dwarf2out.c (dwarf2out_define): Remove start_source_file call, CPP will start the...
[gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "tree.h"
40 #include "flags.h"
41 #include "rtl.h"
42 #include "hard-reg-set.h"
43 #include "regs.h"
44 #include "insn-config.h"
45 #include "reload.h"
46 #include "function.h"
47 #include "output.h"
48 #include "expr.h"
49 #include "libfuncs.h"
50 #include "except.h"
51 #include "dwarf2.h"
52 #include "dwarf2out.h"
53 #include "dwarf2asm.h"
54 #include "toplev.h"
55 #include "varray.h"
56 #include "ggc.h"
57 #include "md5.h"
58 #include "tm_p.h"
59 #include "diagnostic.h"
60 #include "debug.h"
61 #include "target.h"
62 #include "langhooks.h"
63 #include "hashtable.h"
64
65 #ifdef DWARF2_DEBUGGING_INFO
66 static void dwarf2out_source_line PARAMS ((unsigned int, const char *));
67 #endif
68
69 /* DWARF2 Abbreviation Glossary:
70 CFA = Canonical Frame Address
71 a fixed address on the stack which identifies a call frame.
72 We define it to be the value of SP just before the call insn.
73 The CFA register and offset, which may change during the course
74 of the function, are used to calculate its value at runtime.
75 CFI = Call Frame Instruction
76 an instruction for the DWARF2 abstract machine
77 CIE = Common Information Entry
78 information describing information common to one or more FDEs
79 DIE = Debugging Information Entry
80 FDE = Frame Description Entry
81 information describing the stack call frame, in particular,
82 how to restore registers
83
84 DW_CFA_... = DWARF2 CFA call frame instruction
85 DW_TAG_... = DWARF2 DIE tag */
86
87 /* Decide whether we want to emit frame unwind information for the current
88 translation unit. */
89
90 int
91 dwarf2out_do_frame ()
92 {
93 return (write_symbols == DWARF2_DEBUG
94 || write_symbols == VMS_AND_DWARF2_DEBUG
95 #ifdef DWARF2_FRAME_INFO
96 || DWARF2_FRAME_INFO
97 #endif
98 #ifdef DWARF2_UNWIND_INFO
99 || flag_unwind_tables
100 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
101 #endif
102 );
103 }
104
105 /* The number of the current function definition for which debugging
106 information is being generated. These numbers range from 1 up to the
107 maximum number of function definitions contained within the current
108 compilation unit. These numbers are used to create unique label id's
109 unique to each function definition. */
110 unsigned current_funcdef_number = 0;
111
112 /* The size of the target's pointer type. */
113 #ifndef PTR_SIZE
114 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
115 #endif
116
117 /* Default version of targetm.eh_frame_section. Note this must appear
118 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro
119 guards. */
120
121 void
122 default_eh_frame_section ()
123 {
124 #ifdef EH_FRAME_SECTION_NAME
125 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
126 #else
127 tree label = get_file_function_name ('F');
128
129 data_section ();
130 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
131 ASM_GLOBALIZE_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
132 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
133 #endif
134 }
135
136 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
137
138 /* How to start an assembler comment. */
139 #ifndef ASM_COMMENT_START
140 #define ASM_COMMENT_START ";#"
141 #endif
142
143 typedef struct dw_cfi_struct *dw_cfi_ref;
144 typedef struct dw_fde_struct *dw_fde_ref;
145 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
146
147 /* Call frames are described using a sequence of Call Frame
148 Information instructions. The register number, offset
149 and address fields are provided as possible operands;
150 their use is selected by the opcode field. */
151
152 typedef union dw_cfi_oprnd_struct
153 {
154 unsigned long dw_cfi_reg_num;
155 long int dw_cfi_offset;
156 const char *dw_cfi_addr;
157 struct dw_loc_descr_struct *dw_cfi_loc;
158 }
159 dw_cfi_oprnd;
160
161 typedef struct dw_cfi_struct
162 {
163 dw_cfi_ref dw_cfi_next;
164 enum dwarf_call_frame_info dw_cfi_opc;
165 dw_cfi_oprnd dw_cfi_oprnd1;
166 dw_cfi_oprnd dw_cfi_oprnd2;
167 }
168 dw_cfi_node;
169
170 /* This is how we define the location of the CFA. We use to handle it
171 as REG + OFFSET all the time, but now it can be more complex.
172 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
173 Instead of passing around REG and OFFSET, we pass a copy
174 of this structure. */
175 typedef struct cfa_loc
176 {
177 unsigned long reg;
178 long offset;
179 long base_offset;
180 int indirect; /* 1 if CFA is accessed via a dereference. */
181 } dw_cfa_location;
182
183 /* All call frame descriptions (FDE's) in the GCC generated DWARF
184 refer to a single Common Information Entry (CIE), defined at
185 the beginning of the .debug_frame section. This use of a single
186 CIE obviates the need to keep track of multiple CIE's
187 in the DWARF generation routines below. */
188
189 typedef struct dw_fde_struct
190 {
191 const char *dw_fde_begin;
192 const char *dw_fde_current_label;
193 const char *dw_fde_end;
194 dw_cfi_ref dw_fde_cfi;
195 unsigned funcdef_number;
196 unsigned nothrow : 1;
197 unsigned uses_eh_lsda : 1;
198 }
199 dw_fde_node;
200
201 /* Maximum size (in bytes) of an artificially generated label. */
202 #define MAX_ARTIFICIAL_LABEL_BYTES 30
203
204 /* The size of addresses as they appear in the Dwarf 2 data.
205 Some architectures use word addresses to refer to code locations,
206 but Dwarf 2 info always uses byte addresses. On such machines,
207 Dwarf 2 addresses need to be larger than the architecture's
208 pointers. */
209 #ifndef DWARF2_ADDR_SIZE
210 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
211 #endif
212
213 /* The size in bytes of a DWARF field indicating an offset or length
214 relative to a debug info section, specified to be 4 bytes in the
215 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
216 as PTR_SIZE. */
217
218 #ifndef DWARF_OFFSET_SIZE
219 #define DWARF_OFFSET_SIZE 4
220 #endif
221
222 #define DWARF_VERSION 2
223
224 /* Round SIZE up to the nearest BOUNDARY. */
225 #define DWARF_ROUND(SIZE,BOUNDARY) \
226 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
227
228 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
229 #ifndef DWARF_CIE_DATA_ALIGNMENT
230 #ifdef STACK_GROWS_DOWNWARD
231 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
232 #else
233 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
234 #endif
235 #endif
236
237 /* A pointer to the base of a table that contains frame description
238 information for each routine. */
239 static dw_fde_ref fde_table;
240
241 /* Number of elements currently allocated for fde_table. */
242 static unsigned fde_table_allocated;
243
244 /* Number of elements in fde_table currently in use. */
245 static unsigned fde_table_in_use;
246
247 /* Size (in elements) of increments by which we may expand the
248 fde_table. */
249 #define FDE_TABLE_INCREMENT 256
250
251 /* A list of call frame insns for the CIE. */
252 static dw_cfi_ref cie_cfi_head;
253
254 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
255 attribute that accelerates the lookup of the FDE associated
256 with the subprogram. This variable holds the table index of the FDE
257 associated with the current function (body) definition. */
258 static unsigned current_funcdef_fde;
259
260 struct ht *debug_str_hash;
261
262 struct indirect_string_node
263 {
264 struct ht_identifier id;
265 unsigned int refcount;
266 unsigned int form;
267 char *label;
268 };
269
270 /* Forward declarations for functions defined in this file. */
271
272 static char *stripattributes PARAMS ((const char *));
273 static const char *dwarf_cfi_name PARAMS ((unsigned));
274 static dw_cfi_ref new_cfi PARAMS ((void));
275 static void add_cfi PARAMS ((dw_cfi_ref *, dw_cfi_ref));
276 static void add_fde_cfi PARAMS ((const char *, dw_cfi_ref));
277 static void lookup_cfa_1 PARAMS ((dw_cfi_ref,
278 dw_cfa_location *));
279 static void lookup_cfa PARAMS ((dw_cfa_location *));
280 static void reg_save PARAMS ((const char *, unsigned,
281 unsigned, long));
282 static void initial_return_save PARAMS ((rtx));
283 static long stack_adjust_offset PARAMS ((rtx));
284 static void output_cfi PARAMS ((dw_cfi_ref, dw_fde_ref, int));
285 static void output_call_frame_info PARAMS ((int));
286 static void dwarf2out_stack_adjust PARAMS ((rtx));
287 static void queue_reg_save PARAMS ((const char *, rtx, long));
288 static void flush_queued_reg_saves PARAMS ((void));
289 static bool clobbers_queued_reg_save PARAMS ((rtx));
290 static void dwarf2out_frame_debug_expr PARAMS ((rtx, const char *));
291
292 /* Support for complex CFA locations. */
293 static void output_cfa_loc PARAMS ((dw_cfi_ref));
294 static void get_cfa_from_loc_descr PARAMS ((dw_cfa_location *,
295 struct dw_loc_descr_struct *));
296 static struct dw_loc_descr_struct *build_cfa_loc
297 PARAMS ((dw_cfa_location *));
298 static void def_cfa_1 PARAMS ((const char *,
299 dw_cfa_location *));
300
301 /* How to start an assembler comment. */
302 #ifndef ASM_COMMENT_START
303 #define ASM_COMMENT_START ";#"
304 #endif
305
306 /* Data and reference forms for relocatable data. */
307 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
308 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
309
310 /* Pseudo-op for defining a new section. */
311 #ifndef SECTION_ASM_OP
312 #define SECTION_ASM_OP "\t.section\t"
313 #endif
314
315 #ifndef DEBUG_FRAME_SECTION
316 #define DEBUG_FRAME_SECTION ".debug_frame"
317 #endif
318
319 #ifndef FUNC_BEGIN_LABEL
320 #define FUNC_BEGIN_LABEL "LFB"
321 #endif
322
323 #ifndef FUNC_END_LABEL
324 #define FUNC_END_LABEL "LFE"
325 #endif
326
327 #define FRAME_BEGIN_LABEL "Lframe"
328 #define CIE_AFTER_SIZE_LABEL "LSCIE"
329 #define CIE_END_LABEL "LECIE"
330 #define CIE_LENGTH_LABEL "LLCIE"
331 #define FDE_LABEL "LSFDE"
332 #define FDE_AFTER_SIZE_LABEL "LASFDE"
333 #define FDE_END_LABEL "LEFDE"
334 #define FDE_LENGTH_LABEL "LLFDE"
335 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
336 #define LINE_NUMBER_END_LABEL "LELT"
337 #define LN_PROLOG_AS_LABEL "LASLTP"
338 #define LN_PROLOG_END_LABEL "LELTP"
339 #define DIE_LABEL_PREFIX "DW"
340
341 /* Definitions of defaults for various types of primitive assembly language
342 output operations. These may be overridden from within the tm.h file,
343 but typically, that is unnecessary. */
344
345 #ifdef SET_ASM_OP
346 #ifndef ASM_OUTPUT_DEFINE_LABEL_DIFFERENCE_SYMBOL
347 #define ASM_OUTPUT_DEFINE_LABEL_DIFFERENCE_SYMBOL(FILE, SY, HI, LO) \
348 do { \
349 fprintf (FILE, "%s", SET_ASM_OP); \
350 assemble_name (FILE, SY); \
351 fputc (',', FILE); \
352 assemble_name (FILE, HI); \
353 fputc ('-', FILE); \
354 assemble_name (FILE, LO); \
355 } while (0)
356 #endif
357 #endif
358
359 /* The DWARF 2 CFA column which tracks the return address. Normally this
360 is the column for PC, or the first column after all of the hard
361 registers. */
362 #ifndef DWARF_FRAME_RETURN_COLUMN
363 #ifdef PC_REGNUM
364 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
365 #else
366 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
367 #endif
368 #endif
369
370 /* The mapping from gcc register number to DWARF 2 CFA column number. By
371 default, we just provide columns for all registers. */
372 #ifndef DWARF_FRAME_REGNUM
373 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
374 #endif
375
376 /* The offset from the incoming value of %sp to the top of the stack frame
377 for the current function. */
378 #ifndef INCOMING_FRAME_SP_OFFSET
379 #define INCOMING_FRAME_SP_OFFSET 0
380 #endif
381 \f
382 /* Hook used by __throw. */
383
384 rtx
385 expand_builtin_dwarf_fp_regnum ()
386 {
387 return GEN_INT (DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM));
388 }
389
390 /* Return a pointer to a copy of the section string name S with all
391 attributes stripped off, and an asterisk prepended (for assemble_name). */
392
393 static inline char *
394 stripattributes (s)
395 const char *s;
396 {
397 char *stripped = xmalloc (strlen (s) + 2);
398 char *p = stripped;
399
400 *p++ = '*';
401
402 while (*s && *s != ',')
403 *p++ = *s++;
404
405 *p = '\0';
406 return stripped;
407 }
408
409 /* Generate code to initialize the register size table. */
410
411 void
412 expand_builtin_init_dwarf_reg_sizes (address)
413 tree address;
414 {
415 int i;
416 enum machine_mode mode = TYPE_MODE (char_type_node);
417 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
418 rtx mem = gen_rtx_MEM (BLKmode, addr);
419
420 for (i = 0; i < DWARF_FRAME_REGISTERS; i++)
421 {
422 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
423 HOST_WIDE_INT size = GET_MODE_SIZE (reg_raw_mode[i]);
424
425 if (offset < 0)
426 continue;
427
428 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
429 }
430 }
431
432 /* Convert a DWARF call frame info. operation to its string name */
433
434 static const char *
435 dwarf_cfi_name (cfi_opc)
436 unsigned cfi_opc;
437 {
438 switch (cfi_opc)
439 {
440 case DW_CFA_advance_loc:
441 return "DW_CFA_advance_loc";
442 case DW_CFA_offset:
443 return "DW_CFA_offset";
444 case DW_CFA_restore:
445 return "DW_CFA_restore";
446 case DW_CFA_nop:
447 return "DW_CFA_nop";
448 case DW_CFA_set_loc:
449 return "DW_CFA_set_loc";
450 case DW_CFA_advance_loc1:
451 return "DW_CFA_advance_loc1";
452 case DW_CFA_advance_loc2:
453 return "DW_CFA_advance_loc2";
454 case DW_CFA_advance_loc4:
455 return "DW_CFA_advance_loc4";
456 case DW_CFA_offset_extended:
457 return "DW_CFA_offset_extended";
458 case DW_CFA_restore_extended:
459 return "DW_CFA_restore_extended";
460 case DW_CFA_undefined:
461 return "DW_CFA_undefined";
462 case DW_CFA_same_value:
463 return "DW_CFA_same_value";
464 case DW_CFA_register:
465 return "DW_CFA_register";
466 case DW_CFA_remember_state:
467 return "DW_CFA_remember_state";
468 case DW_CFA_restore_state:
469 return "DW_CFA_restore_state";
470 case DW_CFA_def_cfa:
471 return "DW_CFA_def_cfa";
472 case DW_CFA_def_cfa_register:
473 return "DW_CFA_def_cfa_register";
474 case DW_CFA_def_cfa_offset:
475 return "DW_CFA_def_cfa_offset";
476
477 /* DWARF 3 */
478 case DW_CFA_def_cfa_expression:
479 return "DW_CFA_def_cfa_expression";
480 case DW_CFA_expression:
481 return "DW_CFA_expression";
482 case DW_CFA_offset_extended_sf:
483 return "DW_CFA_offset_extended_sf";
484 case DW_CFA_def_cfa_sf:
485 return "DW_CFA_def_cfa_sf";
486 case DW_CFA_def_cfa_offset_sf:
487 return "DW_CFA_def_cfa_offset_sf";
488
489 /* SGI/MIPS specific */
490 case DW_CFA_MIPS_advance_loc8:
491 return "DW_CFA_MIPS_advance_loc8";
492
493 /* GNU extensions */
494 case DW_CFA_GNU_window_save:
495 return "DW_CFA_GNU_window_save";
496 case DW_CFA_GNU_args_size:
497 return "DW_CFA_GNU_args_size";
498 case DW_CFA_GNU_negative_offset_extended:
499 return "DW_CFA_GNU_negative_offset_extended";
500
501 default:
502 return "DW_CFA_<unknown>";
503 }
504 }
505
506 /* Return a pointer to a newly allocated Call Frame Instruction. */
507
508 static inline dw_cfi_ref
509 new_cfi ()
510 {
511 dw_cfi_ref cfi = (dw_cfi_ref) xmalloc (sizeof (dw_cfi_node));
512
513 cfi->dw_cfi_next = NULL;
514 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
515 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
516
517 return cfi;
518 }
519
520 /* Add a Call Frame Instruction to list of instructions. */
521
522 static inline void
523 add_cfi (list_head, cfi)
524 dw_cfi_ref *list_head;
525 dw_cfi_ref cfi;
526 {
527 dw_cfi_ref *p;
528
529 /* Find the end of the chain. */
530 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
531 ;
532
533 *p = cfi;
534 }
535
536 /* Generate a new label for the CFI info to refer to. */
537
538 char *
539 dwarf2out_cfi_label ()
540 {
541 static char label[20];
542 static unsigned long label_num = 0;
543
544 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", label_num++);
545 ASM_OUTPUT_LABEL (asm_out_file, label);
546 return label;
547 }
548
549 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
550 or to the CIE if LABEL is NULL. */
551
552 static void
553 add_fde_cfi (label, cfi)
554 const char *label;
555 dw_cfi_ref cfi;
556 {
557 if (label)
558 {
559 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
560
561 if (*label == 0)
562 label = dwarf2out_cfi_label ();
563
564 if (fde->dw_fde_current_label == NULL
565 || strcmp (label, fde->dw_fde_current_label) != 0)
566 {
567 dw_cfi_ref xcfi;
568
569 fde->dw_fde_current_label = label = xstrdup (label);
570
571 /* Set the location counter to the new label. */
572 xcfi = new_cfi ();
573 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
574 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
575 add_cfi (&fde->dw_fde_cfi, xcfi);
576 }
577
578 add_cfi (&fde->dw_fde_cfi, cfi);
579 }
580
581 else
582 add_cfi (&cie_cfi_head, cfi);
583 }
584
585 /* Subroutine of lookup_cfa. */
586
587 static inline void
588 lookup_cfa_1 (cfi, loc)
589 dw_cfi_ref cfi;
590 dw_cfa_location *loc;
591 {
592 switch (cfi->dw_cfi_opc)
593 {
594 case DW_CFA_def_cfa_offset:
595 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
596 break;
597 case DW_CFA_def_cfa_register:
598 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
599 break;
600 case DW_CFA_def_cfa:
601 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
602 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
603 break;
604 case DW_CFA_def_cfa_expression:
605 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
606 break;
607 default:
608 break;
609 }
610 }
611
612 /* Find the previous value for the CFA. */
613
614 static void
615 lookup_cfa (loc)
616 dw_cfa_location *loc;
617 {
618 dw_cfi_ref cfi;
619
620 loc->reg = (unsigned long) -1;
621 loc->offset = 0;
622 loc->indirect = 0;
623 loc->base_offset = 0;
624
625 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
626 lookup_cfa_1 (cfi, loc);
627
628 if (fde_table_in_use)
629 {
630 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
631 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
632 lookup_cfa_1 (cfi, loc);
633 }
634 }
635
636 /* The current rule for calculating the DWARF2 canonical frame address. */
637 static dw_cfa_location cfa;
638
639 /* The register used for saving registers to the stack, and its offset
640 from the CFA. */
641 static dw_cfa_location cfa_store;
642
643 /* The running total of the size of arguments pushed onto the stack. */
644 static long args_size;
645
646 /* The last args_size we actually output. */
647 static long old_args_size;
648
649 /* Entry point to update the canonical frame address (CFA).
650 LABEL is passed to add_fde_cfi. The value of CFA is now to be
651 calculated from REG+OFFSET. */
652
653 void
654 dwarf2out_def_cfa (label, reg, offset)
655 const char *label;
656 unsigned reg;
657 long offset;
658 {
659 dw_cfa_location loc;
660 loc.indirect = 0;
661 loc.base_offset = 0;
662 loc.reg = reg;
663 loc.offset = offset;
664 def_cfa_1 (label, &loc);
665 }
666
667 /* This routine does the actual work. The CFA is now calculated from
668 the dw_cfa_location structure. */
669
670 static void
671 def_cfa_1 (label, loc_p)
672 const char *label;
673 dw_cfa_location *loc_p;
674 {
675 dw_cfi_ref cfi;
676 dw_cfa_location old_cfa, loc;
677
678 cfa = *loc_p;
679 loc = *loc_p;
680
681 if (cfa_store.reg == loc.reg && loc.indirect == 0)
682 cfa_store.offset = loc.offset;
683
684 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
685 lookup_cfa (&old_cfa);
686
687 /* If nothing changed, no need to issue any call frame instructions. */
688 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
689 && loc.indirect == old_cfa.indirect
690 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
691 return;
692
693 cfi = new_cfi ();
694
695 if (loc.reg == old_cfa.reg && !loc.indirect)
696 {
697 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
698 indicating the CFA register did not change but the offset
699 did. */
700 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
701 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
702 }
703
704 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
705 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
706 && !loc.indirect)
707 {
708 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
709 indicating the CFA register has changed to <register> but the
710 offset has not changed. */
711 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
712 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
713 }
714 #endif
715
716 else if (loc.indirect == 0)
717 {
718 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
719 indicating the CFA register has changed to <register> with
720 the specified offset. */
721 cfi->dw_cfi_opc = DW_CFA_def_cfa;
722 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
723 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
724 }
725 else
726 {
727 /* Construct a DW_CFA_def_cfa_expression instruction to
728 calculate the CFA using a full location expression since no
729 register-offset pair is available. */
730 struct dw_loc_descr_struct *loc_list;
731
732 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
733 loc_list = build_cfa_loc (&loc);
734 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
735 }
736
737 add_fde_cfi (label, cfi);
738 }
739
740 /* Add the CFI for saving a register. REG is the CFA column number.
741 LABEL is passed to add_fde_cfi.
742 If SREG is -1, the register is saved at OFFSET from the CFA;
743 otherwise it is saved in SREG. */
744
745 static void
746 reg_save (label, reg, sreg, offset)
747 const char *label;
748 unsigned reg;
749 unsigned sreg;
750 long offset;
751 {
752 dw_cfi_ref cfi = new_cfi ();
753
754 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
755
756 /* The following comparison is correct. -1 is used to indicate that
757 the value isn't a register number. */
758 if (sreg == (unsigned int) -1)
759 {
760 if (reg & ~0x3f)
761 /* The register number won't fit in 6 bits, so we have to use
762 the long form. */
763 cfi->dw_cfi_opc = DW_CFA_offset_extended;
764 else
765 cfi->dw_cfi_opc = DW_CFA_offset;
766
767 #ifdef ENABLE_CHECKING
768 {
769 /* If we get an offset that is not a multiple of
770 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
771 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
772 description. */
773 long check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
774
775 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
776 abort ();
777 }
778 #endif
779 offset /= DWARF_CIE_DATA_ALIGNMENT;
780 if (offset < 0)
781 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
782
783 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
784 }
785 else if (sreg == reg)
786 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
787 return;
788 else
789 {
790 cfi->dw_cfi_opc = DW_CFA_register;
791 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
792 }
793
794 add_fde_cfi (label, cfi);
795 }
796
797 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
798 This CFI tells the unwinder that it needs to restore the window registers
799 from the previous frame's window save area.
800
801 ??? Perhaps we should note in the CIE where windows are saved (instead of
802 assuming 0(cfa)) and what registers are in the window. */
803
804 void
805 dwarf2out_window_save (label)
806 const char *label;
807 {
808 dw_cfi_ref cfi = new_cfi ();
809
810 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
811 add_fde_cfi (label, cfi);
812 }
813
814 /* Add a CFI to update the running total of the size of arguments
815 pushed onto the stack. */
816
817 void
818 dwarf2out_args_size (label, size)
819 const char *label;
820 long size;
821 {
822 dw_cfi_ref cfi;
823
824 if (size == old_args_size)
825 return;
826
827 old_args_size = size;
828
829 cfi = new_cfi ();
830 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
831 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
832 add_fde_cfi (label, cfi);
833 }
834
835 /* Entry point for saving a register to the stack. REG is the GCC register
836 number. LABEL and OFFSET are passed to reg_save. */
837
838 void
839 dwarf2out_reg_save (label, reg, offset)
840 const char *label;
841 unsigned reg;
842 long offset;
843 {
844 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
845 }
846
847 /* Entry point for saving the return address in the stack.
848 LABEL and OFFSET are passed to reg_save. */
849
850 void
851 dwarf2out_return_save (label, offset)
852 const char *label;
853 long offset;
854 {
855 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
856 }
857
858 /* Entry point for saving the return address in a register.
859 LABEL and SREG are passed to reg_save. */
860
861 void
862 dwarf2out_return_reg (label, sreg)
863 const char *label;
864 unsigned sreg;
865 {
866 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
867 }
868
869 /* Record the initial position of the return address. RTL is
870 INCOMING_RETURN_ADDR_RTX. */
871
872 static void
873 initial_return_save (rtl)
874 rtx rtl;
875 {
876 unsigned int reg = (unsigned int) -1;
877 HOST_WIDE_INT offset = 0;
878
879 switch (GET_CODE (rtl))
880 {
881 case REG:
882 /* RA is in a register. */
883 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
884 break;
885
886 case MEM:
887 /* RA is on the stack. */
888 rtl = XEXP (rtl, 0);
889 switch (GET_CODE (rtl))
890 {
891 case REG:
892 if (REGNO (rtl) != STACK_POINTER_REGNUM)
893 abort ();
894 offset = 0;
895 break;
896
897 case PLUS:
898 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
899 abort ();
900 offset = INTVAL (XEXP (rtl, 1));
901 break;
902
903 case MINUS:
904 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
905 abort ();
906 offset = -INTVAL (XEXP (rtl, 1));
907 break;
908
909 default:
910 abort ();
911 }
912
913 break;
914
915 case PLUS:
916 /* The return address is at some offset from any value we can
917 actually load. For instance, on the SPARC it is in %i7+8. Just
918 ignore the offset for now; it doesn't matter for unwinding frames. */
919 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
920 abort ();
921 initial_return_save (XEXP (rtl, 0));
922 return;
923
924 default:
925 abort ();
926 }
927
928 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
929 }
930
931 /* Given a SET, calculate the amount of stack adjustment it
932 contains. */
933
934 static long
935 stack_adjust_offset (pattern)
936 rtx pattern;
937 {
938 rtx src = SET_SRC (pattern);
939 rtx dest = SET_DEST (pattern);
940 HOST_WIDE_INT offset = 0;
941 enum rtx_code code;
942
943 if (dest == stack_pointer_rtx)
944 {
945 /* (set (reg sp) (plus (reg sp) (const_int))) */
946 code = GET_CODE (src);
947 if (! (code == PLUS || code == MINUS)
948 || XEXP (src, 0) != stack_pointer_rtx
949 || GET_CODE (XEXP (src, 1)) != CONST_INT)
950 return 0;
951
952 offset = INTVAL (XEXP (src, 1));
953 if (code == PLUS)
954 offset = -offset;
955 }
956 else if (GET_CODE (dest) == MEM)
957 {
958 /* (set (mem (pre_dec (reg sp))) (foo)) */
959 src = XEXP (dest, 0);
960 code = GET_CODE (src);
961
962 switch (code)
963 {
964 case PRE_MODIFY:
965 case POST_MODIFY:
966 if (XEXP (src, 0) == stack_pointer_rtx)
967 {
968 rtx val = XEXP (XEXP (src, 1), 1);
969 /* We handle only adjustments by constant amount. */
970 if (GET_CODE (XEXP (src, 1)) != PLUS ||
971 GET_CODE (val) != CONST_INT)
972 abort();
973 offset = -INTVAL (val);
974 break;
975 }
976 return 0;
977
978 case PRE_DEC:
979 case POST_DEC:
980 if (XEXP (src, 0) == stack_pointer_rtx)
981 {
982 offset = GET_MODE_SIZE (GET_MODE (dest));
983 break;
984 }
985 return 0;
986
987 case PRE_INC:
988 case POST_INC:
989 if (XEXP (src, 0) == stack_pointer_rtx)
990 {
991 offset = -GET_MODE_SIZE (GET_MODE (dest));
992 break;
993 }
994 return 0;
995
996 default:
997 return 0;
998 }
999 }
1000 else
1001 return 0;
1002
1003 return offset;
1004 }
1005
1006 /* Check INSN to see if it looks like a push or a stack adjustment, and
1007 make a note of it if it does. EH uses this information to find out how
1008 much extra space it needs to pop off the stack. */
1009
1010 static void
1011 dwarf2out_stack_adjust (insn)
1012 rtx insn;
1013 {
1014 HOST_WIDE_INT offset;
1015 const char *label;
1016 int i;
1017
1018 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1019 {
1020 /* Extract the size of the args from the CALL rtx itself. */
1021 insn = PATTERN (insn);
1022 if (GET_CODE (insn) == PARALLEL)
1023 insn = XVECEXP (insn, 0, 0);
1024 if (GET_CODE (insn) == SET)
1025 insn = SET_SRC (insn);
1026 if (GET_CODE (insn) != CALL)
1027 abort ();
1028
1029 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1030 return;
1031 }
1032
1033 /* If only calls can throw, and we have a frame pointer,
1034 save up adjustments until we see the CALL_INSN. */
1035 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1036 return;
1037
1038 if (GET_CODE (insn) == BARRIER)
1039 {
1040 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1041 the compiler will have already emitted a stack adjustment, but
1042 doesn't bother for calls to noreturn functions. */
1043 #ifdef STACK_GROWS_DOWNWARD
1044 offset = -args_size;
1045 #else
1046 offset = args_size;
1047 #endif
1048 }
1049 else if (GET_CODE (PATTERN (insn)) == SET)
1050 offset = stack_adjust_offset (PATTERN (insn));
1051 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1052 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1053 {
1054 /* There may be stack adjustments inside compound insns. Search
1055 for them. */
1056 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1057 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1058 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1059 }
1060 else
1061 return;
1062
1063 if (offset == 0)
1064 return;
1065
1066 if (cfa.reg == STACK_POINTER_REGNUM)
1067 cfa.offset += offset;
1068
1069 #ifndef STACK_GROWS_DOWNWARD
1070 offset = -offset;
1071 #endif
1072
1073 args_size += offset;
1074 if (args_size < 0)
1075 args_size = 0;
1076
1077 label = dwarf2out_cfi_label ();
1078 def_cfa_1 (label, &cfa);
1079 dwarf2out_args_size (label, args_size);
1080 }
1081
1082 /* We delay emitting a register save until either (a) we reach the end
1083 of the prologue or (b) the register is clobbered. This clusters
1084 register saves so that there are fewer pc advances. */
1085
1086 struct queued_reg_save
1087 {
1088 struct queued_reg_save *next;
1089 rtx reg;
1090 long cfa_offset;
1091 };
1092
1093 static struct queued_reg_save *queued_reg_saves;
1094 static const char *last_reg_save_label;
1095
1096 static void
1097 queue_reg_save (label, reg, offset)
1098 const char *label;
1099 rtx reg;
1100 long offset;
1101 {
1102 struct queued_reg_save *q = (struct queued_reg_save *) xmalloc (sizeof (*q));
1103
1104 q->next = queued_reg_saves;
1105 q->reg = reg;
1106 q->cfa_offset = offset;
1107 queued_reg_saves = q;
1108
1109 last_reg_save_label = label;
1110 }
1111
1112 static void
1113 flush_queued_reg_saves ()
1114 {
1115 struct queued_reg_save *q, *next;
1116
1117 for (q = queued_reg_saves; q ; q = next)
1118 {
1119 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1120 next = q->next;
1121 free (q);
1122 }
1123
1124 queued_reg_saves = NULL;
1125 last_reg_save_label = NULL;
1126 }
1127
1128 static bool
1129 clobbers_queued_reg_save (insn)
1130 rtx insn;
1131 {
1132 struct queued_reg_save *q;
1133
1134 for (q = queued_reg_saves; q ; q = q->next)
1135 if (modified_in_p (q->reg, insn))
1136 return true;
1137
1138 return false;
1139 }
1140
1141
1142 /* A temporary register holding an integral value used in adjusting SP
1143 or setting up the store_reg. The "offset" field holds the integer
1144 value, not an offset. */
1145 static dw_cfa_location cfa_temp;
1146
1147 /* Record call frame debugging information for an expression EXPR,
1148 which either sets SP or FP (adjusting how we calculate the frame
1149 address) or saves a register to the stack. LABEL indicates the
1150 address of EXPR.
1151
1152 This function encodes a state machine mapping rtxes to actions on
1153 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1154 users need not read the source code.
1155
1156 The High-Level Picture
1157
1158 Changes in the register we use to calculate the CFA: Currently we
1159 assume that if you copy the CFA register into another register, we
1160 should take the other one as the new CFA register; this seems to
1161 work pretty well. If it's wrong for some target, it's simple
1162 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1163
1164 Changes in the register we use for saving registers to the stack:
1165 This is usually SP, but not always. Again, we deduce that if you
1166 copy SP into another register (and SP is not the CFA register),
1167 then the new register is the one we will be using for register
1168 saves. This also seems to work.
1169
1170 Register saves: There's not much guesswork about this one; if
1171 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1172 register save, and the register used to calculate the destination
1173 had better be the one we think we're using for this purpose.
1174
1175 Except: If the register being saved is the CFA register, and the
1176 offset is non-zero, we are saving the CFA, so we assume we have to
1177 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1178 the intent is to save the value of SP from the previous frame.
1179
1180 Invariants / Summaries of Rules
1181
1182 cfa current rule for calculating the CFA. It usually
1183 consists of a register and an offset.
1184 cfa_store register used by prologue code to save things to the stack
1185 cfa_store.offset is the offset from the value of
1186 cfa_store.reg to the actual CFA
1187 cfa_temp register holding an integral value. cfa_temp.offset
1188 stores the value, which will be used to adjust the
1189 stack pointer. cfa_temp is also used like cfa_store,
1190 to track stores to the stack via fp or a temp reg.
1191
1192 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1193 with cfa.reg as the first operand changes the cfa.reg and its
1194 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1195 cfa_temp.offset.
1196
1197 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1198 expression yielding a constant. This sets cfa_temp.reg
1199 and cfa_temp.offset.
1200
1201 Rule 5: Create a new register cfa_store used to save items to the
1202 stack.
1203
1204 Rules 10-14: Save a register to the stack. Define offset as the
1205 difference of the original location and cfa_store's
1206 location (or cfa_temp's location if cfa_temp is used).
1207
1208 The Rules
1209
1210 "{a,b}" indicates a choice of a xor b.
1211 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1212
1213 Rule 1:
1214 (set <reg1> <reg2>:cfa.reg)
1215 effects: cfa.reg = <reg1>
1216 cfa.offset unchanged
1217 cfa_temp.reg = <reg1>
1218 cfa_temp.offset = cfa.offset
1219
1220 Rule 2:
1221 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1222 {<const_int>,<reg>:cfa_temp.reg}))
1223 effects: cfa.reg = sp if fp used
1224 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1225 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1226 if cfa_store.reg==sp
1227
1228 Rule 3:
1229 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1230 effects: cfa.reg = fp
1231 cfa_offset += +/- <const_int>
1232
1233 Rule 4:
1234 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1235 constraints: <reg1> != fp
1236 <reg1> != sp
1237 effects: cfa.reg = <reg1>
1238 cfa_temp.reg = <reg1>
1239 cfa_temp.offset = cfa.offset
1240
1241 Rule 5:
1242 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1243 constraints: <reg1> != fp
1244 <reg1> != sp
1245 effects: cfa_store.reg = <reg1>
1246 cfa_store.offset = cfa.offset - cfa_temp.offset
1247
1248 Rule 6:
1249 (set <reg> <const_int>)
1250 effects: cfa_temp.reg = <reg>
1251 cfa_temp.offset = <const_int>
1252
1253 Rule 7:
1254 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1255 effects: cfa_temp.reg = <reg1>
1256 cfa_temp.offset |= <const_int>
1257
1258 Rule 8:
1259 (set <reg> (high <exp>))
1260 effects: none
1261
1262 Rule 9:
1263 (set <reg> (lo_sum <exp> <const_int>))
1264 effects: cfa_temp.reg = <reg>
1265 cfa_temp.offset = <const_int>
1266
1267 Rule 10:
1268 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1269 effects: cfa_store.offset -= <const_int>
1270 cfa.offset = cfa_store.offset if cfa.reg == sp
1271 cfa.reg = sp
1272 cfa.base_offset = -cfa_store.offset
1273
1274 Rule 11:
1275 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1276 effects: cfa_store.offset += -/+ mode_size(mem)
1277 cfa.offset = cfa_store.offset if cfa.reg == sp
1278 cfa.reg = sp
1279 cfa.base_offset = -cfa_store.offset
1280
1281 Rule 12:
1282 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1283
1284 <reg2>)
1285 effects: cfa.reg = <reg1>
1286 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1287
1288 Rule 13:
1289 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1290 effects: cfa.reg = <reg1>
1291 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1292
1293 Rule 14:
1294 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1295 effects: cfa.reg = <reg1>
1296 cfa.base_offset = -cfa_temp.offset
1297 cfa_temp.offset -= mode_size(mem) */
1298
1299 static void
1300 dwarf2out_frame_debug_expr (expr, label)
1301 rtx expr;
1302 const char *label;
1303 {
1304 rtx src, dest;
1305 HOST_WIDE_INT offset;
1306
1307 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1308 the PARALLEL independently. The first element is always processed if
1309 it is a SET. This is for backward compatibility. Other elements
1310 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1311 flag is set in them. */
1312 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1313 {
1314 int par_index;
1315 int limit = XVECLEN (expr, 0);
1316
1317 for (par_index = 0; par_index < limit; par_index++)
1318 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1319 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1320 || par_index == 0))
1321 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1322
1323 return;
1324 }
1325
1326 if (GET_CODE (expr) != SET)
1327 abort ();
1328
1329 src = SET_SRC (expr);
1330 dest = SET_DEST (expr);
1331
1332 switch (GET_CODE (dest))
1333 {
1334 case REG:
1335 /* Rule 1 */
1336 /* Update the CFA rule wrt SP or FP. Make sure src is
1337 relative to the current CFA register. */
1338 switch (GET_CODE (src))
1339 {
1340 /* Setting FP from SP. */
1341 case REG:
1342 if (cfa.reg == (unsigned) REGNO (src))
1343 /* OK. */
1344 ;
1345 else
1346 abort ();
1347
1348 /* We used to require that dest be either SP or FP, but the
1349 ARM copies SP to a temporary register, and from there to
1350 FP. So we just rely on the backends to only set
1351 RTX_FRAME_RELATED_P on appropriate insns. */
1352 cfa.reg = REGNO (dest);
1353 cfa_temp.reg = cfa.reg;
1354 cfa_temp.offset = cfa.offset;
1355 break;
1356
1357 case PLUS:
1358 case MINUS:
1359 case LO_SUM:
1360 if (dest == stack_pointer_rtx)
1361 {
1362 /* Rule 2 */
1363 /* Adjusting SP. */
1364 switch (GET_CODE (XEXP (src, 1)))
1365 {
1366 case CONST_INT:
1367 offset = INTVAL (XEXP (src, 1));
1368 break;
1369 case REG:
1370 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1371 abort ();
1372 offset = cfa_temp.offset;
1373 break;
1374 default:
1375 abort ();
1376 }
1377
1378 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1379 {
1380 /* Restoring SP from FP in the epilogue. */
1381 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1382 abort ();
1383 cfa.reg = STACK_POINTER_REGNUM;
1384 }
1385 else if (GET_CODE (src) == LO_SUM)
1386 /* Assume we've set the source reg of the LO_SUM from sp. */
1387 ;
1388 else if (XEXP (src, 0) != stack_pointer_rtx)
1389 abort ();
1390
1391 if (GET_CODE (src) != MINUS)
1392 offset = -offset;
1393 if (cfa.reg == STACK_POINTER_REGNUM)
1394 cfa.offset += offset;
1395 if (cfa_store.reg == STACK_POINTER_REGNUM)
1396 cfa_store.offset += offset;
1397 }
1398 else if (dest == hard_frame_pointer_rtx)
1399 {
1400 /* Rule 3 */
1401 /* Either setting the FP from an offset of the SP,
1402 or adjusting the FP */
1403 if (! frame_pointer_needed)
1404 abort ();
1405
1406 if (GET_CODE (XEXP (src, 0)) == REG
1407 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1408 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1409 {
1410 offset = INTVAL (XEXP (src, 1));
1411 if (GET_CODE (src) != MINUS)
1412 offset = -offset;
1413 cfa.offset += offset;
1414 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1415 }
1416 else
1417 abort ();
1418 }
1419 else
1420 {
1421 if (GET_CODE (src) == MINUS)
1422 abort ();
1423
1424 /* Rule 4 */
1425 if (GET_CODE (XEXP (src, 0)) == REG
1426 && REGNO (XEXP (src, 0)) == cfa.reg
1427 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1428 {
1429 /* Setting a temporary CFA register that will be copied
1430 into the FP later on. */
1431 offset = - INTVAL (XEXP (src, 1));
1432 cfa.offset += offset;
1433 cfa.reg = REGNO (dest);
1434 /* Or used to save regs to the stack. */
1435 cfa_temp.reg = cfa.reg;
1436 cfa_temp.offset = cfa.offset;
1437 }
1438
1439 /* Rule 5 */
1440 else if (GET_CODE (XEXP (src, 0)) == REG
1441 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1442 && XEXP (src, 1) == stack_pointer_rtx)
1443 {
1444 /* Setting a scratch register that we will use instead
1445 of SP for saving registers to the stack. */
1446 if (cfa.reg != STACK_POINTER_REGNUM)
1447 abort ();
1448 cfa_store.reg = REGNO (dest);
1449 cfa_store.offset = cfa.offset - cfa_temp.offset;
1450 }
1451
1452 /* Rule 9 */
1453 else if (GET_CODE (src) == LO_SUM
1454 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1455 {
1456 cfa_temp.reg = REGNO (dest);
1457 cfa_temp.offset = INTVAL (XEXP (src, 1));
1458 }
1459 else
1460 abort ();
1461 }
1462 break;
1463
1464 /* Rule 6 */
1465 case CONST_INT:
1466 cfa_temp.reg = REGNO (dest);
1467 cfa_temp.offset = INTVAL (src);
1468 break;
1469
1470 /* Rule 7 */
1471 case IOR:
1472 if (GET_CODE (XEXP (src, 0)) != REG
1473 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1474 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1475 abort ();
1476
1477 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1478 cfa_temp.reg = REGNO (dest);
1479 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1480 break;
1481
1482 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1483 which will fill in all of the bits. */
1484 /* Rule 8 */
1485 case HIGH:
1486 break;
1487
1488 default:
1489 abort ();
1490 }
1491
1492 def_cfa_1 (label, &cfa);
1493 break;
1494
1495 case MEM:
1496 if (GET_CODE (src) != REG)
1497 abort ();
1498
1499 /* Saving a register to the stack. Make sure dest is relative to the
1500 CFA register. */
1501 switch (GET_CODE (XEXP (dest, 0)))
1502 {
1503 /* Rule 10 */
1504 /* With a push. */
1505 case PRE_MODIFY:
1506 /* We can't handle variable size modifications. */
1507 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1508 abort ();
1509 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1510
1511 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1512 || cfa_store.reg != STACK_POINTER_REGNUM)
1513 abort ();
1514
1515 cfa_store.offset += offset;
1516 if (cfa.reg == STACK_POINTER_REGNUM)
1517 cfa.offset = cfa_store.offset;
1518
1519 offset = -cfa_store.offset;
1520 break;
1521
1522 /* Rule 11 */
1523 case PRE_INC:
1524 case PRE_DEC:
1525 offset = GET_MODE_SIZE (GET_MODE (dest));
1526 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1527 offset = -offset;
1528
1529 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1530 || cfa_store.reg != STACK_POINTER_REGNUM)
1531 abort ();
1532
1533 cfa_store.offset += offset;
1534 if (cfa.reg == STACK_POINTER_REGNUM)
1535 cfa.offset = cfa_store.offset;
1536
1537 offset = -cfa_store.offset;
1538 break;
1539
1540 /* Rule 12 */
1541 /* With an offset. */
1542 case PLUS:
1543 case MINUS:
1544 case LO_SUM:
1545 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1546 abort ();
1547 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1548 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1549 offset = -offset;
1550
1551 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1552 offset -= cfa_store.offset;
1553 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1554 offset -= cfa_temp.offset;
1555 else
1556 abort ();
1557 break;
1558
1559 /* Rule 13 */
1560 /* Without an offset. */
1561 case REG:
1562 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1563 offset = -cfa_store.offset;
1564 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1565 offset = -cfa_temp.offset;
1566 else
1567 abort ();
1568 break;
1569
1570 /* Rule 14 */
1571 case POST_INC:
1572 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1573 abort ();
1574 offset = -cfa_temp.offset;
1575 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1576 break;
1577
1578 default:
1579 abort ();
1580 }
1581
1582 if (REGNO (src) != STACK_POINTER_REGNUM
1583 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1584 && (unsigned) REGNO (src) == cfa.reg)
1585 {
1586 /* We're storing the current CFA reg into the stack. */
1587
1588 if (cfa.offset == 0)
1589 {
1590 /* If the source register is exactly the CFA, assume
1591 we're saving SP like any other register; this happens
1592 on the ARM. */
1593 def_cfa_1 (label, &cfa);
1594 queue_reg_save (label, stack_pointer_rtx, offset);
1595 break;
1596 }
1597 else
1598 {
1599 /* Otherwise, we'll need to look in the stack to
1600 calculate the CFA. */
1601 rtx x = XEXP (dest, 0);
1602
1603 if (GET_CODE (x) != REG)
1604 x = XEXP (x, 0);
1605 if (GET_CODE (x) != REG)
1606 abort ();
1607
1608 cfa.reg = REGNO (x);
1609 cfa.base_offset = offset;
1610 cfa.indirect = 1;
1611 def_cfa_1 (label, &cfa);
1612 break;
1613 }
1614 }
1615
1616 def_cfa_1 (label, &cfa);
1617 queue_reg_save (label, src, offset);
1618 break;
1619
1620 default:
1621 abort ();
1622 }
1623 }
1624
1625 /* Record call frame debugging information for INSN, which either
1626 sets SP or FP (adjusting how we calculate the frame address) or saves a
1627 register to the stack. If INSN is NULL_RTX, initialize our state. */
1628
1629 void
1630 dwarf2out_frame_debug (insn)
1631 rtx insn;
1632 {
1633 const char *label;
1634 rtx src;
1635
1636 if (insn == NULL_RTX)
1637 {
1638 /* Flush any queued register saves. */
1639 flush_queued_reg_saves ();
1640
1641 /* Set up state for generating call frame debug info. */
1642 lookup_cfa (&cfa);
1643 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1644 abort ();
1645
1646 cfa.reg = STACK_POINTER_REGNUM;
1647 cfa_store = cfa;
1648 cfa_temp.reg = -1;
1649 cfa_temp.offset = 0;
1650 return;
1651 }
1652
1653 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1654 flush_queued_reg_saves ();
1655
1656 if (! RTX_FRAME_RELATED_P (insn))
1657 {
1658 if (!ACCUMULATE_OUTGOING_ARGS)
1659 dwarf2out_stack_adjust (insn);
1660
1661 return;
1662 }
1663
1664 label = dwarf2out_cfi_label ();
1665 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1666 if (src)
1667 insn = XEXP (src, 0);
1668 else
1669 insn = PATTERN (insn);
1670
1671 dwarf2out_frame_debug_expr (insn, label);
1672 }
1673
1674 /* Output a Call Frame Information opcode and its operand(s). */
1675
1676 static void
1677 output_cfi (cfi, fde, for_eh)
1678 dw_cfi_ref cfi;
1679 dw_fde_ref fde;
1680 int for_eh;
1681 {
1682 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1683 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1684 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1685 "DW_CFA_advance_loc 0x%lx",
1686 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1687 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1688 {
1689 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1690 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1691 "DW_CFA_offset, column 0x%lx",
1692 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1693 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1694 }
1695 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1696 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1697 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1698 "DW_CFA_restore, column 0x%lx",
1699 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1700 else
1701 {
1702 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1703 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1704
1705 switch (cfi->dw_cfi_opc)
1706 {
1707 case DW_CFA_set_loc:
1708 if (for_eh)
1709 dw2_asm_output_encoded_addr_rtx (
1710 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1711 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1712 NULL);
1713 else
1714 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1715 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1716 break;
1717
1718 case DW_CFA_advance_loc1:
1719 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1720 fde->dw_fde_current_label, NULL);
1721 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1722 break;
1723
1724 case DW_CFA_advance_loc2:
1725 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1726 fde->dw_fde_current_label, NULL);
1727 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1728 break;
1729
1730 case DW_CFA_advance_loc4:
1731 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1732 fde->dw_fde_current_label, NULL);
1733 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1734 break;
1735
1736 case DW_CFA_MIPS_advance_loc8:
1737 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1738 fde->dw_fde_current_label, NULL);
1739 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1740 break;
1741
1742 case DW_CFA_offset_extended:
1743 case DW_CFA_def_cfa:
1744 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1745 NULL);
1746 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1747 break;
1748
1749 case DW_CFA_offset_extended_sf:
1750 case DW_CFA_def_cfa_sf:
1751 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1752 NULL);
1753 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1754 break;
1755
1756 case DW_CFA_restore_extended:
1757 case DW_CFA_undefined:
1758 case DW_CFA_same_value:
1759 case DW_CFA_def_cfa_register:
1760 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1761 NULL);
1762 break;
1763
1764 case DW_CFA_register:
1765 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1766 NULL);
1767 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_reg_num,
1768 NULL);
1769 break;
1770
1771 case DW_CFA_def_cfa_offset:
1772 case DW_CFA_GNU_args_size:
1773 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1774 break;
1775
1776 case DW_CFA_def_cfa_offset_sf:
1777 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1778 break;
1779
1780 case DW_CFA_GNU_window_save:
1781 break;
1782
1783 case DW_CFA_def_cfa_expression:
1784 case DW_CFA_expression:
1785 output_cfa_loc (cfi);
1786 break;
1787
1788 case DW_CFA_GNU_negative_offset_extended:
1789 /* Obsoleted by DW_CFA_offset_extended_sf. */
1790 abort ();
1791
1792 default:
1793 break;
1794 }
1795 }
1796 }
1797
1798 /* Output the call frame information used to used to record information
1799 that relates to calculating the frame pointer, and records the
1800 location of saved registers. */
1801
1802 static void
1803 output_call_frame_info (for_eh)
1804 int for_eh;
1805 {
1806 unsigned int i;
1807 dw_fde_ref fde;
1808 dw_cfi_ref cfi;
1809 char l1[20], l2[20], section_start_label[20];
1810 int any_lsda_needed = 0;
1811 char augmentation[6];
1812 int augmentation_size;
1813 int fde_encoding = DW_EH_PE_absptr;
1814 int per_encoding = DW_EH_PE_absptr;
1815 int lsda_encoding = DW_EH_PE_absptr;
1816
1817 /* If we don't have any functions we'll want to unwind out of, don't emit any
1818 EH unwind information. */
1819 if (for_eh)
1820 {
1821 int any_eh_needed = flag_asynchronous_unwind_tables;
1822
1823 for (i = 0; i < fde_table_in_use; i++)
1824 if (fde_table[i].uses_eh_lsda)
1825 any_eh_needed = any_lsda_needed = 1;
1826 else if (! fde_table[i].nothrow)
1827 any_eh_needed = 1;
1828
1829 if (! any_eh_needed)
1830 return;
1831 }
1832
1833 /* We're going to be generating comments, so turn on app. */
1834 if (flag_debug_asm)
1835 app_enable ();
1836
1837 if (for_eh)
1838 (*targetm.asm_out.eh_frame_section) ();
1839 else
1840 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1841
1842 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1843 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1844
1845 /* Output the CIE. */
1846 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1847 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1848 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1849 "Length of Common Information Entry");
1850 ASM_OUTPUT_LABEL (asm_out_file, l1);
1851
1852 /* Now that the CIE pointer is PC-relative for EH,
1853 use 0 to identify the CIE. */
1854 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1855 (for_eh ? 0 : DW_CIE_ID),
1856 "CIE Identifier Tag");
1857
1858 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1859
1860 augmentation[0] = 0;
1861 augmentation_size = 0;
1862 if (for_eh)
1863 {
1864 char *p;
1865
1866 /* Augmentation:
1867 z Indicates that a uleb128 is present to size the
1868 augmentation section.
