* dwarf2out.c (multiple_reg_loc_descriptor): Fix thinko.
[gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "real.h"
44 #include "rtl.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "reload.h"
49 #include "function.h"
50 #include "output.h"
51 #include "expr.h"
52 #include "libfuncs.h"
53 #include "except.h"
54 #include "dwarf2.h"
55 #include "dwarf2out.h"
56 #include "dwarf2asm.h"
57 #include "toplev.h"
58 #include "varray.h"
59 #include "ggc.h"
60 #include "md5.h"
61 #include "tm_p.h"
62 #include "diagnostic.h"
63 #include "debug.h"
64 #include "target.h"
65 #include "langhooks.h"
66 #include "hashtab.h"
67
68 #ifdef DWARF2_DEBUGGING_INFO
69 static void dwarf2out_source_line PARAMS ((unsigned int, const char *));
70 #endif
71
72 /* DWARF2 Abbreviation Glossary:
73 CFA = Canonical Frame Address
74 a fixed address on the stack which identifies a call frame.
75 We define it to be the value of SP just before the call insn.
76 The CFA register and offset, which may change during the course
77 of the function, are used to calculate its value at runtime.
78 CFI = Call Frame Instruction
79 an instruction for the DWARF2 abstract machine
80 CIE = Common Information Entry
81 information describing information common to one or more FDEs
82 DIE = Debugging Information Entry
83 FDE = Frame Description Entry
84 information describing the stack call frame, in particular,
85 how to restore registers
86
87 DW_CFA_... = DWARF2 CFA call frame instruction
88 DW_TAG_... = DWARF2 DIE tag */
89
90 /* Decide whether we want to emit frame unwind information for the current
91 translation unit. */
92
93 int
94 dwarf2out_do_frame ()
95 {
96 return (write_symbols == DWARF2_DEBUG
97 || write_symbols == VMS_AND_DWARF2_DEBUG
98 #ifdef DWARF2_FRAME_INFO
99 || DWARF2_FRAME_INFO
100 #endif
101 #ifdef DWARF2_UNWIND_INFO
102 || flag_unwind_tables
103 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
104 #endif
105 );
106 }
107
108 /* The size of the target's pointer type. */
109 #ifndef PTR_SIZE
110 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
111 #endif
112
113 /* Default version of targetm.eh_frame_section. Note this must appear
114 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro
115 guards. */
116
117 void
118 default_eh_frame_section ()
119 {
120 #ifdef EH_FRAME_SECTION_NAME
121 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
122 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
123 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
124 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
125 int flags;
126
127 flags = (! flag_pic
128 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
129 && (fde_encoding & 0x70) != DW_EH_PE_aligned
130 && (per_encoding & 0x70) != DW_EH_PE_absptr
131 && (per_encoding & 0x70) != DW_EH_PE_aligned
132 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
133 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
134 ? 0 : SECTION_WRITE;
135 named_section_flags (EH_FRAME_SECTION_NAME, flags);
136 #else
137 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
138 #endif
139 #else
140 tree label = get_file_function_name ('F');
141
142 data_section ();
143 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
144 (*targetm.asm_out.globalize_label) (asm_out_file, IDENTIFIER_POINTER (label));
145 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
146 #endif
147 }
148
149 /* Array of RTXes referenced by the debugging information, which therefore
150 must be kept around forever. */
151 static GTY(()) varray_type used_rtx_varray;
152
153 /* A pointer to the base of a list of incomplete types which might be
154 completed at some later time. incomplete_types_list needs to be a VARRAY
155 because we want to tell the garbage collector about it. */
156 static GTY(()) varray_type incomplete_types;
157
158 /* A pointer to the base of a table of references to declaration
159 scopes. This table is a display which tracks the nesting
160 of declaration scopes at the current scope and containing
161 scopes. This table is used to find the proper place to
162 define type declaration DIE's. */
163 static GTY(()) varray_type decl_scope_table;
164
165 /* How to start an assembler comment. */
166 #ifndef ASM_COMMENT_START
167 #define ASM_COMMENT_START ";#"
168 #endif
169
170 typedef struct dw_cfi_struct *dw_cfi_ref;
171 typedef struct dw_fde_struct *dw_fde_ref;
172 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
173
174 /* Call frames are described using a sequence of Call Frame
175 Information instructions. The register number, offset
176 and address fields are provided as possible operands;
177 their use is selected by the opcode field. */
178
179 enum dw_cfi_oprnd_type {
180 dw_cfi_oprnd_unused,
181 dw_cfi_oprnd_reg_num,
182 dw_cfi_oprnd_offset,
183 dw_cfi_oprnd_addr,
184 dw_cfi_oprnd_loc
185 };
186
187 typedef union dw_cfi_oprnd_struct GTY(())
188 {
189 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
190 long int GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
191 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
192 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
193 }
194 dw_cfi_oprnd;
195
196 typedef struct dw_cfi_struct GTY(())
197 {
198 dw_cfi_ref dw_cfi_next;
199 enum dwarf_call_frame_info dw_cfi_opc;
200 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
201 dw_cfi_oprnd1;
202 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
203 dw_cfi_oprnd2;
204 }
205 dw_cfi_node;
206
207 /* This is how we define the location of the CFA. We use to handle it
208 as REG + OFFSET all the time, but now it can be more complex.
209 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
210 Instead of passing around REG and OFFSET, we pass a copy
211 of this structure. */
212 typedef struct cfa_loc GTY(())
213 {
214 unsigned long reg;
215 long offset;
216 long base_offset;
217 int indirect; /* 1 if CFA is accessed via a dereference. */
218 } dw_cfa_location;
219
220 /* All call frame descriptions (FDE's) in the GCC generated DWARF
221 refer to a single Common Information Entry (CIE), defined at
222 the beginning of the .debug_frame section. This use of a single
223 CIE obviates the need to keep track of multiple CIE's
224 in the DWARF generation routines below. */
225
226 typedef struct dw_fde_struct GTY(())
227 {
228 const char *dw_fde_begin;
229 const char *dw_fde_current_label;
230 const char *dw_fde_end;
231 dw_cfi_ref dw_fde_cfi;
232 unsigned funcdef_number;
233 unsigned all_throwers_are_sibcalls : 1;
234 unsigned nothrow : 1;
235 unsigned uses_eh_lsda : 1;
236 }
237 dw_fde_node;
238
239 /* Maximum size (in bytes) of an artificially generated label. */
240 #define MAX_ARTIFICIAL_LABEL_BYTES 30
241
242 /* The size of addresses as they appear in the Dwarf 2 data.
243 Some architectures use word addresses to refer to code locations,
244 but Dwarf 2 info always uses byte addresses. On such machines,
245 Dwarf 2 addresses need to be larger than the architecture's
246 pointers. */
247 #ifndef DWARF2_ADDR_SIZE
248 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
249 #endif
250
251 /* The size in bytes of a DWARF field indicating an offset or length
252 relative to a debug info section, specified to be 4 bytes in the
253 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
254 as PTR_SIZE. */
255
256 #ifndef DWARF_OFFSET_SIZE
257 #define DWARF_OFFSET_SIZE 4
258 #endif
259
260 #define DWARF_VERSION 2
261
262 /* Round SIZE up to the nearest BOUNDARY. */
263 #define DWARF_ROUND(SIZE,BOUNDARY) \
264 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
265
266 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
267 #ifndef DWARF_CIE_DATA_ALIGNMENT
268 #ifdef STACK_GROWS_DOWNWARD
269 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
270 #else
271 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
272 #endif
273 #endif
274
275 /* A pointer to the base of a table that contains frame description
276 information for each routine. */
277 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
278
279 /* Number of elements currently allocated for fde_table. */
280 static unsigned fde_table_allocated;
281
282 /* Number of elements in fde_table currently in use. */
283 static GTY(()) unsigned fde_table_in_use;
284
285 /* Size (in elements) of increments by which we may expand the
286 fde_table. */
287 #define FDE_TABLE_INCREMENT 256
288
289 /* A list of call frame insns for the CIE. */
290 static GTY(()) dw_cfi_ref cie_cfi_head;
291
292 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
293 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
294 attribute that accelerates the lookup of the FDE associated
295 with the subprogram. This variable holds the table index of the FDE
296 associated with the current function (body) definition. */
297 static unsigned current_funcdef_fde;
298 #endif
299
300 struct indirect_string_node GTY(())
301 {
302 const char *str;
303 unsigned int refcount;
304 unsigned int form;
305 char *label;
306 };
307
308 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
309
310 static GTY(()) int dw2_string_counter;
311 static GTY(()) unsigned long dwarf2out_cfi_label_num;
312
313 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
314
315 /* Forward declarations for functions defined in this file. */
316
317 static char *stripattributes PARAMS ((const char *));
318 static const char *dwarf_cfi_name PARAMS ((unsigned));
319 static dw_cfi_ref new_cfi PARAMS ((void));
320 static void add_cfi PARAMS ((dw_cfi_ref *, dw_cfi_ref));
321 static void add_fde_cfi PARAMS ((const char *, dw_cfi_ref));
322 static void lookup_cfa_1 PARAMS ((dw_cfi_ref,
323 dw_cfa_location *));
324 static void lookup_cfa PARAMS ((dw_cfa_location *));
325 static void reg_save PARAMS ((const char *, unsigned,
326 unsigned, long));
327 static void initial_return_save PARAMS ((rtx));
328 static long stack_adjust_offset PARAMS ((rtx));
329 static void output_cfi PARAMS ((dw_cfi_ref, dw_fde_ref, int));
330 static void output_call_frame_info PARAMS ((int));
331 static void dwarf2out_stack_adjust PARAMS ((rtx));
332 static void queue_reg_save PARAMS ((const char *, rtx, long));
333 static void flush_queued_reg_saves PARAMS ((void));
334 static bool clobbers_queued_reg_save PARAMS ((rtx));
335 static void dwarf2out_frame_debug_expr PARAMS ((rtx, const char *));
336
337 /* Support for complex CFA locations. */
338 static void output_cfa_loc PARAMS ((dw_cfi_ref));
339 static void get_cfa_from_loc_descr PARAMS ((dw_cfa_location *,
340 struct dw_loc_descr_struct *));
341 static struct dw_loc_descr_struct *build_cfa_loc
342 PARAMS ((dw_cfa_location *));
343 static void def_cfa_1 PARAMS ((const char *,
344 dw_cfa_location *));
345
346 /* How to start an assembler comment. */
347 #ifndef ASM_COMMENT_START
348 #define ASM_COMMENT_START ";#"
349 #endif
350
351 /* Data and reference forms for relocatable data. */
352 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
353 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
354
355 #ifndef DEBUG_FRAME_SECTION
356 #define DEBUG_FRAME_SECTION ".debug_frame"
357 #endif
358
359 #ifndef FUNC_BEGIN_LABEL
360 #define FUNC_BEGIN_LABEL "LFB"
361 #endif
362
363 #ifndef FUNC_END_LABEL
364 #define FUNC_END_LABEL "LFE"
365 #endif
366
367 #define FRAME_BEGIN_LABEL "Lframe"
368 #define CIE_AFTER_SIZE_LABEL "LSCIE"
369 #define CIE_END_LABEL "LECIE"
370 #define FDE_LABEL "LSFDE"
371 #define FDE_AFTER_SIZE_LABEL "LASFDE"
372 #define FDE_END_LABEL "LEFDE"
373 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
374 #define LINE_NUMBER_END_LABEL "LELT"
375 #define LN_PROLOG_AS_LABEL "LASLTP"
376 #define LN_PROLOG_END_LABEL "LELTP"
377 #define DIE_LABEL_PREFIX "DW"
378
379 /* The DWARF 2 CFA column which tracks the return address. Normally this
380 is the column for PC, or the first column after all of the hard
381 registers. */
382 #ifndef DWARF_FRAME_RETURN_COLUMN
383 #ifdef PC_REGNUM
384 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
385 #else
386 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
387 #endif
388 #endif
389
390 /* The mapping from gcc register number to DWARF 2 CFA column number. By
391 default, we just provide columns for all registers. */
392 #ifndef DWARF_FRAME_REGNUM
393 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
394 #endif
395
396 /* The offset from the incoming value of %sp to the top of the stack frame
397 for the current function. */
398 #ifndef INCOMING_FRAME_SP_OFFSET
399 #define INCOMING_FRAME_SP_OFFSET 0
400 #endif
401 \f
402 /* Hook used by __throw. */
403
404 rtx
405 expand_builtin_dwarf_fp_regnum ()
406 {
407 return GEN_INT (DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM));
408 }
409
410 /* Return a pointer to a copy of the section string name S with all
411 attributes stripped off, and an asterisk prepended (for assemble_name). */
412
413 static inline char *
414 stripattributes (s)
415 const char *s;
416 {
417 char *stripped = xmalloc (strlen (s) + 2);
418 char *p = stripped;
419
420 *p++ = '*';
421
422 while (*s && *s != ',')
423 *p++ = *s++;
424
425 *p = '\0';
426 return stripped;
427 }
428
429 /* Generate code to initialize the register size table. */
430
431 void
432 expand_builtin_init_dwarf_reg_sizes (address)
433 tree address;
434 {
435 int i;
436 enum machine_mode mode = TYPE_MODE (char_type_node);
437 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
438 rtx mem = gen_rtx_MEM (BLKmode, addr);
439
440 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
441 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
442 {
443 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
444 HOST_WIDE_INT size = GET_MODE_SIZE (reg_raw_mode[i]);
445
446 if (offset < 0)
447 continue;
448
449 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
450 }
451 }
452
453 /* Convert a DWARF call frame info. operation to its string name */
454
455 static const char *
456 dwarf_cfi_name (cfi_opc)
457 unsigned cfi_opc;
458 {
459 switch (cfi_opc)
460 {
461 case DW_CFA_advance_loc:
462 return "DW_CFA_advance_loc";
463 case DW_CFA_offset:
464 return "DW_CFA_offset";
465 case DW_CFA_restore:
466 return "DW_CFA_restore";
467 case DW_CFA_nop:
468 return "DW_CFA_nop";
469 case DW_CFA_set_loc:
470 return "DW_CFA_set_loc";
471 case DW_CFA_advance_loc1:
472 return "DW_CFA_advance_loc1";
473 case DW_CFA_advance_loc2:
474 return "DW_CFA_advance_loc2";
475 case DW_CFA_advance_loc4:
476 return "DW_CFA_advance_loc4";
477 case DW_CFA_offset_extended:
478 return "DW_CFA_offset_extended";
479 case DW_CFA_restore_extended:
480 return "DW_CFA_restore_extended";
481 case DW_CFA_undefined:
482 return "DW_CFA_undefined";
483 case DW_CFA_same_value:
484 return "DW_CFA_same_value";
485 case DW_CFA_register:
486 return "DW_CFA_register";
487 case DW_CFA_remember_state:
488 return "DW_CFA_remember_state";
489 case DW_CFA_restore_state:
490 return "DW_CFA_restore_state";
491 case DW_CFA_def_cfa:
492 return "DW_CFA_def_cfa";
493 case DW_CFA_def_cfa_register:
494 return "DW_CFA_def_cfa_register";
495 case DW_CFA_def_cfa_offset:
496 return "DW_CFA_def_cfa_offset";
497
498 /* DWARF 3 */
499 case DW_CFA_def_cfa_expression:
500 return "DW_CFA_def_cfa_expression";
501 case DW_CFA_expression:
502 return "DW_CFA_expression";
503 case DW_CFA_offset_extended_sf:
504 return "DW_CFA_offset_extended_sf";
505 case DW_CFA_def_cfa_sf:
506 return "DW_CFA_def_cfa_sf";
507 case DW_CFA_def_cfa_offset_sf:
508 return "DW_CFA_def_cfa_offset_sf";
509
510 /* SGI/MIPS specific */
511 case DW_CFA_MIPS_advance_loc8:
512 return "DW_CFA_MIPS_advance_loc8";
513
514 /* GNU extensions */
515 case DW_CFA_GNU_window_save:
516 return "DW_CFA_GNU_window_save";
517 case DW_CFA_GNU_args_size:
518 return "DW_CFA_GNU_args_size";
519 case DW_CFA_GNU_negative_offset_extended:
520 return "DW_CFA_GNU_negative_offset_extended";
521
522 default:
523 return "DW_CFA_<unknown>";
524 }
525 }
526
527 /* Return a pointer to a newly allocated Call Frame Instruction. */
528
529 static inline dw_cfi_ref
530 new_cfi ()
531 {
532 dw_cfi_ref cfi = (dw_cfi_ref) ggc_alloc (sizeof (dw_cfi_node));
533
534 cfi->dw_cfi_next = NULL;
535 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
536 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
537
538 return cfi;
539 }
540
541 /* Add a Call Frame Instruction to list of instructions. */
542
543 static inline void
544 add_cfi (list_head, cfi)
545 dw_cfi_ref *list_head;
546 dw_cfi_ref cfi;
547 {
548 dw_cfi_ref *p;
549
550 /* Find the end of the chain. */
551 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
552 ;
553
554 *p = cfi;
555 }
556
557 /* Generate a new label for the CFI info to refer to. */
558
559 char *
560 dwarf2out_cfi_label ()
561 {
562 static char label[20];
563
564 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
565 ASM_OUTPUT_LABEL (asm_out_file, label);
566 return label;
567 }
568
569 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
570 or to the CIE if LABEL is NULL. */
571
572 static void
573 add_fde_cfi (label, cfi)
574 const char *label;
575 dw_cfi_ref cfi;
576 {
577 if (label)
578 {
579 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
580
581 if (*label == 0)
582 label = dwarf2out_cfi_label ();
583
584 if (fde->dw_fde_current_label == NULL
585 || strcmp (label, fde->dw_fde_current_label) != 0)
586 {
587 dw_cfi_ref xcfi;
588
589 fde->dw_fde_current_label = label = xstrdup (label);
590
591 /* Set the location counter to the new label. */
592 xcfi = new_cfi ();
593 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
594 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
595 add_cfi (&fde->dw_fde_cfi, xcfi);
596 }
597
598 add_cfi (&fde->dw_fde_cfi, cfi);
599 }
600
601 else
602 add_cfi (&cie_cfi_head, cfi);
603 }
604
605 /* Subroutine of lookup_cfa. */
606
607 static inline void
608 lookup_cfa_1 (cfi, loc)
609 dw_cfi_ref cfi;
610 dw_cfa_location *loc;
611 {
612 switch (cfi->dw_cfi_opc)
613 {
614 case DW_CFA_def_cfa_offset:
615 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
616 break;
617 case DW_CFA_def_cfa_register:
618 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
619 break;
620 case DW_CFA_def_cfa:
621 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
622 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
623 break;
624 case DW_CFA_def_cfa_expression:
625 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
626 break;
627 default:
628 break;
629 }
630 }
631
632 /* Find the previous value for the CFA. */
633
634 static void
635 lookup_cfa (loc)
636 dw_cfa_location *loc;
637 {
638 dw_cfi_ref cfi;
639
640 loc->reg = (unsigned long) -1;
641 loc->offset = 0;
642 loc->indirect = 0;
643 loc->base_offset = 0;
644
645 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
646 lookup_cfa_1 (cfi, loc);
647
648 if (fde_table_in_use)
649 {
650 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
651 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
652 lookup_cfa_1 (cfi, loc);
653 }
654 }
655
656 /* The current rule for calculating the DWARF2 canonical frame address. */
657 static dw_cfa_location cfa;
658
659 /* The register used for saving registers to the stack, and its offset
660 from the CFA. */
661 static dw_cfa_location cfa_store;
662
663 /* The running total of the size of arguments pushed onto the stack. */
664 static long args_size;
665
666 /* The last args_size we actually output. */
667 static long old_args_size;
668
669 /* Entry point to update the canonical frame address (CFA).
670 LABEL is passed to add_fde_cfi. The value of CFA is now to be
671 calculated from REG+OFFSET. */
672
673 void
674 dwarf2out_def_cfa (label, reg, offset)
675 const char *label;
676 unsigned reg;
677 long offset;
678 {
679 dw_cfa_location loc;
680 loc.indirect = 0;
681 loc.base_offset = 0;
682 loc.reg = reg;
683 loc.offset = offset;
684 def_cfa_1 (label, &loc);
685 }
686
687 /* This routine does the actual work. The CFA is now calculated from
688 the dw_cfa_location structure. */
689
690 static void
691 def_cfa_1 (label, loc_p)
692 const char *label;
693 dw_cfa_location *loc_p;
694 {
695 dw_cfi_ref cfi;
696 dw_cfa_location old_cfa, loc;
697
698 cfa = *loc_p;
699 loc = *loc_p;
700
701 if (cfa_store.reg == loc.reg && loc.indirect == 0)
702 cfa_store.offset = loc.offset;
703
704 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
705 lookup_cfa (&old_cfa);
706
707 /* If nothing changed, no need to issue any call frame instructions. */
708 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
709 && loc.indirect == old_cfa.indirect
710 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
711 return;
712
713 cfi = new_cfi ();
714
715 if (loc.reg == old_cfa.reg && !loc.indirect)
716 {
717 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
718 indicating the CFA register did not change but the offset
719 did. */
720 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
721 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
722 }
723
724 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
725 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
726 && !loc.indirect)
727 {
728 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
729 indicating the CFA register has changed to <register> but the
730 offset has not changed. */
731 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
732 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
733 }
734 #endif
735
736 else if (loc.indirect == 0)
737 {
738 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
739 indicating the CFA register has changed to <register> with
740 the specified offset. */
741 cfi->dw_cfi_opc = DW_CFA_def_cfa;
742 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
743 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
744 }
745 else
746 {
747 /* Construct a DW_CFA_def_cfa_expression instruction to
748 calculate the CFA using a full location expression since no
749 register-offset pair is available. */
750 struct dw_loc_descr_struct *loc_list;
751
752 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
753 loc_list = build_cfa_loc (&loc);
754 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
755 }
756
757 add_fde_cfi (label, cfi);
758 }
759
760 /* Add the CFI for saving a register. REG is the CFA column number.
761 LABEL is passed to add_fde_cfi.
762 If SREG is -1, the register is saved at OFFSET from the CFA;
763 otherwise it is saved in SREG. */
764
765 static void
766 reg_save (label, reg, sreg, offset)
767 const char *label;
768 unsigned reg;
769 unsigned sreg;
770 long offset;
771 {
772 dw_cfi_ref cfi = new_cfi ();
773
774 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
775
776 /* The following comparison is correct. -1 is used to indicate that
777 the value isn't a register number. */
778 if (sreg == (unsigned int) -1)
779 {
780 if (reg & ~0x3f)
781 /* The register number won't fit in 6 bits, so we have to use
782 the long form. */
783 cfi->dw_cfi_opc = DW_CFA_offset_extended;
784 else
785 cfi->dw_cfi_opc = DW_CFA_offset;
786
787 #ifdef ENABLE_CHECKING
788 {
789 /* If we get an offset that is not a multiple of
790 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
791 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
792 description. */
793 long check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
794
795 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
796 abort ();
797 }
798 #endif
799 offset /= DWARF_CIE_DATA_ALIGNMENT;
800 if (offset < 0)
801 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
802
803 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
804 }
805 else if (sreg == reg)
806 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
807 return;
808 else
809 {
810 cfi->dw_cfi_opc = DW_CFA_register;
811 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
812 }
813
814 add_fde_cfi (label, cfi);
815 }
816
817 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
818 This CFI tells the unwinder that it needs to restore the window registers
819 from the previous frame's window save area.
820
821 ??? Perhaps we should note in the CIE where windows are saved (instead of
822 assuming 0(cfa)) and what registers are in the window. */
823
824 void
825 dwarf2out_window_save (label)
826 const char *label;
827 {
828 dw_cfi_ref cfi = new_cfi ();
829
830 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
831 add_fde_cfi (label, cfi);
832 }
833
834 /* Add a CFI to update the running total of the size of arguments
835 pushed onto the stack. */
836
837 void
838 dwarf2out_args_size (label, size)
839 const char *label;
840 long size;
841 {
842 dw_cfi_ref cfi;
843
844 if (size == old_args_size)
845 return;
846
847 old_args_size = size;
848
849 cfi = new_cfi ();
850 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
851 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
852 add_fde_cfi (label, cfi);
853 }
854
855 /* Entry point for saving a register to the stack. REG is the GCC register
856 number. LABEL and OFFSET are passed to reg_save. */
857
858 void
859 dwarf2out_reg_save (label, reg, offset)
860 const char *label;
861 unsigned reg;
862 long offset;
863 {
864 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
865 }
866
867 /* Entry point for saving the return address in the stack.
868 LABEL and OFFSET are passed to reg_save. */
869
870 void
871 dwarf2out_return_save (label, offset)
872 const char *label;
873 long offset;
874 {
875 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
876 }
877
878 /* Entry point for saving the return address in a register.
879 LABEL and SREG are passed to reg_save. */
880
881 void
882 dwarf2out_return_reg (label, sreg)
883 const char *label;
884 unsigned sreg;
885 {
886 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
887 }
888
889 /* Record the initial position of the return address. RTL is
890 INCOMING_RETURN_ADDR_RTX. */
891
892 static void
893 initial_return_save (rtl)
894 rtx rtl;
895 {
896 unsigned int reg = (unsigned int) -1;
897 HOST_WIDE_INT offset = 0;
898
899 switch (GET_CODE (rtl))
900 {
901 case REG:
902 /* RA is in a register. */
903 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
904 break;
905
906 case MEM:
907 /* RA is on the stack. */
908 rtl = XEXP (rtl, 0);
909 switch (GET_CODE (rtl))
910 {
911 case REG:
912 if (REGNO (rtl) != STACK_POINTER_REGNUM)
913 abort ();
914 offset = 0;
915 break;
916
917 case PLUS:
918 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
919 abort ();
920 offset = INTVAL (XEXP (rtl, 1));
921 break;
922
923 case MINUS:
924 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
925 abort ();
926 offset = -INTVAL (XEXP (rtl, 1));
927 break;
928
929 default:
930 abort ();
931 }
932
933 break;
934
935 case PLUS:
936 /* The return address is at some offset from any value we can
937 actually load. For instance, on the SPARC it is in %i7+8. Just
938 ignore the offset for now; it doesn't matter for unwinding frames. */
939 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
940 abort ();
941 initial_return_save (XEXP (rtl, 0));
942 return;
943
944 default:
945 abort ();
946 }
947
948 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
949 }
950
951 /* Given a SET, calculate the amount of stack adjustment it
952 contains. */
953
954 static long
955 stack_adjust_offset (pattern)
956 rtx pattern;
957 {
958 rtx src = SET_SRC (pattern);
959 rtx dest = SET_DEST (pattern);
960 HOST_WIDE_INT offset = 0;
961 enum rtx_code code;
962
963 if (dest == stack_pointer_rtx)
964 {
965 /* (set (reg sp) (plus (reg sp) (const_int))) */
966 code = GET_CODE (src);
967 if (! (code == PLUS || code == MINUS)
968 || XEXP (src, 0) != stack_pointer_rtx
969 || GET_CODE (XEXP (src, 1)) != CONST_INT)
970 return 0;
971
972 offset = INTVAL (XEXP (src, 1));
973 if (code == PLUS)
974 offset = -offset;
975 }
976 else if (GET_CODE (dest) == MEM)
977 {
978 /* (set (mem (pre_dec (reg sp))) (foo)) */
979 src = XEXP (dest, 0);
980 code = GET_CODE (src);
981
982 switch (code)
983 {
984 case PRE_MODIFY:
985 case POST_MODIFY:
986 if (XEXP (src, 0) == stack_pointer_rtx)
987 {
988 rtx val = XEXP (XEXP (src, 1), 1);
989 /* We handle only adjustments by constant amount. */
990 if (GET_CODE (XEXP (src, 1)) != PLUS ||
991 GET_CODE (val) != CONST_INT)
992 abort ();
993 offset = -INTVAL (val);
994 break;
995 }
996 return 0;
997
998 case PRE_DEC:
999 case POST_DEC:
1000 if (XEXP (src, 0) == stack_pointer_rtx)
1001 {
1002 offset = GET_MODE_SIZE (GET_MODE (dest));
1003 break;
1004 }
1005 return 0;
1006
1007 case PRE_INC:
1008 case POST_INC:
1009 if (XEXP (src, 0) == stack_pointer_rtx)
1010 {
1011 offset = -GET_MODE_SIZE (GET_MODE (dest));
1012 break;
1013 }
1014 return 0;
1015
1016 default:
1017 return 0;
1018 }
1019 }
1020 else
1021 return 0;
1022
1023 return offset;
1024 }
1025
1026 /* Check INSN to see if it looks like a push or a stack adjustment, and
1027 make a note of it if it does. EH uses this information to find out how
1028 much extra space it needs to pop off the stack. */
1029
1030 static void
1031 dwarf2out_stack_adjust (insn)
1032 rtx insn;
1033 {
1034 HOST_WIDE_INT offset;
1035 const char *label;
1036 int i;
1037
1038 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1039 {
1040 /* Extract the size of the args from the CALL rtx itself. */
1041 insn = PATTERN (insn);
1042 if (GET_CODE (insn) == PARALLEL)
1043 insn = XVECEXP (insn, 0, 0);
1044 if (GET_CODE (insn) == SET)
1045 insn = SET_SRC (insn);
1046 if (GET_CODE (insn) != CALL)
1047 abort ();
1048
1049 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1050 return;
1051 }
1052
1053 /* If only calls can throw, and we have a frame pointer,
1054 save up adjustments until we see the CALL_INSN. */
1055 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1056 return;
1057
1058 if (GET_CODE (insn) == BARRIER)
1059 {
1060 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1061 the compiler will have already emitted a stack adjustment, but
1062 doesn't bother for calls to noreturn functions. */
1063 #ifdef STACK_GROWS_DOWNWARD
1064 offset = -args_size;
1065 #else
1066 offset = args_size;
1067 #endif
1068 }
1069 else if (GET_CODE (PATTERN (insn)) == SET)
1070 offset = stack_adjust_offset (PATTERN (insn));
1071 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1072 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1073 {
1074 /* There may be stack adjustments inside compound insns. Search
1075 for them. */
1076 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1077 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1078 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1079 }
1080 else
1081 return;
1082
1083 if (offset == 0)
1084 return;
1085
1086 if (cfa.reg == STACK_POINTER_REGNUM)
1087 cfa.offset += offset;
1088
1089 #ifndef STACK_GROWS_DOWNWARD
1090 offset = -offset;
1091 #endif
1092
1093 args_size += offset;
1094 if (args_size < 0)
1095 args_size = 0;
1096
1097 label = dwarf2out_cfi_label ();
1098 def_cfa_1 (label, &cfa);
1099 dwarf2out_args_size (label, args_size);
1100 }
1101
1102 #endif
1103
1104 /* We delay emitting a register save until either (a) we reach the end
1105 of the prologue or (b) the register is clobbered. This clusters
1106 register saves so that there are fewer pc advances. */
1107
1108 struct queued_reg_save GTY(())
1109 {
1110 struct queued_reg_save *next;
1111 rtx reg;
1112 long cfa_offset;
1113 };
1114
1115 static GTY(()) struct queued_reg_save *queued_reg_saves;
1116
1117 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1118 static const char *last_reg_save_label;
1119
1120 static void
1121 queue_reg_save (label, reg, offset)
1122 const char *label;
1123 rtx reg;
1124 long offset;
1125 {
1126 struct queued_reg_save *q = ggc_alloc (sizeof (*q));
1127
1128 q->next = queued_reg_saves;
1129 q->reg = reg;
1130 q->cfa_offset = offset;
1131 queued_reg_saves = q;
1132
1133 last_reg_save_label = label;
1134 }
1135
1136 static void
1137 flush_queued_reg_saves ()
1138 {
1139 struct queued_reg_save *q, *next;
1140
1141 for (q = queued_reg_saves; q; q = next)
1142 {
1143 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1144 next = q->next;
1145 }
1146
1147 queued_reg_saves = NULL;
1148 last_reg_save_label = NULL;
1149 }
1150
1151 static bool
1152 clobbers_queued_reg_save (insn)
1153 rtx insn;
1154 {
1155 struct queued_reg_save *q;
1156
1157 for (q = queued_reg_saves; q; q = q->next)
1158 if (modified_in_p (q->reg, insn))
1159 return true;
1160
1161 return false;
1162 }
1163
1164
1165 /* A temporary register holding an integral value used in adjusting SP
1166 or setting up the store_reg. The "offset" field holds the integer
1167 value, not an offset. */
1168 static dw_cfa_location cfa_temp;
1169
1170 /* Record call frame debugging information for an expression EXPR,
1171 which either sets SP or FP (adjusting how we calculate the frame
1172 address) or saves a register to the stack. LABEL indicates the
1173 address of EXPR.
1174
1175 This function encodes a state machine mapping rtxes to actions on
1176 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1177 users need not read the source code.
1178
1179 The High-Level Picture
1180
1181 Changes in the register we use to calculate the CFA: Currently we
1182 assume that if you copy the CFA register into another register, we
1183 should take the other one as the new CFA register; this seems to
1184 work pretty well. If it's wrong for some target, it's simple
1185 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1186
1187 Changes in the register we use for saving registers to the stack:
1188 This is usually SP, but not always. Again, we deduce that if you
1189 copy SP into another register (and SP is not the CFA register),
1190 then the new register is the one we will be using for register
1191 saves. This also seems to work.
1192
1193 Register saves: There's not much guesswork about this one; if
1194 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1195 register save, and the register used to calculate the destination
1196 had better be the one we think we're using for this purpose.
1197
1198 Except: If the register being saved is the CFA register, and the
1199 offset is nonzero, we are saving the CFA, so we assume we have to
1200 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1201 the intent is to save the value of SP from the previous frame.
1202
1203 Invariants / Summaries of Rules
1204
1205 cfa current rule for calculating the CFA. It usually
1206 consists of a register and an offset.
1207 cfa_store register used by prologue code to save things to the stack
1208 cfa_store.offset is the offset from the value of
1209 cfa_store.reg to the actual CFA
1210 cfa_temp register holding an integral value. cfa_temp.offset
1211 stores the value, which will be used to adjust the
1212 stack pointer. cfa_temp is also used like cfa_store,
1213 to track stores to the stack via fp or a temp reg.
1214
1215 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1216 with cfa.reg as the first operand changes the cfa.reg and its
1217 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1218 cfa_temp.offset.
1219
1220 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1221 expression yielding a constant. This sets cfa_temp.reg
1222 and cfa_temp.offset.
1223
1224 Rule 5: Create a new register cfa_store used to save items to the
1225 stack.
1226
1227 Rules 10-14: Save a register to the stack. Define offset as the
1228 difference of the original location and cfa_store's
1229 location (or cfa_temp's location if cfa_temp is used).
1230
1231 The Rules
1232
1233 "{a,b}" indicates a choice of a xor b.
1234 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1235
1236 Rule 1:
1237 (set <reg1> <reg2>:cfa.reg)
1238 effects: cfa.reg = <reg1>
1239 cfa.offset unchanged
1240 cfa_temp.reg = <reg1>
1241 cfa_temp.offset = cfa.offset
1242
1243 Rule 2:
1244 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1245 {<const_int>,<reg>:cfa_temp.reg}))
1246 effects: cfa.reg = sp if fp used
1247 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1248 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1249 if cfa_store.reg==sp
1250
1251 Rule 3:
1252 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1253 effects: cfa.reg = fp
1254 cfa_offset += +/- <const_int>
1255
1256 Rule 4:
1257 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1258 constraints: <reg1> != fp
1259 <reg1> != sp
1260 effects: cfa.reg = <reg1>
1261 cfa_temp.reg = <reg1>
1262 cfa_temp.offset = cfa.offset
1263
1264 Rule 5:
1265 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1266 constraints: <reg1> != fp
1267 <reg1> != sp
1268 effects: cfa_store.reg = <reg1>
1269 cfa_store.offset = cfa.offset - cfa_temp.offset
1270
1271 Rule 6:
1272 (set <reg> <const_int>)
1273 effects: cfa_temp.reg = <reg>
1274 cfa_temp.offset = <const_int>
1275
1276 Rule 7:
1277 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1278 effects: cfa_temp.reg = <reg1>
1279 cfa_temp.offset |= <const_int>
1280
1281 Rule 8:
1282 (set <reg> (high <exp>))
1283 effects: none
1284
1285 Rule 9:
1286 (set <reg> (lo_sum <exp> <const_int>))
1287 effects: cfa_temp.reg = <reg>
1288 cfa_temp.offset = <const_int>
1289
1290 Rule 10:
1291 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1292 effects: cfa_store.offset -= <const_int>
1293 cfa.offset = cfa_store.offset if cfa.reg == sp
1294 cfa.reg = sp
1295 cfa.base_offset = -cfa_store.offset
1296
1297 Rule 11:
1298 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1299 effects: cfa_store.offset += -/+ mode_size(mem)
1300 cfa.offset = cfa_store.offset if cfa.reg == sp
1301 cfa.reg = sp
1302 cfa.base_offset = -cfa_store.offset
1303
1304 Rule 12:
1305 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1306
1307 <reg2>)
1308 effects: cfa.reg = <reg1>
1309 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1310
1311 Rule 13:
1312 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1313 effects: cfa.reg = <reg1>
1314 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1315
1316 Rule 14:
1317 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1318 effects: cfa.reg = <reg1>
1319 cfa.base_offset = -cfa_temp.offset
1320 cfa_temp.offset -= mode_size(mem) */
1321
1322 static void
1323 dwarf2out_frame_debug_expr (expr, label)
1324 rtx expr;
1325 const char *label;
1326 {
1327 rtx src, dest;
1328 HOST_WIDE_INT offset;
1329
1330 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1331 the PARALLEL independently. The first element is always processed if
1332 it is a SET. This is for backward compatibility. Other elements
1333 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1334 flag is set in them. */
1335 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1336 {
1337 int par_index;
1338 int limit = XVECLEN (expr, 0);
1339
1340 for (par_index = 0; par_index < limit; par_index++)
1341 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1342 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1343 || par_index == 0))
1344 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1345
1346 return;
1347 }
1348
1349 if (GET_CODE (expr) != SET)
1350 abort ();
1351
1352 src = SET_SRC (expr);
1353 dest = SET_DEST (expr);
1354
1355 switch (GET_CODE (dest))
1356 {
1357 case REG:
1358 /* Rule 1 */
1359 /* Update the CFA rule wrt SP or FP. Make sure src is
1360 relative to the current CFA register. */
1361 switch (GET_CODE (src))
1362 {
1363 /* Setting FP from SP. */
1364 case REG:
1365 if (cfa.reg == (unsigned) REGNO (src))
1366 /* OK. */
1367 ;
1368 else
1369 abort ();
1370
1371 /* We used to require that dest be either SP or FP, but the
1372 ARM copies SP to a temporary register, and from there to
1373 FP. So we just rely on the backends to only set
1374 RTX_FRAME_RELATED_P on appropriate insns. */
1375 cfa.reg = REGNO (dest);
1376 cfa_temp.reg = cfa.reg;
1377 cfa_temp.offset = cfa.offset;
1378 break;
1379
1380 case PLUS:
1381 case MINUS:
1382 case LO_SUM:
1383 if (dest == stack_pointer_rtx)
1384 {
1385 /* Rule 2 */
1386 /* Adjusting SP. */
1387 switch (GET_CODE (XEXP (src, 1)))
1388 {
1389 case CONST_INT:
1390 offset = INTVAL (XEXP (src, 1));
1391 break;
1392 case REG:
1393 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1394 abort ();
1395 offset = cfa_temp.offset;
1396 break;
1397 default:
1398 abort ();
1399 }
1400
1401 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1402 {
1403 /* Restoring SP from FP in the epilogue. */
1404 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1405 abort ();
1406 cfa.reg = STACK_POINTER_REGNUM;
1407 }
1408 else if (GET_CODE (src) == LO_SUM)
1409 /* Assume we've set the source reg of the LO_SUM from sp. */
1410 ;
1411 else if (XEXP (src, 0) != stack_pointer_rtx)
1412 abort ();
1413
1414 if (GET_CODE (src) != MINUS)
1415 offset = -offset;
1416 if (cfa.reg == STACK_POINTER_REGNUM)
1417 cfa.offset += offset;
1418 if (cfa_store.reg == STACK_POINTER_REGNUM)
1419 cfa_store.offset += offset;
1420 }
1421 else if (dest == hard_frame_pointer_rtx)
1422 {
1423 /* Rule 3 */
1424 /* Either setting the FP from an offset of the SP,
1425 or adjusting the FP */
1426 if (! frame_pointer_needed)
1427 abort ();
1428
1429 if (GET_CODE (XEXP (src, 0)) == REG
1430 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1431 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1432 {
1433 offset = INTVAL (XEXP (src, 1));
1434 if (GET_CODE (src) != MINUS)
1435 offset = -offset;
1436 cfa.offset += offset;
1437 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1438 }
1439 else
1440 abort ();
1441 }
1442 else
1443 {
1444 if (GET_CODE (src) == MINUS)
1445 abort ();
1446
1447 /* Rule 4 */
1448 if (GET_CODE (XEXP (src, 0)) == REG
1449 && REGNO (XEXP (src, 0)) == cfa.reg
1450 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1451 {
1452 /* Setting a temporary CFA register that will be copied
1453 into the FP later on. */
1454 offset = - INTVAL (XEXP (src, 1));
1455 cfa.offset += offset;
1456 cfa.reg = REGNO (dest);
1457 /* Or used to save regs to the stack. */
1458 cfa_temp.reg = cfa.reg;
1459 cfa_temp.offset = cfa.offset;
1460 }
1461
1462 /* Rule 5 */
1463 else if (GET_CODE (XEXP (src, 0)) == REG
1464 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1465 && XEXP (src, 1) == stack_pointer_rtx)
1466 {
1467 /* Setting a scratch register that we will use instead
1468 of SP for saving registers to the stack. */
1469 if (cfa.reg != STACK_POINTER_REGNUM)
1470 abort ();
1471 cfa_store.reg = REGNO (dest);
1472 cfa_store.offset = cfa.offset - cfa_temp.offset;
1473 }
1474
1475 /* Rule 9 */
1476 else if (GET_CODE (src) == LO_SUM
1477 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1478 {
1479 cfa_temp.reg = REGNO (dest);
1480 cfa_temp.offset = INTVAL (XEXP (src, 1));
1481 }
1482 else
1483 abort ();
1484 }
1485 break;
1486
1487 /* Rule 6 */
1488 case CONST_INT:
1489 cfa_temp.reg = REGNO (dest);
1490 cfa_temp.offset = INTVAL (src);
1491 break;
1492
1493 /* Rule 7 */
1494 case IOR:
1495 if (GET_CODE (XEXP (src, 0)) != REG
1496 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1497 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1498 abort ();
1499
1500 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1501 cfa_temp.reg = REGNO (dest);
1502 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1503 break;
1504
1505 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1506 which will fill in all of the bits. */
1507 /* Rule 8 */
1508 case HIGH:
1509 break;
1510
1511 default:
1512 abort ();
1513 }
1514
1515 def_cfa_1 (label, &cfa);
1516 break;
1517
1518 case MEM:
1519 if (GET_CODE (src) != REG)
1520 abort ();
1521
1522 /* Saving a register to the stack. Make sure dest is relative to the
1523 CFA register. */
1524 switch (GET_CODE (XEXP (dest, 0)))
1525 {
1526 /* Rule 10 */
1527 /* With a push. */
1528 case PRE_MODIFY:
1529 /* We can't handle variable size modifications. */
1530 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1531 abort ();
1532 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1533
1534 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1535 || cfa_store.reg != STACK_POINTER_REGNUM)
1536 abort ();
1537
1538 cfa_store.offset += offset;
1539 if (cfa.reg == STACK_POINTER_REGNUM)
1540 cfa.offset = cfa_store.offset;
1541
1542 offset = -cfa_store.offset;
1543 break;
1544
1545 /* Rule 11 */
1546 case PRE_INC:
1547 case PRE_DEC:
1548 offset = GET_MODE_SIZE (GET_MODE (dest));
1549 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1550 offset = -offset;
1551
1552 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1553 || cfa_store.reg != STACK_POINTER_REGNUM)
1554 abort ();
1555
1556 cfa_store.offset += offset;
1557 if (cfa.reg == STACK_POINTER_REGNUM)
1558 cfa.offset = cfa_store.offset;
1559
1560 offset = -cfa_store.offset;
1561 break;
1562
1563 /* Rule 12 */
1564 /* With an offset. */
1565 case PLUS:
1566 case MINUS:
1567 case LO_SUM:
1568 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1569 abort ();
1570 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1571 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1572 offset = -offset;
1573
1574 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1575 offset -= cfa_store.offset;
1576 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1577 offset -= cfa_temp.offset;
1578 else
1579 abort ();
1580 break;
1581
1582 /* Rule 13 */
1583 /* Without an offset. */
1584 case REG:
1585 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1586 offset = -cfa_store.offset;
1587 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1588 offset = -cfa_temp.offset;
1589 else
1590 abort ();
1591 break;
1592
1593 /* Rule 14 */
1594 case POST_INC:
1595 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1596 abort ();
1597 offset = -cfa_temp.offset;
1598 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1599 break;
1600
1601 default:
1602 abort ();
1603 }
1604
1605 if (REGNO (src) != STACK_POINTER_REGNUM
1606 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1607 && (unsigned) REGNO (src) == cfa.reg)
1608 {
1609 /* We're storing the current CFA reg into the stack. */
1610
1611 if (cfa.offset == 0)
1612 {
1613 /* If the source register is exactly the CFA, assume
1614 we're saving SP like any other register; this happens
1615 on the ARM. */
1616 def_cfa_1 (label, &cfa);
1617 queue_reg_save (label, stack_pointer_rtx, offset);
1618 break;
1619 }
1620 else
1621 {
1622 /* Otherwise, we'll need to look in the stack to
1623 calculate the CFA. */
1624 rtx x = XEXP (dest, 0);
1625
1626 if (GET_CODE (x) != REG)
1627 x = XEXP (x, 0);
1628 if (GET_CODE (x) != REG)
1629 abort ();
1630
1631 cfa.reg = REGNO (x);
1632 cfa.base_offset = offset;
1633 cfa.indirect = 1;
1634 def_cfa_1 (label, &cfa);
1635 break;
1636 }
1637 }
1638
1639 def_cfa_1 (label, &cfa);
1640 queue_reg_save (label, src, offset);
1641 break;
1642
1643 default:
1644 abort ();
1645 }
1646 }
1647
1648 /* Record call frame debugging information for INSN, which either
1649 sets SP or FP (adjusting how we calculate the frame address) or saves a
1650 register to the stack. If INSN is NULL_RTX, initialize our state. */
1651
1652 void
1653 dwarf2out_frame_debug (insn)
1654 rtx insn;
1655 {
1656 const char *label;
1657 rtx src;
1658
1659 if (insn == NULL_RTX)
1660 {
1661 /* Flush any queued register saves. */
1662 flush_queued_reg_saves ();
1663
1664 /* Set up state for generating call frame debug info. */
1665 lookup_cfa (&cfa);
1666 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1667 abort ();
1668
1669 cfa.reg = STACK_POINTER_REGNUM;
1670 cfa_store = cfa;
1671 cfa_temp.reg = -1;
1672 cfa_temp.offset = 0;
1673 return;
1674 }
1675
1676 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1677 flush_queued_reg_saves ();
1678
1679 if (! RTX_FRAME_RELATED_P (insn))
1680 {
1681 if (!ACCUMULATE_OUTGOING_ARGS)
1682 dwarf2out_stack_adjust (insn);
1683
1684 return;
1685 }
1686
1687 label = dwarf2out_cfi_label ();
1688 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1689 if (src)
1690 insn = XEXP (src, 0);
1691 else
1692 insn = PATTERN (insn);
1693
1694 dwarf2out_frame_debug_expr (insn, label);
1695 }
1696
1697 #endif
1698
1699 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1700 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1701 PARAMS ((enum dwarf_call_frame_info cfi));
1702
1703 static enum dw_cfi_oprnd_type
1704 dw_cfi_oprnd1_desc (cfi)
1705 enum dwarf_call_frame_info cfi;
1706 {
1707 switch (cfi)
1708 {
1709 case DW_CFA_nop:
1710 case DW_CFA_GNU_window_save:
1711 return dw_cfi_oprnd_unused;
1712
1713 case DW_CFA_set_loc:
1714 case DW_CFA_advance_loc1:
1715 case DW_CFA_advance_loc2:
1716 case DW_CFA_advance_loc4:
1717 case DW_CFA_MIPS_advance_loc8:
1718 return dw_cfi_oprnd_addr;
1719
1720 case DW_CFA_offset:
1721 case DW_CFA_offset_extended:
1722 case DW_CFA_def_cfa:
1723 case DW_CFA_offset_extended_sf:
1724 case DW_CFA_def_cfa_sf:
1725 case DW_CFA_restore_extended:
1726 case DW_CFA_undefined:
1727 case DW_CFA_same_value:
1728 case DW_CFA_def_cfa_register:
1729 case DW_CFA_register:
1730 return dw_cfi_oprnd_reg_num;
1731
1732 case DW_CFA_def_cfa_offset:
1733 case DW_CFA_GNU_args_size:
1734 case DW_CFA_def_cfa_offset_sf:
1735 return dw_cfi_oprnd_offset;
1736
1737 case DW_CFA_def_cfa_expression:
1738 case DW_CFA_expression:
1739 return dw_cfi_oprnd_loc;
1740
1741 default:
1742 abort ();
1743 }
1744 }
1745
1746 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1747 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1748 PARAMS ((enum dwarf_call_frame_info cfi));
1749
1750 static enum dw_cfi_oprnd_type
1751 dw_cfi_oprnd2_desc (cfi)
1752 enum dwarf_call_frame_info cfi;
1753 {
1754 switch (cfi)
1755 {
1756 case DW_CFA_def_cfa:
1757 case DW_CFA_def_cfa_sf:
1758 case DW_CFA_offset:
1759 case DW_CFA_offset_extended_sf:
1760 case DW_CFA_offset_extended:
1761 return dw_cfi_oprnd_offset;
1762
1763 case DW_CFA_register:
1764 return dw_cfi_oprnd_reg_num;
1765
1766 default:
1767 return dw_cfi_oprnd_unused;
1768 }
1769 }
1770
1771 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1772
1773 /* Output a Call Frame Information opcode and its operand(s). */
1774
1775 static void
1776 output_cfi (cfi, fde, for_eh)
1777 dw_cfi_ref cfi;
1778 dw_fde_ref fde;
1779 int for_eh;
1780 {
1781 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1782 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1783 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1784 "DW_CFA_advance_loc 0x%lx",
1785 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1786 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1787 {
1788 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1789 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1790 "DW_CFA_offset, column 0x%lx",
1791 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1792 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1793 }
1794 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1795 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1796 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1797 "DW_CFA_restore, column 0x%lx",
1798 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1799 else
1800 {
1801 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1802 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1803
1804 switch (cfi->dw_cfi_opc)
1805 {
1806 case DW_CFA_set_loc:
1807 if (for_eh)
1808 dw2_asm_output_encoded_addr_rtx (
1809 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1810 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1811 NULL);
1812 else
1813 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1814 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1815 break;
1816
1817 case DW_CFA_advance_loc1:
1818 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1819 fde->dw_fde_current_label, NULL);
1820 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1821 break;
1822
1823 case DW_CFA_advance_loc2:
1824 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1825 fde->dw_fde_current_label, NULL);
1826 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1827 break;
1828
1829 case DW_CFA_advance_loc4:
1830 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1831 fde->dw_fde_current_label, NULL);
1832 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1833 break;
1834
1835 case DW_CFA_MIPS_advance_loc8:
1836 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1837 fde->dw_fde_current_label, NULL);
1838 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1839 break;
1840
1841 case DW_CFA_offset_extended:
1842 case DW_CFA_def_cfa:
1843 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1844 NULL);
1845 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1846 break;
1847
1848 case DW_CFA_offset_extended_sf:
1849 case DW_CFA_def_cfa_sf:
1850 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1851 NULL);
1852 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1853 break;
1854
1855 case DW_CFA_restore_extended:
1856 case DW_CFA_undefined:
1857 case DW_CFA_same_value:
1858 case DW_CFA_def_cfa_register:
1859 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1860 NULL);
1861 break;
1862
1863 case DW_CFA_register:
1864 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1865 NULL);
1866 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_reg_num,
1867 NULL);
1868 break;
1869
1870 case DW_CFA_def_cfa_offset:
1871 case DW_CFA_GNU_args_size:
1872 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1873 break;
1874
1875 case DW_CFA_def_cfa_offset_sf:
1876 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1877 break;
1878
1879 case DW_CFA_GNU_window_save:
1880 break;
1881
1882 case DW_CFA_def_cfa_expression:
1883 case DW_CFA_expression:
1884 output_cfa_loc (cfi);
1885 break;
1886
1887 case DW_CFA_GNU_negative_offset_extended:
1888 /* Obsoleted by DW_CFA_offset_extended_sf. */
1889 abort ();
1890
1891 default:
1892 break;
1893 }
1894 }
1895 }
1896
1897 /* Output the call frame information used to used to record information
1898 that relates to calculating the frame pointer, and records the
1899 location of saved registers. */
1900
1901 static void
1902 output_call_frame_info (for_eh)
1903 int for_eh;
1904 {
1905 unsigned int i;
1906 dw_fde_ref fde;
1907 dw_cfi_ref cfi;
1908 char l1[20], l2[20], section_start_label[20];
1909 int any_lsda_needed = 0;
1910 char augmentation[6];
1911 int augmentation_size;
1912 int fde_encoding = DW_EH_PE_absptr;
1913 int per_encoding = DW_EH_PE_absptr;
1914 int lsda_encoding = DW_EH_PE_absptr;
1915
1916 /* Don't emit a CIE if there won't be any FDEs. */
1917 if (fde_table_in_use == 0)
1918 return;
1919
1920 /* If we don't have any functions we'll want to unwind out of, don't emit any
1921 EH unwind information. */
1922 if (for_eh)
1923 {
1924 int any_eh_needed = flag_asynchronous_unwind_tables;
1925
1926 for (i = 0; i < fde_table_in_use; i++)
1927 if (fde_table[i].uses_eh_lsda)
1928 any_eh_needed = any_lsda_needed = 1;
1929 else if (! fde_table[i].nothrow)
1930 any_eh_needed = 1;
1931
1932 if (! any_eh_needed)
1933 return;
1934 }
1935
1936 /* We're going to be generating comments, so turn on app. */
1937 if (flag_debug_asm)
1938 app_enable ();
1939
1940 if (for_eh)
1941 (*targetm.asm_out.eh_frame_section) ();
1942 else
1943 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1944
1945 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1946 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1947
1948 /* Output the CIE. */
1949 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1950 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1951 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1952 "Length of Common Information Entry");
1953 ASM_OUTPUT_LABEL (asm_out_file, l1);
1954
1955 /* Now that the CIE pointer is PC-relative for EH,
1956 use 0 to identify the CIE. */
1957 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1958 (for_eh ? 0 : DW_CIE_ID),
1959 "CIE Identifier Tag");
1960
1961 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1962
1963 augmentation[0] = 0;
1964 augmentation_size = 0;
1965 if (for_eh)
1966 {
1967 char *p;
1968
1969 /* Augmentation:
1970 z Indicates that a uleb128 is present to size the
1971 augmentation section.
