re PR debug/14328 (gcc3.2.2 generates incorrect debugging enum values)
[gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "real.h"
44 #include "rtl.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "reload.h"
49 #include "function.h"
50 #include "output.h"
51 #include "expr.h"
52 #include "libfuncs.h"
53 #include "except.h"
54 #include "dwarf2.h"
55 #include "dwarf2out.h"
56 #include "dwarf2asm.h"
57 #include "toplev.h"
58 #include "varray.h"
59 #include "ggc.h"
60 #include "md5.h"
61 #include "tm_p.h"
62 #include "diagnostic.h"
63 #include "debug.h"
64 #include "target.h"
65 #include "langhooks.h"
66 #include "hashtab.h"
67 #include "cgraph.h"
68 #include "input.h"
69
70 #ifdef DWARF2_DEBUGGING_INFO
71 static void dwarf2out_source_line (unsigned int, const char *);
72 #endif
73
74 /* DWARF2 Abbreviation Glossary:
75 CFA = Canonical Frame Address
76 a fixed address on the stack which identifies a call frame.
77 We define it to be the value of SP just before the call insn.
78 The CFA register and offset, which may change during the course
79 of the function, are used to calculate its value at runtime.
80 CFI = Call Frame Instruction
81 an instruction for the DWARF2 abstract machine
82 CIE = Common Information Entry
83 information describing information common to one or more FDEs
84 DIE = Debugging Information Entry
85 FDE = Frame Description Entry
86 information describing the stack call frame, in particular,
87 how to restore registers
88
89 DW_CFA_... = DWARF2 CFA call frame instruction
90 DW_TAG_... = DWARF2 DIE tag */
91
92 /* Decide whether we want to emit frame unwind information for the current
93 translation unit. */
94
95 int
96 dwarf2out_do_frame (void)
97 {
98 return (write_symbols == DWARF2_DEBUG
99 || write_symbols == VMS_AND_DWARF2_DEBUG
100 #ifdef DWARF2_FRAME_INFO
101 || DWARF2_FRAME_INFO
102 #endif
103 #ifdef DWARF2_UNWIND_INFO
104 || flag_unwind_tables
105 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
106 #endif
107 );
108 }
109
110 /* The size of the target's pointer type. */
111 #ifndef PTR_SIZE
112 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
113 #endif
114
115 /* Various versions of targetm.eh_frame_section. Note these must appear
116 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
117
118 /* Version of targetm.eh_frame_section for systems with named sections. */
119 void
120 named_section_eh_frame_section (void)
121 {
122 #ifdef EH_FRAME_SECTION_NAME
123 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
124 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
125 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
126 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
127 int flags;
128
129 flags = (! flag_pic
130 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
131 && (fde_encoding & 0x70) != DW_EH_PE_aligned
132 && (per_encoding & 0x70) != DW_EH_PE_absptr
133 && (per_encoding & 0x70) != DW_EH_PE_aligned
134 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
135 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
136 ? 0 : SECTION_WRITE;
137 named_section_flags (EH_FRAME_SECTION_NAME, flags);
138 #else
139 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
140 #endif
141 #endif
142 }
143
144 /* Version of targetm.eh_frame_section for systems using collect2. */
145 void
146 collect2_eh_frame_section (void)
147 {
148 tree label = get_file_function_name ('F');
149
150 data_section ();
151 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
152 (*targetm.asm_out.globalize_label) (asm_out_file, IDENTIFIER_POINTER (label));
153 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
154 }
155
156 /* Default version of targetm.eh_frame_section. */
157 void
158 default_eh_frame_section (void)
159 {
160 #ifdef EH_FRAME_SECTION_NAME
161 named_section_eh_frame_section ();
162 #else
163 collect2_eh_frame_section ();
164 #endif
165 }
166
167 /* Array of RTXes referenced by the debugging information, which therefore
168 must be kept around forever. */
169 static GTY(()) varray_type used_rtx_varray;
170
171 /* A pointer to the base of a list of incomplete types which might be
172 completed at some later time. incomplete_types_list needs to be a VARRAY
173 because we want to tell the garbage collector about it. */
174 static GTY(()) varray_type incomplete_types;
175
176 /* A pointer to the base of a table of references to declaration
177 scopes. This table is a display which tracks the nesting
178 of declaration scopes at the current scope and containing
179 scopes. This table is used to find the proper place to
180 define type declaration DIE's. */
181 static GTY(()) varray_type decl_scope_table;
182
183 /* How to start an assembler comment. */
184 #ifndef ASM_COMMENT_START
185 #define ASM_COMMENT_START ";#"
186 #endif
187
188 typedef struct dw_cfi_struct *dw_cfi_ref;
189 typedef struct dw_fde_struct *dw_fde_ref;
190 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
191
192 /* Call frames are described using a sequence of Call Frame
193 Information instructions. The register number, offset
194 and address fields are provided as possible operands;
195 their use is selected by the opcode field. */
196
197 enum dw_cfi_oprnd_type {
198 dw_cfi_oprnd_unused,
199 dw_cfi_oprnd_reg_num,
200 dw_cfi_oprnd_offset,
201 dw_cfi_oprnd_addr,
202 dw_cfi_oprnd_loc
203 };
204
205 typedef union dw_cfi_oprnd_struct GTY(())
206 {
207 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
208 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
209 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
210 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
211 }
212 dw_cfi_oprnd;
213
214 typedef struct dw_cfi_struct GTY(())
215 {
216 dw_cfi_ref dw_cfi_next;
217 enum dwarf_call_frame_info dw_cfi_opc;
218 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
219 dw_cfi_oprnd1;
220 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
221 dw_cfi_oprnd2;
222 }
223 dw_cfi_node;
224
225 /* This is how we define the location of the CFA. We use to handle it
226 as REG + OFFSET all the time, but now it can be more complex.
227 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
228 Instead of passing around REG and OFFSET, we pass a copy
229 of this structure. */
230 typedef struct cfa_loc GTY(())
231 {
232 unsigned long reg;
233 HOST_WIDE_INT offset;
234 HOST_WIDE_INT base_offset;
235 int indirect; /* 1 if CFA is accessed via a dereference. */
236 } dw_cfa_location;
237
238 /* All call frame descriptions (FDE's) in the GCC generated DWARF
239 refer to a single Common Information Entry (CIE), defined at
240 the beginning of the .debug_frame section. This use of a single
241 CIE obviates the need to keep track of multiple CIE's
242 in the DWARF generation routines below. */
243
244 typedef struct dw_fde_struct GTY(())
245 {
246 const char *dw_fde_begin;
247 const char *dw_fde_current_label;
248 const char *dw_fde_end;
249 dw_cfi_ref dw_fde_cfi;
250 unsigned funcdef_number;
251 unsigned all_throwers_are_sibcalls : 1;
252 unsigned nothrow : 1;
253 unsigned uses_eh_lsda : 1;
254 }
255 dw_fde_node;
256
257 /* Maximum size (in bytes) of an artificially generated label. */
258 #define MAX_ARTIFICIAL_LABEL_BYTES 30
259
260 /* The size of addresses as they appear in the Dwarf 2 data.
261 Some architectures use word addresses to refer to code locations,
262 but Dwarf 2 info always uses byte addresses. On such machines,
263 Dwarf 2 addresses need to be larger than the architecture's
264 pointers. */
265 #ifndef DWARF2_ADDR_SIZE
266 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
267 #endif
268
269 /* The size in bytes of a DWARF field indicating an offset or length
270 relative to a debug info section, specified to be 4 bytes in the
271 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
272 as PTR_SIZE. */
273
274 #ifndef DWARF_OFFSET_SIZE
275 #define DWARF_OFFSET_SIZE 4
276 #endif
277
278 /* According to the (draft) DWARF 3 specification, the initial length
279 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
280 bytes are 0xffffffff, followed by the length stored in the next 8
281 bytes.
282
283 However, the SGI/MIPS ABI uses an initial length which is equal to
284 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
285
286 #ifndef DWARF_INITIAL_LENGTH_SIZE
287 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
288 #endif
289
290 #define DWARF_VERSION 2
291
292 /* Round SIZE up to the nearest BOUNDARY. */
293 #define DWARF_ROUND(SIZE,BOUNDARY) \
294 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
295
296 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
297 #ifndef DWARF_CIE_DATA_ALIGNMENT
298 #ifdef STACK_GROWS_DOWNWARD
299 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
300 #else
301 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
302 #endif
303 #endif
304
305 /* A pointer to the base of a table that contains frame description
306 information for each routine. */
307 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
308
309 /* Number of elements currently allocated for fde_table. */
310 static GTY(()) unsigned fde_table_allocated;
311
312 /* Number of elements in fde_table currently in use. */
313 static GTY(()) unsigned fde_table_in_use;
314
315 /* Size (in elements) of increments by which we may expand the
316 fde_table. */
317 #define FDE_TABLE_INCREMENT 256
318
319 /* A list of call frame insns for the CIE. */
320 static GTY(()) dw_cfi_ref cie_cfi_head;
321
322 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
323 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
324 attribute that accelerates the lookup of the FDE associated
325 with the subprogram. This variable holds the table index of the FDE
326 associated with the current function (body) definition. */
327 static unsigned current_funcdef_fde;
328 #endif
329
330 struct indirect_string_node GTY(())
331 {
332 const char *str;
333 unsigned int refcount;
334 unsigned int form;
335 char *label;
336 };
337
338 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
339
340 static GTY(()) int dw2_string_counter;
341 static GTY(()) unsigned long dwarf2out_cfi_label_num;
342
343 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
344
345 /* Forward declarations for functions defined in this file. */
346
347 static char *stripattributes (const char *);
348 static const char *dwarf_cfi_name (unsigned);
349 static dw_cfi_ref new_cfi (void);
350 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
351 static void add_fde_cfi (const char *, dw_cfi_ref);
352 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
353 static void lookup_cfa (dw_cfa_location *);
354 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
355 static void initial_return_save (rtx);
356 static HOST_WIDE_INT stack_adjust_offset (rtx);
357 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
358 static void output_call_frame_info (int);
359 static void dwarf2out_stack_adjust (rtx);
360 static void queue_reg_save (const char *, rtx, HOST_WIDE_INT);
361 static void flush_queued_reg_saves (void);
362 static bool clobbers_queued_reg_save (rtx);
363 static void dwarf2out_frame_debug_expr (rtx, const char *);
364
365 /* Support for complex CFA locations. */
366 static void output_cfa_loc (dw_cfi_ref);
367 static void get_cfa_from_loc_descr (dw_cfa_location *,
368 struct dw_loc_descr_struct *);
369 static struct dw_loc_descr_struct *build_cfa_loc
370 (dw_cfa_location *);
371 static void def_cfa_1 (const char *, dw_cfa_location *);
372
373 /* How to start an assembler comment. */
374 #ifndef ASM_COMMENT_START
375 #define ASM_COMMENT_START ";#"
376 #endif
377
378 /* Data and reference forms for relocatable data. */
379 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
380 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
381
382 #ifndef DEBUG_FRAME_SECTION
383 #define DEBUG_FRAME_SECTION ".debug_frame"
384 #endif
385
386 #ifndef FUNC_BEGIN_LABEL
387 #define FUNC_BEGIN_LABEL "LFB"
388 #endif
389
390 #ifndef FUNC_END_LABEL
391 #define FUNC_END_LABEL "LFE"
392 #endif
393
394 #define FRAME_BEGIN_LABEL "Lframe"
395 #define CIE_AFTER_SIZE_LABEL "LSCIE"
396 #define CIE_END_LABEL "LECIE"
397 #define FDE_LABEL "LSFDE"
398 #define FDE_AFTER_SIZE_LABEL "LASFDE"
399 #define FDE_END_LABEL "LEFDE"
400 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
401 #define LINE_NUMBER_END_LABEL "LELT"
402 #define LN_PROLOG_AS_LABEL "LASLTP"
403 #define LN_PROLOG_END_LABEL "LELTP"
404 #define DIE_LABEL_PREFIX "DW"
405
406 /* The DWARF 2 CFA column which tracks the return address. Normally this
407 is the column for PC, or the first column after all of the hard
408 registers. */
409 #ifndef DWARF_FRAME_RETURN_COLUMN
410 #ifdef PC_REGNUM
411 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
412 #else
413 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
414 #endif
415 #endif
416
417 /* The mapping from gcc register number to DWARF 2 CFA column number. By
418 default, we just provide columns for all registers. */
419 #ifndef DWARF_FRAME_REGNUM
420 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
421 #endif
422
423 /* The offset from the incoming value of %sp to the top of the stack frame
424 for the current function. */
425 #ifndef INCOMING_FRAME_SP_OFFSET
426 #define INCOMING_FRAME_SP_OFFSET 0
427 #endif
428 \f
429 /* Hook used by __throw. */
430
431 rtx
432 expand_builtin_dwarf_sp_column (void)
433 {
434 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
435 }
436
437 /* Return a pointer to a copy of the section string name S with all
438 attributes stripped off, and an asterisk prepended (for assemble_name). */
439
440 static inline char *
441 stripattributes (const char *s)
442 {
443 char *stripped = xmalloc (strlen (s) + 2);
444 char *p = stripped;
445
446 *p++ = '*';
447
448 while (*s && *s != ',')
449 *p++ = *s++;
450
451 *p = '\0';
452 return stripped;
453 }
454
455 /* Generate code to initialize the register size table. */
456
457 void
458 expand_builtin_init_dwarf_reg_sizes (tree address)
459 {
460 int i;
461 enum machine_mode mode = TYPE_MODE (char_type_node);
462 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
463 rtx mem = gen_rtx_MEM (BLKmode, addr);
464 bool wrote_return_column = false;
465
466 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
467 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
468 {
469 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
470 enum machine_mode save_mode = reg_raw_mode[i];
471 HOST_WIDE_INT size;
472
473 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
474 save_mode = choose_hard_reg_mode (i, 1, true);
475 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
476 {
477 if (save_mode == VOIDmode)
478 continue;
479 wrote_return_column = true;
480 }
481 size = GET_MODE_SIZE (save_mode);
482 if (offset < 0)
483 continue;
484
485 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
486 }
487
488 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
489 if (! wrote_return_column)
490 abort ();
491 i = DWARF_ALT_FRAME_RETURN_COLUMN;
492 wrote_return_column = false;
493 #else
494 i = DWARF_FRAME_RETURN_COLUMN;
495 #endif
496
497 if (! wrote_return_column)
498 {
499 enum machine_mode save_mode = Pmode;
500 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
501 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
502 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
503 }
504 }
505
506 /* Convert a DWARF call frame info. operation to its string name */
507
508 static const char *
509 dwarf_cfi_name (unsigned int cfi_opc)
510 {
511 switch (cfi_opc)
512 {
513 case DW_CFA_advance_loc:
514 return "DW_CFA_advance_loc";
515 case DW_CFA_offset:
516 return "DW_CFA_offset";
517 case DW_CFA_restore:
518 return "DW_CFA_restore";
519 case DW_CFA_nop:
520 return "DW_CFA_nop";
521 case DW_CFA_set_loc:
522 return "DW_CFA_set_loc";
523 case DW_CFA_advance_loc1:
524 return "DW_CFA_advance_loc1";
525 case DW_CFA_advance_loc2:
526 return "DW_CFA_advance_loc2";
527 case DW_CFA_advance_loc4:
528 return "DW_CFA_advance_loc4";
529 case DW_CFA_offset_extended:
530 return "DW_CFA_offset_extended";
531 case DW_CFA_restore_extended:
532 return "DW_CFA_restore_extended";
533 case DW_CFA_undefined:
534 return "DW_CFA_undefined";
535 case DW_CFA_same_value:
536 return "DW_CFA_same_value";
537 case DW_CFA_register:
538 return "DW_CFA_register";
539 case DW_CFA_remember_state:
540 return "DW_CFA_remember_state";
541 case DW_CFA_restore_state:
542 return "DW_CFA_restore_state";
543 case DW_CFA_def_cfa:
544 return "DW_CFA_def_cfa";
545 case DW_CFA_def_cfa_register:
546 return "DW_CFA_def_cfa_register";
547 case DW_CFA_def_cfa_offset:
548 return "DW_CFA_def_cfa_offset";
549
550 /* DWARF 3 */
551 case DW_CFA_def_cfa_expression:
552 return "DW_CFA_def_cfa_expression";
553 case DW_CFA_expression:
554 return "DW_CFA_expression";
555 case DW_CFA_offset_extended_sf:
556 return "DW_CFA_offset_extended_sf";
557 case DW_CFA_def_cfa_sf:
558 return "DW_CFA_def_cfa_sf";
559 case DW_CFA_def_cfa_offset_sf:
560 return "DW_CFA_def_cfa_offset_sf";
561
562 /* SGI/MIPS specific */
563 case DW_CFA_MIPS_advance_loc8:
564 return "DW_CFA_MIPS_advance_loc8";
565
566 /* GNU extensions */
567 case DW_CFA_GNU_window_save:
568 return "DW_CFA_GNU_window_save";
569 case DW_CFA_GNU_args_size:
570 return "DW_CFA_GNU_args_size";
571 case DW_CFA_GNU_negative_offset_extended:
572 return "DW_CFA_GNU_negative_offset_extended";
573
574 default:
575 return "DW_CFA_<unknown>";
576 }
577 }
578
579 /* Return a pointer to a newly allocated Call Frame Instruction. */
580
581 static inline dw_cfi_ref
582 new_cfi (void)
583 {
584 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
585
586 cfi->dw_cfi_next = NULL;
587 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
588 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
589
590 return cfi;
591 }
592
593 /* Add a Call Frame Instruction to list of instructions. */
594
595 static inline void
596 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
597 {
598 dw_cfi_ref *p;
599
600 /* Find the end of the chain. */
601 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
602 ;
603
604 *p = cfi;
605 }
606
607 /* Generate a new label for the CFI info to refer to. */
608
609 char *
610 dwarf2out_cfi_label (void)
611 {
612 static char label[20];
613
614 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
615 ASM_OUTPUT_LABEL (asm_out_file, label);
616 return label;
617 }
618
619 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
620 or to the CIE if LABEL is NULL. */
621
622 static void
623 add_fde_cfi (const char *label, dw_cfi_ref cfi)
624 {
625 if (label)
626 {
627 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
628
629 if (*label == 0)
630 label = dwarf2out_cfi_label ();
631
632 if (fde->dw_fde_current_label == NULL
633 || strcmp (label, fde->dw_fde_current_label) != 0)
634 {
635 dw_cfi_ref xcfi;
636
637 fde->dw_fde_current_label = label = xstrdup (label);
638
639 /* Set the location counter to the new label. */
640 xcfi = new_cfi ();
641 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
642 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
643 add_cfi (&fde->dw_fde_cfi, xcfi);
644 }
645
646 add_cfi (&fde->dw_fde_cfi, cfi);
647 }
648
649 else
650 add_cfi (&cie_cfi_head, cfi);
651 }
652
653 /* Subroutine of lookup_cfa. */
654
655 static inline void
656 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
657 {
658 switch (cfi->dw_cfi_opc)
659 {
660 case DW_CFA_def_cfa_offset:
661 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
662 break;
663 case DW_CFA_def_cfa_register:
664 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
665 break;
666 case DW_CFA_def_cfa:
667 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
668 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
669 break;
670 case DW_CFA_def_cfa_expression:
671 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
672 break;
673 default:
674 break;
675 }
676 }
677
678 /* Find the previous value for the CFA. */
679
680 static void
681 lookup_cfa (dw_cfa_location *loc)
682 {
683 dw_cfi_ref cfi;
684
685 loc->reg = (unsigned long) -1;
686 loc->offset = 0;
687 loc->indirect = 0;
688 loc->base_offset = 0;
689
690 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
691 lookup_cfa_1 (cfi, loc);
692
693 if (fde_table_in_use)
694 {
695 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
696 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
697 lookup_cfa_1 (cfi, loc);
698 }
699 }
700
701 /* The current rule for calculating the DWARF2 canonical frame address. */
702 static dw_cfa_location cfa;
703
704 /* The register used for saving registers to the stack, and its offset
705 from the CFA. */
706 static dw_cfa_location cfa_store;
707
708 /* The running total of the size of arguments pushed onto the stack. */
709 static HOST_WIDE_INT args_size;
710
711 /* The last args_size we actually output. */
712 static HOST_WIDE_INT old_args_size;
713
714 /* Entry point to update the canonical frame address (CFA).
715 LABEL is passed to add_fde_cfi. The value of CFA is now to be
716 calculated from REG+OFFSET. */
717
718 void
719 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
720 {
721 dw_cfa_location loc;
722 loc.indirect = 0;
723 loc.base_offset = 0;
724 loc.reg = reg;
725 loc.offset = offset;
726 def_cfa_1 (label, &loc);
727 }
728
729 /* This routine does the actual work. The CFA is now calculated from
730 the dw_cfa_location structure. */
731
732 static void
733 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
734 {
735 dw_cfi_ref cfi;
736 dw_cfa_location old_cfa, loc;
737
738 cfa = *loc_p;
739 loc = *loc_p;
740
741 if (cfa_store.reg == loc.reg && loc.indirect == 0)
742 cfa_store.offset = loc.offset;
743
744 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
745 lookup_cfa (&old_cfa);
746
747 /* If nothing changed, no need to issue any call frame instructions. */
748 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
749 && loc.indirect == old_cfa.indirect
750 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
751 return;
752
753 cfi = new_cfi ();
754
755 if (loc.reg == old_cfa.reg && !loc.indirect)
756 {
757 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
758 indicating the CFA register did not change but the offset
759 did. */
760 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
761 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
762 }
763
764 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
765 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
766 && !loc.indirect)
767 {
768 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
769 indicating the CFA register has changed to <register> but the
770 offset has not changed. */
771 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
772 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
773 }
774 #endif
775
776 else if (loc.indirect == 0)
777 {
778 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
779 indicating the CFA register has changed to <register> with
780 the specified offset. */
781 cfi->dw_cfi_opc = DW_CFA_def_cfa;
782 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
783 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
784 }
785 else
786 {
787 /* Construct a DW_CFA_def_cfa_expression instruction to
788 calculate the CFA using a full location expression since no
789 register-offset pair is available. */
790 struct dw_loc_descr_struct *loc_list;
791
792 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
793 loc_list = build_cfa_loc (&loc);
794 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
795 }
796
797 add_fde_cfi (label, cfi);
798 }
799
800 /* Add the CFI for saving a register. REG is the CFA column number.
801 LABEL is passed to add_fde_cfi.
802 If SREG is -1, the register is saved at OFFSET from the CFA;
803 otherwise it is saved in SREG. */
804
805 static void
806 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
807 {
808 dw_cfi_ref cfi = new_cfi ();
809
810 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
811
812 /* The following comparison is correct. -1 is used to indicate that
813 the value isn't a register number. */
814 if (sreg == (unsigned int) -1)
815 {
816 if (reg & ~0x3f)
817 /* The register number won't fit in 6 bits, so we have to use
818 the long form. */
819 cfi->dw_cfi_opc = DW_CFA_offset_extended;
820 else
821 cfi->dw_cfi_opc = DW_CFA_offset;
822
823 #ifdef ENABLE_CHECKING
824 {
825 /* If we get an offset that is not a multiple of
826 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
827 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
828 description. */
829 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
830
831 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
832 abort ();
833 }
834 #endif
835 offset /= DWARF_CIE_DATA_ALIGNMENT;
836 if (offset < 0)
837 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
838
839 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
840 }
841 else if (sreg == reg)
842 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
843 return;
844 else
845 {
846 cfi->dw_cfi_opc = DW_CFA_register;
847 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
848 }
849
850 add_fde_cfi (label, cfi);
851 }
852
853 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
854 This CFI tells the unwinder that it needs to restore the window registers
855 from the previous frame's window save area.
856
857 ??? Perhaps we should note in the CIE where windows are saved (instead of
858 assuming 0(cfa)) and what registers are in the window. */
859
860 void
861 dwarf2out_window_save (const char *label)
862 {
863 dw_cfi_ref cfi = new_cfi ();
864
865 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
866 add_fde_cfi (label, cfi);
867 }
868
869 /* Add a CFI to update the running total of the size of arguments
870 pushed onto the stack. */
871
872 void
873 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
874 {
875 dw_cfi_ref cfi;
876
877 if (size == old_args_size)
878 return;
879
880 old_args_size = size;
881
882 cfi = new_cfi ();
883 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
884 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
885 add_fde_cfi (label, cfi);
886 }
887
888 /* Entry point for saving a register to the stack. REG is the GCC register
889 number. LABEL and OFFSET are passed to reg_save. */
890
891 void
892 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
893 {
894 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
895 }
896
897 /* Entry point for saving the return address in the stack.
898 LABEL and OFFSET are passed to reg_save. */
899
900 void
901 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
902 {
903 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
904 }
905
906 /* Entry point for saving the return address in a register.
907 LABEL and SREG are passed to reg_save. */
908
909 void
910 dwarf2out_return_reg (const char *label, unsigned int sreg)
911 {
912 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
913 }
914
915 /* Record the initial position of the return address. RTL is
916 INCOMING_RETURN_ADDR_RTX. */
917
918 static void
919 initial_return_save (rtx rtl)
920 {
921 unsigned int reg = (unsigned int) -1;
922 HOST_WIDE_INT offset = 0;
923
924 switch (GET_CODE (rtl))
925 {
926 case REG:
927 /* RA is in a register. */
928 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
929 break;
930
931 case MEM:
932 /* RA is on the stack. */
933 rtl = XEXP (rtl, 0);
934 switch (GET_CODE (rtl))
935 {
936 case REG:
937 if (REGNO (rtl) != STACK_POINTER_REGNUM)
938 abort ();
939 offset = 0;
940 break;
941
942 case PLUS:
943 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
944 abort ();
945 offset = INTVAL (XEXP (rtl, 1));
946 break;
947
948 case MINUS:
949 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
950 abort ();
951 offset = -INTVAL (XEXP (rtl, 1));
952 break;
953
954 default:
955 abort ();
956 }
957
958 break;
959
960 case PLUS:
961 /* The return address is at some offset from any value we can
962 actually load. For instance, on the SPARC it is in %i7+8. Just
963 ignore the offset for now; it doesn't matter for unwinding frames. */
964 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
965 abort ();
966 initial_return_save (XEXP (rtl, 0));
967 return;
968
969 default:
970 abort ();
971 }
972
973 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
974 }
975
976 /* Given a SET, calculate the amount of stack adjustment it
977 contains. */
978
979 static HOST_WIDE_INT
980 stack_adjust_offset (rtx pattern)
981 {
982 rtx src = SET_SRC (pattern);
983 rtx dest = SET_DEST (pattern);
984 HOST_WIDE_INT offset = 0;
985 enum rtx_code code;
986
987 if (dest == stack_pointer_rtx)
988 {
989 /* (set (reg sp) (plus (reg sp) (const_int))) */
990 code = GET_CODE (src);
991 if (! (code == PLUS || code == MINUS)
992 || XEXP (src, 0) != stack_pointer_rtx
993 || GET_CODE (XEXP (src, 1)) != CONST_INT)
994 return 0;
995
996 offset = INTVAL (XEXP (src, 1));
997 if (code == PLUS)
998 offset = -offset;
999 }
1000 else if (GET_CODE (dest) == MEM)
1001 {
1002 /* (set (mem (pre_dec (reg sp))) (foo)) */
1003 src = XEXP (dest, 0);
1004 code = GET_CODE (src);
1005
1006 switch (code)
1007 {
1008 case PRE_MODIFY:
1009 case POST_MODIFY:
1010 if (XEXP (src, 0) == stack_pointer_rtx)
1011 {
1012 rtx val = XEXP (XEXP (src, 1), 1);
1013 /* We handle only adjustments by constant amount. */
1014 if (GET_CODE (XEXP (src, 1)) != PLUS ||
1015 GET_CODE (val) != CONST_INT)
1016 abort ();
1017 offset = -INTVAL (val);
1018 break;
1019 }
1020 return 0;
1021
1022 case PRE_DEC:
1023 case POST_DEC:
1024 if (XEXP (src, 0) == stack_pointer_rtx)
1025 {
1026 offset = GET_MODE_SIZE (GET_MODE (dest));
1027 break;
1028 }
1029 return 0;
1030
1031 case PRE_INC:
1032 case POST_INC:
1033 if (XEXP (src, 0) == stack_pointer_rtx)
1034 {
1035 offset = -GET_MODE_SIZE (GET_MODE (dest));
1036 break;
1037 }
1038 return 0;
1039
1040 default:
1041 return 0;
1042 }
1043 }
1044 else
1045 return 0;
1046
1047 return offset;
1048 }
1049
1050 /* Check INSN to see if it looks like a push or a stack adjustment, and
1051 make a note of it if it does. EH uses this information to find out how
1052 much extra space it needs to pop off the stack. */
1053
1054 static void
1055 dwarf2out_stack_adjust (rtx insn)
1056 {
1057 HOST_WIDE_INT offset;
1058 const char *label;
1059 int i;
1060
1061 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1062 with this function. Proper support would require all frame-related
1063 insns to be marked, and to be able to handle saving state around
1064 epilogues textually in the middle of the function. */
1065 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1066 return;
1067
1068 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1069 {
1070 /* Extract the size of the args from the CALL rtx itself. */
1071 insn = PATTERN (insn);
1072 if (GET_CODE (insn) == PARALLEL)
1073 insn = XVECEXP (insn, 0, 0);
1074 if (GET_CODE (insn) == SET)
1075 insn = SET_SRC (insn);
1076 if (GET_CODE (insn) != CALL)
1077 abort ();
1078
1079 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1080 return;
1081 }
1082
1083 /* If only calls can throw, and we have a frame pointer,
1084 save up adjustments until we see the CALL_INSN. */
1085 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1086 return;
1087
1088 if (GET_CODE (insn) == BARRIER)
1089 {
1090 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1091 the compiler will have already emitted a stack adjustment, but
1092 doesn't bother for calls to noreturn functions. */
1093 #ifdef STACK_GROWS_DOWNWARD
1094 offset = -args_size;
1095 #else
1096 offset = args_size;
1097 #endif
1098 }
1099 else if (GET_CODE (PATTERN (insn)) == SET)
1100 offset = stack_adjust_offset (PATTERN (insn));
1101 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1102 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1103 {
1104 /* There may be stack adjustments inside compound insns. Search
1105 for them. */
1106 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1107 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1108 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1109 }
1110 else
1111 return;
1112
1113 if (offset == 0)
1114 return;
1115
1116 if (cfa.reg == STACK_POINTER_REGNUM)
1117 cfa.offset += offset;
1118
1119 #ifndef STACK_GROWS_DOWNWARD
1120 offset = -offset;
1121 #endif
1122
1123 args_size += offset;
1124 if (args_size < 0)
1125 args_size = 0;
1126
1127 label = dwarf2out_cfi_label ();
1128 def_cfa_1 (label, &cfa);
1129 dwarf2out_args_size (label, args_size);
1130 }
1131
1132 #endif
1133
1134 /* We delay emitting a register save until either (a) we reach the end
1135 of the prologue or (b) the register is clobbered. This clusters
1136 register saves so that there are fewer pc advances. */
1137
1138 struct queued_reg_save GTY(())
1139 {
1140 struct queued_reg_save *next;
1141 rtx reg;
1142 HOST_WIDE_INT cfa_offset;
1143 };
1144
1145 static GTY(()) struct queued_reg_save *queued_reg_saves;
1146
1147 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1148 static const char *last_reg_save_label;
1149
1150 static void
1151 queue_reg_save (const char *label, rtx reg, HOST_WIDE_INT offset)
1152 {
1153 struct queued_reg_save *q = ggc_alloc (sizeof (*q));
1154
1155 q->next = queued_reg_saves;
1156 q->reg = reg;
1157 q->cfa_offset = offset;
1158 queued_reg_saves = q;
1159
1160 last_reg_save_label = label;
1161 }
1162
1163 static void
1164 flush_queued_reg_saves (void)
1165 {
1166 struct queued_reg_save *q, *next;
1167
1168 for (q = queued_reg_saves; q; q = next)
1169 {
1170 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1171 next = q->next;
1172 }
1173
1174 queued_reg_saves = NULL;
1175 last_reg_save_label = NULL;
1176 }
1177
1178 static bool
1179 clobbers_queued_reg_save (rtx insn)
1180 {
1181 struct queued_reg_save *q;
1182
1183 for (q = queued_reg_saves; q; q = q->next)
1184 if (modified_in_p (q->reg, insn))
1185 return true;
1186
1187 return false;
1188 }
1189
1190
1191 /* A temporary register holding an integral value used in adjusting SP
1192 or setting up the store_reg. The "offset" field holds the integer
1193 value, not an offset. */
1194 static dw_cfa_location cfa_temp;
1195
1196 /* Record call frame debugging information for an expression EXPR,
1197 which either sets SP or FP (adjusting how we calculate the frame
1198 address) or saves a register to the stack. LABEL indicates the
1199 address of EXPR.
1200
1201 This function encodes a state machine mapping rtxes to actions on
1202 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1203 users need not read the source code.
1204
1205 The High-Level Picture
1206
1207 Changes in the register we use to calculate the CFA: Currently we
1208 assume that if you copy the CFA register into another register, we
1209 should take the other one as the new CFA register; this seems to
1210 work pretty well. If it's wrong for some target, it's simple
1211 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1212
1213 Changes in the register we use for saving registers to the stack:
1214 This is usually SP, but not always. Again, we deduce that if you
1215 copy SP into another register (and SP is not the CFA register),
1216 then the new register is the one we will be using for register
1217 saves. This also seems to work.
1218
1219 Register saves: There's not much guesswork about this one; if
1220 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1221 register save, and the register used to calculate the destination
1222 had better be the one we think we're using for this purpose.
1223
1224 Except: If the register being saved is the CFA register, and the
1225 offset is nonzero, we are saving the CFA, so we assume we have to
1226 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1227 the intent is to save the value of SP from the previous frame.
1228
1229 Invariants / Summaries of Rules
1230
1231 cfa current rule for calculating the CFA. It usually
1232 consists of a register and an offset.
1233 cfa_store register used by prologue code to save things to the stack
1234 cfa_store.offset is the offset from the value of
1235 cfa_store.reg to the actual CFA
1236 cfa_temp register holding an integral value. cfa_temp.offset
1237 stores the value, which will be used to adjust the
1238 stack pointer. cfa_temp is also used like cfa_store,
1239 to track stores to the stack via fp or a temp reg.
1240
1241 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1242 with cfa.reg as the first operand changes the cfa.reg and its
1243 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1244 cfa_temp.offset.
1245
1246 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1247 expression yielding a constant. This sets cfa_temp.reg
1248 and cfa_temp.offset.
1249
1250 Rule 5: Create a new register cfa_store used to save items to the
1251 stack.
1252
1253 Rules 10-14: Save a register to the stack. Define offset as the
1254 difference of the original location and cfa_store's
1255 location (or cfa_temp's location if cfa_temp is used).
1256
1257 The Rules
1258
1259 "{a,b}" indicates a choice of a xor b.
1260 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1261
1262 Rule 1:
1263 (set <reg1> <reg2>:cfa.reg)
1264 effects: cfa.reg = <reg1>
1265 cfa.offset unchanged
1266 cfa_temp.reg = <reg1>
1267 cfa_temp.offset = cfa.offset
1268
1269 Rule 2:
1270 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1271 {<const_int>,<reg>:cfa_temp.reg}))
1272 effects: cfa.reg = sp if fp used
1273 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1274 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1275 if cfa_store.reg==sp
1276
1277 Rule 3:
1278 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1279 effects: cfa.reg = fp
1280 cfa_offset += +/- <const_int>
1281
1282 Rule 4:
1283 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1284 constraints: <reg1> != fp
1285 <reg1> != sp
1286 effects: cfa.reg = <reg1>
1287 cfa_temp.reg = <reg1>
1288 cfa_temp.offset = cfa.offset
1289
1290 Rule 5:
1291 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1292 constraints: <reg1> != fp
1293 <reg1> != sp
1294 effects: cfa_store.reg = <reg1>
1295 cfa_store.offset = cfa.offset - cfa_temp.offset
1296
1297 Rule 6:
1298 (set <reg> <const_int>)
1299 effects: cfa_temp.reg = <reg>
1300 cfa_temp.offset = <const_int>
1301
1302 Rule 7:
1303 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1304 effects: cfa_temp.reg = <reg1>
1305 cfa_temp.offset |= <const_int>
1306
1307 Rule 8:
1308 (set <reg> (high <exp>))
1309 effects: none
1310
1311 Rule 9:
1312 (set <reg> (lo_sum <exp> <const_int>))
1313 effects: cfa_temp.reg = <reg>
1314 cfa_temp.offset = <const_int>
1315
1316 Rule 10:
1317 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1318 effects: cfa_store.offset -= <const_int>
1319 cfa.offset = cfa_store.offset if cfa.reg == sp
1320 cfa.reg = sp
1321 cfa.base_offset = -cfa_store.offset
1322
1323 Rule 11:
1324 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1325 effects: cfa_store.offset += -/+ mode_size(mem)
1326 cfa.offset = cfa_store.offset if cfa.reg == sp
1327 cfa.reg = sp
1328 cfa.base_offset = -cfa_store.offset
1329
1330 Rule 12:
1331 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1332
1333 <reg2>)
1334 effects: cfa.reg = <reg1>
1335 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1336
1337 Rule 13:
1338 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1339 effects: cfa.reg = <reg1>
1340 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1341
1342 Rule 14:
1343 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1344 effects: cfa.reg = <reg1>
1345 cfa.base_offset = -cfa_temp.offset
1346 cfa_temp.offset -= mode_size(mem) */
1347
1348 static void
1349 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1350 {
1351 rtx src, dest;
1352 HOST_WIDE_INT offset;
1353
1354 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1355 the PARALLEL independently. The first element is always processed if
1356 it is a SET. This is for backward compatibility. Other elements
1357 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1358 flag is set in them. */
1359 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1360 {
1361 int par_index;
1362 int limit = XVECLEN (expr, 0);
1363
1364 for (par_index = 0; par_index < limit; par_index++)
1365 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1366 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1367 || par_index == 0))
1368 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1369
1370 return;
1371 }
1372
1373 if (GET_CODE (expr) != SET)
1374 abort ();
1375
1376 src = SET_SRC (expr);
1377 dest = SET_DEST (expr);
1378
1379 switch (GET_CODE (dest))
1380 {
1381 case REG:
1382 /* Rule 1 */
1383 /* Update the CFA rule wrt SP or FP. Make sure src is
1384 relative to the current CFA register. */
1385 switch (GET_CODE (src))
1386 {
1387 /* Setting FP from SP. */
1388 case REG:
1389 if (cfa.reg == (unsigned) REGNO (src))
1390 /* OK. */
1391 ;
1392 else
1393 abort ();
1394
1395 /* We used to require that dest be either SP or FP, but the
1396 ARM copies SP to a temporary register, and from there to
1397 FP. So we just rely on the backends to only set
1398 RTX_FRAME_RELATED_P on appropriate insns. */
1399 cfa.reg = REGNO (dest);
1400 cfa_temp.reg = cfa.reg;
1401 cfa_temp.offset = cfa.offset;
1402 break;
1403
1404 case PLUS:
1405 case MINUS:
1406 case LO_SUM:
1407 if (dest == stack_pointer_rtx)
1408 {
1409 /* Rule 2 */
1410 /* Adjusting SP. */
1411 switch (GET_CODE (XEXP (src, 1)))
1412 {
1413 case CONST_INT:
1414 offset = INTVAL (XEXP (src, 1));
1415 break;
1416 case REG:
1417 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1418 abort ();
1419 offset = cfa_temp.offset;
1420 break;
1421 default:
1422 abort ();
1423 }
1424
1425 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1426 {
1427 /* Restoring SP from FP in the epilogue. */
1428 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1429 abort ();
1430 cfa.reg = STACK_POINTER_REGNUM;
1431 }
1432 else if (GET_CODE (src) == LO_SUM)
1433 /* Assume we've set the source reg of the LO_SUM from sp. */
1434 ;
1435 else if (XEXP (src, 0) != stack_pointer_rtx)
1436 abort ();
1437
1438 if (GET_CODE (src) != MINUS)
1439 offset = -offset;
1440 if (cfa.reg == STACK_POINTER_REGNUM)
1441 cfa.offset += offset;
1442 if (cfa_store.reg == STACK_POINTER_REGNUM)
1443 cfa_store.offset += offset;
1444 }
1445 else if (dest == hard_frame_pointer_rtx)
1446 {
1447 /* Rule 3 */
1448 /* Either setting the FP from an offset of the SP,
1449 or adjusting the FP */
1450 if (! frame_pointer_needed)
1451 abort ();
1452
1453 if (GET_CODE (XEXP (src, 0)) == REG
1454 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1455 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1456 {
1457 offset = INTVAL (XEXP (src, 1));
1458 if (GET_CODE (src) != MINUS)
1459 offset = -offset;
1460 cfa.offset += offset;
1461 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1462 }
1463 else
1464 abort ();
1465 }
1466 else
1467 {
1468 if (GET_CODE (src) == MINUS)
1469 abort ();
1470
1471 /* Rule 4 */
1472 if (GET_CODE (XEXP (src, 0)) == REG
1473 && REGNO (XEXP (src, 0)) == cfa.reg
1474 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1475 {
1476 /* Setting a temporary CFA register that will be copied
1477 into the FP later on. */
1478 offset = - INTVAL (XEXP (src, 1));
1479 cfa.offset += offset;
1480 cfa.reg = REGNO (dest);
1481 /* Or used to save regs to the stack. */
1482 cfa_temp.reg = cfa.reg;
1483 cfa_temp.offset = cfa.offset;
1484 }
1485
1486 /* Rule 5 */
1487 else if (GET_CODE (XEXP (src, 0)) == REG
1488 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1489 && XEXP (src, 1) == stack_pointer_rtx)
1490 {
1491 /* Setting a scratch register that we will use instead
1492 of SP for saving registers to the stack. */
1493 if (cfa.reg != STACK_POINTER_REGNUM)
1494 abort ();
1495 cfa_store.reg = REGNO (dest);
1496 cfa_store.offset = cfa.offset - cfa_temp.offset;
1497 }
1498
1499 /* Rule 9 */
1500 else if (GET_CODE (src) == LO_SUM
1501 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1502 {
1503 cfa_temp.reg = REGNO (dest);
1504 cfa_temp.offset = INTVAL (XEXP (src, 1));
1505 }
1506 else
1507 abort ();
1508 }
1509 break;
1510
1511 /* Rule 6 */
1512 case CONST_INT:
1513 cfa_temp.reg = REGNO (dest);
1514 cfa_temp.offset = INTVAL (src);
1515 break;
1516
1517 /* Rule 7 */
1518 case IOR:
1519 if (GET_CODE (XEXP (src, 0)) != REG
1520 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1521 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1522 abort ();
1523
1524 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1525 cfa_temp.reg = REGNO (dest);
1526 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1527 break;
1528
1529 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1530 which will fill in all of the bits. */
1531 /* Rule 8 */
1532 case HIGH:
1533 break;
1534
1535 default:
1536 abort ();
1537 }
1538
1539 def_cfa_1 (label, &cfa);
1540 break;
1541
1542 case MEM:
1543 if (GET_CODE (src) != REG)
1544 abort ();
1545
1546 /* Saving a register to the stack. Make sure dest is relative to the
1547 CFA register. */
1548 switch (GET_CODE (XEXP (dest, 0)))
1549 {
1550 /* Rule 10 */
1551 /* With a push. */
1552 case PRE_MODIFY:
1553 /* We can't handle variable size modifications. */
1554 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1555 abort ();
1556 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1557
1558 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1559 || cfa_store.reg != STACK_POINTER_REGNUM)
1560 abort ();
1561
1562 cfa_store.offset += offset;
1563 if (cfa.reg == STACK_POINTER_REGNUM)
1564 cfa.offset = cfa_store.offset;
1565
1566 offset = -cfa_store.offset;
1567 break;
1568
1569 /* Rule 11 */
1570 case PRE_INC:
1571 case PRE_DEC:
1572 offset = GET_MODE_SIZE (GET_MODE (dest));
1573 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1574 offset = -offset;
1575
1576 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1577 || cfa_store.reg != STACK_POINTER_REGNUM)
1578 abort ();
1579
1580 cfa_store.offset += offset;
1581 if (cfa.reg == STACK_POINTER_REGNUM)
1582 cfa.offset = cfa_store.offset;
1583
1584 offset = -cfa_store.offset;
1585 break;
1586
1587 /* Rule 12 */
1588 /* With an offset. */
1589 case PLUS:
1590 case MINUS:
1591 case LO_SUM:
1592 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1593 abort ();
1594 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1595 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1596 offset = -offset;
1597
1598 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1599 offset -= cfa_store.offset;
1600 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1601 offset -= cfa_temp.offset;
1602 else
1603 abort ();
1604 break;
1605
1606 /* Rule 13 */
1607 /* Without an offset. */
1608 case REG:
1609 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1610 offset = -cfa_store.offset;
1611 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1612 offset = -cfa_temp.offset;
1613 else
1614 abort ();
1615 break;
1616
1617 /* Rule 14 */
1618 case POST_INC:
1619 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1620 abort ();
1621 offset = -cfa_temp.offset;
1622 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1623 break;
1624
1625 default:
1626 abort ();
1627 }
1628
1629 if (REGNO (src) != STACK_POINTER_REGNUM
1630 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1631 && (unsigned) REGNO (src) == cfa.reg)
1632 {
1633 /* We're storing the current CFA reg into the stack. */
1634
1635 if (cfa.offset == 0)
1636 {
1637 /* If the source register is exactly the CFA, assume
1638 we're saving SP like any other register; this happens
1639 on the ARM. */
1640 def_cfa_1 (label, &cfa);
1641 queue_reg_save (label, stack_pointer_rtx, offset);
1642 break;
1643 }
1644 else
1645 {
1646 /* Otherwise, we'll need to look in the stack to
1647 calculate the CFA. */
1648 rtx x = XEXP (dest, 0);
1649
1650 if (GET_CODE (x) != REG)
1651 x = XEXP (x, 0);
1652 if (GET_CODE (x) != REG)
1653 abort ();
1654
1655 cfa.reg = REGNO (x);
1656 cfa.base_offset = offset;
1657 cfa.indirect = 1;
1658 def_cfa_1 (label, &cfa);
1659 break;
1660 }
1661 }
1662
1663 def_cfa_1 (label, &cfa);
1664 queue_reg_save (label, src, offset);
1665 break;
1666
1667 default:
1668 abort ();
1669 }
1670 }
1671
1672 /* Record call frame debugging information for INSN, which either
1673 sets SP or FP (adjusting how we calculate the frame address) or saves a
1674 register to the stack. If INSN is NULL_RTX, initialize our state. */
1675
1676 void
1677 dwarf2out_frame_debug (rtx insn)
1678 {
1679 const char *label;
1680 rtx src;
1681
1682 if (insn == NULL_RTX)
1683 {
1684 /* Flush any queued register saves. */
1685 flush_queued_reg_saves ();
1686
1687 /* Set up state for generating call frame debug info. */
1688 lookup_cfa (&cfa);
1689 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1690 abort ();
1691
1692 cfa.reg = STACK_POINTER_REGNUM;
1693 cfa_store = cfa;
1694 cfa_temp.reg = -1;
1695 cfa_temp.offset = 0;
1696 return;
1697 }
1698
1699 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1700 flush_queued_reg_saves ();
1701
1702 if (! RTX_FRAME_RELATED_P (insn))
1703 {
1704 if (!ACCUMULATE_OUTGOING_ARGS)
1705 dwarf2out_stack_adjust (insn);
1706
1707 return;
1708 }
1709
1710 label = dwarf2out_cfi_label ();
1711 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1712 if (src)
1713 insn = XEXP (src, 0);
1714 else
1715 insn = PATTERN (insn);
1716
1717 dwarf2out_frame_debug_expr (insn, label);
1718 }
1719
1720 #endif
1721
1722 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1723 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1724 (enum dwarf_call_frame_info cfi);
1725
1726 static enum dw_cfi_oprnd_type
1727 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1728 {
1729 switch (cfi)
1730 {
1731 case DW_CFA_nop:
1732 case DW_CFA_GNU_window_save:
1733 return dw_cfi_oprnd_unused;
1734
1735 case DW_CFA_set_loc:
1736 case DW_CFA_advance_loc1:
1737 case DW_CFA_advance_loc2:
1738 case DW_CFA_advance_loc4:
1739 case DW_CFA_MIPS_advance_loc8:
1740 return dw_cfi_oprnd_addr;
1741
1742 case DW_CFA_offset:
1743 case DW_CFA_offset_extended:
1744 case DW_CFA_def_cfa:
1745 case DW_CFA_offset_extended_sf:
1746 case DW_CFA_def_cfa_sf:
1747 case DW_CFA_restore_extended:
1748 case DW_CFA_undefined:
1749 case DW_CFA_same_value:
1750 case DW_CFA_def_cfa_register:
1751 case DW_CFA_register:
1752 return dw_cfi_oprnd_reg_num;
1753
1754 case DW_CFA_def_cfa_offset:
1755 case DW_CFA_GNU_args_size:
1756 case DW_CFA_def_cfa_offset_sf:
1757 return dw_cfi_oprnd_offset;
1758
1759 case DW_CFA_def_cfa_expression:
1760 case DW_CFA_expression:
1761 return dw_cfi_oprnd_loc;
1762
1763 default:
1764 abort ();
1765 }
1766 }
1767
1768 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1769 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1770 (enum dwarf_call_frame_info cfi);
1771
1772 static enum dw_cfi_oprnd_type
1773 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1774 {
1775 switch (cfi)
1776 {
1777 case DW_CFA_def_cfa:
1778 case DW_CFA_def_cfa_sf:
1779 case DW_CFA_offset:
1780 case DW_CFA_offset_extended_sf:
1781 case DW_CFA_offset_extended:
1782 return dw_cfi_oprnd_offset;
1783
1784 case DW_CFA_register:
1785 return dw_cfi_oprnd_reg_num;
1786
1787 default:
1788 return dw_cfi_oprnd_unused;
1789 }
1790 }
1791
1792 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1793
1794 /* Map register numbers held in the call frame info that gcc has
1795 collected using DWARF_FRAME_REGNUM to those that should be output in
1796 .debug_frame and .eh_frame. */
1797 #ifndef DWARF2_FRAME_REG_OUT
1798 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
1799 #endif
1800
1801 /* Output a Call Frame Information opcode and its operand(s). */
1802
1803 static void
1804 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1805 {
1806 unsigned long r;
1807 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1808 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1809 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1810 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1811 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1812 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1813 {
1814 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1815 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1816 "DW_CFA_offset, column 0x%lx", r);
1817 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1818 }
1819 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1820 {
1821 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1822 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1823 "DW_CFA_restore, column 0x%lx", r);
1824 }
1825 else
1826 {
1827 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1828 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1829
1830 switch (cfi->dw_cfi_opc)
1831 {
1832 case DW_CFA_set_loc:
1833 if (for_eh)
1834 dw2_asm_output_encoded_addr_rtx (
1835 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1836 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1837 NULL);
1838 else
1839 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1840 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1841 break;
1842
1843 case DW_CFA_advance_loc1:
1844 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1845 fde->dw_fde_current_label, NULL);
1846 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1847 break;
1848
1849 case DW_CFA_advance_loc2:
1850 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1851 fde->dw_fde_current_label, NULL);
1852 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1853 break;
1854
1855 case DW_CFA_advance_loc4:
1856 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1857 fde->dw_fde_current_label, NULL);
1858 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1859 break;
1860
1861 case DW_CFA_MIPS_advance_loc8:
1862 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1863 fde->dw_fde_current_label, NULL);
1864 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1865 break;
1866
1867 case DW_CFA_offset_extended:
1868 case DW_CFA_def_cfa:
1869 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1870 dw2_asm_output_data_uleb128 (r, NULL);
1871 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1872 break;
1873
1874 case DW_CFA_offset_extended_sf:
1875 case DW_CFA_def_cfa_sf:
1876 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1877 dw2_asm_output_data_uleb128 (r, NULL);
1878 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1879 break;
1880
1881 case DW_CFA_restore_extended:
1882 case DW_CFA_undefined:
1883 case DW_CFA_same_value:
1884 case DW_CFA_def_cfa_register:
1885 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1886 dw2_asm_output_data_uleb128 (r, NULL);
1887 break;
1888
1889 case DW_CFA_register:
1890 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1891 dw2_asm_output_data_uleb128 (r, NULL);
1892 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
1893 dw2_asm_output_data_uleb128 (r, NULL);
1894 break;
1895
1896 case DW_CFA_def_cfa_offset:
1897 case DW_CFA_GNU_args_size:
1898 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1899 break;
1900
1901 case DW_CFA_def_cfa_offset_sf:
1902 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1903 break;
1904
1905 case DW_CFA_GNU_window_save:
1906 break;
1907
1908 case DW_CFA_def_cfa_expression:
1909 case DW_CFA_expression:
1910 output_cfa_loc (cfi);
1911 break;
1912
1913 case DW_CFA_GNU_negative_offset_extended:
1914 /* Obsoleted by DW_CFA_offset_extended_sf. */
1915 abort ();
1916
1917 default:
1918 break;
1919 }
1920 }
1921 }
1922
1923 /* Output the call frame information used to record information
1924 that relates to calculating the frame pointer, and records the
1925 location of saved registers. */
1926
1927 static void
1928 output_call_frame_info (int for_eh)
1929 {
1930 unsigned int i;
1931 dw_fde_ref fde;
1932 dw_cfi_ref cfi;
1933 char l1[20], l2[20], section_start_label[20];
1934 bool any_lsda_needed = false;
1935 char augmentation[6];
1936 int augmentation_size;
1937 int fde_encoding = DW_EH_PE_absptr;
1938 int per_encoding = DW_EH_PE_absptr;
1939 int lsda_encoding = DW_EH_PE_absptr;
1940
1941 /* Don't emit a CIE if there won't be any FDEs. */
1942 if (fde_table_in_use == 0)
1943 return;
1944
1945 /* If we don't have any functions we'll want to unwind out of, don't
1946 emit any EH unwind information. Note that if exceptions aren't
1947 enabled, we won't have collected nothrow information, and if we
1948 asked for asynchronous tables, we always want this info. */
1949 if (for_eh)
1950 {
1951 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
1952
1953 for (i = 0; i < fde_table_in_use; i++)
1954 if (fde_table[i].uses_eh_lsda)
1955 any_eh_needed = any_lsda_needed = true;
1956 else if (! fde_table[i].nothrow
1957 && ! fde_table[i].all_throwers_are_sibcalls)
1958 any_eh_needed = true;
1959
1960 if (! any_eh_needed)
1961 return;
1962 }
1963
1964 /* We're going to be generating comments, so turn on app. */
1965 if (flag_debug_asm)
1966 app_enable ();
1967
1968 if (for_eh)
1969 (*targetm.asm_out.eh_frame_section) ();
1970 else
1971 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1972
1973 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1974 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1975
1976 /* Output the CIE. */
1977 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1978 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1979 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1980 "Length of Common Information Entry");
1981 ASM_OUTPUT_LABEL (asm_out_file, l1);
1982
1983 /* Now that the CIE pointer is PC-relative for EH,
1984 use 0 to identify the CIE. */
1985 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1986 (for_eh ? 0 : DW_CIE_ID),
1987 "CIE Identifier Tag");
1988
1989 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1990
1991 augmentation[0] = 0;
1992 augmentation_size = 0;
1993 if (for_eh)
1994 {
1995 char *p;
1996
1997 /* Augmentation:
1998 z Indicates that a uleb128 is present to size the
1999 augmentation section.