1869 L Indicates the encoding (and thus presence) of
1870 an LSDA pointer in the FDE augmentation.
1871 R Indicates a non-default pointer encoding for
1872 FDE code pointers.
1873 P Indicates the presence of an encoding + language
1874 personality routine in the CIE augmentation. */
1875
1876 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1877 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
1878 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1879
1880 p = augmentation + 1;
1881 if (eh_personality_libfunc)
1882 {
1883 *p++ = 'P';
1884 augmentation_size += 1 + size_of_encoded_value (per_encoding);
1885 }
1886 if (any_lsda_needed)
1887 {
1888 *p++ = 'L';
1889 augmentation_size += 1;
1890 }
1891 if (fde_encoding != DW_EH_PE_absptr)
1892 {
1893 *p++ = 'R';
1894 augmentation_size += 1;
1895 }
1896 if (p > augmentation + 1)
1897 {
1898 augmentation[0] = 'z';
1899 *p = '\0';
1900 }
1901
1902 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
1903 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
1904 {
1905 int offset = ( 4 /* Length */
1906 + 4 /* CIE Id */
1907 + 1 /* CIE version */
1908 + strlen (augmentation) + 1 /* Augmentation */
1909 + size_of_uleb128 (1) /* Code alignment */
1910 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
1911 + 1 /* RA column */
1912 + 1 /* Augmentation size */
1913 + 1 /* Personality encoding */ );
1914 int pad = -offset & (PTR_SIZE - 1);
1915
1916 augmentation_size += pad;
1917
1918 /* Augmentations should be small, so there's scarce need to
1919 iterate for a solution. Die if we exceed one uleb128 byte. */
1920 if (size_of_uleb128 (augmentation_size) != 1)
1921 abort ();
1922 }
1923 }
1924
1925 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
1926 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
1927 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
1928 "CIE Data Alignment Factor");
1929 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
1930
1931 if (augmentation[0])
1932 {
1933 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
1934 if (eh_personality_libfunc)
1935 {
1936 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
1937 eh_data_format_name (per_encoding));
1938 dw2_asm_output_encoded_addr_rtx (per_encoding,
1939 eh_personality_libfunc, NULL);
1940 }
1941
1942 if (any_lsda_needed)
1943 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
1944 eh_data_format_name (lsda_encoding));
1945
1946 if (fde_encoding != DW_EH_PE_absptr)
1947 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
1948 eh_data_format_name (fde_encoding));
1949 }
1950
1951 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
1952 output_cfi (cfi, NULL, for_eh);
1953
1954 /* Pad the CIE out to an address sized boundary. */
1955 ASM_OUTPUT_ALIGN (asm_out_file,
1956 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
1957 ASM_OUTPUT_LABEL (asm_out_file, l2);
1958
1959 /* Loop through all of the FDE's. */
1960 for (i = 0; i < fde_table_in_use; i++)
1961 {
1962 fde = &fde_table[i];
1963
1964 /* Don't emit EH unwind info for leaf functions that don't need it. */
1965 if (for_eh && fde->nothrow && ! fde->uses_eh_lsda)
1966 continue;
1967
1968 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, FDE_LABEL, for_eh + i * 2);
1969 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
1970 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
1971 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1972 "FDE Length");
1973 ASM_OUTPUT_LABEL (asm_out_file, l1);
1974
1975 if (for_eh)
1976 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
1977 else
1978 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
1979 "FDE CIE offset");
1980
1981 if (for_eh)
1982 {
1983 dw2_asm_output_encoded_addr_rtx (fde_encoding,
1984 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
1985 "FDE initial location");
1986 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
1987 fde->dw_fde_end, fde->dw_fde_begin,
1988 "FDE address range");
1989 }
1990 else
1991 {
1992 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
1993 "FDE initial location");
1994 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
1995 fde->dw_fde_end, fde->dw_fde_begin,
1996 "FDE address range");
1997 }
1998
1999 if (augmentation[0])
2000 {
2001 if (any_lsda_needed)
2002 {
2003 int size = size_of_encoded_value (lsda_encoding);
2004
2005 if (lsda_encoding == DW_EH_PE_aligned)
2006 {
2007 int offset = ( 4 /* Length */
2008 + 4 /* CIE offset */
2009 + 2 * size_of_encoded_value (fde_encoding)
2010 + 1 /* Augmentation size */ );
2011 int pad = -offset & (PTR_SIZE - 1);
2012
2013 size += pad;
2014 if (size_of_uleb128 (size) != 1)
2015 abort ();
2016 }
2017
2018 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2019
2020 if (fde->uses_eh_lsda)
2021 {
2022 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2023 fde->funcdef_number);
2024 dw2_asm_output_encoded_addr_rtx (
2025 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2026 "Language Specific Data Area");
2027 }
2028 else
2029 {
2030 if (lsda_encoding == DW_EH_PE_aligned)
2031 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2032 dw2_asm_output_data
2033 (size_of_encoded_value (lsda_encoding), 0,
2034 "Language Specific Data Area (none)");
2035 }
2036 }
2037 else
2038 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2039 }
2040
2041 /* Loop through the Call Frame Instructions associated with
2042 this FDE. */
2043 fde->dw_fde_current_label = fde->dw_fde_begin;
2044 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2045 output_cfi (cfi, fde, for_eh);
2046
2047 /* Pad the FDE out to an address sized boundary. */
2048 ASM_OUTPUT_ALIGN (asm_out_file,
2049 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2050 ASM_OUTPUT_LABEL (asm_out_file, l2);
2051 }
2052
2053 #ifndef EH_FRAME_SECTION_NAME
2054 if (for_eh)
2055 dw2_asm_output_data (4, 0, "End of Table");
2056 #endif
2057 #ifdef MIPS_DEBUGGING_INFO
2058 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2059 get a value of 0. Putting .align 0 after the label fixes it. */
2060 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2061 #endif
2062
2063 /* Turn off app to make assembly quicker. */
2064 if (flag_debug_asm)
2065 app_disable ();
2066 }
2067
2068 /* Output a marker (i.e. a label) for the beginning of a function, before
2069 the prologue. */
2070
2071 void
2072 dwarf2out_begin_prologue (line, file)
2073 unsigned int line ATTRIBUTE_UNUSED;
2074 const char *file ATTRIBUTE_UNUSED;
2075 {
2076 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2077 dw_fde_ref fde;
2078
2079 current_function_func_begin_label = 0;
2080
2081 #ifdef IA64_UNWIND_INFO
2082 /* ??? current_function_func_begin_label is also used by except.c
2083 for call-site information. We must emit this label if it might
2084 be used. */
2085 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2086 && ! dwarf2out_do_frame ())
2087 return;
2088 #else
2089 if (! dwarf2out_do_frame ())
2090 return;
2091 #endif
2092
2093 current_funcdef_number++;
2094 function_section (current_function_decl);
2095 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2096 current_funcdef_number);
2097 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2098 current_funcdef_number);
2099 current_function_func_begin_label = get_identifier (label);
2100
2101 #ifdef IA64_UNWIND_INFO
2102 /* We can elide the fde allocation if we're not emitting debug info. */
2103 if (! dwarf2out_do_frame ())
2104 return;
2105 #endif
2106
2107 /* Expand the fde table if necessary. */
2108 if (fde_table_in_use == fde_table_allocated)
2109 {
2110 fde_table_allocated += FDE_TABLE_INCREMENT;
2111 fde_table
2112 = (dw_fde_ref) xrealloc (fde_table,
2113 fde_table_allocated * sizeof (dw_fde_node));
2114 }
2115
2116 /* Record the FDE associated with this function. */
2117 current_funcdef_fde = fde_table_in_use;
2118
2119 /* Add the new FDE at the end of the fde_table. */
2120 fde = &fde_table[fde_table_in_use++];
2121 fde->dw_fde_begin = xstrdup (label);
2122 fde->dw_fde_current_label = NULL;
2123 fde->dw_fde_end = NULL;
2124 fde->dw_fde_cfi = NULL;
2125 fde->funcdef_number = current_funcdef_number;
2126 fde->nothrow = current_function_nothrow;
2127 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2128
2129 args_size = old_args_size = 0;
2130
2131 /* We only want to output line number information for the genuine dwarf2
2132 prologue case, not the eh frame case. */
2133 #ifdef DWARF2_DEBUGGING_INFO
2134 if (file)
2135 dwarf2out_source_line (line, file);
2136 #endif
2137 }
2138
2139 /* Output a marker (i.e. a label) for the absolute end of the generated code
2140 for a function definition. This gets called *after* the epilogue code has
2141 been generated. */
2142
2143 void
2144 dwarf2out_end_epilogue ()
2145 {
2146 dw_fde_ref fde;
2147 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2148
2149 /* Output a label to mark the endpoint of the code generated for this
2150 function. */
2151 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL, current_funcdef_number);
2152 ASM_OUTPUT_LABEL (asm_out_file, label);
2153 fde = &fde_table[fde_table_in_use - 1];
2154 fde->dw_fde_end = xstrdup (label);
2155 }
2156
2157 void
2158 dwarf2out_frame_init ()
2159 {
2160 /* Allocate the initial hunk of the fde_table. */
2161 fde_table = (dw_fde_ref) xcalloc (FDE_TABLE_INCREMENT, sizeof (dw_fde_node));
2162 fde_table_allocated = FDE_TABLE_INCREMENT;
2163 fde_table_in_use = 0;
2164
2165 /* Generate the CFA instructions common to all FDE's. Do it now for the
2166 sake of lookup_cfa. */
2167
2168 #ifdef DWARF2_UNWIND_INFO
2169 /* On entry, the Canonical Frame Address is at SP. */
2170 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2171 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2172 #endif
2173 }
2174
2175 void
2176 dwarf2out_frame_finish ()
2177 {
2178 /* Output call frame information. */
2179 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2180 output_call_frame_info (0);
2181
2182 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2183 output_call_frame_info (1);
2184 }
2185 \f
2186 /* And now, the subset of the debugging information support code necessary
2187 for emitting location expressions. */
2188
2189 typedef struct dw_val_struct *dw_val_ref;
2190 typedef struct die_struct *dw_die_ref;
2191 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2192 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2193
2194 /* Each DIE may have a series of attribute/value pairs. Values
2195 can take on several forms. The forms that are used in this
2196 implementation are listed below. */
2197
2198 typedef enum
2199 {
2200 dw_val_class_addr,
2201 dw_val_class_offset,
2202 dw_val_class_loc,
2203 dw_val_class_loc_list,
2204 dw_val_class_range_list,
2205 dw_val_class_const,
2206 dw_val_class_unsigned_const,
2207 dw_val_class_long_long,
2208 dw_val_class_float,
2209 dw_val_class_flag,
2210 dw_val_class_die_ref,
2211 dw_val_class_fde_ref,
2212 dw_val_class_lbl_id,
2213 dw_val_class_lbl_offset,
2214 dw_val_class_str
2215 }
2216 dw_val_class;
2217
2218 /* Describe a double word constant value. */
2219 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2220
2221 typedef struct dw_long_long_struct
2222 {
2223 unsigned long hi;
2224 unsigned long low;
2225 }
2226 dw_long_long_const;
2227
2228 /* Describe a floating point constant value. */
2229
2230 typedef struct dw_fp_struct
2231 {
2232 long *array;
2233 unsigned length;
2234 }
2235 dw_float_const;
2236
2237 /* The dw_val_node describes an attribute's value, as it is
2238 represented internally. */
2239
2240 typedef struct dw_val_struct
2241 {
2242 dw_val_class val_class;
2243 union
2244 {
2245 rtx val_addr;
2246 long unsigned val_offset;
2247 dw_loc_list_ref val_loc_list;
2248 dw_loc_descr_ref val_loc;
2249 long int val_int;
2250 long unsigned val_unsigned;
2251 dw_long_long_const val_long_long;
2252 dw_float_const val_float;
2253 struct
2254 {
2255 dw_die_ref die;
2256 int external;
2257 } val_die_ref;
2258 unsigned val_fde_index;
2259 struct indirect_string_node *val_str;
2260 char *val_lbl_id;
2261 unsigned char val_flag;
2262 }
2263 v;
2264 }
2265 dw_val_node;
2266
2267 /* Locations in memory are described using a sequence of stack machine
2268 operations. */
2269
2270 typedef struct dw_loc_descr_struct
2271 {
2272 dw_loc_descr_ref dw_loc_next;
2273 enum dwarf_location_atom dw_loc_opc;
2274 dw_val_node dw_loc_oprnd1;
2275 dw_val_node dw_loc_oprnd2;
2276 int dw_loc_addr;
2277 }
2278 dw_loc_descr_node;
2279
2280 /* Location lists are ranges + location descriptions for that range,
2281 so you can track variables that are in different places over
2282 their entire life. */
2283 typedef struct dw_loc_list_struct
2284 {
2285 dw_loc_list_ref dw_loc_next;
2286 const char *begin; /* Label for begin address of range */
2287 const char *end; /* Label for end address of range */
2288 char *ll_symbol; /* Label for beginning of location list.
2289 Only on head of list */
2290 const char *section; /* Section this loclist is relative to */
2291 dw_loc_descr_ref expr;
2292 } dw_loc_list_node;
2293
2294 static const char *dwarf_stack_op_name PARAMS ((unsigned));
2295 static dw_loc_descr_ref new_loc_descr PARAMS ((enum dwarf_location_atom,
2296 unsigned long,
2297 unsigned long));
2298 static void add_loc_descr PARAMS ((dw_loc_descr_ref *,
2299 dw_loc_descr_ref));
2300 static unsigned long size_of_loc_descr PARAMS ((dw_loc_descr_ref));
2301 static unsigned long size_of_locs PARAMS ((dw_loc_descr_ref));
2302 static void output_loc_operands PARAMS ((dw_loc_descr_ref));
2303 static void output_loc_sequence PARAMS ((dw_loc_descr_ref));
2304
2305 /* Convert a DWARF stack opcode into its string name. */
2306
2307 static const char *
2308 dwarf_stack_op_name (op)
2309 unsigned op;
2310 {
2311 switch (op)
2312 {
2313 case DW_OP_addr:
2314 return "DW_OP_addr";
2315 case DW_OP_deref:
2316 return "DW_OP_deref";
2317 case DW_OP_const1u:
2318 return "DW_OP_const1u";
2319 case DW_OP_const1s:
2320 return "DW_OP_const1s";
2321 case DW_OP_const2u:
2322 return "DW_OP_const2u";
2323 case DW_OP_const2s:
2324 return "DW_OP_const2s";
2325 case DW_OP_const4u:
2326 return "DW_OP_const4u";
2327 case DW_OP_const4s:
2328 return "DW_OP_const4s";
2329 case DW_OP_const8u:
2330 return "DW_OP_const8u";
2331 case DW_OP_const8s:
2332 return "DW_OP_const8s";
2333 case DW_OP_constu:
2334 return "DW_OP_constu";
2335 case DW_OP_consts:
2336 return "DW_OP_consts";
2337 case DW_OP_dup:
2338 return "DW_OP_dup";
2339 case DW_OP_drop:
2340 return "DW_OP_drop";
2341 case DW_OP_over:
2342 return "DW_OP_over";
2343 case DW_OP_pick:
2344 return "DW_OP_pick";
2345 case DW_OP_swap:
2346 return "DW_OP_swap";
2347 case DW_OP_rot:
2348 return "DW_OP_rot";
2349 case DW_OP_xderef:
2350 return "DW_OP_xderef";
2351 case DW_OP_abs:
2352 return "DW_OP_abs";
2353 case DW_OP_and:
2354 return "DW_OP_and";
2355 case DW_OP_div:
2356 return "DW_OP_div";
2357 case DW_OP_minus:
2358 return "DW_OP_minus";
2359 case DW_OP_mod:
2360 return "DW_OP_mod";
2361 case DW_OP_mul:
2362 return "DW_OP_mul";
2363 case DW_OP_neg:
2364 return "DW_OP_neg";
2365 case DW_OP_not:
2366 return "DW_OP_not";
2367 case DW_OP_or:
2368 return "DW_OP_or";
2369 case DW_OP_plus:
2370 return "DW_OP_plus";
2371 case DW_OP_plus_uconst:
2372 return "DW_OP_plus_uconst";
2373 case DW_OP_shl:
2374 return "DW_OP_shl";
2375 case DW_OP_shr:
2376 return "DW_OP_shr";
2377 case DW_OP_shra:
2378 return "DW_OP_shra";
2379 case DW_OP_xor:
2380 return "DW_OP_xor";
2381 case DW_OP_bra:
2382 return "DW_OP_bra";
2383 case DW_OP_eq:
2384 return "DW_OP_eq";
2385 case DW_OP_ge:
2386 return "DW_OP_ge";
2387 case DW_OP_gt:
2388 return "DW_OP_gt";
2389 case DW_OP_le:
2390 return "DW_OP_le";
2391 case DW_OP_lt:
2392 return "DW_OP_lt";
2393 case DW_OP_ne:
2394 return "DW_OP_ne";
2395 case DW_OP_skip:
2396 return "DW_OP_skip";
2397 case DW_OP_lit0:
2398 return "DW_OP_lit0";
2399 case DW_OP_lit1:
2400 return "DW_OP_lit1";
2401 case DW_OP_lit2:
2402 return "DW_OP_lit2";
2403 case DW_OP_lit3:
2404 return "DW_OP_lit3";
2405 case DW_OP_lit4:
2406 return "DW_OP_lit4";
2407 case DW_OP_lit5:
2408 return "DW_OP_lit5";
2409 case DW_OP_lit6:
2410 return "DW_OP_lit6";
2411 case DW_OP_lit7:
2412 return "DW_OP_lit7";
2413 case DW_OP_lit8:
2414 return "DW_OP_lit8";
2415 case DW_OP_lit9:
2416 return "DW_OP_lit9";
2417 case DW_OP_lit10:
2418 return "DW_OP_lit10";
2419 case DW_OP_lit11:
2420 return "DW_OP_lit11";
2421 case DW_OP_lit12:
2422 return "DW_OP_lit12";
2423 case DW_OP_lit13:
2424 return "DW_OP_lit13";
2425 case DW_OP_lit14:
2426 return "DW_OP_lit14";
2427 case DW_OP_lit15:
2428 return "DW_OP_lit15";
2429 case DW_OP_lit16:
2430 return "DW_OP_lit16";
2431 case DW_OP_lit17:
2432 return "DW_OP_lit17";
2433 case DW_OP_lit18:
2434 return "DW_OP_lit18";
2435 case DW_OP_lit19:
2436 return "DW_OP_lit19";
2437 case DW_OP_lit20:
2438 return "DW_OP_lit20";
2439 case DW_OP_lit21:
2440 return "DW_OP_lit21";
2441 case DW_OP_lit22:
2442 return "DW_OP_lit22";
2443 case DW_OP_lit23:
2444 return "DW_OP_lit23";
2445 case DW_OP_lit24:
2446 return "DW_OP_lit24";
2447 case DW_OP_lit25:
2448 return "DW_OP_lit25";
2449 case DW_OP_lit26:
2450 return "DW_OP_lit26";
2451 case DW_OP_lit27:
2452 return "DW_OP_lit27";
2453 case DW_OP_lit28:
2454 return "DW_OP_lit28";
2455 case DW_OP_lit29:
2456 return "DW_OP_lit29";
2457 case DW_OP_lit30:
2458 return "DW_OP_lit30";
2459 case DW_OP_lit31:
2460 return "DW_OP_lit31";
2461 case DW_OP_reg0:
2462 return "DW_OP_reg0";
2463 case DW_OP_reg1:
2464 return "DW_OP_reg1";
2465 case DW_OP_reg2:
2466 return "DW_OP_reg2";
2467 case DW_OP_reg3:
2468 return "DW_OP_reg3";
2469 case DW_OP_reg4:
2470 return "DW_OP_reg4";
2471 case DW_OP_reg5:
2472 return "DW_OP_reg5";
2473 case DW_OP_reg6:
2474 return "DW_OP_reg6";
2475 case DW_OP_reg7:
2476 return "DW_OP_reg7";
2477 case DW_OP_reg8:
2478 return "DW_OP_reg8";
2479 case DW_OP_reg9:
2480 return "DW_OP_reg9";
2481 case DW_OP_reg10:
2482 return "DW_OP_reg10";
2483 case DW_OP_reg11:
2484 return "DW_OP_reg11";
2485 case DW_OP_reg12:
2486 return "DW_OP_reg12";
2487 case DW_OP_reg13:
2488 return "DW_OP_reg13";
2489 case DW_OP_reg14:
2490 return "DW_OP_reg14";
2491 case DW_OP_reg15:
2492 return "DW_OP_reg15";
2493 case DW_OP_reg16:
2494 return "DW_OP_reg16";
2495 case DW_OP_reg17:
2496 return "DW_OP_reg17";
2497 case DW_OP_reg18:
2498 return "DW_OP_reg18";
2499 case DW_OP_reg19:
2500 return "DW_OP_reg19";
2501 case DW_OP_reg20:
2502 return "DW_OP_reg20";
2503 case DW_OP_reg21:
2504 return "DW_OP_reg21";
2505 case DW_OP_reg22:
2506 return "DW_OP_reg22";
2507 case DW_OP_reg23:
2508 return "DW_OP_reg23";
2509 case DW_OP_reg24:
2510 return "DW_OP_reg24";
2511 case DW_OP_reg25:
2512 return "DW_OP_reg25";
2513 case DW_OP_reg26:
2514 return "DW_OP_reg26";
2515 case DW_OP_reg27:
2516 return "DW_OP_reg27";
2517 case DW_OP_reg28:
2518 return "DW_OP_reg28";
2519 case DW_OP_reg29:
2520 return "DW_OP_reg29";
2521 case DW_OP_reg30:
2522 return "DW_OP_reg30";
2523 case DW_OP_reg31:
2524 return "DW_OP_reg31";
2525 case DW_OP_breg0:
2526 return "DW_OP_breg0";
2527 case DW_OP_breg1:
2528 return "DW_OP_breg1";
2529 case DW_OP_breg2:
2530 return "DW_OP_breg2";
2531 case DW_OP_breg3:
2532 return "DW_OP_breg3";
2533 case DW_OP_breg4:
2534 return "DW_OP_breg4";
2535 case DW_OP_breg5:
2536 return "DW_OP_breg5";
2537 case DW_OP_breg6:
2538 return "DW_OP_breg6";
2539 case DW_OP_breg7:
2540 return "DW_OP_breg7";
2541 case DW_OP_breg8:
2542 return "DW_OP_breg8";
2543 case DW_OP_breg9:
2544 return "DW_OP_breg9";
2545 case DW_OP_breg10:
2546 return "DW_OP_breg10";
2547 case DW_OP_breg11:
2548 return "DW_OP_breg11";
2549 case DW_OP_breg12:
2550 return "DW_OP_breg12";
2551 case DW_OP_breg13:
2552 return "DW_OP_breg13";
2553 case DW_OP_breg14:
2554 return "DW_OP_breg14";
2555 case DW_OP_breg15:
2556 return "DW_OP_breg15";
2557 case DW_OP_breg16:
2558 return "DW_OP_breg16";
2559 case DW_OP_breg17:
2560 return "DW_OP_breg17";
2561 case DW_OP_breg18:
2562 return "DW_OP_breg18";
2563 case DW_OP_breg19:
2564 return "DW_OP_breg19";
2565 case DW_OP_breg20:
2566 return "DW_OP_breg20";
2567 case DW_OP_breg21:
2568 return "DW_OP_breg21";
2569 case DW_OP_breg22:
2570 return "DW_OP_breg22";
2571 case DW_OP_breg23:
2572 return "DW_OP_breg23";
2573 case DW_OP_breg24:
2574 return "DW_OP_breg24";
2575 case DW_OP_breg25:
2576 return "DW_OP_breg25";
2577 case DW_OP_breg26:
2578 return "DW_OP_breg26";
2579 case DW_OP_breg27:
2580 return "DW_OP_breg27";
2581 case DW_OP_breg28:
2582 return "DW_OP_breg28";
2583 case DW_OP_breg29:
2584 return "DW_OP_breg29";
2585 case DW_OP_breg30:
2586 return "DW_OP_breg30";
2587 case DW_OP_breg31:
2588 return "DW_OP_breg31";
2589 case DW_OP_regx:
2590 return "DW_OP_regx";
2591 case DW_OP_fbreg:
2592 return "DW_OP_fbreg";
2593 case DW_OP_bregx:
2594 return "DW_OP_bregx";
2595 case DW_OP_piece:
2596 return "DW_OP_piece";
2597 case DW_OP_deref_size:
2598 return "DW_OP_deref_size";
2599 case DW_OP_xderef_size:
2600 return "DW_OP_xderef_size";
2601 case DW_OP_nop:
2602 return "DW_OP_nop";
2603 default:
2604 return "OP_<unknown>";
2605 }
2606 }
2607
2608 /* Return a pointer to a newly allocated location description. Location
2609 descriptions are simple expression terms that can be strung
2610 together to form more complicated location (address) descriptions. */
2611
2612 static inline dw_loc_descr_ref
2613 new_loc_descr (op, oprnd1, oprnd2)
2614 enum dwarf_location_atom op;
2615 unsigned long oprnd1;
2616 unsigned long oprnd2;
2617 {
2618 /* Use xcalloc here so we clear out all of the long_long constant in
2619 the union. */
2620 dw_loc_descr_ref descr
2621 = (dw_loc_descr_ref) xcalloc (1, sizeof (dw_loc_descr_node));
2622
2623 descr->dw_loc_opc = op;
2624 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2625 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2626 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2627 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2628
2629 return descr;
2630 }
2631
2632
2633 /* Add a location description term to a location description expression. */
2634
2635 static inline void
2636 add_loc_descr (list_head, descr)
2637 dw_loc_descr_ref *list_head;
2638 dw_loc_descr_ref descr;
2639 {
2640 dw_loc_descr_ref *d;
2641
2642 /* Find the end of the chain. */
2643 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2644 ;
2645
2646 *d = descr;
2647 }
2648
2649 /* Return the size of a location descriptor. */
2650
2651 static unsigned long
2652 size_of_loc_descr (loc)
2653 dw_loc_descr_ref loc;
2654 {
2655 unsigned long size = 1;
2656
2657 switch (loc->dw_loc_opc)
2658 {
2659 case DW_OP_addr:
2660 size += DWARF2_ADDR_SIZE;
2661 break;
2662 case DW_OP_const1u:
2663 case DW_OP_const1s:
2664 size += 1;
2665 break;
2666 case DW_OP_const2u:
2667 case DW_OP_const2s:
2668 size += 2;
2669 break;
2670 case DW_OP_const4u:
2671 case DW_OP_const4s:
2672 size += 4;
2673 break;
2674 case DW_OP_const8u:
2675 case DW_OP_const8s:
2676 size += 8;
2677 break;
2678 case DW_OP_constu:
2679 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2680 break;
2681 case DW_OP_consts:
2682 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2683 break;
2684 case DW_OP_pick:
2685 size += 1;
2686 break;
2687 case DW_OP_plus_uconst:
2688 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2689 break;
2690 case DW_OP_skip:
2691 case DW_OP_bra:
2692 size += 2;
2693 break;
2694 case DW_OP_breg0:
2695 case DW_OP_breg1:
2696 case DW_OP_breg2:
2697 case DW_OP_breg3:
2698 case DW_OP_breg4:
2699 case DW_OP_breg5:
2700 case DW_OP_breg6:
2701 case DW_OP_breg7:
2702 case DW_OP_breg8:
2703 case DW_OP_breg9:
2704 case DW_OP_breg10:
2705 case DW_OP_breg11:
2706 case DW_OP_breg12:
2707 case DW_OP_breg13:
2708 case DW_OP_breg14:
2709 case DW_OP_breg15:
2710 case DW_OP_breg16:
2711 case DW_OP_breg17:
2712 case DW_OP_breg18:
2713 case DW_OP_breg19:
2714 case DW_OP_breg20:
2715 case DW_OP_breg21:
2716 case DW_OP_breg22:
2717 case DW_OP_breg23:
2718 case DW_OP_breg24:
2719 case DW_OP_breg25:
2720 case DW_OP_breg26:
2721 case DW_OP_breg27:
2722 case DW_OP_breg28:
2723 case DW_OP_breg29:
2724 case DW_OP_breg30:
2725 case DW_OP_breg31:
2726 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2727 break;
2728 case DW_OP_regx:
2729 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2730 break;
2731 case DW_OP_fbreg:
2732 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2733 break;
2734 case DW_OP_bregx:
2735 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2736 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2737 break;
2738 case DW_OP_piece:
2739 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2740 break;
2741 case DW_OP_deref_size:
2742 case DW_OP_xderef_size:
2743 size += 1;
2744 break;
2745 default:
2746 break;
2747 }
2748
2749 return size;
2750 }
2751
2752 /* Return the size of a series of location descriptors. */
2753
2754 static unsigned long
2755 size_of_locs (loc)
2756 dw_loc_descr_ref loc;
2757 {
2758 unsigned long size;
2759
2760 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2761 {
2762 loc->dw_loc_addr = size;
2763 size += size_of_loc_descr (loc);
2764 }
2765
2766 return size;
2767 }
2768
2769 /* Output location description stack opcode's operands (if any). */
2770
2771 static void
2772 output_loc_operands (loc)
2773 dw_loc_descr_ref loc;
2774 {
2775 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2776 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2777
2778 switch (loc->dw_loc_opc)
2779 {
2780 #ifdef DWARF2_DEBUGGING_INFO
2781 case DW_OP_addr:
2782 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2783 break;
2784 case DW_OP_const2u:
2785 case DW_OP_const2s:
2786 dw2_asm_output_data (2, val1->v.val_int, NULL);
2787 break;
2788 case DW_OP_const4u:
2789 case DW_OP_const4s:
2790 dw2_asm_output_data (4, val1->v.val_int, NULL);
2791 break;
2792 case DW_OP_const8u:
2793 case DW_OP_const8s:
2794 if (HOST_BITS_PER_LONG < 64)
2795 abort ();
2796 dw2_asm_output_data (8, val1->v.val_int, NULL);
2797 break;
2798 case DW_OP_skip:
2799 case DW_OP_bra:
2800 {
2801 int offset;
2802
2803 if (val1->val_class == dw_val_class_loc)
2804 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2805 else
2806 abort ();
2807
2808 dw2_asm_output_data (2, offset, NULL);
2809 }
2810 break;
2811 #else
2812 case DW_OP_addr:
2813 case DW_OP_const2u:
2814 case DW_OP_const2s:
2815 case DW_OP_const4u:
2816 case DW_OP_const4s:
2817 case DW_OP_const8u:
2818 case DW_OP_const8s:
2819 case DW_OP_skip:
2820 case DW_OP_bra:
2821 /* We currently don't make any attempt to make sure these are
2822 aligned properly like we do for the main unwind info, so
2823 don't support emitting things larger than a byte if we're
2824 only doing unwinding. */
2825 abort ();
2826 #endif
2827 case DW_OP_const1u:
2828 case DW_OP_const1s:
2829 dw2_asm_output_data (1, val1->v.val_int, NULL);
2830 break;
2831 case DW_OP_constu:
2832 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2833 break;
2834 case DW_OP_consts:
2835 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2836 break;
2837 case DW_OP_pick:
2838 dw2_asm_output_data (1, val1->v.val_int, NULL);
2839 break;
2840 case DW_OP_plus_uconst:
2841 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2842 break;
2843 case DW_OP_breg0:
2844 case DW_OP_breg1:
2845 case DW_OP_breg2:
2846 case DW_OP_breg3:
2847 case DW_OP_breg4:
2848 case DW_OP_breg5:
2849 case DW_OP_breg6:
2850 case DW_OP_breg7:
2851 case DW_OP_breg8:
2852 case DW_OP_breg9:
2853 case DW_OP_breg10:
2854 case DW_OP_breg11:
2855 case DW_OP_breg12:
2856 case DW_OP_breg13:
2857 case DW_OP_breg14:
2858 case DW_OP_breg15:
2859 case DW_OP_breg16:
2860 case DW_OP_breg17:
2861 case DW_OP_breg18:
2862 case DW_OP_breg19:
2863 case DW_OP_breg20:
2864 case DW_OP_breg21:
2865 case DW_OP_breg22:
2866 case DW_OP_breg23:
2867 case DW_OP_breg24:
2868 case DW_OP_breg25:
2869 case DW_OP_breg26:
2870 case DW_OP_breg27:
2871 case DW_OP_breg28:
2872 case DW_OP_breg29:
2873 case DW_OP_breg30:
2874 case DW_OP_breg31:
2875 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2876 break;
2877 case DW_OP_regx:
2878 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2879 break;
2880 case DW_OP_fbreg:
2881 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2882 break;
2883 case DW_OP_bregx:
2884 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2885 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
2886 break;
2887 case DW_OP_piece:
2888 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2889 break;
2890 case DW_OP_deref_size:
2891 case DW_OP_xderef_size:
2892 dw2_asm_output_data (1, val1->v.val_int, NULL);
2893 break;
2894 default:
2895 /* Other codes have no operands. */
2896 break;
2897 }
2898 }
2899
2900 /* Output a sequence of location operations. */
2901
2902 static void
2903 output_loc_sequence (loc)
2904 dw_loc_descr_ref loc;
2905 {
2906 for (; loc != NULL; loc = loc->dw_loc_next)
2907 {
2908 /* Output the opcode. */
2909 dw2_asm_output_data (1, loc->dw_loc_opc,
2910 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
2911
2912 /* Output the operand(s) (if any). */
2913 output_loc_operands (loc);
2914 }
2915 }
2916
2917 /* This routine will generate the correct assembly data for a location
2918 description based on a cfi entry with a complex address. */
2919
2920 static void
2921 output_cfa_loc (cfi)
2922 dw_cfi_ref cfi;
2923 {
2924 dw_loc_descr_ref loc;
2925 unsigned long size;
2926
2927 /* Output the size of the block. */
2928 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
2929 size = size_of_locs (loc);
2930 dw2_asm_output_data_uleb128 (size, NULL);
2931
2932 /* Now output the operations themselves. */
2933 output_loc_sequence (loc);
2934 }
2935
2936 /* This function builds a dwarf location descriptor sequence from
2937 a dw_cfa_location. */
2938
2939 static struct dw_loc_descr_struct *
2940 build_cfa_loc (cfa)
2941 dw_cfa_location *cfa;
2942 {
2943 struct dw_loc_descr_struct *head, *tmp;
2944
2945 if (cfa->indirect == 0)
2946 abort ();
2947
2948 if (cfa->base_offset)
2949 {
2950 if (cfa->reg <= 31)
2951 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
2952 else
2953 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
2954 }
2955 else if (cfa->reg <= 31)
2956 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
2957 else
2958 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
2959
2960 head->dw_loc_oprnd1.val_class = dw_val_class_const;
2961 tmp = new_loc_descr (DW_OP_deref, 0, 0);
2962 add_loc_descr (&head, tmp);
2963 if (cfa->offset != 0)
2964 {
2965 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
2966 add_loc_descr (&head, tmp);
2967 }
2968
2969 return head;
2970 }
2971
2972 /* This function fills in aa dw_cfa_location structure from a dwarf location
2973 descriptor sequence. */
2974
2975 static void
2976 get_cfa_from_loc_descr (cfa, loc)
2977 dw_cfa_location *cfa;
2978 struct dw_loc_descr_struct *loc;
2979 {
2980 struct dw_loc_descr_struct *ptr;
2981 cfa->offset = 0;
2982 cfa->base_offset = 0;
2983 cfa->indirect = 0;
2984 cfa->reg = -1;
2985
2986 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
2987 {
2988 enum dwarf_location_atom op = ptr->dw_loc_opc;
2989
2990 switch (op)
2991 {
2992 case DW_OP_reg0:
2993 case DW_OP_reg1:
2994 case DW_OP_reg2:
2995 case DW_OP_reg3:
2996 case DW_OP_reg4:
2997 case DW_OP_reg5:
2998 case DW_OP_reg6:
2999 case DW_OP_reg7:
3000 case DW_OP_reg8:
3001 case DW_OP_reg9:
3002 case DW_OP_reg10:
3003 case DW_OP_reg11:
3004 case DW_OP_reg12:
3005 case DW_OP_reg13:
3006 case DW_OP_reg14:
3007 case DW_OP_reg15:
3008 case DW_OP_reg16:
3009 case DW_OP_reg17:
3010 case DW_OP_reg18:
3011 case DW_OP_reg19:
3012 case DW_OP_reg20:
3013 case DW_OP_reg21:
3014 case DW_OP_reg22:
3015 case DW_OP_reg23:
3016 case DW_OP_reg24:
3017 case DW_OP_reg25:
3018 case DW_OP_reg26:
3019 case DW_OP_reg27:
3020 case DW_OP_reg28:
3021 case DW_OP_reg29:
3022 case DW_OP_reg30:
3023 case DW_OP_reg31:
3024 cfa->reg = op - DW_OP_reg0;
3025 break;
3026 case DW_OP_regx:
3027 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3028 break;
3029 case DW_OP_breg0:
3030 case DW_OP_breg1:
3031 case DW_OP_breg2:
3032 case DW_OP_breg3:
3033 case DW_OP_breg4:
3034 case DW_OP_breg5:
3035 case DW_OP_breg6:
3036 case DW_OP_breg7:
3037 case DW_OP_breg8:
3038 case DW_OP_breg9:
3039 case DW_OP_breg10:
3040 case DW_OP_breg11:
3041 case DW_OP_breg12:
3042 case DW_OP_breg13:
3043 case DW_OP_breg14:
3044 case DW_OP_breg15:
3045 case DW_OP_breg16:
3046 case DW_OP_breg17:
3047 case DW_OP_breg18:
3048 case DW_OP_breg19:
3049 case DW_OP_breg20:
3050 case DW_OP_breg21:
3051 case DW_OP_breg22:
3052 case DW_OP_breg23:
3053 case DW_OP_breg24:
3054 case DW_OP_breg25:
3055 case DW_OP_breg26:
3056 case DW_OP_breg27:
3057 case DW_OP_breg28:
3058 case DW_OP_breg29:
3059 case DW_OP_breg30:
3060 case DW_OP_breg31:
3061 cfa->reg = op - DW_OP_breg0;
3062 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3063 break;
3064 case DW_OP_bregx:
3065 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3066 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3067 break;
3068 case DW_OP_deref:
3069 cfa->indirect = 1;
3070 break;
3071 case DW_OP_plus_uconst:
3072 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3073 break;
3074 default:
3075 internal_error ("DW_LOC_OP %s not implemented\n",
3076 dwarf_stack_op_name (ptr->dw_loc_opc));
3077 }
3078 }
3079 }
3080 #endif /* .debug_frame support */
3081 \f
3082 /* And now, the support for symbolic debugging information. */
3083 #ifdef DWARF2_DEBUGGING_INFO
3084
3085 /* .debug_str support. */
3086 static hashnode indirect_string_alloc PARAMS ((hash_table *));
3087 static int output_indirect_string PARAMS ((struct cpp_reader *,
3088 hashnode, const PTR));
3089
3090
3091 static void dwarf2out_init PARAMS ((const char *));
3092 static void dwarf2out_finish PARAMS ((const char *));
3093 static void dwarf2out_define PARAMS ((unsigned int, const char *));
3094 static void dwarf2out_undef PARAMS ((unsigned int, const char *));
3095 static void dwarf2out_start_source_file PARAMS ((unsigned, const char *));
3096 static void dwarf2out_end_source_file PARAMS ((unsigned));
3097 static void dwarf2out_begin_block PARAMS ((unsigned, unsigned));
3098 static void dwarf2out_end_block PARAMS ((unsigned, unsigned));
3099 static bool dwarf2out_ignore_block PARAMS ((tree));
3100 static void dwarf2out_global_decl PARAMS ((tree));
3101 static void dwarf2out_abstract_function PARAMS ((tree));
3102
3103 /* The debug hooks structure. */
3104
3105 const struct gcc_debug_hooks dwarf2_debug_hooks =
3106 {
3107 dwarf2out_init,
3108 dwarf2out_finish,
3109 dwarf2out_define,
3110 dwarf2out_undef,
3111 dwarf2out_start_source_file,
3112 dwarf2out_end_source_file,
3113 dwarf2out_begin_block,
3114 dwarf2out_end_block,
3115 dwarf2out_ignore_block,
3116 dwarf2out_source_line,
3117 dwarf2out_begin_prologue,
3118 debug_nothing_int, /* end_prologue */
3119 dwarf2out_end_epilogue,
3120 debug_nothing_tree, /* begin_function */
3121 debug_nothing_int, /* end_function */
3122 dwarf2out_decl, /* function_decl */
3123 dwarf2out_global_decl,
3124 debug_nothing_tree, /* deferred_inline_function */
3125 /* The DWARF 2 backend tries to reduce debugging bloat by not
3126 emitting the abstract description of inline functions until
3127 something tries to reference them. */
3128 dwarf2out_abstract_function, /* outlining_inline_function */
3129 debug_nothing_rtx /* label */
3130 };
3131 \f
3132 /* NOTE: In the comments in this file, many references are made to
3133 "Debugging Information Entries". This term is abbreviated as `DIE'
3134 throughout the remainder of this file. */
3135
3136 /* An internal representation of the DWARF output is built, and then
3137 walked to generate the DWARF debugging info. The walk of the internal
3138 representation is done after the entire program has been compiled.
3139 The types below are used to describe the internal representation. */
3140
3141 /* Various DIE's use offsets relative to the beginning of the
3142 .debug_info section to refer to each other. */
3143
3144 typedef long int dw_offset;
3145
3146 /* Define typedefs here to avoid circular dependencies. */
3147
3148 typedef struct dw_attr_struct *dw_attr_ref;
3149 typedef struct dw_line_info_struct *dw_line_info_ref;
3150 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3151 typedef struct pubname_struct *pubname_ref;
3152 typedef struct dw_ranges_struct *dw_ranges_ref;
3153
3154 /* Each entry in the line_info_table maintains the file and
3155 line number associated with the label generated for that
3156 entry. The label gives the PC value associated with
3157 the line number entry. */
3158
3159 typedef struct dw_line_info_struct
3160 {
3161 unsigned long dw_file_num;
3162 unsigned long dw_line_num;
3163 }
3164 dw_line_info_entry;
3165
3166 /* Line information for functions in separate sections; each one gets its
3167 own sequence. */
3168 typedef struct dw_separate_line_info_struct
3169 {
3170 unsigned long dw_file_num;
3171 unsigned long dw_line_num;
3172 unsigned long function;
3173 }
3174 dw_separate_line_info_entry;
3175
3176 /* Each DIE attribute has a field specifying the attribute kind,
3177 a link to the next attribute in the chain, and an attribute value.
3178 Attributes are typically linked below the DIE they modify. */
3179
3180 typedef struct dw_attr_struct
3181 {
3182 enum dwarf_attribute dw_attr;
3183 dw_attr_ref dw_attr_next;
3184 dw_val_node dw_attr_val;
3185 }
3186 dw_attr_node;
3187
3188 /* The Debugging Information Entry (DIE) structure */
3189
3190 typedef struct die_struct
3191 {
3192 enum dwarf_tag die_tag;
3193 char *die_symbol;
3194 dw_attr_ref die_attr;
3195 dw_die_ref die_parent;
3196 dw_die_ref die_child;
3197 dw_die_ref die_sib;
3198 dw_offset die_offset;
3199 unsigned long die_abbrev;
3200 int die_mark;
3201 }
3202 die_node;
3203
3204 /* The pubname structure */
3205
3206 typedef struct pubname_struct
3207 {
3208 dw_die_ref die;
3209 char *name;
3210 }
3211 pubname_entry;
3212
3213 struct dw_ranges_struct
3214 {
3215 int block_num;
3216 };
3217
3218 /* The limbo die list structure. */
3219 typedef struct limbo_die_struct
3220 {
3221 dw_die_ref die;
3222 tree created_for;
3223 struct limbo_die_struct *next;
3224 }
3225 limbo_die_node;
3226
3227 /* How to start an assembler comment. */
3228 #ifndef ASM_COMMENT_START
3229 #define ASM_COMMENT_START ";#"
3230 #endif
3231
3232 /* Define a macro which returns non-zero for a TYPE_DECL which was
3233 implicitly generated for a tagged type.
3234
3235 Note that unlike the gcc front end (which generates a NULL named
3236 TYPE_DECL node for each complete tagged type, each array type, and
3237 each function type node created) the g++ front end generates a
3238 _named_ TYPE_DECL node for each tagged type node created.
