dwarf2out.c (gen_compile_unit_die): Emit DW_LANG_Ada95 instead of DW_LANG_Ada83 for...
[gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "real.h"
44 #include "rtl.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "reload.h"
49 #include "function.h"
50 #include "output.h"
51 #include "expr.h"
52 #include "libfuncs.h"
53 #include "except.h"
54 #include "dwarf2.h"
55 #include "dwarf2out.h"
56 #include "dwarf2asm.h"
57 #include "toplev.h"
58 #include "varray.h"
59 #include "ggc.h"
60 #include "md5.h"
61 #include "tm_p.h"
62 #include "diagnostic.h"
63 #include "debug.h"
64 #include "target.h"
65 #include "langhooks.h"
66 #include "hashtab.h"
67
68 #ifdef DWARF2_DEBUGGING_INFO
69 static void dwarf2out_source_line PARAMS ((unsigned int, const char *));
70 #endif
71
72 /* DWARF2 Abbreviation Glossary:
73 CFA = Canonical Frame Address
74 a fixed address on the stack which identifies a call frame.
75 We define it to be the value of SP just before the call insn.
76 The CFA register and offset, which may change during the course
77 of the function, are used to calculate its value at runtime.
78 CFI = Call Frame Instruction
79 an instruction for the DWARF2 abstract machine
80 CIE = Common Information Entry
81 information describing information common to one or more FDEs
82 DIE = Debugging Information Entry
83 FDE = Frame Description Entry
84 information describing the stack call frame, in particular,
85 how to restore registers
86
87 DW_CFA_... = DWARF2 CFA call frame instruction
88 DW_TAG_... = DWARF2 DIE tag */
89
90 /* Decide whether we want to emit frame unwind information for the current
91 translation unit. */
92
93 int
94 dwarf2out_do_frame ()
95 {
96 return (write_symbols == DWARF2_DEBUG
97 || write_symbols == VMS_AND_DWARF2_DEBUG
98 #ifdef DWARF2_FRAME_INFO
99 || DWARF2_FRAME_INFO
100 #endif
101 #ifdef DWARF2_UNWIND_INFO
102 || flag_unwind_tables
103 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
104 #endif
105 );
106 }
107
108 /* The size of the target's pointer type. */
109 #ifndef PTR_SIZE
110 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
111 #endif
112
113 /* Default version of targetm.eh_frame_section. Note this must appear
114 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro
115 guards. */
116
117 void
118 default_eh_frame_section ()
119 {
120 #ifdef EH_FRAME_SECTION_NAME
121 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
122 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
123 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
124 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
125 int flags;
126
127 flags = (! flag_pic
128 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
129 && (fde_encoding & 0x70) != DW_EH_PE_aligned
130 && (per_encoding & 0x70) != DW_EH_PE_absptr
131 && (per_encoding & 0x70) != DW_EH_PE_aligned
132 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
133 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
134 ? 0 : SECTION_WRITE;
135 named_section_flags (EH_FRAME_SECTION_NAME, flags);
136 #else
137 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
138 #endif
139 #else
140 tree label = get_file_function_name ('F');
141
142 data_section ();
143 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
144 (*targetm.asm_out.globalize_label) (asm_out_file, IDENTIFIER_POINTER (label));
145 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
146 #endif
147 }
148
149 /* Array of RTXes referenced by the debugging information, which therefore
150 must be kept around forever. */
151 static GTY(()) varray_type used_rtx_varray;
152
153 /* A pointer to the base of a list of incomplete types which might be
154 completed at some later time. incomplete_types_list needs to be a VARRAY
155 because we want to tell the garbage collector about it. */
156 static GTY(()) varray_type incomplete_types;
157
158 /* A pointer to the base of a table of references to declaration
159 scopes. This table is a display which tracks the nesting
160 of declaration scopes at the current scope and containing
161 scopes. This table is used to find the proper place to
162 define type declaration DIE's. */
163 static GTY(()) varray_type decl_scope_table;
164
165 /* How to start an assembler comment. */
166 #ifndef ASM_COMMENT_START
167 #define ASM_COMMENT_START ";#"
168 #endif
169
170 typedef struct dw_cfi_struct *dw_cfi_ref;
171 typedef struct dw_fde_struct *dw_fde_ref;
172 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
173
174 /* Call frames are described using a sequence of Call Frame
175 Information instructions. The register number, offset
176 and address fields are provided as possible operands;
177 their use is selected by the opcode field. */
178
179 enum dw_cfi_oprnd_type {
180 dw_cfi_oprnd_unused,
181 dw_cfi_oprnd_reg_num,
182 dw_cfi_oprnd_offset,
183 dw_cfi_oprnd_addr,
184 dw_cfi_oprnd_loc
185 };
186
187 typedef union dw_cfi_oprnd_struct GTY(())
188 {
189 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
190 long int GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
191 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
192 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
193 }
194 dw_cfi_oprnd;
195
196 typedef struct dw_cfi_struct GTY(())
197 {
198 dw_cfi_ref dw_cfi_next;
199 enum dwarf_call_frame_info dw_cfi_opc;
200 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
201 dw_cfi_oprnd1;
202 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
203 dw_cfi_oprnd2;
204 }
205 dw_cfi_node;
206
207 /* This is how we define the location of the CFA. We use to handle it
208 as REG + OFFSET all the time, but now it can be more complex.
209 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
210 Instead of passing around REG and OFFSET, we pass a copy
211 of this structure. */
212 typedef struct cfa_loc GTY(())
213 {
214 unsigned long reg;
215 long offset;
216 long base_offset;
217 int indirect; /* 1 if CFA is accessed via a dereference. */
218 } dw_cfa_location;
219
220 /* All call frame descriptions (FDE's) in the GCC generated DWARF
221 refer to a single Common Information Entry (CIE), defined at
222 the beginning of the .debug_frame section. This use of a single
223 CIE obviates the need to keep track of multiple CIE's
224 in the DWARF generation routines below. */
225
226 typedef struct dw_fde_struct GTY(())
227 {
228 const char *dw_fde_begin;
229 const char *dw_fde_current_label;
230 const char *dw_fde_end;
231 dw_cfi_ref dw_fde_cfi;
232 unsigned funcdef_number;
233 unsigned all_throwers_are_sibcalls : 1;
234 unsigned nothrow : 1;
235 unsigned uses_eh_lsda : 1;
236 }
237 dw_fde_node;
238
239 /* Maximum size (in bytes) of an artificially generated label. */
240 #define MAX_ARTIFICIAL_LABEL_BYTES 30
241
242 /* The size of addresses as they appear in the Dwarf 2 data.
243 Some architectures use word addresses to refer to code locations,
244 but Dwarf 2 info always uses byte addresses. On such machines,
245 Dwarf 2 addresses need to be larger than the architecture's
246 pointers. */
247 #ifndef DWARF2_ADDR_SIZE
248 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
249 #endif
250
251 /* The size in bytes of a DWARF field indicating an offset or length
252 relative to a debug info section, specified to be 4 bytes in the
253 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
254 as PTR_SIZE. */
255
256 #ifndef DWARF_OFFSET_SIZE
257 #define DWARF_OFFSET_SIZE 4
258 #endif
259
260 /* According to the (draft) DWARF 3 specification, the initial length
261 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
262 bytes are 0xffffffff, followed by the length stored in the next 8
263 bytes.
264
265 However, the SGI/MIPS ABI uses an initial length which is equal to
266 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
267
268 #ifndef DWARF_INITIAL_LENGTH_SIZE
269 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
270 #endif
271
272 #define DWARF_VERSION 2
273
274 /* Round SIZE up to the nearest BOUNDARY. */
275 #define DWARF_ROUND(SIZE,BOUNDARY) \
276 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
277
278 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
279 #ifndef DWARF_CIE_DATA_ALIGNMENT
280 #ifdef STACK_GROWS_DOWNWARD
281 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
282 #else
283 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
284 #endif
285 #endif
286
287 /* A pointer to the base of a table that contains frame description
288 information for each routine. */
289 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
290
291 /* Number of elements currently allocated for fde_table. */
292 static unsigned fde_table_allocated;
293
294 /* Number of elements in fde_table currently in use. */
295 static GTY(()) unsigned fde_table_in_use;
296
297 /* Size (in elements) of increments by which we may expand the
298 fde_table. */
299 #define FDE_TABLE_INCREMENT 256
300
301 /* A list of call frame insns for the CIE. */
302 static GTY(()) dw_cfi_ref cie_cfi_head;
303
304 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
305 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
306 attribute that accelerates the lookup of the FDE associated
307 with the subprogram. This variable holds the table index of the FDE
308 associated with the current function (body) definition. */
309 static unsigned current_funcdef_fde;
310 #endif
311
312 struct indirect_string_node GTY(())
313 {
314 const char *str;
315 unsigned int refcount;
316 unsigned int form;
317 char *label;
318 };
319
320 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
321
322 static GTY(()) int dw2_string_counter;
323 static GTY(()) unsigned long dwarf2out_cfi_label_num;
324
325 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
326
327 /* Forward declarations for functions defined in this file. */
328
329 static char *stripattributes PARAMS ((const char *));
330 static const char *dwarf_cfi_name PARAMS ((unsigned));
331 static dw_cfi_ref new_cfi PARAMS ((void));
332 static void add_cfi PARAMS ((dw_cfi_ref *, dw_cfi_ref));
333 static void add_fde_cfi PARAMS ((const char *, dw_cfi_ref));
334 static void lookup_cfa_1 PARAMS ((dw_cfi_ref,
335 dw_cfa_location *));
336 static void lookup_cfa PARAMS ((dw_cfa_location *));
337 static void reg_save PARAMS ((const char *, unsigned,
338 unsigned, long));
339 static void initial_return_save PARAMS ((rtx));
340 static long stack_adjust_offset PARAMS ((rtx));
341 static void output_cfi PARAMS ((dw_cfi_ref, dw_fde_ref, int));
342 static void output_call_frame_info PARAMS ((int));
343 static void dwarf2out_stack_adjust PARAMS ((rtx));
344 static void queue_reg_save PARAMS ((const char *, rtx, long));
345 static void flush_queued_reg_saves PARAMS ((void));
346 static bool clobbers_queued_reg_save PARAMS ((rtx));
347 static void dwarf2out_frame_debug_expr PARAMS ((rtx, const char *));
348
349 /* Support for complex CFA locations. */
350 static void output_cfa_loc PARAMS ((dw_cfi_ref));
351 static void get_cfa_from_loc_descr PARAMS ((dw_cfa_location *,
352 struct dw_loc_descr_struct *));
353 static struct dw_loc_descr_struct *build_cfa_loc
354 PARAMS ((dw_cfa_location *));
355 static void def_cfa_1 PARAMS ((const char *,
356 dw_cfa_location *));
357
358 /* How to start an assembler comment. */
359 #ifndef ASM_COMMENT_START
360 #define ASM_COMMENT_START ";#"
361 #endif
362
363 /* Data and reference forms for relocatable data. */
364 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
365 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
366
367 #ifndef DEBUG_FRAME_SECTION
368 #define DEBUG_FRAME_SECTION ".debug_frame"
369 #endif
370
371 #ifndef FUNC_BEGIN_LABEL
372 #define FUNC_BEGIN_LABEL "LFB"
373 #endif
374
375 #ifndef FUNC_END_LABEL
376 #define FUNC_END_LABEL "LFE"
377 #endif
378
379 #define FRAME_BEGIN_LABEL "Lframe"
380 #define CIE_AFTER_SIZE_LABEL "LSCIE"
381 #define CIE_END_LABEL "LECIE"
382 #define FDE_LABEL "LSFDE"
383 #define FDE_AFTER_SIZE_LABEL "LASFDE"
384 #define FDE_END_LABEL "LEFDE"
385 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
386 #define LINE_NUMBER_END_LABEL "LELT"
387 #define LN_PROLOG_AS_LABEL "LASLTP"
388 #define LN_PROLOG_END_LABEL "LELTP"
389 #define DIE_LABEL_PREFIX "DW"
390
391 /* The DWARF 2 CFA column which tracks the return address. Normally this
392 is the column for PC, or the first column after all of the hard
393 registers. */
394 #ifndef DWARF_FRAME_RETURN_COLUMN
395 #ifdef PC_REGNUM
396 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
397 #else
398 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
399 #endif
400 #endif
401
402 /* The mapping from gcc register number to DWARF 2 CFA column number. By
403 default, we just provide columns for all registers. */
404 #ifndef DWARF_FRAME_REGNUM
405 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
406 #endif
407
408 /* The offset from the incoming value of %sp to the top of the stack frame
409 for the current function. */
410 #ifndef INCOMING_FRAME_SP_OFFSET
411 #define INCOMING_FRAME_SP_OFFSET 0
412 #endif
413 \f
414 /* Hook used by __throw. */
415
416 rtx
417 expand_builtin_dwarf_fp_regnum ()
418 {
419 return GEN_INT (DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM));
420 }
421
422 /* Return a pointer to a copy of the section string name S with all
423 attributes stripped off, and an asterisk prepended (for assemble_name). */
424
425 static inline char *
426 stripattributes (s)
427 const char *s;
428 {
429 char *stripped = xmalloc (strlen (s) + 2);
430 char *p = stripped;
431
432 *p++ = '*';
433
434 while (*s && *s != ',')
435 *p++ = *s++;
436
437 *p = '\0';
438 return stripped;
439 }
440
441 /* Generate code to initialize the register size table. */
442
443 void
444 expand_builtin_init_dwarf_reg_sizes (address)
445 tree address;
446 {
447 int i;
448 enum machine_mode mode = TYPE_MODE (char_type_node);
449 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
450 rtx mem = gen_rtx_MEM (BLKmode, addr);
451
452 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
453 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
454 {
455 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
456 HOST_WIDE_INT size = GET_MODE_SIZE (reg_raw_mode[i]);
457
458 if (offset < 0)
459 continue;
460
461 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
462 }
463 }
464
465 /* Convert a DWARF call frame info. operation to its string name */
466
467 static const char *
468 dwarf_cfi_name (cfi_opc)
469 unsigned cfi_opc;
470 {
471 switch (cfi_opc)
472 {
473 case DW_CFA_advance_loc:
474 return "DW_CFA_advance_loc";
475 case DW_CFA_offset:
476 return "DW_CFA_offset";
477 case DW_CFA_restore:
478 return "DW_CFA_restore";
479 case DW_CFA_nop:
480 return "DW_CFA_nop";
481 case DW_CFA_set_loc:
482 return "DW_CFA_set_loc";
483 case DW_CFA_advance_loc1:
484 return "DW_CFA_advance_loc1";
485 case DW_CFA_advance_loc2:
486 return "DW_CFA_advance_loc2";
487 case DW_CFA_advance_loc4:
488 return "DW_CFA_advance_loc4";
489 case DW_CFA_offset_extended:
490 return "DW_CFA_offset_extended";
491 case DW_CFA_restore_extended:
492 return "DW_CFA_restore_extended";
493 case DW_CFA_undefined:
494 return "DW_CFA_undefined";
495 case DW_CFA_same_value:
496 return "DW_CFA_same_value";
497 case DW_CFA_register:
498 return "DW_CFA_register";
499 case DW_CFA_remember_state:
500 return "DW_CFA_remember_state";
501 case DW_CFA_restore_state:
502 return "DW_CFA_restore_state";
503 case DW_CFA_def_cfa:
504 return "DW_CFA_def_cfa";
505 case DW_CFA_def_cfa_register:
506 return "DW_CFA_def_cfa_register";
507 case DW_CFA_def_cfa_offset:
508 return "DW_CFA_def_cfa_offset";
509
510 /* DWARF 3 */
511 case DW_CFA_def_cfa_expression:
512 return "DW_CFA_def_cfa_expression";
513 case DW_CFA_expression:
514 return "DW_CFA_expression";
515 case DW_CFA_offset_extended_sf:
516 return "DW_CFA_offset_extended_sf";
517 case DW_CFA_def_cfa_sf:
518 return "DW_CFA_def_cfa_sf";
519 case DW_CFA_def_cfa_offset_sf:
520 return "DW_CFA_def_cfa_offset_sf";
521
522 /* SGI/MIPS specific */
523 case DW_CFA_MIPS_advance_loc8:
524 return "DW_CFA_MIPS_advance_loc8";
525
526 /* GNU extensions */
527 case DW_CFA_GNU_window_save:
528 return "DW_CFA_GNU_window_save";
529 case DW_CFA_GNU_args_size:
530 return "DW_CFA_GNU_args_size";
531 case DW_CFA_GNU_negative_offset_extended:
532 return "DW_CFA_GNU_negative_offset_extended";
533
534 default:
535 return "DW_CFA_<unknown>";
536 }
537 }
538
539 /* Return a pointer to a newly allocated Call Frame Instruction. */
540
541 static inline dw_cfi_ref
542 new_cfi ()
543 {
544 dw_cfi_ref cfi = (dw_cfi_ref) ggc_alloc (sizeof (dw_cfi_node));
545
546 cfi->dw_cfi_next = NULL;
547 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
548 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
549
550 return cfi;
551 }
552
553 /* Add a Call Frame Instruction to list of instructions. */
554
555 static inline void
556 add_cfi (list_head, cfi)
557 dw_cfi_ref *list_head;
558 dw_cfi_ref cfi;
559 {
560 dw_cfi_ref *p;
561
562 /* Find the end of the chain. */
563 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
564 ;
565
566 *p = cfi;
567 }
568
569 /* Generate a new label for the CFI info to refer to. */
570
571 char *
572 dwarf2out_cfi_label ()
573 {
574 static char label[20];
575
576 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
577 ASM_OUTPUT_LABEL (asm_out_file, label);
578 return label;
579 }
580
581 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
582 or to the CIE if LABEL is NULL. */
583
584 static void
585 add_fde_cfi (label, cfi)
586 const char *label;
587 dw_cfi_ref cfi;
588 {
589 if (label)
590 {
591 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
592
593 if (*label == 0)
594 label = dwarf2out_cfi_label ();
595
596 if (fde->dw_fde_current_label == NULL
597 || strcmp (label, fde->dw_fde_current_label) != 0)
598 {
599 dw_cfi_ref xcfi;
600
601 fde->dw_fde_current_label = label = xstrdup (label);
602
603 /* Set the location counter to the new label. */
604 xcfi = new_cfi ();
605 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
606 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
607 add_cfi (&fde->dw_fde_cfi, xcfi);
608 }
609
610 add_cfi (&fde->dw_fde_cfi, cfi);
611 }
612
613 else
614 add_cfi (&cie_cfi_head, cfi);
615 }
616
617 /* Subroutine of lookup_cfa. */
618
619 static inline void
620 lookup_cfa_1 (cfi, loc)
621 dw_cfi_ref cfi;
622 dw_cfa_location *loc;
623 {
624 switch (cfi->dw_cfi_opc)
625 {
626 case DW_CFA_def_cfa_offset:
627 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
628 break;
629 case DW_CFA_def_cfa_register:
630 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
631 break;
632 case DW_CFA_def_cfa:
633 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
634 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
635 break;
636 case DW_CFA_def_cfa_expression:
637 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
638 break;
639 default:
640 break;
641 }
642 }
643
644 /* Find the previous value for the CFA. */
645
646 static void
647 lookup_cfa (loc)
648 dw_cfa_location *loc;
649 {
650 dw_cfi_ref cfi;
651
652 loc->reg = (unsigned long) -1;
653 loc->offset = 0;
654 loc->indirect = 0;
655 loc->base_offset = 0;
656
657 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
658 lookup_cfa_1 (cfi, loc);
659
660 if (fde_table_in_use)
661 {
662 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
663 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
664 lookup_cfa_1 (cfi, loc);
665 }
666 }
667
668 /* The current rule for calculating the DWARF2 canonical frame address. */
669 static dw_cfa_location cfa;
670
671 /* The register used for saving registers to the stack, and its offset
672 from the CFA. */
673 static dw_cfa_location cfa_store;
674
675 /* The running total of the size of arguments pushed onto the stack. */
676 static long args_size;
677
678 /* The last args_size we actually output. */
679 static long old_args_size;
680
681 /* Entry point to update the canonical frame address (CFA).