2000 L Indicates the encoding (and thus presence) of
2001 an LSDA pointer in the FDE augmentation.
2002 R Indicates a non-default pointer encoding for
2003 FDE code pointers.
2004 P Indicates the presence of an encoding + language
2005 personality routine in the CIE augmentation. */
2006
2007 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2008 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2009 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2010
2011 p = augmentation + 1;
2012 if (eh_personality_libfunc)
2013 {
2014 *p++ = 'P';
2015 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2016 }
2017 if (any_lsda_needed)
2018 {
2019 *p++ = 'L';
2020 augmentation_size += 1;
2021 }
2022 if (fde_encoding != DW_EH_PE_absptr)
2023 {
2024 *p++ = 'R';
2025 augmentation_size += 1;
2026 }
2027 if (p > augmentation + 1)
2028 {
2029 augmentation[0] = 'z';
2030 *p = '\0';
2031 }
2032
2033 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2034 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2035 {
2036 int offset = ( 4 /* Length */
2037 + 4 /* CIE Id */
2038 + 1 /* CIE version */
2039 + strlen (augmentation) + 1 /* Augmentation */
2040 + size_of_uleb128 (1) /* Code alignment */
2041 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2042 + 1 /* RA column */
2043 + 1 /* Augmentation size */
2044 + 1 /* Personality encoding */ );
2045 int pad = -offset & (PTR_SIZE - 1);
2046
2047 augmentation_size += pad;
2048
2049 /* Augmentations should be small, so there's scarce need to
2050 iterate for a solution. Die if we exceed one uleb128 byte. */
2051 if (size_of_uleb128 (augmentation_size) != 1)
2052 abort ();
2053 }
2054 }
2055
2056 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2057 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2058 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2059 "CIE Data Alignment Factor");
2060 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2061
2062 if (augmentation[0])
2063 {
2064 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2065 if (eh_personality_libfunc)
2066 {
2067 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2068 eh_data_format_name (per_encoding));
2069 dw2_asm_output_encoded_addr_rtx (per_encoding,
2070 eh_personality_libfunc, NULL);
2071 }
2072
2073 if (any_lsda_needed)
2074 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2075 eh_data_format_name (lsda_encoding));
2076
2077 if (fde_encoding != DW_EH_PE_absptr)
2078 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2079 eh_data_format_name (fde_encoding));
2080 }
2081
2082 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2083 output_cfi (cfi, NULL, for_eh);
2084
2085 /* Pad the CIE out to an address sized boundary. */
2086 ASM_OUTPUT_ALIGN (asm_out_file,
2087 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2088 ASM_OUTPUT_LABEL (asm_out_file, l2);
2089
2090 /* Loop through all of the FDE's. */
2091 for (i = 0; i < fde_table_in_use; i++)
2092 {
2093 fde = &fde_table[i];
2094
2095 /* Don't emit EH unwind info for leaf functions that don't need it. */
2096 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2097 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2098 && !fde->uses_eh_lsda)
2099 continue;
2100
2101 (*targetm.asm_out.internal_label) (asm_out_file, FDE_LABEL, for_eh + i * 2);
2102 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2103 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2104 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2105 "FDE Length");
2106 ASM_OUTPUT_LABEL (asm_out_file, l1);
2107
2108 if (for_eh)
2109 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2110 else
2111 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2112 "FDE CIE offset");
2113
2114 if (for_eh)
2115 {
2116 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2117 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
2118 "FDE initial location");
2119 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2120 fde->dw_fde_end, fde->dw_fde_begin,
2121 "FDE address range");
2122 }
2123 else
2124 {
2125 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2126 "FDE initial location");
2127 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2128 fde->dw_fde_end, fde->dw_fde_begin,
2129 "FDE address range");
2130 }
2131
2132 if (augmentation[0])
2133 {
2134 if (any_lsda_needed)
2135 {
2136 int size = size_of_encoded_value (lsda_encoding);
2137
2138 if (lsda_encoding == DW_EH_PE_aligned)
2139 {
2140 int offset = ( 4 /* Length */
2141 + 4 /* CIE offset */
2142 + 2 * size_of_encoded_value (fde_encoding)
2143 + 1 /* Augmentation size */ );
2144 int pad = -offset & (PTR_SIZE - 1);
2145
2146 size += pad;
2147 if (size_of_uleb128 (size) != 1)
2148 abort ();
2149 }
2150
2151 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2152
2153 if (fde->uses_eh_lsda)
2154 {
2155 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2156 fde->funcdef_number);
2157 dw2_asm_output_encoded_addr_rtx (
2158 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2159 "Language Specific Data Area");
2160 }
2161 else
2162 {
2163 if (lsda_encoding == DW_EH_PE_aligned)
2164 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2165 dw2_asm_output_data
2166 (size_of_encoded_value (lsda_encoding), 0,
2167 "Language Specific Data Area (none)");
2168 }
2169 }
2170 else
2171 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2172 }
2173
2174 /* Loop through the Call Frame Instructions associated with
2175 this FDE. */
2176 fde->dw_fde_current_label = fde->dw_fde_begin;
2177 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2178 output_cfi (cfi, fde, for_eh);
2179
2180 /* Pad the FDE out to an address sized boundary. */
2181 ASM_OUTPUT_ALIGN (asm_out_file,
2182 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2183 ASM_OUTPUT_LABEL (asm_out_file, l2);
2184 }
2185
2186 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2187 dw2_asm_output_data (4, 0, "End of Table");
2188 #ifdef MIPS_DEBUGGING_INFO
2189 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2190 get a value of 0. Putting .align 0 after the label fixes it. */
2191 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2192 #endif
2193
2194 /* Turn off app to make assembly quicker. */
2195 if (flag_debug_asm)
2196 app_disable ();
2197 }
2198
2199 /* Output a marker (i.e. a label) for the beginning of a function, before
2200 the prologue. */
2201
2202 void
2203 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2204 const char *file ATTRIBUTE_UNUSED)
2205 {
2206 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2207 dw_fde_ref fde;
2208
2209 current_function_func_begin_label = 0;
2210
2211 #ifdef IA64_UNWIND_INFO
2212 /* ??? current_function_func_begin_label is also used by except.c
2213 for call-site information. We must emit this label if it might
2214 be used. */
2215 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2216 && ! dwarf2out_do_frame ())
2217 return;
2218 #else
2219 if (! dwarf2out_do_frame ())
2220 return;
2221 #endif
2222
2223 function_section (current_function_decl);
2224 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2225 current_function_funcdef_no);
2226 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2227 current_function_funcdef_no);
2228 current_function_func_begin_label = get_identifier (label);
2229
2230 #ifdef IA64_UNWIND_INFO
2231 /* We can elide the fde allocation if we're not emitting debug info. */
2232 if (! dwarf2out_do_frame ())
2233 return;
2234 #endif
2235
2236 /* Expand the fde table if necessary. */
2237 if (fde_table_in_use == fde_table_allocated)
2238 {
2239 fde_table_allocated += FDE_TABLE_INCREMENT;
2240 fde_table = ggc_realloc (fde_table,
2241 fde_table_allocated * sizeof (dw_fde_node));
2242 memset (fde_table + fde_table_in_use, 0,
2243 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2244 }
2245
2246 /* Record the FDE associated with this function. */
2247 current_funcdef_fde = fde_table_in_use;
2248
2249 /* Add the new FDE at the end of the fde_table. */
2250 fde = &fde_table[fde_table_in_use++];
2251 fde->dw_fde_begin = xstrdup (label);
2252 fde->dw_fde_current_label = NULL;
2253 fde->dw_fde_end = NULL;
2254 fde->dw_fde_cfi = NULL;
2255 fde->funcdef_number = current_function_funcdef_no;
2256 fde->nothrow = current_function_nothrow;
2257 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2258 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2259
2260 args_size = old_args_size = 0;
2261
2262 /* We only want to output line number information for the genuine dwarf2
2263 prologue case, not the eh frame case. */
2264 #ifdef DWARF2_DEBUGGING_INFO
2265 if (file)
2266 dwarf2out_source_line (line, file);
2267 #endif
2268 }
2269
2270 /* Output a marker (i.e. a label) for the absolute end of the generated code
2271 for a function definition. This gets called *after* the epilogue code has
2272 been generated. */
2273
2274 void
2275 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2276 const char *file ATTRIBUTE_UNUSED)
2277 {
2278 dw_fde_ref fde;
2279 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2280
2281 /* Output a label to mark the endpoint of the code generated for this
2282 function. */
2283 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2284 current_function_funcdef_no);
2285 ASM_OUTPUT_LABEL (asm_out_file, label);
2286 fde = &fde_table[fde_table_in_use - 1];
2287 fde->dw_fde_end = xstrdup (label);
2288 }
2289
2290 void
2291 dwarf2out_frame_init (void)
2292 {
2293 /* Allocate the initial hunk of the fde_table. */
2294 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2295 fde_table_allocated = FDE_TABLE_INCREMENT;
2296 fde_table_in_use = 0;
2297
2298 /* Generate the CFA instructions common to all FDE's. Do it now for the
2299 sake of lookup_cfa. */
2300
2301 #ifdef DWARF2_UNWIND_INFO
2302 /* On entry, the Canonical Frame Address is at SP. */
2303 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2304 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2305 #endif
2306 }
2307
2308 void
2309 dwarf2out_frame_finish (void)
2310 {
2311 /* Output call frame information. */
2312 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2313 output_call_frame_info (0);
2314
2315 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2316 output_call_frame_info (1);
2317 }
2318 #endif
2319 \f
2320 /* And now, the subset of the debugging information support code necessary
2321 for emitting location expressions. */
2322
2323 /* We need some way to distinguish DW_OP_addr with a direct symbol
2324 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2325 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2326
2327
2328 typedef struct dw_val_struct *dw_val_ref;
2329 typedef struct die_struct *dw_die_ref;
2330 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2331 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2332
2333 /* Each DIE may have a series of attribute/value pairs. Values
2334 can take on several forms. The forms that are used in this
2335 implementation are listed below. */
2336
2337 enum dw_val_class
2338 {
2339 dw_val_class_addr,
2340 dw_val_class_offset,
2341 dw_val_class_loc,
2342 dw_val_class_loc_list,
2343 dw_val_class_range_list,
2344 dw_val_class_const,
2345 dw_val_class_unsigned_const,
2346 dw_val_class_long_long,
2347 dw_val_class_float,
2348 dw_val_class_flag,
2349 dw_val_class_die_ref,
2350 dw_val_class_fde_ref,
2351 dw_val_class_lbl_id,
2352 dw_val_class_lbl_offset,
2353 dw_val_class_str
2354 };
2355
2356 /* Describe a double word constant value. */
2357 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2358
2359 typedef struct dw_long_long_struct GTY(())
2360 {
2361 unsigned long hi;
2362 unsigned long low;
2363 }
2364 dw_long_long_const;
2365
2366 /* Describe a floating point constant value. */
2367
2368 typedef struct dw_fp_struct GTY(())
2369 {
2370 long * GTY((length ("%h.length"))) array;
2371 unsigned length;
2372 }
2373 dw_float_const;
2374
2375 /* The dw_val_node describes an attribute's value, as it is
2376 represented internally. */
2377
2378 typedef struct dw_val_struct GTY(())
2379 {
2380 enum dw_val_class val_class;
2381 union dw_val_struct_union
2382 {
2383 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2384 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2385 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2386 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2387 HOST_WIDE_INT GTY ((default (""))) val_int;
2388 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2389 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2390 dw_float_const GTY ((tag ("dw_val_class_float"))) val_float;
2391 struct dw_val_die_union
2392 {
2393 dw_die_ref die;
2394 int external;
2395 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2396 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2397 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2398 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2399 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2400 }
2401 GTY ((desc ("%1.val_class"))) v;
2402 }
2403 dw_val_node;
2404
2405 /* Locations in memory are described using a sequence of stack machine
2406 operations. */
2407
2408 typedef struct dw_loc_descr_struct GTY(())
2409 {
2410 dw_loc_descr_ref dw_loc_next;
2411 enum dwarf_location_atom dw_loc_opc;
2412 dw_val_node dw_loc_oprnd1;
2413 dw_val_node dw_loc_oprnd2;
2414 int dw_loc_addr;
2415 }
2416 dw_loc_descr_node;
2417
2418 /* Location lists are ranges + location descriptions for that range,
2419 so you can track variables that are in different places over
2420 their entire life. */
2421 typedef struct dw_loc_list_struct GTY(())
2422 {
2423 dw_loc_list_ref dw_loc_next;
2424 const char *begin; /* Label for begin address of range */
2425 const char *end; /* Label for end address of range */
2426 char *ll_symbol; /* Label for beginning of location list.
2427 Only on head of list */
2428 const char *section; /* Section this loclist is relative to */
2429 dw_loc_descr_ref expr;
2430 } dw_loc_list_node;
2431
2432 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2433
2434 static const char *dwarf_stack_op_name (unsigned);
2435 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2436 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2437 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2438 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2439 static unsigned long size_of_locs (dw_loc_descr_ref);
2440 static void output_loc_operands (dw_loc_descr_ref);
2441 static void output_loc_sequence (dw_loc_descr_ref);
2442
2443 /* Convert a DWARF stack opcode into its string name. */
2444
2445 static const char *
2446 dwarf_stack_op_name (unsigned int op)
2447 {
2448 switch (op)
2449 {
2450 case DW_OP_addr:
2451 case INTERNAL_DW_OP_tls_addr:
2452 return "DW_OP_addr";
2453 case DW_OP_deref:
2454 return "DW_OP_deref";
2455 case DW_OP_const1u:
2456 return "DW_OP_const1u";
2457 case DW_OP_const1s:
2458 return "DW_OP_const1s";
2459 case DW_OP_const2u:
2460 return "DW_OP_const2u";
2461 case DW_OP_const2s:
2462 return "DW_OP_const2s";
2463 case DW_OP_const4u:
2464 return "DW_OP_const4u";
2465 case DW_OP_const4s:
2466 return "DW_OP_const4s";
2467 case DW_OP_const8u:
2468 return "DW_OP_const8u";
2469 case DW_OP_const8s:
2470 return "DW_OP_const8s";
2471 case DW_OP_constu:
2472 return "DW_OP_constu";
2473 case DW_OP_consts:
2474 return "DW_OP_consts";
2475 case DW_OP_dup:
2476 return "DW_OP_dup";
2477 case DW_OP_drop:
2478 return "DW_OP_drop";
2479 case DW_OP_over:
2480 return "DW_OP_over";
2481 case DW_OP_pick:
2482 return "DW_OP_pick";
2483 case DW_OP_swap:
2484 return "DW_OP_swap";
2485 case DW_OP_rot:
2486 return "DW_OP_rot";
2487 case DW_OP_xderef:
2488 return "DW_OP_xderef";
2489 case DW_OP_abs:
2490 return "DW_OP_abs";
2491 case DW_OP_and:
2492 return "DW_OP_and";
2493 case DW_OP_div:
2494 return "DW_OP_div";
2495 case DW_OP_minus:
2496 return "DW_OP_minus";
2497 case DW_OP_mod:
2498 return "DW_OP_mod";
2499 case DW_OP_mul:
2500 return "DW_OP_mul";
2501 case DW_OP_neg:
2502 return "DW_OP_neg";
2503 case DW_OP_not:
2504 return "DW_OP_not";
2505 case DW_OP_or:
2506 return "DW_OP_or";
2507 case DW_OP_plus:
2508 return "DW_OP_plus";
2509 case DW_OP_plus_uconst:
2510 return "DW_OP_plus_uconst";
2511 case DW_OP_shl:
2512 return "DW_OP_shl";
2513 case DW_OP_shr:
2514 return "DW_OP_shr";
2515 case DW_OP_shra:
2516 return "DW_OP_shra";
2517 case DW_OP_xor:
2518 return "DW_OP_xor";
2519 case DW_OP_bra:
2520 return "DW_OP_bra";
2521 case DW_OP_eq:
2522 return "DW_OP_eq";
2523 case DW_OP_ge:
2524 return "DW_OP_ge";
2525 case DW_OP_gt:
2526 return "DW_OP_gt";
2527 case DW_OP_le:
2528 return "DW_OP_le";
2529 case DW_OP_lt:
2530 return "DW_OP_lt";
2531 case DW_OP_ne:
2532 return "DW_OP_ne";
2533 case DW_OP_skip:
2534 return "DW_OP_skip";
2535 case DW_OP_lit0:
2536 return "DW_OP_lit0";
2537 case DW_OP_lit1:
2538 return "DW_OP_lit1";
2539 case DW_OP_lit2:
2540 return "DW_OP_lit2";
2541 case DW_OP_lit3:
2542 return "DW_OP_lit3";
2543 case DW_OP_lit4:
2544 return "DW_OP_lit4";
2545 case DW_OP_lit5:
2546 return "DW_OP_lit5";
2547 case DW_OP_lit6:
2548 return "DW_OP_lit6";
2549 case DW_OP_lit7:
2550 return "DW_OP_lit7";
2551 case DW_OP_lit8:
2552 return "DW_OP_lit8";
2553 case DW_OP_lit9:
2554 return "DW_OP_lit9";
2555 case DW_OP_lit10:
2556 return "DW_OP_lit10";
2557 case DW_OP_lit11:
2558 return "DW_OP_lit11";
2559 case DW_OP_lit12:
2560 return "DW_OP_lit12";
2561 case DW_OP_lit13:
2562 return "DW_OP_lit13";
2563 case DW_OP_lit14:
2564 return "DW_OP_lit14";
2565 case DW_OP_lit15:
2566 return "DW_OP_lit15";
2567 case DW_OP_lit16:
2568 return "DW_OP_lit16";
2569 case DW_OP_lit17:
2570 return "DW_OP_lit17";
2571 case DW_OP_lit18:
2572 return "DW_OP_lit18";
2573 case DW_OP_lit19:
2574 return "DW_OP_lit19";
2575 case DW_OP_lit20:
2576 return "DW_OP_lit20";
2577 case DW_OP_lit21:
2578 return "DW_OP_lit21";
2579 case DW_OP_lit22:
2580 return "DW_OP_lit22";
2581 case DW_OP_lit23:
2582 return "DW_OP_lit23";
2583 case DW_OP_lit24:
2584 return "DW_OP_lit24";
2585 case DW_OP_lit25:
2586 return "DW_OP_lit25";
2587 case DW_OP_lit26:
2588 return "DW_OP_lit26";
2589 case DW_OP_lit27:
2590 return "DW_OP_lit27";
2591 case DW_OP_lit28:
2592 return "DW_OP_lit28";
2593 case DW_OP_lit29:
2594 return "DW_OP_lit29";
2595 case DW_OP_lit30:
2596 return "DW_OP_lit30";
2597 case DW_OP_lit31:
2598 return "DW_OP_lit31";
2599 case DW_OP_reg0:
2600 return "DW_OP_reg0";
2601 case DW_OP_reg1:
2602 return "DW_OP_reg1";
2603 case DW_OP_reg2:
2604 return "DW_OP_reg2";
2605 case DW_OP_reg3:
2606 return "DW_OP_reg3";
2607 case DW_OP_reg4:
2608 return "DW_OP_reg4";
2609 case DW_OP_reg5:
2610 return "DW_OP_reg5";
2611 case DW_OP_reg6:
2612 return "DW_OP_reg6";
2613 case DW_OP_reg7:
2614 return "DW_OP_reg7";
2615 case DW_OP_reg8:
2616 return "DW_OP_reg8";
2617 case DW_OP_reg9:
2618 return "DW_OP_reg9";
2619 case DW_OP_reg10:
2620 return "DW_OP_reg10";
2621 case DW_OP_reg11:
2622 return "DW_OP_reg11";
2623 case DW_OP_reg12:
2624 return "DW_OP_reg12";
2625 case DW_OP_reg13:
2626 return "DW_OP_reg13";
2627 case DW_OP_reg14:
2628 return "DW_OP_reg14";
2629 case DW_OP_reg15:
2630 return "DW_OP_reg15";
2631 case DW_OP_reg16:
2632 return "DW_OP_reg16";
2633 case DW_OP_reg17:
2634 return "DW_OP_reg17";
2635 case DW_OP_reg18:
2636 return "DW_OP_reg18";
2637 case DW_OP_reg19:
2638 return "DW_OP_reg19";
2639 case DW_OP_reg20:
2640 return "DW_OP_reg20";
2641 case DW_OP_reg21:
2642 return "DW_OP_reg21";
2643 case DW_OP_reg22:
2644 return "DW_OP_reg22";
2645 case DW_OP_reg23:
2646 return "DW_OP_reg23";
2647 case DW_OP_reg24:
2648 return "DW_OP_reg24";
2649 case DW_OP_reg25:
2650 return "DW_OP_reg25";
2651 case DW_OP_reg26:
2652 return "DW_OP_reg26";
2653 case DW_OP_reg27:
2654 return "DW_OP_reg27";
2655 case DW_OP_reg28:
2656 return "DW_OP_reg28";
2657 case DW_OP_reg29:
2658 return "DW_OP_reg29";
2659 case DW_OP_reg30:
2660 return "DW_OP_reg30";
2661 case DW_OP_reg31:
2662 return "DW_OP_reg31";
2663 case DW_OP_breg0:
2664 return "DW_OP_breg0";
2665 case DW_OP_breg1:
2666 return "DW_OP_breg1";
2667 case DW_OP_breg2:
2668 return "DW_OP_breg2";
2669 case DW_OP_breg3:
2670 return "DW_OP_breg3";
2671 case DW_OP_breg4:
2672 return "DW_OP_breg4";
2673 case DW_OP_breg5:
2674 return "DW_OP_breg5";
2675 case DW_OP_breg6:
2676 return "DW_OP_breg6";
2677 case DW_OP_breg7:
2678 return "DW_OP_breg7";
2679 case DW_OP_breg8:
2680 return "DW_OP_breg8";
2681 case DW_OP_breg9:
2682 return "DW_OP_breg9";
2683 case DW_OP_breg10:
2684 return "DW_OP_breg10";
2685 case DW_OP_breg11:
2686 return "DW_OP_breg11";
2687 case DW_OP_breg12:
2688 return "DW_OP_breg12";
2689 case DW_OP_breg13:
2690 return "DW_OP_breg13";
2691 case DW_OP_breg14:
2692 return "DW_OP_breg14";
2693 case DW_OP_breg15:
2694 return "DW_OP_breg15";
2695 case DW_OP_breg16:
2696 return "DW_OP_breg16";
2697 case DW_OP_breg17:
2698 return "DW_OP_breg17";
2699 case DW_OP_breg18:
2700 return "DW_OP_breg18";
2701 case DW_OP_breg19:
2702 return "DW_OP_breg19";
2703 case DW_OP_breg20:
2704 return "DW_OP_breg20";
2705 case DW_OP_breg21:
2706 return "DW_OP_breg21";
2707 case DW_OP_breg22:
2708 return "DW_OP_breg22";
2709 case DW_OP_breg23:
2710 return "DW_OP_breg23";
2711 case DW_OP_breg24:
2712 return "DW_OP_breg24";
2713 case DW_OP_breg25:
2714 return "DW_OP_breg25";
2715 case DW_OP_breg26:
2716 return "DW_OP_breg26";
2717 case DW_OP_breg27:
2718 return "DW_OP_breg27";
2719 case DW_OP_breg28:
2720 return "DW_OP_breg28";
2721 case DW_OP_breg29:
2722 return "DW_OP_breg29";
2723 case DW_OP_breg30:
2724 return "DW_OP_breg30";
2725 case DW_OP_breg31:
2726 return "DW_OP_breg31";
2727 case DW_OP_regx:
2728 return "DW_OP_regx";
2729 case DW_OP_fbreg:
2730 return "DW_OP_fbreg";
2731 case DW_OP_bregx:
2732 return "DW_OP_bregx";
2733 case DW_OP_piece:
2734 return "DW_OP_piece";
2735 case DW_OP_deref_size:
2736 return "DW_OP_deref_size";
2737 case DW_OP_xderef_size:
2738 return "DW_OP_xderef_size";
2739 case DW_OP_nop:
2740 return "DW_OP_nop";
2741 case DW_OP_push_object_address:
2742 return "DW_OP_push_object_address";
2743 case DW_OP_call2:
2744 return "DW_OP_call2";
2745 case DW_OP_call4:
2746 return "DW_OP_call4";
2747 case DW_OP_call_ref:
2748 return "DW_OP_call_ref";
2749 case DW_OP_GNU_push_tls_address:
2750 return "DW_OP_GNU_push_tls_address";
2751 default:
2752 return "OP_<unknown>";
2753 }
2754 }
2755
2756 /* Return a pointer to a newly allocated location description. Location
2757 descriptions are simple expression terms that can be strung
2758 together to form more complicated location (address) descriptions. */
2759
2760 static inline dw_loc_descr_ref
2761 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2762 unsigned HOST_WIDE_INT oprnd2)
2763 {
2764 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2765
2766 descr->dw_loc_opc = op;
2767 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2768 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2769 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2770 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2771
2772 return descr;
2773 }
2774
2775
2776 /* Add a location description term to a location description expression. */
2777
2778 static inline void
2779 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
2780 {
2781 dw_loc_descr_ref *d;
2782
2783 /* Find the end of the chain. */
2784 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2785 ;
2786
2787 *d = descr;
2788 }
2789
2790 /* Return the size of a location descriptor. */
2791
2792 static unsigned long
2793 size_of_loc_descr (dw_loc_descr_ref loc)
2794 {
2795 unsigned long size = 1;
2796
2797 switch (loc->dw_loc_opc)
2798 {
2799 case DW_OP_addr:
2800 case INTERNAL_DW_OP_tls_addr:
2801 size += DWARF2_ADDR_SIZE;
2802 break;
2803 case DW_OP_const1u:
2804 case DW_OP_const1s:
2805 size += 1;
2806 break;
2807 case DW_OP_const2u:
2808 case DW_OP_const2s:
2809 size += 2;
2810 break;
2811 case DW_OP_const4u:
2812 case DW_OP_const4s:
2813 size += 4;
2814 break;
2815 case DW_OP_const8u:
2816 case DW_OP_const8s:
2817 size += 8;
2818 break;
2819 case DW_OP_constu:
2820 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2821 break;
2822 case DW_OP_consts:
2823 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2824 break;
2825 case DW_OP_pick:
2826 size += 1;
2827 break;
2828 case DW_OP_plus_uconst:
2829 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2830 break;
2831 case DW_OP_skip:
2832 case DW_OP_bra:
2833 size += 2;
2834 break;
2835 case DW_OP_breg0:
2836 case DW_OP_breg1:
2837 case DW_OP_breg2:
2838 case DW_OP_breg3:
2839 case DW_OP_breg4:
2840 case DW_OP_breg5:
2841 case DW_OP_breg6:
2842 case DW_OP_breg7:
2843 case DW_OP_breg8:
2844 case DW_OP_breg9:
2845 case DW_OP_breg10:
2846 case DW_OP_breg11:
2847 case DW_OP_breg12:
2848 case DW_OP_breg13:
2849 case DW_OP_breg14:
2850 case DW_OP_breg15:
2851 case DW_OP_breg16:
2852 case DW_OP_breg17:
2853 case DW_OP_breg18:
2854 case DW_OP_breg19:
2855 case DW_OP_breg20:
2856 case DW_OP_breg21:
2857 case DW_OP_breg22:
2858 case DW_OP_breg23:
2859 case DW_OP_breg24:
2860 case DW_OP_breg25:
2861 case DW_OP_breg26:
2862 case DW_OP_breg27:
2863 case DW_OP_breg28:
2864 case DW_OP_breg29:
2865 case DW_OP_breg30:
2866 case DW_OP_breg31:
2867 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2868 break;
2869 case DW_OP_regx:
2870 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2871 break;
2872 case DW_OP_fbreg:
2873 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2874 break;
2875 case DW_OP_bregx:
2876 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2877 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2878 break;
2879 case DW_OP_piece:
2880 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2881 break;
2882 case DW_OP_deref_size:
2883 case DW_OP_xderef_size:
2884 size += 1;
2885 break;
2886 case DW_OP_call2:
2887 size += 2;
2888 break;
2889 case DW_OP_call4:
2890 size += 4;
2891 break;
2892 case DW_OP_call_ref:
2893 size += DWARF2_ADDR_SIZE;
2894 break;
2895 default:
2896 break;
2897 }
2898
2899 return size;
2900 }
2901
2902 /* Return the size of a series of location descriptors. */
2903
2904 static unsigned long
2905 size_of_locs (dw_loc_descr_ref loc)
2906 {
2907 unsigned long size;
2908
2909 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2910 {
2911 loc->dw_loc_addr = size;
2912 size += size_of_loc_descr (loc);
2913 }
2914
2915 return size;
2916 }
2917
2918 /* Output location description stack opcode's operands (if any). */
2919
2920 static void
2921 output_loc_operands (dw_loc_descr_ref loc)
2922 {
2923 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2924 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2925
2926 switch (loc->dw_loc_opc)
2927 {
2928 #ifdef DWARF2_DEBUGGING_INFO
2929 case DW_OP_addr:
2930 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2931 break;
2932 case DW_OP_const2u:
2933 case DW_OP_const2s:
2934 dw2_asm_output_data (2, val1->v.val_int, NULL);
2935 break;
2936 case DW_OP_const4u:
2937 case DW_OP_const4s:
2938 dw2_asm_output_data (4, val1->v.val_int, NULL);
2939 break;
2940 case DW_OP_const8u:
2941 case DW_OP_const8s:
2942 if (HOST_BITS_PER_LONG < 64)
2943 abort ();
2944 dw2_asm_output_data (8, val1->v.val_int, NULL);
2945 break;
2946 case DW_OP_skip:
2947 case DW_OP_bra:
2948 {
2949 int offset;
2950
2951 if (val1->val_class == dw_val_class_loc)
2952 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2953 else
2954 abort ();
2955
2956 dw2_asm_output_data (2, offset, NULL);
2957 }
2958 break;
2959 #else
2960 case DW_OP_addr:
2961 case DW_OP_const2u:
2962 case DW_OP_const2s:
2963 case DW_OP_const4u:
2964 case DW_OP_const4s:
2965 case DW_OP_const8u:
2966 case DW_OP_const8s:
2967 case DW_OP_skip:
2968 case DW_OP_bra:
2969 /* We currently don't make any attempt to make sure these are
2970 aligned properly like we do for the main unwind info, so
2971 don't support emitting things larger than a byte if we're
2972 only doing unwinding. */
2973 abort ();
2974 #endif
2975 case DW_OP_const1u:
2976 case DW_OP_const1s:
2977 dw2_asm_output_data (1, val1->v.val_int, NULL);
2978 break;
2979 case DW_OP_constu:
2980 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2981 break;
2982 case DW_OP_consts:
2983 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2984 break;
2985 case DW_OP_pick:
2986 dw2_asm_output_data (1, val1->v.val_int, NULL);
2987 break;
2988 case DW_OP_plus_uconst:
2989 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2990 break;
2991 case DW_OP_breg0:
2992 case DW_OP_breg1:
2993 case DW_OP_breg2:
2994 case DW_OP_breg3:
2995 case DW_OP_breg4:
2996 case DW_OP_breg5:
2997 case DW_OP_breg6:
2998 case DW_OP_breg7:
2999 case DW_OP_breg8:
3000 case DW_OP_breg9:
3001 case DW_OP_breg10:
3002 case DW_OP_breg11:
3003 case DW_OP_breg12:
3004 case DW_OP_breg13:
3005 case DW_OP_breg14:
3006 case DW_OP_breg15:
3007 case DW_OP_breg16:
3008 case DW_OP_breg17:
3009 case DW_OP_breg18:
3010 case DW_OP_breg19:
3011 case DW_OP_breg20:
3012 case DW_OP_breg21:
3013 case DW_OP_breg22:
3014 case DW_OP_breg23:
3015 case DW_OP_breg24:
3016 case DW_OP_breg25:
3017 case DW_OP_breg26:
3018 case DW_OP_breg27:
3019 case DW_OP_breg28:
3020 case DW_OP_breg29:
3021 case DW_OP_breg30:
3022 case DW_OP_breg31:
3023 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3024 break;
3025 case DW_OP_regx:
3026 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3027 break;
3028 case DW_OP_fbreg:
3029 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3030 break;
3031 case DW_OP_bregx:
3032 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3033 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3034 break;
3035 case DW_OP_piece:
3036 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3037 break;
3038 case DW_OP_deref_size:
3039 case DW_OP_xderef_size:
3040 dw2_asm_output_data (1, val1->v.val_int, NULL);
3041 break;
3042
3043 case INTERNAL_DW_OP_tls_addr:
3044 #ifdef ASM_OUTPUT_DWARF_DTPREL
3045 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3046 val1->v.val_addr);
3047 fputc ('\n', asm_out_file);
3048 #else
3049 abort ();
3050 #endif
3051 break;
3052
3053 default:
3054 /* Other codes have no operands. */
3055 break;
3056 }
3057 }
3058
3059 /* Output a sequence of location operations. */
3060
3061 static void
3062 output_loc_sequence (dw_loc_descr_ref loc)
3063 {
3064 for (; loc != NULL; loc = loc->dw_loc_next)
3065 {
3066 /* Output the opcode. */
3067 dw2_asm_output_data (1, loc->dw_loc_opc,
3068 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3069
3070 /* Output the operand(s) (if any). */
3071 output_loc_operands (loc);
3072 }
3073 }
3074
3075 /* This routine will generate the correct assembly data for a location
3076 description based on a cfi entry with a complex address. */
3077
3078 static void
3079 output_cfa_loc (dw_cfi_ref cfi)
3080 {
3081 dw_loc_descr_ref loc;
3082 unsigned long size;
3083
3084 /* Output the size of the block. */
3085 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3086 size = size_of_locs (loc);
3087 dw2_asm_output_data_uleb128 (size, NULL);
3088
3089 /* Now output the operations themselves. */
3090 output_loc_sequence (loc);
3091 }
3092
3093 /* This function builds a dwarf location descriptor sequence from
3094 a dw_cfa_location. */
3095
3096 static struct dw_loc_descr_struct *
3097 build_cfa_loc (dw_cfa_location *cfa)
3098 {
3099 struct dw_loc_descr_struct *head, *tmp;
3100
3101 if (cfa->indirect == 0)
3102 abort ();
3103
3104 if (cfa->base_offset)
3105 {
3106 if (cfa->reg <= 31)
3107 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3108 else
3109 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3110 }
3111 else if (cfa->reg <= 31)
3112 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3113 else
3114 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3115
3116 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3117 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3118 add_loc_descr (&head, tmp);
3119 if (cfa->offset != 0)
3120 {
3121 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3122 add_loc_descr (&head, tmp);
3123 }
3124
3125 return head;
3126 }
3127
3128 /* This function fills in aa dw_cfa_location structure from a dwarf location
3129 descriptor sequence. */
3130
3131 static void
3132 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3133 {
3134 struct dw_loc_descr_struct *ptr;
3135 cfa->offset = 0;
3136 cfa->base_offset = 0;
3137 cfa->indirect = 0;
3138 cfa->reg = -1;
3139
3140 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3141 {
3142 enum dwarf_location_atom op = ptr->dw_loc_opc;
3143
3144 switch (op)
3145 {
3146 case DW_OP_reg0:
3147 case DW_OP_reg1:
3148 case DW_OP_reg2:
3149 case DW_OP_reg3:
3150 case DW_OP_reg4:
3151 case DW_OP_reg5:
3152 case DW_OP_reg6:
3153 case DW_OP_reg7:
3154 case DW_OP_reg8:
3155 case DW_OP_reg9:
3156 case DW_OP_reg10:
3157 case DW_OP_reg11:
3158 case DW_OP_reg12:
3159 case DW_OP_reg13:
3160 case DW_OP_reg14:
3161 case DW_OP_reg15:
3162 case DW_OP_reg16:
3163 case DW_OP_reg17:
3164 case DW_OP_reg18:
3165 case DW_OP_reg19:
3166 case DW_OP_reg20:
3167 case DW_OP_reg21:
3168 case DW_OP_reg22:
3169 case DW_OP_reg23:
3170 case DW_OP_reg24:
3171 case DW_OP_reg25:
3172 case DW_OP_reg26:
3173 case DW_OP_reg27:
3174 case DW_OP_reg28:
3175 case DW_OP_reg29:
3176 case DW_OP_reg30:
3177 case DW_OP_reg31:
3178 cfa->reg = op - DW_OP_reg0;
3179 break;
3180 case DW_OP_regx:
3181 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3182 break;
3183 case DW_OP_breg0:
3184 case DW_OP_breg1:
3185 case DW_OP_breg2:
3186 case DW_OP_breg3:
3187 case DW_OP_breg4:
3188 case DW_OP_breg5:
3189 case DW_OP_breg6:
3190 case DW_OP_breg7:
3191 case DW_OP_breg8:
3192 case DW_OP_breg9:
3193 case DW_OP_breg10:
3194 case DW_OP_breg11:
3195 case DW_OP_breg12:
3196 case DW_OP_breg13:
3197 case DW_OP_breg14:
3198 case DW_OP_breg15:
3199 case DW_OP_breg16:
3200 case DW_OP_breg17:
3201 case DW_OP_breg18:
3202 case DW_OP_breg19:
3203 case DW_OP_breg20:
3204 case DW_OP_breg21:
3205 case DW_OP_breg22:
3206 case DW_OP_breg23:
3207 case DW_OP_breg24:
3208 case DW_OP_breg25:
3209 case DW_OP_breg26:
3210 case DW_OP_breg27:
3211 case DW_OP_breg28:
3212 case DW_OP_breg29:
3213 case DW_OP_breg30:
3214 case DW_OP_breg31:
3215 cfa->reg = op - DW_OP_breg0;
3216 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3217 break;
3218 case DW_OP_bregx:
3219 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3220 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3221 break;
3222 case DW_OP_deref:
3223 cfa->indirect = 1;
3224 break;
3225 case DW_OP_plus_uconst:
3226 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3227 break;
3228 default:
3229 internal_error ("DW_LOC_OP %s not implemented\n",
3230 dwarf_stack_op_name (ptr->dw_loc_opc));
3231 }
3232 }
3233 }
3234 #endif /* .debug_frame support */
3235 \f
3236 /* And now, the support for symbolic debugging information. */
3237 #ifdef DWARF2_DEBUGGING_INFO
3238
3239 /* .debug_str support. */
3240 static int output_indirect_string (void **, void *);
3241
3242 static void dwarf2out_init (const char *);
3243 static void dwarf2out_finish (const char *);
3244 static void dwarf2out_define (unsigned int, const char *);
3245 static void dwarf2out_undef (unsigned int, const char *);
3246 static void dwarf2out_start_source_file (unsigned, const char *);
3247 static void dwarf2out_end_source_file (unsigned);
3248 static void dwarf2out_begin_block (unsigned, unsigned);
3249 static void dwarf2out_end_block (unsigned, unsigned);
3250 static bool dwarf2out_ignore_block (tree);
3251 static void dwarf2out_global_decl (tree);
3252 static void dwarf2out_type_decl (tree, int);
3253 static void dwarf2out_imported_module_or_decl (tree, tree);
3254 static void dwarf2out_abstract_function (tree);
3255 static void dwarf2out_var_location (rtx);
3256 static void dwarf2out_begin_function (tree);
3257
3258 /* The debug hooks structure. */
3259
3260 const struct gcc_debug_hooks dwarf2_debug_hooks =
3261 {
3262 dwarf2out_init,
3263 dwarf2out_finish,
3264 dwarf2out_define,
3265 dwarf2out_undef,
3266 dwarf2out_start_source_file,
3267 dwarf2out_end_source_file,
3268 dwarf2out_begin_block,
3269 dwarf2out_end_block,
3270 dwarf2out_ignore_block,
3271 dwarf2out_source_line,
3272 dwarf2out_begin_prologue,
3273 debug_nothing_int_charstar, /* end_prologue */
3274 dwarf2out_end_epilogue,
3275 dwarf2out_begin_function,
3276 debug_nothing_int, /* end_function */
3277 dwarf2out_decl, /* function_decl */
3278 dwarf2out_global_decl,
3279 dwarf2out_type_decl, /* type_decl */
3280 dwarf2out_imported_module_or_decl,
3281 debug_nothing_tree, /* deferred_inline_function */
3282 /* The DWARF 2 backend tries to reduce debugging bloat by not
3283 emitting the abstract description of inline functions until
3284 something tries to reference them. */
3285 dwarf2out_abstract_function, /* outlining_inline_function */
3286 debug_nothing_rtx, /* label */
3287 debug_nothing_int, /* handle_pch */
3288 dwarf2out_var_location
3289 };
3290 #endif
3291 \f
3292 /* NOTE: In the comments in this file, many references are made to
3293 "Debugging Information Entries". This term is abbreviated as `DIE'
3294 throughout the remainder of this file. */
3295
3296 /* An internal representation of the DWARF output is built, and then
3297 walked to generate the DWARF debugging info. The walk of the internal
3298 representation is done after the entire program has been compiled.
3299 The types below are used to describe the internal representation. */
3300
3301 /* Various DIE's use offsets relative to the beginning of the
3302 .debug_info section to refer to each other. */
3303
3304 typedef long int dw_offset;
3305
3306 /* Define typedefs here to avoid circular dependencies. */
3307
3308 typedef struct dw_attr_struct *dw_attr_ref;
3309 typedef struct dw_line_info_struct *dw_line_info_ref;
3310 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3311 typedef struct pubname_struct *pubname_ref;
3312 typedef struct dw_ranges_struct *dw_ranges_ref;
3313
3314 /* Each entry in the line_info_table maintains the file and
3315 line number associated with the label generated for that
3316 entry. The label gives the PC value associated with
3317 the line number entry. */
3318
3319 typedef struct dw_line_info_struct GTY(())
3320 {
3321 unsigned long dw_file_num;
3322 unsigned long dw_line_num;
3323 }
3324 dw_line_info_entry;
3325
3326 /* Line information for functions in separate sections; each one gets its
3327 own sequence. */
3328 typedef struct dw_separate_line_info_struct GTY(())
3329 {
3330 unsigned long dw_file_num;
3331 unsigned long dw_line_num;
3332 unsigned long function;
3333 }
3334 dw_separate_line_info_entry;
3335
3336 /* Each DIE attribute has a field specifying the attribute kind,
3337 a link to the next attribute in the chain, and an attribute value.
3338 Attributes are typically linked below the DIE they modify. */
3339
3340 typedef struct dw_attr_struct GTY(())
3341 {
3342 enum dwarf_attribute dw_attr;
3343 dw_attr_ref dw_attr_next;
3344 dw_val_node dw_attr_val;
3345 }
3346 dw_attr_node;
3347
3348 /* The Debugging Information Entry (DIE) structure */
3349
3350 typedef struct die_struct GTY(())
3351 {
3352 enum dwarf_tag die_tag;
3353 char *die_symbol;
3354 dw_attr_ref die_attr;
3355 dw_die_ref die_parent;
3356 dw_die_ref die_child;
3357 dw_die_ref die_sib;
3358 dw_die_ref die_definition; /* ref from a specification to its definition */
3359 dw_offset die_offset;
3360 unsigned long die_abbrev;
3361 int die_mark;
3362 unsigned int decl_id;
3363 }
3364 die_node;
3365
3366 /* The pubname structure */
3367
3368 typedef struct pubname_struct GTY(())
3369 {
3370 dw_die_ref die;
3371 char *name;
3372 }
3373 pubname_entry;
3374
3375 struct dw_ranges_struct GTY(())
3376 {
3377 int block_num;
3378 };
3379
3380 /* The limbo die list structure. */
3381 typedef struct limbo_die_struct GTY(())
3382 {
3383 dw_die_ref die;
3384 tree created_for;
3385 struct limbo_die_struct *next;
3386 }
3387 limbo_die_node;
3388
3389 /* How to start an assembler comment. */
3390 #ifndef ASM_COMMENT_START
3391 #define ASM_COMMENT_START ";#"
3392 #endif
3393
3394 /* Define a macro which returns nonzero for a TYPE_DECL which was
3395 implicitly generated for a tagged type.
3396
3397 Note that unlike the gcc front end (which generates a NULL named
3398 TYPE_DECL node for each complete tagged type, each array type, and
3399 each function type node created) the g++ front end generates a
3400 _named_ TYPE_DECL node for each tagged type node created.
3401 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3402 generate a DW_TAG_typedef DIE for them. */
3403
3404 #define TYPE_DECL_IS_STUB(decl) \
3405 (DECL_NAME (decl) == NULL_TREE \
3406 || (DECL_ARTIFICIAL (decl) \
3407 && is_tagged_type (TREE_TYPE (decl)) \
3408 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3409 /* This is necessary for stub decls that \
3410 appear in nested inline functions. */ \
3411 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3412 && (decl_ultimate_origin (decl) \
3413 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3414
3415 /* Information concerning the compilation unit's programming
3416 language, and compiler version. */
3417
3418 /* Fixed size portion of the DWARF compilation unit header. */
3419 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3420 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3421
3422 /* Fixed size portion of public names info. */
3423 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3424
3425 /* Fixed size portion of the address range info. */
3426 #define DWARF_ARANGES_HEADER_SIZE \
3427 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3428 DWARF2_ADDR_SIZE * 2) \
3429 - DWARF_INITIAL_LENGTH_SIZE)
3430
3431 /* Size of padding portion in the address range info. It must be
3432 aligned to twice the pointer size. */
3433 #define DWARF_ARANGES_PAD_SIZE \
3434 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3435 DWARF2_ADDR_SIZE * 2) \
3436 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3437
3438 /* Use assembler line directives if available. */
3439 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3440 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3441 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3442 #else
3443 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3444 #endif
3445 #endif
3446
3447 /* Minimum line offset in a special line info. opcode.
3448 This value was chosen to give a reasonable range of values. */
3449 #define DWARF_LINE_BASE -10
3450
3451 /* First special line opcode - leave room for the standard opcodes. */
3452 #define DWARF_LINE_OPCODE_BASE 10
3453
3454 /* Range of line offsets in a special line info. opcode. */
3455 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3456
3457 /* Flag that indicates the initial value of the is_stmt_start flag.
3458 In the present implementation, we do not mark any lines as
3459 the beginning of a source statement, because that information
3460 is not made available by the GCC front-end. */
3461 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3462
3463 #ifdef DWARF2_DEBUGGING_INFO
3464 /* This location is used by calc_die_sizes() to keep track
3465 the offset of each DIE within the .debug_info section. */
3466 static unsigned long next_die_offset;
3467 #endif
3468
3469 /* Record the root of the DIE's built for the current compilation unit. */
3470 static GTY(()) dw_die_ref comp_unit_die;
3471
3472 /* A list of DIEs with a NULL parent waiting to be relocated. */
3473 static GTY(()) limbo_die_node *limbo_die_list;
3474
3475 /* Filenames referenced by this compilation unit. */
3476 static GTY(()) varray_type file_table;
3477 static GTY(()) varray_type file_table_emitted;
3478 static GTY(()) size_t file_table_last_lookup_index;
3479
3480 /* A hash table of references to DIE's that describe declarations.