3239 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3240 generate a DW_TAG_typedef DIE for them. */
3241
3242 #define TYPE_DECL_IS_STUB(decl) \
3243 (DECL_NAME (decl) == NULL_TREE \
3244 || (DECL_ARTIFICIAL (decl) \
3245 && is_tagged_type (TREE_TYPE (decl)) \
3246 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3247 /* This is necessary for stub decls that \
3248 appear in nested inline functions. */ \
3249 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3250 && (decl_ultimate_origin (decl) \
3251 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3252
3253 /* Information concerning the compilation unit's programming
3254 language, and compiler version. */
3255
3256 /* Fixed size portion of the DWARF compilation unit header. */
3257 #define DWARF_COMPILE_UNIT_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 3)
3258
3259 /* Fixed size portion of debugging line information prolog. */
3260 #define DWARF_LINE_PROLOG_HEADER_SIZE 5
3261
3262 /* Fixed size portion of public names info. */
3263 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3264
3265 /* Fixed size portion of the address range info. */
3266 #define DWARF_ARANGES_HEADER_SIZE \
3267 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3268 - DWARF_OFFSET_SIZE)
3269
3270 /* Size of padding portion in the address range info. It must be
3271 aligned to twice the pointer size. */
3272 #define DWARF_ARANGES_PAD_SIZE \
3273 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3274 - (2 * DWARF_OFFSET_SIZE + 4))
3275
3276 /* Use assembler line directives if available. */
3277 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3278 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3279 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3280 #else
3281 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3282 #endif
3283 #endif
3284
3285 /* Minimum line offset in a special line info. opcode.
3286 This value was chosen to give a reasonable range of values. */
3287 #define DWARF_LINE_BASE -10
3288
3289 /* First special line opcode - leave room for the standard opcodes. */
3290 #define DWARF_LINE_OPCODE_BASE 10
3291
3292 /* Range of line offsets in a special line info. opcode. */
3293 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3294
3295 /* Flag that indicates the initial value of the is_stmt_start flag.
3296 In the present implementation, we do not mark any lines as
3297 the beginning of a source statement, because that information
3298 is not made available by the GCC front-end. */
3299 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3300
3301 /* This location is used by calc_die_sizes() to keep track
3302 the offset of each DIE within the .debug_info section. */
3303 static unsigned long next_die_offset;
3304
3305 /* Record the root of the DIE's built for the current compilation unit. */
3306 static dw_die_ref comp_unit_die;
3307
3308 /* A list of DIEs with a NULL parent waiting to be relocated. */
3309 static limbo_die_node *limbo_die_list = 0;
3310
3311 /* Structure used by lookup_filename to manage sets of filenames. */
3312 struct file_table
3313 {
3314 char **table;
3315 unsigned allocated;
3316 unsigned in_use;
3317 unsigned last_lookup_index;
3318 };
3319
3320 /* Size (in elements) of increments by which we may expand the filename
3321 table. */
3322 #define FILE_TABLE_INCREMENT 64
3323
3324 /* Filenames referenced by this compilation unit. */
3325 static struct file_table file_table;
3326
3327 /* Local pointer to the name of the main input file. Initialized in
3328 dwarf2out_init. */
3329 static const char *primary_filename;
3330
3331 /* A pointer to the base of a table of references to DIE's that describe
3332 declarations. The table is indexed by DECL_UID() which is a unique
3333 number identifying each decl. */
3334 static dw_die_ref *decl_die_table;
3335
3336 /* Number of elements currently allocated for the decl_die_table. */
3337 static unsigned decl_die_table_allocated;
3338
3339 /* Number of elements in decl_die_table currently in use. */
3340 static unsigned decl_die_table_in_use;
3341
3342 /* Size (in elements) of increments by which we may expand the
3343 decl_die_table. */
3344 #define DECL_DIE_TABLE_INCREMENT 256
3345
3346 /* A pointer to the base of a table of references to declaration
3347 scopes. This table is a display which tracks the nesting
3348 of declaration scopes at the current scope and containing
3349 scopes. This table is used to find the proper place to
3350 define type declaration DIE's. */
3351 varray_type decl_scope_table;
3352
3353 /* A pointer to the base of a list of references to DIE's that
3354 are uniquely identified by their tag, presence/absence of
3355 children DIE's, and list of attribute/value pairs. */
3356 static dw_die_ref *abbrev_die_table;
3357
3358 /* Number of elements currently allocated for abbrev_die_table. */
3359 static unsigned abbrev_die_table_allocated;
3360
3361 /* Number of elements in type_die_table currently in use. */
3362 static unsigned abbrev_die_table_in_use;
3363
3364 /* Size (in elements) of increments by which we may expand the
3365 abbrev_die_table. */
3366 #define ABBREV_DIE_TABLE_INCREMENT 256
3367
3368 /* A pointer to the base of a table that contains line information
3369 for each source code line in .text in the compilation unit. */
3370 static dw_line_info_ref line_info_table;
3371
3372 /* Number of elements currently allocated for line_info_table. */
3373 static unsigned line_info_table_allocated;
3374
3375 /* Number of elements in separate_line_info_table currently in use. */
3376 static unsigned separate_line_info_table_in_use;
3377
3378 /* A pointer to the base of a table that contains line information
3379 for each source code line outside of .text in the compilation unit. */
3380 static dw_separate_line_info_ref separate_line_info_table;
3381
3382 /* Number of elements currently allocated for separate_line_info_table. */
3383 static unsigned separate_line_info_table_allocated;
3384
3385 /* Number of elements in line_info_table currently in use. */
3386 static unsigned line_info_table_in_use;
3387
3388 /* Size (in elements) of increments by which we may expand the
3389 line_info_table. */
3390 #define LINE_INFO_TABLE_INCREMENT 1024
3391
3392 /* A pointer to the base of a table that contains a list of publicly
3393 accessible names. */
3394 static pubname_ref pubname_table;
3395
3396 /* Number of elements currently allocated for pubname_table. */
3397 static unsigned pubname_table_allocated;
3398
3399 /* Number of elements in pubname_table currently in use. */
3400 static unsigned pubname_table_in_use;
3401
3402 /* Size (in elements) of increments by which we may expand the
3403 pubname_table. */
3404 #define PUBNAME_TABLE_INCREMENT 64
3405
3406 /* Array of dies for which we should generate .debug_arange info. */
3407 static dw_die_ref *arange_table;
3408
3409 /* Number of elements currently allocated for arange_table. */
3410 static unsigned arange_table_allocated;
3411
3412 /* Number of elements in arange_table currently in use. */
3413 static unsigned arange_table_in_use;
3414
3415 /* Size (in elements) of increments by which we may expand the
3416 arange_table. */
3417 #define ARANGE_TABLE_INCREMENT 64
3418
3419 /* Array of dies for which we should generate .debug_ranges info. */
3420 static dw_ranges_ref ranges_table;
3421
3422 /* Number of elements currently allocated for ranges_table. */
3423 static unsigned ranges_table_allocated;
3424
3425 /* Number of elements in ranges_table currently in use. */
3426 static unsigned ranges_table_in_use;
3427
3428 /* Size (in elements) of increments by which we may expand the
3429 ranges_table. */
3430 #define RANGES_TABLE_INCREMENT 64
3431
3432 /* Whether we have location lists that need outputting */
3433 static unsigned have_location_lists;
3434
3435 /* A pointer to the base of a list of incomplete types which might be
3436 completed at some later time. incomplete_types_list needs to be a VARRAY
3437 because we want to tell the garbage collector about it. */
3438 varray_type incomplete_types;
3439
3440 /* Record whether the function being analyzed contains inlined functions. */
3441 static int current_function_has_inlines;
3442 #if 0 && defined (MIPS_DEBUGGING_INFO)
3443 static int comp_unit_has_inlines;
3444 #endif
3445
3446 /* Array of RTXes referenced by the debugging information, which therefore
3447 must be kept around forever. This is a GC root. */
3448 static varray_type used_rtx_varray;
3449
3450 /* Forward declarations for functions defined in this file. */
3451
3452 static int is_pseudo_reg PARAMS ((rtx));
3453 static tree type_main_variant PARAMS ((tree));
3454 static int is_tagged_type PARAMS ((tree));
3455 static const char *dwarf_tag_name PARAMS ((unsigned));
3456 static const char *dwarf_attr_name PARAMS ((unsigned));
3457 static const char *dwarf_form_name PARAMS ((unsigned));
3458 #if 0
3459 static const char *dwarf_type_encoding_name PARAMS ((unsigned));
3460 #endif
3461 static tree decl_ultimate_origin PARAMS ((tree));
3462 static tree block_ultimate_origin PARAMS ((tree));
3463 static tree decl_class_context PARAMS ((tree));
3464 static void add_dwarf_attr PARAMS ((dw_die_ref, dw_attr_ref));
3465 static inline dw_val_class AT_class PARAMS ((dw_attr_ref));
3466 static void add_AT_flag PARAMS ((dw_die_ref,
3467 enum dwarf_attribute,
3468 unsigned));
3469 static inline unsigned AT_flag PARAMS ((dw_attr_ref));
3470 static void add_AT_int PARAMS ((dw_die_ref,
3471 enum dwarf_attribute, long));
3472 static inline long int AT_int PARAMS ((dw_attr_ref));
3473 static void add_AT_unsigned PARAMS ((dw_die_ref,
3474 enum dwarf_attribute,
3475 unsigned long));
3476 static inline unsigned long AT_unsigned PARAMS ((dw_attr_ref));
3477 static void add_AT_long_long PARAMS ((dw_die_ref,
3478 enum dwarf_attribute,
3479 unsigned long,
3480 unsigned long));
3481 static void add_AT_float PARAMS ((dw_die_ref,
3482 enum dwarf_attribute,
3483 unsigned, long *));
3484 static void add_AT_string PARAMS ((dw_die_ref,
3485 enum dwarf_attribute,
3486 const char *));
3487 static inline const char *AT_string PARAMS ((dw_attr_ref));
3488 static int AT_string_form PARAMS ((dw_attr_ref));
3489 static void add_AT_die_ref PARAMS ((dw_die_ref,
3490 enum dwarf_attribute,
3491 dw_die_ref));
3492 static inline dw_die_ref AT_ref PARAMS ((dw_attr_ref));
3493 static inline int AT_ref_external PARAMS ((dw_attr_ref));
3494 static inline void set_AT_ref_external PARAMS ((dw_attr_ref, int));
3495 static void add_AT_fde_ref PARAMS ((dw_die_ref,
3496 enum dwarf_attribute,
3497 unsigned));
3498 static void add_AT_loc PARAMS ((dw_die_ref,
3499 enum dwarf_attribute,
3500 dw_loc_descr_ref));
3501 static inline dw_loc_descr_ref AT_loc PARAMS ((dw_attr_ref));
3502 static void add_AT_loc_list PARAMS ((dw_die_ref,
3503 enum dwarf_attribute,
3504 dw_loc_list_ref));
3505 static inline dw_loc_list_ref AT_loc_list PARAMS ((dw_attr_ref));
3506 static void add_AT_addr PARAMS ((dw_die_ref,
3507 enum dwarf_attribute,
3508 rtx));
3509 static inline rtx AT_addr PARAMS ((dw_attr_ref));
3510 static void add_AT_lbl_id PARAMS ((dw_die_ref,
3511 enum dwarf_attribute,
3512 const char *));
3513 static void add_AT_lbl_offset PARAMS ((dw_die_ref,
3514 enum dwarf_attribute,
3515 const char *));
3516 static void add_AT_offset PARAMS ((dw_die_ref,
3517 enum dwarf_attribute,
3518 unsigned long));
3519 static void add_AT_range_list PARAMS ((dw_die_ref,
3520 enum dwarf_attribute,
3521 unsigned long));
3522 static inline const char *AT_lbl PARAMS ((dw_attr_ref));
3523 static dw_attr_ref get_AT PARAMS ((dw_die_ref,
3524 enum dwarf_attribute));
3525 static const char *get_AT_low_pc PARAMS ((dw_die_ref));
3526 static const char *get_AT_hi_pc PARAMS ((dw_die_ref));
3527 static const char *get_AT_string PARAMS ((dw_die_ref,
3528 enum dwarf_attribute));
3529 static int get_AT_flag PARAMS ((dw_die_ref,
3530 enum dwarf_attribute));
3531 static unsigned get_AT_unsigned PARAMS ((dw_die_ref,
3532 enum dwarf_attribute));
3533 static inline dw_die_ref get_AT_ref PARAMS ((dw_die_ref,
3534 enum dwarf_attribute));
3535 static int is_c_family PARAMS ((void));
3536 static int is_cxx PARAMS ((void));
3537 static int is_java PARAMS ((void));
3538 static int is_fortran PARAMS ((void));
3539 static void remove_AT PARAMS ((dw_die_ref,
3540 enum dwarf_attribute));
3541 static inline void free_die PARAMS ((dw_die_ref));
3542 static void remove_children PARAMS ((dw_die_ref));
3543 static void add_child_die PARAMS ((dw_die_ref, dw_die_ref));
3544 static dw_die_ref new_die PARAMS ((enum dwarf_tag, dw_die_ref,
3545 tree));
3546 static dw_die_ref lookup_type_die PARAMS ((tree));
3547 static void equate_type_number_to_die PARAMS ((tree, dw_die_ref));
3548 static dw_die_ref lookup_decl_die PARAMS ((tree));
3549 static void equate_decl_number_to_die PARAMS ((tree, dw_die_ref));
3550 static void print_spaces PARAMS ((FILE *));
3551 static void print_die PARAMS ((dw_die_ref, FILE *));
3552 static void print_dwarf_line_table PARAMS ((FILE *));
3553 static void reverse_die_lists PARAMS ((dw_die_ref));
3554 static void reverse_all_dies PARAMS ((dw_die_ref));
3555 static dw_die_ref push_new_compile_unit PARAMS ((dw_die_ref, dw_die_ref));
3556 static dw_die_ref pop_compile_unit PARAMS ((dw_die_ref));
3557 static void loc_checksum PARAMS ((dw_loc_descr_ref,
3558 struct md5_ctx *));
3559 static void attr_checksum PARAMS ((dw_attr_ref,
3560 struct md5_ctx *));
3561 static void die_checksum PARAMS ((dw_die_ref,
3562 struct md5_ctx *));
3563 static void compute_section_prefix PARAMS ((dw_die_ref));
3564 static int is_type_die PARAMS ((dw_die_ref));
3565 static int is_comdat_die PARAMS ((dw_die_ref));
3566 static int is_symbol_die PARAMS ((dw_die_ref));
3567 static void assign_symbol_names PARAMS ((dw_die_ref));
3568 static void break_out_includes PARAMS ((dw_die_ref));
3569 static void add_sibling_attributes PARAMS ((dw_die_ref));
3570 static void build_abbrev_table PARAMS ((dw_die_ref));
3571 static void output_location_lists PARAMS ((dw_die_ref));
3572 static int constant_size PARAMS ((long unsigned));
3573 static unsigned long size_of_die PARAMS ((dw_die_ref));
3574 static void calc_die_sizes PARAMS ((dw_die_ref));
3575 static void mark_dies PARAMS ((dw_die_ref));
3576 static void unmark_dies PARAMS ((dw_die_ref));
3577 static unsigned long size_of_pubnames PARAMS ((void));
3578 static unsigned long size_of_aranges PARAMS ((void));
3579 static enum dwarf_form value_format PARAMS ((dw_attr_ref));
3580 static void output_value_format PARAMS ((dw_attr_ref));
3581 static void output_abbrev_section PARAMS ((void));
3582 static void output_die_symbol PARAMS ((dw_die_ref));
3583 static void output_die PARAMS ((dw_die_ref));
3584 static void output_compilation_unit_header PARAMS ((void));
3585 static void output_comp_unit PARAMS ((dw_die_ref));
3586 static const char *dwarf2_name PARAMS ((tree, int));
3587 static void add_pubname PARAMS ((tree, dw_die_ref));
3588 static void output_pubnames PARAMS ((void));
3589 static void add_arange PARAMS ((tree, dw_die_ref));
3590 static void output_aranges PARAMS ((void));
3591 static unsigned int add_ranges PARAMS ((tree));
3592 static void output_ranges PARAMS ((void));
3593 static void output_line_info PARAMS ((void));
3594 static void output_file_names PARAMS ((void));
3595 static dw_die_ref base_type_die PARAMS ((tree));
3596 static tree root_type PARAMS ((tree));
3597 static int is_base_type PARAMS ((tree));
3598 static dw_die_ref modified_type_die PARAMS ((tree, int, int, dw_die_ref));
3599 static int type_is_enum PARAMS ((tree));
3600 static unsigned int reg_number PARAMS ((rtx));
3601 static dw_loc_descr_ref reg_loc_descriptor PARAMS ((rtx));
3602 static dw_loc_descr_ref int_loc_descriptor PARAMS ((HOST_WIDE_INT));
3603 static dw_loc_descr_ref based_loc_descr PARAMS ((unsigned, long));
3604 static int is_based_loc PARAMS ((rtx));
3605 static dw_loc_descr_ref mem_loc_descriptor PARAMS ((rtx, enum machine_mode mode));
3606 static dw_loc_descr_ref concat_loc_descriptor PARAMS ((rtx, rtx));
3607 static dw_loc_descr_ref loc_descriptor PARAMS ((rtx));
3608 static dw_loc_descr_ref loc_descriptor_from_tree PARAMS ((tree, int));
3609 static HOST_WIDE_INT ceiling PARAMS ((HOST_WIDE_INT, unsigned int));
3610 static tree field_type PARAMS ((tree));
3611 static unsigned int simple_type_align_in_bits PARAMS ((tree));
3612 static unsigned int simple_decl_align_in_bits PARAMS ((tree));
3613 static unsigned HOST_WIDE_INT simple_type_size_in_bits PARAMS ((tree));
3614 static HOST_WIDE_INT field_byte_offset PARAMS ((tree));
3615 static void add_AT_location_description PARAMS ((dw_die_ref,
3616 enum dwarf_attribute, rtx));
3617 static void add_data_member_location_attribute PARAMS ((dw_die_ref, tree));
3618 static void add_const_value_attribute PARAMS ((dw_die_ref, rtx));
3619 static rtx rtl_for_decl_location PARAMS ((tree));
3620 static void add_location_or_const_value_attribute PARAMS ((dw_die_ref, tree));
3621 static void tree_add_const_value_attribute PARAMS ((dw_die_ref, tree));
3622 static void add_name_attribute PARAMS ((dw_die_ref, const char *));
3623 static void add_bound_info PARAMS ((dw_die_ref,
3624 enum dwarf_attribute, tree));
3625 static void add_subscript_info PARAMS ((dw_die_ref, tree));
3626 static void add_byte_size_attribute PARAMS ((dw_die_ref, tree));
3627 static void add_bit_offset_attribute PARAMS ((dw_die_ref, tree));
3628 static void add_bit_size_attribute PARAMS ((dw_die_ref, tree));
3629 static void add_prototyped_attribute PARAMS ((dw_die_ref, tree));
3630 static void add_abstract_origin_attribute PARAMS ((dw_die_ref, tree));
3631 static void add_pure_or_virtual_attribute PARAMS ((dw_die_ref, tree));
3632 static void add_src_coords_attributes PARAMS ((dw_die_ref, tree));
3633 static void add_name_and_src_coords_attributes PARAMS ((dw_die_ref, tree));
3634 static void push_decl_scope PARAMS ((tree));
3635 static void pop_decl_scope PARAMS ((void));
3636 static dw_die_ref scope_die_for PARAMS ((tree, dw_die_ref));
3637 static inline int local_scope_p PARAMS ((dw_die_ref));
3638 static inline int class_scope_p PARAMS ((dw_die_ref));
3639 static void add_type_attribute PARAMS ((dw_die_ref, tree, int, int,
3640 dw_die_ref));
3641 static const char *type_tag PARAMS ((tree));
3642 static tree member_declared_type PARAMS ((tree));
3643 #if 0
3644 static const char *decl_start_label PARAMS ((tree));
3645 #endif
3646 static void gen_array_type_die PARAMS ((tree, dw_die_ref));
3647 static void gen_set_type_die PARAMS ((tree, dw_die_ref));
3648 #if 0
3649 static void gen_entry_point_die PARAMS ((tree, dw_die_ref));
3650 #endif
3651 static void gen_inlined_enumeration_type_die PARAMS ((tree, dw_die_ref));
3652 static void gen_inlined_structure_type_die PARAMS ((tree, dw_die_ref));
3653 static void gen_inlined_union_type_die PARAMS ((tree, dw_die_ref));
3654 static void gen_enumeration_type_die PARAMS ((tree, dw_die_ref));
3655 static dw_die_ref gen_formal_parameter_die PARAMS ((tree, dw_die_ref));
3656 static void gen_unspecified_parameters_die PARAMS ((tree, dw_die_ref));
3657 static void gen_formal_types_die PARAMS ((tree, dw_die_ref));
3658 static void gen_subprogram_die PARAMS ((tree, dw_die_ref));
3659 static void gen_variable_die PARAMS ((tree, dw_die_ref));
3660 static void gen_label_die PARAMS ((tree, dw_die_ref));
3661 static void gen_lexical_block_die PARAMS ((tree, dw_die_ref, int));
3662 static void gen_inlined_subroutine_die PARAMS ((tree, dw_die_ref, int));
3663 static void gen_field_die PARAMS ((tree, dw_die_ref));
3664 static void gen_ptr_to_mbr_type_die PARAMS ((tree, dw_die_ref));
3665 static dw_die_ref gen_compile_unit_die PARAMS ((const char *));
3666 static void gen_string_type_die PARAMS ((tree, dw_die_ref));
3667 static void gen_inheritance_die PARAMS ((tree, dw_die_ref));
3668 static void gen_member_die PARAMS ((tree, dw_die_ref));
3669 static void gen_struct_or_union_type_die PARAMS ((tree, dw_die_ref));
3670 static void gen_subroutine_type_die PARAMS ((tree, dw_die_ref));
3671 static void gen_typedef_die PARAMS ((tree, dw_die_ref));
3672 static void gen_type_die PARAMS ((tree, dw_die_ref));
3673 static void gen_tagged_type_instantiation_die PARAMS ((tree, dw_die_ref));
3674 static void gen_block_die PARAMS ((tree, dw_die_ref, int));
3675 static void decls_for_scope PARAMS ((tree, dw_die_ref, int));
3676 static int is_redundant_typedef PARAMS ((tree));
3677 static void gen_decl_die PARAMS ((tree, dw_die_ref));
3678 static unsigned lookup_filename PARAMS ((const char *));
3679 static void init_file_table PARAMS ((void));
3680 static void retry_incomplete_types PARAMS ((void));
3681 static void gen_type_die_for_member PARAMS ((tree, tree, dw_die_ref));
3682 static void splice_child_die PARAMS ((dw_die_ref, dw_die_ref));
3683 static int file_info_cmp PARAMS ((const void *, const void *));
3684 static dw_loc_list_ref new_loc_list PARAMS ((dw_loc_descr_ref,
3685 const char *, const char *,
3686 const char *, unsigned));
3687 static void add_loc_descr_to_loc_list PARAMS ((dw_loc_list_ref *,
3688 dw_loc_descr_ref,
3689 const char *, const char *, const char *));
3690 static void output_loc_list PARAMS ((dw_loc_list_ref));
3691 static char *gen_internal_sym PARAMS ((const char *));
3692 static void mark_limbo_die_list PARAMS ((void *));
3693
3694 /* Section names used to hold DWARF debugging information. */
3695 #ifndef DEBUG_INFO_SECTION
3696 #define DEBUG_INFO_SECTION ".debug_info"
3697 #endif
3698 #ifndef DEBUG_ABBREV_SECTION
3699 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3700 #endif
3701 #ifndef DEBUG_ARANGES_SECTION
3702 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3703 #endif
3704 #ifndef DEBUG_MACINFO_SECTION
3705 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3706 #endif
3707 #ifndef DEBUG_LINE_SECTION
3708 #define DEBUG_LINE_SECTION ".debug_line"
3709 #endif
3710 #ifndef DEBUG_LOC_SECTION
3711 #define DEBUG_LOC_SECTION ".debug_loc"
3712 #endif
3713 #ifndef DEBUG_PUBNAMES_SECTION
3714 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3715 #endif
3716 #ifndef DEBUG_STR_SECTION
3717 #define DEBUG_STR_SECTION ".debug_str"
3718 #endif
3719 #ifndef DEBUG_RANGES_SECTION
3720 #define DEBUG_RANGES_SECTION ".debug_ranges"
3721 #endif
3722
3723 /* Standard ELF section names for compiled code and data. */
3724 #ifndef TEXT_SECTION_NAME
3725 #define TEXT_SECTION_NAME ".text"
3726 #endif
3727
3728 /* Section flags for .debug_str section. */
3729 #ifdef HAVE_GAS_SHF_MERGE
3730 #define DEBUG_STR_SECTION_FLAGS \
3731 (SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1)
3732 #else
3733 #define DEBUG_STR_SECTION_FLAGS SECTION_DEBUG
3734 #endif
3735
3736 /* Labels we insert at beginning sections we can reference instead of
3737 the section names themselves. */
3738
3739 #ifndef TEXT_SECTION_LABEL
3740 #define TEXT_SECTION_LABEL "Ltext"
3741 #endif
3742 #ifndef DEBUG_LINE_SECTION_LABEL
3743 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3744 #endif
3745 #ifndef DEBUG_INFO_SECTION_LABEL
3746 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3747 #endif
3748 #ifndef DEBUG_ABBREV_SECTION_LABEL
3749 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3750 #endif
3751 #ifndef DEBUG_LOC_SECTION_LABEL
3752 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3753 #endif
3754 #ifndef DEBUG_RANGES_SECTION_LABEL
3755 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3756 #endif
3757 #ifndef DEBUG_MACINFO_SECTION_LABEL
3758 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3759 #endif
3760
3761 /* Definitions of defaults for formats and names of various special
3762 (artificial) labels which may be generated within this file (when the -g
3763 options is used and DWARF_DEBUGGING_INFO is in effect.
3764 If necessary, these may be overridden from within the tm.h file, but
3765 typically, overriding these defaults is unnecessary. */
3766
3767 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3768 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3769 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3770 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3771 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3772 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3773 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3774 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3775
3776 #ifndef TEXT_END_LABEL
3777 #define TEXT_END_LABEL "Letext"
3778 #endif
3779 #ifndef DATA_END_LABEL
3780 #define DATA_END_LABEL "Ledata"
3781 #endif
3782 #ifndef BSS_END_LABEL
3783 #define BSS_END_LABEL "Lebss"
3784 #endif
3785 #ifndef BLOCK_BEGIN_LABEL
3786 #define BLOCK_BEGIN_LABEL "LBB"
3787 #endif
3788 #ifndef BLOCK_END_LABEL
3789 #define BLOCK_END_LABEL "LBE"
3790 #endif
3791 #ifndef BODY_BEGIN_LABEL
3792 #define BODY_BEGIN_LABEL "Lbb"
3793 #endif
3794 #ifndef BODY_END_LABEL
3795 #define BODY_END_LABEL "Lbe"
3796 #endif
3797 #ifndef LINE_CODE_LABEL
3798 #define LINE_CODE_LABEL "LM"
3799 #endif
3800 #ifndef SEPARATE_LINE_CODE_LABEL
3801 #define SEPARATE_LINE_CODE_LABEL "LSM"
3802 #endif
3803 \f
3804 /* We allow a language front-end to designate a function that is to be
3805 called to "demangle" any name before it it put into a DIE. */
3806
3807 static const char *(*demangle_name_func) PARAMS ((const char *));
3808
3809 void
3810 dwarf2out_set_demangle_name_func (func)
3811 const char *(*func) PARAMS ((const char *));
3812 {
3813 demangle_name_func = func;
3814 }
3815
3816 /* Test if rtl node points to a pseudo register. */
3817
3818 static inline int
3819 is_pseudo_reg (rtl)
3820 rtx rtl;
3821 {
3822 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3823 || (GET_CODE (rtl) == SUBREG
3824 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3825 }
3826
3827 /* Return a reference to a type, with its const and volatile qualifiers
3828 removed. */
3829
3830 static inline tree
3831 type_main_variant (type)
3832 tree type;
3833 {
3834 type = TYPE_MAIN_VARIANT (type);
3835
3836 /* ??? There really should be only one main variant among any group of
3837 variants of a given type (and all of the MAIN_VARIANT values for all
3838 members of the group should point to that one type) but sometimes the C
3839 front-end messes this up for array types, so we work around that bug
3840 here. */
3841 if (TREE_CODE (type) == ARRAY_TYPE)
3842 while (type != TYPE_MAIN_VARIANT (type))
3843 type = TYPE_MAIN_VARIANT (type);
3844
3845 return type;
3846 }
3847
3848 /* Return non-zero if the given type node represents a tagged type. */
3849
3850 static inline int
3851 is_tagged_type (type)
3852 tree type;
3853 {
3854 enum tree_code code = TREE_CODE (type);
3855
3856 return (code == RECORD_TYPE || code == UNION_TYPE
3857 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
3858 }
3859
3860 /* Convert a DIE tag into its string name. */
3861
3862 static const char *
3863 dwarf_tag_name (tag)
3864 unsigned tag;
3865 {
3866 switch (tag)
3867 {
3868 case DW_TAG_padding:
3869 return "DW_TAG_padding";
3870 case DW_TAG_array_type:
3871 return "DW_TAG_array_type";
3872 case DW_TAG_class_type:
3873 return "DW_TAG_class_type";
3874 case DW_TAG_entry_point:
3875 return "DW_TAG_entry_point";
3876 case DW_TAG_enumeration_type:
3877 return "DW_TAG_enumeration_type";
3878 case DW_TAG_formal_parameter:
3879 return "DW_TAG_formal_parameter";
3880 case DW_TAG_imported_declaration:
3881 return "DW_TAG_imported_declaration";
3882 case DW_TAG_label:
3883 return "DW_TAG_label";
3884 case DW_TAG_lexical_block:
3885 return "DW_TAG_lexical_block";
3886 case DW_TAG_member:
3887 return "DW_TAG_member";
3888 case DW_TAG_pointer_type:
3889 return "DW_TAG_pointer_type";
3890 case DW_TAG_reference_type:
3891 return "DW_TAG_reference_type";
3892 case DW_TAG_compile_unit:
3893 return "DW_TAG_compile_unit";
3894 case DW_TAG_string_type:
3895 return "DW_TAG_string_type";
3896 case DW_TAG_structure_type:
3897 return "DW_TAG_structure_type";
3898 case DW_TAG_subroutine_type:
3899 return "DW_TAG_subroutine_type";
3900 case DW_TAG_typedef:
3901 return "DW_TAG_typedef";
3902 case DW_TAG_union_type:
3903 return "DW_TAG_union_type";
3904 case DW_TAG_unspecified_parameters:
3905 return "DW_TAG_unspecified_parameters";
3906 case DW_TAG_variant:
3907 return "DW_TAG_variant";
3908 case DW_TAG_common_block:
3909 return "DW_TAG_common_block";
3910 case DW_TAG_common_inclusion:
3911 return "DW_TAG_common_inclusion";
3912 case DW_TAG_inheritance:
3913 return "DW_TAG_inheritance";
3914 case DW_TAG_inlined_subroutine:
3915 return "DW_TAG_inlined_subroutine";
3916 case DW_TAG_module:
3917 return "DW_TAG_module";
3918 case DW_TAG_ptr_to_member_type:
3919 return "DW_TAG_ptr_to_member_type";
3920 case DW_TAG_set_type:
3921 return "DW_TAG_set_type";
3922 case DW_TAG_subrange_type:
3923 return "DW_TAG_subrange_type";
3924 case DW_TAG_with_stmt:
3925 return "DW_TAG_with_stmt";
3926 case DW_TAG_access_declaration:
3927 return "DW_TAG_access_declaration";
3928 case DW_TAG_base_type:
3929 return "DW_TAG_base_type";
3930 case DW_TAG_catch_block:
3931 return "DW_TAG_catch_block";
3932 case DW_TAG_const_type:
3933 return "DW_TAG_const_type";
3934 case DW_TAG_constant:
3935 return "DW_TAG_constant";
3936 case DW_TAG_enumerator:
3937 return "DW_TAG_enumerator";
3938 case DW_TAG_file_type:
3939 return "DW_TAG_file_type";
3940 case DW_TAG_friend:
3941 return "DW_TAG_friend";
3942 case DW_TAG_namelist:
3943 return "DW_TAG_namelist";
3944 case DW_TAG_namelist_item:
3945 return "DW_TAG_namelist_item";
3946 case DW_TAG_packed_type:
3947 return "DW_TAG_packed_type";
3948 case DW_TAG_subprogram:
3949 return "DW_TAG_subprogram";
3950 case DW_TAG_template_type_param:
3951 return "DW_TAG_template_type_param";
3952 case DW_TAG_template_value_param:
3953 return "DW_TAG_template_value_param";
3954 case DW_TAG_thrown_type:
3955 return "DW_TAG_thrown_type";
3956 case DW_TAG_try_block:
3957 return "DW_TAG_try_block";
3958 case DW_TAG_variant_part:
3959 return "DW_TAG_variant_part";
3960 case DW_TAG_variable:
3961 return "DW_TAG_variable";
3962 case DW_TAG_volatile_type:
3963 return "DW_TAG_volatile_type";
3964 case DW_TAG_MIPS_loop:
3965 return "DW_TAG_MIPS_loop";
3966 case DW_TAG_format_label:
3967 return "DW_TAG_format_label";
3968 case DW_TAG_function_template:
3969 return "DW_TAG_function_template";
3970 case DW_TAG_class_template:
3971 return "DW_TAG_class_template";
3972 case DW_TAG_GNU_BINCL:
3973 return "DW_TAG_GNU_BINCL";
3974 case DW_TAG_GNU_EINCL:
3975 return "DW_TAG_GNU_EINCL";
3976 default:
3977 return "DW_TAG_<unknown>";
3978 }
3979 }
3980
3981 /* Convert a DWARF attribute code into its string name. */
3982
3983 static const char *
3984 dwarf_attr_name (attr)
3985 unsigned attr;
3986 {
3987 switch (attr)
3988 {
3989 case DW_AT_sibling:
3990 return "DW_AT_sibling";
3991 case DW_AT_location:
3992 return "DW_AT_location";
3993 case DW_AT_name:
3994 return "DW_AT_name";
3995 case DW_AT_ordering:
3996 return "DW_AT_ordering";
3997 case DW_AT_subscr_data:
3998 return "DW_AT_subscr_data";
3999 case DW_AT_byte_size:
4000 return "DW_AT_byte_size";
4001 case DW_AT_bit_offset:
4002 return "DW_AT_bit_offset";
4003 case DW_AT_bit_size:
4004 return "DW_AT_bit_size";
4005 case DW_AT_element_list:
4006 return "DW_AT_element_list";
4007 case DW_AT_stmt_list:
4008 return "DW_AT_stmt_list";
4009 case DW_AT_low_pc:
4010 return "DW_AT_low_pc";
4011 case DW_AT_high_pc:
4012 return "DW_AT_high_pc";
4013 case DW_AT_language:
4014 return "DW_AT_language";
4015 case DW_AT_member:
4016 return "DW_AT_member";
4017 case DW_AT_discr:
4018 return "DW_AT_discr";
4019 case DW_AT_discr_value:
4020 return "DW_AT_discr_value";
4021 case DW_AT_visibility:
4022 return "DW_AT_visibility";
4023 case DW_AT_import:
4024 return "DW_AT_import";
4025 case DW_AT_string_length:
4026 return "DW_AT_string_length";
4027 case DW_AT_common_reference:
4028 return "DW_AT_common_reference";
4029 case DW_AT_comp_dir:
4030 return "DW_AT_comp_dir";
4031 case DW_AT_const_value:
4032 return "DW_AT_const_value";
4033 case DW_AT_containing_type:
4034 return "DW_AT_containing_type";
4035 case DW_AT_default_value:
4036 return "DW_AT_default_value";
4037 case DW_AT_inline:
4038 return "DW_AT_inline";
4039 case DW_AT_is_optional:
4040 return "DW_AT_is_optional";
4041 case DW_AT_lower_bound:
4042 return "DW_AT_lower_bound";
4043 case DW_AT_producer:
4044 return "DW_AT_producer";
4045 case DW_AT_prototyped:
4046 return "DW_AT_prototyped";
4047 case DW_AT_return_addr:
4048 return "DW_AT_return_addr";
4049 case DW_AT_start_scope:
4050 return "DW_AT_start_scope";
4051 case DW_AT_stride_size:
4052 return "DW_AT_stride_size";
4053 case DW_AT_upper_bound:
4054 return "DW_AT_upper_bound";
4055 case DW_AT_abstract_origin:
4056 return "DW_AT_abstract_origin";
4057 case DW_AT_accessibility:
4058 return "DW_AT_accessibility";
4059 case DW_AT_address_class:
4060 return "DW_AT_address_class";
4061 case DW_AT_artificial:
4062 return "DW_AT_artificial";
4063 case DW_AT_base_types:
4064 return "DW_AT_base_types";
4065 case DW_AT_calling_convention:
4066 return "DW_AT_calling_convention";
4067 case DW_AT_count:
4068 return "DW_AT_count";
4069 case DW_AT_data_member_location:
4070 return "DW_AT_data_member_location";
4071 case DW_AT_decl_column:
4072 return "DW_AT_decl_column";
4073 case DW_AT_decl_file:
4074 return "DW_AT_decl_file";
4075 case DW_AT_decl_line:
4076 return "DW_AT_decl_line";
4077 case DW_AT_declaration:
4078 return "DW_AT_declaration";
4079 case DW_AT_discr_list:
4080 return "DW_AT_discr_list";
4081 case DW_AT_encoding:
4082 return "DW_AT_encoding";
4083 case DW_AT_external:
4084 return "DW_AT_external";
4085 case DW_AT_frame_base:
4086 return "DW_AT_frame_base";
4087 case DW_AT_friend:
4088 return "DW_AT_friend";
4089 case DW_AT_identifier_case:
4090 return "DW_AT_identifier_case";
4091 case DW_AT_macro_info:
4092 return "DW_AT_macro_info";
4093 case DW_AT_namelist_items:
4094 return "DW_AT_namelist_items";
4095 case DW_AT_priority:
4096 return "DW_AT_priority";
4097 case DW_AT_segment:
4098 return "DW_AT_segment";
4099 case DW_AT_specification:
4100 return "DW_AT_specification";
4101 case DW_AT_static_link:
4102 return "DW_AT_static_link";
4103 case DW_AT_type:
4104 return "DW_AT_type";
4105 case DW_AT_use_location:
4106 return "DW_AT_use_location";
4107 case DW_AT_variable_parameter:
4108 return "DW_AT_variable_parameter";
4109 case DW_AT_virtuality:
4110 return "DW_AT_virtuality";
4111 case DW_AT_vtable_elem_location:
4112 return "DW_AT_vtable_elem_location";
4113
4114 case DW_AT_allocated:
4115 return "DW_AT_allocated";
4116 case DW_AT_associated:
4117 return "DW_AT_associated";
4118 case DW_AT_data_location:
4119 return "DW_AT_data_location";
4120 case DW_AT_stride:
4121 return "DW_AT_stride";
4122 case DW_AT_entry_pc:
4123 return "DW_AT_entry_pc";
4124 case DW_AT_use_UTF8:
4125 return "DW_AT_use_UTF8";
4126 case DW_AT_extension:
4127 return "DW_AT_extension";
4128 case DW_AT_ranges:
4129 return "DW_AT_ranges";
4130 case DW_AT_trampoline:
4131 return "DW_AT_trampoline";
4132 case DW_AT_call_column:
4133 return "DW_AT_call_column";
4134 case DW_AT_call_file:
4135 return "DW_AT_call_file";
4136 case DW_AT_call_line:
4137 return "DW_AT_call_line";
4138
4139 case DW_AT_MIPS_fde:
4140 return "DW_AT_MIPS_fde";
4141 case DW_AT_MIPS_loop_begin:
4142 return "DW_AT_MIPS_loop_begin";
4143 case DW_AT_MIPS_tail_loop_begin:
4144 return "DW_AT_MIPS_tail_loop_begin";
4145 case DW_AT_MIPS_epilog_begin:
4146 return "DW_AT_MIPS_epilog_begin";
4147 case DW_AT_MIPS_loop_unroll_factor:
4148 return "DW_AT_MIPS_loop_unroll_factor";
4149 case DW_AT_MIPS_software_pipeline_depth:
4150 return "DW_AT_MIPS_software_pipeline_depth";
4151 case DW_AT_MIPS_linkage_name:
4152 return "DW_AT_MIPS_linkage_name";
4153 case DW_AT_MIPS_stride:
4154 return "DW_AT_MIPS_stride";
4155 case DW_AT_MIPS_abstract_name:
4156 return "DW_AT_MIPS_abstract_name";
4157 case DW_AT_MIPS_clone_origin:
4158 return "DW_AT_MIPS_clone_origin";
4159 case DW_AT_MIPS_has_inlines:
4160 return "DW_AT_MIPS_has_inlines";
4161
4162 case DW_AT_sf_names:
4163 return "DW_AT_sf_names";
4164 case DW_AT_src_info:
4165 return "DW_AT_src_info";
4166 case DW_AT_mac_info:
4167 return "DW_AT_mac_info";
4168 case DW_AT_src_coords:
4169 return "DW_AT_src_coords";
4170 case DW_AT_body_begin:
4171 return "DW_AT_body_begin";
4172 case DW_AT_body_end:
4173 return "DW_AT_body_end";
4174 case DW_AT_VMS_rtnbeg_pd_address:
4175 return "DW_AT_VMS_rtnbeg_pd_address";
4176
4177 default:
4178 return "DW_AT_<unknown>";
4179 }
4180 }
4181
4182 /* Convert a DWARF value form code into its string name. */
4183
4184 static const char *
4185 dwarf_form_name (form)
4186 unsigned form;
4187 {
4188 switch (form)
4189 {
4190 case DW_FORM_addr:
4191 return "DW_FORM_addr";
4192 case DW_FORM_block2:
4193 return "DW_FORM_block2";
4194 case DW_FORM_block4:
4195 return "DW_FORM_block4";
4196 case DW_FORM_data2:
4197 return "DW_FORM_data2";
4198 case DW_FORM_data4:
4199 return "DW_FORM_data4";
4200 case DW_FORM_data8:
4201 return "DW_FORM_data8";
4202 case DW_FORM_string:
4203 return "DW_FORM_string";
4204 case DW_FORM_block:
4205 return "DW_FORM_block";
4206 case DW_FORM_block1:
4207 return "DW_FORM_block1";
4208 case DW_FORM_data1:
4209 return "DW_FORM_data1";
4210 case DW_FORM_flag:
4211 return "DW_FORM_flag";
4212 case DW_FORM_sdata:
4213 return "DW_FORM_sdata";
4214 case DW_FORM_strp:
4215 return "DW_FORM_strp";
4216 case DW_FORM_udata:
4217 return "DW_FORM_udata";
4218 case DW_FORM_ref_addr:
4219 return "DW_FORM_ref_addr";
4220 case DW_FORM_ref1:
4221 return "DW_FORM_ref1";
4222 case DW_FORM_ref2:
4223 return "DW_FORM_ref2";
4224 case DW_FORM_ref4:
4225 return "DW_FORM_ref4";
4226 case DW_FORM_ref8:
4227 return "DW_FORM_ref8";
4228 case DW_FORM_ref_udata:
4229 return "DW_FORM_ref_udata";
4230 case DW_FORM_indirect:
4231 return "DW_FORM_indirect";
4232 default:
4233 return "DW_FORM_<unknown>";
4234 }
4235 }
4236
4237 /* Convert a DWARF type code into its string name. */
4238
4239 #if 0
4240 static const char *
4241 dwarf_type_encoding_name (enc)
4242 unsigned enc;
4243 {
4244 switch (enc)
4245 {
4246 case DW_ATE_address:
4247 return "DW_ATE_address";
4248 case DW_ATE_boolean:
4249 return "DW_ATE_boolean";
4250 case DW_ATE_complex_float:
4251 return "DW_ATE_complex_float";
4252 case DW_ATE_float:
4253 return "DW_ATE_float";
4254 case DW_ATE_signed:
4255 return "DW_ATE_signed";
4256 case DW_ATE_signed_char:
4257 return "DW_ATE_signed_char";
4258 case DW_ATE_unsigned:
4259 return "DW_ATE_unsigned";
4260 case DW_ATE_unsigned_char:
4261 return "DW_ATE_unsigned_char";
4262 default:
4263 return "DW_ATE_<unknown>";
4264 }
4265 }
4266 #endif
4267 \f
4268 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4269 instance of an inlined instance of a decl which is local to an inline
4270 function, so we have to trace all of the way back through the origin chain
4271 to find out what sort of node actually served as the original seed for the
4272 given block. */
4273
4274 static tree
4275 decl_ultimate_origin (decl)
4276 tree decl;
4277 {
4278 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4279 nodes in the function to point to themselves; ignore that if
4280 we're trying to output the abstract instance of this function. */
4281 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4282 return NULL_TREE;
4283
4284 #ifdef ENABLE_CHECKING
4285 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4286 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4287 most distant ancestor, this should never happen. */
4288 abort ();
4289 #endif
4290
4291 return DECL_ABSTRACT_ORIGIN (decl);
4292 }
4293
4294 /* Determine the "ultimate origin" of a block. The block may be an inlined
4295 instance of an inlined instance of a block which is local to an inline
4296 function, so we have to trace all of the way back through the origin chain
4297 to find out what sort of node actually served as the original seed for the
4298 given block. */
4299
4300 static tree
4301 block_ultimate_origin (block)
4302 tree block;
4303 {
4304 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4305
4306 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4307 nodes in the function to point to themselves; ignore that if
4308 we're trying to output the abstract instance of this function. */
4309 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4310 return NULL_TREE;
4311
4312 if (immediate_origin == NULL_TREE)
4313 return NULL_TREE;
4314 else
4315 {
4316 tree ret_val;
4317 tree lookahead = immediate_origin;
4318
4319 do
4320 {
4321 ret_val = lookahead;
4322 lookahead = (TREE_CODE (ret_val) == BLOCK
4323 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4324 }
4325 while (lookahead != NULL && lookahead != ret_val);
4326
4327 return ret_val;
4328 }
4329 }
4330
4331 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4332 of a virtual function may refer to a base class, so we check the 'this'
4333 parameter. */
4334
4335 static tree
4336 decl_class_context (decl)
4337 tree decl;
4338 {
4339 tree context = NULL_TREE;
4340
4341 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4342 context = DECL_CONTEXT (decl);
4343 else
4344 context = TYPE_MAIN_VARIANT
4345 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4346
4347 if (context && !TYPE_P (context))
4348 context = NULL_TREE;
4349
4350 return context;
4351 }
4352 \f
4353 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4354 addition order, and correct that in reverse_all_dies. */
4355
4356 static inline void
4357 add_dwarf_attr (die, attr)
4358 dw_die_ref die;
4359 dw_attr_ref attr;
4360 {
4361 if (die != NULL && attr != NULL)
4362 {
4363 attr->dw_attr_next = die->die_attr;
4364 die->die_attr = attr;
4365 }
4366 }
4367
4368 static inline dw_val_class
4369 AT_class (a)
4370 dw_attr_ref a;
4371 {
4372 return a->dw_attr_val.val_class;
4373 }
4374
4375 /* Add a flag value attribute to a DIE. */
4376
4377 static inline void
4378 add_AT_flag (die, attr_kind, flag)
4379 dw_die_ref die;
4380 enum dwarf_attribute attr_kind;
4381 unsigned flag;
4382 {
4383 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4384
4385 attr->dw_attr_next = NULL;
4386 attr->dw_attr = attr_kind;
4387 attr->dw_attr_val.val_class = dw_val_class_flag;
4388 attr->dw_attr_val.v.val_flag = flag;
4389 add_dwarf_attr (die, attr);
4390 }
4391
4392 static inline unsigned
4393 AT_flag (a)
4394 dw_attr_ref a;
4395 {
4396 if (a && AT_class (a) == dw_val_class_flag)
4397 return a->dw_attr_val.v.val_flag;
4398
4399 abort ();
4400 }
4401
4402 /* Add a signed integer attribute value to a DIE. */
4403
4404 static inline void
4405 add_AT_int (die, attr_kind, int_val)
4406 dw_die_ref die;
4407 enum dwarf_attribute attr_kind;
4408 long int int_val;
4409 {
4410 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4411
4412 attr->dw_attr_next = NULL;
4413 attr->dw_attr = attr_kind;
4414 attr->dw_attr_val.val_class = dw_val_class_const;
4415 attr->dw_attr_val.v.val_int = int_val;
4416 add_dwarf_attr (die, attr);
4417 }
4418
4419 static inline long int
4420 AT_int (a)
4421 dw_attr_ref a;
4422 {
4423 if (a && AT_class (a) == dw_val_class_const)
4424 return a->dw_attr_val.v.val_int;
4425
4426 abort ();
4427 }
4428
4429 /* Add an unsigned integer attribute value to a DIE. */
4430
4431 static inline void
4432 add_AT_unsigned (die, attr_kind, unsigned_val)
4433 dw_die_ref die;
4434 enum dwarf_attribute attr_kind;
4435 unsigned long unsigned_val;
4436 {
4437 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4438
4439 attr->dw_attr_next = NULL;
4440 attr->dw_attr = attr_kind;
4441 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4442 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4443 add_dwarf_attr (die, attr);
4444 }
4445
4446 static inline unsigned long
4447 AT_unsigned (a)
4448 dw_attr_ref a;
4449 {
4450 if (a && AT_class (a) == dw_val_class_unsigned_const)
4451 return a->dw_attr_val.v.val_unsigned;
4452
4453 abort ();
4454 }
4455
4456 /* Add an unsigned double integer attribute value to a DIE. */
4457
4458 static inline void
4459 add_AT_long_long (die, attr_kind, val_hi, val_low)
4460 dw_die_ref die;
4461 enum dwarf_attribute attr_kind;
4462 unsigned long val_hi;
4463 unsigned long val_low;
4464 {
4465 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4466
4467 attr->dw_attr_next = NULL;
4468 attr->dw_attr = attr_kind;
4469 attr->dw_attr_val.val_class = dw_val_class_long_long;
4470 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4471 attr->dw_attr_val.v.val_long_long.low = val_low;
4472 add_dwarf_attr (die, attr);
4473 }
4474
4475 /* Add a floating point attribute value to a DIE and return it. */
4476
4477 static inline void
4478 add_AT_float (die, attr_kind, length, array)
4479 dw_die_ref die;
4480 enum dwarf_attribute attr_kind;
4481 unsigned length;
4482 long *array;
4483 {
4484 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4485
4486 attr->dw_attr_next = NULL;
4487 attr->dw_attr = attr_kind;
4488 attr->dw_attr_val.val_class = dw_val_class_float;
4489 attr->dw_attr_val.v.val_float.length = length;
4490 attr->dw_attr_val.v.val_float.array = array;
4491 add_dwarf_attr (die, attr);
4492 }
4493
4494 /* Add a string attribute value to a DIE. */
4495
4496 static inline void
4497 add_AT_string (die, attr_kind, str)
4498 dw_die_ref die;
4499 enum dwarf_attribute attr_kind;
4500 const char *str;
4501 {
4502 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4503 struct indirect_string_node *node;
4504
4505 if (! debug_str_hash)
4506 {
4507 debug_str_hash = ht_create (10);
4508 debug_str_hash->alloc_node = indirect_string_alloc;
4509 }
4510
4511 node = (struct indirect_string_node *)
4512 ht_lookup (debug_str_hash, (const unsigned char *) str,
4513 strlen (str), HT_ALLOC);
4514 node->refcount++;
4515
4516 attr->dw_attr_next = NULL;
4517 attr->dw_attr = attr_kind;
4518 attr->dw_attr_val.val_class = dw_val_class_str;
4519 attr->dw_attr_val.v.val_str = node;
4520 add_dwarf_attr (die, attr);
4521 }
4522
4523 static inline const char *
4524 AT_string (a)
4525 dw_attr_ref a;
4526 {
4527 if (a && AT_class (a) == dw_val_class_str)
4528 return (const char *) HT_STR (&a->dw_attr_val.v.val_str->id);
4529
4530 abort ();
4531 }
4532
4533 /* Find out whether a string should be output inline in DIE
4534 or out-of-line in .debug_str section. */
4535
4536 static int
4537 AT_string_form (a)
4538 dw_attr_ref a;
4539 {
4540 if (a && AT_class (a) == dw_val_class_str)
4541 {
4542 struct indirect_string_node *node;
4543 unsigned int len;
4544 extern int const_labelno;
4545 char label[32];
4546
4547 node = a->dw_attr_val.v.val_str;
4548 if (node->form)
4549 return node->form;
4550
4551 len = HT_LEN (&node->id) + 1;
4552
4553 /* If the string is shorter or equal to the size of the reference, it is
4554 always better to put it inline. */
4555 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4556 return node->form = DW_FORM_string;
4557
4558 /* If we cannot expect the linker to merge strings in .debug_str
4559 section, only put it into .debug_str if it is worth even in this
4560 single module. */
4561 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4562 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4563 return node->form = DW_FORM_string;
4564
4565 ASM_GENERATE_INTERNAL_LABEL (label, "LC", const_labelno);
4566 ++const_labelno;
4567 node->label = xstrdup (label);
4568
4569 return node->form = DW_FORM_strp;
4570 }
4571
4572 abort ();
4573 }
4574
4575 /* Add a DIE reference attribute value to a DIE. */
4576
4577 static inline void
4578 add_AT_die_ref (die, attr_kind, targ_die)
4579 dw_die_ref die;
4580 enum dwarf_attribute attr_kind;
4581 dw_die_ref targ_die;
4582 {
4583 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4584
4585 attr->dw_attr_next = NULL;
4586 attr->dw_attr = attr_kind;
4587 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4588 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4589 attr->dw_attr_val.v.val_die_ref.external = 0;
4590 add_dwarf_attr (die, attr);
4591 }
4592
4593 static inline dw_die_ref
4594 AT_ref (a)
4595 dw_attr_ref a;
4596 {
4597 if (a && AT_class (a) == dw_val_class_die_ref)
4598 return a->dw_attr_val.v.val_die_ref.die;
4599
4600 abort ();
4601 }
4602
4603 static inline int
4604 AT_ref_external (a)
4605 dw_attr_ref a;
4606 {
4607 if (a && AT_class (a) == dw_val_class_die_ref)
4608 return a->dw_attr_val.v.val_die_ref.external;
4609
4610 return 0;
4611 }
4612
4613 static inline void
4614 set_AT_ref_external (a, i)
4615 dw_attr_ref a;
4616 int i;
4617 {
4618 if (a && AT_class (a) == dw_val_class_die_ref)
4619 a->dw_attr_val.v.val_die_ref.external = i;
4620 else
4621 abort ();
4622 }
4623
4624 /* Add an FDE reference attribute value to a DIE. */
4625
4626 static inline void
4627 add_AT_fde_ref (die, attr_kind, targ_fde)
4628 dw_die_ref die;
4629 enum dwarf_attribute attr_kind;
4630 unsigned targ_fde;
4631 {
4632 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4633
4634 attr->dw_attr_next = NULL;
4635 attr->dw_attr = attr_kind;
4636 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4637 attr->dw_attr_val.v.val_fde_index = targ_fde;
4638 add_dwarf_attr (die, attr);
4639 }
4640
4641 /* Add a location description attribute value to a DIE. */
4642
4643 static inline void
4644 add_AT_loc (die, attr_kind, loc)
4645 dw_die_ref die;
4646 enum dwarf_attribute attr_kind;
4647 dw_loc_descr_ref loc;
4648 {
4649 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4650
4651 attr->dw_attr_next = NULL;
4652 attr->dw_attr = attr_kind;
4653 attr->dw_attr_val.val_class = dw_val_class_loc;
4654 attr->dw_attr_val.v.val_loc = loc;
4655 add_dwarf_attr (die, attr);
4656 }
4657
4658 static inline dw_loc_descr_ref
4659 AT_loc (a)
4660 dw_attr_ref a;
4661 {
4662 if (a && AT_class (a) == dw_val_class_loc)
4663 return a->dw_attr_val.v.val_loc;
4664
4665 abort ();
4666 }
4667
4668 static inline void
4669 add_AT_loc_list (die, attr_kind, loc_list)
4670 dw_die_ref die;
4671 enum dwarf_attribute attr_kind;
4672 dw_loc_list_ref loc_list;
4673 {
4674 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4675
4676 attr->dw_attr_next = NULL;
4677 attr->dw_attr = attr_kind;
4678 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4679 attr->dw_attr_val.v.val_loc_list = loc_list;
4680 add_dwarf_attr (die, attr);
4681 have_location_lists = 1;
4682 }
4683
4684 static inline dw_loc_list_ref
4685 AT_loc_list (a)
4686 dw_attr_ref a;
4687 {
4688 if (a && AT_class (a) == dw_val_class_loc_list)