682 LABEL is passed to add_fde_cfi. The value of CFA is now to be
683 calculated from REG+OFFSET. */
684
685 void
686 dwarf2out_def_cfa (label, reg, offset)
687 const char *label;
688 unsigned reg;
689 long offset;
690 {
691 dw_cfa_location loc;
692 loc.indirect = 0;
693 loc.base_offset = 0;
694 loc.reg = reg;
695 loc.offset = offset;
696 def_cfa_1 (label, &loc);
697 }
698
699 /* This routine does the actual work. The CFA is now calculated from
700 the dw_cfa_location structure. */
701
702 static void
703 def_cfa_1 (label, loc_p)
704 const char *label;
705 dw_cfa_location *loc_p;
706 {
707 dw_cfi_ref cfi;
708 dw_cfa_location old_cfa, loc;
709
710 cfa = *loc_p;
711 loc = *loc_p;
712
713 if (cfa_store.reg == loc.reg && loc.indirect == 0)
714 cfa_store.offset = loc.offset;
715
716 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
717 lookup_cfa (&old_cfa);
718
719 /* If nothing changed, no need to issue any call frame instructions. */
720 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
721 && loc.indirect == old_cfa.indirect
722 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
723 return;
724
725 cfi = new_cfi ();
726
727 if (loc.reg == old_cfa.reg && !loc.indirect)
728 {
729 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
730 indicating the CFA register did not change but the offset
731 did. */
732 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
733 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
734 }
735
736 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
737 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
738 && !loc.indirect)
739 {
740 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
741 indicating the CFA register has changed to <register> but the
742 offset has not changed. */
743 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
744 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
745 }
746 #endif
747
748 else if (loc.indirect == 0)
749 {
750 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
751 indicating the CFA register has changed to <register> with
752 the specified offset. */
753 cfi->dw_cfi_opc = DW_CFA_def_cfa;
754 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
755 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
756 }
757 else
758 {
759 /* Construct a DW_CFA_def_cfa_expression instruction to
760 calculate the CFA using a full location expression since no
761 register-offset pair is available. */
762 struct dw_loc_descr_struct *loc_list;
763
764 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
765 loc_list = build_cfa_loc (&loc);
766 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
767 }
768
769 add_fde_cfi (label, cfi);
770 }
771
772 /* Add the CFI for saving a register. REG is the CFA column number.
773 LABEL is passed to add_fde_cfi.
774 If SREG is -1, the register is saved at OFFSET from the CFA;
775 otherwise it is saved in SREG. */
776
777 static void
778 reg_save (label, reg, sreg, offset)
779 const char *label;
780 unsigned reg;
781 unsigned sreg;
782 long offset;
783 {
784 dw_cfi_ref cfi = new_cfi ();
785
786 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
787
788 /* The following comparison is correct. -1 is used to indicate that
789 the value isn't a register number. */
790 if (sreg == (unsigned int) -1)
791 {
792 if (reg & ~0x3f)
793 /* The register number won't fit in 6 bits, so we have to use
794 the long form. */
795 cfi->dw_cfi_opc = DW_CFA_offset_extended;
796 else
797 cfi->dw_cfi_opc = DW_CFA_offset;
798
799 #ifdef ENABLE_CHECKING
800 {
801 /* If we get an offset that is not a multiple of
802 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
803 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
804 description. */
805 long check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
806
807 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
808 abort ();
809 }
810 #endif
811 offset /= DWARF_CIE_DATA_ALIGNMENT;
812 if (offset < 0)
813 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
814
815 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
816 }
817 else if (sreg == reg)
818 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
819 return;
820 else
821 {
822 cfi->dw_cfi_opc = DW_CFA_register;
823 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
824 }
825
826 add_fde_cfi (label, cfi);
827 }
828
829 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
830 This CFI tells the unwinder that it needs to restore the window registers
831 from the previous frame's window save area.
832
833 ??? Perhaps we should note in the CIE where windows are saved (instead of
834 assuming 0(cfa)) and what registers are in the window. */
835
836 void
837 dwarf2out_window_save (label)
838 const char *label;
839 {
840 dw_cfi_ref cfi = new_cfi ();
841
842 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
843 add_fde_cfi (label, cfi);
844 }
845
846 /* Add a CFI to update the running total of the size of arguments
847 pushed onto the stack. */
848
849 void
850 dwarf2out_args_size (label, size)
851 const char *label;
852 long size;
853 {
854 dw_cfi_ref cfi;
855
856 if (size == old_args_size)
857 return;
858
859 old_args_size = size;
860
861 cfi = new_cfi ();
862 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
863 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
864 add_fde_cfi (label, cfi);
865 }
866
867 /* Entry point for saving a register to the stack. REG is the GCC register
868 number. LABEL and OFFSET are passed to reg_save. */
869
870 void
871 dwarf2out_reg_save (label, reg, offset)
872 const char *label;
873 unsigned reg;
874 long offset;
875 {
876 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
877 }
878
879 /* Entry point for saving the return address in the stack.
880 LABEL and OFFSET are passed to reg_save. */
881
882 void
883 dwarf2out_return_save (label, offset)
884 const char *label;
885 long offset;
886 {
887 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
888 }
889
890 /* Entry point for saving the return address in a register.
891 LABEL and SREG are passed to reg_save. */
892
893 void
894 dwarf2out_return_reg (label, sreg)
895 const char *label;
896 unsigned sreg;
897 {
898 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
899 }
900
901 /* Record the initial position of the return address. RTL is
902 INCOMING_RETURN_ADDR_RTX. */
903
904 static void
905 initial_return_save (rtl)
906 rtx rtl;
907 {
908 unsigned int reg = (unsigned int) -1;
909 HOST_WIDE_INT offset = 0;
910
911 switch (GET_CODE (rtl))
912 {
913 case REG:
914 /* RA is in a register. */
915 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
916 break;
917
918 case MEM:
919 /* RA is on the stack. */
920 rtl = XEXP (rtl, 0);
921 switch (GET_CODE (rtl))
922 {
923 case REG:
924 if (REGNO (rtl) != STACK_POINTER_REGNUM)
925 abort ();
926 offset = 0;
927 break;
928
929 case PLUS:
930 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
931 abort ();
932 offset = INTVAL (XEXP (rtl, 1));
933 break;
934
935 case MINUS:
936 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
937 abort ();
938 offset = -INTVAL (XEXP (rtl, 1));
939 break;
940
941 default:
942 abort ();
943 }
944
945 break;
946
947 case PLUS:
948 /* The return address is at some offset from any value we can
949 actually load. For instance, on the SPARC it is in %i7+8. Just
950 ignore the offset for now; it doesn't matter for unwinding frames. */
951 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
952 abort ();
953 initial_return_save (XEXP (rtl, 0));
954 return;
955
956 default:
957 abort ();
958 }
959
960 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
961 }
962
963 /* Given a SET, calculate the amount of stack adjustment it
964 contains. */
965
966 static long
967 stack_adjust_offset (pattern)
968 rtx pattern;
969 {
970 rtx src = SET_SRC (pattern);
971 rtx dest = SET_DEST (pattern);
972 HOST_WIDE_INT offset = 0;
973 enum rtx_code code;
974
975 if (dest == stack_pointer_rtx)
976 {
977 /* (set (reg sp) (plus (reg sp) (const_int))) */
978 code = GET_CODE (src);
979 if (! (code == PLUS || code == MINUS)
980 || XEXP (src, 0) != stack_pointer_rtx
981 || GET_CODE (XEXP (src, 1)) != CONST_INT)
982 return 0;
983
984 offset = INTVAL (XEXP (src, 1));
985 if (code == PLUS)
986 offset = -offset;
987 }
988 else if (GET_CODE (dest) == MEM)
989 {
990 /* (set (mem (pre_dec (reg sp))) (foo)) */
991 src = XEXP (dest, 0);
992 code = GET_CODE (src);
993
994 switch (code)
995 {
996 case PRE_MODIFY:
997 case POST_MODIFY:
998 if (XEXP (src, 0) == stack_pointer_rtx)
999 {
1000 rtx val = XEXP (XEXP (src, 1), 1);
1001 /* We handle only adjustments by constant amount. */
1002 if (GET_CODE (XEXP (src, 1)) != PLUS ||
1003 GET_CODE (val) != CONST_INT)
1004 abort ();
1005 offset = -INTVAL (val);
1006 break;
1007 }
1008 return 0;
1009
1010 case PRE_DEC:
1011 case POST_DEC:
1012 if (XEXP (src, 0) == stack_pointer_rtx)
1013 {
1014 offset = GET_MODE_SIZE (GET_MODE (dest));
1015 break;
1016 }
1017 return 0;
1018
1019 case PRE_INC:
1020 case POST_INC:
1021 if (XEXP (src, 0) == stack_pointer_rtx)
1022 {
1023 offset = -GET_MODE_SIZE (GET_MODE (dest));
1024 break;
1025 }
1026 return 0;
1027
1028 default:
1029 return 0;
1030 }
1031 }
1032 else
1033 return 0;
1034
1035 return offset;
1036 }
1037
1038 /* Check INSN to see if it looks like a push or a stack adjustment, and
1039 make a note of it if it does. EH uses this information to find out how
1040 much extra space it needs to pop off the stack. */
1041
1042 static void
1043 dwarf2out_stack_adjust (insn)
1044 rtx insn;
1045 {
1046 HOST_WIDE_INT offset;
1047 const char *label;
1048 int i;
1049
1050 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1051 {
1052 /* Extract the size of the args from the CALL rtx itself. */
1053 insn = PATTERN (insn);
1054 if (GET_CODE (insn) == PARALLEL)
1055 insn = XVECEXP (insn, 0, 0);
1056 if (GET_CODE (insn) == SET)
1057 insn = SET_SRC (insn);
1058 if (GET_CODE (insn) != CALL)
1059 abort ();
1060
1061 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1062 return;
1063 }
1064
1065 /* If only calls can throw, and we have a frame pointer,
1066 save up adjustments until we see the CALL_INSN. */
1067 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1068 return;
1069
1070 if (GET_CODE (insn) == BARRIER)
1071 {
1072 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1073 the compiler will have already emitted a stack adjustment, but
1074 doesn't bother for calls to noreturn functions. */
1075 #ifdef STACK_GROWS_DOWNWARD
1076 offset = -args_size;
1077 #else
1078 offset = args_size;
1079 #endif
1080 }
1081 else if (GET_CODE (PATTERN (insn)) == SET)
1082 offset = stack_adjust_offset (PATTERN (insn));
1083 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1084 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1085 {
1086 /* There may be stack adjustments inside compound insns. Search
1087 for them. */
1088 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1089 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1090 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1091 }
1092 else
1093 return;
1094
1095 if (offset == 0)
1096 return;
1097
1098 if (cfa.reg == STACK_POINTER_REGNUM)
1099 cfa.offset += offset;
1100
1101 #ifndef STACK_GROWS_DOWNWARD
1102 offset = -offset;
1103 #endif
1104
1105 args_size += offset;
1106 if (args_size < 0)
1107 args_size = 0;
1108
1109 label = dwarf2out_cfi_label ();
1110 def_cfa_1 (label, &cfa);
1111 dwarf2out_args_size (label, args_size);
1112 }
1113
1114 #endif
1115
1116 /* We delay emitting a register save until either (a) we reach the end
1117 of the prologue or (b) the register is clobbered. This clusters
1118 register saves so that there are fewer pc advances. */
1119
1120 struct queued_reg_save GTY(())
1121 {
1122 struct queued_reg_save *next;
1123 rtx reg;
1124 long cfa_offset;
1125 };
1126
1127 static GTY(()) struct queued_reg_save *queued_reg_saves;
1128
1129 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1130 static const char *last_reg_save_label;
1131
1132 static void
1133 queue_reg_save (label, reg, offset)
1134 const char *label;
1135 rtx reg;
1136 long offset;
1137 {
1138 struct queued_reg_save *q = ggc_alloc (sizeof (*q));
1139
1140 q->next = queued_reg_saves;
1141 q->reg = reg;
1142 q->cfa_offset = offset;
1143 queued_reg_saves = q;
1144
1145 last_reg_save_label = label;
1146 }
1147
1148 static void
1149 flush_queued_reg_saves ()
1150 {
1151 struct queued_reg_save *q, *next;
1152
1153 for (q = queued_reg_saves; q; q = next)
1154 {
1155 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1156 next = q->next;
1157 }
1158
1159 queued_reg_saves = NULL;
1160 last_reg_save_label = NULL;
1161 }
1162
1163 static bool
1164 clobbers_queued_reg_save (insn)
1165 rtx insn;
1166 {
1167 struct queued_reg_save *q;
1168
1169 for (q = queued_reg_saves; q; q = q->next)
1170 if (modified_in_p (q->reg, insn))
1171 return true;
1172
1173 return false;
1174 }
1175
1176
1177 /* A temporary register holding an integral value used in adjusting SP
1178 or setting up the store_reg. The "offset" field holds the integer
1179 value, not an offset. */
1180 static dw_cfa_location cfa_temp;
1181
1182 /* Record call frame debugging information for an expression EXPR,
1183 which either sets SP or FP (adjusting how we calculate the frame
1184 address) or saves a register to the stack. LABEL indicates the
1185 address of EXPR.