3481 The key is a DECL_UID() which is a unique number identifying each decl. */
3482 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3483
3484 /* Node of the variable location list. */
3485 struct var_loc_node GTY ((chain_next ("%h.next")))
3486 {
3487 rtx GTY (()) var_loc_note;
3488 const char * GTY (()) label;
3489 struct var_loc_node * GTY (()) next;
3490 };
3491
3492 /* Variable location list. */
3493 struct var_loc_list_def GTY (())
3494 {
3495 struct var_loc_node * GTY (()) first;
3496
3497 /* Do not mark the last element of the chained list because
3498 it is marked through the chain. */
3499 struct var_loc_node * GTY ((skip ("%h"))) last;
3500
3501 /* DECL_UID of the variable decl. */
3502 unsigned int decl_id;
3503 };
3504 typedef struct var_loc_list_def var_loc_list;
3505
3506
3507 /* Table of decl location linked lists. */
3508 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3509
3510 /* A pointer to the base of a list of references to DIE's that
3511 are uniquely identified by their tag, presence/absence of
3512 children DIE's, and list of attribute/value pairs. */
3513 static GTY((length ("abbrev_die_table_allocated")))
3514 dw_die_ref *abbrev_die_table;
3515
3516 /* Number of elements currently allocated for abbrev_die_table. */
3517 static GTY(()) unsigned abbrev_die_table_allocated;
3518
3519 /* Number of elements in type_die_table currently in use. */
3520 static GTY(()) unsigned abbrev_die_table_in_use;
3521
3522 /* Size (in elements) of increments by which we may expand the
3523 abbrev_die_table. */
3524 #define ABBREV_DIE_TABLE_INCREMENT 256
3525
3526 /* A pointer to the base of a table that contains line information
3527 for each source code line in .text in the compilation unit. */
3528 static GTY((length ("line_info_table_allocated")))
3529 dw_line_info_ref line_info_table;
3530
3531 /* Number of elements currently allocated for line_info_table. */
3532 static GTY(()) unsigned line_info_table_allocated;
3533
3534 /* Number of elements in line_info_table currently in use. */
3535 static GTY(()) unsigned line_info_table_in_use;
3536
3537 /* A pointer to the base of a table that contains line information
3538 for each source code line outside of .text in the compilation unit. */
3539 static GTY ((length ("separate_line_info_table_allocated")))
3540 dw_separate_line_info_ref separate_line_info_table;
3541
3542 /* Number of elements currently allocated for separate_line_info_table. */
3543 static GTY(()) unsigned separate_line_info_table_allocated;
3544
3545 /* Number of elements in separate_line_info_table currently in use. */
3546 static GTY(()) unsigned separate_line_info_table_in_use;
3547
3548 /* Size (in elements) of increments by which we may expand the
3549 line_info_table. */
3550 #define LINE_INFO_TABLE_INCREMENT 1024
3551
3552 /* A pointer to the base of a table that contains a list of publicly
3553 accessible names. */
3554 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3555
3556 /* Number of elements currently allocated for pubname_table. */
3557 static GTY(()) unsigned pubname_table_allocated;
3558
3559 /* Number of elements in pubname_table currently in use. */
3560 static GTY(()) unsigned pubname_table_in_use;
3561
3562 /* Size (in elements) of increments by which we may expand the
3563 pubname_table. */
3564 #define PUBNAME_TABLE_INCREMENT 64
3565
3566 /* Array of dies for which we should generate .debug_arange info. */
3567 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3568
3569 /* Number of elements currently allocated for arange_table. */
3570 static GTY(()) unsigned arange_table_allocated;
3571
3572 /* Number of elements in arange_table currently in use. */
3573 static GTY(()) unsigned arange_table_in_use;
3574
3575 /* Size (in elements) of increments by which we may expand the
3576 arange_table. */
3577 #define ARANGE_TABLE_INCREMENT 64
3578
3579 /* Array of dies for which we should generate .debug_ranges info. */
3580 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3581
3582 /* Number of elements currently allocated for ranges_table. */
3583 static GTY(()) unsigned ranges_table_allocated;
3584
3585 /* Number of elements in ranges_table currently in use. */
3586 static GTY(()) unsigned ranges_table_in_use;
3587
3588 /* Size (in elements) of increments by which we may expand the
3589 ranges_table. */
3590 #define RANGES_TABLE_INCREMENT 64
3591
3592 /* Whether we have location lists that need outputting */
3593 static GTY(()) unsigned have_location_lists;
3594
3595 /* Unique label counter. */
3596 static GTY(()) unsigned int loclabel_num;
3597
3598 #ifdef DWARF2_DEBUGGING_INFO
3599 /* Record whether the function being analyzed contains inlined functions. */
3600 static int current_function_has_inlines;
3601 #endif
3602 #if 0 && defined (MIPS_DEBUGGING_INFO)
3603 static int comp_unit_has_inlines;
3604 #endif
3605
3606 /* Number of file tables emitted in maybe_emit_file(). */
3607 static GTY(()) int emitcount = 0;
3608
3609 /* Number of internal labels generated by gen_internal_sym(). */
3610 static GTY(()) int label_num;
3611
3612 #ifdef DWARF2_DEBUGGING_INFO
3613
3614 /* Forward declarations for functions defined in this file. */
3615
3616 static int is_pseudo_reg (rtx);
3617 static tree type_main_variant (tree);
3618 static int is_tagged_type (tree);
3619 static const char *dwarf_tag_name (unsigned);
3620 static const char *dwarf_attr_name (unsigned);
3621 static const char *dwarf_form_name (unsigned);
3622 #if 0
3623 static const char *dwarf_type_encoding_name (unsigned);
3624 #endif
3625 static tree decl_ultimate_origin (tree);
3626 static tree block_ultimate_origin (tree);
3627 static tree decl_class_context (tree);
3628 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3629 static inline enum dw_val_class AT_class (dw_attr_ref);
3630 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3631 static inline unsigned AT_flag (dw_attr_ref);
3632 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3633 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3634 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3635 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3636 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3637 unsigned long);
3638 static void add_AT_float (dw_die_ref, enum dwarf_attribute, unsigned, long *);
3639 static hashval_t debug_str_do_hash (const void *);
3640 static int debug_str_eq (const void *, const void *);
3641 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3642 static inline const char *AT_string (dw_attr_ref);
3643 static int AT_string_form (dw_attr_ref);
3644 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3645 static void add_AT_specification (dw_die_ref, dw_die_ref);
3646 static inline dw_die_ref AT_ref (dw_attr_ref);
3647 static inline int AT_ref_external (dw_attr_ref);
3648 static inline void set_AT_ref_external (dw_attr_ref, int);
3649 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3650 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3651 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3652 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3653 dw_loc_list_ref);
3654 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3655 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3656 static inline rtx AT_addr (dw_attr_ref);
3657 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3658 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3659 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3660 unsigned HOST_WIDE_INT);
3661 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3662 unsigned long);
3663 static inline const char *AT_lbl (dw_attr_ref);
3664 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3665 static const char *get_AT_low_pc (dw_die_ref);
3666 static const char *get_AT_hi_pc (dw_die_ref);
3667 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3668 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3669 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3670 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3671 static bool is_c_family (void);
3672 static bool is_cxx (void);
3673 static bool is_java (void);
3674 static bool is_fortran (void);
3675 static bool is_ada (void);
3676 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3677 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3678 static inline void free_die (dw_die_ref);
3679 static void remove_children (dw_die_ref);
3680 static void add_child_die (dw_die_ref, dw_die_ref);
3681 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3682 static dw_die_ref lookup_type_die (tree);
3683 static void equate_type_number_to_die (tree, dw_die_ref);
3684 static hashval_t decl_die_table_hash (const void *);
3685 static int decl_die_table_eq (const void *, const void *);
3686 static dw_die_ref lookup_decl_die (tree);
3687 static hashval_t decl_loc_table_hash (const void *);
3688 static int decl_loc_table_eq (const void *, const void *);
3689 static var_loc_list *lookup_decl_loc (tree);
3690 static void equate_decl_number_to_die (tree, dw_die_ref);
3691 static void add_var_loc_to_decl (tree, struct var_loc_node *);
3692 static void print_spaces (FILE *);
3693 static void print_die (dw_die_ref, FILE *);
3694 static void print_dwarf_line_table (FILE *);
3695 static void reverse_die_lists (dw_die_ref);
3696 static void reverse_all_dies (dw_die_ref);
3697 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3698 static dw_die_ref pop_compile_unit (dw_die_ref);
3699 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3700 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3701 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3702 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3703 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3704 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3705 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3706 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3707 static void compute_section_prefix (dw_die_ref);
3708 static int is_type_die (dw_die_ref);
3709 static int is_comdat_die (dw_die_ref);
3710 static int is_symbol_die (dw_die_ref);
3711 static void assign_symbol_names (dw_die_ref);
3712 static void break_out_includes (dw_die_ref);
3713 static hashval_t htab_cu_hash (const void *);
3714 static int htab_cu_eq (const void *, const void *);
3715 static void htab_cu_del (void *);
3716 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3717 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3718 static void add_sibling_attributes (dw_die_ref);
3719 static void build_abbrev_table (dw_die_ref);
3720 static void output_location_lists (dw_die_ref);
3721 static int constant_size (long unsigned);
3722 static unsigned long size_of_die (dw_die_ref);
3723 static void calc_die_sizes (dw_die_ref);
3724 static void mark_dies (dw_die_ref);
3725 static void unmark_dies (dw_die_ref);
3726 static void unmark_all_dies (dw_die_ref);
3727 static unsigned long size_of_pubnames (void);
3728 static unsigned long size_of_aranges (void);
3729 static enum dwarf_form value_format (dw_attr_ref);
3730 static void output_value_format (dw_attr_ref);
3731 static void output_abbrev_section (void);
3732 static void output_die_symbol (dw_die_ref);
3733 static void output_die (dw_die_ref);
3734 static void output_compilation_unit_header (void);
3735 static void output_comp_unit (dw_die_ref, int);
3736 static const char *dwarf2_name (tree, int);
3737 static void add_pubname (tree, dw_die_ref);
3738 static void output_pubnames (void);
3739 static void add_arange (tree, dw_die_ref);
3740 static void output_aranges (void);
3741 static unsigned int add_ranges (tree);
3742 static void output_ranges (void);
3743 static void output_line_info (void);
3744 static void output_file_names (void);
3745 static dw_die_ref base_type_die (tree);
3746 static tree root_type (tree);
3747 static int is_base_type (tree);
3748 static bool is_subrange_type (tree);
3749 static dw_die_ref subrange_type_die (tree, dw_die_ref);
3750 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3751 static int type_is_enum (tree);
3752 static unsigned int reg_number (rtx);
3753 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3754 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3755 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3756 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3757 static dw_loc_descr_ref based_loc_descr (unsigned, HOST_WIDE_INT, bool);
3758 static int is_based_loc (rtx);
3759 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode, bool);
3760 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3761 static dw_loc_descr_ref loc_descriptor (rtx, bool);
3762 static dw_loc_descr_ref loc_descriptor_from_tree (tree, int);
3763 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3764 static tree field_type (tree);
3765 static unsigned int simple_type_align_in_bits (tree);
3766 static unsigned int simple_decl_align_in_bits (tree);
3767 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3768 static HOST_WIDE_INT field_byte_offset (tree);
3769 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3770 dw_loc_descr_ref);
3771 static void add_data_member_location_attribute (dw_die_ref, tree);
3772 static void add_const_value_attribute (dw_die_ref, rtx);
3773 static rtx rtl_for_decl_location (tree);
3774 static void add_location_or_const_value_attribute (dw_die_ref, tree,
3775 enum dwarf_attribute);
3776 static void tree_add_const_value_attribute (dw_die_ref, tree);
3777 static void add_name_attribute (dw_die_ref, const char *);
3778 static void add_comp_dir_attribute (dw_die_ref);
3779 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
3780 static void add_subscript_info (dw_die_ref, tree);
3781 static void add_byte_size_attribute (dw_die_ref, tree);
3782 static void add_bit_offset_attribute (dw_die_ref, tree);
3783 static void add_bit_size_attribute (dw_die_ref, tree);
3784 static void add_prototyped_attribute (dw_die_ref, tree);
3785 static void add_abstract_origin_attribute (dw_die_ref, tree);
3786 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3787 static void add_src_coords_attributes (dw_die_ref, tree);
3788 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3789 static void push_decl_scope (tree);
3790 static void pop_decl_scope (void);
3791 static dw_die_ref scope_die_for (tree, dw_die_ref);
3792 static inline int local_scope_p (dw_die_ref);
3793 static inline int class_or_namespace_scope_p (dw_die_ref);
3794 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
3795 static const char *type_tag (tree);
3796 static tree member_declared_type (tree);
3797 #if 0
3798 static const char *decl_start_label (tree);
3799 #endif
3800 static void gen_array_type_die (tree, dw_die_ref);
3801 static void gen_set_type_die (tree, dw_die_ref);
3802 #if 0
3803 static void gen_entry_point_die (tree, dw_die_ref);
3804 #endif
3805 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
3806 static void gen_inlined_structure_type_die (tree, dw_die_ref);
3807 static void gen_inlined_union_type_die (tree, dw_die_ref);
3808 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
3809 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
3810 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3811 static void gen_formal_types_die (tree, dw_die_ref);
3812 static void gen_subprogram_die (tree, dw_die_ref);
3813 static void gen_variable_die (tree, dw_die_ref);
3814 static void gen_label_die (tree, dw_die_ref);
3815 static void gen_lexical_block_die (tree, dw_die_ref, int);
3816 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
3817 static void gen_field_die (tree, dw_die_ref);
3818 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3819 static dw_die_ref gen_compile_unit_die (const char *);
3820 static void gen_string_type_die (tree, dw_die_ref);
3821 static void gen_inheritance_die (tree, tree, dw_die_ref);
3822 static void gen_member_die (tree, dw_die_ref);
3823 static void gen_struct_or_union_type_die (tree, dw_die_ref);
3824 static void gen_subroutine_type_die (tree, dw_die_ref);
3825 static void gen_typedef_die (tree, dw_die_ref);
3826 static void gen_type_die (tree, dw_die_ref);
3827 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
3828 static void gen_block_die (tree, dw_die_ref, int);
3829 static void decls_for_scope (tree, dw_die_ref, int);
3830 static int is_redundant_typedef (tree);
3831 static void gen_namespace_die (tree);
3832 static void gen_decl_die (tree, dw_die_ref);
3833 static dw_die_ref force_decl_die (tree);
3834 static dw_die_ref force_type_die (tree);
3835 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
3836 static void declare_in_namespace (tree, dw_die_ref);
3837 static unsigned lookup_filename (const char *);
3838 static void init_file_table (void);
3839 static void retry_incomplete_types (void);
3840 static void gen_type_die_for_member (tree, tree, dw_die_ref);
3841 static void splice_child_die (dw_die_ref, dw_die_ref);
3842 static int file_info_cmp (const void *, const void *);
3843 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
3844 const char *, const char *, unsigned);
3845 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
3846 const char *, const char *,
3847 const char *);
3848 static void output_loc_list (dw_loc_list_ref);
3849 static char *gen_internal_sym (const char *);
3850
3851 static void prune_unmark_dies (dw_die_ref);
3852 static void prune_unused_types_mark (dw_die_ref, int);
3853 static void prune_unused_types_walk (dw_die_ref);
3854 static void prune_unused_types_walk_attribs (dw_die_ref);
3855 static void prune_unused_types_prune (dw_die_ref);
3856 static void prune_unused_types (void);
3857 static int maybe_emit_file (int);
3858
3859 /* Section names used to hold DWARF debugging information. */
3860 #ifndef DEBUG_INFO_SECTION
3861 #define DEBUG_INFO_SECTION ".debug_info"
3862 #endif
3863 #ifndef DEBUG_ABBREV_SECTION
3864 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3865 #endif
3866 #ifndef DEBUG_ARANGES_SECTION
3867 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3868 #endif
3869 #ifndef DEBUG_MACINFO_SECTION
3870 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3871 #endif
3872 #ifndef DEBUG_LINE_SECTION
3873 #define DEBUG_LINE_SECTION ".debug_line"
3874 #endif
3875 #ifndef DEBUG_LOC_SECTION
3876 #define DEBUG_LOC_SECTION ".debug_loc"
3877 #endif
3878 #ifndef DEBUG_PUBNAMES_SECTION
3879 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3880 #endif
3881 #ifndef DEBUG_STR_SECTION
3882 #define DEBUG_STR_SECTION ".debug_str"
3883 #endif
3884 #ifndef DEBUG_RANGES_SECTION
3885 #define DEBUG_RANGES_SECTION ".debug_ranges"
3886 #endif
3887
3888 /* Standard ELF section names for compiled code and data. */
3889 #ifndef TEXT_SECTION_NAME
3890 #define TEXT_SECTION_NAME ".text"
3891 #endif
3892
3893 /* Section flags for .debug_str section. */
3894 #define DEBUG_STR_SECTION_FLAGS \
3895 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
3896 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
3897 : SECTION_DEBUG)
3898
3899 /* Labels we insert at beginning sections we can reference instead of
3900 the section names themselves. */
3901
3902 #ifndef TEXT_SECTION_LABEL
3903 #define TEXT_SECTION_LABEL "Ltext"
3904 #endif
3905 #ifndef DEBUG_LINE_SECTION_LABEL
3906 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3907 #endif
3908 #ifndef DEBUG_INFO_SECTION_LABEL
3909 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3910 #endif
3911 #ifndef DEBUG_ABBREV_SECTION_LABEL
3912 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3913 #endif
3914 #ifndef DEBUG_LOC_SECTION_LABEL
3915 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3916 #endif
3917 #ifndef DEBUG_RANGES_SECTION_LABEL
3918 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3919 #endif
3920 #ifndef DEBUG_MACINFO_SECTION_LABEL
3921 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3922 #endif
3923
3924 /* Definitions of defaults for formats and names of various special
3925 (artificial) labels which may be generated within this file (when the -g
3926 options is used and DWARF2_DEBUGGING_INFO is in effect.
3927 If necessary, these may be overridden from within the tm.h file, but
3928 typically, overriding these defaults is unnecessary. */
3929
3930 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3931 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3932 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3933 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3934 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3935 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3936 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3937 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3938
3939 #ifndef TEXT_END_LABEL
3940 #define TEXT_END_LABEL "Letext"
3941 #endif
3942 #ifndef BLOCK_BEGIN_LABEL
3943 #define BLOCK_BEGIN_LABEL "LBB"
3944 #endif
3945 #ifndef BLOCK_END_LABEL
3946 #define BLOCK_END_LABEL "LBE"
3947 #endif
3948 #ifndef LINE_CODE_LABEL
3949 #define LINE_CODE_LABEL "LM"
3950 #endif
3951 #ifndef SEPARATE_LINE_CODE_LABEL
3952 #define SEPARATE_LINE_CODE_LABEL "LSM"
3953 #endif
3954 \f
3955 /* We allow a language front-end to designate a function that is to be
3956 called to "demangle" any name before it it put into a DIE. */
3957
3958 static const char *(*demangle_name_func) (const char *);
3959
3960 void
3961 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
3962 {
3963 demangle_name_func = func;
3964 }
3965
3966 /* Test if rtl node points to a pseudo register. */
3967
3968 static inline int
3969 is_pseudo_reg (rtx rtl)
3970 {
3971 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3972 || (GET_CODE (rtl) == SUBREG
3973 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3974 }
3975
3976 /* Return a reference to a type, with its const and volatile qualifiers
3977 removed. */
3978
3979 static inline tree
3980 type_main_variant (tree type)
3981 {
3982 type = TYPE_MAIN_VARIANT (type);
3983
3984 /* ??? There really should be only one main variant among any group of
3985 variants of a given type (and all of the MAIN_VARIANT values for all
3986 members of the group should point to that one type) but sometimes the C
3987 front-end messes this up for array types, so we work around that bug
3988 here. */
3989 if (TREE_CODE (type) == ARRAY_TYPE)
3990 while (type != TYPE_MAIN_VARIANT (type))
3991 type = TYPE_MAIN_VARIANT (type);
3992
3993 return type;
3994 }
3995
3996 /* Return nonzero if the given type node represents a tagged type. */
3997
3998 static inline int
3999 is_tagged_type (tree type)
4000 {
4001 enum tree_code code = TREE_CODE (type);
4002
4003 return (code == RECORD_TYPE || code == UNION_TYPE
4004 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4005 }
4006
4007 /* Convert a DIE tag into its string name. */
4008
4009 static const char *
4010 dwarf_tag_name (unsigned int tag)
4011 {
4012 switch (tag)
4013 {
4014 case DW_TAG_padding:
4015 return "DW_TAG_padding";
4016 case DW_TAG_array_type:
4017 return "DW_TAG_array_type";
4018 case DW_TAG_class_type:
4019 return "DW_TAG_class_type";
4020 case DW_TAG_entry_point:
4021 return "DW_TAG_entry_point";
4022 case DW_TAG_enumeration_type:
4023 return "DW_TAG_enumeration_type";
4024 case DW_TAG_formal_parameter:
4025 return "DW_TAG_formal_parameter";
4026 case DW_TAG_imported_declaration:
4027 return "DW_TAG_imported_declaration";
4028 case DW_TAG_label:
4029 return "DW_TAG_label";
4030 case DW_TAG_lexical_block:
4031 return "DW_TAG_lexical_block";
4032 case DW_TAG_member:
4033 return "DW_TAG_member";
4034 case DW_TAG_pointer_type:
4035 return "DW_TAG_pointer_type";
4036 case DW_TAG_reference_type:
4037 return "DW_TAG_reference_type";
4038 case DW_TAG_compile_unit:
4039 return "DW_TAG_compile_unit";
4040 case DW_TAG_string_type:
4041 return "DW_TAG_string_type";
4042 case DW_TAG_structure_type:
4043 return "DW_TAG_structure_type";
4044 case DW_TAG_subroutine_type:
4045 return "DW_TAG_subroutine_type";
4046 case DW_TAG_typedef:
4047 return "DW_TAG_typedef";
4048 case DW_TAG_union_type:
4049 return "DW_TAG_union_type";
4050 case DW_TAG_unspecified_parameters:
4051 return "DW_TAG_unspecified_parameters";
4052 case DW_TAG_variant:
4053 return "DW_TAG_variant";
4054 case DW_TAG_common_block:
4055 return "DW_TAG_common_block";
4056 case DW_TAG_common_inclusion:
4057 return "DW_TAG_common_inclusion";
4058 case DW_TAG_inheritance:
4059 return "DW_TAG_inheritance";
4060 case DW_TAG_inlined_subroutine:
4061 return "DW_TAG_inlined_subroutine";
4062 case DW_TAG_module:
4063 return "DW_TAG_module";
4064 case DW_TAG_ptr_to_member_type:
4065 return "DW_TAG_ptr_to_member_type";
4066 case DW_TAG_set_type:
4067 return "DW_TAG_set_type";
4068 case DW_TAG_subrange_type:
4069 return "DW_TAG_subrange_type";
4070 case DW_TAG_with_stmt:
4071 return "DW_TAG_with_stmt";
4072 case DW_TAG_access_declaration:
4073 return "DW_TAG_access_declaration";
4074 case DW_TAG_base_type:
4075 return "DW_TAG_base_type";
4076 case DW_TAG_catch_block:
4077 return "DW_TAG_catch_block";
4078 case DW_TAG_const_type:
4079 return "DW_TAG_const_type";
4080 case DW_TAG_constant:
4081 return "DW_TAG_constant";
4082 case DW_TAG_enumerator:
4083 return "DW_TAG_enumerator";
4084 case DW_TAG_file_type:
4085 return "DW_TAG_file_type";
4086 case DW_TAG_friend:
4087 return "DW_TAG_friend";
4088 case DW_TAG_namelist:
4089 return "DW_TAG_namelist";
4090 case DW_TAG_namelist_item:
4091 return "DW_TAG_namelist_item";
4092 case DW_TAG_namespace:
4093 return "DW_TAG_namespace";
4094 case DW_TAG_packed_type:
4095 return "DW_TAG_packed_type";
4096 case DW_TAG_subprogram:
4097 return "DW_TAG_subprogram";
4098 case DW_TAG_template_type_param:
4099 return "DW_TAG_template_type_param";
4100 case DW_TAG_template_value_param:
4101 return "DW_TAG_template_value_param";
4102 case DW_TAG_thrown_type:
4103 return "DW_TAG_thrown_type";
4104 case DW_TAG_try_block:
4105 return "DW_TAG_try_block";
4106 case DW_TAG_variant_part:
4107 return "DW_TAG_variant_part";
4108 case DW_TAG_variable:
4109 return "DW_TAG_variable";
4110 case DW_TAG_volatile_type:
4111 return "DW_TAG_volatile_type";
4112 case DW_TAG_imported_module:
4113 return "DW_TAG_imported_module";
4114 case DW_TAG_MIPS_loop:
4115 return "DW_TAG_MIPS_loop";
4116 case DW_TAG_format_label:
4117 return "DW_TAG_format_label";
4118 case DW_TAG_function_template:
4119 return "DW_TAG_function_template";
4120 case DW_TAG_class_template:
4121 return "DW_TAG_class_template";
4122 case DW_TAG_GNU_BINCL:
4123 return "DW_TAG_GNU_BINCL";
4124 case DW_TAG_GNU_EINCL:
4125 return "DW_TAG_GNU_EINCL";
4126 default:
4127 return "DW_TAG_<unknown>";
4128 }
4129 }
4130
4131 /* Convert a DWARF attribute code into its string name. */
4132
4133 static const char *
4134 dwarf_attr_name (unsigned int attr)
4135 {
4136 switch (attr)
4137 {
4138 case DW_AT_sibling:
4139 return "DW_AT_sibling";
4140 case DW_AT_location:
4141 return "DW_AT_location";
4142 case DW_AT_name:
4143 return "DW_AT_name";
4144 case DW_AT_ordering:
4145 return "DW_AT_ordering";
4146 case DW_AT_subscr_data:
4147 return "DW_AT_subscr_data";
4148 case DW_AT_byte_size:
4149 return "DW_AT_byte_size";
4150 case DW_AT_bit_offset:
4151 return "DW_AT_bit_offset";
4152 case DW_AT_bit_size:
4153 return "DW_AT_bit_size";
4154 case DW_AT_element_list:
4155 return "DW_AT_element_list";
4156 case DW_AT_stmt_list:
4157 return "DW_AT_stmt_list";
4158 case DW_AT_low_pc:
4159 return "DW_AT_low_pc";
4160 case DW_AT_high_pc:
4161 return "DW_AT_high_pc";
4162 case DW_AT_language:
4163 return "DW_AT_language";
4164 case DW_AT_member:
4165 return "DW_AT_member";
4166 case DW_AT_discr:
4167 return "DW_AT_discr";
4168 case DW_AT_discr_value:
4169 return "DW_AT_discr_value";
4170 case DW_AT_visibility:
4171 return "DW_AT_visibility";
4172 case DW_AT_import:
4173 return "DW_AT_import";
4174 case DW_AT_string_length:
4175 return "DW_AT_string_length";
4176 case DW_AT_common_reference:
4177 return "DW_AT_common_reference";
4178 case DW_AT_comp_dir:
4179 return "DW_AT_comp_dir";
4180 case DW_AT_const_value:
4181 return "DW_AT_const_value";
4182 case DW_AT_containing_type:
4183 return "DW_AT_containing_type";
4184 case DW_AT_default_value:
4185 return "DW_AT_default_value";
4186 case DW_AT_inline:
4187 return "DW_AT_inline";
4188 case DW_AT_is_optional:
4189 return "DW_AT_is_optional";
4190 case DW_AT_lower_bound:
4191 return "DW_AT_lower_bound";
4192 case DW_AT_producer:
4193 return "DW_AT_producer";
4194 case DW_AT_prototyped:
4195 return "DW_AT_prototyped";
4196 case DW_AT_return_addr:
4197 return "DW_AT_return_addr";
4198 case DW_AT_start_scope:
4199 return "DW_AT_start_scope";
4200 case DW_AT_stride_size:
4201 return "DW_AT_stride_size";
4202 case DW_AT_upper_bound:
4203 return "DW_AT_upper_bound";
4204 case DW_AT_abstract_origin:
4205 return "DW_AT_abstract_origin";
4206 case DW_AT_accessibility:
4207 return "DW_AT_accessibility";
4208 case DW_AT_address_class:
4209 return "DW_AT_address_class";
4210 case DW_AT_artificial:
4211 return "DW_AT_artificial";
4212 case DW_AT_base_types:
4213 return "DW_AT_base_types";
4214 case DW_AT_calling_convention:
4215 return "DW_AT_calling_convention";
4216 case DW_AT_count:
4217 return "DW_AT_count";
4218 case DW_AT_data_member_location:
4219 return "DW_AT_data_member_location";
4220 case DW_AT_decl_column:
4221 return "DW_AT_decl_column";
4222 case DW_AT_decl_file:
4223 return "DW_AT_decl_file";
4224 case DW_AT_decl_line:
4225 return "DW_AT_decl_line";
4226 case DW_AT_declaration:
4227 return "DW_AT_declaration";
4228 case DW_AT_discr_list:
4229 return "DW_AT_discr_list";
4230 case DW_AT_encoding:
4231 return "DW_AT_encoding";
4232 case DW_AT_external:
4233 return "DW_AT_external";
4234 case DW_AT_frame_base:
4235 return "DW_AT_frame_base";
4236 case DW_AT_friend:
4237 return "DW_AT_friend";
4238 case DW_AT_identifier_case:
4239 return "DW_AT_identifier_case";
4240 case DW_AT_macro_info:
4241 return "DW_AT_macro_info";
4242 case DW_AT_namelist_items:
4243 return "DW_AT_namelist_items";
4244 case DW_AT_priority:
4245 return "DW_AT_priority";
4246 case DW_AT_segment:
4247 return "DW_AT_segment";
4248 case DW_AT_specification:
4249 return "DW_AT_specification";
4250 case DW_AT_static_link:
4251 return "DW_AT_static_link";
4252 case DW_AT_type:
4253 return "DW_AT_type";
4254 case DW_AT_use_location:
4255 return "DW_AT_use_location";
4256 case DW_AT_variable_parameter:
4257 return "DW_AT_variable_parameter";
4258 case DW_AT_virtuality:
4259 return "DW_AT_virtuality";
4260 case DW_AT_vtable_elem_location:
4261 return "DW_AT_vtable_elem_location";
4262
4263 case DW_AT_allocated:
4264 return "DW_AT_allocated";
4265 case DW_AT_associated:
4266 return "DW_AT_associated";
4267 case DW_AT_data_location:
4268 return "DW_AT_data_location";
4269 case DW_AT_stride:
4270 return "DW_AT_stride";
4271 case DW_AT_entry_pc:
4272 return "DW_AT_entry_pc";
4273 case DW_AT_use_UTF8:
4274 return "DW_AT_use_UTF8";
4275 case DW_AT_extension:
4276 return "DW_AT_extension";
4277 case DW_AT_ranges:
4278 return "DW_AT_ranges";
4279 case DW_AT_trampoline:
4280 return "DW_AT_trampoline";
4281 case DW_AT_call_column:
4282 return "DW_AT_call_column";
4283 case DW_AT_call_file:
4284 return "DW_AT_call_file";
4285 case DW_AT_call_line:
4286 return "DW_AT_call_line";
4287
4288 case DW_AT_MIPS_fde:
4289 return "DW_AT_MIPS_fde";
4290 case DW_AT_MIPS_loop_begin:
4291 return "DW_AT_MIPS_loop_begin";
4292 case DW_AT_MIPS_tail_loop_begin:
4293 return "DW_AT_MIPS_tail_loop_begin";
4294 case DW_AT_MIPS_epilog_begin:
4295 return "DW_AT_MIPS_epilog_begin";
4296 case DW_AT_MIPS_loop_unroll_factor:
4297 return "DW_AT_MIPS_loop_unroll_factor";
4298 case DW_AT_MIPS_software_pipeline_depth:
4299 return "DW_AT_MIPS_software_pipeline_depth";
4300 case DW_AT_MIPS_linkage_name:
4301 return "DW_AT_MIPS_linkage_name";
4302 case DW_AT_MIPS_stride:
4303 return "DW_AT_MIPS_stride";
4304 case DW_AT_MIPS_abstract_name:
4305 return "DW_AT_MIPS_abstract_name";
4306 case DW_AT_MIPS_clone_origin:
4307 return "DW_AT_MIPS_clone_origin";
4308 case DW_AT_MIPS_has_inlines:
4309 return "DW_AT_MIPS_has_inlines";
4310
4311 case DW_AT_sf_names:
4312 return "DW_AT_sf_names";
4313 case DW_AT_src_info:
4314 return "DW_AT_src_info";
4315 case DW_AT_mac_info:
4316 return "DW_AT_mac_info";
4317 case DW_AT_src_coords:
4318 return "DW_AT_src_coords";
4319 case DW_AT_body_begin:
4320 return "DW_AT_body_begin";
4321 case DW_AT_body_end:
4322 return "DW_AT_body_end";
4323 case DW_AT_GNU_vector:
4324 return "DW_AT_GNU_vector";
4325
4326 case DW_AT_VMS_rtnbeg_pd_address:
4327 return "DW_AT_VMS_rtnbeg_pd_address";
4328
4329 default:
4330 return "DW_AT_<unknown>";
4331 }
4332 }
4333
4334 /* Convert a DWARF value form code into its string name. */
4335
4336 static const char *
4337 dwarf_form_name (unsigned int form)
4338 {
4339 switch (form)
4340 {
4341 case DW_FORM_addr:
4342 return "DW_FORM_addr";
4343 case DW_FORM_block2:
4344 return "DW_FORM_block2";
4345 case DW_FORM_block4:
4346 return "DW_FORM_block4";
4347 case DW_FORM_data2:
4348 return "DW_FORM_data2";
4349 case DW_FORM_data4:
4350 return "DW_FORM_data4";
4351 case DW_FORM_data8:
4352 return "DW_FORM_data8";
4353 case DW_FORM_string:
4354 return "DW_FORM_string";
4355 case DW_FORM_block:
4356 return "DW_FORM_block";
4357 case DW_FORM_block1:
4358 return "DW_FORM_block1";
4359 case DW_FORM_data1:
4360 return "DW_FORM_data1";
4361 case DW_FORM_flag:
4362 return "DW_FORM_flag";
4363 case DW_FORM_sdata:
4364 return "DW_FORM_sdata";
4365 case DW_FORM_strp:
4366 return "DW_FORM_strp";
4367 case DW_FORM_udata:
4368 return "DW_FORM_udata";
4369 case DW_FORM_ref_addr:
4370 return "DW_FORM_ref_addr";
4371 case DW_FORM_ref1:
4372 return "DW_FORM_ref1";
4373 case DW_FORM_ref2:
4374 return "DW_FORM_ref2";
4375 case DW_FORM_ref4:
4376 return "DW_FORM_ref4";
4377 case DW_FORM_ref8:
4378 return "DW_FORM_ref8";
4379 case DW_FORM_ref_udata:
4380 return "DW_FORM_ref_udata";
4381 case DW_FORM_indirect:
4382 return "DW_FORM_indirect";
4383 default:
4384 return "DW_FORM_<unknown>";
4385 }
4386 }
4387
4388 /* Convert a DWARF type code into its string name. */
4389
4390 #if 0
4391 static const char *
4392 dwarf_type_encoding_name (unsigned enc)
4393 {
4394 switch (enc)
4395 {
4396 case DW_ATE_address:
4397 return "DW_ATE_address";
4398 case DW_ATE_boolean:
4399 return "DW_ATE_boolean";
4400 case DW_ATE_complex_float:
4401 return "DW_ATE_complex_float";
4402 case DW_ATE_float:
4403 return "DW_ATE_float";
4404 case DW_ATE_signed:
4405 return "DW_ATE_signed";
4406 case DW_ATE_signed_char:
4407 return "DW_ATE_signed_char";
4408 case DW_ATE_unsigned:
4409 return "DW_ATE_unsigned";
4410 case DW_ATE_unsigned_char:
4411 return "DW_ATE_unsigned_char";
4412 default:
4413 return "DW_ATE_<unknown>";
4414 }
4415 }
4416 #endif
4417 \f
4418 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4419 instance of an inlined instance of a decl which is local to an inline
4420 function, so we have to trace all of the way back through the origin chain
4421 to find out what sort of node actually served as the original seed for the
4422 given block. */
4423
4424 static tree
4425 decl_ultimate_origin (tree decl)
4426 {
4427 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4428 nodes in the function to point to themselves; ignore that if
4429 we're trying to output the abstract instance of this function. */
4430 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4431 return NULL_TREE;
4432
4433 #ifdef ENABLE_CHECKING
4434 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4435 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4436 most distant ancestor, this should never happen. */
4437 abort ();
4438 #endif
4439
4440 return DECL_ABSTRACT_ORIGIN (decl);
4441 }
4442
4443 /* Determine the "ultimate origin" of a block. The block may be an inlined
4444 instance of an inlined instance of a block which is local to an inline
4445 function, so we have to trace all of the way back through the origin chain
4446 to find out what sort of node actually served as the original seed for the
4447 given block. */
4448
4449 static tree
4450 block_ultimate_origin (tree block)
4451 {
4452 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4453
4454 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4455 nodes in the function to point to themselves; ignore that if
4456 we're trying to output the abstract instance of this function. */
4457 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4458 return NULL_TREE;
4459
4460 if (immediate_origin == NULL_TREE)
4461 return NULL_TREE;
4462 else
4463 {
4464 tree ret_val;
4465 tree lookahead = immediate_origin;
4466
4467 do
4468 {
4469 ret_val = lookahead;
4470 lookahead = (TREE_CODE (ret_val) == BLOCK
4471 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4472 }
4473 while (lookahead != NULL && lookahead != ret_val);
4474
4475 return ret_val;
4476 }
4477 }
4478
4479 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4480 of a virtual function may refer to a base class, so we check the 'this'
4481 parameter. */
4482
4483 static tree
4484 decl_class_context (tree decl)
4485 {
4486 tree context = NULL_TREE;
4487
4488 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4489 context = DECL_CONTEXT (decl);
4490 else
4491 context = TYPE_MAIN_VARIANT
4492 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4493
4494 if (context && !TYPE_P (context))
4495 context = NULL_TREE;
4496
4497 return context;
4498 }
4499 \f
4500 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4501 addition order, and correct that in reverse_all_dies. */
4502
4503 static inline void
4504 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4505 {
4506 if (die != NULL && attr != NULL)
4507 {
4508 attr->dw_attr_next = die->die_attr;
4509 die->die_attr = attr;
4510 }
4511 }
4512
4513 static inline enum dw_val_class
4514 AT_class (dw_attr_ref a)
4515 {
4516 return a->dw_attr_val.val_class;
4517 }
4518
4519 /* Add a flag value attribute to a DIE. */
4520
4521 static inline void
4522 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4523 {
4524 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4525
4526 attr->dw_attr_next = NULL;
4527 attr->dw_attr = attr_kind;
4528 attr->dw_attr_val.val_class = dw_val_class_flag;
4529 attr->dw_attr_val.v.val_flag = flag;
4530 add_dwarf_attr (die, attr);
4531 }
4532
4533 static inline unsigned
4534 AT_flag (dw_attr_ref a)
4535 {
4536 if (a && AT_class (a) == dw_val_class_flag)
4537 return a->dw_attr_val.v.val_flag;
4538
4539 abort ();
4540 }
4541
4542 /* Add a signed integer attribute value to a DIE. */
4543
4544 static inline void
4545 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4546 {
4547 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4548
4549 attr->dw_attr_next = NULL;
4550 attr->dw_attr = attr_kind;
4551 attr->dw_attr_val.val_class = dw_val_class_const;
4552 attr->dw_attr_val.v.val_int = int_val;
4553 add_dwarf_attr (die, attr);
4554 }
4555
4556 static inline HOST_WIDE_INT
4557 AT_int (dw_attr_ref a)
4558 {
4559 if (a && AT_class (a) == dw_val_class_const)
4560 return a->dw_attr_val.v.val_int;
4561
4562 abort ();
4563 }
4564
4565 /* Add an unsigned integer attribute value to a DIE. */
4566
4567 static inline void
4568 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4569 unsigned HOST_WIDE_INT unsigned_val)
4570 {
4571 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4572
4573 attr->dw_attr_next = NULL;
4574 attr->dw_attr = attr_kind;
4575 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4576 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4577 add_dwarf_attr (die, attr);
4578 }
4579
4580 static inline unsigned HOST_WIDE_INT
4581 AT_unsigned (dw_attr_ref a)
4582 {
4583 if (a && AT_class (a) == dw_val_class_unsigned_const)
4584 return a->dw_attr_val.v.val_unsigned;
4585
4586 abort ();
4587 }
4588
4589 /* Add an unsigned double integer attribute value to a DIE. */
4590
4591 static inline void
4592 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4593 long unsigned int val_hi, long unsigned int val_low)
4594 {
4595 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4596
4597 attr->dw_attr_next = NULL;
4598 attr->dw_attr = attr_kind;
4599 attr->dw_attr_val.val_class = dw_val_class_long_long;
4600 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4601 attr->dw_attr_val.v.val_long_long.low = val_low;
4602 add_dwarf_attr (die, attr);
4603 }
4604
4605 /* Add a floating point attribute value to a DIE and return it. */
4606
4607 static inline void
4608 add_AT_float (dw_die_ref die, enum dwarf_attribute attr_kind,
4609 unsigned int length, long int *array)
4610 {
4611 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4612
4613 attr->dw_attr_next = NULL;
4614 attr->dw_attr = attr_kind;
4615 attr->dw_attr_val.val_class = dw_val_class_float;
4616 attr->dw_attr_val.v.val_float.length = length;
4617 attr->dw_attr_val.v.val_float.array = array;
4618 add_dwarf_attr (die, attr);
4619 }
4620
4621 /* Hash and equality functions for debug_str_hash. */
4622
4623 static hashval_t
4624 debug_str_do_hash (const void *x)
4625 {
4626 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4627 }
4628
4629 static int
4630 debug_str_eq (const void *x1, const void *x2)
4631 {
4632 return strcmp ((((const struct indirect_string_node *)x1)->str),
4633 (const char *)x2) == 0;
4634 }
4635
4636 /* Add a string attribute value to a DIE. */
4637
4638 static inline void
4639 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4640 {
4641 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4642 struct indirect_string_node *node;
4643 void **slot;
4644
4645 if (! debug_str_hash)
4646 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4647 debug_str_eq, NULL);
4648
4649 slot = htab_find_slot_with_hash (debug_str_hash, str,
4650 htab_hash_string (str), INSERT);
4651 if (*slot == NULL)
4652 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4653 node = (struct indirect_string_node *) *slot;
4654 node->str = ggc_strdup (str);
4655 node->refcount++;
4656
4657 attr->dw_attr_next = NULL;
4658 attr->dw_attr = attr_kind;
4659 attr->dw_attr_val.val_class = dw_val_class_str;
4660 attr->dw_attr_val.v.val_str = node;
4661 add_dwarf_attr (die, attr);
4662 }
4663
4664 static inline const char *
4665 AT_string (dw_attr_ref a)
4666 {
4667 if (a && AT_class (a) == dw_val_class_str)
4668 return a->dw_attr_val.v.val_str->str;
4669
4670 abort ();
4671 }
4672
4673 /* Find out whether a string should be output inline in DIE
4674 or out-of-line in .debug_str section. */
4675
4676 static int
4677 AT_string_form (dw_attr_ref a)
4678 {
4679 if (a && AT_class (a) == dw_val_class_str)
4680 {
4681 struct indirect_string_node *node;
4682 unsigned int len;
4683 char label[32];
4684
4685 node = a->dw_attr_val.v.val_str;
4686 if (node->form)
4687 return node->form;
4688
4689 len = strlen (node->str) + 1;
4690
4691 /* If the string is shorter or equal to the size of the reference, it is
4692 always better to put it inline. */
4693 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4694 return node->form = DW_FORM_string;
4695
4696 /* If we cannot expect the linker to merge strings in .debug_str
4697 section, only put it into .debug_str if it is worth even in this
4698 single module. */
4699 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4700 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4701 return node->form = DW_FORM_string;
4702
4703 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4704 ++dw2_string_counter;
4705 node->label = xstrdup (label);
4706
4707 return node->form = DW_FORM_strp;
4708 }
4709
4710 abort ();
4711 }
4712
4713 /* Add a DIE reference attribute value to a DIE. */
4714
4715 static inline void
4716 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4717 {
4718 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4719
4720 attr->dw_attr_next = NULL;
4721 attr->dw_attr = attr_kind;
4722 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4723 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4724 attr->dw_attr_val.v.val_die_ref.external = 0;
4725 add_dwarf_attr (die, attr);
4726 }
4727
4728 /* Add an AT_specification attribute to a DIE, and also make the back
4729 pointer from the specification to the definition. */
4730
4731 static inline void
4732 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4733 {
4734 add_AT_die_ref (die, DW_AT_specification, targ_die);
4735 if (targ_die->die_definition)
4736 abort ();
4737 targ_die->die_definition = die;
4738 }
4739
4740 static inline dw_die_ref
4741 AT_ref (dw_attr_ref a)
4742 {
4743 if (a && AT_class (a) == dw_val_class_die_ref)
4744 return a->dw_attr_val.v.val_die_ref.die;
4745
4746 abort ();
4747 }
4748
4749 static inline int
4750 AT_ref_external (dw_attr_ref a)
4751 {
4752 if (a && AT_class (a) == dw_val_class_die_ref)
4753 return a->dw_attr_val.v.val_die_ref.external;
4754
4755 return 0;
4756 }
4757
4758 static inline void
4759 set_AT_ref_external (dw_attr_ref a, int i)
4760 {
4761 if (a && AT_class (a) == dw_val_class_die_ref)
4762 a->dw_attr_val.v.val_die_ref.external = i;
4763 else
4764 abort ();
4765 }
4766
4767 /* Add an FDE reference attribute value to a DIE. */
4768
4769 static inline void
4770 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4771 {
4772 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4773
4774 attr->dw_attr_next = NULL;
4775 attr->dw_attr = attr_kind;
4776 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4777 attr->dw_attr_val.v.val_fde_index = targ_fde;
4778 add_dwarf_attr (die, attr);
4779 }
4780
4781 /* Add a location description attribute value to a DIE. */
4782
4783 static inline void
4784 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4785 {
4786 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4787
4788 attr->dw_attr_next = NULL;
4789 attr->dw_attr = attr_kind;
4790 attr->dw_attr_val.val_class = dw_val_class_loc;
4791 attr->dw_attr_val.v.val_loc = loc;
4792 add_dwarf_attr (die, attr);
4793 }
4794
4795 static inline dw_loc_descr_ref
4796 AT_loc (dw_attr_ref a)
4797 {
4798 if (a && AT_class (a) == dw_val_class_loc)
4799 return a->dw_attr_val.v.val_loc;
4800
4801 abort ();
4802 }
4803
4804 static inline void
4805 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4806 {
4807 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4808
4809 attr->dw_attr_next = NULL;
4810 attr->dw_attr = attr_kind;
4811 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4812 attr->dw_attr_val.v.val_loc_list = loc_list;
4813 add_dwarf_attr (die, attr);
4814 have_location_lists = 1;
4815 }
4816
4817 static inline dw_loc_list_ref
4818 AT_loc_list (dw_attr_ref a)
4819 {
4820 if (a && AT_class (a) == dw_val_class_loc_list)
4821 return a->dw_attr_val.v.val_loc_list;
4822
4823 abort ();
4824 }
4825
4826 /* Add an address constant attribute value to a DIE. */
4827
4828 static inline void
4829 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
4830 {
4831 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4832
4833 attr->dw_attr_next = NULL;
4834 attr->dw_attr = attr_kind;
4835 attr->dw_attr_val.val_class = dw_val_class_addr;
4836 attr->dw_attr_val.v.val_addr = addr;
4837 add_dwarf_attr (die, attr);
4838 }
4839
4840 static inline rtx
4841 AT_addr (dw_attr_ref a)
4842 {
4843 if (a && AT_class (a) == dw_val_class_addr)
4844 return a->dw_attr_val.v.val_addr;
4845
4846 abort ();
4847 }
4848
4849 /* Add a label identifier attribute value to a DIE. */
4850
4851 static inline void
4852 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
4853 {
4854 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4855
4856 attr->dw_attr_next = NULL;
4857 attr->dw_attr = attr_kind;
4858 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4859 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4860 add_dwarf_attr (die, attr);
4861 }
4862
4863 /* Add a section offset attribute value to a DIE. */
4864
4865 static inline void
4866 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
4867 {
4868 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4869
4870 attr->dw_attr_next = NULL;
4871 attr->dw_attr = attr_kind;
4872 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4873 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4874 add_dwarf_attr (die, attr);
4875 }
4876
4877 /* Add an offset attribute value to a DIE. */
4878
4879 static inline void
4880 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
4881 unsigned HOST_WIDE_INT offset)
4882 {
4883 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4884
4885 attr->dw_attr_next = NULL;
4886 attr->dw_attr = attr_kind;
4887 attr->dw_attr_val.val_class = dw_val_class_offset;
4888 attr->dw_attr_val.v.val_offset = offset;
4889 add_dwarf_attr (die, attr);
4890 }
4891
4892 /* Add an range_list attribute value to a DIE. */
4893
4894 static void
4895 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
4896 long unsigned int offset)
4897 {
4898 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4899
4900 attr->dw_attr_next = NULL;
4901 attr->dw_attr = attr_kind;
4902 attr->dw_attr_val.val_class = dw_val_class_range_list;
4903 attr->dw_attr_val.v.val_offset = offset;
4904 add_dwarf_attr (die, attr);
4905 }
4906
4907 static inline const char *
4908 AT_lbl (dw_attr_ref a)
4909 {
4910 if (a && (AT_class (a) == dw_val_class_lbl_id
4911 || AT_class (a) == dw_val_class_lbl_offset))
4912 return a->dw_attr_val.v.val_lbl_id;
4913
4914 abort ();
4915 }
4916
4917 /* Get the attribute of type attr_kind. */
4918
4919 static dw_attr_ref
4920 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4921 {
4922 dw_attr_ref a;
4923 dw_die_ref spec = NULL;
4924
4925 if (die != NULL)
4926 {
4927 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
4928 if (a->dw_attr == attr_kind)
4929 return a;
4930 else if (a->dw_attr == DW_AT_specification
4931 || a->dw_attr == DW_AT_abstract_origin)
4932 spec = AT_ref (a);
4933
4934 if (spec)
4935 return get_AT (spec, attr_kind);
4936 }
4937
4938 return NULL;
4939 }
4940
4941 /* Return the "low pc" attribute value, typically associated with a subprogram
4942 DIE. Return null if the "low pc" attribute is either not present, or if it
4943 cannot be represented as an assembler label identifier. */
4944
4945 static inline const char *
4946 get_AT_low_pc (dw_die_ref die)
4947 {
4948 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
4949
4950 return a ? AT_lbl (a) : NULL;
4951 }
4952
4953 /* Return the "high pc" attribute value, typically associated with a subprogram
4954 DIE. Return null if the "high pc" attribute is either not present, or if it
4955 cannot be represented as an assembler label identifier. */
4956
4957 static inline const char *
4958 get_AT_hi_pc (dw_die_ref die)
4959 {
4960 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
4961
4962 return a ? AT_lbl (a) : NULL;
4963 }
4964
4965 /* Return the value of the string attribute designated by ATTR_KIND, or
4966 NULL if it is not present. */
4967
4968 static inline const char *
4969 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
4970 {
4971 dw_attr_ref a = get_AT (die, attr_kind);
4972
4973 return a ? AT_string (a) : NULL;
4974 }
4975
4976 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
4977 if it is not present. */
4978
4979 static inline int
4980 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
4981 {
4982 dw_attr_ref a = get_AT (die, attr_kind);
4983
4984 return a ? AT_flag (a) : 0;
4985 }
4986
4987 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4988 if it is not present. */
4989
4990 static inline unsigned
4991 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
4992 {
4993 dw_attr_ref a = get_AT (die, attr_kind);
4994
4995 return a ? AT_unsigned (a) : 0;
4996 }
4997
4998 static inline dw_die_ref
4999 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5000 {
5001 dw_attr_ref a = get_AT (die, attr_kind);
5002
5003 return a ? AT_ref (a) : NULL;
5004 }
5005
5006 /* Return TRUE if the language is C or C++. */
5007
5008 static inline bool
5009 is_c_family (void)
5010 {
5011 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5012
5013 return (lang == DW_LANG_C || lang == DW_LANG_C89
5014 || lang == DW_LANG_C_plus_plus);
5015 }
5016
5017 /* Return TRUE if the language is C++. */
5018
5019 static inline bool
5020 is_cxx (void)
5021 {
5022 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5023 == DW_LANG_C_plus_plus);
5024 }
5025
5026 /* Return TRUE if the language is Fortran. */
5027
5028 static inline bool
5029 is_fortran (void)
5030 {
5031 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5032
5033 return lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90;
5034 }
5035
5036 /* Return TRUE if the language is Java. */
5037
5038 static inline bool
5039 is_java (void)
5040 {
5041 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5042
5043 return lang == DW_LANG_Java;
5044 }
5045
5046 /* Return TRUE if the language is Ada. */
5047
5048 static inline bool
5049 is_ada (void)
5050 {
5051 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5052
5053 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5054 }
5055
5056 /* Free up the memory used by A. */
5057
5058 static inline void free_AT (dw_attr_ref);
5059 static inline void
5060 free_AT (dw_attr_ref a)
5061 {
5062 if (AT_class (a) == dw_val_class_str)
5063 if (a->dw_attr_val.v.val_str->refcount)
5064 a->dw_attr_val.v.val_str->refcount--;
5065 }
5066
5067 /* Remove the specified attribute if present. */
5068
5069 static void
5070 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5071 {
5072 dw_attr_ref *p;
5073 dw_attr_ref removed = NULL;
5074
5075 if (die != NULL)
5076 {
5077 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5078 if ((*p)->dw_attr == attr_kind)
5079 {
5080 removed = *p;
5081 *p = (*p)->dw_attr_next;
5082 break;
5083 }
5084
5085 if (removed != 0)
5086 free_AT (removed);
5087 }
5088 }
5089
5090 /* Remove child die whose die_tag is specified tag. */
5091
5092 static void
5093 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5094 {
5095 dw_die_ref current, prev, next;
5096 current = die->die_child;
5097 prev = NULL;
5098 while (current != NULL)
5099 {
5100 if (current->die_tag == tag)
5101 {
5102 next = current->die_sib;
5103 if (prev == NULL)
5104 die->die_child = next;
5105 else
5106 prev->die_sib = next;
5107 free_die (current);
5108 current = next;
5109 }
5110 else
5111 {
5112 prev = current;
5113 current = current->die_sib;
5114 }
5115 }
5116 }
5117
5118 /* Free up the memory used by DIE. */
5119
5120 static inline void
5121 free_die (dw_die_ref die)
5122 {
5123 remove_children (die);
5124 }
5125
5126 /* Discard the children of this DIE. */
5127
5128 static void
5129 remove_children (dw_die_ref die)
5130 {
5131 dw_die_ref child_die = die->die_child;
5132
5133 die->die_child = NULL;
5134
5135 while (child_die != NULL)
5136 {
5137 dw_die_ref tmp_die = child_die;
5138 dw_attr_ref a;
5139
5140 child_die = child_die->die_sib;
5141
5142 for (a = tmp_die->die_attr; a != NULL;)
5143 {
5144 dw_attr_ref tmp_a = a;
5145
5146 a = a->dw_attr_next;
5147 free_AT (tmp_a);
5148 }
5149
5150 free_die (tmp_die);
5151 }
5152 }
5153
5154 /* Add a child DIE below its parent. We build the lists up in reverse
5155 addition order, and correct that in reverse_all_dies. */
5156
5157 static inline void
5158 add_child_die (dw_die_ref die, dw_die_ref child_die)
5159 {
5160 if (die != NULL && child_die != NULL)
5161 {
5162 if (die == child_die)
5163 abort ();
5164
5165 child_die->die_parent = die;
5166 child_die->die_sib = die->die_child;
5167 die->die_child = child_die;
5168 }
5169 }
5170
5171 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5172 is the specification, to the front of PARENT's list of children. */
5173
5174 static void
5175 splice_child_die (dw_die_ref parent, dw_die_ref child)
5176 {
5177 dw_die_ref *p;
5178
5179 /* We want the declaration DIE from inside the class, not the
5180 specification DIE at toplevel. */
5181 if (child->die_parent != parent)
5182 {
5183 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5184
5185 if (tmp)
5186 child = tmp;
5187 }
5188
5189 if (child->die_parent != parent
5190 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5191 abort ();
5192
5193 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5194 if (*p == child)
5195 {
5196 *p = child->die_sib;
5197 break;
5198 }
5199
5200 child->die_parent = parent;
5201 child->die_sib = parent->die_child;
5202 parent->die_child = child;
5203 }
5204
5205 /* Return a pointer to a newly created DIE node. */
5206
5207 static inline dw_die_ref
5208 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5209 {
5210 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5211
5212 die->die_tag = tag_value;
5213
5214 if (parent_die != NULL)
5215 add_child_die (parent_die, die);
5216 else
5217 {
5218 limbo_die_node *limbo_node;
5219
5220 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5221 limbo_node->die = die;
5222 limbo_node->created_for = t;
5223 limbo_node->next = limbo_die_list;
5224 limbo_die_list = limbo_node;
5225 }
5226
5227 return die;
5228 }
5229
5230 /* Return the DIE associated with the given type specifier. */
5231
5232 static inline dw_die_ref
5233 lookup_type_die (tree type)
5234 {
5235 return TYPE_SYMTAB_DIE (type);
5236 }
5237
5238 /* Equate a DIE to a given type specifier. */
5239
5240 static inline void
5241 equate_type_number_to_die (tree type, dw_die_ref type_die)
5242 {
5243 TYPE_SYMTAB_DIE (type) = type_die;
5244 }
5245
5246 /* Returns a hash value for X (which really is a die_struct). */
5247
5248 static hashval_t
5249 decl_die_table_hash (const void *x)
5250 {
5251 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5252 }
5253
5254 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5255
5256 static int
5257 decl_die_table_eq (const void *x, const void *y)
5258 {
5259 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5260 }
5261
5262 /* Return the DIE associated with a given declaration. */
5263
5264 static inline dw_die_ref
5265 lookup_decl_die (tree decl)
5266 {
5267 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5268 }
5269
5270 /* Returns a hash value for X (which really is a var_loc_list). */
5271
5272 static hashval_t
5273 decl_loc_table_hash (const void *x)
5274 {
5275 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5276 }
5277
5278 /* Return nonzero if decl_id of var_loc_list X is the same as
5279 UID of decl *Y. */
5280
5281 static int
5282 decl_loc_table_eq (const void *x, const void *y)
5283 {
5284 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5285 }
5286
5287 /* Return the var_loc list associated with a given declaration. */
5288
5289 static inline var_loc_list *
5290 lookup_decl_loc (tree decl)
5291 {
5292 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5293 }
5294
5295 /* Equate a DIE to a particular declaration. */
5296
5297 static void
5298 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5299 {
5300 unsigned int decl_id = DECL_UID (decl);
5301 void **slot;
5302
5303 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5304 *slot = decl_die;
5305 decl_die->decl_id = decl_id;
5306 }
5307
5308 /* Add a variable location node to the linked list for DECL. */
5309
5310 static void
5311 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5312 {
5313 unsigned int decl_id = DECL_UID (decl);
5314 var_loc_list *temp;
5315 void **slot;
5316
5317 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5318 if (*slot == NULL)
5319 {
5320 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5321 temp->decl_id = decl_id;
5322 *slot = temp;
5323 }
5324 else
5325 temp = *slot;
5326
5327 if (temp->last)
5328 {
5329 /* If the current location is the same as the end of the list,
5330 we have nothing to do. */
5331 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5332 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5333 {
5334 /* Add LOC to the end of list and update LAST. */
5335 temp->last->next = loc;
5336 temp->last = loc;
5337 }
5338 }
5339 /* Do not add empty location to the beginning of the list. */
5340 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5341 {
5342 temp->first = loc;
5343 temp->last = loc;
5344 }
5345 }
5346 \f
5347 /* Keep track of the number of spaces used to indent the
5348 output of the debugging routines that print the structure of
5349 the DIE internal representation. */
5350 static int print_indent;
5351
5352 /* Indent the line the number of spaces given by print_indent. */
5353
5354 static inline void
5355 print_spaces (FILE *outfile)
5356 {
5357 fprintf (outfile, "%*s", print_indent, "");
5358 }
5359
5360 /* Print the information associated with a given DIE, and its children.