4689 return a->dw_attr_val.v.val_loc_list;
4690
4691 abort ();
4692 }
4693
4694 /* Add an address constant attribute value to a DIE. */
4695
4696 static inline void
4697 add_AT_addr (die, attr_kind, addr)
4698 dw_die_ref die;
4699 enum dwarf_attribute attr_kind;
4700 rtx addr;
4701 {
4702 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4703
4704 attr->dw_attr_next = NULL;
4705 attr->dw_attr = attr_kind;
4706 attr->dw_attr_val.val_class = dw_val_class_addr;
4707 attr->dw_attr_val.v.val_addr = addr;
4708 add_dwarf_attr (die, attr);
4709 }
4710
4711 static inline rtx
4712 AT_addr (a)
4713 dw_attr_ref a;
4714 {
4715 if (a && AT_class (a) == dw_val_class_addr)
4716 return a->dw_attr_val.v.val_addr;
4717
4718 abort ();
4719 }
4720
4721 /* Add a label identifier attribute value to a DIE. */
4722
4723 static inline void
4724 add_AT_lbl_id (die, attr_kind, lbl_id)
4725 dw_die_ref die;
4726 enum dwarf_attribute attr_kind;
4727 const char *lbl_id;
4728 {
4729 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4730
4731 attr->dw_attr_next = NULL;
4732 attr->dw_attr = attr_kind;
4733 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4734 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4735 add_dwarf_attr (die, attr);
4736 }
4737
4738 /* Add a section offset attribute value to a DIE. */
4739
4740 static inline void
4741 add_AT_lbl_offset (die, attr_kind, label)
4742 dw_die_ref die;
4743 enum dwarf_attribute attr_kind;
4744 const char *label;
4745 {
4746 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4747
4748 attr->dw_attr_next = NULL;
4749 attr->dw_attr = attr_kind;
4750 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4751 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4752 add_dwarf_attr (die, attr);
4753 }
4754
4755 /* Add an offset attribute value to a DIE. */
4756
4757 static inline void
4758 add_AT_offset (die, attr_kind, offset)
4759 dw_die_ref die;
4760 enum dwarf_attribute attr_kind;
4761 unsigned long offset;
4762 {
4763 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4764
4765 attr->dw_attr_next = NULL;
4766 attr->dw_attr = attr_kind;
4767 attr->dw_attr_val.val_class = dw_val_class_offset;
4768 attr->dw_attr_val.v.val_offset = offset;
4769 add_dwarf_attr (die, attr);
4770 }
4771
4772 /* Add an range_list attribute value to a DIE. */
4773
4774 static void
4775 add_AT_range_list (die, attr_kind, offset)
4776 dw_die_ref die;
4777 enum dwarf_attribute attr_kind;
4778 unsigned long offset;
4779 {
4780 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4781
4782 attr->dw_attr_next = NULL;
4783 attr->dw_attr = attr_kind;
4784 attr->dw_attr_val.val_class = dw_val_class_range_list;
4785 attr->dw_attr_val.v.val_offset = offset;
4786 add_dwarf_attr (die, attr);
4787 }
4788
4789 static inline const char *
4790 AT_lbl (a)
4791 dw_attr_ref a;
4792 {
4793 if (a && (AT_class (a) == dw_val_class_lbl_id
4794 || AT_class (a) == dw_val_class_lbl_offset))
4795 return a->dw_attr_val.v.val_lbl_id;
4796
4797 abort ();
4798 }
4799
4800 /* Get the attribute of type attr_kind. */
4801
4802 static inline dw_attr_ref
4803 get_AT (die, attr_kind)
4804 dw_die_ref die;
4805 enum dwarf_attribute attr_kind;
4806 {
4807 dw_attr_ref a;
4808 dw_die_ref spec = NULL;
4809
4810 if (die != NULL)
4811 {
4812 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
4813 if (a->dw_attr == attr_kind)
4814 return a;
4815 else if (a->dw_attr == DW_AT_specification
4816 || a->dw_attr == DW_AT_abstract_origin)
4817 spec = AT_ref (a);
4818
4819 if (spec)
4820 return get_AT (spec, attr_kind);
4821 }
4822
4823 return NULL;
4824 }
4825
4826 /* Return the "low pc" attribute value, typically associated with a subprogram
4827 DIE. Return null if the "low pc" attribute is either not present, or if it
4828 cannot be represented as an assembler label identifier. */
4829
4830 static inline const char *
4831 get_AT_low_pc (die)
4832 dw_die_ref die;
4833 {
4834 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
4835
4836 return a ? AT_lbl (a) : NULL;
4837 }
4838
4839 /* Return the "high pc" attribute value, typically associated with a subprogram
4840 DIE. Return null if the "high pc" attribute is either not present, or if it
4841 cannot be represented as an assembler label identifier. */
4842
4843 static inline const char *
4844 get_AT_hi_pc (die)
4845 dw_die_ref die;
4846 {
4847 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
4848
4849 return a ? AT_lbl (a) : NULL;
4850 }
4851
4852 /* Return the value of the string attribute designated by ATTR_KIND, or
4853 NULL if it is not present. */
4854
4855 static inline const char *
4856 get_AT_string (die, attr_kind)
4857 dw_die_ref die;
4858 enum dwarf_attribute attr_kind;
4859 {
4860 dw_attr_ref a = get_AT (die, attr_kind);
4861
4862 return a ? AT_string (a) : NULL;
4863 }
4864
4865 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
4866 if it is not present. */
4867
4868 static inline int
4869 get_AT_flag (die, attr_kind)
4870 dw_die_ref die;
4871 enum dwarf_attribute attr_kind;
4872 {
4873 dw_attr_ref a = get_AT (die, attr_kind);
4874
4875 return a ? AT_flag (a) : 0;
4876 }
4877
4878 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4879 if it is not present. */
4880
4881 static inline unsigned
4882 get_AT_unsigned (die, attr_kind)
4883 dw_die_ref die;
4884 enum dwarf_attribute attr_kind;
4885 {
4886 dw_attr_ref a = get_AT (die, attr_kind);
4887
4888 return a ? AT_unsigned (a) : 0;
4889 }
4890
4891 static inline dw_die_ref
4892 get_AT_ref (die, attr_kind)
4893 dw_die_ref die;
4894 enum dwarf_attribute attr_kind;
4895 {
4896 dw_attr_ref a = get_AT (die, attr_kind);
4897
4898 return a ? AT_ref (a) : NULL;
4899 }
4900
4901 static inline int
4902 is_c_family ()
4903 {
4904 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4905
4906 return (lang == DW_LANG_C || lang == DW_LANG_C89
4907 || lang == DW_LANG_C_plus_plus);
4908 }
4909
4910 static inline int
4911 is_cxx ()
4912 {
4913 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
4914 == DW_LANG_C_plus_plus);
4915 }
4916
4917 static inline int
4918 is_fortran ()
4919 {
4920 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4921
4922 return (lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90);
4923 }
4924
4925 static inline int
4926 is_java ()
4927 {
4928 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4929
4930 return (lang == DW_LANG_Java);
4931 }
4932
4933 /* Free up the memory used by A. */
4934
4935 static inline void free_AT PARAMS ((dw_attr_ref));
4936 static inline void
4937 free_AT (a)
4938 dw_attr_ref a;
4939 {
4940 switch (AT_class (a))
4941 {
4942 case dw_val_class_str:
4943 if (a->dw_attr_val.v.val_str->refcount)
4944 a->dw_attr_val.v.val_str->refcount--;
4945 break;
4946
4947 case dw_val_class_lbl_id:
4948 case dw_val_class_lbl_offset:
4949 free (a->dw_attr_val.v.val_lbl_id);
4950 break;
4951
4952 case dw_val_class_float:
4953 free (a->dw_attr_val.v.val_float.array);
4954 break;
4955
4956 default:
4957 break;
4958 }
4959
4960 free (a);
4961 }
4962
4963 /* Remove the specified attribute if present. */
4964
4965 static void
4966 remove_AT (die, attr_kind)
4967 dw_die_ref die;
4968 enum dwarf_attribute attr_kind;
4969 {
4970 dw_attr_ref *p;
4971 dw_attr_ref removed = NULL;
4972
4973 if (die != NULL)
4974 {
4975 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
4976 if ((*p)->dw_attr == attr_kind)
4977 {
4978 removed = *p;
4979 *p = (*p)->dw_attr_next;
4980 break;
4981 }
4982
4983 if (removed != 0)
4984 free_AT (removed);
4985 }
4986 }
4987
4988 /* Free up the memory used by DIE. */
4989
4990 static inline void
4991 free_die (die)
4992 dw_die_ref die;
4993 {
4994 remove_children (die);
4995 free (die);
4996 }
4997
4998 /* Discard the children of this DIE. */
4999
5000 static void
5001 remove_children (die)
5002 dw_die_ref die;
5003 {
5004 dw_die_ref child_die = die->die_child;
5005
5006 die->die_child = NULL;
5007
5008 while (child_die != NULL)
5009 {
5010 dw_die_ref tmp_die = child_die;
5011 dw_attr_ref a;
5012
5013 child_die = child_die->die_sib;
5014
5015 for (a = tmp_die->die_attr; a != NULL;)
5016 {
5017 dw_attr_ref tmp_a = a;
5018
5019 a = a->dw_attr_next;
5020 free_AT (tmp_a);
5021 }
5022
5023 free_die (tmp_die);
5024 }
5025 }
5026
5027 /* Add a child DIE below its parent. We build the lists up in reverse
5028 addition order, and correct that in reverse_all_dies. */
5029
5030 static inline void
5031 add_child_die (die, child_die)
5032 dw_die_ref die;
5033 dw_die_ref child_die;
5034 {
5035 if (die != NULL && child_die != NULL)
5036 {
5037 if (die == child_die)
5038 abort ();
5039
5040 child_die->die_parent = die;
5041 child_die->die_sib = die->die_child;
5042 die->die_child = child_die;
5043 }
5044 }
5045
5046 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5047 is the specification, to the front of PARENT's list of children. */
5048
5049 static void
5050 splice_child_die (parent, child)
5051 dw_die_ref parent, child;
5052 {
5053 dw_die_ref *p;
5054
5055 /* We want the declaration DIE from inside the class, not the
5056 specification DIE at toplevel. */
5057 if (child->die_parent != parent)
5058 {
5059 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5060
5061 if (tmp)
5062 child = tmp;
5063 }
5064
5065 if (child->die_parent != parent
5066 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5067 abort ();
5068
5069 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5070 if (*p == child)
5071 {
5072 *p = child->die_sib;
5073 break;
5074 }
5075
5076 child->die_sib = parent->die_child;
5077 parent->die_child = child;
5078 }
5079
5080 /* Return a pointer to a newly created DIE node. */
5081
5082 static inline dw_die_ref
5083 new_die (tag_value, parent_die, t)
5084 enum dwarf_tag tag_value;
5085 dw_die_ref parent_die;
5086 tree t;
5087 {
5088 dw_die_ref die = (dw_die_ref) xcalloc (1, sizeof (die_node));
5089
5090 die->die_tag = tag_value;
5091
5092 if (parent_die != NULL)
5093 add_child_die (parent_die, die);
5094 else
5095 {
5096 limbo_die_node *limbo_node;
5097
5098 limbo_node = (limbo_die_node *) xmalloc (sizeof (limbo_die_node));
5099 limbo_node->die = die;
5100 limbo_node->created_for = t;
5101 limbo_node->next = limbo_die_list;
5102 limbo_die_list = limbo_node;
5103 }
5104
5105 return die;
5106 }
5107
5108 /* Return the DIE associated with the given type specifier. */
5109
5110 static inline dw_die_ref
5111 lookup_type_die (type)
5112 tree type;
5113 {
5114 if (TREE_CODE (type) == VECTOR_TYPE)
5115 type = TYPE_DEBUG_REPRESENTATION_TYPE (type);
5116
5117 return (dw_die_ref) TYPE_SYMTAB_POINTER (type);
5118 }
5119
5120 /* Equate a DIE to a given type specifier. */
5121
5122 static inline void
5123 equate_type_number_to_die (type, type_die)
5124 tree type;
5125 dw_die_ref type_die;
5126 {
5127 TYPE_SYMTAB_POINTER (type) = (char *) type_die;
5128 }
5129
5130 /* Return the DIE associated with a given declaration. */
5131
5132 static inline dw_die_ref
5133 lookup_decl_die (decl)
5134 tree decl;
5135 {
5136 unsigned decl_id = DECL_UID (decl);
5137
5138 return (decl_id < decl_die_table_in_use ? decl_die_table[decl_id] : NULL);
5139 }
5140
5141 /* Equate a DIE to a particular declaration. */
5142
5143 static void
5144 equate_decl_number_to_die (decl, decl_die)
5145 tree decl;
5146 dw_die_ref decl_die;
5147 {
5148 unsigned int decl_id = DECL_UID (decl);
5149 unsigned int num_allocated;
5150
5151 if (decl_id >= decl_die_table_allocated)
5152 {
5153 num_allocated
5154 = ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
5155 / DECL_DIE_TABLE_INCREMENT)
5156 * DECL_DIE_TABLE_INCREMENT;
5157
5158 decl_die_table
5159 = (dw_die_ref *) xrealloc (decl_die_table,
5160 sizeof (dw_die_ref) * num_allocated);
5161
5162 memset ((char *) &decl_die_table[decl_die_table_allocated], 0,
5163 (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
5164 decl_die_table_allocated = num_allocated;
5165 }
5166
5167 if (decl_id >= decl_die_table_in_use)
5168 decl_die_table_in_use = (decl_id + 1);
5169
5170 decl_die_table[decl_id] = decl_die;
5171 }
5172 \f
5173 /* Keep track of the number of spaces used to indent the
5174 output of the debugging routines that print the structure of
5175 the DIE internal representation. */
5176 static int print_indent;
5177
5178 /* Indent the line the number of spaces given by print_indent. */
5179
5180 static inline void
5181 print_spaces (outfile)
5182 FILE *outfile;
5183 {
5184 fprintf (outfile, "%*s", print_indent, "");
5185 }
5186
5187 /* Print the information associated with a given DIE, and its children.
5188 This routine is a debugging aid only. */
5189
5190 static void
5191 print_die (die, outfile)
5192 dw_die_ref die;
5193 FILE *outfile;
5194 {
5195 dw_attr_ref a;
5196 dw_die_ref c;
5197
5198 print_spaces (outfile);
5199 fprintf (outfile, "DIE %4lu: %s\n",
5200 die->die_offset, dwarf_tag_name (die->die_tag));
5201 print_spaces (outfile);
5202 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5203 fprintf (outfile, " offset: %lu\n", die->die_offset);
5204
5205 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5206 {
5207 print_spaces (outfile);
5208 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5209
5210 switch (AT_class (a))
5211 {
5212 case dw_val_class_addr:
5213 fprintf (outfile, "address");
5214 break;
5215 case dw_val_class_offset:
5216 fprintf (outfile, "offset");
5217 break;
5218 case dw_val_class_loc:
5219 fprintf (outfile, "location descriptor");
5220 break;
5221 case dw_val_class_loc_list:
5222 fprintf (outfile, "location list -> label:%s",
5223 AT_loc_list (a)->ll_symbol);
5224 break;
5225 case dw_val_class_range_list:
5226 fprintf (outfile, "range list");
5227 break;
5228 case dw_val_class_const:
5229 fprintf (outfile, "%ld", AT_int (a));
5230 break;
5231 case dw_val_class_unsigned_const:
5232 fprintf (outfile, "%lu", AT_unsigned (a));
5233 break;
5234 case dw_val_class_long_long:
5235 fprintf (outfile, "constant (%lu,%lu)",
5236 a->dw_attr_val.v.val_long_long.hi,
5237 a->dw_attr_val.v.val_long_long.low);
5238 break;
5239 case dw_val_class_float:
5240 fprintf (outfile, "floating-point constant");
5241 break;
5242 case dw_val_class_flag:
5243 fprintf (outfile, "%u", AT_flag (a));
5244 break;
5245 case dw_val_class_die_ref:
5246 if (AT_ref (a) != NULL)
5247 {
5248 if (AT_ref (a)->die_symbol)
5249 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5250 else
5251 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5252 }
5253 else
5254 fprintf (outfile, "die -> <null>");
5255 break;
5256 case dw_val_class_lbl_id:
5257 case dw_val_class_lbl_offset:
5258 fprintf (outfile, "label: %s", AT_lbl (a));
5259 break;
5260 case dw_val_class_str:
5261 if (AT_string (a) != NULL)
5262 fprintf (outfile, "\"%s\"", AT_string (a));
5263 else
5264 fprintf (outfile, "<null>");
5265 break;
5266 default:
5267 break;
5268 }
5269
5270 fprintf (outfile, "\n");
5271 }
5272
5273 if (die->die_child != NULL)
5274 {
5275 print_indent += 4;
5276 for (c = die->die_child; c != NULL; c = c->die_sib)
5277 print_die (c, outfile);
5278
5279 print_indent -= 4;
5280 }
5281 if (print_indent == 0)
5282 fprintf (outfile, "\n");
5283 }
5284
5285 /* Print the contents of the source code line number correspondence table.
5286 This routine is a debugging aid only. */
5287
5288 static void
5289 print_dwarf_line_table (outfile)
5290 FILE *outfile;
5291 {
5292 unsigned i;
5293 dw_line_info_ref line_info;
5294
5295 fprintf (outfile, "\n\nDWARF source line information\n");
5296 for (i = 1; i < line_info_table_in_use; i++)
5297 {
5298 line_info = &line_info_table[i];
5299 fprintf (outfile, "%5d: ", i);
5300 fprintf (outfile, "%-20s", file_table.table[line_info->dw_file_num]);
5301 fprintf (outfile, "%6ld", line_info->dw_line_num);
5302 fprintf (outfile, "\n");
5303 }
5304
5305 fprintf (outfile, "\n\n");
5306 }
5307
5308 /* Print the information collected for a given DIE. */
5309
5310 void
5311 debug_dwarf_die (die)
5312 dw_die_ref die;
5313 {
5314 print_die (die, stderr);
5315 }
5316
5317 /* Print all DWARF information collected for the compilation unit.
5318 This routine is a debugging aid only. */
5319
5320 void
5321 debug_dwarf ()
5322 {
5323 print_indent = 0;
5324 print_die (comp_unit_die, stderr);
5325 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5326 print_dwarf_line_table (stderr);
5327 }
5328 \f
5329 /* We build up the lists of children and attributes by pushing new ones
5330 onto the beginning of the list. Reverse the lists for DIE so that
5331 they are in order of addition. */
5332
5333 static void
5334 reverse_die_lists (die)
5335 dw_die_ref die;
5336 {
5337 dw_die_ref c, cp, cn;
5338 dw_attr_ref a, ap, an;
5339
5340 for (a = die->die_attr, ap = 0; a; a = an)
5341 {
5342 an = a->dw_attr_next;
5343 a->dw_attr_next = ap;
5344 ap = a;
5345 }
5346
5347 die->die_attr = ap;
5348
5349 for (c = die->die_child, cp = 0; c; c = cn)
5350 {
5351 cn = c->die_sib;
5352 c->die_sib = cp;
5353 cp = c;
5354 }
5355
5356 die->die_child = cp;
5357 }
5358
5359 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5360 reverse all dies in add_sibling_attributes, which runs through all the dies,
5361 it would reverse all the dies. Now, however, since we don't call
5362 reverse_die_lists in add_sibling_attributes, we need a routine to
5363 recursively reverse all the dies. This is that routine. */
5364
5365 static void
5366 reverse_all_dies (die)
5367 dw_die_ref die;
5368 {
5369 dw_die_ref c;
5370
5371 reverse_die_lists (die);
5372
5373 for (c = die->die_child; c; c = c->die_sib)
5374 reverse_all_dies (c);
5375 }
5376
5377 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5378 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5379 DIE that marks the start of the DIEs for this include file. */
5380
5381 static dw_die_ref
5382 push_new_compile_unit (old_unit, bincl_die)
5383 dw_die_ref old_unit, bincl_die;
5384 {
5385 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5386 dw_die_ref new_unit = gen_compile_unit_die (filename);
5387
5388 new_unit->die_sib = old_unit;
5389 return new_unit;
5390 }
5391
5392 /* Close an include-file CU and reopen the enclosing one. */
5393
5394 static dw_die_ref
5395 pop_compile_unit (old_unit)
5396 dw_die_ref old_unit;
5397 {
5398 dw_die_ref new_unit = old_unit->die_sib;
5399
5400 old_unit->die_sib = NULL;
5401 return new_unit;
5402 }
5403
5404 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5405 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5406
5407 /* Calculate the checksum of a location expression. */
5408
5409 static inline void
5410 loc_checksum (loc, ctx)
5411 dw_loc_descr_ref loc;
5412 struct md5_ctx *ctx;
5413 {
5414 CHECKSUM (loc->dw_loc_opc);
5415 CHECKSUM (loc->dw_loc_oprnd1);
5416 CHECKSUM (loc->dw_loc_oprnd2);
5417 }
5418
5419 /* Calculate the checksum of an attribute. */
5420
5421 static void
5422 attr_checksum (at, ctx)
5423 dw_attr_ref at;
5424 struct md5_ctx *ctx;
5425 {
5426 dw_loc_descr_ref loc;
5427 rtx r;
5428
5429 CHECKSUM (at->dw_attr);
5430
5431 /* We don't care about differences in file numbering. */
5432 if (at->dw_attr == DW_AT_decl_file
5433 /* Or that this was compiled with a different compiler snapshot; if
5434 the output is the same, that's what matters. */
5435 || at->dw_attr == DW_AT_producer)
5436 return;
5437
5438 switch (AT_class (at))
5439 {
5440 case dw_val_class_const:
5441 CHECKSUM (at->dw_attr_val.v.val_int);
5442 break;
5443 case dw_val_class_unsigned_const:
5444 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5445 break;
5446 case dw_val_class_long_long:
5447 CHECKSUM (at->dw_attr_val.v.val_long_long);
5448 break;
5449 case dw_val_class_float:
5450 CHECKSUM (at->dw_attr_val.v.val_float);
5451 break;
5452 case dw_val_class_flag:
5453 CHECKSUM (at->dw_attr_val.v.val_flag);
5454 break;
5455 case dw_val_class_str:
5456 CHECKSUM_STRING (AT_string (at));
5457 break;
5458
5459 case dw_val_class_addr:
5460 r = AT_addr (at);
5461 switch (GET_CODE (r))
5462 {
5463 case SYMBOL_REF:
5464 CHECKSUM_STRING (XSTR (r, 0));
5465 break;
5466
5467 default:
5468 abort ();
5469 }
5470 break;
5471
5472 case dw_val_class_offset:
5473 CHECKSUM (at->dw_attr_val.v.val_offset);
5474 break;
5475
5476 case dw_val_class_loc:
5477 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5478 loc_checksum (loc, ctx);
5479 break;
5480
5481 case dw_val_class_die_ref:
5482 if (AT_ref (at)->die_offset)
5483 CHECKSUM (AT_ref (at)->die_offset);
5484 /* FIXME else use target die name or something. */
5485
5486 case dw_val_class_fde_ref:
5487 case dw_val_class_lbl_id:
5488 case dw_val_class_lbl_offset:
5489 break;
5490
5491 default:
5492 break;
5493 }
5494 }
5495
5496 /* Calculate the checksum of a DIE. */
5497
5498 static void
5499 die_checksum (die, ctx)
5500 dw_die_ref die;
5501 struct md5_ctx *ctx;
5502 {
5503 dw_die_ref c;
5504 dw_attr_ref a;
5505
5506 CHECKSUM (die->die_tag);
5507
5508 for (a = die->die_attr; a; a = a->dw_attr_next)
5509 attr_checksum (a, ctx);
5510
5511 for (c = die->die_child; c; c = c->die_sib)
5512 die_checksum (c, ctx);
5513 }
5514
5515 #undef CHECKSUM
5516 #undef CHECKSUM_STRING
5517
5518 /* The prefix to attach to symbols on DIEs in the current comdat debug
5519 info section. */
5520 static char *comdat_symbol_id;
5521
5522 /* The index of the current symbol within the current comdat CU. */
5523 static unsigned int comdat_symbol_number;
5524
5525 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5526 children, and set comdat_symbol_id accordingly. */
5527
5528 static void
5529 compute_section_prefix (unit_die)
5530 dw_die_ref unit_die;
5531 {
5532 const char *base = lbasename (get_AT_string (unit_die, DW_AT_name));
5533 char *name = (char *) alloca (strlen (base) + 64);
5534 char *p;
5535 int i;
5536 unsigned char checksum[16];
5537 struct md5_ctx ctx;
5538
5539 /* Compute the checksum of the DIE, then append part of it as hex digits to
5540 the name filename of the unit. */
5541
5542 md5_init_ctx (&ctx);
5543 die_checksum (unit_die, &ctx);
5544 md5_finish_ctx (&ctx, checksum);
5545
5546 sprintf (name, "%s.", base);
5547 clean_symbol_name (name);
5548
5549 p = name + strlen (name);
5550 for (i = 0; i < 4; i++)
5551 {
5552 sprintf (p, "%.2x", checksum[i]);
5553 p += 2;
5554 }
5555
5556 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5557 comdat_symbol_number = 0;
5558 }
5559
5560 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5561
5562 static int
5563 is_type_die (die)
5564 dw_die_ref die;
5565 {
5566 switch (die->die_tag)
5567 {
5568 case DW_TAG_array_type:
5569 case DW_TAG_class_type:
5570 case DW_TAG_enumeration_type:
5571 case DW_TAG_pointer_type:
5572 case DW_TAG_reference_type:
5573 case DW_TAG_string_type:
5574 case DW_TAG_structure_type:
5575 case DW_TAG_subroutine_type:
5576 case DW_TAG_union_type:
5577 case DW_TAG_ptr_to_member_type:
5578 case DW_TAG_set_type:
5579 case DW_TAG_subrange_type:
5580 case DW_TAG_base_type:
5581 case DW_TAG_const_type:
5582 case DW_TAG_file_type:
5583 case DW_TAG_packed_type:
5584 case DW_TAG_volatile_type:
5585 return 1;
5586 default:
5587 return 0;
5588 }
5589 }
5590
5591 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5592 Basically, we want to choose the bits that are likely to be shared between
5593 compilations (types) and leave out the bits that are specific to individual
5594 compilations (functions). */
5595
5596 static int
5597 is_comdat_die (c)
5598 dw_die_ref c;
5599 {
5600 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5601 we do for stabs. The advantage is a greater likelihood of sharing between
5602 objects that don't include headers in the same order (and therefore would
5603 put the base types in a different comdat). jason 8/28/00 */
5604
5605 if (c->die_tag == DW_TAG_base_type)
5606 return 0;
5607
5608 if (c->die_tag == DW_TAG_pointer_type
5609 || c->die_tag == DW_TAG_reference_type
5610 || c->die_tag == DW_TAG_const_type
5611 || c->die_tag == DW_TAG_volatile_type)
5612 {
5613 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5614
5615 return t ? is_comdat_die (t) : 0;
5616 }
5617
5618 return is_type_die (c);
5619 }
5620
5621 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5622 compilation unit. */
5623
5624 static int
5625 is_symbol_die (c)
5626 dw_die_ref c;
5627 {
5628 return (is_type_die (c)
5629 || (get_AT (c, DW_AT_declaration)
5630 && !get_AT (c, DW_AT_specification)));
5631 }
5632
5633 static char *
5634 gen_internal_sym (prefix)
5635 const char *prefix;
5636 {
5637 char buf[256];
5638 static int label_num;
5639
5640 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5641 return xstrdup (buf);
5642 }
5643
5644 /* Assign symbols to all worthy DIEs under DIE. */
5645
5646 static void
5647 assign_symbol_names (die)
5648 dw_die_ref die;
5649 {
5650 dw_die_ref c;
5651
5652 if (is_symbol_die (die))
5653 {
5654 if (comdat_symbol_id)
5655 {
5656 char *p = alloca (strlen (comdat_symbol_id) + 64);
5657
5658 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
5659 comdat_symbol_id, comdat_symbol_number++);
5660 die->die_symbol = xstrdup (p);
5661 }
5662 else
5663 die->die_symbol = gen_internal_sym ("LDIE");
5664 }
5665
5666 for (c = die->die_child; c != NULL; c = c->die_sib)
5667 assign_symbol_names (c);
5668 }
5669
5670 /* Traverse the DIE (which is always comp_unit_die), and set up
5671 additional compilation units for each of the include files we see
5672 bracketed by BINCL/EINCL. */
5673
5674 static void
5675 break_out_includes (die)
5676 dw_die_ref die;
5677 {
5678 dw_die_ref *ptr;
5679 dw_die_ref unit = NULL;
5680 limbo_die_node *node;
5681
5682 for (ptr = &(die->die_child); *ptr; )
5683 {
5684 dw_die_ref c = *ptr;
5685
5686 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
5687 || (unit && is_comdat_die (c)))
5688 {
5689 /* This DIE is for a secondary CU; remove it from the main one. */
5690 *ptr = c->die_sib;
5691
5692 if (c->die_tag == DW_TAG_GNU_BINCL)
5693 {
5694 unit = push_new_compile_unit (unit, c);
5695 free_die (c);
5696 }
5697 else if (c->die_tag == DW_TAG_GNU_EINCL)
5698 {
5699 unit = pop_compile_unit (unit);
5700 free_die (c);
5701 }
5702 else
5703 add_child_die (unit, c);
5704 }
5705 else
5706 {
5707 /* Leave this DIE in the main CU. */
5708 ptr = &(c->die_sib);
5709 continue;
5710 }
5711 }
5712
5713 #if 0
5714 /* We can only use this in debugging, since the frontend doesn't check
5715 to make sure that we leave every include file we enter. */
5716 if (unit != NULL)
5717 abort ();
5718 #endif
5719
5720 assign_symbol_names (die);
5721 for (node = limbo_die_list; node; node = node->next)
5722 {
5723 compute_section_prefix (node->die);
5724 assign_symbol_names (node->die);
5725 }
5726 }
5727
5728 /* Traverse the DIE and add a sibling attribute if it may have the
5729 effect of speeding up access to siblings. To save some space,
5730 avoid generating sibling attributes for DIE's without children. */
5731
5732 static void
5733 add_sibling_attributes (die)
5734 dw_die_ref die;
5735 {
5736 dw_die_ref c;
5737
5738 if (die->die_tag != DW_TAG_compile_unit
5739 && die->die_sib && die->die_child != NULL)
5740 /* Add the sibling link to the front of the attribute list. */
5741 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
5742
5743 for (c = die->die_child; c != NULL; c = c->die_sib)
5744 add_sibling_attributes (c);
5745 }
5746
5747 /* Output all location lists for the DIE and its children. */
5748
5749 static void
5750 output_location_lists (die)
5751 dw_die_ref die;
5752 {
5753 dw_die_ref c;
5754 dw_attr_ref d_attr;
5755
5756 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
5757 if (AT_class (d_attr) == dw_val_class_loc_list)
5758 output_loc_list (AT_loc_list (d_attr));
5759
5760 for (c = die->die_child; c != NULL; c = c->die_sib)
5761 output_location_lists (c);
5762
5763 }
5764 /* The format of each DIE (and its attribute value pairs) is encoded in an
5765 abbreviation table. This routine builds the abbreviation table and assigns
5766 a unique abbreviation id for each abbreviation entry. The children of each
5767 die are visited recursively. */
5768
5769 static void
5770 build_abbrev_table (die)
5771 dw_die_ref die;
5772 {
5773 unsigned long abbrev_id;
5774 unsigned int n_alloc;
5775 dw_die_ref c;
5776 dw_attr_ref d_attr, a_attr;
5777
5778 /* Scan the DIE references, and mark as external any that refer to
5779 DIEs from other CUs (i.e. those which are not marked). */
5780 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
5781 if (AT_class (d_attr) == dw_val_class_die_ref
5782 && AT_ref (d_attr)->die_mark == 0)
5783 {
5784 if (AT_ref (d_attr)->die_symbol == 0)
5785 abort ();
5786
5787 set_AT_ref_external (d_attr, 1);
5788 }
5789
5790 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
5791 {
5792 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
5793
5794 if (abbrev->die_tag == die->die_tag)
5795 {
5796 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
5797 {
5798 a_attr = abbrev->die_attr;
5799 d_attr = die->die_attr;
5800
5801 while (a_attr != NULL && d_attr != NULL)
5802 {
5803 if ((a_attr->dw_attr != d_attr->dw_attr)
5804 || (value_format (a_attr) != value_format (d_attr)))
5805 break;
5806
5807 a_attr = a_attr->dw_attr_next;
5808 d_attr = d_attr->dw_attr_next;
5809 }
5810
5811 if (a_attr == NULL && d_attr == NULL)
5812 break;
5813 }
5814 }
5815 }
5816
5817 if (abbrev_id >= abbrev_die_table_in_use)
5818 {
5819 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
5820 {
5821 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
5822 abbrev_die_table
5823 = (dw_die_ref *) xrealloc (abbrev_die_table,
5824 sizeof (dw_die_ref) * n_alloc);
5825
5826 memset ((char *) &abbrev_die_table[abbrev_die_table_allocated], 0,
5827 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
5828 abbrev_die_table_allocated = n_alloc;
5829 }
5830
5831 ++abbrev_die_table_in_use;
5832 abbrev_die_table[abbrev_id] = die;
5833 }
5834
5835 die->die_abbrev = abbrev_id;
5836 for (c = die->die_child; c != NULL; c = c->die_sib)
5837 build_abbrev_table (c);
5838 }
5839 \f
5840 /* Return the power-of-two number of bytes necessary to represent VALUE. */
5841
5842 static int
5843 constant_size (value)
5844 long unsigned value;
5845 {
5846 int log;
5847
5848 if (value == 0)
5849 log = 0;
5850 else
5851 log = floor_log2 (value);
5852
5853 log = log / 8;
5854 log = 1 << (floor_log2 (log) + 1);
5855
5856 return log;
5857 }
5858
5859 /* Return the size of a DIE as it is represented in the
5860 .debug_info section. */
5861
5862 static unsigned long
5863 size_of_die (die)
5864 dw_die_ref die;
5865 {
5866 unsigned long size = 0;
5867 dw_attr_ref a;
5868
5869 size += size_of_uleb128 (die->die_abbrev);
5870 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5871 {
5872 switch (AT_class (a))
5873 {
5874 case dw_val_class_addr:
5875 size += DWARF2_ADDR_SIZE;
5876 break;
5877 case dw_val_class_offset:
5878 size += DWARF_OFFSET_SIZE;
5879 break;
5880 case dw_val_class_loc:
5881 {
5882 unsigned long lsize = size_of_locs (AT_loc (a));
5883
5884 /* Block length. */
5885 size += constant_size (lsize);
5886 size += lsize;
5887 }
5888 break;
5889 case dw_val_class_loc_list:
5890 size += DWARF_OFFSET_SIZE;
5891 break;
5892 case dw_val_class_range_list:
5893 size += DWARF_OFFSET_SIZE;
5894 break;
5895 case dw_val_class_const:
5896 size += size_of_sleb128 (AT_int (a));
5897 break;
5898 case dw_val_class_unsigned_const:
5899 size += constant_size (AT_unsigned (a));
5900 break;
5901 case dw_val_class_long_long:
5902 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
5903 break;
5904 case dw_val_class_float:
5905 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
5906 break;
5907 case dw_val_class_flag:
5908 size += 1;
5909 break;
5910 case dw_val_class_die_ref:
5911 size += DWARF_OFFSET_SIZE;
5912 break;
5913 case dw_val_class_fde_ref:
5914 size += DWARF_OFFSET_SIZE;
5915 break;
5916 case dw_val_class_lbl_id:
5917 size += DWARF2_ADDR_SIZE;
5918 break;
5919 case dw_val_class_lbl_offset:
5920 size += DWARF_OFFSET_SIZE;
5921 break;
5922 case dw_val_class_str:
5923 if (AT_string_form (a) == DW_FORM_strp)
5924 size += DWARF_OFFSET_SIZE;
5925 else
5926 size += HT_LEN (&a->dw_attr_val.v.val_str->id) + 1;
5927 break;
5928 default:
5929 abort ();
5930 }
5931 }
5932
5933 return size;
5934 }
5935
5936 /* Size the debugging information associated with a given DIE. Visits the
5937 DIE's children recursively. Updates the global variable next_die_offset, on
5938 each time through. Uses the current value of next_die_offset to update the
5939 die_offset field in each DIE. */
5940
5941 static void
5942 calc_die_sizes (die)
5943 dw_die_ref die;
5944 {
5945 dw_die_ref c;
5946
5947 die->die_offset = next_die_offset;
5948 next_die_offset += size_of_die (die);
5949
5950 for (c = die->die_child; c != NULL; c = c->die_sib)
5951 calc_die_sizes (c);
5952
5953 if (die->die_child != NULL)
5954 /* Count the null byte used to terminate sibling lists. */
5955 next_die_offset += 1;
5956 }
5957
5958 /* Set the marks for a die and its children. We do this so
5959 that we know whether or not a reference needs to use FORM_ref_addr; only
5960 DIEs in the same CU will be marked. We used to clear out the offset
5961 and use that as the flag, but ran into ordering problems. */
5962
5963 static void
5964 mark_dies (die)
5965 dw_die_ref die;
5966 {
5967 dw_die_ref c;
5968
5969 die->die_mark = 1;
5970 for (c = die->die_child; c; c = c->die_sib)
5971 mark_dies (c);
5972 }
5973
5974 /* Clear the marks for a die and its children. */
5975
5976 static void
5977 unmark_dies (die)
5978 dw_die_ref die;
5979 {
5980 dw_die_ref c;
5981
5982 die->die_mark = 0;
5983 for (c = die->die_child; c; c = c->die_sib)
5984 unmark_dies (c);
5985 }
5986
5987 /* Return the size of the .debug_pubnames table generated for the
5988 compilation unit. */
5989
5990 static unsigned long
5991 size_of_pubnames ()
5992 {
5993 unsigned long size;
5994 unsigned i;
5995
5996 size = DWARF_PUBNAMES_HEADER_SIZE;
5997 for (i = 0; i < pubname_table_in_use; i++)
5998 {
5999 pubname_ref p = &pubname_table[i];
6000 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6001 }
6002
6003 size += DWARF_OFFSET_SIZE;
6004 return size;
6005 }
6006
6007 /* Return the size of the information in the .debug_aranges section. */
6008
6009 static unsigned long
6010 size_of_aranges ()
6011 {
6012 unsigned long size;
6013
6014 size = DWARF_ARANGES_HEADER_SIZE;
6015
6016 /* Count the address/length pair for this compilation unit. */
6017 size += 2 * DWARF2_ADDR_SIZE;
6018 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6019
6020 /* Count the two zero words used to terminated the address range table. */
6021 size += 2 * DWARF2_ADDR_SIZE;
6022 return size;
6023 }
6024 \f
6025 /* Select the encoding of an attribute value. */
6026
6027 static enum dwarf_form
6028 value_format (a)
6029 dw_attr_ref a;
6030 {
6031 switch (a->dw_attr_val.val_class)
6032 {
6033 case dw_val_class_addr:
6034 return DW_FORM_addr;
6035 case dw_val_class_range_list:
6036 case dw_val_class_offset:
6037 if (DWARF_OFFSET_SIZE == 4)
6038 return DW_FORM_data4;
6039 if (DWARF_OFFSET_SIZE == 8)
6040 return DW_FORM_data8;
6041 abort ();
6042 case dw_val_class_loc_list:
6043 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6044 .debug_loc section */
6045 return DW_FORM_data4;
6046 case dw_val_class_loc:
6047 switch (constant_size (size_of_locs (AT_loc (a))))
6048 {
6049 case 1:
6050 return DW_FORM_block1;
6051 case 2:
6052 return DW_FORM_block2;
6053 default:
6054 abort ();
6055 }
6056 case dw_val_class_const:
6057 return DW_FORM_sdata;
6058 case dw_val_class_unsigned_const:
6059 switch (constant_size (AT_unsigned (a)))
6060 {
6061 case 1:
6062 return DW_FORM_data1;
6063 case 2:
6064 return DW_FORM_data2;
6065 case 4:
6066 return DW_FORM_data4;
6067 case 8:
6068 return DW_FORM_data8;
6069 default:
6070 abort ();
6071 }
6072 case dw_val_class_long_long:
6073 return DW_FORM_block1;
6074 case dw_val_class_float:
6075 return DW_FORM_block1;
6076 case dw_val_class_flag:
6077 return DW_FORM_flag;
6078 case dw_val_class_die_ref:
6079 if (AT_ref_external (a))
6080 return DW_FORM_ref_addr;
6081 else
6082 return DW_FORM_ref;
6083 case dw_val_class_fde_ref:
6084 return DW_FORM_data;
6085 case dw_val_class_lbl_id:
6086 return DW_FORM_addr;
6087 case dw_val_class_lbl_offset:
6088 return DW_FORM_data;
6089 case dw_val_class_str:
6090 return AT_string_form (a);
6091
6092 default:
6093 abort ();
6094 }
6095 }
6096
6097 /* Output the encoding of an attribute value. */
6098
6099 static void
6100 output_value_format (a)
6101 dw_attr_ref a;
6102 {
6103 enum dwarf_form form = value_format (a);
6104
6105 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6106 }
6107
6108 /* Output the .debug_abbrev section which defines the DIE abbreviation
6109 table. */
6110
6111 static void
6112 output_abbrev_section ()
6113 {
6114 unsigned long abbrev_id;
6115
6116 dw_attr_ref a_attr;
6117
6118 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6119 {
6120 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6121
6122 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6123 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6124 dwarf_tag_name (abbrev->die_tag));
6125
6126 if (abbrev->die_child != NULL)
6127 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6128 else
6129 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6130
6131 for (a_attr = abbrev->die_attr; a_attr != NULL;
6132 a_attr = a_attr->dw_attr_next)
6133 {
6134 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6135 dwarf_attr_name (a_attr->dw_attr));
6136 output_value_format (a_attr);
6137 }
6138
6139 dw2_asm_output_data (1, 0, NULL);
6140 dw2_asm_output_data (1, 0, NULL);
6141 }
6142
6143 /* Terminate the table. */
6144 dw2_asm_output_data (1, 0, NULL);
6145 }
6146
6147 /* Output a symbol we can use to refer to this DIE from another CU. */
6148
6149 static inline void
6150 output_die_symbol (die)
6151 dw_die_ref die;
6152 {
6153 char *sym = die->die_symbol;
6154
6155 if (sym == 0)
6156 return;
6157
6158 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6159 /* We make these global, not weak; if the target doesn't support
6160 .linkonce, it doesn't support combining the sections, so debugging
6161 will break. */
6162 ASM_GLOBALIZE_LABEL (asm_out_file, sym);
6163
6164 ASM_OUTPUT_LABEL (asm_out_file, sym);
6165 }
6166
6167 /* Return a new location list, given the begin and end range, and the
6168 expression. gensym tells us whether to generate a new internal symbol for
6169 this location list node, which is done for the head of the list only. */
6170
6171 static inline dw_loc_list_ref
6172 new_loc_list (expr, begin, end, section, gensym)
6173 dw_loc_descr_ref expr;
6174 const char *begin;
6175 const char *end;
6176 const char *section;
6177 unsigned gensym;
6178 {
6179 dw_loc_list_ref retlist
6180 = (dw_loc_list_ref) xcalloc (1, sizeof (dw_loc_list_node));
6181
6182 retlist->begin = begin;
6183 retlist->end = end;
6184 retlist->expr = expr;
6185 retlist->section = section;
6186 if (gensym)
6187 retlist->ll_symbol = gen_internal_sym ("LLST");
6188
6189 return retlist;
6190 }
6191
6192 /* Add a location description expression to a location list */
6193
6194 static inline void
6195 add_loc_descr_to_loc_list (list_head, descr, begin, end, section)
6196 dw_loc_list_ref *list_head;
6197 dw_loc_descr_ref descr;
6198 const char *begin;
6199 const char *end;
6200 const char *section;
6201 {
6202 dw_loc_list_ref *d;
6203
6204 /* Find the end of the chain. */
6205 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6206 ;
6207
6208 /* Add a new location list node to the list */
6209 *d = new_loc_list (descr, begin, end, section, 0);
6210 }
6211
6212 /* Output the location list given to us */
6213
6214 static void
6215 output_loc_list (list_head)
6216 dw_loc_list_ref list_head;
6217 {
6218 dw_loc_list_ref curr = list_head;
6219
6220 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6221
6222 /* ??? This shouldn't be needed now that we've forced the
6223 compilation unit base address to zero when there is code
6224 in more than one section. */
6225 if (strcmp (curr->section, ".text") == 0)
6226 {
6227 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6228 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT) 0,
6229 "Location list base address specifier fake entry");
6230 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6231 "Location list base address specifier base");
6232 }
6233
6234 for (curr = list_head; curr != NULL; curr=curr->dw_loc_next)
6235 {
6236 unsigned long size;
6237
6238 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6239 "Location list begin address (%s)",
6240 list_head->ll_symbol);
6241 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6242 "Location list end address (%s)",
6243 list_head->ll_symbol);
6244 size = size_of_locs (curr->expr);
6245
6246 /* Output the block length for this list of location operations. */
6247 if (size > 0xffff)
6248 abort ();
6249 dw2_asm_output_data (2, size, "%s", "Location expression size");
6250
6251 output_loc_sequence (curr->expr);
6252 }
6253
6254 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6255 "Location list terminator begin (%s)",
6256 list_head->ll_symbol);
6257 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6258 "Location list terminator end (%s)",
6259 list_head->ll_symbol);
6260 }
6261
6262 /* Output the DIE and its attributes. Called recursively to generate
6263 the definitions of each child DIE. */
6264
6265 static void
6266 output_die (die)
6267 dw_die_ref die;
6268 {
6269 dw_attr_ref a;
6270 dw_die_ref c;
6271 unsigned long size;
6272
6273 /* If someone in another CU might refer to us, set up a symbol for
6274 them to point to. */
6275 if (die->die_symbol)
6276 output_die_symbol (die);
6277
6278 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6279 die->die_offset, dwarf_tag_name (die->die_tag));
6280
6281 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6282 {
6283 const char *name = dwarf_attr_name (a->dw_attr);
6284
6285 switch (AT_class (a))
6286 {
6287 case dw_val_class_addr:
6288 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6289 break;
6290
6291 case dw_val_class_offset:
6292 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6293 "%s", name);
6294 break;
6295
6296 case dw_val_class_range_list:
6297 {
6298 char *p = strchr (ranges_section_label, '\0');
6299
6300 sprintf (p, "+0x%lx", a->dw_attr_val.v.val_offset);
6301 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6302 "%s", name);
6303 *p = '\0';
6304 }
6305 break;
6306
6307 case dw_val_class_loc:
6308 size = size_of_locs (AT_loc (a));
6309
6310 /* Output the block length for this list of location operations. */
6311 dw2_asm_output_data (constant_size (size), size, "%s", name);
6312
6313 output_loc_sequence (AT_loc (a));
6314 break;
6315
6316 case dw_val_class_const:
6317 /* ??? It would be slightly more efficient to use a scheme like is
6318 used for unsigned constants below, but gdb 4.x does not sign
6319 extend. Gdb 5.x does sign extend. */
6320 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6321 break;
6322
6323 case dw_val_class_unsigned_const:
6324 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6325 AT_unsigned (a), "%s", name);
6326 break;
6327
6328 case dw_val_class_long_long:
6329 {
6330 unsigned HOST_WIDE_INT first, second;
6331
6332 dw2_asm_output_data (1,
6333 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6334 "%s", name);
6335
6336 if (WORDS_BIG_ENDIAN)
6337 {
6338 first = a->dw_attr_val.v.val_long_long.hi;
6339 second = a->dw_attr_val.v.val_long_long.low;
6340 }
6341 else
6342 {
6343 first = a->dw_attr_val.v.val_long_long.low;
6344 second = a->dw_attr_val.v.val_long_long.hi;
6345 }
6346
6347 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6348 first, "long long constant");
6349 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6350 second, NULL);
6351 }
6352 break;
6353
6354 case dw_val_class_float:
6355 {
6356 unsigned int i;
6357
6358 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6359 "%s", name);
6360
6361 for (i = 0; i < a->dw_attr_val.v.val_float.length; i++)
6362 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6363 "fp constant word %u", i);
6364 break;
6365 }
6366
6367 case dw_val_class_flag:
6368 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6369 break;
6370
6371 case dw_val_class_loc_list:
6372 {
6373 char *sym = AT_loc_list (a)->ll_symbol;
6374
6375 if (sym == 0)
6376 abort ();
6377 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym,
6378 loc_section_label, "%s", name);
6379 }
6380 break;
6381
6382 case dw_val_class_die_ref:
6383 if (AT_ref_external (a))
6384 {
6385 char *sym = AT_ref (a)->die_symbol;
6386
6387 if (sym == 0)
6388 abort ();
6389 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6390 }
6391 else if (AT_ref (a)->die_offset == 0)
6392 abort ();
6393 else
6394 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6395 "%s", name);
6396 break;
6397
6398 case dw_val_class_fde_ref:
6399 {
6400 char l1[20];
6401
6402 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6403 a->dw_attr_val.v.val_fde_index * 2);
6404 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6405 }
6406 break;
6407
6408 case dw_val_class_lbl_id:
6409 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6410 break;
6411
6412 case dw_val_class_lbl_offset:
6413 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6414 break;
6415
6416 case dw_val_class_str:
6417 if (AT_string_form (a) == DW_FORM_strp)
6418 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6419 a->dw_attr_val.v.val_str->label,
6420 "%s: \"%s\"", name, AT_string (a));
6421 else
6422 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6423 break;
6424
6425 default:
6426 abort ();
6427 }
6428 }
6429
6430 for (c = die->die_child; c != NULL; c = c->die_sib)
6431 output_die (c);
6432
6433 /* Add null byte to terminate sibling list. */
6434 if (die->die_child != NULL)
6435 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6436 die->die_offset);
6437 }
6438
6439 /* Output the compilation unit that appears at the beginning of the
6440 .debug_info section, and precedes the DIE descriptions. */
6441
6442 static void
6443 output_compilation_unit_header ()
6444 {
6445 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset - DWARF_OFFSET_SIZE,
6446 "Length of Compilation Unit Info");
6447 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6448 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6449 "Offset Into Abbrev. Section");
6450 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6451 }
6452
6453 /* Output the compilation unit DIE and its children. */
6454
6455 static void
6456 output_comp_unit (die)
6457 dw_die_ref die;
6458 {
6459 const char *secname;
6460
6461 /* Even if there are no children of this DIE, we must output the information
6462 about the compilation unit. Otherwise, on an empty translation unit, we
6463 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6464 will then complain when examining the file. First mark all the DIEs in
6465 this CU so we know which get local refs. */
6466 mark_dies (die);
6467
6468 build_abbrev_table (die);
6469
6470 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6471 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6472 calc_die_sizes (die);
6473
6474 if (die->die_symbol)
6475 {
6476 char *tmp = (char *) alloca (strlen (die->die_symbol) + 24);
6477
6478 sprintf (tmp, ".gnu.linkonce.wi.%s", die->die_symbol);
6479 secname = tmp;
6480 die->die_symbol = NULL;
6481 }
6482 else
6483 secname = (const char *) DEBUG_INFO_SECTION;
6484
6485 /* Output debugging information. */
6486 named_section_flags (secname, SECTION_DEBUG);
6487 output_compilation_unit_header ();
6488 output_die (die);
6489
6490 /* Leave the marks on the main CU, so we can check them in
6491 output_pubnames. */
6492 if (die->die_symbol)
6493 unmark_dies (die);
6494 }
6495
6496 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
6497 output of lang_hooks.decl_printable_name for C++ looks like
6498 "A::f(int)". Let's drop the argument list, and maybe the scope. */
6499
6500 static const char *
6501 dwarf2_name (decl, scope)
6502 tree decl;
6503 int scope;
6504 {
6505 return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
6506 }
6507
6508 /* Add a new entry to .debug_pubnames if appropriate. */
6509
6510 static void
6511 add_pubname (decl, die)
6512 tree decl;
6513 dw_die_ref die;
6514 {
6515 pubname_ref p;
6516
6517 if (! TREE_PUBLIC (decl))
6518 return;
6519
6520 if (pubname_table_in_use == pubname_table_allocated)
6521 {
6522 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
6523 pubname_table
6524 = (pubname_ref) xrealloc (pubname_table,
6525 (pubname_table_allocated
6526 * sizeof (pubname_entry)));
6527 }
6528
6529 p = &pubname_table[pubname_table_in_use++];
6530 p->die = die;
6531 p->name = xstrdup (dwarf2_name (decl, 1));
6532 }
6533
6534 /* Output the public names table used to speed up access to externally
6535 visible names. For now, only generate entries for externally
6536 visible procedures. */
6537
6538 static void
6539 output_pubnames ()
6540 {
6541 unsigned i;
6542 unsigned long pubnames_length = size_of_pubnames ();
6543
6544 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
6545 "Length of Public Names Info");
6546 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6547 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6548 "Offset of Compilation Unit Info");
6549 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
6550 "Compilation Unit Length");
6551
6552 for (i = 0; i < pubname_table_in_use; i++)
6553 {
6554 pubname_ref pub = &pubname_table[i];
6555
6556 /* We shouldn't see pubnames for DIEs outside of the main CU. */
6557 if (pub->die->die_mark == 0)
6558 abort ();
6559
6560 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
6561 "DIE offset");
6562
6563 dw2_asm_output_nstring (pub->name, -1, "external name");
6564 }
6565
6566 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
6567 }
6568
6569 /* Add a new entry to .debug_aranges if appropriate. */
6570
6571 static void
6572 add_arange (decl, die)
6573 tree decl;
6574 dw_die_ref die;
6575 {
6576 if (! DECL_SECTION_NAME (decl))
6577 return;
6578
6579 if (arange_table_in_use == arange_table_allocated)
6580 {
6581 arange_table_allocated += ARANGE_TABLE_INCREMENT;
6582 arange_table = (dw_die_ref *)
6583 xrealloc (arange_table, arange_table_allocated * sizeof (dw_die_ref));
6584 }
6585
6586 arange_table[arange_table_in_use++] = die;
6587 }
6588
6589 /* Output the information that goes into the .debug_aranges table.