1186
1187 This function encodes a state machine mapping rtxes to actions on
1188 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1189 users need not read the source code.
1190
1191 The High-Level Picture
1192
1193 Changes in the register we use to calculate the CFA: Currently we
1194 assume that if you copy the CFA register into another register, we
1195 should take the other one as the new CFA register; this seems to
1196 work pretty well. If it's wrong for some target, it's simple
1197 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1198
1199 Changes in the register we use for saving registers to the stack:
1200 This is usually SP, but not always. Again, we deduce that if you
1201 copy SP into another register (and SP is not the CFA register),
1202 then the new register is the one we will be using for register
1203 saves. This also seems to work.
1204
1205 Register saves: There's not much guesswork about this one; if
1206 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1207 register save, and the register used to calculate the destination
1208 had better be the one we think we're using for this purpose.
1209
1210 Except: If the register being saved is the CFA register, and the
1211 offset is nonzero, we are saving the CFA, so we assume we have to
1212 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1213 the intent is to save the value of SP from the previous frame.
1214
1215 Invariants / Summaries of Rules
1216
1217 cfa current rule for calculating the CFA. It usually
1218 consists of a register and an offset.
1219 cfa_store register used by prologue code to save things to the stack
1220 cfa_store.offset is the offset from the value of
1221 cfa_store.reg to the actual CFA
1222 cfa_temp register holding an integral value. cfa_temp.offset
1223 stores the value, which will be used to adjust the
1224 stack pointer. cfa_temp is also used like cfa_store,
1225 to track stores to the stack via fp or a temp reg.
1226
1227 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1228 with cfa.reg as the first operand changes the cfa.reg and its
1229 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1230 cfa_temp.offset.
1231
1232 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1233 expression yielding a constant. This sets cfa_temp.reg
1234 and cfa_temp.offset.
1235
1236 Rule 5: Create a new register cfa_store used to save items to the
1237 stack.
1238
1239 Rules 10-14: Save a register to the stack. Define offset as the
1240 difference of the original location and cfa_store's
1241 location (or cfa_temp's location if cfa_temp is used).
1242
1243 The Rules
1244
1245 "{a,b}" indicates a choice of a xor b.
1246 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1247
1248 Rule 1:
1249 (set <reg1> <reg2>:cfa.reg)
1250 effects: cfa.reg = <reg1>
1251 cfa.offset unchanged
1252 cfa_temp.reg = <reg1>
1253 cfa_temp.offset = cfa.offset
1254
1255 Rule 2:
1256 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1257 {<const_int>,<reg>:cfa_temp.reg}))
1258 effects: cfa.reg = sp if fp used
1259 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1260 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1261 if cfa_store.reg==sp
1262
1263 Rule 3:
1264 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1265 effects: cfa.reg = fp
1266 cfa_offset += +/- <const_int>
1267
1268 Rule 4:
1269 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1270 constraints: <reg1> != fp
1271 <reg1> != sp
1272 effects: cfa.reg = <reg1>
1273 cfa_temp.reg = <reg1>
1274 cfa_temp.offset = cfa.offset
1275
1276 Rule 5:
1277 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1278 constraints: <reg1> != fp
1279 <reg1> != sp
1280 effects: cfa_store.reg = <reg1>
1281 cfa_store.offset = cfa.offset - cfa_temp.offset
1282
1283 Rule 6:
1284 (set <reg> <const_int>)
1285 effects: cfa_temp.reg = <reg>
1286 cfa_temp.offset = <const_int>
1287
1288 Rule 7:
1289 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1290 effects: cfa_temp.reg = <reg1>
1291 cfa_temp.offset |= <const_int>
1292
1293 Rule 8:
1294 (set <reg> (high <exp>))
1295 effects: none
1296
1297 Rule 9:
1298 (set <reg> (lo_sum <exp> <const_int>))
1299 effects: cfa_temp.reg = <reg>
1300 cfa_temp.offset = <const_int>
1301
1302 Rule 10:
1303 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1304 effects: cfa_store.offset -= <const_int>
1305 cfa.offset = cfa_store.offset if cfa.reg == sp
1306 cfa.reg = sp
1307 cfa.base_offset = -cfa_store.offset
1308
1309 Rule 11:
1310 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1311 effects: cfa_store.offset += -/+ mode_size(mem)
1312 cfa.offset = cfa_store.offset if cfa.reg == sp
1313 cfa.reg = sp
1314 cfa.base_offset = -cfa_store.offset
1315
1316 Rule 12:
1317 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1318
1319 <reg2>)
1320 effects: cfa.reg = <reg1>
1321 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1322
1323 Rule 13:
1324 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1325 effects: cfa.reg = <reg1>
1326 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1327
1328 Rule 14:
1329 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1330 effects: cfa.reg = <reg1>
1331 cfa.base_offset = -cfa_temp.offset
1332 cfa_temp.offset -= mode_size(mem) */
1333
1334 static void
1335 dwarf2out_frame_debug_expr (expr, label)
1336 rtx expr;
1337 const char *label;
1338 {
1339 rtx src, dest;
1340 HOST_WIDE_INT offset;
1341
1342 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1343 the PARALLEL independently. The first element is always processed if
1344 it is a SET. This is for backward compatibility. Other elements
1345 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1346 flag is set in them. */
1347 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1348 {
1349 int par_index;
1350 int limit = XVECLEN (expr, 0);
1351
1352 for (par_index = 0; par_index < limit; par_index++)
1353 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1354 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1355 || par_index == 0))
1356 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1357
1358 return;
1359 }
1360
1361 if (GET_CODE (expr) != SET)
1362 abort ();
1363
1364 src = SET_SRC (expr);
1365 dest = SET_DEST (expr);
1366
1367 switch (GET_CODE (dest))
1368 {
1369 case REG:
1370 /* Rule 1 */
1371 /* Update the CFA rule wrt SP or FP. Make sure src is
1372 relative to the current CFA register. */
1373 switch (GET_CODE (src))
1374 {
1375 /* Setting FP from SP. */
1376 case REG:
1377 if (cfa.reg == (unsigned) REGNO (src))
1378 /* OK. */
1379 ;
1380 else
1381 abort ();
1382
1383 /* We used to require that dest be either SP or FP, but the
1384 ARM copies SP to a temporary register, and from there to
1385 FP. So we just rely on the backends to only set
1386 RTX_FRAME_RELATED_P on appropriate insns. */
1387 cfa.reg = REGNO (dest);
1388 cfa_temp.reg = cfa.reg;
1389 cfa_temp.offset = cfa.offset;
1390 break;
1391
1392 case PLUS:
1393 case MINUS:
1394 case LO_SUM:
1395 if (dest == stack_pointer_rtx)
1396 {
1397 /* Rule 2 */
1398 /* Adjusting SP. */
1399 switch (GET_CODE (XEXP (src, 1)))
1400 {
1401 case CONST_INT:
1402 offset = INTVAL (XEXP (src, 1));
1403 break;
1404 case REG:
1405 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1406 abort ();
1407 offset = cfa_temp.offset;
1408 break;
1409 default:
1410 abort ();
1411 }
1412
1413 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1414 {
1415 /* Restoring SP from FP in the epilogue. */
1416 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1417 abort ();
1418 cfa.reg = STACK_POINTER_REGNUM;
1419 }
1420 else if (GET_CODE (src) == LO_SUM)
1421 /* Assume we've set the source reg of the LO_SUM from sp. */
1422 ;
1423 else if (XEXP (src, 0) != stack_pointer_rtx)
1424 abort ();
1425
1426 if (GET_CODE (src) != MINUS)
1427 offset = -offset;
1428 if (cfa.reg == STACK_POINTER_REGNUM)
1429 cfa.offset += offset;
1430 if (cfa_store.reg == STACK_POINTER_REGNUM)
1431 cfa_store.offset += offset;
1432 }
1433 else if (dest == hard_frame_pointer_rtx)
1434 {
1435 /* Rule 3 */
1436 /* Either setting the FP from an offset of the SP,
1437 or adjusting the FP */
1438 if (! frame_pointer_needed)
1439 abort ();
1440
1441 if (GET_CODE (XEXP (src, 0)) == REG
1442 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1443 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1444 {
1445 offset = INTVAL (XEXP (src, 1));
1446 if (GET_CODE (src) != MINUS)
1447 offset = -offset;
1448 cfa.offset += offset;
1449 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1450 }
1451 else
1452 abort ();
1453 }
1454 else
1455 {
1456 if (GET_CODE (src) == MINUS)
1457 abort ();
1458
1459 /* Rule 4 */
1460 if (GET_CODE (XEXP (src, 0)) == REG
1461 && REGNO (XEXP (src, 0)) == cfa.reg
1462 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1463 {
1464 /* Setting a temporary CFA register that will be copied
1465 into the FP later on. */
1466 offset = - INTVAL (XEXP (src, 1));
1467 cfa.offset += offset;
1468 cfa.reg = REGNO (dest);
1469 /* Or used to save regs to the stack. */
1470 cfa_temp.reg = cfa.reg;
1471 cfa_temp.offset = cfa.offset;
1472 }
1473
1474 /* Rule 5 */
1475 else if (GET_CODE (XEXP (src, 0)) == REG
1476 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1477 && XEXP (src, 1) == stack_pointer_rtx)
1478 {
1479 /* Setting a scratch register that we will use instead
1480 of SP for saving registers to the stack. */
1481 if (cfa.reg != STACK_POINTER_REGNUM)
1482 abort ();
1483 cfa_store.reg = REGNO (dest);
1484 cfa_store.offset = cfa.offset - cfa_temp.offset;
1485 }
1486
1487 /* Rule 9 */
1488 else if (GET_CODE (src) == LO_SUM
1489 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1490 {
1491 cfa_temp.reg = REGNO (dest);
1492 cfa_temp.offset = INTVAL (XEXP (src, 1));
1493 }
1494 else
1495 abort ();
1496 }
1497 break;
1498
1499 /* Rule 6 */
1500 case CONST_INT:
1501 cfa_temp.reg = REGNO (dest);
1502 cfa_temp.offset = INTVAL (src);
1503 break;
1504
1505 /* Rule 7 */
1506 case IOR:
1507 if (GET_CODE (XEXP (src, 0)) != REG
1508 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1509 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1510 abort ();
1511
1512 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1513 cfa_temp.reg = REGNO (dest);
1514 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1515 break;
1516
1517 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1518 which will fill in all of the bits. */
1519 /* Rule 8 */
1520 case HIGH:
1521 break;
1522
1523 default:
1524 abort ();
1525 }
1526
1527 def_cfa_1 (label, &cfa);
1528 break;
1529
1530 case MEM:
1531 if (GET_CODE (src) != REG)
1532 abort ();
1533
1534 /* Saving a register to the stack. Make sure dest is relative to the
1535 CFA register. */
1536 switch (GET_CODE (XEXP (dest, 0)))
1537 {
1538 /* Rule 10 */
1539 /* With a push. */
1540 case PRE_MODIFY:
1541 /* We can't handle variable size modifications. */
1542 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1543 abort ();
1544 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1545
1546 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1547 || cfa_store.reg != STACK_POINTER_REGNUM)
1548 abort ();
1549
1550 cfa_store.offset += offset;
1551 if (cfa.reg == STACK_POINTER_REGNUM)
1552 cfa.offset = cfa_store.offset;
1553
1554 offset = -cfa_store.offset;
1555 break;
1556
1557 /* Rule 11 */
1558 case PRE_INC:
1559 case PRE_DEC:
1560 offset = GET_MODE_SIZE (GET_MODE (dest));
1561 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1562 offset = -offset;
1563
1564 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1565 || cfa_store.reg != STACK_POINTER_REGNUM)
1566 abort ();
1567
1568 cfa_store.offset += offset;
1569 if (cfa.reg == STACK_POINTER_REGNUM)
1570 cfa.offset = cfa_store.offset;
1571
1572 offset = -cfa_store.offset;
1573 break;
1574
1575 /* Rule 12 */
1576 /* With an offset. */
1577 case PLUS:
1578 case MINUS:
1579 case LO_SUM:
1580 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1581 abort ();
1582 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1583 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1584 offset = -offset;
1585
1586 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1587 offset -= cfa_store.offset;
1588 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1589 offset -= cfa_temp.offset;
1590 else
1591 abort ();
1592 break;
1593
1594 /* Rule 13 */
1595 /* Without an offset. */
1596 case REG:
1597 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1598 offset = -cfa_store.offset;
1599 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1600 offset = -cfa_temp.offset;
1601 else
1602 abort ();
1603 break;
1604
1605 /* Rule 14 */
1606 case POST_INC:
1607 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1608 abort ();
1609 offset = -cfa_temp.offset;
1610 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1611 break;
1612
1613 default:
1614 abort ();
1615 }
1616
1617 if (REGNO (src) != STACK_POINTER_REGNUM
1618 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1619 && (unsigned) REGNO (src) == cfa.reg)
1620 {
1621 /* We're storing the current CFA reg into the stack. */
1622
1623 if (cfa.offset == 0)
1624 {
1625 /* If the source register is exactly the CFA, assume
1626 we're saving SP like any other register; this happens
1627 on the ARM. */
1628 def_cfa_1 (label, &cfa);
1629 queue_reg_save (label, stack_pointer_rtx, offset);
1630 break;
1631 }
1632 else
1633 {
1634 /* Otherwise, we'll need to look in the stack to
1635 calculate the CFA. */
1636 rtx x = XEXP (dest, 0);
1637
1638 if (GET_CODE (x) != REG)
1639 x = XEXP (x, 0);
1640 if (GET_CODE (x) != REG)
1641 abort ();
1642
1643 cfa.reg = REGNO (x);
1644 cfa.base_offset = offset;
1645 cfa.indirect = 1;
1646 def_cfa_1 (label, &cfa);
1647 break;
1648 }
1649 }
1650
1651 def_cfa_1 (label, &cfa);
1652 queue_reg_save (label, src, offset);
1653 break;
1654
1655 default:
1656 abort ();
1657 }
1658 }
1659
1660 /* Record call frame debugging information for INSN, which either
1661 sets SP or FP (adjusting how we calculate the frame address) or saves a
1662 register to the stack. If INSN is NULL_RTX, initialize our state. */
1663
1664 void
1665 dwarf2out_frame_debug (insn)
1666 rtx insn;
1667 {
1668 const char *label;
1669 rtx src;
1670
1671 if (insn == NULL_RTX)
1672 {
1673 /* Flush any queued register saves. */
1674 flush_queued_reg_saves ();
1675
1676 /* Set up state for generating call frame debug info. */
1677 lookup_cfa (&cfa);
1678 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1679 abort ();
1680
1681 cfa.reg = STACK_POINTER_REGNUM;
1682 cfa_store = cfa;
1683 cfa_temp.reg = -1;
1684 cfa_temp.offset = 0;
1685 return;
1686 }
1687
1688 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1689 flush_queued_reg_saves ();
1690
1691 if (! RTX_FRAME_RELATED_P (insn))
1692 {
1693 if (!ACCUMULATE_OUTGOING_ARGS)
1694 dwarf2out_stack_adjust (insn);
1695
1696 return;
1697 }
1698
1699 label = dwarf2out_cfi_label ();
1700 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1701 if (src)
1702 insn = XEXP (src, 0);
1703 else
1704 insn = PATTERN (insn);
1705
1706 dwarf2out_frame_debug_expr (insn, label);
1707 }
1708
1709 #endif
1710