1972 L Indicates the encoding (and thus presence) of
1973 an LSDA pointer in the FDE augmentation.
1974 R Indicates a non-default pointer encoding for
1975 FDE code pointers.
1976 P Indicates the presence of an encoding + language
1977 personality routine in the CIE augmentation. */
1978
1979 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1980 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
1981 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1982
1983 p = augmentation + 1;
1984 if (eh_personality_libfunc)
1985 {
1986 *p++ = 'P';
1987 augmentation_size += 1 + size_of_encoded_value (per_encoding);
1988 }
1989 if (any_lsda_needed)
1990 {
1991 *p++ = 'L';
1992 augmentation_size += 1;
1993 }
1994 if (fde_encoding != DW_EH_PE_absptr)
1995 {
1996 *p++ = 'R';
1997 augmentation_size += 1;
1998 }
1999 if (p > augmentation + 1)
2000 {
2001 augmentation[0] = 'z';
2002 *p = '\0';
2003 }
2004
2005 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2006 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2007 {
2008 int offset = ( 4 /* Length */
2009 + 4 /* CIE Id */
2010 + 1 /* CIE version */
2011 + strlen (augmentation) + 1 /* Augmentation */
2012 + size_of_uleb128 (1) /* Code alignment */
2013 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2014 + 1 /* RA column */
2015 + 1 /* Augmentation size */
2016 + 1 /* Personality encoding */ );
2017 int pad = -offset & (PTR_SIZE - 1);
2018
2019 augmentation_size += pad;
2020
2021 /* Augmentations should be small, so there's scarce need to
2022 iterate for a solution. Die if we exceed one uleb128 byte. */
2023 if (size_of_uleb128 (augmentation_size) != 1)
2024 abort ();
2025 }
2026 }
2027
2028 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2029 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2030 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2031 "CIE Data Alignment Factor");
2032 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2033
2034 if (augmentation[0])
2035 {
2036 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2037 if (eh_personality_libfunc)
2038 {
2039 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2040 eh_data_format_name (per_encoding));
2041 dw2_asm_output_encoded_addr_rtx (per_encoding,
2042 eh_personality_libfunc, NULL);
2043 }
2044
2045 if (any_lsda_needed)
2046 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2047 eh_data_format_name (lsda_encoding));
2048
2049 if (fde_encoding != DW_EH_PE_absptr)
2050 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2051 eh_data_format_name (fde_encoding));
2052 }
2053
2054 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2055 output_cfi (cfi, NULL, for_eh);
2056
2057 /* Pad the CIE out to an address sized boundary. */
2058 ASM_OUTPUT_ALIGN (asm_out_file,
2059 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2060 ASM_OUTPUT_LABEL (asm_out_file, l2);
2061
2062 /* Loop through all of the FDE's. */
2063 for (i = 0; i < fde_table_in_use; i++)
2064 {
2065 fde = &fde_table[i];
2066
2067 /* Don't emit EH unwind info for leaf functions that don't need it. */
2068 if (!flag_asynchronous_unwind_tables && for_eh
2069 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2070 && !fde->uses_eh_lsda)
2071 continue;
2072
2073 (*targetm.asm_out.internal_label) (asm_out_file, FDE_LABEL, for_eh + i * 2);
2074 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2075 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2076 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2077 "FDE Length");
2078 ASM_OUTPUT_LABEL (asm_out_file, l1);
2079
2080 if (for_eh)
2081 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2082 else
2083 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2084 "FDE CIE offset");
2085
2086 if (for_eh)
2087 {
2088 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2089 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
2090 "FDE initial location");
2091 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2092 fde->dw_fde_end, fde->dw_fde_begin,
2093 "FDE address range");
2094 }
2095 else
2096 {
2097 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2098 "FDE initial location");
2099 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2100 fde->dw_fde_end, fde->dw_fde_begin,
2101 "FDE address range");
2102 }
2103
2104 if (augmentation[0])
2105 {
2106 if (any_lsda_needed)
2107 {
2108 int size = size_of_encoded_value (lsda_encoding);
2109
2110 if (lsda_encoding == DW_EH_PE_aligned)
2111 {
2112 int offset = ( 4 /* Length */
2113 + 4 /* CIE offset */
2114 + 2 * size_of_encoded_value (fde_encoding)
2115 + 1 /* Augmentation size */ );
2116 int pad = -offset & (PTR_SIZE - 1);
2117
2118 size += pad;
2119 if (size_of_uleb128 (size) != 1)
2120 abort ();
2121 }
2122
2123 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2124
2125 if (fde->uses_eh_lsda)
2126 {
2127 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2128 fde->funcdef_number);
2129 dw2_asm_output_encoded_addr_rtx (
2130 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2131 "Language Specific Data Area");
2132 }
2133 else
2134 {
2135 if (lsda_encoding == DW_EH_PE_aligned)
2136 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2137 dw2_asm_output_data
2138 (size_of_encoded_value (lsda_encoding), 0,
2139 "Language Specific Data Area (none)");
2140 }
2141 }
2142 else
2143 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2144 }
2145
2146 /* Loop through the Call Frame Instructions associated with
2147 this FDE. */
2148 fde->dw_fde_current_label = fde->dw_fde_begin;
2149 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2150 output_cfi (cfi, fde, for_eh);
2151
2152 /* Pad the FDE out to an address sized boundary. */
2153 ASM_OUTPUT_ALIGN (asm_out_file,
2154 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2155 ASM_OUTPUT_LABEL (asm_out_file, l2);
2156 }
2157
2158 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2159 dw2_asm_output_data (4, 0, "End of Table");
2160 #ifdef MIPS_DEBUGGING_INFO
2161 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2162 get a value of 0. Putting .align 0 after the label fixes it. */
2163 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2164 #endif
2165
2166 /* Turn off app to make assembly quicker. */
2167 if (flag_debug_asm)
2168 app_disable ();
2169 }
2170
2171 /* Output a marker (i.e. a label) for the beginning of a function, before
2172 the prologue. */
2173
2174 void
2175 dwarf2out_begin_prologue (line, file)
2176 unsigned int line ATTRIBUTE_UNUSED;
2177 const char *file ATTRIBUTE_UNUSED;
2178 {
2179 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2180 dw_fde_ref fde;
2181
2182 current_function_func_begin_label = 0;
2183
2184 #ifdef IA64_UNWIND_INFO
2185 /* ??? current_function_func_begin_label is also used by except.c
2186 for call-site information. We must emit this label if it might
2187 be used. */
2188 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2189 && ! dwarf2out_do_frame ())
2190 return;
2191 #else
2192 if (! dwarf2out_do_frame ())
2193 return;
2194 #endif
2195
2196 function_section (current_function_decl);
2197 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2198 current_function_funcdef_no);
2199 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2200 current_function_funcdef_no);
2201 current_function_func_begin_label = get_identifier (label);
2202
2203 #ifdef IA64_UNWIND_INFO
2204 /* We can elide the fde allocation if we're not emitting debug info. */
2205 if (! dwarf2out_do_frame ())
2206 return;
2207 #endif
2208
2209 /* Expand the fde table if necessary. */
2210 if (fde_table_in_use == fde_table_allocated)
2211 {
2212 fde_table_allocated += FDE_TABLE_INCREMENT;
2213 fde_table = ggc_realloc (fde_table,
2214 fde_table_allocated * sizeof (dw_fde_node));
2215 memset (fde_table + fde_table_in_use, 0,
2216 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2217 }
2218
2219 /* Record the FDE associated with this function. */
2220 current_funcdef_fde = fde_table_in_use;
2221
2222 /* Add the new FDE at the end of the fde_table. */
2223 fde = &fde_table[fde_table_in_use++];
2224 fde->dw_fde_begin = xstrdup (label);
2225 fde->dw_fde_current_label = NULL;
2226 fde->dw_fde_end = NULL;
2227 fde->dw_fde_cfi = NULL;
2228 fde->funcdef_number = current_function_funcdef_no;
2229 fde->nothrow = current_function_nothrow;
2230 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2231 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2232
2233 args_size = old_args_size = 0;
2234
2235 /* We only want to output line number information for the genuine dwarf2
2236 prologue case, not the eh frame case. */
2237 #ifdef DWARF2_DEBUGGING_INFO
2238 if (file)
2239 dwarf2out_source_line (line, file);
2240 #endif
2241 }
2242
2243 /* Output a marker (i.e. a label) for the absolute end of the generated code
2244 for a function definition. This gets called *after* the epilogue code has
2245 been generated. */
2246
2247 void
2248 dwarf2out_end_epilogue (line, file)
2249 unsigned int line ATTRIBUTE_UNUSED;
2250 const char *file ATTRIBUTE_UNUSED;
2251 {
2252 dw_fde_ref fde;
2253 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2254
2255 /* Output a label to mark the endpoint of the code generated for this
2256 function. */
2257 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2258 current_function_funcdef_no);
2259 ASM_OUTPUT_LABEL (asm_out_file, label);
2260 fde = &fde_table[fde_table_in_use - 1];
2261 fde->dw_fde_end = xstrdup (label);
2262 }
2263
2264 void
2265 dwarf2out_frame_init ()
2266 {
2267 /* Allocate the initial hunk of the fde_table. */
2268 fde_table = (dw_fde_ref) ggc_alloc_cleared (FDE_TABLE_INCREMENT
2269 * sizeof (dw_fde_node));
2270 fde_table_allocated = FDE_TABLE_INCREMENT;
2271 fde_table_in_use = 0;
2272
2273 /* Generate the CFA instructions common to all FDE's. Do it now for the
2274 sake of lookup_cfa. */
2275
2276 #ifdef DWARF2_UNWIND_INFO
2277 /* On entry, the Canonical Frame Address is at SP. */
2278 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2279 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2280 #endif
2281 }
2282
2283 void
2284 dwarf2out_frame_finish ()
2285 {
2286 /* Output call frame information. */
2287 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2288 output_call_frame_info (0);
2289
2290 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2291 output_call_frame_info (1);
2292 }
2293 #endif
2294 \f
2295 /* And now, the subset of the debugging information support code necessary
2296 for emitting location expressions. */
2297
2298 /* We need some way to distinguish DW_OP_addr with a direct symbol
2299 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2300 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2301
2302
2303 typedef struct dw_val_struct *dw_val_ref;
2304 typedef struct die_struct *dw_die_ref;
2305 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2306 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2307
2308 /* Each DIE may have a series of attribute/value pairs. Values
2309 can take on several forms. The forms that are used in this
2310 implementation are listed below. */
2311
2312 enum dw_val_class
2313 {
2314 dw_val_class_addr,
2315 dw_val_class_offset,
2316 dw_val_class_loc,
2317 dw_val_class_loc_list,
2318 dw_val_class_range_list,
2319 dw_val_class_const,
2320 dw_val_class_unsigned_const,
2321 dw_val_class_long_long,
2322 dw_val_class_float,
2323 dw_val_class_flag,
2324 dw_val_class_die_ref,
2325 dw_val_class_fde_ref,
2326 dw_val_class_lbl_id,
2327 dw_val_class_lbl_offset,
2328 dw_val_class_str
2329 };
2330
2331 /* Describe a double word constant value. */
2332 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2333
2334 typedef struct dw_long_long_struct GTY(())
2335 {
2336 unsigned long hi;
2337 unsigned long low;
2338 }
2339 dw_long_long_const;
2340
2341 /* Describe a floating point constant value. */
2342
2343 typedef struct dw_fp_struct GTY(())
2344 {
2345 long * GTY((length ("%h.length"))) array;
2346 unsigned length;
2347 }
2348 dw_float_const;
2349
2350 /* The dw_val_node describes an attribute's value, as it is
2351 represented internally. */
2352
2353 typedef struct dw_val_struct GTY(())
2354 {
2355 enum dw_val_class val_class;
2356 union dw_val_struct_union
2357 {
2358 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2359 long unsigned GTY ((tag ("dw_val_class_offset"))) val_offset;
2360 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2361 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2362 long int GTY ((default (""))) val_int;
2363 long unsigned GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2364 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2365 dw_float_const GTY ((tag ("dw_val_class_float"))) val_float;
2366 struct dw_val_die_union
2367 {
2368 dw_die_ref die;
2369 int external;
2370 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2371 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2372 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2373 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2374 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2375 }
2376 GTY ((desc ("%1.val_class"))) v;
2377 }
2378 dw_val_node;
2379
2380 /* Locations in memory are described using a sequence of stack machine
2381 operations. */
2382
2383 typedef struct dw_loc_descr_struct GTY(())
2384 {
2385 dw_loc_descr_ref dw_loc_next;
2386 enum dwarf_location_atom dw_loc_opc;
2387 dw_val_node dw_loc_oprnd1;
2388 dw_val_node dw_loc_oprnd2;
2389 int dw_loc_addr;
2390 }
2391 dw_loc_descr_node;
2392
2393 /* Location lists are ranges + location descriptions for that range,
2394 so you can track variables that are in different places over
2395 their entire life. */
2396 typedef struct dw_loc_list_struct GTY(())
2397 {
2398 dw_loc_list_ref dw_loc_next;
2399 const char *begin; /* Label for begin address of range */
2400 const char *end; /* Label for end address of range */
2401 char *ll_symbol; /* Label for beginning of location list.
2402 Only on head of list */
2403 const char *section; /* Section this loclist is relative to */
2404 dw_loc_descr_ref expr;
2405 } dw_loc_list_node;
2406
2407 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2408
2409 static const char *dwarf_stack_op_name PARAMS ((unsigned));
2410 static dw_loc_descr_ref new_loc_descr PARAMS ((enum dwarf_location_atom,
2411 unsigned long,
2412 unsigned long));
2413 static void add_loc_descr PARAMS ((dw_loc_descr_ref *,
2414 dw_loc_descr_ref));
2415 static unsigned long size_of_loc_descr PARAMS ((dw_loc_descr_ref));
2416 static unsigned long size_of_locs PARAMS ((dw_loc_descr_ref));
2417 static void output_loc_operands PARAMS ((dw_loc_descr_ref));
2418 static void output_loc_sequence PARAMS ((dw_loc_descr_ref));
2419
2420 /* Convert a DWARF stack opcode into its string name. */
2421
2422 static const char *
2423 dwarf_stack_op_name (op)
2424 unsigned op;
2425 {
2426 switch (op)
2427 {
2428 case DW_OP_addr:
2429 case INTERNAL_DW_OP_tls_addr:
2430 return "DW_OP_addr";
2431 case DW_OP_deref:
2432 return "DW_OP_deref";
2433 case DW_OP_const1u:
2434 return "DW_OP_const1u";
2435 case DW_OP_const1s:
2436 return "DW_OP_const1s";
2437 case DW_OP_const2u:
2438 return "DW_OP_const2u";
2439 case DW_OP_const2s:
2440 return "DW_OP_const2s";
2441 case DW_OP_const4u:
2442 return "DW_OP_const4u";
2443 case DW_OP_const4s:
2444 return "DW_OP_const4s";
2445 case DW_OP_const8u:
2446 return "DW_OP_const8u";
2447 case DW_OP_const8s:
2448 return "DW_OP_const8s";
2449 case DW_OP_constu:
2450 return "DW_OP_constu";
2451 case DW_OP_consts:
2452 return "DW_OP_consts";
2453 case DW_OP_dup:
2454 return "DW_OP_dup";
2455 case DW_OP_drop:
2456 return "DW_OP_drop";
2457 case DW_OP_over:
2458 return "DW_OP_over";
2459 case DW_OP_pick:
2460 return "DW_OP_pick";
2461 case DW_OP_swap:
2462 return "DW_OP_swap";
2463 case DW_OP_rot:
2464 return "DW_OP_rot";
2465 case DW_OP_xderef:
2466 return "DW_OP_xderef";
2467 case DW_OP_abs:
2468 return "DW_OP_abs";
2469 case DW_OP_and:
2470 return "DW_OP_and";
2471 case DW_OP_div:
2472 return "DW_OP_div";
2473 case DW_OP_minus:
2474 return "DW_OP_minus";
2475 case DW_OP_mod:
2476 return "DW_OP_mod";
2477 case DW_OP_mul:
2478 return "DW_OP_mul";
2479 case DW_OP_neg:
2480 return "DW_OP_neg";
2481 case DW_OP_not:
2482 return "DW_OP_not";
2483 case DW_OP_or:
2484 return "DW_OP_or";
2485 case DW_OP_plus:
2486 return "DW_OP_plus";
2487 case DW_OP_plus_uconst:
2488 return "DW_OP_plus_uconst";
2489 case DW_OP_shl:
2490 return "DW_OP_shl";
2491 case DW_OP_shr:
2492 return "DW_OP_shr";
2493 case DW_OP_shra:
2494 return "DW_OP_shra";
2495 case DW_OP_xor:
2496 return "DW_OP_xor";
2497 case DW_OP_bra:
2498 return "DW_OP_bra";
2499 case DW_OP_eq:
2500 return "DW_OP_eq";
2501 case DW_OP_ge:
2502 return "DW_OP_ge";
2503 case DW_OP_gt:
2504 return "DW_OP_gt";
2505 case DW_OP_le:
2506 return "DW_OP_le";
2507 case DW_OP_lt:
2508 return "DW_OP_lt";
2509 case DW_OP_ne:
2510 return "DW_OP_ne";
2511 case DW_OP_skip:
2512 return "DW_OP_skip";
2513 case DW_OP_lit0:
2514 return "DW_OP_lit0";
2515 case DW_OP_lit1:
2516 return "DW_OP_lit1";
2517 case DW_OP_lit2:
2518 return "DW_OP_lit2";
2519 case DW_OP_lit3:
2520 return "DW_OP_lit3";
2521 case DW_OP_lit4:
2522 return "DW_OP_lit4";
2523 case DW_OP_lit5:
2524 return "DW_OP_lit5";
2525 case DW_OP_lit6:
2526 return "DW_OP_lit6";
2527 case DW_OP_lit7:
2528 return "DW_OP_lit7";
2529 case DW_OP_lit8:
2530 return "DW_OP_lit8";
2531 case DW_OP_lit9:
2532 return "DW_OP_lit9";
2533 case DW_OP_lit10:
2534 return "DW_OP_lit10";
2535 case DW_OP_lit11:
2536 return "DW_OP_lit11";
2537 case DW_OP_lit12:
2538 return "DW_OP_lit12";
2539 case DW_OP_lit13:
2540 return "DW_OP_lit13";
2541 case DW_OP_lit14:
2542 return "DW_OP_lit14";
2543 case DW_OP_lit15:
2544 return "DW_OP_lit15";
2545 case DW_OP_lit16:
2546 return "DW_OP_lit16";
2547 case DW_OP_lit17:
2548 return "DW_OP_lit17";
2549 case DW_OP_lit18:
2550 return "DW_OP_lit18";
2551 case DW_OP_lit19:
2552 return "DW_OP_lit19";
2553 case DW_OP_lit20:
2554 return "DW_OP_lit20";
2555 case DW_OP_lit21:
2556 return "DW_OP_lit21";
2557 case DW_OP_lit22:
2558 return "DW_OP_lit22";
2559 case DW_OP_lit23:
2560 return "DW_OP_lit23";
2561 case DW_OP_lit24:
2562 return "DW_OP_lit24";
2563 case DW_OP_lit25:
2564 return "DW_OP_lit25";
2565 case DW_OP_lit26:
2566 return "DW_OP_lit26";
2567 case DW_OP_lit27:
2568 return "DW_OP_lit27";
2569 case DW_OP_lit28:
2570 return "DW_OP_lit28";
2571 case DW_OP_lit29:
2572 return "DW_OP_lit29";
2573 case DW_OP_lit30:
2574 return "DW_OP_lit30";
2575 case DW_OP_lit31:
2576 return "DW_OP_lit31";
2577 case DW_OP_reg0:
2578 return "DW_OP_reg0";
2579 case DW_OP_reg1:
2580 return "DW_OP_reg1";
2581 case DW_OP_reg2:
2582 return "DW_OP_reg2";
2583 case DW_OP_reg3:
2584 return "DW_OP_reg3";
2585 case DW_OP_reg4:
2586 return "DW_OP_reg4";
2587 case DW_OP_reg5:
2588 return "DW_OP_reg5";
2589 case DW_OP_reg6:
2590 return "DW_OP_reg6";
2591 case DW_OP_reg7:
2592 return "DW_OP_reg7";
2593 case DW_OP_reg8:
2594 return "DW_OP_reg8";
2595 case DW_OP_reg9:
2596 return "DW_OP_reg9";
2597 case DW_OP_reg10:
2598 return "DW_OP_reg10";
2599 case DW_OP_reg11:
2600 return "DW_OP_reg11";
2601 case DW_OP_reg12:
2602 return "DW_OP_reg12";
2603 case DW_OP_reg13:
2604 return "DW_OP_reg13";
2605 case DW_OP_reg14:
2606 return "DW_OP_reg14";
2607 case DW_OP_reg15:
2608 return "DW_OP_reg15";
2609 case DW_OP_reg16:
2610 return "DW_OP_reg16";
2611 case DW_OP_reg17:
2612 return "DW_OP_reg17";
2613 case DW_OP_reg18:
2614 return "DW_OP_reg18";
2615 case DW_OP_reg19:
2616 return "DW_OP_reg19";
2617 case DW_OP_reg20:
2618 return "DW_OP_reg20";
2619 case DW_OP_reg21:
2620 return "DW_OP_reg21";
2621 case DW_OP_reg22:
2622 return "DW_OP_reg22";
2623 case DW_OP_reg23:
2624 return "DW_OP_reg23";
2625 case DW_OP_reg24:
2626 return "DW_OP_reg24";
2627 case DW_OP_reg25:
2628 return "DW_OP_reg25";
2629 case DW_OP_reg26:
2630 return "DW_OP_reg26";
2631 case DW_OP_reg27:
2632 return "DW_OP_reg27";
2633 case DW_OP_reg28:
2634 return "DW_OP_reg28";
2635 case DW_OP_reg29:
2636 return "DW_OP_reg29";
2637 case DW_OP_reg30:
2638 return "DW_OP_reg30";
2639 case DW_OP_reg31:
2640 return "DW_OP_reg31";
2641 case DW_OP_breg0:
2642 return "DW_OP_breg0";
2643 case DW_OP_breg1:
2644 return "DW_OP_breg1";
2645 case DW_OP_breg2:
2646 return "DW_OP_breg2";
2647 case DW_OP_breg3:
2648 return "DW_OP_breg3";
2649 case DW_OP_breg4:
2650 return "DW_OP_breg4";
2651 case DW_OP_breg5:
2652 return "DW_OP_breg5";
2653 case DW_OP_breg6:
2654 return "DW_OP_breg6";
2655 case DW_OP_breg7:
2656 return "DW_OP_breg7";
2657 case DW_OP_breg8:
2658 return "DW_OP_breg8";
2659 case DW_OP_breg9:
2660 return "DW_OP_breg9";
2661 case DW_OP_breg10:
2662 return "DW_OP_breg10";
2663 case DW_OP_breg11:
2664 return "DW_OP_breg11";
2665 case DW_OP_breg12:
2666 return "DW_OP_breg12";
2667 case DW_OP_breg13:
2668 return "DW_OP_breg13";
2669 case DW_OP_breg14:
2670 return "DW_OP_breg14";
2671 case DW_OP_breg15:
2672 return "DW_OP_breg15";
2673 case DW_OP_breg16:
2674 return "DW_OP_breg16";
2675 case DW_OP_breg17:
2676 return "DW_OP_breg17";
2677 case DW_OP_breg18:
2678 return "DW_OP_breg18";
2679 case DW_OP_breg19:
2680 return "DW_OP_breg19";
2681 case DW_OP_breg20:
2682 return "DW_OP_breg20";
2683 case DW_OP_breg21:
2684 return "DW_OP_breg21";
2685 case DW_OP_breg22:
2686 return "DW_OP_breg22";
2687 case DW_OP_breg23:
2688 return "DW_OP_breg23";
2689 case DW_OP_breg24:
2690 return "DW_OP_breg24";
2691 case DW_OP_breg25:
2692 return "DW_OP_breg25";
2693 case DW_OP_breg26:
2694 return "DW_OP_breg26";
2695 case DW_OP_breg27:
2696 return "DW_OP_breg27";
2697 case DW_OP_breg28:
2698 return "DW_OP_breg28";
2699 case DW_OP_breg29:
2700 return "DW_OP_breg29";
2701 case DW_OP_breg30:
2702 return "DW_OP_breg30";
2703 case DW_OP_breg31:
2704 return "DW_OP_breg31";
2705 case DW_OP_regx:
2706 return "DW_OP_regx";
2707 case DW_OP_fbreg:
2708 return "DW_OP_fbreg";
2709 case DW_OP_bregx:
2710 return "DW_OP_bregx";
2711 case DW_OP_piece:
2712 return "DW_OP_piece";
2713 case DW_OP_deref_size:
2714 return "DW_OP_deref_size";
2715 case DW_OP_xderef_size:
2716 return "DW_OP_xderef_size";
2717 case DW_OP_nop:
2718 return "DW_OP_nop";
2719 case DW_OP_push_object_address:
2720 return "DW_OP_push_object_address";
2721 case DW_OP_call2:
2722 return "DW_OP_call2";
2723 case DW_OP_call4:
2724 return "DW_OP_call4";
2725 case DW_OP_call_ref:
2726 return "DW_OP_call_ref";
2727 case DW_OP_GNU_push_tls_address:
2728 return "DW_OP_GNU_push_tls_address";
2729 default:
2730 return "OP_<unknown>";
2731 }
2732 }
2733
2734 /* Return a pointer to a newly allocated location description. Location
2735 descriptions are simple expression terms that can be strung
2736 together to form more complicated location (address) descriptions. */
2737
2738 static inline dw_loc_descr_ref
2739 new_loc_descr (op, oprnd1, oprnd2)
2740 enum dwarf_location_atom op;
2741 unsigned long oprnd1;
2742 unsigned long oprnd2;
2743 {
2744 dw_loc_descr_ref descr
2745 = (dw_loc_descr_ref) ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2746
2747 descr->dw_loc_opc = op;
2748 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2749 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2750 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2751 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2752
2753 return descr;
2754 }
2755
2756
2757 /* Add a location description term to a location description expression. */
2758
2759 static inline void
2760 add_loc_descr (list_head, descr)
2761 dw_loc_descr_ref *list_head;
2762 dw_loc_descr_ref descr;
2763 {
2764 dw_loc_descr_ref *d;
2765
2766 /* Find the end of the chain. */
2767 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2768 ;
2769
2770 *d = descr;
2771 }
2772
2773 /* Return the size of a location descriptor. */
2774
2775 static unsigned long
2776 size_of_loc_descr (loc)
2777 dw_loc_descr_ref loc;
2778 {
2779 unsigned long size = 1;
2780
2781 switch (loc->dw_loc_opc)
2782 {
2783 case DW_OP_addr:
2784 case INTERNAL_DW_OP_tls_addr:
2785 size += DWARF2_ADDR_SIZE;
2786 break;
2787 case DW_OP_const1u:
2788 case DW_OP_const1s:
2789 size += 1;
2790 break;
2791 case DW_OP_const2u:
2792 case DW_OP_const2s:
2793 size += 2;
2794 break;
2795 case DW_OP_const4u:
2796 case DW_OP_const4s:
2797 size += 4;
2798 break;
2799 case DW_OP_const8u:
2800 case DW_OP_const8s:
2801 size += 8;
2802 break;
2803 case DW_OP_constu:
2804 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2805 break;
2806 case DW_OP_consts:
2807 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2808 break;
2809 case DW_OP_pick:
2810 size += 1;
2811 break;
2812 case DW_OP_plus_uconst:
2813 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2814 break;
2815 case DW_OP_skip:
2816 case DW_OP_bra:
2817 size += 2;
2818 break;
2819 case DW_OP_breg0:
2820 case DW_OP_breg1:
2821 case DW_OP_breg2:
2822 case DW_OP_breg3:
2823 case DW_OP_breg4:
2824 case DW_OP_breg5:
2825 case DW_OP_breg6:
2826 case DW_OP_breg7:
2827 case DW_OP_breg8:
2828 case DW_OP_breg9:
2829 case DW_OP_breg10:
2830 case DW_OP_breg11:
2831 case DW_OP_breg12:
2832 case DW_OP_breg13:
2833 case DW_OP_breg14:
2834 case DW_OP_breg15:
2835 case DW_OP_breg16:
2836 case DW_OP_breg17:
2837 case DW_OP_breg18:
2838 case DW_OP_breg19:
2839 case DW_OP_breg20:
2840 case DW_OP_breg21:
2841 case DW_OP_breg22:
2842 case DW_OP_breg23:
2843 case DW_OP_breg24:
2844 case DW_OP_breg25:
2845 case DW_OP_breg26:
2846 case DW_OP_breg27:
2847 case DW_OP_breg28:
2848 case DW_OP_breg29:
2849 case DW_OP_breg30:
2850 case DW_OP_breg31:
2851 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2852 break;
2853 case DW_OP_regx:
2854 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2855 break;
2856 case DW_OP_fbreg:
2857 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2858 break;
2859 case DW_OP_bregx:
2860 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2861 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2862 break;
2863 case DW_OP_piece:
2864 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2865 break;
2866 case DW_OP_deref_size:
2867 case DW_OP_xderef_size:
2868 size += 1;
2869 break;
2870 case DW_OP_call2:
2871 size += 2;
2872 break;
2873 case DW_OP_call4:
2874 size += 4;
2875 break;
2876 case DW_OP_call_ref:
2877 size += DWARF2_ADDR_SIZE;
2878 break;
2879 default:
2880 break;
2881 }
2882
2883 return size;
2884 }
2885
2886 /* Return the size of a series of location descriptors. */
2887
2888 static unsigned long
2889 size_of_locs (loc)
2890 dw_loc_descr_ref loc;
2891 {
2892 unsigned long size;
2893
2894 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2895 {
2896 loc->dw_loc_addr = size;
2897 size += size_of_loc_descr (loc);
2898 }
2899
2900 return size;
2901 }
2902
2903 /* Output location description stack opcode's operands (if any). */
2904
2905 static void
2906 output_loc_operands (loc)
2907 dw_loc_descr_ref loc;
2908 {
2909 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2910 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2911
2912 switch (loc->dw_loc_opc)
2913 {
2914 #ifdef DWARF2_DEBUGGING_INFO
2915 case DW_OP_addr:
2916 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2917 break;
2918 case DW_OP_const2u:
2919 case DW_OP_const2s:
2920 dw2_asm_output_data (2, val1->v.val_int, NULL);
2921 break;
2922 case DW_OP_const4u:
2923 case DW_OP_const4s:
2924 dw2_asm_output_data (4, val1->v.val_int, NULL);
2925 break;
2926 case DW_OP_const8u:
2927 case DW_OP_const8s:
2928 if (HOST_BITS_PER_LONG < 64)
2929 abort ();
2930 dw2_asm_output_data (8, val1->v.val_int, NULL);
2931 break;
2932 case DW_OP_skip:
2933 case DW_OP_bra:
2934 {
2935 int offset;
2936
2937 if (val1->val_class == dw_val_class_loc)
2938 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2939 else
2940 abort ();
2941
2942 dw2_asm_output_data (2, offset, NULL);
2943 }
2944 break;
2945 #else
2946 case DW_OP_addr:
2947 case DW_OP_const2u:
2948 case DW_OP_const2s:
2949 case DW_OP_const4u:
2950 case DW_OP_const4s:
2951 case DW_OP_const8u:
2952 case DW_OP_const8s:
2953 case DW_OP_skip:
2954 case DW_OP_bra:
2955 /* We currently don't make any attempt to make sure these are
2956 aligned properly like we do for the main unwind info, so
2957 don't support emitting things larger than a byte if we're
2958 only doing unwinding. */
2959 abort ();
2960 #endif
2961 case DW_OP_const1u:
2962 case DW_OP_const1s:
2963 dw2_asm_output_data (1, val1->v.val_int, NULL);
2964 break;
2965 case DW_OP_constu:
2966 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2967 break;
2968 case DW_OP_consts:
2969 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2970 break;
2971 case DW_OP_pick:
2972 dw2_asm_output_data (1, val1->v.val_int, NULL);
2973 break;
2974 case DW_OP_plus_uconst:
2975 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2976 break;
2977 case DW_OP_breg0:
2978 case DW_OP_breg1:
2979 case DW_OP_breg2:
2980 case DW_OP_breg3:
2981 case DW_OP_breg4:
2982 case DW_OP_breg5:
2983 case DW_OP_breg6:
2984 case DW_OP_breg7:
2985 case DW_OP_breg8:
2986 case DW_OP_breg9:
2987 case DW_OP_breg10:
2988 case DW_OP_breg11:
2989 case DW_OP_breg12:
2990 case DW_OP_breg13:
2991 case DW_OP_breg14:
2992 case DW_OP_breg15:
2993 case DW_OP_breg16:
2994 case DW_OP_breg17:
2995 case DW_OP_breg18:
2996 case DW_OP_breg19:
2997 case DW_OP_breg20:
2998 case DW_OP_breg21:
2999 case DW_OP_breg22:
3000 case DW_OP_breg23:
3001 case DW_OP_breg24:
3002 case DW_OP_breg25:
3003 case DW_OP_breg26:
3004 case DW_OP_breg27:
3005 case DW_OP_breg28:
3006 case DW_OP_breg29:
3007 case DW_OP_breg30:
3008 case DW_OP_breg31:
3009 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3010 break;
3011 case DW_OP_regx:
3012 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3013 break;
3014 case DW_OP_fbreg:
3015 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3016 break;
3017 case DW_OP_bregx:
3018 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3019 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3020 break;
3021 case DW_OP_piece:
3022 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3023 break;
3024 case DW_OP_deref_size:
3025 case DW_OP_xderef_size:
3026 dw2_asm_output_data (1, val1->v.val_int, NULL);
3027 break;
3028
3029 case INTERNAL_DW_OP_tls_addr:
3030 #ifdef ASM_OUTPUT_DWARF_DTPREL
3031 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3032 val1->v.val_addr);
3033 fputc ('\n', asm_out_file);
3034 #else
3035 abort ();
3036 #endif
3037 break;
3038
3039 default:
3040 /* Other codes have no operands. */
3041 break;
3042 }
3043 }
3044
3045 /* Output a sequence of location operations. */
3046
3047 static void
3048 output_loc_sequence (loc)
3049 dw_loc_descr_ref loc;
3050 {
3051 for (; loc != NULL; loc = loc->dw_loc_next)
3052 {
3053 /* Output the opcode. */
3054 dw2_asm_output_data (1, loc->dw_loc_opc,
3055 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3056
3057 /* Output the operand(s) (if any). */
3058 output_loc_operands (loc);
3059 }
3060 }
3061
3062 /* This routine will generate the correct assembly data for a location
3063 description based on a cfi entry with a complex address. */
3064
3065 static void
3066 output_cfa_loc (cfi)
3067 dw_cfi_ref cfi;
3068 {
3069 dw_loc_descr_ref loc;
3070 unsigned long size;
3071
3072 /* Output the size of the block. */
3073 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3074 size = size_of_locs (loc);
3075 dw2_asm_output_data_uleb128 (size, NULL);
3076
3077 /* Now output the operations themselves. */
3078 output_loc_sequence (loc);
3079 }
3080
3081 /* This function builds a dwarf location descriptor sequence from
3082 a dw_cfa_location. */
3083
3084 static struct dw_loc_descr_struct *
3085 build_cfa_loc (cfa)
3086 dw_cfa_location *cfa;
3087 {
3088 struct dw_loc_descr_struct *head, *tmp;
3089
3090 if (cfa->indirect == 0)
3091 abort ();
3092
3093 if (cfa->base_offset)
3094 {
3095 if (cfa->reg <= 31)
3096 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3097 else
3098 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3099 }
3100 else if (cfa->reg <= 31)
3101 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3102 else
3103 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3104
3105 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3106 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3107 add_loc_descr (&head, tmp);
3108 if (cfa->offset != 0)
3109 {
3110 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3111 add_loc_descr (&head, tmp);
3112 }
3113
3114 return head;
3115 }
3116
3117 /* This function fills in aa dw_cfa_location structure from a dwarf location
3118 descriptor sequence. */
3119
3120 static void
3121 get_cfa_from_loc_descr (cfa, loc)
3122 dw_cfa_location *cfa;
3123 struct dw_loc_descr_struct *loc;
3124 {
3125 struct dw_loc_descr_struct *ptr;
3126 cfa->offset = 0;
3127 cfa->base_offset = 0;
3128 cfa->indirect = 0;
3129 cfa->reg = -1;
3130
3131 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3132 {
3133 enum dwarf_location_atom op = ptr->dw_loc_opc;
3134
3135 switch (op)
3136 {
3137 case DW_OP_reg0:
3138 case DW_OP_reg1:
3139 case DW_OP_reg2:
3140 case DW_OP_reg3:
3141 case DW_OP_reg4:
3142 case DW_OP_reg5:
3143 case DW_OP_reg6:
3144 case DW_OP_reg7:
3145 case DW_OP_reg8:
3146 case DW_OP_reg9:
3147 case DW_OP_reg10:
3148 case DW_OP_reg11:
3149 case DW_OP_reg12:
3150 case DW_OP_reg13:
3151 case DW_OP_reg14:
3152 case DW_OP_reg15:
3153 case DW_OP_reg16:
3154 case DW_OP_reg17:
3155 case DW_OP_reg18:
3156 case DW_OP_reg19:
3157 case DW_OP_reg20:
3158 case DW_OP_reg21:
3159 case DW_OP_reg22:
3160 case DW_OP_reg23:
3161 case DW_OP_reg24:
3162 case DW_OP_reg25:
3163 case DW_OP_reg26:
3164 case DW_OP_reg27:
3165 case DW_OP_reg28:
3166 case DW_OP_reg29:
3167 case DW_OP_reg30:
3168 case DW_OP_reg31:
3169 cfa->reg = op - DW_OP_reg0;
3170 break;
3171 case DW_OP_regx:
3172 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3173 break;
3174 case DW_OP_breg0:
3175 case DW_OP_breg1:
3176 case DW_OP_breg2:
3177 case DW_OP_breg3:
3178 case DW_OP_breg4:
3179 case DW_OP_breg5:
3180 case DW_OP_breg6:
3181 case DW_OP_breg7:
3182 case DW_OP_breg8:
3183 case DW_OP_breg9:
3184 case DW_OP_breg10:
3185 case DW_OP_breg11:
3186 case DW_OP_breg12:
3187 case DW_OP_breg13:
3188 case DW_OP_breg14:
3189 case DW_OP_breg15:
3190 case DW_OP_breg16:
3191 case DW_OP_breg17:
3192 case DW_OP_breg18:
3193 case DW_OP_breg19:
3194 case DW_OP_breg20:
3195 case DW_OP_breg21:
3196 case DW_OP_breg22:
3197 case DW_OP_breg23:
3198 case DW_OP_breg24:
3199 case DW_OP_breg25:
3200 case DW_OP_breg26:
3201 case DW_OP_breg27:
3202 case DW_OP_breg28:
3203 case DW_OP_breg29:
3204 case DW_OP_breg30:
3205 case DW_OP_breg31:
3206 cfa->reg = op - DW_OP_breg0;
3207 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3208 break;
3209 case DW_OP_bregx:
3210 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3211 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3212 break;
3213 case DW_OP_deref:
3214 cfa->indirect = 1;
3215 break;
3216 case DW_OP_plus_uconst:
3217 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3218 break;
3219 default:
3220 internal_error ("DW_LOC_OP %s not implemented\n",
3221 dwarf_stack_op_name (ptr->dw_loc_opc));
3222 }
3223 }
3224 }
3225 #endif /* .debug_frame support */
3226 \f
3227 /* And now, the support for symbolic debugging information. */
3228 #ifdef DWARF2_DEBUGGING_INFO
3229
3230 /* .debug_str support. */
3231 static int output_indirect_string PARAMS ((void **, void *));
3232
3233 static void dwarf2out_init PARAMS ((const char *));
3234 static void dwarf2out_finish PARAMS ((const char *));
3235 static void dwarf2out_define PARAMS ((unsigned int, const char *));
3236 static void dwarf2out_undef PARAMS ((unsigned int, const char *));
3237 static void dwarf2out_start_source_file PARAMS ((unsigned, const char *));
3238 static void dwarf2out_end_source_file PARAMS ((unsigned));
3239 static void dwarf2out_begin_block PARAMS ((unsigned, unsigned));
3240 static void dwarf2out_end_block PARAMS ((unsigned, unsigned));
3241 static bool dwarf2out_ignore_block PARAMS ((tree));
3242 static void dwarf2out_global_decl PARAMS ((tree));
3243 static void dwarf2out_abstract_function PARAMS ((tree));
3244
3245 /* The debug hooks structure. */
3246
3247 const struct gcc_debug_hooks dwarf2_debug_hooks =
3248 {
3249 dwarf2out_init,
3250 dwarf2out_finish,
3251 dwarf2out_define,
3252 dwarf2out_undef,
3253 dwarf2out_start_source_file,
3254 dwarf2out_end_source_file,
3255 dwarf2out_begin_block,
3256 dwarf2out_end_block,
3257 dwarf2out_ignore_block,
3258 dwarf2out_source_line,
3259 dwarf2out_begin_prologue,
3260 debug_nothing_int_charstar, /* end_prologue */
3261 dwarf2out_end_epilogue,
3262 debug_nothing_tree, /* begin_function */
3263 debug_nothing_int, /* end_function */
3264 dwarf2out_decl, /* function_decl */
3265 dwarf2out_global_decl,
3266 debug_nothing_tree, /* deferred_inline_function */
3267 /* The DWARF 2 backend tries to reduce debugging bloat by not
3268 emitting the abstract description of inline functions until
3269 something tries to reference them. */
3270 dwarf2out_abstract_function, /* outlining_inline_function */
3271 debug_nothing_rtx /* label */
3272 };
3273 #endif
3274 \f
3275 /* NOTE: In the comments in this file, many references are made to
3276 "Debugging Information Entries". This term is abbreviated as `DIE'
3277 throughout the remainder of this file. */
3278
3279 /* An internal representation of the DWARF output is built, and then
3280 walked to generate the DWARF debugging info. The walk of the internal
3281 representation is done after the entire program has been compiled.
3282 The types below are used to describe the internal representation. */
3283
3284 /* Various DIE's use offsets relative to the beginning of the
3285 .debug_info section to refer to each other. */
3286
3287 typedef long int dw_offset;
3288
3289 /* Define typedefs here to avoid circular dependencies. */
3290
3291 typedef struct dw_attr_struct *dw_attr_ref;
3292 typedef struct dw_line_info_struct *dw_line_info_ref;
3293 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3294 typedef struct pubname_struct *pubname_ref;
3295 typedef struct dw_ranges_struct *dw_ranges_ref;
3296
3297 /* Each entry in the line_info_table maintains the file and
3298 line number associated with the label generated for that
3299 entry. The label gives the PC value associated with
3300 the line number entry. */
3301
3302 typedef struct dw_line_info_struct GTY(())
3303 {
3304 unsigned long dw_file_num;
3305 unsigned long dw_line_num;
3306 }
3307 dw_line_info_entry;
3308
3309 /* Line information for functions in separate sections; each one gets its
3310 own sequence. */
3311 typedef struct dw_separate_line_info_struct GTY(())
3312 {
3313 unsigned long dw_file_num;
3314 unsigned long dw_line_num;
3315 unsigned long function;
3316 }
3317 dw_separate_line_info_entry;
3318
3319 /* Each DIE attribute has a field specifying the attribute kind,
3320 a link to the next attribute in the chain, and an attribute value.
3321 Attributes are typically linked below the DIE they modify. */
3322
3323 typedef struct dw_attr_struct GTY(())
3324 {
3325 enum dwarf_attribute dw_attr;
3326 dw_attr_ref dw_attr_next;
3327 dw_val_node dw_attr_val;
3328 }
3329 dw_attr_node;
3330
3331 /* The Debugging Information Entry (DIE) structure */
3332
3333 typedef struct die_struct GTY(())
3334 {
3335 enum dwarf_tag die_tag;
3336 char *die_symbol;
3337 dw_attr_ref die_attr;
3338 dw_die_ref die_parent;
3339 dw_die_ref die_child;
3340 dw_die_ref die_sib;
3341 dw_offset die_offset;
3342 unsigned long die_abbrev;
3343 int die_mark;
3344 }
3345 die_node;
3346
3347 /* The pubname structure */
3348
3349 typedef struct pubname_struct GTY(())
3350 {
3351 dw_die_ref die;
3352 char *name;
3353 }
3354 pubname_entry;
3355
3356 struct dw_ranges_struct GTY(())
3357 {
3358 int block_num;
3359 };
3360
3361 /* The limbo die list structure. */
3362 typedef struct limbo_die_struct GTY(())
3363 {
3364 dw_die_ref die;
3365 tree created_for;
3366 struct limbo_die_struct *next;
3367 }
3368 limbo_die_node;
3369
3370 /* How to start an assembler comment. */
3371 #ifndef ASM_COMMENT_START
3372 #define ASM_COMMENT_START ";#"
3373 #endif
3374
3375 /* Define a macro which returns nonzero for a TYPE_DECL which was
3376 implicitly generated for a tagged type.
3377
3378 Note that unlike the gcc front end (which generates a NULL named
3379 TYPE_DECL node for each complete tagged type, each array type, and
3380 each function type node created) the g++ front end generates a
3381 _named_ TYPE_DECL node for each tagged type node created.
3382 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3383 generate a DW_TAG_typedef DIE for them. */
3384
3385 #define TYPE_DECL_IS_STUB(decl) \
3386 (DECL_NAME (decl) == NULL_TREE \
3387 || (DECL_ARTIFICIAL (decl) \
3388 && is_tagged_type (TREE_TYPE (decl)) \
3389 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3390 /* This is necessary for stub decls that \
3391 appear in nested inline functions. */ \
3392 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3393 && (decl_ultimate_origin (decl) \
3394 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3395
3396 /* Information concerning the compilation unit's programming
3397 language, and compiler version. */
3398
3399 /* Fixed size portion of the DWARF compilation unit header. */
3400 #define DWARF_COMPILE_UNIT_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 3)
3401
3402 /* Fixed size portion of public names info. */
3403 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3404
3405 /* Fixed size portion of the address range info. */
3406 #define DWARF_ARANGES_HEADER_SIZE \
3407 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3408 - DWARF_OFFSET_SIZE)
3409
3410 /* Size of padding portion in the address range info. It must be
3411 aligned to twice the pointer size. */
3412 #define DWARF_ARANGES_PAD_SIZE \
3413 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3414 - (2 * DWARF_OFFSET_SIZE + 4))
3415
3416 /* Use assembler line directives if available. */
3417 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3418 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3419 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3420 #else
3421 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3422 #endif
3423 #endif
3424
3425 /* Minimum line offset in a special line info. opcode.
3426 This value was chosen to give a reasonable range of values. */
3427 #define DWARF_LINE_BASE -10
3428
3429 /* First special line opcode - leave room for the standard opcodes. */
3430 #define DWARF_LINE_OPCODE_BASE 10
3431
3432 /* Range of line offsets in a special line info. opcode. */
3433 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3434
3435 /* Flag that indicates the initial value of the is_stmt_start flag.