6590 Namely, define the beginning and ending address range of the
6591 text section generated for this compilation unit. */
6592
6593 static void
6594 output_aranges ()
6595 {
6596 unsigned i;
6597 unsigned long aranges_length = size_of_aranges ();
6598
6599 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
6600 "Length of Address Ranges Info");
6601 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6602 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6603 "Offset of Compilation Unit Info");
6604 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
6605 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
6606
6607 /* We need to align to twice the pointer size here. */
6608 if (DWARF_ARANGES_PAD_SIZE)
6609 {
6610 /* Pad using a 2 byte words so that padding is correct for any
6611 pointer size. */
6612 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
6613 2 * DWARF2_ADDR_SIZE);
6614 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
6615 dw2_asm_output_data (2, 0, NULL);
6616 }
6617
6618 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
6619 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
6620 text_section_label, "Length");
6621
6622 for (i = 0; i < arange_table_in_use; i++)
6623 {
6624 dw_die_ref die = arange_table[i];
6625
6626 /* We shouldn't see aranges for DIEs outside of the main CU. */
6627 if (die->die_mark == 0)
6628 abort ();
6629
6630 if (die->die_tag == DW_TAG_subprogram)
6631 {
6632 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
6633 "Address");
6634 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
6635 get_AT_low_pc (die), "Length");
6636 }
6637 else
6638 {
6639 /* A static variable; extract the symbol from DW_AT_location.
6640 Note that this code isn't currently hit, as we only emit
6641 aranges for functions (jason 9/23/99). */
6642 dw_attr_ref a = get_AT (die, DW_AT_location);
6643 dw_loc_descr_ref loc;
6644
6645 if (! a || AT_class (a) != dw_val_class_loc)
6646 abort ();
6647
6648 loc = AT_loc (a);
6649 if (loc->dw_loc_opc != DW_OP_addr)
6650 abort ();
6651
6652 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
6653 loc->dw_loc_oprnd1.v.val_addr, "Address");
6654 dw2_asm_output_data (DWARF2_ADDR_SIZE,
6655 get_AT_unsigned (die, DW_AT_byte_size),
6656 "Length");
6657 }
6658 }
6659
6660 /* Output the terminator words. */
6661 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6662 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6663 }
6664
6665 /* Add a new entry to .debug_ranges. Return the offset at which it
6666 was placed. */
6667
6668 static unsigned int
6669 add_ranges (block)
6670 tree block;
6671 {
6672 unsigned int in_use = ranges_table_in_use;
6673
6674 if (in_use == ranges_table_allocated)
6675 {
6676 ranges_table_allocated += RANGES_TABLE_INCREMENT;
6677 ranges_table = (dw_ranges_ref)
6678 xrealloc (ranges_table, (ranges_table_allocated
6679 * sizeof (struct dw_ranges_struct)));
6680 }
6681
6682 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
6683 ranges_table_in_use = in_use + 1;
6684
6685 return in_use * 2 * DWARF2_ADDR_SIZE;
6686 }
6687
6688 static void
6689 output_ranges ()
6690 {
6691 unsigned i;
6692 static const char *const start_fmt = "Offset 0x%x";
6693 const char *fmt = start_fmt;
6694
6695 for (i = 0; i < ranges_table_in_use; i++)
6696 {
6697 int block_num = ranges_table[i].block_num;
6698
6699 if (block_num)
6700 {
6701 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
6702 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
6703
6704 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
6705 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
6706
6707 /* If all code is in the text section, then the compilation
6708 unit base address defaults to DW_AT_low_pc, which is the
6709 base of the text section. */
6710 if (separate_line_info_table_in_use == 0)
6711 {
6712 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
6713 text_section_label,
6714 fmt, i * 2 * DWARF2_ADDR_SIZE);
6715 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
6716 text_section_label, NULL);
6717 }
6718
6719 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
6720 compilation unit base address to zero, which allows us to
6721 use absolute addresses, and not worry about whether the
6722 target supports cross-section arithmetic. */
6723 else
6724 {
6725 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
6726 fmt, i * 2 * DWARF2_ADDR_SIZE);
6727 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
6728 }
6729
6730 fmt = NULL;
6731 }
6732 else
6733 {
6734 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6735 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6736 fmt = start_fmt;
6737 }
6738 }
6739 }
6740
6741 /* Data structure containing information about input files. */
6742 struct file_info
6743 {
6744 char *path; /* Complete file name. */
6745 char *fname; /* File name part. */
6746 int length; /* Length of entire string. */
6747 int file_idx; /* Index in input file table. */
6748 int dir_idx; /* Index in directory table. */
6749 };
6750
6751 /* Data structure containing information about directories with source
6752 files. */
6753 struct dir_info
6754 {
6755 char *path; /* Path including directory name. */
6756 int length; /* Path length. */
6757 int prefix; /* Index of directory entry which is a prefix. */
6758 int count; /* Number of files in this directory. */
6759 int dir_idx; /* Index of directory used as base. */
6760 int used; /* Used in the end? */
6761 };
6762
6763 /* Callback function for file_info comparison. We sort by looking at
6764 the directories in the path. */
6765
6766 static int
6767 file_info_cmp (p1, p2)
6768 const void *p1;
6769 const void *p2;
6770 {
6771 const struct file_info *s1 = p1;
6772 const struct file_info *s2 = p2;
6773 unsigned char *cp1;
6774 unsigned char *cp2;
6775
6776 /* Take care of file names without directories. We need to make sure that
6777 we return consistent values to qsort since some will get confused if
6778 we return the same value when identical operands are passed in opposite
6779 orders. So if neither has a directory, return 0 and otherwise return
6780 1 or -1 depending on which one has the directory. */
6781 if ((s1->path == s1->fname || s2->path == s2->fname))
6782 return (s2->path == s2->fname) - (s1->path == s1->fname);
6783
6784 cp1 = (unsigned char *) s1->path;
6785 cp2 = (unsigned char *) s2->path;
6786
6787 while (1)
6788 {
6789 ++cp1;
6790 ++cp2;
6791 /* Reached the end of the first path? If so, handle like above. */
6792 if ((cp1 == (unsigned char *) s1->fname)
6793 || (cp2 == (unsigned char *) s2->fname))
6794 return ((cp2 == (unsigned char *) s2->fname)
6795 - (cp1 == (unsigned char *) s1->fname));
6796
6797 /* Character of current path component the same? */
6798 else if (*cp1 != *cp2)
6799 return *cp1 - *cp2;
6800 }
6801 }
6802
6803 /* Output the directory table and the file name table. We try to minimize
6804 the total amount of memory needed. A heuristic is used to avoid large
6805 slowdowns with many input files. */
6806
6807 static void
6808 output_file_names ()
6809 {
6810 struct file_info *files;
6811 struct dir_info *dirs;
6812 int *saved;
6813 int *savehere;
6814 int *backmap;
6815 int ndirs;
6816 int idx_offset;
6817 int i;
6818 int idx;
6819
6820 /* Allocate the various arrays we need. */
6821 files = (struct file_info *) alloca (file_table.in_use
6822 * sizeof (struct file_info));
6823 dirs = (struct dir_info *) alloca (file_table.in_use
6824 * sizeof (struct dir_info));
6825
6826 /* Sort the file names. */
6827 for (i = 1; i < (int) file_table.in_use; i++)
6828 {
6829 char *f;
6830
6831 /* Skip all leading "./". */
6832 f = file_table.table[i];
6833 while (f[0] == '.' && f[1] == '/')
6834 f += 2;
6835
6836 /* Create a new array entry. */
6837 files[i].path = f;
6838 files[i].length = strlen (f);
6839 files[i].file_idx = i;
6840
6841 /* Search for the file name part. */
6842 f = strrchr (f, '/');
6843 files[i].fname = f == NULL ? files[i].path : f + 1;
6844 }
6845
6846 qsort (files + 1, file_table.in_use - 1, sizeof (files[0]), file_info_cmp);
6847
6848 /* Find all the different directories used. */
6849 dirs[0].path = files[1].path;
6850 dirs[0].length = files[1].fname - files[1].path;
6851 dirs[0].prefix = -1;
6852 dirs[0].count = 1;
6853 dirs[0].dir_idx = 0;
6854 dirs[0].used = 0;
6855 files[1].dir_idx = 0;
6856 ndirs = 1;
6857
6858 for (i = 2; i < (int) file_table.in_use; i++)
6859 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
6860 && memcmp (dirs[ndirs - 1].path, files[i].path,
6861 dirs[ndirs - 1].length) == 0)
6862 {
6863 /* Same directory as last entry. */
6864 files[i].dir_idx = ndirs - 1;
6865 ++dirs[ndirs - 1].count;
6866 }
6867 else
6868 {
6869 int j;
6870
6871 /* This is a new directory. */
6872 dirs[ndirs].path = files[i].path;
6873 dirs[ndirs].length = files[i].fname - files[i].path;
6874 dirs[ndirs].count = 1;
6875 dirs[ndirs].dir_idx = ndirs;
6876 dirs[ndirs].used = 0;
6877 files[i].dir_idx = ndirs;
6878
6879 /* Search for a prefix. */
6880 dirs[ndirs].prefix = -1;
6881 for (j = 0; j < ndirs; j++)
6882 if (dirs[j].length < dirs[ndirs].length
6883 && dirs[j].length > 1
6884 && (dirs[ndirs].prefix == -1
6885 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
6886 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
6887 dirs[ndirs].prefix = j;
6888
6889 ++ndirs;
6890 }
6891
6892 /* Now to the actual work. We have to find a subset of the directories which
6893 allow expressing the file name using references to the directory table
6894 with the least amount of characters. We do not do an exhaustive search
6895 where we would have to check out every combination of every single
6896 possible prefix. Instead we use a heuristic which provides nearly optimal
6897 results in most cases and never is much off. */
6898 saved = (int *) alloca (ndirs * sizeof (int));
6899 savehere = (int *) alloca (ndirs * sizeof (int));
6900
6901 memset (saved, '\0', ndirs * sizeof (saved[0]));
6902 for (i = 0; i < ndirs; i++)
6903 {
6904 int j;
6905 int total;
6906
6907 /* We can always save some space for the current directory. But this
6908 does not mean it will be enough to justify adding the directory. */
6909 savehere[i] = dirs[i].length;
6910 total = (savehere[i] - saved[i]) * dirs[i].count;
6911
6912 for (j = i + 1; j < ndirs; j++)
6913 {
6914 savehere[j] = 0;
6915 if (saved[j] < dirs[i].length)
6916 {
6917 /* Determine whether the dirs[i] path is a prefix of the
6918 dirs[j] path. */
6919 int k;
6920
6921 k = dirs[j].prefix;
6922 while (k != -1 && k != i)
6923 k = dirs[k].prefix;
6924
6925 if (k == i)
6926 {
6927 /* Yes it is. We can possibly safe some memory but
6928 writing the filenames in dirs[j] relative to
6929 dirs[i]. */
6930 savehere[j] = dirs[i].length;
6931 total += (savehere[j] - saved[j]) * dirs[j].count;
6932 }
6933 }
6934 }
6935
6936 /* Check whether we can safe enough to justify adding the dirs[i]
6937 directory. */
6938 if (total > dirs[i].length + 1)
6939 {
6940 /* It's worthwhile adding. */
6941 for (j = i; j < ndirs; j++)
6942 if (savehere[j] > 0)
6943 {
6944 /* Remember how much we saved for this directory so far. */
6945 saved[j] = savehere[j];
6946
6947 /* Remember the prefix directory. */
6948 dirs[j].dir_idx = i;
6949 }
6950 }
6951 }
6952
6953 /* We have to emit them in the order they appear in the file_table array
6954 since the index is used in the debug info generation. To do this
6955 efficiently we generate a back-mapping of the indices first. */
6956 backmap = (int *) alloca (file_table.in_use * sizeof (int));
6957 for (i = 1; i < (int) file_table.in_use; i++)
6958 {
6959 backmap[files[i].file_idx] = i;
6960
6961 /* Mark this directory as used. */
6962 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
6963 }
6964
6965 /* That was it. We are ready to emit the information. First emit the
6966 directory name table. We have to make sure the first actually emitted
6967 directory name has index one; zero is reserved for the current working
6968 directory. Make sure we do not confuse these indices with the one for the
6969 constructed table (even though most of the time they are identical). */
6970 idx = 1;
6971 idx_offset = dirs[0].length > 0 ? 1 : 0;
6972 for (i = 1 - idx_offset; i < ndirs; i++)
6973 if (dirs[i].used != 0)
6974 {
6975 dirs[i].used = idx++;
6976 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
6977 "Directory Entry: 0x%x", dirs[i].used);
6978 }
6979
6980 dw2_asm_output_data (1, 0, "End directory table");
6981
6982 /* Correct the index for the current working directory entry if it
6983 exists. */
6984 if (idx_offset == 0)
6985 dirs[0].used = 0;
6986
6987 /* Now write all the file names. */
6988 for (i = 1; i < (int) file_table.in_use; i++)
6989 {
6990 int file_idx = backmap[i];
6991 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
6992
6993 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
6994 "File Entry: 0x%x", i);
6995
6996 /* Include directory index. */
6997 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
6998
6999 /* Modification time. */
7000 dw2_asm_output_data_uleb128 (0, NULL);
7001
7002 /* File length in bytes. */
7003 dw2_asm_output_data_uleb128 (0, NULL);
7004 }
7005
7006 dw2_asm_output_data (1, 0, "End file name table");
7007 }
7008
7009
7010 /* Output the source line number correspondence information. This
7011 information goes into the .debug_line section. */
7012
7013 static void
7014 output_line_info ()
7015 {
7016 char l1[20], l2[20], p1[20], p2[20];
7017 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7018 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7019 unsigned opc;
7020 unsigned n_op_args;
7021 unsigned long lt_index;
7022 unsigned long current_line;
7023 long line_offset;
7024 long line_delta;
7025 unsigned long current_file;
7026 unsigned long function;
7027
7028 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7029 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7030 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7031 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7032
7033 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7034 "Length of Source Line Info");
7035 ASM_OUTPUT_LABEL (asm_out_file, l1);
7036
7037 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7038 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7039 ASM_OUTPUT_LABEL (asm_out_file, p1);
7040
7041 /* Define the architecture-dependent minimum instruction length (in
7042 bytes). In this implementation of DWARF, this field is used for
7043 information purposes only. Since GCC generates assembly language,
7044 we have no a priori knowledge of how many instruction bytes are
7045 generated for each source line, and therefore can use only the
7046 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7047 commands. Accordingly, we fix this as `1', which is "correct
7048 enough" for all architectures, and don't let the target override. */
7049 dw2_asm_output_data (1, 1,
7050 "Minimum Instruction Length");
7051
7052 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7053 "Default is_stmt_start flag");
7054 dw2_asm_output_data (1, DWARF_LINE_BASE,
7055 "Line Base Value (Special Opcodes)");
7056 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7057 "Line Range Value (Special Opcodes)");
7058 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7059 "Special Opcode Base");
7060
7061 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7062 {
7063 switch (opc)
7064 {
7065 case DW_LNS_advance_pc:
7066 case DW_LNS_advance_line:
7067 case DW_LNS_set_file:
7068 case DW_LNS_set_column:
7069 case DW_LNS_fixed_advance_pc:
7070 n_op_args = 1;
7071 break;
7072 default:
7073 n_op_args = 0;
7074 break;
7075 }
7076
7077 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7078 opc, n_op_args);
7079 }
7080
7081 /* Write out the information about the files we use. */
7082 output_file_names ();
7083 ASM_OUTPUT_LABEL (asm_out_file, p2);
7084
7085 /* We used to set the address register to the first location in the text
7086 section here, but that didn't accomplish anything since we already
7087 have a line note for the opening brace of the first function. */
7088
7089 /* Generate the line number to PC correspondence table, encoded as
7090 a series of state machine operations. */
7091 current_file = 1;
7092 current_line = 1;
7093 strcpy (prev_line_label, text_section_label);
7094 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7095 {
7096 dw_line_info_ref line_info = &line_info_table[lt_index];
7097
7098 #if 0
7099 /* Disable this optimization for now; GDB wants to see two line notes
7100 at the beginning of a function so it can find the end of the
7101 prologue. */
7102
7103 /* Don't emit anything for redundant notes. Just updating the
7104 address doesn't accomplish anything, because we already assume
7105 that anything after the last address is this line. */
7106 if (line_info->dw_line_num == current_line
7107 && line_info->dw_file_num == current_file)
7108 continue;
7109 #endif
7110
7111 /* Emit debug info for the address of the current line.
7112
7113 Unfortunately, we have little choice here currently, and must always
7114 use the most general form. GCC does not know the address delta
7115 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7116 attributes which will give an upper bound on the address range. We
7117 could perhaps use length attributes to determine when it is safe to
7118 use DW_LNS_fixed_advance_pc. */
7119
7120 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7121 if (0)
7122 {
7123 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7124 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7125 "DW_LNS_fixed_advance_pc");
7126 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7127 }
7128 else
7129 {
7130 /* This can handle any delta. This takes
7131 4+DWARF2_ADDR_SIZE bytes. */
7132 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7133 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7134 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7135 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7136 }
7137
7138 strcpy (prev_line_label, line_label);
7139
7140 /* Emit debug info for the source file of the current line, if
7141 different from the previous line. */
7142 if (line_info->dw_file_num != current_file)
7143 {
7144 current_file = line_info->dw_file_num;
7145 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7146 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7147 file_table.table[current_file]);
7148 }
7149
7150 /* Emit debug info for the current line number, choosing the encoding
7151 that uses the least amount of space. */
7152 if (line_info->dw_line_num != current_line)
7153 {
7154 line_offset = line_info->dw_line_num - current_line;
7155 line_delta = line_offset - DWARF_LINE_BASE;
7156 current_line = line_info->dw_line_num;
7157 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7158 /* This can handle deltas from -10 to 234, using the current
7159 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7160 takes 1 byte. */
7161 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7162 "line %lu", current_line);
7163 else
7164 {
7165 /* This can handle any delta. This takes at least 4 bytes,
7166 depending on the value being encoded. */
7167 dw2_asm_output_data (1, DW_LNS_advance_line,
7168 "advance to line %lu", current_line);
7169 dw2_asm_output_data_sleb128 (line_offset, NULL);
7170 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7171 }
7172 }
7173 else
7174 /* We still need to start a new row, so output a copy insn. */
7175 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7176 }
7177
7178 /* Emit debug info for the address of the end of the function. */
7179 if (0)
7180 {
7181 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7182 "DW_LNS_fixed_advance_pc");
7183 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7184 }
7185 else
7186 {
7187 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7188 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7189 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7190 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7191 }
7192
7193 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7194 dw2_asm_output_data_uleb128 (1, NULL);
7195 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7196
7197 function = 0;
7198 current_file = 1;
7199 current_line = 1;
7200 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7201 {
7202 dw_separate_line_info_ref line_info
7203 = &separate_line_info_table[lt_index];
7204
7205 #if 0
7206 /* Don't emit anything for redundant notes. */
7207 if (line_info->dw_line_num == current_line
7208 && line_info->dw_file_num == current_file
7209 && line_info->function == function)
7210 goto cont;
7211 #endif
7212
7213 /* Emit debug info for the address of the current line. If this is
7214 a new function, or the first line of a function, then we need
7215 to handle it differently. */
7216 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7217 lt_index);
7218 if (function != line_info->function)
7219 {
7220 function = line_info->function;
7221
7222 /* Set the address register to the first line in the function */
7223 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7224 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7225 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7226 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7227 }
7228 else
7229 {
7230 /* ??? See the DW_LNS_advance_pc comment above. */
7231 if (0)
7232 {
7233 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7234 "DW_LNS_fixed_advance_pc");
7235 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7236 }
7237 else
7238 {
7239 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7240 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7241 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7242 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7243 }
7244 }
7245
7246 strcpy (prev_line_label, line_label);
7247
7248 /* Emit debug info for the source file of the current line, if
7249 different from the previous line. */
7250 if (line_info->dw_file_num != current_file)
7251 {
7252 current_file = line_info->dw_file_num;
7253 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7254 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7255 file_table.table[current_file]);
7256 }
7257
7258 /* Emit debug info for the current line number, choosing the encoding
7259 that uses the least amount of space. */
7260 if (line_info->dw_line_num != current_line)
7261 {
7262 line_offset = line_info->dw_line_num - current_line;
7263 line_delta = line_offset - DWARF_LINE_BASE;
7264 current_line = line_info->dw_line_num;
7265 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7266 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7267 "line %lu", current_line);
7268 else
7269 {
7270 dw2_asm_output_data (1, DW_LNS_advance_line,
7271 "advance to line %lu", current_line);
7272 dw2_asm_output_data_sleb128 (line_offset, NULL);
7273 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7274 }
7275 }
7276 else
7277 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7278
7279 #if 0
7280 cont:
7281 #endif
7282
7283 lt_index++;
7284
7285 /* If we're done with a function, end its sequence. */
7286 if (lt_index == separate_line_info_table_in_use
7287 || separate_line_info_table[lt_index].function != function)
7288 {
7289 current_file = 1;
7290 current_line = 1;
7291
7292 /* Emit debug info for the address of the end of the function. */
7293 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7294 if (0)
7295 {
7296 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7297 "DW_LNS_fixed_advance_pc");
7298 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7299 }
7300 else
7301 {
7302 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7303 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7304 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7305 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7306 }
7307
7308 /* Output the marker for the end of this sequence. */
7309 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7310 dw2_asm_output_data_uleb128 (1, NULL);
7311 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7312 }
7313 }
7314
7315 /* Output the marker for the end of the line number info. */
7316 ASM_OUTPUT_LABEL (asm_out_file, l2);
7317 }
7318 \f
7319 /* Given a pointer to a tree node for some base type, return a pointer to
7320 a DIE that describes the given type.
7321
7322 This routine must only be called for GCC type nodes that correspond to
7323 Dwarf base (fundamental) types. */
7324
7325 static dw_die_ref
7326 base_type_die (type)
7327 tree type;
7328 {
7329 dw_die_ref base_type_result;
7330 const char *type_name;
7331 enum dwarf_type encoding;
7332 tree name = TYPE_NAME (type);
7333
7334 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7335 return 0;
7336
7337 if (name)
7338 {
7339 if (TREE_CODE (name) == TYPE_DECL)
7340 name = DECL_NAME (name);
7341
7342 type_name = IDENTIFIER_POINTER (name);
7343 }
7344 else
7345 type_name = "__unknown__";
7346
7347 switch (TREE_CODE (type))
7348 {
7349 case INTEGER_TYPE:
7350 /* Carefully distinguish the C character types, without messing
7351 up if the language is not C. Note that we check only for the names
7352 that contain spaces; other names might occur by coincidence in other
7353 languages. */
7354 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7355 && (type == char_type_node
7356 || ! strcmp (type_name, "signed char")
7357 || ! strcmp (type_name, "unsigned char"))))
7358 {
7359 if (TREE_UNSIGNED (type))
7360 encoding = DW_ATE_unsigned;
7361 else
7362 encoding = DW_ATE_signed;
7363 break;
7364 }
7365 /* else fall through. */
7366
7367 case CHAR_TYPE:
7368 /* GNU Pascal/Ada CHAR type. Not used in C. */
7369 if (TREE_UNSIGNED (type))
7370 encoding = DW_ATE_unsigned_char;
7371 else
7372 encoding = DW_ATE_signed_char;
7373 break;
7374
7375 case REAL_TYPE:
7376 encoding = DW_ATE_float;
7377 break;
7378
7379 /* Dwarf2 doesn't know anything about complex ints, so use
7380 a user defined type for it. */
7381 case COMPLEX_TYPE:
7382 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7383 encoding = DW_ATE_complex_float;
7384 else
7385 encoding = DW_ATE_lo_user;
7386 break;
7387
7388 case BOOLEAN_TYPE:
7389 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7390 encoding = DW_ATE_boolean;
7391 break;
7392
7393 default:
7394 /* No other TREE_CODEs are Dwarf fundamental types. */
7395 abort ();
7396 }
7397
7398 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7399 if (demangle_name_func)
7400 type_name = (*demangle_name_func) (type_name);
7401
7402 add_AT_string (base_type_result, DW_AT_name, type_name);
7403 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7404 int_size_in_bytes (type));
7405 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7406
7407 return base_type_result;
7408 }
7409
7410 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7411 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7412 a given type is generally the same as the given type, except that if the
7413 given type is a pointer or reference type, then the root type of the given
7414 type is the root type of the "basis" type for the pointer or reference
7415 type. (This definition of the "root" type is recursive.) Also, the root
7416 type of a `const' qualified type or a `volatile' qualified type is the
7417 root type of the given type without the qualifiers. */
7418
7419 static tree
7420 root_type (type)
7421 tree type;
7422 {
7423 if (TREE_CODE (type) == ERROR_MARK)
7424 return error_mark_node;
7425
7426 switch (TREE_CODE (type))
7427 {
7428 case ERROR_MARK:
7429 return error_mark_node;
7430
7431 case POINTER_TYPE:
7432 case REFERENCE_TYPE:
7433 return type_main_variant (root_type (TREE_TYPE (type)));
7434
7435 default:
7436 return type_main_variant (type);
7437 }
7438 }
7439
7440 /* Given a pointer to an arbitrary ..._TYPE tree node, return non-zero if the
7441 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7442
7443 static inline int
7444 is_base_type (type)
7445 tree type;
7446 {
7447 switch (TREE_CODE (type))
7448 {
7449 case ERROR_MARK:
7450 case VOID_TYPE:
7451 case INTEGER_TYPE:
7452 case REAL_TYPE:
7453 case COMPLEX_TYPE:
7454 case BOOLEAN_TYPE:
7455 case CHAR_TYPE:
7456 return 1;
7457
7458 case SET_TYPE:
7459 case ARRAY_TYPE:
7460 case RECORD_TYPE:
7461 case UNION_TYPE:
7462 case QUAL_UNION_TYPE:
7463 case ENUMERAL_TYPE:
7464 case FUNCTION_TYPE:
7465 case METHOD_TYPE:
7466 case POINTER_TYPE:
7467 case REFERENCE_TYPE:
7468 case FILE_TYPE:
7469 case OFFSET_TYPE:
7470 case LANG_TYPE:
7471 case VECTOR_TYPE:
7472 return 0;
7473
7474 default:
7475 abort ();
7476 }
7477
7478 return 0;
7479 }
7480
7481 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
7482 entry that chains various modifiers in front of the given type. */
7483
7484 static dw_die_ref
7485 modified_type_die (type, is_const_type, is_volatile_type, context_die)
7486 tree type;
7487 int is_const_type;
7488 int is_volatile_type;
7489 dw_die_ref context_die;
7490 {
7491 enum tree_code code = TREE_CODE (type);
7492 dw_die_ref mod_type_die = NULL;
7493 dw_die_ref sub_die = NULL;
7494 tree item_type = NULL;
7495
7496 if (code != ERROR_MARK)
7497 {
7498 tree qualified_type;
7499
7500 /* See if we already have the appropriately qualified variant of
7501 this type. */
7502 qualified_type
7503 = get_qualified_type (type,
7504 ((is_const_type ? TYPE_QUAL_CONST : 0)
7505 | (is_volatile_type
7506 ? TYPE_QUAL_VOLATILE : 0)));
7507
7508 /* If we do, then we can just use its DIE, if it exists. */
7509 if (qualified_type)
7510 {
7511 mod_type_die = lookup_type_die (qualified_type);
7512 if (mod_type_die)
7513 return mod_type_die;
7514 }
7515
7516 /* Handle C typedef types. */
7517 if (qualified_type && TYPE_NAME (qualified_type)
7518 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
7519 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
7520 {
7521 tree type_name = TYPE_NAME (qualified_type);
7522 tree dtype = TREE_TYPE (type_name);
7523
7524 if (qualified_type == dtype)
7525 {
7526 /* For a named type, use the typedef. */
7527 gen_type_die (qualified_type, context_die);
7528 mod_type_die = lookup_type_die (qualified_type);
7529 }
7530 else if (is_const_type < TYPE_READONLY (dtype)
7531 || is_volatile_type < TYPE_VOLATILE (dtype))
7532 /* cv-unqualified version of named type. Just use the unnamed
7533 type to which it refers. */
7534 mod_type_die
7535 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
7536 is_const_type, is_volatile_type,
7537 context_die);
7538
7539 /* Else cv-qualified version of named type; fall through. */
7540 }
7541
7542 if (mod_type_die)
7543 /* OK. */
7544 ;
7545 else if (is_const_type)
7546 {
7547 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
7548 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
7549 }
7550 else if (is_volatile_type)
7551 {
7552 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
7553 sub_die = modified_type_die (type, 0, 0, context_die);
7554 }
7555 else if (code == POINTER_TYPE)
7556 {
7557 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
7558 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
7559 #if 0
7560 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7561 #endif
7562 item_type = TREE_TYPE (type);
7563 }
7564 else if (code == REFERENCE_TYPE)
7565 {
7566 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
7567 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
7568 #if 0
7569 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7570 #endif
7571 item_type = TREE_TYPE (type);
7572 }
7573 else if (is_base_type (type))
7574 mod_type_die = base_type_die (type);
7575 else
7576 {
7577 gen_type_die (type, context_die);
7578
7579 /* We have to get the type_main_variant here (and pass that to the
7580 `lookup_type_die' routine) because the ..._TYPE node we have
7581 might simply be a *copy* of some original type node (where the
7582 copy was created to help us keep track of typedef names) and
7583 that copy might have a different TYPE_UID from the original
7584 ..._TYPE node. */
7585 if (TREE_CODE (type) != VECTOR_TYPE)
7586 mod_type_die = lookup_type_die (type_main_variant (type));
7587 else
7588 /* Vectors have the debugging information in the type,
7589 not the main variant. */
7590 mod_type_die = lookup_type_die (type);
7591 if (mod_type_die == NULL)
7592 abort ();
7593 }
7594
7595 /* We want to equate the qualified type to the die below. */
7596 if (qualified_type)
7597 type = qualified_type;
7598 }
7599
7600 equate_type_number_to_die (type, mod_type_die);
7601 if (item_type)
7602 /* We must do this after the equate_type_number_to_die call, in case
7603 this is a recursive type. This ensures that the modified_type_die
7604 recursion will terminate even if the type is recursive. Recursive
7605 types are possible in Ada. */
7606 sub_die = modified_type_die (item_type,
7607 TYPE_READONLY (item_type),
7608 TYPE_VOLATILE (item_type),
7609 context_die);
7610
7611 if (sub_die != NULL)
7612 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
7613
7614 return mod_type_die;
7615 }
7616
7617 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
7618 an enumerated type. */
7619
7620 static inline int
7621 type_is_enum (type)
7622 tree type;
7623 {
7624 return TREE_CODE (type) == ENUMERAL_TYPE;
7625 }
7626
7627 /* Return the register number described by a given RTL node. */
7628
7629 static unsigned int
7630 reg_number (rtl)
7631 rtx rtl;
7632 {
7633 unsigned regno = REGNO (rtl);
7634
7635 if (regno >= FIRST_PSEUDO_REGISTER)
7636 abort ();
7637
7638 return DBX_REGISTER_NUMBER (regno);
7639 }
7640
7641 /* Return a location descriptor that designates a machine register or
7642 zero if there is no such. */
7643
7644 static dw_loc_descr_ref
7645 reg_loc_descriptor (rtl)
7646 rtx rtl;
7647 {
7648 dw_loc_descr_ref loc_result = NULL;
7649 unsigned reg;
7650
7651 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
7652 return 0;
7653
7654 reg = reg_number (rtl);
7655 if (reg <= 31)
7656 loc_result = new_loc_descr (DW_OP_reg0 + reg, 0, 0);
7657 else
7658 loc_result = new_loc_descr (DW_OP_regx, reg, 0);
7659
7660 return loc_result;
7661 }
7662
7663 /* Return a location descriptor that designates a constant. */
7664
7665 static dw_loc_descr_ref
7666 int_loc_descriptor (i)
7667 HOST_WIDE_INT i;
7668 {
7669 enum dwarf_location_atom op;
7670
7671 /* Pick the smallest representation of a constant, rather than just
7672 defaulting to the LEB encoding. */
7673 if (i >= 0)
7674 {
7675 if (i <= 31)
7676 op = DW_OP_lit0 + i;
7677 else if (i <= 0xff)
7678 op = DW_OP_const1u;
7679 else if (i <= 0xffff)
7680 op = DW_OP_const2u;
7681 else if (HOST_BITS_PER_WIDE_INT == 32
7682 || i <= 0xffffffff)
7683 op = DW_OP_const4u;
7684 else
7685 op = DW_OP_constu;
7686 }
7687 else
7688 {
7689 if (i >= -0x80)
7690 op = DW_OP_const1s;
7691 else if (i >= -0x8000)
7692 op = DW_OP_const2s;
7693 else if (HOST_BITS_PER_WIDE_INT == 32
7694 || i >= -0x80000000)
7695 op = DW_OP_const4s;
7696 else
7697 op = DW_OP_consts;
7698 }
7699
7700 return new_loc_descr (op, i, 0);
7701 }
7702
7703 /* Return a location descriptor that designates a base+offset location. */
7704
7705 static dw_loc_descr_ref
7706 based_loc_descr (reg, offset)
7707 unsigned reg;
7708 long int offset;
7709 {
7710 dw_loc_descr_ref loc_result;
7711 /* For the "frame base", we use the frame pointer or stack pointer
7712 registers, since the RTL for local variables is relative to one of
7713 them. */
7714 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
7715 ? HARD_FRAME_POINTER_REGNUM
7716 : STACK_POINTER_REGNUM);
7717
7718 if (reg == fp_reg)
7719 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
7720 else if (reg <= 31)
7721 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
7722 else
7723 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
7724
7725 return loc_result;
7726 }
7727
7728 /* Return true if this RTL expression describes a base+offset calculation. */
7729
7730 static inline int
7731 is_based_loc (rtl)
7732 rtx rtl;
7733 {
7734 return (GET_CODE (rtl) == PLUS
7735 && ((GET_CODE (XEXP (rtl, 0)) == REG
7736 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
7737 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
7738 }
7739
7740 /* The following routine converts the RTL for a variable or parameter
7741 (resident in memory) into an equivalent Dwarf representation of a
7742 mechanism for getting the address of that same variable onto the top of a
7743 hypothetical "address evaluation" stack.
7744
7745 When creating memory location descriptors, we are effectively transforming
7746 the RTL for a memory-resident object into its Dwarf postfix expression
7747 equivalent. This routine recursively descends an RTL tree, turning
7748 it into Dwarf postfix code as it goes.
7749
7750 MODE is the mode of the memory reference, needed to handle some
7751 autoincrement addressing modes.
