c-decl.c (grokdeclarator): Don't frob current_function_decl around variable_size.
[gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
70
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
74
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
89
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
92
93 /* Decide whether we want to emit frame unwind information for the current
94 translation unit. */
95
96 int
97 dwarf2out_do_frame (void)
98 {
99 return (write_symbols == DWARF2_DEBUG
100 || write_symbols == VMS_AND_DWARF2_DEBUG
101 #ifdef DWARF2_FRAME_INFO
102 || DWARF2_FRAME_INFO
103 #endif
104 #ifdef DWARF2_UNWIND_INFO
105 || flag_unwind_tables
106 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
107 #endif
108 );
109 }
110
111 /* The size of the target's pointer type. */
112 #ifndef PTR_SIZE
113 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
114 #endif
115
116 /* Various versions of targetm.eh_frame_section. Note these must appear
117 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
118
119 /* Version of targetm.eh_frame_section for systems with named sections. */
120 void
121 named_section_eh_frame_section (void)
122 {
123 #ifdef EH_FRAME_SECTION_NAME
124 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
125 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
126 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
127 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
128 int flags;
129
130 flags = (! flag_pic
131 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
132 && (fde_encoding & 0x70) != DW_EH_PE_aligned
133 && (per_encoding & 0x70) != DW_EH_PE_absptr
134 && (per_encoding & 0x70) != DW_EH_PE_aligned
135 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
136 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
137 ? 0 : SECTION_WRITE;
138 named_section_flags (EH_FRAME_SECTION_NAME, flags);
139 #else
140 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
141 #endif
142 #endif
143 }
144
145 /* Version of targetm.eh_frame_section for systems using collect2. */
146 void
147 collect2_eh_frame_section (void)
148 {
149 tree label = get_file_function_name ('F');
150
151 data_section ();
152 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
153 targetm.asm_out.globalize_label (asm_out_file, IDENTIFIER_POINTER (label));
154 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
155 }
156
157 /* Default version of targetm.eh_frame_section. */
158 void
159 default_eh_frame_section (void)
160 {
161 #ifdef EH_FRAME_SECTION_NAME
162 named_section_eh_frame_section ();
163 #else
164 collect2_eh_frame_section ();
165 #endif
166 }
167
168 /* Array of RTXes referenced by the debugging information, which therefore
169 must be kept around forever. */
170 static GTY(()) varray_type used_rtx_varray;
171
172 /* A pointer to the base of a list of incomplete types which might be
173 completed at some later time. incomplete_types_list needs to be a VARRAY
174 because we want to tell the garbage collector about it. */
175 static GTY(()) varray_type incomplete_types;
176
177 /* A pointer to the base of a table of references to declaration
178 scopes. This table is a display which tracks the nesting
179 of declaration scopes at the current scope and containing
180 scopes. This table is used to find the proper place to
181 define type declaration DIE's. */
182 static GTY(()) varray_type decl_scope_table;
183
184 /* How to start an assembler comment. */
185 #ifndef ASM_COMMENT_START
186 #define ASM_COMMENT_START ";#"
187 #endif
188
189 typedef struct dw_cfi_struct *dw_cfi_ref;
190 typedef struct dw_fde_struct *dw_fde_ref;
191 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
192
193 /* Call frames are described using a sequence of Call Frame
194 Information instructions. The register number, offset
195 and address fields are provided as possible operands;
196 their use is selected by the opcode field. */
197
198 enum dw_cfi_oprnd_type {
199 dw_cfi_oprnd_unused,
200 dw_cfi_oprnd_reg_num,
201 dw_cfi_oprnd_offset,
202 dw_cfi_oprnd_addr,
203 dw_cfi_oprnd_loc
204 };
205
206 typedef union dw_cfi_oprnd_struct GTY(())
207 {
208 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
209 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
210 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
211 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
212 }
213 dw_cfi_oprnd;
214
215 typedef struct dw_cfi_struct GTY(())
216 {
217 dw_cfi_ref dw_cfi_next;
218 enum dwarf_call_frame_info dw_cfi_opc;
219 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
220 dw_cfi_oprnd1;
221 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
222 dw_cfi_oprnd2;
223 }
224 dw_cfi_node;
225
226 /* This is how we define the location of the CFA. We use to handle it
227 as REG + OFFSET all the time, but now it can be more complex.
228 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
229 Instead of passing around REG and OFFSET, we pass a copy
230 of this structure. */
231 typedef struct cfa_loc GTY(())
232 {
233 unsigned long reg;
234 HOST_WIDE_INT offset;
235 HOST_WIDE_INT base_offset;
236 int indirect; /* 1 if CFA is accessed via a dereference. */
237 } dw_cfa_location;
238
239 /* All call frame descriptions (FDE's) in the GCC generated DWARF
240 refer to a single Common Information Entry (CIE), defined at
241 the beginning of the .debug_frame section. This use of a single
242 CIE obviates the need to keep track of multiple CIE's
243 in the DWARF generation routines below. */
244
245 typedef struct dw_fde_struct GTY(())
246 {
247 tree decl;
248 const char *dw_fde_begin;
249 const char *dw_fde_current_label;
250 const char *dw_fde_end;
251 dw_cfi_ref dw_fde_cfi;
252 unsigned funcdef_number;
253 unsigned all_throwers_are_sibcalls : 1;
254 unsigned nothrow : 1;
255 unsigned uses_eh_lsda : 1;
256 }
257 dw_fde_node;
258
259 /* Maximum size (in bytes) of an artificially generated label. */
260 #define MAX_ARTIFICIAL_LABEL_BYTES 30
261
262 /* The size of addresses as they appear in the Dwarf 2 data.
263 Some architectures use word addresses to refer to code locations,
264 but Dwarf 2 info always uses byte addresses. On such machines,
265 Dwarf 2 addresses need to be larger than the architecture's
266 pointers. */
267 #ifndef DWARF2_ADDR_SIZE
268 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
269 #endif
270
271 /* The size in bytes of a DWARF field indicating an offset or length
272 relative to a debug info section, specified to be 4 bytes in the
273 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
274 as PTR_SIZE. */
275
276 #ifndef DWARF_OFFSET_SIZE
277 #define DWARF_OFFSET_SIZE 4
278 #endif
279
280 /* According to the (draft) DWARF 3 specification, the initial length
281 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
282 bytes are 0xffffffff, followed by the length stored in the next 8
283 bytes.
284
285 However, the SGI/MIPS ABI uses an initial length which is equal to
286 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
287
288 #ifndef DWARF_INITIAL_LENGTH_SIZE
289 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
290 #endif
291
292 #define DWARF_VERSION 2
293
294 /* Round SIZE up to the nearest BOUNDARY. */
295 #define DWARF_ROUND(SIZE,BOUNDARY) \
296 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
297
298 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
299 #ifndef DWARF_CIE_DATA_ALIGNMENT
300 #ifdef STACK_GROWS_DOWNWARD
301 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
302 #else
303 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
304 #endif
305 #endif
306
307 /* A pointer to the base of a table that contains frame description
308 information for each routine. */
309 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
310
311 /* Number of elements currently allocated for fde_table. */
312 static GTY(()) unsigned fde_table_allocated;
313
314 /* Number of elements in fde_table currently in use. */
315 static GTY(()) unsigned fde_table_in_use;
316
317 /* Size (in elements) of increments by which we may expand the
318 fde_table. */
319 #define FDE_TABLE_INCREMENT 256
320
321 /* A list of call frame insns for the CIE. */
322 static GTY(()) dw_cfi_ref cie_cfi_head;
323
324 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
325 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
326 attribute that accelerates the lookup of the FDE associated
327 with the subprogram. This variable holds the table index of the FDE
328 associated with the current function (body) definition. */
329 static unsigned current_funcdef_fde;
330 #endif
331
332 struct indirect_string_node GTY(())
333 {
334 const char *str;
335 unsigned int refcount;
336 unsigned int form;
337 char *label;
338 };
339
340 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
341
342 static GTY(()) int dw2_string_counter;
343 static GTY(()) unsigned long dwarf2out_cfi_label_num;
344
345 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
346
347 /* Forward declarations for functions defined in this file. */
348
349 static char *stripattributes (const char *);
350 static const char *dwarf_cfi_name (unsigned);
351 static dw_cfi_ref new_cfi (void);
352 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
353 static void add_fde_cfi (const char *, dw_cfi_ref);
354 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
355 static void lookup_cfa (dw_cfa_location *);
356 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
357 static void initial_return_save (rtx);
358 static HOST_WIDE_INT stack_adjust_offset (rtx);
359 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
360 static void output_call_frame_info (int);
361 static void dwarf2out_stack_adjust (rtx);
362 static void flush_queued_reg_saves (void);
363 static bool clobbers_queued_reg_save (rtx);
364 static void dwarf2out_frame_debug_expr (rtx, const char *);
365
366 /* Support for complex CFA locations. */
367 static void output_cfa_loc (dw_cfi_ref);
368 static void get_cfa_from_loc_descr (dw_cfa_location *,
369 struct dw_loc_descr_struct *);
370 static struct dw_loc_descr_struct *build_cfa_loc
371 (dw_cfa_location *);
372 static void def_cfa_1 (const char *, dw_cfa_location *);
373
374 /* How to start an assembler comment. */
375 #ifndef ASM_COMMENT_START
376 #define ASM_COMMENT_START ";#"
377 #endif
378
379 /* Data and reference forms for relocatable data. */
380 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
381 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
382
383 #ifndef DEBUG_FRAME_SECTION
384 #define DEBUG_FRAME_SECTION ".debug_frame"
385 #endif
386
387 #ifndef FUNC_BEGIN_LABEL
388 #define FUNC_BEGIN_LABEL "LFB"
389 #endif
390
391 #ifndef FUNC_END_LABEL
392 #define FUNC_END_LABEL "LFE"
393 #endif
394
395 #ifndef FRAME_BEGIN_LABEL
396 #define FRAME_BEGIN_LABEL "Lframe"
397 #endif
398 #define CIE_AFTER_SIZE_LABEL "LSCIE"
399 #define CIE_END_LABEL "LECIE"
400 #define FDE_LABEL "LSFDE"
401 #define FDE_AFTER_SIZE_LABEL "LASFDE"
402 #define FDE_END_LABEL "LEFDE"
403 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
404 #define LINE_NUMBER_END_LABEL "LELT"
405 #define LN_PROLOG_AS_LABEL "LASLTP"
406 #define LN_PROLOG_END_LABEL "LELTP"
407 #define DIE_LABEL_PREFIX "DW"
408
409 /* The DWARF 2 CFA column which tracks the return address. Normally this
410 is the column for PC, or the first column after all of the hard
411 registers. */
412 #ifndef DWARF_FRAME_RETURN_COLUMN
413 #ifdef PC_REGNUM
414 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
415 #else
416 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
417 #endif
418 #endif
419
420 /* The mapping from gcc register number to DWARF 2 CFA column number. By
421 default, we just provide columns for all registers. */
422 #ifndef DWARF_FRAME_REGNUM
423 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
424 #endif
425
426 /* The offset from the incoming value of %sp to the top of the stack frame
427 for the current function. */
428 #ifndef INCOMING_FRAME_SP_OFFSET
429 #define INCOMING_FRAME_SP_OFFSET 0
430 #endif
431 \f
432 /* Hook used by __throw. */
433
434 rtx
435 expand_builtin_dwarf_sp_column (void)
436 {
437 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
438 }
439
440 /* Return a pointer to a copy of the section string name S with all
441 attributes stripped off, and an asterisk prepended (for assemble_name). */
442
443 static inline char *
444 stripattributes (const char *s)
445 {
446 char *stripped = xmalloc (strlen (s) + 2);
447 char *p = stripped;
448
449 *p++ = '*';
450
451 while (*s && *s != ',')
452 *p++ = *s++;
453
454 *p = '\0';
455 return stripped;
456 }
457
458 /* Generate code to initialize the register size table. */
459
460 void
461 expand_builtin_init_dwarf_reg_sizes (tree address)
462 {
463 int i;
464 enum machine_mode mode = TYPE_MODE (char_type_node);
465 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
466 rtx mem = gen_rtx_MEM (BLKmode, addr);
467 bool wrote_return_column = false;
468
469 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
470 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
471 {
472 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
473 enum machine_mode save_mode = reg_raw_mode[i];
474 HOST_WIDE_INT size;
475
476 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
477 save_mode = choose_hard_reg_mode (i, 1, true);
478 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
479 {
480 if (save_mode == VOIDmode)
481 continue;
482 wrote_return_column = true;
483 }
484 size = GET_MODE_SIZE (save_mode);
485 if (offset < 0)
486 continue;
487
488 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
489 }
490
491 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
492 if (! wrote_return_column)
493 abort ();
494 i = DWARF_ALT_FRAME_RETURN_COLUMN;
495 wrote_return_column = false;
496 #else
497 i = DWARF_FRAME_RETURN_COLUMN;
498 #endif
499
500 if (! wrote_return_column)
501 {
502 enum machine_mode save_mode = Pmode;
503 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
504 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
505 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
506 }
507 }
508
509 /* Convert a DWARF call frame info. operation to its string name */
510
511 static const char *
512 dwarf_cfi_name (unsigned int cfi_opc)
513 {
514 switch (cfi_opc)
515 {
516 case DW_CFA_advance_loc:
517 return "DW_CFA_advance_loc";
518 case DW_CFA_offset:
519 return "DW_CFA_offset";
520 case DW_CFA_restore:
521 return "DW_CFA_restore";
522 case DW_CFA_nop:
523 return "DW_CFA_nop";
524 case DW_CFA_set_loc:
525 return "DW_CFA_set_loc";
526 case DW_CFA_advance_loc1:
527 return "DW_CFA_advance_loc1";
528 case DW_CFA_advance_loc2:
529 return "DW_CFA_advance_loc2";
530 case DW_CFA_advance_loc4:
531 return "DW_CFA_advance_loc4";
532 case DW_CFA_offset_extended:
533 return "DW_CFA_offset_extended";
534 case DW_CFA_restore_extended:
535 return "DW_CFA_restore_extended";
536 case DW_CFA_undefined:
537 return "DW_CFA_undefined";
538 case DW_CFA_same_value:
539 return "DW_CFA_same_value";
540 case DW_CFA_register:
541 return "DW_CFA_register";
542 case DW_CFA_remember_state:
543 return "DW_CFA_remember_state";
544 case DW_CFA_restore_state:
545 return "DW_CFA_restore_state";
546 case DW_CFA_def_cfa:
547 return "DW_CFA_def_cfa";
548 case DW_CFA_def_cfa_register:
549 return "DW_CFA_def_cfa_register";
550 case DW_CFA_def_cfa_offset:
551 return "DW_CFA_def_cfa_offset";
552
553 /* DWARF 3 */
554 case DW_CFA_def_cfa_expression:
555 return "DW_CFA_def_cfa_expression";
556 case DW_CFA_expression:
557 return "DW_CFA_expression";
558 case DW_CFA_offset_extended_sf:
559 return "DW_CFA_offset_extended_sf";
560 case DW_CFA_def_cfa_sf:
561 return "DW_CFA_def_cfa_sf";
562 case DW_CFA_def_cfa_offset_sf:
563 return "DW_CFA_def_cfa_offset_sf";
564
565 /* SGI/MIPS specific */
566 case DW_CFA_MIPS_advance_loc8:
567 return "DW_CFA_MIPS_advance_loc8";
568
569 /* GNU extensions */
570 case DW_CFA_GNU_window_save:
571 return "DW_CFA_GNU_window_save";
572 case DW_CFA_GNU_args_size:
573 return "DW_CFA_GNU_args_size";
574 case DW_CFA_GNU_negative_offset_extended:
575 return "DW_CFA_GNU_negative_offset_extended";
576
577 default:
578 return "DW_CFA_<unknown>";
579 }
580 }
581
582 /* Return a pointer to a newly allocated Call Frame Instruction. */
583
584 static inline dw_cfi_ref
585 new_cfi (void)
586 {
587 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
588
589 cfi->dw_cfi_next = NULL;
590 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
591 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
592
593 return cfi;
594 }
595
596 /* Add a Call Frame Instruction to list of instructions. */
597
598 static inline void
599 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
600 {
601 dw_cfi_ref *p;
602
603 /* Find the end of the chain. */
604 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
605 ;
606
607 *p = cfi;
608 }
609
610 /* Generate a new label for the CFI info to refer to. */
611
612 char *
613 dwarf2out_cfi_label (void)
614 {
615 static char label[20];
616
617 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
618 ASM_OUTPUT_LABEL (asm_out_file, label);
619 return label;
620 }
621
622 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
623 or to the CIE if LABEL is NULL. */
624
625 static void
626 add_fde_cfi (const char *label, dw_cfi_ref cfi)
627 {
628 if (label)
629 {
630 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
631
632 if (*label == 0)
633 label = dwarf2out_cfi_label ();
634
635 if (fde->dw_fde_current_label == NULL
636 || strcmp (label, fde->dw_fde_current_label) != 0)
637 {
638 dw_cfi_ref xcfi;
639
640 fde->dw_fde_current_label = label = xstrdup (label);
641
642 /* Set the location counter to the new label. */
643 xcfi = new_cfi ();
644 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
645 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
646 add_cfi (&fde->dw_fde_cfi, xcfi);
647 }
648
649 add_cfi (&fde->dw_fde_cfi, cfi);
650 }
651
652 else
653 add_cfi (&cie_cfi_head, cfi);
654 }
655
656 /* Subroutine of lookup_cfa. */
657
658 static inline void
659 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
660 {
661 switch (cfi->dw_cfi_opc)
662 {
663 case DW_CFA_def_cfa_offset:
664 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
665 break;
666 case DW_CFA_def_cfa_register:
667 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
668 break;
669 case DW_CFA_def_cfa:
670 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
671 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
672 break;
673 case DW_CFA_def_cfa_expression:
674 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
675 break;
676 default:
677 break;
678 }
679 }
680
681 /* Find the previous value for the CFA. */
682
683 static void
684 lookup_cfa (dw_cfa_location *loc)
685 {
686 dw_cfi_ref cfi;
687
688 loc->reg = (unsigned long) -1;
689 loc->offset = 0;
690 loc->indirect = 0;
691 loc->base_offset = 0;
692
693 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
694 lookup_cfa_1 (cfi, loc);
695
696 if (fde_table_in_use)
697 {
698 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
699 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
700 lookup_cfa_1 (cfi, loc);
701 }
702 }
703
704 /* The current rule for calculating the DWARF2 canonical frame address. */
705 static dw_cfa_location cfa;
706
707 /* The register used for saving registers to the stack, and its offset
708 from the CFA. */
709 static dw_cfa_location cfa_store;
710
711 /* The running total of the size of arguments pushed onto the stack. */
712 static HOST_WIDE_INT args_size;
713
714 /* The last args_size we actually output. */
715 static HOST_WIDE_INT old_args_size;
716
717 /* Entry point to update the canonical frame address (CFA).
718 LABEL is passed to add_fde_cfi. The value of CFA is now to be
719 calculated from REG+OFFSET. */
720
721 void
722 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
723 {
724 dw_cfa_location loc;
725 loc.indirect = 0;
726 loc.base_offset = 0;
727 loc.reg = reg;
728 loc.offset = offset;
729 def_cfa_1 (label, &loc);
730 }
731
732 /* This routine does the actual work. The CFA is now calculated from
733 the dw_cfa_location structure. */
734
735 static void
736 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
737 {
738 dw_cfi_ref cfi;
739 dw_cfa_location old_cfa, loc;
740
741 cfa = *loc_p;
742 loc = *loc_p;
743
744 if (cfa_store.reg == loc.reg && loc.indirect == 0)
745 cfa_store.offset = loc.offset;
746
747 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
748 lookup_cfa (&old_cfa);
749
750 /* If nothing changed, no need to issue any call frame instructions. */
751 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
752 && loc.indirect == old_cfa.indirect
753 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
754 return;
755
756 cfi = new_cfi ();
757
758 if (loc.reg == old_cfa.reg && !loc.indirect)
759 {
760 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
761 indicating the CFA register did not change but the offset
762 did. */
763 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
764 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
765 }
766
767 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
768 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
769 && !loc.indirect)
770 {
771 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
772 indicating the CFA register has changed to <register> but the
773 offset has not changed. */
774 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
775 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
776 }
777 #endif
778
779 else if (loc.indirect == 0)
780 {
781 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
782 indicating the CFA register has changed to <register> with
783 the specified offset. */
784 cfi->dw_cfi_opc = DW_CFA_def_cfa;
785 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
786 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
787 }
788 else
789 {
790 /* Construct a DW_CFA_def_cfa_expression instruction to
791 calculate the CFA using a full location expression since no
792 register-offset pair is available. */
793 struct dw_loc_descr_struct *loc_list;
794
795 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
796 loc_list = build_cfa_loc (&loc);
797 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
798 }
799
800 add_fde_cfi (label, cfi);
801 }
802
803 /* Add the CFI for saving a register. REG is the CFA column number.
804 LABEL is passed to add_fde_cfi.
805 If SREG is -1, the register is saved at OFFSET from the CFA;
806 otherwise it is saved in SREG. */
807
808 static void
809 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
810 {
811 dw_cfi_ref cfi = new_cfi ();
812
813 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
814
815 if (sreg == INVALID_REGNUM)
816 {
817 if (reg & ~0x3f)
818 /* The register number won't fit in 6 bits, so we have to use
819 the long form. */
820 cfi->dw_cfi_opc = DW_CFA_offset_extended;
821 else
822 cfi->dw_cfi_opc = DW_CFA_offset;
823
824 #ifdef ENABLE_CHECKING
825 {
826 /* If we get an offset that is not a multiple of
827 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
828 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
829 description. */
830 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
831
832 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
833 abort ();
834 }
835 #endif
836 offset /= DWARF_CIE_DATA_ALIGNMENT;
837 if (offset < 0)
838 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
839
840 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
841 }
842 else if (sreg == reg)
843 cfi->dw_cfi_opc = DW_CFA_same_value;
844 else
845 {
846 cfi->dw_cfi_opc = DW_CFA_register;
847 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
848 }
849
850 add_fde_cfi (label, cfi);
851 }
852
853 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
854 This CFI tells the unwinder that it needs to restore the window registers
855 from the previous frame's window save area.
856
857 ??? Perhaps we should note in the CIE where windows are saved (instead of
858 assuming 0(cfa)) and what registers are in the window. */
859
860 void
861 dwarf2out_window_save (const char *label)
862 {
863 dw_cfi_ref cfi = new_cfi ();
864
865 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
866 add_fde_cfi (label, cfi);
867 }
868
869 /* Add a CFI to update the running total of the size of arguments
870 pushed onto the stack. */
871
872 void
873 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
874 {
875 dw_cfi_ref cfi;
876
877 if (size == old_args_size)
878 return;
879
880 old_args_size = size;
881
882 cfi = new_cfi ();
883 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
884 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
885 add_fde_cfi (label, cfi);
886 }
887
888 /* Entry point for saving a register to the stack. REG is the GCC register
889 number. LABEL and OFFSET are passed to reg_save. */
890
891 void
892 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
893 {
894 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
895 }
896
897 /* Entry point for saving the return address in the stack.
898 LABEL and OFFSET are passed to reg_save. */
899
900 void
901 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
902 {
903 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
904 }
905
906 /* Entry point for saving the return address in a register.
907 LABEL and SREG are passed to reg_save. */
908
909 void
910 dwarf2out_return_reg (const char *label, unsigned int sreg)
911 {
912 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
913 }
914
915 /* Record the initial position of the return address. RTL is
916 INCOMING_RETURN_ADDR_RTX. */
917
918 static void
919 initial_return_save (rtx rtl)
920 {
921 unsigned int reg = INVALID_REGNUM;
922 HOST_WIDE_INT offset = 0;
923
924 switch (GET_CODE (rtl))
925 {
926 case REG:
927 /* RA is in a register. */
928 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
929 break;
930
931 case MEM:
932 /* RA is on the stack. */
933 rtl = XEXP (rtl, 0);
934 switch (GET_CODE (rtl))
935 {
936 case REG:
937 if (REGNO (rtl) != STACK_POINTER_REGNUM)
938 abort ();
939 offset = 0;
940 break;
941
942 case PLUS:
943 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
944 abort ();
945 offset = INTVAL (XEXP (rtl, 1));
946 break;
947
948 case MINUS:
949 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
950 abort ();
951 offset = -INTVAL (XEXP (rtl, 1));
952 break;
953
954 default:
955 abort ();
956 }
957
958 break;
959
960 case PLUS:
961 /* The return address is at some offset from any value we can
962 actually load. For instance, on the SPARC it is in %i7+8. Just
963 ignore the offset for now; it doesn't matter for unwinding frames. */
964 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
965 abort ();
966 initial_return_save (XEXP (rtl, 0));
967 return;
968
969 default:
970 abort ();
971 }
972
973 if (reg != DWARF_FRAME_RETURN_COLUMN)
974 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
975 }
976
977 /* Given a SET, calculate the amount of stack adjustment it
978 contains. */
979
980 static HOST_WIDE_INT
981 stack_adjust_offset (rtx pattern)
982 {
983 rtx src = SET_SRC (pattern);
984 rtx dest = SET_DEST (pattern);
985 HOST_WIDE_INT offset = 0;
986 enum rtx_code code;
987
988 if (dest == stack_pointer_rtx)
989 {
990 /* (set (reg sp) (plus (reg sp) (const_int))) */
991 code = GET_CODE (src);
992 if (! (code == PLUS || code == MINUS)
993 || XEXP (src, 0) != stack_pointer_rtx
994 || GET_CODE (XEXP (src, 1)) != CONST_INT)
995 return 0;
996
997 offset = INTVAL (XEXP (src, 1));
998 if (code == PLUS)
999 offset = -offset;
1000 }
1001 else if (MEM_P (dest))
1002 {
1003 /* (set (mem (pre_dec (reg sp))) (foo)) */
1004 src = XEXP (dest, 0);
1005 code = GET_CODE (src);
1006
1007 switch (code)
1008 {
1009 case PRE_MODIFY:
1010 case POST_MODIFY:
1011 if (XEXP (src, 0) == stack_pointer_rtx)
1012 {
1013 rtx val = XEXP (XEXP (src, 1), 1);
1014 /* We handle only adjustments by constant amount. */
1015 if (GET_CODE (XEXP (src, 1)) != PLUS ||
1016 GET_CODE (val) != CONST_INT)
1017 abort ();
1018 offset = -INTVAL (val);
1019 break;
1020 }
1021 return 0;
1022
1023 case PRE_DEC:
1024 case POST_DEC:
1025 if (XEXP (src, 0) == stack_pointer_rtx)
1026 {
1027 offset = GET_MODE_SIZE (GET_MODE (dest));
1028 break;
1029 }
1030 return 0;
1031
1032 case PRE_INC:
1033 case POST_INC:
1034 if (XEXP (src, 0) == stack_pointer_rtx)
1035 {
1036 offset = -GET_MODE_SIZE (GET_MODE (dest));
1037 break;
1038 }
1039 return 0;
1040
1041 default:
1042 return 0;
1043 }
1044 }
1045 else
1046 return 0;
1047
1048 return offset;
1049 }
1050
1051 /* Check INSN to see if it looks like a push or a stack adjustment, and
1052 make a note of it if it does. EH uses this information to find out how
1053 much extra space it needs to pop off the stack. */
1054
1055 static void
1056 dwarf2out_stack_adjust (rtx insn)
1057 {
1058 HOST_WIDE_INT offset;
1059 const char *label;
1060 int i;
1061
1062 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1063 with this function. Proper support would require all frame-related
1064 insns to be marked, and to be able to handle saving state around
1065 epilogues textually in the middle of the function. */
1066 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1067 return;
1068
1069 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1070 {
1071 /* Extract the size of the args from the CALL rtx itself. */
1072 insn = PATTERN (insn);
1073 if (GET_CODE (insn) == PARALLEL)
1074 insn = XVECEXP (insn, 0, 0);
1075 if (GET_CODE (insn) == SET)
1076 insn = SET_SRC (insn);
1077 if (GET_CODE (insn) != CALL)
1078 abort ();
1079
1080 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1081 return;
1082 }
1083
1084 /* If only calls can throw, and we have a frame pointer,
1085 save up adjustments until we see the CALL_INSN. */
1086 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1087 return;
1088
1089 if (GET_CODE (insn) == BARRIER)
1090 {
1091 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1092 the compiler will have already emitted a stack adjustment, but
1093 doesn't bother for calls to noreturn functions. */
1094 #ifdef STACK_GROWS_DOWNWARD
1095 offset = -args_size;
1096 #else
1097 offset = args_size;
1098 #endif
1099 }
1100 else if (GET_CODE (PATTERN (insn)) == SET)
1101 offset = stack_adjust_offset (PATTERN (insn));
1102 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1103 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1104 {
1105 /* There may be stack adjustments inside compound insns. Search
1106 for them. */
1107 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1108 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1109 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1110 }
1111 else
1112 return;
1113
1114 if (offset == 0)
1115 return;
1116
1117 if (cfa.reg == STACK_POINTER_REGNUM)
1118 cfa.offset += offset;
1119
1120 #ifndef STACK_GROWS_DOWNWARD
1121 offset = -offset;
1122 #endif
1123
1124 args_size += offset;
1125 if (args_size < 0)
1126 args_size = 0;
1127
1128 label = dwarf2out_cfi_label ();
1129 def_cfa_1 (label, &cfa);
1130 dwarf2out_args_size (label, args_size);
1131 }
1132
1133 #endif
1134
1135 /* We delay emitting a register save until either (a) we reach the end
1136 of the prologue or (b) the register is clobbered. This clusters
1137 register saves so that there are fewer pc advances. */
1138
1139 struct queued_reg_save GTY(())
1140 {
1141 struct queued_reg_save *next;
1142 rtx reg;
1143 HOST_WIDE_INT cfa_offset;
1144 rtx saved_reg;
1145 };
1146
1147 static GTY(()) struct queued_reg_save *queued_reg_saves;
1148
1149 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1150 struct reg_saved_in_data GTY(()) {
1151 rtx orig_reg;
1152 rtx saved_in_reg;
1153 };
1154
1155 /* A list of registers saved in other registers.
1156 The list intentionally has a small maximum capacity of 4; if your
1157 port needs more than that, you might consider implementing a
1158 more efficient data structure. */
1159 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1160 static GTY(()) size_t num_regs_saved_in_regs;
1161
1162 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1163 static const char *last_reg_save_label;
1164
1165 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1166 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1167
1168 static void
1169 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1170 {
1171 struct queued_reg_save *q;
1172
1173 /* Duplicates waste space, but it's also necessary to remove them
1174 for correctness, since the queue gets output in reverse
1175 order. */
1176 for (q = queued_reg_saves; q != NULL; q = q->next)
1177 if (REGNO (q->reg) == REGNO (reg))
1178 break;
1179
1180 if (q == NULL)
1181 {
1182 q = ggc_alloc (sizeof (*q));
1183 q->next = queued_reg_saves;
1184 queued_reg_saves = q;
1185 }
1186
1187 q->reg = reg;
1188 q->cfa_offset = offset;
1189 q->saved_reg = sreg;
1190
1191 last_reg_save_label = label;
1192 }
1193
1194 /* Output all the entries in QUEUED_REG_SAVES. */
1195
1196 static void
1197 flush_queued_reg_saves (void)
1198 {
1199 struct queued_reg_save *q;
1200
1201 for (q = queued_reg_saves; q; q = q->next)
1202 {
1203 size_t i;
1204 unsigned int reg, sreg;
1205
1206 for (i = 0; i < num_regs_saved_in_regs; i++)
1207 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1208 break;
1209 if (q->saved_reg && i == num_regs_saved_in_regs)
1210 {
1211 if (i == ARRAY_SIZE (regs_saved_in_regs))
1212 abort ();
1213 num_regs_saved_in_regs++;
1214 }
1215 if (i != num_regs_saved_in_regs)
1216 {
1217 regs_saved_in_regs[i].orig_reg = q->reg;
1218 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1219 }
1220
1221 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1222 if (q->saved_reg)
1223 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1224 else
1225 sreg = INVALID_REGNUM;
1226 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1227 }
1228
1229 queued_reg_saves = NULL;
1230 last_reg_save_label = NULL;
1231 }
1232
1233 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1234 location for? Or, does it clobber a register which we've previously
1235 said that some other register is saved in, and for which we now
1236 have a new location for? */
1237
1238 static bool
1239 clobbers_queued_reg_save (rtx insn)
1240 {
1241 struct queued_reg_save *q;
1242
1243 for (q = queued_reg_saves; q; q = q->next)
1244 {
1245 size_t i;
1246 if (modified_in_p (q->reg, insn))
1247 return true;
1248 for (i = 0; i < num_regs_saved_in_regs; i++)
1249 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1250 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1251 return true;
1252 }
1253
1254 return false;
1255 }
1256
1257 /* What register, if any, is currently saved in REG? */
1258
1259 static rtx
1260 reg_saved_in (rtx reg)
1261 {
1262 unsigned int regn = REGNO (reg);
1263 size_t i;
1264 struct queued_reg_save *q;
1265
1266 for (q = queued_reg_saves; q; q = q->next)
1267 if (q->saved_reg && regn == REGNO (q->saved_reg))
1268 return q->reg;
1269
1270 for (i = 0; i < num_regs_saved_in_regs; i++)
1271 if (regs_saved_in_regs[i].saved_in_reg
1272 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1273 return regs_saved_in_regs[i].orig_reg;
1274
1275 return NULL_RTX;
1276 }
1277
1278
1279 /* A temporary register holding an integral value used in adjusting SP
1280 or setting up the store_reg. The "offset" field holds the integer
1281 value, not an offset. */
1282 static dw_cfa_location cfa_temp;
1283
1284 /* Record call frame debugging information for an expression EXPR,
1285 which either sets SP or FP (adjusting how we calculate the frame
1286 address) or saves a register to the stack or another register.
1287 LABEL indicates the address of EXPR.
1288
1289 This function encodes a state machine mapping rtxes to actions on
1290 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1291 users need not read the source code.
1292
1293 The High-Level Picture
1294
1295 Changes in the register we use to calculate the CFA: Currently we
1296 assume that if you copy the CFA register into another register, we
1297 should take the other one as the new CFA register; this seems to
1298 work pretty well. If it's wrong for some target, it's simple
1299 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1300
1301 Changes in the register we use for saving registers to the stack:
1302 This is usually SP, but not always. Again, we deduce that if you
1303 copy SP into another register (and SP is not the CFA register),
1304 then the new register is the one we will be using for register
1305 saves. This also seems to work.
1306
1307 Register saves: There's not much guesswork about this one; if
1308 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1309 register save, and the register used to calculate the destination
1310 had better be the one we think we're using for this purpose.
1311 It's also assumed that a copy from a call-saved register to another
1312 register is saving that register if RTX_FRAME_RELATED_P is set on
1313 that instruction. If the copy is from a call-saved register to
1314 the *same* register, that means that the register is now the same
1315 value as in the caller.
1316
1317 Except: If the register being saved is the CFA register, and the
1318 offset is nonzero, we are saving the CFA, so we assume we have to
1319 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1320 the intent is to save the value of SP from the previous frame.
1321
1322 In addition, if a register has previously been saved to a different
1323 register,
1324
1325 Invariants / Summaries of Rules
1326
1327 cfa current rule for calculating the CFA. It usually
1328 consists of a register and an offset.
1329 cfa_store register used by prologue code to save things to the stack
1330 cfa_store.offset is the offset from the value of
1331 cfa_store.reg to the actual CFA
1332 cfa_temp register holding an integral value. cfa_temp.offset
1333 stores the value, which will be used to adjust the
1334 stack pointer. cfa_temp is also used like cfa_store,
1335 to track stores to the stack via fp or a temp reg.
1336
1337 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1338 with cfa.reg as the first operand changes the cfa.reg and its
1339 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1340 cfa_temp.offset.
1341
1342 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1343 expression yielding a constant. This sets cfa_temp.reg
1344 and cfa_temp.offset.
1345
1346 Rule 5: Create a new register cfa_store used to save items to the
1347 stack.
1348
1349 Rules 10-14: Save a register to the stack. Define offset as the
1350 difference of the original location and cfa_store's
1351 location (or cfa_temp's location if cfa_temp is used).
1352
1353 The Rules
1354
1355 "{a,b}" indicates a choice of a xor b.
1356 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1357
1358 Rule 1:
1359 (set <reg1> <reg2>:cfa.reg)
1360 effects: cfa.reg = <reg1>
1361 cfa.offset unchanged
1362 cfa_temp.reg = <reg1>
1363 cfa_temp.offset = cfa.offset
1364
1365 Rule 2:
1366 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1367 {<const_int>,<reg>:cfa_temp.reg}))
1368 effects: cfa.reg = sp if fp used
1369 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1370 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1371 if cfa_store.reg==sp
1372
1373 Rule 3:
1374 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1375 effects: cfa.reg = fp
1376 cfa_offset += +/- <const_int>
1377
1378 Rule 4:
1379 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1380 constraints: <reg1> != fp
1381 <reg1> != sp
1382 effects: cfa.reg = <reg1>
1383 cfa_temp.reg = <reg1>
1384 cfa_temp.offset = cfa.offset
1385
1386 Rule 5:
1387 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1388 constraints: <reg1> != fp
1389 <reg1> != sp
1390 effects: cfa_store.reg = <reg1>
1391 cfa_store.offset = cfa.offset - cfa_temp.offset
1392
1393 Rule 6:
1394 (set <reg> <const_int>)
1395 effects: cfa_temp.reg = <reg>
1396 cfa_temp.offset = <const_int>
1397
1398 Rule 7:
1399 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1400 effects: cfa_temp.reg = <reg1>
1401 cfa_temp.offset |= <const_int>
1402
1403 Rule 8:
1404 (set <reg> (high <exp>))
1405 effects: none
1406
1407 Rule 9:
1408 (set <reg> (lo_sum <exp> <const_int>))
1409 effects: cfa_temp.reg = <reg>
1410 cfa_temp.offset = <const_int>
1411
1412 Rule 10:
1413 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1414 effects: cfa_store.offset -= <const_int>
1415 cfa.offset = cfa_store.offset if cfa.reg == sp
1416 cfa.reg = sp
1417 cfa.base_offset = -cfa_store.offset
1418
1419 Rule 11:
1420 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1421 effects: cfa_store.offset += -/+ mode_size(mem)
1422 cfa.offset = cfa_store.offset if cfa.reg == sp
1423 cfa.reg = sp
1424 cfa.base_offset = -cfa_store.offset
1425
1426 Rule 12:
1427 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1428
1429 <reg2>)
1430 effects: cfa.reg = <reg1>
1431 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1432
1433 Rule 13:
1434 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1435 effects: cfa.reg = <reg1>
1436 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1437
1438 Rule 14:
1439 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1440 effects: cfa.reg = <reg1>
1441 cfa.base_offset = -cfa_temp.offset
1442 cfa_temp.offset -= mode_size(mem) */
1443
1444 static void
1445 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1446 {
1447 rtx src, dest;
1448 HOST_WIDE_INT offset;
1449
1450 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1451 the PARALLEL independently. The first element is always processed if
1452 it is a SET. This is for backward compatibility. Other elements
1453 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1454 flag is set in them. */
1455 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1456 {
1457 int par_index;
1458 int limit = XVECLEN (expr, 0);
1459
1460 for (par_index = 0; par_index < limit; par_index++)
1461 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1462 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1463 || par_index == 0))
1464 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1465
1466 return;
1467 }
1468
1469 if (GET_CODE (expr) != SET)
1470 abort ();
1471
1472 src = SET_SRC (expr);
1473 dest = SET_DEST (expr);
1474
1475 if (GET_CODE (src) == REG)
1476 {
1477 rtx rsi = reg_saved_in (src);
1478 if (rsi)
1479 src = rsi;
1480 }
1481
1482 switch (GET_CODE (dest))
1483 {
1484 case REG:
1485 switch (GET_CODE (src))
1486 {
1487 /* Setting FP from SP. */
1488 case REG:
1489 if (cfa.reg == (unsigned) REGNO (src))
1490 {
1491 /* Rule 1 */
1492 /* Update the CFA rule wrt SP or FP. Make sure src is
1493 relative to the current CFA register.
1494
1495 We used to require that dest be either SP or FP, but the
1496 ARM copies SP to a temporary register, and from there to
1497 FP. So we just rely on the backends to only set
1498 RTX_FRAME_RELATED_P on appropriate insns. */
1499 cfa.reg = REGNO (dest);
1500 cfa_temp.reg = cfa.reg;
1501 cfa_temp.offset = cfa.offset;
1502 }
1503 else if (call_used_regs [REGNO (dest)]
1504 && ! fixed_regs [REGNO (dest)])
1505 {
1506 /* Saving a register in a register. */
1507 queue_reg_save (label, src, dest, 0);
1508 }
1509 else
1510 abort ();
1511 break;
1512
1513 case PLUS:
1514 case MINUS:
1515 case LO_SUM:
1516 if (dest == stack_pointer_rtx)
1517 {
1518 /* Rule 2 */
1519 /* Adjusting SP. */
1520 switch (GET_CODE (XEXP (src, 1)))
1521 {
1522 case CONST_INT:
1523 offset = INTVAL (XEXP (src, 1));
1524 break;
1525 case REG:
1526 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1527 abort ();
1528 offset = cfa_temp.offset;
1529 break;
1530 default:
1531 abort ();
1532 }
1533
1534 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1535 {
1536 /* Restoring SP from FP in the epilogue. */
1537 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1538 abort ();
1539 cfa.reg = STACK_POINTER_REGNUM;
1540 }
1541 else if (GET_CODE (src) == LO_SUM)
1542 /* Assume we've set the source reg of the LO_SUM from sp. */
1543 ;
1544 else if (XEXP (src, 0) != stack_pointer_rtx)
1545 abort ();
1546
1547 if (GET_CODE (src) != MINUS)
1548 offset = -offset;
1549 if (cfa.reg == STACK_POINTER_REGNUM)
1550 cfa.offset += offset;
1551 if (cfa_store.reg == STACK_POINTER_REGNUM)
1552 cfa_store.offset += offset;
1553 }
1554 else if (dest == hard_frame_pointer_rtx)
1555 {
1556 /* Rule 3 */
1557 /* Either setting the FP from an offset of the SP,
1558 or adjusting the FP */
1559 if (! frame_pointer_needed)
1560 abort ();
1561
1562 if (REG_P (XEXP (src, 0))
1563 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1564 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1565 {
1566 offset = INTVAL (XEXP (src, 1));
1567 if (GET_CODE (src) != MINUS)
1568 offset = -offset;
1569 cfa.offset += offset;
1570 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1571 }
1572 else
1573 abort ();
1574 }
1575 else
1576 {
1577 if (GET_CODE (src) == MINUS)
1578 abort ();
1579
1580 /* Rule 4 */
1581 if (REG_P (XEXP (src, 0))
1582 && REGNO (XEXP (src, 0)) == cfa.reg
1583 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1584 {
1585 /* Setting a temporary CFA register that will be copied
1586 into the FP later on. */
1587 offset = - INTVAL (XEXP (src, 1));
1588 cfa.offset += offset;
1589 cfa.reg = REGNO (dest);
1590 /* Or used to save regs to the stack. */
1591 cfa_temp.reg = cfa.reg;
1592 cfa_temp.offset = cfa.offset;
1593 }
1594
1595 /* Rule 5 */
1596 else if (REG_P (XEXP (src, 0))
1597 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1598 && XEXP (src, 1) == stack_pointer_rtx)
1599 {
1600 /* Setting a scratch register that we will use instead
1601 of SP for saving registers to the stack. */
1602 if (cfa.reg != STACK_POINTER_REGNUM)
1603 abort ();
1604 cfa_store.reg = REGNO (dest);
1605 cfa_store.offset = cfa.offset - cfa_temp.offset;
1606 }
1607
1608 /* Rule 9 */
1609 else if (GET_CODE (src) == LO_SUM
1610 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1611 {
1612 cfa_temp.reg = REGNO (dest);
1613 cfa_temp.offset = INTVAL (XEXP (src, 1));
1614 }
1615 else
1616 abort ();
1617 }
1618 break;
1619
1620 /* Rule 6 */
1621 case CONST_INT:
1622 cfa_temp.reg = REGNO (dest);
1623 cfa_temp.offset = INTVAL (src);
1624 break;
1625
1626 /* Rule 7 */
1627 case IOR:
1628 if (!REG_P (XEXP (src, 0))
1629 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1630 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1631 abort ();
1632
1633 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1634 cfa_temp.reg = REGNO (dest);
1635 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1636 break;
1637
1638 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1639 which will fill in all of the bits. */
1640 /* Rule 8 */
1641 case HIGH:
1642 break;
1643
1644 default:
1645 abort ();
1646 }
1647
1648 def_cfa_1 (label, &cfa);
1649 break;
1650
1651 case MEM:
1652 if (!REG_P (src))
1653 abort ();
1654
1655 /* Saving a register to the stack. Make sure dest is relative to the
1656 CFA register. */
1657 switch (GET_CODE (XEXP (dest, 0)))
1658 {
1659 /* Rule 10 */
1660 /* With a push. */
1661 case PRE_MODIFY:
1662 /* We can't handle variable size modifications. */
1663 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1664 abort ();
1665 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1666
1667 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1668 || cfa_store.reg != STACK_POINTER_REGNUM)
1669 abort ();
1670
1671 cfa_store.offset += offset;
1672 if (cfa.reg == STACK_POINTER_REGNUM)
1673 cfa.offset = cfa_store.offset;
1674
1675 offset = -cfa_store.offset;
1676 break;
1677
1678 /* Rule 11 */
1679 case PRE_INC:
1680 case PRE_DEC:
1681 offset = GET_MODE_SIZE (GET_MODE (dest));
1682 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1683 offset = -offset;
1684
1685 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1686 || cfa_store.reg != STACK_POINTER_REGNUM)
1687 abort ();
1688
1689 cfa_store.offset += offset;
1690 if (cfa.reg == STACK_POINTER_REGNUM)
1691 cfa.offset = cfa_store.offset;
1692
1693 offset = -cfa_store.offset;
1694 break;
1695
1696 /* Rule 12 */
1697 /* With an offset. */
1698 case PLUS:
1699 case MINUS:
1700 case LO_SUM:
1701 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1702 abort ();
1703 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1704 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1705 offset = -offset;
1706
1707 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1708 offset -= cfa_store.offset;
1709 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1710 offset -= cfa_temp.offset;
1711 else
1712 abort ();
1713 break;
1714
1715 /* Rule 13 */
1716 /* Without an offset. */
1717 case REG:
1718 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1719 offset = -cfa_store.offset;
1720 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1721 offset = -cfa_temp.offset;
1722 else
1723 abort ();
1724 break;
1725
1726 /* Rule 14 */
1727 case POST_INC:
1728 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1729 abort ();
1730 offset = -cfa_temp.offset;
1731 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1732 break;
1733
1734 default:
1735 abort ();
1736 }
1737
1738 if (REGNO (src) != STACK_POINTER_REGNUM
1739 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1740 && (unsigned) REGNO (src) == cfa.reg)
1741 {
1742 /* We're storing the current CFA reg into the stack. */
1743
1744 if (cfa.offset == 0)
1745 {
1746 /* If the source register is exactly the CFA, assume
1747 we're saving SP like any other register; this happens
1748 on the ARM. */
1749 def_cfa_1 (label, &cfa);
1750 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1751 break;
1752 }
1753 else
1754 {
1755 /* Otherwise, we'll need to look in the stack to
1756 calculate the CFA. */
1757 rtx x = XEXP (dest, 0);
1758
1759 if (!REG_P (x))
1760 x = XEXP (x, 0);
1761 if (!REG_P (x))
1762 abort ();
1763
1764 cfa.reg = REGNO (x);
1765 cfa.base_offset = offset;
1766 cfa.indirect = 1;
1767 def_cfa_1 (label, &cfa);
1768 break;
1769 }
1770 }
1771
1772 def_cfa_1 (label, &cfa);
1773 queue_reg_save (label, src, NULL_RTX, offset);
1774 break;
1775
1776 default:
1777 abort ();
1778 }
1779 }
1780
1781 /* Record call frame debugging information for INSN, which either
1782 sets SP or FP (adjusting how we calculate the frame address) or saves a
1783 register to the stack. If INSN is NULL_RTX, initialize our state. */
1784
1785 void
1786 dwarf2out_frame_debug (rtx insn)
1787 {
1788 const char *label;
1789 rtx src;
1790
1791 if (insn == NULL_RTX)
1792 {
1793 size_t i;
1794
1795 /* Flush any queued register saves. */
1796 flush_queued_reg_saves ();
1797
1798 /* Set up state for generating call frame debug info. */
1799 lookup_cfa (&cfa);
1800 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1801 abort ();
1802
1803 cfa.reg = STACK_POINTER_REGNUM;
1804 cfa_store = cfa;
1805 cfa_temp.reg = -1;
1806 cfa_temp.offset = 0;
1807
1808 for (i = 0; i < num_regs_saved_in_regs; i++)
1809 {
1810 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1811 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1812 }
1813 num_regs_saved_in_regs = 0;
1814 return;
1815 }
1816
1817 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1818 flush_queued_reg_saves ();
1819
1820 if (! RTX_FRAME_RELATED_P (insn))
1821 {
1822 if (!ACCUMULATE_OUTGOING_ARGS)
1823 dwarf2out_stack_adjust (insn);
1824
1825 return;
1826 }
1827
1828 label = dwarf2out_cfi_label ();
1829 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1830 if (src)
1831 insn = XEXP (src, 0);
1832 else
1833 insn = PATTERN (insn);
1834
1835 dwarf2out_frame_debug_expr (insn, label);
1836 }
1837
1838 #endif
1839
1840 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1841 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1842 (enum dwarf_call_frame_info cfi);
1843
1844 static enum dw_cfi_oprnd_type
1845 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1846 {
1847 switch (cfi)
1848 {
1849 case DW_CFA_nop:
1850 case DW_CFA_GNU_window_save:
1851 return dw_cfi_oprnd_unused;
1852
1853 case DW_CFA_set_loc:
1854 case DW_CFA_advance_loc1:
1855 case DW_CFA_advance_loc2:
1856 case DW_CFA_advance_loc4:
1857 case DW_CFA_MIPS_advance_loc8:
1858 return dw_cfi_oprnd_addr;
1859
1860 case DW_CFA_offset:
1861 case DW_CFA_offset_extended:
1862 case DW_CFA_def_cfa:
1863 case DW_CFA_offset_extended_sf:
1864 case DW_CFA_def_cfa_sf:
1865 case DW_CFA_restore_extended:
1866 case DW_CFA_undefined:
1867 case DW_CFA_same_value:
1868 case DW_CFA_def_cfa_register:
1869 case DW_CFA_register:
1870 return dw_cfi_oprnd_reg_num;
1871
1872 case DW_CFA_def_cfa_offset:
1873 case DW_CFA_GNU_args_size:
1874 case DW_CFA_def_cfa_offset_sf:
1875 return dw_cfi_oprnd_offset;
1876
1877 case DW_CFA_def_cfa_expression:
1878 case DW_CFA_expression:
1879 return dw_cfi_oprnd_loc;
1880
1881 default:
1882 abort ();
1883 }
1884 }
1885
1886 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1887 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1888 (enum dwarf_call_frame_info cfi);
1889
1890 static enum dw_cfi_oprnd_type
1891 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1892 {
1893 switch (cfi)
1894 {
1895 case DW_CFA_def_cfa:
1896 case DW_CFA_def_cfa_sf:
1897 case DW_CFA_offset:
1898 case DW_CFA_offset_extended_sf:
1899 case DW_CFA_offset_extended:
1900 return dw_cfi_oprnd_offset;
1901
1902 case DW_CFA_register:
1903 return dw_cfi_oprnd_reg_num;
1904
1905 default:
1906 return dw_cfi_oprnd_unused;
1907 }
1908 }
1909
1910 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1911
1912 /* Map register numbers held in the call frame info that gcc has
1913 collected using DWARF_FRAME_REGNUM to those that should be output in
1914 .debug_frame and .eh_frame. */
1915 #ifndef DWARF2_FRAME_REG_OUT
1916 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
1917 #endif
1918
1919 /* Output a Call Frame Information opcode and its operand(s). */
1920
1921 static void
1922 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1923 {
1924 unsigned long r;
1925 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1926 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1927 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1928 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1929 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1930 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1931 {
1932 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1933 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1934 "DW_CFA_offset, column 0x%lx", r);
1935 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1936 }
1937 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1938 {
1939 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1940 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1941 "DW_CFA_restore, column 0x%lx", r);
1942 }
1943 else
1944 {
1945 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1946 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1947
1948 switch (cfi->dw_cfi_opc)
1949 {
1950 case DW_CFA_set_loc:
1951 if (for_eh)
1952 dw2_asm_output_encoded_addr_rtx (
1953 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1954 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1955 NULL);
1956 else
1957 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1958 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1959 break;
1960
1961 case DW_CFA_advance_loc1:
1962 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1963 fde->dw_fde_current_label, NULL);
1964 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1965 break;
1966
1967 case DW_CFA_advance_loc2:
1968 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1969 fde->dw_fde_current_label, NULL);
1970 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1971 break;
1972
1973 case DW_CFA_advance_loc4:
1974 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1975 fde->dw_fde_current_label, NULL);
1976 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1977 break;
1978
1979 case DW_CFA_MIPS_advance_loc8:
1980 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1981 fde->dw_fde_current_label, NULL);
1982 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1983 break;
1984
1985 case DW_CFA_offset_extended:
1986 case DW_CFA_def_cfa:
1987 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1988 dw2_asm_output_data_uleb128 (r, NULL);
1989 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1990 break;
1991
1992 case DW_CFA_offset_extended_sf:
1993 case DW_CFA_def_cfa_sf:
1994 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1995 dw2_asm_output_data_uleb128 (r, NULL);
1996 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1997 break;
1998
1999 case DW_CFA_restore_extended:
2000 case DW_CFA_undefined:
2001 case DW_CFA_same_value:
2002 case DW_CFA_def_cfa_register:
2003 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2004 dw2_asm_output_data_uleb128 (r, NULL);
2005 break;
2006
2007 case DW_CFA_register:
2008 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2009 dw2_asm_output_data_uleb128 (r, NULL);
2010 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2011 dw2_asm_output_data_uleb128 (r, NULL);
2012 break;
2013
2014 case DW_CFA_def_cfa_offset:
2015 case DW_CFA_GNU_args_size:
2016 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2017 break;
2018
2019 case DW_CFA_def_cfa_offset_sf:
2020 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2021 break;
2022
2023 case DW_CFA_GNU_window_save:
2024 break;
2025
2026 case DW_CFA_def_cfa_expression:
2027 case DW_CFA_expression:
2028 output_cfa_loc (cfi);
2029 break;
2030
2031 case DW_CFA_GNU_negative_offset_extended:
2032 /* Obsoleted by DW_CFA_offset_extended_sf. */
2033 abort ();
2034
2035 default:
2036 break;
2037 }
2038 }
2039 }
2040
2041 /* Output the call frame information used to record information
2042 that relates to calculating the frame pointer, and records the
2043 location of saved registers. */
2044
2045 static void
2046 output_call_frame_info (int for_eh)
2047 {
2048 unsigned int i;
2049 dw_fde_ref fde;
2050 dw_cfi_ref cfi;
2051 char l1[20], l2[20], section_start_label[20];
2052 bool any_lsda_needed = false;
2053 char augmentation[6];
2054 int augmentation_size;
2055 int fde_encoding = DW_EH_PE_absptr;
2056 int per_encoding = DW_EH_PE_absptr;
2057 int lsda_encoding = DW_EH_PE_absptr;
2058
2059 /* Don't emit a CIE if there won't be any FDEs. */
2060 if (fde_table_in_use == 0)
2061 return;
2062
2063 /* If we make FDEs linkonce, we may have to emit an empty label for
2064 an FDE that wouldn't otherwise be emitted. We want to avoid
2065 having an FDE kept around when the function it refers to is
2066 discarded. (Example where this matters: a primary function
2067 template in C++ requires EH information, but an explicit
2068 specialization doesn't. */
2069 if (TARGET_USES_WEAK_UNWIND_INFO
2070 && ! flag_asynchronous_unwind_tables
2071 && for_eh)
2072 for (i = 0; i < fde_table_in_use; i++)
2073 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2074 && !fde_table[i].uses_eh_lsda
2075 && ! DECL_ONE_ONLY (fde_table[i].decl))
2076 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2077 for_eh, /* empty */ 1);
2078
2079 /* If we don't have any functions we'll want to unwind out of, don't
2080 emit any EH unwind information. Note that if exceptions aren't
2081 enabled, we won't have collected nothrow information, and if we
2082 asked for asynchronous tables, we always want this info. */
2083 if (for_eh)
2084 {
2085 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2086
2087 for (i = 0; i < fde_table_in_use; i++)
2088 if (fde_table[i].uses_eh_lsda)
2089 any_eh_needed = any_lsda_needed = true;
2090 else if (TARGET_USES_WEAK_UNWIND_INFO
2091 && DECL_ONE_ONLY (fde_table[i].decl))
2092 any_eh_needed = 1;
2093 else if (! fde_table[i].nothrow
2094 && ! fde_table[i].all_throwers_are_sibcalls)
2095 any_eh_needed = true;
2096
2097 if (! any_eh_needed)
2098 return;
2099 }
2100
2101 /* We're going to be generating comments, so turn on app. */
2102 if (flag_debug_asm)
2103 app_enable ();
2104
2105 if (for_eh)
2106 targetm.asm_out.eh_frame_section ();
2107 else
2108 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
2109
2110 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2111 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2112
2113 /* Output the CIE. */
2114 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2115 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2116 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2117 "Length of Common Information Entry");
2118 ASM_OUTPUT_LABEL (asm_out_file, l1);
2119
2120 /* Now that the CIE pointer is PC-relative for EH,
2121 use 0 to identify the CIE. */
2122 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2123 (for_eh ? 0 : DW_CIE_ID),
2124 "CIE Identifier Tag");
2125
2126 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2127
2128 augmentation[0] = 0;
2129 augmentation_size = 0;
2130 if (for_eh)
2131 {
2132 char *p;
2133
2134 /* Augmentation:
2135 z Indicates that a uleb128 is present to size the
2136 augmentation section.
2137 L Indicates the encoding (and thus presence) of
2138 an LSDA pointer in the FDE augmentation.
2139 R Indicates a non-default pointer encoding for
2140 FDE code pointers.
2141 P Indicates the presence of an encoding + language
2142 personality routine in the CIE augmentation. */
2143
2144 fde_encoding = TARGET_USES_WEAK_UNWIND_INFO
2145 ? ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1)
2146 : ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2147 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2148 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2149
2150 p = augmentation + 1;
2151 if (eh_personality_libfunc)
2152 {
2153 *p++ = 'P';
2154 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2155 }
2156 if (any_lsda_needed)
2157 {
2158 *p++ = 'L';
2159 augmentation_size += 1;
2160 }
2161 if (fde_encoding != DW_EH_PE_absptr)
2162 {
2163 *p++ = 'R';
2164 augmentation_size += 1;
2165 }
2166 if (p > augmentation + 1)
2167 {
2168 augmentation[0] = 'z';
2169 *p = '\0';
2170 }
2171
2172 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2173 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2174 {
2175 int offset = ( 4 /* Length */
2176 + 4 /* CIE Id */
2177 + 1 /* CIE version */
2178 + strlen (augmentation) + 1 /* Augmentation */
2179 + size_of_uleb128 (1) /* Code alignment */
2180 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2181 + 1 /* RA column */
2182 + 1 /* Augmentation size */
2183 + 1 /* Personality encoding */ );
2184 int pad = -offset & (PTR_SIZE - 1);
2185
2186 augmentation_size += pad;
2187
2188 /* Augmentations should be small, so there's scarce need to
2189 iterate for a solution. Die if we exceed one uleb128 byte. */
2190 if (size_of_uleb128 (augmentation_size) != 1)
2191 abort ();
2192 }
2193 }
2194
2195 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2196 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2197 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2198 "CIE Data Alignment Factor");
2199
2200 if (DW_CIE_VERSION == 1)
2201 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2202 else
2203 dw2_asm_output_data_uleb128 (DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2204
2205 if (augmentation[0])
2206 {
2207 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2208 if (eh_personality_libfunc)
2209 {
2210 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2211 eh_data_format_name (per_encoding));
2212 dw2_asm_output_encoded_addr_rtx (per_encoding,
2213 eh_personality_libfunc, NULL);
2214 }
2215
2216 if (any_lsda_needed)
2217 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2218 eh_data_format_name (lsda_encoding));
2219
2220 if (fde_encoding != DW_EH_PE_absptr)
2221 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2222 eh_data_format_name (fde_encoding));
2223 }
2224
2225 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2226 output_cfi (cfi, NULL, for_eh);
2227
2228 /* Pad the CIE out to an address sized boundary. */
2229 ASM_OUTPUT_ALIGN (asm_out_file,
2230 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2231 ASM_OUTPUT_LABEL (asm_out_file, l2);
2232
2233 /* Loop through all of the FDE's. */
2234 for (i = 0; i < fde_table_in_use; i++)
2235 {
2236 fde = &fde_table[i];
2237
2238 /* Don't emit EH unwind info for leaf functions that don't need it. */
2239 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2240 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2241 && (! TARGET_USES_WEAK_UNWIND_INFO || ! DECL_ONE_ONLY (fde->decl))
2242 && !fde->uses_eh_lsda)
2243 continue;
2244
2245 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2246 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2247 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2248 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2249 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2250 "FDE Length");
2251 ASM_OUTPUT_LABEL (asm_out_file, l1);
2252
2253 if (for_eh)
2254 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2255 else
2256 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2257 "FDE CIE offset");
2258
2259 if (for_eh)
2260 {
2261 if (TARGET_USES_WEAK_UNWIND_INFO
2262 && DECL_ONE_ONLY (fde->decl))
2263 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2264 gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER
2265 (DECL_ASSEMBLER_NAME (fde->decl))),
2266 "FDE initial location");
2267 else
2268 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2269 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
2270 "FDE initial location");
2271 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2272 fde->dw_fde_end, fde->dw_fde_begin,
2273 "FDE address range");
2274 }
2275 else
2276 {
2277 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2278 "FDE initial location");
2279 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2280 fde->dw_fde_end, fde->dw_fde_begin,
2281 "FDE address range");
2282 }
2283
2284 if (augmentation[0])
2285 {
2286 if (any_lsda_needed)
2287 {
2288 int size = size_of_encoded_value (lsda_encoding);
2289
2290 if (lsda_encoding == DW_EH_PE_aligned)
2291 {
2292 int offset = ( 4 /* Length */
2293 + 4 /* CIE offset */
2294 + 2 * size_of_encoded_value (fde_encoding)
2295 + 1 /* Augmentation size */ );
2296 int pad = -offset & (PTR_SIZE - 1);
2297
2298 size += pad;
2299 if (size_of_uleb128 (size) != 1)
2300 abort ();
2301 }
2302
2303 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2304
2305 if (fde->uses_eh_lsda)
2306 {
2307 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2308 fde->funcdef_number);
2309 dw2_asm_output_encoded_addr_rtx (
2310 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2311 "Language Specific Data Area");
2312 }
2313 else
2314 {
2315 if (lsda_encoding == DW_EH_PE_aligned)
2316 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2317 dw2_asm_output_data
2318 (size_of_encoded_value (lsda_encoding), 0,
2319 "Language Specific Data Area (none)");
2320 }
2321 }
2322 else
2323 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2324 }
2325
2326 /* Loop through the Call Frame Instructions associated with
2327 this FDE. */
2328 fde->dw_fde_current_label = fde->dw_fde_begin;
2329 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2330 output_cfi (cfi, fde, for_eh);
2331
2332 /* Pad the FDE out to an address sized boundary. */
2333 ASM_OUTPUT_ALIGN (asm_out_file,
2334 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2335 ASM_OUTPUT_LABEL (asm_out_file, l2);
2336 }
2337
2338 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2339 dw2_asm_output_data (4, 0, "End of Table");
2340 #ifdef MIPS_DEBUGGING_INFO
2341 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2342 get a value of 0. Putting .align 0 after the label fixes it. */
2343 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2344 #endif
2345
2346 /* Turn off app to make assembly quicker. */
2347 if (flag_debug_asm)
2348 app_disable ();
2349 }
2350
2351 /* Output a marker (i.e. a label) for the beginning of a function, before
2352 the prologue. */
2353
2354 void
2355 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2356 const char *file ATTRIBUTE_UNUSED)
2357 {
2358 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2359 dw_fde_ref fde;
2360
2361 current_function_func_begin_label = 0;
2362
2363 #ifdef IA64_UNWIND_INFO
2364 /* ??? current_function_func_begin_label is also used by except.c
2365 for call-site information. We must emit this label if it might
2366 be used. */
2367 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2368 && ! dwarf2out_do_frame ())
2369 return;
2370 #else
2371 if (! dwarf2out_do_frame ())
2372 return;
2373 #endif
2374
2375 function_section (current_function_decl);
2376 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2377 current_function_funcdef_no);
2378 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2379 current_function_funcdef_no);
2380 current_function_func_begin_label = get_identifier (label);
2381
2382 #ifdef IA64_UNWIND_INFO
2383 /* We can elide the fde allocation if we're not emitting debug info. */
2384 if (! dwarf2out_do_frame ())
2385 return;
2386 #endif
2387
2388 /* Expand the fde table if necessary. */
2389 if (fde_table_in_use == fde_table_allocated)
2390 {
2391 fde_table_allocated += FDE_TABLE_INCREMENT;
2392 fde_table = ggc_realloc (fde_table,
2393 fde_table_allocated * sizeof (dw_fde_node));
2394 memset (fde_table + fde_table_in_use, 0,
2395 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2396 }
2397
2398 /* Record the FDE associated with this function. */
2399 current_funcdef_fde = fde_table_in_use;
2400
2401 /* Add the new FDE at the end of the fde_table. */
2402 fde = &fde_table[fde_table_in_use++];
2403 fde->decl = current_function_decl;
2404 fde->dw_fde_begin = xstrdup (label);
2405 fde->dw_fde_current_label = NULL;
2406 fde->dw_fde_end = NULL;
2407 fde->dw_fde_cfi = NULL;
2408 fde->funcdef_number = current_function_funcdef_no;
2409 fde->nothrow = current_function_nothrow;
2410 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2411 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2412
2413 args_size = old_args_size = 0;
2414
2415 /* We only want to output line number information for the genuine dwarf2
2416 prologue case, not the eh frame case. */
2417 #ifdef DWARF2_DEBUGGING_INFO
2418 if (file)
2419 dwarf2out_source_line (line, file);
2420 #endif
2421 }
2422
2423 /* Output a marker (i.e. a label) for the absolute end of the generated code
2424 for a function definition. This gets called *after* the epilogue code has
2425 been generated. */
2426
2427 void
2428 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2429 const char *file ATTRIBUTE_UNUSED)
2430 {
2431 dw_fde_ref fde;
2432 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2433
2434 /* Output a label to mark the endpoint of the code generated for this
2435 function. */
2436 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2437 current_function_funcdef_no);
2438 ASM_OUTPUT_LABEL (asm_out_file, label);
2439 fde = &fde_table[fde_table_in_use - 1];
2440 fde->dw_fde_end = xstrdup (label);
2441 }
2442
2443 void
2444 dwarf2out_frame_init (void)
2445 {
2446 /* Allocate the initial hunk of the fde_table. */
2447 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2448 fde_table_allocated = FDE_TABLE_INCREMENT;
2449 fde_table_in_use = 0;
2450
2451 /* Generate the CFA instructions common to all FDE's. Do it now for the
2452 sake of lookup_cfa. */
2453
2454 #ifdef DWARF2_UNWIND_INFO
2455 /* On entry, the Canonical Frame Address is at SP. */
2456 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2457 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2458 #endif
2459 }
2460
2461 void
2462 dwarf2out_frame_finish (void)
2463 {
2464 /* Output call frame information. */
2465 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2466 output_call_frame_info (0);
2467
2468 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2469 output_call_frame_info (1);
2470 }
2471 #endif
2472 \f
2473 /* And now, the subset of the debugging information support code necessary
2474 for emitting location expressions. */
2475
2476 /* We need some way to distinguish DW_OP_addr with a direct symbol
2477 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2478 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2479
2480
2481 typedef struct dw_val_struct *dw_val_ref;
2482 typedef struct die_struct *dw_die_ref;
2483 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2484 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2485
2486 /* Each DIE may have a series of attribute/value pairs. Values
2487 can take on several forms. The forms that are used in this
2488 implementation are listed below. */
2489
2490 enum dw_val_class
2491 {
2492 dw_val_class_addr,
2493 dw_val_class_offset,
2494 dw_val_class_loc,
2495 dw_val_class_loc_list,
2496 dw_val_class_range_list,
2497 dw_val_class_const,
2498 dw_val_class_unsigned_const,
2499 dw_val_class_long_long,
2500 dw_val_class_vec,
2501 dw_val_class_flag,
2502 dw_val_class_die_ref,
2503 dw_val_class_fde_ref,
2504 dw_val_class_lbl_id,
2505 dw_val_class_lbl_offset,
2506 dw_val_class_str
2507 };
2508
2509 /* Describe a double word constant value. */
2510 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2511
2512 typedef struct dw_long_long_struct GTY(())
2513 {
2514 unsigned long hi;
2515 unsigned long low;
2516 }
2517 dw_long_long_const;
2518
2519 /* Describe a floating point constant value, or a vector constant value. */
2520
2521 typedef struct dw_vec_struct GTY(())
2522 {
2523 unsigned char * GTY((length ("%h.length"))) array;
2524 unsigned length;
2525 unsigned elt_size;
2526 }
2527 dw_vec_const;
2528
2529 /* The dw_val_node describes an attribute's value, as it is
2530 represented internally. */
2531
2532 typedef struct dw_val_struct GTY(())
2533 {
2534 enum dw_val_class val_class;
2535 union dw_val_struct_union
2536 {
2537 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2538 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2539 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2540 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2541 HOST_WIDE_INT GTY ((default)) val_int;
2542 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2543 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2544 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2545 struct dw_val_die_union
2546 {
2547 dw_die_ref die;
2548 int external;
2549 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2550 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2551 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2552 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2553 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2554 }
2555 GTY ((desc ("%1.val_class"))) v;
2556 }
2557 dw_val_node;
2558
2559 /* Locations in memory are described using a sequence of stack machine
2560 operations. */
2561
2562 typedef struct dw_loc_descr_struct GTY(())
2563 {
2564 dw_loc_descr_ref dw_loc_next;
2565 enum dwarf_location_atom dw_loc_opc;
2566 dw_val_node dw_loc_oprnd1;
2567 dw_val_node dw_loc_oprnd2;
2568 int dw_loc_addr;
2569 }
2570 dw_loc_descr_node;
2571
2572 /* Location lists are ranges + location descriptions for that range,
2573 so you can track variables that are in different places over
2574 their entire life. */
2575 typedef struct dw_loc_list_struct GTY(())
2576 {
2577 dw_loc_list_ref dw_loc_next;
2578 const char *begin; /* Label for begin address of range */
2579 const char *end; /* Label for end address of range */
2580 char *ll_symbol; /* Label for beginning of location list.
2581 Only on head of list */
2582 const char *section; /* Section this loclist is relative to */
2583 dw_loc_descr_ref expr;
2584 } dw_loc_list_node;
2585
2586 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2587
2588 static const char *dwarf_stack_op_name (unsigned);
2589 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2590 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2591 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2592 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2593 static unsigned long size_of_locs (dw_loc_descr_ref);
2594 static void output_loc_operands (dw_loc_descr_ref);
2595 static void output_loc_sequence (dw_loc_descr_ref);
2596
2597 /* Convert a DWARF stack opcode into its string name. */
2598
2599 static const char *
2600 dwarf_stack_op_name (unsigned int op)
2601 {
2602 switch (op)
2603 {
2604 case DW_OP_addr:
2605 case INTERNAL_DW_OP_tls_addr:
2606 return "DW_OP_addr";
2607 case DW_OP_deref:
2608 return "DW_OP_deref";
2609 case DW_OP_const1u:
2610 return "DW_OP_const1u";
2611 case DW_OP_const1s:
2612 return "DW_OP_const1s";
2613 case DW_OP_const2u:
2614 return "DW_OP_const2u";
2615 case DW_OP_const2s:
2616 return "DW_OP_const2s";
2617 case DW_OP_const4u:
2618 return "DW_OP_const4u";
2619 case DW_OP_const4s:
2620 return "DW_OP_const4s";
2621 case DW_OP_const8u:
2622 return "DW_OP_const8u";
2623 case DW_OP_const8s:
2624 return "DW_OP_const8s";
2625 case DW_OP_constu:
2626 return "DW_OP_constu";
2627 case DW_OP_consts:
2628 return "DW_OP_consts";
2629 case DW_OP_dup:
2630 return "DW_OP_dup";
2631 case DW_OP_drop:
2632 return "DW_OP_drop";
2633 case DW_OP_over:
2634 return "DW_OP_over";
2635 case DW_OP_pick:
2636 return "DW_OP_pick";
2637 case DW_OP_swap:
2638 return "DW_OP_swap";
2639 case DW_OP_rot:
2640 return "DW_OP_rot";
2641 case DW_OP_xderef:
2642 return "DW_OP_xderef";
2643 case DW_OP_abs:
2644 return "DW_OP_abs";
2645 case DW_OP_and:
2646 return "DW_OP_and";
2647 case DW_OP_div:
2648 return "DW_OP_div";
2649 case DW_OP_minus:
2650 return "DW_OP_minus";
2651 case DW_OP_mod:
2652 return "DW_OP_mod";
2653 case DW_OP_mul:
2654 return "DW_OP_mul";
2655 case DW_OP_neg:
2656 return "DW_OP_neg";
2657 case DW_OP_not:
2658 return "DW_OP_not";
2659 case DW_OP_or:
2660 return "DW_OP_or";
2661 case DW_OP_plus:
2662 return "DW_OP_plus";
2663 case DW_OP_plus_uconst:
2664 return "DW_OP_plus_uconst";
2665 case DW_OP_shl:
2666 return "DW_OP_shl";
2667 case DW_OP_shr:
2668 return "DW_OP_shr";
2669 case DW_OP_shra:
2670 return "DW_OP_shra";
2671 case DW_OP_xor:
2672 return "DW_OP_xor";
2673 case DW_OP_bra:
2674 return "DW_OP_bra";
2675 case DW_OP_eq:
2676 return "DW_OP_eq";
2677 case DW_OP_ge:
2678 return "DW_OP_ge";
2679 case DW_OP_gt:
2680 return "DW_OP_gt";
2681 case DW_OP_le:
2682 return "DW_OP_le";
2683 case DW_OP_lt:
2684 return "DW_OP_lt";
2685 case DW_OP_ne:
2686 return "DW_OP_ne";
2687 case DW_OP_skip:
2688 return "DW_OP_skip";
2689 case DW_OP_lit0:
2690 return "DW_OP_lit0";
2691 case DW_OP_lit1:
2692 return "DW_OP_lit1";
2693 case DW_OP_lit2:
2694 return "DW_OP_lit2";
2695 case DW_OP_lit3:
2696 return "DW_OP_lit3";
2697 case DW_OP_lit4:
2698 return "DW_OP_lit4";
2699 case DW_OP_lit5:
2700 return "DW_OP_lit5";
2701 case DW_OP_lit6:
2702 return "DW_OP_lit6";
2703 case DW_OP_lit7:
2704 return "DW_OP_lit7";
2705 case DW_OP_lit8:
2706 return "DW_OP_lit8";
2707 case DW_OP_lit9:
2708 return "DW_OP_lit9";
2709 case DW_OP_lit10:
2710 return "DW_OP_lit10";
2711 case DW_OP_lit11:
2712 return "DW_OP_lit11";
2713 case DW_OP_lit12:
2714 return "DW_OP_lit12";
2715 case DW_OP_lit13:
2716 return "DW_OP_lit13";
2717 case DW_OP_lit14:
2718 return "DW_OP_lit14";
2719 case DW_OP_lit15:
2720 return "DW_OP_lit15";
2721 case DW_OP_lit16:
2722 return "DW_OP_lit16";
2723 case DW_OP_lit17:
2724 return "DW_OP_lit17";
2725 case DW_OP_lit18:
2726 return "DW_OP_lit18";
2727 case DW_OP_lit19:
2728 return "DW_OP_lit19";
2729 case DW_OP_lit20:
2730 return "DW_OP_lit20";
2731 case DW_OP_lit21:
2732 return "DW_OP_lit21";
2733 case DW_OP_lit22:
2734 return "DW_OP_lit22";
2735 case DW_OP_lit23:
2736 return "DW_OP_lit23";
2737 case DW_OP_lit24:
2738 return "DW_OP_lit24";
2739 case DW_OP_lit25:
2740 return "DW_OP_lit25";
2741 case DW_OP_lit26:
2742 return "DW_OP_lit26";
2743 case DW_OP_lit27:
2744 return "DW_OP_lit27";
2745 case DW_OP_lit28:
2746 return "DW_OP_lit28";
2747 case DW_OP_lit29:
2748 return "DW_OP_lit29";
2749 case DW_OP_lit30:
2750 return "DW_OP_lit30";
2751 case DW_OP_lit31:
2752 return "DW_OP_lit31";
2753 case DW_OP_reg0:
2754 return "DW_OP_reg0";
2755 case DW_OP_reg1:
2756 return "DW_OP_reg1";
2757 case DW_OP_reg2:
2758 return "DW_OP_reg2";
2759 case DW_OP_reg3:
2760 return "DW_OP_reg3";
2761 case DW_OP_reg4:
2762 return "DW_OP_reg4";
2763 case DW_OP_reg5:
2764 return "DW_OP_reg5";
2765 case DW_OP_reg6:
2766 return "DW_OP_reg6";
2767 case DW_OP_reg7:
2768 return "DW_OP_reg7";
2769 case DW_OP_reg8:
2770 return "DW_OP_reg8";
2771 case DW_OP_reg9:
2772 return "DW_OP_reg9";
2773 case DW_OP_reg10:
2774 return "DW_OP_reg10";
2775 case DW_OP_reg11:
2776 return "DW_OP_reg11";
2777 case DW_OP_reg12:
2778 return "DW_OP_reg12";
2779 case DW_OP_reg13:
2780 return "DW_OP_reg13";
2781 case DW_OP_reg14:
2782 return "DW_OP_reg14";
2783 case DW_OP_reg15:
2784 return "DW_OP_reg15";
2785 case DW_OP_reg16:
2786 return "DW_OP_reg16";
2787 case DW_OP_reg17:
2788 return "DW_OP_reg17";
2789 case DW_OP_reg18:
2790 return "DW_OP_reg18";
2791 case DW_OP_reg19:
2792 return "DW_OP_reg19";
2793 case DW_OP_reg20:
2794 return "DW_OP_reg20";
2795 case DW_OP_reg21:
2796 return "DW_OP_reg21";
2797 case DW_OP_reg22:
2798 return "DW_OP_reg22";
2799 case DW_OP_reg23:
2800 return "DW_OP_reg23";
2801 case DW_OP_reg24:
2802 return "DW_OP_reg24";
2803 case DW_OP_reg25:
2804 return "DW_OP_reg25";
2805 case DW_OP_reg26:
2806 return "DW_OP_reg26";
2807 case DW_OP_reg27:
2808 return "DW_OP_reg27";
2809 case DW_OP_reg28:
2810 return "DW_OP_reg28";
2811 case DW_OP_reg29:
2812 return "DW_OP_reg29";
2813 case DW_OP_reg30:
2814 return "DW_OP_reg30";
2815 case DW_OP_reg31:
2816 return "DW_OP_reg31";
2817 case DW_OP_breg0:
2818 return "DW_OP_breg0";
2819 case DW_OP_breg1:
2820 return "DW_OP_breg1";
2821 case DW_OP_breg2:
2822 return "DW_OP_breg2";
2823 case DW_OP_breg3:
2824 return "DW_OP_breg3";
2825 case DW_OP_breg4:
2826 return "DW_OP_breg4";
2827 case DW_OP_breg5:
2828 return "DW_OP_breg5";
2829 case DW_OP_breg6:
2830 return "DW_OP_breg6";
2831 case DW_OP_breg7:
2832 return "DW_OP_breg7";
2833 case DW_OP_breg8:
2834 return "DW_OP_breg8";
2835 case DW_OP_breg9:
2836 return "DW_OP_breg9";
2837 case DW_OP_breg10:
2838 return "DW_OP_breg10";
2839 case DW_OP_breg11:
2840 return "DW_OP_breg11";
2841 case DW_OP_breg12:
2842 return "DW_OP_breg12";
2843 case DW_OP_breg13:
2844 return "DW_OP_breg13";
2845 case DW_OP_breg14:
2846 return "DW_OP_breg14";
2847 case DW_OP_breg15:
2848 return "DW_OP_breg15";
2849 case DW_OP_breg16:
2850 return "DW_OP_breg16";
2851 case DW_OP_breg17:
2852 return "DW_OP_breg17";
2853 case DW_OP_breg18:
2854 return "DW_OP_breg18";
2855 case DW_OP_breg19:
2856 return "DW_OP_breg19";
2857 case DW_OP_breg20:
2858 return "DW_OP_breg20";
2859 case DW_OP_breg21:
2860 return "DW_OP_breg21";
2861 case DW_OP_breg22:
2862 return "DW_OP_breg22";
2863 case DW_OP_breg23:
2864 return "DW_OP_breg23";
2865 case DW_OP_breg24:
2866 return "DW_OP_breg24";
2867 case DW_OP_breg25:
2868 return "DW_OP_breg25";
2869 case DW_OP_breg26:
2870 return "DW_OP_breg26";
2871 case DW_OP_breg27:
2872 return "DW_OP_breg27";
2873 case DW_OP_breg28:
2874 return "DW_OP_breg28";
2875 case DW_OP_breg29:
2876 return "DW_OP_breg29";
2877 case DW_OP_breg30:
2878 return "DW_OP_breg30";
2879 case DW_OP_breg31:
2880 return "DW_OP_breg31";
2881 case DW_OP_regx:
2882 return "DW_OP_regx";
2883 case DW_OP_fbreg:
2884 return "DW_OP_fbreg";
2885 case DW_OP_bregx:
2886 return "DW_OP_bregx";
2887 case DW_OP_piece:
2888 return "DW_OP_piece";
2889 case DW_OP_deref_size:
2890 return "DW_OP_deref_size";
2891 case DW_OP_xderef_size:
2892 return "DW_OP_xderef_size";
2893 case DW_OP_nop:
2894 return "DW_OP_nop";
2895 case DW_OP_push_object_address:
2896 return "DW_OP_push_object_address";
2897 case DW_OP_call2:
2898 return "DW_OP_call2";
2899 case DW_OP_call4:
2900 return "DW_OP_call4";
2901 case DW_OP_call_ref:
2902 return "DW_OP_call_ref";
2903 case DW_OP_GNU_push_tls_address:
2904 return "DW_OP_GNU_push_tls_address";
2905 default:
2906 return "OP_<unknown>";
2907 }
2908 }
2909
2910 /* Return a pointer to a newly allocated location description. Location
2911 descriptions are simple expression terms that can be strung
2912 together to form more complicated location (address) descriptions. */
2913
2914 static inline dw_loc_descr_ref
2915 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2916 unsigned HOST_WIDE_INT oprnd2)
2917 {
2918 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2919
2920 descr->dw_loc_opc = op;
2921 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2922 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2923 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2924 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2925
2926 return descr;
2927 }
2928
2929
2930 /* Add a location description term to a location description expression. */
2931
2932 static inline void
2933 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
2934 {
2935 dw_loc_descr_ref *d;
2936
2937 /* Find the end of the chain. */
2938 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2939 ;
2940
2941 *d = descr;
2942 }
2943
2944 /* Return the size of a location descriptor. */
2945
2946 static unsigned long
2947 size_of_loc_descr (dw_loc_descr_ref loc)
2948 {
2949 unsigned long size = 1;
2950
2951 switch (loc->dw_loc_opc)
2952 {
2953 case DW_OP_addr:
2954 case INTERNAL_DW_OP_tls_addr:
2955 size += DWARF2_ADDR_SIZE;
2956 break;
2957 case DW_OP_const1u:
2958 case DW_OP_const1s:
2959 size += 1;
2960 break;
2961 case DW_OP_const2u:
2962 case DW_OP_const2s:
2963 size += 2;
2964 break;
2965 case DW_OP_const4u:
2966 case DW_OP_const4s:
2967 size += 4;
2968 break;
2969 case DW_OP_const8u:
2970 case DW_OP_const8s:
2971 size += 8;
2972 break;
2973 case DW_OP_constu:
2974 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2975 break;
2976 case DW_OP_consts:
2977 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2978 break;
2979 case DW_OP_pick:
2980 size += 1;
2981 break;
2982 case DW_OP_plus_uconst:
2983 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2984 break;
2985 case DW_OP_skip:
2986 case DW_OP_bra:
2987 size += 2;
2988 break;
2989 case DW_OP_breg0:
2990 case DW_OP_breg1:
2991 case DW_OP_breg2:
2992 case DW_OP_breg3:
2993 case DW_OP_breg4:
2994 case DW_OP_breg5:
2995 case DW_OP_breg6:
2996 case DW_OP_breg7:
2997 case DW_OP_breg8:
2998 case DW_OP_breg9:
2999 case DW_OP_breg10:
3000 case DW_OP_breg11:
3001 case DW_OP_breg12:
3002 case DW_OP_breg13:
3003 case DW_OP_breg14:
3004 case DW_OP_breg15:
3005 case DW_OP_breg16:
3006 case DW_OP_breg17:
3007 case DW_OP_breg18:
3008 case DW_OP_breg19:
3009 case DW_OP_breg20:
3010 case DW_OP_breg21:
3011 case DW_OP_breg22:
3012 case DW_OP_breg23:
3013 case DW_OP_breg24:
3014 case DW_OP_breg25:
3015 case DW_OP_breg26:
3016 case DW_OP_breg27:
3017 case DW_OP_breg28:
3018 case DW_OP_breg29:
3019 case DW_OP_breg30:
3020 case DW_OP_breg31:
3021 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3022 break;
3023 case DW_OP_regx:
3024 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3025 break;
3026 case DW_OP_fbreg:
3027 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3028 break;
3029 case DW_OP_bregx:
3030 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3031 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3032 break;
3033 case DW_OP_piece:
3034 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3035 break;
3036 case DW_OP_deref_size:
3037 case DW_OP_xderef_size:
3038 size += 1;
3039 break;
3040 case DW_OP_call2:
3041 size += 2;
3042 break;
3043 case DW_OP_call4:
3044 size += 4;
3045 break;
3046 case DW_OP_call_ref:
3047 size += DWARF2_ADDR_SIZE;
3048 break;
3049 default:
3050 break;
3051 }
3052
3053 return size;
3054 }
3055
3056 /* Return the size of a series of location descriptors. */
3057
3058 static unsigned long
3059 size_of_locs (dw_loc_descr_ref loc)
3060 {
3061 unsigned long size;
3062
3063 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
3064 {
3065 loc->dw_loc_addr = size;
3066 size += size_of_loc_descr (loc);
3067 }
3068
3069 return size;
3070 }
3071
3072 /* Output location description stack opcode's operands (if any). */
3073
3074 static void
3075 output_loc_operands (dw_loc_descr_ref loc)
3076 {
3077 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3078 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3079
3080 switch (loc->dw_loc_opc)
3081 {
3082 #ifdef DWARF2_DEBUGGING_INFO
3083 case DW_OP_addr:
3084 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3085 break;
3086 case DW_OP_const2u:
3087 case DW_OP_const2s:
3088 dw2_asm_output_data (2, val1->v.val_int, NULL);
3089 break;
3090 case DW_OP_const4u:
3091 case DW_OP_const4s:
3092 dw2_asm_output_data (4, val1->v.val_int, NULL);
3093 break;
3094 case DW_OP_const8u:
3095 case DW_OP_const8s:
3096 if (HOST_BITS_PER_LONG < 64)
3097 abort ();
3098 dw2_asm_output_data (8, val1->v.val_int, NULL);
3099 break;
3100 case DW_OP_skip:
3101 case DW_OP_bra:
3102 {
3103 int offset;
3104
3105 if (val1->val_class == dw_val_class_loc)
3106 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3107 else
3108 abort ();
3109
3110 dw2_asm_output_data (2, offset, NULL);
3111 }
3112 break;
3113 #else
3114 case DW_OP_addr:
3115 case DW_OP_const2u:
3116 case DW_OP_const2s:
3117 case DW_OP_const4u:
3118 case DW_OP_const4s:
3119 case DW_OP_const8u:
3120 case DW_OP_const8s:
3121 case DW_OP_skip:
3122 case DW_OP_bra:
3123 /* We currently don't make any attempt to make sure these are
3124 aligned properly like we do for the main unwind info, so
3125 don't support emitting things larger than a byte if we're
3126 only doing unwinding. */
3127 abort ();
3128 #endif
3129 case DW_OP_const1u:
3130 case DW_OP_const1s:
3131 dw2_asm_output_data (1, val1->v.val_int, NULL);
3132 break;
3133 case DW_OP_constu:
3134 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3135 break;
3136 case DW_OP_consts:
3137 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3138 break;
3139 case DW_OP_pick:
3140 dw2_asm_output_data (1, val1->v.val_int, NULL);
3141 break;
3142 case DW_OP_plus_uconst:
3143 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3144 break;
3145 case DW_OP_breg0:
3146 case DW_OP_breg1:
3147 case DW_OP_breg2:
3148 case DW_OP_breg3:
3149 case DW_OP_breg4:
3150 case DW_OP_breg5:
3151 case DW_OP_breg6:
3152 case DW_OP_breg7:
3153 case DW_OP_breg8:
3154 case DW_OP_breg9:
3155 case DW_OP_breg10:
3156 case DW_OP_breg11:
3157 case DW_OP_breg12:
3158 case DW_OP_breg13:
3159 case DW_OP_breg14:
3160 case DW_OP_breg15:
3161 case DW_OP_breg16:
3162 case DW_OP_breg17:
3163 case DW_OP_breg18:
3164 case DW_OP_breg19:
3165 case DW_OP_breg20:
3166 case DW_OP_breg21:
3167 case DW_OP_breg22:
3168 case DW_OP_breg23:
3169 case DW_OP_breg24:
3170 case DW_OP_breg25:
3171 case DW_OP_breg26:
3172 case DW_OP_breg27:
3173 case DW_OP_breg28:
3174 case DW_OP_breg29:
3175 case DW_OP_breg30:
3176 case DW_OP_breg31:
3177 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3178 break;
3179 case DW_OP_regx:
3180 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3181 break;
3182 case DW_OP_fbreg:
3183 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3184 break;
3185 case DW_OP_bregx:
3186 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3187 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3188 break;
3189 case DW_OP_piece:
3190 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3191 break;
3192 case DW_OP_deref_size:
3193 case DW_OP_xderef_size:
3194 dw2_asm_output_data (1, val1->v.val_int, NULL);
3195 break;
3196
3197 case INTERNAL_DW_OP_tls_addr:
3198 #ifdef ASM_OUTPUT_DWARF_DTPREL
3199 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3200 val1->v.val_addr);
3201 fputc ('\n', asm_out_file);
3202 #else
3203 abort ();
3204 #endif
3205 break;
3206
3207 default:
3208 /* Other codes have no operands. */
3209 break;
3210 }
3211 }
3212
3213 /* Output a sequence of location operations. */
3214
3215 static void
3216 output_loc_sequence (dw_loc_descr_ref loc)
3217 {
3218 for (; loc != NULL; loc = loc->dw_loc_next)
3219 {
3220 /* Output the opcode. */
3221 dw2_asm_output_data (1, loc->dw_loc_opc,
3222 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3223
3224 /* Output the operand(s) (if any). */
3225 output_loc_operands (loc);
3226 }
3227 }
3228
3229 /* This routine will generate the correct assembly data for a location
3230 description based on a cfi entry with a complex address. */
3231
3232 static void
3233 output_cfa_loc (dw_cfi_ref cfi)
3234 {
3235 dw_loc_descr_ref loc;
3236 unsigned long size;
3237
3238 /* Output the size of the block. */
3239 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3240 size = size_of_locs (loc);
3241 dw2_asm_output_data_uleb128 (size, NULL);
3242
3243 /* Now output the operations themselves. */
3244 output_loc_sequence (loc);
3245 }
3246
3247 /* This function builds a dwarf location descriptor sequence from
3248 a dw_cfa_location. */
3249
3250 static struct dw_loc_descr_struct *
3251 build_cfa_loc (dw_cfa_location *cfa)
3252 {
3253 struct dw_loc_descr_struct *head, *tmp;
3254
3255 if (cfa->indirect == 0)
3256 abort ();
3257
3258 if (cfa->base_offset)
3259 {
3260 if (cfa->reg <= 31)
3261 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3262 else
3263 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3264 }
3265 else if (cfa->reg <= 31)
3266 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3267 else
3268 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3269
3270 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3271 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3272 add_loc_descr (&head, tmp);
3273 if (cfa->offset != 0)
3274 {
3275 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3276 add_loc_descr (&head, tmp);
3277 }
3278
3279 return head;
3280 }
3281
3282 /* This function fills in aa dw_cfa_location structure from a dwarf location
3283 descriptor sequence. */
3284
3285 static void
3286 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3287 {
3288 struct dw_loc_descr_struct *ptr;
3289 cfa->offset = 0;
3290 cfa->base_offset = 0;
3291 cfa->indirect = 0;
3292 cfa->reg = -1;
3293
3294 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3295 {
3296 enum dwarf_location_atom op = ptr->dw_loc_opc;
3297
3298 switch (op)
3299 {
3300 case DW_OP_reg0:
3301 case DW_OP_reg1:
3302 case DW_OP_reg2:
3303 case DW_OP_reg3:
3304 case DW_OP_reg4:
3305 case DW_OP_reg5:
3306 case DW_OP_reg6:
3307 case DW_OP_reg7:
3308 case DW_OP_reg8:
3309 case DW_OP_reg9:
3310 case DW_OP_reg10:
3311 case DW_OP_reg11:
3312 case DW_OP_reg12:
3313 case DW_OP_reg13:
3314 case DW_OP_reg14:
3315 case DW_OP_reg15:
3316 case DW_OP_reg16:
3317 case DW_OP_reg17:
3318 case DW_OP_reg18:
3319 case DW_OP_reg19:
3320 case DW_OP_reg20:
3321 case DW_OP_reg21:
3322 case DW_OP_reg22:
3323 case DW_OP_reg23:
3324 case DW_OP_reg24:
3325 case DW_OP_reg25:
3326 case DW_OP_reg26:
3327 case DW_OP_reg27:
3328 case DW_OP_reg28:
3329 case DW_OP_reg29:
3330 case DW_OP_reg30:
3331 case DW_OP_reg31:
3332 cfa->reg = op - DW_OP_reg0;
3333 break;
3334 case DW_OP_regx:
3335 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3336 break;
3337 case DW_OP_breg0:
3338 case DW_OP_breg1:
3339 case DW_OP_breg2:
3340 case DW_OP_breg3:
3341 case DW_OP_breg4:
3342 case DW_OP_breg5:
3343 case DW_OP_breg6:
3344 case DW_OP_breg7:
3345 case DW_OP_breg8:
3346 case DW_OP_breg9:
3347 case DW_OP_breg10:
3348 case DW_OP_breg11:
3349 case DW_OP_breg12:
3350 case DW_OP_breg13:
3351 case DW_OP_breg14:
3352 case DW_OP_breg15:
3353 case DW_OP_breg16:
3354 case DW_OP_breg17:
3355 case DW_OP_breg18:
3356 case DW_OP_breg19:
3357 case DW_OP_breg20:
3358 case DW_OP_breg21:
3359 case DW_OP_breg22:
3360 case DW_OP_breg23:
3361 case DW_OP_breg24:
3362 case DW_OP_breg25:
3363 case DW_OP_breg26:
3364 case DW_OP_breg27:
3365 case DW_OP_breg28:
3366 case DW_OP_breg29:
3367 case DW_OP_breg30:
3368 case DW_OP_breg31:
3369 cfa->reg = op - DW_OP_breg0;
3370 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3371 break;
3372 case DW_OP_bregx:
3373 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3374 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3375 break;
3376 case DW_OP_deref:
3377 cfa->indirect = 1;
3378 break;
3379 case DW_OP_plus_uconst:
3380 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3381 break;
3382 default:
3383 internal_error ("DW_LOC_OP %s not implemented\n",
3384 dwarf_stack_op_name (ptr->dw_loc_opc));
3385 }
3386 }
3387 }
3388 #endif /* .debug_frame support */
3389 \f
3390 /* And now, the support for symbolic debugging information. */
3391 #ifdef DWARF2_DEBUGGING_INFO
3392
3393 /* .debug_str support. */
3394 static int output_indirect_string (void **, void *);
3395
3396 static void dwarf2out_init (const char *);
3397 static void dwarf2out_finish (const char *);
3398 static void dwarf2out_define (unsigned int, const char *);
3399 static void dwarf2out_undef (unsigned int, const char *);
3400 static void dwarf2out_start_source_file (unsigned, const char *);
3401 static void dwarf2out_end_source_file (unsigned);
3402 static void dwarf2out_begin_block (unsigned, unsigned);
3403 static void dwarf2out_end_block (unsigned, unsigned);
3404 static bool dwarf2out_ignore_block (tree);
3405 static void dwarf2out_global_decl (tree);
3406 static void dwarf2out_type_decl (tree, int);
3407 static void dwarf2out_imported_module_or_decl (tree, tree);
3408 static void dwarf2out_abstract_function (tree);
3409 static void dwarf2out_var_location (rtx);
3410 static void dwarf2out_begin_function (tree);
3411
3412 /* The debug hooks structure. */
3413
3414 const struct gcc_debug_hooks dwarf2_debug_hooks =
3415 {
3416 dwarf2out_init,
3417 dwarf2out_finish,
3418 dwarf2out_define,
3419 dwarf2out_undef,
3420 dwarf2out_start_source_file,
3421 dwarf2out_end_source_file,
3422 dwarf2out_begin_block,
3423 dwarf2out_end_block,
3424 dwarf2out_ignore_block,
3425 dwarf2out_source_line,
3426 dwarf2out_begin_prologue,
3427 debug_nothing_int_charstar, /* end_prologue */
3428 dwarf2out_end_epilogue,
3429 dwarf2out_begin_function,
3430 debug_nothing_int, /* end_function */
3431 dwarf2out_decl, /* function_decl */
3432 dwarf2out_global_decl,
3433 dwarf2out_type_decl, /* type_decl */
3434 dwarf2out_imported_module_or_decl,
3435 debug_nothing_tree, /* deferred_inline_function */
3436 /* The DWARF 2 backend tries to reduce debugging bloat by not
3437 emitting the abstract description of inline functions until
3438 something tries to reference them. */
3439 dwarf2out_abstract_function, /* outlining_inline_function */
3440 debug_nothing_rtx, /* label */
3441 debug_nothing_int, /* handle_pch */
3442 dwarf2out_var_location
3443 };
3444 #endif
3445 \f
3446 /* NOTE: In the comments in this file, many references are made to
3447 "Debugging Information Entries". This term is abbreviated as `DIE'
3448 throughout the remainder of this file. */
3449
3450 /* An internal representation of the DWARF output is built, and then
3451 walked to generate the DWARF debugging info. The walk of the internal
3452 representation is done after the entire program has been compiled.
3453 The types below are used to describe the internal representation. */
3454
3455 /* Various DIE's use offsets relative to the beginning of the
3456 .debug_info section to refer to each other. */
3457
3458 typedef long int dw_offset;
3459
3460 /* Define typedefs here to avoid circular dependencies. */
3461
3462 typedef struct dw_attr_struct *dw_attr_ref;
3463 typedef struct dw_line_info_struct *dw_line_info_ref;
3464 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3465 typedef struct pubname_struct *pubname_ref;
3466 typedef struct dw_ranges_struct *dw_ranges_ref;
3467
3468 /* Each entry in the line_info_table maintains the file and
3469 line number associated with the label generated for that
3470 entry. The label gives the PC value associated with
3471 the line number entry. */
3472
3473 typedef struct dw_line_info_struct GTY(())
3474 {
3475 unsigned long dw_file_num;
3476 unsigned long dw_line_num;
3477 }
3478 dw_line_info_entry;
3479
3480 /* Line information for functions in separate sections; each one gets its
3481 own sequence. */
3482 typedef struct dw_separate_line_info_struct GTY(())
3483 {
3484 unsigned long dw_file_num;
3485 unsigned long dw_line_num;
3486 unsigned long function;
3487 }
3488 dw_separate_line_info_entry;
3489
3490 /* Each DIE attribute has a field specifying the attribute kind,
3491 a link to the next attribute in the chain, and an attribute value.
3492 Attributes are typically linked below the DIE they modify. */
3493
3494 typedef struct dw_attr_struct GTY(())
3495 {
3496 enum dwarf_attribute dw_attr;
3497 dw_attr_ref dw_attr_next;
3498 dw_val_node dw_attr_val;
3499 }
3500 dw_attr_node;
3501
3502 /* The Debugging Information Entry (DIE) structure */
3503
3504 typedef struct die_struct GTY(())
3505 {
3506 enum dwarf_tag die_tag;
3507 char *die_symbol;
3508 dw_attr_ref die_attr;
3509 dw_die_ref die_parent;
3510 dw_die_ref die_child;
3511 dw_die_ref die_sib;
3512 dw_die_ref die_definition; /* ref from a specification to its definition */
3513 dw_offset die_offset;
3514 unsigned long die_abbrev;
3515 int die_mark;
3516 unsigned int decl_id;
3517 }
3518 die_node;
3519
3520 /* The pubname structure */
3521
3522 typedef struct pubname_struct GTY(())
3523 {
3524 dw_die_ref die;
3525 char *name;
3526 }
3527 pubname_entry;
3528
3529 struct dw_ranges_struct GTY(())
3530 {
3531 int block_num;
3532 };
3533
3534 /* The limbo die list structure. */
3535 typedef struct limbo_die_struct GTY(())
3536 {
3537 dw_die_ref die;
3538 tree created_for;
3539 struct limbo_die_struct *next;
3540 }
3541 limbo_die_node;
3542
3543 /* How to start an assembler comment. */
3544 #ifndef ASM_COMMENT_START
3545 #define ASM_COMMENT_START ";#"
3546 #endif
3547
3548 /* Define a macro which returns nonzero for a TYPE_DECL which was
3549 implicitly generated for a tagged type.
3550
3551 Note that unlike the gcc front end (which generates a NULL named
3552 TYPE_DECL node for each complete tagged type, each array type, and
3553 each function type node created) the g++ front end generates a
3554 _named_ TYPE_DECL node for each tagged type node created.
3555 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3556 generate a DW_TAG_typedef DIE for them. */
3557
3558 #define TYPE_DECL_IS_STUB(decl) \
3559 (DECL_NAME (decl) == NULL_TREE \
3560 || (DECL_ARTIFICIAL (decl) \
3561 && is_tagged_type (TREE_TYPE (decl)) \
3562 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3563 /* This is necessary for stub decls that \
3564 appear in nested inline functions. */ \
3565 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3566 && (decl_ultimate_origin (decl) \
3567 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3568
3569 /* Information concerning the compilation unit's programming
3570 language, and compiler version. */
3571
3572 /* Fixed size portion of the DWARF compilation unit header. */
3573 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3574 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3575
3576 /* Fixed size portion of public names info. */
3577 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3578
3579 /* Fixed size portion of the address range info. */
3580 #define DWARF_ARANGES_HEADER_SIZE \
3581 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3582 DWARF2_ADDR_SIZE * 2) \
3583 - DWARF_INITIAL_LENGTH_SIZE)
3584
3585 /* Size of padding portion in the address range info. It must be
3586 aligned to twice the pointer size. */
3587 #define DWARF_ARANGES_PAD_SIZE \
3588 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3589 DWARF2_ADDR_SIZE * 2) \
3590 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3591
3592 /* Use assembler line directives if available. */
3593 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3594 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3595 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3596 #else
3597 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3598 #endif
3599 #endif
3600
3601 /* Minimum line offset in a special line info. opcode.
3602 This value was chosen to give a reasonable range of values. */
3603 #define DWARF_LINE_BASE -10
3604
3605 /* First special line opcode - leave room for the standard opcodes. */
3606 #define DWARF_LINE_OPCODE_BASE 10
3607
3608 /* Range of line offsets in a special line info. opcode. */
3609 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3610
3611 /* Flag that indicates the initial value of the is_stmt_start flag.
3612 In the present implementation, we do not mark any lines as
3613 the beginning of a source statement, because that information
3614 is not made available by the GCC front-end. */
3615 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3616
3617 #ifdef DWARF2_DEBUGGING_INFO
3618 /* This location is used by calc_die_sizes() to keep track
3619 the offset of each DIE within the .debug_info section. */
3620 static unsigned long next_die_offset;
3621 #endif
3622
3623 /* Record the root of the DIE's built for the current compilation unit. */
3624 static GTY(()) dw_die_ref comp_unit_die;
3625
3626 /* A list of DIEs with a NULL parent waiting to be relocated. */
3627 static GTY(()) limbo_die_node *limbo_die_list;
3628
3629 /* Filenames referenced by this compilation unit. */
3630 static GTY(()) varray_type file_table;
3631 static GTY(()) varray_type file_table_emitted;
3632 static GTY(()) size_t file_table_last_lookup_index;
3633
3634 /* A hash table of references to DIE's that describe declarations.
3635 The key is a DECL_UID() which is a unique number identifying each decl. */
3636 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3637
3638 /* Node of the variable location list. */
3639 struct var_loc_node GTY ((chain_next ("%h.next")))
3640 {
3641 rtx GTY (()) var_loc_note;
3642 const char * GTY (()) label;
3643 struct var_loc_node * GTY (()) next;
3644 };
3645
3646 /* Variable location list. */
3647 struct var_loc_list_def GTY (())
3648 {
3649 struct var_loc_node * GTY (()) first;
3650
3651 /* Do not mark the last element of the chained list because
3652 it is marked through the chain. */
3653 struct var_loc_node * GTY ((skip ("%h"))) last;
3654
3655 /* DECL_UID of the variable decl. */
3656 unsigned int decl_id;
3657 };
3658 typedef struct var_loc_list_def var_loc_list;
3659
3660
3661 /* Table of decl location linked lists. */
3662 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3663
3664 /* A pointer to the base of a list of references to DIE's that
3665 are uniquely identified by their tag, presence/absence of
3666 children DIE's, and list of attribute/value pairs. */
3667 static GTY((length ("abbrev_die_table_allocated")))
3668 dw_die_ref *abbrev_die_table;
3669
3670 /* Number of elements currently allocated for abbrev_die_table. */
3671 static GTY(()) unsigned abbrev_die_table_allocated;
3672
3673 /* Number of elements in type_die_table currently in use. */
3674 static GTY(()) unsigned abbrev_die_table_in_use;
3675
3676 /* Size (in elements) of increments by which we may expand the
3677 abbrev_die_table. */
3678 #define ABBREV_DIE_TABLE_INCREMENT 256
3679
3680 /* A pointer to the base of a table that contains line information
3681 for each source code line in .text in the compilation unit. */
3682 static GTY((length ("line_info_table_allocated")))
3683 dw_line_info_ref line_info_table;
3684
3685 /* Number of elements currently allocated for line_info_table. */
3686 static GTY(()) unsigned line_info_table_allocated;
3687
3688 /* Number of elements in line_info_table currently in use. */
3689 static GTY(()) unsigned line_info_table_in_use;
3690
3691 /* A pointer to the base of a table that contains line information
3692 for each source code line outside of .text in the compilation unit. */
3693 static GTY ((length ("separate_line_info_table_allocated")))
3694 dw_separate_line_info_ref separate_line_info_table;
3695
3696 /* Number of elements currently allocated for separate_line_info_table. */
3697 static GTY(()) unsigned separate_line_info_table_allocated;
3698
3699 /* Number of elements in separate_line_info_table currently in use. */
3700 static GTY(()) unsigned separate_line_info_table_in_use;
3701
3702 /* Size (in elements) of increments by which we may expand the
3703 line_info_table. */
3704 #define LINE_INFO_TABLE_INCREMENT 1024
3705
3706 /* A pointer to the base of a table that contains a list of publicly
3707 accessible names. */
3708 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3709
3710 /* Number of elements currently allocated for pubname_table. */
3711 static GTY(()) unsigned pubname_table_allocated;
3712
3713 /* Number of elements in pubname_table currently in use. */
3714 static GTY(()) unsigned pubname_table_in_use;
3715
3716 /* Size (in elements) of increments by which we may expand the
3717 pubname_table. */
3718 #define PUBNAME_TABLE_INCREMENT 64
3719
3720 /* Array of dies for which we should generate .debug_arange info. */
3721 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3722
3723 /* Number of elements currently allocated for arange_table. */
3724 static GTY(()) unsigned arange_table_allocated;
3725
3726 /* Number of elements in arange_table currently in use. */
3727 static GTY(()) unsigned arange_table_in_use;
3728
3729 /* Size (in elements) of increments by which we may expand the
3730 arange_table. */
3731 #define ARANGE_TABLE_INCREMENT 64
3732
3733 /* Array of dies for which we should generate .debug_ranges info. */
3734 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3735
3736 /* Number of elements currently allocated for ranges_table. */
3737 static GTY(()) unsigned ranges_table_allocated;
3738
3739 /* Number of elements in ranges_table currently in use. */
3740 static GTY(()) unsigned ranges_table_in_use;
3741
3742 /* Size (in elements) of increments by which we may expand the
3743 ranges_table. */
3744 #define RANGES_TABLE_INCREMENT 64
3745
3746 /* Whether we have location lists that need outputting */
3747 static GTY(()) unsigned have_location_lists;
3748
3749 /* Unique label counter. */
3750 static GTY(()) unsigned int loclabel_num;
3751
3752 #ifdef DWARF2_DEBUGGING_INFO
3753 /* Record whether the function being analyzed contains inlined functions. */
3754 static int current_function_has_inlines;
3755 #endif
3756 #if 0 && defined (MIPS_DEBUGGING_INFO)
3757 static int comp_unit_has_inlines;
3758 #endif
3759
3760 /* Number of file tables emitted in maybe_emit_file(). */
3761 static GTY(()) int emitcount = 0;
3762
3763 /* Number of internal labels generated by gen_internal_sym(). */
3764 static GTY(()) int label_num;
3765
3766 #ifdef DWARF2_DEBUGGING_INFO
3767
3768 /* Forward declarations for functions defined in this file. */
3769
3770 static int is_pseudo_reg (rtx);
3771 static tree type_main_variant (tree);
3772 static int is_tagged_type (tree);
3773 static const char *dwarf_tag_name (unsigned);
3774 static const char *dwarf_attr_name (unsigned);
3775 static const char *dwarf_form_name (unsigned);
3776 #if 0
3777 static const char *dwarf_type_encoding_name (unsigned);
3778 #endif
3779 static tree decl_ultimate_origin (tree);
3780 static tree block_ultimate_origin (tree);
3781 static tree decl_class_context (tree);
3782 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3783 static inline enum dw_val_class AT_class (dw_attr_ref);
3784 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3785 static inline unsigned AT_flag (dw_attr_ref);
3786 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3787 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3788 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3789 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3790 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3791 unsigned long);
3792 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3793 unsigned int, unsigned char *);
3794 static hashval_t debug_str_do_hash (const void *);
3795 static int debug_str_eq (const void *, const void *);
3796 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3797 static inline const char *AT_string (dw_attr_ref);
3798 static int AT_string_form (dw_attr_ref);
3799 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3800 static void add_AT_specification (dw_die_ref, dw_die_ref);
3801 static inline dw_die_ref AT_ref (dw_attr_ref);
3802 static inline int AT_ref_external (dw_attr_ref);
3803 static inline void set_AT_ref_external (dw_attr_ref, int);
3804 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3805 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3806 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3807 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3808 dw_loc_list_ref);
3809 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3810 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3811 static inline rtx AT_addr (dw_attr_ref);
3812 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3813 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3814 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3815 unsigned HOST_WIDE_INT);
3816 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3817 unsigned long);
3818 static inline const char *AT_lbl (dw_attr_ref);
3819 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3820 static const char *get_AT_low_pc (dw_die_ref);
3821 static const char *get_AT_hi_pc (dw_die_ref);
3822 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3823 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3824 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3825 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3826 static bool is_c_family (void);
3827 static bool is_cxx (void);
3828 static bool is_java (void);
3829 static bool is_fortran (void);
3830 static bool is_ada (void);
3831 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3832 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3833 static inline void free_die (dw_die_ref);
3834 static void remove_children (dw_die_ref);
3835 static void add_child_die (dw_die_ref, dw_die_ref);
3836 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3837 static dw_die_ref lookup_type_die (tree);
3838 static void equate_type_number_to_die (tree, dw_die_ref);
3839 static hashval_t decl_die_table_hash (const void *);
3840 static int decl_die_table_eq (const void *, const void *);
3841 static dw_die_ref lookup_decl_die (tree);
3842 static hashval_t decl_loc_table_hash (const void *);
3843 static int decl_loc_table_eq (const void *, const void *);
3844 static var_loc_list *lookup_decl_loc (tree);
3845 static void equate_decl_number_to_die (tree, dw_die_ref);
3846 static void add_var_loc_to_decl (tree, struct var_loc_node *);
3847 static void print_spaces (FILE *);
3848 static void print_die (dw_die_ref, FILE *);
3849 static void print_dwarf_line_table (FILE *);
3850 static void reverse_die_lists (dw_die_ref);
3851 static void reverse_all_dies (dw_die_ref);
3852 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3853 static dw_die_ref pop_compile_unit (dw_die_ref);
3854 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3855 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3856 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3857 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3858 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3859 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3860 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3861 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3862 static void compute_section_prefix (dw_die_ref);
3863 static int is_type_die (dw_die_ref);
3864 static int is_comdat_die (dw_die_ref);
3865 static int is_symbol_die (dw_die_ref);
3866 static void assign_symbol_names (dw_die_ref);
3867 static void break_out_includes (dw_die_ref);
3868 static hashval_t htab_cu_hash (const void *);
3869 static int htab_cu_eq (const void *, const void *);
3870 static void htab_cu_del (void *);
3871 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3872 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3873 static void add_sibling_attributes (dw_die_ref);
3874 static void build_abbrev_table (dw_die_ref);
3875 static void output_location_lists (dw_die_ref);
3876 static int constant_size (long unsigned);
3877 static unsigned long size_of_die (dw_die_ref);
3878 static void calc_die_sizes (dw_die_ref);
3879 static void mark_dies (dw_die_ref);
3880 static void unmark_dies (dw_die_ref);
3881 static void unmark_all_dies (dw_die_ref);
3882 static unsigned long size_of_pubnames (void);
3883 static unsigned long size_of_aranges (void);
3884 static enum dwarf_form value_format (dw_attr_ref);
3885 static void output_value_format (dw_attr_ref);
3886 static void output_abbrev_section (void);
3887 static void output_die_symbol (dw_die_ref);
3888 static void output_die (dw_die_ref);
3889 static void output_compilation_unit_header (void);
3890 static void output_comp_unit (dw_die_ref, int);
3891 static const char *dwarf2_name (tree, int);
3892 static void add_pubname (tree, dw_die_ref);
3893 static void output_pubnames (void);
3894 static void add_arange (tree, dw_die_ref);
3895 static void output_aranges (void);
3896 static unsigned int add_ranges (tree);
3897 static void output_ranges (void);
3898 static void output_line_info (void);
3899 static void output_file_names (void);
3900 static dw_die_ref base_type_die (tree);
3901 static tree root_type (tree);
3902 static int is_base_type (tree);
3903 static bool is_subrange_type (tree);
3904 static dw_die_ref subrange_type_die (tree, dw_die_ref);
3905 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3906 static int type_is_enum (tree);
3907 static unsigned int dbx_reg_number (rtx);
3908 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3909 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3910 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3911 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3912 static dw_loc_descr_ref based_loc_descr (unsigned, HOST_WIDE_INT, bool);
3913 static int is_based_loc (rtx);
3914 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode, bool);
3915 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3916 static dw_loc_descr_ref loc_descriptor (rtx, bool);
3917 static dw_loc_descr_ref loc_descriptor_from_tree (tree, int);
3918 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3919 static tree field_type (tree);
3920 static unsigned int simple_type_align_in_bits (tree);
3921 static unsigned int simple_decl_align_in_bits (tree);
3922 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3923 static HOST_WIDE_INT field_byte_offset (tree);
3924 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3925 dw_loc_descr_ref);
3926 static void add_data_member_location_attribute (dw_die_ref, tree);
3927 static void add_const_value_attribute (dw_die_ref, rtx);
3928 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
3929 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
3930 static void insert_float (rtx, unsigned char *);
3931 static rtx rtl_for_decl_location (tree);
3932 static void add_location_or_const_value_attribute (dw_die_ref, tree,
3933 enum dwarf_attribute);
3934 static void tree_add_const_value_attribute (dw_die_ref, tree);
3935 static void add_name_attribute (dw_die_ref, const char *);
3936 static void add_comp_dir_attribute (dw_die_ref);
3937 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
3938 static void add_subscript_info (dw_die_ref, tree);
3939 static void add_byte_size_attribute (dw_die_ref, tree);
3940 static void add_bit_offset_attribute (dw_die_ref, tree);
3941 static void add_bit_size_attribute (dw_die_ref, tree);
3942 static void add_prototyped_attribute (dw_die_ref, tree);
3943 static void add_abstract_origin_attribute (dw_die_ref, tree);
3944 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3945 static void add_src_coords_attributes (dw_die_ref, tree);
3946 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3947 static void push_decl_scope (tree);
3948 static void pop_decl_scope (void);
3949 static dw_die_ref scope_die_for (tree, dw_die_ref);
3950 static inline int local_scope_p (dw_die_ref);
3951 static inline int class_or_namespace_scope_p (dw_die_ref);
3952 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
3953 static const char *type_tag (tree);
3954 static tree member_declared_type (tree);
3955 #if 0
3956 static const char *decl_start_label (tree);
3957 #endif
3958 static void gen_array_type_die (tree, dw_die_ref);
3959 static void gen_set_type_die (tree, dw_die_ref);
3960 #if 0
3961 static void gen_entry_point_die (tree, dw_die_ref);
3962 #endif
3963 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
3964 static void gen_inlined_structure_type_die (tree, dw_die_ref);
3965 static void gen_inlined_union_type_die (tree, dw_die_ref);
3966 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
3967 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
3968 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3969 static void gen_formal_types_die (tree, dw_die_ref);
3970 static void gen_subprogram_die (tree, dw_die_ref);
3971 static void gen_variable_die (tree, dw_die_ref);
3972 static void gen_label_die (tree, dw_die_ref);
3973 static void gen_lexical_block_die (tree, dw_die_ref, int);
3974 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
3975 static void gen_field_die (tree, dw_die_ref);
3976 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3977 static dw_die_ref gen_compile_unit_die (const char *);
3978 static void gen_string_type_die (tree, dw_die_ref);
3979 static void gen_inheritance_die (tree, tree, dw_die_ref);
3980 static void gen_member_die (tree, dw_die_ref);
3981 static void gen_struct_or_union_type_die (tree, dw_die_ref);
3982 static void gen_subroutine_type_die (tree, dw_die_ref);
3983 static void gen_typedef_die (tree, dw_die_ref);
3984 static void gen_type_die (tree, dw_die_ref);
3985 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
3986 static void gen_block_die (tree, dw_die_ref, int);
3987 static void decls_for_scope (tree, dw_die_ref, int);
3988 static int is_redundant_typedef (tree);
3989 static void gen_namespace_die (tree);
3990 static void gen_decl_die (tree, dw_die_ref);
3991 static dw_die_ref force_decl_die (tree);
3992 static dw_die_ref force_type_die (tree);
3993 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
3994 static void declare_in_namespace (tree, dw_die_ref);
3995 static unsigned lookup_filename (const char *);
3996 static void init_file_table (void);
3997 static void retry_incomplete_types (void);
3998 static void gen_type_die_for_member (tree, tree, dw_die_ref);
3999 static void splice_child_die (dw_die_ref, dw_die_ref);
4000 static int file_info_cmp (const void *, const void *);
4001 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4002 const char *, const char *, unsigned);
4003 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4004 const char *, const char *,
4005 const char *);
4006 static void output_loc_list (dw_loc_list_ref);
4007 static char *gen_internal_sym (const char *);
4008
4009 static void prune_unmark_dies (dw_die_ref);
4010 static void prune_unused_types_mark (dw_die_ref, int);
4011 static void prune_unused_types_walk (dw_die_ref);
4012 static void prune_unused_types_walk_attribs (dw_die_ref);
4013 static void prune_unused_types_prune (dw_die_ref);
4014 static void prune_unused_types (void);
4015 static int maybe_emit_file (int);
4016
4017 /* Section names used to hold DWARF debugging information. */
4018 #ifndef DEBUG_INFO_SECTION
4019 #define DEBUG_INFO_SECTION ".debug_info"
4020 #endif
4021 #ifndef DEBUG_ABBREV_SECTION
4022 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4023 #endif
4024 #ifndef DEBUG_ARANGES_SECTION
4025 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4026 #endif
4027 #ifndef DEBUG_MACINFO_SECTION
4028 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4029 #endif
4030 #ifndef DEBUG_LINE_SECTION
4031 #define DEBUG_LINE_SECTION ".debug_line"
4032 #endif
4033 #ifndef DEBUG_LOC_SECTION
4034 #define DEBUG_LOC_SECTION ".debug_loc"
4035 #endif
4036 #ifndef DEBUG_PUBNAMES_SECTION
4037 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4038 #endif
4039 #ifndef DEBUG_STR_SECTION
4040 #define DEBUG_STR_SECTION ".debug_str"
4041 #endif
4042 #ifndef DEBUG_RANGES_SECTION
4043 #define DEBUG_RANGES_SECTION ".debug_ranges"
4044 #endif
4045
4046 /* Standard ELF section names for compiled code and data. */
4047 #ifndef TEXT_SECTION_NAME
4048 #define TEXT_SECTION_NAME ".text"
4049 #endif
4050
4051 /* Section flags for .debug_str section. */
4052 #define DEBUG_STR_SECTION_FLAGS \
4053 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4054 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4055 : SECTION_DEBUG)
4056
4057 /* Labels we insert at beginning sections we can reference instead of
4058 the section names themselves. */
4059
4060 #ifndef TEXT_SECTION_LABEL
4061 #define TEXT_SECTION_LABEL "Ltext"
4062 #endif
4063 #ifndef DEBUG_LINE_SECTION_LABEL
4064 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4065 #endif
4066 #ifndef DEBUG_INFO_SECTION_LABEL
4067 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4068 #endif
4069 #ifndef DEBUG_ABBREV_SECTION_LABEL
4070 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4071 #endif
4072 #ifndef DEBUG_LOC_SECTION_LABEL
4073 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4074 #endif
4075 #ifndef DEBUG_RANGES_SECTION_LABEL
4076 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4077 #endif
4078 #ifndef DEBUG_MACINFO_SECTION_LABEL
4079 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4080 #endif
4081
4082 /* Definitions of defaults for formats and names of various special
4083 (artificial) labels which may be generated within this file (when the -g
4084 options is used and DWARF2_DEBUGGING_INFO is in effect.
4085 If necessary, these may be overridden from within the tm.h file, but
4086 typically, overriding these defaults is unnecessary. */
4087
4088 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4089 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4090 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4091 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4092 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4093 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4094 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4095 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4096
4097 #ifndef TEXT_END_LABEL
4098 #define TEXT_END_LABEL "Letext"
4099 #endif
4100 #ifndef BLOCK_BEGIN_LABEL
4101 #define BLOCK_BEGIN_LABEL "LBB"
4102 #endif
4103 #ifndef BLOCK_END_LABEL
4104 #define BLOCK_END_LABEL "LBE"
4105 #endif
4106 #ifndef LINE_CODE_LABEL
4107 #define LINE_CODE_LABEL "LM"
4108 #endif
4109 #ifndef SEPARATE_LINE_CODE_LABEL
4110 #define SEPARATE_LINE_CODE_LABEL "LSM"
4111 #endif
4112 \f
4113 /* We allow a language front-end to designate a function that is to be
4114 called to "demangle" any name before it it put into a DIE. */
4115
4116 static const char *(*demangle_name_func) (const char *);
4117
4118 void
4119 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4120 {
4121 demangle_name_func = func;
4122 }
4123
4124 /* Test if rtl node points to a pseudo register. */
4125
4126 static inline int
4127 is_pseudo_reg (rtx rtl)
4128 {
4129 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4130 || (GET_CODE (rtl) == SUBREG
4131 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4132 }
4133
4134 /* Return a reference to a type, with its const and volatile qualifiers
4135 removed. */
4136
4137 static inline tree
4138 type_main_variant (tree type)
4139 {
4140 type = TYPE_MAIN_VARIANT (type);
4141
4142 /* ??? There really should be only one main variant among any group of
4143 variants of a given type (and all of the MAIN_VARIANT values for all
4144 members of the group should point to that one type) but sometimes the C
4145 front-end messes this up for array types, so we work around that bug
4146 here. */
4147 if (TREE_CODE (type) == ARRAY_TYPE)
4148 while (type != TYPE_MAIN_VARIANT (type))
4149 type = TYPE_MAIN_VARIANT (type);
4150
4151 return type;
4152 }
4153
4154 /* Return nonzero if the given type node represents a tagged type. */
4155
4156 static inline int
4157 is_tagged_type (tree type)
4158 {
4159 enum tree_code code = TREE_CODE (type);
4160
4161 return (code == RECORD_TYPE || code == UNION_TYPE
4162 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4163 }
4164
4165 /* Convert a DIE tag into its string name. */
4166
4167 static const char *
4168 dwarf_tag_name (unsigned int tag)
4169 {
4170 switch (tag)
4171 {
4172 case DW_TAG_padding:
4173 return "DW_TAG_padding";
4174 case DW_TAG_array_type:
4175 return "DW_TAG_array_type";
4176 case DW_TAG_class_type:
4177 return "DW_TAG_class_type";
4178 case DW_TAG_entry_point:
4179 return "DW_TAG_entry_point";
4180 case DW_TAG_enumeration_type:
4181 return "DW_TAG_enumeration_type";
4182 case DW_TAG_formal_parameter:
4183 return "DW_TAG_formal_parameter";
4184 case DW_TAG_imported_declaration:
4185 return "DW_TAG_imported_declaration";
4186 case DW_TAG_label:
4187 return "DW_TAG_label";
4188 case DW_TAG_lexical_block:
4189 return "DW_TAG_lexical_block";
4190 case DW_TAG_member:
4191 return "DW_TAG_member";
4192 case DW_TAG_pointer_type:
4193 return "DW_TAG_pointer_type";
4194 case DW_TAG_reference_type:
4195 return "DW_TAG_reference_type";
4196 case DW_TAG_compile_unit:
4197 return "DW_TAG_compile_unit";
4198 case DW_TAG_string_type:
4199 return "DW_TAG_string_type";
4200 case DW_TAG_structure_type:
4201 return "DW_TAG_structure_type";
4202 case DW_TAG_subroutine_type:
4203 return "DW_TAG_subroutine_type";
4204 case DW_TAG_typedef:
4205 return "DW_TAG_typedef";
4206 case DW_TAG_union_type:
4207 return "DW_TAG_union_type";
4208 case DW_TAG_unspecified_parameters:
4209 return "DW_TAG_unspecified_parameters";
4210 case DW_TAG_variant:
4211 return "DW_TAG_variant";
4212 case DW_TAG_common_block:
4213 return "DW_TAG_common_block";
4214 case DW_TAG_common_inclusion:
4215 return "DW_TAG_common_inclusion";
4216 case DW_TAG_inheritance:
4217 return "DW_TAG_inheritance";
4218 case DW_TAG_inlined_subroutine:
4219 return "DW_TAG_inlined_subroutine";
4220 case DW_TAG_module:
4221 return "DW_TAG_module";
4222 case DW_TAG_ptr_to_member_type:
4223 return "DW_TAG_ptr_to_member_type";
4224 case DW_TAG_set_type:
4225 return "DW_TAG_set_type";
4226 case DW_TAG_subrange_type:
4227 return "DW_TAG_subrange_type";
4228 case DW_TAG_with_stmt:
4229 return "DW_TAG_with_stmt";
4230 case DW_TAG_access_declaration:
4231 return "DW_TAG_access_declaration";
4232 case DW_TAG_base_type:
4233 return "DW_TAG_base_type";
4234 case DW_TAG_catch_block:
4235 return "DW_TAG_catch_block";
4236 case DW_TAG_const_type:
4237 return "DW_TAG_const_type";
4238 case DW_TAG_constant:
4239 return "DW_TAG_constant";
4240 case DW_TAG_enumerator:
4241 return "DW_TAG_enumerator";
4242 case DW_TAG_file_type:
4243 return "DW_TAG_file_type";
4244 case DW_TAG_friend:
4245 return "DW_TAG_friend";
4246 case DW_TAG_namelist:
4247 return "DW_TAG_namelist";
4248 case DW_TAG_namelist_item:
4249 return "DW_TAG_namelist_item";
4250 case DW_TAG_namespace:
4251 return "DW_TAG_namespace";
4252 case DW_TAG_packed_type:
4253 return "DW_TAG_packed_type";
4254 case DW_TAG_subprogram:
4255 return "DW_TAG_subprogram";
4256 case DW_TAG_template_type_param:
4257 return "DW_TAG_template_type_param";
4258 case DW_TAG_template_value_param:
4259 return "DW_TAG_template_value_param";
4260 case DW_TAG_thrown_type:
4261 return "DW_TAG_thrown_type";
4262 case DW_TAG_try_block:
4263 return "DW_TAG_try_block";
4264 case DW_TAG_variant_part:
4265 return "DW_TAG_variant_part";
4266 case DW_TAG_variable:
4267 return "DW_TAG_variable";
4268 case DW_TAG_volatile_type:
4269 return "DW_TAG_volatile_type";
4270 case DW_TAG_imported_module:
4271 return "DW_TAG_imported_module";
4272 case DW_TAG_MIPS_loop:
4273 return "DW_TAG_MIPS_loop";
4274 case DW_TAG_format_label:
4275 return "DW_TAG_format_label";
4276 case DW_TAG_function_template:
4277 return "DW_TAG_function_template";
4278 case DW_TAG_class_template:
4279 return "DW_TAG_class_template";
4280 case DW_TAG_GNU_BINCL:
4281 return "DW_TAG_GNU_BINCL";
4282 case DW_TAG_GNU_EINCL:
4283 return "DW_TAG_GNU_EINCL";
4284 default:
4285 return "DW_TAG_<unknown>";
4286 }
4287 }
4288
4289 /* Convert a DWARF attribute code into its string name. */
4290
4291 static const char *
4292 dwarf_attr_name (unsigned int attr)
4293 {
4294 switch (attr)
4295 {
4296 case DW_AT_sibling:
4297 return "DW_AT_sibling";
4298 case DW_AT_location:
4299 return "DW_AT_location";
4300 case DW_AT_name:
4301 return "DW_AT_name";
4302 case DW_AT_ordering:
4303 return "DW_AT_ordering";
4304 case DW_AT_subscr_data:
4305 return "DW_AT_subscr_data";
4306 case DW_AT_byte_size:
4307 return "DW_AT_byte_size";
4308 case DW_AT_bit_offset:
4309 return "DW_AT_bit_offset";
4310 case DW_AT_bit_size:
4311 return "DW_AT_bit_size";
4312 case DW_AT_element_list:
4313 return "DW_AT_element_list";
4314 case DW_AT_stmt_list:
4315 return "DW_AT_stmt_list";
4316 case DW_AT_low_pc:
4317 return "DW_AT_low_pc";
4318 case DW_AT_high_pc:
4319 return "DW_AT_high_pc";
4320 case DW_AT_language:
4321 return "DW_AT_language";
4322 case DW_AT_member:
4323 return "DW_AT_member";
4324 case DW_AT_discr:
4325 return "DW_AT_discr";
4326 case DW_AT_discr_value:
4327 return "DW_AT_discr_value";
4328 case DW_AT_visibility:
4329 return "DW_AT_visibility";
4330 case DW_AT_import:
4331 return "DW_AT_import";
4332 case DW_AT_string_length:
4333 return "DW_AT_string_length";
4334 case DW_AT_common_reference:
4335 return "DW_AT_common_reference";
4336 case DW_AT_comp_dir:
4337 return "DW_AT_comp_dir";
4338 case DW_AT_const_value:
4339 return "DW_AT_const_value";
4340 case DW_AT_containing_type:
4341 return "DW_AT_containing_type";
4342 case DW_AT_default_value:
4343 return "DW_AT_default_value";
4344 case DW_AT_inline:
4345 return "DW_AT_inline";
4346 case DW_AT_is_optional:
4347 return "DW_AT_is_optional";
4348 case DW_AT_lower_bound:
4349 return "DW_AT_lower_bound";
4350 case DW_AT_producer:
4351 return "DW_AT_producer";
4352 case DW_AT_prototyped:
4353 return "DW_AT_prototyped";
4354 case DW_AT_return_addr:
4355 return "DW_AT_return_addr";
4356 case DW_AT_start_scope:
4357 return "DW_AT_start_scope";
4358 case DW_AT_stride_size:
4359 return "DW_AT_stride_size";
4360 case DW_AT_upper_bound:
4361 return "DW_AT_upper_bound";
4362 case DW_AT_abstract_origin:
4363 return "DW_AT_abstract_origin";
4364 case DW_AT_accessibility:
4365 return "DW_AT_accessibility";
4366 case DW_AT_address_class:
4367 return "DW_AT_address_class";
4368 case DW_AT_artificial:
4369 return "DW_AT_artificial";
4370 case DW_AT_base_types:
4371 return "DW_AT_base_types";
4372 case DW_AT_calling_convention:
4373 return "DW_AT_calling_convention";
4374 case DW_AT_count:
4375 return "DW_AT_count";
4376 case DW_AT_data_member_location:
4377 return "DW_AT_data_member_location";
4378 case DW_AT_decl_column:
4379 return "DW_AT_decl_column";
4380 case DW_AT_decl_file:
4381 return "DW_AT_decl_file";
4382 case DW_AT_decl_line:
4383 return "DW_AT_decl_line";
4384 case DW_AT_declaration:
4385 return "DW_AT_declaration";
4386 case DW_AT_discr_list:
4387 return "DW_AT_discr_list";
4388 case DW_AT_encoding:
4389 return "DW_AT_encoding";
4390 case DW_AT_external:
4391 return "DW_AT_external";
4392 case DW_AT_frame_base:
4393 return "DW_AT_frame_base";
4394 case DW_AT_friend:
4395 return "DW_AT_friend";
4396 case DW_AT_identifier_case:
4397 return "DW_AT_identifier_case";
4398 case DW_AT_macro_info:
4399 return "DW_AT_macro_info";
4400 case DW_AT_namelist_items:
4401 return "DW_AT_namelist_items";
4402 case DW_AT_priority:
4403 return "DW_AT_priority";
4404 case DW_AT_segment:
4405 return "DW_AT_segment";
4406 case DW_AT_specification:
4407 return "DW_AT_specification";
4408 case DW_AT_static_link:
4409 return "DW_AT_static_link";
4410 case DW_AT_type:
4411 return "DW_AT_type";
4412 case DW_AT_use_location:
4413 return "DW_AT_use_location";
4414 case DW_AT_variable_parameter:
4415 return "DW_AT_variable_parameter";
4416 case DW_AT_virtuality:
4417 return "DW_AT_virtuality";
4418 case DW_AT_vtable_elem_location:
4419 return "DW_AT_vtable_elem_location";
4420
4421 case DW_AT_allocated:
4422 return "DW_AT_allocated";
4423 case DW_AT_associated:
4424 return "DW_AT_associated";
4425 case DW_AT_data_location:
4426 return "DW_AT_data_location";
4427 case DW_AT_stride:
4428 return "DW_AT_stride";
4429 case DW_AT_entry_pc:
4430 return "DW_AT_entry_pc";
4431 case DW_AT_use_UTF8:
4432 return "DW_AT_use_UTF8";
4433 case DW_AT_extension:
4434 return "DW_AT_extension";
4435 case DW_AT_ranges:
4436 return "DW_AT_ranges";
4437 case DW_AT_trampoline:
4438 return "DW_AT_trampoline";
4439 case DW_AT_call_column:
4440 return "DW_AT_call_column";
4441 case DW_AT_call_file:
4442 return "DW_AT_call_file";
4443 case DW_AT_call_line:
4444 return "DW_AT_call_line";
4445
4446 case DW_AT_MIPS_fde:
4447 return "DW_AT_MIPS_fde";
4448 case DW_AT_MIPS_loop_begin:
4449 return "DW_AT_MIPS_loop_begin";
4450 case DW_AT_MIPS_tail_loop_begin:
4451 return "DW_AT_MIPS_tail_loop_begin";
4452 case DW_AT_MIPS_epilog_begin:
4453 return "DW_AT_MIPS_epilog_begin";
4454 case DW_AT_MIPS_loop_unroll_factor:
4455 return "DW_AT_MIPS_loop_unroll_factor";
4456 case DW_AT_MIPS_software_pipeline_depth:
4457 return "DW_AT_MIPS_software_pipeline_depth";
4458 case DW_AT_MIPS_linkage_name:
4459 return "DW_AT_MIPS_linkage_name";
4460 case DW_AT_MIPS_stride:
4461 return "DW_AT_MIPS_stride";
4462 case DW_AT_MIPS_abstract_name:
4463 return "DW_AT_MIPS_abstract_name";
4464 case DW_AT_MIPS_clone_origin:
4465 return "DW_AT_MIPS_clone_origin";
4466 case DW_AT_MIPS_has_inlines:
4467 return "DW_AT_MIPS_has_inlines";
4468
4469 case DW_AT_sf_names:
4470 return "DW_AT_sf_names";
4471 case DW_AT_src_info:
4472 return "DW_AT_src_info";
4473 case DW_AT_mac_info:
4474 return "DW_AT_mac_info";
4475 case DW_AT_src_coords:
4476 return "DW_AT_src_coords";
4477 case DW_AT_body_begin:
4478 return "DW_AT_body_begin";
4479 case DW_AT_body_end:
4480 return "DW_AT_body_end";
4481 case DW_AT_GNU_vector:
4482 return "DW_AT_GNU_vector";
4483
4484 case DW_AT_VMS_rtnbeg_pd_address:
4485 return "DW_AT_VMS_rtnbeg_pd_address";
4486
4487 default:
4488 return "DW_AT_<unknown>";
4489 }
4490 }
4491
4492 /* Convert a DWARF value form code into its string name. */
4493
4494 static const char *
4495 dwarf_form_name (unsigned int form)
4496 {
4497 switch (form)
4498 {
4499 case DW_FORM_addr:
4500 return "DW_FORM_addr";
4501 case DW_FORM_block2:
4502 return "DW_FORM_block2";
4503 case DW_FORM_block4:
4504 return "DW_FORM_block4";
4505 case DW_FORM_data2:
4506 return "DW_FORM_data2";
4507 case DW_FORM_data4:
4508 return "DW_FORM_data4";
4509 case DW_FORM_data8:
4510 return "DW_FORM_data8";
4511 case DW_FORM_string:
4512 return "DW_FORM_string";
4513 case DW_FORM_block:
4514 return "DW_FORM_block";
4515 case DW_FORM_block1:
4516 return "DW_FORM_block1";
4517 case DW_FORM_data1:
4518 return "DW_FORM_data1";
4519 case DW_FORM_flag:
4520 return "DW_FORM_flag";
4521 case DW_FORM_sdata:
4522 return "DW_FORM_sdata";
4523 case DW_FORM_strp:
4524 return "DW_FORM_strp";
4525 case DW_FORM_udata:
4526 return "DW_FORM_udata";
4527 case DW_FORM_ref_addr:
4528 return "DW_FORM_ref_addr";
4529 case DW_FORM_ref1:
4530 return "DW_FORM_ref1";
4531 case DW_FORM_ref2:
4532 return "DW_FORM_ref2";
4533 case DW_FORM_ref4:
4534 return "DW_FORM_ref4";
4535 case DW_FORM_ref8:
4536 return "DW_FORM_ref8";
4537 case DW_FORM_ref_udata:
4538 return "DW_FORM_ref_udata";
4539 case DW_FORM_indirect:
4540 return "DW_FORM_indirect";
4541 default:
4542 return "DW_FORM_<unknown>";
4543 }
4544 }
4545
4546 /* Convert a DWARF type code into its string name. */
4547
4548 #if 0
4549 static const char *
4550 dwarf_type_encoding_name (unsigned enc)
4551 {
4552 switch (enc)
4553 {
4554 case DW_ATE_address:
4555 return "DW_ATE_address";
4556 case DW_ATE_boolean:
4557 return "DW_ATE_boolean";
4558 case DW_ATE_complex_float:
4559 return "DW_ATE_complex_float";
4560 case DW_ATE_float:
4561 return "DW_ATE_float";
4562 case DW_ATE_signed:
4563 return "DW_ATE_signed";
4564 case DW_ATE_signed_char:
4565 return "DW_ATE_signed_char";
4566 case DW_ATE_unsigned:
4567 return "DW_ATE_unsigned";
4568 case DW_ATE_unsigned_char:
4569 return "DW_ATE_unsigned_char";
4570 default:
4571 return "DW_ATE_<unknown>";
4572 }
4573 }
4574 #endif
4575 \f
4576 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4577 instance of an inlined instance of a decl which is local to an inline
4578 function, so we have to trace all of the way back through the origin chain
4579 to find out what sort of node actually served as the original seed for the
4580 given block. */
4581
4582 static tree
4583 decl_ultimate_origin (tree decl)
4584 {
4585 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4586 nodes in the function to point to themselves; ignore that if
4587 we're trying to output the abstract instance of this function. */
4588 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4589 return NULL_TREE;
4590
4591 #ifdef ENABLE_CHECKING
4592 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4593 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4594 most distant ancestor, this should never happen. */
4595 abort ();
4596 #endif
4597
4598 return DECL_ABSTRACT_ORIGIN (decl);
4599 }
4600
4601 /* Determine the "ultimate origin" of a block. The block may be an inlined
4602 instance of an inlined instance of a block which is local to an inline
4603 function, so we have to trace all of the way back through the origin chain
4604 to find out what sort of node actually served as the original seed for the
4605 given block. */
4606
4607 static tree
4608 block_ultimate_origin (tree block)
4609 {
4610 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4611
4612 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4613 nodes in the function to point to themselves; ignore that if
4614 we're trying to output the abstract instance of this function. */
4615 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4616 return NULL_TREE;
4617
4618 if (immediate_origin == NULL_TREE)
4619 return NULL_TREE;
4620 else
4621 {
4622 tree ret_val;
4623 tree lookahead = immediate_origin;
4624
4625 do
4626 {
4627 ret_val = lookahead;
4628 lookahead = (TREE_CODE (ret_val) == BLOCK
4629 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4630 }
4631 while (lookahead != NULL && lookahead != ret_val);
4632
4633 return ret_val;
4634 }
4635 }
4636
4637 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4638 of a virtual function may refer to a base class, so we check the 'this'
4639 parameter. */
4640
4641 static tree
4642 decl_class_context (tree decl)
4643 {
4644 tree context = NULL_TREE;
4645
4646 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4647 context = DECL_CONTEXT (decl);
4648 else
4649 context = TYPE_MAIN_VARIANT
4650 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4651
4652 if (context && !TYPE_P (context))
4653 context = NULL_TREE;
4654
4655 return context;
4656 }
4657 \f
4658 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4659 addition order, and correct that in reverse_all_dies. */
4660
4661 static inline void
4662 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4663 {
4664 if (die != NULL && attr != NULL)
4665 {
4666 attr->dw_attr_next = die->die_attr;
4667 die->die_attr = attr;
4668 }
4669 }
4670
4671 static inline enum dw_val_class
4672 AT_class (dw_attr_ref a)
4673 {
4674 return a->dw_attr_val.val_class;
4675 }
4676
4677 /* Add a flag value attribute to a DIE. */
4678
4679 static inline void
4680 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4681 {
4682 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4683
4684 attr->dw_attr_next = NULL;
4685 attr->dw_attr = attr_kind;
4686 attr->dw_attr_val.val_class = dw_val_class_flag;
4687 attr->dw_attr_val.v.val_flag = flag;
4688 add_dwarf_attr (die, attr);
4689 }
4690
4691 static inline unsigned
4692 AT_flag (dw_attr_ref a)
4693 {
4694 if (a && AT_class (a) == dw_val_class_flag)
4695 return a->dw_attr_val.v.val_flag;
4696
4697 abort ();
4698 }
4699
4700 /* Add a signed integer attribute value to a DIE. */
4701
4702 static inline void
4703 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4704 {
4705 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4706
4707 attr->dw_attr_next = NULL;
4708 attr->dw_attr = attr_kind;
4709 attr->dw_attr_val.val_class = dw_val_class_const;
4710 attr->dw_attr_val.v.val_int = int_val;
4711 add_dwarf_attr (die, attr);
4712 }
4713
4714 static inline HOST_WIDE_INT
4715 AT_int (dw_attr_ref a)
4716 {
4717 if (a && AT_class (a) == dw_val_class_const)
4718 return a->dw_attr_val.v.val_int;
4719
4720 abort ();
4721 }
4722
4723 /* Add an unsigned integer attribute value to a DIE. */
4724
4725 static inline void
4726 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4727 unsigned HOST_WIDE_INT unsigned_val)
4728 {
4729 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4730
4731 attr->dw_attr_next = NULL;
4732 attr->dw_attr = attr_kind;
4733 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4734 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4735 add_dwarf_attr (die, attr);
4736 }
4737
4738 static inline unsigned HOST_WIDE_INT
4739 AT_unsigned (dw_attr_ref a)
4740 {
4741 if (a && AT_class (a) == dw_val_class_unsigned_const)
4742 return a->dw_attr_val.v.val_unsigned;
4743
4744 abort ();
4745 }
4746
4747 /* Add an unsigned double integer attribute value to a DIE. */
4748
4749 static inline void
4750 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4751 long unsigned int val_hi, long unsigned int val_low)
4752 {
4753 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4754
4755 attr->dw_attr_next = NULL;
4756 attr->dw_attr = attr_kind;
4757 attr->dw_attr_val.val_class = dw_val_class_long_long;
4758 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4759 attr->dw_attr_val.v.val_long_long.low = val_low;
4760 add_dwarf_attr (die, attr);
4761 }
4762
4763 /* Add a floating point attribute value to a DIE and return it. */
4764
4765 static inline void
4766 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4767 unsigned int length, unsigned int elt_size, unsigned char *array)
4768 {
4769 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4770
4771 attr->dw_attr_next = NULL;
4772 attr->dw_attr = attr_kind;
4773 attr->dw_attr_val.val_class = dw_val_class_vec;
4774 attr->dw_attr_val.v.val_vec.length = length;
4775 attr->dw_attr_val.v.val_vec.elt_size = elt_size;
4776 attr->dw_attr_val.v.val_vec.array = array;
4777 add_dwarf_attr (die, attr);
4778 }
4779
4780 /* Hash and equality functions for debug_str_hash. */
4781
4782 static hashval_t
4783 debug_str_do_hash (const void *x)
4784 {
4785 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4786 }
4787
4788 static int
4789 debug_str_eq (const void *x1, const void *x2)
4790 {
4791 return strcmp ((((const struct indirect_string_node *)x1)->str),
4792 (const char *)x2) == 0;
4793 }
4794
4795 /* Add a string attribute value to a DIE. */
4796
4797 static inline void
4798 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4799 {
4800 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4801 struct indirect_string_node *node;
4802 void **slot;
4803
4804 if (! debug_str_hash)
4805 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4806 debug_str_eq, NULL);
4807
4808 slot = htab_find_slot_with_hash (debug_str_hash, str,
4809 htab_hash_string (str), INSERT);
4810 if (*slot == NULL)
4811 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4812 node = (struct indirect_string_node *) *slot;
4813 node->str = ggc_strdup (str);
4814 node->refcount++;
4815
4816 attr->dw_attr_next = NULL;
4817 attr->dw_attr = attr_kind;
4818 attr->dw_attr_val.val_class = dw_val_class_str;
4819 attr->dw_attr_val.v.val_str = node;
4820 add_dwarf_attr (die, attr);
4821 }
4822
4823 static inline const char *
4824 AT_string (dw_attr_ref a)
4825 {
4826 if (a && AT_class (a) == dw_val_class_str)
4827 return a->dw_attr_val.v.val_str->str;
4828
4829 abort ();
4830 }
4831
4832 /* Find out whether a string should be output inline in DIE
4833 or out-of-line in .debug_str section. */
4834
4835 static int
4836 AT_string_form (dw_attr_ref a)
4837 {
4838 if (a && AT_class (a) == dw_val_class_str)
4839 {
4840 struct indirect_string_node *node;
4841 unsigned int len;
4842 char label[32];
4843
4844 node = a->dw_attr_val.v.val_str;
4845 if (node->form)
4846 return node->form;
4847
4848 len = strlen (node->str) + 1;
4849
4850 /* If the string is shorter or equal to the size of the reference, it is
4851 always better to put it inline. */
4852 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4853 return node->form = DW_FORM_string;
4854
4855 /* If we cannot expect the linker to merge strings in .debug_str
4856 section, only put it into .debug_str if it is worth even in this
4857 single module. */
4858 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4859 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4860 return node->form = DW_FORM_string;
4861
4862 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4863 ++dw2_string_counter;
4864 node->label = xstrdup (label);
4865
4866 return node->form = DW_FORM_strp;
4867 }
4868
4869 abort ();
4870 }
4871
4872 /* Add a DIE reference attribute value to a DIE. */
4873
4874 static inline void
4875 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4876 {
4877 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4878
4879 attr->dw_attr_next = NULL;
4880 attr->dw_attr = attr_kind;
4881 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4882 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4883 attr->dw_attr_val.v.val_die_ref.external = 0;
4884 add_dwarf_attr (die, attr);
4885 }
4886
4887 /* Add an AT_specification attribute to a DIE, and also make the back
4888 pointer from the specification to the definition. */
4889
4890 static inline void
4891 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4892 {
4893 add_AT_die_ref (die, DW_AT_specification, targ_die);
4894 if (targ_die->die_definition)
4895 abort ();
4896 targ_die->die_definition = die;
4897 }
4898
4899 static inline dw_die_ref
4900 AT_ref (dw_attr_ref a)
4901 {
4902 if (a && AT_class (a) == dw_val_class_die_ref)
4903 return a->dw_attr_val.v.val_die_ref.die;
4904
4905 abort ();
4906 }
4907
4908 static inline int
4909 AT_ref_external (dw_attr_ref a)
4910 {
4911 if (a && AT_class (a) == dw_val_class_die_ref)
4912 return a->dw_attr_val.v.val_die_ref.external;
4913
4914 return 0;
4915 }
4916
4917 static inline void
4918 set_AT_ref_external (dw_attr_ref a, int i)
4919 {
4920 if (a && AT_class (a) == dw_val_class_die_ref)
4921 a->dw_attr_val.v.val_die_ref.external = i;
4922 else
4923 abort ();
4924 }
4925
4926 /* Add an FDE reference attribute value to a DIE. */
4927
4928 static inline void
4929 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4930 {
4931 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4932
4933 attr->dw_attr_next = NULL;
4934 attr->dw_attr = attr_kind;
4935 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4936 attr->dw_attr_val.v.val_fde_index = targ_fde;
4937 add_dwarf_attr (die, attr);
4938 }
4939
4940 /* Add a location description attribute value to a DIE. */
4941
4942 static inline void
4943 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4944 {
4945 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4946
4947 attr->dw_attr_next = NULL;
4948 attr->dw_attr = attr_kind;
4949 attr->dw_attr_val.val_class = dw_val_class_loc;
4950 attr->dw_attr_val.v.val_loc = loc;
4951 add_dwarf_attr (die, attr);
4952 }
4953
4954 static inline dw_loc_descr_ref
4955 AT_loc (dw_attr_ref a)
4956 {
4957 if (a && AT_class (a) == dw_val_class_loc)
4958 return a->dw_attr_val.v.val_loc;
4959
4960 abort ();
4961 }
4962
4963 static inline void
4964 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4965 {
4966 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4967
4968 attr->dw_attr_next = NULL;
4969 attr->dw_attr = attr_kind;
4970 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4971 attr->dw_attr_val.v.val_loc_list = loc_list;
4972 add_dwarf_attr (die, attr);
4973 have_location_lists = 1;
4974 }
4975
4976 static inline dw_loc_list_ref
4977 AT_loc_list (dw_attr_ref a)
4978 {
4979 if (a && AT_class (a) == dw_val_class_loc_list)
4980 return a->dw_attr_val.v.val_loc_list;
4981
4982 abort ();
4983 }
4984
4985 /* Add an address constant attribute value to a DIE. */
4986
4987 static inline void
4988 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
4989 {
4990 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4991
4992 attr->dw_attr_next = NULL;
4993 attr->dw_attr = attr_kind;
4994 attr->dw_attr_val.val_class = dw_val_class_addr;
4995 attr->dw_attr_val.v.val_addr = addr;
4996 add_dwarf_attr (die, attr);
4997 }
4998
4999 static inline rtx
5000 AT_addr (dw_attr_ref a)
5001 {
5002 if (a && AT_class (a) == dw_val_class_addr)
5003 return a->dw_attr_val.v.val_addr;
5004
5005 abort ();
5006 }
5007
5008 /* Add a label identifier attribute value to a DIE. */
5009
5010 static inline void
5011 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5012 {
5013 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5014
5015 attr->dw_attr_next = NULL;
5016 attr->dw_attr = attr_kind;
5017 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
5018 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5019 add_dwarf_attr (die, attr);
5020 }
5021
5022 /* Add a section offset attribute value to a DIE. */
5023
5024 static inline void
5025 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
5026 {
5027 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5028
5029 attr->dw_attr_next = NULL;
5030 attr->dw_attr = attr_kind;
5031 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
5032 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
5033 add_dwarf_attr (die, attr);
5034 }
5035
5036 /* Add an offset attribute value to a DIE. */
5037
5038 static inline void
5039 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5040 unsigned HOST_WIDE_INT offset)
5041 {
5042 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5043
5044 attr->dw_attr_next = NULL;
5045 attr->dw_attr = attr_kind;
5046 attr->dw_attr_val.val_class = dw_val_class_offset;
5047 attr->dw_attr_val.v.val_offset = offset;
5048 add_dwarf_attr (die, attr);
5049 }
5050
5051 /* Add an range_list attribute value to a DIE. */
5052
5053 static void
5054 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5055 long unsigned int offset)
5056 {
5057 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5058
5059 attr->dw_attr_next = NULL;
5060 attr->dw_attr = attr_kind;
5061 attr->dw_attr_val.val_class = dw_val_class_range_list;
5062 attr->dw_attr_val.v.val_offset = offset;
5063 add_dwarf_attr (die, attr);
5064 }
5065
5066 static inline const char *
5067 AT_lbl (dw_attr_ref a)
5068 {
5069 if (a && (AT_class (a) == dw_val_class_lbl_id
5070 || AT_class (a) == dw_val_class_lbl_offset))
5071 return a->dw_attr_val.v.val_lbl_id;
5072
5073 abort ();
5074 }
5075
5076 /* Get the attribute of type attr_kind. */
5077
5078 static dw_attr_ref
5079 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5080 {
5081 dw_attr_ref a;
5082 dw_die_ref spec = NULL;
5083
5084 if (die != NULL)
5085 {
5086 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5087 if (a->dw_attr == attr_kind)
5088 return a;
5089 else if (a->dw_attr == DW_AT_specification
5090 || a->dw_attr == DW_AT_abstract_origin)
5091 spec = AT_ref (a);
5092
5093 if (spec)
5094 return get_AT (spec, attr_kind);
5095 }
5096
5097 return NULL;
5098 }
5099
5100 /* Return the "low pc" attribute value, typically associated with a subprogram
5101 DIE. Return null if the "low pc" attribute is either not present, or if it
5102 cannot be represented as an assembler label identifier. */
5103
5104 static inline const char *
5105 get_AT_low_pc (dw_die_ref die)
5106 {
5107 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5108
5109 return a ? AT_lbl (a) : NULL;
5110 }
5111
5112 /* Return the "high pc" attribute value, typically associated with a subprogram
5113 DIE. Return null if the "high pc" attribute is either not present, or if it
5114 cannot be represented as an assembler label identifier. */
5115
5116 static inline const char *
5117 get_AT_hi_pc (dw_die_ref die)
5118 {
5119 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5120
5121 return a ? AT_lbl (a) : NULL;
5122 }
5123
5124 /* Return the value of the string attribute designated by ATTR_KIND, or
5125 NULL if it is not present. */
5126
5127 static inline const char *
5128 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5129 {
5130 dw_attr_ref a = get_AT (die, attr_kind);
5131
5132 return a ? AT_string (a) : NULL;
5133 }
5134
5135 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5136 if it is not present. */
5137
5138 static inline int
5139 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5140 {
5141 dw_attr_ref a = get_AT (die, attr_kind);
5142
5143 return a ? AT_flag (a) : 0;
5144 }
5145
5146 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5147 if it is not present. */
5148
5149 static inline unsigned
5150 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5151 {
5152 dw_attr_ref a = get_AT (die, attr_kind);
5153
5154 return a ? AT_unsigned (a) : 0;
5155 }
5156
5157 static inline dw_die_ref
5158 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5159 {
5160 dw_attr_ref a = get_AT (die, attr_kind);
5161
5162 return a ? AT_ref (a) : NULL;
5163 }
5164
5165 /* Return TRUE if the language is C or C++. */
5166
5167 static inline bool
5168 is_c_family (void)
5169 {
5170 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5171
5172 return (lang == DW_LANG_C || lang == DW_LANG_C89
5173 || lang == DW_LANG_C_plus_plus);
5174 }
5175
5176 /* Return TRUE if the language is C++. */
5177
5178 static inline bool
5179 is_cxx (void)
5180 {
5181 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5182 == DW_LANG_C_plus_plus);
5183 }
5184
5185 /* Return TRUE if the language is Fortran. */
5186
5187 static inline bool
5188 is_fortran (void)
5189 {
5190 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5191
5192 return (lang == DW_LANG_Fortran77
5193 || lang == DW_LANG_Fortran90
5194 || lang == DW_LANG_Fortran95);
5195 }
5196
5197 /* Return TRUE if the language is Java. */
5198
5199 static inline bool
5200 is_java (void)
5201 {
5202 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5203
5204 return lang == DW_LANG_Java;
5205 }
5206
5207 /* Return TRUE if the language is Ada. */
5208
5209 static inline bool
5210 is_ada (void)
5211 {
5212 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5213
5214 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5215 }
5216
5217 /* Free up the memory used by A. */
5218
5219 static inline void free_AT (dw_attr_ref);
5220 static inline void
5221 free_AT (dw_attr_ref a)
5222 {
5223 if (AT_class (a) == dw_val_class_str)
5224 if (a->dw_attr_val.v.val_str->refcount)
5225 a->dw_attr_val.v.val_str->refcount--;
5226 }
5227
5228 /* Remove the specified attribute if present. */
5229
5230 static void
5231 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5232 {
5233 dw_attr_ref *p;
5234 dw_attr_ref removed = NULL;
5235
5236 if (die != NULL)
5237 {
5238 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5239 if ((*p)->dw_attr == attr_kind)
5240 {
5241 removed = *p;
5242 *p = (*p)->dw_attr_next;
5243 break;
5244 }
5245
5246 if (removed != 0)
5247 free_AT (removed);
5248 }
5249 }
5250
5251 /* Remove child die whose die_tag is specified tag. */
5252
5253 static void
5254 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5255 {
5256 dw_die_ref current, prev, next;
5257 current = die->die_child;
5258 prev = NULL;
5259 while (current != NULL)
5260 {
5261 if (current->die_tag == tag)
5262 {
5263 next = current->die_sib;
5264 if (prev == NULL)
5265 die->die_child = next;
5266 else
5267 prev->die_sib = next;
5268 free_die (current);
5269 current = next;
5270 }
5271 else
5272 {
5273 prev = current;
5274 current = current->die_sib;
5275 }
5276 }
5277 }
5278
5279 /* Free up the memory used by DIE. */
5280
5281 static inline void
5282 free_die (dw_die_ref die)
5283 {
5284 remove_children (die);
5285 }
5286
5287 /* Discard the children of this DIE. */
5288
5289 static void
5290 remove_children (dw_die_ref die)
5291 {
5292 dw_die_ref child_die = die->die_child;
5293
5294 die->die_child = NULL;
5295
5296 while (child_die != NULL)
5297 {
5298 dw_die_ref tmp_die = child_die;
5299 dw_attr_ref a;
5300
5301 child_die = child_die->die_sib;
5302
5303 for (a = tmp_die->die_attr; a != NULL;)
5304 {
5305 dw_attr_ref tmp_a = a;
5306
5307 a = a->dw_attr_next;
5308 free_AT (tmp_a);
5309 }
5310
5311 free_die (tmp_die);
5312 }
5313 }
5314
5315 /* Add a child DIE below its parent. We build the lists up in reverse
5316 addition order, and correct that in reverse_all_dies. */
5317
5318 static inline void
5319 add_child_die (dw_die_ref die, dw_die_ref child_die)
5320 {
5321 if (die != NULL && child_die != NULL)
5322 {
5323 if (die == child_die)
5324 abort ();
5325
5326 child_die->die_parent = die;
5327 child_die->die_sib = die->die_child;
5328 die->die_child = child_die;
5329 }
5330 }
5331
5332 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5333 is the specification, to the front of PARENT's list of children. */
5334
5335 static void
5336 splice_child_die (dw_die_ref parent, dw_die_ref child)
5337 {
5338 dw_die_ref *p;
5339
5340 /* We want the declaration DIE from inside the class, not the
5341 specification DIE at toplevel. */
5342 if (child->die_parent != parent)
5343 {
5344 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5345
5346 if (tmp)
5347 child = tmp;
5348 }
5349
5350 if (child->die_parent != parent
5351 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5352 abort ();
5353
5354 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5355 if (*p == child)
5356 {
5357 *p = child->die_sib;
5358 break;
5359 }
5360
5361 child->die_parent = parent;
5362 child->die_sib = parent->die_child;
5363 parent->die_child = child;
5364 }
5365
5366 /* Return a pointer to a newly created DIE node. */
5367
5368 static inline dw_die_ref
5369 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5370 {
5371 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5372
5373 die->die_tag = tag_value;
5374
5375 if (parent_die != NULL)
5376 add_child_die (parent_die, die);
5377 else
5378 {
5379 limbo_die_node *limbo_node;
5380
5381 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5382 limbo_node->die = die;
5383 limbo_node->created_for = t;
5384 limbo_node->next = limbo_die_list;
5385 limbo_die_list = limbo_node;
5386 }
5387
5388 return die;
5389 }
5390
5391 /* Return the DIE associated with the given type specifier. */
5392
5393 static inline dw_die_ref
5394 lookup_type_die (tree type)
5395 {
5396 return TYPE_SYMTAB_DIE (type);
5397 }
5398
5399 /* Equate a DIE to a given type specifier. */
5400
5401 static inline void
5402 equate_type_number_to_die (tree type, dw_die_ref type_die)
5403 {
5404 TYPE_SYMTAB_DIE (type) = type_die;
5405 }
5406
5407 /* Returns a hash value for X (which really is a die_struct). */
5408
5409 static hashval_t
5410 decl_die_table_hash (const void *x)
5411 {
5412 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5413 }
5414
5415 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5416
5417 static int
5418 decl_die_table_eq (const void *x, const void *y)
5419 {
5420 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5421 }
5422
5423 /* Return the DIE associated with a given declaration. */
5424
5425 static inline dw_die_ref
5426 lookup_decl_die (tree decl)
5427 {
5428 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5429 }
5430
5431 /* Returns a hash value for X (which really is a var_loc_list). */
5432
5433 static hashval_t
5434 decl_loc_table_hash (const void *x)
5435 {
5436 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5437 }
5438
5439 /* Return nonzero if decl_id of var_loc_list X is the same as
5440 UID of decl *Y. */
5441
5442 static int
5443 decl_loc_table_eq (const void *x, const void *y)
5444 {
5445 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5446 }
5447
5448 /* Return the var_loc list associated with a given declaration. */
5449
5450 static inline var_loc_list *
5451 lookup_decl_loc (tree decl)
5452 {
5453 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5454 }
5455
5456 /* Equate a DIE to a particular declaration. */
5457
5458 static void
5459 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5460 {
5461 unsigned int decl_id = DECL_UID (decl);
5462 void **slot;
5463
5464 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5465 *slot = decl_die;
5466 decl_die->decl_id = decl_id;
5467 }
5468
5469 /* Add a variable location node to the linked list for DECL. */
5470
5471 static void
5472 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5473 {
5474 unsigned int decl_id = DECL_UID (decl);
5475 var_loc_list *temp;
5476 void **slot;
5477
5478 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5479 if (*slot == NULL)
5480 {
5481 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5482 temp->decl_id = decl_id;
5483 *slot = temp;
5484 }
5485 else
5486 temp = *slot;
5487
5488 if (temp->last)
5489 {
5490 /* If the current location is the same as the end of the list,
5491 we have nothing to do. */
5492 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5493 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5494 {
5495 /* Add LOC to the end of list and update LAST. */
5496 temp->last->next = loc;
5497 temp->last = loc;
5498 }
5499 }
5500 /* Do not add empty location to the beginning of the list. */
5501 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5502 {
5503 temp->first = loc;
5504 temp->last = loc;
5505 }
5506 }
5507 \f
5508 /* Keep track of the number of spaces used to indent the
5509 output of the debugging routines that print the structure of
5510 the DIE internal representation. */
5511 static int print_indent;
5512
5513 /* Indent the line the number of spaces given by print_indent. */
5514
5515 static inline void
5516 print_spaces (FILE *outfile)
5517 {
5518 fprintf (outfile, "%*s", print_indent, "");
5519 }
5520
5521 /* Print the information associated with a given DIE, and its children.
5522 This routine is a debugging aid only. */
5523
5524 static void
5525 print_die (dw_die_ref die, FILE *outfile)
5526 {
5527 dw_attr_ref a;
5528 dw_die_ref c;
5529
5530 print_spaces (outfile);
5531 fprintf (outfile, "DIE %4lu: %s\n",
5532 die->die_offset, dwarf_tag_name (die->die_tag));
5533 print_spaces (outfile);
5534 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5535 fprintf (outfile, " offset: %lu\n", die->die_offset);
5536
5537 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5538 {
5539 print_spaces (outfile);
5540 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5541
5542 switch (AT_class (a))
5543 {
5544 case dw_val_class_addr:
5545 fprintf (outfile, "address");
5546 break;
5547 case dw_val_class_offset:
5548 fprintf (outfile, "offset");
5549 break;
5550 case dw_val_class_loc:
5551 fprintf (outfile, "location descriptor");
5552 break;
5553 case dw_val_class_loc_list:
5554 fprintf (outfile, "location list -> label:%s",
5555 AT_loc_list (a)->ll_symbol);
5556 break;
5557 case dw_val_class_range_list:
5558 fprintf (outfile, "range list");
5559 break;
5560 case dw_val_class_const:
5561 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5562 break;
5563 case dw_val_class_unsigned_const:
5564 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5565 break;
5566 case dw_val_class_long_long:
5567 fprintf (outfile, "constant (%lu,%lu)",
5568 a->dw_attr_val.v.val_long_long.hi,
5569 a->dw_attr_val.v.val_long_long.low);
5570 break;
5571 case dw_val_class_vec:
5572 fprintf (outfile, "floating-point or vector constant");
5573 break;
5574 case dw_val_class_flag:
5575 fprintf (outfile, "%u", AT_flag (a));
5576 break;
5577 case dw_val_class_die_ref:
5578 if (AT_ref (a) != NULL)
5579 {
5580 if (AT_ref (a)->die_symbol)
5581 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5582 else
5583 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5584 }
5585 else
5586 fprintf (outfile, "die -> <null>");
5587 break;
5588 case dw_val_class_lbl_id:
5589 case dw_val_class_lbl_offset:
5590 fprintf (outfile, "label: %s", AT_lbl (a));
5591 break;
5592 case dw_val_class_str:
5593 if (AT_string (a) != NULL)
5594 fprintf (outfile, "\"%s\"", AT_string (a));
5595 else
5596 fprintf (outfile, "<null>");
5597 break;
5598 default:
5599 break;
5600 }
5601
5602 fprintf (outfile, "\n");
5603 }
5604
5605 if (die->die_child != NULL)
5606 {
5607 print_indent += 4;
5608 for (c = die->die_child; c != NULL; c = c->die_sib)
5609 print_die (c, outfile);
5610
5611 print_indent -= 4;
5612 }
5613 if (print_indent == 0)
5614 fprintf (outfile, "\n");
5615 }
5616
5617 /* Print the contents of the source code line number correspondence table.
5618 This routine is a debugging aid only. */
5619
5620 static void
5621 print_dwarf_line_table (FILE *outfile)
5622 {
5623 unsigned i;
5624 dw_line_info_ref line_info;
5625
5626 fprintf (outfile, "\n\nDWARF source line information\n");
5627 for (i = 1; i < line_info_table_in_use; i++)
5628 {
5629 line_info = &line_info_table[i];
5630 fprintf (outfile, "%5d: ", i);
5631 fprintf (outfile, "%-20s",
5632 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5633 fprintf (outfile, "%6ld", line_info->dw_line_num);
5634 fprintf (outfile, "\n");
5635 }
5636
5637 fprintf (outfile, "\n\n");
5638 }
5639
5640 /* Print the information collected for a given DIE. */
5641
5642 void
5643 debug_dwarf_die (dw_die_ref die)
5644 {
5645 print_die (die, stderr);
5646 }
5647
5648 /* Print all DWARF information collected for the compilation unit.
5649 This routine is a debugging aid only. */
5650
5651 void
5652 debug_dwarf (void)
5653 {
5654 print_indent = 0;
5655 print_die (comp_unit_die, stderr);
5656 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5657 print_dwarf_line_table (stderr);
5658 }
5659 \f
5660 /* We build up the lists of children and attributes by pushing new ones
5661 onto the beginning of the list. Reverse the lists for DIE so that
5662 they are in order of addition. */
5663
5664 static void
5665 reverse_die_lists (dw_die_ref die)
5666 {
5667 dw_die_ref c, cp, cn;
5668 dw_attr_ref a, ap, an;
5669
5670 for (a = die->die_attr, ap = 0; a; a = an)
5671 {
5672 an = a->dw_attr_next;
5673 a->dw_attr_next = ap;
5674 ap = a;
5675 }
5676
5677 die->die_attr = ap;
5678
5679 for (c = die->die_child, cp = 0; c; c = cn)
5680 {
5681 cn = c->die_sib;
5682 c->die_sib = cp;
5683 cp = c;
5684 }
5685
5686 die->die_child = cp;
5687 }
5688
5689 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5690 reverse all dies in add_sibling_attributes, which runs through all the dies,
5691 it would reverse all the dies. Now, however, since we don't call
5692 reverse_die_lists in add_sibling_attributes, we need a routine to
5693 recursively reverse all the dies. This is that routine. */
5694
5695 static void
5696 reverse_all_dies (dw_die_ref die)
5697 {
5698 dw_die_ref c;
5699
5700 reverse_die_lists (die);
5701
5702 for (c = die->die_child; c; c = c->die_sib)
5703 reverse_all_dies (c);
5704 }
5705
5706 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5707 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5708 DIE that marks the start of the DIEs for this include file. */
5709
5710 static dw_die_ref
5711 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5712 {
5713 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5714 dw_die_ref new_unit = gen_compile_unit_die (filename);
5715
5716 new_unit->die_sib = old_unit;
5717 return new_unit;
5718 }
5719
5720 /* Close an include-file CU and reopen the enclosing one. */
5721
5722 static dw_die_ref
5723 pop_compile_unit (dw_die_ref old_unit)
5724 {
5725 dw_die_ref new_unit = old_unit->die_sib;
5726
5727 old_unit->die_sib = NULL;
5728 return new_unit;
5729 }
5730
5731 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5732 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5733
5734 /* Calculate the checksum of a location expression. */
5735
5736 static inline void
5737 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5738 {
5739 CHECKSUM (loc->dw_loc_opc);
5740 CHECKSUM (loc->dw_loc_oprnd1);
5741 CHECKSUM (loc->dw_loc_oprnd2);
5742 }
5743
5744 /* Calculate the checksum of an attribute. */
5745
5746 static void
5747 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5748 {
5749 dw_loc_descr_ref loc;
5750 rtx r;
5751
5752 CHECKSUM (at->dw_attr);
5753
5754 /* We don't care about differences in file numbering. */
5755 if (at->dw_attr == DW_AT_decl_file
5756 /* Or that this was compiled with a different compiler snapshot; if
5757 the output is the same, that's what matters. */
5758 || at->dw_attr == DW_AT_producer)
5759 return;
5760
5761 switch (AT_class (at))
5762 {
5763 case dw_val_class_const:
5764 CHECKSUM (at->dw_attr_val.v.val_int);
5765 break;
5766 case dw_val_class_unsigned_const:
5767 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5768 break;
5769 case dw_val_class_long_long:
5770 CHECKSUM (at->dw_attr_val.v.val_long_long);
5771 break;
5772 case dw_val_class_vec:
5773 CHECKSUM (at->dw_attr_val.v.val_vec);
5774 break;
5775 case dw_val_class_flag:
5776 CHECKSUM (at->dw_attr_val.v.val_flag);
5777 break;
5778 case dw_val_class_str:
5779 CHECKSUM_STRING (AT_string (at));
5780 break;
5781
5782 case dw_val_class_addr:
5783 r = AT_addr (at);
5784 switch (GET_CODE (r))
5785 {
5786 case SYMBOL_REF:
5787 CHECKSUM_STRING (XSTR (r, 0));
5788 break;
5789
5790 default:
5791 abort ();
5792 }
5793 break;
5794
5795 case dw_val_class_offset:
5796 CHECKSUM (at->dw_attr_val.v.val_offset);
5797 break;
5798
5799 case dw_val_class_loc:
5800 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5801 loc_checksum (loc, ctx);
5802 break;
5803
5804 case dw_val_class_die_ref:
5805 die_checksum (AT_ref (at), ctx, mark);
5806 break;
5807
5808 case dw_val_class_fde_ref:
5809 case dw_val_class_lbl_id:
5810 case dw_val_class_lbl_offset:
5811 break;
5812
5813 default:
5814 break;
5815 }
5816 }
5817
5818 /* Calculate the checksum of a DIE. */
5819
5820 static void
5821 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5822 {
5823 dw_die_ref c;
5824 dw_attr_ref a;
5825
5826 /* To avoid infinite recursion. */
5827 if (die->die_mark)
5828 {
5829 CHECKSUM (die->die_mark);
5830 return;
5831 }
5832 die->die_mark = ++(*mark);
5833
5834 CHECKSUM (die->die_tag);
5835
5836 for (a = die->die_attr; a; a = a->dw_attr_next)
5837 attr_checksum (a, ctx, mark);
5838
5839 for (c = die->die_child; c; c = c->die_sib)
5840 die_checksum (c, ctx, mark);
5841 }
5842
5843 #undef CHECKSUM
5844 #undef CHECKSUM_STRING
5845
5846 /* Do the location expressions look same? */
5847 static inline int
5848 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5849 {
5850 return loc1->dw_loc_opc == loc2->dw_loc_opc
5851 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5852 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5853 }
5854
5855 /* Do the values look the same? */
5856 static int
5857 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5858 {
5859 dw_loc_descr_ref loc1, loc2;
5860 rtx r1, r2;
5861
5862 if (v1->val_class != v2->val_class)
5863 return 0;
5864
5865 switch (v1->val_class)
5866 {
5867 case dw_val_class_const:
5868 return v1->v.val_int == v2->v.val_int;
5869 case dw_val_class_unsigned_const:
5870 return v1->v.val_unsigned == v2->v.val_unsigned;
5871 case dw_val_class_long_long:
5872 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5873 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5874 case dw_val_class_vec:
5875 if (v1->v.val_vec.length != v2->v.val_vec.length
5876 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
5877 return 0;
5878 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
5879 v1->v.val_vec.length * v1->v.val_vec.elt_size))
5880 return 0;
5881 return 1;
5882 case dw_val_class_flag:
5883 return v1->v.val_flag == v2->v.val_flag;
5884 case dw_val_class_str:
5885 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5886
5887 case dw_val_class_addr:
5888 r1 = v1->v.val_addr;
5889 r2 = v2->v.val_addr;
5890 if (GET_CODE (r1) != GET_CODE (r2))
5891 return 0;
5892 switch (GET_CODE (r1))
5893 {
5894 case SYMBOL_REF:
5895 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5896
5897 default:
5898 abort ();
5899 }
5900
5901 case dw_val_class_offset:
5902 return v1->v.val_offset == v2->v.val_offset;
5903
5904 case dw_val_class_loc:
5905 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5906 loc1 && loc2;
5907 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5908 if (!same_loc_p (loc1, loc2, mark))
5909 return 0;
5910 return !loc1 && !loc2;
5911
5912 case dw_val_class_die_ref:
5913 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5914
5915 case dw_val_class_fde_ref:
5916 case dw_val_class_lbl_id:
5917 case dw_val_class_lbl_offset:
5918 return 1;
5919
5920 default:
5921 return 1;
5922 }
5923 }
5924
5925 /* Do the attributes look the same? */
5926
5927 static int
5928 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5929 {
5930 if (at1->dw_attr != at2->dw_attr)
5931 return 0;
5932
5933 /* We don't care about differences in file numbering. */
5934 if (at1->dw_attr == DW_AT_decl_file
5935 /* Or that this was compiled with a different compiler snapshot; if
5936 the output is the same, that's what matters. */
5937 || at1->dw_attr == DW_AT_producer)
5938 return 1;
5939
5940 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5941 }
5942
5943 /* Do the dies look the same? */
5944
5945 static int
5946 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5947 {
5948 dw_die_ref c1, c2;
5949 dw_attr_ref a1, a2;
5950
5951 /* To avoid infinite recursion. */
5952 if (die1->die_mark)
5953 return die1->die_mark == die2->die_mark;
5954 die1->die_mark = die2->die_mark = ++(*mark);
5955
5956 if (die1->die_tag != die2->die_tag)
5957 return 0;
5958
5959 for (a1 = die1->die_attr, a2 = die2->die_attr;
5960 a1 && a2;
5961 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5962 if (!same_attr_p (a1, a2, mark))
5963 return 0;
5964 if (a1 || a2)
5965 return 0;
5966
5967 for (c1 = die1->die_child, c2 = die2->die_child;
5968 c1 && c2;
5969 c1 = c1->die_sib, c2 = c2->die_sib)
5970 if (!same_die_p (c1, c2, mark))
5971 return 0;
5972 if (c1 || c2)
5973 return 0;
5974
5975 return 1;
5976 }
5977
5978 /* Do the dies look the same? Wrapper around same_die_p. */
5979
5980 static int
5981 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5982 {
5983 int mark = 0;
5984 int ret = same_die_p (die1, die2, &mark);
5985
5986 unmark_all_dies (die1);
5987 unmark_all_dies (die2);
5988
5989 return ret;
5990 }
5991
5992 /* The prefix to attach to symbols on DIEs in the current comdat debug
5993 info section. */
5994 static char *comdat_symbol_id;
5995
5996 /* The index of the current symbol within the current comdat CU. */
5997 static unsigned int comdat_symbol_number;
5998
5999 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6000 children, and set comdat_symbol_id accordingly. */
6001
6002 static void
6003 compute_section_prefix (dw_die_ref unit_die)
6004 {
6005 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6006 const char *base = die_name ? lbasename (die_name) : "anonymous";
6007 char *name = alloca (strlen (base) + 64);
6008 char *p;
6009 int i, mark;
6010 unsigned char checksum[16];
6011 struct md5_ctx ctx;
6012
6013 /* Compute the checksum of the DIE, then append part of it as hex digits to
6014 the name filename of the unit. */
6015
6016 md5_init_ctx (&ctx);
6017 mark = 0;
6018 die_checksum (unit_die, &ctx, &mark);
6019 unmark_all_dies (unit_die);
6020 md5_finish_ctx (&ctx, checksum);
6021
6022 sprintf (name, "%s.", base);
6023 clean_symbol_name (name);
6024
6025 p = name + strlen (name);
6026 for (i = 0; i < 4; i++)
6027 {
6028 sprintf (p, "%.2x", checksum[i]);
6029 p += 2;
6030 }
6031
6032 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6033 comdat_symbol_number = 0;
6034 }
6035
6036 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6037
6038 static int
6039 is_type_die (dw_die_ref die)
6040 {
6041 switch (die->die_tag)
6042 {
6043 case DW_TAG_array_type:
6044 case DW_TAG_class_type:
6045 case DW_TAG_enumeration_type:
6046 case DW_TAG_pointer_type:
6047 case DW_TAG_reference_type:
6048 case DW_TAG_string_type:
6049 case DW_TAG_structure_type:
6050 case DW_TAG_subroutine_type:
6051 case DW_TAG_union_type:
6052 case DW_TAG_ptr_to_member_type:
6053 case DW_TAG_set_type:
6054 case DW_TAG_subrange_type:
6055 case DW_TAG_base_type:
6056 case DW_TAG_const_type:
6057 case DW_TAG_file_type:
6058 case DW_TAG_packed_type:
6059 case DW_TAG_volatile_type:
6060 case DW_TAG_typedef:
6061 return 1;
6062 default:
6063 return 0;
6064 }
6065 }
6066
6067 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6068 Basically, we want to choose the bits that are likely to be shared between
6069 compilations (types) and leave out the bits that are specific to individual
6070 compilations (functions). */
6071
6072 static int
6073 is_comdat_die (dw_die_ref c)
6074 {
6075 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6076 we do for stabs. The advantage is a greater likelihood of sharing between
6077 objects that don't include headers in the same order (and therefore would
6078 put the base types in a different comdat). jason 8/28/00 */
6079
6080 if (c->die_tag == DW_TAG_base_type)
6081 return 0;
6082
6083 if (c->die_tag == DW_TAG_pointer_type
6084 || c->die_tag == DW_TAG_reference_type
6085 || c->die_tag == DW_TAG_const_type
6086 || c->die_tag == DW_TAG_volatile_type)
6087 {
6088 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6089
6090 return t ? is_comdat_die (t) : 0;
6091 }
6092
6093 return is_type_die (c);
6094 }
6095
6096 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6097 compilation unit. */
6098
6099 static int
6100 is_symbol_die (dw_die_ref c)
6101 {
6102 return (is_type_die (c)
6103 || (get_AT (c, DW_AT_declaration)
6104 && !get_AT (c, DW_AT_specification)));
6105 }
6106
6107 static char *
6108 gen_internal_sym (const char *prefix)
6109 {
6110 char buf[256];
6111
6112 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6113 return xstrdup (buf);
6114 }
6115
6116 /* Assign symbols to all worthy DIEs under DIE. */
6117
6118 static void
6119 assign_symbol_names (dw_die_ref die)
6120 {
6121 dw_die_ref c;
6122
6123 if (is_symbol_die (die))
6124 {
6125 if (comdat_symbol_id)
6126 {
6127 char *p = alloca (strlen (comdat_symbol_id) + 64);
6128
6129 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6130 comdat_symbol_id, comdat_symbol_number++);
6131 die->die_symbol = xstrdup (p);
6132 }
6133 else
6134 die->die_symbol = gen_internal_sym ("LDIE");
6135 }
6136
6137 for (c = die->die_child; c != NULL; c = c->die_sib)
6138 assign_symbol_names (c);
6139 }
6140
6141 struct cu_hash_table_entry
6142 {
6143 dw_die_ref cu;
6144 unsigned min_comdat_num, max_comdat_num;
6145 struct cu_hash_table_entry *next;
6146 };
6147
6148 /* Routines to manipulate hash table of CUs. */
6149 static hashval_t
6150 htab_cu_hash (const void *of)
6151 {
6152 const struct cu_hash_table_entry *entry = of;
6153
6154 return htab_hash_string (entry->cu->die_symbol);
6155 }
6156
6157 static int
6158 htab_cu_eq (const void *of1, const void *of2)
6159 {
6160 const struct cu_hash_table_entry *entry1 = of1;
6161 const struct die_struct *entry2 = of2;
6162
6163 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6164 }
6165
6166 static void
6167 htab_cu_del (void *what)
6168 {
6169 struct cu_hash_table_entry *next, *entry = what;
6170
6171 while (entry)
6172 {
6173 next = entry->next;
6174 free (entry);
6175 entry = next;
6176 }
6177 }
6178
6179 /* Check whether we have already seen this CU and set up SYM_NUM
6180 accordingly. */
6181 static int
6182 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6183 {
6184 struct cu_hash_table_entry dummy;
6185 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6186
6187 dummy.max_comdat_num = 0;
6188
6189 slot = (struct cu_hash_table_entry **)
6190 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6191 INSERT);
6192 entry = *slot;
6193
6194 for (; entry; last = entry, entry = entry->next)
6195 {
6196 if (same_die_p_wrap (cu, entry->cu))
6197 break;
6198 }
6199
6200 if (entry)
6201 {
6202 *sym_num = entry->min_comdat_num;
6203 return 1;
6204 }
6205
6206 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6207 entry->cu = cu;
6208 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6209 entry->next = *slot;
6210 *slot = entry;
6211
6212 return 0;
6213 }
6214
6215 /* Record SYM_NUM to record of CU in HTABLE. */
6216 static void
6217 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6218 {
6219 struct cu_hash_table_entry **slot, *entry;
6220
6221 slot = (struct cu_hash_table_entry **)
6222 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6223 NO_INSERT);
6224 entry = *slot;
6225
6226 entry->max_comdat_num = sym_num;
6227 }
6228
6229 /* Traverse the DIE (which is always comp_unit_die), and set up
6230 additional compilation units for each of the include files we see
6231 bracketed by BINCL/EINCL. */
6232
6233 static void
6234 break_out_includes (dw_die_ref die)
6235 {
6236 dw_die_ref *ptr;
6237 dw_die_ref unit = NULL;
6238 limbo_die_node *node, **pnode;
6239 htab_t cu_hash_table;
6240
6241 for (ptr = &(die->die_child); *ptr;)
6242 {
6243 dw_die_ref c = *ptr;
6244
6245 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6246 || (unit && is_comdat_die (c)))
6247 {
6248 /* This DIE is for a secondary CU; remove it from the main one. */
6249 *ptr = c->die_sib;
6250
6251 if (c->die_tag == DW_TAG_GNU_BINCL)
6252 {
6253 unit = push_new_compile_unit (unit, c);
6254 free_die (c);
6255 }
6256 else if (c->die_tag == DW_TAG_GNU_EINCL)
6257 {
6258 unit = pop_compile_unit (unit);
6259 free_die (c);
6260 }
6261 else
6262 add_child_die (unit, c);
6263 }
6264 else
6265 {
6266 /* Leave this DIE in the main CU. */
6267 ptr = &(c->die_sib);
6268 continue;
6269 }
6270 }
6271
6272 #if 0
6273 /* We can only use this in debugging, since the frontend doesn't check
6274 to make sure that we leave every include file we enter. */
6275 if (unit != NULL)
6276 abort ();
6277 #endif
6278
6279 assign_symbol_names (die);
6280 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6281 for (node = limbo_die_list, pnode = &limbo_die_list;
6282 node;
6283 node = node->next)
6284 {
6285 int is_dupl;
6286
6287 compute_section_prefix (node->die);
6288 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6289 &comdat_symbol_number);
6290 assign_symbol_names (node->die);
6291 if (is_dupl)
6292 *pnode = node->next;
6293 else
6294 {
6295 pnode = &node->next;
6296 record_comdat_symbol_number (node->die, cu_hash_table,
6297 comdat_symbol_number);
6298 }
6299 }
6300 htab_delete (cu_hash_table);
6301 }
6302
6303 /* Traverse the DIE and add a sibling attribute if it may have the
6304 effect of speeding up access to siblings. To save some space,
6305 avoid generating sibling attributes for DIE's without children. */
6306
6307 static void
6308 add_sibling_attributes (dw_die_ref die)
6309 {
6310 dw_die_ref c;
6311
6312 if (die->die_tag != DW_TAG_compile_unit
6313 && die->die_sib && die->die_child != NULL)
6314 /* Add the sibling link to the front of the attribute list. */
6315 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6316
6317 for (c = die->die_child; c != NULL; c = c->die_sib)
6318 add_sibling_attributes (c);
6319 }
6320
6321 /* Output all location lists for the DIE and its children. */
6322
6323 static void
6324 output_location_lists (dw_die_ref die)
6325 {
6326 dw_die_ref c;
6327 dw_attr_ref d_attr;
6328
6329 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6330 if (AT_class (d_attr) == dw_val_class_loc_list)
6331 output_loc_list (AT_loc_list (d_attr));
6332
6333 for (c = die->die_child; c != NULL; c = c->die_sib)
6334 output_location_lists (c);
6335
6336 }
6337
6338 /* The format of each DIE (and its attribute value pairs) is encoded in an
6339 abbreviation table. This routine builds the abbreviation table and assigns
6340 a unique abbreviation id for each abbreviation entry. The children of each
6341 die are visited recursively. */
6342
6343 static void
6344 build_abbrev_table (dw_die_ref die)
6345 {
6346 unsigned long abbrev_id;
6347 unsigned int n_alloc;
6348 dw_die_ref c;
6349 dw_attr_ref d_attr, a_attr;
6350
6351 /* Scan the DIE references, and mark as external any that refer to
6352 DIEs from other CUs (i.e. those which are not marked). */
6353 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6354 if (AT_class (d_attr) == dw_val_class_die_ref
6355 && AT_ref (d_attr)->die_mark == 0)
6356 {
6357 if (AT_ref (d_attr)->die_symbol == 0)
6358 abort ();
6359
6360 set_AT_ref_external (d_attr, 1);
6361 }
6362
6363 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6364 {
6365 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6366
6367 if (abbrev->die_tag == die->die_tag)
6368 {
6369 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6370 {
6371 a_attr = abbrev->die_attr;
6372 d_attr = die->die_attr;
6373
6374 while (a_attr != NULL && d_attr != NULL)
6375 {
6376 if ((a_attr->dw_attr != d_attr->dw_attr)
6377 || (value_format (a_attr) != value_format (d_attr)))
6378 break;
6379
6380 a_attr = a_attr->dw_attr_next;
6381 d_attr = d_attr->dw_attr_next;
6382 }
6383
6384 if (a_attr == NULL && d_attr == NULL)
6385 break;
6386 }
6387 }
6388 }
6389
6390 if (abbrev_id >= abbrev_die_table_in_use)
6391 {
6392 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6393 {
6394 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6395 abbrev_die_table = ggc_realloc (abbrev_die_table,
6396 sizeof (dw_die_ref) * n_alloc);
6397
6398 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6399 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6400 abbrev_die_table_allocated = n_alloc;
6401 }
6402
6403 ++abbrev_die_table_in_use;
6404 abbrev_die_table[abbrev_id] = die;
6405 }
6406
6407 die->die_abbrev = abbrev_id;
6408 for (c = die->die_child; c != NULL; c = c->die_sib)
6409 build_abbrev_table (c);
6410 }
6411 \f
6412 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6413
6414 static int
6415 constant_size (long unsigned int value)
6416 {
6417 int log;
6418
6419 if (value == 0)
6420 log = 0;
6421 else
6422 log = floor_log2 (value);
6423
6424 log = log / 8;
6425 log = 1 << (floor_log2 (log) + 1);
6426
6427 return log;
6428 }
6429
6430 /* Return the size of a DIE as it is represented in the
6431 .debug_info section. */
6432
6433 static unsigned long
6434 size_of_die (dw_die_ref die)
6435 {
6436 unsigned long size = 0;
6437 dw_attr_ref a;
6438
6439 size += size_of_uleb128 (die->die_abbrev);
6440 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6441 {
6442 switch (AT_class (a))
6443 {
6444 case dw_val_class_addr:
6445 size += DWARF2_ADDR_SIZE;
6446 break;
6447 case dw_val_class_offset:
6448 size += DWARF_OFFSET_SIZE;
6449 break;
6450 case dw_val_class_loc:
6451 {
6452 unsigned long lsize = size_of_locs (AT_loc (a));
6453
6454 /* Block length. */
6455 size += constant_size (lsize);
6456 size += lsize;
6457 }
6458 break;
6459 case dw_val_class_loc_list:
6460 size += DWARF_OFFSET_SIZE;
6461 break;
6462 case dw_val_class_range_list:
6463 size += DWARF_OFFSET_SIZE;
6464 break;
6465 case dw_val_class_const:
6466 size += size_of_sleb128 (AT_int (a));
6467 break;
6468 case dw_val_class_unsigned_const:
6469 size += constant_size (AT_unsigned (a));
6470 break;
6471 case dw_val_class_long_long:
6472 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6473 break;
6474 case dw_val_class_vec:
6475 size += 1 + (a->dw_attr_val.v.val_vec.length
6476 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6477 break;
6478 case dw_val_class_flag:
6479 size += 1;
6480 break;
6481 case dw_val_class_die_ref:
6482 if (AT_ref_external (a))
6483 size += DWARF2_ADDR_SIZE;
6484 else
6485 size += DWARF_OFFSET_SIZE;
6486 break;
6487 case dw_val_class_fde_ref:
6488 size += DWARF_OFFSET_SIZE;
6489 break;
6490 case dw_val_class_lbl_id:
6491 size += DWARF2_ADDR_SIZE;
6492 break;
6493 case dw_val_class_lbl_offset:
6494 size += DWARF_OFFSET_SIZE;
6495 break;
6496 case dw_val_class_str:
6497 if (AT_string_form (a) == DW_FORM_strp)
6498 size += DWARF_OFFSET_SIZE;
6499 else
6500 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6501 break;
6502 default:
6503 abort ();
6504 }
6505 }
6506
6507 return size;
6508 }
6509
6510 /* Size the debugging information associated with a given DIE. Visits the
6511 DIE's children recursively. Updates the global variable next_die_offset, on
6512 each time through. Uses the current value of next_die_offset to update the
6513 die_offset field in each DIE. */
6514
6515 static void
6516 calc_die_sizes (dw_die_ref die)
6517 {
6518 dw_die_ref c;
6519
6520 die->die_offset = next_die_offset;
6521 next_die_offset += size_of_die (die);
6522
6523 for (c = die->die_child; c != NULL; c = c->die_sib)
6524 calc_die_sizes (c);
6525
6526 if (die->die_child != NULL)
6527 /* Count the null byte used to terminate sibling lists. */
6528 next_die_offset += 1;
6529 }
6530
6531 /* Set the marks for a die and its children. We do this so
6532 that we know whether or not a reference needs to use FORM_ref_addr; only
6533 DIEs in the same CU will be marked. We used to clear out the offset
6534 and use that as the flag, but ran into ordering problems. */
6535
6536 static void
6537 mark_dies (dw_die_ref die)
6538 {
6539 dw_die_ref c;
6540
6541 if (die->die_mark)
6542 abort ();
6543
6544 die->die_mark = 1;
6545 for (c = die->die_child; c; c = c->die_sib)
6546 mark_dies (c);
6547 }
6548
6549 /* Clear the marks for a die and its children. */
6550
6551 static void
6552 unmark_dies (dw_die_ref die)
6553 {
6554 dw_die_ref c;
6555
6556 if (!die->die_mark)
6557 abort ();
6558
6559 die->die_mark = 0;
6560 for (c = die->die_child; c; c = c->die_sib)
6561 unmark_dies (c);
6562 }
6563
6564 /* Clear the marks for a die, its children and referred dies. */
6565
6566 static void
6567 unmark_all_dies (dw_die_ref die)
6568 {
6569 dw_die_ref c;
6570 dw_attr_ref a;
6571
6572 if (!die->die_mark)
6573 return;
6574 die->die_mark = 0;
6575
6576 for (c = die->die_child; c; c = c->die_sib)
6577 unmark_all_dies (c);
6578
6579 for (a = die->die_attr; a; a = a->dw_attr_next)
6580 if (AT_class (a) == dw_val_class_die_ref)
6581 unmark_all_dies (AT_ref (a));
6582 }
6583
6584 /* Return the size of the .debug_pubnames table generated for the
6585 compilation unit. */
6586
6587 static unsigned long
6588 size_of_pubnames (void)
6589 {
6590 unsigned long size;
6591 unsigned i;
6592
6593 size = DWARF_PUBNAMES_HEADER_SIZE;
6594 for (i = 0; i < pubname_table_in_use; i++)
6595 {
6596 pubname_ref p = &pubname_table[i];
6597 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6598 }
6599
6600 size += DWARF_OFFSET_SIZE;
6601 return size;
6602 }
6603
6604 /* Return the size of the information in the .debug_aranges section. */
6605
6606 static unsigned long
6607 size_of_aranges (void)
6608 {
6609 unsigned long size;
6610
6611 size = DWARF_ARANGES_HEADER_SIZE;
6612
6613 /* Count the address/length pair for this compilation unit. */
6614 size += 2 * DWARF2_ADDR_SIZE;
6615 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6616
6617 /* Count the two zero words used to terminated the address range table. */
6618 size += 2 * DWARF2_ADDR_SIZE;
6619 return size;
6620 }
6621 \f
6622 /* Select the encoding of an attribute value. */
6623
6624 static enum dwarf_form
6625 value_format (dw_attr_ref a)
6626 {
6627 switch (a->dw_attr_val.val_class)
6628 {
6629 case dw_val_class_addr:
6630 return DW_FORM_addr;
6631 case dw_val_class_range_list:
6632 case dw_val_class_offset:
6633 if (DWARF_OFFSET_SIZE == 4)
6634 return DW_FORM_data4;
6635 if (DWARF_OFFSET_SIZE == 8)
6636 return DW_FORM_data8;
6637 abort ();
6638 case dw_val_class_loc_list:
6639 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6640 .debug_loc section */
6641 return DW_FORM_data4;
6642 case dw_val_class_loc:
6643 switch (constant_size (size_of_locs (AT_loc (a))))
6644 {
6645 case 1:
6646 return DW_FORM_block1;
6647 case 2:
6648 return DW_FORM_block2;
6649 default:
6650 abort ();
6651 }
6652 case dw_val_class_const:
6653 return DW_FORM_sdata;
6654 case dw_val_class_unsigned_const:
6655 switch (constant_size (AT_unsigned (a)))
6656 {
6657 case 1:
6658 return DW_FORM_data1;
6659 case 2:
6660 return DW_FORM_data2;
6661 case 4:
6662 return DW_FORM_data4;
6663 case 8:
6664 return DW_FORM_data8;
6665 default:
6666 abort ();
6667 }
6668 case dw_val_class_long_long:
6669 return DW_FORM_block1;
6670 case dw_val_class_vec:
6671 return DW_FORM_block1;
6672 case dw_val_class_flag:
6673 return DW_FORM_flag;
6674 case dw_val_class_die_ref:
6675 if (AT_ref_external (a))
6676 return DW_FORM_ref_addr;
6677 else
6678 return DW_FORM_ref;
6679 case dw_val_class_fde_ref:
6680 return DW_FORM_data;
6681 case dw_val_class_lbl_id:
6682 return DW_FORM_addr;
6683 case dw_val_class_lbl_offset:
6684 return DW_FORM_data;
6685 case dw_val_class_str:
6686 return AT_string_form (a);
6687
6688 default:
6689 abort ();
6690 }
6691 }
6692
6693 /* Output the encoding of an attribute value. */
6694
6695 static void
6696 output_value_format (dw_attr_ref a)
6697 {
6698 enum dwarf_form form = value_format (a);
6699
6700 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6701 }
6702
6703 /* Output the .debug_abbrev section which defines the DIE abbreviation
6704 table. */
6705
6706 static void
6707 output_abbrev_section (void)
6708 {
6709 unsigned long abbrev_id;
6710
6711 dw_attr_ref a_attr;
6712
6713 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6714 {
6715 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6716
6717 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6718 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6719 dwarf_tag_name (abbrev->die_tag));
6720
6721 if (abbrev->die_child != NULL)
6722 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6723 else
6724 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6725
6726 for (a_attr = abbrev->die_attr; a_attr != NULL;
6727 a_attr = a_attr->dw_attr_next)
6728 {
6729 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6730 dwarf_attr_name (a_attr->dw_attr));
6731 output_value_format (a_attr);
6732 }
6733
6734 dw2_asm_output_data (1, 0, NULL);
6735 dw2_asm_output_data (1, 0, NULL);
6736 }
6737
6738 /* Terminate the table. */
6739 dw2_asm_output_data (1, 0, NULL);
6740 }
6741
6742 /* Output a symbol we can use to refer to this DIE from another CU. */
6743
6744 static inline void
6745 output_die_symbol (dw_die_ref die)
6746 {
6747 char *sym = die->die_symbol;
6748
6749 if (sym == 0)
6750 return;
6751
6752 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6753 /* We make these global, not weak; if the target doesn't support
6754 .linkonce, it doesn't support combining the sections, so debugging
6755 will break. */
6756 targetm.asm_out.globalize_label (asm_out_file, sym);
6757
6758 ASM_OUTPUT_LABEL (asm_out_file, sym);
6759 }
6760
6761 /* Return a new location list, given the begin and end range, and the
6762 expression. gensym tells us whether to generate a new internal symbol for
6763 this location list node, which is done for the head of the list only. */
6764
6765 static inline dw_loc_list_ref
6766 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6767 const char *section, unsigned int gensym)
6768 {
6769 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6770
6771 retlist->begin = begin;
6772 retlist->end = end;
6773 retlist->expr = expr;
6774 retlist->section = section;
6775 if (gensym)
6776 retlist->ll_symbol = gen_internal_sym ("LLST");
6777
6778 return retlist;
6779 }
6780
6781 /* Add a location description expression to a location list. */
6782
6783 static inline void
6784 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6785 const char *begin, const char *end,
6786 const char *section)
6787 {
6788 dw_loc_list_ref *d;
6789
6790 /* Find the end of the chain. */
6791 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6792 ;
6793
6794 /* Add a new location list node to the list. */
6795 *d = new_loc_list (descr, begin, end, section, 0);
6796 }
6797
6798 /* Output the location list given to us. */
6799
6800 static void
6801 output_loc_list (dw_loc_list_ref list_head)
6802 {
6803 dw_loc_list_ref curr = list_head;
6804
6805 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6806
6807 /* Walk the location list, and output each range + expression. */
6808 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6809 {
6810 unsigned long size;
6811 if (separate_line_info_table_in_use == 0)
6812 {
6813 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6814 "Location list begin address (%s)",
6815 list_head->ll_symbol);
6816 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6817 "Location list end address (%s)",
6818 list_head->ll_symbol);
6819 }
6820 else
6821 {
6822 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
6823 "Location list begin address (%s)",
6824 list_head->ll_symbol);
6825 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
6826 "Location list end address (%s)",
6827 list_head->ll_symbol);
6828 }
6829 size = size_of_locs (curr->expr);
6830
6831 /* Output the block length for this list of location operations. */
6832 if (size > 0xffff)
6833 abort ();
6834 dw2_asm_output_data (2, size, "%s", "Location expression size");
6835
6836 output_loc_sequence (curr->expr);
6837 }
6838
6839 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6840 "Location list terminator begin (%s)",
6841 list_head->ll_symbol);
6842 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6843 "Location list terminator end (%s)",
6844 list_head->ll_symbol);
6845 }
6846
6847 /* Output the DIE and its attributes. Called recursively to generate
6848 the definitions of each child DIE. */
6849
6850 static void
6851 output_die (dw_die_ref die)
6852 {
6853 dw_attr_ref a;
6854 dw_die_ref c;
6855 unsigned long size;
6856
6857 /* If someone in another CU might refer to us, set up a symbol for
6858 them to point to. */
6859 if (die->die_symbol)
6860 output_die_symbol (die);
6861
6862 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6863 die->die_offset, dwarf_tag_name (die->die_tag));
6864
6865 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6866 {
6867 const char *name = dwarf_attr_name (a->dw_attr);
6868
6869 switch (AT_class (a))
6870 {
6871 case dw_val_class_addr:
6872 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6873 break;
6874
6875 case dw_val_class_offset:
6876 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6877 "%s", name);
6878 break;
6879
6880 case dw_val_class_range_list:
6881 {
6882 char *p = strchr (ranges_section_label, '\0');
6883
6884 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6885 a->dw_attr_val.v.val_offset);
6886 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6887 "%s", name);
6888 *p = '\0';
6889 }
6890 break;
6891
6892 case dw_val_class_loc:
6893 size = size_of_locs (AT_loc (a));
6894
6895 /* Output the block length for this list of location operations. */
6896 dw2_asm_output_data (constant_size (size), size, "%s", name);
6897
6898 output_loc_sequence (AT_loc (a));
6899 break;
6900
6901 case dw_val_class_const:
6902 /* ??? It would be slightly more efficient to use a scheme like is
6903 used for unsigned constants below, but gdb 4.x does not sign
6904 extend. Gdb 5.x does sign extend. */
6905 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6906 break;
6907
6908 case dw_val_class_unsigned_const:
6909 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6910 AT_unsigned (a), "%s", name);
6911 break;
6912
6913 case dw_val_class_long_long:
6914 {
6915 unsigned HOST_WIDE_INT first, second;
6916
6917 dw2_asm_output_data (1,
6918 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6919 "%s", name);
6920
6921 if (WORDS_BIG_ENDIAN)
6922 {
6923 first = a->dw_attr_val.v.val_long_long.hi;
6924 second = a->dw_attr_val.v.val_long_long.low;
6925 }
6926 else
6927 {
6928 first = a->dw_attr_val.v.val_long_long.low;
6929 second = a->dw_attr_val.v.val_long_long.hi;
6930 }
6931
6932 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6933 first, "long long constant");
6934 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6935 second, NULL);
6936 }
6937 break;
6938
6939 case dw_val_class_vec:
6940 {
6941 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
6942 unsigned int len = a->dw_attr_val.v.val_vec.length;
6943 unsigned int i;
6944 unsigned char *p;
6945
6946 dw2_asm_output_data (1, len * elt_size, "%s", name);
6947 if (elt_size > sizeof (HOST_WIDE_INT))
6948 {
6949 elt_size /= 2;
6950 len *= 2;
6951 }
6952 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
6953 i < len;
6954 i++, p += elt_size)
6955 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
6956 "fp or vector constant word %u", i);
6957 break;
6958 }
6959
6960 case dw_val_class_flag:
6961 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6962 break;
6963
6964 case dw_val_class_loc_list:
6965 {
6966 char *sym = AT_loc_list (a)->ll_symbol;
6967
6968 if (sym == 0)
6969 abort ();
6970 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, "%s", name);
6971 }
6972 break;
6973
6974 case dw_val_class_die_ref:
6975 if (AT_ref_external (a))
6976 {
6977 char *sym = AT_ref (a)->die_symbol;
6978
6979 if (sym == 0)
6980 abort ();
6981 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6982 }
6983 else if (AT_ref (a)->die_offset == 0)
6984 abort ();
6985 else
6986 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6987 "%s", name);
6988 break;
6989
6990 case dw_val_class_fde_ref:
6991 {
6992 char l1[20];
6993
6994 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6995 a->dw_attr_val.v.val_fde_index * 2);
6996 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6997 }
6998 break;
6999
7000 case dw_val_class_lbl_id:
7001 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7002 break;
7003
7004 case dw_val_class_lbl_offset:
7005 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
7006 break;
7007
7008 case dw_val_class_str:
7009 if (AT_string_form (a) == DW_FORM_strp)
7010 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7011 a->dw_attr_val.v.val_str->label,
7012 "%s: \"%s\"", name, AT_string (a));
7013 else
7014 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7015 break;
7016
7017 default:
7018 abort ();
7019 }
7020 }
7021
7022 for (c = die->die_child; c != NULL; c = c->die_sib)
7023 output_die (c);
7024
7025 /* Add null byte to terminate sibling list. */
7026 if (die->die_child != NULL)
7027 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7028 die->die_offset);
7029 }
7030
7031 /* Output the compilation unit that appears at the beginning of the
7032 .debug_info section, and precedes the DIE descriptions. */
7033
7034 static void
7035 output_compilation_unit_header (void)
7036 {
7037 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7038 dw2_asm_output_data (4, 0xffffffff,
7039 "Initial length escape value indicating 64-bit DWARF extension");
7040 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7041 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7042 "Length of Compilation Unit Info");
7043 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7044 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7045 "Offset Into Abbrev. Section");
7046 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7047 }
7048
7049 /* Output the compilation unit DIE and its children. */
7050
7051 static void
7052 output_comp_unit (dw_die_ref die, int output_if_empty)
7053 {
7054 const char *secname;
7055 char *oldsym, *tmp;
7056
7057 /* Unless we are outputting main CU, we may throw away empty ones. */
7058 if (!output_if_empty && die->die_child == NULL)
7059 return;
7060
7061 /* Even if there are no children of this DIE, we must output the information
7062 about the compilation unit. Otherwise, on an empty translation unit, we
7063 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7064 will then complain when examining the file. First mark all the DIEs in
7065 this CU so we know which get local refs. */
7066 mark_dies (die);
7067
7068 build_abbrev_table (die);
7069
7070 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7071 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7072 calc_die_sizes (die);
7073
7074 oldsym = die->die_symbol;
7075 if (oldsym)
7076 {
7077 tmp = alloca (strlen (oldsym) + 24);
7078
7079 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7080 secname = tmp;
7081 die->die_symbol = NULL;
7082 }
7083 else
7084 secname = (const char *) DEBUG_INFO_SECTION;
7085
7086 /* Output debugging information. */
7087 named_section_flags (secname, SECTION_DEBUG);
7088 output_compilation_unit_header ();
7089 output_die (die);
7090
7091 /* Leave the marks on the main CU, so we can check them in
7092 output_pubnames. */
7093 if (oldsym)
7094 {
7095 unmark_dies (die);
7096 die->die_symbol = oldsym;
7097 }
7098 }
7099
7100 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
7101 output of lang_hooks.decl_printable_name for C++ looks like
7102 "A::f(int)". Let's drop the argument list, and maybe the scope. */
7103
7104 static const char *
7105 dwarf2_name (tree decl, int scope)
7106 {
7107 return lang_hooks.decl_printable_name (decl, scope ? 1 : 0);
7108 }
7109
7110 /* Add a new entry to .debug_pubnames if appropriate. */
7111
7112 static void
7113 add_pubname (tree decl, dw_die_ref die)
7114 {
7115 pubname_ref p;
7116
7117 if (! TREE_PUBLIC (decl))
7118 return;
7119
7120 if (pubname_table_in_use == pubname_table_allocated)
7121 {
7122 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7123 pubname_table
7124 = ggc_realloc (pubname_table,
7125 (pubname_table_allocated * sizeof (pubname_entry)));
7126 memset (pubname_table + pubname_table_in_use, 0,
7127 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7128 }
7129
7130 p = &pubname_table[pubname_table_in_use++];
7131 p->die = die;
7132 p->name = xstrdup (dwarf2_name (decl, 1));
7133 }
7134
7135 /* Output the public names table used to speed up access to externally
7136 visible names. For now, only generate entries for externally
7137 visible procedures. */
7138
7139 static void
7140 output_pubnames (void)
7141 {
7142 unsigned i;
7143 unsigned long pubnames_length = size_of_pubnames ();
7144
7145 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7146 dw2_asm_output_data (4, 0xffffffff,
7147 "Initial length escape value indicating 64-bit DWARF extension");
7148 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7149 "Length of Public Names Info");
7150 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7151 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7152 "Offset of Compilation Unit Info");
7153 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7154 "Compilation Unit Length");
7155
7156 for (i = 0; i < pubname_table_in_use; i++)
7157 {
7158 pubname_ref pub = &pubname_table[i];
7159
7160 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7161 if (pub->die->die_mark == 0)
7162 abort ();
7163
7164 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7165 "DIE offset");
7166
7167 dw2_asm_output_nstring (pub->name, -1, "external name");
7168 }
7169
7170 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7171 }
7172
7173 /* Add a new entry to .debug_aranges if appropriate. */
7174
7175 static void
7176 add_arange (tree decl, dw_die_ref die)
7177 {
7178 if (! DECL_SECTION_NAME (decl))
7179 return;
7180
7181 if (arange_table_in_use == arange_table_allocated)
7182 {
7183 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7184 arange_table = ggc_realloc (arange_table,
7185 (arange_table_allocated
7186 * sizeof (dw_die_ref)));
7187 memset (arange_table + arange_table_in_use, 0,
7188 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7189 }
7190
7191 arange_table[arange_table_in_use++] = die;
7192 }
7193
7194 /* Output the information that goes into the .debug_aranges table.