1711 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1712 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1713 PARAMS ((enum dwarf_call_frame_info cfi));
1714
1715 static enum dw_cfi_oprnd_type
1716 dw_cfi_oprnd1_desc (cfi)
1717 enum dwarf_call_frame_info cfi;
1718 {
1719 switch (cfi)
1720 {
1721 case DW_CFA_nop:
1722 case DW_CFA_GNU_window_save:
1723 return dw_cfi_oprnd_unused;
1724
1725 case DW_CFA_set_loc:
1726 case DW_CFA_advance_loc1:
1727 case DW_CFA_advance_loc2:
1728 case DW_CFA_advance_loc4:
1729 case DW_CFA_MIPS_advance_loc8:
1730 return dw_cfi_oprnd_addr;
1731
1732 case DW_CFA_offset:
1733 case DW_CFA_offset_extended:
1734 case DW_CFA_def_cfa:
1735 case DW_CFA_offset_extended_sf:
1736 case DW_CFA_def_cfa_sf:
1737 case DW_CFA_restore_extended:
1738 case DW_CFA_undefined:
1739 case DW_CFA_same_value:
1740 case DW_CFA_def_cfa_register:
1741 case DW_CFA_register:
1742 return dw_cfi_oprnd_reg_num;
1743
1744 case DW_CFA_def_cfa_offset:
1745 case DW_CFA_GNU_args_size:
1746 case DW_CFA_def_cfa_offset_sf:
1747 return dw_cfi_oprnd_offset;
1748
1749 case DW_CFA_def_cfa_expression:
1750 case DW_CFA_expression:
1751 return dw_cfi_oprnd_loc;
1752
1753 default:
1754 abort ();
1755 }
1756 }
1757
1758 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1759 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1760 PARAMS ((enum dwarf_call_frame_info cfi));
1761
1762 static enum dw_cfi_oprnd_type
1763 dw_cfi_oprnd2_desc (cfi)
1764 enum dwarf_call_frame_info cfi;
1765 {
1766 switch (cfi)
1767 {
1768 case DW_CFA_def_cfa:
1769 case DW_CFA_def_cfa_sf:
1770 case DW_CFA_offset:
1771 case DW_CFA_offset_extended_sf:
1772 case DW_CFA_offset_extended:
1773 return dw_cfi_oprnd_offset;
1774
1775 case DW_CFA_register:
1776 return dw_cfi_oprnd_reg_num;
1777
1778 default:
1779 return dw_cfi_oprnd_unused;
1780 }
1781 }
1782
1783 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1784
1785 /* Output a Call Frame Information opcode and its operand(s). */
1786
1787 static void
1788 output_cfi (cfi, fde, for_eh)
1789 dw_cfi_ref cfi;
1790 dw_fde_ref fde;
1791 int for_eh;
1792 {
1793 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1794 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1795 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1796 "DW_CFA_advance_loc 0x%lx",
1797 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1798 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1799 {
1800 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1801 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1802 "DW_CFA_offset, column 0x%lx",
1803 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1804 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1805 }
1806 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1807 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1808 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1809 "DW_CFA_restore, column 0x%lx",
1810 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1811 else
1812 {
1813 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1814 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1815
1816 switch (cfi->dw_cfi_opc)
1817 {
1818 case DW_CFA_set_loc:
1819 if (for_eh)
1820 dw2_asm_output_encoded_addr_rtx (
1821 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1822 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1823 NULL);
1824 else
1825 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1826 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1827 break;
1828
1829 case DW_CFA_advance_loc1:
1830 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1831 fde->dw_fde_current_label, NULL);
1832 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1833 break;
1834
1835 case DW_CFA_advance_loc2:
1836 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1837 fde->dw_fde_current_label, NULL);
1838 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1839 break;
1840
1841 case DW_CFA_advance_loc4:
1842 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1843 fde->dw_fde_current_label, NULL);
1844 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1845 break;
1846
1847 case DW_CFA_MIPS_advance_loc8:
1848 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1849 fde->dw_fde_current_label, NULL);
1850 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1851 break;
1852
1853 case DW_CFA_offset_extended:
1854 case DW_CFA_def_cfa:
1855 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1856 NULL);
1857 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1858 break;
1859
1860 case DW_CFA_offset_extended_sf:
1861 case DW_CFA_def_cfa_sf:
1862 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1863 NULL);
1864 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1865 break;
1866
1867 case DW_CFA_restore_extended:
1868 case DW_CFA_undefined:
1869 case DW_CFA_same_value:
1870 case DW_CFA_def_cfa_register:
1871 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1872 NULL);
1873 break;
1874
1875 case DW_CFA_register:
1876 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1877 NULL);
1878 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_reg_num,
1879 NULL);
1880 break;
1881
1882 case DW_CFA_def_cfa_offset:
1883 case DW_CFA_GNU_args_size:
1884 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1885 break;
1886
1887 case DW_CFA_def_cfa_offset_sf:
1888 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1889 break;
1890
1891 case DW_CFA_GNU_window_save:
1892 break;
1893
1894 case DW_CFA_def_cfa_expression:
1895 case DW_CFA_expression:
1896 output_cfa_loc (cfi);
1897 break;
1898
1899 case DW_CFA_GNU_negative_offset_extended:
1900 /* Obsoleted by DW_CFA_offset_extended_sf. */
1901 abort ();
1902
1903 default:
1904 break;
1905 }
1906 }
1907 }
1908
1909 /* Output the call frame information used to used to record information
1910 that relates to calculating the frame pointer, and records the
1911 location of saved registers. */
1912
1913 static void
1914 output_call_frame_info (for_eh)
1915 int for_eh;
1916 {
1917 unsigned int i;
1918 dw_fde_ref fde;
1919 dw_cfi_ref cfi;
1920 char l1[20], l2[20], section_start_label[20];
1921 bool any_lsda_needed = false;
1922 char augmentation[6];
1923 int augmentation_size;
1924 int fde_encoding = DW_EH_PE_absptr;
1925 int per_encoding = DW_EH_PE_absptr;
1926 int lsda_encoding = DW_EH_PE_absptr;
1927
1928 /* Don't emit a CIE if there won't be any FDEs. */
1929 if (fde_table_in_use == 0)
1930 return;
1931
1932 /* If we don't have any functions we'll want to unwind out of, don't
1933 emit any EH unwind information. Note that if exceptions aren't
1934 enabled, we won't have collected nothrow information, and if we
1935 asked for asynchronous tables, we always want this info. */
1936 if (for_eh)
1937 {
1938 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
1939
1940 for (i = 0; i < fde_table_in_use; i++)
1941 if (fde_table[i].uses_eh_lsda)
1942 any_eh_needed = any_lsda_needed = true;
1943 else if (! fde_table[i].nothrow)
1944 any_eh_needed = true;
1945
1946 if (! any_eh_needed)
1947 return;
1948 }
1949
1950 /* We're going to be generating comments, so turn on app. */
1951 if (flag_debug_asm)
1952 app_enable ();
1953
1954 if (for_eh)
1955 (*targetm.asm_out.eh_frame_section) ();
1956 else
1957 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1958
1959 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1960 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1961
1962 /* Output the CIE. */
1963 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1964 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1965 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1966 "Length of Common Information Entry");
1967 ASM_OUTPUT_LABEL (asm_out_file, l1);
1968
1969 /* Now that the CIE pointer is PC-relative for EH,
1970 use 0 to identify the CIE. */
1971 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1972 (for_eh ? 0 : DW_CIE_ID),
1973 "CIE Identifier Tag");
1974
1975 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1976
1977 augmentation[0] = 0;
1978 augmentation_size = 0;
1979 if (for_eh)
1980 {
1981 char *p;
1982
1983 /* Augmentation:
1984 z Indicates that a uleb128 is present to size the
1985 augmentation section.
1986 L Indicates the encoding (and thus presence) of
1987 an LSDA pointer in the FDE augmentation.
1988 R Indicates a non-default pointer encoding for
1989 FDE code pointers.
1990 P Indicates the presence of an encoding + language
1991 personality routine in the CIE augmentation. */
1992
1993 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1994 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
1995 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1996
1997 p = augmentation + 1;
1998 if (eh_personality_libfunc)
1999 {
2000 *p++ = 'P';
2001 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2002 }
2003 if (any_lsda_needed)
2004 {
2005 *p++ = 'L';
2006 augmentation_size += 1;
2007 }
2008 if (fde_encoding != DW_EH_PE_absptr)
2009 {
2010 *p++ = 'R';
2011 augmentation_size += 1;
2012 }
2013 if (p > augmentation + 1)
2014 {
2015 augmentation[0] = 'z';
2016 *p = '\0';
2017 }
2018
2019 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2020 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2021 {
2022 int offset = ( 4 /* Length */
2023 + 4 /* CIE Id */
2024 + 1 /* CIE version */
2025 + strlen (augmentation) + 1 /* Augmentation */
2026 + size_of_uleb128 (1) /* Code alignment */
2027 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2028 + 1 /* RA column */
2029 + 1 /* Augmentation size */
2030 + 1 /* Personality encoding */ );
2031 int pad = -offset & (PTR_SIZE - 1);
2032
2033 augmentation_size += pad;
2034
2035 /* Augmentations should be small, so there's scarce need to
2036 iterate for a solution. Die if we exceed one uleb128 byte. */
2037 if (size_of_uleb128 (augmentation_size) != 1)
2038 abort ();
2039 }
2040 }
2041
2042 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2043 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2044 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2045 "CIE Data Alignment Factor");
2046 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2047
2048 if (augmentation[0])
2049 {
2050 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2051 if (eh_personality_libfunc)
2052 {
2053 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2054 eh_data_format_name (per_encoding));
2055 dw2_asm_output_encoded_addr_rtx (per_encoding,
2056 eh_personality_libfunc, NULL);
2057 }
2058
2059 if (any_lsda_needed)
2060 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2061 eh_data_format_name (lsda_encoding));
2062
2063 if (fde_encoding != DW_EH_PE_absptr)
2064 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2065 eh_data_format_name (fde_encoding));
2066 }
2067
2068 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2069 output_cfi (cfi, NULL, for_eh);
2070
2071 /* Pad the CIE out to an address sized boundary. */
2072 ASM_OUTPUT_ALIGN (asm_out_file,
2073 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2074 ASM_OUTPUT_LABEL (asm_out_file, l2);
2075
2076 /* Loop through all of the FDE's. */
2077 for (i = 0; i < fde_table_in_use; i++)
2078 {
2079 fde = &fde_table[i];
2080
2081 /* Don't emit EH unwind info for leaf functions that don't need it. */
2082 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2083 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2084 && !fde->uses_eh_lsda)
2085 continue;
2086
2087 (*targetm.asm_out.internal_label) (asm_out_file, FDE_LABEL, for_eh + i * 2);
2088 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2089 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2090 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2091 "FDE Length");
2092 ASM_OUTPUT_LABEL (asm_out_file, l1);
2093
2094 if (for_eh)
2095 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2096 else
2097 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2098 "FDE CIE offset");
2099
2100 if (for_eh)
2101 {
2102 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2103 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
2104 "FDE initial location");
2105 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2106 fde->dw_fde_end, fde->dw_fde_begin,
2107 "FDE address range");
2108 }
2109 else
2110 {
2111 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2112 "FDE initial location");
2113 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2114 fde->dw_fde_end, fde->dw_fde_begin,
2115 "FDE address range");
2116 }
2117
2118 if (augmentation[0])
2119 {
2120 if (any_lsda_needed)
2121 {
2122 int size = size_of_encoded_value (lsda_encoding);
2123
2124 if (lsda_encoding == DW_EH_PE_aligned)
2125 {
2126 int offset = ( 4 /* Length */
2127 + 4 /* CIE offset */
2128 + 2 * size_of_encoded_value (fde_encoding)
2129 + 1 /* Augmentation size */ );
2130 int pad = -offset & (PTR_SIZE - 1);
2131
2132 size += pad;
2133 if (size_of_uleb128 (size) != 1)
2134 abort ();
2135 }
2136
2137 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2138
2139 if (fde->uses_eh_lsda)
2140 {
2141 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2142 fde->funcdef_number);
2143 dw2_asm_output_encoded_addr_rtx (
2144 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2145 "Language Specific Data Area");
2146 }
2147 else
2148 {
2149 if (lsda_encoding == DW_EH_PE_aligned)
2150 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2151 dw2_asm_output_data
2152 (size_of_encoded_value (lsda_encoding), 0,
2153 "Language Specific Data Area (none)");
2154 }
2155 }
2156 else
2157 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2158 }
2159
2160 /* Loop through the Call Frame Instructions associated with
2161 this FDE. */
2162 fde->dw_fde_current_label = fde->dw_fde_begin;
2163 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2164 output_cfi (cfi, fde, for_eh);
2165
2166 /* Pad the FDE out to an address sized boundary. */
2167 ASM_OUTPUT_ALIGN (asm_out_file,
2168 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2169 ASM_OUTPUT_LABEL (asm_out_file, l2);
2170 }
2171
2172 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2173 dw2_asm_output_data (4, 0, "End of Table");
2174 #ifdef MIPS_DEBUGGING_INFO
2175 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2176 get a value of 0. Putting .align 0 after the label fixes it. */
2177 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2178 #endif
2179
2180 /* Turn off app to make assembly quicker. */
2181 if (flag_debug_asm)
2182 app_disable ();
2183 }
2184
2185 /* Output a marker (i.e. a label) for the beginning of a function, before
2186 the prologue. */
2187
2188 void
2189 dwarf2out_begin_prologue (line, file)
2190 unsigned int line ATTRIBUTE_UNUSED;
2191 const char *file ATTRIBUTE_UNUSED;
2192 {
2193 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2194 dw_fde_ref fde;
2195
2196 current_function_func_begin_label = 0;
2197
2198 #ifdef IA64_UNWIND_INFO
2199 /* ??? current_function_func_begin_label is also used by except.c
2200 for call-site information. We must emit this label if it might
2201 be used. */
2202 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2203 && ! dwarf2out_do_frame ())
2204 return;
2205 #else
2206 if (! dwarf2out_do_frame ())
2207 return;
2208 #endif
2209
2210 function_section (current_function_decl);
2211 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2212 current_function_funcdef_no);
