configure.in (HAVE_GAS_SHF_MERGE): Always define to test result.
[gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "real.h"
44 #include "rtl.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "reload.h"
49 #include "function.h"
50 #include "output.h"
51 #include "expr.h"
52 #include "libfuncs.h"
53 #include "except.h"
54 #include "dwarf2.h"
55 #include "dwarf2out.h"
56 #include "dwarf2asm.h"
57 #include "toplev.h"
58 #include "varray.h"
59 #include "ggc.h"
60 #include "md5.h"
61 #include "tm_p.h"
62 #include "diagnostic.h"
63 #include "debug.h"
64 #include "target.h"
65 #include "langhooks.h"
66 #include "hashtab.h"
67
68 #ifdef DWARF2_DEBUGGING_INFO
69 static void dwarf2out_source_line (unsigned int, const char *);
70 #endif
71
72 /* DWARF2 Abbreviation Glossary:
73 CFA = Canonical Frame Address
74 a fixed address on the stack which identifies a call frame.
75 We define it to be the value of SP just before the call insn.
76 The CFA register and offset, which may change during the course
77 of the function, are used to calculate its value at runtime.
78 CFI = Call Frame Instruction
79 an instruction for the DWARF2 abstract machine
80 CIE = Common Information Entry
81 information describing information common to one or more FDEs
82 DIE = Debugging Information Entry
83 FDE = Frame Description Entry
84 information describing the stack call frame, in particular,
85 how to restore registers
86
87 DW_CFA_... = DWARF2 CFA call frame instruction
88 DW_TAG_... = DWARF2 DIE tag */
89
90 /* Decide whether we want to emit frame unwind information for the current
91 translation unit. */
92
93 int
94 dwarf2out_do_frame (void)
95 {
96 return (write_symbols == DWARF2_DEBUG
97 || write_symbols == VMS_AND_DWARF2_DEBUG
98 #ifdef DWARF2_FRAME_INFO
99 || DWARF2_FRAME_INFO
100 #endif
101 #ifdef DWARF2_UNWIND_INFO
102 || flag_unwind_tables
103 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
104 #endif
105 );
106 }
107
108 /* The size of the target's pointer type. */
109 #ifndef PTR_SIZE
110 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
111 #endif
112
113 /* Default version of targetm.eh_frame_section. Note this must appear
114 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro
115 guards. */
116
117 void
118 default_eh_frame_section (void)
119 {
120 #ifdef EH_FRAME_SECTION_NAME
121 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
122 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
123 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
124 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
125 int flags;
126
127 flags = (! flag_pic
128 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
129 && (fde_encoding & 0x70) != DW_EH_PE_aligned
130 && (per_encoding & 0x70) != DW_EH_PE_absptr
131 && (per_encoding & 0x70) != DW_EH_PE_aligned
132 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
133 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
134 ? 0 : SECTION_WRITE;
135 named_section_flags (EH_FRAME_SECTION_NAME, flags);
136 #else
137 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
138 #endif
139 #else
140 tree label = get_file_function_name ('F');
141
142 data_section ();
143 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
144 (*targetm.asm_out.globalize_label) (asm_out_file, IDENTIFIER_POINTER (label));
145 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
146 #endif
147 }
148
149 /* Array of RTXes referenced by the debugging information, which therefore
150 must be kept around forever. */
151 static GTY(()) varray_type used_rtx_varray;
152
153 /* A pointer to the base of a list of incomplete types which might be
154 completed at some later time. incomplete_types_list needs to be a VARRAY
155 because we want to tell the garbage collector about it. */
156 static GTY(()) varray_type incomplete_types;
157
158 /* A pointer to the base of a table of references to declaration
159 scopes. This table is a display which tracks the nesting
160 of declaration scopes at the current scope and containing
161 scopes. This table is used to find the proper place to
162 define type declaration DIE's. */
163 static GTY(()) varray_type decl_scope_table;
164
165 /* How to start an assembler comment. */
166 #ifndef ASM_COMMENT_START
167 #define ASM_COMMENT_START ";#"
168 #endif
169
170 typedef struct dw_cfi_struct *dw_cfi_ref;
171 typedef struct dw_fde_struct *dw_fde_ref;
172 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
173
174 /* Call frames are described using a sequence of Call Frame
175 Information instructions. The register number, offset
176 and address fields are provided as possible operands;
177 their use is selected by the opcode field. */
178
179 enum dw_cfi_oprnd_type {
180 dw_cfi_oprnd_unused,
181 dw_cfi_oprnd_reg_num,
182 dw_cfi_oprnd_offset,
183 dw_cfi_oprnd_addr,
184 dw_cfi_oprnd_loc
185 };
186
187 typedef union dw_cfi_oprnd_struct GTY(())
188 {
189 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
190 long int GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
191 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
192 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
193 }
194 dw_cfi_oprnd;
195
196 typedef struct dw_cfi_struct GTY(())
197 {
198 dw_cfi_ref dw_cfi_next;
199 enum dwarf_call_frame_info dw_cfi_opc;
200 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
201 dw_cfi_oprnd1;
202 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
203 dw_cfi_oprnd2;
204 }
205 dw_cfi_node;
206
207 /* This is how we define the location of the CFA. We use to handle it
208 as REG + OFFSET all the time, but now it can be more complex.
209 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
210 Instead of passing around REG and OFFSET, we pass a copy
211 of this structure. */
212 typedef struct cfa_loc GTY(())
213 {
214 unsigned long reg;
215 long offset;
216 long base_offset;
217 int indirect; /* 1 if CFA is accessed via a dereference. */
218 } dw_cfa_location;
219
220 /* All call frame descriptions (FDE's) in the GCC generated DWARF
221 refer to a single Common Information Entry (CIE), defined at
222 the beginning of the .debug_frame section. This use of a single
223 CIE obviates the need to keep track of multiple CIE's
224 in the DWARF generation routines below. */
225
226 typedef struct dw_fde_struct GTY(())
227 {
228 const char *dw_fde_begin;
229 const char *dw_fde_current_label;
230 const char *dw_fde_end;
231 dw_cfi_ref dw_fde_cfi;
232 unsigned funcdef_number;
233 unsigned all_throwers_are_sibcalls : 1;
234 unsigned nothrow : 1;
235 unsigned uses_eh_lsda : 1;
236 }
237 dw_fde_node;
238
239 /* Maximum size (in bytes) of an artificially generated label. */
240 #define MAX_ARTIFICIAL_LABEL_BYTES 30
241
242 /* The size of addresses as they appear in the Dwarf 2 data.
243 Some architectures use word addresses to refer to code locations,
244 but Dwarf 2 info always uses byte addresses. On such machines,
245 Dwarf 2 addresses need to be larger than the architecture's
246 pointers. */
247 #ifndef DWARF2_ADDR_SIZE
248 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
249 #endif
250
251 /* The size in bytes of a DWARF field indicating an offset or length
252 relative to a debug info section, specified to be 4 bytes in the
253 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
254 as PTR_SIZE. */
255
256 #ifndef DWARF_OFFSET_SIZE
257 #define DWARF_OFFSET_SIZE 4
258 #endif
259
260 /* According to the (draft) DWARF 3 specification, the initial length
261 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
262 bytes are 0xffffffff, followed by the length stored in the next 8
263 bytes.
264
265 However, the SGI/MIPS ABI uses an initial length which is equal to
266 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
267
268 #ifndef DWARF_INITIAL_LENGTH_SIZE
269 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
270 #endif
271
272 #define DWARF_VERSION 2
273
274 /* Round SIZE up to the nearest BOUNDARY. */
275 #define DWARF_ROUND(SIZE,BOUNDARY) \
276 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
277
278 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
279 #ifndef DWARF_CIE_DATA_ALIGNMENT
280 #ifdef STACK_GROWS_DOWNWARD
281 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
282 #else
283 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
284 #endif
285 #endif
286
287 /* A pointer to the base of a table that contains frame description
288 information for each routine. */
289 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
290
291 /* Number of elements currently allocated for fde_table. */
292 static GTY(()) unsigned fde_table_allocated;
293
294 /* Number of elements in fde_table currently in use. */
295 static GTY(()) unsigned fde_table_in_use;
296
297 /* Size (in elements) of increments by which we may expand the
298 fde_table. */
299 #define FDE_TABLE_INCREMENT 256
300
301 /* A list of call frame insns for the CIE. */
302 static GTY(()) dw_cfi_ref cie_cfi_head;
303
304 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
305 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
306 attribute that accelerates the lookup of the FDE associated
307 with the subprogram. This variable holds the table index of the FDE
308 associated with the current function (body) definition. */
309 static unsigned current_funcdef_fde;
310 #endif
311
312 struct indirect_string_node GTY(())
313 {
314 const char *str;
315 unsigned int refcount;
316 unsigned int form;
317 char *label;
318 };
319
320 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
321
322 static GTY(()) int dw2_string_counter;
323 static GTY(()) unsigned long dwarf2out_cfi_label_num;
324
325 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
326
327 /* Forward declarations for functions defined in this file. */
328
329 static char *stripattributes (const char *);
330 static const char *dwarf_cfi_name (unsigned);
331 static dw_cfi_ref new_cfi (void);
332 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
333 static void add_fde_cfi (const char *, dw_cfi_ref);
334 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
335 static void lookup_cfa (dw_cfa_location *);
336 static void reg_save (const char *, unsigned, unsigned, long);
337 static void initial_return_save (rtx);
338 static long stack_adjust_offset (rtx);
339 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
340 static void output_call_frame_info (int);
341 static void dwarf2out_stack_adjust (rtx);
342 static void queue_reg_save (const char *, rtx, long);
343 static void flush_queued_reg_saves (void);
344 static bool clobbers_queued_reg_save (rtx);
345 static void dwarf2out_frame_debug_expr (rtx, const char *);
346
347 /* Support for complex CFA locations. */
348 static void output_cfa_loc (dw_cfi_ref);
349 static void get_cfa_from_loc_descr (dw_cfa_location *,
350 struct dw_loc_descr_struct *);
351 static struct dw_loc_descr_struct *build_cfa_loc
352 (dw_cfa_location *);
353 static void def_cfa_1 (const char *, dw_cfa_location *);
354
355 /* How to start an assembler comment. */
356 #ifndef ASM_COMMENT_START
357 #define ASM_COMMENT_START ";#"
358 #endif
359
360 /* Data and reference forms for relocatable data. */
361 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
362 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
363
364 #ifndef DEBUG_FRAME_SECTION
365 #define DEBUG_FRAME_SECTION ".debug_frame"
366 #endif
367
368 #ifndef FUNC_BEGIN_LABEL
369 #define FUNC_BEGIN_LABEL "LFB"
370 #endif
371
372 #ifndef FUNC_END_LABEL
373 #define FUNC_END_LABEL "LFE"
374 #endif
375
376 #define FRAME_BEGIN_LABEL "Lframe"
377 #define CIE_AFTER_SIZE_LABEL "LSCIE"
378 #define CIE_END_LABEL "LECIE"
379 #define FDE_LABEL "LSFDE"
380 #define FDE_AFTER_SIZE_LABEL "LASFDE"
381 #define FDE_END_LABEL "LEFDE"
382 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
383 #define LINE_NUMBER_END_LABEL "LELT"
384 #define LN_PROLOG_AS_LABEL "LASLTP"
385 #define LN_PROLOG_END_LABEL "LELTP"
386 #define DIE_LABEL_PREFIX "DW"
387
388 /* The DWARF 2 CFA column which tracks the return address. Normally this
389 is the column for PC, or the first column after all of the hard
390 registers. */
391 #ifndef DWARF_FRAME_RETURN_COLUMN
392 #ifdef PC_REGNUM
393 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
394 #else
395 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
396 #endif
397 #endif
398
399 /* The mapping from gcc register number to DWARF 2 CFA column number. By
400 default, we just provide columns for all registers. */
401 #ifndef DWARF_FRAME_REGNUM
402 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
403 #endif
404
405 /* The offset from the incoming value of %sp to the top of the stack frame
406 for the current function. */
407 #ifndef INCOMING_FRAME_SP_OFFSET
408 #define INCOMING_FRAME_SP_OFFSET 0
409 #endif
410 \f
411 /* Hook used by __throw. */
412
413 rtx
414 expand_builtin_dwarf_sp_column (void)
415 {
416 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
417 }
418
419 /* Return a pointer to a copy of the section string name S with all
420 attributes stripped off, and an asterisk prepended (for assemble_name). */
421
422 static inline char *
423 stripattributes (const char *s)
424 {
425 char *stripped = xmalloc (strlen (s) + 2);
426 char *p = stripped;
427
428 *p++ = '*';
429
430 while (*s && *s != ',')
431 *p++ = *s++;
432
433 *p = '\0';
434 return stripped;
435 }
436
437 /* Generate code to initialize the register size table. */
438
439 void
440 expand_builtin_init_dwarf_reg_sizes (tree address)
441 {
442 int i;
443 enum machine_mode mode = TYPE_MODE (char_type_node);
444 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
445 rtx mem = gen_rtx_MEM (BLKmode, addr);
446 bool wrote_return_column = false;
447
448 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
449 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
450 {
451 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
452 enum machine_mode save_mode = reg_raw_mode[i];
453 HOST_WIDE_INT size;
454
455 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
456 save_mode = choose_hard_reg_mode (i, 1, true);
457 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
458 {
459 if (save_mode == VOIDmode)
460 continue;
461 wrote_return_column = true;
462 }
463 size = GET_MODE_SIZE (save_mode);
464 if (offset < 0)
465 continue;
466
467 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
468 }
469 if (! wrote_return_column)
470 {
471 enum machine_mode save_mode = Pmode;
472 HOST_WIDE_INT offset = DWARF_FRAME_RETURN_COLUMN * GET_MODE_SIZE (mode);
473 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
474 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
475 }
476 }
477
478 /* Convert a DWARF call frame info. operation to its string name */
479
480 static const char *
481 dwarf_cfi_name (unsigned int cfi_opc)
482 {
483 switch (cfi_opc)
484 {
485 case DW_CFA_advance_loc:
486 return "DW_CFA_advance_loc";
487 case DW_CFA_offset:
488 return "DW_CFA_offset";
489 case DW_CFA_restore:
490 return "DW_CFA_restore";
491 case DW_CFA_nop:
492 return "DW_CFA_nop";
493 case DW_CFA_set_loc:
494 return "DW_CFA_set_loc";
495 case DW_CFA_advance_loc1:
496 return "DW_CFA_advance_loc1";
497 case DW_CFA_advance_loc2:
498 return "DW_CFA_advance_loc2";
499 case DW_CFA_advance_loc4:
500 return "DW_CFA_advance_loc4";
501 case DW_CFA_offset_extended:
502 return "DW_CFA_offset_extended";
503 case DW_CFA_restore_extended:
504 return "DW_CFA_restore_extended";
505 case DW_CFA_undefined:
506 return "DW_CFA_undefined";
507 case DW_CFA_same_value:
508 return "DW_CFA_same_value";
509 case DW_CFA_register:
510 return "DW_CFA_register";
511 case DW_CFA_remember_state:
512 return "DW_CFA_remember_state";
513 case DW_CFA_restore_state:
514 return "DW_CFA_restore_state";
515 case DW_CFA_def_cfa:
516 return "DW_CFA_def_cfa";
517 case DW_CFA_def_cfa_register:
518 return "DW_CFA_def_cfa_register";
519 case DW_CFA_def_cfa_offset:
520 return "DW_CFA_def_cfa_offset";
521
522 /* DWARF 3 */
523 case DW_CFA_def_cfa_expression:
524 return "DW_CFA_def_cfa_expression";
525 case DW_CFA_expression:
526 return "DW_CFA_expression";
527 case DW_CFA_offset_extended_sf:
528 return "DW_CFA_offset_extended_sf";
529 case DW_CFA_def_cfa_sf:
530 return "DW_CFA_def_cfa_sf";
531 case DW_CFA_def_cfa_offset_sf:
532 return "DW_CFA_def_cfa_offset_sf";
533
534 /* SGI/MIPS specific */
535 case DW_CFA_MIPS_advance_loc8:
536 return "DW_CFA_MIPS_advance_loc8";
537
538 /* GNU extensions */
539 case DW_CFA_GNU_window_save:
540 return "DW_CFA_GNU_window_save";
541 case DW_CFA_GNU_args_size:
542 return "DW_CFA_GNU_args_size";
543 case DW_CFA_GNU_negative_offset_extended:
544 return "DW_CFA_GNU_negative_offset_extended";
545
546 default:
547 return "DW_CFA_<unknown>";
548 }
549 }
550
551 /* Return a pointer to a newly allocated Call Frame Instruction. */
552
553 static inline dw_cfi_ref
554 new_cfi (void)
555 {
556 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
557
558 cfi->dw_cfi_next = NULL;
559 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
560 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
561
562 return cfi;
563 }
564
565 /* Add a Call Frame Instruction to list of instructions. */
566
567 static inline void
568 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
569 {
570 dw_cfi_ref *p;
571
572 /* Find the end of the chain. */
573 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
574 ;
575
576 *p = cfi;
577 }
578
579 /* Generate a new label for the CFI info to refer to. */
580
581 char *
582 dwarf2out_cfi_label (void)
583 {
584 static char label[20];
585
586 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
587 ASM_OUTPUT_LABEL (asm_out_file, label);
588 return label;
589 }
590
591 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
592 or to the CIE if LABEL is NULL. */
593
594 static void
595 add_fde_cfi (const char *label, dw_cfi_ref cfi)
596 {
597 if (label)
598 {
599 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
600
601 if (*label == 0)
602 label = dwarf2out_cfi_label ();
603
604 if (fde->dw_fde_current_label == NULL
605 || strcmp (label, fde->dw_fde_current_label) != 0)
606 {
607 dw_cfi_ref xcfi;
608
609 fde->dw_fde_current_label = label = xstrdup (label);
610
611 /* Set the location counter to the new label. */
612 xcfi = new_cfi ();
613 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
614 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
615 add_cfi (&fde->dw_fde_cfi, xcfi);
616 }
617
618 add_cfi (&fde->dw_fde_cfi, cfi);
619 }
620
621 else
622 add_cfi (&cie_cfi_head, cfi);
623 }
624
625 /* Subroutine of lookup_cfa. */
626
627 static inline void
628 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
629 {
630 switch (cfi->dw_cfi_opc)
631 {
632 case DW_CFA_def_cfa_offset:
633 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
634 break;
635 case DW_CFA_def_cfa_register:
636 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
637 break;
638 case DW_CFA_def_cfa:
639 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
640 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
641 break;
642 case DW_CFA_def_cfa_expression:
643 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
644 break;
645 default:
646 break;
647 }
648 }
649
650 /* Find the previous value for the CFA. */
651
652 static void
653 lookup_cfa (dw_cfa_location *loc)
654 {
655 dw_cfi_ref cfi;
656
657 loc->reg = (unsigned long) -1;
658 loc->offset = 0;
659 loc->indirect = 0;
660 loc->base_offset = 0;
661
662 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
663 lookup_cfa_1 (cfi, loc);
664
665 if (fde_table_in_use)
666 {
667 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
668 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
669 lookup_cfa_1 (cfi, loc);
670 }
671 }
672
673 /* The current rule for calculating the DWARF2 canonical frame address. */
674 static dw_cfa_location cfa;
675
676 /* The register used for saving registers to the stack, and its offset
677 from the CFA. */
678 static dw_cfa_location cfa_store;
679
680 /* The running total of the size of arguments pushed onto the stack. */
681 static long args_size;
682
683 /* The last args_size we actually output. */
684 static long old_args_size;
685
686 /* Entry point to update the canonical frame address (CFA).
687 LABEL is passed to add_fde_cfi. The value of CFA is now to be
688 calculated from REG+OFFSET. */
689
690 void
691 dwarf2out_def_cfa (const char *label, unsigned int reg, long int offset)
692 {
693 dw_cfa_location loc;
694 loc.indirect = 0;
695 loc.base_offset = 0;
696 loc.reg = reg;
697 loc.offset = offset;
698 def_cfa_1 (label, &loc);
699 }
700
701 /* This routine does the actual work. The CFA is now calculated from
702 the dw_cfa_location structure. */
703
704 static void
705 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
706 {
707 dw_cfi_ref cfi;
708 dw_cfa_location old_cfa, loc;
709
710 cfa = *loc_p;
711 loc = *loc_p;
712
713 if (cfa_store.reg == loc.reg && loc.indirect == 0)
714 cfa_store.offset = loc.offset;
715
716 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
717 lookup_cfa (&old_cfa);
718
719 /* If nothing changed, no need to issue any call frame instructions. */
720 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
721 && loc.indirect == old_cfa.indirect
722 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
723 return;
724
725 cfi = new_cfi ();
726
727 if (loc.reg == old_cfa.reg && !loc.indirect)
728 {
729 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
730 indicating the CFA register did not change but the offset
731 did. */
732 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
733 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
734 }
735
736 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
737 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
738 && !loc.indirect)
739 {
740 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
741 indicating the CFA register has changed to <register> but the
742 offset has not changed. */
743 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
744 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
745 }
746 #endif
747
748 else if (loc.indirect == 0)
749 {
750 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
751 indicating the CFA register has changed to <register> with
752 the specified offset. */
753 cfi->dw_cfi_opc = DW_CFA_def_cfa;
754 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
755 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
756 }
757 else
758 {
759 /* Construct a DW_CFA_def_cfa_expression instruction to
760 calculate the CFA using a full location expression since no
761 register-offset pair is available. */
762 struct dw_loc_descr_struct *loc_list;
763
764 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
765 loc_list = build_cfa_loc (&loc);
766 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
767 }
768
769 add_fde_cfi (label, cfi);
770 }
771
772 /* Add the CFI for saving a register. REG is the CFA column number.
773 LABEL is passed to add_fde_cfi.
774 If SREG is -1, the register is saved at OFFSET from the CFA;
775 otherwise it is saved in SREG. */
776
777 static void
778 reg_save (const char *label, unsigned int reg, unsigned int sreg, long int offset)
779 {
780 dw_cfi_ref cfi = new_cfi ();
781
782 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
783
784 /* The following comparison is correct. -1 is used to indicate that
785 the value isn't a register number. */
786 if (sreg == (unsigned int) -1)
787 {
788 if (reg & ~0x3f)
789 /* The register number won't fit in 6 bits, so we have to use
790 the long form. */
791 cfi->dw_cfi_opc = DW_CFA_offset_extended;
792 else
793 cfi->dw_cfi_opc = DW_CFA_offset;
794
795 #ifdef ENABLE_CHECKING
796 {
797 /* If we get an offset that is not a multiple of
798 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
799 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
800 description. */
801 long check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
802
803 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
804 abort ();
805 }
806 #endif
807 offset /= DWARF_CIE_DATA_ALIGNMENT;
808 if (offset < 0)
809 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
810
811 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
812 }
813 else if (sreg == reg)
814 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
815 return;
816 else
817 {
818 cfi->dw_cfi_opc = DW_CFA_register;
819 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
820 }
821
822 add_fde_cfi (label, cfi);
823 }
824
825 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
826 This CFI tells the unwinder that it needs to restore the window registers
827 from the previous frame's window save area.
828
829 ??? Perhaps we should note in the CIE where windows are saved (instead of
830 assuming 0(cfa)) and what registers are in the window. */
831
832 void
833 dwarf2out_window_save (const char *label)
834 {
835 dw_cfi_ref cfi = new_cfi ();
836
837 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
838 add_fde_cfi (label, cfi);
839 }
840
841 /* Add a CFI to update the running total of the size of arguments
842 pushed onto the stack. */
843
844 void
845 dwarf2out_args_size (const char *label, long int size)
846 {
847 dw_cfi_ref cfi;
848
849 if (size == old_args_size)
850 return;
851
852 old_args_size = size;
853
854 cfi = new_cfi ();
855 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
856 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
857 add_fde_cfi (label, cfi);
858 }
859
860 /* Entry point for saving a register to the stack. REG is the GCC register
861 number. LABEL and OFFSET are passed to reg_save. */
862
863 void
864 dwarf2out_reg_save (const char *label, unsigned int reg, long int offset)
865 {
866 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
867 }
868
869 /* Entry point for saving the return address in the stack.
870 LABEL and OFFSET are passed to reg_save. */
871
872 void
873 dwarf2out_return_save (const char *label, long int offset)
874 {
875 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
876 }
877
878 /* Entry point for saving the return address in a register.
879 LABEL and SREG are passed to reg_save. */
880
881 void
882 dwarf2out_return_reg (const char *label, unsigned int sreg)
883 {
884 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
885 }
886
887 /* Record the initial position of the return address. RTL is
888 INCOMING_RETURN_ADDR_RTX. */
889
890 static void
891 initial_return_save (rtx rtl)
892 {
893 unsigned int reg = (unsigned int) -1;
894 HOST_WIDE_INT offset = 0;
895
896 switch (GET_CODE (rtl))
897 {
898 case REG:
899 /* RA is in a register. */
900 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
901 break;
902
903 case MEM:
904 /* RA is on the stack. */
905 rtl = XEXP (rtl, 0);
906 switch (GET_CODE (rtl))
907 {
908 case REG:
909 if (REGNO (rtl) != STACK_POINTER_REGNUM)
910 abort ();
911 offset = 0;
912 break;
913
914 case PLUS:
915 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
916 abort ();
917 offset = INTVAL (XEXP (rtl, 1));
918 break;
919
920 case MINUS:
921 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
922 abort ();
923 offset = -INTVAL (XEXP (rtl, 1));
924 break;
925
926 default:
927 abort ();
928 }
929
930 break;
931
932 case PLUS:
933 /* The return address is at some offset from any value we can
934 actually load. For instance, on the SPARC it is in %i7+8. Just
935 ignore the offset for now; it doesn't matter for unwinding frames. */
936 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
937 abort ();
938 initial_return_save (XEXP (rtl, 0));
939 return;
940
941 default:
942 abort ();
943 }
944
945 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
946 }
947
948 /* Given a SET, calculate the amount of stack adjustment it
949 contains. */
950
951 static long
952 stack_adjust_offset (rtx pattern)
953 {
954 rtx src = SET_SRC (pattern);
955 rtx dest = SET_DEST (pattern);
956 HOST_WIDE_INT offset = 0;
957 enum rtx_code code;
958
959 if (dest == stack_pointer_rtx)
960 {
961 /* (set (reg sp) (plus (reg sp) (const_int))) */
962 code = GET_CODE (src);
963 if (! (code == PLUS || code == MINUS)
964 || XEXP (src, 0) != stack_pointer_rtx
965 || GET_CODE (XEXP (src, 1)) != CONST_INT)
966 return 0;
967
968 offset = INTVAL (XEXP (src, 1));
969 if (code == PLUS)
970 offset = -offset;
971 }
972 else if (GET_CODE (dest) == MEM)
973 {
974 /* (set (mem (pre_dec (reg sp))) (foo)) */
975 src = XEXP (dest, 0);
976 code = GET_CODE (src);
977
978 switch (code)
979 {
980 case PRE_MODIFY:
981 case POST_MODIFY:
982 if (XEXP (src, 0) == stack_pointer_rtx)
983 {
984 rtx val = XEXP (XEXP (src, 1), 1);
985 /* We handle only adjustments by constant amount. */
986 if (GET_CODE (XEXP (src, 1)) != PLUS ||
987 GET_CODE (val) != CONST_INT)
988 abort ();
989 offset = -INTVAL (val);
990 break;
991 }
992 return 0;
993
994 case PRE_DEC:
995 case POST_DEC:
996 if (XEXP (src, 0) == stack_pointer_rtx)
997 {
998 offset = GET_MODE_SIZE (GET_MODE (dest));
999 break;
1000 }
1001 return 0;
1002
1003 case PRE_INC:
1004 case POST_INC:
1005 if (XEXP (src, 0) == stack_pointer_rtx)
1006 {
1007 offset = -GET_MODE_SIZE (GET_MODE (dest));
1008 break;
1009 }
1010 return 0;
1011
1012 default:
1013 return 0;
1014 }
1015 }
1016 else
1017 return 0;
1018
1019 return offset;
1020 }
1021
1022 /* Check INSN to see if it looks like a push or a stack adjustment, and
1023 make a note of it if it does. EH uses this information to find out how
1024 much extra space it needs to pop off the stack. */
1025
1026 static void
1027 dwarf2out_stack_adjust (rtx insn)
1028 {
1029 HOST_WIDE_INT offset;
1030 const char *label;
1031 int i;
1032
1033 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1034 {
1035 /* Extract the size of the args from the CALL rtx itself. */
1036 insn = PATTERN (insn);
1037 if (GET_CODE (insn) == PARALLEL)
1038 insn = XVECEXP (insn, 0, 0);
1039 if (GET_CODE (insn) == SET)
1040 insn = SET_SRC (insn);
1041 if (GET_CODE (insn) != CALL)
1042 abort ();
1043
1044 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1045 return;
1046 }
1047
1048 /* If only calls can throw, and we have a frame pointer,
1049 save up adjustments until we see the CALL_INSN. */
1050 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1051 return;
1052
1053 if (GET_CODE (insn) == BARRIER)
1054 {
1055 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1056 the compiler will have already emitted a stack adjustment, but
1057 doesn't bother for calls to noreturn functions. */
1058 #ifdef STACK_GROWS_DOWNWARD
1059 offset = -args_size;
1060 #else
1061 offset = args_size;
1062 #endif
1063 }
1064 else if (GET_CODE (PATTERN (insn)) == SET)
1065 offset = stack_adjust_offset (PATTERN (insn));
1066 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1067 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1068 {
1069 /* There may be stack adjustments inside compound insns. Search
1070 for them. */
1071 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1072 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1073 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1074 }
1075 else
1076 return;
1077
1078 if (offset == 0)
1079 return;
1080
1081 if (cfa.reg == STACK_POINTER_REGNUM)
1082 cfa.offset += offset;
1083
1084 #ifndef STACK_GROWS_DOWNWARD
1085 offset = -offset;
1086 #endif
1087
1088 args_size += offset;
1089 if (args_size < 0)
1090 args_size = 0;
1091
1092 label = dwarf2out_cfi_label ();
1093 def_cfa_1 (label, &cfa);
1094 dwarf2out_args_size (label, args_size);
1095 }
1096
1097 #endif
1098
1099 /* We delay emitting a register save until either (a) we reach the end
1100 of the prologue or (b) the register is clobbered. This clusters
1101 register saves so that there are fewer pc advances. */
1102
1103 struct queued_reg_save GTY(())
1104 {
1105 struct queued_reg_save *next;
1106 rtx reg;
1107 long cfa_offset;
1108 };
1109
1110 static GTY(()) struct queued_reg_save *queued_reg_saves;
1111
1112 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1113 static const char *last_reg_save_label;
1114
1115 static void
1116 queue_reg_save (const char *label, rtx reg, long int offset)
1117 {
1118 struct queued_reg_save *q = ggc_alloc (sizeof (*q));
1119
1120 q->next = queued_reg_saves;
1121 q->reg = reg;
1122 q->cfa_offset = offset;
1123 queued_reg_saves = q;
1124
1125 last_reg_save_label = label;
1126 }
1127
1128 static void
1129 flush_queued_reg_saves (void)
1130 {
1131 struct queued_reg_save *q, *next;
1132
1133 for (q = queued_reg_saves; q; q = next)
1134 {
1135 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1136 next = q->next;
1137 }
1138
1139 queued_reg_saves = NULL;
1140 last_reg_save_label = NULL;
1141 }
1142
1143 static bool
1144 clobbers_queued_reg_save (rtx insn)
1145 {
1146 struct queued_reg_save *q;
1147
1148 for (q = queued_reg_saves; q; q = q->next)
1149 if (modified_in_p (q->reg, insn))
1150 return true;
1151
1152 return false;
1153 }
1154
1155
1156 /* A temporary register holding an integral value used in adjusting SP
1157 or setting up the store_reg. The "offset" field holds the integer
1158 value, not an offset. */
1159 static dw_cfa_location cfa_temp;
1160
1161 /* Record call frame debugging information for an expression EXPR,
1162 which either sets SP or FP (adjusting how we calculate the frame
1163 address) or saves a register to the stack. LABEL indicates the
1164 address of EXPR.
1165
1166 This function encodes a state machine mapping rtxes to actions on
1167 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1168 users need not read the source code.
1169
1170 The High-Level Picture
1171
1172 Changes in the register we use to calculate the CFA: Currently we
1173 assume that if you copy the CFA register into another register, we
1174 should take the other one as the new CFA register; this seems to
1175 work pretty well. If it's wrong for some target, it's simple
1176 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1177
1178 Changes in the register we use for saving registers to the stack:
1179 This is usually SP, but not always. Again, we deduce that if you
1180 copy SP into another register (and SP is not the CFA register),
1181 then the new register is the one we will be using for register
1182 saves. This also seems to work.
1183
1184 Register saves: There's not much guesswork about this one; if
1185 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1186 register save, and the register used to calculate the destination
1187 had better be the one we think we're using for this purpose.
1188
1189 Except: If the register being saved is the CFA register, and the
1190 offset is nonzero, we are saving the CFA, so we assume we have to
1191 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1192 the intent is to save the value of SP from the previous frame.
1193
1194 Invariants / Summaries of Rules
1195
1196 cfa current rule for calculating the CFA. It usually
1197 consists of a register and an offset.
1198 cfa_store register used by prologue code to save things to the stack
1199 cfa_store.offset is the offset from the value of
1200 cfa_store.reg to the actual CFA
1201 cfa_temp register holding an integral value. cfa_temp.offset
1202 stores the value, which will be used to adjust the
1203 stack pointer. cfa_temp is also used like cfa_store,
1204 to track stores to the stack via fp or a temp reg.
1205
1206 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1207 with cfa.reg as the first operand changes the cfa.reg and its
1208 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1209 cfa_temp.offset.
1210
1211 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1212 expression yielding a constant. This sets cfa_temp.reg
1213 and cfa_temp.offset.
1214
1215 Rule 5: Create a new register cfa_store used to save items to the
1216 stack.
1217
1218 Rules 10-14: Save a register to the stack. Define offset as the
1219 difference of the original location and cfa_store's
1220 location (or cfa_temp's location if cfa_temp is used).
1221
1222 The Rules
1223
1224 "{a,b}" indicates a choice of a xor b.
1225 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1226
1227 Rule 1:
1228 (set <reg1> <reg2>:cfa.reg)
1229 effects: cfa.reg = <reg1>
1230 cfa.offset unchanged
1231 cfa_temp.reg = <reg1>
1232 cfa_temp.offset = cfa.offset
1233
1234 Rule 2:
1235 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1236 {<const_int>,<reg>:cfa_temp.reg}))
1237 effects: cfa.reg = sp if fp used
1238 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1239 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1240 if cfa_store.reg==sp
1241
1242 Rule 3:
1243 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1244 effects: cfa.reg = fp
1245 cfa_offset += +/- <const_int>
1246
1247 Rule 4:
1248 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1249 constraints: <reg1> != fp
1250 <reg1> != sp
1251 effects: cfa.reg = <reg1>
1252 cfa_temp.reg = <reg1>
1253 cfa_temp.offset = cfa.offset
1254
1255 Rule 5:
1256 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1257 constraints: <reg1> != fp
1258 <reg1> != sp
1259 effects: cfa_store.reg = <reg1>
1260 cfa_store.offset = cfa.offset - cfa_temp.offset
1261
1262 Rule 6:
1263 (set <reg> <const_int>)
1264 effects: cfa_temp.reg = <reg>
1265 cfa_temp.offset = <const_int>
1266
1267 Rule 7:
1268 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1269 effects: cfa_temp.reg = <reg1>
1270 cfa_temp.offset |= <const_int>
1271
1272 Rule 8:
1273 (set <reg> (high <exp>))
1274 effects: none
1275
1276 Rule 9:
1277 (set <reg> (lo_sum <exp> <const_int>))
1278 effects: cfa_temp.reg = <reg>
1279 cfa_temp.offset = <const_int>
1280
1281 Rule 10:
1282 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1283 effects: cfa_store.offset -= <const_int>
1284 cfa.offset = cfa_store.offset if cfa.reg == sp
1285 cfa.reg = sp
1286 cfa.base_offset = -cfa_store.offset
1287
1288 Rule 11:
1289 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1290 effects: cfa_store.offset += -/+ mode_size(mem)
1291 cfa.offset = cfa_store.offset if cfa.reg == sp
1292 cfa.reg = sp
1293 cfa.base_offset = -cfa_store.offset
1294
1295 Rule 12:
1296 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1297
1298 <reg2>)
1299 effects: cfa.reg = <reg1>
1300 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1301
1302 Rule 13:
1303 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1304 effects: cfa.reg = <reg1>
1305 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1306
1307 Rule 14:
1308 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1309 effects: cfa.reg = <reg1>
1310 cfa.base_offset = -cfa_temp.offset
1311 cfa_temp.offset -= mode_size(mem) */
1312
1313 static void
1314 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1315 {
1316 rtx src, dest;
1317 HOST_WIDE_INT offset;
1318
1319 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1320 the PARALLEL independently. The first element is always processed if
1321 it is a SET. This is for backward compatibility. Other elements
1322 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1323 flag is set in them. */
1324 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1325 {
1326 int par_index;
1327 int limit = XVECLEN (expr, 0);
1328
1329 for (par_index = 0; par_index < limit; par_index++)
1330 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1331 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1332 || par_index == 0))
1333 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1334
1335 return;
1336 }
1337
1338 if (GET_CODE (expr) != SET)
1339 abort ();
1340
1341 src = SET_SRC (expr);
1342 dest = SET_DEST (expr);
1343
1344 switch (GET_CODE (dest))
1345 {
1346 case REG:
1347 /* Rule 1 */
1348 /* Update the CFA rule wrt SP or FP. Make sure src is
1349 relative to the current CFA register. */
1350 switch (GET_CODE (src))
1351 {
1352 /* Setting FP from SP. */
1353 case REG:
1354 if (cfa.reg == (unsigned) REGNO (src))
1355 /* OK. */
1356 ;
1357 else
1358 abort ();
1359
1360 /* We used to require that dest be either SP or FP, but the
1361 ARM copies SP to a temporary register, and from there to
1362 FP. So we just rely on the backends to only set
1363 RTX_FRAME_RELATED_P on appropriate insns. */
1364 cfa.reg = REGNO (dest);
1365 cfa_temp.reg = cfa.reg;
1366 cfa_temp.offset = cfa.offset;
1367 break;
1368
1369 case PLUS:
1370 case MINUS:
1371 case LO_SUM:
1372 if (dest == stack_pointer_rtx)
1373 {
1374 /* Rule 2 */
1375 /* Adjusting SP. */
1376 switch (GET_CODE (XEXP (src, 1)))
1377 {
1378 case CONST_INT:
1379 offset = INTVAL (XEXP (src, 1));
1380 break;
1381 case REG:
1382 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1383 abort ();
1384 offset = cfa_temp.offset;
1385 break;
1386 default:
1387 abort ();
1388 }
1389
1390 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1391 {
1392 /* Restoring SP from FP in the epilogue. */
1393 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1394 abort ();
1395 cfa.reg = STACK_POINTER_REGNUM;
1396 }
1397 else if (GET_CODE (src) == LO_SUM)
1398 /* Assume we've set the source reg of the LO_SUM from sp. */
1399 ;
1400 else if (XEXP (src, 0) != stack_pointer_rtx)
1401 abort ();
1402
1403 if (GET_CODE (src) != MINUS)
1404 offset = -offset;
1405 if (cfa.reg == STACK_POINTER_REGNUM)
1406 cfa.offset += offset;
1407 if (cfa_store.reg == STACK_POINTER_REGNUM)
1408 cfa_store.offset += offset;
1409 }
1410 else if (dest == hard_frame_pointer_rtx)
1411 {
1412 /* Rule 3 */
1413 /* Either setting the FP from an offset of the SP,
1414 or adjusting the FP */
1415 if (! frame_pointer_needed)
1416 abort ();
1417
1418 if (GET_CODE (XEXP (src, 0)) == REG
1419 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1420 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1421 {
1422 offset = INTVAL (XEXP (src, 1));
1423 if (GET_CODE (src) != MINUS)
1424 offset = -offset;
1425 cfa.offset += offset;
1426 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1427 }
1428 else
1429 abort ();
1430 }
1431 else
1432 {
1433 if (GET_CODE (src) == MINUS)
1434 abort ();
1435
1436 /* Rule 4 */
1437 if (GET_CODE (XEXP (src, 0)) == REG
1438 && REGNO (XEXP (src, 0)) == cfa.reg
1439 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1440 {
1441 /* Setting a temporary CFA register that will be copied
1442 into the FP later on. */
1443 offset = - INTVAL (XEXP (src, 1));
1444 cfa.offset += offset;
1445 cfa.reg = REGNO (dest);
1446 /* Or used to save regs to the stack. */
1447 cfa_temp.reg = cfa.reg;
1448 cfa_temp.offset = cfa.offset;
1449 }
1450
1451 /* Rule 5 */
1452 else if (GET_CODE (XEXP (src, 0)) == REG
1453 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1454 && XEXP (src, 1) == stack_pointer_rtx)
1455 {
1456 /* Setting a scratch register that we will use instead
1457 of SP for saving registers to the stack. */
1458 if (cfa.reg != STACK_POINTER_REGNUM)
1459 abort ();
1460 cfa_store.reg = REGNO (dest);
1461 cfa_store.offset = cfa.offset - cfa_temp.offset;
1462 }
1463
1464 /* Rule 9 */
1465 else if (GET_CODE (src) == LO_SUM
1466 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1467 {
1468 cfa_temp.reg = REGNO (dest);
1469 cfa_temp.offset = INTVAL (XEXP (src, 1));
1470 }
1471 else
1472 abort ();
1473 }
1474 break;
1475
1476 /* Rule 6 */
1477 case CONST_INT:
1478 cfa_temp.reg = REGNO (dest);
1479 cfa_temp.offset = INTVAL (src);
1480 break;
1481
1482 /* Rule 7 */
1483 case IOR:
1484 if (GET_CODE (XEXP (src, 0)) != REG
1485 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1486 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1487 abort ();
1488
1489 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1490 cfa_temp.reg = REGNO (dest);
1491 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1492 break;
1493
1494 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1495 which will fill in all of the bits. */
1496 /* Rule 8 */
1497 case HIGH:
1498 break;
1499
1500 default:
1501 abort ();
1502 }
1503
1504 def_cfa_1 (label, &cfa);
1505 break;
1506
1507 case MEM:
1508 if (GET_CODE (src) != REG)
1509 abort ();
1510
1511 /* Saving a register to the stack. Make sure dest is relative to the
1512 CFA register. */
1513 switch (GET_CODE (XEXP (dest, 0)))
1514 {
1515 /* Rule 10 */
1516 /* With a push. */
1517 case PRE_MODIFY:
1518 /* We can't handle variable size modifications. */
1519 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1520 abort ();
1521 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1522
1523 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1524 || cfa_store.reg != STACK_POINTER_REGNUM)
1525 abort ();
1526
1527 cfa_store.offset += offset;
1528 if (cfa.reg == STACK_POINTER_REGNUM)
1529 cfa.offset = cfa_store.offset;
1530
1531 offset = -cfa_store.offset;
1532 break;
1533
1534 /* Rule 11 */
1535 case PRE_INC:
1536 case PRE_DEC:
1537 offset = GET_MODE_SIZE (GET_MODE (dest));
1538 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1539 offset = -offset;
1540
1541 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1542 || cfa_store.reg != STACK_POINTER_REGNUM)
1543 abort ();
1544
1545 cfa_store.offset += offset;
1546 if (cfa.reg == STACK_POINTER_REGNUM)
1547 cfa.offset = cfa_store.offset;
1548
1549 offset = -cfa_store.offset;
1550 break;
1551
1552 /* Rule 12 */
1553 /* With an offset. */
1554 case PLUS:
1555 case MINUS:
1556 case LO_SUM:
1557 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1558 abort ();
1559 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1560 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1561 offset = -offset;
1562
1563 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1564 offset -= cfa_store.offset;
1565 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1566 offset -= cfa_temp.offset;
1567 else
1568 abort ();
1569 break;
1570
1571 /* Rule 13 */
1572 /* Without an offset. */
1573 case REG:
1574 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1575 offset = -cfa_store.offset;
1576 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1577 offset = -cfa_temp.offset;
1578 else
1579 abort ();
1580 break;
1581
1582 /* Rule 14 */
1583 case POST_INC:
1584 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1585 abort ();
1586 offset = -cfa_temp.offset;
1587 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1588 break;
1589
1590 default:
1591 abort ();
1592 }
1593
1594 if (REGNO (src) != STACK_POINTER_REGNUM
1595 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1596 && (unsigned) REGNO (src) == cfa.reg)
1597 {
1598 /* We're storing the current CFA reg into the stack. */
1599
1600 if (cfa.offset == 0)
1601 {
1602 /* If the source register is exactly the CFA, assume
1603 we're saving SP like any other register; this happens
1604 on the ARM. */
1605 def_cfa_1 (label, &cfa);
1606 queue_reg_save (label, stack_pointer_rtx, offset);
1607 break;
1608 }
1609 else
1610 {
1611 /* Otherwise, we'll need to look in the stack to
1612 calculate the CFA. */
1613 rtx x = XEXP (dest, 0);
1614
1615 if (GET_CODE (x) != REG)
1616 x = XEXP (x, 0);
1617 if (GET_CODE (x) != REG)
1618 abort ();
1619
1620 cfa.reg = REGNO (x);
1621 cfa.base_offset = offset;
1622 cfa.indirect = 1;
1623 def_cfa_1 (label, &cfa);
1624 break;
1625 }
1626 }
1627
1628 def_cfa_1 (label, &cfa);
1629 queue_reg_save (label, src, offset);
1630 break;
1631
1632 default:
1633 abort ();
1634 }
1635 }
1636
1637 /* Record call frame debugging information for INSN, which either
1638 sets SP or FP (adjusting how we calculate the frame address) or saves a
1639 register to the stack. If INSN is NULL_RTX, initialize our state. */
1640
1641 void
1642 dwarf2out_frame_debug (rtx insn)
1643 {
1644 const char *label;
1645 rtx src;
1646
1647 if (insn == NULL_RTX)
1648 {
1649 /* Flush any queued register saves. */
1650 flush_queued_reg_saves ();
1651
1652 /* Set up state for generating call frame debug info. */
1653 lookup_cfa (&cfa);
1654 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1655 abort ();
1656
1657 cfa.reg = STACK_POINTER_REGNUM;
1658 cfa_store = cfa;
1659 cfa_temp.reg = -1;
1660 cfa_temp.offset = 0;
1661 return;
1662 }
1663
1664 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1665 flush_queued_reg_saves ();
1666
1667 if (! RTX_FRAME_RELATED_P (insn))
1668 {
1669 if (!ACCUMULATE_OUTGOING_ARGS)
1670 dwarf2out_stack_adjust (insn);
1671
1672 return;
1673 }
1674
1675 label = dwarf2out_cfi_label ();
1676 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1677 if (src)
1678 insn = XEXP (src, 0);
1679 else
1680 insn = PATTERN (insn);
1681
1682 dwarf2out_frame_debug_expr (insn, label);
1683 }
1684
1685 #endif
1686
1687 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1688 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1689 (enum dwarf_call_frame_info cfi);
1690
1691 static enum dw_cfi_oprnd_type
1692 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1693 {
1694 switch (cfi)
1695 {
1696 case DW_CFA_nop:
1697 case DW_CFA_GNU_window_save:
1698 return dw_cfi_oprnd_unused;
1699
1700 case DW_CFA_set_loc:
1701 case DW_CFA_advance_loc1:
1702 case DW_CFA_advance_loc2:
1703 case DW_CFA_advance_loc4:
1704 case DW_CFA_MIPS_advance_loc8:
1705 return dw_cfi_oprnd_addr;
1706
1707 case DW_CFA_offset:
1708 case DW_CFA_offset_extended:
1709 case DW_CFA_def_cfa:
1710 case DW_CFA_offset_extended_sf:
1711 case DW_CFA_def_cfa_sf:
1712 case DW_CFA_restore_extended:
1713 case DW_CFA_undefined:
1714 case DW_CFA_same_value:
1715 case DW_CFA_def_cfa_register:
1716 case DW_CFA_register:
1717 return dw_cfi_oprnd_reg_num;
1718
1719 case DW_CFA_def_cfa_offset:
1720 case DW_CFA_GNU_args_size:
1721 case DW_CFA_def_cfa_offset_sf:
1722 return dw_cfi_oprnd_offset;
1723
1724 case DW_CFA_def_cfa_expression:
1725 case DW_CFA_expression:
1726 return dw_cfi_oprnd_loc;
1727
1728 default:
1729 abort ();
1730 }
1731 }
1732
1733 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1734 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1735 (enum dwarf_call_frame_info cfi);
1736
1737 static enum dw_cfi_oprnd_type
1738 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1739 {
1740 switch (cfi)
1741 {
1742 case DW_CFA_def_cfa:
1743 case DW_CFA_def_cfa_sf:
1744 case DW_CFA_offset:
1745 case DW_CFA_offset_extended_sf:
1746 case DW_CFA_offset_extended:
1747 return dw_cfi_oprnd_offset;
1748
1749 case DW_CFA_register:
1750 return dw_cfi_oprnd_reg_num;
1751
1752 default:
1753 return dw_cfi_oprnd_unused;
1754 }
1755 }
1756
1757 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1758
1759 /* Output a Call Frame Information opcode and its operand(s). */
1760
1761 static void
1762 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1763 {
1764 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1765 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1766 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1767 "DW_CFA_advance_loc 0x%lx",
1768 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1769 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1770 {
1771 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1772 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1773 "DW_CFA_offset, column 0x%lx",
1774 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1775 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1776 }
1777 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1778 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1779 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1780 "DW_CFA_restore, column 0x%lx",
1781 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1782 else
1783 {
1784 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1785 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1786
1787 switch (cfi->dw_cfi_opc)
1788 {
1789 case DW_CFA_set_loc:
1790 if (for_eh)
1791 dw2_asm_output_encoded_addr_rtx (
1792 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1793 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1794 NULL);
1795 else
1796 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1797 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1798 break;
1799
1800 case DW_CFA_advance_loc1:
1801 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1802 fde->dw_fde_current_label, NULL);
1803 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1804 break;
1805
1806 case DW_CFA_advance_loc2:
1807 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1808 fde->dw_fde_current_label, NULL);
1809 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1810 break;
1811
1812 case DW_CFA_advance_loc4:
1813 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1814 fde->dw_fde_current_label, NULL);
1815 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1816 break;
1817
1818 case DW_CFA_MIPS_advance_loc8:
1819 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1820 fde->dw_fde_current_label, NULL);
1821 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1822 break;
1823
1824 case DW_CFA_offset_extended:
1825 case DW_CFA_def_cfa:
1826 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1827 NULL);
1828 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1829 break;
1830
1831 case DW_CFA_offset_extended_sf:
1832 case DW_CFA_def_cfa_sf:
1833 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1834 NULL);
1835 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1836 break;
1837
1838 case DW_CFA_restore_extended:
1839 case DW_CFA_undefined:
1840 case DW_CFA_same_value:
1841 case DW_CFA_def_cfa_register:
1842 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1843 NULL);
1844 break;
1845
1846 case DW_CFA_register:
1847 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1848 NULL);
1849 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_reg_num,
1850 NULL);
1851 break;
1852
1853 case DW_CFA_def_cfa_offset:
1854 case DW_CFA_GNU_args_size:
1855 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1856 break;
1857
1858 case DW_CFA_def_cfa_offset_sf:
1859 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1860 break;
1861
1862 case DW_CFA_GNU_window_save:
1863 break;
1864
1865 case DW_CFA_def_cfa_expression:
1866 case DW_CFA_expression:
1867 output_cfa_loc (cfi);
1868 break;
1869
1870 case DW_CFA_GNU_negative_offset_extended:
1871 /* Obsoleted by DW_CFA_offset_extended_sf. */
1872 abort ();
1873
1874 default:
1875 break;
1876 }
1877 }
1878 }
1879
1880 /* Output the call frame information used to used to record information
1881 that relates to calculating the frame pointer, and records the
1882 location of saved registers. */
1883
1884 static void
1885 output_call_frame_info (int for_eh)
1886 {
1887 unsigned int i;
1888 dw_fde_ref fde;
1889 dw_cfi_ref cfi;
1890 char l1[20], l2[20], section_start_label[20];
1891 bool any_lsda_needed = false;
1892 char augmentation[6];
1893 int augmentation_size;
1894 int fde_encoding = DW_EH_PE_absptr;
1895 int per_encoding = DW_EH_PE_absptr;
1896 int lsda_encoding = DW_EH_PE_absptr;
1897
1898 /* Don't emit a CIE if there won't be any FDEs. */
1899 if (fde_table_in_use == 0)
1900 return;
1901
1902 /* If we don't have any functions we'll want to unwind out of, don't
1903 emit any EH unwind information. Note that if exceptions aren't
1904 enabled, we won't have collected nothrow information, and if we
1905 asked for asynchronous tables, we always want this info. */
1906 if (for_eh)
1907 {
1908 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
1909
1910 for (i = 0; i < fde_table_in_use; i++)
1911 if (fde_table[i].uses_eh_lsda)
1912 any_eh_needed = any_lsda_needed = true;
1913 else if (! fde_table[i].nothrow
1914 && ! fde_table[i].all_throwers_are_sibcalls)
1915 any_eh_needed = true;
1916
1917 if (! any_eh_needed)
1918 return;
1919 }
1920
1921 /* We're going to be generating comments, so turn on app. */
1922 if (flag_debug_asm)
1923 app_enable ();
1924
1925 if (for_eh)
1926 (*targetm.asm_out.eh_frame_section) ();
1927 else
1928 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1929
1930 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1931 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1932
1933 /* Output the CIE. */
1934 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1935 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1936 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1937 "Length of Common Information Entry");
1938 ASM_OUTPUT_LABEL (asm_out_file, l1);
1939
1940 /* Now that the CIE pointer is PC-relative for EH,
1941 use 0 to identify the CIE. */
1942 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1943 (for_eh ? 0 : DW_CIE_ID),
1944 "CIE Identifier Tag");
1945
1946 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1947
1948 augmentation[0] = 0;
1949 augmentation_size = 0;
1950 if (for_eh)
1951 {
1952 char *p;
1953
1954 /* Augmentation:
1955 z Indicates that a uleb128 is present to size the
1956 augmentation section.
1957 L Indicates the encoding (and thus presence) of
1958 an LSDA pointer in the FDE augmentation.
1959 R Indicates a non-default pointer encoding for
1960 FDE code pointers.
1961 P Indicates the presence of an encoding + language
1962 personality routine in the CIE augmentation. */
1963
1964 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1965 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
1966 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1967
1968 p = augmentation + 1;
1969 if (eh_personality_libfunc)
1970 {
1971 *p++ = 'P';
1972 augmentation_size += 1 + size_of_encoded_value (per_encoding);
1973 }
1974 if (any_lsda_needed)
1975 {
1976 *p++ = 'L';
1977 augmentation_size += 1;
1978 }
1979 if (fde_encoding != DW_EH_PE_absptr)
1980 {
1981 *p++ = 'R';
1982 augmentation_size += 1;
1983 }
1984 if (p > augmentation + 1)
1985 {
1986 augmentation[0] = 'z';
1987 *p = '\0';
1988 }
1989
1990 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
1991 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
1992 {
1993 int offset = ( 4 /* Length */
1994 + 4 /* CIE Id */
1995 + 1 /* CIE version */
1996 + strlen (augmentation) + 1 /* Augmentation */
1997 + size_of_uleb128 (1) /* Code alignment */
1998 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
1999 + 1 /* RA column */
2000 + 1 /* Augmentation size */
2001 + 1 /* Personality encoding */ );
2002 int pad = -offset & (PTR_SIZE - 1);
2003
2004 augmentation_size += pad;
2005
2006 /* Augmentations should be small, so there's scarce need to
2007 iterate for a solution. Die if we exceed one uleb128 byte. */
2008 if (size_of_uleb128 (augmentation_size) != 1)
2009 abort ();
2010 }
2011 }
2012
2013 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2014 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2015 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2016 "CIE Data Alignment Factor");
2017 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2018
2019 if (augmentation[0])
2020 {
2021 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2022 if (eh_personality_libfunc)
2023 {
2024 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2025 eh_data_format_name (per_encoding));
2026 dw2_asm_output_encoded_addr_rtx (per_encoding,
2027 eh_personality_libfunc, NULL);
2028 }
2029
2030 if (any_lsda_needed)
2031 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2032 eh_data_format_name (lsda_encoding));
2033
2034 if (fde_encoding != DW_EH_PE_absptr)
2035 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2036 eh_data_format_name (fde_encoding));
2037 }
2038
2039 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2040 output_cfi (cfi, NULL, for_eh);
2041
2042 /* Pad the CIE out to an address sized boundary. */
2043 ASM_OUTPUT_ALIGN (asm_out_file,
2044 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2045 ASM_OUTPUT_LABEL (asm_out_file, l2);
2046
2047 /* Loop through all of the FDE's. */
2048 for (i = 0; i < fde_table_in_use; i++)
2049 {
2050 fde = &fde_table[i];
2051
2052 /* Don't emit EH unwind info for leaf functions that don't need it. */
2053 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2054 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2055 && !fde->uses_eh_lsda)
2056 continue;
2057
2058 (*targetm.asm_out.internal_label) (asm_out_file, FDE_LABEL, for_eh + i * 2);
2059 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2060 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2061 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2062 "FDE Length");
2063 ASM_OUTPUT_LABEL (asm_out_file, l1);
2064
2065 if (for_eh)
2066 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2067 else
2068 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2069 "FDE CIE offset");
2070
2071 if (for_eh)
2072 {
2073 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2074 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
2075 "FDE initial location");
2076 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2077 fde->dw_fde_end, fde->dw_fde_begin,
2078 "FDE address range");
2079 }
2080 else
2081 {
2082 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2083 "FDE initial location");
2084 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2085 fde->dw_fde_end, fde->dw_fde_begin,
2086 "FDE address range");
2087 }
2088
2089 if (augmentation[0])
2090 {
2091 if (any_lsda_needed)
2092 {
2093 int size = size_of_encoded_value (lsda_encoding);
2094
2095 if (lsda_encoding == DW_EH_PE_aligned)
2096 {
2097 int offset = ( 4 /* Length */
2098 + 4 /* CIE offset */
2099 + 2 * size_of_encoded_value (fde_encoding)
2100 + 1 /* Augmentation size */ );
2101 int pad = -offset & (PTR_SIZE - 1);
2102
2103 size += pad;
2104 if (size_of_uleb128 (size) != 1)
2105 abort ();
2106 }
2107
2108 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2109
2110 if (fde->uses_eh_lsda)
2111 {
2112 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2113 fde->funcdef_number);
2114 dw2_asm_output_encoded_addr_rtx (
2115 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2116 "Language Specific Data Area");
2117 }
2118 else
2119 {
2120 if (lsda_encoding == DW_EH_PE_aligned)
2121 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2122 dw2_asm_output_data
2123 (size_of_encoded_value (lsda_encoding), 0,
2124 "Language Specific Data Area (none)");
2125 }
2126 }
2127 else
2128 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2129 }
2130
2131 /* Loop through the Call Frame Instructions associated with
2132 this FDE. */
2133 fde->dw_fde_current_label = fde->dw_fde_begin;
2134 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2135 output_cfi (cfi, fde, for_eh);
2136
2137 /* Pad the FDE out to an address sized boundary. */
2138 ASM_OUTPUT_ALIGN (asm_out_file,
2139 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2140 ASM_OUTPUT_LABEL (asm_out_file, l2);
2141 }
2142
2143 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2144 dw2_asm_output_data (4, 0, "End of Table");
2145 #ifdef MIPS_DEBUGGING_INFO
2146 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2147 get a value of 0. Putting .align 0 after the label fixes it. */
2148 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2149 #endif
2150
2151 /* Turn off app to make assembly quicker. */
2152 if (flag_debug_asm)
2153 app_disable ();
2154 }
2155
2156 /* Output a marker (i.e. a label) for the beginning of a function, before
2157 the prologue. */
2158
2159 void
2160 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2161 const char *file ATTRIBUTE_UNUSED)
2162 {
2163 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2164 dw_fde_ref fde;
2165
2166 current_function_func_begin_label = 0;
2167
2168 #ifdef IA64_UNWIND_INFO
2169 /* ??? current_function_func_begin_label is also used by except.c
2170 for call-site information. We must emit this label if it might
2171 be used. */
2172 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2173 && ! dwarf2out_do_frame ())
2174 return;
2175 #else
2176 if (! dwarf2out_do_frame ())
2177 return;
2178 #endif
2179
2180 function_section (current_function_decl);
2181 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2182 current_function_funcdef_no);
2183 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2184 current_function_funcdef_no);
2185 current_function_func_begin_label = get_identifier (label);
2186
2187 #ifdef IA64_UNWIND_INFO
2188 /* We can elide the fde allocation if we're not emitting debug info. */
2189 if (! dwarf2out_do_frame ())
2190 return;
2191 #endif
2192
2193 /* Expand the fde table if necessary. */
2194 if (fde_table_in_use == fde_table_allocated)
2195 {
2196 fde_table_allocated += FDE_TABLE_INCREMENT;
2197 fde_table = ggc_realloc (fde_table,
2198 fde_table_allocated * sizeof (dw_fde_node));
2199 memset (fde_table + fde_table_in_use, 0,
2200 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2201 }
2202
2203 /* Record the FDE associated with this function. */
2204 current_funcdef_fde = fde_table_in_use;
2205
2206 /* Add the new FDE at the end of the fde_table. */
2207 fde = &fde_table[fde_table_in_use++];
2208 fde->dw_fde_begin = xstrdup (label);
2209 fde->dw_fde_current_label = NULL;
2210 fde->dw_fde_end = NULL;
2211 fde->dw_fde_cfi = NULL;
2212 fde->funcdef_number = current_function_funcdef_no;
2213 fde->nothrow = current_function_nothrow;
2214 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2215 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2216
2217 args_size = old_args_size = 0;
2218
2219 /* We only want to output line number information for the genuine dwarf2
2220 prologue case, not the eh frame case. */
2221 #ifdef DWARF2_DEBUGGING_INFO
2222 if (file)
2223 dwarf2out_source_line (line, file);
2224 #endif
2225 }
2226
2227 /* Output a marker (i.e. a label) for the absolute end of the generated code
2228 for a function definition. This gets called *after* the epilogue code has
2229 been generated. */
2230
2231 void
2232 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2233 const char *file ATTRIBUTE_UNUSED)
2234 {
2235 dw_fde_ref fde;
2236 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2237
2238 /* Output a label to mark the endpoint of the code generated for this
2239 function. */
2240 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2241 current_function_funcdef_no);
2242 ASM_OUTPUT_LABEL (asm_out_file, label);
2243 fde = &fde_table[fde_table_in_use - 1];
2244 fde->dw_fde_end = xstrdup (label);
2245 }
2246
2247 void
2248 dwarf2out_frame_init (void)
2249 {
2250 /* Allocate the initial hunk of the fde_table. */
2251 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2252 fde_table_allocated = FDE_TABLE_INCREMENT;
2253 fde_table_in_use = 0;
2254
2255 /* Generate the CFA instructions common to all FDE's. Do it now for the
2256 sake of lookup_cfa. */
2257
2258 #ifdef DWARF2_UNWIND_INFO
2259 /* On entry, the Canonical Frame Address is at SP. */
2260 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2261 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2262 #endif
2263 }
2264
2265 void
2266 dwarf2out_frame_finish (void)
2267 {
2268 /* Output call frame information. */
2269 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2270 output_call_frame_info (0);
2271
2272 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2273 output_call_frame_info (1);
2274 }
2275 #endif
2276 \f
2277 /* And now, the subset of the debugging information support code necessary
2278 for emitting location expressions. */
2279
2280 /* We need some way to distinguish DW_OP_addr with a direct symbol
2281 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2282 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2283
2284
2285 typedef struct dw_val_struct *dw_val_ref;
2286 typedef struct die_struct *dw_die_ref;
2287 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2288 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2289
2290 /* Each DIE may have a series of attribute/value pairs. Values
2291 can take on several forms. The forms that are used in this
2292 implementation are listed below. */
2293
2294 enum dw_val_class
2295 {
2296 dw_val_class_addr,
2297 dw_val_class_offset,
2298 dw_val_class_loc,
2299 dw_val_class_loc_list,
2300 dw_val_class_range_list,
2301 dw_val_class_const,
2302 dw_val_class_unsigned_const,
2303 dw_val_class_long_long,
2304 dw_val_class_float,
2305 dw_val_class_flag,
2306 dw_val_class_die_ref,
2307 dw_val_class_fde_ref,
2308 dw_val_class_lbl_id,
2309 dw_val_class_lbl_offset,
2310 dw_val_class_str
2311 };
2312
2313 /* Describe a double word constant value. */
2314 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2315
2316 typedef struct dw_long_long_struct GTY(())
2317 {
2318 unsigned long hi;
2319 unsigned long low;
2320 }
2321 dw_long_long_const;
2322
2323 /* Describe a floating point constant value. */
2324
2325 typedef struct dw_fp_struct GTY(())
2326 {
2327 long * GTY((length ("%h.length"))) array;
2328 unsigned length;
2329 }
2330 dw_float_const;
2331
2332 /* The dw_val_node describes an attribute's value, as it is
2333 represented internally. */
2334
2335 typedef struct dw_val_struct GTY(())
2336 {
2337 enum dw_val_class val_class;
2338 union dw_val_struct_union
2339 {
2340 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2341 long unsigned GTY ((tag ("dw_val_class_offset"))) val_offset;
2342 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2343 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2344 long int GTY ((default (""))) val_int;
2345 long unsigned GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2346 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2347 dw_float_const GTY ((tag ("dw_val_class_float"))) val_float;
2348 struct dw_val_die_union
2349 {
2350 dw_die_ref die;
2351 int external;
2352 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2353 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2354 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2355 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2356 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2357 }
2358 GTY ((desc ("%1.val_class"))) v;
2359 }
2360 dw_val_node;
2361
2362 /* Locations in memory are described using a sequence of stack machine
2363 operations. */
2364
2365 typedef struct dw_loc_descr_struct GTY(())
2366 {
2367 dw_loc_descr_ref dw_loc_next;
2368 enum dwarf_location_atom dw_loc_opc;
2369 dw_val_node dw_loc_oprnd1;
2370 dw_val_node dw_loc_oprnd2;
2371 int dw_loc_addr;
2372 }
2373 dw_loc_descr_node;
2374
2375 /* Location lists are ranges + location descriptions for that range,
2376 so you can track variables that are in different places over
2377 their entire life. */
2378 typedef struct dw_loc_list_struct GTY(())
2379 {
2380 dw_loc_list_ref dw_loc_next;
2381 const char *begin; /* Label for begin address of range */
2382 const char *end; /* Label for end address of range */
2383 char *ll_symbol; /* Label for beginning of location list.
2384 Only on head of list */
2385 const char *section; /* Section this loclist is relative to */
2386 dw_loc_descr_ref expr;
2387 } dw_loc_list_node;
2388
2389 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2390
2391 static const char *dwarf_stack_op_name (unsigned);
2392 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2393 unsigned long, unsigned long);
2394 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2395 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2396 static unsigned long size_of_locs (dw_loc_descr_ref);
2397 static void output_loc_operands (dw_loc_descr_ref);
2398 static void output_loc_sequence (dw_loc_descr_ref);
2399
2400 /* Convert a DWARF stack opcode into its string name. */
2401
2402 static const char *
2403 dwarf_stack_op_name (unsigned int op)
2404 {
2405 switch (op)
2406 {
2407 case DW_OP_addr:
2408 case INTERNAL_DW_OP_tls_addr:
2409 return "DW_OP_addr";
2410 case DW_OP_deref:
2411 return "DW_OP_deref";
2412 case DW_OP_const1u:
2413 return "DW_OP_const1u";
2414 case DW_OP_const1s:
2415 return "DW_OP_const1s";
2416 case DW_OP_const2u:
2417 return "DW_OP_const2u";
2418 case DW_OP_const2s:
2419 return "DW_OP_const2s";
2420 case DW_OP_const4u:
2421 return "DW_OP_const4u";
2422 case DW_OP_const4s:
2423 return "DW_OP_const4s";
2424 case DW_OP_const8u:
2425 return "DW_OP_const8u";
2426 case DW_OP_const8s:
2427 return "DW_OP_const8s";
2428 case DW_OP_constu:
2429 return "DW_OP_constu";
2430 case DW_OP_consts:
2431 return "DW_OP_consts";
2432 case DW_OP_dup:
2433 return "DW_OP_dup";
2434 case DW_OP_drop:
2435 return "DW_OP_drop";
2436 case DW_OP_over:
2437 return "DW_OP_over";
2438 case DW_OP_pick:
2439 return "DW_OP_pick";
2440 case DW_OP_swap:
2441 return "DW_OP_swap";
2442 case DW_OP_rot:
2443 return "DW_OP_rot";
2444 case DW_OP_xderef:
2445 return "DW_OP_xderef";
2446 case DW_OP_abs:
2447 return "DW_OP_abs";
2448 case DW_OP_and:
2449 return "DW_OP_and";
2450 case DW_OP_div:
2451 return "DW_OP_div";
2452 case DW_OP_minus:
2453 return "DW_OP_minus";
2454 case DW_OP_mod:
2455 return "DW_OP_mod";
2456 case DW_OP_mul:
2457 return "DW_OP_mul";
2458 case DW_OP_neg:
2459 return "DW_OP_neg";
2460 case DW_OP_not:
2461 return "DW_OP_not";
2462 case DW_OP_or:
2463 return "DW_OP_or";
2464 case DW_OP_plus:
2465 return "DW_OP_plus";
2466 case DW_OP_plus_uconst:
2467 return "DW_OP_plus_uconst";
2468 case DW_OP_shl:
2469 return "DW_OP_shl";
2470 case DW_OP_shr:
2471 return "DW_OP_shr";
2472 case DW_OP_shra:
2473 return "DW_OP_shra";
2474 case DW_OP_xor:
2475 return "DW_OP_xor";
2476 case DW_OP_bra:
2477 return "DW_OP_bra";
2478 case DW_OP_eq:
2479 return "DW_OP_eq";
2480 case DW_OP_ge:
2481 return "DW_OP_ge";
2482 case DW_OP_gt:
2483 return "DW_OP_gt";
2484 case DW_OP_le:
2485 return "DW_OP_le";
2486 case DW_OP_lt:
2487 return "DW_OP_lt";
2488 case DW_OP_ne:
2489 return "DW_OP_ne";
2490 case DW_OP_skip:
2491 return "DW_OP_skip";
2492 case DW_OP_lit0:
2493 return "DW_OP_lit0";
2494 case DW_OP_lit1:
2495 return "DW_OP_lit1";
2496 case DW_OP_lit2:
2497 return "DW_OP_lit2";
2498 case DW_OP_lit3:
2499 return "DW_OP_lit3";
2500 case DW_OP_lit4:
2501 return "DW_OP_lit4";
2502 case DW_OP_lit5:
2503 return "DW_OP_lit5";
2504 case DW_OP_lit6:
2505 return "DW_OP_lit6";
2506 case DW_OP_lit7:
2507 return "DW_OP_lit7";
2508 case DW_OP_lit8:
2509 return "DW_OP_lit8";
2510 case DW_OP_lit9:
2511 return "DW_OP_lit9";
2512 case DW_OP_lit10:
2513 return "DW_OP_lit10";
2514 case DW_OP_lit11:
2515 return "DW_OP_lit11";
2516 case DW_OP_lit12:
2517 return "DW_OP_lit12";
2518 case DW_OP_lit13:
2519 return "DW_OP_lit13";
2520 case DW_OP_lit14:
2521 return "DW_OP_lit14";
2522 case DW_OP_lit15:
2523 return "DW_OP_lit15";
2524 case DW_OP_lit16:
2525 return "DW_OP_lit16";
2526 case DW_OP_lit17:
2527 return "DW_OP_lit17";
2528 case DW_OP_lit18:
2529 return "DW_OP_lit18";
2530 case DW_OP_lit19:
2531 return "DW_OP_lit19";
2532 case DW_OP_lit20:
2533 return "DW_OP_lit20";
2534 case DW_OP_lit21:
2535 return "DW_OP_lit21";
2536 case DW_OP_lit22:
2537 return "DW_OP_lit22";
2538 case DW_OP_lit23:
2539 return "DW_OP_lit23";
2540 case DW_OP_lit24:
2541 return "DW_OP_lit24";
2542 case DW_OP_lit25:
2543 return "DW_OP_lit25";
2544 case DW_OP_lit26:
2545 return "DW_OP_lit26";
2546 case DW_OP_lit27:
2547 return "DW_OP_lit27";
2548 case DW_OP_lit28:
2549 return "DW_OP_lit28";
2550 case DW_OP_lit29:
2551 return "DW_OP_lit29";
2552 case DW_OP_lit30:
2553 return "DW_OP_lit30";
2554 case DW_OP_lit31:
2555 return "DW_OP_lit31";
2556 case DW_OP_reg0:
2557 return "DW_OP_reg0";
2558 case DW_OP_reg1:
2559 return "DW_OP_reg1";
2560 case DW_OP_reg2:
2561 return "DW_OP_reg2";
2562 case DW_OP_reg3:
2563 return "DW_OP_reg3";
2564 case DW_OP_reg4:
2565 return "DW_OP_reg4";
2566 case DW_OP_reg5:
2567 return "DW_OP_reg5";
2568 case DW_OP_reg6:
2569 return "DW_OP_reg6";
2570 case DW_OP_reg7:
2571 return "DW_OP_reg7";
2572 case DW_OP_reg8:
2573 return "DW_OP_reg8";
2574 case DW_OP_reg9:
2575 return "DW_OP_reg9";
2576 case DW_OP_reg10:
2577 return "DW_OP_reg10";
2578 case DW_OP_reg11:
2579 return "DW_OP_reg11";
2580 case DW_OP_reg12:
2581 return "DW_OP_reg12";
2582 case DW_OP_reg13:
2583 return "DW_OP_reg13";
2584 case DW_OP_reg14:
2585 return "DW_OP_reg14";
2586 case DW_OP_reg15:
2587 return "DW_OP_reg15";
2588 case DW_OP_reg16:
2589 return "DW_OP_reg16";
2590 case DW_OP_reg17:
2591 return "DW_OP_reg17";
2592 case DW_OP_reg18:
2593 return "DW_OP_reg18";
2594 case DW_OP_reg19:
2595 return "DW_OP_reg19";
2596 case DW_OP_reg20:
2597 return "DW_OP_reg20";
2598 case DW_OP_reg21:
2599 return "DW_OP_reg21";
2600 case DW_OP_reg22:
2601 return "DW_OP_reg22";
2602 case DW_OP_reg23:
2603 return "DW_OP_reg23";
2604 case DW_OP_reg24:
2605 return "DW_OP_reg24";
2606 case DW_OP_reg25:
2607 return "DW_OP_reg25";
2608 case DW_OP_reg26:
2609 return "DW_OP_reg26";
2610 case DW_OP_reg27:
2611 return "DW_OP_reg27";
2612 case DW_OP_reg28:
2613 return "DW_OP_reg28";
2614 case DW_OP_reg29:
2615 return "DW_OP_reg29";
2616 case DW_OP_reg30:
2617 return "DW_OP_reg30";
2618 case DW_OP_reg31:
2619 return "DW_OP_reg31";
2620 case DW_OP_breg0:
2621 return "DW_OP_breg0";
2622 case DW_OP_breg1:
2623 return "DW_OP_breg1";
2624 case DW_OP_breg2:
2625 return "DW_OP_breg2";
2626 case DW_OP_breg3:
2627 return "DW_OP_breg3";
2628 case DW_OP_breg4:
2629 return "DW_OP_breg4";
2630 case DW_OP_breg5:
2631 return "DW_OP_breg5";
2632 case DW_OP_breg6:
2633 return "DW_OP_breg6";
2634 case DW_OP_breg7:
2635 return "DW_OP_breg7";
2636 case DW_OP_breg8:
2637 return "DW_OP_breg8";
2638 case DW_OP_breg9:
2639 return "DW_OP_breg9";
2640 case DW_OP_breg10:
2641 return "DW_OP_breg10";
2642 case DW_OP_breg11:
2643 return "DW_OP_breg11";
2644 case DW_OP_breg12:
2645 return "DW_OP_breg12";
2646 case DW_OP_breg13:
2647 return "DW_OP_breg13";
2648 case DW_OP_breg14:
2649 return "DW_OP_breg14";
2650 case DW_OP_breg15:
2651 return "DW_OP_breg15";
2652 case DW_OP_breg16:
2653 return "DW_OP_breg16";
2654 case DW_OP_breg17:
2655 return "DW_OP_breg17";
2656 case DW_OP_breg18:
2657 return "DW_OP_breg18";
2658 case DW_OP_breg19:
2659 return "DW_OP_breg19";
2660 case DW_OP_breg20:
2661 return "DW_OP_breg20";
2662 case DW_OP_breg21:
2663 return "DW_OP_breg21";
2664 case DW_OP_breg22:
2665 return "DW_OP_breg22";
2666 case DW_OP_breg23:
2667 return "DW_OP_breg23";
2668 case DW_OP_breg24:
2669 return "DW_OP_breg24";
2670 case DW_OP_breg25:
2671 return "DW_OP_breg25";
2672 case DW_OP_breg26:
2673 return "DW_OP_breg26";
2674 case DW_OP_breg27:
2675 return "DW_OP_breg27";
2676 case DW_OP_breg28:
2677 return "DW_OP_breg28";
2678 case DW_OP_breg29:
2679 return "DW_OP_breg29";
2680 case DW_OP_breg30:
2681 return "DW_OP_breg30";
2682 case DW_OP_breg31:
2683 return "DW_OP_breg31";
2684 case DW_OP_regx:
2685 return "DW_OP_regx";
2686 case DW_OP_fbreg:
2687 return "DW_OP_fbreg";
2688 case DW_OP_bregx:
2689 return "DW_OP_bregx";
2690 case DW_OP_piece:
2691 return "DW_OP_piece";
2692 case DW_OP_deref_size:
2693 return "DW_OP_deref_size";
2694 case DW_OP_xderef_size:
2695 return "DW_OP_xderef_size";
2696 case DW_OP_nop:
2697 return "DW_OP_nop";
2698 case DW_OP_push_object_address:
2699 return "DW_OP_push_object_address";
2700 case DW_OP_call2:
2701 return "DW_OP_call2";
2702 case DW_OP_call4:
2703 return "DW_OP_call4";
2704 case DW_OP_call_ref:
2705 return "DW_OP_call_ref";
2706 case DW_OP_GNU_push_tls_address:
2707 return "DW_OP_GNU_push_tls_address";
2708 default:
2709 return "OP_<unknown>";
2710 }
2711 }
2712
2713 /* Return a pointer to a newly allocated location description. Location
2714 descriptions are simple expression terms that can be strung
2715 together to form more complicated location (address) descriptions. */
2716
2717 static inline dw_loc_descr_ref
2718 new_loc_descr (enum dwarf_location_atom op, long unsigned int oprnd1,
2719 long unsigned int oprnd2)
2720 {
2721 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2722
2723 descr->dw_loc_opc = op;
2724 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2725 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2726 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2727 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2728
2729 return descr;
2730 }
2731
2732
2733 /* Add a location description term to a location description expression. */
2734
2735 static inline void
2736 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
2737 {
2738 dw_loc_descr_ref *d;
2739
2740 /* Find the end of the chain. */
2741 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2742 ;
2743
2744 *d = descr;
2745 }
2746
2747 /* Return the size of a location descriptor. */
2748
2749 static unsigned long
2750 size_of_loc_descr (dw_loc_descr_ref loc)
2751 {
2752 unsigned long size = 1;
2753
2754 switch (loc->dw_loc_opc)
2755 {
2756 case DW_OP_addr:
2757 case INTERNAL_DW_OP_tls_addr:
2758 size += DWARF2_ADDR_SIZE;
2759 break;
2760 case DW_OP_const1u:
2761 case DW_OP_const1s:
2762 size += 1;
2763 break;
2764 case DW_OP_const2u:
2765 case DW_OP_const2s:
2766 size += 2;
2767 break;
2768 case DW_OP_const4u:
2769 case DW_OP_const4s:
2770 size += 4;
2771 break;
2772 case DW_OP_const8u:
2773 case DW_OP_const8s:
2774 size += 8;
2775 break;
2776 case DW_OP_constu:
2777 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2778 break;
2779 case DW_OP_consts:
2780 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2781 break;
2782 case DW_OP_pick:
2783 size += 1;
2784 break;
2785 case DW_OP_plus_uconst:
2786 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2787 break;
2788 case DW_OP_skip:
2789 case DW_OP_bra:
2790 size += 2;
2791 break;
2792 case DW_OP_breg0:
2793 case DW_OP_breg1:
2794 case DW_OP_breg2:
2795 case DW_OP_breg3:
2796 case DW_OP_breg4:
2797 case DW_OP_breg5:
2798 case DW_OP_breg6:
2799 case DW_OP_breg7:
2800 case DW_OP_breg8:
2801 case DW_OP_breg9:
2802 case DW_OP_breg10:
2803 case DW_OP_breg11:
2804 case DW_OP_breg12:
2805 case DW_OP_breg13:
2806 case DW_OP_breg14:
2807 case DW_OP_breg15:
2808 case DW_OP_breg16:
2809 case DW_OP_breg17:
2810 case DW_OP_breg18:
2811 case DW_OP_breg19:
2812 case DW_OP_breg20:
2813 case DW_OP_breg21:
2814 case DW_OP_breg22:
2815 case DW_OP_breg23:
2816 case DW_OP_breg24:
2817 case DW_OP_breg25:
2818 case DW_OP_breg26:
2819 case DW_OP_breg27:
2820 case DW_OP_breg28:
2821 case DW_OP_breg29:
2822 case DW_OP_breg30:
2823 case DW_OP_breg31:
2824 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2825 break;
2826 case DW_OP_regx:
2827 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2828 break;
2829 case DW_OP_fbreg:
2830 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2831 break;
2832 case DW_OP_bregx:
2833 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2834 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2835 break;
2836 case DW_OP_piece:
2837 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2838 break;
2839 case DW_OP_deref_size:
2840 case DW_OP_xderef_size:
2841 size += 1;
2842 break;
2843 case DW_OP_call2:
2844 size += 2;
2845 break;
2846 case DW_OP_call4:
2847 size += 4;
2848 break;
2849 case DW_OP_call_ref:
2850 size += DWARF2_ADDR_SIZE;
2851 break;
2852 default:
2853 break;
2854 }
2855
2856 return size;
2857 }
2858
2859 /* Return the size of a series of location descriptors. */
2860
2861 static unsigned long
2862 size_of_locs (dw_loc_descr_ref loc)
2863 {
2864 unsigned long size;
2865
2866 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2867 {
2868 loc->dw_loc_addr = size;
2869 size += size_of_loc_descr (loc);
2870 }
2871
2872 return size;
2873 }
2874
2875 /* Output location description stack opcode's operands (if any). */
2876
2877 static void
2878 output_loc_operands (dw_loc_descr_ref loc)
2879 {
2880 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2881 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2882
2883 switch (loc->dw_loc_opc)
2884 {
2885 #ifdef DWARF2_DEBUGGING_INFO
2886 case DW_OP_addr:
2887 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2888 break;
2889 case DW_OP_const2u:
2890 case DW_OP_const2s:
2891 dw2_asm_output_data (2, val1->v.val_int, NULL);
2892 break;
2893 case DW_OP_const4u:
2894 case DW_OP_const4s:
2895 dw2_asm_output_data (4, val1->v.val_int, NULL);
2896 break;
2897 case DW_OP_const8u:
2898 case DW_OP_const8s:
2899 if (HOST_BITS_PER_LONG < 64)
2900 abort ();
2901 dw2_asm_output_data (8, val1->v.val_int, NULL);
2902 break;
2903 case DW_OP_skip:
2904 case DW_OP_bra:
2905 {
2906 int offset;
2907
2908 if (val1->val_class == dw_val_class_loc)
2909 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2910 else
2911 abort ();
2912
2913 dw2_asm_output_data (2, offset, NULL);
2914 }
2915 break;
2916 #else
2917 case DW_OP_addr:
2918 case DW_OP_const2u:
2919 case DW_OP_const2s:
2920 case DW_OP_const4u:
2921 case DW_OP_const4s:
2922 case DW_OP_const8u:
2923 case DW_OP_const8s:
2924 case DW_OP_skip:
2925 case DW_OP_bra:
2926 /* We currently don't make any attempt to make sure these are
2927 aligned properly like we do for the main unwind info, so
2928 don't support emitting things larger than a byte if we're
2929 only doing unwinding. */
2930 abort ();
2931 #endif
2932 case DW_OP_const1u:
2933 case DW_OP_const1s:
2934 dw2_asm_output_data (1, val1->v.val_int, NULL);
2935 break;
2936 case DW_OP_constu:
2937 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2938 break;
2939 case DW_OP_consts:
2940 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2941 break;
2942 case DW_OP_pick:
2943 dw2_asm_output_data (1, val1->v.val_int, NULL);
2944 break;
2945 case DW_OP_plus_uconst:
2946 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2947 break;
2948 case DW_OP_breg0:
2949 case DW_OP_breg1:
2950 case DW_OP_breg2:
2951 case DW_OP_breg3:
2952 case DW_OP_breg4:
2953 case DW_OP_breg5:
2954 case DW_OP_breg6:
2955 case DW_OP_breg7:
2956 case DW_OP_breg8:
2957 case DW_OP_breg9:
2958 case DW_OP_breg10:
2959 case DW_OP_breg11:
2960 case DW_OP_breg12:
2961 case DW_OP_breg13:
2962 case DW_OP_breg14:
2963 case DW_OP_breg15:
2964 case DW_OP_breg16:
2965 case DW_OP_breg17:
2966 case DW_OP_breg18:
2967 case DW_OP_breg19:
2968 case DW_OP_breg20:
2969 case DW_OP_breg21:
2970 case DW_OP_breg22:
2971 case DW_OP_breg23:
2972 case DW_OP_breg24:
2973 case DW_OP_breg25:
2974 case DW_OP_breg26:
2975 case DW_OP_breg27:
2976 case DW_OP_breg28:
2977 case DW_OP_breg29:
2978 case DW_OP_breg30:
2979 case DW_OP_breg31:
2980 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2981 break;
2982 case DW_OP_regx:
2983 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2984 break;
2985 case DW_OP_fbreg:
2986 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2987 break;
2988 case DW_OP_bregx:
2989 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2990 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
2991 break;
2992 case DW_OP_piece:
2993 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2994 break;
2995 case DW_OP_deref_size:
2996 case DW_OP_xderef_size:
2997 dw2_asm_output_data (1, val1->v.val_int, NULL);
2998 break;
2999
3000 case INTERNAL_DW_OP_tls_addr:
3001 #ifdef ASM_OUTPUT_DWARF_DTPREL
3002 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3003 val1->v.val_addr);
3004 fputc ('\n', asm_out_file);
3005 #else
3006 abort ();
3007 #endif
3008 break;
3009
3010 default:
3011 /* Other codes have no operands. */
3012 break;
3013 }
3014 }
3015
3016 /* Output a sequence of location operations. */
3017
3018 static void
3019 output_loc_sequence (dw_loc_descr_ref loc)
3020 {
3021 for (; loc != NULL; loc = loc->dw_loc_next)
3022 {
3023 /* Output the opcode. */
3024 dw2_asm_output_data (1, loc->dw_loc_opc,
3025 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3026
3027 /* Output the operand(s) (if any). */
3028 output_loc_operands (loc);
3029 }
3030 }
3031
3032 /* This routine will generate the correct assembly data for a location
3033 description based on a cfi entry with a complex address. */
3034
3035 static void
3036 output_cfa_loc (dw_cfi_ref cfi)
3037 {
3038 dw_loc_descr_ref loc;
3039 unsigned long size;
3040
3041 /* Output the size of the block. */
3042 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3043 size = size_of_locs (loc);
3044 dw2_asm_output_data_uleb128 (size, NULL);
3045
3046 /* Now output the operations themselves. */
3047 output_loc_sequence (loc);
3048 }
3049
3050 /* This function builds a dwarf location descriptor sequence from
3051 a dw_cfa_location. */
3052
3053 static struct dw_loc_descr_struct *
3054 build_cfa_loc (dw_cfa_location *cfa)
3055 {
3056 struct dw_loc_descr_struct *head, *tmp;
3057
3058 if (cfa->indirect == 0)
3059 abort ();
3060
3061 if (cfa->base_offset)
3062 {
3063 if (cfa->reg <= 31)
3064 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3065 else
3066 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3067 }
3068 else if (cfa->reg <= 31)
3069 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3070 else
3071 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3072
3073 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3074 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3075 add_loc_descr (&head, tmp);
3076 if (cfa->offset != 0)
3077 {
3078 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3079 add_loc_descr (&head, tmp);
3080 }
3081
3082 return head;
3083 }
3084
3085 /* This function fills in aa dw_cfa_location structure from a dwarf location
3086 descriptor sequence. */
3087
3088 static void
3089 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3090 {
3091 struct dw_loc_descr_struct *ptr;
3092 cfa->offset = 0;
3093 cfa->base_offset = 0;
3094 cfa->indirect = 0;
3095 cfa->reg = -1;
3096
3097 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3098 {
3099 enum dwarf_location_atom op = ptr->dw_loc_opc;
3100
3101 switch (op)
3102 {
3103 case DW_OP_reg0:
3104 case DW_OP_reg1:
3105 case DW_OP_reg2:
3106 case DW_OP_reg3:
3107 case DW_OP_reg4:
3108 case DW_OP_reg5:
3109 case DW_OP_reg6:
3110 case DW_OP_reg7:
3111 case DW_OP_reg8:
3112 case DW_OP_reg9:
3113 case DW_OP_reg10:
3114 case DW_OP_reg11:
3115 case DW_OP_reg12:
3116 case DW_OP_reg13:
3117 case DW_OP_reg14:
3118 case DW_OP_reg15:
3119 case DW_OP_reg16:
3120 case DW_OP_reg17:
3121 case DW_OP_reg18:
3122 case DW_OP_reg19:
3123 case DW_OP_reg20:
3124 case DW_OP_reg21:
3125 case DW_OP_reg22:
3126 case DW_OP_reg23:
3127 case DW_OP_reg24:
3128 case DW_OP_reg25:
3129 case DW_OP_reg26:
3130 case DW_OP_reg27:
3131 case DW_OP_reg28:
3132 case DW_OP_reg29:
3133 case DW_OP_reg30:
3134 case DW_OP_reg31:
3135 cfa->reg = op - DW_OP_reg0;
3136 break;
3137 case DW_OP_regx:
3138 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3139 break;
3140 case DW_OP_breg0:
3141 case DW_OP_breg1:
3142 case DW_OP_breg2:
3143 case DW_OP_breg3:
3144 case DW_OP_breg4:
3145 case DW_OP_breg5:
3146 case DW_OP_breg6:
3147 case DW_OP_breg7:
3148 case DW_OP_breg8:
3149 case DW_OP_breg9:
3150 case DW_OP_breg10:
3151 case DW_OP_breg11:
3152 case DW_OP_breg12:
3153 case DW_OP_breg13:
3154 case DW_OP_breg14:
3155 case DW_OP_breg15:
3156 case DW_OP_breg16:
3157 case DW_OP_breg17:
3158 case DW_OP_breg18:
3159 case DW_OP_breg19:
3160 case DW_OP_breg20:
3161 case DW_OP_breg21:
3162 case DW_OP_breg22:
3163 case DW_OP_breg23:
3164 case DW_OP_breg24:
3165 case DW_OP_breg25:
3166 case DW_OP_breg26:
3167 case DW_OP_breg27:
3168 case DW_OP_breg28:
3169 case DW_OP_breg29:
3170 case DW_OP_breg30:
3171 case DW_OP_breg31:
3172 cfa->reg = op - DW_OP_breg0;
3173 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3174 break;
3175 case DW_OP_bregx:
3176 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3177 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3178 break;
3179 case DW_OP_deref:
3180 cfa->indirect = 1;
3181 break;
3182 case DW_OP_plus_uconst:
3183 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3184 break;
3185 default:
3186 internal_error ("DW_LOC_OP %s not implemented\n",
3187 dwarf_stack_op_name (ptr->dw_loc_opc));
3188 }
3189 }
3190 }
3191 #endif /* .debug_frame support */
3192 \f
3193 /* And now, the support for symbolic debugging information. */
3194 #ifdef DWARF2_DEBUGGING_INFO
3195
3196 /* .debug_str support. */
3197 static int output_indirect_string (void **, void *);
3198
3199 static void dwarf2out_init (const char *);
3200 static void dwarf2out_finish (const char *);
3201 static void dwarf2out_define (unsigned int, const char *);
3202 static void dwarf2out_undef (unsigned int, const char *);
3203 static void dwarf2out_start_source_file (unsigned, const char *);
3204 static void dwarf2out_end_source_file (unsigned);
3205 static void dwarf2out_begin_block (unsigned, unsigned);
3206 static void dwarf2out_end_block (unsigned, unsigned);
3207 static bool dwarf2out_ignore_block (tree);
3208 static void dwarf2out_global_decl (tree);
3209 static void dwarf2out_abstract_function (tree);
3210
3211 /* The debug hooks structure. */
3212
3213 const struct gcc_debug_hooks dwarf2_debug_hooks =
3214 {
3215 dwarf2out_init,
3216 dwarf2out_finish,
3217 dwarf2out_define,
3218 dwarf2out_undef,
3219 dwarf2out_start_source_file,
3220 dwarf2out_end_source_file,
3221 dwarf2out_begin_block,
3222 dwarf2out_end_block,
3223 dwarf2out_ignore_block,
3224 dwarf2out_source_line,
3225 dwarf2out_begin_prologue,
3226 debug_nothing_int_charstar, /* end_prologue */
3227 dwarf2out_end_epilogue,
3228 debug_nothing_tree, /* begin_function */
3229 debug_nothing_int, /* end_function */
3230 dwarf2out_decl, /* function_decl */
3231 dwarf2out_global_decl,
3232 debug_nothing_tree, /* deferred_inline_function */
3233 /* The DWARF 2 backend tries to reduce debugging bloat by not
3234 emitting the abstract description of inline functions until
3235 something tries to reference them. */
3236 dwarf2out_abstract_function, /* outlining_inline_function */
3237 debug_nothing_rtx, /* label */
3238 debug_nothing_int /* handle_pch */
3239 };
3240 #endif
3241 \f
3242 /* NOTE: In the comments in this file, many references are made to
3243 "Debugging Information Entries". This term is abbreviated as `DIE'
3244 throughout the remainder of this file. */
3245
3246 /* An internal representation of the DWARF output is built, and then
3247 walked to generate the DWARF debugging info. The walk of the internal
3248 representation is done after the entire program has been compiled.
3249 The types below are used to describe the internal representation. */
3250
3251 /* Various DIE's use offsets relative to the beginning of the
3252 .debug_info section to refer to each other. */
3253
3254 typedef long int dw_offset;
3255
3256 /* Define typedefs here to avoid circular dependencies. */
3257
3258 typedef struct dw_attr_struct *dw_attr_ref;
3259 typedef struct dw_line_info_struct *dw_line_info_ref;
3260 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3261 typedef struct pubname_struct *pubname_ref;
3262 typedef struct dw_ranges_struct *dw_ranges_ref;
3263
3264 /* Each entry in the line_info_table maintains the file and
3265 line number associated with the label generated for that
3266 entry. The label gives the PC value associated with
3267 the line number entry. */
3268
3269 typedef struct dw_line_info_struct GTY(())
3270 {
3271 unsigned long dw_file_num;
3272 unsigned long dw_line_num;
3273 }
3274 dw_line_info_entry;
3275
3276 /* Line information for functions in separate sections; each one gets its
3277 own sequence. */
3278 typedef struct dw_separate_line_info_struct GTY(())
3279 {
3280 unsigned long dw_file_num;
3281 unsigned long dw_line_num;
3282 unsigned long function;
3283 }
3284 dw_separate_line_info_entry;
3285
3286 /* Each DIE attribute has a field specifying the attribute kind,
3287 a link to the next attribute in the chain, and an attribute value.
3288 Attributes are typically linked below the DIE they modify. */
3289
3290 typedef struct dw_attr_struct GTY(())
3291 {
3292 enum dwarf_attribute dw_attr;
3293 dw_attr_ref dw_attr_next;
3294 dw_val_node dw_attr_val;
3295 }
3296 dw_attr_node;
3297
3298 /* The Debugging Information Entry (DIE) structure */
3299
3300 typedef struct die_struct GTY(())
3301 {
3302 enum dwarf_tag die_tag;
3303 char *die_symbol;
3304 dw_attr_ref die_attr;
3305 dw_die_ref die_parent;
3306 dw_die_ref die_child;
3307 dw_die_ref die_sib;
3308 dw_offset die_offset;
3309 unsigned long die_abbrev;
3310 int die_mark;
3311 }
3312 die_node;
3313
3314 /* The pubname structure */
3315
3316 typedef struct pubname_struct GTY(())
3317 {
3318 dw_die_ref die;
3319 char *name;
3320 }
3321 pubname_entry;
3322
3323 struct dw_ranges_struct GTY(())
3324 {
3325 int block_num;
3326 };
3327
3328 /* The limbo die list structure. */
3329 typedef struct limbo_die_struct GTY(())
3330 {
3331 dw_die_ref die;
3332 tree created_for;
3333 struct limbo_die_struct *next;
3334 }
3335 limbo_die_node;
3336
3337 /* How to start an assembler comment. */
3338 #ifndef ASM_COMMENT_START
3339 #define ASM_COMMENT_START ";#"
3340 #endif
3341
3342 /* Define a macro which returns nonzero for a TYPE_DECL which was
3343 implicitly generated for a tagged type.
3344
3345 Note that unlike the gcc front end (which generates a NULL named
3346 TYPE_DECL node for each complete tagged type, each array type, and
3347 each function type node created) the g++ front end generates a
3348 _named_ TYPE_DECL node for each tagged type node created.
