system.h: Poison ASM_SIMPLIFY_DWARF_ADDR.
[gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "real.h"
44 #include "rtl.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "reload.h"
49 #include "function.h"
50 #include "output.h"
51 #include "expr.h"
52 #include "libfuncs.h"
53 #include "except.h"
54 #include "dwarf2.h"
55 #include "dwarf2out.h"
56 #include "dwarf2asm.h"
57 #include "toplev.h"
58 #include "varray.h"
59 #include "ggc.h"
60 #include "md5.h"
61 #include "tm_p.h"
62 #include "diagnostic.h"
63 #include "debug.h"
64 #include "target.h"
65 #include "langhooks.h"
66 #include "hashtab.h"
67
68 #ifdef DWARF2_DEBUGGING_INFO
69 static void dwarf2out_source_line (unsigned int, const char *);
70 #endif
71
72 /* DWARF2 Abbreviation Glossary:
73 CFA = Canonical Frame Address
74 a fixed address on the stack which identifies a call frame.
75 We define it to be the value of SP just before the call insn.
76 The CFA register and offset, which may change during the course
77 of the function, are used to calculate its value at runtime.
78 CFI = Call Frame Instruction
79 an instruction for the DWARF2 abstract machine
80 CIE = Common Information Entry
81 information describing information common to one or more FDEs
82 DIE = Debugging Information Entry
83 FDE = Frame Description Entry
84 information describing the stack call frame, in particular,
85 how to restore registers
86
87 DW_CFA_... = DWARF2 CFA call frame instruction
88 DW_TAG_... = DWARF2 DIE tag */
89
90 /* Decide whether we want to emit frame unwind information for the current
91 translation unit. */
92
93 int
94 dwarf2out_do_frame (void)
95 {
96 return (write_symbols == DWARF2_DEBUG
97 || write_symbols == VMS_AND_DWARF2_DEBUG
98 #ifdef DWARF2_FRAME_INFO
99 || DWARF2_FRAME_INFO
100 #endif
101 #ifdef DWARF2_UNWIND_INFO
102 || flag_unwind_tables
103 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
104 #endif
105 );
106 }
107
108 /* The size of the target's pointer type. */
109 #ifndef PTR_SIZE
110 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
111 #endif
112
113 /* Default version of targetm.eh_frame_section. Note this must appear
114 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro
115 guards. */
116
117 void
118 default_eh_frame_section (void)
119 {
120 #ifdef EH_FRAME_SECTION_NAME
121 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
122 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
123 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
124 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
125 int flags;
126
127 flags = (! flag_pic
128 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
129 && (fde_encoding & 0x70) != DW_EH_PE_aligned
130 && (per_encoding & 0x70) != DW_EH_PE_absptr
131 && (per_encoding & 0x70) != DW_EH_PE_aligned
132 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
133 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
134 ? 0 : SECTION_WRITE;
135 named_section_flags (EH_FRAME_SECTION_NAME, flags);
136 #else
137 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
138 #endif
139 #else
140 tree label = get_file_function_name ('F');
141
142 data_section ();
143 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
144 (*targetm.asm_out.globalize_label) (asm_out_file, IDENTIFIER_POINTER (label));
145 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
146 #endif
147 }
148
149 /* Array of RTXes referenced by the debugging information, which therefore
150 must be kept around forever. */
151 static GTY(()) varray_type used_rtx_varray;
152
153 /* A pointer to the base of a list of incomplete types which might be
154 completed at some later time. incomplete_types_list needs to be a VARRAY
155 because we want to tell the garbage collector about it. */
156 static GTY(()) varray_type incomplete_types;
157
158 /* A pointer to the base of a table of references to declaration
159 scopes. This table is a display which tracks the nesting
160 of declaration scopes at the current scope and containing
161 scopes. This table is used to find the proper place to
162 define type declaration DIE's. */
163 static GTY(()) varray_type decl_scope_table;
164
165 /* How to start an assembler comment. */
166 #ifndef ASM_COMMENT_START
167 #define ASM_COMMENT_START ";#"
168 #endif
169
170 typedef struct dw_cfi_struct *dw_cfi_ref;
171 typedef struct dw_fde_struct *dw_fde_ref;
172 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
173
174 /* Call frames are described using a sequence of Call Frame
175 Information instructions. The register number, offset
176 and address fields are provided as possible operands;
177 their use is selected by the opcode field. */
178
179 enum dw_cfi_oprnd_type {
180 dw_cfi_oprnd_unused,
181 dw_cfi_oprnd_reg_num,
182 dw_cfi_oprnd_offset,
183 dw_cfi_oprnd_addr,
184 dw_cfi_oprnd_loc
185 };
186
187 typedef union dw_cfi_oprnd_struct GTY(())
188 {
189 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
190 long int GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
191 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
192 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
193 }
194 dw_cfi_oprnd;
195
196 typedef struct dw_cfi_struct GTY(())
197 {
198 dw_cfi_ref dw_cfi_next;
199 enum dwarf_call_frame_info dw_cfi_opc;
200 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
201 dw_cfi_oprnd1;
202 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
203 dw_cfi_oprnd2;
204 }
205 dw_cfi_node;
206
207 /* This is how we define the location of the CFA. We use to handle it
208 as REG + OFFSET all the time, but now it can be more complex.
209 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
210 Instead of passing around REG and OFFSET, we pass a copy
211 of this structure. */
212 typedef struct cfa_loc GTY(())
213 {
214 unsigned long reg;
215 long offset;
216 long base_offset;
217 int indirect; /* 1 if CFA is accessed via a dereference. */
218 } dw_cfa_location;
219
220 /* All call frame descriptions (FDE's) in the GCC generated DWARF
221 refer to a single Common Information Entry (CIE), defined at
222 the beginning of the .debug_frame section. This use of a single
223 CIE obviates the need to keep track of multiple CIE's
224 in the DWARF generation routines below. */
225
226 typedef struct dw_fde_struct GTY(())
227 {
228 const char *dw_fde_begin;
229 const char *dw_fde_current_label;
230 const char *dw_fde_end;
231 dw_cfi_ref dw_fde_cfi;
232 unsigned funcdef_number;
233 unsigned all_throwers_are_sibcalls : 1;
234 unsigned nothrow : 1;
235 unsigned uses_eh_lsda : 1;
236 }
237 dw_fde_node;
238
239 /* Maximum size (in bytes) of an artificially generated label. */
240 #define MAX_ARTIFICIAL_LABEL_BYTES 30
241
242 /* The size of addresses as they appear in the Dwarf 2 data.
243 Some architectures use word addresses to refer to code locations,
244 but Dwarf 2 info always uses byte addresses. On such machines,
245 Dwarf 2 addresses need to be larger than the architecture's
246 pointers. */
247 #ifndef DWARF2_ADDR_SIZE
248 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
249 #endif
250
251 /* The size in bytes of a DWARF field indicating an offset or length
252 relative to a debug info section, specified to be 4 bytes in the
253 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
254 as PTR_SIZE. */
255
256 #ifndef DWARF_OFFSET_SIZE
257 #define DWARF_OFFSET_SIZE 4
258 #endif
259
260 /* According to the (draft) DWARF 3 specification, the initial length
261 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
262 bytes are 0xffffffff, followed by the length stored in the next 8
263 bytes.
264
265 However, the SGI/MIPS ABI uses an initial length which is equal to
266 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
267
268 #ifndef DWARF_INITIAL_LENGTH_SIZE
269 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
270 #endif
271
272 #define DWARF_VERSION 2
273
274 /* Round SIZE up to the nearest BOUNDARY. */
275 #define DWARF_ROUND(SIZE,BOUNDARY) \
276 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
277
278 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
279 #ifndef DWARF_CIE_DATA_ALIGNMENT
280 #ifdef STACK_GROWS_DOWNWARD
281 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
282 #else
283 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
284 #endif
285 #endif
286
287 /* A pointer to the base of a table that contains frame description
288 information for each routine. */
289 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
290
291 /* Number of elements currently allocated for fde_table. */
292 static GTY(()) unsigned fde_table_allocated;
293
294 /* Number of elements in fde_table currently in use. */
295 static GTY(()) unsigned fde_table_in_use;
296
297 /* Size (in elements) of increments by which we may expand the
298 fde_table. */
299 #define FDE_TABLE_INCREMENT 256
300
301 /* A list of call frame insns for the CIE. */
302 static GTY(()) dw_cfi_ref cie_cfi_head;
303
304 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
305 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
306 attribute that accelerates the lookup of the FDE associated
307 with the subprogram. This variable holds the table index of the FDE
308 associated with the current function (body) definition. */
309 static unsigned current_funcdef_fde;
310 #endif
311
312 struct indirect_string_node GTY(())
313 {
314 const char *str;
315 unsigned int refcount;
316 unsigned int form;
317 char *label;
318 };
319
320 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
321
322 static GTY(()) int dw2_string_counter;
323 static GTY(()) unsigned long dwarf2out_cfi_label_num;
324
325 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
326
327 /* Forward declarations for functions defined in this file. */
328
329 static char *stripattributes (const char *);
330 static const char *dwarf_cfi_name (unsigned);
331 static dw_cfi_ref new_cfi (void);
332 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
333 static void add_fde_cfi (const char *, dw_cfi_ref);
334 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
335 static void lookup_cfa (dw_cfa_location *);
336 static void reg_save (const char *, unsigned, unsigned, long);
337 static void initial_return_save (rtx);
338 static long stack_adjust_offset (rtx);
339 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
340 static void output_call_frame_info (int);
341 static void dwarf2out_stack_adjust (rtx);
342 static void queue_reg_save (const char *, rtx, long);
343 static void flush_queued_reg_saves (void);
344 static bool clobbers_queued_reg_save (rtx);
345 static void dwarf2out_frame_debug_expr (rtx, const char *);
346
347 /* Support for complex CFA locations. */
348 static void output_cfa_loc (dw_cfi_ref);
349 static void get_cfa_from_loc_descr (dw_cfa_location *,
350 struct dw_loc_descr_struct *);
351 static struct dw_loc_descr_struct *build_cfa_loc
352 (dw_cfa_location *);
353 static void def_cfa_1 (const char *, dw_cfa_location *);
354
355 /* How to start an assembler comment. */
356 #ifndef ASM_COMMENT_START
357 #define ASM_COMMENT_START ";#"
358 #endif
359
360 /* Data and reference forms for relocatable data. */
361 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
362 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
363
364 #ifndef DEBUG_FRAME_SECTION
365 #define DEBUG_FRAME_SECTION ".debug_frame"
366 #endif
367
368 #ifndef FUNC_BEGIN_LABEL
369 #define FUNC_BEGIN_LABEL "LFB"
370 #endif
371
372 #ifndef FUNC_END_LABEL
373 #define FUNC_END_LABEL "LFE"
374 #endif
375
376 #define FRAME_BEGIN_LABEL "Lframe"
377 #define CIE_AFTER_SIZE_LABEL "LSCIE"
378 #define CIE_END_LABEL "LECIE"
379 #define FDE_LABEL "LSFDE"
380 #define FDE_AFTER_SIZE_LABEL "LASFDE"
381 #define FDE_END_LABEL "LEFDE"
382 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
383 #define LINE_NUMBER_END_LABEL "LELT"
384 #define LN_PROLOG_AS_LABEL "LASLTP"
385 #define LN_PROLOG_END_LABEL "LELTP"
386 #define DIE_LABEL_PREFIX "DW"
387
388 /* The DWARF 2 CFA column which tracks the return address. Normally this
389 is the column for PC, or the first column after all of the hard
390 registers. */
391 #ifndef DWARF_FRAME_RETURN_COLUMN
392 #ifdef PC_REGNUM
393 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
394 #else
395 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
396 #endif
397 #endif
398
399 /* The mapping from gcc register number to DWARF 2 CFA column number. By
400 default, we just provide columns for all registers. */
401 #ifndef DWARF_FRAME_REGNUM
402 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
403 #endif
404
405 /* The offset from the incoming value of %sp to the top of the stack frame
406 for the current function. */
407 #ifndef INCOMING_FRAME_SP_OFFSET
408 #define INCOMING_FRAME_SP_OFFSET 0
409 #endif
410 \f
411 /* Hook used by __throw. */
412
413 rtx
414 expand_builtin_dwarf_sp_column (void)
415 {
416 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
417 }
418
419 /* Return a pointer to a copy of the section string name S with all
420 attributes stripped off, and an asterisk prepended (for assemble_name). */
421
422 static inline char *
423 stripattributes (const char *s)
424 {
425 char *stripped = xmalloc (strlen (s) + 2);
426 char *p = stripped;
427
428 *p++ = '*';
429
430 while (*s && *s != ',')
431 *p++ = *s++;
432
433 *p = '\0';
434 return stripped;
435 }
436
437 /* Generate code to initialize the register size table. */
438
439 void
440 expand_builtin_init_dwarf_reg_sizes (tree address)
441 {
442 int i;
443 enum machine_mode mode = TYPE_MODE (char_type_node);
444 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
445 rtx mem = gen_rtx_MEM (BLKmode, addr);
446 bool wrote_return_column = false;
447
448 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
449 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
450 {
451 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
452 enum machine_mode save_mode = reg_raw_mode[i];
453 HOST_WIDE_INT size;
454
455 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
456 save_mode = choose_hard_reg_mode (i, 1, true);
457 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
458 {
459 if (save_mode == VOIDmode)
460 continue;
461 wrote_return_column = true;
462 }
463 size = GET_MODE_SIZE (save_mode);
464 if (offset < 0)
465 continue;
466
467 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
468 }
469 if (! wrote_return_column)
470 {
471 enum machine_mode save_mode = Pmode;
472 HOST_WIDE_INT offset = DWARF_FRAME_RETURN_COLUMN * GET_MODE_SIZE (mode);
473 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
474 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
475 }
476 }
477
478 /* Convert a DWARF call frame info. operation to its string name */
479
480 static const char *
481 dwarf_cfi_name (unsigned int cfi_opc)
482 {
483 switch (cfi_opc)
484 {
485 case DW_CFA_advance_loc:
486 return "DW_CFA_advance_loc";
487 case DW_CFA_offset:
488 return "DW_CFA_offset";
489 case DW_CFA_restore:
490 return "DW_CFA_restore";
491 case DW_CFA_nop:
492 return "DW_CFA_nop";
493 case DW_CFA_set_loc:
494 return "DW_CFA_set_loc";
495 case DW_CFA_advance_loc1:
496 return "DW_CFA_advance_loc1";
497 case DW_CFA_advance_loc2:
498 return "DW_CFA_advance_loc2";
499 case DW_CFA_advance_loc4:
500 return "DW_CFA_advance_loc4";
501 case DW_CFA_offset_extended:
502 return "DW_CFA_offset_extended";
503 case DW_CFA_restore_extended:
504 return "DW_CFA_restore_extended";
505 case DW_CFA_undefined:
506 return "DW_CFA_undefined";
507 case DW_CFA_same_value:
508 return "DW_CFA_same_value";
509 case DW_CFA_register:
510 return "DW_CFA_register";
511 case DW_CFA_remember_state:
512 return "DW_CFA_remember_state";
513 case DW_CFA_restore_state:
514 return "DW_CFA_restore_state";
515 case DW_CFA_def_cfa:
516 return "DW_CFA_def_cfa";
517 case DW_CFA_def_cfa_register:
518 return "DW_CFA_def_cfa_register";
519 case DW_CFA_def_cfa_offset:
520 return "DW_CFA_def_cfa_offset";
521
522 /* DWARF 3 */
523 case DW_CFA_def_cfa_expression:
524 return "DW_CFA_def_cfa_expression";
525 case DW_CFA_expression:
526 return "DW_CFA_expression";
527 case DW_CFA_offset_extended_sf:
528 return "DW_CFA_offset_extended_sf";
529 case DW_CFA_def_cfa_sf:
530 return "DW_CFA_def_cfa_sf";
531 case DW_CFA_def_cfa_offset_sf:
532 return "DW_CFA_def_cfa_offset_sf";
533
534 /* SGI/MIPS specific */
535 case DW_CFA_MIPS_advance_loc8:
536 return "DW_CFA_MIPS_advance_loc8";
537
538 /* GNU extensions */
539 case DW_CFA_GNU_window_save:
540 return "DW_CFA_GNU_window_save";
541 case DW_CFA_GNU_args_size:
542 return "DW_CFA_GNU_args_size";
543 case DW_CFA_GNU_negative_offset_extended:
544 return "DW_CFA_GNU_negative_offset_extended";
545
546 default:
547 return "DW_CFA_<unknown>";
548 }
549 }
550
551 /* Return a pointer to a newly allocated Call Frame Instruction. */
552
553 static inline dw_cfi_ref
554 new_cfi (void)
555 {
556 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
557
558 cfi->dw_cfi_next = NULL;
559 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
560 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
561
562 return cfi;
563 }
564
565 /* Add a Call Frame Instruction to list of instructions. */
566
567 static inline void
568 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
569 {
570 dw_cfi_ref *p;
571
572 /* Find the end of the chain. */
573 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
574 ;
575
576 *p = cfi;
577 }
578
579 /* Generate a new label for the CFI info to refer to. */
580
581 char *
582 dwarf2out_cfi_label (void)
583 {
584 static char label[20];
585
586 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
587 ASM_OUTPUT_LABEL (asm_out_file, label);
588 return label;
589 }
590
591 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
592 or to the CIE if LABEL is NULL. */
593
594 static void
595 add_fde_cfi (const char *label, dw_cfi_ref cfi)
596 {
597 if (label)
598 {
599 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
600
601 if (*label == 0)
602 label = dwarf2out_cfi_label ();
603
604 if (fde->dw_fde_current_label == NULL
605 || strcmp (label, fde->dw_fde_current_label) != 0)
606 {
607 dw_cfi_ref xcfi;
608
609 fde->dw_fde_current_label = label = xstrdup (label);
610
611 /* Set the location counter to the new label. */
612 xcfi = new_cfi ();
613 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
614 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
615 add_cfi (&fde->dw_fde_cfi, xcfi);
616 }
617
618 add_cfi (&fde->dw_fde_cfi, cfi);
619 }
620
621 else
622 add_cfi (&cie_cfi_head, cfi);
623 }
624
625 /* Subroutine of lookup_cfa. */
626
627 static inline void
628 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
629 {
630 switch (cfi->dw_cfi_opc)
631 {
632 case DW_CFA_def_cfa_offset:
633 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
634 break;
635 case DW_CFA_def_cfa_register:
636 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
637 break;
638 case DW_CFA_def_cfa:
639 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
640 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
641 break;
642 case DW_CFA_def_cfa_expression:
643 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
644 break;
645 default:
646 break;
647 }
648 }
649
650 /* Find the previous value for the CFA. */
651
652 static void
653 lookup_cfa (dw_cfa_location *loc)
654 {
655 dw_cfi_ref cfi;
656
657 loc->reg = (unsigned long) -1;
658 loc->offset = 0;
659 loc->indirect = 0;
660 loc->base_offset = 0;
661
662 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
663 lookup_cfa_1 (cfi, loc);
664
665 if (fde_table_in_use)
666 {
667 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
668 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
669 lookup_cfa_1 (cfi, loc);
670 }
671 }
672
673 /* The current rule for calculating the DWARF2 canonical frame address. */
674 static dw_cfa_location cfa;
675
676 /* The register used for saving registers to the stack, and its offset
677 from the CFA. */
678 static dw_cfa_location cfa_store;
679
680 /* The running total of the size of arguments pushed onto the stack. */
681 static long args_size;
682
683 /* The last args_size we actually output. */
684 static long old_args_size;
685
686 /* Entry point to update the canonical frame address (CFA).
687 LABEL is passed to add_fde_cfi. The value of CFA is now to be
688 calculated from REG+OFFSET. */
689
690 void
691 dwarf2out_def_cfa (const char *label, unsigned int reg, long int offset)
692 {
693 dw_cfa_location loc;
694 loc.indirect = 0;
695 loc.base_offset = 0;
696 loc.reg = reg;
697 loc.offset = offset;
698 def_cfa_1 (label, &loc);
699 }
700
701 /* This routine does the actual work. The CFA is now calculated from
702 the dw_cfa_location structure. */
703
704 static void
705 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
706 {
707 dw_cfi_ref cfi;
708 dw_cfa_location old_cfa, loc;
709
710 cfa = *loc_p;
711 loc = *loc_p;
712
713 if (cfa_store.reg == loc.reg && loc.indirect == 0)
714 cfa_store.offset = loc.offset;
715
716 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
717 lookup_cfa (&old_cfa);
718
719 /* If nothing changed, no need to issue any call frame instructions. */
720 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
721 && loc.indirect == old_cfa.indirect
722 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
723 return;
724
725 cfi = new_cfi ();
726
727 if (loc.reg == old_cfa.reg && !loc.indirect)
728 {
729 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
730 indicating the CFA register did not change but the offset
731 did. */
732 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
733 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
734 }
735
736 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
737 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
738 && !loc.indirect)
739 {
740 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
741 indicating the CFA register has changed to <register> but the
742 offset has not changed. */
743 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
744 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
745 }
746 #endif
747
748 else if (loc.indirect == 0)
749 {
750 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
751 indicating the CFA register has changed to <register> with
752 the specified offset. */
753 cfi->dw_cfi_opc = DW_CFA_def_cfa;
754 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
755 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
756 }
757 else
758 {
759 /* Construct a DW_CFA_def_cfa_expression instruction to
760 calculate the CFA using a full location expression since no
761 register-offset pair is available. */
762 struct dw_loc_descr_struct *loc_list;
763
764 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
765 loc_list = build_cfa_loc (&loc);
766 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
767 }
768
769 add_fde_cfi (label, cfi);
770 }
771
772 /* Add the CFI for saving a register. REG is the CFA column number.
773 LABEL is passed to add_fde_cfi.
774 If SREG is -1, the register is saved at OFFSET from the CFA;
775 otherwise it is saved in SREG. */
776
777 static void
778 reg_save (const char *label, unsigned int reg, unsigned int sreg, long int offset)
779 {
780 dw_cfi_ref cfi = new_cfi ();
781
782 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
783
784 /* The following comparison is correct. -1 is used to indicate that
785 the value isn't a register number. */
786 if (sreg == (unsigned int) -1)
787 {
788 if (reg & ~0x3f)
789 /* The register number won't fit in 6 bits, so we have to use
790 the long form. */
791 cfi->dw_cfi_opc = DW_CFA_offset_extended;
792 else
793 cfi->dw_cfi_opc = DW_CFA_offset;
794
795 #ifdef ENABLE_CHECKING
796 {
797 /* If we get an offset that is not a multiple of
798 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
799 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
800 description. */
801 long check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
802
803 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
804 abort ();
805 }
806 #endif
807 offset /= DWARF_CIE_DATA_ALIGNMENT;
808 if (offset < 0)
809 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
810
811 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
812 }
813 else if (sreg == reg)
814 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
815 return;
816 else
817 {
818 cfi->dw_cfi_opc = DW_CFA_register;
819 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
820 }
821
822 add_fde_cfi (label, cfi);
823 }
824
825 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
826 This CFI tells the unwinder that it needs to restore the window registers
827 from the previous frame's window save area.
828
829 ??? Perhaps we should note in the CIE where windows are saved (instead of
830 assuming 0(cfa)) and what registers are in the window. */
831
832 void
833 dwarf2out_window_save (const char *label)
834 {
835 dw_cfi_ref cfi = new_cfi ();
836
837 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
838 add_fde_cfi (label, cfi);
839 }
840
841 /* Add a CFI to update the running total of the size of arguments
842 pushed onto the stack. */
843
844 void
845 dwarf2out_args_size (const char *label, long int size)
846 {
847 dw_cfi_ref cfi;
848
849 if (size == old_args_size)
850 return;
851
852 old_args_size = size;
853
854 cfi = new_cfi ();
855 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
856 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
857 add_fde_cfi (label, cfi);
858 }
859
860 /* Entry point for saving a register to the stack. REG is the GCC register
861 number. LABEL and OFFSET are passed to reg_save. */
862
863 void
864 dwarf2out_reg_save (const char *label, unsigned int reg, long int offset)
865 {
866 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
867 }
868
869 /* Entry point for saving the return address in the stack.
870 LABEL and OFFSET are passed to reg_save. */
871
872 void
873 dwarf2out_return_save (const char *label, long int offset)
874 {
875 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
876 }
877
878 /* Entry point for saving the return address in a register.
879 LABEL and SREG are passed to reg_save. */
880
881 void
882 dwarf2out_return_reg (const char *label, unsigned int sreg)
883 {
884 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
885 }
886
887 /* Record the initial position of the return address. RTL is
888 INCOMING_RETURN_ADDR_RTX. */
889
890 static void
891 initial_return_save (rtx rtl)
892 {
893 unsigned int reg = (unsigned int) -1;
894 HOST_WIDE_INT offset = 0;
895
896 switch (GET_CODE (rtl))
897 {
898 case REG:
899 /* RA is in a register. */
900 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
901 break;
902
903 case MEM:
904 /* RA is on the stack. */
905 rtl = XEXP (rtl, 0);
906 switch (GET_CODE (rtl))
907 {
908 case REG:
909 if (REGNO (rtl) != STACK_POINTER_REGNUM)
910 abort ();
911 offset = 0;
912 break;
913
914 case PLUS:
915 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
916 abort ();
917 offset = INTVAL (XEXP (rtl, 1));
918 break;
919
920 case MINUS:
921 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
922 abort ();
923 offset = -INTVAL (XEXP (rtl, 1));
924 break;
925
926 default:
927 abort ();
928 }
929
930 break;
931
932 case PLUS:
933 /* The return address is at some offset from any value we can
934 actually load. For instance, on the SPARC it is in %i7+8. Just
935 ignore the offset for now; it doesn't matter for unwinding frames. */
936 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
937 abort ();
938 initial_return_save (XEXP (rtl, 0));
939 return;
940
941 default:
942 abort ();
943 }
944
945 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
946 }
947
948 /* Given a SET, calculate the amount of stack adjustment it
949 contains. */
950
951 static long
952 stack_adjust_offset (rtx pattern)
953 {
954 rtx src = SET_SRC (pattern);
955 rtx dest = SET_DEST (pattern);
956 HOST_WIDE_INT offset = 0;
957 enum rtx_code code;
958
959 if (dest == stack_pointer_rtx)
960 {
961 /* (set (reg sp) (plus (reg sp) (const_int))) */
962 code = GET_CODE (src);
963 if (! (code == PLUS || code == MINUS)
964 || XEXP (src, 0) != stack_pointer_rtx
965 || GET_CODE (XEXP (src, 1)) != CONST_INT)
966 return 0;
967
968 offset = INTVAL (XEXP (src, 1));
969 if (code == PLUS)
970 offset = -offset;
971 }
972 else if (GET_CODE (dest) == MEM)
973 {
974 /* (set (mem (pre_dec (reg sp))) (foo)) */
975 src = XEXP (dest, 0);
976 code = GET_CODE (src);
977
978 switch (code)
979 {
980 case PRE_MODIFY:
981 case POST_MODIFY:
982 if (XEXP (src, 0) == stack_pointer_rtx)
983 {
984 rtx val = XEXP (XEXP (src, 1), 1);
985 /* We handle only adjustments by constant amount. */
986 if (GET_CODE (XEXP (src, 1)) != PLUS ||
987 GET_CODE (val) != CONST_INT)
988 abort ();
989 offset = -INTVAL (val);
990 break;
991 }
992 return 0;
993
994 case PRE_DEC:
995 case POST_DEC:
996 if (XEXP (src, 0) == stack_pointer_rtx)
997 {
998 offset = GET_MODE_SIZE (GET_MODE (dest));
999 break;
1000 }
1001 return 0;
1002
1003 case PRE_INC:
1004 case POST_INC:
1005 if (XEXP (src, 0) == stack_pointer_rtx)
1006 {
1007 offset = -GET_MODE_SIZE (GET_MODE (dest));
1008 break;
1009 }
1010 return 0;
1011
1012 default:
1013 return 0;
1014 }
1015 }
1016 else
1017 return 0;
1018
1019 return offset;
1020 }
1021
1022 /* Check INSN to see if it looks like a push or a stack adjustment, and
1023 make a note of it if it does. EH uses this information to find out how
1024 much extra space it needs to pop off the stack. */
1025
1026 static void
1027 dwarf2out_stack_adjust (rtx insn)
1028 {
1029 HOST_WIDE_INT offset;
1030 const char *label;
1031 int i;
1032
1033 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1034 {
1035 /* Extract the size of the args from the CALL rtx itself. */
1036 insn = PATTERN (insn);
1037 if (GET_CODE (insn) == PARALLEL)
1038 insn = XVECEXP (insn, 0, 0);
1039 if (GET_CODE (insn) == SET)
1040 insn = SET_SRC (insn);
1041 if (GET_CODE (insn) != CALL)
1042 abort ();
1043
1044 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1045 return;
1046 }
1047
1048 /* If only calls can throw, and we have a frame pointer,
1049 save up adjustments until we see the CALL_INSN. */
1050 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1051 return;
1052
1053 if (GET_CODE (insn) == BARRIER)
1054 {
1055 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1056 the compiler will have already emitted a stack adjustment, but
1057 doesn't bother for calls to noreturn functions. */
1058 #ifdef STACK_GROWS_DOWNWARD
1059 offset = -args_size;
1060 #else
1061 offset = args_size;
1062 #endif
1063 }
1064 else if (GET_CODE (PATTERN (insn)) == SET)
1065 offset = stack_adjust_offset (PATTERN (insn));
1066 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1067 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1068 {
1069 /* There may be stack adjustments inside compound insns. Search
1070 for them. */
1071 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1072 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1073 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1074 }
1075 else
1076 return;
1077
1078 if (offset == 0)
1079 return;
1080
1081 if (cfa.reg == STACK_POINTER_REGNUM)
1082 cfa.offset += offset;
1083
1084 #ifndef STACK_GROWS_DOWNWARD
1085 offset = -offset;
1086 #endif
1087
1088 args_size += offset;
1089 if (args_size < 0)
1090 args_size = 0;
1091
1092 label = dwarf2out_cfi_label ();
1093 def_cfa_1 (label, &cfa);
1094 dwarf2out_args_size (label, args_size);
1095 }
1096
1097 #endif
1098
1099 /* We delay emitting a register save until either (a) we reach the end
1100 of the prologue or (b) the register is clobbered. This clusters
1101 register saves so that there are fewer pc advances. */
1102
1103 struct queued_reg_save GTY(())
1104 {
1105 struct queued_reg_save *next;
1106 rtx reg;
1107 long cfa_offset;
1108 };
1109
1110 static GTY(()) struct queued_reg_save *queued_reg_saves;
1111
1112 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1113 static const char *last_reg_save_label;
1114
1115 static void
1116 queue_reg_save (const char *label, rtx reg, long int offset)
1117 {
1118 struct queued_reg_save *q = ggc_alloc (sizeof (*q));
1119
1120 q->next = queued_reg_saves;
1121 q->reg = reg;
1122 q->cfa_offset = offset;
1123 queued_reg_saves = q;
1124
1125 last_reg_save_label = label;
1126 }
1127
1128 static void
1129 flush_queued_reg_saves (void)
1130 {
1131 struct queued_reg_save *q, *next;
1132
1133 for (q = queued_reg_saves; q; q = next)
1134 {
1135 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1136 next = q->next;
1137 }
1138
1139 queued_reg_saves = NULL;
1140 last_reg_save_label = NULL;
1141 }
1142
1143 static bool
1144 clobbers_queued_reg_save (rtx insn)
1145 {
1146 struct queued_reg_save *q;
1147
1148 for (q = queued_reg_saves; q; q = q->next)
1149 if (modified_in_p (q->reg, insn))
1150 return true;
1151
1152 return false;
1153 }
1154
1155
1156 /* A temporary register holding an integral value used in adjusting SP
1157 or setting up the store_reg. The "offset" field holds the integer
1158 value, not an offset. */
1159 static dw_cfa_location cfa_temp;
1160
1161 /* Record call frame debugging information for an expression EXPR,
1162 which either sets SP or FP (adjusting how we calculate the frame
1163 address) or saves a register to the stack. LABEL indicates the
1164 address of EXPR.
1165
1166 This function encodes a state machine mapping rtxes to actions on
1167 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1168 users need not read the source code.
1169
1170 The High-Level Picture
1171
1172 Changes in the register we use to calculate the CFA: Currently we
1173 assume that if you copy the CFA register into another register, we
1174 should take the other one as the new CFA register; this seems to
1175 work pretty well. If it's wrong for some target, it's simple
1176 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1177
1178 Changes in the register we use for saving registers to the stack:
1179 This is usually SP, but not always. Again, we deduce that if you
1180 copy SP into another register (and SP is not the CFA register),
1181 then the new register is the one we will be using for register
1182 saves. This also seems to work.
1183
1184 Register saves: There's not much guesswork about this one; if
1185 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1186 register save, and the register used to calculate the destination
1187 had better be the one we think we're using for this purpose.
1188
1189 Except: If the register being saved is the CFA register, and the
1190 offset is nonzero, we are saving the CFA, so we assume we have to
1191 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1192 the intent is to save the value of SP from the previous frame.
1193
1194 Invariants / Summaries of Rules
1195
1196 cfa current rule for calculating the CFA. It usually
1197 consists of a register and an offset.
1198 cfa_store register used by prologue code to save things to the stack
1199 cfa_store.offset is the offset from the value of
1200 cfa_store.reg to the actual CFA
1201 cfa_temp register holding an integral value. cfa_temp.offset
1202 stores the value, which will be used to adjust the
1203 stack pointer. cfa_temp is also used like cfa_store,
1204 to track stores to the stack via fp or a temp reg.
1205
1206 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1207 with cfa.reg as the first operand changes the cfa.reg and its
1208 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1209 cfa_temp.offset.
1210
1211 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1212 expression yielding a constant. This sets cfa_temp.reg
1213 and cfa_temp.offset.
1214
1215 Rule 5: Create a new register cfa_store used to save items to the
1216 stack.
1217
1218 Rules 10-14: Save a register to the stack. Define offset as the
1219 difference of the original location and cfa_store's
1220 location (or cfa_temp's location if cfa_temp is used).
1221
1222 The Rules
1223
1224 "{a,b}" indicates a choice of a xor b.
1225 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1226
1227 Rule 1:
1228 (set <reg1> <reg2>:cfa.reg)
1229 effects: cfa.reg = <reg1>
1230 cfa.offset unchanged
1231 cfa_temp.reg = <reg1>
1232 cfa_temp.offset = cfa.offset
1233
1234 Rule 2:
1235 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1236 {<const_int>,<reg>:cfa_temp.reg}))
1237 effects: cfa.reg = sp if fp used
1238 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1239 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1240 if cfa_store.reg==sp
1241
1242 Rule 3:
1243 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1244 effects: cfa.reg = fp
1245 cfa_offset += +/- <const_int>
1246
1247 Rule 4:
1248 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1249 constraints: <reg1> != fp
1250 <reg1> != sp
1251 effects: cfa.reg = <reg1>
1252 cfa_temp.reg = <reg1>
1253 cfa_temp.offset = cfa.offset
1254
1255 Rule 5:
1256 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1257 constraints: <reg1> != fp
1258 <reg1> != sp
1259 effects: cfa_store.reg = <reg1>
1260 cfa_store.offset = cfa.offset - cfa_temp.offset
1261
1262 Rule 6:
1263 (set <reg> <const_int>)
1264 effects: cfa_temp.reg = <reg>
1265 cfa_temp.offset = <const_int>
1266
1267 Rule 7:
1268 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1269 effects: cfa_temp.reg = <reg1>
1270 cfa_temp.offset |= <const_int>
1271
1272 Rule 8:
1273 (set <reg> (high <exp>))
1274 effects: none
1275
1276 Rule 9:
1277 (set <reg> (lo_sum <exp> <const_int>))
1278 effects: cfa_temp.reg = <reg>
1279 cfa_temp.offset = <const_int>
1280
1281 Rule 10:
1282 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1283 effects: cfa_store.offset -= <const_int>
1284 cfa.offset = cfa_store.offset if cfa.reg == sp
1285 cfa.reg = sp
1286 cfa.base_offset = -cfa_store.offset
1287
1288 Rule 11:
1289 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1290 effects: cfa_store.offset += -/+ mode_size(mem)
1291 cfa.offset = cfa_store.offset if cfa.reg == sp
1292 cfa.reg = sp
1293 cfa.base_offset = -cfa_store.offset
1294
1295 Rule 12:
1296 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1297
1298 <reg2>)
1299 effects: cfa.reg = <reg1>
1300 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1301
1302 Rule 13:
1303 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1304 effects: cfa.reg = <reg1>
1305 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1306
1307 Rule 14:
1308 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1309 effects: cfa.reg = <reg1>
1310 cfa.base_offset = -cfa_temp.offset
1311 cfa_temp.offset -= mode_size(mem) */
1312
1313 static void
1314 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1315 {
1316 rtx src, dest;
1317 HOST_WIDE_INT offset;
1318
1319 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1320 the PARALLEL independently. The first element is always processed if
1321 it is a SET. This is for backward compatibility. Other elements
1322 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1323 flag is set in them. */
1324 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1325 {
1326 int par_index;
1327 int limit = XVECLEN (expr, 0);
1328
1329 for (par_index = 0; par_index < limit; par_index++)
1330 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1331 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1332 || par_index == 0))
1333 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1334
1335 return;
1336 }
1337
1338 if (GET_CODE (expr) != SET)
1339 abort ();
1340
1341 src = SET_SRC (expr);
1342 dest = SET_DEST (expr);
1343
1344 switch (GET_CODE (dest))
1345 {
1346 case REG:
1347 /* Rule 1 */
1348 /* Update the CFA rule wrt SP or FP. Make sure src is
1349 relative to the current CFA register. */
1350 switch (GET_CODE (src))
1351 {
1352 /* Setting FP from SP. */
1353 case REG:
1354 if (cfa.reg == (unsigned) REGNO (src))
1355 /* OK. */
1356 ;
1357 else
1358 abort ();
1359
1360 /* We used to require that dest be either SP or FP, but the
1361 ARM copies SP to a temporary register, and from there to
1362 FP. So we just rely on the backends to only set
1363 RTX_FRAME_RELATED_P on appropriate insns. */
1364 cfa.reg = REGNO (dest);
1365 cfa_temp.reg = cfa.reg;
1366 cfa_temp.offset = cfa.offset;
1367 break;
1368
1369 case PLUS:
1370 case MINUS:
1371 case LO_SUM:
1372 if (dest == stack_pointer_rtx)
1373 {
1374 /* Rule 2 */
1375 /* Adjusting SP. */
1376 switch (GET_CODE (XEXP (src, 1)))
1377 {
1378 case CONST_INT:
1379 offset = INTVAL (XEXP (src, 1));
1380 break;
1381 case REG:
1382 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1383 abort ();
1384 offset = cfa_temp.offset;
1385 break;
1386 default:
1387 abort ();
1388 }
1389
1390 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1391 {
1392 /* Restoring SP from FP in the epilogue. */
1393 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1394 abort ();
1395 cfa.reg = STACK_POINTER_REGNUM;
1396 }
1397 else if (GET_CODE (src) == LO_SUM)
1398 /* Assume we've set the source reg of the LO_SUM from sp. */
1399 ;
1400 else if (XEXP (src, 0) != stack_pointer_rtx)
1401 abort ();
1402
1403 if (GET_CODE (src) != MINUS)
1404 offset = -offset;
1405 if (cfa.reg == STACK_POINTER_REGNUM)
1406 cfa.offset += offset;
1407 if (cfa_store.reg == STACK_POINTER_REGNUM)
1408 cfa_store.offset += offset;
1409 }
1410 else if (dest == hard_frame_pointer_rtx)
1411 {
1412 /* Rule 3 */
1413 /* Either setting the FP from an offset of the SP,
1414 or adjusting the FP */
1415 if (! frame_pointer_needed)
1416 abort ();
1417
1418 if (GET_CODE (XEXP (src, 0)) == REG
1419 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1420 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1421 {
1422 offset = INTVAL (XEXP (src, 1));
1423 if (GET_CODE (src) != MINUS)
1424 offset = -offset;
1425 cfa.offset += offset;
1426 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1427 }
1428 else
1429 abort ();
1430 }
1431 else
1432 {
1433 if (GET_CODE (src) == MINUS)
1434 abort ();
1435
1436 /* Rule 4 */
1437 if (GET_CODE (XEXP (src, 0)) == REG
1438 && REGNO (XEXP (src, 0)) == cfa.reg
1439 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1440 {
1441 /* Setting a temporary CFA register that will be copied
1442 into the FP later on. */
1443 offset = - INTVAL (XEXP (src, 1));
1444 cfa.offset += offset;
1445 cfa.reg = REGNO (dest);
1446 /* Or used to save regs to the stack. */
1447 cfa_temp.reg = cfa.reg;
1448 cfa_temp.offset = cfa.offset;
1449 }
1450
1451 /* Rule 5 */
1452 else if (GET_CODE (XEXP (src, 0)) == REG
1453 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1454 && XEXP (src, 1) == stack_pointer_rtx)
1455 {
1456 /* Setting a scratch register that we will use instead
1457 of SP for saving registers to the stack. */
1458 if (cfa.reg != STACK_POINTER_REGNUM)
1459 abort ();
1460 cfa_store.reg = REGNO (dest);
1461 cfa_store.offset = cfa.offset - cfa_temp.offset;
1462 }
1463
1464 /* Rule 9 */
1465 else if (GET_CODE (src) == LO_SUM
1466 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1467 {
1468 cfa_temp.reg = REGNO (dest);
1469 cfa_temp.offset = INTVAL (XEXP (src, 1));
1470 }
1471 else
1472 abort ();
1473 }
1474 break;
1475
1476 /* Rule 6 */
1477 case CONST_INT:
1478 cfa_temp.reg = REGNO (dest);
1479 cfa_temp.offset = INTVAL (src);
1480 break;
1481
1482 /* Rule 7 */
1483 case IOR:
1484 if (GET_CODE (XEXP (src, 0)) != REG
1485 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1486 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1487 abort ();
1488
1489 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1490 cfa_temp.reg = REGNO (dest);
1491 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1492 break;
1493
1494 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1495 which will fill in all of the bits. */
1496 /* Rule 8 */
1497 case HIGH:
1498 break;
1499
1500 default:
1501 abort ();
1502 }
1503
1504 def_cfa_1 (label, &cfa);
1505 break;
1506
1507 case MEM:
1508 if (GET_CODE (src) != REG)
1509 abort ();
1510
1511 /* Saving a register to the stack. Make sure dest is relative to the
1512 CFA register. */
1513 switch (GET_CODE (XEXP (dest, 0)))
1514 {
1515 /* Rule 10 */
1516 /* With a push. */
1517 case PRE_MODIFY:
1518 /* We can't handle variable size modifications. */
1519 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1520 abort ();
1521 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1522
1523 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1524 || cfa_store.reg != STACK_POINTER_REGNUM)
1525 abort ();
1526
1527 cfa_store.offset += offset;
1528 if (cfa.reg == STACK_POINTER_REGNUM)
1529 cfa.offset = cfa_store.offset;
1530
1531 offset = -cfa_store.offset;
1532 break;
1533
1534 /* Rule 11 */
1535 case PRE_INC:
1536 case PRE_DEC:
1537 offset = GET_MODE_SIZE (GET_MODE (dest));
1538 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1539 offset = -offset;
1540
1541 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1542 || cfa_store.reg != STACK_POINTER_REGNUM)
1543 abort ();
1544
1545 cfa_store.offset += offset;
1546 if (cfa.reg == STACK_POINTER_REGNUM)
1547 cfa.offset = cfa_store.offset;
1548
1549 offset = -cfa_store.offset;
1550 break;
1551
1552 /* Rule 12 */
1553 /* With an offset. */
1554 case PLUS:
1555 case MINUS:
1556 case LO_SUM:
1557 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1558 abort ();
1559 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1560 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1561 offset = -offset;
1562
1563 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1564 offset -= cfa_store.offset;
1565 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1566 offset -= cfa_temp.offset;
1567 else
1568 abort ();
1569 break;
1570
1571 /* Rule 13 */
1572 /* Without an offset. */
1573 case REG:
1574 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1575 offset = -cfa_store.offset;
1576 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1577 offset = -cfa_temp.offset;
1578 else
1579 abort ();
1580 break;
1581
1582 /* Rule 14 */
1583 case POST_INC:
1584 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1585 abort ();
1586 offset = -cfa_temp.offset;
1587 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1588 break;
1589
1590 default:
1591 abort ();
1592 }
1593
1594 if (REGNO (src) != STACK_POINTER_REGNUM
1595 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1596 && (unsigned) REGNO (src) == cfa.reg)
1597 {
1598 /* We're storing the current CFA reg into the stack. */
1599
1600 if (cfa.offset == 0)
1601 {
1602 /* If the source register is exactly the CFA, assume
1603 we're saving SP like any other register; this happens
1604 on the ARM. */
1605 def_cfa_1 (label, &cfa);
1606 queue_reg_save (label, stack_pointer_rtx, offset);
1607 break;
1608 }
1609 else
1610 {
1611 /* Otherwise, we'll need to look in the stack to
1612 calculate the CFA. */
1613 rtx x = XEXP (dest, 0);
1614
1615 if (GET_CODE (x) != REG)
1616 x = XEXP (x, 0);
1617 if (GET_CODE (x) != REG)
1618 abort ();
1619
1620 cfa.reg = REGNO (x);
1621 cfa.base_offset = offset;
1622 cfa.indirect = 1;
1623 def_cfa_1 (label, &cfa);
1624 break;
1625 }
1626 }
1627
1628 def_cfa_1 (label, &cfa);
1629 queue_reg_save (label, src, offset);
1630 break;
1631
1632 default:
1633 abort ();
1634 }
1635 }
1636
1637 /* Record call frame debugging information for INSN, which either
1638 sets SP or FP (adjusting how we calculate the frame address) or saves a
1639 register to the stack. If INSN is NULL_RTX, initialize our state. */
1640
1641 void
1642 dwarf2out_frame_debug (rtx insn)
1643 {
1644 const char *label;
1645 rtx src;
1646
1647 if (insn == NULL_RTX)
1648 {
1649 /* Flush any queued register saves. */
1650 flush_queued_reg_saves ();
1651
1652 /* Set up state for generating call frame debug info. */
1653 lookup_cfa (&cfa);
1654 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1655 abort ();
1656
1657 cfa.reg = STACK_POINTER_REGNUM;
1658 cfa_store = cfa;
1659 cfa_temp.reg = -1;
1660 cfa_temp.offset = 0;
1661 return;
1662 }
1663
1664 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1665 flush_queued_reg_saves ();
1666
1667 if (! RTX_FRAME_RELATED_P (insn))
1668 {
1669 if (!ACCUMULATE_OUTGOING_ARGS)
1670 dwarf2out_stack_adjust (insn);
1671
1672 return;
1673 }
1674
1675 label = dwarf2out_cfi_label ();
1676 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1677 if (src)
1678 insn = XEXP (src, 0);
1679 else
1680 insn = PATTERN (insn);
1681
1682 dwarf2out_frame_debug_expr (insn, label);
1683 }
1684
1685 #endif
1686
1687 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1688 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1689 (enum dwarf_call_frame_info cfi);
1690
1691 static enum dw_cfi_oprnd_type
1692 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1693 {
1694 switch (cfi)
1695 {
1696 case DW_CFA_nop:
1697 case DW_CFA_GNU_window_save:
1698 return dw_cfi_oprnd_unused;
1699
1700 case DW_CFA_set_loc:
1701 case DW_CFA_advance_loc1:
1702 case DW_CFA_advance_loc2:
1703 case DW_CFA_advance_loc4:
1704 case DW_CFA_MIPS_advance_loc8:
1705 return dw_cfi_oprnd_addr;
1706
1707 case DW_CFA_offset:
1708 case DW_CFA_offset_extended:
1709 case DW_CFA_def_cfa:
1710 case DW_CFA_offset_extended_sf:
1711 case DW_CFA_def_cfa_sf:
1712 case DW_CFA_restore_extended:
1713 case DW_CFA_undefined:
1714 case DW_CFA_same_value:
1715 case DW_CFA_def_cfa_register:
1716 case DW_CFA_register:
1717 return dw_cfi_oprnd_reg_num;
1718
1719 case DW_CFA_def_cfa_offset:
1720 case DW_CFA_GNU_args_size:
1721 case DW_CFA_def_cfa_offset_sf:
1722 return dw_cfi_oprnd_offset;
1723
1724 case DW_CFA_def_cfa_expression:
1725 case DW_CFA_expression:
1726 return dw_cfi_oprnd_loc;
1727
1728 default:
1729 abort ();
1730 }
1731 }
1732
1733 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1734 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1735 (enum dwarf_call_frame_info cfi);
1736
1737 static enum dw_cfi_oprnd_type
1738 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1739 {
1740 switch (cfi)
1741 {
1742 case DW_CFA_def_cfa:
1743 case DW_CFA_def_cfa_sf:
1744 case DW_CFA_offset:
1745 case DW_CFA_offset_extended_sf:
1746 case DW_CFA_offset_extended:
1747 return dw_cfi_oprnd_offset;
1748
1749 case DW_CFA_register:
1750 return dw_cfi_oprnd_reg_num;
1751
1752 default:
1753 return dw_cfi_oprnd_unused;
1754 }
1755 }
1756
1757 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1758
1759 /* Output a Call Frame Information opcode and its operand(s). */
1760
1761 static void
1762 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1763 {
1764 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1765 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1766 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1767 "DW_CFA_advance_loc 0x%lx",
1768 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1769 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1770 {
1771 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1772 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1773 "DW_CFA_offset, column 0x%lx",
1774 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1775 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1776 }
1777 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1778 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1779 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1780 "DW_CFA_restore, column 0x%lx",
1781 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1782 else
1783 {
1784 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1785 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1786
1787 switch (cfi->dw_cfi_opc)
1788 {
1789 case DW_CFA_set_loc:
1790 if (for_eh)
1791 dw2_asm_output_encoded_addr_rtx (
1792 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1793 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1794 NULL);
1795 else
1796 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1797 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1798 break;
1799
1800 case DW_CFA_advance_loc1:
1801 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1802 fde->dw_fde_current_label, NULL);
1803 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1804 break;
1805
1806 case DW_CFA_advance_loc2:
1807 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1808 fde->dw_fde_current_label, NULL);
1809 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1810 break;
1811
1812 case DW_CFA_advance_loc4:
1813 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1814 fde->dw_fde_current_label, NULL);
1815 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1816 break;
1817
1818 case DW_CFA_MIPS_advance_loc8:
1819 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1820 fde->dw_fde_current_label, NULL);
1821 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1822 break;
1823
1824 case DW_CFA_offset_extended:
1825 case DW_CFA_def_cfa:
1826 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1827 NULL);
1828 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1829 break;
1830
1831 case DW_CFA_offset_extended_sf:
1832 case DW_CFA_def_cfa_sf:
1833 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1834 NULL);
1835 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1836 break;
1837
1838 case DW_CFA_restore_extended:
1839 case DW_CFA_undefined:
1840 case DW_CFA_same_value:
1841 case DW_CFA_def_cfa_register:
1842 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1843 NULL);
1844 break;
1845
1846 case DW_CFA_register:
1847 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1848 NULL);
1849 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_reg_num,
1850 NULL);
1851 break;
1852
1853 case DW_CFA_def_cfa_offset:
1854 case DW_CFA_GNU_args_size:
1855 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1856 break;
1857
1858 case DW_CFA_def_cfa_offset_sf:
1859 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1860 break;
1861
1862 case DW_CFA_GNU_window_save:
1863 break;
1864
1865 case DW_CFA_def_cfa_expression:
1866 case DW_CFA_expression:
1867 output_cfa_loc (cfi);
1868 break;
1869
1870 case DW_CFA_GNU_negative_offset_extended:
1871 /* Obsoleted by DW_CFA_offset_extended_sf. */
1872 abort ();
1873
1874 default:
1875 break;
1876 }
1877 }
1878 }
1879
1880 /* Output the call frame information used to used to record information
1881 that relates to calculating the frame pointer, and records the
1882 location of saved registers. */
1883
1884 static void
1885 output_call_frame_info (int for_eh)
1886 {
1887 unsigned int i;
1888 dw_fde_ref fde;
1889 dw_cfi_ref cfi;
1890 char l1[20], l2[20], section_start_label[20];
1891 bool any_lsda_needed = false;
1892 char augmentation[6];
1893 int augmentation_size;
1894 int fde_encoding = DW_EH_PE_absptr;
1895 int per_encoding = DW_EH_PE_absptr;
1896 int lsda_encoding = DW_EH_PE_absptr;
1897
1898 /* Don't emit a CIE if there won't be any FDEs. */
1899 if (fde_table_in_use == 0)
1900 return;
1901
1902 /* If we don't have any functions we'll want to unwind out of, don't
1903 emit any EH unwind information. Note that if exceptions aren't
1904 enabled, we won't have collected nothrow information, and if we
1905 asked for asynchronous tables, we always want this info. */
1906 if (for_eh)
1907 {
1908 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
1909
1910 for (i = 0; i < fde_table_in_use; i++)
1911 if (fde_table[i].uses_eh_lsda)
1912 any_eh_needed = any_lsda_needed = true;
1913 else if (! fde_table[i].nothrow
1914 && ! fde_table[i].all_throwers_are_sibcalls)
1915 any_eh_needed = true;
1916
1917 if (! any_eh_needed)
1918 return;
1919 }
1920
1921 /* We're going to be generating comments, so turn on app. */
1922 if (flag_debug_asm)
1923 app_enable ();
1924
1925 if (for_eh)
1926 (*targetm.asm_out.eh_frame_section) ();
1927 else
1928 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1929
1930 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1931 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1932
1933 /* Output the CIE. */
1934 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1935 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1936 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1937 "Length of Common Information Entry");
1938 ASM_OUTPUT_LABEL (asm_out_file, l1);
1939
1940 /* Now that the CIE pointer is PC-relative for EH,
1941 use 0 to identify the CIE. */
1942 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1943 (for_eh ? 0 : DW_CIE_ID),
1944 "CIE Identifier Tag");
1945
1946 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1947
1948 augmentation[0] = 0;
1949 augmentation_size = 0;
1950 if (for_eh)
1951 {
1952 char *p;
1953
1954 /* Augmentation:
1955 z Indicates that a uleb128 is present to size the
1956 augmentation section.