5361 This routine is a debugging aid only. */
5362
5363 static void
5364 print_die (dw_die_ref die, FILE *outfile)
5365 {
5366 dw_attr_ref a;
5367 dw_die_ref c;
5368
5369 print_spaces (outfile);
5370 fprintf (outfile, "DIE %4lu: %s\n",
5371 die->die_offset, dwarf_tag_name (die->die_tag));
5372 print_spaces (outfile);
5373 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5374 fprintf (outfile, " offset: %lu\n", die->die_offset);
5375
5376 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5377 {
5378 print_spaces (outfile);
5379 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5380
5381 switch (AT_class (a))
5382 {
5383 case dw_val_class_addr:
5384 fprintf (outfile, "address");
5385 break;
5386 case dw_val_class_offset:
5387 fprintf (outfile, "offset");
5388 break;
5389 case dw_val_class_loc:
5390 fprintf (outfile, "location descriptor");
5391 break;
5392 case dw_val_class_loc_list:
5393 fprintf (outfile, "location list -> label:%s",
5394 AT_loc_list (a)->ll_symbol);
5395 break;
5396 case dw_val_class_range_list:
5397 fprintf (outfile, "range list");
5398 break;
5399 case dw_val_class_const:
5400 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5401 break;
5402 case dw_val_class_unsigned_const:
5403 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5404 break;
5405 case dw_val_class_long_long:
5406 fprintf (outfile, "constant (%lu,%lu)",
5407 a->dw_attr_val.v.val_long_long.hi,
5408 a->dw_attr_val.v.val_long_long.low);
5409 break;
5410 case dw_val_class_float:
5411 fprintf (outfile, "floating-point constant");
5412 break;
5413 case dw_val_class_flag:
5414 fprintf (outfile, "%u", AT_flag (a));
5415 break;
5416 case dw_val_class_die_ref:
5417 if (AT_ref (a) != NULL)
5418 {
5419 if (AT_ref (a)->die_symbol)
5420 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5421 else
5422 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5423 }
5424 else
5425 fprintf (outfile, "die -> <null>");
5426 break;
5427 case dw_val_class_lbl_id:
5428 case dw_val_class_lbl_offset:
5429 fprintf (outfile, "label: %s", AT_lbl (a));
5430 break;
5431 case dw_val_class_str:
5432 if (AT_string (a) != NULL)
5433 fprintf (outfile, "\"%s\"", AT_string (a));
5434 else
5435 fprintf (outfile, "<null>");
5436 break;
5437 default:
5438 break;
5439 }
5440
5441 fprintf (outfile, "\n");
5442 }
5443
5444 if (die->die_child != NULL)
5445 {
5446 print_indent += 4;
5447 for (c = die->die_child; c != NULL; c = c->die_sib)
5448 print_die (c, outfile);
5449
5450 print_indent -= 4;
5451 }
5452 if (print_indent == 0)
5453 fprintf (outfile, "\n");
5454 }
5455
5456 /* Print the contents of the source code line number correspondence table.
5457 This routine is a debugging aid only. */
5458
5459 static void
5460 print_dwarf_line_table (FILE *outfile)
5461 {
5462 unsigned i;
5463 dw_line_info_ref line_info;
5464
5465 fprintf (outfile, "\n\nDWARF source line information\n");
5466 for (i = 1; i < line_info_table_in_use; i++)
5467 {
5468 line_info = &line_info_table[i];
5469 fprintf (outfile, "%5d: ", i);
5470 fprintf (outfile, "%-20s",
5471 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5472 fprintf (outfile, "%6ld", line_info->dw_line_num);
5473 fprintf (outfile, "\n");
5474 }
5475
5476 fprintf (outfile, "\n\n");
5477 }
5478
5479 /* Print the information collected for a given DIE. */
5480
5481 void
5482 debug_dwarf_die (dw_die_ref die)
5483 {
5484 print_die (die, stderr);
5485 }
5486
5487 /* Print all DWARF information collected for the compilation unit.
5488 This routine is a debugging aid only. */
5489
5490 void
5491 debug_dwarf (void)
5492 {
5493 print_indent = 0;
5494 print_die (comp_unit_die, stderr);
5495 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5496 print_dwarf_line_table (stderr);
5497 }
5498 \f
5499 /* We build up the lists of children and attributes by pushing new ones
5500 onto the beginning of the list. Reverse the lists for DIE so that
5501 they are in order of addition. */
5502
5503 static void
5504 reverse_die_lists (dw_die_ref die)
5505 {
5506 dw_die_ref c, cp, cn;
5507 dw_attr_ref a, ap, an;
5508
5509 for (a = die->die_attr, ap = 0; a; a = an)
5510 {
5511 an = a->dw_attr_next;
5512 a->dw_attr_next = ap;
5513 ap = a;
5514 }
5515
5516 die->die_attr = ap;
5517
5518 for (c = die->die_child, cp = 0; c; c = cn)
5519 {
5520 cn = c->die_sib;
5521 c->die_sib = cp;
5522 cp = c;
5523 }
5524
5525 die->die_child = cp;
5526 }
5527
5528 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5529 reverse all dies in add_sibling_attributes, which runs through all the dies,
5530 it would reverse all the dies. Now, however, since we don't call
5531 reverse_die_lists in add_sibling_attributes, we need a routine to
5532 recursively reverse all the dies. This is that routine. */
5533
5534 static void
5535 reverse_all_dies (dw_die_ref die)
5536 {
5537 dw_die_ref c;
5538
5539 reverse_die_lists (die);
5540
5541 for (c = die->die_child; c; c = c->die_sib)
5542 reverse_all_dies (c);
5543 }
5544
5545 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5546 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5547 DIE that marks the start of the DIEs for this include file. */
5548
5549 static dw_die_ref
5550 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5551 {
5552 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5553 dw_die_ref new_unit = gen_compile_unit_die (filename);
5554
5555 new_unit->die_sib = old_unit;
5556 return new_unit;
5557 }
5558
5559 /* Close an include-file CU and reopen the enclosing one. */
5560
5561 static dw_die_ref
5562 pop_compile_unit (dw_die_ref old_unit)
5563 {
5564 dw_die_ref new_unit = old_unit->die_sib;
5565
5566 old_unit->die_sib = NULL;
5567 return new_unit;
5568 }
5569
5570 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5571 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5572
5573 /* Calculate the checksum of a location expression. */
5574
5575 static inline void
5576 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5577 {
5578 CHECKSUM (loc->dw_loc_opc);
5579 CHECKSUM (loc->dw_loc_oprnd1);
5580 CHECKSUM (loc->dw_loc_oprnd2);
5581 }
5582
5583 /* Calculate the checksum of an attribute. */
5584
5585 static void
5586 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5587 {
5588 dw_loc_descr_ref loc;
5589 rtx r;
5590
5591 CHECKSUM (at->dw_attr);
5592
5593 /* We don't care about differences in file numbering. */
5594 if (at->dw_attr == DW_AT_decl_file
5595 /* Or that this was compiled with a different compiler snapshot; if
5596 the output is the same, that's what matters. */
5597 || at->dw_attr == DW_AT_producer)
5598 return;
5599
5600 switch (AT_class (at))
5601 {
5602 case dw_val_class_const:
5603 CHECKSUM (at->dw_attr_val.v.val_int);
5604 break;
5605 case dw_val_class_unsigned_const:
5606 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5607 break;
5608 case dw_val_class_long_long:
5609 CHECKSUM (at->dw_attr_val.v.val_long_long);
5610 break;
5611 case dw_val_class_float:
5612 CHECKSUM (at->dw_attr_val.v.val_float);
5613 break;
5614 case dw_val_class_flag:
5615 CHECKSUM (at->dw_attr_val.v.val_flag);
5616 break;
5617 case dw_val_class_str:
5618 CHECKSUM_STRING (AT_string (at));
5619 break;
5620
5621 case dw_val_class_addr:
5622 r = AT_addr (at);
5623 switch (GET_CODE (r))
5624 {
5625 case SYMBOL_REF:
5626 CHECKSUM_STRING (XSTR (r, 0));
5627 break;
5628
5629 default:
5630 abort ();
5631 }
5632 break;
5633
5634 case dw_val_class_offset:
5635 CHECKSUM (at->dw_attr_val.v.val_offset);
5636 break;
5637
5638 case dw_val_class_loc:
5639 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5640 loc_checksum (loc, ctx);
5641 break;
5642
5643 case dw_val_class_die_ref:
5644 die_checksum (AT_ref (at), ctx, mark);
5645 break;
5646
5647 case dw_val_class_fde_ref:
5648 case dw_val_class_lbl_id:
5649 case dw_val_class_lbl_offset:
5650 break;
5651
5652 default:
5653 break;
5654 }
5655 }
5656
5657 /* Calculate the checksum of a DIE. */
5658
5659 static void
5660 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5661 {
5662 dw_die_ref c;
5663 dw_attr_ref a;
5664
5665 /* To avoid infinite recursion. */
5666 if (die->die_mark)
5667 {
5668 CHECKSUM (die->die_mark);
5669 return;
5670 }
5671 die->die_mark = ++(*mark);
5672
5673 CHECKSUM (die->die_tag);
5674
5675 for (a = die->die_attr; a; a = a->dw_attr_next)
5676 attr_checksum (a, ctx, mark);
5677
5678 for (c = die->die_child; c; c = c->die_sib)
5679 die_checksum (c, ctx, mark);
5680 }
5681
5682 #undef CHECKSUM
5683 #undef CHECKSUM_STRING
5684
5685 /* Do the location expressions look same? */
5686 static inline int
5687 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5688 {
5689 return loc1->dw_loc_opc == loc2->dw_loc_opc
5690 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5691 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5692 }
5693
5694 /* Do the values look the same? */
5695 static int
5696 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5697 {
5698 dw_loc_descr_ref loc1, loc2;
5699 rtx r1, r2;
5700 unsigned i;
5701
5702 if (v1->val_class != v2->val_class)
5703 return 0;
5704
5705 switch (v1->val_class)
5706 {
5707 case dw_val_class_const:
5708 return v1->v.val_int == v2->v.val_int;
5709 case dw_val_class_unsigned_const:
5710 return v1->v.val_unsigned == v2->v.val_unsigned;
5711 case dw_val_class_long_long:
5712 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5713 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5714 case dw_val_class_float:
5715 if (v1->v.val_float.length != v2->v.val_float.length)
5716 return 0;
5717 for (i = 0; i < v1->v.val_float.length; i++)
5718 if (v1->v.val_float.array[i] != v2->v.val_float.array[i])
5719 return 0;
5720 return 1;
5721 case dw_val_class_flag:
5722 return v1->v.val_flag == v2->v.val_flag;
5723 case dw_val_class_str:
5724 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5725
5726 case dw_val_class_addr:
5727 r1 = v1->v.val_addr;
5728 r2 = v2->v.val_addr;
5729 if (GET_CODE (r1) != GET_CODE (r2))
5730 return 0;
5731 switch (GET_CODE (r1))
5732 {
5733 case SYMBOL_REF:
5734 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5735
5736 default:
5737 abort ();
5738 }
5739
5740 case dw_val_class_offset:
5741 return v1->v.val_offset == v2->v.val_offset;
5742
5743 case dw_val_class_loc:
5744 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5745 loc1 && loc2;
5746 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5747 if (!same_loc_p (loc1, loc2, mark))
5748 return 0;
5749 return !loc1 && !loc2;
5750
5751 case dw_val_class_die_ref:
5752 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5753
5754 case dw_val_class_fde_ref:
5755 case dw_val_class_lbl_id:
5756 case dw_val_class_lbl_offset:
5757 return 1;
5758
5759 default:
5760 return 1;
5761 }
5762 }
5763
5764 /* Do the attributes look the same? */
5765
5766 static int
5767 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5768 {
5769 if (at1->dw_attr != at2->dw_attr)
5770 return 0;
5771
5772 /* We don't care about differences in file numbering. */
5773 if (at1->dw_attr == DW_AT_decl_file
5774 /* Or that this was compiled with a different compiler snapshot; if
5775 the output is the same, that's what matters. */
5776 || at1->dw_attr == DW_AT_producer)
5777 return 1;
5778
5779 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5780 }
5781
5782 /* Do the dies look the same? */
5783
5784 static int
5785 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5786 {
5787 dw_die_ref c1, c2;
5788 dw_attr_ref a1, a2;
5789
5790 /* To avoid infinite recursion. */
5791 if (die1->die_mark)
5792 return die1->die_mark == die2->die_mark;
5793 die1->die_mark = die2->die_mark = ++(*mark);
5794
5795 if (die1->die_tag != die2->die_tag)
5796 return 0;
5797
5798 for (a1 = die1->die_attr, a2 = die2->die_attr;
5799 a1 && a2;
5800 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5801 if (!same_attr_p (a1, a2, mark))
5802 return 0;
5803 if (a1 || a2)
5804 return 0;
5805
5806 for (c1 = die1->die_child, c2 = die2->die_child;
5807 c1 && c2;
5808 c1 = c1->die_sib, c2 = c2->die_sib)
5809 if (!same_die_p (c1, c2, mark))
5810 return 0;
5811 if (c1 || c2)
5812 return 0;
5813
5814 return 1;
5815 }
5816
5817 /* Do the dies look the same? Wrapper around same_die_p. */
5818
5819 static int
5820 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5821 {
5822 int mark = 0;
5823 int ret = same_die_p (die1, die2, &mark);
5824
5825 unmark_all_dies (die1);
5826 unmark_all_dies (die2);
5827
5828 return ret;
5829 }
5830
5831 /* The prefix to attach to symbols on DIEs in the current comdat debug
5832 info section. */
5833 static char *comdat_symbol_id;
5834
5835 /* The index of the current symbol within the current comdat CU. */
5836 static unsigned int comdat_symbol_number;
5837
5838 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5839 children, and set comdat_symbol_id accordingly. */
5840
5841 static void
5842 compute_section_prefix (dw_die_ref unit_die)
5843 {
5844 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5845 const char *base = die_name ? lbasename (die_name) : "anonymous";
5846 char *name = alloca (strlen (base) + 64);
5847 char *p;
5848 int i, mark;
5849 unsigned char checksum[16];
5850 struct md5_ctx ctx;
5851
5852 /* Compute the checksum of the DIE, then append part of it as hex digits to
5853 the name filename of the unit. */
5854
5855 md5_init_ctx (&ctx);
5856 mark = 0;
5857 die_checksum (unit_die, &ctx, &mark);
5858 unmark_all_dies (unit_die);
5859 md5_finish_ctx (&ctx, checksum);
5860
5861 sprintf (name, "%s.", base);
5862 clean_symbol_name (name);
5863
5864 p = name + strlen (name);
5865 for (i = 0; i < 4; i++)
5866 {
5867 sprintf (p, "%.2x", checksum[i]);
5868 p += 2;
5869 }
5870
5871 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5872 comdat_symbol_number = 0;
5873 }
5874
5875 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5876
5877 static int
5878 is_type_die (dw_die_ref die)
5879 {
5880 switch (die->die_tag)
5881 {
5882 case DW_TAG_array_type:
5883 case DW_TAG_class_type:
5884 case DW_TAG_enumeration_type:
5885 case DW_TAG_pointer_type:
5886 case DW_TAG_reference_type:
5887 case DW_TAG_string_type:
5888 case DW_TAG_structure_type:
5889 case DW_TAG_subroutine_type:
5890 case DW_TAG_union_type:
5891 case DW_TAG_ptr_to_member_type:
5892 case DW_TAG_set_type:
5893 case DW_TAG_subrange_type:
5894 case DW_TAG_base_type:
5895 case DW_TAG_const_type:
5896 case DW_TAG_file_type:
5897 case DW_TAG_packed_type:
5898 case DW_TAG_volatile_type:
5899 case DW_TAG_typedef:
5900 return 1;
5901 default:
5902 return 0;
5903 }
5904 }
5905
5906 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5907 Basically, we want to choose the bits that are likely to be shared between
5908 compilations (types) and leave out the bits that are specific to individual
5909 compilations (functions). */
5910
5911 static int
5912 is_comdat_die (dw_die_ref c)
5913 {
5914 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5915 we do for stabs. The advantage is a greater likelihood of sharing between
5916 objects that don't include headers in the same order (and therefore would
5917 put the base types in a different comdat). jason 8/28/00 */
5918
5919 if (c->die_tag == DW_TAG_base_type)
5920 return 0;
5921
5922 if (c->die_tag == DW_TAG_pointer_type
5923 || c->die_tag == DW_TAG_reference_type
5924 || c->die_tag == DW_TAG_const_type
5925 || c->die_tag == DW_TAG_volatile_type)
5926 {
5927 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5928
5929 return t ? is_comdat_die (t) : 0;
5930 }
5931
5932 return is_type_die (c);
5933 }
5934
5935 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5936 compilation unit. */
5937
5938 static int
5939 is_symbol_die (dw_die_ref c)
5940 {
5941 return (is_type_die (c)
5942 || (get_AT (c, DW_AT_declaration)
5943 && !get_AT (c, DW_AT_specification)));
5944 }
5945
5946 static char *
5947 gen_internal_sym (const char *prefix)
5948 {
5949 char buf[256];
5950
5951 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5952 return xstrdup (buf);
5953 }
5954
5955 /* Assign symbols to all worthy DIEs under DIE. */
5956
5957 static void
5958 assign_symbol_names (dw_die_ref die)
5959 {
5960 dw_die_ref c;
5961
5962 if (is_symbol_die (die))
5963 {
5964 if (comdat_symbol_id)
5965 {
5966 char *p = alloca (strlen (comdat_symbol_id) + 64);
5967
5968 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
5969 comdat_symbol_id, comdat_symbol_number++);
5970 die->die_symbol = xstrdup (p);
5971 }
5972 else
5973 die->die_symbol = gen_internal_sym ("LDIE");
5974 }
5975
5976 for (c = die->die_child; c != NULL; c = c->die_sib)
5977 assign_symbol_names (c);
5978 }
5979
5980 struct cu_hash_table_entry
5981 {
5982 dw_die_ref cu;
5983 unsigned min_comdat_num, max_comdat_num;
5984 struct cu_hash_table_entry *next;
5985 };
5986
5987 /* Routines to manipulate hash table of CUs. */
5988 static hashval_t
5989 htab_cu_hash (const void *of)
5990 {
5991 const struct cu_hash_table_entry *entry = of;
5992
5993 return htab_hash_string (entry->cu->die_symbol);
5994 }
5995
5996 static int
5997 htab_cu_eq (const void *of1, const void *of2)
5998 {
5999 const struct cu_hash_table_entry *entry1 = of1;
6000 const struct die_struct *entry2 = of2;
6001
6002 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6003 }
6004
6005 static void
6006 htab_cu_del (void *what)
6007 {
6008 struct cu_hash_table_entry *next, *entry = what;
6009
6010 while (entry)
6011 {
6012 next = entry->next;
6013 free (entry);
6014 entry = next;
6015 }
6016 }
6017
6018 /* Check whether we have already seen this CU and set up SYM_NUM
6019 accordingly. */
6020 static int
6021 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6022 {
6023 struct cu_hash_table_entry dummy;
6024 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6025
6026 dummy.max_comdat_num = 0;
6027
6028 slot = (struct cu_hash_table_entry **)
6029 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6030 INSERT);
6031 entry = *slot;
6032
6033 for (; entry; last = entry, entry = entry->next)
6034 {
6035 if (same_die_p_wrap (cu, entry->cu))
6036 break;
6037 }
6038
6039 if (entry)
6040 {
6041 *sym_num = entry->min_comdat_num;
6042 return 1;
6043 }
6044
6045 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6046 entry->cu = cu;
6047 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6048 entry->next = *slot;
6049 *slot = entry;
6050
6051 return 0;
6052 }
6053
6054 /* Record SYM_NUM to record of CU in HTABLE. */
6055 static void
6056 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6057 {
6058 struct cu_hash_table_entry **slot, *entry;
6059
6060 slot = (struct cu_hash_table_entry **)
6061 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6062 NO_INSERT);
6063 entry = *slot;
6064
6065 entry->max_comdat_num = sym_num;
6066 }
6067
6068 /* Traverse the DIE (which is always comp_unit_die), and set up
6069 additional compilation units for each of the include files we see
6070 bracketed by BINCL/EINCL. */
6071
6072 static void
6073 break_out_includes (dw_die_ref die)
6074 {
6075 dw_die_ref *ptr;
6076 dw_die_ref unit = NULL;
6077 limbo_die_node *node, **pnode;
6078 htab_t cu_hash_table;
6079
6080 for (ptr = &(die->die_child); *ptr;)
6081 {
6082 dw_die_ref c = *ptr;
6083
6084 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6085 || (unit && is_comdat_die (c)))
6086 {
6087 /* This DIE is for a secondary CU; remove it from the main one. */
6088 *ptr = c->die_sib;
6089
6090 if (c->die_tag == DW_TAG_GNU_BINCL)
6091 {
6092 unit = push_new_compile_unit (unit, c);
6093 free_die (c);
6094 }
6095 else if (c->die_tag == DW_TAG_GNU_EINCL)
6096 {
6097 unit = pop_compile_unit (unit);
6098 free_die (c);
6099 }
6100 else
6101 add_child_die (unit, c);
6102 }
6103 else
6104 {
6105 /* Leave this DIE in the main CU. */
6106 ptr = &(c->die_sib);
6107 continue;
6108 }
6109 }
6110
6111 #if 0
6112 /* We can only use this in debugging, since the frontend doesn't check
6113 to make sure that we leave every include file we enter. */
6114 if (unit != NULL)
6115 abort ();
6116 #endif
6117
6118 assign_symbol_names (die);
6119 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6120 for (node = limbo_die_list, pnode = &limbo_die_list;
6121 node;
6122 node = node->next)
6123 {
6124 int is_dupl;
6125
6126 compute_section_prefix (node->die);
6127 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6128 &comdat_symbol_number);
6129 assign_symbol_names (node->die);
6130 if (is_dupl)
6131 *pnode = node->next;
6132 else
6133 {
6134 pnode = &node->next;
6135 record_comdat_symbol_number (node->die, cu_hash_table,
6136 comdat_symbol_number);
6137 }
6138 }
6139 htab_delete (cu_hash_table);
6140 }
6141
6142 /* Traverse the DIE and add a sibling attribute if it may have the
6143 effect of speeding up access to siblings. To save some space,
6144 avoid generating sibling attributes for DIE's without children. */
6145
6146 static void
6147 add_sibling_attributes (dw_die_ref die)
6148 {
6149 dw_die_ref c;
6150
6151 if (die->die_tag != DW_TAG_compile_unit
6152 && die->die_sib && die->die_child != NULL)
6153 /* Add the sibling link to the front of the attribute list. */
6154 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6155
6156 for (c = die->die_child; c != NULL; c = c->die_sib)
6157 add_sibling_attributes (c);
6158 }
6159
6160 /* Output all location lists for the DIE and its children. */
6161
6162 static void
6163 output_location_lists (dw_die_ref die)
6164 {
6165 dw_die_ref c;
6166 dw_attr_ref d_attr;
6167
6168 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6169 if (AT_class (d_attr) == dw_val_class_loc_list)
6170 output_loc_list (AT_loc_list (d_attr));
6171
6172 for (c = die->die_child; c != NULL; c = c->die_sib)
6173 output_location_lists (c);
6174
6175 }
6176
6177 /* The format of each DIE (and its attribute value pairs) is encoded in an
6178 abbreviation table. This routine builds the abbreviation table and assigns
6179 a unique abbreviation id for each abbreviation entry. The children of each
6180 die are visited recursively. */
6181
6182 static void
6183 build_abbrev_table (dw_die_ref die)
6184 {
6185 unsigned long abbrev_id;
6186 unsigned int n_alloc;
6187 dw_die_ref c;
6188 dw_attr_ref d_attr, a_attr;
6189
6190 /* Scan the DIE references, and mark as external any that refer to
6191 DIEs from other CUs (i.e. those which are not marked). */
6192 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6193 if (AT_class (d_attr) == dw_val_class_die_ref
6194 && AT_ref (d_attr)->die_mark == 0)
6195 {
6196 if (AT_ref (d_attr)->die_symbol == 0)
6197 abort ();
6198
6199 set_AT_ref_external (d_attr, 1);
6200 }
6201
6202 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6203 {
6204 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6205
6206 if (abbrev->die_tag == die->die_tag)
6207 {
6208 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6209 {
6210 a_attr = abbrev->die_attr;
6211 d_attr = die->die_attr;
6212
6213 while (a_attr != NULL && d_attr != NULL)
6214 {
6215 if ((a_attr->dw_attr != d_attr->dw_attr)
6216 || (value_format (a_attr) != value_format (d_attr)))
6217 break;
6218
6219 a_attr = a_attr->dw_attr_next;
6220 d_attr = d_attr->dw_attr_next;
6221 }
6222
6223 if (a_attr == NULL && d_attr == NULL)
6224 break;
6225 }
6226 }
6227 }
6228
6229 if (abbrev_id >= abbrev_die_table_in_use)
6230 {
6231 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6232 {
6233 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6234 abbrev_die_table = ggc_realloc (abbrev_die_table,
6235 sizeof (dw_die_ref) * n_alloc);
6236
6237 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6238 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6239 abbrev_die_table_allocated = n_alloc;
6240 }
6241
6242 ++abbrev_die_table_in_use;
6243 abbrev_die_table[abbrev_id] = die;
6244 }
6245
6246 die->die_abbrev = abbrev_id;
6247 for (c = die->die_child; c != NULL; c = c->die_sib)
6248 build_abbrev_table (c);
6249 }
6250 \f
6251 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6252
6253 static int
6254 constant_size (long unsigned int value)
6255 {
6256 int log;
6257
6258 if (value == 0)
6259 log = 0;
6260 else
6261 log = floor_log2 (value);
6262
6263 log = log / 8;
6264 log = 1 << (floor_log2 (log) + 1);
6265
6266 return log;
6267 }
6268
6269 /* Return the size of a DIE as it is represented in the
6270 .debug_info section. */
6271
6272 static unsigned long
6273 size_of_die (dw_die_ref die)
6274 {
6275 unsigned long size = 0;
6276 dw_attr_ref a;
6277
6278 size += size_of_uleb128 (die->die_abbrev);
6279 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6280 {
6281 switch (AT_class (a))
6282 {
6283 case dw_val_class_addr:
6284 size += DWARF2_ADDR_SIZE;
6285 break;
6286 case dw_val_class_offset:
6287 size += DWARF_OFFSET_SIZE;
6288 break;
6289 case dw_val_class_loc:
6290 {
6291 unsigned long lsize = size_of_locs (AT_loc (a));
6292
6293 /* Block length. */
6294 size += constant_size (lsize);
6295 size += lsize;
6296 }
6297 break;
6298 case dw_val_class_loc_list:
6299 size += DWARF_OFFSET_SIZE;
6300 break;
6301 case dw_val_class_range_list:
6302 size += DWARF_OFFSET_SIZE;
6303 break;
6304 case dw_val_class_const:
6305 size += size_of_sleb128 (AT_int (a));
6306 break;
6307 case dw_val_class_unsigned_const:
6308 size += constant_size (AT_unsigned (a));
6309 break;
6310 case dw_val_class_long_long:
6311 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6312 break;
6313 case dw_val_class_float:
6314 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
6315 break;
6316 case dw_val_class_flag:
6317 size += 1;
6318 break;
6319 case dw_val_class_die_ref:
6320 if (AT_ref_external (a))
6321 size += DWARF2_ADDR_SIZE;
6322 else
6323 size += DWARF_OFFSET_SIZE;
6324 break;
6325 case dw_val_class_fde_ref:
6326 size += DWARF_OFFSET_SIZE;
6327 break;
6328 case dw_val_class_lbl_id:
6329 size += DWARF2_ADDR_SIZE;
6330 break;
6331 case dw_val_class_lbl_offset:
6332 size += DWARF_OFFSET_SIZE;
6333 break;
6334 case dw_val_class_str:
6335 if (AT_string_form (a) == DW_FORM_strp)
6336 size += DWARF_OFFSET_SIZE;
6337 else
6338 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6339 break;
6340 default:
6341 abort ();
6342 }
6343 }
6344
6345 return size;
6346 }
6347
6348 /* Size the debugging information associated with a given DIE. Visits the
6349 DIE's children recursively. Updates the global variable next_die_offset, on
6350 each time through. Uses the current value of next_die_offset to update the
6351 die_offset field in each DIE. */
6352
6353 static void
6354 calc_die_sizes (dw_die_ref die)
6355 {
6356 dw_die_ref c;
6357
6358 die->die_offset = next_die_offset;
6359 next_die_offset += size_of_die (die);
6360
6361 for (c = die->die_child; c != NULL; c = c->die_sib)
6362 calc_die_sizes (c);
6363
6364 if (die->die_child != NULL)
6365 /* Count the null byte used to terminate sibling lists. */
6366 next_die_offset += 1;
6367 }
6368
6369 /* Set the marks for a die and its children. We do this so
6370 that we know whether or not a reference needs to use FORM_ref_addr; only
6371 DIEs in the same CU will be marked. We used to clear out the offset
6372 and use that as the flag, but ran into ordering problems. */
6373
6374 static void
6375 mark_dies (dw_die_ref die)
6376 {
6377 dw_die_ref c;
6378
6379 if (die->die_mark)
6380 abort ();
6381
6382 die->die_mark = 1;
6383 for (c = die->die_child; c; c = c->die_sib)
6384 mark_dies (c);
6385 }
6386
6387 /* Clear the marks for a die and its children. */
6388
6389 static void
6390 unmark_dies (dw_die_ref die)
6391 {
6392 dw_die_ref c;
6393
6394 if (!die->die_mark)
6395 abort ();
6396
6397 die->die_mark = 0;
6398 for (c = die->die_child; c; c = c->die_sib)
6399 unmark_dies (c);
6400 }
6401
6402 /* Clear the marks for a die, its children and referred dies. */
6403
6404 static void
6405 unmark_all_dies (dw_die_ref die)
6406 {
6407 dw_die_ref c;
6408 dw_attr_ref a;
6409
6410 if (!die->die_mark)
6411 return;
6412 die->die_mark = 0;
6413
6414 for (c = die->die_child; c; c = c->die_sib)
6415 unmark_all_dies (c);
6416
6417 for (a = die->die_attr; a; a = a->dw_attr_next)
6418 if (AT_class (a) == dw_val_class_die_ref)
6419 unmark_all_dies (AT_ref (a));
6420 }
6421
6422 /* Return the size of the .debug_pubnames table generated for the
6423 compilation unit. */
6424
6425 static unsigned long
6426 size_of_pubnames (void)
6427 {
6428 unsigned long size;
6429 unsigned i;
6430
6431 size = DWARF_PUBNAMES_HEADER_SIZE;
6432 for (i = 0; i < pubname_table_in_use; i++)
6433 {
6434 pubname_ref p = &pubname_table[i];
6435 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6436 }
6437
6438 size += DWARF_OFFSET_SIZE;
6439 return size;
6440 }
6441
6442 /* Return the size of the information in the .debug_aranges section. */
6443
6444 static unsigned long
6445 size_of_aranges (void)
6446 {
6447 unsigned long size;
6448
6449 size = DWARF_ARANGES_HEADER_SIZE;
6450
6451 /* Count the address/length pair for this compilation unit. */
6452 size += 2 * DWARF2_ADDR_SIZE;
6453 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6454
6455 /* Count the two zero words used to terminated the address range table. */
6456 size += 2 * DWARF2_ADDR_SIZE;
6457 return size;
6458 }
6459 \f
6460 /* Select the encoding of an attribute value. */
6461
6462 static enum dwarf_form
6463 value_format (dw_attr_ref a)
6464 {
6465 switch (a->dw_attr_val.val_class)
6466 {
6467 case dw_val_class_addr:
6468 return DW_FORM_addr;
6469 case dw_val_class_range_list:
6470 case dw_val_class_offset:
6471 if (DWARF_OFFSET_SIZE == 4)
6472 return DW_FORM_data4;
6473 if (DWARF_OFFSET_SIZE == 8)
6474 return DW_FORM_data8;
6475 abort ();
6476 case dw_val_class_loc_list:
6477 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6478 .debug_loc section */
6479 return DW_FORM_data4;
6480 case dw_val_class_loc:
6481 switch (constant_size (size_of_locs (AT_loc (a))))
6482 {
6483 case 1:
6484 return DW_FORM_block1;
6485 case 2:
6486 return DW_FORM_block2;
6487 default:
6488 abort ();
6489 }
6490 case dw_val_class_const:
6491 return DW_FORM_sdata;
6492 case dw_val_class_unsigned_const:
6493 switch (constant_size (AT_unsigned (a)))
6494 {
6495 case 1:
6496 return DW_FORM_data1;
6497 case 2:
6498 return DW_FORM_data2;
6499 case 4:
6500 return DW_FORM_data4;
6501 case 8:
6502 return DW_FORM_data8;
6503 default:
6504 abort ();
6505 }
6506 case dw_val_class_long_long:
6507 return DW_FORM_block1;
6508 case dw_val_class_float:
6509 return DW_FORM_block1;
6510 case dw_val_class_flag:
6511 return DW_FORM_flag;
6512 case dw_val_class_die_ref:
6513 if (AT_ref_external (a))
6514 return DW_FORM_ref_addr;
6515 else
6516 return DW_FORM_ref;
6517 case dw_val_class_fde_ref:
6518 return DW_FORM_data;
6519 case dw_val_class_lbl_id:
6520 return DW_FORM_addr;
6521 case dw_val_class_lbl_offset:
6522 return DW_FORM_data;
6523 case dw_val_class_str:
6524 return AT_string_form (a);
6525
6526 default:
6527 abort ();
6528 }
6529 }
6530
6531 /* Output the encoding of an attribute value. */
6532
6533 static void
6534 output_value_format (dw_attr_ref a)
6535 {
6536 enum dwarf_form form = value_format (a);
6537
6538 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6539 }
6540
6541 /* Output the .debug_abbrev section which defines the DIE abbreviation
6542 table. */
6543
6544 static void
6545 output_abbrev_section (void)
6546 {
6547 unsigned long abbrev_id;
6548
6549 dw_attr_ref a_attr;
6550
6551 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6552 {
6553 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6554
6555 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6556 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6557 dwarf_tag_name (abbrev->die_tag));
6558
6559 if (abbrev->die_child != NULL)
6560 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6561 else
6562 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6563
6564 for (a_attr = abbrev->die_attr; a_attr != NULL;
6565 a_attr = a_attr->dw_attr_next)
6566 {
6567 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6568 dwarf_attr_name (a_attr->dw_attr));
6569 output_value_format (a_attr);
6570 }
6571
6572 dw2_asm_output_data (1, 0, NULL);
6573 dw2_asm_output_data (1, 0, NULL);
6574 }
6575
6576 /* Terminate the table. */
6577 dw2_asm_output_data (1, 0, NULL);
6578 }
6579
6580 /* Output a symbol we can use to refer to this DIE from another CU. */
6581
6582 static inline void
6583 output_die_symbol (dw_die_ref die)
6584 {
6585 char *sym = die->die_symbol;
6586
6587 if (sym == 0)
6588 return;
6589
6590 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6591 /* We make these global, not weak; if the target doesn't support
6592 .linkonce, it doesn't support combining the sections, so debugging
6593 will break. */
6594 (*targetm.asm_out.globalize_label) (asm_out_file, sym);
6595
6596 ASM_OUTPUT_LABEL (asm_out_file, sym);
6597 }
6598
6599 /* Return a new location list, given the begin and end range, and the
6600 expression. gensym tells us whether to generate a new internal symbol for
6601 this location list node, which is done for the head of the list only. */
6602
6603 static inline dw_loc_list_ref
6604 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6605 const char *section, unsigned int gensym)
6606 {
6607 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6608
6609 retlist->begin = begin;
6610 retlist->end = end;
6611 retlist->expr = expr;
6612 retlist->section = section;
6613 if (gensym)
6614 retlist->ll_symbol = gen_internal_sym ("LLST");
6615
6616 return retlist;
6617 }
6618
6619 /* Add a location description expression to a location list. */
6620
6621 static inline void
6622 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6623 const char *begin, const char *end,
6624 const char *section)
6625 {
6626 dw_loc_list_ref *d;
6627
6628 /* Find the end of the chain. */
6629 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6630 ;
6631
6632 /* Add a new location list node to the list. */
6633 *d = new_loc_list (descr, begin, end, section, 0);
6634 }
6635
6636 /* Output the location list given to us. */
6637
6638 static void
6639 output_loc_list (dw_loc_list_ref list_head)
6640 {
6641 dw_loc_list_ref curr = list_head;
6642
6643 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6644
6645 /* Walk the location list, and output each range + expression. */
6646 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6647 {
6648 unsigned long size;
6649 if (separate_line_info_table_in_use == 0)
6650 {
6651 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6652 "Location list begin address (%s)",
6653 list_head->ll_symbol);
6654 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6655 "Location list end address (%s)",
6656 list_head->ll_symbol);
6657 }
6658 else
6659 {
6660 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
6661 "Location list begin address (%s)",
6662 list_head->ll_symbol);
6663 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
6664 "Location list end address (%s)",
6665 list_head->ll_symbol);
6666 }
6667 size = size_of_locs (curr->expr);
6668
6669 /* Output the block length for this list of location operations. */
6670 if (size > 0xffff)
6671 abort ();
6672 dw2_asm_output_data (2, size, "%s", "Location expression size");
6673
6674 output_loc_sequence (curr->expr);
6675 }
6676
6677 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6678 "Location list terminator begin (%s)",
6679 list_head->ll_symbol);
6680 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6681 "Location list terminator end (%s)",
6682 list_head->ll_symbol);
6683 }
6684
6685 /* Output the DIE and its attributes. Called recursively to generate
6686 the definitions of each child DIE. */
6687
6688 static void
6689 output_die (dw_die_ref die)
6690 {
6691 dw_attr_ref a;
6692 dw_die_ref c;
6693 unsigned long size;
6694
6695 /* If someone in another CU might refer to us, set up a symbol for
6696 them to point to. */
6697 if (die->die_symbol)
6698 output_die_symbol (die);
6699
6700 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6701 die->die_offset, dwarf_tag_name (die->die_tag));
6702
6703 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6704 {
6705 const char *name = dwarf_attr_name (a->dw_attr);
6706
6707 switch (AT_class (a))
6708 {
6709 case dw_val_class_addr:
6710 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6711 break;
6712
6713 case dw_val_class_offset:
6714 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6715 "%s", name);
6716 break;
6717
6718 case dw_val_class_range_list:
6719 {
6720 char *p = strchr (ranges_section_label, '\0');
6721
6722 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6723 a->dw_attr_val.v.val_offset);
6724 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6725 "%s", name);
6726 *p = '\0';
6727 }
6728 break;
6729
6730 case dw_val_class_loc:
6731 size = size_of_locs (AT_loc (a));
6732
6733 /* Output the block length for this list of location operations. */
6734 dw2_asm_output_data (constant_size (size), size, "%s", name);
6735
6736 output_loc_sequence (AT_loc (a));
6737 break;
6738
6739 case dw_val_class_const:
6740 /* ??? It would be slightly more efficient to use a scheme like is
6741 used for unsigned constants below, but gdb 4.x does not sign
6742 extend. Gdb 5.x does sign extend. */
6743 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6744 break;
6745
6746 case dw_val_class_unsigned_const:
6747 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6748 AT_unsigned (a), "%s", name);
6749 break;
6750
6751 case dw_val_class_long_long:
6752 {
6753 unsigned HOST_WIDE_INT first, second;
6754
6755 dw2_asm_output_data (1,
6756 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6757 "%s", name);
6758
6759 if (WORDS_BIG_ENDIAN)
6760 {
6761 first = a->dw_attr_val.v.val_long_long.hi;
6762 second = a->dw_attr_val.v.val_long_long.low;
6763 }
6764 else
6765 {
6766 first = a->dw_attr_val.v.val_long_long.low;
6767 second = a->dw_attr_val.v.val_long_long.hi;
6768 }
6769
6770 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6771 first, "long long constant");
6772 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6773 second, NULL);
6774 }
6775 break;
6776
6777 case dw_val_class_float:
6778 {
6779 unsigned int i;
6780
6781 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6782 "%s", name);
6783
6784 for (i = 0; i < a->dw_attr_val.v.val_float.length; i++)
6785 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6786 "fp constant word %u", i);
6787 break;
6788 }
6789
6790 case dw_val_class_flag:
6791 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6792 break;
6793
6794 case dw_val_class_loc_list:
6795 {
6796 char *sym = AT_loc_list (a)->ll_symbol;
6797
6798 if (sym == 0)
6799 abort ();
6800 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, "%s", name);
6801 }
6802 break;
6803
6804 case dw_val_class_die_ref:
6805 if (AT_ref_external (a))
6806 {
6807 char *sym = AT_ref (a)->die_symbol;
6808
6809 if (sym == 0)
6810 abort ();
6811 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6812 }
6813 else if (AT_ref (a)->die_offset == 0)
6814 abort ();
6815 else
6816 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6817 "%s", name);
6818 break;
6819
6820 case dw_val_class_fde_ref:
6821 {
6822 char l1[20];
6823
6824 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6825 a->dw_attr_val.v.val_fde_index * 2);
6826 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6827 }
6828 break;
6829
6830 case dw_val_class_lbl_id:
6831 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6832 break;
6833
6834 case dw_val_class_lbl_offset:
6835 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6836 break;
6837
6838 case dw_val_class_str:
6839 if (AT_string_form (a) == DW_FORM_strp)
6840 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6841 a->dw_attr_val.v.val_str->label,
6842 "%s: \"%s\"", name, AT_string (a));
6843 else
6844 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6845 break;
6846
6847 default:
6848 abort ();
6849 }
6850 }
6851
6852 for (c = die->die_child; c != NULL; c = c->die_sib)
6853 output_die (c);
6854
6855 /* Add null byte to terminate sibling list. */
6856 if (die->die_child != NULL)
6857 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6858 die->die_offset);
6859 }
6860
6861 /* Output the compilation unit that appears at the beginning of the
6862 .debug_info section, and precedes the DIE descriptions. */
6863
6864 static void
6865 output_compilation_unit_header (void)
6866 {
6867 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6868 dw2_asm_output_data (4, 0xffffffff,
6869 "Initial length escape value indicating 64-bit DWARF extension");
6870 dw2_asm_output_data (DWARF_OFFSET_SIZE,
6871 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
6872 "Length of Compilation Unit Info");
6873 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6874 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6875 "Offset Into Abbrev. Section");
6876 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6877 }
6878
6879 /* Output the compilation unit DIE and its children. */
6880
6881 static void
6882 output_comp_unit (dw_die_ref die, int output_if_empty)
6883 {
6884 const char *secname;
6885 char *oldsym, *tmp;
6886
6887 /* Unless we are outputting main CU, we may throw away empty ones. */
6888 if (!output_if_empty && die->die_child == NULL)
6889 return;
6890
6891 /* Even if there are no children of this DIE, we must output the information
6892 about the compilation unit. Otherwise, on an empty translation unit, we
6893 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6894 will then complain when examining the file. First mark all the DIEs in
6895 this CU so we know which get local refs. */
6896 mark_dies (die);
6897
6898 build_abbrev_table (die);
6899
6900 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6901 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6902 calc_die_sizes (die);
6903
6904 oldsym = die->die_symbol;
6905 if (oldsym)
6906 {
6907 tmp = alloca (strlen (oldsym) + 24);
6908
6909 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
6910 secname = tmp;
6911 die->die_symbol = NULL;
6912 }
6913 else
6914 secname = (const char *) DEBUG_INFO_SECTION;
6915
6916 /* Output debugging information. */
6917 named_section_flags (secname, SECTION_DEBUG);
6918 output_compilation_unit_header ();
6919 output_die (die);
6920
6921 /* Leave the marks on the main CU, so we can check them in
6922 output_pubnames. */
6923 if (oldsym)
6924 {
6925 unmark_dies (die);
6926 die->die_symbol = oldsym;
6927 }
6928 }
6929
6930 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
6931 output of lang_hooks.decl_printable_name for C++ looks like
6932 "A::f(int)". Let's drop the argument list, and maybe the scope. */
6933
6934 static const char *
6935 dwarf2_name (tree decl, int scope)
6936 {
6937 return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
6938 }
6939
6940 /* Add a new entry to .debug_pubnames if appropriate. */
6941
6942 static void
6943 add_pubname (tree decl, dw_die_ref die)
6944 {
6945 pubname_ref p;
6946
6947 if (! TREE_PUBLIC (decl))
6948 return;
6949
6950 if (pubname_table_in_use == pubname_table_allocated)
6951 {
6952 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
6953 pubname_table
6954 = ggc_realloc (pubname_table,
6955 (pubname_table_allocated * sizeof (pubname_entry)));
6956 memset (pubname_table + pubname_table_in_use, 0,
6957 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
6958 }
6959
6960 p = &pubname_table[pubname_table_in_use++];
6961 p->die = die;
6962 p->name = xstrdup (dwarf2_name (decl, 1));
6963 }
6964
6965 /* Output the public names table used to speed up access to externally
6966 visible names. For now, only generate entries for externally
6967 visible procedures. */
6968
6969 static void
6970 output_pubnames (void)
6971 {
6972 unsigned i;
6973 unsigned long pubnames_length = size_of_pubnames ();
6974
6975 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6976 dw2_asm_output_data (4, 0xffffffff,
6977 "Initial length escape value indicating 64-bit DWARF extension");
6978 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
6979 "Length of Public Names Info");
6980 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6981 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6982 "Offset of Compilation Unit Info");
6983 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
6984 "Compilation Unit Length");
6985
6986 for (i = 0; i < pubname_table_in_use; i++)
6987 {
6988 pubname_ref pub = &pubname_table[i];
6989
6990 /* We shouldn't see pubnames for DIEs outside of the main CU. */
6991 if (pub->die->die_mark == 0)
6992 abort ();
6993
6994 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
6995 "DIE offset");
6996
6997 dw2_asm_output_nstring (pub->name, -1, "external name");
6998 }
6999
7000 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7001 }
7002
7003 /* Add a new entry to .debug_aranges if appropriate. */
7004
7005 static void
7006 add_arange (tree decl, dw_die_ref die)
7007 {
7008 if (! DECL_SECTION_NAME (decl))
7009 return;
7010
7011 if (arange_table_in_use == arange_table_allocated)
7012 {
7013 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7014 arange_table = ggc_realloc (arange_table,
7015 (arange_table_allocated
7016 * sizeof (dw_die_ref)));
7017 memset (arange_table + arange_table_in_use, 0,
7018 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7019 }
7020
7021 arange_table[arange_table_in_use++] = die;
7022 }
7023
7024 /* Output the information that goes into the .debug_aranges table.
