dwarf2out.c (rtl_for_decl_location): Adjust rtl for byte variables stored in word...
[gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "real.h"
44 #include "rtl.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "reload.h"
49 #include "function.h"
50 #include "output.h"
51 #include "expr.h"
52 #include "libfuncs.h"
53 #include "except.h"
54 #include "dwarf2.h"
55 #include "dwarf2out.h"
56 #include "dwarf2asm.h"
57 #include "toplev.h"
58 #include "varray.h"
59 #include "ggc.h"
60 #include "md5.h"
61 #include "tm_p.h"
62 #include "diagnostic.h"
63 #include "debug.h"
64 #include "target.h"
65 #include "langhooks.h"
66 #include "hashtab.h"
67 #include "cgraph.h"
68 #include "input.h"
69
70 #ifdef DWARF2_DEBUGGING_INFO
71 static void dwarf2out_source_line (unsigned int, const char *);
72 #endif
73
74 /* DWARF2 Abbreviation Glossary:
75 CFA = Canonical Frame Address
76 a fixed address on the stack which identifies a call frame.
77 We define it to be the value of SP just before the call insn.
78 The CFA register and offset, which may change during the course
79 of the function, are used to calculate its value at runtime.
80 CFI = Call Frame Instruction
81 an instruction for the DWARF2 abstract machine
82 CIE = Common Information Entry
83 information describing information common to one or more FDEs
84 DIE = Debugging Information Entry
85 FDE = Frame Description Entry
86 information describing the stack call frame, in particular,
87 how to restore registers
88
89 DW_CFA_... = DWARF2 CFA call frame instruction
90 DW_TAG_... = DWARF2 DIE tag */
91
92 /* Decide whether we want to emit frame unwind information for the current
93 translation unit. */
94
95 int
96 dwarf2out_do_frame (void)
97 {
98 return (write_symbols == DWARF2_DEBUG
99 || write_symbols == VMS_AND_DWARF2_DEBUG
100 #ifdef DWARF2_FRAME_INFO
101 || DWARF2_FRAME_INFO
102 #endif
103 #ifdef DWARF2_UNWIND_INFO
104 || flag_unwind_tables
105 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
106 #endif
107 );
108 }
109
110 /* The size of the target's pointer type. */
111 #ifndef PTR_SIZE
112 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
113 #endif
114
115 /* Various versions of targetm.eh_frame_section. Note these must appear
116 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
117
118 /* Version of targetm.eh_frame_section for systems with named sections. */
119 void
120 named_section_eh_frame_section (void)
121 {
122 #ifdef EH_FRAME_SECTION_NAME
123 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
124 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
125 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
126 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
127 int flags;
128
129 flags = (! flag_pic
130 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
131 && (fde_encoding & 0x70) != DW_EH_PE_aligned
132 && (per_encoding & 0x70) != DW_EH_PE_absptr
133 && (per_encoding & 0x70) != DW_EH_PE_aligned
134 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
135 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
136 ? 0 : SECTION_WRITE;
137 named_section_flags (EH_FRAME_SECTION_NAME, flags);
138 #else
139 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
140 #endif
141 #endif
142 }
143
144 /* Version of targetm.eh_frame_section for systems using collect2. */
145 void
146 collect2_eh_frame_section (void)
147 {
148 tree label = get_file_function_name ('F');
149
150 data_section ();
151 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
152 targetm.asm_out.globalize_label (asm_out_file, IDENTIFIER_POINTER (label));
153 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
154 }
155
156 /* Default version of targetm.eh_frame_section. */
157 void
158 default_eh_frame_section (void)
159 {
160 #ifdef EH_FRAME_SECTION_NAME
161 named_section_eh_frame_section ();
162 #else
163 collect2_eh_frame_section ();
164 #endif
165 }
166
167 /* Array of RTXes referenced by the debugging information, which therefore
168 must be kept around forever. */
169 static GTY(()) varray_type used_rtx_varray;
170
171 /* A pointer to the base of a list of incomplete types which might be
172 completed at some later time. incomplete_types_list needs to be a VARRAY
173 because we want to tell the garbage collector about it. */
174 static GTY(()) varray_type incomplete_types;
175
176 /* A pointer to the base of a table of references to declaration
177 scopes. This table is a display which tracks the nesting
178 of declaration scopes at the current scope and containing
179 scopes. This table is used to find the proper place to
180 define type declaration DIE's. */
181 static GTY(()) varray_type decl_scope_table;
182
183 /* How to start an assembler comment. */
184 #ifndef ASM_COMMENT_START
185 #define ASM_COMMENT_START ";#"
186 #endif
187
188 typedef struct dw_cfi_struct *dw_cfi_ref;
189 typedef struct dw_fde_struct *dw_fde_ref;
190 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
191
192 /* Call frames are described using a sequence of Call Frame
193 Information instructions. The register number, offset
194 and address fields are provided as possible operands;
195 their use is selected by the opcode field. */
196
197 enum dw_cfi_oprnd_type {
198 dw_cfi_oprnd_unused,
199 dw_cfi_oprnd_reg_num,
200 dw_cfi_oprnd_offset,
201 dw_cfi_oprnd_addr,
202 dw_cfi_oprnd_loc
203 };
204
205 typedef union dw_cfi_oprnd_struct GTY(())
206 {
207 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
208 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
209 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
210 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
211 }
212 dw_cfi_oprnd;
213
214 typedef struct dw_cfi_struct GTY(())
215 {
216 dw_cfi_ref dw_cfi_next;
217 enum dwarf_call_frame_info dw_cfi_opc;
218 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
219 dw_cfi_oprnd1;
220 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
221 dw_cfi_oprnd2;
222 }
223 dw_cfi_node;
224
225 /* This is how we define the location of the CFA. We use to handle it
226 as REG + OFFSET all the time, but now it can be more complex.
227 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
228 Instead of passing around REG and OFFSET, we pass a copy
229 of this structure. */
230 typedef struct cfa_loc GTY(())
231 {
232 unsigned long reg;
233 HOST_WIDE_INT offset;
234 HOST_WIDE_INT base_offset;
235 int indirect; /* 1 if CFA is accessed via a dereference. */
236 } dw_cfa_location;
237
238 /* All call frame descriptions (FDE's) in the GCC generated DWARF
239 refer to a single Common Information Entry (CIE), defined at
240 the beginning of the .debug_frame section. This use of a single
241 CIE obviates the need to keep track of multiple CIE's
242 in the DWARF generation routines below. */
243
244 typedef struct dw_fde_struct GTY(())
245 {
246 tree decl;
247 const char *dw_fde_begin;
248 const char *dw_fde_current_label;
249 const char *dw_fde_end;
250 dw_cfi_ref dw_fde_cfi;
251 unsigned funcdef_number;
252 unsigned all_throwers_are_sibcalls : 1;
253 unsigned nothrow : 1;
254 unsigned uses_eh_lsda : 1;
255 }
256 dw_fde_node;
257
258 /* Maximum size (in bytes) of an artificially generated label. */
259 #define MAX_ARTIFICIAL_LABEL_BYTES 30
260
261 /* The size of addresses as they appear in the Dwarf 2 data.
262 Some architectures use word addresses to refer to code locations,
263 but Dwarf 2 info always uses byte addresses. On such machines,
264 Dwarf 2 addresses need to be larger than the architecture's
265 pointers. */
266 #ifndef DWARF2_ADDR_SIZE
267 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
268 #endif
269
270 /* The size in bytes of a DWARF field indicating an offset or length
271 relative to a debug info section, specified to be 4 bytes in the
272 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
273 as PTR_SIZE. */
274
275 #ifndef DWARF_OFFSET_SIZE
276 #define DWARF_OFFSET_SIZE 4
277 #endif
278
279 /* According to the (draft) DWARF 3 specification, the initial length
280 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
281 bytes are 0xffffffff, followed by the length stored in the next 8
282 bytes.
283
284 However, the SGI/MIPS ABI uses an initial length which is equal to
285 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
286
287 #ifndef DWARF_INITIAL_LENGTH_SIZE
288 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
289 #endif
290
291 #define DWARF_VERSION 2
292
293 /* Round SIZE up to the nearest BOUNDARY. */
294 #define DWARF_ROUND(SIZE,BOUNDARY) \
295 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
296
297 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
298 #ifndef DWARF_CIE_DATA_ALIGNMENT
299 #ifdef STACK_GROWS_DOWNWARD
300 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
301 #else
302 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
303 #endif
304 #endif
305
306 /* A pointer to the base of a table that contains frame description
307 information for each routine. */
308 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
309
310 /* Number of elements currently allocated for fde_table. */
311 static GTY(()) unsigned fde_table_allocated;
312
313 /* Number of elements in fde_table currently in use. */
314 static GTY(()) unsigned fde_table_in_use;
315
316 /* Size (in elements) of increments by which we may expand the
317 fde_table. */
318 #define FDE_TABLE_INCREMENT 256
319
320 /* A list of call frame insns for the CIE. */
321 static GTY(()) dw_cfi_ref cie_cfi_head;
322
323 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
324 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
325 attribute that accelerates the lookup of the FDE associated
326 with the subprogram. This variable holds the table index of the FDE
327 associated with the current function (body) definition. */
328 static unsigned current_funcdef_fde;
329 #endif
330
331 struct indirect_string_node GTY(())
332 {
333 const char *str;
334 unsigned int refcount;
335 unsigned int form;
336 char *label;
337 };
338
339 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
340
341 static GTY(()) int dw2_string_counter;
342 static GTY(()) unsigned long dwarf2out_cfi_label_num;
343
344 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
345
346 /* Forward declarations for functions defined in this file. */
347
348 static char *stripattributes (const char *);
349 static const char *dwarf_cfi_name (unsigned);
350 static dw_cfi_ref new_cfi (void);
351 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
352 static void add_fde_cfi (const char *, dw_cfi_ref);
353 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
354 static void lookup_cfa (dw_cfa_location *);
355 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
356 static void initial_return_save (rtx);
357 static HOST_WIDE_INT stack_adjust_offset (rtx);
358 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
359 static void output_call_frame_info (int);
360 static void dwarf2out_stack_adjust (rtx);
361 static void queue_reg_save (const char *, rtx, HOST_WIDE_INT);
362 static void flush_queued_reg_saves (void);
363 static bool clobbers_queued_reg_save (rtx);
364 static void dwarf2out_frame_debug_expr (rtx, const char *);
365
366 /* Support for complex CFA locations. */
367 static void output_cfa_loc (dw_cfi_ref);
368 static void get_cfa_from_loc_descr (dw_cfa_location *,
369 struct dw_loc_descr_struct *);
370 static struct dw_loc_descr_struct *build_cfa_loc
371 (dw_cfa_location *);
372 static void def_cfa_1 (const char *, dw_cfa_location *);
373
374 /* How to start an assembler comment. */
375 #ifndef ASM_COMMENT_START
376 #define ASM_COMMENT_START ";#"
377 #endif
378
379 /* Data and reference forms for relocatable data. */
380 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
381 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
382
383 #ifndef DEBUG_FRAME_SECTION
384 #define DEBUG_FRAME_SECTION ".debug_frame"
385 #endif
386
387 #ifndef FUNC_BEGIN_LABEL
388 #define FUNC_BEGIN_LABEL "LFB"
389 #endif
390
391 #ifndef FUNC_END_LABEL
392 #define FUNC_END_LABEL "LFE"
393 #endif
394
395 #ifndef FRAME_BEGIN_LABEL
396 #define FRAME_BEGIN_LABEL "Lframe"
397 #endif
398 #define CIE_AFTER_SIZE_LABEL "LSCIE"
399 #define CIE_END_LABEL "LECIE"
400 #define FDE_LABEL "LSFDE"
401 #define FDE_AFTER_SIZE_LABEL "LASFDE"
402 #define FDE_END_LABEL "LEFDE"
403 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
404 #define LINE_NUMBER_END_LABEL "LELT"
405 #define LN_PROLOG_AS_LABEL "LASLTP"
406 #define LN_PROLOG_END_LABEL "LELTP"
407 #define DIE_LABEL_PREFIX "DW"
408
409 /* The DWARF 2 CFA column which tracks the return address. Normally this
410 is the column for PC, or the first column after all of the hard
411 registers. */
412 #ifndef DWARF_FRAME_RETURN_COLUMN
413 #ifdef PC_REGNUM
414 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
415 #else
416 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
417 #endif
418 #endif
419
420 /* The mapping from gcc register number to DWARF 2 CFA column number. By
421 default, we just provide columns for all registers. */
422 #ifndef DWARF_FRAME_REGNUM
423 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
424 #endif
425
426 /* The offset from the incoming value of %sp to the top of the stack frame
427 for the current function. */
428 #ifndef INCOMING_FRAME_SP_OFFSET
429 #define INCOMING_FRAME_SP_OFFSET 0
430 #endif
431 \f
432 /* Hook used by __throw. */
433
434 rtx
435 expand_builtin_dwarf_sp_column (void)
436 {
437 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
438 }
439
440 /* Return a pointer to a copy of the section string name S with all
441 attributes stripped off, and an asterisk prepended (for assemble_name). */
442
443 static inline char *
444 stripattributes (const char *s)
445 {
446 char *stripped = xmalloc (strlen (s) + 2);
447 char *p = stripped;
448
449 *p++ = '*';
450
451 while (*s && *s != ',')
452 *p++ = *s++;
453
454 *p = '\0';
455 return stripped;
456 }
457
458 /* Generate code to initialize the register size table. */
459
460 void
461 expand_builtin_init_dwarf_reg_sizes (tree address)
462 {
463 int i;
464 enum machine_mode mode = TYPE_MODE (char_type_node);
465 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
466 rtx mem = gen_rtx_MEM (BLKmode, addr);
467 bool wrote_return_column = false;
468
469 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
470 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
471 {
472 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
473 enum machine_mode save_mode = reg_raw_mode[i];
474 HOST_WIDE_INT size;
475
476 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
477 save_mode = choose_hard_reg_mode (i, 1, true);
478 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
479 {
480 if (save_mode == VOIDmode)
481 continue;
482 wrote_return_column = true;
483 }
484 size = GET_MODE_SIZE (save_mode);
485 if (offset < 0)
486 continue;
487
488 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
489 }
490
491 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
492 if (! wrote_return_column)
493 abort ();
494 i = DWARF_ALT_FRAME_RETURN_COLUMN;
495 wrote_return_column = false;
496 #else
497 i = DWARF_FRAME_RETURN_COLUMN;
498 #endif
499
500 if (! wrote_return_column)
501 {
502 enum machine_mode save_mode = Pmode;
503 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
504 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
505 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
506 }
507 }
508
509 /* Convert a DWARF call frame info. operation to its string name */
510
511 static const char *
512 dwarf_cfi_name (unsigned int cfi_opc)
513 {
514 switch (cfi_opc)
515 {
516 case DW_CFA_advance_loc:
517 return "DW_CFA_advance_loc";
518 case DW_CFA_offset:
519 return "DW_CFA_offset";
520 case DW_CFA_restore:
521 return "DW_CFA_restore";
522 case DW_CFA_nop:
523 return "DW_CFA_nop";
524 case DW_CFA_set_loc:
525 return "DW_CFA_set_loc";
526 case DW_CFA_advance_loc1:
527 return "DW_CFA_advance_loc1";
528 case DW_CFA_advance_loc2:
529 return "DW_CFA_advance_loc2";
530 case DW_CFA_advance_loc4:
531 return "DW_CFA_advance_loc4";
532 case DW_CFA_offset_extended:
533 return "DW_CFA_offset_extended";
534 case DW_CFA_restore_extended:
535 return "DW_CFA_restore_extended";
536 case DW_CFA_undefined:
537 return "DW_CFA_undefined";
538 case DW_CFA_same_value:
539 return "DW_CFA_same_value";
540 case DW_CFA_register:
541 return "DW_CFA_register";
542 case DW_CFA_remember_state:
543 return "DW_CFA_remember_state";
544 case DW_CFA_restore_state:
545 return "DW_CFA_restore_state";
546 case DW_CFA_def_cfa:
547 return "DW_CFA_def_cfa";
548 case DW_CFA_def_cfa_register:
549 return "DW_CFA_def_cfa_register";
550 case DW_CFA_def_cfa_offset:
551 return "DW_CFA_def_cfa_offset";
552
553 /* DWARF 3 */
554 case DW_CFA_def_cfa_expression:
555 return "DW_CFA_def_cfa_expression";
556 case DW_CFA_expression:
557 return "DW_CFA_expression";
558 case DW_CFA_offset_extended_sf:
559 return "DW_CFA_offset_extended_sf";
560 case DW_CFA_def_cfa_sf:
561 return "DW_CFA_def_cfa_sf";
562 case DW_CFA_def_cfa_offset_sf:
563 return "DW_CFA_def_cfa_offset_sf";
564
565 /* SGI/MIPS specific */
566 case DW_CFA_MIPS_advance_loc8:
567 return "DW_CFA_MIPS_advance_loc8";
568
569 /* GNU extensions */
570 case DW_CFA_GNU_window_save:
571 return "DW_CFA_GNU_window_save";
572 case DW_CFA_GNU_args_size:
573 return "DW_CFA_GNU_args_size";
574 case DW_CFA_GNU_negative_offset_extended:
575 return "DW_CFA_GNU_negative_offset_extended";
576
577 default:
578 return "DW_CFA_<unknown>";
579 }
580 }
581
582 /* Return a pointer to a newly allocated Call Frame Instruction. */
583
584 static inline dw_cfi_ref
585 new_cfi (void)
586 {
587 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
588
589 cfi->dw_cfi_next = NULL;
590 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
591 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
592
593 return cfi;
594 }
595
596 /* Add a Call Frame Instruction to list of instructions. */
597
598 static inline void
599 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
600 {
601 dw_cfi_ref *p;
602
603 /* Find the end of the chain. */
604 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
605 ;
606
607 *p = cfi;
608 }
609
610 /* Generate a new label for the CFI info to refer to. */
611
612 char *
613 dwarf2out_cfi_label (void)
614 {
615 static char label[20];
616
617 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
618 ASM_OUTPUT_LABEL (asm_out_file, label);
619 return label;
620 }
621
622 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
623 or to the CIE if LABEL is NULL. */
624
625 static void
626 add_fde_cfi (const char *label, dw_cfi_ref cfi)
627 {
628 if (label)
629 {
630 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
631
632 if (*label == 0)
633 label = dwarf2out_cfi_label ();
634
635 if (fde->dw_fde_current_label == NULL
636 || strcmp (label, fde->dw_fde_current_label) != 0)
637 {
638 dw_cfi_ref xcfi;
639
640 fde->dw_fde_current_label = label = xstrdup (label);
641
642 /* Set the location counter to the new label. */
643 xcfi = new_cfi ();
644 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
645 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
646 add_cfi (&fde->dw_fde_cfi, xcfi);
647 }
648
649 add_cfi (&fde->dw_fde_cfi, cfi);
650 }
651
652 else
653 add_cfi (&cie_cfi_head, cfi);
654 }
655
656 /* Subroutine of lookup_cfa. */
657
658 static inline void
659 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
660 {
661 switch (cfi->dw_cfi_opc)
662 {
663 case DW_CFA_def_cfa_offset:
664 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
665 break;
666 case DW_CFA_def_cfa_register:
667 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
668 break;
669 case DW_CFA_def_cfa:
670 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
671 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
672 break;
673 case DW_CFA_def_cfa_expression:
674 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
675 break;
676 default:
677 break;
678 }
679 }
680
681 /* Find the previous value for the CFA. */
682
683 static void
684 lookup_cfa (dw_cfa_location *loc)
685 {
686 dw_cfi_ref cfi;
687
688 loc->reg = (unsigned long) -1;
689 loc->offset = 0;
690 loc->indirect = 0;
691 loc->base_offset = 0;
692
693 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
694 lookup_cfa_1 (cfi, loc);
695
696 if (fde_table_in_use)
697 {
698 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
699 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
700 lookup_cfa_1 (cfi, loc);
701 }
702 }
703
704 /* The current rule for calculating the DWARF2 canonical frame address. */
705 static dw_cfa_location cfa;
706
707 /* The register used for saving registers to the stack, and its offset
708 from the CFA. */
709 static dw_cfa_location cfa_store;
710
711 /* The running total of the size of arguments pushed onto the stack. */
712 static HOST_WIDE_INT args_size;
713
714 /* The last args_size we actually output. */
715 static HOST_WIDE_INT old_args_size;
716
717 /* Entry point to update the canonical frame address (CFA).
718 LABEL is passed to add_fde_cfi. The value of CFA is now to be
719 calculated from REG+OFFSET. */
720
721 void
722 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
723 {
724 dw_cfa_location loc;
725 loc.indirect = 0;
726 loc.base_offset = 0;
727 loc.reg = reg;
728 loc.offset = offset;
729 def_cfa_1 (label, &loc);
730 }
731
732 /* This routine does the actual work. The CFA is now calculated from
733 the dw_cfa_location structure. */
734
735 static void
736 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
737 {
738 dw_cfi_ref cfi;
739 dw_cfa_location old_cfa, loc;
740
741 cfa = *loc_p;
742 loc = *loc_p;
743
744 if (cfa_store.reg == loc.reg && loc.indirect == 0)
745 cfa_store.offset = loc.offset;
746
747 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
748 lookup_cfa (&old_cfa);
749
750 /* If nothing changed, no need to issue any call frame instructions. */
751 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
752 && loc.indirect == old_cfa.indirect
753 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
754 return;
755
756 cfi = new_cfi ();
757
758 if (loc.reg == old_cfa.reg && !loc.indirect)
759 {
760 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
761 indicating the CFA register did not change but the offset
762 did. */
763 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
764 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
765 }
766
767 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
768 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
769 && !loc.indirect)
770 {
771 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
772 indicating the CFA register has changed to <register> but the
773 offset has not changed. */
774 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
775 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
776 }
777 #endif
778
779 else if (loc.indirect == 0)
780 {
781 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
782 indicating the CFA register has changed to <register> with
783 the specified offset. */
784 cfi->dw_cfi_opc = DW_CFA_def_cfa;
785 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
786 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
787 }
788 else
789 {
790 /* Construct a DW_CFA_def_cfa_expression instruction to
791 calculate the CFA using a full location expression since no
792 register-offset pair is available. */
793 struct dw_loc_descr_struct *loc_list;
794
795 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
796 loc_list = build_cfa_loc (&loc);
797 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
798 }
799
800 add_fde_cfi (label, cfi);
801 }
802
803 /* Add the CFI for saving a register. REG is the CFA column number.
804 LABEL is passed to add_fde_cfi.
805 If SREG is -1, the register is saved at OFFSET from the CFA;
806 otherwise it is saved in SREG. */
807
808 static void
809 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
810 {
811 dw_cfi_ref cfi = new_cfi ();
812
813 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
814
815 /* The following comparison is correct. -1 is used to indicate that
816 the value isn't a register number. */
817 if (sreg == (unsigned int) -1)
818 {
819 if (reg & ~0x3f)
820 /* The register number won't fit in 6 bits, so we have to use
821 the long form. */
822 cfi->dw_cfi_opc = DW_CFA_offset_extended;
823 else
824 cfi->dw_cfi_opc = DW_CFA_offset;
825
826 #ifdef ENABLE_CHECKING
827 {
828 /* If we get an offset that is not a multiple of
829 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
830 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
831 description. */
832 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
833
834 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
835 abort ();
836 }
837 #endif
838 offset /= DWARF_CIE_DATA_ALIGNMENT;
839 if (offset < 0)
840 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
841
842 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
843 }
844 else if (sreg == reg)
845 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
846 return;
847 else
848 {
849 cfi->dw_cfi_opc = DW_CFA_register;
850 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
851 }
852
853 add_fde_cfi (label, cfi);
854 }
855
856 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
857 This CFI tells the unwinder that it needs to restore the window registers
858 from the previous frame's window save area.
859
860 ??? Perhaps we should note in the CIE where windows are saved (instead of
861 assuming 0(cfa)) and what registers are in the window. */
862
863 void
864 dwarf2out_window_save (const char *label)
865 {
866 dw_cfi_ref cfi = new_cfi ();
867
868 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
869 add_fde_cfi (label, cfi);
870 }
871
872 /* Add a CFI to update the running total of the size of arguments
873 pushed onto the stack. */
874
875 void
876 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
877 {
878 dw_cfi_ref cfi;
879
880 if (size == old_args_size)
881 return;
882
883 old_args_size = size;
884
885 cfi = new_cfi ();
886 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
887 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
888 add_fde_cfi (label, cfi);
889 }
890
891 /* Entry point for saving a register to the stack. REG is the GCC register
892 number. LABEL and OFFSET are passed to reg_save. */
893
894 void
895 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
896 {
897 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
898 }
899
900 /* Entry point for saving the return address in the stack.
901 LABEL and OFFSET are passed to reg_save. */
902
903 void
904 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
905 {
906 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
907 }
908
909 /* Entry point for saving the return address in a register.
910 LABEL and SREG are passed to reg_save. */
911
912 void
913 dwarf2out_return_reg (const char *label, unsigned int sreg)
914 {
915 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
916 }
917
918 /* Record the initial position of the return address. RTL is
919 INCOMING_RETURN_ADDR_RTX. */
920
921 static void
922 initial_return_save (rtx rtl)
923 {
924 unsigned int reg = (unsigned int) -1;
925 HOST_WIDE_INT offset = 0;
926
927 switch (GET_CODE (rtl))
928 {
929 case REG:
930 /* RA is in a register. */
931 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
932 break;
933
934 case MEM:
935 /* RA is on the stack. */
936 rtl = XEXP (rtl, 0);
937 switch (GET_CODE (rtl))
938 {
939 case REG:
940 if (REGNO (rtl) != STACK_POINTER_REGNUM)
941 abort ();
942 offset = 0;
943 break;
944
945 case PLUS:
946 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
947 abort ();
948 offset = INTVAL (XEXP (rtl, 1));
949 break;
950
951 case MINUS:
952 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
953 abort ();
954 offset = -INTVAL (XEXP (rtl, 1));
955 break;
956
957 default:
958 abort ();
959 }
960
961 break;
962
963 case PLUS:
964 /* The return address is at some offset from any value we can
965 actually load. For instance, on the SPARC it is in %i7+8. Just
966 ignore the offset for now; it doesn't matter for unwinding frames. */
967 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
968 abort ();
969 initial_return_save (XEXP (rtl, 0));
970 return;
971
972 default:
973 abort ();
974 }
975
976 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
977 }
978
979 /* Given a SET, calculate the amount of stack adjustment it
980 contains. */
981
982 static HOST_WIDE_INT
983 stack_adjust_offset (rtx pattern)
984 {
985 rtx src = SET_SRC (pattern);
986 rtx dest = SET_DEST (pattern);
987 HOST_WIDE_INT offset = 0;
988 enum rtx_code code;
989
990 if (dest == stack_pointer_rtx)
991 {
992 /* (set (reg sp) (plus (reg sp) (const_int))) */
993 code = GET_CODE (src);
994 if (! (code == PLUS || code == MINUS)
995 || XEXP (src, 0) != stack_pointer_rtx
996 || GET_CODE (XEXP (src, 1)) != CONST_INT)
997 return 0;
998
999 offset = INTVAL (XEXP (src, 1));
1000 if (code == PLUS)
1001 offset = -offset;
1002 }
1003 else if (GET_CODE (dest) == MEM)
1004 {
1005 /* (set (mem (pre_dec (reg sp))) (foo)) */
1006 src = XEXP (dest, 0);
1007 code = GET_CODE (src);
1008
1009 switch (code)
1010 {
1011 case PRE_MODIFY:
1012 case POST_MODIFY:
1013 if (XEXP (src, 0) == stack_pointer_rtx)
1014 {
1015 rtx val = XEXP (XEXP (src, 1), 1);
1016 /* We handle only adjustments by constant amount. */
1017 if (GET_CODE (XEXP (src, 1)) != PLUS ||
1018 GET_CODE (val) != CONST_INT)
1019 abort ();
1020 offset = -INTVAL (val);
1021 break;
1022 }
1023 return 0;
1024
1025 case PRE_DEC:
1026 case POST_DEC:
1027 if (XEXP (src, 0) == stack_pointer_rtx)
1028 {
1029 offset = GET_MODE_SIZE (GET_MODE (dest));
1030 break;
1031 }
1032 return 0;
1033
1034 case PRE_INC:
1035 case POST_INC:
1036 if (XEXP (src, 0) == stack_pointer_rtx)
1037 {
1038 offset = -GET_MODE_SIZE (GET_MODE (dest));
1039 break;
1040 }
1041 return 0;
1042
1043 default:
1044 return 0;
1045 }
1046 }
1047 else
1048 return 0;
1049
1050 return offset;
1051 }
1052
1053 /* Check INSN to see if it looks like a push or a stack adjustment, and
1054 make a note of it if it does. EH uses this information to find out how
1055 much extra space it needs to pop off the stack. */
1056
1057 static void
1058 dwarf2out_stack_adjust (rtx insn)
1059 {
1060 HOST_WIDE_INT offset;
1061 const char *label;
1062 int i;
1063
1064 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1065 with this function. Proper support would require all frame-related
1066 insns to be marked, and to be able to handle saving state around
1067 epilogues textually in the middle of the function. */
1068 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1069 return;
1070
1071 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1072 {
1073 /* Extract the size of the args from the CALL rtx itself. */
1074 insn = PATTERN (insn);
1075 if (GET_CODE (insn) == PARALLEL)
1076 insn = XVECEXP (insn, 0, 0);
1077 if (GET_CODE (insn) == SET)
1078 insn = SET_SRC (insn);
1079 if (GET_CODE (insn) != CALL)
1080 abort ();
1081
1082 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1083 return;
1084 }
1085
1086 /* If only calls can throw, and we have a frame pointer,
1087 save up adjustments until we see the CALL_INSN. */
1088 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1089 return;
1090
1091 if (GET_CODE (insn) == BARRIER)
1092 {
1093 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1094 the compiler will have already emitted a stack adjustment, but
1095 doesn't bother for calls to noreturn functions. */
1096 #ifdef STACK_GROWS_DOWNWARD
1097 offset = -args_size;
1098 #else
1099 offset = args_size;
1100 #endif
1101 }
1102 else if (GET_CODE (PATTERN (insn)) == SET)
1103 offset = stack_adjust_offset (PATTERN (insn));
1104 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1105 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1106 {
1107 /* There may be stack adjustments inside compound insns. Search
1108 for them. */
1109 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1110 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1111 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1112 }
1113 else
1114 return;
1115
1116 if (offset == 0)
1117 return;
1118
1119 if (cfa.reg == STACK_POINTER_REGNUM)
1120 cfa.offset += offset;
1121
1122 #ifndef STACK_GROWS_DOWNWARD
1123 offset = -offset;
1124 #endif
1125
1126 args_size += offset;
1127 if (args_size < 0)
1128 args_size = 0;
1129
1130 label = dwarf2out_cfi_label ();
1131 def_cfa_1 (label, &cfa);
1132 dwarf2out_args_size (label, args_size);
1133 }
1134
1135 #endif
1136
1137 /* We delay emitting a register save until either (a) we reach the end
1138 of the prologue or (b) the register is clobbered. This clusters
1139 register saves so that there are fewer pc advances. */
1140
1141 struct queued_reg_save GTY(())
1142 {
1143 struct queued_reg_save *next;
1144 rtx reg;
1145 HOST_WIDE_INT cfa_offset;
1146 };
1147
1148 static GTY(()) struct queued_reg_save *queued_reg_saves;
1149
1150 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1151 static const char *last_reg_save_label;
1152
1153 static void
1154 queue_reg_save (const char *label, rtx reg, HOST_WIDE_INT offset)
1155 {
1156 struct queued_reg_save *q = ggc_alloc (sizeof (*q));
1157
1158 q->next = queued_reg_saves;
1159 q->reg = reg;
1160 q->cfa_offset = offset;
1161 queued_reg_saves = q;
1162
1163 last_reg_save_label = label;
1164 }
1165
1166 static void
1167 flush_queued_reg_saves (void)
1168 {
1169 struct queued_reg_save *q, *next;
1170
1171 for (q = queued_reg_saves; q; q = next)
1172 {
1173 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1174 next = q->next;
1175 }
1176
1177 queued_reg_saves = NULL;
1178 last_reg_save_label = NULL;
1179 }
1180
1181 static bool
1182 clobbers_queued_reg_save (rtx insn)
1183 {
1184 struct queued_reg_save *q;
1185
1186 for (q = queued_reg_saves; q; q = q->next)
1187 if (modified_in_p (q->reg, insn))
1188 return true;
1189
1190 return false;
1191 }
1192
1193
1194 /* A temporary register holding an integral value used in adjusting SP
1195 or setting up the store_reg. The "offset" field holds the integer
1196 value, not an offset. */
1197 static dw_cfa_location cfa_temp;
1198
1199 /* Record call frame debugging information for an expression EXPR,
1200 which either sets SP or FP (adjusting how we calculate the frame
1201 address) or saves a register to the stack. LABEL indicates the
1202 address of EXPR.
1203
1204 This function encodes a state machine mapping rtxes to actions on
1205 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1206 users need not read the source code.
1207
1208 The High-Level Picture
1209
1210 Changes in the register we use to calculate the CFA: Currently we
1211 assume that if you copy the CFA register into another register, we
1212 should take the other one as the new CFA register; this seems to
1213 work pretty well. If it's wrong for some target, it's simple
1214 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1215
1216 Changes in the register we use for saving registers to the stack:
1217 This is usually SP, but not always. Again, we deduce that if you
1218 copy SP into another register (and SP is not the CFA register),
1219 then the new register is the one we will be using for register
1220 saves. This also seems to work.
1221
1222 Register saves: There's not much guesswork about this one; if
1223 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1224 register save, and the register used to calculate the destination
1225 had better be the one we think we're using for this purpose.
1226
1227 Except: If the register being saved is the CFA register, and the
1228 offset is nonzero, we are saving the CFA, so we assume we have to
1229 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1230 the intent is to save the value of SP from the previous frame.
1231
1232 Invariants / Summaries of Rules
1233
1234 cfa current rule for calculating the CFA. It usually
1235 consists of a register and an offset.
1236 cfa_store register used by prologue code to save things to the stack
1237 cfa_store.offset is the offset from the value of
1238 cfa_store.reg to the actual CFA
1239 cfa_temp register holding an integral value. cfa_temp.offset
1240 stores the value, which will be used to adjust the
1241 stack pointer. cfa_temp is also used like cfa_store,
1242 to track stores to the stack via fp or a temp reg.
1243
1244 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1245 with cfa.reg as the first operand changes the cfa.reg and its
1246 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1247 cfa_temp.offset.
1248
1249 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1250 expression yielding a constant. This sets cfa_temp.reg
1251 and cfa_temp.offset.
1252
1253 Rule 5: Create a new register cfa_store used to save items to the
1254 stack.
1255
1256 Rules 10-14: Save a register to the stack. Define offset as the
1257 difference of the original location and cfa_store's
1258 location (or cfa_temp's location if cfa_temp is used).
1259
1260 The Rules
1261
1262 "{a,b}" indicates a choice of a xor b.
1263 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1264
1265 Rule 1:
1266 (set <reg1> <reg2>:cfa.reg)
1267 effects: cfa.reg = <reg1>
1268 cfa.offset unchanged
1269 cfa_temp.reg = <reg1>
1270 cfa_temp.offset = cfa.offset
1271
1272 Rule 2:
1273 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1274 {<const_int>,<reg>:cfa_temp.reg}))
1275 effects: cfa.reg = sp if fp used
1276 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1277 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1278 if cfa_store.reg==sp
1279
1280 Rule 3:
1281 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1282 effects: cfa.reg = fp
1283 cfa_offset += +/- <const_int>
1284
1285 Rule 4:
1286 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1287 constraints: <reg1> != fp
1288 <reg1> != sp
1289 effects: cfa.reg = <reg1>
1290 cfa_temp.reg = <reg1>
1291 cfa_temp.offset = cfa.offset
1292
1293 Rule 5:
1294 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1295 constraints: <reg1> != fp
1296 <reg1> != sp
1297 effects: cfa_store.reg = <reg1>
1298 cfa_store.offset = cfa.offset - cfa_temp.offset
1299
1300 Rule 6:
1301 (set <reg> <const_int>)
1302 effects: cfa_temp.reg = <reg>
1303 cfa_temp.offset = <const_int>
1304
1305 Rule 7:
1306 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1307 effects: cfa_temp.reg = <reg1>
1308 cfa_temp.offset |= <const_int>
1309
1310 Rule 8:
1311 (set <reg> (high <exp>))
1312 effects: none
1313
1314 Rule 9:
1315 (set <reg> (lo_sum <exp> <const_int>))
1316 effects: cfa_temp.reg = <reg>
1317 cfa_temp.offset = <const_int>
1318
1319 Rule 10:
1320 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1321 effects: cfa_store.offset -= <const_int>
1322 cfa.offset = cfa_store.offset if cfa.reg == sp
1323 cfa.reg = sp
1324 cfa.base_offset = -cfa_store.offset
1325
1326 Rule 11:
1327 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1328 effects: cfa_store.offset += -/+ mode_size(mem)
1329 cfa.offset = cfa_store.offset if cfa.reg == sp
1330 cfa.reg = sp
1331 cfa.base_offset = -cfa_store.offset
1332
1333 Rule 12:
1334 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1335
1336 <reg2>)
1337 effects: cfa.reg = <reg1>
1338 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1339
1340 Rule 13:
1341 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1342 effects: cfa.reg = <reg1>
1343 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1344
1345 Rule 14:
1346 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1347 effects: cfa.reg = <reg1>
1348 cfa.base_offset = -cfa_temp.offset
1349 cfa_temp.offset -= mode_size(mem) */
1350
1351 static void
1352 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1353 {
1354 rtx src, dest;
1355 HOST_WIDE_INT offset;
1356
1357 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1358 the PARALLEL independently. The first element is always processed if
1359 it is a SET. This is for backward compatibility. Other elements
1360 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1361 flag is set in them. */
1362 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1363 {
1364 int par_index;
1365 int limit = XVECLEN (expr, 0);
1366
1367 for (par_index = 0; par_index < limit; par_index++)
1368 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1369 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1370 || par_index == 0))
1371 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1372
1373 return;
1374 }
1375
1376 if (GET_CODE (expr) != SET)
1377 abort ();
1378
1379 src = SET_SRC (expr);
1380 dest = SET_DEST (expr);
1381
1382 switch (GET_CODE (dest))
1383 {
1384 case REG:
1385 /* Rule 1 */
1386 /* Update the CFA rule wrt SP or FP. Make sure src is
1387 relative to the current CFA register. */
1388 switch (GET_CODE (src))
1389 {
1390 /* Setting FP from SP. */
1391 case REG:
1392 if (cfa.reg == (unsigned) REGNO (src))
1393 /* OK. */
1394 ;
1395 else
1396 abort ();
1397
1398 /* We used to require that dest be either SP or FP, but the
1399 ARM copies SP to a temporary register, and from there to
1400 FP. So we just rely on the backends to only set
1401 RTX_FRAME_RELATED_P on appropriate insns. */
1402 cfa.reg = REGNO (dest);
1403 cfa_temp.reg = cfa.reg;
1404 cfa_temp.offset = cfa.offset;
1405 break;
1406
1407 case PLUS:
1408 case MINUS:
1409 case LO_SUM:
1410 if (dest == stack_pointer_rtx)
1411 {
1412 /* Rule 2 */
1413 /* Adjusting SP. */
1414 switch (GET_CODE (XEXP (src, 1)))
1415 {
1416 case CONST_INT:
1417 offset = INTVAL (XEXP (src, 1));
1418 break;
1419 case REG:
1420 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1421 abort ();
1422 offset = cfa_temp.offset;
1423 break;
1424 default:
1425 abort ();
1426 }
1427
1428 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1429 {
1430 /* Restoring SP from FP in the epilogue. */
1431 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1432 abort ();
1433 cfa.reg = STACK_POINTER_REGNUM;
1434 }
1435 else if (GET_CODE (src) == LO_SUM)
1436 /* Assume we've set the source reg of the LO_SUM from sp. */
1437 ;
1438 else if (XEXP (src, 0) != stack_pointer_rtx)
1439 abort ();
1440
1441 if (GET_CODE (src) != MINUS)
1442 offset = -offset;
1443 if (cfa.reg == STACK_POINTER_REGNUM)
1444 cfa.offset += offset;
1445 if (cfa_store.reg == STACK_POINTER_REGNUM)
1446 cfa_store.offset += offset;
1447 }
1448 else if (dest == hard_frame_pointer_rtx)
1449 {
1450 /* Rule 3 */
1451 /* Either setting the FP from an offset of the SP,
1452 or adjusting the FP */
1453 if (! frame_pointer_needed)
1454 abort ();
1455
1456 if (GET_CODE (XEXP (src, 0)) == REG
1457 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1458 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1459 {
1460 offset = INTVAL (XEXP (src, 1));
1461 if (GET_CODE (src) != MINUS)
1462 offset = -offset;
1463 cfa.offset += offset;
1464 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1465 }
1466 else
1467 abort ();
1468 }
1469 else
1470 {
1471 if (GET_CODE (src) == MINUS)
1472 abort ();
1473
1474 /* Rule 4 */
1475 if (GET_CODE (XEXP (src, 0)) == REG
1476 && REGNO (XEXP (src, 0)) == cfa.reg
1477 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1478 {
1479 /* Setting a temporary CFA register that will be copied
1480 into the FP later on. */
1481 offset = - INTVAL (XEXP (src, 1));
1482 cfa.offset += offset;
1483 cfa.reg = REGNO (dest);
1484 /* Or used to save regs to the stack. */
1485 cfa_temp.reg = cfa.reg;
1486 cfa_temp.offset = cfa.offset;
1487 }
1488
1489 /* Rule 5 */
1490 else if (GET_CODE (XEXP (src, 0)) == REG
1491 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1492 && XEXP (src, 1) == stack_pointer_rtx)
1493 {
1494 /* Setting a scratch register that we will use instead
1495 of SP for saving registers to the stack. */
1496 if (cfa.reg != STACK_POINTER_REGNUM)
1497 abort ();
1498 cfa_store.reg = REGNO (dest);
1499 cfa_store.offset = cfa.offset - cfa_temp.offset;
1500 }
1501
1502 /* Rule 9 */
1503 else if (GET_CODE (src) == LO_SUM
1504 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1505 {
1506 cfa_temp.reg = REGNO (dest);
1507 cfa_temp.offset = INTVAL (XEXP (src, 1));
1508 }
1509 else
1510 abort ();
1511 }
1512 break;
1513
1514 /* Rule 6 */
1515 case CONST_INT:
1516 cfa_temp.reg = REGNO (dest);
1517 cfa_temp.offset = INTVAL (src);
1518 break;
1519
1520 /* Rule 7 */
1521 case IOR:
1522 if (GET_CODE (XEXP (src, 0)) != REG
1523 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1524 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1525 abort ();
1526
1527 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1528 cfa_temp.reg = REGNO (dest);
1529 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1530 break;
1531
1532 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1533 which will fill in all of the bits. */
1534 /* Rule 8 */
1535 case HIGH:
1536 break;
1537
1538 default:
1539 abort ();
1540 }
1541
1542 def_cfa_1 (label, &cfa);
1543 break;
1544
1545 case MEM:
1546 if (GET_CODE (src) != REG)
1547 abort ();
1548
1549 /* Saving a register to the stack. Make sure dest is relative to the
1550 CFA register. */
1551 switch (GET_CODE (XEXP (dest, 0)))
1552 {
1553 /* Rule 10 */
1554 /* With a push. */
1555 case PRE_MODIFY:
1556 /* We can't handle variable size modifications. */
1557 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1558 abort ();
1559 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1560
1561 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1562 || cfa_store.reg != STACK_POINTER_REGNUM)
1563 abort ();
1564
1565 cfa_store.offset += offset;
1566 if (cfa.reg == STACK_POINTER_REGNUM)
1567 cfa.offset = cfa_store.offset;
1568
1569 offset = -cfa_store.offset;
1570 break;
1571
1572 /* Rule 11 */
1573 case PRE_INC:
1574 case PRE_DEC:
1575 offset = GET_MODE_SIZE (GET_MODE (dest));
1576 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1577 offset = -offset;
1578
1579 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1580 || cfa_store.reg != STACK_POINTER_REGNUM)
1581 abort ();
1582
1583 cfa_store.offset += offset;
1584 if (cfa.reg == STACK_POINTER_REGNUM)
1585 cfa.offset = cfa_store.offset;
1586
1587 offset = -cfa_store.offset;
1588 break;
1589
1590 /* Rule 12 */
1591 /* With an offset. */
1592 case PLUS:
1593 case MINUS:
1594 case LO_SUM:
1595 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1596 abort ();
1597 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1598 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1599 offset = -offset;
1600
1601 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1602 offset -= cfa_store.offset;
1603 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1604 offset -= cfa_temp.offset;
1605 else
1606 abort ();
1607 break;
1608
1609 /* Rule 13 */
1610 /* Without an offset. */
1611 case REG:
1612 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1613 offset = -cfa_store.offset;
1614 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1615 offset = -cfa_temp.offset;
1616 else
1617 abort ();
1618 break;
1619
1620 /* Rule 14 */
1621 case POST_INC:
1622 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1623 abort ();
1624 offset = -cfa_temp.offset;
1625 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1626 break;
1627
1628 default:
1629 abort ();
1630 }
1631
1632 if (REGNO (src) != STACK_POINTER_REGNUM
1633 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1634 && (unsigned) REGNO (src) == cfa.reg)
1635 {
1636 /* We're storing the current CFA reg into the stack. */
1637
1638 if (cfa.offset == 0)
1639 {
1640 /* If the source register is exactly the CFA, assume
1641 we're saving SP like any other register; this happens
1642 on the ARM. */
1643 def_cfa_1 (label, &cfa);
1644 queue_reg_save (label, stack_pointer_rtx, offset);
1645 break;
1646 }
1647 else
1648 {
1649 /* Otherwise, we'll need to look in the stack to
1650 calculate the CFA. */
1651 rtx x = XEXP (dest, 0);
1652
1653 if (GET_CODE (x) != REG)
1654 x = XEXP (x, 0);
1655 if (GET_CODE (x) != REG)
1656 abort ();
1657
1658 cfa.reg = REGNO (x);
1659 cfa.base_offset = offset;
1660 cfa.indirect = 1;
1661 def_cfa_1 (label, &cfa);
1662 break;
1663 }
1664 }
1665
1666 def_cfa_1 (label, &cfa);
1667 queue_reg_save (label, src, offset);
1668 break;
1669
1670 default:
1671 abort ();
1672 }
1673 }
1674
1675 /* Record call frame debugging information for INSN, which either
1676 sets SP or FP (adjusting how we calculate the frame address) or saves a
1677 register to the stack. If INSN is NULL_RTX, initialize our state. */
1678
1679 void
1680 dwarf2out_frame_debug (rtx insn)
1681 {
1682 const char *label;
1683 rtx src;
1684
1685 if (insn == NULL_RTX)
1686 {
1687 /* Flush any queued register saves. */
1688 flush_queued_reg_saves ();
1689
1690 /* Set up state for generating call frame debug info. */
1691 lookup_cfa (&cfa);
1692 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1693 abort ();
1694
1695 cfa.reg = STACK_POINTER_REGNUM;
1696 cfa_store = cfa;
1697 cfa_temp.reg = -1;
1698 cfa_temp.offset = 0;
1699 return;
1700 }
1701
1702 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1703 flush_queued_reg_saves ();
1704
1705 if (! RTX_FRAME_RELATED_P (insn))
1706 {
1707 if (!ACCUMULATE_OUTGOING_ARGS)
1708 dwarf2out_stack_adjust (insn);
1709
1710 return;
1711 }
1712
1713 label = dwarf2out_cfi_label ();
1714 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1715 if (src)
1716 insn = XEXP (src, 0);
1717 else
1718 insn = PATTERN (insn);
1719
1720 dwarf2out_frame_debug_expr (insn, label);
1721 }
1722
1723 #endif
1724
1725 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1726 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1727 (enum dwarf_call_frame_info cfi);
1728
1729 static enum dw_cfi_oprnd_type
1730 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1731 {
1732 switch (cfi)
1733 {
1734 case DW_CFA_nop:
1735 case DW_CFA_GNU_window_save:
1736 return dw_cfi_oprnd_unused;
1737
1738 case DW_CFA_set_loc:
1739 case DW_CFA_advance_loc1:
1740 case DW_CFA_advance_loc2:
1741 case DW_CFA_advance_loc4:
1742 case DW_CFA_MIPS_advance_loc8:
1743 return dw_cfi_oprnd_addr;
1744
1745 case DW_CFA_offset:
1746 case DW_CFA_offset_extended:
1747 case DW_CFA_def_cfa:
1748 case DW_CFA_offset_extended_sf:
1749 case DW_CFA_def_cfa_sf:
1750 case DW_CFA_restore_extended:
1751 case DW_CFA_undefined:
1752 case DW_CFA_same_value:
1753 case DW_CFA_def_cfa_register:
1754 case DW_CFA_register:
1755 return dw_cfi_oprnd_reg_num;
1756
1757 case DW_CFA_def_cfa_offset:
1758 case DW_CFA_GNU_args_size:
1759 case DW_CFA_def_cfa_offset_sf:
1760 return dw_cfi_oprnd_offset;
1761
1762 case DW_CFA_def_cfa_expression:
1763 case DW_CFA_expression:
1764 return dw_cfi_oprnd_loc;
1765
1766 default:
1767 abort ();
1768 }
1769 }
1770
1771 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1772 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1773 (enum dwarf_call_frame_info cfi);
1774
1775 static enum dw_cfi_oprnd_type
1776 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1777 {
1778 switch (cfi)
1779 {
1780 case DW_CFA_def_cfa:
1781 case DW_CFA_def_cfa_sf:
1782 case DW_CFA_offset:
1783 case DW_CFA_offset_extended_sf:
1784 case DW_CFA_offset_extended:
1785 return dw_cfi_oprnd_offset;
1786
1787 case DW_CFA_register:
1788 return dw_cfi_oprnd_reg_num;
1789
1790 default:
1791 return dw_cfi_oprnd_unused;
1792 }
1793 }
1794
1795 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1796
1797 /* Map register numbers held in the call frame info that gcc has
1798 collected using DWARF_FRAME_REGNUM to those that should be output in
1799 .debug_frame and .eh_frame. */
1800 #ifndef DWARF2_FRAME_REG_OUT
1801 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
1802 #endif
1803
1804 /* Output a Call Frame Information opcode and its operand(s). */
1805
1806 static void
1807 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1808 {
1809 unsigned long r;
1810 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1811 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1812 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1813 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1814 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1815 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1816 {
1817 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1818 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1819 "DW_CFA_offset, column 0x%lx", r);
1820 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1821 }
1822 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1823 {
1824 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1825 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1826 "DW_CFA_restore, column 0x%lx", r);
1827 }
1828 else
1829 {
1830 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1831 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1832
1833 switch (cfi->dw_cfi_opc)
1834 {
1835 case DW_CFA_set_loc:
1836 if (for_eh)
1837 dw2_asm_output_encoded_addr_rtx (
1838 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1839 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1840 NULL);
1841 else
1842 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1843 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1844 break;
1845
1846 case DW_CFA_advance_loc1:
1847 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1848 fde->dw_fde_current_label, NULL);
1849 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1850 break;
1851
1852 case DW_CFA_advance_loc2:
1853 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1854 fde->dw_fde_current_label, NULL);
1855 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1856 break;
1857
1858 case DW_CFA_advance_loc4:
1859 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1860 fde->dw_fde_current_label, NULL);
1861 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1862 break;
1863
1864 case DW_CFA_MIPS_advance_loc8:
1865 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1866 fde->dw_fde_current_label, NULL);
1867 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1868 break;
1869
1870 case DW_CFA_offset_extended:
1871 case DW_CFA_def_cfa:
1872 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1873 dw2_asm_output_data_uleb128 (r, NULL);
1874 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1875 break;
1876
1877 case DW_CFA_offset_extended_sf:
1878 case DW_CFA_def_cfa_sf:
1879 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1880 dw2_asm_output_data_uleb128 (r, NULL);
1881 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1882 break;
1883
1884 case DW_CFA_restore_extended:
1885 case DW_CFA_undefined:
1886 case DW_CFA_same_value:
1887 case DW_CFA_def_cfa_register:
1888 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1889 dw2_asm_output_data_uleb128 (r, NULL);
1890 break;
1891
1892 case DW_CFA_register:
1893 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1894 dw2_asm_output_data_uleb128 (r, NULL);
1895 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
1896 dw2_asm_output_data_uleb128 (r, NULL);
1897 break;
1898
1899 case DW_CFA_def_cfa_offset:
1900 case DW_CFA_GNU_args_size:
1901 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1902 break;
1903
1904 case DW_CFA_def_cfa_offset_sf:
1905 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1906 break;
1907
1908 case DW_CFA_GNU_window_save:
1909 break;
1910
1911 case DW_CFA_def_cfa_expression:
1912 case DW_CFA_expression:
1913 output_cfa_loc (cfi);
1914 break;
1915
1916 case DW_CFA_GNU_negative_offset_extended:
1917 /* Obsoleted by DW_CFA_offset_extended_sf. */
1918 abort ();
1919
1920 default:
1921 break;
1922 }
1923 }
1924 }
1925
1926 /* Output the call frame information used to record information
1927 that relates to calculating the frame pointer, and records the
1928 location of saved registers. */
1929
1930 static void
1931 output_call_frame_info (int for_eh)
1932 {
1933 unsigned int i;
1934 dw_fde_ref fde;
1935 dw_cfi_ref cfi;
1936 char l1[20], l2[20], section_start_label[20];
1937 bool any_lsda_needed = false;
1938 char augmentation[6];
1939 int augmentation_size;
1940 int fde_encoding = DW_EH_PE_absptr;
1941 int per_encoding = DW_EH_PE_absptr;
1942 int lsda_encoding = DW_EH_PE_absptr;
1943
1944 /* Don't emit a CIE if there won't be any FDEs. */
1945 if (fde_table_in_use == 0)
1946 return;
1947
1948 /* If we make FDEs linkonce, we may have to emit an empty label for
1949 an FDE that wouldn't otherwise be emitted. We want to avoid
1950 having an FDE kept around when the function it refers to is
1951 discarded. (Example where this matters: a primary function
1952 template in C++ requires EH information, but an explicit
1953 specialization doesn't. */
1954 if (TARGET_USES_WEAK_UNWIND_INFO
1955 && ! flag_asynchronous_unwind_tables
1956 && for_eh)
1957 for (i = 0; i < fde_table_in_use; i++)
1958 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
1959 && !fde_table[i].uses_eh_lsda
1960 && ! DECL_ONE_ONLY (fde_table[i].decl))
1961 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
1962 /* empty */ 1);
1963
1964 /* If we don't have any functions we'll want to unwind out of, don't
1965 emit any EH unwind information. Note that if exceptions aren't
1966 enabled, we won't have collected nothrow information, and if we
1967 asked for asynchronous tables, we always want this info. */
1968 if (for_eh)
1969 {
1970 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
1971
1972 for (i = 0; i < fde_table_in_use; i++)
1973 if (fde_table[i].uses_eh_lsda)
1974 any_eh_needed = any_lsda_needed = true;
1975 else if (TARGET_USES_WEAK_UNWIND_INFO
1976 && DECL_ONE_ONLY (fde_table[i].decl))
1977 any_eh_needed = 1;
1978 else if (! fde_table[i].nothrow
1979 && ! fde_table[i].all_throwers_are_sibcalls)
1980 any_eh_needed = true;
1981
1982 if (! any_eh_needed)
1983 return;
1984 }
1985
1986 /* We're going to be generating comments, so turn on app. */
1987 if (flag_debug_asm)
1988 app_enable ();
1989
1990 if (for_eh)
1991 targetm.asm_out.eh_frame_section ();
1992 else
1993 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1994
1995 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1996 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1997
1998 /* Output the CIE. */
1999 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2000 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2001 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2002 "Length of Common Information Entry");
2003 ASM_OUTPUT_LABEL (asm_out_file, l1);
2004
2005 /* Now that the CIE pointer is PC-relative for EH,
2006 use 0 to identify the CIE. */
2007 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2008 (for_eh ? 0 : DW_CIE_ID),
2009 "CIE Identifier Tag");
2010
2011 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2012
2013 augmentation[0] = 0;
2014 augmentation_size = 0;
2015 if (for_eh)
2016 {
2017 char *p;
2018
2019 /* Augmentation:
2020 z Indicates that a uleb128 is present to size the
2021 augmentation section.
2022 L Indicates the encoding (and thus presence) of
2023 an LSDA pointer in the FDE augmentation.
2024 R Indicates a non-default pointer encoding for
2025 FDE code pointers.
2026 P Indicates the presence of an encoding + language
2027 personality routine in the CIE augmentation. */
2028
2029 fde_encoding = TARGET_USES_WEAK_UNWIND_INFO
2030 ? ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1)
2031 : ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2032 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2033 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2034
2035 p = augmentation + 1;
2036 if (eh_personality_libfunc)
2037 {
2038 *p++ = 'P';
2039 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2040 }
2041 if (any_lsda_needed)
2042 {
2043 *p++ = 'L';
2044 augmentation_size += 1;
2045 }
2046 if (fde_encoding != DW_EH_PE_absptr)
2047 {
2048 *p++ = 'R';
2049 augmentation_size += 1;
2050 }
2051 if (p > augmentation + 1)
2052 {
2053 augmentation[0] = 'z';
2054 *p = '\0';
2055 }
2056
2057 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2058 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2059 {
2060 int offset = ( 4 /* Length */
2061 + 4 /* CIE Id */
2062 + 1 /* CIE version */
2063 + strlen (augmentation) + 1 /* Augmentation */
2064 + size_of_uleb128 (1) /* Code alignment */
2065 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2066 + 1 /* RA column */
2067 + 1 /* Augmentation size */
2068 + 1 /* Personality encoding */ );
2069 int pad = -offset & (PTR_SIZE - 1);
2070
2071 augmentation_size += pad;
2072
2073 /* Augmentations should be small, so there's scarce need to
2074 iterate for a solution. Die if we exceed one uleb128 byte. */
2075 if (size_of_uleb128 (augmentation_size) != 1)
2076 abort ();
2077 }
2078 }
2079
2080 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2081 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2082 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2083 "CIE Data Alignment Factor");
2084 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2085
2086 if (augmentation[0])
2087 {
2088 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2089 if (eh_personality_libfunc)
2090 {
2091 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2092 eh_data_format_name (per_encoding));
2093 dw2_asm_output_encoded_addr_rtx (per_encoding,
2094 eh_personality_libfunc, NULL);
2095 }
2096
2097 if (any_lsda_needed)
2098 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2099 eh_data_format_name (lsda_encoding));
2100
2101 if (fde_encoding != DW_EH_PE_absptr)
2102 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2103 eh_data_format_name (fde_encoding));
2104 }
2105
2106 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2107 output_cfi (cfi, NULL, for_eh);
2108
2109 /* Pad the CIE out to an address sized boundary. */
2110 ASM_OUTPUT_ALIGN (asm_out_file,
2111 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2112 ASM_OUTPUT_LABEL (asm_out_file, l2);
2113
2114 /* Loop through all of the FDE's. */
2115 for (i = 0; i < fde_table_in_use; i++)
2116 {
2117 fde = &fde_table[i];
2118
2119 /* Don't emit EH unwind info for leaf functions that don't need it. */
2120 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2121 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2122 && (! TARGET_USES_WEAK_UNWIND_INFO || ! DECL_ONE_ONLY (fde->decl))
2123 && !fde->uses_eh_lsda)
2124 continue;
2125
2126 targetm.asm_out.unwind_label (asm_out_file, fde->decl, /* empty */ 0);
2127 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2128 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2129 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2130 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2131 "FDE Length");
2132 ASM_OUTPUT_LABEL (asm_out_file, l1);
2133
2134 if (for_eh)
2135 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2136 else
2137 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2138 "FDE CIE offset");
2139
2140 if (for_eh)
2141 {
2142 if (TARGET_USES_WEAK_UNWIND_INFO
2143 && DECL_ONE_ONLY (fde->decl))
2144 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2145 gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER
2146 (DECL_ASSEMBLER_NAME (fde->decl))),
2147 "FDE initial location");
2148 else
2149 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2150 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
2151 "FDE initial location");
2152 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2153 fde->dw_fde_end, fde->dw_fde_begin,
2154 "FDE address range");
2155 }
2156 else
2157 {
2158 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2159 "FDE initial location");
2160 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2161 fde->dw_fde_end, fde->dw_fde_begin,
2162 "FDE address range");
2163 }
2164
2165 if (augmentation[0])
2166 {
2167 if (any_lsda_needed)
2168 {
2169 int size = size_of_encoded_value (lsda_encoding);
2170
2171 if (lsda_encoding == DW_EH_PE_aligned)
2172 {
2173 int offset = ( 4 /* Length */
2174 + 4 /* CIE offset */
2175 + 2 * size_of_encoded_value (fde_encoding)
2176 + 1 /* Augmentation size */ );
2177 int pad = -offset & (PTR_SIZE - 1);
2178
2179 size += pad;
2180 if (size_of_uleb128 (size) != 1)
2181 abort ();
2182 }
2183
2184 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2185
2186 if (fde->uses_eh_lsda)
2187 {
2188 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2189 fde->funcdef_number);
2190 dw2_asm_output_encoded_addr_rtx (
2191 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2192 "Language Specific Data Area");
2193 }
2194 else
2195 {
2196 if (lsda_encoding == DW_EH_PE_aligned)
2197 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2198 dw2_asm_output_data
2199 (size_of_encoded_value (lsda_encoding), 0,
2200 "Language Specific Data Area (none)");
2201 }
2202 }
2203 else
2204 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2205 }
2206
2207 /* Loop through the Call Frame Instructions associated with
2208 this FDE. */
2209 fde->dw_fde_current_label = fde->dw_fde_begin;
2210 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2211 output_cfi (cfi, fde, for_eh);
2212
2213 /* Pad the FDE out to an address sized boundary. */
2214 ASM_OUTPUT_ALIGN (asm_out_file,
2215 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2216 ASM_OUTPUT_LABEL (asm_out_file, l2);
2217 }
2218
2219 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2220 dw2_asm_output_data (4, 0, "End of Table");
2221 #ifdef MIPS_DEBUGGING_INFO
2222 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2223 get a value of 0. Putting .align 0 after the label fixes it. */
2224 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2225 #endif
2226
2227 /* Turn off app to make assembly quicker. */
2228 if (flag_debug_asm)
2229 app_disable ();
2230 }
2231
2232 /* Output a marker (i.e. a label) for the beginning of a function, before
2233 the prologue. */
2234
2235 void
2236 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2237 const char *file ATTRIBUTE_UNUSED)
2238 {
2239 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2240 dw_fde_ref fde;
2241
2242 current_function_func_begin_label = 0;
2243
2244 #ifdef IA64_UNWIND_INFO
2245 /* ??? current_function_func_begin_label is also used by except.c
2246 for call-site information. We must emit this label if it might
2247 be used. */
2248 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2249 && ! dwarf2out_do_frame ())
2250 return;
2251 #else
2252 if (! dwarf2out_do_frame ())
2253 return;
2254 #endif
2255
2256 function_section (current_function_decl);
2257 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2258 current_function_funcdef_no);
2259 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2260 current_function_funcdef_no);
2261 current_function_func_begin_label = get_identifier (label);
2262
2263 #ifdef IA64_UNWIND_INFO
2264 /* We can elide the fde allocation if we're not emitting debug info. */
2265 if (! dwarf2out_do_frame ())
2266 return;
2267 #endif
2268
2269 /* Expand the fde table if necessary. */
2270 if (fde_table_in_use == fde_table_allocated)
2271 {
2272 fde_table_allocated += FDE_TABLE_INCREMENT;
2273 fde_table = ggc_realloc (fde_table,
2274 fde_table_allocated * sizeof (dw_fde_node));
2275 memset (fde_table + fde_table_in_use, 0,
2276 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2277 }
2278
2279 /* Record the FDE associated with this function. */
2280 current_funcdef_fde = fde_table_in_use;
2281
2282 /* Add the new FDE at the end of the fde_table. */
2283 fde = &fde_table[fde_table_in_use++];
2284 fde->decl = current_function_decl;
2285 fde->dw_fde_begin = xstrdup (label);
2286 fde->dw_fde_current_label = NULL;
2287 fde->dw_fde_end = NULL;
2288 fde->dw_fde_cfi = NULL;
2289 fde->funcdef_number = current_function_funcdef_no;
2290 fde->nothrow = current_function_nothrow;
2291 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2292 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2293
2294 args_size = old_args_size = 0;
2295
2296 /* We only want to output line number information for the genuine dwarf2
2297 prologue case, not the eh frame case. */
2298 #ifdef DWARF2_DEBUGGING_INFO
2299 if (file)
2300 dwarf2out_source_line (line, file);
2301 #endif
2302 }
2303
2304 /* Output a marker (i.e. a label) for the absolute end of the generated code
2305 for a function definition. This gets called *after* the epilogue code has
2306 been generated. */
2307
2308 void
2309 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2310 const char *file ATTRIBUTE_UNUSED)
2311 {
2312 dw_fde_ref fde;
2313 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2314
2315 /* Output a label to mark the endpoint of the code generated for this
2316 function. */
2317 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2318 current_function_funcdef_no);
2319 ASM_OUTPUT_LABEL (asm_out_file, label);
2320 fde = &fde_table[fde_table_in_use - 1];
2321 fde->dw_fde_end = xstrdup (label);
2322 }
2323
2324 void
2325 dwarf2out_frame_init (void)
2326 {
2327 /* Allocate the initial hunk of the fde_table. */
2328 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2329 fde_table_allocated = FDE_TABLE_INCREMENT;
2330 fde_table_in_use = 0;
2331
2332 /* Generate the CFA instructions common to all FDE's. Do it now for the
2333 sake of lookup_cfa. */
2334
2335 #ifdef DWARF2_UNWIND_INFO
2336 /* On entry, the Canonical Frame Address is at SP. */
2337 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2338 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2339 #endif
2340 }
2341
2342 void
2343 dwarf2out_frame_finish (void)
2344 {
2345 /* Output call frame information. */
2346 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2347 output_call_frame_info (0);
2348
2349 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2350 output_call_frame_info (1);
2351 }
2352 #endif
2353 \f
2354 /* And now, the subset of the debugging information support code necessary
2355 for emitting location expressions. */
2356
2357 /* We need some way to distinguish DW_OP_addr with a direct symbol
2358 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2359 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2360
2361
2362 typedef struct dw_val_struct *dw_val_ref;
2363 typedef struct die_struct *dw_die_ref;
2364 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2365 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2366
2367 /* Each DIE may have a series of attribute/value pairs. Values
2368 can take on several forms. The forms that are used in this
2369 implementation are listed below. */
2370
2371 enum dw_val_class
2372 {
2373 dw_val_class_addr,
2374 dw_val_class_offset,
2375 dw_val_class_loc,
2376 dw_val_class_loc_list,
2377 dw_val_class_range_list,
2378 dw_val_class_const,
2379 dw_val_class_unsigned_const,
2380 dw_val_class_long_long,
2381 dw_val_class_vec,
2382 dw_val_class_flag,
2383 dw_val_class_die_ref,
2384 dw_val_class_fde_ref,
2385 dw_val_class_lbl_id,
2386 dw_val_class_lbl_offset,
2387 dw_val_class_str
2388 };
2389
2390 /* Describe a double word constant value. */
2391 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2392
2393 typedef struct dw_long_long_struct GTY(())
2394 {
2395 unsigned long hi;
2396 unsigned long low;
2397 }
2398 dw_long_long_const;
2399
2400 /* Describe a floating point constant value, or a vector constant value. */
2401
2402 typedef struct dw_vec_struct GTY(())
2403 {
2404 unsigned char * GTY((length ("%h.length"))) array;
2405 unsigned length;
2406 unsigned elt_size;
2407 }
2408 dw_vec_const;
2409
2410 /* The dw_val_node describes an attribute's value, as it is
2411 represented internally. */
2412
2413 typedef struct dw_val_struct GTY(())
2414 {
2415 enum dw_val_class val_class;
2416 union dw_val_struct_union
2417 {
2418 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2419 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2420 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2421 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2422 HOST_WIDE_INT GTY ((default)) val_int;
2423 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2424 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2425 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2426 struct dw_val_die_union
2427 {
2428 dw_die_ref die;
2429 int external;
2430 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2431 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2432 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2433 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2434 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2435 }
2436 GTY ((desc ("%1.val_class"))) v;
2437 }
2438 dw_val_node;
2439
2440 /* Locations in memory are described using a sequence of stack machine
2441 operations. */
2442
2443 typedef struct dw_loc_descr_struct GTY(())
2444 {
2445 dw_loc_descr_ref dw_loc_next;
2446 enum dwarf_location_atom dw_loc_opc;
2447 dw_val_node dw_loc_oprnd1;
2448 dw_val_node dw_loc_oprnd2;
2449 int dw_loc_addr;
2450 }
2451 dw_loc_descr_node;
2452
2453 /* Location lists are ranges + location descriptions for that range,
2454 so you can track variables that are in different places over
2455 their entire life. */
2456 typedef struct dw_loc_list_struct GTY(())
2457 {
2458 dw_loc_list_ref dw_loc_next;
2459 const char *begin; /* Label for begin address of range */
2460 const char *end; /* Label for end address of range */
2461 char *ll_symbol; /* Label for beginning of location list.
2462 Only on head of list */
2463 const char *section; /* Section this loclist is relative to */
2464 dw_loc_descr_ref expr;
2465 } dw_loc_list_node;
2466
2467 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2468
2469 static const char *dwarf_stack_op_name (unsigned);
2470 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2471 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2472 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2473 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2474 static unsigned long size_of_locs (dw_loc_descr_ref);
2475 static void output_loc_operands (dw_loc_descr_ref);
2476 static void output_loc_sequence (dw_loc_descr_ref);
2477
2478 /* Convert a DWARF stack opcode into its string name. */
2479
2480 static const char *
2481 dwarf_stack_op_name (unsigned int op)
2482 {
2483 switch (op)
2484 {
2485 case DW_OP_addr:
2486 case INTERNAL_DW_OP_tls_addr:
2487 return "DW_OP_addr";
2488 case DW_OP_deref:
2489 return "DW_OP_deref";
2490 case DW_OP_const1u:
2491 return "DW_OP_const1u";
2492 case DW_OP_const1s:
2493 return "DW_OP_const1s";
2494 case DW_OP_const2u:
2495 return "DW_OP_const2u";
2496 case DW_OP_const2s:
2497 return "DW_OP_const2s";
2498 case DW_OP_const4u:
2499 return "DW_OP_const4u";
2500 case DW_OP_const4s:
2501 return "DW_OP_const4s";
2502 case DW_OP_const8u:
2503 return "DW_OP_const8u";
2504 case DW_OP_const8s:
2505 return "DW_OP_const8s";
2506 case DW_OP_constu:
2507 return "DW_OP_constu";
2508 case DW_OP_consts:
2509 return "DW_OP_consts";
2510 case DW_OP_dup:
2511 return "DW_OP_dup";
2512 case DW_OP_drop:
2513 return "DW_OP_drop";
2514 case DW_OP_over:
2515 return "DW_OP_over";
2516 case DW_OP_pick:
2517 return "DW_OP_pick";
2518 case DW_OP_swap:
2519 return "DW_OP_swap";
2520 case DW_OP_rot:
2521 return "DW_OP_rot";
2522 case DW_OP_xderef:
2523 return "DW_OP_xderef";
2524 case DW_OP_abs:
2525 return "DW_OP_abs";
2526 case DW_OP_and:
2527 return "DW_OP_and";
2528 case DW_OP_div:
2529 return "DW_OP_div";
2530 case DW_OP_minus:
2531 return "DW_OP_minus";
2532 case DW_OP_mod:
2533 return "DW_OP_mod";
2534 case DW_OP_mul:
2535 return "DW_OP_mul";
2536 case DW_OP_neg:
2537 return "DW_OP_neg";
2538 case DW_OP_not:
2539 return "DW_OP_not";
2540 case DW_OP_or:
2541 return "DW_OP_or";
2542 case DW_OP_plus:
2543 return "DW_OP_plus";
2544 case DW_OP_plus_uconst:
2545 return "DW_OP_plus_uconst";
2546 case DW_OP_shl:
2547 return "DW_OP_shl";
2548 case DW_OP_shr:
2549 return "DW_OP_shr";
2550 case DW_OP_shra:
2551 return "DW_OP_shra";
2552 case DW_OP_xor:
2553 return "DW_OP_xor";
2554 case DW_OP_bra:
2555 return "DW_OP_bra";
2556 case DW_OP_eq:
2557 return "DW_OP_eq";
2558 case DW_OP_ge:
2559 return "DW_OP_ge";
2560 case DW_OP_gt:
2561 return "DW_OP_gt";
2562 case DW_OP_le:
2563 return "DW_OP_le";
2564 case DW_OP_lt:
2565 return "DW_OP_lt";
2566 case DW_OP_ne:
2567 return "DW_OP_ne";
2568 case DW_OP_skip:
2569 return "DW_OP_skip";
2570 case DW_OP_lit0:
2571 return "DW_OP_lit0";
2572 case DW_OP_lit1:
2573 return "DW_OP_lit1";
2574 case DW_OP_lit2:
2575 return "DW_OP_lit2";
2576 case DW_OP_lit3:
2577 return "DW_OP_lit3";
2578 case DW_OP_lit4:
2579 return "DW_OP_lit4";
2580 case DW_OP_lit5:
2581 return "DW_OP_lit5";
2582 case DW_OP_lit6:
2583 return "DW_OP_lit6";
2584 case DW_OP_lit7:
2585 return "DW_OP_lit7";
2586 case DW_OP_lit8:
2587 return "DW_OP_lit8";
2588 case DW_OP_lit9:
2589 return "DW_OP_lit9";
2590 case DW_OP_lit10:
2591 return "DW_OP_lit10";
2592 case DW_OP_lit11:
2593 return "DW_OP_lit11";
2594 case DW_OP_lit12:
2595 return "DW_OP_lit12";
2596 case DW_OP_lit13:
2597 return "DW_OP_lit13";
2598 case DW_OP_lit14:
2599 return "DW_OP_lit14";
2600 case DW_OP_lit15:
2601 return "DW_OP_lit15";
2602 case DW_OP_lit16:
2603 return "DW_OP_lit16";
2604 case DW_OP_lit17:
2605 return "DW_OP_lit17";
2606 case DW_OP_lit18:
2607 return "DW_OP_lit18";
2608 case DW_OP_lit19:
2609 return "DW_OP_lit19";
2610 case DW_OP_lit20:
2611 return "DW_OP_lit20";
2612 case DW_OP_lit21:
2613 return "DW_OP_lit21";
2614 case DW_OP_lit22:
2615 return "DW_OP_lit22";
2616 case DW_OP_lit23:
2617 return "DW_OP_lit23";
2618 case DW_OP_lit24:
2619 return "DW_OP_lit24";
2620 case DW_OP_lit25:
2621 return "DW_OP_lit25";
2622 case DW_OP_lit26:
2623 return "DW_OP_lit26";
2624 case DW_OP_lit27:
2625 return "DW_OP_lit27";
2626 case DW_OP_lit28:
2627 return "DW_OP_lit28";
2628 case DW_OP_lit29:
2629 return "DW_OP_lit29";
2630 case DW_OP_lit30:
2631 return "DW_OP_lit30";
2632 case DW_OP_lit31:
2633 return "DW_OP_lit31";
2634 case DW_OP_reg0:
2635 return "DW_OP_reg0";
2636 case DW_OP_reg1:
2637 return "DW_OP_reg1";
2638 case DW_OP_reg2:
2639 return "DW_OP_reg2";
2640 case DW_OP_reg3:
2641 return "DW_OP_reg3";
2642 case DW_OP_reg4:
2643 return "DW_OP_reg4";
2644 case DW_OP_reg5:
2645 return "DW_OP_reg5";
2646 case DW_OP_reg6:
2647 return "DW_OP_reg6";
2648 case DW_OP_reg7:
2649 return "DW_OP_reg7";
2650 case DW_OP_reg8:
2651 return "DW_OP_reg8";
2652 case DW_OP_reg9:
2653 return "DW_OP_reg9";
2654 case DW_OP_reg10:
2655 return "DW_OP_reg10";
2656 case DW_OP_reg11:
2657 return "DW_OP_reg11";
2658 case DW_OP_reg12:
2659 return "DW_OP_reg12";
2660 case DW_OP_reg13:
2661 return "DW_OP_reg13";
2662 case DW_OP_reg14:
2663 return "DW_OP_reg14";
2664 case DW_OP_reg15:
2665 return "DW_OP_reg15";
2666 case DW_OP_reg16:
2667 return "DW_OP_reg16";
2668 case DW_OP_reg17:
2669 return "DW_OP_reg17";
2670 case DW_OP_reg18:
2671 return "DW_OP_reg18";
2672 case DW_OP_reg19:
2673 return "DW_OP_reg19";
2674 case DW_OP_reg20:
2675 return "DW_OP_reg20";
2676 case DW_OP_reg21:
2677 return "DW_OP_reg21";
2678 case DW_OP_reg22:
2679 return "DW_OP_reg22";
2680 case DW_OP_reg23:
2681 return "DW_OP_reg23";
2682 case DW_OP_reg24:
2683 return "DW_OP_reg24";
2684 case DW_OP_reg25:
2685 return "DW_OP_reg25";
2686 case DW_OP_reg26:
2687 return "DW_OP_reg26";
2688 case DW_OP_reg27:
2689 return "DW_OP_reg27";
2690 case DW_OP_reg28:
2691 return "DW_OP_reg28";
2692 case DW_OP_reg29:
2693 return "DW_OP_reg29";
2694 case DW_OP_reg30:
2695 return "DW_OP_reg30";
2696 case DW_OP_reg31:
2697 return "DW_OP_reg31";
2698 case DW_OP_breg0:
2699 return "DW_OP_breg0";
2700 case DW_OP_breg1:
2701 return "DW_OP_breg1";
2702 case DW_OP_breg2:
2703 return "DW_OP_breg2";
2704 case DW_OP_breg3:
2705 return "DW_OP_breg3";
2706 case DW_OP_breg4:
2707 return "DW_OP_breg4";
2708 case DW_OP_breg5:
2709 return "DW_OP_breg5";
2710 case DW_OP_breg6:
2711 return "DW_OP_breg6";
2712 case DW_OP_breg7:
2713 return "DW_OP_breg7";
2714 case DW_OP_breg8:
2715 return "DW_OP_breg8";
2716 case DW_OP_breg9:
2717 return "DW_OP_breg9";
2718 case DW_OP_breg10:
2719 return "DW_OP_breg10";
2720 case DW_OP_breg11:
2721 return "DW_OP_breg11";
2722 case DW_OP_breg12:
2723 return "DW_OP_breg12";
2724 case DW_OP_breg13:
2725 return "DW_OP_breg13";
2726 case DW_OP_breg14:
2727 return "DW_OP_breg14";
2728 case DW_OP_breg15:
2729 return "DW_OP_breg15";
2730 case DW_OP_breg16:
2731 return "DW_OP_breg16";
2732 case DW_OP_breg17:
2733 return "DW_OP_breg17";
2734 case DW_OP_breg18:
2735 return "DW_OP_breg18";
2736 case DW_OP_breg19:
2737 return "DW_OP_breg19";
2738 case DW_OP_breg20:
2739 return "DW_OP_breg20";
2740 case DW_OP_breg21:
2741 return "DW_OP_breg21";
2742 case DW_OP_breg22:
2743 return "DW_OP_breg22";
2744 case DW_OP_breg23:
2745 return "DW_OP_breg23";
2746 case DW_OP_breg24:
2747 return "DW_OP_breg24";
2748 case DW_OP_breg25:
2749 return "DW_OP_breg25";
2750 case DW_OP_breg26:
2751 return "DW_OP_breg26";
2752 case DW_OP_breg27:
2753 return "DW_OP_breg27";
2754 case DW_OP_breg28:
2755 return "DW_OP_breg28";
2756 case DW_OP_breg29:
2757 return "DW_OP_breg29";
2758 case DW_OP_breg30:
2759 return "DW_OP_breg30";
2760 case DW_OP_breg31:
2761 return "DW_OP_breg31";
2762 case DW_OP_regx:
2763 return "DW_OP_regx";
2764 case DW_OP_fbreg:
2765 return "DW_OP_fbreg";
2766 case DW_OP_bregx:
2767 return "DW_OP_bregx";
2768 case DW_OP_piece:
2769 return "DW_OP_piece";
2770 case DW_OP_deref_size:
2771 return "DW_OP_deref_size";
2772 case DW_OP_xderef_size:
2773 return "DW_OP_xderef_size";
2774 case DW_OP_nop:
2775 return "DW_OP_nop";
2776 case DW_OP_push_object_address:
2777 return "DW_OP_push_object_address";
2778 case DW_OP_call2:
2779 return "DW_OP_call2";
2780 case DW_OP_call4:
2781 return "DW_OP_call4";
2782 case DW_OP_call_ref:
2783 return "DW_OP_call_ref";
2784 case DW_OP_GNU_push_tls_address:
2785 return "DW_OP_GNU_push_tls_address";
2786 default:
2787 return "OP_<unknown>";
2788 }
2789 }
2790
2791 /* Return a pointer to a newly allocated location description. Location
2792 descriptions are simple expression terms that can be strung
2793 together to form more complicated location (address) descriptions. */
2794
2795 static inline dw_loc_descr_ref
2796 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2797 unsigned HOST_WIDE_INT oprnd2)
2798 {
2799 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2800
2801 descr->dw_loc_opc = op;
2802 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2803 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2804 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2805 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2806
2807 return descr;
2808 }
2809
2810
2811 /* Add a location description term to a location description expression. */
2812
2813 static inline void
2814 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
2815 {
2816 dw_loc_descr_ref *d;
2817
2818 /* Find the end of the chain. */
2819 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2820 ;
2821
2822 *d = descr;
2823 }
2824
2825 /* Return the size of a location descriptor. */
2826
2827 static unsigned long
2828 size_of_loc_descr (dw_loc_descr_ref loc)
2829 {
2830 unsigned long size = 1;
2831
2832 switch (loc->dw_loc_opc)
2833 {
2834 case DW_OP_addr:
2835 case INTERNAL_DW_OP_tls_addr:
2836 size += DWARF2_ADDR_SIZE;
2837 break;
2838 case DW_OP_const1u:
2839 case DW_OP_const1s:
2840 size += 1;
2841 break;
2842 case DW_OP_const2u:
2843 case DW_OP_const2s:
2844 size += 2;
2845 break;
2846 case DW_OP_const4u:
2847 case DW_OP_const4s:
2848 size += 4;
2849 break;
2850 case DW_OP_const8u:
2851 case DW_OP_const8s:
2852 size += 8;
2853 break;
2854 case DW_OP_constu:
2855 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2856 break;
2857 case DW_OP_consts:
2858 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2859 break;
2860 case DW_OP_pick:
2861 size += 1;
2862 break;
2863 case DW_OP_plus_uconst:
2864 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2865 break;
2866 case DW_OP_skip:
2867 case DW_OP_bra:
2868 size += 2;
2869 break;
2870 case DW_OP_breg0:
2871 case DW_OP_breg1:
2872 case DW_OP_breg2:
2873 case DW_OP_breg3:
2874 case DW_OP_breg4:
2875 case DW_OP_breg5:
2876 case DW_OP_breg6:
2877 case DW_OP_breg7:
2878 case DW_OP_breg8:
2879 case DW_OP_breg9:
2880 case DW_OP_breg10:
2881 case DW_OP_breg11:
2882 case DW_OP_breg12:
2883 case DW_OP_breg13:
2884 case DW_OP_breg14:
2885 case DW_OP_breg15:
2886 case DW_OP_breg16:
2887 case DW_OP_breg17:
2888 case DW_OP_breg18:
2889 case DW_OP_breg19:
2890 case DW_OP_breg20:
2891 case DW_OP_breg21:
2892 case DW_OP_breg22:
2893 case DW_OP_breg23:
2894 case DW_OP_breg24:
2895 case DW_OP_breg25:
2896 case DW_OP_breg26:
2897 case DW_OP_breg27:
2898 case DW_OP_breg28:
2899 case DW_OP_breg29:
2900 case DW_OP_breg30:
2901 case DW_OP_breg31:
2902 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2903 break;
2904 case DW_OP_regx:
2905 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2906 break;
2907 case DW_OP_fbreg:
2908 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2909 break;
2910 case DW_OP_bregx:
2911 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2912 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2913 break;
2914 case DW_OP_piece:
2915 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2916 break;
2917 case DW_OP_deref_size:
2918 case DW_OP_xderef_size:
2919 size += 1;
2920 break;
2921 case DW_OP_call2:
2922 size += 2;
2923 break;
2924 case DW_OP_call4:
2925 size += 4;
2926 break;
2927 case DW_OP_call_ref:
2928 size += DWARF2_ADDR_SIZE;
2929 break;
2930 default:
2931 break;
2932 }
2933
2934 return size;
2935 }
2936
2937 /* Return the size of a series of location descriptors. */
2938
2939 static unsigned long
2940 size_of_locs (dw_loc_descr_ref loc)
2941 {
2942 unsigned long size;
2943
2944 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2945 {
2946 loc->dw_loc_addr = size;
2947 size += size_of_loc_descr (loc);
2948 }
2949
2950 return size;
2951 }
2952
2953 /* Output location description stack opcode's operands (if any). */
2954
2955 static void
2956 output_loc_operands (dw_loc_descr_ref loc)
2957 {
2958 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2959 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2960
2961 switch (loc->dw_loc_opc)
2962 {
2963 #ifdef DWARF2_DEBUGGING_INFO
2964 case DW_OP_addr:
2965 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2966 break;
2967 case DW_OP_const2u:
2968 case DW_OP_const2s:
2969 dw2_asm_output_data (2, val1->v.val_int, NULL);
2970 break;
2971 case DW_OP_const4u:
2972 case DW_OP_const4s:
2973 dw2_asm_output_data (4, val1->v.val_int, NULL);
2974 break;
2975 case DW_OP_const8u:
2976 case DW_OP_const8s:
2977 if (HOST_BITS_PER_LONG < 64)
2978 abort ();
2979 dw2_asm_output_data (8, val1->v.val_int, NULL);
2980 break;
2981 case DW_OP_skip:
2982 case DW_OP_bra:
2983 {
2984 int offset;
2985
2986 if (val1->val_class == dw_val_class_loc)
2987 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2988 else
2989 abort ();
2990
2991 dw2_asm_output_data (2, offset, NULL);
2992 }
2993 break;
2994 #else
2995 case DW_OP_addr:
2996 case DW_OP_const2u:
2997 case DW_OP_const2s:
2998 case DW_OP_const4u:
2999 case DW_OP_const4s:
3000 case DW_OP_const8u:
3001 case DW_OP_const8s:
3002 case DW_OP_skip:
3003 case DW_OP_bra:
3004 /* We currently don't make any attempt to make sure these are
3005 aligned properly like we do for the main unwind info, so
3006 don't support emitting things larger than a byte if we're
3007 only doing unwinding. */
3008 abort ();
3009 #endif
3010 case DW_OP_const1u:
3011 case DW_OP_const1s:
3012 dw2_asm_output_data (1, val1->v.val_int, NULL);
3013 break;
3014 case DW_OP_constu:
3015 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3016 break;
3017 case DW_OP_consts:
3018 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3019 break;
3020 case DW_OP_pick:
3021 dw2_asm_output_data (1, val1->v.val_int, NULL);
3022 break;
3023 case DW_OP_plus_uconst:
3024 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3025 break;
3026 case DW_OP_breg0:
3027 case DW_OP_breg1:
3028 case DW_OP_breg2:
3029 case DW_OP_breg3:
3030 case DW_OP_breg4:
3031 case DW_OP_breg5:
3032 case DW_OP_breg6:
3033 case DW_OP_breg7:
3034 case DW_OP_breg8:
3035 case DW_OP_breg9:
3036 case DW_OP_breg10:
3037 case DW_OP_breg11:
3038 case DW_OP_breg12:
3039 case DW_OP_breg13:
3040 case DW_OP_breg14:
3041 case DW_OP_breg15:
3042 case DW_OP_breg16:
3043 case DW_OP_breg17:
3044 case DW_OP_breg18:
3045 case DW_OP_breg19:
3046 case DW_OP_breg20:
3047 case DW_OP_breg21:
3048 case DW_OP_breg22:
3049 case DW_OP_breg23:
3050 case DW_OP_breg24:
3051 case DW_OP_breg25:
3052 case DW_OP_breg26:
3053 case DW_OP_breg27:
3054 case DW_OP_breg28:
3055 case DW_OP_breg29:
3056 case DW_OP_breg30:
3057 case DW_OP_breg31:
3058 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3059 break;
3060 case DW_OP_regx:
3061 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3062 break;
3063 case DW_OP_fbreg:
3064 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3065 break;
3066 case DW_OP_bregx:
3067 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3068 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3069 break;
3070 case DW_OP_piece:
3071 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3072 break;
3073 case DW_OP_deref_size:
3074 case DW_OP_xderef_size:
3075 dw2_asm_output_data (1, val1->v.val_int, NULL);
3076 break;
3077
3078 case INTERNAL_DW_OP_tls_addr:
3079 #ifdef ASM_OUTPUT_DWARF_DTPREL
3080 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3081 val1->v.val_addr);
3082 fputc ('\n', asm_out_file);
3083 #else
3084 abort ();
3085 #endif
3086 break;
3087
3088 default:
3089 /* Other codes have no operands. */
3090 break;
3091 }
3092 }
3093
3094 /* Output a sequence of location operations. */
3095
3096 static void
3097 output_loc_sequence (dw_loc_descr_ref loc)
3098 {
3099 for (; loc != NULL; loc = loc->dw_loc_next)
3100 {
3101 /* Output the opcode. */
3102 dw2_asm_output_data (1, loc->dw_loc_opc,
3103 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3104
3105 /* Output the operand(s) (if any). */
3106 output_loc_operands (loc);
3107 }
3108 }
3109
3110 /* This routine will generate the correct assembly data for a location
3111 description based on a cfi entry with a complex address. */
3112
3113 static void
3114 output_cfa_loc (dw_cfi_ref cfi)
3115 {
3116 dw_loc_descr_ref loc;
3117 unsigned long size;
3118
3119 /* Output the size of the block. */
3120 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3121 size = size_of_locs (loc);
3122 dw2_asm_output_data_uleb128 (size, NULL);
3123
3124 /* Now output the operations themselves. */
3125 output_loc_sequence (loc);
3126 }
3127
3128 /* This function builds a dwarf location descriptor sequence from
3129 a dw_cfa_location. */
3130
3131 static struct dw_loc_descr_struct *
3132 build_cfa_loc (dw_cfa_location *cfa)
3133 {
3134 struct dw_loc_descr_struct *head, *tmp;
3135
3136 if (cfa->indirect == 0)
3137 abort ();
3138
3139 if (cfa->base_offset)
3140 {
3141 if (cfa->reg <= 31)
3142 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3143 else
3144 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3145 }
3146 else if (cfa->reg <= 31)
3147 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3148 else
3149 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3150
3151 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3152 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3153 add_loc_descr (&head, tmp);
3154 if (cfa->offset != 0)
3155 {
3156 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3157 add_loc_descr (&head, tmp);
3158 }
3159
3160 return head;
3161 }
3162
3163 /* This function fills in aa dw_cfa_location structure from a dwarf location
3164 descriptor sequence. */
3165
3166 static void
3167 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3168 {
3169 struct dw_loc_descr_struct *ptr;
3170 cfa->offset = 0;
3171 cfa->base_offset = 0;
3172 cfa->indirect = 0;
3173 cfa->reg = -1;
3174
3175 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3176 {
3177 enum dwarf_location_atom op = ptr->dw_loc_opc;
3178
3179 switch (op)
3180 {
3181 case DW_OP_reg0:
3182 case DW_OP_reg1:
3183 case DW_OP_reg2:
3184 case DW_OP_reg3:
3185 case DW_OP_reg4:
3186 case DW_OP_reg5:
3187 case DW_OP_reg6:
3188 case DW_OP_reg7:
3189 case DW_OP_reg8:
3190 case DW_OP_reg9:
3191 case DW_OP_reg10:
3192 case DW_OP_reg11:
3193 case DW_OP_reg12:
3194 case DW_OP_reg13:
3195 case DW_OP_reg14:
3196 case DW_OP_reg15:
3197 case DW_OP_reg16:
3198 case DW_OP_reg17:
3199 case DW_OP_reg18:
3200 case DW_OP_reg19:
3201 case DW_OP_reg20:
3202 case DW_OP_reg21:
3203 case DW_OP_reg22:
3204 case DW_OP_reg23:
3205 case DW_OP_reg24:
3206 case DW_OP_reg25:
3207 case DW_OP_reg26:
3208 case DW_OP_reg27:
3209 case DW_OP_reg28:
3210 case DW_OP_reg29:
3211 case DW_OP_reg30:
3212 case DW_OP_reg31:
3213 cfa->reg = op - DW_OP_reg0;
3214 break;
3215 case DW_OP_regx:
3216 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3217 break;
3218 case DW_OP_breg0:
3219 case DW_OP_breg1:
3220 case DW_OP_breg2:
3221 case DW_OP_breg3:
3222 case DW_OP_breg4:
3223 case DW_OP_breg5:
3224 case DW_OP_breg6:
3225 case DW_OP_breg7:
3226 case DW_OP_breg8:
3227 case DW_OP_breg9:
3228 case DW_OP_breg10:
3229 case DW_OP_breg11:
3230 case DW_OP_breg12:
3231 case DW_OP_breg13:
3232 case DW_OP_breg14:
3233 case DW_OP_breg15:
3234 case DW_OP_breg16:
3235 case DW_OP_breg17:
3236 case DW_OP_breg18:
3237 case DW_OP_breg19:
3238 case DW_OP_breg20:
3239 case DW_OP_breg21:
3240 case DW_OP_breg22:
3241 case DW_OP_breg23:
3242 case DW_OP_breg24:
3243 case DW_OP_breg25:
3244 case DW_OP_breg26:
3245 case DW_OP_breg27:
3246 case DW_OP_breg28:
3247 case DW_OP_breg29:
3248 case DW_OP_breg30:
3249 case DW_OP_breg31:
3250 cfa->reg = op - DW_OP_breg0;
3251 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3252 break;
3253 case DW_OP_bregx:
3254 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3255 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3256 break;
3257 case DW_OP_deref:
3258 cfa->indirect = 1;
3259 break;
3260 case DW_OP_plus_uconst:
3261 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3262 break;
3263 default:
3264 internal_error ("DW_LOC_OP %s not implemented\n",
3265 dwarf_stack_op_name (ptr->dw_loc_opc));
3266 }
3267 }
3268 }
3269 #endif /* .debug_frame support */
3270 \f
3271 /* And now, the support for symbolic debugging information. */
3272 #ifdef DWARF2_DEBUGGING_INFO
3273
3274 /* .debug_str support. */
3275 static int output_indirect_string (void **, void *);
3276
3277 static void dwarf2out_init (const char *);
3278 static void dwarf2out_finish (const char *);
3279 static void dwarf2out_define (unsigned int, const char *);
3280 static void dwarf2out_undef (unsigned int, const char *);
3281 static void dwarf2out_start_source_file (unsigned, const char *);
3282 static void dwarf2out_end_source_file (unsigned);
3283 static void dwarf2out_begin_block (unsigned, unsigned);
3284 static void dwarf2out_end_block (unsigned, unsigned);
3285 static bool dwarf2out_ignore_block (tree);
3286 static void dwarf2out_global_decl (tree);
3287 static void dwarf2out_type_decl (tree, int);
3288 static void dwarf2out_imported_module_or_decl (tree, tree);
3289 static void dwarf2out_abstract_function (tree);
3290 static void dwarf2out_var_location (rtx);
3291 static void dwarf2out_begin_function (tree);
3292
3293 /* The debug hooks structure. */
3294
3295 const struct gcc_debug_hooks dwarf2_debug_hooks =
3296 {
3297 dwarf2out_init,
3298 dwarf2out_finish,
3299 dwarf2out_define,
3300 dwarf2out_undef,
3301 dwarf2out_start_source_file,
3302 dwarf2out_end_source_file,
3303 dwarf2out_begin_block,
3304 dwarf2out_end_block,
3305 dwarf2out_ignore_block,
3306 dwarf2out_source_line,
3307 dwarf2out_begin_prologue,
3308 debug_nothing_int_charstar, /* end_prologue */
3309 dwarf2out_end_epilogue,
3310 dwarf2out_begin_function,
3311 debug_nothing_int, /* end_function */
3312 dwarf2out_decl, /* function_decl */
3313 dwarf2out_global_decl,
3314 dwarf2out_type_decl, /* type_decl */
3315 dwarf2out_imported_module_or_decl,
3316 debug_nothing_tree, /* deferred_inline_function */
3317 /* The DWARF 2 backend tries to reduce debugging bloat by not
3318 emitting the abstract description of inline functions until
3319 something tries to reference them. */
3320 dwarf2out_abstract_function, /* outlining_inline_function */
3321 debug_nothing_rtx, /* label */
3322 debug_nothing_int, /* handle_pch */
3323 dwarf2out_var_location
3324 };
3325 #endif
3326 \f
3327 /* NOTE: In the comments in this file, many references are made to
3328 "Debugging Information Entries". This term is abbreviated as `DIE'
3329 throughout the remainder of this file. */
3330
3331 /* An internal representation of the DWARF output is built, and then
3332 walked to generate the DWARF debugging info. The walk of the internal
3333 representation is done after the entire program has been compiled.
3334 The types below are used to describe the internal representation. */
3335
3336 /* Various DIE's use offsets relative to the beginning of the
3337 .debug_info section to refer to each other. */
3338
3339 typedef long int dw_offset;
3340
3341 /* Define typedefs here to avoid circular dependencies. */
3342
3343 typedef struct dw_attr_struct *dw_attr_ref;
3344 typedef struct dw_line_info_struct *dw_line_info_ref;
3345 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3346 typedef struct pubname_struct *pubname_ref;
3347 typedef struct dw_ranges_struct *dw_ranges_ref;
3348
3349 /* Each entry in the line_info_table maintains the file and
3350 line number associated with the label generated for that
3351 entry. The label gives the PC value associated with
3352 the line number entry. */
3353
3354 typedef struct dw_line_info_struct GTY(())
3355 {
3356 unsigned long dw_file_num;
3357 unsigned long dw_line_num;
3358 }
3359 dw_line_info_entry;
3360
3361 /* Line information for functions in separate sections; each one gets its
3362 own sequence. */
3363 typedef struct dw_separate_line_info_struct GTY(())
3364 {
3365 unsigned long dw_file_num;
3366 unsigned long dw_line_num;
3367 unsigned long function;
3368 }
3369 dw_separate_line_info_entry;
3370
3371 /* Each DIE attribute has a field specifying the attribute kind,
3372 a link to the next attribute in the chain, and an attribute value.
3373 Attributes are typically linked below the DIE they modify. */
3374
3375 typedef struct dw_attr_struct GTY(())
3376 {
3377 enum dwarf_attribute dw_attr;
3378 dw_attr_ref dw_attr_next;
3379 dw_val_node dw_attr_val;
3380 }
3381 dw_attr_node;
3382
3383 /* The Debugging Information Entry (DIE) structure */
3384
3385 typedef struct die_struct GTY(())
3386 {
3387 enum dwarf_tag die_tag;
3388 char *die_symbol;
3389 dw_attr_ref die_attr;
3390 dw_die_ref die_parent;
3391 dw_die_ref die_child;
3392 dw_die_ref die_sib;
3393 dw_die_ref die_definition; /* ref from a specification to its definition */
3394 dw_offset die_offset;
3395 unsigned long die_abbrev;
3396 int die_mark;
3397 unsigned int decl_id;
3398 }
3399 die_node;
3400
3401 /* The pubname structure */
3402
3403 typedef struct pubname_struct GTY(())
3404 {
3405 dw_die_ref die;
3406 char *name;
3407 }
3408 pubname_entry;
3409
3410 struct dw_ranges_struct GTY(())
3411 {
3412 int block_num;
3413 };
3414
3415 /* The limbo die list structure. */
3416 typedef struct limbo_die_struct GTY(())
3417 {
3418 dw_die_ref die;
3419 tree created_for;
3420 struct limbo_die_struct *next;
3421 }
3422 limbo_die_node;
3423
3424 /* How to start an assembler comment. */
3425 #ifndef ASM_COMMENT_START
3426 #define ASM_COMMENT_START ";#"
3427 #endif
3428
3429 /* Define a macro which returns nonzero for a TYPE_DECL which was
3430 implicitly generated for a tagged type.
3431
3432 Note that unlike the gcc front end (which generates a NULL named
3433 TYPE_DECL node for each complete tagged type, each array type, and
3434 each function type node created) the g++ front end generates a
3435 _named_ TYPE_DECL node for each tagged type node created.
3436 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3437 generate a DW_TAG_typedef DIE for them. */
3438
3439 #define TYPE_DECL_IS_STUB(decl) \
3440 (DECL_NAME (decl) == NULL_TREE \
3441 || (DECL_ARTIFICIAL (decl) \
3442 && is_tagged_type (TREE_TYPE (decl)) \
3443 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3444 /* This is necessary for stub decls that \
3445 appear in nested inline functions. */ \
3446 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3447 && (decl_ultimate_origin (decl) \
3448 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3449
3450 /* Information concerning the compilation unit's programming
3451 language, and compiler version. */
3452
3453 /* Fixed size portion of the DWARF compilation unit header. */
3454 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3455 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3456
3457 /* Fixed size portion of public names info. */
3458 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3459
3460 /* Fixed size portion of the address range info. */
3461 #define DWARF_ARANGES_HEADER_SIZE \
3462 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3463 DWARF2_ADDR_SIZE * 2) \
3464 - DWARF_INITIAL_LENGTH_SIZE)
3465
3466 /* Size of padding portion in the address range info. It must be
3467 aligned to twice the pointer size. */
3468 #define DWARF_ARANGES_PAD_SIZE \
3469 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3470 DWARF2_ADDR_SIZE * 2) \
3471 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3472
3473 /* Use assembler line directives if available. */
3474 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3475 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3476 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3477 #else
3478 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3479 #endif
3480 #endif
3481
3482 /* Minimum line offset in a special line info. opcode.
3483 This value was chosen to give a reasonable range of values. */
3484 #define DWARF_LINE_BASE -10
3485
3486 /* First special line opcode - leave room for the standard opcodes. */
3487 #define DWARF_LINE_OPCODE_BASE 10
3488
3489 /* Range of line offsets in a special line info. opcode. */
3490 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3491
3492 /* Flag that indicates the initial value of the is_stmt_start flag.
3493 In the present implementation, we do not mark any lines as
3494 the beginning of a source statement, because that information
3495 is not made available by the GCC front-end. */
3496 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3497
3498 #ifdef DWARF2_DEBUGGING_INFO
3499 /* This location is used by calc_die_sizes() to keep track
3500 the offset of each DIE within the .debug_info section. */
3501 static unsigned long next_die_offset;
3502 #endif
3503
3504 /* Record the root of the DIE's built for the current compilation unit. */
3505 static GTY(()) dw_die_ref comp_unit_die;
3506
3507 /* A list of DIEs with a NULL parent waiting to be relocated. */
3508 static GTY(()) limbo_die_node *limbo_die_list;
3509
3510 /* Filenames referenced by this compilation unit. */
3511 static GTY(()) varray_type file_table;
3512 static GTY(()) varray_type file_table_emitted;
3513 static GTY(()) size_t file_table_last_lookup_index;
3514
3515 /* A hash table of references to DIE's that describe declarations.
3516 The key is a DECL_UID() which is a unique number identifying each decl. */
3517 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3518
3519 /* Node of the variable location list. */
3520 struct var_loc_node GTY ((chain_next ("%h.next")))
3521 {
3522 rtx GTY (()) var_loc_note;
3523 const char * GTY (()) label;
3524 struct var_loc_node * GTY (()) next;
3525 };
3526
3527 /* Variable location list. */
3528 struct var_loc_list_def GTY (())
3529 {
3530 struct var_loc_node * GTY (()) first;
3531
3532 /* Do not mark the last element of the chained list because
3533 it is marked through the chain. */
3534 struct var_loc_node * GTY ((skip ("%h"))) last;
3535
3536 /* DECL_UID of the variable decl. */
3537 unsigned int decl_id;
3538 };
3539 typedef struct var_loc_list_def var_loc_list;
3540
3541
3542 /* Table of decl location linked lists. */
3543 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3544
3545 /* A pointer to the base of a list of references to DIE's that
3546 are uniquely identified by their tag, presence/absence of
3547 children DIE's, and list of attribute/value pairs. */
3548 static GTY((length ("abbrev_die_table_allocated")))
3549 dw_die_ref *abbrev_die_table;
3550
3551 /* Number of elements currently allocated for abbrev_die_table. */
3552 static GTY(()) unsigned abbrev_die_table_allocated;
3553
3554 /* Number of elements in type_die_table currently in use. */
3555 static GTY(()) unsigned abbrev_die_table_in_use;
3556
3557 /* Size (in elements) of increments by which we may expand the
3558 abbrev_die_table. */
3559 #define ABBREV_DIE_TABLE_INCREMENT 256
3560
3561 /* A pointer to the base of a table that contains line information
3562 for each source code line in .text in the compilation unit. */
3563 static GTY((length ("line_info_table_allocated")))
3564 dw_line_info_ref line_info_table;
3565
3566 /* Number of elements currently allocated for line_info_table. */
3567 static GTY(()) unsigned line_info_table_allocated;
3568
3569 /* Number of elements in line_info_table currently in use. */
3570 static GTY(()) unsigned line_info_table_in_use;
3571
3572 /* A pointer to the base of a table that contains line information
3573 for each source code line outside of .text in the compilation unit. */
3574 static GTY ((length ("separate_line_info_table_allocated")))
3575 dw_separate_line_info_ref separate_line_info_table;
3576
3577 /* Number of elements currently allocated for separate_line_info_table. */
3578 static GTY(()) unsigned separate_line_info_table_allocated;
3579
3580 /* Number of elements in separate_line_info_table currently in use. */
3581 static GTY(()) unsigned separate_line_info_table_in_use;
3582
3583 /* Size (in elements) of increments by which we may expand the
3584 line_info_table. */
3585 #define LINE_INFO_TABLE_INCREMENT 1024
3586
3587 /* A pointer to the base of a table that contains a list of publicly
3588 accessible names. */
3589 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3590
3591 /* Number of elements currently allocated for pubname_table. */
3592 static GTY(()) unsigned pubname_table_allocated;
3593
3594 /* Number of elements in pubname_table currently in use. */
3595 static GTY(()) unsigned pubname_table_in_use;
3596
3597 /* Size (in elements) of increments by which we may expand the
3598 pubname_table. */
3599 #define PUBNAME_TABLE_INCREMENT 64
3600
3601 /* Array of dies for which we should generate .debug_arange info. */
3602 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3603
3604 /* Number of elements currently allocated for arange_table. */
3605 static GTY(()) unsigned arange_table_allocated;
3606
3607 /* Number of elements in arange_table currently in use. */
3608 static GTY(()) unsigned arange_table_in_use;
3609
3610 /* Size (in elements) of increments by which we may expand the
3611 arange_table. */
3612 #define ARANGE_TABLE_INCREMENT 64
3613
3614 /* Array of dies for which we should generate .debug_ranges info. */
3615 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3616
3617 /* Number of elements currently allocated for ranges_table. */
3618 static GTY(()) unsigned ranges_table_allocated;
3619
3620 /* Number of elements in ranges_table currently in use. */
3621 static GTY(()) unsigned ranges_table_in_use;
3622
3623 /* Size (in elements) of increments by which we may expand the
3624 ranges_table. */
3625 #define RANGES_TABLE_INCREMENT 64
3626
3627 /* Whether we have location lists that need outputting */
3628 static GTY(()) unsigned have_location_lists;
3629
3630 /* Unique label counter. */
3631 static GTY(()) unsigned int loclabel_num;
3632
3633 #ifdef DWARF2_DEBUGGING_INFO
3634 /* Record whether the function being analyzed contains inlined functions. */
3635 static int current_function_has_inlines;
3636 #endif
3637 #if 0 && defined (MIPS_DEBUGGING_INFO)
3638 static int comp_unit_has_inlines;
3639 #endif
3640
3641 /* Number of file tables emitted in maybe_emit_file(). */
3642 static GTY(()) int emitcount = 0;
3643
3644 /* Number of internal labels generated by gen_internal_sym(). */
3645 static GTY(()) int label_num;
3646
3647 #ifdef DWARF2_DEBUGGING_INFO
3648
3649 /* Forward declarations for functions defined in this file. */
3650
3651 static int is_pseudo_reg (rtx);
3652 static tree type_main_variant (tree);
3653 static int is_tagged_type (tree);
3654 static const char *dwarf_tag_name (unsigned);
3655 static const char *dwarf_attr_name (unsigned);
3656 static const char *dwarf_form_name (unsigned);
3657 #if 0
3658 static const char *dwarf_type_encoding_name (unsigned);
3659 #endif
3660 static tree decl_ultimate_origin (tree);
3661 static tree block_ultimate_origin (tree);
3662 static tree decl_class_context (tree);
3663 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3664 static inline enum dw_val_class AT_class (dw_attr_ref);
3665 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3666 static inline unsigned AT_flag (dw_attr_ref);
3667 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3668 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3669 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3670 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3671 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3672 unsigned long);
3673 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3674 unsigned int, unsigned char *);
3675 static hashval_t debug_str_do_hash (const void *);
3676 static int debug_str_eq (const void *, const void *);
3677 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3678 static inline const char *AT_string (dw_attr_ref);
3679 static int AT_string_form (dw_attr_ref);
3680 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3681 static void add_AT_specification (dw_die_ref, dw_die_ref);
3682 static inline dw_die_ref AT_ref (dw_attr_ref);
3683 static inline int AT_ref_external (dw_attr_ref);
3684 static inline void set_AT_ref_external (dw_attr_ref, int);
3685 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3686 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3687 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3688 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3689 dw_loc_list_ref);
3690 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3691 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3692 static inline rtx AT_addr (dw_attr_ref);
3693 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3694 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3695 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3696 unsigned HOST_WIDE_INT);
3697 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3698 unsigned long);
3699 static inline const char *AT_lbl (dw_attr_ref);
3700 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3701 static const char *get_AT_low_pc (dw_die_ref);
3702 static const char *get_AT_hi_pc (dw_die_ref);
3703 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3704 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3705 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3706 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3707 static bool is_c_family (void);
3708 static bool is_cxx (void);
3709 static bool is_java (void);
3710 static bool is_fortran (void);
3711 static bool is_ada (void);
3712 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3713 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3714 static inline void free_die (dw_die_ref);
3715 static void remove_children (dw_die_ref);
3716 static void add_child_die (dw_die_ref, dw_die_ref);
3717 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3718 static dw_die_ref lookup_type_die (tree);
3719 static void equate_type_number_to_die (tree, dw_die_ref);
3720 static hashval_t decl_die_table_hash (const void *);
3721 static int decl_die_table_eq (const void *, const void *);
3722 static dw_die_ref lookup_decl_die (tree);
3723 static hashval_t decl_loc_table_hash (const void *);
3724 static int decl_loc_table_eq (const void *, const void *);
3725 static var_loc_list *lookup_decl_loc (tree);
3726 static void equate_decl_number_to_die (tree, dw_die_ref);
3727 static void add_var_loc_to_decl (tree, struct var_loc_node *);
3728 static void print_spaces (FILE *);
3729 static void print_die (dw_die_ref, FILE *);
3730 static void print_dwarf_line_table (FILE *);
3731 static void reverse_die_lists (dw_die_ref);
3732 static void reverse_all_dies (dw_die_ref);
3733 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3734 static dw_die_ref pop_compile_unit (dw_die_ref);
3735 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3736 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3737 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3738 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3739 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3740 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3741 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3742 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3743 static void compute_section_prefix (dw_die_ref);
3744 static int is_type_die (dw_die_ref);
3745 static int is_comdat_die (dw_die_ref);
3746 static int is_symbol_die (dw_die_ref);
3747 static void assign_symbol_names (dw_die_ref);
3748 static void break_out_includes (dw_die_ref);
3749 static hashval_t htab_cu_hash (const void *);
3750 static int htab_cu_eq (const void *, const void *);
3751 static void htab_cu_del (void *);
3752 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3753 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3754 static void add_sibling_attributes (dw_die_ref);
3755 static void build_abbrev_table (dw_die_ref);
3756 static void output_location_lists (dw_die_ref);
3757 static int constant_size (long unsigned);
3758 static unsigned long size_of_die (dw_die_ref);
3759 static void calc_die_sizes (dw_die_ref);
3760 static void mark_dies (dw_die_ref);
3761 static void unmark_dies (dw_die_ref);
3762 static void unmark_all_dies (dw_die_ref);
3763 static unsigned long size_of_pubnames (void);
3764 static unsigned long size_of_aranges (void);
3765 static enum dwarf_form value_format (dw_attr_ref);
3766 static void output_value_format (dw_attr_ref);
3767 static void output_abbrev_section (void);
3768 static void output_die_symbol (dw_die_ref);
3769 static void output_die (dw_die_ref);
3770 static void output_compilation_unit_header (void);
3771 static void output_comp_unit (dw_die_ref, int);
3772 static const char *dwarf2_name (tree, int);
3773 static void add_pubname (tree, dw_die_ref);
3774 static void output_pubnames (void);
3775 static void add_arange (tree, dw_die_ref);
3776 static void output_aranges (void);
3777 static unsigned int add_ranges (tree);
3778 static void output_ranges (void);
3779 static void output_line_info (void);
3780 static void output_file_names (void);
3781 static dw_die_ref base_type_die (tree);
3782 static tree root_type (tree);
3783 static int is_base_type (tree);
3784 static bool is_subrange_type (tree);
3785 static dw_die_ref subrange_type_die (tree, dw_die_ref);
3786 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3787 static int type_is_enum (tree);
3788 static unsigned int reg_number (rtx);
3789 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3790 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3791 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3792 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3793 static dw_loc_descr_ref based_loc_descr (unsigned, HOST_WIDE_INT, bool);
3794 static int is_based_loc (rtx);
3795 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode, bool);
3796 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3797 static dw_loc_descr_ref loc_descriptor (rtx, bool);
3798 static dw_loc_descr_ref loc_descriptor_from_tree (tree, int);
3799 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3800 static tree field_type (tree);
3801 static unsigned int simple_type_align_in_bits (tree);
3802 static unsigned int simple_decl_align_in_bits (tree);
3803 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3804 static HOST_WIDE_INT field_byte_offset (tree);
3805 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3806 dw_loc_descr_ref);
3807 static void add_data_member_location_attribute (dw_die_ref, tree);
3808 static void add_const_value_attribute (dw_die_ref, rtx);
3809 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
3810 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
3811 static void insert_float (rtx, unsigned char *);
3812 static rtx rtl_for_decl_location (tree);
3813 static void add_location_or_const_value_attribute (dw_die_ref, tree,
3814 enum dwarf_attribute);
3815 static void tree_add_const_value_attribute (dw_die_ref, tree);
3816 static void add_name_attribute (dw_die_ref, const char *);
3817 static void add_comp_dir_attribute (dw_die_ref);
3818 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
3819 static void add_subscript_info (dw_die_ref, tree);
3820 static void add_byte_size_attribute (dw_die_ref, tree);
3821 static void add_bit_offset_attribute (dw_die_ref, tree);
3822 static void add_bit_size_attribute (dw_die_ref, tree);
3823 static void add_prototyped_attribute (dw_die_ref, tree);
3824 static void add_abstract_origin_attribute (dw_die_ref, tree);
3825 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3826 static void add_src_coords_attributes (dw_die_ref, tree);
3827 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3828 static void push_decl_scope (tree);
3829 static void pop_decl_scope (void);
3830 static dw_die_ref scope_die_for (tree, dw_die_ref);
3831 static inline int local_scope_p (dw_die_ref);
3832 static inline int class_or_namespace_scope_p (dw_die_ref);
3833 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
3834 static const char *type_tag (tree);
3835 static tree member_declared_type (tree);
3836 #if 0
3837 static const char *decl_start_label (tree);
3838 #endif
3839 static void gen_array_type_die (tree, dw_die_ref);
3840 static void gen_set_type_die (tree, dw_die_ref);
3841 #if 0
3842 static void gen_entry_point_die (tree, dw_die_ref);
3843 #endif
3844 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
3845 static void gen_inlined_structure_type_die (tree, dw_die_ref);
3846 static void gen_inlined_union_type_die (tree, dw_die_ref);
3847 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
3848 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
3849 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3850 static void gen_formal_types_die (tree, dw_die_ref);
3851 static void gen_subprogram_die (tree, dw_die_ref);
3852 static void gen_variable_die (tree, dw_die_ref);
3853 static void gen_label_die (tree, dw_die_ref);
3854 static void gen_lexical_block_die (tree, dw_die_ref, int);
3855 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
3856 static void gen_field_die (tree, dw_die_ref);
3857 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3858 static dw_die_ref gen_compile_unit_die (const char *);
3859 static void gen_string_type_die (tree, dw_die_ref);
3860 static void gen_inheritance_die (tree, tree, dw_die_ref);
3861 static void gen_member_die (tree, dw_die_ref);
3862 static void gen_struct_or_union_type_die (tree, dw_die_ref);
3863 static void gen_subroutine_type_die (tree, dw_die_ref);
3864 static void gen_typedef_die (tree, dw_die_ref);
3865 static void gen_type_die (tree, dw_die_ref);
3866 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
3867 static void gen_block_die (tree, dw_die_ref, int);
3868 static void decls_for_scope (tree, dw_die_ref, int);
3869 static int is_redundant_typedef (tree);
3870 static void gen_namespace_die (tree);
3871 static void gen_decl_die (tree, dw_die_ref);
3872 static dw_die_ref force_decl_die (tree);
3873 static dw_die_ref force_type_die (tree);
3874 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
3875 static void declare_in_namespace (tree, dw_die_ref);
3876 static unsigned lookup_filename (const char *);
3877 static void init_file_table (void);
3878 static void retry_incomplete_types (void);
3879 static void gen_type_die_for_member (tree, tree, dw_die_ref);
3880 static void splice_child_die (dw_die_ref, dw_die_ref);
3881 static int file_info_cmp (const void *, const void *);
3882 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
3883 const char *, const char *, unsigned);
3884 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
3885 const char *, const char *,
3886 const char *);
3887 static void output_loc_list (dw_loc_list_ref);
3888 static char *gen_internal_sym (const char *);
3889
3890 static void prune_unmark_dies (dw_die_ref);
3891 static void prune_unused_types_mark (dw_die_ref, int);
3892 static void prune_unused_types_walk (dw_die_ref);
3893 static void prune_unused_types_walk_attribs (dw_die_ref);
3894 static void prune_unused_types_prune (dw_die_ref);
3895 static void prune_unused_types (void);
3896 static int maybe_emit_file (int);
3897
3898 /* Section names used to hold DWARF debugging information. */
3899 #ifndef DEBUG_INFO_SECTION
3900 #define DEBUG_INFO_SECTION ".debug_info"
3901 #endif
3902 #ifndef DEBUG_ABBREV_SECTION
3903 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3904 #endif
3905 #ifndef DEBUG_ARANGES_SECTION
3906 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3907 #endif
3908 #ifndef DEBUG_MACINFO_SECTION
3909 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3910 #endif
3911 #ifndef DEBUG_LINE_SECTION
3912 #define DEBUG_LINE_SECTION ".debug_line"
3913 #endif
3914 #ifndef DEBUG_LOC_SECTION
3915 #define DEBUG_LOC_SECTION ".debug_loc"
3916 #endif
3917 #ifndef DEBUG_PUBNAMES_SECTION
3918 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3919 #endif
3920 #ifndef DEBUG_STR_SECTION
3921 #define DEBUG_STR_SECTION ".debug_str"
3922 #endif
3923 #ifndef DEBUG_RANGES_SECTION
3924 #define DEBUG_RANGES_SECTION ".debug_ranges"
3925 #endif
3926
3927 /* Standard ELF section names for compiled code and data. */
3928 #ifndef TEXT_SECTION_NAME
3929 #define TEXT_SECTION_NAME ".text"
3930 #endif
3931
3932 /* Section flags for .debug_str section. */
3933 #define DEBUG_STR_SECTION_FLAGS \
3934 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
3935 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
3936 : SECTION_DEBUG)
3937
3938 /* Labels we insert at beginning sections we can reference instead of
3939 the section names themselves. */
3940
3941 #ifndef TEXT_SECTION_LABEL
3942 #define TEXT_SECTION_LABEL "Ltext"
3943 #endif
3944 #ifndef DEBUG_LINE_SECTION_LABEL
3945 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3946 #endif
3947 #ifndef DEBUG_INFO_SECTION_LABEL
3948 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3949 #endif
3950 #ifndef DEBUG_ABBREV_SECTION_LABEL
3951 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3952 #endif
3953 #ifndef DEBUG_LOC_SECTION_LABEL
3954 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3955 #endif
3956 #ifndef DEBUG_RANGES_SECTION_LABEL
3957 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3958 #endif
3959 #ifndef DEBUG_MACINFO_SECTION_LABEL
3960 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3961 #endif
3962
3963 /* Definitions of defaults for formats and names of various special
3964 (artificial) labels which may be generated within this file (when the -g
3965 options is used and DWARF2_DEBUGGING_INFO is in effect.
3966 If necessary, these may be overridden from within the tm.h file, but
3967 typically, overriding these defaults is unnecessary. */
3968
3969 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3970 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3971 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3972 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3973 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3974 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3975 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3976 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3977
3978 #ifndef TEXT_END_LABEL
3979 #define TEXT_END_LABEL "Letext"
3980 #endif
3981 #ifndef BLOCK_BEGIN_LABEL
3982 #define BLOCK_BEGIN_LABEL "LBB"
3983 #endif
3984 #ifndef BLOCK_END_LABEL
3985 #define BLOCK_END_LABEL "LBE"
3986 #endif
3987 #ifndef LINE_CODE_LABEL
3988 #define LINE_CODE_LABEL "LM"
3989 #endif
3990 #ifndef SEPARATE_LINE_CODE_LABEL
3991 #define SEPARATE_LINE_CODE_LABEL "LSM"
3992 #endif
3993 \f
3994 /* We allow a language front-end to designate a function that is to be
3995 called to "demangle" any name before it it put into a DIE. */
3996
3997 static const char *(*demangle_name_func) (const char *);
3998
3999 void
4000 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4001 {
4002 demangle_name_func = func;
4003 }
4004
4005 /* Test if rtl node points to a pseudo register. */
4006
4007 static inline int
4008 is_pseudo_reg (rtx rtl)
4009 {
4010 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4011 || (GET_CODE (rtl) == SUBREG
4012 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4013 }
4014
4015 /* Return a reference to a type, with its const and volatile qualifiers
4016 removed. */
4017
4018 static inline tree
4019 type_main_variant (tree type)
4020 {
4021 type = TYPE_MAIN_VARIANT (type);
4022
4023 /* ??? There really should be only one main variant among any group of
4024 variants of a given type (and all of the MAIN_VARIANT values for all
4025 members of the group should point to that one type) but sometimes the C
4026 front-end messes this up for array types, so we work around that bug
4027 here. */
4028 if (TREE_CODE (type) == ARRAY_TYPE)
4029 while (type != TYPE_MAIN_VARIANT (type))
4030 type = TYPE_MAIN_VARIANT (type);
4031
4032 return type;
4033 }
4034
4035 /* Return nonzero if the given type node represents a tagged type. */
4036
4037 static inline int
4038 is_tagged_type (tree type)
4039 {
4040 enum tree_code code = TREE_CODE (type);
4041
4042 return (code == RECORD_TYPE || code == UNION_TYPE
4043 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4044 }
4045
4046 /* Convert a DIE tag into its string name. */
4047
4048 static const char *
4049 dwarf_tag_name (unsigned int tag)
4050 {
4051 switch (tag)
4052 {
4053 case DW_TAG_padding:
4054 return "DW_TAG_padding";
4055 case DW_TAG_array_type:
4056 return "DW_TAG_array_type";
4057 case DW_TAG_class_type:
4058 return "DW_TAG_class_type";
4059 case DW_TAG_entry_point:
4060 return "DW_TAG_entry_point";
4061 case DW_TAG_enumeration_type:
4062 return "DW_TAG_enumeration_type";
4063 case DW_TAG_formal_parameter:
4064 return "DW_TAG_formal_parameter";
4065 case DW_TAG_imported_declaration:
4066 return "DW_TAG_imported_declaration";
4067 case DW_TAG_label:
4068 return "DW_TAG_label";
4069 case DW_TAG_lexical_block:
4070 return "DW_TAG_lexical_block";
4071 case DW_TAG_member:
4072 return "DW_TAG_member";
4073 case DW_TAG_pointer_type:
4074 return "DW_TAG_pointer_type";
4075 case DW_TAG_reference_type:
4076 return "DW_TAG_reference_type";
4077 case DW_TAG_compile_unit:
4078 return "DW_TAG_compile_unit";
4079 case DW_TAG_string_type:
4080 return "DW_TAG_string_type";
4081 case DW_TAG_structure_type:
4082 return "DW_TAG_structure_type";
4083 case DW_TAG_subroutine_type:
4084 return "DW_TAG_subroutine_type";
4085 case DW_TAG_typedef:
4086 return "DW_TAG_typedef";
4087 case DW_TAG_union_type:
4088 return "DW_TAG_union_type";
4089 case DW_TAG_unspecified_parameters:
4090 return "DW_TAG_unspecified_parameters";
4091 case DW_TAG_variant:
4092 return "DW_TAG_variant";
4093 case DW_TAG_common_block:
4094 return "DW_TAG_common_block";
4095 case DW_TAG_common_inclusion:
4096 return "DW_TAG_common_inclusion";
4097 case DW_TAG_inheritance:
4098 return "DW_TAG_inheritance";
4099 case DW_TAG_inlined_subroutine:
4100 return "DW_TAG_inlined_subroutine";
4101 case DW_TAG_module:
4102 return "DW_TAG_module";
4103 case DW_TAG_ptr_to_member_type:
4104 return "DW_TAG_ptr_to_member_type";
4105 case DW_TAG_set_type:
4106 return "DW_TAG_set_type";
4107 case DW_TAG_subrange_type:
4108 return "DW_TAG_subrange_type";
4109 case DW_TAG_with_stmt:
4110 return "DW_TAG_with_stmt";
4111 case DW_TAG_access_declaration:
4112 return "DW_TAG_access_declaration";
4113 case DW_TAG_base_type:
4114 return "DW_TAG_base_type";
4115 case DW_TAG_catch_block:
4116 return "DW_TAG_catch_block";
4117 case DW_TAG_const_type:
4118 return "DW_TAG_const_type";
4119 case DW_TAG_constant:
4120 return "DW_TAG_constant";
4121 case DW_TAG_enumerator:
4122 return "DW_TAG_enumerator";
4123 case DW_TAG_file_type:
4124 return "DW_TAG_file_type";
4125 case DW_TAG_friend:
4126 return "DW_TAG_friend";
4127 case DW_TAG_namelist:
4128 return "DW_TAG_namelist";
4129 case DW_TAG_namelist_item:
4130 return "DW_TAG_namelist_item";
4131 case DW_TAG_namespace:
4132 return "DW_TAG_namespace";
4133 case DW_TAG_packed_type:
4134 return "DW_TAG_packed_type";
4135 case DW_TAG_subprogram:
4136 return "DW_TAG_subprogram";
4137 case DW_TAG_template_type_param:
4138 return "DW_TAG_template_type_param";
4139 case DW_TAG_template_value_param:
4140 return "DW_TAG_template_value_param";
4141 case DW_TAG_thrown_type:
4142 return "DW_TAG_thrown_type";
4143 case DW_TAG_try_block:
4144 return "DW_TAG_try_block";
4145 case DW_TAG_variant_part:
4146 return "DW_TAG_variant_part";
4147 case DW_TAG_variable:
4148 return "DW_TAG_variable";
4149 case DW_TAG_volatile_type:
4150 return "DW_TAG_volatile_type";
4151 case DW_TAG_imported_module:
4152 return "DW_TAG_imported_module";
4153 case DW_TAG_MIPS_loop:
4154 return "DW_TAG_MIPS_loop";
4155 case DW_TAG_format_label:
4156 return "DW_TAG_format_label";
4157 case DW_TAG_function_template:
4158 return "DW_TAG_function_template";
4159 case DW_TAG_class_template:
4160 return "DW_TAG_class_template";
4161 case DW_TAG_GNU_BINCL:
4162 return "DW_TAG_GNU_BINCL";
4163 case DW_TAG_GNU_EINCL:
4164 return "DW_TAG_GNU_EINCL";
4165 default:
4166 return "DW_TAG_<unknown>";
4167 }
4168 }
4169
4170 /* Convert a DWARF attribute code into its string name. */
4171
4172 static const char *
4173 dwarf_attr_name (unsigned int attr)
4174 {
4175 switch (attr)
4176 {
4177 case DW_AT_sibling:
4178 return "DW_AT_sibling";
4179 case DW_AT_location:
4180 return "DW_AT_location";
4181 case DW_AT_name:
4182 return "DW_AT_name";
4183 case DW_AT_ordering:
4184 return "DW_AT_ordering";
4185 case DW_AT_subscr_data:
4186 return "DW_AT_subscr_data";
4187 case DW_AT_byte_size:
4188 return "DW_AT_byte_size";
4189 case DW_AT_bit_offset:
4190 return "DW_AT_bit_offset";
4191 case DW_AT_bit_size:
4192 return "DW_AT_bit_size";
4193 case DW_AT_element_list:
4194 return "DW_AT_element_list";
4195 case DW_AT_stmt_list:
4196 return "DW_AT_stmt_list";
4197 case DW_AT_low_pc:
4198 return "DW_AT_low_pc";
4199 case DW_AT_high_pc:
4200 return "DW_AT_high_pc";
4201 case DW_AT_language:
4202 return "DW_AT_language";
4203 case DW_AT_member:
4204 return "DW_AT_member";
4205 case DW_AT_discr:
4206 return "DW_AT_discr";
4207 case DW_AT_discr_value:
4208 return "DW_AT_discr_value";
4209 case DW_AT_visibility:
4210 return "DW_AT_visibility";
4211 case DW_AT_import:
4212 return "DW_AT_import";
4213 case DW_AT_string_length:
4214 return "DW_AT_string_length";
4215 case DW_AT_common_reference:
4216 return "DW_AT_common_reference";
4217 case DW_AT_comp_dir:
4218 return "DW_AT_comp_dir";
4219 case DW_AT_const_value:
4220 return "DW_AT_const_value";
4221 case DW_AT_containing_type:
4222 return "DW_AT_containing_type";
4223 case DW_AT_default_value:
4224 return "DW_AT_default_value";
4225 case DW_AT_inline:
4226 return "DW_AT_inline";
4227 case DW_AT_is_optional:
4228 return "DW_AT_is_optional";
4229 case DW_AT_lower_bound:
4230 return "DW_AT_lower_bound";
4231 case DW_AT_producer:
4232 return "DW_AT_producer";
4233 case DW_AT_prototyped:
4234 return "DW_AT_prototyped";
4235 case DW_AT_return_addr:
4236 return "DW_AT_return_addr";
4237 case DW_AT_start_scope:
4238 return "DW_AT_start_scope";
4239 case DW_AT_stride_size:
4240 return "DW_AT_stride_size";
4241 case DW_AT_upper_bound:
4242 return "DW_AT_upper_bound";
4243 case DW_AT_abstract_origin:
4244 return "DW_AT_abstract_origin";
4245 case DW_AT_accessibility:
4246 return "DW_AT_accessibility";
4247 case DW_AT_address_class:
4248 return "DW_AT_address_class";
4249 case DW_AT_artificial:
4250 return "DW_AT_artificial";
4251 case DW_AT_base_types:
4252 return "DW_AT_base_types";
4253 case DW_AT_calling_convention:
4254 return "DW_AT_calling_convention";
4255 case DW_AT_count:
4256 return "DW_AT_count";
4257 case DW_AT_data_member_location:
4258 return "DW_AT_data_member_location";
4259 case DW_AT_decl_column:
4260 return "DW_AT_decl_column";
4261 case DW_AT_decl_file:
4262 return "DW_AT_decl_file";
4263 case DW_AT_decl_line:
4264 return "DW_AT_decl_line";
4265 case DW_AT_declaration:
4266 return "DW_AT_declaration";
4267 case DW_AT_discr_list:
4268 return "DW_AT_discr_list";
4269 case DW_AT_encoding:
4270 return "DW_AT_encoding";
4271 case DW_AT_external:
4272 return "DW_AT_external";
4273 case DW_AT_frame_base:
4274 return "DW_AT_frame_base";
4275 case DW_AT_friend:
4276 return "DW_AT_friend";
4277 case DW_AT_identifier_case:
4278 return "DW_AT_identifier_case";
4279 case DW_AT_macro_info:
4280 return "DW_AT_macro_info";
4281 case DW_AT_namelist_items:
4282 return "DW_AT_namelist_items";
4283 case DW_AT_priority:
4284 return "DW_AT_priority";
4285 case DW_AT_segment:
4286 return "DW_AT_segment";
4287 case DW_AT_specification:
4288 return "DW_AT_specification";
4289 case DW_AT_static_link:
4290 return "DW_AT_static_link";
4291 case DW_AT_type:
4292 return "DW_AT_type";
4293 case DW_AT_use_location:
4294 return "DW_AT_use_location";
4295 case DW_AT_variable_parameter:
4296 return "DW_AT_variable_parameter";
4297 case DW_AT_virtuality:
4298 return "DW_AT_virtuality";
4299 case DW_AT_vtable_elem_location:
4300 return "DW_AT_vtable_elem_location";
4301
4302 case DW_AT_allocated:
4303 return "DW_AT_allocated";
4304 case DW_AT_associated:
4305 return "DW_AT_associated";
4306 case DW_AT_data_location:
4307 return "DW_AT_data_location";
4308 case DW_AT_stride:
4309 return "DW_AT_stride";
4310 case DW_AT_entry_pc:
4311 return "DW_AT_entry_pc";
4312 case DW_AT_use_UTF8:
4313 return "DW_AT_use_UTF8";
4314 case DW_AT_extension:
4315 return "DW_AT_extension";
4316 case DW_AT_ranges:
4317 return "DW_AT_ranges";
4318 case DW_AT_trampoline:
4319 return "DW_AT_trampoline";
4320 case DW_AT_call_column:
4321 return "DW_AT_call_column";
4322 case DW_AT_call_file:
4323 return "DW_AT_call_file";
4324 case DW_AT_call_line:
4325 return "DW_AT_call_line";
4326
4327 case DW_AT_MIPS_fde:
4328 return "DW_AT_MIPS_fde";
4329 case DW_AT_MIPS_loop_begin:
4330 return "DW_AT_MIPS_loop_begin";
4331 case DW_AT_MIPS_tail_loop_begin:
4332 return "DW_AT_MIPS_tail_loop_begin";
4333 case DW_AT_MIPS_epilog_begin:
4334 return "DW_AT_MIPS_epilog_begin";
4335 case DW_AT_MIPS_loop_unroll_factor:
4336 return "DW_AT_MIPS_loop_unroll_factor";
4337 case DW_AT_MIPS_software_pipeline_depth:
4338 return "DW_AT_MIPS_software_pipeline_depth";
4339 case DW_AT_MIPS_linkage_name:
4340 return "DW_AT_MIPS_linkage_name";
4341 case DW_AT_MIPS_stride:
4342 return "DW_AT_MIPS_stride";
4343 case DW_AT_MIPS_abstract_name:
4344 return "DW_AT_MIPS_abstract_name";
4345 case DW_AT_MIPS_clone_origin:
4346 return "DW_AT_MIPS_clone_origin";
4347 case DW_AT_MIPS_has_inlines:
4348 return "DW_AT_MIPS_has_inlines";
4349
4350 case DW_AT_sf_names:
4351 return "DW_AT_sf_names";
4352 case DW_AT_src_info:
4353 return "DW_AT_src_info";
4354 case DW_AT_mac_info:
4355 return "DW_AT_mac_info";
4356 case DW_AT_src_coords:
4357 return "DW_AT_src_coords";
4358 case DW_AT_body_begin:
4359 return "DW_AT_body_begin";
4360 case DW_AT_body_end:
4361 return "DW_AT_body_end";
4362 case DW_AT_GNU_vector:
4363 return "DW_AT_GNU_vector";
4364
4365 case DW_AT_VMS_rtnbeg_pd_address:
4366 return "DW_AT_VMS_rtnbeg_pd_address";
4367
4368 default:
4369 return "DW_AT_<unknown>";
4370 }
4371 }
4372
4373 /* Convert a DWARF value form code into its string name. */
4374
4375 static const char *
4376 dwarf_form_name (unsigned int form)
4377 {
4378 switch (form)
4379 {
4380 case DW_FORM_addr:
4381 return "DW_FORM_addr";
4382 case DW_FORM_block2:
4383 return "DW_FORM_block2";
4384 case DW_FORM_block4:
4385 return "DW_FORM_block4";
4386 case DW_FORM_data2:
4387 return "DW_FORM_data2";
4388 case DW_FORM_data4:
4389 return "DW_FORM_data4";
4390 case DW_FORM_data8:
4391 return "DW_FORM_data8";
4392 case DW_FORM_string:
4393 return "DW_FORM_string";
4394 case DW_FORM_block:
4395 return "DW_FORM_block";
4396 case DW_FORM_block1:
4397 return "DW_FORM_block1";
4398 case DW_FORM_data1:
4399 return "DW_FORM_data1";
4400 case DW_FORM_flag:
4401 return "DW_FORM_flag";
4402 case DW_FORM_sdata:
4403 return "DW_FORM_sdata";
4404 case DW_FORM_strp:
4405 return "DW_FORM_strp";
4406 case DW_FORM_udata:
4407 return "DW_FORM_udata";
4408 case DW_FORM_ref_addr:
4409 return "DW_FORM_ref_addr";
4410 case DW_FORM_ref1:
4411 return "DW_FORM_ref1";
4412 case DW_FORM_ref2:
4413 return "DW_FORM_ref2";
4414 case DW_FORM_ref4:
4415 return "DW_FORM_ref4";
4416 case DW_FORM_ref8:
4417 return "DW_FORM_ref8";
4418 case DW_FORM_ref_udata:
4419 return "DW_FORM_ref_udata";
4420 case DW_FORM_indirect:
4421 return "DW_FORM_indirect";
4422 default:
4423 return "DW_FORM_<unknown>";
4424 }
4425 }
4426
4427 /* Convert a DWARF type code into its string name. */
4428
4429 #if 0
4430 static const char *
4431 dwarf_type_encoding_name (unsigned enc)
4432 {
4433 switch (enc)
4434 {
4435 case DW_ATE_address:
4436 return "DW_ATE_address";
4437 case DW_ATE_boolean:
4438 return "DW_ATE_boolean";
4439 case DW_ATE_complex_float:
4440 return "DW_ATE_complex_float";
4441 case DW_ATE_float:
4442 return "DW_ATE_float";
4443 case DW_ATE_signed:
4444 return "DW_ATE_signed";
4445 case DW_ATE_signed_char:
4446 return "DW_ATE_signed_char";
4447 case DW_ATE_unsigned:
4448 return "DW_ATE_unsigned";
4449 case DW_ATE_unsigned_char:
4450 return "DW_ATE_unsigned_char";
4451 default:
4452 return "DW_ATE_<unknown>";
4453 }
4454 }
4455 #endif
4456 \f
4457 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4458 instance of an inlined instance of a decl which is local to an inline
4459 function, so we have to trace all of the way back through the origin chain
4460 to find out what sort of node actually served as the original seed for the
4461 given block. */
4462
4463 static tree
4464 decl_ultimate_origin (tree decl)
4465 {
4466 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4467 nodes in the function to point to themselves; ignore that if
4468 we're trying to output the abstract instance of this function. */
4469 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4470 return NULL_TREE;
4471
4472 #ifdef ENABLE_CHECKING
4473 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4474 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4475 most distant ancestor, this should never happen. */
4476 abort ();
4477 #endif
4478
4479 return DECL_ABSTRACT_ORIGIN (decl);
4480 }
4481
4482 /* Determine the "ultimate origin" of a block. The block may be an inlined
4483 instance of an inlined instance of a block which is local to an inline
4484 function, so we have to trace all of the way back through the origin chain
4485 to find out what sort of node actually served as the original seed for the
4486 given block. */
4487
4488 static tree
4489 block_ultimate_origin (tree block)
4490 {
4491 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4492
4493 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4494 nodes in the function to point to themselves; ignore that if
4495 we're trying to output the abstract instance of this function. */
4496 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4497 return NULL_TREE;
4498
4499 if (immediate_origin == NULL_TREE)
4500 return NULL_TREE;
4501 else
4502 {
4503 tree ret_val;
4504 tree lookahead = immediate_origin;
4505
4506 do
4507 {
4508 ret_val = lookahead;
4509 lookahead = (TREE_CODE (ret_val) == BLOCK
4510 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4511 }
4512 while (lookahead != NULL && lookahead != ret_val);
4513
4514 return ret_val;
4515 }
4516 }
4517
4518 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4519 of a virtual function may refer to a base class, so we check the 'this'
4520 parameter. */
4521
4522 static tree
4523 decl_class_context (tree decl)
4524 {
4525 tree context = NULL_TREE;
4526
4527 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4528 context = DECL_CONTEXT (decl);
4529 else
4530 context = TYPE_MAIN_VARIANT
4531 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4532
4533 if (context && !TYPE_P (context))
4534 context = NULL_TREE;
4535
4536 return context;
4537 }
4538 \f
4539 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4540 addition order, and correct that in reverse_all_dies. */
4541
4542 static inline void
4543 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4544 {
4545 if (die != NULL && attr != NULL)
4546 {
4547 attr->dw_attr_next = die->die_attr;
4548 die->die_attr = attr;
4549 }
4550 }
4551
4552 static inline enum dw_val_class
4553 AT_class (dw_attr_ref a)
4554 {
4555 return a->dw_attr_val.val_class;
4556 }
4557
4558 /* Add a flag value attribute to a DIE. */
4559
4560 static inline void
4561 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4562 {
4563 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4564
4565 attr->dw_attr_next = NULL;
4566 attr->dw_attr = attr_kind;
4567 attr->dw_attr_val.val_class = dw_val_class_flag;
4568 attr->dw_attr_val.v.val_flag = flag;
4569 add_dwarf_attr (die, attr);
4570 }
4571
4572 static inline unsigned
4573 AT_flag (dw_attr_ref a)
4574 {
4575 if (a && AT_class (a) == dw_val_class_flag)
4576 return a->dw_attr_val.v.val_flag;
4577
4578 abort ();
4579 }
4580
4581 /* Add a signed integer attribute value to a DIE. */
4582
4583 static inline void
4584 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4585 {
4586 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4587
4588 attr->dw_attr_next = NULL;
4589 attr->dw_attr = attr_kind;
4590 attr->dw_attr_val.val_class = dw_val_class_const;
4591 attr->dw_attr_val.v.val_int = int_val;
4592 add_dwarf_attr (die, attr);
4593 }
4594
4595 static inline HOST_WIDE_INT
4596 AT_int (dw_attr_ref a)
4597 {
4598 if (a && AT_class (a) == dw_val_class_const)
4599 return a->dw_attr_val.v.val_int;
4600
4601 abort ();
4602 }
4603
4604 /* Add an unsigned integer attribute value to a DIE. */
4605
4606 static inline void
4607 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4608 unsigned HOST_WIDE_INT unsigned_val)
4609 {
4610 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4611
4612 attr->dw_attr_next = NULL;
4613 attr->dw_attr = attr_kind;
4614 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4615 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4616 add_dwarf_attr (die, attr);
4617 }
4618
4619 static inline unsigned HOST_WIDE_INT
4620 AT_unsigned (dw_attr_ref a)
4621 {
4622 if (a && AT_class (a) == dw_val_class_unsigned_const)
4623 return a->dw_attr_val.v.val_unsigned;
4624
4625 abort ();
4626 }
4627
4628 /* Add an unsigned double integer attribute value to a DIE. */
4629
4630 static inline void
4631 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4632 long unsigned int val_hi, long unsigned int val_low)
4633 {
4634 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4635
4636 attr->dw_attr_next = NULL;
4637 attr->dw_attr = attr_kind;
4638 attr->dw_attr_val.val_class = dw_val_class_long_long;
4639 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4640 attr->dw_attr_val.v.val_long_long.low = val_low;
4641 add_dwarf_attr (die, attr);
4642 }
4643
4644 /* Add a floating point attribute value to a DIE and return it. */
4645
4646 static inline void
4647 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4648 unsigned int length, unsigned int elt_size, unsigned char *array)
4649 {
4650 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4651
4652 attr->dw_attr_next = NULL;
4653 attr->dw_attr = attr_kind;
4654 attr->dw_attr_val.val_class = dw_val_class_vec;
4655 attr->dw_attr_val.v.val_vec.length = length;
4656 attr->dw_attr_val.v.val_vec.elt_size = elt_size;
4657 attr->dw_attr_val.v.val_vec.array = array;
4658 add_dwarf_attr (die, attr);
4659 }
4660
4661 /* Hash and equality functions for debug_str_hash. */
4662
4663 static hashval_t
4664 debug_str_do_hash (const void *x)
4665 {
4666 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4667 }
4668
4669 static int
4670 debug_str_eq (const void *x1, const void *x2)
4671 {
4672 return strcmp ((((const struct indirect_string_node *)x1)->str),
4673 (const char *)x2) == 0;
4674 }
4675
4676 /* Add a string attribute value to a DIE. */
4677
4678 static inline void
4679 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4680 {
4681 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4682 struct indirect_string_node *node;
4683 void **slot;
4684
4685 if (! debug_str_hash)
4686 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4687 debug_str_eq, NULL);
4688
4689 slot = htab_find_slot_with_hash (debug_str_hash, str,
4690 htab_hash_string (str), INSERT);
4691 if (*slot == NULL)
4692 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4693 node = (struct indirect_string_node *) *slot;
4694 node->str = ggc_strdup (str);
4695 node->refcount++;
4696
4697 attr->dw_attr_next = NULL;
4698 attr->dw_attr = attr_kind;
4699 attr->dw_attr_val.val_class = dw_val_class_str;
4700 attr->dw_attr_val.v.val_str = node;
4701 add_dwarf_attr (die, attr);
4702 }
4703
4704 static inline const char *
4705 AT_string (dw_attr_ref a)
4706 {
4707 if (a && AT_class (a) == dw_val_class_str)
4708 return a->dw_attr_val.v.val_str->str;
4709
4710 abort ();
4711 }
4712
4713 /* Find out whether a string should be output inline in DIE
4714 or out-of-line in .debug_str section. */
4715
4716 static int
4717 AT_string_form (dw_attr_ref a)
4718 {
4719 if (a && AT_class (a) == dw_val_class_str)
4720 {
4721 struct indirect_string_node *node;
4722 unsigned int len;
4723 char label[32];
4724
4725 node = a->dw_attr_val.v.val_str;
4726 if (node->form)
4727 return node->form;
4728
4729 len = strlen (node->str) + 1;
4730
4731 /* If the string is shorter or equal to the size of the reference, it is
4732 always better to put it inline. */
4733 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4734 return node->form = DW_FORM_string;
4735
4736 /* If we cannot expect the linker to merge strings in .debug_str
4737 section, only put it into .debug_str if it is worth even in this
4738 single module. */
4739 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4740 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4741 return node->form = DW_FORM_string;
4742
4743 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4744 ++dw2_string_counter;
4745 node->label = xstrdup (label);
4746
4747 return node->form = DW_FORM_strp;
4748 }
4749
4750 abort ();
4751 }
4752
4753 /* Add a DIE reference attribute value to a DIE. */
4754
4755 static inline void
4756 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4757 {
4758 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4759
4760 attr->dw_attr_next = NULL;
4761 attr->dw_attr = attr_kind;
4762 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4763 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4764 attr->dw_attr_val.v.val_die_ref.external = 0;
4765 add_dwarf_attr (die, attr);
4766 }
4767
4768 /* Add an AT_specification attribute to a DIE, and also make the back
4769 pointer from the specification to the definition. */
4770
4771 static inline void
4772 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4773 {
4774 add_AT_die_ref (die, DW_AT_specification, targ_die);
4775 if (targ_die->die_definition)
4776 abort ();
4777 targ_die->die_definition = die;
4778 }
4779
4780 static inline dw_die_ref
4781 AT_ref (dw_attr_ref a)
4782 {
4783 if (a && AT_class (a) == dw_val_class_die_ref)
4784 return a->dw_attr_val.v.val_die_ref.die;
4785
4786 abort ();
4787 }
4788
4789 static inline int
4790 AT_ref_external (dw_attr_ref a)
4791 {
4792 if (a && AT_class (a) == dw_val_class_die_ref)
4793 return a->dw_attr_val.v.val_die_ref.external;
4794
4795 return 0;
4796 }
4797
4798 static inline void
4799 set_AT_ref_external (dw_attr_ref a, int i)
4800 {
4801 if (a && AT_class (a) == dw_val_class_die_ref)
4802 a->dw_attr_val.v.val_die_ref.external = i;
4803 else
4804 abort ();
4805 }
4806
4807 /* Add an FDE reference attribute value to a DIE. */
4808
4809 static inline void
4810 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4811 {
4812 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4813
4814 attr->dw_attr_next = NULL;
4815 attr->dw_attr = attr_kind;
4816 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4817 attr->dw_attr_val.v.val_fde_index = targ_fde;
4818 add_dwarf_attr (die, attr);
4819 }
4820
4821 /* Add a location description attribute value to a DIE. */
4822
4823 static inline void
4824 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4825 {
4826 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4827
4828 attr->dw_attr_next = NULL;
4829 attr->dw_attr = attr_kind;
4830 attr->dw_attr_val.val_class = dw_val_class_loc;
4831 attr->dw_attr_val.v.val_loc = loc;
4832 add_dwarf_attr (die, attr);
4833 }
4834
4835 static inline dw_loc_descr_ref
4836 AT_loc (dw_attr_ref a)
4837 {
4838 if (a && AT_class (a) == dw_val_class_loc)
4839 return a->dw_attr_val.v.val_loc;
4840
4841 abort ();
4842 }
4843
4844 static inline void
4845 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4846 {
4847 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4848
4849 attr->dw_attr_next = NULL;
4850 attr->dw_attr = attr_kind;
4851 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4852 attr->dw_attr_val.v.val_loc_list = loc_list;
4853 add_dwarf_attr (die, attr);
4854 have_location_lists = 1;
4855 }
4856
4857 static inline dw_loc_list_ref
4858 AT_loc_list (dw_attr_ref a)
4859 {
4860 if (a && AT_class (a) == dw_val_class_loc_list)
4861 return a->dw_attr_val.v.val_loc_list;
4862
4863 abort ();
4864 }
4865
4866 /* Add an address constant attribute value to a DIE. */
4867
4868 static inline void
4869 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
4870 {
4871 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4872
4873 attr->dw_attr_next = NULL;
4874 attr->dw_attr = attr_kind;
4875 attr->dw_attr_val.val_class = dw_val_class_addr;
4876 attr->dw_attr_val.v.val_addr = addr;
4877 add_dwarf_attr (die, attr);
4878 }
4879
4880 static inline rtx
4881 AT_addr (dw_attr_ref a)
4882 {
4883 if (a && AT_class (a) == dw_val_class_addr)
4884 return a->dw_attr_val.v.val_addr;
4885
4886 abort ();
4887 }
4888
4889 /* Add a label identifier attribute value to a DIE. */
4890
4891 static inline void
4892 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
4893 {
4894 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4895
4896 attr->dw_attr_next = NULL;
4897 attr->dw_attr = attr_kind;
4898 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4899 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4900 add_dwarf_attr (die, attr);
4901 }
4902
4903 /* Add a section offset attribute value to a DIE. */
4904
4905 static inline void
4906 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
4907 {
4908 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4909
4910 attr->dw_attr_next = NULL;
4911 attr->dw_attr = attr_kind;
4912 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4913 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4914 add_dwarf_attr (die, attr);
4915 }
4916
4917 /* Add an offset attribute value to a DIE. */
4918
4919 static inline void
4920 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
4921 unsigned HOST_WIDE_INT offset)
4922 {
4923 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4924
4925 attr->dw_attr_next = NULL;
4926 attr->dw_attr = attr_kind;
4927 attr->dw_attr_val.val_class = dw_val_class_offset;
4928 attr->dw_attr_val.v.val_offset = offset;
4929 add_dwarf_attr (die, attr);
4930 }
4931
4932 /* Add an range_list attribute value to a DIE. */
4933
4934 static void
4935 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
4936 long unsigned int offset)
4937 {
4938 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4939
4940 attr->dw_attr_next = NULL;
4941 attr->dw_attr = attr_kind;
4942 attr->dw_attr_val.val_class = dw_val_class_range_list;
4943 attr->dw_attr_val.v.val_offset = offset;
4944 add_dwarf_attr (die, attr);
4945 }
4946
4947 static inline const char *
4948 AT_lbl (dw_attr_ref a)
4949 {
4950 if (a && (AT_class (a) == dw_val_class_lbl_id
4951 || AT_class (a) == dw_val_class_lbl_offset))
4952 return a->dw_attr_val.v.val_lbl_id;
4953
4954 abort ();
4955 }
4956
4957 /* Get the attribute of type attr_kind. */
4958
4959 static dw_attr_ref
4960 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4961 {
4962 dw_attr_ref a;
4963 dw_die_ref spec = NULL;
4964
4965 if (die != NULL)
4966 {
4967 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
4968 if (a->dw_attr == attr_kind)
4969 return a;
4970 else if (a->dw_attr == DW_AT_specification
4971 || a->dw_attr == DW_AT_abstract_origin)
4972 spec = AT_ref (a);
4973
4974 if (spec)
4975 return get_AT (spec, attr_kind);
4976 }
4977
4978 return NULL;
4979 }
4980
4981 /* Return the "low pc" attribute value, typically associated with a subprogram
4982 DIE. Return null if the "low pc" attribute is either not present, or if it
4983 cannot be represented as an assembler label identifier. */
4984
4985 static inline const char *
4986 get_AT_low_pc (dw_die_ref die)
4987 {
4988 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
4989
4990 return a ? AT_lbl (a) : NULL;
4991 }
4992
4993 /* Return the "high pc" attribute value, typically associated with a subprogram
4994 DIE. Return null if the "high pc" attribute is either not present, or if it
4995 cannot be represented as an assembler label identifier. */
4996
4997 static inline const char *
4998 get_AT_hi_pc (dw_die_ref die)
4999 {
5000 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5001
5002 return a ? AT_lbl (a) : NULL;
5003 }
5004
5005 /* Return the value of the string attribute designated by ATTR_KIND, or
5006 NULL if it is not present. */
5007
5008 static inline const char *
5009 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5010 {
5011 dw_attr_ref a = get_AT (die, attr_kind);
5012
5013 return a ? AT_string (a) : NULL;
5014 }
5015
5016 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5017 if it is not present. */
5018
5019 static inline int
5020 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5021 {
5022 dw_attr_ref a = get_AT (die, attr_kind);
5023
5024 return a ? AT_flag (a) : 0;
5025 }
5026
5027 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5028 if it is not present. */
5029
5030 static inline unsigned
5031 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5032 {
5033 dw_attr_ref a = get_AT (die, attr_kind);
5034
5035 return a ? AT_unsigned (a) : 0;
5036 }
5037
5038 static inline dw_die_ref
5039 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5040 {
5041 dw_attr_ref a = get_AT (die, attr_kind);
5042
5043 return a ? AT_ref (a) : NULL;
5044 }
5045
5046 /* Return TRUE if the language is C or C++. */
5047
5048 static inline bool
5049 is_c_family (void)
5050 {
5051 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5052
5053 return (lang == DW_LANG_C || lang == DW_LANG_C89
5054 || lang == DW_LANG_C_plus_plus);
5055 }
5056
5057 /* Return TRUE if the language is C++. */
5058
5059 static inline bool
5060 is_cxx (void)
5061 {
5062 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5063 == DW_LANG_C_plus_plus);
5064 }
5065
5066 /* Return TRUE if the language is Fortran. */
5067
5068 static inline bool
5069 is_fortran (void)
5070 {
5071 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5072
5073 return lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90;
5074 }
5075
5076 /* Return TRUE if the language is Java. */
5077
5078 static inline bool
5079 is_java (void)
5080 {
5081 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5082
5083 return lang == DW_LANG_Java;
5084 }
5085
5086 /* Return TRUE if the language is Ada. */
5087
5088 static inline bool
5089 is_ada (void)
5090 {
5091 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5092
5093 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5094 }
5095
5096 /* Free up the memory used by A. */
5097
5098 static inline void free_AT (dw_attr_ref);
5099 static inline void
5100 free_AT (dw_attr_ref a)
5101 {
5102 if (AT_class (a) == dw_val_class_str)
5103 if (a->dw_attr_val.v.val_str->refcount)
5104 a->dw_attr_val.v.val_str->refcount--;
5105 }
5106
5107 /* Remove the specified attribute if present. */
5108
5109 static void
5110 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5111 {
5112 dw_attr_ref *p;
5113 dw_attr_ref removed = NULL;
5114
5115 if (die != NULL)
5116 {
5117 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5118 if ((*p)->dw_attr == attr_kind)
5119 {
5120 removed = *p;
5121 *p = (*p)->dw_attr_next;
5122 break;
5123 }
5124
5125 if (removed != 0)
5126 free_AT (removed);
5127 }
5128 }
5129
5130 /* Remove child die whose die_tag is specified tag. */
5131
5132 static void
5133 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5134 {
5135 dw_die_ref current, prev, next;
5136 current = die->die_child;
5137 prev = NULL;
5138 while (current != NULL)
5139 {
5140 if (current->die_tag == tag)
5141 {
5142 next = current->die_sib;
5143 if (prev == NULL)
5144 die->die_child = next;
5145 else
5146 prev->die_sib = next;
5147 free_die (current);
5148 current = next;
5149 }
5150 else
5151 {
5152 prev = current;
5153 current = current->die_sib;
5154 }
5155 }
5156 }
5157
5158 /* Free up the memory used by DIE. */
5159
5160 static inline void
5161 free_die (dw_die_ref die)
5162 {
5163 remove_children (die);
5164 }
5165
5166 /* Discard the children of this DIE. */
5167
5168 static void
5169 remove_children (dw_die_ref die)
5170 {
5171 dw_die_ref child_die = die->die_child;
5172
5173 die->die_child = NULL;
5174
5175 while (child_die != NULL)
5176 {
5177 dw_die_ref tmp_die = child_die;
5178 dw_attr_ref a;
5179
5180 child_die = child_die->die_sib;
5181
5182 for (a = tmp_die->die_attr; a != NULL;)
5183 {
5184 dw_attr_ref tmp_a = a;
5185
5186 a = a->dw_attr_next;
5187 free_AT (tmp_a);
5188 }
5189
5190 free_die (tmp_die);
5191 }
5192 }
5193
5194 /* Add a child DIE below its parent. We build the lists up in reverse
5195 addition order, and correct that in reverse_all_dies. */
5196
5197 static inline void
5198 add_child_die (dw_die_ref die, dw_die_ref child_die)
5199 {
5200 if (die != NULL && child_die != NULL)
5201 {
5202 if (die == child_die)
5203 abort ();
5204
5205 child_die->die_parent = die;
5206 child_die->die_sib = die->die_child;
5207 die->die_child = child_die;
5208 }
5209 }
5210
5211 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5212 is the specification, to the front of PARENT's list of children. */
5213
5214 static void
5215 splice_child_die (dw_die_ref parent, dw_die_ref child)
5216 {
5217 dw_die_ref *p;
5218
5219 /* We want the declaration DIE from inside the class, not the
5220 specification DIE at toplevel. */
5221 if (child->die_parent != parent)
5222 {
5223 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5224
5225 if (tmp)
5226 child = tmp;
5227 }
5228
5229 if (child->die_parent != parent
5230 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5231 abort ();
5232
5233 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5234 if (*p == child)
5235 {
5236 *p = child->die_sib;
5237 break;
5238 }
5239
5240 child->die_parent = parent;
5241 child->die_sib = parent->die_child;
5242 parent->die_child = child;
5243 }
5244
5245 /* Return a pointer to a newly created DIE node. */
5246
5247 static inline dw_die_ref
5248 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5249 {
5250 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5251
5252 die->die_tag = tag_value;
5253
5254 if (parent_die != NULL)
5255 add_child_die (parent_die, die);
5256 else
5257 {
5258 limbo_die_node *limbo_node;
5259
5260 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5261 limbo_node->die = die;
5262 limbo_node->created_for = t;
5263 limbo_node->next = limbo_die_list;
5264 limbo_die_list = limbo_node;
5265 }
5266
5267 return die;
5268 }
5269
5270 /* Return the DIE associated with the given type specifier. */
5271
5272 static inline dw_die_ref
5273 lookup_type_die (tree type)
5274 {
5275 return TYPE_SYMTAB_DIE (type);
5276 }
5277
5278 /* Equate a DIE to a given type specifier. */
5279
5280 static inline void
5281 equate_type_number_to_die (tree type, dw_die_ref type_die)
5282 {
5283 TYPE_SYMTAB_DIE (type) = type_die;
5284 }
5285
5286 /* Returns a hash value for X (which really is a die_struct). */
5287
5288 static hashval_t
5289 decl_die_table_hash (const void *x)
5290 {
5291 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5292 }
5293
5294 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5295
5296 static int
5297 decl_die_table_eq (const void *x, const void *y)
5298 {
5299 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5300 }
5301
5302 /* Return the DIE associated with a given declaration. */
5303
5304 static inline dw_die_ref
5305 lookup_decl_die (tree decl)
5306 {
5307 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5308 }
5309
5310 /* Returns a hash value for X (which really is a var_loc_list). */
5311
5312 static hashval_t
5313 decl_loc_table_hash (const void *x)
5314 {
5315 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5316 }
5317
5318 /* Return nonzero if decl_id of var_loc_list X is the same as
5319 UID of decl *Y. */
5320
5321 static int
5322 decl_loc_table_eq (const void *x, const void *y)
5323 {
5324 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5325 }
5326
5327 /* Return the var_loc list associated with a given declaration. */
5328
5329 static inline var_loc_list *
5330 lookup_decl_loc (tree decl)
5331 {
5332 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5333 }
5334
5335 /* Equate a DIE to a particular declaration. */
5336
5337 static void
5338 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5339 {
5340 unsigned int decl_id = DECL_UID (decl);
5341 void **slot;
5342
5343 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5344 *slot = decl_die;
5345 decl_die->decl_id = decl_id;
5346 }
5347
5348 /* Add a variable location node to the linked list for DECL. */
5349
5350 static void
5351 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5352 {
5353 unsigned int decl_id = DECL_UID (decl);
5354 var_loc_list *temp;
5355 void **slot;
5356
5357 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5358 if (*slot == NULL)
5359 {
5360 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5361 temp->decl_id = decl_id;
5362 *slot = temp;
5363 }
5364 else
5365 temp = *slot;
5366
5367 if (temp->last)
5368 {
5369 /* If the current location is the same as the end of the list,
5370 we have nothing to do. */
5371 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5372 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5373 {
5374 /* Add LOC to the end of list and update LAST. */
5375 temp->last->next = loc;
5376 temp->last = loc;
5377 }
5378 }
5379 /* Do not add empty location to the beginning of the list. */
5380 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5381 {
5382 temp->first = loc;
5383 temp->last = loc;
5384 }
5385 }
5386 \f
5387 /* Keep track of the number of spaces used to indent the
5388 output of the debugging routines that print the structure of
5389 the DIE internal representation. */
5390 static int print_indent;
5391
5392 /* Indent the line the number of spaces given by print_indent. */
5393
5394 static inline void
5395 print_spaces (FILE *outfile)
5396 {
5397 fprintf (outfile, "%*s", print_indent, "");
5398 }
5399
5400 /* Print the information associated with a given DIE, and its children.
5401 This routine is a debugging aid only. */
5402
5403 static void
5404 print_die (dw_die_ref die, FILE *outfile)
5405 {
5406 dw_attr_ref a;
5407 dw_die_ref c;
5408
5409 print_spaces (outfile);
5410 fprintf (outfile, "DIE %4lu: %s\n",
5411 die->die_offset, dwarf_tag_name (die->die_tag));
5412 print_spaces (outfile);
5413 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5414 fprintf (outfile, " offset: %lu\n", die->die_offset);
5415
5416 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5417 {
5418 print_spaces (outfile);
5419 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5420
5421 switch (AT_class (a))
5422 {
5423 case dw_val_class_addr:
5424 fprintf (outfile, "address");
5425 break;
5426 case dw_val_class_offset:
5427 fprintf (outfile, "offset");
5428 break;
5429 case dw_val_class_loc:
5430 fprintf (outfile, "location descriptor");
5431 break;
5432 case dw_val_class_loc_list:
5433 fprintf (outfile, "location list -> label:%s",
5434 AT_loc_list (a)->ll_symbol);
5435 break;
5436 case dw_val_class_range_list:
5437 fprintf (outfile, "range list");
5438 break;
5439 case dw_val_class_const:
5440 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5441 break;
5442 case dw_val_class_unsigned_const:
5443 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5444 break;
5445 case dw_val_class_long_long:
5446 fprintf (outfile, "constant (%lu,%lu)",
5447 a->dw_attr_val.v.val_long_long.hi,
5448 a->dw_attr_val.v.val_long_long.low);
5449 break;
5450 case dw_val_class_vec:
5451 fprintf (outfile, "floating-point or vector constant");
5452 break;
5453 case dw_val_class_flag:
5454 fprintf (outfile, "%u", AT_flag (a));
5455 break;
5456 case dw_val_class_die_ref:
5457 if (AT_ref (a) != NULL)
5458 {
5459 if (AT_ref (a)->die_symbol)
5460 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5461 else
5462 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5463 }
5464 else
5465 fprintf (outfile, "die -> <null>");
5466 break;
5467 case dw_val_class_lbl_id:
5468 case dw_val_class_lbl_offset:
5469 fprintf (outfile, "label: %s", AT_lbl (a));
5470 break;
5471 case dw_val_class_str:
5472 if (AT_string (a) != NULL)
5473 fprintf (outfile, "\"%s\"", AT_string (a));
5474 else
5475 fprintf (outfile, "<null>");
5476 break;
5477 default:
5478 break;
5479 }
5480
5481 fprintf (outfile, "\n");
5482 }
5483
5484 if (die->die_child != NULL)
5485 {
5486 print_indent += 4;
5487 for (c = die->die_child; c != NULL; c = c->die_sib)
5488 print_die (c, outfile);
5489
5490 print_indent -= 4;
5491 }
5492 if (print_indent == 0)
5493 fprintf (outfile, "\n");
5494 }
5495
5496 /* Print the contents of the source code line number correspondence table.
5497 This routine is a debugging aid only. */
5498
5499 static void
5500 print_dwarf_line_table (FILE *outfile)
5501 {
5502 unsigned i;
5503 dw_line_info_ref line_info;
5504
5505 fprintf (outfile, "\n\nDWARF source line information\n");
5506 for (i = 1; i < line_info_table_in_use; i++)
5507 {
5508 line_info = &line_info_table[i];
5509 fprintf (outfile, "%5d: ", i);
5510 fprintf (outfile, "%-20s",
5511 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5512 fprintf (outfile, "%6ld", line_info->dw_line_num);
5513 fprintf (outfile, "\n");
5514 }
5515
5516 fprintf (outfile, "\n\n");
5517 }
5518
5519 /* Print the information collected for a given DIE. */
5520
5521 void
5522 debug_dwarf_die (dw_die_ref die)
5523 {
5524 print_die (die, stderr);
5525 }
5526
5527 /* Print all DWARF information collected for the compilation unit.
5528 This routine is a debugging aid only. */
5529
5530 void
5531 debug_dwarf (void)
5532 {
5533 print_indent = 0;
5534 print_die (comp_unit_die, stderr);
5535 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5536 print_dwarf_line_table (stderr);
5537 }
5538 \f
5539 /* We build up the lists of children and attributes by pushing new ones
5540 onto the beginning of the list. Reverse the lists for DIE so that
5541 they are in order of addition. */
5542
5543 static void
5544 reverse_die_lists (dw_die_ref die)
5545 {
5546 dw_die_ref c, cp, cn;
5547 dw_attr_ref a, ap, an;
5548
5549 for (a = die->die_attr, ap = 0; a; a = an)
5550 {
5551 an = a->dw_attr_next;
5552 a->dw_attr_next = ap;
5553 ap = a;
5554 }
5555
5556 die->die_attr = ap;
5557
5558 for (c = die->die_child, cp = 0; c; c = cn)
5559 {
5560 cn = c->die_sib;
5561 c->die_sib = cp;
5562 cp = c;
5563 }
5564
5565 die->die_child = cp;
5566 }
5567
5568 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5569 reverse all dies in add_sibling_attributes, which runs through all the dies,
5570 it would reverse all the dies. Now, however, since we don't call
5571 reverse_die_lists in add_sibling_attributes, we need a routine to
5572 recursively reverse all the dies. This is that routine. */
5573
5574 static void
5575 reverse_all_dies (dw_die_ref die)
5576 {
5577 dw_die_ref c;
5578
5579 reverse_die_lists (die);
5580
5581 for (c = die->die_child; c; c = c->die_sib)
5582 reverse_all_dies (c);
5583 }
5584
5585 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5586 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5587 DIE that marks the start of the DIEs for this include file. */
5588
5589 static dw_die_ref
5590 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5591 {
5592 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5593 dw_die_ref new_unit = gen_compile_unit_die (filename);
5594
5595 new_unit->die_sib = old_unit;
5596 return new_unit;
5597 }
5598
5599 /* Close an include-file CU and reopen the enclosing one. */
5600
5601 static dw_die_ref
5602 pop_compile_unit (dw_die_ref old_unit)
5603 {
5604 dw_die_ref new_unit = old_unit->die_sib;
5605
5606 old_unit->die_sib = NULL;
5607 return new_unit;
5608 }
5609
5610 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5611 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5612
5613 /* Calculate the checksum of a location expression. */
5614
5615 static inline void
5616 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5617 {
5618 CHECKSUM (loc->dw_loc_opc);
5619 CHECKSUM (loc->dw_loc_oprnd1);
5620 CHECKSUM (loc->dw_loc_oprnd2);
5621 }
5622
5623 /* Calculate the checksum of an attribute. */
5624
5625 static void
5626 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5627 {
5628 dw_loc_descr_ref loc;
5629 rtx r;
5630
5631 CHECKSUM (at->dw_attr);
5632
5633 /* We don't care about differences in file numbering. */
5634 if (at->dw_attr == DW_AT_decl_file
5635 /* Or that this was compiled with a different compiler snapshot; if
5636 the output is the same, that's what matters. */
5637 || at->dw_attr == DW_AT_producer)
5638 return;
5639
5640 switch (AT_class (at))
5641 {
5642 case dw_val_class_const:
5643 CHECKSUM (at->dw_attr_val.v.val_int);
5644 break;
5645 case dw_val_class_unsigned_const:
5646 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5647 break;
5648 case dw_val_class_long_long:
5649 CHECKSUM (at->dw_attr_val.v.val_long_long);
5650 break;
5651 case dw_val_class_vec:
5652 CHECKSUM (at->dw_attr_val.v.val_vec);
5653 break;
5654 case dw_val_class_flag:
5655 CHECKSUM (at->dw_attr_val.v.val_flag);
5656 break;
5657 case dw_val_class_str:
5658 CHECKSUM_STRING (AT_string (at));
5659 break;
5660
5661 case dw_val_class_addr:
5662 r = AT_addr (at);
5663 switch (GET_CODE (r))
5664 {
5665 case SYMBOL_REF:
5666 CHECKSUM_STRING (XSTR (r, 0));
5667 break;
5668
5669 default:
5670 abort ();
5671 }
5672 break;
5673
5674 case dw_val_class_offset:
5675 CHECKSUM (at->dw_attr_val.v.val_offset);
5676 break;
5677
5678 case dw_val_class_loc:
5679 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5680 loc_checksum (loc, ctx);
5681 break;
5682
5683 case dw_val_class_die_ref:
5684 die_checksum (AT_ref (at), ctx, mark);
5685 break;
5686
5687 case dw_val_class_fde_ref:
5688 case dw_val_class_lbl_id:
5689 case dw_val_class_lbl_offset:
5690 break;
5691
5692 default:
5693 break;
5694 }
5695 }
5696
5697 /* Calculate the checksum of a DIE. */
5698
5699 static void
5700 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5701 {
5702 dw_die_ref c;
5703 dw_attr_ref a;
5704
5705 /* To avoid infinite recursion. */
5706 if (die->die_mark)
5707 {
5708 CHECKSUM (die->die_mark);
5709 return;
5710 }
5711 die->die_mark = ++(*mark);
5712
5713 CHECKSUM (die->die_tag);
5714
5715 for (a = die->die_attr; a; a = a->dw_attr_next)
5716 attr_checksum (a, ctx, mark);
5717
5718 for (c = die->die_child; c; c = c->die_sib)
5719 die_checksum (c, ctx, mark);
5720 }
5721
5722 #undef CHECKSUM
5723 #undef CHECKSUM_STRING
5724
5725 /* Do the location expressions look same? */
5726 static inline int
5727 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5728 {
5729 return loc1->dw_loc_opc == loc2->dw_loc_opc
5730 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5731 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5732 }
5733
5734 /* Do the values look the same? */
5735 static int
5736 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5737 {
5738 dw_loc_descr_ref loc1, loc2;
5739 rtx r1, r2;
5740
5741 if (v1->val_class != v2->val_class)
5742 return 0;
5743
5744 switch (v1->val_class)
5745 {
5746 case dw_val_class_const:
5747 return v1->v.val_int == v2->v.val_int;
5748 case dw_val_class_unsigned_const:
5749 return v1->v.val_unsigned == v2->v.val_unsigned;
5750 case dw_val_class_long_long:
5751 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5752 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5753 case dw_val_class_vec:
5754 if (v1->v.val_vec.length != v2->v.val_vec.length
5755 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
5756 return 0;
5757 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
5758 v1->v.val_vec.length * v1->v.val_vec.elt_size))
5759 return 0;
5760 return 1;
5761 case dw_val_class_flag:
5762 return v1->v.val_flag == v2->v.val_flag;
5763 case dw_val_class_str:
5764 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5765
5766 case dw_val_class_addr:
5767 r1 = v1->v.val_addr;
5768 r2 = v2->v.val_addr;
5769 if (GET_CODE (r1) != GET_CODE (r2))
5770 return 0;
5771 switch (GET_CODE (r1))
5772 {
5773 case SYMBOL_REF:
5774 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5775
5776 default:
5777 abort ();
5778 }
5779
5780 case dw_val_class_offset:
5781 return v1->v.val_offset == v2->v.val_offset;
5782
5783 case dw_val_class_loc:
5784 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5785 loc1 && loc2;
5786 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5787 if (!same_loc_p (loc1, loc2, mark))
5788 return 0;
5789 return !loc1 && !loc2;
5790
5791 case dw_val_class_die_ref:
5792 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5793
5794 case dw_val_class_fde_ref:
5795 case dw_val_class_lbl_id:
5796 case dw_val_class_lbl_offset:
5797 return 1;
5798
5799 default:
5800 return 1;
5801 }
5802 }
5803
5804 /* Do the attributes look the same? */
5805
5806 static int
5807 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5808 {
5809 if (at1->dw_attr != at2->dw_attr)
5810 return 0;
5811
5812 /* We don't care about differences in file numbering. */
5813 if (at1->dw_attr == DW_AT_decl_file
5814 /* Or that this was compiled with a different compiler snapshot; if
5815 the output is the same, that's what matters. */
5816 || at1->dw_attr == DW_AT_producer)
5817 return 1;
5818
5819 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5820 }
5821
5822 /* Do the dies look the same? */
5823
5824 static int
5825 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5826 {
5827 dw_die_ref c1, c2;
5828 dw_attr_ref a1, a2;
5829
5830 /* To avoid infinite recursion. */
5831 if (die1->die_mark)
5832 return die1->die_mark == die2->die_mark;
5833 die1->die_mark = die2->die_mark = ++(*mark);
5834
5835 if (die1->die_tag != die2->die_tag)
5836 return 0;
5837
5838 for (a1 = die1->die_attr, a2 = die2->die_attr;
5839 a1 && a2;
5840 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5841 if (!same_attr_p (a1, a2, mark))
5842 return 0;
5843 if (a1 || a2)
5844 return 0;
5845
5846 for (c1 = die1->die_child, c2 = die2->die_child;
5847 c1 && c2;
5848 c1 = c1->die_sib, c2 = c2->die_sib)
5849 if (!same_die_p (c1, c2, mark))
5850 return 0;
5851 if (c1 || c2)
5852 return 0;
5853
5854 return 1;
5855 }
5856
5857 /* Do the dies look the same? Wrapper around same_die_p. */
5858
5859 static int
5860 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5861 {
5862 int mark = 0;
5863 int ret = same_die_p (die1, die2, &mark);
5864
5865 unmark_all_dies (die1);
5866 unmark_all_dies (die2);
5867
5868 return ret;
5869 }
5870
5871 /* The prefix to attach to symbols on DIEs in the current comdat debug
5872 info section. */
5873 static char *comdat_symbol_id;
5874
5875 /* The index of the current symbol within the current comdat CU. */
5876 static unsigned int comdat_symbol_number;
5877
5878 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5879 children, and set comdat_symbol_id accordingly. */
5880
5881 static void
5882 compute_section_prefix (dw_die_ref unit_die)
5883 {
5884 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5885 const char *base = die_name ? lbasename (die_name) : "anonymous";
5886 char *name = alloca (strlen (base) + 64);
5887 char *p;
5888 int i, mark;
5889 unsigned char checksum[16];
5890 struct md5_ctx ctx;
5891
5892 /* Compute the checksum of the DIE, then append part of it as hex digits to
5893 the name filename of the unit. */
5894
5895 md5_init_ctx (&ctx);
5896 mark = 0;
5897 die_checksum (unit_die, &ctx, &mark);
5898 unmark_all_dies (unit_die);
5899 md5_finish_ctx (&ctx, checksum);
5900
5901 sprintf (name, "%s.", base);
5902 clean_symbol_name (name);
5903
5904 p = name + strlen (name);
5905 for (i = 0; i < 4; i++)
5906 {
5907 sprintf (p, "%.2x", checksum[i]);
5908 p += 2;
5909 }
5910
5911 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5912 comdat_symbol_number = 0;
5913 }
5914
5915 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5916
5917 static int
5918 is_type_die (dw_die_ref die)
5919 {
5920 switch (die->die_tag)
5921 {
5922 case DW_TAG_array_type:
5923 case DW_TAG_class_type:
5924 case DW_TAG_enumeration_type:
5925 case DW_TAG_pointer_type:
5926 case DW_TAG_reference_type:
5927 case DW_TAG_string_type:
5928 case DW_TAG_structure_type:
5929 case DW_TAG_subroutine_type:
5930 case DW_TAG_union_type:
5931 case DW_TAG_ptr_to_member_type:
5932 case DW_TAG_set_type:
5933 case DW_TAG_subrange_type:
5934 case DW_TAG_base_type:
5935 case DW_TAG_const_type:
5936 case DW_TAG_file_type:
5937 case DW_TAG_packed_type:
5938 case DW_TAG_volatile_type:
5939 case DW_TAG_typedef:
5940 return 1;
5941 default:
5942 return 0;
5943 }
5944 }
5945
5946 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5947 Basically, we want to choose the bits that are likely to be shared between
5948 compilations (types) and leave out the bits that are specific to individual
5949 compilations (functions). */
5950
5951 static int
5952 is_comdat_die (dw_die_ref c)
5953 {
5954 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5955 we do for stabs. The advantage is a greater likelihood of sharing between
5956 objects that don't include headers in the same order (and therefore would
5957 put the base types in a different comdat). jason 8/28/00 */
5958
5959 if (c->die_tag == DW_TAG_base_type)
5960 return 0;
5961
5962 if (c->die_tag == DW_TAG_pointer_type
5963 || c->die_tag == DW_TAG_reference_type
5964 || c->die_tag == DW_TAG_const_type
5965 || c->die_tag == DW_TAG_volatile_type)
5966 {
5967 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5968
5969 return t ? is_comdat_die (t) : 0;
5970 }
5971
5972 return is_type_die (c);
5973 }
5974
5975 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5976 compilation unit. */
5977
5978 static int
5979 is_symbol_die (dw_die_ref c)
5980 {
5981 return (is_type_die (c)
5982 || (get_AT (c, DW_AT_declaration)
5983 && !get_AT (c, DW_AT_specification)));
5984 }
5985
5986 static char *
5987 gen_internal_sym (const char *prefix)
5988 {
5989 char buf[256];
5990
5991 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5992 return xstrdup (buf);
5993 }
5994
5995 /* Assign symbols to all worthy DIEs under DIE. */
5996
5997 static void
5998 assign_symbol_names (dw_die_ref die)
5999 {
6000 dw_die_ref c;
6001
6002 if (is_symbol_die (die))
6003 {
6004 if (comdat_symbol_id)
6005 {
6006 char *p = alloca (strlen (comdat_symbol_id) + 64);
6007
6008 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6009 comdat_symbol_id, comdat_symbol_number++);
6010 die->die_symbol = xstrdup (p);
6011 }
6012 else
6013 die->die_symbol = gen_internal_sym ("LDIE");
6014 }
6015
6016 for (c = die->die_child; c != NULL; c = c->die_sib)
6017 assign_symbol_names (c);
6018 }
6019
6020 struct cu_hash_table_entry
6021 {
6022 dw_die_ref cu;
6023 unsigned min_comdat_num, max_comdat_num;
6024 struct cu_hash_table_entry *next;
6025 };
6026
6027 /* Routines to manipulate hash table of CUs. */
6028 static hashval_t
6029 htab_cu_hash (const void *of)
6030 {
6031 const struct cu_hash_table_entry *entry = of;
6032
6033 return htab_hash_string (entry->cu->die_symbol);
6034 }
6035
6036 static int
6037 htab_cu_eq (const void *of1, const void *of2)
6038 {
6039 const struct cu_hash_table_entry *entry1 = of1;
6040 const struct die_struct *entry2 = of2;
6041
6042 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6043 }
6044
6045 static void
6046 htab_cu_del (void *what)
6047 {
6048 struct cu_hash_table_entry *next, *entry = what;
6049
6050 while (entry)
6051 {
6052 next = entry->next;
6053 free (entry);
6054 entry = next;
6055 }
6056 }
6057
6058 /* Check whether we have already seen this CU and set up SYM_NUM
6059 accordingly. */
6060 static int
6061 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6062 {
6063 struct cu_hash_table_entry dummy;
6064 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6065
6066 dummy.max_comdat_num = 0;
6067
6068 slot = (struct cu_hash_table_entry **)
6069 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6070 INSERT);
6071 entry = *slot;
6072
6073 for (; entry; last = entry, entry = entry->next)
6074 {
6075 if (same_die_p_wrap (cu, entry->cu))
6076 break;
6077 }
6078
6079 if (entry)
6080 {
6081 *sym_num = entry->min_comdat_num;
6082 return 1;
6083 }
6084
6085 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6086 entry->cu = cu;
6087 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6088 entry->next = *slot;
6089 *slot = entry;
6090
6091 return 0;
6092 }
6093
6094 /* Record SYM_NUM to record of CU in HTABLE. */
6095 static void
6096 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6097 {
6098 struct cu_hash_table_entry **slot, *entry;
6099
6100 slot = (struct cu_hash_table_entry **)
6101 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6102 NO_INSERT);
6103 entry = *slot;
6104
6105 entry->max_comdat_num = sym_num;
6106 }
6107
6108 /* Traverse the DIE (which is always comp_unit_die), and set up
6109 additional compilation units for each of the include files we see
6110 bracketed by BINCL/EINCL. */
6111
6112 static void
6113 break_out_includes (dw_die_ref die)
6114 {
6115 dw_die_ref *ptr;
6116 dw_die_ref unit = NULL;
6117 limbo_die_node *node, **pnode;
6118 htab_t cu_hash_table;
6119
6120 for (ptr = &(die->die_child); *ptr;)
6121 {
6122 dw_die_ref c = *ptr;
6123
6124 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6125 || (unit && is_comdat_die (c)))
6126 {
6127 /* This DIE is for a secondary CU; remove it from the main one. */
6128 *ptr = c->die_sib;
6129
6130 if (c->die_tag == DW_TAG_GNU_BINCL)
6131 {
6132 unit = push_new_compile_unit (unit, c);
6133 free_die (c);
6134 }
6135 else if (c->die_tag == DW_TAG_GNU_EINCL)
6136 {
6137 unit = pop_compile_unit (unit);
6138 free_die (c);
6139 }
6140 else
6141 add_child_die (unit, c);
6142 }
6143 else
6144 {
6145 /* Leave this DIE in the main CU. */
6146 ptr = &(c->die_sib);
6147 continue;
6148 }
6149 }
6150
6151 #if 0
6152 /* We can only use this in debugging, since the frontend doesn't check
6153 to make sure that we leave every include file we enter. */
6154 if (unit != NULL)
6155 abort ();
6156 #endif
6157
6158 assign_symbol_names (die);
6159 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6160 for (node = limbo_die_list, pnode = &limbo_die_list;
6161 node;
6162 node = node->next)
6163 {
6164 int is_dupl;
6165
6166 compute_section_prefix (node->die);
6167 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6168 &comdat_symbol_number);
6169 assign_symbol_names (node->die);
6170 if (is_dupl)
6171 *pnode = node->next;
6172 else
6173 {
6174 pnode = &node->next;
6175 record_comdat_symbol_number (node->die, cu_hash_table,
6176 comdat_symbol_number);
6177 }
6178 }
6179 htab_delete (cu_hash_table);
6180 }
6181
6182 /* Traverse the DIE and add a sibling attribute if it may have the
6183 effect of speeding up access to siblings. To save some space,
6184 avoid generating sibling attributes for DIE's without children. */
6185
6186 static void
6187 add_sibling_attributes (dw_die_ref die)
6188 {
6189 dw_die_ref c;
6190
6191 if (die->die_tag != DW_TAG_compile_unit
6192 && die->die_sib && die->die_child != NULL)
6193 /* Add the sibling link to the front of the attribute list. */
6194 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6195
6196 for (c = die->die_child; c != NULL; c = c->die_sib)
6197 add_sibling_attributes (c);
6198 }
6199
6200 /* Output all location lists for the DIE and its children. */
6201
6202 static void
6203 output_location_lists (dw_die_ref die)
6204 {
6205 dw_die_ref c;
6206 dw_attr_ref d_attr;
6207
6208 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6209 if (AT_class (d_attr) == dw_val_class_loc_list)
6210 output_loc_list (AT_loc_list (d_attr));
6211
6212 for (c = die->die_child; c != NULL; c = c->die_sib)
6213 output_location_lists (c);
6214
6215 }
6216
6217 /* The format of each DIE (and its attribute value pairs) is encoded in an
6218 abbreviation table. This routine builds the abbreviation table and assigns
6219 a unique abbreviation id for each abbreviation entry. The children of each
6220 die are visited recursively. */
6221
6222 static void
6223 build_abbrev_table (dw_die_ref die)
6224 {
6225 unsigned long abbrev_id;
6226 unsigned int n_alloc;
6227 dw_die_ref c;
6228 dw_attr_ref d_attr, a_attr;
6229
6230 /* Scan the DIE references, and mark as external any that refer to
6231 DIEs from other CUs (i.e. those which are not marked). */
6232 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6233 if (AT_class (d_attr) == dw_val_class_die_ref
6234 && AT_ref (d_attr)->die_mark == 0)
6235 {
6236 if (AT_ref (d_attr)->die_symbol == 0)
6237 abort ();
6238
6239 set_AT_ref_external (d_attr, 1);
6240 }
6241
6242 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6243 {
6244 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6245
6246 if (abbrev->die_tag == die->die_tag)
6247 {
6248 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6249 {
6250 a_attr = abbrev->die_attr;
6251 d_attr = die->die_attr;
6252
6253 while (a_attr != NULL && d_attr != NULL)
6254 {
6255 if ((a_attr->dw_attr != d_attr->dw_attr)
6256 || (value_format (a_attr) != value_format (d_attr)))
6257 break;
6258
6259 a_attr = a_attr->dw_attr_next;
6260 d_attr = d_attr->dw_attr_next;
6261 }
6262
6263 if (a_attr == NULL && d_attr == NULL)
6264 break;
6265 }
6266 }
6267 }
6268
6269 if (abbrev_id >= abbrev_die_table_in_use)
6270 {
6271 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6272 {
6273 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6274 abbrev_die_table = ggc_realloc (abbrev_die_table,
6275 sizeof (dw_die_ref) * n_alloc);
6276
6277 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6278 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6279 abbrev_die_table_allocated = n_alloc;
6280 }
6281
6282 ++abbrev_die_table_in_use;
6283 abbrev_die_table[abbrev_id] = die;
6284 }
6285
6286 die->die_abbrev = abbrev_id;
6287 for (c = die->die_child; c != NULL; c = c->die_sib)
6288 build_abbrev_table (c);
6289 }
6290 \f
6291 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6292
6293 static int
6294 constant_size (long unsigned int value)
6295 {
6296 int log;
6297
6298 if (value == 0)
6299 log = 0;
6300 else
6301 log = floor_log2 (value);
6302
6303 log = log / 8;
6304 log = 1 << (floor_log2 (log) + 1);
6305
6306 return log;
6307 }
6308
6309 /* Return the size of a DIE as it is represented in the
6310 .debug_info section. */
6311
6312 static unsigned long
6313 size_of_die (dw_die_ref die)
6314 {
6315 unsigned long size = 0;
6316 dw_attr_ref a;
6317
6318 size += size_of_uleb128 (die->die_abbrev);
6319 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6320 {
6321 switch (AT_class (a))
6322 {
6323 case dw_val_class_addr:
6324 size += DWARF2_ADDR_SIZE;
6325 break;
6326 case dw_val_class_offset:
6327 size += DWARF_OFFSET_SIZE;
6328 break;
6329 case dw_val_class_loc:
6330 {
6331 unsigned long lsize = size_of_locs (AT_loc (a));
6332
6333 /* Block length. */
6334 size += constant_size (lsize);
6335 size += lsize;
6336 }
6337 break;
6338 case dw_val_class_loc_list:
6339 size += DWARF_OFFSET_SIZE;
6340 break;
6341 case dw_val_class_range_list:
6342 size += DWARF_OFFSET_SIZE;
6343 break;
6344 case dw_val_class_const:
6345 size += size_of_sleb128 (AT_int (a));
6346 break;
6347 case dw_val_class_unsigned_const:
6348 size += constant_size (AT_unsigned (a));
6349 break;
6350 case dw_val_class_long_long:
6351 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6352 break;
6353 case dw_val_class_vec:
6354 size += 1 + (a->dw_attr_val.v.val_vec.length
6355 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6356 break;
6357 case dw_val_class_flag:
6358 size += 1;
6359 break;
6360 case dw_val_class_die_ref:
6361 if (AT_ref_external (a))
6362 size += DWARF2_ADDR_SIZE;
6363 else
6364 size += DWARF_OFFSET_SIZE;
6365 break;
6366 case dw_val_class_fde_ref:
6367 size += DWARF_OFFSET_SIZE;
6368 break;
6369 case dw_val_class_lbl_id:
6370 size += DWARF2_ADDR_SIZE;
6371 break;
6372 case dw_val_class_lbl_offset:
6373 size += DWARF_OFFSET_SIZE;
6374 break;
6375 case dw_val_class_str:
6376 if (AT_string_form (a) == DW_FORM_strp)
6377 size += DWARF_OFFSET_SIZE;
6378 else
6379 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6380 break;
6381 default:
6382 abort ();
6383 }
6384 }
6385
6386 return size;
6387 }
6388
6389 /* Size the debugging information associated with a given DIE. Visits the
6390 DIE's children recursively. Updates the global variable next_die_offset, on
6391 each time through. Uses the current value of next_die_offset to update the
6392 die_offset field in each DIE. */
6393
6394 static void
6395 calc_die_sizes (dw_die_ref die)
6396 {
6397 dw_die_ref c;
6398
6399 die->die_offset = next_die_offset;
6400 next_die_offset += size_of_die (die);
6401
6402 for (c = die->die_child; c != NULL; c = c->die_sib)
6403 calc_die_sizes (c);
6404
6405 if (die->die_child != NULL)
6406 /* Count the null byte used to terminate sibling lists. */
6407 next_die_offset += 1;
6408 }
6409
6410 /* Set the marks for a die and its children. We do this so
6411 that we know whether or not a reference needs to use FORM_ref_addr; only
6412 DIEs in the same CU will be marked. We used to clear out the offset
6413 and use that as the flag, but ran into ordering problems. */
6414
6415 static void
6416 mark_dies (dw_die_ref die)
6417 {
6418 dw_die_ref c;
6419
6420 if (die->die_mark)
6421 abort ();
6422
6423 die->die_mark = 1;
6424 for (c = die->die_child; c; c = c->die_sib)
6425 mark_dies (c);
6426 }
6427
6428 /* Clear the marks for a die and its children. */
6429
6430 static void
6431 unmark_dies (dw_die_ref die)
6432 {
6433 dw_die_ref c;
6434
6435 if (!die->die_mark)
6436 abort ();
6437
6438 die->die_mark = 0;
6439 for (c = die->die_child; c; c = c->die_sib)
6440 unmark_dies (c);
6441 }
6442
6443 /* Clear the marks for a die, its children and referred dies. */
6444
6445 static void
6446 unmark_all_dies (dw_die_ref die)
6447 {
6448 dw_die_ref c;
6449 dw_attr_ref a;
6450
6451 if (!die->die_mark)
6452 return;
6453 die->die_mark = 0;
6454
6455 for (c = die->die_child; c; c = c->die_sib)
6456 unmark_all_dies (c);
6457
6458 for (a = die->die_attr; a; a = a->dw_attr_next)
6459 if (AT_class (a) == dw_val_class_die_ref)
6460 unmark_all_dies (AT_ref (a));
6461 }
6462
6463 /* Return the size of the .debug_pubnames table generated for the
6464 compilation unit. */
6465
6466 static unsigned long
6467 size_of_pubnames (void)
6468 {
6469 unsigned long size;
6470 unsigned i;
6471
6472 size = DWARF_PUBNAMES_HEADER_SIZE;
6473 for (i = 0; i < pubname_table_in_use; i++)
6474 {
6475 pubname_ref p = &pubname_table[i];
6476 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6477 }
6478
6479 size += DWARF_OFFSET_SIZE;
6480 return size;
6481 }
6482
6483 /* Return the size of the information in the .debug_aranges section. */
6484
6485 static unsigned long
6486 size_of_aranges (void)
6487 {
6488 unsigned long size;
6489
6490 size = DWARF_ARANGES_HEADER_SIZE;
6491
6492 /* Count the address/length pair for this compilation unit. */
6493 size += 2 * DWARF2_ADDR_SIZE;
6494 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6495
6496 /* Count the two zero words used to terminated the address range table. */
6497 size += 2 * DWARF2_ADDR_SIZE;
6498 return size;
6499 }
6500 \f
6501 /* Select the encoding of an attribute value. */
6502
6503 static enum dwarf_form
6504 value_format (dw_attr_ref a)
6505 {
6506 switch (a->dw_attr_val.val_class)
6507 {
6508 case dw_val_class_addr:
6509 return DW_FORM_addr;
6510 case dw_val_class_range_list:
6511 case dw_val_class_offset:
6512 if (DWARF_OFFSET_SIZE == 4)
6513 return DW_FORM_data4;
6514 if (DWARF_OFFSET_SIZE == 8)
6515 return DW_FORM_data8;
6516 abort ();
6517 case dw_val_class_loc_list:
6518 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6519 .debug_loc section */
6520 return DW_FORM_data4;
6521 case dw_val_class_loc:
6522 switch (constant_size (size_of_locs (AT_loc (a))))
6523 {
6524 case 1:
6525 return DW_FORM_block1;
6526 case 2:
6527 return DW_FORM_block2;
6528 default:
6529 abort ();
6530 }
6531 case dw_val_class_const:
6532 return DW_FORM_sdata;
6533 case dw_val_class_unsigned_const:
6534 switch (constant_size (AT_unsigned (a)))
6535 {
6536 case 1:
6537 return DW_FORM_data1;
6538 case 2:
6539 return DW_FORM_data2;
6540 case 4:
6541 return DW_FORM_data4;
6542 case 8:
6543 return DW_FORM_data8;
6544 default:
6545 abort ();
6546 }
6547 case dw_val_class_long_long:
6548 return DW_FORM_block1;
6549 case dw_val_class_vec:
6550 return DW_FORM_block1;
6551 case dw_val_class_flag:
6552 return DW_FORM_flag;
6553 case dw_val_class_die_ref:
6554 if (AT_ref_external (a))
6555 return DW_FORM_ref_addr;
6556 else
6557 return DW_FORM_ref;
6558 case dw_val_class_fde_ref:
6559 return DW_FORM_data;
6560 case dw_val_class_lbl_id:
6561 return DW_FORM_addr;
6562 case dw_val_class_lbl_offset:
6563 return DW_FORM_data;
6564 case dw_val_class_str:
6565 return AT_string_form (a);
6566
6567 default:
6568 abort ();
6569 }
6570 }
6571
6572 /* Output the encoding of an attribute value. */
6573
6574 static void
6575 output_value_format (dw_attr_ref a)
6576 {
6577 enum dwarf_form form = value_format (a);
6578
6579 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6580 }
6581
6582 /* Output the .debug_abbrev section which defines the DIE abbreviation
6583 table. */
6584
6585 static void
6586 output_abbrev_section (void)
6587 {
6588 unsigned long abbrev_id;
6589
6590 dw_attr_ref a_attr;
6591
6592 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6593 {
6594 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6595
6596 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6597 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6598 dwarf_tag_name (abbrev->die_tag));
6599
6600 if (abbrev->die_child != NULL)
6601 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6602 else
6603 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6604
6605 for (a_attr = abbrev->die_attr; a_attr != NULL;
6606 a_attr = a_attr->dw_attr_next)
6607 {
6608 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6609 dwarf_attr_name (a_attr->dw_attr));
6610 output_value_format (a_attr);
6611 }
6612
6613 dw2_asm_output_data (1, 0, NULL);
6614 dw2_asm_output_data (1, 0, NULL);
6615 }
6616
6617 /* Terminate the table. */
6618 dw2_asm_output_data (1, 0, NULL);
6619 }
6620
6621 /* Output a symbol we can use to refer to this DIE from another CU. */
6622
6623 static inline void
6624 output_die_symbol (dw_die_ref die)
6625 {
6626 char *sym = die->die_symbol;
6627
6628 if (sym == 0)
6629 return;
6630
6631 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6632 /* We make these global, not weak; if the target doesn't support
6633 .linkonce, it doesn't support combining the sections, so debugging
6634 will break. */
6635 targetm.asm_out.globalize_label (asm_out_file, sym);
6636
6637 ASM_OUTPUT_LABEL (asm_out_file, sym);
6638 }
6639
6640 /* Return a new location list, given the begin and end range, and the
6641 expression. gensym tells us whether to generate a new internal symbol for
6642 this location list node, which is done for the head of the list only. */
6643
6644 static inline dw_loc_list_ref
6645 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6646 const char *section, unsigned int gensym)
6647 {
6648 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6649
6650 retlist->begin = begin;
6651 retlist->end = end;
6652 retlist->expr = expr;
6653 retlist->section = section;
6654 if (gensym)
6655 retlist->ll_symbol = gen_internal_sym ("LLST");
6656
6657 return retlist;
6658 }
6659
6660 /* Add a location description expression to a location list. */
6661
6662 static inline void
6663 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6664 const char *begin, const char *end,
6665 const char *section)
6666 {
6667 dw_loc_list_ref *d;
6668
6669 /* Find the end of the chain. */
6670 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6671 ;
6672
6673 /* Add a new location list node to the list. */
6674 *d = new_loc_list (descr, begin, end, section, 0);
6675 }
6676
6677 /* Output the location list given to us. */
6678
6679 static void
6680 output_loc_list (dw_loc_list_ref list_head)
6681 {
6682 dw_loc_list_ref curr = list_head;
6683
6684 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6685
6686 /* Walk the location list, and output each range + expression. */
6687 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6688 {
6689 unsigned long size;
6690 if (separate_line_info_table_in_use == 0)
6691 {
6692 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6693 "Location list begin address (%s)",
6694 list_head->ll_symbol);
6695 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6696 "Location list end address (%s)",
6697 list_head->ll_symbol);
6698 }
6699 else
6700 {
6701 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
6702 "Location list begin address (%s)",
6703 list_head->ll_symbol);
6704 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
6705 "Location list end address (%s)",
6706 list_head->ll_symbol);
6707 }
6708 size = size_of_locs (curr->expr);
6709
6710 /* Output the block length for this list of location operations. */
6711 if (size > 0xffff)
6712 abort ();
6713 dw2_asm_output_data (2, size, "%s", "Location expression size");
6714
6715 output_loc_sequence (curr->expr);
6716 }
6717
6718 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6719 "Location list terminator begin (%s)",
6720 list_head->ll_symbol);
6721 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6722 "Location list terminator end (%s)",
6723 list_head->ll_symbol);
6724 }
6725
6726 /* Output the DIE and its attributes. Called recursively to generate
6727 the definitions of each child DIE. */
6728
6729 static void
6730 output_die (dw_die_ref die)
6731 {
6732 dw_attr_ref a;
6733 dw_die_ref c;
6734 unsigned long size;
6735
6736 /* If someone in another CU might refer to us, set up a symbol for
6737 them to point to. */
6738 if (die->die_symbol)
6739 output_die_symbol (die);
6740
6741 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6742 die->die_offset, dwarf_tag_name (die->die_tag));
6743
6744 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6745 {
6746 const char *name = dwarf_attr_name (a->dw_attr);
6747
6748 switch (AT_class (a))
6749 {
6750 case dw_val_class_addr:
6751 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6752 break;
6753
6754 case dw_val_class_offset:
6755 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6756 "%s", name);
6757 break;
6758
6759 case dw_val_class_range_list:
6760 {
6761 char *p = strchr (ranges_section_label, '\0');
6762
6763 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6764 a->dw_attr_val.v.val_offset);
6765 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6766 "%s", name);
6767 *p = '\0';
6768 }
6769 break;
6770
6771 case dw_val_class_loc:
6772 size = size_of_locs (AT_loc (a));
6773
6774 /* Output the block length for this list of location operations. */
6775 dw2_asm_output_data (constant_size (size), size, "%s", name);
6776
6777 output_loc_sequence (AT_loc (a));
6778 break;
6779
6780 case dw_val_class_const:
6781 /* ??? It would be slightly more efficient to use a scheme like is
6782 used for unsigned constants below, but gdb 4.x does not sign
6783 extend. Gdb 5.x does sign extend. */
6784 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6785 break;
6786
6787 case dw_val_class_unsigned_const:
6788 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6789 AT_unsigned (a), "%s", name);
6790 break;
6791
6792 case dw_val_class_long_long:
6793 {
6794 unsigned HOST_WIDE_INT first, second;
6795
6796 dw2_asm_output_data (1,
6797 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6798 "%s", name);
6799
6800 if (WORDS_BIG_ENDIAN)
6801 {
6802 first = a->dw_attr_val.v.val_long_long.hi;
6803 second = a->dw_attr_val.v.val_long_long.low;
6804 }
6805 else
6806 {
6807 first = a->dw_attr_val.v.val_long_long.low;
6808 second = a->dw_attr_val.v.val_long_long.hi;
6809 }
6810
6811 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6812 first, "long long constant");
6813 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6814 second, NULL);
6815 }
6816 break;
6817
6818 case dw_val_class_vec:
6819 {
6820 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
6821 unsigned int len = a->dw_attr_val.v.val_vec.length;
6822 unsigned int i;
6823 unsigned char *p;
6824
6825 dw2_asm_output_data (1, len * elt_size, "%s", name);
6826 if (elt_size > sizeof (HOST_WIDE_INT))
6827 {
6828 elt_size /= 2;
6829 len *= 2;
6830 }
6831 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
6832 i < len;
6833 i++, p += elt_size)
6834 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
6835 "fp or vector constant word %u", i);
6836 break;
6837 }
6838
6839 case dw_val_class_flag:
6840 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6841 break;
6842
6843 case dw_val_class_loc_list:
6844 {
6845 char *sym = AT_loc_list (a)->ll_symbol;
6846
6847 if (sym == 0)
6848 abort ();
6849 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, "%s", name);
6850 }
6851 break;
6852
6853 case dw_val_class_die_ref:
6854 if (AT_ref_external (a))
6855 {
6856 char *sym = AT_ref (a)->die_symbol;
6857
6858 if (sym == 0)
6859 abort ();
6860 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6861 }
6862 else if (AT_ref (a)->die_offset == 0)
6863 abort ();
6864 else
6865 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6866 "%s", name);
6867 break;
6868
6869 case dw_val_class_fde_ref:
6870 {
6871 char l1[20];
6872
6873 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6874 a->dw_attr_val.v.val_fde_index * 2);
6875 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6876 }
6877 break;
6878
6879 case dw_val_class_lbl_id:
6880 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6881 break;
6882
6883 case dw_val_class_lbl_offset:
6884 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6885 break;
6886
6887 case dw_val_class_str:
6888 if (AT_string_form (a) == DW_FORM_strp)
6889 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6890 a->dw_attr_val.v.val_str->label,
6891 "%s: \"%s\"", name, AT_string (a));
6892 else
6893 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6894 break;
6895
6896 default:
6897 abort ();
6898 }
6899 }
6900
6901 for (c = die->die_child; c != NULL; c = c->die_sib)
6902 output_die (c);
6903
6904 /* Add null byte to terminate sibling list. */
6905 if (die->die_child != NULL)
6906 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6907 die->die_offset);
6908 }
6909
6910 /* Output the compilation unit that appears at the beginning of the
6911 .debug_info section, and precedes the DIE descriptions. */
6912
6913 static void
6914 output_compilation_unit_header (void)
6915 {
6916 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6917 dw2_asm_output_data (4, 0xffffffff,
6918 "Initial length escape value indicating 64-bit DWARF extension");
6919 dw2_asm_output_data (DWARF_OFFSET_SIZE,
6920 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
6921 "Length of Compilation Unit Info");
6922 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6923 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6924 "Offset Into Abbrev. Section");
6925 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6926 }
6927
6928 /* Output the compilation unit DIE and its children. */
6929
6930 static void
6931 output_comp_unit (dw_die_ref die, int output_if_empty)
6932 {
6933 const char *secname;
6934 char *oldsym, *tmp;
6935
6936 /* Unless we are outputting main CU, we may throw away empty ones. */
6937 if (!output_if_empty && die->die_child == NULL)
6938 return;
6939
6940 /* Even if there are no children of this DIE, we must output the information
6941 about the compilation unit. Otherwise, on an empty translation unit, we
6942 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6943 will then complain when examining the file. First mark all the DIEs in
6944 this CU so we know which get local refs. */
6945 mark_dies (die);
6946
6947 build_abbrev_table (die);
6948
6949 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6950 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6951 calc_die_sizes (die);
6952
6953 oldsym = die->die_symbol;
6954 if (oldsym)
6955 {
6956 tmp = alloca (strlen (oldsym) + 24);
6957
6958 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
6959 secname = tmp;
6960 die->die_symbol = NULL;
6961 }
6962 else
6963 secname = (const char *) DEBUG_INFO_SECTION;
6964
6965 /* Output debugging information. */
6966 named_section_flags (secname, SECTION_DEBUG);
6967 output_compilation_unit_header ();
6968 output_die (die);
6969
6970 /* Leave the marks on the main CU, so we can check them in
6971 output_pubnames. */
6972 if (oldsym)
6973 {
6974 unmark_dies (die);
6975 die->die_symbol = oldsym;
6976 }
6977 }
6978
6979 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
6980 output of lang_hooks.decl_printable_name for C++ looks like
6981 "A::f(int)". Let's drop the argument list, and maybe the scope. */
6982
6983 static const char *
6984 dwarf2_name (tree decl, int scope)
6985 {
6986 return lang_hooks.decl_printable_name (decl, scope ? 1 : 0);
6987 }
6988
6989 /* Add a new entry to .debug_pubnames if appropriate. */
6990
6991 static void
6992 add_pubname (tree decl, dw_die_ref die)
6993 {
6994 pubname_ref p;
6995
6996 if (! TREE_PUBLIC (decl))
6997 return;
6998
6999 if (pubname_table_in_use == pubname_table_allocated)
7000 {
7001 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7002 pubname_table
7003 = ggc_realloc (pubname_table,
7004 (pubname_table_allocated * sizeof (pubname_entry)));
7005 memset (pubname_table + pubname_table_in_use, 0,
7006 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7007 }
7008
7009 p = &pubname_table[pubname_table_in_use++];
7010 p->die = die;
7011 p->name = xstrdup (dwarf2_name (decl, 1));
7012 }
7013
7014 /* Output the public names table used to speed up access to externally
7015 visible names. For now, only generate entries for externally
7016 visible procedures. */
7017
7018 static void
7019 output_pubnames (void)
7020 {
7021 unsigned i;
7022 unsigned long pubnames_length = size_of_pubnames ();
7023
7024 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7025 dw2_asm_output_data (4, 0xffffffff,
7026 "Initial length escape value indicating 64-bit DWARF extension");
7027 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7028 "Length of Public Names Info");
7029 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7030 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7031 "Offset of Compilation Unit Info");
7032 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7033 "Compilation Unit Length");
7034
7035 for (i = 0; i < pubname_table_in_use; i++)
7036 {
7037 pubname_ref pub = &pubname_table[i];
7038
7039 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7040 if (pub->die->die_mark == 0)
7041 abort ();
7042
7043 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7044 "DIE offset");
7045
7046 dw2_asm_output_nstring (pub->name, -1, "external name");
7047 }
7048
7049 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7050 }
7051
7052 /* Add a new entry to .debug_aranges if appropriate. */
7053
7054 static void
7055 add_arange (tree decl, dw_die_ref die)
7056 {
7057 if (! DECL_SECTION_NAME (decl))
7058 return;
7059
7060 if (arange_table_in_use == arange_table_allocated)
7061 {
7062 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7063 arange_table = ggc_realloc (arange_table,
7064 (arange_table_allocated
7065 * sizeof (dw_die_ref)));
7066 memset (arange_table + arange_table_in_use, 0,
7067 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7068 }
7069
7070 arange_table[arange_table_in_use++] = die;
7071 }
7072
7073 /* Output the information that goes into the .debug_aranges table.
7074 Namely, define the beginning and ending address range of the
7075 text section generated for this compilation unit. */
7076
7077 static void
7078 output_aranges (void)
7079 {
7080 unsigned i;
7081 unsigned long aranges_length = size_of_aranges ();
7082
7083 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7084 dw2_asm_output_data (4, 0xffffffff,
7085 "Initial length escape value indicating 64-bit DWARF extension");
7086 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7087 "Length of Address Ranges Info");
7088 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7089 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7090 "Offset of Compilation Unit Info");
7091 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7092 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7093
7094 /* We need to align to twice the pointer size here. */
7095 if (DWARF_ARANGES_PAD_SIZE)
7096 {
7097 /* Pad using a 2 byte words so that padding is correct for any
7098 pointer size. */
7099 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7100 2 * DWARF2_ADDR_SIZE);
7101 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7102 dw2_asm_output_data (2, 0, NULL);
7103 }
7104
7105 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7106 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7107 text_section_label, "Length");
7108
7109 for (i = 0; i < arange_table_in_use; i++)
7110 {
7111 dw_die_ref die = arange_table[i];
7112
7113 /* We shouldn't see aranges for DIEs outside of the main CU. */
7114 if (die->die_mark == 0)
7115 abort ();
7116
7117 if (die->die_tag == DW_TAG_subprogram)
7118 {
7119 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7120 "Address");
7121 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7122 get_AT_low_pc (die), "Length");
7123 }
7124 else
7125 {
7126 /* A static variable; extract the symbol from DW_AT_location.
7127 Note that this code isn't currently hit, as we only emit
7128 aranges for functions (jason 9/23/99). */
7129 dw_attr_ref a = get_AT (die, DW_AT_location);
7130 dw_loc_descr_ref loc;
7131
7132 if (! a || AT_class (a) != dw_val_class_loc)
7133 abort ();
7134
7135 loc = AT_loc (a);
7136 if (loc->dw_loc_opc != DW_OP_addr)
7137 abort ();
7138
7139 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7140 loc->dw_loc_oprnd1.v.val_addr, "Address");
7141 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7142 get_AT_unsigned (die, DW_AT_byte_size),
7143 "Length");
7144 }
7145 }
7146
7147 /* Output the terminator words. */
7148 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7149 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7150 }
7151
7152 /* Add a new entry to .debug_ranges. Return the offset at which it
7153 was placed. */
7154
7155 static unsigned int
7156 add_ranges (tree block)
7157 {
7158 unsigned int in_use = ranges_table_in_use;
7159
7160 if (in_use == ranges_table_allocated)
7161 {
7162 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7163 ranges_table
7164 = ggc_realloc (ranges_table, (ranges_table_allocated
7165 * sizeof (struct dw_ranges_struct)));
7166 memset (ranges_table + ranges_table_in_use, 0,
7167 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7168 }
7169
7170 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7171 ranges_table_in_use = in_use + 1;
7172
7173 return in_use * 2 * DWARF2_ADDR_SIZE;
7174 }
7175
7176 static void
7177 output_ranges (void)
7178 {
7179 unsigned i;
7180 static const char *const start_fmt = "Offset 0x%x";
7181 const char *fmt = start_fmt;
7182
7183 for (i = 0; i < ranges_table_in_use; i++)
7184 {
7185 int block_num = ranges_table[i].block_num;
7186
7187 if (block_num)
7188 {
7189 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7190 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7191
7192 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7193 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7194
7195 /* If all code is in the text section, then the compilation
7196 unit base address defaults to DW_AT_low_pc, which is the
7197 base of the text section. */
7198 if (separate_line_info_table_in_use == 0)
7199 {
7200 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7201 text_section_label,
7202 fmt, i * 2 * DWARF2_ADDR_SIZE);
7203 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7204 text_section_label, NULL);
7205 }
7206
7207 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7208 compilation unit base address to zero, which allows us to
7209 use absolute addresses, and not worry about whether the
7210 target supports cross-section arithmetic. */
7211 else
7212 {
7213 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7214 fmt, i * 2 * DWARF2_ADDR_SIZE);
7215 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7216 }
7217
7218 fmt = NULL;
7219 }
7220 else
7221 {
7222 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7223 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7224 fmt = start_fmt;
7225 }
7226 }
7227 }
7228
7229 /* Data structure containing information about input files. */
7230 struct file_info
7231 {
7232 char *path; /* Complete file name. */
7233 char *fname; /* File name part. */
7234 int length; /* Length of entire string. */
7235 int file_idx; /* Index in input file table. */
7236 int dir_idx; /* Index in directory table. */
7237 };
7238
7239 /* Data structure containing information about directories with source
7240 files. */
7241 struct dir_info
7242 {
7243 char *path; /* Path including directory name. */
7244 int length; /* Path length. */
7245 int prefix; /* Index of directory entry which is a prefix. */
7246 int count; /* Number of files in this directory. */
7247 int dir_idx; /* Index of directory used as base. */
7248 int used; /* Used in the end? */
7249 };
7250
7251 /* Callback function for file_info comparison. We sort by looking at
7252 the directories in the path. */
7253
7254 static int
7255 file_info_cmp (const void *p1, const void *p2)
7256 {
7257 const struct file_info *s1 = p1;
7258 const struct file_info *s2 = p2;
7259 unsigned char *cp1;
7260 unsigned char *cp2;
7261
7262 /* Take care of file names without directories. We need to make sure that
7263 we return consistent values to qsort since some will get confused if
7264 we return the same value when identical operands are passed in opposite
7265 orders. So if neither has a directory, return 0 and otherwise return
7266 1 or -1 depending on which one has the directory. */
7267 if ((s1->path == s1->fname || s2->path == s2->fname))
7268 return (s2->path == s2->fname) - (s1->path == s1->fname);
7269
7270 cp1 = (unsigned char *) s1->path;
7271 cp2 = (unsigned char *) s2->path;
7272
7273 while (1)
7274 {
7275 ++cp1;
7276 ++cp2;
7277 /* Reached the end of the first path? If so, handle like above. */
7278 if ((cp1 == (unsigned char *) s1->fname)
7279 || (cp2 == (unsigned char *) s2->fname))
7280 return ((cp2 == (unsigned char *) s2->fname)
7281 - (cp1 == (unsigned char *) s1->fname));
7282
7283 /* Character of current path component the same? */
7284 else if (*cp1 != *cp2)
7285 return *cp1 - *cp2;
7286 }
7287 }
7288
7289 /* Output the directory table and the file name table. We try to minimize
7290 the total amount of memory needed. A heuristic is used to avoid large
7291 slowdowns with many input files. */
7292
7293 static void
7294 output_file_names (void)
7295 {
7296 struct file_info *files;
7297 struct dir_info *dirs;
7298 int *saved;
7299 int *savehere;
7300 int *backmap;
7301 size_t ndirs;
7302 int idx_offset;
7303 size_t i;
7304 int idx;
7305
7306 /* Handle the case where file_table is empty. */
7307 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7308 {
7309 dw2_asm_output_data (1, 0, "End directory table");
7310 dw2_asm_output_data (1, 0, "End file name table");
7311 return;
7312 }
7313
7314 /* Allocate the various arrays we need. */
7315 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7316 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7317
7318 /* Sort the file names. */
7319 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7320 {
7321 char *f;
7322
7323 /* Skip all leading "./". */
7324 f = VARRAY_CHAR_PTR (file_table, i);
7325 while (f[0] == '.' && f[1] == '/')
7326 f += 2;
7327
7328 /* Create a new array entry. */
7329 files[i].path = f;
7330 files[i].length = strlen (f);
7331 files[i].file_idx = i;
7332
7333 /* Search for the file name part. */
7334 f = strrchr (f, '/');
7335 files[i].fname = f == NULL ? files[i].path : f + 1;
7336 }
7337
7338 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7339 sizeof (files[0]), file_info_cmp);
7340
7341 /* Find all the different directories used. */
7342 dirs[0].path = files[1].path;
7343 dirs[0].length = files[1].fname - files[1].path;
7344 dirs[0].prefix = -1;
7345 dirs[0].count = 1;
7346 dirs[0].dir_idx = 0;
7347 dirs[0].used = 0;
7348 files[1].dir_idx = 0;
7349 ndirs = 1;
7350
7351 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7352 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7353 && memcmp (dirs[ndirs - 1].path, files[i].path,
7354 dirs[ndirs - 1].length) == 0)
7355 {
7356 /* Same directory as last entry. */
7357 files[i].dir_idx = ndirs - 1;
7358 ++dirs[ndirs - 1].count;
7359 }
7360 else
7361 {
7362 size_t j;
7363
7364 /* This is a new directory. */
7365 dirs[ndirs].path = files[i].path;
7366 dirs[ndirs].length = files[i].fname - files[i].path;
7367 dirs[ndirs].count = 1;
7368 dirs[ndirs].dir_idx = ndirs;
7369 dirs[ndirs].used = 0;
7370 files[i].dir_idx = ndirs;
7371
7372 /* Search for a prefix. */
7373 dirs[ndirs].prefix = -1;
7374 for (j = 0; j < ndirs; j++)
7375 if (dirs[j].length < dirs[ndirs].length
7376 && dirs[j].length > 1
7377 && (dirs[ndirs].prefix == -1
7378 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7379 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7380 dirs[ndirs].prefix = j;
7381
7382 ++ndirs;
7383 }
7384
7385 /* Now to the actual work. We have to find a subset of the directories which
7386 allow expressing the file name using references to the directory table
7387 with the least amount of characters. We do not do an exhaustive search
7388 where we would have to check out every combination of every single
7389 possible prefix. Instead we use a heuristic which provides nearly optimal
7390 results in most cases and never is much off. */
7391 saved = alloca (ndirs * sizeof (int));
7392 savehere = alloca (ndirs * sizeof (int));
7393
7394 memset (saved, '\0', ndirs * sizeof (saved[0]));
7395 for (i = 0; i < ndirs; i++)
7396 {
7397 size_t j;
7398 int total;
7399
7400 /* We can always save some space for the current directory. But this
7401 does not mean it will be enough to justify adding the directory. */
7402 savehere[i] = dirs[i].length;
7403 total = (savehere[i] - saved[i]) * dirs[i].count;
7404
7405 for (j = i + 1; j < ndirs; j++)
7406 {
7407 savehere[j] = 0;
7408 if (saved[j] < dirs[i].length)
7409 {
7410 /* Determine whether the dirs[i] path is a prefix of the
7411 dirs[j] path. */
7412 int k;
7413
7414 k = dirs[j].prefix;
7415 while (k != -1 && k != (int) i)
7416 k = dirs[k].prefix;
7417
7418 if (k == (int) i)
7419 {
7420 /* Yes it is. We can possibly safe some memory but
7421 writing the filenames in dirs[j] relative to
7422 dirs[i]. */
7423 savehere[j] = dirs[i].length;
7424 total += (savehere[j] - saved[j]) * dirs[j].count;
7425 }
7426 }
7427 }
7428
7429 /* Check whether we can safe enough to justify adding the dirs[i]
7430 directory. */
7431 if (total > dirs[i].length + 1)
7432 {
7433 /* It's worthwhile adding. */
7434 for (j = i; j < ndirs; j++)
7435 if (savehere[j] > 0)
7436 {
7437 /* Remember how much we saved for this directory so far. */
7438 saved[j] = savehere[j];
7439
7440 /* Remember the prefix directory. */
7441 dirs[j].dir_idx = i;
7442 }
7443 }
7444 }
7445
7446 /* We have to emit them in the order they appear in the file_table array
7447 since the index is used in the debug info generation. To do this
7448 efficiently we generate a back-mapping of the indices first. */
7449 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7450 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7451 {
7452 backmap[files[i].file_idx] = i;
7453
7454 /* Mark this directory as used. */
7455 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7456 }
7457
7458 /* That was it. We are ready to emit the information. First emit the
7459 directory name table. We have to make sure the first actually emitted
7460 directory name has index one; zero is reserved for the current working
7461 directory. Make sure we do not confuse these indices with the one for the
7462 constructed table (even though most of the time they are identical). */
7463 idx = 1;
7464 idx_offset = dirs[0].length > 0 ? 1 : 0;
7465 for (i = 1 - idx_offset; i < ndirs; i++)
7466 if (dirs[i].used != 0)
7467 {
7468 dirs[i].used = idx++;
7469 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7470 "Directory Entry: 0x%x", dirs[i].used);
7471 }
7472
7473 dw2_asm_output_data (1, 0, "End directory table");
7474
7475 /* Correct the index for the current working directory entry if it
7476 exists. */
7477 if (idx_offset == 0)
7478 dirs[0].used = 0;
7479
7480 /* Now write all the file names. */
7481 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7482 {
7483 int file_idx = backmap[i];
7484 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7485
7486 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7487 "File Entry: 0x%lx", (unsigned long) i);
7488
7489 /* Include directory index. */
7490 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7491
7492 /* Modification time. */
7493 dw2_asm_output_data_uleb128 (0, NULL);
7494
7495 /* File length in bytes. */
7496 dw2_asm_output_data_uleb128 (0, NULL);
7497 }
7498
7499 dw2_asm_output_data (1, 0, "End file name table");
7500 }
7501
7502
7503 /* Output the source line number correspondence information. This
7504 information goes into the .debug_line section. */
7505
7506 static void
7507 output_line_info (void)
7508 {
7509 char l1[20], l2[20], p1[20], p2[20];
7510 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7511 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7512 unsigned opc;
7513 unsigned n_op_args;
7514 unsigned long lt_index;
7515 unsigned long current_line;
7516 long line_offset;
7517 long line_delta;
7518 unsigned long current_file;
7519 unsigned long function;
7520
7521 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7522 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7523 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7524 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7525
7526 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7527 dw2_asm_output_data (4, 0xffffffff,
7528 "Initial length escape value indicating 64-bit DWARF extension");
7529 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7530 "Length of Source Line Info");
7531 ASM_OUTPUT_LABEL (asm_out_file, l1);
7532
7533 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7534 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7535 ASM_OUTPUT_LABEL (asm_out_file, p1);
7536
7537 /* Define the architecture-dependent minimum instruction length (in
7538 bytes). In this implementation of DWARF, this field is used for
7539 information purposes only. Since GCC generates assembly language,
7540 we have no a priori knowledge of how many instruction bytes are
7541 generated for each source line, and therefore can use only the
7542 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7543 commands. Accordingly, we fix this as `1', which is "correct
7544 enough" for all architectures, and don't let the target override. */
7545 dw2_asm_output_data (1, 1,
7546 "Minimum Instruction Length");
7547
7548 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7549 "Default is_stmt_start flag");
7550 dw2_asm_output_data (1, DWARF_LINE_BASE,
7551 "Line Base Value (Special Opcodes)");
7552 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7553 "Line Range Value (Special Opcodes)");
7554 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7555 "Special Opcode Base");
7556
7557 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7558 {
7559 switch (opc)
7560 {
7561 case DW_LNS_advance_pc:
7562 case DW_LNS_advance_line:
7563 case DW_LNS_set_file:
7564 case DW_LNS_set_column:
7565 case DW_LNS_fixed_advance_pc:
7566 n_op_args = 1;
7567 break;
7568 default:
7569 n_op_args = 0;
7570 break;
7571 }
7572
7573 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7574 opc, n_op_args);
7575 }
7576
7577 /* Write out the information about the files we use. */
7578 output_file_names ();
7579 ASM_OUTPUT_LABEL (asm_out_file, p2);
7580
7581 /* We used to set the address register to the first location in the text
7582 section here, but that didn't accomplish anything since we already
7583 have a line note for the opening brace of the first function. */
7584
7585 /* Generate the line number to PC correspondence table, encoded as
7586 a series of state machine operations. */
7587 current_file = 1;
7588 current_line = 1;
7589 strcpy (prev_line_label, text_section_label);
7590 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7591 {
7592 dw_line_info_ref line_info = &line_info_table[lt_index];
7593
7594 #if 0
7595 /* Disable this optimization for now; GDB wants to see two line notes
7596 at the beginning of a function so it can find the end of the
7597 prologue. */
7598
7599 /* Don't emit anything for redundant notes. Just updating the
7600 address doesn't accomplish anything, because we already assume
7601 that anything after the last address is this line. */
7602 if (line_info->dw_line_num == current_line
7603 && line_info->dw_file_num == current_file)
7604 continue;
7605 #endif
7606
7607 /* Emit debug info for the address of the current line.
7608
7609 Unfortunately, we have little choice here currently, and must always
7610 use the most general form. GCC does not know the address delta
7611 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7612 attributes which will give an upper bound on the address range. We
7613 could perhaps use length attributes to determine when it is safe to
7614 use DW_LNS_fixed_advance_pc. */
7615
7616 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7617 if (0)
7618 {
7619 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7620 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7621 "DW_LNS_fixed_advance_pc");
7622 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7623 }
7624 else
7625 {
7626 /* This can handle any delta. This takes
7627 4+DWARF2_ADDR_SIZE bytes. */
7628 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7629 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7630 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7631 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7632 }
7633
7634 strcpy (prev_line_label, line_label);
7635
7636 /* Emit debug info for the source file of the current line, if
7637 different from the previous line. */
7638 if (line_info->dw_file_num != current_file)
7639 {
7640 current_file = line_info->dw_file_num;
7641 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7642 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7643 VARRAY_CHAR_PTR (file_table,
7644 current_file));
7645 }
7646
7647 /* Emit debug info for the current line number, choosing the encoding
7648 that uses the least amount of space. */
7649 if (line_info->dw_line_num != current_line)
7650 {
7651 line_offset = line_info->dw_line_num - current_line;
7652 line_delta = line_offset - DWARF_LINE_BASE;
7653 current_line = line_info->dw_line_num;
7654 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7655 /* This can handle deltas from -10 to 234, using the current
7656 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7657 takes 1 byte. */
7658 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7659 "line %lu", current_line);
7660 else
7661 {
7662 /* This can handle any delta. This takes at least 4 bytes,
7663 depending on the value being encoded. */
7664 dw2_asm_output_data (1, DW_LNS_advance_line,
7665 "advance to line %lu", current_line);
7666 dw2_asm_output_data_sleb128 (line_offset, NULL);
7667 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7668 }
7669 }
7670 else
7671 /* We still need to start a new row, so output a copy insn. */
7672 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7673 }
7674
7675 /* Emit debug info for the address of the end of the function. */
7676 if (0)
7677 {
7678 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7679 "DW_LNS_fixed_advance_pc");
7680 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7681 }
7682 else
7683 {
7684 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7685 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7686 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7687 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7688 }
7689
7690 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7691 dw2_asm_output_data_uleb128 (1, NULL);
7692 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7693
7694 function = 0;
7695 current_file = 1;
7696 current_line = 1;
7697 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7698 {
7699 dw_separate_line_info_ref line_info
7700 = &separate_line_info_table[lt_index];
7701
7702 #if 0
7703 /* Don't emit anything for redundant notes. */
7704 if (line_info->dw_line_num == current_line
7705 && line_info->dw_file_num == current_file
7706 && line_info->function == function)
7707 goto cont;
7708 #endif
7709
7710 /* Emit debug info for the address of the current line. If this is
7711 a new function, or the first line of a function, then we need
7712 to handle it differently. */
7713 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7714 lt_index);
7715 if (function != line_info->function)
7716 {
7717 function = line_info->function;
7718
7719 /* Set the address register to the first line in the function. */
7720 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7721 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7722 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7723 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7724 }
7725 else
7726 {
7727 /* ??? See the DW_LNS_advance_pc comment above. */
7728 if (0)
7729 {
7730 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7731 "DW_LNS_fixed_advance_pc");
7732 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7733 }
7734 else
7735 {
7736 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7737 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7738 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7739 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7740 }
7741 }
7742
7743 strcpy (prev_line_label, line_label);
7744
7745 /* Emit debug info for the source file of the current line, if
7746 different from the previous line. */
7747 if (line_info->dw_file_num != current_file)
7748 {
7749 current_file = line_info->dw_file_num;
7750 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7751 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7752 VARRAY_CHAR_PTR (file_table,
7753 current_file));
7754 }
7755
7756 /* Emit debug info for the current line number, choosing the encoding
7757 that uses the least amount of space. */
7758 if (line_info->dw_line_num != current_line)
7759 {
7760 line_offset = line_info->dw_line_num - current_line;
7761 line_delta = line_offset - DWARF_LINE_BASE;
7762 current_line = line_info->dw_line_num;
7763 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7764 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7765 "line %lu", current_line);
7766 else
7767 {
7768 dw2_asm_output_data (1, DW_LNS_advance_line,
7769 "advance to line %lu", current_line);
7770 dw2_asm_output_data_sleb128 (line_offset, NULL);
7771 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7772 }
7773 }
7774 else
7775 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7776
7777 #if 0
7778 cont:
7779 #endif
7780
7781 lt_index++;
7782
7783 /* If we're done with a function, end its sequence. */
7784 if (lt_index == separate_line_info_table_in_use
7785 || separate_line_info_table[lt_index].function != function)
7786 {
7787 current_file = 1;
7788 current_line = 1;
7789
7790 /* Emit debug info for the address of the end of the function. */
7791 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7792 if (0)
7793 {
7794 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7795 "DW_LNS_fixed_advance_pc");
7796 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7797 }
7798 else
7799 {
7800 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7801 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7802 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7803 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7804 }
7805
7806 /* Output the marker for the end of this sequence. */
7807 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7808 dw2_asm_output_data_uleb128 (1, NULL);
7809 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7810 }
7811 }
7812
7813 /* Output the marker for the end of the line number info. */
7814 ASM_OUTPUT_LABEL (asm_out_file, l2);
7815 }
7816 \f
7817 /* Given a pointer to a tree node for some base type, return a pointer to
7818 a DIE that describes the given type.
7819
7820 This routine must only be called for GCC type nodes that correspond to
7821 Dwarf base (fundamental) types. */
7822
7823 static dw_die_ref
7824 base_type_die (tree type)
7825 {
7826 dw_die_ref base_type_result;
7827 const char *type_name;
7828 enum dwarf_type encoding;
7829 tree name = TYPE_NAME (type);
7830
7831 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7832 return 0;
7833
7834 if (name)
7835 {
7836 if (TREE_CODE (name) == TYPE_DECL)
7837 name = DECL_NAME (name);
7838
7839 type_name = IDENTIFIER_POINTER (name);
7840 }
7841 else
7842 type_name = "__unknown__";
7843
7844 switch (TREE_CODE (type))
7845 {
7846 case INTEGER_TYPE:
7847 /* Carefully distinguish the C character types, without messing
7848 up if the language is not C. Note that we check only for the names
7849 that contain spaces; other names might occur by coincidence in other
7850 languages. */
7851 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7852 && (type == char_type_node
7853 || ! strcmp (type_name, "signed char")
7854 || ! strcmp (type_name, "unsigned char"))))
7855 {
7856 if (TYPE_UNSIGNED (type))
7857 encoding = DW_ATE_unsigned;
7858 else
7859 encoding = DW_ATE_signed;
7860 break;
7861 }
7862 /* else fall through. */
7863
7864 case CHAR_TYPE:
7865 /* GNU Pascal/Ada CHAR type. Not used in C. */
7866 if (TYPE_UNSIGNED (type))
7867 encoding = DW_ATE_unsigned_char;
7868 else
7869 encoding = DW_ATE_signed_char;
7870 break;
7871
7872 case REAL_TYPE:
7873 encoding = DW_ATE_float;
7874 break;
7875
7876 /* Dwarf2 doesn't know anything about complex ints, so use
7877 a user defined type for it. */
7878 case COMPLEX_TYPE:
7879 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7880 encoding = DW_ATE_complex_float;
7881 else
7882 encoding = DW_ATE_lo_user;
7883 break;
7884
7885 case BOOLEAN_TYPE:
7886 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7887 encoding = DW_ATE_boolean;
7888 break;
7889
7890 default:
7891 /* No other TREE_CODEs are Dwarf fundamental types. */
7892 abort ();
7893 }
7894
7895 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7896 if (demangle_name_func)
7897 type_name = (*demangle_name_func) (type_name);
7898
7899 add_AT_string (base_type_result, DW_AT_name, type_name);
7900 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7901 int_size_in_bytes (type));
7902 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7903
7904 return base_type_result;
7905 }
7906
7907 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7908 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7909 a given type is generally the same as the given type, except that if the
7910 given type is a pointer or reference type, then the root type of the given
7911 type is the root type of the "basis" type for the pointer or reference
7912 type. (This definition of the "root" type is recursive.) Also, the root
7913 type of a `const' qualified type or a `volatile' qualified type is the
7914 root type of the given type without the qualifiers. */
7915
7916 static tree
7917 root_type (tree type)
7918 {
7919 if (TREE_CODE (type) == ERROR_MARK)
7920 return error_mark_node;
7921
7922 switch (TREE_CODE (type))
7923 {
7924 case ERROR_MARK:
7925 return error_mark_node;
7926
7927 case POINTER_TYPE:
7928 case REFERENCE_TYPE:
7929 return type_main_variant (root_type (TREE_TYPE (type)));
7930
7931 default:
7932 return type_main_variant (type);
7933 }
7934 }
7935
7936 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7937 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7938
7939 static inline int
7940 is_base_type (tree type)
7941 {
7942 switch (TREE_CODE (type))
7943 {
7944 case ERROR_MARK:
7945 case VOID_TYPE:
7946 case INTEGER_TYPE:
7947 case REAL_TYPE:
7948 case COMPLEX_TYPE:
7949 case BOOLEAN_TYPE:
7950 case CHAR_TYPE:
7951 return 1;
7952
7953 case SET_TYPE:
7954 case ARRAY_TYPE:
7955 case RECORD_TYPE:
7956 case UNION_TYPE:
7957 case QUAL_UNION_TYPE:
7958 case ENUMERAL_TYPE:
7959 case FUNCTION_TYPE:
7960 case METHOD_TYPE:
7961 case POINTER_TYPE:
7962 case REFERENCE_TYPE:
7963 case FILE_TYPE:
7964 case OFFSET_TYPE:
7965 case LANG_TYPE:
7966 case VECTOR_TYPE:
7967 return 0;
7968
7969 default:
7970 abort ();
7971 }
7972
7973 return 0;
7974 }
7975
7976 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
7977 node, return the size in bits for the type if it is a constant, or else
7978 return the alignment for the type if the type's size is not constant, or
7979 else return BITS_PER_WORD if the type actually turns out to be an
7980 ERROR_MARK node. */
7981
7982 static inline unsigned HOST_WIDE_INT
7983 simple_type_size_in_bits (tree type)
7984 {
7985 if (TREE_CODE (type) == ERROR_MARK)
7986 return BITS_PER_WORD;
7987 else if (TYPE_SIZE (type) == NULL_TREE)
7988 return 0;
7989 else if (host_integerp (TYPE_SIZE (type), 1))
7990 return tree_low_cst (TYPE_SIZE (type), 1);
7991 else
7992 return TYPE_ALIGN (type);
7993 }
7994
7995 /* Return true if the debug information for the given type should be
7996 emitted as a subrange type. */
7997
7998 static inline bool
7999 is_subrange_type (tree type)
8000 {
8001 tree subtype = TREE_TYPE (type);
8002
8003 /* Subrange types are identified by the fact that they are integer
8004 types, and that they have a subtype which is either an integer type
8005 or an enumeral type. */
8006
8007 if (TREE_CODE (type) != INTEGER_TYPE
8008 || subtype == NULL_TREE)
8009 return false;
8010
8011 if (TREE_CODE (subtype) != INTEGER_TYPE
8012 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8013 return false;
8014
8015 if (TREE_CODE (type) == TREE_CODE (subtype)
8016 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8017 && TYPE_MIN_VALUE (type) != NULL
8018 && TYPE_MIN_VALUE (subtype) != NULL
8019 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8020 && TYPE_MAX_VALUE (type) != NULL
8021 && TYPE_MAX_VALUE (subtype) != NULL
8022 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8023 {
8024 /* The type and its subtype have the same representation. If in
8025 addition the two types also have the same name, then the given
8026 type is not a subrange type, but rather a plain base type. */
8027 /* FIXME: brobecker/2004-03-22:
8028 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8029 therefore be sufficient to check the TYPE_SIZE node pointers
8030 rather than checking the actual size. Unfortunately, we have
8031 found some cases, such as in the Ada "integer" type, where
8032 this is not the case. Until this problem is solved, we need to
8033 keep checking the actual size. */
8034 tree type_name = TYPE_NAME (type);
8035 tree subtype_name = TYPE_NAME (subtype);
8036
8037 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8038 type_name = DECL_NAME (type_name);
8039
8040 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8041 subtype_name = DECL_NAME (subtype_name);
8042
8043 if (type_name == subtype_name)
8044 return false;
8045 }
8046
8047 return true;
8048 }
8049
8050 /* Given a pointer to a tree node for a subrange type, return a pointer
8051 to a DIE that describes the given type. */
8052
8053 static dw_die_ref
8054 subrange_type_die (tree type, dw_die_ref context_die)
8055 {
8056 dw_die_ref subtype_die;
8057 dw_die_ref subrange_die;
8058 tree name = TYPE_NAME (type);
8059 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8060 tree subtype = TREE_TYPE (type);
8061
8062 if (context_die == NULL)
8063 context_die = comp_unit_die;
8064
8065 if (TREE_CODE (subtype) == ENUMERAL_TYPE)
8066 subtype_die = gen_enumeration_type_die (subtype, context_die);
8067 else
8068 subtype_die = base_type_die (subtype);
8069
8070 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8071
8072 if (name != NULL)
8073 {
8074 if (TREE_CODE (name) == TYPE_DECL)
8075 name = DECL_NAME (name);
8076 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
8077 }
8078
8079 if (int_size_in_bytes (subtype) != size_in_bytes)
8080 {
8081 /* The size of the subrange type and its base type do not match,
8082 so we need to generate a size attribute for the subrange type. */
8083 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8084 }
8085
8086 if (TYPE_MIN_VALUE (type) != NULL)
8087 add_bound_info (subrange_die, DW_AT_lower_bound,
8088 TYPE_MIN_VALUE (type));
8089 if (TYPE_MAX_VALUE (type) != NULL)
8090 add_bound_info (subrange_die, DW_AT_upper_bound,
8091 TYPE_MAX_VALUE (type));
8092 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
8093
8094 return subrange_die;
8095 }
8096
8097 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8098 entry that chains various modifiers in front of the given type. */
8099
8100 static dw_die_ref
8101 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8102 dw_die_ref context_die)
8103 {
8104 enum tree_code code = TREE_CODE (type);
8105 dw_die_ref mod_type_die = NULL;
8106 dw_die_ref sub_die = NULL;
8107 tree item_type = NULL;
8108
8109 if (code != ERROR_MARK)
8110 {
8111 tree qualified_type;
8112
8113 /* See if we already have the appropriately qualified variant of
8114 this type. */
8115 qualified_type
8116 = get_qualified_type (type,
8117 ((is_const_type ? TYPE_QUAL_CONST : 0)
8118 | (is_volatile_type
8119 ? TYPE_QUAL_VOLATILE : 0)));
8120
8121 /* If we do, then we can just use its DIE, if it exists. */
8122 if (qualified_type)
8123 {
8124 mod_type_die = lookup_type_die (qualified_type);
8125 if (mod_type_die)
8126 return mod_type_die;
8127 }
8128
8129 /* Handle C typedef types. */
8130 if (qualified_type && TYPE_NAME (qualified_type)
8131 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8132 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8133 {
8134 tree type_name = TYPE_NAME (qualified_type);
8135 tree dtype = TREE_TYPE (type_name);
8136
8137 if (qualified_type == dtype)
8138 {
8139 /* For a named type, use the typedef. */
8140 gen_type_die (qualified_type, context_die);
8141 mod_type_die = lookup_type_die (qualified_type);
8142 }
8143 else if (is_const_type < TYPE_READONLY (dtype)
8144 || is_volatile_type < TYPE_VOLATILE (dtype))
8145 /* cv-unqualified version of named type. Just use the unnamed
8146 type to which it refers. */
8147 mod_type_die
8148 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8149 is_const_type, is_volatile_type,
8150 context_die);
8151
8152 /* Else cv-qualified version of named type; fall through. */
8153 }
8154
8155 if (mod_type_die)
8156 /* OK. */
8157 ;
8158 else if (is_const_type)
8159 {
8160 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8161 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8162 }
8163 else if (is_volatile_type)
8164 {
8165 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8166 sub_die = modified_type_die (type, 0, 0, context_die);
8167 }
8168 else if (code == POINTER_TYPE)
8169 {
8170 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8171 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8172 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8173 #if 0
8174 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8175 #endif
8176 item_type = TREE_TYPE (type);
8177 }
8178 else if (code == REFERENCE_TYPE)
8179 {
8180 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8181 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8182 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8183 #if 0
8184 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8185 #endif
8186 item_type = TREE_TYPE (type);
8187 }
8188 else if (is_subrange_type (type))
8189 mod_type_die = subrange_type_die (type, context_die);
8190 else if (is_base_type (type))
8191 mod_type_die = base_type_die (type);
8192 else
8193 {
8194 gen_type_die (type, context_die);
8195
8196 /* We have to get the type_main_variant here (and pass that to the
8197 `lookup_type_die' routine) because the ..._TYPE node we have
8198 might simply be a *copy* of some original type node (where the
8199 copy was created to help us keep track of typedef names) and
8200 that copy might have a different TYPE_UID from the original
8201 ..._TYPE node. */
8202 if (TREE_CODE (type) != VECTOR_TYPE)
8203 mod_type_die = lookup_type_die (type_main_variant (type));
8204 else
8205 /* Vectors have the debugging information in the type,
8206 not the main variant. */
8207 mod_type_die = lookup_type_die (type);
8208 if (mod_type_die == NULL)
8209 abort ();
8210 }
8211
8212 /* We want to equate the qualified type to the die below. */
8213 type = qualified_type;
8214 }
8215
8216 if (type)
8217 equate_type_number_to_die (type, mod_type_die);
8218 if (item_type)
8219 /* We must do this after the equate_type_number_to_die call, in case
8220 this is a recursive type. This ensures that the modified_type_die
8221 recursion will terminate even if the type is recursive. Recursive
8222 types are possible in Ada. */
8223 sub_die = modified_type_die (item_type,
8224 TYPE_READONLY (item_type),
8225 TYPE_VOLATILE (item_type),
8226 context_die);
8227
8228 if (sub_die != NULL)
8229 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8230
8231 return mod_type_die;
8232 }
8233
8234 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8235 an enumerated type. */
8236
8237 static inline int
8238 type_is_enum (tree type)
8239 {
8240 return TREE_CODE (type) == ENUMERAL_TYPE;
8241 }
8242
8243 /* Return the register number described by a given RTL node. */
8244
8245 static unsigned int
8246 reg_number (rtx rtl)
8247 {
8248 unsigned regno = REGNO (rtl);
8249
8250 if (regno >= FIRST_PSEUDO_REGISTER)
8251 abort ();
8252
8253 return DBX_REGISTER_NUMBER (regno);
8254 }
8255
8256 /* Return a location descriptor that designates a machine register or
8257 zero if there is none. */
8258
8259 static dw_loc_descr_ref
8260 reg_loc_descriptor (rtx rtl)
8261 {
8262 unsigned reg;
8263 rtx regs;
8264
8265 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8266 return 0;
8267
8268 reg = reg_number (rtl);
8269 regs = targetm.dwarf_register_span (rtl);
8270
8271 if (hard_regno_nregs[reg][GET_MODE (rtl)] > 1
8272 || regs)
8273 return multiple_reg_loc_descriptor (rtl, regs);
8274 else
8275 return one_reg_loc_descriptor (reg);
8276 }
8277
8278 /* Return a location descriptor that designates a machine register for
8279 a given hard register number. */
8280
8281 static dw_loc_descr_ref
8282 one_reg_loc_descriptor (unsigned int regno)
8283 {
8284 if (regno <= 31)
8285 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8286 else
8287 return new_loc_descr (DW_OP_regx, regno, 0);
8288 }
8289
8290 /* Given an RTL of a register, return a location descriptor that
8291 designates a value that spans more than one register. */
8292
8293 static dw_loc_descr_ref
8294 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8295 {
8296 int nregs, size, i;
8297 unsigned reg;
8298 dw_loc_descr_ref loc_result = NULL;
8299
8300 reg = reg_number (rtl);
8301 nregs = hard_regno_nregs[reg][GET_MODE (rtl)];
8302
8303 /* Simple, contiguous registers. */
8304 if (regs == NULL_RTX)
8305 {
8306 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8307
8308 loc_result = NULL;
8309 while (nregs--)
8310 {
8311 dw_loc_descr_ref t;
8312
8313 t = one_reg_loc_descriptor (reg);
8314 add_loc_descr (&loc_result, t);
8315 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8316 ++reg;
8317 }
8318 return loc_result;
8319 }
8320
8321 /* Now onto stupid register sets in non contiguous locations. */
8322
8323 if (GET_CODE (regs) != PARALLEL)
8324 abort ();
8325
8326 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8327 loc_result = NULL;
8328
8329 for (i = 0; i < XVECLEN (regs, 0); ++i)
8330 {
8331 dw_loc_descr_ref t;
8332
8333 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8334 add_loc_descr (&loc_result, t);
8335 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8336 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8337 }
8338 return loc_result;
8339 }
8340
8341 /* Return a location descriptor that designates a constant. */
8342
8343 static dw_loc_descr_ref
8344 int_loc_descriptor (HOST_WIDE_INT i)
8345 {
8346 enum dwarf_location_atom op;
8347
8348 /* Pick the smallest representation of a constant, rather than just
8349 defaulting to the LEB encoding. */
8350 if (i >= 0)
8351 {
8352 if (i <= 31)
8353 op = DW_OP_lit0 + i;
8354 else if (i <= 0xff)
8355 op = DW_OP_const1u;
8356 else if (i <= 0xffff)
8357 op = DW_OP_const2u;
8358 else if (HOST_BITS_PER_WIDE_INT == 32
8359 || i <= 0xffffffff)
8360 op = DW_OP_const4u;
8361 else
8362 op = DW_OP_constu;
8363 }
8364 else
8365 {
8366 if (i >= -0x80)
8367 op = DW_OP_const1s;
8368 else if (i >= -0x8000)
8369 op = DW_OP_const2s;
8370 else if (HOST_BITS_PER_WIDE_INT == 32
8371 || i >= -0x80000000)
8372 op = DW_OP_const4s;
8373 else
8374 op = DW_OP_consts;
8375 }
8376
8377 return new_loc_descr (op, i, 0);
8378 }
8379
8380 /* Return a location descriptor that designates a base+offset location. */
8381
8382 static dw_loc_descr_ref
8383 based_loc_descr (unsigned int reg, HOST_WIDE_INT offset, bool can_use_fbreg)
8384 {
8385 dw_loc_descr_ref loc_result;
8386 /* For the "frame base", we use the frame pointer or stack pointer
8387 registers, since the RTL for local variables is relative to one of
8388 them. */
8389 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8390 ? HARD_FRAME_POINTER_REGNUM
8391 : STACK_POINTER_REGNUM);
8392
8393 if (reg == fp_reg && can_use_fbreg)
8394 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8395 else if (reg <= 31)
8396 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8397 else
8398 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8399
8400 return loc_result;
8401 }
8402
8403 /* Return true if this RTL expression describes a base+offset calculation. */
8404
8405 static inline int
8406 is_based_loc (rtx rtl)
8407 {
8408 return (GET_CODE (rtl) == PLUS
8409 && ((GET_CODE (XEXP (rtl, 0)) == REG
8410 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8411 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8412 }
8413
8414 /* The following routine converts the RTL for a variable or parameter
8415 (resident in memory) into an equivalent Dwarf representation of a
8416 mechanism for getting the address of that same variable onto the top of a
8417 hypothetical "address evaluation" stack.
8418
8419 When creating memory location descriptors, we are effectively transforming
8420 the RTL for a memory-resident object into its Dwarf postfix expression
8421 equivalent. This routine recursively descends an RTL tree, turning
8422 it into Dwarf postfix code as it goes.
8423
8424 MODE is the mode of the memory reference, needed to handle some
8425 autoincrement addressing modes.
8426
8427 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the location
8428 list for RTL. We can't use it when we are emitting location list for
8429 virtual variable frame_base_decl (i.e. a location list for DW_AT_frame_base)
8430 which describes how frame base changes when !frame_pointer_needed.
8431
8432 Return 0 if we can't represent the location. */
8433
8434 static dw_loc_descr_ref
8435 mem_loc_descriptor (rtx rtl, enum machine_mode mode, bool can_use_fbreg)
8436 {
8437 dw_loc_descr_ref mem_loc_result = NULL;
8438
8439 /* Note that for a dynamically sized array, the location we will generate a
8440 description of here will be the lowest numbered location which is
8441 actually within the array. That's *not* necessarily the same as the
8442 zeroth element of the array. */
8443
8444 rtl = targetm.delegitimize_address (rtl);
8445
8446 switch (GET_CODE (rtl))
8447 {
8448 case POST_INC:
8449 case POST_DEC:
8450 case POST_MODIFY:
8451 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8452 just fall into the SUBREG code. */
8453
8454 /* ... fall through ... */
8455
8456 case SUBREG:
8457 /* The case of a subreg may arise when we have a local (register)
8458 variable or a formal (register) parameter which doesn't quite fill
8459 up an entire register. For now, just assume that it is
8460 legitimate to make the Dwarf info refer to the whole register which
8461 contains the given subreg. */
8462 rtl = SUBREG_REG (rtl);
8463
8464 /* ... fall through ... */
8465
8466 case REG:
8467 /* Whenever a register number forms a part of the description of the
8468 method for calculating the (dynamic) address of a memory resident
8469 object, DWARF rules require the register number be referred to as
8470 a "base register". This distinction is not based in any way upon
8471 what category of register the hardware believes the given register
8472 belongs to. This is strictly DWARF terminology we're dealing with
8473 here. Note that in cases where the location of a memory-resident
8474 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8475 OP_CONST (0)) the actual DWARF location descriptor that we generate
8476 may just be OP_BASEREG (basereg). This may look deceptively like
8477 the object in question was allocated to a register (rather than in
8478 memory) so DWARF consumers need to be aware of the subtle
8479 distinction between OP_REG and OP_BASEREG. */
8480 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8481 mem_loc_result = based_loc_descr (reg_number (rtl), 0, can_use_fbreg);
8482 break;
8483
8484 case MEM:
8485 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8486 can_use_fbreg);
8487 if (mem_loc_result != 0)
8488 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8489 break;
8490
8491 case LO_SUM:
8492 rtl = XEXP (rtl, 1);
8493
8494 /* ... fall through ... */
8495
8496 case LABEL_REF:
8497 /* Some ports can transform a symbol ref into a label ref, because
8498 the symbol ref is too far away and has to be dumped into a constant
8499 pool. */
8500 case CONST:
8501 case SYMBOL_REF:
8502 /* Alternatively, the symbol in the constant pool might be referenced
8503 by a different symbol. */
8504 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8505 {
8506 bool marked;
8507 rtx tmp = get_pool_constant_mark (rtl, &marked);
8508
8509 if (GET_CODE (tmp) == SYMBOL_REF)
8510 {
8511 rtl = tmp;
8512 if (CONSTANT_POOL_ADDRESS_P (tmp))
8513 get_pool_constant_mark (tmp, &marked);
8514 else
8515 marked = true;
8516 }
8517
8518 /* If all references to this pool constant were optimized away,
8519 it was not output and thus we can't represent it.
8520 FIXME: might try to use DW_OP_const_value here, though
8521 DW_OP_piece complicates it. */
8522 if (!marked)
8523 return 0;
8524 }
8525
8526 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8527 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8528 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8529 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8530 break;
8531
8532 case PRE_MODIFY:
8533 /* Extract the PLUS expression nested inside and fall into
8534 PLUS code below. */
8535 rtl = XEXP (rtl, 1);
8536 goto plus;
8537
8538 case PRE_INC:
8539 case PRE_DEC:
8540 /* Turn these into a PLUS expression and fall into the PLUS code
8541 below. */
8542 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8543 GEN_INT (GET_CODE (rtl) == PRE_INC
8544 ? GET_MODE_UNIT_SIZE (mode)
8545 : -GET_MODE_UNIT_SIZE (mode)));
8546
8547 /* ... fall through ... */
8548
8549 case PLUS:
8550 plus:
8551 if (is_based_loc (rtl))
8552 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
8553 INTVAL (XEXP (rtl, 1)),
8554 can_use_fbreg);
8555 else
8556 {
8557 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode,
8558 can_use_fbreg);
8559 if (mem_loc_result == 0)
8560 break;
8561
8562 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8563 && INTVAL (XEXP (rtl, 1)) >= 0)
8564 add_loc_descr (&mem_loc_result,
8565 new_loc_descr (DW_OP_plus_uconst,
8566 INTVAL (XEXP (rtl, 1)), 0));
8567 else
8568 {
8569 add_loc_descr (&mem_loc_result,
8570 mem_loc_descriptor (XEXP (rtl, 1), mode,
8571 can_use_fbreg));
8572 add_loc_descr (&mem_loc_result,
8573 new_loc_descr (DW_OP_plus, 0, 0));
8574 }
8575 }
8576 break;
8577
8578 case MULT:
8579 {
8580 /* If a pseudo-reg is optimized away, it is possible for it to
8581 be replaced with a MEM containing a multiply. */
8582 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
8583 can_use_fbreg);
8584 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
8585 can_use_fbreg);
8586
8587 if (op0 == 0 || op1 == 0)
8588 break;
8589
8590 mem_loc_result = op0;
8591 add_loc_descr (&mem_loc_result, op1);
8592 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
8593 break;
8594 }
8595
8596 case CONST_INT:
8597 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8598 break;
8599
8600 case ADDRESSOF:
8601 /* If this is a MEM, return its address. Otherwise, we can't
8602 represent this. */
8603 if (GET_CODE (XEXP (rtl, 0)) == MEM)
8604 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode,
8605 can_use_fbreg);
8606 else
8607 return 0;
8608
8609 default:
8610 abort ();
8611 }
8612
8613 return mem_loc_result;
8614 }
8615
8616 /* Return a descriptor that describes the concatenation of two locations.
8617 This is typically a complex variable. */
8618
8619 static dw_loc_descr_ref
8620 concat_loc_descriptor (rtx x0, rtx x1)
8621 {
8622 dw_loc_descr_ref cc_loc_result = NULL;
8623 dw_loc_descr_ref x0_ref = loc_descriptor (x0, true);
8624 dw_loc_descr_ref x1_ref = loc_descriptor (x1, true);
8625
8626 if (x0_ref == 0 || x1_ref == 0)
8627 return 0;
8628
8629 cc_loc_result = x0_ref;
8630 add_loc_descr (&cc_loc_result,
8631 new_loc_descr (DW_OP_piece,
8632 GET_MODE_SIZE (GET_MODE (x0)), 0));
8633
8634 add_loc_descr (&cc_loc_result, x1_ref);
8635 add_loc_descr (&cc_loc_result,
8636 new_loc_descr (DW_OP_piece,
8637 GET_MODE_SIZE (GET_MODE (x1)), 0));
8638
8639 return cc_loc_result;
8640 }
8641
8642 /* Output a proper Dwarf location descriptor for a variable or parameter
8643 which is either allocated in a register or in a memory location. For a
8644 register, we just generate an OP_REG and the register number. For a
8645 memory location we provide a Dwarf postfix expression describing how to
8646 generate the (dynamic) address of the object onto the address stack.
8647
8648 If we don't know how to describe it, return 0. */
8649
8650 static dw_loc_descr_ref
8651 loc_descriptor (rtx rtl, bool can_use_fbreg)
8652 {
8653 dw_loc_descr_ref loc_result = NULL;
8654
8655 switch (GET_CODE (rtl))
8656 {
8657 case SUBREG:
8658 /* The case of a subreg may arise when we have a local (register)
8659 variable or a formal (register) parameter which doesn't quite fill
8660 up an entire register. For now, just assume that it is
8661 legitimate to make the Dwarf info refer to the whole register which
8662 contains the given subreg. */
8663 rtl = SUBREG_REG (rtl);
8664
8665 /* ... fall through ... */
8666
8667 case REG:
8668 loc_result = reg_loc_descriptor (rtl);
8669 break;
8670
8671 case MEM:
8672 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8673 can_use_fbreg);
8674 break;
8675
8676 case CONCAT:
8677 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8678 break;
8679
8680 case VAR_LOCATION:
8681 /* Single part. */
8682 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
8683 {
8684 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0), can_use_fbreg);
8685 }
8686 /* Multiple parts. */
8687 else
8688 {
8689 rtvec par_elems = XVEC (XEXP (rtl, 1), 0);
8690 int num_elem = GET_NUM_ELEM (par_elems);
8691 enum machine_mode mode;
8692 int i;
8693
8694 /* Create the first one, so we have something to add to. */
8695 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
8696 can_use_fbreg);
8697 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
8698 add_loc_descr (&loc_result,
8699 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
8700 for (i = 1; i < num_elem; i++)
8701 {
8702 dw_loc_descr_ref temp;
8703
8704 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
8705 can_use_fbreg);
8706 add_loc_descr (&loc_result, temp);
8707 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
8708 add_loc_descr (&loc_result,
8709 new_loc_descr (DW_OP_piece,
8710 GET_MODE_SIZE (mode), 0));
8711 }
8712 }
8713 break;
8714
8715 default:
8716 abort ();
8717 }
8718
8719 return loc_result;
8720 }
8721
8722 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8723 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8724 looking for an address. Otherwise, we return a value. If we can't make a
8725 descriptor, return 0. */
8726
8727 static dw_loc_descr_ref
8728 loc_descriptor_from_tree (tree loc, int addressp)
8729 {
8730 dw_loc_descr_ref ret, ret1;
8731 int indirect_p = 0;
8732 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
8733 enum dwarf_location_atom op;
8734
8735 /* ??? Most of the time we do not take proper care for sign/zero
8736 extending the values properly. Hopefully this won't be a real
8737 problem... */
8738
8739 switch (TREE_CODE (loc))
8740 {
8741 case ERROR_MARK:
8742 return 0;
8743
8744 case PLACEHOLDER_EXPR:
8745 /* This case involves extracting fields from an object to determine the
8746 position of other fields. We don't try to encode this here. The
8747 only user of this is Ada, which encodes the needed information using
8748 the names of types. */
8749 return 0;
8750
8751 case CALL_EXPR:
8752 return 0;
8753
8754 case PREINCREMENT_EXPR:
8755 case PREDECREMENT_EXPR:
8756 case POSTINCREMENT_EXPR:
8757 case POSTDECREMENT_EXPR:
8758 /* There are no opcodes for these operations. */
8759 return 0;
8760
8761 case ADDR_EXPR:
8762 /* We can support this only if we can look through conversions and
8763 find an INDIRECT_EXPR. */
8764 for (loc = TREE_OPERAND (loc, 0);
8765 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8766 || TREE_CODE (loc) == NON_LVALUE_EXPR
8767 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8768 || TREE_CODE (loc) == SAVE_EXPR;
8769 loc = TREE_OPERAND (loc, 0))
8770 ;
8771
8772 return (TREE_CODE (loc) == INDIRECT_REF
8773 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8774 : 0);
8775
8776 case VAR_DECL:
8777 if (DECL_THREAD_LOCAL (loc))
8778 {
8779 rtx rtl;
8780
8781 #ifndef ASM_OUTPUT_DWARF_DTPREL
8782 /* If this is not defined, we have no way to emit the data. */
8783 return 0;
8784 #endif
8785
8786 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8787 look up addresses of objects in the current module. */
8788 if (DECL_EXTERNAL (loc))
8789 return 0;
8790
8791 rtl = rtl_for_decl_location (loc);
8792 if (rtl == NULL_RTX)
8793 return 0;
8794
8795 if (GET_CODE (rtl) != MEM)
8796 return 0;
8797 rtl = XEXP (rtl, 0);
8798 if (! CONSTANT_P (rtl))
8799 return 0;
8800
8801 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8802 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8803 ret->dw_loc_oprnd1.v.val_addr = rtl;
8804
8805 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8806 add_loc_descr (&ret, ret1);
8807
8808 indirect_p = 1;
8809 break;
8810 }
8811 /* Fall through. */
8812
8813 case PARM_DECL:
8814 {
8815 rtx rtl = rtl_for_decl_location (loc);
8816
8817 if (rtl == NULL_RTX)
8818 return 0;
8819 else if (CONSTANT_P (rtl))
8820 {
8821 ret = new_loc_descr (DW_OP_addr, 0, 0);
8822 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8823 ret->dw_loc_oprnd1.v.val_addr = rtl;
8824 indirect_p = 1;
8825 }
8826 else
8827 {
8828 enum machine_mode mode = GET_MODE (rtl);
8829
8830 if (GET_CODE (rtl) == MEM)
8831 {
8832 indirect_p = 1;
8833 rtl = XEXP (rtl, 0);
8834 }
8835
8836 ret = mem_loc_descriptor (rtl, mode, true);
8837 }
8838 }
8839 break;
8840
8841 case INDIRECT_REF:
8842 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8843 indirect_p = 1;
8844 break;
8845
8846 case COMPOUND_EXPR:
8847 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8848
8849 case NOP_EXPR:
8850 case CONVERT_EXPR:
8851 case NON_LVALUE_EXPR:
8852 case VIEW_CONVERT_EXPR:
8853 case SAVE_EXPR:
8854 case MODIFY_EXPR:
8855 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8856
8857 case COMPONENT_REF:
8858 case BIT_FIELD_REF:
8859 case ARRAY_REF:
8860 case ARRAY_RANGE_REF:
8861 {
8862 tree obj, offset;
8863 HOST_WIDE_INT bitsize, bitpos, bytepos;
8864 enum machine_mode mode;
8865 int volatilep;
8866
8867 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8868 &unsignedp, &volatilep);
8869
8870 if (obj == loc)
8871 return 0;
8872
8873 ret = loc_descriptor_from_tree (obj, 1);
8874 if (ret == 0
8875 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8876 return 0;
8877
8878 if (offset != NULL_TREE)
8879 {
8880 /* Variable offset. */
8881 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8882 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8883 }
8884
8885 if (!addressp)
8886 indirect_p = 1;
8887
8888 bytepos = bitpos / BITS_PER_UNIT;
8889 if (bytepos > 0)
8890 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8891 else if (bytepos < 0)
8892 {
8893 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8894 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8895 }
8896 break;
8897 }
8898
8899 case INTEGER_CST:
8900 if (host_integerp (loc, 0))
8901 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8902 else
8903 return 0;
8904 break;
8905
8906 case CONSTRUCTOR:
8907 {
8908 /* Get an RTL for this, if something has been emitted. */
8909 rtx rtl = lookup_constant_def (loc);
8910 enum machine_mode mode;
8911
8912 if (GET_CODE (rtl) != MEM)
8913 return 0;
8914 mode = GET_MODE (rtl);
8915 rtl = XEXP (rtl, 0);
8916
8917 rtl = targetm.delegitimize_address (rtl);
8918
8919 indirect_p = 1;
8920 ret = mem_loc_descriptor (rtl, mode, true);
8921 break;
8922 }
8923
8924 case TRUTH_AND_EXPR:
8925 case TRUTH_ANDIF_EXPR:
8926 case BIT_AND_EXPR:
8927 op = DW_OP_and;
8928 goto do_binop;
8929
8930 case TRUTH_XOR_EXPR:
8931 case BIT_XOR_EXPR:
8932 op = DW_OP_xor;
8933 goto do_binop;
8934
8935 case TRUTH_OR_EXPR:
8936 case TRUTH_ORIF_EXPR:
8937 case BIT_IOR_EXPR:
8938 op = DW_OP_or;
8939 goto do_binop;
8940
8941 case FLOOR_DIV_EXPR:
8942 case CEIL_DIV_EXPR:
8943 case ROUND_DIV_EXPR:
8944 case TRUNC_DIV_EXPR:
8945 op = DW_OP_div;
8946 goto do_binop;
8947
8948 case MINUS_EXPR:
8949 op = DW_OP_minus;
8950 goto do_binop;
8951
8952 case FLOOR_MOD_EXPR:
8953 case CEIL_MOD_EXPR:
8954 case ROUND_MOD_EXPR:
8955 case TRUNC_MOD_EXPR:
8956 op = DW_OP_mod;
8957 goto do_binop;
8958
8959 case MULT_EXPR:
8960 op = DW_OP_mul;
8961 goto do_binop;
8962
8963 case LSHIFT_EXPR:
8964 op = DW_OP_shl;
8965 goto do_binop;
8966
8967 case RSHIFT_EXPR:
8968 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8969 goto do_binop;
8970
8971 case PLUS_EXPR:
8972 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8973 && host_integerp (TREE_OPERAND (loc, 1), 0))
8974 {
8975 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8976 if (ret == 0)
8977 return 0;
8978
8979 add_loc_descr (&ret,
8980 new_loc_descr (DW_OP_plus_uconst,
8981 tree_low_cst (TREE_OPERAND (loc, 1),
8982 0),
8983 0));
8984 break;
8985 }
8986
8987 op = DW_OP_plus;
8988 goto do_binop;
8989
8990 case LE_EXPR:
8991 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8992 return 0;
8993
8994 op = DW_OP_le;
8995 goto do_binop;
8996
8997 case GE_EXPR:
8998 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8999 return 0;
9000
9001 op = DW_OP_ge;
9002 goto do_binop;
9003
9004 case LT_EXPR:
9005 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9006 return 0;
9007
9008 op = DW_OP_lt;
9009 goto do_binop;
9010
9011 case GT_EXPR:
9012 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9013 return 0;
9014
9015 op = DW_OP_gt;
9016 goto do_binop;
9017
9018 case EQ_EXPR:
9019 op = DW_OP_eq;
9020 goto do_binop;
9021
9022 case NE_EXPR:
9023 op = DW_OP_ne;
9024 goto do_binop;
9025
9026 do_binop:
9027 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
9028 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
9029 if (ret == 0 || ret1 == 0)
9030 return 0;
9031
9032 add_loc_descr (&ret, ret1);
9033 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9034 break;
9035
9036 case TRUTH_NOT_EXPR:
9037 case BIT_NOT_EXPR:
9038 op = DW_OP_not;
9039 goto do_unop;
9040
9041 case ABS_EXPR:
9042 op = DW_OP_abs;
9043 goto do_unop;
9044
9045 case NEGATE_EXPR:
9046 op = DW_OP_neg;
9047 goto do_unop;
9048
9049 do_unop:
9050 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
9051 if (ret == 0)
9052 return 0;
9053
9054 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9055 break;
9056
9057 case MIN_EXPR:
9058 case MAX_EXPR:
9059 {
9060 const enum tree_code code =
9061 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9062
9063 loc = build (COND_EXPR, TREE_TYPE (loc),
9064 build (code, integer_type_node,
9065 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9066 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9067 }
9068
9069 /* ... fall through ... */
9070
9071 case COND_EXPR:
9072 {
9073 dw_loc_descr_ref lhs
9074 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
9075 dw_loc_descr_ref rhs
9076 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
9077 dw_loc_descr_ref bra_node, jump_node, tmp;
9078
9079 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
9080 if (ret == 0 || lhs == 0 || rhs == 0)
9081 return 0;
9082
9083 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9084 add_loc_descr (&ret, bra_node);
9085
9086 add_loc_descr (&ret, rhs);
9087 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9088 add_loc_descr (&ret, jump_node);
9089
9090 add_loc_descr (&ret, lhs);
9091 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9092 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9093
9094 /* ??? Need a node to point the skip at. Use a nop. */
9095 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9096 add_loc_descr (&ret, tmp);
9097 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9098 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9099 }
9100 break;
9101
9102 case EXPR_WITH_FILE_LOCATION:
9103 return loc_descriptor_from_tree (EXPR_WFL_NODE (loc), addressp);
9104
9105 default:
9106 /* Leave front-end specific codes as simply unknown. This comes
9107 up, for instance, with the C STMT_EXPR. */
9108 if ((unsigned int) TREE_CODE (loc)
9109 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9110 return 0;
9111
9112 /* Otherwise this is a generic code; we should just lists all of
9113 these explicitly. Aborting means we forgot one. */
9114 abort ();
9115 }
9116
9117 /* Show if we can't fill the request for an address. */
9118 if (addressp && indirect_p == 0)
9119 return 0;
9120
9121 /* If we've got an address and don't want one, dereference. */
9122 if (!addressp && indirect_p > 0)
9123 {
9124 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9125
9126 if (size > DWARF2_ADDR_SIZE || size == -1)
9127 return 0;
9128 else if (size == DWARF2_ADDR_SIZE)
9129 op = DW_OP_deref;
9130 else
9131 op = DW_OP_deref_size;
9132
9133 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9134 }
9135
9136 return ret;
9137 }
9138
9139 /* Given a value, round it up to the lowest multiple of `boundary'
9140 which is not less than the value itself. */
9141
9142 static inline HOST_WIDE_INT
9143 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9144 {
9145 return (((value + boundary - 1) / boundary) * boundary);
9146 }
9147
9148 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9149 pointer to the declared type for the relevant field variable, or return
9150 `integer_type_node' if the given node turns out to be an
9151 ERROR_MARK node. */
9152
9153 static inline tree
9154 field_type (tree decl)
9155 {
9156 tree type;
9157
9158 if (TREE_CODE (decl) == ERROR_MARK)
9159 return integer_type_node;
9160
9161 type = DECL_BIT_FIELD_TYPE (decl);
9162 if (type == NULL_TREE)
9163 type = TREE_TYPE (decl);
9164
9165 return type;
9166 }
9167
9168 /* Given a pointer to a tree node, return the alignment in bits for
9169 it, or else return BITS_PER_WORD if the node actually turns out to
9170 be an ERROR_MARK node. */
9171
9172 static inline unsigned
9173 simple_type_align_in_bits (tree type)
9174 {
9175 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9176 }
9177
9178 static inline unsigned
9179 simple_decl_align_in_bits (tree decl)
9180 {
9181 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9182 }
9183
9184 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9185 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9186 or return 0 if we are unable to determine what that offset is, either
9187 because the argument turns out to be a pointer to an ERROR_MARK node, or
9188 because the offset is actually variable. (We can't handle the latter case
9189 just yet). */
9190
9191 static HOST_WIDE_INT
9192 field_byte_offset (tree decl)
9193 {
9194 unsigned int type_align_in_bits;
9195 unsigned int decl_align_in_bits;
9196 unsigned HOST_WIDE_INT type_size_in_bits;
9197 HOST_WIDE_INT object_offset_in_bits;
9198 tree type;
9199 tree field_size_tree;
9200 HOST_WIDE_INT bitpos_int;
9201 HOST_WIDE_INT deepest_bitpos;
9202 unsigned HOST_WIDE_INT field_size_in_bits;
9203
9204 if (TREE_CODE (decl) == ERROR_MARK)
9205 return 0;
9206 else if (TREE_CODE (decl) != FIELD_DECL)
9207 abort ();
9208
9209 type = field_type (decl);
9210 field_size_tree = DECL_SIZE (decl);
9211
9212 /* The size could be unspecified if there was an error, or for
9213 a flexible array member. */
9214 if (! field_size_tree)
9215 field_size_tree = bitsize_zero_node;
9216
9217 /* We cannot yet cope with fields whose positions are variable, so
9218 for now, when we see such things, we simply return 0. Someday, we may
9219 be able to handle such cases, but it will be damn difficult. */
9220 if (! host_integerp (bit_position (decl), 0))
9221 return 0;
9222
9223 bitpos_int = int_bit_position (decl);
9224
9225 /* If we don't know the size of the field, pretend it's a full word. */
9226 if (host_integerp (field_size_tree, 1))
9227 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9228 else
9229 field_size_in_bits = BITS_PER_WORD;
9230
9231 type_size_in_bits = simple_type_size_in_bits (type);
9232 type_align_in_bits = simple_type_align_in_bits (type);
9233 decl_align_in_bits = simple_decl_align_in_bits (decl);
9234
9235 /* The GCC front-end doesn't make any attempt to keep track of the starting
9236 bit offset (relative to the start of the containing structure type) of the
9237 hypothetical "containing object" for a bit-field. Thus, when computing
9238 the byte offset value for the start of the "containing object" of a
9239 bit-field, we must deduce this information on our own. This can be rather
9240 tricky to do in some cases. For example, handling the following structure
9241 type definition when compiling for an i386/i486 target (which only aligns
9242 long long's to 32-bit boundaries) can be very tricky:
9243
9244 struct S { int field1; long long field2:31; };
9245
9246 Fortunately, there is a simple rule-of-thumb which can be used in such
9247 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9248 structure shown above. It decides to do this based upon one simple rule
9249 for bit-field allocation. GCC allocates each "containing object" for each
9250 bit-field at the first (i.e. lowest addressed) legitimate alignment
9251 boundary (based upon the required minimum alignment for the declared type
9252 of the field) which it can possibly use, subject to the condition that
9253 there is still enough available space remaining in the containing object
9254 (when allocated at the selected point) to fully accommodate all of the
9255 bits of the bit-field itself.
9256
9257 This simple rule makes it obvious why GCC allocates 8 bytes for each
9258 object of the structure type shown above. When looking for a place to
9259 allocate the "containing object" for `field2', the compiler simply tries
9260 to allocate a 64-bit "containing object" at each successive 32-bit
9261 boundary (starting at zero) until it finds a place to allocate that 64-
9262 bit field such that at least 31 contiguous (and previously unallocated)
9263 bits remain within that selected 64 bit field. (As it turns out, for the
9264 example above, the compiler finds it is OK to allocate the "containing
9265 object" 64-bit field at bit-offset zero within the structure type.)
9266
9267 Here we attempt to work backwards from the limited set of facts we're
9268 given, and we try to deduce from those facts, where GCC must have believed
9269 that the containing object started (within the structure type). The value
9270 we deduce is then used (by the callers of this routine) to generate
9271 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9272 and, in the case of DW_AT_location, regular fields as well). */
9273
9274 /* Figure out the bit-distance from the start of the structure to the
9275 "deepest" bit of the bit-field. */
9276 deepest_bitpos = bitpos_int + field_size_in_bits;
9277
9278 /* This is the tricky part. Use some fancy footwork to deduce where the
9279 lowest addressed bit of the containing object must be. */
9280 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9281
9282 /* Round up to type_align by default. This works best for bitfields. */
9283 object_offset_in_bits += type_align_in_bits - 1;
9284 object_offset_in_bits /= type_align_in_bits;
9285 object_offset_in_bits *= type_align_in_bits;
9286
9287 if (object_offset_in_bits > bitpos_int)
9288 {
9289 /* Sigh, the decl must be packed. */
9290 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9291
9292 /* Round up to decl_align instead. */
9293 object_offset_in_bits += decl_align_in_bits - 1;
9294 object_offset_in_bits /= decl_align_in_bits;
9295 object_offset_in_bits *= decl_align_in_bits;
9296 }
9297
9298 return object_offset_in_bits / BITS_PER_UNIT;
9299 }
9300 \f
9301 /* The following routines define various Dwarf attributes and any data
9302 associated with them. */
9303
9304 /* Add a location description attribute value to a DIE.
9305
9306 This emits location attributes suitable for whole variables and
9307 whole parameters. Note that the location attributes for struct fields are
9308 generated by the routine `data_member_location_attribute' below. */
9309
9310 static inline void
9311 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9312 dw_loc_descr_ref descr)
9313 {
9314 if (descr != 0)
9315 add_AT_loc (die, attr_kind, descr);
9316 }
9317
9318 /* Attach the specialized form of location attribute used for data members of
9319 struct and union types. In the special case of a FIELD_DECL node which
9320 represents a bit-field, the "offset" part of this special location
9321 descriptor must indicate the distance in bytes from the lowest-addressed
9322 byte of the containing struct or union type to the lowest-addressed byte of
9323 the "containing object" for the bit-field. (See the `field_byte_offset'
9324 function above).
9325
9326 For any given bit-field, the "containing object" is a hypothetical object
9327 (of some integral or enum type) within which the given bit-field lives. The
9328 type of this hypothetical "containing object" is always the same as the
9329 declared type of the individual bit-field itself (for GCC anyway... the
9330 DWARF spec doesn't actually mandate this). Note that it is the size (in
9331 bytes) of the hypothetical "containing object" which will be given in the
9332 DW_AT_byte_size attribute for this bit-field. (See the
9333 `byte_size_attribute' function below.) It is also used when calculating the
9334 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9335 function below.) */
9336
9337 static void
9338 add_data_member_location_attribute (dw_die_ref die, tree decl)
9339 {
9340 HOST_WIDE_INT offset;
9341 dw_loc_descr_ref loc_descr = 0;
9342
9343 if (TREE_CODE (decl) == TREE_VEC)
9344 {
9345 /* We're working on the TAG_inheritance for a base class. */
9346 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
9347 {
9348 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9349 aren't at a fixed offset from all (sub)objects of the same
9350 type. We need to extract the appropriate offset from our
9351 vtable. The following dwarf expression means
9352
9353 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9354
9355 This is specific to the V3 ABI, of course. */
9356
9357 dw_loc_descr_ref tmp;
9358
9359 /* Make a copy of the object address. */
9360 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9361 add_loc_descr (&loc_descr, tmp);
9362
9363 /* Extract the vtable address. */
9364 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9365 add_loc_descr (&loc_descr, tmp);
9366
9367 /* Calculate the address of the offset. */
9368 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9369 if (offset >= 0)
9370 abort ();
9371
9372 tmp = int_loc_descriptor (-offset);
9373 add_loc_descr (&loc_descr, tmp);
9374 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9375 add_loc_descr (&loc_descr, tmp);
9376
9377 /* Extract the offset. */
9378 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9379 add_loc_descr (&loc_descr, tmp);
9380
9381 /* Add it to the object address. */
9382 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9383 add_loc_descr (&loc_descr, tmp);
9384 }
9385 else
9386 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9387 }
9388 else
9389 offset = field_byte_offset (decl);
9390
9391 if (! loc_descr)
9392 {
9393 enum dwarf_location_atom op;
9394
9395 /* The DWARF2 standard says that we should assume that the structure
9396 address is already on the stack, so we can specify a structure field
9397 address by using DW_OP_plus_uconst. */
9398
9399 #ifdef MIPS_DEBUGGING_INFO
9400 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9401 operator correctly. It works only if we leave the offset on the
9402 stack. */
9403 op = DW_OP_constu;
9404 #else
9405 op = DW_OP_plus_uconst;
9406 #endif
9407
9408 loc_descr = new_loc_descr (op, offset, 0);
9409 }
9410
9411 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9412 }
9413
9414 /* Writes integer values to dw_vec_const array. */
9415
9416 static void
9417 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9418 {
9419 while (size != 0)
9420 {
9421 *dest++ = val & 0xff;
9422 val >>= 8;
9423 --size;
9424 }
9425 }
9426
9427 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9428
9429 static HOST_WIDE_INT
9430 extract_int (const unsigned char *src, unsigned int size)
9431 {
9432 HOST_WIDE_INT val = 0;
9433
9434 src += size;
9435 while (size != 0)
9436 {
9437 val <<= 8;
9438 val |= *--src & 0xff;
9439 --size;
9440 }
9441 return val;
9442 }
9443
9444 /* Writes floating point values to dw_vec_const array. */
9445
9446 static void
9447 insert_float (rtx rtl, unsigned char *array)
9448 {
9449 REAL_VALUE_TYPE rv;
9450 long val[4];
9451 int i;
9452
9453 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9454 real_to_target (val, &rv, GET_MODE (rtl));
9455
9456 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9457 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9458 {
9459 insert_int (val[i], 4, array);
9460 array += 4;
9461 }
9462 }
9463
9464 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9465 does not have a "location" either in memory or in a register. These
9466 things can arise in GNU C when a constant is passed as an actual parameter
9467 to an inlined function. They can also arise in C++ where declared
9468 constants do not necessarily get memory "homes". */
9469
9470 static void
9471 add_const_value_attribute (dw_die_ref die, rtx rtl)
9472 {
9473 switch (GET_CODE (rtl))
9474 {
9475 case CONST_INT:
9476 {
9477 HOST_WIDE_INT val = INTVAL (rtl);
9478
9479 if (val < 0)
9480 add_AT_int (die, DW_AT_const_value, val);
9481 else
9482 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9483 }
9484 break;
9485
9486 case CONST_DOUBLE:
9487 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9488 floating-point constant. A CONST_DOUBLE is used whenever the
9489 constant requires more than one word in order to be adequately
9490 represented. We output CONST_DOUBLEs as blocks. */
9491 {
9492 enum machine_mode mode = GET_MODE (rtl);
9493
9494 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9495 {
9496 unsigned int length = GET_MODE_SIZE (mode);
9497 unsigned char *array = ggc_alloc (length);
9498
9499 insert_float (rtl, array);
9500 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9501 }
9502 else
9503 {
9504 /* ??? We really should be using HOST_WIDE_INT throughout. */
9505 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9506 abort ();
9507
9508 add_AT_long_long (die, DW_AT_const_value,
9509 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9510 }
9511 }
9512 break;
9513
9514 case CONST_VECTOR:
9515 {
9516 enum machine_mode mode = GET_MODE (rtl);
9517 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9518 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9519 unsigned char *array = ggc_alloc (length * elt_size);
9520 unsigned int i;
9521 unsigned char *p;
9522
9523 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
9524 {
9525 for (i = 0, p = array; i < length; i++, p += elt_size)
9526 {
9527 rtx elt = CONST_VECTOR_ELT (rtl, i);
9528 HOST_WIDE_INT lo, hi;
9529 if (GET_CODE (elt) == CONST_INT)
9530 {
9531 lo = INTVAL (elt);
9532 hi = -(lo < 0);
9533 }
9534 else if (GET_CODE (elt) == CONST_DOUBLE)
9535 {
9536 lo = CONST_DOUBLE_LOW (elt);
9537 hi = CONST_DOUBLE_HIGH (elt);
9538 }
9539 else
9540 abort ();
9541
9542 if (elt_size <= sizeof (HOST_WIDE_INT))
9543 insert_int (lo, elt_size, p);
9544 else if (elt_size == 2 * sizeof (HOST_WIDE_INT))
9545 {
9546 unsigned char *p0 = p;
9547 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9548
9549 if (WORDS_BIG_ENDIAN)
9550 {
9551 p0 = p1;
9552 p1 = p;
9553 }
9554 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9555 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9556 }
9557 else
9558 abort ();
9559 }
9560 }
9561 else if (GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
9562 {
9563 for (i = 0, p = array; i < length; i++, p += elt_size)
9564 {
9565 rtx elt = CONST_VECTOR_ELT (rtl, i);
9566 insert_float (elt, p);
9567 }
9568 }
9569 else
9570 abort ();
9571
9572 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9573 }
9574 break;
9575
9576 case CONST_STRING:
9577 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9578 break;
9579
9580 case SYMBOL_REF:
9581 case LABEL_REF:
9582 case CONST:
9583 add_AT_addr (die, DW_AT_const_value, rtl);
9584 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9585 break;
9586
9587 case PLUS:
9588 /* In cases where an inlined instance of an inline function is passed
9589 the address of an `auto' variable (which is local to the caller) we
9590 can get a situation where the DECL_RTL of the artificial local
9591 variable (for the inlining) which acts as a stand-in for the
9592 corresponding formal parameter (of the inline function) will look
9593 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9594 exactly a compile-time constant expression, but it isn't the address
9595 of the (artificial) local variable either. Rather, it represents the
9596 *value* which the artificial local variable always has during its
9597 lifetime. We currently have no way to represent such quasi-constant
9598 values in Dwarf, so for now we just punt and generate nothing. */
9599 break;
9600
9601 default:
9602 /* No other kinds of rtx should be possible here. */
9603 abort ();
9604 }
9605
9606 }
9607
9608 static rtx
9609 rtl_for_decl_location (tree decl)
9610 {
9611 rtx rtl;
9612
9613 /* Here we have to decide where we are going to say the parameter "lives"
9614 (as far as the debugger is concerned). We only have a couple of
9615 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9616
9617 DECL_RTL normally indicates where the parameter lives during most of the
9618 activation of the function. If optimization is enabled however, this
9619 could be either NULL or else a pseudo-reg. Both of those cases indicate
9620 that the parameter doesn't really live anywhere (as far as the code
9621 generation parts of GCC are concerned) during most of the function's
9622 activation. That will happen (for example) if the parameter is never
9623 referenced within the function.
9624
9625 We could just generate a location descriptor here for all non-NULL
9626 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9627 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9628 where DECL_RTL is NULL or is a pseudo-reg.
9629
9630 Note however that we can only get away with using DECL_INCOMING_RTL as
9631 a backup substitute for DECL_RTL in certain limited cases. In cases
9632 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9633 we can be sure that the parameter was passed using the same type as it is
9634 declared to have within the function, and that its DECL_INCOMING_RTL
9635 points us to a place where a value of that type is passed.
9636
9637 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9638 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9639 because in these cases DECL_INCOMING_RTL points us to a value of some
9640 type which is *different* from the type of the parameter itself. Thus,
9641 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9642 such cases, the debugger would end up (for example) trying to fetch a
9643 `float' from a place which actually contains the first part of a
9644 `double'. That would lead to really incorrect and confusing
9645 output at debug-time.
9646
9647 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9648 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9649 are a couple of exceptions however. On little-endian machines we can
9650 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9651 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9652 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9653 when (on a little-endian machine) a non-prototyped function has a
9654 parameter declared to be of type `short' or `char'. In such cases,
9655 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9656 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9657 passed `int' value. If the debugger then uses that address to fetch
9658 a `short' or a `char' (on a little-endian machine) the result will be
9659 the correct data, so we allow for such exceptional cases below.
9660
9661 Note that our goal here is to describe the place where the given formal
9662 parameter lives during most of the function's activation (i.e. between the
9663 end of the prologue and the start of the epilogue). We'll do that as best
9664 as we can. Note however that if the given formal parameter is modified
9665 sometime during the execution of the function, then a stack backtrace (at
9666 debug-time) will show the function as having been called with the *new*
9667 value rather than the value which was originally passed in. This happens
9668 rarely enough that it is not a major problem, but it *is* a problem, and
9669 I'd like to fix it.
9670
9671 A future version of dwarf2out.c may generate two additional attributes for
9672 any given DW_TAG_formal_parameter DIE which will describe the "passed
9673 type" and the "passed location" for the given formal parameter in addition
9674 to the attributes we now generate to indicate the "declared type" and the
9675 "active location" for each parameter. This additional set of attributes
9676 could be used by debuggers for stack backtraces. Separately, note that
9677 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9678 This happens (for example) for inlined-instances of inline function formal
9679 parameters which are never referenced. This really shouldn't be
9680 happening. All PARM_DECL nodes should get valid non-NULL
9681 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9682 values for inlined instances of inline function parameters, so when we see
9683 such cases, we are just out-of-luck for the time being (until integrate.c
9684 gets fixed). */
9685
9686 /* Use DECL_RTL as the "location" unless we find something better. */
9687 rtl = DECL_RTL_IF_SET (decl);
9688
9689 /* When generating abstract instances, ignore everything except
9690 constants, symbols living in memory, and symbols living in
9691 fixed registers. */
9692 if (! reload_completed)
9693 {
9694 if (rtl
9695 && (CONSTANT_P (rtl)
9696 || (GET_CODE (rtl) == MEM
9697 && CONSTANT_P (XEXP (rtl, 0)))
9698 || (GET_CODE (rtl) == REG
9699 && TREE_CODE (decl) == VAR_DECL
9700 && TREE_STATIC (decl))))
9701 {
9702 rtl = targetm.delegitimize_address (rtl);
9703 return rtl;
9704 }
9705 rtl = NULL_RTX;
9706 }
9707 else if (TREE_CODE (decl) == PARM_DECL)
9708 {
9709 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9710 {
9711 tree declared_type = type_main_variant (TREE_TYPE (decl));
9712 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9713
9714 /* This decl represents a formal parameter which was optimized out.
9715 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9716 all cases where (rtl == NULL_RTX) just below. */
9717 if (declared_type == passed_type)
9718 rtl = DECL_INCOMING_RTL (decl);
9719 else if (! BYTES_BIG_ENDIAN
9720 && TREE_CODE (declared_type) == INTEGER_TYPE
9721 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9722 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9723 rtl = DECL_INCOMING_RTL (decl);
9724 }
9725
9726 /* If the parm was passed in registers, but lives on the stack, then
9727 make a big endian correction if the mode of the type of the
9728 parameter is not the same as the mode of the rtl. */
9729 /* ??? This is the same series of checks that are made in dbxout.c before
9730 we reach the big endian correction code there. It isn't clear if all
9731 of these checks are necessary here, but keeping them all is the safe
9732 thing to do. */
9733 else if (GET_CODE (rtl) == MEM
9734 && XEXP (rtl, 0) != const0_rtx
9735 && ! CONSTANT_P (XEXP (rtl, 0))
9736 /* Not passed in memory. */
9737 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
9738 /* Not passed by invisible reference. */
9739 && (GET_CODE (XEXP (rtl, 0)) != REG
9740 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9741 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9742 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9743 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9744 #endif
9745 )
9746 /* Big endian correction check. */
9747 && BYTES_BIG_ENDIAN
9748 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9749 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9750 < UNITS_PER_WORD))
9751 {
9752 int offset = (UNITS_PER_WORD
9753 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9754
9755 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9756 plus_constant (XEXP (rtl, 0), offset));
9757 }
9758 }
9759 else if (TREE_CODE (decl) == VAR_DECL
9760 && GET_CODE (rtl) == MEM
9761 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
9762 && BYTES_BIG_ENDIAN)
9763 {
9764 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
9765 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
9766
9767 /* If a variable is declared "register" yet is smaller than
9768 a register, then if we store the variable to memory, it
9769 looks like we're storing a register-sized value, when in
9770 fact we are not. We need to adjust the offset of the
9771 storage location to reflect the actual value's bytes,
9772 else gdb will not be able to display it. */
9773 if (rsize > dsize)
9774 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9775 plus_constant (XEXP (rtl, 0), rsize-dsize));
9776 }
9777
9778 if (rtl != NULL_RTX)
9779 {
9780 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9781 #ifdef LEAF_REG_REMAP
9782 if (current_function_uses_only_leaf_regs)
9783 leaf_renumber_regs_insn (rtl);
9784 #endif
9785 }
9786
9787 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9788 and will have been substituted directly into all expressions that use it.
9789 C does not have such a concept, but C++ and other languages do. */
9790 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9791 {
9792 /* If a variable is initialized with a string constant without embedded
9793 zeros, build CONST_STRING. */
9794 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9795 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9796 {
9797 tree arrtype = TREE_TYPE (decl);
9798 tree enttype = TREE_TYPE (arrtype);
9799 tree domain = TYPE_DOMAIN (arrtype);
9800 tree init = DECL_INITIAL (decl);
9801 enum machine_mode mode = TYPE_MODE (enttype);
9802
9803 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9804 && domain
9805 && integer_zerop (TYPE_MIN_VALUE (domain))
9806 && compare_tree_int (TYPE_MAX_VALUE (domain),
9807 TREE_STRING_LENGTH (init) - 1) == 0
9808 && ((size_t) TREE_STRING_LENGTH (init)
9809 == strlen (TREE_STRING_POINTER (init)) + 1))
9810 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9811 }
9812 /* If the initializer is something that we know will expand into an
9813 immediate RTL constant, expand it now. Expanding anything else
9814 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9815 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9816 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9817 {
9818 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9819 EXPAND_INITIALIZER);
9820 /* If expand_expr returns a MEM, it wasn't immediate. */
9821 if (rtl && GET_CODE (rtl) == MEM)
9822 abort ();
9823 }
9824 }
9825
9826 if (rtl)
9827 rtl = targetm.delegitimize_address (rtl);
9828
9829 /* If we don't look past the constant pool, we risk emitting a
9830 reference to a constant pool entry that isn't referenced from
9831 code, and thus is not emitted. */
9832 if (rtl)
9833 rtl = avoid_constant_pool_reference (rtl);
9834
9835 return rtl;
9836 }
9837
9838 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
9839 data attribute for a variable or a parameter. We generate the
9840 DW_AT_const_value attribute only in those cases where the given variable
9841 or parameter does not have a true "location" either in memory or in a
9842 register. This can happen (for example) when a constant is passed as an
9843 actual argument in a call to an inline function. (It's possible that
9844 these things can crop up in other ways also.) Note that one type of
9845 constant value which can be passed into an inlined function is a constant
9846 pointer. This can happen for example if an actual argument in an inlined
9847 function call evaluates to a compile-time constant address. */
9848
9849 static void
9850 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
9851 enum dwarf_attribute attr)
9852 {
9853 rtx rtl;
9854 dw_loc_descr_ref descr;
9855 var_loc_list *loc_list;
9856
9857 if (TREE_CODE (decl) == ERROR_MARK)
9858 return;
9859 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
9860 abort ();
9861
9862 /* See if we possibly have multiple locations for this variable. */
9863 loc_list = lookup_decl_loc (decl);
9864
9865 /* If it truly has multiple locations, the first and last node will
9866 differ. */
9867 if (loc_list && loc_list->first != loc_list->last)
9868 {
9869 const char *secname;
9870 const char *endname;
9871 dw_loc_list_ref list;
9872 rtx varloc;
9873 struct var_loc_node *node;
9874
9875 /* We need to figure out what section we should use as the base
9876 for the address ranges where a given location is valid.
9877 1. If this particular DECL has a section associated with it,
9878 use that.
9879 2. If this function has a section associated with it, use
9880 that.
9881 3. Otherwise, use the text section.
9882 XXX: If you split a variable across multiple sections, this
9883 won't notice. */
9884
9885 if (DECL_SECTION_NAME (decl))
9886 {
9887 tree sectree = DECL_SECTION_NAME (decl);
9888 secname = TREE_STRING_POINTER (sectree);
9889 }
9890 else if (current_function_decl
9891 && DECL_SECTION_NAME (current_function_decl))
9892 {
9893 tree sectree = DECL_SECTION_NAME (current_function_decl);
9894 secname = TREE_STRING_POINTER (sectree);
9895 }
9896 else
9897 secname = text_section_label;
9898
9899 /* Now that we know what section we are using for a base,
9900 actually construct the list of locations.
9901 The first location information is what is passed to the
9902 function that creates the location list, and the remaining
9903 locations just get added on to that list.
9904 Note that we only know the start address for a location
9905 (IE location changes), so to build the range, we use
9906 the range [current location start, next location start].
9907 This means we have to special case the last node, and generate
9908 a range of [last location start, end of function label]. */
9909
9910 node = loc_list->first;
9911 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
9912 list = new_loc_list (loc_descriptor (varloc, attr != DW_AT_frame_base),
9913 node->label, node->next->label, secname, 1);
9914 node = node->next;
9915
9916 for (; node->next; node = node->next)
9917 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
9918 {
9919 /* The variable has a location between NODE->LABEL and
9920 NODE->NEXT->LABEL. */
9921 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
9922 add_loc_descr_to_loc_list (&list,
9923 loc_descriptor (varloc,
9924 attr != DW_AT_frame_base),
9925 node->label, node->next->label, secname);
9926 }
9927
9928 /* If the variable has a location at the last label
9929 it keeps its location until the end of function. */
9930 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
9931 {
9932 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
9933
9934 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
9935 if (!current_function_decl)
9936 endname = text_end_label;
9937 else
9938 {
9939 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
9940 current_function_funcdef_no);
9941 endname = ggc_strdup (label_id);
9942 }
9943 add_loc_descr_to_loc_list (&list,
9944 loc_descriptor (varloc,
9945 attr != DW_AT_frame_base),
9946 node->label, endname, secname);
9947 }
9948
9949 /* Finally, add the location list to the DIE, and we are done. */
9950 add_AT_loc_list (die, attr, list);
9951 return;
9952 }
9953
9954 rtl = rtl_for_decl_location (decl);
9955 if (rtl == NULL_RTX)
9956 return;
9957
9958 switch (GET_CODE (rtl))
9959 {
9960 case ADDRESSOF:
9961 /* The address of a variable that was optimized away;
9962 don't emit anything. */
9963 break;
9964
9965 case CONST_INT:
9966 case CONST_DOUBLE:
9967 case CONST_VECTOR:
9968 case CONST_STRING:
9969 case SYMBOL_REF:
9970 case LABEL_REF:
9971 case CONST:
9972 case PLUS:
9973 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9974 add_const_value_attribute (die, rtl);
9975 break;
9976
9977 case MEM:
9978 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
9979 {
9980 /* Need loc_descriptor_from_tree since that's where we know
9981 how to handle TLS variables. Want the object's address
9982 since the top-level DW_AT_location assumes such. See
9983 the confusion in loc_descriptor for reference. */
9984 descr = loc_descriptor_from_tree (decl, 1);
9985 }
9986 else
9987 {
9988 case REG:
9989 case SUBREG:
9990 case CONCAT:
9991 descr = loc_descriptor (rtl, true);
9992 }
9993 add_AT_location_description (die, attr, descr);
9994 break;
9995
9996 case PARALLEL:
9997 {
9998 rtvec par_elems = XVEC (rtl, 0);
9999 int num_elem = GET_NUM_ELEM (par_elems);
10000 enum machine_mode mode;
10001 int i;
10002
10003 /* Create the first one, so we have something to add to. */
10004 descr = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0), true);
10005 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
10006 add_loc_descr (&descr,
10007 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
10008 for (i = 1; i < num_elem; i++)
10009 {
10010 dw_loc_descr_ref temp;
10011
10012 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0), true);
10013 add_loc_descr (&descr, temp);
10014 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
10015 add_loc_descr (&descr,
10016 new_loc_descr (DW_OP_piece,
10017 GET_MODE_SIZE (mode), 0));
10018 }
10019 }
10020 add_AT_location_description (die, DW_AT_location, descr);
10021 break;
10022
10023 default:
10024 abort ();
10025 }
10026 }
10027
10028 /* If we don't have a copy of this variable in memory for some reason (such
10029 as a C++ member constant that doesn't have an out-of-line definition),
10030 we should tell the debugger about the constant value. */
10031
10032 static void
10033 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10034 {
10035 tree init = DECL_INITIAL (decl);
10036 tree type = TREE_TYPE (decl);
10037
10038 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
10039 && initializer_constant_valid_p (init, type) == null_pointer_node)
10040 /* OK */;
10041 else
10042 return;
10043
10044 switch (TREE_CODE (type))
10045 {
10046 case INTEGER_TYPE:
10047 if (host_integerp (init, 0))
10048 add_AT_unsigned (var_die, DW_AT_const_value,
10049 tree_low_cst (init, 0));
10050 else
10051 add_AT_long_long (var_die, DW_AT_const_value,
10052 TREE_INT_CST_HIGH (init),
10053 TREE_INT_CST_LOW (init));
10054 break;
10055
10056 default:;
10057 }
10058 }
10059
10060 /* Generate a DW_AT_name attribute given some string value to be included as
10061 the value of the attribute. */
10062
10063 static void
10064 add_name_attribute (dw_die_ref die, const char *name_string)
10065 {
10066 if (name_string != NULL && *name_string != 0)
10067 {
10068 if (demangle_name_func)
10069 name_string = (*demangle_name_func) (name_string);
10070
10071 add_AT_string (die, DW_AT_name, name_string);
10072 }
10073 }
10074
10075 /* Generate a DW_AT_comp_dir attribute for DIE. */
10076
10077 static void
10078 add_comp_dir_attribute (dw_die_ref die)
10079 {
10080 const char *wd = get_src_pwd ();
10081 if (wd != NULL)
10082 add_AT_string (die, DW_AT_comp_dir, wd);
10083 }
10084
10085 /* Given a tree node describing an array bound (either lower or upper) output
10086 a representation for that bound. */
10087
10088 static void
10089 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10090 {
10091 switch (TREE_CODE (bound))
10092 {
10093 case ERROR_MARK:
10094 return;
10095
10096 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10097 case INTEGER_CST:
10098 if (! host_integerp (bound, 0)
10099 || (bound_attr == DW_AT_lower_bound
10100 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10101 || (is_fortran () && integer_onep (bound)))))
10102 /* Use the default. */
10103 ;
10104 else
10105 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10106 break;
10107
10108 case CONVERT_EXPR:
10109 case NOP_EXPR:
10110 case NON_LVALUE_EXPR:
10111 case VIEW_CONVERT_EXPR:
10112 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10113 break;
10114
10115 case SAVE_EXPR:
10116 /* If optimization is turned on, the SAVE_EXPRs that describe how to
10117 access the upper bound values may be bogus. If they refer to a
10118 register, they may only describe how to get at these values at the
10119 points in the generated code right after they have just been
10120 computed. Worse yet, in the typical case, the upper bound values
10121 will not even *be* computed in the optimized code (though the
10122 number of elements will), so these SAVE_EXPRs are entirely
10123 bogus. In order to compensate for this fact, we check here to see
10124 if optimization is enabled, and if so, we don't add an attribute
10125 for the (unknown and unknowable) upper bound. This should not
10126 cause too much trouble for existing (stupid?) debuggers because
10127 they have to deal with empty upper bounds location descriptions
10128 anyway in order to be able to deal with incomplete array types.
10129 Of course an intelligent debugger (GDB?) should be able to
10130 comprehend that a missing upper bound specification in an array
10131 type used for a storage class `auto' local array variable
10132 indicates that the upper bound is both unknown (at compile- time)
10133 and unknowable (at run-time) due to optimization.
10134
10135 We assume that a MEM rtx is safe because gcc wouldn't put the
10136 value there unless it was going to be used repeatedly in the
10137 function, i.e. for cleanups. */
10138 if (SAVE_EXPR_RTL (bound)
10139 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
10140 {
10141 dw_die_ref ctx = lookup_decl_die (current_function_decl);
10142 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
10143 rtx loc = SAVE_EXPR_RTL (bound);
10144
10145 /* If the RTL for the SAVE_EXPR is memory, handle the case where
10146 it references an outer function's frame. */
10147 if (GET_CODE (loc) == MEM)
10148 {
10149 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
10150
10151 if (XEXP (loc, 0) != new_addr)
10152 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
10153 }
10154
10155 add_AT_flag (decl_die, DW_AT_artificial, 1);
10156 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10157 add_AT_location_description (decl_die, DW_AT_location,
10158 loc_descriptor (loc, true));
10159 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10160 }
10161
10162 /* Else leave out the attribute. */
10163 break;
10164
10165 case VAR_DECL:
10166 case PARM_DECL:
10167 {
10168 dw_die_ref decl_die = lookup_decl_die (bound);
10169
10170 /* ??? Can this happen, or should the variable have been bound
10171 first? Probably it can, since I imagine that we try to create
10172 the types of parameters in the order in which they exist in
10173 the list, and won't have created a forward reference to a
10174 later parameter. */
10175 if (decl_die != NULL)
10176 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10177 break;
10178 }
10179
10180 default:
10181 {
10182 /* Otherwise try to create a stack operation procedure to
10183 evaluate the value of the array bound. */
10184
10185 dw_die_ref ctx, decl_die;
10186 dw_loc_descr_ref loc;
10187
10188 loc = loc_descriptor_from_tree (bound, 0);
10189 if (loc == NULL)
10190 break;
10191
10192 if (current_function_decl == 0)
10193 ctx = comp_unit_die;
10194 else
10195 ctx = lookup_decl_die (current_function_decl);
10196
10197 /* If we weren't able to find a context, it's most likely the case
10198 that we are processing the return type of the function. So
10199 make a SAVE_EXPR to point to it and have the limbo DIE code
10200 find the proper die. The save_expr function doesn't always
10201 make a SAVE_EXPR, so do it ourselves. */
10202 if (ctx == 0)
10203 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
10204 current_function_decl, NULL_TREE);
10205
10206 decl_die = new_die (DW_TAG_variable, ctx, bound);
10207 add_AT_flag (decl_die, DW_AT_artificial, 1);
10208 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10209 add_AT_loc (decl_die, DW_AT_location, loc);
10210
10211 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10212 break;
10213 }
10214 }
10215 }
10216
10217 /* Note that the block of subscript information for an array type also
10218 includes information about the element type of type given array type. */
10219
10220 static void
10221 add_subscript_info (dw_die_ref type_die, tree type)
10222 {
10223 #ifndef MIPS_DEBUGGING_INFO
10224 unsigned dimension_number;
10225 #endif
10226 tree lower, upper;
10227 dw_die_ref subrange_die;
10228
10229 /* The GNU compilers represent multidimensional array types as sequences of
10230 one dimensional array types whose element types are themselves array
10231 types. Here we squish that down, so that each multidimensional array
10232 type gets only one array_type DIE in the Dwarf debugging info. The draft
10233 Dwarf specification say that we are allowed to do this kind of
10234 compression in C (because there is no difference between an array or
10235 arrays and a multidimensional array in C) but for other source languages
10236 (e.g. Ada) we probably shouldn't do this. */
10237
10238 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10239 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10240 We work around this by disabling this feature. See also
10241 gen_array_type_die. */
10242 #ifndef MIPS_DEBUGGING_INFO
10243 for (dimension_number = 0;
10244 TREE_CODE (type) == ARRAY_TYPE;
10245 type = TREE_TYPE (type), dimension_number++)
10246 #endif
10247 {
10248 tree domain = TYPE_DOMAIN (type);
10249
10250 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10251 and (in GNU C only) variable bounds. Handle all three forms
10252 here. */
10253 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10254 if (domain)
10255 {
10256 /* We have an array type with specified bounds. */
10257 lower = TYPE_MIN_VALUE (domain);
10258 upper = TYPE_MAX_VALUE (domain);
10259
10260 /* Define the index type. */
10261 if (TREE_TYPE (domain))
10262 {
10263 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10264 TREE_TYPE field. We can't emit debug info for this
10265 because it is an unnamed integral type. */
10266 if (TREE_CODE (domain) == INTEGER_TYPE
10267 && TYPE_NAME (domain) == NULL_TREE
10268 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10269 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10270 ;
10271 else
10272 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10273 type_die);
10274 }
10275
10276 /* ??? If upper is NULL, the array has unspecified length,
10277 but it does have a lower bound. This happens with Fortran
10278 dimension arr(N:*)
10279 Since the debugger is definitely going to need to know N
10280 to produce useful results, go ahead and output the lower
10281 bound solo, and hope the debugger can cope. */
10282
10283 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10284 if (upper)
10285 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10286 }
10287
10288 /* Otherwise we have an array type with an unspecified length. The
10289 DWARF-2 spec does not say how to handle this; let's just leave out the
10290 bounds. */
10291 }
10292 }
10293
10294 static void
10295 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10296 {
10297 unsigned size;
10298
10299 switch (TREE_CODE (tree_node))
10300 {
10301 case ERROR_MARK:
10302 size = 0;
10303 break;
10304 case ENUMERAL_TYPE:
10305 case RECORD_TYPE:
10306 case UNION_TYPE:
10307 case QUAL_UNION_TYPE:
10308 size = int_size_in_bytes (tree_node);
10309 break;
10310 case FIELD_DECL:
10311 /* For a data member of a struct or union, the DW_AT_byte_size is
10312 generally given as the number of bytes normally allocated for an
10313 object of the *declared* type of the member itself. This is true
10314 even for bit-fields. */
10315 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10316 break;
10317 default:
10318 abort ();
10319 }
10320
10321 /* Note that `size' might be -1 when we get to this point. If it is, that
10322 indicates that the byte size of the entity in question is variable. We
10323 have no good way of expressing this fact in Dwarf at the present time,
10324 so just let the -1 pass on through. */
10325 add_AT_unsigned (die, DW_AT_byte_size, size);
10326 }
10327
10328 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10329 which specifies the distance in bits from the highest order bit of the
10330 "containing object" for the bit-field to the highest order bit of the
10331 bit-field itself.
10332
10333 For any given bit-field, the "containing object" is a hypothetical object
10334 (of some integral or enum type) within which the given bit-field lives. The
10335 type of this hypothetical "containing object" is always the same as the
10336 declared type of the individual bit-field itself. The determination of the
10337 exact location of the "containing object" for a bit-field is rather
10338 complicated. It's handled by the `field_byte_offset' function (above).
10339
10340 Note that it is the size (in bytes) of the hypothetical "containing object"
10341 which will be given in the DW_AT_byte_size attribute for this bit-field.
10342 (See `byte_size_attribute' above). */
10343
10344 static inline void
10345 add_bit_offset_attribute (dw_die_ref die, tree decl)
10346 {
10347 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10348 tree type = DECL_BIT_FIELD_TYPE (decl);
10349 HOST_WIDE_INT bitpos_int;
10350 HOST_WIDE_INT highest_order_object_bit_offset;
10351 HOST_WIDE_INT highest_order_field_bit_offset;
10352 HOST_WIDE_INT unsigned bit_offset;
10353
10354 /* Must be a field and a bit field. */
10355 if (!type
10356 || TREE_CODE (decl) != FIELD_DECL)
10357 abort ();
10358
10359 /* We can't yet handle bit-fields whose offsets are variable, so if we
10360 encounter such things, just return without generating any attribute
10361 whatsoever. Likewise for variable or too large size. */
10362 if (! host_integerp (bit_position (decl), 0)
10363 || ! host_integerp (DECL_SIZE (decl), 1))
10364 return;
10365
10366 bitpos_int = int_bit_position (decl);
10367
10368 /* Note that the bit offset is always the distance (in bits) from the
10369 highest-order bit of the "containing object" to the highest-order bit of
10370 the bit-field itself. Since the "high-order end" of any object or field
10371 is different on big-endian and little-endian machines, the computation
10372 below must take account of these differences. */
10373 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10374 highest_order_field_bit_offset = bitpos_int;
10375
10376 if (! BYTES_BIG_ENDIAN)
10377 {
10378 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10379 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10380 }
10381
10382 bit_offset
10383 = (! BYTES_BIG_ENDIAN
10384 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10385 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10386
10387 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10388 }
10389
10390 /* For a FIELD_DECL node which represents a bit field, output an attribute
10391 which specifies the length in bits of the given field. */
10392
10393 static inline void
10394 add_bit_size_attribute (dw_die_ref die, tree decl)
10395 {
10396 /* Must be a field and a bit field. */
10397 if (TREE_CODE (decl) != FIELD_DECL
10398 || ! DECL_BIT_FIELD_TYPE (decl))
10399 abort ();
10400
10401 if (host_integerp (DECL_SIZE (decl), 1))
10402 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10403 }
10404
10405 /* If the compiled language is ANSI C, then add a 'prototyped'
10406 attribute, if arg types are given for the parameters of a function. */
10407
10408 static inline void
10409 add_prototyped_attribute (dw_die_ref die, tree func_type)
10410 {
10411 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10412 && TYPE_ARG_TYPES (func_type) != NULL)
10413 add_AT_flag (die, DW_AT_prototyped, 1);
10414 }
10415
10416 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10417 by looking in either the type declaration or object declaration
10418 equate table. */
10419
10420 static inline void
10421 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10422 {
10423 dw_die_ref origin_die = NULL;
10424
10425 if (TREE_CODE (origin) != FUNCTION_DECL)
10426 {
10427 /* We may have gotten separated from the block for the inlined
10428 function, if we're in an exception handler or some such; make
10429 sure that the abstract function has been written out.
10430
10431 Doing this for nested functions is wrong, however; functions are
10432 distinct units, and our context might not even be inline. */
10433 tree fn = origin;
10434
10435 if (TYPE_P (fn))
10436 fn = TYPE_STUB_DECL (fn);
10437
10438 fn = decl_function_context (fn);
10439 if (fn)
10440 dwarf2out_abstract_function (fn);
10441 }
10442
10443 if (DECL_P (origin))
10444 origin_die = lookup_decl_die (origin);
10445 else if (TYPE_P (origin))
10446 origin_die = lookup_type_die (origin);
10447
10448 if (origin_die == NULL)
10449 abort ();
10450
10451 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10452 }
10453
10454 /* We do not currently support the pure_virtual attribute. */
10455
10456 static inline void
10457 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10458 {
10459 if (DECL_VINDEX (func_decl))
10460 {
10461 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10462
10463 if (host_integerp (DECL_VINDEX (func_decl), 0))
10464 add_AT_loc (die, DW_AT_vtable_elem_location,
10465 new_loc_descr (DW_OP_constu,
10466 tree_low_cst (DECL_VINDEX (func_decl), 0),
10467 0));
10468
10469 /* GNU extension: Record what type this method came from originally. */
10470 if (debug_info_level > DINFO_LEVEL_TERSE)
10471 add_AT_die_ref (die, DW_AT_containing_type,
10472 lookup_type_die (DECL_CONTEXT (func_decl)));
10473 }
10474 }
10475 \f
10476 /* Add source coordinate attributes for the given decl. */
10477
10478 static void
10479 add_src_coords_attributes (dw_die_ref die, tree decl)
10480 {
10481 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10482
10483 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10484 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10485 }
10486
10487 /* Add a DW_AT_name attribute and source coordinate attribute for the
10488 given decl, but only if it actually has a name. */
10489
10490 static void
10491 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10492 {
10493 tree decl_name;
10494
10495 decl_name = DECL_NAME (decl);
10496 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10497 {
10498 add_name_attribute (die, dwarf2_name (decl, 0));
10499 if (! DECL_ARTIFICIAL (decl))
10500 add_src_coords_attributes (die, decl);
10501
10502 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10503 && TREE_PUBLIC (decl)
10504 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10505 && !DECL_ABSTRACT (decl))
10506 add_AT_string (die, DW_AT_MIPS_linkage_name,
10507 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10508 }
10509
10510 #ifdef VMS_DEBUGGING_INFO
10511 /* Get the function's name, as described by its RTL. This may be different
10512 from the DECL_NAME name used in the source file. */
10513 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10514 {
10515 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10516 XEXP (DECL_RTL (decl), 0));
10517 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10518 }
10519 #endif
10520 }
10521
10522 /* Push a new declaration scope. */
10523
10524 static void
10525 push_decl_scope (tree scope)
10526 {
10527 VARRAY_PUSH_TREE (decl_scope_table, scope);
10528 }
10529
10530 /* Pop a declaration scope. */
10531
10532 static inline void
10533 pop_decl_scope (void)
10534 {
10535 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
10536 abort ();
10537
10538 VARRAY_POP (decl_scope_table);
10539 }
10540
10541 /* Return the DIE for the scope that immediately contains this type.
10542 Non-named types get global scope. Named types nested in other
10543 types get their containing scope if it's open, or global scope
10544 otherwise. All other types (i.e. function-local named types) get
10545 the current active scope. */
10546
10547 static dw_die_ref
10548 scope_die_for (tree t, dw_die_ref context_die)
10549 {
10550 dw_die_ref scope_die = NULL;
10551 tree containing_scope;
10552 int i;
10553
10554 /* Non-types always go in the current scope. */
10555 if (! TYPE_P (t))
10556 abort ();
10557
10558 containing_scope = TYPE_CONTEXT (t);
10559
10560 /* Use the containing namespace if it was passed in (for a declaration). */
10561 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10562 {
10563 if (context_die == lookup_decl_die (containing_scope))
10564 /* OK */;
10565 else
10566 containing_scope = NULL_TREE;
10567 }
10568
10569 /* Ignore function type "scopes" from the C frontend. They mean that
10570 a tagged type is local to a parmlist of a function declarator, but
10571 that isn't useful to DWARF. */
10572 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10573 containing_scope = NULL_TREE;
10574
10575 if (containing_scope == NULL_TREE)
10576 scope_die = comp_unit_die;
10577 else if (TYPE_P (containing_scope))
10578 {
10579 /* For types, we can just look up the appropriate DIE. But
10580 first we check to see if we're in the middle of emitting it
10581 so we know where the new DIE should go. */
10582 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10583 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10584 break;
10585
10586 if (i < 0)
10587 {
10588 if (debug_info_level > DINFO_LEVEL_TERSE
10589 && !TREE_ASM_WRITTEN (containing_scope))
10590 abort ();
10591
10592 /* If none of the current dies are suitable, we get file scope. */
10593 scope_die = comp_unit_die;
10594 }
10595 else
10596 scope_die = lookup_type_die (containing_scope);
10597 }
10598 else
10599 scope_die = context_die;
10600
10601 return scope_die;
10602 }
10603
10604 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10605
10606 static inline int
10607 local_scope_p (dw_die_ref context_die)
10608 {
10609 for (; context_die; context_die = context_die->die_parent)
10610 if (context_die->die_tag == DW_TAG_inlined_subroutine
10611 || context_die->die_tag == DW_TAG_subprogram)
10612 return 1;
10613
10614 return 0;
10615 }
10616
10617 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10618 whether or not to treat a DIE in this context as a declaration. */
10619
10620 static inline int
10621 class_or_namespace_scope_p (dw_die_ref context_die)
10622 {
10623 return (context_die
10624 && (context_die->die_tag == DW_TAG_structure_type
10625 || context_die->die_tag == DW_TAG_union_type
10626 || context_die->die_tag == DW_TAG_namespace));
10627 }
10628
10629 /* Many forms of DIEs require a "type description" attribute. This
10630 routine locates the proper "type descriptor" die for the type given
10631 by 'type', and adds a DW_AT_type attribute below the given die. */
10632
10633 static void
10634 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10635 int decl_volatile, dw_die_ref context_die)
10636 {
10637 enum tree_code code = TREE_CODE (type);
10638 dw_die_ref type_die = NULL;
10639
10640 /* ??? If this type is an unnamed subrange type of an integral or
10641 floating-point type, use the inner type. This is because we have no
10642 support for unnamed types in base_type_die. This can happen if this is
10643 an Ada subrange type. Correct solution is emit a subrange type die. */
10644 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10645 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10646 type = TREE_TYPE (type), code = TREE_CODE (type);
10647
10648 if (code == ERROR_MARK
10649 /* Handle a special case. For functions whose return type is void, we
10650 generate *no* type attribute. (Note that no object may have type
10651 `void', so this only applies to function return types). */
10652 || code == VOID_TYPE)
10653 return;
10654
10655 type_die = modified_type_die (type,
10656 decl_const || TYPE_READONLY (type),
10657 decl_volatile || TYPE_VOLATILE (type),
10658 context_die);
10659
10660 if (type_die != NULL)
10661 add_AT_die_ref (object_die, DW_AT_type, type_die);
10662 }
10663
10664 /* Given a tree pointer to a struct, class, union, or enum type node, return
10665 a pointer to the (string) tag name for the given type, or zero if the type
10666 was declared without a tag. */
10667
10668 static const char *
10669 type_tag (tree type)
10670 {
10671 const char *name = 0;
10672
10673 if (TYPE_NAME (type) != 0)
10674 {
10675 tree t = 0;
10676
10677 /* Find the IDENTIFIER_NODE for the type name. */
10678 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10679 t = TYPE_NAME (type);
10680
10681 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10682 a TYPE_DECL node, regardless of whether or not a `typedef' was
10683 involved. */
10684 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10685 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10686 t = DECL_NAME (TYPE_NAME (type));
10687
10688 /* Now get the name as a string, or invent one. */
10689 if (t != 0)
10690 name = IDENTIFIER_POINTER (t);
10691 }
10692
10693 return (name == 0 || *name == '\0') ? 0 : name;
10694 }
10695
10696 /* Return the type associated with a data member, make a special check
10697 for bit field types. */
10698
10699 static inline tree
10700 member_declared_type (tree member)
10701 {
10702 return (DECL_BIT_FIELD_TYPE (member)
10703 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10704 }
10705
10706 /* Get the decl's label, as described by its RTL. This may be different
10707 from the DECL_NAME name used in the source file. */
10708
10709 #if 0
10710 static const char *
10711 decl_start_label (tree decl)
10712 {
10713 rtx x;
10714 const char *fnname;
10715
10716 x = DECL_RTL (decl);
10717 if (GET_CODE (x) != MEM)
10718 abort ();
10719
10720 x = XEXP (x, 0);
10721 if (GET_CODE (x) != SYMBOL_REF)
10722 abort ();
10723
10724 fnname = XSTR (x, 0);
10725 return fnname;
10726 }
10727 #endif
10728 \f
10729 /* These routines generate the internal representation of the DIE's for
10730 the compilation unit. Debugging information is collected by walking
10731 the declaration trees passed in from dwarf2out_decl(). */
10732
10733 static void
10734 gen_array_type_die (tree type, dw_die_ref context_die)
10735 {
10736 dw_die_ref scope_die = scope_die_for (type, context_die);
10737 dw_die_ref array_die;
10738 tree element_type;
10739
10740 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10741 the inner array type comes before the outer array type. Thus we must
10742 call gen_type_die before we call new_die. See below also. */
10743 #ifdef MIPS_DEBUGGING_INFO
10744 gen_type_die (TREE_TYPE (type), context_die);
10745 #endif
10746
10747 array_die = new_die (DW_TAG_array_type, scope_die, type);
10748 add_name_attribute (array_die, type_tag (type));
10749 equate_type_number_to_die (type, array_die);
10750
10751 if (TREE_CODE (type) == VECTOR_TYPE)
10752 {
10753 /* The frontend feeds us a representation for the vector as a struct
10754 containing an array. Pull out the array type. */
10755 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10756 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10757 }
10758
10759 #if 0
10760 /* We default the array ordering. SDB will probably do
10761 the right things even if DW_AT_ordering is not present. It's not even
10762 an issue until we start to get into multidimensional arrays anyway. If
10763 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10764 then we'll have to put the DW_AT_ordering attribute back in. (But if
10765 and when we find out that we need to put these in, we will only do so
10766 for multidimensional arrays. */
10767 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10768 #endif
10769
10770 #ifdef MIPS_DEBUGGING_INFO
10771 /* The SGI compilers handle arrays of unknown bound by setting
10772 AT_declaration and not emitting any subrange DIEs. */
10773 if (! TYPE_DOMAIN (type))
10774 add_AT_flag (array_die, DW_AT_declaration, 1);
10775 else
10776 #endif
10777 add_subscript_info (array_die, type);
10778
10779 /* Add representation of the type of the elements of this array type. */
10780 element_type = TREE_TYPE (type);
10781
10782 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10783 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10784 We work around this by disabling this feature. See also
10785 add_subscript_info. */
10786 #ifndef MIPS_DEBUGGING_INFO
10787 while (TREE_CODE (element_type) == ARRAY_TYPE)
10788 element_type = TREE_TYPE (element_type);
10789
10790 gen_type_die (element_type, context_die);
10791 #endif
10792
10793 add_type_attribute (array_die, element_type, 0, 0, context_die);
10794 }
10795
10796 static void
10797 gen_set_type_die (tree type, dw_die_ref context_die)
10798 {
10799 dw_die_ref type_die
10800 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10801
10802 equate_type_number_to_die (type, type_die);
10803 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10804 }
10805
10806 #if 0
10807 static void
10808 gen_entry_point_die (tree decl, dw_die_ref context_die)
10809 {
10810 tree origin = decl_ultimate_origin (decl);
10811 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10812
10813 if (origin != NULL)
10814 add_abstract_origin_attribute (decl_die, origin);
10815 else
10816 {
10817 add_name_and_src_coords_attributes (decl_die, decl);
10818 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10819 0, 0, context_die);
10820 }
10821
10822 if (DECL_ABSTRACT (decl))
10823 equate_decl_number_to_die (decl, decl_die);
10824 else
10825 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10826 }
10827 #endif
10828
10829 /* Walk through the list of incomplete types again, trying once more to
10830 emit full debugging info for them. */
10831
10832 static void
10833 retry_incomplete_types (void)
10834 {
10835 int i;
10836
10837 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10838 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10839 }
10840
10841 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10842
10843 static void
10844 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
10845 {
10846 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10847
10848 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10849 be incomplete and such types are not marked. */
10850 add_abstract_origin_attribute (type_die, type);
10851 }
10852
10853 /* Generate a DIE to represent an inlined instance of a structure type. */
10854
10855 static void
10856 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
10857 {
10858 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10859
10860 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10861 be incomplete and such types are not marked. */
10862 add_abstract_origin_attribute (type_die, type);
10863 }
10864
10865 /* Generate a DIE to represent an inlined instance of a union type. */
10866
10867 static void
10868 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
10869 {
10870 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10871
10872 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10873 be incomplete and such types are not marked. */
10874 add_abstract_origin_attribute (type_die, type);
10875 }
10876
10877 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10878 include all of the information about the enumeration values also. Each
10879 enumerated type name/value is listed as a child of the enumerated type
10880 DIE. */
10881
10882 static dw_die_ref
10883 gen_enumeration_type_die (tree type, dw_die_ref context_die)
10884 {
10885 dw_die_ref type_die = lookup_type_die (type);
10886
10887 if (type_die == NULL)
10888 {
10889 type_die = new_die (DW_TAG_enumeration_type,
10890 scope_die_for (type, context_die), type);
10891 equate_type_number_to_die (type, type_die);
10892 add_name_attribute (type_die, type_tag (type));
10893 }
10894 else if (! TYPE_SIZE (type))
10895 return type_die;
10896 else
10897 remove_AT (type_die, DW_AT_declaration);
10898
10899 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10900 given enum type is incomplete, do not generate the DW_AT_byte_size
10901 attribute or the DW_AT_element_list attribute. */
10902 if (TYPE_SIZE (type))
10903 {
10904 tree link;
10905
10906 TREE_ASM_WRITTEN (type) = 1;
10907 add_byte_size_attribute (type_die, type);
10908 if (TYPE_STUB_DECL (type) != NULL_TREE)
10909 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10910
10911 /* If the first reference to this type was as the return type of an
10912 inline function, then it may not have a parent. Fix this now. */
10913 if (type_die->die_parent == NULL)
10914 add_child_die (scope_die_for (type, context_die), type_die);
10915
10916 for (link = TYPE_VALUES (type);
10917 link != NULL; link = TREE_CHAIN (link))
10918 {
10919 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10920 tree value = TREE_VALUE (link);
10921
10922 add_name_attribute (enum_die,
10923 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10924
10925 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
10926 /* DWARF2 does not provide a way of indicating whether or
10927 not enumeration constants are signed or unsigned. GDB
10928 always assumes the values are signed, so we output all
10929 values as if they were signed. That means that
10930 enumeration constants with very large unsigned values
10931 will appear to have negative values in the debugger. */
10932 add_AT_int (enum_die, DW_AT_const_value,
10933 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
10934 }
10935 }
10936 else
10937 add_AT_flag (type_die, DW_AT_declaration, 1);
10938
10939 return type_die;
10940 }
10941
10942 /* Generate a DIE to represent either a real live formal parameter decl or to
10943 represent just the type of some formal parameter position in some function
10944 type.
10945
10946 Note that this routine is a bit unusual because its argument may be a
10947 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10948 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10949 node. If it's the former then this function is being called to output a
10950 DIE to represent a formal parameter object (or some inlining thereof). If
10951 it's the latter, then this function is only being called to output a
10952 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10953 argument type of some subprogram type. */
10954
10955 static dw_die_ref
10956 gen_formal_parameter_die (tree node, dw_die_ref context_die)
10957 {
10958 dw_die_ref parm_die
10959 = new_die (DW_TAG_formal_parameter, context_die, node);
10960 tree origin;
10961
10962 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10963 {
10964 case 'd':
10965 origin = decl_ultimate_origin (node);
10966 if (origin != NULL)
10967 add_abstract_origin_attribute (parm_die, origin);
10968 else
10969 {
10970 add_name_and_src_coords_attributes (parm_die, node);
10971 add_type_attribute (parm_die, TREE_TYPE (node),
10972 TREE_READONLY (node),
10973 TREE_THIS_VOLATILE (node),
10974 context_die);
10975 if (DECL_ARTIFICIAL (node))
10976 add_AT_flag (parm_die, DW_AT_artificial, 1);
10977 }
10978
10979 equate_decl_number_to_die (node, parm_die);
10980 if (! DECL_ABSTRACT (node))
10981 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
10982
10983 break;
10984
10985 case 't':
10986 /* We were called with some kind of a ..._TYPE node. */
10987 add_type_attribute (parm_die, node, 0, 0, context_die);
10988 break;
10989
10990 default:
10991 abort ();
10992 }
10993
10994 return parm_die;
10995 }
10996
10997 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10998 at the end of an (ANSI prototyped) formal parameters list. */
10999
11000 static void
11001 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11002 {
11003 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11004 }
11005
11006 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11007 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11008 parameters as specified in some function type specification (except for
11009 those which appear as part of a function *definition*). */
11010
11011 static void
11012 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11013 {
11014 tree link;
11015 tree formal_type = NULL;
11016 tree first_parm_type;
11017 tree arg;
11018
11019 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11020 {
11021 arg = DECL_ARGUMENTS (function_or_method_type);
11022 function_or_method_type = TREE_TYPE (function_or_method_type);
11023 }
11024 else
11025 arg = NULL_TREE;
11026
11027 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11028
11029 /* Make our first pass over the list of formal parameter types and output a
11030 DW_TAG_formal_parameter DIE for each one. */
11031 for (link = first_parm_type; link; )
11032 {
11033 dw_die_ref parm_die;
11034
11035 formal_type = TREE_VALUE (link);
11036 if (formal_type == void_type_node)
11037 break;
11038
11039 /* Output a (nameless) DIE to represent the formal parameter itself. */
11040 parm_die = gen_formal_parameter_die (formal_type, context_die);
11041 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11042 && link == first_parm_type)
11043 || (arg && DECL_ARTIFICIAL (arg)))
11044 add_AT_flag (parm_die, DW_AT_artificial, 1);
11045
11046 link = TREE_CHAIN (link);
11047 if (arg)
11048 arg = TREE_CHAIN (arg);
11049 }
11050
11051 /* If this function type has an ellipsis, add a
11052 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11053 if (formal_type != void_type_node)
11054 gen_unspecified_parameters_die (function_or_method_type, context_die);
11055
11056 /* Make our second (and final) pass over the list of formal parameter types
11057 and output DIEs to represent those types (as necessary). */
11058 for (link = TYPE_ARG_TYPES (function_or_method_type);
11059 link && TREE_VALUE (link);
11060 link = TREE_CHAIN (link))
11061 gen_type_die (TREE_VALUE (link), context_die);
11062 }
11063
11064 /* We want to generate the DIE for TYPE so that we can generate the
11065 die for MEMBER, which has been defined; we will need to refer back
11066 to the member declaration nested within TYPE. If we're trying to
11067 generate minimal debug info for TYPE, processing TYPE won't do the
11068 trick; we need to attach the member declaration by hand. */
11069
11070 static void
11071 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11072 {
11073 gen_type_die (type, context_die);
11074
11075 /* If we're trying to avoid duplicate debug info, we may not have
11076 emitted the member decl for this function. Emit it now. */
11077 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11078 && ! lookup_decl_die (member))
11079 {
11080 if (decl_ultimate_origin (member))
11081 abort ();
11082
11083 push_decl_scope (type);
11084 if (TREE_CODE (member) == FUNCTION_DECL)
11085 gen_subprogram_die (member, lookup_type_die (type));
11086 else
11087 gen_variable_die (member, lookup_type_die (type));
11088
11089 pop_decl_scope ();
11090 }
11091 }
11092
11093 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11094 may later generate inlined and/or out-of-line instances of. */
11095
11096 static void
11097 dwarf2out_abstract_function (tree decl)
11098 {
11099 dw_die_ref old_die;
11100 tree save_fn;
11101 tree context;
11102 int was_abstract = DECL_ABSTRACT (decl);
11103
11104 /* Make sure we have the actual abstract inline, not a clone. */
11105 decl = DECL_ORIGIN (decl);
11106
11107 old_die = lookup_decl_die (decl);
11108 if (old_die && get_AT (old_die, DW_AT_inline))
11109 /* We've already generated the abstract instance. */
11110 return;
11111
11112 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11113 we don't get confused by DECL_ABSTRACT. */
11114 if (debug_info_level > DINFO_LEVEL_TERSE)
11115 {
11116 context = decl_class_context (decl);
11117 if (context)
11118 gen_type_die_for_member
11119 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11120 }
11121
11122 /* Pretend we've just finished compiling this function. */
11123 save_fn = current_function_decl;
11124 current_function_decl = decl;
11125
11126 set_decl_abstract_flags (decl, 1);
11127 dwarf2out_decl (decl);
11128 if (! was_abstract)
11129 set_decl_abstract_flags (decl, 0);
11130
11131 current_function_decl = save_fn;
11132 }
11133
11134 /* Generate a DIE to represent a declared function (either file-scope or
11135 block-local). */
11136
11137 static void
11138 gen_subprogram_die (tree decl, dw_die_ref context_die)
11139 {
11140 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11141 tree origin = decl_ultimate_origin (decl);
11142 dw_die_ref subr_die;
11143 rtx fp_reg;
11144 tree fn_arg_types;
11145 tree outer_scope;
11146 dw_die_ref old_die = lookup_decl_die (decl);
11147 int declaration = (current_function_decl != decl
11148 || class_or_namespace_scope_p (context_die));
11149
11150 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11151 started to generate the abstract instance of an inline, decided to output
11152 its containing class, and proceeded to emit the declaration of the inline
11153 from the member list for the class. If so, DECLARATION takes priority;
11154 we'll get back to the abstract instance when done with the class. */
11155
11156 /* The class-scope declaration DIE must be the primary DIE. */
11157 if (origin && declaration && class_or_namespace_scope_p (context_die))
11158 {
11159 origin = NULL;
11160 if (old_die)
11161 abort ();
11162 }
11163
11164 if (origin != NULL)
11165 {
11166 if (declaration && ! local_scope_p (context_die))
11167 abort ();
11168
11169 /* Fixup die_parent for the abstract instance of a nested
11170 inline function. */
11171 if (old_die && old_die->die_parent == NULL)
11172 add_child_die (context_die, old_die);
11173
11174 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11175 add_abstract_origin_attribute (subr_die, origin);
11176 }
11177 else if (old_die)
11178 {
11179 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
11180
11181 if (!get_AT_flag (old_die, DW_AT_declaration)
11182 /* We can have a normal definition following an inline one in the
11183 case of redefinition of GNU C extern inlines.
11184 It seems reasonable to use AT_specification in this case. */
11185 && !get_AT (old_die, DW_AT_inline))
11186 {
11187 /* ??? This can happen if there is a bug in the program, for
11188 instance, if it has duplicate function definitions. Ideally,
11189 we should detect this case and ignore it. For now, if we have
11190 already reported an error, any error at all, then assume that
11191 we got here because of an input error, not a dwarf2 bug. */
11192 if (errorcount)
11193 return;
11194 abort ();
11195 }
11196
11197 /* If the definition comes from the same place as the declaration,
11198 maybe use the old DIE. We always want the DIE for this function
11199 that has the *_pc attributes to be under comp_unit_die so the
11200 debugger can find it. We also need to do this for abstract
11201 instances of inlines, since the spec requires the out-of-line copy
11202 to have the same parent. For local class methods, this doesn't
11203 apply; we just use the old DIE. */
11204 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11205 && (DECL_ARTIFICIAL (decl)
11206 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
11207 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11208 == (unsigned) DECL_SOURCE_LINE (decl)))))
11209 {
11210 subr_die = old_die;
11211
11212 /* Clear out the declaration attribute and the formal parameters.
11213 Do not remove all children, because it is possible that this
11214 declaration die was forced using force_decl_die(). In such
11215 cases die that forced declaration die (e.g. TAG_imported_module)
11216 is one of the children that we do not want to remove. */
11217 remove_AT (subr_die, DW_AT_declaration);
11218 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11219 }
11220 else
11221 {
11222 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11223 add_AT_specification (subr_die, old_die);
11224 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11225 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
11226 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11227 != (unsigned) DECL_SOURCE_LINE (decl))
11228 add_AT_unsigned
11229 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
11230 }
11231 }
11232 else
11233 {
11234 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11235
11236 if (TREE_PUBLIC (decl))
11237 add_AT_flag (subr_die, DW_AT_external, 1);
11238
11239 add_name_and_src_coords_attributes (subr_die, decl);
11240 if (debug_info_level > DINFO_LEVEL_TERSE)
11241 {
11242 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11243 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11244 0, 0, context_die);
11245 }
11246
11247 add_pure_or_virtual_attribute (subr_die, decl);
11248 if (DECL_ARTIFICIAL (decl))
11249 add_AT_flag (subr_die, DW_AT_artificial, 1);
11250
11251 if (TREE_PROTECTED (decl))
11252 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11253 else if (TREE_PRIVATE (decl))
11254 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11255 }
11256
11257 if (declaration)
11258 {
11259 if (!old_die || !get_AT (old_die, DW_AT_inline))
11260 {
11261 add_AT_flag (subr_die, DW_AT_declaration, 1);
11262
11263 /* The first time we see a member function, it is in the context of
11264 the class to which it belongs. We make sure of this by emitting
11265 the class first. The next time is the definition, which is
11266 handled above. The two may come from the same source text.
11267
11268 Note that force_decl_die() forces function declaration die. It is
11269 later reused to represent definition. */
11270 equate_decl_number_to_die (decl, subr_die);
11271 }
11272 }
11273 else if (DECL_ABSTRACT (decl))
11274 {
11275 if (DECL_DECLARED_INLINE_P (decl))
11276 {
11277 if (cgraph_function_possibly_inlined_p (decl))
11278 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11279 else
11280 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11281 }
11282 else
11283 {
11284 if (cgraph_function_possibly_inlined_p (decl))
11285 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11286 else
11287 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11288 }
11289
11290 equate_decl_number_to_die (decl, subr_die);
11291 }
11292 else if (!DECL_EXTERNAL (decl))
11293 {
11294 if (!old_die || !get_AT (old_die, DW_AT_inline))
11295 equate_decl_number_to_die (decl, subr_die);
11296
11297 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11298 current_function_funcdef_no);
11299 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11300 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11301 current_function_funcdef_no);
11302 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11303
11304 add_pubname (decl, subr_die);
11305 add_arange (decl, subr_die);
11306
11307 #ifdef MIPS_DEBUGGING_INFO
11308 /* Add a reference to the FDE for this routine. */
11309 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11310 #endif
11311
11312 /* Define the "frame base" location for this routine. We use the
11313 frame pointer or stack pointer registers, since the RTL for local
11314 variables is relative to one of them. */
11315 if (frame_base_decl && lookup_decl_loc (frame_base_decl) != NULL)
11316 {
11317 add_location_or_const_value_attribute (subr_die, frame_base_decl,
11318 DW_AT_frame_base);
11319 }
11320 else
11321 {
11322 fp_reg
11323 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11324 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11325 }
11326
11327 #if 0
11328 /* ??? This fails for nested inline functions, because context_display
11329 is not part of the state saved/restored for inline functions. */
11330 if (current_function_needs_context)
11331 add_AT_location_description (subr_die, DW_AT_static_link,
11332 loc_descriptor (lookup_static_chain (decl)));
11333 #endif
11334 }
11335
11336 /* Now output descriptions of the arguments for this function. This gets
11337 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11338 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11339 `...' at the end of the formal parameter list. In order to find out if
11340 there was a trailing ellipsis or not, we must instead look at the type
11341 associated with the FUNCTION_DECL. This will be a node of type
11342 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11343 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11344 an ellipsis at the end. */
11345
11346 /* In the case where we are describing a mere function declaration, all we
11347 need to do here (and all we *can* do here) is to describe the *types* of
11348 its formal parameters. */
11349 if (debug_info_level <= DINFO_LEVEL_TERSE)
11350 ;
11351 else if (declaration)
11352 gen_formal_types_die (decl, subr_die);
11353 else
11354 {
11355 /* Generate DIEs to represent all known formal parameters. */
11356 tree arg_decls = DECL_ARGUMENTS (decl);
11357 tree parm;
11358
11359 /* When generating DIEs, generate the unspecified_parameters DIE
11360 instead if we come across the arg "__builtin_va_alist" */
11361 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11362 if (TREE_CODE (parm) == PARM_DECL)
11363 {
11364 if (DECL_NAME (parm)
11365 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11366 "__builtin_va_alist"))
11367 gen_unspecified_parameters_die (parm, subr_die);
11368 else
11369 gen_decl_die (parm, subr_die);
11370 }
11371
11372 /* Decide whether we need an unspecified_parameters DIE at the end.
11373 There are 2 more cases to do this for: 1) the ansi ... declaration -
11374 this is detectable when the end of the arg list is not a
11375 void_type_node 2) an unprototyped function declaration (not a
11376 definition). This just means that we have no info about the
11377 parameters at all. */
11378 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11379 if (fn_arg_types != NULL)
11380 {
11381 /* This is the prototyped case, check for.... */
11382 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11383 gen_unspecified_parameters_die (decl, subr_die);
11384 }
11385 else if (DECL_INITIAL (decl) == NULL_TREE)
11386 gen_unspecified_parameters_die (decl, subr_die);
11387 }
11388
11389 /* Output Dwarf info for all of the stuff within the body of the function
11390 (if it has one - it may be just a declaration). */
11391 outer_scope = DECL_INITIAL (decl);
11392
11393 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11394 a function. This BLOCK actually represents the outermost binding contour
11395 for the function, i.e. the contour in which the function's formal
11396 parameters and labels get declared. Curiously, it appears that the front
11397 end doesn't actually put the PARM_DECL nodes for the current function onto
11398 the BLOCK_VARS list for this outer scope, but are strung off of the
11399 DECL_ARGUMENTS list for the function instead.
11400
11401 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11402 the LABEL_DECL nodes for the function however, and we output DWARF info
11403 for those in decls_for_scope. Just within the `outer_scope' there will be
11404 a BLOCK node representing the function's outermost pair of curly braces,
11405 and any blocks used for the base and member initializers of a C++
11406 constructor function. */
11407 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11408 {
11409 current_function_has_inlines = 0;
11410 decls_for_scope (outer_scope, subr_die, 0);
11411
11412 #if 0 && defined (MIPS_DEBUGGING_INFO)
11413 if (current_function_has_inlines)
11414 {
11415 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11416 if (! comp_unit_has_inlines)
11417 {
11418 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11419 comp_unit_has_inlines = 1;
11420 }
11421 }
11422 #endif
11423 }
11424 }
11425
11426 /* Generate a DIE to represent a declared data object. */
11427
11428 static void
11429 gen_variable_die (tree decl, dw_die_ref context_die)
11430 {
11431 tree origin = decl_ultimate_origin (decl);
11432 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11433
11434 dw_die_ref old_die = lookup_decl_die (decl);
11435 int declaration = (DECL_EXTERNAL (decl)
11436 || class_or_namespace_scope_p (context_die));
11437
11438 if (origin != NULL)
11439 add_abstract_origin_attribute (var_die, origin);
11440
11441 /* Loop unrolling can create multiple blocks that refer to the same
11442 static variable, so we must test for the DW_AT_declaration flag.
11443
11444 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11445 copy decls and set the DECL_ABSTRACT flag on them instead of
11446 sharing them.
11447
11448 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11449 else if (old_die && TREE_STATIC (decl)
11450 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11451 {
11452 /* This is a definition of a C++ class level static. */
11453 add_AT_specification (var_die, old_die);
11454 if (DECL_NAME (decl))
11455 {
11456 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
11457
11458 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11459 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11460
11461 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11462 != (unsigned) DECL_SOURCE_LINE (decl))
11463
11464 add_AT_unsigned (var_die, DW_AT_decl_line,
11465 DECL_SOURCE_LINE (decl));
11466 }
11467 }
11468 else
11469 {
11470 add_name_and_src_coords_attributes (var_die, decl);
11471 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11472 TREE_THIS_VOLATILE (decl), context_die);
11473
11474 if (TREE_PUBLIC (decl))
11475 add_AT_flag (var_die, DW_AT_external, 1);
11476
11477 if (DECL_ARTIFICIAL (decl))
11478 add_AT_flag (var_die, DW_AT_artificial, 1);
11479
11480 if (TREE_PROTECTED (decl))
11481 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11482 else if (TREE_PRIVATE (decl))
11483 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11484 }
11485
11486 if (declaration)
11487 add_AT_flag (var_die, DW_AT_declaration, 1);
11488
11489 if (DECL_ABSTRACT (decl) || declaration)
11490 equate_decl_number_to_die (decl, var_die);
11491
11492 if (! declaration && ! DECL_ABSTRACT (decl))
11493 {
11494 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
11495 add_pubname (decl, var_die);
11496 }
11497 else
11498 tree_add_const_value_attribute (var_die, decl);
11499 }
11500
11501 /* Generate a DIE to represent a label identifier. */
11502
11503 static void
11504 gen_label_die (tree decl, dw_die_ref context_die)
11505 {
11506 tree origin = decl_ultimate_origin (decl);
11507 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11508 rtx insn;
11509 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11510
11511 if (origin != NULL)
11512 add_abstract_origin_attribute (lbl_die, origin);
11513 else
11514 add_name_and_src_coords_attributes (lbl_die, decl);
11515
11516 if (DECL_ABSTRACT (decl))
11517 equate_decl_number_to_die (decl, lbl_die);
11518 else
11519 {
11520 insn = DECL_RTL_IF_SET (decl);
11521
11522 /* Deleted labels are programmer specified labels which have been
11523 eliminated because of various optimizations. We still emit them
11524 here so that it is possible to put breakpoints on them. */
11525 if (insn
11526 && (GET_CODE (insn) == CODE_LABEL
11527 || ((GET_CODE (insn) == NOTE
11528 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11529 {
11530 /* When optimization is enabled (via -O) some parts of the compiler
11531 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11532 represent source-level labels which were explicitly declared by
11533 the user. This really shouldn't be happening though, so catch
11534 it if it ever does happen. */
11535 if (INSN_DELETED_P (insn))
11536 abort ();
11537
11538 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11539 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11540 }
11541 }
11542 }
11543
11544 /* Generate a DIE for a lexical block. */
11545
11546 static void
11547 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11548 {
11549 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11550 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11551
11552 if (! BLOCK_ABSTRACT (stmt))
11553 {
11554 if (BLOCK_FRAGMENT_CHAIN (stmt))
11555 {
11556 tree chain;
11557
11558 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11559
11560 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11561 do
11562 {
11563 add_ranges (chain);
11564 chain = BLOCK_FRAGMENT_CHAIN (chain);
11565 }
11566 while (chain);
11567 add_ranges (NULL);
11568 }
11569 else
11570 {
11571 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11572 BLOCK_NUMBER (stmt));
11573 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11574 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11575 BLOCK_NUMBER (stmt));
11576 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11577 }
11578 }
11579
11580 decls_for_scope (stmt, stmt_die, depth);
11581 }
11582
11583 /* Generate a DIE for an inlined subprogram. */
11584
11585 static void
11586 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11587 {
11588 tree decl = block_ultimate_origin (stmt);
11589
11590 /* Emit info for the abstract instance first, if we haven't yet. We
11591 must emit this even if the block is abstract, otherwise when we
11592 emit the block below (or elsewhere), we may end up trying to emit
11593 a die whose origin die hasn't been emitted, and crashing. */
11594 dwarf2out_abstract_function (decl);
11595
11596 if (! BLOCK_ABSTRACT (stmt))
11597 {
11598 dw_die_ref subr_die
11599 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11600 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11601
11602 add_abstract_origin_attribute (subr_die, decl);
11603 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11604 BLOCK_NUMBER (stmt));
11605 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11606 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11607 BLOCK_NUMBER (stmt));
11608 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11609 decls_for_scope (stmt, subr_die, depth);
11610 current_function_has_inlines = 1;
11611 }
11612 else
11613 /* We may get here if we're the outer block of function A that was
11614 inlined into function B that was inlined into function C. When
11615 generating debugging info for C, dwarf2out_abstract_function(B)
11616 would mark all inlined blocks as abstract, including this one.
11617 So, we wouldn't (and shouldn't) expect labels to be generated
11618 for this one. Instead, just emit debugging info for
11619 declarations within the block. This is particularly important
11620 in the case of initializers of arguments passed from B to us:
11621 if they're statement expressions containing declarations, we
11622 wouldn't generate dies for their abstract variables, and then,
11623 when generating dies for the real variables, we'd die (pun
11624 intended :-) */
11625 gen_lexical_block_die (stmt, context_die, depth);
11626 }
11627
11628 /* Generate a DIE for a field in a record, or structure. */
11629
11630 static void
11631 gen_field_die (tree decl, dw_die_ref context_die)
11632 {
11633 dw_die_ref decl_die;
11634
11635 if (TREE_TYPE (decl) == error_mark_node)
11636 return;
11637
11638 decl_die = new_die (DW_TAG_member, context_die, decl);
11639 add_name_and_src_coords_attributes (decl_die, decl);
11640 add_type_attribute (decl_die, member_declared_type (decl),
11641 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11642 context_die);
11643
11644 if (DECL_BIT_FIELD_TYPE (decl))
11645 {
11646 add_byte_size_attribute (decl_die, decl);
11647 add_bit_size_attribute (decl_die, decl);
11648 add_bit_offset_attribute (decl_die, decl);
11649 }
11650
11651 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11652 add_data_member_location_attribute (decl_die, decl);
11653
11654 if (DECL_ARTIFICIAL (decl))
11655 add_AT_flag (decl_die, DW_AT_artificial, 1);
11656
11657 if (TREE_PROTECTED (decl))
11658 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11659 else if (TREE_PRIVATE (decl))
11660 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11661 }
11662
11663 #if 0
11664 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11665 Use modified_type_die instead.
11666 We keep this code here just in case these types of DIEs may be needed to
11667 represent certain things in other languages (e.g. Pascal) someday. */
11668
11669 static void
11670 gen_pointer_type_die (tree type, dw_die_ref context_die)
11671 {
11672 dw_die_ref ptr_die
11673 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11674
11675 equate_type_number_to_die (type, ptr_die);
11676 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11677 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11678 }
11679
11680 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11681 Use modified_type_die instead.
11682 We keep this code here just in case these types of DIEs may be needed to
11683 represent certain things in other languages (e.g. Pascal) someday. */
11684
11685 static void
11686 gen_reference_type_die (tree type, dw_die_ref context_die)
11687 {
11688 dw_die_ref ref_die
11689 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11690
11691 equate_type_number_to_die (type, ref_die);
11692 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11693 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11694 }
11695 #endif
11696
11697 /* Generate a DIE for a pointer to a member type. */
11698
11699 static void
11700 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11701 {
11702 dw_die_ref ptr_die
11703 = new_die (DW_TAG_ptr_to_member_type,
11704 scope_die_for (type, context_die), type);
11705
11706 equate_type_number_to_die (type, ptr_die);
11707 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11708 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11709 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11710 }
11711
11712 /* Generate the DIE for the compilation unit. */
11713
11714 static dw_die_ref
11715 gen_compile_unit_die (const char *filename)
11716 {
11717 dw_die_ref die;
11718 char producer[250];
11719 const char *language_string = lang_hooks.name;
11720 int language;
11721
11722 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11723
11724 if (filename)
11725 {
11726 add_name_attribute (die, filename);
11727 /* Don't add cwd for <built-in>. */
11728 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11729 add_comp_dir_attribute (die);
11730 }
11731
11732 sprintf (producer, "%s %s", language_string, version_string);
11733
11734 #ifdef MIPS_DEBUGGING_INFO
11735 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11736 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11737 not appear in the producer string, the debugger reaches the conclusion
11738 that the object file is stripped and has no debugging information.
11739 To get the MIPS/SGI debugger to believe that there is debugging
11740 information in the object file, we add a -g to the producer string. */
11741 if (debug_info_level > DINFO_LEVEL_TERSE)
11742 strcat (producer, " -g");
11743 #endif
11744
11745 add_AT_string (die, DW_AT_producer, producer);
11746
11747 if (strcmp (language_string, "GNU C++") == 0)
11748 language = DW_LANG_C_plus_plus;
11749 else if (strcmp (language_string, "GNU Ada") == 0)
11750 language = DW_LANG_Ada95;
11751 else if (strcmp (language_string, "GNU F77") == 0)
11752 language = DW_LANG_Fortran77;
11753 else if (strcmp (language_string, "GNU Pascal") == 0)
11754 language = DW_LANG_Pascal83;
11755 else if (strcmp (language_string, "GNU Java") == 0)
11756 language = DW_LANG_Java;
11757 else
11758 language = DW_LANG_C89;
11759
11760 add_AT_unsigned (die, DW_AT_language, language);
11761 return die;
11762 }
11763
11764 /* Generate a DIE for a string type. */
11765
11766 static void
11767 gen_string_type_die (tree type, dw_die_ref context_die)
11768 {
11769 dw_die_ref type_die
11770 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11771
11772 equate_type_number_to_die (type, type_die);
11773
11774 /* ??? Fudge the string length attribute for now.
11775 TODO: add string length info. */
11776 #if 0
11777 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11778 bound_representation (upper_bound, 0, 'u');
11779 #endif
11780 }
11781
11782 /* Generate the DIE for a base class. */
11783
11784 static void
11785 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11786 {
11787 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11788
11789 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11790 add_data_member_location_attribute (die, binfo);
11791
11792 if (TREE_VIA_VIRTUAL (binfo))
11793 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11794
11795 if (access == access_public_node)
11796 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11797 else if (access == access_protected_node)
11798 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11799 }
11800
11801 /* Generate a DIE for a class member. */
11802
11803 static void
11804 gen_member_die (tree type, dw_die_ref context_die)
11805 {
11806 tree member;
11807 tree binfo = TYPE_BINFO (type);
11808 dw_die_ref child;
11809
11810 /* If this is not an incomplete type, output descriptions of each of its
11811 members. Note that as we output the DIEs necessary to represent the
11812 members of this record or union type, we will also be trying to output
11813 DIEs to represent the *types* of those members. However the `type'
11814 function (above) will specifically avoid generating type DIEs for member
11815 types *within* the list of member DIEs for this (containing) type except
11816 for those types (of members) which are explicitly marked as also being
11817 members of this (containing) type themselves. The g++ front- end can
11818 force any given type to be treated as a member of some other (containing)
11819 type by setting the TYPE_CONTEXT of the given (member) type to point to
11820 the TREE node representing the appropriate (containing) type. */
11821
11822 /* First output info about the base classes. */
11823 if (binfo && BINFO_BASETYPES (binfo))
11824 {
11825 tree bases = BINFO_BASETYPES (binfo);
11826 tree accesses = BINFO_BASEACCESSES (binfo);
11827 int n_bases = TREE_VEC_LENGTH (bases);
11828 int i;
11829
11830 for (i = 0; i < n_bases; i++)
11831 gen_inheritance_die (TREE_VEC_ELT (bases, i),
11832 (accesses ? TREE_VEC_ELT (accesses, i)
11833 : access_public_node), context_die);
11834 }
11835
11836 /* Now output info about the data members and type members. */
11837 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11838 {
11839 /* If we thought we were generating minimal debug info for TYPE
11840 and then changed our minds, some of the member declarations
11841 may have already been defined. Don't define them again, but
11842 do put them in the right order. */
11843
11844 child = lookup_decl_die (member);
11845 if (child)
11846 splice_child_die (context_die, child);
11847 else
11848 gen_decl_die (member, context_die);
11849 }
11850
11851 /* Now output info about the function members (if any). */
11852 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11853 {
11854 /* Don't include clones in the member list. */
11855 if (DECL_ABSTRACT_ORIGIN (member))
11856 continue;
11857
11858 child = lookup_decl_die (member);
11859 if (child)
11860 splice_child_die (context_die, child);
11861 else
11862 gen_decl_die (member, context_die);
11863 }
11864 }
11865
11866 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11867 is set, we pretend that the type was never defined, so we only get the
11868 member DIEs needed by later specification DIEs. */
11869
11870 static void
11871 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
11872 {
11873 dw_die_ref type_die = lookup_type_die (type);
11874 dw_die_ref scope_die = 0;
11875 int nested = 0;
11876 int complete = (TYPE_SIZE (type)
11877 && (! TYPE_STUB_DECL (type)
11878 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11879 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
11880
11881 if (type_die && ! complete)
11882 return;
11883
11884 if (TYPE_CONTEXT (type) != NULL_TREE
11885 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11886 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
11887 nested = 1;
11888
11889 scope_die = scope_die_for (type, context_die);
11890
11891 if (! type_die || (nested && scope_die == comp_unit_die))
11892 /* First occurrence of type or toplevel definition of nested class. */
11893 {
11894 dw_die_ref old_die = type_die;
11895
11896 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11897 ? DW_TAG_structure_type : DW_TAG_union_type,
11898 scope_die, type);
11899 equate_type_number_to_die (type, type_die);
11900 if (old_die)
11901 add_AT_specification (type_die, old_die);
11902 else
11903 add_name_attribute (type_die, type_tag (type));
11904 }
11905 else
11906 remove_AT (type_die, DW_AT_declaration);
11907
11908 /* If this type has been completed, then give it a byte_size attribute and
11909 then give a list of members. */
11910 if (complete && !ns_decl)
11911 {
11912 /* Prevent infinite recursion in cases where the type of some member of
11913 this type is expressed in terms of this type itself. */
11914 TREE_ASM_WRITTEN (type) = 1;
11915 add_byte_size_attribute (type_die, type);
11916 if (TYPE_STUB_DECL (type) != NULL_TREE)
11917 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11918
11919 /* If the first reference to this type was as the return type of an
11920 inline function, then it may not have a parent. Fix this now. */
11921 if (type_die->die_parent == NULL)
11922 add_child_die (scope_die, type_die);
11923
11924 push_decl_scope (type);
11925 gen_member_die (type, type_die);
11926 pop_decl_scope ();
11927
11928 /* GNU extension: Record what type our vtable lives in. */
11929 if (TYPE_VFIELD (type))
11930 {
11931 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11932
11933 gen_type_die (vtype, context_die);
11934 add_AT_die_ref (type_die, DW_AT_containing_type,
11935 lookup_type_die (vtype));
11936 }
11937 }
11938 else
11939 {
11940 add_AT_flag (type_die, DW_AT_declaration, 1);
11941
11942 /* We don't need to do this for function-local types. */
11943 if (TYPE_STUB_DECL (type)
11944 && ! decl_function_context (TYPE_STUB_DECL (type)))
11945 VARRAY_PUSH_TREE (incomplete_types, type);
11946 }
11947 }
11948
11949 /* Generate a DIE for a subroutine _type_. */
11950
11951 static void
11952 gen_subroutine_type_die (tree type, dw_die_ref context_die)
11953 {
11954 tree return_type = TREE_TYPE (type);
11955 dw_die_ref subr_die
11956 = new_die (DW_TAG_subroutine_type,
11957 scope_die_for (type, context_die), type);
11958
11959 equate_type_number_to_die (type, subr_die);
11960 add_prototyped_attribute (subr_die, type);
11961 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11962 gen_formal_types_die (type, subr_die);
11963 }
11964
11965 /* Generate a DIE for a type definition. */
11966
11967 static void
11968 gen_typedef_die (tree decl, dw_die_ref context_die)
11969 {
11970 dw_die_ref type_die;
11971 tree origin;
11972
11973 if (TREE_ASM_WRITTEN (decl))
11974 return;
11975
11976 TREE_ASM_WRITTEN (decl) = 1;
11977 type_die = new_die (DW_TAG_typedef, context_die, decl);
11978 origin = decl_ultimate_origin (decl);
11979 if (origin != NULL)
11980 add_abstract_origin_attribute (type_die, origin);
11981 else
11982 {
11983 tree type;
11984
11985 add_name_and_src_coords_attributes (type_die, decl);
11986 if (DECL_ORIGINAL_TYPE (decl))
11987 {
11988 type = DECL_ORIGINAL_TYPE (decl);
11989
11990 if (type == TREE_TYPE (decl))
11991 abort ();
11992 else
11993 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11994 }
11995 else
11996 type = TREE_TYPE (decl);
11997
11998 add_type_attribute (type_die, type, TREE_READONLY (decl),
11999 TREE_THIS_VOLATILE (decl), context_die);
12000 }
12001
12002 if (DECL_ABSTRACT (decl))
12003 equate_decl_number_to_die (decl, type_die);
12004 }
12005
12006 /* Generate a type description DIE. */
12007
12008 static void
12009 gen_type_die (tree type, dw_die_ref context_die)
12010 {
12011 int need_pop;
12012
12013 if (type == NULL_TREE || type == error_mark_node)
12014 return;
12015
12016 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12017 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12018 {
12019 if (TREE_ASM_WRITTEN (type))
12020 return;
12021
12022 /* Prevent broken recursion; we can't hand off to the same type. */
12023 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
12024 abort ();
12025
12026 TREE_ASM_WRITTEN (type) = 1;
12027 gen_decl_die (TYPE_NAME (type), context_die);
12028 return;
12029 }
12030
12031 /* We are going to output a DIE to represent the unqualified version
12032 of this type (i.e. without any const or volatile qualifiers) so
12033 get the main variant (i.e. the unqualified version) of this type
12034 now. (Vectors are special because the debugging info is in the
12035 cloned type itself). */
12036 if (TREE_CODE (type) != VECTOR_TYPE)
12037 type = type_main_variant (type);
12038
12039 if (TREE_ASM_WRITTEN (type))
12040 return;
12041
12042 switch (TREE_CODE (type))
12043 {
12044 case ERROR_MARK:
12045 break;
12046
12047 case POINTER_TYPE:
12048 case REFERENCE_TYPE:
12049 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12050 ensures that the gen_type_die recursion will terminate even if the
12051 type is recursive. Recursive types are possible in Ada. */
12052 /* ??? We could perhaps do this for all types before the switch
12053 statement. */
12054 TREE_ASM_WRITTEN (type) = 1;
12055
12056 /* For these types, all that is required is that we output a DIE (or a
12057 set of DIEs) to represent the "basis" type. */
12058 gen_type_die (TREE_TYPE (type), context_die);
12059 break;
12060
12061 case OFFSET_TYPE:
12062 /* This code is used for C++ pointer-to-data-member types.
12063 Output a description of the relevant class type. */
12064 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12065
12066 /* Output a description of the type of the object pointed to. */
12067 gen_type_die (TREE_TYPE (type), context_die);
12068
12069 /* Now output a DIE to represent this pointer-to-data-member type
12070 itself. */
12071 gen_ptr_to_mbr_type_die (type, context_die);
12072 break;
12073
12074 case SET_TYPE:
12075 gen_type_die (TYPE_DOMAIN (type), context_die);
12076 gen_set_type_die (type, context_die);
12077 break;
12078
12079 case FILE_TYPE:
12080 gen_type_die (TREE_TYPE (type), context_die);
12081 abort (); /* No way to represent these in Dwarf yet! */
12082 break;
12083
12084 case FUNCTION_TYPE:
12085 /* Force out return type (in case it wasn't forced out already). */
12086 gen_type_die (TREE_TYPE (type), context_die);
12087 gen_subroutine_type_die (type, context_die);
12088 break;
12089
12090 case METHOD_TYPE:
12091 /* Force out return type (in case it wasn't forced out already). */
12092 gen_type_die (TREE_TYPE (type), context_die);
12093 gen_subroutine_type_die (type, context_die);
12094 break;
12095
12096 case ARRAY_TYPE:
12097 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
12098 {
12099 gen_type_die (TREE_TYPE (type), context_die);
12100 gen_string_type_die (type, context_die);
12101 }
12102 else
12103 gen_array_type_die (type, context_die);
12104 break;
12105
12106 case VECTOR_TYPE:
12107 gen_array_type_die (type, context_die);
12108 break;
12109
12110 case ENUMERAL_TYPE:
12111 case RECORD_TYPE:
12112 case UNION_TYPE:
12113 case QUAL_UNION_TYPE:
12114 /* If this is a nested type whose containing class hasn't been written
12115 out yet, writing it out will cover this one, too. This does not apply
12116 to instantiations of member class templates; they need to be added to
12117 the containing class as they are generated. FIXME: This hurts the
12118 idea of combining type decls from multiple TUs, since we can't predict
12119 what set of template instantiations we'll get. */
12120 if (TYPE_CONTEXT (type)
12121 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12122 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12123 {
12124 gen_type_die (TYPE_CONTEXT (type), context_die);
12125
12126 if (TREE_ASM_WRITTEN (type))
12127 return;
12128
12129 /* If that failed, attach ourselves to the stub. */
12130 push_decl_scope (TYPE_CONTEXT (type));
12131 context_die = lookup_type_die (TYPE_CONTEXT (type));
12132 need_pop = 1;
12133 }
12134 else
12135 {
12136 declare_in_namespace (type, context_die);
12137 need_pop = 0;
12138 }
12139
12140 if (TREE_CODE (type) == ENUMERAL_TYPE)
12141 gen_enumeration_type_die (type, context_die);
12142 else
12143 gen_struct_or_union_type_die (type, context_die);
12144
12145 if (need_pop)
12146 pop_decl_scope ();
12147
12148 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12149 it up if it is ever completed. gen_*_type_die will set it for us
12150 when appropriate. */
12151 return;
12152
12153 case VOID_TYPE:
12154 case INTEGER_TYPE:
12155 case REAL_TYPE:
12156 case COMPLEX_TYPE:
12157 case BOOLEAN_TYPE:
12158 case CHAR_TYPE:
12159 /* No DIEs needed for fundamental types. */
12160 break;
12161
12162 case LANG_TYPE:
12163 /* No Dwarf representation currently defined. */
12164 break;
12165
12166 default:
12167 abort ();
12168 }
12169
12170 TREE_ASM_WRITTEN (type) = 1;
12171 }
12172
12173 /* Generate a DIE for a tagged type instantiation. */
12174
12175 static void
12176 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12177 {
12178 if (type == NULL_TREE || type == error_mark_node)
12179 return;
12180
12181 /* We are going to output a DIE to represent the unqualified version of
12182 this type (i.e. without any const or volatile qualifiers) so make sure
12183 that we have the main variant (i.e. the unqualified version) of this
12184 type now. */
12185 if (type != type_main_variant (type))
12186 abort ();
12187
12188 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12189 an instance of an unresolved type. */
12190
12191 switch (TREE_CODE (type))
12192 {
12193 case ERROR_MARK:
12194 break;
12195
12196 case ENUMERAL_TYPE:
12197 gen_inlined_enumeration_type_die (type, context_die);
12198 break;
12199
12200 case RECORD_TYPE:
12201 gen_inlined_structure_type_die (type, context_die);
12202 break;
12203
12204 case UNION_TYPE:
12205 case QUAL_UNION_TYPE:
12206 gen_inlined_union_type_die (type, context_die);
12207 break;
12208
12209 default:
12210 abort ();
12211 }
12212 }
12213
12214 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12215 things which are local to the given block. */
12216
12217 static void
12218 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12219 {
12220 int must_output_die = 0;
12221 tree origin;
12222 tree decl;
12223 enum tree_code origin_code;
12224
12225 /* Ignore blocks never really used to make RTL. */
12226 if (stmt == NULL_TREE || !TREE_USED (stmt)
12227 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
12228 return;
12229
12230 /* If the block is one fragment of a non-contiguous block, do not
12231 process the variables, since they will have been done by the
12232 origin block. Do process subblocks. */
12233 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12234 {
12235 tree sub;
12236
12237 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12238 gen_block_die (sub, context_die, depth + 1);
12239
12240 return;
12241 }
12242
12243 /* Determine the "ultimate origin" of this block. This block may be an
12244 inlined instance of an inlined instance of inline function, so we have
12245 to trace all of the way back through the origin chain to find out what
12246 sort of node actually served as the original seed for the creation of
12247 the current block. */
12248 origin = block_ultimate_origin (stmt);
12249 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12250
12251 /* Determine if we need to output any Dwarf DIEs at all to represent this
12252 block. */
12253 if (origin_code == FUNCTION_DECL)
12254 /* The outer scopes for inlinings *must* always be represented. We
12255 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12256 must_output_die = 1;
12257 else
12258 {
12259 /* In the case where the current block represents an inlining of the
12260 "body block" of an inline function, we must *NOT* output any DIE for
12261 this block because we have already output a DIE to represent the whole
12262 inlined function scope and the "body block" of any function doesn't
12263 really represent a different scope according to ANSI C rules. So we
12264 check here to make sure that this block does not represent a "body
12265 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12266 if (! is_body_block (origin ? origin : stmt))
12267 {
12268 /* Determine if this block directly contains any "significant"
12269 local declarations which we will need to output DIEs for. */
12270 if (debug_info_level > DINFO_LEVEL_TERSE)
12271 /* We are not in terse mode so *any* local declaration counts
12272 as being a "significant" one. */
12273 must_output_die = (BLOCK_VARS (stmt) != NULL);
12274 else
12275 /* We are in terse mode, so only local (nested) function
12276 definitions count as "significant" local declarations. */
12277 for (decl = BLOCK_VARS (stmt);
12278 decl != NULL; decl = TREE_CHAIN (decl))
12279 if (TREE_CODE (decl) == FUNCTION_DECL
12280 && DECL_INITIAL (decl))
12281 {
12282 must_output_die = 1;
12283 break;
12284 }
12285 }
12286 }
12287
12288 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12289 DIE for any block which contains no significant local declarations at
12290 all. Rather, in such cases we just call `decls_for_scope' so that any
12291 needed Dwarf info for any sub-blocks will get properly generated. Note
12292 that in terse mode, our definition of what constitutes a "significant"
12293 local declaration gets restricted to include only inlined function
12294 instances and local (nested) function definitions. */
12295 if (must_output_die)
12296 {
12297 if (origin_code == FUNCTION_DECL)
12298 gen_inlined_subroutine_die (stmt, context_die, depth);
12299 else
12300 gen_lexical_block_die (stmt, context_die, depth);
12301 }
12302 else
12303 decls_for_scope (stmt, context_die, depth);
12304 }
12305
12306 /* Generate all of the decls declared within a given scope and (recursively)
12307 all of its sub-blocks. */
12308
12309 static void
12310 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12311 {
12312 tree decl;
12313 tree subblocks;
12314
12315 /* Ignore blocks never really used to make RTL. */
12316 if (stmt == NULL_TREE || ! TREE_USED (stmt))
12317 return;
12318
12319 /* Output the DIEs to represent all of the data objects and typedefs
12320 declared directly within this block but not within any nested
12321 sub-blocks. Also, nested function and tag DIEs have been
12322 generated with a parent of NULL; fix that up now. */
12323 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12324 {
12325 dw_die_ref die;
12326
12327 if (TREE_CODE (decl) == FUNCTION_DECL)
12328 die = lookup_decl_die (decl);
12329 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12330 die = lookup_type_die (TREE_TYPE (decl));
12331 else
12332 die = NULL;
12333
12334 if (die != NULL && die->die_parent == NULL)
12335 add_child_die (context_die, die);
12336 else
12337 gen_decl_die (decl, context_die);
12338 }
12339
12340 /* If we're at -g1, we're not interested in subblocks. */
12341 if (debug_info_level <= DINFO_LEVEL_TERSE)
12342 return;
12343
12344 /* Output the DIEs to represent all sub-blocks (and the items declared
12345 therein) of this block. */
12346 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12347 subblocks != NULL;
12348 subblocks = BLOCK_CHAIN (subblocks))
12349 gen_block_die (subblocks, context_die, depth + 1);
12350 }
12351
12352 /* Is this a typedef we can avoid emitting? */
12353
12354 static inline int
12355 is_redundant_typedef (tree decl)
12356 {
12357 if (TYPE_DECL_IS_STUB (decl))
12358 return 1;
12359
12360 if (DECL_ARTIFICIAL (decl)
12361 && DECL_CONTEXT (decl)
12362 && is_tagged_type (DECL_CONTEXT (decl))
12363 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12364 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12365 /* Also ignore the artificial member typedef for the class name. */
12366 return 1;
12367
12368 return 0;
12369 }
12370
12371 /* Returns the DIE for decl or aborts. */
12372
12373 static dw_die_ref
12374 force_decl_die (tree decl)
12375 {
12376 dw_die_ref decl_die;
12377 unsigned saved_external_flag;
12378 tree save_fn = NULL_TREE;
12379 decl_die = lookup_decl_die (decl);
12380 if (!decl_die)
12381 {
12382 dw_die_ref context_die;
12383 tree decl_context = DECL_CONTEXT (decl);
12384 if (decl_context)
12385 {
12386 /* Find die that represents this context. */
12387 if (TYPE_P (decl_context))
12388 context_die = force_type_die (decl_context);
12389 else
12390 context_die = force_decl_die (decl_context);
12391 }
12392 else
12393 context_die = comp_unit_die;
12394
12395 switch (TREE_CODE (decl))
12396 {
12397 case FUNCTION_DECL:
12398 /* Clear current_function_decl, so that gen_subprogram_die thinks
12399 that this is a declaration. At this point, we just want to force
12400 declaration die. */
12401 save_fn = current_function_decl;
12402 current_function_decl = NULL_TREE;
12403 gen_subprogram_die (decl, context_die);
12404 current_function_decl = save_fn;
12405 break;
12406
12407 case VAR_DECL:
12408 /* Set external flag to force declaration die. Restore it after
12409 gen_decl_die() call. */
12410 saved_external_flag = DECL_EXTERNAL (decl);
12411 DECL_EXTERNAL (decl) = 1;
12412 gen_decl_die (decl, context_die);
12413 DECL_EXTERNAL (decl) = saved_external_flag;
12414 break;
12415
12416 case NAMESPACE_DECL:
12417 dwarf2out_decl (decl);
12418 break;
12419
12420 default:
12421 abort ();
12422 }
12423
12424 /* See if we can find the die for this deci now.
12425 If not then abort. */
12426 if (!decl_die)
12427 decl_die = lookup_decl_die (decl);
12428 if (!decl_die)
12429 abort ();
12430 }
12431
12432 return decl_die;
12433 }
12434
12435 /* Returns the DIE for decl or aborts. */
12436
12437 static dw_die_ref
12438 force_type_die (tree type)
12439 {
12440 dw_die_ref type_die;
12441
12442 type_die = lookup_type_die (type);
12443 if (!type_die)
12444 {
12445 dw_die_ref context_die;
12446 if (TYPE_CONTEXT (type))
12447 if (TYPE_P (TYPE_CONTEXT (type)))
12448 context_die = force_type_die (TYPE_CONTEXT (type));
12449 else
12450 context_die = force_decl_die (TYPE_CONTEXT (type));
12451 else
12452 context_die = comp_unit_die;
12453
12454 gen_type_die (type, context_die);
12455 type_die = lookup_type_die (type);
12456 if (!type_die)
12457 abort();
12458 }
12459 return type_die;
12460 }
12461
12462 /* Force out any required namespaces to be able to output DECL,
12463 and return the new context_die for it, if it's changed. */
12464
12465 static dw_die_ref
12466 setup_namespace_context (tree thing, dw_die_ref context_die)
12467 {
12468 tree context = DECL_P (thing) ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing);
12469 if (context && TREE_CODE (context) == NAMESPACE_DECL)
12470 /* Force out the namespace. */
12471 context_die = force_decl_die (context);
12472
12473 return context_die;
12474 }
12475
12476 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12477 type) within its namespace, if appropriate.
12478
12479 For compatibility with older debuggers, namespace DIEs only contain
12480 declarations; all definitions are emitted at CU scope. */
12481
12482 static void
12483 declare_in_namespace (tree thing, dw_die_ref context_die)
12484 {
12485 dw_die_ref ns_context;
12486
12487 if (debug_info_level <= DINFO_LEVEL_TERSE)
12488 return;
12489
12490 ns_context = setup_namespace_context (thing, context_die);
12491
12492 if (ns_context != context_die)
12493 {
12494 if (DECL_P (thing))
12495 gen_decl_die (thing, ns_context);
12496 else
12497 gen_type_die (thing, ns_context);
12498 }
12499 }
12500
12501 /* Generate a DIE for a namespace or namespace alias. */
12502
12503 static void
12504 gen_namespace_die (tree decl)
12505 {
12506 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12507
12508 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12509 they are an alias of. */
12510 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12511 {
12512 /* Output a real namespace. */
12513 dw_die_ref namespace_die
12514 = new_die (DW_TAG_namespace, context_die, decl);
12515 add_name_and_src_coords_attributes (namespace_die, decl);
12516 equate_decl_number_to_die (decl, namespace_die);
12517 }
12518 else
12519 {
12520 /* Output a namespace alias. */
12521
12522 /* Force out the namespace we are an alias of, if necessary. */
12523 dw_die_ref origin_die
12524 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
12525
12526 /* Now create the namespace alias DIE. */
12527 dw_die_ref namespace_die
12528 = new_die (DW_TAG_imported_declaration, context_die, decl);
12529 add_name_and_src_coords_attributes (namespace_die, decl);
12530 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12531 equate_decl_number_to_die (decl, namespace_die);
12532 }
12533 }
12534
12535 /* Generate Dwarf debug information for a decl described by DECL. */
12536
12537 static void
12538 gen_decl_die (tree decl, dw_die_ref context_die)
12539 {
12540 tree origin;
12541
12542 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12543 return;
12544
12545 switch (TREE_CODE (decl))
12546 {
12547 case ERROR_MARK:
12548 break;
12549
12550 case CONST_DECL:
12551 /* The individual enumerators of an enum type get output when we output
12552 the Dwarf representation of the relevant enum type itself. */
12553 break;
12554
12555 case FUNCTION_DECL:
12556 /* Don't output any DIEs to represent mere function declarations,
12557 unless they are class members or explicit block externs. */
12558 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12559 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12560 break;
12561
12562 /* If we're emitting a clone, emit info for the abstract instance. */
12563 if (DECL_ORIGIN (decl) != decl)
12564 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12565
12566 /* If we're emitting an out-of-line copy of an inline function,
12567 emit info for the abstract instance and set up to refer to it. */
12568 else if (cgraph_function_possibly_inlined_p (decl)
12569 && ! DECL_ABSTRACT (decl)
12570 && ! class_or_namespace_scope_p (context_die)
12571 /* dwarf2out_abstract_function won't emit a die if this is just
12572 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12573 that case, because that works only if we have a die. */
12574 && DECL_INITIAL (decl) != NULL_TREE)
12575 {
12576 dwarf2out_abstract_function (decl);
12577 set_decl_origin_self (decl);
12578 }
12579
12580 /* Otherwise we're emitting the primary DIE for this decl. */
12581 else if (debug_info_level > DINFO_LEVEL_TERSE)
12582 {
12583 /* Before we describe the FUNCTION_DECL itself, make sure that we
12584 have described its return type. */
12585 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12586
12587 /* And its virtual context. */
12588 if (DECL_VINDEX (decl) != NULL_TREE)
12589 gen_type_die (DECL_CONTEXT (decl), context_die);
12590
12591 /* And its containing type. */
12592 origin = decl_class_context (decl);
12593 if (origin != NULL_TREE)
12594 gen_type_die_for_member (origin, decl, context_die);
12595
12596 /* And its containing namespace. */
12597 declare_in_namespace (decl, context_die);
12598 }
12599
12600 /* Now output a DIE to represent the function itself. */
12601 gen_subprogram_die (decl, context_die);
12602 break;
12603
12604 case TYPE_DECL:
12605 /* If we are in terse mode, don't generate any DIEs to represent any
12606 actual typedefs. */
12607 if (debug_info_level <= DINFO_LEVEL_TERSE)
12608 break;
12609
12610 /* In the special case of a TYPE_DECL node representing the declaration
12611 of some type tag, if the given TYPE_DECL is marked as having been
12612 instantiated from some other (original) TYPE_DECL node (e.g. one which
12613 was generated within the original definition of an inline function) we
12614 have to generate a special (abbreviated) DW_TAG_structure_type,
12615 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12616 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12617 {
12618 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12619 break;
12620 }
12621
12622 if (is_redundant_typedef (decl))
12623 gen_type_die (TREE_TYPE (decl), context_die);
12624 else
12625 /* Output a DIE to represent the typedef itself. */
12626 gen_typedef_die (decl, context_die);
12627 break;
12628
12629 case LABEL_DECL:
12630 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12631 gen_label_die (decl, context_die);
12632 break;
12633
12634 case VAR_DECL:
12635 /* If we are in terse mode, don't generate any DIEs to represent any
12636 variable declarations or definitions. */
12637 if (debug_info_level <= DINFO_LEVEL_TERSE)
12638 break;
12639
12640 /* Output any DIEs that are needed to specify the type of this data
12641 object. */
12642 gen_type_die (TREE_TYPE (decl), context_die);
12643
12644 /* And its containing type. */
12645 origin = decl_class_context (decl);
12646 if (origin != NULL_TREE)
12647 gen_type_die_for_member (origin, decl, context_die);
12648
12649 /* And its containing namespace. */
12650 declare_in_namespace (decl, context_die);
12651
12652 /* Now output the DIE to represent the data object itself. This gets
12653 complicated because of the possibility that the VAR_DECL really
12654 represents an inlined instance of a formal parameter for an inline
12655 function. */
12656 origin = decl_ultimate_origin (decl);
12657 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12658 gen_formal_parameter_die (decl, context_die);
12659 else
12660 gen_variable_die (decl, context_die);
12661 break;
12662
12663 case FIELD_DECL:
12664 /* Ignore the nameless fields that are used to skip bits but handle C++
12665 anonymous unions and structs. */
12666 if (DECL_NAME (decl) != NULL_TREE
12667 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
12668 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
12669 {
12670 gen_type_die (member_declared_type (decl), context_die);
12671 gen_field_die (decl, context_die);
12672 }
12673 break;
12674
12675 case PARM_DECL:
12676 gen_type_die (TREE_TYPE (decl), context_die);
12677 gen_formal_parameter_die (decl, context_die);
12678 break;
12679
12680 case NAMESPACE_DECL:
12681 gen_namespace_die (decl);
12682 break;
12683
12684 default:
12685 if ((int)TREE_CODE (decl) > NUM_TREE_CODES)
12686 /* Probably some frontend-internal decl. Assume we don't care. */
12687 break;
12688 abort ();
12689 }
12690 }
12691 \f
12692 /* Add Ada "use" clause information for SGI Workshop debugger. */
12693
12694 void
12695 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
12696 {
12697 unsigned int file_index;
12698
12699 if (filename != NULL)
12700 {
12701 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12702 tree context_list_decl
12703 = build_decl (LABEL_DECL, get_identifier (context_list),
12704 void_type_node);
12705
12706 TREE_PUBLIC (context_list_decl) = TRUE;
12707 add_name_attribute (unit_die, context_list);
12708 file_index = lookup_filename (filename);
12709 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12710 add_pubname (context_list_decl, unit_die);
12711 }
12712 }
12713
12714 /* Output debug information for global decl DECL. Called from toplev.c after
12715 compilation proper has finished. */
12716
12717 static void
12718 dwarf2out_global_decl (tree decl)
12719 {
12720 /* Output DWARF2 information for file-scope tentative data object
12721 declarations, file-scope (extern) function declarations (which had no
12722 corresponding body) and file-scope tagged type declarations and
12723 definitions which have not yet been forced out. */
12724 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12725 dwarf2out_decl (decl);
12726 }
12727
12728 /* Output debug information for type decl DECL. Called from toplev.c
12729 and from language front ends (to record built-in types). */
12730 static void
12731 dwarf2out_type_decl (tree decl, int local)
12732 {
12733 if (!local)
12734 dwarf2out_decl (decl);
12735 }
12736
12737 /* Output debug information for imported module or decl. */
12738
12739 static void
12740 dwarf2out_imported_module_or_decl (tree decl, tree context)
12741 {
12742 dw_die_ref imported_die, at_import_die;
12743 dw_die_ref scope_die;
12744 unsigned file_index;
12745
12746 if (debug_info_level <= DINFO_LEVEL_TERSE)
12747 return;
12748
12749 if (!decl)
12750 abort ();
12751
12752 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
12753 We need decl DIE for reference and scope die. First, get DIE for the decl
12754 itself. */
12755
12756 /* Get the scope die for decl context. Use comp_unit_die for global module
12757 or decl. If die is not found for non globals, force new die. */
12758 if (!context)
12759 scope_die = comp_unit_die;
12760 else if (TYPE_P (context))
12761 scope_die = force_type_die (context);
12762 else
12763 scope_die = force_decl_die (context);
12764
12765 /* For TYPE_DECL, lookup TREE_TYPE. */
12766 if (TREE_CODE (decl) == TYPE_DECL)
12767 at_import_die = force_type_die (TREE_TYPE (decl));
12768 else
12769 at_import_die = force_decl_die (decl);
12770
12771 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
12772 if (TREE_CODE (decl) == NAMESPACE_DECL)
12773 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
12774 else
12775 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
12776
12777 file_index = lookup_filename (input_filename);
12778 add_AT_unsigned (imported_die, DW_AT_decl_file, file_index);
12779 add_AT_unsigned (imported_die, DW_AT_decl_line, input_line);
12780 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
12781 }
12782
12783 /* Write the debugging output for DECL. */
12784
12785 void
12786 dwarf2out_decl (tree decl)
12787 {
12788 dw_die_ref context_die = comp_unit_die;
12789
12790 switch (TREE_CODE (decl))
12791 {
12792 case ERROR_MARK:
12793 return;
12794
12795 case FUNCTION_DECL:
12796 /* What we would really like to do here is to filter out all mere
12797 file-scope declarations of file-scope functions which are never
12798 referenced later within this translation unit (and keep all of ones
12799 that *are* referenced later on) but we aren't clairvoyant, so we have
12800 no idea which functions will be referenced in the future (i.e. later
12801 on within the current translation unit). So here we just ignore all
12802 file-scope function declarations which are not also definitions. If
12803 and when the debugger needs to know something about these functions,
12804 it will have to hunt around and find the DWARF information associated
12805 with the definition of the function.
12806
12807 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12808 nodes represent definitions and which ones represent mere
12809 declarations. We have to check DECL_INITIAL instead. That's because
12810 the C front-end supports some weird semantics for "extern inline"
12811 function definitions. These can get inlined within the current
12812 translation unit (an thus, we need to generate Dwarf info for their
12813 abstract instances so that the Dwarf info for the concrete inlined
12814 instances can have something to refer to) but the compiler never
12815 generates any out-of-lines instances of such things (despite the fact
12816 that they *are* definitions).
12817
12818 The important point is that the C front-end marks these "extern
12819 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12820 them anyway. Note that the C++ front-end also plays some similar games
12821 for inline function definitions appearing within include files which
12822 also contain `#pragma interface' pragmas. */
12823 if (DECL_INITIAL (decl) == NULL_TREE)
12824 return;
12825
12826 /* If we're a nested function, initially use a parent of NULL; if we're
12827 a plain function, this will be fixed up in decls_for_scope. If
12828 we're a method, it will be ignored, since we already have a DIE. */
12829 if (decl_function_context (decl)
12830 /* But if we're in terse mode, we don't care about scope. */
12831 && debug_info_level > DINFO_LEVEL_TERSE)
12832 context_die = NULL;
12833 break;
12834
12835 case VAR_DECL:
12836 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12837 declaration and if the declaration was never even referenced from
12838 within this entire compilation unit. We suppress these DIEs in
12839 order to save space in the .debug section (by eliminating entries
12840 which are probably useless). Note that we must not suppress
12841 block-local extern declarations (whether used or not) because that
12842 would screw-up the debugger's name lookup mechanism and cause it to
12843 miss things which really ought to be in scope at a given point. */
12844 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12845 return;
12846
12847 /* If we are in terse mode, don't generate any DIEs to represent any
12848 variable declarations or definitions. */
12849 if (debug_info_level <= DINFO_LEVEL_TERSE)
12850 return;
12851 break;
12852
12853 case NAMESPACE_DECL:
12854 if (debug_info_level <= DINFO_LEVEL_TERSE)
12855 return;
12856 if (lookup_decl_die (decl) != NULL)
12857 return;
12858 break;
12859
12860 case TYPE_DECL:
12861 /* Don't emit stubs for types unless they are needed by other DIEs. */
12862 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12863 return;
12864
12865 /* Don't bother trying to generate any DIEs to represent any of the
12866 normal built-in types for the language we are compiling. */
12867 if (DECL_SOURCE_LINE (decl) == 0)
12868 {
12869 /* OK, we need to generate one for `bool' so GDB knows what type
12870 comparisons have. */
12871 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12872 == DW_LANG_C_plus_plus)
12873 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12874 && ! DECL_IGNORED_P (decl))
12875 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12876
12877 return;
12878 }
12879
12880 /* If we are in terse mode, don't generate any DIEs for types. */
12881 if (debug_info_level <= DINFO_LEVEL_TERSE)
12882 return;
12883
12884 /* If we're a function-scope tag, initially use a parent of NULL;
12885 this will be fixed up in decls_for_scope. */
12886 if (decl_function_context (decl))
12887 context_die = NULL;
12888
12889 break;
12890
12891 default:
12892 return;
12893 }
12894
12895 gen_decl_die (decl, context_die);
12896 }
12897
12898 /* Output a marker (i.e. a label) for the beginning of the generated code for
12899 a lexical block. */
12900
12901 static void
12902 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
12903 unsigned int blocknum)
12904 {
12905 function_section (current_function_decl);
12906 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12907 }
12908
12909 /* Output a marker (i.e. a label) for the end of the generated code for a
12910 lexical block. */
12911
12912 static void
12913 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
12914 {
12915 function_section (current_function_decl);
12916 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12917 }
12918
12919 /* Returns nonzero if it is appropriate not to emit any debugging
12920 information for BLOCK, because it doesn't contain any instructions.
12921
12922 Don't allow this for blocks with nested functions or local classes
12923 as we would end up with orphans, and in the presence of scheduling
12924 we may end up calling them anyway. */
12925
12926 static bool
12927 dwarf2out_ignore_block (tree block)
12928 {
12929 tree decl;
12930
12931 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12932 if (TREE_CODE (decl) == FUNCTION_DECL
12933 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12934 return 0;
12935
12936 return 1;
12937 }
12938
12939 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12940 dwarf2out.c) and return its "index". The index of each (known) filename is
12941 just a unique number which is associated with only that one filename. We
12942 need such numbers for the sake of generating labels (in the .debug_sfnames
12943 section) and references to those files numbers (in the .debug_srcinfo
12944 and.debug_macinfo sections). If the filename given as an argument is not
12945 found in our current list, add it to the list and assign it the next
12946 available unique index number. In order to speed up searches, we remember
12947 the index of the filename was looked up last. This handles the majority of
12948 all searches. */
12949
12950 static unsigned
12951 lookup_filename (const char *file_name)
12952 {
12953 size_t i, n;
12954 char *save_file_name;
12955
12956 /* Check to see if the file name that was searched on the previous
12957 call matches this file name. If so, return the index. */
12958 if (file_table_last_lookup_index != 0)
12959 {
12960 const char *last
12961 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12962 if (strcmp (file_name, last) == 0)
12963 return file_table_last_lookup_index;
12964 }
12965
12966 /* Didn't match the previous lookup, search the table */
12967 n = VARRAY_ACTIVE_SIZE (file_table);
12968 for (i = 1; i < n; i++)
12969 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12970 {
12971 file_table_last_lookup_index = i;
12972 return i;
12973 }
12974
12975 /* Add the new entry to the end of the filename table. */
12976 file_table_last_lookup_index = n;
12977 save_file_name = (char *) ggc_strdup (file_name);
12978 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12979 VARRAY_PUSH_UINT (file_table_emitted, 0);
12980
12981 return i;
12982 }
12983
12984 static int
12985 maybe_emit_file (int fileno)
12986 {
12987 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12988 {
12989 if (!VARRAY_UINT (file_table_emitted, fileno))
12990 {
12991 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12992 fprintf (asm_out_file, "\t.file %u ",
12993 VARRAY_UINT (file_table_emitted, fileno));
12994 output_quoted_string (asm_out_file,
12995 VARRAY_CHAR_PTR (file_table, fileno));
12996 fputc ('\n', asm_out_file);
12997 }
12998 return VARRAY_UINT (file_table_emitted, fileno);
12999 }
13000 else
13001 return fileno;
13002 }
13003
13004 static void
13005 init_file_table (void)
13006 {
13007 /* Allocate the initial hunk of the file_table. */
13008 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
13009 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
13010
13011 /* Skip the first entry - file numbers begin at 1. */
13012 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
13013 VARRAY_PUSH_UINT (file_table_emitted, 0);
13014 file_table_last_lookup_index = 0;
13015 }
13016
13017 /* Called by the final INSN scan whenever we see a var location. We
13018 use it to drop labels in the right places, and throw the location in
13019 our lookup table. */
13020
13021 static void
13022 dwarf2out_var_location (rtx loc_note)
13023 {
13024 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13025 struct var_loc_node *newloc;
13026 rtx prev_insn;
13027 static rtx last_insn;
13028 static const char *last_label;
13029
13030 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13031 return;
13032 prev_insn = PREV_INSN (loc_note);
13033
13034 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13035 /* If the insn we processed last time is the previous insn
13036 and it is also a var location note, use the label we emitted
13037 last time. */
13038 if (last_insn != NULL_RTX
13039 && last_insn == prev_insn
13040 && GET_CODE (prev_insn) == NOTE
13041 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13042 {
13043 newloc->label = last_label;
13044 }
13045 else
13046 {
13047 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13048 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13049 loclabel_num++;
13050 newloc->label = ggc_strdup (loclabel);
13051 }
13052 newloc->var_loc_note = loc_note;
13053 newloc->next = NULL;
13054
13055 last_insn = loc_note;
13056 last_label = newloc->label;
13057
13058 add_var_loc_to_decl (NOTE_VAR_LOCATION_DECL (loc_note), newloc);
13059 }
13060
13061 /* We need to reset the locations at the beginning of each
13062 function. We can't do this in the end_function hook, because the
13063 declarations that use the locations won't have been outputted when
13064 that hook is called. */
13065
13066 static void
13067 dwarf2out_begin_function (tree unused ATTRIBUTE_UNUSED)
13068 {
13069 htab_empty (decl_loc_table);
13070 }
13071
13072 /* Output a label to mark the beginning of a source code line entry
13073 and record information relating to this source line, in
13074 'line_info_table' for later output of the .debug_line section. */
13075
13076 static void
13077 dwarf2out_source_line (unsigned int line, const char *filename)
13078 {
13079 if (debug_info_level >= DINFO_LEVEL_NORMAL
13080 && line != 0)
13081 {
13082 function_section (current_function_decl);
13083
13084 /* If requested, emit something human-readable. */
13085 if (flag_debug_asm)
13086 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13087 filename, line);
13088
13089 if (DWARF2_ASM_LINE_DEBUG_INFO)
13090 {
13091 unsigned file_num = lookup_filename (filename);
13092
13093 file_num = maybe_emit_file (file_num);
13094
13095 /* Emit the .loc directive understood by GNU as. */
13096 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13097
13098 /* Indicate that line number info exists. */
13099 line_info_table_in_use++;
13100
13101 /* Indicate that multiple line number tables exist. */
13102 if (DECL_SECTION_NAME (current_function_decl))
13103 separate_line_info_table_in_use++;
13104 }
13105 else if (DECL_SECTION_NAME (current_function_decl))
13106 {
13107 dw_separate_line_info_ref line_info;
13108 targetm.asm_out.internal_label (asm_out_file, SEPARATE_LINE_CODE_LABEL,
13109 separate_line_info_table_in_use);
13110
13111 /* Expand the line info table if necessary. */
13112 if (separate_line_info_table_in_use
13113 == separate_line_info_table_allocated)
13114 {
13115 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13116 separate_line_info_table
13117 = ggc_realloc (separate_line_info_table,
13118 separate_line_info_table_allocated
13119 * sizeof (dw_separate_line_info_entry));
13120 memset (separate_line_info_table
13121 + separate_line_info_table_in_use,
13122 0,
13123 (LINE_INFO_TABLE_INCREMENT
13124 * sizeof (dw_separate_line_info_entry)));
13125 }
13126
13127 /* Add the new entry at the end of the line_info_table. */
13128 line_info
13129 = &separate_line_info_table[separate_line_info_table_in_use++];
13130 line_info->dw_file_num = lookup_filename (filename);
13131 line_info->dw_line_num = line;
13132 line_info->function = current_function_funcdef_no;
13133 }
13134 else
13135 {
13136 dw_line_info_ref line_info;
13137
13138 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13139 line_info_table_in_use);
13140
13141 /* Expand the line info table if necessary. */
13142 if (line_info_table_in_use == line_info_table_allocated)
13143 {
13144 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13145 line_info_table
13146 = ggc_realloc (line_info_table,
13147 (line_info_table_allocated
13148 * sizeof (dw_line_info_entry)));
13149 memset (line_info_table + line_info_table_in_use, 0,
13150 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13151 }
13152
13153 /* Add the new entry at the end of the line_info_table. */
13154 line_info = &line_info_table[line_info_table_in_use++];
13155 line_info->dw_file_num = lookup_filename (filename);
13156 line_info->dw_line_num = line;
13157 }
13158 }
13159 }
13160
13161 /* Record the beginning of a new source file. */
13162
13163 static void
13164 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13165 {
13166 if (flag_eliminate_dwarf2_dups)
13167 {
13168 /* Record the beginning of the file for break_out_includes. */
13169 dw_die_ref bincl_die;
13170
13171 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13172 add_AT_string (bincl_die, DW_AT_name, filename);
13173 }
13174
13175 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13176 {
13177 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13178 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13179 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13180 lineno);
13181 maybe_emit_file (lookup_filename (filename));
13182 dw2_asm_output_data_uleb128 (lookup_filename (filename),
13183 "Filename we just started");
13184 }
13185 }
13186
13187 /* Record the end of a source file. */
13188
13189 static void
13190 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13191 {
13192 if (flag_eliminate_dwarf2_dups)
13193 /* Record the end of the file for break_out_includes. */
13194 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13195
13196 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13197 {
13198 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13199 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13200 }
13201 }
13202
13203 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13204 the tail part of the directive line, i.e. the part which is past the
13205 initial whitespace, #, whitespace, directive-name, whitespace part. */
13206
13207 static void
13208 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13209 const char *buffer ATTRIBUTE_UNUSED)
13210 {
13211 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13212 {
13213 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13214 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13215 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13216 dw2_asm_output_nstring (buffer, -1, "The macro");
13217 }
13218 }
13219
13220 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13221 the tail part of the directive line, i.e. the part which is past the
13222 initial whitespace, #, whitespace, directive-name, whitespace part. */
13223
13224 static void
13225 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13226 const char *buffer ATTRIBUTE_UNUSED)
13227 {
13228 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13229 {
13230 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13231 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13232 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13233 dw2_asm_output_nstring (buffer, -1, "The macro");
13234 }
13235 }
13236
13237 /* Set up for Dwarf output at the start of compilation. */
13238
13239 static void
13240 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13241 {
13242 init_file_table ();
13243
13244 /* Allocate the decl_die_table. */
13245 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13246 decl_die_table_eq, NULL);
13247
13248 /* Allocate the decl_loc_table. */
13249 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13250 decl_loc_table_eq, NULL);
13251
13252 /* Allocate the initial hunk of the decl_scope_table. */
13253 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
13254
13255 /* Allocate the initial hunk of the abbrev_die_table. */
13256 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13257 * sizeof (dw_die_ref));
13258 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13259 /* Zero-th entry is allocated, but unused */
13260 abbrev_die_table_in_use = 1;
13261
13262 /* Allocate the initial hunk of the line_info_table. */
13263 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13264 * sizeof (dw_line_info_entry));
13265 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13266
13267 /* Zero-th entry is allocated, but unused */
13268 line_info_table_in_use = 1;
13269
13270 /* Generate the initial DIE for the .debug section. Note that the (string)
13271 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13272 will (typically) be a relative pathname and that this pathname should be
13273 taken as being relative to the directory from which the compiler was
13274 invoked when the given (base) source file was compiled. We will fill
13275 in this value in dwarf2out_finish. */
13276 comp_unit_die = gen_compile_unit_die (NULL);
13277
13278 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
13279
13280 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
13281
13282 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13283 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13284 DEBUG_ABBREV_SECTION_LABEL, 0);
13285 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
13286 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13287 else
13288 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
13289
13290 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13291 DEBUG_INFO_SECTION_LABEL, 0);
13292 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13293 DEBUG_LINE_SECTION_LABEL, 0);
13294 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13295 DEBUG_RANGES_SECTION_LABEL, 0);
13296 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13297 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13298 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
13299 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13300 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13301 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13302
13303 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13304 {
13305 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13306 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13307 DEBUG_MACINFO_SECTION_LABEL, 0);
13308 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13309 }
13310
13311 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
13312 {
13313 text_section ();
13314 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13315 }
13316 }
13317
13318 /* A helper function for dwarf2out_finish called through
13319 ht_forall. Emit one queued .debug_str string. */
13320
13321 static int
13322 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13323 {
13324 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13325
13326 if (node->form == DW_FORM_strp)
13327 {
13328 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
13329 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13330 assemble_string (node->str, strlen (node->str) + 1);
13331 }
13332
13333 return 1;
13334 }
13335
13336
13337
13338 /* Clear the marks for a die and its children.
13339 Be cool if the mark isn't set. */
13340
13341 static void
13342 prune_unmark_dies (dw_die_ref die)
13343 {
13344 dw_die_ref c;
13345 die->die_mark = 0;
13346 for (c = die->die_child; c; c = c->die_sib)
13347 prune_unmark_dies (c);
13348 }
13349
13350
13351 /* Given DIE that we're marking as used, find any other dies
13352 it references as attributes and mark them as used. */
13353
13354 static void
13355 prune_unused_types_walk_attribs (dw_die_ref die)
13356 {
13357 dw_attr_ref a;
13358
13359 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
13360 {
13361 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13362 {
13363 /* A reference to another DIE.
13364 Make sure that it will get emitted. */
13365 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13366 }
13367 else if (a->dw_attr == DW_AT_decl_file)
13368 {
13369 /* A reference to a file. Make sure the file name is emitted. */
13370 a->dw_attr_val.v.val_unsigned =
13371 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
13372 }
13373 }
13374 }
13375
13376
13377 /* Mark DIE as being used. If DOKIDS is true, then walk down
13378 to DIE's children. */
13379
13380 static void
13381 prune_unused_types_mark (dw_die_ref die, int dokids)
13382 {
13383 dw_die_ref c;
13384
13385 if (die->die_mark == 0)
13386 {
13387 /* We haven't done this node yet. Mark it as used. */
13388 die->die_mark = 1;
13389
13390 /* We also have to mark its parents as used.
13391 (But we don't want to mark our parents' kids due to this.) */
13392 if (die->die_parent)
13393 prune_unused_types_mark (die->die_parent, 0);
13394
13395 /* Mark any referenced nodes. */
13396 prune_unused_types_walk_attribs (die);
13397
13398 /* If this node is a specification,
13399 also mark the definition, if it exists. */
13400 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
13401 prune_unused_types_mark (die->die_definition, 1);
13402 }
13403
13404 if (dokids && die->die_mark != 2)
13405 {
13406 /* We need to walk the children, but haven't done so yet.
13407 Remember that we've walked the kids. */
13408 die->die_mark = 2;
13409
13410 /* Walk them. */
13411 for (c = die->die_child; c; c = c->die_sib)
13412 {
13413 /* If this is an array type, we need to make sure our
13414 kids get marked, even if they're types. */
13415 if (die->die_tag == DW_TAG_array_type)
13416 prune_unused_types_mark (c, 1);
13417 else
13418 prune_unused_types_walk (c);
13419 }
13420 }
13421 }
13422
13423
13424 /* Walk the tree DIE and mark types that we actually use. */
13425
13426 static void
13427 prune_unused_types_walk (dw_die_ref die)
13428 {
13429 dw_die_ref c;
13430
13431 /* Don't do anything if this node is already marked. */
13432 if (die->die_mark)
13433 return;
13434
13435 switch (die->die_tag) {
13436 case DW_TAG_const_type:
13437 case DW_TAG_packed_type:
13438 case DW_TAG_pointer_type:
13439 case DW_TAG_reference_type:
13440 case DW_TAG_volatile_type:
13441 case DW_TAG_typedef:
13442 case DW_TAG_array_type:
13443 case DW_TAG_structure_type:
13444 case DW_TAG_union_type:
13445 case DW_TAG_class_type:
13446 case DW_TAG_friend:
13447 case DW_TAG_variant_part:
13448 case DW_TAG_enumeration_type:
13449 case DW_TAG_subroutine_type:
13450 case DW_TAG_string_type:
13451 case DW_TAG_set_type:
13452 case DW_TAG_subrange_type:
13453 case DW_TAG_ptr_to_member_type:
13454 case DW_TAG_file_type:
13455 /* It's a type node --- don't mark it. */
13456 return;
13457
13458 default:
13459 /* Mark everything else. */
13460 break;
13461 }
13462
13463 die->die_mark = 1;
13464
13465 /* Now, mark any dies referenced from here. */
13466 prune_unused_types_walk_attribs (die);
13467
13468 /* Mark children. */
13469 for (c = die->die_child; c; c = c->die_sib)
13470 prune_unused_types_walk (c);
13471 }
13472
13473
13474 /* Remove from the tree DIE any dies that aren't marked. */
13475
13476 static void
13477 prune_unused_types_prune (dw_die_ref die)
13478 {
13479 dw_die_ref c, p, n;
13480 if (!die->die_mark)
13481 abort();
13482
13483 p = NULL;
13484 for (c = die->die_child; c; c = n)
13485 {
13486 n = c->die_sib;
13487 if (c->die_mark)
13488 {
13489 prune_unused_types_prune (c);
13490 p = c;
13491 }
13492 else
13493 {
13494 if (p)
13495 p->die_sib = n;
13496 else
13497 die->die_child = n;
13498 free_die (c);
13499 }
13500 }
13501 }
13502
13503
13504 /* Remove dies representing declarations that we never use. */
13505
13506 static void
13507 prune_unused_types (void)
13508 {
13509 unsigned int i;
13510 limbo_die_node *node;
13511
13512 /* Clear all the marks. */
13513 prune_unmark_dies (comp_unit_die);
13514 for (node = limbo_die_list; node; node = node->next)
13515 prune_unmark_dies (node->die);
13516
13517 /* Set the mark on nodes that are actually used. */
13518 prune_unused_types_walk (comp_unit_die);
13519 for (node = limbo_die_list; node; node = node->next)
13520 prune_unused_types_walk (node->die);
13521
13522 /* Also set the mark on nodes referenced from the
13523 pubname_table or arange_table. */
13524 for (i = 0; i < pubname_table_in_use; i++)
13525 prune_unused_types_mark (pubname_table[i].die, 1);
13526 for (i = 0; i < arange_table_in_use; i++)
13527 prune_unused_types_mark (arange_table[i], 1);
13528
13529 /* Get rid of nodes that aren't marked. */
13530 prune_unused_types_prune (comp_unit_die);
13531 for (node = limbo_die_list; node; node = node->next)
13532 prune_unused_types_prune (node->die);
13533
13534 /* Leave the marks clear. */
13535 prune_unmark_dies (comp_unit_die);
13536 for (node = limbo_die_list; node; node = node->next)
13537 prune_unmark_dies (node->die);
13538 }
13539
13540 /* Output stuff that dwarf requires at the end of every file,
13541 and generate the DWARF-2 debugging info. */
13542
13543 static void
13544 dwarf2out_finish (const char *filename)
13545 {
13546 limbo_die_node *node, *next_node;
13547 dw_die_ref die = 0;
13548
13549 /* Add the name for the main input file now. We delayed this from
13550 dwarf2out_init to avoid complications with PCH. */
13551 add_name_attribute (comp_unit_die, filename);
13552 if (filename[0] != DIR_SEPARATOR)
13553 add_comp_dir_attribute (comp_unit_die);
13554 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13555 {
13556 size_t i;
13557 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13558 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
13559 /* Don't add cwd for <built-in>. */
13560 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
13561 {
13562 add_comp_dir_attribute (comp_unit_die);
13563 break;
13564 }
13565 }
13566
13567 /* Traverse the limbo die list, and add parent/child links. The only
13568 dies without parents that should be here are concrete instances of
13569 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13570 For concrete instances, we can get the parent die from the abstract
13571 instance. */
13572 for (node = limbo_die_list; node; node = next_node)
13573 {
13574 next_node = node->next;
13575 die = node->die;
13576
13577 if (die->die_parent == NULL)
13578 {
13579 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13580 tree context;
13581
13582 if (origin)
13583 add_child_die (origin->die_parent, die);
13584 else if (die == comp_unit_die)
13585 ;
13586 /* If this was an expression for a bound involved in a function
13587 return type, it may be a SAVE_EXPR for which we weren't able
13588 to find a DIE previously. So try now. */
13589 else if (node->created_for
13590 && TREE_CODE (node->created_for) == SAVE_EXPR
13591 && 0 != (origin = (lookup_decl_die
13592 (SAVE_EXPR_CONTEXT
13593 (node->created_for)))))
13594 add_child_die (origin, die);
13595 else if (errorcount > 0 || sorrycount > 0)
13596 /* It's OK to be confused by errors in the input. */
13597 add_child_die (comp_unit_die, die);
13598 else if (node->created_for
13599 && ((DECL_P (node->created_for)
13600 && (context = DECL_CONTEXT (node->created_for)))
13601 || (TYPE_P (node->created_for)
13602 && (context = TYPE_CONTEXT (node->created_for))))
13603 && TREE_CODE (context) == FUNCTION_DECL)
13604 {
13605 /* In certain situations, the lexical block containing a
13606 nested function can be optimized away, which results
13607 in the nested function die being orphaned. Likewise
13608 with the return type of that nested function. Force
13609 this to be a child of the containing function. */
13610 origin = lookup_decl_die (context);
13611 if (! origin)
13612 abort ();
13613 add_child_die (origin, die);
13614 }
13615 else
13616 abort ();
13617 }
13618 }
13619
13620 limbo_die_list = NULL;
13621
13622 /* Walk through the list of incomplete types again, trying once more to
13623 emit full debugging info for them. */
13624 retry_incomplete_types ();
13625
13626 /* We need to reverse all the dies before break_out_includes, or
13627 we'll see the end of an include file before the beginning. */
13628 reverse_all_dies (comp_unit_die);
13629
13630 if (flag_eliminate_unused_debug_types)
13631 prune_unused_types ();
13632
13633 /* Generate separate CUs for each of the include files we've seen.
13634 They will go into limbo_die_list. */
13635 if (flag_eliminate_dwarf2_dups)
13636 break_out_includes (comp_unit_die);
13637
13638 /* Traverse the DIE's and add add sibling attributes to those DIE's
13639 that have children. */
13640 add_sibling_attributes (comp_unit_die);
13641 for (node = limbo_die_list; node; node = node->next)
13642 add_sibling_attributes (node->die);
13643
13644 /* Output a terminator label for the .text section. */
13645 text_section ();
13646 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
13647
13648 /* Output the source line correspondence table. We must do this
13649 even if there is no line information. Otherwise, on an empty
13650 translation unit, we will generate a present, but empty,
13651 .debug_info section. IRIX 6.5 `nm' will then complain when
13652 examining the file. */
13653 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13654 {
13655 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13656 output_line_info ();
13657 }
13658
13659 /* Output location list section if necessary. */
13660 if (have_location_lists)
13661 {
13662 /* Output the location lists info. */
13663 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13664 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13665 DEBUG_LOC_SECTION_LABEL, 0);
13666 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13667 output_location_lists (die);
13668 have_location_lists = 0;
13669 }
13670
13671 /* We can only use the low/high_pc attributes if all of the code was
13672 in .text. */
13673 if (separate_line_info_table_in_use == 0)
13674 {
13675 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13676 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13677 }
13678
13679 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13680 "base address". Use zero so that these addresses become absolute. */
13681 else if (have_location_lists || ranges_table_in_use)
13682 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13683
13684 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13685 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13686 debug_line_section_label);
13687
13688 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13689 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13690
13691 /* Output all of the compilation units. We put the main one last so that
13692 the offsets are available to output_pubnames. */
13693 for (node = limbo_die_list; node; node = node->next)
13694 output_comp_unit (node->die, 0);
13695
13696 output_comp_unit (comp_unit_die, 0);
13697
13698 /* Output the abbreviation table. */
13699 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13700 output_abbrev_section ();
13701
13702 /* Output public names table if necessary. */
13703 if (pubname_table_in_use)
13704 {
13705 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13706 output_pubnames ();
13707 }
13708
13709 /* Output the address range information. We only put functions in the arange
13710 table, so don't write it out if we don't have any. */
13711 if (fde_table_in_use)
13712 {
13713 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13714 output_aranges ();
13715 }
13716
13717 /* Output ranges section if necessary. */
13718 if (ranges_table_in_use)
13719 {
13720 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13721 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13722 output_ranges ();
13723 }
13724
13725 /* Have to end the primary source file. */
13726 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13727 {
13728 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13729 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13730 dw2_asm_output_data (1, 0, "End compilation unit");
13731 }
13732
13733 /* If we emitted any DW_FORM_strp form attribute, output the string
13734 table too. */
13735 if (debug_str_hash)
13736 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13737 }
13738 #else
13739
13740 /* This should never be used, but its address is needed for comparisons. */
13741 const struct gcc_debug_hooks dwarf2_debug_hooks;
13742
13743 #endif /* DWARF2_DEBUGGING_INFO */
13744
13745 #include "gt-dwarf2out.h"