7752
7753 Return 0 if we can't represent the location. */
7754
7755 static dw_loc_descr_ref
7756 mem_loc_descriptor (rtl, mode)
7757 rtx rtl;
7758 enum machine_mode mode;
7759 {
7760 dw_loc_descr_ref mem_loc_result = NULL;
7761
7762 /* Note that for a dynamically sized array, the location we will generate a
7763 description of here will be the lowest numbered location which is
7764 actually within the array. That's *not* necessarily the same as the
7765 zeroth element of the array. */
7766
7767 #ifdef ASM_SIMPLIFY_DWARF_ADDR
7768 rtl = ASM_SIMPLIFY_DWARF_ADDR (rtl);
7769 #endif
7770
7771 switch (GET_CODE (rtl))
7772 {
7773 case POST_INC:
7774 case POST_DEC:
7775 case POST_MODIFY:
7776 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
7777 just fall into the SUBREG code. */
7778
7779 /* ... fall through ... */
7780
7781 case SUBREG:
7782 /* The case of a subreg may arise when we have a local (register)
7783 variable or a formal (register) parameter which doesn't quite fill
7784 up an entire register. For now, just assume that it is
7785 legitimate to make the Dwarf info refer to the whole register which
7786 contains the given subreg. */
7787 rtl = SUBREG_REG (rtl);
7788
7789 /* ... fall through ... */
7790
7791 case REG:
7792 /* Whenever a register number forms a part of the description of the
7793 method for calculating the (dynamic) address of a memory resident
7794 object, DWARF rules require the register number be referred to as
7795 a "base register". This distinction is not based in any way upon
7796 what category of register the hardware believes the given register
7797 belongs to. This is strictly DWARF terminology we're dealing with
7798 here. Note that in cases where the location of a memory-resident
7799 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
7800 OP_CONST (0)) the actual DWARF location descriptor that we generate
7801 may just be OP_BASEREG (basereg). This may look deceptively like
7802 the object in question was allocated to a register (rather than in
7803 memory) so DWARF consumers need to be aware of the subtle
7804 distinction between OP_REG and OP_BASEREG. */
7805 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
7806 mem_loc_result = based_loc_descr (reg_number (rtl), 0);
7807 break;
7808
7809 case MEM:
7810 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
7811 if (mem_loc_result != 0)
7812 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
7813 break;
7814
7815 case LABEL_REF:
7816 /* Some ports can transform a symbol ref into a label ref, because
7817 the symbol ref is too far away and has to be dumped into a constant
7818 pool. */
7819 case CONST:
7820 case SYMBOL_REF:
7821 /* Alternatively, the symbol in the constant pool might be referenced
7822 by a different symbol. */
7823 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
7824 {
7825 bool marked;
7826 rtx tmp = get_pool_constant_mark (rtl, &marked);
7827
7828 if (GET_CODE (tmp) == SYMBOL_REF)
7829 {
7830 rtl = tmp;
7831 if (CONSTANT_POOL_ADDRESS_P (tmp))
7832 get_pool_constant_mark (tmp, &marked);
7833 else
7834 marked = true;
7835 }
7836
7837 /* If all references to this pool constant were optimized away,
7838 it was not output and thus we can't represent it.
7839 FIXME: might try to use DW_OP_const_value here, though
7840 DW_OP_piece complicates it. */
7841 if (!marked)
7842 return 0;
7843 }
7844
7845 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
7846 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
7847 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
7848 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
7849 break;
7850
7851 case PRE_MODIFY:
7852 /* Extract the PLUS expression nested inside and fall into
7853 PLUS code below. */
7854 rtl = XEXP (rtl, 1);
7855 goto plus;
7856
7857 case PRE_INC:
7858 case PRE_DEC:
7859 /* Turn these into a PLUS expression and fall into the PLUS code
7860 below. */
7861 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
7862 GEN_INT (GET_CODE (rtl) == PRE_INC
7863 ? GET_MODE_UNIT_SIZE (mode)
7864 : -GET_MODE_UNIT_SIZE (mode)));
7865
7866 /* ... fall through ... */
7867
7868 case PLUS:
7869 plus:
7870 if (is_based_loc (rtl))
7871 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
7872 INTVAL (XEXP (rtl, 1)));
7873 else
7874 {
7875 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
7876 if (mem_loc_result == 0)
7877 break;
7878
7879 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
7880 && INTVAL (XEXP (rtl, 1)) >= 0)
7881 add_loc_descr (&mem_loc_result,
7882 new_loc_descr (DW_OP_plus_uconst,
7883 INTVAL (XEXP (rtl, 1)), 0));
7884 else
7885 {
7886 add_loc_descr (&mem_loc_result,
7887 mem_loc_descriptor (XEXP (rtl, 1), mode));
7888 add_loc_descr (&mem_loc_result,
7889 new_loc_descr (DW_OP_plus, 0, 0));
7890 }
7891 }
7892 break;
7893
7894 case MULT:
7895 {
7896 /* If a pseudo-reg is optimized away, it is possible for it to
7897 be replaced with a MEM containing a multiply. */
7898 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
7899 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
7900
7901 if (op0 == 0 || op1 == 0)
7902 break;
7903
7904 mem_loc_result = op0;
7905 add_loc_descr (&mem_loc_result, op1);
7906 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
7907 break;
7908 }
7909
7910 case CONST_INT:
7911 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
7912 break;
7913
7914 case ADDRESSOF:
7915 /* If this is a MEM, return its address. Otherwise, we can't
7916 represent this. */
7917 if (GET_CODE (XEXP (rtl, 0)) == MEM)
7918 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode);
7919 else
7920 return 0;
7921
7922 default:
7923 abort ();
7924 }
7925
7926 return mem_loc_result;
7927 }
7928
7929 /* Return a descriptor that describes the concatenation of two locations.
7930 This is typically a complex variable. */
7931
7932 static dw_loc_descr_ref
7933 concat_loc_descriptor (x0, x1)
7934 rtx x0, x1;
7935 {
7936 dw_loc_descr_ref cc_loc_result = NULL;
7937 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
7938 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
7939
7940 if (x0_ref == 0 || x1_ref == 0)
7941 return 0;
7942
7943 cc_loc_result = x0_ref;
7944 add_loc_descr (&cc_loc_result,
7945 new_loc_descr (DW_OP_piece,
7946 GET_MODE_SIZE (GET_MODE (x0)), 0));
7947
7948 add_loc_descr (&cc_loc_result, x1_ref);
7949 add_loc_descr (&cc_loc_result,
7950 new_loc_descr (DW_OP_piece,
7951 GET_MODE_SIZE (GET_MODE (x1)), 0));
7952
7953 return cc_loc_result;
7954 }
7955
7956 /* Output a proper Dwarf location descriptor for a variable or parameter
7957 which is either allocated in a register or in a memory location. For a
7958 register, we just generate an OP_REG and the register number. For a
7959 memory location we provide a Dwarf postfix expression describing how to
7960 generate the (dynamic) address of the object onto the address stack.
7961
7962 If we don't know how to describe it, return 0. */
7963
7964 static dw_loc_descr_ref
7965 loc_descriptor (rtl)
7966 rtx rtl;
7967 {
7968 dw_loc_descr_ref loc_result = NULL;
7969
7970 switch (GET_CODE (rtl))
7971 {
7972 case SUBREG:
7973 /* The case of a subreg may arise when we have a local (register)
7974 variable or a formal (register) parameter which doesn't quite fill
7975 up an entire register. For now, just assume that it is
7976 legitimate to make the Dwarf info refer to the whole register which
7977 contains the given subreg. */
7978 rtl = SUBREG_REG (rtl);
7979
7980 /* ... fall through ... */
7981
7982 case REG:
7983 loc_result = reg_loc_descriptor (rtl);
7984 break;
7985
7986 case MEM:
7987 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
7988 break;
7989
7990 case CONCAT:
7991 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
7992 break;
7993
7994 default:
7995 abort ();
7996 }
7997
7998 return loc_result;
7999 }
8000
8001 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8002 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8003 looking for an address. Otherwise, we return a value. If we can't make a
8004 descriptor, return 0. */
8005
8006 static dw_loc_descr_ref
8007 loc_descriptor_from_tree (loc, addressp)
8008 tree loc;
8009 int addressp;
8010 {
8011 dw_loc_descr_ref ret, ret1;
8012 int indirect_p = 0;
8013 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8014 enum dwarf_location_atom op;
8015
8016 /* ??? Most of the time we do not take proper care for sign/zero
8017 extending the values properly. Hopefully this won't be a real
8018 problem... */
8019
8020 switch (TREE_CODE (loc))
8021 {
8022 case ERROR_MARK:
8023 return 0;
8024
8025 case WITH_RECORD_EXPR:
8026 case PLACEHOLDER_EXPR:
8027 /* This case involves extracting fields from an object to determine the
8028 position of other fields. We don't try to encode this here. The
8029 only user of this is Ada, which encodes the needed information using
8030 the names of types. */
8031 return 0;
8032
8033 case CALL_EXPR:
8034 return 0;
8035
8036 case ADDR_EXPR:
8037 /* We can support this only if we can look through conversions and
8038 find an INDIRECT_EXPR. */
8039 for (loc = TREE_OPERAND (loc, 0);
8040 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8041 || TREE_CODE (loc) == NON_LVALUE_EXPR
8042 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8043 || TREE_CODE (loc) == SAVE_EXPR;
8044 loc = TREE_OPERAND (loc, 0))
8045 ;
8046
8047 return (TREE_CODE (loc) == INDIRECT_REF
8048 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8049 : 0);
8050
8051 case VAR_DECL:
8052 case PARM_DECL:
8053 {
8054 rtx rtl = rtl_for_decl_location (loc);
8055
8056 if (rtl == NULL_RTX)
8057 return 0;
8058 else if (CONSTANT_P (rtl))
8059 {
8060 ret = new_loc_descr (DW_OP_addr, 0, 0);
8061 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8062 ret->dw_loc_oprnd1.v.val_addr = rtl;
8063 indirect_p = 1;
8064 }
8065 else
8066 {
8067 enum machine_mode mode = GET_MODE (rtl);
8068
8069 if (GET_CODE (rtl) == MEM)
8070 {
8071 indirect_p = 1;
8072 rtl = XEXP (rtl, 0);
8073 }
8074
8075 ret = mem_loc_descriptor (rtl, mode);
8076 }
8077 }
8078 break;
8079
8080 case INDIRECT_REF:
8081 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8082 indirect_p = 1;
8083 break;
8084
8085 case COMPOUND_EXPR:
8086 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8087
8088 case NOP_EXPR:
8089 case CONVERT_EXPR:
8090 case NON_LVALUE_EXPR:
8091 case VIEW_CONVERT_EXPR:
8092 case SAVE_EXPR:
8093 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8094
8095 case COMPONENT_REF:
8096 case BIT_FIELD_REF:
8097 case ARRAY_REF:
8098 case ARRAY_RANGE_REF:
8099 {
8100 tree obj, offset;
8101 HOST_WIDE_INT bitsize, bitpos, bytepos;
8102 enum machine_mode mode;
8103 int volatilep;
8104
8105 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8106 &unsignedp, &volatilep);
8107
8108 if (obj == loc)
8109 return 0;
8110
8111 ret = loc_descriptor_from_tree (obj, 1);
8112 if (ret == 0
8113 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8114 return 0;
8115
8116 if (offset != NULL_TREE)
8117 {
8118 /* Variable offset. */
8119 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8120 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8121 }
8122
8123 if (!addressp)
8124 indirect_p = 1;
8125
8126 bytepos = bitpos / BITS_PER_UNIT;
8127 if (bytepos > 0)
8128 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8129 else if (bytepos < 0)
8130 {
8131 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8132 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8133 }
8134 break;
8135 }
8136
8137 case INTEGER_CST:
8138 if (host_integerp (loc, 0))
8139 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8140 else
8141 return 0;
8142 break;
8143
8144 case TRUTH_AND_EXPR:
8145 case TRUTH_ANDIF_EXPR:
8146 case BIT_AND_EXPR:
8147 op = DW_OP_and;
8148 goto do_binop;
8149
8150 case TRUTH_XOR_EXPR:
8151 case BIT_XOR_EXPR:
8152 op = DW_OP_xor;
8153 goto do_binop;
8154
8155 case TRUTH_OR_EXPR:
8156 case TRUTH_ORIF_EXPR:
8157 case BIT_IOR_EXPR:
8158 op = DW_OP_or;
8159 goto do_binop;
8160
8161 case TRUNC_DIV_EXPR:
8162 op = DW_OP_div;
8163 goto do_binop;
8164
8165 case MINUS_EXPR:
8166 op = DW_OP_minus;
8167 goto do_binop;
8168
8169 case TRUNC_MOD_EXPR:
8170 op = DW_OP_mod;
8171 goto do_binop;
8172
8173 case MULT_EXPR:
8174 op = DW_OP_mul;
8175 goto do_binop;
8176
8177 case LSHIFT_EXPR:
8178 op = DW_OP_shl;
8179 goto do_binop;
8180
8181 case RSHIFT_EXPR:
8182 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8183 goto do_binop;
8184
8185 case PLUS_EXPR:
8186 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8187 && host_integerp (TREE_OPERAND (loc, 1), 0))
8188 {
8189 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8190 if (ret == 0)
8191 return 0;
8192
8193 add_loc_descr (&ret,
8194 new_loc_descr (DW_OP_plus_uconst,
8195 tree_low_cst (TREE_OPERAND (loc, 1),
8196 0),
8197 0));
8198 break;
8199 }
8200
8201 op = DW_OP_plus;
8202 goto do_binop;
8203
8204 case LE_EXPR:
8205 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8206 return 0;
8207
8208 op = DW_OP_le;
8209 goto do_binop;
8210
8211 case GE_EXPR:
8212 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8213 return 0;
8214
8215 op = DW_OP_ge;
8216 goto do_binop;
8217
8218 case LT_EXPR:
8219 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8220 return 0;
8221
8222 op = DW_OP_lt;
8223 goto do_binop;
8224
8225 case GT_EXPR:
8226 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8227 return 0;
8228
8229 op = DW_OP_gt;
8230 goto do_binop;
8231
8232 case EQ_EXPR:
8233 op = DW_OP_eq;
8234 goto do_binop;
8235
8236 case NE_EXPR:
8237 op = DW_OP_ne;
8238 goto do_binop;
8239
8240 do_binop:
8241 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8242 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8243 if (ret == 0 || ret1 == 0)
8244 return 0;
8245
8246 add_loc_descr (&ret, ret1);
8247 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8248 break;
8249
8250 case TRUTH_NOT_EXPR:
8251 case BIT_NOT_EXPR:
8252 op = DW_OP_not;
8253 goto do_unop;
8254
8255 case ABS_EXPR:
8256 op = DW_OP_abs;
8257 goto do_unop;
8258
8259 case NEGATE_EXPR:
8260 op = DW_OP_neg;
8261 goto do_unop;
8262
8263 do_unop:
8264 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8265 if (ret == 0)
8266 return 0;
8267
8268 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8269 break;
8270
8271 case MAX_EXPR:
8272 loc = build (COND_EXPR, TREE_TYPE (loc),
8273 build (LT_EXPR, integer_type_node,
8274 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8275 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
8276
8277 /* ... fall through ... */
8278
8279 case COND_EXPR:
8280 {
8281 dw_loc_descr_ref lhs
8282 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8283 dw_loc_descr_ref rhs
8284 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
8285 dw_loc_descr_ref bra_node, jump_node, tmp;
8286
8287 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8288 if (ret == 0 || lhs == 0 || rhs == 0)
8289 return 0;
8290
8291 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
8292 add_loc_descr (&ret, bra_node);
8293
8294 add_loc_descr (&ret, rhs);
8295 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
8296 add_loc_descr (&ret, jump_node);
8297
8298 add_loc_descr (&ret, lhs);
8299 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8300 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
8301
8302 /* ??? Need a node to point the skip at. Use a nop. */
8303 tmp = new_loc_descr (DW_OP_nop, 0, 0);
8304 add_loc_descr (&ret, tmp);
8305 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8306 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
8307 }
8308 break;
8309
8310 default:
8311 abort ();
8312 }
8313
8314 /* Show if we can't fill the request for an address. */
8315 if (addressp && indirect_p == 0)
8316 return 0;
8317
8318 /* If we've got an address and don't want one, dereference. */
8319 if (!addressp && indirect_p > 0)
8320 {
8321 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
8322
8323 if (size > DWARF2_ADDR_SIZE || size == -1)
8324 return 0;
8325 else if (size == DWARF2_ADDR_SIZE)
8326 op = DW_OP_deref;
8327 else
8328 op = DW_OP_deref_size;
8329
8330 add_loc_descr (&ret, new_loc_descr (op, size, 0));
8331 }
8332
8333 return ret;
8334 }
8335
8336 /* Given a value, round it up to the lowest multiple of `boundary'
8337 which is not less than the value itself. */
8338
8339 static inline HOST_WIDE_INT
8340 ceiling (value, boundary)
8341 HOST_WIDE_INT value;
8342 unsigned int boundary;
8343 {
8344 return (((value + boundary - 1) / boundary) * boundary);
8345 }
8346
8347 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
8348 pointer to the declared type for the relevant field variable, or return
8349 `integer_type_node' if the given node turns out to be an
8350 ERROR_MARK node. */
8351
8352 static inline tree
8353 field_type (decl)
8354 tree decl;
8355 {
8356 tree type;
8357
8358 if (TREE_CODE (decl) == ERROR_MARK)
8359 return integer_type_node;
8360
8361 type = DECL_BIT_FIELD_TYPE (decl);
8362 if (type == NULL_TREE)
8363 type = TREE_TYPE (decl);
8364
8365 return type;
8366 }
8367
8368 /* Given a pointer to a tree node, return the alignment in bits for
8369 it, or else return BITS_PER_WORD if the node actually turns out to
8370 be an ERROR_MARK node. */
8371
8372 static inline unsigned
8373 simple_type_align_in_bits (type)
8374 tree type;
8375 {
8376 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
8377 }
8378
8379 static inline unsigned
8380 simple_decl_align_in_bits (decl)
8381 tree decl;
8382 {
8383 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
8384 }
8385
8386 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8387 node, return the size in bits for the type if it is a constant, or else
8388 return the alignment for the type if the type's size is not constant, or
8389 else return BITS_PER_WORD if the type actually turns out to be an
8390 ERROR_MARK node. */
8391
8392 static inline unsigned HOST_WIDE_INT
8393 simple_type_size_in_bits (type)
8394 tree type;
8395 {
8396
8397 if (TREE_CODE (type) == ERROR_MARK)
8398 return BITS_PER_WORD;
8399 else if (TYPE_SIZE (type) == NULL_TREE)
8400 return 0;
8401 else if (host_integerp (TYPE_SIZE (type), 1))
8402 return tree_low_cst (TYPE_SIZE (type), 1);
8403 else
8404 return TYPE_ALIGN (type);
8405 }
8406
8407 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
8408 lowest addressed byte of the "containing object" for the given FIELD_DECL,
8409 or return 0 if we are unable to determine what that offset is, either
8410 because the argument turns out to be a pointer to an ERROR_MARK node, or
8411 because the offset is actually variable. (We can't handle the latter case
8412 just yet). */
8413
8414 static HOST_WIDE_INT
8415 field_byte_offset (decl)
8416 tree decl;
8417 {
8418 unsigned int type_align_in_bits;
8419 unsigned int decl_align_in_bits;
8420 unsigned HOST_WIDE_INT type_size_in_bits;
8421 HOST_WIDE_INT object_offset_in_bits;
8422 tree type;
8423 tree field_size_tree;
8424 HOST_WIDE_INT bitpos_int;
8425 HOST_WIDE_INT deepest_bitpos;
8426 unsigned HOST_WIDE_INT field_size_in_bits;
8427
8428 if (TREE_CODE (decl) == ERROR_MARK)
8429 return 0;
8430 else if (TREE_CODE (decl) != FIELD_DECL)
8431 abort ();
8432
8433 type = field_type (decl);
8434 field_size_tree = DECL_SIZE (decl);
8435
8436 /* The size could be unspecified if there was an error, or for
8437 a flexible array member. */
8438 if (! field_size_tree)
8439 field_size_tree = bitsize_zero_node;
8440
8441 /* We cannot yet cope with fields whose positions are variable, so
8442 for now, when we see such things, we simply return 0. Someday, we may
8443 be able to handle such cases, but it will be damn difficult. */
8444 if (! host_integerp (bit_position (decl), 0))
8445 return 0;
8446
8447 bitpos_int = int_bit_position (decl);
8448
8449 /* If we don't know the size of the field, pretend it's a full word. */
8450 if (host_integerp (field_size_tree, 1))
8451 field_size_in_bits = tree_low_cst (field_size_tree, 1);
8452 else
8453 field_size_in_bits = BITS_PER_WORD;
8454
8455 type_size_in_bits = simple_type_size_in_bits (type);
8456 type_align_in_bits = simple_type_align_in_bits (type);
8457 decl_align_in_bits = simple_decl_align_in_bits (decl);
8458
8459 /* The GCC front-end doesn't make any attempt to keep track of the starting
8460 bit offset (relative to the start of the containing structure type) of the
8461 hypothetical "containing object" for a bit-field. Thus, when computing
8462 the byte offset value for the start of the "containing object" of a
8463 bit-field, we must deduce this information on our own. This can be rather
8464 tricky to do in some cases. For example, handling the following structure
8465 type definition when compiling for an i386/i486 target (which only aligns
8466 long long's to 32-bit boundaries) can be very tricky:
8467
8468 struct S { int field1; long long field2:31; };
8469
8470 Fortunately, there is a simple rule-of-thumb which can be used in such
8471 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
8472 structure shown above. It decides to do this based upon one simple rule
8473 for bit-field allocation. GCC allocates each "containing object" for each
8474 bit-field at the first (i.e. lowest addressed) legitimate alignment
8475 boundary (based upon the required minimum alignment for the declared type
8476 of the field) which it can possibly use, subject to the condition that
8477 there is still enough available space remaining in the containing object
8478 (when allocated at the selected point) to fully accommodate all of the
8479 bits of the bit-field itself.
8480
8481 This simple rule makes it obvious why GCC allocates 8 bytes for each
8482 object of the structure type shown above. When looking for a place to
8483 allocate the "containing object" for `field2', the compiler simply tries
8484 to allocate a 64-bit "containing object" at each successive 32-bit
8485 boundary (starting at zero) until it finds a place to allocate that 64-
8486 bit field such that at least 31 contiguous (and previously unallocated)
8487 bits remain within that selected 64 bit field. (As it turns out, for the
8488 example above, the compiler finds it is OK to allocate the "containing
8489 object" 64-bit field at bit-offset zero within the structure type.)
8490
8491 Here we attempt to work backwards from the limited set of facts we're
8492 given, and we try to deduce from those facts, where GCC must have believed
8493 that the containing object started (within the structure type). The value
8494 we deduce is then used (by the callers of this routine) to generate
8495 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
8496 and, in the case of DW_AT_location, regular fields as well). */
8497
8498 /* Figure out the bit-distance from the start of the structure to the
8499 "deepest" bit of the bit-field. */
8500 deepest_bitpos = bitpos_int + field_size_in_bits;
8501
8502 /* This is the tricky part. Use some fancy footwork to deduce where the
8503 lowest addressed bit of the containing object must be. */
8504 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8505
8506 /* Round up to type_align by default. This works best for bitfields. */
8507 object_offset_in_bits += type_align_in_bits - 1;
8508 object_offset_in_bits /= type_align_in_bits;
8509 object_offset_in_bits *= type_align_in_bits;
8510
8511 if (object_offset_in_bits > bitpos_int)
8512 {
8513 /* Sigh, the decl must be packed. */
8514 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8515
8516 /* Round up to decl_align instead. */
8517 object_offset_in_bits += decl_align_in_bits - 1;
8518 object_offset_in_bits /= decl_align_in_bits;
8519 object_offset_in_bits *= decl_align_in_bits;
8520 }
8521
8522 return object_offset_in_bits / BITS_PER_UNIT;
8523 }
8524 \f
8525 /* The following routines define various Dwarf attributes and any data
8526 associated with them. */
8527
8528 /* Add a location description attribute value to a DIE.
8529
8530 This emits location attributes suitable for whole variables and
8531 whole parameters. Note that the location attributes for struct fields are
8532 generated by the routine `data_member_location_attribute' below. */
8533
8534 static void
8535 add_AT_location_description (die, attr_kind, rtl)
8536 dw_die_ref die;
8537 enum dwarf_attribute attr_kind;
8538 rtx rtl;
8539 {
8540 dw_loc_descr_ref descr = loc_descriptor (rtl);
8541
8542 if (descr != 0)
8543 add_AT_loc (die, attr_kind, descr);
8544 }
8545
8546 /* Attach the specialized form of location attribute used for data members of
8547 struct and union types. In the special case of a FIELD_DECL node which
8548 represents a bit-field, the "offset" part of this special location
8549 descriptor must indicate the distance in bytes from the lowest-addressed
8550 byte of the containing struct or union type to the lowest-addressed byte of
8551 the "containing object" for the bit-field. (See the `field_byte_offset'
8552 function above).
8553
8554 For any given bit-field, the "containing object" is a hypothetical object
8555 (of some integral or enum type) within which the given bit-field lives. The
8556 type of this hypothetical "containing object" is always the same as the
8557 declared type of the individual bit-field itself (for GCC anyway... the
8558 DWARF spec doesn't actually mandate this). Note that it is the size (in
8559 bytes) of the hypothetical "containing object" which will be given in the
8560 DW_AT_byte_size attribute for this bit-field. (See the
8561 `byte_size_attribute' function below.) It is also used when calculating the
8562 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
8563 function below.) */
8564
8565 static void
8566 add_data_member_location_attribute (die, decl)
8567 dw_die_ref die;
8568 tree decl;
8569 {
8570 long offset;
8571 dw_loc_descr_ref loc_descr = 0;
8572
8573 if (TREE_CODE (decl) == TREE_VEC)
8574 {
8575 /* We're working on the TAG_inheritance for a base class. */
8576 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
8577 {
8578 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
8579 aren't at a fixed offset from all (sub)objects of the same
8580 type. We need to extract the appropriate offset from our
8581 vtable. The following dwarf expression means
8582
8583 BaseAddr = ObAddr + *((*ObAddr) - Offset)
8584
8585 This is specific to the V3 ABI, of course. */
8586
8587 dw_loc_descr_ref tmp;
8588
8589 /* Make a copy of the object address. */
8590 tmp = new_loc_descr (DW_OP_dup, 0, 0);
8591 add_loc_descr (&loc_descr, tmp);
8592
8593 /* Extract the vtable address. */
8594 tmp = new_loc_descr (DW_OP_deref, 0, 0);
8595 add_loc_descr (&loc_descr, tmp);
8596
8597 /* Calculate the address of the offset. */
8598 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
8599 if (offset >= 0)
8600 abort ();
8601
8602 tmp = int_loc_descriptor (-offset);
8603 add_loc_descr (&loc_descr, tmp);
8604 tmp = new_loc_descr (DW_OP_minus, 0, 0);
8605 add_loc_descr (&loc_descr, tmp);
8606
8607 /* Extract the offset. */
8608 tmp = new_loc_descr (DW_OP_deref, 0, 0);
8609 add_loc_descr (&loc_descr, tmp);
8610
8611 /* Add it to the object address. */
8612 tmp = new_loc_descr (DW_OP_plus, 0, 0);
8613 add_loc_descr (&loc_descr, tmp);
8614 }
8615 else
8616 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
8617 }
8618 else
8619 offset = field_byte_offset (decl);
8620
8621 if (! loc_descr)
8622 {
8623 enum dwarf_location_atom op;
8624
8625 /* The DWARF2 standard says that we should assume that the structure
8626 address is already on the stack, so we can specify a structure field
8627 address by using DW_OP_plus_uconst. */
8628
8629 #ifdef MIPS_DEBUGGING_INFO
8630 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
8631 operator correctly. It works only if we leave the offset on the
8632 stack. */
8633 op = DW_OP_constu;
8634 #else
8635 op = DW_OP_plus_uconst;
8636 #endif
8637
8638 loc_descr = new_loc_descr (op, offset, 0);
8639 }
8640
8641 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
8642 }
8643
8644 /* Attach an DW_AT_const_value attribute for a variable or a parameter which
8645 does not have a "location" either in memory or in a register. These
8646 things can arise in GNU C when a constant is passed as an actual parameter
8647 to an inlined function. They can also arise in C++ where declared
8648 constants do not necessarily get memory "homes". */
8649
8650 static void
8651 add_const_value_attribute (die, rtl)
8652 dw_die_ref die;
8653 rtx rtl;
8654 {
8655 switch (GET_CODE (rtl))
8656 {
8657 case CONST_INT:
8658 /* Note that a CONST_INT rtx could represent either an integer
8659 or a floating-point constant. A CONST_INT is used whenever
8660 the constant will fit into a single word. In all such
8661 cases, the original mode of the constant value is wiped
8662 out, and the CONST_INT rtx is assigned VOIDmode. */
8663 {
8664 HOST_WIDE_INT val = INTVAL (rtl);
8665
8666 /* ??? We really should be using HOST_WIDE_INT throughout. */
8667 if (val < 0 && (long) val == val)
8668 add_AT_int (die, DW_AT_const_value, (long) val);
8669 else if ((unsigned long) val == (unsigned HOST_WIDE_INT) val)
8670 add_AT_unsigned (die, DW_AT_const_value, (unsigned long) val);
8671 else
8672 {
8673 #if HOST_BITS_PER_LONG * 2 == HOST_BITS_PER_WIDE_INT
8674 add_AT_long_long (die, DW_AT_const_value,
8675 val >> HOST_BITS_PER_LONG, val);
8676 #else
8677 abort ();
8678 #endif
8679 }
8680 }
8681 break;
8682
8683 case CONST_DOUBLE:
8684 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
8685 floating-point constant. A CONST_DOUBLE is used whenever the
8686 constant requires more than one word in order to be adequately
8687 represented. We output CONST_DOUBLEs as blocks. */
8688 {
8689 enum machine_mode mode = GET_MODE (rtl);
8690
8691 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
8692 {
8693 unsigned length = GET_MODE_SIZE (mode) / 4;
8694 long *array = (long *) xmalloc (sizeof (long) * length);
8695 REAL_VALUE_TYPE rv;
8696
8697 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
8698 switch (mode)
8699 {
8700 case SFmode:
8701 REAL_VALUE_TO_TARGET_SINGLE (rv, array[0]);
8702 break;
8703
8704 case DFmode:
8705 REAL_VALUE_TO_TARGET_DOUBLE (rv, array);
8706 break;
8707
8708 case XFmode:
8709 case TFmode:
8710 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, array);
8711 break;
8712
8713 default:
8714 abort ();
8715 }
8716
8717 add_AT_float (die, DW_AT_const_value, length, array);
8718 }
8719 else
8720 {
8721 /* ??? We really should be using HOST_WIDE_INT throughout. */
8722 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
8723 abort ();
8724
8725 add_AT_long_long (die, DW_AT_const_value,
8726 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
8727 }
8728 }
8729 break;
8730
8731 case CONST_STRING:
8732 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
8733 break;
8734
8735 case SYMBOL_REF:
8736 case LABEL_REF:
8737 case CONST:
8738 add_AT_addr (die, DW_AT_const_value, rtl);
8739 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8740 break;
8741
8742 case PLUS:
8743 /* In cases where an inlined instance of an inline function is passed
8744 the address of an `auto' variable (which is local to the caller) we
8745 can get a situation where the DECL_RTL of the artificial local
8746 variable (for the inlining) which acts as a stand-in for the
8747 corresponding formal parameter (of the inline function) will look
8748 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
8749 exactly a compile-time constant expression, but it isn't the address
8750 of the (artificial) local variable either. Rather, it represents the
8751 *value* which the artificial local variable always has during its
8752 lifetime. We currently have no way to represent such quasi-constant
8753 values in Dwarf, so for now we just punt and generate nothing. */
8754 break;
8755
8756 default:
8757 /* No other kinds of rtx should be possible here. */
8758 abort ();
8759 }
8760
8761 }
8762
8763 static rtx
8764 rtl_for_decl_location (decl)
8765 tree decl;
8766 {
8767 rtx rtl;
8768
8769 /* Here we have to decide where we are going to say the parameter "lives"
8770 (as far as the debugger is concerned). We only have a couple of
8771 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
8772
8773 DECL_RTL normally indicates where the parameter lives during most of the
8774 activation of the function. If optimization is enabled however, this
8775 could be either NULL or else a pseudo-reg. Both of those cases indicate
8776 that the parameter doesn't really live anywhere (as far as the code
8777 generation parts of GCC are concerned) during most of the function's
8778 activation. That will happen (for example) if the parameter is never
8779 referenced within the function.
8780
8781 We could just generate a location descriptor here for all non-NULL
8782 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
8783 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
8784 where DECL_RTL is NULL or is a pseudo-reg.
8785
8786 Note however that we can only get away with using DECL_INCOMING_RTL as
8787 a backup substitute for DECL_RTL in certain limited cases. In cases
8788 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
8789 we can be sure that the parameter was passed using the same type as it is
8790 declared to have within the function, and that its DECL_INCOMING_RTL
8791 points us to a place where a value of that type is passed.
8792
8793 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
8794 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
8795 because in these cases DECL_INCOMING_RTL points us to a value of some
8796 type which is *different* from the type of the parameter itself. Thus,
8797 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
8798 such cases, the debugger would end up (for example) trying to fetch a
8799 `float' from a place which actually contains the first part of a
8800 `double'. That would lead to really incorrect and confusing
8801 output at debug-time.
8802
8803 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
8804 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
8805 are a couple of exceptions however. On little-endian machines we can
8806 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
8807 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
8808 an integral type that is smaller than TREE_TYPE (decl). These cases arise
8809 when (on a little-endian machine) a non-prototyped function has a
8810 parameter declared to be of type `short' or `char'. In such cases,
8811 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
8812 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
8813 passed `int' value. If the debugger then uses that address to fetch
8814 a `short' or a `char' (on a little-endian machine) the result will be
8815 the correct data, so we allow for such exceptional cases below.
8816
8817 Note that our goal here is to describe the place where the given formal
8818 parameter lives during most of the function's activation (i.e. between the
8819 end of the prologue and the start of the epilogue). We'll do that as best
8820 as we can. Note however that if the given formal parameter is modified
8821 sometime during the execution of the function, then a stack backtrace (at
8822 debug-time) will show the function as having been called with the *new*
8823 value rather than the value which was originally passed in. This happens
8824 rarely enough that it is not a major problem, but it *is* a problem, and
8825 I'd like to fix it.
8826
8827 A future version of dwarf2out.c may generate two additional attributes for
8828 any given DW_TAG_formal_parameter DIE which will describe the "passed
8829 type" and the "passed location" for the given formal parameter in addition
8830 to the attributes we now generate to indicate the "declared type" and the
8831 "active location" for each parameter. This additional set of attributes
8832 could be used by debuggers for stack backtraces. Separately, note that
8833 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
8834 This happens (for example) for inlined-instances of inline function formal
8835 parameters which are never referenced. This really shouldn't be
8836 happening. All PARM_DECL nodes should get valid non-NULL
8837 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
8838 values for inlined instances of inline function parameters, so when we see
8839 such cases, we are just out-of-luck for the time being (until integrate.c
8840 gets fixed). */
8841
8842 /* Use DECL_RTL as the "location" unless we find something better. */
8843 rtl = DECL_RTL_IF_SET (decl);
8844
8845 /* When generating abstract instances, ignore everything except
8846 constants and symbols living in memory. */
8847 if (! reload_completed)
8848 {
8849 if (rtl
8850 && (CONSTANT_P (rtl)
8851 || (GET_CODE (rtl) == MEM
8852 && CONSTANT_P (XEXP (rtl, 0)))))
8853 return rtl;
8854 rtl = NULL_RTX;
8855 }
8856 else if (TREE_CODE (decl) == PARM_DECL)
8857 {
8858 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
8859 {
8860 tree declared_type = type_main_variant (TREE_TYPE (decl));
8861 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
8862
8863 /* This decl represents a formal parameter which was optimized out.
8864 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
8865 all cases where (rtl == NULL_RTX) just below. */
8866 if (declared_type == passed_type)
8867 rtl = DECL_INCOMING_RTL (decl);
8868 else if (! BYTES_BIG_ENDIAN
8869 && TREE_CODE (declared_type) == INTEGER_TYPE
8870 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
8871 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
8872 rtl = DECL_INCOMING_RTL (decl);
8873 }
8874
8875 /* If the parm was passed in registers, but lives on the stack, then
8876 make a big endian correction if the mode of the type of the
8877 parameter is not the same as the mode of the rtl. */
8878 /* ??? This is the same series of checks that are made in dbxout.c before
8879 we reach the big endian correction code there. It isn't clear if all
8880 of these checks are necessary here, but keeping them all is the safe
8881 thing to do. */
8882 else if (GET_CODE (rtl) == MEM
8883 && XEXP (rtl, 0) != const0_rtx
8884 && ! CONSTANT_P (XEXP (rtl, 0))
8885 /* Not passed in memory. */
8886 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
8887 /* Not passed by invisible reference. */
8888 && (GET_CODE (XEXP (rtl, 0)) != REG
8889 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
8890 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
8891 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
8892 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
8893 #endif
8894 )
8895 /* Big endian correction check. */
8896 && BYTES_BIG_ENDIAN
8897 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
8898 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
8899 < UNITS_PER_WORD))
8900 {
8901 int offset = (UNITS_PER_WORD
8902 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
8903
8904 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
8905 plus_constant (XEXP (rtl, 0), offset));
8906 }
8907 }
8908
8909 if (rtl != NULL_RTX)
8910 {
8911 rtl = eliminate_regs (rtl, 0, NULL_RTX);
8912 #ifdef LEAF_REG_REMAP
8913 if (current_function_uses_only_leaf_regs)
8914 leaf_renumber_regs_insn (rtl);
8915 #endif
8916 }
8917
8918 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
8919 and will have been substituted directly into all expressions that use it.
8920 C does not have such a concept, but C++ and other languages do. */
8921 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
8922 {
8923 /* If a variable is initialized with a string constant without embedded
8924 zeros, build CONST_STRING. */
8925 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
8926 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
8927 {
8928 tree arrtype = TREE_TYPE (decl);
8929 tree enttype = TREE_TYPE (arrtype);
8930 tree domain = TYPE_DOMAIN (arrtype);
8931 tree init = DECL_INITIAL (decl);
8932 enum machine_mode mode = TYPE_MODE (enttype);
8933
8934 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
8935 && domain
8936 && integer_zerop (TYPE_MIN_VALUE (domain))
8937 && compare_tree_int (TYPE_MAX_VALUE (domain),
8938 TREE_STRING_LENGTH (init) - 1) == 0
8939 && ((size_t) TREE_STRING_LENGTH (init)
8940 == strlen (TREE_STRING_POINTER (init)) + 1))
8941 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
8942 }
8943
8944 if (rtl == NULL)
8945 {
8946 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
8947 EXPAND_INITIALIZER);
8948 /* If expand_expr returned a MEM, we cannot use it, since
8949 it won't be output, leading to unresolved symbol. */
8950 if (rtl && GET_CODE (rtl) == MEM)
8951 rtl = NULL;
8952 }
8953 }
8954
8955 return rtl;
8956 }
8957
8958 /* Generate *either* an DW_AT_location attribute or else an DW_AT_const_value
8959 data attribute for a variable or a parameter. We generate the
8960 DW_AT_const_value attribute only in those cases where the given variable
8961 or parameter does not have a true "location" either in memory or in a
8962 register. This can happen (for example) when a constant is passed as an
8963 actual argument in a call to an inline function. (It's possible that
8964 these things can crop up in other ways also.) Note that one type of
8965 constant value which can be passed into an inlined function is a constant
8966 pointer. This can happen for example if an actual argument in an inlined
8967 function call evaluates to a compile-time constant address. */
8968
8969 static void
8970 add_location_or_const_value_attribute (die, decl)
8971 dw_die_ref die;
8972 tree decl;
8973 {
8974 rtx rtl;
8975
8976 if (TREE_CODE (decl) == ERROR_MARK)
8977 return;
8978 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
8979 abort ();
8980
8981 rtl = rtl_for_decl_location (decl);
8982 if (rtl == NULL_RTX)
8983 return;
8984
8985 /* If we don't look past the constant pool, we risk emitting a
8986 reference to a constant pool entry that isn't referenced from
8987 code, and thus is not emitted. */
8988 rtl = avoid_constant_pool_reference (rtl);
8989
8990 switch (GET_CODE (rtl))
8991 {
8992 case ADDRESSOF:
8993 /* The address of a variable that was optimized away; don't emit
8994 anything. */
8995 break;
8996
8997 case CONST_INT:
8998 case CONST_DOUBLE:
8999 case CONST_STRING:
9000 case SYMBOL_REF:
9001 case LABEL_REF:
9002 case CONST:
9003 case PLUS:
9004 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9005 add_const_value_attribute (die, rtl);
9006 break;
9007
9008 case MEM:
9009 case REG:
9010 case SUBREG:
9011 case CONCAT:
9012 add_AT_location_description (die, DW_AT_location, rtl);
9013 break;
9014
9015 default:
9016 abort ();
9017 }
9018 }
9019
9020 /* If we don't have a copy of this variable in memory for some reason (such
9021 as a C++ member constant that doesn't have an out-of-line definition),
9022 we should tell the debugger about the constant value. */
9023
9024 static void
9025 tree_add_const_value_attribute (var_die, decl)
9026 dw_die_ref var_die;
9027 tree decl;
9028 {
9029 tree init = DECL_INITIAL (decl);
9030 tree type = TREE_TYPE (decl);
9031
9032 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9033 && initializer_constant_valid_p (init, type) == null_pointer_node)
9034 /* OK */;
9035 else
9036 return;
9037
9038 switch (TREE_CODE (type))
9039 {
9040 case INTEGER_TYPE:
9041 if (host_integerp (init, 0))
9042 add_AT_unsigned (var_die, DW_AT_const_value,
9043 tree_low_cst (init, 0));
9044 else
9045 add_AT_long_long (var_die, DW_AT_const_value,
9046 TREE_INT_CST_HIGH (init),
9047 TREE_INT_CST_LOW (init));
9048 break;
9049
9050 default:;
9051 }
9052 }
9053
9054 /* Generate an DW_AT_name attribute given some string value to be included as
9055 the value of the attribute. */
9056
9057 static inline void
9058 add_name_attribute (die, name_string)
9059 dw_die_ref die;
9060 const char *name_string;
9061 {
9062 if (name_string != NULL && *name_string != 0)
9063 {
9064 if (demangle_name_func)
9065 name_string = (*demangle_name_func) (name_string);
9066
9067 add_AT_string (die, DW_AT_name, name_string);
9068 }
9069 }
9070
9071 /* Given a tree node describing an array bound (either lower or upper) output
9072 a representation for that bound. */
9073
9074 static void
9075 add_bound_info (subrange_die, bound_attr, bound)
9076 dw_die_ref subrange_die;
9077 enum dwarf_attribute bound_attr;
9078 tree bound;
9079 {
9080 switch (TREE_CODE (bound))
9081 {
9082 case ERROR_MARK:
9083 return;
9084
9085 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9086 case INTEGER_CST:
9087 if (! host_integerp (bound, 0)
9088 || (bound_attr == DW_AT_lower_bound
9089 && (((is_c_family () || is_java ()) && integer_zerop (bound))
9090 || (is_fortran () && integer_onep (bound)))))
9091 /* use the default */
9092 ;
9093 else
9094 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
9095 break;
9096
9097 case CONVERT_EXPR:
9098 case NOP_EXPR:
9099 case NON_LVALUE_EXPR:
9100 case VIEW_CONVERT_EXPR:
9101 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9102 break;
9103
9104 case SAVE_EXPR:
9105 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9106 access the upper bound values may be bogus. If they refer to a
9107 register, they may only describe how to get at these values at the
9108 points in the generated code right after they have just been
9109 computed. Worse yet, in the typical case, the upper bound values
9110 will not even *be* computed in the optimized code (though the
9111 number of elements will), so these SAVE_EXPRs are entirely
9112 bogus. In order to compensate for this fact, we check here to see
9113 if optimization is enabled, and if so, we don't add an attribute
9114 for the (unknown and unknowable) upper bound. This should not
9115 cause too much trouble for existing (stupid?) debuggers because
9116 they have to deal with empty upper bounds location descriptions
9117 anyway in order to be able to deal with incomplete array types.
9118 Of course an intelligent debugger (GDB?) should be able to
9119 comprehend that a missing upper bound specification in an array
9120 type used for a storage class `auto' local array variable
9121 indicates that the upper bound is both unknown (at compile- time)
9122 and unknowable (at run-time) due to optimization.
9123
9124 We assume that a MEM rtx is safe because gcc wouldn't put the
9125 value there unless it was going to be used repeatedly in the
9126 function, i.e. for cleanups. */
9127 if (SAVE_EXPR_RTL (bound)
9128 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
9129 {
9130 dw_die_ref ctx = lookup_decl_die (current_function_decl);
9131 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
9132 rtx loc = SAVE_EXPR_RTL (bound);
9133
9134 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9135 it references an outer function's frame. */
9136 if (GET_CODE (loc) == MEM)
9137 {
9138 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9139
9140 if (XEXP (loc, 0) != new_addr)
9141 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
9142 }
9143
9144 add_AT_flag (decl_die, DW_AT_artificial, 1);
9145 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9146 add_AT_location_description (decl_die, DW_AT_location, loc);
9147 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9148 }
9149
9150 /* Else leave out the attribute. */
9151 break;
9152
9153 case VAR_DECL:
9154 case PARM_DECL:
9155 {
9156 dw_die_ref decl_die = lookup_decl_die (bound);
9157
9158 /* ??? Can this happen, or should the variable have been bound
9159 first? Probably it can, since I imagine that we try to create
9160 the types of parameters in the order in which they exist in
9161 the list, and won't have created a forward reference to a
9162 later parameter. */
9163 if (decl_die != NULL)
9164 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9165 break;
9166 }
9167
9168 default:
9169 {
9170 /* Otherwise try to create a stack operation procedure to
9171 evaluate the value of the array bound. */
9172
9173 dw_die_ref ctx, decl_die;
9174 dw_loc_descr_ref loc;
9175
9176 loc = loc_descriptor_from_tree (bound, 0);
9177 if (loc == NULL)
9178 break;
9179
9180 if (current_function_decl == 0)
9181 ctx = comp_unit_die;
9182 else
9183 ctx = lookup_decl_die (current_function_decl);
9184
9185 /* If we weren't able to find a context, it's most likely the case
9186 that we are processing the return type of the function. So
9187 make a SAVE_EXPR to point to it and have the limbo DIE code
9188 find the proper die. The save_expr function doesn't always
9189 make a SAVE_EXPR, so do it ourselves. */
9190 if (ctx == 0)
9191 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9192 current_function_decl, NULL_TREE);
9193
9194 decl_die = new_die (DW_TAG_variable, ctx, bound);
9195 add_AT_flag (decl_die, DW_AT_artificial, 1);
9196 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9197 add_AT_loc (decl_die, DW_AT_location, loc);
9198
9199 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9200 break;
9201 }
9202 }
9203 }
9204
9205 /* Note that the block of subscript information for an array type also
9206 includes information about the element type of type given array type. */
9207
9208 static void
9209 add_subscript_info (type_die, type)
9210 dw_die_ref type_die;
9211 tree type;
9212 {
9213 #ifndef MIPS_DEBUGGING_INFO
9214 unsigned dimension_number;
9215 #endif
9216 tree lower, upper;
9217 dw_die_ref subrange_die;
9218
9219 /* The GNU compilers represent multidimensional array types as sequences of
9220 one dimensional array types whose element types are themselves array
9221 types. Here we squish that down, so that each multidimensional array
9222 type gets only one array_type DIE in the Dwarf debugging info. The draft
9223 Dwarf specification say that we are allowed to do this kind of
9224 compression in C (because there is no difference between an array or
9225 arrays and a multidimensional array in C) but for other source languages
9226 (e.g. Ada) we probably shouldn't do this. */
9227
9228 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9229 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9230 We work around this by disabling this feature. See also
9231 gen_array_type_die. */
9232 #ifndef MIPS_DEBUGGING_INFO
9233 for (dimension_number = 0;
9234 TREE_CODE (type) == ARRAY_TYPE;
9235 type = TREE_TYPE (type), dimension_number++)
9236 #endif
9237 {
9238 tree domain = TYPE_DOMAIN (type);
9239
9240 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
9241 and (in GNU C only) variable bounds. Handle all three forms
9242 here. */
9243 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
9244 if (domain)
9245 {
9246 /* We have an array type with specified bounds. */
9247 lower = TYPE_MIN_VALUE (domain);
9248 upper = TYPE_MAX_VALUE (domain);
9249
9250 /* define the index type. */
9251 if (TREE_TYPE (domain))
9252 {
9253 /* ??? This is probably an Ada unnamed subrange type. Ignore the
9254 TREE_TYPE field. We can't emit debug info for this
9255 because it is an unnamed integral type. */
9256 if (TREE_CODE (domain) == INTEGER_TYPE
9257 && TYPE_NAME (domain) == NULL_TREE
9258 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
9259 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
9260 ;
9261 else
9262 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
9263 type_die);
9264 }
9265
9266 /* ??? If upper is NULL, the array has unspecified length,
9267 but it does have a lower bound. This happens with Fortran
9268 dimension arr(N:*)
9269 Since the debugger is definitely going to need to know N
9270 to produce useful results, go ahead and output the lower
9271 bound solo, and hope the debugger can cope. */
9272
9273 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
9274 if (upper)
9275 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
9276 }
9277
9278 /* Otherwise we have an array type with an unspecified length. The
9279 DWARF-2 spec does not say how to handle this; let's just leave out the
9280 bounds. */
9281 }
9282 }
9283
9284 static void
9285 add_byte_size_attribute (die, tree_node)
9286 dw_die_ref die;
9287 tree tree_node;
9288 {
9289 unsigned size;
9290
9291 switch (TREE_CODE (tree_node))
9292 {
9293 case ERROR_MARK:
9294 size = 0;
9295 break;
9296 case ENUMERAL_TYPE:
9297 case RECORD_TYPE:
9298 case UNION_TYPE:
9299 case QUAL_UNION_TYPE:
9300 size = int_size_in_bytes (tree_node);
9301 break;
9302 case FIELD_DECL:
9303 /* For a data member of a struct or union, the DW_AT_byte_size is
9304 generally given as the number of bytes normally allocated for an
9305 object of the *declared* type of the member itself. This is true
9306 even for bit-fields. */
9307 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
9308 break;
9309 default:
9310 abort ();
9311 }
9312
9313 /* Note that `size' might be -1 when we get to this point. If it is, that
9314 indicates that the byte size of the entity in question is variable. We
9315 have no good way of expressing this fact in Dwarf at the present time,
9316 so just let the -1 pass on through. */
9317 add_AT_unsigned (die, DW_AT_byte_size, size);
9318 }
9319
9320 /* For a FIELD_DECL node which represents a bit-field, output an attribute
9321 which specifies the distance in bits from the highest order bit of the
9322 "containing object" for the bit-field to the highest order bit of the
9323 bit-field itself.