7025 Namely, define the beginning and ending address range of the
7026 text section generated for this compilation unit. */
7027
7028 static void
7029 output_aranges (void)
7030 {
7031 unsigned i;
7032 unsigned long aranges_length = size_of_aranges ();
7033
7034 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7035 dw2_asm_output_data (4, 0xffffffff,
7036 "Initial length escape value indicating 64-bit DWARF extension");
7037 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7038 "Length of Address Ranges Info");
7039 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7040 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7041 "Offset of Compilation Unit Info");
7042 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7043 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7044
7045 /* We need to align to twice the pointer size here. */
7046 if (DWARF_ARANGES_PAD_SIZE)
7047 {
7048 /* Pad using a 2 byte words so that padding is correct for any
7049 pointer size. */
7050 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7051 2 * DWARF2_ADDR_SIZE);
7052 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7053 dw2_asm_output_data (2, 0, NULL);
7054 }
7055
7056 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7057 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7058 text_section_label, "Length");
7059
7060 for (i = 0; i < arange_table_in_use; i++)
7061 {
7062 dw_die_ref die = arange_table[i];
7063
7064 /* We shouldn't see aranges for DIEs outside of the main CU. */
7065 if (die->die_mark == 0)
7066 abort ();
7067
7068 if (die->die_tag == DW_TAG_subprogram)
7069 {
7070 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7071 "Address");
7072 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7073 get_AT_low_pc (die), "Length");
7074 }
7075 else
7076 {
7077 /* A static variable; extract the symbol from DW_AT_location.
7078 Note that this code isn't currently hit, as we only emit
7079 aranges for functions (jason 9/23/99). */
7080 dw_attr_ref a = get_AT (die, DW_AT_location);
7081 dw_loc_descr_ref loc;
7082
7083 if (! a || AT_class (a) != dw_val_class_loc)
7084 abort ();
7085
7086 loc = AT_loc (a);
7087 if (loc->dw_loc_opc != DW_OP_addr)
7088 abort ();
7089
7090 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7091 loc->dw_loc_oprnd1.v.val_addr, "Address");
7092 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7093 get_AT_unsigned (die, DW_AT_byte_size),
7094 "Length");
7095 }
7096 }
7097
7098 /* Output the terminator words. */
7099 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7100 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7101 }
7102
7103 /* Add a new entry to .debug_ranges. Return the offset at which it
7104 was placed. */
7105
7106 static unsigned int
7107 add_ranges (tree block)
7108 {
7109 unsigned int in_use = ranges_table_in_use;
7110
7111 if (in_use == ranges_table_allocated)
7112 {
7113 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7114 ranges_table
7115 = ggc_realloc (ranges_table, (ranges_table_allocated
7116 * sizeof (struct dw_ranges_struct)));
7117 memset (ranges_table + ranges_table_in_use, 0,
7118 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7119 }
7120
7121 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7122 ranges_table_in_use = in_use + 1;
7123
7124 return in_use * 2 * DWARF2_ADDR_SIZE;
7125 }
7126
7127 static void
7128 output_ranges (void)
7129 {
7130 unsigned i;
7131 static const char *const start_fmt = "Offset 0x%x";
7132 const char *fmt = start_fmt;
7133
7134 for (i = 0; i < ranges_table_in_use; i++)
7135 {
7136 int block_num = ranges_table[i].block_num;
7137
7138 if (block_num)
7139 {
7140 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7141 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7142
7143 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7144 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7145
7146 /* If all code is in the text section, then the compilation
7147 unit base address defaults to DW_AT_low_pc, which is the
7148 base of the text section. */
7149 if (separate_line_info_table_in_use == 0)
7150 {
7151 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7152 text_section_label,
7153 fmt, i * 2 * DWARF2_ADDR_SIZE);
7154 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7155 text_section_label, NULL);
7156 }
7157
7158 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7159 compilation unit base address to zero, which allows us to
7160 use absolute addresses, and not worry about whether the
7161 target supports cross-section arithmetic. */
7162 else
7163 {
7164 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7165 fmt, i * 2 * DWARF2_ADDR_SIZE);
7166 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7167 }
7168
7169 fmt = NULL;
7170 }
7171 else
7172 {
7173 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7174 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7175 fmt = start_fmt;
7176 }
7177 }
7178 }
7179
7180 /* Data structure containing information about input files. */
7181 struct file_info
7182 {
7183 char *path; /* Complete file name. */
7184 char *fname; /* File name part. */
7185 int length; /* Length of entire string. */
7186 int file_idx; /* Index in input file table. */
7187 int dir_idx; /* Index in directory table. */
7188 };
7189
7190 /* Data structure containing information about directories with source
7191 files. */
7192 struct dir_info
7193 {
7194 char *path; /* Path including directory name. */
7195 int length; /* Path length. */
7196 int prefix; /* Index of directory entry which is a prefix. */
7197 int count; /* Number of files in this directory. */
7198 int dir_idx; /* Index of directory used as base. */
7199 int used; /* Used in the end? */
7200 };
7201
7202 /* Callback function for file_info comparison. We sort by looking at
7203 the directories in the path. */
7204
7205 static int
7206 file_info_cmp (const void *p1, const void *p2)
7207 {
7208 const struct file_info *s1 = p1;
7209 const struct file_info *s2 = p2;
7210 unsigned char *cp1;
7211 unsigned char *cp2;
7212
7213 /* Take care of file names without directories. We need to make sure that
7214 we return consistent values to qsort since some will get confused if
7215 we return the same value when identical operands are passed in opposite
7216 orders. So if neither has a directory, return 0 and otherwise return
7217 1 or -1 depending on which one has the directory. */
7218 if ((s1->path == s1->fname || s2->path == s2->fname))
7219 return (s2->path == s2->fname) - (s1->path == s1->fname);
7220
7221 cp1 = (unsigned char *) s1->path;
7222 cp2 = (unsigned char *) s2->path;
7223
7224 while (1)
7225 {
7226 ++cp1;
7227 ++cp2;
7228 /* Reached the end of the first path? If so, handle like above. */
7229 if ((cp1 == (unsigned char *) s1->fname)
7230 || (cp2 == (unsigned char *) s2->fname))
7231 return ((cp2 == (unsigned char *) s2->fname)
7232 - (cp1 == (unsigned char *) s1->fname));
7233
7234 /* Character of current path component the same? */
7235 else if (*cp1 != *cp2)
7236 return *cp1 - *cp2;
7237 }
7238 }
7239
7240 /* Output the directory table and the file name table. We try to minimize
7241 the total amount of memory needed. A heuristic is used to avoid large
7242 slowdowns with many input files. */
7243
7244 static void
7245 output_file_names (void)
7246 {
7247 struct file_info *files;
7248 struct dir_info *dirs;
7249 int *saved;
7250 int *savehere;
7251 int *backmap;
7252 size_t ndirs;
7253 int idx_offset;
7254 size_t i;
7255 int idx;
7256
7257 /* Handle the case where file_table is empty. */
7258 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7259 {
7260 dw2_asm_output_data (1, 0, "End directory table");
7261 dw2_asm_output_data (1, 0, "End file name table");
7262 return;
7263 }
7264
7265 /* Allocate the various arrays we need. */
7266 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7267 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7268
7269 /* Sort the file names. */
7270 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7271 {
7272 char *f;
7273
7274 /* Skip all leading "./". */
7275 f = VARRAY_CHAR_PTR (file_table, i);
7276 while (f[0] == '.' && f[1] == '/')
7277 f += 2;
7278
7279 /* Create a new array entry. */
7280 files[i].path = f;
7281 files[i].length = strlen (f);
7282 files[i].file_idx = i;
7283
7284 /* Search for the file name part. */
7285 f = strrchr (f, '/');
7286 files[i].fname = f == NULL ? files[i].path : f + 1;
7287 }
7288
7289 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7290 sizeof (files[0]), file_info_cmp);
7291
7292 /* Find all the different directories used. */
7293 dirs[0].path = files[1].path;
7294 dirs[0].length = files[1].fname - files[1].path;
7295 dirs[0].prefix = -1;
7296 dirs[0].count = 1;
7297 dirs[0].dir_idx = 0;
7298 dirs[0].used = 0;
7299 files[1].dir_idx = 0;
7300 ndirs = 1;
7301
7302 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7303 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7304 && memcmp (dirs[ndirs - 1].path, files[i].path,
7305 dirs[ndirs - 1].length) == 0)
7306 {
7307 /* Same directory as last entry. */
7308 files[i].dir_idx = ndirs - 1;
7309 ++dirs[ndirs - 1].count;
7310 }
7311 else
7312 {
7313 size_t j;
7314
7315 /* This is a new directory. */
7316 dirs[ndirs].path = files[i].path;
7317 dirs[ndirs].length = files[i].fname - files[i].path;
7318 dirs[ndirs].count = 1;
7319 dirs[ndirs].dir_idx = ndirs;
7320 dirs[ndirs].used = 0;
7321 files[i].dir_idx = ndirs;
7322
7323 /* Search for a prefix. */
7324 dirs[ndirs].prefix = -1;
7325 for (j = 0; j < ndirs; j++)
7326 if (dirs[j].length < dirs[ndirs].length
7327 && dirs[j].length > 1
7328 && (dirs[ndirs].prefix == -1
7329 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7330 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7331 dirs[ndirs].prefix = j;
7332
7333 ++ndirs;
7334 }
7335
7336 /* Now to the actual work. We have to find a subset of the directories which
7337 allow expressing the file name using references to the directory table
7338 with the least amount of characters. We do not do an exhaustive search
7339 where we would have to check out every combination of every single
7340 possible prefix. Instead we use a heuristic which provides nearly optimal
7341 results in most cases and never is much off. */
7342 saved = alloca (ndirs * sizeof (int));
7343 savehere = alloca (ndirs * sizeof (int));
7344
7345 memset (saved, '\0', ndirs * sizeof (saved[0]));
7346 for (i = 0; i < ndirs; i++)
7347 {
7348 size_t j;
7349 int total;
7350
7351 /* We can always save some space for the current directory. But this
7352 does not mean it will be enough to justify adding the directory. */
7353 savehere[i] = dirs[i].length;
7354 total = (savehere[i] - saved[i]) * dirs[i].count;
7355
7356 for (j = i + 1; j < ndirs; j++)
7357 {
7358 savehere[j] = 0;
7359 if (saved[j] < dirs[i].length)
7360 {
7361 /* Determine whether the dirs[i] path is a prefix of the
7362 dirs[j] path. */
7363 int k;
7364
7365 k = dirs[j].prefix;
7366 while (k != -1 && k != (int) i)
7367 k = dirs[k].prefix;
7368
7369 if (k == (int) i)
7370 {
7371 /* Yes it is. We can possibly safe some memory but
7372 writing the filenames in dirs[j] relative to
7373 dirs[i]. */
7374 savehere[j] = dirs[i].length;
7375 total += (savehere[j] - saved[j]) * dirs[j].count;
7376 }
7377 }
7378 }
7379
7380 /* Check whether we can safe enough to justify adding the dirs[i]
7381 directory. */
7382 if (total > dirs[i].length + 1)
7383 {
7384 /* It's worthwhile adding. */
7385 for (j = i; j < ndirs; j++)
7386 if (savehere[j] > 0)
7387 {
7388 /* Remember how much we saved for this directory so far. */
7389 saved[j] = savehere[j];
7390
7391 /* Remember the prefix directory. */
7392 dirs[j].dir_idx = i;
7393 }
7394 }
7395 }
7396
7397 /* We have to emit them in the order they appear in the file_table array
7398 since the index is used in the debug info generation. To do this
7399 efficiently we generate a back-mapping of the indices first. */
7400 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7401 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7402 {
7403 backmap[files[i].file_idx] = i;
7404
7405 /* Mark this directory as used. */
7406 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7407 }
7408
7409 /* That was it. We are ready to emit the information. First emit the
7410 directory name table. We have to make sure the first actually emitted
7411 directory name has index one; zero is reserved for the current working
7412 directory. Make sure we do not confuse these indices with the one for the
7413 constructed table (even though most of the time they are identical). */
7414 idx = 1;
7415 idx_offset = dirs[0].length > 0 ? 1 : 0;
7416 for (i = 1 - idx_offset; i < ndirs; i++)
7417 if (dirs[i].used != 0)
7418 {
7419 dirs[i].used = idx++;
7420 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7421 "Directory Entry: 0x%x", dirs[i].used);
7422 }
7423
7424 dw2_asm_output_data (1, 0, "End directory table");
7425
7426 /* Correct the index for the current working directory entry if it
7427 exists. */
7428 if (idx_offset == 0)
7429 dirs[0].used = 0;
7430
7431 /* Now write all the file names. */
7432 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7433 {
7434 int file_idx = backmap[i];
7435 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7436
7437 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7438 "File Entry: 0x%lx", (unsigned long) i);
7439
7440 /* Include directory index. */
7441 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7442
7443 /* Modification time. */
7444 dw2_asm_output_data_uleb128 (0, NULL);
7445
7446 /* File length in bytes. */
7447 dw2_asm_output_data_uleb128 (0, NULL);
7448 }
7449
7450 dw2_asm_output_data (1, 0, "End file name table");
7451 }
7452
7453
7454 /* Output the source line number correspondence information. This
7455 information goes into the .debug_line section. */
7456
7457 static void
7458 output_line_info (void)
7459 {
7460 char l1[20], l2[20], p1[20], p2[20];
7461 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7462 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7463 unsigned opc;
7464 unsigned n_op_args;
7465 unsigned long lt_index;
7466 unsigned long current_line;
7467 long line_offset;
7468 long line_delta;
7469 unsigned long current_file;
7470 unsigned long function;
7471
7472 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7473 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7474 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7475 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7476
7477 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7478 dw2_asm_output_data (4, 0xffffffff,
7479 "Initial length escape value indicating 64-bit DWARF extension");
7480 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7481 "Length of Source Line Info");
7482 ASM_OUTPUT_LABEL (asm_out_file, l1);
7483
7484 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7485 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7486 ASM_OUTPUT_LABEL (asm_out_file, p1);
7487
7488 /* Define the architecture-dependent minimum instruction length (in
7489 bytes). In this implementation of DWARF, this field is used for
7490 information purposes only. Since GCC generates assembly language,
7491 we have no a priori knowledge of how many instruction bytes are
7492 generated for each source line, and therefore can use only the
7493 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7494 commands. Accordingly, we fix this as `1', which is "correct
7495 enough" for all architectures, and don't let the target override. */
7496 dw2_asm_output_data (1, 1,
7497 "Minimum Instruction Length");
7498
7499 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7500 "Default is_stmt_start flag");
7501 dw2_asm_output_data (1, DWARF_LINE_BASE,
7502 "Line Base Value (Special Opcodes)");
7503 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7504 "Line Range Value (Special Opcodes)");
7505 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7506 "Special Opcode Base");
7507
7508 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7509 {
7510 switch (opc)
7511 {
7512 case DW_LNS_advance_pc:
7513 case DW_LNS_advance_line:
7514 case DW_LNS_set_file:
7515 case DW_LNS_set_column:
7516 case DW_LNS_fixed_advance_pc:
7517 n_op_args = 1;
7518 break;
7519 default:
7520 n_op_args = 0;
7521 break;
7522 }
7523
7524 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7525 opc, n_op_args);
7526 }
7527
7528 /* Write out the information about the files we use. */
7529 output_file_names ();
7530 ASM_OUTPUT_LABEL (asm_out_file, p2);
7531
7532 /* We used to set the address register to the first location in the text
7533 section here, but that didn't accomplish anything since we already
7534 have a line note for the opening brace of the first function. */
7535
7536 /* Generate the line number to PC correspondence table, encoded as
7537 a series of state machine operations. */
7538 current_file = 1;
7539 current_line = 1;
7540 strcpy (prev_line_label, text_section_label);
7541 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7542 {
7543 dw_line_info_ref line_info = &line_info_table[lt_index];
7544
7545 #if 0
7546 /* Disable this optimization for now; GDB wants to see two line notes
7547 at the beginning of a function so it can find the end of the
7548 prologue. */
7549
7550 /* Don't emit anything for redundant notes. Just updating the
7551 address doesn't accomplish anything, because we already assume
7552 that anything after the last address is this line. */
7553 if (line_info->dw_line_num == current_line
7554 && line_info->dw_file_num == current_file)
7555 continue;
7556 #endif
7557
7558 /* Emit debug info for the address of the current line.
7559
7560 Unfortunately, we have little choice here currently, and must always
7561 use the most general form. GCC does not know the address delta
7562 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7563 attributes which will give an upper bound on the address range. We
7564 could perhaps use length attributes to determine when it is safe to
7565 use DW_LNS_fixed_advance_pc. */
7566
7567 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7568 if (0)
7569 {
7570 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7571 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7572 "DW_LNS_fixed_advance_pc");
7573 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7574 }
7575 else
7576 {
7577 /* This can handle any delta. This takes
7578 4+DWARF2_ADDR_SIZE bytes. */
7579 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7580 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7581 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7582 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7583 }
7584
7585 strcpy (prev_line_label, line_label);
7586
7587 /* Emit debug info for the source file of the current line, if
7588 different from the previous line. */
7589 if (line_info->dw_file_num != current_file)
7590 {
7591 current_file = line_info->dw_file_num;
7592 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7593 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7594 VARRAY_CHAR_PTR (file_table,
7595 current_file));
7596 }
7597
7598 /* Emit debug info for the current line number, choosing the encoding
7599 that uses the least amount of space. */
7600 if (line_info->dw_line_num != current_line)
7601 {
7602 line_offset = line_info->dw_line_num - current_line;
7603 line_delta = line_offset - DWARF_LINE_BASE;
7604 current_line = line_info->dw_line_num;
7605 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7606 /* This can handle deltas from -10 to 234, using the current
7607 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7608 takes 1 byte. */
7609 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7610 "line %lu", current_line);
7611 else
7612 {
7613 /* This can handle any delta. This takes at least 4 bytes,
7614 depending on the value being encoded. */
7615 dw2_asm_output_data (1, DW_LNS_advance_line,
7616 "advance to line %lu", current_line);
7617 dw2_asm_output_data_sleb128 (line_offset, NULL);
7618 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7619 }
7620 }
7621 else
7622 /* We still need to start a new row, so output a copy insn. */
7623 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7624 }
7625
7626 /* Emit debug info for the address of the end of the function. */
7627 if (0)
7628 {
7629 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7630 "DW_LNS_fixed_advance_pc");
7631 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7632 }
7633 else
7634 {
7635 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7636 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7637 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7638 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7639 }
7640
7641 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7642 dw2_asm_output_data_uleb128 (1, NULL);
7643 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7644
7645 function = 0;
7646 current_file = 1;
7647 current_line = 1;
7648 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7649 {
7650 dw_separate_line_info_ref line_info
7651 = &separate_line_info_table[lt_index];
7652
7653 #if 0
7654 /* Don't emit anything for redundant notes. */
7655 if (line_info->dw_line_num == current_line
7656 && line_info->dw_file_num == current_file
7657 && line_info->function == function)
7658 goto cont;
7659 #endif
7660
7661 /* Emit debug info for the address of the current line. If this is
7662 a new function, or the first line of a function, then we need
7663 to handle it differently. */
7664 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7665 lt_index);
7666 if (function != line_info->function)
7667 {
7668 function = line_info->function;
7669
7670 /* Set the address register to the first line in the function. */
7671 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7672 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7673 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7674 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7675 }
7676 else
7677 {
7678 /* ??? See the DW_LNS_advance_pc comment above. */
7679 if (0)
7680 {
7681 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7682 "DW_LNS_fixed_advance_pc");
7683 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7684 }
7685 else
7686 {
7687 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7688 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7689 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7690 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7691 }
7692 }
7693
7694 strcpy (prev_line_label, line_label);
7695
7696 /* Emit debug info for the source file of the current line, if
7697 different from the previous line. */
7698 if (line_info->dw_file_num != current_file)
7699 {
7700 current_file = line_info->dw_file_num;
7701 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7702 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7703 VARRAY_CHAR_PTR (file_table,
7704 current_file));
7705 }
7706
7707 /* Emit debug info for the current line number, choosing the encoding
7708 that uses the least amount of space. */
7709 if (line_info->dw_line_num != current_line)
7710 {
7711 line_offset = line_info->dw_line_num - current_line;
7712 line_delta = line_offset - DWARF_LINE_BASE;
7713 current_line = line_info->dw_line_num;
7714 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7715 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7716 "line %lu", current_line);
7717 else
7718 {
7719 dw2_asm_output_data (1, DW_LNS_advance_line,
7720 "advance to line %lu", current_line);
7721 dw2_asm_output_data_sleb128 (line_offset, NULL);
7722 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7723 }
7724 }
7725 else
7726 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7727
7728 #if 0
7729 cont:
7730 #endif
7731
7732 lt_index++;
7733
7734 /* If we're done with a function, end its sequence. */
7735 if (lt_index == separate_line_info_table_in_use
7736 || separate_line_info_table[lt_index].function != function)
7737 {
7738 current_file = 1;
7739 current_line = 1;
7740
7741 /* Emit debug info for the address of the end of the function. */
7742 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7743 if (0)
7744 {
7745 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7746 "DW_LNS_fixed_advance_pc");
7747 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7748 }
7749 else
7750 {
7751 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7752 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7753 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7754 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7755 }
7756
7757 /* Output the marker for the end of this sequence. */
7758 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7759 dw2_asm_output_data_uleb128 (1, NULL);
7760 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7761 }
7762 }
7763
7764 /* Output the marker for the end of the line number info. */
7765 ASM_OUTPUT_LABEL (asm_out_file, l2);
7766 }
7767 \f
7768 /* Given a pointer to a tree node for some base type, return a pointer to
7769 a DIE that describes the given type.
7770
7771 This routine must only be called for GCC type nodes that correspond to
7772 Dwarf base (fundamental) types. */
7773
7774 static dw_die_ref
7775 base_type_die (tree type)
7776 {
7777 dw_die_ref base_type_result;
7778 const char *type_name;
7779 enum dwarf_type encoding;
7780 tree name = TYPE_NAME (type);
7781
7782 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7783 return 0;
7784
7785 if (name)
7786 {
7787 if (TREE_CODE (name) == TYPE_DECL)
7788 name = DECL_NAME (name);
7789
7790 type_name = IDENTIFIER_POINTER (name);
7791 }
7792 else
7793 type_name = "__unknown__";
7794
7795 switch (TREE_CODE (type))
7796 {
7797 case INTEGER_TYPE:
7798 /* Carefully distinguish the C character types, without messing
7799 up if the language is not C. Note that we check only for the names
7800 that contain spaces; other names might occur by coincidence in other
7801 languages. */
7802 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7803 && (type == char_type_node
7804 || ! strcmp (type_name, "signed char")
7805 || ! strcmp (type_name, "unsigned char"))))
7806 {
7807 if (TREE_UNSIGNED (type))
7808 encoding = DW_ATE_unsigned;
7809 else
7810 encoding = DW_ATE_signed;
7811 break;
7812 }
7813 /* else fall through. */
7814
7815 case CHAR_TYPE:
7816 /* GNU Pascal/Ada CHAR type. Not used in C. */
7817 if (TREE_UNSIGNED (type))
7818 encoding = DW_ATE_unsigned_char;
7819 else
7820 encoding = DW_ATE_signed_char;
7821 break;
7822
7823 case REAL_TYPE:
7824 encoding = DW_ATE_float;
7825 break;
7826
7827 /* Dwarf2 doesn't know anything about complex ints, so use
7828 a user defined type for it. */
7829 case COMPLEX_TYPE:
7830 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7831 encoding = DW_ATE_complex_float;
7832 else
7833 encoding = DW_ATE_lo_user;
7834 break;
7835
7836 case BOOLEAN_TYPE:
7837 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7838 encoding = DW_ATE_boolean;
7839 break;
7840
7841 default:
7842 /* No other TREE_CODEs are Dwarf fundamental types. */
7843 abort ();
7844 }
7845
7846 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7847 if (demangle_name_func)
7848 type_name = (*demangle_name_func) (type_name);
7849
7850 add_AT_string (base_type_result, DW_AT_name, type_name);
7851 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7852 int_size_in_bytes (type));
7853 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7854
7855 return base_type_result;
7856 }
7857
7858 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7859 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7860 a given type is generally the same as the given type, except that if the
7861 given type is a pointer or reference type, then the root type of the given
7862 type is the root type of the "basis" type for the pointer or reference
7863 type. (This definition of the "root" type is recursive.) Also, the root
7864 type of a `const' qualified type or a `volatile' qualified type is the
7865 root type of the given type without the qualifiers. */
7866
7867 static tree
7868 root_type (tree type)
7869 {
7870 if (TREE_CODE (type) == ERROR_MARK)
7871 return error_mark_node;
7872
7873 switch (TREE_CODE (type))
7874 {
7875 case ERROR_MARK:
7876 return error_mark_node;
7877
7878 case POINTER_TYPE:
7879 case REFERENCE_TYPE:
7880 return type_main_variant (root_type (TREE_TYPE (type)));
7881
7882 default:
7883 return type_main_variant (type);
7884 }
7885 }
7886
7887 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7888 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7889
7890 static inline int
7891 is_base_type (tree type)
7892 {
7893 switch (TREE_CODE (type))
7894 {
7895 case ERROR_MARK:
7896 case VOID_TYPE:
7897 case INTEGER_TYPE:
7898 case REAL_TYPE:
7899 case COMPLEX_TYPE:
7900 case BOOLEAN_TYPE:
7901 case CHAR_TYPE:
7902 return 1;
7903
7904 case SET_TYPE:
7905 case ARRAY_TYPE:
7906 case RECORD_TYPE:
7907 case UNION_TYPE:
7908 case QUAL_UNION_TYPE:
7909 case ENUMERAL_TYPE:
7910 case FUNCTION_TYPE:
7911 case METHOD_TYPE:
7912 case POINTER_TYPE:
7913 case REFERENCE_TYPE:
7914 case FILE_TYPE:
7915 case OFFSET_TYPE:
7916 case LANG_TYPE:
7917 case VECTOR_TYPE:
7918 return 0;
7919
7920 default:
7921 abort ();
7922 }
7923
7924 return 0;
7925 }
7926
7927 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
7928 node, return the size in bits for the type if it is a constant, or else
7929 return the alignment for the type if the type's size is not constant, or
7930 else return BITS_PER_WORD if the type actually turns out to be an
7931 ERROR_MARK node. */
7932
7933 static inline unsigned HOST_WIDE_INT
7934 simple_type_size_in_bits (tree type)
7935 {
7936 if (TREE_CODE (type) == ERROR_MARK)
7937 return BITS_PER_WORD;
7938 else if (TYPE_SIZE (type) == NULL_TREE)
7939 return 0;
7940 else if (host_integerp (TYPE_SIZE (type), 1))
7941 return tree_low_cst (TYPE_SIZE (type), 1);
7942 else
7943 return TYPE_ALIGN (type);
7944 }
7945
7946 /* Return true if the debug information for the given type should be
7947 emitted as a subrange type. */
7948
7949 static inline bool
7950 is_subrange_type (tree type)
7951 {
7952 tree subtype = TREE_TYPE (type);
7953
7954 if (TREE_CODE (type) == INTEGER_TYPE
7955 && subtype != NULL_TREE)
7956 {
7957 if (TREE_CODE (subtype) == INTEGER_TYPE)
7958 return true;
7959 if (TREE_CODE (subtype) == ENUMERAL_TYPE)
7960 return true;
7961 }
7962 return false;
7963 }
7964
7965 /* Given a pointer to a tree node for a subrange type, return a pointer
7966 to a DIE that describes the given type. */
7967
7968 static dw_die_ref
7969 subrange_type_die (tree type, dw_die_ref context_die)
7970 {
7971 dw_die_ref subtype_die;
7972 dw_die_ref subrange_die;
7973 tree name = TYPE_NAME (type);
7974 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
7975
7976 if (context_die == NULL)
7977 context_die = comp_unit_die;
7978
7979 if (TREE_CODE (TREE_TYPE (type)) == ENUMERAL_TYPE)
7980 subtype_die = gen_enumeration_type_die (TREE_TYPE (type), context_die);
7981 else
7982 subtype_die = base_type_die (TREE_TYPE (type));
7983
7984 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
7985
7986 if (name != NULL)
7987 {
7988 if (TREE_CODE (name) == TYPE_DECL)
7989 name = DECL_NAME (name);
7990 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
7991 }
7992
7993 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
7994 {
7995 /* The size of the subrange type and its base type do not match,
7996 so we need to generate a size attribute for the subrange type. */
7997 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
7998 }
7999
8000 if (TYPE_MIN_VALUE (type) != NULL)
8001 add_bound_info (subrange_die, DW_AT_lower_bound,
8002 TYPE_MIN_VALUE (type));
8003 if (TYPE_MAX_VALUE (type) != NULL)
8004 add_bound_info (subrange_die, DW_AT_upper_bound,
8005 TYPE_MAX_VALUE (type));
8006 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
8007
8008 return subrange_die;
8009 }
8010
8011 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8012 entry that chains various modifiers in front of the given type. */
8013
8014 static dw_die_ref
8015 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8016 dw_die_ref context_die)
8017 {
8018 enum tree_code code = TREE_CODE (type);
8019 dw_die_ref mod_type_die = NULL;
8020 dw_die_ref sub_die = NULL;
8021 tree item_type = NULL;
8022
8023 if (code != ERROR_MARK)
8024 {
8025 tree qualified_type;
8026
8027 /* See if we already have the appropriately qualified variant of
8028 this type. */
8029 qualified_type
8030 = get_qualified_type (type,
8031 ((is_const_type ? TYPE_QUAL_CONST : 0)
8032 | (is_volatile_type
8033 ? TYPE_QUAL_VOLATILE : 0)));
8034
8035 /* If we do, then we can just use its DIE, if it exists. */
8036 if (qualified_type)
8037 {
8038 mod_type_die = lookup_type_die (qualified_type);
8039 if (mod_type_die)
8040 return mod_type_die;
8041 }
8042
8043 /* Handle C typedef types. */
8044 if (qualified_type && TYPE_NAME (qualified_type)
8045 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8046 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8047 {
8048 tree type_name = TYPE_NAME (qualified_type);
8049 tree dtype = TREE_TYPE (type_name);
8050
8051 if (qualified_type == dtype)
8052 {
8053 /* For a named type, use the typedef. */
8054 gen_type_die (qualified_type, context_die);
8055 mod_type_die = lookup_type_die (qualified_type);
8056 }
8057 else if (is_const_type < TYPE_READONLY (dtype)
8058 || is_volatile_type < TYPE_VOLATILE (dtype))
8059 /* cv-unqualified version of named type. Just use the unnamed
8060 type to which it refers. */
8061 mod_type_die
8062 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8063 is_const_type, is_volatile_type,
8064 context_die);
8065
8066 /* Else cv-qualified version of named type; fall through. */
8067 }
8068
8069 if (mod_type_die)
8070 /* OK. */
8071 ;
8072 else if (is_const_type)
8073 {
8074 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8075 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8076 }
8077 else if (is_volatile_type)
8078 {
8079 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8080 sub_die = modified_type_die (type, 0, 0, context_die);
8081 }
8082 else if (code == POINTER_TYPE)
8083 {
8084 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8085 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8086 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8087 #if 0
8088 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8089 #endif
8090 item_type = TREE_TYPE (type);
8091 }
8092 else if (code == REFERENCE_TYPE)
8093 {
8094 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8095 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8096 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8097 #if 0
8098 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8099 #endif
8100 item_type = TREE_TYPE (type);
8101 }
8102 else if (is_subrange_type (type))
8103 mod_type_die = subrange_type_die (type, context_die);
8104 else if (is_base_type (type))
8105 mod_type_die = base_type_die (type);
8106 else
8107 {
8108 gen_type_die (type, context_die);
8109
8110 /* We have to get the type_main_variant here (and pass that to the
8111 `lookup_type_die' routine) because the ..._TYPE node we have
8112 might simply be a *copy* of some original type node (where the
8113 copy was created to help us keep track of typedef names) and
8114 that copy might have a different TYPE_UID from the original
8115 ..._TYPE node. */
8116 if (TREE_CODE (type) != VECTOR_TYPE)
8117 mod_type_die = lookup_type_die (type_main_variant (type));
8118 else
8119 /* Vectors have the debugging information in the type,
8120 not the main variant. */
8121 mod_type_die = lookup_type_die (type);
8122 if (mod_type_die == NULL)
8123 abort ();
8124 }
8125
8126 /* We want to equate the qualified type to the die below. */
8127 type = qualified_type;
8128 }
8129
8130 if (type)
8131 equate_type_number_to_die (type, mod_type_die);
8132 if (item_type)
8133 /* We must do this after the equate_type_number_to_die call, in case
8134 this is a recursive type. This ensures that the modified_type_die
8135 recursion will terminate even if the type is recursive. Recursive
8136 types are possible in Ada. */
8137 sub_die = modified_type_die (item_type,
8138 TYPE_READONLY (item_type),
8139 TYPE_VOLATILE (item_type),
8140 context_die);
8141
8142 if (sub_die != NULL)
8143 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8144
8145 return mod_type_die;
8146 }
8147
8148 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8149 an enumerated type. */
8150
8151 static inline int
8152 type_is_enum (tree type)
8153 {
8154 return TREE_CODE (type) == ENUMERAL_TYPE;
8155 }
8156
8157 /* Return the register number described by a given RTL node. */
8158
8159 static unsigned int
8160 reg_number (rtx rtl)
8161 {
8162 unsigned regno = REGNO (rtl);
8163
8164 if (regno >= FIRST_PSEUDO_REGISTER)
8165 abort ();
8166
8167 return DBX_REGISTER_NUMBER (regno);
8168 }
8169
8170 /* Return a location descriptor that designates a machine register or
8171 zero if there is none. */
8172
8173 static dw_loc_descr_ref
8174 reg_loc_descriptor (rtx rtl)
8175 {
8176 unsigned reg;
8177 rtx regs;
8178
8179 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8180 return 0;
8181
8182 reg = reg_number (rtl);
8183 regs = (*targetm.dwarf_register_span) (rtl);
8184
8185 if (hard_regno_nregs[reg][GET_MODE (rtl)] > 1
8186 || regs)
8187 return multiple_reg_loc_descriptor (rtl, regs);
8188 else
8189 return one_reg_loc_descriptor (reg);
8190 }
8191
8192 /* Return a location descriptor that designates a machine register for
8193 a given hard register number. */
8194
8195 static dw_loc_descr_ref
8196 one_reg_loc_descriptor (unsigned int regno)
8197 {
8198 if (regno <= 31)
8199 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8200 else
8201 return new_loc_descr (DW_OP_regx, regno, 0);
8202 }
8203
8204 /* Given an RTL of a register, return a location descriptor that
8205 designates a value that spans more than one register. */
8206
8207 static dw_loc_descr_ref
8208 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8209 {
8210 int nregs, size, i;
8211 unsigned reg;
8212 dw_loc_descr_ref loc_result = NULL;
8213
8214 reg = reg_number (rtl);
8215 nregs = hard_regno_nregs[reg][GET_MODE (rtl)];
8216
8217 /* Simple, contiguous registers. */
8218 if (regs == NULL_RTX)
8219 {
8220 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8221
8222 loc_result = NULL;
8223 while (nregs--)
8224 {
8225 dw_loc_descr_ref t;
8226
8227 t = one_reg_loc_descriptor (reg);
8228 add_loc_descr (&loc_result, t);
8229 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8230 ++reg;
8231 }
8232 return loc_result;
8233 }
8234
8235 /* Now onto stupid register sets in non contiguous locations. */
8236
8237 if (GET_CODE (regs) != PARALLEL)
8238 abort ();
8239
8240 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8241 loc_result = NULL;
8242
8243 for (i = 0; i < XVECLEN (regs, 0); ++i)
8244 {
8245 dw_loc_descr_ref t;
8246
8247 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8248 add_loc_descr (&loc_result, t);
8249 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8250 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8251 }
8252 return loc_result;
8253 }
8254
8255 /* Return a location descriptor that designates a constant. */
8256
8257 static dw_loc_descr_ref
8258 int_loc_descriptor (HOST_WIDE_INT i)
8259 {
8260 enum dwarf_location_atom op;
8261
8262 /* Pick the smallest representation of a constant, rather than just
8263 defaulting to the LEB encoding. */
8264 if (i >= 0)
8265 {
8266 if (i <= 31)
8267 op = DW_OP_lit0 + i;
8268 else if (i <= 0xff)
8269 op = DW_OP_const1u;
8270 else if (i <= 0xffff)
8271 op = DW_OP_const2u;
8272 else if (HOST_BITS_PER_WIDE_INT == 32
8273 || i <= 0xffffffff)
8274 op = DW_OP_const4u;
8275 else
8276 op = DW_OP_constu;
8277 }
8278 else
8279 {
8280 if (i >= -0x80)
8281 op = DW_OP_const1s;
8282 else if (i >= -0x8000)
8283 op = DW_OP_const2s;
8284 else if (HOST_BITS_PER_WIDE_INT == 32
8285 || i >= -0x80000000)
8286 op = DW_OP_const4s;
8287 else
8288 op = DW_OP_consts;
8289 }
8290
8291 return new_loc_descr (op, i, 0);
8292 }
8293
8294 /* Return a location descriptor that designates a base+offset location. */
8295
8296 static dw_loc_descr_ref
8297 based_loc_descr (unsigned int reg, HOST_WIDE_INT offset, bool can_use_fbreg)
8298 {
8299 dw_loc_descr_ref loc_result;
8300 /* For the "frame base", we use the frame pointer or stack pointer
8301 registers, since the RTL for local variables is relative to one of
8302 them. */
8303 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8304 ? HARD_FRAME_POINTER_REGNUM
8305 : STACK_POINTER_REGNUM);
8306
8307 if (reg == fp_reg && can_use_fbreg)
8308 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8309 else if (reg <= 31)
8310 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8311 else
8312 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8313
8314 return loc_result;
8315 }
8316
8317 /* Return true if this RTL expression describes a base+offset calculation. */
8318
8319 static inline int
8320 is_based_loc (rtx rtl)
8321 {
8322 return (GET_CODE (rtl) == PLUS
8323 && ((GET_CODE (XEXP (rtl, 0)) == REG
8324 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8325 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8326 }
8327
8328 /* The following routine converts the RTL for a variable or parameter
8329 (resident in memory) into an equivalent Dwarf representation of a
8330 mechanism for getting the address of that same variable onto the top of a
8331 hypothetical "address evaluation" stack.
8332
8333 When creating memory location descriptors, we are effectively transforming
8334 the RTL for a memory-resident object into its Dwarf postfix expression
8335 equivalent. This routine recursively descends an RTL tree, turning
8336 it into Dwarf postfix code as it goes.
8337
8338 MODE is the mode of the memory reference, needed to handle some
8339 autoincrement addressing modes.
8340
8341 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the location
8342 list for RTL. We can't use it when we are emitting location list for
8343 virtual variable frame_base_decl (i.e. a location list for DW_AT_frame_base)
8344 which describes how frame base changes when !frame_pointer_needed.
8345
8346 Return 0 if we can't represent the location. */
8347
8348 static dw_loc_descr_ref
8349 mem_loc_descriptor (rtx rtl, enum machine_mode mode, bool can_use_fbreg)
8350 {
8351 dw_loc_descr_ref mem_loc_result = NULL;
8352
8353 /* Note that for a dynamically sized array, the location we will generate a
8354 description of here will be the lowest numbered location which is
8355 actually within the array. That's *not* necessarily the same as the
8356 zeroth element of the array. */
8357
8358 rtl = (*targetm.delegitimize_address) (rtl);
8359
8360 switch (GET_CODE (rtl))
8361 {
8362 case POST_INC:
8363 case POST_DEC:
8364 case POST_MODIFY:
8365 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8366 just fall into the SUBREG code. */
8367
8368 /* ... fall through ... */
8369
8370 case SUBREG:
8371 /* The case of a subreg may arise when we have a local (register)
8372 variable or a formal (register) parameter which doesn't quite fill
8373 up an entire register. For now, just assume that it is
8374 legitimate to make the Dwarf info refer to the whole register which
8375 contains the given subreg. */
8376 rtl = SUBREG_REG (rtl);
8377
8378 /* ... fall through ... */
8379
8380 case REG:
8381 /* Whenever a register number forms a part of the description of the
8382 method for calculating the (dynamic) address of a memory resident
8383 object, DWARF rules require the register number be referred to as
8384 a "base register". This distinction is not based in any way upon
8385 what category of register the hardware believes the given register
8386 belongs to. This is strictly DWARF terminology we're dealing with
8387 here. Note that in cases where the location of a memory-resident
8388 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8389 OP_CONST (0)) the actual DWARF location descriptor that we generate
8390 may just be OP_BASEREG (basereg). This may look deceptively like
8391 the object in question was allocated to a register (rather than in
8392 memory) so DWARF consumers need to be aware of the subtle
8393 distinction between OP_REG and OP_BASEREG. */
8394 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8395 mem_loc_result = based_loc_descr (reg_number (rtl), 0, can_use_fbreg);
8396 break;
8397
8398 case MEM:
8399 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8400 can_use_fbreg);
8401 if (mem_loc_result != 0)
8402 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8403 break;
8404
8405 case LO_SUM:
8406 rtl = XEXP (rtl, 1);
8407
8408 /* ... fall through ... */
8409
8410 case LABEL_REF:
8411 /* Some ports can transform a symbol ref into a label ref, because
8412 the symbol ref is too far away and has to be dumped into a constant
8413 pool. */
8414 case CONST:
8415 case SYMBOL_REF:
8416 /* Alternatively, the symbol in the constant pool might be referenced
8417 by a different symbol. */
8418 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8419 {
8420 bool marked;
8421 rtx tmp = get_pool_constant_mark (rtl, &marked);
8422
8423 if (GET_CODE (tmp) == SYMBOL_REF)
8424 {
8425 rtl = tmp;
8426 if (CONSTANT_POOL_ADDRESS_P (tmp))
8427 get_pool_constant_mark (tmp, &marked);
8428 else
8429 marked = true;
8430 }
8431
8432 /* If all references to this pool constant were optimized away,
8433 it was not output and thus we can't represent it.
8434 FIXME: might try to use DW_OP_const_value here, though
8435 DW_OP_piece complicates it. */
8436 if (!marked)
8437 return 0;
8438 }
8439
8440 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8441 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8442 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8443 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8444 break;
8445
8446 case PRE_MODIFY:
8447 /* Extract the PLUS expression nested inside and fall into
8448 PLUS code below. */
8449 rtl = XEXP (rtl, 1);
8450 goto plus;
8451
8452 case PRE_INC:
8453 case PRE_DEC:
8454 /* Turn these into a PLUS expression and fall into the PLUS code
8455 below. */
8456 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8457 GEN_INT (GET_CODE (rtl) == PRE_INC
8458 ? GET_MODE_UNIT_SIZE (mode)
8459 : -GET_MODE_UNIT_SIZE (mode)));
8460
8461 /* ... fall through ... */
8462
8463 case PLUS:
8464 plus:
8465 if (is_based_loc (rtl))
8466 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
8467 INTVAL (XEXP (rtl, 1)),
8468 can_use_fbreg);
8469 else
8470 {
8471 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode,
8472 can_use_fbreg);
8473 if (mem_loc_result == 0)
8474 break;
8475
8476 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8477 && INTVAL (XEXP (rtl, 1)) >= 0)
8478 add_loc_descr (&mem_loc_result,
8479 new_loc_descr (DW_OP_plus_uconst,
8480 INTVAL (XEXP (rtl, 1)), 0));
8481 else
8482 {
8483 add_loc_descr (&mem_loc_result,
8484 mem_loc_descriptor (XEXP (rtl, 1), mode,
8485 can_use_fbreg));
8486 add_loc_descr (&mem_loc_result,
8487 new_loc_descr (DW_OP_plus, 0, 0));
8488 }
8489 }
8490 break;
8491
8492 case MULT:
8493 {
8494 /* If a pseudo-reg is optimized away, it is possible for it to
8495 be replaced with a MEM containing a multiply. */
8496 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
8497 can_use_fbreg);
8498 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
8499 can_use_fbreg);
8500
8501 if (op0 == 0 || op1 == 0)
8502 break;
8503
8504 mem_loc_result = op0;
8505 add_loc_descr (&mem_loc_result, op1);
8506 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
8507 break;
8508 }
8509
8510 case CONST_INT:
8511 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8512 break;
8513
8514 case ADDRESSOF:
8515 /* If this is a MEM, return its address. Otherwise, we can't
8516 represent this. */
8517 if (GET_CODE (XEXP (rtl, 0)) == MEM)
8518 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode,
8519 can_use_fbreg);
8520 else
8521 return 0;
8522
8523 default:
8524 abort ();
8525 }
8526
8527 return mem_loc_result;
8528 }
8529
8530 /* Return a descriptor that describes the concatenation of two locations.
8531 This is typically a complex variable. */
8532
8533 static dw_loc_descr_ref
8534 concat_loc_descriptor (rtx x0, rtx x1)
8535 {
8536 dw_loc_descr_ref cc_loc_result = NULL;
8537 dw_loc_descr_ref x0_ref = loc_descriptor (x0, true);
8538 dw_loc_descr_ref x1_ref = loc_descriptor (x1, true);
8539
8540 if (x0_ref == 0 || x1_ref == 0)
8541 return 0;
8542
8543 cc_loc_result = x0_ref;
8544 add_loc_descr (&cc_loc_result,
8545 new_loc_descr (DW_OP_piece,
8546 GET_MODE_SIZE (GET_MODE (x0)), 0));
8547
8548 add_loc_descr (&cc_loc_result, x1_ref);
8549 add_loc_descr (&cc_loc_result,
8550 new_loc_descr (DW_OP_piece,
8551 GET_MODE_SIZE (GET_MODE (x1)), 0));
8552
8553 return cc_loc_result;
8554 }
8555
8556 /* Output a proper Dwarf location descriptor for a variable or parameter
8557 which is either allocated in a register or in a memory location. For a
8558 register, we just generate an OP_REG and the register number. For a
8559 memory location we provide a Dwarf postfix expression describing how to
8560 generate the (dynamic) address of the object onto the address stack.
8561
8562 If we don't know how to describe it, return 0. */
8563
8564 static dw_loc_descr_ref
8565 loc_descriptor (rtx rtl, bool can_use_fbreg)
8566 {
8567 dw_loc_descr_ref loc_result = NULL;
8568
8569 switch (GET_CODE (rtl))
8570 {
8571 case SUBREG:
8572 /* The case of a subreg may arise when we have a local (register)
8573 variable or a formal (register) parameter which doesn't quite fill
8574 up an entire register. For now, just assume that it is
8575 legitimate to make the Dwarf info refer to the whole register which
8576 contains the given subreg. */
8577 rtl = SUBREG_REG (rtl);
8578
8579 /* ... fall through ... */
8580
8581 case REG:
8582 loc_result = reg_loc_descriptor (rtl);
8583 break;
8584
8585 case MEM:
8586 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8587 can_use_fbreg);
8588 break;
8589
8590 case CONCAT:
8591 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8592 break;
8593
8594 case VAR_LOCATION:
8595 /* Single part. */
8596 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
8597 {
8598 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0), can_use_fbreg);
8599 }
8600 /* Multiple parts. */
8601 else
8602 {
8603 rtvec par_elems = XVEC (XEXP (rtl, 1), 0);
8604 int num_elem = GET_NUM_ELEM (par_elems);
8605 enum machine_mode mode;
8606 int i;
8607
8608 /* Create the first one, so we have something to add to. */
8609 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
8610 can_use_fbreg);
8611 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
8612 add_loc_descr (&loc_result,
8613 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
8614 for (i = 1; i < num_elem; i++)
8615 {
8616 dw_loc_descr_ref temp;
8617
8618 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
8619 can_use_fbreg);
8620 add_loc_descr (&loc_result, temp);
8621 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
8622 add_loc_descr (&loc_result,
8623 new_loc_descr (DW_OP_piece,
8624 GET_MODE_SIZE (mode), 0));
8625 }
8626 }
8627 break;
8628
8629 default:
8630 abort ();
8631 }
8632
8633 return loc_result;
8634 }
8635
8636 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8637 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8638 looking for an address. Otherwise, we return a value. If we can't make a
8639 descriptor, return 0. */
8640
8641 static dw_loc_descr_ref
8642 loc_descriptor_from_tree (tree loc, int addressp)
8643 {
8644 dw_loc_descr_ref ret, ret1;
8645 int indirect_p = 0;
8646 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8647 enum dwarf_location_atom op;
8648
8649 /* ??? Most of the time we do not take proper care for sign/zero
8650 extending the values properly. Hopefully this won't be a real
8651 problem... */
8652
8653 switch (TREE_CODE (loc))
8654 {
8655 case ERROR_MARK:
8656 return 0;
8657
8658 case WITH_RECORD_EXPR:
8659 case PLACEHOLDER_EXPR:
8660 /* This case involves extracting fields from an object to determine the
8661 position of other fields. We don't try to encode this here. The
8662 only user of this is Ada, which encodes the needed information using
8663 the names of types. */
8664 return 0;
8665
8666 case CALL_EXPR:
8667 return 0;
8668
8669 case ADDR_EXPR:
8670 /* We can support this only if we can look through conversions and
8671 find an INDIRECT_EXPR. */
8672 for (loc = TREE_OPERAND (loc, 0);
8673 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8674 || TREE_CODE (loc) == NON_LVALUE_EXPR
8675 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8676 || TREE_CODE (loc) == SAVE_EXPR;
8677 loc = TREE_OPERAND (loc, 0))
8678 ;
8679
8680 return (TREE_CODE (loc) == INDIRECT_REF
8681 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8682 : 0);
8683
8684 case VAR_DECL:
8685 if (DECL_THREAD_LOCAL (loc))
8686 {
8687 rtx rtl;
8688
8689 #ifndef ASM_OUTPUT_DWARF_DTPREL
8690 /* If this is not defined, we have no way to emit the data. */
8691 return 0;
8692 #endif
8693
8694 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8695 look up addresses of objects in the current module. */
8696 if (DECL_EXTERNAL (loc))
8697 return 0;
8698
8699 rtl = rtl_for_decl_location (loc);
8700 if (rtl == NULL_RTX)
8701 return 0;
8702
8703 if (GET_CODE (rtl) != MEM)
8704 return 0;
8705 rtl = XEXP (rtl, 0);
8706 if (! CONSTANT_P (rtl))
8707 return 0;
8708
8709 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8710 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8711 ret->dw_loc_oprnd1.v.val_addr = rtl;
8712
8713 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8714 add_loc_descr (&ret, ret1);
8715
8716 indirect_p = 1;
8717 break;
8718 }
8719 /* Fall through. */
8720
8721 case PARM_DECL:
8722 {
8723 rtx rtl = rtl_for_decl_location (loc);
8724
8725 if (rtl == NULL_RTX)
8726 return 0;
8727 else if (CONSTANT_P (rtl))
8728 {
8729 ret = new_loc_descr (DW_OP_addr, 0, 0);
8730 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8731 ret->dw_loc_oprnd1.v.val_addr = rtl;
8732 indirect_p = 1;
8733 }
8734 else
8735 {
8736 enum machine_mode mode = GET_MODE (rtl);
8737
8738 if (GET_CODE (rtl) == MEM)
8739 {
8740 indirect_p = 1;
8741 rtl = XEXP (rtl, 0);
8742 }
8743
8744 ret = mem_loc_descriptor (rtl, mode, true);
8745 }
8746 }
8747 break;
8748
8749 case INDIRECT_REF:
8750 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8751 indirect_p = 1;
8752 break;
8753
8754 case COMPOUND_EXPR:
8755 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8756
8757 case NOP_EXPR:
8758 case CONVERT_EXPR:
8759 case NON_LVALUE_EXPR:
8760 case VIEW_CONVERT_EXPR:
8761 case SAVE_EXPR:
8762 case MODIFY_EXPR:
8763 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8764
8765 case COMPONENT_REF:
8766 case BIT_FIELD_REF:
8767 case ARRAY_REF:
8768 case ARRAY_RANGE_REF:
8769 {
8770 tree obj, offset;
8771 HOST_WIDE_INT bitsize, bitpos, bytepos;
8772 enum machine_mode mode;
8773 int volatilep;
8774
8775 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8776 &unsignedp, &volatilep);
8777
8778 if (obj == loc)
8779 return 0;
8780
8781 ret = loc_descriptor_from_tree (obj, 1);
8782 if (ret == 0
8783 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8784 return 0;
8785
8786 if (offset != NULL_TREE)
8787 {
8788 /* Variable offset. */
8789 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8790 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8791 }
8792
8793 if (!addressp)
8794 indirect_p = 1;
8795
8796 bytepos = bitpos / BITS_PER_UNIT;
8797 if (bytepos > 0)
8798 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8799 else if (bytepos < 0)
8800 {
8801 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8802 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8803 }
8804 break;
8805 }
8806
8807 case INTEGER_CST:
8808 if (host_integerp (loc, 0))
8809 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8810 else
8811 return 0;
8812 break;
8813
8814 case CONSTRUCTOR:
8815 {
8816 /* Get an RTL for this, if something has been emitted. */
8817 rtx rtl = lookup_constant_def (loc);
8818 enum machine_mode mode;
8819
8820 if (GET_CODE (rtl) != MEM)
8821 return 0;
8822 mode = GET_MODE (rtl);
8823 rtl = XEXP (rtl, 0);
8824
8825 rtl = (*targetm.delegitimize_address) (rtl);
8826
8827 indirect_p = 1;
8828 ret = mem_loc_descriptor (rtl, mode, true);
8829 break;
8830 }
8831
8832 case TRUTH_AND_EXPR:
8833 case TRUTH_ANDIF_EXPR:
8834 case BIT_AND_EXPR:
8835 op = DW_OP_and;
8836 goto do_binop;
8837
8838 case TRUTH_XOR_EXPR:
8839 case BIT_XOR_EXPR:
8840 op = DW_OP_xor;
8841 goto do_binop;
8842
8843 case TRUTH_OR_EXPR:
8844 case TRUTH_ORIF_EXPR:
8845 case BIT_IOR_EXPR:
8846 op = DW_OP_or;
8847 goto do_binop;
8848
8849 case FLOOR_DIV_EXPR:
8850 case CEIL_DIV_EXPR:
8851 case ROUND_DIV_EXPR:
8852 case TRUNC_DIV_EXPR:
8853 op = DW_OP_div;
8854 goto do_binop;
8855
8856 case MINUS_EXPR:
8857 op = DW_OP_minus;
8858 goto do_binop;
8859
8860 case FLOOR_MOD_EXPR:
8861 case CEIL_MOD_EXPR:
8862 case ROUND_MOD_EXPR:
8863 case TRUNC_MOD_EXPR:
8864 op = DW_OP_mod;
8865 goto do_binop;
8866
8867 case MULT_EXPR:
8868 op = DW_OP_mul;
8869 goto do_binop;
8870
8871 case LSHIFT_EXPR:
8872 op = DW_OP_shl;
8873 goto do_binop;
8874
8875 case RSHIFT_EXPR:
8876 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8877 goto do_binop;
8878
8879 case PLUS_EXPR:
8880 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8881 && host_integerp (TREE_OPERAND (loc, 1), 0))
8882 {
8883 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8884 if (ret == 0)
8885 return 0;
8886
8887 add_loc_descr (&ret,
8888 new_loc_descr (DW_OP_plus_uconst,
8889 tree_low_cst (TREE_OPERAND (loc, 1),
8890 0),
8891 0));
8892 break;
8893 }
8894
8895 op = DW_OP_plus;
8896 goto do_binop;
8897
8898 case LE_EXPR:
8899 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8900 return 0;
8901
8902 op = DW_OP_le;
8903 goto do_binop;
8904
8905 case GE_EXPR:
8906 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8907 return 0;
8908
8909 op = DW_OP_ge;
8910 goto do_binop;
8911
8912 case LT_EXPR:
8913 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8914 return 0;
8915
8916 op = DW_OP_lt;
8917 goto do_binop;
8918
8919 case GT_EXPR:
8920 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8921 return 0;
8922
8923 op = DW_OP_gt;
8924 goto do_binop;
8925
8926 case EQ_EXPR:
8927 op = DW_OP_eq;
8928 goto do_binop;
8929
8930 case NE_EXPR:
8931 op = DW_OP_ne;
8932 goto do_binop;
8933
8934 do_binop:
8935 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8936 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8937 if (ret == 0 || ret1 == 0)
8938 return 0;
8939
8940 add_loc_descr (&ret, ret1);
8941 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8942 break;
8943
8944 case TRUTH_NOT_EXPR:
8945 case BIT_NOT_EXPR:
8946 op = DW_OP_not;
8947 goto do_unop;
8948
8949 case ABS_EXPR:
8950 op = DW_OP_abs;
8951 goto do_unop;
8952
8953 case NEGATE_EXPR:
8954 op = DW_OP_neg;
8955 goto do_unop;
8956
8957 do_unop:
8958 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8959 if (ret == 0)
8960 return 0;
8961
8962 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8963 break;
8964
8965 case MAX_EXPR:
8966 loc = build (COND_EXPR, TREE_TYPE (loc),
8967 build (LT_EXPR, integer_type_node,
8968 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8969 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
8970
8971 /* ... fall through ... */
8972
8973 case COND_EXPR:
8974 {
8975 dw_loc_descr_ref lhs
8976 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8977 dw_loc_descr_ref rhs
8978 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
8979 dw_loc_descr_ref bra_node, jump_node, tmp;
8980
8981 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8982 if (ret == 0 || lhs == 0 || rhs == 0)
8983 return 0;
8984
8985 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
8986 add_loc_descr (&ret, bra_node);
8987
8988 add_loc_descr (&ret, rhs);
8989 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
8990 add_loc_descr (&ret, jump_node);
8991
8992 add_loc_descr (&ret, lhs);
8993 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8994 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
8995
8996 /* ??? Need a node to point the skip at. Use a nop. */
8997 tmp = new_loc_descr (DW_OP_nop, 0, 0);
8998 add_loc_descr (&ret, tmp);
8999 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9000 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9001 }
9002 break;
9003
9004 case EXPR_WITH_FILE_LOCATION:
9005 return loc_descriptor_from_tree (EXPR_WFL_NODE (loc), addressp);
9006
9007 default:
9008 /* Leave front-end specific codes as simply unknown. This comes
9009 up, for instance, with the C STMT_EXPR. */
9010 if ((unsigned int) TREE_CODE (loc)
9011 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9012 return 0;
9013
9014 /* Otherwise this is a generic code; we should just lists all of
9015 these explicitly. Aborting means we forgot one. */
9016 abort ();
9017 }
9018
9019 /* Show if we can't fill the request for an address. */
9020 if (addressp && indirect_p == 0)
9021 return 0;
9022
9023 /* If we've got an address and don't want one, dereference. */
9024 if (!addressp && indirect_p > 0)
9025 {
9026 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9027
9028 if (size > DWARF2_ADDR_SIZE || size == -1)
9029 return 0;
9030 else if (size == DWARF2_ADDR_SIZE)
9031 op = DW_OP_deref;
9032 else
9033 op = DW_OP_deref_size;
9034
9035 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9036 }
9037
9038 return ret;
9039 }
9040
9041 /* Given a value, round it up to the lowest multiple of `boundary'
9042 which is not less than the value itself. */
9043
9044 static inline HOST_WIDE_INT
9045 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9046 {
9047 return (((value + boundary - 1) / boundary) * boundary);
9048 }
9049
9050 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9051 pointer to the declared type for the relevant field variable, or return
9052 `integer_type_node' if the given node turns out to be an
9053 ERROR_MARK node. */
9054
9055 static inline tree
9056 field_type (tree decl)
9057 {
9058 tree type;
9059
9060 if (TREE_CODE (decl) == ERROR_MARK)
9061 return integer_type_node;
9062
9063 type = DECL_BIT_FIELD_TYPE (decl);
9064 if (type == NULL_TREE)
9065 type = TREE_TYPE (decl);
9066
9067 return type;
9068 }
9069
9070 /* Given a pointer to a tree node, return the alignment in bits for
9071 it, or else return BITS_PER_WORD if the node actually turns out to
9072 be an ERROR_MARK node. */
9073
9074 static inline unsigned
9075 simple_type_align_in_bits (tree type)
9076 {
9077 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9078 }
9079
9080 static inline unsigned
9081 simple_decl_align_in_bits (tree decl)
9082 {
9083 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9084 }
9085
9086 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9087 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9088 or return 0 if we are unable to determine what that offset is, either
9089 because the argument turns out to be a pointer to an ERROR_MARK node, or
9090 because the offset is actually variable. (We can't handle the latter case
9091 just yet). */
9092
9093 static HOST_WIDE_INT
9094 field_byte_offset (tree decl)
9095 {
9096 unsigned int type_align_in_bits;
9097 unsigned int decl_align_in_bits;
9098 unsigned HOST_WIDE_INT type_size_in_bits;
9099 HOST_WIDE_INT object_offset_in_bits;
9100 tree type;
9101 tree field_size_tree;
9102 HOST_WIDE_INT bitpos_int;
9103 HOST_WIDE_INT deepest_bitpos;
9104 unsigned HOST_WIDE_INT field_size_in_bits;
9105
9106 if (TREE_CODE (decl) == ERROR_MARK)
9107 return 0;
9108 else if (TREE_CODE (decl) != FIELD_DECL)
9109 abort ();
9110
9111 type = field_type (decl);
9112 field_size_tree = DECL_SIZE (decl);
9113
9114 /* The size could be unspecified if there was an error, or for
9115 a flexible array member. */
9116 if (! field_size_tree)
9117 field_size_tree = bitsize_zero_node;
9118
9119 /* We cannot yet cope with fields whose positions are variable, so
9120 for now, when we see such things, we simply return 0. Someday, we may
9121 be able to handle such cases, but it will be damn difficult. */
9122 if (! host_integerp (bit_position (decl), 0))
9123 return 0;
9124
9125 bitpos_int = int_bit_position (decl);
9126
9127 /* If we don't know the size of the field, pretend it's a full word. */
9128 if (host_integerp (field_size_tree, 1))
9129 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9130 else
9131 field_size_in_bits = BITS_PER_WORD;
9132
9133 type_size_in_bits = simple_type_size_in_bits (type);
9134 type_align_in_bits = simple_type_align_in_bits (type);
9135 decl_align_in_bits = simple_decl_align_in_bits (decl);
9136
9137 /* The GCC front-end doesn't make any attempt to keep track of the starting
9138 bit offset (relative to the start of the containing structure type) of the
9139 hypothetical "containing object" for a bit-field. Thus, when computing
9140 the byte offset value for the start of the "containing object" of a
9141 bit-field, we must deduce this information on our own. This can be rather
9142 tricky to do in some cases. For example, handling the following structure
9143 type definition when compiling for an i386/i486 target (which only aligns
9144 long long's to 32-bit boundaries) can be very tricky:
9145
9146 struct S { int field1; long long field2:31; };
9147
9148 Fortunately, there is a simple rule-of-thumb which can be used in such
9149 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9150 structure shown above. It decides to do this based upon one simple rule
9151 for bit-field allocation. GCC allocates each "containing object" for each
9152 bit-field at the first (i.e. lowest addressed) legitimate alignment
9153 boundary (based upon the required minimum alignment for the declared type
9154 of the field) which it can possibly use, subject to the condition that
9155 there is still enough available space remaining in the containing object
9156 (when allocated at the selected point) to fully accommodate all of the
9157 bits of the bit-field itself.
9158
9159 This simple rule makes it obvious why GCC allocates 8 bytes for each
9160 object of the structure type shown above. When looking for a place to
9161 allocate the "containing object" for `field2', the compiler simply tries
9162 to allocate a 64-bit "containing object" at each successive 32-bit
9163 boundary (starting at zero) until it finds a place to allocate that 64-
9164 bit field such that at least 31 contiguous (and previously unallocated)
9165 bits remain within that selected 64 bit field. (As it turns out, for the
9166 example above, the compiler finds it is OK to allocate the "containing
9167 object" 64-bit field at bit-offset zero within the structure type.)
9168
9169 Here we attempt to work backwards from the limited set of facts we're
9170 given, and we try to deduce from those facts, where GCC must have believed
9171 that the containing object started (within the structure type). The value
9172 we deduce is then used (by the callers of this routine) to generate
9173 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9174 and, in the case of DW_AT_location, regular fields as well). */
9175
9176 /* Figure out the bit-distance from the start of the structure to the
9177 "deepest" bit of the bit-field. */
9178 deepest_bitpos = bitpos_int + field_size_in_bits;
9179
9180 /* This is the tricky part. Use some fancy footwork to deduce where the
9181 lowest addressed bit of the containing object must be. */
9182 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9183
9184 /* Round up to type_align by default. This works best for bitfields. */
9185 object_offset_in_bits += type_align_in_bits - 1;
9186 object_offset_in_bits /= type_align_in_bits;
9187 object_offset_in_bits *= type_align_in_bits;
9188
9189 if (object_offset_in_bits > bitpos_int)
9190 {
9191 /* Sigh, the decl must be packed. */
9192 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9193
9194 /* Round up to decl_align instead. */
9195 object_offset_in_bits += decl_align_in_bits - 1;
9196 object_offset_in_bits /= decl_align_in_bits;
9197 object_offset_in_bits *= decl_align_in_bits;
9198 }
9199
9200 return object_offset_in_bits / BITS_PER_UNIT;
9201 }
9202 \f
9203 /* The following routines define various Dwarf attributes and any data
9204 associated with them. */
9205
9206 /* Add a location description attribute value to a DIE.
9207
9208 This emits location attributes suitable for whole variables and
9209 whole parameters. Note that the location attributes for struct fields are
9210 generated by the routine `data_member_location_attribute' below. */
9211
9212 static inline void
9213 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9214 dw_loc_descr_ref descr)
9215 {
9216 if (descr != 0)
9217 add_AT_loc (die, attr_kind, descr);
9218 }
9219
9220 /* Attach the specialized form of location attribute used for data members of
9221 struct and union types. In the special case of a FIELD_DECL node which
9222 represents a bit-field, the "offset" part of this special location
9223 descriptor must indicate the distance in bytes from the lowest-addressed
9224 byte of the containing struct or union type to the lowest-addressed byte of
9225 the "containing object" for the bit-field. (See the `field_byte_offset'
9226 function above).
9227
9228 For any given bit-field, the "containing object" is a hypothetical object
9229 (of some integral or enum type) within which the given bit-field lives. The
9230 type of this hypothetical "containing object" is always the same as the
9231 declared type of the individual bit-field itself (for GCC anyway... the
9232 DWARF spec doesn't actually mandate this). Note that it is the size (in
9233 bytes) of the hypothetical "containing object" which will be given in the
9234 DW_AT_byte_size attribute for this bit-field. (See the
9235 `byte_size_attribute' function below.) It is also used when calculating the
9236 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9237 function below.) */
9238
9239 static void
9240 add_data_member_location_attribute (dw_die_ref die, tree decl)
9241 {
9242 HOST_WIDE_INT offset;
9243 dw_loc_descr_ref loc_descr = 0;
9244
9245 if (TREE_CODE (decl) == TREE_VEC)
9246 {
9247 /* We're working on the TAG_inheritance for a base class. */
9248 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
9249 {
9250 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9251 aren't at a fixed offset from all (sub)objects of the same
9252 type. We need to extract the appropriate offset from our
9253 vtable. The following dwarf expression means
9254
9255 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9256
9257 This is specific to the V3 ABI, of course. */
9258
9259 dw_loc_descr_ref tmp;
9260
9261 /* Make a copy of the object address. */
9262 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9263 add_loc_descr (&loc_descr, tmp);
9264
9265 /* Extract the vtable address. */
9266 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9267 add_loc_descr (&loc_descr, tmp);
9268
9269 /* Calculate the address of the offset. */
9270 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9271 if (offset >= 0)
9272 abort ();
9273
9274 tmp = int_loc_descriptor (-offset);
9275 add_loc_descr (&loc_descr, tmp);
9276 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9277 add_loc_descr (&loc_descr, tmp);
9278
9279 /* Extract the offset. */
9280 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9281 add_loc_descr (&loc_descr, tmp);
9282
9283 /* Add it to the object address. */
9284 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9285 add_loc_descr (&loc_descr, tmp);
9286 }
9287 else
9288 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9289 }
9290 else
9291 offset = field_byte_offset (decl);
9292
9293 if (! loc_descr)
9294 {
9295 enum dwarf_location_atom op;
9296
9297 /* The DWARF2 standard says that we should assume that the structure
9298 address is already on the stack, so we can specify a structure field
9299 address by using DW_OP_plus_uconst. */
9300
9301 #ifdef MIPS_DEBUGGING_INFO
9302 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9303 operator correctly. It works only if we leave the offset on the
9304 stack. */
9305 op = DW_OP_constu;
9306 #else
9307 op = DW_OP_plus_uconst;
9308 #endif
9309
9310 loc_descr = new_loc_descr (op, offset, 0);
9311 }
9312
9313 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9314 }
9315
9316 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9317 does not have a "location" either in memory or in a register. These
9318 things can arise in GNU C when a constant is passed as an actual parameter
9319 to an inlined function. They can also arise in C++ where declared
9320 constants do not necessarily get memory "homes". */
9321
9322 static void
9323 add_const_value_attribute (dw_die_ref die, rtx rtl)
9324 {
9325 switch (GET_CODE (rtl))
9326 {
9327 case CONST_INT:
9328 {
9329 HOST_WIDE_INT val = INTVAL (rtl);
9330
9331 if (val < 0)
9332 add_AT_int (die, DW_AT_const_value, val);
9333 else
9334 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9335 }
9336 break;
9337
9338 case CONST_DOUBLE:
9339 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9340 floating-point constant. A CONST_DOUBLE is used whenever the
9341 constant requires more than one word in order to be adequately
9342 represented. We output CONST_DOUBLEs as blocks. */
9343 {
9344 enum machine_mode mode = GET_MODE (rtl);
9345
9346 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9347 {
9348 unsigned length = GET_MODE_SIZE (mode) / 4;
9349 long *array = ggc_alloc (sizeof (long) * length);
9350 REAL_VALUE_TYPE rv;
9351
9352 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9353 real_to_target (array, &rv, mode);
9354
9355 add_AT_float (die, DW_AT_const_value, length, array);
9356 }
9357 else
9358 {
9359 /* ??? We really should be using HOST_WIDE_INT throughout. */
9360 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9361 abort ();
9362
9363 add_AT_long_long (die, DW_AT_const_value,
9364 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9365 }
9366 }
9367 break;
9368
9369 case CONST_STRING:
9370 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9371 break;
9372
9373 case SYMBOL_REF:
9374 case LABEL_REF:
9375 case CONST:
9376 add_AT_addr (die, DW_AT_const_value, rtl);
9377 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9378 break;
9379
9380 case PLUS:
9381 /* In cases where an inlined instance of an inline function is passed
9382 the address of an `auto' variable (which is local to the caller) we
9383 can get a situation where the DECL_RTL of the artificial local
9384 variable (for the inlining) which acts as a stand-in for the
9385 corresponding formal parameter (of the inline function) will look
9386 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9387 exactly a compile-time constant expression, but it isn't the address
9388 of the (artificial) local variable either. Rather, it represents the
9389 *value* which the artificial local variable always has during its
9390 lifetime. We currently have no way to represent such quasi-constant
9391 values in Dwarf, so for now we just punt and generate nothing. */
9392 break;
9393
9394 default:
9395 /* No other kinds of rtx should be possible here. */
9396 abort ();
9397 }
9398
9399 }
9400
9401 static rtx
9402 rtl_for_decl_location (tree decl)
9403 {
9404 rtx rtl;
9405
9406 /* Here we have to decide where we are going to say the parameter "lives"
9407 (as far as the debugger is concerned). We only have a couple of
9408 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9409
9410 DECL_RTL normally indicates where the parameter lives during most of the
9411 activation of the function. If optimization is enabled however, this
9412 could be either NULL or else a pseudo-reg. Both of those cases indicate
9413 that the parameter doesn't really live anywhere (as far as the code
9414 generation parts of GCC are concerned) during most of the function's
9415 activation. That will happen (for example) if the parameter is never
9416 referenced within the function.
9417
9418 We could just generate a location descriptor here for all non-NULL
9419 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9420 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9421 where DECL_RTL is NULL or is a pseudo-reg.
9422
9423 Note however that we can only get away with using DECL_INCOMING_RTL as
9424 a backup substitute for DECL_RTL in certain limited cases. In cases
9425 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9426 we can be sure that the parameter was passed using the same type as it is
9427 declared to have within the function, and that its DECL_INCOMING_RTL
9428 points us to a place where a value of that type is passed.
9429
9430 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9431 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9432 because in these cases DECL_INCOMING_RTL points us to a value of some
9433 type which is *different* from the type of the parameter itself. Thus,
9434 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9435 such cases, the debugger would end up (for example) trying to fetch a
9436 `float' from a place which actually contains the first part of a
9437 `double'. That would lead to really incorrect and confusing
9438 output at debug-time.
9439
9440 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9441 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9442 are a couple of exceptions however. On little-endian machines we can
9443 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9444 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9445 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9446 when (on a little-endian machine) a non-prototyped function has a
9447 parameter declared to be of type `short' or `char'. In such cases,
9448 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9449 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9450 passed `int' value. If the debugger then uses that address to fetch
9451 a `short' or a `char' (on a little-endian machine) the result will be
9452 the correct data, so we allow for such exceptional cases below.
9453
9454 Note that our goal here is to describe the place where the given formal
9455 parameter lives during most of the function's activation (i.e. between the
9456 end of the prologue and the start of the epilogue). We'll do that as best
9457 as we can. Note however that if the given formal parameter is modified
9458 sometime during the execution of the function, then a stack backtrace (at
9459 debug-time) will show the function as having been called with the *new*
9460 value rather than the value which was originally passed in. This happens
9461 rarely enough that it is not a major problem, but it *is* a problem, and
9462 I'd like to fix it.
9463
9464 A future version of dwarf2out.c may generate two additional attributes for
9465 any given DW_TAG_formal_parameter DIE which will describe the "passed
9466 type" and the "passed location" for the given formal parameter in addition
9467 to the attributes we now generate to indicate the "declared type" and the
9468 "active location" for each parameter. This additional set of attributes
9469 could be used by debuggers for stack backtraces. Separately, note that
9470 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9471 This happens (for example) for inlined-instances of inline function formal
9472 parameters which are never referenced. This really shouldn't be
9473 happening. All PARM_DECL nodes should get valid non-NULL
9474 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9475 values for inlined instances of inline function parameters, so when we see
9476 such cases, we are just out-of-luck for the time being (until integrate.c
9477 gets fixed). */
9478
9479 /* Use DECL_RTL as the "location" unless we find something better. */
9480 rtl = DECL_RTL_IF_SET (decl);
9481
9482 /* When generating abstract instances, ignore everything except
9483 constants, symbols living in memory, and symbols living in
9484 fixed registers. */
9485 if (! reload_completed)
9486 {
9487 if (rtl
9488 && (CONSTANT_P (rtl)
9489 || (GET_CODE (rtl) == MEM
9490 && CONSTANT_P (XEXP (rtl, 0)))
9491 || (GET_CODE (rtl) == REG
9492 && TREE_CODE (decl) == VAR_DECL
9493 && TREE_STATIC (decl))))
9494 {
9495 rtl = (*targetm.delegitimize_address) (rtl);
9496 return rtl;
9497 }
9498 rtl = NULL_RTX;
9499 }
9500 else if (TREE_CODE (decl) == PARM_DECL)
9501 {
9502 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9503 {
9504 tree declared_type = type_main_variant (TREE_TYPE (decl));
9505 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9506
9507 /* This decl represents a formal parameter which was optimized out.
9508 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9509 all cases where (rtl == NULL_RTX) just below. */
9510 if (declared_type == passed_type)
9511 rtl = DECL_INCOMING_RTL (decl);
9512 else if (! BYTES_BIG_ENDIAN
9513 && TREE_CODE (declared_type) == INTEGER_TYPE
9514 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9515 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9516 rtl = DECL_INCOMING_RTL (decl);
9517 }
9518
9519 /* If the parm was passed in registers, but lives on the stack, then
9520 make a big endian correction if the mode of the type of the
9521 parameter is not the same as the mode of the rtl. */
9522 /* ??? This is the same series of checks that are made in dbxout.c before
9523 we reach the big endian correction code there. It isn't clear if all
9524 of these checks are necessary here, but keeping them all is the safe
9525 thing to do. */
9526 else if (GET_CODE (rtl) == MEM
9527 && XEXP (rtl, 0) != const0_rtx
9528 && ! CONSTANT_P (XEXP (rtl, 0))
9529 /* Not passed in memory. */
9530 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
9531 /* Not passed by invisible reference. */
9532 && (GET_CODE (XEXP (rtl, 0)) != REG
9533 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9534 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9535 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9536 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9537 #endif
9538 )
9539 /* Big endian correction check. */
9540 && BYTES_BIG_ENDIAN
9541 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9542 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9543 < UNITS_PER_WORD))
9544 {
9545 int offset = (UNITS_PER_WORD
9546 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9547
9548 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9549 plus_constant (XEXP (rtl, 0), offset));
9550 }
9551 }
9552
9553 if (rtl != NULL_RTX)
9554 {
9555 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9556 #ifdef LEAF_REG_REMAP
9557 if (current_function_uses_only_leaf_regs)
9558 leaf_renumber_regs_insn (rtl);
9559 #endif
9560 }
9561
9562 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9563 and will have been substituted directly into all expressions that use it.
9564 C does not have such a concept, but C++ and other languages do. */
9565 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9566 {
9567 /* If a variable is initialized with a string constant without embedded
9568 zeros, build CONST_STRING. */
9569 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9570 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9571 {
9572 tree arrtype = TREE_TYPE (decl);
9573 tree enttype = TREE_TYPE (arrtype);
9574 tree domain = TYPE_DOMAIN (arrtype);
9575 tree init = DECL_INITIAL (decl);
9576 enum machine_mode mode = TYPE_MODE (enttype);
9577
9578 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9579 && domain
9580 && integer_zerop (TYPE_MIN_VALUE (domain))
9581 && compare_tree_int (TYPE_MAX_VALUE (domain),
9582 TREE_STRING_LENGTH (init) - 1) == 0
9583 && ((size_t) TREE_STRING_LENGTH (init)
9584 == strlen (TREE_STRING_POINTER (init)) + 1))
9585 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9586 }
9587 /* If the initializer is something that we know will expand into an
9588 immediate RTL constant, expand it now. Expanding anything else
9589 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9590 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9591 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9592 {
9593 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9594 EXPAND_INITIALIZER);
9595 /* If expand_expr returns a MEM, it wasn't immediate. */
9596 if (rtl && GET_CODE (rtl) == MEM)
9597 abort ();
9598 }
9599 }
9600
9601 if (rtl)
9602 rtl = (*targetm.delegitimize_address) (rtl);
9603
9604 /* If we don't look past the constant pool, we risk emitting a
9605 reference to a constant pool entry that isn't referenced from
9606 code, and thus is not emitted. */
9607 if (rtl)
9608 rtl = avoid_constant_pool_reference (rtl);
9609
9610 return rtl;
9611 }
9612
9613 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
9614 data attribute for a variable or a parameter. We generate the
9615 DW_AT_const_value attribute only in those cases where the given variable
9616 or parameter does not have a true "location" either in memory or in a
9617 register. This can happen (for example) when a constant is passed as an
9618 actual argument in a call to an inline function. (It's possible that
9619 these things can crop up in other ways also.) Note that one type of
9620 constant value which can be passed into an inlined function is a constant
9621 pointer. This can happen for example if an actual argument in an inlined
9622 function call evaluates to a compile-time constant address. */
9623
9624 static void
9625 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
9626 enum dwarf_attribute attr)
9627 {
9628 rtx rtl;
9629 dw_loc_descr_ref descr;
9630 var_loc_list *loc_list;
9631
9632 if (TREE_CODE (decl) == ERROR_MARK)
9633 return;
9634 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
9635 abort ();
9636
9637 /* See if we possibly have multiple locations for this variable. */
9638 loc_list = lookup_decl_loc (decl);
9639
9640 /* If it truly has multiple locations, the first and last node will
9641 differ. */
9642 if (loc_list && loc_list->first != loc_list->last)
9643 {
9644 const char *secname;
9645 const char *endname;
9646 dw_loc_list_ref list;
9647 rtx varloc;
9648 struct var_loc_node *node;
9649
9650 /* We need to figure out what section we should use as the base
9651 for the address ranges where a given location is valid.
9652 1. If this particular DECL has a section associated with it,
9653 use that.
9654 2. If this function has a section associated with it, use
9655 that.
9656 3. Otherwise, use the text section.
9657 XXX: If you split a variable across multiple sections, this
9658 won't notice. */
9659
9660 if (DECL_SECTION_NAME (decl))
9661 {
9662 tree sectree = DECL_SECTION_NAME (decl);
9663 secname = TREE_STRING_POINTER (sectree);
9664 }
9665 else if (current_function_decl
9666 && DECL_SECTION_NAME (current_function_decl))
9667 {
9668 tree sectree = DECL_SECTION_NAME (current_function_decl);
9669 secname = TREE_STRING_POINTER (sectree);
9670 }
9671 else
9672 secname = text_section_label;
9673
9674 /* Now that we know what section we are using for a base,
9675 actually construct the list of locations.
9676 The first location information is what is passed to the
9677 function that creates the location list, and the remaining
9678 locations just get added on to that list.
9679 Note that we only know the start address for a location
9680 (IE location changes), so to build the range, we use
9681 the range [current location start, next location start].
9682 This means we have to special case the last node, and generate
9683 a range of [last location start, end of function label]. */
9684
9685 node = loc_list->first;
9686 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
9687 list = new_loc_list (loc_descriptor (varloc, attr != DW_AT_frame_base),
9688 node->label, node->next->label, secname, 1);
9689 node = node->next;
9690
9691 for (; node->next; node = node->next)
9692 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
9693 {
9694 /* The variable has a location between NODE->LABEL and
9695 NODE->NEXT->LABEL. */
9696 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
9697 add_loc_descr_to_loc_list (&list,
9698 loc_descriptor (varloc,
9699 attr != DW_AT_frame_base),
9700 node->label, node->next->label, secname);
9701 }
9702
9703 /* If the variable has a location at the last label
9704 it keeps its location until the end of function. */
9705 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
9706 {
9707 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
9708
9709 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
9710 if (!current_function_decl)
9711 endname = text_end_label;
9712 else
9713 {
9714 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
9715 current_function_funcdef_no);
9716 endname = ggc_strdup (label_id);
9717 }
9718 add_loc_descr_to_loc_list (&list,
9719 loc_descriptor (varloc,
9720 attr != DW_AT_frame_base),
9721 node->label, endname, secname);
9722 }
9723
9724 /* Finally, add the location list to the DIE, and we are done. */
9725 add_AT_loc_list (die, attr, list);
9726 return;
9727 }
9728
9729 rtl = rtl_for_decl_location (decl);
9730 if (rtl == NULL_RTX)
9731 return;
9732
9733 switch (GET_CODE (rtl))
9734 {
9735 case ADDRESSOF:
9736 /* The address of a variable that was optimized away;
9737 don't emit anything. */
9738 break;
9739
9740 case CONST_INT:
9741 case CONST_DOUBLE:
9742 case CONST_STRING:
9743 case SYMBOL_REF:
9744 case LABEL_REF:
9745 case CONST:
9746 case PLUS:
9747 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9748 add_const_value_attribute (die, rtl);
9749 break;
9750
9751 case MEM:
9752 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
9753 {
9754 /* Need loc_descriptor_from_tree since that's where we know
9755 how to handle TLS variables. Want the object's address
9756 since the top-level DW_AT_location assumes such. See
9757 the confusion in loc_descriptor for reference. */
9758 descr = loc_descriptor_from_tree (decl, 1);
9759 }
9760 else
9761 {
9762 case REG:
9763 case SUBREG:
9764 case CONCAT:
9765 descr = loc_descriptor (rtl, true);
9766 }
9767 add_AT_location_description (die, attr, descr);
9768 break;
9769
9770 case PARALLEL:
9771 {
9772 rtvec par_elems = XVEC (rtl, 0);
9773 int num_elem = GET_NUM_ELEM (par_elems);
9774 enum machine_mode mode;
9775 int i;
9776
9777 /* Create the first one, so we have something to add to. */
9778 descr = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0), true);
9779 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
9780 add_loc_descr (&descr,
9781 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
9782 for (i = 1; i < num_elem; i++)
9783 {
9784 dw_loc_descr_ref temp;
9785
9786 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0), true);
9787 add_loc_descr (&descr, temp);
9788 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
9789 add_loc_descr (&descr,
9790 new_loc_descr (DW_OP_piece,
9791 GET_MODE_SIZE (mode), 0));
9792 }
9793 }
9794 add_AT_location_description (die, DW_AT_location, descr);
9795 break;
9796
9797 default:
9798 abort ();
9799 }
9800 }
9801
9802 /* If we don't have a copy of this variable in memory for some reason (such
9803 as a C++ member constant that doesn't have an out-of-line definition),
9804 we should tell the debugger about the constant value. */
9805
9806 static void
9807 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
9808 {
9809 tree init = DECL_INITIAL (decl);
9810 tree type = TREE_TYPE (decl);
9811
9812 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9813 && initializer_constant_valid_p (init, type) == null_pointer_node)
9814 /* OK */;
9815 else
9816 return;
9817
9818 switch (TREE_CODE (type))
9819 {
9820 case INTEGER_TYPE:
9821 if (host_integerp (init, 0))
9822 add_AT_unsigned (var_die, DW_AT_const_value,
9823 tree_low_cst (init, 0));
9824 else
9825 add_AT_long_long (var_die, DW_AT_const_value,
9826 TREE_INT_CST_HIGH (init),
9827 TREE_INT_CST_LOW (init));
9828 break;
9829
9830 default:;
9831 }
9832 }
9833
9834 /* Generate a DW_AT_name attribute given some string value to be included as
9835 the value of the attribute. */
9836
9837 static void
9838 add_name_attribute (dw_die_ref die, const char *name_string)
9839 {
9840 if (name_string != NULL && *name_string != 0)
9841 {
9842 if (demangle_name_func)
9843 name_string = (*demangle_name_func) (name_string);
9844
9845 add_AT_string (die, DW_AT_name, name_string);
9846 }
9847 }
9848
9849 /* Generate a DW_AT_comp_dir attribute for DIE. */
9850
9851 static void
9852 add_comp_dir_attribute (dw_die_ref die)
9853 {
9854 const char *wd = get_src_pwd ();
9855 if (wd != NULL)
9856 add_AT_string (die, DW_AT_comp_dir, wd);
9857 }
9858
9859 /* Given a tree node describing an array bound (either lower or upper) output
9860 a representation for that bound. */
9861
9862 static void
9863 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
9864 {
9865 switch (TREE_CODE (bound))
9866 {
9867 case ERROR_MARK:
9868 return;
9869
9870 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9871 case INTEGER_CST:
9872 if (! host_integerp (bound, 0)
9873 || (bound_attr == DW_AT_lower_bound
9874 && (((is_c_family () || is_java ()) && integer_zerop (bound))
9875 || (is_fortran () && integer_onep (bound)))))
9876 /* Use the default. */
9877 ;
9878 else
9879 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
9880 break;
9881
9882 case CONVERT_EXPR:
9883 case NOP_EXPR:
9884 case NON_LVALUE_EXPR:
9885 case VIEW_CONVERT_EXPR:
9886 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9887 break;
9888
9889 case SAVE_EXPR:
9890 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9891 access the upper bound values may be bogus. If they refer to a
9892 register, they may only describe how to get at these values at the
9893 points in the generated code right after they have just been
9894 computed. Worse yet, in the typical case, the upper bound values
9895 will not even *be* computed in the optimized code (though the
9896 number of elements will), so these SAVE_EXPRs are entirely
9897 bogus. In order to compensate for this fact, we check here to see
9898 if optimization is enabled, and if so, we don't add an attribute
9899 for the (unknown and unknowable) upper bound. This should not
9900 cause too much trouble for existing (stupid?) debuggers because
9901 they have to deal with empty upper bounds location descriptions
9902 anyway in order to be able to deal with incomplete array types.
9903 Of course an intelligent debugger (GDB?) should be able to
9904 comprehend that a missing upper bound specification in an array
9905 type used for a storage class `auto' local array variable
9906 indicates that the upper bound is both unknown (at compile- time)
9907 and unknowable (at run-time) due to optimization.
9908
9909 We assume that a MEM rtx is safe because gcc wouldn't put the
9910 value there unless it was going to be used repeatedly in the
9911 function, i.e. for cleanups. */
9912 if (SAVE_EXPR_RTL (bound)
9913 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
9914 {
9915 dw_die_ref ctx = lookup_decl_die (current_function_decl);
9916 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
9917 rtx loc = SAVE_EXPR_RTL (bound);
9918
9919 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9920 it references an outer function's frame. */
9921 if (GET_CODE (loc) == MEM)
9922 {
9923 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9924
9925 if (XEXP (loc, 0) != new_addr)
9926 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
9927 }
9928
9929 add_AT_flag (decl_die, DW_AT_artificial, 1);
9930 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9931 add_AT_location_description (decl_die, DW_AT_location,
9932 loc_descriptor (loc, true));
9933 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9934 }
9935
9936 /* Else leave out the attribute. */
9937 break;
9938
9939 case VAR_DECL:
9940 case PARM_DECL:
9941 {
9942 dw_die_ref decl_die = lookup_decl_die (bound);
9943
9944 /* ??? Can this happen, or should the variable have been bound
9945 first? Probably it can, since I imagine that we try to create
9946 the types of parameters in the order in which they exist in
9947 the list, and won't have created a forward reference to a
9948 later parameter. */
9949 if (decl_die != NULL)
9950 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9951 break;
9952 }
9953
9954 default:
9955 {
9956 /* Otherwise try to create a stack operation procedure to
9957 evaluate the value of the array bound. */
9958
9959 dw_die_ref ctx, decl_die;
9960 dw_loc_descr_ref loc;
9961
9962 loc = loc_descriptor_from_tree (bound, 0);
9963 if (loc == NULL)
9964 break;
9965
9966 if (current_function_decl == 0)
9967 ctx = comp_unit_die;
9968 else
9969 ctx = lookup_decl_die (current_function_decl);
9970
9971 /* If we weren't able to find a context, it's most likely the case
9972 that we are processing the return type of the function. So
9973 make a SAVE_EXPR to point to it and have the limbo DIE code
9974 find the proper die. The save_expr function doesn't always
9975 make a SAVE_EXPR, so do it ourselves. */
9976 if (ctx == 0)
9977 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9978 current_function_decl, NULL_TREE);
9979
9980 decl_die = new_die (DW_TAG_variable, ctx, bound);
9981 add_AT_flag (decl_die, DW_AT_artificial, 1);
9982 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9983 add_AT_loc (decl_die, DW_AT_location, loc);
9984
9985 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9986 break;
9987 }
9988 }
9989 }
9990
9991 /* Note that the block of subscript information for an array type also
9992 includes information about the element type of type given array type. */
9993
9994 static void
9995 add_subscript_info (dw_die_ref type_die, tree type)
9996 {
9997 #ifndef MIPS_DEBUGGING_INFO
9998 unsigned dimension_number;
9999 #endif
10000 tree lower, upper;
10001 dw_die_ref subrange_die;
10002
10003 /* The GNU compilers represent multidimensional array types as sequences of
10004 one dimensional array types whose element types are themselves array
10005 types. Here we squish that down, so that each multidimensional array
10006 type gets only one array_type DIE in the Dwarf debugging info. The draft
10007 Dwarf specification say that we are allowed to do this kind of
10008 compression in C (because there is no difference between an array or
10009 arrays and a multidimensional array in C) but for other source languages
10010 (e.g. Ada) we probably shouldn't do this. */
10011
10012 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10013 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10014 We work around this by disabling this feature. See also
10015 gen_array_type_die. */
10016 #ifndef MIPS_DEBUGGING_INFO
10017 for (dimension_number = 0;
10018 TREE_CODE (type) == ARRAY_TYPE;
10019 type = TREE_TYPE (type), dimension_number++)
10020 #endif
10021 {
10022 tree domain = TYPE_DOMAIN (type);
10023
10024 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10025 and (in GNU C only) variable bounds. Handle all three forms
10026 here. */
10027 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10028 if (domain)
10029 {
10030 /* We have an array type with specified bounds. */
10031 lower = TYPE_MIN_VALUE (domain);
10032 upper = TYPE_MAX_VALUE (domain);
10033
10034 /* Define the index type. */
10035 if (TREE_TYPE (domain))
10036 {
10037 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10038 TREE_TYPE field. We can't emit debug info for this
10039 because it is an unnamed integral type. */
10040 if (TREE_CODE (domain) == INTEGER_TYPE
10041 && TYPE_NAME (domain) == NULL_TREE
10042 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10043 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10044 ;
10045 else
10046 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10047 type_die);
10048 }
10049
10050 /* ??? If upper is NULL, the array has unspecified length,
10051 but it does have a lower bound. This happens with Fortran
10052 dimension arr(N:*)
10053 Since the debugger is definitely going to need to know N
10054 to produce useful results, go ahead and output the lower
10055 bound solo, and hope the debugger can cope. */
10056
10057 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10058 if (upper)
10059 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10060 }
10061
10062 /* Otherwise we have an array type with an unspecified length. The
10063 DWARF-2 spec does not say how to handle this; let's just leave out the
10064 bounds. */
10065 }
10066 }
10067
10068 static void
10069 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10070 {
10071 unsigned size;
10072
10073 switch (TREE_CODE (tree_node))
10074 {
10075 case ERROR_MARK:
10076 size = 0;
10077 break;
10078 case ENUMERAL_TYPE:
10079 case RECORD_TYPE:
10080 case UNION_TYPE:
10081 case QUAL_UNION_TYPE:
10082 size = int_size_in_bytes (tree_node);
10083 break;
10084 case FIELD_DECL:
10085 /* For a data member of a struct or union, the DW_AT_byte_size is
10086 generally given as the number of bytes normally allocated for an
10087 object of the *declared* type of the member itself. This is true
10088 even for bit-fields. */
10089 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10090 break;
10091 default:
10092 abort ();
10093 }
10094
10095 /* Note that `size' might be -1 when we get to this point. If it is, that
10096 indicates that the byte size of the entity in question is variable. We
10097 have no good way of expressing this fact in Dwarf at the present time,
10098 so just let the -1 pass on through. */
10099 add_AT_unsigned (die, DW_AT_byte_size, size);
10100 }
10101
10102 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10103 which specifies the distance in bits from the highest order bit of the
10104 "containing object" for the bit-field to the highest order bit of the
10105 bit-field itself.
10106
10107 For any given bit-field, the "containing object" is a hypothetical object
10108 (of some integral or enum type) within which the given bit-field lives. The
10109 type of this hypothetical "containing object" is always the same as the
10110 declared type of the individual bit-field itself. The determination of the
10111 exact location of the "containing object" for a bit-field is rather
10112 complicated. It's handled by the `field_byte_offset' function (above).
10113
10114 Note that it is the size (in bytes) of the hypothetical "containing object"
10115 which will be given in the DW_AT_byte_size attribute for this bit-field.
10116 (See `byte_size_attribute' above). */
10117
10118 static inline void
10119 add_bit_offset_attribute (dw_die_ref die, tree decl)
10120 {
10121 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10122 tree type = DECL_BIT_FIELD_TYPE (decl);
10123 HOST_WIDE_INT bitpos_int;
10124 HOST_WIDE_INT highest_order_object_bit_offset;
10125 HOST_WIDE_INT highest_order_field_bit_offset;
10126 HOST_WIDE_INT unsigned bit_offset;
10127
10128 /* Must be a field and a bit field. */
10129 if (!type
10130 || TREE_CODE (decl) != FIELD_DECL)
10131 abort ();
10132
10133 /* We can't yet handle bit-fields whose offsets are variable, so if we
10134 encounter such things, just return without generating any attribute
10135 whatsoever. Likewise for variable or too large size. */
10136 if (! host_integerp (bit_position (decl), 0)
10137 || ! host_integerp (DECL_SIZE (decl), 1))
10138 return;
10139
10140 bitpos_int = int_bit_position (decl);
10141
10142 /* Note that the bit offset is always the distance (in bits) from the
10143 highest-order bit of the "containing object" to the highest-order bit of
10144 the bit-field itself. Since the "high-order end" of any object or field
10145 is different on big-endian and little-endian machines, the computation
10146 below must take account of these differences. */
10147 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10148 highest_order_field_bit_offset = bitpos_int;
10149
10150 if (! BYTES_BIG_ENDIAN)
10151 {
10152 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10153 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10154 }
10155
10156 bit_offset
10157 = (! BYTES_BIG_ENDIAN
10158 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10159 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10160
10161 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10162 }
10163
10164 /* For a FIELD_DECL node which represents a bit field, output an attribute
10165 which specifies the length in bits of the given field. */
10166
10167 static inline void
10168 add_bit_size_attribute (dw_die_ref die, tree decl)
10169 {
10170 /* Must be a field and a bit field. */
10171 if (TREE_CODE (decl) != FIELD_DECL
10172 || ! DECL_BIT_FIELD_TYPE (decl))
10173 abort ();
10174
10175 if (host_integerp (DECL_SIZE (decl), 1))
10176 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10177 }
10178
10179 /* If the compiled language is ANSI C, then add a 'prototyped'
10180 attribute, if arg types are given for the parameters of a function. */
10181
10182 static inline void
10183 add_prototyped_attribute (dw_die_ref die, tree func_type)
10184 {
10185 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10186 && TYPE_ARG_TYPES (func_type) != NULL)
10187 add_AT_flag (die, DW_AT_prototyped, 1);
10188 }
10189
10190 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10191 by looking in either the type declaration or object declaration
10192 equate table. */
10193
10194 static inline void
10195 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10196 {
10197 dw_die_ref origin_die = NULL;
10198
10199 if (TREE_CODE (origin) != FUNCTION_DECL)
10200 {
10201 /* We may have gotten separated from the block for the inlined
10202 function, if we're in an exception handler or some such; make
10203 sure that the abstract function has been written out.
10204
10205 Doing this for nested functions is wrong, however; functions are
10206 distinct units, and our context might not even be inline. */
10207 tree fn = origin;
10208
10209 if (TYPE_P (fn))
10210 fn = TYPE_STUB_DECL (fn);
10211
10212 fn = decl_function_context (fn);
10213 if (fn)
10214 dwarf2out_abstract_function (fn);
10215 }
10216
10217 if (DECL_P (origin))
10218 origin_die = lookup_decl_die (origin);
10219 else if (TYPE_P (origin))
10220 origin_die = lookup_type_die (origin);
10221
10222 if (origin_die == NULL)
10223 abort ();
10224
10225 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10226 }
10227
10228 /* We do not currently support the pure_virtual attribute. */
10229
10230 static inline void
10231 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10232 {
10233 if (DECL_VINDEX (func_decl))
10234 {
10235 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10236
10237 if (host_integerp (DECL_VINDEX (func_decl), 0))
10238 add_AT_loc (die, DW_AT_vtable_elem_location,
10239 new_loc_descr (DW_OP_constu,
10240 tree_low_cst (DECL_VINDEX (func_decl), 0),
10241 0));
10242
10243 /* GNU extension: Record what type this method came from originally. */
10244 if (debug_info_level > DINFO_LEVEL_TERSE)
10245 add_AT_die_ref (die, DW_AT_containing_type,
10246 lookup_type_die (DECL_CONTEXT (func_decl)));
10247 }
10248 }
10249 \f
10250 /* Add source coordinate attributes for the given decl. */
10251
10252 static void
10253 add_src_coords_attributes (dw_die_ref die, tree decl)
10254 {
10255 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10256
10257 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10258 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10259 }
10260
10261 /* Add a DW_AT_name attribute and source coordinate attribute for the
10262 given decl, but only if it actually has a name. */
10263
10264 static void
10265 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10266 {
10267 tree decl_name;
10268
10269 decl_name = DECL_NAME (decl);
10270 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10271 {
10272 add_name_attribute (die, dwarf2_name (decl, 0));
10273 if (! DECL_ARTIFICIAL (decl))
10274 add_src_coords_attributes (die, decl);
10275
10276 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10277 && TREE_PUBLIC (decl)
10278 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10279 && !DECL_ABSTRACT (decl))
10280 add_AT_string (die, DW_AT_MIPS_linkage_name,
10281 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10282 }
10283
10284 #ifdef VMS_DEBUGGING_INFO
10285 /* Get the function's name, as described by its RTL. This may be different
10286 from the DECL_NAME name used in the source file. */
10287 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10288 {
10289 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10290 XEXP (DECL_RTL (decl), 0));
10291 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10292 }
10293 #endif
10294 }
10295
10296 /* Push a new declaration scope. */
10297
10298 static void
10299 push_decl_scope (tree scope)
10300 {
10301 VARRAY_PUSH_TREE (decl_scope_table, scope);
10302 }
10303
10304 /* Pop a declaration scope. */
10305
10306 static inline void
10307 pop_decl_scope (void)
10308 {
10309 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
10310 abort ();
10311
10312 VARRAY_POP (decl_scope_table);
10313 }
10314
10315 /* Return the DIE for the scope that immediately contains this type.
10316 Non-named types get global scope. Named types nested in other
10317 types get their containing scope if it's open, or global scope
10318 otherwise. All other types (i.e. function-local named types) get
10319 the current active scope. */
10320
10321 static dw_die_ref
10322 scope_die_for (tree t, dw_die_ref context_die)
10323 {
10324 dw_die_ref scope_die = NULL;
10325 tree containing_scope;
10326 int i;
10327
10328 /* Non-types always go in the current scope. */
10329 if (! TYPE_P (t))
10330 abort ();
10331
10332 containing_scope = TYPE_CONTEXT (t);
10333
10334 /* Use the containing namespace if it was passed in (for a declaration). */
10335 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10336 {
10337 if (context_die == lookup_decl_die (containing_scope))
10338 /* OK */;
10339 else
10340 containing_scope = NULL_TREE;
10341 }
10342
10343 /* Ignore function type "scopes" from the C frontend. They mean that
10344 a tagged type is local to a parmlist of a function declarator, but
10345 that isn't useful to DWARF. */
10346 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10347 containing_scope = NULL_TREE;
10348
10349 if (containing_scope == NULL_TREE)
10350 scope_die = comp_unit_die;
10351 else if (TYPE_P (containing_scope))
10352 {
10353 /* For types, we can just look up the appropriate DIE. But
10354 first we check to see if we're in the middle of emitting it
10355 so we know where the new DIE should go. */
10356 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10357 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10358 break;
10359
10360 if (i < 0)
10361 {
10362 if (debug_info_level > DINFO_LEVEL_TERSE
10363 && !TREE_ASM_WRITTEN (containing_scope))
10364 abort ();
10365
10366 /* If none of the current dies are suitable, we get file scope. */
10367 scope_die = comp_unit_die;
10368 }
10369 else
10370 scope_die = lookup_type_die (containing_scope);
10371 }
10372 else
10373 scope_die = context_die;
10374
10375 return scope_die;
10376 }
10377
10378 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10379
10380 static inline int
10381 local_scope_p (dw_die_ref context_die)
10382 {
10383 for (; context_die; context_die = context_die->die_parent)
10384 if (context_die->die_tag == DW_TAG_inlined_subroutine
10385 || context_die->die_tag == DW_TAG_subprogram)
10386 return 1;
10387
10388 return 0;
10389 }
10390
10391 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10392 whether or not to treat a DIE in this context as a declaration. */
10393
10394 static inline int
10395 class_or_namespace_scope_p (dw_die_ref context_die)
10396 {
10397 return (context_die
10398 && (context_die->die_tag == DW_TAG_structure_type
10399 || context_die->die_tag == DW_TAG_union_type
10400 || context_die->die_tag == DW_TAG_namespace));
10401 }
10402
10403 /* Many forms of DIEs require a "type description" attribute. This
10404 routine locates the proper "type descriptor" die for the type given
10405 by 'type', and adds a DW_AT_type attribute below the given die. */
10406
10407 static void
10408 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10409 int decl_volatile, dw_die_ref context_die)
10410 {
10411 enum tree_code code = TREE_CODE (type);
10412 dw_die_ref type_die = NULL;
10413
10414 /* ??? If this type is an unnamed subrange type of an integral or
10415 floating-point type, use the inner type. This is because we have no
10416 support for unnamed types in base_type_die. This can happen if this is
10417 an Ada subrange type. Correct solution is emit a subrange type die. */
10418 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10419 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10420 type = TREE_TYPE (type), code = TREE_CODE (type);
10421
10422 if (code == ERROR_MARK
10423 /* Handle a special case. For functions whose return type is void, we
10424 generate *no* type attribute. (Note that no object may have type
10425 `void', so this only applies to function return types). */
10426 || code == VOID_TYPE)
10427 return;
10428
10429 type_die = modified_type_die (type,
10430 decl_const || TYPE_READONLY (type),
10431 decl_volatile || TYPE_VOLATILE (type),
10432 context_die);
10433
10434 if (type_die != NULL)
10435 add_AT_die_ref (object_die, DW_AT_type, type_die);
10436 }
10437
10438 /* Given a tree pointer to a struct, class, union, or enum type node, return
10439 a pointer to the (string) tag name for the given type, or zero if the type
10440 was declared without a tag. */
10441
10442 static const char *
10443 type_tag (tree type)
10444 {
10445 const char *name = 0;
10446
10447 if (TYPE_NAME (type) != 0)
10448 {
10449 tree t = 0;
10450
10451 /* Find the IDENTIFIER_NODE for the type name. */
10452 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10453 t = TYPE_NAME (type);
10454
10455 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10456 a TYPE_DECL node, regardless of whether or not a `typedef' was
10457 involved. */
10458 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10459 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10460 t = DECL_NAME (TYPE_NAME (type));
10461
10462 /* Now get the name as a string, or invent one. */
10463 if (t != 0)
10464 name = IDENTIFIER_POINTER (t);
10465 }
10466
10467 return (name == 0 || *name == '\0') ? 0 : name;
10468 }
10469
10470 /* Return the type associated with a data member, make a special check
10471 for bit field types. */
10472
10473 static inline tree
10474 member_declared_type (tree member)
10475 {
10476 return (DECL_BIT_FIELD_TYPE (member)
10477 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10478 }
10479
10480 /* Get the decl's label, as described by its RTL. This may be different
10481 from the DECL_NAME name used in the source file. */
10482
10483 #if 0
10484 static const char *
10485 decl_start_label (tree decl)
10486 {
10487 rtx x;
10488 const char *fnname;
10489
10490 x = DECL_RTL (decl);
10491 if (GET_CODE (x) != MEM)
10492 abort ();
10493
10494 x = XEXP (x, 0);
10495 if (GET_CODE (x) != SYMBOL_REF)
10496 abort ();
10497
10498 fnname = XSTR (x, 0);
10499 return fnname;
10500 }
10501 #endif
10502 \f
10503 /* These routines generate the internal representation of the DIE's for
10504 the compilation unit. Debugging information is collected by walking
10505 the declaration trees passed in from dwarf2out_decl(). */
10506
10507 static void
10508 gen_array_type_die (tree type, dw_die_ref context_die)
10509 {
10510 dw_die_ref scope_die = scope_die_for (type, context_die);
10511 dw_die_ref array_die;
10512 tree element_type;
10513
10514 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10515 the inner array type comes before the outer array type. Thus we must
10516 call gen_type_die before we call new_die. See below also. */
10517 #ifdef MIPS_DEBUGGING_INFO
10518 gen_type_die (TREE_TYPE (type), context_die);
10519 #endif
10520
10521 array_die = new_die (DW_TAG_array_type, scope_die, type);
10522 add_name_attribute (array_die, type_tag (type));
10523 equate_type_number_to_die (type, array_die);
10524
10525 if (TREE_CODE (type) == VECTOR_TYPE)
10526 {
10527 /* The frontend feeds us a representation for the vector as a struct
10528 containing an array. Pull out the array type. */
10529 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10530 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10531 }
10532
10533 #if 0
10534 /* We default the array ordering. SDB will probably do
10535 the right things even if DW_AT_ordering is not present. It's not even
10536 an issue until we start to get into multidimensional arrays anyway. If
10537 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10538 then we'll have to put the DW_AT_ordering attribute back in. (But if
10539 and when we find out that we need to put these in, we will only do so
10540 for multidimensional arrays. */
10541 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10542 #endif
10543
10544 #ifdef MIPS_DEBUGGING_INFO
10545 /* The SGI compilers handle arrays of unknown bound by setting
10546 AT_declaration and not emitting any subrange DIEs. */
10547 if (! TYPE_DOMAIN (type))
10548 add_AT_flag (array_die, DW_AT_declaration, 1);
10549 else
10550 #endif
10551 add_subscript_info (array_die, type);
10552
10553 /* Add representation of the type of the elements of this array type. */
10554 element_type = TREE_TYPE (type);
10555
10556 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10557 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10558 We work around this by disabling this feature. See also
10559 add_subscript_info. */
10560 #ifndef MIPS_DEBUGGING_INFO
10561 while (TREE_CODE (element_type) == ARRAY_TYPE)
10562 element_type = TREE_TYPE (element_type);
10563
10564 gen_type_die (element_type, context_die);
10565 #endif
10566
10567 add_type_attribute (array_die, element_type, 0, 0, context_die);
10568 }
10569
10570 static void
10571 gen_set_type_die (tree type, dw_die_ref context_die)
10572 {
10573 dw_die_ref type_die
10574 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10575
10576 equate_type_number_to_die (type, type_die);
10577 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10578 }
10579
10580 #if 0
10581 static void
10582 gen_entry_point_die (tree decl, dw_die_ref context_die)
10583 {
10584 tree origin = decl_ultimate_origin (decl);
10585 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10586
10587 if (origin != NULL)
10588 add_abstract_origin_attribute (decl_die, origin);
10589 else
10590 {
10591 add_name_and_src_coords_attributes (decl_die, decl);
10592 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10593 0, 0, context_die);
10594 }
10595
10596 if (DECL_ABSTRACT (decl))
10597 equate_decl_number_to_die (decl, decl_die);
10598 else
10599 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10600 }
10601 #endif
10602
10603 /* Walk through the list of incomplete types again, trying once more to
10604 emit full debugging info for them. */
10605
10606 static void
10607 retry_incomplete_types (void)
10608 {
10609 int i;
10610
10611 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10612 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10613 }
10614
10615 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10616
10617 static void
10618 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
10619 {
10620 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10621
10622 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10623 be incomplete and such types are not marked. */
10624 add_abstract_origin_attribute (type_die, type);
10625 }
10626
10627 /* Generate a DIE to represent an inlined instance of a structure type. */
10628
10629 static void
10630 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
10631 {
10632 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10633
10634 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10635 be incomplete and such types are not marked. */
10636 add_abstract_origin_attribute (type_die, type);
10637 }
10638
10639 /* Generate a DIE to represent an inlined instance of a union type. */
10640
10641 static void
10642 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
10643 {
10644 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10645
10646 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10647 be incomplete and such types are not marked. */
10648 add_abstract_origin_attribute (type_die, type);
10649 }
10650
10651 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10652 include all of the information about the enumeration values also. Each
10653 enumerated type name/value is listed as a child of the enumerated type
10654 DIE. */
10655
10656 static dw_die_ref
10657 gen_enumeration_type_die (tree type, dw_die_ref context_die)
10658 {
10659 dw_die_ref type_die = lookup_type_die (type);
10660
10661 if (type_die == NULL)
10662 {
10663 type_die = new_die (DW_TAG_enumeration_type,
10664 scope_die_for (type, context_die), type);
10665 equate_type_number_to_die (type, type_die);
10666 add_name_attribute (type_die, type_tag (type));
10667 }
10668 else if (! TYPE_SIZE (type))
10669 return type_die;
10670 else
10671 remove_AT (type_die, DW_AT_declaration);
10672
10673 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10674 given enum type is incomplete, do not generate the DW_AT_byte_size
10675 attribute or the DW_AT_element_list attribute. */
10676 if (TYPE_SIZE (type))
10677 {
10678 tree link;
10679
10680 TREE_ASM_WRITTEN (type) = 1;
10681 add_byte_size_attribute (type_die, type);
10682 if (TYPE_STUB_DECL (type) != NULL_TREE)
10683 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10684
10685 /* If the first reference to this type was as the return type of an
10686 inline function, then it may not have a parent. Fix this now. */
10687 if (type_die->die_parent == NULL)
10688 add_child_die (scope_die_for (type, context_die), type_die);
10689
10690 for (link = TYPE_FIELDS (type);
10691 link != NULL; link = TREE_CHAIN (link))
10692 {
10693 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10694 tree value = TREE_VALUE (link);
10695
10696 add_name_attribute (enum_die,
10697 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10698
10699 if (host_integerp (value, TREE_UNSIGNED (TREE_TYPE (value))))
10700 /* DWARF2 does not provide a way of indicating whether or
10701 not enumeration constants are signed or unsigned. GDB
10702 always assumes the values are signed, so we output all
10703 values as if they were signed. That means that
10704 enumeration constants with very large unsigned values
10705 will appear to have negative values in the debugger. */
10706 add_AT_int (enum_die, DW_AT_const_value,
10707 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
10708 }
10709 }
10710 else
10711 add_AT_flag (type_die, DW_AT_declaration, 1);
10712
10713 return type_die;
10714 }
10715
10716 /* Generate a DIE to represent either a real live formal parameter decl or to
10717 represent just the type of some formal parameter position in some function
10718 type.
10719
10720 Note that this routine is a bit unusual because its argument may be a
10721 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10722 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10723 node. If it's the former then this function is being called to output a
10724 DIE to represent a formal parameter object (or some inlining thereof). If
10725 it's the latter, then this function is only being called to output a
10726 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10727 argument type of some subprogram type. */
10728
10729 static dw_die_ref
10730 gen_formal_parameter_die (tree node, dw_die_ref context_die)
10731 {
10732 dw_die_ref parm_die
10733 = new_die (DW_TAG_formal_parameter, context_die, node);
10734 tree origin;
10735
10736 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10737 {
10738 case 'd':
10739 origin = decl_ultimate_origin (node);
10740 if (origin != NULL)
10741 add_abstract_origin_attribute (parm_die, origin);
10742 else
10743 {
10744 add_name_and_src_coords_attributes (parm_die, node);
10745 add_type_attribute (parm_die, TREE_TYPE (node),
10746 TREE_READONLY (node),
10747 TREE_THIS_VOLATILE (node),
10748 context_die);
10749 if (DECL_ARTIFICIAL (node))
10750 add_AT_flag (parm_die, DW_AT_artificial, 1);
10751 }
10752
10753 equate_decl_number_to_die (node, parm_die);
10754 if (! DECL_ABSTRACT (node))
10755 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
10756
10757 break;
10758
10759 case 't':
10760 /* We were called with some kind of a ..._TYPE node. */
10761 add_type_attribute (parm_die, node, 0, 0, context_die);
10762 break;
10763
10764 default:
10765 abort ();
10766 }
10767
10768 return parm_die;
10769 }
10770
10771 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10772 at the end of an (ANSI prototyped) formal parameters list. */
10773
10774 static void
10775 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
10776 {
10777 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10778 }
10779
10780 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10781 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10782 parameters as specified in some function type specification (except for
10783 those which appear as part of a function *definition*). */
10784
10785 static void
10786 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
10787 {
10788 tree link;
10789 tree formal_type = NULL;
10790 tree first_parm_type;
10791 tree arg;
10792
10793 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10794 {
10795 arg = DECL_ARGUMENTS (function_or_method_type);
10796 function_or_method_type = TREE_TYPE (function_or_method_type);
10797 }
10798 else
10799 arg = NULL_TREE;
10800
10801 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10802
10803 /* Make our first pass over the list of formal parameter types and output a
10804 DW_TAG_formal_parameter DIE for each one. */
10805 for (link = first_parm_type; link; )
10806 {
10807 dw_die_ref parm_die;
10808
10809 formal_type = TREE_VALUE (link);
10810 if (formal_type == void_type_node)
10811 break;
10812
10813 /* Output a (nameless) DIE to represent the formal parameter itself. */
10814 parm_die = gen_formal_parameter_die (formal_type, context_die);
10815 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10816 && link == first_parm_type)
10817 || (arg && DECL_ARTIFICIAL (arg)))
10818 add_AT_flag (parm_die, DW_AT_artificial, 1);
10819
10820 link = TREE_CHAIN (link);
10821 if (arg)
10822 arg = TREE_CHAIN (arg);
10823 }
10824
10825 /* If this function type has an ellipsis, add a
10826 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10827 if (formal_type != void_type_node)
10828 gen_unspecified_parameters_die (function_or_method_type, context_die);
10829
10830 /* Make our second (and final) pass over the list of formal parameter types
10831 and output DIEs to represent those types (as necessary). */
10832 for (link = TYPE_ARG_TYPES (function_or_method_type);
10833 link && TREE_VALUE (link);
10834 link = TREE_CHAIN (link))
10835 gen_type_die (TREE_VALUE (link), context_die);
10836 }
10837
10838 /* We want to generate the DIE for TYPE so that we can generate the
10839 die for MEMBER, which has been defined; we will need to refer back
10840 to the member declaration nested within TYPE. If we're trying to
10841 generate minimal debug info for TYPE, processing TYPE won't do the
10842 trick; we need to attach the member declaration by hand. */
10843
10844 static void
10845 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
10846 {
10847 gen_type_die (type, context_die);
10848
10849 /* If we're trying to avoid duplicate debug info, we may not have
10850 emitted the member decl for this function. Emit it now. */
10851 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10852 && ! lookup_decl_die (member))
10853 {
10854 if (decl_ultimate_origin (member))
10855 abort ();
10856
10857 push_decl_scope (type);
10858 if (TREE_CODE (member) == FUNCTION_DECL)
10859 gen_subprogram_die (member, lookup_type_die (type));
10860 else
10861 gen_variable_die (member, lookup_type_die (type));
10862
10863 pop_decl_scope ();
10864 }
10865 }
10866
10867 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10868 may later generate inlined and/or out-of-line instances of. */
10869
10870 static void
10871 dwarf2out_abstract_function (tree decl)
10872 {
10873 dw_die_ref old_die;
10874 tree save_fn;
10875 tree context;
10876 int was_abstract = DECL_ABSTRACT (decl);
10877
10878 /* Make sure we have the actual abstract inline, not a clone. */
10879 decl = DECL_ORIGIN (decl);
10880
10881 old_die = lookup_decl_die (decl);
10882 if (old_die && get_AT (old_die, DW_AT_inline))
10883 /* We've already generated the abstract instance. */
10884 return;
10885
10886 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10887 we don't get confused by DECL_ABSTRACT. */
10888 if (debug_info_level > DINFO_LEVEL_TERSE)
10889 {
10890 context = decl_class_context (decl);
10891 if (context)
10892 gen_type_die_for_member
10893 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10894 }
10895
10896 /* Pretend we've just finished compiling this function. */
10897 save_fn = current_function_decl;
10898 current_function_decl = decl;
10899
10900 set_decl_abstract_flags (decl, 1);
10901 dwarf2out_decl (decl);
10902 if (! was_abstract)
10903 set_decl_abstract_flags (decl, 0);
10904
10905 current_function_decl = save_fn;
10906 }
10907
10908 /* Generate a DIE to represent a declared function (either file-scope or
10909 block-local). */
10910
10911 static void
10912 gen_subprogram_die (tree decl, dw_die_ref context_die)
10913 {
10914 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10915 tree origin = decl_ultimate_origin (decl);
10916 dw_die_ref subr_die;
10917 rtx fp_reg;
10918 tree fn_arg_types;
10919 tree outer_scope;
10920 dw_die_ref old_die = lookup_decl_die (decl);
10921 int declaration = (current_function_decl != decl
10922 || class_or_namespace_scope_p (context_die));
10923
10924 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10925 started to generate the abstract instance of an inline, decided to output
10926 its containing class, and proceeded to emit the declaration of the inline
10927 from the member list for the class. If so, DECLARATION takes priority;
10928 we'll get back to the abstract instance when done with the class. */
10929
10930 /* The class-scope declaration DIE must be the primary DIE. */
10931 if (origin && declaration && class_or_namespace_scope_p (context_die))
10932 {
10933 origin = NULL;
10934 if (old_die)
10935 abort ();
10936 }
10937
10938 if (origin != NULL)
10939 {
10940 if (declaration && ! local_scope_p (context_die))
10941 abort ();
10942
10943 /* Fixup die_parent for the abstract instance of a nested
10944 inline function. */
10945 if (old_die && old_die->die_parent == NULL)
10946 add_child_die (context_die, old_die);
10947
10948 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10949 add_abstract_origin_attribute (subr_die, origin);
10950 }
10951 else if (old_die)
10952 {
10953 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10954
10955 if (!get_AT_flag (old_die, DW_AT_declaration)
10956 /* We can have a normal definition following an inline one in the
10957 case of redefinition of GNU C extern inlines.
10958 It seems reasonable to use AT_specification in this case. */
10959 && !get_AT (old_die, DW_AT_inline))
10960 {
10961 /* ??? This can happen if there is a bug in the program, for
10962 instance, if it has duplicate function definitions. Ideally,
10963 we should detect this case and ignore it. For now, if we have
10964 already reported an error, any error at all, then assume that
10965 we got here because of an input error, not a dwarf2 bug. */
10966 if (errorcount)
10967 return;
10968 abort ();
10969 }
10970
10971 /* If the definition comes from the same place as the declaration,
10972 maybe use the old DIE. We always want the DIE for this function
10973 that has the *_pc attributes to be under comp_unit_die so the
10974 debugger can find it. We also need to do this for abstract
10975 instances of inlines, since the spec requires the out-of-line copy
10976 to have the same parent. For local class methods, this doesn't
10977 apply; we just use the old DIE. */
10978 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
10979 && (DECL_ARTIFICIAL (decl)
10980 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10981 && (get_AT_unsigned (old_die, DW_AT_decl_line)
10982 == (unsigned) DECL_SOURCE_LINE (decl)))))
10983 {
10984 subr_die = old_die;
10985
10986 /* Clear out the declaration attribute and the formal parameters.
10987 Do not remove all children, because it is possible that this
10988 declaration die was forced using force_decl_die(). In such
10989 cases die that forced declaration die (e.g. TAG_imported_module)
10990 is one of the children that we do not want to remove. */
10991 remove_AT (subr_die, DW_AT_declaration);
10992 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
10993 }
10994 else
10995 {
10996 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10997 add_AT_specification (subr_die, old_die);
10998 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10999 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
11000 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11001 != (unsigned) DECL_SOURCE_LINE (decl))
11002 add_AT_unsigned
11003 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
11004 }
11005 }
11006 else
11007 {
11008 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11009
11010 if (TREE_PUBLIC (decl))
11011 add_AT_flag (subr_die, DW_AT_external, 1);
11012
11013 add_name_and_src_coords_attributes (subr_die, decl);
11014 if (debug_info_level > DINFO_LEVEL_TERSE)
11015 {
11016 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11017 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11018 0, 0, context_die);
11019 }
11020
11021 add_pure_or_virtual_attribute (subr_die, decl);
11022 if (DECL_ARTIFICIAL (decl))
11023 add_AT_flag (subr_die, DW_AT_artificial, 1);
11024
11025 if (TREE_PROTECTED (decl))
11026 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11027 else if (TREE_PRIVATE (decl))
11028 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11029 }
11030
11031 if (declaration)
11032 {
11033 if (!old_die || !get_AT (old_die, DW_AT_inline))
11034 {
11035 add_AT_flag (subr_die, DW_AT_declaration, 1);
11036
11037 /* The first time we see a member function, it is in the context of
11038 the class to which it belongs. We make sure of this by emitting
11039 the class first. The next time is the definition, which is
11040 handled above. The two may come from the same source text.
11041
11042 Note that force_decl_die() forces function declaration die. It is
11043 later reused to represent definition. */
11044 equate_decl_number_to_die (decl, subr_die);
11045 }
11046 }
11047 else if (DECL_ABSTRACT (decl))
11048 {
11049 if (DECL_DECLARED_INLINE_P (decl))
11050 {
11051 if (cgraph_function_possibly_inlined_p (decl))
11052 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11053 else
11054 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11055 }
11056 else
11057 {
11058 if (cgraph_function_possibly_inlined_p (decl))
11059 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11060 else
11061 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11062 }
11063
11064 equate_decl_number_to_die (decl, subr_die);
11065 }
11066 else if (!DECL_EXTERNAL (decl))
11067 {
11068 if (!old_die || !get_AT (old_die, DW_AT_inline))
11069 equate_decl_number_to_die (decl, subr_die);
11070
11071 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11072 current_function_funcdef_no);
11073 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11074 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11075 current_function_funcdef_no);
11076 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11077
11078 add_pubname (decl, subr_die);
11079 add_arange (decl, subr_die);
11080
11081 #ifdef MIPS_DEBUGGING_INFO
11082 /* Add a reference to the FDE for this routine. */
11083 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11084 #endif
11085
11086 /* Define the "frame base" location for this routine. We use the
11087 frame pointer or stack pointer registers, since the RTL for local
11088 variables is relative to one of them. */
11089 if (frame_base_decl && lookup_decl_loc (frame_base_decl) != NULL)
11090 {
11091 add_location_or_const_value_attribute (subr_die, frame_base_decl,
11092 DW_AT_frame_base);
11093 }
11094 else
11095 {
11096 fp_reg
11097 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11098 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11099 }
11100
11101 #if 0
11102 /* ??? This fails for nested inline functions, because context_display
11103 is not part of the state saved/restored for inline functions. */
11104 if (current_function_needs_context)
11105 add_AT_location_description (subr_die, DW_AT_static_link,
11106 loc_descriptor (lookup_static_chain (decl)));
11107 #endif
11108 }
11109
11110 /* Now output descriptions of the arguments for this function. This gets
11111 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11112 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11113 `...' at the end of the formal parameter list. In order to find out if
11114 there was a trailing ellipsis or not, we must instead look at the type
11115 associated with the FUNCTION_DECL. This will be a node of type
11116 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11117 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11118 an ellipsis at the end. */
11119
11120 /* In the case where we are describing a mere function declaration, all we
11121 need to do here (and all we *can* do here) is to describe the *types* of
11122 its formal parameters. */
11123 if (debug_info_level <= DINFO_LEVEL_TERSE)
11124 ;
11125 else if (declaration)
11126 gen_formal_types_die (decl, subr_die);
11127 else
11128 {
11129 /* Generate DIEs to represent all known formal parameters. */
11130 tree arg_decls = DECL_ARGUMENTS (decl);
11131 tree parm;
11132
11133 /* When generating DIEs, generate the unspecified_parameters DIE
11134 instead if we come across the arg "__builtin_va_alist" */
11135 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11136 if (TREE_CODE (parm) == PARM_DECL)
11137 {
11138 if (DECL_NAME (parm)
11139 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11140 "__builtin_va_alist"))
11141 gen_unspecified_parameters_die (parm, subr_die);
11142 else
11143 gen_decl_die (parm, subr_die);
11144 }
11145
11146 /* Decide whether we need an unspecified_parameters DIE at the end.
11147 There are 2 more cases to do this for: 1) the ansi ... declaration -
11148 this is detectable when the end of the arg list is not a
11149 void_type_node 2) an unprototyped function declaration (not a
11150 definition). This just means that we have no info about the
11151 parameters at all. */
11152 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11153 if (fn_arg_types != NULL)
11154 {
11155 /* This is the prototyped case, check for.... */
11156 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11157 gen_unspecified_parameters_die (decl, subr_die);
11158 }
11159 else if (DECL_INITIAL (decl) == NULL_TREE)
11160 gen_unspecified_parameters_die (decl, subr_die);
11161 }
11162
11163 /* Output Dwarf info for all of the stuff within the body of the function
11164 (if it has one - it may be just a declaration). */
11165 outer_scope = DECL_INITIAL (decl);
11166
11167 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11168 a function. This BLOCK actually represents the outermost binding contour
11169 for the function, i.e. the contour in which the function's formal
11170 parameters and labels get declared. Curiously, it appears that the front
11171 end doesn't actually put the PARM_DECL nodes for the current function onto
11172 the BLOCK_VARS list for this outer scope, but are strung off of the
11173 DECL_ARGUMENTS list for the function instead.
11174
11175 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11176 the LABEL_DECL nodes for the function however, and we output DWARF info
11177 for those in decls_for_scope. Just within the `outer_scope' there will be
11178 a BLOCK node representing the function's outermost pair of curly braces,
11179 and any blocks used for the base and member initializers of a C++
11180 constructor function. */
11181 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11182 {
11183 current_function_has_inlines = 0;
11184 decls_for_scope (outer_scope, subr_die, 0);
11185
11186 #if 0 && defined (MIPS_DEBUGGING_INFO)
11187 if (current_function_has_inlines)
11188 {
11189 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11190 if (! comp_unit_has_inlines)
11191 {
11192 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11193 comp_unit_has_inlines = 1;
11194 }
11195 }
11196 #endif
11197 }
11198 }
11199
11200 /* Generate a DIE to represent a declared data object. */
11201
11202 static void
11203 gen_variable_die (tree decl, dw_die_ref context_die)
11204 {
11205 tree origin = decl_ultimate_origin (decl);
11206 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11207
11208 dw_die_ref old_die = lookup_decl_die (decl);
11209 int declaration = (DECL_EXTERNAL (decl)
11210 || class_or_namespace_scope_p (context_die));
11211
11212 if (origin != NULL)
11213 add_abstract_origin_attribute (var_die, origin);
11214
11215 /* Loop unrolling can create multiple blocks that refer to the same
11216 static variable, so we must test for the DW_AT_declaration flag.
11217
11218 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11219 copy decls and set the DECL_ABSTRACT flag on them instead of
11220 sharing them.
11221
11222 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11223 else if (old_die && TREE_STATIC (decl)
11224 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11225 {
11226 /* This is a definition of a C++ class level static. */
11227 add_AT_specification (var_die, old_die);
11228 if (DECL_NAME (decl))
11229 {
11230 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
11231
11232 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11233 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11234
11235 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11236 != (unsigned) DECL_SOURCE_LINE (decl))
11237
11238 add_AT_unsigned (var_die, DW_AT_decl_line,
11239 DECL_SOURCE_LINE (decl));
11240 }
11241 }
11242 else
11243 {
11244 add_name_and_src_coords_attributes (var_die, decl);
11245 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11246 TREE_THIS_VOLATILE (decl), context_die);
11247
11248 if (TREE_PUBLIC (decl))
11249 add_AT_flag (var_die, DW_AT_external, 1);
11250
11251 if (DECL_ARTIFICIAL (decl))
11252 add_AT_flag (var_die, DW_AT_artificial, 1);
11253
11254 if (TREE_PROTECTED (decl))
11255 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11256 else if (TREE_PRIVATE (decl))
11257 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11258 }
11259
11260 if (declaration)
11261 add_AT_flag (var_die, DW_AT_declaration, 1);
11262
11263 if (DECL_ABSTRACT (decl) || declaration)
11264 equate_decl_number_to_die (decl, var_die);
11265
11266 if (! declaration && ! DECL_ABSTRACT (decl))
11267 {
11268 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
11269 add_pubname (decl, var_die);
11270 }
11271 else
11272 tree_add_const_value_attribute (var_die, decl);
11273 }
11274
11275 /* Generate a DIE to represent a label identifier. */
11276
11277 static void
11278 gen_label_die (tree decl, dw_die_ref context_die)
11279 {
11280 tree origin = decl_ultimate_origin (decl);
11281 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11282 rtx insn;
11283 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11284
11285 if (origin != NULL)
11286 add_abstract_origin_attribute (lbl_die, origin);
11287 else
11288 add_name_and_src_coords_attributes (lbl_die, decl);
11289
11290 if (DECL_ABSTRACT (decl))
11291 equate_decl_number_to_die (decl, lbl_die);
11292 else
11293 {
11294 insn = DECL_RTL_IF_SET (decl);
11295
11296 /* Deleted labels are programmer specified labels which have been
11297 eliminated because of various optimizations. We still emit them
11298 here so that it is possible to put breakpoints on them. */
11299 if (insn
11300 && (GET_CODE (insn) == CODE_LABEL
11301 || ((GET_CODE (insn) == NOTE
11302 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11303 {
11304 /* When optimization is enabled (via -O) some parts of the compiler
11305 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11306 represent source-level labels which were explicitly declared by
11307 the user. This really shouldn't be happening though, so catch
11308 it if it ever does happen. */
11309 if (INSN_DELETED_P (insn))
11310 abort ();
11311
11312 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11313 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11314 }
11315 }
11316 }
11317
11318 /* Generate a DIE for a lexical block. */
11319
11320 static void
11321 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11322 {
11323 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11324 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11325
11326 if (! BLOCK_ABSTRACT (stmt))
11327 {
11328 if (BLOCK_FRAGMENT_CHAIN (stmt))
11329 {
11330 tree chain;
11331
11332 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11333
11334 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11335 do
11336 {
11337 add_ranges (chain);
11338 chain = BLOCK_FRAGMENT_CHAIN (chain);
11339 }
11340 while (chain);
11341 add_ranges (NULL);
11342 }
11343 else
11344 {
11345 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11346 BLOCK_NUMBER (stmt));
11347 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11348 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11349 BLOCK_NUMBER (stmt));
11350 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11351 }
11352 }
11353
11354 decls_for_scope (stmt, stmt_die, depth);
11355 }
11356
11357 /* Generate a DIE for an inlined subprogram. */
11358
11359 static void
11360 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11361 {
11362 tree decl = block_ultimate_origin (stmt);
11363
11364 /* Emit info for the abstract instance first, if we haven't yet. We
11365 must emit this even if the block is abstract, otherwise when we
11366 emit the block below (or elsewhere), we may end up trying to emit
11367 a die whose origin die hasn't been emitted, and crashing. */
11368 dwarf2out_abstract_function (decl);
11369
11370 if (! BLOCK_ABSTRACT (stmt))
11371 {
11372 dw_die_ref subr_die
11373 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11374 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11375
11376 add_abstract_origin_attribute (subr_die, decl);
11377 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11378 BLOCK_NUMBER (stmt));
11379 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11380 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11381 BLOCK_NUMBER (stmt));
11382 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11383 decls_for_scope (stmt, subr_die, depth);
11384 current_function_has_inlines = 1;
11385 }
11386 else
11387 /* We may get here if we're the outer block of function A that was
11388 inlined into function B that was inlined into function C. When
11389 generating debugging info for C, dwarf2out_abstract_function(B)
11390 would mark all inlined blocks as abstract, including this one.
11391 So, we wouldn't (and shouldn't) expect labels to be generated
11392 for this one. Instead, just emit debugging info for
11393 declarations within the block. This is particularly important
11394 in the case of initializers of arguments passed from B to us:
11395 if they're statement expressions containing declarations, we
11396 wouldn't generate dies for their abstract variables, and then,
11397 when generating dies for the real variables, we'd die (pun
11398 intended :-) */
11399 gen_lexical_block_die (stmt, context_die, depth);
11400 }
11401
11402 /* Generate a DIE for a field in a record, or structure. */
11403
11404 static void
11405 gen_field_die (tree decl, dw_die_ref context_die)
11406 {
11407 dw_die_ref decl_die;
11408
11409 if (TREE_TYPE (decl) == error_mark_node)
11410 return;
11411
11412 decl_die = new_die (DW_TAG_member, context_die, decl);
11413 add_name_and_src_coords_attributes (decl_die, decl);
11414 add_type_attribute (decl_die, member_declared_type (decl),
11415 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11416 context_die);
11417
11418 if (DECL_BIT_FIELD_TYPE (decl))
11419 {
11420 add_byte_size_attribute (decl_die, decl);
11421 add_bit_size_attribute (decl_die, decl);
11422 add_bit_offset_attribute (decl_die, decl);
11423 }
11424
11425 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11426 add_data_member_location_attribute (decl_die, decl);
11427
11428 if (DECL_ARTIFICIAL (decl))
11429 add_AT_flag (decl_die, DW_AT_artificial, 1);
11430
11431 if (TREE_PROTECTED (decl))
11432 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11433 else if (TREE_PRIVATE (decl))
11434 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11435 }
11436
11437 #if 0
11438 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11439 Use modified_type_die instead.
11440 We keep this code here just in case these types of DIEs may be needed to
11441 represent certain things in other languages (e.g. Pascal) someday. */
11442
11443 static void
11444 gen_pointer_type_die (tree type, dw_die_ref context_die)
11445 {
11446 dw_die_ref ptr_die
11447 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11448
11449 equate_type_number_to_die (type, ptr_die);
11450 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11451 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11452 }
11453
11454 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11455 Use modified_type_die instead.
11456 We keep this code here just in case these types of DIEs may be needed to
11457 represent certain things in other languages (e.g. Pascal) someday. */
11458
11459 static void
11460 gen_reference_type_die (tree type, dw_die_ref context_die)
11461 {
11462 dw_die_ref ref_die
11463 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11464
11465 equate_type_number_to_die (type, ref_die);
11466 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11467 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11468 }
11469 #endif
11470
11471 /* Generate a DIE for a pointer to a member type. */
11472
11473 static void
11474 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11475 {
11476 dw_die_ref ptr_die
11477 = new_die (DW_TAG_ptr_to_member_type,
11478 scope_die_for (type, context_die), type);
11479
11480 equate_type_number_to_die (type, ptr_die);
11481 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11482 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11483 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11484 }
11485
11486 /* Generate the DIE for the compilation unit. */
11487
11488 static dw_die_ref
11489 gen_compile_unit_die (const char *filename)
11490 {
11491 dw_die_ref die;
11492 char producer[250];
11493 const char *language_string = lang_hooks.name;
11494 int language;
11495
11496 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11497
11498 if (filename)
11499 {
11500 add_name_attribute (die, filename);
11501 /* Don't add cwd for <built-in>. */
11502 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11503 add_comp_dir_attribute (die);
11504 }
11505
11506 sprintf (producer, "%s %s", language_string, version_string);
11507
11508 #ifdef MIPS_DEBUGGING_INFO
11509 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11510 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11511 not appear in the producer string, the debugger reaches the conclusion
11512 that the object file is stripped and has no debugging information.
11513 To get the MIPS/SGI debugger to believe that there is debugging
11514 information in the object file, we add a -g to the producer string. */
11515 if (debug_info_level > DINFO_LEVEL_TERSE)
11516 strcat (producer, " -g");
11517 #endif
11518
11519 add_AT_string (die, DW_AT_producer, producer);
11520
11521 if (strcmp (language_string, "GNU C++") == 0)
11522 language = DW_LANG_C_plus_plus;
11523 else if (strcmp (language_string, "GNU Ada") == 0)
11524 language = DW_LANG_Ada95;
11525 else if (strcmp (language_string, "GNU F77") == 0)
11526 language = DW_LANG_Fortran77;
11527 else if (strcmp (language_string, "GNU Pascal") == 0)
11528 language = DW_LANG_Pascal83;
11529 else if (strcmp (language_string, "GNU Java") == 0)
11530 language = DW_LANG_Java;
11531 else
11532 language = DW_LANG_C89;
11533
11534 add_AT_unsigned (die, DW_AT_language, language);
11535 return die;
11536 }
11537
11538 /* Generate a DIE for a string type. */
11539
11540 static void
11541 gen_string_type_die (tree type, dw_die_ref context_die)
11542 {
11543 dw_die_ref type_die
11544 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11545
11546 equate_type_number_to_die (type, type_die);
11547
11548 /* ??? Fudge the string length attribute for now.
11549 TODO: add string length info. */
11550 #if 0
11551 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11552 bound_representation (upper_bound, 0, 'u');
11553 #endif
11554 }
11555
11556 /* Generate the DIE for a base class. */
11557
11558 static void
11559 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11560 {
11561 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11562
11563 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11564 add_data_member_location_attribute (die, binfo);
11565
11566 if (TREE_VIA_VIRTUAL (binfo))
11567 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11568
11569 if (access == access_public_node)
11570 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11571 else if (access == access_protected_node)
11572 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11573 }
11574
11575 /* Generate a DIE for a class member. */
11576
11577 static void
11578 gen_member_die (tree type, dw_die_ref context_die)
11579 {
11580 tree member;
11581 tree binfo = TYPE_BINFO (type);
11582 dw_die_ref child;
11583
11584 /* If this is not an incomplete type, output descriptions of each of its
11585 members. Note that as we output the DIEs necessary to represent the
11586 members of this record or union type, we will also be trying to output
11587 DIEs to represent the *types* of those members. However the `type'
11588 function (above) will specifically avoid generating type DIEs for member
11589 types *within* the list of member DIEs for this (containing) type except
11590 for those types (of members) which are explicitly marked as also being
11591 members of this (containing) type themselves. The g++ front- end can
11592 force any given type to be treated as a member of some other (containing)
11593 type by setting the TYPE_CONTEXT of the given (member) type to point to
11594 the TREE node representing the appropriate (containing) type. */
11595
11596 /* First output info about the base classes. */
11597 if (binfo && BINFO_BASETYPES (binfo))
11598 {
11599 tree bases = BINFO_BASETYPES (binfo);
11600 tree accesses = BINFO_BASEACCESSES (binfo);
11601 int n_bases = TREE_VEC_LENGTH (bases);
11602 int i;
11603
11604 for (i = 0; i < n_bases; i++)
11605 gen_inheritance_die (TREE_VEC_ELT (bases, i),
11606 (accesses ? TREE_VEC_ELT (accesses, i)
11607 : access_public_node), context_die);
11608 }
11609
11610 /* Now output info about the data members and type members. */
11611 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11612 {
11613 /* If we thought we were generating minimal debug info for TYPE
11614 and then changed our minds, some of the member declarations
11615 may have already been defined. Don't define them again, but
11616 do put them in the right order. */
11617
11618 child = lookup_decl_die (member);
11619 if (child)
11620 splice_child_die (context_die, child);
11621 else
11622 gen_decl_die (member, context_die);
11623 }
11624
11625 /* Now output info about the function members (if any). */
11626 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11627 {
11628 /* Don't include clones in the member list. */
11629 if (DECL_ABSTRACT_ORIGIN (member))
11630 continue;
11631
11632 child = lookup_decl_die (member);
11633 if (child)
11634 splice_child_die (context_die, child);
11635 else
11636 gen_decl_die (member, context_die);
11637 }
11638 }
11639
11640 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11641 is set, we pretend that the type was never defined, so we only get the
11642 member DIEs needed by later specification DIEs. */
11643
11644 static void
11645 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
11646 {
11647 dw_die_ref type_die = lookup_type_die (type);
11648 dw_die_ref scope_die = 0;
11649 int nested = 0;
11650 int complete = (TYPE_SIZE (type)
11651 && (! TYPE_STUB_DECL (type)
11652 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11653 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
11654
11655 if (type_die && ! complete)
11656 return;
11657
11658 if (TYPE_CONTEXT (type) != NULL_TREE
11659 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11660 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
11661 nested = 1;
11662
11663 scope_die = scope_die_for (type, context_die);
11664
11665 if (! type_die || (nested && scope_die == comp_unit_die))
11666 /* First occurrence of type or toplevel definition of nested class. */
11667 {
11668 dw_die_ref old_die = type_die;
11669
11670 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11671 ? DW_TAG_structure_type : DW_TAG_union_type,
11672 scope_die, type);
11673 equate_type_number_to_die (type, type_die);
11674 if (old_die)
11675 add_AT_specification (type_die, old_die);
11676 else
11677 add_name_attribute (type_die, type_tag (type));
11678 }
11679 else
11680 remove_AT (type_die, DW_AT_declaration);
11681
11682 /* If this type has been completed, then give it a byte_size attribute and
11683 then give a list of members. */
11684 if (complete && !ns_decl)
11685 {
11686 /* Prevent infinite recursion in cases where the type of some member of
11687 this type is expressed in terms of this type itself. */
11688 TREE_ASM_WRITTEN (type) = 1;
11689 add_byte_size_attribute (type_die, type);
11690 if (TYPE_STUB_DECL (type) != NULL_TREE)
11691 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11692
11693 /* If the first reference to this type was as the return type of an
11694 inline function, then it may not have a parent. Fix this now. */
11695 if (type_die->die_parent == NULL)
11696 add_child_die (scope_die, type_die);
11697
11698 push_decl_scope (type);
11699 gen_member_die (type, type_die);
11700 pop_decl_scope ();
11701
11702 /* GNU extension: Record what type our vtable lives in. */
11703 if (TYPE_VFIELD (type))
11704 {
11705 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11706
11707 gen_type_die (vtype, context_die);
11708 add_AT_die_ref (type_die, DW_AT_containing_type,
11709 lookup_type_die (vtype));
11710 }
11711 }
11712 else
11713 {
11714 add_AT_flag (type_die, DW_AT_declaration, 1);
11715
11716 /* We don't need to do this for function-local types. */
11717 if (TYPE_STUB_DECL (type)
11718 && ! decl_function_context (TYPE_STUB_DECL (type)))
11719 VARRAY_PUSH_TREE (incomplete_types, type);
11720 }
11721 }
11722
11723 /* Generate a DIE for a subroutine _type_. */
11724
11725 static void
11726 gen_subroutine_type_die (tree type, dw_die_ref context_die)
11727 {
11728 tree return_type = TREE_TYPE (type);
11729 dw_die_ref subr_die
11730 = new_die (DW_TAG_subroutine_type,
11731 scope_die_for (type, context_die), type);
11732
11733 equate_type_number_to_die (type, subr_die);
11734 add_prototyped_attribute (subr_die, type);
11735 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11736 gen_formal_types_die (type, subr_die);
11737 }
11738
11739 /* Generate a DIE for a type definition. */
11740
11741 static void
11742 gen_typedef_die (tree decl, dw_die_ref context_die)
11743 {
11744 dw_die_ref type_die;
11745 tree origin;
11746
11747 if (TREE_ASM_WRITTEN (decl))
11748 return;
11749
11750 TREE_ASM_WRITTEN (decl) = 1;
11751 type_die = new_die (DW_TAG_typedef, context_die, decl);
11752 origin = decl_ultimate_origin (decl);
11753 if (origin != NULL)
11754 add_abstract_origin_attribute (type_die, origin);
11755 else
11756 {
11757 tree type;
11758
11759 add_name_and_src_coords_attributes (type_die, decl);
11760 if (DECL_ORIGINAL_TYPE (decl))
11761 {
11762 type = DECL_ORIGINAL_TYPE (decl);
11763
11764 if (type == TREE_TYPE (decl))
11765 abort ();
11766 else
11767 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11768 }
11769 else
11770 type = TREE_TYPE (decl);
11771
11772 add_type_attribute (type_die, type, TREE_READONLY (decl),
11773 TREE_THIS_VOLATILE (decl), context_die);
11774 }
11775
11776 if (DECL_ABSTRACT (decl))
11777 equate_decl_number_to_die (decl, type_die);
11778 }
11779
11780 /* Generate a type description DIE. */
11781
11782 static void
11783 gen_type_die (tree type, dw_die_ref context_die)
11784 {
11785 int need_pop;
11786
11787 if (type == NULL_TREE || type == error_mark_node)
11788 return;
11789
11790 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11791 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11792 {
11793 if (TREE_ASM_WRITTEN (type))
11794 return;
11795
11796 /* Prevent broken recursion; we can't hand off to the same type. */
11797 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
11798 abort ();
11799
11800 TREE_ASM_WRITTEN (type) = 1;
11801 gen_decl_die (TYPE_NAME (type), context_die);
11802 return;
11803 }
11804
11805 /* We are going to output a DIE to represent the unqualified version
11806 of this type (i.e. without any const or volatile qualifiers) so
11807 get the main variant (i.e. the unqualified version) of this type
11808 now. (Vectors are special because the debugging info is in the
11809 cloned type itself). */
11810 if (TREE_CODE (type) != VECTOR_TYPE)
11811 type = type_main_variant (type);
11812
11813 if (TREE_ASM_WRITTEN (type))
11814 return;
11815
11816 switch (TREE_CODE (type))
11817 {
11818 case ERROR_MARK:
11819 break;
11820
11821 case POINTER_TYPE:
11822 case REFERENCE_TYPE:
11823 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11824 ensures that the gen_type_die recursion will terminate even if the
11825 type is recursive. Recursive types are possible in Ada. */
11826 /* ??? We could perhaps do this for all types before the switch
11827 statement. */
11828 TREE_ASM_WRITTEN (type) = 1;
11829
11830 /* For these types, all that is required is that we output a DIE (or a
11831 set of DIEs) to represent the "basis" type. */
11832 gen_type_die (TREE_TYPE (type), context_die);
11833 break;
11834
11835 case OFFSET_TYPE:
11836 /* This code is used for C++ pointer-to-data-member types.
11837 Output a description of the relevant class type. */
11838 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
11839
11840 /* Output a description of the type of the object pointed to. */
11841 gen_type_die (TREE_TYPE (type), context_die);
11842
11843 /* Now output a DIE to represent this pointer-to-data-member type
11844 itself. */
11845 gen_ptr_to_mbr_type_die (type, context_die);
11846 break;
11847
11848 case SET_TYPE:
11849 gen_type_die (TYPE_DOMAIN (type), context_die);
11850 gen_set_type_die (type, context_die);
11851 break;
11852
11853 case FILE_TYPE:
11854 gen_type_die (TREE_TYPE (type), context_die);
11855 abort (); /* No way to represent these in Dwarf yet! */
11856 break;
11857
11858 case FUNCTION_TYPE:
11859 /* Force out return type (in case it wasn't forced out already). */
11860 gen_type_die (TREE_TYPE (type), context_die);
11861 gen_subroutine_type_die (type, context_die);
11862 break;
11863
11864 case METHOD_TYPE:
11865 /* Force out return type (in case it wasn't forced out already). */
11866 gen_type_die (TREE_TYPE (type), context_die);
11867 gen_subroutine_type_die (type, context_die);
11868 break;
11869
11870 case ARRAY_TYPE:
11871 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11872 {
11873 gen_type_die (TREE_TYPE (type), context_die);
11874 gen_string_type_die (type, context_die);
11875 }
11876 else
11877 gen_array_type_die (type, context_die);
11878 break;
11879
11880 case VECTOR_TYPE:
11881 gen_array_type_die (type, context_die);
11882 break;
11883
11884 case ENUMERAL_TYPE:
11885 case RECORD_TYPE:
11886 case UNION_TYPE:
11887 case QUAL_UNION_TYPE:
11888 /* If this is a nested type whose containing class hasn't been written
11889 out yet, writing it out will cover this one, too. This does not apply
11890 to instantiations of member class templates; they need to be added to
11891 the containing class as they are generated. FIXME: This hurts the
11892 idea of combining type decls from multiple TUs, since we can't predict
11893 what set of template instantiations we'll get. */
11894 if (TYPE_CONTEXT (type)
11895 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11896 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
11897 {
11898 gen_type_die (TYPE_CONTEXT (type), context_die);
11899
11900 if (TREE_ASM_WRITTEN (type))
11901 return;
11902
11903 /* If that failed, attach ourselves to the stub. */
11904 push_decl_scope (TYPE_CONTEXT (type));
11905 context_die = lookup_type_die (TYPE_CONTEXT (type));
11906 need_pop = 1;
11907 }
11908 else
11909 {
11910 declare_in_namespace (type, context_die);
11911 need_pop = 0;
11912 }
11913
11914 if (TREE_CODE (type) == ENUMERAL_TYPE)
11915 gen_enumeration_type_die (type, context_die);
11916 else
11917 gen_struct_or_union_type_die (type, context_die);
11918
11919 if (need_pop)
11920 pop_decl_scope ();
11921
11922 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11923 it up if it is ever completed. gen_*_type_die will set it for us
11924 when appropriate. */
11925 return;
11926
11927 case VOID_TYPE:
11928 case INTEGER_TYPE:
11929 case REAL_TYPE:
11930 case COMPLEX_TYPE:
11931 case BOOLEAN_TYPE:
11932 case CHAR_TYPE:
11933 /* No DIEs needed for fundamental types. */
11934 break;
11935
11936 case LANG_TYPE:
11937 /* No Dwarf representation currently defined. */
11938 break;
11939
11940 default:
11941 abort ();
11942 }
11943
11944 TREE_ASM_WRITTEN (type) = 1;
11945 }
11946
11947 /* Generate a DIE for a tagged type instantiation. */
11948
11949 static void
11950 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
11951 {
11952 if (type == NULL_TREE || type == error_mark_node)
11953 return;
11954
11955 /* We are going to output a DIE to represent the unqualified version of
11956 this type (i.e. without any const or volatile qualifiers) so make sure
11957 that we have the main variant (i.e. the unqualified version) of this
11958 type now. */
11959 if (type != type_main_variant (type))
11960 abort ();
11961
11962 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11963 an instance of an unresolved type. */
11964
11965 switch (TREE_CODE (type))
11966 {
11967 case ERROR_MARK:
11968 break;
11969
11970 case ENUMERAL_TYPE:
11971 gen_inlined_enumeration_type_die (type, context_die);
11972 break;
11973
11974 case RECORD_TYPE:
11975 gen_inlined_structure_type_die (type, context_die);
11976 break;
11977
11978 case UNION_TYPE:
11979 case QUAL_UNION_TYPE:
11980 gen_inlined_union_type_die (type, context_die);
11981 break;
11982
11983 default:
11984 abort ();
11985 }
11986 }
11987
11988 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11989 things which are local to the given block. */
11990
11991 static void
11992 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
11993 {
11994 int must_output_die = 0;
11995 tree origin;
11996 tree decl;
11997 enum tree_code origin_code;
11998
11999 /* Ignore blocks never really used to make RTL. */
12000 if (stmt == NULL_TREE || !TREE_USED (stmt)
12001 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
12002 return;
12003
12004 /* If the block is one fragment of a non-contiguous block, do not
12005 process the variables, since they will have been done by the
12006 origin block. Do process subblocks. */
12007 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12008 {
12009 tree sub;
12010
12011 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12012 gen_block_die (sub, context_die, depth + 1);
12013
12014 return;
12015 }
12016
12017 /* Determine the "ultimate origin" of this block. This block may be an
12018 inlined instance of an inlined instance of inline function, so we have
12019 to trace all of the way back through the origin chain to find out what
12020 sort of node actually served as the original seed for the creation of
12021 the current block. */
12022 origin = block_ultimate_origin (stmt);
12023 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12024
12025 /* Determine if we need to output any Dwarf DIEs at all to represent this
12026 block. */
12027 if (origin_code == FUNCTION_DECL)
12028 /* The outer scopes for inlinings *must* always be represented. We
12029 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12030 must_output_die = 1;
12031 else
12032 {
12033 /* In the case where the current block represents an inlining of the
12034 "body block" of an inline function, we must *NOT* output any DIE for
12035 this block because we have already output a DIE to represent the whole
12036 inlined function scope and the "body block" of any function doesn't
12037 really represent a different scope according to ANSI C rules. So we
12038 check here to make sure that this block does not represent a "body
12039 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12040 if (! is_body_block (origin ? origin : stmt))
12041 {
12042 /* Determine if this block directly contains any "significant"
12043 local declarations which we will need to output DIEs for. */
12044 if (debug_info_level > DINFO_LEVEL_TERSE)
12045 /* We are not in terse mode so *any* local declaration counts
12046 as being a "significant" one. */
12047 must_output_die = (BLOCK_VARS (stmt) != NULL);
12048 else
12049 /* We are in terse mode, so only local (nested) function
12050 definitions count as "significant" local declarations. */
12051 for (decl = BLOCK_VARS (stmt);
12052 decl != NULL; decl = TREE_CHAIN (decl))
12053 if (TREE_CODE (decl) == FUNCTION_DECL
12054 && DECL_INITIAL (decl))
12055 {
12056 must_output_die = 1;
12057 break;
12058 }
12059 }
12060 }
12061
12062 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12063 DIE for any block which contains no significant local declarations at
12064 all. Rather, in such cases we just call `decls_for_scope' so that any
12065 needed Dwarf info for any sub-blocks will get properly generated. Note
12066 that in terse mode, our definition of what constitutes a "significant"
12067 local declaration gets restricted to include only inlined function
12068 instances and local (nested) function definitions. */
12069 if (must_output_die)
12070 {
12071 if (origin_code == FUNCTION_DECL)
12072 gen_inlined_subroutine_die (stmt, context_die, depth);
12073 else
12074 gen_lexical_block_die (stmt, context_die, depth);
12075 }
12076 else
12077 decls_for_scope (stmt, context_die, depth);
12078 }
12079
12080 /* Generate all of the decls declared within a given scope and (recursively)
12081 all of its sub-blocks. */
12082
12083 static void
12084 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12085 {
12086 tree decl;
12087 tree subblocks;
12088
12089 /* Ignore blocks never really used to make RTL. */
12090 if (stmt == NULL_TREE || ! TREE_USED (stmt))
12091 return;
12092
12093 /* Output the DIEs to represent all of the data objects and typedefs
12094 declared directly within this block but not within any nested
12095 sub-blocks. Also, nested function and tag DIEs have been
12096 generated with a parent of NULL; fix that up now. */
12097 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12098 {
12099 dw_die_ref die;
12100
12101 if (TREE_CODE (decl) == FUNCTION_DECL)
12102 die = lookup_decl_die (decl);
12103 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12104 die = lookup_type_die (TREE_TYPE (decl));
12105 else
12106 die = NULL;
12107
12108 if (die != NULL && die->die_parent == NULL)
12109 add_child_die (context_die, die);
12110 else
12111 gen_decl_die (decl, context_die);
12112 }
12113
12114 /* If we're at -g1, we're not interested in subblocks. */
12115 if (debug_info_level <= DINFO_LEVEL_TERSE)
12116 return;
12117
12118 /* Output the DIEs to represent all sub-blocks (and the items declared
12119 therein) of this block. */
12120 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12121 subblocks != NULL;
12122 subblocks = BLOCK_CHAIN (subblocks))
12123 gen_block_die (subblocks, context_die, depth + 1);
12124 }
12125
12126 /* Is this a typedef we can avoid emitting? */
12127
12128 static inline int
12129 is_redundant_typedef (tree decl)
12130 {
12131 if (TYPE_DECL_IS_STUB (decl))
12132 return 1;
12133
12134 if (DECL_ARTIFICIAL (decl)
12135 && DECL_CONTEXT (decl)
12136 && is_tagged_type (DECL_CONTEXT (decl))
12137 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12138 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12139 /* Also ignore the artificial member typedef for the class name. */
12140 return 1;
12141
12142 return 0;
12143 }
12144
12145 /* Returns the DIE for decl or aborts. */
12146
12147 static dw_die_ref
12148 force_decl_die (tree decl)
12149 {
12150 dw_die_ref decl_die;
12151 unsigned saved_external_flag;
12152 tree save_fn = NULL_TREE;
12153 decl_die = lookup_decl_die (decl);
12154 if (!decl_die)
12155 {
12156 dw_die_ref context_die;
12157 tree decl_context = DECL_CONTEXT (decl);
12158 if (decl_context)
12159 {
12160 /* Find die that represents this context. */
12161 if (TYPE_P (decl_context))
12162 context_die = force_type_die (decl_context);
12163 else
12164 context_die = force_decl_die (decl_context);
12165 }
12166 else
12167 context_die = comp_unit_die;
12168
12169 switch (TREE_CODE (decl))
12170 {
12171 case FUNCTION_DECL:
12172 /* Clear current_function_decl, so that gen_subprogram_die thinks
12173 that this is a declaration. At this point, we just want to force
12174 declaration die. */
12175 save_fn = current_function_decl;
12176 current_function_decl = NULL_TREE;
12177 gen_subprogram_die (decl, context_die);
12178 current_function_decl = save_fn;
12179 break;
12180
12181 case VAR_DECL:
12182 /* Set external flag to force declaration die. Restore it after
12183 gen_decl_die() call. */
12184 saved_external_flag = DECL_EXTERNAL (decl);
12185 DECL_EXTERNAL (decl) = 1;
12186 gen_decl_die (decl, context_die);
12187 DECL_EXTERNAL (decl) = saved_external_flag;
12188 break;
12189
12190 case NAMESPACE_DECL:
12191 dwarf2out_decl (decl);
12192 break;
12193
12194 default:
12195 abort ();
12196 }
12197
12198 /* See if we can find the die for this deci now.
12199 If not then abort. */
12200 if (!decl_die)
12201 decl_die = lookup_decl_die (decl);
12202 if (!decl_die)
12203 abort ();
12204 }
12205
12206 return decl_die;
12207 }
12208
12209 /* Returns the DIE for decl or aborts. */
12210
12211 static dw_die_ref
12212 force_type_die (tree type)
12213 {
12214 dw_die_ref type_die;
12215
12216 type_die = lookup_type_die (type);
12217 if (!type_die)
12218 {
12219 dw_die_ref context_die;
12220 if (TYPE_CONTEXT (type))
12221 if (TYPE_P (TYPE_CONTEXT (type)))
12222 context_die = force_type_die (TYPE_CONTEXT (type));
12223 else
12224 context_die = force_decl_die (TYPE_CONTEXT (type));
12225 else
12226 context_die = comp_unit_die;
12227
12228 gen_type_die (type, context_die);
12229 type_die = lookup_type_die (type);
12230 if (!type_die)
12231 abort();
12232 }
12233 return type_die;
12234 }
12235
12236 /* Force out any required namespaces to be able to output DECL,
12237 and return the new context_die for it, if it's changed. */
12238
12239 static dw_die_ref
12240 setup_namespace_context (tree thing, dw_die_ref context_die)
12241 {
12242 tree context = DECL_P (thing) ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing);
12243 if (context && TREE_CODE (context) == NAMESPACE_DECL)
12244 /* Force out the namespace. */
12245 context_die = force_decl_die (context);
12246
12247 return context_die;
12248 }
12249
12250 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12251 type) within its namespace, if appropriate.
12252
12253 For compatibility with older debuggers, namespace DIEs only contain
12254 declarations; all definitions are emitted at CU scope. */
12255
12256 static void
12257 declare_in_namespace (tree thing, dw_die_ref context_die)
12258 {
12259 dw_die_ref ns_context;
12260
12261 if (debug_info_level <= DINFO_LEVEL_TERSE)
12262 return;
12263
12264 ns_context = setup_namespace_context (thing, context_die);
12265
12266 if (ns_context != context_die)
12267 {
12268 if (DECL_P (thing))
12269 gen_decl_die (thing, ns_context);
12270 else
12271 gen_type_die (thing, ns_context);
12272 }
12273 }
12274
12275 /* Generate a DIE for a namespace or namespace alias. */
12276
12277 static void
12278 gen_namespace_die (tree decl)
12279 {
12280 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12281
12282 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12283 they are an alias of. */
12284 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12285 {
12286 /* Output a real namespace. */
12287 dw_die_ref namespace_die
12288 = new_die (DW_TAG_namespace, context_die, decl);
12289 add_name_and_src_coords_attributes (namespace_die, decl);
12290 equate_decl_number_to_die (decl, namespace_die);
12291 }
12292 else
12293 {
12294 /* Output a namespace alias. */
12295
12296 /* Force out the namespace we are an alias of, if necessary. */
12297 dw_die_ref origin_die
12298 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
12299
12300 /* Now create the namespace alias DIE. */
12301 dw_die_ref namespace_die
12302 = new_die (DW_TAG_imported_declaration, context_die, decl);
12303 add_name_and_src_coords_attributes (namespace_die, decl);
12304 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12305 equate_decl_number_to_die (decl, namespace_die);
12306 }
12307 }
12308
12309 /* Generate Dwarf debug information for a decl described by DECL. */
12310
12311 static void
12312 gen_decl_die (tree decl, dw_die_ref context_die)
12313 {
12314 tree origin;
12315
12316 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12317 return;
12318
12319 switch (TREE_CODE (decl))
12320 {
12321 case ERROR_MARK:
12322 break;
12323
12324 case CONST_DECL:
12325 /* The individual enumerators of an enum type get output when we output
12326 the Dwarf representation of the relevant enum type itself. */
12327 break;
12328
12329 case FUNCTION_DECL:
12330 /* Don't output any DIEs to represent mere function declarations,
12331 unless they are class members or explicit block externs. */
12332 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12333 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12334 break;
12335
12336 /* If we're emitting a clone, emit info for the abstract instance. */
12337 if (DECL_ORIGIN (decl) != decl)
12338 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12339
12340 /* If we're emitting an out-of-line copy of an inline function,
12341 emit info for the abstract instance and set up to refer to it. */
12342 else if (cgraph_function_possibly_inlined_p (decl)
12343 && ! DECL_ABSTRACT (decl)
12344 && ! class_or_namespace_scope_p (context_die)
12345 /* dwarf2out_abstract_function won't emit a die if this is just
12346 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12347 that case, because that works only if we have a die. */
12348 && DECL_INITIAL (decl) != NULL_TREE)
12349 {
12350 dwarf2out_abstract_function (decl);
12351 set_decl_origin_self (decl);
12352 }
12353
12354 /* Otherwise we're emitting the primary DIE for this decl. */
12355 else if (debug_info_level > DINFO_LEVEL_TERSE)
12356 {
12357 /* Before we describe the FUNCTION_DECL itself, make sure that we
12358 have described its return type. */
12359 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12360
12361 /* And its virtual context. */
12362 if (DECL_VINDEX (decl) != NULL_TREE)
12363 gen_type_die (DECL_CONTEXT (decl), context_die);
12364
12365 /* And its containing type. */
12366 origin = decl_class_context (decl);
12367 if (origin != NULL_TREE)
12368 gen_type_die_for_member (origin, decl, context_die);
12369
12370 /* And its containing namespace. */
12371 declare_in_namespace (decl, context_die);
12372 }
12373
12374 /* Now output a DIE to represent the function itself. */
12375 gen_subprogram_die (decl, context_die);
12376 break;
12377
12378 case TYPE_DECL:
12379 /* If we are in terse mode, don't generate any DIEs to represent any
12380 actual typedefs. */
12381 if (debug_info_level <= DINFO_LEVEL_TERSE)
12382 break;
12383
12384 /* In the special case of a TYPE_DECL node representing the declaration
12385 of some type tag, if the given TYPE_DECL is marked as having been
12386 instantiated from some other (original) TYPE_DECL node (e.g. one which
12387 was generated within the original definition of an inline function) we
12388 have to generate a special (abbreviated) DW_TAG_structure_type,
12389 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12390 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12391 {
12392 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12393 break;
12394 }
12395
12396 if (is_redundant_typedef (decl))
12397 gen_type_die (TREE_TYPE (decl), context_die);
12398 else
12399 /* Output a DIE to represent the typedef itself. */
12400 gen_typedef_die (decl, context_die);
12401 break;
12402
12403 case LABEL_DECL:
12404 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12405 gen_label_die (decl, context_die);
12406 break;
12407
12408 case VAR_DECL:
12409 /* If we are in terse mode, don't generate any DIEs to represent any
12410 variable declarations or definitions. */
12411 if (debug_info_level <= DINFO_LEVEL_TERSE)
12412 break;
12413
12414 /* Output any DIEs that are needed to specify the type of this data
12415 object. */
12416 gen_type_die (TREE_TYPE (decl), context_die);
12417
12418 /* And its containing type. */
12419 origin = decl_class_context (decl);
12420 if (origin != NULL_TREE)
12421 gen_type_die_for_member (origin, decl, context_die);
12422
12423 /* And its containing namespace. */
12424 declare_in_namespace (decl, context_die);
12425
12426 /* Now output the DIE to represent the data object itself. This gets
12427 complicated because of the possibility that the VAR_DECL really
12428 represents an inlined instance of a formal parameter for an inline
12429 function. */
12430 origin = decl_ultimate_origin (decl);
12431 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12432 gen_formal_parameter_die (decl, context_die);
12433 else
12434 gen_variable_die (decl, context_die);
12435 break;
12436
12437 case FIELD_DECL:
12438 /* Ignore the nameless fields that are used to skip bits but handle C++
12439 anonymous unions and structs. */
12440 if (DECL_NAME (decl) != NULL_TREE
12441 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
12442 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
12443 {
12444 gen_type_die (member_declared_type (decl), context_die);
12445 gen_field_die (decl, context_die);
12446 }
12447 break;
12448
12449 case PARM_DECL:
12450 gen_type_die (TREE_TYPE (decl), context_die);
12451 gen_formal_parameter_die (decl, context_die);
12452 break;
12453
12454 case NAMESPACE_DECL:
12455 gen_namespace_die (decl);
12456 break;
12457
12458 default:
12459 if ((int)TREE_CODE (decl) > NUM_TREE_CODES)
12460 /* Probably some frontend-internal decl. Assume we don't care. */
12461 break;
12462 abort ();
12463 }
12464 }
12465 \f
12466 /* Add Ada "use" clause information for SGI Workshop debugger. */
12467
12468 void
12469 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
12470 {
12471 unsigned int file_index;
12472
12473 if (filename != NULL)
12474 {
12475 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12476 tree context_list_decl
12477 = build_decl (LABEL_DECL, get_identifier (context_list),
12478 void_type_node);
12479
12480 TREE_PUBLIC (context_list_decl) = TRUE;
12481 add_name_attribute (unit_die, context_list);
12482 file_index = lookup_filename (filename);
12483 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12484 add_pubname (context_list_decl, unit_die);
12485 }
12486 }
12487
12488 /* Output debug information for global decl DECL. Called from toplev.c after
12489 compilation proper has finished. */
12490
12491 static void
12492 dwarf2out_global_decl (tree decl)
12493 {
12494 /* Output DWARF2 information for file-scope tentative data object
12495 declarations, file-scope (extern) function declarations (which had no
12496 corresponding body) and file-scope tagged type declarations and
12497 definitions which have not yet been forced out. */
12498 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12499 dwarf2out_decl (decl);
12500 }
12501
12502 /* Output debug information for type decl DECL. Called from toplev.c
12503 and from language front ends (to record built-in types). */
12504 static void
12505 dwarf2out_type_decl (tree decl, int local)
12506 {
12507 if (!local)
12508 dwarf2out_decl (decl);
12509 }
12510
12511 /* Output debug information for imported module or decl. */
12512
12513 static void
12514 dwarf2out_imported_module_or_decl (tree decl, tree context)
12515 {
12516 dw_die_ref imported_die, at_import_die;
12517 dw_die_ref scope_die;
12518 unsigned file_index;
12519
12520 if (debug_info_level <= DINFO_LEVEL_TERSE)
12521 return;
12522
12523 if (!decl)
12524 abort ();
12525
12526 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
12527 We need decl DIE for reference and scope die. First, get DIE for the decl
12528 itself. */
12529
12530 /* Get the scope die for decl context. Use comp_unit_die for global module
12531 or decl. If die is not found for non globals, force new die. */
12532 if (!context)
12533 scope_die = comp_unit_die;
12534 else if (TYPE_P (context))
12535 scope_die = force_type_die (context);
12536 else
12537 scope_die = force_decl_die (context);
12538
12539 /* For TYPE_DECL, lookup TREE_TYPE. */
12540 if (TREE_CODE (decl) == TYPE_DECL)
12541 at_import_die = force_type_die (TREE_TYPE (decl));
12542 else
12543 at_import_die = force_decl_die (decl);
12544
12545 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
12546 if (TREE_CODE (decl) == NAMESPACE_DECL)
12547 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
12548 else
12549 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
12550
12551 file_index = lookup_filename (input_filename);
12552 add_AT_unsigned (imported_die, DW_AT_decl_file, file_index);
12553 add_AT_unsigned (imported_die, DW_AT_decl_line, input_line);
12554 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
12555 }
12556
12557 /* Write the debugging output for DECL. */
12558
12559 void
12560 dwarf2out_decl (tree decl)
12561 {
12562 dw_die_ref context_die = comp_unit_die;
12563
12564 switch (TREE_CODE (decl))
12565 {
12566 case ERROR_MARK:
12567 return;
12568
12569 case FUNCTION_DECL:
12570 /* What we would really like to do here is to filter out all mere
12571 file-scope declarations of file-scope functions which are never
12572 referenced later within this translation unit (and keep all of ones
12573 that *are* referenced later on) but we aren't clairvoyant, so we have
12574 no idea which functions will be referenced in the future (i.e. later
12575 on within the current translation unit). So here we just ignore all
12576 file-scope function declarations which are not also definitions. If
12577 and when the debugger needs to know something about these functions,
12578 it will have to hunt around and find the DWARF information associated
12579 with the definition of the function.
12580
12581 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12582 nodes represent definitions and which ones represent mere
12583 declarations. We have to check DECL_INITIAL instead. That's because
12584 the C front-end supports some weird semantics for "extern inline"
12585 function definitions. These can get inlined within the current
12586 translation unit (an thus, we need to generate Dwarf info for their
12587 abstract instances so that the Dwarf info for the concrete inlined
12588 instances can have something to refer to) but the compiler never
12589 generates any out-of-lines instances of such things (despite the fact
12590 that they *are* definitions).
12591
12592 The important point is that the C front-end marks these "extern
12593 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12594 them anyway. Note that the C++ front-end also plays some similar games
12595 for inline function definitions appearing within include files which
12596 also contain `#pragma interface' pragmas. */
12597 if (DECL_INITIAL (decl) == NULL_TREE)
12598 return;
12599
12600 /* If we're a nested function, initially use a parent of NULL; if we're
12601 a plain function, this will be fixed up in decls_for_scope. If
12602 we're a method, it will be ignored, since we already have a DIE. */
12603 if (decl_function_context (decl)
12604 /* But if we're in terse mode, we don't care about scope. */
12605 && debug_info_level > DINFO_LEVEL_TERSE)
12606 context_die = NULL;
12607 break;
12608
12609 case VAR_DECL:
12610 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12611 declaration and if the declaration was never even referenced from
12612 within this entire compilation unit. We suppress these DIEs in
12613 order to save space in the .debug section (by eliminating entries
12614 which are probably useless). Note that we must not suppress
12615 block-local extern declarations (whether used or not) because that
12616 would screw-up the debugger's name lookup mechanism and cause it to
12617 miss things which really ought to be in scope at a given point. */
12618 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12619 return;
12620
12621 /* If we are in terse mode, don't generate any DIEs to represent any
12622 variable declarations or definitions. */
12623 if (debug_info_level <= DINFO_LEVEL_TERSE)
12624 return;
12625 break;
12626
12627 case NAMESPACE_DECL:
12628 if (debug_info_level <= DINFO_LEVEL_TERSE)
12629 return;
12630 if (lookup_decl_die (decl) != NULL)
12631 return;
12632 break;
12633
12634 case TYPE_DECL:
12635 /* Don't emit stubs for types unless they are needed by other DIEs. */
12636 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12637 return;
12638
12639 /* Don't bother trying to generate any DIEs to represent any of the
12640 normal built-in types for the language we are compiling. */
12641 if (DECL_SOURCE_LINE (decl) == 0)
12642 {
12643 /* OK, we need to generate one for `bool' so GDB knows what type
12644 comparisons have. */
12645 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12646 == DW_LANG_C_plus_plus)
12647 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12648 && ! DECL_IGNORED_P (decl))
12649 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12650
12651 return;
12652 }
12653
12654 /* If we are in terse mode, don't generate any DIEs for types. */
12655 if (debug_info_level <= DINFO_LEVEL_TERSE)
12656 return;
12657
12658 /* If we're a function-scope tag, initially use a parent of NULL;
12659 this will be fixed up in decls_for_scope. */
12660 if (decl_function_context (decl))
12661 context_die = NULL;
12662
12663 break;
12664
12665 default:
12666 return;
12667 }
12668
12669 gen_decl_die (decl, context_die);
12670 }
12671
12672 /* Output a marker (i.e. a label) for the beginning of the generated code for
12673 a lexical block. */
12674
12675 static void
12676 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
12677 unsigned int blocknum)
12678 {
12679 function_section (current_function_decl);
12680 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12681 }
12682
12683 /* Output a marker (i.e. a label) for the end of the generated code for a
12684 lexical block. */
12685
12686 static void
12687 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
12688 {
12689 function_section (current_function_decl);
12690 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12691 }
12692
12693 /* Returns nonzero if it is appropriate not to emit any debugging
12694 information for BLOCK, because it doesn't contain any instructions.
12695
12696 Don't allow this for blocks with nested functions or local classes
12697 as we would end up with orphans, and in the presence of scheduling
12698 we may end up calling them anyway. */
12699
12700 static bool
12701 dwarf2out_ignore_block (tree block)
12702 {
12703 tree decl;
12704
12705 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12706 if (TREE_CODE (decl) == FUNCTION_DECL
12707 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12708 return 0;
12709
12710 return 1;
12711 }
12712
12713 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12714 dwarf2out.c) and return its "index". The index of each (known) filename is
12715 just a unique number which is associated with only that one filename. We
12716 need such numbers for the sake of generating labels (in the .debug_sfnames
12717 section) and references to those files numbers (in the .debug_srcinfo
12718 and.debug_macinfo sections). If the filename given as an argument is not
12719 found in our current list, add it to the list and assign it the next
12720 available unique index number. In order to speed up searches, we remember
12721 the index of the filename was looked up last. This handles the majority of
12722 all searches. */
12723
12724 static unsigned
12725 lookup_filename (const char *file_name)
12726 {
12727 size_t i, n;
12728 char *save_file_name;
12729
12730 /* Check to see if the file name that was searched on the previous
12731 call matches this file name. If so, return the index. */
12732 if (file_table_last_lookup_index != 0)
12733 {
12734 const char *last
12735 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12736 if (strcmp (file_name, last) == 0)
12737 return file_table_last_lookup_index;
12738 }
12739
12740 /* Didn't match the previous lookup, search the table */
12741 n = VARRAY_ACTIVE_SIZE (file_table);
12742 for (i = 1; i < n; i++)
12743 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12744 {
12745 file_table_last_lookup_index = i;
12746 return i;
12747 }
12748
12749 /* Add the new entry to the end of the filename table. */
12750 file_table_last_lookup_index = n;
12751 save_file_name = (char *) ggc_strdup (file_name);
12752 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12753 VARRAY_PUSH_UINT (file_table_emitted, 0);
12754
12755 return i;
12756 }
12757
12758 static int
12759 maybe_emit_file (int fileno)
12760 {
12761 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12762 {
12763 if (!VARRAY_UINT (file_table_emitted, fileno))
12764 {
12765 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12766 fprintf (asm_out_file, "\t.file %u ",
12767 VARRAY_UINT (file_table_emitted, fileno));
12768 output_quoted_string (asm_out_file,
12769 VARRAY_CHAR_PTR (file_table, fileno));
12770 fputc ('\n', asm_out_file);
12771 }
12772 return VARRAY_UINT (file_table_emitted, fileno);
12773 }
12774 else
12775 return fileno;
12776 }
12777
12778 static void
12779 init_file_table (void)
12780 {
12781 /* Allocate the initial hunk of the file_table. */
12782 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
12783 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
12784
12785 /* Skip the first entry - file numbers begin at 1. */
12786 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
12787 VARRAY_PUSH_UINT (file_table_emitted, 0);
12788 file_table_last_lookup_index = 0;
12789 }
12790
12791 /* Called by the final INSN scan whenever we see a var location. We
12792 use it to drop labels in the right places, and throw the location in
12793 our lookup table. */
12794
12795 static void
12796 dwarf2out_var_location (rtx loc_note)
12797 {
12798 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
12799 struct var_loc_node *newloc;
12800 rtx prev_insn;
12801 static rtx last_insn;
12802 static const char *last_label;
12803
12804 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
12805 return;
12806 prev_insn = PREV_INSN (loc_note);
12807
12808 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
12809 /* If the insn we processed last time is the previous insn
12810 and it is also a var location note, use the label we emitted
12811 last time. */
12812 if (last_insn != NULL_RTX
12813 && last_insn == prev_insn
12814 && GET_CODE (prev_insn) == NOTE
12815 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
12816 {
12817 newloc->label = last_label;
12818 }
12819 else
12820 {
12821 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
12822 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
12823 loclabel_num++;
12824 newloc->label = ggc_strdup (loclabel);
12825 }
12826 newloc->var_loc_note = loc_note;
12827 newloc->next = NULL;
12828
12829 last_insn = loc_note;
12830 last_label = newloc->label;
12831
12832 add_var_loc_to_decl (NOTE_VAR_LOCATION_DECL (loc_note), newloc);
12833 }
12834
12835 /* We need to reset the locations at the beginning of each
12836 function. We can't do this in the end_function hook, because the
12837 declarations that use the locations won't have been outputted when
12838 that hook is called. */
12839
12840 static void
12841 dwarf2out_begin_function (tree unused ATTRIBUTE_UNUSED)
12842 {
12843 htab_empty (decl_loc_table);
12844 }
12845
12846 /* Output a label to mark the beginning of a source code line entry
12847 and record information relating to this source line, in
12848 'line_info_table' for later output of the .debug_line section. */
12849
12850 static void
12851 dwarf2out_source_line (unsigned int line, const char *filename)
12852 {
12853 if (debug_info_level >= DINFO_LEVEL_NORMAL
12854 && line != 0)
12855 {
12856 function_section (current_function_decl);
12857
12858 /* If requested, emit something human-readable. */
12859 if (flag_debug_asm)
12860 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
12861 filename, line);
12862
12863 if (DWARF2_ASM_LINE_DEBUG_INFO)
12864 {
12865 unsigned file_num = lookup_filename (filename);
12866
12867 file_num = maybe_emit_file (file_num);
12868
12869 /* Emit the .loc directive understood by GNU as. */
12870 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
12871
12872 /* Indicate that line number info exists. */
12873 line_info_table_in_use++;
12874
12875 /* Indicate that multiple line number tables exist. */
12876 if (DECL_SECTION_NAME (current_function_decl))
12877 separate_line_info_table_in_use++;
12878 }
12879 else if (DECL_SECTION_NAME (current_function_decl))
12880 {
12881 dw_separate_line_info_ref line_info;
12882 (*targetm.asm_out.internal_label) (asm_out_file, SEPARATE_LINE_CODE_LABEL,
12883 separate_line_info_table_in_use);
12884
12885 /* Expand the line info table if necessary. */
12886 if (separate_line_info_table_in_use
12887 == separate_line_info_table_allocated)
12888 {
12889 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12890 separate_line_info_table
12891 = ggc_realloc (separate_line_info_table,
12892 separate_line_info_table_allocated
12893 * sizeof (dw_separate_line_info_entry));
12894 memset (separate_line_info_table
12895 + separate_line_info_table_in_use,
12896 0,
12897 (LINE_INFO_TABLE_INCREMENT
12898 * sizeof (dw_separate_line_info_entry)));
12899 }
12900
12901 /* Add the new entry at the end of the line_info_table. */
12902 line_info
12903 = &separate_line_info_table[separate_line_info_table_in_use++];
12904 line_info->dw_file_num = lookup_filename (filename);
12905 line_info->dw_line_num = line;
12906 line_info->function = current_function_funcdef_no;
12907 }
12908 else
12909 {
12910 dw_line_info_ref line_info;
12911
12912 (*targetm.asm_out.internal_label) (asm_out_file, LINE_CODE_LABEL,
12913 line_info_table_in_use);
12914
12915 /* Expand the line info table if necessary. */
12916 if (line_info_table_in_use == line_info_table_allocated)
12917 {
12918 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12919 line_info_table
12920 = ggc_realloc (line_info_table,
12921 (line_info_table_allocated
12922 * sizeof (dw_line_info_entry)));
12923 memset (line_info_table + line_info_table_in_use, 0,
12924 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
12925 }
12926
12927 /* Add the new entry at the end of the line_info_table. */
12928 line_info = &line_info_table[line_info_table_in_use++];
12929 line_info->dw_file_num = lookup_filename (filename);
12930 line_info->dw_line_num = line;
12931 }
12932 }
12933 }
12934
12935 /* Record the beginning of a new source file. */
12936
12937 static void
12938 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
12939 {
12940 if (flag_eliminate_dwarf2_dups)
12941 {
12942 /* Record the beginning of the file for break_out_includes. */
12943 dw_die_ref bincl_die;
12944
12945 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
12946 add_AT_string (bincl_die, DW_AT_name, filename);
12947 }
12948
12949 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12950 {
12951 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12952 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
12953 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
12954 lineno);
12955 maybe_emit_file (lookup_filename (filename));
12956 dw2_asm_output_data_uleb128 (lookup_filename (filename),
12957 "Filename we just started");
12958 }
12959 }
12960
12961 /* Record the end of a source file. */
12962
12963 static void
12964 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
12965 {
12966 if (flag_eliminate_dwarf2_dups)
12967 /* Record the end of the file for break_out_includes. */
12968 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
12969
12970 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12971 {
12972 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12973 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12974 }
12975 }
12976
12977 /* Called from debug_define in toplev.c. The `buffer' parameter contains
12978 the tail part of the directive line, i.e. the part which is past the
12979 initial whitespace, #, whitespace, directive-name, whitespace part. */
12980
12981 static void
12982 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
12983 const char *buffer ATTRIBUTE_UNUSED)
12984 {
12985 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12986 {
12987 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12988 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
12989 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12990 dw2_asm_output_nstring (buffer, -1, "The macro");
12991 }
12992 }
12993
12994 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
12995 the tail part of the directive line, i.e. the part which is past the
12996 initial whitespace, #, whitespace, directive-name, whitespace part. */
12997
12998 static void
12999 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13000 const char *buffer ATTRIBUTE_UNUSED)
13001 {
13002 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13003 {
13004 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13005 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13006 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13007 dw2_asm_output_nstring (buffer, -1, "The macro");
13008 }
13009 }
13010
13011 /* Set up for Dwarf output at the start of compilation. */
13012
13013 static void
13014 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13015 {
13016 init_file_table ();
13017
13018 /* Allocate the decl_die_table. */
13019 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13020 decl_die_table_eq, NULL);
13021
13022 /* Allocate the decl_loc_table. */
13023 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13024 decl_loc_table_eq, NULL);
13025
13026 /* Allocate the initial hunk of the decl_scope_table. */
13027 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
13028
13029 /* Allocate the initial hunk of the abbrev_die_table. */
13030 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13031 * sizeof (dw_die_ref));
13032 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13033 /* Zero-th entry is allocated, but unused */
13034 abbrev_die_table_in_use = 1;
13035
13036 /* Allocate the initial hunk of the line_info_table. */
13037 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13038 * sizeof (dw_line_info_entry));
13039 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13040
13041 /* Zero-th entry is allocated, but unused */
13042 line_info_table_in_use = 1;
13043
13044 /* Generate the initial DIE for the .debug section. Note that the (string)
13045 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13046 will (typically) be a relative pathname and that this pathname should be
13047 taken as being relative to the directory from which the compiler was
13048 invoked when the given (base) source file was compiled. We will fill
13049 in this value in dwarf2out_finish. */
13050 comp_unit_die = gen_compile_unit_die (NULL);
13051
13052 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
13053
13054 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
13055
13056 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13057 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13058 DEBUG_ABBREV_SECTION_LABEL, 0);
13059 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
13060 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13061 else
13062 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
13063
13064 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13065 DEBUG_INFO_SECTION_LABEL, 0);
13066 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13067 DEBUG_LINE_SECTION_LABEL, 0);
13068 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13069 DEBUG_RANGES_SECTION_LABEL, 0);
13070 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13071 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13072 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
13073 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13074 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13075 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13076
13077 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13078 {
13079 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13080 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13081 DEBUG_MACINFO_SECTION_LABEL, 0);
13082 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13083 }
13084
13085 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
13086 {
13087 text_section ();
13088 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13089 }
13090 }
13091
13092 /* A helper function for dwarf2out_finish called through
13093 ht_forall. Emit one queued .debug_str string. */
13094
13095 static int
13096 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13097 {
13098 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13099
13100 if (node->form == DW_FORM_strp)
13101 {
13102 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
13103 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13104 assemble_string (node->str, strlen (node->str) + 1);
13105 }
13106
13107 return 1;
13108 }
13109
13110
13111
13112 /* Clear the marks for a die and its children.
13113 Be cool if the mark isn't set. */
13114
13115 static void
13116 prune_unmark_dies (dw_die_ref die)
13117 {
13118 dw_die_ref c;
13119 die->die_mark = 0;
13120 for (c = die->die_child; c; c = c->die_sib)
13121 prune_unmark_dies (c);
13122 }
13123
13124
13125 /* Given DIE that we're marking as used, find any other dies
13126 it references as attributes and mark them as used. */
13127
13128 static void
13129 prune_unused_types_walk_attribs (dw_die_ref die)
13130 {
13131 dw_attr_ref a;
13132
13133 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
13134 {
13135 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13136 {
13137 /* A reference to another DIE.
13138 Make sure that it will get emitted. */
13139 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13140 }
13141 else if (a->dw_attr == DW_AT_decl_file)
13142 {
13143 /* A reference to a file. Make sure the file name is emitted. */
13144 a->dw_attr_val.v.val_unsigned =
13145 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
13146 }
13147 }
13148 }
13149
13150
13151 /* Mark DIE as being used. If DOKIDS is true, then walk down
13152 to DIE's children. */
13153
13154 static void
13155 prune_unused_types_mark (dw_die_ref die, int dokids)
13156 {
13157 dw_die_ref c;
13158
13159 if (die->die_mark == 0)
13160 {
13161 /* We haven't done this node yet. Mark it as used. */
13162 die->die_mark = 1;
13163
13164 /* We also have to mark its parents as used.
13165 (But we don't want to mark our parents' kids due to this.) */
13166 if (die->die_parent)
13167 prune_unused_types_mark (die->die_parent, 0);
13168
13169 /* Mark any referenced nodes. */
13170 prune_unused_types_walk_attribs (die);
13171
13172 /* If this node is a specification,
13173 also mark the definition, if it exists. */
13174 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
13175 prune_unused_types_mark (die->die_definition, 1);
13176 }
13177
13178 if (dokids && die->die_mark != 2)
13179 {
13180 /* We need to walk the children, but haven't done so yet.
13181 Remember that we've walked the kids. */
13182 die->die_mark = 2;
13183
13184 /* Walk them. */
13185 for (c = die->die_child; c; c = c->die_sib)
13186 {
13187 /* If this is an array type, we need to make sure our
13188 kids get marked, even if they're types. */
13189 if (die->die_tag == DW_TAG_array_type)
13190 prune_unused_types_mark (c, 1);
13191 else
13192 prune_unused_types_walk (c);
13193 }
13194 }
13195 }
13196
13197
13198 /* Walk the tree DIE and mark types that we actually use. */
13199
13200 static void
13201 prune_unused_types_walk (dw_die_ref die)
13202 {
13203 dw_die_ref c;
13204
13205 /* Don't do anything if this node is already marked. */
13206 if (die->die_mark)
13207 return;
13208
13209 switch (die->die_tag) {
13210 case DW_TAG_const_type:
13211 case DW_TAG_packed_type:
13212 case DW_TAG_pointer_type:
13213 case DW_TAG_reference_type:
13214 case DW_TAG_volatile_type:
13215 case DW_TAG_typedef:
13216 case DW_TAG_array_type:
13217 case DW_TAG_structure_type:
13218 case DW_TAG_union_type:
13219 case DW_TAG_class_type:
13220 case DW_TAG_friend:
13221 case DW_TAG_variant_part:
13222 case DW_TAG_enumeration_type:
13223 case DW_TAG_subroutine_type:
13224 case DW_TAG_string_type:
13225 case DW_TAG_set_type:
13226 case DW_TAG_subrange_type:
13227 case DW_TAG_ptr_to_member_type:
13228 case DW_TAG_file_type:
13229 /* It's a type node --- don't mark it. */
13230 return;
13231
13232 default:
13233 /* Mark everything else. */
13234 break;
13235 }
13236
13237 die->die_mark = 1;
13238
13239 /* Now, mark any dies referenced from here. */
13240 prune_unused_types_walk_attribs (die);
13241
13242 /* Mark children. */
13243 for (c = die->die_child; c; c = c->die_sib)
13244 prune_unused_types_walk (c);
13245 }
13246
13247
13248 /* Remove from the tree DIE any dies that aren't marked. */
13249
13250 static void
13251 prune_unused_types_prune (dw_die_ref die)
13252 {
13253 dw_die_ref c, p, n;
13254 if (!die->die_mark)
13255 abort();
13256
13257 p = NULL;
13258 for (c = die->die_child; c; c = n)
13259 {
13260 n = c->die_sib;
13261 if (c->die_mark)
13262 {
13263 prune_unused_types_prune (c);
13264 p = c;
13265 }
13266 else
13267 {
13268 if (p)
13269 p->die_sib = n;
13270 else
13271 die->die_child = n;
13272 free_die (c);
13273 }
13274 }
13275 }
13276
13277
13278 /* Remove dies representing declarations that we never use. */
13279
13280 static void
13281 prune_unused_types (void)
13282 {
13283 unsigned int i;
13284 limbo_die_node *node;
13285
13286 /* Clear all the marks. */
13287 prune_unmark_dies (comp_unit_die);
13288 for (node = limbo_die_list; node; node = node->next)
13289 prune_unmark_dies (node->die);
13290
13291 /* Set the mark on nodes that are actually used. */
13292 prune_unused_types_walk (comp_unit_die);
13293 for (node = limbo_die_list; node; node = node->next)
13294 prune_unused_types_walk (node->die);
13295
13296 /* Also set the mark on nodes referenced from the
13297 pubname_table or arange_table. */
13298 for (i = 0; i < pubname_table_in_use; i++)
13299 prune_unused_types_mark (pubname_table[i].die, 1);
13300 for (i = 0; i < arange_table_in_use; i++)
13301 prune_unused_types_mark (arange_table[i], 1);
13302
13303 /* Get rid of nodes that aren't marked. */
13304 prune_unused_types_prune (comp_unit_die);
13305 for (node = limbo_die_list; node; node = node->next)
13306 prune_unused_types_prune (node->die);
13307
13308 /* Leave the marks clear. */
13309 prune_unmark_dies (comp_unit_die);
13310 for (node = limbo_die_list; node; node = node->next)
13311 prune_unmark_dies (node->die);
13312 }
13313
13314 /* Output stuff that dwarf requires at the end of every file,
13315 and generate the DWARF-2 debugging info. */
13316
13317 static void
13318 dwarf2out_finish (const char *filename)
13319 {
13320 limbo_die_node *node, *next_node;
13321 dw_die_ref die = 0;
13322
13323 /* Add the name for the main input file now. We delayed this from
13324 dwarf2out_init to avoid complications with PCH. */
13325 add_name_attribute (comp_unit_die, filename);
13326 if (filename[0] != DIR_SEPARATOR)
13327 add_comp_dir_attribute (comp_unit_die);
13328 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13329 {
13330 size_t i;
13331 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13332 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
13333 /* Don't add cwd for <built-in>. */
13334 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
13335 {
13336 add_comp_dir_attribute (comp_unit_die);
13337 break;
13338 }
13339 }
13340
13341 /* Traverse the limbo die list, and add parent/child links. The only
13342 dies without parents that should be here are concrete instances of
13343 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13344 For concrete instances, we can get the parent die from the abstract
13345 instance. */
13346 for (node = limbo_die_list; node; node = next_node)
13347 {
13348 next_node = node->next;
13349 die = node->die;
13350
13351 if (die->die_parent == NULL)
13352 {
13353 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13354 tree context;
13355
13356 if (origin)
13357 add_child_die (origin->die_parent, die);
13358 else if (die == comp_unit_die)
13359 ;
13360 /* If this was an expression for a bound involved in a function
13361 return type, it may be a SAVE_EXPR for which we weren't able
13362 to find a DIE previously. So try now. */
13363 else if (node->created_for
13364 && TREE_CODE (node->created_for) == SAVE_EXPR
13365 && 0 != (origin = (lookup_decl_die
13366 (SAVE_EXPR_CONTEXT
13367 (node->created_for)))))
13368 add_child_die (origin, die);
13369 else if (errorcount > 0 || sorrycount > 0)
13370 /* It's OK to be confused by errors in the input. */
13371 add_child_die (comp_unit_die, die);
13372 else if (node->created_for
13373 && ((DECL_P (node->created_for)
13374 && (context = DECL_CONTEXT (node->created_for)))
13375 || (TYPE_P (node->created_for)
13376 && (context = TYPE_CONTEXT (node->created_for))))
13377 && TREE_CODE (context) == FUNCTION_DECL)
13378 {
13379 /* In certain situations, the lexical block containing a
13380 nested function can be optimized away, which results
13381 in the nested function die being orphaned. Likewise
13382 with the return type of that nested function. Force
13383 this to be a child of the containing function. */
13384 origin = lookup_decl_die (context);
13385 if (! origin)
13386 abort ();
13387 add_child_die (origin, die);
13388 }
13389 else
13390 abort ();
13391 }
13392 }
13393
13394 limbo_die_list = NULL;
13395
13396 /* Walk through the list of incomplete types again, trying once more to
13397 emit full debugging info for them. */
13398 retry_incomplete_types ();
13399
13400 /* We need to reverse all the dies before break_out_includes, or
13401 we'll see the end of an include file before the beginning. */
13402 reverse_all_dies (comp_unit_die);
13403
13404 if (flag_eliminate_unused_debug_types)
13405 prune_unused_types ();
13406
13407 /* Generate separate CUs for each of the include files we've seen.
13408 They will go into limbo_die_list. */
13409 if (flag_eliminate_dwarf2_dups)
13410 break_out_includes (comp_unit_die);
13411
13412 /* Traverse the DIE's and add add sibling attributes to those DIE's
13413 that have children. */
13414 add_sibling_attributes (comp_unit_die);
13415 for (node = limbo_die_list; node; node = node->next)
13416 add_sibling_attributes (node->die);
13417
13418 /* Output a terminator label for the .text section. */
13419 text_section ();
13420 (*targetm.asm_out.internal_label) (asm_out_file, TEXT_END_LABEL, 0);
13421
13422 /* Output the source line correspondence table. We must do this
13423 even if there is no line information. Otherwise, on an empty
13424 translation unit, we will generate a present, but empty,
13425 .debug_info section. IRIX 6.5 `nm' will then complain when
13426 examining the file. */
13427 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13428 {
13429 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13430 output_line_info ();
13431 }
13432
13433 /* Output location list section if necessary. */
13434 if (have_location_lists)
13435 {
13436 /* Output the location lists info. */
13437 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13438 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13439 DEBUG_LOC_SECTION_LABEL, 0);
13440 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13441 output_location_lists (die);
13442 have_location_lists = 0;
13443 }
13444
13445 /* We can only use the low/high_pc attributes if all of the code was
13446 in .text. */
13447 if (separate_line_info_table_in_use == 0)
13448 {
13449 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13450 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13451 }
13452
13453 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13454 "base address". Use zero so that these addresses become absolute. */
13455 else if (have_location_lists || ranges_table_in_use)
13456 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13457
13458 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13459 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13460 debug_line_section_label);
13461
13462 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13463 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13464
13465 /* Output all of the compilation units. We put the main one last so that
13466 the offsets are available to output_pubnames. */
13467 for (node = limbo_die_list; node; node = node->next)
13468 output_comp_unit (node->die, 0);
13469
13470 output_comp_unit (comp_unit_die, 0);
13471
13472 /* Output the abbreviation table. */
13473 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13474 output_abbrev_section ();
13475
13476 /* Output public names table if necessary. */
13477 if (pubname_table_in_use)
13478 {
13479 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13480 output_pubnames ();
13481 }
13482
13483 /* Output the address range information. We only put functions in the arange
13484 table, so don't write it out if we don't have any. */
13485 if (fde_table_in_use)
13486 {
13487 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13488 output_aranges ();
13489 }
13490
13491 /* Output ranges section if necessary. */
13492 if (ranges_table_in_use)
13493 {
13494 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13495 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13496 output_ranges ();
13497 }
13498
13499 /* Have to end the primary source file. */
13500 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13501 {
13502 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13503 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13504 dw2_asm_output_data (1, 0, "End compilation unit");
13505 }
13506
13507 /* If we emitted any DW_FORM_strp form attribute, output the string
13508 table too. */
13509 if (debug_str_hash)
13510 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13511 }
13512 #else
13513
13514 /* This should never be used, but its address is needed for comparisons. */
13515 const struct gcc_debug_hooks dwarf2_debug_hooks;
13516
13517 #endif /* DWARF2_DEBUGGING_INFO */
13518
13519 #include "gt-dwarf2out.h"