3349 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3350 generate a DW_TAG_typedef DIE for them. */
3351
3352 #define TYPE_DECL_IS_STUB(decl) \
3353 (DECL_NAME (decl) == NULL_TREE \
3354 || (DECL_ARTIFICIAL (decl) \
3355 && is_tagged_type (TREE_TYPE (decl)) \
3356 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3357 /* This is necessary for stub decls that \
3358 appear in nested inline functions. */ \
3359 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3360 && (decl_ultimate_origin (decl) \
3361 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3362
3363 /* Information concerning the compilation unit's programming
3364 language, and compiler version. */
3365
3366 /* Fixed size portion of the DWARF compilation unit header. */
3367 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3368 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3369
3370 /* Fixed size portion of public names info. */
3371 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3372
3373 /* Fixed size portion of the address range info. */
3374 #define DWARF_ARANGES_HEADER_SIZE \
3375 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3376 DWARF2_ADDR_SIZE * 2) \
3377 - DWARF_INITIAL_LENGTH_SIZE)
3378
3379 /* Size of padding portion in the address range info. It must be
3380 aligned to twice the pointer size. */
3381 #define DWARF_ARANGES_PAD_SIZE \
3382 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3383 DWARF2_ADDR_SIZE * 2) \
3384 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3385
3386 /* Use assembler line directives if available. */
3387 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3388 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3389 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3390 #else
3391 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3392 #endif
3393 #endif
3394
3395 /* Minimum line offset in a special line info. opcode.
3396 This value was chosen to give a reasonable range of values. */
3397 #define DWARF_LINE_BASE -10
3398
3399 /* First special line opcode - leave room for the standard opcodes. */
3400 #define DWARF_LINE_OPCODE_BASE 10
3401
3402 /* Range of line offsets in a special line info. opcode. */
3403 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3404
3405 /* Flag that indicates the initial value of the is_stmt_start flag.
3406 In the present implementation, we do not mark any lines as
3407 the beginning of a source statement, because that information
3408 is not made available by the GCC front-end. */
3409 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3410
3411 #ifdef DWARF2_DEBUGGING_INFO
3412 /* This location is used by calc_die_sizes() to keep track
3413 the offset of each DIE within the .debug_info section. */
3414 static unsigned long next_die_offset;
3415 #endif
3416
3417 /* Record the root of the DIE's built for the current compilation unit. */
3418 static GTY(()) dw_die_ref comp_unit_die;
3419
3420 #ifdef DWARF2_DEBUGGING_INFO
3421 /* We need special handling in dwarf2out_start_source_file if it is
3422 first one. */
3423 static int is_main_source;
3424 #endif
3425
3426 /* A list of DIEs with a NULL parent waiting to be relocated. */
3427 static GTY(()) limbo_die_node *limbo_die_list;
3428
3429 /* Filenames referenced by this compilation unit. */
3430 static GTY(()) varray_type file_table;
3431 static GTY(()) varray_type file_table_emitted;
3432 static GTY(()) size_t file_table_last_lookup_index;
3433
3434 /* A pointer to the base of a table of references to DIE's that describe
3435 declarations. The table is indexed by DECL_UID() which is a unique
3436 number identifying each decl. */
3437 static GTY((length ("decl_die_table_allocated"))) dw_die_ref *decl_die_table;
3438
3439 /* Number of elements currently allocated for the decl_die_table. */
3440 static GTY(()) unsigned decl_die_table_allocated;
3441
3442 /* Number of elements in decl_die_table currently in use. */
3443 static GTY(()) unsigned decl_die_table_in_use;
3444
3445 /* Size (in elements) of increments by which we may expand the
3446 decl_die_table. */
3447 #define DECL_DIE_TABLE_INCREMENT 256
3448
3449 /* A pointer to the base of a list of references to DIE's that
3450 are uniquely identified by their tag, presence/absence of
3451 children DIE's, and list of attribute/value pairs. */
3452 static GTY((length ("abbrev_die_table_allocated")))
3453 dw_die_ref *abbrev_die_table;
3454
3455 /* Number of elements currently allocated for abbrev_die_table. */
3456 static GTY(()) unsigned abbrev_die_table_allocated;
3457
3458 /* Number of elements in type_die_table currently in use. */
3459 static GTY(()) unsigned abbrev_die_table_in_use;
3460
3461 /* Size (in elements) of increments by which we may expand the
3462 abbrev_die_table. */
3463 #define ABBREV_DIE_TABLE_INCREMENT 256
3464
3465 /* A pointer to the base of a table that contains line information
3466 for each source code line in .text in the compilation unit. */
3467 static GTY((length ("line_info_table_allocated")))
3468 dw_line_info_ref line_info_table;
3469
3470 /* Number of elements currently allocated for line_info_table. */
3471 static GTY(()) unsigned line_info_table_allocated;
3472
3473 /* Number of elements in line_info_table currently in use. */
3474 static GTY(()) unsigned line_info_table_in_use;
3475
3476 /* A pointer to the base of a table that contains line information
3477 for each source code line outside of .text in the compilation unit. */
3478 static GTY ((length ("separate_line_info_table_allocated")))
3479 dw_separate_line_info_ref separate_line_info_table;
3480
3481 /* Number of elements currently allocated for separate_line_info_table. */
3482 static GTY(()) unsigned separate_line_info_table_allocated;
3483
3484 /* Number of elements in separate_line_info_table currently in use. */
3485 static GTY(()) unsigned separate_line_info_table_in_use;
3486
3487 /* Size (in elements) of increments by which we may expand the
3488 line_info_table. */
3489 #define LINE_INFO_TABLE_INCREMENT 1024
3490
3491 /* A pointer to the base of a table that contains a list of publicly
3492 accessible names. */
3493 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3494
3495 /* Number of elements currently allocated for pubname_table. */
3496 static GTY(()) unsigned pubname_table_allocated;
3497
3498 /* Number of elements in pubname_table currently in use. */
3499 static GTY(()) unsigned pubname_table_in_use;
3500
3501 /* Size (in elements) of increments by which we may expand the
3502 pubname_table. */
3503 #define PUBNAME_TABLE_INCREMENT 64
3504
3505 /* Array of dies for which we should generate .debug_arange info. */
3506 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3507
3508 /* Number of elements currently allocated for arange_table. */
3509 static GTY(()) unsigned arange_table_allocated;
3510
3511 /* Number of elements in arange_table currently in use. */
3512 static GTY(()) unsigned arange_table_in_use;
3513
3514 /* Size (in elements) of increments by which we may expand the
3515 arange_table. */
3516 #define ARANGE_TABLE_INCREMENT 64
3517
3518 /* Array of dies for which we should generate .debug_ranges info. */
3519 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3520
3521 /* Number of elements currently allocated for ranges_table. */
3522 static GTY(()) unsigned ranges_table_allocated;
3523
3524 /* Number of elements in ranges_table currently in use. */
3525 static GTY(()) unsigned ranges_table_in_use;
3526
3527 /* Size (in elements) of increments by which we may expand the
3528 ranges_table. */
3529 #define RANGES_TABLE_INCREMENT 64
3530
3531 /* Whether we have location lists that need outputting */
3532 static GTY(()) unsigned have_location_lists;
3533
3534 #ifdef DWARF2_DEBUGGING_INFO
3535 /* Record whether the function being analyzed contains inlined functions. */
3536 static int current_function_has_inlines;
3537 #endif
3538 #if 0 && defined (MIPS_DEBUGGING_INFO)
3539 static int comp_unit_has_inlines;
3540 #endif
3541
3542 /* Number of file tables emitted in maybe_emit_file(). */
3543 static GTY(()) int emitcount = 0;
3544
3545 /* Number of internal labels generated by gen_internal_sym(). */
3546 static GTY(()) int label_num;
3547
3548 #ifdef DWARF2_DEBUGGING_INFO
3549
3550 /* Forward declarations for functions defined in this file. */
3551
3552 static int is_pseudo_reg (rtx);
3553 static tree type_main_variant (tree);
3554 static int is_tagged_type (tree);
3555 static const char *dwarf_tag_name (unsigned);
3556 static const char *dwarf_attr_name (unsigned);
3557 static const char *dwarf_form_name (unsigned);
3558 #if 0
3559 static const char *dwarf_type_encoding_name (unsigned);
3560 #endif
3561 static tree decl_ultimate_origin (tree);
3562 static tree block_ultimate_origin (tree);
3563 static tree decl_class_context (tree);
3564 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3565 static inline enum dw_val_class AT_class (dw_attr_ref);
3566 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3567 static inline unsigned AT_flag (dw_attr_ref);
3568 static void add_AT_int (dw_die_ref, enum dwarf_attribute, long);
3569 static inline long int AT_int (dw_attr_ref);
3570 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned long);
3571 static inline unsigned long AT_unsigned (dw_attr_ref);
3572 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3573 unsigned long);
3574 static void add_AT_float (dw_die_ref, enum dwarf_attribute, unsigned, long *);
3575 static hashval_t debug_str_do_hash (const void *);
3576 static int debug_str_eq (const void *, const void *);
3577 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3578 static inline const char *AT_string (dw_attr_ref);
3579 static int AT_string_form (dw_attr_ref);
3580 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3581 static inline dw_die_ref AT_ref (dw_attr_ref);
3582 static inline int AT_ref_external (dw_attr_ref);
3583 static inline void set_AT_ref_external (dw_attr_ref, int);
3584 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3585 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3586 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3587 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3588 dw_loc_list_ref);
3589 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3590 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3591 static inline rtx AT_addr (dw_attr_ref);
3592 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3593 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3594 static void add_AT_offset (dw_die_ref, enum dwarf_attribute, unsigned long);
3595 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3596 unsigned long);
3597 static inline const char *AT_lbl (dw_attr_ref);
3598 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3599 static const char *get_AT_low_pc (dw_die_ref);
3600 static const char *get_AT_hi_pc (dw_die_ref);
3601 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3602 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3603 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3604 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3605 static bool is_c_family (void);
3606 static bool is_cxx (void);
3607 static bool is_java (void);
3608 static bool is_fortran (void);
3609 static bool is_ada (void);
3610 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3611 static inline void free_die (dw_die_ref);
3612 static void remove_children (dw_die_ref);
3613 static void add_child_die (dw_die_ref, dw_die_ref);
3614 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3615 static dw_die_ref lookup_type_die (tree);
3616 static void equate_type_number_to_die (tree, dw_die_ref);
3617 static dw_die_ref lookup_decl_die (tree);
3618 static void equate_decl_number_to_die (tree, dw_die_ref);
3619 static void print_spaces (FILE *);
3620 static void print_die (dw_die_ref, FILE *);
3621 static void print_dwarf_line_table (FILE *);
3622 static void reverse_die_lists (dw_die_ref);
3623 static void reverse_all_dies (dw_die_ref);
3624 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3625 static dw_die_ref pop_compile_unit (dw_die_ref);
3626 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3627 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3628 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3629 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3630 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3631 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3632 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3633 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3634 static void compute_section_prefix (dw_die_ref);
3635 static int is_type_die (dw_die_ref);
3636 static int is_comdat_die (dw_die_ref);
3637 static int is_symbol_die (dw_die_ref);
3638 static void assign_symbol_names (dw_die_ref);
3639 static void break_out_includes (dw_die_ref);
3640 static hashval_t htab_cu_hash (const void *);
3641 static int htab_cu_eq (const void *, const void *);
3642 static void htab_cu_del (void *);
3643 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3644 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3645 static void add_sibling_attributes (dw_die_ref);
3646 static void build_abbrev_table (dw_die_ref);
3647 static void output_location_lists (dw_die_ref);
3648 static int constant_size (long unsigned);
3649 static unsigned long size_of_die (dw_die_ref);
3650 static void calc_die_sizes (dw_die_ref);
3651 static void mark_dies (dw_die_ref);
3652 static void unmark_dies (dw_die_ref);
3653 static void unmark_all_dies (dw_die_ref);
3654 static unsigned long size_of_pubnames (void);
3655 static unsigned long size_of_aranges (void);
3656 static enum dwarf_form value_format (dw_attr_ref);
3657 static void output_value_format (dw_attr_ref);
3658 static void output_abbrev_section (void);
3659 static void output_die_symbol (dw_die_ref);
3660 static void output_die (dw_die_ref);
3661 static void output_compilation_unit_header (void);
3662 static void output_comp_unit (dw_die_ref, int);
3663 static const char *dwarf2_name (tree, int);
3664 static void add_pubname (tree, dw_die_ref);
3665 static void output_pubnames (void);
3666 static void add_arange (tree, dw_die_ref);
3667 static void output_aranges (void);
3668 static unsigned int add_ranges (tree);
3669 static void output_ranges (void);
3670 static void output_line_info (void);
3671 static void output_file_names (void);
3672 static dw_die_ref base_type_die (tree);
3673 static tree root_type (tree);
3674 static int is_base_type (tree);
3675 static bool is_ada_subrange_type (tree);
3676 static dw_die_ref subrange_type_die (tree);
3677 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3678 static int type_is_enum (tree);
3679 static unsigned int reg_number (rtx);
3680 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3681 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3682 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3683 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3684 static dw_loc_descr_ref based_loc_descr (unsigned, long);
3685 static int is_based_loc (rtx);
3686 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
3687 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3688 static dw_loc_descr_ref loc_descriptor (rtx);
3689 static dw_loc_descr_ref loc_descriptor_from_tree (tree, int);
3690 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3691 static tree field_type (tree);
3692 static unsigned int simple_type_align_in_bits (tree);
3693 static unsigned int simple_decl_align_in_bits (tree);
3694 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3695 static HOST_WIDE_INT field_byte_offset (tree);
3696 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3697 dw_loc_descr_ref);
3698 static void add_data_member_location_attribute (dw_die_ref, tree);
3699 static void add_const_value_attribute (dw_die_ref, rtx);
3700 static rtx rtl_for_decl_location (tree);
3701 static void add_location_or_const_value_attribute (dw_die_ref, tree);
3702 static void tree_add_const_value_attribute (dw_die_ref, tree);
3703 static void add_name_attribute (dw_die_ref, const char *);
3704 static void add_comp_dir_attribute (dw_die_ref);
3705 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
3706 static void add_subscript_info (dw_die_ref, tree);
3707 static void add_byte_size_attribute (dw_die_ref, tree);
3708 static void add_bit_offset_attribute (dw_die_ref, tree);
3709 static void add_bit_size_attribute (dw_die_ref, tree);
3710 static void add_prototyped_attribute (dw_die_ref, tree);
3711 static void add_abstract_origin_attribute (dw_die_ref, tree);
3712 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3713 static void add_src_coords_attributes (dw_die_ref, tree);
3714 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3715 static void push_decl_scope (tree);
3716 static void pop_decl_scope (void);
3717 static dw_die_ref scope_die_for (tree, dw_die_ref);
3718 static inline int local_scope_p (dw_die_ref);
3719 static inline int class_scope_p (dw_die_ref);
3720 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
3721 static const char *type_tag (tree);
3722 static tree member_declared_type (tree);
3723 #if 0
3724 static const char *decl_start_label (tree);
3725 #endif
3726 static void gen_array_type_die (tree, dw_die_ref);
3727 static void gen_set_type_die (tree, dw_die_ref);
3728 #if 0
3729 static void gen_entry_point_die (tree, dw_die_ref);
3730 #endif
3731 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
3732 static void gen_inlined_structure_type_die (tree, dw_die_ref);
3733 static void gen_inlined_union_type_die (tree, dw_die_ref);
3734 static void gen_enumeration_type_die (tree, dw_die_ref);
3735 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
3736 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3737 static void gen_formal_types_die (tree, dw_die_ref);
3738 static void gen_subprogram_die (tree, dw_die_ref);
3739 static void gen_variable_die (tree, dw_die_ref);
3740 static void gen_label_die (tree, dw_die_ref);
3741 static void gen_lexical_block_die (tree, dw_die_ref, int);
3742 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
3743 static void gen_field_die (tree, dw_die_ref);
3744 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3745 static dw_die_ref gen_compile_unit_die (const char *);
3746 static void gen_string_type_die (tree, dw_die_ref);
3747 static void gen_inheritance_die (tree, tree, dw_die_ref);
3748 static void gen_member_die (tree, dw_die_ref);
3749 static void gen_struct_or_union_type_die (tree, dw_die_ref);
3750 static void gen_subroutine_type_die (tree, dw_die_ref);
3751 static void gen_typedef_die (tree, dw_die_ref);
3752 static void gen_type_die (tree, dw_die_ref);
3753 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
3754 static void gen_block_die (tree, dw_die_ref, int);
3755 static void decls_for_scope (tree, dw_die_ref, int);
3756 static int is_redundant_typedef (tree);
3757 static void gen_decl_die (tree, dw_die_ref);
3758 static unsigned lookup_filename (const char *);
3759 static void init_file_table (void);
3760 static void retry_incomplete_types (void);
3761 static void gen_type_die_for_member (tree, tree, dw_die_ref);
3762 static void splice_child_die (dw_die_ref, dw_die_ref);
3763 static int file_info_cmp (const void *, const void *);
3764 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
3765 const char *, const char *, unsigned);
3766 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
3767 const char *, const char *,
3768 const char *);
3769 static void output_loc_list (dw_loc_list_ref);
3770 static char *gen_internal_sym (const char *);
3771
3772 static void prune_unmark_dies (dw_die_ref);
3773 static void prune_unused_types_mark (dw_die_ref, int);
3774 static void prune_unused_types_walk (dw_die_ref);
3775 static void prune_unused_types_walk_attribs (dw_die_ref);
3776 static void prune_unused_types_prune (dw_die_ref);
3777 static void prune_unused_types (void);
3778 static int maybe_emit_file (int);
3779
3780 /* Section names used to hold DWARF debugging information. */
3781 #ifndef DEBUG_INFO_SECTION
3782 #define DEBUG_INFO_SECTION ".debug_info"
3783 #endif
3784 #ifndef DEBUG_ABBREV_SECTION
3785 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3786 #endif
3787 #ifndef DEBUG_ARANGES_SECTION
3788 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3789 #endif
3790 #ifndef DEBUG_MACINFO_SECTION
3791 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3792 #endif
3793 #ifndef DEBUG_LINE_SECTION
3794 #define DEBUG_LINE_SECTION ".debug_line"
3795 #endif
3796 #ifndef DEBUG_LOC_SECTION
3797 #define DEBUG_LOC_SECTION ".debug_loc"
3798 #endif
3799 #ifndef DEBUG_PUBNAMES_SECTION
3800 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3801 #endif
3802 #ifndef DEBUG_STR_SECTION
3803 #define DEBUG_STR_SECTION ".debug_str"
3804 #endif
3805 #ifndef DEBUG_RANGES_SECTION
3806 #define DEBUG_RANGES_SECTION ".debug_ranges"
3807 #endif
3808
3809 /* Standard ELF section names for compiled code and data. */
3810 #ifndef TEXT_SECTION_NAME
3811 #define TEXT_SECTION_NAME ".text"
3812 #endif
3813
3814 /* Section flags for .debug_str section. */
3815 #define DEBUG_STR_SECTION_FLAGS \
3816 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
3817 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
3818 : SECTION_DEBUG)
3819
3820 /* Labels we insert at beginning sections we can reference instead of
3821 the section names themselves. */
3822
3823 #ifndef TEXT_SECTION_LABEL
3824 #define TEXT_SECTION_LABEL "Ltext"
3825 #endif
3826 #ifndef DEBUG_LINE_SECTION_LABEL
3827 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3828 #endif
3829 #ifndef DEBUG_INFO_SECTION_LABEL
3830 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3831 #endif
3832 #ifndef DEBUG_ABBREV_SECTION_LABEL
3833 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3834 #endif
3835 #ifndef DEBUG_LOC_SECTION_LABEL
3836 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3837 #endif
3838 #ifndef DEBUG_RANGES_SECTION_LABEL
3839 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3840 #endif
3841 #ifndef DEBUG_MACINFO_SECTION_LABEL
3842 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3843 #endif
3844
3845 /* Definitions of defaults for formats and names of various special
3846 (artificial) labels which may be generated within this file (when the -g
3847 options is used and DWARF_DEBUGGING_INFO is in effect.
3848 If necessary, these may be overridden from within the tm.h file, but
3849 typically, overriding these defaults is unnecessary. */
3850
3851 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3852 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3853 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3854 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3855 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3856 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3857 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3858 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3859
3860 #ifndef TEXT_END_LABEL
3861 #define TEXT_END_LABEL "Letext"
3862 #endif
3863 #ifndef BLOCK_BEGIN_LABEL
3864 #define BLOCK_BEGIN_LABEL "LBB"
3865 #endif
3866 #ifndef BLOCK_END_LABEL
3867 #define BLOCK_END_LABEL "LBE"
3868 #endif
3869 #ifndef LINE_CODE_LABEL
3870 #define LINE_CODE_LABEL "LM"
3871 #endif
3872 #ifndef SEPARATE_LINE_CODE_LABEL
3873 #define SEPARATE_LINE_CODE_LABEL "LSM"
3874 #endif
3875 \f
3876 /* We allow a language front-end to designate a function that is to be
3877 called to "demangle" any name before it it put into a DIE. */
3878
3879 static const char *(*demangle_name_func) (const char *);
3880
3881 void
3882 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
3883 {
3884 demangle_name_func = func;
3885 }
3886
3887 /* Test if rtl node points to a pseudo register. */
3888
3889 static inline int
3890 is_pseudo_reg (rtx rtl)
3891 {
3892 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3893 || (GET_CODE (rtl) == SUBREG
3894 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3895 }
3896
3897 /* Return a reference to a type, with its const and volatile qualifiers
3898 removed. */
3899
3900 static inline tree
3901 type_main_variant (tree type)
3902 {
3903 type = TYPE_MAIN_VARIANT (type);
3904
3905 /* ??? There really should be only one main variant among any group of
3906 variants of a given type (and all of the MAIN_VARIANT values for all
3907 members of the group should point to that one type) but sometimes the C
3908 front-end messes this up for array types, so we work around that bug
3909 here. */
3910 if (TREE_CODE (type) == ARRAY_TYPE)
3911 while (type != TYPE_MAIN_VARIANT (type))
3912 type = TYPE_MAIN_VARIANT (type);
3913
3914 return type;
3915 }
3916
3917 /* Return nonzero if the given type node represents a tagged type. */
3918
3919 static inline int
3920 is_tagged_type (tree type)
3921 {
3922 enum tree_code code = TREE_CODE (type);
3923
3924 return (code == RECORD_TYPE || code == UNION_TYPE
3925 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
3926 }
3927
3928 /* Convert a DIE tag into its string name. */
3929
3930 static const char *
3931 dwarf_tag_name (unsigned int tag)
3932 {
3933 switch (tag)
3934 {
3935 case DW_TAG_padding:
3936 return "DW_TAG_padding";
3937 case DW_TAG_array_type:
3938 return "DW_TAG_array_type";
3939 case DW_TAG_class_type:
3940 return "DW_TAG_class_type";
3941 case DW_TAG_entry_point:
3942 return "DW_TAG_entry_point";
3943 case DW_TAG_enumeration_type:
3944 return "DW_TAG_enumeration_type";
3945 case DW_TAG_formal_parameter:
3946 return "DW_TAG_formal_parameter";
3947 case DW_TAG_imported_declaration:
3948 return "DW_TAG_imported_declaration";
3949 case DW_TAG_label:
3950 return "DW_TAG_label";
3951 case DW_TAG_lexical_block:
3952 return "DW_TAG_lexical_block";
3953 case DW_TAG_member:
3954 return "DW_TAG_member";
3955 case DW_TAG_pointer_type:
3956 return "DW_TAG_pointer_type";
3957 case DW_TAG_reference_type:
3958 return "DW_TAG_reference_type";
3959 case DW_TAG_compile_unit:
3960 return "DW_TAG_compile_unit";
3961 case DW_TAG_string_type:
3962 return "DW_TAG_string_type";
3963 case DW_TAG_structure_type:
3964 return "DW_TAG_structure_type";
3965 case DW_TAG_subroutine_type:
3966 return "DW_TAG_subroutine_type";
3967 case DW_TAG_typedef:
3968 return "DW_TAG_typedef";
3969 case DW_TAG_union_type:
3970 return "DW_TAG_union_type";
3971 case DW_TAG_unspecified_parameters:
3972 return "DW_TAG_unspecified_parameters";
3973 case DW_TAG_variant:
3974 return "DW_TAG_variant";
3975 case DW_TAG_common_block:
3976 return "DW_TAG_common_block";
3977 case DW_TAG_common_inclusion:
3978 return "DW_TAG_common_inclusion";
3979 case DW_TAG_inheritance:
3980 return "DW_TAG_inheritance";
3981 case DW_TAG_inlined_subroutine:
3982 return "DW_TAG_inlined_subroutine";
3983 case DW_TAG_module:
3984 return "DW_TAG_module";
3985 case DW_TAG_ptr_to_member_type:
3986 return "DW_TAG_ptr_to_member_type";
3987 case DW_TAG_set_type:
3988 return "DW_TAG_set_type";
3989 case DW_TAG_subrange_type:
3990 return "DW_TAG_subrange_type";
3991 case DW_TAG_with_stmt:
3992 return "DW_TAG_with_stmt";
3993 case DW_TAG_access_declaration:
3994 return "DW_TAG_access_declaration";
3995 case DW_TAG_base_type:
3996 return "DW_TAG_base_type";
3997 case DW_TAG_catch_block:
3998 return "DW_TAG_catch_block";
3999 case DW_TAG_const_type:
4000 return "DW_TAG_const_type";
4001 case DW_TAG_constant:
4002 return "DW_TAG_constant";
4003 case DW_TAG_enumerator:
4004 return "DW_TAG_enumerator";
4005 case DW_TAG_file_type:
4006 return "DW_TAG_file_type";
4007 case DW_TAG_friend:
4008 return "DW_TAG_friend";
4009 case DW_TAG_namelist:
4010 return "DW_TAG_namelist";
4011 case DW_TAG_namelist_item:
4012 return "DW_TAG_namelist_item";
4013 case DW_TAG_packed_type:
4014 return "DW_TAG_packed_type";
4015 case DW_TAG_subprogram:
4016 return "DW_TAG_subprogram";
4017 case DW_TAG_template_type_param:
4018 return "DW_TAG_template_type_param";
4019 case DW_TAG_template_value_param:
4020 return "DW_TAG_template_value_param";
4021 case DW_TAG_thrown_type:
4022 return "DW_TAG_thrown_type";
4023 case DW_TAG_try_block:
4024 return "DW_TAG_try_block";
4025 case DW_TAG_variant_part:
4026 return "DW_TAG_variant_part";
4027 case DW_TAG_variable:
4028 return "DW_TAG_variable";
4029 case DW_TAG_volatile_type:
4030 return "DW_TAG_volatile_type";
4031 case DW_TAG_MIPS_loop:
4032 return "DW_TAG_MIPS_loop";
4033 case DW_TAG_format_label:
4034 return "DW_TAG_format_label";
4035 case DW_TAG_function_template:
4036 return "DW_TAG_function_template";
4037 case DW_TAG_class_template:
4038 return "DW_TAG_class_template";
4039 case DW_TAG_GNU_BINCL:
4040 return "DW_TAG_GNU_BINCL";
4041 case DW_TAG_GNU_EINCL:
4042 return "DW_TAG_GNU_EINCL";
4043 default:
4044 return "DW_TAG_<unknown>";
4045 }
4046 }
4047
4048 /* Convert a DWARF attribute code into its string name. */
4049
4050 static const char *
4051 dwarf_attr_name (unsigned int attr)
4052 {
4053 switch (attr)
4054 {
4055 case DW_AT_sibling:
4056 return "DW_AT_sibling";
4057 case DW_AT_location:
4058 return "DW_AT_location";
4059 case DW_AT_name:
4060 return "DW_AT_name";
4061 case DW_AT_ordering:
4062 return "DW_AT_ordering";
4063 case DW_AT_subscr_data:
4064 return "DW_AT_subscr_data";
4065 case DW_AT_byte_size:
4066 return "DW_AT_byte_size";
4067 case DW_AT_bit_offset:
4068 return "DW_AT_bit_offset";
4069 case DW_AT_bit_size:
4070 return "DW_AT_bit_size";
4071 case DW_AT_element_list:
4072 return "DW_AT_element_list";
4073 case DW_AT_stmt_list:
4074 return "DW_AT_stmt_list";
4075 case DW_AT_low_pc:
4076 return "DW_AT_low_pc";
4077 case DW_AT_high_pc:
4078 return "DW_AT_high_pc";
4079 case DW_AT_language:
4080 return "DW_AT_language";
4081 case DW_AT_member:
4082 return "DW_AT_member";
4083 case DW_AT_discr:
4084 return "DW_AT_discr";
4085 case DW_AT_discr_value:
4086 return "DW_AT_discr_value";
4087 case DW_AT_visibility:
4088 return "DW_AT_visibility";
4089 case DW_AT_import:
4090 return "DW_AT_import";
4091 case DW_AT_string_length:
4092 return "DW_AT_string_length";
4093 case DW_AT_common_reference:
4094 return "DW_AT_common_reference";
4095 case DW_AT_comp_dir:
4096 return "DW_AT_comp_dir";
4097 case DW_AT_const_value:
4098 return "DW_AT_const_value";
4099 case DW_AT_containing_type:
4100 return "DW_AT_containing_type";
4101 case DW_AT_default_value:
4102 return "DW_AT_default_value";
4103 case DW_AT_inline:
4104 return "DW_AT_inline";
4105 case DW_AT_is_optional:
4106 return "DW_AT_is_optional";
4107 case DW_AT_lower_bound:
4108 return "DW_AT_lower_bound";
4109 case DW_AT_producer:
4110 return "DW_AT_producer";
4111 case DW_AT_prototyped:
4112 return "DW_AT_prototyped";
4113 case DW_AT_return_addr:
4114 return "DW_AT_return_addr";
4115 case DW_AT_start_scope:
4116 return "DW_AT_start_scope";
4117 case DW_AT_stride_size:
4118 return "DW_AT_stride_size";
4119 case DW_AT_upper_bound:
4120 return "DW_AT_upper_bound";
4121 case DW_AT_abstract_origin:
4122 return "DW_AT_abstract_origin";
4123 case DW_AT_accessibility:
4124 return "DW_AT_accessibility";
4125 case DW_AT_address_class:
4126 return "DW_AT_address_class";
4127 case DW_AT_artificial:
4128 return "DW_AT_artificial";
4129 case DW_AT_base_types:
4130 return "DW_AT_base_types";
4131 case DW_AT_calling_convention:
4132 return "DW_AT_calling_convention";
4133 case DW_AT_count:
4134 return "DW_AT_count";
4135 case DW_AT_data_member_location:
4136 return "DW_AT_data_member_location";
4137 case DW_AT_decl_column:
4138 return "DW_AT_decl_column";
4139 case DW_AT_decl_file:
4140 return "DW_AT_decl_file";
4141 case DW_AT_decl_line:
4142 return "DW_AT_decl_line";
4143 case DW_AT_declaration:
4144 return "DW_AT_declaration";
4145 case DW_AT_discr_list:
4146 return "DW_AT_discr_list";
4147 case DW_AT_encoding:
4148 return "DW_AT_encoding";
4149 case DW_AT_external:
4150 return "DW_AT_external";
4151 case DW_AT_frame_base:
4152 return "DW_AT_frame_base";
4153 case DW_AT_friend:
4154 return "DW_AT_friend";
4155 case DW_AT_identifier_case:
4156 return "DW_AT_identifier_case";
4157 case DW_AT_macro_info:
4158 return "DW_AT_macro_info";
4159 case DW_AT_namelist_items:
4160 return "DW_AT_namelist_items";
4161 case DW_AT_priority:
4162 return "DW_AT_priority";
4163 case DW_AT_segment:
4164 return "DW_AT_segment";
4165 case DW_AT_specification:
4166 return "DW_AT_specification";
4167 case DW_AT_static_link:
4168 return "DW_AT_static_link";
4169 case DW_AT_type:
4170 return "DW_AT_type";
4171 case DW_AT_use_location:
4172 return "DW_AT_use_location";
4173 case DW_AT_variable_parameter:
4174 return "DW_AT_variable_parameter";
4175 case DW_AT_virtuality:
4176 return "DW_AT_virtuality";
4177 case DW_AT_vtable_elem_location:
4178 return "DW_AT_vtable_elem_location";
4179
4180 case DW_AT_allocated:
4181 return "DW_AT_allocated";
4182 case DW_AT_associated:
4183 return "DW_AT_associated";
4184 case DW_AT_data_location:
4185 return "DW_AT_data_location";
4186 case DW_AT_stride:
4187 return "DW_AT_stride";
4188 case DW_AT_entry_pc:
4189 return "DW_AT_entry_pc";
4190 case DW_AT_use_UTF8:
4191 return "DW_AT_use_UTF8";
4192 case DW_AT_extension:
4193 return "DW_AT_extension";
4194 case DW_AT_ranges:
4195 return "DW_AT_ranges";
4196 case DW_AT_trampoline:
4197 return "DW_AT_trampoline";
4198 case DW_AT_call_column:
4199 return "DW_AT_call_column";
4200 case DW_AT_call_file:
4201 return "DW_AT_call_file";
4202 case DW_AT_call_line:
4203 return "DW_AT_call_line";
4204
4205 case DW_AT_MIPS_fde:
4206 return "DW_AT_MIPS_fde";
4207 case DW_AT_MIPS_loop_begin:
4208 return "DW_AT_MIPS_loop_begin";
4209 case DW_AT_MIPS_tail_loop_begin:
4210 return "DW_AT_MIPS_tail_loop_begin";
4211 case DW_AT_MIPS_epilog_begin:
4212 return "DW_AT_MIPS_epilog_begin";
4213 case DW_AT_MIPS_loop_unroll_factor:
4214 return "DW_AT_MIPS_loop_unroll_factor";
4215 case DW_AT_MIPS_software_pipeline_depth:
4216 return "DW_AT_MIPS_software_pipeline_depth";
4217 case DW_AT_MIPS_linkage_name:
4218 return "DW_AT_MIPS_linkage_name";
4219 case DW_AT_MIPS_stride:
4220 return "DW_AT_MIPS_stride";
4221 case DW_AT_MIPS_abstract_name:
4222 return "DW_AT_MIPS_abstract_name";
4223 case DW_AT_MIPS_clone_origin:
4224 return "DW_AT_MIPS_clone_origin";
4225 case DW_AT_MIPS_has_inlines:
4226 return "DW_AT_MIPS_has_inlines";
4227
4228 case DW_AT_sf_names:
4229 return "DW_AT_sf_names";
4230 case DW_AT_src_info:
4231 return "DW_AT_src_info";
4232 case DW_AT_mac_info:
4233 return "DW_AT_mac_info";
4234 case DW_AT_src_coords:
4235 return "DW_AT_src_coords";
4236 case DW_AT_body_begin:
4237 return "DW_AT_body_begin";
4238 case DW_AT_body_end:
4239 return "DW_AT_body_end";
4240 case DW_AT_GNU_vector:
4241 return "DW_AT_GNU_vector";
4242
4243 case DW_AT_VMS_rtnbeg_pd_address:
4244 return "DW_AT_VMS_rtnbeg_pd_address";
4245
4246 default:
4247 return "DW_AT_<unknown>";
4248 }
4249 }
4250
4251 /* Convert a DWARF value form code into its string name. */
4252
4253 static const char *
4254 dwarf_form_name (unsigned int form)
4255 {
4256 switch (form)
4257 {
4258 case DW_FORM_addr:
4259 return "DW_FORM_addr";
4260 case DW_FORM_block2:
4261 return "DW_FORM_block2";
4262 case DW_FORM_block4:
4263 return "DW_FORM_block4";
4264 case DW_FORM_data2:
4265 return "DW_FORM_data2";
4266 case DW_FORM_data4:
4267 return "DW_FORM_data4";
4268 case DW_FORM_data8:
4269 return "DW_FORM_data8";
4270 case DW_FORM_string:
4271 return "DW_FORM_string";
4272 case DW_FORM_block:
4273 return "DW_FORM_block";
4274 case DW_FORM_block1:
4275 return "DW_FORM_block1";
4276 case DW_FORM_data1:
4277 return "DW_FORM_data1";
4278 case DW_FORM_flag:
4279 return "DW_FORM_flag";
4280 case DW_FORM_sdata:
4281 return "DW_FORM_sdata";
4282 case DW_FORM_strp:
4283 return "DW_FORM_strp";
4284 case DW_FORM_udata:
4285 return "DW_FORM_udata";
4286 case DW_FORM_ref_addr:
4287 return "DW_FORM_ref_addr";
4288 case DW_FORM_ref1:
4289 return "DW_FORM_ref1";
4290 case DW_FORM_ref2:
4291 return "DW_FORM_ref2";
4292 case DW_FORM_ref4:
4293 return "DW_FORM_ref4";
4294 case DW_FORM_ref8:
4295 return "DW_FORM_ref8";
4296 case DW_FORM_ref_udata:
4297 return "DW_FORM_ref_udata";
4298 case DW_FORM_indirect:
4299 return "DW_FORM_indirect";
4300 default:
4301 return "DW_FORM_<unknown>";
4302 }
4303 }
4304
4305 /* Convert a DWARF type code into its string name. */
4306
4307 #if 0
4308 static const char *
4309 dwarf_type_encoding_name (unsigned enc)
4310 {
4311 switch (enc)
4312 {
4313 case DW_ATE_address:
4314 return "DW_ATE_address";
4315 case DW_ATE_boolean:
4316 return "DW_ATE_boolean";
4317 case DW_ATE_complex_float:
4318 return "DW_ATE_complex_float";
4319 case DW_ATE_float:
4320 return "DW_ATE_float";
4321 case DW_ATE_signed:
4322 return "DW_ATE_signed";
4323 case DW_ATE_signed_char:
4324 return "DW_ATE_signed_char";
4325 case DW_ATE_unsigned:
4326 return "DW_ATE_unsigned";
4327 case DW_ATE_unsigned_char:
4328 return "DW_ATE_unsigned_char";
4329 default:
4330 return "DW_ATE_<unknown>";
4331 }
4332 }
4333 #endif
4334 \f
4335 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4336 instance of an inlined instance of a decl which is local to an inline
4337 function, so we have to trace all of the way back through the origin chain
4338 to find out what sort of node actually served as the original seed for the
4339 given block. */
4340
4341 static tree
4342 decl_ultimate_origin (tree decl)
4343 {
4344 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4345 nodes in the function to point to themselves; ignore that if
4346 we're trying to output the abstract instance of this function. */
4347 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4348 return NULL_TREE;
4349
4350 #ifdef ENABLE_CHECKING
4351 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4352 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4353 most distant ancestor, this should never happen. */
4354 abort ();
4355 #endif
4356
4357 return DECL_ABSTRACT_ORIGIN (decl);
4358 }
4359
4360 /* Determine the "ultimate origin" of a block. The block may be an inlined
4361 instance of an inlined instance of a block which is local to an inline
4362 function, so we have to trace all of the way back through the origin chain
4363 to find out what sort of node actually served as the original seed for the
4364 given block. */
4365
4366 static tree
4367 block_ultimate_origin (tree block)
4368 {
4369 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4370
4371 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4372 nodes in the function to point to themselves; ignore that if
4373 we're trying to output the abstract instance of this function. */
4374 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4375 return NULL_TREE;
4376
4377 if (immediate_origin == NULL_TREE)
4378 return NULL_TREE;
4379 else
4380 {
4381 tree ret_val;
4382 tree lookahead = immediate_origin;
4383
4384 do
4385 {
4386 ret_val = lookahead;
4387 lookahead = (TREE_CODE (ret_val) == BLOCK
4388 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4389 }
4390 while (lookahead != NULL && lookahead != ret_val);
4391
4392 return ret_val;
4393 }
4394 }
4395
4396 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4397 of a virtual function may refer to a base class, so we check the 'this'
4398 parameter. */
4399
4400 static tree
4401 decl_class_context (tree decl)
4402 {
4403 tree context = NULL_TREE;
4404
4405 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4406 context = DECL_CONTEXT (decl);
4407 else
4408 context = TYPE_MAIN_VARIANT
4409 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4410
4411 if (context && !TYPE_P (context))
4412 context = NULL_TREE;
4413
4414 return context;
4415 }
4416 \f
4417 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4418 addition order, and correct that in reverse_all_dies. */
4419
4420 static inline void
4421 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4422 {
4423 if (die != NULL && attr != NULL)
4424 {
4425 attr->dw_attr_next = die->die_attr;
4426 die->die_attr = attr;
4427 }
4428 }
4429
4430 static inline enum dw_val_class
4431 AT_class (dw_attr_ref a)
4432 {
4433 return a->dw_attr_val.val_class;
4434 }
4435
4436 /* Add a flag value attribute to a DIE. */
4437
4438 static inline void
4439 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4440 {
4441 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4442
4443 attr->dw_attr_next = NULL;
4444 attr->dw_attr = attr_kind;
4445 attr->dw_attr_val.val_class = dw_val_class_flag;
4446 attr->dw_attr_val.v.val_flag = flag;
4447 add_dwarf_attr (die, attr);
4448 }
4449
4450 static inline unsigned
4451 AT_flag (dw_attr_ref a)
4452 {
4453 if (a && AT_class (a) == dw_val_class_flag)
4454 return a->dw_attr_val.v.val_flag;
4455
4456 abort ();
4457 }
4458
4459 /* Add a signed integer attribute value to a DIE. */
4460
4461 static inline void
4462 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, long int int_val)
4463 {
4464 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4465
4466 attr->dw_attr_next = NULL;
4467 attr->dw_attr = attr_kind;
4468 attr->dw_attr_val.val_class = dw_val_class_const;
4469 attr->dw_attr_val.v.val_int = int_val;
4470 add_dwarf_attr (die, attr);
4471 }
4472
4473 static inline long int
4474 AT_int (dw_attr_ref a)
4475 {
4476 if (a && AT_class (a) == dw_val_class_const)
4477 return a->dw_attr_val.v.val_int;
4478
4479 abort ();
4480 }
4481
4482 /* Add an unsigned integer attribute value to a DIE. */
4483
4484 static inline void
4485 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4486 long unsigned int unsigned_val)
4487 {
4488 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4489
4490 attr->dw_attr_next = NULL;
4491 attr->dw_attr = attr_kind;
4492 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4493 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4494 add_dwarf_attr (die, attr);
4495 }
4496
4497 static inline unsigned long
4498 AT_unsigned (dw_attr_ref a)
4499 {
4500 if (a && AT_class (a) == dw_val_class_unsigned_const)
4501 return a->dw_attr_val.v.val_unsigned;
4502
4503 abort ();
4504 }
4505
4506 /* Add an unsigned double integer attribute value to a DIE. */
4507
4508 static inline void
4509 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4510 long unsigned int val_hi, long unsigned int val_low)
4511 {
4512 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4513
4514 attr->dw_attr_next = NULL;
4515 attr->dw_attr = attr_kind;
4516 attr->dw_attr_val.val_class = dw_val_class_long_long;
4517 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4518 attr->dw_attr_val.v.val_long_long.low = val_low;
4519 add_dwarf_attr (die, attr);
4520 }
4521
4522 /* Add a floating point attribute value to a DIE and return it. */
4523
4524 static inline void
4525 add_AT_float (dw_die_ref die, enum dwarf_attribute attr_kind,
4526 unsigned int length, long int *array)
4527 {
4528 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4529
4530 attr->dw_attr_next = NULL;
4531 attr->dw_attr = attr_kind;
4532 attr->dw_attr_val.val_class = dw_val_class_float;
4533 attr->dw_attr_val.v.val_float.length = length;
4534 attr->dw_attr_val.v.val_float.array = array;
4535 add_dwarf_attr (die, attr);
4536 }
4537
4538 /* Hash and equality functions for debug_str_hash. */
4539
4540 static hashval_t
4541 debug_str_do_hash (const void *x)
4542 {
4543 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4544 }
4545
4546 static int
4547 debug_str_eq (const void *x1, const void *x2)
4548 {
4549 return strcmp ((((const struct indirect_string_node *)x1)->str),
4550 (const char *)x2) == 0;
4551 }
4552
4553 /* Add a string attribute value to a DIE. */
4554
4555 static inline void
4556 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4557 {
4558 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4559 struct indirect_string_node *node;
4560 void **slot;
4561
4562 if (! debug_str_hash)
4563 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4564 debug_str_eq, NULL);
4565
4566 slot = htab_find_slot_with_hash (debug_str_hash, str,
4567 htab_hash_string (str), INSERT);
4568 if (*slot == NULL)
4569 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4570 node = (struct indirect_string_node *) *slot;
4571 node->str = ggc_strdup (str);
4572 node->refcount++;
4573
4574 attr->dw_attr_next = NULL;
4575 attr->dw_attr = attr_kind;
4576 attr->dw_attr_val.val_class = dw_val_class_str;
4577 attr->dw_attr_val.v.val_str = node;
4578 add_dwarf_attr (die, attr);
4579 }
4580
4581 static inline const char *
4582 AT_string (dw_attr_ref a)
4583 {
4584 if (a && AT_class (a) == dw_val_class_str)
4585 return a->dw_attr_val.v.val_str->str;
4586
4587 abort ();
4588 }
4589
4590 /* Find out whether a string should be output inline in DIE
4591 or out-of-line in .debug_str section. */
4592
4593 static int
4594 AT_string_form (dw_attr_ref a)
4595 {
4596 if (a && AT_class (a) == dw_val_class_str)
4597 {
4598 struct indirect_string_node *node;
4599 unsigned int len;
4600 char label[32];
4601
4602 node = a->dw_attr_val.v.val_str;
4603 if (node->form)
4604 return node->form;
4605
4606 len = strlen (node->str) + 1;
4607
4608 /* If the string is shorter or equal to the size of the reference, it is
4609 always better to put it inline. */
4610 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4611 return node->form = DW_FORM_string;
4612
4613 /* If we cannot expect the linker to merge strings in .debug_str
4614 section, only put it into .debug_str if it is worth even in this
4615 single module. */
4616 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4617 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4618 return node->form = DW_FORM_string;
4619
4620 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4621 ++dw2_string_counter;
4622 node->label = xstrdup (label);
4623
4624 return node->form = DW_FORM_strp;
4625 }
4626
4627 abort ();
4628 }
4629
4630 /* Add a DIE reference attribute value to a DIE. */
4631
4632 static inline void
4633 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4634 {
4635 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4636
4637 attr->dw_attr_next = NULL;
4638 attr->dw_attr = attr_kind;
4639 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4640 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4641 attr->dw_attr_val.v.val_die_ref.external = 0;
4642 add_dwarf_attr (die, attr);
4643 }
4644
4645 static inline dw_die_ref
4646 AT_ref (dw_attr_ref a)
4647 {
4648 if (a && AT_class (a) == dw_val_class_die_ref)
4649 return a->dw_attr_val.v.val_die_ref.die;
4650
4651 abort ();
4652 }
4653
4654 static inline int
4655 AT_ref_external (dw_attr_ref a)
4656 {
4657 if (a && AT_class (a) == dw_val_class_die_ref)
4658 return a->dw_attr_val.v.val_die_ref.external;
4659
4660 return 0;
4661 }
4662
4663 static inline void
4664 set_AT_ref_external (dw_attr_ref a, int i)
4665 {
4666 if (a && AT_class (a) == dw_val_class_die_ref)
4667 a->dw_attr_val.v.val_die_ref.external = i;
4668 else
4669 abort ();
4670 }
4671
4672 /* Add an FDE reference attribute value to a DIE. */
4673
4674 static inline void
4675 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4676 {
4677 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4678
4679 attr->dw_attr_next = NULL;
4680 attr->dw_attr = attr_kind;
4681 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4682 attr->dw_attr_val.v.val_fde_index = targ_fde;
4683 add_dwarf_attr (die, attr);
4684 }
4685
4686 /* Add a location description attribute value to a DIE. */
4687
4688 static inline void
4689 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4690 {
4691 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4692
4693 attr->dw_attr_next = NULL;
4694 attr->dw_attr = attr_kind;
4695 attr->dw_attr_val.val_class = dw_val_class_loc;
4696 attr->dw_attr_val.v.val_loc = loc;
4697 add_dwarf_attr (die, attr);
4698 }
4699
4700 static inline dw_loc_descr_ref
4701 AT_loc (dw_attr_ref a)
4702 {
4703 if (a && AT_class (a) == dw_val_class_loc)
4704 return a->dw_attr_val.v.val_loc;
4705
4706 abort ();
4707 }
4708
4709 static inline void
4710 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4711 {
4712 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4713
4714 attr->dw_attr_next = NULL;
4715 attr->dw_attr = attr_kind;
4716 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4717 attr->dw_attr_val.v.val_loc_list = loc_list;
4718 add_dwarf_attr (die, attr);
4719 have_location_lists = 1;
4720 }
4721
4722 static inline dw_loc_list_ref
4723 AT_loc_list (dw_attr_ref a)
4724 {
4725 if (a && AT_class (a) == dw_val_class_loc_list)
4726 return a->dw_attr_val.v.val_loc_list;
4727
4728 abort ();
4729 }
4730
4731 /* Add an address constant attribute value to a DIE. */
4732
4733 static inline void
4734 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
4735 {
4736 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4737
4738 attr->dw_attr_next = NULL;
4739 attr->dw_attr = attr_kind;
4740 attr->dw_attr_val.val_class = dw_val_class_addr;
4741 attr->dw_attr_val.v.val_addr = addr;
4742 add_dwarf_attr (die, attr);
4743 }
4744
4745 static inline rtx
4746 AT_addr (dw_attr_ref a)
4747 {
4748 if (a && AT_class (a) == dw_val_class_addr)
4749 return a->dw_attr_val.v.val_addr;
4750
4751 abort ();
4752 }
4753
4754 /* Add a label identifier attribute value to a DIE. */
4755
4756 static inline void
4757 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
4758 {
4759 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4760
4761 attr->dw_attr_next = NULL;
4762 attr->dw_attr = attr_kind;
4763 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4764 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4765 add_dwarf_attr (die, attr);
4766 }
4767
4768 /* Add a section offset attribute value to a DIE. */
4769
4770 static inline void
4771 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
4772 {
4773 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4774
4775 attr->dw_attr_next = NULL;
4776 attr->dw_attr = attr_kind;
4777 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4778 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4779 add_dwarf_attr (die, attr);
4780 }
4781
4782 /* Add an offset attribute value to a DIE. */
4783
4784 static inline void
4785 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind, long unsigned int offset)
4786 {
4787 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4788
4789 attr->dw_attr_next = NULL;
4790 attr->dw_attr = attr_kind;
4791 attr->dw_attr_val.val_class = dw_val_class_offset;
4792 attr->dw_attr_val.v.val_offset = offset;
4793 add_dwarf_attr (die, attr);
4794 }
4795
4796 /* Add an range_list attribute value to a DIE. */
4797
4798 static void
4799 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
4800 long unsigned int offset)
4801 {
4802 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4803
4804 attr->dw_attr_next = NULL;
4805 attr->dw_attr = attr_kind;
4806 attr->dw_attr_val.val_class = dw_val_class_range_list;
4807 attr->dw_attr_val.v.val_offset = offset;
4808 add_dwarf_attr (die, attr);
4809 }
4810
4811 static inline const char *
4812 AT_lbl (dw_attr_ref a)
4813 {
4814 if (a && (AT_class (a) == dw_val_class_lbl_id
4815 || AT_class (a) == dw_val_class_lbl_offset))
4816 return a->dw_attr_val.v.val_lbl_id;
4817
4818 abort ();
4819 }
4820
4821 /* Get the attribute of type attr_kind. */
4822
4823 static inline dw_attr_ref
4824 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4825 {
4826 dw_attr_ref a;
4827 dw_die_ref spec = NULL;
4828
4829 if (die != NULL)
4830 {
4831 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
4832 if (a->dw_attr == attr_kind)
4833 return a;
4834 else if (a->dw_attr == DW_AT_specification
4835 || a->dw_attr == DW_AT_abstract_origin)
4836 spec = AT_ref (a);
4837
4838 if (spec)
4839 return get_AT (spec, attr_kind);
4840 }
4841
4842 return NULL;
4843 }
4844
4845 /* Return the "low pc" attribute value, typically associated with a subprogram
4846 DIE. Return null if the "low pc" attribute is either not present, or if it
4847 cannot be represented as an assembler label identifier. */
4848
4849 static inline const char *
4850 get_AT_low_pc (dw_die_ref die)
4851 {
4852 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
4853
4854 return a ? AT_lbl (a) : NULL;
4855 }
4856
4857 /* Return the "high pc" attribute value, typically associated with a subprogram
4858 DIE. Return null if the "high pc" attribute is either not present, or if it
4859 cannot be represented as an assembler label identifier. */
4860
4861 static inline const char *
4862 get_AT_hi_pc (dw_die_ref die)
4863 {
4864 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
4865
4866 return a ? AT_lbl (a) : NULL;
4867 }
4868
4869 /* Return the value of the string attribute designated by ATTR_KIND, or
4870 NULL if it is not present. */
4871
4872 static inline const char *
4873 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
4874 {
4875 dw_attr_ref a = get_AT (die, attr_kind);
4876
4877 return a ? AT_string (a) : NULL;
4878 }
4879
4880 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
4881 if it is not present. */
4882
4883 static inline int
4884 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
4885 {
4886 dw_attr_ref a = get_AT (die, attr_kind);
4887
4888 return a ? AT_flag (a) : 0;
4889 }
4890
4891 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4892 if it is not present. */
4893
4894 static inline unsigned
4895 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
4896 {
4897 dw_attr_ref a = get_AT (die, attr_kind);
4898
4899 return a ? AT_unsigned (a) : 0;
4900 }
4901
4902 static inline dw_die_ref
4903 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
4904 {
4905 dw_attr_ref a = get_AT (die, attr_kind);
4906
4907 return a ? AT_ref (a) : NULL;
4908 }
4909
4910 /* Return TRUE if the language is C or C++. */
4911
4912 static inline bool
4913 is_c_family (void)
4914 {
4915 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4916
4917 return (lang == DW_LANG_C || lang == DW_LANG_C89
4918 || lang == DW_LANG_C_plus_plus);
4919 }
4920
4921 /* Return TRUE if the language is C++. */
4922
4923 static inline bool
4924 is_cxx (void)
4925 {
4926 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
4927 == DW_LANG_C_plus_plus);
4928 }
4929
4930 /* Return TRUE if the language is Fortran. */
4931
4932 static inline bool
4933 is_fortran (void)
4934 {
4935 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4936
4937 return lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90;
4938 }
4939
4940 /* Return TRUE if the language is Java. */
4941
4942 static inline bool
4943 is_java (void)
4944 {
4945 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4946
4947 return lang == DW_LANG_Java;
4948 }
4949
4950 /* Return TRUE if the language is Ada. */
4951
4952 static inline bool
4953 is_ada (void)
4954 {
4955 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4956
4957 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
4958 }
4959
4960 /* Free up the memory used by A. */
4961
4962 static inline void free_AT (dw_attr_ref);
4963 static inline void
4964 free_AT (dw_attr_ref a)
4965 {
4966 if (AT_class (a) == dw_val_class_str)
4967 if (a->dw_attr_val.v.val_str->refcount)
4968 a->dw_attr_val.v.val_str->refcount--;
4969 }
4970
4971 /* Remove the specified attribute if present. */
4972
4973 static void
4974 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4975 {
4976 dw_attr_ref *p;
4977 dw_attr_ref removed = NULL;
4978
4979 if (die != NULL)
4980 {
4981 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
4982 if ((*p)->dw_attr == attr_kind)
4983 {
4984 removed = *p;
4985 *p = (*p)->dw_attr_next;
4986 break;
4987 }
4988
4989 if (removed != 0)
4990 free_AT (removed);
4991 }
4992 }
4993
4994 /* Free up the memory used by DIE. */
4995
4996 static inline void
4997 free_die (dw_die_ref die)
4998 {
4999 remove_children (die);
5000 }
5001
5002 /* Discard the children of this DIE. */
5003
5004 static void
5005 remove_children (dw_die_ref die)
5006 {
5007 dw_die_ref child_die = die->die_child;
5008
5009 die->die_child = NULL;
5010
5011 while (child_die != NULL)
5012 {
5013 dw_die_ref tmp_die = child_die;
5014 dw_attr_ref a;
5015
5016 child_die = child_die->die_sib;
5017
5018 for (a = tmp_die->die_attr; a != NULL;)
5019 {
5020 dw_attr_ref tmp_a = a;
5021
5022 a = a->dw_attr_next;
5023 free_AT (tmp_a);
5024 }
5025
5026 free_die (tmp_die);
5027 }
5028 }
5029
5030 /* Add a child DIE below its parent. We build the lists up in reverse
5031 addition order, and correct that in reverse_all_dies. */
5032
5033 static inline void
5034 add_child_die (dw_die_ref die, dw_die_ref child_die)
5035 {
5036 if (die != NULL && child_die != NULL)
5037 {
5038 if (die == child_die)
5039 abort ();
5040
5041 child_die->die_parent = die;
5042 child_die->die_sib = die->die_child;
5043 die->die_child = child_die;
5044 }
5045 }
5046
5047 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5048 is the specification, to the front of PARENT's list of children. */
5049
5050 static void
5051 splice_child_die (dw_die_ref parent, dw_die_ref child)
5052 {
5053 dw_die_ref *p;
5054
5055 /* We want the declaration DIE from inside the class, not the
5056 specification DIE at toplevel. */
5057 if (child->die_parent != parent)
5058 {
5059 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5060
5061 if (tmp)
5062 child = tmp;
5063 }
5064
5065 if (child->die_parent != parent
5066 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5067 abort ();
5068
5069 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5070 if (*p == child)
5071 {
5072 *p = child->die_sib;
5073 break;
5074 }
5075
5076 child->die_parent = parent;
5077 child->die_sib = parent->die_child;
5078 parent->die_child = child;
5079 }
5080
5081 /* Return a pointer to a newly created DIE node. */
5082
5083 static inline dw_die_ref
5084 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5085 {
5086 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5087
5088 die->die_tag = tag_value;
5089
5090 if (parent_die != NULL)
5091 add_child_die (parent_die, die);
5092 else
5093 {
5094 limbo_die_node *limbo_node;
5095
5096 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5097 limbo_node->die = die;
5098 limbo_node->created_for = t;
5099 limbo_node->next = limbo_die_list;
5100 limbo_die_list = limbo_node;
5101 }
5102
5103 return die;
5104 }
5105
5106 /* Return the DIE associated with the given type specifier. */
5107
5108 static inline dw_die_ref
5109 lookup_type_die (tree type)
5110 {
5111 return TYPE_SYMTAB_DIE (type);
5112 }
5113
5114 /* Equate a DIE to a given type specifier. */
5115
5116 static inline void
5117 equate_type_number_to_die (tree type, dw_die_ref type_die)
5118 {
5119 TYPE_SYMTAB_DIE (type) = type_die;
5120 }
5121
5122 /* Return the DIE associated with a given declaration. */
5123
5124 static inline dw_die_ref
5125 lookup_decl_die (tree decl)
5126 {
5127 unsigned decl_id = DECL_UID (decl);
5128
5129 return (decl_id < decl_die_table_in_use ? decl_die_table[decl_id] : NULL);
5130 }
5131
5132 /* Equate a DIE to a particular declaration. */
5133
5134 static void
5135 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5136 {
5137 unsigned int decl_id = DECL_UID (decl);
5138 unsigned int num_allocated;
5139
5140 if (decl_id >= decl_die_table_allocated)
5141 {
5142 num_allocated
5143 = ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
5144 / DECL_DIE_TABLE_INCREMENT)
5145 * DECL_DIE_TABLE_INCREMENT;
5146
5147 decl_die_table = ggc_realloc (decl_die_table,
5148 sizeof (dw_die_ref) * num_allocated);
5149
5150 memset (&decl_die_table[decl_die_table_allocated], 0,
5151 (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
5152 decl_die_table_allocated = num_allocated;
5153 }
5154
5155 if (decl_id >= decl_die_table_in_use)
5156 decl_die_table_in_use = (decl_id + 1);
5157
5158 decl_die_table[decl_id] = decl_die;
5159 }
5160 \f
5161 /* Keep track of the number of spaces used to indent the
5162 output of the debugging routines that print the structure of
5163 the DIE internal representation. */
5164 static int print_indent;
5165
5166 /* Indent the line the number of spaces given by print_indent. */
5167
5168 static inline void
5169 print_spaces (FILE *outfile)
5170 {
5171 fprintf (outfile, "%*s", print_indent, "");
5172 }
5173
5174 /* Print the information associated with a given DIE, and its children.
5175 This routine is a debugging aid only. */
5176
5177 static void
5178 print_die (dw_die_ref die, FILE *outfile)
5179 {
5180 dw_attr_ref a;
5181 dw_die_ref c;
5182
5183 print_spaces (outfile);
5184 fprintf (outfile, "DIE %4lu: %s\n",
5185 die->die_offset, dwarf_tag_name (die->die_tag));
5186 print_spaces (outfile);
5187 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5188 fprintf (outfile, " offset: %lu\n", die->die_offset);
5189
5190 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5191 {
5192 print_spaces (outfile);
5193 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5194
5195 switch (AT_class (a))
5196 {
5197 case dw_val_class_addr:
5198 fprintf (outfile, "address");
5199 break;
5200 case dw_val_class_offset:
5201 fprintf (outfile, "offset");
5202 break;
5203 case dw_val_class_loc:
5204 fprintf (outfile, "location descriptor");
5205 break;
5206 case dw_val_class_loc_list:
5207 fprintf (outfile, "location list -> label:%s",
5208 AT_loc_list (a)->ll_symbol);
5209 break;
5210 case dw_val_class_range_list:
5211 fprintf (outfile, "range list");
5212 break;
5213 case dw_val_class_const:
5214 fprintf (outfile, "%ld", AT_int (a));
5215 break;
5216 case dw_val_class_unsigned_const:
5217 fprintf (outfile, "%lu", AT_unsigned (a));
5218 break;
5219 case dw_val_class_long_long:
5220 fprintf (outfile, "constant (%lu,%lu)",
5221 a->dw_attr_val.v.val_long_long.hi,
5222 a->dw_attr_val.v.val_long_long.low);
5223 break;
5224 case dw_val_class_float:
5225 fprintf (outfile, "floating-point constant");
5226 break;
5227 case dw_val_class_flag:
5228 fprintf (outfile, "%u", AT_flag (a));
5229 break;
5230 case dw_val_class_die_ref:
5231 if (AT_ref (a) != NULL)
5232 {
5233 if (AT_ref (a)->die_symbol)
5234 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5235 else
5236 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5237 }
5238 else
5239 fprintf (outfile, "die -> <null>");
5240 break;
5241 case dw_val_class_lbl_id:
5242 case dw_val_class_lbl_offset:
5243 fprintf (outfile, "label: %s", AT_lbl (a));
5244 break;
5245 case dw_val_class_str:
5246 if (AT_string (a) != NULL)
5247 fprintf (outfile, "\"%s\"", AT_string (a));
5248 else
5249 fprintf (outfile, "<null>");
5250 break;
5251 default:
5252 break;
5253 }
5254
5255 fprintf (outfile, "\n");
5256 }
5257
5258 if (die->die_child != NULL)
5259 {
5260 print_indent += 4;
5261 for (c = die->die_child; c != NULL; c = c->die_sib)
5262 print_die (c, outfile);
5263
5264 print_indent -= 4;
5265 }
5266 if (print_indent == 0)
5267 fprintf (outfile, "\n");
5268 }
5269
5270 /* Print the contents of the source code line number correspondence table.
5271 This routine is a debugging aid only. */
5272
5273 static void
5274 print_dwarf_line_table (FILE *outfile)
5275 {
5276 unsigned i;
5277 dw_line_info_ref line_info;
5278
5279 fprintf (outfile, "\n\nDWARF source line information\n");
5280 for (i = 1; i < line_info_table_in_use; i++)
5281 {
5282 line_info = &line_info_table[i];
5283 fprintf (outfile, "%5d: ", i);
5284 fprintf (outfile, "%-20s",
5285 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5286 fprintf (outfile, "%6ld", line_info->dw_line_num);
5287 fprintf (outfile, "\n");
5288 }
5289
5290 fprintf (outfile, "\n\n");
5291 }
5292
5293 /* Print the information collected for a given DIE. */
5294
5295 void
5296 debug_dwarf_die (dw_die_ref die)
5297 {
5298 print_die (die, stderr);
5299 }
5300
5301 /* Print all DWARF information collected for the compilation unit.
5302 This routine is a debugging aid only. */
5303
5304 void
5305 debug_dwarf (void)
5306 {
5307 print_indent = 0;
5308 print_die (comp_unit_die, stderr);
5309 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5310 print_dwarf_line_table (stderr);
5311 }
5312 \f
5313 /* We build up the lists of children and attributes by pushing new ones
5314 onto the beginning of the list. Reverse the lists for DIE so that
5315 they are in order of addition. */
5316
5317 static void
5318 reverse_die_lists (dw_die_ref die)
5319 {
5320 dw_die_ref c, cp, cn;
5321 dw_attr_ref a, ap, an;
5322
5323 for (a = die->die_attr, ap = 0; a; a = an)
5324 {
5325 an = a->dw_attr_next;
5326 a->dw_attr_next = ap;
5327 ap = a;
5328 }
5329
5330 die->die_attr = ap;
5331
5332 for (c = die->die_child, cp = 0; c; c = cn)
5333 {
5334 cn = c->die_sib;
5335 c->die_sib = cp;
5336 cp = c;
5337 }
5338
5339 die->die_child = cp;
5340 }
5341
5342 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5343 reverse all dies in add_sibling_attributes, which runs through all the dies,
5344 it would reverse all the dies. Now, however, since we don't call
5345 reverse_die_lists in add_sibling_attributes, we need a routine to
5346 recursively reverse all the dies. This is that routine. */
5347
5348 static void
5349 reverse_all_dies (dw_die_ref die)
5350 {
5351 dw_die_ref c;
5352
5353 reverse_die_lists (die);
5354
5355 for (c = die->die_child; c; c = c->die_sib)
5356 reverse_all_dies (c);
5357 }
5358
5359 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5360 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5361 DIE that marks the start of the DIEs for this include file. */
5362
5363 static dw_die_ref
5364 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5365 {
5366 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5367 dw_die_ref new_unit = gen_compile_unit_die (filename);
5368
5369 new_unit->die_sib = old_unit;
5370 return new_unit;
5371 }
5372
5373 /* Close an include-file CU and reopen the enclosing one. */
5374
5375 static dw_die_ref
5376 pop_compile_unit (dw_die_ref old_unit)
5377 {
5378 dw_die_ref new_unit = old_unit->die_sib;
5379
5380 old_unit->die_sib = NULL;
5381 return new_unit;
5382 }
5383
5384 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5385 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5386
5387 /* Calculate the checksum of a location expression. */
5388
5389 static inline void
5390 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5391 {
5392 CHECKSUM (loc->dw_loc_opc);
5393 CHECKSUM (loc->dw_loc_oprnd1);
5394 CHECKSUM (loc->dw_loc_oprnd2);
5395 }
5396
5397 /* Calculate the checksum of an attribute. */
5398
5399 static void
5400 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5401 {
5402 dw_loc_descr_ref loc;
5403 rtx r;
5404
5405 CHECKSUM (at->dw_attr);
5406
5407 /* We don't care about differences in file numbering. */
5408 if (at->dw_attr == DW_AT_decl_file
5409 /* Or that this was compiled with a different compiler snapshot; if
5410 the output is the same, that's what matters. */
5411 || at->dw_attr == DW_AT_producer)
5412 return;
5413
5414 switch (AT_class (at))
5415 {
5416 case dw_val_class_const:
5417 CHECKSUM (at->dw_attr_val.v.val_int);
5418 break;
5419 case dw_val_class_unsigned_const:
5420 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5421 break;
5422 case dw_val_class_long_long:
5423 CHECKSUM (at->dw_attr_val.v.val_long_long);
5424 break;
5425 case dw_val_class_float:
5426 CHECKSUM (at->dw_attr_val.v.val_float);
5427 break;
5428 case dw_val_class_flag:
5429 CHECKSUM (at->dw_attr_val.v.val_flag);
5430 break;
5431 case dw_val_class_str:
5432 CHECKSUM_STRING (AT_string (at));
5433 break;
5434
5435 case dw_val_class_addr:
5436 r = AT_addr (at);
5437 switch (GET_CODE (r))
5438 {
5439 case SYMBOL_REF:
5440 CHECKSUM_STRING (XSTR (r, 0));
5441 break;
5442
5443 default:
5444 abort ();
5445 }
5446 break;
5447
5448 case dw_val_class_offset:
5449 CHECKSUM (at->dw_attr_val.v.val_offset);
5450 break;
5451
5452 case dw_val_class_loc:
5453 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5454 loc_checksum (loc, ctx);
5455 break;
5456
5457 case dw_val_class_die_ref:
5458 die_checksum (AT_ref (at), ctx, mark);
5459 break;
5460
5461 case dw_val_class_fde_ref:
5462 case dw_val_class_lbl_id:
5463 case dw_val_class_lbl_offset:
5464 break;
5465
5466 default:
5467 break;
5468 }
5469 }
5470
5471 /* Calculate the checksum of a DIE. */
5472
5473 static void
5474 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5475 {
5476 dw_die_ref c;
5477 dw_attr_ref a;
5478
5479 /* To avoid infinite recursion. */
5480 if (die->die_mark)
5481 {
5482 CHECKSUM (die->die_mark);
5483 return;
5484 }
5485 die->die_mark = ++(*mark);
5486
5487 CHECKSUM (die->die_tag);
5488
5489 for (a = die->die_attr; a; a = a->dw_attr_next)
5490 attr_checksum (a, ctx, mark);
5491
5492 for (c = die->die_child; c; c = c->die_sib)
5493 die_checksum (c, ctx, mark);
5494 }
5495
5496 #undef CHECKSUM
5497 #undef CHECKSUM_STRING
5498
5499 /* Do the location expressions look same? */
5500 static inline int
5501 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5502 {
5503 return loc1->dw_loc_opc == loc2->dw_loc_opc
5504 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5505 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5506 }
5507
5508 /* Do the values look the same? */
5509 static int
5510 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5511 {
5512 dw_loc_descr_ref loc1, loc2;
5513 rtx r1, r2;
5514 unsigned i;
5515
5516 if (v1->val_class != v2->val_class)
5517 return 0;
5518
5519 switch (v1->val_class)
5520 {
5521 case dw_val_class_const:
5522 return v1->v.val_int == v2->v.val_int;
5523 case dw_val_class_unsigned_const:
5524 return v1->v.val_unsigned == v2->v.val_unsigned;
5525 case dw_val_class_long_long:
5526 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5527 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5528 case dw_val_class_float:
5529 if (v1->v.val_float.length != v2->v.val_float.length)
5530 return 0;
5531 for (i = 0; i < v1->v.val_float.length; i++)
5532 if (v1->v.val_float.array[i] != v2->v.val_float.array[i])
5533 return 0;
5534 return 1;
5535 case dw_val_class_flag:
5536 return v1->v.val_flag == v2->v.val_flag;
5537 case dw_val_class_str:
5538 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5539
5540 case dw_val_class_addr:
5541 r1 = v1->v.val_addr;
5542 r2 = v2->v.val_addr;
5543 if (GET_CODE (r1) != GET_CODE (r2))
5544 return 0;
5545 switch (GET_CODE (r1))
5546 {
5547 case SYMBOL_REF:
5548 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5549
5550 default:
5551 abort ();
5552 }
5553
5554 case dw_val_class_offset:
5555 return v1->v.val_offset == v2->v.val_offset;
5556
5557 case dw_val_class_loc:
5558 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5559 loc1 && loc2;
5560 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5561 if (!same_loc_p (loc1, loc2, mark))
5562 return 0;
5563 return !loc1 && !loc2;
5564
5565 case dw_val_class_die_ref:
5566 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5567
5568 case dw_val_class_fde_ref:
5569 case dw_val_class_lbl_id:
5570 case dw_val_class_lbl_offset:
5571 return 1;
5572
5573 default:
5574 return 1;
5575 }
5576 }
5577
5578 /* Do the attributes look the same? */
5579
5580 static int
5581 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5582 {
5583 if (at1->dw_attr != at2->dw_attr)
5584 return 0;
5585
5586 /* We don't care about differences in file numbering. */
5587 if (at1->dw_attr == DW_AT_decl_file
5588 /* Or that this was compiled with a different compiler snapshot; if
5589 the output is the same, that's what matters. */
5590 || at1->dw_attr == DW_AT_producer)
5591 return 1;
5592
5593 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5594 }
5595
5596 /* Do the dies look the same? */
5597
5598 static int
5599 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5600 {
5601 dw_die_ref c1, c2;
5602 dw_attr_ref a1, a2;
5603
5604 /* To avoid infinite recursion. */
5605 if (die1->die_mark)
5606 return die1->die_mark == die2->die_mark;
5607 die1->die_mark = die2->die_mark = ++(*mark);
5608
5609 if (die1->die_tag != die2->die_tag)
5610 return 0;
5611
5612 for (a1 = die1->die_attr, a2 = die2->die_attr;
5613 a1 && a2;
5614 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5615 if (!same_attr_p (a1, a2, mark))
5616 return 0;
5617 if (a1 || a2)
5618 return 0;
5619
5620 for (c1 = die1->die_child, c2 = die2->die_child;
5621 c1 && c2;
5622 c1 = c1->die_sib, c2 = c2->die_sib)
5623 if (!same_die_p (c1, c2, mark))
5624 return 0;
5625 if (c1 || c2)
5626 return 0;
5627
5628 return 1;
5629 }
5630
5631 /* Do the dies look the same? Wrapper around same_die_p. */
5632
5633 static int
5634 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5635 {
5636 int mark = 0;
5637 int ret = same_die_p (die1, die2, &mark);
5638
5639 unmark_all_dies (die1);
5640 unmark_all_dies (die2);
5641
5642 return ret;
5643 }
5644
5645 /* The prefix to attach to symbols on DIEs in the current comdat debug
5646 info section. */
5647 static char *comdat_symbol_id;
5648
5649 /* The index of the current symbol within the current comdat CU. */
5650 static unsigned int comdat_symbol_number;
5651
5652 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5653 children, and set comdat_symbol_id accordingly. */
5654
5655 static void
5656 compute_section_prefix (dw_die_ref unit_die)
5657 {
5658 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5659 const char *base = die_name ? lbasename (die_name) : "anonymous";
5660 char *name = alloca (strlen (base) + 64);
5661 char *p;
5662 int i, mark;
5663 unsigned char checksum[16];
5664 struct md5_ctx ctx;
5665
5666 /* Compute the checksum of the DIE, then append part of it as hex digits to
5667 the name filename of the unit. */
5668
5669 md5_init_ctx (&ctx);
5670 mark = 0;
5671 die_checksum (unit_die, &ctx, &mark);
5672 unmark_all_dies (unit_die);
5673 md5_finish_ctx (&ctx, checksum);
5674
5675 sprintf (name, "%s.", base);
5676 clean_symbol_name (name);
5677
5678 p = name + strlen (name);
5679 for (i = 0; i < 4; i++)
5680 {
5681 sprintf (p, "%.2x", checksum[i]);
5682 p += 2;
5683 }
5684
5685 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5686 comdat_symbol_number = 0;
5687 }
5688
5689 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5690
5691 static int
5692 is_type_die (dw_die_ref die)
5693 {
5694 switch (die->die_tag)
5695 {
5696 case DW_TAG_array_type:
5697 case DW_TAG_class_type:
5698 case DW_TAG_enumeration_type:
5699 case DW_TAG_pointer_type:
5700 case DW_TAG_reference_type:
5701 case DW_TAG_string_type:
5702 case DW_TAG_structure_type:
5703 case DW_TAG_subroutine_type:
5704 case DW_TAG_union_type:
5705 case DW_TAG_ptr_to_member_type:
5706 case DW_TAG_set_type:
5707 case DW_TAG_subrange_type:
5708 case DW_TAG_base_type:
5709 case DW_TAG_const_type:
5710 case DW_TAG_file_type:
5711 case DW_TAG_packed_type:
5712 case DW_TAG_volatile_type:
5713 case DW_TAG_typedef:
5714 return 1;
5715 default:
5716 return 0;
5717 }
5718 }
5719
5720 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5721 Basically, we want to choose the bits that are likely to be shared between
5722 compilations (types) and leave out the bits that are specific to individual
5723 compilations (functions). */
5724
5725 static int
5726 is_comdat_die (dw_die_ref c)
5727 {
5728 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5729 we do for stabs. The advantage is a greater likelihood of sharing between
5730 objects that don't include headers in the same order (and therefore would
5731 put the base types in a different comdat). jason 8/28/00 */
5732
5733 if (c->die_tag == DW_TAG_base_type)
5734 return 0;
5735
5736 if (c->die_tag == DW_TAG_pointer_type
5737 || c->die_tag == DW_TAG_reference_type
5738 || c->die_tag == DW_TAG_const_type
5739 || c->die_tag == DW_TAG_volatile_type)
5740 {
5741 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5742
5743 return t ? is_comdat_die (t) : 0;
5744 }
5745
5746 return is_type_die (c);
5747 }
5748
5749 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5750 compilation unit. */
5751
5752 static int
5753 is_symbol_die (dw_die_ref c)
5754 {
5755 return (is_type_die (c)
5756 || (get_AT (c, DW_AT_declaration)
5757 && !get_AT (c, DW_AT_specification)));
5758 }
5759
5760 static char *
5761 gen_internal_sym (const char *prefix)
5762 {
5763 char buf[256];
5764
5765 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5766 return xstrdup (buf);
5767 }
5768
5769 /* Assign symbols to all worthy DIEs under DIE. */
5770
5771 static void
5772 assign_symbol_names (dw_die_ref die)
5773 {
5774 dw_die_ref c;
5775
5776 if (is_symbol_die (die))
5777 {
5778 if (comdat_symbol_id)
5779 {
5780 char *p = alloca (strlen (comdat_symbol_id) + 64);
5781
5782 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
5783 comdat_symbol_id, comdat_symbol_number++);
5784 die->die_symbol = xstrdup (p);
5785 }
5786 else
5787 die->die_symbol = gen_internal_sym ("LDIE");
5788 }
5789
5790 for (c = die->die_child; c != NULL; c = c->die_sib)
5791 assign_symbol_names (c);
5792 }
5793
5794 struct cu_hash_table_entry
5795 {
5796 dw_die_ref cu;
5797 unsigned min_comdat_num, max_comdat_num;
5798 struct cu_hash_table_entry *next;
5799 };
5800
5801 /* Routines to manipulate hash table of CUs. */
5802 static hashval_t
5803 htab_cu_hash (const void *of)
5804 {
5805 const struct cu_hash_table_entry *entry = of;
5806
5807 return htab_hash_string (entry->cu->die_symbol);
5808 }
5809
5810 static int
5811 htab_cu_eq (const void *of1, const void *of2)
5812 {
5813 const struct cu_hash_table_entry *entry1 = of1;
5814 const struct die_struct *entry2 = of2;
5815
5816 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
5817 }
5818
5819 static void
5820 htab_cu_del (void *what)
5821 {
5822 struct cu_hash_table_entry *next, *entry = what;
5823
5824 while (entry)
5825 {
5826 next = entry->next;
5827 free (entry);
5828 entry = next;
5829 }
5830 }
5831
5832 /* Check whether we have already seen this CU and set up SYM_NUM
5833 accordingly. */
5834 static int
5835 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
5836 {
5837 struct cu_hash_table_entry dummy;
5838 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
5839
5840 dummy.max_comdat_num = 0;
5841
5842 slot = (struct cu_hash_table_entry **)
5843 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
5844 INSERT);
5845 entry = *slot;
5846
5847 for (; entry; last = entry, entry = entry->next)
5848 {
5849 if (same_die_p_wrap (cu, entry->cu))
5850 break;
5851 }
5852
5853 if (entry)
5854 {
5855 *sym_num = entry->min_comdat_num;
5856 return 1;
5857 }
5858
5859 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
5860 entry->cu = cu;
5861 entry->min_comdat_num = *sym_num = last->max_comdat_num;
5862 entry->next = *slot;
5863 *slot = entry;
5864
5865 return 0;
5866 }
5867
5868 /* Record SYM_NUM to record of CU in HTABLE. */
5869 static void
5870 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
5871 {
5872 struct cu_hash_table_entry **slot, *entry;
5873
5874 slot = (struct cu_hash_table_entry **)
5875 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
5876 NO_INSERT);
5877 entry = *slot;
5878
5879 entry->max_comdat_num = sym_num;
5880 }
5881
5882 /* Traverse the DIE (which is always comp_unit_die), and set up
5883 additional compilation units for each of the include files we see
5884 bracketed by BINCL/EINCL. */
5885
5886 static void
5887 break_out_includes (dw_die_ref die)
5888 {
5889 dw_die_ref *ptr;
5890 dw_die_ref unit = NULL;
5891 limbo_die_node *node, **pnode;
5892 htab_t cu_hash_table;
5893
5894 for (ptr = &(die->die_child); *ptr;)
5895 {
5896 dw_die_ref c = *ptr;
5897
5898 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
5899 || (unit && is_comdat_die (c)))
5900 {
5901 /* This DIE is for a secondary CU; remove it from the main one. */
5902 *ptr = c->die_sib;
5903
5904 if (c->die_tag == DW_TAG_GNU_BINCL)
5905 {
5906 unit = push_new_compile_unit (unit, c);
5907 free_die (c);
5908 }
5909 else if (c->die_tag == DW_TAG_GNU_EINCL)
5910 {
5911 unit = pop_compile_unit (unit);
5912 free_die (c);
5913 }
5914 else
5915 add_child_die (unit, c);
5916 }
5917 else
5918 {
5919 /* Leave this DIE in the main CU. */
5920 ptr = &(c->die_sib);
5921 continue;
5922 }
5923 }
5924
5925 #if 0
5926 /* We can only use this in debugging, since the frontend doesn't check
5927 to make sure that we leave every include file we enter. */
5928 if (unit != NULL)
5929 abort ();
5930 #endif
5931
5932 assign_symbol_names (die);
5933 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
5934 for (node = limbo_die_list, pnode = &limbo_die_list;
5935 node;
5936 node = node->next)
5937 {
5938 int is_dupl;
5939
5940 compute_section_prefix (node->die);
5941 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
5942 &comdat_symbol_number);
5943 assign_symbol_names (node->die);
5944 if (is_dupl)
5945 *pnode = node->next;
5946 else
5947 {
5948 pnode = &node->next;
5949 record_comdat_symbol_number (node->die, cu_hash_table,
5950 comdat_symbol_number);
5951 }
5952 }
5953 htab_delete (cu_hash_table);
5954 }
5955
5956 /* Traverse the DIE and add a sibling attribute if it may have the
5957 effect of speeding up access to siblings. To save some space,
5958 avoid generating sibling attributes for DIE's without children. */
5959
5960 static void
5961 add_sibling_attributes (dw_die_ref die)
5962 {
5963 dw_die_ref c;
5964
5965 if (die->die_tag != DW_TAG_compile_unit
5966 && die->die_sib && die->die_child != NULL)
5967 /* Add the sibling link to the front of the attribute list. */
5968 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
5969
5970 for (c = die->die_child; c != NULL; c = c->die_sib)
5971 add_sibling_attributes (c);
5972 }
5973
5974 /* Output all location lists for the DIE and its children. */
5975
5976 static void
5977 output_location_lists (dw_die_ref die)
5978 {
5979 dw_die_ref c;
5980 dw_attr_ref d_attr;
5981
5982 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
5983 if (AT_class (d_attr) == dw_val_class_loc_list)
5984 output_loc_list (AT_loc_list (d_attr));
5985
5986 for (c = die->die_child; c != NULL; c = c->die_sib)
5987 output_location_lists (c);
5988
5989 }
5990
5991 /* The format of each DIE (and its attribute value pairs) is encoded in an
5992 abbreviation table. This routine builds the abbreviation table and assigns
5993 a unique abbreviation id for each abbreviation entry. The children of each
5994 die are visited recursively. */
5995
5996 static void
5997 build_abbrev_table (dw_die_ref die)
5998 {
5999 unsigned long abbrev_id;
6000 unsigned int n_alloc;
6001 dw_die_ref c;
6002 dw_attr_ref d_attr, a_attr;
6003
6004 /* Scan the DIE references, and mark as external any that refer to
6005 DIEs from other CUs (i.e. those which are not marked). */
6006 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6007 if (AT_class (d_attr) == dw_val_class_die_ref
6008 && AT_ref (d_attr)->die_mark == 0)
6009 {
6010 if (AT_ref (d_attr)->die_symbol == 0)
6011 abort ();
6012
6013 set_AT_ref_external (d_attr, 1);
6014 }
6015
6016 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6017 {
6018 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6019
6020 if (abbrev->die_tag == die->die_tag)
6021 {
6022 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6023 {
6024 a_attr = abbrev->die_attr;
6025 d_attr = die->die_attr;
6026
6027 while (a_attr != NULL && d_attr != NULL)
6028 {
6029 if ((a_attr->dw_attr != d_attr->dw_attr)
6030 || (value_format (a_attr) != value_format (d_attr)))
6031 break;
6032
6033 a_attr = a_attr->dw_attr_next;
6034 d_attr = d_attr->dw_attr_next;
6035 }
6036
6037 if (a_attr == NULL && d_attr == NULL)
6038 break;
6039 }
6040 }
6041 }
6042
6043 if (abbrev_id >= abbrev_die_table_in_use)
6044 {
6045 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6046 {
6047 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6048 abbrev_die_table = ggc_realloc (abbrev_die_table,
6049 sizeof (dw_die_ref) * n_alloc);
6050
6051 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6052 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6053 abbrev_die_table_allocated = n_alloc;
6054 }
6055
6056 ++abbrev_die_table_in_use;
6057 abbrev_die_table[abbrev_id] = die;
6058 }
6059
6060 die->die_abbrev = abbrev_id;
6061 for (c = die->die_child; c != NULL; c = c->die_sib)
6062 build_abbrev_table (c);
6063 }
6064 \f
6065 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6066
6067 static int
6068 constant_size (long unsigned int value)
6069 {
6070 int log;
6071
6072 if (value == 0)
6073 log = 0;
6074 else
6075 log = floor_log2 (value);
6076
6077 log = log / 8;
6078 log = 1 << (floor_log2 (log) + 1);
6079
6080 return log;
6081 }
6082
6083 /* Return the size of a DIE as it is represented in the
6084 .debug_info section. */
6085
6086 static unsigned long
6087 size_of_die (dw_die_ref die)
6088 {
6089 unsigned long size = 0;
6090 dw_attr_ref a;
6091
6092 size += size_of_uleb128 (die->die_abbrev);
6093 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6094 {
6095 switch (AT_class (a))
6096 {
6097 case dw_val_class_addr:
6098 size += DWARF2_ADDR_SIZE;
6099 break;
6100 case dw_val_class_offset:
6101 size += DWARF_OFFSET_SIZE;
6102 break;
6103 case dw_val_class_loc:
6104 {
6105 unsigned long lsize = size_of_locs (AT_loc (a));
6106
6107 /* Block length. */
6108 size += constant_size (lsize);
6109 size += lsize;
6110 }
6111 break;
6112 case dw_val_class_loc_list:
6113 size += DWARF_OFFSET_SIZE;
6114 break;
6115 case dw_val_class_range_list:
6116 size += DWARF_OFFSET_SIZE;
6117 break;
6118 case dw_val_class_const:
6119 size += size_of_sleb128 (AT_int (a));
6120 break;
6121 case dw_val_class_unsigned_const:
6122 size += constant_size (AT_unsigned (a));
6123 break;
6124 case dw_val_class_long_long:
6125 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6126 break;
6127 case dw_val_class_float:
6128 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
6129 break;
6130 case dw_val_class_flag:
6131 size += 1;
6132 break;
6133 case dw_val_class_die_ref:
6134 if (AT_ref_external (a))
6135 size += DWARF2_ADDR_SIZE;
6136 else
6137 size += DWARF_OFFSET_SIZE;
6138 break;
6139 case dw_val_class_fde_ref:
6140 size += DWARF_OFFSET_SIZE;
6141 break;
6142 case dw_val_class_lbl_id:
6143 size += DWARF2_ADDR_SIZE;
6144 break;
6145 case dw_val_class_lbl_offset:
6146 size += DWARF_OFFSET_SIZE;
6147 break;
6148 case dw_val_class_str:
6149 if (AT_string_form (a) == DW_FORM_strp)
6150 size += DWARF_OFFSET_SIZE;
6151 else
6152 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6153 break;
6154 default:
6155 abort ();
6156 }
6157 }
6158
6159 return size;
6160 }
6161
6162 /* Size the debugging information associated with a given DIE. Visits the
6163 DIE's children recursively. Updates the global variable next_die_offset, on
6164 each time through. Uses the current value of next_die_offset to update the
6165 die_offset field in each DIE. */
6166
6167 static void
6168 calc_die_sizes (dw_die_ref die)
6169 {
6170 dw_die_ref c;
6171
6172 die->die_offset = next_die_offset;
6173 next_die_offset += size_of_die (die);
6174
6175 for (c = die->die_child; c != NULL; c = c->die_sib)
6176 calc_die_sizes (c);
6177
6178 if (die->die_child != NULL)
6179 /* Count the null byte used to terminate sibling lists. */
6180 next_die_offset += 1;
6181 }
6182
6183 /* Set the marks for a die and its children. We do this so
6184 that we know whether or not a reference needs to use FORM_ref_addr; only
6185 DIEs in the same CU will be marked. We used to clear out the offset
6186 and use that as the flag, but ran into ordering problems. */
6187
6188 static void
6189 mark_dies (dw_die_ref die)
6190 {
6191 dw_die_ref c;
6192
6193 if (die->die_mark)
6194 abort ();
6195
6196 die->die_mark = 1;
6197 for (c = die->die_child; c; c = c->die_sib)
6198 mark_dies (c);
6199 }
6200
6201 /* Clear the marks for a die and its children. */
6202
6203 static void
6204 unmark_dies (dw_die_ref die)
6205 {
6206 dw_die_ref c;
6207
6208 if (!die->die_mark)
6209 abort ();
6210
6211 die->die_mark = 0;
6212 for (c = die->die_child; c; c = c->die_sib)
6213 unmark_dies (c);
6214 }
6215
6216 /* Clear the marks for a die, its children and referred dies. */
6217
6218 static void
6219 unmark_all_dies (dw_die_ref die)
6220 {
6221 dw_die_ref c;
6222 dw_attr_ref a;
6223
6224 if (!die->die_mark)
6225 return;
6226 die->die_mark = 0;
6227
6228 for (c = die->die_child; c; c = c->die_sib)
6229 unmark_all_dies (c);
6230
6231 for (a = die->die_attr; a; a = a->dw_attr_next)
6232 if (AT_class (a) == dw_val_class_die_ref)
6233 unmark_all_dies (AT_ref (a));
6234 }
6235
6236 /* Return the size of the .debug_pubnames table generated for the
6237 compilation unit. */
6238
6239 static unsigned long
6240 size_of_pubnames (void)
6241 {
6242 unsigned long size;
6243 unsigned i;
6244
6245 size = DWARF_PUBNAMES_HEADER_SIZE;
6246 for (i = 0; i < pubname_table_in_use; i++)
6247 {
6248 pubname_ref p = &pubname_table[i];
6249 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6250 }
6251
6252 size += DWARF_OFFSET_SIZE;
6253 return size;
6254 }
6255
6256 /* Return the size of the information in the .debug_aranges section. */
6257
6258 static unsigned long
6259 size_of_aranges (void)
6260 {
6261 unsigned long size;
6262
6263 size = DWARF_ARANGES_HEADER_SIZE;
6264
6265 /* Count the address/length pair for this compilation unit. */
6266 size += 2 * DWARF2_ADDR_SIZE;
6267 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6268
6269 /* Count the two zero words used to terminated the address range table. */
6270 size += 2 * DWARF2_ADDR_SIZE;
6271 return size;
6272 }
6273 \f
6274 /* Select the encoding of an attribute value. */
6275
6276 static enum dwarf_form
6277 value_format (dw_attr_ref a)
6278 {
6279 switch (a->dw_attr_val.val_class)
6280 {
6281 case dw_val_class_addr:
6282 return DW_FORM_addr;
6283 case dw_val_class_range_list:
6284 case dw_val_class_offset:
6285 if (DWARF_OFFSET_SIZE == 4)
6286 return DW_FORM_data4;
6287 if (DWARF_OFFSET_SIZE == 8)
6288 return DW_FORM_data8;
6289 abort ();
6290 case dw_val_class_loc_list:
6291 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6292 .debug_loc section */
6293 return DW_FORM_data4;
6294 case dw_val_class_loc:
6295 switch (constant_size (size_of_locs (AT_loc (a))))
6296 {
6297 case 1:
6298 return DW_FORM_block1;
6299 case 2:
6300 return DW_FORM_block2;
6301 default:
6302 abort ();
6303 }
6304 case dw_val_class_const:
6305 return DW_FORM_sdata;
6306 case dw_val_class_unsigned_const:
6307 switch (constant_size (AT_unsigned (a)))
6308 {
6309 case 1:
6310 return DW_FORM_data1;
6311 case 2:
6312 return DW_FORM_data2;
6313 case 4:
6314 return DW_FORM_data4;
6315 case 8:
6316 return DW_FORM_data8;
6317 default:
6318 abort ();
6319 }
6320 case dw_val_class_long_long:
6321 return DW_FORM_block1;
6322 case dw_val_class_float:
6323 return DW_FORM_block1;
6324 case dw_val_class_flag:
6325 return DW_FORM_flag;
6326 case dw_val_class_die_ref:
6327 if (AT_ref_external (a))
6328 return DW_FORM_ref_addr;
6329 else
6330 return DW_FORM_ref;
6331 case dw_val_class_fde_ref:
6332 return DW_FORM_data;
6333 case dw_val_class_lbl_id:
6334 return DW_FORM_addr;
6335 case dw_val_class_lbl_offset:
6336 return DW_FORM_data;
6337 case dw_val_class_str:
6338 return AT_string_form (a);
6339
6340 default:
6341 abort ();
6342 }
6343 }
6344
6345 /* Output the encoding of an attribute value. */
6346
6347 static void
6348 output_value_format (dw_attr_ref a)
6349 {
6350 enum dwarf_form form = value_format (a);
6351
6352 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6353 }
6354
6355 /* Output the .debug_abbrev section which defines the DIE abbreviation
6356 table. */
6357
6358 static void
6359 output_abbrev_section (void)
6360 {
6361 unsigned long abbrev_id;
6362
6363 dw_attr_ref a_attr;
6364
6365 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6366 {
6367 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6368
6369 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6370 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6371 dwarf_tag_name (abbrev->die_tag));
6372
6373 if (abbrev->die_child != NULL)
6374 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6375 else
6376 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6377
6378 for (a_attr = abbrev->die_attr; a_attr != NULL;
6379 a_attr = a_attr->dw_attr_next)
6380 {
6381 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6382 dwarf_attr_name (a_attr->dw_attr));
6383 output_value_format (a_attr);
6384 }
6385
6386 dw2_asm_output_data (1, 0, NULL);
6387 dw2_asm_output_data (1, 0, NULL);
6388 }
6389
6390 /* Terminate the table. */
6391 dw2_asm_output_data (1, 0, NULL);
6392 }
6393
6394 /* Output a symbol we can use to refer to this DIE from another CU. */
6395
6396 static inline void
6397 output_die_symbol (dw_die_ref die)
6398 {
6399 char *sym = die->die_symbol;
6400
6401 if (sym == 0)
6402 return;
6403
6404 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6405 /* We make these global, not weak; if the target doesn't support
6406 .linkonce, it doesn't support combining the sections, so debugging
6407 will break. */
6408 (*targetm.asm_out.globalize_label) (asm_out_file, sym);
6409
6410 ASM_OUTPUT_LABEL (asm_out_file, sym);
6411 }
6412
6413 /* Return a new location list, given the begin and end range, and the
6414 expression. gensym tells us whether to generate a new internal symbol for
6415 this location list node, which is done for the head of the list only. */
6416
6417 static inline dw_loc_list_ref
6418 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6419 const char *section, unsigned int gensym)
6420 {
6421 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6422
6423 retlist->begin = begin;
6424 retlist->end = end;
6425 retlist->expr = expr;
6426 retlist->section = section;
6427 if (gensym)
6428 retlist->ll_symbol = gen_internal_sym ("LLST");
6429
6430 return retlist;
6431 }
6432
6433 /* Add a location description expression to a location list. */
6434
6435 static inline void
6436 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6437 const char *begin, const char *end,
6438 const char *section)
6439 {
6440 dw_loc_list_ref *d;
6441
6442 /* Find the end of the chain. */
6443 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6444 ;
6445
6446 /* Add a new location list node to the list. */
6447 *d = new_loc_list (descr, begin, end, section, 0);
6448 }
6449
6450 /* Output the location list given to us. */
6451
6452 static void
6453 output_loc_list (dw_loc_list_ref list_head)
6454 {
6455 dw_loc_list_ref curr = list_head;
6456
6457 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6458
6459 /* ??? This shouldn't be needed now that we've forced the
6460 compilation unit base address to zero when there is code
6461 in more than one section. */
6462 if (strcmp (curr->section, ".text") == 0)
6463 {
6464 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6465 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT) 0,
6466 "Location list base address specifier fake entry");
6467 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6468 "Location list base address specifier base");
6469 }
6470
6471 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6472 {
6473 unsigned long size;
6474
6475 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6476 "Location list begin address (%s)",
6477 list_head->ll_symbol);
6478 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6479 "Location list end address (%s)",
6480 list_head->ll_symbol);
6481 size = size_of_locs (curr->expr);
6482
6483 /* Output the block length for this list of location operations. */
6484 if (size > 0xffff)
6485 abort ();
6486 dw2_asm_output_data (2, size, "%s", "Location expression size");
6487
6488 output_loc_sequence (curr->expr);
6489 }
6490
6491 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6492 "Location list terminator begin (%s)",
6493 list_head->ll_symbol);
6494 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6495 "Location list terminator end (%s)",
6496 list_head->ll_symbol);
6497 }
6498
6499 /* Output the DIE and its attributes. Called recursively to generate
6500 the definitions of each child DIE. */
6501
6502 static void
6503 output_die (dw_die_ref die)
6504 {
6505 dw_attr_ref a;
6506 dw_die_ref c;
6507 unsigned long size;
6508
6509 /* If someone in another CU might refer to us, set up a symbol for
6510 them to point to. */
6511 if (die->die_symbol)
6512 output_die_symbol (die);
6513
6514 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6515 die->die_offset, dwarf_tag_name (die->die_tag));
6516
6517 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6518 {
6519 const char *name = dwarf_attr_name (a->dw_attr);
6520
6521 switch (AT_class (a))
6522 {
6523 case dw_val_class_addr:
6524 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6525 break;
6526
6527 case dw_val_class_offset:
6528 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6529 "%s", name);
6530 break;
6531
6532 case dw_val_class_range_list:
6533 {
6534 char *p = strchr (ranges_section_label, '\0');
6535
6536 sprintf (p, "+0x%lx", a->dw_attr_val.v.val_offset);
6537 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6538 "%s", name);
6539 *p = '\0';
6540 }
6541 break;
6542
6543 case dw_val_class_loc:
6544 size = size_of_locs (AT_loc (a));
6545
6546 /* Output the block length for this list of location operations. */
6547 dw2_asm_output_data (constant_size (size), size, "%s", name);
6548
6549 output_loc_sequence (AT_loc (a));
6550 break;
6551
6552 case dw_val_class_const:
6553 /* ??? It would be slightly more efficient to use a scheme like is
6554 used for unsigned constants below, but gdb 4.x does not sign
6555 extend. Gdb 5.x does sign extend. */
6556 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6557 break;
6558
6559 case dw_val_class_unsigned_const:
6560 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6561 AT_unsigned (a), "%s", name);
6562 break;
6563
6564 case dw_val_class_long_long:
6565 {
6566 unsigned HOST_WIDE_INT first, second;
6567
6568 dw2_asm_output_data (1,
6569 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6570 "%s", name);
6571
6572 if (WORDS_BIG_ENDIAN)
6573 {
6574 first = a->dw_attr_val.v.val_long_long.hi;
6575 second = a->dw_attr_val.v.val_long_long.low;
6576 }
6577 else
6578 {
6579 first = a->dw_attr_val.v.val_long_long.low;
6580 second = a->dw_attr_val.v.val_long_long.hi;
6581 }
6582
6583 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6584 first, "long long constant");
6585 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6586 second, NULL);
6587 }
6588 break;
6589
6590 case dw_val_class_float:
6591 {
6592 unsigned int i;
6593
6594 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6595 "%s", name);
6596
6597 for (i = 0; i < a->dw_attr_val.v.val_float.length; i++)
6598 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6599 "fp constant word %u", i);
6600 break;
6601 }
6602
6603 case dw_val_class_flag:
6604 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6605 break;
6606
6607 case dw_val_class_loc_list:
6608 {
6609 char *sym = AT_loc_list (a)->ll_symbol;
6610
6611 if (sym == 0)
6612 abort ();
6613 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym,
6614 loc_section_label, "%s", name);
6615 }
6616 break;
6617
6618 case dw_val_class_die_ref:
6619 if (AT_ref_external (a))
6620 {
6621 char *sym = AT_ref (a)->die_symbol;
6622
6623 if (sym == 0)
6624 abort ();
6625 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6626 }
6627 else if (AT_ref (a)->die_offset == 0)
6628 abort ();
6629 else
6630 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6631 "%s", name);
6632 break;
6633
6634 case dw_val_class_fde_ref:
6635 {
6636 char l1[20];
6637
6638 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6639 a->dw_attr_val.v.val_fde_index * 2);
6640 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6641 }
6642 break;
6643
6644 case dw_val_class_lbl_id:
6645 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6646 break;
6647
6648 case dw_val_class_lbl_offset:
6649 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6650 break;
6651
6652 case dw_val_class_str:
6653 if (AT_string_form (a) == DW_FORM_strp)
6654 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6655 a->dw_attr_val.v.val_str->label,
6656 "%s: \"%s\"", name, AT_string (a));
6657 else
6658 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6659 break;
6660
6661 default:
6662 abort ();
6663 }
6664 }
6665
6666 for (c = die->die_child; c != NULL; c = c->die_sib)
6667 output_die (c);
6668
6669 /* Add null byte to terminate sibling list. */
6670 if (die->die_child != NULL)
6671 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6672 die->die_offset);
6673 }
6674
6675 /* Output the compilation unit that appears at the beginning of the
6676 .debug_info section, and precedes the DIE descriptions. */
6677
6678 static void
6679 output_compilation_unit_header (void)
6680 {
6681 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6682 dw2_asm_output_data (4, 0xffffffff,
6683 "Initial length escape value indicating 64-bit DWARF extension");
6684 dw2_asm_output_data (DWARF_OFFSET_SIZE,
6685 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
6686 "Length of Compilation Unit Info");
6687 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6688 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6689 "Offset Into Abbrev. Section");
6690 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6691 }
6692
6693 /* Output the compilation unit DIE and its children. */
6694
6695 static void
6696 output_comp_unit (dw_die_ref die, int output_if_empty)
6697 {
6698 const char *secname;
6699 char *oldsym, *tmp;
6700
6701 /* Unless we are outputting main CU, we may throw away empty ones. */
6702 if (!output_if_empty && die->die_child == NULL)
6703 return;
6704
6705 /* Even if there are no children of this DIE, we must output the information
6706 about the compilation unit. Otherwise, on an empty translation unit, we
6707 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6708 will then complain when examining the file. First mark all the DIEs in
6709 this CU so we know which get local refs. */
6710 mark_dies (die);
6711
6712 build_abbrev_table (die);
6713
6714 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6715 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6716 calc_die_sizes (die);
6717
6718 oldsym = die->die_symbol;
6719 if (oldsym)
6720 {
6721 tmp = alloca (strlen (oldsym) + 24);
6722
6723 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
6724 secname = tmp;
6725 die->die_symbol = NULL;
6726 }
6727 else
6728 secname = (const char *) DEBUG_INFO_SECTION;
6729
6730 /* Output debugging information. */
6731 named_section_flags (secname, SECTION_DEBUG);
6732 output_compilation_unit_header ();
6733 output_die (die);
6734
6735 /* Leave the marks on the main CU, so we can check them in
6736 output_pubnames. */
6737 if (oldsym)
6738 {
6739 unmark_dies (die);
6740 die->die_symbol = oldsym;
6741 }
6742 }
6743
6744 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
6745 output of lang_hooks.decl_printable_name for C++ looks like
6746 "A::f(int)". Let's drop the argument list, and maybe the scope. */
6747
6748 static const char *
6749 dwarf2_name (tree decl, int scope)
6750 {
6751 return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
6752 }
6753
6754 /* Add a new entry to .debug_pubnames if appropriate. */
6755
6756 static void
6757 add_pubname (tree decl, dw_die_ref die)
6758 {
6759 pubname_ref p;
6760
6761 if (! TREE_PUBLIC (decl))
6762 return;
6763
6764 if (pubname_table_in_use == pubname_table_allocated)
6765 {
6766 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
6767 pubname_table
6768 = ggc_realloc (pubname_table,
6769 (pubname_table_allocated * sizeof (pubname_entry)));
6770 memset (pubname_table + pubname_table_in_use, 0,
6771 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
6772 }
6773
6774 p = &pubname_table[pubname_table_in_use++];
6775 p->die = die;
6776 p->name = xstrdup (dwarf2_name (decl, 1));
6777 }
6778
6779 /* Output the public names table used to speed up access to externally
6780 visible names. For now, only generate entries for externally
6781 visible procedures. */
6782
6783 static void
6784 output_pubnames (void)
6785 {
6786 unsigned i;
6787 unsigned long pubnames_length = size_of_pubnames ();
6788
6789 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6790 dw2_asm_output_data (4, 0xffffffff,
6791 "Initial length escape value indicating 64-bit DWARF extension");
6792 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
6793 "Length of Public Names Info");
6794 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6795 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6796 "Offset of Compilation Unit Info");
6797 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
6798 "Compilation Unit Length");
6799
6800 for (i = 0; i < pubname_table_in_use; i++)
6801 {
6802 pubname_ref pub = &pubname_table[i];
6803
6804 /* We shouldn't see pubnames for DIEs outside of the main CU. */
6805 if (pub->die->die_mark == 0)
6806 abort ();
6807
6808 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
6809 "DIE offset");
6810
6811 dw2_asm_output_nstring (pub->name, -1, "external name");
6812 }
6813
6814 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
6815 }
6816
6817 /* Add a new entry to .debug_aranges if appropriate. */
6818
6819 static void
6820 add_arange (tree decl, dw_die_ref die)
6821 {
6822 if (! DECL_SECTION_NAME (decl))
6823 return;
6824
6825 if (arange_table_in_use == arange_table_allocated)
6826 {
6827 arange_table_allocated += ARANGE_TABLE_INCREMENT;
6828 arange_table = ggc_realloc (arange_table,
6829 (arange_table_allocated
6830 * sizeof (dw_die_ref)));
6831 memset (arange_table + arange_table_in_use, 0,
6832 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
6833 }
6834
6835 arange_table[arange_table_in_use++] = die;
6836 }
6837
6838 /* Output the information that goes into the .debug_aranges table.
6839 Namely, define the beginning and ending address range of the
6840 text section generated for this compilation unit. */
6841
6842 static void
6843 output_aranges (void)
6844 {
6845 unsigned i;
6846 unsigned long aranges_length = size_of_aranges ();
6847
6848 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6849 dw2_asm_output_data (4, 0xffffffff,
6850 "Initial length escape value indicating 64-bit DWARF extension");
6851 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
6852 "Length of Address Ranges Info");
6853 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6854 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6855 "Offset of Compilation Unit Info");
6856 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
6857 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
6858
6859 /* We need to align to twice the pointer size here. */
6860 if (DWARF_ARANGES_PAD_SIZE)
6861 {
6862 /* Pad using a 2 byte words so that padding is correct for any
6863 pointer size. */
6864 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
6865 2 * DWARF2_ADDR_SIZE);
6866 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
6867 dw2_asm_output_data (2, 0, NULL);
6868 }
6869
6870 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
6871 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
6872 text_section_label, "Length");
6873
6874 for (i = 0; i < arange_table_in_use; i++)
6875 {
6876 dw_die_ref die = arange_table[i];
6877
6878 /* We shouldn't see aranges for DIEs outside of the main CU. */
6879 if (die->die_mark == 0)
6880 abort ();
6881
6882 if (die->die_tag == DW_TAG_subprogram)
6883 {
6884 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
6885 "Address");
6886 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
6887 get_AT_low_pc (die), "Length");
6888 }
6889 else
6890 {
6891 /* A static variable; extract the symbol from DW_AT_location.
6892 Note that this code isn't currently hit, as we only emit
6893 aranges for functions (jason 9/23/99). */
6894 dw_attr_ref a = get_AT (die, DW_AT_location);
6895 dw_loc_descr_ref loc;
6896
6897 if (! a || AT_class (a) != dw_val_class_loc)
6898 abort ();
6899
6900 loc = AT_loc (a);
6901 if (loc->dw_loc_opc != DW_OP_addr)
6902 abort ();
6903
6904 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
6905 loc->dw_loc_oprnd1.v.val_addr, "Address");
6906 dw2_asm_output_data (DWARF2_ADDR_SIZE,
6907 get_AT_unsigned (die, DW_AT_byte_size),
6908 "Length");
6909 }
6910 }
6911
6912 /* Output the terminator words. */
6913 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6914 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6915 }
6916
6917 /* Add a new entry to .debug_ranges. Return the offset at which it
6918 was placed. */
6919
6920 static unsigned int
6921 add_ranges (tree block)
6922 {
6923 unsigned int in_use = ranges_table_in_use;
6924
6925 if (in_use == ranges_table_allocated)
6926 {
6927 ranges_table_allocated += RANGES_TABLE_INCREMENT;
6928 ranges_table
6929 = ggc_realloc (ranges_table, (ranges_table_allocated
6930 * sizeof (struct dw_ranges_struct)));
6931 memset (ranges_table + ranges_table_in_use, 0,
6932 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
6933 }
6934
6935 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
6936 ranges_table_in_use = in_use + 1;
6937
6938 return in_use * 2 * DWARF2_ADDR_SIZE;
6939 }
6940
6941 static void
6942 output_ranges (void)
6943 {
6944 unsigned i;
6945 static const char *const start_fmt = "Offset 0x%x";
6946 const char *fmt = start_fmt;
6947
6948 for (i = 0; i < ranges_table_in_use; i++)
6949 {
6950 int block_num = ranges_table[i].block_num;
6951
6952 if (block_num)
6953 {
6954 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
6955 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
6956
6957 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
6958 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
6959
6960 /* If all code is in the text section, then the compilation
6961 unit base address defaults to DW_AT_low_pc, which is the
6962 base of the text section. */
6963 if (separate_line_info_table_in_use == 0)
6964 {
6965 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
6966 text_section_label,
6967 fmt, i * 2 * DWARF2_ADDR_SIZE);
6968 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
6969 text_section_label, NULL);
6970 }
6971
6972 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
6973 compilation unit base address to zero, which allows us to
6974 use absolute addresses, and not worry about whether the
6975 target supports cross-section arithmetic. */
6976 else
6977 {
6978 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
6979 fmt, i * 2 * DWARF2_ADDR_SIZE);
6980 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
6981 }
6982
6983 fmt = NULL;
6984 }
6985 else
6986 {
6987 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6988 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6989 fmt = start_fmt;
6990 }
6991 }
6992 }
6993
6994 /* Data structure containing information about input files. */
6995 struct file_info
6996 {
6997 char *path; /* Complete file name. */
6998 char *fname; /* File name part. */
6999 int length; /* Length of entire string. */
7000 int file_idx; /* Index in input file table. */
7001 int dir_idx; /* Index in directory table. */
7002 };
7003
7004 /* Data structure containing information about directories with source
7005 files. */
7006 struct dir_info
7007 {
7008 char *path; /* Path including directory name. */
7009 int length; /* Path length. */
7010 int prefix; /* Index of directory entry which is a prefix. */
7011 int count; /* Number of files in this directory. */
7012 int dir_idx; /* Index of directory used as base. */
7013 int used; /* Used in the end? */
7014 };
7015
7016 /* Callback function for file_info comparison. We sort by looking at
7017 the directories in the path. */
7018
7019 static int
7020 file_info_cmp (const void *p1, const void *p2)
7021 {
7022 const struct file_info *s1 = p1;
7023 const struct file_info *s2 = p2;
7024 unsigned char *cp1;
7025 unsigned char *cp2;
7026
7027 /* Take care of file names without directories. We need to make sure that
7028 we return consistent values to qsort since some will get confused if
7029 we return the same value when identical operands are passed in opposite
7030 orders. So if neither has a directory, return 0 and otherwise return
7031 1 or -1 depending on which one has the directory. */
7032 if ((s1->path == s1->fname || s2->path == s2->fname))
7033 return (s2->path == s2->fname) - (s1->path == s1->fname);
7034
7035 cp1 = (unsigned char *) s1->path;
7036 cp2 = (unsigned char *) s2->path;
7037
7038 while (1)
7039 {
7040 ++cp1;
7041 ++cp2;
7042 /* Reached the end of the first path? If so, handle like above. */
7043 if ((cp1 == (unsigned char *) s1->fname)
7044 || (cp2 == (unsigned char *) s2->fname))
7045 return ((cp2 == (unsigned char *) s2->fname)
7046 - (cp1 == (unsigned char *) s1->fname));
7047
7048 /* Character of current path component the same? */
7049 else if (*cp1 != *cp2)
7050 return *cp1 - *cp2;
7051 }
7052 }
7053
7054 /* Output the directory table and the file name table. We try to minimize
7055 the total amount of memory needed. A heuristic is used to avoid large
7056 slowdowns with many input files. */
7057
7058 static void
7059 output_file_names (void)
7060 {
7061 struct file_info *files;
7062 struct dir_info *dirs;
7063 int *saved;
7064 int *savehere;
7065 int *backmap;
7066 size_t ndirs;
7067 int idx_offset;
7068 size_t i;
7069 int idx;
7070
7071 /* Handle the case where file_table is empty. */
7072 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7073 {
7074 dw2_asm_output_data (1, 0, "End directory table");
7075 dw2_asm_output_data (1, 0, "End file name table");
7076 return;
7077 }
7078
7079 /* Allocate the various arrays we need. */
7080 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7081 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7082
7083 /* Sort the file names. */
7084 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7085 {
7086 char *f;
7087
7088 /* Skip all leading "./". */
7089 f = VARRAY_CHAR_PTR (file_table, i);
7090 while (f[0] == '.' && f[1] == '/')
7091 f += 2;
7092
7093 /* Create a new array entry. */
7094 files[i].path = f;
7095 files[i].length = strlen (f);
7096 files[i].file_idx = i;
7097
7098 /* Search for the file name part. */
7099 f = strrchr (f, '/');
7100 files[i].fname = f == NULL ? files[i].path : f + 1;
7101 }
7102
7103 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7104 sizeof (files[0]), file_info_cmp);
7105
7106 /* Find all the different directories used. */
7107 dirs[0].path = files[1].path;
7108 dirs[0].length = files[1].fname - files[1].path;
7109 dirs[0].prefix = -1;
7110 dirs[0].count = 1;
7111 dirs[0].dir_idx = 0;
7112 dirs[0].used = 0;
7113 files[1].dir_idx = 0;
7114 ndirs = 1;
7115
7116 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7117 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7118 && memcmp (dirs[ndirs - 1].path, files[i].path,
7119 dirs[ndirs - 1].length) == 0)
7120 {
7121 /* Same directory as last entry. */
7122 files[i].dir_idx = ndirs - 1;
7123 ++dirs[ndirs - 1].count;
7124 }
7125 else
7126 {
7127 size_t j;
7128
7129 /* This is a new directory. */
7130 dirs[ndirs].path = files[i].path;
7131 dirs[ndirs].length = files[i].fname - files[i].path;
7132 dirs[ndirs].count = 1;
7133 dirs[ndirs].dir_idx = ndirs;
7134 dirs[ndirs].used = 0;
7135 files[i].dir_idx = ndirs;
7136
7137 /* Search for a prefix. */
7138 dirs[ndirs].prefix = -1;
7139 for (j = 0; j < ndirs; j++)
7140 if (dirs[j].length < dirs[ndirs].length
7141 && dirs[j].length > 1
7142 && (dirs[ndirs].prefix == -1
7143 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7144 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7145 dirs[ndirs].prefix = j;
7146
7147 ++ndirs;
7148 }
7149
7150 /* Now to the actual work. We have to find a subset of the directories which
7151 allow expressing the file name using references to the directory table
7152 with the least amount of characters. We do not do an exhaustive search
7153 where we would have to check out every combination of every single
7154 possible prefix. Instead we use a heuristic which provides nearly optimal
7155 results in most cases and never is much off. */
7156 saved = alloca (ndirs * sizeof (int));
7157 savehere = alloca (ndirs * sizeof (int));
7158
7159 memset (saved, '\0', ndirs * sizeof (saved[0]));
7160 for (i = 0; i < ndirs; i++)
7161 {
7162 size_t j;
7163 int total;
7164
7165 /* We can always save some space for the current directory. But this
7166 does not mean it will be enough to justify adding the directory. */
7167 savehere[i] = dirs[i].length;
7168 total = (savehere[i] - saved[i]) * dirs[i].count;
7169
7170 for (j = i + 1; j < ndirs; j++)
7171 {
7172 savehere[j] = 0;
7173 if (saved[j] < dirs[i].length)
7174 {
7175 /* Determine whether the dirs[i] path is a prefix of the
7176 dirs[j] path. */
7177 int k;
7178
7179 k = dirs[j].prefix;
7180 while (k != -1 && k != (int) i)
7181 k = dirs[k].prefix;
7182
7183 if (k == (int) i)
7184 {
7185 /* Yes it is. We can possibly safe some memory but
7186 writing the filenames in dirs[j] relative to
7187 dirs[i]. */
7188 savehere[j] = dirs[i].length;
7189 total += (savehere[j] - saved[j]) * dirs[j].count;
7190 }
7191 }
7192 }
7193
7194 /* Check whether we can safe enough to justify adding the dirs[i]
7195 directory. */
7196 if (total > dirs[i].length + 1)
7197 {
7198 /* It's worthwhile adding. */
7199 for (j = i; j < ndirs; j++)
7200 if (savehere[j] > 0)
7201 {
7202 /* Remember how much we saved for this directory so far. */
7203 saved[j] = savehere[j];
7204
7205 /* Remember the prefix directory. */
7206 dirs[j].dir_idx = i;
7207 }
7208 }
7209 }
7210
7211 /* We have to emit them in the order they appear in the file_table array
7212 since the index is used in the debug info generation. To do this
7213 efficiently we generate a back-mapping of the indices first. */
7214 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7215 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7216 {
7217 backmap[files[i].file_idx] = i;
7218
7219 /* Mark this directory as used. */
7220 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7221 }
7222
7223 /* That was it. We are ready to emit the information. First emit the
7224 directory name table. We have to make sure the first actually emitted
7225 directory name has index one; zero is reserved for the current working
7226 directory. Make sure we do not confuse these indices with the one for the
7227 constructed table (even though most of the time they are identical). */
7228 idx = 1;
7229 idx_offset = dirs[0].length > 0 ? 1 : 0;
7230 for (i = 1 - idx_offset; i < ndirs; i++)
7231 if (dirs[i].used != 0)
7232 {
7233 dirs[i].used = idx++;
7234 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7235 "Directory Entry: 0x%x", dirs[i].used);
7236 }
7237
7238 dw2_asm_output_data (1, 0, "End directory table");
7239
7240 /* Correct the index for the current working directory entry if it
7241 exists. */
7242 if (idx_offset == 0)
7243 dirs[0].used = 0;
7244
7245 /* Now write all the file names. */
7246 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7247 {
7248 int file_idx = backmap[i];
7249 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7250
7251 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7252 "File Entry: 0x%lx", (unsigned long) i);
7253
7254 /* Include directory index. */
7255 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7256
7257 /* Modification time. */
7258 dw2_asm_output_data_uleb128 (0, NULL);
7259
7260 /* File length in bytes. */
7261 dw2_asm_output_data_uleb128 (0, NULL);
7262 }
7263
7264 dw2_asm_output_data (1, 0, "End file name table");
7265 }
7266
7267
7268 /* Output the source line number correspondence information. This
7269 information goes into the .debug_line section. */
7270
7271 static void
7272 output_line_info (void)
7273 {
7274 char l1[20], l2[20], p1[20], p2[20];
7275 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7276 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7277 unsigned opc;
7278 unsigned n_op_args;
7279 unsigned long lt_index;
7280 unsigned long current_line;
7281 long line_offset;
7282 long line_delta;
7283 unsigned long current_file;
7284 unsigned long function;
7285
7286 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7287 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7288 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7289 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7290
7291 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7292 dw2_asm_output_data (4, 0xffffffff,
7293 "Initial length escape value indicating 64-bit DWARF extension");
7294 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7295 "Length of Source Line Info");
7296 ASM_OUTPUT_LABEL (asm_out_file, l1);
7297
7298 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7299 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7300 ASM_OUTPUT_LABEL (asm_out_file, p1);
7301
7302 /* Define the architecture-dependent minimum instruction length (in
7303 bytes). In this implementation of DWARF, this field is used for
7304 information purposes only. Since GCC generates assembly language,
7305 we have no a priori knowledge of how many instruction bytes are
7306 generated for each source line, and therefore can use only the
7307 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7308 commands. Accordingly, we fix this as `1', which is "correct
7309 enough" for all architectures, and don't let the target override. */
7310 dw2_asm_output_data (1, 1,
7311 "Minimum Instruction Length");
7312
7313 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7314 "Default is_stmt_start flag");
7315 dw2_asm_output_data (1, DWARF_LINE_BASE,
7316 "Line Base Value (Special Opcodes)");
7317 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7318 "Line Range Value (Special Opcodes)");
7319 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7320 "Special Opcode Base");
7321
7322 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7323 {
7324 switch (opc)
7325 {
7326 case DW_LNS_advance_pc:
7327 case DW_LNS_advance_line:
7328 case DW_LNS_set_file:
7329 case DW_LNS_set_column:
7330 case DW_LNS_fixed_advance_pc:
7331 n_op_args = 1;
7332 break;
7333 default:
7334 n_op_args = 0;
7335 break;
7336 }
7337
7338 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7339 opc, n_op_args);
7340 }
7341
7342 /* Write out the information about the files we use. */
7343 output_file_names ();
7344 ASM_OUTPUT_LABEL (asm_out_file, p2);
7345
7346 /* We used to set the address register to the first location in the text
7347 section here, but that didn't accomplish anything since we already
7348 have a line note for the opening brace of the first function. */
7349
7350 /* Generate the line number to PC correspondence table, encoded as
7351 a series of state machine operations. */
7352 current_file = 1;
7353 current_line = 1;
7354 strcpy (prev_line_label, text_section_label);
7355 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7356 {
7357 dw_line_info_ref line_info = &line_info_table[lt_index];
7358
7359 #if 0
7360 /* Disable this optimization for now; GDB wants to see two line notes
7361 at the beginning of a function so it can find the end of the
7362 prologue. */
7363
7364 /* Don't emit anything for redundant notes. Just updating the
7365 address doesn't accomplish anything, because we already assume
7366 that anything after the last address is this line. */
7367 if (line_info->dw_line_num == current_line
7368 && line_info->dw_file_num == current_file)
7369 continue;
7370 #endif
7371
7372 /* Emit debug info for the address of the current line.
7373
7374 Unfortunately, we have little choice here currently, and must always
7375 use the most general form. GCC does not know the address delta
7376 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7377 attributes which will give an upper bound on the address range. We
7378 could perhaps use length attributes to determine when it is safe to
7379 use DW_LNS_fixed_advance_pc. */
7380
7381 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7382 if (0)
7383 {
7384 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7385 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7386 "DW_LNS_fixed_advance_pc");
7387 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7388 }
7389 else
7390 {
7391 /* This can handle any delta. This takes
7392 4+DWARF2_ADDR_SIZE bytes. */
7393 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7394 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7395 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7396 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7397 }
7398
7399 strcpy (prev_line_label, line_label);
7400
7401 /* Emit debug info for the source file of the current line, if
7402 different from the previous line. */
7403 if (line_info->dw_file_num != current_file)
7404 {
7405 current_file = line_info->dw_file_num;
7406 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7407 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7408 VARRAY_CHAR_PTR (file_table,
7409 current_file));
7410 }
7411
7412 /* Emit debug info for the current line number, choosing the encoding
7413 that uses the least amount of space. */
7414 if (line_info->dw_line_num != current_line)
7415 {
7416 line_offset = line_info->dw_line_num - current_line;
7417 line_delta = line_offset - DWARF_LINE_BASE;
7418 current_line = line_info->dw_line_num;
7419 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7420 /* This can handle deltas from -10 to 234, using the current
7421 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7422 takes 1 byte. */
7423 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7424 "line %lu", current_line);
7425 else
7426 {
7427 /* This can handle any delta. This takes at least 4 bytes,
7428 depending on the value being encoded. */
7429 dw2_asm_output_data (1, DW_LNS_advance_line,
7430 "advance to line %lu", current_line);
7431 dw2_asm_output_data_sleb128 (line_offset, NULL);
7432 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7433 }
7434 }
7435 else
7436 /* We still need to start a new row, so output a copy insn. */
7437 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7438 }
7439
7440 /* Emit debug info for the address of the end of the function. */
7441 if (0)
7442 {
7443 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7444 "DW_LNS_fixed_advance_pc");
7445 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7446 }
7447 else
7448 {
7449 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7450 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7451 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7452 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7453 }
7454
7455 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7456 dw2_asm_output_data_uleb128 (1, NULL);
7457 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7458
7459 function = 0;
7460 current_file = 1;
7461 current_line = 1;
7462 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7463 {
7464 dw_separate_line_info_ref line_info
7465 = &separate_line_info_table[lt_index];
7466
7467 #if 0
7468 /* Don't emit anything for redundant notes. */
7469 if (line_info->dw_line_num == current_line
7470 && line_info->dw_file_num == current_file
7471 && line_info->function == function)
7472 goto cont;
7473 #endif
7474
7475 /* Emit debug info for the address of the current line. If this is
7476 a new function, or the first line of a function, then we need
7477 to handle it differently. */
7478 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7479 lt_index);
7480 if (function != line_info->function)
7481 {
7482 function = line_info->function;
7483
7484 /* Set the address register to the first line in the function. */
7485 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7486 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7487 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7488 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7489 }
7490 else
7491 {
7492 /* ??? See the DW_LNS_advance_pc comment above. */
7493 if (0)
7494 {
7495 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7496 "DW_LNS_fixed_advance_pc");
7497 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7498 }
7499 else
7500 {
7501 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7502 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7503 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7504 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7505 }
7506 }
7507
7508 strcpy (prev_line_label, line_label);
7509
7510 /* Emit debug info for the source file of the current line, if
7511 different from the previous line. */
7512 if (line_info->dw_file_num != current_file)
7513 {
7514 current_file = line_info->dw_file_num;
7515 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7516 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7517 VARRAY_CHAR_PTR (file_table,
7518 current_file));
7519 }
7520
7521 /* Emit debug info for the current line number, choosing the encoding
7522 that uses the least amount of space. */
7523 if (line_info->dw_line_num != current_line)
7524 {
7525 line_offset = line_info->dw_line_num - current_line;
7526 line_delta = line_offset - DWARF_LINE_BASE;
7527 current_line = line_info->dw_line_num;
7528 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7529 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7530 "line %lu", current_line);
7531 else
7532 {
7533 dw2_asm_output_data (1, DW_LNS_advance_line,
7534 "advance to line %lu", current_line);
7535 dw2_asm_output_data_sleb128 (line_offset, NULL);
7536 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7537 }
7538 }
7539 else
7540 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7541
7542 #if 0
7543 cont:
7544 #endif
7545
7546 lt_index++;
7547
7548 /* If we're done with a function, end its sequence. */
7549 if (lt_index == separate_line_info_table_in_use
7550 || separate_line_info_table[lt_index].function != function)
7551 {
7552 current_file = 1;
7553 current_line = 1;
7554
7555 /* Emit debug info for the address of the end of the function. */
7556 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7557 if (0)
7558 {
7559 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7560 "DW_LNS_fixed_advance_pc");
7561 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7562 }
7563 else
7564 {
7565 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7566 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7567 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7568 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7569 }
7570
7571 /* Output the marker for the end of this sequence. */
7572 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7573 dw2_asm_output_data_uleb128 (1, NULL);
7574 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7575 }
7576 }
7577
7578 /* Output the marker for the end of the line number info. */
7579 ASM_OUTPUT_LABEL (asm_out_file, l2);
7580 }
7581 \f
7582 /* Given a pointer to a tree node for some base type, return a pointer to
7583 a DIE that describes the given type.
7584
7585 This routine must only be called for GCC type nodes that correspond to
7586 Dwarf base (fundamental) types. */
7587
7588 static dw_die_ref
7589 base_type_die (tree type)
7590 {
7591 dw_die_ref base_type_result;
7592 const char *type_name;
7593 enum dwarf_type encoding;
7594 tree name = TYPE_NAME (type);
7595
7596 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7597 return 0;
7598
7599 if (name)
7600 {
7601 if (TREE_CODE (name) == TYPE_DECL)
7602 name = DECL_NAME (name);
7603
7604 type_name = IDENTIFIER_POINTER (name);
7605 }
7606 else
7607 type_name = "__unknown__";
7608
7609 switch (TREE_CODE (type))
7610 {
7611 case INTEGER_TYPE:
7612 /* Carefully distinguish the C character types, without messing
7613 up if the language is not C. Note that we check only for the names
7614 that contain spaces; other names might occur by coincidence in other
7615 languages. */
7616 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7617 && (type == char_type_node
7618 || ! strcmp (type_name, "signed char")
7619 || ! strcmp (type_name, "unsigned char"))))
7620 {
7621 if (TREE_UNSIGNED (type))
7622 encoding = DW_ATE_unsigned;
7623 else
7624 encoding = DW_ATE_signed;
7625 break;
7626 }
7627 /* else fall through. */
7628
7629 case CHAR_TYPE:
7630 /* GNU Pascal/Ada CHAR type. Not used in C. */
7631 if (TREE_UNSIGNED (type))
7632 encoding = DW_ATE_unsigned_char;
7633 else
7634 encoding = DW_ATE_signed_char;
7635 break;
7636
7637 case REAL_TYPE:
7638 encoding = DW_ATE_float;
7639 break;
7640
7641 /* Dwarf2 doesn't know anything about complex ints, so use
7642 a user defined type for it. */
7643 case COMPLEX_TYPE:
7644 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7645 encoding = DW_ATE_complex_float;
7646 else
7647 encoding = DW_ATE_lo_user;
7648 break;
7649
7650 case BOOLEAN_TYPE:
7651 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7652 encoding = DW_ATE_boolean;
7653 break;
7654
7655 default:
7656 /* No other TREE_CODEs are Dwarf fundamental types. */
7657 abort ();
7658 }
7659
7660 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7661 if (demangle_name_func)
7662 type_name = (*demangle_name_func) (type_name);
7663
7664 add_AT_string (base_type_result, DW_AT_name, type_name);
7665 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7666 int_size_in_bytes (type));
7667 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7668
7669 return base_type_result;
7670 }
7671
7672 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7673 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7674 a given type is generally the same as the given type, except that if the
7675 given type is a pointer or reference type, then the root type of the given
7676 type is the root type of the "basis" type for the pointer or reference
7677 type. (This definition of the "root" type is recursive.) Also, the root
7678 type of a `const' qualified type or a `volatile' qualified type is the
7679 root type of the given type without the qualifiers. */
7680
7681 static tree
7682 root_type (tree type)
7683 {
7684 if (TREE_CODE (type) == ERROR_MARK)
7685 return error_mark_node;
7686
7687 switch (TREE_CODE (type))
7688 {
7689 case ERROR_MARK:
7690 return error_mark_node;
7691
7692 case POINTER_TYPE:
7693 case REFERENCE_TYPE:
7694 return type_main_variant (root_type (TREE_TYPE (type)));
7695
7696 default:
7697 return type_main_variant (type);
7698 }
7699 }
7700
7701 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7702 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7703
7704 static inline int
7705 is_base_type (tree type)
7706 {
7707 switch (TREE_CODE (type))
7708 {
7709 case ERROR_MARK:
7710 case VOID_TYPE:
7711 case INTEGER_TYPE:
7712 case REAL_TYPE:
7713 case COMPLEX_TYPE:
7714 case BOOLEAN_TYPE:
7715 case CHAR_TYPE:
7716 return 1;
7717
7718 case SET_TYPE:
7719 case ARRAY_TYPE:
7720 case RECORD_TYPE:
7721 case UNION_TYPE:
7722 case QUAL_UNION_TYPE:
7723 case ENUMERAL_TYPE:
7724 case FUNCTION_TYPE:
7725 case METHOD_TYPE:
7726 case POINTER_TYPE:
7727 case REFERENCE_TYPE:
7728 case FILE_TYPE:
7729 case OFFSET_TYPE:
7730 case LANG_TYPE:
7731 case VECTOR_TYPE:
7732 return 0;
7733
7734 default:
7735 abort ();
7736 }
7737
7738 return 0;
7739 }
7740
7741 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
7742 node, return the size in bits for the type if it is a constant, or else
7743 return the alignment for the type if the type's size is not constant, or
7744 else return BITS_PER_WORD if the type actually turns out to be an
7745 ERROR_MARK node. */
7746
7747 static inline unsigned HOST_WIDE_INT
7748 simple_type_size_in_bits (tree type)
7749 {
7750 if (TREE_CODE (type) == ERROR_MARK)
7751 return BITS_PER_WORD;
7752 else if (TYPE_SIZE (type) == NULL_TREE)
7753 return 0;
7754 else if (host_integerp (TYPE_SIZE (type), 1))
7755 return tree_low_cst (TYPE_SIZE (type), 1);
7756 else
7757 return TYPE_ALIGN (type);
7758 }
7759
7760 /* Return true if the debug information for the given type should be
7761 emitted as a subrange type. */
7762
7763 static inline bool
7764 is_ada_subrange_type (tree type)
7765 {
7766 /* We do this for INTEGER_TYPEs that have names, parent types, and when
7767 we are compiling Ada code. */
7768 return (TREE_CODE (type) == INTEGER_TYPE
7769 && TYPE_NAME (type) != 0 && TREE_TYPE (type) != 0
7770 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
7771 && TREE_UNSIGNED (TREE_TYPE (type)) && is_ada ());
7772 }
7773
7774 /* Given a pointer to a tree node for a subrange type, return a pointer
7775 to a DIE that describes the given type. */
7776
7777 static dw_die_ref
7778 subrange_type_die (tree type)
7779 {
7780 dw_die_ref subtype_die;
7781 dw_die_ref subrange_die;
7782 tree name = TYPE_NAME (type);
7783
7784 subtype_die = base_type_die (TREE_TYPE (type));
7785
7786 if (TREE_CODE (name) == TYPE_DECL)
7787 name = DECL_NAME (name);
7788
7789 subrange_die = new_die (DW_TAG_subrange_type, comp_unit_die, type);
7790 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
7791 if (TYPE_MIN_VALUE (type) != NULL)
7792 add_bound_info (subrange_die, DW_AT_lower_bound,
7793 TYPE_MIN_VALUE (type));
7794 if (TYPE_MAX_VALUE (type) != NULL)
7795 add_bound_info (subrange_die, DW_AT_upper_bound,
7796 TYPE_MAX_VALUE (type));
7797 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
7798
7799 return subrange_die;
7800 }
7801
7802 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
7803 entry that chains various modifiers in front of the given type. */
7804
7805 static dw_die_ref
7806 modified_type_die (tree type, int is_const_type, int is_volatile_type,
7807 dw_die_ref context_die)
7808 {
7809 enum tree_code code = TREE_CODE (type);
7810 dw_die_ref mod_type_die = NULL;
7811 dw_die_ref sub_die = NULL;
7812 tree item_type = NULL;
7813
7814 if (code != ERROR_MARK)
7815 {
7816 tree qualified_type;
7817
7818 /* See if we already have the appropriately qualified variant of
7819 this type. */
7820 qualified_type
7821 = get_qualified_type (type,
7822 ((is_const_type ? TYPE_QUAL_CONST : 0)
7823 | (is_volatile_type
7824 ? TYPE_QUAL_VOLATILE : 0)));
7825
7826 /* If we do, then we can just use its DIE, if it exists. */
7827 if (qualified_type)
7828 {
7829 mod_type_die = lookup_type_die (qualified_type);
7830 if (mod_type_die)
7831 return mod_type_die;
7832 }
7833
7834 /* Handle C typedef types. */
7835 if (qualified_type && TYPE_NAME (qualified_type)
7836 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
7837 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
7838 {
7839 tree type_name = TYPE_NAME (qualified_type);
7840 tree dtype = TREE_TYPE (type_name);
7841
7842 if (qualified_type == dtype)
7843 {
7844 /* For a named type, use the typedef. */
7845 gen_type_die (qualified_type, context_die);
7846 mod_type_die = lookup_type_die (qualified_type);
7847 }
7848 else if (is_const_type < TYPE_READONLY (dtype)
7849 || is_volatile_type < TYPE_VOLATILE (dtype))
7850 /* cv-unqualified version of named type. Just use the unnamed
7851 type to which it refers. */
7852 mod_type_die
7853 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
7854 is_const_type, is_volatile_type,
7855 context_die);
7856
7857 /* Else cv-qualified version of named type; fall through. */
7858 }
7859
7860 if (mod_type_die)
7861 /* OK. */
7862 ;
7863 else if (is_const_type)
7864 {
7865 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
7866 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
7867 }
7868 else if (is_volatile_type)
7869 {
7870 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
7871 sub_die = modified_type_die (type, 0, 0, context_die);
7872 }
7873 else if (code == POINTER_TYPE)
7874 {
7875 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
7876 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
7877 simple_type_size_in_bits (type) / BITS_PER_UNIT);
7878 #if 0
7879 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7880 #endif
7881 item_type = TREE_TYPE (type);
7882 }
7883 else if (code == REFERENCE_TYPE)
7884 {
7885 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
7886 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
7887 simple_type_size_in_bits (type) / BITS_PER_UNIT);
7888 #if 0
7889 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7890 #endif
7891 item_type = TREE_TYPE (type);
7892 }
7893 else if (is_ada_subrange_type (type))
7894 mod_type_die = subrange_type_die (type);
7895 else if (is_base_type (type))
7896 mod_type_die = base_type_die (type);
7897 else
7898 {
7899 gen_type_die (type, context_die);
7900
7901 /* We have to get the type_main_variant here (and pass that to the
7902 `lookup_type_die' routine) because the ..._TYPE node we have
7903 might simply be a *copy* of some original type node (where the
7904 copy was created to help us keep track of typedef names) and
7905 that copy might have a different TYPE_UID from the original
7906 ..._TYPE node. */
7907 if (TREE_CODE (type) != VECTOR_TYPE)
7908 mod_type_die = lookup_type_die (type_main_variant (type));
7909 else
7910 /* Vectors have the debugging information in the type,
7911 not the main variant. */
7912 mod_type_die = lookup_type_die (type);
7913 if (mod_type_die == NULL)
7914 abort ();
7915 }
7916
7917 /* We want to equate the qualified type to the die below. */
7918 type = qualified_type;
7919 }
7920
7921 if (type)
7922 equate_type_number_to_die (type, mod_type_die);
7923 if (item_type)
7924 /* We must do this after the equate_type_number_to_die call, in case
7925 this is a recursive type. This ensures that the modified_type_die
7926 recursion will terminate even if the type is recursive. Recursive
7927 types are possible in Ada. */
7928 sub_die = modified_type_die (item_type,
7929 TYPE_READONLY (item_type),
7930 TYPE_VOLATILE (item_type),
7931 context_die);
7932
7933 if (sub_die != NULL)
7934 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
7935
7936 return mod_type_die;
7937 }
7938
7939 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
7940 an enumerated type. */
7941
7942 static inline int
7943 type_is_enum (tree type)
7944 {
7945 return TREE_CODE (type) == ENUMERAL_TYPE;
7946 }
7947
7948 /* Return the register number described by a given RTL node. */
7949
7950 static unsigned int
7951 reg_number (rtx rtl)
7952 {
7953 unsigned regno = REGNO (rtl);
7954
7955 if (regno >= FIRST_PSEUDO_REGISTER)
7956 abort ();
7957
7958 return DBX_REGISTER_NUMBER (regno);
7959 }
7960
7961 /* Return a location descriptor that designates a machine register or
7962 zero if there is none. */
7963
7964 static dw_loc_descr_ref
7965 reg_loc_descriptor (rtx rtl)
7966 {
7967 unsigned reg;
7968 rtx regs;
7969
7970 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
7971 return 0;
7972
7973 reg = reg_number (rtl);
7974 regs = (*targetm.dwarf_register_span) (rtl);
7975
7976 if (HARD_REGNO_NREGS (reg, GET_MODE (rtl)) > 1
7977 || regs)
7978 return multiple_reg_loc_descriptor (rtl, regs);
7979 else
7980 return one_reg_loc_descriptor (reg);
7981 }
7982
7983 /* Return a location descriptor that designates a machine register for
7984 a given hard register number. */
7985
7986 static dw_loc_descr_ref
7987 one_reg_loc_descriptor (unsigned int regno)
7988 {
7989 if (regno <= 31)
7990 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
7991 else
7992 return new_loc_descr (DW_OP_regx, regno, 0);
7993 }
7994
7995 /* Given an RTL of a register, return a location descriptor that
7996 designates a value that spans more than one register. */
7997
7998 static dw_loc_descr_ref
7999 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8000 {
8001 int nregs, size, i;
8002 unsigned reg;
8003 dw_loc_descr_ref loc_result = NULL;
8004
8005 reg = reg_number (rtl);
8006 nregs = HARD_REGNO_NREGS (reg, GET_MODE (rtl));
8007
8008 /* Simple, contiguous registers. */
8009 if (regs == NULL_RTX)
8010 {
8011 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8012
8013 loc_result = NULL;
8014 while (nregs--)
8015 {
8016 dw_loc_descr_ref t;
8017
8018 t = one_reg_loc_descriptor (reg);
8019 add_loc_descr (&loc_result, t);
8020 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8021 ++reg;
8022 }
8023 return loc_result;
8024 }
8025
8026 /* Now onto stupid register sets in non contiguous locations. */
8027
8028 if (GET_CODE (regs) != PARALLEL)
8029 abort ();
8030
8031 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8032 loc_result = NULL;
8033
8034 for (i = 0; i < XVECLEN (regs, 0); ++i)
8035 {
8036 dw_loc_descr_ref t;
8037
8038 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8039 add_loc_descr (&loc_result, t);
8040 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8041 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8042 }
8043 return loc_result;
8044 }
8045
8046 /* Return a location descriptor that designates a constant. */
8047
8048 static dw_loc_descr_ref
8049 int_loc_descriptor (HOST_WIDE_INT i)
8050 {
8051 enum dwarf_location_atom op;
8052
8053 /* Pick the smallest representation of a constant, rather than just
8054 defaulting to the LEB encoding. */
8055 if (i >= 0)
8056 {
8057 if (i <= 31)
8058 op = DW_OP_lit0 + i;
8059 else if (i <= 0xff)
8060 op = DW_OP_const1u;
8061 else if (i <= 0xffff)
8062 op = DW_OP_const2u;
8063 else if (HOST_BITS_PER_WIDE_INT == 32
8064 || i <= 0xffffffff)
8065 op = DW_OP_const4u;
8066 else
8067 op = DW_OP_constu;
8068 }
8069 else
8070 {
8071 if (i >= -0x80)
8072 op = DW_OP_const1s;
8073 else if (i >= -0x8000)
8074 op = DW_OP_const2s;
8075 else if (HOST_BITS_PER_WIDE_INT == 32
8076 || i >= -0x80000000)
8077 op = DW_OP_const4s;
8078 else
8079 op = DW_OP_consts;
8080 }
8081
8082 return new_loc_descr (op, i, 0);
8083 }
8084
8085 /* Return a location descriptor that designates a base+offset location. */
8086
8087 static dw_loc_descr_ref
8088 based_loc_descr (unsigned int reg, long int offset)
8089 {
8090 dw_loc_descr_ref loc_result;
8091 /* For the "frame base", we use the frame pointer or stack pointer
8092 registers, since the RTL for local variables is relative to one of
8093 them. */
8094 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8095 ? HARD_FRAME_POINTER_REGNUM
8096 : STACK_POINTER_REGNUM);
8097
8098 if (reg == fp_reg)
8099 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8100 else if (reg <= 31)
8101 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8102 else
8103 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8104
8105 return loc_result;
8106 }
8107
8108 /* Return true if this RTL expression describes a base+offset calculation. */
8109
8110 static inline int
8111 is_based_loc (rtx rtl)
8112 {
8113 return (GET_CODE (rtl) == PLUS
8114 && ((GET_CODE (XEXP (rtl, 0)) == REG
8115 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8116 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8117 }
8118
8119 /* The following routine converts the RTL for a variable or parameter
8120 (resident in memory) into an equivalent Dwarf representation of a
8121 mechanism for getting the address of that same variable onto the top of a
8122 hypothetical "address evaluation" stack.
8123
8124 When creating memory location descriptors, we are effectively transforming
8125 the RTL for a memory-resident object into its Dwarf postfix expression
8126 equivalent. This routine recursively descends an RTL tree, turning
8127 it into Dwarf postfix code as it goes.
8128
8129 MODE is the mode of the memory reference, needed to handle some
8130 autoincrement addressing modes.
8131
8132 Return 0 if we can't represent the location. */
8133
8134 static dw_loc_descr_ref
8135 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8136 {
8137 dw_loc_descr_ref mem_loc_result = NULL;
8138
8139 /* Note that for a dynamically sized array, the location we will generate a
8140 description of here will be the lowest numbered location which is
8141 actually within the array. That's *not* necessarily the same as the
8142 zeroth element of the array. */
8143
8144 rtl = (*targetm.delegitimize_address) (rtl);
8145
8146 switch (GET_CODE (rtl))
8147 {
8148 case POST_INC:
8149 case POST_DEC:
8150 case POST_MODIFY:
8151 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8152 just fall into the SUBREG code. */
8153
8154 /* ... fall through ... */
8155
8156 case SUBREG:
8157 /* The case of a subreg may arise when we have a local (register)
8158 variable or a formal (register) parameter which doesn't quite fill
8159 up an entire register. For now, just assume that it is
8160 legitimate to make the Dwarf info refer to the whole register which
8161 contains the given subreg. */
8162 rtl = SUBREG_REG (rtl);
8163
8164 /* ... fall through ... */
8165
8166 case REG:
8167 /* Whenever a register number forms a part of the description of the
8168 method for calculating the (dynamic) address of a memory resident
8169 object, DWARF rules require the register number be referred to as
8170 a "base register". This distinction is not based in any way upon
8171 what category of register the hardware believes the given register
8172 belongs to. This is strictly DWARF terminology we're dealing with
8173 here. Note that in cases where the location of a memory-resident
8174 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8175 OP_CONST (0)) the actual DWARF location descriptor that we generate
8176 may just be OP_BASEREG (basereg). This may look deceptively like
8177 the object in question was allocated to a register (rather than in
8178 memory) so DWARF consumers need to be aware of the subtle
8179 distinction between OP_REG and OP_BASEREG. */
8180 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8181 mem_loc_result = based_loc_descr (reg_number (rtl), 0);
8182 break;
8183
8184 case MEM:
8185 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8186 if (mem_loc_result != 0)
8187 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8188 break;
8189
8190 case LO_SUM:
8191 rtl = XEXP (rtl, 1);
8192
8193 /* ... fall through ... */
8194
8195 case LABEL_REF:
8196 /* Some ports can transform a symbol ref into a label ref, because
8197 the symbol ref is too far away and has to be dumped into a constant
8198 pool. */
8199 case CONST:
8200 case SYMBOL_REF:
8201 /* Alternatively, the symbol in the constant pool might be referenced
8202 by a different symbol. */
8203 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8204 {
8205 bool marked;
8206 rtx tmp = get_pool_constant_mark (rtl, &marked);
8207
8208 if (GET_CODE (tmp) == SYMBOL_REF)
8209 {
8210 rtl = tmp;
8211 if (CONSTANT_POOL_ADDRESS_P (tmp))
8212 get_pool_constant_mark (tmp, &marked);
8213 else
8214 marked = true;
8215 }
8216
8217 /* If all references to this pool constant were optimized away,
8218 it was not output and thus we can't represent it.
8219 FIXME: might try to use DW_OP_const_value here, though
8220 DW_OP_piece complicates it. */
8221 if (!marked)
8222 return 0;
8223 }
8224
8225 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8226 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8227 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8228 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8229 break;
8230
8231 case PRE_MODIFY:
8232 /* Extract the PLUS expression nested inside and fall into
8233 PLUS code below. */
8234 rtl = XEXP (rtl, 1);
8235 goto plus;
8236
8237 case PRE_INC:
8238 case PRE_DEC:
8239 /* Turn these into a PLUS expression and fall into the PLUS code
8240 below. */
8241 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8242 GEN_INT (GET_CODE (rtl) == PRE_INC
8243 ? GET_MODE_UNIT_SIZE (mode)
8244 : -GET_MODE_UNIT_SIZE (mode)));
8245
8246 /* ... fall through ... */
8247
8248 case PLUS:
8249 plus:
8250 if (is_based_loc (rtl))
8251 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
8252 INTVAL (XEXP (rtl, 1)));
8253 else
8254 {
8255 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8256 if (mem_loc_result == 0)
8257 break;
8258
8259 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8260 && INTVAL (XEXP (rtl, 1)) >= 0)
8261 add_loc_descr (&mem_loc_result,
8262 new_loc_descr (DW_OP_plus_uconst,
8263 INTVAL (XEXP (rtl, 1)), 0));
8264 else
8265 {
8266 add_loc_descr (&mem_loc_result,
8267 mem_loc_descriptor (XEXP (rtl, 1), mode));
8268 add_loc_descr (&mem_loc_result,
8269 new_loc_descr (DW_OP_plus, 0, 0));
8270 }
8271 }
8272 break;
8273
8274 case MULT:
8275 {
8276 /* If a pseudo-reg is optimized away, it is possible for it to
8277 be replaced with a MEM containing a multiply. */
8278 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8279 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8280
8281 if (op0 == 0 || op1 == 0)
8282 break;
8283
8284 mem_loc_result = op0;
8285 add_loc_descr (&mem_loc_result, op1);
8286 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
8287 break;
8288 }
8289
8290 case CONST_INT:
8291 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8292 break;
8293
8294 case ADDRESSOF:
8295 /* If this is a MEM, return its address. Otherwise, we can't
8296 represent this. */
8297 if (GET_CODE (XEXP (rtl, 0)) == MEM)
8298 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode);
8299 else
8300 return 0;
8301
8302 default:
8303 abort ();
8304 }
8305
8306 return mem_loc_result;
8307 }
8308
8309 /* Return a descriptor that describes the concatenation of two locations.
8310 This is typically a complex variable. */
8311
8312 static dw_loc_descr_ref
8313 concat_loc_descriptor (rtx x0, rtx x1)
8314 {
8315 dw_loc_descr_ref cc_loc_result = NULL;
8316 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8317 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8318
8319 if (x0_ref == 0 || x1_ref == 0)
8320 return 0;
8321
8322 cc_loc_result = x0_ref;
8323 add_loc_descr (&cc_loc_result,
8324 new_loc_descr (DW_OP_piece,
8325 GET_MODE_SIZE (GET_MODE (x0)), 0));
8326
8327 add_loc_descr (&cc_loc_result, x1_ref);
8328 add_loc_descr (&cc_loc_result,
8329 new_loc_descr (DW_OP_piece,
8330 GET_MODE_SIZE (GET_MODE (x1)), 0));
8331
8332 return cc_loc_result;
8333 }
8334
8335 /* Output a proper Dwarf location descriptor for a variable or parameter
8336 which is either allocated in a register or in a memory location. For a
8337 register, we just generate an OP_REG and the register number. For a
8338 memory location we provide a Dwarf postfix expression describing how to
8339 generate the (dynamic) address of the object onto the address stack.
8340
8341 If we don't know how to describe it, return 0. */
8342
8343 static dw_loc_descr_ref
8344 loc_descriptor (rtx rtl)
8345 {
8346 dw_loc_descr_ref loc_result = NULL;
8347
8348 switch (GET_CODE (rtl))
8349 {
8350 case SUBREG:
8351 /* The case of a subreg may arise when we have a local (register)
8352 variable or a formal (register) parameter which doesn't quite fill
8353 up an entire register. For now, just assume that it is
8354 legitimate to make the Dwarf info refer to the whole register which
8355 contains the given subreg. */
8356 rtl = SUBREG_REG (rtl);
8357
8358 /* ... fall through ... */
8359
8360 case REG:
8361 loc_result = reg_loc_descriptor (rtl);
8362 break;
8363
8364 case MEM:
8365 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8366 break;
8367
8368 case CONCAT:
8369 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8370 break;
8371
8372 default:
8373 abort ();
8374 }
8375
8376 return loc_result;
8377 }
8378
8379 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8380 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8381 looking for an address. Otherwise, we return a value. If we can't make a
8382 descriptor, return 0. */
8383
8384 static dw_loc_descr_ref
8385 loc_descriptor_from_tree (tree loc, int addressp)
8386 {
8387 dw_loc_descr_ref ret, ret1;
8388 int indirect_p = 0;
8389 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8390 enum dwarf_location_atom op;
8391
8392 /* ??? Most of the time we do not take proper care for sign/zero
8393 extending the values properly. Hopefully this won't be a real
8394 problem... */
8395
8396 switch (TREE_CODE (loc))
8397 {
8398 case ERROR_MARK:
8399 return 0;
8400
8401 case WITH_RECORD_EXPR:
8402 case PLACEHOLDER_EXPR:
8403 /* This case involves extracting fields from an object to determine the
8404 position of other fields. We don't try to encode this here. The
8405 only user of this is Ada, which encodes the needed information using
8406 the names of types. */
8407 return 0;
8408
8409 case CALL_EXPR:
8410 return 0;
8411
8412 case ADDR_EXPR:
8413 /* We can support this only if we can look through conversions and
8414 find an INDIRECT_EXPR. */
8415 for (loc = TREE_OPERAND (loc, 0);
8416 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8417 || TREE_CODE (loc) == NON_LVALUE_EXPR
8418 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8419 || TREE_CODE (loc) == SAVE_EXPR;
8420 loc = TREE_OPERAND (loc, 0))
8421 ;
8422
8423 return (TREE_CODE (loc) == INDIRECT_REF
8424 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8425 : 0);
8426
8427 case VAR_DECL:
8428 if (DECL_THREAD_LOCAL (loc))
8429 {
8430 rtx rtl;
8431
8432 #ifndef ASM_OUTPUT_DWARF_DTPREL
8433 /* If this is not defined, we have no way to emit the data. */
8434 return 0;
8435 #endif
8436
8437 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8438 look up addresses of objects in the current module. */
8439 if (DECL_EXTERNAL (loc))
8440 return 0;
8441
8442 rtl = rtl_for_decl_location (loc);
8443 if (rtl == NULL_RTX)
8444 return 0;
8445
8446 if (GET_CODE (rtl) != MEM)
8447 return 0;
8448 rtl = XEXP (rtl, 0);
8449 if (! CONSTANT_P (rtl))
8450 return 0;
8451
8452 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8453 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8454 ret->dw_loc_oprnd1.v.val_addr = rtl;
8455
8456 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8457 add_loc_descr (&ret, ret1);
8458
8459 indirect_p = 1;
8460 break;
8461 }
8462 /* FALLTHRU */
8463
8464 case PARM_DECL:
8465 {
8466 rtx rtl = rtl_for_decl_location (loc);
8467
8468 if (rtl == NULL_RTX)
8469 return 0;
8470 else if (CONSTANT_P (rtl))
8471 {
8472 ret = new_loc_descr (DW_OP_addr, 0, 0);
8473 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8474 ret->dw_loc_oprnd1.v.val_addr = rtl;
8475 indirect_p = 1;
8476 }
8477 else
8478 {
8479 enum machine_mode mode = GET_MODE (rtl);
8480
8481 if (GET_CODE (rtl) == MEM)
8482 {
8483 indirect_p = 1;
8484 rtl = XEXP (rtl, 0);
8485 }
8486
8487 ret = mem_loc_descriptor (rtl, mode);
8488 }
8489 }
8490 break;
8491
8492 case INDIRECT_REF:
8493 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8494 indirect_p = 1;
8495 break;
8496
8497 case COMPOUND_EXPR:
8498 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8499
8500 case NOP_EXPR:
8501 case CONVERT_EXPR:
8502 case NON_LVALUE_EXPR:
8503 case VIEW_CONVERT_EXPR:
8504 case SAVE_EXPR:
8505 case MODIFY_EXPR:
8506 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8507
8508 case COMPONENT_REF:
8509 case BIT_FIELD_REF:
8510 case ARRAY_REF:
8511 case ARRAY_RANGE_REF:
8512 {
8513 tree obj, offset;
8514 HOST_WIDE_INT bitsize, bitpos, bytepos;
8515 enum machine_mode mode;
8516 int volatilep;
8517
8518 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8519 &unsignedp, &volatilep);
8520
8521 if (obj == loc)
8522 return 0;
8523
8524 ret = loc_descriptor_from_tree (obj, 1);
8525 if (ret == 0
8526 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8527 return 0;
8528
8529 if (offset != NULL_TREE)
8530 {
8531 /* Variable offset. */
8532 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8533 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8534 }
8535
8536 if (!addressp)
8537 indirect_p = 1;
8538
8539 bytepos = bitpos / BITS_PER_UNIT;
8540 if (bytepos > 0)
8541 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8542 else if (bytepos < 0)
8543 {
8544 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8545 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8546 }
8547 break;
8548 }
8549
8550 case INTEGER_CST:
8551 if (host_integerp (loc, 0))
8552 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8553 else
8554 return 0;
8555 break;
8556
8557 case CONSTRUCTOR:
8558 {
8559 /* Get an RTL for this, if something has been emitted. */
8560 rtx rtl = lookup_constant_def (loc);
8561 enum machine_mode mode;
8562
8563 if (GET_CODE (rtl) != MEM)
8564 return 0;
8565 mode = GET_MODE (rtl);
8566 rtl = XEXP (rtl, 0);
8567
8568 rtl = (*targetm.delegitimize_address) (rtl);
8569
8570 indirect_p = 1;
8571 ret = mem_loc_descriptor (rtl, mode);
8572 break;
8573 }
8574
8575 case TRUTH_AND_EXPR:
8576 case TRUTH_ANDIF_EXPR:
8577 case BIT_AND_EXPR:
8578 op = DW_OP_and;
8579 goto do_binop;
8580
8581 case TRUTH_XOR_EXPR:
8582 case BIT_XOR_EXPR:
8583 op = DW_OP_xor;
8584 goto do_binop;
8585
8586 case TRUTH_OR_EXPR:
8587 case TRUTH_ORIF_EXPR:
8588 case BIT_IOR_EXPR:
8589 op = DW_OP_or;
8590 goto do_binop;
8591
8592 case FLOOR_DIV_EXPR:
8593 case CEIL_DIV_EXPR:
8594 case ROUND_DIV_EXPR:
8595 case TRUNC_DIV_EXPR:
8596 op = DW_OP_div;
8597 goto do_binop;
8598
8599 case MINUS_EXPR:
8600 op = DW_OP_minus;
8601 goto do_binop;
8602
8603 case FLOOR_MOD_EXPR:
8604 case CEIL_MOD_EXPR:
8605 case ROUND_MOD_EXPR:
8606 case TRUNC_MOD_EXPR:
8607 op = DW_OP_mod;
8608 goto do_binop;
8609
8610 case MULT_EXPR:
8611 op = DW_OP_mul;
8612 goto do_binop;
8613
8614 case LSHIFT_EXPR:
8615 op = DW_OP_shl;
8616 goto do_binop;
8617
8618 case RSHIFT_EXPR:
8619 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8620 goto do_binop;
8621
8622 case PLUS_EXPR:
8623 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8624 && host_integerp (TREE_OPERAND (loc, 1), 0))
8625 {
8626 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8627 if (ret == 0)
8628 return 0;
8629
8630 add_loc_descr (&ret,
8631 new_loc_descr (DW_OP_plus_uconst,
8632 tree_low_cst (TREE_OPERAND (loc, 1),
8633 0),
8634 0));
8635 break;
8636 }
8637
8638 op = DW_OP_plus;
8639 goto do_binop;
8640
8641 case LE_EXPR:
8642 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8643 return 0;
8644
8645 op = DW_OP_le;
8646 goto do_binop;
8647
8648 case GE_EXPR:
8649 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8650 return 0;
8651
8652 op = DW_OP_ge;
8653 goto do_binop;
8654
8655 case LT_EXPR:
8656 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8657 return 0;
8658
8659 op = DW_OP_lt;
8660 goto do_binop;
8661
8662 case GT_EXPR:
8663 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8664 return 0;
8665
8666 op = DW_OP_gt;
8667 goto do_binop;
8668
8669 case EQ_EXPR:
8670 op = DW_OP_eq;
8671 goto do_binop;
8672
8673 case NE_EXPR:
8674 op = DW_OP_ne;
8675 goto do_binop;
8676
8677 do_binop:
8678 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8679 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8680 if (ret == 0 || ret1 == 0)
8681 return 0;
8682
8683 add_loc_descr (&ret, ret1);
8684 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8685 break;
8686
8687 case TRUTH_NOT_EXPR:
8688 case BIT_NOT_EXPR:
8689 op = DW_OP_not;
8690 goto do_unop;
8691
8692 case ABS_EXPR:
8693 op = DW_OP_abs;
8694 goto do_unop;
8695
8696 case NEGATE_EXPR:
8697 op = DW_OP_neg;
8698 goto do_unop;
8699
8700 do_unop:
8701 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8702 if (ret == 0)
8703 return 0;
8704
8705 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8706 break;
8707
8708 case MAX_EXPR:
8709 loc = build (COND_EXPR, TREE_TYPE (loc),
8710 build (LT_EXPR, integer_type_node,
8711 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8712 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
8713
8714 /* ... fall through ... */
8715
8716 case COND_EXPR:
8717 {
8718 dw_loc_descr_ref lhs
8719 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8720 dw_loc_descr_ref rhs
8721 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
8722 dw_loc_descr_ref bra_node, jump_node, tmp;
8723
8724 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8725 if (ret == 0 || lhs == 0 || rhs == 0)
8726 return 0;
8727
8728 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
8729 add_loc_descr (&ret, bra_node);
8730
8731 add_loc_descr (&ret, rhs);
8732 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
8733 add_loc_descr (&ret, jump_node);
8734
8735 add_loc_descr (&ret, lhs);
8736 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8737 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
8738
8739 /* ??? Need a node to point the skip at. Use a nop. */
8740 tmp = new_loc_descr (DW_OP_nop, 0, 0);
8741 add_loc_descr (&ret, tmp);
8742 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8743 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
8744 }
8745 break;
8746
8747 default:
8748 /* Leave front-end specific codes as simply unknown. This comes
8749 up, for instance, with the C STMT_EXPR. */
8750 if ((unsigned int) TREE_CODE (loc)
8751 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
8752 return 0;
8753
8754 /* Otherwise this is a generic code; we should just lists all of
8755 these explicitly. Aborting means we forgot one. */
8756 abort ();
8757 }
8758
8759 /* Show if we can't fill the request for an address. */
8760 if (addressp && indirect_p == 0)
8761 return 0;
8762
8763 /* If we've got an address and don't want one, dereference. */
8764 if (!addressp && indirect_p > 0)
8765 {
8766 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
8767
8768 if (size > DWARF2_ADDR_SIZE || size == -1)
8769 return 0;
8770 else if (size == DWARF2_ADDR_SIZE)
8771 op = DW_OP_deref;
8772 else
8773 op = DW_OP_deref_size;
8774
8775 add_loc_descr (&ret, new_loc_descr (op, size, 0));
8776 }
8777
8778 return ret;
8779 }
8780
8781 /* Given a value, round it up to the lowest multiple of `boundary'
8782 which is not less than the value itself. */
8783
8784 static inline HOST_WIDE_INT
8785 ceiling (HOST_WIDE_INT value, unsigned int boundary)
8786 {
8787 return (((value + boundary - 1) / boundary) * boundary);
8788 }
8789
8790 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
8791 pointer to the declared type for the relevant field variable, or return
8792 `integer_type_node' if the given node turns out to be an
8793 ERROR_MARK node. */
8794
8795 static inline tree
8796 field_type (tree decl)
8797 {
8798 tree type;
8799
8800 if (TREE_CODE (decl) == ERROR_MARK)
8801 return integer_type_node;
8802
8803 type = DECL_BIT_FIELD_TYPE (decl);
8804 if (type == NULL_TREE)
8805 type = TREE_TYPE (decl);
8806
8807 return type;
8808 }
8809
8810 /* Given a pointer to a tree node, return the alignment in bits for
8811 it, or else return BITS_PER_WORD if the node actually turns out to
8812 be an ERROR_MARK node. */
8813
8814 static inline unsigned
8815 simple_type_align_in_bits (tree type)
8816 {
8817 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
8818 }
8819
8820 static inline unsigned
8821 simple_decl_align_in_bits (tree decl)
8822 {
8823 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
8824 }
8825
8826 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
8827 lowest addressed byte of the "containing object" for the given FIELD_DECL,
8828 or return 0 if we are unable to determine what that offset is, either
8829 because the argument turns out to be a pointer to an ERROR_MARK node, or
8830 because the offset is actually variable. (We can't handle the latter case
8831 just yet). */
8832
8833 static HOST_WIDE_INT
8834 field_byte_offset (tree decl)
8835 {
8836 unsigned int type_align_in_bits;
8837 unsigned int decl_align_in_bits;
8838 unsigned HOST_WIDE_INT type_size_in_bits;
8839 HOST_WIDE_INT object_offset_in_bits;
8840 tree type;
8841 tree field_size_tree;
8842 HOST_WIDE_INT bitpos_int;
8843 HOST_WIDE_INT deepest_bitpos;
8844 unsigned HOST_WIDE_INT field_size_in_bits;
8845
8846 if (TREE_CODE (decl) == ERROR_MARK)
8847 return 0;
8848 else if (TREE_CODE (decl) != FIELD_DECL)
8849 abort ();
8850
8851 type = field_type (decl);
8852 field_size_tree = DECL_SIZE (decl);
8853
8854 /* The size could be unspecified if there was an error, or for
8855 a flexible array member. */
8856 if (! field_size_tree)
8857 field_size_tree = bitsize_zero_node;
8858
8859 /* We cannot yet cope with fields whose positions are variable, so
8860 for now, when we see such things, we simply return 0. Someday, we may
8861 be able to handle such cases, but it will be damn difficult. */
8862 if (! host_integerp (bit_position (decl), 0))
8863 return 0;
8864
8865 bitpos_int = int_bit_position (decl);
8866
8867 /* If we don't know the size of the field, pretend it's a full word. */
8868 if (host_integerp (field_size_tree, 1))
8869 field_size_in_bits = tree_low_cst (field_size_tree, 1);
8870 else
8871 field_size_in_bits = BITS_PER_WORD;
8872
8873 type_size_in_bits = simple_type_size_in_bits (type);
8874 type_align_in_bits = simple_type_align_in_bits (type);
8875 decl_align_in_bits = simple_decl_align_in_bits (decl);
8876
8877 /* The GCC front-end doesn't make any attempt to keep track of the starting
8878 bit offset (relative to the start of the containing structure type) of the
8879 hypothetical "containing object" for a bit-field. Thus, when computing
8880 the byte offset value for the start of the "containing object" of a
8881 bit-field, we must deduce this information on our own. This can be rather
8882 tricky to do in some cases. For example, handling the following structure
8883 type definition when compiling for an i386/i486 target (which only aligns
8884 long long's to 32-bit boundaries) can be very tricky:
8885
8886 struct S { int field1; long long field2:31; };
8887
8888 Fortunately, there is a simple rule-of-thumb which can be used in such
8889 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
8890 structure shown above. It decides to do this based upon one simple rule
8891 for bit-field allocation. GCC allocates each "containing object" for each
8892 bit-field at the first (i.e. lowest addressed) legitimate alignment
8893 boundary (based upon the required minimum alignment for the declared type
8894 of the field) which it can possibly use, subject to the condition that
8895 there is still enough available space remaining in the containing object
8896 (when allocated at the selected point) to fully accommodate all of the
8897 bits of the bit-field itself.
8898
8899 This simple rule makes it obvious why GCC allocates 8 bytes for each
8900 object of the structure type shown above. When looking for a place to
8901 allocate the "containing object" for `field2', the compiler simply tries
8902 to allocate a 64-bit "containing object" at each successive 32-bit
8903 boundary (starting at zero) until it finds a place to allocate that 64-
8904 bit field such that at least 31 contiguous (and previously unallocated)
8905 bits remain within that selected 64 bit field. (As it turns out, for the
8906 example above, the compiler finds it is OK to allocate the "containing
8907 object" 64-bit field at bit-offset zero within the structure type.)
8908
8909 Here we attempt to work backwards from the limited set of facts we're
8910 given, and we try to deduce from those facts, where GCC must have believed
8911 that the containing object started (within the structure type). The value
8912 we deduce is then used (by the callers of this routine) to generate
8913 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
8914 and, in the case of DW_AT_location, regular fields as well). */
8915
8916 /* Figure out the bit-distance from the start of the structure to the
8917 "deepest" bit of the bit-field. */
8918 deepest_bitpos = bitpos_int + field_size_in_bits;
8919
8920 /* This is the tricky part. Use some fancy footwork to deduce where the
8921 lowest addressed bit of the containing object must be. */
8922 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8923
8924 /* Round up to type_align by default. This works best for bitfields. */
8925 object_offset_in_bits += type_align_in_bits - 1;
8926 object_offset_in_bits /= type_align_in_bits;
8927 object_offset_in_bits *= type_align_in_bits;
8928
8929 if (object_offset_in_bits > bitpos_int)
8930 {
8931 /* Sigh, the decl must be packed. */
8932 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8933
8934 /* Round up to decl_align instead. */
8935 object_offset_in_bits += decl_align_in_bits - 1;
8936 object_offset_in_bits /= decl_align_in_bits;
8937 object_offset_in_bits *= decl_align_in_bits;
8938 }
8939
8940 return object_offset_in_bits / BITS_PER_UNIT;
8941 }
8942 \f
8943 /* The following routines define various Dwarf attributes and any data
8944 associated with them. */
8945
8946 /* Add a location description attribute value to a DIE.
8947
8948 This emits location attributes suitable for whole variables and
8949 whole parameters. Note that the location attributes for struct fields are
8950 generated by the routine `data_member_location_attribute' below. */
8951
8952 static inline void
8953 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
8954 dw_loc_descr_ref descr)
8955 {
8956 if (descr != 0)
8957 add_AT_loc (die, attr_kind, descr);
8958 }
8959
8960 /* Attach the specialized form of location attribute used for data members of
8961 struct and union types. In the special case of a FIELD_DECL node which
8962 represents a bit-field, the "offset" part of this special location
8963 descriptor must indicate the distance in bytes from the lowest-addressed
8964 byte of the containing struct or union type to the lowest-addressed byte of
8965 the "containing object" for the bit-field. (See the `field_byte_offset'
8966 function above).
8967
8968 For any given bit-field, the "containing object" is a hypothetical object
8969 (of some integral or enum type) within which the given bit-field lives. The
8970 type of this hypothetical "containing object" is always the same as the
8971 declared type of the individual bit-field itself (for GCC anyway... the
8972 DWARF spec doesn't actually mandate this). Note that it is the size (in
8973 bytes) of the hypothetical "containing object" which will be given in the
8974 DW_AT_byte_size attribute for this bit-field. (See the
8975 `byte_size_attribute' function below.) It is also used when calculating the
8976 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
8977 function below.) */
8978
8979 static void
8980 add_data_member_location_attribute (dw_die_ref die, tree decl)
8981 {
8982 long offset;
8983 dw_loc_descr_ref loc_descr = 0;
8984
8985 if (TREE_CODE (decl) == TREE_VEC)
8986 {
8987 /* We're working on the TAG_inheritance for a base class. */
8988 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
8989 {
8990 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
8991 aren't at a fixed offset from all (sub)objects of the same
8992 type. We need to extract the appropriate offset from our
8993 vtable. The following dwarf expression means
8994
8995 BaseAddr = ObAddr + *((*ObAddr) - Offset)
8996
8997 This is specific to the V3 ABI, of course. */
8998
8999 dw_loc_descr_ref tmp;
9000
9001 /* Make a copy of the object address. */
9002 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9003 add_loc_descr (&loc_descr, tmp);
9004
9005 /* Extract the vtable address. */
9006 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9007 add_loc_descr (&loc_descr, tmp);
9008
9009 /* Calculate the address of the offset. */
9010 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9011 if (offset >= 0)
9012 abort ();
9013
9014 tmp = int_loc_descriptor (-offset);
9015 add_loc_descr (&loc_descr, tmp);
9016 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9017 add_loc_descr (&loc_descr, tmp);
9018
9019 /* Extract the offset. */
9020 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9021 add_loc_descr (&loc_descr, tmp);
9022
9023 /* Add it to the object address. */
9024 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9025 add_loc_descr (&loc_descr, tmp);
9026 }
9027 else
9028 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9029 }
9030 else
9031 offset = field_byte_offset (decl);
9032
9033 if (! loc_descr)
9034 {
9035 enum dwarf_location_atom op;
9036
9037 /* The DWARF2 standard says that we should assume that the structure
9038 address is already on the stack, so we can specify a structure field
9039 address by using DW_OP_plus_uconst. */
9040
9041 #ifdef MIPS_DEBUGGING_INFO
9042 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9043 operator correctly. It works only if we leave the offset on the
9044 stack. */
9045 op = DW_OP_constu;
9046 #else
9047 op = DW_OP_plus_uconst;
9048 #endif
9049
9050 loc_descr = new_loc_descr (op, offset, 0);
9051 }
9052
9053 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9054 }
9055
9056 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9057 does not have a "location" either in memory or in a register. These
9058 things can arise in GNU C when a constant is passed as an actual parameter
9059 to an inlined function. They can also arise in C++ where declared
9060 constants do not necessarily get memory "homes". */
9061
9062 static void
9063 add_const_value_attribute (dw_die_ref die, rtx rtl)
9064 {
9065 switch (GET_CODE (rtl))
9066 {
9067 case CONST_INT:
9068 /* Note that a CONST_INT rtx could represent either an integer
9069 or a floating-point constant. A CONST_INT is used whenever
9070 the constant will fit into a single word. In all such
9071 cases, the original mode of the constant value is wiped
9072 out, and the CONST_INT rtx is assigned VOIDmode. */
9073 {
9074 HOST_WIDE_INT val = INTVAL (rtl);
9075
9076 /* ??? We really should be using HOST_WIDE_INT throughout. */
9077 if (val < 0 && (long) val == val)
9078 add_AT_int (die, DW_AT_const_value, (long) val);
9079 else if ((unsigned long) val == (unsigned HOST_WIDE_INT) val)
9080 add_AT_unsigned (die, DW_AT_const_value, (unsigned long) val);
9081 else
9082 {
9083 #if HOST_BITS_PER_LONG * 2 == HOST_BITS_PER_WIDE_INT
9084 add_AT_long_long (die, DW_AT_const_value,
9085 val >> HOST_BITS_PER_LONG, val);
9086 #else
9087 abort ();
9088 #endif
9089 }
9090 }
9091 break;
9092
9093 case CONST_DOUBLE:
9094 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9095 floating-point constant. A CONST_DOUBLE is used whenever the
9096 constant requires more than one word in order to be adequately
9097 represented. We output CONST_DOUBLEs as blocks. */
9098 {
9099 enum machine_mode mode = GET_MODE (rtl);
9100
9101 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9102 {
9103 unsigned length = GET_MODE_SIZE (mode) / 4;
9104 long *array = ggc_alloc (sizeof (long) * length);
9105 REAL_VALUE_TYPE rv;
9106
9107 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9108 switch (mode)
9109 {
9110 case SFmode:
9111 REAL_VALUE_TO_TARGET_SINGLE (rv, array[0]);
9112 break;
9113
9114 case DFmode:
9115 REAL_VALUE_TO_TARGET_DOUBLE (rv, array);
9116 break;
9117
9118 case XFmode:
9119 case TFmode:
9120 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, array);
9121 break;
9122
9123 default:
9124 abort ();
9125 }
9126
9127 add_AT_float (die, DW_AT_const_value, length, array);
9128 }
9129 else
9130 {
9131 /* ??? We really should be using HOST_WIDE_INT throughout. */
9132 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9133 abort ();
9134
9135 add_AT_long_long (die, DW_AT_const_value,
9136 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9137 }
9138 }
9139 break;
9140
9141 case CONST_STRING:
9142 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9143 break;
9144
9145 case SYMBOL_REF:
9146 case LABEL_REF:
9147 case CONST:
9148 add_AT_addr (die, DW_AT_const_value, rtl);
9149 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9150 break;
9151
9152 case PLUS:
9153 /* In cases where an inlined instance of an inline function is passed
9154 the address of an `auto' variable (which is local to the caller) we
9155 can get a situation where the DECL_RTL of the artificial local
9156 variable (for the inlining) which acts as a stand-in for the
9157 corresponding formal parameter (of the inline function) will look
9158 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9159 exactly a compile-time constant expression, but it isn't the address
9160 of the (artificial) local variable either. Rather, it represents the
9161 *value* which the artificial local variable always has during its
9162 lifetime. We currently have no way to represent such quasi-constant
9163 values in Dwarf, so for now we just punt and generate nothing. */
9164 break;
9165
9166 default:
9167 /* No other kinds of rtx should be possible here. */
9168 abort ();
9169 }
9170
9171 }
9172
9173 static rtx
9174 rtl_for_decl_location (tree decl)
9175 {
9176 rtx rtl;
9177
9178 /* Here we have to decide where we are going to say the parameter "lives"
9179 (as far as the debugger is concerned). We only have a couple of
9180 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9181
9182 DECL_RTL normally indicates where the parameter lives during most of the
9183 activation of the function. If optimization is enabled however, this
9184 could be either NULL or else a pseudo-reg. Both of those cases indicate
9185 that the parameter doesn't really live anywhere (as far as the code
9186 generation parts of GCC are concerned) during most of the function's
9187 activation. That will happen (for example) if the parameter is never
9188 referenced within the function.
9189
9190 We could just generate a location descriptor here for all non-NULL
9191 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9192 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9193 where DECL_RTL is NULL or is a pseudo-reg.
9194
9195 Note however that we can only get away with using DECL_INCOMING_RTL as
9196 a backup substitute for DECL_RTL in certain limited cases. In cases
9197 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9198 we can be sure that the parameter was passed using the same type as it is
9199 declared to have within the function, and that its DECL_INCOMING_RTL
9200 points us to a place where a value of that type is passed.
9201
9202 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9203 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9204 because in these cases DECL_INCOMING_RTL points us to a value of some
9205 type which is *different* from the type of the parameter itself. Thus,
9206 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9207 such cases, the debugger would end up (for example) trying to fetch a
9208 `float' from a place which actually contains the first part of a
9209 `double'. That would lead to really incorrect and confusing
9210 output at debug-time.
9211
9212 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9213 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9214 are a couple of exceptions however. On little-endian machines we can
9215 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9216 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9217 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9218 when (on a little-endian machine) a non-prototyped function has a
9219 parameter declared to be of type `short' or `char'. In such cases,
9220 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9221 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9222 passed `int' value. If the debugger then uses that address to fetch
9223 a `short' or a `char' (on a little-endian machine) the result will be
9224 the correct data, so we allow for such exceptional cases below.
9225
9226 Note that our goal here is to describe the place where the given formal
9227 parameter lives during most of the function's activation (i.e. between the
9228 end of the prologue and the start of the epilogue). We'll do that as best
9229 as we can. Note however that if the given formal parameter is modified
9230 sometime during the execution of the function, then a stack backtrace (at
9231 debug-time) will show the function as having been called with the *new*
9232 value rather than the value which was originally passed in. This happens
9233 rarely enough that it is not a major problem, but it *is* a problem, and
9234 I'd like to fix it.
9235
9236 A future version of dwarf2out.c may generate two additional attributes for
9237 any given DW_TAG_formal_parameter DIE which will describe the "passed
9238 type" and the "passed location" for the given formal parameter in addition
9239 to the attributes we now generate to indicate the "declared type" and the
9240 "active location" for each parameter. This additional set of attributes
9241 could be used by debuggers for stack backtraces. Separately, note that
9242 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9243 This happens (for example) for inlined-instances of inline function formal
9244 parameters which are never referenced. This really shouldn't be
9245 happening. All PARM_DECL nodes should get valid non-NULL
9246 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9247 values for inlined instances of inline function parameters, so when we see
9248 such cases, we are just out-of-luck for the time being (until integrate.c
9249 gets fixed). */
9250
9251 /* Use DECL_RTL as the "location" unless we find something better. */
9252 rtl = DECL_RTL_IF_SET (decl);
9253
9254 /* When generating abstract instances, ignore everything except
9255 constants, symbols living in memory, and symbols living in
9256 fixed registers. */
9257 if (! reload_completed)
9258 {
9259 if (rtl
9260 && (CONSTANT_P (rtl)
9261 || (GET_CODE (rtl) == MEM
9262 && CONSTANT_P (XEXP (rtl, 0)))
9263 || (GET_CODE (rtl) == REG
9264 && TREE_CODE (decl) == VAR_DECL
9265 && TREE_STATIC (decl))))
9266 {
9267 rtl = (*targetm.delegitimize_address) (rtl);
9268 return rtl;
9269 }
9270 rtl = NULL_RTX;
9271 }
9272 else if (TREE_CODE (decl) == PARM_DECL)
9273 {
9274 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9275 {
9276 tree declared_type = type_main_variant (TREE_TYPE (decl));
9277 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9278
9279 /* This decl represents a formal parameter which was optimized out.
9280 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9281 all cases where (rtl == NULL_RTX) just below. */
9282 if (declared_type == passed_type)
9283 rtl = DECL_INCOMING_RTL (decl);
9284 else if (! BYTES_BIG_ENDIAN
9285 && TREE_CODE (declared_type) == INTEGER_TYPE
9286 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9287 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9288 rtl = DECL_INCOMING_RTL (decl);
9289 }
9290
9291 /* If the parm was passed in registers, but lives on the stack, then
9292 make a big endian correction if the mode of the type of the
9293 parameter is not the same as the mode of the rtl. */
9294 /* ??? This is the same series of checks that are made in dbxout.c before
9295 we reach the big endian correction code there. It isn't clear if all
9296 of these checks are necessary here, but keeping them all is the safe
9297 thing to do. */
9298 else if (GET_CODE (rtl) == MEM
9299 && XEXP (rtl, 0) != const0_rtx
9300 && ! CONSTANT_P (XEXP (rtl, 0))
9301 /* Not passed in memory. */
9302 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
9303 /* Not passed by invisible reference. */
9304 && (GET_CODE (XEXP (rtl, 0)) != REG
9305 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9306 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9307 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9308 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9309 #endif
9310 )
9311 /* Big endian correction check. */
9312 && BYTES_BIG_ENDIAN
9313 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9314 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9315 < UNITS_PER_WORD))
9316 {
9317 int offset = (UNITS_PER_WORD
9318 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9319
9320 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9321 plus_constant (XEXP (rtl, 0), offset));
9322 }
9323 }
9324
9325 if (rtl != NULL_RTX)
9326 {
9327 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9328 #ifdef LEAF_REG_REMAP
9329 if (current_function_uses_only_leaf_regs)
9330 leaf_renumber_regs_insn (rtl);
9331 #endif
9332 }
9333
9334 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9335 and will have been substituted directly into all expressions that use it.
9336 C does not have such a concept, but C++ and other languages do. */
9337 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9338 {
9339 /* If a variable is initialized with a string constant without embedded
9340 zeros, build CONST_STRING. */
9341 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9342 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9343 {
9344 tree arrtype = TREE_TYPE (decl);
9345 tree enttype = TREE_TYPE (arrtype);
9346 tree domain = TYPE_DOMAIN (arrtype);
9347 tree init = DECL_INITIAL (decl);
9348 enum machine_mode mode = TYPE_MODE (enttype);
9349
9350 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9351 && domain
9352 && integer_zerop (TYPE_MIN_VALUE (domain))
9353 && compare_tree_int (TYPE_MAX_VALUE (domain),
9354 TREE_STRING_LENGTH (init) - 1) == 0
9355 && ((size_t) TREE_STRING_LENGTH (init)
9356 == strlen (TREE_STRING_POINTER (init)) + 1))
9357 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9358 }
9359 /* If the initializer is something that we know will expand into an
9360 immediate RTL constant, expand it now. Expanding anything else
9361 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9362 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9363 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9364 {
9365 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9366 EXPAND_INITIALIZER);
9367 /* If expand_expr returns a MEM, it wasn't immediate. */
9368 if (rtl && GET_CODE (rtl) == MEM)
9369 abort ();
9370 }
9371 }
9372
9373 if (rtl)
9374 rtl = (*targetm.delegitimize_address) (rtl);
9375
9376 /* If we don't look past the constant pool, we risk emitting a
9377 reference to a constant pool entry that isn't referenced from
9378 code, and thus is not emitted. */
9379 if (rtl)
9380 rtl = avoid_constant_pool_reference (rtl);
9381
9382 return rtl;
9383 }
9384
9385 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
9386 data attribute for a variable or a parameter. We generate the
9387 DW_AT_const_value attribute only in those cases where the given variable
9388 or parameter does not have a true "location" either in memory or in a
9389 register. This can happen (for example) when a constant is passed as an
9390 actual argument in a call to an inline function. (It's possible that
9391 these things can crop up in other ways also.) Note that one type of
9392 constant value which can be passed into an inlined function is a constant
9393 pointer. This can happen for example if an actual argument in an inlined
9394 function call evaluates to a compile-time constant address. */
9395
9396 static void
9397 add_location_or_const_value_attribute (dw_die_ref die, tree decl)
9398 {
9399 rtx rtl;
9400 dw_loc_descr_ref descr;
9401
9402 if (TREE_CODE (decl) == ERROR_MARK)
9403 return;
9404 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
9405 abort ();
9406
9407 rtl = rtl_for_decl_location (decl);
9408 if (rtl == NULL_RTX)
9409 return;
9410
9411 switch (GET_CODE (rtl))
9412 {
9413 case ADDRESSOF:
9414 /* The address of a variable that was optimized away;
9415 don't emit anything. */
9416 break;
9417
9418 case CONST_INT:
9419 case CONST_DOUBLE:
9420 case CONST_STRING:
9421 case SYMBOL_REF:
9422 case LABEL_REF:
9423 case CONST:
9424 case PLUS:
9425 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9426 add_const_value_attribute (die, rtl);
9427 break;
9428
9429 case MEM:
9430 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
9431 {
9432 /* Need loc_descriptor_from_tree since that's where we know
9433 how to handle TLS variables. Want the object's address
9434 since the top-level DW_AT_location assumes such. See
9435 the confusion in loc_descriptor for reference. */
9436 descr = loc_descriptor_from_tree (decl, 1);
9437 }
9438 else
9439 {
9440 case REG:
9441 case SUBREG:
9442 case CONCAT:
9443 descr = loc_descriptor (rtl);
9444 }
9445 add_AT_location_description (die, DW_AT_location, descr);
9446 break;
9447
9448 default:
9449 abort ();
9450 }
9451 }
9452
9453 /* If we don't have a copy of this variable in memory for some reason (such
9454 as a C++ member constant that doesn't have an out-of-line definition),
9455 we should tell the debugger about the constant value. */
9456
9457 static void
9458 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
9459 {
9460 tree init = DECL_INITIAL (decl);
9461 tree type = TREE_TYPE (decl);
9462
9463 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9464 && initializer_constant_valid_p (init, type) == null_pointer_node)
9465 /* OK */;
9466 else
9467 return;
9468
9469 switch (TREE_CODE (type))
9470 {
9471 case INTEGER_TYPE:
9472 if (host_integerp (init, 0))
9473 add_AT_unsigned (var_die, DW_AT_const_value,
9474 tree_low_cst (init, 0));
9475 else
9476 add_AT_long_long (var_die, DW_AT_const_value,
9477 TREE_INT_CST_HIGH (init),
9478 TREE_INT_CST_LOW (init));
9479 break;
9480
9481 default:;
9482 }
9483 }
9484
9485 /* Generate a DW_AT_name attribute given some string value to be included as
9486 the value of the attribute. */
9487
9488 static void
9489 add_name_attribute (dw_die_ref die, const char *name_string)
9490 {
9491 if (name_string != NULL && *name_string != 0)
9492 {
9493 if (demangle_name_func)
9494 name_string = (*demangle_name_func) (name_string);
9495
9496 add_AT_string (die, DW_AT_name, name_string);
9497 }
9498 }
9499
9500 /* Generate a DW_AT_comp_dir attribute for DIE. */
9501
9502 static void
9503 add_comp_dir_attribute (dw_die_ref die)
9504 {
9505 const char *wd = get_src_pwd ();
9506 if (wd != NULL)
9507 add_AT_string (die, DW_AT_comp_dir, wd);
9508 }
9509
9510 /* Given a tree node describing an array bound (either lower or upper) output
9511 a representation for that bound. */
9512
9513 static void
9514 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
9515 {
9516 switch (TREE_CODE (bound))
9517 {
9518 case ERROR_MARK:
9519 return;
9520
9521 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9522 case INTEGER_CST:
9523 if (! host_integerp (bound, 0)
9524 || (bound_attr == DW_AT_lower_bound
9525 && (((is_c_family () || is_java ()) && integer_zerop (bound))
9526 || (is_fortran () && integer_onep (bound)))))
9527 /* use the default */
9528 ;
9529 else
9530 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
9531 break;
9532
9533 case CONVERT_EXPR:
9534 case NOP_EXPR:
9535 case NON_LVALUE_EXPR:
9536 case VIEW_CONVERT_EXPR:
9537 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9538 break;
9539
9540 case SAVE_EXPR:
9541 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9542 access the upper bound values may be bogus. If they refer to a
9543 register, they may only describe how to get at these values at the
9544 points in the generated code right after they have just been
9545 computed. Worse yet, in the typical case, the upper bound values
9546 will not even *be* computed in the optimized code (though the
9547 number of elements will), so these SAVE_EXPRs are entirely
9548 bogus. In order to compensate for this fact, we check here to see
9549 if optimization is enabled, and if so, we don't add an attribute
9550 for the (unknown and unknowable) upper bound. This should not
9551 cause too much trouble for existing (stupid?) debuggers because
9552 they have to deal with empty upper bounds location descriptions
9553 anyway in order to be able to deal with incomplete array types.
9554 Of course an intelligent debugger (GDB?) should be able to
9555 comprehend that a missing upper bound specification in an array
9556 type used for a storage class `auto' local array variable
9557 indicates that the upper bound is both unknown (at compile- time)
9558 and unknowable (at run-time) due to optimization.
9559
9560 We assume that a MEM rtx is safe because gcc wouldn't put the
9561 value there unless it was going to be used repeatedly in the
9562 function, i.e. for cleanups. */
9563 if (SAVE_EXPR_RTL (bound)
9564 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
9565 {
9566 dw_die_ref ctx = lookup_decl_die (current_function_decl);
9567 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
9568 rtx loc = SAVE_EXPR_RTL (bound);
9569
9570 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9571 it references an outer function's frame. */
9572 if (GET_CODE (loc) == MEM)
9573 {
9574 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9575
9576 if (XEXP (loc, 0) != new_addr)
9577 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
9578 }
9579
9580 add_AT_flag (decl_die, DW_AT_artificial, 1);
9581 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9582 add_AT_location_description (decl_die, DW_AT_location,
9583 loc_descriptor (loc));
9584 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9585 }
9586
9587 /* Else leave out the attribute. */
9588 break;
9589
9590 case VAR_DECL:
9591 case PARM_DECL:
9592 {
9593 dw_die_ref decl_die = lookup_decl_die (bound);
9594
9595 /* ??? Can this happen, or should the variable have been bound
9596 first? Probably it can, since I imagine that we try to create
9597 the types of parameters in the order in which they exist in
9598 the list, and won't have created a forward reference to a
9599 later parameter. */
9600 if (decl_die != NULL)
9601 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9602 break;
9603 }
9604
9605 default:
9606 {
9607 /* Otherwise try to create a stack operation procedure to
9608 evaluate the value of the array bound. */
9609
9610 dw_die_ref ctx, decl_die;
9611 dw_loc_descr_ref loc;
9612
9613 loc = loc_descriptor_from_tree (bound, 0);
9614 if (loc == NULL)
9615 break;
9616
9617 if (current_function_decl == 0)
9618 ctx = comp_unit_die;
9619 else
9620 ctx = lookup_decl_die (current_function_decl);
9621
9622 /* If we weren't able to find a context, it's most likely the case
9623 that we are processing the return type of the function. So
9624 make a SAVE_EXPR to point to it and have the limbo DIE code
9625 find the proper die. The save_expr function doesn't always
9626 make a SAVE_EXPR, so do it ourselves. */
9627 if (ctx == 0)
9628 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9629 current_function_decl, NULL_TREE);
9630
9631 decl_die = new_die (DW_TAG_variable, ctx, bound);
9632 add_AT_flag (decl_die, DW_AT_artificial, 1);
9633 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9634 add_AT_loc (decl_die, DW_AT_location, loc);
9635
9636 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9637 break;
9638 }
9639 }
9640 }
9641
9642 /* Note that the block of subscript information for an array type also
9643 includes information about the element type of type given array type. */
9644
9645 static void
9646 add_subscript_info (dw_die_ref type_die, tree type)
9647 {
9648 #ifndef MIPS_DEBUGGING_INFO
9649 unsigned dimension_number;
9650 #endif
9651 tree lower, upper;
9652 dw_die_ref subrange_die;
9653
9654 /* The GNU compilers represent multidimensional array types as sequences of
9655 one dimensional array types whose element types are themselves array
9656 types. Here we squish that down, so that each multidimensional array
9657 type gets only one array_type DIE in the Dwarf debugging info. The draft
9658 Dwarf specification say that we are allowed to do this kind of
9659 compression in C (because there is no difference between an array or
9660 arrays and a multidimensional array in C) but for other source languages
9661 (e.g. Ada) we probably shouldn't do this. */
9662
9663 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9664 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9665 We work around this by disabling this feature. See also
9666 gen_array_type_die. */
9667 #ifndef MIPS_DEBUGGING_INFO
9668 for (dimension_number = 0;
9669 TREE_CODE (type) == ARRAY_TYPE;
9670 type = TREE_TYPE (type), dimension_number++)
9671 #endif
9672 {
9673 tree domain = TYPE_DOMAIN (type);
9674
9675 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
9676 and (in GNU C only) variable bounds. Handle all three forms
9677 here. */
9678 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
9679 if (domain)
9680 {
9681 /* We have an array type with specified bounds. */
9682 lower = TYPE_MIN_VALUE (domain);
9683 upper = TYPE_MAX_VALUE (domain);
9684
9685 /* Define the index type. */
9686 if (TREE_TYPE (domain))
9687 {
9688 /* ??? This is probably an Ada unnamed subrange type. Ignore the
9689 TREE_TYPE field. We can't emit debug info for this
9690 because it is an unnamed integral type. */
9691 if (TREE_CODE (domain) == INTEGER_TYPE
9692 && TYPE_NAME (domain) == NULL_TREE
9693 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
9694 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
9695 ;
9696 else
9697 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
9698 type_die);
9699 }
9700
9701 /* ??? If upper is NULL, the array has unspecified length,
9702 but it does have a lower bound. This happens with Fortran
9703 dimension arr(N:*)
9704 Since the debugger is definitely going to need to know N
9705 to produce useful results, go ahead and output the lower
9706 bound solo, and hope the debugger can cope. */
9707
9708 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
9709 if (upper)
9710 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
9711 }
9712
9713 /* Otherwise we have an array type with an unspecified length. The
9714 DWARF-2 spec does not say how to handle this; let's just leave out the
9715 bounds. */
9716 }
9717 }
9718
9719 static void
9720 add_byte_size_attribute (dw_die_ref die, tree tree_node)
9721 {
9722 unsigned size;
9723
9724 switch (TREE_CODE (tree_node))
9725 {
9726 case ERROR_MARK:
9727 size = 0;
9728 break;
9729 case ENUMERAL_TYPE:
9730 case RECORD_TYPE:
9731 case UNION_TYPE:
9732 case QUAL_UNION_TYPE:
9733 size = int_size_in_bytes (tree_node);
9734 break;
9735 case FIELD_DECL:
9736 /* For a data member of a struct or union, the DW_AT_byte_size is
9737 generally given as the number of bytes normally allocated for an
9738 object of the *declared* type of the member itself. This is true
9739 even for bit-fields. */
9740 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
9741 break;
9742 default:
9743 abort ();
9744 }
9745
9746 /* Note that `size' might be -1 when we get to this point. If it is, that
9747 indicates that the byte size of the entity in question is variable. We
9748 have no good way of expressing this fact in Dwarf at the present time,
9749 so just let the -1 pass on through. */
9750 add_AT_unsigned (die, DW_AT_byte_size, size);
9751 }
9752
9753 /* For a FIELD_DECL node which represents a bit-field, output an attribute
9754 which specifies the distance in bits from the highest order bit of the
9755 "containing object" for the bit-field to the highest order bit of the
9756 bit-field itself.
9757
9758 For any given bit-field, the "containing object" is a hypothetical object
9759 (of some integral or enum type) within which the given bit-field lives. The
9760 type of this hypothetical "containing object" is always the same as the
9761 declared type of the individual bit-field itself. The determination of the
9762 exact location of the "containing object" for a bit-field is rather
9763 complicated. It's handled by the `field_byte_offset' function (above).
9764
9765 Note that it is the size (in bytes) of the hypothetical "containing object"
9766 which will be given in the DW_AT_byte_size attribute for this bit-field.
9767 (See `byte_size_attribute' above). */
9768
9769 static inline void
9770 add_bit_offset_attribute (dw_die_ref die, tree decl)
9771 {
9772 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
9773 tree type = DECL_BIT_FIELD_TYPE (decl);
9774 HOST_WIDE_INT bitpos_int;
9775 HOST_WIDE_INT highest_order_object_bit_offset;
9776 HOST_WIDE_INT highest_order_field_bit_offset;
9777 HOST_WIDE_INT unsigned bit_offset;
9778
9779 /* Must be a field and a bit field. */
9780 if (!type
9781 || TREE_CODE (decl) != FIELD_DECL)
9782 abort ();
9783
9784 /* We can't yet handle bit-fields whose offsets are variable, so if we
9785 encounter such things, just return without generating any attribute
9786 whatsoever. Likewise for variable or too large size. */
9787 if (! host_integerp (bit_position (decl), 0)
9788 || ! host_integerp (DECL_SIZE (decl), 1))
9789 return;
9790
9791 bitpos_int = int_bit_position (decl);
9792
9793 /* Note that the bit offset is always the distance (in bits) from the
9794 highest-order bit of the "containing object" to the highest-order bit of
9795 the bit-field itself. Since the "high-order end" of any object or field
9796 is different on big-endian and little-endian machines, the computation
9797 below must take account of these differences. */
9798 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
9799 highest_order_field_bit_offset = bitpos_int;
9800
9801 if (! BYTES_BIG_ENDIAN)
9802 {
9803 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
9804 highest_order_object_bit_offset += simple_type_size_in_bits (type);
9805 }
9806
9807 bit_offset
9808 = (! BYTES_BIG_ENDIAN
9809 ? highest_order_object_bit_offset - highest_order_field_bit_offset
9810 : highest_order_field_bit_offset - highest_order_object_bit_offset);
9811
9812 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
9813 }
9814
9815 /* For a FIELD_DECL node which represents a bit field, output an attribute
9816 which specifies the length in bits of the given field. */
9817
9818 static inline void
9819 add_bit_size_attribute (dw_die_ref die, tree decl)
9820 {
9821 /* Must be a field and a bit field. */
9822 if (TREE_CODE (decl) != FIELD_DECL
9823 || ! DECL_BIT_FIELD_TYPE (decl))
9824 abort ();
9825
9826 if (host_integerp (DECL_SIZE (decl), 1))
9827 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
9828 }
9829
9830 /* If the compiled language is ANSI C, then add a 'prototyped'
9831 attribute, if arg types are given for the parameters of a function. */
9832
9833 static inline void
9834 add_prototyped_attribute (dw_die_ref die, tree func_type)
9835 {
9836 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
9837 && TYPE_ARG_TYPES (func_type) != NULL)
9838 add_AT_flag (die, DW_AT_prototyped, 1);
9839 }
9840
9841 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
9842 by looking in either the type declaration or object declaration
9843 equate table. */
9844
9845 static inline void
9846 add_abstract_origin_attribute (dw_die_ref die, tree origin)
9847 {
9848 dw_die_ref origin_die = NULL;
9849
9850 if (TREE_CODE (origin) != FUNCTION_DECL)
9851 {
9852 /* We may have gotten separated from the block for the inlined
9853 function, if we're in an exception handler or some such; make
9854 sure that the abstract function has been written out.
9855
9856 Doing this for nested functions is wrong, however; functions are
9857 distinct units, and our context might not even be inline. */
9858 tree fn = origin;
9859
9860 if (TYPE_P (fn))
9861 fn = TYPE_STUB_DECL (fn);
9862
9863 fn = decl_function_context (fn);
9864 if (fn)
9865 dwarf2out_abstract_function (fn);
9866 }
9867
9868 if (DECL_P (origin))
9869 origin_die = lookup_decl_die (origin);
9870 else if (TYPE_P (origin))
9871 origin_die = lookup_type_die (origin);
9872
9873 if (origin_die == NULL)
9874 abort ();
9875
9876 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
9877 }
9878
9879 /* We do not currently support the pure_virtual attribute. */
9880
9881 static inline void
9882 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
9883 {
9884 if (DECL_VINDEX (func_decl))
9885 {
9886 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
9887
9888 if (host_integerp (DECL_VINDEX (func_decl), 0))
9889 add_AT_loc (die, DW_AT_vtable_elem_location,
9890 new_loc_descr (DW_OP_constu,
9891 tree_low_cst (DECL_VINDEX (func_decl), 0),
9892 0));
9893
9894 /* GNU extension: Record what type this method came from originally. */
9895 if (debug_info_level > DINFO_LEVEL_TERSE)
9896 add_AT_die_ref (die, DW_AT_containing_type,
9897 lookup_type_die (DECL_CONTEXT (func_decl)));
9898 }
9899 }
9900 \f
9901 /* Add source coordinate attributes for the given decl. */
9902
9903 static void
9904 add_src_coords_attributes (dw_die_ref die, tree decl)
9905 {
9906 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
9907
9908 add_AT_unsigned (die, DW_AT_decl_file, file_index);
9909 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
9910 }
9911
9912 /* Add a DW_AT_name attribute and source coordinate attribute for the
9913 given decl, but only if it actually has a name. */
9914
9915 static void
9916 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
9917 {
9918 tree decl_name;
9919
9920 decl_name = DECL_NAME (decl);
9921 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
9922 {
9923 add_name_attribute (die, dwarf2_name (decl, 0));
9924 if (! DECL_ARTIFICIAL (decl))
9925 add_src_coords_attributes (die, decl);
9926
9927 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
9928 && TREE_PUBLIC (decl)
9929 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
9930 && !DECL_ABSTRACT (decl))
9931 add_AT_string (die, DW_AT_MIPS_linkage_name,
9932 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
9933 }
9934
9935 #ifdef VMS_DEBUGGING_INFO
9936 /* Get the function's name, as described by its RTL. This may be different
9937 from the DECL_NAME name used in the source file. */
9938 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
9939 {
9940 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
9941 XEXP (DECL_RTL (decl), 0));
9942 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
9943 }
9944 #endif
9945 }
9946
9947 /* Push a new declaration scope. */
9948
9949 static void
9950 push_decl_scope (tree scope)
9951 {
9952 VARRAY_PUSH_TREE (decl_scope_table, scope);
9953 }
9954
9955 /* Pop a declaration scope. */
9956
9957 static inline void
9958 pop_decl_scope (void)
9959 {
9960 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
9961 abort ();
9962
9963 VARRAY_POP (decl_scope_table);
9964 }
9965
9966 /* Return the DIE for the scope that immediately contains this type.
9967 Non-named types get global scope. Named types nested in other
9968 types get their containing scope if it's open, or global scope
9969 otherwise. All other types (i.e. function-local named types) get
9970 the current active scope. */
9971
9972 static dw_die_ref
9973 scope_die_for (tree t, dw_die_ref context_die)
9974 {
9975 dw_die_ref scope_die = NULL;
9976 tree containing_scope;
9977 int i;
9978
9979 /* Non-types always go in the current scope. */
9980 if (! TYPE_P (t))
9981 abort ();
9982
9983 containing_scope = TYPE_CONTEXT (t);
9984
9985 /* Ignore namespaces for the moment. */
9986 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
9987 containing_scope = NULL_TREE;
9988
9989 /* Ignore function type "scopes" from the C frontend. They mean that
9990 a tagged type is local to a parmlist of a function declarator, but
9991 that isn't useful to DWARF. */
9992 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
9993 containing_scope = NULL_TREE;
9994
9995 if (containing_scope == NULL_TREE)
9996 scope_die = comp_unit_die;
9997 else if (TYPE_P (containing_scope))
9998 {
9999 /* For types, we can just look up the appropriate DIE. But
10000 first we check to see if we're in the middle of emitting it
10001 so we know where the new DIE should go. */
10002 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10003 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10004 break;
10005
10006 if (i < 0)
10007 {
10008 if (debug_info_level > DINFO_LEVEL_TERSE
10009 && !TREE_ASM_WRITTEN (containing_scope))
10010 abort ();
10011
10012 /* If none of the current dies are suitable, we get file scope. */
10013 scope_die = comp_unit_die;
10014 }
10015 else
10016 scope_die = lookup_type_die (containing_scope);
10017 }
10018 else
10019 scope_die = context_die;
10020
10021 return scope_die;
10022 }
10023
10024 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10025
10026 static inline int
10027 local_scope_p (dw_die_ref context_die)
10028 {
10029 for (; context_die; context_die = context_die->die_parent)
10030 if (context_die->die_tag == DW_TAG_inlined_subroutine
10031 || context_die->die_tag == DW_TAG_subprogram)
10032 return 1;
10033
10034 return 0;
10035 }
10036
10037 /* Returns nonzero if CONTEXT_DIE is a class. */
10038
10039 static inline int
10040 class_scope_p (dw_die_ref context_die)
10041 {
10042 return (context_die
10043 && (context_die->die_tag == DW_TAG_structure_type
10044 || context_die->die_tag == DW_TAG_union_type));
10045 }
10046
10047 /* Many forms of DIEs require a "type description" attribute. This
10048 routine locates the proper "type descriptor" die for the type given
10049 by 'type', and adds a DW_AT_type attribute below the given die. */
10050
10051 static void
10052 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10053 int decl_volatile, dw_die_ref context_die)
10054 {
10055 enum tree_code code = TREE_CODE (type);
10056 dw_die_ref type_die = NULL;
10057
10058 /* ??? If this type is an unnamed subrange type of an integral or
10059 floating-point type, use the inner type. This is because we have no
10060 support for unnamed types in base_type_die. This can happen if this is
10061 an Ada subrange type. Correct solution is emit a subrange type die. */
10062 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10063 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10064 type = TREE_TYPE (type), code = TREE_CODE (type);
10065
10066 if (code == ERROR_MARK
10067 /* Handle a special case. For functions whose return type is void, we
10068 generate *no* type attribute. (Note that no object may have type
10069 `void', so this only applies to function return types). */
10070 || code == VOID_TYPE)
10071 return;
10072
10073 type_die = modified_type_die (type,
10074 decl_const || TYPE_READONLY (type),
10075 decl_volatile || TYPE_VOLATILE (type),
10076 context_die);
10077
10078 if (type_die != NULL)
10079 add_AT_die_ref (object_die, DW_AT_type, type_die);
10080 }
10081
10082 /* Given a tree pointer to a struct, class, union, or enum type node, return
10083 a pointer to the (string) tag name for the given type, or zero if the type
10084 was declared without a tag. */
10085
10086 static const char *
10087 type_tag (tree type)
10088 {
10089 const char *name = 0;
10090
10091 if (TYPE_NAME (type) != 0)
10092 {
10093 tree t = 0;
10094
10095 /* Find the IDENTIFIER_NODE for the type name. */
10096 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10097 t = TYPE_NAME (type);
10098
10099 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10100 a TYPE_DECL node, regardless of whether or not a `typedef' was
10101 involved. */
10102 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10103 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10104 t = DECL_NAME (TYPE_NAME (type));
10105
10106 /* Now get the name as a string, or invent one. */
10107 if (t != 0)
10108 name = IDENTIFIER_POINTER (t);
10109 }
10110
10111 return (name == 0 || *name == '\0') ? 0 : name;
10112 }
10113
10114 /* Return the type associated with a data member, make a special check
10115 for bit field types. */
10116
10117 static inline tree
10118 member_declared_type (tree member)
10119 {
10120 return (DECL_BIT_FIELD_TYPE (member)
10121 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10122 }
10123
10124 /* Get the decl's label, as described by its RTL. This may be different
10125 from the DECL_NAME name used in the source file. */
10126
10127 #if 0
10128 static const char *
10129 decl_start_label (tree decl)
10130 {
10131 rtx x;
10132 const char *fnname;
10133
10134 x = DECL_RTL (decl);
10135 if (GET_CODE (x) != MEM)
10136 abort ();
10137
10138 x = XEXP (x, 0);
10139 if (GET_CODE (x) != SYMBOL_REF)
10140 abort ();
10141
10142 fnname = XSTR (x, 0);
10143 return fnname;
10144 }
10145 #endif
10146 \f
10147 /* These routines generate the internal representation of the DIE's for
10148 the compilation unit. Debugging information is collected by walking
10149 the declaration trees passed in from dwarf2out_decl(). */
10150
10151 static void
10152 gen_array_type_die (tree type, dw_die_ref context_die)
10153 {
10154 dw_die_ref scope_die = scope_die_for (type, context_die);
10155 dw_die_ref array_die;
10156 tree element_type;
10157
10158 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10159 the inner array type comes before the outer array type. Thus we must
10160 call gen_type_die before we call new_die. See below also. */
10161 #ifdef MIPS_DEBUGGING_INFO
10162 gen_type_die (TREE_TYPE (type), context_die);
10163 #endif
10164
10165 array_die = new_die (DW_TAG_array_type, scope_die, type);
10166 add_name_attribute (array_die, type_tag (type));
10167 equate_type_number_to_die (type, array_die);
10168
10169 if (TREE_CODE (type) == VECTOR_TYPE)
10170 {
10171 /* The frontend feeds us a representation for the vector as a struct
10172 containing an array. Pull out the array type. */
10173 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10174 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10175 }
10176
10177 #if 0
10178 /* We default the array ordering. SDB will probably do
10179 the right things even if DW_AT_ordering is not present. It's not even
10180 an issue until we start to get into multidimensional arrays anyway. If
10181 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10182 then we'll have to put the DW_AT_ordering attribute back in. (But if
10183 and when we find out that we need to put these in, we will only do so
10184 for multidimensional arrays. */
10185 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10186 #endif
10187
10188 #ifdef MIPS_DEBUGGING_INFO
10189 /* The SGI compilers handle arrays of unknown bound by setting
10190 AT_declaration and not emitting any subrange DIEs. */
10191 if (! TYPE_DOMAIN (type))
10192 add_AT_unsigned (array_die, DW_AT_declaration, 1);
10193 else
10194 #endif
10195 add_subscript_info (array_die, type);
10196
10197 /* Add representation of the type of the elements of this array type. */
10198 element_type = TREE_TYPE (type);
10199
10200 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10201 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10202 We work around this by disabling this feature. See also
10203 add_subscript_info. */
10204 #ifndef MIPS_DEBUGGING_INFO
10205 while (TREE_CODE (element_type) == ARRAY_TYPE)
10206 element_type = TREE_TYPE (element_type);
10207
10208 gen_type_die (element_type, context_die);
10209 #endif
10210
10211 add_type_attribute (array_die, element_type, 0, 0, context_die);
10212 }
10213
10214 static void
10215 gen_set_type_die (tree type, dw_die_ref context_die)
10216 {
10217 dw_die_ref type_die
10218 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10219
10220 equate_type_number_to_die (type, type_die);
10221 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10222 }
10223
10224 #if 0
10225 static void
10226 gen_entry_point_die (tree decl, dw_die_ref context_die)
10227 {
10228 tree origin = decl_ultimate_origin (decl);
10229 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10230
10231 if (origin != NULL)
10232 add_abstract_origin_attribute (decl_die, origin);
10233 else
10234 {
10235 add_name_and_src_coords_attributes (decl_die, decl);
10236 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10237 0, 0, context_die);
10238 }
10239
10240 if (DECL_ABSTRACT (decl))
10241 equate_decl_number_to_die (decl, decl_die);
10242 else
10243 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10244 }
10245 #endif
10246
10247 /* Walk through the list of incomplete types again, trying once more to
10248 emit full debugging info for them. */
10249
10250 static void
10251 retry_incomplete_types (void)
10252 {
10253 int i;
10254
10255 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10256 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10257 }
10258
10259 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10260
10261 static void
10262 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
10263 {
10264 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10265
10266 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10267 be incomplete and such types are not marked. */
10268 add_abstract_origin_attribute (type_die, type);
10269 }
10270
10271 /* Generate a DIE to represent an inlined instance of a structure type. */
10272
10273 static void
10274 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
10275 {
10276 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10277
10278 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10279 be incomplete and such types are not marked. */
10280 add_abstract_origin_attribute (type_die, type);
10281 }
10282
10283 /* Generate a DIE to represent an inlined instance of a union type. */
10284
10285 static void
10286 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
10287 {
10288 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10289
10290 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10291 be incomplete and such types are not marked. */
10292 add_abstract_origin_attribute (type_die, type);
10293 }
10294
10295 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10296 include all of the information about the enumeration values also. Each
10297 enumerated type name/value is listed as a child of the enumerated type
10298 DIE. */
10299
10300 static void
10301 gen_enumeration_type_die (tree type, dw_die_ref context_die)
10302 {
10303 dw_die_ref type_die = lookup_type_die (type);
10304
10305 if (type_die == NULL)
10306 {
10307 type_die = new_die (DW_TAG_enumeration_type,
10308 scope_die_for (type, context_die), type);
10309 equate_type_number_to_die (type, type_die);
10310 add_name_attribute (type_die, type_tag (type));
10311 }
10312 else if (! TYPE_SIZE (type))
10313 return;
10314 else
10315 remove_AT (type_die, DW_AT_declaration);
10316
10317 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10318 given enum type is incomplete, do not generate the DW_AT_byte_size
10319 attribute or the DW_AT_element_list attribute. */
10320 if (TYPE_SIZE (type))
10321 {
10322 tree link;
10323
10324 TREE_ASM_WRITTEN (type) = 1;
10325 add_byte_size_attribute (type_die, type);
10326 if (TYPE_STUB_DECL (type) != NULL_TREE)
10327 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10328
10329 /* If the first reference to this type was as the return type of an
10330 inline function, then it may not have a parent. Fix this now. */
10331 if (type_die->die_parent == NULL)
10332 add_child_die (scope_die_for (type, context_die), type_die);
10333
10334 for (link = TYPE_FIELDS (type);
10335 link != NULL; link = TREE_CHAIN (link))
10336 {
10337 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10338
10339 add_name_attribute (enum_die,
10340 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10341
10342 if (host_integerp (TREE_VALUE (link),
10343 TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (link)))))
10344 {
10345 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
10346 add_AT_int (enum_die, DW_AT_const_value,
10347 tree_low_cst (TREE_VALUE (link), 0));
10348 else
10349 add_AT_unsigned (enum_die, DW_AT_const_value,
10350 tree_low_cst (TREE_VALUE (link), 1));
10351 }
10352 }
10353 }
10354 else
10355 add_AT_flag (type_die, DW_AT_declaration, 1);
10356 }
10357
10358 /* Generate a DIE to represent either a real live formal parameter decl or to
10359 represent just the type of some formal parameter position in some function
10360 type.
10361
10362 Note that this routine is a bit unusual because its argument may be a
10363 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10364 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10365 node. If it's the former then this function is being called to output a
10366 DIE to represent a formal parameter object (or some inlining thereof). If
10367 it's the latter, then this function is only being called to output a
10368 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10369 argument type of some subprogram type. */
10370
10371 static dw_die_ref
10372 gen_formal_parameter_die (tree node, dw_die_ref context_die)
10373 {
10374 dw_die_ref parm_die
10375 = new_die (DW_TAG_formal_parameter, context_die, node);
10376 tree origin;
10377
10378 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10379 {
10380 case 'd':
10381 origin = decl_ultimate_origin (node);
10382 if (origin != NULL)
10383 add_abstract_origin_attribute (parm_die, origin);
10384 else
10385 {
10386 add_name_and_src_coords_attributes (parm_die, node);
10387 add_type_attribute (parm_die, TREE_TYPE (node),
10388 TREE_READONLY (node),
10389 TREE_THIS_VOLATILE (node),
10390 context_die);
10391 if (DECL_ARTIFICIAL (node))
10392 add_AT_flag (parm_die, DW_AT_artificial, 1);
10393 }
10394
10395 equate_decl_number_to_die (node, parm_die);
10396 if (! DECL_ABSTRACT (node))
10397 add_location_or_const_value_attribute (parm_die, node);
10398
10399 break;
10400
10401 case 't':
10402 /* We were called with some kind of a ..._TYPE node. */
10403 add_type_attribute (parm_die, node, 0, 0, context_die);
10404 break;
10405
10406 default:
10407 abort ();
10408 }
10409
10410 return parm_die;
10411 }
10412
10413 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10414 at the end of an (ANSI prototyped) formal parameters list. */
10415
10416 static void
10417 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
10418 {
10419 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10420 }
10421
10422 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10423 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10424 parameters as specified in some function type specification (except for
10425 those which appear as part of a function *definition*). */
10426
10427 static void
10428 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
10429 {
10430 tree link;
10431 tree formal_type = NULL;
10432 tree first_parm_type;
10433 tree arg;
10434
10435 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10436 {
10437 arg = DECL_ARGUMENTS (function_or_method_type);
10438 function_or_method_type = TREE_TYPE (function_or_method_type);
10439 }
10440 else
10441 arg = NULL_TREE;
10442
10443 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10444
10445 /* Make our first pass over the list of formal parameter types and output a
10446 DW_TAG_formal_parameter DIE for each one. */
10447 for (link = first_parm_type; link; )
10448 {
10449 dw_die_ref parm_die;
10450
10451 formal_type = TREE_VALUE (link);
10452 if (formal_type == void_type_node)
10453 break;
10454
10455 /* Output a (nameless) DIE to represent the formal parameter itself. */
10456 parm_die = gen_formal_parameter_die (formal_type, context_die);
10457 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10458 && link == first_parm_type)
10459 || (arg && DECL_ARTIFICIAL (arg)))
10460 add_AT_flag (parm_die, DW_AT_artificial, 1);
10461
10462 link = TREE_CHAIN (link);
10463 if (arg)
10464 arg = TREE_CHAIN (arg);
10465 }
10466
10467 /* If this function type has an ellipsis, add a
10468 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10469 if (formal_type != void_type_node)
10470 gen_unspecified_parameters_die (function_or_method_type, context_die);
10471
10472 /* Make our second (and final) pass over the list of formal parameter types
10473 and output DIEs to represent those types (as necessary). */
10474 for (link = TYPE_ARG_TYPES (function_or_method_type);
10475 link && TREE_VALUE (link);
10476 link = TREE_CHAIN (link))
10477 gen_type_die (TREE_VALUE (link), context_die);
10478 }
10479
10480 /* We want to generate the DIE for TYPE so that we can generate the
10481 die for MEMBER, which has been defined; we will need to refer back
10482 to the member declaration nested within TYPE. If we're trying to
10483 generate minimal debug info for TYPE, processing TYPE won't do the
10484 trick; we need to attach the member declaration by hand. */
10485
10486 static void
10487 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
10488 {
10489 gen_type_die (type, context_die);
10490
10491 /* If we're trying to avoid duplicate debug info, we may not have
10492 emitted the member decl for this function. Emit it now. */
10493 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10494 && ! lookup_decl_die (member))
10495 {
10496 if (decl_ultimate_origin (member))
10497 abort ();
10498
10499 push_decl_scope (type);
10500 if (TREE_CODE (member) == FUNCTION_DECL)
10501 gen_subprogram_die (member, lookup_type_die (type));
10502 else
10503 gen_variable_die (member, lookup_type_die (type));
10504
10505 pop_decl_scope ();
10506 }
10507 }
10508
10509 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10510 may later generate inlined and/or out-of-line instances of. */
10511
10512 static void
10513 dwarf2out_abstract_function (tree decl)
10514 {
10515 dw_die_ref old_die;
10516 tree save_fn;
10517 tree context;
10518 int was_abstract = DECL_ABSTRACT (decl);
10519
10520 /* Make sure we have the actual abstract inline, not a clone. */
10521 decl = DECL_ORIGIN (decl);
10522
10523 old_die = lookup_decl_die (decl);
10524 if (old_die && get_AT_unsigned (old_die, DW_AT_inline))
10525 /* We've already generated the abstract instance. */
10526 return;
10527
10528 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10529 we don't get confused by DECL_ABSTRACT. */
10530 if (debug_info_level > DINFO_LEVEL_TERSE)
10531 {
10532 context = decl_class_context (decl);
10533 if (context)
10534 gen_type_die_for_member
10535 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10536 }
10537
10538 /* Pretend we've just finished compiling this function. */
10539 save_fn = current_function_decl;
10540 current_function_decl = decl;
10541
10542 set_decl_abstract_flags (decl, 1);
10543 dwarf2out_decl (decl);
10544 if (! was_abstract)
10545 set_decl_abstract_flags (decl, 0);
10546
10547 current_function_decl = save_fn;
10548 }
10549
10550 /* Generate a DIE to represent a declared function (either file-scope or
10551 block-local). */
10552
10553 static void
10554 gen_subprogram_die (tree decl, dw_die_ref context_die)
10555 {
10556 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10557 tree origin = decl_ultimate_origin (decl);
10558 dw_die_ref subr_die;
10559 rtx fp_reg;
10560 tree fn_arg_types;
10561 tree outer_scope;
10562 dw_die_ref old_die = lookup_decl_die (decl);
10563 int declaration = (current_function_decl != decl
10564 || class_scope_p (context_die));
10565
10566 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10567 started to generate the abstract instance of an inline, decided to output
10568 its containing class, and proceeded to emit the declaration of the inline
10569 from the member list for the class. If so, DECLARATION takes priority;
10570 we'll get back to the abstract instance when done with the class. */
10571
10572 /* The class-scope declaration DIE must be the primary DIE. */
10573 if (origin && declaration && class_scope_p (context_die))
10574 {
10575 origin = NULL;
10576 if (old_die)
10577 abort ();
10578 }
10579
10580 if (origin != NULL)
10581 {
10582 if (declaration && ! local_scope_p (context_die))
10583 abort ();
10584
10585 /* Fixup die_parent for the abstract instance of a nested
10586 inline function. */
10587 if (old_die && old_die->die_parent == NULL)
10588 add_child_die (context_die, old_die);
10589
10590 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10591 add_abstract_origin_attribute (subr_die, origin);
10592 }
10593 else if (old_die)
10594 {
10595 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10596
10597 if (!get_AT_flag (old_die, DW_AT_declaration)
10598 /* We can have a normal definition following an inline one in the
10599 case of redefinition of GNU C extern inlines.
10600 It seems reasonable to use AT_specification in this case. */
10601 && !get_AT_unsigned (old_die, DW_AT_inline))
10602 {
10603 /* ??? This can happen if there is a bug in the program, for
10604 instance, if it has duplicate function definitions. Ideally,
10605 we should detect this case and ignore it. For now, if we have
10606 already reported an error, any error at all, then assume that
10607 we got here because of an input error, not a dwarf2 bug. */
10608 if (errorcount)
10609 return;
10610 abort ();
10611 }
10612
10613 /* If the definition comes from the same place as the declaration,
10614 maybe use the old DIE. We always want the DIE for this function
10615 that has the *_pc attributes to be under comp_unit_die so the
10616 debugger can find it. We also need to do this for abstract
10617 instances of inlines, since the spec requires the out-of-line copy
10618 to have the same parent. For local class methods, this doesn't
10619 apply; we just use the old DIE. */
10620 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
10621 && (DECL_ARTIFICIAL (decl)
10622 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10623 && (get_AT_unsigned (old_die, DW_AT_decl_line)
10624 == (unsigned) DECL_SOURCE_LINE (decl)))))
10625 {
10626 subr_die = old_die;
10627
10628 /* Clear out the declaration attribute and the parm types. */
10629 remove_AT (subr_die, DW_AT_declaration);
10630 remove_children (subr_die);
10631 }
10632 else
10633 {
10634 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10635 add_AT_die_ref (subr_die, DW_AT_specification, old_die);
10636 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10637 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
10638 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10639 != (unsigned) DECL_SOURCE_LINE (decl))
10640 add_AT_unsigned
10641 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10642 }
10643 }
10644 else
10645 {
10646 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10647
10648 if (TREE_PUBLIC (decl))
10649 add_AT_flag (subr_die, DW_AT_external, 1);
10650
10651 add_name_and_src_coords_attributes (subr_die, decl);
10652 if (debug_info_level > DINFO_LEVEL_TERSE)
10653 {
10654 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
10655 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
10656 0, 0, context_die);
10657 }
10658
10659 add_pure_or_virtual_attribute (subr_die, decl);
10660 if (DECL_ARTIFICIAL (decl))
10661 add_AT_flag (subr_die, DW_AT_artificial, 1);
10662
10663 if (TREE_PROTECTED (decl))
10664 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
10665 else if (TREE_PRIVATE (decl))
10666 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
10667 }
10668
10669 if (declaration)
10670 {
10671 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
10672 {
10673 add_AT_flag (subr_die, DW_AT_declaration, 1);
10674
10675 /* The first time we see a member function, it is in the context of
10676 the class to which it belongs. We make sure of this by emitting
10677 the class first. The next time is the definition, which is
10678 handled above. The two may come from the same source text. */
10679 if (DECL_CONTEXT (decl) || DECL_ABSTRACT (decl))
10680 equate_decl_number_to_die (decl, subr_die);
10681 }
10682 }
10683 else if (DECL_ABSTRACT (decl))
10684 {
10685 if (DECL_INLINE (decl) && !flag_no_inline)
10686 {
10687 /* ??? Checking DECL_DEFER_OUTPUT is correct for static
10688 inline functions, but not for extern inline functions.
10689 We can't get this completely correct because information
10690 about whether the function was declared inline is not
10691 saved anywhere. */
10692 if (DECL_DEFER_OUTPUT (decl))
10693 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
10694 else
10695 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
10696 }
10697 else
10698 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
10699
10700 equate_decl_number_to_die (decl, subr_die);
10701 }
10702 else if (!DECL_EXTERNAL (decl))
10703 {
10704 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
10705 equate_decl_number_to_die (decl, subr_die);
10706
10707 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
10708 current_function_funcdef_no);
10709 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
10710 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10711 current_function_funcdef_no);
10712 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
10713
10714 add_pubname (decl, subr_die);
10715 add_arange (decl, subr_die);
10716
10717 #ifdef MIPS_DEBUGGING_INFO
10718 /* Add a reference to the FDE for this routine. */
10719 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
10720 #endif
10721
10722 /* Define the "frame base" location for this routine. We use the
10723 frame pointer or stack pointer registers, since the RTL for local
10724 variables is relative to one of them. */
10725 fp_reg
10726 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
10727 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
10728
10729 #if 0
10730 /* ??? This fails for nested inline functions, because context_display
10731 is not part of the state saved/restored for inline functions. */
10732 if (current_function_needs_context)
10733 add_AT_location_description (subr_die, DW_AT_static_link,
10734 loc_descriptor (lookup_static_chain (decl)));
10735 #endif
10736 }
10737
10738 /* Now output descriptions of the arguments for this function. This gets
10739 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
10740 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
10741 `...' at the end of the formal parameter list. In order to find out if
10742 there was a trailing ellipsis or not, we must instead look at the type
10743 associated with the FUNCTION_DECL. This will be a node of type
10744 FUNCTION_TYPE. If the chain of type nodes hanging off of this
10745 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
10746 an ellipsis at the end. */
10747
10748 /* In the case where we are describing a mere function declaration, all we
10749 need to do here (and all we *can* do here) is to describe the *types* of
10750 its formal parameters. */
10751 if (debug_info_level <= DINFO_LEVEL_TERSE)
10752 ;
10753 else if (declaration)
10754 gen_formal_types_die (decl, subr_die);
10755 else
10756 {
10757 /* Generate DIEs to represent all known formal parameters. */
10758 tree arg_decls = DECL_ARGUMENTS (decl);
10759 tree parm;
10760
10761 /* When generating DIEs, generate the unspecified_parameters DIE
10762 instead if we come across the arg "__builtin_va_alist" */
10763 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
10764 if (TREE_CODE (parm) == PARM_DECL)
10765 {
10766 if (DECL_NAME (parm)
10767 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
10768 "__builtin_va_alist"))
10769 gen_unspecified_parameters_die (parm, subr_die);
10770 else
10771 gen_decl_die (parm, subr_die);
10772 }
10773
10774 /* Decide whether we need an unspecified_parameters DIE at the end.
10775 There are 2 more cases to do this for: 1) the ansi ... declaration -
10776 this is detectable when the end of the arg list is not a
10777 void_type_node 2) an unprototyped function declaration (not a
10778 definition). This just means that we have no info about the
10779 parameters at all. */
10780 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
10781 if (fn_arg_types != NULL)
10782 {
10783 /* This is the prototyped case, check for.... */
10784 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
10785 gen_unspecified_parameters_die (decl, subr_die);
10786 }
10787 else if (DECL_INITIAL (decl) == NULL_TREE)
10788 gen_unspecified_parameters_die (decl, subr_die);
10789 }
10790
10791 /* Output Dwarf info for all of the stuff within the body of the function
10792 (if it has one - it may be just a declaration). */
10793 outer_scope = DECL_INITIAL (decl);
10794
10795 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
10796 a function. This BLOCK actually represents the outermost binding contour
10797 for the function, i.e. the contour in which the function's formal
10798 parameters and labels get declared. Curiously, it appears that the front
10799 end doesn't actually put the PARM_DECL nodes for the current function onto
10800 the BLOCK_VARS list for this outer scope, but are strung off of the
10801 DECL_ARGUMENTS list for the function instead.
10802
10803 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
10804 the LABEL_DECL nodes for the function however, and we output DWARF info
10805 for those in decls_for_scope. Just within the `outer_scope' there will be
10806 a BLOCK node representing the function's outermost pair of curly braces,
10807 and any blocks used for the base and member initializers of a C++
10808 constructor function. */
10809 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
10810 {
10811 current_function_has_inlines = 0;
10812 decls_for_scope (outer_scope, subr_die, 0);
10813
10814 #if 0 && defined (MIPS_DEBUGGING_INFO)
10815 if (current_function_has_inlines)
10816 {
10817 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
10818 if (! comp_unit_has_inlines)
10819 {
10820 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
10821 comp_unit_has_inlines = 1;
10822 }
10823 }
10824 #endif
10825 }
10826 }
10827
10828 /* Generate a DIE to represent a declared data object. */
10829
10830 static void
10831 gen_variable_die (tree decl, dw_die_ref context_die)
10832 {
10833 tree origin = decl_ultimate_origin (decl);
10834 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
10835
10836 dw_die_ref old_die = lookup_decl_die (decl);
10837 int declaration = (DECL_EXTERNAL (decl)
10838 || class_scope_p (context_die));
10839
10840 if (origin != NULL)
10841 add_abstract_origin_attribute (var_die, origin);
10842
10843 /* Loop unrolling can create multiple blocks that refer to the same
10844 static variable, so we must test for the DW_AT_declaration flag.
10845
10846 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
10847 copy decls and set the DECL_ABSTRACT flag on them instead of
10848 sharing them.
10849
10850 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
10851 else if (old_die && TREE_STATIC (decl)
10852 && get_AT_flag (old_die, DW_AT_declaration) == 1)
10853 {
10854 /* This is a definition of a C++ class level static. */
10855 add_AT_die_ref (var_die, DW_AT_specification, old_die);
10856 if (DECL_NAME (decl))
10857 {
10858 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10859
10860 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10861 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
10862
10863 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10864 != (unsigned) DECL_SOURCE_LINE (decl))
10865
10866 add_AT_unsigned (var_die, DW_AT_decl_line,
10867 DECL_SOURCE_LINE (decl));
10868 }
10869 }
10870 else
10871 {
10872 add_name_and_src_coords_attributes (var_die, decl);
10873 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
10874 TREE_THIS_VOLATILE (decl), context_die);
10875
10876 if (TREE_PUBLIC (decl))
10877 add_AT_flag (var_die, DW_AT_external, 1);
10878
10879 if (DECL_ARTIFICIAL (decl))
10880 add_AT_flag (var_die, DW_AT_artificial, 1);
10881
10882 if (TREE_PROTECTED (decl))
10883 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
10884 else if (TREE_PRIVATE (decl))
10885 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
10886 }
10887
10888 if (declaration)
10889 add_AT_flag (var_die, DW_AT_declaration, 1);
10890
10891 if (class_scope_p (context_die) || DECL_ABSTRACT (decl))
10892 equate_decl_number_to_die (decl, var_die);
10893
10894 if (! declaration && ! DECL_ABSTRACT (decl))
10895 {
10896 add_location_or_const_value_attribute (var_die, decl);
10897 add_pubname (decl, var_die);
10898 }
10899 else
10900 tree_add_const_value_attribute (var_die, decl);
10901 }
10902
10903 /* Generate a DIE to represent a label identifier. */
10904
10905 static void
10906 gen_label_die (tree decl, dw_die_ref context_die)
10907 {
10908 tree origin = decl_ultimate_origin (decl);
10909 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
10910 rtx insn;
10911 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10912
10913 if (origin != NULL)
10914 add_abstract_origin_attribute (lbl_die, origin);
10915 else
10916 add_name_and_src_coords_attributes (lbl_die, decl);
10917
10918 if (DECL_ABSTRACT (decl))
10919 equate_decl_number_to_die (decl, lbl_die);
10920 else
10921 {
10922 insn = DECL_RTL (decl);
10923
10924 /* Deleted labels are programmer specified labels which have been
10925 eliminated because of various optimizations. We still emit them
10926 here so that it is possible to put breakpoints on them. */
10927 if (GET_CODE (insn) == CODE_LABEL
10928 || ((GET_CODE (insn) == NOTE
10929 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
10930 {
10931 /* When optimization is enabled (via -O) some parts of the compiler
10932 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
10933 represent source-level labels which were explicitly declared by
10934 the user. This really shouldn't be happening though, so catch
10935 it if it ever does happen. */
10936 if (INSN_DELETED_P (insn))
10937 abort ();
10938
10939 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
10940 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
10941 }
10942 }
10943 }
10944
10945 /* Generate a DIE for a lexical block. */
10946
10947 static void
10948 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
10949 {
10950 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
10951 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10952
10953 if (! BLOCK_ABSTRACT (stmt))
10954 {
10955 if (BLOCK_FRAGMENT_CHAIN (stmt))
10956 {
10957 tree chain;
10958
10959 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
10960
10961 chain = BLOCK_FRAGMENT_CHAIN (stmt);
10962 do
10963 {
10964 add_ranges (chain);
10965 chain = BLOCK_FRAGMENT_CHAIN (chain);
10966 }
10967 while (chain);
10968 add_ranges (NULL);
10969 }
10970 else
10971 {
10972 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
10973 BLOCK_NUMBER (stmt));
10974 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
10975 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
10976 BLOCK_NUMBER (stmt));
10977 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
10978 }
10979 }
10980
10981 decls_for_scope (stmt, stmt_die, depth);
10982 }
10983
10984 /* Generate a DIE for an inlined subprogram. */
10985
10986 static void
10987 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
10988 {
10989 tree decl = block_ultimate_origin (stmt);
10990
10991 /* Emit info for the abstract instance first, if we haven't yet. We
10992 must emit this even if the block is abstract, otherwise when we
10993 emit the block below (or elsewhere), we may end up trying to emit
10994 a die whose origin die hasn't been emitted, and crashing. */
10995 dwarf2out_abstract_function (decl);
10996
10997 if (! BLOCK_ABSTRACT (stmt))
10998 {
10999 dw_die_ref subr_die
11000 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11001 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11002
11003 add_abstract_origin_attribute (subr_die, decl);
11004 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11005 BLOCK_NUMBER (stmt));
11006 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11007 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11008 BLOCK_NUMBER (stmt));
11009 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11010 decls_for_scope (stmt, subr_die, depth);
11011 current_function_has_inlines = 1;
11012 }
11013 else
11014 /* We may get here if we're the outer block of function A that was
11015 inlined into function B that was inlined into function C. When
11016 generating debugging info for C, dwarf2out_abstract_function(B)
11017 would mark all inlined blocks as abstract, including this one.
11018 So, we wouldn't (and shouldn't) expect labels to be generated
11019 for this one. Instead, just emit debugging info for
11020 declarations within the block. This is particularly important
11021 in the case of initializers of arguments passed from B to us:
11022 if they're statement expressions containing declarations, we
11023 wouldn't generate dies for their abstract variables, and then,
11024 when generating dies for the real variables, we'd die (pun
11025 intended :-) */
11026 gen_lexical_block_die (stmt, context_die, depth);
11027 }
11028
11029 /* Generate a DIE for a field in a record, or structure. */
11030
11031 static void
11032 gen_field_die (tree decl, dw_die_ref context_die)
11033 {
11034 dw_die_ref decl_die;
11035
11036 if (TREE_TYPE (decl) == error_mark_node)
11037 return;
11038
11039 decl_die = new_die (DW_TAG_member, context_die, decl);
11040 add_name_and_src_coords_attributes (decl_die, decl);
11041 add_type_attribute (decl_die, member_declared_type (decl),
11042 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11043 context_die);
11044
11045 if (DECL_BIT_FIELD_TYPE (decl))
11046 {
11047 add_byte_size_attribute (decl_die, decl);
11048 add_bit_size_attribute (decl_die, decl);
11049 add_bit_offset_attribute (decl_die, decl);
11050 }
11051
11052 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11053 add_data_member_location_attribute (decl_die, decl);
11054
11055 if (DECL_ARTIFICIAL (decl))
11056 add_AT_flag (decl_die, DW_AT_artificial, 1);
11057
11058 if (TREE_PROTECTED (decl))
11059 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11060 else if (TREE_PRIVATE (decl))
11061 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11062 }
11063
11064 #if 0
11065 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11066 Use modified_type_die instead.
11067 We keep this code here just in case these types of DIEs may be needed to
11068 represent certain things in other languages (e.g. Pascal) someday. */
11069
11070 static void
11071 gen_pointer_type_die (tree type, dw_die_ref context_die)
11072 {
11073 dw_die_ref ptr_die
11074 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11075
11076 equate_type_number_to_die (type, ptr_die);
11077 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11078 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11079 }
11080
11081 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11082 Use modified_type_die instead.
11083 We keep this code here just in case these types of DIEs may be needed to
11084 represent certain things in other languages (e.g. Pascal) someday. */
11085
11086 static void
11087 gen_reference_type_die (tree type, dw_die_ref context_die)
11088 {
11089 dw_die_ref ref_die
11090 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11091
11092 equate_type_number_to_die (type, ref_die);
11093 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11094 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11095 }
11096 #endif
11097
11098 /* Generate a DIE for a pointer to a member type. */
11099
11100 static void
11101 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11102 {
11103 dw_die_ref ptr_die
11104 = new_die (DW_TAG_ptr_to_member_type,
11105 scope_die_for (type, context_die), type);
11106
11107 equate_type_number_to_die (type, ptr_die);
11108 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11109 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11110 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11111 }
11112
11113 /* Generate the DIE for the compilation unit. */
11114
11115 static dw_die_ref
11116 gen_compile_unit_die (const char *filename)
11117 {
11118 dw_die_ref die;
11119 char producer[250];
11120 const char *language_string = lang_hooks.name;
11121 int language;
11122
11123 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11124
11125 if (filename)
11126 {
11127 add_name_attribute (die, filename);
11128 /* Don't add cwd for <built-in>. */
11129 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11130 add_comp_dir_attribute (die);
11131 }
11132
11133 sprintf (producer, "%s %s", language_string, version_string);
11134
11135 #ifdef MIPS_DEBUGGING_INFO
11136 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11137 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11138 not appear in the producer string, the debugger reaches the conclusion
11139 that the object file is stripped and has no debugging information.
11140 To get the MIPS/SGI debugger to believe that there is debugging
11141 information in the object file, we add a -g to the producer string. */
11142 if (debug_info_level > DINFO_LEVEL_TERSE)
11143 strcat (producer, " -g");
11144 #endif
11145
11146 add_AT_string (die, DW_AT_producer, producer);
11147
11148 if (strcmp (language_string, "GNU C++") == 0)
11149 language = DW_LANG_C_plus_plus;
11150 else if (strcmp (language_string, "GNU Ada") == 0)
11151 language = DW_LANG_Ada95;
11152 else if (strcmp (language_string, "GNU F77") == 0)
11153 language = DW_LANG_Fortran77;
11154 else if (strcmp (language_string, "GNU Pascal") == 0)
11155 language = DW_LANG_Pascal83;
11156 else if (strcmp (language_string, "GNU Java") == 0)
11157 language = DW_LANG_Java;
11158 else
11159 language = DW_LANG_C89;
11160
11161 add_AT_unsigned (die, DW_AT_language, language);
11162 return die;
11163 }
11164
11165 /* Generate a DIE for a string type. */
11166
11167 static void
11168 gen_string_type_die (tree type, dw_die_ref context_die)
11169 {
11170 dw_die_ref type_die
11171 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11172
11173 equate_type_number_to_die (type, type_die);
11174
11175 /* ??? Fudge the string length attribute for now.
11176 TODO: add string length info. */
11177 #if 0
11178 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11179 bound_representation (upper_bound, 0, 'u');
11180 #endif
11181 }
11182
11183 /* Generate the DIE for a base class. */
11184
11185 static void
11186 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11187 {
11188 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11189
11190 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11191 add_data_member_location_attribute (die, binfo);
11192
11193 if (TREE_VIA_VIRTUAL (binfo))
11194 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11195
11196 if (access == access_public_node)
11197 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11198 else if (access == access_protected_node)
11199 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11200 }
11201
11202 /* Generate a DIE for a class member. */
11203
11204 static void
11205 gen_member_die (tree type, dw_die_ref context_die)
11206 {
11207 tree member;
11208 tree binfo = TYPE_BINFO (type);
11209 dw_die_ref child;
11210
11211 /* If this is not an incomplete type, output descriptions of each of its
11212 members. Note that as we output the DIEs necessary to represent the
11213 members of this record or union type, we will also be trying to output
11214 DIEs to represent the *types* of those members. However the `type'
11215 function (above) will specifically avoid generating type DIEs for member
11216 types *within* the list of member DIEs for this (containing) type except
11217 for those types (of members) which are explicitly marked as also being
11218 members of this (containing) type themselves. The g++ front- end can
11219 force any given type to be treated as a member of some other (containing)
11220 type by setting the TYPE_CONTEXT of the given (member) type to point to
11221 the TREE node representing the appropriate (containing) type. */
11222
11223 /* First output info about the base classes. */
11224 if (binfo && BINFO_BASETYPES (binfo))
11225 {
11226 tree bases = BINFO_BASETYPES (binfo);
11227 tree accesses = BINFO_BASEACCESSES (binfo);
11228 int n_bases = TREE_VEC_LENGTH (bases);
11229 int i;
11230
11231 for (i = 0; i < n_bases; i++)
11232 gen_inheritance_die (TREE_VEC_ELT (bases, i),
11233 (accesses ? TREE_VEC_ELT (accesses, i)
11234 : access_public_node), context_die);
11235 }
11236
11237 /* Now output info about the data members and type members. */
11238 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11239 {
11240 /* If we thought we were generating minimal debug info for TYPE
11241 and then changed our minds, some of the member declarations
11242 may have already been defined. Don't define them again, but
11243 do put them in the right order. */
11244
11245 child = lookup_decl_die (member);
11246 if (child)
11247 splice_child_die (context_die, child);
11248 else
11249 gen_decl_die (member, context_die);
11250 }
11251
11252 /* Now output info about the function members (if any). */
11253 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11254 {
11255 /* Don't include clones in the member list. */
11256 if (DECL_ABSTRACT_ORIGIN (member))
11257 continue;
11258
11259 child = lookup_decl_die (member);
11260 if (child)
11261 splice_child_die (context_die, child);
11262 else
11263 gen_decl_die (member, context_die);
11264 }
11265 }
11266
11267 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11268 is set, we pretend that the type was never defined, so we only get the
11269 member DIEs needed by later specification DIEs. */
11270
11271 static void
11272 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
11273 {
11274 dw_die_ref type_die = lookup_type_die (type);
11275 dw_die_ref scope_die = 0;
11276 int nested = 0;
11277 int complete = (TYPE_SIZE (type)
11278 && (! TYPE_STUB_DECL (type)
11279 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11280
11281 if (type_die && ! complete)
11282 return;
11283
11284 if (TYPE_CONTEXT (type) != NULL_TREE
11285 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type)))
11286 nested = 1;
11287
11288 scope_die = scope_die_for (type, context_die);
11289
11290 if (! type_die || (nested && scope_die == comp_unit_die))
11291 /* First occurrence of type or toplevel definition of nested class. */
11292 {
11293 dw_die_ref old_die = type_die;
11294
11295 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11296 ? DW_TAG_structure_type : DW_TAG_union_type,
11297 scope_die, type);
11298 equate_type_number_to_die (type, type_die);
11299 if (old_die)
11300 add_AT_die_ref (type_die, DW_AT_specification, old_die);
11301 else
11302 add_name_attribute (type_die, type_tag (type));
11303 }
11304 else
11305 remove_AT (type_die, DW_AT_declaration);
11306
11307 /* If this type has been completed, then give it a byte_size attribute and
11308 then give a list of members. */
11309 if (complete)
11310 {
11311 /* Prevent infinite recursion in cases where the type of some member of
11312 this type is expressed in terms of this type itself. */
11313 TREE_ASM_WRITTEN (type) = 1;
11314 add_byte_size_attribute (type_die, type);
11315 if (TYPE_STUB_DECL (type) != NULL_TREE)
11316 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11317
11318 /* If the first reference to this type was as the return type of an
11319 inline function, then it may not have a parent. Fix this now. */
11320 if (type_die->die_parent == NULL)
11321 add_child_die (scope_die, type_die);
11322
11323 push_decl_scope (type);
11324 gen_member_die (type, type_die);
11325 pop_decl_scope ();
11326
11327 /* GNU extension: Record what type our vtable lives in. */
11328 if (TYPE_VFIELD (type))
11329 {
11330 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11331
11332 gen_type_die (vtype, context_die);
11333 add_AT_die_ref (type_die, DW_AT_containing_type,
11334 lookup_type_die (vtype));
11335 }
11336 }
11337 else
11338 {
11339 add_AT_flag (type_die, DW_AT_declaration, 1);
11340
11341 /* We don't need to do this for function-local types. */
11342 if (TYPE_STUB_DECL (type)
11343 && ! decl_function_context (TYPE_STUB_DECL (type)))
11344 VARRAY_PUSH_TREE (incomplete_types, type);
11345 }
11346 }
11347
11348 /* Generate a DIE for a subroutine _type_. */
11349
11350 static void
11351 gen_subroutine_type_die (tree type, dw_die_ref context_die)
11352 {
11353 tree return_type = TREE_TYPE (type);
11354 dw_die_ref subr_die
11355 = new_die (DW_TAG_subroutine_type,
11356 scope_die_for (type, context_die), type);
11357
11358 equate_type_number_to_die (type, subr_die);
11359 add_prototyped_attribute (subr_die, type);
11360 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11361 gen_formal_types_die (type, subr_die);
11362 }
11363
11364 /* Generate a DIE for a type definition. */
11365
11366 static void
11367 gen_typedef_die (tree decl, dw_die_ref context_die)
11368 {
11369 dw_die_ref type_die;
11370 tree origin;
11371
11372 if (TREE_ASM_WRITTEN (decl))
11373 return;
11374
11375 TREE_ASM_WRITTEN (decl) = 1;
11376 type_die = new_die (DW_TAG_typedef, context_die, decl);
11377 origin = decl_ultimate_origin (decl);
11378 if (origin != NULL)
11379 add_abstract_origin_attribute (type_die, origin);
11380 else
11381 {
11382 tree type;
11383
11384 add_name_and_src_coords_attributes (type_die, decl);
11385 if (DECL_ORIGINAL_TYPE (decl))
11386 {
11387 type = DECL_ORIGINAL_TYPE (decl);
11388
11389 if (type == TREE_TYPE (decl))
11390 abort ();
11391 else
11392 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11393 }
11394 else
11395 type = TREE_TYPE (decl);
11396
11397 add_type_attribute (type_die, type, TREE_READONLY (decl),
11398 TREE_THIS_VOLATILE (decl), context_die);
11399 }
11400
11401 if (DECL_ABSTRACT (decl))
11402 equate_decl_number_to_die (decl, type_die);
11403 }
11404
11405 /* Generate a type description DIE. */
11406
11407 static void
11408 gen_type_die (tree type, dw_die_ref context_die)
11409 {
11410 int need_pop;
11411
11412 if (type == NULL_TREE || type == error_mark_node)
11413 return;
11414
11415 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11416 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11417 {
11418 if (TREE_ASM_WRITTEN (type))
11419 return;
11420
11421 /* Prevent broken recursion; we can't hand off to the same type. */
11422 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
11423 abort ();
11424
11425 TREE_ASM_WRITTEN (type) = 1;
11426 gen_decl_die (TYPE_NAME (type), context_die);
11427 return;
11428 }
11429
11430 /* We are going to output a DIE to represent the unqualified version
11431 of this type (i.e. without any const or volatile qualifiers) so
11432 get the main variant (i.e. the unqualified version) of this type
11433 now. (Vectors are special because the debugging info is in the
11434 cloned type itself). */
11435 if (TREE_CODE (type) != VECTOR_TYPE)
11436 type = type_main_variant (type);
11437
11438 if (TREE_ASM_WRITTEN (type))
11439 return;
11440
11441 switch (TREE_CODE (type))
11442 {
11443 case ERROR_MARK:
11444 break;
11445
11446 case POINTER_TYPE:
11447 case REFERENCE_TYPE:
11448 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11449 ensures that the gen_type_die recursion will terminate even if the
11450 type is recursive. Recursive types are possible in Ada. */
11451 /* ??? We could perhaps do this for all types before the switch
11452 statement. */
11453 TREE_ASM_WRITTEN (type) = 1;
11454
11455 /* For these types, all that is required is that we output a DIE (or a
11456 set of DIEs) to represent the "basis" type. */
11457 gen_type_die (TREE_TYPE (type), context_die);
11458 break;
11459
11460 case OFFSET_TYPE:
11461 /* This code is used for C++ pointer-to-data-member types.
11462 Output a description of the relevant class type. */
11463 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
11464
11465 /* Output a description of the type of the object pointed to. */
11466 gen_type_die (TREE_TYPE (type), context_die);
11467
11468 /* Now output a DIE to represent this pointer-to-data-member type
11469 itself. */
11470 gen_ptr_to_mbr_type_die (type, context_die);
11471 break;
11472
11473 case SET_TYPE:
11474 gen_type_die (TYPE_DOMAIN (type), context_die);
11475 gen_set_type_die (type, context_die);
11476 break;
11477
11478 case FILE_TYPE:
11479 gen_type_die (TREE_TYPE (type), context_die);
11480 abort (); /* No way to represent these in Dwarf yet! */
11481 break;
11482
11483 case FUNCTION_TYPE:
11484 /* Force out return type (in case it wasn't forced out already). */
11485 gen_type_die (TREE_TYPE (type), context_die);
11486 gen_subroutine_type_die (type, context_die);
11487 break;
11488
11489 case METHOD_TYPE:
11490 /* Force out return type (in case it wasn't forced out already). */
11491 gen_type_die (TREE_TYPE (type), context_die);
11492 gen_subroutine_type_die (type, context_die);
11493 break;
11494
11495 case ARRAY_TYPE:
11496 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11497 {
11498 gen_type_die (TREE_TYPE (type), context_die);
11499 gen_string_type_die (type, context_die);
11500 }
11501 else
11502 gen_array_type_die (type, context_die);
11503 break;
11504
11505 case VECTOR_TYPE:
11506 gen_array_type_die (type, context_die);
11507 break;
11508
11509 case ENUMERAL_TYPE:
11510 case RECORD_TYPE:
11511 case UNION_TYPE:
11512 case QUAL_UNION_TYPE:
11513 /* If this is a nested type whose containing class hasn't been written
11514 out yet, writing it out will cover this one, too. This does not apply
11515 to instantiations of member class templates; they need to be added to
11516 the containing class as they are generated. FIXME: This hurts the
11517 idea of combining type decls from multiple TUs, since we can't predict
11518 what set of template instantiations we'll get. */
11519 if (TYPE_CONTEXT (type)
11520 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11521 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
11522 {
11523 gen_type_die (TYPE_CONTEXT (type), context_die);
11524
11525 if (TREE_ASM_WRITTEN (type))
11526 return;
11527
11528 /* If that failed, attach ourselves to the stub. */
11529 push_decl_scope (TYPE_CONTEXT (type));
11530 context_die = lookup_type_die (TYPE_CONTEXT (type));
11531 need_pop = 1;
11532 }
11533 else
11534 need_pop = 0;
11535
11536 if (TREE_CODE (type) == ENUMERAL_TYPE)
11537 gen_enumeration_type_die (type, context_die);
11538 else
11539 gen_struct_or_union_type_die (type, context_die);
11540
11541 if (need_pop)
11542 pop_decl_scope ();
11543
11544 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11545 it up if it is ever completed. gen_*_type_die will set it for us
11546 when appropriate. */
11547 return;
11548
11549 case VOID_TYPE:
11550 case INTEGER_TYPE:
11551 case REAL_TYPE:
11552 case COMPLEX_TYPE:
11553 case BOOLEAN_TYPE:
11554 case CHAR_TYPE:
11555 /* No DIEs needed for fundamental types. */
11556 break;
11557
11558 case LANG_TYPE:
11559 /* No Dwarf representation currently defined. */
11560 break;
11561
11562 default:
11563 abort ();
11564 }
11565
11566 TREE_ASM_WRITTEN (type) = 1;
11567 }
11568
11569 /* Generate a DIE for a tagged type instantiation. */
11570
11571 static void
11572 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
11573 {
11574 if (type == NULL_TREE || type == error_mark_node)
11575 return;
11576
11577 /* We are going to output a DIE to represent the unqualified version of
11578 this type (i.e. without any const or volatile qualifiers) so make sure
11579 that we have the main variant (i.e. the unqualified version) of this
11580 type now. */
11581 if (type != type_main_variant (type))
11582 abort ();
11583
11584 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11585 an instance of an unresolved type. */
11586
11587 switch (TREE_CODE (type))
11588 {
11589 case ERROR_MARK:
11590 break;
11591
11592 case ENUMERAL_TYPE:
11593 gen_inlined_enumeration_type_die (type, context_die);
11594 break;
11595
11596 case RECORD_TYPE:
11597 gen_inlined_structure_type_die (type, context_die);
11598 break;
11599
11600 case UNION_TYPE:
11601 case QUAL_UNION_TYPE:
11602 gen_inlined_union_type_die (type, context_die);
11603 break;
11604
11605 default:
11606 abort ();
11607 }
11608 }
11609
11610 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11611 things which are local to the given block. */
11612
11613 static void
11614 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
11615 {
11616 int must_output_die = 0;
11617 tree origin;
11618 tree decl;
11619 enum tree_code origin_code;
11620
11621 /* Ignore blocks never really used to make RTL. */
11622 if (stmt == NULL_TREE || !TREE_USED (stmt)
11623 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
11624 return;
11625
11626 /* If the block is one fragment of a non-contiguous block, do not
11627 process the variables, since they will have been done by the
11628 origin block. Do process subblocks. */
11629 if (BLOCK_FRAGMENT_ORIGIN (stmt))
11630 {
11631 tree sub;
11632
11633 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
11634 gen_block_die (sub, context_die, depth + 1);
11635
11636 return;
11637 }
11638
11639 /* Determine the "ultimate origin" of this block. This block may be an
11640 inlined instance of an inlined instance of inline function, so we have
11641 to trace all of the way back through the origin chain to find out what
11642 sort of node actually served as the original seed for the creation of
11643 the current block. */
11644 origin = block_ultimate_origin (stmt);
11645 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
11646
11647 /* Determine if we need to output any Dwarf DIEs at all to represent this
11648 block. */
11649 if (origin_code == FUNCTION_DECL)
11650 /* The outer scopes for inlinings *must* always be represented. We
11651 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
11652 must_output_die = 1;
11653 else
11654 {
11655 /* In the case where the current block represents an inlining of the
11656 "body block" of an inline function, we must *NOT* output any DIE for
11657 this block because we have already output a DIE to represent the whole
11658 inlined function scope and the "body block" of any function doesn't
11659 really represent a different scope according to ANSI C rules. So we
11660 check here to make sure that this block does not represent a "body
11661 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
11662 if (! is_body_block (origin ? origin : stmt))
11663 {
11664 /* Determine if this block directly contains any "significant"
11665 local declarations which we will need to output DIEs for. */
11666 if (debug_info_level > DINFO_LEVEL_TERSE)
11667 /* We are not in terse mode so *any* local declaration counts
11668 as being a "significant" one. */
11669 must_output_die = (BLOCK_VARS (stmt) != NULL);
11670 else
11671 /* We are in terse mode, so only local (nested) function
11672 definitions count as "significant" local declarations. */
11673 for (decl = BLOCK_VARS (stmt);
11674 decl != NULL; decl = TREE_CHAIN (decl))
11675 if (TREE_CODE (decl) == FUNCTION_DECL
11676 && DECL_INITIAL (decl))
11677 {
11678 must_output_die = 1;
11679 break;
11680 }
11681 }
11682 }
11683
11684 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
11685 DIE for any block which contains no significant local declarations at
11686 all. Rather, in such cases we just call `decls_for_scope' so that any
11687 needed Dwarf info for any sub-blocks will get properly generated. Note
11688 that in terse mode, our definition of what constitutes a "significant"
11689 local declaration gets restricted to include only inlined function
11690 instances and local (nested) function definitions. */
11691 if (must_output_die)
11692 {
11693 if (origin_code == FUNCTION_DECL)
11694 gen_inlined_subroutine_die (stmt, context_die, depth);
11695 else
11696 gen_lexical_block_die (stmt, context_die, depth);
11697 }
11698 else
11699 decls_for_scope (stmt, context_die, depth);
11700 }
11701
11702 /* Generate all of the decls declared within a given scope and (recursively)
11703 all of its sub-blocks. */
11704
11705 static void
11706 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
11707 {
11708 tree decl;
11709 tree subblocks;
11710
11711 /* Ignore blocks never really used to make RTL. */
11712 if (stmt == NULL_TREE || ! TREE_USED (stmt))
11713 return;
11714
11715 /* Output the DIEs to represent all of the data objects and typedefs
11716 declared directly within this block but not within any nested
11717 sub-blocks. Also, nested function and tag DIEs have been
11718 generated with a parent of NULL; fix that up now. */
11719 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
11720 {
11721 dw_die_ref die;
11722
11723 if (TREE_CODE (decl) == FUNCTION_DECL)
11724 die = lookup_decl_die (decl);
11725 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
11726 die = lookup_type_die (TREE_TYPE (decl));
11727 else
11728 die = NULL;
11729
11730 if (die != NULL && die->die_parent == NULL)
11731 add_child_die (context_die, die);
11732 else
11733 gen_decl_die (decl, context_die);
11734 }
11735
11736 /* If we're at -g1, we're not interested in subblocks. */
11737 if (debug_info_level <= DINFO_LEVEL_TERSE)
11738 return;
11739
11740 /* Output the DIEs to represent all sub-blocks (and the items declared
11741 therein) of this block. */
11742 for (subblocks = BLOCK_SUBBLOCKS (stmt);
11743 subblocks != NULL;
11744 subblocks = BLOCK_CHAIN (subblocks))
11745 gen_block_die (subblocks, context_die, depth + 1);
11746 }
11747
11748 /* Is this a typedef we can avoid emitting? */
11749
11750 static inline int
11751 is_redundant_typedef (tree decl)
11752 {
11753 if (TYPE_DECL_IS_STUB (decl))
11754 return 1;
11755
11756 if (DECL_ARTIFICIAL (decl)
11757 && DECL_CONTEXT (decl)
11758 && is_tagged_type (DECL_CONTEXT (decl))
11759 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
11760 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
11761 /* Also ignore the artificial member typedef for the class name. */
11762 return 1;
11763
11764 return 0;
11765 }
11766
11767 /* Generate Dwarf debug information for a decl described by DECL. */
11768
11769 static void
11770 gen_decl_die (tree decl, dw_die_ref context_die)
11771 {
11772 tree origin;
11773
11774 if (DECL_P (decl) && DECL_IGNORED_P (decl))
11775 return;
11776
11777 switch (TREE_CODE (decl))
11778 {
11779 case ERROR_MARK:
11780 break;
11781
11782 case CONST_DECL:
11783 /* The individual enumerators of an enum type get output when we output
11784 the Dwarf representation of the relevant enum type itself. */
11785 break;
11786
11787 case FUNCTION_DECL:
11788 /* Don't output any DIEs to represent mere function declarations,
11789 unless they are class members or explicit block externs. */
11790 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
11791 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
11792 break;
11793
11794 /* If we're emitting a clone, emit info for the abstract instance. */
11795 if (DECL_ORIGIN (decl) != decl)
11796 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
11797
11798 /* If we're emitting an out-of-line copy of an inline function,
11799 emit info for the abstract instance and set up to refer to it. */
11800 else if (DECL_INLINE (decl) && ! DECL_ABSTRACT (decl)
11801 && ! class_scope_p (context_die)
11802 /* dwarf2out_abstract_function won't emit a die if this is just
11803 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
11804 that case, because that works only if we have a die. */
11805 && DECL_INITIAL (decl) != NULL_TREE)
11806 {
11807 dwarf2out_abstract_function (decl);
11808 set_decl_origin_self (decl);
11809 }
11810
11811 /* Otherwise we're emitting the primary DIE for this decl. */
11812 else if (debug_info_level > DINFO_LEVEL_TERSE)
11813 {
11814 /* Before we describe the FUNCTION_DECL itself, make sure that we
11815 have described its return type. */
11816 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
11817
11818 /* And its virtual context. */
11819 if (DECL_VINDEX (decl) != NULL_TREE)
11820 gen_type_die (DECL_CONTEXT (decl), context_die);
11821
11822 /* And its containing type. */
11823 origin = decl_class_context (decl);
11824 if (origin != NULL_TREE)
11825 gen_type_die_for_member (origin, decl, context_die);
11826 }
11827
11828 /* Now output a DIE to represent the function itself. */
11829 gen_subprogram_die (decl, context_die);
11830 break;
11831
11832 case TYPE_DECL:
11833 /* If we are in terse mode, don't generate any DIEs to represent any
11834 actual typedefs. */
11835 if (debug_info_level <= DINFO_LEVEL_TERSE)
11836 break;
11837
11838 /* In the special case of a TYPE_DECL node representing the declaration
11839 of some type tag, if the given TYPE_DECL is marked as having been
11840 instantiated from some other (original) TYPE_DECL node (e.g. one which
11841 was generated within the original definition of an inline function) we
11842 have to generate a special (abbreviated) DW_TAG_structure_type,
11843 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
11844 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
11845 {
11846 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
11847 break;
11848 }
11849
11850 if (is_redundant_typedef (decl))
11851 gen_type_die (TREE_TYPE (decl), context_die);
11852 else
11853 /* Output a DIE to represent the typedef itself. */
11854 gen_typedef_die (decl, context_die);
11855 break;
11856
11857 case LABEL_DECL:
11858 if (debug_info_level >= DINFO_LEVEL_NORMAL)
11859 gen_label_die (decl, context_die);
11860 break;
11861
11862 case VAR_DECL:
11863 /* If we are in terse mode, don't generate any DIEs to represent any
11864 variable declarations or definitions. */
11865 if (debug_info_level <= DINFO_LEVEL_TERSE)
11866 break;
11867
11868 /* Output any DIEs that are needed to specify the type of this data
11869 object. */
11870 gen_type_die (TREE_TYPE (decl), context_die);
11871
11872 /* And its containing type. */
11873 origin = decl_class_context (decl);
11874 if (origin != NULL_TREE)
11875 gen_type_die_for_member (origin, decl, context_die);
11876
11877 /* Now output the DIE to represent the data object itself. This gets
11878 complicated because of the possibility that the VAR_DECL really
11879 represents an inlined instance of a formal parameter for an inline
11880 function. */
11881 origin = decl_ultimate_origin (decl);
11882 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
11883 gen_formal_parameter_die (decl, context_die);
11884 else
11885 gen_variable_die (decl, context_die);
11886 break;
11887
11888 case FIELD_DECL:
11889 /* Ignore the nameless fields that are used to skip bits but handle C++
11890 anonymous unions. */
11891 if (DECL_NAME (decl) != NULL_TREE
11892 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
11893 {
11894 gen_type_die (member_declared_type (decl), context_die);
11895 gen_field_die (decl, context_die);
11896 }
11897 break;
11898
11899 case PARM_DECL:
11900 gen_type_die (TREE_TYPE (decl), context_die);
11901 gen_formal_parameter_die (decl, context_die);
11902 break;
11903
11904 case NAMESPACE_DECL:
11905 /* Ignore for now. */
11906 break;
11907
11908 default:
11909 if ((int)TREE_CODE (decl) > NUM_TREE_CODES)
11910 /* Probably some frontend-internal decl. Assume we don't care. */
11911 break;
11912 abort ();
11913 }
11914 }
11915 \f
11916 /* Add Ada "use" clause information for SGI Workshop debugger. */
11917
11918 void
11919 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
11920 {
11921 unsigned int file_index;
11922
11923 if (filename != NULL)
11924 {
11925 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
11926 tree context_list_decl
11927 = build_decl (LABEL_DECL, get_identifier (context_list),
11928 void_type_node);
11929
11930 TREE_PUBLIC (context_list_decl) = TRUE;
11931 add_name_attribute (unit_die, context_list);
11932 file_index = lookup_filename (filename);
11933 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
11934 add_pubname (context_list_decl, unit_die);
11935 }
11936 }
11937
11938 /* Output debug information for global decl DECL. Called from toplev.c after
11939 compilation proper has finished. */
11940
11941 static void
11942 dwarf2out_global_decl (tree decl)
11943 {
11944 /* Output DWARF2 information for file-scope tentative data object
11945 declarations, file-scope (extern) function declarations (which had no
11946 corresponding body) and file-scope tagged type declarations and
11947 definitions which have not yet been forced out. */
11948 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
11949 dwarf2out_decl (decl);
11950 }
11951
11952 /* Write the debugging output for DECL. */
11953
11954 void
11955 dwarf2out_decl (tree decl)
11956 {
11957 dw_die_ref context_die = comp_unit_die;
11958
11959 switch (TREE_CODE (decl))
11960 {
11961 case ERROR_MARK:
11962 return;
11963
11964 case FUNCTION_DECL:
11965 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
11966 builtin function. Explicit programmer-supplied declarations of
11967 these same functions should NOT be ignored however. */
11968 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
11969 return;
11970
11971 /* What we would really like to do here is to filter out all mere
11972 file-scope declarations of file-scope functions which are never
11973 referenced later within this translation unit (and keep all of ones
11974 that *are* referenced later on) but we aren't clairvoyant, so we have
11975 no idea which functions will be referenced in the future (i.e. later
11976 on within the current translation unit). So here we just ignore all
11977 file-scope function declarations which are not also definitions. If
11978 and when the debugger needs to know something about these functions,
11979 it will have to hunt around and find the DWARF information associated
11980 with the definition of the function.
11981
11982 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
11983 nodes represent definitions and which ones represent mere
11984 declarations. We have to check DECL_INITIAL instead. That's because
11985 the C front-end supports some weird semantics for "extern inline"
11986 function definitions. These can get inlined within the current
11987 translation unit (an thus, we need to generate Dwarf info for their
11988 abstract instances so that the Dwarf info for the concrete inlined
11989 instances can have something to refer to) but the compiler never
11990 generates any out-of-lines instances of such things (despite the fact
11991 that they *are* definitions).
11992
11993 The important point is that the C front-end marks these "extern
11994 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
11995 them anyway. Note that the C++ front-end also plays some similar games
11996 for inline function definitions appearing within include files which
11997 also contain `#pragma interface' pragmas. */
11998 if (DECL_INITIAL (decl) == NULL_TREE)
11999 return;
12000
12001 /* If we're a nested function, initially use a parent of NULL; if we're
12002 a plain function, this will be fixed up in decls_for_scope. If
12003 we're a method, it will be ignored, since we already have a DIE. */
12004 if (decl_function_context (decl)
12005 /* But if we're in terse mode, we don't care about scope. */
12006 && debug_info_level > DINFO_LEVEL_TERSE)
12007 context_die = NULL;
12008 break;
12009
12010 case VAR_DECL:
12011 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12012 declaration and if the declaration was never even referenced from
12013 within this entire compilation unit. We suppress these DIEs in
12014 order to save space in the .debug section (by eliminating entries
12015 which are probably useless). Note that we must not suppress
12016 block-local extern declarations (whether used or not) because that
12017 would screw-up the debugger's name lookup mechanism and cause it to
12018 miss things which really ought to be in scope at a given point. */
12019 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12020 return;
12021
12022 /* If we are in terse mode, don't generate any DIEs to represent any
12023 variable declarations or definitions. */
12024 if (debug_info_level <= DINFO_LEVEL_TERSE)
12025 return;
12026 break;
12027
12028 case TYPE_DECL:
12029 /* Don't emit stubs for types unless they are needed by other DIEs. */
12030 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12031 return;
12032
12033 /* Don't bother trying to generate any DIEs to represent any of the
12034 normal built-in types for the language we are compiling. */
12035 if (DECL_SOURCE_LINE (decl) == 0)
12036 {
12037 /* OK, we need to generate one for `bool' so GDB knows what type
12038 comparisons have. */
12039 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12040 == DW_LANG_C_plus_plus)
12041 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12042 && ! DECL_IGNORED_P (decl))
12043 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12044
12045 return;
12046 }
12047
12048 /* If we are in terse mode, don't generate any DIEs for types. */
12049 if (debug_info_level <= DINFO_LEVEL_TERSE)
12050 return;
12051
12052 /* If we're a function-scope tag, initially use a parent of NULL;
12053 this will be fixed up in decls_for_scope. */
12054 if (decl_function_context (decl))
12055 context_die = NULL;
12056
12057 break;
12058
12059 default:
12060 return;
12061 }
12062
12063 gen_decl_die (decl, context_die);
12064 }
12065
12066 /* Output a marker (i.e. a label) for the beginning of the generated code for
12067 a lexical block. */
12068
12069 static void
12070 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
12071 unsigned int blocknum)
12072 {
12073 function_section (current_function_decl);
12074 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12075 }
12076
12077 /* Output a marker (i.e. a label) for the end of the generated code for a
12078 lexical block. */
12079
12080 static void
12081 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
12082 {
12083 function_section (current_function_decl);
12084 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12085 }
12086
12087 /* Returns nonzero if it is appropriate not to emit any debugging
12088 information for BLOCK, because it doesn't contain any instructions.
12089
12090 Don't allow this for blocks with nested functions or local classes
12091 as we would end up with orphans, and in the presence of scheduling
12092 we may end up calling them anyway. */
12093
12094 static bool
12095 dwarf2out_ignore_block (tree block)
12096 {
12097 tree decl;
12098
12099 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12100 if (TREE_CODE (decl) == FUNCTION_DECL
12101 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12102 return 0;
12103
12104 return 1;
12105 }
12106
12107 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12108 dwarf2out.c) and return its "index". The index of each (known) filename is
12109 just a unique number which is associated with only that one filename. We
12110 need such numbers for the sake of generating labels (in the .debug_sfnames
12111 section) and references to those files numbers (in the .debug_srcinfo
12112 and.debug_macinfo sections). If the filename given as an argument is not
12113 found in our current list, add it to the list and assign it the next
12114 available unique index number. In order to speed up searches, we remember
12115 the index of the filename was looked up last. This handles the majority of
12116 all searches. */
12117
12118 static unsigned
12119 lookup_filename (const char *file_name)
12120 {
12121 size_t i, n;
12122 char *save_file_name;
12123
12124 /* Check to see if the file name that was searched on the previous
12125 call matches this file name. If so, return the index. */
12126 if (file_table_last_lookup_index != 0)
12127 {
12128 const char *last
12129 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12130 if (strcmp (file_name, last) == 0)
12131 return file_table_last_lookup_index;
12132 }
12133
12134 /* Didn't match the previous lookup, search the table */
12135 n = VARRAY_ACTIVE_SIZE (file_table);
12136 for (i = 1; i < n; i++)
12137 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12138 {
12139 file_table_last_lookup_index = i;
12140 return i;
12141 }
12142
12143 /* Add the new entry to the end of the filename table. */
12144 file_table_last_lookup_index = n;
12145 save_file_name = (char *) ggc_strdup (file_name);
12146 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12147 VARRAY_PUSH_UINT (file_table_emitted, 0);
12148
12149 return i;
12150 }
12151
12152 static int
12153 maybe_emit_file (int fileno)
12154 {
12155 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12156 {
12157 if (!VARRAY_UINT (file_table_emitted, fileno))
12158 {
12159 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12160 fprintf (asm_out_file, "\t.file %u ",
12161 VARRAY_UINT (file_table_emitted, fileno));
12162 output_quoted_string (asm_out_file,
12163 VARRAY_CHAR_PTR (file_table, fileno));
12164 fputc ('\n', asm_out_file);
12165 }
12166 return VARRAY_UINT (file_table_emitted, fileno);
12167 }
12168 else
12169 return fileno;
12170 }
12171
12172 static void
12173 init_file_table (void)
12174 {
12175 /* Allocate the initial hunk of the file_table. */
12176 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
12177 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
12178
12179 /* Skip the first entry - file numbers begin at 1. */
12180 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
12181 VARRAY_PUSH_UINT (file_table_emitted, 0);
12182 file_table_last_lookup_index = 0;
12183 }
12184
12185 /* Output a label to mark the beginning of a source code line entry
12186 and record information relating to this source line, in
12187 'line_info_table' for later output of the .debug_line section. */
12188
12189 static void
12190 dwarf2out_source_line (unsigned int line, const char *filename)
12191 {
12192 if (debug_info_level >= DINFO_LEVEL_NORMAL
12193 && line != 0)
12194 {
12195 function_section (current_function_decl);
12196
12197 /* If requested, emit something human-readable. */
12198 if (flag_debug_asm)
12199 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
12200 filename, line);
12201
12202 if (DWARF2_ASM_LINE_DEBUG_INFO)
12203 {
12204 unsigned file_num = lookup_filename (filename);
12205
12206 file_num = maybe_emit_file (file_num);
12207
12208 /* Emit the .loc directive understood by GNU as. */
12209 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
12210
12211 /* Indicate that line number info exists. */
12212 line_info_table_in_use++;
12213
12214 /* Indicate that multiple line number tables exist. */
12215 if (DECL_SECTION_NAME (current_function_decl))
12216 separate_line_info_table_in_use++;
12217 }
12218 else if (DECL_SECTION_NAME (current_function_decl))
12219 {
12220 dw_separate_line_info_ref line_info;
12221 (*targetm.asm_out.internal_label) (asm_out_file, SEPARATE_LINE_CODE_LABEL,
12222 separate_line_info_table_in_use);
12223
12224 /* expand the line info table if necessary */
12225 if (separate_line_info_table_in_use
12226 == separate_line_info_table_allocated)
12227 {
12228 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12229 separate_line_info_table
12230 = ggc_realloc (separate_line_info_table,
12231 separate_line_info_table_allocated
12232 * sizeof (dw_separate_line_info_entry));
12233 memset (separate_line_info_table
12234 + separate_line_info_table_in_use,
12235 0,
12236 (LINE_INFO_TABLE_INCREMENT
12237 * sizeof (dw_separate_line_info_entry)));
12238 }
12239
12240 /* Add the new entry at the end of the line_info_table. */
12241 line_info
12242 = &separate_line_info_table[separate_line_info_table_in_use++];
12243 line_info->dw_file_num = lookup_filename (filename);
12244 line_info->dw_line_num = line;
12245 line_info->function = current_function_funcdef_no;
12246 }
12247 else
12248 {
12249 dw_line_info_ref line_info;
12250
12251 (*targetm.asm_out.internal_label) (asm_out_file, LINE_CODE_LABEL,
12252 line_info_table_in_use);
12253
12254 /* Expand the line info table if necessary. */
12255 if (line_info_table_in_use == line_info_table_allocated)
12256 {
12257 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12258 line_info_table
12259 = ggc_realloc (line_info_table,
12260 (line_info_table_allocated
12261 * sizeof (dw_line_info_entry)));
12262 memset (line_info_table + line_info_table_in_use, 0,
12263 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
12264 }
12265
12266 /* Add the new entry at the end of the line_info_table. */
12267 line_info = &line_info_table[line_info_table_in_use++];
12268 line_info->dw_file_num = lookup_filename (filename);
12269 line_info->dw_line_num = line;
12270 }
12271 }
12272 }
12273
12274 /* Record the beginning of a new source file. */
12275
12276 static void
12277 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
12278 {
12279 if (flag_eliminate_dwarf2_dups && !is_main_source)
12280 {
12281 /* Record the beginning of the file for break_out_includes. */
12282 dw_die_ref bincl_die;
12283
12284 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
12285 add_AT_string (bincl_die, DW_AT_name, filename);
12286 }
12287
12288 is_main_source = 0;
12289
12290 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12291 {
12292 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12293 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
12294 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
12295 lineno);
12296 maybe_emit_file (lookup_filename (filename));
12297 dw2_asm_output_data_uleb128 (lookup_filename (filename),
12298 "Filename we just started");
12299 }
12300 }
12301
12302 /* Record the end of a source file. */
12303
12304 static void
12305 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
12306 {
12307 if (flag_eliminate_dwarf2_dups)
12308 /* Record the end of the file for break_out_includes. */
12309 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
12310
12311 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12312 {
12313 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12314 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12315 }
12316 }
12317
12318 /* Called from debug_define in toplev.c. The `buffer' parameter contains
12319 the tail part of the directive line, i.e. the part which is past the
12320 initial whitespace, #, whitespace, directive-name, whitespace part. */
12321
12322 static void
12323 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
12324 const char *buffer ATTRIBUTE_UNUSED)
12325 {
12326 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12327 {
12328 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12329 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
12330 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12331 dw2_asm_output_nstring (buffer, -1, "The macro");
12332 }
12333 }
12334
12335 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
12336 the tail part of the directive line, i.e. the part which is past the
12337 initial whitespace, #, whitespace, directive-name, whitespace part. */
12338
12339 static void
12340 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
12341 const char *buffer ATTRIBUTE_UNUSED)
12342 {
12343 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12344 {
12345 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12346 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
12347 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12348 dw2_asm_output_nstring (buffer, -1, "The macro");
12349 }
12350 }
12351
12352 /* Set up for Dwarf output at the start of compilation. */
12353
12354 static void
12355 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
12356 {
12357 init_file_table ();
12358
12359 /* Allocate the initial hunk of the decl_die_table. */
12360 decl_die_table = ggc_alloc_cleared (DECL_DIE_TABLE_INCREMENT
12361 * sizeof (dw_die_ref));
12362 decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
12363 decl_die_table_in_use = 0;
12364
12365 /* Allocate the initial hunk of the decl_scope_table. */
12366 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
12367
12368 /* Allocate the initial hunk of the abbrev_die_table. */
12369 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
12370 * sizeof (dw_die_ref));
12371 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
12372 /* Zero-th entry is allocated, but unused */
12373 abbrev_die_table_in_use = 1;
12374
12375 /* Allocate the initial hunk of the line_info_table. */
12376 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
12377 * sizeof (dw_line_info_entry));
12378 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
12379
12380 /* Zero-th entry is allocated, but unused */
12381 line_info_table_in_use = 1;
12382
12383 /* Generate the initial DIE for the .debug section. Note that the (string)
12384 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
12385 will (typically) be a relative pathname and that this pathname should be
12386 taken as being relative to the directory from which the compiler was
12387 invoked when the given (base) source file was compiled. We will fill
12388 in this value in dwarf2out_finish. */
12389 comp_unit_die = gen_compile_unit_die (NULL);
12390 is_main_source = 1;
12391
12392 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
12393
12394 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
12395
12396 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
12397 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
12398 DEBUG_ABBREV_SECTION_LABEL, 0);
12399 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12400 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
12401 else
12402 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
12403
12404 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
12405 DEBUG_INFO_SECTION_LABEL, 0);
12406 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
12407 DEBUG_LINE_SECTION_LABEL, 0);
12408 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
12409 DEBUG_RANGES_SECTION_LABEL, 0);
12410 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12411 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
12412 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
12413 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
12414 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12415 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
12416
12417 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12418 {
12419 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12420 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
12421 DEBUG_MACINFO_SECTION_LABEL, 0);
12422 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
12423 }
12424
12425 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12426 {
12427 text_section ();
12428 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
12429 }
12430 }
12431
12432 /* A helper function for dwarf2out_finish called through
12433 ht_forall. Emit one queued .debug_str string. */
12434
12435 static int
12436 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
12437 {
12438 struct indirect_string_node *node = (struct indirect_string_node *) *h;
12439
12440 if (node->form == DW_FORM_strp)
12441 {
12442 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
12443 ASM_OUTPUT_LABEL (asm_out_file, node->label);
12444 assemble_string (node->str, strlen (node->str) + 1);
12445 }
12446
12447 return 1;
12448 }
12449
12450
12451
12452 /* Clear the marks for a die and its children.
12453 Be cool if the mark isn't set. */
12454
12455 static void
12456 prune_unmark_dies (dw_die_ref die)
12457 {
12458 dw_die_ref c;
12459 die->die_mark = 0;
12460 for (c = die->die_child; c; c = c->die_sib)
12461 prune_unmark_dies (c);
12462 }
12463
12464
12465 /* Given DIE that we're marking as used, find any other dies
12466 it references as attributes and mark them as used. */
12467
12468 static void
12469 prune_unused_types_walk_attribs (dw_die_ref die)
12470 {
12471 dw_attr_ref a;
12472
12473 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
12474 {
12475 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
12476 {
12477 /* A reference to another DIE.
12478 Make sure that it will get emitted. */
12479 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
12480 }
12481 else if (a->dw_attr == DW_AT_decl_file)
12482 {
12483 /* A reference to a file. Make sure the file name is emitted. */
12484 a->dw_attr_val.v.val_unsigned =
12485 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
12486 }
12487 }
12488 }
12489
12490
12491 /* Mark DIE as being used. If DOKIDS is true, then walk down
12492 to DIE's children. */
12493
12494 static void
12495 prune_unused_types_mark (dw_die_ref die, int dokids)
12496 {
12497 dw_die_ref c;
12498
12499 if (die->die_mark == 0)
12500 {
12501 /* We haven't done this node yet. Mark it as used. */
12502 die->die_mark = 1;
12503
12504 /* We also have to mark its parents as used.
12505 (But we don't want to mark our parents' kids due to this.) */
12506 if (die->die_parent)
12507 prune_unused_types_mark (die->die_parent, 0);
12508
12509 /* Mark any referenced nodes. */
12510 prune_unused_types_walk_attribs (die);
12511 }
12512
12513 if (dokids && die->die_mark != 2)
12514 {
12515 /* We need to walk the children, but haven't done so yet.
12516 Remember that we've walked the kids. */
12517 die->die_mark = 2;
12518
12519 /* Walk them. */
12520 for (c = die->die_child; c; c = c->die_sib)
12521 {
12522 /* If this is an array type, we need to make sure our
12523 kids get marked, even if they're types. */
12524 if (die->die_tag == DW_TAG_array_type)
12525 prune_unused_types_mark (c, 1);
12526 else
12527 prune_unused_types_walk (c);
12528 }
12529 }
12530 }
12531
12532
12533 /* Walk the tree DIE and mark types that we actually use. */
12534
12535 static void
12536 prune_unused_types_walk (dw_die_ref die)
12537 {
12538 dw_die_ref c;
12539
12540 /* Don't do anything if this node is already marked. */
12541 if (die->die_mark)
12542 return;
12543
12544 switch (die->die_tag) {
12545 case DW_TAG_const_type:
12546 case DW_TAG_packed_type:
12547 case DW_TAG_pointer_type:
12548 case DW_TAG_reference_type:
12549 case DW_TAG_volatile_type:
12550 case DW_TAG_typedef:
12551 case DW_TAG_array_type:
12552 case DW_TAG_structure_type:
12553 case DW_TAG_union_type:
12554 case DW_TAG_class_type:
12555 case DW_TAG_friend:
12556 case DW_TAG_variant_part:
12557 case DW_TAG_enumeration_type:
12558 case DW_TAG_subroutine_type:
12559 case DW_TAG_string_type:
12560 case DW_TAG_set_type:
12561 case DW_TAG_subrange_type:
12562 case DW_TAG_ptr_to_member_type:
12563 case DW_TAG_file_type:
12564 /* It's a type node --- don't mark it. */
12565 return;
12566
12567 default:
12568 /* Mark everything else. */
12569 break;
12570 }
12571
12572 die->die_mark = 1;
12573
12574 /* Now, mark any dies referenced from here. */
12575 prune_unused_types_walk_attribs (die);
12576
12577 /* Mark children. */
12578 for (c = die->die_child; c; c = c->die_sib)
12579 prune_unused_types_walk (c);
12580 }
12581
12582
12583 /* Remove from the tree DIE any dies that aren't marked. */
12584
12585 static void
12586 prune_unused_types_prune (dw_die_ref die)
12587 {
12588 dw_die_ref c, p, n;
12589 if (!die->die_mark)
12590 abort();
12591
12592 p = NULL;
12593 for (c = die->die_child; c; c = n)
12594 {
12595 n = c->die_sib;
12596 if (c->die_mark)
12597 {
12598 prune_unused_types_prune (c);
12599 p = c;
12600 }
12601 else
12602 {
12603 if (p)
12604 p->die_sib = n;
12605 else
12606 die->die_child = n;
12607 free_die (c);
12608 }
12609 }
12610 }
12611
12612
12613 /* Remove dies representing declarations that we never use. */
12614
12615 static void
12616 prune_unused_types (void)
12617 {
12618 unsigned int i;
12619 limbo_die_node *node;
12620
12621 /* Clear all the marks. */
12622 prune_unmark_dies (comp_unit_die);
12623 for (node = limbo_die_list; node; node = node->next)
12624 prune_unmark_dies (node->die);
12625
12626 /* Set the mark on nodes that are actually used. */
12627 prune_unused_types_walk (comp_unit_die);
12628 for (node = limbo_die_list; node; node = node->next)
12629 prune_unused_types_walk (node->die);
12630
12631 /* Also set the mark on nodes referenced from the
12632 pubname_table or arange_table. */
12633 for (i = 0; i < pubname_table_in_use; i++)
12634 prune_unused_types_mark (pubname_table[i].die, 1);
12635 for (i = 0; i < arange_table_in_use; i++)
12636 prune_unused_types_mark (arange_table[i], 1);
12637
12638 /* Get rid of nodes that aren't marked. */
12639 prune_unused_types_prune (comp_unit_die);
12640 for (node = limbo_die_list; node; node = node->next)
12641 prune_unused_types_prune (node->die);
12642
12643 /* Leave the marks clear. */
12644 prune_unmark_dies (comp_unit_die);
12645 for (node = limbo_die_list; node; node = node->next)
12646 prune_unmark_dies (node->die);
12647 }
12648
12649 /* Output stuff that dwarf requires at the end of every file,
12650 and generate the DWARF-2 debugging info. */
12651
12652 static void
12653 dwarf2out_finish (const char *filename)
12654 {
12655 limbo_die_node *node, *next_node;
12656 dw_die_ref die = 0;
12657
12658 /* Add the name for the main input file now. We delayed this from
12659 dwarf2out_init to avoid complications with PCH. */
12660 add_name_attribute (comp_unit_die, filename);
12661 if (filename[0] != DIR_SEPARATOR)
12662 add_comp_dir_attribute (comp_unit_die);
12663 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
12664 {
12665 size_t i;
12666 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
12667 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
12668 /* Don't add cwd for <built-in>. */
12669 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
12670 {
12671 add_comp_dir_attribute (comp_unit_die);
12672 break;
12673 }
12674 }
12675
12676 /* Traverse the limbo die list, and add parent/child links. The only
12677 dies without parents that should be here are concrete instances of
12678 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
12679 For concrete instances, we can get the parent die from the abstract
12680 instance. */
12681 for (node = limbo_die_list; node; node = next_node)
12682 {
12683 next_node = node->next;
12684 die = node->die;
12685
12686 if (die->die_parent == NULL)
12687 {
12688 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
12689 tree context;
12690
12691 if (origin)
12692 add_child_die (origin->die_parent, die);
12693 else if (die == comp_unit_die)
12694 ;
12695 /* If this was an expression for a bound involved in a function
12696 return type, it may be a SAVE_EXPR for which we weren't able
12697 to find a DIE previously. So try now. */
12698 else if (node->created_for
12699 && TREE_CODE (node->created_for) == SAVE_EXPR
12700 && 0 != (origin = (lookup_decl_die
12701 (SAVE_EXPR_CONTEXT
12702 (node->created_for)))))
12703 add_child_die (origin, die);
12704 else if (errorcount > 0 || sorrycount > 0)
12705 /* It's OK to be confused by errors in the input. */
12706 add_child_die (comp_unit_die, die);
12707 else if (node->created_for
12708 && ((DECL_P (node->created_for)
12709 && (context = DECL_CONTEXT (node->created_for)))
12710 || (TYPE_P (node->created_for)
12711 && (context = TYPE_CONTEXT (node->created_for))))
12712 && TREE_CODE (context) == FUNCTION_DECL)
12713 {
12714 /* In certain situations, the lexical block containing a
12715 nested function can be optimized away, which results
12716 in the nested function die being orphaned. Likewise
12717 with the return type of that nested function. Force
12718 this to be a child of the containing function. */
12719 origin = lookup_decl_die (context);
12720 if (! origin)
12721 abort ();
12722 add_child_die (origin, die);
12723 }
12724 else
12725 abort ();
12726 }
12727 }
12728
12729 limbo_die_list = NULL;
12730
12731 /* Walk through the list of incomplete types again, trying once more to
12732 emit full debugging info for them. */
12733 retry_incomplete_types ();
12734
12735 /* We need to reverse all the dies before break_out_includes, or
12736 we'll see the end of an include file before the beginning. */
12737 reverse_all_dies (comp_unit_die);
12738
12739 if (flag_eliminate_unused_debug_types)
12740 prune_unused_types ();
12741
12742 /* Generate separate CUs for each of the include files we've seen.
12743 They will go into limbo_die_list. */
12744 if (flag_eliminate_dwarf2_dups)
12745 break_out_includes (comp_unit_die);
12746
12747 /* Traverse the DIE's and add add sibling attributes to those DIE's
12748 that have children. */
12749 add_sibling_attributes (comp_unit_die);
12750 for (node = limbo_die_list; node; node = node->next)
12751 add_sibling_attributes (node->die);
12752
12753 /* Output a terminator label for the .text section. */
12754 text_section ();
12755 (*targetm.asm_out.internal_label) (asm_out_file, TEXT_END_LABEL, 0);
12756
12757 /* Output the source line correspondence table. We must do this
12758 even if there is no line information. Otherwise, on an empty
12759 translation unit, we will generate a present, but empty,
12760 .debug_info section. IRIX 6.5 `nm' will then complain when
12761 examining the file. */
12762 if (! DWARF2_ASM_LINE_DEBUG_INFO)
12763 {
12764 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12765 output_line_info ();
12766 }
12767
12768 /* Output location list section if necessary. */
12769 if (have_location_lists)
12770 {
12771 /* Output the location lists info. */
12772 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
12773 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
12774 DEBUG_LOC_SECTION_LABEL, 0);
12775 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
12776 output_location_lists (die);
12777 have_location_lists = 0;
12778 }
12779
12780 /* We can only use the low/high_pc attributes if all of the code was
12781 in .text. */
12782 if (separate_line_info_table_in_use == 0)
12783 {
12784 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
12785 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
12786 }
12787
12788 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
12789 "base address". Use zero so that these addresses become absolute. */
12790 else if (have_location_lists || ranges_table_in_use)
12791 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
12792
12793 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12794 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
12795 debug_line_section_label);
12796
12797 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12798 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
12799
12800 /* Output all of the compilation units. We put the main one last so that
12801 the offsets are available to output_pubnames. */
12802 for (node = limbo_die_list; node; node = node->next)
12803 output_comp_unit (node->die, 0);
12804
12805 output_comp_unit (comp_unit_die, 0);
12806
12807 /* Output the abbreviation table. */
12808 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12809 output_abbrev_section ();
12810
12811 /* Output public names table if necessary. */
12812 if (pubname_table_in_use)
12813 {
12814 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
12815 output_pubnames ();
12816 }
12817
12818 /* Output the address range information. We only put functions in the arange
12819 table, so don't write it out if we don't have any. */
12820 if (fde_table_in_use)
12821 {
12822 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
12823 output_aranges ();
12824 }
12825
12826 /* Output ranges section if necessary. */
12827 if (ranges_table_in_use)
12828 {
12829 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
12830 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
12831 output_ranges ();
12832 }
12833
12834 /* Have to end the primary source file. */
12835 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12836 {
12837 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12838 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12839 dw2_asm_output_data (1, 0, "End compilation unit");
12840 }
12841
12842 /* If we emitted any DW_FORM_strp form attribute, output the string
12843 table too. */
12844 if (debug_str_hash)
12845 htab_traverse (debug_str_hash, output_indirect_string, NULL);
12846 }
12847 #else
12848
12849 /* This should never be used, but its address is needed for comparisons. */
12850 const struct gcc_debug_hooks dwarf2_debug_hooks;
12851
12852 #endif /* DWARF2_DEBUGGING_INFO */
12853
12854 #include "gt-dwarf2out.h"