9324
9325 For any given bit-field, the "containing object" is a hypothetical object
9326 (of some integral or enum type) within which the given bit-field lives. The
9327 type of this hypothetical "containing object" is always the same as the
9328 declared type of the individual bit-field itself. The determination of the
9329 exact location of the "containing object" for a bit-field is rather
9330 complicated. It's handled by the `field_byte_offset' function (above).
9331
9332 Note that it is the size (in bytes) of the hypothetical "containing object"
9333 which will be given in the DW_AT_byte_size attribute for this bit-field.
9334 (See `byte_size_attribute' above). */
9335
9336 static inline void
9337 add_bit_offset_attribute (die, decl)
9338 dw_die_ref die;
9339 tree decl;
9340 {
9341 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
9342 tree type = DECL_BIT_FIELD_TYPE (decl);
9343 HOST_WIDE_INT bitpos_int;
9344 HOST_WIDE_INT highest_order_object_bit_offset;
9345 HOST_WIDE_INT highest_order_field_bit_offset;
9346 HOST_WIDE_INT unsigned bit_offset;
9347
9348 /* Must be a field and a bit field. */
9349 if (!type
9350 || TREE_CODE (decl) != FIELD_DECL)
9351 abort ();
9352
9353 /* We can't yet handle bit-fields whose offsets are variable, so if we
9354 encounter such things, just return without generating any attribute
9355 whatsoever. Likewise for variable or too large size. */
9356 if (! host_integerp (bit_position (decl), 0)
9357 || ! host_integerp (DECL_SIZE (decl), 1))
9358 return;
9359
9360 bitpos_int = int_bit_position (decl);
9361
9362 /* Note that the bit offset is always the distance (in bits) from the
9363 highest-order bit of the "containing object" to the highest-order bit of
9364 the bit-field itself. Since the "high-order end" of any object or field
9365 is different on big-endian and little-endian machines, the computation
9366 below must take account of these differences. */
9367 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
9368 highest_order_field_bit_offset = bitpos_int;
9369
9370 if (! BYTES_BIG_ENDIAN)
9371 {
9372 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
9373 highest_order_object_bit_offset += simple_type_size_in_bits (type);
9374 }
9375
9376 bit_offset
9377 = (! BYTES_BIG_ENDIAN
9378 ? highest_order_object_bit_offset - highest_order_field_bit_offset
9379 : highest_order_field_bit_offset - highest_order_object_bit_offset);
9380
9381 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
9382 }
9383
9384 /* For a FIELD_DECL node which represents a bit field, output an attribute
9385 which specifies the length in bits of the given field. */
9386
9387 static inline void
9388 add_bit_size_attribute (die, decl)
9389 dw_die_ref die;
9390 tree decl;
9391 {
9392 /* Must be a field and a bit field. */
9393 if (TREE_CODE (decl) != FIELD_DECL
9394 || ! DECL_BIT_FIELD_TYPE (decl))
9395 abort ();
9396
9397 if (host_integerp (DECL_SIZE (decl), 1))
9398 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
9399 }
9400
9401 /* If the compiled language is ANSI C, then add a 'prototyped'
9402 attribute, if arg types are given for the parameters of a function. */
9403
9404 static inline void
9405 add_prototyped_attribute (die, func_type)
9406 dw_die_ref die;
9407 tree func_type;
9408 {
9409 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
9410 && TYPE_ARG_TYPES (func_type) != NULL)
9411 add_AT_flag (die, DW_AT_prototyped, 1);
9412 }
9413
9414 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
9415 by looking in either the type declaration or object declaration
9416 equate table. */
9417
9418 static inline void
9419 add_abstract_origin_attribute (die, origin)
9420 dw_die_ref die;
9421 tree origin;
9422 {
9423 dw_die_ref origin_die = NULL;
9424
9425 if (TREE_CODE (origin) != FUNCTION_DECL)
9426 {
9427 /* We may have gotten separated from the block for the inlined
9428 function, if we're in an exception handler or some such; make
9429 sure that the abstract function has been written out.
9430
9431 Doing this for nested functions is wrong, however; functions are
9432 distinct units, and our context might not even be inline. */
9433 tree fn = origin;
9434
9435 if (TYPE_P (fn))
9436 fn = TYPE_STUB_DECL (fn);
9437
9438 fn = decl_function_context (fn);
9439 if (fn)
9440 dwarf2out_abstract_function (fn);
9441 }
9442
9443 if (DECL_P (origin))
9444 origin_die = lookup_decl_die (origin);
9445 else if (TYPE_P (origin))
9446 origin_die = lookup_type_die (origin);
9447
9448 if (origin_die == NULL)
9449 abort ();
9450
9451 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
9452 }
9453
9454 /* We do not currently support the pure_virtual attribute. */
9455
9456 static inline void
9457 add_pure_or_virtual_attribute (die, func_decl)
9458 dw_die_ref die;
9459 tree func_decl;
9460 {
9461 if (DECL_VINDEX (func_decl))
9462 {
9463 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
9464
9465 if (host_integerp (DECL_VINDEX (func_decl), 0))
9466 add_AT_loc (die, DW_AT_vtable_elem_location,
9467 new_loc_descr (DW_OP_constu,
9468 tree_low_cst (DECL_VINDEX (func_decl), 0),
9469 0));
9470
9471 /* GNU extension: Record what type this method came from originally. */
9472 if (debug_info_level > DINFO_LEVEL_TERSE)
9473 add_AT_die_ref (die, DW_AT_containing_type,
9474 lookup_type_die (DECL_CONTEXT (func_decl)));
9475 }
9476 }
9477 \f
9478 /* Add source coordinate attributes for the given decl. */
9479
9480 static void
9481 add_src_coords_attributes (die, decl)
9482 dw_die_ref die;
9483 tree decl;
9484 {
9485 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
9486
9487 add_AT_unsigned (die, DW_AT_decl_file, file_index);
9488 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
9489 }
9490
9491 /* Add an DW_AT_name attribute and source coordinate attribute for the
9492 given decl, but only if it actually has a name. */
9493
9494 static void
9495 add_name_and_src_coords_attributes (die, decl)
9496 dw_die_ref die;
9497 tree decl;
9498 {
9499 tree decl_name;
9500
9501 decl_name = DECL_NAME (decl);
9502 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
9503 {
9504 add_name_attribute (die, dwarf2_name (decl, 0));
9505 if (! DECL_ARTIFICIAL (decl))
9506 add_src_coords_attributes (die, decl);
9507
9508 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
9509 && TREE_PUBLIC (decl)
9510 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
9511 && !DECL_ABSTRACT (decl))
9512 add_AT_string (die, DW_AT_MIPS_linkage_name,
9513 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
9514 }
9515
9516 #ifdef VMS_DEBUGGING_INFO
9517 /* Get the function's name, as described by its RTL. This may be different
9518 from the DECL_NAME name used in the source file. */
9519 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
9520 {
9521 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
9522 XEXP (DECL_RTL (decl), 0));
9523 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
9524 }
9525 #endif
9526 }
9527
9528 /* Push a new declaration scope. */
9529
9530 static void
9531 push_decl_scope (scope)
9532 tree scope;
9533 {
9534 VARRAY_PUSH_TREE (decl_scope_table, scope);
9535 }
9536
9537 /* Pop a declaration scope. */
9538
9539 static inline void
9540 pop_decl_scope ()
9541 {
9542 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
9543 abort ();
9544
9545 VARRAY_POP (decl_scope_table);
9546 }
9547
9548 /* Return the DIE for the scope that immediately contains this type.
9549 Non-named types get global scope. Named types nested in other
9550 types get their containing scope if it's open, or global scope
9551 otherwise. All other types (i.e. function-local named types) get
9552 the current active scope. */
9553
9554 static dw_die_ref
9555 scope_die_for (t, context_die)
9556 tree t;
9557 dw_die_ref context_die;
9558 {
9559 dw_die_ref scope_die = NULL;
9560 tree containing_scope;
9561 int i;
9562
9563 /* Non-types always go in the current scope. */
9564 if (! TYPE_P (t))
9565 abort ();
9566
9567 containing_scope = TYPE_CONTEXT (t);
9568
9569 /* Ignore namespaces for the moment. */
9570 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
9571 containing_scope = NULL_TREE;
9572
9573 /* Ignore function type "scopes" from the C frontend. They mean that
9574 a tagged type is local to a parmlist of a function declarator, but
9575 that isn't useful to DWARF. */
9576 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
9577 containing_scope = NULL_TREE;
9578
9579 if (containing_scope == NULL_TREE)
9580 scope_die = comp_unit_die;
9581 else if (TYPE_P (containing_scope))
9582 {
9583 /* For types, we can just look up the appropriate DIE. But
9584 first we check to see if we're in the middle of emitting it
9585 so we know where the new DIE should go. */
9586 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
9587 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
9588 break;
9589
9590 if (i < 0)
9591 {
9592 if (debug_info_level > DINFO_LEVEL_TERSE
9593 && !TREE_ASM_WRITTEN (containing_scope))
9594 abort ();
9595
9596 /* If none of the current dies are suitable, we get file scope. */
9597 scope_die = comp_unit_die;
9598 }
9599 else
9600 scope_die = lookup_type_die (containing_scope);
9601 }
9602 else
9603 scope_die = context_die;
9604
9605 return scope_die;
9606 }
9607
9608 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
9609
9610 static inline int
9611 local_scope_p (context_die)
9612 dw_die_ref context_die;
9613 {
9614 for (; context_die; context_die = context_die->die_parent)
9615 if (context_die->die_tag == DW_TAG_inlined_subroutine
9616 || context_die->die_tag == DW_TAG_subprogram)
9617 return 1;
9618
9619 return 0;
9620 }
9621
9622 /* Returns nonzero if CONTEXT_DIE is a class. */
9623
9624 static inline int
9625 class_scope_p (context_die)
9626 dw_die_ref context_die;
9627 {
9628 return (context_die
9629 && (context_die->die_tag == DW_TAG_structure_type
9630 || context_die->die_tag == DW_TAG_union_type));
9631 }
9632
9633 /* Many forms of DIEs require a "type description" attribute. This
9634 routine locates the proper "type descriptor" die for the type given
9635 by 'type', and adds an DW_AT_type attribute below the given die. */
9636
9637 static void
9638 add_type_attribute (object_die, type, decl_const, decl_volatile, context_die)
9639 dw_die_ref object_die;
9640 tree type;
9641 int decl_const;
9642 int decl_volatile;
9643 dw_die_ref context_die;
9644 {
9645 enum tree_code code = TREE_CODE (type);
9646 dw_die_ref type_die = NULL;
9647
9648 /* ??? If this type is an unnamed subrange type of an integral or
9649 floating-point type, use the inner type. This is because we have no
9650 support for unnamed types in base_type_die. This can happen if this is
9651 an Ada subrange type. Correct solution is emit a subrange type die. */
9652 if ((code == INTEGER_TYPE || code == REAL_TYPE)
9653 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
9654 type = TREE_TYPE (type), code = TREE_CODE (type);
9655
9656 if (code == ERROR_MARK
9657 /* Handle a special case. For functions whose return type is void, we
9658 generate *no* type attribute. (Note that no object may have type
9659 `void', so this only applies to function return types). */
9660 || code == VOID_TYPE)
9661 return;
9662
9663 type_die = modified_type_die (type,
9664 decl_const || TYPE_READONLY (type),
9665 decl_volatile || TYPE_VOLATILE (type),
9666 context_die);
9667
9668 if (type_die != NULL)
9669 add_AT_die_ref (object_die, DW_AT_type, type_die);
9670 }
9671
9672 /* Given a tree pointer to a struct, class, union, or enum type node, return
9673 a pointer to the (string) tag name for the given type, or zero if the type
9674 was declared without a tag. */
9675
9676 static const char *
9677 type_tag (type)
9678 tree type;
9679 {
9680 const char *name = 0;
9681
9682 if (TYPE_NAME (type) != 0)
9683 {
9684 tree t = 0;
9685
9686 /* Find the IDENTIFIER_NODE for the type name. */
9687 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
9688 t = TYPE_NAME (type);
9689
9690 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
9691 a TYPE_DECL node, regardless of whether or not a `typedef' was
9692 involved. */
9693 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
9694 && ! DECL_IGNORED_P (TYPE_NAME (type)))
9695 t = DECL_NAME (TYPE_NAME (type));
9696
9697 /* Now get the name as a string, or invent one. */
9698 if (t != 0)
9699 name = IDENTIFIER_POINTER (t);
9700 }
9701
9702 return (name == 0 || *name == '\0') ? 0 : name;
9703 }
9704
9705 /* Return the type associated with a data member, make a special check
9706 for bit field types. */
9707
9708 static inline tree
9709 member_declared_type (member)
9710 tree member;
9711 {
9712 return (DECL_BIT_FIELD_TYPE (member)
9713 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
9714 }
9715
9716 /* Get the decl's label, as described by its RTL. This may be different
9717 from the DECL_NAME name used in the source file. */
9718
9719 #if 0
9720 static const char *
9721 decl_start_label (decl)
9722 tree decl;
9723 {
9724 rtx x;
9725 const char *fnname;
9726
9727 x = DECL_RTL (decl);
9728 if (GET_CODE (x) != MEM)
9729 abort ();
9730
9731 x = XEXP (x, 0);
9732 if (GET_CODE (x) != SYMBOL_REF)
9733 abort ();
9734
9735 fnname = XSTR (x, 0);
9736 return fnname;
9737 }
9738 #endif
9739 \f
9740 /* These routines generate the internal representation of the DIE's for
9741 the compilation unit. Debugging information is collected by walking
9742 the declaration trees passed in from dwarf2out_decl(). */
9743
9744 static void
9745 gen_array_type_die (type, context_die)
9746 tree type;
9747 dw_die_ref context_die;
9748 {
9749 dw_die_ref scope_die = scope_die_for (type, context_die);
9750 dw_die_ref array_die;
9751 tree element_type;
9752
9753 /* ??? The SGI dwarf reader fails for array of array of enum types unless
9754 the inner array type comes before the outer array type. Thus we must
9755 call gen_type_die before we call new_die. See below also. */
9756 #ifdef MIPS_DEBUGGING_INFO
9757 gen_type_die (TREE_TYPE (type), context_die);
9758 #endif
9759
9760 array_die = new_die (DW_TAG_array_type, scope_die, type);
9761
9762 #if 0
9763 /* We default the array ordering. SDB will probably do
9764 the right things even if DW_AT_ordering is not present. It's not even
9765 an issue until we start to get into multidimensional arrays anyway. If
9766 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
9767 then we'll have to put the DW_AT_ordering attribute back in. (But if
9768 and when we find out that we need to put these in, we will only do so
9769 for multidimensional arrays. */
9770 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
9771 #endif
9772
9773 #ifdef MIPS_DEBUGGING_INFO
9774 /* The SGI compilers handle arrays of unknown bound by setting
9775 AT_declaration and not emitting any subrange DIEs. */
9776 if (! TYPE_DOMAIN (type))
9777 add_AT_unsigned (array_die, DW_AT_declaration, 1);
9778 else
9779 #endif
9780 add_subscript_info (array_die, type);
9781
9782 add_name_attribute (array_die, type_tag (type));
9783 equate_type_number_to_die (type, array_die);
9784
9785 /* Add representation of the type of the elements of this array type. */
9786 element_type = TREE_TYPE (type);
9787
9788 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9789 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9790 We work around this by disabling this feature. See also
9791 add_subscript_info. */
9792 #ifndef MIPS_DEBUGGING_INFO
9793 while (TREE_CODE (element_type) == ARRAY_TYPE)
9794 element_type = TREE_TYPE (element_type);
9795
9796 gen_type_die (element_type, context_die);
9797 #endif
9798
9799 add_type_attribute (array_die, element_type, 0, 0, context_die);
9800 }
9801
9802 static void
9803 gen_set_type_die (type, context_die)
9804 tree type;
9805 dw_die_ref context_die;
9806 {
9807 dw_die_ref type_die
9808 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
9809
9810 equate_type_number_to_die (type, type_die);
9811 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
9812 }
9813
9814 #if 0
9815 static void
9816 gen_entry_point_die (decl, context_die)
9817 tree decl;
9818 dw_die_ref context_die;
9819 {
9820 tree origin = decl_ultimate_origin (decl);
9821 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
9822
9823 if (origin != NULL)
9824 add_abstract_origin_attribute (decl_die, origin);
9825 else
9826 {
9827 add_name_and_src_coords_attributes (decl_die, decl);
9828 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
9829 0, 0, context_die);
9830 }
9831
9832 if (DECL_ABSTRACT (decl))
9833 equate_decl_number_to_die (decl, decl_die);
9834 else
9835 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
9836 }
9837 #endif
9838
9839 /* Walk through the list of incomplete types again, trying once more to
9840 emit full debugging info for them. */
9841
9842 static void
9843 retry_incomplete_types ()
9844 {
9845 int i;
9846
9847 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
9848 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
9849 }
9850
9851 /* Generate a DIE to represent an inlined instance of an enumeration type. */
9852
9853 static void
9854 gen_inlined_enumeration_type_die (type, context_die)
9855 tree type;
9856 dw_die_ref context_die;
9857 {
9858 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
9859
9860 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
9861 be incomplete and such types are not marked. */
9862 add_abstract_origin_attribute (type_die, type);
9863 }
9864
9865 /* Generate a DIE to represent an inlined instance of a structure type. */
9866
9867 static void
9868 gen_inlined_structure_type_die (type, context_die)
9869 tree type;
9870 dw_die_ref context_die;
9871 {
9872 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
9873
9874 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
9875 be incomplete and such types are not marked. */
9876 add_abstract_origin_attribute (type_die, type);
9877 }
9878
9879 /* Generate a DIE to represent an inlined instance of a union type. */
9880
9881 static void
9882 gen_inlined_union_type_die (type, context_die)
9883 tree type;
9884 dw_die_ref context_die;
9885 {
9886 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
9887
9888 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
9889 be incomplete and such types are not marked. */
9890 add_abstract_origin_attribute (type_die, type);
9891 }
9892
9893 /* Generate a DIE to represent an enumeration type. Note that these DIEs
9894 include all of the information about the enumeration values also. Each
9895 enumerated type name/value is listed as a child of the enumerated type
9896 DIE. */
9897
9898 static void
9899 gen_enumeration_type_die (type, context_die)
9900 tree type;
9901 dw_die_ref context_die;
9902 {
9903 dw_die_ref type_die = lookup_type_die (type);
9904
9905 if (type_die == NULL)
9906 {
9907 type_die = new_die (DW_TAG_enumeration_type,
9908 scope_die_for (type, context_die), type);
9909 equate_type_number_to_die (type, type_die);
9910 add_name_attribute (type_die, type_tag (type));
9911 }
9912 else if (! TYPE_SIZE (type))
9913 return;
9914 else
9915 remove_AT (type_die, DW_AT_declaration);
9916
9917 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
9918 given enum type is incomplete, do not generate the DW_AT_byte_size
9919 attribute or the DW_AT_element_list attribute. */
9920 if (TYPE_SIZE (type))
9921 {
9922 tree link;
9923
9924 TREE_ASM_WRITTEN (type) = 1;
9925 add_byte_size_attribute (type_die, type);
9926 if (TYPE_STUB_DECL (type) != NULL_TREE)
9927 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
9928
9929 /* If the first reference to this type was as the return type of an
9930 inline function, then it may not have a parent. Fix this now. */
9931 if (type_die->die_parent == NULL)
9932 add_child_die (scope_die_for (type, context_die), type_die);
9933
9934 for (link = TYPE_FIELDS (type);
9935 link != NULL; link = TREE_CHAIN (link))
9936 {
9937 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
9938
9939 add_name_attribute (enum_die,
9940 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
9941
9942 if (host_integerp (TREE_VALUE (link), 0))
9943 {
9944 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
9945 add_AT_int (enum_die, DW_AT_const_value,
9946 tree_low_cst (TREE_VALUE (link), 0));
9947 else
9948 add_AT_unsigned (enum_die, DW_AT_const_value,
9949 tree_low_cst (TREE_VALUE (link), 0));
9950 }
9951 }
9952 }
9953 else
9954 add_AT_flag (type_die, DW_AT_declaration, 1);
9955 }
9956
9957 /* Generate a DIE to represent either a real live formal parameter decl or to
9958 represent just the type of some formal parameter position in some function
9959 type.
9960
9961 Note that this routine is a bit unusual because its argument may be a
9962 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
9963 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
9964 node. If it's the former then this function is being called to output a
9965 DIE to represent a formal parameter object (or some inlining thereof). If
9966 it's the latter, then this function is only being called to output a
9967 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
9968 argument type of some subprogram type. */
9969
9970 static dw_die_ref
9971 gen_formal_parameter_die (node, context_die)
9972 tree node;
9973 dw_die_ref context_die;
9974 {
9975 dw_die_ref parm_die
9976 = new_die (DW_TAG_formal_parameter, context_die, node);
9977 tree origin;
9978
9979 switch (TREE_CODE_CLASS (TREE_CODE (node)))
9980 {
9981 case 'd':
9982 origin = decl_ultimate_origin (node);
9983 if (origin != NULL)
9984 add_abstract_origin_attribute (parm_die, origin);
9985 else
9986 {
9987 add_name_and_src_coords_attributes (parm_die, node);
9988 add_type_attribute (parm_die, TREE_TYPE (node),
9989 TREE_READONLY (node),
9990 TREE_THIS_VOLATILE (node),
9991 context_die);
9992 if (DECL_ARTIFICIAL (node))
9993 add_AT_flag (parm_die, DW_AT_artificial, 1);
9994 }
9995
9996 equate_decl_number_to_die (node, parm_die);
9997 if (! DECL_ABSTRACT (node))
9998 add_location_or_const_value_attribute (parm_die, node);
9999
10000 break;
10001
10002 case 't':
10003 /* We were called with some kind of a ..._TYPE node. */
10004 add_type_attribute (parm_die, node, 0, 0, context_die);
10005 break;
10006
10007 default:
10008 abort ();
10009 }
10010
10011 return parm_die;
10012 }
10013
10014 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10015 at the end of an (ANSI prototyped) formal parameters list. */
10016
10017 static void
10018 gen_unspecified_parameters_die (decl_or_type, context_die)
10019 tree decl_or_type;
10020 dw_die_ref context_die;
10021 {
10022 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10023 }
10024
10025 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10026 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10027 parameters as specified in some function type specification (except for
10028 those which appear as part of a function *definition*). */
10029
10030 static void
10031 gen_formal_types_die (function_or_method_type, context_die)
10032 tree function_or_method_type;
10033 dw_die_ref context_die;
10034 {
10035 tree link;
10036 tree formal_type = NULL;
10037 tree first_parm_type;
10038 tree arg;
10039
10040 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10041 {
10042 arg = DECL_ARGUMENTS (function_or_method_type);
10043 function_or_method_type = TREE_TYPE (function_or_method_type);
10044 }
10045 else
10046 arg = NULL_TREE;
10047
10048 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10049
10050 /* Make our first pass over the list of formal parameter types and output a
10051 DW_TAG_formal_parameter DIE for each one. */
10052 for (link = first_parm_type; link; )
10053 {
10054 dw_die_ref parm_die;
10055
10056 formal_type = TREE_VALUE (link);
10057 if (formal_type == void_type_node)
10058 break;
10059
10060 /* Output a (nameless) DIE to represent the formal parameter itself. */
10061 parm_die = gen_formal_parameter_die (formal_type, context_die);
10062 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10063 && link == first_parm_type)
10064 || (arg && DECL_ARTIFICIAL (arg)))
10065 add_AT_flag (parm_die, DW_AT_artificial, 1);
10066
10067 link = TREE_CHAIN (link);
10068 if (arg)
10069 arg = TREE_CHAIN (arg);
10070 }
10071
10072 /* If this function type has an ellipsis, add a
10073 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10074 if (formal_type != void_type_node)
10075 gen_unspecified_parameters_die (function_or_method_type, context_die);
10076
10077 /* Make our second (and final) pass over the list of formal parameter types
10078 and output DIEs to represent those types (as necessary). */
10079 for (link = TYPE_ARG_TYPES (function_or_method_type);
10080 link && TREE_VALUE (link);
10081 link = TREE_CHAIN (link))
10082 gen_type_die (TREE_VALUE (link), context_die);
10083 }
10084
10085 /* We want to generate the DIE for TYPE so that we can generate the
10086 die for MEMBER, which has been defined; we will need to refer back
10087 to the member declaration nested within TYPE. If we're trying to
10088 generate minimal debug info for TYPE, processing TYPE won't do the
10089 trick; we need to attach the member declaration by hand. */
10090
10091 static void
10092 gen_type_die_for_member (type, member, context_die)
10093 tree type, member;
10094 dw_die_ref context_die;
10095 {
10096 gen_type_die (type, context_die);
10097
10098 /* If we're trying to avoid duplicate debug info, we may not have
10099 emitted the member decl for this function. Emit it now. */
10100 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10101 && ! lookup_decl_die (member))
10102 {
10103 if (decl_ultimate_origin (member))
10104 abort ();
10105
10106 push_decl_scope (type);
10107 if (TREE_CODE (member) == FUNCTION_DECL)
10108 gen_subprogram_die (member, lookup_type_die (type));
10109 else
10110 gen_variable_die (member, lookup_type_die (type));
10111
10112 pop_decl_scope ();
10113 }
10114 }
10115
10116 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10117 may later generate inlined and/or out-of-line instances of. */
10118
10119 static void
10120 dwarf2out_abstract_function (decl)
10121 tree decl;
10122 {
10123 dw_die_ref old_die;
10124 tree save_fn;
10125 tree context;
10126 int was_abstract = DECL_ABSTRACT (decl);
10127
10128 /* Make sure we have the actual abstract inline, not a clone. */
10129 decl = DECL_ORIGIN (decl);
10130
10131 old_die = lookup_decl_die (decl);
10132 if (old_die && get_AT_unsigned (old_die, DW_AT_inline))
10133 /* We've already generated the abstract instance. */
10134 return;
10135
10136 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10137 we don't get confused by DECL_ABSTRACT. */
10138 if (debug_info_level > DINFO_LEVEL_TERSE)
10139 {
10140 context = decl_class_context (decl);
10141 if (context)
10142 gen_type_die_for_member
10143 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10144 }
10145
10146 /* Pretend we've just finished compiling this function. */
10147 save_fn = current_function_decl;
10148 current_function_decl = decl;
10149
10150 set_decl_abstract_flags (decl, 1);
10151 dwarf2out_decl (decl);
10152 if (! was_abstract)
10153 set_decl_abstract_flags (decl, 0);
10154
10155 current_function_decl = save_fn;
10156 }
10157
10158 /* Generate a DIE to represent a declared function (either file-scope or
10159 block-local). */
10160
10161 static void
10162 gen_subprogram_die (decl, context_die)
10163 tree decl;
10164 dw_die_ref context_die;
10165 {
10166 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10167 tree origin = decl_ultimate_origin (decl);
10168 dw_die_ref subr_die;
10169 rtx fp_reg;
10170 tree fn_arg_types;
10171 tree outer_scope;
10172 dw_die_ref old_die = lookup_decl_die (decl);
10173 int declaration = (current_function_decl != decl
10174 || class_scope_p (context_die));
10175
10176 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10177 started to generate the abstract instance of an inline, decided to output
10178 its containing class, and proceeded to emit the declaration of the inline
10179 from the member list for the class. If so, DECLARATION takes priority;
10180 we'll get back to the abstract instance when done with the class. */
10181
10182 /* The class-scope declaration DIE must be the primary DIE. */
10183 if (origin && declaration && class_scope_p (context_die))
10184 {
10185 origin = NULL;
10186 if (old_die)
10187 abort ();
10188 }
10189
10190 if (origin != NULL)
10191 {
10192 if (declaration && ! local_scope_p (context_die))
10193 abort ();
10194
10195 /* Fixup die_parent for the abstract instance of a nested
10196 inline function. */
10197 if (old_die && old_die->die_parent == NULL)
10198 add_child_die (context_die, old_die);
10199
10200 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10201 add_abstract_origin_attribute (subr_die, origin);
10202 }
10203 else if (old_die)
10204 {
10205 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10206
10207 if (!get_AT_flag (old_die, DW_AT_declaration)
10208 /* We can have a normal definition following an inline one in the
10209 case of redefinition of GNU C extern inlines.
10210 It seems reasonable to use AT_specification in this case. */
10211 && !get_AT_unsigned (old_die, DW_AT_inline))
10212 {
10213 /* ??? This can happen if there is a bug in the program, for
10214 instance, if it has duplicate function definitions. Ideally,
10215 we should detect this case and ignore it. For now, if we have
10216 already reported an error, any error at all, then assume that
10217 we got here because of an input error, not a dwarf2 bug. */
10218 if (errorcount)
10219 return;
10220 abort ();
10221 }
10222
10223 /* If the definition comes from the same place as the declaration,
10224 maybe use the old DIE. We always want the DIE for this function
10225 that has the *_pc attributes to be under comp_unit_die so the
10226 debugger can find it. We also need to do this for abstract
10227 instances of inlines, since the spec requires the out-of-line copy
10228 to have the same parent. For local class methods, this doesn't
10229 apply; we just use the old DIE. */
10230 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
10231 && (DECL_ARTIFICIAL (decl)
10232 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10233 && (get_AT_unsigned (old_die, DW_AT_decl_line)
10234 == (unsigned) DECL_SOURCE_LINE (decl)))))
10235 {
10236 subr_die = old_die;
10237
10238 /* Clear out the declaration attribute and the parm types. */
10239 remove_AT (subr_die, DW_AT_declaration);
10240 remove_children (subr_die);
10241 }
10242 else
10243 {
10244 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10245 add_AT_die_ref (subr_die, DW_AT_specification, old_die);
10246 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10247 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
10248 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10249 != (unsigned) DECL_SOURCE_LINE (decl))
10250 add_AT_unsigned
10251 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10252 }
10253 }
10254 else
10255 {
10256 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10257
10258 if (TREE_PUBLIC (decl))
10259 add_AT_flag (subr_die, DW_AT_external, 1);
10260
10261 add_name_and_src_coords_attributes (subr_die, decl);
10262 if (debug_info_level > DINFO_LEVEL_TERSE)
10263 {
10264 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
10265 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
10266 0, 0, context_die);
10267 }
10268
10269 add_pure_or_virtual_attribute (subr_die, decl);
10270 if (DECL_ARTIFICIAL (decl))
10271 add_AT_flag (subr_die, DW_AT_artificial, 1);
10272
10273 if (TREE_PROTECTED (decl))
10274 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
10275 else if (TREE_PRIVATE (decl))
10276 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
10277 }
10278
10279 if (declaration)
10280 {
10281 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
10282 {
10283 add_AT_flag (subr_die, DW_AT_declaration, 1);
10284
10285 /* The first time we see a member function, it is in the context of
10286 the class to which it belongs. We make sure of this by emitting
10287 the class first. The next time is the definition, which is
10288 handled above. The two may come from the same source text. */
10289 if (DECL_CONTEXT (decl) || DECL_ABSTRACT (decl))
10290 equate_decl_number_to_die (decl, subr_die);
10291 }
10292 }
10293 else if (DECL_ABSTRACT (decl))
10294 {
10295 if (DECL_INLINE (decl) && !flag_no_inline)
10296 {
10297 /* ??? Checking DECL_DEFER_OUTPUT is correct for static
10298 inline functions, but not for extern inline functions.
10299 We can't get this completely correct because information
10300 about whether the function was declared inline is not
10301 saved anywhere. */
10302 if (DECL_DEFER_OUTPUT (decl))
10303 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
10304 else
10305 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
10306 }
10307 else
10308 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
10309
10310 equate_decl_number_to_die (decl, subr_die);
10311 }
10312 else if (!DECL_EXTERNAL (decl))
10313 {
10314 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
10315 equate_decl_number_to_die (decl, subr_die);
10316
10317 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
10318 current_funcdef_number);
10319 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
10320 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10321 current_funcdef_number);
10322 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
10323
10324 add_pubname (decl, subr_die);
10325 add_arange (decl, subr_die);
10326
10327 #ifdef MIPS_DEBUGGING_INFO
10328 /* Add a reference to the FDE for this routine. */
10329 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
10330 #endif
10331
10332 /* Define the "frame base" location for this routine. We use the
10333 frame pointer or stack pointer registers, since the RTL for local
10334 variables is relative to one of them. */
10335 fp_reg
10336 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
10337 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
10338
10339 #if 0
10340 /* ??? This fails for nested inline functions, because context_display
10341 is not part of the state saved/restored for inline functions. */
10342 if (current_function_needs_context)
10343 add_AT_location_description (subr_die, DW_AT_static_link,
10344 lookup_static_chain (decl));
10345 #endif
10346 }
10347
10348 /* Now output descriptions of the arguments for this function. This gets
10349 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
10350 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
10351 `...' at the end of the formal parameter list. In order to find out if
10352 there was a trailing ellipsis or not, we must instead look at the type
10353 associated with the FUNCTION_DECL. This will be a node of type
10354 FUNCTION_TYPE. If the chain of type nodes hanging off of this
10355 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
10356 an ellipsis at the end. */
10357
10358 /* In the case where we are describing a mere function declaration, all we
10359 need to do here (and all we *can* do here) is to describe the *types* of
10360 its formal parameters. */
10361 if (debug_info_level <= DINFO_LEVEL_TERSE)
10362 ;
10363 else if (declaration)
10364 gen_formal_types_die (decl, subr_die);
10365 else
10366 {
10367 /* Generate DIEs to represent all known formal parameters */
10368 tree arg_decls = DECL_ARGUMENTS (decl);
10369 tree parm;
10370
10371 /* When generating DIEs, generate the unspecified_parameters DIE
10372 instead if we come across the arg "__builtin_va_alist" */
10373 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
10374 if (TREE_CODE (parm) == PARM_DECL)
10375 {
10376 if (DECL_NAME (parm)
10377 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
10378 "__builtin_va_alist"))
10379 gen_unspecified_parameters_die (parm, subr_die);
10380 else
10381 gen_decl_die (parm, subr_die);
10382 }
10383
10384 /* Decide whether we need an unspecified_parameters DIE at the end.
10385 There are 2 more cases to do this for: 1) the ansi ... declaration -
10386 this is detectable when the end of the arg list is not a
10387 void_type_node 2) an unprototyped function declaration (not a
10388 definition). This just means that we have no info about the
10389 parameters at all. */
10390 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
10391 if (fn_arg_types != NULL)
10392 {
10393 /* this is the prototyped case, check for ... */
10394 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
10395 gen_unspecified_parameters_die (decl, subr_die);
10396 }
10397 else if (DECL_INITIAL (decl) == NULL_TREE)
10398 gen_unspecified_parameters_die (decl, subr_die);
10399 }
10400
10401 /* Output Dwarf info for all of the stuff within the body of the function
10402 (if it has one - it may be just a declaration). */
10403 outer_scope = DECL_INITIAL (decl);
10404
10405 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
10406 a function. This BLOCK actually represents the outermost binding contour
10407 for the function, i.e. the contour in which the function's formal
10408 parameters and labels get declared. Curiously, it appears that the front
10409 end doesn't actually put the PARM_DECL nodes for the current function onto
10410 the BLOCK_VARS list for this outer scope, but are strung off of the
10411 DECL_ARGUMENTS list for the function instead.
10412
10413 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
10414 the LABEL_DECL nodes for the function however, and we output DWARF info
10415 for those in decls_for_scope. Just within the `outer_scope' there will be
10416 a BLOCK node representing the function's outermost pair of curly braces,
10417 and any blocks used for the base and member initializers of a C++
10418 constructor function. */
10419 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
10420 {
10421 current_function_has_inlines = 0;
10422 decls_for_scope (outer_scope, subr_die, 0);
10423
10424 #if 0 && defined (MIPS_DEBUGGING_INFO)
10425 if (current_function_has_inlines)
10426 {
10427 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
10428 if (! comp_unit_has_inlines)
10429 {
10430 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
10431 comp_unit_has_inlines = 1;
10432 }
10433 }
10434 #endif
10435 }
10436 }
10437
10438 /* Generate a DIE to represent a declared data object. */
10439
10440 static void
10441 gen_variable_die (decl, context_die)
10442 tree decl;
10443 dw_die_ref context_die;
10444 {
10445 tree origin = decl_ultimate_origin (decl);
10446 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
10447
10448 dw_die_ref old_die = lookup_decl_die (decl);
10449 int declaration = (DECL_EXTERNAL (decl)
10450 || class_scope_p (context_die));
10451
10452 if (origin != NULL)
10453 add_abstract_origin_attribute (var_die, origin);
10454
10455 /* Loop unrolling can create multiple blocks that refer to the same
10456 static variable, so we must test for the DW_AT_declaration flag.
10457
10458 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
10459 copy decls and set the DECL_ABSTRACT flag on them instead of
10460 sharing them.
10461
10462 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
10463 else if (old_die && TREE_STATIC (decl)
10464 && get_AT_flag (old_die, DW_AT_declaration) == 1)
10465 {
10466 /* This is a definition of a C++ class level static. */
10467 add_AT_die_ref (var_die, DW_AT_specification, old_die);
10468 if (DECL_NAME (decl))
10469 {
10470 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10471
10472 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10473 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
10474
10475 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10476 != (unsigned) DECL_SOURCE_LINE (decl))
10477
10478 add_AT_unsigned (var_die, DW_AT_decl_line,
10479 DECL_SOURCE_LINE (decl));
10480 }
10481 }
10482 else
10483 {
10484 add_name_and_src_coords_attributes (var_die, decl);
10485 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
10486 TREE_THIS_VOLATILE (decl), context_die);
10487
10488 if (TREE_PUBLIC (decl))
10489 add_AT_flag (var_die, DW_AT_external, 1);
10490
10491 if (DECL_ARTIFICIAL (decl))
10492 add_AT_flag (var_die, DW_AT_artificial, 1);
10493
10494 if (TREE_PROTECTED (decl))
10495 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
10496 else if (TREE_PRIVATE (decl))
10497 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
10498 }
10499
10500 if (declaration)
10501 add_AT_flag (var_die, DW_AT_declaration, 1);
10502
10503 if (class_scope_p (context_die) || DECL_ABSTRACT (decl))
10504 equate_decl_number_to_die (decl, var_die);
10505
10506 if (! declaration && ! DECL_ABSTRACT (decl))
10507 {
10508 add_location_or_const_value_attribute (var_die, decl);
10509 add_pubname (decl, var_die);
10510 }
10511 else
10512 tree_add_const_value_attribute (var_die, decl);
10513 }
10514
10515 /* Generate a DIE to represent a label identifier. */
10516
10517 static void
10518 gen_label_die (decl, context_die)
10519 tree decl;
10520 dw_die_ref context_die;
10521 {
10522 tree origin = decl_ultimate_origin (decl);
10523 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
10524 rtx insn;
10525 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10526
10527 if (origin != NULL)
10528 add_abstract_origin_attribute (lbl_die, origin);
10529 else
10530 add_name_and_src_coords_attributes (lbl_die, decl);
10531
10532 if (DECL_ABSTRACT (decl))
10533 equate_decl_number_to_die (decl, lbl_die);
10534 else
10535 {
10536 insn = DECL_RTL (decl);
10537
10538 /* Deleted labels are programmer specified labels which have been
10539 eliminated because of various optimisations. We still emit them
10540 here so that it is possible to put breakpoints on them. */
10541 if (GET_CODE (insn) == CODE_LABEL
10542 || ((GET_CODE (insn) == NOTE
10543 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
10544 {
10545 /* When optimization is enabled (via -O) some parts of the compiler
10546 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
10547 represent source-level labels which were explicitly declared by
10548 the user. This really shouldn't be happening though, so catch
10549 it if it ever does happen. */
10550 if (INSN_DELETED_P (insn))
10551 abort ();
10552
10553 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
10554 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
10555 }
10556 }
10557 }
10558
10559 /* Generate a DIE for a lexical block. */
10560
10561 static void
10562 gen_lexical_block_die (stmt, context_die, depth)
10563 tree stmt;
10564 dw_die_ref context_die;
10565 int depth;
10566 {
10567 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
10568 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10569
10570 if (! BLOCK_ABSTRACT (stmt))
10571 {
10572 if (BLOCK_FRAGMENT_CHAIN (stmt))
10573 {
10574 tree chain;
10575
10576 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
10577
10578 chain = BLOCK_FRAGMENT_CHAIN (stmt);
10579 do
10580 {
10581 add_ranges (chain);
10582 chain = BLOCK_FRAGMENT_CHAIN (chain);
10583 }
10584 while (chain);
10585 add_ranges (NULL);
10586 }
10587 else
10588 {
10589 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
10590 BLOCK_NUMBER (stmt));
10591 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
10592 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
10593 BLOCK_NUMBER (stmt));
10594 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
10595 }
10596 }
10597
10598 decls_for_scope (stmt, stmt_die, depth);
10599 }
10600
10601 /* Generate a DIE for an inlined subprogram. */
10602
10603 static void
10604 gen_inlined_subroutine_die (stmt, context_die, depth)
10605 tree stmt;
10606 dw_die_ref context_die;
10607 int depth;
10608 {
10609 if (! BLOCK_ABSTRACT (stmt))
10610 {
10611 dw_die_ref subr_die
10612 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
10613 tree decl = block_ultimate_origin (stmt);
10614 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10615
10616 /* Emit info for the abstract instance first, if we haven't yet. */
10617 dwarf2out_abstract_function (decl);
10618
10619 add_abstract_origin_attribute (subr_die, decl);
10620 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
10621 BLOCK_NUMBER (stmt));
10622 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
10623 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
10624 BLOCK_NUMBER (stmt));
10625 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
10626 decls_for_scope (stmt, subr_die, depth);
10627 current_function_has_inlines = 1;
10628 }
10629 else
10630 /* We may get here if we're the outer block of function A that was
10631 inlined into function B that was inlined into function C. When
10632 generating debugging info for C, dwarf2out_abstract_function(B)
10633 would mark all inlined blocks as abstract, including this one.
10634 So, we wouldn't (and shouldn't) expect labels to be generated
10635 for this one. Instead, just emit debugging info for
10636 declarations within the block. This is particularly important
10637 in the case of initializers of arguments passed from B to us:
10638 if they're statement expressions containing declarations, we
10639 wouldn't generate dies for their abstract variables, and then,
10640 when generating dies for the real variables, we'd die (pun
10641 intended :-) */
10642 gen_lexical_block_die (stmt, context_die, depth);
10643 }
10644
10645 /* Generate a DIE for a field in a record, or structure. */
10646
10647 static void
10648 gen_field_die (decl, context_die)
10649 tree decl;
10650 dw_die_ref context_die;
10651 {
10652 dw_die_ref decl_die = new_die (DW_TAG_member, context_die, decl);
10653
10654 add_name_and_src_coords_attributes (decl_die, decl);
10655 add_type_attribute (decl_die, member_declared_type (decl),
10656 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
10657 context_die);
10658
10659 if (DECL_BIT_FIELD_TYPE (decl))
10660 {
10661 add_byte_size_attribute (decl_die, decl);
10662 add_bit_size_attribute (decl_die, decl);
10663 add_bit_offset_attribute (decl_die, decl);
10664 }
10665
10666 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
10667 add_data_member_location_attribute (decl_die, decl);
10668
10669 if (DECL_ARTIFICIAL (decl))
10670 add_AT_flag (decl_die, DW_AT_artificial, 1);
10671
10672 if (TREE_PROTECTED (decl))
10673 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
10674 else if (TREE_PRIVATE (decl))
10675 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
10676 }
10677
10678 #if 0
10679 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
10680 Use modified_type_die instead.
10681 We keep this code here just in case these types of DIEs may be needed to
10682 represent certain things in other languages (e.g. Pascal) someday. */
10683
10684 static void
10685 gen_pointer_type_die (type, context_die)
10686 tree type;
10687 dw_die_ref context_die;
10688 {
10689 dw_die_ref ptr_die
10690 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
10691
10692 equate_type_number_to_die (type, ptr_die);
10693 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
10694 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
10695 }
10696
10697 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
10698 Use modified_type_die instead.
10699 We keep this code here just in case these types of DIEs may be needed to
10700 represent certain things in other languages (e.g. Pascal) someday. */
10701
10702 static void
10703 gen_reference_type_die (type, context_die)
10704 tree type;
10705 dw_die_ref context_die;
10706 {
10707 dw_die_ref ref_die
10708 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
10709
10710 equate_type_number_to_die (type, ref_die);
10711 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
10712 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
10713 }
10714 #endif
10715
10716 /* Generate a DIE for a pointer to a member type. */
10717
10718 static void
10719 gen_ptr_to_mbr_type_die (type, context_die)
10720 tree type;
10721 dw_die_ref context_die;
10722 {
10723 dw_die_ref ptr_die
10724 = new_die (DW_TAG_ptr_to_member_type,
10725 scope_die_for (type, context_die), type);
10726
10727 equate_type_number_to_die (type, ptr_die);
10728 add_AT_die_ref (ptr_die, DW_AT_containing_type,
10729 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
10730 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
10731 }
10732
10733 /* Generate the DIE for the compilation unit. */
10734
10735 static dw_die_ref
10736 gen_compile_unit_die (filename)
10737 const char *filename;
10738 {
10739 dw_die_ref die;
10740 char producer[250];
10741 const char *wd = getpwd ();
10742 const char *language_string = lang_hooks.name;
10743 int language;
10744
10745 die = new_die (DW_TAG_compile_unit, NULL, NULL);
10746 add_name_attribute (die, filename);
10747
10748 if (wd != NULL && filename[0] != DIR_SEPARATOR)
10749 add_AT_string (die, DW_AT_comp_dir, wd);
10750
10751 sprintf (producer, "%s %s", language_string, version_string);
10752
10753 #ifdef MIPS_DEBUGGING_INFO
10754 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
10755 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
10756 not appear in the producer string, the debugger reaches the conclusion
10757 that the object file is stripped and has no debugging information.
10758 To get the MIPS/SGI debugger to believe that there is debugging
10759 information in the object file, we add a -g to the producer string. */
10760 if (debug_info_level > DINFO_LEVEL_TERSE)
10761 strcat (producer, " -g");
10762 #endif
10763
10764 add_AT_string (die, DW_AT_producer, producer);
10765
10766 if (strcmp (language_string, "GNU C++") == 0)
10767 language = DW_LANG_C_plus_plus;
10768 else if (strcmp (language_string, "GNU Ada") == 0)
10769 language = DW_LANG_Ada83;
10770 else if (strcmp (language_string, "GNU F77") == 0)
10771 language = DW_LANG_Fortran77;
10772 else if (strcmp (language_string, "GNU Pascal") == 0)
10773 language = DW_LANG_Pascal83;
10774 else if (strcmp (language_string, "GNU Java") == 0)
10775 language = DW_LANG_Java;
10776 else
10777 language = DW_LANG_C89;
10778
10779 add_AT_unsigned (die, DW_AT_language, language);
10780 return die;
10781 }
10782
10783 /* Generate a DIE for a string type. */
10784
10785 static void
10786 gen_string_type_die (type, context_die)
10787 tree type;
10788 dw_die_ref context_die;
10789 {
10790 dw_die_ref type_die
10791 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
10792
10793 equate_type_number_to_die (type, type_die);
10794
10795 /* ??? Fudge the string length attribute for now.