3436 In the present implementation, we do not mark any lines as
3437 the beginning of a source statement, because that information
3438 is not made available by the GCC front-end. */
3439 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3440
3441 #ifdef DWARF2_DEBUGGING_INFO
3442 /* This location is used by calc_die_sizes() to keep track
3443 the offset of each DIE within the .debug_info section. */
3444 static unsigned long next_die_offset;
3445 #endif
3446
3447 /* Record the root of the DIE's built for the current compilation unit. */
3448 static GTY(()) dw_die_ref comp_unit_die;
3449
3450 #ifdef DWARF2_DEBUGGING_INFO
3451 /* We need special handling in dwarf2out_start_source_file if it is
3452 first one. */
3453 static int is_main_source;
3454 #endif
3455
3456 /* A list of DIEs with a NULL parent waiting to be relocated. */
3457 static GTY(()) limbo_die_node *limbo_die_list;
3458
3459 /* Filenames referenced by this compilation unit. */
3460 static GTY(()) varray_type file_table;
3461 static GTY(()) varray_type file_table_emitted;
3462 static GTY(()) size_t file_table_last_lookup_index;
3463
3464 /* A pointer to the base of a table of references to DIE's that describe
3465 declarations. The table is indexed by DECL_UID() which is a unique
3466 number identifying each decl. */
3467 static GTY((length ("decl_die_table_allocated"))) dw_die_ref *decl_die_table;
3468
3469 /* Number of elements currently allocated for the decl_die_table. */
3470 static unsigned decl_die_table_allocated;
3471
3472 #ifdef DWARF2_DEBUGGING_INFO
3473 /* Number of elements in decl_die_table currently in use. */
3474 static unsigned decl_die_table_in_use;
3475 #endif
3476
3477 /* Size (in elements) of increments by which we may expand the
3478 decl_die_table. */
3479 #define DECL_DIE_TABLE_INCREMENT 256
3480
3481 /* A pointer to the base of a list of references to DIE's that
3482 are uniquely identified by their tag, presence/absence of
3483 children DIE's, and list of attribute/value pairs. */
3484 static GTY((length ("abbrev_die_table_allocated")))
3485 dw_die_ref *abbrev_die_table;
3486
3487 /* Number of elements currently allocated for abbrev_die_table. */
3488 static unsigned abbrev_die_table_allocated;
3489
3490 #ifdef DWARF2_DEBUGGING_INFO
3491 /* Number of elements in type_die_table currently in use. */
3492 static unsigned abbrev_die_table_in_use;
3493 #endif
3494
3495 /* Size (in elements) of increments by which we may expand the
3496 abbrev_die_table. */
3497 #define ABBREV_DIE_TABLE_INCREMENT 256
3498
3499 /* A pointer to the base of a table that contains line information
3500 for each source code line in .text in the compilation unit. */
3501 static GTY((length ("line_info_table_allocated")))
3502 dw_line_info_ref line_info_table;
3503
3504 /* Number of elements currently allocated for line_info_table. */
3505 static unsigned line_info_table_allocated;
3506
3507 #ifdef DWARF2_DEBUGGING_INFO
3508 /* Number of elements in line_info_table currently in use. */
3509 static unsigned line_info_table_in_use;
3510 #endif
3511
3512 /* A pointer to the base of a table that contains line information
3513 for each source code line outside of .text in the compilation unit. */
3514 static GTY ((length ("separate_line_info_table_allocated")))
3515 dw_separate_line_info_ref separate_line_info_table;
3516
3517 /* Number of elements currently allocated for separate_line_info_table. */
3518 static unsigned separate_line_info_table_allocated;
3519
3520 #ifdef DWARF2_DEBUGGING_INFO
3521 /* Number of elements in separate_line_info_table currently in use. */
3522 static unsigned separate_line_info_table_in_use;
3523 #endif
3524
3525 /* Size (in elements) of increments by which we may expand the
3526 line_info_table. */
3527 #define LINE_INFO_TABLE_INCREMENT 1024
3528
3529 /* A pointer to the base of a table that contains a list of publicly
3530 accessible names. */
3531 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3532
3533 /* Number of elements currently allocated for pubname_table. */
3534 static unsigned pubname_table_allocated;
3535
3536 #ifdef DWARF2_DEBUGGING_INFO
3537 /* Number of elements in pubname_table currently in use. */
3538 static unsigned pubname_table_in_use;
3539 #endif
3540
3541 /* Size (in elements) of increments by which we may expand the
3542 pubname_table. */
3543 #define PUBNAME_TABLE_INCREMENT 64
3544
3545 /* Array of dies for which we should generate .debug_arange info. */
3546 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3547
3548 /* Number of elements currently allocated for arange_table. */
3549 static unsigned arange_table_allocated;
3550
3551 #ifdef DWARF2_DEBUGGING_INFO
3552 /* Number of elements in arange_table currently in use. */
3553 static unsigned arange_table_in_use;
3554 #endif
3555
3556 /* Size (in elements) of increments by which we may expand the
3557 arange_table. */
3558 #define ARANGE_TABLE_INCREMENT 64
3559
3560 /* Array of dies for which we should generate .debug_ranges info. */
3561 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3562
3563 /* Number of elements currently allocated for ranges_table. */
3564 static unsigned ranges_table_allocated;
3565
3566 #ifdef DWARF2_DEBUGGING_INFO
3567 /* Number of elements in ranges_table currently in use. */
3568 static unsigned ranges_table_in_use;
3569
3570 /* Size (in elements) of increments by which we may expand the
3571 ranges_table. */
3572 #define RANGES_TABLE_INCREMENT 64
3573
3574 /* Whether we have location lists that need outputting */
3575 static unsigned have_location_lists;
3576
3577 /* Record whether the function being analyzed contains inlined functions. */
3578 static int current_function_has_inlines;
3579 #endif
3580 #if 0 && defined (MIPS_DEBUGGING_INFO)
3581 static int comp_unit_has_inlines;
3582 #endif
3583
3584 #ifdef DWARF2_DEBUGGING_INFO
3585
3586 /* Forward declarations for functions defined in this file. */
3587
3588 static int is_pseudo_reg PARAMS ((rtx));
3589 static tree type_main_variant PARAMS ((tree));
3590 static int is_tagged_type PARAMS ((tree));
3591 static const char *dwarf_tag_name PARAMS ((unsigned));
3592 static const char *dwarf_attr_name PARAMS ((unsigned));
3593 static const char *dwarf_form_name PARAMS ((unsigned));
3594 #if 0
3595 static const char *dwarf_type_encoding_name PARAMS ((unsigned));
3596 #endif
3597 static tree decl_ultimate_origin PARAMS ((tree));
3598 static tree block_ultimate_origin PARAMS ((tree));
3599 static tree decl_class_context PARAMS ((tree));
3600 static void add_dwarf_attr PARAMS ((dw_die_ref, dw_attr_ref));
3601 static inline enum dw_val_class AT_class PARAMS ((dw_attr_ref));
3602 static void add_AT_flag PARAMS ((dw_die_ref,
3603 enum dwarf_attribute,
3604 unsigned));
3605 static inline unsigned AT_flag PARAMS ((dw_attr_ref));
3606 static void add_AT_int PARAMS ((dw_die_ref,
3607 enum dwarf_attribute, long));
3608 static inline long int AT_int PARAMS ((dw_attr_ref));
3609 static void add_AT_unsigned PARAMS ((dw_die_ref,
3610 enum dwarf_attribute,
3611 unsigned long));
3612 static inline unsigned long AT_unsigned PARAMS ((dw_attr_ref));
3613 static void add_AT_long_long PARAMS ((dw_die_ref,
3614 enum dwarf_attribute,
3615 unsigned long,
3616 unsigned long));
3617 static void add_AT_float PARAMS ((dw_die_ref,
3618 enum dwarf_attribute,
3619 unsigned, long *));
3620 static hashval_t debug_str_do_hash PARAMS ((const void *));
3621 static int debug_str_eq PARAMS ((const void *, const void *));
3622 static void add_AT_string PARAMS ((dw_die_ref,
3623 enum dwarf_attribute,
3624 const char *));
3625 static inline const char *AT_string PARAMS ((dw_attr_ref));
3626 static int AT_string_form PARAMS ((dw_attr_ref));
3627 static void add_AT_die_ref PARAMS ((dw_die_ref,
3628 enum dwarf_attribute,
3629 dw_die_ref));
3630 static inline dw_die_ref AT_ref PARAMS ((dw_attr_ref));
3631 static inline int AT_ref_external PARAMS ((dw_attr_ref));
3632 static inline void set_AT_ref_external PARAMS ((dw_attr_ref, int));
3633 static void add_AT_fde_ref PARAMS ((dw_die_ref,
3634 enum dwarf_attribute,
3635 unsigned));
3636 static void add_AT_loc PARAMS ((dw_die_ref,
3637 enum dwarf_attribute,
3638 dw_loc_descr_ref));
3639 static inline dw_loc_descr_ref AT_loc PARAMS ((dw_attr_ref));
3640 static void add_AT_loc_list PARAMS ((dw_die_ref,
3641 enum dwarf_attribute,
3642 dw_loc_list_ref));
3643 static inline dw_loc_list_ref AT_loc_list PARAMS ((dw_attr_ref));
3644 static void add_AT_addr PARAMS ((dw_die_ref,
3645 enum dwarf_attribute,
3646 rtx));
3647 static inline rtx AT_addr PARAMS ((dw_attr_ref));
3648 static void add_AT_lbl_id PARAMS ((dw_die_ref,
3649 enum dwarf_attribute,
3650 const char *));
3651 static void add_AT_lbl_offset PARAMS ((dw_die_ref,
3652 enum dwarf_attribute,
3653 const char *));
3654 static void add_AT_offset PARAMS ((dw_die_ref,
3655 enum dwarf_attribute,
3656 unsigned long));
3657 static void add_AT_range_list PARAMS ((dw_die_ref,
3658 enum dwarf_attribute,
3659 unsigned long));
3660 static inline const char *AT_lbl PARAMS ((dw_attr_ref));
3661 static dw_attr_ref get_AT PARAMS ((dw_die_ref,
3662 enum dwarf_attribute));
3663 static const char *get_AT_low_pc PARAMS ((dw_die_ref));
3664 static const char *get_AT_hi_pc PARAMS ((dw_die_ref));
3665 static const char *get_AT_string PARAMS ((dw_die_ref,
3666 enum dwarf_attribute));
3667 static int get_AT_flag PARAMS ((dw_die_ref,
3668 enum dwarf_attribute));
3669 static unsigned get_AT_unsigned PARAMS ((dw_die_ref,
3670 enum dwarf_attribute));
3671 static inline dw_die_ref get_AT_ref PARAMS ((dw_die_ref,
3672 enum dwarf_attribute));
3673 static int is_c_family PARAMS ((void));
3674 static int is_cxx PARAMS ((void));
3675 static int is_java PARAMS ((void));
3676 static int is_fortran PARAMS ((void));
3677 static void remove_AT PARAMS ((dw_die_ref,
3678 enum dwarf_attribute));
3679 static inline void free_die PARAMS ((dw_die_ref));
3680 static void remove_children PARAMS ((dw_die_ref));
3681 static void add_child_die PARAMS ((dw_die_ref, dw_die_ref));
3682 static dw_die_ref new_die PARAMS ((enum dwarf_tag, dw_die_ref,
3683 tree));
3684 static dw_die_ref lookup_type_die PARAMS ((tree));
3685 static void equate_type_number_to_die PARAMS ((tree, dw_die_ref));
3686 static dw_die_ref lookup_decl_die PARAMS ((tree));
3687 static void equate_decl_number_to_die PARAMS ((tree, dw_die_ref));
3688 static void print_spaces PARAMS ((FILE *));
3689 static void print_die PARAMS ((dw_die_ref, FILE *));
3690 static void print_dwarf_line_table PARAMS ((FILE *));
3691 static void reverse_die_lists PARAMS ((dw_die_ref));
3692 static void reverse_all_dies PARAMS ((dw_die_ref));
3693 static dw_die_ref push_new_compile_unit PARAMS ((dw_die_ref, dw_die_ref));
3694 static dw_die_ref pop_compile_unit PARAMS ((dw_die_ref));
3695 static void loc_checksum PARAMS ((dw_loc_descr_ref,
3696 struct md5_ctx *));
3697 static void attr_checksum PARAMS ((dw_attr_ref,
3698 struct md5_ctx *,
3699 int *));
3700 static void die_checksum PARAMS ((dw_die_ref,
3701 struct md5_ctx *,
3702 int *));
3703 static int same_loc_p PARAMS ((dw_loc_descr_ref,
3704 dw_loc_descr_ref, int *));
3705 static int same_dw_val_p PARAMS ((dw_val_node *, dw_val_node *,
3706 int *));
3707 static int same_attr_p PARAMS ((dw_attr_ref, dw_attr_ref, int *));
3708 static int same_die_p PARAMS ((dw_die_ref, dw_die_ref, int *));
3709 static int same_die_p_wrap PARAMS ((dw_die_ref, dw_die_ref));
3710 static void compute_section_prefix PARAMS ((dw_die_ref));
3711 static int is_type_die PARAMS ((dw_die_ref));
3712 static int is_comdat_die PARAMS ((dw_die_ref));
3713 static int is_symbol_die PARAMS ((dw_die_ref));
3714 static void assign_symbol_names PARAMS ((dw_die_ref));
3715 static void break_out_includes PARAMS ((dw_die_ref));
3716 static hashval_t htab_cu_hash PARAMS ((const void *));
3717 static int htab_cu_eq PARAMS ((const void *, const void *));
3718 static void htab_cu_del PARAMS ((void *));
3719 static int check_duplicate_cu PARAMS ((dw_die_ref, htab_t, unsigned *));
3720 static void record_comdat_symbol_number PARAMS ((dw_die_ref, htab_t, unsigned));
3721 static void add_sibling_attributes PARAMS ((dw_die_ref));
3722 static void build_abbrev_table PARAMS ((dw_die_ref));
3723 static void output_location_lists PARAMS ((dw_die_ref));
3724 static int constant_size PARAMS ((long unsigned));
3725 static unsigned long size_of_die PARAMS ((dw_die_ref));
3726 static void calc_die_sizes PARAMS ((dw_die_ref));
3727 static void mark_dies PARAMS ((dw_die_ref));
3728 static void unmark_dies PARAMS ((dw_die_ref));
3729 static void unmark_all_dies PARAMS ((dw_die_ref));
3730 static unsigned long size_of_pubnames PARAMS ((void));
3731 static unsigned long size_of_aranges PARAMS ((void));
3732 static enum dwarf_form value_format PARAMS ((dw_attr_ref));
3733 static void output_value_format PARAMS ((dw_attr_ref));
3734 static void output_abbrev_section PARAMS ((void));
3735 static void output_die_symbol PARAMS ((dw_die_ref));
3736 static void output_die PARAMS ((dw_die_ref));
3737 static void output_compilation_unit_header PARAMS ((void));
3738 static void output_comp_unit PARAMS ((dw_die_ref, int));
3739 static const char *dwarf2_name PARAMS ((tree, int));
3740 static void add_pubname PARAMS ((tree, dw_die_ref));
3741 static void output_pubnames PARAMS ((void));
3742 static void add_arange PARAMS ((tree, dw_die_ref));
3743 static void output_aranges PARAMS ((void));
3744 static unsigned int add_ranges PARAMS ((tree));
3745 static void output_ranges PARAMS ((void));
3746 static void output_line_info PARAMS ((void));
3747 static void output_file_names PARAMS ((void));
3748 static dw_die_ref base_type_die PARAMS ((tree));
3749 static tree root_type PARAMS ((tree));
3750 static int is_base_type PARAMS ((tree));
3751 static dw_die_ref modified_type_die PARAMS ((tree, int, int, dw_die_ref));
3752 static int type_is_enum PARAMS ((tree));
3753 static unsigned int reg_number PARAMS ((rtx));
3754 static dw_loc_descr_ref reg_loc_descriptor PARAMS ((rtx));
3755 static dw_loc_descr_ref one_reg_loc_descriptor PARAMS ((unsigned int));
3756 static dw_loc_descr_ref multiple_reg_loc_descriptor PARAMS ((rtx, rtx));
3757 static dw_loc_descr_ref int_loc_descriptor PARAMS ((HOST_WIDE_INT));
3758 static dw_loc_descr_ref based_loc_descr PARAMS ((unsigned, long));
3759 static int is_based_loc PARAMS ((rtx));
3760 static dw_loc_descr_ref mem_loc_descriptor PARAMS ((rtx, enum machine_mode mode));
3761 static dw_loc_descr_ref concat_loc_descriptor PARAMS ((rtx, rtx));
3762 static dw_loc_descr_ref loc_descriptor PARAMS ((rtx));
3763 static dw_loc_descr_ref loc_descriptor_from_tree PARAMS ((tree, int));
3764 static HOST_WIDE_INT ceiling PARAMS ((HOST_WIDE_INT, unsigned int));
3765 static tree field_type PARAMS ((tree));
3766 static unsigned int simple_type_align_in_bits PARAMS ((tree));
3767 static unsigned int simple_decl_align_in_bits PARAMS ((tree));
3768 static unsigned HOST_WIDE_INT simple_type_size_in_bits PARAMS ((tree));
3769 static HOST_WIDE_INT field_byte_offset PARAMS ((tree));
3770 static void add_AT_location_description PARAMS ((dw_die_ref,
3771 enum dwarf_attribute,
3772 dw_loc_descr_ref));
3773 static void add_data_member_location_attribute PARAMS ((dw_die_ref, tree));
3774 static void add_const_value_attribute PARAMS ((dw_die_ref, rtx));
3775 static rtx rtl_for_decl_location PARAMS ((tree));
3776 static void add_location_or_const_value_attribute PARAMS ((dw_die_ref, tree));
3777 static void tree_add_const_value_attribute PARAMS ((dw_die_ref, tree));
3778 static void add_name_attribute PARAMS ((dw_die_ref, const char *));
3779 static void add_comp_dir_attribute PARAMS ((dw_die_ref));
3780 static void add_bound_info PARAMS ((dw_die_ref,
3781 enum dwarf_attribute, tree));
3782 static void add_subscript_info PARAMS ((dw_die_ref, tree));
3783 static void add_byte_size_attribute PARAMS ((dw_die_ref, tree));
3784 static void add_bit_offset_attribute PARAMS ((dw_die_ref, tree));
3785 static void add_bit_size_attribute PARAMS ((dw_die_ref, tree));
3786 static void add_prototyped_attribute PARAMS ((dw_die_ref, tree));
3787 static void add_abstract_origin_attribute PARAMS ((dw_die_ref, tree));
3788 static void add_pure_or_virtual_attribute PARAMS ((dw_die_ref, tree));
3789 static void add_src_coords_attributes PARAMS ((dw_die_ref, tree));
3790 static void add_name_and_src_coords_attributes PARAMS ((dw_die_ref, tree));
3791 static void push_decl_scope PARAMS ((tree));
3792 static void pop_decl_scope PARAMS ((void));
3793 static dw_die_ref scope_die_for PARAMS ((tree, dw_die_ref));
3794 static inline int local_scope_p PARAMS ((dw_die_ref));
3795 static inline int class_scope_p PARAMS ((dw_die_ref));
3796 static void add_type_attribute PARAMS ((dw_die_ref, tree, int, int,
3797 dw_die_ref));
3798 static const char *type_tag PARAMS ((tree));
3799 static tree member_declared_type PARAMS ((tree));
3800 #if 0
3801 static const char *decl_start_label PARAMS ((tree));
3802 #endif
3803 static void gen_array_type_die PARAMS ((tree, dw_die_ref));
3804 static void gen_set_type_die PARAMS ((tree, dw_die_ref));
3805 #if 0
3806 static void gen_entry_point_die PARAMS ((tree, dw_die_ref));
3807 #endif
3808 static void gen_inlined_enumeration_type_die PARAMS ((tree, dw_die_ref));
3809 static void gen_inlined_structure_type_die PARAMS ((tree, dw_die_ref));
3810 static void gen_inlined_union_type_die PARAMS ((tree, dw_die_ref));
3811 static void gen_enumeration_type_die PARAMS ((tree, dw_die_ref));
3812 static dw_die_ref gen_formal_parameter_die PARAMS ((tree, dw_die_ref));
3813 static void gen_unspecified_parameters_die PARAMS ((tree, dw_die_ref));
3814 static void gen_formal_types_die PARAMS ((tree, dw_die_ref));
3815 static void gen_subprogram_die PARAMS ((tree, dw_die_ref));
3816 static void gen_variable_die PARAMS ((tree, dw_die_ref));
3817 static void gen_label_die PARAMS ((tree, dw_die_ref));
3818 static void gen_lexical_block_die PARAMS ((tree, dw_die_ref, int));
3819 static void gen_inlined_subroutine_die PARAMS ((tree, dw_die_ref, int));
3820 static void gen_field_die PARAMS ((tree, dw_die_ref));
3821 static void gen_ptr_to_mbr_type_die PARAMS ((tree, dw_die_ref));
3822 static dw_die_ref gen_compile_unit_die PARAMS ((const char *));
3823 static void gen_string_type_die PARAMS ((tree, dw_die_ref));
3824 static void gen_inheritance_die PARAMS ((tree, tree, dw_die_ref));
3825 static void gen_member_die PARAMS ((tree, dw_die_ref));
3826 static void gen_struct_or_union_type_die PARAMS ((tree, dw_die_ref));
3827 static void gen_subroutine_type_die PARAMS ((tree, dw_die_ref));
3828 static void gen_typedef_die PARAMS ((tree, dw_die_ref));
3829 static void gen_type_die PARAMS ((tree, dw_die_ref));
3830 static void gen_tagged_type_instantiation_die PARAMS ((tree, dw_die_ref));
3831 static void gen_block_die PARAMS ((tree, dw_die_ref, int));
3832 static void decls_for_scope PARAMS ((tree, dw_die_ref, int));
3833 static int is_redundant_typedef PARAMS ((tree));
3834 static void gen_decl_die PARAMS ((tree, dw_die_ref));
3835 static unsigned lookup_filename PARAMS ((const char *));
3836 static void init_file_table PARAMS ((void));
3837 static void retry_incomplete_types PARAMS ((void));
3838 static void gen_type_die_for_member PARAMS ((tree, tree, dw_die_ref));
3839 static void splice_child_die PARAMS ((dw_die_ref, dw_die_ref));
3840 static int file_info_cmp PARAMS ((const void *, const void *));
3841 static dw_loc_list_ref new_loc_list PARAMS ((dw_loc_descr_ref,
3842 const char *, const char *,
3843 const char *, unsigned));
3844 static void add_loc_descr_to_loc_list PARAMS ((dw_loc_list_ref *,
3845 dw_loc_descr_ref,
3846 const char *, const char *, const char *));
3847 static void output_loc_list PARAMS ((dw_loc_list_ref));
3848 static char *gen_internal_sym PARAMS ((const char *));
3849
3850 static void prune_unmark_dies PARAMS ((dw_die_ref));
3851 static void prune_unused_types_mark PARAMS ((dw_die_ref, int));
3852 static void prune_unused_types_walk PARAMS ((dw_die_ref));
3853 static void prune_unused_types_walk_attribs PARAMS ((dw_die_ref));
3854 static void prune_unused_types_prune PARAMS ((dw_die_ref));
3855 static void prune_unused_types PARAMS ((void));
3856 static int maybe_emit_file PARAMS ((int));
3857
3858 /* Section names used to hold DWARF debugging information. */
3859 #ifndef DEBUG_INFO_SECTION
3860 #define DEBUG_INFO_SECTION ".debug_info"
3861 #endif
3862 #ifndef DEBUG_ABBREV_SECTION
3863 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3864 #endif
3865 #ifndef DEBUG_ARANGES_SECTION
3866 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3867 #endif
3868 #ifndef DEBUG_MACINFO_SECTION
3869 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3870 #endif
3871 #ifndef DEBUG_LINE_SECTION
3872 #define DEBUG_LINE_SECTION ".debug_line"
3873 #endif
3874 #ifndef DEBUG_LOC_SECTION
3875 #define DEBUG_LOC_SECTION ".debug_loc"
3876 #endif
3877 #ifndef DEBUG_PUBNAMES_SECTION
3878 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3879 #endif
3880 #ifndef DEBUG_STR_SECTION
3881 #define DEBUG_STR_SECTION ".debug_str"
3882 #endif
3883 #ifndef DEBUG_RANGES_SECTION
3884 #define DEBUG_RANGES_SECTION ".debug_ranges"
3885 #endif
3886
3887 /* Standard ELF section names for compiled code and data. */
3888 #ifndef TEXT_SECTION_NAME
3889 #define TEXT_SECTION_NAME ".text"
3890 #endif
3891
3892 /* Section flags for .debug_str section. */
3893 #ifdef HAVE_GAS_SHF_MERGE
3894 #define DEBUG_STR_SECTION_FLAGS \
3895 (SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1)
3896 #else
3897 #define DEBUG_STR_SECTION_FLAGS SECTION_DEBUG
3898 #endif
3899
3900 /* Labels we insert at beginning sections we can reference instead of
3901 the section names themselves. */
3902
3903 #ifndef TEXT_SECTION_LABEL
3904 #define TEXT_SECTION_LABEL "Ltext"
3905 #endif
3906 #ifndef DEBUG_LINE_SECTION_LABEL
3907 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3908 #endif
3909 #ifndef DEBUG_INFO_SECTION_LABEL
3910 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3911 #endif
3912 #ifndef DEBUG_ABBREV_SECTION_LABEL
3913 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3914 #endif
3915 #ifndef DEBUG_LOC_SECTION_LABEL
3916 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3917 #endif
3918 #ifndef DEBUG_RANGES_SECTION_LABEL
3919 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3920 #endif
3921 #ifndef DEBUG_MACINFO_SECTION_LABEL
3922 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3923 #endif
3924
3925 /* Definitions of defaults for formats and names of various special
3926 (artificial) labels which may be generated within this file (when the -g
3927 options is used and DWARF_DEBUGGING_INFO is in effect.
3928 If necessary, these may be overridden from within the tm.h file, but
3929 typically, overriding these defaults is unnecessary. */
3930
3931 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3932 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3933 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3934 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3935 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3936 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3937 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3938 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3939
3940 #ifndef TEXT_END_LABEL
3941 #define TEXT_END_LABEL "Letext"
3942 #endif
3943 #ifndef BLOCK_BEGIN_LABEL
3944 #define BLOCK_BEGIN_LABEL "LBB"
3945 #endif
3946 #ifndef BLOCK_END_LABEL
3947 #define BLOCK_END_LABEL "LBE"
3948 #endif
3949 #ifndef LINE_CODE_LABEL
3950 #define LINE_CODE_LABEL "LM"
3951 #endif
3952 #ifndef SEPARATE_LINE_CODE_LABEL
3953 #define SEPARATE_LINE_CODE_LABEL "LSM"
3954 #endif
3955 \f
3956 /* We allow a language front-end to designate a function that is to be
3957 called to "demangle" any name before it it put into a DIE. */
3958
3959 static const char *(*demangle_name_func) PARAMS ((const char *));
3960
3961 void
3962 dwarf2out_set_demangle_name_func (func)
3963 const char *(*func) PARAMS ((const char *));
3964 {
3965 demangle_name_func = func;
3966 }
3967
3968 /* Test if rtl node points to a pseudo register. */
3969
3970 static inline int
3971 is_pseudo_reg (rtl)
3972 rtx rtl;
3973 {
3974 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3975 || (GET_CODE (rtl) == SUBREG
3976 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3977 }
3978
3979 /* Return a reference to a type, with its const and volatile qualifiers
3980 removed. */
3981
3982 static inline tree
3983 type_main_variant (type)
3984 tree type;
3985 {
3986 type = TYPE_MAIN_VARIANT (type);
3987
3988 /* ??? There really should be only one main variant among any group of
3989 variants of a given type (and all of the MAIN_VARIANT values for all
3990 members of the group should point to that one type) but sometimes the C
3991 front-end messes this up for array types, so we work around that bug
3992 here. */
3993 if (TREE_CODE (type) == ARRAY_TYPE)
3994 while (type != TYPE_MAIN_VARIANT (type))
3995 type = TYPE_MAIN_VARIANT (type);
3996
3997 return type;
3998 }
3999
4000 /* Return nonzero if the given type node represents a tagged type. */
4001
4002 static inline int
4003 is_tagged_type (type)
4004 tree type;
4005 {
4006 enum tree_code code = TREE_CODE (type);
4007
4008 return (code == RECORD_TYPE || code == UNION_TYPE
4009 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4010 }
4011
4012 /* Convert a DIE tag into its string name. */
4013
4014 static const char *
4015 dwarf_tag_name (tag)
4016 unsigned tag;
4017 {
4018 switch (tag)
4019 {
4020 case DW_TAG_padding:
4021 return "DW_TAG_padding";
4022 case DW_TAG_array_type:
4023 return "DW_TAG_array_type";
4024 case DW_TAG_class_type:
4025 return "DW_TAG_class_type";
4026 case DW_TAG_entry_point:
4027 return "DW_TAG_entry_point";
4028 case DW_TAG_enumeration_type:
4029 return "DW_TAG_enumeration_type";
4030 case DW_TAG_formal_parameter:
4031 return "DW_TAG_formal_parameter";
4032 case DW_TAG_imported_declaration:
4033 return "DW_TAG_imported_declaration";
4034 case DW_TAG_label:
4035 return "DW_TAG_label";
4036 case DW_TAG_lexical_block:
4037 return "DW_TAG_lexical_block";
4038 case DW_TAG_member:
4039 return "DW_TAG_member";
4040 case DW_TAG_pointer_type:
4041 return "DW_TAG_pointer_type";
4042 case DW_TAG_reference_type:
4043 return "DW_TAG_reference_type";
4044 case DW_TAG_compile_unit:
4045 return "DW_TAG_compile_unit";
4046 case DW_TAG_string_type:
4047 return "DW_TAG_string_type";
4048 case DW_TAG_structure_type:
4049 return "DW_TAG_structure_type";
4050 case DW_TAG_subroutine_type:
4051 return "DW_TAG_subroutine_type";
4052 case DW_TAG_typedef:
4053 return "DW_TAG_typedef";
4054 case DW_TAG_union_type:
4055 return "DW_TAG_union_type";
4056 case DW_TAG_unspecified_parameters:
4057 return "DW_TAG_unspecified_parameters";
4058 case DW_TAG_variant:
4059 return "DW_TAG_variant";
4060 case DW_TAG_common_block:
4061 return "DW_TAG_common_block";
4062 case DW_TAG_common_inclusion:
4063 return "DW_TAG_common_inclusion";
4064 case DW_TAG_inheritance:
4065 return "DW_TAG_inheritance";
4066 case DW_TAG_inlined_subroutine:
4067 return "DW_TAG_inlined_subroutine";
4068 case DW_TAG_module:
4069 return "DW_TAG_module";
4070 case DW_TAG_ptr_to_member_type:
4071 return "DW_TAG_ptr_to_member_type";
4072 case DW_TAG_set_type:
4073 return "DW_TAG_set_type";
4074 case DW_TAG_subrange_type:
4075 return "DW_TAG_subrange_type";
4076 case DW_TAG_with_stmt:
4077 return "DW_TAG_with_stmt";
4078 case DW_TAG_access_declaration:
4079 return "DW_TAG_access_declaration";
4080 case DW_TAG_base_type:
4081 return "DW_TAG_base_type";
4082 case DW_TAG_catch_block:
4083 return "DW_TAG_catch_block";
4084 case DW_TAG_const_type:
4085 return "DW_TAG_const_type";
4086 case DW_TAG_constant:
4087 return "DW_TAG_constant";
4088 case DW_TAG_enumerator:
4089 return "DW_TAG_enumerator";
4090 case DW_TAG_file_type:
4091 return "DW_TAG_file_type";
4092 case DW_TAG_friend:
4093 return "DW_TAG_friend";
4094 case DW_TAG_namelist:
4095 return "DW_TAG_namelist";
4096 case DW_TAG_namelist_item:
4097 return "DW_TAG_namelist_item";
4098 case DW_TAG_packed_type:
4099 return "DW_TAG_packed_type";
4100 case DW_TAG_subprogram:
4101 return "DW_TAG_subprogram";
4102 case DW_TAG_template_type_param:
4103 return "DW_TAG_template_type_param";
4104 case DW_TAG_template_value_param:
4105 return "DW_TAG_template_value_param";
4106 case DW_TAG_thrown_type:
4107 return "DW_TAG_thrown_type";
4108 case DW_TAG_try_block:
4109 return "DW_TAG_try_block";
4110 case DW_TAG_variant_part:
4111 return "DW_TAG_variant_part";
4112 case DW_TAG_variable:
4113 return "DW_TAG_variable";
4114 case DW_TAG_volatile_type:
4115 return "DW_TAG_volatile_type";
4116 case DW_TAG_MIPS_loop:
4117 return "DW_TAG_MIPS_loop";
4118 case DW_TAG_format_label:
4119 return "DW_TAG_format_label";
4120 case DW_TAG_function_template:
4121 return "DW_TAG_function_template";
4122 case DW_TAG_class_template:
4123 return "DW_TAG_class_template";
4124 case DW_TAG_GNU_BINCL:
4125 return "DW_TAG_GNU_BINCL";
4126 case DW_TAG_GNU_EINCL:
4127 return "DW_TAG_GNU_EINCL";
4128 default:
4129 return "DW_TAG_<unknown>";
4130 }
4131 }
4132
4133 /* Convert a DWARF attribute code into its string name. */
4134
4135 static const char *
4136 dwarf_attr_name (attr)
4137 unsigned attr;
4138 {
4139 switch (attr)
4140 {
4141 case DW_AT_sibling:
4142 return "DW_AT_sibling";
4143 case DW_AT_location:
4144 return "DW_AT_location";
4145 case DW_AT_name:
4146 return "DW_AT_name";
4147 case DW_AT_ordering:
4148 return "DW_AT_ordering";
4149 case DW_AT_subscr_data:
4150 return "DW_AT_subscr_data";
4151 case DW_AT_byte_size:
4152 return "DW_AT_byte_size";
4153 case DW_AT_bit_offset:
4154 return "DW_AT_bit_offset";
4155 case DW_AT_bit_size:
4156 return "DW_AT_bit_size";
4157 case DW_AT_element_list:
4158 return "DW_AT_element_list";
4159 case DW_AT_stmt_list:
4160 return "DW_AT_stmt_list";
4161 case DW_AT_low_pc:
4162 return "DW_AT_low_pc";
4163 case DW_AT_high_pc:
4164 return "DW_AT_high_pc";
4165 case DW_AT_language:
4166 return "DW_AT_language";
4167 case DW_AT_member:
4168 return "DW_AT_member";
4169 case DW_AT_discr:
4170 return "DW_AT_discr";
4171 case DW_AT_discr_value:
4172 return "DW_AT_discr_value";
4173 case DW_AT_visibility:
4174 return "DW_AT_visibility";
4175 case DW_AT_import:
4176 return "DW_AT_import";
4177 case DW_AT_string_length:
4178 return "DW_AT_string_length";
4179 case DW_AT_common_reference:
4180 return "DW_AT_common_reference";
4181 case DW_AT_comp_dir:
4182 return "DW_AT_comp_dir";
4183 case DW_AT_const_value:
4184 return "DW_AT_const_value";
4185 case DW_AT_containing_type:
4186 return "DW_AT_containing_type";
4187 case DW_AT_default_value:
4188 return "DW_AT_default_value";
4189 case DW_AT_inline:
4190 return "DW_AT_inline";
4191 case DW_AT_is_optional:
4192 return "DW_AT_is_optional";
4193 case DW_AT_lower_bound:
4194 return "DW_AT_lower_bound";
4195 case DW_AT_producer:
4196 return "DW_AT_producer";
4197 case DW_AT_prototyped:
4198 return "DW_AT_prototyped";
4199 case DW_AT_return_addr:
4200 return "DW_AT_return_addr";
4201 case DW_AT_start_scope:
4202 return "DW_AT_start_scope";
4203 case DW_AT_stride_size:
4204 return "DW_AT_stride_size";
4205 case DW_AT_upper_bound:
4206 return "DW_AT_upper_bound";
4207 case DW_AT_abstract_origin:
4208 return "DW_AT_abstract_origin";
4209 case DW_AT_accessibility:
4210 return "DW_AT_accessibility";
4211 case DW_AT_address_class:
4212 return "DW_AT_address_class";
4213 case DW_AT_artificial:
4214 return "DW_AT_artificial";
4215 case DW_AT_base_types:
4216 return "DW_AT_base_types";
4217 case DW_AT_calling_convention:
4218 return "DW_AT_calling_convention";
4219 case DW_AT_count:
4220 return "DW_AT_count";
4221 case DW_AT_data_member_location:
4222 return "DW_AT_data_member_location";
4223 case DW_AT_decl_column:
4224 return "DW_AT_decl_column";
4225 case DW_AT_decl_file:
4226 return "DW_AT_decl_file";
4227 case DW_AT_decl_line:
4228 return "DW_AT_decl_line";
4229 case DW_AT_declaration:
4230 return "DW_AT_declaration";
4231 case DW_AT_discr_list:
4232 return "DW_AT_discr_list";
4233 case DW_AT_encoding:
4234 return "DW_AT_encoding";
4235 case DW_AT_external:
4236 return "DW_AT_external";
4237 case DW_AT_frame_base:
4238 return "DW_AT_frame_base";
4239 case DW_AT_friend:
4240 return "DW_AT_friend";
4241 case DW_AT_identifier_case:
4242 return "DW_AT_identifier_case";
4243 case DW_AT_macro_info:
4244 return "DW_AT_macro_info";
4245 case DW_AT_namelist_items:
4246 return "DW_AT_namelist_items";
4247 case DW_AT_priority:
4248 return "DW_AT_priority";
4249 case DW_AT_segment:
4250 return "DW_AT_segment";
4251 case DW_AT_specification:
4252 return "DW_AT_specification";
4253 case DW_AT_static_link:
4254 return "DW_AT_static_link";
4255 case DW_AT_type:
4256 return "DW_AT_type";
4257 case DW_AT_use_location:
4258 return "DW_AT_use_location";
4259 case DW_AT_variable_parameter:
4260 return "DW_AT_variable_parameter";
4261 case DW_AT_virtuality:
4262 return "DW_AT_virtuality";
4263 case DW_AT_vtable_elem_location:
4264 return "DW_AT_vtable_elem_location";
4265
4266 case DW_AT_allocated:
4267 return "DW_AT_allocated";
4268 case DW_AT_associated:
4269 return "DW_AT_associated";
4270 case DW_AT_data_location:
4271 return "DW_AT_data_location";
4272 case DW_AT_stride:
4273 return "DW_AT_stride";
4274 case DW_AT_entry_pc:
4275 return "DW_AT_entry_pc";
4276 case DW_AT_use_UTF8:
4277 return "DW_AT_use_UTF8";
4278 case DW_AT_extension:
4279 return "DW_AT_extension";
4280 case DW_AT_ranges:
4281 return "DW_AT_ranges";
4282 case DW_AT_trampoline:
4283 return "DW_AT_trampoline";
4284 case DW_AT_call_column:
4285 return "DW_AT_call_column";
4286 case DW_AT_call_file:
4287 return "DW_AT_call_file";
4288 case DW_AT_call_line:
4289 return "DW_AT_call_line";
4290
4291 case DW_AT_MIPS_fde:
4292 return "DW_AT_MIPS_fde";
4293 case DW_AT_MIPS_loop_begin:
4294 return "DW_AT_MIPS_loop_begin";
4295 case DW_AT_MIPS_tail_loop_begin:
4296 return "DW_AT_MIPS_tail_loop_begin";
4297 case DW_AT_MIPS_epilog_begin:
4298 return "DW_AT_MIPS_epilog_begin";
4299 case DW_AT_MIPS_loop_unroll_factor:
4300 return "DW_AT_MIPS_loop_unroll_factor";
4301 case DW_AT_MIPS_software_pipeline_depth:
4302 return "DW_AT_MIPS_software_pipeline_depth";
4303 case DW_AT_MIPS_linkage_name:
4304 return "DW_AT_MIPS_linkage_name";
4305 case DW_AT_MIPS_stride:
4306 return "DW_AT_MIPS_stride";
4307 case DW_AT_MIPS_abstract_name:
4308 return "DW_AT_MIPS_abstract_name";
4309 case DW_AT_MIPS_clone_origin:
4310 return "DW_AT_MIPS_clone_origin";
4311 case DW_AT_MIPS_has_inlines:
4312 return "DW_AT_MIPS_has_inlines";
4313
4314 case DW_AT_sf_names:
4315 return "DW_AT_sf_names";
4316 case DW_AT_src_info:
4317 return "DW_AT_src_info";
4318 case DW_AT_mac_info:
4319 return "DW_AT_mac_info";
4320 case DW_AT_src_coords:
4321 return "DW_AT_src_coords";
4322 case DW_AT_body_begin:
4323 return "DW_AT_body_begin";
4324 case DW_AT_body_end:
4325 return "DW_AT_body_end";
4326 case DW_AT_GNU_vector:
4327 return "DW_AT_GNU_vector";
4328
4329 case DW_AT_VMS_rtnbeg_pd_address:
4330 return "DW_AT_VMS_rtnbeg_pd_address";
4331
4332 default:
4333 return "DW_AT_<unknown>";
4334 }
4335 }
4336
4337 /* Convert a DWARF value form code into its string name. */
4338
4339 static const char *
4340 dwarf_form_name (form)
4341 unsigned form;
4342 {
4343 switch (form)
4344 {
4345 case DW_FORM_addr:
4346 return "DW_FORM_addr";
4347 case DW_FORM_block2:
4348 return "DW_FORM_block2";
4349 case DW_FORM_block4:
4350 return "DW_FORM_block4";
4351 case DW_FORM_data2:
4352 return "DW_FORM_data2";
4353 case DW_FORM_data4:
4354 return "DW_FORM_data4";
4355 case DW_FORM_data8:
4356 return "DW_FORM_data8";
4357 case DW_FORM_string:
4358 return "DW_FORM_string";
4359 case DW_FORM_block:
4360 return "DW_FORM_block";
4361 case DW_FORM_block1:
4362 return "DW_FORM_block1";
4363 case DW_FORM_data1:
4364 return "DW_FORM_data1";
4365 case DW_FORM_flag:
4366 return "DW_FORM_flag";
4367 case DW_FORM_sdata:
4368 return "DW_FORM_sdata";
4369 case DW_FORM_strp:
4370 return "DW_FORM_strp";
4371 case DW_FORM_udata:
4372 return "DW_FORM_udata";
4373 case DW_FORM_ref_addr:
4374 return "DW_FORM_ref_addr";
4375 case DW_FORM_ref1:
4376 return "DW_FORM_ref1";
4377 case DW_FORM_ref2:
4378 return "DW_FORM_ref2";
4379 case DW_FORM_ref4:
4380 return "DW_FORM_ref4";
4381 case DW_FORM_ref8:
4382 return "DW_FORM_ref8";
4383 case DW_FORM_ref_udata:
4384 return "DW_FORM_ref_udata";
4385 case DW_FORM_indirect:
4386 return "DW_FORM_indirect";
4387 default:
4388 return "DW_FORM_<unknown>";
4389 }
4390 }
4391
4392 /* Convert a DWARF type code into its string name. */
4393
4394 #if 0
4395 static const char *
4396 dwarf_type_encoding_name (enc)
4397 unsigned enc;
4398 {
4399 switch (enc)
4400 {
4401 case DW_ATE_address:
4402 return "DW_ATE_address";
4403 case DW_ATE_boolean:
4404 return "DW_ATE_boolean";
4405 case DW_ATE_complex_float:
4406 return "DW_ATE_complex_float";
4407 case DW_ATE_float:
4408 return "DW_ATE_float";
4409 case DW_ATE_signed:
4410 return "DW_ATE_signed";
4411 case DW_ATE_signed_char:
4412 return "DW_ATE_signed_char";
4413 case DW_ATE_unsigned:
4414 return "DW_ATE_unsigned";
4415 case DW_ATE_unsigned_char:
4416 return "DW_ATE_unsigned_char";
4417 default:
4418 return "DW_ATE_<unknown>";
4419 }
4420 }
4421 #endif
4422 \f
4423 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4424 instance of an inlined instance of a decl which is local to an inline
4425 function, so we have to trace all of the way back through the origin chain
4426 to find out what sort of node actually served as the original seed for the
4427 given block. */
4428
4429 static tree
4430 decl_ultimate_origin (decl)
4431 tree decl;
4432 {
4433 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4434 nodes in the function to point to themselves; ignore that if
4435 we're trying to output the abstract instance of this function. */
4436 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4437 return NULL_TREE;
4438
4439 #ifdef ENABLE_CHECKING
4440 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4441 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4442 most distant ancestor, this should never happen. */
4443 abort ();
4444 #endif
4445
4446 return DECL_ABSTRACT_ORIGIN (decl);
4447 }
4448
4449 /* Determine the "ultimate origin" of a block. The block may be an inlined
4450 instance of an inlined instance of a block which is local to an inline
4451 function, so we have to trace all of the way back through the origin chain
4452 to find out what sort of node actually served as the original seed for the
4453 given block. */
4454
4455 static tree
4456 block_ultimate_origin (block)
4457 tree block;
4458 {
4459 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4460
4461 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4462 nodes in the function to point to themselves; ignore that if
4463 we're trying to output the abstract instance of this function. */
4464 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4465 return NULL_TREE;
4466
4467 if (immediate_origin == NULL_TREE)
4468 return NULL_TREE;
4469 else
4470 {
4471 tree ret_val;
4472 tree lookahead = immediate_origin;
4473
4474 do
4475 {
4476 ret_val = lookahead;
4477 lookahead = (TREE_CODE (ret_val) == BLOCK
4478 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4479 }
4480 while (lookahead != NULL && lookahead != ret_val);
4481
4482 return ret_val;
4483 }
4484 }
4485
4486 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4487 of a virtual function may refer to a base class, so we check the 'this'
4488 parameter. */
4489
4490 static tree
4491 decl_class_context (decl)
4492 tree decl;
4493 {
4494 tree context = NULL_TREE;
4495
4496 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4497 context = DECL_CONTEXT (decl);
4498 else
4499 context = TYPE_MAIN_VARIANT
4500 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4501
4502 if (context && !TYPE_P (context))
4503 context = NULL_TREE;
4504
4505 return context;
4506 }
4507 \f
4508 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4509 addition order, and correct that in reverse_all_dies. */
4510
4511 static inline void
4512 add_dwarf_attr (die, attr)
4513 dw_die_ref die;
4514 dw_attr_ref attr;
4515 {
4516 if (die != NULL && attr != NULL)
4517 {
4518 attr->dw_attr_next = die->die_attr;
4519 die->die_attr = attr;
4520 }
4521 }
4522
4523 static inline enum dw_val_class
4524 AT_class (a)
4525 dw_attr_ref a;
4526 {
4527 return a->dw_attr_val.val_class;
4528 }
4529
4530 /* Add a flag value attribute to a DIE. */
4531
4532 static inline void
4533 add_AT_flag (die, attr_kind, flag)
4534 dw_die_ref die;
4535 enum dwarf_attribute attr_kind;
4536 unsigned flag;
4537 {
4538 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4539
4540 attr->dw_attr_next = NULL;
4541 attr->dw_attr = attr_kind;
4542 attr->dw_attr_val.val_class = dw_val_class_flag;
4543 attr->dw_attr_val.v.val_flag = flag;
4544 add_dwarf_attr (die, attr);
4545 }
4546
4547 static inline unsigned
4548 AT_flag (a)
4549 dw_attr_ref a;
4550 {
4551 if (a && AT_class (a) == dw_val_class_flag)
4552 return a->dw_attr_val.v.val_flag;
4553
4554 abort ();
4555 }
4556
4557 /* Add a signed integer attribute value to a DIE. */
4558
4559 static inline void
4560 add_AT_int (die, attr_kind, int_val)
4561 dw_die_ref die;
4562 enum dwarf_attribute attr_kind;
4563 long int int_val;
4564 {
4565 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4566
4567 attr->dw_attr_next = NULL;
4568 attr->dw_attr = attr_kind;
4569 attr->dw_attr_val.val_class = dw_val_class_const;
4570 attr->dw_attr_val.v.val_int = int_val;
4571 add_dwarf_attr (die, attr);
4572 }
4573
4574 static inline long int
4575 AT_int (a)
4576 dw_attr_ref a;
4577 {
4578 if (a && AT_class (a) == dw_val_class_const)
4579 return a->dw_attr_val.v.val_int;
4580
4581 abort ();
4582 }
4583
4584 /* Add an unsigned integer attribute value to a DIE. */
4585
4586 static inline void
4587 add_AT_unsigned (die, attr_kind, unsigned_val)
4588 dw_die_ref die;
4589 enum dwarf_attribute attr_kind;
4590 unsigned long unsigned_val;
4591 {
4592 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4593
4594 attr->dw_attr_next = NULL;
4595 attr->dw_attr = attr_kind;
4596 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4597 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4598 add_dwarf_attr (die, attr);
4599 }
4600
4601 static inline unsigned long
4602 AT_unsigned (a)
4603 dw_attr_ref a;
4604 {
4605 if (a && AT_class (a) == dw_val_class_unsigned_const)
4606 return a->dw_attr_val.v.val_unsigned;
4607
4608 abort ();
4609 }
4610
4611 /* Add an unsigned double integer attribute value to a DIE. */
4612
4613 static inline void
4614 add_AT_long_long (die, attr_kind, val_hi, val_low)
4615 dw_die_ref die;
4616 enum dwarf_attribute attr_kind;
4617 unsigned long val_hi;
4618 unsigned long val_low;
4619 {
4620 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4621
4622 attr->dw_attr_next = NULL;
4623 attr->dw_attr = attr_kind;
4624 attr->dw_attr_val.val_class = dw_val_class_long_long;
4625 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4626 attr->dw_attr_val.v.val_long_long.low = val_low;
4627 add_dwarf_attr (die, attr);
4628 }
4629
4630 /* Add a floating point attribute value to a DIE and return it. */
4631
4632 static inline void
4633 add_AT_float (die, attr_kind, length, array)
4634 dw_die_ref die;
4635 enum dwarf_attribute attr_kind;
4636 unsigned length;
4637 long *array;
4638 {
4639 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4640
4641 attr->dw_attr_next = NULL;
4642 attr->dw_attr = attr_kind;
4643 attr->dw_attr_val.val_class = dw_val_class_float;
4644 attr->dw_attr_val.v.val_float.length = length;
4645 attr->dw_attr_val.v.val_float.array = array;
4646 add_dwarf_attr (die, attr);
4647 }
4648
4649 /* Hash and equality functions for debug_str_hash. */
4650
4651 static hashval_t
4652 debug_str_do_hash (x)
4653 const void * x;
4654 {
4655 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4656 }
4657
4658 static int
4659 debug_str_eq (x1, x2)
4660 const void * x1;
4661 const void * x2;
4662 {
4663 return strcmp ((((const struct indirect_string_node *)x1)->str),
4664 (const char *)x2) == 0;
4665 }
4666
4667 /* Add a string attribute value to a DIE. */
4668
4669 static inline void
4670 add_AT_string (die, attr_kind, str)
4671 dw_die_ref die;
4672 enum dwarf_attribute attr_kind;
4673 const char *str;
4674 {
4675 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4676 struct indirect_string_node *node;
4677 PTR *slot;
4678
4679 if (! debug_str_hash)
4680 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4681 debug_str_eq, NULL);
4682
4683 slot = htab_find_slot_with_hash (debug_str_hash, str,
4684 htab_hash_string (str), INSERT);
4685 if (*slot == NULL)
4686 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4687 node = (struct indirect_string_node *) *slot;
4688 node->str = ggc_alloc_string (str, -1);
4689 node->refcount++;
4690
4691 attr->dw_attr_next = NULL;
4692 attr->dw_attr = attr_kind;
4693 attr->dw_attr_val.val_class = dw_val_class_str;
4694 attr->dw_attr_val.v.val_str = node;
4695 add_dwarf_attr (die, attr);
4696 }
4697
4698 static inline const char *
4699 AT_string (a)
4700 dw_attr_ref a;
4701 {
4702 if (a && AT_class (a) == dw_val_class_str)
4703 return a->dw_attr_val.v.val_str->str;
4704
4705 abort ();
4706 }
4707
4708 /* Find out whether a string should be output inline in DIE
4709 or out-of-line in .debug_str section. */
4710
4711 static int
4712 AT_string_form (a)
4713 dw_attr_ref a;
4714 {
4715 if (a && AT_class (a) == dw_val_class_str)
4716 {
4717 struct indirect_string_node *node;
4718 unsigned int len;
4719 char label[32];
4720
4721 node = a->dw_attr_val.v.val_str;
4722 if (node->form)
4723 return node->form;
4724
4725 len = strlen (node->str) + 1;
4726
4727 /* If the string is shorter or equal to the size of the reference, it is
4728 always better to put it inline. */
4729 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4730 return node->form = DW_FORM_string;
4731
4732 /* If we cannot expect the linker to merge strings in .debug_str
4733 section, only put it into .debug_str if it is worth even in this
4734 single module. */
4735 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4736 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4737 return node->form = DW_FORM_string;
4738
4739 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4740 ++dw2_string_counter;
4741 node->label = xstrdup (label);
4742
4743 return node->form = DW_FORM_strp;
4744 }
4745
4746 abort ();
4747 }
4748
4749 /* Add a DIE reference attribute value to a DIE. */
4750
4751 static inline void
4752 add_AT_die_ref (die, attr_kind, targ_die)
4753 dw_die_ref die;
4754 enum dwarf_attribute attr_kind;
4755 dw_die_ref targ_die;
4756 {
4757 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4758
4759 attr->dw_attr_next = NULL;
4760 attr->dw_attr = attr_kind;
4761 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4762 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4763 attr->dw_attr_val.v.val_die_ref.external = 0;
4764 add_dwarf_attr (die, attr);
4765 }
4766
4767 static inline dw_die_ref
4768 AT_ref (a)
4769 dw_attr_ref a;
4770 {
4771 if (a && AT_class (a) == dw_val_class_die_ref)
4772 return a->dw_attr_val.v.val_die_ref.die;
4773
4774 abort ();
4775 }
4776
4777 static inline int
4778 AT_ref_external (a)
4779 dw_attr_ref a;
4780 {
4781 if (a && AT_class (a) == dw_val_class_die_ref)
4782 return a->dw_attr_val.v.val_die_ref.external;
4783
4784 return 0;
4785 }
4786
4787 static inline void
4788 set_AT_ref_external (a, i)
4789 dw_attr_ref a;
4790 int i;
4791 {
4792 if (a && AT_class (a) == dw_val_class_die_ref)
4793 a->dw_attr_val.v.val_die_ref.external = i;
4794 else
4795 abort ();
4796 }
4797
4798 /* Add an FDE reference attribute value to a DIE. */
4799
4800 static inline void
4801 add_AT_fde_ref (die, attr_kind, targ_fde)
4802 dw_die_ref die;
4803 enum dwarf_attribute attr_kind;
4804 unsigned targ_fde;
4805 {
4806 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4807
4808 attr->dw_attr_next = NULL;
4809 attr->dw_attr = attr_kind;
4810 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4811 attr->dw_attr_val.v.val_fde_index = targ_fde;
4812 add_dwarf_attr (die, attr);
4813 }
4814
4815 /* Add a location description attribute value to a DIE. */
4816
4817 static inline void
4818 add_AT_loc (die, attr_kind, loc)
4819 dw_die_ref die;
4820 enum dwarf_attribute attr_kind;
4821 dw_loc_descr_ref loc;
4822 {
4823 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4824
4825 attr->dw_attr_next = NULL;
4826 attr->dw_attr = attr_kind;
4827 attr->dw_attr_val.val_class = dw_val_class_loc;
4828 attr->dw_attr_val.v.val_loc = loc;
4829 add_dwarf_attr (die, attr);
4830 }
4831
4832 static inline dw_loc_descr_ref
4833 AT_loc (a)
4834 dw_attr_ref a;
4835 {
4836 if (a && AT_class (a) == dw_val_class_loc)
4837 return a->dw_attr_val.v.val_loc;
4838
4839 abort ();
4840 }
4841
4842 static inline void
4843 add_AT_loc_list (die, attr_kind, loc_list)
4844 dw_die_ref die;
4845 enum dwarf_attribute attr_kind;
4846 dw_loc_list_ref loc_list;
4847 {
4848 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4849
4850 attr->dw_attr_next = NULL;
4851 attr->dw_attr = attr_kind;
4852 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4853 attr->dw_attr_val.v.val_loc_list = loc_list;
4854 add_dwarf_attr (die, attr);
4855 have_location_lists = 1;
4856 }
4857
4858 static inline dw_loc_list_ref
4859 AT_loc_list (a)
4860 dw_attr_ref a;
4861 {
4862 if (a && AT_class (a) == dw_val_class_loc_list)
4863 return a->dw_attr_val.v.val_loc_list;
4864
4865 abort ();
4866 }
4867
4868 /* Add an address constant attribute value to a DIE. */
4869
4870 static inline void
4871 add_AT_addr (die, attr_kind, addr)
4872 dw_die_ref die;
4873 enum dwarf_attribute attr_kind;
4874 rtx addr;
4875 {
4876 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4877
4878 attr->dw_attr_next = NULL;
4879 attr->dw_attr = attr_kind;
4880 attr->dw_attr_val.val_class = dw_val_class_addr;
4881 attr->dw_attr_val.v.val_addr = addr;
4882 add_dwarf_attr (die, attr);
4883 }
4884
4885 static inline rtx
4886 AT_addr (a)
4887 dw_attr_ref a;
4888 {
4889 if (a && AT_class (a) == dw_val_class_addr)
4890 return a->dw_attr_val.v.val_addr;
4891
4892 abort ();
4893 }
4894
4895 /* Add a label identifier attribute value to a DIE. */
4896
4897 static inline void
4898 add_AT_lbl_id (die, attr_kind, lbl_id)
4899 dw_die_ref die;
4900 enum dwarf_attribute attr_kind;
4901 const char *lbl_id;
4902 {
4903 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4904
4905 attr->dw_attr_next = NULL;
4906 attr->dw_attr = attr_kind;
4907 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4908 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4909 add_dwarf_attr (die, attr);
4910 }
4911
4912 /* Add a section offset attribute value to a DIE. */
4913
4914 static inline void
4915 add_AT_lbl_offset (die, attr_kind, label)
4916 dw_die_ref die;
4917 enum dwarf_attribute attr_kind;
4918 const char *label;
4919 {
4920 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4921
4922 attr->dw_attr_next = NULL;
4923 attr->dw_attr = attr_kind;
4924 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4925 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4926 add_dwarf_attr (die, attr);
4927 }
4928
4929 /* Add an offset attribute value to a DIE. */
4930
4931 static inline void
4932 add_AT_offset (die, attr_kind, offset)
4933 dw_die_ref die;
4934 enum dwarf_attribute attr_kind;
4935 unsigned long offset;
4936 {
4937 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4938
4939 attr->dw_attr_next = NULL;
4940 attr->dw_attr = attr_kind;
4941 attr->dw_attr_val.val_class = dw_val_class_offset;
4942 attr->dw_attr_val.v.val_offset = offset;
4943 add_dwarf_attr (die, attr);
4944 }
4945
4946 /* Add an range_list attribute value to a DIE. */
4947
4948 static void
4949 add_AT_range_list (die, attr_kind, offset)
4950 dw_die_ref die;
4951 enum dwarf_attribute attr_kind;
4952 unsigned long offset;
4953 {
4954 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4955
4956 attr->dw_attr_next = NULL;
4957 attr->dw_attr = attr_kind;
4958 attr->dw_attr_val.val_class = dw_val_class_range_list;
4959 attr->dw_attr_val.v.val_offset = offset;
4960 add_dwarf_attr (die, attr);
4961 }
4962
4963 static inline const char *
4964 AT_lbl (a)
4965 dw_attr_ref a;
4966 {
4967 if (a && (AT_class (a) == dw_val_class_lbl_id
4968 || AT_class (a) == dw_val_class_lbl_offset))
4969 return a->dw_attr_val.v.val_lbl_id;
4970
4971 abort ();
4972 }
4973
4974 /* Get the attribute of type attr_kind. */
4975
4976 static inline dw_attr_ref
4977 get_AT (die, attr_kind)
4978 dw_die_ref die;
4979 enum dwarf_attribute attr_kind;
4980 {
4981 dw_attr_ref a;
4982 dw_die_ref spec = NULL;
4983
4984 if (die != NULL)
4985 {
4986 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
4987 if (a->dw_attr == attr_kind)
4988 return a;
4989 else if (a->dw_attr == DW_AT_specification
4990 || a->dw_attr == DW_AT_abstract_origin)
4991 spec = AT_ref (a);
4992
4993 if (spec)
4994 return get_AT (spec, attr_kind);
4995 }
4996
4997 return NULL;
4998 }
4999
5000 /* Return the "low pc" attribute value, typically associated with a subprogram
5001 DIE. Return null if the "low pc" attribute is either not present, or if it
5002 cannot be represented as an assembler label identifier. */
5003
5004 static inline const char *
5005 get_AT_low_pc (die)
5006 dw_die_ref die;
5007 {
5008 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5009
5010 return a ? AT_lbl (a) : NULL;
5011 }
5012
5013 /* Return the "high pc" attribute value, typically associated with a subprogram
5014 DIE. Return null if the "high pc" attribute is either not present, or if it
5015 cannot be represented as an assembler label identifier. */
5016
5017 static inline const char *
5018 get_AT_hi_pc (die)
5019 dw_die_ref die;
5020 {
5021 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5022
5023 return a ? AT_lbl (a) : NULL;
5024 }
5025
5026 /* Return the value of the string attribute designated by ATTR_KIND, or
5027 NULL if it is not present. */
5028
5029 static inline const char *
5030 get_AT_string (die, attr_kind)
5031 dw_die_ref die;
5032 enum dwarf_attribute attr_kind;
5033 {
5034 dw_attr_ref a = get_AT (die, attr_kind);
5035
5036 return a ? AT_string (a) : NULL;
5037 }
5038
5039 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5040 if it is not present. */
5041
5042 static inline int
5043 get_AT_flag (die, attr_kind)
5044 dw_die_ref die;
5045 enum dwarf_attribute attr_kind;
5046 {
5047 dw_attr_ref a = get_AT (die, attr_kind);
5048
5049 return a ? AT_flag (a) : 0;
5050 }
5051
5052 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5053 if it is not present. */
5054
5055 static inline unsigned
5056 get_AT_unsigned (die, attr_kind)
5057 dw_die_ref die;
5058 enum dwarf_attribute attr_kind;
5059 {
5060 dw_attr_ref a = get_AT (die, attr_kind);
5061
5062 return a ? AT_unsigned (a) : 0;
5063 }
5064
5065 static inline dw_die_ref
5066 get_AT_ref (die, attr_kind)
5067 dw_die_ref die;
5068 enum dwarf_attribute attr_kind;
5069 {
5070 dw_attr_ref a = get_AT (die, attr_kind);
5071
5072 return a ? AT_ref (a) : NULL;
5073 }
5074
5075 static inline int
5076 is_c_family ()
5077 {
5078 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5079
5080 return (lang == DW_LANG_C || lang == DW_LANG_C89
5081 || lang == DW_LANG_C_plus_plus);
5082 }
5083
5084 static inline int
5085 is_cxx ()
5086 {
5087 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5088 == DW_LANG_C_plus_plus);
5089 }
5090
5091 static inline int
5092 is_fortran ()
5093 {
5094 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5095
5096 return (lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90);
5097 }
5098
5099 static inline int
5100 is_java ()
5101 {
5102 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5103
5104 return (lang == DW_LANG_Java);
5105 }
5106
5107 /* Free up the memory used by A. */
5108
5109 static inline void free_AT PARAMS ((dw_attr_ref));
5110 static inline void
5111 free_AT (a)
5112 dw_attr_ref a;
5113 {
5114 if (AT_class (a) == dw_val_class_str)
5115 if (a->dw_attr_val.v.val_str->refcount)
5116 a->dw_attr_val.v.val_str->refcount--;
5117 }
5118
5119 /* Remove the specified attribute if present. */
5120
5121 static void
5122 remove_AT (die, attr_kind)
5123 dw_die_ref die;
5124 enum dwarf_attribute attr_kind;
5125 {
5126 dw_attr_ref *p;
5127 dw_attr_ref removed = NULL;
5128
5129 if (die != NULL)
5130 {
5131 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5132 if ((*p)->dw_attr == attr_kind)
5133 {
5134 removed = *p;
5135 *p = (*p)->dw_attr_next;
5136 break;
5137 }
5138
5139 if (removed != 0)
5140 free_AT (removed);
5141 }
5142 }
5143
5144 /* Free up the memory used by DIE. */
5145
5146 static inline void
5147 free_die (die)
5148 dw_die_ref die;
5149 {
5150 remove_children (die);
5151 }
5152
5153 /* Discard the children of this DIE. */
5154
5155 static void
5156 remove_children (die)
5157 dw_die_ref die;
5158 {
5159 dw_die_ref child_die = die->die_child;
5160
5161 die->die_child = NULL;
5162
5163 while (child_die != NULL)
5164 {
5165 dw_die_ref tmp_die = child_die;
5166 dw_attr_ref a;
5167
5168 child_die = child_die->die_sib;
5169
5170 for (a = tmp_die->die_attr; a != NULL;)
5171 {
5172 dw_attr_ref tmp_a = a;
5173
5174 a = a->dw_attr_next;
5175 free_AT (tmp_a);
5176 }
5177
5178 free_die (tmp_die);
5179 }
5180 }
5181
5182 /* Add a child DIE below its parent. We build the lists up in reverse
5183 addition order, and correct that in reverse_all_dies. */
5184
5185 static inline void
5186 add_child_die (die, child_die)
5187 dw_die_ref die;
5188 dw_die_ref child_die;
5189 {
5190 if (die != NULL && child_die != NULL)
5191 {
5192 if (die == child_die)
5193 abort ();
5194
5195 child_die->die_parent = die;
5196 child_die->die_sib = die->die_child;
5197 die->die_child = child_die;
5198 }
5199 }
5200
5201 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5202 is the specification, to the front of PARENT's list of children. */
5203
5204 static void
5205 splice_child_die (parent, child)
5206 dw_die_ref parent, child;
5207 {
5208 dw_die_ref *p;
5209
5210 /* We want the declaration DIE from inside the class, not the
5211 specification DIE at toplevel. */
5212 if (child->die_parent != parent)
5213 {
5214 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5215
5216 if (tmp)
5217 child = tmp;
5218 }
5219
5220 if (child->die_parent != parent
5221 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5222 abort ();
5223
5224 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5225 if (*p == child)
5226 {
5227 *p = child->die_sib;
5228 break;
5229 }
5230
5231 child->die_parent = parent;
5232 child->die_sib = parent->die_child;
5233 parent->die_child = child;
5234 }
5235
5236 /* Return a pointer to a newly created DIE node. */
5237
5238 static inline dw_die_ref
5239 new_die (tag_value, parent_die, t)
5240 enum dwarf_tag tag_value;
5241 dw_die_ref parent_die;
5242 tree t;
5243 {
5244 dw_die_ref die = (dw_die_ref) ggc_alloc_cleared (sizeof (die_node));
5245
5246 die->die_tag = tag_value;
5247
5248 if (parent_die != NULL)
5249 add_child_die (parent_die, die);
5250 else
5251 {
5252 limbo_die_node *limbo_node;
5253
5254 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5255 limbo_node->die = die;
5256 limbo_node->created_for = t;
5257 limbo_node->next = limbo_die_list;
5258 limbo_die_list = limbo_node;
5259 }
5260
5261 return die;
5262 }
5263
5264 /* Return the DIE associated with the given type specifier. */
5265
5266 static inline dw_die_ref
5267 lookup_type_die (type)
5268 tree type;
5269 {
5270 return TYPE_SYMTAB_DIE (type);
5271 }
5272
5273 /* Equate a DIE to a given type specifier. */
5274
5275 static inline void
5276 equate_type_number_to_die (type, type_die)
5277 tree type;
5278 dw_die_ref type_die;
5279 {
5280 TYPE_SYMTAB_DIE (type) = type_die;
5281 }
5282
5283 /* Return the DIE associated with a given declaration. */
5284
5285 static inline dw_die_ref
5286 lookup_decl_die (decl)
5287 tree decl;
5288 {
5289 unsigned decl_id = DECL_UID (decl);
5290
5291 return (decl_id < decl_die_table_in_use ? decl_die_table[decl_id] : NULL);
5292 }
5293
5294 /* Equate a DIE to a particular declaration. */
5295
5296 static void
5297 equate_decl_number_to_die (decl, decl_die)
5298 tree decl;
5299 dw_die_ref decl_die;
5300 {
5301 unsigned int decl_id = DECL_UID (decl);
5302 unsigned int num_allocated;
5303
5304 if (decl_id >= decl_die_table_allocated)
5305 {
5306 num_allocated
5307 = ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
5308 / DECL_DIE_TABLE_INCREMENT)
5309 * DECL_DIE_TABLE_INCREMENT;
5310
5311 decl_die_table = ggc_realloc (decl_die_table,
5312 sizeof (dw_die_ref) * num_allocated);
5313
5314 memset ((char *) &decl_die_table[decl_die_table_allocated], 0,
5315 (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
5316 decl_die_table_allocated = num_allocated;
5317 }
5318
5319 if (decl_id >= decl_die_table_in_use)
5320 decl_die_table_in_use = (decl_id + 1);
5321
5322 decl_die_table[decl_id] = decl_die;
5323 }
5324 \f
5325 /* Keep track of the number of spaces used to indent the
5326 output of the debugging routines that print the structure of
5327 the DIE internal representation. */
5328 static int print_indent;
5329
5330 /* Indent the line the number of spaces given by print_indent. */
5331
5332 static inline void
5333 print_spaces (outfile)
5334 FILE *outfile;
5335 {
5336 fprintf (outfile, "%*s", print_indent, "");
5337 }
5338
5339 /* Print the information associated with a given DIE, and its children.
5340 This routine is a debugging aid only. */
5341
5342 static void
5343 print_die (die, outfile)
5344 dw_die_ref die;
5345 FILE *outfile;
5346 {
5347 dw_attr_ref a;
5348 dw_die_ref c;
5349
5350 print_spaces (outfile);
5351 fprintf (outfile, "DIE %4lu: %s\n",
5352 die->die_offset, dwarf_tag_name (die->die_tag));
5353 print_spaces (outfile);
5354 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5355 fprintf (outfile, " offset: %lu\n", die->die_offset);
5356
5357 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5358 {
5359 print_spaces (outfile);
5360 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5361
5362 switch (AT_class (a))
5363 {
5364 case dw_val_class_addr:
5365 fprintf (outfile, "address");
5366 break;
5367 case dw_val_class_offset:
5368 fprintf (outfile, "offset");
5369 break;
5370 case dw_val_class_loc:
5371 fprintf (outfile, "location descriptor");
5372 break;
5373 case dw_val_class_loc_list:
5374 fprintf (outfile, "location list -> label:%s",
5375 AT_loc_list (a)->ll_symbol);
5376 break;
5377 case dw_val_class_range_list:
5378 fprintf (outfile, "range list");
5379 break;
5380 case dw_val_class_const:
5381 fprintf (outfile, "%ld", AT_int (a));
5382 break;
5383 case dw_val_class_unsigned_const:
5384 fprintf (outfile, "%lu", AT_unsigned (a));
5385 break;
5386 case dw_val_class_long_long:
5387 fprintf (outfile, "constant (%lu,%lu)",
5388 a->dw_attr_val.v.val_long_long.hi,
5389 a->dw_attr_val.v.val_long_long.low);
5390 break;
5391 case dw_val_class_float:
5392 fprintf (outfile, "floating-point constant");
5393 break;
5394 case dw_val_class_flag:
5395 fprintf (outfile, "%u", AT_flag (a));
5396 break;
5397 case dw_val_class_die_ref:
5398 if (AT_ref (a) != NULL)
5399 {
5400 if (AT_ref (a)->die_symbol)
5401 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5402 else
5403 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5404 }
5405 else
5406 fprintf (outfile, "die -> <null>");
5407 break;
5408 case dw_val_class_lbl_id:
5409 case dw_val_class_lbl_offset:
5410 fprintf (outfile, "label: %s", AT_lbl (a));
5411 break;
5412 case dw_val_class_str:
5413 if (AT_string (a) != NULL)
5414 fprintf (outfile, "\"%s\"", AT_string (a));
5415 else
5416 fprintf (outfile, "<null>");
5417 break;
5418 default:
5419 break;
5420 }
5421
5422 fprintf (outfile, "\n");
5423 }
5424
5425 if (die->die_child != NULL)
5426 {
5427 print_indent += 4;
5428 for (c = die->die_child; c != NULL; c = c->die_sib)
5429 print_die (c, outfile);
5430
5431 print_indent -= 4;
5432 }
5433 if (print_indent == 0)
5434 fprintf (outfile, "\n");
5435 }
5436
5437 /* Print the contents of the source code line number correspondence table.
5438 This routine is a debugging aid only. */
5439
5440 static void
5441 print_dwarf_line_table (outfile)
5442 FILE *outfile;
5443 {
5444 unsigned i;
5445 dw_line_info_ref line_info;
5446
5447 fprintf (outfile, "\n\nDWARF source line information\n");
5448 for (i = 1; i < line_info_table_in_use; i++)
5449 {
5450 line_info = &line_info_table[i];
5451 fprintf (outfile, "%5d: ", i);
5452 fprintf (outfile, "%-20s",
5453 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5454 fprintf (outfile, "%6ld", line_info->dw_line_num);
5455 fprintf (outfile, "\n");
5456 }
5457
5458 fprintf (outfile, "\n\n");
5459 }
5460
5461 /* Print the information collected for a given DIE. */
5462
5463 void
5464 debug_dwarf_die (die)
5465 dw_die_ref die;
5466 {
5467 print_die (die, stderr);
5468 }
5469
5470 /* Print all DWARF information collected for the compilation unit.
5471 This routine is a debugging aid only. */
5472
5473 void
5474 debug_dwarf ()
5475 {
5476 print_indent = 0;
5477 print_die (comp_unit_die, stderr);
5478 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5479 print_dwarf_line_table (stderr);
5480 }
5481 \f
5482 /* We build up the lists of children and attributes by pushing new ones
5483 onto the beginning of the list. Reverse the lists for DIE so that
5484 they are in order of addition. */
5485
5486 static void
5487 reverse_die_lists (die)
5488 dw_die_ref die;
5489 {
5490 dw_die_ref c, cp, cn;
5491 dw_attr_ref a, ap, an;
5492
5493 for (a = die->die_attr, ap = 0; a; a = an)
5494 {
5495 an = a->dw_attr_next;
5496 a->dw_attr_next = ap;
5497 ap = a;
5498 }
5499
5500 die->die_attr = ap;
5501
5502 for (c = die->die_child, cp = 0; c; c = cn)
5503 {
5504 cn = c->die_sib;
5505 c->die_sib = cp;
5506 cp = c;
5507 }
5508
5509 die->die_child = cp;
5510 }
5511
5512 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5513 reverse all dies in add_sibling_attributes, which runs through all the dies,
5514 it would reverse all the dies. Now, however, since we don't call
5515 reverse_die_lists in add_sibling_attributes, we need a routine to
5516 recursively reverse all the dies. This is that routine. */
5517
5518 static void
5519 reverse_all_dies (die)
5520 dw_die_ref die;
5521 {
5522 dw_die_ref c;
5523
5524 reverse_die_lists (die);
5525
5526 for (c = die->die_child; c; c = c->die_sib)
5527 reverse_all_dies (c);
5528 }
5529
5530 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5531 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5532 DIE that marks the start of the DIEs for this include file. */
5533
5534 static dw_die_ref
5535 push_new_compile_unit (old_unit, bincl_die)
5536 dw_die_ref old_unit, bincl_die;
5537 {
5538 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5539 dw_die_ref new_unit = gen_compile_unit_die (filename);
5540
5541 new_unit->die_sib = old_unit;
5542 return new_unit;
5543 }
5544
5545 /* Close an include-file CU and reopen the enclosing one. */
5546
5547 static dw_die_ref
5548 pop_compile_unit (old_unit)
5549 dw_die_ref old_unit;
5550 {
5551 dw_die_ref new_unit = old_unit->die_sib;
5552
5553 old_unit->die_sib = NULL;
5554 return new_unit;
5555 }
5556
5557 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5558 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5559
5560 /* Calculate the checksum of a location expression. */
5561
5562 static inline void
5563 loc_checksum (loc, ctx)
5564 dw_loc_descr_ref loc;
5565 struct md5_ctx *ctx;
5566 {
5567 CHECKSUM (loc->dw_loc_opc);
5568 CHECKSUM (loc->dw_loc_oprnd1);
5569 CHECKSUM (loc->dw_loc_oprnd2);
5570 }
5571
5572 /* Calculate the checksum of an attribute. */
5573
5574 static void
5575 attr_checksum (at, ctx, mark)
5576 dw_attr_ref at;
5577 struct md5_ctx *ctx;
5578 int *mark;
5579 {
5580 dw_loc_descr_ref loc;
5581 rtx r;
5582
5583 CHECKSUM (at->dw_attr);
5584
5585 /* We don't care about differences in file numbering. */
5586 if (at->dw_attr == DW_AT_decl_file
5587 /* Or that this was compiled with a different compiler snapshot; if
5588 the output is the same, that's what matters. */
5589 || at->dw_attr == DW_AT_producer)
5590 return;
5591
5592 switch (AT_class (at))
5593 {
5594 case dw_val_class_const:
5595 CHECKSUM (at->dw_attr_val.v.val_int);
5596 break;
5597 case dw_val_class_unsigned_const:
5598 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5599 break;
5600 case dw_val_class_long_long:
5601 CHECKSUM (at->dw_attr_val.v.val_long_long);
5602 break;
5603 case dw_val_class_float:
5604 CHECKSUM (at->dw_attr_val.v.val_float);
5605 break;
5606 case dw_val_class_flag:
5607 CHECKSUM (at->dw_attr_val.v.val_flag);
5608 break;
5609 case dw_val_class_str:
5610 CHECKSUM_STRING (AT_string (at));
5611 break;
5612
5613 case dw_val_class_addr:
5614 r = AT_addr (at);
5615 switch (GET_CODE (r))
5616 {
5617 case SYMBOL_REF:
5618 CHECKSUM_STRING (XSTR (r, 0));
5619 break;
5620
5621 default:
5622 abort ();
5623 }
5624 break;
5625
5626 case dw_val_class_offset:
5627 CHECKSUM (at->dw_attr_val.v.val_offset);
5628 break;
5629
5630 case dw_val_class_loc:
5631 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5632 loc_checksum (loc, ctx);
5633 break;
5634
5635 case dw_val_class_die_ref:
5636 die_checksum (AT_ref (at), ctx, mark);
5637 break;
5638
5639 case dw_val_class_fde_ref:
5640 case dw_val_class_lbl_id:
5641 case dw_val_class_lbl_offset:
5642 break;
5643
5644 default:
5645 break;
5646 }
5647 }
5648
5649 /* Calculate the checksum of a DIE. */
5650
5651 static void
5652 die_checksum (die, ctx, mark)
5653 dw_die_ref die;
5654 struct md5_ctx *ctx;
5655 int *mark;
5656 {
5657 dw_die_ref c;
5658 dw_attr_ref a;
5659
5660 /* To avoid infinite recursion. */
5661 if (die->die_mark)
5662 {
5663 CHECKSUM (die->die_mark);
5664 return;
5665 }
5666 die->die_mark = ++(*mark);
5667
5668 CHECKSUM (die->die_tag);
5669
5670 for (a = die->die_attr; a; a = a->dw_attr_next)
5671 attr_checksum (a, ctx, mark);
5672
5673 for (c = die->die_child; c; c = c->die_sib)
5674 die_checksum (c, ctx, mark);
5675 }
5676
5677 #undef CHECKSUM
5678 #undef CHECKSUM_STRING
5679
5680 /* Do the location expressions look same? */
5681 static inline int
5682 same_loc_p (loc1, loc2, mark)
5683 dw_loc_descr_ref loc1;
5684 dw_loc_descr_ref loc2;
5685 int *mark;
5686 {
5687 return loc1->dw_loc_opc == loc2->dw_loc_opc
5688 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5689 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5690 }
5691
5692 /* Do the values look the same? */
5693 static int
5694 same_dw_val_p (v1, v2, mark)
5695 dw_val_node *v1;
5696 dw_val_node *v2;
5697 int *mark;
5698 {
5699 dw_loc_descr_ref loc1, loc2;
5700 rtx r1, r2;
5701 unsigned i;
5702
5703 if (v1->val_class != v2->val_class)
5704 return 0;
5705
5706 switch (v1->val_class)
5707 {
5708 case dw_val_class_const:
5709 return v1->v.val_int == v2->v.val_int;
5710 case dw_val_class_unsigned_const:
5711 return v1->v.val_unsigned == v2->v.val_unsigned;
5712 case dw_val_class_long_long:
5713 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5714 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5715 case dw_val_class_float:
5716 if (v1->v.val_float.length != v2->v.val_float.length)
5717 return 0;
5718 for (i = 0; i < v1->v.val_float.length; i++)
5719 if (v1->v.val_float.array[i] != v2->v.val_float.array[i])
5720 return 0;
5721 return 1;
5722 case dw_val_class_flag:
5723 return v1->v.val_flag == v2->v.val_flag;
5724 case dw_val_class_str:
5725 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5726
5727 case dw_val_class_addr:
5728 r1 = v1->v.val_addr;
5729 r2 = v2->v.val_addr;
5730 if (GET_CODE (r1) != GET_CODE (r2))
5731 return 0;
5732 switch (GET_CODE (r1))
5733 {
5734 case SYMBOL_REF:
5735 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5736
5737 default:
5738 abort ();
5739 }
5740
5741 case dw_val_class_offset:
5742 return v1->v.val_offset == v2->v.val_offset;
5743
5744 case dw_val_class_loc:
5745 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5746 loc1 && loc2;
5747 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5748 if (!same_loc_p (loc1, loc2, mark))
5749 return 0;
5750 return !loc1 && !loc2;
5751
5752 case dw_val_class_die_ref:
5753 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5754
5755 case dw_val_class_fde_ref:
5756 case dw_val_class_lbl_id:
5757 case dw_val_class_lbl_offset:
5758 return 1;
5759
5760 default:
5761 return 1;
5762 }
5763 }
5764
5765 /* Do the attributes look the same? */
5766
5767 static int
5768 same_attr_p (at1, at2, mark)
5769 dw_attr_ref at1;
5770 dw_attr_ref at2;
5771 int *mark;
5772 {
5773 if (at1->dw_attr != at2->dw_attr)
5774 return 0;
5775
5776 /* We don't care about differences in file numbering. */
5777 if (at1->dw_attr == DW_AT_decl_file
5778 /* Or that this was compiled with a different compiler snapshot; if
5779 the output is the same, that's what matters. */
5780 || at1->dw_attr == DW_AT_producer)
5781 return 1;
5782
5783 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5784 }
5785
5786 /* Do the dies look the same? */
5787
5788 static int
5789 same_die_p (die1, die2, mark)
5790 dw_die_ref die1;
5791 dw_die_ref die2;
5792 int *mark;
5793 {
5794 dw_die_ref c1, c2;
5795 dw_attr_ref a1, a2;
5796
5797 /* To avoid infinite recursion. */
5798 if (die1->die_mark)
5799 return die1->die_mark == die2->die_mark;
5800 die1->die_mark = die2->die_mark = ++(*mark);
5801
5802 if (die1->die_tag != die2->die_tag)
5803 return 0;
5804
5805 for (a1 = die1->die_attr, a2 = die2->die_attr;
5806 a1 && a2;
5807 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5808 if (!same_attr_p (a1, a2, mark))
5809 return 0;
5810 if (a1 || a2)
5811 return 0;
5812
5813 for (c1 = die1->die_child, c2 = die2->die_child;
5814 c1 && c2;
5815 c1 = c1->die_sib, c2 = c2->die_sib)
5816 if (!same_die_p (c1, c2, mark))
5817 return 0;
5818 if (c1 || c2)
5819 return 0;
5820
5821 return 1;
5822 }
5823
5824 /* Do the dies look the same? Wrapper around same_die_p. */
5825
5826 static int
5827 same_die_p_wrap (die1, die2)
5828 dw_die_ref die1;
5829 dw_die_ref die2;
5830 {
5831 int mark = 0;
5832 int ret = same_die_p (die1, die2, &mark);
5833
5834 unmark_all_dies (die1);
5835 unmark_all_dies (die2);
5836
5837 return ret;
5838 }
5839
5840 /* The prefix to attach to symbols on DIEs in the current comdat debug
5841 info section. */
5842 static char *comdat_symbol_id;
5843
5844 /* The index of the current symbol within the current comdat CU. */
5845 static unsigned int comdat_symbol_number;
5846
5847 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5848 children, and set comdat_symbol_id accordingly. */
5849
5850 static void
5851 compute_section_prefix (unit_die)
5852 dw_die_ref unit_die;
5853 {
5854 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5855 const char *base = die_name ? lbasename (die_name) : "anonymous";
5856 char *name = (char *) alloca (strlen (base) + 64);
5857 char *p;
5858 int i, mark;
5859 unsigned char checksum[16];
5860 struct md5_ctx ctx;
5861
5862 /* Compute the checksum of the DIE, then append part of it as hex digits to
5863 the name filename of the unit. */
5864
5865 md5_init_ctx (&ctx);
5866 mark = 0;
5867 die_checksum (unit_die, &ctx, &mark);
5868 unmark_all_dies (unit_die);
5869 md5_finish_ctx (&ctx, checksum);
5870
5871 sprintf (name, "%s.", base);
5872 clean_symbol_name (name);
5873
5874 p = name + strlen (name);
5875 for (i = 0; i < 4; i++)
5876 {
5877 sprintf (p, "%.2x", checksum[i]);
5878 p += 2;
5879 }
5880
5881 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5882 comdat_symbol_number = 0;
5883 }
5884
5885 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5886
5887 static int
5888 is_type_die (die)
5889 dw_die_ref die;
5890 {
5891 switch (die->die_tag)
5892 {
5893 case DW_TAG_array_type:
5894 case DW_TAG_class_type:
5895 case DW_TAG_enumeration_type:
5896 case DW_TAG_pointer_type:
5897 case DW_TAG_reference_type:
5898 case DW_TAG_string_type:
5899 case DW_TAG_structure_type:
5900 case DW_TAG_subroutine_type:
5901 case DW_TAG_union_type:
5902 case DW_TAG_ptr_to_member_type:
5903 case DW_TAG_set_type:
5904 case DW_TAG_subrange_type:
5905 case DW_TAG_base_type:
5906 case DW_TAG_const_type:
5907 case DW_TAG_file_type:
5908 case DW_TAG_packed_type:
5909 case DW_TAG_volatile_type:
5910 case DW_TAG_typedef:
5911 return 1;
5912 default:
5913 return 0;
5914 }
5915 }
5916
5917 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5918 Basically, we want to choose the bits that are likely to be shared between
5919 compilations (types) and leave out the bits that are specific to individual
5920 compilations (functions). */
5921
5922 static int
5923 is_comdat_die (c)
5924 dw_die_ref c;
5925 {
5926 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5927 we do for stabs. The advantage is a greater likelihood of sharing between
5928 objects that don't include headers in the same order (and therefore would
5929 put the base types in a different comdat). jason 8/28/00 */
5930
5931 if (c->die_tag == DW_TAG_base_type)
5932 return 0;
5933
5934 if (c->die_tag == DW_TAG_pointer_type
5935 || c->die_tag == DW_TAG_reference_type
5936 || c->die_tag == DW_TAG_const_type
5937 || c->die_tag == DW_TAG_volatile_type)
5938 {
5939 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5940
5941 return t ? is_comdat_die (t) : 0;
5942 }
5943
5944 return is_type_die (c);
5945 }
5946
5947 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5948 compilation unit. */
5949
5950 static int
5951 is_symbol_die (c)
5952 dw_die_ref c;
5953 {
5954 return (is_type_die (c)
5955 || (get_AT (c, DW_AT_declaration)
5956 && !get_AT (c, DW_AT_specification)));
5957 }
5958
5959 static char *
5960 gen_internal_sym (prefix)
5961 const char *prefix;
5962 {
5963 char buf[256];
5964 static int label_num;
5965
5966 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5967 return xstrdup (buf);
5968 }
5969
5970 /* Assign symbols to all worthy DIEs under DIE. */
5971
5972 static void
5973 assign_symbol_names (die)
5974 dw_die_ref die;
5975 {
5976 dw_die_ref c;
5977
5978 if (is_symbol_die (die))
5979 {
5980 if (comdat_symbol_id)
5981 {
5982 char *p = alloca (strlen (comdat_symbol_id) + 64);
5983
5984 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
5985 comdat_symbol_id, comdat_symbol_number++);
5986 die->die_symbol = xstrdup (p);
5987 }
5988 else
5989 die->die_symbol = gen_internal_sym ("LDIE");
5990 }
5991
5992 for (c = die->die_child; c != NULL; c = c->die_sib)
5993 assign_symbol_names (c);
5994 }
5995
5996 struct cu_hash_table_entry
5997 {
5998 dw_die_ref cu;
5999 unsigned min_comdat_num, max_comdat_num;
6000 struct cu_hash_table_entry *next;
6001 };
6002
6003 /* Routines to manipulate hash table of CUs. */
6004 static hashval_t
6005 htab_cu_hash (of)
6006 const void *of;
6007 {
6008 const struct cu_hash_table_entry *entry = of;
6009
6010 return htab_hash_string (entry->cu->die_symbol);
6011 }
6012
6013 static int
6014 htab_cu_eq (of1, of2)
6015 const void *of1;
6016 const void *of2;
6017 {
6018 const struct cu_hash_table_entry *entry1 = of1;
6019 const struct die_struct *entry2 = of2;
6020
6021 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6022 }
6023
6024 static void
6025 htab_cu_del (what)
6026 void *what;
6027 {
6028 struct cu_hash_table_entry *next, *entry = what;
6029
6030 while (entry)
6031 {
6032 next = entry->next;
6033 free (entry);
6034 entry = next;
6035 }
6036 }
6037
6038 /* Check whether we have already seen this CU and set up SYM_NUM
6039 accordingly. */
6040 static int
6041 check_duplicate_cu (cu, htable, sym_num)
6042 dw_die_ref cu;
6043 htab_t htable;
6044 unsigned *sym_num;
6045 {
6046 struct cu_hash_table_entry dummy;
6047 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6048
6049 dummy.max_comdat_num = 0;
6050
6051 slot = (struct cu_hash_table_entry **)
6052 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6053 INSERT);
6054 entry = *slot;
6055
6056 for (; entry; last = entry, entry = entry->next)
6057 {
6058 if (same_die_p_wrap (cu, entry->cu))
6059 break;
6060 }
6061
6062 if (entry)
6063 {
6064 *sym_num = entry->min_comdat_num;
6065 return 1;
6066 }
6067
6068 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6069 entry->cu = cu;
6070 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6071 entry->next = *slot;
6072 *slot = entry;
6073
6074 return 0;
6075 }
6076
6077 /* Record SYM_NUM to record of CU in HTABLE. */
6078 static void
6079 record_comdat_symbol_number (cu, htable, sym_num)
6080 dw_die_ref cu;
6081 htab_t htable;
6082 unsigned sym_num;
6083 {
6084 struct cu_hash_table_entry **slot, *entry;
6085
6086 slot = (struct cu_hash_table_entry **)
6087 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6088 NO_INSERT);
6089 entry = *slot;
6090
6091 entry->max_comdat_num = sym_num;
6092 }
6093
6094 /* Traverse the DIE (which is always comp_unit_die), and set up
6095 additional compilation units for each of the include files we see
6096 bracketed by BINCL/EINCL. */
6097
6098 static void
6099 break_out_includes (die)
6100 dw_die_ref die;
6101 {
6102 dw_die_ref *ptr;
6103 dw_die_ref unit = NULL;
6104 limbo_die_node *node, **pnode;
6105 htab_t cu_hash_table;
6106
6107 for (ptr = &(die->die_child); *ptr;)
6108 {
6109 dw_die_ref c = *ptr;
6110
6111 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6112 || (unit && is_comdat_die (c)))
6113 {
6114 /* This DIE is for a secondary CU; remove it from the main one. */
6115 *ptr = c->die_sib;
6116
6117 if (c->die_tag == DW_TAG_GNU_BINCL)
6118 {
6119 unit = push_new_compile_unit (unit, c);
6120 free_die (c);
6121 }
6122 else if (c->die_tag == DW_TAG_GNU_EINCL)
6123 {
6124 unit = pop_compile_unit (unit);
6125 free_die (c);
6126 }
6127 else
6128 add_child_die (unit, c);
6129 }
6130 else
6131 {
6132 /* Leave this DIE in the main CU. */
6133 ptr = &(c->die_sib);
6134 continue;
6135 }
6136 }
6137
6138 #if 0
6139 /* We can only use this in debugging, since the frontend doesn't check
6140 to make sure that we leave every include file we enter. */
6141 if (unit != NULL)
6142 abort ();
6143 #endif
6144
6145 assign_symbol_names (die);
6146 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6147 for (node = limbo_die_list, pnode = &limbo_die_list;
6148 node;
6149 node = node->next)
6150 {
6151 int is_dupl;
6152
6153 compute_section_prefix (node->die);
6154 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6155 &comdat_symbol_number);
6156 assign_symbol_names (node->die);
6157 if (is_dupl)
6158 *pnode = node->next;
6159 else
6160 {
6161 pnode = &node->next;
6162 record_comdat_symbol_number (node->die, cu_hash_table,
6163 comdat_symbol_number);
6164 }
6165 }
6166 htab_delete (cu_hash_table);
6167 }
6168
6169 /* Traverse the DIE and add a sibling attribute if it may have the
6170 effect of speeding up access to siblings. To save some space,
6171 avoid generating sibling attributes for DIE's without children. */
6172
6173 static void
6174 add_sibling_attributes (die)
6175 dw_die_ref die;
6176 {
6177 dw_die_ref c;
6178
6179 if (die->die_tag != DW_TAG_compile_unit
6180 && die->die_sib && die->die_child != NULL)
6181 /* Add the sibling link to the front of the attribute list. */
6182 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6183
6184 for (c = die->die_child; c != NULL; c = c->die_sib)
6185 add_sibling_attributes (c);
6186 }
6187
6188 /* Output all location lists for the DIE and its children. */
6189
6190 static void
6191 output_location_lists (die)
6192 dw_die_ref die;
6193 {
6194 dw_die_ref c;
6195 dw_attr_ref d_attr;
6196
6197 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6198 if (AT_class (d_attr) == dw_val_class_loc_list)
6199 output_loc_list (AT_loc_list (d_attr));
6200
6201 for (c = die->die_child; c != NULL; c = c->die_sib)
6202 output_location_lists (c);
6203
6204 }
6205
6206 /* The format of each DIE (and its attribute value pairs) is encoded in an
6207 abbreviation table. This routine builds the abbreviation table and assigns
6208 a unique abbreviation id for each abbreviation entry. The children of each
6209 die are visited recursively. */
6210
6211 static void
6212 build_abbrev_table (die)
6213 dw_die_ref die;
6214 {
6215 unsigned long abbrev_id;
6216 unsigned int n_alloc;
6217 dw_die_ref c;
6218 dw_attr_ref d_attr, a_attr;
6219
6220 /* Scan the DIE references, and mark as external any that refer to
6221 DIEs from other CUs (i.e. those which are not marked). */
6222 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6223 if (AT_class (d_attr) == dw_val_class_die_ref
6224 && AT_ref (d_attr)->die_mark == 0)
6225 {
6226 if (AT_ref (d_attr)->die_symbol == 0)
6227 abort ();
6228
6229 set_AT_ref_external (d_attr, 1);
6230 }
6231
6232 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6233 {
6234 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6235
6236 if (abbrev->die_tag == die->die_tag)
6237 {
6238 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6239 {
6240 a_attr = abbrev->die_attr;
6241 d_attr = die->die_attr;
6242
6243 while (a_attr != NULL && d_attr != NULL)
6244 {
6245 if ((a_attr->dw_attr != d_attr->dw_attr)
6246 || (value_format (a_attr) != value_format (d_attr)))
6247 break;
6248
6249 a_attr = a_attr->dw_attr_next;
6250 d_attr = d_attr->dw_attr_next;
6251 }
6252
6253 if (a_attr == NULL && d_attr == NULL)
6254 break;
6255 }
6256 }
6257 }
6258
6259 if (abbrev_id >= abbrev_die_table_in_use)
6260 {
6261 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6262 {
6263 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6264 abbrev_die_table = ggc_realloc (abbrev_die_table,
6265 sizeof (dw_die_ref) * n_alloc);
6266
6267 memset ((char *) &abbrev_die_table[abbrev_die_table_allocated], 0,
6268 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6269 abbrev_die_table_allocated = n_alloc;
6270 }
6271
6272 ++abbrev_die_table_in_use;
6273 abbrev_die_table[abbrev_id] = die;
6274 }
6275
6276 die->die_abbrev = abbrev_id;
6277 for (c = die->die_child; c != NULL; c = c->die_sib)
6278 build_abbrev_table (c);
6279 }
6280 \f
6281 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6282
6283 static int
6284 constant_size (value)
6285 long unsigned value;
6286 {
6287 int log;
6288
6289 if (value == 0)
6290 log = 0;
6291 else
6292 log = floor_log2 (value);
6293
6294 log = log / 8;
6295 log = 1 << (floor_log2 (log) + 1);
6296
6297 return log;
6298 }
6299
6300 /* Return the size of a DIE as it is represented in the
6301 .debug_info section. */
6302
6303 static unsigned long
6304 size_of_die (die)
6305 dw_die_ref die;
6306 {
6307 unsigned long size = 0;
6308 dw_attr_ref a;
6309
6310 size += size_of_uleb128 (die->die_abbrev);
6311 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6312 {
6313 switch (AT_class (a))
6314 {
6315 case dw_val_class_addr:
6316 size += DWARF2_ADDR_SIZE;
6317 break;
6318 case dw_val_class_offset:
6319 size += DWARF_OFFSET_SIZE;
6320 break;
6321 case dw_val_class_loc:
6322 {
6323 unsigned long lsize = size_of_locs (AT_loc (a));
6324
6325 /* Block length. */
6326 size += constant_size (lsize);
6327 size += lsize;
6328 }
6329 break;
6330 case dw_val_class_loc_list:
6331 size += DWARF_OFFSET_SIZE;
6332 break;
6333 case dw_val_class_range_list:
6334 size += DWARF_OFFSET_SIZE;
6335 break;
6336 case dw_val_class_const:
6337 size += size_of_sleb128 (AT_int (a));
6338 break;
6339 case dw_val_class_unsigned_const:
6340 size += constant_size (AT_unsigned (a));
6341 break;
6342 case dw_val_class_long_long:
6343 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6344 break;
6345 case dw_val_class_float:
6346 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
6347 break;
6348 case dw_val_class_flag:
6349 size += 1;
6350 break;
6351 case dw_val_class_die_ref:
6352 if (AT_ref_external (a))
6353 size += DWARF2_ADDR_SIZE;
6354 else
6355 size += DWARF_OFFSET_SIZE;
6356 break;
6357 case dw_val_class_fde_ref:
6358 size += DWARF_OFFSET_SIZE;
6359 break;
6360 case dw_val_class_lbl_id:
6361 size += DWARF2_ADDR_SIZE;
6362 break;
6363 case dw_val_class_lbl_offset:
6364 size += DWARF_OFFSET_SIZE;
6365 break;
6366 case dw_val_class_str:
6367 if (AT_string_form (a) == DW_FORM_strp)
6368 size += DWARF_OFFSET_SIZE;
6369 else
6370 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6371 break;
6372 default:
6373 abort ();
6374 }
6375 }
6376
6377 return size;
6378 }
6379
6380 /* Size the debugging information associated with a given DIE. Visits the
6381 DIE's children recursively. Updates the global variable next_die_offset, on
6382 each time through. Uses the current value of next_die_offset to update the
6383 die_offset field in each DIE. */
6384
6385 static void
6386 calc_die_sizes (die)
6387 dw_die_ref die;
6388 {
6389 dw_die_ref c;
6390
6391 die->die_offset = next_die_offset;
6392 next_die_offset += size_of_die (die);
6393
6394 for (c = die->die_child; c != NULL; c = c->die_sib)
6395 calc_die_sizes (c);
6396
6397 if (die->die_child != NULL)
6398 /* Count the null byte used to terminate sibling lists. */
6399 next_die_offset += 1;
6400 }
6401
6402 /* Set the marks for a die and its children. We do this so
6403 that we know whether or not a reference needs to use FORM_ref_addr; only
6404 DIEs in the same CU will be marked. We used to clear out the offset
6405 and use that as the flag, but ran into ordering problems. */
6406
6407 static void
6408 mark_dies (die)
6409 dw_die_ref die;
6410 {
6411 dw_die_ref c;
6412
6413 if (die->die_mark)
6414 abort ();
6415
6416 die->die_mark = 1;
6417 for (c = die->die_child; c; c = c->die_sib)
6418 mark_dies (c);
6419 }
6420
6421 /* Clear the marks for a die and its children. */
6422
6423 static void
6424 unmark_dies (die)
6425 dw_die_ref die;
6426 {
6427 dw_die_ref c;
6428
6429 if (!die->die_mark)
6430 abort ();
6431
6432 die->die_mark = 0;
6433 for (c = die->die_child; c; c = c->die_sib)
6434 unmark_dies (c);
6435 }
6436
6437 /* Clear the marks for a die, its children and referred dies. */
6438
6439 static void
6440 unmark_all_dies (die)
6441 dw_die_ref die;
6442 {
6443 dw_die_ref c;
6444 dw_attr_ref a;
6445
6446 if (!die->die_mark)
6447 return;
6448 die->die_mark = 0;
6449
6450 for (c = die->die_child; c; c = c->die_sib)
6451 unmark_all_dies (c);
6452
6453 for (a = die->die_attr; a; a = a->dw_attr_next)
6454 if (AT_class (a) == dw_val_class_die_ref)
6455 unmark_all_dies (AT_ref (a));
6456 }
6457
6458 /* Return the size of the .debug_pubnames table generated for the
6459 compilation unit. */
6460
6461 static unsigned long
6462 size_of_pubnames ()
6463 {
6464 unsigned long size;
6465 unsigned i;
6466
6467 size = DWARF_PUBNAMES_HEADER_SIZE;
6468 for (i = 0; i < pubname_table_in_use; i++)
6469 {
6470 pubname_ref p = &pubname_table[i];
6471 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6472 }
6473
6474 size += DWARF_OFFSET_SIZE;
6475 return size;
6476 }
6477
6478 /* Return the size of the information in the .debug_aranges section. */
6479
6480 static unsigned long
6481 size_of_aranges ()
6482 {
6483 unsigned long size;
6484
6485 size = DWARF_ARANGES_HEADER_SIZE;
6486
6487 /* Count the address/length pair for this compilation unit. */
6488 size += 2 * DWARF2_ADDR_SIZE;
6489 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6490
6491 /* Count the two zero words used to terminated the address range table. */
6492 size += 2 * DWARF2_ADDR_SIZE;
6493 return size;
6494 }
6495 \f
6496 /* Select the encoding of an attribute value. */
6497
6498 static enum dwarf_form
6499 value_format (a)
6500 dw_attr_ref a;
6501 {
6502 switch (a->dw_attr_val.val_class)
6503 {
6504 case dw_val_class_addr:
6505 return DW_FORM_addr;
6506 case dw_val_class_range_list:
6507 case dw_val_class_offset:
6508 if (DWARF_OFFSET_SIZE == 4)
6509 return DW_FORM_data4;
6510 if (DWARF_OFFSET_SIZE == 8)
6511 return DW_FORM_data8;
6512 abort ();
6513 case dw_val_class_loc_list:
6514 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6515 .debug_loc section */
6516 return DW_FORM_data4;
6517 case dw_val_class_loc:
6518 switch (constant_size (size_of_locs (AT_loc (a))))
6519 {
6520 case 1:
6521 return DW_FORM_block1;
6522 case 2:
6523 return DW_FORM_block2;
6524 default:
6525 abort ();
6526 }
6527 case dw_val_class_const:
6528 return DW_FORM_sdata;
6529 case dw_val_class_unsigned_const:
6530 switch (constant_size (AT_unsigned (a)))
6531 {
6532 case 1:
6533 return DW_FORM_data1;
6534 case 2:
6535 return DW_FORM_data2;
6536 case 4:
6537 return DW_FORM_data4;
6538 case 8:
6539 return DW_FORM_data8;
6540 default:
6541 abort ();
6542 }
6543 case dw_val_class_long_long:
6544 return DW_FORM_block1;
6545 case dw_val_class_float:
6546 return DW_FORM_block1;
6547 case dw_val_class_flag:
6548 return DW_FORM_flag;
6549 case dw_val_class_die_ref:
6550 if (AT_ref_external (a))
6551 return DW_FORM_ref_addr;
6552 else
6553 return DW_FORM_ref;
6554 case dw_val_class_fde_ref:
6555 return DW_FORM_data;
6556 case dw_val_class_lbl_id:
6557 return DW_FORM_addr;
6558 case dw_val_class_lbl_offset:
6559 return DW_FORM_data;
6560 case dw_val_class_str:
6561 return AT_string_form (a);
6562
6563 default:
6564 abort ();
6565 }
6566 }
6567
6568 /* Output the encoding of an attribute value. */
6569
6570 static void
6571 output_value_format (a)
6572 dw_attr_ref a;
6573 {
6574 enum dwarf_form form = value_format (a);
6575
6576 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6577 }
6578
6579 /* Output the .debug_abbrev section which defines the DIE abbreviation
6580 table. */
6581
6582 static void
6583 output_abbrev_section ()
6584 {
6585 unsigned long abbrev_id;
6586
6587 dw_attr_ref a_attr;
6588
6589 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6590 {
6591 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6592
6593 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6594 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6595 dwarf_tag_name (abbrev->die_tag));
6596
6597 if (abbrev->die_child != NULL)
6598 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6599 else
6600 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6601
6602 for (a_attr = abbrev->die_attr; a_attr != NULL;
6603 a_attr = a_attr->dw_attr_next)
6604 {
6605 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6606 dwarf_attr_name (a_attr->dw_attr));
6607 output_value_format (a_attr);
6608 }
6609
6610 dw2_asm_output_data (1, 0, NULL);
6611 dw2_asm_output_data (1, 0, NULL);
6612 }
6613
6614 /* Terminate the table. */
6615 dw2_asm_output_data (1, 0, NULL);
6616 }
6617
6618 /* Output a symbol we can use to refer to this DIE from another CU. */
6619
6620 static inline void
6621 output_die_symbol (die)
6622 dw_die_ref die;
6623 {
6624 char *sym = die->die_symbol;
6625
6626 if (sym == 0)
6627 return;
6628
6629 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6630 /* We make these global, not weak; if the target doesn't support
6631 .linkonce, it doesn't support combining the sections, so debugging
6632 will break. */
6633 (*targetm.asm_out.globalize_label) (asm_out_file, sym);
6634
6635 ASM_OUTPUT_LABEL (asm_out_file, sym);
6636 }
6637
6638 /* Return a new location list, given the begin and end range, and the
6639 expression. gensym tells us whether to generate a new internal symbol for
6640 this location list node, which is done for the head of the list only. */
6641
6642 static inline dw_loc_list_ref
6643 new_loc_list (expr, begin, end, section, gensym)
6644 dw_loc_descr_ref expr;
6645 const char *begin;
6646 const char *end;
6647 const char *section;
6648 unsigned gensym;
6649 {
6650 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6651
6652 retlist->begin = begin;
6653 retlist->end = end;
6654 retlist->expr = expr;
6655 retlist->section = section;
6656 if (gensym)
6657 retlist->ll_symbol = gen_internal_sym ("LLST");
6658
6659 return retlist;
6660 }
6661
6662 /* Add a location description expression to a location list */
6663
6664 static inline void
6665 add_loc_descr_to_loc_list (list_head, descr, begin, end, section)
6666 dw_loc_list_ref *list_head;
6667 dw_loc_descr_ref descr;
6668 const char *begin;
6669 const char *end;
6670 const char *section;
6671 {
6672 dw_loc_list_ref *d;
6673
6674 /* Find the end of the chain. */
6675 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6676 ;
6677
6678 /* Add a new location list node to the list */
6679 *d = new_loc_list (descr, begin, end, section, 0);
6680 }
6681
6682 /* Output the location list given to us */
6683
6684 static void
6685 output_loc_list (list_head)
6686 dw_loc_list_ref list_head;
6687 {
6688 dw_loc_list_ref curr = list_head;
6689
6690 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6691
6692 /* ??? This shouldn't be needed now that we've forced the
6693 compilation unit base address to zero when there is code
6694 in more than one section. */
6695 if (strcmp (curr->section, ".text") == 0)
6696 {
6697 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6698 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT) 0,
6699 "Location list base address specifier fake entry");
6700 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6701 "Location list base address specifier base");
6702 }
6703
6704 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6705 {
6706 unsigned long size;
6707
6708 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6709 "Location list begin address (%s)",
6710 list_head->ll_symbol);
6711 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6712 "Location list end address (%s)",
6713 list_head->ll_symbol);
6714 size = size_of_locs (curr->expr);
6715
6716 /* Output the block length for this list of location operations. */
6717 if (size > 0xffff)
6718 abort ();
6719 dw2_asm_output_data (2, size, "%s", "Location expression size");
6720
6721 output_loc_sequence (curr->expr);
6722 }
6723
6724 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6725 "Location list terminator begin (%s)",
6726 list_head->ll_symbol);
6727 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6728 "Location list terminator end (%s)",
6729 list_head->ll_symbol);
6730 }
6731
6732 /* Output the DIE and its attributes. Called recursively to generate
6733 the definitions of each child DIE. */
6734
6735 static void
6736 output_die (die)
6737 dw_die_ref die;
6738 {
6739 dw_attr_ref a;
6740 dw_die_ref c;
6741 unsigned long size;
6742
6743 /* If someone in another CU might refer to us, set up a symbol for
6744 them to point to. */
6745 if (die->die_symbol)
6746 output_die_symbol (die);
6747
6748 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6749 die->die_offset, dwarf_tag_name (die->die_tag));
6750
6751 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6752 {
6753 const char *name = dwarf_attr_name (a->dw_attr);
6754
6755 switch (AT_class (a))
6756 {
6757 case dw_val_class_addr:
6758 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6759 break;
6760
6761 case dw_val_class_offset:
6762 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6763 "%s", name);
6764 break;
6765
6766 case dw_val_class_range_list:
6767 {
6768 char *p = strchr (ranges_section_label, '\0');
6769
6770 sprintf (p, "+0x%lx", a->dw_attr_val.v.val_offset);
6771 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6772 "%s", name);
6773 *p = '\0';
6774 }
6775 break;
6776
6777 case dw_val_class_loc:
6778 size = size_of_locs (AT_loc (a));
6779
6780 /* Output the block length for this list of location operations. */
6781 dw2_asm_output_data (constant_size (size), size, "%s", name);
6782
6783 output_loc_sequence (AT_loc (a));
6784 break;
6785
6786 case dw_val_class_const:
6787 /* ??? It would be slightly more efficient to use a scheme like is
6788 used for unsigned constants below, but gdb 4.x does not sign
6789 extend. Gdb 5.x does sign extend. */
6790 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6791 break;
6792
6793 case dw_val_class_unsigned_const:
6794 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6795 AT_unsigned (a), "%s", name);
6796 break;
6797
6798 case dw_val_class_long_long:
6799 {
6800 unsigned HOST_WIDE_INT first, second;
6801
6802 dw2_asm_output_data (1,
6803 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6804 "%s", name);
6805
6806 if (WORDS_BIG_ENDIAN)
6807 {
6808 first = a->dw_attr_val.v.val_long_long.hi;
6809 second = a->dw_attr_val.v.val_long_long.low;
6810 }
6811 else
6812 {
6813 first = a->dw_attr_val.v.val_long_long.low;
6814 second = a->dw_attr_val.v.val_long_long.hi;
6815 }
6816
6817 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6818 first, "long long constant");
6819 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6820 second, NULL);
6821 }
6822 break;
6823
6824 case dw_val_class_float:
6825 {
6826 unsigned int i;
6827
6828 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6829 "%s", name);
6830
6831 for (i = 0; i < a->dw_attr_val.v.val_float.length; i++)
6832 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6833 "fp constant word %u", i);
6834 break;
6835 }
6836
6837 case dw_val_class_flag:
6838 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6839 break;
6840
6841 case dw_val_class_loc_list:
6842 {
6843 char *sym = AT_loc_list (a)->ll_symbol;
6844
6845 if (sym == 0)
6846 abort ();
6847 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym,
6848 loc_section_label, "%s", name);
6849 }
6850 break;
6851
6852 case dw_val_class_die_ref:
6853 if (AT_ref_external (a))
6854 {
6855 char *sym = AT_ref (a)->die_symbol;
6856
6857 if (sym == 0)
6858 abort ();
6859 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6860 }
6861 else if (AT_ref (a)->die_offset == 0)
6862 abort ();
6863 else
6864 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6865 "%s", name);
6866 break;
6867
6868 case dw_val_class_fde_ref:
6869 {
6870 char l1[20];
6871
6872 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6873 a->dw_attr_val.v.val_fde_index * 2);
6874 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6875 }
6876 break;
6877
6878 case dw_val_class_lbl_id:
6879 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6880 break;
6881
6882 case dw_val_class_lbl_offset:
6883 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6884 break;
6885
6886 case dw_val_class_str:
6887 if (AT_string_form (a) == DW_FORM_strp)
6888 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6889 a->dw_attr_val.v.val_str->label,
6890 "%s: \"%s\"", name, AT_string (a));
6891 else
6892 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6893 break;
6894
6895 default:
6896 abort ();
6897 }
6898 }
6899
6900 for (c = die->die_child; c != NULL; c = c->die_sib)
6901 output_die (c);
6902
6903 /* Add null byte to terminate sibling list. */
6904 if (die->die_child != NULL)
6905 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6906 die->die_offset);
6907 }
6908
6909 /* Output the compilation unit that appears at the beginning of the
6910 .debug_info section, and precedes the DIE descriptions. */
6911
6912 static void
6913 output_compilation_unit_header ()
6914 {
6915 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset - DWARF_OFFSET_SIZE,
6916 "Length of Compilation Unit Info");
6917 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6918 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6919 "Offset Into Abbrev. Section");
6920 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6921 }
6922
6923 /* Output the compilation unit DIE and its children. */
6924
6925 static void
6926 output_comp_unit (die, output_if_empty)
6927 dw_die_ref die;
6928 int output_if_empty;
6929 {
6930 const char *secname;
6931 char *oldsym, *tmp;
6932
6933 /* Unless we are outputting main CU, we may throw away empty ones. */
6934 if (!output_if_empty && die->die_child == NULL)
6935 return;
6936
6937 /* Even if there are no children of this DIE, we must output the information
6938 about the compilation unit. Otherwise, on an empty translation unit, we
6939 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6940 will then complain when examining the file. First mark all the DIEs in
6941 this CU so we know which get local refs. */
6942 mark_dies (die);
6943
6944 build_abbrev_table (die);
6945
6946 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6947 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6948 calc_die_sizes (die);
6949
6950 oldsym = die->die_symbol;
6951 if (oldsym)
6952 {
6953 tmp = (char *) alloca (strlen (oldsym) + 24);
6954
6955 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
6956 secname = tmp;
6957 die->die_symbol = NULL;
6958 }
6959 else
6960 secname = (const char *) DEBUG_INFO_SECTION;
6961
6962 /* Output debugging information. */
6963 named_section_flags (secname, SECTION_DEBUG);
6964 output_compilation_unit_header ();
6965 output_die (die);
6966
6967 /* Leave the marks on the main CU, so we can check them in
6968 output_pubnames. */
6969 if (oldsym)
6970 {
6971 unmark_dies (die);
6972 die->die_symbol = oldsym;
6973 }
6974 }
6975
6976 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
6977 output of lang_hooks.decl_printable_name for C++ looks like
6978 "A::f(int)". Let's drop the argument list, and maybe the scope. */
6979
6980 static const char *
6981 dwarf2_name (decl, scope)
6982 tree decl;
6983 int scope;
6984 {
6985 return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
6986 }
6987
6988 /* Add a new entry to .debug_pubnames if appropriate. */
6989
6990 static void
6991 add_pubname (decl, die)
6992 tree decl;
6993 dw_die_ref die;
6994 {
6995 pubname_ref p;
6996
6997 if (! TREE_PUBLIC (decl))
6998 return;
6999
7000 if (pubname_table_in_use == pubname_table_allocated)
7001 {
7002 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7003 pubname_table
7004 = (pubname_ref) ggc_realloc (pubname_table,
7005 (pubname_table_allocated
7006 * sizeof (pubname_entry)));
7007 memset (pubname_table + pubname_table_in_use, 0,
7008 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7009 }
7010
7011 p = &pubname_table[pubname_table_in_use++];
7012 p->die = die;
7013 p->name = xstrdup (dwarf2_name (decl, 1));
7014 }
7015
7016 /* Output the public names table used to speed up access to externally
7017 visible names. For now, only generate entries for externally
7018 visible procedures. */
7019
7020 static void
7021 output_pubnames ()
7022 {
7023 unsigned i;
7024 unsigned long pubnames_length = size_of_pubnames ();
7025
7026 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7027 "Length of Public Names Info");
7028 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7029 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7030 "Offset of Compilation Unit Info");
7031 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7032 "Compilation Unit Length");
7033
7034 for (i = 0; i < pubname_table_in_use; i++)
7035 {
7036 pubname_ref pub = &pubname_table[i];
7037
7038 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7039 if (pub->die->die_mark == 0)
7040 abort ();
7041
7042 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7043 "DIE offset");
7044
7045 dw2_asm_output_nstring (pub->name, -1, "external name");
7046 }
7047
7048 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7049 }
7050
7051 /* Add a new entry to .debug_aranges if appropriate. */
7052
7053 static void
7054 add_arange (decl, die)
7055 tree decl;
7056 dw_die_ref die;
7057 {
7058 if (! DECL_SECTION_NAME (decl))
7059 return;
7060
7061 if (arange_table_in_use == arange_table_allocated)
7062 {
7063 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7064 arange_table = ggc_realloc (arange_table,
7065 (arange_table_allocated
7066 * sizeof (dw_die_ref)));
7067 memset (arange_table + arange_table_in_use, 0,
7068 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7069 }
7070
7071 arange_table[arange_table_in_use++] = die;
7072 }
7073
7074 /* Output the information that goes into the .debug_aranges table.
7075 Namely, define the beginning and ending address range of the
7076 text section generated for this compilation unit. */
7077
7078 static void
7079 output_aranges ()
7080 {
7081 unsigned i;
7082 unsigned long aranges_length = size_of_aranges ();
7083
7084 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7085 "Length of Address Ranges Info");
7086 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7087 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7088 "Offset of Compilation Unit Info");
7089 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7090 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7091
7092 /* We need to align to twice the pointer size here. */
7093 if (DWARF_ARANGES_PAD_SIZE)
7094 {
7095 /* Pad using a 2 byte words so that padding is correct for any
7096 pointer size. */
7097 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7098 2 * DWARF2_ADDR_SIZE);
7099 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7100 dw2_asm_output_data (2, 0, NULL);
7101 }
7102
7103 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7104 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7105 text_section_label, "Length");
7106
7107 for (i = 0; i < arange_table_in_use; i++)
7108 {
7109 dw_die_ref die = arange_table[i];
7110
7111 /* We shouldn't see aranges for DIEs outside of the main CU. */
7112 if (die->die_mark == 0)
7113 abort ();
7114
7115 if (die->die_tag == DW_TAG_subprogram)
7116 {
7117 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7118 "Address");
7119 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7120 get_AT_low_pc (die), "Length");
7121 }
7122 else
7123 {
7124 /* A static variable; extract the symbol from DW_AT_location.
7125 Note that this code isn't currently hit, as we only emit
7126 aranges for functions (jason 9/23/99). */
7127 dw_attr_ref a = get_AT (die, DW_AT_location);
7128 dw_loc_descr_ref loc;
7129
7130 if (! a || AT_class (a) != dw_val_class_loc)
7131 abort ();
7132
7133 loc = AT_loc (a);
7134 if (loc->dw_loc_opc != DW_OP_addr)
7135 abort ();
7136
7137 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7138 loc->dw_loc_oprnd1.v.val_addr, "Address");
7139 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7140 get_AT_unsigned (die, DW_AT_byte_size),
7141 "Length");
7142 }
7143 }
7144
7145 /* Output the terminator words. */
7146 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7147 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7148 }
7149
7150 /* Add a new entry to .debug_ranges. Return the offset at which it
7151 was placed. */
7152
7153 static unsigned int
7154 add_ranges (block)
7155 tree block;
7156 {
7157 unsigned int in_use = ranges_table_in_use;
7158
7159 if (in_use == ranges_table_allocated)
7160 {
7161 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7162 ranges_table = (dw_ranges_ref)
7163 ggc_realloc (ranges_table, (ranges_table_allocated
7164 * sizeof (struct dw_ranges_struct)));
7165 memset (ranges_table + ranges_table_in_use, 0,
7166 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7167 }
7168
7169 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7170 ranges_table_in_use = in_use + 1;
7171
7172 return in_use * 2 * DWARF2_ADDR_SIZE;
7173 }
7174
7175 static void
7176 output_ranges ()
7177 {
7178 unsigned i;
7179 static const char *const start_fmt = "Offset 0x%x";
7180 const char *fmt = start_fmt;
7181
7182 for (i = 0; i < ranges_table_in_use; i++)
7183 {
7184 int block_num = ranges_table[i].block_num;
7185
7186 if (block_num)
7187 {
7188 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7189 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7190
7191 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7192 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7193
7194 /* If all code is in the text section, then the compilation
7195 unit base address defaults to DW_AT_low_pc, which is the
7196 base of the text section. */
7197 if (separate_line_info_table_in_use == 0)
7198 {
7199 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7200 text_section_label,
7201 fmt, i * 2 * DWARF2_ADDR_SIZE);
7202 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7203 text_section_label, NULL);
7204 }
7205
7206 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7207 compilation unit base address to zero, which allows us to
7208 use absolute addresses, and not worry about whether the
7209 target supports cross-section arithmetic. */
7210 else
7211 {
7212 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7213 fmt, i * 2 * DWARF2_ADDR_SIZE);
7214 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7215 }
7216
7217 fmt = NULL;
7218 }
7219 else
7220 {
7221 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7222 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7223 fmt = start_fmt;
7224 }
7225 }
7226 }
7227
7228 /* Data structure containing information about input files. */
7229 struct file_info
7230 {
7231 char *path; /* Complete file name. */
7232 char *fname; /* File name part. */
7233 int length; /* Length of entire string. */
7234 int file_idx; /* Index in input file table. */
7235 int dir_idx; /* Index in directory table. */
7236 };
7237
7238 /* Data structure containing information about directories with source
7239 files. */
7240 struct dir_info
7241 {
7242 char *path; /* Path including directory name. */
7243 int length; /* Path length. */
7244 int prefix; /* Index of directory entry which is a prefix. */
7245 int count; /* Number of files in this directory. */
7246 int dir_idx; /* Index of directory used as base. */
7247 int used; /* Used in the end? */
7248 };
7249
7250 /* Callback function for file_info comparison. We sort by looking at
7251 the directories in the path. */
7252
7253 static int
7254 file_info_cmp (p1, p2)
7255 const void *p1;
7256 const void *p2;
7257 {
7258 const struct file_info *s1 = p1;
7259 const struct file_info *s2 = p2;
7260 unsigned char *cp1;
7261 unsigned char *cp2;
7262
7263 /* Take care of file names without directories. We need to make sure that
7264 we return consistent values to qsort since some will get confused if
7265 we return the same value when identical operands are passed in opposite
7266 orders. So if neither has a directory, return 0 and otherwise return
7267 1 or -1 depending on which one has the directory. */
7268 if ((s1->path == s1->fname || s2->path == s2->fname))
7269 return (s2->path == s2->fname) - (s1->path == s1->fname);
7270
7271 cp1 = (unsigned char *) s1->path;
7272 cp2 = (unsigned char *) s2->path;
7273
7274 while (1)
7275 {
7276 ++cp1;
7277 ++cp2;
7278 /* Reached the end of the first path? If so, handle like above. */
7279 if ((cp1 == (unsigned char *) s1->fname)
7280 || (cp2 == (unsigned char *) s2->fname))
7281 return ((cp2 == (unsigned char *) s2->fname)
7282 - (cp1 == (unsigned char *) s1->fname));
7283
7284 /* Character of current path component the same? */
7285 else if (*cp1 != *cp2)
7286 return *cp1 - *cp2;
7287 }
7288 }
7289
7290 /* Output the directory table and the file name table. We try to minimize
7291 the total amount of memory needed. A heuristic is used to avoid large
7292 slowdowns with many input files. */
7293
7294 static void
7295 output_file_names ()
7296 {
7297 struct file_info *files;
7298 struct dir_info *dirs;
7299 int *saved;
7300 int *savehere;
7301 int *backmap;
7302 size_t ndirs;
7303 int idx_offset;
7304 size_t i;
7305 int idx;
7306
7307 /* Handle the case where file_table is empty. */
7308 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7309 {
7310 dw2_asm_output_data (1, 0, "End directory table");
7311 dw2_asm_output_data (1, 0, "End file name table");
7312 return;
7313 }
7314
7315 /* Allocate the various arrays we need. */
7316 files = (struct file_info *) alloca (VARRAY_ACTIVE_SIZE (file_table)
7317 * sizeof (struct file_info));
7318 dirs = (struct dir_info *) alloca (VARRAY_ACTIVE_SIZE (file_table)
7319 * sizeof (struct dir_info));
7320
7321 /* Sort the file names. */
7322 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7323 {
7324 char *f;
7325
7326 /* Skip all leading "./". */
7327 f = VARRAY_CHAR_PTR (file_table, i);
7328 while (f[0] == '.' && f[1] == '/')
7329 f += 2;
7330
7331 /* Create a new array entry. */
7332 files[i].path = f;
7333 files[i].length = strlen (f);
7334 files[i].file_idx = i;
7335
7336 /* Search for the file name part. */
7337 f = strrchr (f, '/');
7338 files[i].fname = f == NULL ? files[i].path : f + 1;
7339 }
7340
7341 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7342 sizeof (files[0]), file_info_cmp);
7343
7344 /* Find all the different directories used. */
7345 dirs[0].path = files[1].path;
7346 dirs[0].length = files[1].fname - files[1].path;
7347 dirs[0].prefix = -1;
7348 dirs[0].count = 1;
7349 dirs[0].dir_idx = 0;
7350 dirs[0].used = 0;
7351 files[1].dir_idx = 0;
7352 ndirs = 1;
7353
7354 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7355 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7356 && memcmp (dirs[ndirs - 1].path, files[i].path,
7357 dirs[ndirs - 1].length) == 0)
7358 {
7359 /* Same directory as last entry. */
7360 files[i].dir_idx = ndirs - 1;
7361 ++dirs[ndirs - 1].count;
7362 }
7363 else
7364 {
7365 size_t j;
7366
7367 /* This is a new directory. */
7368 dirs[ndirs].path = files[i].path;
7369 dirs[ndirs].length = files[i].fname - files[i].path;
7370 dirs[ndirs].count = 1;
7371 dirs[ndirs].dir_idx = ndirs;
7372 dirs[ndirs].used = 0;
7373 files[i].dir_idx = ndirs;
7374
7375 /* Search for a prefix. */
7376 dirs[ndirs].prefix = -1;
7377 for (j = 0; j < ndirs; j++)
7378 if (dirs[j].length < dirs[ndirs].length
7379 && dirs[j].length > 1
7380 && (dirs[ndirs].prefix == -1
7381 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7382 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7383 dirs[ndirs].prefix = j;
7384
7385 ++ndirs;
7386 }
7387
7388 /* Now to the actual work. We have to find a subset of the directories which
7389 allow expressing the file name using references to the directory table
7390 with the least amount of characters. We do not do an exhaustive search
7391 where we would have to check out every combination of every single
7392 possible prefix. Instead we use a heuristic which provides nearly optimal
7393 results in most cases and never is much off. */
7394 saved = (int *) alloca (ndirs * sizeof (int));
7395 savehere = (int *) alloca (ndirs * sizeof (int));
7396
7397 memset (saved, '\0', ndirs * sizeof (saved[0]));
7398 for (i = 0; i < ndirs; i++)
7399 {
7400 size_t j;
7401 int total;
7402
7403 /* We can always save some space for the current directory. But this
7404 does not mean it will be enough to justify adding the directory. */
7405 savehere[i] = dirs[i].length;
7406 total = (savehere[i] - saved[i]) * dirs[i].count;
7407
7408 for (j = i + 1; j < ndirs; j++)
7409 {
7410 savehere[j] = 0;
7411 if (saved[j] < dirs[i].length)
7412 {
7413 /* Determine whether the dirs[i] path is a prefix of the
7414 dirs[j] path. */
7415 int k;
7416
7417 k = dirs[j].prefix;
7418 while (k != -1 && k != (int) i)
7419 k = dirs[k].prefix;
7420
7421 if (k == (int) i)
7422 {
7423 /* Yes it is. We can possibly safe some memory but
7424 writing the filenames in dirs[j] relative to
7425 dirs[i]. */
7426 savehere[j] = dirs[i].length;
7427 total += (savehere[j] - saved[j]) * dirs[j].count;
7428 }
7429 }
7430 }
7431
7432 /* Check whether we can safe enough to justify adding the dirs[i]
7433 directory. */
7434 if (total > dirs[i].length + 1)
7435 {
7436 /* It's worthwhile adding. */
7437 for (j = i; j < ndirs; j++)
7438 if (savehere[j] > 0)
7439 {
7440 /* Remember how much we saved for this directory so far. */
7441 saved[j] = savehere[j];
7442
7443 /* Remember the prefix directory. */
7444 dirs[j].dir_idx = i;
7445 }
7446 }
7447 }
7448
7449 /* We have to emit them in the order they appear in the file_table array
7450 since the index is used in the debug info generation. To do this
7451 efficiently we generate a back-mapping of the indices first. */
7452 backmap = (int *) alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7453 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7454 {
7455 backmap[files[i].file_idx] = i;
7456
7457 /* Mark this directory as used. */
7458 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7459 }
7460
7461 /* That was it. We are ready to emit the information. First emit the
7462 directory name table. We have to make sure the first actually emitted
7463 directory name has index one; zero is reserved for the current working
7464 directory. Make sure we do not confuse these indices with the one for the
7465 constructed table (even though most of the time they are identical). */
7466 idx = 1;
7467 idx_offset = dirs[0].length > 0 ? 1 : 0;
7468 for (i = 1 - idx_offset; i < ndirs; i++)
7469 if (dirs[i].used != 0)
7470 {
7471 dirs[i].used = idx++;
7472 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7473 "Directory Entry: 0x%x", dirs[i].used);
7474 }
7475
7476 dw2_asm_output_data (1, 0, "End directory table");
7477
7478 /* Correct the index for the current working directory entry if it
7479 exists. */
7480 if (idx_offset == 0)
7481 dirs[0].used = 0;
7482
7483 /* Now write all the file names. */
7484 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7485 {
7486 int file_idx = backmap[i];
7487 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7488
7489 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7490 "File Entry: 0x%x", i);
7491
7492 /* Include directory index. */
7493 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7494
7495 /* Modification time. */
7496 dw2_asm_output_data_uleb128 (0, NULL);
7497
7498 /* File length in bytes. */
7499 dw2_asm_output_data_uleb128 (0, NULL);
7500 }
7501
7502 dw2_asm_output_data (1, 0, "End file name table");
7503 }
7504
7505
7506 /* Output the source line number correspondence information. This
7507 information goes into the .debug_line section. */
7508
7509 static void
7510 output_line_info ()
7511 {
7512 char l1[20], l2[20], p1[20], p2[20];
7513 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7514 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7515 unsigned opc;
7516 unsigned n_op_args;
7517 unsigned long lt_index;
7518 unsigned long current_line;
7519 long line_offset;
7520 long line_delta;
7521 unsigned long current_file;
7522 unsigned long function;
7523
7524 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7525 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7526 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7527 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7528
7529 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7530 "Length of Source Line Info");
7531 ASM_OUTPUT_LABEL (asm_out_file, l1);
7532
7533 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7534 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7535 ASM_OUTPUT_LABEL (asm_out_file, p1);
7536
7537 /* Define the architecture-dependent minimum instruction length (in
7538 bytes). In this implementation of DWARF, this field is used for
7539 information purposes only. Since GCC generates assembly language,
7540 we have no a priori knowledge of how many instruction bytes are
7541 generated for each source line, and therefore can use only the
7542 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7543 commands. Accordingly, we fix this as `1', which is "correct
7544 enough" for all architectures, and don't let the target override. */
7545 dw2_asm_output_data (1, 1,
7546 "Minimum Instruction Length");
7547
7548 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7549 "Default is_stmt_start flag");
7550 dw2_asm_output_data (1, DWARF_LINE_BASE,
7551 "Line Base Value (Special Opcodes)");
7552 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7553 "Line Range Value (Special Opcodes)");
7554 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7555 "Special Opcode Base");
7556
7557 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7558 {
7559 switch (opc)
7560 {
7561 case DW_LNS_advance_pc:
7562 case DW_LNS_advance_line:
7563 case DW_LNS_set_file:
7564 case DW_LNS_set_column:
7565 case DW_LNS_fixed_advance_pc:
7566 n_op_args = 1;
7567 break;
7568 default:
7569 n_op_args = 0;
7570 break;
7571 }
7572
7573 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7574 opc, n_op_args);
7575 }
7576
7577 /* Write out the information about the files we use. */
7578 output_file_names ();
7579 ASM_OUTPUT_LABEL (asm_out_file, p2);
7580
7581 /* We used to set the address register to the first location in the text
7582 section here, but that didn't accomplish anything since we already
7583 have a line note for the opening brace of the first function. */
7584
7585 /* Generate the line number to PC correspondence table, encoded as
7586 a series of state machine operations. */
7587 current_file = 1;
7588 current_line = 1;
7589 strcpy (prev_line_label, text_section_label);
7590 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7591 {
7592 dw_line_info_ref line_info = &line_info_table[lt_index];
7593
7594 #if 0
7595 /* Disable this optimization for now; GDB wants to see two line notes
7596 at the beginning of a function so it can find the end of the
7597 prologue. */
7598
7599 /* Don't emit anything for redundant notes. Just updating the
7600 address doesn't accomplish anything, because we already assume
7601 that anything after the last address is this line. */
7602 if (line_info->dw_line_num == current_line
7603 && line_info->dw_file_num == current_file)
7604 continue;
7605 #endif
7606
7607 /* Emit debug info for the address of the current line.
7608
7609 Unfortunately, we have little choice here currently, and must always
7610 use the most general form. GCC does not know the address delta
7611 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7612 attributes which will give an upper bound on the address range. We
7613 could perhaps use length attributes to determine when it is safe to
7614 use DW_LNS_fixed_advance_pc. */
7615
7616 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7617 if (0)
7618 {
7619 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7620 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7621 "DW_LNS_fixed_advance_pc");
7622 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7623 }
7624 else
7625 {
7626 /* This can handle any delta. This takes
7627 4+DWARF2_ADDR_SIZE bytes. */
7628 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7629 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7630 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7631 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7632 }
7633
7634 strcpy (prev_line_label, line_label);
7635
7636 /* Emit debug info for the source file of the current line, if
7637 different from the previous line. */
7638 if (line_info->dw_file_num != current_file)
7639 {
7640 current_file = line_info->dw_file_num;
7641 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7642 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7643 VARRAY_CHAR_PTR (file_table,
7644 current_file));
7645 }
7646
7647 /* Emit debug info for the current line number, choosing the encoding
7648 that uses the least amount of space. */
7649 if (line_info->dw_line_num != current_line)
7650 {
7651 line_offset = line_info->dw_line_num - current_line;
7652 line_delta = line_offset - DWARF_LINE_BASE;
7653 current_line = line_info->dw_line_num;
7654 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7655 /* This can handle deltas from -10 to 234, using the current
7656 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7657 takes 1 byte. */
7658 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7659 "line %lu", current_line);
7660 else
7661 {
7662 /* This can handle any delta. This takes at least 4 bytes,
7663 depending on the value being encoded. */
7664 dw2_asm_output_data (1, DW_LNS_advance_line,
7665 "advance to line %lu", current_line);
7666 dw2_asm_output_data_sleb128 (line_offset, NULL);
7667 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7668 }
7669 }
7670 else
7671 /* We still need to start a new row, so output a copy insn. */
7672 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7673 }
7674
7675 /* Emit debug info for the address of the end of the function. */
7676 if (0)
7677 {
7678 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7679 "DW_LNS_fixed_advance_pc");
7680 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7681 }
7682 else
7683 {
7684 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7685 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7686 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7687 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7688 }
7689
7690 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7691 dw2_asm_output_data_uleb128 (1, NULL);
7692 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7693
7694 function = 0;
7695 current_file = 1;
7696 current_line = 1;
7697 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7698 {
7699 dw_separate_line_info_ref line_info
7700 = &separate_line_info_table[lt_index];
7701
7702 #if 0
7703 /* Don't emit anything for redundant notes. */
7704 if (line_info->dw_line_num == current_line
7705 && line_info->dw_file_num == current_file
7706 && line_info->function == function)
7707 goto cont;
7708 #endif
7709
7710 /* Emit debug info for the address of the current line. If this is
7711 a new function, or the first line of a function, then we need
7712 to handle it differently. */
7713 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7714 lt_index);
7715 if (function != line_info->function)
7716 {
7717 function = line_info->function;
7718
7719 /* Set the address register to the first line in the function */
7720 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7721 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7722 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7723 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7724 }
7725 else
7726 {
7727 /* ??? See the DW_LNS_advance_pc comment above. */
7728 if (0)
7729 {
7730 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7731 "DW_LNS_fixed_advance_pc");
7732 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7733 }
7734 else
7735 {
7736 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7737 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7738 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7739 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7740 }
7741 }
7742
7743 strcpy (prev_line_label, line_label);
7744
7745 /* Emit debug info for the source file of the current line, if
7746 different from the previous line. */
7747 if (line_info->dw_file_num != current_file)
7748 {
7749 current_file = line_info->dw_file_num;
7750 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7751 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7752 VARRAY_CHAR_PTR (file_table,
7753 current_file));
7754 }
7755
7756 /* Emit debug info for the current line number, choosing the encoding
7757 that uses the least amount of space. */
7758 if (line_info->dw_line_num != current_line)
7759 {
7760 line_offset = line_info->dw_line_num - current_line;
7761 line_delta = line_offset - DWARF_LINE_BASE;
7762 current_line = line_info->dw_line_num;
7763 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7764 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7765 "line %lu", current_line);
7766 else
7767 {
7768 dw2_asm_output_data (1, DW_LNS_advance_line,
7769 "advance to line %lu", current_line);
7770 dw2_asm_output_data_sleb128 (line_offset, NULL);
7771 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7772 }
7773 }
7774 else
7775 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7776
7777 #if 0
7778 cont:
7779 #endif
7780
7781 lt_index++;
7782
7783 /* If we're done with a function, end its sequence. */
7784 if (lt_index == separate_line_info_table_in_use
7785 || separate_line_info_table[lt_index].function != function)
7786 {
7787 current_file = 1;
7788 current_line = 1;
7789
7790 /* Emit debug info for the address of the end of the function. */
7791 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7792 if (0)
7793 {
7794 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7795 "DW_LNS_fixed_advance_pc");
7796 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7797 }
7798 else
7799 {
7800 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7801 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7802 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7803 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7804 }
7805
7806 /* Output the marker for the end of this sequence. */
7807 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7808 dw2_asm_output_data_uleb128 (1, NULL);
7809 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7810 }
7811 }
7812
7813 /* Output the marker for the end of the line number info. */
7814 ASM_OUTPUT_LABEL (asm_out_file, l2);
7815 }
7816 \f
7817 /* Given a pointer to a tree node for some base type, return a pointer to
7818 a DIE that describes the given type.
7819
7820 This routine must only be called for GCC type nodes that correspond to
7821 Dwarf base (fundamental) types. */
7822
7823 static dw_die_ref
7824 base_type_die (type)
7825 tree type;
7826 {
7827 dw_die_ref base_type_result;
7828 const char *type_name;
7829 enum dwarf_type encoding;
7830 tree name = TYPE_NAME (type);
7831
7832 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7833 return 0;
7834
7835 if (name)
7836 {
7837 if (TREE_CODE (name) == TYPE_DECL)
7838 name = DECL_NAME (name);
7839
7840 type_name = IDENTIFIER_POINTER (name);
7841 }
7842 else
7843 type_name = "__unknown__";
7844
7845 switch (TREE_CODE (type))
7846 {
7847 case INTEGER_TYPE:
7848 /* Carefully distinguish the C character types, without messing
7849 up if the language is not C. Note that we check only for the names
7850 that contain spaces; other names might occur by coincidence in other
7851 languages. */
7852 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7853 && (type == char_type_node
7854 || ! strcmp (type_name, "signed char")
7855 || ! strcmp (type_name, "unsigned char"))))
7856 {
7857 if (TREE_UNSIGNED (type))
7858 encoding = DW_ATE_unsigned;
7859 else
7860 encoding = DW_ATE_signed;
7861 break;
7862 }
7863 /* else fall through. */
7864
7865 case CHAR_TYPE:
7866 /* GNU Pascal/Ada CHAR type. Not used in C. */
7867 if (TREE_UNSIGNED (type))
7868 encoding = DW_ATE_unsigned_char;
7869 else
7870 encoding = DW_ATE_signed_char;
7871 break;
7872
7873 case REAL_TYPE:
7874 encoding = DW_ATE_float;
7875 break;
7876
7877 /* Dwarf2 doesn't know anything about complex ints, so use
7878 a user defined type for it. */
7879 case COMPLEX_TYPE:
7880 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7881 encoding = DW_ATE_complex_float;
7882 else
7883 encoding = DW_ATE_lo_user;
7884 break;
7885
7886 case BOOLEAN_TYPE:
7887 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7888 encoding = DW_ATE_boolean;
7889 break;
7890
7891 default:
7892 /* No other TREE_CODEs are Dwarf fundamental types. */
7893 abort ();
7894 }
7895
7896 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7897 if (demangle_name_func)
7898 type_name = (*demangle_name_func) (type_name);
7899
7900 add_AT_string (base_type_result, DW_AT_name, type_name);
7901 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7902 int_size_in_bytes (type));
7903 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7904
7905 return base_type_result;
7906 }
7907
7908 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7909 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7910 a given type is generally the same as the given type, except that if the
7911 given type is a pointer or reference type, then the root type of the given
7912 type is the root type of the "basis" type for the pointer or reference
7913 type. (This definition of the "root" type is recursive.) Also, the root
7914 type of a `const' qualified type or a `volatile' qualified type is the
7915 root type of the given type without the qualifiers. */
7916
7917 static tree
7918 root_type (type)
7919 tree type;
7920 {
7921 if (TREE_CODE (type) == ERROR_MARK)
7922 return error_mark_node;
7923
7924 switch (TREE_CODE (type))
7925 {
7926 case ERROR_MARK:
7927 return error_mark_node;
7928
7929 case POINTER_TYPE:
7930 case REFERENCE_TYPE:
7931 return type_main_variant (root_type (TREE_TYPE (type)));
7932
7933 default:
7934 return type_main_variant (type);
7935 }
7936 }
7937
7938 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7939 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7940
7941 static inline int
7942 is_base_type (type)
7943 tree type;
7944 {
7945 switch (TREE_CODE (type))
7946 {
7947 case ERROR_MARK:
7948 case VOID_TYPE:
7949 case INTEGER_TYPE:
7950 case REAL_TYPE:
7951 case COMPLEX_TYPE:
7952 case BOOLEAN_TYPE:
7953 case CHAR_TYPE:
7954 return 1;
7955
7956 case SET_TYPE:
7957 case ARRAY_TYPE:
7958 case RECORD_TYPE:
7959 case UNION_TYPE:
7960 case QUAL_UNION_TYPE:
7961 case ENUMERAL_TYPE:
7962 case FUNCTION_TYPE:
7963 case METHOD_TYPE:
7964 case POINTER_TYPE:
7965 case REFERENCE_TYPE:
7966 case FILE_TYPE:
7967 case OFFSET_TYPE:
7968 case LANG_TYPE:
7969 case VECTOR_TYPE:
7970 return 0;
7971
7972 default:
7973 abort ();
7974 }
7975
7976 return 0;
7977 }
7978
7979 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
7980 node, return the size in bits for the type if it is a constant, or else
7981 return the alignment for the type if the type's size is not constant, or
7982 else return BITS_PER_WORD if the type actually turns out to be an
7983 ERROR_MARK node. */
7984
7985 static inline unsigned HOST_WIDE_INT
7986 simple_type_size_in_bits (type)
7987 tree type;
7988 {
7989
7990 if (TREE_CODE (type) == ERROR_MARK)
7991 return BITS_PER_WORD;
7992 else if (TYPE_SIZE (type) == NULL_TREE)
7993 return 0;
7994 else if (host_integerp (TYPE_SIZE (type), 1))
7995 return tree_low_cst (TYPE_SIZE (type), 1);
7996 else
7997 return TYPE_ALIGN (type);
7998 }
7999
8000 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8001 entry that chains various modifiers in front of the given type. */
8002
8003 static dw_die_ref
8004 modified_type_die (type, is_const_type, is_volatile_type, context_die)
8005 tree type;
8006 int is_const_type;
8007 int is_volatile_type;
8008 dw_die_ref context_die;
8009 {
8010 enum tree_code code = TREE_CODE (type);
8011 dw_die_ref mod_type_die = NULL;
8012 dw_die_ref sub_die = NULL;
8013 tree item_type = NULL;
8014
8015 if (code != ERROR_MARK)
8016 {
8017 tree qualified_type;
8018
8019 /* See if we already have the appropriately qualified variant of
8020 this type. */
8021 qualified_type
8022 = get_qualified_type (type,
8023 ((is_const_type ? TYPE_QUAL_CONST : 0)
8024 | (is_volatile_type
8025 ? TYPE_QUAL_VOLATILE : 0)));
8026
8027 /* If we do, then we can just use its DIE, if it exists. */
8028 if (qualified_type)
8029 {
8030 mod_type_die = lookup_type_die (qualified_type);
8031 if (mod_type_die)
8032 return mod_type_die;
8033 }
8034
8035 /* Handle C typedef types. */
8036 if (qualified_type && TYPE_NAME (qualified_type)
8037 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8038 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8039 {
8040 tree type_name = TYPE_NAME (qualified_type);
8041 tree dtype = TREE_TYPE (type_name);
8042
8043 if (qualified_type == dtype)
8044 {
8045 /* For a named type, use the typedef. */
8046 gen_type_die (qualified_type, context_die);
8047 mod_type_die = lookup_type_die (qualified_type);
8048 }
8049 else if (is_const_type < TYPE_READONLY (dtype)
8050 || is_volatile_type < TYPE_VOLATILE (dtype))
8051 /* cv-unqualified version of named type. Just use the unnamed
8052 type to which it refers. */
8053 mod_type_die
8054 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8055 is_const_type, is_volatile_type,
8056 context_die);
8057
8058 /* Else cv-qualified version of named type; fall through. */
8059 }
8060
8061 if (mod_type_die)
8062 /* OK. */
8063 ;
8064 else if (is_const_type)
8065 {
8066 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8067 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8068 }
8069 else if (is_volatile_type)
8070 {
8071 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8072 sub_die = modified_type_die (type, 0, 0, context_die);
8073 }
8074 else if (code == POINTER_TYPE)
8075 {
8076 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8077 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8078 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8079 #if 0
8080 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8081 #endif
8082 item_type = TREE_TYPE (type);
8083 }
8084 else if (code == REFERENCE_TYPE)
8085 {
8086 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8087 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8088 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8089 #if 0
8090 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8091 #endif
8092 item_type = TREE_TYPE (type);
8093 }
8094 else if (is_base_type (type))
8095 mod_type_die = base_type_die (type);
8096 else
8097 {
8098 gen_type_die (type, context_die);
8099
8100 /* We have to get the type_main_variant here (and pass that to the
8101 `lookup_type_die' routine) because the ..._TYPE node we have
8102 might simply be a *copy* of some original type node (where the
8103 copy was created to help us keep track of typedef names) and
8104 that copy might have a different TYPE_UID from the original
8105 ..._TYPE node. */
8106 if (TREE_CODE (type) != VECTOR_TYPE)
8107 mod_type_die = lookup_type_die (type_main_variant (type));
8108 else
8109 /* Vectors have the debugging information in the type,
8110 not the main variant. */
8111 mod_type_die = lookup_type_die (type);
8112 if (mod_type_die == NULL)
8113 abort ();
8114 }
8115
8116 /* We want to equate the qualified type to the die below. */
8117 type = qualified_type;
8118 }
8119
8120 if (type)
8121 equate_type_number_to_die (type, mod_type_die);
8122 if (item_type)
8123 /* We must do this after the equate_type_number_to_die call, in case
8124 this is a recursive type. This ensures that the modified_type_die
8125 recursion will terminate even if the type is recursive. Recursive
8126 types are possible in Ada. */
8127 sub_die = modified_type_die (item_type,
8128 TYPE_READONLY (item_type),
8129 TYPE_VOLATILE (item_type),
8130 context_die);
8131
8132 if (sub_die != NULL)
8133 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8134
8135 return mod_type_die;
8136 }
8137
8138 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8139 an enumerated type. */
8140
8141 static inline int
8142 type_is_enum (type)
8143 tree type;
8144 {
8145 return TREE_CODE (type) == ENUMERAL_TYPE;
8146 }
8147
8148 /* Return the register number described by a given RTL node. */
8149
8150 static unsigned int
8151 reg_number (rtl)
8152 rtx rtl;
8153 {
8154 unsigned regno = REGNO (rtl);
8155
8156 if (regno >= FIRST_PSEUDO_REGISTER)
8157 abort ();
8158
8159 return DBX_REGISTER_NUMBER (regno);
8160 }
8161
8162 /* Return a location descriptor that designates a machine register or
8163 zero if there is none. */
8164
8165 static dw_loc_descr_ref
8166 reg_loc_descriptor (rtl)
8167 rtx rtl;
8168 {
8169 unsigned reg;
8170 rtx regs;
8171
8172 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8173 return 0;
8174
8175 reg = reg_number (rtl);
8176 regs = (*targetm.dwarf_register_span) (rtl);
8177
8178 if (HARD_REGNO_NREGS (reg, GET_MODE (rtl)) > 1
8179 || regs)
8180 return multiple_reg_loc_descriptor (rtl, regs);
8181 else
8182 return one_reg_loc_descriptor (reg);
8183 }
8184
8185 /* Return a location descriptor that designates a machine register for
8186 a given hard register number. */
8187
8188 static dw_loc_descr_ref
8189 one_reg_loc_descriptor (regno)
8190 unsigned int regno;
8191 {
8192 if (regno <= 31)
8193 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8194 else
8195 return new_loc_descr (DW_OP_regx, regno, 0);
8196 }
8197
8198 /* Given an RTL of a register, return a location descriptor that
8199 designates a value that spans more than one register. */
8200
8201 static dw_loc_descr_ref
8202 multiple_reg_loc_descriptor (rtl, regs)
8203 rtx rtl, regs;
8204 {
8205 int nregs, size, i;
8206 unsigned reg;
8207 dw_loc_descr_ref loc_result = NULL;
8208
8209 reg = reg_number (rtl);
8210 nregs = HARD_REGNO_NREGS (reg, GET_MODE (rtl));
8211
8212 /* Simple, contiguous registers. */
8213 if (regs == NULL_RTX)
8214 {
8215 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8216
8217 loc_result = NULL;
8218 while (nregs--)
8219 {
8220 dw_loc_descr_ref t;
8221
8222 t = one_reg_loc_descriptor (reg);
8223 add_loc_descr (&loc_result, t);
8224 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8225 ++reg;
8226 }
8227 return loc_result;
8228 }
8229
8230 /* Now onto stupid register sets in non contiguous locations. */
8231
8232 if (GET_CODE (regs) != PARALLEL)
8233 abort ();
8234
8235 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8236 loc_result = NULL;
8237
8238 for (i = 0; i < XVECLEN (regs, 0); ++i)
8239 {
8240 dw_loc_descr_ref t;
8241
8242 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8243 add_loc_descr (&loc_result, t);
8244 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8245 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8246 }
8247 return loc_result;
8248 }
8249
8250 /* Return a location descriptor that designates a constant. */
8251
8252 static dw_loc_descr_ref
8253 int_loc_descriptor (i)
8254 HOST_WIDE_INT i;
8255 {
8256 enum dwarf_location_atom op;
8257
8258 /* Pick the smallest representation of a constant, rather than just
8259 defaulting to the LEB encoding. */
8260 if (i >= 0)
8261 {
8262 if (i <= 31)
8263 op = DW_OP_lit0 + i;
8264 else if (i <= 0xff)
8265 op = DW_OP_const1u;
8266 else if (i <= 0xffff)
8267 op = DW_OP_const2u;
8268 else if (HOST_BITS_PER_WIDE_INT == 32
8269 || i <= 0xffffffff)
8270 op = DW_OP_const4u;
8271 else
8272 op = DW_OP_constu;
8273 }
8274 else
8275 {
8276 if (i >= -0x80)
8277 op = DW_OP_const1s;
8278 else if (i >= -0x8000)
8279 op = DW_OP_const2s;
8280 else if (HOST_BITS_PER_WIDE_INT == 32
8281 || i >= -0x80000000)
8282 op = DW_OP_const4s;
8283 else
8284 op = DW_OP_consts;
8285 }
8286
8287 return new_loc_descr (op, i, 0);
8288 }
8289
8290 /* Return a location descriptor that designates a base+offset location. */
8291
8292 static dw_loc_descr_ref
8293 based_loc_descr (reg, offset)
8294 unsigned reg;
8295 long int offset;
8296 {
8297 dw_loc_descr_ref loc_result;
8298 /* For the "frame base", we use the frame pointer or stack pointer
8299 registers, since the RTL for local variables is relative to one of
8300 them. */
8301 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8302 ? HARD_FRAME_POINTER_REGNUM
8303 : STACK_POINTER_REGNUM);
8304
8305 if (reg == fp_reg)
8306 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8307 else if (reg <= 31)
8308 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8309 else
8310 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8311
8312 return loc_result;
8313 }
8314
8315 /* Return true if this RTL expression describes a base+offset calculation. */
8316
8317 static inline int
8318 is_based_loc (rtl)
8319 rtx rtl;
8320 {
8321 return (GET_CODE (rtl) == PLUS
8322 && ((GET_CODE (XEXP (rtl, 0)) == REG
8323 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8324 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8325 }
8326
8327 /* The following routine converts the RTL for a variable or parameter
8328 (resident in memory) into an equivalent Dwarf representation of a
8329 mechanism for getting the address of that same variable onto the top of a
8330 hypothetical "address evaluation" stack.