1957 L Indicates the encoding (and thus presence) of
1958 an LSDA pointer in the FDE augmentation.
1959 R Indicates a non-default pointer encoding for
1960 FDE code pointers.
1961 P Indicates the presence of an encoding + language
1962 personality routine in the CIE augmentation. */
1963
1964 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1965 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
1966 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1967
1968 p = augmentation + 1;
1969 if (eh_personality_libfunc)
1970 {
1971 *p++ = 'P';
1972 augmentation_size += 1 + size_of_encoded_value (per_encoding);
1973 }
1974 if (any_lsda_needed)
1975 {
1976 *p++ = 'L';
1977 augmentation_size += 1;
1978 }
1979 if (fde_encoding != DW_EH_PE_absptr)
1980 {
1981 *p++ = 'R';
1982 augmentation_size += 1;
1983 }
1984 if (p > augmentation + 1)
1985 {
1986 augmentation[0] = 'z';
1987 *p = '\0';
1988 }
1989
1990 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
1991 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
1992 {
1993 int offset = ( 4 /* Length */
1994 + 4 /* CIE Id */
1995 + 1 /* CIE version */
1996 + strlen (augmentation) + 1 /* Augmentation */
1997 + size_of_uleb128 (1) /* Code alignment */
1998 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
1999 + 1 /* RA column */
2000 + 1 /* Augmentation size */
2001 + 1 /* Personality encoding */ );
2002 int pad = -offset & (PTR_SIZE - 1);
2003
2004 augmentation_size += pad;
2005
2006 /* Augmentations should be small, so there's scarce need to
2007 iterate for a solution. Die if we exceed one uleb128 byte. */
2008 if (size_of_uleb128 (augmentation_size) != 1)
2009 abort ();
2010 }
2011 }
2012
2013 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2014 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2015 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2016 "CIE Data Alignment Factor");
2017 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2018
2019 if (augmentation[0])
2020 {
2021 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2022 if (eh_personality_libfunc)
2023 {
2024 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2025 eh_data_format_name (per_encoding));
2026 dw2_asm_output_encoded_addr_rtx (per_encoding,
2027 eh_personality_libfunc, NULL);
2028 }
2029
2030 if (any_lsda_needed)
2031 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2032 eh_data_format_name (lsda_encoding));
2033
2034 if (fde_encoding != DW_EH_PE_absptr)
2035 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2036 eh_data_format_name (fde_encoding));
2037 }
2038
2039 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2040 output_cfi (cfi, NULL, for_eh);
2041
2042 /* Pad the CIE out to an address sized boundary. */
2043 ASM_OUTPUT_ALIGN (asm_out_file,
2044 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2045 ASM_OUTPUT_LABEL (asm_out_file, l2);
2046
2047 /* Loop through all of the FDE's. */
2048 for (i = 0; i < fde_table_in_use; i++)
2049 {
2050 fde = &fde_table[i];
2051
2052 /* Don't emit EH unwind info for leaf functions that don't need it. */
2053 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2054 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2055 && !fde->uses_eh_lsda)
2056 continue;
2057
2058 (*targetm.asm_out.internal_label) (asm_out_file, FDE_LABEL, for_eh + i * 2);
2059 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2060 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2061 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2062 "FDE Length");
2063 ASM_OUTPUT_LABEL (asm_out_file, l1);
2064
2065 if (for_eh)
2066 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2067 else
2068 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2069 "FDE CIE offset");
2070
2071 if (for_eh)
2072 {
2073 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2074 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
2075 "FDE initial location");
2076 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2077 fde->dw_fde_end, fde->dw_fde_begin,
2078 "FDE address range");
2079 }
2080 else
2081 {
2082 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2083 "FDE initial location");
2084 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2085 fde->dw_fde_end, fde->dw_fde_begin,
2086 "FDE address range");
2087 }
2088
2089 if (augmentation[0])
2090 {
2091 if (any_lsda_needed)
2092 {
2093 int size = size_of_encoded_value (lsda_encoding);
2094
2095 if (lsda_encoding == DW_EH_PE_aligned)
2096 {
2097 int offset = ( 4 /* Length */
2098 + 4 /* CIE offset */
2099 + 2 * size_of_encoded_value (fde_encoding)
2100 + 1 /* Augmentation size */ );
2101 int pad = -offset & (PTR_SIZE - 1);
2102
2103 size += pad;
2104 if (size_of_uleb128 (size) != 1)
2105 abort ();
2106 }
2107
2108 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2109
2110 if (fde->uses_eh_lsda)
2111 {
2112 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2113 fde->funcdef_number);
2114 dw2_asm_output_encoded_addr_rtx (
2115 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2116 "Language Specific Data Area");
2117 }
2118 else
2119 {
2120 if (lsda_encoding == DW_EH_PE_aligned)
2121 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2122 dw2_asm_output_data
2123 (size_of_encoded_value (lsda_encoding), 0,
2124 "Language Specific Data Area (none)");
2125 }
2126 }
2127 else
2128 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2129 }
2130
2131 /* Loop through the Call Frame Instructions associated with
2132 this FDE. */
2133 fde->dw_fde_current_label = fde->dw_fde_begin;
2134 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2135 output_cfi (cfi, fde, for_eh);
2136
2137 /* Pad the FDE out to an address sized boundary. */
2138 ASM_OUTPUT_ALIGN (asm_out_file,
2139 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2140 ASM_OUTPUT_LABEL (asm_out_file, l2);
2141 }
2142
2143 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2144 dw2_asm_output_data (4, 0, "End of Table");
2145 #ifdef MIPS_DEBUGGING_INFO
2146 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2147 get a value of 0. Putting .align 0 after the label fixes it. */
2148 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2149 #endif
2150
2151 /* Turn off app to make assembly quicker. */
2152 if (flag_debug_asm)
2153 app_disable ();
2154 }
2155
2156 /* Output a marker (i.e. a label) for the beginning of a function, before
2157 the prologue. */
2158
2159 void
2160 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2161 const char *file ATTRIBUTE_UNUSED)
2162 {
2163 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2164 dw_fde_ref fde;
2165
2166 current_function_func_begin_label = 0;
2167
2168 #ifdef IA64_UNWIND_INFO
2169 /* ??? current_function_func_begin_label is also used by except.c
2170 for call-site information. We must emit this label if it might
2171 be used. */
2172 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2173 && ! dwarf2out_do_frame ())
2174 return;
2175 #else
2176 if (! dwarf2out_do_frame ())
2177 return;
2178 #endif
2179
2180 function_section (current_function_decl);
2181 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2182 current_function_funcdef_no);
2183 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2184 current_function_funcdef_no);
2185 current_function_func_begin_label = get_identifier (label);
2186
2187 #ifdef IA64_UNWIND_INFO
2188 /* We can elide the fde allocation if we're not emitting debug info. */
2189 if (! dwarf2out_do_frame ())
2190 return;
2191 #endif
2192
2193 /* Expand the fde table if necessary. */
2194 if (fde_table_in_use == fde_table_allocated)
2195 {
2196 fde_table_allocated += FDE_TABLE_INCREMENT;
2197 fde_table = ggc_realloc (fde_table,
2198 fde_table_allocated * sizeof (dw_fde_node));
2199 memset (fde_table + fde_table_in_use, 0,
2200 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2201 }
2202
2203 /* Record the FDE associated with this function. */
2204 current_funcdef_fde = fde_table_in_use;
2205
2206 /* Add the new FDE at the end of the fde_table. */
2207 fde = &fde_table[fde_table_in_use++];
2208 fde->dw_fde_begin = xstrdup (label);
2209 fde->dw_fde_current_label = NULL;
2210 fde->dw_fde_end = NULL;
2211 fde->dw_fde_cfi = NULL;
2212 fde->funcdef_number = current_function_funcdef_no;
2213 fde->nothrow = current_function_nothrow;
2214 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2215 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2216
2217 args_size = old_args_size = 0;
2218
2219 /* We only want to output line number information for the genuine dwarf2
2220 prologue case, not the eh frame case. */
2221 #ifdef DWARF2_DEBUGGING_INFO
2222 if (file)
2223 dwarf2out_source_line (line, file);
2224 #endif
2225 }
2226
2227 /* Output a marker (i.e. a label) for the absolute end of the generated code
2228 for a function definition. This gets called *after* the epilogue code has
2229 been generated. */
2230
2231 void
2232 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2233 const char *file ATTRIBUTE_UNUSED)
2234 {
2235 dw_fde_ref fde;
2236 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2237
2238 /* Output a label to mark the endpoint of the code generated for this
2239 function. */
2240 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2241 current_function_funcdef_no);
2242 ASM_OUTPUT_LABEL (asm_out_file, label);
2243 fde = &fde_table[fde_table_in_use - 1];
2244 fde->dw_fde_end = xstrdup (label);
2245 }
2246
2247 void
2248 dwarf2out_frame_init (void)
2249 {
2250 /* Allocate the initial hunk of the fde_table. */
2251 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2252 fde_table_allocated = FDE_TABLE_INCREMENT;
2253 fde_table_in_use = 0;
2254
2255 /* Generate the CFA instructions common to all FDE's. Do it now for the
2256 sake of lookup_cfa. */
2257
2258 #ifdef DWARF2_UNWIND_INFO
2259 /* On entry, the Canonical Frame Address is at SP. */
2260 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2261 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2262 #endif
2263 }
2264
2265 void
2266 dwarf2out_frame_finish (void)
2267 {
2268 /* Output call frame information. */
2269 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2270 output_call_frame_info (0);
2271
2272 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2273 output_call_frame_info (1);
2274 }
2275 #endif
2276 \f
2277 /* And now, the subset of the debugging information support code necessary
2278 for emitting location expressions. */
2279
2280 /* We need some way to distinguish DW_OP_addr with a direct symbol
2281 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2282 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2283
2284
2285 typedef struct dw_val_struct *dw_val_ref;
2286 typedef struct die_struct *dw_die_ref;
2287 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2288 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2289
2290 /* Each DIE may have a series of attribute/value pairs. Values
2291 can take on several forms. The forms that are used in this
2292 implementation are listed below. */
2293
2294 enum dw_val_class
2295 {
2296 dw_val_class_addr,
2297 dw_val_class_offset,
2298 dw_val_class_loc,
2299 dw_val_class_loc_list,
2300 dw_val_class_range_list,
2301 dw_val_class_const,
2302 dw_val_class_unsigned_const,
2303 dw_val_class_long_long,
2304 dw_val_class_float,
2305 dw_val_class_flag,
2306 dw_val_class_die_ref,
2307 dw_val_class_fde_ref,
2308 dw_val_class_lbl_id,
2309 dw_val_class_lbl_offset,
2310 dw_val_class_str
2311 };
2312
2313 /* Describe a double word constant value. */
2314 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2315
2316 typedef struct dw_long_long_struct GTY(())
2317 {
2318 unsigned long hi;
2319 unsigned long low;
2320 }
2321 dw_long_long_const;
2322
2323 /* Describe a floating point constant value. */
2324
2325 typedef struct dw_fp_struct GTY(())
2326 {
2327 long * GTY((length ("%h.length"))) array;
2328 unsigned length;
2329 }
2330 dw_float_const;
2331
2332 /* The dw_val_node describes an attribute's value, as it is
2333 represented internally. */
2334
2335 typedef struct dw_val_struct GTY(())
2336 {
2337 enum dw_val_class val_class;
2338 union dw_val_struct_union
2339 {
2340 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2341 long unsigned GTY ((tag ("dw_val_class_offset"))) val_offset;
2342 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2343 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2344 long int GTY ((default (""))) val_int;
2345 long unsigned GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2346 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2347 dw_float_const GTY ((tag ("dw_val_class_float"))) val_float;
2348 struct dw_val_die_union
2349 {
2350 dw_die_ref die;
2351 int external;
2352 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2353 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2354 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2355 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2356 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2357 }
2358 GTY ((desc ("%1.val_class"))) v;
2359 }
2360 dw_val_node;
2361
2362 /* Locations in memory are described using a sequence of stack machine
2363 operations. */
2364
2365 typedef struct dw_loc_descr_struct GTY(())
2366 {
2367 dw_loc_descr_ref dw_loc_next;
2368 enum dwarf_location_atom dw_loc_opc;
2369 dw_val_node dw_loc_oprnd1;
2370 dw_val_node dw_loc_oprnd2;
2371 int dw_loc_addr;
2372 }
2373 dw_loc_descr_node;
2374
2375 /* Location lists are ranges + location descriptions for that range,
2376 so you can track variables that are in different places over
2377 their entire life. */
2378 typedef struct dw_loc_list_struct GTY(())
2379 {
2380 dw_loc_list_ref dw_loc_next;
2381 const char *begin; /* Label for begin address of range */
2382 const char *end; /* Label for end address of range */
2383 char *ll_symbol; /* Label for beginning of location list.
2384 Only on head of list */
2385 const char *section; /* Section this loclist is relative to */
2386 dw_loc_descr_ref expr;
2387 } dw_loc_list_node;
2388
2389 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2390
2391 static const char *dwarf_stack_op_name (unsigned);
2392 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2393 unsigned long, unsigned long);
2394 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2395 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2396 static unsigned long size_of_locs (dw_loc_descr_ref);
2397 static void output_loc_operands (dw_loc_descr_ref);
2398 static void output_loc_sequence (dw_loc_descr_ref);
2399
2400 /* Convert a DWARF stack opcode into its string name. */
2401
2402 static const char *
2403 dwarf_stack_op_name (unsigned int op)
2404 {
2405 switch (op)
2406 {
2407 case DW_OP_addr:
2408 case INTERNAL_DW_OP_tls_addr:
2409 return "DW_OP_addr";
2410 case DW_OP_deref:
2411 return "DW_OP_deref";
2412 case DW_OP_const1u:
2413 return "DW_OP_const1u";
2414 case DW_OP_const1s:
2415 return "DW_OP_const1s";
2416 case DW_OP_const2u:
2417 return "DW_OP_const2u";
2418 case DW_OP_const2s:
2419 return "DW_OP_const2s";
2420 case DW_OP_const4u:
2421 return "DW_OP_const4u";
2422 case DW_OP_const4s:
2423 return "DW_OP_const4s";
2424 case DW_OP_const8u:
2425 return "DW_OP_const8u";
2426 case DW_OP_const8s:
2427 return "DW_OP_const8s";
2428 case DW_OP_constu:
2429 return "DW_OP_constu";
2430 case DW_OP_consts:
2431 return "DW_OP_consts";
2432 case DW_OP_dup:
2433 return "DW_OP_dup";
2434 case DW_OP_drop:
2435 return "DW_OP_drop";
2436 case DW_OP_over:
2437 return "DW_OP_over";
2438 case DW_OP_pick:
2439 return "DW_OP_pick";
2440 case DW_OP_swap:
2441 return "DW_OP_swap";
2442 case DW_OP_rot:
2443 return "DW_OP_rot";
2444 case DW_OP_xderef:
2445 return "DW_OP_xderef";
2446 case DW_OP_abs:
2447 return "DW_OP_abs";
2448 case DW_OP_and:
2449 return "DW_OP_and";
2450 case DW_OP_div:
2451 return "DW_OP_div";
2452 case DW_OP_minus:
2453 return "DW_OP_minus";
2454 case DW_OP_mod:
2455 return "DW_OP_mod";
2456 case DW_OP_mul:
2457 return "DW_OP_mul";
2458 case DW_OP_neg:
2459 return "DW_OP_neg";
2460 case DW_OP_not:
2461 return "DW_OP_not";
2462 case DW_OP_or:
2463 return "DW_OP_or";
2464 case DW_OP_plus:
2465 return "DW_OP_plus";
2466 case DW_OP_plus_uconst:
2467 return "DW_OP_plus_uconst";
2468 case DW_OP_shl:
2469 return "DW_OP_shl";
2470 case DW_OP_shr:
2471 return "DW_OP_shr";
2472 case DW_OP_shra:
2473 return "DW_OP_shra";
2474 case DW_OP_xor:
2475 return "DW_OP_xor";
2476 case DW_OP_bra:
2477 return "DW_OP_bra";
2478 case DW_OP_eq:
2479 return "DW_OP_eq";
2480 case DW_OP_ge:
2481 return "DW_OP_ge";
2482 case DW_OP_gt:
2483 return "DW_OP_gt";
2484 case DW_OP_le:
2485 return "DW_OP_le";
2486 case DW_OP_lt:
2487 return "DW_OP_lt";
2488 case DW_OP_ne:
2489 return "DW_OP_ne";
2490 case DW_OP_skip:
2491 return "DW_OP_skip";
2492 case DW_OP_lit0:
2493 return "DW_OP_lit0";
2494 case DW_OP_lit1:
2495 return "DW_OP_lit1";
2496 case DW_OP_lit2:
2497 return "DW_OP_lit2";
2498 case DW_OP_lit3:
2499 return "DW_OP_lit3";
2500 case DW_OP_lit4:
2501 return "DW_OP_lit4";
2502 case DW_OP_lit5:
2503 return "DW_OP_lit5";
2504 case DW_OP_lit6:
2505 return "DW_OP_lit6";
2506 case DW_OP_lit7:
2507 return "DW_OP_lit7";
2508 case DW_OP_lit8:
2509 return "DW_OP_lit8";
2510 case DW_OP_lit9:
2511 return "DW_OP_lit9";
2512 case DW_OP_lit10:
2513 return "DW_OP_lit10";
2514 case DW_OP_lit11:
2515 return "DW_OP_lit11";
2516 case DW_OP_lit12:
2517 return "DW_OP_lit12";
2518 case DW_OP_lit13:
2519 return "DW_OP_lit13";
2520 case DW_OP_lit14:
2521 return "DW_OP_lit14";
2522 case DW_OP_lit15:
2523 return "DW_OP_lit15";
2524 case DW_OP_lit16:
2525 return "DW_OP_lit16";
2526 case DW_OP_lit17:
2527 return "DW_OP_lit17";
2528 case DW_OP_lit18:
2529 return "DW_OP_lit18";
2530 case DW_OP_lit19:
2531 return "DW_OP_lit19";
2532 case DW_OP_lit20:
2533 return "DW_OP_lit20";
2534 case DW_OP_lit21:
2535 return "DW_OP_lit21";
2536 case DW_OP_lit22:
2537 return "DW_OP_lit22";
2538 case DW_OP_lit23:
2539 return "DW_OP_lit23";
2540 case DW_OP_lit24:
2541 return "DW_OP_lit24";
2542 case DW_OP_lit25:
2543 return "DW_OP_lit25";
2544 case DW_OP_lit26:
2545 return "DW_OP_lit26";
2546 case DW_OP_lit27:
2547 return "DW_OP_lit27";
2548 case DW_OP_lit28:
2549 return "DW_OP_lit28";
2550 case DW_OP_lit29:
2551 return "DW_OP_lit29";
2552 case DW_OP_lit30:
2553 return "DW_OP_lit30";
2554 case DW_OP_lit31:
2555 return "DW_OP_lit31";
2556 case DW_OP_reg0:
2557 return "DW_OP_reg0";
2558 case DW_OP_reg1:
2559 return "DW_OP_reg1";
2560 case DW_OP_reg2:
2561 return "DW_OP_reg2";
2562 case DW_OP_reg3:
2563 return "DW_OP_reg3";
2564 case DW_OP_reg4:
2565 return "DW_OP_reg4";
2566 case DW_OP_reg5:
2567 return "DW_OP_reg5";
2568 case DW_OP_reg6:
2569 return "DW_OP_reg6";
2570 case DW_OP_reg7:
2571 return "DW_OP_reg7";
2572 case DW_OP_reg8:
2573 return "DW_OP_reg8";
2574 case DW_OP_reg9:
2575 return "DW_OP_reg9";
2576 case DW_OP_reg10:
2577 return "DW_OP_reg10";
2578 case DW_OP_reg11:
2579 return "DW_OP_reg11";
2580 case DW_OP_reg12:
2581 return "DW_OP_reg12";
2582 case DW_OP_reg13:
2583 return "DW_OP_reg13";
2584 case DW_OP_reg14:
2585 return "DW_OP_reg14";
2586 case DW_OP_reg15:
2587 return "DW_OP_reg15";
2588 case DW_OP_reg16:
2589 return "DW_OP_reg16";
2590 case DW_OP_reg17:
2591 return "DW_OP_reg17";
2592 case DW_OP_reg18:
2593 return "DW_OP_reg18";
2594 case DW_OP_reg19:
2595 return "DW_OP_reg19";
2596 case DW_OP_reg20:
2597 return "DW_OP_reg20";
2598 case DW_OP_reg21:
2599 return "DW_OP_reg21";
2600 case DW_OP_reg22:
2601 return "DW_OP_reg22";
2602 case DW_OP_reg23:
2603 return "DW_OP_reg23";
2604 case DW_OP_reg24:
2605 return "DW_OP_reg24";
2606 case DW_OP_reg25:
2607 return "DW_OP_reg25";
2608 case DW_OP_reg26:
2609 return "DW_OP_reg26";
2610 case DW_OP_reg27:
2611 return "DW_OP_reg27";
2612 case DW_OP_reg28:
2613 return "DW_OP_reg28";
2614 case DW_OP_reg29:
2615 return "DW_OP_reg29";
2616 case DW_OP_reg30:
2617 return "DW_OP_reg30";
2618 case DW_OP_reg31:
2619 return "DW_OP_reg31";
2620 case DW_OP_breg0:
2621 return "DW_OP_breg0";
2622 case DW_OP_breg1:
2623 return "DW_OP_breg1";
2624 case DW_OP_breg2:
2625 return "DW_OP_breg2";
2626 case DW_OP_breg3:
2627 return "DW_OP_breg3";
2628 case DW_OP_breg4:
2629 return "DW_OP_breg4";
2630 case DW_OP_breg5:
2631 return "DW_OP_breg5";
2632 case DW_OP_breg6:
2633 return "DW_OP_breg6";
2634 case DW_OP_breg7:
2635 return "DW_OP_breg7";
2636 case DW_OP_breg8:
2637 return "DW_OP_breg8";
2638 case DW_OP_breg9:
2639 return "DW_OP_breg9";
2640 case DW_OP_breg10:
2641 return "DW_OP_breg10";
2642 case DW_OP_breg11:
2643 return "DW_OP_breg11";
2644 case DW_OP_breg12:
2645 return "DW_OP_breg12";
2646 case DW_OP_breg13:
2647 return "DW_OP_breg13";
2648 case DW_OP_breg14:
2649 return "DW_OP_breg14";
2650 case DW_OP_breg15:
2651 return "DW_OP_breg15";
2652 case DW_OP_breg16:
2653 return "DW_OP_breg16";
2654 case DW_OP_breg17:
2655 return "DW_OP_breg17";
2656 case DW_OP_breg18:
2657 return "DW_OP_breg18";
2658 case DW_OP_breg19:
2659 return "DW_OP_breg19";
2660 case DW_OP_breg20:
2661 return "DW_OP_breg20";
2662 case DW_OP_breg21:
2663 return "DW_OP_breg21";
2664 case DW_OP_breg22:
2665 return "DW_OP_breg22";
2666 case DW_OP_breg23:
2667 return "DW_OP_breg23";
2668 case DW_OP_breg24:
2669 return "DW_OP_breg24";
2670 case DW_OP_breg25:
2671 return "DW_OP_breg25";
2672 case DW_OP_breg26:
2673 return "DW_OP_breg26";
2674 case DW_OP_breg27:
2675 return "DW_OP_breg27";
2676 case DW_OP_breg28:
2677 return "DW_OP_breg28";
2678 case DW_OP_breg29:
2679 return "DW_OP_breg29";
2680 case DW_OP_breg30:
2681 return "DW_OP_breg30";
2682 case DW_OP_breg31:
2683 return "DW_OP_breg31";
2684 case DW_OP_regx:
2685 return "DW_OP_regx";
2686 case DW_OP_fbreg:
2687 return "DW_OP_fbreg";
2688 case DW_OP_bregx:
2689 return "DW_OP_bregx";
2690 case DW_OP_piece:
2691 return "DW_OP_piece";
2692 case DW_OP_deref_size:
2693 return "DW_OP_deref_size";
2694 case DW_OP_xderef_size:
2695 return "DW_OP_xderef_size";
2696 case DW_OP_nop:
2697 return "DW_OP_nop";
2698 case DW_OP_push_object_address:
2699 return "DW_OP_push_object_address";
2700 case DW_OP_call2:
2701 return "DW_OP_call2";
2702 case DW_OP_call4:
2703 return "DW_OP_call4";
2704 case DW_OP_call_ref:
2705 return "DW_OP_call_ref";
2706 case DW_OP_GNU_push_tls_address:
2707 return "DW_OP_GNU_push_tls_address";
2708 default:
2709 return "OP_<unknown>";
2710 }
2711 }
2712
2713 /* Return a pointer to a newly allocated location description. Location
2714 descriptions are simple expression terms that can be strung
2715 together to form more complicated location (address) descriptions. */
2716
2717 static inline dw_loc_descr_ref
2718 new_loc_descr (enum dwarf_location_atom op, long unsigned int oprnd1,
2719 long unsigned int oprnd2)
2720 {
2721 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2722
2723 descr->dw_loc_opc = op;
2724 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2725 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2726 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2727 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2728
2729 return descr;
2730 }
2731
2732
2733 /* Add a location description term to a location description expression. */
2734
2735 static inline void
2736 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
2737 {
2738 dw_loc_descr_ref *d;
2739
2740 /* Find the end of the chain. */
2741 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2742 ;
2743
2744 *d = descr;
2745 }
2746
2747 /* Return the size of a location descriptor. */
2748
2749 static unsigned long
2750 size_of_loc_descr (dw_loc_descr_ref loc)
2751 {
2752 unsigned long size = 1;
2753
2754 switch (loc->dw_loc_opc)
2755 {
2756 case DW_OP_addr:
2757 case INTERNAL_DW_OP_tls_addr:
2758 size += DWARF2_ADDR_SIZE;
2759 break;
2760 case DW_OP_const1u:
2761 case DW_OP_const1s:
2762 size += 1;
2763 break;
2764 case DW_OP_const2u:
2765 case DW_OP_const2s:
2766 size += 2;
2767 break;
2768 case DW_OP_const4u:
2769 case DW_OP_const4s:
2770 size += 4;
2771 break;
2772 case DW_OP_const8u:
2773 case DW_OP_const8s:
2774 size += 8;
2775 break;
2776 case DW_OP_constu:
2777 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2778 break;
2779 case DW_OP_consts:
2780 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2781 break;
2782 case DW_OP_pick:
2783 size += 1;
2784 break;
2785 case DW_OP_plus_uconst:
2786 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2787 break;
2788 case DW_OP_skip:
2789 case DW_OP_bra:
2790 size += 2;
2791 break;
2792 case DW_OP_breg0:
2793 case DW_OP_breg1:
2794 case DW_OP_breg2:
2795 case DW_OP_breg3:
2796 case DW_OP_breg4:
2797 case DW_OP_breg5:
2798 case DW_OP_breg6:
2799 case DW_OP_breg7:
2800 case DW_OP_breg8:
2801 case DW_OP_breg9:
2802 case DW_OP_breg10:
2803 case DW_OP_breg11:
2804 case DW_OP_breg12:
2805 case DW_OP_breg13:
2806 case DW_OP_breg14:
2807 case DW_OP_breg15:
2808 case DW_OP_breg16:
2809 case DW_OP_breg17:
2810 case DW_OP_breg18:
2811 case DW_OP_breg19:
2812 case DW_OP_breg20:
2813 case DW_OP_breg21:
2814 case DW_OP_breg22:
2815 case DW_OP_breg23:
2816 case DW_OP_breg24:
2817 case DW_OP_breg25:
2818 case DW_OP_breg26:
2819 case DW_OP_breg27:
2820 case DW_OP_breg28:
2821 case DW_OP_breg29:
2822 case DW_OP_breg30:
2823 case DW_OP_breg31:
2824 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2825 break;
2826 case DW_OP_regx:
2827 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2828 break;
2829 case DW_OP_fbreg:
2830 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2831 break;
2832 case DW_OP_bregx:
2833 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2834 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2835 break;
2836 case DW_OP_piece:
2837 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2838 break;
2839 case DW_OP_deref_size:
2840 case DW_OP_xderef_size:
2841 size += 1;
2842 break;
2843 case DW_OP_call2:
2844 size += 2;
2845 break;
2846 case DW_OP_call4:
2847 size += 4;
2848 break;
2849 case DW_OP_call_ref:
2850 size += DWARF2_ADDR_SIZE;
2851 break;
2852 default:
2853 break;
2854 }
2855
2856 return size;
2857 }
2858
2859 /* Return the size of a series of location descriptors. */
2860
2861 static unsigned long
2862 size_of_locs (dw_loc_descr_ref loc)
2863 {
2864 unsigned long size;
2865
2866 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2867 {
2868 loc->dw_loc_addr = size;
2869 size += size_of_loc_descr (loc);
2870 }
2871
2872 return size;
2873 }
2874
2875 /* Output location description stack opcode's operands (if any). */
2876
2877 static void
2878 output_loc_operands (dw_loc_descr_ref loc)
2879 {
2880 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2881 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2882
2883 switch (loc->dw_loc_opc)
2884 {
2885 #ifdef DWARF2_DEBUGGING_INFO
2886 case DW_OP_addr:
2887 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2888 break;
2889 case DW_OP_const2u:
2890 case DW_OP_const2s:
2891 dw2_asm_output_data (2, val1->v.val_int, NULL);
2892 break;
2893 case DW_OP_const4u:
2894 case DW_OP_const4s:
2895 dw2_asm_output_data (4, val1->v.val_int, NULL);
2896 break;
2897 case DW_OP_const8u:
2898 case DW_OP_const8s:
2899 if (HOST_BITS_PER_LONG < 64)
2900 abort ();
2901 dw2_asm_output_data (8, val1->v.val_int, NULL);
2902 break;
2903 case DW_OP_skip:
2904 case DW_OP_bra:
2905 {
2906 int offset;
2907
2908 if (val1->val_class == dw_val_class_loc)
2909 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2910 else
2911 abort ();
2912
2913 dw2_asm_output_data (2, offset, NULL);
2914 }
2915 break;
2916 #else
2917 case DW_OP_addr:
2918 case DW_OP_const2u:
2919 case DW_OP_const2s:
2920 case DW_OP_const4u:
2921 case DW_OP_const4s:
2922 case DW_OP_const8u:
2923 case DW_OP_const8s:
2924 case DW_OP_skip:
2925 case DW_OP_bra:
2926 /* We currently don't make any attempt to make sure these are
2927 aligned properly like we do for the main unwind info, so
2928 don't support emitting things larger than a byte if we're
2929 only doing unwinding. */
2930 abort ();
2931 #endif
2932 case DW_OP_const1u:
2933 case DW_OP_const1s:
2934 dw2_asm_output_data (1, val1->v.val_int, NULL);
2935 break;
2936 case DW_OP_constu:
2937 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2938 break;
2939 case DW_OP_consts:
2940 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2941 break;
2942 case DW_OP_pick:
2943 dw2_asm_output_data (1, val1->v.val_int, NULL);
2944 break;
2945 case DW_OP_plus_uconst:
2946 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2947 break;
2948 case DW_OP_breg0:
2949 case DW_OP_breg1:
2950 case DW_OP_breg2:
2951 case DW_OP_breg3:
2952 case DW_OP_breg4:
2953 case DW_OP_breg5:
2954 case DW_OP_breg6:
2955 case DW_OP_breg7:
2956 case DW_OP_breg8:
2957 case DW_OP_breg9:
2958 case DW_OP_breg10:
2959 case DW_OP_breg11:
2960 case DW_OP_breg12:
2961 case DW_OP_breg13:
2962 case DW_OP_breg14:
2963 case DW_OP_breg15:
2964 case DW_OP_breg16:
2965 case DW_OP_breg17:
2966 case DW_OP_breg18:
2967 case DW_OP_breg19:
2968 case DW_OP_breg20:
2969 case DW_OP_breg21:
2970 case DW_OP_breg22:
2971 case DW_OP_breg23:
2972 case DW_OP_breg24:
2973 case DW_OP_breg25:
2974 case DW_OP_breg26:
2975 case DW_OP_breg27:
2976 case DW_OP_breg28:
2977 case DW_OP_breg29:
2978 case DW_OP_breg30:
2979 case DW_OP_breg31:
2980 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2981 break;
2982 case DW_OP_regx:
2983 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2984 break;
2985 case DW_OP_fbreg:
2986 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2987 break;
2988 case DW_OP_bregx:
2989 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2990 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
2991 break;
2992 case DW_OP_piece:
2993 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2994 break;
2995 case DW_OP_deref_size:
2996 case DW_OP_xderef_size:
2997 dw2_asm_output_data (1, val1->v.val_int, NULL);
2998 break;
2999
3000 case INTERNAL_DW_OP_tls_addr:
3001 #ifdef ASM_OUTPUT_DWARF_DTPREL
3002 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3003 val1->v.val_addr);
3004 fputc ('\n', asm_out_file);
3005 #else
3006 abort ();
3007 #endif
3008 break;
3009
3010 default:
3011 /* Other codes have no operands. */
3012 break;
3013 }
3014 }
3015
3016 /* Output a sequence of location operations. */
3017
3018 static void
3019 output_loc_sequence (dw_loc_descr_ref loc)
3020 {
3021 for (; loc != NULL; loc = loc->dw_loc_next)
3022 {
3023 /* Output the opcode. */
3024 dw2_asm_output_data (1, loc->dw_loc_opc,
3025 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3026
3027 /* Output the operand(s) (if any). */
3028 output_loc_operands (loc);
3029 }
3030 }
3031
3032 /* This routine will generate the correct assembly data for a location
3033 description based on a cfi entry with a complex address. */
3034
3035 static void
3036 output_cfa_loc (dw_cfi_ref cfi)
3037 {
3038 dw_loc_descr_ref loc;
3039 unsigned long size;
3040
3041 /* Output the size of the block. */
3042 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3043 size = size_of_locs (loc);
3044 dw2_asm_output_data_uleb128 (size, NULL);
3045
3046 /* Now output the operations themselves. */
3047 output_loc_sequence (loc);
3048 }
3049
3050 /* This function builds a dwarf location descriptor sequence from
3051 a dw_cfa_location. */
3052
3053 static struct dw_loc_descr_struct *
3054 build_cfa_loc (dw_cfa_location *cfa)
3055 {
3056 struct dw_loc_descr_struct *head, *tmp;
3057
3058 if (cfa->indirect == 0)
3059 abort ();
3060
3061 if (cfa->base_offset)
3062 {
3063 if (cfa->reg <= 31)
3064 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3065 else
3066 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3067 }
3068 else if (cfa->reg <= 31)
3069 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3070 else
3071 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3072
3073 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3074 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3075 add_loc_descr (&head, tmp);
3076 if (cfa->offset != 0)
3077 {
3078 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3079 add_loc_descr (&head, tmp);
3080 }
3081
3082 return head;
3083 }
3084
3085 /* This function fills in aa dw_cfa_location structure from a dwarf location
3086 descriptor sequence. */
3087
3088 static void
3089 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3090 {
3091 struct dw_loc_descr_struct *ptr;
3092 cfa->offset = 0;
3093 cfa->base_offset = 0;
3094 cfa->indirect = 0;
3095 cfa->reg = -1;
3096
3097 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3098 {
3099 enum dwarf_location_atom op = ptr->dw_loc_opc;
3100
3101 switch (op)
3102 {
3103 case DW_OP_reg0:
3104 case DW_OP_reg1:
3105 case DW_OP_reg2:
3106 case DW_OP_reg3:
3107 case DW_OP_reg4:
3108 case DW_OP_reg5:
3109 case DW_OP_reg6:
3110 case DW_OP_reg7:
3111 case DW_OP_reg8:
3112 case DW_OP_reg9:
3113 case DW_OP_reg10:
3114 case DW_OP_reg11:
3115 case DW_OP_reg12:
3116 case DW_OP_reg13:
3117 case DW_OP_reg14:
3118 case DW_OP_reg15:
3119 case DW_OP_reg16:
3120 case DW_OP_reg17:
3121 case DW_OP_reg18:
3122 case DW_OP_reg19:
3123 case DW_OP_reg20:
3124 case DW_OP_reg21:
3125 case DW_OP_reg22:
3126 case DW_OP_reg23:
3127 case DW_OP_reg24:
3128 case DW_OP_reg25:
3129 case DW_OP_reg26:
3130 case DW_OP_reg27:
3131 case DW_OP_reg28:
3132 case DW_OP_reg29:
3133 case DW_OP_reg30:
3134 case DW_OP_reg31:
3135 cfa->reg = op - DW_OP_reg0;
3136 break;
3137 case DW_OP_regx:
3138 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3139 break;
3140 case DW_OP_breg0:
3141 case DW_OP_breg1:
3142 case DW_OP_breg2:
3143 case DW_OP_breg3:
3144 case DW_OP_breg4:
3145 case DW_OP_breg5:
3146 case DW_OP_breg6:
3147 case DW_OP_breg7:
3148 case DW_OP_breg8:
3149 case DW_OP_breg9:
3150 case DW_OP_breg10:
3151 case DW_OP_breg11:
3152 case DW_OP_breg12:
3153 case DW_OP_breg13:
3154 case DW_OP_breg14:
3155 case DW_OP_breg15:
3156 case DW_OP_breg16:
3157 case DW_OP_breg17:
3158 case DW_OP_breg18:
3159 case DW_OP_breg19:
3160 case DW_OP_breg20:
3161 case DW_OP_breg21:
3162 case DW_OP_breg22:
3163 case DW_OP_breg23:
3164 case DW_OP_breg24:
3165 case DW_OP_breg25:
3166 case DW_OP_breg26:
3167 case DW_OP_breg27:
3168 case DW_OP_breg28:
3169 case DW_OP_breg29:
3170 case DW_OP_breg30:
3171 case DW_OP_breg31:
3172 cfa->reg = op - DW_OP_breg0;
3173 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3174 break;
3175 case DW_OP_bregx:
3176 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3177 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3178 break;
3179 case DW_OP_deref:
3180 cfa->indirect = 1;
3181 break;
3182 case DW_OP_plus_uconst:
3183 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3184 break;
3185 default:
3186 internal_error ("DW_LOC_OP %s not implemented\n",
3187 dwarf_stack_op_name (ptr->dw_loc_opc));
3188 }
3189 }
3190 }
3191 #endif /* .debug_frame support */
3192 \f
3193 /* And now, the support for symbolic debugging information. */
3194 #ifdef DWARF2_DEBUGGING_INFO
3195
3196 /* .debug_str support. */
3197 static int output_indirect_string (void **, void *);
3198
3199 static void dwarf2out_init (const char *);
3200 static void dwarf2out_finish (const char *);
3201 static void dwarf2out_define (unsigned int, const char *);
3202 static void dwarf2out_undef (unsigned int, const char *);
3203 static void dwarf2out_start_source_file (unsigned, const char *);
3204 static void dwarf2out_end_source_file (unsigned);
3205 static void dwarf2out_begin_block (unsigned, unsigned);
3206 static void dwarf2out_end_block (unsigned, unsigned);
3207 static bool dwarf2out_ignore_block (tree);
3208 static void dwarf2out_global_decl (tree);
3209 static void dwarf2out_abstract_function (tree);
3210
3211 /* The debug hooks structure. */
3212
3213 const struct gcc_debug_hooks dwarf2_debug_hooks =
3214 {
3215 dwarf2out_init,
3216 dwarf2out_finish,
3217 dwarf2out_define,
3218 dwarf2out_undef,
3219 dwarf2out_start_source_file,
3220 dwarf2out_end_source_file,
3221 dwarf2out_begin_block,
3222 dwarf2out_end_block,
3223 dwarf2out_ignore_block,
3224 dwarf2out_source_line,
3225 dwarf2out_begin_prologue,
3226 debug_nothing_int_charstar, /* end_prologue */
3227 dwarf2out_end_epilogue,
3228 debug_nothing_tree, /* begin_function */
3229 debug_nothing_int, /* end_function */
3230 dwarf2out_decl, /* function_decl */
3231 dwarf2out_global_decl,
3232 debug_nothing_tree, /* deferred_inline_function */
3233 /* The DWARF 2 backend tries to reduce debugging bloat by not
3234 emitting the abstract description of inline functions until
3235 something tries to reference them. */
3236 dwarf2out_abstract_function, /* outlining_inline_function */
3237 debug_nothing_rtx, /* label */
3238 debug_nothing_int /* handle_pch */
3239 };
3240 #endif
3241 \f
3242 /* NOTE: In the comments in this file, many references are made to
3243 "Debugging Information Entries". This term is abbreviated as `DIE'
3244 throughout the remainder of this file. */
3245
3246 /* An internal representation of the DWARF output is built, and then
3247 walked to generate the DWARF debugging info. The walk of the internal
3248 representation is done after the entire program has been compiled.
3249 The types below are used to describe the internal representation. */
3250
3251 /* Various DIE's use offsets relative to the beginning of the
3252 .debug_info section to refer to each other. */
3253
3254 typedef long int dw_offset;
3255
3256 /* Define typedefs here to avoid circular dependencies. */
3257
3258 typedef struct dw_attr_struct *dw_attr_ref;
3259 typedef struct dw_line_info_struct *dw_line_info_ref;
3260 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3261 typedef struct pubname_struct *pubname_ref;
3262 typedef struct dw_ranges_struct *dw_ranges_ref;
3263
3264 /* Each entry in the line_info_table maintains the file and
3265 line number associated with the label generated for that
3266 entry. The label gives the PC value associated with
3267 the line number entry. */
3268
3269 typedef struct dw_line_info_struct GTY(())
3270 {
3271 unsigned long dw_file_num;
3272 unsigned long dw_line_num;
3273 }
3274 dw_line_info_entry;
3275
3276 /* Line information for functions in separate sections; each one gets its
3277 own sequence. */
3278 typedef struct dw_separate_line_info_struct GTY(())
3279 {
3280 unsigned long dw_file_num;
3281 unsigned long dw_line_num;
3282 unsigned long function;
3283 }
3284 dw_separate_line_info_entry;
3285
3286 /* Each DIE attribute has a field specifying the attribute kind,
3287 a link to the next attribute in the chain, and an attribute value.
3288 Attributes are typically linked below the DIE they modify. */
3289
3290 typedef struct dw_attr_struct GTY(())
3291 {
3292 enum dwarf_attribute dw_attr;
3293 dw_attr_ref dw_attr_next;
3294 dw_val_node dw_attr_val;
3295 }
3296 dw_attr_node;
3297
3298 /* The Debugging Information Entry (DIE) structure */
3299
3300 typedef struct die_struct GTY(())
3301 {
3302 enum dwarf_tag die_tag;
3303 char *die_symbol;
3304 dw_attr_ref die_attr;
3305 dw_die_ref die_parent;
3306 dw_die_ref die_child;
3307 dw_die_ref die_sib;
3308 dw_offset die_offset;
3309 unsigned long die_abbrev;
3310 int die_mark;
3311 }
3312 die_node;
3313
3314 /* The pubname structure */
3315
3316 typedef struct pubname_struct GTY(())
3317 {
3318 dw_die_ref die;
3319 char *name;
3320 }
3321 pubname_entry;
3322
3323 struct dw_ranges_struct GTY(())
3324 {
3325 int block_num;
3326 };
3327
3328 /* The limbo die list structure. */
3329 typedef struct limbo_die_struct GTY(())
3330 {
3331 dw_die_ref die;
3332 tree created_for;
3333 struct limbo_die_struct *next;
3334 }
3335 limbo_die_node;
3336
3337 /* How to start an assembler comment. */
3338 #ifndef ASM_COMMENT_START
3339 #define ASM_COMMENT_START ";#"
3340 #endif
3341
3342 /* Define a macro which returns nonzero for a TYPE_DECL which was
3343 implicitly generated for a tagged type.
3344
3345 Note that unlike the gcc front end (which generates a NULL named
3346 TYPE_DECL node for each complete tagged type, each array type, and
3347 each function type node created) the g++ front end generates a
3348 _named_ TYPE_DECL node for each tagged type node created.