10796 TODO: add string length info. */
10797 #if 0
10798 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
10799 bound_representation (upper_bound, 0, 'u');
10800 #endif
10801 }
10802
10803 /* Generate the DIE for a base class. */
10804
10805 static void
10806 gen_inheritance_die (binfo, context_die)
10807 tree binfo;
10808 dw_die_ref context_die;
10809 {
10810 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
10811
10812 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
10813 add_data_member_location_attribute (die, binfo);
10814
10815 if (TREE_VIA_VIRTUAL (binfo))
10816 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10817
10818 if (TREE_VIA_PUBLIC (binfo))
10819 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
10820 else if (TREE_VIA_PROTECTED (binfo))
10821 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
10822 }
10823
10824 /* Generate a DIE for a class member. */
10825
10826 static void
10827 gen_member_die (type, context_die)
10828 tree type;
10829 dw_die_ref context_die;
10830 {
10831 tree member;
10832 dw_die_ref child;
10833
10834 /* If this is not an incomplete type, output descriptions of each of its
10835 members. Note that as we output the DIEs necessary to represent the
10836 members of this record or union type, we will also be trying to output
10837 DIEs to represent the *types* of those members. However the `type'
10838 function (above) will specifically avoid generating type DIEs for member
10839 types *within* the list of member DIEs for this (containing) type except
10840 for those types (of members) which are explicitly marked as also being
10841 members of this (containing) type themselves. The g++ front- end can
10842 force any given type to be treated as a member of some other (containing)
10843 type by setting the TYPE_CONTEXT of the given (member) type to point to
10844 the TREE node representing the appropriate (containing) type. */
10845
10846 /* First output info about the base classes. */
10847 if (TYPE_BINFO (type) && TYPE_BINFO_BASETYPES (type))
10848 {
10849 tree bases = TYPE_BINFO_BASETYPES (type);
10850 int n_bases = TREE_VEC_LENGTH (bases);
10851 int i;
10852
10853 for (i = 0; i < n_bases; i++)
10854 gen_inheritance_die (TREE_VEC_ELT (bases, i), context_die);
10855 }
10856
10857 /* Now output info about the data members and type members. */
10858 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
10859 {
10860 /* If we thought we were generating minimal debug info for TYPE
10861 and then changed our minds, some of the member declarations
10862 may have already been defined. Don't define them again, but
10863 do put them in the right order. */
10864
10865 child = lookup_decl_die (member);
10866 if (child)
10867 splice_child_die (context_die, child);
10868 else
10869 gen_decl_die (member, context_die);
10870 }
10871
10872 /* Now output info about the function members (if any). */
10873 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
10874 {
10875 /* Don't include clones in the member list. */
10876 if (DECL_ABSTRACT_ORIGIN (member))
10877 continue;
10878
10879 child = lookup_decl_die (member);
10880 if (child)
10881 splice_child_die (context_die, child);
10882 else
10883 gen_decl_die (member, context_die);
10884 }
10885 }
10886
10887 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
10888 is set, we pretend that the type was never defined, so we only get the
10889 member DIEs needed by later specification DIEs. */
10890
10891 static void
10892 gen_struct_or_union_type_die (type, context_die)
10893 tree type;
10894 dw_die_ref context_die;
10895 {
10896 dw_die_ref type_die = lookup_type_die (type);
10897 dw_die_ref scope_die = 0;
10898 int nested = 0;
10899 int complete = (TYPE_SIZE (type)
10900 && (! TYPE_STUB_DECL (type)
10901 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
10902
10903 if (type_die && ! complete)
10904 return;
10905
10906 if (TYPE_CONTEXT (type) != NULL_TREE
10907 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type)))
10908 nested = 1;
10909
10910 scope_die = scope_die_for (type, context_die);
10911
10912 if (! type_die || (nested && scope_die == comp_unit_die))
10913 /* First occurrence of type or toplevel definition of nested class. */
10914 {
10915 dw_die_ref old_die = type_die;
10916
10917 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
10918 ? DW_TAG_structure_type : DW_TAG_union_type,
10919 scope_die, type);
10920 equate_type_number_to_die (type, type_die);
10921 if (old_die)
10922 add_AT_die_ref (type_die, DW_AT_specification, old_die);
10923 else
10924 add_name_attribute (type_die, type_tag (type));
10925 }
10926 else
10927 remove_AT (type_die, DW_AT_declaration);
10928
10929 /* If this type has been completed, then give it a byte_size attribute and
10930 then give a list of members. */
10931 if (complete)
10932 {
10933 /* Prevent infinite recursion in cases where the type of some member of
10934 this type is expressed in terms of this type itself. */
10935 TREE_ASM_WRITTEN (type) = 1;
10936 add_byte_size_attribute (type_die, type);
10937 if (TYPE_STUB_DECL (type) != NULL_TREE)
10938 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10939
10940 /* If the first reference to this type was as the return type of an
10941 inline function, then it may not have a parent. Fix this now. */
10942 if (type_die->die_parent == NULL)
10943 add_child_die (scope_die, type_die);
10944
10945 push_decl_scope (type);
10946 gen_member_die (type, type_die);
10947 pop_decl_scope ();
10948
10949 /* GNU extension: Record what type our vtable lives in. */
10950 if (TYPE_VFIELD (type))
10951 {
10952 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
10953
10954 gen_type_die (vtype, context_die);
10955 add_AT_die_ref (type_die, DW_AT_containing_type,
10956 lookup_type_die (vtype));
10957 }
10958 }
10959 else
10960 {
10961 add_AT_flag (type_die, DW_AT_declaration, 1);
10962
10963 /* We don't need to do this for function-local types. */
10964 if (TYPE_STUB_DECL (type)
10965 && ! decl_function_context (TYPE_STUB_DECL (type)))
10966 VARRAY_PUSH_TREE (incomplete_types, type);
10967 }
10968 }
10969
10970 /* Generate a DIE for a subroutine _type_. */
10971
10972 static void
10973 gen_subroutine_type_die (type, context_die)
10974 tree type;
10975 dw_die_ref context_die;
10976 {
10977 tree return_type = TREE_TYPE (type);
10978 dw_die_ref subr_die
10979 = new_die (DW_TAG_subroutine_type,
10980 scope_die_for (type, context_die), type);
10981
10982 equate_type_number_to_die (type, subr_die);
10983 add_prototyped_attribute (subr_die, type);
10984 add_type_attribute (subr_die, return_type, 0, 0, context_die);
10985 gen_formal_types_die (type, subr_die);
10986 }
10987
10988 /* Generate a DIE for a type definition */
10989
10990 static void
10991 gen_typedef_die (decl, context_die)
10992 tree decl;
10993 dw_die_ref context_die;
10994 {
10995 dw_die_ref type_die;
10996 tree origin;
10997
10998 if (TREE_ASM_WRITTEN (decl))
10999 return;
11000
11001 TREE_ASM_WRITTEN (decl) = 1;
11002 type_die = new_die (DW_TAG_typedef, context_die, decl);
11003 origin = decl_ultimate_origin (decl);
11004 if (origin != NULL)
11005 add_abstract_origin_attribute (type_die, origin);
11006 else
11007 {
11008 tree type;
11009
11010 add_name_and_src_coords_attributes (type_die, decl);
11011 if (DECL_ORIGINAL_TYPE (decl))
11012 {
11013 type = DECL_ORIGINAL_TYPE (decl);
11014
11015 if (type == TREE_TYPE (decl))
11016 abort ();
11017 else
11018 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11019 }
11020 else
11021 type = TREE_TYPE (decl);
11022
11023 add_type_attribute (type_die, type, TREE_READONLY (decl),
11024 TREE_THIS_VOLATILE (decl), context_die);
11025 }
11026
11027 if (DECL_ABSTRACT (decl))
11028 equate_decl_number_to_die (decl, type_die);
11029 }
11030
11031 /* Generate a type description DIE. */
11032
11033 static void
11034 gen_type_die (type, context_die)
11035 tree type;
11036 dw_die_ref context_die;
11037 {
11038 int need_pop;
11039
11040 if (type == NULL_TREE || type == error_mark_node)
11041 return;
11042
11043 /* We are going to output a DIE to represent the unqualified version
11044 of this type (i.e. without any const or volatile qualifiers) so
11045 get the main variant (i.e. the unqualified version) of this type
11046 now. (Vectors are special because the debugging info is in the
11047 cloned type itself). */
11048 if (TREE_CODE (type) != VECTOR_TYPE)
11049 type = type_main_variant (type);
11050
11051 if (TREE_ASM_WRITTEN (type))
11052 return;
11053
11054 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11055 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11056 {
11057 TREE_ASM_WRITTEN (type) = 1;
11058 gen_decl_die (TYPE_NAME (type), context_die);
11059 return;
11060 }
11061
11062 switch (TREE_CODE (type))
11063 {
11064 case ERROR_MARK:
11065 break;
11066
11067 case POINTER_TYPE:
11068 case REFERENCE_TYPE:
11069 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11070 ensures that the gen_type_die recursion will terminate even if the
11071 type is recursive. Recursive types are possible in Ada. */
11072 /* ??? We could perhaps do this for all types before the switch
11073 statement. */
11074 TREE_ASM_WRITTEN (type) = 1;
11075
11076 /* For these types, all that is required is that we output a DIE (or a
11077 set of DIEs) to represent the "basis" type. */
11078 gen_type_die (TREE_TYPE (type), context_die);
11079 break;
11080
11081 case OFFSET_TYPE:
11082 /* This code is used for C++ pointer-to-data-member types.
11083 Output a description of the relevant class type. */
11084 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
11085
11086 /* Output a description of the type of the object pointed to. */
11087 gen_type_die (TREE_TYPE (type), context_die);
11088
11089 /* Now output a DIE to represent this pointer-to-data-member type
11090 itself. */
11091 gen_ptr_to_mbr_type_die (type, context_die);
11092 break;
11093
11094 case SET_TYPE:
11095 gen_type_die (TYPE_DOMAIN (type), context_die);
11096 gen_set_type_die (type, context_die);
11097 break;
11098
11099 case FILE_TYPE:
11100 gen_type_die (TREE_TYPE (type), context_die);
11101 abort (); /* No way to represent these in Dwarf yet! */
11102 break;
11103
11104 case FUNCTION_TYPE:
11105 /* Force out return type (in case it wasn't forced out already). */
11106 gen_type_die (TREE_TYPE (type), context_die);
11107 gen_subroutine_type_die (type, context_die);
11108 break;
11109
11110 case METHOD_TYPE:
11111 /* Force out return type (in case it wasn't forced out already). */
11112 gen_type_die (TREE_TYPE (type), context_die);
11113 gen_subroutine_type_die (type, context_die);
11114 break;
11115
11116 case ARRAY_TYPE:
11117 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11118 {
11119 gen_type_die (TREE_TYPE (type), context_die);
11120 gen_string_type_die (type, context_die);
11121 }
11122 else
11123 gen_array_type_die (type, context_die);
11124 break;
11125
11126 case VECTOR_TYPE:
11127 gen_type_die (TYPE_DEBUG_REPRESENTATION_TYPE (type), context_die);
11128 break;
11129
11130 case ENUMERAL_TYPE:
11131 case RECORD_TYPE:
11132 case UNION_TYPE:
11133 case QUAL_UNION_TYPE:
11134 /* If this is a nested type whose containing class hasn't been written
11135 out yet, writing it out will cover this one, too. This does not apply
11136 to instantiations of member class templates; they need to be added to
11137 the containing class as they are generated. FIXME: This hurts the
11138 idea of combining type decls from multiple TUs, since we can't predict
11139 what set of template instantiations we'll get. */
11140 if (TYPE_CONTEXT (type)
11141 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11142 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
11143 {
11144 gen_type_die (TYPE_CONTEXT (type), context_die);
11145
11146 if (TREE_ASM_WRITTEN (type))
11147 return;
11148
11149 /* If that failed, attach ourselves to the stub. */
11150 push_decl_scope (TYPE_CONTEXT (type));
11151 context_die = lookup_type_die (TYPE_CONTEXT (type));
11152 need_pop = 1;
11153 }
11154 else
11155 need_pop = 0;
11156
11157 if (TREE_CODE (type) == ENUMERAL_TYPE)
11158 gen_enumeration_type_die (type, context_die);
11159 else
11160 gen_struct_or_union_type_die (type, context_die);
11161
11162 if (need_pop)
11163 pop_decl_scope ();
11164
11165 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11166 it up if it is ever completed. gen_*_type_die will set it for us
11167 when appropriate. */
11168 return;
11169
11170 case VOID_TYPE:
11171 case INTEGER_TYPE:
11172 case REAL_TYPE:
11173 case COMPLEX_TYPE:
11174 case BOOLEAN_TYPE:
11175 case CHAR_TYPE:
11176 /* No DIEs needed for fundamental types. */
11177 break;
11178
11179 case LANG_TYPE:
11180 /* No Dwarf representation currently defined. */
11181 break;
11182
11183 default:
11184 abort ();
11185 }
11186
11187 TREE_ASM_WRITTEN (type) = 1;
11188 }
11189
11190 /* Generate a DIE for a tagged type instantiation. */
11191
11192 static void
11193 gen_tagged_type_instantiation_die (type, context_die)
11194 tree type;
11195 dw_die_ref context_die;
11196 {
11197 if (type == NULL_TREE || type == error_mark_node)
11198 return;
11199
11200 /* We are going to output a DIE to represent the unqualified version of
11201 this type (i.e. without any const or volatile qualifiers) so make sure
11202 that we have the main variant (i.e. the unqualified version) of this
11203 type now. */
11204 if (type != type_main_variant (type))
11205 abort ();
11206
11207 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11208 an instance of an unresolved type. */
11209
11210 switch (TREE_CODE (type))
11211 {
11212 case ERROR_MARK:
11213 break;
11214
11215 case ENUMERAL_TYPE:
11216 gen_inlined_enumeration_type_die (type, context_die);
11217 break;
11218
11219 case RECORD_TYPE:
11220 gen_inlined_structure_type_die (type, context_die);
11221 break;
11222
11223 case UNION_TYPE:
11224 case QUAL_UNION_TYPE:
11225 gen_inlined_union_type_die (type, context_die);
11226 break;
11227
11228 default:
11229 abort ();
11230 }
11231 }
11232
11233 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11234 things which are local to the given block. */
11235
11236 static void
11237 gen_block_die (stmt, context_die, depth)
11238 tree stmt;
11239 dw_die_ref context_die;
11240 int depth;
11241 {
11242 int must_output_die = 0;
11243 tree origin;
11244 tree decl;
11245 enum tree_code origin_code;
11246
11247 /* Ignore blocks never really used to make RTL. */
11248 if (stmt == NULL_TREE || !TREE_USED (stmt)
11249 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
11250 return;
11251
11252 /* If the block is one fragment of a non-contiguous block, do not
11253 process the variables, since they will have been done by the
11254 origin block. Do process subblocks. */
11255 if (BLOCK_FRAGMENT_ORIGIN (stmt))
11256 {
11257 tree sub;
11258
11259 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
11260 gen_block_die (sub, context_die, depth + 1);
11261
11262 return;
11263 }
11264
11265 /* Determine the "ultimate origin" of this block. This block may be an
11266 inlined instance of an inlined instance of inline function, so we have
11267 to trace all of the way back through the origin chain to find out what
11268 sort of node actually served as the original seed for the creation of
11269 the current block. */
11270 origin = block_ultimate_origin (stmt);
11271 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
11272
11273 /* Determine if we need to output any Dwarf DIEs at all to represent this
11274 block. */
11275 if (origin_code == FUNCTION_DECL)
11276 /* The outer scopes for inlinings *must* always be represented. We
11277 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
11278 must_output_die = 1;
11279 else
11280 {
11281 /* In the case where the current block represents an inlining of the
11282 "body block" of an inline function, we must *NOT* output any DIE for
11283 this block because we have already output a DIE to represent the whole
11284 inlined function scope and the "body block" of any function doesn't
11285 really represent a different scope according to ANSI C rules. So we
11286 check here to make sure that this block does not represent a "body
11287 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
11288 if (! is_body_block (origin ? origin : stmt))
11289 {
11290 /* Determine if this block directly contains any "significant"
11291 local declarations which we will need to output DIEs for. */
11292 if (debug_info_level > DINFO_LEVEL_TERSE)
11293 /* We are not in terse mode so *any* local declaration counts
11294 as being a "significant" one. */
11295 must_output_die = (BLOCK_VARS (stmt) != NULL);
11296 else
11297 /* We are in terse mode, so only local (nested) function
11298 definitions count as "significant" local declarations. */
11299 for (decl = BLOCK_VARS (stmt);
11300 decl != NULL; decl = TREE_CHAIN (decl))
11301 if (TREE_CODE (decl) == FUNCTION_DECL
11302 && DECL_INITIAL (decl))
11303 {
11304 must_output_die = 1;
11305 break;
11306 }
11307 }
11308 }
11309
11310 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
11311 DIE for any block which contains no significant local declarations at
11312 all. Rather, in such cases we just call `decls_for_scope' so that any
11313 needed Dwarf info for any sub-blocks will get properly generated. Note
11314 that in terse mode, our definition of what constitutes a "significant"
11315 local declaration gets restricted to include only inlined function
11316 instances and local (nested) function definitions. */
11317 if (must_output_die)
11318 {
11319 if (origin_code == FUNCTION_DECL)
11320 gen_inlined_subroutine_die (stmt, context_die, depth);
11321 else
11322 gen_lexical_block_die (stmt, context_die, depth);
11323 }
11324 else
11325 decls_for_scope (stmt, context_die, depth);
11326 }
11327
11328 /* Generate all of the decls declared within a given scope and (recursively)
11329 all of its sub-blocks. */
11330
11331 static void
11332 decls_for_scope (stmt, context_die, depth)
11333 tree stmt;
11334 dw_die_ref context_die;
11335 int depth;
11336 {
11337 tree decl;
11338 tree subblocks;
11339
11340 /* Ignore blocks never really used to make RTL. */
11341 if (stmt == NULL_TREE || ! TREE_USED (stmt))
11342 return;
11343
11344 /* Output the DIEs to represent all of the data objects and typedefs
11345 declared directly within this block but not within any nested
11346 sub-blocks. Also, nested function and tag DIEs have been
11347 generated with a parent of NULL; fix that up now. */
11348 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
11349 {
11350 dw_die_ref die;
11351
11352 if (TREE_CODE (decl) == FUNCTION_DECL)
11353 die = lookup_decl_die (decl);
11354 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
11355 die = lookup_type_die (TREE_TYPE (decl));
11356 else
11357 die = NULL;
11358
11359 if (die != NULL && die->die_parent == NULL)
11360 add_child_die (context_die, die);
11361 else
11362 gen_decl_die (decl, context_die);
11363 }
11364
11365 /* Output the DIEs to represent all sub-blocks (and the items declared
11366 therein) of this block. */
11367 for (subblocks = BLOCK_SUBBLOCKS (stmt);
11368 subblocks != NULL;
11369 subblocks = BLOCK_CHAIN (subblocks))
11370 gen_block_die (subblocks, context_die, depth + 1);
11371 }
11372
11373 /* Is this a typedef we can avoid emitting? */
11374
11375 static inline int
11376 is_redundant_typedef (decl)
11377 tree decl;
11378 {
11379 if (TYPE_DECL_IS_STUB (decl))
11380 return 1;
11381
11382 if (DECL_ARTIFICIAL (decl)
11383 && DECL_CONTEXT (decl)
11384 && is_tagged_type (DECL_CONTEXT (decl))
11385 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
11386 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
11387 /* Also ignore the artificial member typedef for the class name. */
11388 return 1;
11389
11390 return 0;
11391 }
11392
11393 /* Generate Dwarf debug information for a decl described by DECL. */
11394
11395 static void
11396 gen_decl_die (decl, context_die)
11397 tree decl;
11398 dw_die_ref context_die;
11399 {
11400 tree origin;
11401
11402 if (DECL_P (decl) && DECL_IGNORED_P (decl))
11403 return;
11404
11405 switch (TREE_CODE (decl))
11406 {
11407 case ERROR_MARK:
11408 break;
11409
11410 case CONST_DECL:
11411 /* The individual enumerators of an enum type get output when we output
11412 the Dwarf representation of the relevant enum type itself. */
11413 break;
11414
11415 case FUNCTION_DECL:
11416 /* Don't output any DIEs to represent mere function declarations,
11417 unless they are class members or explicit block externs. */
11418 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
11419 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
11420 break;
11421
11422 /* If we're emitting a clone, emit info for the abstract instance. */
11423 if (DECL_ORIGIN (decl) != decl)
11424 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
11425
11426 /* If we're emitting an out-of-line copy of an inline function,
11427 emit info for the abstract instance and set up to refer to it. */
11428 else if (DECL_INLINE (decl) && ! DECL_ABSTRACT (decl)
11429 && ! class_scope_p (context_die)
11430 /* dwarf2out_abstract_function won't emit a die if this is just
11431 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
11432 that case, because that works only if we have a die. */
11433 && DECL_INITIAL (decl) != NULL_TREE)
11434 {
11435 dwarf2out_abstract_function (decl);
11436 set_decl_origin_self (decl);
11437 }
11438
11439 /* Otherwise we're emitting the primary DIE for this decl. */
11440 else if (debug_info_level > DINFO_LEVEL_TERSE)
11441 {
11442 /* Before we describe the FUNCTION_DECL itself, make sure that we
11443 have described its return type. */
11444 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
11445
11446 /* And its virtual context. */
11447 if (DECL_VINDEX (decl) != NULL_TREE)
11448 gen_type_die (DECL_CONTEXT (decl), context_die);
11449
11450 /* And its containing type. */
11451 origin = decl_class_context (decl);
11452 if (origin != NULL_TREE)
11453 gen_type_die_for_member (origin, decl, context_die);
11454 }
11455
11456 /* Now output a DIE to represent the function itself. */
11457 gen_subprogram_die (decl, context_die);
11458 break;
11459
11460 case TYPE_DECL:
11461 /* If we are in terse mode, don't generate any DIEs to represent any
11462 actual typedefs. */
11463 if (debug_info_level <= DINFO_LEVEL_TERSE)
11464 break;
11465
11466 /* In the special case of a TYPE_DECL node representing the declaration
11467 of some type tag, if the given TYPE_DECL is marked as having been
11468 instantiated from some other (original) TYPE_DECL node (e.g. one which
11469 was generated within the original definition of an inline function) we
11470 have to generate a special (abbreviated) DW_TAG_structure_type,
11471 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
11472 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
11473 {
11474 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
11475 break;
11476 }
11477
11478 if (is_redundant_typedef (decl))
11479 gen_type_die (TREE_TYPE (decl), context_die);
11480 else
11481 /* Output a DIE to represent the typedef itself. */
11482 gen_typedef_die (decl, context_die);
11483 break;
11484
11485 case LABEL_DECL:
11486 if (debug_info_level >= DINFO_LEVEL_NORMAL)
11487 gen_label_die (decl, context_die);
11488 break;
11489
11490 case VAR_DECL:
11491 /* If we are in terse mode, don't generate any DIEs to represent any
11492 variable declarations or definitions. */
11493 if (debug_info_level <= DINFO_LEVEL_TERSE)
11494 break;
11495
11496 /* Output any DIEs that are needed to specify the type of this data
11497 object. */
11498 gen_type_die (TREE_TYPE (decl), context_die);
11499
11500 /* And its containing type. */
11501 origin = decl_class_context (decl);
11502 if (origin != NULL_TREE)
11503 gen_type_die_for_member (origin, decl, context_die);
11504
11505 /* Now output the DIE to represent the data object itself. This gets
11506 complicated because of the possibility that the VAR_DECL really
11507 represents an inlined instance of a formal parameter for an inline
11508 function. */
11509 origin = decl_ultimate_origin (decl);
11510 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
11511 gen_formal_parameter_die (decl, context_die);
11512 else
11513 gen_variable_die (decl, context_die);
11514 break;
11515
11516 case FIELD_DECL:
11517 /* Ignore the nameless fields that are used to skip bits but handle C++
11518 anonymous unions. */
11519 if (DECL_NAME (decl) != NULL_TREE
11520 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
11521 {
11522 gen_type_die (member_declared_type (decl), context_die);
11523 gen_field_die (decl, context_die);
11524 }
11525 break;
11526
11527 case PARM_DECL:
11528 gen_type_die (TREE_TYPE (decl), context_die);
11529 gen_formal_parameter_die (decl, context_die);
11530 break;
11531
11532 case NAMESPACE_DECL:
11533 /* Ignore for now. */
11534 break;
11535
11536 default:
11537 abort ();
11538 }
11539 }
11540
11541 static void
11542 mark_limbo_die_list (ptr)
11543 void *ptr ATTRIBUTE_UNUSED;
11544 {
11545 limbo_die_node *node;
11546 for (node = limbo_die_list; node ; node = node->next)
11547 ggc_mark_tree (node->created_for);
11548 }
11549 \f
11550 /* Add Ada "use" clause information for SGI Workshop debugger. */
11551
11552 void
11553 dwarf2out_add_library_unit_info (filename, context_list)
11554 const char *filename;
11555 const char *context_list;
11556 {
11557 unsigned int file_index;
11558
11559 if (filename != NULL)
11560 {
11561 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
11562 tree context_list_decl
11563 = build_decl (LABEL_DECL, get_identifier (context_list),
11564 void_type_node);
11565
11566 TREE_PUBLIC (context_list_decl) = TRUE;
11567 add_name_attribute (unit_die, context_list);
11568 file_index = lookup_filename (filename);
11569 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
11570 add_pubname (context_list_decl, unit_die);
11571 }
11572 }
11573
11574 /* Output debug information for global decl DECL. Called from toplev.c after
11575 compilation proper has finished. */
11576
11577 static void
11578 dwarf2out_global_decl (decl)
11579 tree decl;
11580 {
11581 /* Output DWARF2 information for file-scope tentative data object
11582 declarations, file-scope (extern) function declarations (which had no
11583 corresponding body) and file-scope tagged type declarations and
11584 definitions which have not yet been forced out. */
11585 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
11586 dwarf2out_decl (decl);
11587 }
11588
11589 /* Write the debugging output for DECL. */
11590
11591 void
11592 dwarf2out_decl (decl)
11593 tree decl;
11594 {
11595 dw_die_ref context_die = comp_unit_die;
11596
11597 switch (TREE_CODE (decl))
11598 {
11599 case ERROR_MARK:
11600 return;
11601
11602 case FUNCTION_DECL:
11603 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
11604 builtin function. Explicit programmer-supplied declarations of
11605 these same functions should NOT be ignored however. */
11606 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
11607 return;
11608
11609 /* What we would really like to do here is to filter out all mere
11610 file-scope declarations of file-scope functions which are never
11611 referenced later within this translation unit (and keep all of ones
11612 that *are* referenced later on) but we aren't clairvoyant, so we have
11613 no idea which functions will be referenced in the future (i.e. later
11614 on within the current translation unit). So here we just ignore all
11615 file-scope function declarations which are not also definitions. If
11616 and when the debugger needs to know something about these functions,
11617 it will have to hunt around and find the DWARF information associated
11618 with the definition of the function.
11619
11620 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
11621 nodes represent definitions and which ones represent mere
11622 declarations. We have to check DECL_INITIAL instead. That's because
11623 the C front-end supports some weird semantics for "extern inline"
11624 function definitions. These can get inlined within the current
11625 translation unit (an thus, we need to generate Dwarf info for their
11626 abstract instances so that the Dwarf info for the concrete inlined
11627 instances can have something to refer to) but the compiler never
11628 generates any out-of-lines instances of such things (despite the fact
11629 that they *are* definitions).
11630
11631 The important point is that the C front-end marks these "extern
11632 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
11633 them anyway. Note that the C++ front-end also plays some similar games
11634 for inline function definitions appearing within include files which
11635 also contain `#pragma interface' pragmas. */
11636 if (DECL_INITIAL (decl) == NULL_TREE)
11637 return;
11638
11639 /* If we're a nested function, initially use a parent of NULL; if we're
11640 a plain function, this will be fixed up in decls_for_scope. If
11641 we're a method, it will be ignored, since we already have a DIE. */
11642 if (decl_function_context (decl))
11643 context_die = NULL;
11644 break;
11645
11646 case VAR_DECL:
11647 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
11648 declaration and if the declaration was never even referenced from
11649 within this entire compilation unit. We suppress these DIEs in
11650 order to save space in the .debug section (by eliminating entries
11651 which are probably useless). Note that we must not suppress
11652 block-local extern declarations (whether used or not) because that
11653 would screw-up the debugger's name lookup mechanism and cause it to
11654 miss things which really ought to be in scope at a given point. */
11655 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
11656 return;
11657
11658 /* If we are in terse mode, don't generate any DIEs to represent any
11659 variable declarations or definitions. */
11660 if (debug_info_level <= DINFO_LEVEL_TERSE)
11661 return;
11662 break;
11663
11664 case TYPE_DECL:
11665 /* Don't emit stubs for types unless they are needed by other DIEs. */
11666 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
11667 return;
11668
11669 /* Don't bother trying to generate any DIEs to represent any of the
11670 normal built-in types for the language we are compiling. */
11671 if (DECL_SOURCE_LINE (decl) == 0)
11672 {
11673 /* OK, we need to generate one for `bool' so GDB knows what type
11674 comparisons have. */
11675 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
11676 == DW_LANG_C_plus_plus)
11677 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
11678 && ! DECL_IGNORED_P (decl))
11679 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
11680
11681 return;
11682 }
11683
11684 /* If we are in terse mode, don't generate any DIEs for types. */
11685 if (debug_info_level <= DINFO_LEVEL_TERSE)
11686 return;
11687
11688 /* If we're a function-scope tag, initially use a parent of NULL;
11689 this will be fixed up in decls_for_scope. */
11690 if (decl_function_context (decl))
11691 context_die = NULL;
11692
11693 break;
11694
11695 default:
11696 return;
11697 }
11698
11699 gen_decl_die (decl, context_die);
11700 }
11701
11702 /* Output a marker (i.e. a label) for the beginning of the generated code for
11703 a lexical block. */
11704
11705 static void
11706 dwarf2out_begin_block (line, blocknum)
11707 unsigned int line ATTRIBUTE_UNUSED;
11708 unsigned int blocknum;
11709 {
11710 function_section (current_function_decl);
11711 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
11712 }
11713
11714 /* Output a marker (i.e. a label) for the end of the generated code for a
11715 lexical block. */
11716
11717 static void
11718 dwarf2out_end_block (line, blocknum)
11719 unsigned int line ATTRIBUTE_UNUSED;
11720 unsigned int blocknum;
11721 {
11722 function_section (current_function_decl);
11723 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
11724 }
11725
11726 /* Returns nonzero if it is appropriate not to emit any debugging
11727 information for BLOCK, because it doesn't contain any instructions.
11728
11729 Don't allow this for blocks with nested functions or local classes
11730 as we would end up with orphans, and in the presence of scheduling
11731 we may end up calling them anyway. */
11732
11733 static bool
11734 dwarf2out_ignore_block (block)
11735 tree block;
11736 {
11737 tree decl;
11738
11739 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
11740 if (TREE_CODE (decl) == FUNCTION_DECL
11741 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
11742 return 0;
11743
11744 return 1;
11745 }
11746
11747 /* Lookup FILE_NAME (in the list of filenames that we know about here in
11748 dwarf2out.c) and return its "index". The index of each (known) filename is
11749 just a unique number which is associated with only that one filename. We
11750 need such numbers for the sake of generating labels (in the .debug_sfnames
11751 section) and references to those files numbers (in the .debug_srcinfo
11752 and.debug_macinfo sections). If the filename given as an argument is not
11753 found in our current list, add it to the list and assign it the next
11754 available unique index number. In order to speed up searches, we remember
11755 the index of the filename was looked up last. This handles the majority of
11756 all searches. */
11757
11758 static unsigned
11759 lookup_filename (file_name)
11760 const char *file_name;
11761 {
11762 unsigned i;
11763
11764 /* ??? Why isn't DECL_SOURCE_FILE left null instead. */
11765 if (strcmp (file_name, "<internal>") == 0
11766 || strcmp (file_name, "<built-in>") == 0)
11767 return 0;
11768
11769 /* Check to see if the file name that was searched on the previous
11770 call matches this file name. If so, return the index. */
11771 if (file_table.last_lookup_index != 0)
11772 if (0 == strcmp (file_name,
11773 file_table.table[file_table.last_lookup_index]))
11774 return file_table.last_lookup_index;
11775
11776 /* Didn't match the previous lookup, search the table */
11777 for (i = 1; i < file_table.in_use; i++)
11778 if (strcmp (file_name, file_table.table[i]) == 0)
11779 {
11780 file_table.last_lookup_index = i;
11781 return i;
11782 }
11783
11784 /* Prepare to add a new table entry by making sure there is enough space in
11785 the table to do so. If not, expand the current table. */
11786 if (i == file_table.allocated)
11787 {
11788 file_table.allocated = i + FILE_TABLE_INCREMENT;
11789 file_table.table = (char **)
11790 xrealloc (file_table.table, file_table.allocated * sizeof (char *));
11791 }
11792
11793 /* Add the new entry to the end of the filename table. */
11794 file_table.table[i] = xstrdup (file_name);
11795 file_table.in_use = i + 1;
11796 file_table.last_lookup_index = i;
11797
11798 if (DWARF2_ASM_LINE_DEBUG_INFO)
11799 fprintf (asm_out_file, "\t.file %u \"%s\"\n", i, file_name);
11800
11801 return i;
11802 }
11803
11804 static void
11805 init_file_table ()
11806 {
11807 /* Allocate the initial hunk of the file_table. */
11808 file_table.table = (char **) xcalloc (FILE_TABLE_INCREMENT, sizeof (char *));
11809 file_table.allocated = FILE_TABLE_INCREMENT;
11810
11811 /* Skip the first entry - file numbers begin at 1. */
11812 file_table.in_use = 1;
11813 file_table.last_lookup_index = 0;
11814 }
11815
11816 /* Output a label to mark the beginning of a source code line entry
11817 and record information relating to this source line, in
11818 'line_info_table' for later output of the .debug_line section. */
11819
11820 static void
11821 dwarf2out_source_line (line, filename)
11822 unsigned int line;
11823 const char *filename;
11824 {
11825 if (debug_info_level >= DINFO_LEVEL_NORMAL)
11826 {
11827 function_section (current_function_decl);
11828
11829 /* If requested, emit something human-readable. */
11830 if (flag_debug_asm)
11831 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
11832 filename, line);
11833
11834 if (DWARF2_ASM_LINE_DEBUG_INFO)
11835 {
11836 unsigned file_num = lookup_filename (filename);
11837
11838 /* Emit the .loc directive understood by GNU as. */
11839 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
11840
11841 /* Indicate that line number info exists. */
11842 line_info_table_in_use++;
11843
11844 /* Indicate that multiple line number tables exist. */
11845 if (DECL_SECTION_NAME (current_function_decl))
11846 separate_line_info_table_in_use++;
11847 }
11848 else if (DECL_SECTION_NAME (current_function_decl))
11849 {
11850 dw_separate_line_info_ref line_info;
11851 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, SEPARATE_LINE_CODE_LABEL,
11852 separate_line_info_table_in_use);
11853
11854 /* expand the line info table if necessary */
11855 if (separate_line_info_table_in_use
11856 == separate_line_info_table_allocated)
11857 {
11858 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
11859 separate_line_info_table
11860 = (dw_separate_line_info_ref)
11861 xrealloc (separate_line_info_table,
11862 separate_line_info_table_allocated
11863 * sizeof (dw_separate_line_info_entry));
11864 }
11865
11866 /* Add the new entry at the end of the line_info_table. */
11867 line_info
11868 = &separate_line_info_table[separate_line_info_table_in_use++];
11869 line_info->dw_file_num = lookup_filename (filename);
11870 line_info->dw_line_num = line;
11871 line_info->function = current_funcdef_number;
11872 }
11873 else
11874 {
11875 dw_line_info_ref line_info;
11876
11877 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, LINE_CODE_LABEL,
11878 line_info_table_in_use);
11879
11880 /* Expand the line info table if necessary. */
11881 if (line_info_table_in_use == line_info_table_allocated)
11882 {
11883 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
11884 line_info_table
11885 = (dw_line_info_ref)
11886 xrealloc (line_info_table,
11887 (line_info_table_allocated
11888 * sizeof (dw_line_info_entry)));
11889 }
11890
11891 /* Add the new entry at the end of the line_info_table. */
11892 line_info = &line_info_table[line_info_table_in_use++];
11893 line_info->dw_file_num = lookup_filename (filename);
11894 line_info->dw_line_num = line;
11895 }
11896 }
11897 }
11898
11899 /* Record the beginning of a new source file. */
11900
11901 static void
11902 dwarf2out_start_source_file (lineno, filename)
11903 unsigned int lineno;
11904 const char *filename;
11905 {
11906 if (flag_eliminate_dwarf2_dups)
11907 {
11908 /* Record the beginning of the file for break_out_includes. */
11909 dw_die_ref bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
11910 add_AT_string (bincl_die, DW_AT_name, filename);
11911 }
11912
11913 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11914 {
11915 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
11916 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
11917 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
11918 lineno);
11919 dw2_asm_output_data_uleb128 (lookup_filename (filename),
11920 "Filename we just started");
11921 }
11922 }
11923
11924 /* Record the end of a source file. */
11925
11926 static void
11927 dwarf2out_end_source_file (lineno)
11928 unsigned int lineno ATTRIBUTE_UNUSED;
11929 {
11930 if (flag_eliminate_dwarf2_dups)
11931 /* Record the end of the file for break_out_includes. */
11932 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
11933
11934 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11935 {
11936 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
11937 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
11938 }
11939 }
11940
11941 /* Called from debug_define in toplev.c. The `buffer' parameter contains
11942 the tail part of the directive line, i.e. the part which is past the
11943 initial whitespace, #, whitespace, directive-name, whitespace part. */
11944
11945 static void
11946 dwarf2out_define (lineno, buffer)
11947 unsigned lineno ATTRIBUTE_UNUSED;
11948 const char *buffer ATTRIBUTE_UNUSED;
11949 {
11950 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11951 {
11952 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
11953 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
11954 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
11955 dw2_asm_output_nstring (buffer, -1, "The macro");
11956 }
11957 }
11958
11959 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
11960 the tail part of the directive line, i.e. the part which is past the
11961 initial whitespace, #, whitespace, directive-name, whitespace part. */
11962
11963 static void
11964 dwarf2out_undef (lineno, buffer)
11965 unsigned lineno ATTRIBUTE_UNUSED;
11966 const char *buffer ATTRIBUTE_UNUSED;
11967 {
11968 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11969 {
11970 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
11971 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
11972 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
11973 dw2_asm_output_nstring (buffer, -1, "The macro");
11974 }
11975 }
11976
11977 /* Set up for Dwarf output at the start of compilation. */
11978
11979 static void
11980 dwarf2out_init (main_input_filename)
11981 const char *main_input_filename;
11982 {
11983 init_file_table ();
11984
11985 /* Remember the name of the primary input file. */
11986 primary_filename = main_input_filename;
11987
11988 /* Add it to the file table first, under the assumption that we'll
11989 be emitting line number data for it first, which avoids having
11990 to add an initial DW_LNS_set_file. */
11991 lookup_filename (main_input_filename);
11992
11993 /* Allocate the initial hunk of the decl_die_table. */
11994 decl_die_table
11995 = (dw_die_ref *) xcalloc (DECL_DIE_TABLE_INCREMENT, sizeof (dw_die_ref));
11996 decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
11997 decl_die_table_in_use = 0;
11998
11999 /* Allocate the initial hunk of the decl_scope_table. */
12000 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
12001 ggc_add_tree_varray_root (&decl_scope_table, 1);
12002
12003 /* Allocate the initial hunk of the abbrev_die_table. */
12004 abbrev_die_table
12005 = (dw_die_ref *) xcalloc (ABBREV_DIE_TABLE_INCREMENT,
12006 sizeof (dw_die_ref));
12007 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
12008 /* Zero-th entry is allocated, but unused */
12009 abbrev_die_table_in_use = 1;
12010
12011 /* Allocate the initial hunk of the line_info_table. */
12012 line_info_table
12013 = (dw_line_info_ref) xcalloc (LINE_INFO_TABLE_INCREMENT,
12014 sizeof (dw_line_info_entry));
12015 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
12016
12017 /* Zero-th entry is allocated, but unused */
12018 line_info_table_in_use = 1;
12019
12020 /* Generate the initial DIE for the .debug section. Note that the (string)
12021 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
12022 will (typically) be a relative pathname and that this pathname should be
12023 taken as being relative to the directory from which the compiler was
12024 invoked when the given (base) source file was compiled. */
12025 comp_unit_die = gen_compile_unit_die (main_input_filename);
12026
12027 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
12028 ggc_add_tree_varray_root (&incomplete_types, 1);
12029
12030 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
12031 ggc_add_rtx_varray_root (&used_rtx_varray, 1);
12032
12033 ggc_add_root (&limbo_die_list, 1, 1, mark_limbo_die_list);
12034
12035 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
12036 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
12037 DEBUG_ABBREV_SECTION_LABEL, 0);
12038 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12039 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
12040 else
12041 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
12042
12043 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
12044 DEBUG_INFO_SECTION_LABEL, 0);
12045 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
12046 DEBUG_LINE_SECTION_LABEL, 0);
12047 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
12048 DEBUG_RANGES_SECTION_LABEL, 0);
12049 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12050 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
12051 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
12052 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
12053 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12054 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
12055
12056 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12057 {
12058 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12059 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
12060 DEBUG_MACINFO_SECTION_LABEL, 0);
12061 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
12062 }
12063
12064 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12065 {
12066 text_section ();
12067 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
12068 }
12069 }
12070
12071 /* Allocate a string in .debug_str hash table. */
12072
12073 static hashnode
12074 indirect_string_alloc (tab)
12075 hash_table *tab ATTRIBUTE_UNUSED;
12076 {
12077 struct indirect_string_node *node;
12078
12079 node = xmalloc (sizeof (struct indirect_string_node));
12080 node->refcount = 0;
12081 node->form = 0;
12082 node->label = NULL;
12083
12084 return (hashnode) node;
12085 }
12086
12087 /* A helper function for dwarf2out_finish called through
12088 ht_forall. Emit one queued .debug_str string. */
12089
12090 static int
12091 output_indirect_string (pfile, h, v)
12092 struct cpp_reader *pfile ATTRIBUTE_UNUSED;
12093 hashnode h;
12094 const PTR v ATTRIBUTE_UNUSED;
12095 {
12096 struct indirect_string_node *node = (struct indirect_string_node *) h;
12097
12098 if (node->form == DW_FORM_strp)
12099 {
12100 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
12101 ASM_OUTPUT_LABEL (asm_out_file, node->label);
12102 assemble_string ((const char *) HT_STR (&node->id),
12103 HT_LEN (&node->id) + 1);
12104 }
12105
12106 return 1;
12107 }
12108
12109 /* Output stuff that dwarf requires at the end of every file,
12110 and generate the DWARF-2 debugging info. */
12111
12112 static void
12113 dwarf2out_finish (input_filename)
12114 const char *input_filename ATTRIBUTE_UNUSED;
12115 {
12116 limbo_die_node *node, *next_node;
12117 dw_die_ref die = 0;
12118
12119 /* Traverse the limbo die list, and add parent/child links. The only
12120 dies without parents that should be here are concrete instances of
12121 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
12122 For concrete instances, we can get the parent die from the abstract
12123 instance. */
12124 for (node = limbo_die_list; node; node = next_node)
12125 {
12126 next_node = node->next;
12127 die = node->die;
12128
12129 if (die->die_parent == NULL)
12130 {
12131 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
12132 tree context;
12133
12134 if (origin)
12135 add_child_die (origin->die_parent, die);
12136 else if (die == comp_unit_die)
12137 ;
12138 /* If this was an expression for a bound involved in a function
12139 return type, it may be a SAVE_EXPR for which we weren't able
12140 to find a DIE previously. So try now. */
12141 else if (node->created_for
12142 && TREE_CODE (node->created_for) == SAVE_EXPR
12143 && 0 != (origin = (lookup_decl_die
12144 (SAVE_EXPR_CONTEXT
12145 (node->created_for)))))
12146 add_child_die (origin, die);
12147 else if (errorcount > 0 || sorrycount > 0)
12148 /* It's OK to be confused by errors in the input. */
12149 add_child_die (comp_unit_die, die);
12150 else if (node->created_for
12151 && ((DECL_P (node->created_for)
12152 && (context = DECL_CONTEXT (node->created_for)))
12153 || (TYPE_P (node->created_for)
12154 && (context = TYPE_CONTEXT (node->created_for))))
12155 && TREE_CODE (context) == FUNCTION_DECL)
12156 {
12157 /* In certain situations, the lexical block containing a
12158 nested function can be optimized away, which results
12159 in the nested function die being orphaned. Likewise
12160 with the return type of that nested function. Force
12161 this to be a child of the containing function. */
12162 origin = lookup_decl_die (context);
12163 if (! origin)
12164 abort ();
12165 add_child_die (origin, die);
12166 }
12167 else
12168 abort ();
12169 }
12170
12171 free (node);
12172 }
12173
12174 limbo_die_list = NULL;
12175
12176 /* Walk through the list of incomplete types again, trying once more to
12177 emit full debugging info for them. */
12178 retry_incomplete_types ();
12179
12180 /* We need to reverse all the dies before break_out_includes, or
12181 we'll see the end of an include file before the beginning. */
12182 reverse_all_dies (comp_unit_die);
12183
12184 /* Generate separate CUs for each of the include files we've seen.
12185 They will go into limbo_die_list. */
12186 if (flag_eliminate_dwarf2_dups)
12187 break_out_includes (comp_unit_die);
12188
12189 /* Traverse the DIE's and add add sibling attributes to those DIE's
12190 that have children. */
12191 add_sibling_attributes (comp_unit_die);
12192 for (node = limbo_die_list; node; node = node->next)
12193 add_sibling_attributes (node->die);
12194
12195 /* Output a terminator label for the .text section. */
12196 text_section ();
12197 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, TEXT_END_LABEL, 0);
12198
12199 /* Output the source line correspondence table. We must do this
12200 even if there is no line information. Otherwise, on an empty
12201 translation unit, we will generate a present, but empty,
12202 .debug_info section. IRIX 6.5 `nm' will then complain when
12203 examining the file. */
12204 if (! DWARF2_ASM_LINE_DEBUG_INFO)
12205 {
12206 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12207 output_line_info ();
12208 }
12209
12210 /* Output location list section if necessary. */
12211 if (have_location_lists)
12212 {
12213 /* Output the location lists info. */
12214 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
12215 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
12216 DEBUG_LOC_SECTION_LABEL, 0);
12217 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
12218 output_location_lists (die);
12219 have_location_lists = 0;
12220 }
12221
12222 /* We can only use the low/high_pc attributes if all of the code was
12223 in .text. */
12224 if (separate_line_info_table_in_use == 0)
12225 {
12226 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
12227 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
12228 }
12229
12230 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
12231 "base address". Use zero so that these addresses become absolute. */
12232 else if (have_location_lists || ranges_table_in_use)
12233 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
12234
12235 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12236 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
12237 debug_line_section_label);
12238
12239 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12240 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
12241
12242 /* Output all of the compilation units. We put the main one last so that
12243 the offsets are available to output_pubnames. */
12244 for (node = limbo_die_list; node; node = node->next)
12245 output_comp_unit (node->die);
12246
12247 output_comp_unit (comp_unit_die);
12248
12249 /* Output the abbreviation table. */
12250 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12251 output_abbrev_section ();
12252
12253 /* Output public names table if necessary. */
12254 if (pubname_table_in_use)
12255 {
12256 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
12257 output_pubnames ();
12258 }
12259
12260 /* Output the address range information. We only put functions in the arange
12261 table, so don't write it out if we don't have any. */
12262 if (fde_table_in_use)
12263 {
12264 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
12265 output_aranges ();
12266 }
12267
12268 /* Output ranges section if necessary. */
12269 if (ranges_table_in_use)
12270 {
12271 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
12272 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
12273 output_ranges ();
12274 }
12275
12276 /* Have to end the primary source file. */
12277 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12278 {
12279 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12280 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12281 }
12282
12283 /* If we emitted any DW_FORM_strp form attribute, output the string
12284 table too. */
12285 if (debug_str_hash)
12286 ht_forall (debug_str_hash, output_indirect_string, NULL);
12287 }
12288 #endif /* DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO */