211 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
6212 break;
6213 case dw_val_class_flag:
6214 size += 1;
6215 break;
6216 case dw_val_class_die_ref:
6217 if (AT_ref_external (a))
6218 size += DWARF2_ADDR_SIZE;
6219 else
6220 size += DWARF_OFFSET_SIZE;
6221 break;
6222 case dw_val_class_fde_ref:
6223 size += DWARF_OFFSET_SIZE;
6224 break;
6225 case dw_val_class_lbl_id:
6226 size += DWARF2_ADDR_SIZE;
6227 break;
6228 case dw_val_class_lbl_offset:
6229 size += DWARF_OFFSET_SIZE;
6230 break;
6231 case dw_val_class_str:
6232 if (AT_string_form (a) == DW_FORM_strp)
6233 size += DWARF_OFFSET_SIZE;
6234 else
6235 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6236 break;
6237 default:
6238 abort ();
6239 }
6240 }
6241
6242 return size;
6243 }
6244
6245 /* Size the debugging information associated with a given DIE. Visits the
6246 DIE's children recursively. Updates the global variable next_die_offset, on
6247 each time through. Uses the current value of next_die_offset to update the
6248 die_offset field in each DIE. */
6249
6250 static void
6251 calc_die_sizes (dw_die_ref die)
6252 {
6253 dw_die_ref c;
6254
6255 die->die_offset = next_die_offset;
6256 next_die_offset += size_of_die (die);
6257
6258 for (c = die->die_child; c != NULL; c = c->die_sib)
6259 calc_die_sizes (c);
6260
6261 if (die->die_child != NULL)
6262 /* Count the null byte used to terminate sibling lists. */
6263 next_die_offset += 1;
6264 }
6265
6266 /* Set the marks for a die and its children. We do this so
6267 that we know whether or not a reference needs to use FORM_ref_addr; only
6268 DIEs in the same CU will be marked. We used to clear out the offset
6269 and use that as the flag, but ran into ordering problems. */
6270
6271 static void
6272 mark_dies (dw_die_ref die)
6273 {
6274 dw_die_ref c;
6275
6276 if (die->die_mark)
6277 abort ();
6278
6279 die->die_mark = 1;
6280 for (c = die->die_child; c; c = c->die_sib)
6281 mark_dies (c);
6282 }
6283
6284 /* Clear the marks for a die and its children. */
6285
6286 static void
6287 unmark_dies (dw_die_ref die)
6288 {
6289 dw_die_ref c;
6290
6291 if (!die->die_mark)
6292 abort ();
6293
6294 die->die_mark = 0;
6295 for (c = die->die_child; c; c = c->die_sib)
6296 unmark_dies (c);
6297 }
6298
6299 /* Clear the marks for a die, its children and referred dies. */
6300
6301 static void
6302 unmark_all_dies (dw_die_ref die)
6303 {
6304 dw_die_ref c;
6305 dw_attr_ref a;
6306
6307 if (!die->die_mark)
6308 return;
6309 die->die_mark = 0;
6310
6311 for (c = die->die_child; c; c = c->die_sib)
6312 unmark_all_dies (c);
6313
6314 for (a = die->die_attr; a; a = a->dw_attr_next)
6315 if (AT_class (a) == dw_val_class_die_ref)
6316 unmark_all_dies (AT_ref (a));
6317 }
6318
6319 /* Return the size of the .debug_pubnames table generated for the
6320 compilation unit. */
6321
6322 static unsigned long
6323 size_of_pubnames (void)
6324 {
6325 unsigned long size;
6326 unsigned i;
6327
6328 size = DWARF_PUBNAMES_HEADER_SIZE;
6329 for (i = 0; i < pubname_table_in_use; i++)
6330 {
6331 pubname_ref p = &pubname_table[i];
6332 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6333 }
6334
6335 size += DWARF_OFFSET_SIZE;
6336 return size;
6337 }
6338
6339 /* Return the size of the information in the .debug_aranges section. */
6340
6341 static unsigned long
6342 size_of_aranges (void)
6343 {
6344 unsigned long size;
6345
6346 size = DWARF_ARANGES_HEADER_SIZE;
6347
6348 /* Count the address/length pair for this compilation unit. */
6349 size += 2 * DWARF2_ADDR_SIZE;
6350 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6351
6352 /* Count the two zero words used to terminated the address range table. */
6353 size += 2 * DWARF2_ADDR_SIZE;
6354 return size;
6355 }
6356 \f
6357 /* Select the encoding of an attribute value. */
6358
6359 static enum dwarf_form
6360 value_format (dw_attr_ref a)
6361 {
6362 switch (a->dw_attr_val.val_class)
6363 {
6364 case dw_val_class_addr:
6365 return DW_FORM_addr;
6366 case dw_val_class_range_list:
6367 case dw_val_class_offset:
6368 if (DWARF_OFFSET_SIZE == 4)
6369 return DW_FORM_data4;
6370 if (DWARF_OFFSET_SIZE == 8)
6371 return DW_FORM_data8;
6372 abort ();
6373 case dw_val_class_loc_list:
6374 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6375 .debug_loc section */
6376 return DW_FORM_data4;
6377 case dw_val_class_loc:
6378 switch (constant_size (size_of_locs (AT_loc (a))))
6379 {
6380 case 1:
6381 return DW_FORM_block1;
6382 case 2:
6383 return DW_FORM_block2;
6384 default:
6385 abort ();
6386 }
6387 case dw_val_class_const:
6388 return DW_FORM_sdata;
6389 case dw_val_class_unsigned_const:
6390 switch (constant_size (AT_unsigned (a)))
6391 {
6392 case 1:
6393 return DW_FORM_data1;
6394 case 2:
6395 return DW_FORM_data2;
6396 case 4:
6397 return DW_FORM_data4;
6398 case 8:
6399 return DW_FORM_data8;
6400 default:
6401 abort ();
6402 }
6403 case dw_val_class_long_long:
6404 return DW_FORM_block1;
6405 case dw_val_class_float:
6406 return DW_FORM_block1;
6407 case dw_val_class_flag:
6408 return DW_FORM_flag;
6409 case dw_val_class_die_ref:
6410 if (AT_ref_external (a))
6411 return DW_FORM_ref_addr;
6412 else
6413 return DW_FORM_ref;
6414 case dw_val_class_fde_ref:
6415 return DW_FORM_data;
6416 case dw_val_class_lbl_id:
6417 return DW_FORM_addr;
6418 case dw_val_class_lbl_offset:
6419 return DW_FORM_data;
6420 case dw_val_class_str:
6421 return AT_string_form (a);
6422
6423 default:
6424 abort ();
6425 }
6426 }
6427
6428 /* Output the encoding of an attribute value. */
6429
6430 static void
6431 output_value_format (dw_attr_ref a)
6432 {
6433 enum dwarf_form form = value_format (a);
6434
6435 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6436 }
6437
6438 /* Output the .debug_abbrev section which defines the DIE abbreviation
6439 table. */
6440
6441 static void
6442 output_abbrev_section (void)
6443 {
6444 unsigned long abbrev_id;
6445
6446 dw_attr_ref a_attr;
6447
6448 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6449 {
6450 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6451
6452 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6453 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6454 dwarf_tag_name (abbrev->die_tag));
6455
6456 if (abbrev->die_child != NULL)
6457 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6458 else
6459 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6460
6461 for (a_attr = abbrev->die_attr; a_attr != NULL;
6462 a_attr = a_attr->dw_attr_next)
6463 {
6464 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6465 dwarf_attr_name (a_attr->dw_attr));
6466 output_value_format (a_attr);
6467 }
6468
6469 dw2_asm_output_data (1, 0, NULL);
6470 dw2_asm_output_data (1, 0, NULL);
6471 }
6472
6473 /* Terminate the table. */
6474 dw2_asm_output_data (1, 0, NULL);
6475 }
6476
6477 /* Output a symbol we can use to refer to this DIE from another CU. */
6478
6479 static inline void
6480 output_die_symbol (dw_die_ref die)
6481 {
6482 char *sym = die->die_symbol;
6483
6484 if (sym == 0)
6485 return;
6486
6487 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6488 /* We make these global, not weak; if the target doesn't support
6489 .linkonce, it doesn't support combining the sections, so debugging
6490 will break. */
6491 (*targetm.asm_out.globalize_label) (asm_out_file, sym);
6492
6493 ASM_OUTPUT_LABEL (asm_out_file, sym);
6494 }
6495
6496 /* Return a new location list, given the begin and end range, and the
6497 expression. gensym tells us whether to generate a new internal symbol for
6498 this location list node, which is done for the head of the list only. */
6499
6500 static inline dw_loc_list_ref
6501 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6502 const char *section, unsigned int gensym)
6503 {
6504 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6505
6506 retlist->begin = begin;
6507 retlist->end = end;
6508 retlist->expr = expr;
6509 retlist->section = section;
6510 if (gensym)
6511 retlist->ll_symbol = gen_internal_sym ("LLST");
6512
6513 return retlist;
6514 }
6515
6516 /* Add a location description expression to a location list. */
6517
6518 static inline void
6519 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6520 const char *begin, const char *end,
6521 const char *section)
6522 {
6523 dw_loc_list_ref *d;
6524
6525 /* Find the end of the chain. */
6526 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6527 ;
6528
6529 /* Add a new location list node to the list. */
6530 *d = new_loc_list (descr, begin, end, section, 0);
6531 }
6532
6533 /* Output the location list given to us. */
6534
6535 static void
6536 output_loc_list (dw_loc_list_ref list_head)
6537 {
6538 dw_loc_list_ref curr = list_head;
6539
6540 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6541
6542 /* ??? This shouldn't be needed now that we've forced the
6543 compilation unit base address to zero when there is code
6544 in more than one section. */
6545 if (strcmp (curr->section, ".text") == 0)
6546 {
6547 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6548 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT) 0,
6549 "Location list base address specifier fake entry");
6550 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6551 "Location list base address specifier base");
6552 }
6553
6554 /* Walk the location list, and output each range + expression. */
6555 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6556 {
6557 unsigned long size;
6558 if (separate_line_info_table_in_use == 0)
6559 {
6560 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6561 "Location list begin address (%s)",
6562 list_head->ll_symbol);
6563 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6564 "Location list end address (%s)",
6565 list_head->ll_symbol);
6566 }
6567 else
6568 {
6569 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
6570 "Location list begin address (%s)",
6571 list_head->ll_symbol);
6572 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
6573 "Location list end address (%s)",
6574 list_head->ll_symbol);
6575 }
6576 size = size_of_locs (curr->expr);
6577
6578 /* Output the block length for this list of location operations. */
6579 if (size > 0xffff)
6580 abort ();
6581 dw2_asm_output_data (2, size, "%s", "Location expression size");
6582
6583 output_loc_sequence (curr->expr);
6584 }
6585
6586 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6587 "Location list terminator begin (%s)",
6588 list_head->ll_symbol);
6589 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6590 "Location list terminator end (%s)",
6591 list_head->ll_symbol);
6592 }
6593
6594 /* Output the DIE and its attributes. Called recursively to generate
6595 the definitions of each child DIE. */
6596
6597 static void
6598 output_die (dw_die_ref die)
6599 {
6600 dw_attr_ref a;
6601 dw_die_ref c;
6602 unsigned long size;
6603
6604 /* If someone in another CU might refer to us, set up a symbol for
6605 them to point to. */
6606 if (die->die_symbol)
6607 output_die_symbol (die);
6608
6609 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6610 die->die_offset, dwarf_tag_name (die->die_tag));
6611
6612 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6613 {
6614 const char *name = dwarf_attr_name (a->dw_attr);
6615
6616 switch (AT_class (a))
6617 {
6618 case dw_val_class_addr:
6619 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6620 break;
6621
6622 case dw_val_class_offset:
6623 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6624 "%s", name);
6625 break;
6626
6627 case dw_val_class_range_list:
6628 {
6629 char *p = strchr (ranges_section_label, '\0');
6630
6631 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6632 a->dw_attr_val.v.val_offset);
6633 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6634 "%s", name);
6635 *p = '\0';
6636 }
6637 break;
6638
6639 case dw_val_class_loc:
6640 size = size_of_locs (AT_loc (a));
6641
6642 /* Output the block length for this list of location operations. */
6643 dw2_asm_output_data (constant_size (size), size, "%s", name);
6644
6645 output_loc_sequence (AT_loc (a));
6646 break;
6647
6648 case dw_val_class_const:
6649 /* ??? It would be slightly more efficient to use a scheme like is
6650 used for unsigned constants below, but gdb 4.x does not sign
6651 extend. Gdb 5.x does sign extend. */
6652 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6653 break;
6654
6655 case dw_val_class_unsigned_const:
6656 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6657 AT_unsigned (a), "%s", name);
6658 break;
6659
6660 case dw_val_class_long_long:
6661 {
6662 unsigned HOST_WIDE_INT first, second;
6663
6664 dw2_asm_output_data (1,
6665 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6666 "%s", name);
6667
6668 if (WORDS_BIG_ENDIAN)
6669 {
6670 first = a->dw_attr_val.v.val_long_long.hi;
6671 second = a->dw_attr_val.v.val_long_long.low;
6672 }
6673 else
6674 {
6675 first = a->dw_attr_val.v.val_long_long.low;
6676 second = a->dw_attr_val.v.val_long_long.hi;
6677 }
6678
6679 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6680 first, "long long constant");
6681 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6682 second, NULL);
6683 }
6684 break;
6685
6686 case dw_val_class_float:
6687 {
6688 unsigned int i;
6689
6690 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6691 "%s", name);
6692
6693 for (i = 0; i < a->dw_attr_val.v.val_float.length; i++)
6694 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6695 "fp constant word %u", i);
6696 break;
6697 }
6698
6699 case dw_val_class_flag:
6700 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6701 break;
6702
6703 case dw_val_class_loc_list:
6704 {
6705 char *sym = AT_loc_list (a)->ll_symbol;
6706
6707 if (sym == 0)
6708 abort ();
6709 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, "%s", name);
6710 }
6711 break;
6712
6713 case dw_val_class_die_ref:
6714 if (AT_ref_external (a))
6715 {
6716 char *sym = AT_ref (a)->die_symbol;
6717
6718 if (sym == 0)
6719 abort ();
6720 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6721 }
6722 else if (AT_ref (a)->die_offset == 0)
6723 abort ();
6724 else
6725 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6726 "%s", name);
6727 break;
6728
6729 case dw_val_class_fde_ref:
6730 {
6731 char l1[20];
6732
6733 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6734 a->dw_attr_val.v.val_fde_index * 2);
6735 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6736 }
6737 break;
6738
6739 case dw_val_class_lbl_id:
6740 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6741 break;
6742
6743 case dw_val_class_lbl_offset:
6744 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6745 break;
6746
6747 case dw_val_class_str:
6748 if (AT_string_form (a) == DW_FORM_strp)
6749 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6750 a->dw_attr_val.v.val_str->label,
6751 "%s: \"%s\"", name, AT_string (a));
6752 else
6753 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6754 break;
6755
6756 default:
6757 abort ();
6758 }
6759 }
6760
6761 for (c = die->die_child; c != NULL; c = c->die_sib)
6762 output_die (c);
6763
6764 /* Add null byte to terminate sibling list. */
6765 if (die->die_child != NULL)
6766 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6767 die->die_offset);
6768 }
6769
6770 /* Output the compilation unit that appears at the beginning of the
6771 .debug_info section, and precedes the DIE descriptions. */
6772
6773 static void
6774 output_compilation_unit_header (void)
6775 {
6776 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6777 dw2_asm_output_data (4, 0xffffffff,
6778 "Initial length escape value indicating 64-bit DWARF extension");
6779 dw2_asm_output_data (DWARF_OFFSET_SIZE,
6780 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
6781 "Length of Compilation Unit Info");
6782 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6783 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6784 "Offset Into Abbrev. Section");
6785 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6786 }
6787
6788 /* Output the compilation unit DIE and its children. */
6789
6790 static void
6791 output_comp_unit (dw_die_ref die, int output_if_empty)
6792 {
6793 const char *secname;
6794 char *oldsym, *tmp;
6795
6796 /* Unless we are outputting main CU, we may throw away empty ones. */
6797 if (!output_if_empty && die->die_child == NULL)
6798 return;
6799
6800 /* Even if there are no children of this DIE, we must output the information
6801 about the compilation unit. Otherwise, on an empty translation unit, we
6802 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6803 will then complain when examining the file. First mark all the DIEs in
6804 this CU so we know which get local refs. */
6805 mark_dies (die);
6806
6807 build_abbrev_table (die);
6808
6809 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6810 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6811 calc_die_sizes (die);
6812
6813 oldsym = die->die_symbol;
6814 if (oldsym)
6815 {
6816 tmp = alloca (strlen (oldsym) + 24);
6817
6818 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
6819 secname = tmp;
6820 die->die_symbol = NULL;
6821 }
6822 else
6823 secname = (const char *) DEBUG_INFO_SECTION;
6824
6825 /* Output debugging information. */
6826 named_section_flags (secname, SECTION_DEBUG);
6827 output_compilation_unit_header ();
6828 output_die (die);
6829
6830 /* Leave the marks on the main CU, so we can check them in
6831 output_pubnames. */
6832 if (oldsym)
6833 {
6834 unmark_dies (die);
6835 die->die_symbol = oldsym;
6836 }
6837 }
6838
6839 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
6840 output of lang_hooks.decl_printable_name for C++ looks like
6841 "A::f(int)". Let's drop the argument list, and maybe the scope. */
6842
6843 static const char *
6844 dwarf2_name (tree decl, int scope)
6845 {
6846 return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
6847 }
6848
6849 /* Add a new entry to .debug_pubnames if appropriate. */
6850
6851 static void
6852 add_pubname (tree decl, dw_die_ref die)
6853 {
6854 pubname_ref p;
6855
6856 if (! TREE_PUBLIC (decl))
6857 return;
6858
6859 if (pubname_table_in_use == pubname_table_allocated)
6860 {
6861 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
6862 pubname_table
6863 = ggc_realloc (pubname_table,
6864 (pubname_table_allocated * sizeof (pubname_entry)));
6865 memset (pubname_table + pubname_table_in_use, 0,
6866 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
6867 }
6868
6869 p = &pubname_table[pubname_table_in_use++];
6870 p->die = die;
6871 p->name = xstrdup (dwarf2_name (decl, 1));
6872 }
6873
6874 /* Output the public names table used to speed up access to externally
6875 visible names. For now, only generate entries for externally
6876 visible procedures. */
6877
6878 static void
6879 output_pubnames (void)
6880 {
6881 unsigned i;
6882 unsigned long pubnames_length = size_of_pubnames ();
6883
6884 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6885 dw2_asm_output_data (4, 0xffffffff,
6886 "Initial length escape value indicating 64-bit DWARF extension");
6887 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
6888 "Length of Public Names Info");
6889 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6890 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6891 "Offset of Compilation Unit Info");
6892 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
6893 "Compilation Unit Length");
6894
6895 for (i = 0; i < pubname_table_in_use; i++)
6896 {
6897 pubname_ref pub = &pubname_table[i];
6898
6899 /* We shouldn't see pubnames for DIEs outside of the main CU. */
6900 if (pub->die->die_mark == 0)
6901 abort ();
6902
6903 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
6904 "DIE offset");
6905
6906 dw2_asm_output_nstring (pub->name, -1, "external name");
6907 }
6908
6909 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
6910 }
6911
6912 /* Add a new entry to .debug_aranges if appropriate. */
6913
6914 static void
6915 add_arange (tree decl, dw_die_ref die)
6916 {
6917 if (! DECL_SECTION_NAME (decl))
6918 return;
6919
6920 if (arange_table_in_use == arange_table_allocated)
6921 {
6922 arange_table_allocated += ARANGE_TABLE_INCREMENT;
6923 arange_table = ggc_realloc (arange_table,
6924 (arange_table_allocated
6925 * sizeof (dw_die_ref)));
6926 memset (arange_table + arange_table_in_use, 0,
6927 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
6928 }
6929
6930 arange_table[arange_table_in_use++] = die;
6931 }
6932
6933 /* Output the information that goes into the .debug_aranges table.
6934 Namely, define the beginning and ending address range of the
6935 text section generated for this compilation unit. */
6936
6937 static void
6938 output_aranges (void)
6939 {
6940 unsigned i;
6941 unsigned long aranges_length = size_of_aranges ();
6942
6943 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6944 dw2_asm_output_data (4, 0xffffffff,
6945 "Initial length escape value indicating 64-bit DWARF extension");
6946 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
6947 "Length of Address Ranges Info");
6948 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6949 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6950 "Offset of Compilation Unit Info");
6951 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
6952 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
6953
6954 /* We need to align to twice the pointer size here. */
6955 if (DWARF_ARANGES_PAD_SIZE)
6956 {
6957 /* Pad using a 2 byte words so that padding is correct for any
6958 pointer size. */
6959 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
6960 2 * DWARF2_ADDR_SIZE);
6961 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
6962 dw2_asm_output_data (2, 0, NULL);
6963 }
6964
6965 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
6966 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
6967 text_section_label, "Length");
6968
6969 for (i = 0; i < arange_table_in_use; i++)
6970 {
6971 dw_die_ref die = arange_table[i];
6972
6973 /* We shouldn't see aranges for DIEs outside of the main CU. */
6974 if (die->die_mark == 0)
6975 abort ();
6976
6977 if (die->die_tag == DW_TAG_subprogram)
6978 {
6979 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
6980 "Address");
6981 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
6982 get_AT_low_pc (die), "Length");
6983 }
6984 else
6985 {
6986 /* A static variable; extract the symbol from DW_AT_location.
6987 Note that this code isn't currently hit, as we only emit
6988 aranges for functions (jason 9/23/99). */
6989 dw_attr_ref a = get_AT (die, DW_AT_location);
6990 dw_loc_descr_ref loc;
6991
6992 if (! a || AT_class (a) != dw_val_class_loc)
6993 abort ();
6994
6995 loc = AT_loc (a);
6996 if (loc->dw_loc_opc != DW_OP_addr)
6997 abort ();
6998
6999 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7000 loc->dw_loc_oprnd1.v.val_addr, "Address");
7001 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7002 get_AT_unsigned (die, DW_AT_byte_size),
7003 "Length");
7004 }
7005 }
7006
7007 /* Output the terminator words. */
7008 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7009 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7010 }
7011
7012 /* Add a new entry to .debug_ranges. Return the offset at which it
7013 was placed. */
7014
7015 static unsigned int
7016 add_ranges (tree block)
7017 {
7018 unsigned int in_use = ranges_table_in_use;
7019
7020 if (in_use == ranges_table_allocated)
7021 {
7022 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7023 ranges_table
7024 = ggc_realloc (ranges_table, (ranges_table_allocated
7025 * sizeof (struct dw_ranges_struct)));
7026 memset (ranges_table + ranges_table_in_use, 0,
7027 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7028 }
7029
7030 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7031 ranges_table_in_use = in_use + 1;
7032
7033 return in_use * 2 * DWARF2_ADDR_SIZE;
7034 }
7035
7036 static void
7037 output_ranges (void)
7038 {
7039 unsigned i;
7040 static const char *const start_fmt = "Offset 0x%x";
7041 const char *fmt = start_fmt;
7042
7043 for (i = 0; i < ranges_table_in_use; i++)
7044 {
7045 int block_num = ranges_table[i].block_num;
7046
7047 if (block_num)
7048 {
7049 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7050 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7051
7052 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7053 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7054
7055 /* If all code is in the text section, then the compilation
7056 unit base address defaults to DW_AT_low_pc, which is the
7057 base of the text section. */
7058 if (separate_line_info_table_in_use == 0)
7059 {
7060 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7061 text_section_label,
7062 fmt, i * 2 * DWARF2_ADDR_SIZE);
7063 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7064 text_section_label, NULL);
7065 }
7066
7067 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7068 compilation unit base address to zero, which allows us to
7069 use absolute addresses, and not worry about whether the
7070 target supports cross-section arithmetic. */
7071 else
7072 {
7073 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7074 fmt, i * 2 * DWARF2_ADDR_SIZE);
7075 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7076 }
7077
7078 fmt = NULL;
7079 }
7080 else
7081 {
7082 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7083 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7084 fmt = start_fmt;
7085 }
7086 }
7087 }
7088
7089 /* Data structure containing information about input files. */
7090 struct file_info
7091 {
7092 char *path; /* Complete file name. */
7093 char *fname; /* File name part. */
7094 int length; /* Length of entire string. */
7095 int file_idx; /* Index in input file table. */
7096 int dir_idx; /* Index in directory table. */
7097 };
7098
7099 /* Data structure containing information about directories with source
7100 files. */
7101 struct dir_info
7102 {
7103 char *path; /* Path including directory name. */
7104 int length; /* Path length. */
7105 int prefix; /* Index of directory entry which is a prefix. */
7106 int count; /* Number of files in this directory. */
7107 int dir_idx; /* Index of directory used as base. */
7108 int used; /* Used in the end? */
7109 };
7110
7111 /* Callback function for file_info comparison. We sort by looking at
7112 the directories in the path. */
7113
7114 static int
7115 file_info_cmp (const void *p1, const void *p2)
7116 {
7117 const struct file_info *s1 = p1;
7118 const struct file_info *s2 = p2;
7119 unsigned char *cp1;
7120 unsigned char *cp2;
7121
7122 /* Take care of file names without directories. We need to make sure that
7123 we return consistent values to qsort since some will get confused if
7124 we return the same value when identical operands are passed in opposite
7125 orders. So if neither has a directory, return 0 and otherwise return
7126 1 or -1 depending on which one has the directory. */
7127 if ((s1->path == s1->fname || s2->path == s2->fname))
7128 return (s2->path == s2->fname) - (s1->path == s1->fname);
7129
7130 cp1 = (unsigned char *) s1->path;
7131 cp2 = (unsigned char *) s2->path;
7132
7133 while (1)
7134 {
7135 ++cp1;
7136 ++cp2;
7137 /* Reached the end of the first path? If so, handle like above. */
7138 if ((cp1 == (unsigned char *) s1->fname)
7139 || (cp2 == (unsigned char *) s2->fname))
7140 return ((cp2 == (unsigned char *) s2->fname)
7141 - (cp1 == (unsigned char *) s1->fname));
7142
7143 /* Character of current path component the same? */
7144 else if (*cp1 != *cp2)
7145 return *cp1 - *cp2;
7146 }
7147 }
7148
7149 /* Output the directory table and the file name table. We try to minimize
7150 the total amount of memory needed. A heuristic is used to avoid large
7151 slowdowns with many input files. */
7152
7153 static void
7154 output_file_names (void)
7155 {
7156 struct file_info *files;
7157 struct dir_info *dirs;
7158 int *saved;
7159 int *savehere;
7160 int *backmap;
7161 size_t ndirs;
7162 int idx_offset;
7163 size_t i;
7164 int idx;
7165
7166 /* Handle the case where file_table is empty. */
7167 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7168 {
7169 dw2_asm_output_data (1, 0, "End directory table");
7170 dw2_asm_output_data (1, 0, "End file name table");
7171 return;
7172 }
7173
7174 /* Allocate the various arrays we need. */
7175 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7176 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7177
7178 /* Sort the file names. */
7179 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7180 {
7181 char *f;
7182
7183 /* Skip all leading "./". */
7184 f = VARRAY_CHAR_PTR (file_table, i);
7185 while (f[0] == '.' && f[1] == '/')
7186 f += 2;
7187
7188 /* Create a new array entry. */
7189 files[i].path = f;
7190 files[i].length = strlen (f);
7191 files[i].file_idx = i;
7192
7193 /* Search for the file name part. */
7194 f = strrchr (f, '/');
7195 files[i].fname = f == NULL ? files[i].path : f + 1;
7196 }
7197
7198 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7199 sizeof (files[0]), file_info_cmp);
7200
7201 /* Find all the different directories used. */
7202 dirs[0].path = files[1].path;
7203 dirs[0].length = files[1].fname - files[1].path;
7204 dirs[0].prefix = -1;
7205 dirs[0].count = 1;
7206 dirs[0].dir_idx = 0;
7207 dirs[0].used = 0;
7208 files[1].dir_idx = 0;
7209 ndirs = 1;
7210
7211 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7212 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7213 && memcmp (dirs[ndirs - 1].path, files[i].path,
7214 dirs[ndirs - 1].length) == 0)
7215 {
7216 /* Same directory as last entry. */
7217 files[i].dir_idx = ndirs - 1;
7218 ++dirs[ndirs - 1].count;
7219 }
7220 else
7221 {
7222 size_t j;
7223
7224 /* This is a new directory. */
7225 dirs[ndirs].path = files[i].path;
7226 dirs[ndirs].length = files[i].fname - files[i].path;
7227 dirs[ndirs].count = 1;
7228 dirs[ndirs].dir_idx = ndirs;
7229 dirs[ndirs].used = 0;
7230 files[i].dir_idx = ndirs;
7231
7232 /* Search for a prefix. */
7233 dirs[ndirs].prefix = -1;
7234 for (j = 0; j < ndirs; j++)
7235 if (dirs[j].length < dirs[ndirs].length
7236 && dirs[j].length > 1
7237 && (dirs[ndirs].prefix == -1
7238 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7239 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7240 dirs[ndirs].prefix = j;
7241
7242 ++ndirs;
7243 }
7244
7245 /* Now to the actual work. We have to find a subset of the directories which
7246 allow expressing the file name using references to the directory table
7247 with the least amount of characters. We do not do an exhaustive search
7248 where we would have to check out every combination of every single
7249 possible prefix. Instead we use a heuristic which provides nearly optimal
7250 results in most cases and never is much off. */
7251 saved = alloca (ndirs * sizeof (int));
7252 savehere = alloca (ndirs * sizeof (int));
7253
7254 memset (saved, '\0', ndirs * sizeof (saved[0]));
7255 for (i = 0; i < ndirs; i++)
7256 {
7257 size_t j;
7258 int total;
7259
7260 /* We can always save some space for the current directory. But this
7261 does not mean it will be enough to justify adding the directory. */
7262 savehere[i] = dirs[i].length;
7263 total = (savehere[i] - saved[i]) * dirs[i].count;
7264
7265 for (j = i + 1; j < ndirs; j++)
7266 {
7267 savehere[j] = 0;
7268 if (saved[j] < dirs[i].length)
7269 {
7270 /* Determine whether the dirs[i] path is a prefix of the
7271 dirs[j] path. */
7272 int k;
7273
7274 k = dirs[j].prefix;
7275 while (k != -1 && k != (int) i)
7276 k = dirs[k].prefix;
7277
7278 if (k == (int) i)
7279 {
7280 /* Yes it is. We can possibly safe some memory but
7281 writing the filenames in dirs[j] relative to
7282 dirs[i]. */
7283 savehere[j] = dirs[i].length;
7284 total += (savehere[j] - saved[j]) * dirs[j].count;
7285 }
7286 }
7287 }
7288
7289 /* Check whether we can safe enough to justify adding the dirs[i]
7290 directory. */
7291 if (total > dirs[i].length + 1)
7292 {
7293 /* It's worthwhile adding. */
7294 for (j = i; j < ndirs; j++)
7295 if (savehere[j] > 0)
7296 {
7297 /* Remember how much we saved for this directory so far. */
7298 saved[j] = savehere[j];
7299
7300 /* Remember the prefix directory. */
7301 dirs[j].dir_idx = i;
7302 }
7303 }
7304 }
7305
7306 /* We have to emit them in the order they appear in the file_table array
7307 since the index is used in the debug info generation. To do this
7308 efficiently we generate a back-mapping of the indices first. */
7309 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7310 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7311 {
7312 backmap[files[i].file_idx] = i;
7313
7314 /* Mark this directory as used. */
7315 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7316 }
7317
7318 /* That was it. We are ready to emit the information. First emit the
7319 directory name table. We have to make sure the first actually emitted
7320 directory name has index one; zero is reserved for the current working
7321 directory. Make sure we do not confuse these indices with the one for the
7322 constructed table (even though most of the time they are identical). */
7323 idx = 1;
7324 idx_offset = dirs[0].length > 0 ? 1 : 0;
7325 for (i = 1 - idx_offset; i < ndirs; i++)
7326 if (dirs[i].used != 0)
7327 {
7328 dirs[i].used = idx++;
7329 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7330 "Directory Entry: 0x%x", dirs[i].used);
7331 }
7332
7333 dw2_asm_output_data (1, 0, "End directory table");
7334
7335 /* Correct the index for the current working directory entry if it
7336 exists. */
7337 if (idx_offset == 0)
7338 dirs[0].used = 0;
7339
7340 /* Now write all the file names. */
7341 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7342 {
7343 int file_idx = backmap[i];
7344 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7345
7346 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7347 "File Entry: 0x%lx", (unsigned long) i);
7348
7349 /* Include directory index. */
7350 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7351
7352 /* Modification time. */
7353 dw2_asm_output_data_uleb128 (0, NULL);
7354
7355 /* File length in bytes. */
7356 dw2_asm_output_data_uleb128 (0, NULL);
7357 }
7358
7359 dw2_asm_output_data (1, 0, "End file name table");
7360 }
7361
7362
7363 /* Output the source line number correspondence information. This
7364 information goes into the .debug_line section. */
7365
7366 static void
7367 output_line_info (void)
7368 {
7369 char l1[20], l2[20], p1[20], p2[20];
7370 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7371 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7372 unsigned opc;
7373 unsigned n_op_args;
7374 unsigned long lt_index;
7375 unsigned long current_line;
7376 long line_offset;
7377 long line_delta;
7378 unsigned long current_file;
7379 unsigned long function;
7380
7381 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7382 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7383 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7384 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7385
7386 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7387 dw2_asm_output_data (4, 0xffffffff,
7388 "Initial length escape value indicating 64-bit DWARF extension");
7389 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7390 "Length of Source Line Info");
7391 ASM_OUTPUT_LABEL (asm_out_file, l1);
7392
7393 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7394 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7395 ASM_OUTPUT_LABEL (asm_out_file, p1);
7396
7397 /* Define the architecture-dependent minimum instruction length (in
7398 bytes). In this implementation of DWARF, this field is used for
7399 information purposes only. Since GCC generates assembly language,
7400 we have no a priori knowledge of how many instruction bytes are
7401 generated for each source line, and therefore can use only the
7402 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7403 commands. Accordingly, we fix this as `1', which is "correct
7404 enough" for all architectures, and don't let the target override. */
7405 dw2_asm_output_data (1, 1,
7406 "Minimum Instruction Length");
7407
7408 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7409 "Default is_stmt_start flag");
7410 dw2_asm_output_data (1, DWARF_LINE_BASE,
7411 "Line Base Value (Special Opcodes)");
7412 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7413 "Line Range Value (Special Opcodes)");
7414 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7415 "Special Opcode Base");
7416
7417 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7418 {
7419 switch (opc)
7420 {
7421 case DW_LNS_advance_pc:
7422 case DW_LNS_advance_line:
7423 case DW_LNS_set_file:
7424 case DW_LNS_set_column:
7425 case DW_LNS_fixed_advance_pc:
7426 n_op_args = 1;
7427 break;
7428 default:
7429 n_op_args = 0;
7430 break;
7431 }
7432
7433 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7434 opc, n_op_args);
7435 }
7436
7437 /* Write out the information about the files we use. */
7438 output_file_names ();
7439 ASM_OUTPUT_LABEL (asm_out_file, p2);
7440
7441 /* We used to set the address register to the first location in the text
7442 section here, but that didn't accomplish anything since we already
7443 have a line note for the opening brace of the first function. */
7444
7445 /* Generate the line number to PC correspondence table, encoded as
7446 a series of state machine operations. */
7447 current_file = 1;
7448 current_line = 1;
7449 strcpy (prev_line_label, text_section_label);
7450 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7451 {
7452 dw_line_info_ref line_info = &line_info_table[lt_index];
7453
7454 #if 0
7455 /* Disable this optimization for now; GDB wants to see two line notes
7456 at the beginning of a function so it can find the end of the
7457 prologue. */
7458
7459 /* Don't emit anything for redundant notes. Just updating the
7460 address doesn't accomplish anything, because we already assume
7461 that anything after the last address is this line. */
7462 if (line_info->dw_line_num == current_line
7463 && line_info->dw_file_num == current_file)
7464 continue;
7465 #endif
7466
7467 /* Emit debug info for the address of the current line.
7468
7469 Unfortunately, we have little choice here currently, and must always
7470 use the most general form. GCC does not know the address delta
7471 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7472 attributes which will give an upper bound on the address range. We
7473 could perhaps use length attributes to determine when it is safe to
7474 use DW_LNS_fixed_advance_pc. */
7475
7476 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7477 if (0)
7478 {
7479 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7480 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7481 "DW_LNS_fixed_advance_pc");
7482 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7483 }
7484 else
7485 {
7486 /* This can handle any delta. This takes
7487 4+DWARF2_ADDR_SIZE bytes. */
7488 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7489 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7490 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7491 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7492 }
7493
7494 strcpy (prev_line_label, line_label);
7495
7496 /* Emit debug info for the source file of the current line, if
7497 different from the previous line. */
7498 if (line_info->dw_file_num != current_file)
7499 {
7500 current_file = line_info->dw_file_num;
7501 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7502 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7503 VARRAY_CHAR_PTR (file_table,
7504 current_file));
7505 }
7506
7507 /* Emit debug info for the current line number, choosing the encoding
7508 that uses the least amount of space. */
7509 if (line_info->dw_line_num != current_line)
7510 {
7511 line_offset = line_info->dw_line_num - current_line;
7512 line_delta = line_offset - DWARF_LINE_BASE;
7513 current_line = line_info->dw_line_num;
7514 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7515 /* This can handle deltas from -10 to 234, using the current
7516 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7517 takes 1 byte. */
7518 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7519 "line %lu", current_line);
7520 else
7521 {
7522 /* This can handle any delta. This takes at least 4 bytes,
7523 depending on the value being encoded. */
7524 dw2_asm_output_data (1, DW_LNS_advance_line,
7525 "advance to line %lu", current_line);
7526 dw2_asm_output_data_sleb128 (line_offset, NULL);
7527 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7528 }
7529 }
7530 else
7531 /* We still need to start a new row, so output a copy insn. */
7532 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7533 }
7534
7535 /* Emit debug info for the address of the end of the function. */
7536 if (0)
7537 {
7538 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7539 "DW_LNS_fixed_advance_pc");
7540 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7541 }
7542 else
7543 {
7544 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7545 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7546 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7547 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7548 }
7549
7550 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7551 dw2_asm_output_data_uleb128 (1, NULL);
7552 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7553
7554 function = 0;
7555 current_file = 1;
7556 current_line = 1;
7557 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7558 {
7559 dw_separate_line_info_ref line_info
7560 = &separate_line_info_table[lt_index];
7561
7562 #if 0
7563 /* Don't emit anything for redundant notes. */
7564 if (line_info->dw_line_num == current_line
7565 && line_info->dw_file_num == current_file
7566 && line_info->function == function)
7567 goto cont;
7568 #endif
7569
7570 /* Emit debug info for the address of the current line. If this is
7571 a new function, or the first line of a function, then we need
7572 to handle it differently. */
7573 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7574 lt_index);
7575 if (function != line_info->function)
7576 {
7577 function = line_info->function;
7578
7579 /* Set the address register to the first line in the function. */
7580 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7581 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7582 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7583 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7584 }
7585 else
7586 {
7587 /* ??? See the DW_LNS_advance_pc comment above. */
7588 if (0)
7589 {
7590 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7591 "DW_LNS_fixed_advance_pc");
7592 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7593 }
7594 else
7595 {
7596 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7597 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7598 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7599 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7600 }
7601 }
7602
7603 strcpy (prev_line_label, line_label);
7604
7605 /* Emit debug info for the source file of the current line, if
7606 different from the previous line. */
7607 if (line_info->dw_file_num != current_file)
7608 {
7609 current_file = line_info->dw_file_num;
7610 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7611 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7612 VARRAY_CHAR_PTR (file_table,
7613 current_file));
7614 }
7615
7616 /* Emit debug info for the current line number, choosing the encoding
7617 that uses the least amount of space. */
7618 if (line_info->dw_line_num != current_line)
7619 {
7620 line_offset = line_info->dw_line_num - current_line;
7621 line_delta = line_offset - DWARF_LINE_BASE;
7622 current_line = line_info->dw_line_num;
7623 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7624 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7625 "line %lu", current_line);
7626 else
7627 {
7628 dw2_asm_output_data (1, DW_LNS_advance_line,
7629 "advance to line %lu", current_line);
7630 dw2_asm_output_data_sleb128 (line_offset, NULL);
7631 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7632 }
7633 }
7634 else
7635 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7636
7637 #if 0
7638 cont:
7639 #endif
7640
7641 lt_index++;
7642
7643 /* If we're done with a function, end its sequence. */
7644 if (lt_index == separate_line_info_table_in_use
7645 || separate_line_info_table[lt_index].function != function)
7646 {
7647 current_file = 1;
7648 current_line = 1;
7649
7650 /* Emit debug info for the address of the end of the function. */
7651 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7652 if (0)
7653 {
7654 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7655 "DW_LNS_fixed_advance_pc");
7656 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7657 }
7658 else
7659 {
7660 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7661 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7662 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7663 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7664 }
7665
7666 /* Output the marker for the end of this sequence. */
7667 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7668 dw2_asm_output_data_uleb128 (1, NULL);
7669 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7670 }
7671 }
7672
7673 /* Output the marker for the end of the line number info. */
7674 ASM_OUTPUT_LABEL (asm_out_file, l2);
7675 }
7676 \f
7677 /* Given a pointer to a tree node for some base type, return a pointer to
7678 a DIE that describes the given type.
7679
7680 This routine must only be called for GCC type nodes that correspond to
7681 Dwarf base (fundamental) types. */
7682
7683 static dw_die_ref
7684 base_type_die (tree type)
7685 {
7686 dw_die_ref base_type_result;
7687 const char *type_name;
7688 enum dwarf_type encoding;
7689 tree name = TYPE_NAME (type);
7690
7691 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7692 return 0;
7693
7694 if (name)
7695 {
7696 if (TREE_CODE (name) == TYPE_DECL)
7697 name = DECL_NAME (name);
7698
7699 type_name = IDENTIFIER_POINTER (name);
7700 }
7701 else
7702 type_name = "__unknown__";
7703
7704 switch (TREE_CODE (type))
7705 {
7706 case INTEGER_TYPE:
7707 /* Carefully distinguish the C character types, without messing
7708 up if the language is not C. Note that we check only for the names
7709 that contain spaces; other names might occur by coincidence in other
7710 languages. */
7711 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7712 && (type == char_type_node
7713 || ! strcmp (type_name, "signed char")
7714 || ! strcmp (type_name, "unsigned char"))))
7715 {
7716 if (TREE_UNSIGNED (type))
7717 encoding = DW_ATE_unsigned;
7718 else
7719 encoding = DW_ATE_signed;
7720 break;
7721 }
7722 /* else fall through. */
7723
7724 case CHAR_TYPE:
7725 /* GNU Pascal/Ada CHAR type. Not used in C. */
7726 if (TREE_UNSIGNED (type))
7727 encoding = DW_ATE_unsigned_char;
7728 else
7729 encoding = DW_ATE_signed_char;
7730 break;
7731
7732 case REAL_TYPE:
7733 encoding = DW_ATE_float;
7734 break;
7735
7736 /* Dwarf2 doesn't know anything about complex ints, so use
7737 a user defined type for it. */
7738 case COMPLEX_TYPE:
7739 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7740 encoding = DW_ATE_complex_float;
7741 else
7742 encoding = DW_ATE_lo_user;
7743 break;
7744
7745 case BOOLEAN_TYPE:
7746 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7747 encoding = DW_ATE_boolean;
7748 break;
7749
7750 default:
7751 /* No other TREE_CODEs are Dwarf fundamental types. */
7752 abort ();
7753 }
7754
7755 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7756 if (demangle_name_func)
7757 type_name = (*demangle_name_func) (type_name);
7758
7759 add_AT_string (base_type_result, DW_AT_name, type_name);
7760 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7761 int_size_in_bytes (type));
7762 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7763
7764 return base_type_result;
7765 }
7766
7767 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7768 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7769 a given type is generally the same as the given type, except that if the
7770 given type is a pointer or reference type, then the root type of the given
7771 type is the root type of the "basis" type for the pointer or reference
7772 type. (This definition of the "root" type is recursive.) Also, the root
7773 type of a `const' qualified type or a `volatile' qualified type is the
7774 root type of the given type without the qualifiers. */
7775
7776 static tree
7777 root_type (tree type)
7778 {
7779 if (TREE_CODE (type) == ERROR_MARK)
7780 return error_mark_node;
7781
7782 switch (TREE_CODE (type))
7783 {
7784 case ERROR_MARK:
7785 return error_mark_node;
7786
7787 case POINTER_TYPE:
7788 case REFERENCE_TYPE:
7789 return type_main_variant (root_type (TREE_TYPE (type)));
7790
7791 default:
7792 return type_main_variant (type);
7793 }
7794 }
7795
7796 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7797 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7798
7799 static inline int
7800 is_base_type (tree type)
7801 {
7802 switch (TREE_CODE (type))
7803 {
7804 case ERROR_MARK:
7805 case VOID_TYPE:
7806 case INTEGER_TYPE:
7807 case REAL_TYPE:
7808 case COMPLEX_TYPE:
7809 case BOOLEAN_TYPE:
7810 case CHAR_TYPE:
7811 return 1;
7812
7813 case SET_TYPE:
7814 case ARRAY_TYPE:
7815 case RECORD_TYPE:
7816 case UNION_TYPE:
7817 case QUAL_UNION_TYPE:
7818 case ENUMERAL_TYPE:
7819 case FUNCTION_TYPE:
7820 case METHOD_TYPE:
7821 case POINTER_TYPE:
7822 case REFERENCE_TYPE:
7823 case FILE_TYPE:
7824 case OFFSET_TYPE:
7825 case LANG_TYPE:
7826 case VECTOR_TYPE:
7827 return 0;
7828
7829 default:
7830 abort ();
7831 }
7832
7833 return 0;
7834 }
7835
7836 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
7837 node, return the size in bits for the type if it is a constant, or else
7838 return the alignment for the type if the type's size is not constant, or
7839 else return BITS_PER_WORD if the type actually turns out to be an
7840 ERROR_MARK node. */
7841
7842 static inline unsigned HOST_WIDE_INT
7843 simple_type_size_in_bits (tree type)
7844 {
7845 if (TREE_CODE (type) == ERROR_MARK)
7846 return BITS_PER_WORD;
7847 else if (TYPE_SIZE (type) == NULL_TREE)
7848 return 0;
7849 else if (host_integerp (TYPE_SIZE (type), 1))
7850 return tree_low_cst (TYPE_SIZE (type), 1);
7851 else
7852 return TYPE_ALIGN (type);
7853 }
7854
7855 /* Return true if the debug information for the given type should be
7856 emitted as a subrange type. */
7857
7858 static inline bool
7859 is_subrange_type (tree type)
7860 {
7861 tree subtype = TREE_TYPE (type);
7862
7863 if (TREE_CODE (type) == INTEGER_TYPE
7864 && subtype != NULL_TREE)
7865 {
7866 if (TREE_CODE (subtype) == INTEGER_TYPE)
7867 return true;
7868 if (TREE_CODE (subtype) == ENUMERAL_TYPE)
7869 return true;
7870 }
7871 return false;
7872 }
7873
7874 /* Given a pointer to a tree node for a subrange type, return a pointer
7875 to a DIE that describes the given type. */
7876
7877 static dw_die_ref
7878 subrange_type_die (tree type, dw_die_ref context_die)
7879 {
7880 dw_die_ref subtype_die;
7881 dw_die_ref subrange_die;
7882 tree name = TYPE_NAME (type);
7883 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
7884
7885 if (context_die == NULL)
7886 context_die = comp_unit_die;
7887
7888 if (TREE_CODE (TREE_TYPE (type)) == ENUMERAL_TYPE)
7889 subtype_die = gen_enumeration_type_die (TREE_TYPE (type), context_die);
7890 else
7891 subtype_die = base_type_die (TREE_TYPE (type));
7892
7893 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
7894
7895 if (name != NULL)
7896 {
7897 if (TREE_CODE (name) == TYPE_DECL)
7898 name = DECL_NAME (name);
7899 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
7900 }
7901
7902 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
7903 {
7904 /* The size of the subrange type and its base type do not match,
7905 so we need to generate a size attribute for the subrange type. */
7906 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
7907 }
7908
7909 if (TYPE_MIN_VALUE (type) != NULL)
7910 add_bound_info (subrange_die, DW_AT_lower_bound,
7911 TYPE_MIN_VALUE (type));
7912 if (TYPE_MAX_VALUE (type) != NULL)
7913 add_bound_info (subrange_die, DW_AT_upper_bound,
7914 TYPE_MAX_VALUE (type));
7915 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
7916
7917 return subrange_die;
7918 }
7919
7920 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
7921 entry that chains various modifiers in front of the given type. */
7922
7923 static dw_die_ref
7924 modified_type_die (tree type, int is_const_type, int is_volatile_type,
7925 dw_die_ref context_die)
7926 {
7927 enum tree_code code = TREE_CODE (type);
7928 dw_die_ref mod_type_die = NULL;
7929 dw_die_ref sub_die = NULL;
7930 tree item_type = NULL;
7931
7932 if (code != ERROR_MARK)
7933 {
7934 tree qualified_type;
7935
7936 /* See if we already have the appropriately qualified variant of
7937 this type. */
7938 qualified_type
7939 = get_qualified_type (type,
7940 ((is_const_type ? TYPE_QUAL_CONST : 0)
7941 | (is_volatile_type
7942 ? TYPE_QUAL_VOLATILE : 0)));
7943
7944 /* If we do, then we can just use its DIE, if it exists. */
7945 if (qualified_type)
7946 {
7947 mod_type_die = lookup_type_die (qualified_type);
7948 if (mod_type_die)
7949 return mod_type_die;
7950 }
7951
7952 /* Handle C typedef types. */
7953 if (qualified_type && TYPE_NAME (qualified_type)
7954 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
7955 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
7956 {
7957 tree type_name = TYPE_NAME (qualified_type);
7958 tree dtype = TREE_TYPE (type_name);
7959
7960 if (qualified_type == dtype)
7961 {
7962 /* For a named type, use the typedef. */
7963 gen_type_die (qualified_type, context_die);
7964 mod_type_die = lookup_type_die (qualified_type);
7965 }
7966 else if (is_const_type < TYPE_READONLY (dtype)
7967 || is_volatile_type < TYPE_VOLATILE (dtype))
7968 /* cv-unqualified version of named type. Just use the unnamed
7969 type to which it refers. */
7970 mod_type_die
7971 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
7972 is_const_type, is_volatile_type,
7973 context_die);
7974
7975 /* Else cv-qualified version of named type; fall through. */
7976 }
7977
7978 if (mod_type_die)
7979 /* OK. */
7980 ;
7981 else if (is_const_type)
7982 {
7983 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
7984 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
7985 }
7986 else if (is_volatile_type)
7987 {
7988 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
7989 sub_die = modified_type_die (type, 0, 0, context_die);
7990 }
7991 else if (code == POINTER_TYPE)
7992 {
7993 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
7994 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
7995 simple_type_size_in_bits (type) / BITS_PER_UNIT);
7996 #if 0
7997 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7998 #endif
7999 item_type = TREE_TYPE (type);
8000 }
8001 else if (code == REFERENCE_TYPE)
8002 {
8003 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8004 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8005 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8006 #if 0
8007 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8008 #endif
8009 item_type = TREE_TYPE (type);
8010 }
8011 else if (is_subrange_type (type))
8012 mod_type_die = subrange_type_die (type, context_die);
8013 else if (is_base_type (type))
8014 mod_type_die = base_type_die (type);
8015 else
8016 {
8017 gen_type_die (type, context_die);
8018
8019 /* We have to get the type_main_variant here (and pass that to the
8020 `lookup_type_die' routine) because the ..._TYPE node we have
8021 might simply be a *copy* of some original type node (where the
8022 copy was created to help us keep track of typedef names) and
8023 that copy might have a different TYPE_UID from the original
8024 ..._TYPE node. */
8025 if (TREE_CODE (type) != VECTOR_TYPE)
8026 mod_type_die = lookup_type_die (type_main_variant (type));
8027 else
8028 /* Vectors have the debugging information in the type,
8029 not the main variant. */
8030 mod_type_die = lookup_type_die (type);
8031 if (mod_type_die == NULL)
8032 abort ();
8033 }
8034
8035 /* We want to equate the qualified type to the die below. */
8036 type = qualified_type;
8037 }
8038
8039 if (type)
8040 equate_type_number_to_die (type, mod_type_die);
8041 if (item_type)
8042 /* We must do this after the equate_type_number_to_die call, in case
8043 this is a recursive type. This ensures that the modified_type_die
8044 recursion will terminate even if the type is recursive. Recursive
8045 types are possible in Ada. */
8046 sub_die = modified_type_die (item_type,
8047 TYPE_READONLY (item_type),
8048 TYPE_VOLATILE (item_type),
8049 context_die);
8050
8051 if (sub_die != NULL)
8052 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8053
8054 return mod_type_die;
8055 }
8056
8057 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8058 an enumerated type. */
8059
8060 static inline int
8061 type_is_enum (tree type)
8062 {
8063 return TREE_CODE (type) == ENUMERAL_TYPE;
8064 }
8065
8066 /* Return the register number described by a given RTL node. */
8067
8068 static unsigned int
8069 reg_number (rtx rtl)
8070 {
8071 unsigned regno = REGNO (rtl);
8072
8073 if (regno >= FIRST_PSEUDO_REGISTER)
8074 abort ();
8075
8076 return DBX_REGISTER_NUMBER (regno);
8077 }
8078
8079 /* Return a location descriptor that designates a machine register or
8080 zero if there is none. */
8081
8082 static dw_loc_descr_ref
8083 reg_loc_descriptor (rtx rtl)
8084 {
8085 unsigned reg;
8086 rtx regs;
8087
8088 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8089 return 0;
8090
8091 reg = reg_number (rtl);
8092 regs = (*targetm.dwarf_register_span) (rtl);
8093
8094 if (hard_regno_nregs[reg][GET_MODE (rtl)] > 1
8095 || regs)
8096 return multiple_reg_loc_descriptor (rtl, regs);
8097 else
8098 return one_reg_loc_descriptor (reg);
8099 }
8100
8101 /* Return a location descriptor that designates a machine register for
8102 a given hard register number. */
8103
8104 static dw_loc_descr_ref
8105 one_reg_loc_descriptor (unsigned int regno)
8106 {
8107 if (regno <= 31)
8108 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8109 else
8110 return new_loc_descr (DW_OP_regx, regno, 0);
8111 }
8112
8113 /* Given an RTL of a register, return a location descriptor that
8114 designates a value that spans more than one register. */
8115
8116 static dw_loc_descr_ref
8117 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8118 {
8119 int nregs, size, i;
8120 unsigned reg;
8121 dw_loc_descr_ref loc_result = NULL;
8122
8123 reg = reg_number (rtl);
8124 nregs = hard_regno_nregs[reg][GET_MODE (rtl)];
8125
8126 /* Simple, contiguous registers. */
8127 if (regs == NULL_RTX)
8128 {
8129 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8130
8131 loc_result = NULL;
8132 while (nregs--)
8133 {
8134 dw_loc_descr_ref t;
8135
8136 t = one_reg_loc_descriptor (reg);
8137 add_loc_descr (&loc_result, t);
8138 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8139 ++reg;
8140 }
8141 return loc_result;
8142 }
8143
8144 /* Now onto stupid register sets in non contiguous locations. */
8145
8146 if (GET_CODE (regs) != PARALLEL)
8147 abort ();
8148
8149 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8150 loc_result = NULL;
8151
8152 for (i = 0; i < XVECLEN (regs, 0); ++i)
8153 {
8154 dw_loc_descr_ref t;
8155
8156 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8157 add_loc_descr (&loc_result, t);
8158 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8159 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8160 }
8161 return loc_result;
8162 }
8163
8164 /* Return a location descriptor that designates a constant. */
8165
8166 static dw_loc_descr_ref
8167 int_loc_descriptor (HOST_WIDE_INT i)
8168 {
8169 enum dwarf_location_atom op;
8170
8171 /* Pick the smallest representation of a constant, rather than just
8172 defaulting to the LEB encoding. */
8173 if (i >= 0)
8174 {
8175 if (i <= 31)
8176 op = DW_OP_lit0 + i;
8177 else if (i <= 0xff)
8178 op = DW_OP_const1u;
8179 else if (i <= 0xffff)
8180 op = DW_OP_const2u;
8181 else if (HOST_BITS_PER_WIDE_INT == 32
8182 || i <= 0xffffffff)
8183 op = DW_OP_const4u;
8184 else
8185 op = DW_OP_constu;
8186 }
8187 else
8188 {
8189 if (i >= -0x80)
8190 op = DW_OP_const1s;
8191 else if (i >= -0x8000)
8192 op = DW_OP_const2s;
8193 else if (HOST_BITS_PER_WIDE_INT == 32
8194 || i >= -0x80000000)
8195 op = DW_OP_const4s;
8196 else
8197 op = DW_OP_consts;
8198 }
8199
8200 return new_loc_descr (op, i, 0);
8201 }
8202
8203 /* Return a location descriptor that designates a base+offset location. */
8204
8205 static dw_loc_descr_ref
8206 based_loc_descr (unsigned int reg, HOST_WIDE_INT offset)
8207 {
8208 dw_loc_descr_ref loc_result;
8209 /* For the "frame base", we use the frame pointer or stack pointer
8210 registers, since the RTL for local variables is relative to one of
8211 them. */
8212 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8213 ? HARD_FRAME_POINTER_REGNUM
8214 : STACK_POINTER_REGNUM);
8215
8216 if (reg == fp_reg)
8217 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8218 else if (reg <= 31)
8219 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8220 else
8221 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8222
8223 return loc_result;
8224 }
8225
8226 /* Return true if this RTL expression describes a base+offset calculation. */
8227
8228 static inline int
8229 is_based_loc (rtx rtl)
8230 {
8231 return (GET_CODE (rtl) == PLUS
8232 && ((GET_CODE (XEXP (rtl, 0)) == REG
8233 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8234 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8235 }
8236
8237 /* The following routine converts the RTL for a variable or parameter
8238 (resident in memory) into an equivalent Dwarf representation of a
8239 mechanism for getting the address of that same variable onto the top of a
8240 hypothetical "address evaluation" stack.
8241
8242 When creating memory location descriptors, we are effectively transforming
8243 the RTL for a memory-resident object into its Dwarf postfix expression
8244 equivalent. This routine recursively descends an RTL tree, turning
8245 it into Dwarf postfix code as it goes.
8246
8247 MODE is the mode of the memory reference, needed to handle some
8248 autoincrement addressing modes.
8249
8250 Return 0 if we can't represent the location. */
8251
8252 static dw_loc_descr_ref
8253 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8254 {
8255 dw_loc_descr_ref mem_loc_result = NULL;
8256
8257 /* Note that for a dynamically sized array, the location we will generate a
8258 description of here will be the lowest numbered location which is
8259 actually within the array. That's *not* necessarily the same as the
8260 zeroth element of the array. */
8261
8262 rtl = (*targetm.delegitimize_address) (rtl);
8263
8264 switch (GET_CODE (rtl))
8265 {
8266 case POST_INC:
8267 case POST_DEC:
8268 case POST_MODIFY:
8269 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8270 just fall into the SUBREG code. */
8271
8272 /* ... fall through ... */
8273
8274 case SUBREG:
8275 /* The case of a subreg may arise when we have a local (register)
8276 variable or a formal (register) parameter which doesn't quite fill
8277 up an entire register. For now, just assume that it is
8278 legitimate to make the Dwarf info refer to the whole register which
8279 contains the given subreg. */
8280 rtl = SUBREG_REG (rtl);
8281
8282 /* ... fall through ... */
8283
8284 case REG:
8285 /* Whenever a register number forms a part of the description of the
8286 method for calculating the (dynamic) address of a memory resident
8287 object, DWARF rules require the register number be referred to as
8288 a "base register". This distinction is not based in any way upon
8289 what category of register the hardware believes the given register
8290 belongs to. This is strictly DWARF terminology we're dealing with
8291 here. Note that in cases where the location of a memory-resident
8292 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8293 OP_CONST (0)) the actual DWARF location descriptor that we generate
8294 may just be OP_BASEREG (basereg). This may look deceptively like
8295 the object in question was allocated to a register (rather than in
8296 memory) so DWARF consumers need to be aware of the subtle
8297 distinction between OP_REG and OP_BASEREG. */
8298 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8299 mem_loc_result = based_loc_descr (reg_number (rtl), 0);
8300 break;
8301
8302 case MEM:
8303 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8304 if (mem_loc_result != 0)
8305 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8306 break;
8307
8308 case LO_SUM:
8309 rtl = XEXP (rtl, 1);
8310
8311 /* ... fall through ... */
8312
8313 case LABEL_REF:
8314 /* Some ports can transform a symbol ref into a label ref, because
8315 the symbol ref is too far away and has to be dumped into a constant
8316 pool. */
8317 case CONST:
8318 case SYMBOL_REF:
8319 /* Alternatively, the symbol in the constant pool might be referenced
8320 by a different symbol. */
8321 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8322 {
8323 bool marked;
8324 rtx tmp = get_pool_constant_mark (rtl, &marked);
8325
8326 if (GET_CODE (tmp) == SYMBOL_REF)
8327 {
8328 rtl = tmp;
8329 if (CONSTANT_POOL_ADDRESS_P (tmp))
8330 get_pool_constant_mark (tmp, &marked);
8331 else
8332 marked = true;
8333 }
8334
8335 /* If all references to this pool constant were optimized away,
8336 it was not output and thus we can't represent it.
8337 FIXME: might try to use DW_OP_const_value here, though
8338 DW_OP_piece complicates it. */
8339 if (!marked)
8340 return 0;
8341 }
8342
8343 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8344 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8345 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8346 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8347 break;
8348
8349 case PRE_MODIFY:
8350 /* Extract the PLUS expression nested inside and fall into
8351 PLUS code below. */
8352 rtl = XEXP (rtl, 1);
8353 goto plus;
8354
8355 case PRE_INC:
8356 case PRE_DEC:
8357 /* Turn these into a PLUS expression and fall into the PLUS code
8358 below. */
8359 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8360 GEN_INT (GET_CODE (rtl) == PRE_INC
8361 ? GET_MODE_UNIT_SIZE (mode)
8362 : -GET_MODE_UNIT_SIZE (mode)));
8363
8364 /* ... fall through ... */
8365
8366 case PLUS:
8367 plus:
8368 if (is_based_loc (rtl))
8369 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
8370 INTVAL (XEXP (rtl, 1)));
8371 else
8372 {
8373 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8374 if (mem_loc_result == 0)
8375 break;
8376
8377 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8378 && INTVAL (XEXP (rtl, 1)) >= 0)
8379 add_loc_descr (&mem_loc_result,
8380 new_loc_descr (DW_OP_plus_uconst,
8381 INTVAL (XEXP (rtl, 1)), 0));
8382 else
8383 {
8384 add_loc_descr (&mem_loc_result,
8385 mem_loc_descriptor (XEXP (rtl, 1), mode));
8386 add_loc_descr (&mem_loc_result,
8387 new_loc_descr (DW_OP_plus, 0, 0));
8388 }
8389 }
8390 break;
8391
8392 case MULT:
8393 {
8394 /* If a pseudo-reg is optimized away, it is possible for it to
8395 be replaced with a MEM containing a multiply. */
8396 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8397 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8398
8399 if (op0 == 0 || op1 == 0)
8400 break;
8401
8402 mem_loc_result = op0;
8403 add_loc_descr (&mem_loc_result, op1);
8404 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
8405 break;
8406 }
8407
8408 case CONST_INT:
8409 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8410 break;
8411
8412 case ADDRESSOF:
8413 /* If this is a MEM, return its address. Otherwise, we can't
8414 represent this. */
8415 if (GET_CODE (XEXP (rtl, 0)) == MEM)
8416 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode);
8417 else
8418 return 0;
8419
8420 default:
8421 abort ();
8422 }
8423
8424 return mem_loc_result;
8425 }
8426
8427 /* Return a descriptor that describes the concatenation of two locations.
8428 This is typically a complex variable. */
8429
8430 static dw_loc_descr_ref
8431 concat_loc_descriptor (rtx x0, rtx x1)
8432 {
8433 dw_loc_descr_ref cc_loc_result = NULL;
8434 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8435 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8436
8437 if (x0_ref == 0 || x1_ref == 0)
8438 return 0;
8439
8440 cc_loc_result = x0_ref;
8441 add_loc_descr (&cc_loc_result,
8442 new_loc_descr (DW_OP_piece,
8443 GET_MODE_SIZE (GET_MODE (x0)), 0));
8444
8445 add_loc_descr (&cc_loc_result, x1_ref);
8446 add_loc_descr (&cc_loc_result,
8447 new_loc_descr (DW_OP_piece,
8448 GET_MODE_SIZE (GET_MODE (x1)), 0));
8449
8450 return cc_loc_result;
8451 }
8452
8453 /* Output a proper Dwarf location descriptor for a variable or parameter
8454 which is either allocated in a register or in a memory location. For a
8455 register, we just generate an OP_REG and the register number. For a
8456 memory location we provide a Dwarf postfix expression describing how to
8457 generate the (dynamic) address of the object onto the address stack.
8458
8459 If we don't know how to describe it, return 0. */
8460
8461 static dw_loc_descr_ref
8462 loc_descriptor (rtx rtl)
8463 {
8464 dw_loc_descr_ref loc_result = NULL;
8465
8466 switch (GET_CODE (rtl))
8467 {
8468 case SUBREG:
8469 /* The case of a subreg may arise when we have a local (register)
8470 variable or a formal (register) parameter which doesn't quite fill
8471 up an entire register. For now, just assume that it is
8472 legitimate to make the Dwarf info refer to the whole register which
8473 contains the given subreg. */
8474 rtl = SUBREG_REG (rtl);
8475
8476 /* ... fall through ... */
8477
8478 case REG:
8479 loc_result = reg_loc_descriptor (rtl);
8480 break;
8481
8482 case MEM:
8483 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8484 break;
8485
8486 case CONCAT:
8487 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8488 break;
8489
8490 default:
8491 abort ();
8492 }
8493
8494 return loc_result;
8495 }
8496
8497 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8498 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8499 looking for an address. Otherwise, we return a value. If we can't make a
8500 descriptor, return 0. */
8501
8502 static dw_loc_descr_ref
8503 loc_descriptor_from_tree (tree loc, int addressp)
8504 {
8505 dw_loc_descr_ref ret, ret1;
8506 int indirect_p = 0;
8507 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8508 enum dwarf_location_atom op;
8509
8510 /* ??? Most of the time we do not take proper care for sign/zero
8511 extending the values properly. Hopefully this won't be a real
8512 problem... */
8513
8514 switch (TREE_CODE (loc))
8515 {
8516 case ERROR_MARK:
8517 return 0;
8518
8519 case WITH_RECORD_EXPR:
8520 case PLACEHOLDER_EXPR:
8521 /* This case involves extracting fields from an object to determine the
8522 position of other fields. We don't try to encode this here. The
8523 only user of this is Ada, which encodes the needed information using
8524 the names of types. */
8525 return 0;
8526
8527 case CALL_EXPR:
8528 return 0;
8529
8530 case ADDR_EXPR:
8531 /* We can support this only if we can look through conversions and
8532 find an INDIRECT_EXPR. */
8533 for (loc = TREE_OPERAND (loc, 0);
8534 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8535 || TREE_CODE (loc) == NON_LVALUE_EXPR
8536 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8537 || TREE_CODE (loc) == SAVE_EXPR;
8538 loc = TREE_OPERAND (loc, 0))
8539 ;
8540
8541 return (TREE_CODE (loc) == INDIRECT_REF
8542 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8543 : 0);
8544
8545 case VAR_DECL:
8546 if (DECL_THREAD_LOCAL (loc))
8547 {
8548 rtx rtl;
8549
8550 #ifndef ASM_OUTPUT_DWARF_DTPREL
8551 /* If this is not defined, we have no way to emit the data. */
8552 return 0;
8553 #endif
8554
8555 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8556 look up addresses of objects in the current module. */
8557 if (DECL_EXTERNAL (loc))
8558 return 0;
8559
8560 rtl = rtl_for_decl_location (loc);
8561 if (rtl == NULL_RTX)
8562 return 0;
8563
8564 if (GET_CODE (rtl) != MEM)
8565 return 0;
8566 rtl = XEXP (rtl, 0);
8567 if (! CONSTANT_P (rtl))
8568 return 0;
8569
8570 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8571 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8572 ret->dw_loc_oprnd1.v.val_addr = rtl;
8573
8574 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8575 add_loc_descr (&ret, ret1);
8576
8577 indirect_p = 1;
8578 break;
8579 }
8580 /* Fall through. */
8581
8582 case PARM_DECL:
8583 {
8584 rtx rtl = rtl_for_decl_location (loc);
8585
8586 if (rtl == NULL_RTX)
8587 return 0;
8588 else if (CONSTANT_P (rtl))
8589 {
8590 ret = new_loc_descr (DW_OP_addr, 0, 0);
8591 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8592 ret->dw_loc_oprnd1.v.val_addr = rtl;
8593 indirect_p = 1;
8594 }
8595 else
8596 {
8597 enum machine_mode mode = GET_MODE (rtl);
8598
8599 if (GET_CODE (rtl) == MEM)
8600 {
8601 indirect_p = 1;
8602 rtl = XEXP (rtl, 0);
8603 }
8604
8605 ret = mem_loc_descriptor (rtl, mode);
8606 }
8607 }
8608 break;
8609
8610 case INDIRECT_REF:
8611 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8612 indirect_p = 1;
8613 break;
8614
8615 case COMPOUND_EXPR:
8616 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8617
8618 case NOP_EXPR:
8619 case CONVERT_EXPR:
8620 case NON_LVALUE_EXPR:
8621 case VIEW_CONVERT_EXPR:
8622 case SAVE_EXPR:
8623 case MODIFY_EXPR:
8624 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8625
8626 case COMPONENT_REF:
8627 case BIT_FIELD_REF:
8628 case ARRAY_REF:
8629 case ARRAY_RANGE_REF:
8630 {
8631 tree obj, offset;
8632 HOST_WIDE_INT bitsize, bitpos, bytepos;
8633 enum machine_mode mode;
8634 int volatilep;
8635
8636 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8637 &unsignedp, &volatilep);
8638
8639 if (obj == loc)
8640 return 0;
8641
8642 ret = loc_descriptor_from_tree (obj, 1);
8643 if (ret == 0
8644 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8645 return 0;
8646
8647 if (offset != NULL_TREE)
8648 {
8649 /* Variable offset. */
8650 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8651 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8652 }
8653
8654 if (!addressp)
8655 indirect_p = 1;
8656
8657 bytepos = bitpos / BITS_PER_UNIT;
8658 if (bytepos > 0)
8659 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8660 else if (bytepos < 0)
8661 {
8662 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8663 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8664 }
8665 break;
8666 }
8667
8668 case INTEGER_CST:
8669 if (host_integerp (loc, 0))
8670 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8671 else
8672 return 0;
8673 break;
8674
8675 case CONSTRUCTOR:
8676 {
8677 /* Get an RTL for this, if something has been emitted. */
8678 rtx rtl = lookup_constant_def (loc);
8679 enum machine_mode mode;
8680
8681 if (GET_CODE (rtl) != MEM)
8682 return 0;
8683 mode = GET_MODE (rtl);
8684 rtl = XEXP (rtl, 0);
8685
8686 rtl = (*targetm.delegitimize_address) (rtl);
8687
8688 indirect_p = 1;
8689 ret = mem_loc_descriptor (rtl, mode);
8690 break;
8691 }
8692
8693 case TRUTH_AND_EXPR:
8694 case TRUTH_ANDIF_EXPR:
8695 case BIT_AND_EXPR:
8696 op = DW_OP_and;
8697 goto do_binop;
8698
8699 case TRUTH_XOR_EXPR:
8700 case BIT_XOR_EXPR:
8701 op = DW_OP_xor;
8702 goto do_binop;
8703
8704 case TRUTH_OR_EXPR:
8705 case TRUTH_ORIF_EXPR:
8706 case BIT_IOR_EXPR:
8707 op = DW_OP_or;
8708 goto do_binop;
8709
8710 case FLOOR_DIV_EXPR:
8711 case CEIL_DIV_EXPR:
8712 case ROUND_DIV_EXPR:
8713 case TRUNC_DIV_EXPR:
8714 op = DW_OP_div;
8715 goto do_binop;
8716
8717 case MINUS_EXPR:
8718 op = DW_OP_minus;
8719 goto do_binop;
8720
8721 case FLOOR_MOD_EXPR:
8722 case CEIL_MOD_EXPR:
8723 case ROUND_MOD_EXPR:
8724 case TRUNC_MOD_EXPR:
8725 op = DW_OP_mod;
8726 goto do_binop;
8727
8728 case MULT_EXPR:
8729 op = DW_OP_mul;
8730 goto do_binop;
8731
8732 case LSHIFT_EXPR:
8733 op = DW_OP_shl;
8734 goto do_binop;
8735
8736 case RSHIFT_EXPR:
8737 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8738 goto do_binop;
8739
8740 case PLUS_EXPR:
8741 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8742 && host_integerp (TREE_OPERAND (loc, 1), 0))
8743 {
8744 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8745 if (ret == 0)
8746 return 0;
8747
8748 add_loc_descr (&ret,
8749 new_loc_descr (DW_OP_plus_uconst,
8750 tree_low_cst (TREE_OPERAND (loc, 1),
8751 0),
8752 0));
8753 break;
8754 }
8755
8756 op = DW_OP_plus;
8757 goto do_binop;
8758
8759 case LE_EXPR:
8760 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8761 return 0;
8762
8763 op = DW_OP_le;
8764 goto do_binop;
8765
8766 case GE_EXPR:
8767 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8768 return 0;
8769
8770 op = DW_OP_ge;
8771 goto do_binop;
8772
8773 case LT_EXPR:
8774 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8775 return 0;
8776
8777 op = DW_OP_lt;
8778 goto do_binop;
8779
8780 case GT_EXPR:
8781 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8782 return 0;
8783
8784 op = DW_OP_gt;
8785 goto do_binop;
8786
8787 case EQ_EXPR:
8788 op = DW_OP_eq;
8789 goto do_binop;
8790
8791 case NE_EXPR:
8792 op = DW_OP_ne;
8793 goto do_binop;
8794
8795 do_binop:
8796 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8797 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8798 if (ret == 0 || ret1 == 0)
8799 return 0;
8800
8801 add_loc_descr (&ret, ret1);
8802 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8803 break;
8804
8805 case TRUTH_NOT_EXPR:
8806 case BIT_NOT_EXPR:
8807 op = DW_OP_not;
8808 goto do_unop;
8809
8810 case ABS_EXPR:
8811 op = DW_OP_abs;
8812 goto do_unop;
8813
8814 case NEGATE_EXPR:
8815 op = DW_OP_neg;
8816 goto do_unop;
8817
8818 do_unop:
8819 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8820 if (ret == 0)
8821 return 0;
8822
8823 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8824 break;
8825
8826 case MAX_EXPR:
8827 loc = build (COND_EXPR, TREE_TYPE (loc),
8828 build (LT_EXPR, integer_type_node,
8829 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8830 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
8831
8832 /* ... fall through ... */
8833
8834 case COND_EXPR:
8835 {
8836 dw_loc_descr_ref lhs
8837 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8838 dw_loc_descr_ref rhs
8839 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
8840 dw_loc_descr_ref bra_node, jump_node, tmp;
8841
8842 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8843 if (ret == 0 || lhs == 0 || rhs == 0)
8844 return 0;
8845
8846 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
8847 add_loc_descr (&ret, bra_node);
8848
8849 add_loc_descr (&ret, rhs);
8850 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
8851 add_loc_descr (&ret, jump_node);
8852
8853 add_loc_descr (&ret, lhs);
8854 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8855 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
8856
8857 /* ??? Need a node to point the skip at. Use a nop. */
8858 tmp = new_loc_descr (DW_OP_nop, 0, 0);
8859 add_loc_descr (&ret, tmp);
8860 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8861 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
8862 }
8863 break;
8864
8865 default:
8866 /* Leave front-end specific codes as simply unknown. This comes
8867 up, for instance, with the C STMT_EXPR. */
8868 if ((unsigned int) TREE_CODE (loc)
8869 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
8870 return 0;
8871
8872 /* Otherwise this is a generic code; we should just lists all of
8873 these explicitly. Aborting means we forgot one. */
8874 abort ();
8875 }
8876
8877 /* Show if we can't fill the request for an address. */
8878 if (addressp && indirect_p == 0)
8879 return 0;
8880
8881 /* If we've got an address and don't want one, dereference. */
8882 if (!addressp && indirect_p > 0)
8883 {
8884 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
8885
8886 if (size > DWARF2_ADDR_SIZE || size == -1)
8887 return 0;
8888 else if (size == DWARF2_ADDR_SIZE)
8889 op = DW_OP_deref;
8890 else
8891 op = DW_OP_deref_size;
8892
8893 add_loc_descr (&ret, new_loc_descr (op, size, 0));
8894 }
8895
8896 return ret;
8897 }
8898
8899 /* Given a value, round it up to the lowest multiple of `boundary'
8900 which is not less than the value itself. */
8901
8902 static inline HOST_WIDE_INT
8903 ceiling (HOST_WIDE_INT value, unsigned int boundary)
8904 {
8905 return (((value + boundary - 1) / boundary) * boundary);
8906 }
8907
8908 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
8909 pointer to the declared type for the relevant field variable, or return
8910 `integer_type_node' if the given node turns out to be an
8911 ERROR_MARK node. */
8912
8913 static inline tree
8914 field_type (tree decl)
8915 {
8916 tree type;
8917
8918 if (TREE_CODE (decl) == ERROR_MARK)
8919 return integer_type_node;
8920
8921 type = DECL_BIT_FIELD_TYPE (decl);
8922 if (type == NULL_TREE)
8923 type = TREE_TYPE (decl);
8924
8925 return type;
8926 }
8927
8928 /* Given a pointer to a tree node, return the alignment in bits for
8929 it, or else return BITS_PER_WORD if the node actually turns out to
8930 be an ERROR_MARK node. */
8931
8932 static inline unsigned
8933 simple_type_align_in_bits (tree type)
8934 {
8935 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
8936 }
8937
8938 static inline unsigned
8939 simple_decl_align_in_bits (tree decl)
8940 {
8941 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
8942 }
8943
8944 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
8945 lowest addressed byte of the "containing object" for the given FIELD_DECL,
8946 or return 0 if we are unable to determine what that offset is, either
8947 because the argument turns out to be a pointer to an ERROR_MARK node, or
8948 because the offset is actually variable. (We can't handle the latter case
8949 just yet). */
8950
8951 static HOST_WIDE_INT
8952 field_byte_offset (tree decl)
8953 {
8954 unsigned int type_align_in_bits;
8955 unsigned int decl_align_in_bits;
8956 unsigned HOST_WIDE_INT type_size_in_bits;
8957 HOST_WIDE_INT object_offset_in_bits;
8958 tree type;
8959 tree field_size_tree;
8960 HOST_WIDE_INT bitpos_int;
8961 HOST_WIDE_INT deepest_bitpos;
8962 unsigned HOST_WIDE_INT field_size_in_bits;
8963
8964 if (TREE_CODE (decl) == ERROR_MARK)
8965 return 0;
8966 else if (TREE_CODE (decl) != FIELD_DECL)
8967 abort ();
8968
8969 type = field_type (decl);
8970 field_size_tree = DECL_SIZE (decl);
8971
8972 /* The size could be unspecified if there was an error, or for
8973 a flexible array member. */
8974 if (! field_size_tree)
8975 field_size_tree = bitsize_zero_node;
8976
8977 /* We cannot yet cope with fields whose positions are variable, so
8978 for now, when we see such things, we simply return 0. Someday, we may
8979 be able to handle such cases, but it will be damn difficult. */
8980 if (! host_integerp (bit_position (decl), 0))
8981 return 0;
8982
8983 bitpos_int = int_bit_position (decl);
8984
8985 /* If we don't know the size of the field, pretend it's a full word. */
8986 if (host_integerp (field_size_tree, 1))
8987 field_size_in_bits = tree_low_cst (field_size_tree, 1);
8988 else
8989 field_size_in_bits = BITS_PER_WORD;
8990
8991 type_size_in_bits = simple_type_size_in_bits (type);
8992 type_align_in_bits = simple_type_align_in_bits (type);
8993 decl_align_in_bits = simple_decl_align_in_bits (decl);
8994
8995 /* The GCC front-end doesn't make any attempt to keep track of the starting
8996 bit offset (relative to the start of the containing structure type) of the
8997 hypothetical "containing object" for a bit-field. Thus, when computing
8998 the byte offset value for the start of the "containing object" of a
8999 bit-field, we must deduce this information on our own. This can be rather
9000 tricky to do in some cases. For example, handling the following structure
9001 type definition when compiling for an i386/i486 target (which only aligns
9002 long long's to 32-bit boundaries) can be very tricky:
9003
9004 struct S { int field1; long long field2:31; };
9005
9006 Fortunately, there is a simple rule-of-thumb which can be used in such
9007 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9008 structure shown above. It decides to do this based upon one simple rule
9009 for bit-field allocation. GCC allocates each "containing object" for each
9010 bit-field at the first (i.e. lowest addressed) legitimate alignment
9011 boundary (based upon the required minimum alignment for the declared type
9012 of the field) which it can possibly use, subject to the condition that
9013 there is still enough available space remaining in the containing object
9014 (when allocated at the selected point) to fully accommodate all of the
9015 bits of the bit-field itself.
9016
9017 This simple rule makes it obvious why GCC allocates 8 bytes for each
9018 object of the structure type shown above. When looking for a place to
9019 allocate the "containing object" for `field2', the compiler simply tries
9020 to allocate a 64-bit "containing object" at each successive 32-bit
9021 boundary (starting at zero) until it finds a place to allocate that 64-
9022 bit field such that at least 31 contiguous (and previously unallocated)
9023 bits remain within that selected 64 bit field. (As it turns out, for the
9024 example above, the compiler finds it is OK to allocate the "containing
9025 object" 64-bit field at bit-offset zero within the structure type.)
9026
9027 Here we attempt to work backwards from the limited set of facts we're
9028 given, and we try to deduce from those facts, where GCC must have believed
9029 that the containing object started (within the structure type). The value
9030 we deduce is then used (by the callers of this routine) to generate
9031 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9032 and, in the case of DW_AT_location, regular fields as well). */
9033
9034 /* Figure out the bit-distance from the start of the structure to the
9035 "deepest" bit of the bit-field. */
9036 deepest_bitpos = bitpos_int + field_size_in_bits;
9037
9038 /* This is the tricky part. Use some fancy footwork to deduce where the
9039 lowest addressed bit of the containing object must be. */
9040 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9041
9042 /* Round up to type_align by default. This works best for bitfields. */
9043 object_offset_in_bits += type_align_in_bits - 1;
9044 object_offset_in_bits /= type_align_in_bits;
9045 object_offset_in_bits *= type_align_in_bits;
9046
9047 if (object_offset_in_bits > bitpos_int)
9048 {
9049 /* Sigh, the decl must be packed. */
9050 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9051
9052 /* Round up to decl_align instead. */
9053 object_offset_in_bits += decl_align_in_bits - 1;
9054 object_offset_in_bits /= decl_align_in_bits;
9055 object_offset_in_bits *= decl_align_in_bits;
9056 }
9057
9058 return object_offset_in_bits / BITS_PER_UNIT;
9059 }
9060 \f
9061 /* The following routines define various Dwarf attributes and any data
9062 associated with them. */
9063
9064 /* Add a location description attribute value to a DIE.
9065
9066 This emits location attributes suitable for whole variables and
9067 whole parameters. Note that the location attributes for struct fields are
9068 generated by the routine `data_member_location_attribute' below. */
9069
9070 static inline void
9071 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9072 dw_loc_descr_ref descr)
9073 {
9074 if (descr != 0)
9075 add_AT_loc (die, attr_kind, descr);
9076 }
9077
9078 /* Attach the specialized form of location attribute used for data members of
9079 struct and union types. In the special case of a FIELD_DECL node which
9080 represents a bit-field, the "offset" part of this special location
9081 descriptor must indicate the distance in bytes from the lowest-addressed
9082 byte of the containing struct or union type to the lowest-addressed byte of
9083 the "containing object" for the bit-field. (See the `field_byte_offset'
9084 function above).
9085
9086 For any given bit-field, the "containing object" is a hypothetical object
9087 (of some integral or enum type) within which the given bit-field lives. The
9088 type of this hypothetical "containing object" is always the same as the
9089 declared type of the individual bit-field itself (for GCC anyway... the
9090 DWARF spec doesn't actually mandate this). Note that it is the size (in
9091 bytes) of the hypothetical "containing object" which will be given in the
9092 DW_AT_byte_size attribute for this bit-field. (See the
9093 `byte_size_attribute' function below.) It is also used when calculating the
9094 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9095 function below.) */
9096
9097 static void
9098 add_data_member_location_attribute (dw_die_ref die, tree decl)
9099 {
9100 HOST_WIDE_INT offset;
9101 dw_loc_descr_ref loc_descr = 0;
9102
9103 if (TREE_CODE (decl) == TREE_VEC)
9104 {
9105 /* We're working on the TAG_inheritance for a base class. */
9106 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
9107 {
9108 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9109 aren't at a fixed offset from all (sub)objects of the same
9110 type. We need to extract the appropriate offset from our
9111 vtable. The following dwarf expression means
9112
9113 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9114
9115 This is specific to the V3 ABI, of course. */
9116
9117 dw_loc_descr_ref tmp;
9118
9119 /* Make a copy of the object address. */
9120 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9121 add_loc_descr (&loc_descr, tmp);
9122
9123 /* Extract the vtable address. */
9124 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9125 add_loc_descr (&loc_descr, tmp);
9126
9127 /* Calculate the address of the offset. */
9128 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9129 if (offset >= 0)
9130 abort ();
9131
9132 tmp = int_loc_descriptor (-offset);
9133 add_loc_descr (&loc_descr, tmp);
9134 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9135 add_loc_descr (&loc_descr, tmp);
9136
9137 /* Extract the offset. */
9138 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9139 add_loc_descr (&loc_descr, tmp);
9140
9141 /* Add it to the object address. */
9142 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9143 add_loc_descr (&loc_descr, tmp);
9144 }
9145 else
9146 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9147 }
9148 else
9149 offset = field_byte_offset (decl);
9150
9151 if (! loc_descr)
9152 {
9153 enum dwarf_location_atom op;
9154
9155 /* The DWARF2 standard says that we should assume that the structure
9156 address is already on the stack, so we can specify a structure field
9157 address by using DW_OP_plus_uconst. */
9158
9159 #ifdef MIPS_DEBUGGING_INFO
9160 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9161 operator correctly. It works only if we leave the offset on the
9162 stack. */
9163 op = DW_OP_constu;
9164 #else
9165 op = DW_OP_plus_uconst;
9166 #endif
9167
9168 loc_descr = new_loc_descr (op, offset, 0);
9169 }
9170
9171 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9172 }
9173
9174 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9175 does not have a "location" either in memory or in a register. These
9176 things can arise in GNU C when a constant is passed as an actual parameter
9177 to an inlined function. They can also arise in C++ where declared
9178 constants do not necessarily get memory "homes". */
9179
9180 static void
9181 add_const_value_attribute (dw_die_ref die, rtx rtl)
9182 {
9183 switch (GET_CODE (rtl))
9184 {
9185 case CONST_INT:
9186 {
9187 HOST_WIDE_INT val = INTVAL (rtl);
9188
9189 if (val < 0)
9190 add_AT_int (die, DW_AT_const_value, val);
9191 else
9192 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9193 }
9194 break;
9195
9196 case CONST_DOUBLE:
9197 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9198 floating-point constant. A CONST_DOUBLE is used whenever the
9199 constant requires more than one word in order to be adequately
9200 represented. We output CONST_DOUBLEs as blocks. */
9201 {
9202 enum machine_mode mode = GET_MODE (rtl);
9203
9204 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9205 {
9206 unsigned length = GET_MODE_SIZE (mode) / 4;
9207 long *array = ggc_alloc (sizeof (long) * length);
9208 REAL_VALUE_TYPE rv;
9209
9210 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9211 real_to_target (array, &rv, mode);
9212
9213 add_AT_float (die, DW_AT_const_value, length, array);
9214 }
9215 else
9216 {
9217 /* ??? We really should be using HOST_WIDE_INT throughout. */
9218 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9219 abort ();
9220
9221 add_AT_long_long (die, DW_AT_const_value,
9222 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9223 }
9224 }
9225 break;
9226
9227 case CONST_STRING:
9228 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9229 break;
9230
9231 case SYMBOL_REF:
9232 case LABEL_REF:
9233 case CONST:
9234 add_AT_addr (die, DW_AT_const_value, rtl);
9235 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9236 break;
9237
9238 case PLUS:
9239 /* In cases where an inlined instance of an inline function is passed
9240 the address of an `auto' variable (which is local to the caller) we
9241 can get a situation where the DECL_RTL of the artificial local
9242 variable (for the inlining) which acts as a stand-in for the
9243 corresponding formal parameter (of the inline function) will look
9244 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9245 exactly a compile-time constant expression, but it isn't the address
9246 of the (artificial) local variable either. Rather, it represents the
9247 *value* which the artificial local variable always has during its
9248 lifetime. We currently have no way to represent such quasi-constant
9249 values in Dwarf, so for now we just punt and generate nothing. */
9250 break;
9251
9252 default:
9253 /* No other kinds of rtx should be possible here. */
9254 abort ();
9255 }
9256
9257 }
9258
9259 static rtx
9260 rtl_for_decl_location (tree decl)
9261 {
9262 rtx rtl;
9263
9264 /* Here we have to decide where we are going to say the parameter "lives"
9265 (as far as the debugger is concerned). We only have a couple of
9266 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9267
9268 DECL_RTL normally indicates where the parameter lives during most of the
9269 activation of the function. If optimization is enabled however, this
9270 could be either NULL or else a pseudo-reg. Both of those cases indicate
9271 that the parameter doesn't really live anywhere (as far as the code
9272 generation parts of GCC are concerned) during most of the function's
9273 activation. That will happen (for example) if the parameter is never
9274 referenced within the function.
9275
9276 We could just generate a location descriptor here for all non-NULL
9277 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9278 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9279 where DECL_RTL is NULL or is a pseudo-reg.
9280
9281 Note however that we can only get away with using DECL_INCOMING_RTL as
9282 a backup substitute for DECL_RTL in certain limited cases. In cases
9283 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9284 we can be sure that the parameter was passed using the same type as it is
9285 declared to have within the function, and that its DECL_INCOMING_RTL
9286 points us to a place where a value of that type is passed.
9287
9288 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9289 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9290 because in these cases DECL_INCOMING_RTL points us to a value of some
9291 type which is *different* from the type of the parameter itself. Thus,
9292 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9293 such cases, the debugger would end up (for example) trying to fetch a
9294 `float' from a place which actually contains the first part of a
9295 `double'. That would lead to really incorrect and confusing
9296 output at debug-time.
9297
9298 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9299 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9300 are a couple of exceptions however. On little-endian machines we can
9301 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9302 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9303 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9304 when (on a little-endian machine) a non-prototyped function has a
9305 parameter declared to be of type `short' or `char'. In such cases,
9306 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9307 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9308 passed `int' value. If the debugger then uses that address to fetch
9309 a `short' or a `char' (on a little-endian machine) the result will be
9310 the correct data, so we allow for such exceptional cases below.
9311
9312 Note that our goal here is to describe the place where the given formal
9313 parameter lives during most of the function's activation (i.e. between the
9314 end of the prologue and the start of the epilogue). We'll do that as best
9315 as we can. Note however that if the given formal parameter is modified
9316 sometime during the execution of the function, then a stack backtrace (at
9317 debug-time) will show the function as having been called with the *new*
9318 value rather than the value which was originally passed in. This happens
9319 rarely enough that it is not a major problem, but it *is* a problem, and
9320 I'd like to fix it.
9321
9322 A future version of dwarf2out.c may generate two additional attributes for
9323 any given DW_TAG_formal_parameter DIE which will describe the "passed
9324 type" and the "passed location" for the given formal parameter in addition
9325 to the attributes we now generate to indicate the "declared type" and the
9326 "active location" for each parameter. This additional set of attributes
9327 could be used by debuggers for stack backtraces. Separately, note that
9328 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9329 This happens (for example) for inlined-instances of inline function formal
9330 parameters which are never referenced. This really shouldn't be
9331 happening. All PARM_DECL nodes should get valid non-NULL
9332 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9333 values for inlined instances of inline function parameters, so when we see
9334 such cases, we are just out-of-luck for the time being (until integrate.c
9335 gets fixed). */
9336
9337 /* Use DECL_RTL as the "location" unless we find something better. */
9338 rtl = DECL_RTL_IF_SET (decl);
9339
9340 /* When generating abstract instances, ignore everything except
9341 constants, symbols living in memory, and symbols living in
9342 fixed registers. */
9343 if (! reload_completed)
9344 {
9345 if (rtl
9346 && (CONSTANT_P (rtl)
9347 || (GET_CODE (rtl) == MEM
9348 && CONSTANT_P (XEXP (rtl, 0)))
9349 || (GET_CODE (rtl) == REG
9350 && TREE_CODE (decl) == VAR_DECL
9351 && TREE_STATIC (decl))))
9352 {
9353 rtl = (*targetm.delegitimize_address) (rtl);
9354 return rtl;
9355 }
9356 rtl = NULL_RTX;
9357 }
9358 else if (TREE_CODE (decl) == PARM_DECL)
9359 {
9360 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9361 {
9362 tree declared_type = type_main_variant (TREE_TYPE (decl));
9363 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9364
9365 /* This decl represents a formal parameter which was optimized out.
9366 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9367 all cases where (rtl == NULL_RTX) just below. */
9368 if (declared_type == passed_type)
9369 rtl = DECL_INCOMING_RTL (decl);
9370 else if (! BYTES_BIG_ENDIAN
9371 && TREE_CODE (declared_type) == INTEGER_TYPE
9372 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9373 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9374 rtl = DECL_INCOMING_RTL (decl);
9375 }
9376
9377 /* If the parm was passed in registers, but lives on the stack, then
9378 make a big endian correction if the mode of the type of the
9379 parameter is not the same as the mode of the rtl. */
9380 /* ??? This is the same series of checks that are made in dbxout.c before
9381 we reach the big endian correction code there. It isn't clear if all
9382 of these checks are necessary here, but keeping them all is the safe
9383 thing to do. */
9384 else if (GET_CODE (rtl) == MEM
9385 && XEXP (rtl, 0) != const0_rtx
9386 && ! CONSTANT_P (XEXP (rtl, 0))
9387 /* Not passed in memory. */
9388 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
9389 /* Not passed by invisible reference. */
9390 && (GET_CODE (XEXP (rtl, 0)) != REG
9391 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9392 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9393 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9394 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9395 #endif
9396 )
9397 /* Big endian correction check. */
9398 && BYTES_BIG_ENDIAN
9399 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9400 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9401 < UNITS_PER_WORD))
9402 {
9403 int offset = (UNITS_PER_WORD
9404 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9405
9406 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9407 plus_constant (XEXP (rtl, 0), offset));
9408 }
9409 }
9410
9411 if (rtl != NULL_RTX)
9412 {
9413 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9414 #ifdef LEAF_REG_REMAP
9415 if (current_function_uses_only_leaf_regs)
9416 leaf_renumber_regs_insn (rtl);
9417 #endif
9418 }
9419
9420 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9421 and will have been substituted directly into all expressions that use it.
9422 C does not have such a concept, but C++ and other languages do. */
9423 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9424 {
9425 /* If a variable is initialized with a string constant without embedded
9426 zeros, build CONST_STRING. */
9427 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9428 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9429 {
9430 tree arrtype = TREE_TYPE (decl);
9431 tree enttype = TREE_TYPE (arrtype);
9432 tree domain = TYPE_DOMAIN (arrtype);
9433 tree init = DECL_INITIAL (decl);
9434 enum machine_mode mode = TYPE_MODE (enttype);
9435
9436 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9437 && domain
9438 && integer_zerop (TYPE_MIN_VALUE (domain))
9439 && compare_tree_int (TYPE_MAX_VALUE (domain),
9440 TREE_STRING_LENGTH (init) - 1) == 0
9441 && ((size_t) TREE_STRING_LENGTH (init)
9442 == strlen (TREE_STRING_POINTER (init)) + 1))
9443 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9444 }
9445 /* If the initializer is something that we know will expand into an
9446 immediate RTL constant, expand it now. Expanding anything else
9447 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9448 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9449 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9450 {
9451 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9452 EXPAND_INITIALIZER);
9453 /* If expand_expr returns a MEM, it wasn't immediate. */
9454 if (rtl && GET_CODE (rtl) == MEM)
9455 abort ();
9456 }
9457 }
9458
9459 if (rtl)
9460 rtl = (*targetm.delegitimize_address) (rtl);
9461
9462 /* If we don't look past the constant pool, we risk emitting a
9463 reference to a constant pool entry that isn't referenced from
9464 code, and thus is not emitted. */
9465 if (rtl)
9466 rtl = avoid_constant_pool_reference (rtl);
9467
9468 return rtl;
9469 }
9470
9471 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
9472 data attribute for a variable or a parameter. We generate the
9473 DW_AT_const_value attribute only in those cases where the given variable
9474 or parameter does not have a true "location" either in memory or in a
9475 register. This can happen (for example) when a constant is passed as an
9476 actual argument in a call to an inline function. (It's possible that
9477 these things can crop up in other ways also.) Note that one type of
9478 constant value which can be passed into an inlined function is a constant
9479 pointer. This can happen for example if an actual argument in an inlined
9480 function call evaluates to a compile-time constant address. */
9481
9482 static void
9483 add_location_or_const_value_attribute (dw_die_ref die, tree decl)
9484 {
9485 rtx rtl;
9486 dw_loc_descr_ref descr;
9487
9488 if (TREE_CODE (decl) == ERROR_MARK)
9489 return;
9490 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
9491 abort ();
9492
9493 rtl = rtl_for_decl_location (decl);
9494 if (rtl == NULL_RTX)
9495 return;
9496
9497 switch (GET_CODE (rtl))
9498 {
9499 case ADDRESSOF:
9500 /* The address of a variable that was optimized away;
9501 don't emit anything. */
9502 break;
9503
9504 case CONST_INT:
9505 case CONST_DOUBLE:
9506 case CONST_STRING:
9507 case SYMBOL_REF:
9508 case LABEL_REF:
9509 case CONST:
9510 case PLUS:
9511 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9512 add_const_value_attribute (die, rtl);
9513 break;
9514
9515 case MEM:
9516 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
9517 {
9518 /* Need loc_descriptor_from_tree since that's where we know
9519 how to handle TLS variables. Want the object's address
9520 since the top-level DW_AT_location assumes such. See
9521 the confusion in loc_descriptor for reference. */
9522 descr = loc_descriptor_from_tree (decl, 1);
9523 }
9524 else
9525 {
9526 case REG:
9527 case SUBREG:
9528 case CONCAT:
9529 descr = loc_descriptor (rtl);
9530 }
9531 add_AT_location_description (die, DW_AT_location, descr);
9532 break;
9533
9534 case PARALLEL:
9535 {
9536 rtvec par_elems = XVEC (rtl, 0);
9537 int num_elem = GET_NUM_ELEM (par_elems);
9538 enum machine_mode mode;
9539 int i;
9540
9541 /* Create the first one, so we have something to add to. */
9542 descr = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
9543 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
9544 add_loc_descr (&descr,
9545 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
9546 for (i = 1; i < num_elem; i++)
9547 {
9548 dw_loc_descr_ref temp;
9549
9550 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
9551 add_loc_descr (&descr, temp);
9552 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
9553 add_loc_descr (&descr,
9554 new_loc_descr (DW_OP_piece,
9555 GET_MODE_SIZE (mode), 0));
9556 }
9557 }
9558 add_AT_location_description (die, DW_AT_location, descr);
9559 break;
9560
9561 default:
9562 abort ();
9563 }
9564 }
9565
9566 /* If we don't have a copy of this variable in memory for some reason (such
9567 as a C++ member constant that doesn't have an out-of-line definition),
9568 we should tell the debugger about the constant value. */
9569
9570 static void
9571 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
9572 {
9573 tree init = DECL_INITIAL (decl);
9574 tree type = TREE_TYPE (decl);
9575
9576 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9577 && initializer_constant_valid_p (init, type) == null_pointer_node)
9578 /* OK */;
9579 else
9580 return;
9581
9582 switch (TREE_CODE (type))
9583 {
9584 case INTEGER_TYPE:
9585 if (host_integerp (init, 0))
9586 add_AT_unsigned (var_die, DW_AT_const_value,
9587 tree_low_cst (init, 0));
9588 else
9589 add_AT_long_long (var_die, DW_AT_const_value,
9590 TREE_INT_CST_HIGH (init),
9591 TREE_INT_CST_LOW (init));
9592 break;
9593
9594 default:;
9595 }
9596 }
9597
9598 /* Generate a DW_AT_name attribute given some string value to be included as
9599 the value of the attribute. */
9600
9601 static void
9602 add_name_attribute (dw_die_ref die, const char *name_string)
9603 {
9604 if (name_string != NULL && *name_string != 0)
9605 {
9606 if (demangle_name_func)
9607 name_string = (*demangle_name_func) (name_string);
9608
9609 add_AT_string (die, DW_AT_name, name_string);
9610 }
9611 }
9612
9613 /* Generate a DW_AT_comp_dir attribute for DIE. */
9614
9615 static void
9616 add_comp_dir_attribute (dw_die_ref die)
9617 {
9618 const char *wd = get_src_pwd ();
9619 if (wd != NULL)
9620 add_AT_string (die, DW_AT_comp_dir, wd);
9621 }
9622
9623 /* Given a tree node describing an array bound (either lower or upper) output
9624 a representation for that bound. */
9625
9626 static void
9627 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
9628 {
9629 switch (TREE_CODE (bound))
9630 {
9631 case ERROR_MARK:
9632 return;
9633
9634 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9635 case INTEGER_CST:
9636 if (! host_integerp (bound, 0)
9637 || (bound_attr == DW_AT_lower_bound
9638 && (((is_c_family () || is_java ()) && integer_zerop (bound))
9639 || (is_fortran () && integer_onep (bound)))))
9640 /* use the default */
9641 ;
9642 else
9643 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
9644 break;
9645
9646 case CONVERT_EXPR:
9647 case NOP_EXPR:
9648 case NON_LVALUE_EXPR:
9649 case VIEW_CONVERT_EXPR:
9650 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9651 break;
9652
9653 case SAVE_EXPR:
9654 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9655 access the upper bound values may be bogus. If they refer to a
9656 register, they may only describe how to get at these values at the
9657 points in the generated code right after they have just been
9658 computed. Worse yet, in the typical case, the upper bound values
9659 will not even *be* computed in the optimized code (though the
9660 number of elements will), so these SAVE_EXPRs are entirely
9661 bogus. In order to compensate for this fact, we check here to see
9662 if optimization is enabled, and if so, we don't add an attribute
9663 for the (unknown and unknowable) upper bound. This should not
9664 cause too much trouble for existing (stupid?) debuggers because
9665 they have to deal with empty upper bounds location descriptions
9666 anyway in order to be able to deal with incomplete array types.
9667 Of course an intelligent debugger (GDB?) should be able to
9668 comprehend that a missing upper bound specification in an array
9669 type used for a storage class `auto' local array variable
9670 indicates that the upper bound is both unknown (at compile- time)
9671 and unknowable (at run-time) due to optimization.
9672
9673 We assume that a MEM rtx is safe because gcc wouldn't put the
9674 value there unless it was going to be used repeatedly in the
9675 function, i.e. for cleanups. */
9676 if (SAVE_EXPR_RTL (bound)
9677 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
9678 {
9679 dw_die_ref ctx = lookup_decl_die (current_function_decl);
9680 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
9681 rtx loc = SAVE_EXPR_RTL (bound);
9682
9683 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9684 it references an outer function's frame. */
9685 if (GET_CODE (loc) == MEM)
9686 {
9687 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9688
9689 if (XEXP (loc, 0) != new_addr)
9690 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
9691 }
9692
9693 add_AT_flag (decl_die, DW_AT_artificial, 1);
9694 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9695 add_AT_location_description (decl_die, DW_AT_location,
9696 loc_descriptor (loc));
9697 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9698 }
9699
9700 /* Else leave out the attribute. */
9701 break;
9702
9703 case VAR_DECL:
9704 case PARM_DECL:
9705 {
9706 dw_die_ref decl_die = lookup_decl_die (bound);
9707
9708 /* ??? Can this happen, or should the variable have been bound
9709 first? Probably it can, since I imagine that we try to create
9710 the types of parameters in the order in which they exist in
9711 the list, and won't have created a forward reference to a
9712 later parameter. */
9713 if (decl_die != NULL)
9714 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9715 break;
9716 }
9717
9718 default:
9719 {
9720 /* Otherwise try to create a stack operation procedure to
9721 evaluate the value of the array bound. */
9722
9723 dw_die_ref ctx, decl_die;
9724 dw_loc_descr_ref loc;
9725
9726 loc = loc_descriptor_from_tree (bound, 0);
9727 if (loc == NULL)
9728 break;
9729
9730 if (current_function_decl == 0)
9731 ctx = comp_unit_die;
9732 else
9733 ctx = lookup_decl_die (current_function_decl);
9734
9735 /* If we weren't able to find a context, it's most likely the case
9736 that we are processing the return type of the function. So
9737 make a SAVE_EXPR to point to it and have the limbo DIE code
9738 find the proper die. The save_expr function doesn't always
9739 make a SAVE_EXPR, so do it ourselves. */
9740 if (ctx == 0)
9741 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9742 current_function_decl, NULL_TREE);
9743
9744 decl_die = new_die (DW_TAG_variable, ctx, bound);
9745 add_AT_flag (decl_die, DW_AT_artificial, 1);
9746 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9747 add_AT_loc (decl_die, DW_AT_location, loc);
9748
9749 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9750 break;
9751 }
9752 }
9753 }
9754
9755 /* Note that the block of subscript information for an array type also
9756 includes information about the element type of type given array type. */
9757
9758 static void
9759 add_subscript_info (dw_die_ref type_die, tree type)
9760 {
9761 #ifndef MIPS_DEBUGGING_INFO
9762 unsigned dimension_number;
9763 #endif
9764 tree lower, upper;
9765 dw_die_ref subrange_die;
9766
9767 /* The GNU compilers represent multidimensional array types as sequences of
9768 one dimensional array types whose element types are themselves array
9769 types. Here we squish that down, so that each multidimensional array
9770 type gets only one array_type DIE in the Dwarf debugging info. The draft
9771 Dwarf specification say that we are allowed to do this kind of
9772 compression in C (because there is no difference between an array or
9773 arrays and a multidimensional array in C) but for other source languages
9774 (e.g. Ada) we probably shouldn't do this. */
9775
9776 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9777 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9778 We work around this by disabling this feature. See also
9779 gen_array_type_die. */
9780 #ifndef MIPS_DEBUGGING_INFO
9781 for (dimension_number = 0;
9782 TREE_CODE (type) == ARRAY_TYPE;
9783 type = TREE_TYPE (type), dimension_number++)
9784 #endif
9785 {
9786 tree domain = TYPE_DOMAIN (type);
9787
9788 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
9789 and (in GNU C only) variable bounds. Handle all three forms
9790 here. */
9791 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
9792 if (domain)
9793 {
9794 /* We have an array type with specified bounds. */
9795 lower = TYPE_MIN_VALUE (domain);
9796 upper = TYPE_MAX_VALUE (domain);
9797
9798 /* Define the index type. */
9799 if (TREE_TYPE (domain))
9800 {
9801 /* ??? This is probably an Ada unnamed subrange type. Ignore the
9802 TREE_TYPE field. We can't emit debug info for this
9803 because it is an unnamed integral type. */
9804 if (TREE_CODE (domain) == INTEGER_TYPE
9805 && TYPE_NAME (domain) == NULL_TREE
9806 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
9807 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
9808 ;
9809 else
9810 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
9811 type_die);
9812 }
9813
9814 /* ??? If upper is NULL, the array has unspecified length,
9815 but it does have a lower bound. This happens with Fortran
9816 dimension arr(N:*)
9817 Since the debugger is definitely going to need to know N
9818 to produce useful results, go ahead and output the lower
9819 bound solo, and hope the debugger can cope. */
9820
9821 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
9822 if (upper)
9823 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
9824 }
9825
9826 /* Otherwise we have an array type with an unspecified length. The
9827 DWARF-2 spec does not say how to handle this; let's just leave out the
9828 bounds. */
9829 }
9830 }
9831
9832 static void
9833 add_byte_size_attribute (dw_die_ref die, tree tree_node)
9834 {
9835 unsigned size;
9836
9837 switch (TREE_CODE (tree_node))
9838 {
9839 case ERROR_MARK:
9840 size = 0;
9841 break;
9842 case ENUMERAL_TYPE:
9843 case RECORD_TYPE:
9844 case UNION_TYPE:
9845 case QUAL_UNION_TYPE:
9846 size = int_size_in_bytes (tree_node);
9847 break;
9848 case FIELD_DECL:
9849 /* For a data member of a struct or union, the DW_AT_byte_size is
9850 generally given as the number of bytes normally allocated for an
9851 object of the *declared* type of the member itself. This is true
9852 even for bit-fields. */
9853 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
9854 break;
9855 default:
9856 abort ();
9857 }
9858
9859 /* Note that `size' might be -1 when we get to this point. If it is, that
9860 indicates that the byte size of the entity in question is variable. We
9861 have no good way of expressing this fact in Dwarf at the present time,
9862 so just let the -1 pass on through. */
9863 add_AT_unsigned (die, DW_AT_byte_size, size);
9864 }
9865
9866 /* For a FIELD_DECL node which represents a bit-field, output an attribute
9867 which specifies the distance in bits from the highest order bit of the
9868 "containing object" for the bit-field to the highest order bit of the
9869 bit-field itself.
9870
9871 For any given bit-field, the "containing object" is a hypothetical object
9872 (of some integral or enum type) within which the given bit-field lives. The
9873 type of this hypothetical "containing object" is always the same as the
9874 declared type of the individual bit-field itself. The determination of the
9875 exact location of the "containing object" for a bit-field is rather
9876 complicated. It's handled by the `field_byte_offset' function (above).
9877
9878 Note that it is the size (in bytes) of the hypothetical "containing object"
9879 which will be given in the DW_AT_byte_size attribute for this bit-field.
9880 (See `byte_size_attribute' above). */
9881
9882 static inline void
9883 add_bit_offset_attribute (dw_die_ref die, tree decl)
9884 {
9885 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
9886 tree type = DECL_BIT_FIELD_TYPE (decl);
9887 HOST_WIDE_INT bitpos_int;
9888 HOST_WIDE_INT highest_order_object_bit_offset;
9889 HOST_WIDE_INT highest_order_field_bit_offset;
9890 HOST_WIDE_INT unsigned bit_offset;
9891
9892 /* Must be a field and a bit field. */
9893 if (!type
9894 || TREE_CODE (decl) != FIELD_DECL)
9895 abort ();
9896
9897 /* We can't yet handle bit-fields whose offsets are variable, so if we
9898 encounter such things, just return without generating any attribute
9899 whatsoever. Likewise for variable or too large size. */
9900 if (! host_integerp (bit_position (decl), 0)
9901 || ! host_integerp (DECL_SIZE (decl), 1))
9902 return;
9903
9904 bitpos_int = int_bit_position (decl);
9905
9906 /* Note that the bit offset is always the distance (in bits) from the
9907 highest-order bit of the "containing object" to the highest-order bit of
9908 the bit-field itself. Since the "high-order end" of any object or field
9909 is different on big-endian and little-endian machines, the computation
9910 below must take account of these differences. */
9911 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
9912 highest_order_field_bit_offset = bitpos_int;
9913
9914 if (! BYTES_BIG_ENDIAN)
9915 {
9916 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
9917 highest_order_object_bit_offset += simple_type_size_in_bits (type);
9918 }
9919
9920 bit_offset
9921 = (! BYTES_BIG_ENDIAN
9922 ? highest_order_object_bit_offset - highest_order_field_bit_offset
9923 : highest_order_field_bit_offset - highest_order_object_bit_offset);
9924
9925 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
9926 }
9927
9928 /* For a FIELD_DECL node which represents a bit field, output an attribute
9929 which specifies the length in bits of the given field. */
9930
9931 static inline void
9932 add_bit_size_attribute (dw_die_ref die, tree decl)
9933 {
9934 /* Must be a field and a bit field. */
9935 if (TREE_CODE (decl) != FIELD_DECL
9936 || ! DECL_BIT_FIELD_TYPE (decl))
9937 abort ();
9938
9939 if (host_integerp (DECL_SIZE (decl), 1))
9940 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
9941 }
9942
9943 /* If the compiled language is ANSI C, then add a 'prototyped'
9944 attribute, if arg types are given for the parameters of a function. */
9945
9946 static inline void
9947 add_prototyped_attribute (dw_die_ref die, tree func_type)
9948 {
9949 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
9950 && TYPE_ARG_TYPES (func_type) != NULL)
9951 add_AT_flag (die, DW_AT_prototyped, 1);
9952 }
9953
9954 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
9955 by looking in either the type declaration or object declaration
9956 equate table. */
9957
9958 static inline void
9959 add_abstract_origin_attribute (dw_die_ref die, tree origin)
9960 {
9961 dw_die_ref origin_die = NULL;
9962
9963 if (TREE_CODE (origin) != FUNCTION_DECL)
9964 {
9965 /* We may have gotten separated from the block for the inlined
9966 function, if we're in an exception handler or some such; make
9967 sure that the abstract function has been written out.
9968
9969 Doing this for nested functions is wrong, however; functions are
9970 distinct units, and our context might not even be inline. */
9971 tree fn = origin;
9972
9973 if (TYPE_P (fn))
9974 fn = TYPE_STUB_DECL (fn);
9975
9976 fn = decl_function_context (fn);
9977 if (fn)
9978 dwarf2out_abstract_function (fn);
9979 }
9980
9981 if (DECL_P (origin))
9982 origin_die = lookup_decl_die (origin);
9983 else if (TYPE_P (origin))
9984 origin_die = lookup_type_die (origin);
9985
9986 if (origin_die == NULL)
9987 abort ();
9988
9989 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
9990 }
9991
9992 /* We do not currently support the pure_virtual attribute. */
9993
9994 static inline void
9995 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
9996 {
9997 if (DECL_VINDEX (func_decl))
9998 {
9999 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10000
10001 if (host_integerp (DECL_VINDEX (func_decl), 0))
10002 add_AT_loc (die, DW_AT_vtable_elem_location,
10003 new_loc_descr (DW_OP_constu,
10004 tree_low_cst (DECL_VINDEX (func_decl), 0),
10005 0));
10006
10007 /* GNU extension: Record what type this method came from originally. */
10008 if (debug_info_level > DINFO_LEVEL_TERSE)
10009 add_AT_die_ref (die, DW_AT_containing_type,
10010 lookup_type_die (DECL_CONTEXT (func_decl)));
10011 }
10012 }
10013 \f
10014 /* Add source coordinate attributes for the given decl. */
10015
10016 static void
10017 add_src_coords_attributes (dw_die_ref die, tree decl)
10018 {
10019 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10020
10021 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10022 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10023 }
10024
10025 /* Add a DW_AT_name attribute and source coordinate attribute for the
10026 given decl, but only if it actually has a name. */
10027
10028 static void
10029 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10030 {
10031 tree decl_name;
10032
10033 decl_name = DECL_NAME (decl);
10034 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10035 {
10036 add_name_attribute (die, dwarf2_name (decl, 0));
10037 if (! DECL_ARTIFICIAL (decl))
10038 add_src_coords_attributes (die, decl);
10039
10040 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10041 && TREE_PUBLIC (decl)
10042 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10043 && !DECL_ABSTRACT (decl))
10044 add_AT_string (die, DW_AT_MIPS_linkage_name,
10045 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10046 }
10047
10048 #ifdef VMS_DEBUGGING_INFO
10049 /* Get the function's name, as described by its RTL. This may be different
10050 from the DECL_NAME name used in the source file. */
10051 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10052 {
10053 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10054 XEXP (DECL_RTL (decl), 0));
10055 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10056 }
10057 #endif
10058 }
10059
10060 /* Push a new declaration scope. */
10061
10062 static void
10063 push_decl_scope (tree scope)
10064 {
10065 VARRAY_PUSH_TREE (decl_scope_table, scope);
10066 }
10067
10068 /* Pop a declaration scope. */
10069
10070 static inline void
10071 pop_decl_scope (void)
10072 {
10073 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
10074 abort ();
10075
10076 VARRAY_POP (decl_scope_table);
10077 }
10078
10079 /* Return the DIE for the scope that immediately contains this type.
10080 Non-named types get global scope. Named types nested in other
10081 types get their containing scope if it's open, or global scope
10082 otherwise. All other types (i.e. function-local named types) get
10083 the current active scope. */
10084
10085 static dw_die_ref
10086 scope_die_for (tree t, dw_die_ref context_die)
10087 {
10088 dw_die_ref scope_die = NULL;
10089 tree containing_scope;
10090 int i;
10091
10092 /* Non-types always go in the current scope. */
10093 if (! TYPE_P (t))
10094 abort ();
10095
10096 containing_scope = TYPE_CONTEXT (t);
10097
10098 /* Use the containing namespace if it was passed in (for a declaration). */
10099 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10100 {
10101 if (context_die == lookup_decl_die (containing_scope))
10102 /* OK */;
10103 else
10104 containing_scope = NULL_TREE;
10105 }
10106
10107 /* Ignore function type "scopes" from the C frontend. They mean that
10108 a tagged type is local to a parmlist of a function declarator, but
10109 that isn't useful to DWARF. */
10110 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10111 containing_scope = NULL_TREE;
10112
10113 if (containing_scope == NULL_TREE)
10114 scope_die = comp_unit_die;
10115 else if (TYPE_P (containing_scope))
10116 {
10117 /* For types, we can just look up the appropriate DIE. But
10118 first we check to see if we're in the middle of emitting it
10119 so we know where the new DIE should go. */
10120 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10121 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10122 break;
10123
10124 if (i < 0)
10125 {
10126 if (debug_info_level > DINFO_LEVEL_TERSE
10127 && !TREE_ASM_WRITTEN (containing_scope))
10128 abort ();
10129
10130 /* If none of the current dies are suitable, we get file scope. */
10131 scope_die = comp_unit_die;
10132 }
10133 else
10134 scope_die = lookup_type_die (containing_scope);
10135 }
10136 else
10137 scope_die = context_die;
10138
10139 return scope_die;
10140 }
10141
10142 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10143
10144 static inline int
10145 local_scope_p (dw_die_ref context_die)
10146 {
10147 for (; context_die; context_die = context_die->die_parent)
10148 if (context_die->die_tag == DW_TAG_inlined_subroutine
10149 || context_die->die_tag == DW_TAG_subprogram)
10150 return 1;
10151
10152 return 0;
10153 }
10154
10155 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10156 whether or not to treat a DIE in this context as a declaration. */
10157
10158 static inline int
10159 class_or_namespace_scope_p (dw_die_ref context_die)
10160 {
10161 return (context_die
10162 && (context_die->die_tag == DW_TAG_structure_type
10163 || context_die->die_tag == DW_TAG_union_type
10164 || context_die->die_tag == DW_TAG_namespace));
10165 }
10166
10167 /* Many forms of DIEs require a "type description" attribute. This
10168 routine locates the proper "type descriptor" die for the type given
10169 by 'type', and adds a DW_AT_type attribute below the given die. */
10170
10171 static void
10172 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10173 int decl_volatile, dw_die_ref context_die)
10174 {
10175 enum tree_code code = TREE_CODE (type);
10176 dw_die_ref type_die = NULL;
10177
10178 /* ??? If this type is an unnamed subrange type of an integral or
10179 floating-point type, use the inner type. This is because we have no
10180 support for unnamed types in base_type_die. This can happen if this is
10181 an Ada subrange type. Correct solution is emit a subrange type die. */
10182 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10183 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10184 type = TREE_TYPE (type), code = TREE_CODE (type);
10185
10186 if (code == ERROR_MARK
10187 /* Handle a special case. For functions whose return type is void, we
10188 generate *no* type attribute. (Note that no object may have type
10189 `void', so this only applies to function return types). */
10190 || code == VOID_TYPE)
10191 return;
10192
10193 type_die = modified_type_die (type,
10194 decl_const || TYPE_READONLY (type),
10195 decl_volatile || TYPE_VOLATILE (type),
10196 context_die);
10197
10198 if (type_die != NULL)
10199 add_AT_die_ref (object_die, DW_AT_type, type_die);
10200 }
10201
10202 /* Given a tree pointer to a struct, class, union, or enum type node, return
10203 a pointer to the (string) tag name for the given type, or zero if the type
10204 was declared without a tag. */
10205
10206 static const char *
10207 type_tag (tree type)
10208 {
10209 const char *name = 0;
10210
10211 if (TYPE_NAME (type) != 0)
10212 {
10213 tree t = 0;
10214
10215 /* Find the IDENTIFIER_NODE for the type name. */
10216 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10217 t = TYPE_NAME (type);
10218
10219 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10220 a TYPE_DECL node, regardless of whether or not a `typedef' was
10221 involved. */
10222 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10223 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10224 t = DECL_NAME (TYPE_NAME (type));
10225
10226 /* Now get the name as a string, or invent one. */
10227 if (t != 0)
10228 name = IDENTIFIER_POINTER (t);
10229 }
10230
10231 return (name == 0 || *name == '\0') ? 0 : name;
10232 }
10233
10234 /* Return the type associated with a data member, make a special check
10235 for bit field types. */
10236
10237 static inline tree
10238 member_declared_type (tree member)
10239 {
10240 return (DECL_BIT_FIELD_TYPE (member)
10241 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10242 }
10243
10244 /* Get the decl's label, as described by its RTL. This may be different
10245 from the DECL_NAME name used in the source file. */
10246
10247 #if 0
10248 static const char *
10249 decl_start_label (tree decl)
10250 {
10251 rtx x;
10252 const char *fnname;
10253
10254 x = DECL_RTL (decl);
10255 if (GET_CODE (x) != MEM)
10256 abort ();
10257
10258 x = XEXP (x, 0);
10259 if (GET_CODE (x) != SYMBOL_REF)
10260 abort ();
10261
10262 fnname = XSTR (x, 0);
10263 return fnname;
10264 }
10265 #endif
10266 \f
10267 /* These routines generate the internal representation of the DIE's for
10268 the compilation unit. Debugging information is collected by walking
10269 the declaration trees passed in from dwarf2out_decl(). */
10270
10271 static void
10272 gen_array_type_die (tree type, dw_die_ref context_die)
10273 {
10274 dw_die_ref scope_die = scope_die_for (type, context_die);
10275 dw_die_ref array_die;
10276 tree element_type;
10277
10278 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10279 the inner array type comes before the outer array type. Thus we must
10280 call gen_type_die before we call new_die. See below also. */
10281 #ifdef MIPS_DEBUGGING_INFO
10282 gen_type_die (TREE_TYPE (type), context_die);
10283 #endif
10284
10285 array_die = new_die (DW_TAG_array_type, scope_die, type);
10286 add_name_attribute (array_die, type_tag (type));
10287 equate_type_number_to_die (type, array_die);
10288
10289 if (TREE_CODE (type) == VECTOR_TYPE)
10290 {
10291 /* The frontend feeds us a representation for the vector as a struct
10292 containing an array. Pull out the array type. */
10293 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10294 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10295 }
10296
10297 #if 0
10298 /* We default the array ordering. SDB will probably do
10299 the right things even if DW_AT_ordering is not present. It's not even
10300 an issue until we start to get into multidimensional arrays anyway. If
10301 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10302 then we'll have to put the DW_AT_ordering attribute back in. (But if
10303 and when we find out that we need to put these in, we will only do so
10304 for multidimensional arrays. */
10305 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10306 #endif
10307
10308 #ifdef MIPS_DEBUGGING_INFO
10309 /* The SGI compilers handle arrays of unknown bound by setting
10310 AT_declaration and not emitting any subrange DIEs. */
10311 if (! TYPE_DOMAIN (type))
10312 add_AT_flag (array_die, DW_AT_declaration, 1);
10313 else
10314 #endif
10315 add_subscript_info (array_die, type);
10316
10317 /* Add representation of the type of the elements of this array type. */
10318 element_type = TREE_TYPE (type);
10319
10320 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10321 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10322 We work around this by disabling this feature. See also
10323 add_subscript_info. */
10324 #ifndef MIPS_DEBUGGING_INFO
10325 while (TREE_CODE (element_type) == ARRAY_TYPE)
10326 element_type = TREE_TYPE (element_type);
10327
10328 gen_type_die (element_type, context_die);
10329 #endif
10330
10331 add_type_attribute (array_die, element_type, 0, 0, context_die);
10332 }
10333
10334 static void
10335 gen_set_type_die (tree type, dw_die_ref context_die)
10336 {
10337 dw_die_ref type_die
10338 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10339
10340 equate_type_number_to_die (type, type_die);
10341 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10342 }
10343
10344 #if 0
10345 static void
10346 gen_entry_point_die (tree decl, dw_die_ref context_die)
10347 {
10348 tree origin = decl_ultimate_origin (decl);
10349 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10350
10351 if (origin != NULL)
10352 add_abstract_origin_attribute (decl_die, origin);
10353 else
10354 {
10355 add_name_and_src_coords_attributes (decl_die, decl);
10356 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10357 0, 0, context_die);
10358 }
10359
10360 if (DECL_ABSTRACT (decl))
10361 equate_decl_number_to_die (decl, decl_die);
10362 else
10363 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10364 }
10365 #endif
10366
10367 /* Walk through the list of incomplete types again, trying once more to
10368 emit full debugging info for them. */
10369
10370 static void
10371 retry_incomplete_types (void)
10372 {
10373 int i;
10374
10375 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10376 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10377 }
10378
10379 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10380
10381 static void
10382 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
10383 {
10384 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10385
10386 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10387 be incomplete and such types are not marked. */
10388 add_abstract_origin_attribute (type_die, type);
10389 }
10390
10391 /* Generate a DIE to represent an inlined instance of a structure type. */
10392
10393 static void
10394 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
10395 {
10396 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10397
10398 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10399 be incomplete and such types are not marked. */
10400 add_abstract_origin_attribute (type_die, type);
10401 }
10402
10403 /* Generate a DIE to represent an inlined instance of a union type. */
10404
10405 static void
10406 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
10407 {
10408 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10409
10410 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10411 be incomplete and such types are not marked. */
10412 add_abstract_origin_attribute (type_die, type);
10413 }
10414
10415 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10416 include all of the information about the enumeration values also. Each
10417 enumerated type name/value is listed as a child of the enumerated type
10418 DIE. */
10419
10420 static dw_die_ref
10421 gen_enumeration_type_die (tree type, dw_die_ref context_die)
10422 {
10423 dw_die_ref type_die = lookup_type_die (type);
10424
10425 if (type_die == NULL)
10426 {
10427 type_die = new_die (DW_TAG_enumeration_type,
10428 scope_die_for (type, context_die), type);
10429 equate_type_number_to_die (type, type_die);
10430 add_name_attribute (type_die, type_tag (type));
10431 }
10432 else if (! TYPE_SIZE (type))
10433 return type_die;
10434 else
10435 remove_AT (type_die, DW_AT_declaration);
10436
10437 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10438 given enum type is incomplete, do not generate the DW_AT_byte_size
10439 attribute or the DW_AT_element_list attribute. */
10440 if (TYPE_SIZE (type))
10441 {
10442 tree link;
10443
10444 TREE_ASM_WRITTEN (type) = 1;
10445 add_byte_size_attribute (type_die, type);
10446 if (TYPE_STUB_DECL (type) != NULL_TREE)
10447 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10448
10449 /* If the first reference to this type was as the return type of an
10450 inline function, then it may not have a parent. Fix this now. */
10451 if (type_die->die_parent == NULL)
10452 add_child_die (scope_die_for (type, context_die), type_die);
10453
10454 for (link = TYPE_FIELDS (type);
10455 link != NULL; link = TREE_CHAIN (link))
10456 {
10457 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10458
10459 add_name_attribute (enum_die,
10460 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10461
10462 if (host_integerp (TREE_VALUE (link),
10463 TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (link)))))
10464 {
10465 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
10466 add_AT_int (enum_die, DW_AT_const_value,
10467 tree_low_cst (TREE_VALUE (link), 0));
10468 else
10469 add_AT_unsigned (enum_die, DW_AT_const_value,
10470 tree_low_cst (TREE_VALUE (link), 1));
10471 }
10472 }
10473 }
10474 else
10475 add_AT_flag (type_die, DW_AT_declaration, 1);
10476
10477 return type_die;
10478 }
10479
10480 /* Generate a DIE to represent either a real live formal parameter decl or to
10481 represent just the type of some formal parameter position in some function
10482 type.
10483
10484 Note that this routine is a bit unusual because its argument may be a
10485 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10486 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10487 node. If it's the former then this function is being called to output a
10488 DIE to represent a formal parameter object (or some inlining thereof). If
10489 it's the latter, then this function is only being called to output a
10490 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10491 argument type of some subprogram type. */
10492
10493 static dw_die_ref
10494 gen_formal_parameter_die (tree node, dw_die_ref context_die)
10495 {
10496 dw_die_ref parm_die
10497 = new_die (DW_TAG_formal_parameter, context_die, node);
10498 tree origin;
10499
10500 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10501 {
10502 case 'd':
10503 origin = decl_ultimate_origin (node);
10504 if (origin != NULL)
10505 add_abstract_origin_attribute (parm_die, origin);
10506 else
10507 {
10508 add_name_and_src_coords_attributes (parm_die, node);
10509 add_type_attribute (parm_die, TREE_TYPE (node),
10510 TREE_READONLY (node),
10511 TREE_THIS_VOLATILE (node),
10512 context_die);
10513 if (DECL_ARTIFICIAL (node))
10514 add_AT_flag (parm_die, DW_AT_artificial, 1);
10515 }
10516
10517 equate_decl_number_to_die (node, parm_die);
10518 if (! DECL_ABSTRACT (node))
10519 add_location_or_const_value_attribute (parm_die, node);
10520
10521 break;
10522
10523 case 't':
10524 /* We were called with some kind of a ..._TYPE node. */
10525 add_type_attribute (parm_die, node, 0, 0, context_die);
10526 break;
10527
10528 default:
10529 abort ();
10530 }
10531
10532 return parm_die;
10533 }
10534
10535 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10536 at the end of an (ANSI prototyped) formal parameters list. */
10537
10538 static void
10539 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
10540 {
10541 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10542 }
10543
10544 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10545 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10546 parameters as specified in some function type specification (except for
10547 those which appear as part of a function *definition*). */
10548
10549 static void
10550 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
10551 {
10552 tree link;
10553 tree formal_type = NULL;
10554 tree first_parm_type;
10555 tree arg;
10556
10557 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10558 {
10559 arg = DECL_ARGUMENTS (function_or_method_type);
10560 function_or_method_type = TREE_TYPE (function_or_method_type);
10561 }
10562 else
10563 arg = NULL_TREE;
10564
10565 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10566
10567 /* Make our first pass over the list of formal parameter types and output a
10568 DW_TAG_formal_parameter DIE for each one. */
10569 for (link = first_parm_type; link; )
10570 {
10571 dw_die_ref parm_die;
10572
10573 formal_type = TREE_VALUE (link);
10574 if (formal_type == void_type_node)
10575 break;
10576
10577 /* Output a (nameless) DIE to represent the formal parameter itself. */
10578 parm_die = gen_formal_parameter_die (formal_type, context_die);
10579 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10580 && link == first_parm_type)
10581 || (arg && DECL_ARTIFICIAL (arg)))
10582 add_AT_flag (parm_die, DW_AT_artificial, 1);
10583
10584 link = TREE_CHAIN (link);
10585 if (arg)
10586 arg = TREE_CHAIN (arg);
10587 }
10588
10589 /* If this function type has an ellipsis, add a
10590 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10591 if (formal_type != void_type_node)
10592 gen_unspecified_parameters_die (function_or_method_type, context_die);
10593
10594 /* Make our second (and final) pass over the list of formal parameter types
10595 and output DIEs to represent those types (as necessary). */
10596 for (link = TYPE_ARG_TYPES (function_or_method_type);
10597 link && TREE_VALUE (link);
10598 link = TREE_CHAIN (link))
10599 gen_type_die (TREE_VALUE (link), context_die);
10600 }
10601
10602 /* We want to generate the DIE for TYPE so that we can generate the
10603 die for MEMBER, which has been defined; we will need to refer back
10604 to the member declaration nested within TYPE. If we're trying to
10605 generate minimal debug info for TYPE, processing TYPE won't do the
10606 trick; we need to attach the member declaration by hand. */
10607
10608 static void
10609 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
10610 {
10611 gen_type_die (type, context_die);
10612
10613 /* If we're trying to avoid duplicate debug info, we may not have
10614 emitted the member decl for this function. Emit it now. */
10615 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10616 && ! lookup_decl_die (member))
10617 {
10618 if (decl_ultimate_origin (member))
10619 abort ();
10620
10621 push_decl_scope (type);
10622 if (TREE_CODE (member) == FUNCTION_DECL)
10623 gen_subprogram_die (member, lookup_type_die (type));
10624 else
10625 gen_variable_die (member, lookup_type_die (type));
10626
10627 pop_decl_scope ();
10628 }
10629 }
10630
10631 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10632 may later generate inlined and/or out-of-line instances of. */
10633
10634 static void
10635 dwarf2out_abstract_function (tree decl)
10636 {
10637 dw_die_ref old_die;
10638 tree save_fn;
10639 tree context;
10640 int was_abstract = DECL_ABSTRACT (decl);
10641
10642 /* Make sure we have the actual abstract inline, not a clone. */
10643 decl = DECL_ORIGIN (decl);
10644
10645 old_die = lookup_decl_die (decl);
10646 if (old_die && get_AT (old_die, DW_AT_inline))
10647 /* We've already generated the abstract instance. */
10648 return;
10649
10650 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10651 we don't get confused by DECL_ABSTRACT. */
10652 if (debug_info_level > DINFO_LEVEL_TERSE)
10653 {
10654 context = decl_class_context (decl);
10655 if (context)
10656 gen_type_die_for_member
10657 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10658 }
10659
10660 /* Pretend we've just finished compiling this function. */
10661 save_fn = current_function_decl;
10662 current_function_decl = decl;
10663
10664 set_decl_abstract_flags (decl, 1);
10665 dwarf2out_decl (decl);
10666 if (! was_abstract)
10667 set_decl_abstract_flags (decl, 0);
10668
10669 current_function_decl = save_fn;
10670 }
10671
10672 /* Generate a DIE to represent a declared function (either file-scope or
10673 block-local). */
10674
10675 static void
10676 gen_subprogram_die (tree decl, dw_die_ref context_die)
10677 {
10678 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10679 tree origin = decl_ultimate_origin (decl);
10680 dw_die_ref subr_die;
10681 rtx fp_reg;
10682 tree fn_arg_types;
10683 tree outer_scope;
10684 dw_die_ref old_die = lookup_decl_die (decl);
10685 int declaration = (current_function_decl != decl
10686 || class_or_namespace_scope_p (context_die));
10687
10688 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10689 started to generate the abstract instance of an inline, decided to output
10690 its containing class, and proceeded to emit the declaration of the inline
10691 from the member list for the class. If so, DECLARATION takes priority;
10692 we'll get back to the abstract instance when done with the class. */
10693
10694 /* The class-scope declaration DIE must be the primary DIE. */
10695 if (origin && declaration && class_or_namespace_scope_p (context_die))
10696 {
10697 origin = NULL;
10698 if (old_die)
10699 abort ();
10700 }
10701
10702 if (origin != NULL)
10703 {
10704 if (declaration && ! local_scope_p (context_die))
10705 abort ();
10706
10707 /* Fixup die_parent for the abstract instance of a nested
10708 inline function. */
10709 if (old_die && old_die->die_parent == NULL)
10710 add_child_die (context_die, old_die);
10711
10712 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10713 add_abstract_origin_attribute (subr_die, origin);
10714 }
10715 else if (old_die)
10716 {
10717 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10718
10719 if (!get_AT_flag (old_die, DW_AT_declaration)
10720 /* We can have a normal definition following an inline one in the
10721 case of redefinition of GNU C extern inlines.
10722 It seems reasonable to use AT_specification in this case. */
10723 && !get_AT (old_die, DW_AT_inline))
10724 {
10725 /* ??? This can happen if there is a bug in the program, for
10726 instance, if it has duplicate function definitions. Ideally,
10727 we should detect this case and ignore it. For now, if we have
10728 already reported an error, any error at all, then assume that
10729 we got here because of an input error, not a dwarf2 bug. */
10730 if (errorcount)
10731 return;
10732 abort ();
10733 }
10734
10735 /* If the definition comes from the same place as the declaration,
10736 maybe use the old DIE. We always want the DIE for this function
10737 that has the *_pc attributes to be under comp_unit_die so the
10738 debugger can find it. We also need to do this for abstract
10739 instances of inlines, since the spec requires the out-of-line copy
10740 to have the same parent. For local class methods, this doesn't
10741 apply; we just use the old DIE. */
10742 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
10743 && (DECL_ARTIFICIAL (decl)
10744 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10745 && (get_AT_unsigned (old_die, DW_AT_decl_line)
10746 == (unsigned) DECL_SOURCE_LINE (decl)))))
10747 {
10748 subr_die = old_die;
10749
10750 /* Clear out the declaration attribute and the formal parameters.
10751 Do not remove all children, because it is possible that this
10752 declaration die was forced using force_decl_die(). In such
10753 cases die that forced declaration die (e.g. TAG_imported_module)
10754 is one of the children that we do not want to remove. */
10755 remove_AT (subr_die, DW_AT_declaration);
10756 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
10757 }
10758 else
10759 {
10760 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10761 add_AT_specification (subr_die, old_die);
10762 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10763 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
10764 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10765 != (unsigned) DECL_SOURCE_LINE (decl))
10766 add_AT_unsigned
10767 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10768 }
10769 }
10770 else
10771 {
10772 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10773
10774 if (TREE_PUBLIC (decl))
10775 add_AT_flag (subr_die, DW_AT_external, 1);
10776
10777 add_name_and_src_coords_attributes (subr_die, decl);
10778 if (debug_info_level > DINFO_LEVEL_TERSE)
10779 {
10780 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
10781 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
10782 0, 0, context_die);
10783 }
10784
10785 add_pure_or_virtual_attribute (subr_die, decl);
10786 if (DECL_ARTIFICIAL (decl))
10787 add_AT_flag (subr_die, DW_AT_artificial, 1);
10788
10789 if (TREE_PROTECTED (decl))
10790 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
10791 else if (TREE_PRIVATE (decl))
10792 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
10793 }
10794
10795 if (declaration)
10796 {
10797 if (!old_die || !get_AT (old_die, DW_AT_inline))
10798 {
10799 add_AT_flag (subr_die, DW_AT_declaration, 1);
10800
10801 /* The first time we see a member function, it is in the context of
10802 the class to which it belongs. We make sure of this by emitting
10803 the class first. The next time is the definition, which is
10804 handled above. The two may come from the same source text.
10805
10806 Note that force_decl_die() forces function declaration die. It is
10807 later reused to represent definition. */
10808 equate_decl_number_to_die (decl, subr_die);
10809 }
10810 }
10811 else if (DECL_ABSTRACT (decl))
10812 {
10813 if (DECL_DECLARED_INLINE_P (decl))
10814 {
10815 if (cgraph_function_possibly_inlined_p (decl))
10816 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
10817 else
10818 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
10819 }
10820 else
10821 {
10822 if (cgraph_function_possibly_inlined_p (decl))
10823 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
10824 else
10825 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
10826 }
10827
10828 equate_decl_number_to_die (decl, subr_die);
10829 }
10830 else if (!DECL_EXTERNAL (decl))
10831 {
10832 if (!old_die || !get_AT (old_die, DW_AT_inline))
10833 equate_decl_number_to_die (decl, subr_die);
10834
10835 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
10836 current_function_funcdef_no);
10837 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
10838 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10839 current_function_funcdef_no);
10840 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
10841
10842 add_pubname (decl, subr_die);
10843 add_arange (decl, subr_die);
10844
10845 #ifdef MIPS_DEBUGGING_INFO
10846 /* Add a reference to the FDE for this routine. */
10847 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
10848 #endif
10849
10850 /* Define the "frame base" location for this routine. We use the
10851 frame pointer or stack pointer registers, since the RTL for local
10852 variables is relative to one of them. */
10853 fp_reg
10854 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
10855 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
10856
10857 #if 0
10858 /* ??? This fails for nested inline functions, because context_display
10859 is not part of the state saved/restored for inline functions. */
10860 if (current_function_needs_context)
10861 add_AT_location_description (subr_die, DW_AT_static_link,
10862 loc_descriptor (lookup_static_chain (decl)));
10863 #endif
10864 }
10865
10866 /* Now output descriptions of the arguments for this function. This gets
10867 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
10868 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
10869 `...' at the end of the formal parameter list. In order to find out if
10870 there was a trailing ellipsis or not, we must instead look at the type
10871 associated with the FUNCTION_DECL. This will be a node of type
10872 FUNCTION_TYPE. If the chain of type nodes hanging off of this
10873 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
10874 an ellipsis at the end. */
10875
10876 /* In the case where we are describing a mere function declaration, all we
10877 need to do here (and all we *can* do here) is to describe the *types* of
10878 its formal parameters. */
10879 if (debug_info_level <= DINFO_LEVEL_TERSE)
10880 ;
10881 else if (declaration)
10882 gen_formal_types_die (decl, subr_die);
10883 else
10884 {
10885 /* Generate DIEs to represent all known formal parameters. */
10886 tree arg_decls = DECL_ARGUMENTS (decl);
10887 tree parm;
10888
10889 /* When generating DIEs, generate the unspecified_parameters DIE
10890 instead if we come across the arg "__builtin_va_alist" */
10891 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
10892 if (TREE_CODE (parm) == PARM_DECL)
10893 {
10894 if (DECL_NAME (parm)
10895 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
10896 "__builtin_va_alist"))
10897 gen_unspecified_parameters_die (parm, subr_die);
10898 else
10899 gen_decl_die (parm, subr_die);
10900 }
10901
10902 /* Decide whether we need an unspecified_parameters DIE at the end.
10903 There are 2 more cases to do this for: 1) the ansi ... declaration -
10904 this is detectable when the end of the arg list is not a
10905 void_type_node 2) an unprototyped function declaration (not a
10906 definition). This just means that we have no info about the
10907 parameters at all. */
10908 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
10909 if (fn_arg_types != NULL)
10910 {
10911 /* This is the prototyped case, check for.... */
10912 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
10913 gen_unspecified_parameters_die (decl, subr_die);
10914 }
10915 else if (DECL_INITIAL (decl) == NULL_TREE)
10916 gen_unspecified_parameters_die (decl, subr_die);
10917 }
10918
10919 /* Output Dwarf info for all of the stuff within the body of the function
10920 (if it has one - it may be just a declaration). */
10921 outer_scope = DECL_INITIAL (decl);
10922
10923 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
10924 a function. This BLOCK actually represents the outermost binding contour
10925 for the function, i.e. the contour in which the function's formal
10926 parameters and labels get declared. Curiously, it appears that the front
10927 end doesn't actually put the PARM_DECL nodes for the current function onto
10928 the BLOCK_VARS list for this outer scope, but are strung off of the
10929 DECL_ARGUMENTS list for the function instead.
10930
10931 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
10932 the LABEL_DECL nodes for the function however, and we output DWARF info
10933 for those in decls_for_scope. Just within the `outer_scope' there will be
10934 a BLOCK node representing the function's outermost pair of curly braces,
10935 and any blocks used for the base and member initializers of a C++
10936 constructor function. */
10937 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
10938 {
10939 current_function_has_inlines = 0;
10940 decls_for_scope (outer_scope, subr_die, 0);
10941
10942 #if 0 && defined (MIPS_DEBUGGING_INFO)
10943 if (current_function_has_inlines)
10944 {
10945 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
10946 if (! comp_unit_has_inlines)
10947 {
10948 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
10949 comp_unit_has_inlines = 1;
10950 }
10951 }
10952 #endif
10953 }
10954 }
10955
10956 /* Generate a DIE to represent a declared data object. */
10957
10958 static void
10959 gen_variable_die (tree decl, dw_die_ref context_die)
10960 {
10961 tree origin = decl_ultimate_origin (decl);
10962 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
10963
10964 dw_die_ref old_die = lookup_decl_die (decl);
10965 int declaration = (DECL_EXTERNAL (decl)
10966 || class_or_namespace_scope_p (context_die));
10967
10968 if (origin != NULL)
10969 add_abstract_origin_attribute (var_die, origin);
10970
10971 /* Loop unrolling can create multiple blocks that refer to the same
10972 static variable, so we must test for the DW_AT_declaration flag.
10973
10974 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
10975 copy decls and set the DECL_ABSTRACT flag on them instead of
10976 sharing them.
10977
10978 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
10979 else if (old_die && TREE_STATIC (decl)
10980 && get_AT_flag (old_die, DW_AT_declaration) == 1)
10981 {
10982 /* This is a definition of a C++ class level static. */
10983 add_AT_specification (var_die, old_die);
10984 if (DECL_NAME (decl))
10985 {
10986 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10987
10988 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10989 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
10990
10991 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10992 != (unsigned) DECL_SOURCE_LINE (decl))
10993
10994 add_AT_unsigned (var_die, DW_AT_decl_line,
10995 DECL_SOURCE_LINE (decl));
10996 }
10997 }
10998 else
10999 {
11000 add_name_and_src_coords_attributes (var_die, decl);
11001 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11002 TREE_THIS_VOLATILE (decl), context_die);
11003
11004 if (TREE_PUBLIC (decl))
11005 add_AT_flag (var_die, DW_AT_external, 1);
11006
11007 if (DECL_ARTIFICIAL (decl))
11008 add_AT_flag (var_die, DW_AT_artificial, 1);
11009
11010 if (TREE_PROTECTED (decl))
11011 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11012 else if (TREE_PRIVATE (decl))
11013 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11014 }
11015
11016 if (declaration)
11017 add_AT_flag (var_die, DW_AT_declaration, 1);
11018
11019 if (DECL_ABSTRACT (decl) || declaration)
11020 equate_decl_number_to_die (decl, var_die);
11021
11022 if (! declaration && ! DECL_ABSTRACT (decl))
11023 {
11024 add_location_or_const_value_attribute (var_die, decl);
11025 add_pubname (decl, var_die);
11026 }
11027 else
11028 tree_add_const_value_attribute (var_die, decl);
11029 }
11030
11031 /* Generate a DIE to represent a label identifier. */
11032
11033 static void
11034 gen_label_die (tree decl, dw_die_ref context_die)
11035 {
11036 tree origin = decl_ultimate_origin (decl);
11037 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11038 rtx insn;
11039 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11040
11041 if (origin != NULL)
11042 add_abstract_origin_attribute (lbl_die, origin);
11043 else
11044 add_name_and_src_coords_attributes (lbl_die, decl);
11045
11046 if (DECL_ABSTRACT (decl))
11047 equate_decl_number_to_die (decl, lbl_die);
11048 else
11049 {
11050 insn = DECL_RTL_IF_SET (decl);
11051
11052 /* Deleted labels are programmer specified labels which have been
11053 eliminated because of various optimizations. We still emit them
11054 here so that it is possible to put breakpoints on them. */
11055 if (insn
11056 && (GET_CODE (insn) == CODE_LABEL
11057 || ((GET_CODE (insn) == NOTE
11058 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11059 {
11060 /* When optimization is enabled (via -O) some parts of the compiler
11061 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11062 represent source-level labels which were explicitly declared by
11063 the user. This really shouldn't be happening though, so catch
11064 it if it ever does happen. */
11065 if (INSN_DELETED_P (insn))
11066 abort ();
11067
11068 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11069 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11070 }
11071 }
11072 }
11073
11074 /* Generate a DIE for a lexical block. */
11075
11076 static void
11077 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11078 {
11079 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11080 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11081
11082 if (! BLOCK_ABSTRACT (stmt))
11083 {
11084 if (BLOCK_FRAGMENT_CHAIN (stmt))
11085 {
11086 tree chain;
11087
11088 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11089
11090 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11091 do
11092 {
11093 add_ranges (chain);
11094 chain = BLOCK_FRAGMENT_CHAIN (chain);
11095 }
11096 while (chain);
11097 add_ranges (NULL);
11098 }
11099 else
11100 {
11101 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11102 BLOCK_NUMBER (stmt));
11103 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11104 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11105 BLOCK_NUMBER (stmt));
11106 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11107 }
11108 }
11109
11110 decls_for_scope (stmt, stmt_die, depth);
11111 }
11112
11113 /* Generate a DIE for an inlined subprogram. */
11114
11115 static void
11116 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11117 {
11118 tree decl = block_ultimate_origin (stmt);
11119
11120 /* Emit info for the abstract instance first, if we haven't yet. We
11121 must emit this even if the block is abstract, otherwise when we
11122 emit the block below (or elsewhere), we may end up trying to emit
11123 a die whose origin die hasn't been emitted, and crashing. */
11124 dwarf2out_abstract_function (decl);
11125
11126 if (! BLOCK_ABSTRACT (stmt))
11127 {
11128 dw_die_ref subr_die
11129 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11130 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11131
11132 add_abstract_origin_attribute (subr_die, decl);
11133 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11134 BLOCK_NUMBER (stmt));
11135 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11136 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11137 BLOCK_NUMBER (stmt));
11138 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11139 decls_for_scope (stmt, subr_die, depth);
11140 current_function_has_inlines = 1;
11141 }
11142 else
11143 /* We may get here if we're the outer block of function A that was
11144 inlined into function B that was inlined into function C. When
11145 generating debugging info for C, dwarf2out_abstract_function(B)
11146 would mark all inlined blocks as abstract, including this one.
11147 So, we wouldn't (and shouldn't) expect labels to be generated
11148 for this one. Instead, just emit debugging info for
11149 declarations within the block. This is particularly important
11150 in the case of initializers of arguments passed from B to us:
11151 if they're statement expressions containing declarations, we
11152 wouldn't generate dies for their abstract variables, and then,
11153 when generating dies for the real variables, we'd die (pun
11154 intended :-) */
11155 gen_lexical_block_die (stmt, context_die, depth);
11156 }
11157
11158 /* Generate a DIE for a field in a record, or structure. */
11159
11160 static void
11161 gen_field_die (tree decl, dw_die_ref context_die)
11162 {
11163 dw_die_ref decl_die;
11164
11165 if (TREE_TYPE (decl) == error_mark_node)
11166 return;
11167
11168 decl_die = new_die (DW_TAG_member, context_die, decl);
11169 add_name_and_src_coords_attributes (decl_die, decl);
11170 add_type_attribute (decl_die, member_declared_type (decl),
11171 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11172 context_die);
11173
11174 if (DECL_BIT_FIELD_TYPE (decl))
11175 {
11176 add_byte_size_attribute (decl_die, decl);
11177 add_bit_size_attribute (decl_die, decl);
11178 add_bit_offset_attribute (decl_die, decl);
11179 }
11180
11181 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11182 add_data_member_location_attribute (decl_die, decl);
11183
11184 if (DECL_ARTIFICIAL (decl))
11185 add_AT_flag (decl_die, DW_AT_artificial, 1);
11186
11187 if (TREE_PROTECTED (decl))
11188 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11189 else if (TREE_PRIVATE (decl))
11190 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11191 }
11192
11193 #if 0
11194 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11195 Use modified_type_die instead.
11196 We keep this code here just in case these types of DIEs may be needed to
11197 represent certain things in other languages (e.g. Pascal) someday. */
11198
11199 static void
11200 gen_pointer_type_die (tree type, dw_die_ref context_die)
11201 {
11202 dw_die_ref ptr_die
11203 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11204
11205 equate_type_number_to_die (type, ptr_die);
11206 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11207 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11208 }
11209
11210 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11211 Use modified_type_die instead.
11212 We keep this code here just in case these types of DIEs may be needed to
11213 represent certain things in other languages (e.g. Pascal) someday. */
11214
11215 static void
11216 gen_reference_type_die (tree type, dw_die_ref context_die)
11217 {
11218 dw_die_ref ref_die
11219 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11220
11221 equate_type_number_to_die (type, ref_die);
11222 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11223 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11224 }
11225 #endif
11226
11227 /* Generate a DIE for a pointer to a member type. */
11228
11229 static void
11230 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11231 {
11232 dw_die_ref ptr_die
11233 = new_die (DW_TAG_ptr_to_member_type,
11234 scope_die_for (type, context_die), type);
11235
11236 equate_type_number_to_die (type, ptr_die);
11237 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11238 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11239 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11240 }
11241
11242 /* Generate the DIE for the compilation unit. */
11243
11244 static dw_die_ref
11245 gen_compile_unit_die (const char *filename)
11246 {
11247 dw_die_ref die;
11248 char producer[250];
11249 const char *language_string = lang_hooks.name;
11250 int language;
11251
11252 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11253
11254 if (filename)
11255 {
11256 add_name_attribute (die, filename);
11257 /* Don't add cwd for <built-in>. */
11258 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11259 add_comp_dir_attribute (die);
11260 }
11261
11262 sprintf (producer, "%s %s", language_string, version_string);
11263
11264 #ifdef MIPS_DEBUGGING_INFO
11265 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11266 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11267 not appear in the producer string, the debugger reaches the conclusion
11268 that the object file is stripped and has no debugging information.
11269 To get the MIPS/SGI debugger to believe that there is debugging
11270 information in the object file, we add a -g to the producer string. */
11271 if (debug_info_level > DINFO_LEVEL_TERSE)
11272 strcat (producer, " -g");
11273 #endif
11274
11275 add_AT_string (die, DW_AT_producer, producer);
11276
11277 if (strcmp (language_string, "GNU C++") == 0)
11278 language = DW_LANG_C_plus_plus;
11279 else if (strcmp (language_string, "GNU Ada") == 0)
11280 language = DW_LANG_Ada95;
11281 else if (strcmp (language_string, "GNU F77") == 0)
11282 language = DW_LANG_Fortran77;
11283 else if (strcmp (language_string, "GNU Pascal") == 0)
11284 language = DW_LANG_Pascal83;
11285 else if (strcmp (language_string, "GNU Java") == 0)
11286 language = DW_LANG_Java;
11287 else
11288 language = DW_LANG_C89;
11289
11290 add_AT_unsigned (die, DW_AT_language, language);
11291 return die;
11292 }
11293
11294 /* Generate a DIE for a string type. */
11295
11296 static void
11297 gen_string_type_die (tree type, dw_die_ref context_die)
11298 {
11299 dw_die_ref type_die
11300 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11301
11302 equate_type_number_to_die (type, type_die);
11303
11304 /* ??? Fudge the string length attribute for now.
11305 TODO: add string length info. */
11306 #if 0
11307 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11308 bound_representation (upper_bound, 0, 'u');
11309 #endif
11310 }
11311
11312 /* Generate the DIE for a base class. */
11313
11314 static void
11315 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11316 {
11317 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11318
11319 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11320 add_data_member_location_attribute (die, binfo);
11321
11322 if (TREE_VIA_VIRTUAL (binfo))
11323 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11324
11325 if (access == access_public_node)
11326 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11327 else if (access == access_protected_node)
11328 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11329 }
11330
11331 /* Generate a DIE for a class member. */
11332
11333 static void
11334 gen_member_die (tree type, dw_die_ref context_die)
11335 {
11336 tree member;
11337 tree binfo = TYPE_BINFO (type);
11338 dw_die_ref child;
11339
11340 /* If this is not an incomplete type, output descriptions of each of its
11341 members. Note that as we output the DIEs necessary to represent the
11342 members of this record or union type, we will also be trying to output
11343 DIEs to represent the *types* of those members. However the `type'
11344 function (above) will specifically avoid generating type DIEs for member
11345 types *within* the list of member DIEs for this (containing) type except
11346 for those types (of members) which are explicitly marked as also being
11347 members of this (containing) type themselves. The g++ front- end can
11348 force any given type to be treated as a member of some other (containing)
11349 type by setting the TYPE_CONTEXT of the given (member) type to point to
11350 the TREE node representing the appropriate (containing) type. */
11351
11352 /* First output info about the base classes. */
11353 if (binfo && BINFO_BASETYPES (binfo))
11354 {
11355 tree bases = BINFO_BASETYPES (binfo);
11356 tree accesses = BINFO_BASEACCESSES (binfo);
11357 int n_bases = TREE_VEC_LENGTH (bases);
11358 int i;
11359
11360 for (i = 0; i < n_bases; i++)
11361 gen_inheritance_die (TREE_VEC_ELT (bases, i),
11362 (accesses ? TREE_VEC_ELT (accesses, i)
11363 : access_public_node), context_die);
11364 }
11365
11366 /* Now output info about the data members and type members. */
11367 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11368 {
11369 /* If we thought we were generating minimal debug info for TYPE
11370 and then changed our minds, some of the member declarations
11371 may have already been defined. Don't define them again, but
11372 do put them in the right order. */
11373
11374 child = lookup_decl_die (member);
11375 if (child)
11376 splice_child_die (context_die, child);
11377 else
11378 gen_decl_die (member, context_die);
11379 }
11380
11381 /* Now output info about the function members (if any). */
11382 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11383 {
11384 /* Don't include clones in the member list. */
11385 if (DECL_ABSTRACT_ORIGIN (member))
11386 continue;
11387
11388 child = lookup_decl_die (member);
11389 if (child)
11390 splice_child_die (context_die, child);
11391 else
11392 gen_decl_die (member, context_die);
11393 }
11394 }
11395
11396 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11397 is set, we pretend that the type was never defined, so we only get the
11398 member DIEs needed by later specification DIEs. */
11399
11400 static void
11401 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
11402 {
11403 dw_die_ref type_die = lookup_type_die (type);
11404 dw_die_ref scope_die = 0;
11405 int nested = 0;
11406 int complete = (TYPE_SIZE (type)
11407 && (! TYPE_STUB_DECL (type)
11408 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11409 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
11410
11411 if (type_die && ! complete)
11412 return;
11413
11414 if (TYPE_CONTEXT (type) != NULL_TREE
11415 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11416 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
11417 nested = 1;
11418
11419 scope_die = scope_die_for (type, context_die);
11420
11421 if (! type_die || (nested && scope_die == comp_unit_die))
11422 /* First occurrence of type or toplevel definition of nested class. */
11423 {
11424 dw_die_ref old_die = type_die;
11425
11426 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11427 ? DW_TAG_structure_type : DW_TAG_union_type,
11428 scope_die, type);
11429 equate_type_number_to_die (type, type_die);
11430 if (old_die)
11431 add_AT_specification (type_die, old_die);
11432 else
11433 add_name_attribute (type_die, type_tag (type));
11434 }
11435 else
11436 remove_AT (type_die, DW_AT_declaration);
11437
11438 /* If this type has been completed, then give it a byte_size attribute and
11439 then give a list of members. */
11440 if (complete && !ns_decl)
11441 {
11442 /* Prevent infinite recursion in cases where the type of some member of
11443 this type is expressed in terms of this type itself. */
11444 TREE_ASM_WRITTEN (type) = 1;
11445 add_byte_size_attribute (type_die, type);
11446 if (TYPE_STUB_DECL (type) != NULL_TREE)
11447 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11448
11449 /* If the first reference to this type was as the return type of an
11450 inline function, then it may not have a parent. Fix this now. */
11451 if (type_die->die_parent == NULL)
11452 add_child_die (scope_die, type_die);
11453
11454 push_decl_scope (type);
11455 gen_member_die (type, type_die);
11456 pop_decl_scope ();
11457
11458 /* GNU extension: Record what type our vtable lives in. */
11459 if (TYPE_VFIELD (type))
11460 {
11461 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11462
11463 gen_type_die (vtype, context_die);
11464 add_AT_die_ref (type_die, DW_AT_containing_type,
11465 lookup_type_die (vtype));
11466 }
11467 }
11468 else
11469 {
11470 add_AT_flag (type_die, DW_AT_declaration, 1);
11471
11472 /* We don't need to do this for function-local types. */
11473 if (TYPE_STUB_DECL (type)
11474 && ! decl_function_context (TYPE_STUB_DECL (type)))
11475 VARRAY_PUSH_TREE (incomplete_types, type);
11476 }
11477 }
11478
11479 /* Generate a DIE for a subroutine _type_. */
11480
11481 static void
11482 gen_subroutine_type_die (tree type, dw_die_ref context_die)
11483 {
11484 tree return_type = TREE_TYPE (type);
11485 dw_die_ref subr_die
11486 = new_die (DW_TAG_subroutine_type,
11487 scope_die_for (type, context_die), type);
11488
11489 equate_type_number_to_die (type, subr_die);
11490 add_prototyped_attribute (subr_die, type);
11491 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11492 gen_formal_types_die (type, subr_die);
11493 }
11494
11495 /* Generate a DIE for a type definition. */
11496
11497 static void
11498 gen_typedef_die (tree decl, dw_die_ref context_die)
11499 {
11500 dw_die_ref type_die;
11501 tree origin;
11502
11503 if (TREE_ASM_WRITTEN (decl))
11504 return;
11505
11506 TREE_ASM_WRITTEN (decl) = 1;
11507 type_die = new_die (DW_TAG_typedef, context_die, decl);
11508 origin = decl_ultimate_origin (decl);
11509 if (origin != NULL)
11510 add_abstract_origin_attribute (type_die, origin);
11511 else
11512 {
11513 tree type;
11514
11515 add_name_and_src_coords_attributes (type_die, decl);
11516 if (DECL_ORIGINAL_TYPE (decl))
11517 {
11518 type = DECL_ORIGINAL_TYPE (decl);
11519
11520 if (type == TREE_TYPE (decl))
11521 abort ();
11522 else
11523 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11524 }
11525 else
11526 type = TREE_TYPE (decl);
11527
11528 add_type_attribute (type_die, type, TREE_READONLY (decl),
11529 TREE_THIS_VOLATILE (decl), context_die);
11530 }
11531
11532 if (DECL_ABSTRACT (decl))
11533 equate_decl_number_to_die (decl, type_die);
11534 }
11535
11536 /* Generate a type description DIE. */
11537
11538 static void
11539 gen_type_die (tree type, dw_die_ref context_die)
11540 {
11541 int need_pop;
11542
11543 if (type == NULL_TREE || type == error_mark_node)
11544 return;
11545
11546 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11547 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11548 {
11549 if (TREE_ASM_WRITTEN (type))
11550 return;
11551
11552 /* Prevent broken recursion; we can't hand off to the same type. */
11553 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
11554 abort ();
11555
11556 TREE_ASM_WRITTEN (type) = 1;
11557 gen_decl_die (TYPE_NAME (type), context_die);
11558 return;
11559 }
11560
11561 /* We are going to output a DIE to represent the unqualified version
11562 of this type (i.e. without any const or volatile qualifiers) so
11563 get the main variant (i.e. the unqualified version) of this type
11564 now. (Vectors are special because the debugging info is in the
11565 cloned type itself). */
11566 if (TREE_CODE (type) != VECTOR_TYPE)
11567 type = type_main_variant (type);
11568
11569 if (TREE_ASM_WRITTEN (type))
11570 return;
11571
11572 switch (TREE_CODE (type))
11573 {
11574 case ERROR_MARK:
11575 break;
11576
11577 case POINTER_TYPE:
11578 case REFERENCE_TYPE:
11579 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11580 ensures that the gen_type_die recursion will terminate even if the
11581 type is recursive. Recursive types are possible in Ada. */
11582 /* ??? We could perhaps do this for all types before the switch
11583 statement. */
11584 TREE_ASM_WRITTEN (type) = 1;
11585
11586 /* For these types, all that is required is that we output a DIE (or a
11587 set of DIEs) to represent the "basis" type. */
11588 gen_type_die (TREE_TYPE (type), context_die);
11589 break;
11590
11591 case OFFSET_TYPE:
11592 /* This code is used for C++ pointer-to-data-member types.
11593 Output a description of the relevant class type. */
11594 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
11595
11596 /* Output a description of the type of the object pointed to. */
11597 gen_type_die (TREE_TYPE (type), context_die);
11598
11599 /* Now output a DIE to represent this pointer-to-data-member type
11600 itself. */
11601 gen_ptr_to_mbr_type_die (type, context_die);
11602 break;
11603
11604 case SET_TYPE:
11605 gen_type_die (TYPE_DOMAIN (type), context_die);
11606 gen_set_type_die (type, context_die);
11607 break;
11608
11609 case FILE_TYPE:
11610 gen_type_die (TREE_TYPE (type), context_die);
11611 abort (); /* No way to represent these in Dwarf yet! */
11612 break;
11613
11614 case FUNCTION_TYPE:
11615 /* Force out return type (in case it wasn't forced out already). */
11616 gen_type_die (TREE_TYPE (type), context_die);
11617 gen_subroutine_type_die (type, context_die);
11618 break;
11619
11620 case METHOD_TYPE:
11621 /* Force out return type (in case it wasn't forced out already). */
11622 gen_type_die (TREE_TYPE (type), context_die);
11623 gen_subroutine_type_die (type, context_die);
11624 break;
11625
11626 case ARRAY_TYPE:
11627 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11628 {
11629 gen_type_die (TREE_TYPE (type), context_die);
11630 gen_string_type_die (type, context_die);
11631 }
11632 else
11633 gen_array_type_die (type, context_die);
11634 break;
11635
11636 case VECTOR_TYPE:
11637 gen_array_type_die (type, context_die);
11638 break;
11639
11640 case ENUMERAL_TYPE:
11641 case RECORD_TYPE:
11642 case UNION_TYPE:
11643 case QUAL_UNION_TYPE:
11644 /* If this is a nested type whose containing class hasn't been written
11645 out yet, writing it out will cover this one, too. This does not apply
11646 to instantiations of member class templates; they need to be added to
11647 the containing class as they are generated. FIXME: This hurts the
11648 idea of combining type decls from multiple TUs, since we can't predict
11649 what set of template instantiations we'll get. */
11650 if (TYPE_CONTEXT (type)
11651 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11652 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
11653 {
11654 gen_type_die (TYPE_CONTEXT (type), context_die);
11655
11656 if (TREE_ASM_WRITTEN (type))
11657 return;
11658
11659 /* If that failed, attach ourselves to the stub. */
11660 push_decl_scope (TYPE_CONTEXT (type));
11661 context_die = lookup_type_die (TYPE_CONTEXT (type));
11662 need_pop = 1;
11663 }
11664 else
11665 {
11666 declare_in_namespace (type, context_die);
11667 need_pop = 0;
11668 }
11669
11670 if (TREE_CODE (type) == ENUMERAL_TYPE)
11671 gen_enumeration_type_die (type, context_die);
11672 else
11673 gen_struct_or_union_type_die (type, context_die);
11674
11675 if (need_pop)
11676 pop_decl_scope ();
11677
11678 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11679 it up if it is ever completed. gen_*_type_die will set it for us
11680 when appropriate. */
11681 return;
11682
11683 case VOID_TYPE:
11684 case INTEGER_TYPE:
11685 case REAL_TYPE:
11686 case COMPLEX_TYPE:
11687 case BOOLEAN_TYPE:
11688 case CHAR_TYPE:
11689 /* No DIEs needed for fundamental types. */
11690 break;
11691
11692 case LANG_TYPE:
11693 /* No Dwarf representation currently defined. */
11694 break;
11695
11696 default:
11697 abort ();
11698 }
11699
11700 TREE_ASM_WRITTEN (type) = 1;
11701 }
11702
11703 /* Generate a DIE for a tagged type instantiation. */
11704
11705 static void
11706 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
11707 {
11708 if (type == NULL_TREE || type == error_mark_node)
11709 return;
11710
11711 /* We are going to output a DIE to represent the unqualified version of
11712 this type (i.e. without any const or volatile qualifiers) so make sure
11713 that we have the main variant (i.e. the unqualified version) of this
11714 type now. */
11715 if (type != type_main_variant (type))
11716 abort ();
11717
11718 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11719 an instance of an unresolved type. */
11720
11721 switch (TREE_CODE (type))
11722 {
11723 case ERROR_MARK:
11724 break;
11725
11726 case ENUMERAL_TYPE:
11727 gen_inlined_enumeration_type_die (type, context_die);
11728 break;
11729
11730 case RECORD_TYPE:
11731 gen_inlined_structure_type_die (type, context_die);
11732 break;
11733
11734 case UNION_TYPE:
11735 case QUAL_UNION_TYPE:
11736 gen_inlined_union_type_die (type, context_die);
11737 break;
11738
11739 default:
11740 abort ();
11741 }
11742 }
11743
11744 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11745 things which are local to the given block. */
11746
11747 static void
11748 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
11749 {
11750 int must_output_die = 0;
11751 tree origin;
11752 tree decl;
11753 enum tree_code origin_code;
11754
11755 /* Ignore blocks never really used to make RTL. */
11756 if (stmt == NULL_TREE || !TREE_USED (stmt)
11757 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
11758 return;
11759
11760 /* If the block is one fragment of a non-contiguous block, do not
11761 process the variables, since they will have been done by the
11762 origin block. Do process subblocks. */
11763 if (BLOCK_FRAGMENT_ORIGIN (stmt))
11764 {
11765 tree sub;
11766
11767 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
11768 gen_block_die (sub, context_die, depth + 1);
11769
11770 return;
11771 }
11772
11773 /* Determine the "ultimate origin" of this block. This block may be an
11774 inlined instance of an inlined instance of inline function, so we have
11775 to trace all of the way back through the origin chain to find out what
11776 sort of node actually served as the original seed for the creation of
11777 the current block. */
11778 origin = block_ultimate_origin (stmt);
11779 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
11780
11781 /* Determine if we need to output any Dwarf DIEs at all to represent this
11782 block. */
11783 if (origin_code == FUNCTION_DECL)
11784 /* The outer scopes for inlinings *must* always be represented. We
11785 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
11786 must_output_die = 1;
11787 else
11788 {
11789 /* In the case where the current block represents an inlining of the
11790 "body block" of an inline function, we must *NOT* output any DIE for
11791 this block because we have already output a DIE to represent the whole
11792 inlined function scope and the "body block" of any function doesn't
11793 really represent a different scope according to ANSI C rules. So we
11794 check here to make sure that this block does not represent a "body
11795 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
11796 if (! is_body_block (origin ? origin : stmt))
11797 {
11798 /* Determine if this block directly contains any "significant"
11799 local declarations which we will need to output DIEs for. */
11800 if (debug_info_level > DINFO_LEVEL_TERSE)
11801 /* We are not in terse mode so *any* local declaration counts
11802 as being a "significant" one. */
11803 must_output_die = (BLOCK_VARS (stmt) != NULL);
11804 else
11805 /* We are in terse mode, so only local (nested) function
11806 definitions count as "significant" local declarations. */
11807 for (decl = BLOCK_VARS (stmt);
11808 decl != NULL; decl = TREE_CHAIN (decl))
11809 if (TREE_CODE (decl) == FUNCTION_DECL
11810 && DECL_INITIAL (decl))
11811 {
11812 must_output_die = 1;
11813 break;
11814 }
11815 }
11816 }
11817
11818 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
11819 DIE for any block which contains no significant local declarations at
11820 all. Rather, in such cases we just call `decls_for_scope' so that any
11821 needed Dwarf info for any sub-blocks will get properly generated. Note
11822 that in terse mode, our definition of what constitutes a "significant"
11823 local declaration gets restricted to include only inlined function
11824 instances and local (nested) function definitions. */
11825 if (must_output_die)
11826 {
11827 if (origin_code == FUNCTION_DECL)
11828 gen_inlined_subroutine_die (stmt, context_die, depth);
11829 else
11830 gen_lexical_block_die (stmt, context_die, depth);
11831 }
11832 else
11833 decls_for_scope (stmt, context_die, depth);
11834 }
11835
11836 /* Generate all of the decls declared within a given scope and (recursively)
11837 all of its sub-blocks. */
11838
11839 static void
11840 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
11841 {
11842 tree decl;
11843 tree subblocks;
11844
11845 /* Ignore blocks never really used to make RTL. */
11846 if (stmt == NULL_TREE || ! TREE_USED (stmt))
11847 return;
11848
11849 /* Output the DIEs to represent all of the data objects and typedefs
11850 declared directly within this block but not within any nested
11851 sub-blocks. Also, nested function and tag DIEs have been
11852 generated with a parent of NULL; fix that up now. */
11853 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
11854 {
11855 dw_die_ref die;
11856
11857 if (TREE_CODE (decl) == FUNCTION_DECL)
11858 die = lookup_decl_die (decl);
11859 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
11860 die = lookup_type_die (TREE_TYPE (decl));
11861 else
11862 die = NULL;
11863
11864 if (die != NULL && die->die_parent == NULL)
11865 add_child_die (context_die, die);
11866 else
11867 gen_decl_die (decl, context_die);
11868 }
11869
11870 /* If we're at -g1, we're not interested in subblocks. */
11871 if (debug_info_level <= DINFO_LEVEL_TERSE)
11872 return;
11873
11874 /* Output the DIEs to represent all sub-blocks (and the items declared
11875 therein) of this block. */
11876 for (subblocks = BLOCK_SUBBLOCKS (stmt);
11877 subblocks != NULL;
11878 subblocks = BLOCK_CHAIN (subblocks))
11879 gen_block_die (subblocks, context_die, depth + 1);
11880 }
11881
11882 /* Is this a typedef we can avoid emitting? */
11883
11884 static inline int
11885 is_redundant_typedef (tree decl)
11886 {
11887 if (TYPE_DECL_IS_STUB (decl))
11888 return 1;
11889
11890 if (DECL_ARTIFICIAL (decl)
11891 && DECL_CONTEXT (decl)
11892 && is_tagged_type (DECL_CONTEXT (decl))
11893 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
11894 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
11895 /* Also ignore the artificial member typedef for the class name. */
11896 return 1;
11897
11898 return 0;
11899 }
11900
11901 /* Returns the DIE for decl or aborts. */
11902
11903 static dw_die_ref
11904 force_decl_die (tree decl)
11905 {
11906 dw_die_ref decl_die;
11907 unsigned saved_external_flag;
11908 tree save_fn = NULL_TREE;
11909 decl_die = lookup_decl_die (decl);
11910 if (!decl_die)
11911 {
11912 dw_die_ref context_die;
11913 tree decl_context = DECL_CONTEXT (decl);
11914 if (decl_context)
11915 {
11916 /* Find die that represents this context. */
11917 if (TYPE_P (decl_context))
11918 context_die = force_type_die (decl_context);
11919 else
11920 context_die = force_decl_die (decl_context);
11921 }
11922 else
11923 context_die = comp_unit_die;
11924
11925 switch (TREE_CODE (decl))
11926 {
11927 case FUNCTION_DECL:
11928 /* Clear current_function_decl, so that gen_subprogram_die thinks
11929 that this is a declaration. At this point, we just want to force
11930 declaration die. */
11931 save_fn = current_function_decl;
11932 current_function_decl = NULL_TREE;
11933 gen_subprogram_die (decl, context_die);
11934 current_function_decl = save_fn;
11935 break;
11936
11937 case VAR_DECL:
11938 /* Set external flag to force declaration die. Restore it after
11939 gen_decl_die() call. */
11940 saved_external_flag = DECL_EXTERNAL (decl);
11941 DECL_EXTERNAL (decl) = 1;
11942 gen_decl_die (decl, context_die);
11943 DECL_EXTERNAL (decl) = saved_external_flag;
11944 break;
11945
11946 case NAMESPACE_DECL:
11947 dwarf2out_decl (decl);
11948 break;
11949
11950 default:
11951 abort ();
11952 }
11953
11954 /* See if we can find the die for this deci now.
11955 If not then abort. */
11956 if (!decl_die)
11957 decl_die = lookup_decl_die (decl);
11958 if (!decl_die)
11959 abort ();
11960 }
11961
11962 return decl_die;
11963 }
11964
11965 /* Returns the DIE for decl or aborts. */
11966
11967 static dw_die_ref
11968 force_type_die (tree type)
11969 {
11970 dw_die_ref type_die;
11971
11972 type_die = lookup_type_die (type);
11973 if (!type_die)
11974 {
11975 dw_die_ref context_die;
11976 if (TYPE_CONTEXT (type))
11977 if (TYPE_P (TYPE_CONTEXT (type)))
11978 context_die = force_type_die (TYPE_CONTEXT (type));
11979 else
11980 context_die = force_decl_die (TYPE_CONTEXT (type));
11981 else
11982 context_die = comp_unit_die;
11983
11984 gen_type_die (type, context_die);
11985 type_die = lookup_type_die (type);
11986 if (!type_die)
11987 abort();
11988 }
11989 return type_die;
11990 }
11991
11992 /* Force out any required namespaces to be able to output DECL,
11993 and return the new context_die for it, if it's changed. */
11994
11995 static dw_die_ref
11996 setup_namespace_context (tree thing, dw_die_ref context_die)
11997 {
11998 tree context = DECL_P (thing) ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing);
11999 if (context && TREE_CODE (context) == NAMESPACE_DECL)
12000 /* Force out the namespace. */
12001 context_die = force_decl_die (context);
12002
12003 return context_die;
12004 }
12005
12006 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12007 type) within its namespace, if appropriate.
12008
12009 For compatibility with older debuggers, namespace DIEs only contain
12010 declarations; all definitions are emitted at CU scope. */
12011
12012 static void
12013 declare_in_namespace (tree thing, dw_die_ref context_die)
12014 {
12015 dw_die_ref ns_context;
12016
12017 if (debug_info_level <= DINFO_LEVEL_TERSE)
12018 return;
12019
12020 ns_context = setup_namespace_context (thing, context_die);
12021
12022 if (ns_context != context_die)
12023 {
12024 if (DECL_P (thing))
12025 gen_decl_die (thing, ns_context);
12026 else
12027 gen_type_die (thing, ns_context);
12028 }
12029 }
12030
12031 /* Generate a DIE for a namespace or namespace alias. */
12032
12033 static void
12034 gen_namespace_die (tree decl)
12035 {
12036 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12037
12038 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12039 they are an alias of. */
12040 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12041 {
12042 /* Output a real namespace. */
12043 dw_die_ref namespace_die
12044 = new_die (DW_TAG_namespace, context_die, decl);
12045 add_name_and_src_coords_attributes (namespace_die, decl);
12046 equate_decl_number_to_die (decl, namespace_die);
12047 }
12048 else
12049 {
12050 /* Output a namespace alias. */
12051
12052 /* Force out the namespace we are an alias of, if necessary. */
12053 dw_die_ref origin_die
12054 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
12055
12056 /* Now create the namespace alias DIE. */
12057 dw_die_ref namespace_die
12058 = new_die (DW_TAG_imported_declaration, context_die, decl);
12059 add_name_and_src_coords_attributes (namespace_die, decl);
12060 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12061 equate_decl_number_to_die (decl, namespace_die);
12062 }
12063 }
12064
12065 /* Generate Dwarf debug information for a decl described by DECL. */
12066
12067 static void
12068 gen_decl_die (tree decl, dw_die_ref context_die)
12069 {
12070 tree origin;
12071
12072 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12073 return;
12074
12075 switch (TREE_CODE (decl))
12076 {
12077 case ERROR_MARK:
12078 break;
12079
12080 case CONST_DECL:
12081 /* The individual enumerators of an enum type get output when we output
12082 the Dwarf representation of the relevant enum type itself. */
12083 break;
12084
12085 case FUNCTION_DECL:
12086 /* Don't output any DIEs to represent mere function declarations,
12087 unless they are class members or explicit block externs. */
12088 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12089 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12090 break;
12091
12092 /* If we're emitting a clone, emit info for the abstract instance. */
12093 if (DECL_ORIGIN (decl) != decl)
12094 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12095
12096 /* If we're emitting an out-of-line copy of an inline function,
12097 emit info for the abstract instance and set up to refer to it. */
12098 else if (cgraph_function_possibly_inlined_p (decl)
12099 && ! DECL_ABSTRACT (decl)
12100 && ! class_or_namespace_scope_p (context_die)
12101 /* dwarf2out_abstract_function won't emit a die if this is just
12102 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12103 that case, because that works only if we have a die. */
12104 && DECL_INITIAL (decl) != NULL_TREE)
12105 {
12106 dwarf2out_abstract_function (decl);
12107 set_decl_origin_self (decl);
12108 }
12109
12110 /* Otherwise we're emitting the primary DIE for this decl. */
12111 else if (debug_info_level > DINFO_LEVEL_TERSE)
12112 {
12113 /* Before we describe the FUNCTION_DECL itself, make sure that we
12114 have described its return type. */
12115 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12116
12117 /* And its virtual context. */
12118 if (DECL_VINDEX (decl) != NULL_TREE)
12119 gen_type_die (DECL_CONTEXT (decl), context_die);
12120
12121 /* And its containing type. */
12122 origin = decl_class_context (decl);
12123 if (origin != NULL_TREE)
12124 gen_type_die_for_member (origin, decl, context_die);
12125
12126 /* And its containing namespace. */
12127 declare_in_namespace (decl, context_die);
12128 }
12129
12130 /* Now output a DIE to represent the function itself. */
12131 gen_subprogram_die (decl, context_die);
12132 break;
12133
12134 case TYPE_DECL:
12135 /* If we are in terse mode, don't generate any DIEs to represent any
12136 actual typedefs. */
12137 if (debug_info_level <= DINFO_LEVEL_TERSE)
12138 break;
12139
12140 /* In the special case of a TYPE_DECL node representing the declaration
12141 of some type tag, if the given TYPE_DECL is marked as having been
12142 instantiated from some other (original) TYPE_DECL node (e.g. one which
12143 was generated within the original definition of an inline function) we
12144 have to generate a special (abbreviated) DW_TAG_structure_type,
12145 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12146 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12147 {
12148 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12149 break;
12150 }
12151
12152 if (is_redundant_typedef (decl))
12153 gen_type_die (TREE_TYPE (decl), context_die);
12154 else
12155 /* Output a DIE to represent the typedef itself. */
12156 gen_typedef_die (decl, context_die);
12157 break;
12158
12159 case LABEL_DECL:
12160 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12161 gen_label_die (decl, context_die);
12162 break;
12163
12164 case VAR_DECL:
12165 /* If we are in terse mode, don't generate any DIEs to represent any
12166 variable declarations or definitions. */
12167 if (debug_info_level <= DINFO_LEVEL_TERSE)
12168 break;
12169
12170 /* Output any DIEs that are needed to specify the type of this data
12171 object. */
12172 gen_type_die (TREE_TYPE (decl), context_die);
12173
12174 /* And its containing type. */
12175 origin = decl_class_context (decl);
12176 if (origin != NULL_TREE)
12177 gen_type_die_for_member (origin, decl, context_die);
12178
12179 /* And its containing namespace. */
12180 declare_in_namespace (decl, context_die);
12181
12182 /* Now output the DIE to represent the data object itself. This gets
12183 complicated because of the possibility that the VAR_DECL really
12184 represents an inlined instance of a formal parameter for an inline
12185 function. */
12186 origin = decl_ultimate_origin (decl);
12187 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12188 gen_formal_parameter_die (decl, context_die);
12189 else
12190 gen_variable_die (decl, context_die);
12191 break;
12192
12193 case FIELD_DECL:
12194 /* Ignore the nameless fields that are used to skip bits but handle C++
12195 anonymous unions. */
12196 if (DECL_NAME (decl) != NULL_TREE
12197 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
12198 {
12199 gen_type_die (member_declared_type (decl), context_die);
12200 gen_field_die (decl, context_die);
12201 }
12202 break;
12203
12204 case PARM_DECL:
12205 gen_type_die (TREE_TYPE (decl), context_die);
12206 gen_formal_parameter_die (decl, context_die);
12207 break;
12208
12209 case NAMESPACE_DECL:
12210 gen_namespace_die (decl);
12211 break;
12212
12213 default:
12214 if ((int)TREE_CODE (decl) > NUM_TREE_CODES)
12215 /* Probably some frontend-internal decl. Assume we don't care. */
12216 break;
12217 abort ();
12218 }
12219 }
12220 \f
12221 /* Add Ada "use" clause information for SGI Workshop debugger. */
12222
12223 void
12224 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
12225 {
12226 unsigned int file_index;
12227
12228 if (filename != NULL)
12229 {
12230 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12231 tree context_list_decl
12232 = build_decl (LABEL_DECL, get_identifier (context_list),
12233 void_type_node);
12234
12235 TREE_PUBLIC (context_list_decl) = TRUE;
12236 add_name_attribute (unit_die, context_list);
12237 file_index = lookup_filename (filename);
12238 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12239 add_pubname (context_list_decl, unit_die);
12240 }
12241 }
12242
12243 /* Output debug information for global decl DECL. Called from toplev.c after
12244 compilation proper has finished. */
12245
12246 static void
12247 dwarf2out_global_decl (tree decl)
12248 {
12249 /* Output DWARF2 information for file-scope tentative data object
12250 declarations, file-scope (extern) function declarations (which had no
12251 corresponding body) and file-scope tagged type declarations and
12252 definitions which have not yet been forced out. */
12253 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12254 dwarf2out_decl (decl);
12255 }
12256
12257 /* Output debug information for imported module or decl. */
12258
12259 static void
12260 dwarf2out_imported_module_or_decl (tree decl, tree context)
12261 {
12262 dw_die_ref imported_die, at_import_die;
12263 dw_die_ref scope_die;
12264 unsigned file_index;
12265
12266 if (debug_info_level <= DINFO_LEVEL_TERSE)
12267 return;
12268
12269 if (!decl)
12270 abort ();
12271
12272 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
12273 We need decl DIE for reference and scope die. First, get DIE for the decl
12274 itself. */
12275
12276 /* Get the scope die for decl context. Use comp_unit_die for global module
12277 or decl. If die is not found for non globals, force new die. */
12278 if (!context)
12279 scope_die = comp_unit_die;
12280 else if (TYPE_P (context))
12281 scope_die = force_type_die (context);
12282 else
12283 scope_die = force_decl_die (context);
12284
12285 /* For TYPE_DECL, lookup TREE_TYPE. */
12286 if (TREE_CODE (decl) == TYPE_DECL)
12287 at_import_die = force_type_die (TREE_TYPE (decl));
12288 else
12289 at_import_die = force_decl_die (decl);
12290
12291 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
12292 if (TREE_CODE (decl) == NAMESPACE_DECL)
12293 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
12294 else
12295 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
12296
12297 file_index = lookup_filename (input_filename);
12298 add_AT_unsigned (imported_die, DW_AT_decl_file, file_index);
12299 add_AT_unsigned (imported_die, DW_AT_decl_line, input_line);
12300 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
12301 }
12302
12303 /* Write the debugging output for DECL. */
12304
12305 void
12306 dwarf2out_decl (tree decl)
12307 {
12308 dw_die_ref context_die = comp_unit_die;
12309
12310 switch (TREE_CODE (decl))
12311 {
12312 case ERROR_MARK:
12313 return;
12314
12315 case FUNCTION_DECL:
12316 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
12317 builtin function. Explicit programmer-supplied declarations of
12318 these same functions should NOT be ignored however. */
12319 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
12320 return;
12321
12322 /* What we would really like to do here is to filter out all mere
12323 file-scope declarations of file-scope functions which are never
12324 referenced later within this translation unit (and keep all of ones
12325 that *are* referenced later on) but we aren't clairvoyant, so we have
12326 no idea which functions will be referenced in the future (i.e. later
12327 on within the current translation unit). So here we just ignore all
12328 file-scope function declarations which are not also definitions. If
12329 and when the debugger needs to know something about these functions,
12330 it will have to hunt around and find the DWARF information associated
12331 with the definition of the function.
12332
12333 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12334 nodes represent definitions and which ones represent mere
12335 declarations. We have to check DECL_INITIAL instead. That's because
12336 the C front-end supports some weird semantics for "extern inline"
12337 function definitions. These can get inlined within the current
12338 translation unit (an thus, we need to generate Dwarf info for their
12339 abstract instances so that the Dwarf info for the concrete inlined
12340 instances can have something to refer to) but the compiler never
12341 generates any out-of-lines instances of such things (despite the fact
12342 that they *are* definitions).
12343
12344 The important point is that the C front-end marks these "extern
12345 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12346 them anyway. Note that the C++ front-end also plays some similar games
12347 for inline function definitions appearing within include files which
12348 also contain `#pragma interface' pragmas. */
12349 if (DECL_INITIAL (decl) == NULL_TREE)
12350 return;
12351
12352 /* If we're a nested function, initially use a parent of NULL; if we're
12353 a plain function, this will be fixed up in decls_for_scope. If
12354 we're a method, it will be ignored, since we already have a DIE. */
12355 if (decl_function_context (decl)
12356 /* But if we're in terse mode, we don't care about scope. */
12357 && debug_info_level > DINFO_LEVEL_TERSE)
12358 context_die = NULL;
12359 break;
12360
12361 case VAR_DECL:
12362 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12363 declaration and if the declaration was never even referenced from
12364 within this entire compilation unit. We suppress these DIEs in
12365 order to save space in the .debug section (by eliminating entries
12366 which are probably useless). Note that we must not suppress
12367 block-local extern declarations (whether used or not) because that
12368 would screw-up the debugger's name lookup mechanism and cause it to
12369 miss things which really ought to be in scope at a given point. */
12370 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12371 return;
12372
12373 /* If we are in terse mode, don't generate any DIEs to represent any
12374 variable declarations or definitions. */
12375 if (debug_info_level <= DINFO_LEVEL_TERSE)
12376 return;
12377 break;
12378
12379 case NAMESPACE_DECL:
12380 if (debug_info_level <= DINFO_LEVEL_TERSE)
12381 return;
12382 if (lookup_decl_die (decl) != NULL)
12383 return;
12384 break;
12385
12386 case TYPE_DECL:
12387 /* Don't emit stubs for types unless they are needed by other DIEs. */
12388 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12389 return;
12390
12391 /* Don't bother trying to generate any DIEs to represent any of the
12392 normal built-in types for the language we are compiling. */
12393 if (DECL_SOURCE_LINE (decl) == 0)
12394 {
12395 /* OK, we need to generate one for `bool' so GDB knows what type
12396 comparisons have. */
12397 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12398 == DW_LANG_C_plus_plus)
12399 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12400 && ! DECL_IGNORED_P (decl))
12401 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12402
12403 return;
12404 }
12405
12406 /* If we are in terse mode, don't generate any DIEs for types. */
12407 if (debug_info_level <= DINFO_LEVEL_TERSE)
12408 return;
12409
12410 /* If we're a function-scope tag, initially use a parent of NULL;
12411 this will be fixed up in decls_for_scope. */
12412 if (decl_function_context (decl))
12413 context_die = NULL;
12414
12415 break;
12416
12417 default:
12418 return;
12419 }
12420
12421 gen_decl_die (decl, context_die);
12422 }
12423
12424 /* Output a marker (i.e. a label) for the beginning of the generated code for
12425 a lexical block. */
12426
12427 static void
12428 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
12429 unsigned int blocknum)
12430 {
12431 function_section (current_function_decl);
12432 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12433 }
12434
12435 /* Output a marker (i.e. a label) for the end of the generated code for a
12436 lexical block. */
12437
12438 static void
12439 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
12440 {
12441 function_section (current_function_decl);
12442 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12443 }
12444
12445 /* Returns nonzero if it is appropriate not to emit any debugging
12446 information for BLOCK, because it doesn't contain any instructions.
12447
12448 Don't allow this for blocks with nested functions or local classes
12449 as we would end up with orphans, and in the presence of scheduling
12450 we may end up calling them anyway. */
12451
12452 static bool
12453 dwarf2out_ignore_block (tree block)
12454 {
12455 tree decl;
12456
12457 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12458 if (TREE_CODE (decl) == FUNCTION_DECL
12459 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12460 return 0;
12461
12462 return 1;
12463 }
12464
12465 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12466 dwarf2out.c) and return its "index". The index of each (known) filename is
12467 just a unique number which is associated with only that one filename. We
12468 need such numbers for the sake of generating labels (in the .debug_sfnames
12469 section) and references to those files numbers (in the .debug_srcinfo
12470 and.debug_macinfo sections). If the filename given as an argument is not
12471 found in our current list, add it to the list and assign it the next
12472 available unique index number. In order to speed up searches, we remember
12473 the index of the filename was looked up last. This handles the majority of
12474 all searches. */
12475
12476 static unsigned
12477 lookup_filename (const char *file_name)
12478 {
12479 size_t i, n;
12480 char *save_file_name;
12481
12482 /* Check to see if the file name that was searched on the previous
12483 call matches this file name. If so, return the index. */
12484 if (file_table_last_lookup_index != 0)
12485 {
12486 const char *last
12487 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12488 if (strcmp (file_name, last) == 0)
12489 return file_table_last_lookup_index;
12490 }
12491
12492 /* Didn't match the previous lookup, search the table */
12493 n = VARRAY_ACTIVE_SIZE (file_table);
12494 for (i = 1; i < n; i++)
12495 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12496 {
12497 file_table_last_lookup_index = i;
12498 return i;
12499 }
12500
12501 /* Add the new entry to the end of the filename table. */
12502 file_table_last_lookup_index = n;
12503 save_file_name = (char *) ggc_strdup (file_name);
12504 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12505 VARRAY_PUSH_UINT (file_table_emitted, 0);
12506
12507 return i;
12508 }
12509
12510 static int
12511 maybe_emit_file (int fileno)
12512 {
12513 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12514 {
12515 if (!VARRAY_UINT (file_table_emitted, fileno))
12516 {
12517 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12518 fprintf (asm_out_file, "\t.file %u ",
12519 VARRAY_UINT (file_table_emitted, fileno));
12520 output_quoted_string (asm_out_file,
12521 VARRAY_CHAR_PTR (file_table, fileno));
12522 fputc ('\n', asm_out_file);
12523 }
12524 return VARRAY_UINT (file_table_emitted, fileno);
12525 }
12526 else
12527 return fileno;
12528 }
12529
12530 static void
12531 init_file_table (void)
12532 {
12533 /* Allocate the initial hunk of the file_table. */
12534 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
12535 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
12536
12537 /* Skip the first entry - file numbers begin at 1. */
12538 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
12539 VARRAY_PUSH_UINT (file_table_emitted, 0);
12540 file_table_last_lookup_index = 0;
12541 }
12542
12543 /* Output a label to mark the beginning of a source code line entry
12544 and record information relating to this source line, in
12545 'line_info_table' for later output of the .debug_line section. */
12546
12547 static void
12548 dwarf2out_source_line (unsigned int line, const char *filename)
12549 {
12550 if (debug_info_level >= DINFO_LEVEL_NORMAL
12551 && line != 0)
12552 {
12553 function_section (current_function_decl);
12554
12555 /* If requested, emit something human-readable. */
12556 if (flag_debug_asm)
12557 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
12558 filename, line);
12559
12560 if (DWARF2_ASM_LINE_DEBUG_INFO)
12561 {
12562 unsigned file_num = lookup_filename (filename);
12563
12564 file_num = maybe_emit_file (file_num);
12565
12566 /* Emit the .loc directive understood by GNU as. */
12567 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
12568
12569 /* Indicate that line number info exists. */
12570 line_info_table_in_use++;
12571
12572 /* Indicate that multiple line number tables exist. */
12573 if (DECL_SECTION_NAME (current_function_decl))
12574 separate_line_info_table_in_use++;
12575 }
12576 else if (DECL_SECTION_NAME (current_function_decl))
12577 {
12578 dw_separate_line_info_ref line_info;
12579 (*targetm.asm_out.internal_label) (asm_out_file, SEPARATE_LINE_CODE_LABEL,
12580 separate_line_info_table_in_use);
12581
12582 /* expand the line info table if necessary */
12583 if (separate_line_info_table_in_use
12584 == separate_line_info_table_allocated)
12585 {
12586 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12587 separate_line_info_table
12588 = ggc_realloc (separate_line_info_table,
12589 separate_line_info_table_allocated
12590 * sizeof (dw_separate_line_info_entry));
12591 memset (separate_line_info_table
12592 + separate_line_info_table_in_use,
12593 0,
12594 (LINE_INFO_TABLE_INCREMENT
12595 * sizeof (dw_separate_line_info_entry)));
12596 }
12597
12598 /* Add the new entry at the end of the line_info_table. */
12599 line_info
12600 = &separate_line_info_table[separate_line_info_table_in_use++];
12601 line_info->dw_file_num = lookup_filename (filename);
12602 line_info->dw_line_num = line;
12603 line_info->function = current_function_funcdef_no;
12604 }
12605 else
12606 {
12607 dw_line_info_ref line_info;
12608
12609 (*targetm.asm_out.internal_label) (asm_out_file, LINE_CODE_LABEL,
12610 line_info_table_in_use);
12611
12612 /* Expand the line info table if necessary. */
12613 if (line_info_table_in_use == line_info_table_allocated)
12614 {
12615 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12616 line_info_table
12617 = ggc_realloc (line_info_table,
12618 (line_info_table_allocated
12619 * sizeof (dw_line_info_entry)));
12620 memset (line_info_table + line_info_table_in_use, 0,
12621 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
12622 }
12623
12624 /* Add the new entry at the end of the line_info_table. */
12625 line_info = &line_info_table[line_info_table_in_use++];
12626 line_info->dw_file_num = lookup_filename (filename);
12627 line_info->dw_line_num = line;
12628 }
12629 }
12630 }
12631
12632 /* Record the beginning of a new source file. */
12633
12634 static void
12635 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
12636 {
12637 if (flag_eliminate_dwarf2_dups)
12638 {
12639 /* Record the beginning of the file for break_out_includes. */
12640 dw_die_ref bincl_die;
12641
12642 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
12643 add_AT_string (bincl_die, DW_AT_name, filename);
12644 }
12645
12646 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12647 {
12648 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12649 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
12650 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
12651 lineno);
12652 maybe_emit_file (lookup_filename (filename));
12653 dw2_asm_output_data_uleb128 (lookup_filename (filename),
12654 "Filename we just started");
12655 }
12656 }
12657
12658 /* Record the end of a source file. */
12659
12660 static void
12661 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
12662 {
12663 if (flag_eliminate_dwarf2_dups)
12664 /* Record the end of the file for break_out_includes. */
12665 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
12666
12667 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12668 {
12669 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12670 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12671 }
12672 }
12673
12674 /* Called from debug_define in toplev.c. The `buffer' parameter contains
12675 the tail part of the directive line, i.e. the part which is past the
12676 initial whitespace, #, whitespace, directive-name, whitespace part. */
12677
12678 static void
12679 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
12680 const char *buffer ATTRIBUTE_UNUSED)
12681 {
12682 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12683 {
12684 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12685 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
12686 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12687 dw2_asm_output_nstring (buffer, -1, "The macro");
12688 }
12689 }
12690
12691 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
12692 the tail part of the directive line, i.e. the part which is past the
12693 initial whitespace, #, whitespace, directive-name, whitespace part. */
12694
12695 static void
12696 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
12697 const char *buffer ATTRIBUTE_UNUSED)
12698 {
12699 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12700 {
12701 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12702 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
12703 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12704 dw2_asm_output_nstring (buffer, -1, "The macro");
12705 }
12706 }
12707
12708 /* Set up for Dwarf output at the start of compilation. */
12709
12710 static void
12711 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
12712 {
12713 init_file_table ();
12714
12715 /* Allocate the initial hunk of the decl_die_table. */
12716 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
12717 decl_die_table_eq, NULL);
12718
12719 /* Allocate the initial hunk of the decl_scope_table. */
12720 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
12721
12722 /* Allocate the initial hunk of the abbrev_die_table. */
12723 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
12724 * sizeof (dw_die_ref));
12725 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
12726 /* Zero-th entry is allocated, but unused */
12727 abbrev_die_table_in_use = 1;
12728
12729 /* Allocate the initial hunk of the line_info_table. */
12730 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
12731 * sizeof (dw_line_info_entry));
12732 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
12733
12734 /* Zero-th entry is allocated, but unused */
12735 line_info_table_in_use = 1;
12736
12737 /* Generate the initial DIE for the .debug section. Note that the (string)
12738 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
12739 will (typically) be a relative pathname and that this pathname should be
12740 taken as being relative to the directory from which the compiler was
12741 invoked when the given (base) source file was compiled. We will fill
12742 in this value in dwarf2out_finish. */
12743 comp_unit_die = gen_compile_unit_die (NULL);
12744
12745 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
12746
12747 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
12748
12749 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
12750 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
12751 DEBUG_ABBREV_SECTION_LABEL, 0);
12752 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12753 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
12754 else
12755 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
12756
12757 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
12758 DEBUG_INFO_SECTION_LABEL, 0);
12759 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
12760 DEBUG_LINE_SECTION_LABEL, 0);
12761 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
12762 DEBUG_RANGES_SECTION_LABEL, 0);
12763 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12764 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
12765 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
12766 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
12767 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12768 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
12769
12770 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12771 {
12772 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12773 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
12774 DEBUG_MACINFO_SECTION_LABEL, 0);
12775 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
12776 }
12777
12778 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12779 {
12780 text_section ();
12781 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
12782 }
12783 }
12784
12785 /* A helper function for dwarf2out_finish called through
12786 ht_forall. Emit one queued .debug_str string. */
12787
12788 static int
12789 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
12790 {
12791 struct indirect_string_node *node = (struct indirect_string_node *) *h;
12792
12793 if (node->form == DW_FORM_strp)
12794 {
12795 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
12796 ASM_OUTPUT_LABEL (asm_out_file, node->label);
12797 assemble_string (node->str, strlen (node->str) + 1);
12798 }
12799
12800 return 1;
12801 }
12802
12803
12804
12805 /* Clear the marks for a die and its children.
12806 Be cool if the mark isn't set. */
12807
12808 static void
12809 prune_unmark_dies (dw_die_ref die)
12810 {
12811 dw_die_ref c;
12812 die->die_mark = 0;
12813 for (c = die->die_child; c; c = c->die_sib)
12814 prune_unmark_dies (c);
12815 }
12816
12817
12818 /* Given DIE that we're marking as used, find any other dies
12819 it references as attributes and mark them as used. */
12820
12821 static void
12822 prune_unused_types_walk_attribs (dw_die_ref die)
12823 {
12824 dw_attr_ref a;
12825
12826 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
12827 {
12828 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
12829 {
12830 /* A reference to another DIE.
12831 Make sure that it will get emitted. */
12832 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
12833 }
12834 else if (a->dw_attr == DW_AT_decl_file)
12835 {
12836 /* A reference to a file. Make sure the file name is emitted. */
12837 a->dw_attr_val.v.val_unsigned =
12838 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
12839 }
12840 }
12841 }
12842
12843
12844 /* Mark DIE as being used. If DOKIDS is true, then walk down
12845 to DIE's children. */
12846
12847 static void
12848 prune_unused_types_mark (dw_die_ref die, int dokids)
12849 {
12850 dw_die_ref c;
12851
12852 if (die->die_mark == 0)
12853 {
12854 /* We haven't done this node yet. Mark it as used. */
12855 die->die_mark = 1;
12856
12857 /* We also have to mark its parents as used.
12858 (But we don't want to mark our parents' kids due to this.) */
12859 if (die->die_parent)
12860 prune_unused_types_mark (die->die_parent, 0);
12861
12862 /* Mark any referenced nodes. */
12863 prune_unused_types_walk_attribs (die);
12864
12865 /* If this node is a specification,
12866 also mark the definition, if it exists. */
12867 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
12868 prune_unused_types_mark (die->die_definition, 1);
12869 }
12870
12871 if (dokids && die->die_mark != 2)
12872 {
12873 /* We need to walk the children, but haven't done so yet.
12874 Remember that we've walked the kids. */
12875 die->die_mark = 2;
12876
12877 /* Walk them. */
12878 for (c = die->die_child; c; c = c->die_sib)
12879 {
12880 /* If this is an array type, we need to make sure our
12881 kids get marked, even if they're types. */
12882 if (die->die_tag == DW_TAG_array_type)
12883 prune_unused_types_mark (c, 1);
12884 else
12885 prune_unused_types_walk (c);
12886 }
12887 }
12888 }
12889
12890
12891 /* Walk the tree DIE and mark types that we actually use. */
12892
12893 static void
12894 prune_unused_types_walk (dw_die_ref die)
12895 {
12896 dw_die_ref c;
12897
12898 /* Don't do anything if this node is already marked. */
12899 if (die->die_mark)
12900 return;
12901
12902 switch (die->die_tag) {
12903 case DW_TAG_const_type:
12904 case DW_TAG_packed_type:
12905 case DW_TAG_pointer_type:
12906 case DW_TAG_reference_type:
12907 case DW_TAG_volatile_type:
12908 case DW_TAG_typedef:
12909 case DW_TAG_array_type:
12910 case DW_TAG_structure_type:
12911 case DW_TAG_union_type:
12912 case DW_TAG_class_type:
12913 case DW_TAG_friend:
12914 case DW_TAG_variant_part:
12915 case DW_TAG_enumeration_type:
12916 case DW_TAG_subroutine_type:
12917 case DW_TAG_string_type:
12918 case DW_TAG_set_type:
12919 case DW_TAG_subrange_type:
12920 case DW_TAG_ptr_to_member_type:
12921 case DW_TAG_file_type:
12922 /* It's a type node --- don't mark it. */
12923 return;
12924
12925 default:
12926 /* Mark everything else. */
12927 break;
12928 }
12929
12930 die->die_mark = 1;
12931
12932 /* Now, mark any dies referenced from here. */
12933 prune_unused_types_walk_attribs (die);
12934
12935 /* Mark children. */
12936 for (c = die->die_child; c; c = c->die_sib)
12937 prune_unused_types_walk (c);
12938 }
12939
12940
12941 /* Remove from the tree DIE any dies that aren't marked. */
12942
12943 static void
12944 prune_unused_types_prune (dw_die_ref die)
12945 {
12946 dw_die_ref c, p, n;
12947 if (!die->die_mark)
12948 abort();
12949
12950 p = NULL;
12951 for (c = die->die_child; c; c = n)
12952 {
12953 n = c->die_sib;
12954 if (c->die_mark)
12955 {
12956 prune_unused_types_prune (c);
12957 p = c;
12958 }
12959 else
12960 {
12961 if (p)
12962 p->die_sib = n;
12963 else
12964 die->die_child = n;
12965 free_die (c);
12966 }
12967 }
12968 }
12969
12970
12971 /* Remove dies representing declarations that we never use. */
12972
12973 static void
12974 prune_unused_types (void)
12975 {
12976 unsigned int i;
12977 limbo_die_node *node;
12978
12979 /* Clear all the marks. */
12980 prune_unmark_dies (comp_unit_die);
12981 for (node = limbo_die_list; node; node = node->next)
12982 prune_unmark_dies (node->die);
12983
12984 /* Set the mark on nodes that are actually used. */
12985 prune_unused_types_walk (comp_unit_die);
12986 for (node = limbo_die_list; node; node = node->next)
12987 prune_unused_types_walk (node->die);
12988
12989 /* Also set the mark on nodes referenced from the
12990 pubname_table or arange_table. */
12991 for (i = 0; i < pubname_table_in_use; i++)
12992 prune_unused_types_mark (pubname_table[i].die, 1);
12993 for (i = 0; i < arange_table_in_use; i++)
12994 prune_unused_types_mark (arange_table[i], 1);
12995
12996 /* Get rid of nodes that aren't marked. */
12997 prune_unused_types_prune (comp_unit_die);
12998 for (node = limbo_die_list; node; node = node->next)
12999 prune_unused_types_prune (node->die);
13000
13001 /* Leave the marks clear. */
13002 prune_unmark_dies (comp_unit_die);
13003 for (node = limbo_die_list; node; node = node->next)
13004 prune_unmark_dies (node->die);
13005 }
13006
13007 /* Output stuff that dwarf requires at the end of every file,
13008 and generate the DWARF-2 debugging info. */
13009
13010 static void
13011 dwarf2out_finish (const char *filename)
13012 {
13013 limbo_die_node *node, *next_node;
13014 dw_die_ref die = 0;
13015
13016 /* Add the name for the main input file now. We delayed this from
13017 dwarf2out_init to avoid complications with PCH. */
13018 add_name_attribute (comp_unit_die, filename);
13019 if (filename[0] != DIR_SEPARATOR)
13020 add_comp_dir_attribute (comp_unit_die);
13021 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13022 {
13023 size_t i;
13024 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13025 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
13026 /* Don't add cwd for <built-in>. */
13027 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
13028 {
13029 add_comp_dir_attribute (comp_unit_die);
13030 break;
13031 }
13032 }
13033
13034 /* Traverse the limbo die list, and add parent/child links. The only
13035 dies without parents that should be here are concrete instances of
13036 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13037 For concrete instances, we can get the parent die from the abstract
13038 instance. */
13039 for (node = limbo_die_list; node; node = next_node)
13040 {
13041 next_node = node->next;
13042 die = node->die;
13043
13044 if (die->die_parent == NULL)
13045 {
13046 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13047 tree context;
13048
13049 if (origin)
13050 add_child_die (origin->die_parent, die);
13051 else if (die == comp_unit_die)
13052 ;
13053 /* If this was an expression for a bound involved in a function
13054 return type, it may be a SAVE_EXPR for which we weren't able
13055 to find a DIE previously. So try now. */
13056 else if (node->created_for
13057 && TREE_CODE (node->created_for) == SAVE_EXPR
13058 && 0 != (origin = (lookup_decl_die
13059 (SAVE_EXPR_CONTEXT
13060 (node->created_for)))))
13061 add_child_die (origin, die);
13062 else if (errorcount > 0 || sorrycount > 0)
13063 /* It's OK to be confused by errors in the input. */
13064 add_child_die (comp_unit_die, die);
13065 else if (node->created_for
13066 && ((DECL_P (node->created_for)
13067 && (context = DECL_CONTEXT (node->created_for)))
13068 || (TYPE_P (node->created_for)
13069 && (context = TYPE_CONTEXT (node->created_for))))
13070 && TREE_CODE (context) == FUNCTION_DECL)
13071 {
13072 /* In certain situations, the lexical block containing a
13073 nested function can be optimized away, which results
13074 in the nested function die being orphaned. Likewise
13075 with the return type of that nested function. Force
13076 this to be a child of the containing function. */
13077 origin = lookup_decl_die (context);
13078 if (! origin)
13079 abort ();
13080 add_child_die (origin, die);
13081 }
13082 else
13083 abort ();
13084 }
13085 }
13086
13087 limbo_die_list = NULL;
13088
13089 /* Walk through the list of incomplete types again, trying once more to
13090 emit full debugging info for them. */
13091 retry_incomplete_types ();
13092
13093 /* We need to reverse all the dies before break_out_includes, or
13094 we'll see the end of an include file before the beginning. */
13095 reverse_all_dies (comp_unit_die);
13096
13097 if (flag_eliminate_unused_debug_types)
13098 prune_unused_types ();
13099
13100 /* Generate separate CUs for each of the include files we've seen.
13101 They will go into limbo_die_list. */
13102 if (flag_eliminate_dwarf2_dups)
13103 break_out_includes (comp_unit_die);
13104
13105 /* Traverse the DIE's and add add sibling attributes to those DIE's
13106 that have children. */
13107 add_sibling_attributes (comp_unit_die);
13108 for (node = limbo_die_list; node; node = node->next)
13109 add_sibling_attributes (node->die);
13110
13111 /* Output a terminator label for the .text section. */
13112 text_section ();
13113 (*targetm.asm_out.internal_label) (asm_out_file, TEXT_END_LABEL, 0);
13114
13115 /* Output the source line correspondence table. We must do this
13116 even if there is no line information. Otherwise, on an empty
13117 translation unit, we will generate a present, but empty,
13118 .debug_info section. IRIX 6.5 `nm' will then complain when
13119 examining the file. */
13120 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13121 {
13122 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13123 output_line_info ();
13124 }
13125
13126 /* Output location list section if necessary. */
13127 if (have_location_lists)
13128 {
13129 /* Output the location lists info. */
13130 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13131 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13132 DEBUG_LOC_SECTION_LABEL, 0);
13133 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13134 output_location_lists (die);
13135 have_location_lists = 0;
13136 }
13137
13138 /* We can only use the low/high_pc attributes if all of the code was
13139 in .text. */
13140 if (separate_line_info_table_in_use == 0)
13141 {
13142 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13143 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13144 }
13145
13146 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13147 "base address". Use zero so that these addresses become absolute. */
13148 else if (have_location_lists || ranges_table_in_use)
13149 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13150
13151 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13152 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13153 debug_line_section_label);
13154
13155 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13156 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13157
13158 /* Output all of the compilation units. We put the main one last so that
13159 the offsets are available to output_pubnames. */
13160 for (node = limbo_die_list; node; node = node->next)
13161 output_comp_unit (node->die, 0);
13162
13163 output_comp_unit (comp_unit_die, 0);
13164
13165 /* Output the abbreviation table. */
13166 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13167 output_abbrev_section ();
13168
13169 /* Output public names table if necessary. */
13170 if (pubname_table_in_use)
13171 {
13172 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13173 output_pubnames ();
13174 }
13175
13176 /* Output the address range information. We only put functions in the arange
13177 table, so don't write it out if we don't have any. */
13178 if (fde_table_in_use)
13179 {
13180 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13181 output_aranges ();
13182 }
13183
13184 /* Output ranges section if necessary. */
13185 if (ranges_table_in_use)
13186 {
13187 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13188 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13189 output_ranges ();
13190 }
13191
13192 /* Have to end the primary source file. */
13193 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13194 {
13195 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13196 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13197 dw2_asm_output_data (1, 0, "End compilation unit");
13198 }
13199
13200 /* If we emitted any DW_FORM_strp form attribute, output the string
13201 table too. */
13202 if (debug_str_hash)
13203 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13204 }
13205 #else
13206
13207 /* This should never be used, but its address is needed for comparisons. */
13208 const struct gcc_debug_hooks dwarf2_debug_hooks;
13209
13210 #endif /* DWARF2_DEBUGGING_INFO */
13211
13212 #include "gt-dwarf2out.h"