3349 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3350 generate a DW_TAG_typedef DIE for them. */
3351
3352 #define TYPE_DECL_IS_STUB(decl) \
3353 (DECL_NAME (decl) == NULL_TREE \
3354 || (DECL_ARTIFICIAL (decl) \
3355 && is_tagged_type (TREE_TYPE (decl)) \
3356 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3357 /* This is necessary for stub decls that \
3358 appear in nested inline functions. */ \
3359 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3360 && (decl_ultimate_origin (decl) \
3361 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3362
3363 /* Information concerning the compilation unit's programming
3364 language, and compiler version. */
3365
3366 /* Fixed size portion of the DWARF compilation unit header. */
3367 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3368 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3369
3370 /* Fixed size portion of public names info. */
3371 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3372
3373 /* Fixed size portion of the address range info. */
3374 #define DWARF_ARANGES_HEADER_SIZE \
3375 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3376 DWARF2_ADDR_SIZE * 2) \
3377 - DWARF_INITIAL_LENGTH_SIZE)
3378
3379 /* Size of padding portion in the address range info. It must be
3380 aligned to twice the pointer size. */
3381 #define DWARF_ARANGES_PAD_SIZE \
3382 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3383 DWARF2_ADDR_SIZE * 2) \
3384 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3385
3386 /* Use assembler line directives if available. */
3387 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3388 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3389 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3390 #else
3391 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3392 #endif
3393 #endif
3394
3395 /* Minimum line offset in a special line info. opcode.
3396 This value was chosen to give a reasonable range of values. */
3397 #define DWARF_LINE_BASE -10
3398
3399 /* First special line opcode - leave room for the standard opcodes. */
3400 #define DWARF_LINE_OPCODE_BASE 10
3401
3402 /* Range of line offsets in a special line info. opcode. */
3403 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3404
3405 /* Flag that indicates the initial value of the is_stmt_start flag.
3406 In the present implementation, we do not mark any lines as
3407 the beginning of a source statement, because that information
3408 is not made available by the GCC front-end. */
3409 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3410
3411 #ifdef DWARF2_DEBUGGING_INFO
3412 /* This location is used by calc_die_sizes() to keep track
3413 the offset of each DIE within the .debug_info section. */
3414 static unsigned long next_die_offset;
3415 #endif
3416
3417 /* Record the root of the DIE's built for the current compilation unit. */
3418 static GTY(()) dw_die_ref comp_unit_die;
3419
3420 #ifdef DWARF2_DEBUGGING_INFO
3421 /* We need special handling in dwarf2out_start_source_file if it is
3422 first one. */
3423 static int is_main_source;
3424 #endif
3425
3426 /* A list of DIEs with a NULL parent waiting to be relocated. */
3427 static GTY(()) limbo_die_node *limbo_die_list;
3428
3429 /* Filenames referenced by this compilation unit. */
3430 static GTY(()) varray_type file_table;
3431 static GTY(()) varray_type file_table_emitted;
3432 static GTY(()) size_t file_table_last_lookup_index;
3433
3434 /* A pointer to the base of a table of references to DIE's that describe
3435 declarations. The table is indexed by DECL_UID() which is a unique
3436 number identifying each decl. */
3437 static GTY((length ("decl_die_table_allocated"))) dw_die_ref *decl_die_table;
3438
3439 /* Number of elements currently allocated for the decl_die_table. */
3440 static GTY(()) unsigned decl_die_table_allocated;
3441
3442 /* Number of elements in decl_die_table currently in use. */
3443 static GTY(()) unsigned decl_die_table_in_use;
3444
3445 /* Size (in elements) of increments by which we may expand the
3446 decl_die_table. */
3447 #define DECL_DIE_TABLE_INCREMENT 256
3448
3449 /* A pointer to the base of a list of references to DIE's that
3450 are uniquely identified by their tag, presence/absence of
3451 children DIE's, and list of attribute/value pairs. */
3452 static GTY((length ("abbrev_die_table_allocated")))
3453 dw_die_ref *abbrev_die_table;
3454
3455 /* Number of elements currently allocated for abbrev_die_table. */
3456 static GTY(()) unsigned abbrev_die_table_allocated;
3457
3458 /* Number of elements in type_die_table currently in use. */
3459 static GTY(()) unsigned abbrev_die_table_in_use;
3460
3461 /* Size (in elements) of increments by which we may expand the
3462 abbrev_die_table. */
3463 #define ABBREV_DIE_TABLE_INCREMENT 256
3464
3465 /* A pointer to the base of a table that contains line information
3466 for each source code line in .text in the compilation unit. */
3467 static GTY((length ("line_info_table_allocated")))
3468 dw_line_info_ref line_info_table;
3469
3470 /* Number of elements currently allocated for line_info_table. */
3471 static GTY(()) unsigned line_info_table_allocated;
3472
3473 /* Number of elements in line_info_table currently in use. */
3474 static GTY(()) unsigned line_info_table_in_use;
3475
3476 /* A pointer to the base of a table that contains line information
3477 for each source code line outside of .text in the compilation unit. */
3478 static GTY ((length ("separate_line_info_table_allocated")))
3479 dw_separate_line_info_ref separate_line_info_table;
3480
3481 /* Number of elements currently allocated for separate_line_info_table. */
3482 static GTY(()) unsigned separate_line_info_table_allocated;
3483
3484 /* Number of elements in separate_line_info_table currently in use. */
3485 static GTY(()) unsigned separate_line_info_table_in_use;
3486
3487 /* Size (in elements) of increments by which we may expand the
3488 line_info_table. */
3489 #define LINE_INFO_TABLE_INCREMENT 1024
3490
3491 /* A pointer to the base of a table that contains a list of publicly
3492 accessible names. */
3493 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3494
3495 /* Number of elements currently allocated for pubname_table. */
3496 static GTY(()) unsigned pubname_table_allocated;
3497
3498 /* Number of elements in pubname_table currently in use. */
3499 static GTY(()) unsigned pubname_table_in_use;
3500
3501 /* Size (in elements) of increments by which we may expand the
3502 pubname_table. */
3503 #define PUBNAME_TABLE_INCREMENT 64
3504
3505 /* Array of dies for which we should generate .debug_arange info. */
3506 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3507
3508 /* Number of elements currently allocated for arange_table. */
3509 static GTY(()) unsigned arange_table_allocated;
3510
3511 /* Number of elements in arange_table currently in use. */
3512 static GTY(()) unsigned arange_table_in_use;
3513
3514 /* Size (in elements) of increments by which we may expand the
3515 arange_table. */
3516 #define ARANGE_TABLE_INCREMENT 64
3517
3518 /* Array of dies for which we should generate .debug_ranges info. */
3519 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3520
3521 /* Number of elements currently allocated for ranges_table. */
3522 static GTY(()) unsigned ranges_table_allocated;
3523
3524 /* Number of elements in ranges_table currently in use. */
3525 static GTY(()) unsigned ranges_table_in_use;
3526
3527 /* Size (in elements) of increments by which we may expand the
3528 ranges_table. */
3529 #define RANGES_TABLE_INCREMENT 64
3530
3531 /* Whether we have location lists that need outputting */
3532 static GTY(()) unsigned have_location_lists;
3533
3534 #ifdef DWARF2_DEBUGGING_INFO
3535 /* Record whether the function being analyzed contains inlined functions. */
3536 static int current_function_has_inlines;
3537 #endif
3538 #if 0 && defined (MIPS_DEBUGGING_INFO)
3539 static int comp_unit_has_inlines;
3540 #endif
3541
3542 /* Number of file tables emitted in maybe_emit_file(). */
3543 static GTY(()) int emitcount = 0;
3544
3545 /* Number of internal labels generated by gen_internal_sym(). */
3546 static GTY(()) int label_num;
3547
3548 #ifdef DWARF2_DEBUGGING_INFO
3549
3550 /* Forward declarations for functions defined in this file. */
3551
3552 static int is_pseudo_reg (rtx);
3553 static tree type_main_variant (tree);
3554 static int is_tagged_type (tree);
3555 static const char *dwarf_tag_name (unsigned);
3556 static const char *dwarf_attr_name (unsigned);
3557 static const char *dwarf_form_name (unsigned);
3558 #if 0
3559 static const char *dwarf_type_encoding_name (unsigned);
3560 #endif
3561 static tree decl_ultimate_origin (tree);
3562 static tree block_ultimate_origin (tree);
3563 static tree decl_class_context (tree);
3564 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3565 static inline enum dw_val_class AT_class (dw_attr_ref);
3566 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3567 static inline unsigned AT_flag (dw_attr_ref);
3568 static void add_AT_int (dw_die_ref, enum dwarf_attribute, long);
3569 static inline long int AT_int (dw_attr_ref);
3570 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned long);
3571 static inline unsigned long AT_unsigned (dw_attr_ref);
3572 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3573 unsigned long);
3574 static void add_AT_float (dw_die_ref, enum dwarf_attribute, unsigned, long *);
3575 static hashval_t debug_str_do_hash (const void *);
3576 static int debug_str_eq (const void *, const void *);
3577 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3578 static inline const char *AT_string (dw_attr_ref);
3579 static int AT_string_form (dw_attr_ref);
3580 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3581 static inline dw_die_ref AT_ref (dw_attr_ref);
3582 static inline int AT_ref_external (dw_attr_ref);
3583 static inline void set_AT_ref_external (dw_attr_ref, int);
3584 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3585 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3586 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3587 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3588 dw_loc_list_ref);
3589 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3590 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3591 static inline rtx AT_addr (dw_attr_ref);
3592 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3593 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3594 static void add_AT_offset (dw_die_ref, enum dwarf_attribute, unsigned long);
3595 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3596 unsigned long);
3597 static inline const char *AT_lbl (dw_attr_ref);
3598 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3599 static const char *get_AT_low_pc (dw_die_ref);
3600 static const char *get_AT_hi_pc (dw_die_ref);
3601 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3602 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3603 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3604 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3605 static bool is_c_family (void);
3606 static bool is_cxx (void);
3607 static bool is_java (void);
3608 static bool is_fortran (void);
3609 static bool is_ada (void);
3610 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3611 static inline void free_die (dw_die_ref);
3612 static void remove_children (dw_die_ref);
3613 static void add_child_die (dw_die_ref, dw_die_ref);
3614 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3615 static dw_die_ref lookup_type_die (tree);
3616 static void equate_type_number_to_die (tree, dw_die_ref);
3617 static dw_die_ref lookup_decl_die (tree);
3618 static void equate_decl_number_to_die (tree, dw_die_ref);
3619 static void print_spaces (FILE *);
3620 static void print_die (dw_die_ref, FILE *);
3621 static void print_dwarf_line_table (FILE *);
3622 static void reverse_die_lists (dw_die_ref);
3623 static void reverse_all_dies (dw_die_ref);
3624 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3625 static dw_die_ref pop_compile_unit (dw_die_ref);
3626 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3627 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3628 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3629 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3630 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3631 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3632 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3633 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3634 static void compute_section_prefix (dw_die_ref);
3635 static int is_type_die (dw_die_ref);
3636 static int is_comdat_die (dw_die_ref);
3637 static int is_symbol_die (dw_die_ref);
3638 static void assign_symbol_names (dw_die_ref);
3639 static void break_out_includes (dw_die_ref);
3640 static hashval_t htab_cu_hash (const void *);
3641 static int htab_cu_eq (const void *, const void *);
3642 static void htab_cu_del (void *);
3643 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3644 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3645 static void add_sibling_attributes (dw_die_ref);
3646 static void build_abbrev_table (dw_die_ref);
3647 static void output_location_lists (dw_die_ref);
3648 static int constant_size (long unsigned);
3649 static unsigned long size_of_die (dw_die_ref);
3650 static void calc_die_sizes (dw_die_ref);
3651 static void mark_dies (dw_die_ref);
3652 static void unmark_dies (dw_die_ref);
3653 static void unmark_all_dies (dw_die_ref);
3654 static unsigned long size_of_pubnames (void);
3655 static unsigned long size_of_aranges (void);
3656 static enum dwarf_form value_format (dw_attr_ref);
3657 static void output_value_format (dw_attr_ref);
3658 static void output_abbrev_section (void);
3659 static void output_die_symbol (dw_die_ref);
3660 static void output_die (dw_die_ref);
3661 static void output_compilation_unit_header (void);
3662 static void output_comp_unit (dw_die_ref, int);
3663 static const char *dwarf2_name (tree, int);
3664 static void add_pubname (tree, dw_die_ref);
3665 static void output_pubnames (void);
3666 static void add_arange (tree, dw_die_ref);
3667 static void output_aranges (void);
3668 static unsigned int add_ranges (tree);
3669 static void output_ranges (void);
3670 static void output_line_info (void);
3671 static void output_file_names (void);
3672 static dw_die_ref base_type_die (tree);
3673 static tree root_type (tree);
3674 static int is_base_type (tree);
3675 static bool is_ada_subrange_type (tree);
3676 static dw_die_ref subrange_type_die (tree);
3677 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3678 static int type_is_enum (tree);
3679 static unsigned int reg_number (rtx);
3680 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3681 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3682 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3683 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3684 static dw_loc_descr_ref based_loc_descr (unsigned, long);
3685 static int is_based_loc (rtx);
3686 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
3687 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3688 static dw_loc_descr_ref loc_descriptor (rtx);
3689 static dw_loc_descr_ref loc_descriptor_from_tree (tree, int);
3690 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3691 static tree field_type (tree);
3692 static unsigned int simple_type_align_in_bits (tree);
3693 static unsigned int simple_decl_align_in_bits (tree);
3694 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3695 static HOST_WIDE_INT field_byte_offset (tree);
3696 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3697 dw_loc_descr_ref);
3698 static void add_data_member_location_attribute (dw_die_ref, tree);
3699 static void add_const_value_attribute (dw_die_ref, rtx);
3700 static rtx rtl_for_decl_location (tree);
3701 static void add_location_or_const_value_attribute (dw_die_ref, tree);
3702 static void tree_add_const_value_attribute (dw_die_ref, tree);
3703 static void add_name_attribute (dw_die_ref, const char *);
3704 static void add_comp_dir_attribute (dw_die_ref);
3705 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
3706 static void add_subscript_info (dw_die_ref, tree);
3707 static void add_byte_size_attribute (dw_die_ref, tree);
3708 static void add_bit_offset_attribute (dw_die_ref, tree);
3709 static void add_bit_size_attribute (dw_die_ref, tree);
3710 static void add_prototyped_attribute (dw_die_ref, tree);
3711 static void add_abstract_origin_attribute (dw_die_ref, tree);
3712 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3713 static void add_src_coords_attributes (dw_die_ref, tree);
3714 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3715 static void push_decl_scope (tree);
3716 static void pop_decl_scope (void);
3717 static dw_die_ref scope_die_for (tree, dw_die_ref);
3718 static inline int local_scope_p (dw_die_ref);
3719 static inline int class_scope_p (dw_die_ref);
3720 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
3721 static const char *type_tag (tree);
3722 static tree member_declared_type (tree);
3723 #if 0
3724 static const char *decl_start_label (tree);
3725 #endif
3726 static void gen_array_type_die (tree, dw_die_ref);
3727 static void gen_set_type_die (tree, dw_die_ref);
3728 #if 0
3729 static void gen_entry_point_die (tree, dw_die_ref);
3730 #endif
3731 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
3732 static void gen_inlined_structure_type_die (tree, dw_die_ref);
3733 static void gen_inlined_union_type_die (tree, dw_die_ref);
3734 static void gen_enumeration_type_die (tree, dw_die_ref);
3735 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
3736 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3737 static void gen_formal_types_die (tree, dw_die_ref);
3738 static void gen_subprogram_die (tree, dw_die_ref);
3739 static void gen_variable_die (tree, dw_die_ref);
3740 static void gen_label_die (tree, dw_die_ref);
3741 static void gen_lexical_block_die (tree, dw_die_ref, int);
3742 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
3743 static void gen_field_die (tree, dw_die_ref);
3744 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3745 static dw_die_ref gen_compile_unit_die (const char *);
3746 static void gen_string_type_die (tree, dw_die_ref);
3747 static void gen_inheritance_die (tree, tree, dw_die_ref);
3748 static void gen_member_die (tree, dw_die_ref);
3749 static void gen_struct_or_union_type_die (tree, dw_die_ref);
3750 static void gen_subroutine_type_die (tree, dw_die_ref);
3751 static void gen_typedef_die (tree, dw_die_ref);
3752 static void gen_type_die (tree, dw_die_ref);
3753 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
3754 static void gen_block_die (tree, dw_die_ref, int);
3755 static void decls_for_scope (tree, dw_die_ref, int);
3756 static int is_redundant_typedef (tree);
3757 static void gen_decl_die (tree, dw_die_ref);
3758 static unsigned lookup_filename (const char *);
3759 static void init_file_table (void);
3760 static void retry_incomplete_types (void);
3761 static void gen_type_die_for_member (tree, tree, dw_die_ref);
3762 static void splice_child_die (dw_die_ref, dw_die_ref);
3763 static int file_info_cmp (const void *, const void *);
3764 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
3765 const char *, const char *, unsigned);
3766 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
3767 const char *, const char *,
3768 const char *);
3769 static void output_loc_list (dw_loc_list_ref);
3770 static char *gen_internal_sym (const char *);
3771
3772 static void prune_unmark_dies (dw_die_ref);
3773 static void prune_unused_types_mark (dw_die_ref, int);
3774 static void prune_unused_types_walk (dw_die_ref);
3775 static void prune_unused_types_walk_attribs (dw_die_ref);
3776 static void prune_unused_types_prune (dw_die_ref);
3777 static void prune_unused_types (void);
3778 static int maybe_emit_file (int);
3779
3780 /* Section names used to hold DWARF debugging information. */
3781 #ifndef DEBUG_INFO_SECTION
3782 #define DEBUG_INFO_SECTION ".debug_info"
3783 #endif
3784 #ifndef DEBUG_ABBREV_SECTION
3785 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3786 #endif
3787 #ifndef DEBUG_ARANGES_SECTION
3788 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3789 #endif
3790 #ifndef DEBUG_MACINFO_SECTION
3791 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3792 #endif
3793 #ifndef DEBUG_LINE_SECTION
3794 #define DEBUG_LINE_SECTION ".debug_line"
3795 #endif
3796 #ifndef DEBUG_LOC_SECTION
3797 #define DEBUG_LOC_SECTION ".debug_loc"
3798 #endif
3799 #ifndef DEBUG_PUBNAMES_SECTION
3800 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3801 #endif
3802 #ifndef DEBUG_STR_SECTION
3803 #define DEBUG_STR_SECTION ".debug_str"
3804 #endif
3805 #ifndef DEBUG_RANGES_SECTION
3806 #define DEBUG_RANGES_SECTION ".debug_ranges"
3807 #endif
3808
3809 /* Standard ELF section names for compiled code and data. */
3810 #ifndef TEXT_SECTION_NAME
3811 #define TEXT_SECTION_NAME ".text"
3812 #endif
3813
3814 /* Section flags for .debug_str section. */
3815 #ifdef HAVE_GAS_SHF_MERGE
3816 #define DEBUG_STR_SECTION_FLAGS \
3817 (flag_merge_constants \
3818 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
3819 : SECTION_DEBUG)
3820 #else
3821 #define DEBUG_STR_SECTION_FLAGS SECTION_DEBUG
3822 #endif
3823
3824 /* Labels we insert at beginning sections we can reference instead of
3825 the section names themselves. */
3826
3827 #ifndef TEXT_SECTION_LABEL
3828 #define TEXT_SECTION_LABEL "Ltext"
3829 #endif
3830 #ifndef DEBUG_LINE_SECTION_LABEL
3831 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3832 #endif
3833 #ifndef DEBUG_INFO_SECTION_LABEL
3834 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3835 #endif
3836 #ifndef DEBUG_ABBREV_SECTION_LABEL
3837 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3838 #endif
3839 #ifndef DEBUG_LOC_SECTION_LABEL
3840 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3841 #endif
3842 #ifndef DEBUG_RANGES_SECTION_LABEL
3843 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3844 #endif
3845 #ifndef DEBUG_MACINFO_SECTION_LABEL
3846 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3847 #endif
3848
3849 /* Definitions of defaults for formats and names of various special
3850 (artificial) labels which may be generated within this file (when the -g
3851 options is used and DWARF_DEBUGGING_INFO is in effect.
3852 If necessary, these may be overridden from within the tm.h file, but
3853 typically, overriding these defaults is unnecessary. */
3854
3855 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3856 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3857 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3858 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3859 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3860 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3861 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3862 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3863
3864 #ifndef TEXT_END_LABEL
3865 #define TEXT_END_LABEL "Letext"
3866 #endif
3867 #ifndef BLOCK_BEGIN_LABEL
3868 #define BLOCK_BEGIN_LABEL "LBB"
3869 #endif
3870 #ifndef BLOCK_END_LABEL
3871 #define BLOCK_END_LABEL "LBE"
3872 #endif
3873 #ifndef LINE_CODE_LABEL
3874 #define LINE_CODE_LABEL "LM"
3875 #endif
3876 #ifndef SEPARATE_LINE_CODE_LABEL
3877 #define SEPARATE_LINE_CODE_LABEL "LSM"
3878 #endif
3879 \f
3880 /* We allow a language front-end to designate a function that is to be
3881 called to "demangle" any name before it it put into a DIE. */
3882
3883 static const char *(*demangle_name_func) (const char *);
3884
3885 void
3886 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
3887 {
3888 demangle_name_func = func;
3889 }
3890
3891 /* Test if rtl node points to a pseudo register. */
3892
3893 static inline int
3894 is_pseudo_reg (rtx rtl)
3895 {
3896 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3897 || (GET_CODE (rtl) == SUBREG
3898 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3899 }
3900
3901 /* Return a reference to a type, with its const and volatile qualifiers
3902 removed. */
3903
3904 static inline tree
3905 type_main_variant (tree type)
3906 {
3907 type = TYPE_MAIN_VARIANT (type);
3908
3909 /* ??? There really should be only one main variant among any group of
3910 variants of a given type (and all of the MAIN_VARIANT values for all
3911 members of the group should point to that one type) but sometimes the C
3912 front-end messes this up for array types, so we work around that bug
3913 here. */
3914 if (TREE_CODE (type) == ARRAY_TYPE)
3915 while (type != TYPE_MAIN_VARIANT (type))
3916 type = TYPE_MAIN_VARIANT (type);
3917
3918 return type;
3919 }
3920
3921 /* Return nonzero if the given type node represents a tagged type. */
3922
3923 static inline int
3924 is_tagged_type (tree type)
3925 {
3926 enum tree_code code = TREE_CODE (type);
3927
3928 return (code == RECORD_TYPE || code == UNION_TYPE
3929 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
3930 }
3931
3932 /* Convert a DIE tag into its string name. */
3933
3934 static const char *
3935 dwarf_tag_name (unsigned int tag)
3936 {
3937 switch (tag)
3938 {
3939 case DW_TAG_padding:
3940 return "DW_TAG_padding";
3941 case DW_TAG_array_type:
3942 return "DW_TAG_array_type";
3943 case DW_TAG_class_type:
3944 return "DW_TAG_class_type";
3945 case DW_TAG_entry_point:
3946 return "DW_TAG_entry_point";
3947 case DW_TAG_enumeration_type:
3948 return "DW_TAG_enumeration_type";
3949 case DW_TAG_formal_parameter:
3950 return "DW_TAG_formal_parameter";
3951 case DW_TAG_imported_declaration:
3952 return "DW_TAG_imported_declaration";
3953 case DW_TAG_label:
3954 return "DW_TAG_label";
3955 case DW_TAG_lexical_block:
3956 return "DW_TAG_lexical_block";
3957 case DW_TAG_member:
3958 return "DW_TAG_member";
3959 case DW_TAG_pointer_type:
3960 return "DW_TAG_pointer_type";
3961 case DW_TAG_reference_type:
3962 return "DW_TAG_reference_type";
3963 case DW_TAG_compile_unit:
3964 return "DW_TAG_compile_unit";
3965 case DW_TAG_string_type:
3966 return "DW_TAG_string_type";
3967 case DW_TAG_structure_type:
3968 return "DW_TAG_structure_type";
3969 case DW_TAG_subroutine_type:
3970 return "DW_TAG_subroutine_type";
3971 case DW_TAG_typedef:
3972 return "DW_TAG_typedef";
3973 case DW_TAG_union_type:
3974 return "DW_TAG_union_type";
3975 case DW_TAG_unspecified_parameters:
3976 return "DW_TAG_unspecified_parameters";
3977 case DW_TAG_variant:
3978 return "DW_TAG_variant";
3979 case DW_TAG_common_block:
3980 return "DW_TAG_common_block";
3981 case DW_TAG_common_inclusion:
3982 return "DW_TAG_common_inclusion";
3983 case DW_TAG_inheritance:
3984 return "DW_TAG_inheritance";
3985 case DW_TAG_inlined_subroutine:
3986 return "DW_TAG_inlined_subroutine";
3987 case DW_TAG_module:
3988 return "DW_TAG_module";
3989 case DW_TAG_ptr_to_member_type:
3990 return "DW_TAG_ptr_to_member_type";
3991 case DW_TAG_set_type:
3992 return "DW_TAG_set_type";
3993 case DW_TAG_subrange_type:
3994 return "DW_TAG_subrange_type";
3995 case DW_TAG_with_stmt:
3996 return "DW_TAG_with_stmt";
3997 case DW_TAG_access_declaration:
3998 return "DW_TAG_access_declaration";
3999 case DW_TAG_base_type:
4000 return "DW_TAG_base_type";
4001 case DW_TAG_catch_block:
4002 return "DW_TAG_catch_block";
4003 case DW_TAG_const_type:
4004 return "DW_TAG_const_type";
4005 case DW_TAG_constant:
4006 return "DW_TAG_constant";
4007 case DW_TAG_enumerator:
4008 return "DW_TAG_enumerator";
4009 case DW_TAG_file_type:
4010 return "DW_TAG_file_type";
4011 case DW_TAG_friend:
4012 return "DW_TAG_friend";
4013 case DW_TAG_namelist:
4014 return "DW_TAG_namelist";
4015 case DW_TAG_namelist_item:
4016 return "DW_TAG_namelist_item";
4017 case DW_TAG_packed_type:
4018 return "DW_TAG_packed_type";
4019 case DW_TAG_subprogram:
4020 return "DW_TAG_subprogram";
4021 case DW_TAG_template_type_param:
4022 return "DW_TAG_template_type_param";
4023 case DW_TAG_template_value_param:
4024 return "DW_TAG_template_value_param";
4025 case DW_TAG_thrown_type:
4026 return "DW_TAG_thrown_type";
4027 case DW_TAG_try_block:
4028 return "DW_TAG_try_block";
4029 case DW_TAG_variant_part:
4030 return "DW_TAG_variant_part";
4031 case DW_TAG_variable:
4032 return "DW_TAG_variable";
4033 case DW_TAG_volatile_type:
4034 return "DW_TAG_volatile_type";
4035 case DW_TAG_MIPS_loop:
4036 return "DW_TAG_MIPS_loop";
4037 case DW_TAG_format_label:
4038 return "DW_TAG_format_label";
4039 case DW_TAG_function_template:
4040 return "DW_TAG_function_template";
4041 case DW_TAG_class_template:
4042 return "DW_TAG_class_template";
4043 case DW_TAG_GNU_BINCL:
4044 return "DW_TAG_GNU_BINCL";
4045 case DW_TAG_GNU_EINCL:
4046 return "DW_TAG_GNU_EINCL";
4047 default:
4048 return "DW_TAG_<unknown>";
4049 }
4050 }
4051
4052 /* Convert a DWARF attribute code into its string name. */
4053
4054 static const char *
4055 dwarf_attr_name (unsigned int attr)
4056 {
4057 switch (attr)
4058 {
4059 case DW_AT_sibling:
4060 return "DW_AT_sibling";
4061 case DW_AT_location:
4062 return "DW_AT_location";
4063 case DW_AT_name:
4064 return "DW_AT_name";
4065 case DW_AT_ordering:
4066 return "DW_AT_ordering";
4067 case DW_AT_subscr_data:
4068 return "DW_AT_subscr_data";
4069 case DW_AT_byte_size:
4070 return "DW_AT_byte_size";
4071 case DW_AT_bit_offset:
4072 return "DW_AT_bit_offset";
4073 case DW_AT_bit_size:
4074 return "DW_AT_bit_size";
4075 case DW_AT_element_list:
4076 return "DW_AT_element_list";
4077 case DW_AT_stmt_list:
4078 return "DW_AT_stmt_list";
4079 case DW_AT_low_pc:
4080 return "DW_AT_low_pc";
4081 case DW_AT_high_pc:
4082 return "DW_AT_high_pc";
4083 case DW_AT_language:
4084 return "DW_AT_language";
4085 case DW_AT_member:
4086 return "DW_AT_member";
4087 case DW_AT_discr:
4088 return "DW_AT_discr";
4089 case DW_AT_discr_value:
4090 return "DW_AT_discr_value";
4091 case DW_AT_visibility:
4092 return "DW_AT_visibility";
4093 case DW_AT_import:
4094 return "DW_AT_import";
4095 case DW_AT_string_length:
4096 return "DW_AT_string_length";
4097 case DW_AT_common_reference:
4098 return "DW_AT_common_reference";
4099 case DW_AT_comp_dir:
4100 return "DW_AT_comp_dir";
4101 case DW_AT_const_value:
4102 return "DW_AT_const_value";
4103 case DW_AT_containing_type:
4104 return "DW_AT_containing_type";
4105 case DW_AT_default_value:
4106 return "DW_AT_default_value";
4107 case DW_AT_inline:
4108 return "DW_AT_inline";
4109 case DW_AT_is_optional:
4110 return "DW_AT_is_optional";
4111 case DW_AT_lower_bound:
4112 return "DW_AT_lower_bound";
4113 case DW_AT_producer:
4114 return "DW_AT_producer";
4115 case DW_AT_prototyped:
4116 return "DW_AT_prototyped";
4117 case DW_AT_return_addr:
4118 return "DW_AT_return_addr";
4119 case DW_AT_start_scope:
4120 return "DW_AT_start_scope";
4121 case DW_AT_stride_size:
4122 return "DW_AT_stride_size";
4123 case DW_AT_upper_bound:
4124 return "DW_AT_upper_bound";
4125 case DW_AT_abstract_origin:
4126 return "DW_AT_abstract_origin";
4127 case DW_AT_accessibility:
4128 return "DW_AT_accessibility";
4129 case DW_AT_address_class:
4130 return "DW_AT_address_class";
4131 case DW_AT_artificial:
4132 return "DW_AT_artificial";
4133 case DW_AT_base_types:
4134 return "DW_AT_base_types";
4135 case DW_AT_calling_convention:
4136 return "DW_AT_calling_convention";
4137 case DW_AT_count:
4138 return "DW_AT_count";
4139 case DW_AT_data_member_location:
4140 return "DW_AT_data_member_location";
4141 case DW_AT_decl_column:
4142 return "DW_AT_decl_column";
4143 case DW_AT_decl_file:
4144 return "DW_AT_decl_file";
4145 case DW_AT_decl_line:
4146 return "DW_AT_decl_line";
4147 case DW_AT_declaration:
4148 return "DW_AT_declaration";
4149 case DW_AT_discr_list:
4150 return "DW_AT_discr_list";
4151 case DW_AT_encoding:
4152 return "DW_AT_encoding";
4153 case DW_AT_external:
4154 return "DW_AT_external";
4155 case DW_AT_frame_base:
4156 return "DW_AT_frame_base";
4157 case DW_AT_friend:
4158 return "DW_AT_friend";
4159 case DW_AT_identifier_case:
4160 return "DW_AT_identifier_case";
4161 case DW_AT_macro_info:
4162 return "DW_AT_macro_info";
4163 case DW_AT_namelist_items:
4164 return "DW_AT_namelist_items";
4165 case DW_AT_priority:
4166 return "DW_AT_priority";
4167 case DW_AT_segment:
4168 return "DW_AT_segment";
4169 case DW_AT_specification:
4170 return "DW_AT_specification";
4171 case DW_AT_static_link:
4172 return "DW_AT_static_link";
4173 case DW_AT_type:
4174 return "DW_AT_type";
4175 case DW_AT_use_location:
4176 return "DW_AT_use_location";
4177 case DW_AT_variable_parameter:
4178 return "DW_AT_variable_parameter";
4179 case DW_AT_virtuality:
4180 return "DW_AT_virtuality";
4181 case DW_AT_vtable_elem_location:
4182 return "DW_AT_vtable_elem_location";
4183
4184 case DW_AT_allocated:
4185 return "DW_AT_allocated";
4186 case DW_AT_associated:
4187 return "DW_AT_associated";
4188 case DW_AT_data_location:
4189 return "DW_AT_data_location";
4190 case DW_AT_stride:
4191 return "DW_AT_stride";
4192 case DW_AT_entry_pc:
4193 return "DW_AT_entry_pc";
4194 case DW_AT_use_UTF8:
4195 return "DW_AT_use_UTF8";
4196 case DW_AT_extension:
4197 return "DW_AT_extension";
4198 case DW_AT_ranges:
4199 return "DW_AT_ranges";
4200 case DW_AT_trampoline:
4201 return "DW_AT_trampoline";
4202 case DW_AT_call_column:
4203 return "DW_AT_call_column";
4204 case DW_AT_call_file:
4205 return "DW_AT_call_file";
4206 case DW_AT_call_line:
4207 return "DW_AT_call_line";
4208
4209 case DW_AT_MIPS_fde:
4210 return "DW_AT_MIPS_fde";
4211 case DW_AT_MIPS_loop_begin:
4212 return "DW_AT_MIPS_loop_begin";
4213 case DW_AT_MIPS_tail_loop_begin:
4214 return "DW_AT_MIPS_tail_loop_begin";
4215 case DW_AT_MIPS_epilog_begin:
4216 return "DW_AT_MIPS_epilog_begin";
4217 case DW_AT_MIPS_loop_unroll_factor:
4218 return "DW_AT_MIPS_loop_unroll_factor";
4219 case DW_AT_MIPS_software_pipeline_depth:
4220 return "DW_AT_MIPS_software_pipeline_depth";
4221 case DW_AT_MIPS_linkage_name:
4222 return "DW_AT_MIPS_linkage_name";
4223 case DW_AT_MIPS_stride:
4224 return "DW_AT_MIPS_stride";
4225 case DW_AT_MIPS_abstract_name:
4226 return "DW_AT_MIPS_abstract_name";
4227 case DW_AT_MIPS_clone_origin:
4228 return "DW_AT_MIPS_clone_origin";
4229 case DW_AT_MIPS_has_inlines:
4230 return "DW_AT_MIPS_has_inlines";
4231
4232 case DW_AT_sf_names:
4233 return "DW_AT_sf_names";
4234 case DW_AT_src_info:
4235 return "DW_AT_src_info";
4236 case DW_AT_mac_info:
4237 return "DW_AT_mac_info";
4238 case DW_AT_src_coords:
4239 return "DW_AT_src_coords";
4240 case DW_AT_body_begin:
4241 return "DW_AT_body_begin";
4242 case DW_AT_body_end:
4243 return "DW_AT_body_end";
4244 case DW_AT_GNU_vector:
4245 return "DW_AT_GNU_vector";
4246
4247 case DW_AT_VMS_rtnbeg_pd_address:
4248 return "DW_AT_VMS_rtnbeg_pd_address";
4249
4250 default:
4251 return "DW_AT_<unknown>";
4252 }
4253 }
4254
4255 /* Convert a DWARF value form code into its string name. */
4256
4257 static const char *
4258 dwarf_form_name (unsigned int form)
4259 {
4260 switch (form)
4261 {
4262 case DW_FORM_addr:
4263 return "DW_FORM_addr";
4264 case DW_FORM_block2:
4265 return "DW_FORM_block2";
4266 case DW_FORM_block4:
4267 return "DW_FORM_block4";
4268 case DW_FORM_data2:
4269 return "DW_FORM_data2";
4270 case DW_FORM_data4:
4271 return "DW_FORM_data4";
4272 case DW_FORM_data8:
4273 return "DW_FORM_data8";
4274 case DW_FORM_string:
4275 return "DW_FORM_string";
4276 case DW_FORM_block:
4277 return "DW_FORM_block";
4278 case DW_FORM_block1:
4279 return "DW_FORM_block1";
4280 case DW_FORM_data1:
4281 return "DW_FORM_data1";
4282 case DW_FORM_flag:
4283 return "DW_FORM_flag";
4284 case DW_FORM_sdata:
4285 return "DW_FORM_sdata";
4286 case DW_FORM_strp:
4287 return "DW_FORM_strp";
4288 case DW_FORM_udata:
4289 return "DW_FORM_udata";
4290 case DW_FORM_ref_addr:
4291 return "DW_FORM_ref_addr";
4292 case DW_FORM_ref1:
4293 return "DW_FORM_ref1";
4294 case DW_FORM_ref2:
4295 return "DW_FORM_ref2";
4296 case DW_FORM_ref4:
4297 return "DW_FORM_ref4";
4298 case DW_FORM_ref8:
4299 return "DW_FORM_ref8";
4300 case DW_FORM_ref_udata:
4301 return "DW_FORM_ref_udata";
4302 case DW_FORM_indirect:
4303 return "DW_FORM_indirect";
4304 default:
4305 return "DW_FORM_<unknown>";
4306 }
4307 }
4308
4309 /* Convert a DWARF type code into its string name. */
4310
4311 #if 0
4312 static const char *
4313 dwarf_type_encoding_name (unsigned enc)
4314 {
4315 switch (enc)
4316 {
4317 case DW_ATE_address:
4318 return "DW_ATE_address";
4319 case DW_ATE_boolean:
4320 return "DW_ATE_boolean";
4321 case DW_ATE_complex_float:
4322 return "DW_ATE_complex_float";
4323 case DW_ATE_float:
4324 return "DW_ATE_float";
4325 case DW_ATE_signed:
4326 return "DW_ATE_signed";
4327 case DW_ATE_signed_char:
4328 return "DW_ATE_signed_char";
4329 case DW_ATE_unsigned:
4330 return "DW_ATE_unsigned";
4331 case DW_ATE_unsigned_char:
4332 return "DW_ATE_unsigned_char";
4333 default:
4334 return "DW_ATE_<unknown>";
4335 }
4336 }
4337 #endif
4338 \f
4339 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4340 instance of an inlined instance of a decl which is local to an inline
4341 function, so we have to trace all of the way back through the origin chain
4342 to find out what sort of node actually served as the original seed for the
4343 given block. */
4344
4345 static tree
4346 decl_ultimate_origin (tree decl)
4347 {
4348 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4349 nodes in the function to point to themselves; ignore that if
4350 we're trying to output the abstract instance of this function. */
4351 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4352 return NULL_TREE;
4353
4354 #ifdef ENABLE_CHECKING
4355 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4356 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4357 most distant ancestor, this should never happen. */
4358 abort ();
4359 #endif
4360
4361 return DECL_ABSTRACT_ORIGIN (decl);
4362 }
4363
4364 /* Determine the "ultimate origin" of a block. The block may be an inlined
4365 instance of an inlined instance of a block which is local to an inline
4366 function, so we have to trace all of the way back through the origin chain
4367 to find out what sort of node actually served as the original seed for the
4368 given block. */
4369
4370 static tree
4371 block_ultimate_origin (tree block)
4372 {
4373 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4374
4375 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4376 nodes in the function to point to themselves; ignore that if
4377 we're trying to output the abstract instance of this function. */
4378 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4379 return NULL_TREE;
4380
4381 if (immediate_origin == NULL_TREE)
4382 return NULL_TREE;
4383 else
4384 {
4385 tree ret_val;
4386 tree lookahead = immediate_origin;
4387
4388 do
4389 {
4390 ret_val = lookahead;
4391 lookahead = (TREE_CODE (ret_val) == BLOCK
4392 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4393 }
4394 while (lookahead != NULL && lookahead != ret_val);
4395
4396 return ret_val;
4397 }
4398 }
4399
4400 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4401 of a virtual function may refer to a base class, so we check the 'this'
4402 parameter. */
4403
4404 static tree
4405 decl_class_context (tree decl)
4406 {
4407 tree context = NULL_TREE;
4408
4409 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4410 context = DECL_CONTEXT (decl);
4411 else
4412 context = TYPE_MAIN_VARIANT
4413 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4414
4415 if (context && !TYPE_P (context))
4416 context = NULL_TREE;
4417
4418 return context;
4419 }
4420 \f
4421 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4422 addition order, and correct that in reverse_all_dies. */
4423
4424 static inline void
4425 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4426 {
4427 if (die != NULL && attr != NULL)
4428 {
4429 attr->dw_attr_next = die->die_attr;
4430 die->die_attr = attr;
4431 }
4432 }
4433
4434 static inline enum dw_val_class
4435 AT_class (dw_attr_ref a)
4436 {
4437 return a->dw_attr_val.val_class;
4438 }
4439
4440 /* Add a flag value attribute to a DIE. */
4441
4442 static inline void
4443 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4444 {
4445 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4446
4447 attr->dw_attr_next = NULL;
4448 attr->dw_attr = attr_kind;
4449 attr->dw_attr_val.val_class = dw_val_class_flag;
4450 attr->dw_attr_val.v.val_flag = flag;
4451 add_dwarf_attr (die, attr);
4452 }
4453
4454 static inline unsigned
4455 AT_flag (dw_attr_ref a)
4456 {
4457 if (a && AT_class (a) == dw_val_class_flag)
4458 return a->dw_attr_val.v.val_flag;
4459
4460 abort ();
4461 }
4462
4463 /* Add a signed integer attribute value to a DIE. */
4464
4465 static inline void
4466 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, long int int_val)
4467 {
4468 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4469
4470 attr->dw_attr_next = NULL;
4471 attr->dw_attr = attr_kind;
4472 attr->dw_attr_val.val_class = dw_val_class_const;
4473 attr->dw_attr_val.v.val_int = int_val;
4474 add_dwarf_attr (die, attr);
4475 }
4476
4477 static inline long int
4478 AT_int (dw_attr_ref a)
4479 {
4480 if (a && AT_class (a) == dw_val_class_const)
4481 return a->dw_attr_val.v.val_int;
4482
4483 abort ();
4484 }
4485
4486 /* Add an unsigned integer attribute value to a DIE. */
4487
4488 static inline void
4489 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4490 long unsigned int unsigned_val)
4491 {
4492 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4493
4494 attr->dw_attr_next = NULL;
4495 attr->dw_attr = attr_kind;
4496 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4497 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4498 add_dwarf_attr (die, attr);
4499 }
4500
4501 static inline unsigned long
4502 AT_unsigned (dw_attr_ref a)
4503 {
4504 if (a && AT_class (a) == dw_val_class_unsigned_const)
4505 return a->dw_attr_val.v.val_unsigned;
4506
4507 abort ();
4508 }
4509
4510 /* Add an unsigned double integer attribute value to a DIE. */
4511
4512 static inline void
4513 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4514 long unsigned int val_hi, long unsigned int val_low)
4515 {
4516 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4517
4518 attr->dw_attr_next = NULL;
4519 attr->dw_attr = attr_kind;
4520 attr->dw_attr_val.val_class = dw_val_class_long_long;
4521 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4522 attr->dw_attr_val.v.val_long_long.low = val_low;
4523 add_dwarf_attr (die, attr);
4524 }
4525
4526 /* Add a floating point attribute value to a DIE and return it. */
4527
4528 static inline void
4529 add_AT_float (dw_die_ref die, enum dwarf_attribute attr_kind,
4530 unsigned int length, long int *array)
4531 {
4532 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4533
4534 attr->dw_attr_next = NULL;
4535 attr->dw_attr = attr_kind;
4536 attr->dw_attr_val.val_class = dw_val_class_float;
4537 attr->dw_attr_val.v.val_float.length = length;
4538 attr->dw_attr_val.v.val_float.array = array;
4539 add_dwarf_attr (die, attr);
4540 }
4541
4542 /* Hash and equality functions for debug_str_hash. */
4543
4544 static hashval_t
4545 debug_str_do_hash (const void *x)
4546 {
4547 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4548 }
4549
4550 static int
4551 debug_str_eq (const void *x1, const void *x2)
4552 {
4553 return strcmp ((((const struct indirect_string_node *)x1)->str),
4554 (const char *)x2) == 0;
4555 }
4556
4557 /* Add a string attribute value to a DIE. */
4558
4559 static inline void
4560 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4561 {
4562 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4563 struct indirect_string_node *node;
4564 void **slot;
4565
4566 if (! debug_str_hash)
4567 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4568 debug_str_eq, NULL);
4569
4570 slot = htab_find_slot_with_hash (debug_str_hash, str,
4571 htab_hash_string (str), INSERT);
4572 if (*slot == NULL)
4573 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4574 node = (struct indirect_string_node *) *slot;
4575 node->str = ggc_strdup (str);
4576 node->refcount++;
4577
4578 attr->dw_attr_next = NULL;
4579 attr->dw_attr = attr_kind;
4580 attr->dw_attr_val.val_class = dw_val_class_str;
4581 attr->dw_attr_val.v.val_str = node;
4582 add_dwarf_attr (die, attr);
4583 }
4584
4585 static inline const char *
4586 AT_string (dw_attr_ref a)
4587 {
4588 if (a && AT_class (a) == dw_val_class_str)
4589 return a->dw_attr_val.v.val_str->str;
4590
4591 abort ();
4592 }
4593
4594 /* Find out whether a string should be output inline in DIE
4595 or out-of-line in .debug_str section. */
4596
4597 static int
4598 AT_string_form (dw_attr_ref a)
4599 {
4600 if (a && AT_class (a) == dw_val_class_str)
4601 {
4602 struct indirect_string_node *node;
4603 unsigned int len;
4604 char label[32];
4605
4606 node = a->dw_attr_val.v.val_str;
4607 if (node->form)
4608 return node->form;
4609
4610 len = strlen (node->str) + 1;
4611
4612 /* If the string is shorter or equal to the size of the reference, it is
4613 always better to put it inline. */
4614 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4615 return node->form = DW_FORM_string;
4616
4617 /* If we cannot expect the linker to merge strings in .debug_str
4618 section, only put it into .debug_str if it is worth even in this
4619 single module. */
4620 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4621 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4622 return node->form = DW_FORM_string;
4623
4624 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4625 ++dw2_string_counter;
4626 node->label = xstrdup (label);
4627
4628 return node->form = DW_FORM_strp;
4629 }
4630
4631 abort ();
4632 }
4633
4634 /* Add a DIE reference attribute value to a DIE. */
4635
4636 static inline void
4637 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4638 {
4639 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4640
4641 attr->dw_attr_next = NULL;
4642 attr->dw_attr = attr_kind;
4643 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4644 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4645 attr->dw_attr_val.v.val_die_ref.external = 0;
4646 add_dwarf_attr (die, attr);
4647 }
4648
4649 static inline dw_die_ref
4650 AT_ref (dw_attr_ref a)
4651 {
4652 if (a && AT_class (a) == dw_val_class_die_ref)
4653 return a->dw_attr_val.v.val_die_ref.die;
4654
4655 abort ();
4656 }
4657
4658 static inline int
4659 AT_ref_external (dw_attr_ref a)
4660 {
4661 if (a && AT_class (a) == dw_val_class_die_ref)
4662 return a->dw_attr_val.v.val_die_ref.external;
4663
4664 return 0;
4665 }
4666
4667 static inline void
4668 set_AT_ref_external (dw_attr_ref a, int i)
4669 {
4670 if (a && AT_class (a) == dw_val_class_die_ref)
4671 a->dw_attr_val.v.val_die_ref.external = i;
4672 else
4673 abort ();
4674 }
4675
4676 /* Add an FDE reference attribute value to a DIE. */
4677
4678 static inline void
4679 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4680 {
4681 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4682
4683 attr->dw_attr_next = NULL;
4684 attr->dw_attr = attr_kind;
4685 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4686 attr->dw_attr_val.v.val_fde_index = targ_fde;
4687 add_dwarf_attr (die, attr);
4688 }
4689
4690 /* Add a location description attribute value to a DIE. */
4691
4692 static inline void
4693 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4694 {
4695 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4696
4697 attr->dw_attr_next = NULL;
4698 attr->dw_attr = attr_kind;
4699 attr->dw_attr_val.val_class = dw_val_class_loc;
4700 attr->dw_attr_val.v.val_loc = loc;
4701 add_dwarf_attr (die, attr);
4702 }
4703
4704 static inline dw_loc_descr_ref
4705 AT_loc (dw_attr_ref a)
4706 {
4707 if (a && AT_class (a) == dw_val_class_loc)
4708 return a->dw_attr_val.v.val_loc;
4709
4710 abort ();
4711 }
4712
4713 static inline void
4714 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4715 {
4716 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4717
4718 attr->dw_attr_next = NULL;
4719 attr->dw_attr = attr_kind;
4720 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4721 attr->dw_attr_val.v.val_loc_list = loc_list;
4722 add_dwarf_attr (die, attr);
4723 have_location_lists = 1;
4724 }
4725
4726 static inline dw_loc_list_ref
4727 AT_loc_list (dw_attr_ref a)
4728 {
4729 if (a && AT_class (a) == dw_val_class_loc_list)
4730 return a->dw_attr_val.v.val_loc_list;
4731
4732 abort ();
4733 }
4734
4735 /* Add an address constant attribute value to a DIE. */
4736
4737 static inline void
4738 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
4739 {
4740 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4741
4742 attr->dw_attr_next = NULL;
4743 attr->dw_attr = attr_kind;
4744 attr->dw_attr_val.val_class = dw_val_class_addr;
4745 attr->dw_attr_val.v.val_addr = addr;
4746 add_dwarf_attr (die, attr);
4747 }
4748
4749 static inline rtx
4750 AT_addr (dw_attr_ref a)
4751 {
4752 if (a && AT_class (a) == dw_val_class_addr)
4753 return a->dw_attr_val.v.val_addr;
4754
4755 abort ();
4756 }
4757
4758 /* Add a label identifier attribute value to a DIE. */
4759
4760 static inline void
4761 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
4762 {
4763 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4764
4765 attr->dw_attr_next = NULL;
4766 attr->dw_attr = attr_kind;
4767 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4768 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4769 add_dwarf_attr (die, attr);
4770 }
4771
4772 /* Add a section offset attribute value to a DIE. */
4773
4774 static inline void
4775 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
4776 {
4777 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4778
4779 attr->dw_attr_next = NULL;
4780 attr->dw_attr = attr_kind;
4781 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4782 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4783 add_dwarf_attr (die, attr);
4784 }
4785
4786 /* Add an offset attribute value to a DIE. */
4787
4788 static inline void
4789 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind, long unsigned int offset)
4790 {
4791 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4792
4793 attr->dw_attr_next = NULL;
4794 attr->dw_attr = attr_kind;
4795 attr->dw_attr_val.val_class = dw_val_class_offset;
4796 attr->dw_attr_val.v.val_offset = offset;
4797 add_dwarf_attr (die, attr);
4798 }
4799
4800 /* Add an range_list attribute value to a DIE. */
4801
4802 static void
4803 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
4804 long unsigned int offset)
4805 {
4806 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4807
4808 attr->dw_attr_next = NULL;
4809 attr->dw_attr = attr_kind;
4810 attr->dw_attr_val.val_class = dw_val_class_range_list;
4811 attr->dw_attr_val.v.val_offset = offset;
4812 add_dwarf_attr (die, attr);
4813 }
4814
4815 static inline const char *
4816 AT_lbl (dw_attr_ref a)
4817 {
4818 if (a && (AT_class (a) == dw_val_class_lbl_id
4819 || AT_class (a) == dw_val_class_lbl_offset))
4820 return a->dw_attr_val.v.val_lbl_id;
4821
4822 abort ();
4823 }
4824
4825 /* Get the attribute of type attr_kind. */
4826
4827 static inline dw_attr_ref
4828 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4829 {
4830 dw_attr_ref a;
4831 dw_die_ref spec = NULL;
4832
4833 if (die != NULL)
4834 {
4835 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
4836 if (a->dw_attr == attr_kind)
4837 return a;
4838 else if (a->dw_attr == DW_AT_specification
4839 || a->dw_attr == DW_AT_abstract_origin)
4840 spec = AT_ref (a);
4841
4842 if (spec)
4843 return get_AT (spec, attr_kind);
4844 }
4845
4846 return NULL;
4847 }
4848
4849 /* Return the "low pc" attribute value, typically associated with a subprogram
4850 DIE. Return null if the "low pc" attribute is either not present, or if it
4851 cannot be represented as an assembler label identifier. */
4852
4853 static inline const char *
4854 get_AT_low_pc (dw_die_ref die)
4855 {
4856 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
4857
4858 return a ? AT_lbl (a) : NULL;
4859 }
4860
4861 /* Return the "high pc" attribute value, typically associated with a subprogram
4862 DIE. Return null if the "high pc" attribute is either not present, or if it
4863 cannot be represented as an assembler label identifier. */
4864
4865 static inline const char *
4866 get_AT_hi_pc (dw_die_ref die)
4867 {
4868 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
4869
4870 return a ? AT_lbl (a) : NULL;
4871 }
4872
4873 /* Return the value of the string attribute designated by ATTR_KIND, or
4874 NULL if it is not present. */
4875
4876 static inline const char *
4877 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
4878 {
4879 dw_attr_ref a = get_AT (die, attr_kind);
4880
4881 return a ? AT_string (a) : NULL;
4882 }
4883
4884 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
4885 if it is not present. */
4886
4887 static inline int
4888 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
4889 {
4890 dw_attr_ref a = get_AT (die, attr_kind);
4891
4892 return a ? AT_flag (a) : 0;
4893 }
4894
4895 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4896 if it is not present. */
4897
4898 static inline unsigned
4899 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
4900 {
4901 dw_attr_ref a = get_AT (die, attr_kind);
4902
4903 return a ? AT_unsigned (a) : 0;
4904 }
4905
4906 static inline dw_die_ref
4907 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
4908 {
4909 dw_attr_ref a = get_AT (die, attr_kind);
4910
4911 return a ? AT_ref (a) : NULL;
4912 }
4913
4914 /* Return TRUE if the language is C or C++. */
4915
4916 static inline bool
4917 is_c_family (void)
4918 {
4919 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4920
4921 return (lang == DW_LANG_C || lang == DW_LANG_C89
4922 || lang == DW_LANG_C_plus_plus);
4923 }
4924
4925 /* Return TRUE if the language is C++. */
4926
4927 static inline bool
4928 is_cxx (void)
4929 {
4930 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
4931 == DW_LANG_C_plus_plus);
4932 }
4933
4934 /* Return TRUE if the language is Fortran. */
4935
4936 static inline bool
4937 is_fortran (void)
4938 {
4939 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4940
4941 return lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90;
4942 }
4943
4944 /* Return TRUE if the language is Java. */
4945
4946 static inline bool
4947 is_java (void)
4948 {
4949 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4950
4951 return lang == DW_LANG_Java;
4952 }
4953
4954 /* Return TRUE if the language is Ada. */
4955
4956 static inline bool
4957 is_ada (void)
4958 {
4959 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4960
4961 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
4962 }
4963
4964 /* Free up the memory used by A. */
4965
4966 static inline void free_AT (dw_attr_ref);
4967 static inline void
4968 free_AT (dw_attr_ref a)
4969 {
4970 if (AT_class (a) == dw_val_class_str)
4971 if (a->dw_attr_val.v.val_str->refcount)
4972 a->dw_attr_val.v.val_str->refcount--;
4973 }
4974
4975 /* Remove the specified attribute if present. */
4976
4977 static void
4978 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4979 {
4980 dw_attr_ref *p;
4981 dw_attr_ref removed = NULL;
4982
4983 if (die != NULL)
4984 {
4985 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
4986 if ((*p)->dw_attr == attr_kind)
4987 {
4988 removed = *p;
4989 *p = (*p)->dw_attr_next;
4990 break;
4991 }
4992
4993 if (removed != 0)
4994 free_AT (removed);
4995 }
4996 }
4997
4998 /* Free up the memory used by DIE. */
4999
5000 static inline void
5001 free_die (dw_die_ref die)
5002 {
5003 remove_children (die);
5004 }
5005
5006 /* Discard the children of this DIE. */
5007
5008 static void
5009 remove_children (dw_die_ref die)
5010 {
5011 dw_die_ref child_die = die->die_child;
5012
5013 die->die_child = NULL;
5014
5015 while (child_die != NULL)
5016 {
5017 dw_die_ref tmp_die = child_die;
5018 dw_attr_ref a;
5019
5020 child_die = child_die->die_sib;
5021
5022 for (a = tmp_die->die_attr; a != NULL;)
5023 {
5024 dw_attr_ref tmp_a = a;
5025
5026 a = a->dw_attr_next;
5027 free_AT (tmp_a);
5028 }
5029
5030 free_die (tmp_die);
5031 }
5032 }
5033
5034 /* Add a child DIE below its parent. We build the lists up in reverse
5035 addition order, and correct that in reverse_all_dies. */
5036
5037 static inline void
5038 add_child_die (dw_die_ref die, dw_die_ref child_die)
5039 {
5040 if (die != NULL && child_die != NULL)
5041 {
5042 if (die == child_die)
5043 abort ();
5044
5045 child_die->die_parent = die;
5046 child_die->die_sib = die->die_child;
5047 die->die_child = child_die;
5048 }
5049 }
5050
5051 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5052 is the specification, to the front of PARENT's list of children. */
5053
5054 static void
5055 splice_child_die (dw_die_ref parent, dw_die_ref child)
5056 {
5057 dw_die_ref *p;
5058
5059 /* We want the declaration DIE from inside the class, not the
5060 specification DIE at toplevel. */
5061 if (child->die_parent != parent)
5062 {
5063 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5064
5065 if (tmp)
5066 child = tmp;
5067 }
5068
5069 if (child->die_parent != parent
5070 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5071 abort ();
5072
5073 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5074 if (*p == child)
5075 {
5076 *p = child->die_sib;
5077 break;
5078 }
5079
5080 child->die_parent = parent;
5081 child->die_sib = parent->die_child;
5082 parent->die_child = child;
5083 }
5084
5085 /* Return a pointer to a newly created DIE node. */
5086
5087 static inline dw_die_ref
5088 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5089 {
5090 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5091
5092 die->die_tag = tag_value;
5093
5094 if (parent_die != NULL)
5095 add_child_die (parent_die, die);
5096 else
5097 {
5098 limbo_die_node *limbo_node;
5099
5100 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5101 limbo_node->die = die;
5102 limbo_node->created_for = t;
5103 limbo_node->next = limbo_die_list;
5104 limbo_die_list = limbo_node;
5105 }
5106
5107 return die;
5108 }
5109
5110 /* Return the DIE associated with the given type specifier. */
5111
5112 static inline dw_die_ref
5113 lookup_type_die (tree type)
5114 {
5115 return TYPE_SYMTAB_DIE (type);
5116 }
5117
5118 /* Equate a DIE to a given type specifier. */
5119
5120 static inline void
5121 equate_type_number_to_die (tree type, dw_die_ref type_die)
5122 {
5123 TYPE_SYMTAB_DIE (type) = type_die;
5124 }
5125
5126 /* Return the DIE associated with a given declaration. */
5127
5128 static inline dw_die_ref
5129 lookup_decl_die (tree decl)
5130 {
5131 unsigned decl_id = DECL_UID (decl);
5132
5133 return (decl_id < decl_die_table_in_use ? decl_die_table[decl_id] : NULL);
5134 }
5135
5136 /* Equate a DIE to a particular declaration. */
5137
5138 static void
5139 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5140 {
5141 unsigned int decl_id = DECL_UID (decl);
5142 unsigned int num_allocated;
5143
5144 if (decl_id >= decl_die_table_allocated)
5145 {
5146 num_allocated
5147 = ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
5148 / DECL_DIE_TABLE_INCREMENT)
5149 * DECL_DIE_TABLE_INCREMENT;
5150
5151 decl_die_table = ggc_realloc (decl_die_table,
5152 sizeof (dw_die_ref) * num_allocated);
5153
5154 memset (&decl_die_table[decl_die_table_allocated], 0,
5155 (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
5156 decl_die_table_allocated = num_allocated;
5157 }
5158
5159 if (decl_id >= decl_die_table_in_use)
5160 decl_die_table_in_use = (decl_id + 1);
5161
5162 decl_die_table[decl_id] = decl_die;
5163 }
5164 \f
5165 /* Keep track of the number of spaces used to indent the
5166 output of the debugging routines that print the structure of
5167 the DIE internal representation. */
5168 static int print_indent;
5169
5170 /* Indent the line the number of spaces given by print_indent. */
5171
5172 static inline void
5173 print_spaces (FILE *outfile)
5174 {
5175 fprintf (outfile, "%*s", print_indent, "");
5176 }
5177
5178 /* Print the information associated with a given DIE, and its children.
5179 This routine is a debugging aid only. */
5180
5181 static void
5182 print_die (dw_die_ref die, FILE *outfile)
5183 {
5184 dw_attr_ref a;
5185 dw_die_ref c;
5186
5187 print_spaces (outfile);
5188 fprintf (outfile, "DIE %4lu: %s\n",
5189 die->die_offset, dwarf_tag_name (die->die_tag));
5190 print_spaces (outfile);
5191 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5192 fprintf (outfile, " offset: %lu\n", die->die_offset);
5193
5194 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5195 {
5196 print_spaces (outfile);
5197 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5198
5199 switch (AT_class (a))
5200 {
5201 case dw_val_class_addr:
5202 fprintf (outfile, "address");
5203 break;
5204 case dw_val_class_offset:
5205 fprintf (outfile, "offset");
5206 break;
5207 case dw_val_class_loc:
5208 fprintf (outfile, "location descriptor");
5209 break;
5210 case dw_val_class_loc_list:
5211 fprintf (outfile, "location list -> label:%s",
5212 AT_loc_list (a)->ll_symbol);
5213 break;
5214 case dw_val_class_range_list:
5215 fprintf (outfile, "range list");
5216 break;
5217 case dw_val_class_const:
5218 fprintf (outfile, "%ld", AT_int (a));
5219 break;
5220 case dw_val_class_unsigned_const:
5221 fprintf (outfile, "%lu", AT_unsigned (a));
5222 break;
5223 case dw_val_class_long_long:
5224 fprintf (outfile, "constant (%lu,%lu)",
5225 a->dw_attr_val.v.val_long_long.hi,
5226 a->dw_attr_val.v.val_long_long.low);
5227 break;
5228 case dw_val_class_float:
5229 fprintf (outfile, "floating-point constant");
5230 break;
5231 case dw_val_class_flag:
5232 fprintf (outfile, "%u", AT_flag (a));
5233 break;
5234 case dw_val_class_die_ref:
5235 if (AT_ref (a) != NULL)
5236 {
5237 if (AT_ref (a)->die_symbol)
5238 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5239 else
5240 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5241 }
5242 else
5243 fprintf (outfile, "die -> <null>");
5244 break;
5245 case dw_val_class_lbl_id:
5246 case dw_val_class_lbl_offset:
5247 fprintf (outfile, "label: %s", AT_lbl (a));
5248 break;
5249 case dw_val_class_str:
5250 if (AT_string (a) != NULL)
5251 fprintf (outfile, "\"%s\"", AT_string (a));
5252 else
5253 fprintf (outfile, "<null>");
5254 break;
5255 default:
5256 break;
5257 }
5258
5259 fprintf (outfile, "\n");
5260 }
5261
5262 if (die->die_child != NULL)
5263 {
5264 print_indent += 4;
5265 for (c = die->die_child; c != NULL; c = c->die_sib)
5266 print_die (c, outfile);
5267
5268 print_indent -= 4;
5269 }
5270 if (print_indent == 0)
5271 fprintf (outfile, "\n");
5272 }
5273
5274 /* Print the contents of the source code line number correspondence table.
5275 This routine is a debugging aid only. */
5276
5277 static void
5278 print_dwarf_line_table (FILE *outfile)
5279 {
5280 unsigned i;
5281 dw_line_info_ref line_info;
5282
5283 fprintf (outfile, "\n\nDWARF source line information\n");
5284 for (i = 1; i < line_info_table_in_use; i++)
5285 {
5286 line_info = &line_info_table[i];
5287 fprintf (outfile, "%5d: ", i);
5288 fprintf (outfile, "%-20s",
5289 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5290 fprintf (outfile, "%6ld", line_info->dw_line_num);
5291 fprintf (outfile, "\n");
5292 }
5293
5294 fprintf (outfile, "\n\n");
5295 }
5296
5297 /* Print the information collected for a given DIE. */
5298
5299 void
5300 debug_dwarf_die (dw_die_ref die)
5301 {
5302 print_die (die, stderr);
5303 }
5304
5305 /* Print all DWARF information collected for the compilation unit.
5306 This routine is a debugging aid only. */
5307
5308 void
5309 debug_dwarf (void)
5310 {
5311 print_indent = 0;
5312 print_die (comp_unit_die, stderr);
5313 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5314 print_dwarf_line_table (stderr);
5315 }
5316 \f
5317 /* We build up the lists of children and attributes by pushing new ones
5318 onto the beginning of the list. Reverse the lists for DIE so that
5319 they are in order of addition. */
5320
5321 static void
5322 reverse_die_lists (dw_die_ref die)
5323 {
5324 dw_die_ref c, cp, cn;
5325 dw_attr_ref a, ap, an;
5326
5327 for (a = die->die_attr, ap = 0; a; a = an)
5328 {
5329 an = a->dw_attr_next;
5330 a->dw_attr_next = ap;
5331 ap = a;
5332 }
5333
5334 die->die_attr = ap;
5335
5336 for (c = die->die_child, cp = 0; c; c = cn)
5337 {
5338 cn = c->die_sib;
5339 c->die_sib = cp;
5340 cp = c;
5341 }
5342
5343 die->die_child = cp;
5344 }
5345
5346 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5347 reverse all dies in add_sibling_attributes, which runs through all the dies,
5348 it would reverse all the dies. Now, however, since we don't call
5349 reverse_die_lists in add_sibling_attributes, we need a routine to
5350 recursively reverse all the dies. This is that routine. */
5351
5352 static void
5353 reverse_all_dies (dw_die_ref die)
5354 {
5355 dw_die_ref c;
5356
5357 reverse_die_lists (die);
5358
5359 for (c = die->die_child; c; c = c->die_sib)
5360 reverse_all_dies (c);
5361 }
5362
5363 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5364 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5365 DIE that marks the start of the DIEs for this include file. */
5366
5367 static dw_die_ref
5368 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5369 {
5370 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5371 dw_die_ref new_unit = gen_compile_unit_die (filename);
5372
5373 new_unit->die_sib = old_unit;
5374 return new_unit;
5375 }
5376
5377 /* Close an include-file CU and reopen the enclosing one. */
5378
5379 static dw_die_ref
5380 pop_compile_unit (dw_die_ref old_unit)
5381 {
5382 dw_die_ref new_unit = old_unit->die_sib;
5383
5384 old_unit->die_sib = NULL;
5385 return new_unit;
5386 }
5387
5388 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5389 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5390
5391 /* Calculate the checksum of a location expression. */
5392
5393 static inline void
5394 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5395 {
5396 CHECKSUM (loc->dw_loc_opc);
5397 CHECKSUM (loc->dw_loc_oprnd1);
5398 CHECKSUM (loc->dw_loc_oprnd2);
5399 }
5400
5401 /* Calculate the checksum of an attribute. */
5402
5403 static void
5404 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5405 {
5406 dw_loc_descr_ref loc;
5407 rtx r;
5408
5409 CHECKSUM (at->dw_attr);
5410
5411 /* We don't care about differences in file numbering. */
5412 if (at->dw_attr == DW_AT_decl_file
5413 /* Or that this was compiled with a different compiler snapshot; if
5414 the output is the same, that's what matters. */
5415 || at->dw_attr == DW_AT_producer)
5416 return;
5417
5418 switch (AT_class (at))
5419 {
5420 case dw_val_class_const:
5421 CHECKSUM (at->dw_attr_val.v.val_int);
5422 break;
5423 case dw_val_class_unsigned_const:
5424 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5425 break;
5426 case dw_val_class_long_long:
5427 CHECKSUM (at->dw_attr_val.v.val_long_long);
5428 break;
5429 case dw_val_class_float:
5430 CHECKSUM (at->dw_attr_val.v.val_float);
5431 break;
5432 case dw_val_class_flag:
5433 CHECKSUM (at->dw_attr_val.v.val_flag);
5434 break;
5435 case dw_val_class_str:
5436 CHECKSUM_STRING (AT_string (at));
5437 break;
5438
5439 case dw_val_class_addr:
5440 r = AT_addr (at);
5441 switch (GET_CODE (r))
5442 {
5443 case SYMBOL_REF:
5444 CHECKSUM_STRING (XSTR (r, 0));
5445 break;
5446
5447 default:
5448 abort ();
5449 }
5450 break;
5451
5452 case dw_val_class_offset:
5453 CHECKSUM (at->dw_attr_val.v.val_offset);
5454 break;
5455
5456 case dw_val_class_loc:
5457 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5458 loc_checksum (loc, ctx);
5459 break;
5460
5461 case dw_val_class_die_ref:
5462 die_checksum (AT_ref (at), ctx, mark);
5463 break;
5464
5465 case dw_val_class_fde_ref:
5466 case dw_val_class_lbl_id:
5467 case dw_val_class_lbl_offset:
5468 break;
5469
5470 default:
5471 break;
5472 }
5473 }
5474
5475 /* Calculate the checksum of a DIE. */
5476
5477 static void
5478 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5479 {
5480 dw_die_ref c;
5481 dw_attr_ref a;
5482
5483 /* To avoid infinite recursion. */
5484 if (die->die_mark)
5485 {
5486 CHECKSUM (die->die_mark);
5487 return;
5488 }
5489 die->die_mark = ++(*mark);
5490
5491 CHECKSUM (die->die_tag);
5492
5493 for (a = die->die_attr; a; a = a->dw_attr_next)
5494 attr_checksum (a, ctx, mark);
5495
5496 for (c = die->die_child; c; c = c->die_sib)
5497 die_checksum (c, ctx, mark);
5498 }
5499
5500 #undef CHECKSUM
5501 #undef CHECKSUM_STRING
5502
5503 /* Do the location expressions look same? */
5504 static inline int
5505 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5506 {
5507 return loc1->dw_loc_opc == loc2->dw_loc_opc
5508 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5509 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5510 }
5511
5512 /* Do the values look the same? */
5513 static int
5514 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5515 {
5516 dw_loc_descr_ref loc1, loc2;
5517 rtx r1, r2;
5518 unsigned i;
5519
5520 if (v1->val_class != v2->val_class)
5521 return 0;
5522
5523 switch (v1->val_class)
5524 {
5525 case dw_val_class_const:
5526 return v1->v.val_int == v2->v.val_int;
5527 case dw_val_class_unsigned_const:
5528 return v1->v.val_unsigned == v2->v.val_unsigned;
5529 case dw_val_class_long_long:
5530 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5531 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5532 case dw_val_class_float:
5533 if (v1->v.val_float.length != v2->v.val_float.length)
5534 return 0;
5535 for (i = 0; i < v1->v.val_float.length; i++)
5536 if (v1->v.val_float.array[i] != v2->v.val_float.array[i])
5537 return 0;
5538 return 1;
5539 case dw_val_class_flag:
5540 return v1->v.val_flag == v2->v.val_flag;
5541 case dw_val_class_str:
5542 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5543
5544 case dw_val_class_addr:
5545 r1 = v1->v.val_addr;
5546 r2 = v2->v.val_addr;
5547 if (GET_CODE (r1) != GET_CODE (r2))
5548 return 0;
5549 switch (GET_CODE (r1))
5550 {
5551 case SYMBOL_REF:
5552 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5553
5554 default:
5555 abort ();
5556 }
5557
5558 case dw_val_class_offset:
5559 return v1->v.val_offset == v2->v.val_offset;
5560
5561 case dw_val_class_loc:
5562 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5563 loc1 && loc2;
5564 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5565 if (!same_loc_p (loc1, loc2, mark))
5566 return 0;
5567 return !loc1 && !loc2;
5568
5569 case dw_val_class_die_ref:
5570 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5571
5572 case dw_val_class_fde_ref:
5573 case dw_val_class_lbl_id:
5574 case dw_val_class_lbl_offset:
5575 return 1;
5576
5577 default:
5578 return 1;
5579 }
5580 }
5581
5582 /* Do the attributes look the same? */
5583
5584 static int
5585 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5586 {
5587 if (at1->dw_attr != at2->dw_attr)
5588 return 0;
5589
5590 /* We don't care about differences in file numbering. */
5591 if (at1->dw_attr == DW_AT_decl_file
5592 /* Or that this was compiled with a different compiler snapshot; if
5593 the output is the same, that's what matters. */
5594 || at1->dw_attr == DW_AT_producer)
5595 return 1;
5596
5597 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5598 }
5599
5600 /* Do the dies look the same? */
5601
5602 static int
5603 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5604 {
5605 dw_die_ref c1, c2;
5606 dw_attr_ref a1, a2;
5607
5608 /* To avoid infinite recursion. */
5609 if (die1->die_mark)
5610 return die1->die_mark == die2->die_mark;
5611 die1->die_mark = die2->die_mark = ++(*mark);
5612
5613 if (die1->die_tag != die2->die_tag)
5614 return 0;
5615
5616 for (a1 = die1->die_attr, a2 = die2->die_attr;
5617 a1 && a2;
5618 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5619 if (!same_attr_p (a1, a2, mark))
5620 return 0;
5621 if (a1 || a2)
5622 return 0;
5623
5624 for (c1 = die1->die_child, c2 = die2->die_child;
5625 c1 && c2;
5626 c1 = c1->die_sib, c2 = c2->die_sib)
5627 if (!same_die_p (c1, c2, mark))
5628 return 0;
5629 if (c1 || c2)
5630 return 0;
5631
5632 return 1;
5633 }
5634
5635 /* Do the dies look the same? Wrapper around same_die_p. */
5636
5637 static int
5638 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5639 {
5640 int mark = 0;
5641 int ret = same_die_p (die1, die2, &mark);
5642
5643 unmark_all_dies (die1);
5644 unmark_all_dies (die2);
5645
5646 return ret;
5647 }
5648
5649 /* The prefix to attach to symbols on DIEs in the current comdat debug
5650 info section. */
5651 static char *comdat_symbol_id;
5652
5653 /* The index of the current symbol within the current comdat CU. */
5654 static unsigned int comdat_symbol_number;
5655
5656 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5657 children, and set comdat_symbol_id accordingly. */
5658
5659 static void
5660 compute_section_prefix (dw_die_ref unit_die)
5661 {
5662 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5663 const char *base = die_name ? lbasename (die_name) : "anonymous";
5664 char *name = alloca (strlen (base) + 64);
5665 char *p;
5666 int i, mark;
5667 unsigned char checksum[16];
5668 struct md5_ctx ctx;
5669
5670 /* Compute the checksum of the DIE, then append part of it as hex digits to
5671 the name filename of the unit. */
5672
5673 md5_init_ctx (&ctx);
5674 mark = 0;
5675 die_checksum (unit_die, &ctx, &mark);
5676 unmark_all_dies (unit_die);
5677 md5_finish_ctx (&ctx, checksum);
5678
5679 sprintf (name, "%s.", base);
5680 clean_symbol_name (name);
5681
5682 p = name + strlen (name);
5683 for (i = 0; i < 4; i++)
5684 {
5685 sprintf (p, "%.2x", checksum[i]);
5686 p += 2;
5687 }
5688
5689 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5690 comdat_symbol_number = 0;
5691 }
5692
5693 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5694
5695 static int
5696 is_type_die (dw_die_ref die)
5697 {
5698 switch (die->die_tag)
5699 {
5700 case DW_TAG_array_type:
5701 case DW_TAG_class_type:
5702 case DW_TAG_enumeration_type:
5703 case DW_TAG_pointer_type:
5704 case DW_TAG_reference_type:
5705 case DW_TAG_string_type:
5706 case DW_TAG_structure_type:
5707 case DW_TAG_subroutine_type:
5708 case DW_TAG_union_type:
5709 case DW_TAG_ptr_to_member_type:
5710 case DW_TAG_set_type:
5711 case DW_TAG_subrange_type:
5712 case DW_TAG_base_type:
5713 case DW_TAG_const_type:
5714 case DW_TAG_file_type:
5715 case DW_TAG_packed_type:
5716 case DW_TAG_volatile_type:
5717 case DW_TAG_typedef:
5718 return 1;
5719 default:
5720 return 0;
5721 }
5722 }
5723
5724 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5725 Basically, we want to choose the bits that are likely to be shared between
5726 compilations (types) and leave out the bits that are specific to individual
5727 compilations (functions). */
5728
5729 static int
5730 is_comdat_die (dw_die_ref c)
5731 {
5732 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5733 we do for stabs. The advantage is a greater likelihood of sharing between
5734 objects that don't include headers in the same order (and therefore would
5735 put the base types in a different comdat). jason 8/28/00 */
5736
5737 if (c->die_tag == DW_TAG_base_type)
5738 return 0;
5739
5740 if (c->die_tag == DW_TAG_pointer_type
5741 || c->die_tag == DW_TAG_reference_type
5742 || c->die_tag == DW_TAG_const_type
5743 || c->die_tag == DW_TAG_volatile_type)
5744 {
5745 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5746
5747 return t ? is_comdat_die (t) : 0;
5748 }
5749
5750 return is_type_die (c);
5751 }
5752
5753 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5754 compilation unit. */
5755
5756 static int
5757 is_symbol_die (dw_die_ref c)
5758 {
5759 return (is_type_die (c)
5760 || (get_AT (c, DW_AT_declaration)
5761 && !get_AT (c, DW_AT_specification)));
5762 }
5763
5764 static char *
5765 gen_internal_sym (const char *prefix)
5766 {
5767 char buf[256];
5768
5769 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5770 return xstrdup (buf);
5771 }
5772
5773 /* Assign symbols to all worthy DIEs under DIE. */
5774
5775 static void
5776 assign_symbol_names (dw_die_ref die)
5777 {
5778 dw_die_ref c;
5779
5780 if (is_symbol_die (die))
5781 {
5782 if (comdat_symbol_id)
5783 {
5784 char *p = alloca (strlen (comdat_symbol_id) + 64);
5785
5786 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
5787 comdat_symbol_id, comdat_symbol_number++);
5788 die->die_symbol = xstrdup (p);
5789 }
5790 else
5791 die->die_symbol = gen_internal_sym ("LDIE");
5792 }
5793
5794 for (c = die->die_child; c != NULL; c = c->die_sib)
5795 assign_symbol_names (c);
5796 }
5797
5798 struct cu_hash_table_entry
5799 {
5800 dw_die_ref cu;
5801 unsigned min_comdat_num, max_comdat_num;
5802 struct cu_hash_table_entry *next;
5803 };
5804
5805 /* Routines to manipulate hash table of CUs. */
5806 static hashval_t
5807 htab_cu_hash (const void *of)
5808 {
5809 const struct cu_hash_table_entry *entry = of;
5810
5811 return htab_hash_string (entry->cu->die_symbol);
5812 }
5813
5814 static int
5815 htab_cu_eq (const void *of1, const void *of2)
5816 {
5817 const struct cu_hash_table_entry *entry1 = of1;
5818 const struct die_struct *entry2 = of2;
5819
5820 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
5821 }
5822
5823 static void
5824 htab_cu_del (void *what)
5825 {
5826 struct cu_hash_table_entry *next, *entry = what;
5827
5828 while (entry)
5829 {
5830 next = entry->next;
5831 free (entry);
5832 entry = next;
5833 }
5834 }
5835
5836 /* Check whether we have already seen this CU and set up SYM_NUM
5837 accordingly. */
5838 static int
5839 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
5840 {
5841 struct cu_hash_table_entry dummy;
5842 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
5843
5844 dummy.max_comdat_num = 0;
5845
5846 slot = (struct cu_hash_table_entry **)
5847 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
5848 INSERT);
5849 entry = *slot;
5850
5851 for (; entry; last = entry, entry = entry->next)
5852 {
5853 if (same_die_p_wrap (cu, entry->cu))
5854 break;
5855 }
5856
5857 if (entry)
5858 {
5859 *sym_num = entry->min_comdat_num;
5860 return 1;
5861 }
5862
5863 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
5864 entry->cu = cu;
5865 entry->min_comdat_num = *sym_num = last->max_comdat_num;
5866 entry->next = *slot;
5867 *slot = entry;
5868
5869 return 0;
5870 }
5871
5872 /* Record SYM_NUM to record of CU in HTABLE. */
5873 static void
5874 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
5875 {
5876 struct cu_hash_table_entry **slot, *entry;
5877
5878 slot = (struct cu_hash_table_entry **)
5879 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
5880 NO_INSERT);
5881 entry = *slot;
5882
5883 entry->max_comdat_num = sym_num;
5884 }
5885
5886 /* Traverse the DIE (which is always comp_unit_die), and set up
5887 additional compilation units for each of the include files we see
5888 bracketed by BINCL/EINCL. */
5889
5890 static void
5891 break_out_includes (dw_die_ref die)
5892 {
5893 dw_die_ref *ptr;
5894 dw_die_ref unit = NULL;
5895 limbo_die_node *node, **pnode;
5896 htab_t cu_hash_table;
5897
5898 for (ptr = &(die->die_child); *ptr;)
5899 {
5900 dw_die_ref c = *ptr;
5901
5902 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
5903 || (unit && is_comdat_die (c)))
5904 {
5905 /* This DIE is for a secondary CU; remove it from the main one. */
5906 *ptr = c->die_sib;
5907
5908 if (c->die_tag == DW_TAG_GNU_BINCL)
5909 {
5910 unit = push_new_compile_unit (unit, c);
5911 free_die (c);
5912 }
5913 else if (c->die_tag == DW_TAG_GNU_EINCL)
5914 {
5915 unit = pop_compile_unit (unit);
5916 free_die (c);
5917 }
5918 else
5919 add_child_die (unit, c);
5920 }
5921 else
5922 {
5923 /* Leave this DIE in the main CU. */
5924 ptr = &(c->die_sib);
5925 continue;
5926 }
5927 }
5928
5929 #if 0
5930 /* We can only use this in debugging, since the frontend doesn't check
5931 to make sure that we leave every include file we enter. */
5932 if (unit != NULL)
5933 abort ();
5934 #endif
5935
5936 assign_symbol_names (die);
5937 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
5938 for (node = limbo_die_list, pnode = &limbo_die_list;
5939 node;
5940 node = node->next)
5941 {
5942 int is_dupl;
5943
5944 compute_section_prefix (node->die);
5945 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
5946 &comdat_symbol_number);
5947 assign_symbol_names (node->die);
5948 if (is_dupl)
5949 *pnode = node->next;
5950 else
5951 {
5952 pnode = &node->next;
5953 record_comdat_symbol_number (node->die, cu_hash_table,
5954 comdat_symbol_number);
5955 }
5956 }
5957 htab_delete (cu_hash_table);
5958 }
5959
5960 /* Traverse the DIE and add a sibling attribute if it may have the
5961 effect of speeding up access to siblings. To save some space,
5962 avoid generating sibling attributes for DIE's without children. */
5963
5964 static void
5965 add_sibling_attributes (dw_die_ref die)
5966 {
5967 dw_die_ref c;
5968
5969 if (die->die_tag != DW_TAG_compile_unit
5970 && die->die_sib && die->die_child != NULL)
5971 /* Add the sibling link to the front of the attribute list. */
5972 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
5973
5974 for (c = die->die_child; c != NULL; c = c->die_sib)
5975 add_sibling_attributes (c);
5976 }
5977
5978 /* Output all location lists for the DIE and its children. */
5979
5980 static void
5981 output_location_lists (dw_die_ref die)
5982 {
5983 dw_die_ref c;
5984 dw_attr_ref d_attr;
5985
5986 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
5987 if (AT_class (d_attr) == dw_val_class_loc_list)
5988 output_loc_list (AT_loc_list (d_attr));
5989
5990 for (c = die->die_child; c != NULL; c = c->die_sib)
5991 output_location_lists (c);
5992
5993 }
5994
5995 /* The format of each DIE (and its attribute value pairs) is encoded in an
5996 abbreviation table. This routine builds the abbreviation table and assigns
5997 a unique abbreviation id for each abbreviation entry. The children of each
5998 die are visited recursively. */
5999
6000 static void
6001 build_abbrev_table (dw_die_ref die)
6002 {
6003 unsigned long abbrev_id;
6004 unsigned int n_alloc;
6005 dw_die_ref c;
6006 dw_attr_ref d_attr, a_attr;
6007
6008 /* Scan the DIE references, and mark as external any that refer to
6009 DIEs from other CUs (i.e. those which are not marked). */
6010 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6011 if (AT_class (d_attr) == dw_val_class_die_ref
6012 && AT_ref (d_attr)->die_mark == 0)
6013 {
6014 if (AT_ref (d_attr)->die_symbol == 0)
6015 abort ();
6016
6017 set_AT_ref_external (d_attr, 1);
6018 }
6019
6020 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6021 {
6022 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6023
6024 if (abbrev->die_tag == die->die_tag)
6025 {
6026 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6027 {
6028 a_attr = abbrev->die_attr;
6029 d_attr = die->die_attr;
6030
6031 while (a_attr != NULL && d_attr != NULL)
6032 {
6033 if ((a_attr->dw_attr != d_attr->dw_attr)
6034 || (value_format (a_attr) != value_format (d_attr)))
6035 break;
6036
6037 a_attr = a_attr->dw_attr_next;
6038 d_attr = d_attr->dw_attr_next;
6039 }
6040
6041 if (a_attr == NULL && d_attr == NULL)
6042 break;
6043 }
6044 }
6045 }
6046
6047 if (abbrev_id >= abbrev_die_table_in_use)
6048 {
6049 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6050 {
6051 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6052 abbrev_die_table = ggc_realloc (abbrev_die_table,
6053 sizeof (dw_die_ref) * n_alloc);
6054
6055 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6056 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6057 abbrev_die_table_allocated = n_alloc;
6058 }
6059
6060 ++abbrev_die_table_in_use;
6061 abbrev_die_table[abbrev_id] = die;
6062 }
6063
6064 die->die_abbrev = abbrev_id;
6065 for (c = die->die_child; c != NULL; c = c->die_sib)
6066 build_abbrev_table (c);
6067 }
6068 \f
6069 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6070
6071 static int
6072 constant_size (long unsigned int value)
6073 {
6074 int log;
6075
6076 if (value == 0)
6077 log = 0;
6078 else
6079 log = floor_log2 (value);
6080
6081 log = log / 8;
6082 log = 1 << (floor_log2 (log) + 1);
6083
6084 return log;
6085 }
6086
6087 /* Return the size of a DIE as it is represented in the
6088 .debug_info section. */
6089
6090 static unsigned long
6091 size_of_die (dw_die_ref die)
6092 {
6093 unsigned long size = 0;
6094 dw_attr_ref a;
6095
6096 size += size_of_uleb128 (die->die_abbrev);
6097 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6098 {
6099 switch (AT_class (a))
6100 {
6101 case dw_val_class_addr:
6102 size += DWARF2_ADDR_SIZE;
6103 break;
6104 case dw_val_class_offset:
6105 size += DWARF_OFFSET_SIZE;
6106 break;
6107 case dw_val_class_loc:
6108 {
6109 unsigned long lsize = size_of_locs (AT_loc (a));
6110
6111 /* Block length. */
6112 size += constant_size (lsize);
6113 size += lsize;
6114 }
6115 break;
6116 case dw_val_class_loc_list:
6117 size += DWARF_OFFSET_SIZE;
6118 break;
6119 case dw_val_class_range_list:
6120 size += DWARF_OFFSET_SIZE;
6121 break;
6122 case dw_val_class_const:
6123 size += size_of_sleb128 (AT_int (a));
6124 break;
6125 case dw_val_class_unsigned_const:
6126 size += constant_size (AT_unsigned (a));
6127 break;
6128 case dw_val_class_long_long:
6129 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6130 break;
6131 case dw_val_class_float:
6132 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
6133 break;
6134 case dw_val_class_flag:
6135 size += 1;
6136 break;
6137 case dw_val_class_die_ref:
6138 if (AT_ref_external (a))
6139 size += DWARF2_ADDR_SIZE;
6140 else
6141 size += DWARF_OFFSET_SIZE;
6142 break;
6143 case dw_val_class_fde_ref:
6144 size += DWARF_OFFSET_SIZE;
6145 break;
6146 case dw_val_class_lbl_id:
6147 size += DWARF2_ADDR_SIZE;
6148 break;
6149 case dw_val_class_lbl_offset:
6150 size += DWARF_OFFSET_SIZE;
6151 break;
6152 case dw_val_class_str:
6153 if (AT_string_form (a) == DW_FORM_strp)
6154 size += DWARF_OFFSET_SIZE;
6155 else
6156 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6157 break;
6158 default:
6159 abort ();
6160 }
6161 }
6162
6163 return size;
6164 }
6165
6166 /* Size the debugging information associated with a given DIE. Visits the
6167 DIE's children recursively. Updates the global variable next_die_offset, on
6168 each time through. Uses the current value of next_die_offset to update the
6169 die_offset field in each DIE. */
6170
6171 static void
6172 calc_die_sizes (dw_die_ref die)
6173 {
6174 dw_die_ref c;
6175
6176 die->die_offset = next_die_offset;
6177 next_die_offset += size_of_die (die);
6178
6179 for (c = die->die_child; c != NULL; c = c->die_sib)
6180 calc_die_sizes (c);
6181
6182 if (die->die_child != NULL)
6183 /* Count the null byte used to terminate sibling lists. */
6184 next_die_offset += 1;
6185 }
6186
6187 /* Set the marks for a die and its children. We do this so
6188 that we know whether or not a reference needs to use FORM_ref_addr; only
6189 DIEs in the same CU will be marked. We used to clear out the offset
6190 and use that as the flag, but ran into ordering problems. */
6191
6192 static void
6193 mark_dies (dw_die_ref die)
6194 {
6195 dw_die_ref c;
6196
6197 if (die->die_mark)
6198 abort ();
6199
6200 die->die_mark = 1;
6201 for (c = die->die_child; c; c = c->die_sib)
6202 mark_dies (c);
6203 }
6204
6205 /* Clear the marks for a die and its children. */
6206
6207 static void
6208 unmark_dies (dw_die_ref die)
6209 {
6210 dw_die_ref c;
6211
6212 if (!die->die_mark)
6213 abort ();
6214
6215 die->die_mark = 0;
6216 for (c = die->die_child; c; c = c->die_sib)
6217 unmark_dies (c);
6218 }
6219
6220 /* Clear the marks for a die, its children and referred dies. */
6221
6222 static void
6223 unmark_all_dies (dw_die_ref die)
6224 {
6225 dw_die_ref c;
6226 dw_attr_ref a;
6227
6228 if (!die->die_mark)
6229 return;
6230 die->die_mark = 0;
6231
6232 for (c = die->die_child; c; c = c->die_sib)
6233 unmark_all_dies (c);
6234
6235 for (a = die->die_attr; a; a = a->dw_attr_next)
6236 if (AT_class (a) == dw_val_class_die_ref)
6237 unmark_all_dies (AT_ref (a));
6238 }
6239
6240 /* Return the size of the .debug_pubnames table generated for the
6241 compilation unit. */
6242
6243 static unsigned long
6244 size_of_pubnames (void)
6245 {
6246 unsigned long size;
6247 unsigned i;
6248
6249 size = DWARF_PUBNAMES_HEADER_SIZE;
6250 for (i = 0; i < pubname_table_in_use; i++)
6251 {
6252 pubname_ref p = &pubname_table[i];
6253 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6254 }
6255
6256 size += DWARF_OFFSET_SIZE;
6257 return size;
6258 }
6259
6260 /* Return the size of the information in the .debug_aranges section. */
6261
6262 static unsigned long
6263 size_of_aranges (void)
6264 {
6265 unsigned long size;
6266
6267 size = DWARF_ARANGES_HEADER_SIZE;
6268
6269 /* Count the address/length pair for this compilation unit. */
6270 size += 2 * DWARF2_ADDR_SIZE;
6271 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6272
6273 /* Count the two zero words used to terminated the address range table. */
6274 size += 2 * DWARF2_ADDR_SIZE;
6275 return size;
6276 }
6277 \f
6278 /* Select the encoding of an attribute value. */
6279
6280 static enum dwarf_form
6281 value_format (dw_attr_ref a)
6282 {
6283 switch (a->dw_attr_val.val_class)
6284 {
6285 case dw_val_class_addr:
6286 return DW_FORM_addr;
6287 case dw_val_class_range_list:
6288 case dw_val_class_offset:
6289 if (DWARF_OFFSET_SIZE == 4)
6290 return DW_FORM_data4;
6291 if (DWARF_OFFSET_SIZE == 8)
6292 return DW_FORM_data8;
6293 abort ();
6294 case dw_val_class_loc_list:
6295 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6296 .debug_loc section */
6297 return DW_FORM_data4;
6298 case dw_val_class_loc:
6299 switch (constant_size (size_of_locs (AT_loc (a))))
6300 {
6301 case 1:
6302 return DW_FORM_block1;
6303 case 2:
6304 return DW_FORM_block2;
6305 default:
6306 abort ();
6307 }
6308 case dw_val_class_const:
6309 return DW_FORM_sdata;
6310 case dw_val_class_unsigned_const:
6311 switch (constant_size (AT_unsigned (a)))
6312 {
6313 case 1:
6314 return DW_FORM_data1;
6315 case 2:
6316 return DW_FORM_data2;
6317 case 4:
6318 return DW_FORM_data4;
6319 case 8:
6320 return DW_FORM_data8;
6321 default:
6322 abort ();
6323 }
6324 case dw_val_class_long_long:
6325 return DW_FORM_block1;
6326 case dw_val_class_float:
6327 return DW_FORM_block1;
6328 case dw_val_class_flag:
6329 return DW_FORM_flag;
6330 case dw_val_class_die_ref:
6331 if (AT_ref_external (a))
6332 return DW_FORM_ref_addr;
6333 else
6334 return DW_FORM_ref;
6335 case dw_val_class_fde_ref:
6336 return DW_FORM_data;
6337 case dw_val_class_lbl_id:
6338 return DW_FORM_addr;
6339 case dw_val_class_lbl_offset:
6340 return DW_FORM_data;
6341 case dw_val_class_str:
6342 return AT_string_form (a);
6343
6344 default:
6345 abort ();
6346 }
6347 }
6348
6349 /* Output the encoding of an attribute value. */
6350
6351 static void
6352 output_value_format (dw_attr_ref a)
6353 {
6354 enum dwarf_form form = value_format (a);
6355
6356 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6357 }
6358
6359 /* Output the .debug_abbrev section which defines the DIE abbreviation
6360 table. */
6361
6362 static void
6363 output_abbrev_section (void)
6364 {
6365 unsigned long abbrev_id;
6366
6367 dw_attr_ref a_attr;
6368
6369 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6370 {
6371 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6372
6373 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6374 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6375 dwarf_tag_name (abbrev->die_tag));
6376
6377 if (abbrev->die_child != NULL)
6378 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6379 else
6380 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6381
6382 for (a_attr = abbrev->die_attr; a_attr != NULL;
6383 a_attr = a_attr->dw_attr_next)
6384 {
6385 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6386 dwarf_attr_name (a_attr->dw_attr));
6387 output_value_format (a_attr);
6388 }
6389
6390 dw2_asm_output_data (1, 0, NULL);
6391 dw2_asm_output_data (1, 0, NULL);
6392 }
6393
6394 /* Terminate the table. */
6395 dw2_asm_output_data (1, 0, NULL);
6396 }
6397
6398 /* Output a symbol we can use to refer to this DIE from another CU. */
6399
6400 static inline void
6401 output_die_symbol (dw_die_ref die)
6402 {
6403 char *sym = die->die_symbol;
6404
6405 if (sym == 0)
6406 return;
6407
6408 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6409 /* We make these global, not weak; if the target doesn't support
6410 .linkonce, it doesn't support combining the sections, so debugging
6411 will break. */
6412 (*targetm.asm_out.globalize_label) (asm_out_file, sym);
6413
6414 ASM_OUTPUT_LABEL (asm_out_file, sym);
6415 }
6416
6417 /* Return a new location list, given the begin and end range, and the
6418 expression. gensym tells us whether to generate a new internal symbol for
6419 this location list node, which is done for the head of the list only. */
6420
6421 static inline dw_loc_list_ref
6422 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6423 const char *section, unsigned int gensym)
6424 {
6425 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6426
6427 retlist->begin = begin;
6428 retlist->end = end;
6429 retlist->expr = expr;
6430 retlist->section = section;
6431 if (gensym)
6432 retlist->ll_symbol = gen_internal_sym ("LLST");
6433
6434 return retlist;
6435 }
6436
6437 /* Add a location description expression to a location list. */
6438
6439 static inline void
6440 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6441 const char *begin, const char *end,
6442 const char *section)
6443 {
6444 dw_loc_list_ref *d;
6445
6446 /* Find the end of the chain. */
6447 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6448 ;
6449
6450 /* Add a new location list node to the list. */
6451 *d = new_loc_list (descr, begin, end, section, 0);
6452 }
6453
6454 /* Output the location list given to us. */
6455
6456 static void
6457 output_loc_list (dw_loc_list_ref list_head)
6458 {
6459 dw_loc_list_ref curr = list_head;
6460
6461 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6462
6463 /* ??? This shouldn't be needed now that we've forced the
6464 compilation unit base address to zero when there is code
6465 in more than one section. */
6466 if (strcmp (curr->section, ".text") == 0)
6467 {
6468 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6469 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT) 0,
6470 "Location list base address specifier fake entry");
6471 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6472 "Location list base address specifier base");
6473 }
6474
6475 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6476 {
6477 unsigned long size;
6478
6479 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6480 "Location list begin address (%s)",
6481 list_head->ll_symbol);
6482 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6483 "Location list end address (%s)",
6484 list_head->ll_symbol);
6485 size = size_of_locs (curr->expr);
6486
6487 /* Output the block length for this list of location operations. */
6488 if (size > 0xffff)
6489 abort ();
6490 dw2_asm_output_data (2, size, "%s", "Location expression size");
6491
6492 output_loc_sequence (curr->expr);
6493 }
6494
6495 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6496 "Location list terminator begin (%s)",
6497 list_head->ll_symbol);
6498 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6499 "Location list terminator end (%s)",
6500 list_head->ll_symbol);
6501 }
6502
6503 /* Output the DIE and its attributes. Called recursively to generate
6504 the definitions of each child DIE. */
6505
6506 static void
6507 output_die (dw_die_ref die)
6508 {
6509 dw_attr_ref a;
6510 dw_die_ref c;
6511 unsigned long size;
6512
6513 /* If someone in another CU might refer to us, set up a symbol for
6514 them to point to. */
6515 if (die->die_symbol)
6516 output_die_symbol (die);
6517
6518 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6519 die->die_offset, dwarf_tag_name (die->die_tag));
6520
6521 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6522 {
6523 const char *name = dwarf_attr_name (a->dw_attr);
6524
6525 switch (AT_class (a))
6526 {
6527 case dw_val_class_addr:
6528 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6529 break;
6530
6531 case dw_val_class_offset:
6532 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6533 "%s", name);
6534 break;
6535
6536 case dw_val_class_range_list:
6537 {
6538 char *p = strchr (ranges_section_label, '\0');
6539
6540 sprintf (p, "+0x%lx", a->dw_attr_val.v.val_offset);
6541 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6542 "%s", name);
6543 *p = '\0';
6544 }
6545 break;
6546
6547 case dw_val_class_loc:
6548 size = size_of_locs (AT_loc (a));
6549
6550 /* Output the block length for this list of location operations. */
6551 dw2_asm_output_data (constant_size (size), size, "%s", name);
6552
6553 output_loc_sequence (AT_loc (a));
6554 break;
6555
6556 case dw_val_class_const:
6557 /* ??? It would be slightly more efficient to use a scheme like is
6558 used for unsigned constants below, but gdb 4.x does not sign
6559 extend. Gdb 5.x does sign extend. */
6560 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6561 break;
6562
6563 case dw_val_class_unsigned_const:
6564 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6565 AT_unsigned (a), "%s", name);
6566 break;
6567
6568 case dw_val_class_long_long:
6569 {
6570 unsigned HOST_WIDE_INT first, second;
6571
6572 dw2_asm_output_data (1,
6573 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6574 "%s", name);
6575
6576 if (WORDS_BIG_ENDIAN)
6577 {
6578 first = a->dw_attr_val.v.val_long_long.hi;
6579 second = a->dw_attr_val.v.val_long_long.low;
6580 }
6581 else
6582 {
6583 first = a->dw_attr_val.v.val_long_long.low;
6584 second = a->dw_attr_val.v.val_long_long.hi;
6585 }
6586
6587 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6588 first, "long long constant");
6589 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6590 second, NULL);
6591 }
6592 break;
6593
6594 case dw_val_class_float:
6595 {
6596 unsigned int i;
6597
6598 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6599 "%s", name);
6600
6601 for (i = 0; i < a->dw_attr_val.v.val_float.length; i++)
6602 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6603 "fp constant word %u", i);
6604 break;
6605 }
6606
6607 case dw_val_class_flag:
6608 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6609 break;
6610
6611 case dw_val_class_loc_list:
6612 {
6613 char *sym = AT_loc_list (a)->ll_symbol;
6614
6615 if (sym == 0)
6616 abort ();
6617 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym,
6618 loc_section_label, "%s", name);
6619 }
6620 break;
6621
6622 case dw_val_class_die_ref:
6623 if (AT_ref_external (a))
6624 {
6625 char *sym = AT_ref (a)->die_symbol;
6626
6627 if (sym == 0)
6628 abort ();
6629 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6630 }
6631 else if (AT_ref (a)->die_offset == 0)
6632 abort ();
6633 else
6634 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6635 "%s", name);
6636 break;
6637
6638 case dw_val_class_fde_ref:
6639 {
6640 char l1[20];
6641
6642 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6643 a->dw_attr_val.v.val_fde_index * 2);
6644 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6645 }
6646 break;
6647
6648 case dw_val_class_lbl_id:
6649 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6650 break;
6651
6652 case dw_val_class_lbl_offset:
6653 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6654 break;
6655
6656 case dw_val_class_str:
6657 if (AT_string_form (a) == DW_FORM_strp)
6658 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6659 a->dw_attr_val.v.val_str->label,
6660 "%s: \"%s\"", name, AT_string (a));
6661 else
6662 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6663 break;
6664
6665 default:
6666 abort ();
6667 }
6668 }
6669
6670 for (c = die->die_child; c != NULL; c = c->die_sib)
6671 output_die (c);
6672
6673 /* Add null byte to terminate sibling list. */
6674 if (die->die_child != NULL)
6675 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6676 die->die_offset);
6677 }
6678
6679 /* Output the compilation unit that appears at the beginning of the
6680 .debug_info section, and precedes the DIE descriptions. */
6681
6682 static void
6683 output_compilation_unit_header (void)
6684 {
6685 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6686 dw2_asm_output_data (4, 0xffffffff,
6687 "Initial length escape value indicating 64-bit DWARF extension");
6688 dw2_asm_output_data (DWARF_OFFSET_SIZE,
6689 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
6690 "Length of Compilation Unit Info");
6691 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6692 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6693 "Offset Into Abbrev. Section");
6694 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6695 }
6696
6697 /* Output the compilation unit DIE and its children. */
6698
6699 static void
6700 output_comp_unit (dw_die_ref die, int output_if_empty)
6701 {
6702 const char *secname;
6703 char *oldsym, *tmp;
6704
6705 /* Unless we are outputting main CU, we may throw away empty ones. */
6706 if (!output_if_empty && die->die_child == NULL)
6707 return;
6708
6709 /* Even if there are no children of this DIE, we must output the information
6710 about the compilation unit. Otherwise, on an empty translation unit, we
6711 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6712 will then complain when examining the file. First mark all the DIEs in
6713 this CU so we know which get local refs. */
6714 mark_dies (die);
6715
6716 build_abbrev_table (die);
6717
6718 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6719 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6720 calc_die_sizes (die);
6721
6722 oldsym = die->die_symbol;
6723 if (oldsym)
6724 {
6725 tmp = alloca (strlen (oldsym) + 24);
6726
6727 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
6728 secname = tmp;
6729 die->die_symbol = NULL;
6730 }
6731 else
6732 secname = (const char *) DEBUG_INFO_SECTION;
6733
6734 /* Output debugging information. */
6735 named_section_flags (secname, SECTION_DEBUG);
6736 output_compilation_unit_header ();
6737 output_die (die);
6738
6739 /* Leave the marks on the main CU, so we can check them in
6740 output_pubnames. */
6741 if (oldsym)
6742 {
6743 unmark_dies (die);
6744 die->die_symbol = oldsym;
6745 }
6746 }
6747
6748 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
6749 output of lang_hooks.decl_printable_name for C++ looks like
6750 "A::f(int)". Let's drop the argument list, and maybe the scope. */
6751
6752 static const char *
6753 dwarf2_name (tree decl, int scope)
6754 {
6755 return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
6756 }
6757
6758 /* Add a new entry to .debug_pubnames if appropriate. */
6759
6760 static void
6761 add_pubname (tree decl, dw_die_ref die)
6762 {
6763 pubname_ref p;
6764
6765 if (! TREE_PUBLIC (decl))
6766 return;
6767
6768 if (pubname_table_in_use == pubname_table_allocated)
6769 {
6770 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
6771 pubname_table
6772 = ggc_realloc (pubname_table,
6773 (pubname_table_allocated * sizeof (pubname_entry)));
6774 memset (pubname_table + pubname_table_in_use, 0,
6775 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
6776 }
6777
6778 p = &pubname_table[pubname_table_in_use++];
6779 p->die = die;
6780 p->name = xstrdup (dwarf2_name (decl, 1));
6781 }
6782
6783 /* Output the public names table used to speed up access to externally
6784 visible names. For now, only generate entries for externally
6785 visible procedures. */
6786
6787 static void
6788 output_pubnames (void)
6789 {
6790 unsigned i;
6791 unsigned long pubnames_length = size_of_pubnames ();
6792
6793 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6794 dw2_asm_output_data (4, 0xffffffff,
6795 "Initial length escape value indicating 64-bit DWARF extension");
6796 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
6797 "Length of Public Names Info");
6798 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6799 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6800 "Offset of Compilation Unit Info");
6801 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
6802 "Compilation Unit Length");
6803
6804 for (i = 0; i < pubname_table_in_use; i++)
6805 {
6806 pubname_ref pub = &pubname_table[i];
6807
6808 /* We shouldn't see pubnames for DIEs outside of the main CU. */
6809 if (pub->die->die_mark == 0)
6810 abort ();
6811
6812 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
6813 "DIE offset");
6814
6815 dw2_asm_output_nstring (pub->name, -1, "external name");
6816 }
6817
6818 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
6819 }
6820
6821 /* Add a new entry to .debug_aranges if appropriate. */
6822
6823 static void
6824 add_arange (tree decl, dw_die_ref die)
6825 {
6826 if (! DECL_SECTION_NAME (decl))
6827 return;
6828
6829 if (arange_table_in_use == arange_table_allocated)
6830 {
6831 arange_table_allocated += ARANGE_TABLE_INCREMENT;
6832 arange_table = ggc_realloc (arange_table,
6833 (arange_table_allocated
6834 * sizeof (dw_die_ref)));
6835 memset (arange_table + arange_table_in_use, 0,
6836 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
6837 }
6838
6839 arange_table[arange_table_in_use++] = die;
6840 }
6841
6842 /* Output the information that goes into the .debug_aranges table.
6843 Namely, define the beginning and ending address range of the
6844 text section generated for this compilation unit. */
6845
6846 static void
6847 output_aranges (void)
6848 {
6849 unsigned i;
6850 unsigned long aranges_length = size_of_aranges ();
6851
6852 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6853 dw2_asm_output_data (4, 0xffffffff,
6854 "Initial length escape value indicating 64-bit DWARF extension");
6855 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
6856 "Length of Address Ranges Info");
6857 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6858 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6859 "Offset of Compilation Unit Info");
6860 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
6861 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
6862
6863 /* We need to align to twice the pointer size here. */
6864 if (DWARF_ARANGES_PAD_SIZE)
6865 {
6866 /* Pad using a 2 byte words so that padding is correct for any
6867 pointer size. */
6868 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
6869 2 * DWARF2_ADDR_SIZE);
6870 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
6871 dw2_asm_output_data (2, 0, NULL);
6872 }
6873
6874 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
6875 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
6876 text_section_label, "Length");
6877
6878 for (i = 0; i < arange_table_in_use; i++)
6879 {
6880 dw_die_ref die = arange_table[i];
6881
6882 /* We shouldn't see aranges for DIEs outside of the main CU. */
6883 if (die->die_mark == 0)
6884 abort ();
6885
6886 if (die->die_tag == DW_TAG_subprogram)
6887 {
6888 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
6889 "Address");
6890 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
6891 get_AT_low_pc (die), "Length");
6892 }
6893 else
6894 {
6895 /* A static variable; extract the symbol from DW_AT_location.
6896 Note that this code isn't currently hit, as we only emit
6897 aranges for functions (jason 9/23/99). */
6898 dw_attr_ref a = get_AT (die, DW_AT_location);
6899 dw_loc_descr_ref loc;
6900
6901 if (! a || AT_class (a) != dw_val_class_loc)
6902 abort ();
6903
6904 loc = AT_loc (a);
6905 if (loc->dw_loc_opc != DW_OP_addr)
6906 abort ();
6907
6908 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
6909 loc->dw_loc_oprnd1.v.val_addr, "Address");
6910 dw2_asm_output_data (DWARF2_ADDR_SIZE,
6911 get_AT_unsigned (die, DW_AT_byte_size),
6912 "Length");
6913 }
6914 }
6915
6916 /* Output the terminator words. */
6917 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6918 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6919 }
6920
6921 /* Add a new entry to .debug_ranges. Return the offset at which it
6922 was placed. */
6923
6924 static unsigned int
6925 add_ranges (tree block)
6926 {
6927 unsigned int in_use = ranges_table_in_use;
6928
6929 if (in_use == ranges_table_allocated)
6930 {
6931 ranges_table_allocated += RANGES_TABLE_INCREMENT;
6932 ranges_table
6933 = ggc_realloc (ranges_table, (ranges_table_allocated
6934 * sizeof (struct dw_ranges_struct)));
6935 memset (ranges_table + ranges_table_in_use, 0,
6936 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
6937 }
6938
6939 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
6940 ranges_table_in_use = in_use + 1;
6941
6942 return in_use * 2 * DWARF2_ADDR_SIZE;
6943 }
6944
6945 static void
6946 output_ranges (void)
6947 {
6948 unsigned i;
6949 static const char *const start_fmt = "Offset 0x%x";
6950 const char *fmt = start_fmt;
6951
6952 for (i = 0; i < ranges_table_in_use; i++)
6953 {
6954 int block_num = ranges_table[i].block_num;
6955
6956 if (block_num)
6957 {
6958 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
6959 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
6960
6961 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
6962 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
6963
6964 /* If all code is in the text section, then the compilation
6965 unit base address defaults to DW_AT_low_pc, which is the
6966 base of the text section. */
6967 if (separate_line_info_table_in_use == 0)
6968 {
6969 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
6970 text_section_label,
6971 fmt, i * 2 * DWARF2_ADDR_SIZE);
6972 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
6973 text_section_label, NULL);
6974 }
6975
6976 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
6977 compilation unit base address to zero, which allows us to
6978 use absolute addresses, and not worry about whether the
6979 target supports cross-section arithmetic. */
6980 else
6981 {
6982 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
6983 fmt, i * 2 * DWARF2_ADDR_SIZE);
6984 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
6985 }
6986
6987 fmt = NULL;
6988 }
6989 else
6990 {
6991 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6992 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6993 fmt = start_fmt;
6994 }
6995 }
6996 }
6997
6998 /* Data structure containing information about input files. */
6999 struct file_info
7000 {
7001 char *path; /* Complete file name. */
7002 char *fname; /* File name part. */
7003 int length; /* Length of entire string. */
7004 int file_idx; /* Index in input file table. */
7005 int dir_idx; /* Index in directory table. */
7006 };
7007
7008 /* Data structure containing information about directories with source
7009 files. */
7010 struct dir_info
7011 {
7012 char *path; /* Path including directory name. */
7013 int length; /* Path length. */
7014 int prefix; /* Index of directory entry which is a prefix. */
7015 int count; /* Number of files in this directory. */
7016 int dir_idx; /* Index of directory used as base. */
7017 int used; /* Used in the end? */
7018 };
7019
7020 /* Callback function for file_info comparison. We sort by looking at
7021 the directories in the path. */
7022
7023 static int
7024 file_info_cmp (const void *p1, const void *p2)
7025 {
7026 const struct file_info *s1 = p1;
7027 const struct file_info *s2 = p2;
7028 unsigned char *cp1;
7029 unsigned char *cp2;
7030
7031 /* Take care of file names without directories. We need to make sure that
7032 we return consistent values to qsort since some will get confused if
7033 we return the same value when identical operands are passed in opposite
7034 orders. So if neither has a directory, return 0 and otherwise return
7035 1 or -1 depending on which one has the directory. */
7036 if ((s1->path == s1->fname || s2->path == s2->fname))
7037 return (s2->path == s2->fname) - (s1->path == s1->fname);
7038
7039 cp1 = (unsigned char *) s1->path;
7040 cp2 = (unsigned char *) s2->path;
7041
7042 while (1)
7043 {
7044 ++cp1;
7045 ++cp2;
7046 /* Reached the end of the first path? If so, handle like above. */
7047 if ((cp1 == (unsigned char *) s1->fname)
7048 || (cp2 == (unsigned char *) s2->fname))
7049 return ((cp2 == (unsigned char *) s2->fname)
7050 - (cp1 == (unsigned char *) s1->fname));
7051
7052 /* Character of current path component the same? */
7053 else if (*cp1 != *cp2)
7054 return *cp1 - *cp2;
7055 }
7056 }
7057
7058 /* Output the directory table and the file name table. We try to minimize
7059 the total amount of memory needed. A heuristic is used to avoid large
7060 slowdowns with many input files. */
7061
7062 static void
7063 output_file_names (void)
7064 {
7065 struct file_info *files;
7066 struct dir_info *dirs;
7067 int *saved;
7068 int *savehere;
7069 int *backmap;
7070 size_t ndirs;
7071 int idx_offset;
7072 size_t i;
7073 int idx;
7074
7075 /* Handle the case where file_table is empty. */
7076 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7077 {
7078 dw2_asm_output_data (1, 0, "End directory table");
7079 dw2_asm_output_data (1, 0, "End file name table");
7080 return;
7081 }
7082
7083 /* Allocate the various arrays we need. */
7084 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7085 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7086
7087 /* Sort the file names. */
7088 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7089 {
7090 char *f;
7091
7092 /* Skip all leading "./". */
7093 f = VARRAY_CHAR_PTR (file_table, i);
7094 while (f[0] == '.' && f[1] == '/')
7095 f += 2;
7096
7097 /* Create a new array entry. */
7098 files[i].path = f;
7099 files[i].length = strlen (f);
7100 files[i].file_idx = i;
7101
7102 /* Search for the file name part. */
7103 f = strrchr (f, '/');
7104 files[i].fname = f == NULL ? files[i].path : f + 1;
7105 }
7106
7107 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7108 sizeof (files[0]), file_info_cmp);
7109
7110 /* Find all the different directories used. */
7111 dirs[0].path = files[1].path;
7112 dirs[0].length = files[1].fname - files[1].path;
7113 dirs[0].prefix = -1;
7114 dirs[0].count = 1;
7115 dirs[0].dir_idx = 0;
7116 dirs[0].used = 0;
7117 files[1].dir_idx = 0;
7118 ndirs = 1;
7119
7120 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7121 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7122 && memcmp (dirs[ndirs - 1].path, files[i].path,
7123 dirs[ndirs - 1].length) == 0)
7124 {
7125 /* Same directory as last entry. */
7126 files[i].dir_idx = ndirs - 1;
7127 ++dirs[ndirs - 1].count;
7128 }
7129 else
7130 {
7131 size_t j;
7132
7133 /* This is a new directory. */
7134 dirs[ndirs].path = files[i].path;
7135 dirs[ndirs].length = files[i].fname - files[i].path;
7136 dirs[ndirs].count = 1;
7137 dirs[ndirs].dir_idx = ndirs;
7138 dirs[ndirs].used = 0;
7139 files[i].dir_idx = ndirs;
7140
7141 /* Search for a prefix. */
7142 dirs[ndirs].prefix = -1;
7143 for (j = 0; j < ndirs; j++)
7144 if (dirs[j].length < dirs[ndirs].length
7145 && dirs[j].length > 1
7146 && (dirs[ndirs].prefix == -1
7147 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7148 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7149 dirs[ndirs].prefix = j;
7150
7151 ++ndirs;
7152 }
7153
7154 /* Now to the actual work. We have to find a subset of the directories which
7155 allow expressing the file name using references to the directory table
7156 with the least amount of characters. We do not do an exhaustive search
7157 where we would have to check out every combination of every single
7158 possible prefix. Instead we use a heuristic which provides nearly optimal
7159 results in most cases and never is much off. */
7160 saved = alloca (ndirs * sizeof (int));
7161 savehere = alloca (ndirs * sizeof (int));
7162
7163 memset (saved, '\0', ndirs * sizeof (saved[0]));
7164 for (i = 0; i < ndirs; i++)
7165 {
7166 size_t j;
7167 int total;
7168
7169 /* We can always save some space for the current directory. But this
7170 does not mean it will be enough to justify adding the directory. */
7171 savehere[i] = dirs[i].length;
7172 total = (savehere[i] - saved[i]) * dirs[i].count;
7173
7174 for (j = i + 1; j < ndirs; j++)
7175 {
7176 savehere[j] = 0;
7177 if (saved[j] < dirs[i].length)
7178 {
7179 /* Determine whether the dirs[i] path is a prefix of the
7180 dirs[j] path. */
7181 int k;
7182
7183 k = dirs[j].prefix;
7184 while (k != -1 && k != (int) i)
7185 k = dirs[k].prefix;
7186
7187 if (k == (int) i)
7188 {
7189 /* Yes it is. We can possibly safe some memory but
7190 writing the filenames in dirs[j] relative to
7191 dirs[i]. */
7192 savehere[j] = dirs[i].length;
7193 total += (savehere[j] - saved[j]) * dirs[j].count;
7194 }
7195 }
7196 }
7197
7198 /* Check whether we can safe enough to justify adding the dirs[i]
7199 directory. */
7200 if (total > dirs[i].length + 1)
7201 {
7202 /* It's worthwhile adding. */
7203 for (j = i; j < ndirs; j++)
7204 if (savehere[j] > 0)
7205 {
7206 /* Remember how much we saved for this directory so far. */
7207 saved[j] = savehere[j];
7208
7209 /* Remember the prefix directory. */
7210 dirs[j].dir_idx = i;
7211 }
7212 }
7213 }
7214
7215 /* We have to emit them in the order they appear in the file_table array
7216 since the index is used in the debug info generation. To do this
7217 efficiently we generate a back-mapping of the indices first. */
7218 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7219 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7220 {
7221 backmap[files[i].file_idx] = i;
7222
7223 /* Mark this directory as used. */
7224 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7225 }
7226
7227 /* That was it. We are ready to emit the information. First emit the
7228 directory name table. We have to make sure the first actually emitted
7229 directory name has index one; zero is reserved for the current working
7230 directory. Make sure we do not confuse these indices with the one for the
7231 constructed table (even though most of the time they are identical). */
7232 idx = 1;
7233 idx_offset = dirs[0].length > 0 ? 1 : 0;
7234 for (i = 1 - idx_offset; i < ndirs; i++)
7235 if (dirs[i].used != 0)
7236 {
7237 dirs[i].used = idx++;
7238 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7239 "Directory Entry: 0x%x", dirs[i].used);
7240 }
7241
7242 dw2_asm_output_data (1, 0, "End directory table");
7243
7244 /* Correct the index for the current working directory entry if it
7245 exists. */
7246 if (idx_offset == 0)
7247 dirs[0].used = 0;
7248
7249 /* Now write all the file names. */
7250 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7251 {
7252 int file_idx = backmap[i];
7253 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7254
7255 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7256 "File Entry: 0x%lx", (unsigned long) i);
7257
7258 /* Include directory index. */
7259 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7260
7261 /* Modification time. */
7262 dw2_asm_output_data_uleb128 (0, NULL);
7263
7264 /* File length in bytes. */
7265 dw2_asm_output_data_uleb128 (0, NULL);
7266 }
7267
7268 dw2_asm_output_data (1, 0, "End file name table");
7269 }
7270
7271
7272 /* Output the source line number correspondence information. This
7273 information goes into the .debug_line section. */
7274
7275 static void
7276 output_line_info (void)
7277 {
7278 char l1[20], l2[20], p1[20], p2[20];
7279 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7280 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7281 unsigned opc;
7282 unsigned n_op_args;
7283 unsigned long lt_index;
7284 unsigned long current_line;
7285 long line_offset;
7286 long line_delta;
7287 unsigned long current_file;
7288 unsigned long function;
7289
7290 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7291 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7292 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7293 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7294
7295 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7296 dw2_asm_output_data (4, 0xffffffff,
7297 "Initial length escape value indicating 64-bit DWARF extension");
7298 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7299 "Length of Source Line Info");
7300 ASM_OUTPUT_LABEL (asm_out_file, l1);
7301
7302 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7303 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7304 ASM_OUTPUT_LABEL (asm_out_file, p1);
7305
7306 /* Define the architecture-dependent minimum instruction length (in
7307 bytes). In this implementation of DWARF, this field is used for
7308 information purposes only. Since GCC generates assembly language,
7309 we have no a priori knowledge of how many instruction bytes are
7310 generated for each source line, and therefore can use only the
7311 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7312 commands. Accordingly, we fix this as `1', which is "correct
7313 enough" for all architectures, and don't let the target override. */
7314 dw2_asm_output_data (1, 1,
7315 "Minimum Instruction Length");
7316
7317 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7318 "Default is_stmt_start flag");
7319 dw2_asm_output_data (1, DWARF_LINE_BASE,
7320 "Line Base Value (Special Opcodes)");
7321 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7322 "Line Range Value (Special Opcodes)");
7323 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7324 "Special Opcode Base");
7325
7326 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7327 {
7328 switch (opc)
7329 {
7330 case DW_LNS_advance_pc:
7331 case DW_LNS_advance_line:
7332 case DW_LNS_set_file:
7333 case DW_LNS_set_column:
7334 case DW_LNS_fixed_advance_pc:
7335 n_op_args = 1;
7336 break;
7337 default:
7338 n_op_args = 0;
7339 break;
7340 }
7341
7342 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7343 opc, n_op_args);
7344 }
7345
7346 /* Write out the information about the files we use. */
7347 output_file_names ();
7348 ASM_OUTPUT_LABEL (asm_out_file, p2);
7349
7350 /* We used to set the address register to the first location in the text
7351 section here, but that didn't accomplish anything since we already
7352 have a line note for the opening brace of the first function. */
7353
7354 /* Generate the line number to PC correspondence table, encoded as
7355 a series of state machine operations. */
7356 current_file = 1;
7357 current_line = 1;
7358 strcpy (prev_line_label, text_section_label);
7359 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7360 {
7361 dw_line_info_ref line_info = &line_info_table[lt_index];
7362
7363 #if 0
7364 /* Disable this optimization for now; GDB wants to see two line notes
7365 at the beginning of a function so it can find the end of the
7366 prologue. */
7367
7368 /* Don't emit anything for redundant notes. Just updating the
7369 address doesn't accomplish anything, because we already assume
7370 that anything after the last address is this line. */
7371 if (line_info->dw_line_num == current_line
7372 && line_info->dw_file_num == current_file)
7373 continue;
7374 #endif
7375
7376 /* Emit debug info for the address of the current line.
7377
7378 Unfortunately, we have little choice here currently, and must always
7379 use the most general form. GCC does not know the address delta
7380 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7381 attributes which will give an upper bound on the address range. We
7382 could perhaps use length attributes to determine when it is safe to
7383 use DW_LNS_fixed_advance_pc. */
7384
7385 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7386 if (0)
7387 {
7388 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7389 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7390 "DW_LNS_fixed_advance_pc");
7391 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7392 }
7393 else
7394 {
7395 /* This can handle any delta. This takes
7396 4+DWARF2_ADDR_SIZE bytes. */
7397 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7398 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7399 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7400 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7401 }
7402
7403 strcpy (prev_line_label, line_label);
7404
7405 /* Emit debug info for the source file of the current line, if
7406 different from the previous line. */
7407 if (line_info->dw_file_num != current_file)
7408 {
7409 current_file = line_info->dw_file_num;
7410 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7411 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7412 VARRAY_CHAR_PTR (file_table,
7413 current_file));
7414 }
7415
7416 /* Emit debug info for the current line number, choosing the encoding
7417 that uses the least amount of space. */
7418 if (line_info->dw_line_num != current_line)
7419 {
7420 line_offset = line_info->dw_line_num - current_line;
7421 line_delta = line_offset - DWARF_LINE_BASE;
7422 current_line = line_info->dw_line_num;
7423 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7424 /* This can handle deltas from -10 to 234, using the current
7425 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7426 takes 1 byte. */
7427 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7428 "line %lu", current_line);
7429 else
7430 {
7431 /* This can handle any delta. This takes at least 4 bytes,
7432 depending on the value being encoded. */
7433 dw2_asm_output_data (1, DW_LNS_advance_line,
7434 "advance to line %lu", current_line);
7435 dw2_asm_output_data_sleb128 (line_offset, NULL);
7436 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7437 }
7438 }
7439 else
7440 /* We still need to start a new row, so output a copy insn. */
7441 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7442 }
7443
7444 /* Emit debug info for the address of the end of the function. */
7445 if (0)
7446 {
7447 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7448 "DW_LNS_fixed_advance_pc");
7449 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7450 }
7451 else
7452 {
7453 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7454 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7455 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7456 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7457 }
7458
7459 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7460 dw2_asm_output_data_uleb128 (1, NULL);
7461 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7462
7463 function = 0;
7464 current_file = 1;
7465 current_line = 1;
7466 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7467 {
7468 dw_separate_line_info_ref line_info
7469 = &separate_line_info_table[lt_index];
7470
7471 #if 0
7472 /* Don't emit anything for redundant notes. */
7473 if (line_info->dw_line_num == current_line
7474 && line_info->dw_file_num == current_file
7475 && line_info->function == function)
7476 goto cont;
7477 #endif
7478
7479 /* Emit debug info for the address of the current line. If this is
7480 a new function, or the first line of a function, then we need
7481 to handle it differently. */
7482 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7483 lt_index);
7484 if (function != line_info->function)
7485 {
7486 function = line_info->function;
7487
7488 /* Set the address register to the first line in the function. */
7489 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7490 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7491 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7492 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7493 }
7494 else
7495 {
7496 /* ??? See the DW_LNS_advance_pc comment above. */
7497 if (0)
7498 {
7499 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7500 "DW_LNS_fixed_advance_pc");
7501 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7502 }
7503 else
7504 {
7505 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7506 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7507 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7508 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7509 }
7510 }
7511
7512 strcpy (prev_line_label, line_label);
7513
7514 /* Emit debug info for the source file of the current line, if
7515 different from the previous line. */
7516 if (line_info->dw_file_num != current_file)
7517 {
7518 current_file = line_info->dw_file_num;
7519 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7520 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7521 VARRAY_CHAR_PTR (file_table,
7522 current_file));
7523 }
7524
7525 /* Emit debug info for the current line number, choosing the encoding
7526 that uses the least amount of space. */
7527 if (line_info->dw_line_num != current_line)
7528 {
7529 line_offset = line_info->dw_line_num - current_line;
7530 line_delta = line_offset - DWARF_LINE_BASE;
7531 current_line = line_info->dw_line_num;
7532 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7533 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7534 "line %lu", current_line);
7535 else
7536 {
7537 dw2_asm_output_data (1, DW_LNS_advance_line,
7538 "advance to line %lu", current_line);
7539 dw2_asm_output_data_sleb128 (line_offset, NULL);
7540 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7541 }
7542 }
7543 else
7544 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7545
7546 #if 0
7547 cont:
7548 #endif
7549
7550 lt_index++;
7551
7552 /* If we're done with a function, end its sequence. */
7553 if (lt_index == separate_line_info_table_in_use
7554 || separate_line_info_table[lt_index].function != function)
7555 {
7556 current_file = 1;
7557 current_line = 1;
7558
7559 /* Emit debug info for the address of the end of the function. */
7560 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7561 if (0)
7562 {
7563 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7564 "DW_LNS_fixed_advance_pc");
7565 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7566 }
7567 else
7568 {
7569 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7570 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7571 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7572 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7573 }
7574
7575 /* Output the marker for the end of this sequence. */
7576 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7577 dw2_asm_output_data_uleb128 (1, NULL);
7578 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7579 }
7580 }
7581
7582 /* Output the marker for the end of the line number info. */
7583 ASM_OUTPUT_LABEL (asm_out_file, l2);
7584 }
7585 \f
7586 /* Given a pointer to a tree node for some base type, return a pointer to
7587 a DIE that describes the given type.
7588
7589 This routine must only be called for GCC type nodes that correspond to
7590 Dwarf base (fundamental) types. */
7591
7592 static dw_die_ref
7593 base_type_die (tree type)
7594 {
7595 dw_die_ref base_type_result;
7596 const char *type_name;
7597 enum dwarf_type encoding;
7598 tree name = TYPE_NAME (type);
7599
7600 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7601 return 0;
7602
7603 if (name)
7604 {
7605 if (TREE_CODE (name) == TYPE_DECL)
7606 name = DECL_NAME (name);
7607
7608 type_name = IDENTIFIER_POINTER (name);
7609 }
7610 else
7611 type_name = "__unknown__";
7612
7613 switch (TREE_CODE (type))
7614 {
7615 case INTEGER_TYPE:
7616 /* Carefully distinguish the C character types, without messing
7617 up if the language is not C. Note that we check only for the names
7618 that contain spaces; other names might occur by coincidence in other
7619 languages. */
7620 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7621 && (type == char_type_node
7622 || ! strcmp (type_name, "signed char")
7623 || ! strcmp (type_name, "unsigned char"))))
7624 {
7625 if (TREE_UNSIGNED (type))
7626 encoding = DW_ATE_unsigned;
7627 else
7628 encoding = DW_ATE_signed;
7629 break;
7630 }
7631 /* else fall through. */
7632
7633 case CHAR_TYPE:
7634 /* GNU Pascal/Ada CHAR type. Not used in C. */
7635 if (TREE_UNSIGNED (type))
7636 encoding = DW_ATE_unsigned_char;
7637 else
7638 encoding = DW_ATE_signed_char;
7639 break;
7640
7641 case REAL_TYPE:
7642 encoding = DW_ATE_float;
7643 break;
7644
7645 /* Dwarf2 doesn't know anything about complex ints, so use
7646 a user defined type for it. */
7647 case COMPLEX_TYPE:
7648 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7649 encoding = DW_ATE_complex_float;
7650 else
7651 encoding = DW_ATE_lo_user;
7652 break;
7653
7654 case BOOLEAN_TYPE:
7655 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7656 encoding = DW_ATE_boolean;
7657 break;
7658
7659 default:
7660 /* No other TREE_CODEs are Dwarf fundamental types. */
7661 abort ();
7662 }
7663
7664 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7665 if (demangle_name_func)
7666 type_name = (*demangle_name_func) (type_name);
7667
7668 add_AT_string (base_type_result, DW_AT_name, type_name);
7669 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7670 int_size_in_bytes (type));
7671 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7672
7673 return base_type_result;
7674 }
7675
7676 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7677 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7678 a given type is generally the same as the given type, except that if the
7679 given type is a pointer or reference type, then the root type of the given
7680 type is the root type of the "basis" type for the pointer or reference
7681 type. (This definition of the "root" type is recursive.) Also, the root
7682 type of a `const' qualified type or a `volatile' qualified type is the
7683 root type of the given type without the qualifiers. */
7684
7685 static tree
7686 root_type (tree type)
7687 {
7688 if (TREE_CODE (type) == ERROR_MARK)
7689 return error_mark_node;
7690
7691 switch (TREE_CODE (type))
7692 {
7693 case ERROR_MARK:
7694 return error_mark_node;
7695
7696 case POINTER_TYPE:
7697 case REFERENCE_TYPE:
7698 return type_main_variant (root_type (TREE_TYPE (type)));
7699
7700 default:
7701 return type_main_variant (type);
7702 }
7703 }
7704
7705 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7706 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7707
7708 static inline int
7709 is_base_type (tree type)
7710 {
7711 switch (TREE_CODE (type))
7712 {
7713 case ERROR_MARK:
7714 case VOID_TYPE:
7715 case INTEGER_TYPE:
7716 case REAL_TYPE:
7717 case COMPLEX_TYPE:
7718 case BOOLEAN_TYPE:
7719 case CHAR_TYPE:
7720 return 1;
7721
7722 case SET_TYPE:
7723 case ARRAY_TYPE:
7724 case RECORD_TYPE:
7725 case UNION_TYPE:
7726 case QUAL_UNION_TYPE:
7727 case ENUMERAL_TYPE:
7728 case FUNCTION_TYPE:
7729 case METHOD_TYPE:
7730 case POINTER_TYPE:
7731 case REFERENCE_TYPE:
7732 case FILE_TYPE:
7733 case OFFSET_TYPE:
7734 case LANG_TYPE:
7735 case VECTOR_TYPE:
7736 return 0;
7737
7738 default:
7739 abort ();
7740 }
7741
7742 return 0;
7743 }
7744
7745 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
7746 node, return the size in bits for the type if it is a constant, or else
7747 return the alignment for the type if the type's size is not constant, or
7748 else return BITS_PER_WORD if the type actually turns out to be an
7749 ERROR_MARK node. */
7750
7751 static inline unsigned HOST_WIDE_INT
7752 simple_type_size_in_bits (tree type)
7753 {
7754 if (TREE_CODE (type) == ERROR_MARK)
7755 return BITS_PER_WORD;
7756 else if (TYPE_SIZE (type) == NULL_TREE)
7757 return 0;
7758 else if (host_integerp (TYPE_SIZE (type), 1))
7759 return tree_low_cst (TYPE_SIZE (type), 1);
7760 else
7761 return TYPE_ALIGN (type);
7762 }
7763
7764 /* Return true if the debug information for the given type should be
7765 emitted as a subrange type. */
7766
7767 static inline bool
7768 is_ada_subrange_type (tree type)
7769 {
7770 /* We do this for INTEGER_TYPEs that have names, parent types, and when
7771 we are compiling Ada code. */
7772 return (TREE_CODE (type) == INTEGER_TYPE
7773 && TYPE_NAME (type) != 0 && TREE_TYPE (type) != 0
7774 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
7775 && TREE_UNSIGNED (TREE_TYPE (type)) && is_ada ());
7776 }
7777
7778 /* Given a pointer to a tree node for a subrange type, return a pointer
7779 to a DIE that describes the given type. */
7780
7781 static dw_die_ref
7782 subrange_type_die (tree type)
7783 {
7784 dw_die_ref subtype_die;
7785 dw_die_ref subrange_die;
7786 tree name = TYPE_NAME (type);
7787
7788 subtype_die = base_type_die (TREE_TYPE (type));
7789
7790 if (TREE_CODE (name) == TYPE_DECL)
7791 name = DECL_NAME (name);
7792
7793 subrange_die = new_die (DW_TAG_subrange_type, comp_unit_die, type);
7794 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
7795 if (TYPE_MIN_VALUE (type) != NULL)
7796 add_bound_info (subrange_die, DW_AT_lower_bound,
7797 TYPE_MIN_VALUE (type));
7798 if (TYPE_MAX_VALUE (type) != NULL)
7799 add_bound_info (subrange_die, DW_AT_upper_bound,
7800 TYPE_MAX_VALUE (type));
7801 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
7802
7803 return subrange_die;
7804 }
7805
7806 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
7807 entry that chains various modifiers in front of the given type. */
7808
7809 static dw_die_ref
7810 modified_type_die (tree type, int is_const_type, int is_volatile_type,
7811 dw_die_ref context_die)
7812 {
7813 enum tree_code code = TREE_CODE (type);
7814 dw_die_ref mod_type_die = NULL;
7815 dw_die_ref sub_die = NULL;
7816 tree item_type = NULL;
7817
7818 if (code != ERROR_MARK)
7819 {
7820 tree qualified_type;
7821
7822 /* See if we already have the appropriately qualified variant of
7823 this type. */
7824 qualified_type
7825 = get_qualified_type (type,
7826 ((is_const_type ? TYPE_QUAL_CONST : 0)
7827 | (is_volatile_type
7828 ? TYPE_QUAL_VOLATILE : 0)));
7829
7830 /* If we do, then we can just use its DIE, if it exists. */
7831 if (qualified_type)
7832 {
7833 mod_type_die = lookup_type_die (qualified_type);
7834 if (mod_type_die)
7835 return mod_type_die;
7836 }
7837
7838 /* Handle C typedef types. */
7839 if (qualified_type && TYPE_NAME (qualified_type)
7840 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
7841 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
7842 {
7843 tree type_name = TYPE_NAME (qualified_type);
7844 tree dtype = TREE_TYPE (type_name);
7845
7846 if (qualified_type == dtype)
7847 {
7848 /* For a named type, use the typedef. */
7849 gen_type_die (qualified_type, context_die);
7850 mod_type_die = lookup_type_die (qualified_type);
7851 }
7852 else if (is_const_type < TYPE_READONLY (dtype)
7853 || is_volatile_type < TYPE_VOLATILE (dtype))
7854 /* cv-unqualified version of named type. Just use the unnamed
7855 type to which it refers. */
7856 mod_type_die
7857 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
7858 is_const_type, is_volatile_type,
7859 context_die);
7860
7861 /* Else cv-qualified version of named type; fall through. */
7862 }
7863
7864 if (mod_type_die)
7865 /* OK. */
7866 ;
7867 else if (is_const_type)
7868 {
7869 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
7870 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
7871 }
7872 else if (is_volatile_type)
7873 {
7874 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
7875 sub_die = modified_type_die (type, 0, 0, context_die);
7876 }
7877 else if (code == POINTER_TYPE)
7878 {
7879 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
7880 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
7881 simple_type_size_in_bits (type) / BITS_PER_UNIT);
7882 #if 0
7883 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7884 #endif
7885 item_type = TREE_TYPE (type);
7886 }
7887 else if (code == REFERENCE_TYPE)
7888 {
7889 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
7890 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
7891 simple_type_size_in_bits (type) / BITS_PER_UNIT);
7892 #if 0
7893 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7894 #endif
7895 item_type = TREE_TYPE (type);
7896 }
7897 else if (is_ada_subrange_type (type))
7898 mod_type_die = subrange_type_die (type);
7899 else if (is_base_type (type))
7900 mod_type_die = base_type_die (type);
7901 else
7902 {
7903 gen_type_die (type, context_die);
7904
7905 /* We have to get the type_main_variant here (and pass that to the
7906 `lookup_type_die' routine) because the ..._TYPE node we have
7907 might simply be a *copy* of some original type node (where the
7908 copy was created to help us keep track of typedef names) and
7909 that copy might have a different TYPE_UID from the original
7910 ..._TYPE node. */
7911 if (TREE_CODE (type) != VECTOR_TYPE)
7912 mod_type_die = lookup_type_die (type_main_variant (type));
7913 else
7914 /* Vectors have the debugging information in the type,
7915 not the main variant. */
7916 mod_type_die = lookup_type_die (type);
7917 if (mod_type_die == NULL)
7918 abort ();
7919 }
7920
7921 /* We want to equate the qualified type to the die below. */
7922 type = qualified_type;
7923 }
7924
7925 if (type)
7926 equate_type_number_to_die (type, mod_type_die);
7927 if (item_type)
7928 /* We must do this after the equate_type_number_to_die call, in case
7929 this is a recursive type. This ensures that the modified_type_die
7930 recursion will terminate even if the type is recursive. Recursive
7931 types are possible in Ada. */
7932 sub_die = modified_type_die (item_type,
7933 TYPE_READONLY (item_type),
7934 TYPE_VOLATILE (item_type),
7935 context_die);
7936
7937 if (sub_die != NULL)
7938 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
7939
7940 return mod_type_die;
7941 }
7942
7943 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
7944 an enumerated type. */
7945
7946 static inline int
7947 type_is_enum (tree type)
7948 {
7949 return TREE_CODE (type) == ENUMERAL_TYPE;
7950 }
7951
7952 /* Return the register number described by a given RTL node. */
7953
7954 static unsigned int
7955 reg_number (rtx rtl)
7956 {
7957 unsigned regno = REGNO (rtl);
7958
7959 if (regno >= FIRST_PSEUDO_REGISTER)
7960 abort ();
7961
7962 return DBX_REGISTER_NUMBER (regno);
7963 }
7964
7965 /* Return a location descriptor that designates a machine register or
7966 zero if there is none. */
7967
7968 static dw_loc_descr_ref
7969 reg_loc_descriptor (rtx rtl)
7970 {
7971 unsigned reg;
7972 rtx regs;
7973
7974 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
7975 return 0;
7976
7977 reg = reg_number (rtl);
7978 regs = (*targetm.dwarf_register_span) (rtl);
7979
7980 if (HARD_REGNO_NREGS (reg, GET_MODE (rtl)) > 1
7981 || regs)
7982 return multiple_reg_loc_descriptor (rtl, regs);
7983 else
7984 return one_reg_loc_descriptor (reg);
7985 }
7986
7987 /* Return a location descriptor that designates a machine register for
7988 a given hard register number. */
7989
7990 static dw_loc_descr_ref
7991 one_reg_loc_descriptor (unsigned int regno)
7992 {
7993 if (regno <= 31)
7994 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
7995 else
7996 return new_loc_descr (DW_OP_regx, regno, 0);
7997 }
7998
7999 /* Given an RTL of a register, return a location descriptor that
8000 designates a value that spans more than one register. */
8001
8002 static dw_loc_descr_ref
8003 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8004 {
8005 int nregs, size, i;
8006 unsigned reg;
8007 dw_loc_descr_ref loc_result = NULL;
8008
8009 reg = reg_number (rtl);
8010 nregs = HARD_REGNO_NREGS (reg, GET_MODE (rtl));
8011
8012 /* Simple, contiguous registers. */
8013 if (regs == NULL_RTX)
8014 {
8015 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8016
8017 loc_result = NULL;
8018 while (nregs--)
8019 {
8020 dw_loc_descr_ref t;
8021
8022 t = one_reg_loc_descriptor (reg);
8023 add_loc_descr (&loc_result, t);
8024 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8025 ++reg;
8026 }
8027 return loc_result;
8028 }
8029
8030 /* Now onto stupid register sets in non contiguous locations. */
8031
8032 if (GET_CODE (regs) != PARALLEL)
8033 abort ();
8034
8035 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8036 loc_result = NULL;
8037
8038 for (i = 0; i < XVECLEN (regs, 0); ++i)
8039 {
8040 dw_loc_descr_ref t;
8041
8042 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8043 add_loc_descr (&loc_result, t);
8044 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8045 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8046 }
8047 return loc_result;
8048 }
8049
8050 /* Return a location descriptor that designates a constant. */
8051
8052 static dw_loc_descr_ref
8053 int_loc_descriptor (HOST_WIDE_INT i)
8054 {
8055 enum dwarf_location_atom op;
8056
8057 /* Pick the smallest representation of a constant, rather than just
8058 defaulting to the LEB encoding. */
8059 if (i >= 0)
8060 {
8061 if (i <= 31)
8062 op = DW_OP_lit0 + i;
8063 else if (i <= 0xff)
8064 op = DW_OP_const1u;
8065 else if (i <= 0xffff)
8066 op = DW_OP_const2u;
8067 else if (HOST_BITS_PER_WIDE_INT == 32
8068 || i <= 0xffffffff)
8069 op = DW_OP_const4u;
8070 else
8071 op = DW_OP_constu;
8072 }
8073 else
8074 {
8075 if (i >= -0x80)
8076 op = DW_OP_const1s;
8077 else if (i >= -0x8000)
8078 op = DW_OP_const2s;
8079 else if (HOST_BITS_PER_WIDE_INT == 32
8080 || i >= -0x80000000)
8081 op = DW_OP_const4s;
8082 else
8083 op = DW_OP_consts;
8084 }
8085
8086 return new_loc_descr (op, i, 0);
8087 }
8088
8089 /* Return a location descriptor that designates a base+offset location. */
8090
8091 static dw_loc_descr_ref
8092 based_loc_descr (unsigned int reg, long int offset)
8093 {
8094 dw_loc_descr_ref loc_result;
8095 /* For the "frame base", we use the frame pointer or stack pointer
8096 registers, since the RTL for local variables is relative to one of
8097 them. */
8098 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8099 ? HARD_FRAME_POINTER_REGNUM
8100 : STACK_POINTER_REGNUM);
8101
8102 if (reg == fp_reg)
8103 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8104 else if (reg <= 31)
8105 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8106 else
8107 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8108
8109 return loc_result;
8110 }
8111
8112 /* Return true if this RTL expression describes a base+offset calculation. */
8113
8114 static inline int
8115 is_based_loc (rtx rtl)
8116 {
8117 return (GET_CODE (rtl) == PLUS
8118 && ((GET_CODE (XEXP (rtl, 0)) == REG
8119 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8120 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8121 }
8122
8123 /* The following routine converts the RTL for a variable or parameter
8124 (resident in memory) into an equivalent Dwarf representation of a
8125 mechanism for getting the address of that same variable onto the top of a
8126 hypothetical "address evaluation" stack.
8127
8128 When creating memory location descriptors, we are effectively transforming
8129 the RTL for a memory-resident object into its Dwarf postfix expression
8130 equivalent. This routine recursively descends an RTL tree, turning
8131 it into Dwarf postfix code as it goes.
8132
8133 MODE is the mode of the memory reference, needed to handle some
8134 autoincrement addressing modes.
8135
8136 Return 0 if we can't represent the location. */
8137
8138 static dw_loc_descr_ref
8139 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8140 {
8141 dw_loc_descr_ref mem_loc_result = NULL;
8142
8143 /* Note that for a dynamically sized array, the location we will generate a
8144 description of here will be the lowest numbered location which is
8145 actually within the array. That's *not* necessarily the same as the
8146 zeroth element of the array. */
8147
8148 rtl = (*targetm.delegitimize_address) (rtl);
8149
8150 switch (GET_CODE (rtl))
8151 {
8152 case POST_INC:
8153 case POST_DEC:
8154 case POST_MODIFY:
8155 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8156 just fall into the SUBREG code. */
8157
8158 /* ... fall through ... */
8159
8160 case SUBREG:
8161 /* The case of a subreg may arise when we have a local (register)
8162 variable or a formal (register) parameter which doesn't quite fill
8163 up an entire register. For now, just assume that it is
8164 legitimate to make the Dwarf info refer to the whole register which
8165 contains the given subreg. */
8166 rtl = SUBREG_REG (rtl);
8167
8168 /* ... fall through ... */
8169
8170 case REG:
8171 /* Whenever a register number forms a part of the description of the
8172 method for calculating the (dynamic) address of a memory resident
8173 object, DWARF rules require the register number be referred to as
8174 a "base register". This distinction is not based in any way upon
8175 what category of register the hardware believes the given register
8176 belongs to. This is strictly DWARF terminology we're dealing with
8177 here. Note that in cases where the location of a memory-resident
8178 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8179 OP_CONST (0)) the actual DWARF location descriptor that we generate
8180 may just be OP_BASEREG (basereg). This may look deceptively like
8181 the object in question was allocated to a register (rather than in
8182 memory) so DWARF consumers need to be aware of the subtle
8183 distinction between OP_REG and OP_BASEREG. */
8184 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8185 mem_loc_result = based_loc_descr (reg_number (rtl), 0);
8186 break;
8187
8188 case MEM:
8189 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8190 if (mem_loc_result != 0)
8191 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8192 break;
8193
8194 case LO_SUM:
8195 rtl = XEXP (rtl, 1);
8196
8197 /* ... fall through ... */
8198
8199 case LABEL_REF:
8200 /* Some ports can transform a symbol ref into a label ref, because
8201 the symbol ref is too far away and has to be dumped into a constant
8202 pool. */
8203 case CONST:
8204 case SYMBOL_REF:
8205 /* Alternatively, the symbol in the constant pool might be referenced
8206 by a different symbol. */
8207 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8208 {
8209 bool marked;
8210 rtx tmp = get_pool_constant_mark (rtl, &marked);
8211
8212 if (GET_CODE (tmp) == SYMBOL_REF)
8213 {
8214 rtl = tmp;
8215 if (CONSTANT_POOL_ADDRESS_P (tmp))
8216 get_pool_constant_mark (tmp, &marked);
8217 else
8218 marked = true;
8219 }
8220
8221 /* If all references to this pool constant were optimized away,
8222 it was not output and thus we can't represent it.
8223 FIXME: might try to use DW_OP_const_value here, though
8224 DW_OP_piece complicates it. */
8225 if (!marked)
8226 return 0;
8227 }
8228
8229 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8230 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8231 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8232 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8233 break;
8234
8235 case PRE_MODIFY:
8236 /* Extract the PLUS expression nested inside and fall into
8237 PLUS code below. */
8238 rtl = XEXP (rtl, 1);
8239 goto plus;
8240
8241 case PRE_INC:
8242 case PRE_DEC:
8243 /* Turn these into a PLUS expression and fall into the PLUS code
8244 below. */
8245 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8246 GEN_INT (GET_CODE (rtl) == PRE_INC
8247 ? GET_MODE_UNIT_SIZE (mode)
8248 : -GET_MODE_UNIT_SIZE (mode)));
8249
8250 /* ... fall through ... */
8251
8252 case PLUS:
8253 plus:
8254 if (is_based_loc (rtl))
8255 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
8256 INTVAL (XEXP (rtl, 1)));
8257 else
8258 {
8259 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8260 if (mem_loc_result == 0)
8261 break;
8262
8263 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8264 && INTVAL (XEXP (rtl, 1)) >= 0)
8265 add_loc_descr (&mem_loc_result,
8266 new_loc_descr (DW_OP_plus_uconst,
8267 INTVAL (XEXP (rtl, 1)), 0));
8268 else
8269 {
8270 add_loc_descr (&mem_loc_result,
8271 mem_loc_descriptor (XEXP (rtl, 1), mode));
8272 add_loc_descr (&mem_loc_result,
8273 new_loc_descr (DW_OP_plus, 0, 0));
8274 }
8275 }
8276 break;
8277
8278 case MULT:
8279 {
8280 /* If a pseudo-reg is optimized away, it is possible for it to
8281 be replaced with a MEM containing a multiply. */
8282 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8283 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8284
8285 if (op0 == 0 || op1 == 0)
8286 break;
8287
8288 mem_loc_result = op0;
8289 add_loc_descr (&mem_loc_result, op1);
8290 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
8291 break;
8292 }
8293
8294 case CONST_INT:
8295 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8296 break;
8297
8298 case ADDRESSOF:
8299 /* If this is a MEM, return its address. Otherwise, we can't
8300 represent this. */
8301 if (GET_CODE (XEXP (rtl, 0)) == MEM)
8302 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode);
8303 else
8304 return 0;
8305
8306 default:
8307 abort ();
8308 }
8309
8310 return mem_loc_result;
8311 }
8312
8313 /* Return a descriptor that describes the concatenation of two locations.
8314 This is typically a complex variable. */
8315
8316 static dw_loc_descr_ref
8317 concat_loc_descriptor (rtx x0, rtx x1)
8318 {
8319 dw_loc_descr_ref cc_loc_result = NULL;
8320 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8321 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8322
8323 if (x0_ref == 0 || x1_ref == 0)
8324 return 0;
8325
8326 cc_loc_result = x0_ref;
8327 add_loc_descr (&cc_loc_result,
8328 new_loc_descr (DW_OP_piece,
8329 GET_MODE_SIZE (GET_MODE (x0)), 0));
8330
8331 add_loc_descr (&cc_loc_result, x1_ref);
8332 add_loc_descr (&cc_loc_result,
8333 new_loc_descr (DW_OP_piece,
8334 GET_MODE_SIZE (GET_MODE (x1)), 0));
8335
8336 return cc_loc_result;
8337 }
8338
8339 /* Output a proper Dwarf location descriptor for a variable or parameter
8340 which is either allocated in a register or in a memory location. For a
8341 register, we just generate an OP_REG and the register number. For a
8342 memory location we provide a Dwarf postfix expression describing how to
8343 generate the (dynamic) address of the object onto the address stack.
8344
8345 If we don't know how to describe it, return 0. */
8346
8347 static dw_loc_descr_ref
8348 loc_descriptor (rtx rtl)
8349 {
8350 dw_loc_descr_ref loc_result = NULL;
8351
8352 switch (GET_CODE (rtl))
8353 {
8354 case SUBREG:
8355 /* The case of a subreg may arise when we have a local (register)
8356 variable or a formal (register) parameter which doesn't quite fill
8357 up an entire register. For now, just assume that it is
8358 legitimate to make the Dwarf info refer to the whole register which
8359 contains the given subreg. */
8360 rtl = SUBREG_REG (rtl);
8361
8362 /* ... fall through ... */
8363
8364 case REG:
8365 loc_result = reg_loc_descriptor (rtl);
8366 break;
8367
8368 case MEM:
8369 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8370 break;
8371
8372 case CONCAT:
8373 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8374 break;
8375
8376 default:
8377 abort ();
8378 }
8379
8380 return loc_result;
8381 }
8382
8383 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8384 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8385 looking for an address. Otherwise, we return a value. If we can't make a
8386 descriptor, return 0. */
8387
8388 static dw_loc_descr_ref
8389 loc_descriptor_from_tree (tree loc, int addressp)
8390 {
8391 dw_loc_descr_ref ret, ret1;
8392 int indirect_p = 0;
8393 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8394 enum dwarf_location_atom op;
8395
8396 /* ??? Most of the time we do not take proper care for sign/zero
8397 extending the values properly. Hopefully this won't be a real
8398 problem... */
8399
8400 switch (TREE_CODE (loc))
8401 {
8402 case ERROR_MARK:
8403 return 0;
8404
8405 case WITH_RECORD_EXPR:
8406 case PLACEHOLDER_EXPR:
8407 /* This case involves extracting fields from an object to determine the
8408 position of other fields. We don't try to encode this here. The
8409 only user of this is Ada, which encodes the needed information using
8410 the names of types. */
8411 return 0;
8412
8413 case CALL_EXPR:
8414 return 0;
8415
8416 case ADDR_EXPR:
8417 /* We can support this only if we can look through conversions and
8418 find an INDIRECT_EXPR. */
8419 for (loc = TREE_OPERAND (loc, 0);
8420 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8421 || TREE_CODE (loc) == NON_LVALUE_EXPR
8422 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8423 || TREE_CODE (loc) == SAVE_EXPR;
8424 loc = TREE_OPERAND (loc, 0))
8425 ;
8426
8427 return (TREE_CODE (loc) == INDIRECT_REF
8428 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8429 : 0);
8430
8431 case VAR_DECL:
8432 if (DECL_THREAD_LOCAL (loc))
8433 {
8434 rtx rtl;
8435
8436 #ifndef ASM_OUTPUT_DWARF_DTPREL
8437 /* If this is not defined, we have no way to emit the data. */
8438 return 0;
8439 #endif
8440
8441 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8442 look up addresses of objects in the current module. */
8443 if (DECL_EXTERNAL (loc))
8444 return 0;
8445
8446 rtl = rtl_for_decl_location (loc);
8447 if (rtl == NULL_RTX)
8448 return 0;
8449
8450 if (GET_CODE (rtl) != MEM)
8451 return 0;
8452 rtl = XEXP (rtl, 0);
8453 if (! CONSTANT_P (rtl))
8454 return 0;
8455
8456 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8457 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8458 ret->dw_loc_oprnd1.v.val_addr = rtl;
8459
8460 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8461 add_loc_descr (&ret, ret1);
8462
8463 indirect_p = 1;
8464 break;
8465 }
8466 /* FALLTHRU */
8467
8468 case PARM_DECL:
8469 {
8470 rtx rtl = rtl_for_decl_location (loc);
8471
8472 if (rtl == NULL_RTX)
8473 return 0;
8474 else if (CONSTANT_P (rtl))
8475 {
8476 ret = new_loc_descr (DW_OP_addr, 0, 0);
8477 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8478 ret->dw_loc_oprnd1.v.val_addr = rtl;
8479 indirect_p = 1;
8480 }
8481 else
8482 {
8483 enum machine_mode mode = GET_MODE (rtl);
8484
8485 if (GET_CODE (rtl) == MEM)
8486 {
8487 indirect_p = 1;
8488 rtl = XEXP (rtl, 0);
8489 }
8490
8491 ret = mem_loc_descriptor (rtl, mode);
8492 }
8493 }
8494 break;
8495
8496 case INDIRECT_REF:
8497 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8498 indirect_p = 1;
8499 break;
8500
8501 case COMPOUND_EXPR:
8502 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8503
8504 case NOP_EXPR:
8505 case CONVERT_EXPR:
8506 case NON_LVALUE_EXPR:
8507 case VIEW_CONVERT_EXPR:
8508 case SAVE_EXPR:
8509 case MODIFY_EXPR:
8510 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8511
8512 case COMPONENT_REF:
8513 case BIT_FIELD_REF:
8514 case ARRAY_REF:
8515 case ARRAY_RANGE_REF:
8516 {
8517 tree obj, offset;
8518 HOST_WIDE_INT bitsize, bitpos, bytepos;
8519 enum machine_mode mode;
8520 int volatilep;
8521
8522 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8523 &unsignedp, &volatilep);
8524
8525 if (obj == loc)
8526 return 0;
8527
8528 ret = loc_descriptor_from_tree (obj, 1);
8529 if (ret == 0
8530 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8531 return 0;
8532
8533 if (offset != NULL_TREE)
8534 {
8535 /* Variable offset. */
8536 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8537 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8538 }
8539
8540 if (!addressp)
8541 indirect_p = 1;
8542
8543 bytepos = bitpos / BITS_PER_UNIT;
8544 if (bytepos > 0)
8545 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8546 else if (bytepos < 0)
8547 {
8548 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8549 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8550 }
8551 break;
8552 }
8553
8554 case INTEGER_CST:
8555 if (host_integerp (loc, 0))
8556 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8557 else
8558 return 0;
8559 break;
8560
8561 case CONSTRUCTOR:
8562 {
8563 /* Get an RTL for this, if something has been emitted. */
8564 rtx rtl = lookup_constant_def (loc);
8565 enum machine_mode mode;
8566
8567 if (GET_CODE (rtl) != MEM)
8568 return 0;
8569 mode = GET_MODE (rtl);
8570 rtl = XEXP (rtl, 0);
8571
8572 rtl = (*targetm.delegitimize_address) (rtl);
8573
8574 indirect_p = 1;
8575 ret = mem_loc_descriptor (rtl, mode);
8576 break;
8577 }
8578
8579 case TRUTH_AND_EXPR:
8580 case TRUTH_ANDIF_EXPR:
8581 case BIT_AND_EXPR:
8582 op = DW_OP_and;
8583 goto do_binop;
8584
8585 case TRUTH_XOR_EXPR:
8586 case BIT_XOR_EXPR:
8587 op = DW_OP_xor;
8588 goto do_binop;
8589
8590 case TRUTH_OR_EXPR:
8591 case TRUTH_ORIF_EXPR:
8592 case BIT_IOR_EXPR:
8593 op = DW_OP_or;
8594 goto do_binop;
8595
8596 case FLOOR_DIV_EXPR:
8597 case CEIL_DIV_EXPR:
8598 case ROUND_DIV_EXPR:
8599 case TRUNC_DIV_EXPR:
8600 op = DW_OP_div;
8601 goto do_binop;
8602
8603 case MINUS_EXPR:
8604 op = DW_OP_minus;
8605 goto do_binop;
8606
8607 case FLOOR_MOD_EXPR:
8608 case CEIL_MOD_EXPR:
8609 case ROUND_MOD_EXPR:
8610 case TRUNC_MOD_EXPR:
8611 op = DW_OP_mod;
8612 goto do_binop;
8613
8614 case MULT_EXPR:
8615 op = DW_OP_mul;
8616 goto do_binop;
8617
8618 case LSHIFT_EXPR:
8619 op = DW_OP_shl;
8620 goto do_binop;
8621
8622 case RSHIFT_EXPR:
8623 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8624 goto do_binop;
8625
8626 case PLUS_EXPR:
8627 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8628 && host_integerp (TREE_OPERAND (loc, 1), 0))
8629 {
8630 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8631 if (ret == 0)
8632 return 0;
8633
8634 add_loc_descr (&ret,
8635 new_loc_descr (DW_OP_plus_uconst,
8636 tree_low_cst (TREE_OPERAND (loc, 1),
8637 0),
8638 0));
8639 break;
8640 }
8641
8642 op = DW_OP_plus;
8643 goto do_binop;
8644
8645 case LE_EXPR:
8646 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8647 return 0;
8648
8649 op = DW_OP_le;
8650 goto do_binop;
8651
8652 case GE_EXPR:
8653 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8654 return 0;
8655
8656 op = DW_OP_ge;
8657 goto do_binop;
8658
8659 case LT_EXPR:
8660 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8661 return 0;
8662
8663 op = DW_OP_lt;
8664 goto do_binop;
8665
8666 case GT_EXPR:
8667 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8668 return 0;
8669
8670 op = DW_OP_gt;
8671 goto do_binop;
8672
8673 case EQ_EXPR:
8674 op = DW_OP_eq;
8675 goto do_binop;
8676
8677 case NE_EXPR:
8678 op = DW_OP_ne;
8679 goto do_binop;
8680
8681 do_binop:
8682 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8683 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8684 if (ret == 0 || ret1 == 0)
8685 return 0;
8686
8687 add_loc_descr (&ret, ret1);
8688 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8689 break;
8690
8691 case TRUTH_NOT_EXPR:
8692 case BIT_NOT_EXPR:
8693 op = DW_OP_not;
8694 goto do_unop;
8695
8696 case ABS_EXPR:
8697 op = DW_OP_abs;
8698 goto do_unop;
8699
8700 case NEGATE_EXPR:
8701 op = DW_OP_neg;
8702 goto do_unop;
8703
8704 do_unop:
8705 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8706 if (ret == 0)
8707 return 0;
8708
8709 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8710 break;
8711
8712 case MAX_EXPR:
8713 loc = build (COND_EXPR, TREE_TYPE (loc),
8714 build (LT_EXPR, integer_type_node,
8715 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8716 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
8717
8718 /* ... fall through ... */
8719
8720 case COND_EXPR:
8721 {
8722 dw_loc_descr_ref lhs
8723 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8724 dw_loc_descr_ref rhs
8725 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
8726 dw_loc_descr_ref bra_node, jump_node, tmp;
8727
8728 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8729 if (ret == 0 || lhs == 0 || rhs == 0)
8730 return 0;
8731
8732 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
8733 add_loc_descr (&ret, bra_node);
8734
8735 add_loc_descr (&ret, rhs);
8736 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
8737 add_loc_descr (&ret, jump_node);
8738
8739 add_loc_descr (&ret, lhs);
8740 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8741 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
8742
8743 /* ??? Need a node to point the skip at. Use a nop. */
8744 tmp = new_loc_descr (DW_OP_nop, 0, 0);
8745 add_loc_descr (&ret, tmp);
8746 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8747 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
8748 }
8749 break;
8750
8751 default:
8752 /* Leave front-end specific codes as simply unknown. This comes
8753 up, for instance, with the C STMT_EXPR. */
8754 if ((unsigned int) TREE_CODE (loc)
8755 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
8756 return 0;
8757
8758 /* Otherwise this is a generic code; we should just lists all of
8759 these explicitly. Aborting means we forgot one. */
8760 abort ();
8761 }
8762
8763 /* Show if we can't fill the request for an address. */
8764 if (addressp && indirect_p == 0)
8765 return 0;
8766
8767 /* If we've got an address and don't want one, dereference. */
8768 if (!addressp && indirect_p > 0)
8769 {
8770 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
8771
8772 if (size > DWARF2_ADDR_SIZE || size == -1)
8773 return 0;
8774 else if (size == DWARF2_ADDR_SIZE)
8775 op = DW_OP_deref;
8776 else
8777 op = DW_OP_deref_size;
8778
8779 add_loc_descr (&ret, new_loc_descr (op, size, 0));
8780 }
8781
8782 return ret;
8783 }
8784
8785 /* Given a value, round it up to the lowest multiple of `boundary'
8786 which is not less than the value itself. */
8787
8788 static inline HOST_WIDE_INT
8789 ceiling (HOST_WIDE_INT value, unsigned int boundary)
8790 {
8791 return (((value + boundary - 1) / boundary) * boundary);
8792 }
8793
8794 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
8795 pointer to the declared type for the relevant field variable, or return
8796 `integer_type_node' if the given node turns out to be an
8797 ERROR_MARK node. */
8798
8799 static inline tree
8800 field_type (tree decl)
8801 {
8802 tree type;
8803
8804 if (TREE_CODE (decl) == ERROR_MARK)
8805 return integer_type_node;
8806
8807 type = DECL_BIT_FIELD_TYPE (decl);
8808 if (type == NULL_TREE)
8809 type = TREE_TYPE (decl);
8810
8811 return type;
8812 }
8813
8814 /* Given a pointer to a tree node, return the alignment in bits for
8815 it, or else return BITS_PER_WORD if the node actually turns out to
8816 be an ERROR_MARK node. */
8817
8818 static inline unsigned
8819 simple_type_align_in_bits (tree type)
8820 {
8821 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
8822 }
8823
8824 static inline unsigned
8825 simple_decl_align_in_bits (tree decl)
8826 {
8827 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
8828 }
8829
8830 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
8831 lowest addressed byte of the "containing object" for the given FIELD_DECL,
8832 or return 0 if we are unable to determine what that offset is, either
8833 because the argument turns out to be a pointer to an ERROR_MARK node, or
8834 because the offset is actually variable. (We can't handle the latter case
8835 just yet). */
8836
8837 static HOST_WIDE_INT
8838 field_byte_offset (tree decl)
8839 {
8840 unsigned int type_align_in_bits;
8841 unsigned int decl_align_in_bits;
8842 unsigned HOST_WIDE_INT type_size_in_bits;
8843 HOST_WIDE_INT object_offset_in_bits;
8844 tree type;
8845 tree field_size_tree;
8846 HOST_WIDE_INT bitpos_int;
8847 HOST_WIDE_INT deepest_bitpos;
8848 unsigned HOST_WIDE_INT field_size_in_bits;
8849
8850 if (TREE_CODE (decl) == ERROR_MARK)
8851 return 0;
8852 else if (TREE_CODE (decl) != FIELD_DECL)
8853 abort ();
8854
8855 type = field_type (decl);
8856 field_size_tree = DECL_SIZE (decl);
8857
8858 /* The size could be unspecified if there was an error, or for
8859 a flexible array member. */
8860 if (! field_size_tree)
8861 field_size_tree = bitsize_zero_node;
8862
8863 /* We cannot yet cope with fields whose positions are variable, so
8864 for now, when we see such things, we simply return 0. Someday, we may
8865 be able to handle such cases, but it will be damn difficult. */
8866 if (! host_integerp (bit_position (decl), 0))
8867 return 0;
8868
8869 bitpos_int = int_bit_position (decl);
8870
8871 /* If we don't know the size of the field, pretend it's a full word. */
8872 if (host_integerp (field_size_tree, 1))
8873 field_size_in_bits = tree_low_cst (field_size_tree, 1);
8874 else
8875 field_size_in_bits = BITS_PER_WORD;
8876
8877 type_size_in_bits = simple_type_size_in_bits (type);
8878 type_align_in_bits = simple_type_align_in_bits (type);
8879 decl_align_in_bits = simple_decl_align_in_bits (decl);
8880
8881 /* The GCC front-end doesn't make any attempt to keep track of the starting
8882 bit offset (relative to the start of the containing structure type) of the
8883 hypothetical "containing object" for a bit-field. Thus, when computing
8884 the byte offset value for the start of the "containing object" of a
8885 bit-field, we must deduce this information on our own. This can be rather
8886 tricky to do in some cases. For example, handling the following structure
8887 type definition when compiling for an i386/i486 target (which only aligns
8888 long long's to 32-bit boundaries) can be very tricky:
8889
8890 struct S { int field1; long long field2:31; };
8891
8892 Fortunately, there is a simple rule-of-thumb which can be used in such
8893 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
8894 structure shown above. It decides to do this based upon one simple rule
8895 for bit-field allocation. GCC allocates each "containing object" for each
8896 bit-field at the first (i.e. lowest addressed) legitimate alignment
8897 boundary (based upon the required minimum alignment for the declared type
8898 of the field) which it can possibly use, subject to the condition that
8899 there is still enough available space remaining in the containing object
8900 (when allocated at the selected point) to fully accommodate all of the
8901 bits of the bit-field itself.
8902
8903 This simple rule makes it obvious why GCC allocates 8 bytes for each
8904 object of the structure type shown above. When looking for a place to
8905 allocate the "containing object" for `field2', the compiler simply tries
8906 to allocate a 64-bit "containing object" at each successive 32-bit
8907 boundary (starting at zero) until it finds a place to allocate that 64-
8908 bit field such that at least 31 contiguous (and previously unallocated)
8909 bits remain within that selected 64 bit field. (As it turns out, for the
8910 example above, the compiler finds it is OK to allocate the "containing
8911 object" 64-bit field at bit-offset zero within the structure type.)
8912
8913 Here we attempt to work backwards from the limited set of facts we're
8914 given, and we try to deduce from those facts, where GCC must have believed
8915 that the containing object started (within the structure type). The value
8916 we deduce is then used (by the callers of this routine) to generate
8917 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
8918 and, in the case of DW_AT_location, regular fields as well). */
8919
8920 /* Figure out the bit-distance from the start of the structure to the
8921 "deepest" bit of the bit-field. */
8922 deepest_bitpos = bitpos_int + field_size_in_bits;
8923
8924 /* This is the tricky part. Use some fancy footwork to deduce where the
8925 lowest addressed bit of the containing object must be. */
8926 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8927
8928 /* Round up to type_align by default. This works best for bitfields. */
8929 object_offset_in_bits += type_align_in_bits - 1;
8930 object_offset_in_bits /= type_align_in_bits;
8931 object_offset_in_bits *= type_align_in_bits;
8932
8933 if (object_offset_in_bits > bitpos_int)
8934 {
8935 /* Sigh, the decl must be packed. */
8936 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8937
8938 /* Round up to decl_align instead. */
8939 object_offset_in_bits += decl_align_in_bits - 1;
8940 object_offset_in_bits /= decl_align_in_bits;
8941 object_offset_in_bits *= decl_align_in_bits;
8942 }
8943
8944 return object_offset_in_bits / BITS_PER_UNIT;
8945 }
8946 \f
8947 /* The following routines define various Dwarf attributes and any data
8948 associated with them. */
8949
8950 /* Add a location description attribute value to a DIE.
8951
8952 This emits location attributes suitable for whole variables and
8953 whole parameters. Note that the location attributes for struct fields are
8954 generated by the routine `data_member_location_attribute' below. */
8955
8956 static inline void
8957 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
8958 dw_loc_descr_ref descr)
8959 {
8960 if (descr != 0)
8961 add_AT_loc (die, attr_kind, descr);
8962 }
8963
8964 /* Attach the specialized form of location attribute used for data members of
8965 struct and union types. In the special case of a FIELD_DECL node which
8966 represents a bit-field, the "offset" part of this special location
8967 descriptor must indicate the distance in bytes from the lowest-addressed
8968 byte of the containing struct or union type to the lowest-addressed byte of
8969 the "containing object" for the bit-field. (See the `field_byte_offset'
8970 function above).
8971
8972 For any given bit-field, the "containing object" is a hypothetical object
8973 (of some integral or enum type) within which the given bit-field lives. The
8974 type of this hypothetical "containing object" is always the same as the
8975 declared type of the individual bit-field itself (for GCC anyway... the
8976 DWARF spec doesn't actually mandate this). Note that it is the size (in
8977 bytes) of the hypothetical "containing object" which will be given in the
8978 DW_AT_byte_size attribute for this bit-field. (See the
8979 `byte_size_attribute' function below.) It is also used when calculating the
8980 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
8981 function below.) */
8982
8983 static void
8984 add_data_member_location_attribute (dw_die_ref die, tree decl)
8985 {
8986 long offset;
8987 dw_loc_descr_ref loc_descr = 0;
8988
8989 if (TREE_CODE (decl) == TREE_VEC)
8990 {
8991 /* We're working on the TAG_inheritance for a base class. */
8992 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
8993 {
8994 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
8995 aren't at a fixed offset from all (sub)objects of the same
8996 type. We need to extract the appropriate offset from our
8997 vtable. The following dwarf expression means
8998
8999 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9000
9001 This is specific to the V3 ABI, of course. */
9002
9003 dw_loc_descr_ref tmp;
9004
9005 /* Make a copy of the object address. */
9006 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9007 add_loc_descr (&loc_descr, tmp);
9008
9009 /* Extract the vtable address. */
9010 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9011 add_loc_descr (&loc_descr, tmp);
9012
9013 /* Calculate the address of the offset. */
9014 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9015 if (offset >= 0)
9016 abort ();
9017
9018 tmp = int_loc_descriptor (-offset);
9019 add_loc_descr (&loc_descr, tmp);
9020 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9021 add_loc_descr (&loc_descr, tmp);
9022
9023 /* Extract the offset. */
9024 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9025 add_loc_descr (&loc_descr, tmp);
9026
9027 /* Add it to the object address. */
9028 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9029 add_loc_descr (&loc_descr, tmp);
9030 }
9031 else
9032 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9033 }
9034 else
9035 offset = field_byte_offset (decl);
9036
9037 if (! loc_descr)
9038 {
9039 enum dwarf_location_atom op;
9040
9041 /* The DWARF2 standard says that we should assume that the structure
9042 address is already on the stack, so we can specify a structure field
9043 address by using DW_OP_plus_uconst. */
9044
9045 #ifdef MIPS_DEBUGGING_INFO
9046 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9047 operator correctly. It works only if we leave the offset on the
9048 stack. */
9049 op = DW_OP_constu;
9050 #else
9051 op = DW_OP_plus_uconst;
9052 #endif
9053
9054 loc_descr = new_loc_descr (op, offset, 0);
9055 }
9056
9057 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9058 }
9059
9060 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9061 does not have a "location" either in memory or in a register. These
9062 things can arise in GNU C when a constant is passed as an actual parameter
9063 to an inlined function. They can also arise in C++ where declared
9064 constants do not necessarily get memory "homes". */
9065
9066 static void
9067 add_const_value_attribute (dw_die_ref die, rtx rtl)
9068 {
9069 switch (GET_CODE (rtl))
9070 {
9071 case CONST_INT:
9072 /* Note that a CONST_INT rtx could represent either an integer
9073 or a floating-point constant. A CONST_INT is used whenever
9074 the constant will fit into a single word. In all such
9075 cases, the original mode of the constant value is wiped
9076 out, and the CONST_INT rtx is assigned VOIDmode. */
9077 {
9078 HOST_WIDE_INT val = INTVAL (rtl);
9079
9080 /* ??? We really should be using HOST_WIDE_INT throughout. */
9081 if (val < 0 && (long) val == val)
9082 add_AT_int (die, DW_AT_const_value, (long) val);
9083 else if ((unsigned long) val == (unsigned HOST_WIDE_INT) val)
9084 add_AT_unsigned (die, DW_AT_const_value, (unsigned long) val);
9085 else
9086 {
9087 #if HOST_BITS_PER_LONG * 2 == HOST_BITS_PER_WIDE_INT
9088 add_AT_long_long (die, DW_AT_const_value,
9089 val >> HOST_BITS_PER_LONG, val);
9090 #else
9091 abort ();
9092 #endif
9093 }
9094 }
9095 break;
9096
9097 case CONST_DOUBLE:
9098 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9099 floating-point constant. A CONST_DOUBLE is used whenever the
9100 constant requires more than one word in order to be adequately
9101 represented. We output CONST_DOUBLEs as blocks. */
9102 {
9103 enum machine_mode mode = GET_MODE (rtl);
9104
9105 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9106 {
9107 unsigned length = GET_MODE_SIZE (mode) / 4;
9108 long *array = ggc_alloc (sizeof (long) * length);
9109 REAL_VALUE_TYPE rv;
9110
9111 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9112 switch (mode)
9113 {
9114 case SFmode:
9115 REAL_VALUE_TO_TARGET_SINGLE (rv, array[0]);
9116 break;
9117
9118 case DFmode:
9119 REAL_VALUE_TO_TARGET_DOUBLE (rv, array);
9120 break;
9121
9122 case XFmode:
9123 case TFmode:
9124 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, array);
9125 break;
9126
9127 default:
9128 abort ();
9129 }
9130
9131 add_AT_float (die, DW_AT_const_value, length, array);
9132 }
9133 else
9134 {
9135 /* ??? We really should be using HOST_WIDE_INT throughout. */
9136 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9137 abort ();
9138
9139 add_AT_long_long (die, DW_AT_const_value,
9140 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9141 }
9142 }
9143 break;
9144
9145 case CONST_STRING:
9146 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9147 break;
9148
9149 case SYMBOL_REF:
9150 case LABEL_REF:
9151 case CONST:
9152 add_AT_addr (die, DW_AT_const_value, rtl);
9153 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9154 break;
9155
9156 case PLUS:
9157 /* In cases where an inlined instance of an inline function is passed
9158 the address of an `auto' variable (which is local to the caller) we
9159 can get a situation where the DECL_RTL of the artificial local
9160 variable (for the inlining) which acts as a stand-in for the
9161 corresponding formal parameter (of the inline function) will look
9162 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9163 exactly a compile-time constant expression, but it isn't the address
9164 of the (artificial) local variable either. Rather, it represents the
9165 *value* which the artificial local variable always has during its
9166 lifetime. We currently have no way to represent such quasi-constant
9167 values in Dwarf, so for now we just punt and generate nothing. */
9168 break;
9169
9170 default:
9171 /* No other kinds of rtx should be possible here. */
9172 abort ();
9173 }
9174
9175 }
9176
9177 static rtx
9178 rtl_for_decl_location (tree decl)
9179 {
9180 rtx rtl;
9181
9182 /* Here we have to decide where we are going to say the parameter "lives"
9183 (as far as the debugger is concerned). We only have a couple of
9184 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9185
9186 DECL_RTL normally indicates where the parameter lives during most of the
9187 activation of the function. If optimization is enabled however, this
9188 could be either NULL or else a pseudo-reg. Both of those cases indicate
9189 that the parameter doesn't really live anywhere (as far as the code
9190 generation parts of GCC are concerned) during most of the function's
9191 activation. That will happen (for example) if the parameter is never
9192 referenced within the function.
9193
9194 We could just generate a location descriptor here for all non-NULL
9195 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9196 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9197 where DECL_RTL is NULL or is a pseudo-reg.
9198
9199 Note however that we can only get away with using DECL_INCOMING_RTL as
9200 a backup substitute for DECL_RTL in certain limited cases. In cases
9201 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9202 we can be sure that the parameter was passed using the same type as it is
9203 declared to have within the function, and that its DECL_INCOMING_RTL
9204 points us to a place where a value of that type is passed.
9205
9206 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9207 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9208 because in these cases DECL_INCOMING_RTL points us to a value of some
9209 type which is *different* from the type of the parameter itself. Thus,
9210 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9211 such cases, the debugger would end up (for example) trying to fetch a
9212 `float' from a place which actually contains the first part of a
9213 `double'. That would lead to really incorrect and confusing
9214 output at debug-time.
9215
9216 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9217 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9218 are a couple of exceptions however. On little-endian machines we can
9219 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9220 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9221 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9222 when (on a little-endian machine) a non-prototyped function has a
9223 parameter declared to be of type `short' or `char'. In such cases,
9224 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9225 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9226 passed `int' value. If the debugger then uses that address to fetch
9227 a `short' or a `char' (on a little-endian machine) the result will be
9228 the correct data, so we allow for such exceptional cases below.
9229
9230 Note that our goal here is to describe the place where the given formal
9231 parameter lives during most of the function's activation (i.e. between the
9232 end of the prologue and the start of the epilogue). We'll do that as best
9233 as we can. Note however that if the given formal parameter is modified
9234 sometime during the execution of the function, then a stack backtrace (at
9235 debug-time) will show the function as having been called with the *new*
9236 value rather than the value which was originally passed in. This happens
9237 rarely enough that it is not a major problem, but it *is* a problem, and
9238 I'd like to fix it.
9239
9240 A future version of dwarf2out.c may generate two additional attributes for
9241 any given DW_TAG_formal_parameter DIE which will describe the "passed
9242 type" and the "passed location" for the given formal parameter in addition
9243 to the attributes we now generate to indicate the "declared type" and the
9244 "active location" for each parameter. This additional set of attributes
9245 could be used by debuggers for stack backtraces. Separately, note that
9246 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9247 This happens (for example) for inlined-instances of inline function formal
9248 parameters which are never referenced. This really shouldn't be
9249 happening. All PARM_DECL nodes should get valid non-NULL
9250 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9251 values for inlined instances of inline function parameters, so when we see
9252 such cases, we are just out-of-luck for the time being (until integrate.c
9253 gets fixed). */
9254
9255 /* Use DECL_RTL as the "location" unless we find something better. */
9256 rtl = DECL_RTL_IF_SET (decl);
9257
9258 /* When generating abstract instances, ignore everything except
9259 constants, symbols living in memory, and symbols living in
9260 fixed registers. */
9261 if (! reload_completed)
9262 {
9263 if (rtl
9264 && (CONSTANT_P (rtl)
9265 || (GET_CODE (rtl) == MEM
9266 && CONSTANT_P (XEXP (rtl, 0)))
9267 || (GET_CODE (rtl) == REG
9268 && TREE_CODE (decl) == VAR_DECL
9269 && TREE_STATIC (decl))))
9270 {
9271 rtl = (*targetm.delegitimize_address) (rtl);
9272 return rtl;
9273 }
9274 rtl = NULL_RTX;
9275 }
9276 else if (TREE_CODE (decl) == PARM_DECL)
9277 {
9278 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9279 {
9280 tree declared_type = type_main_variant (TREE_TYPE (decl));
9281 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9282
9283 /* This decl represents a formal parameter which was optimized out.
9284 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9285 all cases where (rtl == NULL_RTX) just below. */
9286 if (declared_type == passed_type)
9287 rtl = DECL_INCOMING_RTL (decl);
9288 else if (! BYTES_BIG_ENDIAN
9289 && TREE_CODE (declared_type) == INTEGER_TYPE
9290 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9291 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9292 rtl = DECL_INCOMING_RTL (decl);
9293 }
9294
9295 /* If the parm was passed in registers, but lives on the stack, then
9296 make a big endian correction if the mode of the type of the
9297 parameter is not the same as the mode of the rtl. */
9298 /* ??? This is the same series of checks that are made in dbxout.c before
9299 we reach the big endian correction code there. It isn't clear if all
9300 of these checks are necessary here, but keeping them all is the safe
9301 thing to do. */
9302 else if (GET_CODE (rtl) == MEM
9303 && XEXP (rtl, 0) != const0_rtx
9304 && ! CONSTANT_P (XEXP (rtl, 0))
9305 /* Not passed in memory. */
9306 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
9307 /* Not passed by invisible reference. */
9308 && (GET_CODE (XEXP (rtl, 0)) != REG
9309 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9310 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9311 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9312 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9313 #endif
9314 )
9315 /* Big endian correction check. */
9316 && BYTES_BIG_ENDIAN
9317 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9318 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9319 < UNITS_PER_WORD))
9320 {
9321 int offset = (UNITS_PER_WORD
9322 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9323
9324 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9325 plus_constant (XEXP (rtl, 0), offset));
9326 }
9327 }
9328
9329 if (rtl != NULL_RTX)
9330 {
9331 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9332 #ifdef LEAF_REG_REMAP
9333 if (current_function_uses_only_leaf_regs)
9334 leaf_renumber_regs_insn (rtl);
9335 #endif
9336 }
9337
9338 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9339 and will have been substituted directly into all expressions that use it.
9340 C does not have such a concept, but C++ and other languages do. */
9341 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9342 {
9343 /* If a variable is initialized with a string constant without embedded
9344 zeros, build CONST_STRING. */
9345 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9346 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9347 {
9348 tree arrtype = TREE_TYPE (decl);
9349 tree enttype = TREE_TYPE (arrtype);
9350 tree domain = TYPE_DOMAIN (arrtype);
9351 tree init = DECL_INITIAL (decl);
9352 enum machine_mode mode = TYPE_MODE (enttype);
9353
9354 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9355 && domain
9356 && integer_zerop (TYPE_MIN_VALUE (domain))
9357 && compare_tree_int (TYPE_MAX_VALUE (domain),
9358 TREE_STRING_LENGTH (init) - 1) == 0
9359 && ((size_t) TREE_STRING_LENGTH (init)
9360 == strlen (TREE_STRING_POINTER (init)) + 1))
9361 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9362 }
9363 /* If the initializer is something that we know will expand into an
9364 immediate RTL constant, expand it now. Expanding anything else
9365 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9366 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9367 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9368 {
9369 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9370 EXPAND_INITIALIZER);
9371 /* If expand_expr returns a MEM, it wasn't immediate. */
9372 if (rtl && GET_CODE (rtl) == MEM)
9373 abort ();
9374 }
9375 }
9376
9377 if (rtl)
9378 rtl = (*targetm.delegitimize_address) (rtl);
9379
9380 /* If we don't look past the constant pool, we risk emitting a
9381 reference to a constant pool entry that isn't referenced from
9382 code, and thus is not emitted. */
9383 if (rtl)
9384 rtl = avoid_constant_pool_reference (rtl);
9385
9386 return rtl;
9387 }
9388
9389 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
9390 data attribute for a variable or a parameter. We generate the
9391 DW_AT_const_value attribute only in those cases where the given variable
9392 or parameter does not have a true "location" either in memory or in a
9393 register. This can happen (for example) when a constant is passed as an
9394 actual argument in a call to an inline function. (It's possible that
9395 these things can crop up in other ways also.) Note that one type of
9396 constant value which can be passed into an inlined function is a constant
9397 pointer. This can happen for example if an actual argument in an inlined
9398 function call evaluates to a compile-time constant address. */
9399
9400 static void
9401 add_location_or_const_value_attribute (dw_die_ref die, tree decl)
9402 {
9403 rtx rtl;
9404 dw_loc_descr_ref descr;
9405
9406 if (TREE_CODE (decl) == ERROR_MARK)
9407 return;
9408 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
9409 abort ();
9410
9411 rtl = rtl_for_decl_location (decl);
9412 if (rtl == NULL_RTX)
9413 return;
9414
9415 switch (GET_CODE (rtl))
9416 {
9417 case ADDRESSOF:
9418 /* The address of a variable that was optimized away;
9419 don't emit anything. */
9420 break;
9421
9422 case CONST_INT:
9423 case CONST_DOUBLE:
9424 case CONST_STRING:
9425 case SYMBOL_REF:
9426 case LABEL_REF:
9427 case CONST:
9428 case PLUS:
9429 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9430 add_const_value_attribute (die, rtl);
9431 break;
9432
9433 case MEM:
9434 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
9435 {
9436 /* Need loc_descriptor_from_tree since that's where we know
9437 how to handle TLS variables. Want the object's address
9438 since the top-level DW_AT_location assumes such. See
9439 the confusion in loc_descriptor for reference. */
9440 descr = loc_descriptor_from_tree (decl, 1);
9441 }
9442 else
9443 {
9444 case REG:
9445 case SUBREG:
9446 case CONCAT:
9447 descr = loc_descriptor (rtl);
9448 }
9449 add_AT_location_description (die, DW_AT_location, descr);
9450 break;
9451
9452 default:
9453 abort ();
9454 }
9455 }
9456
9457 /* If we don't have a copy of this variable in memory for some reason (such
9458 as a C++ member constant that doesn't have an out-of-line definition),
9459 we should tell the debugger about the constant value. */
9460
9461 static void
9462 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
9463 {
9464 tree init = DECL_INITIAL (decl);
9465 tree type = TREE_TYPE (decl);
9466
9467 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9468 && initializer_constant_valid_p (init, type) == null_pointer_node)
9469 /* OK */;
9470 else
9471 return;
9472
9473 switch (TREE_CODE (type))
9474 {
9475 case INTEGER_TYPE:
9476 if (host_integerp (init, 0))
9477 add_AT_unsigned (var_die, DW_AT_const_value,
9478 tree_low_cst (init, 0));
9479 else
9480 add_AT_long_long (var_die, DW_AT_const_value,
9481 TREE_INT_CST_HIGH (init),
9482 TREE_INT_CST_LOW (init));
9483 break;
9484
9485 default:;
9486 }
9487 }
9488
9489 /* Generate a DW_AT_name attribute given some string value to be included as
9490 the value of the attribute. */
9491
9492 static void
9493 add_name_attribute (dw_die_ref die, const char *name_string)
9494 {
9495 if (name_string != NULL && *name_string != 0)
9496 {
9497 if (demangle_name_func)
9498 name_string = (*demangle_name_func) (name_string);
9499
9500 add_AT_string (die, DW_AT_name, name_string);
9501 }
9502 }
9503
9504 /* Generate a DW_AT_comp_dir attribute for DIE. */
9505
9506 static void
9507 add_comp_dir_attribute (dw_die_ref die)
9508 {
9509 const char *wd = getpwd ();
9510 if (wd != NULL)
9511 add_AT_string (die, DW_AT_comp_dir, wd);
9512 }
9513
9514 /* Given a tree node describing an array bound (either lower or upper) output
9515 a representation for that bound. */
9516
9517 static void
9518 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
9519 {
9520 switch (TREE_CODE (bound))
9521 {
9522 case ERROR_MARK:
9523 return;
9524
9525 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9526 case INTEGER_CST:
9527 if (! host_integerp (bound, 0)
9528 || (bound_attr == DW_AT_lower_bound
9529 && (((is_c_family () || is_java ()) && integer_zerop (bound))
9530 || (is_fortran () && integer_onep (bound)))))
9531 /* use the default */
9532 ;
9533 else
9534 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
9535 break;
9536
9537 case CONVERT_EXPR:
9538 case NOP_EXPR:
9539 case NON_LVALUE_EXPR:
9540 case VIEW_CONVERT_EXPR:
9541 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9542 break;
9543
9544 case SAVE_EXPR:
9545 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9546 access the upper bound values may be bogus. If they refer to a
9547 register, they may only describe how to get at these values at the
9548 points in the generated code right after they have just been
9549 computed. Worse yet, in the typical case, the upper bound values
9550 will not even *be* computed in the optimized code (though the
9551 number of elements will), so these SAVE_EXPRs are entirely
9552 bogus. In order to compensate for this fact, we check here to see
9553 if optimization is enabled, and if so, we don't add an attribute
9554 for the (unknown and unknowable) upper bound. This should not
9555 cause too much trouble for existing (stupid?) debuggers because
9556 they have to deal with empty upper bounds location descriptions
9557 anyway in order to be able to deal with incomplete array types.
9558 Of course an intelligent debugger (GDB?) should be able to
9559 comprehend that a missing upper bound specification in an array
9560 type used for a storage class `auto' local array variable
9561 indicates that the upper bound is both unknown (at compile- time)
9562 and unknowable (at run-time) due to optimization.
9563
9564 We assume that a MEM rtx is safe because gcc wouldn't put the
9565 value there unless it was going to be used repeatedly in the
9566 function, i.e. for cleanups. */
9567 if (SAVE_EXPR_RTL (bound)
9568 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
9569 {
9570 dw_die_ref ctx = lookup_decl_die (current_function_decl);
9571 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
9572 rtx loc = SAVE_EXPR_RTL (bound);
9573
9574 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9575 it references an outer function's frame. */
9576 if (GET_CODE (loc) == MEM)
9577 {
9578 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9579
9580 if (XEXP (loc, 0) != new_addr)
9581 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
9582 }
9583
9584 add_AT_flag (decl_die, DW_AT_artificial, 1);
9585 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9586 add_AT_location_description (decl_die, DW_AT_location,
9587 loc_descriptor (loc));
9588 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9589 }
9590
9591 /* Else leave out the attribute. */
9592 break;
9593
9594 case VAR_DECL:
9595 case PARM_DECL:
9596 {
9597 dw_die_ref decl_die = lookup_decl_die (bound);
9598
9599 /* ??? Can this happen, or should the variable have been bound
9600 first? Probably it can, since I imagine that we try to create
9601 the types of parameters in the order in which they exist in
9602 the list, and won't have created a forward reference to a
9603 later parameter. */
9604 if (decl_die != NULL)
9605 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9606 break;
9607 }
9608
9609 default:
9610 {
9611 /* Otherwise try to create a stack operation procedure to
9612 evaluate the value of the array bound. */
9613
9614 dw_die_ref ctx, decl_die;
9615 dw_loc_descr_ref loc;
9616
9617 loc = loc_descriptor_from_tree (bound, 0);
9618 if (loc == NULL)
9619 break;
9620
9621 if (current_function_decl == 0)
9622 ctx = comp_unit_die;
9623 else
9624 ctx = lookup_decl_die (current_function_decl);
9625
9626 /* If we weren't able to find a context, it's most likely the case
9627 that we are processing the return type of the function. So
9628 make a SAVE_EXPR to point to it and have the limbo DIE code
9629 find the proper die. The save_expr function doesn't always
9630 make a SAVE_EXPR, so do it ourselves. */
9631 if (ctx == 0)
9632 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9633 current_function_decl, NULL_TREE);
9634
9635 decl_die = new_die (DW_TAG_variable, ctx, bound);
9636 add_AT_flag (decl_die, DW_AT_artificial, 1);
9637 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9638 add_AT_loc (decl_die, DW_AT_location, loc);
9639
9640 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9641 break;
9642 }
9643 }
9644 }
9645
9646 /* Note that the block of subscript information for an array type also
9647 includes information about the element type of type given array type. */
9648
9649 static void
9650 add_subscript_info (dw_die_ref type_die, tree type)
9651 {
9652 #ifndef MIPS_DEBUGGING_INFO
9653 unsigned dimension_number;
9654 #endif
9655 tree lower, upper;
9656 dw_die_ref subrange_die;
9657
9658 /* The GNU compilers represent multidimensional array types as sequences of
9659 one dimensional array types whose element types are themselves array
9660 types. Here we squish that down, so that each multidimensional array
9661 type gets only one array_type DIE in the Dwarf debugging info. The draft
9662 Dwarf specification say that we are allowed to do this kind of
9663 compression in C (because there is no difference between an array or
9664 arrays and a multidimensional array in C) but for other source languages
9665 (e.g. Ada) we probably shouldn't do this. */
9666
9667 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9668 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9669 We work around this by disabling this feature. See also
9670 gen_array_type_die. */
9671 #ifndef MIPS_DEBUGGING_INFO
9672 for (dimension_number = 0;
9673 TREE_CODE (type) == ARRAY_TYPE;
9674 type = TREE_TYPE (type), dimension_number++)
9675 #endif
9676 {
9677 tree domain = TYPE_DOMAIN (type);
9678
9679 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
9680 and (in GNU C only) variable bounds. Handle all three forms
9681 here. */
9682 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
9683 if (domain)
9684 {
9685 /* We have an array type with specified bounds. */
9686 lower = TYPE_MIN_VALUE (domain);
9687 upper = TYPE_MAX_VALUE (domain);
9688
9689 /* define the index type. */
9690 if (TREE_TYPE (domain))
9691 {
9692 /* ??? This is probably an Ada unnamed subrange type. Ignore the
9693 TREE_TYPE field. We can't emit debug info for this
9694 because it is an unnamed integral type. */
9695 if (TREE_CODE (domain) == INTEGER_TYPE
9696 && TYPE_NAME (domain) == NULL_TREE
9697 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
9698 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
9699 ;
9700 else
9701 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
9702 type_die);
9703 }
9704
9705 /* ??? If upper is NULL, the array has unspecified length,
9706 but it does have a lower bound. This happens with Fortran
9707 dimension arr(N:*)
9708 Since the debugger is definitely going to need to know N
9709 to produce useful results, go ahead and output the lower
9710 bound solo, and hope the debugger can cope. */
9711
9712 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
9713 if (upper)
9714 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
9715 }
9716
9717 /* Otherwise we have an array type with an unspecified length. The
9718 DWARF-2 spec does not say how to handle this; let's just leave out the
9719 bounds. */
9720 }
9721 }
9722
9723 static void
9724 add_byte_size_attribute (dw_die_ref die, tree tree_node)
9725 {
9726 unsigned size;
9727
9728 switch (TREE_CODE (tree_node))
9729 {
9730 case ERROR_MARK:
9731 size = 0;
9732 break;
9733 case ENUMERAL_TYPE:
9734 case RECORD_TYPE:
9735 case UNION_TYPE:
9736 case QUAL_UNION_TYPE:
9737 size = int_size_in_bytes (tree_node);
9738 break;
9739 case FIELD_DECL:
9740 /* For a data member of a struct or union, the DW_AT_byte_size is
9741 generally given as the number of bytes normally allocated for an
9742 object of the *declared* type of the member itself. This is true
9743 even for bit-fields. */
9744 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
9745 break;
9746 default:
9747 abort ();
9748 }
9749
9750 /* Note that `size' might be -1 when we get to this point. If it is, that
9751 indicates that the byte size of the entity in question is variable. We
9752 have no good way of expressing this fact in Dwarf at the present time,
9753 so just let the -1 pass on through. */
9754 add_AT_unsigned (die, DW_AT_byte_size, size);
9755 }
9756
9757 /* For a FIELD_DECL node which represents a bit-field, output an attribute
9758 which specifies the distance in bits from the highest order bit of the
9759 "containing object" for the bit-field to the highest order bit of the
9760 bit-field itself.
9761
9762 For any given bit-field, the "containing object" is a hypothetical object
9763 (of some integral or enum type) within which the given bit-field lives. The
9764 type of this hypothetical "containing object" is always the same as the
9765 declared type of the individual bit-field itself. The determination of the
9766 exact location of the "containing object" for a bit-field is rather
9767 complicated. It's handled by the `field_byte_offset' function (above).
9768
9769 Note that it is the size (in bytes) of the hypothetical "containing object"
9770 which will be given in the DW_AT_byte_size attribute for this bit-field.
9771 (See `byte_size_attribute' above). */
9772
9773 static inline void
9774 add_bit_offset_attribute (dw_die_ref die, tree decl)
9775 {
9776 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
9777 tree type = DECL_BIT_FIELD_TYPE (decl);
9778 HOST_WIDE_INT bitpos_int;
9779 HOST_WIDE_INT highest_order_object_bit_offset;
9780 HOST_WIDE_INT highest_order_field_bit_offset;
9781 HOST_WIDE_INT unsigned bit_offset;
9782
9783 /* Must be a field and a bit field. */
9784 if (!type
9785 || TREE_CODE (decl) != FIELD_DECL)
9786 abort ();
9787
9788 /* We can't yet handle bit-fields whose offsets are variable, so if we
9789 encounter such things, just return without generating any attribute
9790 whatsoever. Likewise for variable or too large size. */
9791 if (! host_integerp (bit_position (decl), 0)
9792 || ! host_integerp (DECL_SIZE (decl), 1))
9793 return;
9794
9795 bitpos_int = int_bit_position (decl);
9796
9797 /* Note that the bit offset is always the distance (in bits) from the
9798 highest-order bit of the "containing object" to the highest-order bit of
9799 the bit-field itself. Since the "high-order end" of any object or field
9800 is different on big-endian and little-endian machines, the computation
9801 below must take account of these differences. */
9802 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
9803 highest_order_field_bit_offset = bitpos_int;
9804
9805 if (! BYTES_BIG_ENDIAN)
9806 {
9807 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
9808 highest_order_object_bit_offset += simple_type_size_in_bits (type);
9809 }
9810
9811 bit_offset
9812 = (! BYTES_BIG_ENDIAN
9813 ? highest_order_object_bit_offset - highest_order_field_bit_offset
9814 : highest_order_field_bit_offset - highest_order_object_bit_offset);
9815
9816 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
9817 }
9818
9819 /* For a FIELD_DECL node which represents a bit field, output an attribute
9820 which specifies the length in bits of the given field. */
9821
9822 static inline void
9823 add_bit_size_attribute (dw_die_ref die, tree decl)
9824 {
9825 /* Must be a field and a bit field. */
9826 if (TREE_CODE (decl) != FIELD_DECL
9827 || ! DECL_BIT_FIELD_TYPE (decl))
9828 abort ();
9829
9830 if (host_integerp (DECL_SIZE (decl), 1))
9831 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
9832 }
9833
9834 /* If the compiled language is ANSI C, then add a 'prototyped'
9835 attribute, if arg types are given for the parameters of a function. */
9836
9837 static inline void
9838 add_prototyped_attribute (dw_die_ref die, tree func_type)
9839 {
9840 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
9841 && TYPE_ARG_TYPES (func_type) != NULL)
9842 add_AT_flag (die, DW_AT_prototyped, 1);
9843 }
9844
9845 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
9846 by looking in either the type declaration or object declaration
9847 equate table. */
9848
9849 static inline void
9850 add_abstract_origin_attribute (dw_die_ref die, tree origin)
9851 {
9852 dw_die_ref origin_die = NULL;
9853
9854 if (TREE_CODE (origin) != FUNCTION_DECL)
9855 {
9856 /* We may have gotten separated from the block for the inlined
9857 function, if we're in an exception handler or some such; make
9858 sure that the abstract function has been written out.
9859
9860 Doing this for nested functions is wrong, however; functions are
9861 distinct units, and our context might not even be inline. */
9862 tree fn = origin;
9863
9864 if (TYPE_P (fn))
9865 fn = TYPE_STUB_DECL (fn);
9866
9867 fn = decl_function_context (fn);
9868 if (fn)
9869 dwarf2out_abstract_function (fn);
9870 }
9871
9872 if (DECL_P (origin))
9873 origin_die = lookup_decl_die (origin);
9874 else if (TYPE_P (origin))
9875 origin_die = lookup_type_die (origin);
9876
9877 if (origin_die == NULL)
9878 abort ();
9879
9880 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
9881 }
9882
9883 /* We do not currently support the pure_virtual attribute. */
9884
9885 static inline void
9886 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
9887 {
9888 if (DECL_VINDEX (func_decl))
9889 {
9890 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
9891
9892 if (host_integerp (DECL_VINDEX (func_decl), 0))
9893 add_AT_loc (die, DW_AT_vtable_elem_location,
9894 new_loc_descr (DW_OP_constu,
9895 tree_low_cst (DECL_VINDEX (func_decl), 0),
9896 0));
9897
9898 /* GNU extension: Record what type this method came from originally. */
9899 if (debug_info_level > DINFO_LEVEL_TERSE)
9900 add_AT_die_ref (die, DW_AT_containing_type,
9901 lookup_type_die (DECL_CONTEXT (func_decl)));
9902 }
9903 }
9904 \f
9905 /* Add source coordinate attributes for the given decl. */
9906
9907 static void
9908 add_src_coords_attributes (dw_die_ref die, tree decl)
9909 {
9910 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
9911
9912 add_AT_unsigned (die, DW_AT_decl_file, file_index);
9913 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
9914 }
9915
9916 /* Add a DW_AT_name attribute and source coordinate attribute for the
9917 given decl, but only if it actually has a name. */
9918
9919 static void
9920 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
9921 {
9922 tree decl_name;
9923
9924 decl_name = DECL_NAME (decl);
9925 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
9926 {
9927 add_name_attribute (die, dwarf2_name (decl, 0));
9928 if (! DECL_ARTIFICIAL (decl))
9929 add_src_coords_attributes (die, decl);
9930
9931 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
9932 && TREE_PUBLIC (decl)
9933 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
9934 && !DECL_ABSTRACT (decl))
9935 add_AT_string (die, DW_AT_MIPS_linkage_name,
9936 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
9937 }
9938
9939 #ifdef VMS_DEBUGGING_INFO
9940 /* Get the function's name, as described by its RTL. This may be different
9941 from the DECL_NAME name used in the source file. */
9942 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
9943 {
9944 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
9945 XEXP (DECL_RTL (decl), 0));
9946 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
9947 }
9948 #endif
9949 }
9950
9951 /* Push a new declaration scope. */
9952
9953 static void
9954 push_decl_scope (tree scope)
9955 {
9956 VARRAY_PUSH_TREE (decl_scope_table, scope);
9957 }
9958
9959 /* Pop a declaration scope. */
9960
9961 static inline void
9962 pop_decl_scope (void)
9963 {
9964 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
9965 abort ();
9966
9967 VARRAY_POP (decl_scope_table);
9968 }
9969
9970 /* Return the DIE for the scope that immediately contains this type.
9971 Non-named types get global scope. Named types nested in other
9972 types get their containing scope if it's open, or global scope
9973 otherwise. All other types (i.e. function-local named types) get
9974 the current active scope. */
9975
9976 static dw_die_ref
9977 scope_die_for (tree t, dw_die_ref context_die)
9978 {
9979 dw_die_ref scope_die = NULL;
9980 tree containing_scope;
9981 int i;
9982
9983 /* Non-types always go in the current scope. */
9984 if (! TYPE_P (t))
9985 abort ();
9986
9987 containing_scope = TYPE_CONTEXT (t);
9988
9989 /* Ignore namespaces for the moment. */
9990 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
9991 containing_scope = NULL_TREE;
9992
9993 /* Ignore function type "scopes" from the C frontend. They mean that
9994 a tagged type is local to a parmlist of a function declarator, but
9995 that isn't useful to DWARF. */
9996 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
9997 containing_scope = NULL_TREE;
9998
9999 if (containing_scope == NULL_TREE)
10000 scope_die = comp_unit_die;
10001 else if (TYPE_P (containing_scope))
10002 {
10003 /* For types, we can just look up the appropriate DIE. But
10004 first we check to see if we're in the middle of emitting it
10005 so we know where the new DIE should go. */
10006 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10007 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10008 break;
10009
10010 if (i < 0)
10011 {
10012 if (debug_info_level > DINFO_LEVEL_TERSE
10013 && !TREE_ASM_WRITTEN (containing_scope))
10014 abort ();
10015
10016 /* If none of the current dies are suitable, we get file scope. */
10017 scope_die = comp_unit_die;
10018 }
10019 else
10020 scope_die = lookup_type_die (containing_scope);
10021 }
10022 else
10023 scope_die = context_die;
10024
10025 return scope_die;
10026 }
10027
10028 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10029
10030 static inline int
10031 local_scope_p (dw_die_ref context_die)
10032 {
10033 for (; context_die; context_die = context_die->die_parent)
10034 if (context_die->die_tag == DW_TAG_inlined_subroutine
10035 || context_die->die_tag == DW_TAG_subprogram)
10036 return 1;
10037
10038 return 0;
10039 }
10040
10041 /* Returns nonzero if CONTEXT_DIE is a class. */
10042
10043 static inline int
10044 class_scope_p (dw_die_ref context_die)
10045 {
10046 return (context_die
10047 && (context_die->die_tag == DW_TAG_structure_type
10048 || context_die->die_tag == DW_TAG_union_type));
10049 }
10050
10051 /* Many forms of DIEs require a "type description" attribute. This
10052 routine locates the proper "type descriptor" die for the type given
10053 by 'type', and adds a DW_AT_type attribute below the given die. */
10054
10055 static void
10056 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10057 int decl_volatile, dw_die_ref context_die)
10058 {
10059 enum tree_code code = TREE_CODE (type);
10060 dw_die_ref type_die = NULL;
10061
10062 /* ??? If this type is an unnamed subrange type of an integral or
10063 floating-point type, use the inner type. This is because we have no
10064 support for unnamed types in base_type_die. This can happen if this is
10065 an Ada subrange type. Correct solution is emit a subrange type die. */
10066 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10067 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10068 type = TREE_TYPE (type), code = TREE_CODE (type);
10069
10070 if (code == ERROR_MARK
10071 /* Handle a special case. For functions whose return type is void, we
10072 generate *no* type attribute. (Note that no object may have type
10073 `void', so this only applies to function return types). */
10074 || code == VOID_TYPE)
10075 return;
10076
10077 type_die = modified_type_die (type,
10078 decl_const || TYPE_READONLY (type),
10079 decl_volatile || TYPE_VOLATILE (type),
10080 context_die);
10081
10082 if (type_die != NULL)
10083 add_AT_die_ref (object_die, DW_AT_type, type_die);
10084 }
10085
10086 /* Given a tree pointer to a struct, class, union, or enum type node, return
10087 a pointer to the (string) tag name for the given type, or zero if the type
10088 was declared without a tag. */
10089
10090 static const char *
10091 type_tag (tree type)
10092 {
10093 const char *name = 0;
10094
10095 if (TYPE_NAME (type) != 0)
10096 {
10097 tree t = 0;
10098
10099 /* Find the IDENTIFIER_NODE for the type name. */
10100 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10101 t = TYPE_NAME (type);
10102
10103 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10104 a TYPE_DECL node, regardless of whether or not a `typedef' was
10105 involved. */
10106 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10107 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10108 t = DECL_NAME (TYPE_NAME (type));
10109
10110 /* Now get the name as a string, or invent one. */
10111 if (t != 0)
10112 name = IDENTIFIER_POINTER (t);
10113 }
10114
10115 return (name == 0 || *name == '\0') ? 0 : name;
10116 }
10117
10118 /* Return the type associated with a data member, make a special check
10119 for bit field types. */
10120
10121 static inline tree
10122 member_declared_type (tree member)
10123 {
10124 return (DECL_BIT_FIELD_TYPE (member)
10125 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10126 }
10127
10128 /* Get the decl's label, as described by its RTL. This may be different
10129 from the DECL_NAME name used in the source file. */
10130
10131 #if 0
10132 static const char *
10133 decl_start_label (tree decl)
10134 {
10135 rtx x;
10136 const char *fnname;
10137
10138 x = DECL_RTL (decl);
10139 if (GET_CODE (x) != MEM)
10140 abort ();
10141
10142 x = XEXP (x, 0);
10143 if (GET_CODE (x) != SYMBOL_REF)
10144 abort ();
10145
10146 fnname = XSTR (x, 0);
10147 return fnname;
10148 }
10149 #endif
10150 \f
10151 /* These routines generate the internal representation of the DIE's for
10152 the compilation unit. Debugging information is collected by walking
10153 the declaration trees passed in from dwarf2out_decl(). */
10154
10155 static void
10156 gen_array_type_die (tree type, dw_die_ref context_die)
10157 {
10158 dw_die_ref scope_die = scope_die_for (type, context_die);
10159 dw_die_ref array_die;
10160 tree element_type;
10161
10162 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10163 the inner array type comes before the outer array type. Thus we must
10164 call gen_type_die before we call new_die. See below also. */
10165 #ifdef MIPS_DEBUGGING_INFO
10166 gen_type_die (TREE_TYPE (type), context_die);
10167 #endif
10168
10169 array_die = new_die (DW_TAG_array_type, scope_die, type);
10170 add_name_attribute (array_die, type_tag (type));
10171 equate_type_number_to_die (type, array_die);
10172
10173 if (TREE_CODE (type) == VECTOR_TYPE)
10174 {
10175 /* The frontend feeds us a representation for the vector as a struct
10176 containing an array. Pull out the array type. */
10177 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10178 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10179 }
10180
10181 #if 0
10182 /* We default the array ordering. SDB will probably do
10183 the right things even if DW_AT_ordering is not present. It's not even
10184 an issue until we start to get into multidimensional arrays anyway. If
10185 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10186 then we'll have to put the DW_AT_ordering attribute back in. (But if
10187 and when we find out that we need to put these in, we will only do so
10188 for multidimensional arrays. */
10189 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10190 #endif
10191
10192 #ifdef MIPS_DEBUGGING_INFO
10193 /* The SGI compilers handle arrays of unknown bound by setting
10194 AT_declaration and not emitting any subrange DIEs. */
10195 if (! TYPE_DOMAIN (type))
10196 add_AT_unsigned (array_die, DW_AT_declaration, 1);
10197 else
10198 #endif
10199 add_subscript_info (array_die, type);
10200
10201 /* Add representation of the type of the elements of this array type. */
10202 element_type = TREE_TYPE (type);
10203
10204 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10205 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10206 We work around this by disabling this feature. See also
10207 add_subscript_info. */
10208 #ifndef MIPS_DEBUGGING_INFO
10209 while (TREE_CODE (element_type) == ARRAY_TYPE)
10210 element_type = TREE_TYPE (element_type);
10211
10212 gen_type_die (element_type, context_die);
10213 #endif
10214
10215 add_type_attribute (array_die, element_type, 0, 0, context_die);
10216 }
10217
10218 static void
10219 gen_set_type_die (tree type, dw_die_ref context_die)
10220 {
10221 dw_die_ref type_die
10222 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10223
10224 equate_type_number_to_die (type, type_die);
10225 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10226 }
10227
10228 #if 0
10229 static void
10230 gen_entry_point_die (tree decl, dw_die_ref context_die)
10231 {
10232 tree origin = decl_ultimate_origin (decl);
10233 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10234
10235 if (origin != NULL)
10236 add_abstract_origin_attribute (decl_die, origin);
10237 else
10238 {
10239 add_name_and_src_coords_attributes (decl_die, decl);
10240 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10241 0, 0, context_die);
10242 }
10243
10244 if (DECL_ABSTRACT (decl))
10245 equate_decl_number_to_die (decl, decl_die);
10246 else
10247 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10248 }
10249 #endif
10250
10251 /* Walk through the list of incomplete types again, trying once more to
10252 emit full debugging info for them. */
10253
10254 static void
10255 retry_incomplete_types (void)
10256 {
10257 int i;
10258
10259 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10260 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10261 }
10262
10263 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10264
10265 static void
10266 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
10267 {
10268 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10269
10270 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10271 be incomplete and such types are not marked. */
10272 add_abstract_origin_attribute (type_die, type);
10273 }
10274
10275 /* Generate a DIE to represent an inlined instance of a structure type. */
10276
10277 static void
10278 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
10279 {
10280 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10281
10282 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10283 be incomplete and such types are not marked. */
10284 add_abstract_origin_attribute (type_die, type);
10285 }
10286
10287 /* Generate a DIE to represent an inlined instance of a union type. */
10288
10289 static void
10290 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
10291 {
10292 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10293
10294 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10295 be incomplete and such types are not marked. */
10296 add_abstract_origin_attribute (type_die, type);
10297 }
10298
10299 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10300 include all of the information about the enumeration values also. Each
10301 enumerated type name/value is listed as a child of the enumerated type
10302 DIE. */
10303
10304 static void
10305 gen_enumeration_type_die (tree type, dw_die_ref context_die)
10306 {
10307 dw_die_ref type_die = lookup_type_die (type);
10308
10309 if (type_die == NULL)
10310 {
10311 type_die = new_die (DW_TAG_enumeration_type,
10312 scope_die_for (type, context_die), type);
10313 equate_type_number_to_die (type, type_die);
10314 add_name_attribute (type_die, type_tag (type));
10315 }
10316 else if (! TYPE_SIZE (type))
10317 return;
10318 else
10319 remove_AT (type_die, DW_AT_declaration);
10320
10321 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10322 given enum type is incomplete, do not generate the DW_AT_byte_size
10323 attribute or the DW_AT_element_list attribute. */
10324 if (TYPE_SIZE (type))
10325 {
10326 tree link;
10327
10328 TREE_ASM_WRITTEN (type) = 1;
10329 add_byte_size_attribute (type_die, type);
10330 if (TYPE_STUB_DECL (type) != NULL_TREE)
10331 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10332
10333 /* If the first reference to this type was as the return type of an
10334 inline function, then it may not have a parent. Fix this now. */
10335 if (type_die->die_parent == NULL)
10336 add_child_die (scope_die_for (type, context_die), type_die);
10337
10338 for (link = TYPE_FIELDS (type);
10339 link != NULL; link = TREE_CHAIN (link))
10340 {
10341 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10342
10343 add_name_attribute (enum_die,
10344 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10345
10346 if (host_integerp (TREE_VALUE (link),
10347 TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (link)))))
10348 {
10349 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
10350 add_AT_int (enum_die, DW_AT_const_value,
10351 tree_low_cst (TREE_VALUE (link), 0));
10352 else
10353 add_AT_unsigned (enum_die, DW_AT_const_value,
10354 tree_low_cst (TREE_VALUE (link), 1));
10355 }
10356 }
10357 }
10358 else
10359 add_AT_flag (type_die, DW_AT_declaration, 1);
10360 }
10361
10362 /* Generate a DIE to represent either a real live formal parameter decl or to
10363 represent just the type of some formal parameter position in some function
10364 type.
10365
10366 Note that this routine is a bit unusual because its argument may be a
10367 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10368 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10369 node. If it's the former then this function is being called to output a
10370 DIE to represent a formal parameter object (or some inlining thereof). If
10371 it's the latter, then this function is only being called to output a
10372 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10373 argument type of some subprogram type. */
10374
10375 static dw_die_ref
10376 gen_formal_parameter_die (tree node, dw_die_ref context_die)
10377 {
10378 dw_die_ref parm_die
10379 = new_die (DW_TAG_formal_parameter, context_die, node);
10380 tree origin;
10381
10382 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10383 {
10384 case 'd':
10385 origin = decl_ultimate_origin (node);
10386 if (origin != NULL)
10387 add_abstract_origin_attribute (parm_die, origin);
10388 else
10389 {
10390 add_name_and_src_coords_attributes (parm_die, node);
10391 add_type_attribute (parm_die, TREE_TYPE (node),
10392 TREE_READONLY (node),
10393 TREE_THIS_VOLATILE (node),
10394 context_die);
10395 if (DECL_ARTIFICIAL (node))
10396 add_AT_flag (parm_die, DW_AT_artificial, 1);
10397 }
10398
10399 equate_decl_number_to_die (node, parm_die);
10400 if (! DECL_ABSTRACT (node))
10401 add_location_or_const_value_attribute (parm_die, node);
10402
10403 break;
10404
10405 case 't':
10406 /* We were called with some kind of a ..._TYPE node. */
10407 add_type_attribute (parm_die, node, 0, 0, context_die);
10408 break;
10409
10410 default:
10411 abort ();
10412 }
10413
10414 return parm_die;
10415 }
10416
10417 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10418 at the end of an (ANSI prototyped) formal parameters list. */
10419
10420 static void
10421 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
10422 {
10423 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10424 }
10425
10426 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10427 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10428 parameters as specified in some function type specification (except for
10429 those which appear as part of a function *definition*). */
10430
10431 static void
10432 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
10433 {
10434 tree link;
10435 tree formal_type = NULL;
10436 tree first_parm_type;
10437 tree arg;
10438
10439 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10440 {
10441 arg = DECL_ARGUMENTS (function_or_method_type);
10442 function_or_method_type = TREE_TYPE (function_or_method_type);
10443 }
10444 else
10445 arg = NULL_TREE;
10446
10447 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10448
10449 /* Make our first pass over the list of formal parameter types and output a
10450 DW_TAG_formal_parameter DIE for each one. */
10451 for (link = first_parm_type; link; )
10452 {
10453 dw_die_ref parm_die;
10454
10455 formal_type = TREE_VALUE (link);
10456 if (formal_type == void_type_node)
10457 break;
10458
10459 /* Output a (nameless) DIE to represent the formal parameter itself. */
10460 parm_die = gen_formal_parameter_die (formal_type, context_die);
10461 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10462 && link == first_parm_type)
10463 || (arg && DECL_ARTIFICIAL (arg)))
10464 add_AT_flag (parm_die, DW_AT_artificial, 1);
10465
10466 link = TREE_CHAIN (link);
10467 if (arg)
10468 arg = TREE_CHAIN (arg);
10469 }
10470
10471 /* If this function type has an ellipsis, add a
10472 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10473 if (formal_type != void_type_node)
10474 gen_unspecified_parameters_die (function_or_method_type, context_die);
10475
10476 /* Make our second (and final) pass over the list of formal parameter types
10477 and output DIEs to represent those types (as necessary). */
10478 for (link = TYPE_ARG_TYPES (function_or_method_type);
10479 link && TREE_VALUE (link);
10480 link = TREE_CHAIN (link))
10481 gen_type_die (TREE_VALUE (link), context_die);
10482 }
10483
10484 /* We want to generate the DIE for TYPE so that we can generate the
10485 die for MEMBER, which has been defined; we will need to refer back
10486 to the member declaration nested within TYPE. If we're trying to
10487 generate minimal debug info for TYPE, processing TYPE won't do the
10488 trick; we need to attach the member declaration by hand. */
10489
10490 static void
10491 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
10492 {
10493 gen_type_die (type, context_die);
10494
10495 /* If we're trying to avoid duplicate debug info, we may not have
10496 emitted the member decl for this function. Emit it now. */
10497 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10498 && ! lookup_decl_die (member))
10499 {
10500 if (decl_ultimate_origin (member))
10501 abort ();
10502
10503 push_decl_scope (type);
10504 if (TREE_CODE (member) == FUNCTION_DECL)
10505 gen_subprogram_die (member, lookup_type_die (type));
10506 else
10507 gen_variable_die (member, lookup_type_die (type));
10508
10509 pop_decl_scope ();
10510 }
10511 }
10512
10513 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10514 may later generate inlined and/or out-of-line instances of. */
10515
10516 static void
10517 dwarf2out_abstract_function (tree decl)
10518 {
10519 dw_die_ref old_die;
10520 tree save_fn;
10521 tree context;
10522 int was_abstract = DECL_ABSTRACT (decl);
10523
10524 /* Make sure we have the actual abstract inline, not a clone. */
10525 decl = DECL_ORIGIN (decl);
10526
10527 old_die = lookup_decl_die (decl);
10528 if (old_die && get_AT_unsigned (old_die, DW_AT_inline))
10529 /* We've already generated the abstract instance. */
10530 return;
10531
10532 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10533 we don't get confused by DECL_ABSTRACT. */
10534 if (debug_info_level > DINFO_LEVEL_TERSE)
10535 {
10536 context = decl_class_context (decl);
10537 if (context)
10538 gen_type_die_for_member
10539 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10540 }
10541
10542 /* Pretend we've just finished compiling this function. */
10543 save_fn = current_function_decl;
10544 current_function_decl = decl;
10545
10546 set_decl_abstract_flags (decl, 1);
10547 dwarf2out_decl (decl);
10548 if (! was_abstract)
10549 set_decl_abstract_flags (decl, 0);
10550
10551 current_function_decl = save_fn;
10552 }
10553
10554 /* Generate a DIE to represent a declared function (either file-scope or
10555 block-local). */
10556
10557 static void
10558 gen_subprogram_die (tree decl, dw_die_ref context_die)
10559 {
10560 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10561 tree origin = decl_ultimate_origin (decl);
10562 dw_die_ref subr_die;
10563 rtx fp_reg;
10564 tree fn_arg_types;
10565 tree outer_scope;
10566 dw_die_ref old_die = lookup_decl_die (decl);
10567 int declaration = (current_function_decl != decl
10568 || class_scope_p (context_die));
10569
10570 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10571 started to generate the abstract instance of an inline, decided to output
10572 its containing class, and proceeded to emit the declaration of the inline
10573 from the member list for the class. If so, DECLARATION takes priority;
10574 we'll get back to the abstract instance when done with the class. */
10575
10576 /* The class-scope declaration DIE must be the primary DIE. */
10577 if (origin && declaration && class_scope_p (context_die))
10578 {
10579 origin = NULL;
10580 if (old_die)
10581 abort ();
10582 }
10583
10584 if (origin != NULL)
10585 {
10586 if (declaration && ! local_scope_p (context_die))
10587 abort ();
10588
10589 /* Fixup die_parent for the abstract instance of a nested
10590 inline function. */
10591 if (old_die && old_die->die_parent == NULL)
10592 add_child_die (context_die, old_die);
10593
10594 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10595 add_abstract_origin_attribute (subr_die, origin);
10596 }
10597 else if (old_die)
10598 {
10599 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10600
10601 if (!get_AT_flag (old_die, DW_AT_declaration)
10602 /* We can have a normal definition following an inline one in the
10603 case of redefinition of GNU C extern inlines.
10604 It seems reasonable to use AT_specification in this case. */
10605 && !get_AT_unsigned (old_die, DW_AT_inline))
10606 {
10607 /* ??? This can happen if there is a bug in the program, for
10608 instance, if it has duplicate function definitions. Ideally,
10609 we should detect this case and ignore it. For now, if we have
10610 already reported an error, any error at all, then assume that
10611 we got here because of an input error, not a dwarf2 bug. */
10612 if (errorcount)
10613 return;
10614 abort ();
10615 }
10616
10617 /* If the definition comes from the same place as the declaration,
10618 maybe use the old DIE. We always want the DIE for this function
10619 that has the *_pc attributes to be under comp_unit_die so the
10620 debugger can find it. We also need to do this for abstract
10621 instances of inlines, since the spec requires the out-of-line copy
10622 to have the same parent. For local class methods, this doesn't
10623 apply; we just use the old DIE. */
10624 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
10625 && (DECL_ARTIFICIAL (decl)
10626 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10627 && (get_AT_unsigned (old_die, DW_AT_decl_line)
10628 == (unsigned) DECL_SOURCE_LINE (decl)))))
10629 {
10630 subr_die = old_die;
10631
10632 /* Clear out the declaration attribute and the parm types. */
10633 remove_AT (subr_die, DW_AT_declaration);
10634 remove_children (subr_die);
10635 }
10636 else
10637 {
10638 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10639 add_AT_die_ref (subr_die, DW_AT_specification, old_die);
10640 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10641 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
10642 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10643 != (unsigned) DECL_SOURCE_LINE (decl))
10644 add_AT_unsigned
10645 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10646 }
10647 }
10648 else
10649 {
10650 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10651
10652 if (TREE_PUBLIC (decl))
10653 add_AT_flag (subr_die, DW_AT_external, 1);
10654
10655 add_name_and_src_coords_attributes (subr_die, decl);
10656 if (debug_info_level > DINFO_LEVEL_TERSE)
10657 {
10658 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
10659 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
10660 0, 0, context_die);
10661 }
10662
10663 add_pure_or_virtual_attribute (subr_die, decl);
10664 if (DECL_ARTIFICIAL (decl))
10665 add_AT_flag (subr_die, DW_AT_artificial, 1);
10666
10667 if (TREE_PROTECTED (decl))
10668 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
10669 else if (TREE_PRIVATE (decl))
10670 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
10671 }
10672
10673 if (declaration)
10674 {
10675 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
10676 {
10677 add_AT_flag (subr_die, DW_AT_declaration, 1);
10678
10679 /* The first time we see a member function, it is in the context of
10680 the class to which it belongs. We make sure of this by emitting
10681 the class first. The next time is the definition, which is
10682 handled above. The two may come from the same source text. */
10683 if (DECL_CONTEXT (decl) || DECL_ABSTRACT (decl))
10684 equate_decl_number_to_die (decl, subr_die);
10685 }
10686 }
10687 else if (DECL_ABSTRACT (decl))
10688 {
10689 if (DECL_INLINE (decl) && !flag_no_inline)
10690 {
10691 /* ??? Checking DECL_DEFER_OUTPUT is correct for static
10692 inline functions, but not for extern inline functions.
10693 We can't get this completely correct because information
10694 about whether the function was declared inline is not
10695 saved anywhere. */
10696 if (DECL_DEFER_OUTPUT (decl))
10697 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
10698 else
10699 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
10700 }
10701 else
10702 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
10703
10704 equate_decl_number_to_die (decl, subr_die);
10705 }
10706 else if (!DECL_EXTERNAL (decl))
10707 {
10708 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
10709 equate_decl_number_to_die (decl, subr_die);
10710
10711 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
10712 current_function_funcdef_no);
10713 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
10714 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10715 current_function_funcdef_no);
10716 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
10717
10718 add_pubname (decl, subr_die);
10719 add_arange (decl, subr_die);
10720
10721 #ifdef MIPS_DEBUGGING_INFO
10722 /* Add a reference to the FDE for this routine. */
10723 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
10724 #endif
10725
10726 /* Define the "frame base" location for this routine. We use the
10727 frame pointer or stack pointer registers, since the RTL for local
10728 variables is relative to one of them. */
10729 fp_reg
10730 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
10731 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
10732
10733 #if 0
10734 /* ??? This fails for nested inline functions, because context_display
10735 is not part of the state saved/restored for inline functions. */
10736 if (current_function_needs_context)
10737 add_AT_location_description (subr_die, DW_AT_static_link,
10738 loc_descriptor (lookup_static_chain (decl)));
10739 #endif
10740 }
10741
10742 /* Now output descriptions of the arguments for this function. This gets
10743 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
10744 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
10745 `...' at the end of the formal parameter list. In order to find out if
10746 there was a trailing ellipsis or not, we must instead look at the type
10747 associated with the FUNCTION_DECL. This will be a node of type
10748 FUNCTION_TYPE. If the chain of type nodes hanging off of this
10749 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
10750 an ellipsis at the end. */
10751
10752 /* In the case where we are describing a mere function declaration, all we
10753 need to do here (and all we *can* do here) is to describe the *types* of
10754 its formal parameters. */
10755 if (debug_info_level <= DINFO_LEVEL_TERSE)
10756 ;
10757 else if (declaration)
10758 gen_formal_types_die (decl, subr_die);
10759 else
10760 {
10761 /* Generate DIEs to represent all known formal parameters. */
10762 tree arg_decls = DECL_ARGUMENTS (decl);
10763 tree parm;
10764
10765 /* When generating DIEs, generate the unspecified_parameters DIE
10766 instead if we come across the arg "__builtin_va_alist" */
10767 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
10768 if (TREE_CODE (parm) == PARM_DECL)
10769 {
10770 if (DECL_NAME (parm)
10771 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
10772 "__builtin_va_alist"))
10773 gen_unspecified_parameters_die (parm, subr_die);
10774 else
10775 gen_decl_die (parm, subr_die);
10776 }
10777
10778 /* Decide whether we need an unspecified_parameters DIE at the end.
10779 There are 2 more cases to do this for: 1) the ansi ... declaration -
10780 this is detectable when the end of the arg list is not a
10781 void_type_node 2) an unprototyped function declaration (not a
10782 definition). This just means that we have no info about the
10783 parameters at all. */
10784 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
10785 if (fn_arg_types != NULL)
10786 {
10787 /* this is the prototyped case, check for ... */
10788 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
10789 gen_unspecified_parameters_die (decl, subr_die);
10790 }
10791 else if (DECL_INITIAL (decl) == NULL_TREE)
10792 gen_unspecified_parameters_die (decl, subr_die);
10793 }
10794
10795 /* Output Dwarf info for all of the stuff within the body of the function
10796 (if it has one - it may be just a declaration). */
10797 outer_scope = DECL_INITIAL (decl);
10798
10799 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
10800 a function. This BLOCK actually represents the outermost binding contour
10801 for the function, i.e. the contour in which the function's formal
10802 parameters and labels get declared. Curiously, it appears that the front
10803 end doesn't actually put the PARM_DECL nodes for the current function onto
10804 the BLOCK_VARS list for this outer scope, but are strung off of the
10805 DECL_ARGUMENTS list for the function instead.
10806
10807 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
10808 the LABEL_DECL nodes for the function however, and we output DWARF info
10809 for those in decls_for_scope. Just within the `outer_scope' there will be
10810 a BLOCK node representing the function's outermost pair of curly braces,
10811 and any blocks used for the base and member initializers of a C++
10812 constructor function. */
10813 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
10814 {
10815 current_function_has_inlines = 0;
10816 decls_for_scope (outer_scope, subr_die, 0);
10817
10818 #if 0 && defined (MIPS_DEBUGGING_INFO)
10819 if (current_function_has_inlines)
10820 {
10821 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
10822 if (! comp_unit_has_inlines)
10823 {
10824 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
10825 comp_unit_has_inlines = 1;
10826 }
10827 }
10828 #endif
10829 }
10830 }
10831
10832 /* Generate a DIE to represent a declared data object. */
10833
10834 static void
10835 gen_variable_die (tree decl, dw_die_ref context_die)
10836 {
10837 tree origin = decl_ultimate_origin (decl);
10838 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
10839
10840 dw_die_ref old_die = lookup_decl_die (decl);
10841 int declaration = (DECL_EXTERNAL (decl)
10842 || class_scope_p (context_die));
10843
10844 if (origin != NULL)
10845 add_abstract_origin_attribute (var_die, origin);
10846
10847 /* Loop unrolling can create multiple blocks that refer to the same
10848 static variable, so we must test for the DW_AT_declaration flag.
10849
10850 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
10851 copy decls and set the DECL_ABSTRACT flag on them instead of
10852 sharing them.
10853
10854 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
10855 else if (old_die && TREE_STATIC (decl)
10856 && get_AT_flag (old_die, DW_AT_declaration) == 1)
10857 {
10858 /* This is a definition of a C++ class level static. */
10859 add_AT_die_ref (var_die, DW_AT_specification, old_die);
10860 if (DECL_NAME (decl))
10861 {
10862 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10863
10864 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10865 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
10866
10867 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10868 != (unsigned) DECL_SOURCE_LINE (decl))
10869
10870 add_AT_unsigned (var_die, DW_AT_decl_line,
10871 DECL_SOURCE_LINE (decl));
10872 }
10873 }
10874 else
10875 {
10876 add_name_and_src_coords_attributes (var_die, decl);
10877 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
10878 TREE_THIS_VOLATILE (decl), context_die);
10879
10880 if (TREE_PUBLIC (decl))
10881 add_AT_flag (var_die, DW_AT_external, 1);
10882
10883 if (DECL_ARTIFICIAL (decl))
10884 add_AT_flag (var_die, DW_AT_artificial, 1);
10885
10886 if (TREE_PROTECTED (decl))
10887 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
10888 else if (TREE_PRIVATE (decl))
10889 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
10890 }
10891
10892 if (declaration)
10893 add_AT_flag (var_die, DW_AT_declaration, 1);
10894
10895 if (class_scope_p (context_die) || DECL_ABSTRACT (decl))
10896 equate_decl_number_to_die (decl, var_die);
10897
10898 if (! declaration && ! DECL_ABSTRACT (decl))
10899 {
10900 add_location_or_const_value_attribute (var_die, decl);
10901 add_pubname (decl, var_die);
10902 }
10903 else
10904 tree_add_const_value_attribute (var_die, decl);
10905 }
10906
10907 /* Generate a DIE to represent a label identifier. */
10908
10909 static void
10910 gen_label_die (tree decl, dw_die_ref context_die)
10911 {
10912 tree origin = decl_ultimate_origin (decl);
10913 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
10914 rtx insn;
10915 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10916
10917 if (origin != NULL)
10918 add_abstract_origin_attribute (lbl_die, origin);
10919 else
10920 add_name_and_src_coords_attributes (lbl_die, decl);
10921
10922 if (DECL_ABSTRACT (decl))
10923 equate_decl_number_to_die (decl, lbl_die);
10924 else
10925 {
10926 insn = DECL_RTL (decl);
10927
10928 /* Deleted labels are programmer specified labels which have been
10929 eliminated because of various optimizations. We still emit them
10930 here so that it is possible to put breakpoints on them. */
10931 if (GET_CODE (insn) == CODE_LABEL
10932 || ((GET_CODE (insn) == NOTE
10933 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
10934 {
10935 /* When optimization is enabled (via -O) some parts of the compiler
10936 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
10937 represent source-level labels which were explicitly declared by
10938 the user. This really shouldn't be happening though, so catch
10939 it if it ever does happen. */
10940 if (INSN_DELETED_P (insn))
10941 abort ();
10942
10943 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
10944 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
10945 }
10946 }
10947 }
10948
10949 /* Generate a DIE for a lexical block. */
10950
10951 static void
10952 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
10953 {
10954 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
10955 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10956
10957 if (! BLOCK_ABSTRACT (stmt))
10958 {
10959 if (BLOCK_FRAGMENT_CHAIN (stmt))
10960 {
10961 tree chain;
10962
10963 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
10964
10965 chain = BLOCK_FRAGMENT_CHAIN (stmt);
10966 do
10967 {
10968 add_ranges (chain);
10969 chain = BLOCK_FRAGMENT_CHAIN (chain);
10970 }
10971 while (chain);
10972 add_ranges (NULL);
10973 }
10974 else
10975 {
10976 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
10977 BLOCK_NUMBER (stmt));
10978 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
10979 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
10980 BLOCK_NUMBER (stmt));
10981 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
10982 }
10983 }
10984
10985 decls_for_scope (stmt, stmt_die, depth);
10986 }
10987
10988 /* Generate a DIE for an inlined subprogram. */
10989
10990 static void
10991 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
10992 {
10993 if (! BLOCK_ABSTRACT (stmt))
10994 {
10995 dw_die_ref subr_die
10996 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
10997 tree decl = block_ultimate_origin (stmt);
10998 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10999
11000 /* Emit info for the abstract instance first, if we haven't yet. */
11001 dwarf2out_abstract_function (decl);
11002
11003 add_abstract_origin_attribute (subr_die, decl);
11004 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11005 BLOCK_NUMBER (stmt));
11006 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11007 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11008 BLOCK_NUMBER (stmt));
11009 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11010 decls_for_scope (stmt, subr_die, depth);
11011 current_function_has_inlines = 1;
11012 }
11013 else
11014 /* We may get here if we're the outer block of function A that was
11015 inlined into function B that was inlined into function C. When
11016 generating debugging info for C, dwarf2out_abstract_function(B)
11017 would mark all inlined blocks as abstract, including this one.
11018 So, we wouldn't (and shouldn't) expect labels to be generated
11019 for this one. Instead, just emit debugging info for
11020 declarations within the block. This is particularly important
11021 in the case of initializers of arguments passed from B to us:
11022 if they're statement expressions containing declarations, we
11023 wouldn't generate dies for their abstract variables, and then,
11024 when generating dies for the real variables, we'd die (pun
11025 intended :-) */
11026 gen_lexical_block_die (stmt, context_die, depth);
11027 }
11028
11029 /* Generate a DIE for a field in a record, or structure. */
11030
11031 static void
11032 gen_field_die (tree decl, dw_die_ref context_die)
11033 {
11034 dw_die_ref decl_die;
11035
11036 if (TREE_TYPE (decl) == error_mark_node)
11037 return;
11038
11039 decl_die = new_die (DW_TAG_member, context_die, decl);
11040 add_name_and_src_coords_attributes (decl_die, decl);
11041 add_type_attribute (decl_die, member_declared_type (decl),
11042 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11043 context_die);
11044
11045 if (DECL_BIT_FIELD_TYPE (decl))
11046 {
11047 add_byte_size_attribute (decl_die, decl);
11048 add_bit_size_attribute (decl_die, decl);
11049 add_bit_offset_attribute (decl_die, decl);
11050 }
11051
11052 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11053 add_data_member_location_attribute (decl_die, decl);
11054
11055 if (DECL_ARTIFICIAL (decl))
11056 add_AT_flag (decl_die, DW_AT_artificial, 1);
11057
11058 if (TREE_PROTECTED (decl))
11059 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11060 else if (TREE_PRIVATE (decl))
11061 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11062 }
11063
11064 #if 0
11065 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11066 Use modified_type_die instead.
11067 We keep this code here just in case these types of DIEs may be needed to
11068 represent certain things in other languages (e.g. Pascal) someday. */
11069
11070 static void
11071 gen_pointer_type_die (tree type, dw_die_ref context_die)
11072 {
11073 dw_die_ref ptr_die
11074 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11075
11076 equate_type_number_to_die (type, ptr_die);
11077 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11078 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11079 }
11080
11081 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11082 Use modified_type_die instead.
11083 We keep this code here just in case these types of DIEs may be needed to
11084 represent certain things in other languages (e.g. Pascal) someday. */
11085
11086 static void
11087 gen_reference_type_die (tree type, dw_die_ref context_die)
11088 {
11089 dw_die_ref ref_die
11090 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11091
11092 equate_type_number_to_die (type, ref_die);
11093 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11094 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11095 }
11096 #endif
11097
11098 /* Generate a DIE for a pointer to a member type. */
11099
11100 static void
11101 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11102 {
11103 dw_die_ref ptr_die
11104 = new_die (DW_TAG_ptr_to_member_type,
11105 scope_die_for (type, context_die), type);
11106
11107 equate_type_number_to_die (type, ptr_die);
11108 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11109 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11110 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11111 }
11112
11113 /* Generate the DIE for the compilation unit. */
11114
11115 static dw_die_ref
11116 gen_compile_unit_die (const char *filename)
11117 {
11118 dw_die_ref die;
11119 char producer[250];
11120 const char *language_string = lang_hooks.name;
11121 int language;
11122
11123 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11124
11125 if (filename)
11126 {
11127 add_name_attribute (die, filename);
11128 /* Don't add cwd for <built-in>. */
11129 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11130 add_comp_dir_attribute (die);
11131 }
11132
11133 sprintf (producer, "%s %s", language_string, version_string);
11134
11135 #ifdef MIPS_DEBUGGING_INFO
11136 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11137 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11138 not appear in the producer string, the debugger reaches the conclusion
11139 that the object file is stripped and has no debugging information.
11140 To get the MIPS/SGI debugger to believe that there is debugging
11141 information in the object file, we add a -g to the producer string. */
11142 if (debug_info_level > DINFO_LEVEL_TERSE)
11143 strcat (producer, " -g");
11144 #endif
11145
11146 add_AT_string (die, DW_AT_producer, producer);
11147
11148 if (strcmp (language_string, "GNU C++") == 0)
11149 language = DW_LANG_C_plus_plus;
11150 else if (strcmp (language_string, "GNU Ada") == 0)
11151 language = DW_LANG_Ada95;
11152 else if (strcmp (language_string, "GNU F77") == 0)
11153 language = DW_LANG_Fortran77;
11154 else if (strcmp (language_string, "GNU Pascal") == 0)
11155 language = DW_LANG_Pascal83;
11156 else if (strcmp (language_string, "GNU Java") == 0)
11157 language = DW_LANG_Java;
11158 else
11159 language = DW_LANG_C89;
11160
11161 add_AT_unsigned (die, DW_AT_language, language);
11162 return die;
11163 }
11164
11165 /* Generate a DIE for a string type. */
11166
11167 static void
11168 gen_string_type_die (tree type, dw_die_ref context_die)
11169 {
11170 dw_die_ref type_die
11171 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11172
11173 equate_type_number_to_die (type, type_die);
11174
11175 /* ??? Fudge the string length attribute for now.
11176 TODO: add string length info. */
11177 #if 0
11178 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11179 bound_representation (upper_bound, 0, 'u');
11180 #endif
11181 }
11182
11183 /* Generate the DIE for a base class. */
11184
11185 static void
11186 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11187 {
11188 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11189
11190 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11191 add_data_member_location_attribute (die, binfo);
11192
11193 if (TREE_VIA_VIRTUAL (binfo))
11194 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11195
11196 if (access == access_public_node)
11197 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11198 else if (access == access_protected_node)
11199 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11200 }
11201
11202 /* Generate a DIE for a class member. */
11203
11204 static void
11205 gen_member_die (tree type, dw_die_ref context_die)
11206 {
11207 tree member;
11208 tree binfo = TYPE_BINFO (type);
11209 dw_die_ref child;
11210
11211 /* If this is not an incomplete type, output descriptions of each of its
11212 members. Note that as we output the DIEs necessary to represent the
11213 members of this record or union type, we will also be trying to output
11214 DIEs to represent the *types* of those members. However the `type'
11215 function (above) will specifically avoid generating type DIEs for member
11216 types *within* the list of member DIEs for this (containing) type except
11217 for those types (of members) which are explicitly marked as also being
11218 members of this (containing) type themselves. The g++ front- end can
11219 force any given type to be treated as a member of some other (containing)
11220 type by setting the TYPE_CONTEXT of the given (member) type to point to
11221 the TREE node representing the appropriate (containing) type. */
11222
11223 /* First output info about the base classes. */
11224 if (binfo && BINFO_BASETYPES (binfo))
11225 {
11226 tree bases = BINFO_BASETYPES (binfo);
11227 tree accesses = BINFO_BASEACCESSES (binfo);
11228 int n_bases = TREE_VEC_LENGTH (bases);
11229 int i;
11230
11231 for (i = 0; i < n_bases; i++)
11232 gen_inheritance_die (TREE_VEC_ELT (bases, i),
11233 (accesses ? TREE_VEC_ELT (accesses, i)
11234 : access_public_node), context_die);
11235 }
11236
11237 /* Now output info about the data members and type members. */
11238 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11239 {
11240 /* If we thought we were generating minimal debug info for TYPE
11241 and then changed our minds, some of the member declarations
11242 may have already been defined. Don't define them again, but
11243 do put them in the right order. */
11244
11245 child = lookup_decl_die (member);
11246 if (child)
11247 splice_child_die (context_die, child);
11248 else
11249 gen_decl_die (member, context_die);
11250 }
11251
11252 /* Now output info about the function members (if any). */
11253 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11254 {
11255 /* Don't include clones in the member list. */
11256 if (DECL_ABSTRACT_ORIGIN (member))
11257 continue;
11258
11259 child = lookup_decl_die (member);
11260 if (child)
11261 splice_child_die (context_die, child);
11262 else
11263 gen_decl_die (member, context_die);
11264 }
11265 }
11266
11267 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11268 is set, we pretend that the type was never defined, so we only get the
11269 member DIEs needed by later specification DIEs. */
11270
11271 static void
11272 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
11273 {
11274 dw_die_ref type_die = lookup_type_die (type);
11275 dw_die_ref scope_die = 0;
11276 int nested = 0;
11277 int complete = (TYPE_SIZE (type)
11278 && (! TYPE_STUB_DECL (type)
11279 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11280
11281 if (type_die && ! complete)
11282 return;
11283
11284 if (TYPE_CONTEXT (type) != NULL_TREE
11285 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type)))
11286 nested = 1;
11287
11288 scope_die = scope_die_for (type, context_die);
11289
11290 if (! type_die || (nested && scope_die == comp_unit_die))
11291 /* First occurrence of type or toplevel definition of nested class. */
11292 {
11293 dw_die_ref old_die = type_die;
11294
11295 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11296 ? DW_TAG_structure_type : DW_TAG_union_type,
11297 scope_die, type);
11298 equate_type_number_to_die (type, type_die);
11299 if (old_die)
11300 add_AT_die_ref (type_die, DW_AT_specification, old_die);
11301 else
11302 add_name_attribute (type_die, type_tag (type));
11303 }
11304 else
11305 remove_AT (type_die, DW_AT_declaration);
11306
11307 /* If this type has been completed, then give it a byte_size attribute and
11308 then give a list of members. */
11309 if (complete)
11310 {
11311 /* Prevent infinite recursion in cases where the type of some member of
11312 this type is expressed in terms of this type itself. */
11313 TREE_ASM_WRITTEN (type) = 1;
11314 add_byte_size_attribute (type_die, type);
11315 if (TYPE_STUB_DECL (type) != NULL_TREE)
11316 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11317
11318 /* If the first reference to this type was as the return type of an
11319 inline function, then it may not have a parent. Fix this now. */
11320 if (type_die->die_parent == NULL)
11321 add_child_die (scope_die, type_die);
11322
11323 push_decl_scope (type);
11324 gen_member_die (type, type_die);
11325 pop_decl_scope ();
11326
11327 /* GNU extension: Record what type our vtable lives in. */
11328 if (TYPE_VFIELD (type))
11329 {
11330 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11331
11332 gen_type_die (vtype, context_die);
11333 add_AT_die_ref (type_die, DW_AT_containing_type,
11334 lookup_type_die (vtype));
11335 }
11336 }
11337 else
11338 {
11339 add_AT_flag (type_die, DW_AT_declaration, 1);
11340
11341 /* We don't need to do this for function-local types. */
11342 if (TYPE_STUB_DECL (type)
11343 && ! decl_function_context (TYPE_STUB_DECL (type)))
11344 VARRAY_PUSH_TREE (incomplete_types, type);
11345 }
11346 }
11347
11348 /* Generate a DIE for a subroutine _type_. */
11349
11350 static void
11351 gen_subroutine_type_die (tree type, dw_die_ref context_die)
11352 {
11353 tree return_type = TREE_TYPE (type);
11354 dw_die_ref subr_die
11355 = new_die (DW_TAG_subroutine_type,
11356 scope_die_for (type, context_die), type);
11357
11358 equate_type_number_to_die (type, subr_die);
11359 add_prototyped_attribute (subr_die, type);
11360 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11361 gen_formal_types_die (type, subr_die);
11362 }
11363
11364 /* Generate a DIE for a type definition. */
11365
11366 static void
11367 gen_typedef_die (tree decl, dw_die_ref context_die)
11368 {
11369 dw_die_ref type_die;
11370 tree origin;
11371
11372 if (TREE_ASM_WRITTEN (decl))
11373 return;
11374
11375 TREE_ASM_WRITTEN (decl) = 1;
11376 type_die = new_die (DW_TAG_typedef, context_die, decl);
11377 origin = decl_ultimate_origin (decl);
11378 if (origin != NULL)
11379 add_abstract_origin_attribute (type_die, origin);
11380 else
11381 {
11382 tree type;
11383
11384 add_name_and_src_coords_attributes (type_die, decl);
11385 if (DECL_ORIGINAL_TYPE (decl))
11386 {
11387 type = DECL_ORIGINAL_TYPE (decl);
11388
11389 if (type == TREE_TYPE (decl))
11390 abort ();
11391 else
11392 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11393 }
11394 else
11395 type = TREE_TYPE (decl);
11396
11397 add_type_attribute (type_die, type, TREE_READONLY (decl),
11398 TREE_THIS_VOLATILE (decl), context_die);
11399 }
11400
11401 if (DECL_ABSTRACT (decl))
11402 equate_decl_number_to_die (decl, type_die);
11403 }
11404
11405 /* Generate a type description DIE. */
11406
11407 static void
11408 gen_type_die (tree type, dw_die_ref context_die)
11409 {
11410 int need_pop;
11411
11412 if (type == NULL_TREE || type == error_mark_node)
11413 return;
11414
11415 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11416 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11417 {
11418 if (TREE_ASM_WRITTEN (type))
11419 return;
11420
11421 /* Prevent broken recursion; we can't hand off to the same type. */
11422 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
11423 abort ();
11424
11425 TREE_ASM_WRITTEN (type) = 1;
11426 gen_decl_die (TYPE_NAME (type), context_die);
11427 return;
11428 }
11429
11430 /* We are going to output a DIE to represent the unqualified version
11431 of this type (i.e. without any const or volatile qualifiers) so
11432 get the main variant (i.e. the unqualified version) of this type
11433 now. (Vectors are special because the debugging info is in the
11434 cloned type itself). */
11435 if (TREE_CODE (type) != VECTOR_TYPE)
11436 type = type_main_variant (type);
11437
11438 if (TREE_ASM_WRITTEN (type))
11439 return;
11440
11441 switch (TREE_CODE (type))
11442 {
11443 case ERROR_MARK:
11444 break;
11445
11446 case POINTER_TYPE:
11447 case REFERENCE_TYPE:
11448 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11449 ensures that the gen_type_die recursion will terminate even if the
11450 type is recursive. Recursive types are possible in Ada. */
11451 /* ??? We could perhaps do this for all types before the switch
11452 statement. */
11453 TREE_ASM_WRITTEN (type) = 1;
11454
11455 /* For these types, all that is required is that we output a DIE (or a
11456 set of DIEs) to represent the "basis" type. */
11457 gen_type_die (TREE_TYPE (type), context_die);
11458 break;
11459
11460 case OFFSET_TYPE:
11461 /* This code is used for C++ pointer-to-data-member types.
11462 Output a description of the relevant class type. */
11463 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
11464
11465 /* Output a description of the type of the object pointed to. */
11466 gen_type_die (TREE_TYPE (type), context_die);
11467
11468 /* Now output a DIE to represent this pointer-to-data-member type
11469 itself. */
11470 gen_ptr_to_mbr_type_die (type, context_die);
11471 break;
11472
11473 case SET_TYPE:
11474 gen_type_die (TYPE_DOMAIN (type), context_die);
11475 gen_set_type_die (type, context_die);
11476 break;
11477
11478 case FILE_TYPE:
11479 gen_type_die (TREE_TYPE (type), context_die);
11480 abort (); /* No way to represent these in Dwarf yet! */
11481 break;
11482
11483 case FUNCTION_TYPE:
11484 /* Force out return type (in case it wasn't forced out already). */
11485 gen_type_die (TREE_TYPE (type), context_die);
11486 gen_subroutine_type_die (type, context_die);
11487 break;
11488
11489 case METHOD_TYPE:
11490 /* Force out return type (in case it wasn't forced out already). */
11491 gen_type_die (TREE_TYPE (type), context_die);
11492 gen_subroutine_type_die (type, context_die);
11493 break;
11494
11495 case ARRAY_TYPE:
11496 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11497 {
11498 gen_type_die (TREE_TYPE (type), context_die);
11499 gen_string_type_die (type, context_die);
11500 }
11501 else
11502 gen_array_type_die (type, context_die);
11503 break;
11504
11505 case VECTOR_TYPE:
11506 gen_array_type_die (type, context_die);
11507 break;
11508
11509 case ENUMERAL_TYPE:
11510 case RECORD_TYPE:
11511 case UNION_TYPE:
11512 case QUAL_UNION_TYPE:
11513 /* If this is a nested type whose containing class hasn't been written
11514 out yet, writing it out will cover this one, too. This does not apply
11515 to instantiations of member class templates; they need to be added to
11516 the containing class as they are generated. FIXME: This hurts the
11517 idea of combining type decls from multiple TUs, since we can't predict
11518 what set of template instantiations we'll get. */
11519 if (TYPE_CONTEXT (type)
11520 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11521 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
11522 {
11523 gen_type_die (TYPE_CONTEXT (type), context_die);
11524
11525 if (TREE_ASM_WRITTEN (type))
11526 return;
11527
11528 /* If that failed, attach ourselves to the stub. */
11529 push_decl_scope (TYPE_CONTEXT (type));
11530 context_die = lookup_type_die (TYPE_CONTEXT (type));
11531 need_pop = 1;
11532 }
11533 else
11534 need_pop = 0;
11535
11536 if (TREE_CODE (type) == ENUMERAL_TYPE)
11537 gen_enumeration_type_die (type, context_die);
11538 else
11539 gen_struct_or_union_type_die (type, context_die);
11540
11541 if (need_pop)
11542 pop_decl_scope ();
11543
11544 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11545 it up if it is ever completed. gen_*_type_die will set it for us
11546 when appropriate. */
11547 return;
11548
11549 case VOID_TYPE:
11550 case INTEGER_TYPE:
11551 case REAL_TYPE:
11552 case COMPLEX_TYPE:
11553 case BOOLEAN_TYPE:
11554 case CHAR_TYPE:
11555 /* No DIEs needed for fundamental types. */
11556 break;
11557
11558 case LANG_TYPE:
11559 /* No Dwarf representation currently defined. */
11560 break;
11561
11562 default:
11563 abort ();
11564 }
11565
11566 TREE_ASM_WRITTEN (type) = 1;
11567 }
11568
11569 /* Generate a DIE for a tagged type instantiation. */
11570
11571 static void
11572 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
11573 {
11574 if (type == NULL_TREE || type == error_mark_node)
11575 return;
11576
11577 /* We are going to output a DIE to represent the unqualified version of
11578 this type (i.e. without any const or volatile qualifiers) so make sure
11579 that we have the main variant (i.e. the unqualified version) of this
11580 type now. */
11581 if (type != type_main_variant (type))
11582 abort ();
11583
11584 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11585 an instance of an unresolved type. */
11586
11587 switch (TREE_CODE (type))
11588 {
11589 case ERROR_MARK:
11590 break;
11591
11592 case ENUMERAL_TYPE:
11593 gen_inlined_enumeration_type_die (type, context_die);
11594 break;
11595
11596 case RECORD_TYPE:
11597 gen_inlined_structure_type_die (type, context_die);
11598 break;
11599
11600 case UNION_TYPE:
11601 case QUAL_UNION_TYPE:
11602 gen_inlined_union_type_die (type, context_die);
11603 break;
11604
11605 default:
11606 abort ();
11607 }
11608 }
11609
11610 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11611 things which are local to the given block. */
11612
11613 static void
11614 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
11615 {
11616 int must_output_die = 0;
11617 tree origin;
11618 tree decl;
11619 enum tree_code origin_code;
11620
11621 /* Ignore blocks never really used to make RTL. */
11622 if (stmt == NULL_TREE || !TREE_USED (stmt)
11623 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
11624 return;
11625
11626 /* If the block is one fragment of a non-contiguous block, do not
11627 process the variables, since they will have been done by the
11628 origin block. Do process subblocks. */
11629 if (BLOCK_FRAGMENT_ORIGIN (stmt))
11630 {
11631 tree sub;
11632
11633 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
11634 gen_block_die (sub, context_die, depth + 1);
11635
11636 return;
11637 }
11638
11639 /* Determine the "ultimate origin" of this block. This block may be an
11640 inlined instance of an inlined instance of inline function, so we have
11641 to trace all of the way back through the origin chain to find out what
11642 sort of node actually served as the original seed for the creation of
11643 the current block. */
11644 origin = block_ultimate_origin (stmt);
11645 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
11646
11647 /* Determine if we need to output any Dwarf DIEs at all to represent this
11648 block. */
11649 if (origin_code == FUNCTION_DECL)
11650 /* The outer scopes for inlinings *must* always be represented. We
11651 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
11652 must_output_die = 1;
11653 else
11654 {
11655 /* In the case where the current block represents an inlining of the
11656 "body block" of an inline function, we must *NOT* output any DIE for
11657 this block because we have already output a DIE to represent the whole
11658 inlined function scope and the "body block" of any function doesn't
11659 really represent a different scope according to ANSI C rules. So we
11660 check here to make sure that this block does not represent a "body
11661 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
11662 if (! is_body_block (origin ? origin : stmt))
11663 {
11664 /* Determine if this block directly contains any "significant"
11665 local declarations which we will need to output DIEs for. */
11666 if (debug_info_level > DINFO_LEVEL_TERSE)
11667 /* We are not in terse mode so *any* local declaration counts
11668 as being a "significant" one. */
11669 must_output_die = (BLOCK_VARS (stmt) != NULL);
11670 else
11671 /* We are in terse mode, so only local (nested) function
11672 definitions count as "significant" local declarations. */
11673 for (decl = BLOCK_VARS (stmt);
11674 decl != NULL; decl = TREE_CHAIN (decl))
11675 if (TREE_CODE (decl) == FUNCTION_DECL
11676 && DECL_INITIAL (decl))
11677 {
11678 must_output_die = 1;
11679 break;
11680 }
11681 }
11682 }
11683
11684 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
11685 DIE for any block which contains no significant local declarations at
11686 all. Rather, in such cases we just call `decls_for_scope' so that any
11687 needed Dwarf info for any sub-blocks will get properly generated. Note
11688 that in terse mode, our definition of what constitutes a "significant"
11689 local declaration gets restricted to include only inlined function
11690 instances and local (nested) function definitions. */
11691 if (must_output_die)
11692 {
11693 if (origin_code == FUNCTION_DECL)
11694 gen_inlined_subroutine_die (stmt, context_die, depth);
11695 else
11696 gen_lexical_block_die (stmt, context_die, depth);
11697 }
11698 else
11699 decls_for_scope (stmt, context_die, depth);
11700 }
11701
11702 /* Generate all of the decls declared within a given scope and (recursively)
11703 all of its sub-blocks. */
11704
11705 static void
11706 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
11707 {
11708 tree decl;
11709 tree subblocks;
11710
11711 /* Ignore blocks never really used to make RTL. */
11712 if (stmt == NULL_TREE || ! TREE_USED (stmt))
11713 return;
11714
11715 /* Output the DIEs to represent all of the data objects and typedefs
11716 declared directly within this block but not within any nested
11717 sub-blocks. Also, nested function and tag DIEs have been
11718 generated with a parent of NULL; fix that up now. */
11719 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
11720 {
11721 dw_die_ref die;
11722
11723 if (TREE_CODE (decl) == FUNCTION_DECL)
11724 die = lookup_decl_die (decl);
11725 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
11726 die = lookup_type_die (TREE_TYPE (decl));
11727 else
11728 die = NULL;
11729
11730 if (die != NULL && die->die_parent == NULL)
11731 add_child_die (context_die, die);
11732 else
11733 gen_decl_die (decl, context_die);
11734 }
11735
11736 /* If we're at -g1, we're not interested in subblocks. */
11737 if (debug_info_level <= DINFO_LEVEL_TERSE)
11738 return;
11739
11740 /* Output the DIEs to represent all sub-blocks (and the items declared
11741 therein) of this block. */
11742 for (subblocks = BLOCK_SUBBLOCKS (stmt);
11743 subblocks != NULL;
11744 subblocks = BLOCK_CHAIN (subblocks))
11745 gen_block_die (subblocks, context_die, depth + 1);
11746 }
11747
11748 /* Is this a typedef we can avoid emitting? */
11749
11750 static inline int
11751 is_redundant_typedef (tree decl)
11752 {
11753 if (TYPE_DECL_IS_STUB (decl))
11754 return 1;
11755
11756 if (DECL_ARTIFICIAL (decl)
11757 && DECL_CONTEXT (decl)
11758 && is_tagged_type (DECL_CONTEXT (decl))
11759 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
11760 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
11761 /* Also ignore the artificial member typedef for the class name. */
11762 return 1;
11763
11764 return 0;
11765 }
11766
11767 /* Generate Dwarf debug information for a decl described by DECL. */
11768
11769 static void
11770 gen_decl_die (tree decl, dw_die_ref context_die)
11771 {
11772 tree origin;
11773
11774 if (DECL_P (decl) && DECL_IGNORED_P (decl))
11775 return;
11776
11777 switch (TREE_CODE (decl))
11778 {
11779 case ERROR_MARK:
11780 break;
11781
11782 case CONST_DECL:
11783 /* The individual enumerators of an enum type get output when we output
11784 the Dwarf representation of the relevant enum type itself. */
11785 break;
11786
11787 case FUNCTION_DECL:
11788 /* Don't output any DIEs to represent mere function declarations,
11789 unless they are class members or explicit block externs. */
11790 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
11791 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
11792 break;
11793
11794 /* If we're emitting a clone, emit info for the abstract instance. */
11795 if (DECL_ORIGIN (decl) != decl)
11796 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
11797
11798 /* If we're emitting an out-of-line copy of an inline function,
11799 emit info for the abstract instance and set up to refer to it. */
11800 else if (DECL_INLINE (decl) && ! DECL_ABSTRACT (decl)
11801 && ! class_scope_p (context_die)
11802 /* dwarf2out_abstract_function won't emit a die if this is just
11803 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
11804 that case, because that works only if we have a die. */
11805 && DECL_INITIAL (decl) != NULL_TREE)
11806 {
11807 dwarf2out_abstract_function (decl);
11808 set_decl_origin_self (decl);
11809 }
11810
11811 /* Otherwise we're emitting the primary DIE for this decl. */
11812 else if (debug_info_level > DINFO_LEVEL_TERSE)
11813 {
11814 /* Before we describe the FUNCTION_DECL itself, make sure that we
11815 have described its return type. */
11816 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
11817
11818 /* And its virtual context. */
11819 if (DECL_VINDEX (decl) != NULL_TREE)
11820 gen_type_die (DECL_CONTEXT (decl), context_die);
11821
11822 /* And its containing type. */
11823 origin = decl_class_context (decl);
11824 if (origin != NULL_TREE)
11825 gen_type_die_for_member (origin, decl, context_die);
11826 }
11827
11828 /* Now output a DIE to represent the function itself. */
11829 gen_subprogram_die (decl, context_die);
11830 break;
11831
11832 case TYPE_DECL:
11833 /* If we are in terse mode, don't generate any DIEs to represent any
11834 actual typedefs. */
11835 if (debug_info_level <= DINFO_LEVEL_TERSE)
11836 break;
11837
11838 /* In the special case of a TYPE_DECL node representing the declaration
11839 of some type tag, if the given TYPE_DECL is marked as having been
11840 instantiated from some other (original) TYPE_DECL node (e.g. one which
11841 was generated within the original definition of an inline function) we
11842 have to generate a special (abbreviated) DW_TAG_structure_type,
11843 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
11844 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
11845 {
11846 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
11847 break;
11848 }
11849
11850 if (is_redundant_typedef (decl))
11851 gen_type_die (TREE_TYPE (decl), context_die);
11852 else
11853 /* Output a DIE to represent the typedef itself. */
11854 gen_typedef_die (decl, context_die);
11855 break;
11856
11857 case LABEL_DECL:
11858 if (debug_info_level >= DINFO_LEVEL_NORMAL)
11859 gen_label_die (decl, context_die);
11860 break;
11861
11862 case VAR_DECL:
11863 /* If we are in terse mode, don't generate any DIEs to represent any
11864 variable declarations or definitions. */
11865 if (debug_info_level <= DINFO_LEVEL_TERSE)
11866 break;
11867
11868 /* Output any DIEs that are needed to specify the type of this data
11869 object. */
11870 gen_type_die (TREE_TYPE (decl), context_die);
11871
11872 /* And its containing type. */
11873 origin = decl_class_context (decl);
11874 if (origin != NULL_TREE)
11875 gen_type_die_for_member (origin, decl, context_die);
11876
11877 /* Now output the DIE to represent the data object itself. This gets
11878 complicated because of the possibility that the VAR_DECL really
11879 represents an inlined instance of a formal parameter for an inline
11880 function. */
11881 origin = decl_ultimate_origin (decl);
11882 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
11883 gen_formal_parameter_die (decl, context_die);
11884 else
11885 gen_variable_die (decl, context_die);
11886 break;
11887
11888 case FIELD_DECL:
11889 /* Ignore the nameless fields that are used to skip bits but handle C++
11890 anonymous unions. */
11891 if (DECL_NAME (decl) != NULL_TREE
11892 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
11893 {
11894 gen_type_die (member_declared_type (decl), context_die);
11895 gen_field_die (decl, context_die);
11896 }
11897 break;
11898
11899 case PARM_DECL:
11900 gen_type_die (TREE_TYPE (decl), context_die);
11901 gen_formal_parameter_die (decl, context_die);
11902 break;
11903
11904 case NAMESPACE_DECL:
11905 /* Ignore for now. */
11906 break;
11907
11908 default:
11909 if ((int)TREE_CODE (decl) > NUM_TREE_CODES)
11910 /* Probably some frontend-internal decl. Assume we don't care. */
11911 break;
11912 abort ();
11913 }
11914 }
11915 \f
11916 /* Add Ada "use" clause information for SGI Workshop debugger. */
11917
11918 void
11919 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
11920 {
11921 unsigned int file_index;
11922
11923 if (filename != NULL)
11924 {
11925 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
11926 tree context_list_decl
11927 = build_decl (LABEL_DECL, get_identifier (context_list),
11928 void_type_node);
11929
11930 TREE_PUBLIC (context_list_decl) = TRUE;
11931 add_name_attribute (unit_die, context_list);
11932 file_index = lookup_filename (filename);
11933 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
11934 add_pubname (context_list_decl, unit_die);
11935 }
11936 }
11937
11938 /* Output debug information for global decl DECL. Called from toplev.c after
11939 compilation proper has finished. */
11940
11941 static void
11942 dwarf2out_global_decl (tree decl)
11943 {
11944 /* Output DWARF2 information for file-scope tentative data object
11945 declarations, file-scope (extern) function declarations (which had no
11946 corresponding body) and file-scope tagged type declarations and
11947 definitions which have not yet been forced out. */
11948 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
11949 dwarf2out_decl (decl);
11950 }
11951
11952 /* Write the debugging output for DECL. */
11953
11954 void
11955 dwarf2out_decl (tree decl)
11956 {
11957 dw_die_ref context_die = comp_unit_die;
11958
11959 switch (TREE_CODE (decl))
11960 {
11961 case ERROR_MARK:
11962 return;
11963
11964 case FUNCTION_DECL:
11965 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
11966 builtin function. Explicit programmer-supplied declarations of
11967 these same functions should NOT be ignored however. */
11968 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
11969 return;
11970
11971 /* What we would really like to do here is to filter out all mere
11972 file-scope declarations of file-scope functions which are never
11973 referenced later within this translation unit (and keep all of ones
11974 that *are* referenced later on) but we aren't clairvoyant, so we have
11975 no idea which functions will be referenced in the future (i.e. later
11976 on within the current translation unit). So here we just ignore all
11977 file-scope function declarations which are not also definitions. If
11978 and when the debugger needs to know something about these functions,
11979 it will have to hunt around and find the DWARF information associated
11980 with the definition of the function.
11981
11982 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
11983 nodes represent definitions and which ones represent mere
11984 declarations. We have to check DECL_INITIAL instead. That's because
11985 the C front-end supports some weird semantics for "extern inline"
11986 function definitions. These can get inlined within the current
11987 translation unit (an thus, we need to generate Dwarf info for their
11988 abstract instances so that the Dwarf info for the concrete inlined
11989 instances can have something to refer to) but the compiler never
11990 generates any out-of-lines instances of such things (despite the fact
11991 that they *are* definitions).
11992
11993 The important point is that the C front-end marks these "extern
11994 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
11995 them anyway. Note that the C++ front-end also plays some similar games
11996 for inline function definitions appearing within include files which
11997 also contain `#pragma interface' pragmas. */
11998 if (DECL_INITIAL (decl) == NULL_TREE)
11999 return;
12000
12001 /* If we're a nested function, initially use a parent of NULL; if we're
12002 a plain function, this will be fixed up in decls_for_scope. If
12003 we're a method, it will be ignored, since we already have a DIE. */
12004 if (decl_function_context (decl)
12005 /* But if we're in terse mode, we don't care about scope. */
12006 && debug_info_level > DINFO_LEVEL_TERSE)
12007 context_die = NULL;
12008 break;
12009
12010 case VAR_DECL:
12011 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12012 declaration and if the declaration was never even referenced from
12013 within this entire compilation unit. We suppress these DIEs in
12014 order to save space in the .debug section (by eliminating entries
12015 which are probably useless). Note that we must not suppress
12016 block-local extern declarations (whether used or not) because that
12017 would screw-up the debugger's name lookup mechanism and cause it to
12018 miss things which really ought to be in scope at a given point. */
12019 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12020 return;
12021
12022 /* If we are in terse mode, don't generate any DIEs to represent any
12023 variable declarations or definitions. */
12024 if (debug_info_level <= DINFO_LEVEL_TERSE)
12025 return;
12026 break;
12027
12028 case TYPE_DECL:
12029 /* Don't emit stubs for types unless they are needed by other DIEs. */
12030 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12031 return;
12032
12033 /* Don't bother trying to generate any DIEs to represent any of the
12034 normal built-in types for the language we are compiling. */
12035 if (DECL_SOURCE_LINE (decl) == 0)
12036 {
12037 /* OK, we need to generate one for `bool' so GDB knows what type
12038 comparisons have. */
12039 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12040 == DW_LANG_C_plus_plus)
12041 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12042 && ! DECL_IGNORED_P (decl))
12043 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12044
12045 return;
12046 }
12047
12048 /* If we are in terse mode, don't generate any DIEs for types. */
12049 if (debug_info_level <= DINFO_LEVEL_TERSE)
12050 return;
12051
12052 /* If we're a function-scope tag, initially use a parent of NULL;
12053 this will be fixed up in decls_for_scope. */
12054 if (decl_function_context (decl))
12055 context_die = NULL;
12056
12057 break;
12058
12059 default:
12060 return;
12061 }
12062
12063 gen_decl_die (decl, context_die);
12064 }
12065
12066 /* Output a marker (i.e. a label) for the beginning of the generated code for
12067 a lexical block. */
12068
12069 static void
12070 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
12071 unsigned int blocknum)
12072 {
12073 function_section (current_function_decl);
12074 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12075 }
12076
12077 /* Output a marker (i.e. a label) for the end of the generated code for a
12078 lexical block. */
12079
12080 static void
12081 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
12082 {
12083 function_section (current_function_decl);
12084 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12085 }
12086
12087 /* Returns nonzero if it is appropriate not to emit any debugging
12088 information for BLOCK, because it doesn't contain any instructions.
12089
12090 Don't allow this for blocks with nested functions or local classes
12091 as we would end up with orphans, and in the presence of scheduling
12092 we may end up calling them anyway. */
12093
12094 static bool
12095 dwarf2out_ignore_block (tree block)
12096 {
12097 tree decl;
12098
12099 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12100 if (TREE_CODE (decl) == FUNCTION_DECL
12101 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12102 return 0;
12103
12104 return 1;
12105 }
12106
12107 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12108 dwarf2out.c) and return its "index". The index of each (known) filename is
12109 just a unique number which is associated with only that one filename. We
12110 need such numbers for the sake of generating labels (in the .debug_sfnames
12111 section) and references to those files numbers (in the .debug_srcinfo
12112 and.debug_macinfo sections). If the filename given as an argument is not
12113 found in our current list, add it to the list and assign it the next
12114 available unique index number. In order to speed up searches, we remember
12115 the index of the filename was looked up last. This handles the majority of
12116 all searches. */
12117
12118 static unsigned
12119 lookup_filename (const char *file_name)
12120 {
12121 size_t i, n;
12122 char *save_file_name;
12123
12124 /* Check to see if the file name that was searched on the previous
12125 call matches this file name. If so, return the index. */
12126 if (file_table_last_lookup_index != 0)
12127 {
12128 const char *last
12129 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12130 if (strcmp (file_name, last) == 0)
12131 return file_table_last_lookup_index;
12132 }
12133
12134 /* Didn't match the previous lookup, search the table */
12135 n = VARRAY_ACTIVE_SIZE (file_table);
12136 for (i = 1; i < n; i++)
12137 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12138 {
12139 file_table_last_lookup_index = i;
12140 return i;
12141 }
12142
12143 /* Add the new entry to the end of the filename table. */
12144 file_table_last_lookup_index = n;
12145 save_file_name = (char *) ggc_strdup (file_name);
12146 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12147 VARRAY_PUSH_UINT (file_table_emitted, 0);
12148
12149 return i;
12150 }
12151
12152 static int
12153 maybe_emit_file (int fileno)
12154 {
12155 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12156 {
12157 if (!VARRAY_UINT (file_table_emitted, fileno))
12158 {
12159 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12160 fprintf (asm_out_file, "\t.file %u ",
12161 VARRAY_UINT (file_table_emitted, fileno));
12162 output_quoted_string (asm_out_file,
12163 VARRAY_CHAR_PTR (file_table, fileno));
12164 fputc ('\n', asm_out_file);
12165 }
12166 return VARRAY_UINT (file_table_emitted, fileno);
12167 }
12168 else
12169 return fileno;
12170 }
12171
12172 static void
12173 init_file_table (void)
12174 {
12175 /* Allocate the initial hunk of the file_table. */
12176 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
12177 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
12178
12179 /* Skip the first entry - file numbers begin at 1. */
12180 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
12181 VARRAY_PUSH_UINT (file_table_emitted, 0);
12182 file_table_last_lookup_index = 0;
12183 }
12184
12185 /* Output a label to mark the beginning of a source code line entry
12186 and record information relating to this source line, in
12187 'line_info_table' for later output of the .debug_line section. */
12188
12189 static void
12190 dwarf2out_source_line (unsigned int line, const char *filename)
12191 {
12192 if (debug_info_level >= DINFO_LEVEL_NORMAL
12193 && line != 0)
12194 {
12195 function_section (current_function_decl);
12196
12197 /* If requested, emit something human-readable. */
12198 if (flag_debug_asm)
12199 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
12200 filename, line);
12201
12202 if (DWARF2_ASM_LINE_DEBUG_INFO)
12203 {
12204 unsigned file_num = lookup_filename (filename);
12205
12206 file_num = maybe_emit_file (file_num);
12207
12208 /* Emit the .loc directive understood by GNU as. */
12209 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
12210
12211 /* Indicate that line number info exists. */
12212 line_info_table_in_use++;
12213
12214 /* Indicate that multiple line number tables exist. */
12215 if (DECL_SECTION_NAME (current_function_decl))
12216 separate_line_info_table_in_use++;
12217 }
12218 else if (DECL_SECTION_NAME (current_function_decl))
12219 {
12220 dw_separate_line_info_ref line_info;
12221 (*targetm.asm_out.internal_label) (asm_out_file, SEPARATE_LINE_CODE_LABEL,
12222 separate_line_info_table_in_use);
12223
12224 /* expand the line info table if necessary */
12225 if (separate_line_info_table_in_use
12226 == separate_line_info_table_allocated)
12227 {
12228 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12229 separate_line_info_table
12230 = ggc_realloc (separate_line_info_table,
12231 separate_line_info_table_allocated
12232 * sizeof (dw_separate_line_info_entry));
12233 memset (separate_line_info_table
12234 + separate_line_info_table_in_use,
12235 0,
12236 (LINE_INFO_TABLE_INCREMENT
12237 * sizeof (dw_separate_line_info_entry)));
12238 }
12239
12240 /* Add the new entry at the end of the line_info_table. */
12241 line_info
12242 = &separate_line_info_table[separate_line_info_table_in_use++];
12243 line_info->dw_file_num = lookup_filename (filename);
12244 line_info->dw_line_num = line;
12245 line_info->function = current_function_funcdef_no;
12246 }
12247 else
12248 {
12249 dw_line_info_ref line_info;
12250
12251 (*targetm.asm_out.internal_label) (asm_out_file, LINE_CODE_LABEL,
12252 line_info_table_in_use);
12253
12254 /* Expand the line info table if necessary. */
12255 if (line_info_table_in_use == line_info_table_allocated)
12256 {
12257 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12258 line_info_table
12259 = ggc_realloc (line_info_table,
12260 (line_info_table_allocated
12261 * sizeof (dw_line_info_entry)));
12262 memset (line_info_table + line_info_table_in_use, 0,
12263 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
12264 }
12265
12266 /* Add the new entry at the end of the line_info_table. */
12267 line_info = &line_info_table[line_info_table_in_use++];
12268 line_info->dw_file_num = lookup_filename (filename);
12269 line_info->dw_line_num = line;
12270 }
12271 }
12272 }
12273
12274 /* Record the beginning of a new source file. */
12275
12276 static void
12277 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
12278 {
12279 if (flag_eliminate_dwarf2_dups && !is_main_source)
12280 {
12281 /* Record the beginning of the file for break_out_includes. */
12282 dw_die_ref bincl_die;
12283
12284 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
12285 add_AT_string (bincl_die, DW_AT_name, filename);
12286 }
12287
12288 is_main_source = 0;
12289
12290 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12291 {
12292 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12293 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
12294 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
12295 lineno);
12296 maybe_emit_file (lookup_filename (filename));
12297 dw2_asm_output_data_uleb128 (lookup_filename (filename),
12298 "Filename we just started");
12299 }
12300 }
12301
12302 /* Record the end of a source file. */
12303
12304 static void
12305 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
12306 {
12307 if (flag_eliminate_dwarf2_dups)
12308 /* Record the end of the file for break_out_includes. */
12309 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
12310
12311 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12312 {
12313 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12314 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12315 }
12316 }
12317
12318 /* Called from debug_define in toplev.c. The `buffer' parameter contains
12319 the tail part of the directive line, i.e. the part which is past the
12320 initial whitespace, #, whitespace, directive-name, whitespace part. */
12321
12322 static void
12323 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
12324 const char *buffer ATTRIBUTE_UNUSED)
12325 {
12326 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12327 {
12328 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12329 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
12330 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12331 dw2_asm_output_nstring (buffer, -1, "The macro");
12332 }
12333 }
12334
12335 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
12336 the tail part of the directive line, i.e. the part which is past the
12337 initial whitespace, #, whitespace, directive-name, whitespace part. */
12338
12339 static void
12340 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
12341 const char *buffer ATTRIBUTE_UNUSED)
12342 {
12343 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12344 {
12345 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12346 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
12347 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12348 dw2_asm_output_nstring (buffer, -1, "The macro");
12349 }
12350 }
12351
12352 /* Set up for Dwarf output at the start of compilation. */
12353
12354 static void
12355 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
12356 {
12357 init_file_table ();
12358
12359 /* Allocate the initial hunk of the decl_die_table. */
12360 decl_die_table = ggc_alloc_cleared (DECL_DIE_TABLE_INCREMENT
12361 * sizeof (dw_die_ref));
12362 decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
12363 decl_die_table_in_use = 0;
12364
12365 /* Allocate the initial hunk of the decl_scope_table. */
12366 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
12367
12368 /* Allocate the initial hunk of the abbrev_die_table. */
12369 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
12370 * sizeof (dw_die_ref));
12371 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
12372 /* Zero-th entry is allocated, but unused */
12373 abbrev_die_table_in_use = 1;
12374
12375 /* Allocate the initial hunk of the line_info_table. */
12376 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
12377 * sizeof (dw_line_info_entry));
12378 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
12379
12380 /* Zero-th entry is allocated, but unused */
12381 line_info_table_in_use = 1;
12382
12383 /* Generate the initial DIE for the .debug section. Note that the (string)
12384 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
12385 will (typically) be a relative pathname and that this pathname should be
12386 taken as being relative to the directory from which the compiler was
12387 invoked when the given (base) source file was compiled. We will fill
12388 in this value in dwarf2out_finish. */
12389 comp_unit_die = gen_compile_unit_die (NULL);
12390 is_main_source = 1;
12391
12392 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
12393
12394 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
12395
12396 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
12397 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
12398 DEBUG_ABBREV_SECTION_LABEL, 0);
12399 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12400 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
12401 else
12402 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
12403
12404 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
12405 DEBUG_INFO_SECTION_LABEL, 0);
12406 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
12407 DEBUG_LINE_SECTION_LABEL, 0);
12408 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
12409 DEBUG_RANGES_SECTION_LABEL, 0);
12410 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12411 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
12412 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
12413 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
12414 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12415 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
12416
12417 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12418 {
12419 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12420 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
12421 DEBUG_MACINFO_SECTION_LABEL, 0);
12422 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
12423 }
12424
12425 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12426 {
12427 text_section ();
12428 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
12429 }
12430 }
12431
12432 /* A helper function for dwarf2out_finish called through
12433 ht_forall. Emit one queued .debug_str string. */
12434
12435 static int
12436 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
12437 {
12438 struct indirect_string_node *node = (struct indirect_string_node *) *h;
12439
12440 if (node->form == DW_FORM_strp)
12441 {
12442 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
12443 ASM_OUTPUT_LABEL (asm_out_file, node->label);
12444 assemble_string (node->str, strlen (node->str) + 1);
12445 }
12446
12447 return 1;
12448 }
12449
12450
12451
12452 /* Clear the marks for a die and its children.
12453 Be cool if the mark isn't set. */
12454
12455 static void
12456 prune_unmark_dies (dw_die_ref die)
12457 {
12458 dw_die_ref c;
12459 die->die_mark = 0;
12460 for (c = die->die_child; c; c = c->die_sib)
12461 prune_unmark_dies (c);
12462 }
12463
12464
12465 /* Given DIE that we're marking as used, find any other dies
12466 it references as attributes and mark them as used. */
12467
12468 static void
12469 prune_unused_types_walk_attribs (dw_die_ref die)
12470 {
12471 dw_attr_ref a;
12472
12473 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
12474 {
12475 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
12476 {
12477 /* A reference to another DIE.
12478 Make sure that it will get emitted. */
12479 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
12480 }
12481 else if (a->dw_attr == DW_AT_decl_file)
12482 {
12483 /* A reference to a file. Make sure the file name is emitted. */
12484 a->dw_attr_val.v.val_unsigned =
12485 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
12486 }
12487 }
12488 }
12489
12490
12491 /* Mark DIE as being used. If DOKIDS is true, then walk down
12492 to DIE's children. */
12493
12494 static void
12495 prune_unused_types_mark (dw_die_ref die, int dokids)
12496 {
12497 dw_die_ref c;
12498
12499 if (die->die_mark == 0)
12500 {
12501 /* We haven't done this node yet. Mark it as used. */
12502 die->die_mark = 1;
12503
12504 /* We also have to mark its parents as used.
12505 (But we don't want to mark our parents' kids due to this.) */
12506 if (die->die_parent)
12507 prune_unused_types_mark (die->die_parent, 0);
12508
12509 /* Mark any referenced nodes. */
12510 prune_unused_types_walk_attribs (die);
12511 }
12512
12513 if (dokids && die->die_mark != 2)
12514 {
12515 /* We need to walk the children, but haven't done so yet.
12516 Remember that we've walked the kids. */
12517 die->die_mark = 2;
12518
12519 /* Walk them. */
12520 for (c = die->die_child; c; c = c->die_sib)
12521 {
12522 /* If this is an array type, we need to make sure our
12523 kids get marked, even if they're types. */
12524 if (die->die_tag == DW_TAG_array_type)
12525 prune_unused_types_mark (c, 1);
12526 else
12527 prune_unused_types_walk (c);
12528 }
12529 }
12530 }
12531
12532
12533 /* Walk the tree DIE and mark types that we actually use. */
12534
12535 static void
12536 prune_unused_types_walk (dw_die_ref die)
12537 {
12538 dw_die_ref c;
12539
12540 /* Don't do anything if this node is already marked. */
12541 if (die->die_mark)
12542 return;
12543
12544 switch (die->die_tag) {
12545 case DW_TAG_const_type:
12546 case DW_TAG_packed_type:
12547 case DW_TAG_pointer_type:
12548 case DW_TAG_reference_type:
12549 case DW_TAG_volatile_type:
12550 case DW_TAG_typedef:
12551 case DW_TAG_array_type:
12552 case DW_TAG_structure_type:
12553 case DW_TAG_union_type:
12554 case DW_TAG_class_type:
12555 case DW_TAG_friend:
12556 case DW_TAG_variant_part:
12557 case DW_TAG_enumeration_type:
12558 case DW_TAG_subroutine_type:
12559 case DW_TAG_string_type:
12560 case DW_TAG_set_type:
12561 case DW_TAG_subrange_type:
12562 case DW_TAG_ptr_to_member_type:
12563 case DW_TAG_file_type:
12564 /* It's a type node --- don't mark it. */
12565 return;
12566
12567 default:
12568 /* Mark everything else. */
12569 break;
12570 }
12571
12572 die->die_mark = 1;
12573
12574 /* Now, mark any dies referenced from here. */
12575 prune_unused_types_walk_attribs (die);
12576
12577 /* Mark children. */
12578 for (c = die->die_child; c; c = c->die_sib)
12579 prune_unused_types_walk (c);
12580 }
12581
12582
12583 /* Remove from the tree DIE any dies that aren't marked. */
12584
12585 static void
12586 prune_unused_types_prune (dw_die_ref die)
12587 {
12588 dw_die_ref c, p, n;
12589 if (!die->die_mark)
12590 abort();
12591
12592 p = NULL;
12593 for (c = die->die_child; c; c = n)
12594 {
12595 n = c->die_sib;
12596 if (c->die_mark)
12597 {
12598 prune_unused_types_prune (c);
12599 p = c;
12600 }
12601 else
12602 {
12603 if (p)
12604 p->die_sib = n;
12605 else
12606 die->die_child = n;
12607 free_die (c);
12608 }
12609 }
12610 }
12611
12612
12613 /* Remove dies representing declarations that we never use. */
12614
12615 static void
12616 prune_unused_types (void)
12617 {
12618 unsigned int i;
12619 limbo_die_node *node;
12620
12621 /* Clear all the marks. */
12622 prune_unmark_dies (comp_unit_die);
12623 for (node = limbo_die_list; node; node = node->next)
12624 prune_unmark_dies (node->die);
12625
12626 /* Set the mark on nodes that are actually used. */
12627 prune_unused_types_walk (comp_unit_die);
12628 for (node = limbo_die_list; node; node = node->next)
12629 prune_unused_types_walk (node->die);
12630
12631 /* Also set the mark on nodes referenced from the
12632 pubname_table or arange_table. */
12633 for (i = 0; i < pubname_table_in_use; i++)
12634 prune_unused_types_mark (pubname_table[i].die, 1);
12635 for (i = 0; i < arange_table_in_use; i++)
12636 prune_unused_types_mark (arange_table[i], 1);
12637
12638 /* Get rid of nodes that aren't marked. */
12639 prune_unused_types_prune (comp_unit_die);
12640 for (node = limbo_die_list; node; node = node->next)
12641 prune_unused_types_prune (node->die);
12642
12643 /* Leave the marks clear. */
12644 prune_unmark_dies (comp_unit_die);
12645 for (node = limbo_die_list; node; node = node->next)
12646 prune_unmark_dies (node->die);
12647 }
12648
12649 /* Output stuff that dwarf requires at the end of every file,
12650 and generate the DWARF-2 debugging info. */
12651
12652 static void
12653 dwarf2out_finish (const char *filename)
12654 {
12655 limbo_die_node *node, *next_node;
12656 dw_die_ref die = 0;
12657
12658 /* Add the name for the main input file now. We delayed this from
12659 dwarf2out_init to avoid complications with PCH. */
12660 add_name_attribute (comp_unit_die, filename);
12661 if (filename[0] != DIR_SEPARATOR)
12662 add_comp_dir_attribute (comp_unit_die);
12663 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
12664 {
12665 size_t i;
12666 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
12667 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
12668 /* Don't add cwd for <built-in>. */
12669 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
12670 {
12671 add_comp_dir_attribute (comp_unit_die);
12672 break;
12673 }
12674 }
12675
12676 /* Traverse the limbo die list, and add parent/child links. The only
12677 dies without parents that should be here are concrete instances of
12678 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
12679 For concrete instances, we can get the parent die from the abstract
12680 instance. */
12681 for (node = limbo_die_list; node; node = next_node)
12682 {
12683 next_node = node->next;
12684 die = node->die;
12685
12686 if (die->die_parent == NULL)
12687 {
12688 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
12689 tree context;
12690
12691 if (origin)
12692 add_child_die (origin->die_parent, die);
12693 else if (die == comp_unit_die)
12694 ;
12695 /* If this was an expression for a bound involved in a function
12696 return type, it may be a SAVE_EXPR for which we weren't able
12697 to find a DIE previously. So try now. */
12698 else if (node->created_for
12699 && TREE_CODE (node->created_for) == SAVE_EXPR
12700 && 0 != (origin = (lookup_decl_die
12701 (SAVE_EXPR_CONTEXT
12702 (node->created_for)))))
12703 add_child_die (origin, die);
12704 else if (errorcount > 0 || sorrycount > 0)
12705 /* It's OK to be confused by errors in the input. */
12706 add_child_die (comp_unit_die, die);
12707 else if (node->created_for
12708 && ((DECL_P (node->created_for)
12709 && (context = DECL_CONTEXT (node->created_for)))
12710 || (TYPE_P (node->created_for)
12711 && (context = TYPE_CONTEXT (node->created_for))))
12712 && TREE_CODE (context) == FUNCTION_DECL)
12713 {
12714 /* In certain situations, the lexical block containing a
12715 nested function can be optimized away, which results
12716 in the nested function die being orphaned. Likewise
12717 with the return type of that nested function. Force
12718 this to be a child of the containing function. */
12719 origin = lookup_decl_die (context);
12720 if (! origin)
12721 abort ();
12722 add_child_die (origin, die);
12723 }
12724 else
12725 abort ();
12726 }
12727 }
12728
12729 limbo_die_list = NULL;
12730
12731 /* Walk through the list of incomplete types again, trying once more to
12732 emit full debugging info for them. */
12733 retry_incomplete_types ();
12734
12735 /* We need to reverse all the dies before break_out_includes, or
12736 we'll see the end of an include file before the beginning. */
12737 reverse_all_dies (comp_unit_die);
12738
12739 if (flag_eliminate_unused_debug_types)
12740 prune_unused_types ();
12741
12742 /* Generate separate CUs for each of the include files we've seen.
12743 They will go into limbo_die_list. */
12744 if (flag_eliminate_dwarf2_dups)
12745 break_out_includes (comp_unit_die);
12746
12747 /* Traverse the DIE's and add add sibling attributes to those DIE's
12748 that have children. */
12749 add_sibling_attributes (comp_unit_die);
12750 for (node = limbo_die_list; node; node = node->next)
12751 add_sibling_attributes (node->die);
12752
12753 /* Output a terminator label for the .text section. */
12754 text_section ();
12755 (*targetm.asm_out.internal_label) (asm_out_file, TEXT_END_LABEL, 0);
12756
12757 /* Output the source line correspondence table. We must do this
12758 even if there is no line information. Otherwise, on an empty
12759 translation unit, we will generate a present, but empty,
12760 .debug_info section. IRIX 6.5 `nm' will then complain when
12761 examining the file. */
12762 if (! DWARF2_ASM_LINE_DEBUG_INFO)
12763 {
12764 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12765 output_line_info ();
12766 }
12767
12768 /* Output location list section if necessary. */
12769 if (have_location_lists)
12770 {
12771 /* Output the location lists info. */
12772 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
12773 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
12774 DEBUG_LOC_SECTION_LABEL, 0);
12775 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
12776 output_location_lists (die);
12777 have_location_lists = 0;
12778 }
12779
12780 /* We can only use the low/high_pc attributes if all of the code was
12781 in .text. */
12782 if (separate_line_info_table_in_use == 0)
12783 {
12784 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
12785 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
12786 }
12787
12788 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
12789 "base address". Use zero so that these addresses become absolute. */
12790 else if (have_location_lists || ranges_table_in_use)
12791 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
12792
12793 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12794 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
12795 debug_line_section_label);
12796
12797 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12798 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
12799
12800 /* Output all of the compilation units. We put the main one last so that
12801 the offsets are available to output_pubnames. */
12802 for (node = limbo_die_list; node; node = node->next)
12803 output_comp_unit (node->die, 0);
12804
12805 output_comp_unit (comp_unit_die, 0);
12806
12807 /* Output the abbreviation table. */
12808 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12809 output_abbrev_section ();
12810
12811 /* Output public names table if necessary. */
12812 if (pubname_table_in_use)
12813 {
12814 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
12815 output_pubnames ();
12816 }
12817
12818 /* Output the address range information. We only put functions in the arange
12819 table, so don't write it out if we don't have any. */
12820 if (fde_table_in_use)
12821 {
12822 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
12823 output_aranges ();
12824 }
12825
12826 /* Output ranges section if necessary. */
12827 if (ranges_table_in_use)
12828 {
12829 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
12830 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
12831 output_ranges ();
12832 }
12833
12834 /* Have to end the primary source file. */
12835 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12836 {
12837 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12838 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12839 dw2_asm_output_data (1, 0, "End compilation unit");
12840 }
12841
12842 /* If we emitted any DW_FORM_strp form attribute, output the string
12843 table too. */
12844 if (debug_str_hash)
12845 htab_traverse (debug_str_hash, output_indirect_string, NULL);
12846 }
12847 #else
12848
12849 /* This should never be used, but its address is needed for comparisons. */
12850 const struct gcc_debug_hooks dwarf2_debug_hooks;
12851
12852 #endif /* DWARF2_DEBUGGING_INFO */
12853
12854 #include "gt-dwarf2out.h"