7195 Namely, define the beginning and ending address range of the
7196 text section generated for this compilation unit. */
7197
7198 static void
7199 output_aranges (void)
7200 {
7201 unsigned i;
7202 unsigned long aranges_length = size_of_aranges ();
7203
7204 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7205 dw2_asm_output_data (4, 0xffffffff,
7206 "Initial length escape value indicating 64-bit DWARF extension");
7207 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7208 "Length of Address Ranges Info");
7209 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7210 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7211 "Offset of Compilation Unit Info");
7212 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7213 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7214
7215 /* We need to align to twice the pointer size here. */
7216 if (DWARF_ARANGES_PAD_SIZE)
7217 {
7218 /* Pad using a 2 byte words so that padding is correct for any
7219 pointer size. */
7220 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7221 2 * DWARF2_ADDR_SIZE);
7222 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7223 dw2_asm_output_data (2, 0, NULL);
7224 }
7225
7226 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7227 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7228 text_section_label, "Length");
7229
7230 for (i = 0; i < arange_table_in_use; i++)
7231 {
7232 dw_die_ref die = arange_table[i];
7233
7234 /* We shouldn't see aranges for DIEs outside of the main CU. */
7235 if (die->die_mark == 0)
7236 abort ();
7237
7238 if (die->die_tag == DW_TAG_subprogram)
7239 {
7240 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7241 "Address");
7242 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7243 get_AT_low_pc (die), "Length");
7244 }
7245 else
7246 {
7247 /* A static variable; extract the symbol from DW_AT_location.
7248 Note that this code isn't currently hit, as we only emit
7249 aranges for functions (jason 9/23/99). */
7250 dw_attr_ref a = get_AT (die, DW_AT_location);
7251 dw_loc_descr_ref loc;
7252
7253 if (! a || AT_class (a) != dw_val_class_loc)
7254 abort ();
7255
7256 loc = AT_loc (a);
7257 if (loc->dw_loc_opc != DW_OP_addr)
7258 abort ();
7259
7260 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7261 loc->dw_loc_oprnd1.v.val_addr, "Address");
7262 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7263 get_AT_unsigned (die, DW_AT_byte_size),
7264 "Length");
7265 }
7266 }
7267
7268 /* Output the terminator words. */
7269 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7270 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7271 }
7272
7273 /* Add a new entry to .debug_ranges. Return the offset at which it
7274 was placed. */
7275
7276 static unsigned int
7277 add_ranges (tree block)
7278 {
7279 unsigned int in_use = ranges_table_in_use;
7280
7281 if (in_use == ranges_table_allocated)
7282 {
7283 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7284 ranges_table
7285 = ggc_realloc (ranges_table, (ranges_table_allocated
7286 * sizeof (struct dw_ranges_struct)));
7287 memset (ranges_table + ranges_table_in_use, 0,
7288 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7289 }
7290
7291 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7292 ranges_table_in_use = in_use + 1;
7293
7294 return in_use * 2 * DWARF2_ADDR_SIZE;
7295 }
7296
7297 static void
7298 output_ranges (void)
7299 {
7300 unsigned i;
7301 static const char *const start_fmt = "Offset 0x%x";
7302 const char *fmt = start_fmt;
7303
7304 for (i = 0; i < ranges_table_in_use; i++)
7305 {
7306 int block_num = ranges_table[i].block_num;
7307
7308 if (block_num)
7309 {
7310 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7311 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7312
7313 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7314 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7315
7316 /* If all code is in the text section, then the compilation
7317 unit base address defaults to DW_AT_low_pc, which is the
7318 base of the text section. */
7319 if (separate_line_info_table_in_use == 0)
7320 {
7321 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7322 text_section_label,
7323 fmt, i * 2 * DWARF2_ADDR_SIZE);
7324 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7325 text_section_label, NULL);
7326 }
7327
7328 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7329 compilation unit base address to zero, which allows us to
7330 use absolute addresses, and not worry about whether the
7331 target supports cross-section arithmetic. */
7332 else
7333 {
7334 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7335 fmt, i * 2 * DWARF2_ADDR_SIZE);
7336 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7337 }
7338
7339 fmt = NULL;
7340 }
7341 else
7342 {
7343 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7344 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7345 fmt = start_fmt;
7346 }
7347 }
7348 }
7349
7350 /* Data structure containing information about input files. */
7351 struct file_info
7352 {
7353 char *path; /* Complete file name. */
7354 char *fname; /* File name part. */
7355 int length; /* Length of entire string. */
7356 int file_idx; /* Index in input file table. */
7357 int dir_idx; /* Index in directory table. */
7358 };
7359
7360 /* Data structure containing information about directories with source
7361 files. */
7362 struct dir_info
7363 {
7364 char *path; /* Path including directory name. */
7365 int length; /* Path length. */
7366 int prefix; /* Index of directory entry which is a prefix. */
7367 int count; /* Number of files in this directory. */
7368 int dir_idx; /* Index of directory used as base. */
7369 int used; /* Used in the end? */
7370 };
7371
7372 /* Callback function for file_info comparison. We sort by looking at
7373 the directories in the path. */
7374
7375 static int
7376 file_info_cmp (const void *p1, const void *p2)
7377 {
7378 const struct file_info *s1 = p1;
7379 const struct file_info *s2 = p2;
7380 unsigned char *cp1;
7381 unsigned char *cp2;
7382
7383 /* Take care of file names without directories. We need to make sure that
7384 we return consistent values to qsort since some will get confused if
7385 we return the same value when identical operands are passed in opposite
7386 orders. So if neither has a directory, return 0 and otherwise return
7387 1 or -1 depending on which one has the directory. */
7388 if ((s1->path == s1->fname || s2->path == s2->fname))
7389 return (s2->path == s2->fname) - (s1->path == s1->fname);
7390
7391 cp1 = (unsigned char *) s1->path;
7392 cp2 = (unsigned char *) s2->path;
7393
7394 while (1)
7395 {
7396 ++cp1;
7397 ++cp2;
7398 /* Reached the end of the first path? If so, handle like above. */
7399 if ((cp1 == (unsigned char *) s1->fname)
7400 || (cp2 == (unsigned char *) s2->fname))
7401 return ((cp2 == (unsigned char *) s2->fname)
7402 - (cp1 == (unsigned char *) s1->fname));
7403
7404 /* Character of current path component the same? */
7405 else if (*cp1 != *cp2)
7406 return *cp1 - *cp2;
7407 }
7408 }
7409
7410 /* Output the directory table and the file name table. We try to minimize
7411 the total amount of memory needed. A heuristic is used to avoid large
7412 slowdowns with many input files. */
7413
7414 static void
7415 output_file_names (void)
7416 {
7417 struct file_info *files;
7418 struct dir_info *dirs;
7419 int *saved;
7420 int *savehere;
7421 int *backmap;
7422 size_t ndirs;
7423 int idx_offset;
7424 size_t i;
7425 int idx;
7426
7427 /* Handle the case where file_table is empty. */
7428 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7429 {
7430 dw2_asm_output_data (1, 0, "End directory table");
7431 dw2_asm_output_data (1, 0, "End file name table");
7432 return;
7433 }
7434
7435 /* Allocate the various arrays we need. */
7436 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7437 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7438
7439 /* Sort the file names. */
7440 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7441 {
7442 char *f;
7443
7444 /* Skip all leading "./". */
7445 f = VARRAY_CHAR_PTR (file_table, i);
7446 while (f[0] == '.' && f[1] == '/')
7447 f += 2;
7448
7449 /* Create a new array entry. */
7450 files[i].path = f;
7451 files[i].length = strlen (f);
7452 files[i].file_idx = i;
7453
7454 /* Search for the file name part. */
7455 f = strrchr (f, '/');
7456 files[i].fname = f == NULL ? files[i].path : f + 1;
7457 }
7458
7459 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7460 sizeof (files[0]), file_info_cmp);
7461
7462 /* Find all the different directories used. */
7463 dirs[0].path = files[1].path;
7464 dirs[0].length = files[1].fname - files[1].path;
7465 dirs[0].prefix = -1;
7466 dirs[0].count = 1;
7467 dirs[0].dir_idx = 0;
7468 dirs[0].used = 0;
7469 files[1].dir_idx = 0;
7470 ndirs = 1;
7471
7472 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7473 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7474 && memcmp (dirs[ndirs - 1].path, files[i].path,
7475 dirs[ndirs - 1].length) == 0)
7476 {
7477 /* Same directory as last entry. */
7478 files[i].dir_idx = ndirs - 1;
7479 ++dirs[ndirs - 1].count;
7480 }
7481 else
7482 {
7483 size_t j;
7484
7485 /* This is a new directory. */
7486 dirs[ndirs].path = files[i].path;
7487 dirs[ndirs].length = files[i].fname - files[i].path;
7488 dirs[ndirs].count = 1;
7489 dirs[ndirs].dir_idx = ndirs;
7490 dirs[ndirs].used = 0;
7491 files[i].dir_idx = ndirs;
7492
7493 /* Search for a prefix. */
7494 dirs[ndirs].prefix = -1;
7495 for (j = 0; j < ndirs; j++)
7496 if (dirs[j].length < dirs[ndirs].length
7497 && dirs[j].length > 1
7498 && (dirs[ndirs].prefix == -1
7499 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7500 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7501 dirs[ndirs].prefix = j;
7502
7503 ++ndirs;
7504 }
7505
7506 /* Now to the actual work. We have to find a subset of the directories which
7507 allow expressing the file name using references to the directory table
7508 with the least amount of characters. We do not do an exhaustive search
7509 where we would have to check out every combination of every single
7510 possible prefix. Instead we use a heuristic which provides nearly optimal
7511 results in most cases and never is much off. */
7512 saved = alloca (ndirs * sizeof (int));
7513 savehere = alloca (ndirs * sizeof (int));
7514
7515 memset (saved, '\0', ndirs * sizeof (saved[0]));
7516 for (i = 0; i < ndirs; i++)
7517 {
7518 size_t j;
7519 int total;
7520
7521 /* We can always save some space for the current directory. But this
7522 does not mean it will be enough to justify adding the directory. */
7523 savehere[i] = dirs[i].length;
7524 total = (savehere[i] - saved[i]) * dirs[i].count;
7525
7526 for (j = i + 1; j < ndirs; j++)
7527 {
7528 savehere[j] = 0;
7529 if (saved[j] < dirs[i].length)
7530 {
7531 /* Determine whether the dirs[i] path is a prefix of the
7532 dirs[j] path. */
7533 int k;
7534
7535 k = dirs[j].prefix;
7536 while (k != -1 && k != (int) i)
7537 k = dirs[k].prefix;
7538
7539 if (k == (int) i)
7540 {
7541 /* Yes it is. We can possibly safe some memory but
7542 writing the filenames in dirs[j] relative to
7543 dirs[i]. */
7544 savehere[j] = dirs[i].length;
7545 total += (savehere[j] - saved[j]) * dirs[j].count;
7546 }
7547 }
7548 }
7549
7550 /* Check whether we can safe enough to justify adding the dirs[i]
7551 directory. */
7552 if (total > dirs[i].length + 1)
7553 {
7554 /* It's worthwhile adding. */
7555 for (j = i; j < ndirs; j++)
7556 if (savehere[j] > 0)
7557 {
7558 /* Remember how much we saved for this directory so far. */
7559 saved[j] = savehere[j];
7560
7561 /* Remember the prefix directory. */
7562 dirs[j].dir_idx = i;
7563 }
7564 }
7565 }
7566
7567 /* We have to emit them in the order they appear in the file_table array
7568 since the index is used in the debug info generation. To do this
7569 efficiently we generate a back-mapping of the indices first. */
7570 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7571 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7572 {
7573 backmap[files[i].file_idx] = i;
7574
7575 /* Mark this directory as used. */
7576 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7577 }
7578
7579 /* That was it. We are ready to emit the information. First emit the
7580 directory name table. We have to make sure the first actually emitted
7581 directory name has index one; zero is reserved for the current working
7582 directory. Make sure we do not confuse these indices with the one for the
7583 constructed table (even though most of the time they are identical). */
7584 idx = 1;
7585 idx_offset = dirs[0].length > 0 ? 1 : 0;
7586 for (i = 1 - idx_offset; i < ndirs; i++)
7587 if (dirs[i].used != 0)
7588 {
7589 dirs[i].used = idx++;
7590 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7591 "Directory Entry: 0x%x", dirs[i].used);
7592 }
7593
7594 dw2_asm_output_data (1, 0, "End directory table");
7595
7596 /* Correct the index for the current working directory entry if it
7597 exists. */
7598 if (idx_offset == 0)
7599 dirs[0].used = 0;
7600
7601 /* Now write all the file names. */
7602 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7603 {
7604 int file_idx = backmap[i];
7605 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7606
7607 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7608 "File Entry: 0x%lx", (unsigned long) i);
7609
7610 /* Include directory index. */
7611 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7612
7613 /* Modification time. */
7614 dw2_asm_output_data_uleb128 (0, NULL);
7615
7616 /* File length in bytes. */
7617 dw2_asm_output_data_uleb128 (0, NULL);
7618 }
7619
7620 dw2_asm_output_data (1, 0, "End file name table");
7621 }
7622
7623
7624 /* Output the source line number correspondence information. This
7625 information goes into the .debug_line section. */
7626
7627 static void
7628 output_line_info (void)
7629 {
7630 char l1[20], l2[20], p1[20], p2[20];
7631 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7632 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7633 unsigned opc;
7634 unsigned n_op_args;
7635 unsigned long lt_index;
7636 unsigned long current_line;
7637 long line_offset;
7638 long line_delta;
7639 unsigned long current_file;
7640 unsigned long function;
7641
7642 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7643 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7644 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7645 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7646
7647 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7648 dw2_asm_output_data (4, 0xffffffff,
7649 "Initial length escape value indicating 64-bit DWARF extension");
7650 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7651 "Length of Source Line Info");
7652 ASM_OUTPUT_LABEL (asm_out_file, l1);
7653
7654 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7655 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7656 ASM_OUTPUT_LABEL (asm_out_file, p1);
7657
7658 /* Define the architecture-dependent minimum instruction length (in
7659 bytes). In this implementation of DWARF, this field is used for
7660 information purposes only. Since GCC generates assembly language,
7661 we have no a priori knowledge of how many instruction bytes are
7662 generated for each source line, and therefore can use only the
7663 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7664 commands. Accordingly, we fix this as `1', which is "correct
7665 enough" for all architectures, and don't let the target override. */
7666 dw2_asm_output_data (1, 1,
7667 "Minimum Instruction Length");
7668
7669 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7670 "Default is_stmt_start flag");
7671 dw2_asm_output_data (1, DWARF_LINE_BASE,
7672 "Line Base Value (Special Opcodes)");
7673 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7674 "Line Range Value (Special Opcodes)");
7675 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7676 "Special Opcode Base");
7677
7678 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7679 {
7680 switch (opc)
7681 {
7682 case DW_LNS_advance_pc:
7683 case DW_LNS_advance_line:
7684 case DW_LNS_set_file:
7685 case DW_LNS_set_column:
7686 case DW_LNS_fixed_advance_pc:
7687 n_op_args = 1;
7688 break;
7689 default:
7690 n_op_args = 0;
7691 break;
7692 }
7693
7694 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7695 opc, n_op_args);
7696 }
7697
7698 /* Write out the information about the files we use. */
7699 output_file_names ();
7700 ASM_OUTPUT_LABEL (asm_out_file, p2);
7701
7702 /* We used to set the address register to the first location in the text
7703 section here, but that didn't accomplish anything since we already
7704 have a line note for the opening brace of the first function. */
7705
7706 /* Generate the line number to PC correspondence table, encoded as
7707 a series of state machine operations. */
7708 current_file = 1;
7709 current_line = 1;
7710 strcpy (prev_line_label, text_section_label);
7711 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7712 {
7713 dw_line_info_ref line_info = &line_info_table[lt_index];
7714
7715 #if 0
7716 /* Disable this optimization for now; GDB wants to see two line notes
7717 at the beginning of a function so it can find the end of the
7718 prologue. */
7719
7720 /* Don't emit anything for redundant notes. Just updating the
7721 address doesn't accomplish anything, because we already assume
7722 that anything after the last address is this line. */
7723 if (line_info->dw_line_num == current_line
7724 && line_info->dw_file_num == current_file)
7725 continue;
7726 #endif
7727
7728 /* Emit debug info for the address of the current line.
7729
7730 Unfortunately, we have little choice here currently, and must always
7731 use the most general form. GCC does not know the address delta
7732 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7733 attributes which will give an upper bound on the address range. We
7734 could perhaps use length attributes to determine when it is safe to
7735 use DW_LNS_fixed_advance_pc. */
7736
7737 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7738 if (0)
7739 {
7740 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7741 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7742 "DW_LNS_fixed_advance_pc");
7743 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7744 }
7745 else
7746 {
7747 /* This can handle any delta. This takes
7748 4+DWARF2_ADDR_SIZE bytes. */
7749 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7750 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7751 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7752 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7753 }
7754
7755 strcpy (prev_line_label, line_label);
7756
7757 /* Emit debug info for the source file of the current line, if
7758 different from the previous line. */
7759 if (line_info->dw_file_num != current_file)
7760 {
7761 current_file = line_info->dw_file_num;
7762 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7763 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7764 VARRAY_CHAR_PTR (file_table,
7765 current_file));
7766 }
7767
7768 /* Emit debug info for the current line number, choosing the encoding
7769 that uses the least amount of space. */
7770 if (line_info->dw_line_num != current_line)
7771 {
7772 line_offset = line_info->dw_line_num - current_line;
7773 line_delta = line_offset - DWARF_LINE_BASE;
7774 current_line = line_info->dw_line_num;
7775 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7776 /* This can handle deltas from -10 to 234, using the current
7777 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7778 takes 1 byte. */
7779 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7780 "line %lu", current_line);
7781 else
7782 {
7783 /* This can handle any delta. This takes at least 4 bytes,
7784 depending on the value being encoded. */
7785 dw2_asm_output_data (1, DW_LNS_advance_line,
7786 "advance to line %lu", current_line);
7787 dw2_asm_output_data_sleb128 (line_offset, NULL);
7788 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7789 }
7790 }
7791 else
7792 /* We still need to start a new row, so output a copy insn. */
7793 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7794 }
7795
7796 /* Emit debug info for the address of the end of the function. */
7797 if (0)
7798 {
7799 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7800 "DW_LNS_fixed_advance_pc");
7801 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7802 }
7803 else
7804 {
7805 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7806 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7807 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7808 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7809 }
7810
7811 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7812 dw2_asm_output_data_uleb128 (1, NULL);
7813 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7814
7815 function = 0;
7816 current_file = 1;
7817 current_line = 1;
7818 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7819 {
7820 dw_separate_line_info_ref line_info
7821 = &separate_line_info_table[lt_index];
7822
7823 #if 0
7824 /* Don't emit anything for redundant notes. */
7825 if (line_info->dw_line_num == current_line
7826 && line_info->dw_file_num == current_file
7827 && line_info->function == function)
7828 goto cont;
7829 #endif
7830
7831 /* Emit debug info for the address of the current line. If this is
7832 a new function, or the first line of a function, then we need
7833 to handle it differently. */
7834 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7835 lt_index);
7836 if (function != line_info->function)
7837 {
7838 function = line_info->function;
7839
7840 /* Set the address register to the first line in the function. */
7841 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7842 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7843 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7844 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7845 }
7846 else
7847 {
7848 /* ??? See the DW_LNS_advance_pc comment above. */
7849 if (0)
7850 {
7851 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7852 "DW_LNS_fixed_advance_pc");
7853 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7854 }
7855 else
7856 {
7857 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7858 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7859 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7860 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7861 }
7862 }
7863
7864 strcpy (prev_line_label, line_label);
7865
7866 /* Emit debug info for the source file of the current line, if
7867 different from the previous line. */
7868 if (line_info->dw_file_num != current_file)
7869 {
7870 current_file = line_info->dw_file_num;
7871 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7872 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7873 VARRAY_CHAR_PTR (file_table,
7874 current_file));
7875 }
7876
7877 /* Emit debug info for the current line number, choosing the encoding
7878 that uses the least amount of space. */
7879 if (line_info->dw_line_num != current_line)
7880 {
7881 line_offset = line_info->dw_line_num - current_line;
7882 line_delta = line_offset - DWARF_LINE_BASE;
7883 current_line = line_info->dw_line_num;
7884 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7885 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7886 "line %lu", current_line);
7887 else
7888 {
7889 dw2_asm_output_data (1, DW_LNS_advance_line,
7890 "advance to line %lu", current_line);
7891 dw2_asm_output_data_sleb128 (line_offset, NULL);
7892 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7893 }
7894 }
7895 else
7896 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7897
7898 #if 0
7899 cont:
7900 #endif
7901
7902 lt_index++;
7903
7904 /* If we're done with a function, end its sequence. */
7905 if (lt_index == separate_line_info_table_in_use
7906 || separate_line_info_table[lt_index].function != function)
7907 {
7908 current_file = 1;
7909 current_line = 1;
7910
7911 /* Emit debug info for the address of the end of the function. */
7912 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7913 if (0)
7914 {
7915 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7916 "DW_LNS_fixed_advance_pc");
7917 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7918 }
7919 else
7920 {
7921 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7922 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7923 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7924 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7925 }
7926
7927 /* Output the marker for the end of this sequence. */
7928 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7929 dw2_asm_output_data_uleb128 (1, NULL);
7930 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7931 }
7932 }
7933
7934 /* Output the marker for the end of the line number info. */
7935 ASM_OUTPUT_LABEL (asm_out_file, l2);
7936 }
7937 \f
7938 /* Given a pointer to a tree node for some base type, return a pointer to
7939 a DIE that describes the given type.
7940
7941 This routine must only be called for GCC type nodes that correspond to
7942 Dwarf base (fundamental) types. */
7943
7944 static dw_die_ref
7945 base_type_die (tree type)
7946 {
7947 dw_die_ref base_type_result;
7948 const char *type_name;
7949 enum dwarf_type encoding;
7950 tree name = TYPE_NAME (type);
7951
7952 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7953 return 0;
7954
7955 if (name)
7956 {
7957 if (TREE_CODE (name) == TYPE_DECL)
7958 name = DECL_NAME (name);
7959
7960 type_name = IDENTIFIER_POINTER (name);
7961 }
7962 else
7963 type_name = "__unknown__";
7964
7965 switch (TREE_CODE (type))
7966 {
7967 case INTEGER_TYPE:
7968 /* Carefully distinguish the C character types, without messing
7969 up if the language is not C. Note that we check only for the names
7970 that contain spaces; other names might occur by coincidence in other
7971 languages. */
7972 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7973 && (type == char_type_node
7974 || ! strcmp (type_name, "signed char")
7975 || ! strcmp (type_name, "unsigned char"))))
7976 {
7977 if (TYPE_UNSIGNED (type))
7978 encoding = DW_ATE_unsigned;
7979 else
7980 encoding = DW_ATE_signed;
7981 break;
7982 }
7983 /* else fall through. */
7984
7985 case CHAR_TYPE:
7986 /* GNU Pascal/Ada CHAR type. Not used in C. */
7987 if (TYPE_UNSIGNED (type))
7988 encoding = DW_ATE_unsigned_char;
7989 else
7990 encoding = DW_ATE_signed_char;
7991 break;
7992
7993 case REAL_TYPE:
7994 encoding = DW_ATE_float;
7995 break;
7996
7997 /* Dwarf2 doesn't know anything about complex ints, so use
7998 a user defined type for it. */
7999 case COMPLEX_TYPE:
8000 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8001 encoding = DW_ATE_complex_float;
8002 else
8003 encoding = DW_ATE_lo_user;
8004 break;
8005
8006 case BOOLEAN_TYPE:
8007 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8008 encoding = DW_ATE_boolean;
8009 break;
8010
8011 default:
8012 /* No other TREE_CODEs are Dwarf fundamental types. */
8013 abort ();
8014 }
8015
8016 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8017 if (demangle_name_func)
8018 type_name = (*demangle_name_func) (type_name);
8019
8020 add_AT_string (base_type_result, DW_AT_name, type_name);
8021 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8022 int_size_in_bytes (type));
8023 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8024
8025 return base_type_result;
8026 }
8027
8028 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8029 the Dwarf "root" type for the given input type. The Dwarf "root" type of
8030 a given type is generally the same as the given type, except that if the
8031 given type is a pointer or reference type, then the root type of the given
8032 type is the root type of the "basis" type for the pointer or reference
8033 type. (This definition of the "root" type is recursive.) Also, the root
8034 type of a `const' qualified type or a `volatile' qualified type is the
8035 root type of the given type without the qualifiers. */
8036
8037 static tree
8038 root_type (tree type)
8039 {
8040 if (TREE_CODE (type) == ERROR_MARK)
8041 return error_mark_node;
8042
8043 switch (TREE_CODE (type))
8044 {
8045 case ERROR_MARK:
8046 return error_mark_node;
8047
8048 case POINTER_TYPE:
8049 case REFERENCE_TYPE:
8050 return type_main_variant (root_type (TREE_TYPE (type)));
8051
8052 default:
8053 return type_main_variant (type);
8054 }
8055 }
8056
8057 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8058 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8059
8060 static inline int
8061 is_base_type (tree type)
8062 {
8063 switch (TREE_CODE (type))
8064 {
8065 case ERROR_MARK:
8066 case VOID_TYPE:
8067 case INTEGER_TYPE:
8068 case REAL_TYPE:
8069 case COMPLEX_TYPE:
8070 case BOOLEAN_TYPE:
8071 case CHAR_TYPE:
8072 return 1;
8073
8074 case SET_TYPE:
8075 case ARRAY_TYPE:
8076 case RECORD_TYPE:
8077 case UNION_TYPE:
8078 case QUAL_UNION_TYPE:
8079 case ENUMERAL_TYPE:
8080 case FUNCTION_TYPE:
8081 case METHOD_TYPE:
8082 case POINTER_TYPE:
8083 case REFERENCE_TYPE:
8084 case FILE_TYPE:
8085 case OFFSET_TYPE:
8086 case LANG_TYPE:
8087 case VECTOR_TYPE:
8088 return 0;
8089
8090 default:
8091 abort ();
8092 }
8093
8094 return 0;
8095 }
8096
8097 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8098 node, return the size in bits for the type if it is a constant, or else
8099 return the alignment for the type if the type's size is not constant, or
8100 else return BITS_PER_WORD if the type actually turns out to be an
8101 ERROR_MARK node. */
8102
8103 static inline unsigned HOST_WIDE_INT
8104 simple_type_size_in_bits (tree type)
8105 {
8106 if (TREE_CODE (type) == ERROR_MARK)
8107 return BITS_PER_WORD;
8108 else if (TYPE_SIZE (type) == NULL_TREE)
8109 return 0;
8110 else if (host_integerp (TYPE_SIZE (type), 1))
8111 return tree_low_cst (TYPE_SIZE (type), 1);
8112 else
8113 return TYPE_ALIGN (type);
8114 }
8115
8116 /* Return true if the debug information for the given type should be
8117 emitted as a subrange type. */
8118
8119 static inline bool
8120 is_subrange_type (tree type)
8121 {
8122 tree subtype = TREE_TYPE (type);
8123
8124 /* Subrange types are identified by the fact that they are integer
8125 types, and that they have a subtype which is either an integer type
8126 or an enumeral type. */
8127
8128 if (TREE_CODE (type) != INTEGER_TYPE
8129 || subtype == NULL_TREE)
8130 return false;
8131
8132 if (TREE_CODE (subtype) != INTEGER_TYPE
8133 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8134 return false;
8135
8136 if (TREE_CODE (type) == TREE_CODE (subtype)
8137 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8138 && TYPE_MIN_VALUE (type) != NULL
8139 && TYPE_MIN_VALUE (subtype) != NULL
8140 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8141 && TYPE_MAX_VALUE (type) != NULL
8142 && TYPE_MAX_VALUE (subtype) != NULL
8143 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8144 {
8145 /* The type and its subtype have the same representation. If in
8146 addition the two types also have the same name, then the given
8147 type is not a subrange type, but rather a plain base type. */
8148 /* FIXME: brobecker/2004-03-22:
8149 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8150 therefore be sufficient to check the TYPE_SIZE node pointers
8151 rather than checking the actual size. Unfortunately, we have
8152 found some cases, such as in the Ada "integer" type, where
8153 this is not the case. Until this problem is solved, we need to
8154 keep checking the actual size. */
8155 tree type_name = TYPE_NAME (type);
8156 tree subtype_name = TYPE_NAME (subtype);
8157
8158 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8159 type_name = DECL_NAME (type_name);
8160
8161 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8162 subtype_name = DECL_NAME (subtype_name);
8163
8164 if (type_name == subtype_name)
8165 return false;
8166 }
8167
8168 return true;
8169 }
8170
8171 /* Given a pointer to a tree node for a subrange type, return a pointer
8172 to a DIE that describes the given type. */
8173
8174 static dw_die_ref
8175 subrange_type_die (tree type, dw_die_ref context_die)
8176 {
8177 dw_die_ref subtype_die;
8178 dw_die_ref subrange_die;
8179 tree name = TYPE_NAME (type);
8180 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8181 tree subtype = TREE_TYPE (type);
8182
8183 if (context_die == NULL)
8184 context_die = comp_unit_die;
8185
8186 if (TREE_CODE (subtype) == ENUMERAL_TYPE)
8187 subtype_die = gen_enumeration_type_die (subtype, context_die);
8188 else
8189 subtype_die = base_type_die (subtype);
8190
8191 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8192
8193 if (name != NULL)
8194 {
8195 if (TREE_CODE (name) == TYPE_DECL)
8196 name = DECL_NAME (name);
8197 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
8198 }
8199
8200 if (int_size_in_bytes (subtype) != size_in_bytes)
8201 {
8202 /* The size of the subrange type and its base type do not match,
8203 so we need to generate a size attribute for the subrange type. */
8204 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8205 }
8206
8207 if (TYPE_MIN_VALUE (type) != NULL)
8208 add_bound_info (subrange_die, DW_AT_lower_bound,
8209 TYPE_MIN_VALUE (type));
8210 if (TYPE_MAX_VALUE (type) != NULL)
8211 add_bound_info (subrange_die, DW_AT_upper_bound,
8212 TYPE_MAX_VALUE (type));
8213 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
8214
8215 return subrange_die;
8216 }
8217
8218 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8219 entry that chains various modifiers in front of the given type. */
8220
8221 static dw_die_ref
8222 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8223 dw_die_ref context_die)
8224 {
8225 enum tree_code code = TREE_CODE (type);
8226 dw_die_ref mod_type_die = NULL;
8227 dw_die_ref sub_die = NULL;
8228 tree item_type = NULL;
8229
8230 if (code != ERROR_MARK)
8231 {
8232 tree qualified_type;
8233
8234 /* See if we already have the appropriately qualified variant of
8235 this type. */
8236 qualified_type
8237 = get_qualified_type (type,
8238 ((is_const_type ? TYPE_QUAL_CONST : 0)
8239 | (is_volatile_type
8240 ? TYPE_QUAL_VOLATILE : 0)));
8241
8242 /* If we do, then we can just use its DIE, if it exists. */
8243 if (qualified_type)
8244 {
8245 mod_type_die = lookup_type_die (qualified_type);
8246 if (mod_type_die)
8247 return mod_type_die;
8248 }
8249
8250 /* Handle C typedef types. */
8251 if (qualified_type && TYPE_NAME (qualified_type)
8252 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8253 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8254 {
8255 tree type_name = TYPE_NAME (qualified_type);
8256 tree dtype = TREE_TYPE (type_name);
8257
8258 if (qualified_type == dtype)
8259 {
8260 /* For a named type, use the typedef. */
8261 gen_type_die (qualified_type, context_die);
8262 mod_type_die = lookup_type_die (qualified_type);
8263 }
8264 else if (is_const_type < TYPE_READONLY (dtype)
8265 || is_volatile_type < TYPE_VOLATILE (dtype))
8266 /* cv-unqualified version of named type. Just use the unnamed
8267 type to which it refers. */
8268 mod_type_die
8269 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8270 is_const_type, is_volatile_type,
8271 context_die);
8272
8273 /* Else cv-qualified version of named type; fall through. */
8274 }
8275
8276 if (mod_type_die)
8277 /* OK. */
8278 ;
8279 else if (is_const_type)
8280 {
8281 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8282 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8283 }
8284 else if (is_volatile_type)
8285 {
8286 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8287 sub_die = modified_type_die (type, 0, 0, context_die);
8288 }
8289 else if (code == POINTER_TYPE)
8290 {
8291 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8292 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8293 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8294 #if 0
8295 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8296 #endif
8297 item_type = TREE_TYPE (type);
8298 }
8299 else if (code == REFERENCE_TYPE)
8300 {
8301 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8302 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8303 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8304 #if 0
8305 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8306 #endif
8307 item_type = TREE_TYPE (type);
8308 }
8309 else if (is_subrange_type (type))
8310 mod_type_die = subrange_type_die (type, context_die);
8311 else if (is_base_type (type))
8312 mod_type_die = base_type_die (type);
8313 else
8314 {
8315 gen_type_die (type, context_die);
8316
8317 /* We have to get the type_main_variant here (and pass that to the
8318 `lookup_type_die' routine) because the ..._TYPE node we have
8319 might simply be a *copy* of some original type node (where the
8320 copy was created to help us keep track of typedef names) and
8321 that copy might have a different TYPE_UID from the original
8322 ..._TYPE node. */
8323 if (TREE_CODE (type) != VECTOR_TYPE)
8324 mod_type_die = lookup_type_die (type_main_variant (type));
8325 else
8326 /* Vectors have the debugging information in the type,
8327 not the main variant. */
8328 mod_type_die = lookup_type_die (type);
8329 if (mod_type_die == NULL)
8330 abort ();
8331 }
8332
8333 /* We want to equate the qualified type to the die below. */
8334 type = qualified_type;
8335 }
8336
8337 if (type)
8338 equate_type_number_to_die (type, mod_type_die);
8339 if (item_type)
8340 /* We must do this after the equate_type_number_to_die call, in case
8341 this is a recursive type. This ensures that the modified_type_die
8342 recursion will terminate even if the type is recursive. Recursive
8343 types are possible in Ada. */
8344 sub_die = modified_type_die (item_type,
8345 TYPE_READONLY (item_type),
8346 TYPE_VOLATILE (item_type),
8347 context_die);
8348
8349 if (sub_die != NULL)
8350 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8351
8352 return mod_type_die;
8353 }
8354
8355 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8356 an enumerated type. */
8357
8358 static inline int
8359 type_is_enum (tree type)
8360 {
8361 return TREE_CODE (type) == ENUMERAL_TYPE;
8362 }
8363
8364 /* Return the DBX register number described by a given RTL node. */
8365
8366 static unsigned int
8367 dbx_reg_number (rtx rtl)
8368 {
8369 unsigned regno = REGNO (rtl);
8370
8371 if (regno >= FIRST_PSEUDO_REGISTER)
8372 abort ();
8373
8374 return DBX_REGISTER_NUMBER (regno);
8375 }
8376
8377 /* Return a location descriptor that designates a machine register or
8378 zero if there is none. */
8379
8380 static dw_loc_descr_ref
8381 reg_loc_descriptor (rtx rtl)
8382 {
8383 unsigned reg;
8384 rtx regs;
8385
8386 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8387 return 0;
8388
8389 reg = dbx_reg_number (rtl);
8390 regs = targetm.dwarf_register_span (rtl);
8391
8392 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1
8393 || regs)
8394 return multiple_reg_loc_descriptor (rtl, regs);
8395 else
8396 return one_reg_loc_descriptor (reg);
8397 }
8398
8399 /* Return a location descriptor that designates a machine register for
8400 a given hard register number. */
8401
8402 static dw_loc_descr_ref
8403 one_reg_loc_descriptor (unsigned int regno)
8404 {
8405 if (regno <= 31)
8406 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8407 else
8408 return new_loc_descr (DW_OP_regx, regno, 0);
8409 }
8410
8411 /* Given an RTL of a register, return a location descriptor that
8412 designates a value that spans more than one register. */
8413
8414 static dw_loc_descr_ref
8415 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8416 {
8417 int nregs, size, i;
8418 unsigned reg;
8419 dw_loc_descr_ref loc_result = NULL;
8420
8421 reg = dbx_reg_number (rtl);
8422 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8423
8424 /* Simple, contiguous registers. */
8425 if (regs == NULL_RTX)
8426 {
8427 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8428
8429 loc_result = NULL;
8430 while (nregs--)
8431 {
8432 dw_loc_descr_ref t;
8433
8434 t = one_reg_loc_descriptor (reg);
8435 add_loc_descr (&loc_result, t);
8436 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8437 ++reg;
8438 }
8439 return loc_result;
8440 }
8441
8442 /* Now onto stupid register sets in non contiguous locations. */
8443
8444 if (GET_CODE (regs) != PARALLEL)
8445 abort ();
8446
8447 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8448 loc_result = NULL;
8449
8450 for (i = 0; i < XVECLEN (regs, 0); ++i)
8451 {
8452 dw_loc_descr_ref t;
8453
8454 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8455 add_loc_descr (&loc_result, t);
8456 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8457 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8458 }
8459 return loc_result;
8460 }
8461
8462 /* Return a location descriptor that designates a constant. */
8463
8464 static dw_loc_descr_ref
8465 int_loc_descriptor (HOST_WIDE_INT i)
8466 {
8467 enum dwarf_location_atom op;
8468
8469 /* Pick the smallest representation of a constant, rather than just
8470 defaulting to the LEB encoding. */
8471 if (i >= 0)
8472 {
8473 if (i <= 31)
8474 op = DW_OP_lit0 + i;
8475 else if (i <= 0xff)
8476 op = DW_OP_const1u;
8477 else if (i <= 0xffff)
8478 op = DW_OP_const2u;
8479 else if (HOST_BITS_PER_WIDE_INT == 32
8480 || i <= 0xffffffff)
8481 op = DW_OP_const4u;
8482 else
8483 op = DW_OP_constu;
8484 }
8485 else
8486 {
8487 if (i >= -0x80)
8488 op = DW_OP_const1s;
8489 else if (i >= -0x8000)
8490 op = DW_OP_const2s;
8491 else if (HOST_BITS_PER_WIDE_INT == 32
8492 || i >= -0x80000000)
8493 op = DW_OP_const4s;
8494 else
8495 op = DW_OP_consts;
8496 }
8497
8498 return new_loc_descr (op, i, 0);
8499 }
8500
8501 /* Return a location descriptor that designates a base+offset location. */
8502
8503 static dw_loc_descr_ref
8504 based_loc_descr (unsigned int reg, HOST_WIDE_INT offset, bool can_use_fbreg)
8505 {
8506 dw_loc_descr_ref loc_result;
8507 /* For the "frame base", we use the frame pointer or stack pointer
8508 registers, since the RTL for local variables is relative to one of
8509 them. */
8510 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8511 ? HARD_FRAME_POINTER_REGNUM
8512 : STACK_POINTER_REGNUM);
8513
8514 if (reg == fp_reg && can_use_fbreg)
8515 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8516 else if (reg <= 31)
8517 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8518 else
8519 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8520
8521 return loc_result;
8522 }
8523
8524 /* Return true if this RTL expression describes a base+offset calculation. */
8525
8526 static inline int
8527 is_based_loc (rtx rtl)
8528 {
8529 return (GET_CODE (rtl) == PLUS
8530 && ((REG_P (XEXP (rtl, 0))
8531 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8532 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8533 }
8534
8535 /* The following routine converts the RTL for a variable or parameter
8536 (resident in memory) into an equivalent Dwarf representation of a
8537 mechanism for getting the address of that same variable onto the top of a
8538 hypothetical "address evaluation" stack.
8539
8540 When creating memory location descriptors, we are effectively transforming
8541 the RTL for a memory-resident object into its Dwarf postfix expression
8542 equivalent. This routine recursively descends an RTL tree, turning
8543 it into Dwarf postfix code as it goes.
8544
8545 MODE is the mode of the memory reference, needed to handle some
8546 autoincrement addressing modes.
8547
8548 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the location
8549 list for RTL. We can't use it when we are emitting location list for
8550 virtual variable frame_base_decl (i.e. a location list for DW_AT_frame_base)
8551 which describes how frame base changes when !frame_pointer_needed.
8552
8553 Return 0 if we can't represent the location. */
8554
8555 static dw_loc_descr_ref
8556 mem_loc_descriptor (rtx rtl, enum machine_mode mode, bool can_use_fbreg)
8557 {
8558 dw_loc_descr_ref mem_loc_result = NULL;
8559 enum dwarf_location_atom op;
8560
8561 /* Note that for a dynamically sized array, the location we will generate a
8562 description of here will be the lowest numbered location which is
8563 actually within the array. That's *not* necessarily the same as the
8564 zeroth element of the array. */
8565
8566 rtl = targetm.delegitimize_address (rtl);
8567
8568 switch (GET_CODE (rtl))
8569 {
8570 case POST_INC:
8571 case POST_DEC:
8572 case POST_MODIFY:
8573 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8574 just fall into the SUBREG code. */
8575
8576 /* ... fall through ... */
8577
8578 case SUBREG:
8579 /* The case of a subreg may arise when we have a local (register)
8580 variable or a formal (register) parameter which doesn't quite fill
8581 up an entire register. For now, just assume that it is
8582 legitimate to make the Dwarf info refer to the whole register which
8583 contains the given subreg. */
8584 rtl = SUBREG_REG (rtl);
8585
8586 /* ... fall through ... */
8587
8588 case REG:
8589 /* Whenever a register number forms a part of the description of the
8590 method for calculating the (dynamic) address of a memory resident
8591 object, DWARF rules require the register number be referred to as
8592 a "base register". This distinction is not based in any way upon
8593 what category of register the hardware believes the given register
8594 belongs to. This is strictly DWARF terminology we're dealing with
8595 here. Note that in cases where the location of a memory-resident
8596 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8597 OP_CONST (0)) the actual DWARF location descriptor that we generate
8598 may just be OP_BASEREG (basereg). This may look deceptively like
8599 the object in question was allocated to a register (rather than in
8600 memory) so DWARF consumers need to be aware of the subtle
8601 distinction between OP_REG and OP_BASEREG. */
8602 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8603 mem_loc_result = based_loc_descr (dbx_reg_number (rtl), 0,
8604 can_use_fbreg);
8605 break;
8606
8607 case MEM:
8608 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8609 can_use_fbreg);
8610 if (mem_loc_result != 0)
8611 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8612 break;
8613
8614 case LO_SUM:
8615 rtl = XEXP (rtl, 1);
8616
8617 /* ... fall through ... */
8618
8619 case LABEL_REF:
8620 /* Some ports can transform a symbol ref into a label ref, because
8621 the symbol ref is too far away and has to be dumped into a constant
8622 pool. */
8623 case CONST:
8624 case SYMBOL_REF:
8625 /* Alternatively, the symbol in the constant pool might be referenced
8626 by a different symbol. */
8627 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8628 {
8629 bool marked;
8630 rtx tmp = get_pool_constant_mark (rtl, &marked);
8631
8632 if (GET_CODE (tmp) == SYMBOL_REF)
8633 {
8634 rtl = tmp;
8635 if (CONSTANT_POOL_ADDRESS_P (tmp))
8636 get_pool_constant_mark (tmp, &marked);
8637 else
8638 marked = true;
8639 }
8640
8641 /* If all references to this pool constant were optimized away,
8642 it was not output and thus we can't represent it.
8643 FIXME: might try to use DW_OP_const_value here, though
8644 DW_OP_piece complicates it. */
8645 if (!marked)
8646 return 0;
8647 }
8648
8649 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8650 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8651 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8652 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8653 break;
8654
8655 case PRE_MODIFY:
8656 /* Extract the PLUS expression nested inside and fall into
8657 PLUS code below. */
8658 rtl = XEXP (rtl, 1);
8659 goto plus;
8660
8661 case PRE_INC:
8662 case PRE_DEC:
8663 /* Turn these into a PLUS expression and fall into the PLUS code
8664 below. */
8665 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8666 GEN_INT (GET_CODE (rtl) == PRE_INC
8667 ? GET_MODE_UNIT_SIZE (mode)
8668 : -GET_MODE_UNIT_SIZE (mode)));
8669
8670 /* ... fall through ... */
8671
8672 case PLUS:
8673 plus:
8674 if (is_based_loc (rtl))
8675 mem_loc_result = based_loc_descr (dbx_reg_number (XEXP (rtl, 0)),
8676 INTVAL (XEXP (rtl, 1)),
8677 can_use_fbreg);
8678 else
8679 {
8680 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode,
8681 can_use_fbreg);
8682 if (mem_loc_result == 0)
8683 break;
8684
8685 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8686 && INTVAL (XEXP (rtl, 1)) >= 0)
8687 add_loc_descr (&mem_loc_result,
8688 new_loc_descr (DW_OP_plus_uconst,
8689 INTVAL (XEXP (rtl, 1)), 0));
8690 else
8691 {
8692 add_loc_descr (&mem_loc_result,
8693 mem_loc_descriptor (XEXP (rtl, 1), mode,
8694 can_use_fbreg));
8695 add_loc_descr (&mem_loc_result,
8696 new_loc_descr (DW_OP_plus, 0, 0));
8697 }
8698 }
8699 break;
8700
8701 /* If a pseudo-reg is optimized away, it is possible for it to
8702 be replaced with a MEM containing a multiply or shift. */
8703 case MULT:
8704 op = DW_OP_mul;
8705 goto do_binop;
8706
8707 case ASHIFT:
8708 op = DW_OP_shl;
8709 goto do_binop;
8710
8711 case ASHIFTRT:
8712 op = DW_OP_shra;
8713 goto do_binop;
8714
8715 case LSHIFTRT:
8716 op = DW_OP_shr;
8717 goto do_binop;
8718
8719 do_binop:
8720 {
8721 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
8722 can_use_fbreg);
8723 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
8724 can_use_fbreg);
8725
8726 if (op0 == 0 || op1 == 0)
8727 break;
8728
8729 mem_loc_result = op0;
8730 add_loc_descr (&mem_loc_result, op1);
8731 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
8732 break;
8733 }
8734
8735 case CONST_INT:
8736 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8737 break;
8738
8739 case ADDRESSOF:
8740 /* If this is a MEM, return its address. Otherwise, we can't
8741 represent this. */
8742 if (MEM_P (XEXP (rtl, 0)))
8743 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode,
8744 can_use_fbreg);
8745 else
8746 return 0;
8747
8748 default:
8749 abort ();
8750 }
8751
8752 return mem_loc_result;
8753 }
8754
8755 /* Return a descriptor that describes the concatenation of two locations.
8756 This is typically a complex variable. */
8757
8758 static dw_loc_descr_ref
8759 concat_loc_descriptor (rtx x0, rtx x1)
8760 {
8761 dw_loc_descr_ref cc_loc_result = NULL;
8762 dw_loc_descr_ref x0_ref = loc_descriptor (x0, true);
8763 dw_loc_descr_ref x1_ref = loc_descriptor (x1, true);
8764
8765 if (x0_ref == 0 || x1_ref == 0)
8766 return 0;
8767
8768 cc_loc_result = x0_ref;
8769 add_loc_descr (&cc_loc_result,
8770 new_loc_descr (DW_OP_piece,
8771 GET_MODE_SIZE (GET_MODE (x0)), 0));
8772
8773 add_loc_descr (&cc_loc_result, x1_ref);
8774 add_loc_descr (&cc_loc_result,
8775 new_loc_descr (DW_OP_piece,
8776 GET_MODE_SIZE (GET_MODE (x1)), 0));
8777
8778 return cc_loc_result;
8779 }
8780
8781 /* Output a proper Dwarf location descriptor for a variable or parameter
8782 which is either allocated in a register or in a memory location. For a
8783 register, we just generate an OP_REG and the register number. For a
8784 memory location we provide a Dwarf postfix expression describing how to
8785 generate the (dynamic) address of the object onto the address stack.
8786
8787 If we don't know how to describe it, return 0. */
8788
8789 static dw_loc_descr_ref
8790 loc_descriptor (rtx rtl, bool can_use_fbreg)
8791 {
8792 dw_loc_descr_ref loc_result = NULL;
8793
8794 switch (GET_CODE (rtl))
8795 {
8796 case SUBREG:
8797 /* The case of a subreg may arise when we have a local (register)
8798 variable or a formal (register) parameter which doesn't quite fill
8799 up an entire register. For now, just assume that it is
8800 legitimate to make the Dwarf info refer to the whole register which
8801 contains the given subreg. */
8802 rtl = SUBREG_REG (rtl);
8803
8804 /* ... fall through ... */
8805
8806 case REG:
8807 loc_result = reg_loc_descriptor (rtl);
8808 break;
8809
8810 case MEM:
8811 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8812 can_use_fbreg);
8813 break;
8814
8815 case CONCAT:
8816 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8817 break;
8818
8819 case VAR_LOCATION:
8820 /* Single part. */
8821 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
8822 {
8823 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0), can_use_fbreg);
8824 }
8825 /* Multiple parts. */
8826 else
8827 {
8828 rtvec par_elems = XVEC (XEXP (rtl, 1), 0);
8829 int num_elem = GET_NUM_ELEM (par_elems);
8830 enum machine_mode mode;
8831 int i;
8832
8833 /* Create the first one, so we have something to add to. */
8834 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
8835 can_use_fbreg);
8836 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
8837 add_loc_descr (&loc_result,
8838 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
8839 for (i = 1; i < num_elem; i++)
8840 {
8841 dw_loc_descr_ref temp;
8842
8843 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
8844 can_use_fbreg);
8845 add_loc_descr (&loc_result, temp);
8846 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
8847 add_loc_descr (&loc_result,
8848 new_loc_descr (DW_OP_piece,
8849 GET_MODE_SIZE (mode), 0));
8850 }
8851 }
8852 break;
8853
8854 default:
8855 abort ();
8856 }
8857
8858 return loc_result;
8859 }
8860
8861 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8862 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8863 looking for an address. Otherwise, we return a value. If we can't make a
8864 descriptor, return 0. */
8865
8866 static dw_loc_descr_ref
8867 loc_descriptor_from_tree (tree loc, int addressp)
8868 {
8869 dw_loc_descr_ref ret, ret1;
8870 int indirect_p = 0;
8871 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
8872 enum dwarf_location_atom op;
8873
8874 /* ??? Most of the time we do not take proper care for sign/zero
8875 extending the values properly. Hopefully this won't be a real
8876 problem... */
8877
8878 switch (TREE_CODE (loc))
8879 {
8880 case ERROR_MARK:
8881 return 0;
8882
8883 case PLACEHOLDER_EXPR:
8884 /* This case involves extracting fields from an object to determine the
8885 position of other fields. We don't try to encode this here. The
8886 only user of this is Ada, which encodes the needed information using
8887 the names of types. */
8888 return 0;
8889
8890 case CALL_EXPR:
8891 return 0;
8892
8893 case PREINCREMENT_EXPR:
8894 case PREDECREMENT_EXPR:
8895 case POSTINCREMENT_EXPR:
8896 case POSTDECREMENT_EXPR:
8897 /* There are no opcodes for these operations. */
8898 return 0;
8899
8900 case ADDR_EXPR:
8901 /* We can support this only if we can look through conversions and
8902 find an INDIRECT_EXPR. */
8903 for (loc = TREE_OPERAND (loc, 0);
8904 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8905 || TREE_CODE (loc) == NON_LVALUE_EXPR
8906 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8907 || TREE_CODE (loc) == SAVE_EXPR;
8908 loc = TREE_OPERAND (loc, 0))
8909 ;
8910
8911 return (TREE_CODE (loc) == INDIRECT_REF
8912 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8913 : 0);
8914
8915 case VAR_DECL:
8916 if (DECL_THREAD_LOCAL (loc))
8917 {
8918 rtx rtl;
8919
8920 #ifndef ASM_OUTPUT_DWARF_DTPREL
8921 /* If this is not defined, we have no way to emit the data. */
8922 return 0;
8923 #endif
8924
8925 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8926 look up addresses of objects in the current module. */
8927 if (DECL_EXTERNAL (loc))
8928 return 0;
8929
8930 rtl = rtl_for_decl_location (loc);
8931 if (rtl == NULL_RTX)
8932 return 0;
8933
8934 if (!MEM_P (rtl))
8935 return 0;
8936 rtl = XEXP (rtl, 0);
8937 if (! CONSTANT_P (rtl))
8938 return 0;
8939
8940 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8941 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8942 ret->dw_loc_oprnd1.v.val_addr = rtl;
8943
8944 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8945 add_loc_descr (&ret, ret1);
8946
8947 indirect_p = 1;
8948 break;
8949 }
8950 /* Fall through. */
8951
8952 case PARM_DECL:
8953 case RESULT_DECL:
8954 {
8955 rtx rtl = rtl_for_decl_location (loc);
8956
8957 if (rtl == NULL_RTX)
8958 return 0;
8959 else if (CONSTANT_P (rtl))
8960 {
8961 ret = new_loc_descr (DW_OP_addr, 0, 0);
8962 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8963 ret->dw_loc_oprnd1.v.val_addr = rtl;
8964 indirect_p = 1;
8965 }
8966 else
8967 {
8968 enum machine_mode mode = GET_MODE (rtl);
8969
8970 if (MEM_P (rtl))
8971 {
8972 indirect_p = 1;
8973 rtl = XEXP (rtl, 0);
8974 }
8975
8976 ret = mem_loc_descriptor (rtl, mode, true);
8977 }
8978 }
8979 break;
8980
8981 case INDIRECT_REF:
8982 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8983 indirect_p = 1;
8984 break;
8985
8986 case COMPOUND_EXPR:
8987 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8988
8989 case NOP_EXPR:
8990 case CONVERT_EXPR:
8991 case NON_LVALUE_EXPR:
8992 case VIEW_CONVERT_EXPR:
8993 case SAVE_EXPR:
8994 case MODIFY_EXPR:
8995 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8996
8997 case COMPONENT_REF:
8998 case BIT_FIELD_REF:
8999 case ARRAY_REF:
9000 case ARRAY_RANGE_REF:
9001 {
9002 tree obj, offset;
9003 HOST_WIDE_INT bitsize, bitpos, bytepos;
9004 enum machine_mode mode;
9005 int volatilep;
9006
9007 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9008 &unsignedp, &volatilep);
9009
9010 if (obj == loc)
9011 return 0;
9012
9013 ret = loc_descriptor_from_tree (obj, 1);
9014 if (ret == 0
9015 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9016 return 0;
9017
9018 if (offset != NULL_TREE)
9019 {
9020 /* Variable offset. */
9021 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
9022 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9023 }
9024
9025 if (!addressp)
9026 indirect_p = 1;
9027
9028 bytepos = bitpos / BITS_PER_UNIT;
9029 if (bytepos > 0)
9030 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9031 else if (bytepos < 0)
9032 {
9033 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9034 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9035 }
9036 break;
9037 }
9038
9039 case INTEGER_CST:
9040 if (host_integerp (loc, 0))
9041 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9042 else
9043 return 0;
9044 break;
9045
9046 case CONSTRUCTOR:
9047 {
9048 /* Get an RTL for this, if something has been emitted. */
9049 rtx rtl = lookup_constant_def (loc);
9050 enum machine_mode mode;
9051
9052 if (!MEM_P (rtl))
9053 return 0;
9054 mode = GET_MODE (rtl);
9055 rtl = XEXP (rtl, 0);
9056
9057 rtl = targetm.delegitimize_address (rtl);
9058
9059 indirect_p = 1;
9060 ret = mem_loc_descriptor (rtl, mode, true);
9061 break;
9062 }
9063
9064 case TRUTH_AND_EXPR:
9065 case TRUTH_ANDIF_EXPR:
9066 case BIT_AND_EXPR:
9067 op = DW_OP_and;
9068 goto do_binop;
9069
9070 case TRUTH_XOR_EXPR:
9071 case BIT_XOR_EXPR:
9072 op = DW_OP_xor;
9073 goto do_binop;
9074
9075 case TRUTH_OR_EXPR:
9076 case TRUTH_ORIF_EXPR:
9077 case BIT_IOR_EXPR:
9078 op = DW_OP_or;
9079 goto do_binop;
9080
9081 case FLOOR_DIV_EXPR:
9082 case CEIL_DIV_EXPR:
9083 case ROUND_DIV_EXPR:
9084 case TRUNC_DIV_EXPR:
9085 op = DW_OP_div;
9086 goto do_binop;
9087
9088 case MINUS_EXPR:
9089 op = DW_OP_minus;
9090 goto do_binop;
9091
9092 case FLOOR_MOD_EXPR:
9093 case CEIL_MOD_EXPR:
9094 case ROUND_MOD_EXPR:
9095 case TRUNC_MOD_EXPR:
9096 op = DW_OP_mod;
9097 goto do_binop;
9098
9099 case MULT_EXPR:
9100 op = DW_OP_mul;
9101 goto do_binop;
9102
9103 case LSHIFT_EXPR:
9104 op = DW_OP_shl;
9105 goto do_binop;
9106
9107 case RSHIFT_EXPR:
9108 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
9109 goto do_binop;
9110
9111 case PLUS_EXPR:
9112 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9113 && host_integerp (TREE_OPERAND (loc, 1), 0))
9114 {
9115 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
9116 if (ret == 0)
9117 return 0;
9118
9119 add_loc_descr (&ret,
9120 new_loc_descr (DW_OP_plus_uconst,
9121 tree_low_cst (TREE_OPERAND (loc, 1),
9122 0),
9123 0));
9124 break;
9125 }
9126
9127 op = DW_OP_plus;
9128 goto do_binop;
9129
9130 case LE_EXPR:
9131 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9132 return 0;
9133
9134 op = DW_OP_le;
9135 goto do_binop;
9136
9137 case GE_EXPR:
9138 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9139 return 0;
9140
9141 op = DW_OP_ge;
9142 goto do_binop;
9143
9144 case LT_EXPR:
9145 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9146 return 0;
9147
9148 op = DW_OP_lt;
9149 goto do_binop;
9150
9151 case GT_EXPR:
9152 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9153 return 0;
9154
9155 op = DW_OP_gt;
9156 goto do_binop;
9157
9158 case EQ_EXPR:
9159 op = DW_OP_eq;
9160 goto do_binop;
9161
9162 case NE_EXPR:
9163 op = DW_OP_ne;
9164 goto do_binop;
9165
9166 do_binop:
9167 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
9168 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
9169 if (ret == 0 || ret1 == 0)
9170 return 0;
9171
9172 add_loc_descr (&ret, ret1);
9173 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9174 break;
9175
9176 case TRUTH_NOT_EXPR:
9177 case BIT_NOT_EXPR:
9178 op = DW_OP_not;
9179 goto do_unop;
9180
9181 case ABS_EXPR:
9182 op = DW_OP_abs;
9183 goto do_unop;
9184
9185 case NEGATE_EXPR:
9186 op = DW_OP_neg;
9187 goto do_unop;
9188
9189 do_unop:
9190 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
9191 if (ret == 0)
9192 return 0;
9193
9194 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9195 break;
9196
9197 case MIN_EXPR:
9198 case MAX_EXPR:
9199 {
9200 const enum tree_code code =
9201 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9202
9203 loc = build (COND_EXPR, TREE_TYPE (loc),
9204 build (code, integer_type_node,
9205 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9206 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9207 }
9208
9209 /* ... fall through ... */
9210
9211 case COND_EXPR:
9212 {
9213 dw_loc_descr_ref lhs
9214 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
9215 dw_loc_descr_ref rhs
9216 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
9217 dw_loc_descr_ref bra_node, jump_node, tmp;
9218
9219 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
9220 if (ret == 0 || lhs == 0 || rhs == 0)
9221 return 0;
9222
9223 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9224 add_loc_descr (&ret, bra_node);
9225
9226 add_loc_descr (&ret, rhs);
9227 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9228 add_loc_descr (&ret, jump_node);
9229
9230 add_loc_descr (&ret, lhs);
9231 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9232 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9233
9234 /* ??? Need a node to point the skip at. Use a nop. */
9235 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9236 add_loc_descr (&ret, tmp);
9237 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9238 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9239 }
9240 break;
9241
9242 default:
9243 /* Leave front-end specific codes as simply unknown. This comes
9244 up, for instance, with the C STMT_EXPR. */
9245 if ((unsigned int) TREE_CODE (loc)
9246 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9247 return 0;
9248
9249 /* Otherwise this is a generic code; we should just lists all of
9250 these explicitly. Aborting means we forgot one. */
9251 abort ();
9252 }
9253
9254 /* Show if we can't fill the request for an address. */
9255 if (addressp && indirect_p == 0)
9256 return 0;
9257
9258 /* If we've got an address and don't want one, dereference. */
9259 if (!addressp && indirect_p > 0)
9260 {
9261 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9262
9263 if (size > DWARF2_ADDR_SIZE || size == -1)
9264 return 0;
9265 else if (size == DWARF2_ADDR_SIZE)
9266 op = DW_OP_deref;
9267 else
9268 op = DW_OP_deref_size;
9269
9270 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9271 }
9272
9273 return ret;
9274 }
9275
9276 /* Given a value, round it up to the lowest multiple of `boundary'
9277 which is not less than the value itself. */
9278
9279 static inline HOST_WIDE_INT
9280 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9281 {
9282 return (((value + boundary - 1) / boundary) * boundary);
9283 }
9284
9285 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9286 pointer to the declared type for the relevant field variable, or return
9287 `integer_type_node' if the given node turns out to be an
9288 ERROR_MARK node. */
9289
9290 static inline tree
9291 field_type (tree decl)
9292 {
9293 tree type;
9294
9295 if (TREE_CODE (decl) == ERROR_MARK)
9296 return integer_type_node;
9297
9298 type = DECL_BIT_FIELD_TYPE (decl);
9299 if (type == NULL_TREE)
9300 type = TREE_TYPE (decl);
9301
9302 return type;
9303 }
9304
9305 /* Given a pointer to a tree node, return the alignment in bits for
9306 it, or else return BITS_PER_WORD if the node actually turns out to
9307 be an ERROR_MARK node. */
9308
9309 static inline unsigned
9310 simple_type_align_in_bits (tree type)
9311 {
9312 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9313 }
9314
9315 static inline unsigned
9316 simple_decl_align_in_bits (tree decl)
9317 {
9318 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9319 }
9320
9321 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9322 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9323 or return 0 if we are unable to determine what that offset is, either
9324 because the argument turns out to be a pointer to an ERROR_MARK node, or
9325 because the offset is actually variable. (We can't handle the latter case
9326 just yet). */
9327
9328 static HOST_WIDE_INT
9329 field_byte_offset (tree decl)
9330 {
9331 unsigned int type_align_in_bits;
9332 unsigned int decl_align_in_bits;
9333 unsigned HOST_WIDE_INT type_size_in_bits;
9334 HOST_WIDE_INT object_offset_in_bits;
9335 tree type;
9336 tree field_size_tree;
9337 HOST_WIDE_INT bitpos_int;
9338 HOST_WIDE_INT deepest_bitpos;
9339 unsigned HOST_WIDE_INT field_size_in_bits;
9340
9341 if (TREE_CODE (decl) == ERROR_MARK)
9342 return 0;
9343 else if (TREE_CODE (decl) != FIELD_DECL)
9344 abort ();
9345
9346 type = field_type (decl);
9347 field_size_tree = DECL_SIZE (decl);
9348
9349 /* The size could be unspecified if there was an error, or for
9350 a flexible array member. */
9351 if (! field_size_tree)
9352 field_size_tree = bitsize_zero_node;
9353
9354 /* We cannot yet cope with fields whose positions are variable, so
9355 for now, when we see such things, we simply return 0. Someday, we may
9356 be able to handle such cases, but it will be damn difficult. */
9357 if (! host_integerp (bit_position (decl), 0))
9358 return 0;
9359
9360 bitpos_int = int_bit_position (decl);
9361
9362 /* If we don't know the size of the field, pretend it's a full word. */
9363 if (host_integerp (field_size_tree, 1))
9364 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9365 else
9366 field_size_in_bits = BITS_PER_WORD;
9367
9368 type_size_in_bits = simple_type_size_in_bits (type);
9369 type_align_in_bits = simple_type_align_in_bits (type);
9370 decl_align_in_bits = simple_decl_align_in_bits (decl);
9371
9372 /* The GCC front-end doesn't make any attempt to keep track of the starting
9373 bit offset (relative to the start of the containing structure type) of the
9374 hypothetical "containing object" for a bit-field. Thus, when computing
9375 the byte offset value for the start of the "containing object" of a
9376 bit-field, we must deduce this information on our own. This can be rather
9377 tricky to do in some cases. For example, handling the following structure
9378 type definition when compiling for an i386/i486 target (which only aligns
9379 long long's to 32-bit boundaries) can be very tricky:
9380
9381 struct S { int field1; long long field2:31; };
9382
9383 Fortunately, there is a simple rule-of-thumb which can be used in such
9384 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9385 structure shown above. It decides to do this based upon one simple rule
9386 for bit-field allocation. GCC allocates each "containing object" for each
9387 bit-field at the first (i.e. lowest addressed) legitimate alignment
9388 boundary (based upon the required minimum alignment for the declared type
9389 of the field) which it can possibly use, subject to the condition that
9390 there is still enough available space remaining in the containing object
9391 (when allocated at the selected point) to fully accommodate all of the
9392 bits of the bit-field itself.
9393
9394 This simple rule makes it obvious why GCC allocates 8 bytes for each
9395 object of the structure type shown above. When looking for a place to
9396 allocate the "containing object" for `field2', the compiler simply tries
9397 to allocate a 64-bit "containing object" at each successive 32-bit
9398 boundary (starting at zero) until it finds a place to allocate that 64-
9399 bit field such that at least 31 contiguous (and previously unallocated)
9400 bits remain within that selected 64 bit field. (As it turns out, for the
9401 example above, the compiler finds it is OK to allocate the "containing
9402 object" 64-bit field at bit-offset zero within the structure type.)
9403
9404 Here we attempt to work backwards from the limited set of facts we're
9405 given, and we try to deduce from those facts, where GCC must have believed
9406 that the containing object started (within the structure type). The value
9407 we deduce is then used (by the callers of this routine) to generate
9408 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9409 and, in the case of DW_AT_location, regular fields as well). */
9410
9411 /* Figure out the bit-distance from the start of the structure to the
9412 "deepest" bit of the bit-field. */
9413 deepest_bitpos = bitpos_int + field_size_in_bits;
9414
9415 /* This is the tricky part. Use some fancy footwork to deduce where the
9416 lowest addressed bit of the containing object must be. */
9417 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9418
9419 /* Round up to type_align by default. This works best for bitfields. */
9420 object_offset_in_bits += type_align_in_bits - 1;
9421 object_offset_in_bits /= type_align_in_bits;
9422 object_offset_in_bits *= type_align_in_bits;
9423
9424 if (object_offset_in_bits > bitpos_int)
9425 {
9426 /* Sigh, the decl must be packed. */
9427 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9428
9429 /* Round up to decl_align instead. */
9430 object_offset_in_bits += decl_align_in_bits - 1;
9431 object_offset_in_bits /= decl_align_in_bits;
9432 object_offset_in_bits *= decl_align_in_bits;
9433 }
9434
9435 return object_offset_in_bits / BITS_PER_UNIT;
9436 }
9437 \f
9438 /* The following routines define various Dwarf attributes and any data
9439 associated with them. */
9440
9441 /* Add a location description attribute value to a DIE.
9442
9443 This emits location attributes suitable for whole variables and
9444 whole parameters. Note that the location attributes for struct fields are
9445 generated by the routine `data_member_location_attribute' below. */
9446
9447 static inline void
9448 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9449 dw_loc_descr_ref descr)
9450 {
9451 if (descr != 0)
9452 add_AT_loc (die, attr_kind, descr);
9453 }
9454
9455 /* Attach the specialized form of location attribute used for data members of
9456 struct and union types. In the special case of a FIELD_DECL node which
9457 represents a bit-field, the "offset" part of this special location
9458 descriptor must indicate the distance in bytes from the lowest-addressed
9459 byte of the containing struct or union type to the lowest-addressed byte of
9460 the "containing object" for the bit-field. (See the `field_byte_offset'
9461 function above).
9462
9463 For any given bit-field, the "containing object" is a hypothetical object
9464 (of some integral or enum type) within which the given bit-field lives. The
9465 type of this hypothetical "containing object" is always the same as the
9466 declared type of the individual bit-field itself (for GCC anyway... the
9467 DWARF spec doesn't actually mandate this). Note that it is the size (in
9468 bytes) of the hypothetical "containing object" which will be given in the
9469 DW_AT_byte_size attribute for this bit-field. (See the
9470 `byte_size_attribute' function below.) It is also used when calculating the
9471 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9472 function below.) */
9473
9474 static void
9475 add_data_member_location_attribute (dw_die_ref die, tree decl)
9476 {
9477 HOST_WIDE_INT offset;
9478 dw_loc_descr_ref loc_descr = 0;
9479
9480 if (TREE_CODE (decl) == TREE_VEC)
9481 {
9482 /* We're working on the TAG_inheritance for a base class. */
9483 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
9484 {
9485 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9486 aren't at a fixed offset from all (sub)objects of the same
9487 type. We need to extract the appropriate offset from our
9488 vtable. The following dwarf expression means
9489
9490 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9491
9492 This is specific to the V3 ABI, of course. */
9493
9494 dw_loc_descr_ref tmp;
9495
9496 /* Make a copy of the object address. */
9497 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9498 add_loc_descr (&loc_descr, tmp);
9499
9500 /* Extract the vtable address. */
9501 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9502 add_loc_descr (&loc_descr, tmp);
9503
9504 /* Calculate the address of the offset. */
9505 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9506 if (offset >= 0)
9507 abort ();
9508
9509 tmp = int_loc_descriptor (-offset);
9510 add_loc_descr (&loc_descr, tmp);
9511 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9512 add_loc_descr (&loc_descr, tmp);
9513
9514 /* Extract the offset. */
9515 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9516 add_loc_descr (&loc_descr, tmp);
9517
9518 /* Add it to the object address. */
9519 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9520 add_loc_descr (&loc_descr, tmp);
9521 }
9522 else
9523 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9524 }
9525 else
9526 offset = field_byte_offset (decl);
9527
9528 if (! loc_descr)
9529 {
9530 enum dwarf_location_atom op;
9531
9532 /* The DWARF2 standard says that we should assume that the structure
9533 address is already on the stack, so we can specify a structure field
9534 address by using DW_OP_plus_uconst. */
9535
9536 #ifdef MIPS_DEBUGGING_INFO
9537 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9538 operator correctly. It works only if we leave the offset on the
9539 stack. */
9540 op = DW_OP_constu;
9541 #else
9542 op = DW_OP_plus_uconst;
9543 #endif
9544
9545 loc_descr = new_loc_descr (op, offset, 0);
9546 }
9547
9548 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9549 }
9550
9551 /* Writes integer values to dw_vec_const array. */
9552
9553 static void
9554 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9555 {
9556 while (size != 0)
9557 {
9558 *dest++ = val & 0xff;
9559 val >>= 8;
9560 --size;
9561 }
9562 }
9563
9564 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9565
9566 static HOST_WIDE_INT
9567 extract_int (const unsigned char *src, unsigned int size)
9568 {
9569 HOST_WIDE_INT val = 0;
9570
9571 src += size;
9572 while (size != 0)
9573 {
9574 val <<= 8;
9575 val |= *--src & 0xff;
9576 --size;
9577 }
9578 return val;
9579 }
9580
9581 /* Writes floating point values to dw_vec_const array. */
9582
9583 static void
9584 insert_float (rtx rtl, unsigned char *array)
9585 {
9586 REAL_VALUE_TYPE rv;
9587 long val[4];
9588 int i;
9589
9590 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9591 real_to_target (val, &rv, GET_MODE (rtl));
9592
9593 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9594 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9595 {
9596 insert_int (val[i], 4, array);
9597 array += 4;
9598 }
9599 }
9600
9601 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9602 does not have a "location" either in memory or in a register. These
9603 things can arise in GNU C when a constant is passed as an actual parameter
9604 to an inlined function. They can also arise in C++ where declared
9605 constants do not necessarily get memory "homes". */
9606
9607 static void
9608 add_const_value_attribute (dw_die_ref die, rtx rtl)
9609 {
9610 switch (GET_CODE (rtl))
9611 {
9612 case CONST_INT:
9613 {
9614 HOST_WIDE_INT val = INTVAL (rtl);
9615
9616 if (val < 0)
9617 add_AT_int (die, DW_AT_const_value, val);
9618 else
9619 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9620 }
9621 break;
9622
9623 case CONST_DOUBLE:
9624 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9625 floating-point constant. A CONST_DOUBLE is used whenever the
9626 constant requires more than one word in order to be adequately
9627 represented. We output CONST_DOUBLEs as blocks. */
9628 {
9629 enum machine_mode mode = GET_MODE (rtl);
9630
9631 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9632 {
9633 unsigned int length = GET_MODE_SIZE (mode);
9634 unsigned char *array = ggc_alloc (length);
9635
9636 insert_float (rtl, array);
9637 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9638 }
9639 else
9640 {
9641 /* ??? We really should be using HOST_WIDE_INT throughout. */
9642 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9643 abort ();
9644
9645 add_AT_long_long (die, DW_AT_const_value,
9646 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9647 }
9648 }
9649 break;
9650
9651 case CONST_VECTOR:
9652 {
9653 enum machine_mode mode = GET_MODE (rtl);
9654 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9655 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9656 unsigned char *array = ggc_alloc (length * elt_size);
9657 unsigned int i;
9658 unsigned char *p;
9659
9660 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
9661 {
9662 for (i = 0, p = array; i < length; i++, p += elt_size)
9663 {
9664 rtx elt = CONST_VECTOR_ELT (rtl, i);
9665 HOST_WIDE_INT lo, hi;
9666 if (GET_CODE (elt) == CONST_INT)
9667 {
9668 lo = INTVAL (elt);
9669 hi = -(lo < 0);
9670 }
9671 else if (GET_CODE (elt) == CONST_DOUBLE)
9672 {
9673 lo = CONST_DOUBLE_LOW (elt);
9674 hi = CONST_DOUBLE_HIGH (elt);
9675 }
9676 else
9677 abort ();
9678
9679 if (elt_size <= sizeof (HOST_WIDE_INT))
9680 insert_int (lo, elt_size, p);
9681 else if (elt_size == 2 * sizeof (HOST_WIDE_INT))
9682 {
9683 unsigned char *p0 = p;
9684 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9685
9686 if (WORDS_BIG_ENDIAN)
9687 {
9688 p0 = p1;
9689 p1 = p;
9690 }
9691 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9692 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9693 }
9694 else
9695 abort ();
9696 }
9697 }
9698 else if (GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
9699 {
9700 for (i = 0, p = array; i < length; i++, p += elt_size)
9701 {
9702 rtx elt = CONST_VECTOR_ELT (rtl, i);
9703 insert_float (elt, p);
9704 }
9705 }
9706 else
9707 abort ();
9708
9709 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9710 }
9711 break;
9712
9713 case CONST_STRING:
9714 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9715 break;
9716
9717 case SYMBOL_REF:
9718 case LABEL_REF:
9719 case CONST:
9720 add_AT_addr (die, DW_AT_const_value, rtl);
9721 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9722 break;
9723
9724 case PLUS:
9725 /* In cases where an inlined instance of an inline function is passed
9726 the address of an `auto' variable (which is local to the caller) we
9727 can get a situation where the DECL_RTL of the artificial local
9728 variable (for the inlining) which acts as a stand-in for the
9729 corresponding formal parameter (of the inline function) will look
9730 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9731 exactly a compile-time constant expression, but it isn't the address
9732 of the (artificial) local variable either. Rather, it represents the
9733 *value* which the artificial local variable always has during its
9734 lifetime. We currently have no way to represent such quasi-constant
9735 values in Dwarf, so for now we just punt and generate nothing. */
9736 break;
9737
9738 default:
9739 /* No other kinds of rtx should be possible here. */
9740 abort ();
9741 }
9742
9743 }
9744
9745 static rtx
9746 rtl_for_decl_location (tree decl)
9747 {
9748 rtx rtl;
9749
9750 /* Here we have to decide where we are going to say the parameter "lives"
9751 (as far as the debugger is concerned). We only have a couple of
9752 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9753
9754 DECL_RTL normally indicates where the parameter lives during most of the
9755 activation of the function. If optimization is enabled however, this
9756 could be either NULL or else a pseudo-reg. Both of those cases indicate
9757 that the parameter doesn't really live anywhere (as far as the code
9758 generation parts of GCC are concerned) during most of the function's
9759 activation. That will happen (for example) if the parameter is never
9760 referenced within the function.
9761
9762 We could just generate a location descriptor here for all non-NULL
9763 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9764 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9765 where DECL_RTL is NULL or is a pseudo-reg.
9766
9767 Note however that we can only get away with using DECL_INCOMING_RTL as
9768 a backup substitute for DECL_RTL in certain limited cases. In cases
9769 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9770 we can be sure that the parameter was passed using the same type as it is
9771 declared to have within the function, and that its DECL_INCOMING_RTL
9772 points us to a place where a value of that type is passed.
9773
9774 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9775 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9776 because in these cases DECL_INCOMING_RTL points us to a value of some
9777 type which is *different* from the type of the parameter itself. Thus,
9778 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9779 such cases, the debugger would end up (for example) trying to fetch a
9780 `float' from a place which actually contains the first part of a
9781 `double'. That would lead to really incorrect and confusing
9782 output at debug-time.
9783
9784 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9785 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9786 are a couple of exceptions however. On little-endian machines we can
9787 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9788 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9789 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9790 when (on a little-endian machine) a non-prototyped function has a
9791 parameter declared to be of type `short' or `char'. In such cases,
9792 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9793 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9794 passed `int' value. If the debugger then uses that address to fetch
9795 a `short' or a `char' (on a little-endian machine) the result will be
9796 the correct data, so we allow for such exceptional cases below.
9797
9798 Note that our goal here is to describe the place where the given formal
9799 parameter lives during most of the function's activation (i.e. between the
9800 end of the prologue and the start of the epilogue). We'll do that as best
9801 as we can. Note however that if the given formal parameter is modified
9802 sometime during the execution of the function, then a stack backtrace (at
9803 debug-time) will show the function as having been called with the *new*
9804 value rather than the value which was originally passed in. This happens
9805 rarely enough that it is not a major problem, but it *is* a problem, and
9806 I'd like to fix it.
9807
9808 A future version of dwarf2out.c may generate two additional attributes for
9809 any given DW_TAG_formal_parameter DIE which will describe the "passed
9810 type" and the "passed location" for the given formal parameter in addition
9811 to the attributes we now generate to indicate the "declared type" and the
9812 "active location" for each parameter. This additional set of attributes
9813 could be used by debuggers for stack backtraces. Separately, note that
9814 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9815 This happens (for example) for inlined-instances of inline function formal
9816 parameters which are never referenced. This really shouldn't be
9817 happening. All PARM_DECL nodes should get valid non-NULL
9818 DECL_INCOMING_RTL values. FIXME. */
9819
9820 /* Use DECL_RTL as the "location" unless we find something better. */
9821 rtl = DECL_RTL_IF_SET (decl);
9822
9823 /* When generating abstract instances, ignore everything except
9824 constants, symbols living in memory, and symbols living in
9825 fixed registers. */
9826 if (! reload_completed)
9827 {
9828 if (rtl
9829 && (CONSTANT_P (rtl)
9830 || (MEM_P (rtl)
9831 && CONSTANT_P (XEXP (rtl, 0)))
9832 || (REG_P (rtl)
9833 && TREE_CODE (decl) == VAR_DECL
9834 && TREE_STATIC (decl))))
9835 {
9836 rtl = targetm.delegitimize_address (rtl);
9837 return rtl;
9838 }
9839 rtl = NULL_RTX;
9840 }
9841 else if (TREE_CODE (decl) == PARM_DECL)
9842 {
9843 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9844 {
9845 tree declared_type = type_main_variant (TREE_TYPE (decl));
9846 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9847
9848 /* This decl represents a formal parameter which was optimized out.
9849 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9850 all cases where (rtl == NULL_RTX) just below. */
9851 if (declared_type == passed_type)
9852 rtl = DECL_INCOMING_RTL (decl);
9853 else if (! BYTES_BIG_ENDIAN
9854 && TREE_CODE (declared_type) == INTEGER_TYPE
9855 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9856 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9857 rtl = DECL_INCOMING_RTL (decl);
9858 }
9859
9860 /* If the parm was passed in registers, but lives on the stack, then
9861 make a big endian correction if the mode of the type of the
9862 parameter is not the same as the mode of the rtl. */
9863 /* ??? This is the same series of checks that are made in dbxout.c before
9864 we reach the big endian correction code there. It isn't clear if all
9865 of these checks are necessary here, but keeping them all is the safe
9866 thing to do. */
9867 else if (MEM_P (rtl)
9868 && XEXP (rtl, 0) != const0_rtx
9869 && ! CONSTANT_P (XEXP (rtl, 0))
9870 /* Not passed in memory. */
9871 && !MEM_P (DECL_INCOMING_RTL (decl))
9872 /* Not passed by invisible reference. */
9873 && (!REG_P (XEXP (rtl, 0))
9874 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9875 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9876 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9877 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9878 #endif
9879 )
9880 /* Big endian correction check. */
9881 && BYTES_BIG_ENDIAN
9882 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9883 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9884 < UNITS_PER_WORD))
9885 {
9886 int offset = (UNITS_PER_WORD
9887 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9888
9889 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9890 plus_constant (XEXP (rtl, 0), offset));
9891 }
9892 }
9893 else if (TREE_CODE (decl) == VAR_DECL
9894 && rtl
9895 && MEM_P (rtl)
9896 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
9897 && BYTES_BIG_ENDIAN)
9898 {
9899 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
9900 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
9901
9902 /* If a variable is declared "register" yet is smaller than
9903 a register, then if we store the variable to memory, it
9904 looks like we're storing a register-sized value, when in
9905 fact we are not. We need to adjust the offset of the
9906 storage location to reflect the actual value's bytes,
9907 else gdb will not be able to display it. */
9908 if (rsize > dsize)
9909 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9910 plus_constant (XEXP (rtl, 0), rsize-dsize));
9911 }
9912
9913 if (rtl != NULL_RTX)
9914 {
9915 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9916 #ifdef LEAF_REG_REMAP
9917 if (current_function_uses_only_leaf_regs)
9918 leaf_renumber_regs_insn (rtl);
9919 #endif
9920 }
9921
9922 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9923 and will have been substituted directly into all expressions that use it.
9924 C does not have such a concept, but C++ and other languages do. */
9925 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9926 {
9927 /* If a variable is initialized with a string constant without embedded
9928 zeros, build CONST_STRING. */
9929 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9930 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9931 {
9932 tree arrtype = TREE_TYPE (decl);
9933 tree enttype = TREE_TYPE (arrtype);
9934 tree domain = TYPE_DOMAIN (arrtype);
9935 tree init = DECL_INITIAL (decl);
9936 enum machine_mode mode = TYPE_MODE (enttype);
9937
9938 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9939 && domain
9940 && integer_zerop (TYPE_MIN_VALUE (domain))
9941 && compare_tree_int (TYPE_MAX_VALUE (domain),
9942 TREE_STRING_LENGTH (init) - 1) == 0
9943 && ((size_t) TREE_STRING_LENGTH (init)
9944 == strlen (TREE_STRING_POINTER (init)) + 1))
9945 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9946 }
9947 /* If the initializer is something that we know will expand into an
9948 immediate RTL constant, expand it now. Expanding anything else
9949 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9950 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9951 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9952 {
9953 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9954 EXPAND_INITIALIZER);
9955 /* If expand_expr returns a MEM, it wasn't immediate. */
9956 if (rtl && MEM_P (rtl))
9957 abort ();
9958 }
9959 }
9960
9961 if (rtl)
9962 rtl = targetm.delegitimize_address (rtl);
9963
9964 /* If we don't look past the constant pool, we risk emitting a
9965 reference to a constant pool entry that isn't referenced from
9966 code, and thus is not emitted. */
9967 if (rtl)
9968 rtl = avoid_constant_pool_reference (rtl);
9969
9970 return rtl;
9971 }
9972
9973 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
9974 data attribute for a variable or a parameter. We generate the
9975 DW_AT_const_value attribute only in those cases where the given variable
9976 or parameter does not have a true "location" either in memory or in a
9977 register. This can happen (for example) when a constant is passed as an
9978 actual argument in a call to an inline function. (It's possible that
9979 these things can crop up in other ways also.) Note that one type of
9980 constant value which can be passed into an inlined function is a constant
9981 pointer. This can happen for example if an actual argument in an inlined
9982 function call evaluates to a compile-time constant address. */
9983
9984 static void
9985 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
9986 enum dwarf_attribute attr)
9987 {
9988 rtx rtl;
9989 dw_loc_descr_ref descr;
9990 var_loc_list *loc_list;
9991
9992 if (TREE_CODE (decl) == ERROR_MARK)
9993 return;
9994 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL
9995 && TREE_CODE (decl) != RESULT_DECL)
9996 abort ();
9997
9998 /* See if we possibly have multiple locations for this variable. */
9999 loc_list = lookup_decl_loc (decl);
10000
10001 /* If it truly has multiple locations, the first and last node will
10002 differ. */
10003 if (loc_list && loc_list->first != loc_list->last)
10004 {
10005 const char *secname;
10006 const char *endname;
10007 dw_loc_list_ref list;
10008 rtx varloc;
10009 struct var_loc_node *node;
10010
10011 /* We need to figure out what section we should use as the base
10012 for the address ranges where a given location is valid.
10013 1. If this particular DECL has a section associated with it,
10014 use that.
10015 2. If this function has a section associated with it, use
10016 that.
10017 3. Otherwise, use the text section.
10018 XXX: If you split a variable across multiple sections, this
10019 won't notice. */
10020
10021 if (DECL_SECTION_NAME (decl))
10022 {
10023 tree sectree = DECL_SECTION_NAME (decl);
10024 secname = TREE_STRING_POINTER (sectree);
10025 }
10026 else if (current_function_decl
10027 && DECL_SECTION_NAME (current_function_decl))
10028 {
10029 tree sectree = DECL_SECTION_NAME (current_function_decl);
10030 secname = TREE_STRING_POINTER (sectree);
10031 }
10032 else
10033 secname = text_section_label;
10034
10035 /* Now that we know what section we are using for a base,
10036 actually construct the list of locations.
10037 The first location information is what is passed to the
10038 function that creates the location list, and the remaining
10039 locations just get added on to that list.
10040 Note that we only know the start address for a location
10041 (IE location changes), so to build the range, we use
10042 the range [current location start, next location start].
10043 This means we have to special case the last node, and generate
10044 a range of [last location start, end of function label]. */
10045
10046 node = loc_list->first;
10047 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10048 list = new_loc_list (loc_descriptor (varloc, attr != DW_AT_frame_base),
10049 node->label, node->next->label, secname, 1);
10050 node = node->next;
10051
10052 for (; node->next; node = node->next)
10053 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10054 {
10055 /* The variable has a location between NODE->LABEL and
10056 NODE->NEXT->LABEL. */
10057 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10058 add_loc_descr_to_loc_list (&list,
10059 loc_descriptor (varloc,
10060 attr != DW_AT_frame_base),
10061 node->label, node->next->label, secname);
10062 }
10063
10064 /* If the variable has a location at the last label
10065 it keeps its location until the end of function. */
10066 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10067 {
10068 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10069
10070 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10071 if (!current_function_decl)
10072 endname = text_end_label;
10073 else
10074 {
10075 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10076 current_function_funcdef_no);
10077 endname = ggc_strdup (label_id);
10078 }
10079 add_loc_descr_to_loc_list (&list,
10080 loc_descriptor (varloc,
10081 attr != DW_AT_frame_base),
10082 node->label, endname, secname);
10083 }
10084
10085 /* Finally, add the location list to the DIE, and we are done. */
10086 add_AT_loc_list (die, attr, list);
10087 return;
10088 }
10089
10090 rtl = rtl_for_decl_location (decl);
10091 if (rtl == NULL_RTX)
10092 return;
10093
10094 switch (GET_CODE (rtl))
10095 {
10096 case ADDRESSOF:
10097 /* The address of a variable that was optimized away;
10098 don't emit anything. */
10099 break;
10100
10101 case CONST_INT:
10102 case CONST_DOUBLE:
10103 case CONST_VECTOR:
10104 case CONST_STRING:
10105 case SYMBOL_REF:
10106 case LABEL_REF:
10107 case CONST:
10108 case PLUS:
10109 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
10110 add_const_value_attribute (die, rtl);
10111 break;
10112
10113 case MEM:
10114 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
10115 {
10116 /* Need loc_descriptor_from_tree since that's where we know
10117 how to handle TLS variables. Want the object's address
10118 since the top-level DW_AT_location assumes such. See
10119 the confusion in loc_descriptor for reference. */
10120 descr = loc_descriptor_from_tree (decl, 1);
10121 }
10122 else
10123 {
10124 case REG:
10125 case SUBREG:
10126 case CONCAT:
10127 descr = loc_descriptor (rtl, true);
10128 }
10129 add_AT_location_description (die, attr, descr);
10130 break;
10131
10132 case PARALLEL:
10133 {
10134 rtvec par_elems = XVEC (rtl, 0);
10135 int num_elem = GET_NUM_ELEM (par_elems);
10136 enum machine_mode mode;
10137 int i;
10138
10139 /* Create the first one, so we have something to add to. */
10140 descr = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0), true);
10141 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
10142 add_loc_descr (&descr,
10143 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
10144 for (i = 1; i < num_elem; i++)
10145 {
10146 dw_loc_descr_ref temp;
10147
10148 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0), true);
10149 add_loc_descr (&descr, temp);
10150 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
10151 add_loc_descr (&descr,
10152 new_loc_descr (DW_OP_piece,
10153 GET_MODE_SIZE (mode), 0));
10154 }
10155 }
10156 add_AT_location_description (die, DW_AT_location, descr);
10157 break;
10158
10159 default:
10160 abort ();
10161 }
10162 }
10163
10164 /* If we don't have a copy of this variable in memory for some reason (such
10165 as a C++ member constant that doesn't have an out-of-line definition),
10166 we should tell the debugger about the constant value. */
10167
10168 static void
10169 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10170 {
10171 tree init = DECL_INITIAL (decl);
10172 tree type = TREE_TYPE (decl);
10173
10174 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
10175 && initializer_constant_valid_p (init, type) == null_pointer_node)
10176 /* OK */;
10177 else
10178 return;
10179
10180 switch (TREE_CODE (type))
10181 {
10182 case INTEGER_TYPE:
10183 if (host_integerp (init, 0))
10184 add_AT_unsigned (var_die, DW_AT_const_value,
10185 tree_low_cst (init, 0));
10186 else
10187 add_AT_long_long (var_die, DW_AT_const_value,
10188 TREE_INT_CST_HIGH (init),
10189 TREE_INT_CST_LOW (init));
10190 break;
10191
10192 default:;
10193 }
10194 }
10195
10196 /* Generate a DW_AT_name attribute given some string value to be included as
10197 the value of the attribute. */
10198
10199 static void
10200 add_name_attribute (dw_die_ref die, const char *name_string)
10201 {
10202 if (name_string != NULL && *name_string != 0)
10203 {
10204 if (demangle_name_func)
10205 name_string = (*demangle_name_func) (name_string);
10206
10207 add_AT_string (die, DW_AT_name, name_string);
10208 }
10209 }
10210
10211 /* Generate a DW_AT_comp_dir attribute for DIE. */
10212
10213 static void
10214 add_comp_dir_attribute (dw_die_ref die)
10215 {
10216 const char *wd = get_src_pwd ();
10217 if (wd != NULL)
10218 add_AT_string (die, DW_AT_comp_dir, wd);
10219 }
10220
10221 /* Given a tree node describing an array bound (either lower or upper) output
10222 a representation for that bound. */
10223
10224 static void
10225 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10226 {
10227 switch (TREE_CODE (bound))
10228 {
10229 case ERROR_MARK:
10230 return;
10231
10232 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10233 case INTEGER_CST:
10234 if (! host_integerp (bound, 0)
10235 || (bound_attr == DW_AT_lower_bound
10236 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10237 || (is_fortran () && integer_onep (bound)))))
10238 /* Use the default. */
10239 ;
10240 else
10241 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10242 break;
10243
10244 case CONVERT_EXPR:
10245 case NOP_EXPR:
10246 case NON_LVALUE_EXPR:
10247 case VIEW_CONVERT_EXPR:
10248 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10249 break;
10250
10251 case SAVE_EXPR:
10252 break;
10253
10254 case VAR_DECL:
10255 case PARM_DECL:
10256 case RESULT_DECL:
10257 {
10258 dw_die_ref decl_die = lookup_decl_die (bound);
10259
10260 /* ??? Can this happen, or should the variable have been bound
10261 first? Probably it can, since I imagine that we try to create
10262 the types of parameters in the order in which they exist in
10263 the list, and won't have created a forward reference to a
10264 later parameter. */
10265 if (decl_die != NULL)
10266 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10267 break;
10268 }
10269
10270 default:
10271 {
10272 /* Otherwise try to create a stack operation procedure to
10273 evaluate the value of the array bound. */
10274
10275 dw_die_ref ctx, decl_die;
10276 dw_loc_descr_ref loc;
10277
10278 loc = loc_descriptor_from_tree (bound, 0);
10279 if (loc == NULL)
10280 break;
10281
10282 if (current_function_decl == 0)
10283 ctx = comp_unit_die;
10284 else
10285 ctx = lookup_decl_die (current_function_decl);
10286
10287 decl_die = new_die (DW_TAG_variable, ctx, bound);
10288 add_AT_flag (decl_die, DW_AT_artificial, 1);
10289 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10290 add_AT_loc (decl_die, DW_AT_location, loc);
10291
10292 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10293 break;
10294 }
10295 }
10296 }
10297
10298 /* Note that the block of subscript information for an array type also
10299 includes information about the element type of type given array type. */
10300
10301 static void
10302 add_subscript_info (dw_die_ref type_die, tree type)
10303 {
10304 #ifndef MIPS_DEBUGGING_INFO
10305 unsigned dimension_number;
10306 #endif
10307 tree lower, upper;
10308 dw_die_ref subrange_die;
10309
10310 /* The GNU compilers represent multidimensional array types as sequences of
10311 one dimensional array types whose element types are themselves array
10312 types. Here we squish that down, so that each multidimensional array
10313 type gets only one array_type DIE in the Dwarf debugging info. The draft
10314 Dwarf specification say that we are allowed to do this kind of
10315 compression in C (because there is no difference between an array or
10316 arrays and a multidimensional array in C) but for other source languages
10317 (e.g. Ada) we probably shouldn't do this. */
10318
10319 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10320 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10321 We work around this by disabling this feature. See also
10322 gen_array_type_die. */
10323 #ifndef MIPS_DEBUGGING_INFO
10324 for (dimension_number = 0;
10325 TREE_CODE (type) == ARRAY_TYPE;
10326 type = TREE_TYPE (type), dimension_number++)
10327 #endif
10328 {
10329 tree domain = TYPE_DOMAIN (type);
10330
10331 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10332 and (in GNU C only) variable bounds. Handle all three forms
10333 here. */
10334 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10335 if (domain)
10336 {
10337 /* We have an array type with specified bounds. */
10338 lower = TYPE_MIN_VALUE (domain);
10339 upper = TYPE_MAX_VALUE (domain);
10340
10341 /* Define the index type. */
10342 if (TREE_TYPE (domain))
10343 {
10344 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10345 TREE_TYPE field. We can't emit debug info for this
10346 because it is an unnamed integral type. */
10347 if (TREE_CODE (domain) == INTEGER_TYPE
10348 && TYPE_NAME (domain) == NULL_TREE
10349 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10350 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10351 ;
10352 else
10353 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10354 type_die);
10355 }
10356
10357 /* ??? If upper is NULL, the array has unspecified length,
10358 but it does have a lower bound. This happens with Fortran
10359 dimension arr(N:*)
10360 Since the debugger is definitely going to need to know N
10361 to produce useful results, go ahead and output the lower
10362 bound solo, and hope the debugger can cope. */
10363
10364 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10365 if (upper)
10366 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10367 }
10368
10369 /* Otherwise we have an array type with an unspecified length. The
10370 DWARF-2 spec does not say how to handle this; let's just leave out the
10371 bounds. */
10372 }
10373 }
10374
10375 static void
10376 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10377 {
10378 unsigned size;
10379
10380 switch (TREE_CODE (tree_node))
10381 {
10382 case ERROR_MARK:
10383 size = 0;
10384 break;
10385 case ENUMERAL_TYPE:
10386 case RECORD_TYPE:
10387 case UNION_TYPE:
10388 case QUAL_UNION_TYPE:
10389 size = int_size_in_bytes (tree_node);
10390 break;
10391 case FIELD_DECL:
10392 /* For a data member of a struct or union, the DW_AT_byte_size is
10393 generally given as the number of bytes normally allocated for an
10394 object of the *declared* type of the member itself. This is true
10395 even for bit-fields. */
10396 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10397 break;
10398 default:
10399 abort ();
10400 }
10401
10402 /* Note that `size' might be -1 when we get to this point. If it is, that
10403 indicates that the byte size of the entity in question is variable. We
10404 have no good way of expressing this fact in Dwarf at the present time,
10405 so just let the -1 pass on through. */
10406 add_AT_unsigned (die, DW_AT_byte_size, size);
10407 }
10408
10409 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10410 which specifies the distance in bits from the highest order bit of the
10411 "containing object" for the bit-field to the highest order bit of the
10412 bit-field itself.
10413
10414 For any given bit-field, the "containing object" is a hypothetical object
10415 (of some integral or enum type) within which the given bit-field lives. The
10416 type of this hypothetical "containing object" is always the same as the
10417 declared type of the individual bit-field itself. The determination of the
10418 exact location of the "containing object" for a bit-field is rather
10419 complicated. It's handled by the `field_byte_offset' function (above).
10420
10421 Note that it is the size (in bytes) of the hypothetical "containing object"
10422 which will be given in the DW_AT_byte_size attribute for this bit-field.
10423 (See `byte_size_attribute' above). */
10424
10425 static inline void
10426 add_bit_offset_attribute (dw_die_ref die, tree decl)
10427 {
10428 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10429 tree type = DECL_BIT_FIELD_TYPE (decl);
10430 HOST_WIDE_INT bitpos_int;
10431 HOST_WIDE_INT highest_order_object_bit_offset;
10432 HOST_WIDE_INT highest_order_field_bit_offset;
10433 HOST_WIDE_INT unsigned bit_offset;
10434
10435 /* Must be a field and a bit field. */
10436 if (!type
10437 || TREE_CODE (decl) != FIELD_DECL)
10438 abort ();
10439
10440 /* We can't yet handle bit-fields whose offsets are variable, so if we
10441 encounter such things, just return without generating any attribute
10442 whatsoever. Likewise for variable or too large size. */
10443 if (! host_integerp (bit_position (decl), 0)
10444 || ! host_integerp (DECL_SIZE (decl), 1))
10445 return;
10446
10447 bitpos_int = int_bit_position (decl);
10448
10449 /* Note that the bit offset is always the distance (in bits) from the
10450 highest-order bit of the "containing object" to the highest-order bit of
10451 the bit-field itself. Since the "high-order end" of any object or field
10452 is different on big-endian and little-endian machines, the computation
10453 below must take account of these differences. */
10454 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10455 highest_order_field_bit_offset = bitpos_int;
10456
10457 if (! BYTES_BIG_ENDIAN)
10458 {
10459 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10460 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10461 }
10462
10463 bit_offset
10464 = (! BYTES_BIG_ENDIAN
10465 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10466 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10467
10468 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10469 }
10470
10471 /* For a FIELD_DECL node which represents a bit field, output an attribute
10472 which specifies the length in bits of the given field. */
10473
10474 static inline void
10475 add_bit_size_attribute (dw_die_ref die, tree decl)
10476 {
10477 /* Must be a field and a bit field. */
10478 if (TREE_CODE (decl) != FIELD_DECL
10479 || ! DECL_BIT_FIELD_TYPE (decl))
10480 abort ();
10481
10482 if (host_integerp (DECL_SIZE (decl), 1))
10483 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10484 }
10485
10486 /* If the compiled language is ANSI C, then add a 'prototyped'
10487 attribute, if arg types are given for the parameters of a function. */
10488
10489 static inline void
10490 add_prototyped_attribute (dw_die_ref die, tree func_type)
10491 {
10492 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10493 && TYPE_ARG_TYPES (func_type) != NULL)
10494 add_AT_flag (die, DW_AT_prototyped, 1);
10495 }
10496
10497 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10498 by looking in either the type declaration or object declaration
10499 equate table. */
10500
10501 static inline void
10502 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10503 {
10504 dw_die_ref origin_die = NULL;
10505
10506 if (TREE_CODE (origin) != FUNCTION_DECL)
10507 {
10508 /* We may have gotten separated from the block for the inlined
10509 function, if we're in an exception handler or some such; make
10510 sure that the abstract function has been written out.
10511
10512 Doing this for nested functions is wrong, however; functions are
10513 distinct units, and our context might not even be inline. */
10514 tree fn = origin;
10515
10516 if (TYPE_P (fn))
10517 fn = TYPE_STUB_DECL (fn);
10518
10519 fn = decl_function_context (fn);
10520 if (fn)
10521 dwarf2out_abstract_function (fn);
10522 }
10523
10524 if (DECL_P (origin))
10525 origin_die = lookup_decl_die (origin);
10526 else if (TYPE_P (origin))
10527 origin_die = lookup_type_die (origin);
10528
10529 if (origin_die == NULL)
10530 abort ();
10531
10532 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10533 }
10534
10535 /* We do not currently support the pure_virtual attribute. */
10536
10537 static inline void
10538 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10539 {
10540 if (DECL_VINDEX (func_decl))
10541 {
10542 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10543
10544 if (host_integerp (DECL_VINDEX (func_decl), 0))
10545 add_AT_loc (die, DW_AT_vtable_elem_location,
10546 new_loc_descr (DW_OP_constu,
10547 tree_low_cst (DECL_VINDEX (func_decl), 0),
10548 0));
10549
10550 /* GNU extension: Record what type this method came from originally. */
10551 if (debug_info_level > DINFO_LEVEL_TERSE)
10552 add_AT_die_ref (die, DW_AT_containing_type,
10553 lookup_type_die (DECL_CONTEXT (func_decl)));
10554 }
10555 }
10556 \f
10557 /* Add source coordinate attributes for the given decl. */
10558
10559 static void
10560 add_src_coords_attributes (dw_die_ref die, tree decl)
10561 {
10562 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10563 unsigned file_index = lookup_filename (s.file);
10564
10565 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10566 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10567 }
10568
10569 /* Add a DW_AT_name attribute and source coordinate attribute for the
10570 given decl, but only if it actually has a name. */
10571
10572 static void
10573 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10574 {
10575 tree decl_name;
10576
10577 decl_name = DECL_NAME (decl);
10578 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10579 {
10580 add_name_attribute (die, dwarf2_name (decl, 0));
10581 if (! DECL_ARTIFICIAL (decl))
10582 add_src_coords_attributes (die, decl);
10583
10584 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10585 && TREE_PUBLIC (decl)
10586 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10587 && !DECL_ABSTRACT (decl))
10588 add_AT_string (die, DW_AT_MIPS_linkage_name,
10589 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10590 }
10591
10592 #ifdef VMS_DEBUGGING_INFO
10593 /* Get the function's name, as described by its RTL. This may be different
10594 from the DECL_NAME name used in the source file. */
10595 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10596 {
10597 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10598 XEXP (DECL_RTL (decl), 0));
10599 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10600 }
10601 #endif
10602 }
10603
10604 /* Push a new declaration scope. */
10605
10606 static void
10607 push_decl_scope (tree scope)
10608 {
10609 VARRAY_PUSH_TREE (decl_scope_table, scope);
10610 }
10611
10612 /* Pop a declaration scope. */
10613
10614 static inline void
10615 pop_decl_scope (void)
10616 {
10617 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
10618 abort ();
10619
10620 VARRAY_POP (decl_scope_table);
10621 }
10622
10623 /* Return the DIE for the scope that immediately contains this type.
10624 Non-named types get global scope. Named types nested in other
10625 types get their containing scope if it's open, or global scope
10626 otherwise. All other types (i.e. function-local named types) get
10627 the current active scope. */
10628
10629 static dw_die_ref
10630 scope_die_for (tree t, dw_die_ref context_die)
10631 {
10632 dw_die_ref scope_die = NULL;
10633 tree containing_scope;
10634 int i;
10635
10636 /* Non-types always go in the current scope. */
10637 if (! TYPE_P (t))
10638 abort ();
10639
10640 containing_scope = TYPE_CONTEXT (t);
10641
10642 /* Use the containing namespace if it was passed in (for a declaration). */
10643 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10644 {
10645 if (context_die == lookup_decl_die (containing_scope))
10646 /* OK */;
10647 else
10648 containing_scope = NULL_TREE;
10649 }
10650
10651 /* Ignore function type "scopes" from the C frontend. They mean that
10652 a tagged type is local to a parmlist of a function declarator, but
10653 that isn't useful to DWARF. */
10654 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10655 containing_scope = NULL_TREE;
10656
10657 if (containing_scope == NULL_TREE)
10658 scope_die = comp_unit_die;
10659 else if (TYPE_P (containing_scope))
10660 {
10661 /* For types, we can just look up the appropriate DIE. But
10662 first we check to see if we're in the middle of emitting it
10663 so we know where the new DIE should go. */
10664 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10665 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10666 break;
10667
10668 if (i < 0)
10669 {
10670 if (debug_info_level > DINFO_LEVEL_TERSE
10671 && !TREE_ASM_WRITTEN (containing_scope))
10672 abort ();
10673
10674 /* If none of the current dies are suitable, we get file scope. */
10675 scope_die = comp_unit_die;
10676 }
10677 else
10678 scope_die = lookup_type_die (containing_scope);
10679 }
10680 else
10681 scope_die = context_die;
10682
10683 return scope_die;
10684 }
10685
10686 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10687
10688 static inline int
10689 local_scope_p (dw_die_ref context_die)
10690 {
10691 for (; context_die; context_die = context_die->die_parent)
10692 if (context_die->die_tag == DW_TAG_inlined_subroutine
10693 || context_die->die_tag == DW_TAG_subprogram)
10694 return 1;
10695
10696 return 0;
10697 }
10698
10699 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10700 whether or not to treat a DIE in this context as a declaration. */
10701
10702 static inline int
10703 class_or_namespace_scope_p (dw_die_ref context_die)
10704 {
10705 return (context_die
10706 && (context_die->die_tag == DW_TAG_structure_type
10707 || context_die->die_tag == DW_TAG_union_type
10708 || context_die->die_tag == DW_TAG_namespace));
10709 }
10710
10711 /* Many forms of DIEs require a "type description" attribute. This
10712 routine locates the proper "type descriptor" die for the type given
10713 by 'type', and adds a DW_AT_type attribute below the given die. */
10714
10715 static void
10716 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10717 int decl_volatile, dw_die_ref context_die)
10718 {
10719 enum tree_code code = TREE_CODE (type);
10720 dw_die_ref type_die = NULL;
10721
10722 /* ??? If this type is an unnamed subrange type of an integral or
10723 floating-point type, use the inner type. This is because we have no
10724 support for unnamed types in base_type_die. This can happen if this is
10725 an Ada subrange type. Correct solution is emit a subrange type die. */
10726 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10727 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10728 type = TREE_TYPE (type), code = TREE_CODE (type);
10729
10730 if (code == ERROR_MARK
10731 /* Handle a special case. For functions whose return type is void, we
10732 generate *no* type attribute. (Note that no object may have type
10733 `void', so this only applies to function return types). */
10734 || code == VOID_TYPE)
10735 return;
10736
10737 type_die = modified_type_die (type,
10738 decl_const || TYPE_READONLY (type),
10739 decl_volatile || TYPE_VOLATILE (type),
10740 context_die);
10741
10742 if (type_die != NULL)
10743 add_AT_die_ref (object_die, DW_AT_type, type_die);
10744 }
10745
10746 /* Given a tree pointer to a struct, class, union, or enum type node, return
10747 a pointer to the (string) tag name for the given type, or zero if the type
10748 was declared without a tag. */
10749
10750 static const char *
10751 type_tag (tree type)
10752 {
10753 const char *name = 0;
10754
10755 if (TYPE_NAME (type) != 0)
10756 {
10757 tree t = 0;
10758
10759 /* Find the IDENTIFIER_NODE for the type name. */
10760 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10761 t = TYPE_NAME (type);
10762
10763 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10764 a TYPE_DECL node, regardless of whether or not a `typedef' was
10765 involved. */
10766 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10767 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10768 t = DECL_NAME (TYPE_NAME (type));
10769
10770 /* Now get the name as a string, or invent one. */
10771 if (t != 0)
10772 name = IDENTIFIER_POINTER (t);
10773 }
10774
10775 return (name == 0 || *name == '\0') ? 0 : name;
10776 }
10777
10778 /* Return the type associated with a data member, make a special check
10779 for bit field types. */
10780
10781 static inline tree
10782 member_declared_type (tree member)
10783 {
10784 return (DECL_BIT_FIELD_TYPE (member)
10785 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10786 }
10787
10788 /* Get the decl's label, as described by its RTL. This may be different
10789 from the DECL_NAME name used in the source file. */
10790
10791 #if 0
10792 static const char *
10793 decl_start_label (tree decl)
10794 {
10795 rtx x;
10796 const char *fnname;
10797
10798 x = DECL_RTL (decl);
10799 if (!MEM_P (x))
10800 abort ();
10801
10802 x = XEXP (x, 0);
10803 if (GET_CODE (x) != SYMBOL_REF)
10804 abort ();
10805
10806 fnname = XSTR (x, 0);
10807 return fnname;
10808 }
10809 #endif
10810 \f
10811 /* These routines generate the internal representation of the DIE's for
10812 the compilation unit. Debugging information is collected by walking
10813 the declaration trees passed in from dwarf2out_decl(). */
10814
10815 static void
10816 gen_array_type_die (tree type, dw_die_ref context_die)
10817 {
10818 dw_die_ref scope_die = scope_die_for (type, context_die);
10819 dw_die_ref array_die;
10820 tree element_type;
10821
10822 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10823 the inner array type comes before the outer array type. Thus we must
10824 call gen_type_die before we call new_die. See below also. */
10825 #ifdef MIPS_DEBUGGING_INFO
10826 gen_type_die (TREE_TYPE (type), context_die);
10827 #endif
10828
10829 array_die = new_die (DW_TAG_array_type, scope_die, type);
10830 add_name_attribute (array_die, type_tag (type));
10831 equate_type_number_to_die (type, array_die);
10832
10833 if (TREE_CODE (type) == VECTOR_TYPE)
10834 {
10835 /* The frontend feeds us a representation for the vector as a struct
10836 containing an array. Pull out the array type. */
10837 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10838 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10839 }
10840
10841 #if 0
10842 /* We default the array ordering. SDB will probably do
10843 the right things even if DW_AT_ordering is not present. It's not even
10844 an issue until we start to get into multidimensional arrays anyway. If
10845 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10846 then we'll have to put the DW_AT_ordering attribute back in. (But if
10847 and when we find out that we need to put these in, we will only do so
10848 for multidimensional arrays. */
10849 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10850 #endif
10851
10852 #ifdef MIPS_DEBUGGING_INFO
10853 /* The SGI compilers handle arrays of unknown bound by setting
10854 AT_declaration and not emitting any subrange DIEs. */
10855 if (! TYPE_DOMAIN (type))
10856 add_AT_flag (array_die, DW_AT_declaration, 1);
10857 else
10858 #endif
10859 add_subscript_info (array_die, type);
10860
10861 /* Add representation of the type of the elements of this array type. */
10862 element_type = TREE_TYPE (type);
10863
10864 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10865 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10866 We work around this by disabling this feature. See also
10867 add_subscript_info. */
10868 #ifndef MIPS_DEBUGGING_INFO
10869 while (TREE_CODE (element_type) == ARRAY_TYPE)
10870 element_type = TREE_TYPE (element_type);
10871
10872 gen_type_die (element_type, context_die);
10873 #endif
10874
10875 add_type_attribute (array_die, element_type, 0, 0, context_die);
10876 }
10877
10878 static void
10879 gen_set_type_die (tree type, dw_die_ref context_die)
10880 {
10881 dw_die_ref type_die
10882 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10883
10884 equate_type_number_to_die (type, type_die);
10885 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10886 }
10887
10888 #if 0
10889 static void
10890 gen_entry_point_die (tree decl, dw_die_ref context_die)
10891 {
10892 tree origin = decl_ultimate_origin (decl);
10893 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10894
10895 if (origin != NULL)
10896 add_abstract_origin_attribute (decl_die, origin);
10897 else
10898 {
10899 add_name_and_src_coords_attributes (decl_die, decl);
10900 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10901 0, 0, context_die);
10902 }
10903
10904 if (DECL_ABSTRACT (decl))
10905 equate_decl_number_to_die (decl, decl_die);
10906 else
10907 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10908 }
10909 #endif
10910
10911 /* Walk through the list of incomplete types again, trying once more to
10912 emit full debugging info for them. */
10913
10914 static void
10915 retry_incomplete_types (void)
10916 {
10917 int i;
10918
10919 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10920 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10921 }
10922
10923 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10924
10925 static void
10926 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
10927 {
10928 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10929
10930 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10931 be incomplete and such types are not marked. */
10932 add_abstract_origin_attribute (type_die, type);
10933 }
10934
10935 /* Generate a DIE to represent an inlined instance of a structure type. */
10936
10937 static void
10938 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
10939 {
10940 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10941
10942 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10943 be incomplete and such types are not marked. */
10944 add_abstract_origin_attribute (type_die, type);
10945 }
10946
10947 /* Generate a DIE to represent an inlined instance of a union type. */
10948
10949 static void
10950 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
10951 {
10952 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10953
10954 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10955 be incomplete and such types are not marked. */
10956 add_abstract_origin_attribute (type_die, type);
10957 }
10958
10959 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10960 include all of the information about the enumeration values also. Each
10961 enumerated type name/value is listed as a child of the enumerated type
10962 DIE. */
10963
10964 static dw_die_ref
10965 gen_enumeration_type_die (tree type, dw_die_ref context_die)
10966 {
10967 dw_die_ref type_die = lookup_type_die (type);
10968
10969 if (type_die == NULL)
10970 {
10971 type_die = new_die (DW_TAG_enumeration_type,
10972 scope_die_for (type, context_die), type);
10973 equate_type_number_to_die (type, type_die);
10974 add_name_attribute (type_die, type_tag (type));
10975 }
10976 else if (! TYPE_SIZE (type))
10977 return type_die;
10978 else
10979 remove_AT (type_die, DW_AT_declaration);
10980
10981 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10982 given enum type is incomplete, do not generate the DW_AT_byte_size
10983 attribute or the DW_AT_element_list attribute. */
10984 if (TYPE_SIZE (type))
10985 {
10986 tree link;
10987
10988 TREE_ASM_WRITTEN (type) = 1;
10989 add_byte_size_attribute (type_die, type);
10990 if (TYPE_STUB_DECL (type) != NULL_TREE)
10991 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10992
10993 /* If the first reference to this type was as the return type of an
10994 inline function, then it may not have a parent. Fix this now. */
10995 if (type_die->die_parent == NULL)
10996 add_child_die (scope_die_for (type, context_die), type_die);
10997
10998 for (link = TYPE_VALUES (type);
10999 link != NULL; link = TREE_CHAIN (link))
11000 {
11001 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11002 tree value = TREE_VALUE (link);
11003
11004 add_name_attribute (enum_die,
11005 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11006
11007 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11008 /* DWARF2 does not provide a way of indicating whether or
11009 not enumeration constants are signed or unsigned. GDB
11010 always assumes the values are signed, so we output all
11011 values as if they were signed. That means that
11012 enumeration constants with very large unsigned values
11013 will appear to have negative values in the debugger. */
11014 add_AT_int (enum_die, DW_AT_const_value,
11015 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11016 }
11017 }
11018 else
11019 add_AT_flag (type_die, DW_AT_declaration, 1);
11020
11021 return type_die;
11022 }
11023
11024 /* Generate a DIE to represent either a real live formal parameter decl or to
11025 represent just the type of some formal parameter position in some function
11026 type.
11027
11028 Note that this routine is a bit unusual because its argument may be a
11029 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11030 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11031 node. If it's the former then this function is being called to output a
11032 DIE to represent a formal parameter object (or some inlining thereof). If
11033 it's the latter, then this function is only being called to output a
11034 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11035 argument type of some subprogram type. */
11036
11037 static dw_die_ref
11038 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11039 {
11040 dw_die_ref parm_die
11041 = new_die (DW_TAG_formal_parameter, context_die, node);
11042 tree origin;
11043
11044 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11045 {
11046 case 'd':
11047 origin = decl_ultimate_origin (node);
11048 if (origin != NULL)
11049 add_abstract_origin_attribute (parm_die, origin);
11050 else
11051 {
11052 add_name_and_src_coords_attributes (parm_die, node);
11053 add_type_attribute (parm_die, TREE_TYPE (node),
11054 TREE_READONLY (node),
11055 TREE_THIS_VOLATILE (node),
11056 context_die);
11057 if (DECL_ARTIFICIAL (node))
11058 add_AT_flag (parm_die, DW_AT_artificial, 1);
11059 }
11060
11061 equate_decl_number_to_die (node, parm_die);
11062 if (! DECL_ABSTRACT (node))
11063 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11064
11065 break;
11066
11067 case 't':
11068 /* We were called with some kind of a ..._TYPE node. */
11069 add_type_attribute (parm_die, node, 0, 0, context_die);
11070 break;
11071
11072 default:
11073 abort ();
11074 }
11075
11076 return parm_die;
11077 }
11078
11079 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11080 at the end of an (ANSI prototyped) formal parameters list. */
11081
11082 static void
11083 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11084 {
11085 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11086 }
11087
11088 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11089 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11090 parameters as specified in some function type specification (except for
11091 those which appear as part of a function *definition*). */
11092
11093 static void
11094 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11095 {
11096 tree link;
11097 tree formal_type = NULL;
11098 tree first_parm_type;
11099 tree arg;
11100
11101 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11102 {
11103 arg = DECL_ARGUMENTS (function_or_method_type);
11104 function_or_method_type = TREE_TYPE (function_or_method_type);
11105 }
11106 else
11107 arg = NULL_TREE;
11108
11109 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11110
11111 /* Make our first pass over the list of formal parameter types and output a
11112 DW_TAG_formal_parameter DIE for each one. */
11113 for (link = first_parm_type; link; )
11114 {
11115 dw_die_ref parm_die;
11116
11117 formal_type = TREE_VALUE (link);
11118 if (formal_type == void_type_node)
11119 break;
11120
11121 /* Output a (nameless) DIE to represent the formal parameter itself. */
11122 parm_die = gen_formal_parameter_die (formal_type, context_die);
11123 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11124 && link == first_parm_type)
11125 || (arg && DECL_ARTIFICIAL (arg)))
11126 add_AT_flag (parm_die, DW_AT_artificial, 1);
11127
11128 link = TREE_CHAIN (link);
11129 if (arg)
11130 arg = TREE_CHAIN (arg);
11131 }
11132
11133 /* If this function type has an ellipsis, add a
11134 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11135 if (formal_type != void_type_node)
11136 gen_unspecified_parameters_die (function_or_method_type, context_die);
11137
11138 /* Make our second (and final) pass over the list of formal parameter types
11139 and output DIEs to represent those types (as necessary). */
11140 for (link = TYPE_ARG_TYPES (function_or_method_type);
11141 link && TREE_VALUE (link);
11142 link = TREE_CHAIN (link))
11143 gen_type_die (TREE_VALUE (link), context_die);
11144 }
11145
11146 /* We want to generate the DIE for TYPE so that we can generate the
11147 die for MEMBER, which has been defined; we will need to refer back
11148 to the member declaration nested within TYPE. If we're trying to
11149 generate minimal debug info for TYPE, processing TYPE won't do the
11150 trick; we need to attach the member declaration by hand. */
11151
11152 static void
11153 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11154 {
11155 gen_type_die (type, context_die);
11156
11157 /* If we're trying to avoid duplicate debug info, we may not have
11158 emitted the member decl for this function. Emit it now. */
11159 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11160 && ! lookup_decl_die (member))
11161 {
11162 if (decl_ultimate_origin (member))
11163 abort ();
11164
11165 push_decl_scope (type);
11166 if (TREE_CODE (member) == FUNCTION_DECL)
11167 gen_subprogram_die (member, lookup_type_die (type));
11168 else
11169 gen_variable_die (member, lookup_type_die (type));
11170
11171 pop_decl_scope ();
11172 }
11173 }
11174
11175 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11176 may later generate inlined and/or out-of-line instances of. */
11177
11178 static void
11179 dwarf2out_abstract_function (tree decl)
11180 {
11181 dw_die_ref old_die;
11182 tree save_fn;
11183 tree context;
11184 int was_abstract = DECL_ABSTRACT (decl);
11185
11186 /* Make sure we have the actual abstract inline, not a clone. */
11187 decl = DECL_ORIGIN (decl);
11188
11189 old_die = lookup_decl_die (decl);
11190 if (old_die && get_AT (old_die, DW_AT_inline))
11191 /* We've already generated the abstract instance. */
11192 return;
11193
11194 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11195 we don't get confused by DECL_ABSTRACT. */
11196 if (debug_info_level > DINFO_LEVEL_TERSE)
11197 {
11198 context = decl_class_context (decl);
11199 if (context)
11200 gen_type_die_for_member
11201 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11202 }
11203
11204 /* Pretend we've just finished compiling this function. */
11205 save_fn = current_function_decl;
11206 current_function_decl = decl;
11207
11208 set_decl_abstract_flags (decl, 1);
11209 dwarf2out_decl (decl);
11210 if (! was_abstract)
11211 set_decl_abstract_flags (decl, 0);
11212
11213 current_function_decl = save_fn;
11214 }
11215
11216 /* Generate a DIE to represent a declared function (either file-scope or
11217 block-local). */
11218
11219 static void
11220 gen_subprogram_die (tree decl, dw_die_ref context_die)
11221 {
11222 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11223 tree origin = decl_ultimate_origin (decl);
11224 dw_die_ref subr_die;
11225 rtx fp_reg;
11226 tree fn_arg_types;
11227 tree outer_scope;
11228 dw_die_ref old_die = lookup_decl_die (decl);
11229 int declaration = (current_function_decl != decl
11230 || class_or_namespace_scope_p (context_die));
11231
11232 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11233 started to generate the abstract instance of an inline, decided to output
11234 its containing class, and proceeded to emit the declaration of the inline
11235 from the member list for the class. If so, DECLARATION takes priority;
11236 we'll get back to the abstract instance when done with the class. */
11237
11238 /* The class-scope declaration DIE must be the primary DIE. */
11239 if (origin && declaration && class_or_namespace_scope_p (context_die))
11240 {
11241 origin = NULL;
11242 if (old_die)
11243 abort ();
11244 }
11245
11246 if (origin != NULL)
11247 {
11248 if (declaration && ! local_scope_p (context_die))
11249 abort ();
11250
11251 /* Fixup die_parent for the abstract instance of a nested
11252 inline function. */
11253 if (old_die && old_die->die_parent == NULL)
11254 add_child_die (context_die, old_die);
11255
11256 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11257 add_abstract_origin_attribute (subr_die, origin);
11258 }
11259 else if (old_die)
11260 {
11261 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11262 unsigned file_index = lookup_filename (s.file);
11263
11264 if (!get_AT_flag (old_die, DW_AT_declaration)
11265 /* We can have a normal definition following an inline one in the
11266 case of redefinition of GNU C extern inlines.
11267 It seems reasonable to use AT_specification in this case. */
11268 && !get_AT (old_die, DW_AT_inline))
11269 {
11270 /* ??? This can happen if there is a bug in the program, for
11271 instance, if it has duplicate function definitions. Ideally,
11272 we should detect this case and ignore it. For now, if we have
11273 already reported an error, any error at all, then assume that
11274 we got here because of an input error, not a dwarf2 bug. */
11275 if (errorcount)
11276 return;
11277 abort ();
11278 }
11279
11280 /* If the definition comes from the same place as the declaration,
11281 maybe use the old DIE. We always want the DIE for this function
11282 that has the *_pc attributes to be under comp_unit_die so the
11283 debugger can find it. We also need to do this for abstract
11284 instances of inlines, since the spec requires the out-of-line copy
11285 to have the same parent. For local class methods, this doesn't
11286 apply; we just use the old DIE. */
11287 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11288 && (DECL_ARTIFICIAL (decl)
11289 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
11290 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11291 == (unsigned) s.line))))
11292 {
11293 subr_die = old_die;
11294
11295 /* Clear out the declaration attribute and the formal parameters.
11296 Do not remove all children, because it is possible that this
11297 declaration die was forced using force_decl_die(). In such
11298 cases die that forced declaration die (e.g. TAG_imported_module)
11299 is one of the children that we do not want to remove. */
11300 remove_AT (subr_die, DW_AT_declaration);
11301 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11302 }
11303 else
11304 {
11305 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11306 add_AT_specification (subr_die, old_die);
11307 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11308 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
11309 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11310 != (unsigned) s.line)
11311 add_AT_unsigned
11312 (subr_die, DW_AT_decl_line, s.line);
11313 }
11314 }
11315 else
11316 {
11317 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11318
11319 if (TREE_PUBLIC (decl))
11320 add_AT_flag (subr_die, DW_AT_external, 1);
11321
11322 add_name_and_src_coords_attributes (subr_die, decl);
11323 if (debug_info_level > DINFO_LEVEL_TERSE)
11324 {
11325 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11326 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11327 0, 0, context_die);
11328 }
11329
11330 add_pure_or_virtual_attribute (subr_die, decl);
11331 if (DECL_ARTIFICIAL (decl))
11332 add_AT_flag (subr_die, DW_AT_artificial, 1);
11333
11334 if (TREE_PROTECTED (decl))
11335 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11336 else if (TREE_PRIVATE (decl))
11337 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11338 }
11339
11340 if (declaration)
11341 {
11342 if (!old_die || !get_AT (old_die, DW_AT_inline))
11343 {
11344 add_AT_flag (subr_die, DW_AT_declaration, 1);
11345
11346 /* The first time we see a member function, it is in the context of
11347 the class to which it belongs. We make sure of this by emitting
11348 the class first. The next time is the definition, which is
11349 handled above. The two may come from the same source text.
11350
11351 Note that force_decl_die() forces function declaration die. It is
11352 later reused to represent definition. */
11353 equate_decl_number_to_die (decl, subr_die);
11354 }
11355 }
11356 else if (DECL_ABSTRACT (decl))
11357 {
11358 if (DECL_DECLARED_INLINE_P (decl))
11359 {
11360 if (cgraph_function_possibly_inlined_p (decl))
11361 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11362 else
11363 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11364 }
11365 else
11366 {
11367 if (cgraph_function_possibly_inlined_p (decl))
11368 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11369 else
11370 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11371 }
11372
11373 equate_decl_number_to_die (decl, subr_die);
11374 }
11375 else if (!DECL_EXTERNAL (decl))
11376 {
11377 if (!old_die || !get_AT (old_die, DW_AT_inline))
11378 equate_decl_number_to_die (decl, subr_die);
11379
11380 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11381 current_function_funcdef_no);
11382 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11383 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11384 current_function_funcdef_no);
11385 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11386
11387 add_pubname (decl, subr_die);
11388 add_arange (decl, subr_die);
11389
11390 #ifdef MIPS_DEBUGGING_INFO
11391 /* Add a reference to the FDE for this routine. */
11392 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11393 #endif
11394
11395 /* Define the "frame base" location for this routine. We use the
11396 frame pointer or stack pointer registers, since the RTL for local
11397 variables is relative to one of them. */
11398 if (frame_base_decl && lookup_decl_loc (frame_base_decl) != NULL)
11399 {
11400 add_location_or_const_value_attribute (subr_die, frame_base_decl,
11401 DW_AT_frame_base);
11402 }
11403 else
11404 {
11405 fp_reg
11406 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11407 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11408 }
11409
11410 if (cfun->static_chain_decl)
11411 add_AT_location_description (subr_die, DW_AT_static_link,
11412 loc_descriptor_from_tree (cfun->static_chain_decl, 0));
11413 }
11414
11415 /* Now output descriptions of the arguments for this function. This gets
11416 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11417 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11418 `...' at the end of the formal parameter list. In order to find out if
11419 there was a trailing ellipsis or not, we must instead look at the type
11420 associated with the FUNCTION_DECL. This will be a node of type
11421 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11422 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11423 an ellipsis at the end. */
11424
11425 /* In the case where we are describing a mere function declaration, all we
11426 need to do here (and all we *can* do here) is to describe the *types* of
11427 its formal parameters. */
11428 if (debug_info_level <= DINFO_LEVEL_TERSE)
11429 ;
11430 else if (declaration)
11431 gen_formal_types_die (decl, subr_die);
11432 else
11433 {
11434 /* Generate DIEs to represent all known formal parameters. */
11435 tree arg_decls = DECL_ARGUMENTS (decl);
11436 tree parm;
11437
11438 /* When generating DIEs, generate the unspecified_parameters DIE
11439 instead if we come across the arg "__builtin_va_alist" */
11440 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11441 if (TREE_CODE (parm) == PARM_DECL)
11442 {
11443 if (DECL_NAME (parm)
11444 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11445 "__builtin_va_alist"))
11446 gen_unspecified_parameters_die (parm, subr_die);
11447 else
11448 gen_decl_die (parm, subr_die);
11449 }
11450
11451 /* Decide whether we need an unspecified_parameters DIE at the end.
11452 There are 2 more cases to do this for: 1) the ansi ... declaration -
11453 this is detectable when the end of the arg list is not a
11454 void_type_node 2) an unprototyped function declaration (not a
11455 definition). This just means that we have no info about the
11456 parameters at all. */
11457 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11458 if (fn_arg_types != NULL)
11459 {
11460 /* This is the prototyped case, check for.... */
11461 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11462 gen_unspecified_parameters_die (decl, subr_die);
11463 }
11464 else if (DECL_INITIAL (decl) == NULL_TREE)
11465 gen_unspecified_parameters_die (decl, subr_die);
11466 }
11467
11468 /* Output Dwarf info for all of the stuff within the body of the function
11469 (if it has one - it may be just a declaration). */
11470 outer_scope = DECL_INITIAL (decl);
11471
11472 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11473 a function. This BLOCK actually represents the outermost binding contour
11474 for the function, i.e. the contour in which the function's formal
11475 parameters and labels get declared. Curiously, it appears that the front
11476 end doesn't actually put the PARM_DECL nodes for the current function onto
11477 the BLOCK_VARS list for this outer scope, but are strung off of the
11478 DECL_ARGUMENTS list for the function instead.
11479
11480 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11481 the LABEL_DECL nodes for the function however, and we output DWARF info
11482 for those in decls_for_scope. Just within the `outer_scope' there will be
11483 a BLOCK node representing the function's outermost pair of curly braces,
11484 and any blocks used for the base and member initializers of a C++
11485 constructor function. */
11486 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11487 {
11488 /* Emit a DW_TAG_variable DIE for a named return value. */
11489 if (DECL_NAME (DECL_RESULT (decl)))
11490 gen_decl_die (DECL_RESULT (decl), subr_die);
11491
11492 current_function_has_inlines = 0;
11493 decls_for_scope (outer_scope, subr_die, 0);
11494
11495 #if 0 && defined (MIPS_DEBUGGING_INFO)
11496 if (current_function_has_inlines)
11497 {
11498 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11499 if (! comp_unit_has_inlines)
11500 {
11501 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11502 comp_unit_has_inlines = 1;
11503 }
11504 }
11505 #endif
11506 }
11507 }
11508
11509 /* Generate a DIE to represent a declared data object. */
11510
11511 static void
11512 gen_variable_die (tree decl, dw_die_ref context_die)
11513 {
11514 tree origin = decl_ultimate_origin (decl);
11515 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11516
11517 dw_die_ref old_die = lookup_decl_die (decl);
11518 int declaration = (DECL_EXTERNAL (decl)
11519 || class_or_namespace_scope_p (context_die));
11520
11521 if (origin != NULL)
11522 add_abstract_origin_attribute (var_die, origin);
11523
11524 /* Loop unrolling can create multiple blocks that refer to the same
11525 static variable, so we must test for the DW_AT_declaration flag.
11526
11527 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11528 copy decls and set the DECL_ABSTRACT flag on them instead of
11529 sharing them.
11530
11531 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11532 else if (old_die && TREE_STATIC (decl)
11533 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11534 {
11535 /* This is a definition of a C++ class level static. */
11536 add_AT_specification (var_die, old_die);
11537 if (DECL_NAME (decl))
11538 {
11539 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11540 unsigned file_index = lookup_filename (s.file);
11541
11542 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11543 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11544
11545 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11546 != (unsigned) s.line)
11547
11548 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
11549 }
11550 }
11551 else
11552 {
11553 add_name_and_src_coords_attributes (var_die, decl);
11554 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11555 TREE_THIS_VOLATILE (decl), context_die);
11556
11557 if (TREE_PUBLIC (decl))
11558 add_AT_flag (var_die, DW_AT_external, 1);
11559
11560 if (DECL_ARTIFICIAL (decl))
11561 add_AT_flag (var_die, DW_AT_artificial, 1);
11562
11563 if (TREE_PROTECTED (decl))
11564 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11565 else if (TREE_PRIVATE (decl))
11566 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11567 }
11568
11569 if (declaration)
11570 add_AT_flag (var_die, DW_AT_declaration, 1);
11571
11572 if (DECL_ABSTRACT (decl) || declaration)
11573 equate_decl_number_to_die (decl, var_die);
11574
11575 if (! declaration && ! DECL_ABSTRACT (decl))
11576 {
11577 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
11578 add_pubname (decl, var_die);
11579 }
11580 else
11581 tree_add_const_value_attribute (var_die, decl);
11582 }
11583
11584 /* Generate a DIE to represent a label identifier. */
11585
11586 static void
11587 gen_label_die (tree decl, dw_die_ref context_die)
11588 {
11589 tree origin = decl_ultimate_origin (decl);
11590 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11591 rtx insn;
11592 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11593
11594 if (origin != NULL)
11595 add_abstract_origin_attribute (lbl_die, origin);
11596 else
11597 add_name_and_src_coords_attributes (lbl_die, decl);
11598
11599 if (DECL_ABSTRACT (decl))
11600 equate_decl_number_to_die (decl, lbl_die);
11601 else
11602 {
11603 insn = DECL_RTL_IF_SET (decl);
11604
11605 /* Deleted labels are programmer specified labels which have been
11606 eliminated because of various optimizations. We still emit them
11607 here so that it is possible to put breakpoints on them. */
11608 if (insn
11609 && (GET_CODE (insn) == CODE_LABEL
11610 || ((GET_CODE (insn) == NOTE
11611 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11612 {
11613 /* When optimization is enabled (via -O) some parts of the compiler
11614 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11615 represent source-level labels which were explicitly declared by
11616 the user. This really shouldn't be happening though, so catch
11617 it if it ever does happen. */
11618 if (INSN_DELETED_P (insn))
11619 abort ();
11620
11621 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11622 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11623 }
11624 }
11625 }
11626
11627 /* Generate a DIE for a lexical block. */
11628
11629 static void
11630 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11631 {
11632 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11633 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11634
11635 if (! BLOCK_ABSTRACT (stmt))
11636 {
11637 if (BLOCK_FRAGMENT_CHAIN (stmt))
11638 {
11639 tree chain;
11640
11641 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11642
11643 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11644 do
11645 {
11646 add_ranges (chain);
11647 chain = BLOCK_FRAGMENT_CHAIN (chain);
11648 }
11649 while (chain);
11650 add_ranges (NULL);
11651 }
11652 else
11653 {
11654 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11655 BLOCK_NUMBER (stmt));
11656 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11657 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11658 BLOCK_NUMBER (stmt));
11659 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11660 }
11661 }
11662
11663 decls_for_scope (stmt, stmt_die, depth);
11664 }
11665
11666 /* Generate a DIE for an inlined subprogram. */
11667
11668 static void
11669 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11670 {
11671 tree decl = block_ultimate_origin (stmt);
11672
11673 /* Emit info for the abstract instance first, if we haven't yet. We
11674 must emit this even if the block is abstract, otherwise when we
11675 emit the block below (or elsewhere), we may end up trying to emit
11676 a die whose origin die hasn't been emitted, and crashing. */
11677 dwarf2out_abstract_function (decl);
11678
11679 if (! BLOCK_ABSTRACT (stmt))
11680 {
11681 dw_die_ref subr_die
11682 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11683 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11684
11685 add_abstract_origin_attribute (subr_die, decl);
11686 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11687 BLOCK_NUMBER (stmt));
11688 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11689 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11690 BLOCK_NUMBER (stmt));
11691 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11692 decls_for_scope (stmt, subr_die, depth);
11693 current_function_has_inlines = 1;
11694 }
11695 else
11696 /* We may get here if we're the outer block of function A that was
11697 inlined into function B that was inlined into function C. When
11698 generating debugging info for C, dwarf2out_abstract_function(B)
11699 would mark all inlined blocks as abstract, including this one.
11700 So, we wouldn't (and shouldn't) expect labels to be generated
11701 for this one. Instead, just emit debugging info for
11702 declarations within the block. This is particularly important
11703 in the case of initializers of arguments passed from B to us:
11704 if they're statement expressions containing declarations, we
11705 wouldn't generate dies for their abstract variables, and then,
11706 when generating dies for the real variables, we'd die (pun
11707 intended :-) */
11708 gen_lexical_block_die (stmt, context_die, depth);
11709 }
11710
11711 /* Generate a DIE for a field in a record, or structure. */
11712
11713 static void
11714 gen_field_die (tree decl, dw_die_ref context_die)
11715 {
11716 dw_die_ref decl_die;
11717
11718 if (TREE_TYPE (decl) == error_mark_node)
11719 return;
11720
11721 decl_die = new_die (DW_TAG_member, context_die, decl);
11722 add_name_and_src_coords_attributes (decl_die, decl);
11723 add_type_attribute (decl_die, member_declared_type (decl),
11724 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11725 context_die);
11726
11727 if (DECL_BIT_FIELD_TYPE (decl))
11728 {
11729 add_byte_size_attribute (decl_die, decl);
11730 add_bit_size_attribute (decl_die, decl);
11731 add_bit_offset_attribute (decl_die, decl);
11732 }
11733
11734 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11735 add_data_member_location_attribute (decl_die, decl);
11736
11737 if (DECL_ARTIFICIAL (decl))
11738 add_AT_flag (decl_die, DW_AT_artificial, 1);
11739
11740 if (TREE_PROTECTED (decl))
11741 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11742 else if (TREE_PRIVATE (decl))
11743 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11744 }
11745
11746 #if 0
11747 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11748 Use modified_type_die instead.
11749 We keep this code here just in case these types of DIEs may be needed to
11750 represent certain things in other languages (e.g. Pascal) someday. */
11751
11752 static void
11753 gen_pointer_type_die (tree type, dw_die_ref context_die)
11754 {
11755 dw_die_ref ptr_die
11756 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11757
11758 equate_type_number_to_die (type, ptr_die);
11759 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11760 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11761 }
11762
11763 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11764 Use modified_type_die instead.
11765 We keep this code here just in case these types of DIEs may be needed to
11766 represent certain things in other languages (e.g. Pascal) someday. */
11767
11768 static void
11769 gen_reference_type_die (tree type, dw_die_ref context_die)
11770 {
11771 dw_die_ref ref_die
11772 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11773
11774 equate_type_number_to_die (type, ref_die);
11775 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11776 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11777 }
11778 #endif
11779
11780 /* Generate a DIE for a pointer to a member type. */
11781
11782 static void
11783 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11784 {
11785 dw_die_ref ptr_die
11786 = new_die (DW_TAG_ptr_to_member_type,
11787 scope_die_for (type, context_die), type);
11788
11789 equate_type_number_to_die (type, ptr_die);
11790 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11791 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11792 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11793 }
11794
11795 /* Generate the DIE for the compilation unit. */
11796
11797 static dw_die_ref
11798 gen_compile_unit_die (const char *filename)
11799 {
11800 dw_die_ref die;
11801 char producer[250];
11802 const char *language_string = lang_hooks.name;
11803 int language;
11804
11805 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11806
11807 if (filename)
11808 {
11809 add_name_attribute (die, filename);
11810 /* Don't add cwd for <built-in>. */
11811 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11812 add_comp_dir_attribute (die);
11813 }
11814
11815 sprintf (producer, "%s %s", language_string, version_string);
11816
11817 #ifdef MIPS_DEBUGGING_INFO
11818 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11819 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11820 not appear in the producer string, the debugger reaches the conclusion
11821 that the object file is stripped and has no debugging information.
11822 To get the MIPS/SGI debugger to believe that there is debugging
11823 information in the object file, we add a -g to the producer string. */
11824 if (debug_info_level > DINFO_LEVEL_TERSE)
11825 strcat (producer, " -g");
11826 #endif
11827
11828 add_AT_string (die, DW_AT_producer, producer);
11829
11830 if (strcmp (language_string, "GNU C++") == 0)
11831 language = DW_LANG_C_plus_plus;
11832 else if (strcmp (language_string, "GNU Ada") == 0)
11833 language = DW_LANG_Ada95;
11834 else if (strcmp (language_string, "GNU F77") == 0)
11835 language = DW_LANG_Fortran77;
11836 else if (strcmp (language_string, "GNU F95") == 0)
11837 language = DW_LANG_Fortran95;
11838 else if (strcmp (language_string, "GNU Pascal") == 0)
11839 language = DW_LANG_Pascal83;
11840 else if (strcmp (language_string, "GNU Java") == 0)
11841 language = DW_LANG_Java;
11842 else
11843 language = DW_LANG_C89;
11844
11845 add_AT_unsigned (die, DW_AT_language, language);
11846 return die;
11847 }
11848
11849 /* Generate a DIE for a string type. */
11850
11851 static void
11852 gen_string_type_die (tree type, dw_die_ref context_die)
11853 {
11854 dw_die_ref type_die
11855 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11856
11857 equate_type_number_to_die (type, type_die);
11858
11859 /* ??? Fudge the string length attribute for now.
11860 TODO: add string length info. */
11861 #if 0
11862 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11863 bound_representation (upper_bound, 0, 'u');
11864 #endif
11865 }
11866
11867 /* Generate the DIE for a base class. */
11868
11869 static void
11870 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11871 {
11872 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11873
11874 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11875 add_data_member_location_attribute (die, binfo);
11876
11877 if (TREE_VIA_VIRTUAL (binfo))
11878 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11879
11880 if (access == access_public_node)
11881 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11882 else if (access == access_protected_node)
11883 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11884 }
11885
11886 /* Generate a DIE for a class member. */
11887
11888 static void
11889 gen_member_die (tree type, dw_die_ref context_die)
11890 {
11891 tree member;
11892 tree binfo = TYPE_BINFO (type);
11893 dw_die_ref child;
11894
11895 /* If this is not an incomplete type, output descriptions of each of its
11896 members. Note that as we output the DIEs necessary to represent the
11897 members of this record or union type, we will also be trying to output
11898 DIEs to represent the *types* of those members. However the `type'
11899 function (above) will specifically avoid generating type DIEs for member
11900 types *within* the list of member DIEs for this (containing) type except
11901 for those types (of members) which are explicitly marked as also being
11902 members of this (containing) type themselves. The g++ front- end can
11903 force any given type to be treated as a member of some other (containing)
11904 type by setting the TYPE_CONTEXT of the given (member) type to point to
11905 the TREE node representing the appropriate (containing) type. */
11906
11907 /* First output info about the base classes. */
11908 if (binfo && BINFO_BASETYPES (binfo))
11909 {
11910 tree bases = BINFO_BASETYPES (binfo);
11911 tree accesses = BINFO_BASEACCESSES (binfo);
11912 int n_bases = TREE_VEC_LENGTH (bases);
11913 int i;
11914
11915 for (i = 0; i < n_bases; i++)
11916 gen_inheritance_die (TREE_VEC_ELT (bases, i),
11917 (accesses ? TREE_VEC_ELT (accesses, i)
11918 : access_public_node), context_die);
11919 }
11920
11921 /* Now output info about the data members and type members. */
11922 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11923 {
11924 /* If we thought we were generating minimal debug info for TYPE
11925 and then changed our minds, some of the member declarations
11926 may have already been defined. Don't define them again, but
11927 do put them in the right order. */
11928
11929 child = lookup_decl_die (member);
11930 if (child)
11931 splice_child_die (context_die, child);
11932 else
11933 gen_decl_die (member, context_die);
11934 }
11935
11936 /* Now output info about the function members (if any). */
11937 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11938 {
11939 /* Don't include clones in the member list. */
11940 if (DECL_ABSTRACT_ORIGIN (member))
11941 continue;
11942
11943 child = lookup_decl_die (member);
11944 if (child)
11945 splice_child_die (context_die, child);
11946 else
11947 gen_decl_die (member, context_die);
11948 }
11949 }
11950
11951 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11952 is set, we pretend that the type was never defined, so we only get the
11953 member DIEs needed by later specification DIEs. */
11954
11955 static void
11956 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
11957 {
11958 dw_die_ref type_die = lookup_type_die (type);
11959 dw_die_ref scope_die = 0;
11960 int nested = 0;
11961 int complete = (TYPE_SIZE (type)
11962 && (! TYPE_STUB_DECL (type)
11963 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11964 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
11965
11966 if (type_die && ! complete)
11967 return;
11968
11969 if (TYPE_CONTEXT (type) != NULL_TREE
11970 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11971 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
11972 nested = 1;
11973
11974 scope_die = scope_die_for (type, context_die);
11975
11976 if (! type_die || (nested && scope_die == comp_unit_die))
11977 /* First occurrence of type or toplevel definition of nested class. */
11978 {
11979 dw_die_ref old_die = type_die;
11980
11981 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11982 ? DW_TAG_structure_type : DW_TAG_union_type,
11983 scope_die, type);
11984 equate_type_number_to_die (type, type_die);
11985 if (old_die)
11986 add_AT_specification (type_die, old_die);
11987 else
11988 add_name_attribute (type_die, type_tag (type));
11989 }
11990 else
11991 remove_AT (type_die, DW_AT_declaration);
11992
11993 /* If this type has been completed, then give it a byte_size attribute and
11994 then give a list of members. */
11995 if (complete && !ns_decl)
11996 {
11997 /* Prevent infinite recursion in cases where the type of some member of
11998 this type is expressed in terms of this type itself. */
11999 TREE_ASM_WRITTEN (type) = 1;
12000 add_byte_size_attribute (type_die, type);
12001 if (TYPE_STUB_DECL (type) != NULL_TREE)
12002 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12003
12004 /* If the first reference to this type was as the return type of an
12005 inline function, then it may not have a parent. Fix this now. */
12006 if (type_die->die_parent == NULL)
12007 add_child_die (scope_die, type_die);
12008
12009 push_decl_scope (type);
12010 gen_member_die (type, type_die);
12011 pop_decl_scope ();
12012
12013 /* GNU extension: Record what type our vtable lives in. */
12014 if (TYPE_VFIELD (type))
12015 {
12016 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12017
12018 gen_type_die (vtype, context_die);
12019 add_AT_die_ref (type_die, DW_AT_containing_type,
12020 lookup_type_die (vtype));
12021 }
12022 }
12023 else
12024 {
12025 add_AT_flag (type_die, DW_AT_declaration, 1);
12026
12027 /* We don't need to do this for function-local types. */
12028 if (TYPE_STUB_DECL (type)
12029 && ! decl_function_context (TYPE_STUB_DECL (type)))
12030 VARRAY_PUSH_TREE (incomplete_types, type);
12031 }
12032 }
12033
12034 /* Generate a DIE for a subroutine _type_. */
12035
12036 static void
12037 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12038 {
12039 tree return_type = TREE_TYPE (type);
12040 dw_die_ref subr_die
12041 = new_die (DW_TAG_subroutine_type,
12042 scope_die_for (type, context_die), type);
12043
12044 equate_type_number_to_die (type, subr_die);
12045 add_prototyped_attribute (subr_die, type);
12046 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12047 gen_formal_types_die (type, subr_die);
12048 }
12049
12050 /* Generate a DIE for a type definition. */
12051
12052 static void
12053 gen_typedef_die (tree decl, dw_die_ref context_die)
12054 {
12055 dw_die_ref type_die;
12056 tree origin;
12057
12058 if (TREE_ASM_WRITTEN (decl))
12059 return;
12060
12061 TREE_ASM_WRITTEN (decl) = 1;
12062 type_die = new_die (DW_TAG_typedef, context_die, decl);
12063 origin = decl_ultimate_origin (decl);
12064 if (origin != NULL)
12065 add_abstract_origin_attribute (type_die, origin);
12066 else
12067 {
12068 tree type;
12069
12070 add_name_and_src_coords_attributes (type_die, decl);
12071 if (DECL_ORIGINAL_TYPE (decl))
12072 {
12073 type = DECL_ORIGINAL_TYPE (decl);
12074
12075 if (type == TREE_TYPE (decl))
12076 abort ();
12077 else
12078 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12079 }
12080 else
12081 type = TREE_TYPE (decl);
12082
12083 add_type_attribute (type_die, type, TREE_READONLY (decl),
12084 TREE_THIS_VOLATILE (decl), context_die);
12085 }
12086
12087 if (DECL_ABSTRACT (decl))
12088 equate_decl_number_to_die (decl, type_die);
12089 }
12090
12091 /* Generate a type description DIE. */
12092
12093 static void
12094 gen_type_die (tree type, dw_die_ref context_die)
12095 {
12096 int need_pop;
12097
12098 if (type == NULL_TREE || type == error_mark_node)
12099 return;
12100
12101 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12102 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12103 {
12104 if (TREE_ASM_WRITTEN (type))
12105 return;
12106
12107 /* Prevent broken recursion; we can't hand off to the same type. */
12108 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
12109 abort ();
12110
12111 TREE_ASM_WRITTEN (type) = 1;
12112 gen_decl_die (TYPE_NAME (type), context_die);
12113 return;
12114 }
12115
12116 /* We are going to output a DIE to represent the unqualified version
12117 of this type (i.e. without any const or volatile qualifiers) so
12118 get the main variant (i.e. the unqualified version) of this type
12119 now. (Vectors are special because the debugging info is in the
12120 cloned type itself). */
12121 if (TREE_CODE (type) != VECTOR_TYPE)
12122 type = type_main_variant (type);
12123
12124 if (TREE_ASM_WRITTEN (type))
12125 return;
12126
12127 switch (TREE_CODE (type))
12128 {
12129 case ERROR_MARK:
12130 break;
12131
12132 case POINTER_TYPE:
12133 case REFERENCE_TYPE:
12134 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12135 ensures that the gen_type_die recursion will terminate even if the
12136 type is recursive. Recursive types are possible in Ada. */
12137 /* ??? We could perhaps do this for all types before the switch
12138 statement. */
12139 TREE_ASM_WRITTEN (type) = 1;
12140
12141 /* For these types, all that is required is that we output a DIE (or a
12142 set of DIEs) to represent the "basis" type. */
12143 gen_type_die (TREE_TYPE (type), context_die);
12144 break;
12145
12146 case OFFSET_TYPE:
12147 /* This code is used for C++ pointer-to-data-member types.
12148 Output a description of the relevant class type. */
12149 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12150
12151 /* Output a description of the type of the object pointed to. */
12152 gen_type_die (TREE_TYPE (type), context_die);
12153
12154 /* Now output a DIE to represent this pointer-to-data-member type
12155 itself. */
12156 gen_ptr_to_mbr_type_die (type, context_die);
12157 break;
12158
12159 case SET_TYPE:
12160 gen_type_die (TYPE_DOMAIN (type), context_die);
12161 gen_set_type_die (type, context_die);
12162 break;
12163
12164 case FILE_TYPE:
12165 gen_type_die (TREE_TYPE (type), context_die);
12166 abort (); /* No way to represent these in Dwarf yet! */
12167 break;
12168
12169 case FUNCTION_TYPE:
12170 /* Force out return type (in case it wasn't forced out already). */
12171 gen_type_die (TREE_TYPE (type), context_die);
12172 gen_subroutine_type_die (type, context_die);
12173 break;
12174
12175 case METHOD_TYPE:
12176 /* Force out return type (in case it wasn't forced out already). */
12177 gen_type_die (TREE_TYPE (type), context_die);
12178 gen_subroutine_type_die (type, context_die);
12179 break;
12180
12181 case ARRAY_TYPE:
12182 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
12183 {
12184 gen_type_die (TREE_TYPE (type), context_die);
12185 gen_string_type_die (type, context_die);
12186 }
12187 else
12188 gen_array_type_die (type, context_die);
12189 break;
12190
12191 case VECTOR_TYPE:
12192 gen_array_type_die (type, context_die);
12193 break;
12194
12195 case ENUMERAL_TYPE:
12196 case RECORD_TYPE:
12197 case UNION_TYPE:
12198 case QUAL_UNION_TYPE:
12199 /* If this is a nested type whose containing class hasn't been written
12200 out yet, writing it out will cover this one, too. This does not apply
12201 to instantiations of member class templates; they need to be added to
12202 the containing class as they are generated. FIXME: This hurts the
12203 idea of combining type decls from multiple TUs, since we can't predict
12204 what set of template instantiations we'll get. */
12205 if (TYPE_CONTEXT (type)
12206 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12207 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12208 {
12209 gen_type_die (TYPE_CONTEXT (type), context_die);
12210
12211 if (TREE_ASM_WRITTEN (type))
12212 return;
12213
12214 /* If that failed, attach ourselves to the stub. */
12215 push_decl_scope (TYPE_CONTEXT (type));
12216 context_die = lookup_type_die (TYPE_CONTEXT (type));
12217 need_pop = 1;
12218 }
12219 else
12220 {
12221 declare_in_namespace (type, context_die);
12222 need_pop = 0;
12223 }
12224
12225 if (TREE_CODE (type) == ENUMERAL_TYPE)
12226 gen_enumeration_type_die (type, context_die);
12227 else
12228 gen_struct_or_union_type_die (type, context_die);
12229
12230 if (need_pop)
12231 pop_decl_scope ();
12232
12233 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12234 it up if it is ever completed. gen_*_type_die will set it for us
12235 when appropriate. */
12236 return;
12237
12238 case VOID_TYPE:
12239 case INTEGER_TYPE:
12240 case REAL_TYPE:
12241 case COMPLEX_TYPE:
12242 case BOOLEAN_TYPE:
12243 case CHAR_TYPE:
12244 /* No DIEs needed for fundamental types. */
12245 break;
12246
12247 case LANG_TYPE:
12248 /* No Dwarf representation currently defined. */
12249 break;
12250
12251 default:
12252 abort ();
12253 }
12254
12255 TREE_ASM_WRITTEN (type) = 1;
12256 }
12257
12258 /* Generate a DIE for a tagged type instantiation. */
12259
12260 static void
12261 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12262 {
12263 if (type == NULL_TREE || type == error_mark_node)
12264 return;
12265
12266 /* We are going to output a DIE to represent the unqualified version of
12267 this type (i.e. without any const or volatile qualifiers) so make sure
12268 that we have the main variant (i.e. the unqualified version) of this
12269 type now. */
12270 if (type != type_main_variant (type))
12271 abort ();
12272
12273 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12274 an instance of an unresolved type. */
12275
12276 switch (TREE_CODE (type))
12277 {
12278 case ERROR_MARK:
12279 break;
12280
12281 case ENUMERAL_TYPE:
12282 gen_inlined_enumeration_type_die (type, context_die);
12283 break;
12284
12285 case RECORD_TYPE:
12286 gen_inlined_structure_type_die (type, context_die);
12287 break;
12288
12289 case UNION_TYPE:
12290 case QUAL_UNION_TYPE:
12291 gen_inlined_union_type_die (type, context_die);
12292 break;
12293
12294 default:
12295 abort ();
12296 }
12297 }
12298
12299 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12300 things which are local to the given block. */
12301
12302 static void
12303 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12304 {
12305 int must_output_die = 0;
12306 tree origin;
12307 tree decl;
12308 enum tree_code origin_code;
12309
12310 /* Ignore blocks never really used to make RTL. */
12311 if (stmt == NULL_TREE || !TREE_USED (stmt)
12312 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
12313 return;
12314
12315 /* If the block is one fragment of a non-contiguous block, do not
12316 process the variables, since they will have been done by the
12317 origin block. Do process subblocks. */
12318 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12319 {
12320 tree sub;
12321
12322 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12323 gen_block_die (sub, context_die, depth + 1);
12324
12325 return;
12326 }
12327
12328 /* Determine the "ultimate origin" of this block. This block may be an
12329 inlined instance of an inlined instance of inline function, so we have
12330 to trace all of the way back through the origin chain to find out what
12331 sort of node actually served as the original seed for the creation of
12332 the current block. */
12333 origin = block_ultimate_origin (stmt);
12334 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12335
12336 /* Determine if we need to output any Dwarf DIEs at all to represent this
12337 block. */
12338 if (origin_code == FUNCTION_DECL)
12339 /* The outer scopes for inlinings *must* always be represented. We
12340 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12341 must_output_die = 1;
12342 else
12343 {
12344 /* In the case where the current block represents an inlining of the
12345 "body block" of an inline function, we must *NOT* output any DIE for
12346 this block because we have already output a DIE to represent the whole
12347 inlined function scope and the "body block" of any function doesn't
12348 really represent a different scope according to ANSI C rules. So we
12349 check here to make sure that this block does not represent a "body
12350 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12351 if (! is_body_block (origin ? origin : stmt))
12352 {
12353 /* Determine if this block directly contains any "significant"
12354 local declarations which we will need to output DIEs for. */
12355 if (debug_info_level > DINFO_LEVEL_TERSE)
12356 /* We are not in terse mode so *any* local declaration counts
12357 as being a "significant" one. */
12358 must_output_die = (BLOCK_VARS (stmt) != NULL);
12359 else
12360 /* We are in terse mode, so only local (nested) function
12361 definitions count as "significant" local declarations. */
12362 for (decl = BLOCK_VARS (stmt);
12363 decl != NULL; decl = TREE_CHAIN (decl))
12364 if (TREE_CODE (decl) == FUNCTION_DECL
12365 && DECL_INITIAL (decl))
12366 {
12367 must_output_die = 1;
12368 break;
12369 }
12370 }
12371 }
12372
12373 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12374 DIE for any block which contains no significant local declarations at
12375 all. Rather, in such cases we just call `decls_for_scope' so that any
12376 needed Dwarf info for any sub-blocks will get properly generated. Note
12377 that in terse mode, our definition of what constitutes a "significant"
12378 local declaration gets restricted to include only inlined function
12379 instances and local (nested) function definitions. */
12380 if (must_output_die)
12381 {
12382 if (origin_code == FUNCTION_DECL)
12383 gen_inlined_subroutine_die (stmt, context_die, depth);
12384 else
12385 gen_lexical_block_die (stmt, context_die, depth);
12386 }
12387 else
12388 decls_for_scope (stmt, context_die, depth);
12389 }
12390
12391 /* Generate all of the decls declared within a given scope and (recursively)
12392 all of its sub-blocks. */
12393
12394 static void
12395 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12396 {
12397 tree decl;
12398 tree subblocks;
12399
12400 /* Ignore blocks never really used to make RTL. */
12401 if (stmt == NULL_TREE || ! TREE_USED (stmt))
12402 return;
12403
12404 /* Output the DIEs to represent all of the data objects and typedefs
12405 declared directly within this block but not within any nested
12406 sub-blocks. Also, nested function and tag DIEs have been
12407 generated with a parent of NULL; fix that up now. */
12408 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12409 {
12410 dw_die_ref die;
12411
12412 if (TREE_CODE (decl) == FUNCTION_DECL)
12413 die = lookup_decl_die (decl);
12414 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12415 die = lookup_type_die (TREE_TYPE (decl));
12416 else
12417 die = NULL;
12418
12419 if (die != NULL && die->die_parent == NULL)
12420 add_child_die (context_die, die);
12421 else
12422 gen_decl_die (decl, context_die);
12423 }
12424
12425 /* If we're at -g1, we're not interested in subblocks. */
12426 if (debug_info_level <= DINFO_LEVEL_TERSE)
12427 return;
12428
12429 /* Output the DIEs to represent all sub-blocks (and the items declared
12430 therein) of this block. */
12431 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12432 subblocks != NULL;
12433 subblocks = BLOCK_CHAIN (subblocks))
12434 gen_block_die (subblocks, context_die, depth + 1);
12435 }
12436
12437 /* Is this a typedef we can avoid emitting? */
12438
12439 static inline int
12440 is_redundant_typedef (tree decl)
12441 {
12442 if (TYPE_DECL_IS_STUB (decl))
12443 return 1;
12444
12445 if (DECL_ARTIFICIAL (decl)
12446 && DECL_CONTEXT (decl)
12447 && is_tagged_type (DECL_CONTEXT (decl))
12448 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12449 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12450 /* Also ignore the artificial member typedef for the class name. */
12451 return 1;
12452
12453 return 0;
12454 }
12455
12456 /* Returns the DIE for decl or aborts. */
12457
12458 static dw_die_ref
12459 force_decl_die (tree decl)
12460 {
12461 dw_die_ref decl_die;
12462 unsigned saved_external_flag;
12463 tree save_fn = NULL_TREE;
12464 decl_die = lookup_decl_die (decl);
12465 if (!decl_die)
12466 {
12467 dw_die_ref context_die;
12468 tree decl_context = DECL_CONTEXT (decl);
12469 if (decl_context)
12470 {
12471 /* Find die that represents this context. */
12472 if (TYPE_P (decl_context))
12473 context_die = force_type_die (decl_context);
12474 else
12475 context_die = force_decl_die (decl_context);
12476 }
12477 else
12478 context_die = comp_unit_die;
12479
12480 switch (TREE_CODE (decl))
12481 {
12482 case FUNCTION_DECL:
12483 /* Clear current_function_decl, so that gen_subprogram_die thinks
12484 that this is a declaration. At this point, we just want to force
12485 declaration die. */
12486 save_fn = current_function_decl;
12487 current_function_decl = NULL_TREE;
12488 gen_subprogram_die (decl, context_die);
12489 current_function_decl = save_fn;
12490 break;
12491
12492 case VAR_DECL:
12493 /* Set external flag to force declaration die. Restore it after
12494 gen_decl_die() call. */
12495 saved_external_flag = DECL_EXTERNAL (decl);
12496 DECL_EXTERNAL (decl) = 1;
12497 gen_decl_die (decl, context_die);
12498 DECL_EXTERNAL (decl) = saved_external_flag;
12499 break;
12500
12501 case NAMESPACE_DECL:
12502 dwarf2out_decl (decl);
12503 break;
12504
12505 default:
12506 abort ();
12507 }
12508
12509 /* See if we can find the die for this deci now.
12510 If not then abort. */
12511 if (!decl_die)
12512 decl_die = lookup_decl_die (decl);
12513 if (!decl_die)
12514 abort ();
12515 }
12516
12517 return decl_die;
12518 }
12519
12520 /* Returns the DIE for decl or aborts. */
12521
12522 static dw_die_ref
12523 force_type_die (tree type)
12524 {
12525 dw_die_ref type_die;
12526
12527 type_die = lookup_type_die (type);
12528 if (!type_die)
12529 {
12530 dw_die_ref context_die;
12531 if (TYPE_CONTEXT (type))
12532 if (TYPE_P (TYPE_CONTEXT (type)))
12533 context_die = force_type_die (TYPE_CONTEXT (type));
12534 else
12535 context_die = force_decl_die (TYPE_CONTEXT (type));
12536 else
12537 context_die = comp_unit_die;
12538
12539 gen_type_die (type, context_die);
12540 type_die = lookup_type_die (type);
12541 if (!type_die)
12542 abort();
12543 }
12544 return type_die;
12545 }
12546
12547 /* Force out any required namespaces to be able to output DECL,
12548 and return the new context_die for it, if it's changed. */
12549
12550 static dw_die_ref
12551 setup_namespace_context (tree thing, dw_die_ref context_die)
12552 {
12553 tree context = DECL_P (thing) ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing);
12554 if (context && TREE_CODE (context) == NAMESPACE_DECL)
12555 /* Force out the namespace. */
12556 context_die = force_decl_die (context);
12557
12558 return context_die;
12559 }
12560
12561 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12562 type) within its namespace, if appropriate.
12563
12564 For compatibility with older debuggers, namespace DIEs only contain
12565 declarations; all definitions are emitted at CU scope. */
12566
12567 static void
12568 declare_in_namespace (tree thing, dw_die_ref context_die)
12569 {
12570 dw_die_ref ns_context;
12571
12572 if (debug_info_level <= DINFO_LEVEL_TERSE)
12573 return;
12574
12575 ns_context = setup_namespace_context (thing, context_die);
12576
12577 if (ns_context != context_die)
12578 {
12579 if (DECL_P (thing))
12580 gen_decl_die (thing, ns_context);
12581 else
12582 gen_type_die (thing, ns_context);
12583 }
12584 }
12585
12586 /* Generate a DIE for a namespace or namespace alias. */
12587
12588 static void
12589 gen_namespace_die (tree decl)
12590 {
12591 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12592
12593 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12594 they are an alias of. */
12595 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12596 {
12597 /* Output a real namespace. */
12598 dw_die_ref namespace_die
12599 = new_die (DW_TAG_namespace, context_die, decl);
12600 add_name_and_src_coords_attributes (namespace_die, decl);
12601 equate_decl_number_to_die (decl, namespace_die);
12602 }
12603 else
12604 {
12605 /* Output a namespace alias. */
12606
12607 /* Force out the namespace we are an alias of, if necessary. */
12608 dw_die_ref origin_die
12609 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
12610
12611 /* Now create the namespace alias DIE. */
12612 dw_die_ref namespace_die
12613 = new_die (DW_TAG_imported_declaration, context_die, decl);
12614 add_name_and_src_coords_attributes (namespace_die, decl);
12615 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12616 equate_decl_number_to_die (decl, namespace_die);
12617 }
12618 }
12619
12620 /* Generate Dwarf debug information for a decl described by DECL. */
12621
12622 static void
12623 gen_decl_die (tree decl, dw_die_ref context_die)
12624 {
12625 tree origin;
12626
12627 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12628 return;
12629
12630 switch (TREE_CODE (decl))
12631 {
12632 case ERROR_MARK:
12633 break;
12634
12635 case CONST_DECL:
12636 /* The individual enumerators of an enum type get output when we output
12637 the Dwarf representation of the relevant enum type itself. */
12638 break;
12639
12640 case FUNCTION_DECL:
12641 /* Don't output any DIEs to represent mere function declarations,
12642 unless they are class members or explicit block externs. */
12643 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12644 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12645 break;
12646
12647 #if 0
12648 /* FIXME */
12649 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
12650 on local redeclarations of global functions. That seems broken. */
12651 if (current_function_decl != decl)
12652 /* This is only a declaration. */;
12653 #endif
12654
12655 /* If we're emitting a clone, emit info for the abstract instance. */
12656 if (DECL_ORIGIN (decl) != decl)
12657 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12658
12659 /* If we're emitting an out-of-line copy of an inline function,
12660 emit info for the abstract instance and set up to refer to it. */
12661 else if (cgraph_function_possibly_inlined_p (decl)
12662 && ! DECL_ABSTRACT (decl)
12663 && ! class_or_namespace_scope_p (context_die)
12664 /* dwarf2out_abstract_function won't emit a die if this is just
12665 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12666 that case, because that works only if we have a die. */
12667 && DECL_INITIAL (decl) != NULL_TREE)
12668 {
12669 dwarf2out_abstract_function (decl);
12670 set_decl_origin_self (decl);
12671 }
12672
12673 /* Otherwise we're emitting the primary DIE for this decl. */
12674 else if (debug_info_level > DINFO_LEVEL_TERSE)
12675 {
12676 /* Before we describe the FUNCTION_DECL itself, make sure that we
12677 have described its return type. */
12678 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12679
12680 /* And its virtual context. */
12681 if (DECL_VINDEX (decl) != NULL_TREE)
12682 gen_type_die (DECL_CONTEXT (decl), context_die);
12683
12684 /* And its containing type. */
12685 origin = decl_class_context (decl);
12686 if (origin != NULL_TREE)
12687 gen_type_die_for_member (origin, decl, context_die);
12688
12689 /* And its containing namespace. */
12690 declare_in_namespace (decl, context_die);
12691 }
12692
12693 /* Now output a DIE to represent the function itself. */
12694 gen_subprogram_die (decl, context_die);
12695 break;
12696
12697 case TYPE_DECL:
12698 /* If we are in terse mode, don't generate any DIEs to represent any
12699 actual typedefs. */
12700 if (debug_info_level <= DINFO_LEVEL_TERSE)
12701 break;
12702
12703 /* In the special case of a TYPE_DECL node representing the declaration
12704 of some type tag, if the given TYPE_DECL is marked as having been
12705 instantiated from some other (original) TYPE_DECL node (e.g. one which
12706 was generated within the original definition of an inline function) we
12707 have to generate a special (abbreviated) DW_TAG_structure_type,
12708 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12709 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12710 {
12711 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12712 break;
12713 }
12714
12715 if (is_redundant_typedef (decl))
12716 gen_type_die (TREE_TYPE (decl), context_die);
12717 else
12718 /* Output a DIE to represent the typedef itself. */
12719 gen_typedef_die (decl, context_die);
12720 break;
12721
12722 case LABEL_DECL:
12723 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12724 gen_label_die (decl, context_die);
12725 break;
12726
12727 case VAR_DECL:
12728 case RESULT_DECL:
12729 /* If we are in terse mode, don't generate any DIEs to represent any
12730 variable declarations or definitions. */
12731 if (debug_info_level <= DINFO_LEVEL_TERSE)
12732 break;
12733
12734 /* Output any DIEs that are needed to specify the type of this data
12735 object. */
12736 gen_type_die (TREE_TYPE (decl), context_die);
12737
12738 /* And its containing type. */
12739 origin = decl_class_context (decl);
12740 if (origin != NULL_TREE)
12741 gen_type_die_for_member (origin, decl, context_die);
12742
12743 /* And its containing namespace. */
12744 declare_in_namespace (decl, context_die);
12745
12746 /* Now output the DIE to represent the data object itself. This gets
12747 complicated because of the possibility that the VAR_DECL really
12748 represents an inlined instance of a formal parameter for an inline
12749 function. */
12750 origin = decl_ultimate_origin (decl);
12751 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12752 gen_formal_parameter_die (decl, context_die);
12753 else
12754 gen_variable_die (decl, context_die);
12755 break;
12756
12757 case FIELD_DECL:
12758 /* Ignore the nameless fields that are used to skip bits but handle C++
12759 anonymous unions and structs. */
12760 if (DECL_NAME (decl) != NULL_TREE
12761 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
12762 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
12763 {
12764 gen_type_die (member_declared_type (decl), context_die);
12765 gen_field_die (decl, context_die);
12766 }
12767 break;
12768
12769 case PARM_DECL:
12770 gen_type_die (TREE_TYPE (decl), context_die);
12771 gen_formal_parameter_die (decl, context_die);
12772 break;
12773
12774 case NAMESPACE_DECL:
12775 gen_namespace_die (decl);
12776 break;
12777
12778 default:
12779 if ((int)TREE_CODE (decl) > NUM_TREE_CODES)
12780 /* Probably some frontend-internal decl. Assume we don't care. */
12781 break;
12782 abort ();
12783 }
12784 }
12785 \f
12786 /* Add Ada "use" clause information for SGI Workshop debugger. */
12787
12788 void
12789 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
12790 {
12791 unsigned int file_index;
12792
12793 if (filename != NULL)
12794 {
12795 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12796 tree context_list_decl
12797 = build_decl (LABEL_DECL, get_identifier (context_list),
12798 void_type_node);
12799
12800 TREE_PUBLIC (context_list_decl) = TRUE;
12801 add_name_attribute (unit_die, context_list);
12802 file_index = lookup_filename (filename);
12803 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12804 add_pubname (context_list_decl, unit_die);
12805 }
12806 }
12807
12808 /* Output debug information for global decl DECL. Called from toplev.c after
12809 compilation proper has finished. */
12810
12811 static void
12812 dwarf2out_global_decl (tree decl)
12813 {
12814 /* Output DWARF2 information for file-scope tentative data object
12815 declarations, file-scope (extern) function declarations (which had no
12816 corresponding body) and file-scope tagged type declarations and
12817 definitions which have not yet been forced out. */
12818 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12819 dwarf2out_decl (decl);
12820 }
12821
12822 /* Output debug information for type decl DECL. Called from toplev.c
12823 and from language front ends (to record built-in types). */
12824 static void
12825 dwarf2out_type_decl (tree decl, int local)
12826 {
12827 if (!local)
12828 dwarf2out_decl (decl);
12829 }
12830
12831 /* Output debug information for imported module or decl. */
12832
12833 static void
12834 dwarf2out_imported_module_or_decl (tree decl, tree context)
12835 {
12836 dw_die_ref imported_die, at_import_die;
12837 dw_die_ref scope_die;
12838 unsigned file_index;
12839 expanded_location xloc;
12840
12841 if (debug_info_level <= DINFO_LEVEL_TERSE)
12842 return;
12843
12844 if (!decl)
12845 abort ();
12846
12847 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
12848 We need decl DIE for reference and scope die. First, get DIE for the decl
12849 itself. */
12850
12851 /* Get the scope die for decl context. Use comp_unit_die for global module
12852 or decl. If die is not found for non globals, force new die. */
12853 if (!context)
12854 scope_die = comp_unit_die;
12855 else if (TYPE_P (context))
12856 scope_die = force_type_die (context);
12857 else
12858 scope_die = force_decl_die (context);
12859
12860 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
12861 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
12862 at_import_die = force_type_die (TREE_TYPE (decl));
12863 else
12864 at_import_die = force_decl_die (decl);
12865
12866 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
12867 if (TREE_CODE (decl) == NAMESPACE_DECL)
12868 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
12869 else
12870 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
12871
12872 xloc = expand_location (input_location);
12873 file_index = lookup_filename (xloc.file);
12874 add_AT_unsigned (imported_die, DW_AT_decl_file, file_index);
12875 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
12876 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
12877 }
12878
12879 /* Write the debugging output for DECL. */
12880
12881 void
12882 dwarf2out_decl (tree decl)
12883 {
12884 dw_die_ref context_die = comp_unit_die;
12885
12886 switch (TREE_CODE (decl))
12887 {
12888 case ERROR_MARK:
12889 return;
12890
12891 case FUNCTION_DECL:
12892 /* What we would really like to do here is to filter out all mere
12893 file-scope declarations of file-scope functions which are never
12894 referenced later within this translation unit (and keep all of ones
12895 that *are* referenced later on) but we aren't clairvoyant, so we have
12896 no idea which functions will be referenced in the future (i.e. later
12897 on within the current translation unit). So here we just ignore all
12898 file-scope function declarations which are not also definitions. If
12899 and when the debugger needs to know something about these functions,
12900 it will have to hunt around and find the DWARF information associated
12901 with the definition of the function.
12902
12903 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12904 nodes represent definitions and which ones represent mere
12905 declarations. We have to check DECL_INITIAL instead. That's because
12906 the C front-end supports some weird semantics for "extern inline"
12907 function definitions. These can get inlined within the current
12908 translation unit (an thus, we need to generate Dwarf info for their
12909 abstract instances so that the Dwarf info for the concrete inlined
12910 instances can have something to refer to) but the compiler never
12911 generates any out-of-lines instances of such things (despite the fact
12912 that they *are* definitions).
12913
12914 The important point is that the C front-end marks these "extern
12915 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12916 them anyway. Note that the C++ front-end also plays some similar games
12917 for inline function definitions appearing within include files which
12918 also contain `#pragma interface' pragmas. */
12919 if (DECL_INITIAL (decl) == NULL_TREE)
12920 return;
12921
12922 /* If we're a nested function, initially use a parent of NULL; if we're
12923 a plain function, this will be fixed up in decls_for_scope. If
12924 we're a method, it will be ignored, since we already have a DIE. */
12925 if (decl_function_context (decl)
12926 /* But if we're in terse mode, we don't care about scope. */
12927 && debug_info_level > DINFO_LEVEL_TERSE)
12928 context_die = NULL;
12929 break;
12930
12931 case VAR_DECL:
12932 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12933 declaration and if the declaration was never even referenced from
12934 within this entire compilation unit. We suppress these DIEs in
12935 order to save space in the .debug section (by eliminating entries
12936 which are probably useless). Note that we must not suppress
12937 block-local extern declarations (whether used or not) because that
12938 would screw-up the debugger's name lookup mechanism and cause it to
12939 miss things which really ought to be in scope at a given point. */
12940 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12941 return;
12942
12943 /* If we are in terse mode, don't generate any DIEs to represent any
12944 variable declarations or definitions. */
12945 if (debug_info_level <= DINFO_LEVEL_TERSE)
12946 return;
12947 break;
12948
12949 case NAMESPACE_DECL:
12950 if (debug_info_level <= DINFO_LEVEL_TERSE)
12951 return;
12952 if (lookup_decl_die (decl) != NULL)
12953 return;
12954 break;
12955
12956 case TYPE_DECL:
12957 /* Don't emit stubs for types unless they are needed by other DIEs. */
12958 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12959 return;
12960
12961 /* Don't bother trying to generate any DIEs to represent any of the
12962 normal built-in types for the language we are compiling. */
12963 if (DECL_IS_BUILTIN (decl))
12964 {
12965 /* OK, we need to generate one for `bool' so GDB knows what type
12966 comparisons have. */
12967 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12968 == DW_LANG_C_plus_plus)
12969 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12970 && ! DECL_IGNORED_P (decl))
12971 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12972
12973 return;
12974 }
12975
12976 /* If we are in terse mode, don't generate any DIEs for types. */
12977 if (debug_info_level <= DINFO_LEVEL_TERSE)
12978 return;
12979
12980 /* If we're a function-scope tag, initially use a parent of NULL;
12981 this will be fixed up in decls_for_scope. */
12982 if (decl_function_context (decl))
12983 context_die = NULL;
12984
12985 break;
12986
12987 default:
12988 return;
12989 }
12990
12991 gen_decl_die (decl, context_die);
12992 }
12993
12994 /* Output a marker (i.e. a label) for the beginning of the generated code for
12995 a lexical block. */
12996
12997 static void
12998 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
12999 unsigned int blocknum)
13000 {
13001 function_section (current_function_decl);
13002 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13003 }
13004
13005 /* Output a marker (i.e. a label) for the end of the generated code for a
13006 lexical block. */
13007
13008 static void
13009 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13010 {
13011 function_section (current_function_decl);
13012 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13013 }
13014
13015 /* Returns nonzero if it is appropriate not to emit any debugging
13016 information for BLOCK, because it doesn't contain any instructions.
13017
13018 Don't allow this for blocks with nested functions or local classes
13019 as we would end up with orphans, and in the presence of scheduling
13020 we may end up calling them anyway. */
13021
13022 static bool
13023 dwarf2out_ignore_block (tree block)
13024 {
13025 tree decl;
13026
13027 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13028 if (TREE_CODE (decl) == FUNCTION_DECL
13029 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13030 return 0;
13031
13032 return 1;
13033 }
13034
13035 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13036 dwarf2out.c) and return its "index". The index of each (known) filename is
13037 just a unique number which is associated with only that one filename. We
13038 need such numbers for the sake of generating labels (in the .debug_sfnames
13039 section) and references to those files numbers (in the .debug_srcinfo
13040 and.debug_macinfo sections). If the filename given as an argument is not
13041 found in our current list, add it to the list and assign it the next
13042 available unique index number. In order to speed up searches, we remember
13043 the index of the filename was looked up last. This handles the majority of
13044 all searches. */
13045
13046 static unsigned
13047 lookup_filename (const char *file_name)
13048 {
13049 size_t i, n;
13050 char *save_file_name;
13051
13052 /* Check to see if the file name that was searched on the previous
13053 call matches this file name. If so, return the index. */
13054 if (file_table_last_lookup_index != 0)
13055 {
13056 const char *last
13057 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
13058 if (strcmp (file_name, last) == 0)
13059 return file_table_last_lookup_index;
13060 }
13061
13062 /* Didn't match the previous lookup, search the table */
13063 n = VARRAY_ACTIVE_SIZE (file_table);
13064 for (i = 1; i < n; i++)
13065 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
13066 {
13067 file_table_last_lookup_index = i;
13068 return i;
13069 }
13070
13071 /* Add the new entry to the end of the filename table. */
13072 file_table_last_lookup_index = n;
13073 save_file_name = (char *) ggc_strdup (file_name);
13074 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
13075 VARRAY_PUSH_UINT (file_table_emitted, 0);
13076
13077 return i;
13078 }
13079
13080 static int
13081 maybe_emit_file (int fileno)
13082 {
13083 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
13084 {
13085 if (!VARRAY_UINT (file_table_emitted, fileno))
13086 {
13087 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
13088 fprintf (asm_out_file, "\t.file %u ",
13089 VARRAY_UINT (file_table_emitted, fileno));
13090 output_quoted_string (asm_out_file,
13091 VARRAY_CHAR_PTR (file_table, fileno));
13092 fputc ('\n', asm_out_file);
13093 }
13094 return VARRAY_UINT (file_table_emitted, fileno);
13095 }
13096 else
13097 return fileno;
13098 }
13099
13100 static void
13101 init_file_table (void)
13102 {
13103 /* Allocate the initial hunk of the file_table. */
13104 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
13105 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
13106
13107 /* Skip the first entry - file numbers begin at 1. */
13108 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
13109 VARRAY_PUSH_UINT (file_table_emitted, 0);
13110 file_table_last_lookup_index = 0;
13111 }
13112
13113 /* Called by the final INSN scan whenever we see a var location. We
13114 use it to drop labels in the right places, and throw the location in
13115 our lookup table. */
13116
13117 static void
13118 dwarf2out_var_location (rtx loc_note)
13119 {
13120 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13121 struct var_loc_node *newloc;
13122 rtx prev_insn;
13123 static rtx last_insn;
13124 static const char *last_label;
13125
13126 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13127 return;
13128 prev_insn = PREV_INSN (loc_note);
13129
13130 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13131 /* If the insn we processed last time is the previous insn
13132 and it is also a var location note, use the label we emitted
13133 last time. */
13134 if (last_insn != NULL_RTX
13135 && last_insn == prev_insn
13136 && GET_CODE (prev_insn) == NOTE
13137 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13138 {
13139 newloc->label = last_label;
13140 }
13141 else
13142 {
13143 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13144 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13145 loclabel_num++;
13146 newloc->label = ggc_strdup (loclabel);
13147 }
13148 newloc->var_loc_note = loc_note;
13149 newloc->next = NULL;
13150
13151 last_insn = loc_note;
13152 last_label = newloc->label;
13153
13154 add_var_loc_to_decl (NOTE_VAR_LOCATION_DECL (loc_note), newloc);
13155 }
13156
13157 /* We need to reset the locations at the beginning of each
13158 function. We can't do this in the end_function hook, because the
13159 declarations that use the locations won't have been outputted when
13160 that hook is called. */
13161
13162 static void
13163 dwarf2out_begin_function (tree unused ATTRIBUTE_UNUSED)
13164 {
13165 htab_empty (decl_loc_table);
13166 }
13167
13168 /* Output a label to mark the beginning of a source code line entry
13169 and record information relating to this source line, in
13170 'line_info_table' for later output of the .debug_line section. */
13171
13172 static void
13173 dwarf2out_source_line (unsigned int line, const char *filename)
13174 {
13175 if (debug_info_level >= DINFO_LEVEL_NORMAL
13176 && line != 0)
13177 {
13178 function_section (current_function_decl);
13179
13180 /* If requested, emit something human-readable. */
13181 if (flag_debug_asm)
13182 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13183 filename, line);
13184
13185 if (DWARF2_ASM_LINE_DEBUG_INFO)
13186 {
13187 unsigned file_num = lookup_filename (filename);
13188
13189 file_num = maybe_emit_file (file_num);
13190
13191 /* Emit the .loc directive understood by GNU as. */
13192 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13193
13194 /* Indicate that line number info exists. */
13195 line_info_table_in_use++;
13196
13197 /* Indicate that multiple line number tables exist. */
13198 if (DECL_SECTION_NAME (current_function_decl))
13199 separate_line_info_table_in_use++;
13200 }
13201 else if (DECL_SECTION_NAME (current_function_decl))
13202 {
13203 dw_separate_line_info_ref line_info;
13204 targetm.asm_out.internal_label (asm_out_file, SEPARATE_LINE_CODE_LABEL,
13205 separate_line_info_table_in_use);
13206
13207 /* Expand the line info table if necessary. */
13208 if (separate_line_info_table_in_use
13209 == separate_line_info_table_allocated)
13210 {
13211 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13212 separate_line_info_table
13213 = ggc_realloc (separate_line_info_table,
13214 separate_line_info_table_allocated
13215 * sizeof (dw_separate_line_info_entry));
13216 memset (separate_line_info_table
13217 + separate_line_info_table_in_use,
13218 0,
13219 (LINE_INFO_TABLE_INCREMENT
13220 * sizeof (dw_separate_line_info_entry)));
13221 }
13222
13223 /* Add the new entry at the end of the line_info_table. */
13224 line_info
13225 = &separate_line_info_table[separate_line_info_table_in_use++];
13226 line_info->dw_file_num = lookup_filename (filename);
13227 line_info->dw_line_num = line;
13228 line_info->function = current_function_funcdef_no;
13229 }
13230 else
13231 {
13232 dw_line_info_ref line_info;
13233
13234 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13235 line_info_table_in_use);
13236
13237 /* Expand the line info table if necessary. */
13238 if (line_info_table_in_use == line_info_table_allocated)
13239 {
13240 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13241 line_info_table
13242 = ggc_realloc (line_info_table,
13243 (line_info_table_allocated
13244 * sizeof (dw_line_info_entry)));
13245 memset (line_info_table + line_info_table_in_use, 0,
13246 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13247 }
13248
13249 /* Add the new entry at the end of the line_info_table. */
13250 line_info = &line_info_table[line_info_table_in_use++];
13251 line_info->dw_file_num = lookup_filename (filename);
13252 line_info->dw_line_num = line;
13253 }
13254 }
13255 }
13256
13257 /* Record the beginning of a new source file. */
13258
13259 static void
13260 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13261 {
13262 if (flag_eliminate_dwarf2_dups)
13263 {
13264 /* Record the beginning of the file for break_out_includes. */
13265 dw_die_ref bincl_die;
13266
13267 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13268 add_AT_string (bincl_die, DW_AT_name, filename);
13269 }
13270
13271 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13272 {
13273 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13274 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13275 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13276 lineno);
13277 maybe_emit_file (lookup_filename (filename));
13278 dw2_asm_output_data_uleb128 (lookup_filename (filename),
13279 "Filename we just started");
13280 }
13281 }
13282
13283 /* Record the end of a source file. */
13284
13285 static void
13286 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13287 {
13288 if (flag_eliminate_dwarf2_dups)
13289 /* Record the end of the file for break_out_includes. */
13290 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13291
13292 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13293 {
13294 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13295 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13296 }
13297 }
13298
13299 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13300 the tail part of the directive line, i.e. the part which is past the
13301 initial whitespace, #, whitespace, directive-name, whitespace part. */
13302
13303 static void
13304 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13305 const char *buffer ATTRIBUTE_UNUSED)
13306 {
13307 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13308 {
13309 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13310 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13311 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13312 dw2_asm_output_nstring (buffer, -1, "The macro");
13313 }
13314 }
13315
13316 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13317 the tail part of the directive line, i.e. the part which is past the
13318 initial whitespace, #, whitespace, directive-name, whitespace part. */
13319
13320 static void
13321 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13322 const char *buffer ATTRIBUTE_UNUSED)
13323 {
13324 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13325 {
13326 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13327 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13328 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13329 dw2_asm_output_nstring (buffer, -1, "The macro");
13330 }
13331 }
13332
13333 /* Set up for Dwarf output at the start of compilation. */
13334
13335 static void
13336 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13337 {
13338 init_file_table ();
13339
13340 /* Allocate the decl_die_table. */
13341 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13342 decl_die_table_eq, NULL);
13343
13344 /* Allocate the decl_loc_table. */
13345 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13346 decl_loc_table_eq, NULL);
13347
13348 /* Allocate the initial hunk of the decl_scope_table. */
13349 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
13350
13351 /* Allocate the initial hunk of the abbrev_die_table. */
13352 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13353 * sizeof (dw_die_ref));
13354 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13355 /* Zero-th entry is allocated, but unused */
13356 abbrev_die_table_in_use = 1;
13357
13358 /* Allocate the initial hunk of the line_info_table. */
13359 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13360 * sizeof (dw_line_info_entry));
13361 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13362
13363 /* Zero-th entry is allocated, but unused */
13364 line_info_table_in_use = 1;
13365
13366 /* Generate the initial DIE for the .debug section. Note that the (string)
13367 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13368 will (typically) be a relative pathname and that this pathname should be
13369 taken as being relative to the directory from which the compiler was
13370 invoked when the given (base) source file was compiled. We will fill
13371 in this value in dwarf2out_finish. */
13372 comp_unit_die = gen_compile_unit_die (NULL);
13373
13374 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
13375
13376 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
13377
13378 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13379 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13380 DEBUG_ABBREV_SECTION_LABEL, 0);
13381 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
13382 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13383 else
13384 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
13385
13386 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13387 DEBUG_INFO_SECTION_LABEL, 0);
13388 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13389 DEBUG_LINE_SECTION_LABEL, 0);
13390 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13391 DEBUG_RANGES_SECTION_LABEL, 0);
13392 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13393 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13394 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
13395 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13396 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13397 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13398
13399 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13400 {
13401 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13402 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13403 DEBUG_MACINFO_SECTION_LABEL, 0);
13404 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13405 }
13406
13407 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
13408 {
13409 text_section ();
13410 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13411 }
13412 }
13413
13414 /* A helper function for dwarf2out_finish called through
13415 ht_forall. Emit one queued .debug_str string. */
13416
13417 static int
13418 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13419 {
13420 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13421
13422 if (node->form == DW_FORM_strp)
13423 {
13424 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
13425 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13426 assemble_string (node->str, strlen (node->str) + 1);
13427 }
13428
13429 return 1;
13430 }
13431
13432
13433
13434 /* Clear the marks for a die and its children.
13435 Be cool if the mark isn't set. */
13436
13437 static void
13438 prune_unmark_dies (dw_die_ref die)
13439 {
13440 dw_die_ref c;
13441 die->die_mark = 0;
13442 for (c = die->die_child; c; c = c->die_sib)
13443 prune_unmark_dies (c);
13444 }
13445
13446
13447 /* Given DIE that we're marking as used, find any other dies
13448 it references as attributes and mark them as used. */
13449
13450 static void
13451 prune_unused_types_walk_attribs (dw_die_ref die)
13452 {
13453 dw_attr_ref a;
13454
13455 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
13456 {
13457 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13458 {
13459 /* A reference to another DIE.
13460 Make sure that it will get emitted. */
13461 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13462 }
13463 else if (a->dw_attr == DW_AT_decl_file)
13464 {
13465 /* A reference to a file. Make sure the file name is emitted. */
13466 a->dw_attr_val.v.val_unsigned =
13467 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
13468 }
13469 }
13470 }
13471
13472
13473 /* Mark DIE as being used. If DOKIDS is true, then walk down
13474 to DIE's children. */
13475
13476 static void
13477 prune_unused_types_mark (dw_die_ref die, int dokids)
13478 {
13479 dw_die_ref c;
13480
13481 if (die->die_mark == 0)
13482 {
13483 /* We haven't done this node yet. Mark it as used. */
13484 die->die_mark = 1;
13485
13486 /* We also have to mark its parents as used.
13487 (But we don't want to mark our parents' kids due to this.) */
13488 if (die->die_parent)
13489 prune_unused_types_mark (die->die_parent, 0);
13490
13491 /* Mark any referenced nodes. */
13492 prune_unused_types_walk_attribs (die);
13493
13494 /* If this node is a specification,
13495 also mark the definition, if it exists. */
13496 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
13497 prune_unused_types_mark (die->die_definition, 1);
13498 }
13499
13500 if (dokids && die->die_mark != 2)
13501 {
13502 /* We need to walk the children, but haven't done so yet.
13503 Remember that we've walked the kids. */
13504 die->die_mark = 2;
13505
13506 /* Walk them. */
13507 for (c = die->die_child; c; c = c->die_sib)
13508 {
13509 /* If this is an array type, we need to make sure our
13510 kids get marked, even if they're types. */
13511 if (die->die_tag == DW_TAG_array_type)
13512 prune_unused_types_mark (c, 1);
13513 else
13514 prune_unused_types_walk (c);
13515 }
13516 }
13517 }
13518
13519
13520 /* Walk the tree DIE and mark types that we actually use. */
13521
13522 static void
13523 prune_unused_types_walk (dw_die_ref die)
13524 {
13525 dw_die_ref c;
13526
13527 /* Don't do anything if this node is already marked. */
13528 if (die->die_mark)
13529 return;
13530
13531 switch (die->die_tag) {
13532 case DW_TAG_const_type:
13533 case DW_TAG_packed_type:
13534 case DW_TAG_pointer_type:
13535 case DW_TAG_reference_type:
13536 case DW_TAG_volatile_type:
13537 case DW_TAG_typedef:
13538 case DW_TAG_array_type:
13539 case DW_TAG_structure_type:
13540 case DW_TAG_union_type:
13541 case DW_TAG_class_type:
13542 case DW_TAG_friend:
13543 case DW_TAG_variant_part:
13544 case DW_TAG_enumeration_type:
13545 case DW_TAG_subroutine_type:
13546 case DW_TAG_string_type:
13547 case DW_TAG_set_type:
13548 case DW_TAG_subrange_type:
13549 case DW_TAG_ptr_to_member_type:
13550 case DW_TAG_file_type:
13551 /* It's a type node --- don't mark it. */
13552 return;
13553
13554 default:
13555 /* Mark everything else. */
13556 break;
13557 }
13558
13559 die->die_mark = 1;
13560
13561 /* Now, mark any dies referenced from here. */
13562 prune_unused_types_walk_attribs (die);
13563
13564 /* Mark children. */
13565 for (c = die->die_child; c; c = c->die_sib)
13566 prune_unused_types_walk (c);
13567 }
13568
13569
13570 /* Remove from the tree DIE any dies that aren't marked. */
13571
13572 static void
13573 prune_unused_types_prune (dw_die_ref die)
13574 {
13575 dw_die_ref c, p, n;
13576 if (!die->die_mark)
13577 abort();
13578
13579 p = NULL;
13580 for (c = die->die_child; c; c = n)
13581 {
13582 n = c->die_sib;
13583 if (c->die_mark)
13584 {
13585 prune_unused_types_prune (c);
13586 p = c;
13587 }
13588 else
13589 {
13590 if (p)
13591 p->die_sib = n;
13592 else
13593 die->die_child = n;
13594 free_die (c);
13595 }
13596 }
13597 }
13598
13599
13600 /* Remove dies representing declarations that we never use. */
13601
13602 static void
13603 prune_unused_types (void)
13604 {
13605 unsigned int i;
13606 limbo_die_node *node;
13607
13608 /* Clear all the marks. */
13609 prune_unmark_dies (comp_unit_die);
13610 for (node = limbo_die_list; node; node = node->next)
13611 prune_unmark_dies (node->die);
13612
13613 /* Set the mark on nodes that are actually used. */
13614 prune_unused_types_walk (comp_unit_die);
13615 for (node = limbo_die_list; node; node = node->next)
13616 prune_unused_types_walk (node->die);
13617
13618 /* Also set the mark on nodes referenced from the
13619 pubname_table or arange_table. */
13620 for (i = 0; i < pubname_table_in_use; i++)
13621 prune_unused_types_mark (pubname_table[i].die, 1);
13622 for (i = 0; i < arange_table_in_use; i++)
13623 prune_unused_types_mark (arange_table[i], 1);
13624
13625 /* Get rid of nodes that aren't marked. */
13626 prune_unused_types_prune (comp_unit_die);
13627 for (node = limbo_die_list; node; node = node->next)
13628 prune_unused_types_prune (node->die);
13629
13630 /* Leave the marks clear. */
13631 prune_unmark_dies (comp_unit_die);
13632 for (node = limbo_die_list; node; node = node->next)
13633 prune_unmark_dies (node->die);
13634 }
13635
13636 /* Output stuff that dwarf requires at the end of every file,
13637 and generate the DWARF-2 debugging info. */
13638
13639 static void
13640 dwarf2out_finish (const char *filename)
13641 {
13642 limbo_die_node *node, *next_node;
13643 dw_die_ref die = 0;
13644
13645 /* Add the name for the main input file now. We delayed this from
13646 dwarf2out_init to avoid complications with PCH. */
13647 add_name_attribute (comp_unit_die, filename);
13648 if (filename[0] != DIR_SEPARATOR)
13649 add_comp_dir_attribute (comp_unit_die);
13650 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13651 {
13652 size_t i;
13653 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13654 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
13655 /* Don't add cwd for <built-in>. */
13656 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
13657 {
13658 add_comp_dir_attribute (comp_unit_die);
13659 break;
13660 }
13661 }
13662
13663 /* Traverse the limbo die list, and add parent/child links. The only
13664 dies without parents that should be here are concrete instances of
13665 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13666 For concrete instances, we can get the parent die from the abstract
13667 instance. */
13668 for (node = limbo_die_list; node; node = next_node)
13669 {
13670 next_node = node->next;
13671 die = node->die;
13672
13673 if (die->die_parent == NULL)
13674 {
13675 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13676 tree context;
13677
13678 if (origin)
13679 add_child_die (origin->die_parent, die);
13680 else if (die == comp_unit_die)
13681 ;
13682 else if (errorcount > 0 || sorrycount > 0)
13683 /* It's OK to be confused by errors in the input. */
13684 add_child_die (comp_unit_die, die);
13685 else if (node->created_for
13686 && ((DECL_P (node->created_for)
13687 && (context = DECL_CONTEXT (node->created_for)))
13688 || (TYPE_P (node->created_for)
13689 && (context = TYPE_CONTEXT (node->created_for))))
13690 && TREE_CODE (context) == FUNCTION_DECL)
13691 {
13692 /* In certain situations, the lexical block containing a
13693 nested function can be optimized away, which results
13694 in the nested function die being orphaned. Likewise
13695 with the return type of that nested function. Force
13696 this to be a child of the containing function. */
13697 origin = lookup_decl_die (context);
13698 if (! origin)
13699 abort ();
13700 add_child_die (origin, die);
13701 }
13702 else
13703 abort ();
13704 }
13705 }
13706
13707 limbo_die_list = NULL;
13708
13709 /* Walk through the list of incomplete types again, trying once more to
13710 emit full debugging info for them. */
13711 retry_incomplete_types ();
13712
13713 /* We need to reverse all the dies before break_out_includes, or
13714 we'll see the end of an include file before the beginning. */
13715 reverse_all_dies (comp_unit_die);
13716
13717 if (flag_eliminate_unused_debug_types)
13718 prune_unused_types ();
13719
13720 /* Generate separate CUs for each of the include files we've seen.
13721 They will go into limbo_die_list. */
13722 if (flag_eliminate_dwarf2_dups)
13723 break_out_includes (comp_unit_die);
13724
13725 /* Traverse the DIE's and add add sibling attributes to those DIE's
13726 that have children. */
13727 add_sibling_attributes (comp_unit_die);
13728 for (node = limbo_die_list; node; node = node->next)
13729 add_sibling_attributes (node->die);
13730
13731 /* Output a terminator label for the .text section. */
13732 text_section ();
13733 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
13734
13735 /* Output the source line correspondence table. We must do this
13736 even if there is no line information. Otherwise, on an empty
13737 translation unit, we will generate a present, but empty,
13738 .debug_info section. IRIX 6.5 `nm' will then complain when
13739 examining the file. */
13740 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13741 {
13742 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13743 output_line_info ();
13744 }
13745
13746 /* Output location list section if necessary. */
13747 if (have_location_lists)
13748 {
13749 /* Output the location lists info. */
13750 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13751 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13752 DEBUG_LOC_SECTION_LABEL, 0);
13753 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13754 output_location_lists (die);
13755 have_location_lists = 0;
13756 }
13757
13758 /* We can only use the low/high_pc attributes if all of the code was
13759 in .text. */
13760 if (separate_line_info_table_in_use == 0)
13761 {
13762 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13763 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13764 }
13765
13766 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13767 "base address". Use zero so that these addresses become absolute. */
13768 else if (have_location_lists || ranges_table_in_use)
13769 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13770
13771 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13772 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13773 debug_line_section_label);
13774
13775 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13776 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13777
13778 /* Output all of the compilation units. We put the main one last so that
13779 the offsets are available to output_pubnames. */
13780 for (node = limbo_die_list; node; node = node->next)
13781 output_comp_unit (node->die, 0);
13782
13783 output_comp_unit (comp_unit_die, 0);
13784
13785 /* Output the abbreviation table. */
13786 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13787 output_abbrev_section ();
13788
13789 /* Output public names table if necessary. */
13790 if (pubname_table_in_use)
13791 {
13792 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13793 output_pubnames ();
13794 }
13795
13796 /* Output the address range information. We only put functions in the arange
13797 table, so don't write it out if we don't have any. */
13798 if (fde_table_in_use)
13799 {
13800 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13801 output_aranges ();
13802 }
13803
13804 /* Output ranges section if necessary. */
13805 if (ranges_table_in_use)
13806 {
13807 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13808 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13809 output_ranges ();
13810 }
13811
13812 /* Have to end the primary source file. */
13813 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13814 {
13815 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13816 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13817 dw2_asm_output_data (1, 0, "End compilation unit");
13818 }
13819
13820 /* If we emitted any DW_FORM_strp form attribute, output the string
13821 table too. */
13822 if (debug_str_hash)
13823 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13824 }
13825 #else
13826
13827 /* This should never be used, but its address is needed for comparisons. */
13828 const struct gcc_debug_hooks dwarf2_debug_hooks;
13829
13830 #endif /* DWARF2_DEBUGGING_INFO */
13831
13832 #include "gt-dwarf2out.h"