2213 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2214 current_function_funcdef_no);
2215 current_function_func_begin_label = get_identifier (label);
2216
2217 #ifdef IA64_UNWIND_INFO
2218 /* We can elide the fde allocation if we're not emitting debug info. */
2219 if (! dwarf2out_do_frame ())
2220 return;
2221 #endif
2222
2223 /* Expand the fde table if necessary. */
2224 if (fde_table_in_use == fde_table_allocated)
2225 {
2226 fde_table_allocated += FDE_TABLE_INCREMENT;
2227 fde_table = ggc_realloc (fde_table,
2228 fde_table_allocated * sizeof (dw_fde_node));
2229 memset (fde_table + fde_table_in_use, 0,
2230 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2231 }
2232
2233 /* Record the FDE associated with this function. */
2234 current_funcdef_fde = fde_table_in_use;
2235
2236 /* Add the new FDE at the end of the fde_table. */
2237 fde = &fde_table[fde_table_in_use++];
2238 fde->dw_fde_begin = xstrdup (label);
2239 fde->dw_fde_current_label = NULL;
2240 fde->dw_fde_end = NULL;
2241 fde->dw_fde_cfi = NULL;
2242 fde->funcdef_number = current_function_funcdef_no;
2243 fde->nothrow = current_function_nothrow;
2244 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2245 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2246
2247 args_size = old_args_size = 0;
2248
2249 /* We only want to output line number information for the genuine dwarf2
2250 prologue case, not the eh frame case. */
2251 #ifdef DWARF2_DEBUGGING_INFO
2252 if (file)
2253 dwarf2out_source_line (line, file);
2254 #endif
2255 }
2256
2257 /* Output a marker (i.e. a label) for the absolute end of the generated code
2258 for a function definition. This gets called *after* the epilogue code has
2259 been generated. */
2260
2261 void
2262 dwarf2out_end_epilogue (line, file)
2263 unsigned int line ATTRIBUTE_UNUSED;
2264 const char *file ATTRIBUTE_UNUSED;
2265 {
2266 dw_fde_ref fde;
2267 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2268
2269 /* Output a label to mark the endpoint of the code generated for this
2270 function. */
2271 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2272 current_function_funcdef_no);
2273 ASM_OUTPUT_LABEL (asm_out_file, label);
2274 fde = &fde_table[fde_table_in_use - 1];
2275 fde->dw_fde_end = xstrdup (label);
2276 }
2277
2278 void
2279 dwarf2out_frame_init ()
2280 {
2281 /* Allocate the initial hunk of the fde_table. */
2282 fde_table = (dw_fde_ref) ggc_alloc_cleared (FDE_TABLE_INCREMENT
2283 * sizeof (dw_fde_node));
2284 fde_table_allocated = FDE_TABLE_INCREMENT;
2285 fde_table_in_use = 0;
2286
2287 /* Generate the CFA instructions common to all FDE's. Do it now for the
2288 sake of lookup_cfa. */
2289
2290 #ifdef DWARF2_UNWIND_INFO
2291 /* On entry, the Canonical Frame Address is at SP. */
2292 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2293 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2294 #endif
2295 }
2296
2297 void
2298 dwarf2out_frame_finish ()
2299 {
2300 /* Output call frame information. */
2301 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2302 output_call_frame_info (0);
2303
2304 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2305 output_call_frame_info (1);
2306 }
2307 #endif
2308 \f
2309 /* And now, the subset of the debugging information support code necessary
2310 for emitting location expressions. */
2311
2312 /* We need some way to distinguish DW_OP_addr with a direct symbol
2313 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2314 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2315
2316
2317 typedef struct dw_val_struct *dw_val_ref;
2318 typedef struct die_struct *dw_die_ref;
2319 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2320 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2321
2322 /* Each DIE may have a series of attribute/value pairs. Values
2323 can take on several forms. The forms that are used in this
2324 implementation are listed below. */
2325
2326 enum dw_val_class
2327 {
2328 dw_val_class_addr,
2329 dw_val_class_offset,
2330 dw_val_class_loc,
2331 dw_val_class_loc_list,
2332 dw_val_class_range_list,
2333 dw_val_class_const,
2334 dw_val_class_unsigned_const,
2335 dw_val_class_long_long,
2336 dw_val_class_float,
2337 dw_val_class_flag,
2338 dw_val_class_die_ref,
2339 dw_val_class_fde_ref,
2340 dw_val_class_lbl_id,
2341 dw_val_class_lbl_offset,
2342 dw_val_class_str
2343 };
2344
2345 /* Describe a double word constant value. */
2346 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2347
2348 typedef struct dw_long_long_struct GTY(())
2349 {
2350 unsigned long hi;
2351 unsigned long low;
2352 }
2353 dw_long_long_const;
2354
2355 /* Describe a floating point constant value. */
2356
2357 typedef struct dw_fp_struct GTY(())
2358 {
2359 long * GTY((length ("%h.length"))) array;
2360 unsigned length;
2361 }
2362 dw_float_const;
2363
2364 /* The dw_val_node describes an attribute's value, as it is
2365 represented internally. */
2366
2367 typedef struct dw_val_struct GTY(())
2368 {
2369 enum dw_val_class val_class;
2370 union dw_val_struct_union
2371 {
2372 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2373 long unsigned GTY ((tag ("dw_val_class_offset"))) val_offset;
2374 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2375 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2376 long int GTY ((default (""))) val_int;
2377 long unsigned GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2378 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2379 dw_float_const GTY ((tag ("dw_val_class_float"))) val_float;
2380 struct dw_val_die_union
2381 {
2382 dw_die_ref die;
2383 int external;
2384 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2385 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2386 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2387 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2388 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2389 }
2390 GTY ((desc ("%1.val_class"))) v;
2391 }
2392 dw_val_node;
2393
2394 /* Locations in memory are described using a sequence of stack machine
2395 operations. */
2396
2397 typedef struct dw_loc_descr_struct GTY(())
2398 {
2399 dw_loc_descr_ref dw_loc_next;
2400 enum dwarf_location_atom dw_loc_opc;
2401 dw_val_node dw_loc_oprnd1;
2402 dw_val_node dw_loc_oprnd2;
2403 int dw_loc_addr;
2404 }
2405 dw_loc_descr_node;
2406
2407 /* Location lists are ranges + location descriptions for that range,
2408 so you can track variables that are in different places over
2409 their entire life. */
2410 typedef struct dw_loc_list_struct GTY(())
2411 {
2412 dw_loc_list_ref dw_loc_next;
2413 const char *begin; /* Label for begin address of range */
2414 const char *end; /* Label for end address of range */
2415 char *ll_symbol; /* Label for beginning of location list.
2416 Only on head of list */
2417 const char *section; /* Section this loclist is relative to */
2418 dw_loc_descr_ref expr;
2419 } dw_loc_list_node;
2420
2421 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2422
2423 static const char *dwarf_stack_op_name PARAMS ((unsigned));
2424 static dw_loc_descr_ref new_loc_descr PARAMS ((enum dwarf_location_atom,
2425 unsigned long,
2426 unsigned long));
2427 static void add_loc_descr PARAMS ((dw_loc_descr_ref *,
2428 dw_loc_descr_ref));
2429 static unsigned long size_of_loc_descr PARAMS ((dw_loc_descr_ref));
2430 static unsigned long size_of_locs PARAMS ((dw_loc_descr_ref));
2431 static void output_loc_operands PARAMS ((dw_loc_descr_ref));
2432 static void output_loc_sequence PARAMS ((dw_loc_descr_ref));
2433
2434 /* Convert a DWARF stack opcode into its string name. */
2435
2436 static const char *
2437 dwarf_stack_op_name (op)
2438 unsigned op;
2439 {
2440 switch (op)
2441 {
2442 case DW_OP_addr:
2443 case INTERNAL_DW_OP_tls_addr:
2444 return "DW_OP_addr";
2445 case DW_OP_deref:
2446 return "DW_OP_deref";
2447 case DW_OP_const1u:
2448 return "DW_OP_const1u";
2449 case DW_OP_const1s:
2450 return "DW_OP_const1s";
2451 case DW_OP_const2u:
2452 return "DW_OP_const2u";
2453 case DW_OP_const2s:
2454 return "DW_OP_const2s";
2455 case DW_OP_const4u:
2456 return "DW_OP_const4u";
2457 case DW_OP_const4s:
2458 return "DW_OP_const4s";
2459 case DW_OP_const8u:
2460 return "DW_OP_const8u";
2461 case DW_OP_const8s:
2462 return "DW_OP_const8s";
2463 case DW_OP_constu:
2464 return "DW_OP_constu";
2465 case DW_OP_consts:
2466 return "DW_OP_consts";
2467 case DW_OP_dup:
2468 return "DW_OP_dup";
2469 case DW_OP_drop:
2470 return "DW_OP_drop";
2471 case DW_OP_over:
2472 return "DW_OP_over";
2473 case DW_OP_pick:
2474 return "DW_OP_pick";
2475 case DW_OP_swap:
2476 return "DW_OP_swap";
2477 case DW_OP_rot:
2478 return "DW_OP_rot";
2479 case DW_OP_xderef:
2480 return "DW_OP_xderef";
2481 case DW_OP_abs:
2482 return "DW_OP_abs";
2483 case DW_OP_and:
2484 return "DW_OP_and";
2485 case DW_OP_div:
2486 return "DW_OP_div";
2487 case DW_OP_minus:
2488 return "DW_OP_minus";
2489 case DW_OP_mod:
2490 return "DW_OP_mod";
2491 case DW_OP_mul:
2492 return "DW_OP_mul";
2493 case DW_OP_neg:
2494 return "DW_OP_neg";
2495 case DW_OP_not:
2496 return "DW_OP_not";
2497 case DW_OP_or:
2498 return "DW_OP_or";
2499 case DW_OP_plus:
2500 return "DW_OP_plus";
2501 case DW_OP_plus_uconst:
2502 return "DW_OP_plus_uconst";
2503 case DW_OP_shl:
2504 return "DW_OP_shl";
2505 case DW_OP_shr:
2506 return "DW_OP_shr";
2507 case DW_OP_shra:
2508 return "DW_OP_shra";
2509 case DW_OP_xor:
2510 return "DW_OP_xor";
2511 case DW_OP_bra:
2512 return "DW_OP_bra";
2513 case DW_OP_eq:
2514 return "DW_OP_eq";
2515 case DW_OP_ge:
2516 return "DW_OP_ge";
2517 case DW_OP_gt:
2518 return "DW_OP_gt";
2519 case DW_OP_le:
2520 return "DW_OP_le";
2521 case DW_OP_lt:
2522 return "DW_OP_lt";
2523 case DW_OP_ne:
2524 return "DW_OP_ne";
2525 case DW_OP_skip:
2526 return "DW_OP_skip";
2527 case DW_OP_lit0:
2528 return "DW_OP_lit0";
2529 case DW_OP_lit1:
2530 return "DW_OP_lit1";
2531 case DW_OP_lit2:
2532 return "DW_OP_lit2";
2533 case DW_OP_lit3:
2534 return "DW_OP_lit3";
2535 case DW_OP_lit4:
2536 return "DW_OP_lit4";
2537 case DW_OP_lit5:
2538 return "DW_OP_lit5";
2539 case DW_OP_lit6:
2540 return "DW_OP_lit6";
2541 case DW_OP_lit7:
2542 return "DW_OP_lit7";
2543 case DW_OP_lit8:
2544 return "DW_OP_lit8";
2545 case DW_OP_lit9:
2546 return "DW_OP_lit9";
2547 case DW_OP_lit10:
2548 return "DW_OP_lit10";
2549 case DW_OP_lit11:
2550 return "DW_OP_lit11";
2551 case DW_OP_lit12:
2552 return "DW_OP_lit12";
2553 case DW_OP_lit13:
2554 return "DW_OP_lit13";
2555 case DW_OP_lit14:
2556 return "DW_OP_lit14";
2557 case DW_OP_lit15:
2558 return "DW_OP_lit15";
2559 case DW_OP_lit16:
2560 return "DW_OP_lit16";
2561 case DW_OP_lit17:
2562 return "DW_OP_lit17";
2563 case DW_OP_lit18:
2564 return "DW_OP_lit18";
2565 case DW_OP_lit19:
2566 return "DW_OP_lit19";
2567 case DW_OP_lit20:
2568 return "DW_OP_lit20";
2569 case DW_OP_lit21:
2570 return "DW_OP_lit21";
2571 case DW_OP_lit22:
2572 return "DW_OP_lit22";
2573 case DW_OP_lit23:
2574 return "DW_OP_lit23";
2575 case DW_OP_lit24:
2576 return "DW_OP_lit24";
2577 case DW_OP_lit25:
2578 return "DW_OP_lit25";
2579 case DW_OP_lit26:
2580 return "DW_OP_lit26";
2581 case DW_OP_lit27:
2582 return "DW_OP_lit27";
2583 case DW_OP_lit28:
2584 return "DW_OP_lit28";
2585 case DW_OP_lit29:
2586 return "DW_OP_lit29";
2587 case DW_OP_lit30:
2588 return "DW_OP_lit30";
2589 case DW_OP_lit31:
2590 return "DW_OP_lit31";
2591 case DW_OP_reg0:
2592 return "DW_OP_reg0";
2593 case DW_OP_reg1:
2594 return "DW_OP_reg1";
2595 case DW_OP_reg2:
2596 return "DW_OP_reg2";
2597 case DW_OP_reg3:
2598 return "DW_OP_reg3";
2599 case DW_OP_reg4:
2600 return "DW_OP_reg4";
2601 case DW_OP_reg5:
2602 return "DW_OP_reg5";
2603 case DW_OP_reg6:
2604 return "DW_OP_reg6";
2605 case DW_OP_reg7:
2606 return "DW_OP_reg7";
2607 case DW_OP_reg8:
2608 return "DW_OP_reg8";
2609 case DW_OP_reg9:
2610 return "DW_OP_reg9";
2611 case DW_OP_reg10:
2612 return "DW_OP_reg10";
2613 case DW_OP_reg11:
2614 return "DW_OP_reg11";
2615 case DW_OP_reg12:
2616 return "DW_OP_reg12";
2617 case DW_OP_reg13:
2618 return "DW_OP_reg13";
2619 case DW_OP_reg14:
2620 return "DW_OP_reg14";
2621 case DW_OP_reg15:
2622 return "DW_OP_reg15";
2623 case DW_OP_reg16:
2624 return "DW_OP_reg16";
2625 case DW_OP_reg17:
2626 return "DW_OP_reg17";
2627 case DW_OP_reg18:
2628 return "DW_OP_reg18";
2629 case DW_OP_reg19:
2630 return "DW_OP_reg19";
2631 case DW_OP_reg20:
2632 return "DW_OP_reg20";
2633 case DW_OP_reg21:
2634 return "DW_OP_reg21";
2635 case DW_OP_reg22:
2636 return "DW_OP_reg22";
2637 case DW_OP_reg23:
2638 return "DW_OP_reg23";
2639 case DW_OP_reg24:
2640 return "DW_OP_reg24";
2641 case DW_OP_reg25:
2642 return "DW_OP_reg25";
2643 case DW_OP_reg26:
2644 return "DW_OP_reg26";
2645 case DW_OP_reg27:
2646 return "DW_OP_reg27";
2647 case DW_OP_reg28:
2648 return "DW_OP_reg28";
2649 case DW_OP_reg29:
2650 return "DW_OP_reg29";
2651 case DW_OP_reg30:
2652 return "DW_OP_reg30";
2653 case DW_OP_reg31:
2654 return "DW_OP_reg31";
2655 case DW_OP_breg0:
2656 return "DW_OP_breg0";
2657 case DW_OP_breg1:
2658 return "DW_OP_breg1";
2659 case DW_OP_breg2:
2660 return "DW_OP_breg2";
2661 case DW_OP_breg3:
2662 return "DW_OP_breg3";
2663 case DW_OP_breg4:
2664 return "DW_OP_breg4";
2665 case DW_OP_breg5:
2666 return "DW_OP_breg5";
2667 case DW_OP_breg6:
2668 return "DW_OP_breg6";
2669 case DW_OP_breg7:
2670 return "DW_OP_breg7";
2671 case DW_OP_breg8:
2672 return "DW_OP_breg8";
2673 case DW_OP_breg9:
2674 return "DW_OP_breg9";
2675 case DW_OP_breg10:
2676 return "DW_OP_breg10";
2677 case DW_OP_breg11:
2678 return "DW_OP_breg11";
2679 case DW_OP_breg12:
2680 return "DW_OP_breg12";
2681 case DW_OP_breg13:
2682 return "DW_OP_breg13";
2683 case DW_OP_breg14:
2684 return "DW_OP_breg14";
2685 case DW_OP_breg15:
2686 return "DW_OP_breg15";
2687 case DW_OP_breg16:
2688 return "DW_OP_breg16";
2689 case DW_OP_breg17:
2690 return "DW_OP_breg17";
2691 case DW_OP_breg18:
2692 return "DW_OP_breg18";
2693 case DW_OP_breg19:
2694 return "DW_OP_breg19";
2695 case DW_OP_breg20:
2696 return "DW_OP_breg20";
2697 case DW_OP_breg21:
2698 return "DW_OP_breg21";
2699 case DW_OP_breg22:
2700 return "DW_OP_breg22";
2701 case DW_OP_breg23:
2702 return "DW_OP_breg23";
2703 case DW_OP_breg24:
2704 return "DW_OP_breg24";
2705 case DW_OP_breg25:
2706 return "DW_OP_breg25";
2707 case DW_OP_breg26:
2708 return "DW_OP_breg26";
2709 case DW_OP_breg27:
2710 return "DW_OP_breg27";
2711 case DW_OP_breg28:
2712 return "DW_OP_breg28";
2713 case DW_OP_breg29:
2714 return "DW_OP_breg29";
2715 case DW_OP_breg30:
2716 return "DW_OP_breg30";
2717 case DW_OP_breg31:
2718 return "DW_OP_breg31";
2719 case DW_OP_regx:
2720 return "DW_OP_regx";
2721 case DW_OP_fbreg:
2722 return "DW_OP_fbreg";
2723 case DW_OP_bregx:
2724 return "DW_OP_bregx";
2725 case DW_OP_piece:
2726 return "DW_OP_piece";
2727 case DW_OP_deref_size:
2728 return "DW_OP_deref_size";
2729 case DW_OP_xderef_size:
2730 return "DW_OP_xderef_size";
2731 case DW_OP_nop:
2732 return "DW_OP_nop";
2733 case DW_OP_push_object_address:
2734 return "DW_OP_push_object_address";
2735 case DW_OP_call2:
2736 return "DW_OP_call2";
2737 case DW_OP_call4:
2738 return "DW_OP_call4";
2739 case DW_OP_call_ref:
2740 return "DW_OP_call_ref";
2741 case DW_OP_GNU_push_tls_address:
2742 return "DW_OP_GNU_push_tls_address";
2743 default:
2744 return "OP_<unknown>";
2745 }
2746 }
2747
2748 /* Return a pointer to a newly allocated location description. Location
2749 descriptions are simple expression terms that can be strung
2750 together to form more complicated location (address) descriptions. */
2751
2752 static inline dw_loc_descr_ref
2753 new_loc_descr (op, oprnd1, oprnd2)
2754 enum dwarf_location_atom op;
2755 unsigned long oprnd1;
2756 unsigned long oprnd2;
2757 {
2758 dw_loc_descr_ref descr
2759 = (dw_loc_descr_ref) ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2760
2761 descr->dw_loc_opc = op;
2762 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2763 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2764 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2765 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2766
2767 return descr;
2768 }
2769
2770
2771 /* Add a location description term to a location description expression. */
2772
2773 static inline void
2774 add_loc_descr (list_head, descr)
2775 dw_loc_descr_ref *list_head;
2776 dw_loc_descr_ref descr;
2777 {
2778 dw_loc_descr_ref *d;
2779
2780 /* Find the end of the chain. */
2781 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2782 ;
2783
2784 *d = descr;
2785 }
2786
2787 /* Return the size of a location descriptor. */
2788
2789 static unsigned long
2790 size_of_loc_descr (loc)
2791 dw_loc_descr_ref loc;
2792 {
2793 unsigned long size = 1;
2794
2795 switch (loc->dw_loc_opc)
2796 {
2797 case DW_OP_addr:
2798 case INTERNAL_DW_OP_tls_addr:
2799 size += DWARF2_ADDR_SIZE;
2800 break;
2801 case DW_OP_const1u:
2802 case DW_OP_const1s:
2803 size += 1;
2804 break;
2805 case DW_OP_const2u:
2806 case DW_OP_const2s:
2807 size += 2;
2808 break;
2809 case DW_OP_const4u:
2810 case DW_OP_const4s:
2811 size += 4;
2812 break;
2813 case DW_OP_const8u:
2814 case DW_OP_const8s:
2815 size += 8;
2816 break;
2817 case DW_OP_constu:
2818 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2819 break;
2820 case DW_OP_consts:
2821 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2822 break;
2823 case DW_OP_pick:
2824 size += 1;
2825 break;
2826 case DW_OP_plus_uconst:
2827 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2828 break;
2829 case DW_OP_skip:
2830 case DW_OP_bra:
2831 size += 2;
2832 break;
2833 case DW_OP_breg0:
2834 case DW_OP_breg1:
2835 case DW_OP_breg2:
2836 case DW_OP_breg3:
2837 case DW_OP_breg4:
2838 case DW_OP_breg5:
2839 case DW_OP_breg6:
2840 case DW_OP_breg7:
2841 case DW_OP_breg8:
2842 case DW_OP_breg9:
2843 case DW_OP_breg10:
2844 case DW_OP_breg11:
2845 case DW_OP_breg12:
2846 case DW_OP_breg13:
2847 case DW_OP_breg14:
2848 case DW_OP_breg15:
2849 case DW_OP_breg16:
2850 case DW_OP_breg17:
2851 case DW_OP_breg18:
2852 case DW_OP_breg19:
2853 case DW_OP_breg20:
2854 case DW_OP_breg21:
2855 case DW_OP_breg22:
2856 case DW_OP_breg23:
2857 case DW_OP_breg24:
2858 case DW_OP_breg25:
2859 case DW_OP_breg26:
2860 case DW_OP_breg27:
2861 case DW_OP_breg28:
2862 case DW_OP_breg29:
2863 case DW_OP_breg30:
2864 case DW_OP_breg31:
2865 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2866 break;
2867 case DW_OP_regx:
2868 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2869 break;
2870 case DW_OP_fbreg:
2871 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2872 break;
2873 case DW_OP_bregx:
2874 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2875 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2876 break;
2877 case DW_OP_piece:
2878 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2879 break;
2880 case DW_OP_deref_size:
2881 case DW_OP_xderef_size:
2882 size += 1;
2883 break;
2884 case DW_OP_call2:
2885 size += 2;
2886 break;
2887 case DW_OP_call4:
2888 size += 4;
2889 break;
2890 case DW_OP_call_ref:
2891 size += DWARF2_ADDR_SIZE;
2892 break;
2893 default:
2894 break;
2895 }
2896
2897 return size;
2898 }
2899
2900 /* Return the size of a series of location descriptors. */
2901
2902 static unsigned long
2903 size_of_locs (loc)
2904 dw_loc_descr_ref loc;
2905 {
2906 unsigned long size;
2907
2908 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2909 {
2910 loc->dw_loc_addr = size;
2911 size += size_of_loc_descr (loc);
2912 }
2913
2914 return size;
2915 }
2916
2917 /* Output location description stack opcode's operands (if any). */
2918
2919 static void
2920 output_loc_operands (loc)
2921 dw_loc_descr_ref loc;
2922 {
2923 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2924 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2925
2926 switch (loc->dw_loc_opc)
2927 {
2928 #ifdef DWARF2_DEBUGGING_INFO
2929 case DW_OP_addr:
2930 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2931 break;
2932 case DW_OP_const2u:
2933 case DW_OP_const2s:
2934 dw2_asm_output_data (2, val1->v.val_int, NULL);
2935 break;
2936 case DW_OP_const4u:
2937 case DW_OP_const4s:
2938 dw2_asm_output_data (4, val1->v.val_int, NULL);
2939 break;
2940 case DW_OP_const8u:
2941 case DW_OP_const8s:
2942 if (HOST_BITS_PER_LONG < 64)
2943 abort ();
2944 dw2_asm_output_data (8, val1->v.val_int, NULL);
2945 break;
2946 case DW_OP_skip:
2947 case DW_OP_bra:
2948 {
2949 int offset;
2950
2951 if (val1->val_class == dw_val_class_loc)
2952 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2953 else
2954 abort ();
2955
2956 dw2_asm_output_data (2, offset, NULL);
2957 }
2958 break;
2959 #else
2960 case DW_OP_addr:
2961 case DW_OP_const2u:
2962 case DW_OP_const2s:
2963 case DW_OP_const4u:
2964 case DW_OP_const4s:
2965 case DW_OP_const8u:
2966 case DW_OP_const8s:
2967 case DW_OP_skip:
2968 case DW_OP_bra:
2969 /* We currently don't make any attempt to make sure these are
2970 aligned properly like we do for the main unwind info, so
2971 don't support emitting things larger than a byte if we're
2972 only doing unwinding. */
2973 abort ();
2974 #endif
2975 case DW_OP_const1u:
2976 case DW_OP_const1s:
2977 dw2_asm_output_data (1, val1->v.val_int, NULL);
2978 break;
2979 case DW_OP_constu:
2980 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2981 break;
2982 case DW_OP_consts:
2983 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2984 break;
2985 case DW_OP_pick:
2986 dw2_asm_output_data (1, val1->v.val_int, NULL);
2987 break;
2988 case DW_OP_plus_uconst:
2989 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2990 break;
2991 case DW_OP_breg0:
2992 case DW_OP_breg1:
2993 case DW_OP_breg2:
2994 case DW_OP_breg3:
2995 case DW_OP_breg4:
2996 case DW_OP_breg5:
2997 case DW_OP_breg6:
2998 case DW_OP_breg7:
2999 case DW_OP_breg8:
3000 case DW_OP_breg9:
3001 case DW_OP_breg10:
3002 case DW_OP_breg11:
3003 case DW_OP_breg12:
3004 case DW_OP_breg13:
3005 case DW_OP_breg14:
3006 case DW_OP_breg15:
3007 case DW_OP_breg16:
3008 case DW_OP_breg17:
3009 case DW_OP_breg18:
3010 case DW_OP_breg19:
3011 case DW_OP_breg20:
3012 case DW_OP_breg21:
3013 case DW_OP_breg22:
3014 case DW_OP_breg23:
3015 case DW_OP_breg24:
3016 case DW_OP_breg25:
3017 case DW_OP_breg26:
3018 case DW_OP_breg27:
3019 case DW_OP_breg28:
3020 case DW_OP_breg29:
3021 case DW_OP_breg30:
3022 case DW_OP_breg31:
3023 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3024 break;
3025 case DW_OP_regx:
3026 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3027 break;
3028 case DW_OP_fbreg:
3029 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3030 break;
3031 case DW_OP_bregx:
3032 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3033 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3034 break;
3035 case DW_OP_piece:
3036 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3037 break;
3038 case DW_OP_deref_size:
3039 case DW_OP_xderef_size:
3040 dw2_asm_output_data (1, val1->v.val_int, NULL);
3041 break;
3042
3043 case INTERNAL_DW_OP_tls_addr:
3044 #ifdef ASM_OUTPUT_DWARF_DTPREL
3045 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3046 val1->v.val_addr);
3047 fputc ('\n', asm_out_file);
3048 #else
3049 abort ();
3050 #endif
3051 break;
3052
3053 default:
3054 /* Other codes have no operands. */
3055 break;
3056 }
3057 }
3058
3059 /* Output a sequence of location operations. */
3060
3061 static void
3062 output_loc_sequence (loc)
3063 dw_loc_descr_ref loc;
3064 {
3065 for (; loc != NULL; loc = loc->dw_loc_next)
3066 {
3067 /* Output the opcode. */
3068 dw2_asm_output_data (1, loc->dw_loc_opc,
3069 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3070
3071 /* Output the operand(s) (if any). */
3072 output_loc_operands (loc);
3073 }
3074 }
3075
3076 /* This routine will generate the correct assembly data for a location
3077 description based on a cfi entry with a complex address. */
3078
3079 static void
3080 output_cfa_loc (cfi)
3081 dw_cfi_ref cfi;
3082 {
3083 dw_loc_descr_ref loc;
3084 unsigned long size;
3085
3086 /* Output the size of the block. */
3087 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3088 size = size_of_locs (loc);
3089 dw2_asm_output_data_uleb128 (size, NULL);
3090
3091 /* Now output the operations themselves. */
3092 output_loc_sequence (loc);
3093 }
3094
3095 /* This function builds a dwarf location descriptor sequence from
3096 a dw_cfa_location. */
3097
3098 static struct dw_loc_descr_struct *
3099 build_cfa_loc (cfa)
3100 dw_cfa_location *cfa;
3101 {
3102 struct dw_loc_descr_struct *head, *tmp;
3103
3104 if (cfa->indirect == 0)
3105 abort ();
3106
3107 if (cfa->base_offset)
3108 {
3109 if (cfa->reg <= 31)
3110 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3111 else
3112 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3113 }
3114 else if (cfa->reg <= 31)
3115 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3116 else
3117 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3118
3119 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3120 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3121 add_loc_descr (&head, tmp);
3122 if (cfa->offset != 0)
3123 {
3124 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3125 add_loc_descr (&head, tmp);
3126 }
3127
3128 return head;
3129 }
3130
3131 /* This function fills in aa dw_cfa_location structure from a dwarf location
3132 descriptor sequence. */
3133
3134 static void
3135 get_cfa_from_loc_descr (cfa, loc)
3136 dw_cfa_location *cfa;
3137 struct dw_loc_descr_struct *loc;
3138 {
3139 struct dw_loc_descr_struct *ptr;
3140 cfa->offset = 0;
3141 cfa->base_offset = 0;
3142 cfa->indirect = 0;
3143 cfa->reg = -1;
3144
3145 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3146 {
3147 enum dwarf_location_atom op = ptr->dw_loc_opc;
3148
3149 switch (op)
3150 {
3151 case DW_OP_reg0:
3152 case DW_OP_reg1:
3153 case DW_OP_reg2:
3154 case DW_OP_reg3:
3155 case DW_OP_reg4:
3156 case DW_OP_reg5:
3157 case DW_OP_reg6:
3158 case DW_OP_reg7:
3159 case DW_OP_reg8:
3160 case DW_OP_reg9:
3161 case DW_OP_reg10:
3162 case DW_OP_reg11:
3163 case DW_OP_reg12:
3164 case DW_OP_reg13:
3165 case DW_OP_reg14:
3166 case DW_OP_reg15:
3167 case DW_OP_reg16:
3168 case DW_OP_reg17:
3169 case DW_OP_reg18:
3170 case DW_OP_reg19:
3171 case DW_OP_reg20:
3172 case DW_OP_reg21:
3173 case DW_OP_reg22:
3174 case DW_OP_reg23:
3175 case DW_OP_reg24:
3176 case DW_OP_reg25:
3177 case DW_OP_reg26:
3178 case DW_OP_reg27:
3179 case DW_OP_reg28:
3180 case DW_OP_reg29:
3181 case DW_OP_reg30:
3182 case DW_OP_reg31:
3183 cfa->reg = op - DW_OP_reg0;
3184 break;
3185 case DW_OP_regx:
3186 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3187 break;
3188 case DW_OP_breg0:
3189 case DW_OP_breg1:
3190 case DW_OP_breg2:
3191 case DW_OP_breg3:
3192 case DW_OP_breg4:
3193 case DW_OP_breg5:
3194 case DW_OP_breg6:
3195 case DW_OP_breg7:
3196 case DW_OP_breg8:
3197 case DW_OP_breg9:
3198 case DW_OP_breg10:
3199 case DW_OP_breg11:
3200 case DW_OP_breg12:
3201 case DW_OP_breg13:
3202 case DW_OP_breg14:
3203 case DW_OP_breg15:
3204 case DW_OP_breg16:
3205 case DW_OP_breg17:
3206 case DW_OP_breg18:
3207 case DW_OP_breg19:
3208 case DW_OP_breg20:
3209 case DW_OP_breg21:
3210 case DW_OP_breg22:
3211 case DW_OP_breg23:
3212 case DW_OP_breg24:
3213 case DW_OP_breg25:
3214 case DW_OP_breg26:
3215 case DW_OP_breg27:
3216 case DW_OP_breg28:
3217 case DW_OP_breg29:
3218 case DW_OP_breg30:
3219 case DW_OP_breg31:
3220 cfa->reg = op - DW_OP_breg0;
3221 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3222 break;
3223 case DW_OP_bregx:
3224 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3225 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3226 break;
3227 case DW_OP_deref:
3228 cfa->indirect = 1;
3229 break;
3230 case DW_OP_plus_uconst:
3231 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3232 break;
3233 default:
3234 internal_error ("DW_LOC_OP %s not implemented\n",
3235 dwarf_stack_op_name (ptr->dw_loc_opc));
3236 }
3237 }
3238 }
3239 #endif /* .debug_frame support */
3240 \f
3241 /* And now, the support for symbolic debugging information. */
3242 #ifdef DWARF2_DEBUGGING_INFO
3243
3244 /* .debug_str support. */
3245 static int output_indirect_string PARAMS ((void **, void *));
3246
3247 static void dwarf2out_init PARAMS ((const char *));
3248 static void dwarf2out_finish PARAMS ((const char *));
3249 static void dwarf2out_define PARAMS ((unsigned int, const char *));
3250 static void dwarf2out_undef PARAMS ((unsigned int, const char *));
3251 static void dwarf2out_start_source_file PARAMS ((unsigned, const char *));
3252 static void dwarf2out_end_source_file PARAMS ((unsigned));
3253 static void dwarf2out_begin_block PARAMS ((unsigned, unsigned));
3254 static void dwarf2out_end_block PARAMS ((unsigned, unsigned));
3255 static bool dwarf2out_ignore_block PARAMS ((tree));
3256 static void dwarf2out_global_decl PARAMS ((tree));
3257 static void dwarf2out_abstract_function PARAMS ((tree));
3258
3259 /* The debug hooks structure. */
3260
3261 const struct gcc_debug_hooks dwarf2_debug_hooks =
3262 {
3263 dwarf2out_init,
3264 dwarf2out_finish,
3265 dwarf2out_define,
3266 dwarf2out_undef,
3267 dwarf2out_start_source_file,
3268 dwarf2out_end_source_file,
3269 dwarf2out_begin_block,
3270 dwarf2out_end_block,
3271 dwarf2out_ignore_block,
3272 dwarf2out_source_line,
3273 dwarf2out_begin_prologue,
3274 debug_nothing_int_charstar, /* end_prologue */
3275 dwarf2out_end_epilogue,
3276 debug_nothing_tree, /* begin_function */
3277 debug_nothing_int, /* end_function */
3278 dwarf2out_decl, /* function_decl */
3279 dwarf2out_global_decl,
3280 debug_nothing_tree, /* deferred_inline_function */
3281 /* The DWARF 2 backend tries to reduce debugging bloat by not
3282 emitting the abstract description of inline functions until
3283 something tries to reference them. */
3284 dwarf2out_abstract_function, /* outlining_inline_function */
3285 debug_nothing_rtx, /* label */
3286 debug_nothing_int /* handle_pch */
3287 };
3288 #endif
3289 \f
3290 /* NOTE: In the comments in this file, many references are made to
3291 "Debugging Information Entries". This term is abbreviated as `DIE'
3292 throughout the remainder of this file. */
3293
3294 /* An internal representation of the DWARF output is built, and then
3295 walked to generate the DWARF debugging info. The walk of the internal
3296 representation is done after the entire program has been compiled.
3297 The types below are used to describe the internal representation. */
3298
3299 /* Various DIE's use offsets relative to the beginning of the
3300 .debug_info section to refer to each other. */
3301
3302 typedef long int dw_offset;
3303
3304 /* Define typedefs here to avoid circular dependencies. */
3305
3306 typedef struct dw_attr_struct *dw_attr_ref;
3307 typedef struct dw_line_info_struct *dw_line_info_ref;
3308 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3309 typedef struct pubname_struct *pubname_ref;
3310 typedef struct dw_ranges_struct *dw_ranges_ref;
3311
3312 /* Each entry in the line_info_table maintains the file and
3313 line number associated with the label generated for that
3314 entry. The label gives the PC value associated with
3315 the line number entry. */
3316
3317 typedef struct dw_line_info_struct GTY(())
3318 {
3319 unsigned long dw_file_num;
3320 unsigned long dw_line_num;
3321 }
3322 dw_line_info_entry;
3323
3324 /* Line information for functions in separate sections; each one gets its
3325 own sequence. */
3326 typedef struct dw_separate_line_info_struct GTY(())
3327 {
3328 unsigned long dw_file_num;
3329 unsigned long dw_line_num;
3330 unsigned long function;
3331 }
3332 dw_separate_line_info_entry;
3333
3334 /* Each DIE attribute has a field specifying the attribute kind,
3335 a link to the next attribute in the chain, and an attribute value.
3336 Attributes are typically linked below the DIE they modify. */
3337
3338 typedef struct dw_attr_struct GTY(())
3339 {
3340 enum dwarf_attribute dw_attr;
3341 dw_attr_ref dw_attr_next;
3342 dw_val_node dw_attr_val;
3343 }
3344 dw_attr_node;
3345
3346 /* The Debugging Information Entry (DIE) structure */
3347
3348 typedef struct die_struct GTY(())
3349 {
3350 enum dwarf_tag die_tag;
3351 char *die_symbol;
3352 dw_attr_ref die_attr;
3353 dw_die_ref die_parent;
3354 dw_die_ref die_child;
3355 dw_die_ref die_sib;
3356 dw_offset die_offset;
3357 unsigned long die_abbrev;
3358 int die_mark;
3359 }
3360 die_node;
3361
3362 /* The pubname structure */
3363
3364 typedef struct pubname_struct GTY(())
3365 {
3366 dw_die_ref die;
3367 char *name;
3368 }
3369 pubname_entry;
3370
3371 struct dw_ranges_struct GTY(())
3372 {
3373 int block_num;
3374 };
3375
3376 /* The limbo die list structure. */
3377 typedef struct limbo_die_struct GTY(())
3378 {
3379 dw_die_ref die;
3380 tree created_for;
3381 struct limbo_die_struct *next;
3382 }
3383 limbo_die_node;
3384
3385 /* How to start an assembler comment. */
3386 #ifndef ASM_COMMENT_START
3387 #define ASM_COMMENT_START ";#"
3388 #endif
3389
3390 /* Define a macro which returns nonzero for a TYPE_DECL which was
3391 implicitly generated for a tagged type.
3392
3393 Note that unlike the gcc front end (which generates a NULL named
3394 TYPE_DECL node for each complete tagged type, each array type, and
3395 each function type node created) the g++ front end generates a
3396 _named_ TYPE_DECL node for each tagged type node created.
3397 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3398 generate a DW_TAG_typedef DIE for them. */
3399
3400 #define TYPE_DECL_IS_STUB(decl) \
3401 (DECL_NAME (decl) == NULL_TREE \
3402 || (DECL_ARTIFICIAL (decl) \
3403 && is_tagged_type (TREE_TYPE (decl)) \
3404 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3405 /* This is necessary for stub decls that \
3406 appear in nested inline functions. */ \
3407 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3408 && (decl_ultimate_origin (decl) \
3409 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3410
3411 /* Information concerning the compilation unit's programming
3412 language, and compiler version. */
3413
3414 /* Fixed size portion of the DWARF compilation unit header. */
3415 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3416 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3417
3418 /* Fixed size portion of public names info. */
3419 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3420
3421 /* Fixed size portion of the address range info. */
3422 #define DWARF_ARANGES_HEADER_SIZE \
3423 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3424 DWARF2_ADDR_SIZE * 2) \
3425 - DWARF_INITIAL_LENGTH_SIZE)
3426
3427 /* Size of padding portion in the address range info. It must be
3428 aligned to twice the pointer size. */
3429 #define DWARF_ARANGES_PAD_SIZE \
3430 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3431 DWARF2_ADDR_SIZE * 2) \
3432 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3433
3434 /* Use assembler line directives if available. */
3435 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3436 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3437 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3438 #else
3439 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3440 #endif
3441 #endif
3442
3443 /* Minimum line offset in a special line info. opcode.
3444 This value was chosen to give a reasonable range of values. */
3445 #define DWARF_LINE_BASE -10
3446
3447 /* First special line opcode - leave room for the standard opcodes. */
3448 #define DWARF_LINE_OPCODE_BASE 10
3449
3450 /* Range of line offsets in a special line info. opcode. */
3451 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3452
3453 /* Flag that indicates the initial value of the is_stmt_start flag.
3454 In the present implementation, we do not mark any lines as
3455 the beginning of a source statement, because that information
3456 is not made available by the GCC front-end. */
3457 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3458
3459 #ifdef DWARF2_DEBUGGING_INFO
3460 /* This location is used by calc_die_sizes() to keep track
3461 the offset of each DIE within the .debug_info section. */
3462 static unsigned long next_die_offset;
3463 #endif
3464
3465 /* Record the root of the DIE's built for the current compilation unit. */
3466 static GTY(()) dw_die_ref comp_unit_die;
3467
3468 #ifdef DWARF2_DEBUGGING_INFO
3469 /* We need special handling in dwarf2out_start_source_file if it is
3470 first one. */
3471 static int is_main_source;
3472 #endif
3473
3474 /* A list of DIEs with a NULL parent waiting to be relocated. */
3475 static GTY(()) limbo_die_node *limbo_die_list;
3476
3477 /* Filenames referenced by this compilation unit. */
3478 static GTY(()) varray_type file_table;
3479 static GTY(()) varray_type file_table_emitted;
3480 static GTY(()) size_t file_table_last_lookup_index;
3481
3482 /* A pointer to the base of a table of references to DIE's that describe
3483 declarations. The table is indexed by DECL_UID() which is a unique
3484 number identifying each decl. */
3485 static GTY((length ("decl_die_table_allocated"))) dw_die_ref *decl_die_table;
3486
3487 /* Number of elements currently allocated for the decl_die_table. */
3488 static unsigned decl_die_table_allocated;
3489
3490 #ifdef DWARF2_DEBUGGING_INFO
3491 /* Number of elements in decl_die_table currently in use. */
3492 static unsigned decl_die_table_in_use;
3493 #endif
3494
3495 /* Size (in elements) of increments by which we may expand the
3496 decl_die_table. */
3497 #define DECL_DIE_TABLE_INCREMENT 256
3498
3499 /* A pointer to the base of a list of references to DIE's that
3500 are uniquely identified by their tag, presence/absence of
3501 children DIE's, and list of attribute/value pairs. */
3502 static GTY((length ("abbrev_die_table_allocated")))
3503 dw_die_ref *abbrev_die_table;
3504
3505 /* Number of elements currently allocated for abbrev_die_table. */
3506 static unsigned abbrev_die_table_allocated;
3507
3508 #ifdef DWARF2_DEBUGGING_INFO
3509 /* Number of elements in type_die_table currently in use. */
3510 static unsigned abbrev_die_table_in_use;
3511 #endif
3512
3513 /* Size (in elements) of increments by which we may expand the
3514 abbrev_die_table. */
3515 #define ABBREV_DIE_TABLE_INCREMENT 256
3516
3517 /* A pointer to the base of a table that contains line information
3518 for each source code line in .text in the compilation unit. */
3519 static GTY((length ("line_info_table_allocated")))
3520 dw_line_info_ref line_info_table;
3521
3522 /* Number of elements currently allocated for line_info_table. */
3523 static unsigned line_info_table_allocated;
3524
3525 #ifdef DWARF2_DEBUGGING_INFO
3526 /* Number of elements in line_info_table currently in use. */
3527 static unsigned line_info_table_in_use;
3528 #endif
3529
3530 /* A pointer to the base of a table that contains line information
3531 for each source code line outside of .text in the compilation unit. */
3532 static GTY ((length ("separate_line_info_table_allocated")))
3533 dw_separate_line_info_ref separate_line_info_table;
3534
3535 /* Number of elements currently allocated for separate_line_info_table. */
3536 static unsigned separate_line_info_table_allocated;
3537
3538 #ifdef DWARF2_DEBUGGING_INFO
3539 /* Number of elements in separate_line_info_table currently in use. */
3540 static unsigned separate_line_info_table_in_use;
3541 #endif
3542
3543 /* Size (in elements) of increments by which we may expand the
3544 line_info_table. */
3545 #define LINE_INFO_TABLE_INCREMENT 1024
3546
3547 /* A pointer to the base of a table that contains a list of publicly
3548 accessible names. */
3549 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3550
3551 /* Number of elements currently allocated for pubname_table. */
3552 static unsigned pubname_table_allocated;
3553
3554 #ifdef DWARF2_DEBUGGING_INFO
3555 /* Number of elements in pubname_table currently in use. */
3556 static unsigned pubname_table_in_use;
3557 #endif
3558
3559 /* Size (in elements) of increments by which we may expand the
3560 pubname_table. */
3561 #define PUBNAME_TABLE_INCREMENT 64
3562
3563 /* Array of dies for which we should generate .debug_arange info. */
3564 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3565
3566 /* Number of elements currently allocated for arange_table. */
3567 static unsigned arange_table_allocated;
3568
3569 #ifdef DWARF2_DEBUGGING_INFO
3570 /* Number of elements in arange_table currently in use. */
3571 static unsigned arange_table_in_use;
3572 #endif
3573
3574 /* Size (in elements) of increments by which we may expand the
3575 arange_table. */
3576 #define ARANGE_TABLE_INCREMENT 64
3577
3578 /* Array of dies for which we should generate .debug_ranges info. */
3579 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3580
3581 /* Number of elements currently allocated for ranges_table. */
3582 static unsigned ranges_table_allocated;
3583
3584 #ifdef DWARF2_DEBUGGING_INFO
3585 /* Number of elements in ranges_table currently in use. */
3586 static unsigned ranges_table_in_use;
3587
3588 /* Size (in elements) of increments by which we may expand the
3589 ranges_table. */
3590 #define RANGES_TABLE_INCREMENT 64
3591
3592 /* Whether we have location lists that need outputting */
3593 static unsigned have_location_lists;
3594
3595 /* Record whether the function being analyzed contains inlined functions. */
3596 static int current_function_has_inlines;
3597 #endif
3598 #if 0 && defined (MIPS_DEBUGGING_INFO)
3599 static int comp_unit_has_inlines;
3600 #endif
3601
3602 #ifdef DWARF2_DEBUGGING_INFO
3603
3604 /* Forward declarations for functions defined in this file. */
3605
3606 static int is_pseudo_reg PARAMS ((rtx));
3607 static tree type_main_variant PARAMS ((tree));
3608 static int is_tagged_type PARAMS ((tree));
3609 static const char *dwarf_tag_name PARAMS ((unsigned));
3610 static const char *dwarf_attr_name PARAMS ((unsigned));
3611 static const char *dwarf_form_name PARAMS ((unsigned));
3612 #if 0
3613 static const char *dwarf_type_encoding_name PARAMS ((unsigned));
3614 #endif
3615 static tree decl_ultimate_origin PARAMS ((tree));
3616 static tree block_ultimate_origin PARAMS ((tree));
3617 static tree decl_class_context PARAMS ((tree));
3618 static void add_dwarf_attr PARAMS ((dw_die_ref, dw_attr_ref));
3619 static inline enum dw_val_class AT_class PARAMS ((dw_attr_ref));
3620 static void add_AT_flag PARAMS ((dw_die_ref,
3621 enum dwarf_attribute,
3622 unsigned));
3623 static inline unsigned AT_flag PARAMS ((dw_attr_ref));
3624 static void add_AT_int PARAMS ((dw_die_ref,
3625 enum dwarf_attribute, long));
3626 static inline long int AT_int PARAMS ((dw_attr_ref));
3627 static void add_AT_unsigned PARAMS ((dw_die_ref,
3628 enum dwarf_attribute,
3629 unsigned long));
3630 static inline unsigned long AT_unsigned PARAMS ((dw_attr_ref));
3631 static void add_AT_long_long PARAMS ((dw_die_ref,
3632 enum dwarf_attribute,
3633 unsigned long,
3634 unsigned long));
3635 static void add_AT_float PARAMS ((dw_die_ref,
3636 enum dwarf_attribute,
3637 unsigned, long *));
3638 static hashval_t debug_str_do_hash PARAMS ((const void *));