8331
8332 When creating memory location descriptors, we are effectively transforming
8333 the RTL for a memory-resident object into its Dwarf postfix expression
8334 equivalent. This routine recursively descends an RTL tree, turning
8335 it into Dwarf postfix code as it goes.
8336
8337 MODE is the mode of the memory reference, needed to handle some
8338 autoincrement addressing modes.
8339
8340 Return 0 if we can't represent the location. */
8341
8342 static dw_loc_descr_ref
8343 mem_loc_descriptor (rtl, mode)
8344 rtx rtl;
8345 enum machine_mode mode;
8346 {
8347 dw_loc_descr_ref mem_loc_result = NULL;
8348
8349 /* Note that for a dynamically sized array, the location we will generate a
8350 description of here will be the lowest numbered location which is
8351 actually within the array. That's *not* necessarily the same as the
8352 zeroth element of the array. */
8353
8354 rtl = (*targetm.delegitimize_address) (rtl);
8355
8356 switch (GET_CODE (rtl))
8357 {
8358 case POST_INC:
8359 case POST_DEC:
8360 case POST_MODIFY:
8361 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8362 just fall into the SUBREG code. */
8363
8364 /* ... fall through ... */
8365
8366 case SUBREG:
8367 /* The case of a subreg may arise when we have a local (register)
8368 variable or a formal (register) parameter which doesn't quite fill
8369 up an entire register. For now, just assume that it is
8370 legitimate to make the Dwarf info refer to the whole register which
8371 contains the given subreg. */
8372 rtl = SUBREG_REG (rtl);
8373
8374 /* ... fall through ... */
8375
8376 case REG:
8377 /* Whenever a register number forms a part of the description of the
8378 method for calculating the (dynamic) address of a memory resident
8379 object, DWARF rules require the register number be referred to as
8380 a "base register". This distinction is not based in any way upon
8381 what category of register the hardware believes the given register
8382 belongs to. This is strictly DWARF terminology we're dealing with
8383 here. Note that in cases where the location of a memory-resident
8384 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8385 OP_CONST (0)) the actual DWARF location descriptor that we generate
8386 may just be OP_BASEREG (basereg). This may look deceptively like
8387 the object in question was allocated to a register (rather than in
8388 memory) so DWARF consumers need to be aware of the subtle
8389 distinction between OP_REG and OP_BASEREG. */
8390 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8391 mem_loc_result = based_loc_descr (reg_number (rtl), 0);
8392 break;
8393
8394 case MEM:
8395 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8396 if (mem_loc_result != 0)
8397 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8398 break;
8399
8400 case LABEL_REF:
8401 /* Some ports can transform a symbol ref into a label ref, because
8402 the symbol ref is too far away and has to be dumped into a constant
8403 pool. */
8404 case CONST:
8405 case SYMBOL_REF:
8406 /* Alternatively, the symbol in the constant pool might be referenced
8407 by a different symbol. */
8408 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8409 {
8410 bool marked;
8411 rtx tmp = get_pool_constant_mark (rtl, &marked);
8412
8413 if (GET_CODE (tmp) == SYMBOL_REF)
8414 {
8415 rtl = tmp;
8416 if (CONSTANT_POOL_ADDRESS_P (tmp))
8417 get_pool_constant_mark (tmp, &marked);
8418 else
8419 marked = true;
8420 }
8421
8422 /* If all references to this pool constant were optimized away,
8423 it was not output and thus we can't represent it.
8424 FIXME: might try to use DW_OP_const_value here, though
8425 DW_OP_piece complicates it. */
8426 if (!marked)
8427 return 0;
8428 }
8429
8430 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8431 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8432 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8433 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8434 break;
8435
8436 case PRE_MODIFY:
8437 /* Extract the PLUS expression nested inside and fall into
8438 PLUS code below. */
8439 rtl = XEXP (rtl, 1);
8440 goto plus;
8441
8442 case PRE_INC:
8443 case PRE_DEC:
8444 /* Turn these into a PLUS expression and fall into the PLUS code
8445 below. */
8446 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8447 GEN_INT (GET_CODE (rtl) == PRE_INC
8448 ? GET_MODE_UNIT_SIZE (mode)
8449 : -GET_MODE_UNIT_SIZE (mode)));
8450
8451 /* ... fall through ... */
8452
8453 case PLUS:
8454 plus:
8455 if (is_based_loc (rtl))
8456 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
8457 INTVAL (XEXP (rtl, 1)));
8458 else
8459 {
8460 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8461 if (mem_loc_result == 0)
8462 break;
8463
8464 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8465 && INTVAL (XEXP (rtl, 1)) >= 0)
8466 add_loc_descr (&mem_loc_result,
8467 new_loc_descr (DW_OP_plus_uconst,
8468 INTVAL (XEXP (rtl, 1)), 0));
8469 else
8470 {
8471 add_loc_descr (&mem_loc_result,
8472 mem_loc_descriptor (XEXP (rtl, 1), mode));
8473 add_loc_descr (&mem_loc_result,
8474 new_loc_descr (DW_OP_plus, 0, 0));
8475 }
8476 }
8477 break;
8478
8479 case MULT:
8480 {
8481 /* If a pseudo-reg is optimized away, it is possible for it to
8482 be replaced with a MEM containing a multiply. */
8483 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8484 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8485
8486 if (op0 == 0 || op1 == 0)
8487 break;
8488
8489 mem_loc_result = op0;
8490 add_loc_descr (&mem_loc_result, op1);
8491 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
8492 break;
8493 }
8494
8495 case CONST_INT:
8496 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8497 break;
8498
8499 case ADDRESSOF:
8500 /* If this is a MEM, return its address. Otherwise, we can't
8501 represent this. */
8502 if (GET_CODE (XEXP (rtl, 0)) == MEM)
8503 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode);
8504 else
8505 return 0;
8506
8507 default:
8508 abort ();
8509 }
8510
8511 return mem_loc_result;
8512 }
8513
8514 /* Return a descriptor that describes the concatenation of two locations.
8515 This is typically a complex variable. */
8516
8517 static dw_loc_descr_ref
8518 concat_loc_descriptor (x0, x1)
8519 rtx x0, x1;
8520 {
8521 dw_loc_descr_ref cc_loc_result = NULL;
8522 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8523 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8524
8525 if (x0_ref == 0 || x1_ref == 0)
8526 return 0;
8527
8528 cc_loc_result = x0_ref;
8529 add_loc_descr (&cc_loc_result,
8530 new_loc_descr (DW_OP_piece,
8531 GET_MODE_SIZE (GET_MODE (x0)), 0));
8532
8533 add_loc_descr (&cc_loc_result, x1_ref);
8534 add_loc_descr (&cc_loc_result,
8535 new_loc_descr (DW_OP_piece,
8536 GET_MODE_SIZE (GET_MODE (x1)), 0));
8537
8538 return cc_loc_result;
8539 }
8540
8541 /* Output a proper Dwarf location descriptor for a variable or parameter
8542 which is either allocated in a register or in a memory location. For a
8543 register, we just generate an OP_REG and the register number. For a
8544 memory location we provide a Dwarf postfix expression describing how to
8545 generate the (dynamic) address of the object onto the address stack.
8546
8547 If we don't know how to describe it, return 0. */
8548
8549 static dw_loc_descr_ref
8550 loc_descriptor (rtl)
8551 rtx rtl;
8552 {
8553 dw_loc_descr_ref loc_result = NULL;
8554
8555 switch (GET_CODE (rtl))
8556 {
8557 case SUBREG:
8558 /* The case of a subreg may arise when we have a local (register)
8559 variable or a formal (register) parameter which doesn't quite fill
8560 up an entire register. For now, just assume that it is
8561 legitimate to make the Dwarf info refer to the whole register which
8562 contains the given subreg. */
8563 rtl = SUBREG_REG (rtl);
8564
8565 /* ... fall through ... */
8566
8567 case REG:
8568 loc_result = reg_loc_descriptor (rtl);
8569 break;
8570
8571 case MEM:
8572 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8573 break;
8574
8575 case CONCAT:
8576 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8577 break;
8578
8579 default:
8580 abort ();
8581 }
8582
8583 return loc_result;
8584 }
8585
8586 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8587 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8588 looking for an address. Otherwise, we return a value. If we can't make a
8589 descriptor, return 0. */
8590
8591 static dw_loc_descr_ref
8592 loc_descriptor_from_tree (loc, addressp)
8593 tree loc;
8594 int addressp;
8595 {
8596 dw_loc_descr_ref ret, ret1;
8597 int indirect_p = 0;
8598 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8599 enum dwarf_location_atom op;
8600
8601 /* ??? Most of the time we do not take proper care for sign/zero
8602 extending the values properly. Hopefully this won't be a real
8603 problem... */
8604
8605 switch (TREE_CODE (loc))
8606 {
8607 case ERROR_MARK:
8608 return 0;
8609
8610 case WITH_RECORD_EXPR:
8611 case PLACEHOLDER_EXPR:
8612 /* This case involves extracting fields from an object to determine the
8613 position of other fields. We don't try to encode this here. The
8614 only user of this is Ada, which encodes the needed information using
8615 the names of types. */
8616 return 0;
8617
8618 case CALL_EXPR:
8619 return 0;
8620
8621 case ADDR_EXPR:
8622 /* We can support this only if we can look through conversions and
8623 find an INDIRECT_EXPR. */
8624 for (loc = TREE_OPERAND (loc, 0);
8625 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8626 || TREE_CODE (loc) == NON_LVALUE_EXPR
8627 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8628 || TREE_CODE (loc) == SAVE_EXPR;
8629 loc = TREE_OPERAND (loc, 0))
8630 ;
8631
8632 return (TREE_CODE (loc) == INDIRECT_REF
8633 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8634 : 0);
8635
8636 case VAR_DECL:
8637 if (DECL_THREAD_LOCAL (loc))
8638 {
8639 rtx rtl;
8640
8641 #ifndef ASM_OUTPUT_DWARF_DTPREL
8642 /* If this is not defined, we have no way to emit the data. */
8643 return 0;
8644 #endif
8645
8646 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8647 look up addresses of objects in the current module. */
8648 if (DECL_EXTERNAL (loc))
8649 return 0;
8650
8651 rtl = rtl_for_decl_location (loc);
8652 if (rtl == NULL_RTX)
8653 return 0;
8654
8655 if (GET_CODE (rtl) != MEM)
8656 return 0;
8657 rtl = XEXP (rtl, 0);
8658 if (! CONSTANT_P (rtl))
8659 return 0;
8660
8661 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8662 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8663 ret->dw_loc_oprnd1.v.val_addr = rtl;
8664
8665 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8666 add_loc_descr (&ret, ret1);
8667
8668 indirect_p = 1;
8669 break;
8670 }
8671 /* FALLTHRU */
8672
8673 case PARM_DECL:
8674 {
8675 rtx rtl = rtl_for_decl_location (loc);
8676
8677 if (rtl == NULL_RTX)
8678 return 0;
8679 else if (CONSTANT_P (rtl))
8680 {
8681 ret = new_loc_descr (DW_OP_addr, 0, 0);
8682 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8683 ret->dw_loc_oprnd1.v.val_addr = rtl;
8684 indirect_p = 1;
8685 }
8686 else
8687 {
8688 enum machine_mode mode = GET_MODE (rtl);
8689
8690 if (GET_CODE (rtl) == MEM)
8691 {
8692 indirect_p = 1;
8693 rtl = XEXP (rtl, 0);
8694 }
8695
8696 ret = mem_loc_descriptor (rtl, mode);
8697 }
8698 }
8699 break;
8700
8701 case INDIRECT_REF:
8702 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8703 indirect_p = 1;
8704 break;
8705
8706 case COMPOUND_EXPR:
8707 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8708
8709 case NOP_EXPR:
8710 case CONVERT_EXPR:
8711 case NON_LVALUE_EXPR:
8712 case VIEW_CONVERT_EXPR:
8713 case SAVE_EXPR:
8714 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8715
8716 case COMPONENT_REF:
8717 case BIT_FIELD_REF:
8718 case ARRAY_REF:
8719 case ARRAY_RANGE_REF:
8720 {
8721 tree obj, offset;
8722 HOST_WIDE_INT bitsize, bitpos, bytepos;
8723 enum machine_mode mode;
8724 int volatilep;
8725
8726 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8727 &unsignedp, &volatilep);
8728
8729 if (obj == loc)
8730 return 0;
8731
8732 ret = loc_descriptor_from_tree (obj, 1);
8733 if (ret == 0
8734 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8735 return 0;
8736
8737 if (offset != NULL_TREE)
8738 {
8739 /* Variable offset. */
8740 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8741 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8742 }
8743
8744 if (!addressp)
8745 indirect_p = 1;
8746
8747 bytepos = bitpos / BITS_PER_UNIT;
8748 if (bytepos > 0)
8749 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8750 else if (bytepos < 0)
8751 {
8752 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8753 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8754 }
8755 break;
8756 }
8757
8758 case INTEGER_CST:
8759 if (host_integerp (loc, 0))
8760 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8761 else
8762 return 0;
8763 break;
8764
8765 case TRUTH_AND_EXPR:
8766 case TRUTH_ANDIF_EXPR:
8767 case BIT_AND_EXPR:
8768 op = DW_OP_and;
8769 goto do_binop;
8770
8771 case TRUTH_XOR_EXPR:
8772 case BIT_XOR_EXPR:
8773 op = DW_OP_xor;
8774 goto do_binop;
8775
8776 case TRUTH_OR_EXPR:
8777 case TRUTH_ORIF_EXPR:
8778 case BIT_IOR_EXPR:
8779 op = DW_OP_or;
8780 goto do_binop;
8781
8782 case TRUNC_DIV_EXPR:
8783 op = DW_OP_div;
8784 goto do_binop;
8785
8786 case MINUS_EXPR:
8787 op = DW_OP_minus;
8788 goto do_binop;
8789
8790 case TRUNC_MOD_EXPR:
8791 op = DW_OP_mod;
8792 goto do_binop;
8793
8794 case MULT_EXPR:
8795 op = DW_OP_mul;
8796 goto do_binop;
8797
8798 case LSHIFT_EXPR:
8799 op = DW_OP_shl;
8800 goto do_binop;
8801
8802 case RSHIFT_EXPR:
8803 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8804 goto do_binop;
8805
8806 case PLUS_EXPR:
8807 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8808 && host_integerp (TREE_OPERAND (loc, 1), 0))
8809 {
8810 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8811 if (ret == 0)
8812 return 0;
8813
8814 add_loc_descr (&ret,
8815 new_loc_descr (DW_OP_plus_uconst,
8816 tree_low_cst (TREE_OPERAND (loc, 1),
8817 0),
8818 0));
8819 break;
8820 }
8821
8822 op = DW_OP_plus;
8823 goto do_binop;
8824
8825 case LE_EXPR:
8826 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8827 return 0;
8828
8829 op = DW_OP_le;
8830 goto do_binop;
8831
8832 case GE_EXPR:
8833 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8834 return 0;
8835
8836 op = DW_OP_ge;
8837 goto do_binop;
8838
8839 case LT_EXPR:
8840 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8841 return 0;
8842
8843 op = DW_OP_lt;
8844 goto do_binop;
8845
8846 case GT_EXPR:
8847 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8848 return 0;
8849
8850 op = DW_OP_gt;
8851 goto do_binop;
8852
8853 case EQ_EXPR:
8854 op = DW_OP_eq;
8855 goto do_binop;
8856
8857 case NE_EXPR:
8858 op = DW_OP_ne;
8859 goto do_binop;
8860
8861 do_binop:
8862 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8863 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8864 if (ret == 0 || ret1 == 0)
8865 return 0;
8866
8867 add_loc_descr (&ret, ret1);
8868 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8869 break;
8870
8871 case TRUTH_NOT_EXPR:
8872 case BIT_NOT_EXPR:
8873 op = DW_OP_not;
8874 goto do_unop;
8875
8876 case ABS_EXPR:
8877 op = DW_OP_abs;
8878 goto do_unop;
8879
8880 case NEGATE_EXPR:
8881 op = DW_OP_neg;
8882 goto do_unop;
8883
8884 do_unop:
8885 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8886 if (ret == 0)
8887 return 0;
8888
8889 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8890 break;
8891
8892 case MAX_EXPR:
8893 loc = build (COND_EXPR, TREE_TYPE (loc),
8894 build (LT_EXPR, integer_type_node,
8895 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8896 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
8897
8898 /* ... fall through ... */
8899
8900 case COND_EXPR:
8901 {
8902 dw_loc_descr_ref lhs
8903 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8904 dw_loc_descr_ref rhs
8905 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
8906 dw_loc_descr_ref bra_node, jump_node, tmp;
8907
8908 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8909 if (ret == 0 || lhs == 0 || rhs == 0)
8910 return 0;
8911
8912 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
8913 add_loc_descr (&ret, bra_node);
8914
8915 add_loc_descr (&ret, rhs);
8916 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
8917 add_loc_descr (&ret, jump_node);
8918
8919 add_loc_descr (&ret, lhs);
8920 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8921 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
8922
8923 /* ??? Need a node to point the skip at. Use a nop. */
8924 tmp = new_loc_descr (DW_OP_nop, 0, 0);
8925 add_loc_descr (&ret, tmp);
8926 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8927 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
8928 }
8929 break;
8930
8931 default:
8932 abort ();
8933 }
8934
8935 /* Show if we can't fill the request for an address. */
8936 if (addressp && indirect_p == 0)
8937 return 0;
8938
8939 /* If we've got an address and don't want one, dereference. */
8940 if (!addressp && indirect_p > 0)
8941 {
8942 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
8943
8944 if (size > DWARF2_ADDR_SIZE || size == -1)
8945 return 0;
8946 else if (size == DWARF2_ADDR_SIZE)
8947 op = DW_OP_deref;
8948 else
8949 op = DW_OP_deref_size;
8950
8951 add_loc_descr (&ret, new_loc_descr (op, size, 0));
8952 }
8953
8954 return ret;
8955 }
8956
8957 /* Given a value, round it up to the lowest multiple of `boundary'
8958 which is not less than the value itself. */
8959
8960 static inline HOST_WIDE_INT
8961 ceiling (value, boundary)
8962 HOST_WIDE_INT value;
8963 unsigned int boundary;
8964 {
8965 return (((value + boundary - 1) / boundary) * boundary);
8966 }
8967
8968 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
8969 pointer to the declared type for the relevant field variable, or return
8970 `integer_type_node' if the given node turns out to be an
8971 ERROR_MARK node. */
8972
8973 static inline tree
8974 field_type (decl)
8975 tree decl;
8976 {
8977 tree type;
8978
8979 if (TREE_CODE (decl) == ERROR_MARK)
8980 return integer_type_node;
8981
8982 type = DECL_BIT_FIELD_TYPE (decl);
8983 if (type == NULL_TREE)
8984 type = TREE_TYPE (decl);
8985
8986 return type;
8987 }
8988
8989 /* Given a pointer to a tree node, return the alignment in bits for
8990 it, or else return BITS_PER_WORD if the node actually turns out to
8991 be an ERROR_MARK node. */
8992
8993 static inline unsigned
8994 simple_type_align_in_bits (type)
8995 tree type;
8996 {
8997 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
8998 }
8999
9000 static inline unsigned
9001 simple_decl_align_in_bits (decl)
9002 tree decl;
9003 {
9004 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9005 }
9006
9007 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9008 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9009 or return 0 if we are unable to determine what that offset is, either
9010 because the argument turns out to be a pointer to an ERROR_MARK node, or
9011 because the offset is actually variable. (We can't handle the latter case
9012 just yet). */
9013
9014 static HOST_WIDE_INT
9015 field_byte_offset (decl)
9016 tree decl;
9017 {
9018 unsigned int type_align_in_bits;
9019 unsigned int decl_align_in_bits;
9020 unsigned HOST_WIDE_INT type_size_in_bits;
9021 HOST_WIDE_INT object_offset_in_bits;
9022 tree type;
9023 tree field_size_tree;
9024 HOST_WIDE_INT bitpos_int;
9025 HOST_WIDE_INT deepest_bitpos;
9026 unsigned HOST_WIDE_INT field_size_in_bits;
9027
9028 if (TREE_CODE (decl) == ERROR_MARK)
9029 return 0;
9030 else if (TREE_CODE (decl) != FIELD_DECL)
9031 abort ();
9032
9033 type = field_type (decl);
9034 field_size_tree = DECL_SIZE (decl);
9035
9036 /* The size could be unspecified if there was an error, or for
9037 a flexible array member. */
9038 if (! field_size_tree)
9039 field_size_tree = bitsize_zero_node;
9040
9041 /* We cannot yet cope with fields whose positions are variable, so
9042 for now, when we see such things, we simply return 0. Someday, we may
9043 be able to handle such cases, but it will be damn difficult. */
9044 if (! host_integerp (bit_position (decl), 0))
9045 return 0;
9046
9047 bitpos_int = int_bit_position (decl);
9048
9049 /* If we don't know the size of the field, pretend it's a full word. */
9050 if (host_integerp (field_size_tree, 1))
9051 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9052 else
9053 field_size_in_bits = BITS_PER_WORD;
9054
9055 type_size_in_bits = simple_type_size_in_bits (type);
9056 type_align_in_bits = simple_type_align_in_bits (type);
9057 decl_align_in_bits = simple_decl_align_in_bits (decl);
9058
9059 /* The GCC front-end doesn't make any attempt to keep track of the starting
9060 bit offset (relative to the start of the containing structure type) of the
9061 hypothetical "containing object" for a bit-field. Thus, when computing
9062 the byte offset value for the start of the "containing object" of a
9063 bit-field, we must deduce this information on our own. This can be rather
9064 tricky to do in some cases. For example, handling the following structure
9065 type definition when compiling for an i386/i486 target (which only aligns
9066 long long's to 32-bit boundaries) can be very tricky:
9067
9068 struct S { int field1; long long field2:31; };
9069
9070 Fortunately, there is a simple rule-of-thumb which can be used in such
9071 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9072 structure shown above. It decides to do this based upon one simple rule
9073 for bit-field allocation. GCC allocates each "containing object" for each
9074 bit-field at the first (i.e. lowest addressed) legitimate alignment
9075 boundary (based upon the required minimum alignment for the declared type
9076 of the field) which it can possibly use, subject to the condition that
9077 there is still enough available space remaining in the containing object
9078 (when allocated at the selected point) to fully accommodate all of the
9079 bits of the bit-field itself.
9080
9081 This simple rule makes it obvious why GCC allocates 8 bytes for each
9082 object of the structure type shown above. When looking for a place to
9083 allocate the "containing object" for `field2', the compiler simply tries
9084 to allocate a 64-bit "containing object" at each successive 32-bit
9085 boundary (starting at zero) until it finds a place to allocate that 64-
9086 bit field such that at least 31 contiguous (and previously unallocated)
9087 bits remain within that selected 64 bit field. (As it turns out, for the
9088 example above, the compiler finds it is OK to allocate the "containing
9089 object" 64-bit field at bit-offset zero within the structure type.)
9090
9091 Here we attempt to work backwards from the limited set of facts we're
9092 given, and we try to deduce from those facts, where GCC must have believed
9093 that the containing object started (within the structure type). The value
9094 we deduce is then used (by the callers of this routine) to generate
9095 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9096 and, in the case of DW_AT_location, regular fields as well). */
9097
9098 /* Figure out the bit-distance from the start of the structure to the
9099 "deepest" bit of the bit-field. */
9100 deepest_bitpos = bitpos_int + field_size_in_bits;
9101
9102 /* This is the tricky part. Use some fancy footwork to deduce where the
9103 lowest addressed bit of the containing object must be. */
9104 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9105
9106 /* Round up to type_align by default. This works best for bitfields. */
9107 object_offset_in_bits += type_align_in_bits - 1;
9108 object_offset_in_bits /= type_align_in_bits;
9109 object_offset_in_bits *= type_align_in_bits;
9110
9111 if (object_offset_in_bits > bitpos_int)
9112 {
9113 /* Sigh, the decl must be packed. */
9114 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9115
9116 /* Round up to decl_align instead. */
9117 object_offset_in_bits += decl_align_in_bits - 1;
9118 object_offset_in_bits /= decl_align_in_bits;
9119 object_offset_in_bits *= decl_align_in_bits;
9120 }
9121
9122 return object_offset_in_bits / BITS_PER_UNIT;
9123 }
9124 \f
9125 /* The following routines define various Dwarf attributes and any data
9126 associated with them. */
9127
9128 /* Add a location description attribute value to a DIE.
9129
9130 This emits location attributes suitable for whole variables and
9131 whole parameters. Note that the location attributes for struct fields are
9132 generated by the routine `data_member_location_attribute' below. */
9133
9134 static inline void
9135 add_AT_location_description (die, attr_kind, descr)
9136 dw_die_ref die;
9137 enum dwarf_attribute attr_kind;
9138 dw_loc_descr_ref descr;
9139 {
9140 if (descr != 0)
9141 add_AT_loc (die, attr_kind, descr);
9142 }
9143
9144 /* Attach the specialized form of location attribute used for data members of
9145 struct and union types. In the special case of a FIELD_DECL node which
9146 represents a bit-field, the "offset" part of this special location
9147 descriptor must indicate the distance in bytes from the lowest-addressed
9148 byte of the containing struct or union type to the lowest-addressed byte of
9149 the "containing object" for the bit-field. (See the `field_byte_offset'
9150 function above).
9151
9152 For any given bit-field, the "containing object" is a hypothetical object
9153 (of some integral or enum type) within which the given bit-field lives. The
9154 type of this hypothetical "containing object" is always the same as the
9155 declared type of the individual bit-field itself (for GCC anyway... the
9156 DWARF spec doesn't actually mandate this). Note that it is the size (in
9157 bytes) of the hypothetical "containing object" which will be given in the
9158 DW_AT_byte_size attribute for this bit-field. (See the
9159 `byte_size_attribute' function below.) It is also used when calculating the
9160 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9161 function below.) */
9162
9163 static void
9164 add_data_member_location_attribute (die, decl)
9165 dw_die_ref die;
9166 tree decl;
9167 {
9168 long offset;
9169 dw_loc_descr_ref loc_descr = 0;
9170
9171 if (TREE_CODE (decl) == TREE_VEC)
9172 {
9173 /* We're working on the TAG_inheritance for a base class. */
9174 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
9175 {
9176 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9177 aren't at a fixed offset from all (sub)objects of the same
9178 type. We need to extract the appropriate offset from our
9179 vtable. The following dwarf expression means
9180
9181 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9182
9183 This is specific to the V3 ABI, of course. */
9184
9185 dw_loc_descr_ref tmp;
9186
9187 /* Make a copy of the object address. */
9188 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9189 add_loc_descr (&loc_descr, tmp);
9190
9191 /* Extract the vtable address. */
9192 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9193 add_loc_descr (&loc_descr, tmp);
9194
9195 /* Calculate the address of the offset. */
9196 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9197 if (offset >= 0)
9198 abort ();
9199
9200 tmp = int_loc_descriptor (-offset);
9201 add_loc_descr (&loc_descr, tmp);
9202 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9203 add_loc_descr (&loc_descr, tmp);
9204
9205 /* Extract the offset. */
9206 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9207 add_loc_descr (&loc_descr, tmp);
9208
9209 /* Add it to the object address. */
9210 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9211 add_loc_descr (&loc_descr, tmp);
9212 }
9213 else
9214 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9215 }
9216 else
9217 offset = field_byte_offset (decl);
9218
9219 if (! loc_descr)
9220 {
9221 enum dwarf_location_atom op;
9222
9223 /* The DWARF2 standard says that we should assume that the structure
9224 address is already on the stack, so we can specify a structure field
9225 address by using DW_OP_plus_uconst. */
9226
9227 #ifdef MIPS_DEBUGGING_INFO
9228 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9229 operator correctly. It works only if we leave the offset on the
9230 stack. */
9231 op = DW_OP_constu;
9232 #else
9233 op = DW_OP_plus_uconst;
9234 #endif
9235
9236 loc_descr = new_loc_descr (op, offset, 0);
9237 }
9238
9239 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9240 }
9241
9242 /* Attach an DW_AT_const_value attribute for a variable or a parameter which
9243 does not have a "location" either in memory or in a register. These
9244 things can arise in GNU C when a constant is passed as an actual parameter
9245 to an inlined function. They can also arise in C++ where declared
9246 constants do not necessarily get memory "homes". */
9247
9248 static void
9249 add_const_value_attribute (die, rtl)
9250 dw_die_ref die;
9251 rtx rtl;
9252 {
9253 switch (GET_CODE (rtl))
9254 {
9255 case CONST_INT:
9256 /* Note that a CONST_INT rtx could represent either an integer
9257 or a floating-point constant. A CONST_INT is used whenever
9258 the constant will fit into a single word. In all such
9259 cases, the original mode of the constant value is wiped
9260 out, and the CONST_INT rtx is assigned VOIDmode. */
9261 {
9262 HOST_WIDE_INT val = INTVAL (rtl);
9263
9264 /* ??? We really should be using HOST_WIDE_INT throughout. */
9265 if (val < 0 && (long) val == val)
9266 add_AT_int (die, DW_AT_const_value, (long) val);
9267 else if ((unsigned long) val == (unsigned HOST_WIDE_INT) val)
9268 add_AT_unsigned (die, DW_AT_const_value, (unsigned long) val);
9269 else
9270 {
9271 #if HOST_BITS_PER_LONG * 2 == HOST_BITS_PER_WIDE_INT
9272 add_AT_long_long (die, DW_AT_const_value,
9273 val >> HOST_BITS_PER_LONG, val);
9274 #else
9275 abort ();
9276 #endif
9277 }
9278 }
9279 break;
9280
9281 case CONST_DOUBLE:
9282 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9283 floating-point constant. A CONST_DOUBLE is used whenever the
9284 constant requires more than one word in order to be adequately
9285 represented. We output CONST_DOUBLEs as blocks. */
9286 {
9287 enum machine_mode mode = GET_MODE (rtl);
9288
9289 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9290 {
9291 unsigned length = GET_MODE_SIZE (mode) / 4;
9292 long *array = (long *) ggc_alloc (sizeof (long) * length);
9293 REAL_VALUE_TYPE rv;
9294
9295 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9296 switch (mode)
9297 {
9298 case SFmode:
9299 REAL_VALUE_TO_TARGET_SINGLE (rv, array[0]);
9300 break;
9301
9302 case DFmode:
9303 REAL_VALUE_TO_TARGET_DOUBLE (rv, array);
9304 break;
9305
9306 case XFmode:
9307 case TFmode:
9308 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, array);
9309 break;
9310
9311 default:
9312 abort ();
9313 }
9314
9315 add_AT_float (die, DW_AT_const_value, length, array);
9316 }
9317 else
9318 {
9319 /* ??? We really should be using HOST_WIDE_INT throughout. */
9320 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9321 abort ();
9322
9323 add_AT_long_long (die, DW_AT_const_value,
9324 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9325 }
9326 }
9327 break;
9328
9329 case CONST_STRING:
9330 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9331 break;
9332
9333 case SYMBOL_REF:
9334 case LABEL_REF:
9335 case CONST:
9336 add_AT_addr (die, DW_AT_const_value, rtl);
9337 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9338 break;
9339
9340 case PLUS:
9341 /* In cases where an inlined instance of an inline function is passed
9342 the address of an `auto' variable (which is local to the caller) we
9343 can get a situation where the DECL_RTL of the artificial local
9344 variable (for the inlining) which acts as a stand-in for the
9345 corresponding formal parameter (of the inline function) will look
9346 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9347 exactly a compile-time constant expression, but it isn't the address
9348 of the (artificial) local variable either. Rather, it represents the
9349 *value* which the artificial local variable always has during its
9350 lifetime. We currently have no way to represent such quasi-constant
9351 values in Dwarf, so for now we just punt and generate nothing. */
9352 break;
9353
9354 default:
9355 /* No other kinds of rtx should be possible here. */
9356 abort ();
9357 }
9358
9359 }
9360
9361 static rtx
9362 rtl_for_decl_location (decl)
9363 tree decl;
9364 {
9365 rtx rtl;
9366
9367 /* Here we have to decide where we are going to say the parameter "lives"
9368 (as far as the debugger is concerned). We only have a couple of
9369 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9370
9371 DECL_RTL normally indicates where the parameter lives during most of the
9372 activation of the function. If optimization is enabled however, this
9373 could be either NULL or else a pseudo-reg. Both of those cases indicate
9374 that the parameter doesn't really live anywhere (as far as the code
9375 generation parts of GCC are concerned) during most of the function's
9376 activation. That will happen (for example) if the parameter is never
9377 referenced within the function.
9378
9379 We could just generate a location descriptor here for all non-NULL
9380 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9381 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9382 where DECL_RTL is NULL or is a pseudo-reg.
9383
9384 Note however that we can only get away with using DECL_INCOMING_RTL as
9385 a backup substitute for DECL_RTL in certain limited cases. In cases
9386 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9387 we can be sure that the parameter was passed using the same type as it is
9388 declared to have within the function, and that its DECL_INCOMING_RTL
9389 points us to a place where a value of that type is passed.
9390
9391 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9392 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9393 because in these cases DECL_INCOMING_RTL points us to a value of some
9394 type which is *different* from the type of the parameter itself. Thus,
9395 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9396 such cases, the debugger would end up (for example) trying to fetch a
9397 `float' from a place which actually contains the first part of a
9398 `double'. That would lead to really incorrect and confusing
9399 output at debug-time.
9400
9401 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9402 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9403 are a couple of exceptions however. On little-endian machines we can
9404 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9405 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9406 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9407 when (on a little-endian machine) a non-prototyped function has a
9408 parameter declared to be of type `short' or `char'. In such cases,
9409 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9410 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9411 passed `int' value. If the debugger then uses that address to fetch
9412 a `short' or a `char' (on a little-endian machine) the result will be
9413 the correct data, so we allow for such exceptional cases below.
9414
9415 Note that our goal here is to describe the place where the given formal
9416 parameter lives during most of the function's activation (i.e. between the
9417 end of the prologue and the start of the epilogue). We'll do that as best
9418 as we can. Note however that if the given formal parameter is modified
9419 sometime during the execution of the function, then a stack backtrace (at
9420 debug-time) will show the function as having been called with the *new*
9421 value rather than the value which was originally passed in. This happens
9422 rarely enough that it is not a major problem, but it *is* a problem, and
9423 I'd like to fix it.
9424
9425 A future version of dwarf2out.c may generate two additional attributes for
9426 any given DW_TAG_formal_parameter DIE which will describe the "passed
9427 type" and the "passed location" for the given formal parameter in addition
9428 to the attributes we now generate to indicate the "declared type" and the
9429 "active location" for each parameter. This additional set of attributes
9430 could be used by debuggers for stack backtraces. Separately, note that
9431 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9432 This happens (for example) for inlined-instances of inline function formal
9433 parameters which are never referenced. This really shouldn't be
9434 happening. All PARM_DECL nodes should get valid non-NULL
9435 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9436 values for inlined instances of inline function parameters, so when we see
9437 such cases, we are just out-of-luck for the time being (until integrate.c
9438 gets fixed). */
9439
9440 /* Use DECL_RTL as the "location" unless we find something better. */
9441 rtl = DECL_RTL_IF_SET (decl);
9442
9443 /* When generating abstract instances, ignore everything except
9444 constants, symbols living in memory, and symbols living in
9445 fixed registers. */
9446 if (! reload_completed)
9447 {
9448 if (rtl
9449 && (CONSTANT_P (rtl)
9450 || (GET_CODE (rtl) == MEM
9451 && CONSTANT_P (XEXP (rtl, 0)))
9452 || (GET_CODE (rtl) == REG
9453 && TREE_CODE (decl) == VAR_DECL
9454 && TREE_STATIC (decl))))
9455 {
9456 rtl = (*targetm.delegitimize_address) (rtl);
9457 return rtl;
9458 }
9459 rtl = NULL_RTX;
9460 }
9461 else if (TREE_CODE (decl) == PARM_DECL)
9462 {
9463 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9464 {
9465 tree declared_type = type_main_variant (TREE_TYPE (decl));
9466 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9467
9468 /* This decl represents a formal parameter which was optimized out.
9469 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9470 all cases where (rtl == NULL_RTX) just below. */
9471 if (declared_type == passed_type)
9472 rtl = DECL_INCOMING_RTL (decl);
9473 else if (! BYTES_BIG_ENDIAN
9474 && TREE_CODE (declared_type) == INTEGER_TYPE
9475 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9476 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9477 rtl = DECL_INCOMING_RTL (decl);
9478 }
9479
9480 /* If the parm was passed in registers, but lives on the stack, then
9481 make a big endian correction if the mode of the type of the
9482 parameter is not the same as the mode of the rtl. */
9483 /* ??? This is the same series of checks that are made in dbxout.c before
9484 we reach the big endian correction code there. It isn't clear if all
9485 of these checks are necessary here, but keeping them all is the safe
9486 thing to do. */
9487 else if (GET_CODE (rtl) == MEM
9488 && XEXP (rtl, 0) != const0_rtx
9489 && ! CONSTANT_P (XEXP (rtl, 0))
9490 /* Not passed in memory. */
9491 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
9492 /* Not passed by invisible reference. */
9493 && (GET_CODE (XEXP (rtl, 0)) != REG
9494 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9495 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9496 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9497 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9498 #endif
9499 )
9500 /* Big endian correction check. */
9501 && BYTES_BIG_ENDIAN
9502 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9503 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9504 < UNITS_PER_WORD))
9505 {
9506 int offset = (UNITS_PER_WORD
9507 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9508
9509 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9510 plus_constant (XEXP (rtl, 0), offset));
9511 }
9512 }
9513
9514 if (rtl != NULL_RTX)
9515 {
9516 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9517 #ifdef LEAF_REG_REMAP
9518 if (current_function_uses_only_leaf_regs)
9519 leaf_renumber_regs_insn (rtl);
9520 #endif
9521 }
9522
9523 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9524 and will have been substituted directly into all expressions that use it.
9525 C does not have such a concept, but C++ and other languages do. */
9526 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9527 {
9528 /* If a variable is initialized with a string constant without embedded
9529 zeros, build CONST_STRING. */
9530 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9531 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9532 {
9533 tree arrtype = TREE_TYPE (decl);
9534 tree enttype = TREE_TYPE (arrtype);
9535 tree domain = TYPE_DOMAIN (arrtype);
9536 tree init = DECL_INITIAL (decl);
9537 enum machine_mode mode = TYPE_MODE (enttype);
9538
9539 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9540 && domain
9541 && integer_zerop (TYPE_MIN_VALUE (domain))
9542 && compare_tree_int (TYPE_MAX_VALUE (domain),
9543 TREE_STRING_LENGTH (init) - 1) == 0
9544 && ((size_t) TREE_STRING_LENGTH (init)
9545 == strlen (TREE_STRING_POINTER (init)) + 1))
9546 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9547 }
9548 /* If the initializer is something that we know will expand into an
9549 immediate RTL constant, expand it now. Expanding anything else
9550 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9551 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9552 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9553 {
9554 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9555 EXPAND_INITIALIZER);
9556 /* If expand_expr returns a MEM, it wasn't immediate. */
9557 if (rtl && GET_CODE (rtl) == MEM)
9558 abort ();
9559 }
9560 }
9561
9562 if (rtl)
9563 rtl = (*targetm.delegitimize_address) (rtl);
9564
9565 /* If we don't look past the constant pool, we risk emitting a
9566 reference to a constant pool entry that isn't referenced from
9567 code, and thus is not emitted. */
9568 if (rtl)
9569 rtl = avoid_constant_pool_reference (rtl);
9570
9571 return rtl;
9572 }
9573
9574 /* Generate *either* an DW_AT_location attribute or else an DW_AT_const_value
9575 data attribute for a variable or a parameter. We generate the
9576 DW_AT_const_value attribute only in those cases where the given variable
9577 or parameter does not have a true "location" either in memory or in a
9578 register. This can happen (for example) when a constant is passed as an
9579 actual argument in a call to an inline function. (It's possible that
9580 these things can crop up in other ways also.) Note that one type of
9581 constant value which can be passed into an inlined function is a constant
9582 pointer. This can happen for example if an actual argument in an inlined
9583 function call evaluates to a compile-time constant address. */
9584
9585 static void
9586 add_location_or_const_value_attribute (die, decl)
9587 dw_die_ref die;
9588 tree decl;
9589 {
9590 rtx rtl;
9591 dw_loc_descr_ref descr;
9592
9593 if (TREE_CODE (decl) == ERROR_MARK)
9594 return;
9595 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
9596 abort ();
9597
9598 rtl = rtl_for_decl_location (decl);
9599 if (rtl == NULL_RTX)
9600 return;
9601
9602 switch (GET_CODE (rtl))
9603 {
9604 case ADDRESSOF:
9605 /* The address of a variable that was optimized away;
9606 don't emit anything. */
9607 break;
9608
9609 case CONST_INT:
9610 case CONST_DOUBLE:
9611 case CONST_STRING:
9612 case SYMBOL_REF:
9613 case LABEL_REF:
9614 case CONST:
9615 case PLUS:
9616 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9617 add_const_value_attribute (die, rtl);
9618 break;
9619
9620 case MEM:
9621 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
9622 {
9623 /* Need loc_descriptor_from_tree since that's where we know
9624 how to handle TLS variables. Want the object's address
9625 since the top-level DW_AT_location assumes such. See
9626 the confusion in loc_descriptor for reference. */
9627 descr = loc_descriptor_from_tree (decl, 1);
9628 }
9629 else
9630 {
9631 case REG:
9632 case SUBREG:
9633 case CONCAT:
9634 descr = loc_descriptor (rtl);
9635 }
9636 add_AT_location_description (die, DW_AT_location, descr);
9637 break;
9638
9639 default:
9640 abort ();
9641 }
9642 }
9643
9644 /* If we don't have a copy of this variable in memory for some reason (such
9645 as a C++ member constant that doesn't have an out-of-line definition),
9646 we should tell the debugger about the constant value. */
9647
9648 static void
9649 tree_add_const_value_attribute (var_die, decl)
9650 dw_die_ref var_die;
9651 tree decl;
9652 {
9653 tree init = DECL_INITIAL (decl);
9654 tree type = TREE_TYPE (decl);
9655
9656 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9657 && initializer_constant_valid_p (init, type) == null_pointer_node)
9658 /* OK */;
9659 else
9660 return;
9661
9662 switch (TREE_CODE (type))
9663 {
9664 case INTEGER_TYPE:
9665 if (host_integerp (init, 0))
9666 add_AT_unsigned (var_die, DW_AT_const_value,
9667 tree_low_cst (init, 0));
9668 else
9669 add_AT_long_long (var_die, DW_AT_const_value,
9670 TREE_INT_CST_HIGH (init),
9671 TREE_INT_CST_LOW (init));
9672 break;
9673
9674 default:;
9675 }
9676 }
9677
9678 /* Generate an DW_AT_name attribute given some string value to be included as
9679 the value of the attribute. */
9680
9681 static void
9682 add_name_attribute (die, name_string)
9683 dw_die_ref die;
9684 const char *name_string;
9685 {
9686 if (name_string != NULL && *name_string != 0)
9687 {
9688 if (demangle_name_func)
9689 name_string = (*demangle_name_func) (name_string);
9690
9691 add_AT_string (die, DW_AT_name, name_string);
9692 }
9693 }
9694
9695 /* Generate an DW_AT_comp_dir attribute for DIE. */
9696
9697 static void
9698 add_comp_dir_attribute (die)
9699 dw_die_ref die;
9700 {
9701 const char *wd = getpwd ();
9702 if (wd != NULL)
9703 add_AT_string (die, DW_AT_comp_dir, wd);
9704 }
9705
9706 /* Given a tree node describing an array bound (either lower or upper) output
9707 a representation for that bound. */
9708
9709 static void
9710 add_bound_info (subrange_die, bound_attr, bound)
9711 dw_die_ref subrange_die;
9712 enum dwarf_attribute bound_attr;
9713 tree bound;
9714 {
9715 switch (TREE_CODE (bound))
9716 {
9717 case ERROR_MARK:
9718 return;
9719
9720 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9721 case INTEGER_CST:
9722 if (! host_integerp (bound, 0)
9723 || (bound_attr == DW_AT_lower_bound
9724 && (((is_c_family () || is_java ()) && integer_zerop (bound))
9725 || (is_fortran () && integer_onep (bound)))))
9726 /* use the default */
9727 ;
9728 else
9729 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
9730 break;
9731
9732 case CONVERT_EXPR:
9733 case NOP_EXPR:
9734 case NON_LVALUE_EXPR:
9735 case VIEW_CONVERT_EXPR:
9736 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9737 break;
9738
9739 case SAVE_EXPR:
9740 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9741 access the upper bound values may be bogus. If they refer to a
9742 register, they may only describe how to get at these values at the
9743 points in the generated code right after they have just been
9744 computed. Worse yet, in the typical case, the upper bound values
9745 will not even *be* computed in the optimized code (though the
9746 number of elements will), so these SAVE_EXPRs are entirely
9747 bogus. In order to compensate for this fact, we check here to see
9748 if optimization is enabled, and if so, we don't add an attribute
9749 for the (unknown and unknowable) upper bound. This should not
9750 cause too much trouble for existing (stupid?) debuggers because
9751 they have to deal with empty upper bounds location descriptions
9752 anyway in order to be able to deal with incomplete array types.
9753 Of course an intelligent debugger (GDB?) should be able to
9754 comprehend that a missing upper bound specification in an array
9755 type used for a storage class `auto' local array variable
9756 indicates that the upper bound is both unknown (at compile- time)
9757 and unknowable (at run-time) due to optimization.
9758
9759 We assume that a MEM rtx is safe because gcc wouldn't put the
9760 value there unless it was going to be used repeatedly in the
9761 function, i.e. for cleanups. */
9762 if (SAVE_EXPR_RTL (bound)
9763 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
9764 {
9765 dw_die_ref ctx = lookup_decl_die (current_function_decl);
9766 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
9767 rtx loc = SAVE_EXPR_RTL (bound);
9768
9769 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9770 it references an outer function's frame. */
9771 if (GET_CODE (loc) == MEM)
9772 {
9773 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9774
9775 if (XEXP (loc, 0) != new_addr)
9776 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
9777 }
9778
9779 add_AT_flag (decl_die, DW_AT_artificial, 1);
9780 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9781 add_AT_location_description (decl_die, DW_AT_location,
9782 loc_descriptor (loc));
9783 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9784 }
9785
9786 /* Else leave out the attribute. */
9787 break;
9788
9789 case VAR_DECL:
9790 case PARM_DECL:
9791 {
9792 dw_die_ref decl_die = lookup_decl_die (bound);
9793
9794 /* ??? Can this happen, or should the variable have been bound
9795 first? Probably it can, since I imagine that we try to create
9796 the types of parameters in the order in which they exist in
9797 the list, and won't have created a forward reference to a
9798 later parameter. */
9799 if (decl_die != NULL)
9800 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9801 break;
9802 }
9803
9804 default:
9805 {
9806 /* Otherwise try to create a stack operation procedure to
9807 evaluate the value of the array bound. */
9808
9809 dw_die_ref ctx, decl_die;
9810 dw_loc_descr_ref loc;
9811
9812 loc = loc_descriptor_from_tree (bound, 0);
9813 if (loc == NULL)
9814 break;
9815
9816 if (current_function_decl == 0)
9817 ctx = comp_unit_die;
9818 else
9819 ctx = lookup_decl_die (current_function_decl);
9820
9821 /* If we weren't able to find a context, it's most likely the case
9822 that we are processing the return type of the function. So
9823 make a SAVE_EXPR to point to it and have the limbo DIE code
9824 find the proper die. The save_expr function doesn't always
9825 make a SAVE_EXPR, so do it ourselves. */
9826 if (ctx == 0)
9827 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9828 current_function_decl, NULL_TREE);
9829
9830 decl_die = new_die (DW_TAG_variable, ctx, bound);
9831 add_AT_flag (decl_die, DW_AT_artificial, 1);
9832 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9833 add_AT_loc (decl_die, DW_AT_location, loc);
9834
9835 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9836 break;
9837 }
9838 }
9839 }
9840
9841 /* Note that the block of subscript information for an array type also
9842 includes information about the element type of type given array type. */
9843
9844 static void
9845 add_subscript_info (type_die, type)
9846 dw_die_ref type_die;
9847 tree type;
9848 {
9849 #ifndef MIPS_DEBUGGING_INFO
9850 unsigned dimension_number;
9851 #endif
9852 tree lower, upper;
9853 dw_die_ref subrange_die;
9854
9855 /* The GNU compilers represent multidimensional array types as sequences of
9856 one dimensional array types whose element types are themselves array
9857 types. Here we squish that down, so that each multidimensional array
9858 type gets only one array_type DIE in the Dwarf debugging info. The draft
9859 Dwarf specification say that we are allowed to do this kind of
9860 compression in C (because there is no difference between an array or
9861 arrays and a multidimensional array in C) but for other source languages
9862 (e.g. Ada) we probably shouldn't do this. */
9863
9864 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9865 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9866 We work around this by disabling this feature. See also
9867 gen_array_type_die. */
9868 #ifndef MIPS_DEBUGGING_INFO
9869 for (dimension_number = 0;
9870 TREE_CODE (type) == ARRAY_TYPE;
9871 type = TREE_TYPE (type), dimension_number++)
9872 #endif
9873 {
9874 tree domain = TYPE_DOMAIN (type);
9875
9876 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
9877 and (in GNU C only) variable bounds. Handle all three forms
9878 here. */
9879 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
9880 if (domain)
9881 {
9882 /* We have an array type with specified bounds. */
9883 lower = TYPE_MIN_VALUE (domain);
9884 upper = TYPE_MAX_VALUE (domain);
9885
9886 /* define the index type. */
9887 if (TREE_TYPE (domain))
9888 {
9889 /* ??? This is probably an Ada unnamed subrange type. Ignore the
9890 TREE_TYPE field. We can't emit debug info for this
9891 because it is an unnamed integral type. */
9892 if (TREE_CODE (domain) == INTEGER_TYPE
9893 && TYPE_NAME (domain) == NULL_TREE
9894 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
9895 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
9896 ;
9897 else
9898 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
9899 type_die);
9900 }
9901
9902 /* ??? If upper is NULL, the array has unspecified length,
9903 but it does have a lower bound. This happens with Fortran
9904 dimension arr(N:*)
9905 Since the debugger is definitely going to need to know N
9906 to produce useful results, go ahead and output the lower
9907 bound solo, and hope the debugger can cope. */
9908
9909 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
9910 if (upper)
9911 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
9912 }
9913
9914 /* Otherwise we have an array type with an unspecified length. The
9915 DWARF-2 spec does not say how to handle this; let's just leave out the
9916 bounds. */
9917 }
9918 }
9919
9920 static void
9921 add_byte_size_attribute (die, tree_node)
9922 dw_die_ref die;
9923 tree tree_node;
9924 {
9925 unsigned size;
9926
9927 switch (TREE_CODE (tree_node))
9928 {
9929 case ERROR_MARK:
9930 size = 0;
9931 break;
9932 case ENUMERAL_TYPE:
9933 case RECORD_TYPE:
9934 case UNION_TYPE:
9935 case QUAL_UNION_TYPE:
9936 size = int_size_in_bytes (tree_node);
9937 break;
9938 case FIELD_DECL:
9939 /* For a data member of a struct or union, the DW_AT_byte_size is
9940 generally given as the number of bytes normally allocated for an
9941 object of the *declared* type of the member itself. This is true
9942 even for bit-fields. */
9943 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
9944 break;
9945 default:
9946 abort ();
9947 }
9948
9949 /* Note that `size' might be -1 when we get to this point. If it is, that
9950 indicates that the byte size of the entity in question is variable. We
9951 have no good way of expressing this fact in Dwarf at the present time,
9952 so just let the -1 pass on through. */
9953 add_AT_unsigned (die, DW_AT_byte_size, size);
9954 }
9955
9956 /* For a FIELD_DECL node which represents a bit-field, output an attribute
9957 which specifies the distance in bits from the highest order bit of the
9958 "containing object" for the bit-field to the highest order bit of the
9959 bit-field itself.
9960
9961 For any given bit-field, the "containing object" is a hypothetical object
9962 (of some integral or enum type) within which the given bit-field lives. The
9963 type of this hypothetical "containing object" is always the same as the
9964 declared type of the individual bit-field itself. The determination of the
9965 exact location of the "containing object" for a bit-field is rather
9966 complicated. It's handled by the `field_byte_offset' function (above).
9967
9968 Note that it is the size (in bytes) of the hypothetical "containing object"
9969 which will be given in the DW_AT_byte_size attribute for this bit-field.
9970 (See `byte_size_attribute' above). */
9971
9972 static inline void
9973 add_bit_offset_attribute (die, decl)
9974 dw_die_ref die;
9975 tree decl;
9976 {
9977 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
9978 tree type = DECL_BIT_FIELD_TYPE (decl);
9979 HOST_WIDE_INT bitpos_int;
9980 HOST_WIDE_INT highest_order_object_bit_offset;
9981 HOST_WIDE_INT highest_order_field_bit_offset;
9982 HOST_WIDE_INT unsigned bit_offset;
9983
9984 /* Must be a field and a bit field. */
9985 if (!type
9986 || TREE_CODE (decl) != FIELD_DECL)
9987 abort ();
9988
9989 /* We can't yet handle bit-fields whose offsets are variable, so if we
9990 encounter such things, just return without generating any attribute
9991 whatsoever. Likewise for variable or too large size. */
9992 if (! host_integerp (bit_position (decl), 0)
9993 || ! host_integerp (DECL_SIZE (decl), 1))
9994 return;
9995
9996 bitpos_int = int_bit_position (decl);
9997
9998 /* Note that the bit offset is always the distance (in bits) from the
9999 highest-order bit of the "containing object" to the highest-order bit of
10000 the bit-field itself. Since the "high-order end" of any object or field
10001 is different on big-endian and little-endian machines, the computation
10002 below must take account of these differences. */
10003 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10004 highest_order_field_bit_offset = bitpos_int;
10005
10006 if (! BYTES_BIG_ENDIAN)
10007 {
10008 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10009 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10010 }
10011
10012 bit_offset
10013 = (! BYTES_BIG_ENDIAN
10014 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10015 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10016
10017 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10018 }
10019
10020 /* For a FIELD_DECL node which represents a bit field, output an attribute
10021 which specifies the length in bits of the given field. */
10022
10023 static inline void
10024 add_bit_size_attribute (die, decl)
10025 dw_die_ref die;
10026 tree decl;
10027 {
10028 /* Must be a field and a bit field. */
10029 if (TREE_CODE (decl) != FIELD_DECL
10030 || ! DECL_BIT_FIELD_TYPE (decl))
10031 abort ();
10032
10033 if (host_integerp (DECL_SIZE (decl), 1))
10034 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10035 }
10036
10037 /* If the compiled language is ANSI C, then add a 'prototyped'
10038 attribute, if arg types are given for the parameters of a function. */
10039
10040 static inline void
10041 add_prototyped_attribute (die, func_type)
10042 dw_die_ref die;
10043 tree func_type;
10044 {
10045 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10046 && TYPE_ARG_TYPES (func_type) != NULL)
10047 add_AT_flag (die, DW_AT_prototyped, 1);
10048 }
10049
10050 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10051 by looking in either the type declaration or object declaration
10052 equate table. */
10053
10054 static inline void
10055 add_abstract_origin_attribute (die, origin)
10056 dw_die_ref die;
10057 tree origin;
10058 {
10059 dw_die_ref origin_die = NULL;
10060
10061 if (TREE_CODE (origin) != FUNCTION_DECL)
10062 {
10063 /* We may have gotten separated from the block for the inlined
10064 function, if we're in an exception handler or some such; make
10065 sure that the abstract function has been written out.
10066
10067 Doing this for nested functions is wrong, however; functions are
10068 distinct units, and our context might not even be inline. */
10069 tree fn = origin;
10070
10071 if (TYPE_P (fn))
10072 fn = TYPE_STUB_DECL (fn);
10073
10074 fn = decl_function_context (fn);
10075 if (fn)
10076 dwarf2out_abstract_function (fn);
10077 }
10078
10079 if (DECL_P (origin))
10080 origin_die = lookup_decl_die (origin);
10081 else if (TYPE_P (origin))
10082 origin_die = lookup_type_die (origin);
10083
10084 if (origin_die == NULL)
10085 abort ();
10086
10087 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10088 }
10089
10090 /* We do not currently support the pure_virtual attribute. */
10091
10092 static inline void
10093 add_pure_or_virtual_attribute (die, func_decl)
10094 dw_die_ref die;
10095 tree func_decl;
10096 {
10097 if (DECL_VINDEX (func_decl))
10098 {
10099 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10100
10101 if (host_integerp (DECL_VINDEX (func_decl), 0))
10102 add_AT_loc (die, DW_AT_vtable_elem_location,
10103 new_loc_descr (DW_OP_constu,
10104 tree_low_cst (DECL_VINDEX (func_decl), 0),
10105 0));
10106
10107 /* GNU extension: Record what type this method came from originally. */
10108 if (debug_info_level > DINFO_LEVEL_TERSE)
10109 add_AT_die_ref (die, DW_AT_containing_type,
10110 lookup_type_die (DECL_CONTEXT (func_decl)));
10111 }
10112 }
10113 \f
10114 /* Add source coordinate attributes for the given decl. */
10115
10116 static void
10117 add_src_coords_attributes (die, decl)
10118 dw_die_ref die;
10119 tree decl;
10120 {
10121 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10122
10123 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10124 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10125 }
10126
10127 /* Add an DW_AT_name attribute and source coordinate attribute for the
10128 given decl, but only if it actually has a name. */
10129
10130 static void
10131 add_name_and_src_coords_attributes (die, decl)
10132 dw_die_ref die;
10133 tree decl;
10134 {
10135 tree decl_name;
10136
10137 decl_name = DECL_NAME (decl);
10138 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10139 {
10140 add_name_attribute (die, dwarf2_name (decl, 0));
10141 if (! DECL_ARTIFICIAL (decl))
10142 add_src_coords_attributes (die, decl);
10143
10144 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10145 && TREE_PUBLIC (decl)
10146 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10147 && !DECL_ABSTRACT (decl))
10148 add_AT_string (die, DW_AT_MIPS_linkage_name,
10149 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10150 }
10151
10152 #ifdef VMS_DEBUGGING_INFO
10153 /* Get the function's name, as described by its RTL. This may be different
10154 from the DECL_NAME name used in the source file. */
10155 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10156 {
10157 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10158 XEXP (DECL_RTL (decl), 0));
10159 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10160 }
10161 #endif
10162 }
10163
10164 /* Push a new declaration scope. */
10165
10166 static void
10167 push_decl_scope (scope)
10168 tree scope;
10169 {
10170 VARRAY_PUSH_TREE (decl_scope_table, scope);
10171 }
10172
10173 /* Pop a declaration scope. */
10174
10175 static inline void
10176 pop_decl_scope ()
10177 {
10178 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
10179 abort ();
10180
10181 VARRAY_POP (decl_scope_table);
10182 }
10183
10184 /* Return the DIE for the scope that immediately contains this type.
10185 Non-named types get global scope. Named types nested in other
10186 types get their containing scope if it's open, or global scope
10187 otherwise. All other types (i.e. function-local named types) get
10188 the current active scope. */
10189
10190 static dw_die_ref
10191 scope_die_for (t, context_die)
10192 tree t;
10193 dw_die_ref context_die;
10194 {
10195 dw_die_ref scope_die = NULL;
10196 tree containing_scope;
10197 int i;
10198
10199 /* Non-types always go in the current scope. */
10200 if (! TYPE_P (t))
10201 abort ();
10202
10203 containing_scope = TYPE_CONTEXT (t);
10204
10205 /* Ignore namespaces for the moment. */
10206 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10207 containing_scope = NULL_TREE;
10208
10209 /* Ignore function type "scopes" from the C frontend. They mean that
10210 a tagged type is local to a parmlist of a function declarator, but
10211 that isn't useful to DWARF. */
10212 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10213 containing_scope = NULL_TREE;
10214
10215 if (containing_scope == NULL_TREE)
10216 scope_die = comp_unit_die;
10217 else if (TYPE_P (containing_scope))
10218 {
10219 /* For types, we can just look up the appropriate DIE. But
10220 first we check to see if we're in the middle of emitting it
10221 so we know where the new DIE should go. */
10222 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10223 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10224 break;
10225
10226 if (i < 0)
10227 {
10228 if (debug_info_level > DINFO_LEVEL_TERSE
10229 && !TREE_ASM_WRITTEN (containing_scope))
10230 abort ();
10231
10232 /* If none of the current dies are suitable, we get file scope. */
10233 scope_die = comp_unit_die;
10234 }
10235 else
10236 scope_die = lookup_type_die (containing_scope);
10237 }
10238 else
10239 scope_die = context_die;
10240
10241 return scope_die;
10242 }
10243
10244 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10245
10246 static inline int
10247 local_scope_p (context_die)
10248 dw_die_ref context_die;
10249 {
10250 for (; context_die; context_die = context_die->die_parent)
10251 if (context_die->die_tag == DW_TAG_inlined_subroutine
10252 || context_die->die_tag == DW_TAG_subprogram)
10253 return 1;
10254
10255 return 0;
10256 }
10257
10258 /* Returns nonzero if CONTEXT_DIE is a class. */
10259
10260 static inline int
10261 class_scope_p (context_die)
10262 dw_die_ref context_die;
10263 {
10264 return (context_die
10265 && (context_die->die_tag == DW_TAG_structure_type
10266 || context_die->die_tag == DW_TAG_union_type));
10267 }
10268
10269 /* Many forms of DIEs require a "type description" attribute. This
10270 routine locates the proper "type descriptor" die for the type given
10271 by 'type', and adds an DW_AT_type attribute below the given die. */
10272
10273 static void
10274 add_type_attribute (object_die, type, decl_const, decl_volatile, context_die)
10275 dw_die_ref object_die;
10276 tree type;
10277 int decl_const;
10278 int decl_volatile;
10279 dw_die_ref context_die;
10280 {
10281 enum tree_code code = TREE_CODE (type);
10282 dw_die_ref type_die = NULL;
10283
10284 /* ??? If this type is an unnamed subrange type of an integral or
10285 floating-point type, use the inner type. This is because we have no
10286 support for unnamed types in base_type_die. This can happen if this is
10287 an Ada subrange type. Correct solution is emit a subrange type die. */
10288 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10289 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10290 type = TREE_TYPE (type), code = TREE_CODE (type);
10291
10292 if (code == ERROR_MARK
10293 /* Handle a special case. For functions whose return type is void, we
10294 generate *no* type attribute. (Note that no object may have type
10295 `void', so this only applies to function return types). */
10296 || code == VOID_TYPE)
10297 return;
10298
10299 type_die = modified_type_die (type,
10300 decl_const || TYPE_READONLY (type),
10301 decl_volatile || TYPE_VOLATILE (type),
10302 context_die);
10303
10304 if (type_die != NULL)
10305 add_AT_die_ref (object_die, DW_AT_type, type_die);
10306 }
10307
10308 /* Given a tree pointer to a struct, class, union, or enum type node, return
10309 a pointer to the (string) tag name for the given type, or zero if the type
10310 was declared without a tag. */
10311
10312 static const char *
10313 type_tag (type)
10314 tree type;
10315 {
10316 const char *name = 0;
10317
10318 if (TYPE_NAME (type) != 0)
10319 {
10320 tree t = 0;
10321
10322 /* Find the IDENTIFIER_NODE for the type name. */
10323 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10324 t = TYPE_NAME (type);
10325
10326 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10327 a TYPE_DECL node, regardless of whether or not a `typedef' was
10328 involved. */
10329 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10330 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10331 t = DECL_NAME (TYPE_NAME (type));
10332
10333 /* Now get the name as a string, or invent one. */
10334 if (t != 0)
10335 name = IDENTIFIER_POINTER (t);
10336 }
10337
10338 return (name == 0 || *name == '\0') ? 0 : name;
10339 }
10340
10341 /* Return the type associated with a data member, make a special check
10342 for bit field types. */
10343
10344 static inline tree
10345 member_declared_type (member)
10346 tree member;
10347 {
10348 return (DECL_BIT_FIELD_TYPE (member)
10349 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10350 }
10351
10352 /* Get the decl's label, as described by its RTL. This may be different
10353 from the DECL_NAME name used in the source file. */
10354
10355 #if 0
10356 static const char *
10357 decl_start_label (decl)
10358 tree decl;
10359 {
10360 rtx x;
10361 const char *fnname;
10362
10363 x = DECL_RTL (decl);
10364 if (GET_CODE (x) != MEM)
10365 abort ();
10366
10367 x = XEXP (x, 0);
10368 if (GET_CODE (x) != SYMBOL_REF)
10369 abort ();
10370
10371 fnname = XSTR (x, 0);
10372 return fnname;
10373 }
10374 #endif
10375 \f
10376 /* These routines generate the internal representation of the DIE's for
10377 the compilation unit. Debugging information is collected by walking
10378 the declaration trees passed in from dwarf2out_decl(). */
10379
10380 static void
10381 gen_array_type_die (type, context_die)
10382 tree type;
10383 dw_die_ref context_die;
10384 {
10385 dw_die_ref scope_die = scope_die_for (type, context_die);
10386 dw_die_ref array_die;
10387 tree element_type;
10388
10389 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10390 the inner array type comes before the outer array type. Thus we must
10391 call gen_type_die before we call new_die. See below also. */
10392 #ifdef MIPS_DEBUGGING_INFO
10393 gen_type_die (TREE_TYPE (type), context_die);
10394 #endif
10395
10396 array_die = new_die (DW_TAG_array_type, scope_die, type);
10397 add_name_attribute (array_die, type_tag (type));
10398 equate_type_number_to_die (type, array_die);
10399
10400 if (TREE_CODE (type) == VECTOR_TYPE)
10401 {
10402 /* The frontend feeds us a representation for the vector as a struct
10403 containing an array. Pull out the array type. */
10404 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10405 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10406 }
10407
10408 #if 0
10409 /* We default the array ordering. SDB will probably do
10410 the right things even if DW_AT_ordering is not present. It's not even
10411 an issue until we start to get into multidimensional arrays anyway. If
10412 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10413 then we'll have to put the DW_AT_ordering attribute back in. (But if
10414 and when we find out that we need to put these in, we will only do so
10415 for multidimensional arrays. */
10416 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10417 #endif
10418
10419 #ifdef MIPS_DEBUGGING_INFO
10420 /* The SGI compilers handle arrays of unknown bound by setting
10421 AT_declaration and not emitting any subrange DIEs. */
10422 if (! TYPE_DOMAIN (type))
10423 add_AT_unsigned (array_die, DW_AT_declaration, 1);
10424 else
10425 #endif
10426 add_subscript_info (array_die, type);
10427
10428 /* Add representation of the type of the elements of this array type. */
10429 element_type = TREE_TYPE (type);
10430
10431 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10432 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10433 We work around this by disabling this feature. See also
10434 add_subscript_info. */
10435 #ifndef MIPS_DEBUGGING_INFO
10436 while (TREE_CODE (element_type) == ARRAY_TYPE)
10437 element_type = TREE_TYPE (element_type);
10438
10439 gen_type_die (element_type, context_die);
10440 #endif
10441
10442 add_type_attribute (array_die, element_type, 0, 0, context_die);
10443 }
10444
10445 static void
10446 gen_set_type_die (type, context_die)
10447 tree type;
10448 dw_die_ref context_die;
10449 {
10450 dw_die_ref type_die
10451 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10452
10453 equate_type_number_to_die (type, type_die);
10454 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10455 }
10456
10457 #if 0
10458 static void
10459 gen_entry_point_die (decl, context_die)
10460 tree decl;
10461 dw_die_ref context_die;
10462 {
10463 tree origin = decl_ultimate_origin (decl);
10464 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10465
10466 if (origin != NULL)
10467 add_abstract_origin_attribute (decl_die, origin);
10468 else
10469 {
10470 add_name_and_src_coords_attributes (decl_die, decl);
10471 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10472 0, 0, context_die);
10473 }
10474
10475 if (DECL_ABSTRACT (decl))
10476 equate_decl_number_to_die (decl, decl_die);
10477 else
10478 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10479 }
10480 #endif
10481
10482 /* Walk through the list of incomplete types again, trying once more to
10483 emit full debugging info for them. */
10484
10485 static void
10486 retry_incomplete_types ()
10487 {
10488 int i;
10489
10490 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10491 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10492 }
10493
10494 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10495
10496 static void
10497 gen_inlined_enumeration_type_die (type, context_die)
10498 tree type;
10499 dw_die_ref context_die;
10500 {
10501 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10502
10503 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10504 be incomplete and such types are not marked. */
10505 add_abstract_origin_attribute (type_die, type);
10506 }
10507
10508 /* Generate a DIE to represent an inlined instance of a structure type. */
10509
10510 static void
10511 gen_inlined_structure_type_die (type, context_die)
10512 tree type;
10513 dw_die_ref context_die;
10514 {
10515 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10516
10517 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10518 be incomplete and such types are not marked. */
10519 add_abstract_origin_attribute (type_die, type);
10520 }
10521
10522 /* Generate a DIE to represent an inlined instance of a union type. */
10523
10524 static void
10525 gen_inlined_union_type_die (type, context_die)
10526 tree type;
10527 dw_die_ref context_die;
10528 {
10529 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10530
10531 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10532 be incomplete and such types are not marked. */
10533 add_abstract_origin_attribute (type_die, type);
10534 }
10535
10536 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10537 include all of the information about the enumeration values also. Each
10538 enumerated type name/value is listed as a child of the enumerated type
10539 DIE. */
10540
10541 static void
10542 gen_enumeration_type_die (type, context_die)
10543 tree type;
10544 dw_die_ref context_die;
10545 {
10546 dw_die_ref type_die = lookup_type_die (type);
10547
10548 if (type_die == NULL)
10549 {
10550 type_die = new_die (DW_TAG_enumeration_type,
10551 scope_die_for (type, context_die), type);
10552 equate_type_number_to_die (type, type_die);
10553 add_name_attribute (type_die, type_tag (type));
10554 }
10555 else if (! TYPE_SIZE (type))
10556 return;
10557 else
10558 remove_AT (type_die, DW_AT_declaration);
10559
10560 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10561 given enum type is incomplete, do not generate the DW_AT_byte_size
10562 attribute or the DW_AT_element_list attribute. */
10563 if (TYPE_SIZE (type))
10564 {
10565 tree link;
10566
10567 TREE_ASM_WRITTEN (type) = 1;
10568 add_byte_size_attribute (type_die, type);
10569 if (TYPE_STUB_DECL (type) != NULL_TREE)
10570 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10571
10572 /* If the first reference to this type was as the return type of an
10573 inline function, then it may not have a parent. Fix this now. */
10574 if (type_die->die_parent == NULL)
10575 add_child_die (scope_die_for (type, context_die), type_die);
10576
10577 for (link = TYPE_FIELDS (type);
10578 link != NULL; link = TREE_CHAIN (link))
10579 {
10580 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10581
10582 add_name_attribute (enum_die,
10583 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10584
10585 if (host_integerp (TREE_VALUE (link), 0))
10586 {
10587 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
10588 add_AT_int (enum_die, DW_AT_const_value,
10589 tree_low_cst (TREE_VALUE (link), 0));
10590 else
10591 add_AT_unsigned (enum_die, DW_AT_const_value,
10592 tree_low_cst (TREE_VALUE (link), 0));
10593 }
10594 }
10595 }
10596 else
10597 add_AT_flag (type_die, DW_AT_declaration, 1);
10598 }
10599
10600 /* Generate a DIE to represent either a real live formal parameter decl or to
10601 represent just the type of some formal parameter position in some function
10602 type.
10603
10604 Note that this routine is a bit unusual because its argument may be a
10605 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10606 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10607 node. If it's the former then this function is being called to output a
10608 DIE to represent a formal parameter object (or some inlining thereof). If
10609 it's the latter, then this function is only being called to output a
10610 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10611 argument type of some subprogram type. */
10612
10613 static dw_die_ref
10614 gen_formal_parameter_die (node, context_die)
10615 tree node;
10616 dw_die_ref context_die;
10617 {
10618 dw_die_ref parm_die
10619 = new_die (DW_TAG_formal_parameter, context_die, node);
10620 tree origin;
10621
10622 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10623 {
10624 case 'd':
10625 origin = decl_ultimate_origin (node);
10626 if (origin != NULL)
10627 add_abstract_origin_attribute (parm_die, origin);
10628 else
10629 {
10630 add_name_and_src_coords_attributes (parm_die, node);
10631 add_type_attribute (parm_die, TREE_TYPE (node),
10632 TREE_READONLY (node),
10633 TREE_THIS_VOLATILE (node),
10634 context_die);
10635 if (DECL_ARTIFICIAL (node))
10636 add_AT_flag (parm_die, DW_AT_artificial, 1);
10637 }
10638
10639 equate_decl_number_to_die (node, parm_die);
10640 if (! DECL_ABSTRACT (node))
10641 add_location_or_const_value_attribute (parm_die, node);
10642
10643 break;
10644
10645 case 't':
10646 /* We were called with some kind of a ..._TYPE node. */
10647 add_type_attribute (parm_die, node, 0, 0, context_die);
10648 break;
10649
10650 default:
10651 abort ();
10652 }
10653
10654 return parm_die;
10655 }
10656
10657 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10658 at the end of an (ANSI prototyped) formal parameters list. */
10659
10660 static void
10661 gen_unspecified_parameters_die (decl_or_type, context_die)
10662 tree decl_or_type;
10663 dw_die_ref context_die;
10664 {
10665 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10666 }
10667
10668 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10669 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10670 parameters as specified in some function type specification (except for
10671 those which appear as part of a function *definition*). */
10672
10673 static void
10674 gen_formal_types_die (function_or_method_type, context_die)
10675 tree function_or_method_type;
10676 dw_die_ref context_die;
10677 {
10678 tree link;
10679 tree formal_type = NULL;
10680 tree first_parm_type;
10681 tree arg;
10682
10683 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10684 {
10685 arg = DECL_ARGUMENTS (function_or_method_type);
10686 function_or_method_type = TREE_TYPE (function_or_method_type);
10687 }
10688 else
10689 arg = NULL_TREE;
10690
10691 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10692
10693 /* Make our first pass over the list of formal parameter types and output a
10694 DW_TAG_formal_parameter DIE for each one. */
10695 for (link = first_parm_type; link; )
10696 {
10697 dw_die_ref parm_die;
10698
10699 formal_type = TREE_VALUE (link);
10700 if (formal_type == void_type_node)
10701 break;
10702
10703 /* Output a (nameless) DIE to represent the formal parameter itself. */
10704 parm_die = gen_formal_parameter_die (formal_type, context_die);
10705 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10706 && link == first_parm_type)
10707 || (arg && DECL_ARTIFICIAL (arg)))
10708 add_AT_flag (parm_die, DW_AT_artificial, 1);
10709
10710 link = TREE_CHAIN (link);
10711 if (arg)
10712 arg = TREE_CHAIN (arg);
10713 }
10714
10715 /* If this function type has an ellipsis, add a
10716 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10717 if (formal_type != void_type_node)
10718 gen_unspecified_parameters_die (function_or_method_type, context_die);
10719
10720 /* Make our second (and final) pass over the list of formal parameter types
10721 and output DIEs to represent those types (as necessary). */
10722 for (link = TYPE_ARG_TYPES (function_or_method_type);
10723 link && TREE_VALUE (link);
10724 link = TREE_CHAIN (link))
10725 gen_type_die (TREE_VALUE (link), context_die);
10726 }
10727
10728 /* We want to generate the DIE for TYPE so that we can generate the
10729 die for MEMBER, which has been defined; we will need to refer back
10730 to the member declaration nested within TYPE. If we're trying to
10731 generate minimal debug info for TYPE, processing TYPE won't do the
10732 trick; we need to attach the member declaration by hand. */
10733
10734 static void
10735 gen_type_die_for_member (type, member, context_die)
10736 tree type, member;
10737 dw_die_ref context_die;
10738 {
10739 gen_type_die (type, context_die);
10740
10741 /* If we're trying to avoid duplicate debug info, we may not have
10742 emitted the member decl for this function. Emit it now. */
10743 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10744 && ! lookup_decl_die (member))
10745 {
10746 if (decl_ultimate_origin (member))
10747 abort ();
10748
10749 push_decl_scope (type);
10750 if (TREE_CODE (member) == FUNCTION_DECL)
10751 gen_subprogram_die (member, lookup_type_die (type));
10752 else
10753 gen_variable_die (member, lookup_type_die (type));
10754
10755 pop_decl_scope ();
10756 }
10757 }
10758
10759 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10760 may later generate inlined and/or out-of-line instances of. */
10761
10762 static void
10763 dwarf2out_abstract_function (decl)
10764 tree decl;
10765 {
10766 dw_die_ref old_die;
10767 tree save_fn;
10768 tree context;
10769 int was_abstract = DECL_ABSTRACT (decl);
10770
10771 /* Make sure we have the actual abstract inline, not a clone. */
10772 decl = DECL_ORIGIN (decl);
10773
10774 old_die = lookup_decl_die (decl);
10775 if (old_die && get_AT_unsigned (old_die, DW_AT_inline))
10776 /* We've already generated the abstract instance. */
10777 return;
10778
10779 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10780 we don't get confused by DECL_ABSTRACT. */
10781 if (debug_info_level > DINFO_LEVEL_TERSE)
10782 {
10783 context = decl_class_context (decl);
10784 if (context)
10785 gen_type_die_for_member
10786 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10787 }
10788
10789 /* Pretend we've just finished compiling this function. */
10790 save_fn = current_function_decl;
10791 current_function_decl = decl;
10792
10793 set_decl_abstract_flags (decl, 1);
10794 dwarf2out_decl (decl);
10795 if (! was_abstract)
10796 set_decl_abstract_flags (decl, 0);
10797
10798 current_function_decl = save_fn;
10799 }
10800
10801 /* Generate a DIE to represent a declared function (either file-scope or
10802 block-local). */
10803
10804 static void
10805 gen_subprogram_die (decl, context_die)
10806 tree decl;
10807 dw_die_ref context_die;
10808 {
10809 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10810 tree origin = decl_ultimate_origin (decl);
10811 dw_die_ref subr_die;
10812 rtx fp_reg;
10813 tree fn_arg_types;
10814 tree outer_scope;
10815 dw_die_ref old_die = lookup_decl_die (decl);
10816 int declaration = (current_function_decl != decl
10817 || class_scope_p (context_die));
10818
10819 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10820 started to generate the abstract instance of an inline, decided to output
10821 its containing class, and proceeded to emit the declaration of the inline
10822 from the member list for the class. If so, DECLARATION takes priority;
10823 we'll get back to the abstract instance when done with the class. */
10824
10825 /* The class-scope declaration DIE must be the primary DIE. */
10826 if (origin && declaration && class_scope_p (context_die))
10827 {
10828 origin = NULL;
10829 if (old_die)
10830 abort ();
10831 }
10832
10833 if (origin != NULL)
10834 {
10835 if (declaration && ! local_scope_p (context_die))
10836 abort ();
10837
10838 /* Fixup die_parent for the abstract instance of a nested
10839 inline function. */
10840 if (old_die && old_die->die_parent == NULL)
10841 add_child_die (context_die, old_die);
10842
10843 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10844 add_abstract_origin_attribute (subr_die, origin);
10845 }
10846 else if (old_die)
10847 {
10848 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10849
10850 if (!get_AT_flag (old_die, DW_AT_declaration)
10851 /* We can have a normal definition following an inline one in the
10852 case of redefinition of GNU C extern inlines.
10853 It seems reasonable to use AT_specification in this case. */
10854 && !get_AT_unsigned (old_die, DW_AT_inline))
10855 {
10856 /* ??? This can happen if there is a bug in the program, for
10857 instance, if it has duplicate function definitions. Ideally,
10858 we should detect this case and ignore it. For now, if we have
10859 already reported an error, any error at all, then assume that
10860 we got here because of an input error, not a dwarf2 bug. */
10861 if (errorcount)
10862 return;
10863 abort ();
10864 }
10865
10866 /* If the definition comes from the same place as the declaration,
10867 maybe use the old DIE. We always want the DIE for this function
10868 that has the *_pc attributes to be under comp_unit_die so the
10869 debugger can find it. We also need to do this for abstract
10870 instances of inlines, since the spec requires the out-of-line copy
10871 to have the same parent. For local class methods, this doesn't
10872 apply; we just use the old DIE. */
10873 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
10874 && (DECL_ARTIFICIAL (decl)
10875 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10876 && (get_AT_unsigned (old_die, DW_AT_decl_line)
10877 == (unsigned) DECL_SOURCE_LINE (decl)))))
10878 {
10879 subr_die = old_die;
10880
10881 /* Clear out the declaration attribute and the parm types. */
10882 remove_AT (subr_die, DW_AT_declaration);
10883 remove_children (subr_die);
10884 }
10885 else
10886 {
10887 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10888 add_AT_die_ref (subr_die, DW_AT_specification, old_die);
10889 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10890 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
10891 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10892 != (unsigned) DECL_SOURCE_LINE (decl))
10893 add_AT_unsigned
10894 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10895 }
10896 }
10897 else
10898 {
10899 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10900
10901 if (TREE_PUBLIC (decl))
10902 add_AT_flag (subr_die, DW_AT_external, 1);
10903
10904 add_name_and_src_coords_attributes (subr_die, decl);
10905 if (debug_info_level > DINFO_LEVEL_TERSE)
10906 {
10907 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
10908 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
10909 0, 0, context_die);
10910 }
10911
10912 add_pure_or_virtual_attribute (subr_die, decl);
10913 if (DECL_ARTIFICIAL (decl))
10914 add_AT_flag (subr_die, DW_AT_artificial, 1);
10915
10916 if (TREE_PROTECTED (decl))
10917 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
10918 else if (TREE_PRIVATE (decl))
10919 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
10920 }
10921
10922 if (declaration)
10923 {
10924 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
10925 {
10926 add_AT_flag (subr_die, DW_AT_declaration, 1);
10927
10928 /* The first time we see a member function, it is in the context of
10929 the class to which it belongs. We make sure of this by emitting
10930 the class first. The next time is the definition, which is
10931 handled above. The two may come from the same source text. */
10932 if (DECL_CONTEXT (decl) || DECL_ABSTRACT (decl))
10933 equate_decl_number_to_die (decl, subr_die);
10934 }
10935 }
10936 else if (DECL_ABSTRACT (decl))
10937 {
10938 if (DECL_INLINE (decl) && !flag_no_inline)
10939 {
10940 /* ??? Checking DECL_DEFER_OUTPUT is correct for static
10941 inline functions, but not for extern inline functions.
10942 We can't get this completely correct because information
10943 about whether the function was declared inline is not
10944 saved anywhere. */
10945 if (DECL_DEFER_OUTPUT (decl))
10946 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
10947 else
10948 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
10949 }
10950 else
10951 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
10952
10953 equate_decl_number_to_die (decl, subr_die);
10954 }
10955 else if (!DECL_EXTERNAL (decl))
10956 {
10957 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
10958 equate_decl_number_to_die (decl, subr_die);
10959
10960 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
10961 current_function_funcdef_no);
10962 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
10963 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10964 current_function_funcdef_no);
10965 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
10966
10967 add_pubname (decl, subr_die);
10968 add_arange (decl, subr_die);
10969
10970 #ifdef MIPS_DEBUGGING_INFO
10971 /* Add a reference to the FDE for this routine. */
10972 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
10973 #endif
10974
10975 /* Define the "frame base" location for this routine. We use the
10976 frame pointer or stack pointer registers, since the RTL for local
10977 variables is relative to one of them. */
10978 fp_reg
10979 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
10980 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
10981
10982 #if 0
10983 /* ??? This fails for nested inline functions, because context_display
10984 is not part of the state saved/restored for inline functions. */
10985 if (current_function_needs_context)
10986 add_AT_location_description (subr_die, DW_AT_static_link,
10987 loc_descriptor (lookup_static_chain (decl)));
10988 #endif
10989 }
10990
10991 /* Now output descriptions of the arguments for this function. This gets
10992 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
10993 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
10994 `...' at the end of the formal parameter list. In order to find out if
10995 there was a trailing ellipsis or not, we must instead look at the type
10996 associated with the FUNCTION_DECL. This will be a node of type
10997 FUNCTION_TYPE. If the chain of type nodes hanging off of this
10998 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
10999 an ellipsis at the end. */
11000
11001 /* In the case where we are describing a mere function declaration, all we
11002 need to do here (and all we *can* do here) is to describe the *types* of
11003 its formal parameters. */
11004 if (debug_info_level <= DINFO_LEVEL_TERSE)
11005 ;
11006 else if (declaration)
11007 gen_formal_types_die (decl, subr_die);
11008 else
11009 {
11010 /* Generate DIEs to represent all known formal parameters */
11011 tree arg_decls = DECL_ARGUMENTS (decl);
11012 tree parm;
11013
11014 /* When generating DIEs, generate the unspecified_parameters DIE
11015 instead if we come across the arg "__builtin_va_alist" */
11016 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11017 if (TREE_CODE (parm) == PARM_DECL)
11018 {
11019 if (DECL_NAME (parm)
11020 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11021 "__builtin_va_alist"))
11022 gen_unspecified_parameters_die (parm, subr_die);
11023 else
11024 gen_decl_die (parm, subr_die);
11025 }
11026
11027 /* Decide whether we need an unspecified_parameters DIE at the end.
11028 There are 2 more cases to do this for: 1) the ansi ... declaration -
11029 this is detectable when the end of the arg list is not a
11030 void_type_node 2) an unprototyped function declaration (not a
11031 definition). This just means that we have no info about the
11032 parameters at all. */
11033 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11034 if (fn_arg_types != NULL)
11035 {
11036 /* this is the prototyped case, check for ... */
11037 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11038 gen_unspecified_parameters_die (decl, subr_die);
11039 }
11040 else if (DECL_INITIAL (decl) == NULL_TREE)
11041 gen_unspecified_parameters_die (decl, subr_die);
11042 }
11043
11044 /* Output Dwarf info for all of the stuff within the body of the function
11045 (if it has one - it may be just a declaration). */
11046 outer_scope = DECL_INITIAL (decl);
11047
11048 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11049 a function. This BLOCK actually represents the outermost binding contour
11050 for the function, i.e. the contour in which the function's formal
11051 parameters and labels get declared. Curiously, it appears that the front
11052 end doesn't actually put the PARM_DECL nodes for the current function onto
11053 the BLOCK_VARS list for this outer scope, but are strung off of the
11054 DECL_ARGUMENTS list for the function instead.
11055
11056 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11057 the LABEL_DECL nodes for the function however, and we output DWARF info
11058 for those in decls_for_scope. Just within the `outer_scope' there will be
11059 a BLOCK node representing the function's outermost pair of curly braces,
11060 and any blocks used for the base and member initializers of a C++
11061 constructor function. */
11062 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11063 {
11064 current_function_has_inlines = 0;
11065 decls_for_scope (outer_scope, subr_die, 0);
11066
11067 #if 0 && defined (MIPS_DEBUGGING_INFO)
11068 if (current_function_has_inlines)
11069 {
11070 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11071 if (! comp_unit_has_inlines)
11072 {
11073 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11074 comp_unit_has_inlines = 1;
11075 }
11076 }
11077 #endif
11078 }
11079 }
11080
11081 /* Generate a DIE to represent a declared data object. */
11082
11083 static void
11084 gen_variable_die (decl, context_die)
11085 tree decl;
11086 dw_die_ref context_die;
11087 {
11088 tree origin = decl_ultimate_origin (decl);
11089 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11090
11091 dw_die_ref old_die = lookup_decl_die (decl);
11092 int declaration = (DECL_EXTERNAL (decl)
11093 || class_scope_p (context_die));
11094
11095 if (origin != NULL)
11096 add_abstract_origin_attribute (var_die, origin);
11097
11098 /* Loop unrolling can create multiple blocks that refer to the same
11099 static variable, so we must test for the DW_AT_declaration flag.
11100
11101 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11102 copy decls and set the DECL_ABSTRACT flag on them instead of
11103 sharing them.
11104
11105 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11106 else if (old_die && TREE_STATIC (decl)
11107 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11108 {
11109 /* This is a definition of a C++ class level static. */
11110 add_AT_die_ref (var_die, DW_AT_specification, old_die);
11111 if (DECL_NAME (decl))
11112 {
11113 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
11114
11115 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11116 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11117
11118 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11119 != (unsigned) DECL_SOURCE_LINE (decl))
11120
11121 add_AT_unsigned (var_die, DW_AT_decl_line,
11122 DECL_SOURCE_LINE (decl));
11123 }
11124 }
11125 else
11126 {
11127 add_name_and_src_coords_attributes (var_die, decl);
11128 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11129 TREE_THIS_VOLATILE (decl), context_die);
11130
11131 if (TREE_PUBLIC (decl))
11132 add_AT_flag (var_die, DW_AT_external, 1);
11133
11134 if (DECL_ARTIFICIAL (decl))
11135 add_AT_flag (var_die, DW_AT_artificial, 1);
11136
11137 if (TREE_PROTECTED (decl))
11138 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11139 else if (TREE_PRIVATE (decl))
11140 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11141 }
11142
11143 if (declaration)
11144 add_AT_flag (var_die, DW_AT_declaration, 1);
11145
11146 if (class_scope_p (context_die) || DECL_ABSTRACT (decl))
11147 equate_decl_number_to_die (decl, var_die);
11148
11149 if (! declaration && ! DECL_ABSTRACT (decl))
11150 {
11151 add_location_or_const_value_attribute (var_die, decl);
11152 add_pubname (decl, var_die);
11153 }
11154 else
11155 tree_add_const_value_attribute (var_die, decl);
11156 }
11157
11158 /* Generate a DIE to represent a label identifier. */
11159
11160 static void
11161 gen_label_die (decl, context_die)
11162 tree decl;
11163 dw_die_ref context_die;
11164 {
11165 tree origin = decl_ultimate_origin (decl);
11166 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11167 rtx insn;
11168 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11169
11170 if (origin != NULL)
11171 add_abstract_origin_attribute (lbl_die, origin);
11172 else
11173 add_name_and_src_coords_attributes (lbl_die, decl);
11174
11175 if (DECL_ABSTRACT (decl))
11176 equate_decl_number_to_die (decl, lbl_die);
11177 else
11178 {
11179 insn = DECL_RTL (decl);
11180
11181 /* Deleted labels are programmer specified labels which have been
11182 eliminated because of various optimisations. We still emit them
11183 here so that it is possible to put breakpoints on them. */
11184 if (GET_CODE (insn) == CODE_LABEL
11185 || ((GET_CODE (insn) == NOTE
11186 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
11187 {
11188 /* When optimization is enabled (via -O) some parts of the compiler
11189 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11190 represent source-level labels which were explicitly declared by
11191 the user. This really shouldn't be happening though, so catch
11192 it if it ever does happen. */
11193 if (INSN_DELETED_P (insn))
11194 abort ();
11195
11196 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11197 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11198 }
11199 }
11200 }
11201
11202 /* Generate a DIE for a lexical block. */
11203
11204 static void
11205 gen_lexical_block_die (stmt, context_die, depth)
11206 tree stmt;
11207 dw_die_ref context_die;
11208 int depth;
11209 {
11210 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11211 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11212
11213 if (! BLOCK_ABSTRACT (stmt))
11214 {
11215 if (BLOCK_FRAGMENT_CHAIN (stmt))
11216 {
11217 tree chain;
11218
11219 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11220
11221 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11222 do
11223 {
11224 add_ranges (chain);
11225 chain = BLOCK_FRAGMENT_CHAIN (chain);
11226 }
11227 while (chain);
11228 add_ranges (NULL);
11229 }
11230 else
11231 {
11232 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11233 BLOCK_NUMBER (stmt));
11234 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11235 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11236 BLOCK_NUMBER (stmt));
11237 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11238 }
11239 }
11240
11241 decls_for_scope (stmt, stmt_die, depth);
11242 }
11243
11244 /* Generate a DIE for an inlined subprogram. */
11245
11246 static void
11247 gen_inlined_subroutine_die (stmt, context_die, depth)
11248 tree stmt;
11249 dw_die_ref context_die;
11250 int depth;
11251 {
11252 if (! BLOCK_ABSTRACT (stmt))
11253 {
11254 dw_die_ref subr_die
11255 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11256 tree decl = block_ultimate_origin (stmt);
11257 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11258
11259 /* Emit info for the abstract instance first, if we haven't yet. */
11260 dwarf2out_abstract_function (decl);
11261
11262 add_abstract_origin_attribute (subr_die, decl);
11263 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11264 BLOCK_NUMBER (stmt));
11265 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11266 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11267 BLOCK_NUMBER (stmt));
11268 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11269 decls_for_scope (stmt, subr_die, depth);
11270 current_function_has_inlines = 1;
11271 }
11272 else
11273 /* We may get here if we're the outer block of function A that was
11274 inlined into function B that was inlined into function C. When
11275 generating debugging info for C, dwarf2out_abstract_function(B)
11276 would mark all inlined blocks as abstract, including this one.
11277 So, we wouldn't (and shouldn't) expect labels to be generated
11278 for this one. Instead, just emit debugging info for
11279 declarations within the block. This is particularly important
11280 in the case of initializers of arguments passed from B to us:
11281 if they're statement expressions containing declarations, we
11282 wouldn't generate dies for their abstract variables, and then,
11283 when generating dies for the real variables, we'd die (pun
11284 intended :-) */
11285 gen_lexical_block_die (stmt, context_die, depth);
11286 }
11287
11288 /* Generate a DIE for a field in a record, or structure. */
11289
11290 static void
11291 gen_field_die (decl, context_die)
11292 tree decl;
11293 dw_die_ref context_die;
11294 {
11295 dw_die_ref decl_die = new_die (DW_TAG_member, context_die, decl);
11296
11297 add_name_and_src_coords_attributes (decl_die, decl);
11298 add_type_attribute (decl_die, member_declared_type (decl),
11299 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11300 context_die);
11301
11302 if (DECL_BIT_FIELD_TYPE (decl))
11303 {
11304 add_byte_size_attribute (decl_die, decl);
11305 add_bit_size_attribute (decl_die, decl);
11306 add_bit_offset_attribute (decl_die, decl);
11307 }
11308
11309 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11310 add_data_member_location_attribute (decl_die, decl);
11311
11312 if (DECL_ARTIFICIAL (decl))
11313 add_AT_flag (decl_die, DW_AT_artificial, 1);
11314
11315 if (TREE_PROTECTED (decl))
11316 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11317 else if (TREE_PRIVATE (decl))
11318 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11319 }
11320
11321 #if 0
11322 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11323 Use modified_type_die instead.
11324 We keep this code here just in case these types of DIEs may be needed to
11325 represent certain things in other languages (e.g. Pascal) someday. */
11326
11327 static void
11328 gen_pointer_type_die (type, context_die)
11329 tree type;
11330 dw_die_ref context_die;
11331 {
11332 dw_die_ref ptr_die
11333 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11334
11335 equate_type_number_to_die (type, ptr_die);
11336 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11337 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11338 }
11339
11340 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11341 Use modified_type_die instead.
11342 We keep this code here just in case these types of DIEs may be needed to
11343 represent certain things in other languages (e.g. Pascal) someday. */
11344
11345 static void
11346 gen_reference_type_die (type, context_die)
11347 tree type;
11348 dw_die_ref context_die;
11349 {
11350 dw_die_ref ref_die
11351 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11352
11353 equate_type_number_to_die (type, ref_die);
11354 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11355 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11356 }
11357 #endif
11358
11359 /* Generate a DIE for a pointer to a member type. */
11360
11361 static void
11362 gen_ptr_to_mbr_type_die (type, context_die)
11363 tree type;
11364 dw_die_ref context_die;
11365 {
11366 dw_die_ref ptr_die
11367 = new_die (DW_TAG_ptr_to_member_type,
11368 scope_die_for (type, context_die), type);
11369
11370 equate_type_number_to_die (type, ptr_die);
11371 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11372 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11373 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11374 }
11375
11376 /* Generate the DIE for the compilation unit. */
11377
11378 static dw_die_ref
11379 gen_compile_unit_die (filename)
11380 const char *filename;
11381 {
11382 dw_die_ref die;
11383 char producer[250];
11384 const char *language_string = lang_hooks.name;
11385 int language;
11386
11387 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11388
11389 if (filename)
11390 {
11391 add_name_attribute (die, filename);
11392 if (filename[0] != DIR_SEPARATOR)
11393 add_comp_dir_attribute (die);
11394 }
11395
11396 sprintf (producer, "%s %s", language_string, version_string);
11397
11398 #ifdef MIPS_DEBUGGING_INFO
11399 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11400 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11401 not appear in the producer string, the debugger reaches the conclusion
11402 that the object file is stripped and has no debugging information.
11403 To get the MIPS/SGI debugger to believe that there is debugging
11404 information in the object file, we add a -g to the producer string. */
11405 if (debug_info_level > DINFO_LEVEL_TERSE)
11406 strcat (producer, " -g");
11407 #endif
11408
11409 add_AT_string (die, DW_AT_producer, producer);
11410
11411 if (strcmp (language_string, "GNU C++") == 0)
11412 language = DW_LANG_C_plus_plus;
11413 else if (strcmp (language_string, "GNU Ada") == 0)
11414 language = DW_LANG_Ada83;
11415 else if (strcmp (language_string, "GNU F77") == 0)
11416 language = DW_LANG_Fortran77;
11417 else if (strcmp (language_string, "GNU Pascal") == 0)
11418 language = DW_LANG_Pascal83;
11419 else if (strcmp (language_string, "GNU Java") == 0)
11420 language = DW_LANG_Java;
11421 else
11422 language = DW_LANG_C89;
11423
11424 add_AT_unsigned (die, DW_AT_language, language);
11425 return die;
11426 }
11427
11428 /* Generate a DIE for a string type. */
11429
11430 static void
11431 gen_string_type_die (type, context_die)
11432 tree type;
11433 dw_die_ref context_die;
11434 {
11435 dw_die_ref type_die
11436 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11437
11438 equate_type_number_to_die (type, type_die);
11439
11440 /* ??? Fudge the string length attribute for now.
11441 TODO: add string length info. */
11442 #if 0
11443 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11444 bound_representation (upper_bound, 0, 'u');
11445 #endif
11446 }
11447
11448 /* Generate the DIE for a base class. */
11449
11450 static void
11451 gen_inheritance_die (binfo, access, context_die)
11452 tree binfo, access;
11453 dw_die_ref context_die;
11454 {
11455 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11456
11457 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11458 add_data_member_location_attribute (die, binfo);
11459
11460 if (TREE_VIA_VIRTUAL (binfo))
11461 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11462
11463 if (access == access_public_node)
11464 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11465 else if (access == access_protected_node)
11466 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11467 }
11468
11469 /* Generate a DIE for a class member. */
11470
11471 static void
11472 gen_member_die (type, context_die)
11473 tree type;
11474 dw_die_ref context_die;
11475 {
11476 tree member;
11477 tree binfo = TYPE_BINFO (type);
11478 dw_die_ref child;
11479
11480 /* If this is not an incomplete type, output descriptions of each of its
11481 members. Note that as we output the DIEs necessary to represent the
11482 members of this record or union type, we will also be trying to output
11483 DIEs to represent the *types* of those members. However the `type'
11484 function (above) will specifically avoid generating type DIEs for member
11485 types *within* the list of member DIEs for this (containing) type except
11486 for those types (of members) which are explicitly marked as also being
11487 members of this (containing) type themselves. The g++ front- end can
11488 force any given type to be treated as a member of some other (containing)
11489 type by setting the TYPE_CONTEXT of the given (member) type to point to
11490 the TREE node representing the appropriate (containing) type. */
11491
11492 /* First output info about the base classes. */
11493 if (binfo && BINFO_BASETYPES (binfo))
11494 {
11495 tree bases = BINFO_BASETYPES (binfo);
11496 tree accesses = BINFO_BASEACCESSES (binfo);
11497 int n_bases = TREE_VEC_LENGTH (bases);
11498 int i;
11499
11500 for (i = 0; i < n_bases; i++)
11501 gen_inheritance_die (TREE_VEC_ELT (bases, i),
11502 (accesses ? TREE_VEC_ELT (accesses, i)
11503 : access_public_node), context_die);
11504 }
11505
11506 /* Now output info about the data members and type members. */
11507 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11508 {
11509 /* If we thought we were generating minimal debug info for TYPE
11510 and then changed our minds, some of the member declarations
11511 may have already been defined. Don't define them again, but
11512 do put them in the right order. */
11513
11514 child = lookup_decl_die (member);
11515 if (child)
11516 splice_child_die (context_die, child);
11517 else
11518 gen_decl_die (member, context_die);
11519 }
11520
11521 /* Now output info about the function members (if any). */
11522 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11523 {
11524 /* Don't include clones in the member list. */
11525 if (DECL_ABSTRACT_ORIGIN (member))
11526 continue;
11527
11528 child = lookup_decl_die (member);
11529 if (child)
11530 splice_child_die (context_die, child);
11531 else
11532 gen_decl_die (member, context_die);
11533 }
11534 }
11535
11536 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11537 is set, we pretend that the type was never defined, so we only get the
11538 member DIEs needed by later specification DIEs. */
11539
11540 static void
11541 gen_struct_or_union_type_die (type, context_die)
11542 tree type;
11543 dw_die_ref context_die;
11544 {
11545 dw_die_ref type_die = lookup_type_die (type);
11546 dw_die_ref scope_die = 0;
11547 int nested = 0;
11548 int complete = (TYPE_SIZE (type)
11549 && (! TYPE_STUB_DECL (type)
11550 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11551
11552 if (type_die && ! complete)
11553 return;
11554
11555 if (TYPE_CONTEXT (type) != NULL_TREE
11556 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type)))
11557 nested = 1;
11558
11559 scope_die = scope_die_for (type, context_die);
11560
11561 if (! type_die || (nested && scope_die == comp_unit_die))
11562 /* First occurrence of type or toplevel definition of nested class. */
11563 {
11564 dw_die_ref old_die = type_die;
11565
11566 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11567 ? DW_TAG_structure_type : DW_TAG_union_type,
11568 scope_die, type);
11569 equate_type_number_to_die (type, type_die);
11570 if (old_die)
11571 add_AT_die_ref (type_die, DW_AT_specification, old_die);
11572 else
11573 add_name_attribute (type_die, type_tag (type));
11574 }
11575 else
11576 remove_AT (type_die, DW_AT_declaration);
11577
11578 /* If this type has been completed, then give it a byte_size attribute and
11579 then give a list of members. */
11580 if (complete)
11581 {
11582 /* Prevent infinite recursion in cases where the type of some member of
11583 this type is expressed in terms of this type itself. */
11584 TREE_ASM_WRITTEN (type) = 1;
11585 add_byte_size_attribute (type_die, type);
11586 if (TYPE_STUB_DECL (type) != NULL_TREE)
11587 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11588
11589 /* If the first reference to this type was as the return type of an
11590 inline function, then it may not have a parent. Fix this now. */
11591 if (type_die->die_parent == NULL)
11592 add_child_die (scope_die, type_die);
11593
11594 push_decl_scope (type);
11595 gen_member_die (type, type_die);
11596 pop_decl_scope ();
11597
11598 /* GNU extension: Record what type our vtable lives in. */
11599 if (TYPE_VFIELD (type))
11600 {
11601 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11602
11603 gen_type_die (vtype, context_die);
11604 add_AT_die_ref (type_die, DW_AT_containing_type,
11605 lookup_type_die (vtype));
11606 }
11607 }
11608 else
11609 {
11610 add_AT_flag (type_die, DW_AT_declaration, 1);
11611
11612 /* We don't need to do this for function-local types. */
11613 if (TYPE_STUB_DECL (type)
11614 && ! decl_function_context (TYPE_STUB_DECL (type)))
11615 VARRAY_PUSH_TREE (incomplete_types, type);
11616 }
11617 }
11618
11619 /* Generate a DIE for a subroutine _type_. */
11620
11621 static void
11622 gen_subroutine_type_die (type, context_die)
11623 tree type;
11624 dw_die_ref context_die;
11625 {
11626 tree return_type = TREE_TYPE (type);
11627 dw_die_ref subr_die
11628 = new_die (DW_TAG_subroutine_type,
11629 scope_die_for (type, context_die), type);
11630
11631 equate_type_number_to_die (type, subr_die);
11632 add_prototyped_attribute (subr_die, type);
11633 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11634 gen_formal_types_die (type, subr_die);
11635 }
11636
11637 /* Generate a DIE for a type definition */
11638
11639 static void
11640 gen_typedef_die (decl, context_die)
11641 tree decl;
11642 dw_die_ref context_die;
11643 {
11644 dw_die_ref type_die;
11645 tree origin;
11646
11647 if (TREE_ASM_WRITTEN (decl))
11648 return;
11649
11650 TREE_ASM_WRITTEN (decl) = 1;
11651 type_die = new_die (DW_TAG_typedef, context_die, decl);
11652 origin = decl_ultimate_origin (decl);
11653 if (origin != NULL)
11654 add_abstract_origin_attribute (type_die, origin);
11655 else
11656 {
11657 tree type;
11658
11659 add_name_and_src_coords_attributes (type_die, decl);
11660 if (DECL_ORIGINAL_TYPE (decl))
11661 {
11662 type = DECL_ORIGINAL_TYPE (decl);
11663
11664 if (type == TREE_TYPE (decl))
11665 abort ();
11666 else
11667 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11668 }
11669 else
11670 type = TREE_TYPE (decl);
11671
11672 add_type_attribute (type_die, type, TREE_READONLY (decl),
11673 TREE_THIS_VOLATILE (decl), context_die);
11674 }
11675
11676 if (DECL_ABSTRACT (decl))
11677 equate_decl_number_to_die (decl, type_die);
11678 }
11679
11680 /* Generate a type description DIE. */
11681
11682 static void
11683 gen_type_die (type, context_die)
11684 tree type;
11685 dw_die_ref context_die;
11686 {
11687 int need_pop;
11688
11689 if (type == NULL_TREE || type == error_mark_node)
11690 return;
11691
11692 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11693 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11694 {
11695 if (TREE_ASM_WRITTEN (type))
11696 return;
11697
11698 /* Prevent broken recursion; we can't hand off to the same type. */
11699 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
11700 abort ();
11701
11702 TREE_ASM_WRITTEN (type) = 1;
11703 gen_decl_die (TYPE_NAME (type), context_die);
11704 return;
11705 }
11706
11707 /* We are going to output a DIE to represent the unqualified version
11708 of this type (i.e. without any const or volatile qualifiers) so
11709 get the main variant (i.e. the unqualified version) of this type
11710 now. (Vectors are special because the debugging info is in the
11711 cloned type itself). */
11712 if (TREE_CODE (type) != VECTOR_TYPE)
11713 type = type_main_variant (type);
11714
11715 if (TREE_ASM_WRITTEN (type))
11716 return;
11717
11718 switch (TREE_CODE (type))
11719 {
11720 case ERROR_MARK:
11721 break;
11722
11723 case POINTER_TYPE:
11724 case REFERENCE_TYPE:
11725 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11726 ensures that the gen_type_die recursion will terminate even if the
11727 type is recursive. Recursive types are possible in Ada. */
11728 /* ??? We could perhaps do this for all types before the switch
11729 statement. */
11730 TREE_ASM_WRITTEN (type) = 1;
11731
11732 /* For these types, all that is required is that we output a DIE (or a
11733 set of DIEs) to represent the "basis" type. */
11734 gen_type_die (TREE_TYPE (type), context_die);
11735 break;
11736
11737 case OFFSET_TYPE:
11738 /* This code is used for C++ pointer-to-data-member types.
11739 Output a description of the relevant class type. */
11740 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
11741
11742 /* Output a description of the type of the object pointed to. */
11743 gen_type_die (TREE_TYPE (type), context_die);
11744
11745 /* Now output a DIE to represent this pointer-to-data-member type
11746 itself. */
11747 gen_ptr_to_mbr_type_die (type, context_die);
11748 break;
11749
11750 case SET_TYPE:
11751 gen_type_die (TYPE_DOMAIN (type), context_die);
11752 gen_set_type_die (type, context_die);
11753 break;
11754
11755 case FILE_TYPE:
11756 gen_type_die (TREE_TYPE (type), context_die);
11757 abort (); /* No way to represent these in Dwarf yet! */
11758 break;
11759
11760 case FUNCTION_TYPE:
11761 /* Force out return type (in case it wasn't forced out already). */
11762 gen_type_die (TREE_TYPE (type), context_die);
11763 gen_subroutine_type_die (type, context_die);
11764 break;
11765
11766 case METHOD_TYPE:
11767 /* Force out return type (in case it wasn't forced out already). */
11768 gen_type_die (TREE_TYPE (type), context_die);
11769 gen_subroutine_type_die (type, context_die);
11770 break;
11771
11772 case ARRAY_TYPE:
11773 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11774 {
11775 gen_type_die (TREE_TYPE (type), context_die);
11776 gen_string_type_die (type, context_die);
11777 }
11778 else
11779 gen_array_type_die (type, context_die);
11780 break;
11781
11782 case VECTOR_TYPE:
11783 gen_array_type_die (type, context_die);
11784 break;
11785
11786 case ENUMERAL_TYPE:
11787 case RECORD_TYPE:
11788 case UNION_TYPE:
11789 case QUAL_UNION_TYPE:
11790 /* If this is a nested type whose containing class hasn't been written
11791 out yet, writing it out will cover this one, too. This does not apply
11792 to instantiations of member class templates; they need to be added to
11793 the containing class as they are generated. FIXME: This hurts the
11794 idea of combining type decls from multiple TUs, since we can't predict
11795 what set of template instantiations we'll get. */
11796 if (TYPE_CONTEXT (type)
11797 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11798 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
11799 {
11800 gen_type_die (TYPE_CONTEXT (type), context_die);
11801
11802 if (TREE_ASM_WRITTEN (type))
11803 return;
11804
11805 /* If that failed, attach ourselves to the stub. */
11806 push_decl_scope (TYPE_CONTEXT (type));
11807 context_die = lookup_type_die (TYPE_CONTEXT (type));
11808 need_pop = 1;
11809 }
11810 else
11811 need_pop = 0;
11812
11813 if (TREE_CODE (type) == ENUMERAL_TYPE)
11814 gen_enumeration_type_die (type, context_die);
11815 else
11816 gen_struct_or_union_type_die (type, context_die);
11817
11818 if (need_pop)
11819 pop_decl_scope ();
11820
11821 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11822 it up if it is ever completed. gen_*_type_die will set it for us
11823 when appropriate. */
11824 return;
11825
11826 case VOID_TYPE:
11827 case INTEGER_TYPE:
11828 case REAL_TYPE:
11829 case COMPLEX_TYPE:
11830 case BOOLEAN_TYPE:
11831 case CHAR_TYPE:
11832 /* No DIEs needed for fundamental types. */
11833 break;
11834
11835 case LANG_TYPE:
11836 /* No Dwarf representation currently defined. */
11837 break;
11838
11839 default:
11840 abort ();
11841 }
11842
11843 TREE_ASM_WRITTEN (type) = 1;
11844 }
11845
11846 /* Generate a DIE for a tagged type instantiation. */
11847
11848 static void
11849 gen_tagged_type_instantiation_die (type, context_die)
11850 tree type;
11851 dw_die_ref context_die;
11852 {
11853 if (type == NULL_TREE || type == error_mark_node)
11854 return;
11855
11856 /* We are going to output a DIE to represent the unqualified version of
11857 this type (i.e. without any const or volatile qualifiers) so make sure
11858 that we have the main variant (i.e. the unqualified version) of this
11859 type now. */
11860 if (type != type_main_variant (type))
11861 abort ();
11862
11863 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11864 an instance of an unresolved type. */
11865
11866 switch (TREE_CODE (type))
11867 {
11868 case ERROR_MARK:
11869 break;
11870
11871 case ENUMERAL_TYPE:
11872 gen_inlined_enumeration_type_die (type, context_die);
11873 break;
11874
11875 case RECORD_TYPE:
11876 gen_inlined_structure_type_die (type, context_die);
11877 break;
11878
11879 case UNION_TYPE:
11880 case QUAL_UNION_TYPE:
11881 gen_inlined_union_type_die (type, context_die);
11882 break;
11883
11884 default:
11885 abort ();
11886 }
11887 }
11888
11889 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11890 things which are local to the given block. */
11891
11892 static void
11893 gen_block_die (stmt, context_die, depth)
11894 tree stmt;
11895 dw_die_ref context_die;
11896 int depth;
11897 {
11898 int must_output_die = 0;
11899 tree origin;
11900 tree decl;
11901 enum tree_code origin_code;
11902
11903 /* Ignore blocks never really used to make RTL. */
11904 if (stmt == NULL_TREE || !TREE_USED (stmt)
11905 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
11906 return;
11907
11908 /* If the block is one fragment of a non-contiguous block, do not
11909 process the variables, since they will have been done by the
11910 origin block. Do process subblocks. */
11911 if (BLOCK_FRAGMENT_ORIGIN (stmt))
11912 {
11913 tree sub;
11914
11915 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
11916 gen_block_die (sub, context_die, depth + 1);
11917
11918 return;
11919 }
11920
11921 /* Determine the "ultimate origin" of this block. This block may be an
11922 inlined instance of an inlined instance of inline function, so we have
11923 to trace all of the way back through the origin chain to find out what
11924 sort of node actually served as the original seed for the creation of
11925 the current block. */
11926 origin = block_ultimate_origin (stmt);
11927 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
11928
11929 /* Determine if we need to output any Dwarf DIEs at all to represent this
11930 block. */
11931 if (origin_code == FUNCTION_DECL)
11932 /* The outer scopes for inlinings *must* always be represented. We
11933 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
11934 must_output_die = 1;
11935 else
11936 {
11937 /* In the case where the current block represents an inlining of the
11938 "body block" of an inline function, we must *NOT* output any DIE for
11939 this block because we have already output a DIE to represent the whole
11940 inlined function scope and the "body block" of any function doesn't
11941 really represent a different scope according to ANSI C rules. So we
11942 check here to make sure that this block does not represent a "body
11943 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
11944 if (! is_body_block (origin ? origin : stmt))
11945 {
11946 /* Determine if this block directly contains any "significant"
11947 local declarations which we will need to output DIEs for. */
11948 if (debug_info_level > DINFO_LEVEL_TERSE)
11949 /* We are not in terse mode so *any* local declaration counts
11950 as being a "significant" one. */
11951 must_output_die = (BLOCK_VARS (stmt) != NULL);
11952 else
11953 /* We are in terse mode, so only local (nested) function
11954 definitions count as "significant" local declarations. */
11955 for (decl = BLOCK_VARS (stmt);
11956 decl != NULL; decl = TREE_CHAIN (decl))
11957 if (TREE_CODE (decl) == FUNCTION_DECL
11958 && DECL_INITIAL (decl))
11959 {
11960 must_output_die = 1;
11961 break;
11962 }
11963 }
11964 }
11965
11966 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
11967 DIE for any block which contains no significant local declarations at
11968 all. Rather, in such cases we just call `decls_for_scope' so that any
11969 needed Dwarf info for any sub-blocks will get properly generated. Note
11970 that in terse mode, our definition of what constitutes a "significant"
11971 local declaration gets restricted to include only inlined function
11972 instances and local (nested) function definitions. */
11973 if (must_output_die)
11974 {
11975 if (origin_code == FUNCTION_DECL)
11976 gen_inlined_subroutine_die (stmt, context_die, depth);
11977 else
11978 gen_lexical_block_die (stmt, context_die, depth);
11979 }
11980 else
11981 decls_for_scope (stmt, context_die, depth);
11982 }
11983
11984 /* Generate all of the decls declared within a given scope and (recursively)
11985 all of its sub-blocks. */
11986
11987 static void
11988 decls_for_scope (stmt, context_die, depth)
11989 tree stmt;
11990 dw_die_ref context_die;
11991 int depth;
11992 {
11993 tree decl;
11994 tree subblocks;
11995
11996 /* Ignore blocks never really used to make RTL. */
11997 if (stmt == NULL_TREE || ! TREE_USED (stmt))
11998 return;
11999
12000 /* Output the DIEs to represent all of the data objects and typedefs
12001 declared directly within this block but not within any nested
12002 sub-blocks. Also, nested function and tag DIEs have been
12003 generated with a parent of NULL; fix that up now. */
12004 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12005 {
12006 dw_die_ref die;
12007
12008 if (TREE_CODE (decl) == FUNCTION_DECL)
12009 die = lookup_decl_die (decl);
12010 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12011 die = lookup_type_die (TREE_TYPE (decl));
12012 else
12013 die = NULL;
12014
12015 if (die != NULL && die->die_parent == NULL)
12016 add_child_die (context_die, die);
12017 else
12018 gen_decl_die (decl, context_die);
12019 }
12020
12021 /* Output the DIEs to represent all sub-blocks (and the items declared
12022 therein) of this block. */
12023 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12024 subblocks != NULL;
12025 subblocks = BLOCK_CHAIN (subblocks))
12026 gen_block_die (subblocks, context_die, depth + 1);
12027 }
12028
12029 /* Is this a typedef we can avoid emitting? */
12030
12031 static inline int
12032 is_redundant_typedef (decl)
12033 tree decl;
12034 {
12035 if (TYPE_DECL_IS_STUB (decl))
12036 return 1;
12037
12038 if (DECL_ARTIFICIAL (decl)
12039 && DECL_CONTEXT (decl)
12040 && is_tagged_type (DECL_CONTEXT (decl))
12041 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12042 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12043 /* Also ignore the artificial member typedef for the class name. */
12044 return 1;
12045
12046 return 0;
12047 }
12048
12049 /* Generate Dwarf debug information for a decl described by DECL. */
12050
12051 static void
12052 gen_decl_die (decl, context_die)
12053 tree decl;
12054 dw_die_ref context_die;
12055 {
12056 tree origin;
12057
12058 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12059 return;
12060
12061 switch (TREE_CODE (decl))
12062 {
12063 case ERROR_MARK:
12064 break;
12065
12066 case CONST_DECL:
12067 /* The individual enumerators of an enum type get output when we output
12068 the Dwarf representation of the relevant enum type itself. */
12069 break;
12070
12071 case FUNCTION_DECL:
12072 /* Don't output any DIEs to represent mere function declarations,
12073 unless they are class members or explicit block externs. */
12074 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12075 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12076 break;
12077
12078 /* If we're emitting a clone, emit info for the abstract instance. */
12079 if (DECL_ORIGIN (decl) != decl)
12080 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12081
12082 /* If we're emitting an out-of-line copy of an inline function,
12083 emit info for the abstract instance and set up to refer to it. */
12084 else if (DECL_INLINE (decl) && ! DECL_ABSTRACT (decl)
12085 && ! class_scope_p (context_die)
12086 /* dwarf2out_abstract_function won't emit a die if this is just
12087 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12088 that case, because that works only if we have a die. */
12089 && DECL_INITIAL (decl) != NULL_TREE)
12090 {
12091 dwarf2out_abstract_function (decl);
12092 set_decl_origin_self (decl);
12093 }
12094
12095 /* Otherwise we're emitting the primary DIE for this decl. */
12096 else if (debug_info_level > DINFO_LEVEL_TERSE)
12097 {
12098 /* Before we describe the FUNCTION_DECL itself, make sure that we
12099 have described its return type. */
12100 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12101
12102 /* And its virtual context. */
12103 if (DECL_VINDEX (decl) != NULL_TREE)
12104 gen_type_die (DECL_CONTEXT (decl), context_die);
12105
12106 /* And its containing type. */
12107 origin = decl_class_context (decl);
12108 if (origin != NULL_TREE)
12109 gen_type_die_for_member (origin, decl, context_die);
12110 }
12111
12112 /* Now output a DIE to represent the function itself. */
12113 gen_subprogram_die (decl, context_die);
12114 break;
12115
12116 case TYPE_DECL:
12117 /* If we are in terse mode, don't generate any DIEs to represent any
12118 actual typedefs. */
12119 if (debug_info_level <= DINFO_LEVEL_TERSE)
12120 break;
12121
12122 /* In the special case of a TYPE_DECL node representing the declaration
12123 of some type tag, if the given TYPE_DECL is marked as having been
12124 instantiated from some other (original) TYPE_DECL node (e.g. one which
12125 was generated within the original definition of an inline function) we
12126 have to generate a special (abbreviated) DW_TAG_structure_type,
12127 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12128 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12129 {
12130 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12131 break;
12132 }
12133
12134 if (is_redundant_typedef (decl))
12135 gen_type_die (TREE_TYPE (decl), context_die);
12136 else
12137 /* Output a DIE to represent the typedef itself. */
12138 gen_typedef_die (decl, context_die);
12139 break;
12140
12141 case LABEL_DECL:
12142 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12143 gen_label_die (decl, context_die);
12144 break;
12145
12146 case VAR_DECL:
12147 /* If we are in terse mode, don't generate any DIEs to represent any
12148 variable declarations or definitions. */
12149 if (debug_info_level <= DINFO_LEVEL_TERSE)
12150 break;
12151
12152 /* Output any DIEs that are needed to specify the type of this data
12153 object. */
12154 gen_type_die (TREE_TYPE (decl), context_die);
12155
12156 /* And its containing type. */
12157 origin = decl_class_context (decl);
12158 if (origin != NULL_TREE)
12159 gen_type_die_for_member (origin, decl, context_die);
12160
12161 /* Now output the DIE to represent the data object itself. This gets
12162 complicated because of the possibility that the VAR_DECL really
12163 represents an inlined instance of a formal parameter for an inline
12164 function. */
12165 origin = decl_ultimate_origin (decl);
12166 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12167 gen_formal_parameter_die (decl, context_die);
12168 else
12169 gen_variable_die (decl, context_die);
12170 break;
12171
12172 case FIELD_DECL:
12173 /* Ignore the nameless fields that are used to skip bits but handle C++
12174 anonymous unions. */
12175 if (DECL_NAME (decl) != NULL_TREE
12176 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
12177 {
12178 gen_type_die (member_declared_type (decl), context_die);
12179 gen_field_die (decl, context_die);
12180 }
12181 break;
12182
12183 case PARM_DECL:
12184 gen_type_die (TREE_TYPE (decl), context_die);
12185 gen_formal_parameter_die (decl, context_die);
12186 break;
12187
12188 case NAMESPACE_DECL:
12189 /* Ignore for now. */
12190 break;
12191
12192 default:
12193 abort ();
12194 }
12195 }
12196 \f
12197 /* Add Ada "use" clause information for SGI Workshop debugger. */
12198
12199 void
12200 dwarf2out_add_library_unit_info (filename, context_list)
12201 const char *filename;
12202 const char *context_list;
12203 {
12204 unsigned int file_index;
12205
12206 if (filename != NULL)
12207 {
12208 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12209 tree context_list_decl
12210 = build_decl (LABEL_DECL, get_identifier (context_list),
12211 void_type_node);
12212
12213 TREE_PUBLIC (context_list_decl) = TRUE;
12214 add_name_attribute (unit_die, context_list);
12215 file_index = lookup_filename (filename);
12216 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12217 add_pubname (context_list_decl, unit_die);
12218 }
12219 }
12220
12221 /* Output debug information for global decl DECL. Called from toplev.c after
12222 compilation proper has finished. */
12223
12224 static void
12225 dwarf2out_global_decl (decl)
12226 tree decl;
12227 {
12228 /* Output DWARF2 information for file-scope tentative data object
12229 declarations, file-scope (extern) function declarations (which had no
12230 corresponding body) and file-scope tagged type declarations and
12231 definitions which have not yet been forced out. */
12232 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12233 dwarf2out_decl (decl);
12234 }
12235
12236 /* Write the debugging output for DECL. */
12237
12238 void
12239 dwarf2out_decl (decl)
12240 tree decl;
12241 {
12242 dw_die_ref context_die = comp_unit_die;
12243
12244 switch (TREE_CODE (decl))
12245 {
12246 case ERROR_MARK:
12247 return;
12248
12249 case FUNCTION_DECL:
12250 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
12251 builtin function. Explicit programmer-supplied declarations of
12252 these same functions should NOT be ignored however. */
12253 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
12254 return;
12255
12256 /* What we would really like to do here is to filter out all mere
12257 file-scope declarations of file-scope functions which are never
12258 referenced later within this translation unit (and keep all of ones
12259 that *are* referenced later on) but we aren't clairvoyant, so we have
12260 no idea which functions will be referenced in the future (i.e. later
12261 on within the current translation unit). So here we just ignore all
12262 file-scope function declarations which are not also definitions. If
12263 and when the debugger needs to know something about these functions,
12264 it will have to hunt around and find the DWARF information associated
12265 with the definition of the function.
12266
12267 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12268 nodes represent definitions and which ones represent mere
12269 declarations. We have to check DECL_INITIAL instead. That's because
12270 the C front-end supports some weird semantics for "extern inline"
12271 function definitions. These can get inlined within the current
12272 translation unit (an thus, we need to generate Dwarf info for their
12273 abstract instances so that the Dwarf info for the concrete inlined
12274 instances can have something to refer to) but the compiler never
12275 generates any out-of-lines instances of such things (despite the fact
12276 that they *are* definitions).
12277
12278 The important point is that the C front-end marks these "extern
12279 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12280 them anyway. Note that the C++ front-end also plays some similar games
12281 for inline function definitions appearing within include files which
12282 also contain `#pragma interface' pragmas. */
12283 if (DECL_INITIAL (decl) == NULL_TREE)
12284 return;
12285
12286 /* If we're a nested function, initially use a parent of NULL; if we're
12287 a plain function, this will be fixed up in decls_for_scope. If
12288 we're a method, it will be ignored, since we already have a DIE. */
12289 if (decl_function_context (decl))
12290 context_die = NULL;
12291 break;
12292
12293 case VAR_DECL:
12294 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12295 declaration and if the declaration was never even referenced from
12296 within this entire compilation unit. We suppress these DIEs in
12297 order to save space in the .debug section (by eliminating entries
12298 which are probably useless). Note that we must not suppress
12299 block-local extern declarations (whether used or not) because that
12300 would screw-up the debugger's name lookup mechanism and cause it to
12301 miss things which really ought to be in scope at a given point. */
12302 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12303 return;
12304
12305 /* If we are in terse mode, don't generate any DIEs to represent any
12306 variable declarations or definitions. */
12307 if (debug_info_level <= DINFO_LEVEL_TERSE)
12308 return;
12309 break;
12310
12311 case TYPE_DECL:
12312 /* Don't emit stubs for types unless they are needed by other DIEs. */
12313 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12314 return;
12315
12316 /* Don't bother trying to generate any DIEs to represent any of the
12317 normal built-in types for the language we are compiling. */
12318 if (DECL_SOURCE_LINE (decl) == 0)
12319 {
12320 /* OK, we need to generate one for `bool' so GDB knows what type
12321 comparisons have. */
12322 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12323 == DW_LANG_C_plus_plus)
12324 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12325 && ! DECL_IGNORED_P (decl))
12326 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12327
12328 return;
12329 }
12330
12331 /* If we are in terse mode, don't generate any DIEs for types. */
12332 if (debug_info_level <= DINFO_LEVEL_TERSE)
12333 return;
12334
12335 /* If we're a function-scope tag, initially use a parent of NULL;
12336 this will be fixed up in decls_for_scope. */
12337 if (decl_function_context (decl))
12338 context_die = NULL;
12339
12340 break;
12341
12342 default:
12343 return;
12344 }
12345
12346 gen_decl_die (decl, context_die);
12347 }
12348
12349 /* Output a marker (i.e. a label) for the beginning of the generated code for
12350 a lexical block. */
12351
12352 static void
12353 dwarf2out_begin_block (line, blocknum)
12354 unsigned int line ATTRIBUTE_UNUSED;
12355 unsigned int blocknum;
12356 {
12357 function_section (current_function_decl);
12358 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12359 }
12360
12361 /* Output a marker (i.e. a label) for the end of the generated code for a
12362 lexical block. */
12363
12364 static void
12365 dwarf2out_end_block (line, blocknum)
12366 unsigned int line ATTRIBUTE_UNUSED;
12367 unsigned int blocknum;
12368 {
12369 function_section (current_function_decl);
12370 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12371 }
12372
12373 /* Returns nonzero if it is appropriate not to emit any debugging
12374 information for BLOCK, because it doesn't contain any instructions.
12375
12376 Don't allow this for blocks with nested functions or local classes
12377 as we would end up with orphans, and in the presence of scheduling
12378 we may end up calling them anyway. */
12379
12380 static bool
12381 dwarf2out_ignore_block (block)
12382 tree block;
12383 {
12384 tree decl;
12385
12386 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12387 if (TREE_CODE (decl) == FUNCTION_DECL
12388 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12389 return 0;
12390
12391 return 1;
12392 }
12393
12394 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12395 dwarf2out.c) and return its "index". The index of each (known) filename is
12396 just a unique number which is associated with only that one filename. We
12397 need such numbers for the sake of generating labels (in the .debug_sfnames
12398 section) and references to those files numbers (in the .debug_srcinfo
12399 and.debug_macinfo sections). If the filename given as an argument is not
12400 found in our current list, add it to the list and assign it the next
12401 available unique index number. In order to speed up searches, we remember
12402 the index of the filename was looked up last. This handles the majority of
12403 all searches. */
12404
12405 static unsigned
12406 lookup_filename (file_name)
12407 const char *file_name;
12408 {
12409 size_t i, n;
12410 char *save_file_name;
12411
12412 /* ??? Why isn't DECL_SOURCE_FILE left null instead. */
12413 if (strcmp (file_name, "<internal>") == 0
12414 || strcmp (file_name, "<built-in>") == 0)
12415 return 0;
12416
12417 /* Check to see if the file name that was searched on the previous
12418 call matches this file name. If so, return the index. */
12419 if (file_table_last_lookup_index != 0)
12420 {
12421 const char *last
12422 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12423 if (strcmp (file_name, last) == 0)
12424 return file_table_last_lookup_index;
12425 }
12426
12427 /* Didn't match the previous lookup, search the table */
12428 n = VARRAY_ACTIVE_SIZE (file_table);
12429 for (i = 1; i < n; i++)
12430 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12431 {
12432 file_table_last_lookup_index = i;
12433 return i;
12434 }
12435
12436 /* Add the new entry to the end of the filename table. */
12437 file_table_last_lookup_index = n;
12438 save_file_name = (char *) ggc_strdup (file_name);
12439 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12440 VARRAY_PUSH_UINT (file_table_emitted, 0);
12441
12442 return i;
12443 }
12444
12445 static int
12446 maybe_emit_file (fileno)
12447 int fileno;
12448 {
12449 static int emitcount = 0;
12450 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12451 {
12452 if (!VARRAY_UINT (file_table_emitted, fileno))
12453 {
12454 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12455 fprintf (asm_out_file, "\t.file %u ",
12456 VARRAY_UINT (file_table_emitted, fileno));
12457 output_quoted_string (asm_out_file,
12458 VARRAY_CHAR_PTR (file_table, fileno));
12459 fputc ('\n', asm_out_file);
12460 }
12461 return VARRAY_UINT (file_table_emitted, fileno);
12462 }
12463 else
12464 return fileno;
12465 }
12466
12467 static void
12468 init_file_table ()
12469 {
12470 /* Allocate the initial hunk of the file_table. */
12471 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
12472 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
12473
12474 /* Skip the first entry - file numbers begin at 1. */
12475 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
12476 VARRAY_PUSH_UINT (file_table_emitted, 0);
12477 file_table_last_lookup_index = 0;
12478 }
12479
12480 /* Output a label to mark the beginning of a source code line entry
12481 and record information relating to this source line, in
12482 'line_info_table' for later output of the .debug_line section. */
12483
12484 static void
12485 dwarf2out_source_line (line, filename)
12486 unsigned int line;
12487 const char *filename;
12488 {
12489 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12490 {
12491 function_section (current_function_decl);
12492
12493 /* If requested, emit something human-readable. */
12494 if (flag_debug_asm)
12495 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
12496 filename, line);
12497
12498 if (DWARF2_ASM_LINE_DEBUG_INFO)
12499 {
12500 unsigned file_num = lookup_filename (filename);
12501
12502 file_num = maybe_emit_file (file_num);
12503
12504 /* Emit the .loc directive understood by GNU as. */
12505 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
12506
12507 /* Indicate that line number info exists. */
12508 line_info_table_in_use++;
12509
12510 /* Indicate that multiple line number tables exist. */
12511 if (DECL_SECTION_NAME (current_function_decl))
12512 separate_line_info_table_in_use++;
12513 }
12514 else if (DECL_SECTION_NAME (current_function_decl))
12515 {
12516 dw_separate_line_info_ref line_info;
12517 (*targetm.asm_out.internal_label) (asm_out_file, SEPARATE_LINE_CODE_LABEL,
12518 separate_line_info_table_in_use);
12519
12520 /* expand the line info table if necessary */
12521 if (separate_line_info_table_in_use
12522 == separate_line_info_table_allocated)
12523 {
12524 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12525 separate_line_info_table
12526 = (dw_separate_line_info_ref)
12527 ggc_realloc (separate_line_info_table,
12528 separate_line_info_table_allocated
12529 * sizeof (dw_separate_line_info_entry));
12530 memset ((separate_line_info_table
12531 + separate_line_info_table_in_use),
12532 0,
12533 (LINE_INFO_TABLE_INCREMENT
12534 * sizeof (dw_separate_line_info_entry)));
12535 }
12536
12537 /* Add the new entry at the end of the line_info_table. */
12538 line_info
12539 = &separate_line_info_table[separate_line_info_table_in_use++];
12540 line_info->dw_file_num = lookup_filename (filename);
12541 line_info->dw_line_num = line;
12542 line_info->function = current_function_funcdef_no;
12543 }
12544 else
12545 {
12546 dw_line_info_ref line_info;
12547
12548 (*targetm.asm_out.internal_label) (asm_out_file, LINE_CODE_LABEL,
12549 line_info_table_in_use);
12550
12551 /* Expand the line info table if necessary. */
12552 if (line_info_table_in_use == line_info_table_allocated)
12553 {
12554 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12555 line_info_table
12556 = ggc_realloc (line_info_table,
12557 (line_info_table_allocated
12558 * sizeof (dw_line_info_entry)));
12559 memset (line_info_table + line_info_table_in_use, 0,
12560 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
12561 }
12562
12563 /* Add the new entry at the end of the line_info_table. */
12564 line_info = &line_info_table[line_info_table_in_use++];
12565 line_info->dw_file_num = lookup_filename (filename);
12566 line_info->dw_line_num = line;
12567 }
12568 }
12569 }
12570
12571 /* Record the beginning of a new source file. */
12572
12573 static void
12574 dwarf2out_start_source_file (lineno, filename)
12575 unsigned int lineno;
12576 const char *filename;
12577 {
12578 if (flag_eliminate_dwarf2_dups && !is_main_source)
12579 {
12580 /* Record the beginning of the file for break_out_includes. */
12581 dw_die_ref bincl_die;
12582
12583 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
12584 add_AT_string (bincl_die, DW_AT_name, filename);
12585 }
12586
12587 is_main_source = 0;
12588
12589 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12590 {
12591 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12592 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
12593 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
12594 lineno);
12595 maybe_emit_file (lookup_filename (filename));
12596 dw2_asm_output_data_uleb128 (lookup_filename (filename),
12597 "Filename we just started");
12598 }
12599 }
12600
12601 /* Record the end of a source file. */
12602
12603 static void
12604 dwarf2out_end_source_file (lineno)
12605 unsigned int lineno ATTRIBUTE_UNUSED;
12606 {
12607 if (flag_eliminate_dwarf2_dups)
12608 /* Record the end of the file for break_out_includes. */
12609 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
12610
12611 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12612 {
12613 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12614 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12615 }
12616 }
12617
12618 /* Called from debug_define in toplev.c. The `buffer' parameter contains
12619 the tail part of the directive line, i.e. the part which is past the
12620 initial whitespace, #, whitespace, directive-name, whitespace part. */
12621
12622 static void
12623 dwarf2out_define (lineno, buffer)
12624 unsigned lineno ATTRIBUTE_UNUSED;
12625 const char *buffer ATTRIBUTE_UNUSED;
12626 {
12627 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12628 {
12629 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12630 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
12631 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12632 dw2_asm_output_nstring (buffer, -1, "The macro");
12633 }
12634 }
12635
12636 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
12637 the tail part of the directive line, i.e. the part which is past the
12638 initial whitespace, #, whitespace, directive-name, whitespace part. */
12639
12640 static void
12641 dwarf2out_undef (lineno, buffer)
12642 unsigned lineno ATTRIBUTE_UNUSED;
12643 const char *buffer ATTRIBUTE_UNUSED;
12644 {
12645 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12646 {
12647 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12648 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
12649 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12650 dw2_asm_output_nstring (buffer, -1, "The macro");
12651 }
12652 }
12653
12654 /* Set up for Dwarf output at the start of compilation. */
12655
12656 static void
12657 dwarf2out_init (input_filename)
12658 const char *input_filename ATTRIBUTE_UNUSED;
12659 {
12660 init_file_table ();
12661
12662 /* Allocate the initial hunk of the decl_die_table. */
12663 decl_die_table = ggc_alloc_cleared (DECL_DIE_TABLE_INCREMENT
12664 * sizeof (dw_die_ref));
12665 decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
12666 decl_die_table_in_use = 0;
12667
12668 /* Allocate the initial hunk of the decl_scope_table. */
12669 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
12670
12671 /* Allocate the initial hunk of the abbrev_die_table. */
12672 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
12673 * sizeof (dw_die_ref));
12674 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
12675 /* Zero-th entry is allocated, but unused */
12676 abbrev_die_table_in_use = 1;
12677
12678 /* Allocate the initial hunk of the line_info_table. */
12679 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
12680 * sizeof (dw_line_info_entry));
12681 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
12682
12683 /* Zero-th entry is allocated, but unused */
12684 line_info_table_in_use = 1;
12685
12686 /* Generate the initial DIE for the .debug section. Note that the (string)
12687 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
12688 will (typically) be a relative pathname and that this pathname should be
12689 taken as being relative to the directory from which the compiler was
12690 invoked when the given (base) source file was compiled. We will fill
12691 in this value in dwarf2out_finish. */
12692 comp_unit_die = gen_compile_unit_die (NULL);
12693 is_main_source = 1;
12694
12695 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
12696
12697 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
12698
12699 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
12700 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
12701 DEBUG_ABBREV_SECTION_LABEL, 0);
12702 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12703 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
12704 else
12705 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
12706
12707 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
12708 DEBUG_INFO_SECTION_LABEL, 0);
12709 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
12710 DEBUG_LINE_SECTION_LABEL, 0);
12711 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
12712 DEBUG_RANGES_SECTION_LABEL, 0);
12713 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12714 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
12715 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
12716 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
12717 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12718 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
12719
12720 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12721 {
12722 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12723 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
12724 DEBUG_MACINFO_SECTION_LABEL, 0);
12725 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
12726 }
12727
12728 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12729 {
12730 text_section ();
12731 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
12732 }
12733 }
12734
12735 /* A helper function for dwarf2out_finish called through
12736 ht_forall. Emit one queued .debug_str string. */
12737
12738 static int
12739 output_indirect_string (h, v)
12740 void **h;
12741 void *v ATTRIBUTE_UNUSED;
12742 {
12743 struct indirect_string_node *node = (struct indirect_string_node *) *h;
12744
12745 if (node->form == DW_FORM_strp)
12746 {
12747 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
12748 ASM_OUTPUT_LABEL (asm_out_file, node->label);
12749 assemble_string (node->str, strlen (node->str) + 1);
12750 }
12751
12752 return 1;
12753 }
12754
12755
12756
12757 /* Clear the marks for a die and its children.
12758 Be cool if the mark isn't set. */
12759
12760 static void
12761 prune_unmark_dies (die)
12762 dw_die_ref die;
12763 {
12764 dw_die_ref c;
12765 die->die_mark = 0;
12766 for (c = die->die_child; c; c = c->die_sib)
12767 prune_unmark_dies (c);
12768 }
12769
12770
12771 /* Given DIE that we're marking as used, find any other dies
12772 it references as attributes and mark them as used. */
12773
12774 static void
12775 prune_unused_types_walk_attribs (die)
12776 dw_die_ref die;
12777 {
12778 dw_attr_ref a;
12779
12780 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
12781 {
12782 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
12783 {
12784 /* A reference to another DIE.
12785 Make sure that it will get emitted. */
12786 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
12787 }
12788 else if (a->dw_attr == DW_AT_decl_file)
12789 {
12790 /* A reference to a file. Make sure the file name is emitted. */
12791 a->dw_attr_val.v.val_unsigned =
12792 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
12793 }
12794 }
12795 }
12796
12797
12798 /* Mark DIE as being used. If DOKIDS is true, then walk down
12799 to DIE's children. */
12800
12801 static void
12802 prune_unused_types_mark (die, dokids)
12803 dw_die_ref die;
12804 int dokids;
12805 {
12806 dw_die_ref c;
12807
12808 if (die->die_mark == 0)
12809 {
12810 /* We haven't done this node yet. Mark it as used. */
12811 die->die_mark = 1;
12812
12813 /* We also have to mark its parents as used.
12814 (But we don't want to mark our parents' kids due to this.) */
12815 if (die->die_parent)
12816 prune_unused_types_mark (die->die_parent, 0);
12817
12818 /* Mark any referenced nodes. */
12819 prune_unused_types_walk_attribs (die);
12820 }
12821
12822 if (dokids && die->die_mark != 2)
12823 {
12824 /* We need to walk the children, but haven't done so yet.
12825 Remember that we've walked the kids. */
12826 die->die_mark = 2;
12827
12828 /* Walk them. */
12829 for (c = die->die_child; c; c = c->die_sib)
12830 {
12831 /* If this is an array type, we need to make sure our
12832 kids get marked, even if they're types. */
12833 if (die->die_tag == DW_TAG_array_type)
12834 prune_unused_types_mark (c, 1);
12835 else
12836 prune_unused_types_walk (c);
12837 }
12838 }
12839 }
12840
12841
12842 /* Walk the tree DIE and mark types that we actually use. */
12843
12844 static void
12845 prune_unused_types_walk (die)
12846 dw_die_ref die;
12847 {
12848 dw_die_ref c;
12849
12850 /* Don't do anything if this node is already marked. */
12851 if (die->die_mark)
12852 return;
12853
12854 switch (die->die_tag) {
12855 case DW_TAG_const_type:
12856 case DW_TAG_packed_type:
12857 case DW_TAG_pointer_type:
12858 case DW_TAG_reference_type:
12859 case DW_TAG_volatile_type:
12860 case DW_TAG_typedef:
12861 case DW_TAG_array_type:
12862 case DW_TAG_structure_type:
12863 case DW_TAG_union_type:
12864 case DW_TAG_class_type:
12865 case DW_TAG_friend:
12866 case DW_TAG_variant_part:
12867 case DW_TAG_enumeration_type:
12868 case DW_TAG_subroutine_type:
12869 case DW_TAG_string_type:
12870 case DW_TAG_set_type:
12871 case DW_TAG_subrange_type:
12872 case DW_TAG_ptr_to_member_type:
12873 case DW_TAG_file_type:
12874 /* It's a type node --- don't mark it. */
12875 return;
12876
12877 default:
12878 /* Mark everything else. */
12879 break;
12880 }
12881
12882 die->die_mark = 1;
12883
12884 /* Now, mark any dies referenced from here. */
12885 prune_unused_types_walk_attribs (die);
12886
12887 /* Mark children. */
12888 for (c = die->die_child; c; c = c->die_sib)
12889 prune_unused_types_walk (c);
12890 }
12891
12892
12893 /* Remove from the tree DIE any dies that aren't marked. */
12894
12895 static void
12896 prune_unused_types_prune (die)
12897 dw_die_ref die;
12898 {
12899 dw_die_ref c, p, n;
12900 if (!die->die_mark)
12901 abort();
12902
12903 p = NULL;
12904 for (c = die->die_child; c; c = n)
12905 {
12906 n = c->die_sib;
12907 if (c->die_mark)
12908 {
12909 prune_unused_types_prune (c);
12910 p = c;
12911 }
12912 else
12913 {
12914 if (p)
12915 p->die_sib = n;
12916 else
12917 die->die_child = n;
12918 free_die (c);
12919 }
12920 }
12921 }
12922
12923
12924 /* Remove dies representing declarations that we never use. */
12925
12926 static void
12927 prune_unused_types ()
12928 {
12929 unsigned int i;
12930 limbo_die_node *node;
12931
12932 /* Clear all the marks. */
12933 prune_unmark_dies (comp_unit_die);
12934 for (node = limbo_die_list; node; node = node->next)
12935 prune_unmark_dies (node->die);
12936
12937 /* Set the mark on nodes that are actually used. */
12938 prune_unused_types_walk (comp_unit_die);
12939 for (node = limbo_die_list; node; node = node->next)
12940 prune_unused_types_walk (node->die);
12941
12942 /* Also set the mark on nodes referenced from the
12943 pubname_table or arange_table. */
12944 for (i=0; i < pubname_table_in_use; i++)
12945 {
12946 prune_unused_types_mark (pubname_table[i].die, 1);
12947 }
12948 for (i=0; i < arange_table_in_use; i++)
12949 {
12950 prune_unused_types_mark (arange_table[i], 1);
12951 }
12952
12953 /* Get rid of nodes that aren't marked. */
12954 prune_unused_types_prune (comp_unit_die);
12955 for (node = limbo_die_list; node; node = node->next)
12956 prune_unused_types_prune (node->die);
12957
12958 /* Leave the marks clear. */
12959 prune_unmark_dies (comp_unit_die);
12960 for (node = limbo_die_list; node; node = node->next)
12961 prune_unmark_dies (node->die);
12962 }
12963
12964 /* Output stuff that dwarf requires at the end of every file,
12965 and generate the DWARF-2 debugging info. */
12966
12967 static void
12968 dwarf2out_finish (input_filename)
12969 const char *input_filename;
12970 {
12971 limbo_die_node *node, *next_node;
12972 dw_die_ref die = 0;
12973
12974 /* Add the name for the main input file now. We delayed this from
12975 dwarf2out_init to avoid complications with PCH. */
12976 add_name_attribute (comp_unit_die, input_filename);
12977 if (input_filename[0] != DIR_SEPARATOR)
12978 add_comp_dir_attribute (comp_unit_die);
12979 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
12980 {
12981 size_t i;
12982 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
12983 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR)
12984 {
12985 add_comp_dir_attribute (comp_unit_die);
12986 break;
12987 }
12988 }
12989
12990 /* Traverse the limbo die list, and add parent/child links. The only
12991 dies without parents that should be here are concrete instances of
12992 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
12993 For concrete instances, we can get the parent die from the abstract
12994 instance. */
12995 for (node = limbo_die_list; node; node = next_node)
12996 {
12997 next_node = node->next;
12998 die = node->die;
12999
13000 if (die->die_parent == NULL)
13001 {
13002 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13003 tree context;
13004
13005 if (origin)
13006 add_child_die (origin->die_parent, die);
13007 else if (die == comp_unit_die)
13008 ;
13009 /* If this was an expression for a bound involved in a function
13010 return type, it may be a SAVE_EXPR for which we weren't able
13011 to find a DIE previously. So try now. */
13012 else if (node->created_for
13013 && TREE_CODE (node->created_for) == SAVE_EXPR
13014 && 0 != (origin = (lookup_decl_die
13015 (SAVE_EXPR_CONTEXT
13016 (node->created_for)))))
13017 add_child_die (origin, die);
13018 else if (errorcount > 0 || sorrycount > 0)
13019 /* It's OK to be confused by errors in the input. */
13020 add_child_die (comp_unit_die, die);
13021 else if (node->created_for
13022 && ((DECL_P (node->created_for)
13023 && (context = DECL_CONTEXT (node->created_for)))
13024 || (TYPE_P (node->created_for)
13025 && (context = TYPE_CONTEXT (node->created_for))))
13026 && TREE_CODE (context) == FUNCTION_DECL)
13027 {
13028 /* In certain situations, the lexical block containing a
13029 nested function can be optimized away, which results
13030 in the nested function die being orphaned. Likewise
13031 with the return type of that nested function. Force
13032 this to be a child of the containing function. */
13033 origin = lookup_decl_die (context);
13034 if (! origin)
13035 abort ();
13036 add_child_die (origin, die);
13037 }
13038 else
13039 abort ();
13040 }
13041 }
13042
13043 limbo_die_list = NULL;
13044
13045 /* Walk through the list of incomplete types again, trying once more to
13046 emit full debugging info for them. */
13047 retry_incomplete_types ();
13048
13049 /* We need to reverse all the dies before break_out_includes, or
13050 we'll see the end of an include file before the beginning. */
13051 reverse_all_dies (comp_unit_die);
13052
13053 if (flag_eliminate_unused_debug_types)
13054 prune_unused_types ();
13055
13056 /* Generate separate CUs for each of the include files we've seen.
13057 They will go into limbo_die_list. */
13058 if (flag_eliminate_dwarf2_dups)
13059 break_out_includes (comp_unit_die);
13060
13061 /* Traverse the DIE's and add add sibling attributes to those DIE's
13062 that have children. */
13063 add_sibling_attributes (comp_unit_die);
13064 for (node = limbo_die_list; node; node = node->next)
13065 add_sibling_attributes (node->die);
13066
13067 /* Output a terminator label for the .text section. */
13068 text_section ();
13069 (*targetm.asm_out.internal_label) (asm_out_file, TEXT_END_LABEL, 0);
13070
13071 /* Output the source line correspondence table. We must do this
13072 even if there is no line information. Otherwise, on an empty
13073 translation unit, we will generate a present, but empty,
13074 .debug_info section. IRIX 6.5 `nm' will then complain when
13075 examining the file. */
13076 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13077 {
13078 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13079 output_line_info ();
13080 }
13081
13082 /* Output location list section if necessary. */
13083 if (have_location_lists)
13084 {
13085 /* Output the location lists info. */
13086 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13087 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13088 DEBUG_LOC_SECTION_LABEL, 0);
13089 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13090 output_location_lists (die);
13091 have_location_lists = 0;
13092 }
13093
13094 /* We can only use the low/high_pc attributes if all of the code was
13095 in .text. */
13096 if (separate_line_info_table_in_use == 0)
13097 {
13098 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13099 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13100 }
13101
13102 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13103 "base address". Use zero so that these addresses become absolute. */
13104 else if (have_location_lists || ranges_table_in_use)
13105 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13106
13107 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13108 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13109 debug_line_section_label);
13110
13111 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13112 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13113
13114 /* Output all of the compilation units. We put the main one last so that
13115 the offsets are available to output_pubnames. */
13116 for (node = limbo_die_list; node; node = node->next)
13117 output_comp_unit (node->die, 0);
13118
13119 output_comp_unit (comp_unit_die, 0);
13120
13121 /* Output the abbreviation table. */
13122 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13123 output_abbrev_section ();
13124
13125 /* Output public names table if necessary. */
13126 if (pubname_table_in_use)
13127 {
13128 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13129 output_pubnames ();
13130 }
13131
13132 /* Output the address range information. We only put functions in the arange
13133 table, so don't write it out if we don't have any. */
13134 if (fde_table_in_use)
13135 {
13136 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13137 output_aranges ();
13138 }
13139
13140 /* Output ranges section if necessary. */
13141 if (ranges_table_in_use)
13142 {
13143 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13144 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13145 output_ranges ();
13146 }
13147
13148 /* Have to end the primary source file. */
13149 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13150 {
13151 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13152 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13153 dw2_asm_output_data (1, 0, "End compilation unit");
13154 }
13155
13156 /* If we emitted any DW_FORM_strp form attribute, output the string
13157 table too. */
13158 if (debug_str_hash)
13159 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13160 }
13161 #else
13162
13163 /* This should never be used, but its address is needed for comparisons. */
13164 const struct gcc_debug_hooks dwarf2_debug_hooks;
13165
13166 #endif /* DWARF2_DEBUGGING_INFO */
13167
13168 #include "gt-dwarf2out.h"