3639 static int debug_str_eq PARAMS ((const void *, const void *));
3640 static void add_AT_string PARAMS ((dw_die_ref,
3641 enum dwarf_attribute,
3642 const char *));
3643 static inline const char *AT_string PARAMS ((dw_attr_ref));
3644 static int AT_string_form PARAMS ((dw_attr_ref));
3645 static void add_AT_die_ref PARAMS ((dw_die_ref,
3646 enum dwarf_attribute,
3647 dw_die_ref));
3648 static inline dw_die_ref AT_ref PARAMS ((dw_attr_ref));
3649 static inline int AT_ref_external PARAMS ((dw_attr_ref));
3650 static inline void set_AT_ref_external PARAMS ((dw_attr_ref, int));
3651 static void add_AT_fde_ref PARAMS ((dw_die_ref,
3652 enum dwarf_attribute,
3653 unsigned));
3654 static void add_AT_loc PARAMS ((dw_die_ref,
3655 enum dwarf_attribute,
3656 dw_loc_descr_ref));
3657 static inline dw_loc_descr_ref AT_loc PARAMS ((dw_attr_ref));
3658 static void add_AT_loc_list PARAMS ((dw_die_ref,
3659 enum dwarf_attribute,
3660 dw_loc_list_ref));
3661 static inline dw_loc_list_ref AT_loc_list PARAMS ((dw_attr_ref));
3662 static void add_AT_addr PARAMS ((dw_die_ref,
3663 enum dwarf_attribute,
3664 rtx));
3665 static inline rtx AT_addr PARAMS ((dw_attr_ref));
3666 static void add_AT_lbl_id PARAMS ((dw_die_ref,
3667 enum dwarf_attribute,
3668 const char *));
3669 static void add_AT_lbl_offset PARAMS ((dw_die_ref,
3670 enum dwarf_attribute,
3671 const char *));
3672 static void add_AT_offset PARAMS ((dw_die_ref,
3673 enum dwarf_attribute,
3674 unsigned long));
3675 static void add_AT_range_list PARAMS ((dw_die_ref,
3676 enum dwarf_attribute,
3677 unsigned long));
3678 static inline const char *AT_lbl PARAMS ((dw_attr_ref));
3679 static dw_attr_ref get_AT PARAMS ((dw_die_ref,
3680 enum dwarf_attribute));
3681 static const char *get_AT_low_pc PARAMS ((dw_die_ref));
3682 static const char *get_AT_hi_pc PARAMS ((dw_die_ref));
3683 static const char *get_AT_string PARAMS ((dw_die_ref,
3684 enum dwarf_attribute));
3685 static int get_AT_flag PARAMS ((dw_die_ref,
3686 enum dwarf_attribute));
3687 static unsigned get_AT_unsigned PARAMS ((dw_die_ref,
3688 enum dwarf_attribute));
3689 static inline dw_die_ref get_AT_ref PARAMS ((dw_die_ref,
3690 enum dwarf_attribute));
3691 static int is_c_family PARAMS ((void));
3692 static int is_cxx PARAMS ((void));
3693 static int is_java PARAMS ((void));
3694 static int is_fortran PARAMS ((void));
3695 static void remove_AT PARAMS ((dw_die_ref,
3696 enum dwarf_attribute));
3697 static inline void free_die PARAMS ((dw_die_ref));
3698 static void remove_children PARAMS ((dw_die_ref));
3699 static void add_child_die PARAMS ((dw_die_ref, dw_die_ref));
3700 static dw_die_ref new_die PARAMS ((enum dwarf_tag, dw_die_ref,
3701 tree));
3702 static dw_die_ref lookup_type_die PARAMS ((tree));
3703 static void equate_type_number_to_die PARAMS ((tree, dw_die_ref));
3704 static dw_die_ref lookup_decl_die PARAMS ((tree));
3705 static void equate_decl_number_to_die PARAMS ((tree, dw_die_ref));
3706 static void print_spaces PARAMS ((FILE *));
3707 static void print_die PARAMS ((dw_die_ref, FILE *));
3708 static void print_dwarf_line_table PARAMS ((FILE *));
3709 static void reverse_die_lists PARAMS ((dw_die_ref));
3710 static void reverse_all_dies PARAMS ((dw_die_ref));
3711 static dw_die_ref push_new_compile_unit PARAMS ((dw_die_ref, dw_die_ref));
3712 static dw_die_ref pop_compile_unit PARAMS ((dw_die_ref));
3713 static void loc_checksum PARAMS ((dw_loc_descr_ref,
3714 struct md5_ctx *));
3715 static void attr_checksum PARAMS ((dw_attr_ref,
3716 struct md5_ctx *,
3717 int *));
3718 static void die_checksum PARAMS ((dw_die_ref,
3719 struct md5_ctx *,
3720 int *));
3721 static int same_loc_p PARAMS ((dw_loc_descr_ref,
3722 dw_loc_descr_ref, int *));
3723 static int same_dw_val_p PARAMS ((dw_val_node *, dw_val_node *,
3724 int *));
3725 static int same_attr_p PARAMS ((dw_attr_ref, dw_attr_ref, int *));
3726 static int same_die_p PARAMS ((dw_die_ref, dw_die_ref, int *));
3727 static int same_die_p_wrap PARAMS ((dw_die_ref, dw_die_ref));
3728 static void compute_section_prefix PARAMS ((dw_die_ref));
3729 static int is_type_die PARAMS ((dw_die_ref));
3730 static int is_comdat_die PARAMS ((dw_die_ref));
3731 static int is_symbol_die PARAMS ((dw_die_ref));
3732 static void assign_symbol_names PARAMS ((dw_die_ref));
3733 static void break_out_includes PARAMS ((dw_die_ref));
3734 static hashval_t htab_cu_hash PARAMS ((const void *));
3735 static int htab_cu_eq PARAMS ((const void *, const void *));
3736 static void htab_cu_del PARAMS ((void *));
3737 static int check_duplicate_cu PARAMS ((dw_die_ref, htab_t, unsigned *));
3738 static void record_comdat_symbol_number PARAMS ((dw_die_ref, htab_t, unsigned));
3739 static void add_sibling_attributes PARAMS ((dw_die_ref));
3740 static void build_abbrev_table PARAMS ((dw_die_ref));
3741 static void output_location_lists PARAMS ((dw_die_ref));
3742 static int constant_size PARAMS ((long unsigned));
3743 static unsigned long size_of_die PARAMS ((dw_die_ref));
3744 static void calc_die_sizes PARAMS ((dw_die_ref));
3745 static void mark_dies PARAMS ((dw_die_ref));
3746 static void unmark_dies PARAMS ((dw_die_ref));
3747 static void unmark_all_dies PARAMS ((dw_die_ref));
3748 static unsigned long size_of_pubnames PARAMS ((void));
3749 static unsigned long size_of_aranges PARAMS ((void));
3750 static enum dwarf_form value_format PARAMS ((dw_attr_ref));
3751 static void output_value_format PARAMS ((dw_attr_ref));
3752 static void output_abbrev_section PARAMS ((void));
3753 static void output_die_symbol PARAMS ((dw_die_ref));
3754 static void output_die PARAMS ((dw_die_ref));
3755 static void output_compilation_unit_header PARAMS ((void));
3756 static void output_comp_unit PARAMS ((dw_die_ref, int));
3757 static const char *dwarf2_name PARAMS ((tree, int));
3758 static void add_pubname PARAMS ((tree, dw_die_ref));
3759 static void output_pubnames PARAMS ((void));
3760 static void add_arange PARAMS ((tree, dw_die_ref));
3761 static void output_aranges PARAMS ((void));
3762 static unsigned int add_ranges PARAMS ((tree));
3763 static void output_ranges PARAMS ((void));
3764 static void output_line_info PARAMS ((void));
3765 static void output_file_names PARAMS ((void));
3766 static dw_die_ref base_type_die PARAMS ((tree));
3767 static tree root_type PARAMS ((tree));
3768 static int is_base_type PARAMS ((tree));
3769 static dw_die_ref modified_type_die PARAMS ((tree, int, int, dw_die_ref));
3770 static int type_is_enum PARAMS ((tree));
3771 static unsigned int reg_number PARAMS ((rtx));
3772 static dw_loc_descr_ref reg_loc_descriptor PARAMS ((rtx));
3773 static dw_loc_descr_ref one_reg_loc_descriptor PARAMS ((unsigned int));
3774 static dw_loc_descr_ref multiple_reg_loc_descriptor PARAMS ((rtx, rtx));
3775 static dw_loc_descr_ref int_loc_descriptor PARAMS ((HOST_WIDE_INT));
3776 static dw_loc_descr_ref based_loc_descr PARAMS ((unsigned, long));
3777 static int is_based_loc PARAMS ((rtx));
3778 static dw_loc_descr_ref mem_loc_descriptor PARAMS ((rtx, enum machine_mode mode));
3779 static dw_loc_descr_ref concat_loc_descriptor PARAMS ((rtx, rtx));
3780 static dw_loc_descr_ref loc_descriptor PARAMS ((rtx));
3781 static dw_loc_descr_ref loc_descriptor_from_tree PARAMS ((tree, int));
3782 static HOST_WIDE_INT ceiling PARAMS ((HOST_WIDE_INT, unsigned int));
3783 static tree field_type PARAMS ((tree));
3784 static unsigned int simple_type_align_in_bits PARAMS ((tree));
3785 static unsigned int simple_decl_align_in_bits PARAMS ((tree));
3786 static unsigned HOST_WIDE_INT simple_type_size_in_bits PARAMS ((tree));
3787 static HOST_WIDE_INT field_byte_offset PARAMS ((tree));
3788 static void add_AT_location_description PARAMS ((dw_die_ref,
3789 enum dwarf_attribute,
3790 dw_loc_descr_ref));
3791 static void add_data_member_location_attribute PARAMS ((dw_die_ref, tree));
3792 static void add_const_value_attribute PARAMS ((dw_die_ref, rtx));
3793 static rtx rtl_for_decl_location PARAMS ((tree));
3794 static void add_location_or_const_value_attribute PARAMS ((dw_die_ref, tree));
3795 static void tree_add_const_value_attribute PARAMS ((dw_die_ref, tree));
3796 static void add_name_attribute PARAMS ((dw_die_ref, const char *));
3797 static void add_comp_dir_attribute PARAMS ((dw_die_ref));
3798 static void add_bound_info PARAMS ((dw_die_ref,
3799 enum dwarf_attribute, tree));
3800 static void add_subscript_info PARAMS ((dw_die_ref, tree));
3801 static void add_byte_size_attribute PARAMS ((dw_die_ref, tree));
3802 static void add_bit_offset_attribute PARAMS ((dw_die_ref, tree));
3803 static void add_bit_size_attribute PARAMS ((dw_die_ref, tree));
3804 static void add_prototyped_attribute PARAMS ((dw_die_ref, tree));
3805 static void add_abstract_origin_attribute PARAMS ((dw_die_ref, tree));
3806 static void add_pure_or_virtual_attribute PARAMS ((dw_die_ref, tree));
3807 static void add_src_coords_attributes PARAMS ((dw_die_ref, tree));
3808 static void add_name_and_src_coords_attributes PARAMS ((dw_die_ref, tree));
3809 static void push_decl_scope PARAMS ((tree));
3810 static void pop_decl_scope PARAMS ((void));
3811 static dw_die_ref scope_die_for PARAMS ((tree, dw_die_ref));
3812 static inline int local_scope_p PARAMS ((dw_die_ref));
3813 static inline int class_scope_p PARAMS ((dw_die_ref));
3814 static void add_type_attribute PARAMS ((dw_die_ref, tree, int, int,
3815 dw_die_ref));
3816 static const char *type_tag PARAMS ((tree));
3817 static tree member_declared_type PARAMS ((tree));
3818 #if 0
3819 static const char *decl_start_label PARAMS ((tree));
3820 #endif
3821 static void gen_array_type_die PARAMS ((tree, dw_die_ref));
3822 static void gen_set_type_die PARAMS ((tree, dw_die_ref));
3823 #if 0
3824 static void gen_entry_point_die PARAMS ((tree, dw_die_ref));
3825 #endif
3826 static void gen_inlined_enumeration_type_die PARAMS ((tree, dw_die_ref));
3827 static void gen_inlined_structure_type_die PARAMS ((tree, dw_die_ref));
3828 static void gen_inlined_union_type_die PARAMS ((tree, dw_die_ref));
3829 static void gen_enumeration_type_die PARAMS ((tree, dw_die_ref));
3830 static dw_die_ref gen_formal_parameter_die PARAMS ((tree, dw_die_ref));
3831 static void gen_unspecified_parameters_die PARAMS ((tree, dw_die_ref));
3832 static void gen_formal_types_die PARAMS ((tree, dw_die_ref));
3833 static void gen_subprogram_die PARAMS ((tree, dw_die_ref));
3834 static void gen_variable_die PARAMS ((tree, dw_die_ref));
3835 static void gen_label_die PARAMS ((tree, dw_die_ref));
3836 static void gen_lexical_block_die PARAMS ((tree, dw_die_ref, int));
3837 static void gen_inlined_subroutine_die PARAMS ((tree, dw_die_ref, int));
3838 static void gen_field_die PARAMS ((tree, dw_die_ref));
3839 static void gen_ptr_to_mbr_type_die PARAMS ((tree, dw_die_ref));
3840 static dw_die_ref gen_compile_unit_die PARAMS ((const char *));
3841 static void gen_string_type_die PARAMS ((tree, dw_die_ref));
3842 static void gen_inheritance_die PARAMS ((tree, tree, dw_die_ref));
3843 static void gen_member_die PARAMS ((tree, dw_die_ref));
3844 static void gen_struct_or_union_type_die PARAMS ((tree, dw_die_ref));
3845 static void gen_subroutine_type_die PARAMS ((tree, dw_die_ref));
3846 static void gen_typedef_die PARAMS ((tree, dw_die_ref));
3847 static void gen_type_die PARAMS ((tree, dw_die_ref));
3848 static void gen_tagged_type_instantiation_die PARAMS ((tree, dw_die_ref));
3849 static void gen_block_die PARAMS ((tree, dw_die_ref, int));
3850 static void decls_for_scope PARAMS ((tree, dw_die_ref, int));
3851 static int is_redundant_typedef PARAMS ((tree));
3852 static void gen_decl_die PARAMS ((tree, dw_die_ref));
3853 static unsigned lookup_filename PARAMS ((const char *));
3854 static void init_file_table PARAMS ((void));
3855 static void retry_incomplete_types PARAMS ((void));
3856 static void gen_type_die_for_member PARAMS ((tree, tree, dw_die_ref));
3857 static void splice_child_die PARAMS ((dw_die_ref, dw_die_ref));
3858 static int file_info_cmp PARAMS ((const void *, const void *));
3859 static dw_loc_list_ref new_loc_list PARAMS ((dw_loc_descr_ref,
3860 const char *, const char *,
3861 const char *, unsigned));
3862 static void add_loc_descr_to_loc_list PARAMS ((dw_loc_list_ref *,
3863 dw_loc_descr_ref,
3864 const char *, const char *, const char *));
3865 static void output_loc_list PARAMS ((dw_loc_list_ref));
3866 static char *gen_internal_sym PARAMS ((const char *));
3867
3868 static void prune_unmark_dies PARAMS ((dw_die_ref));
3869 static void prune_unused_types_mark PARAMS ((dw_die_ref, int));
3870 static void prune_unused_types_walk PARAMS ((dw_die_ref));
3871 static void prune_unused_types_walk_attribs PARAMS ((dw_die_ref));
3872 static void prune_unused_types_prune PARAMS ((dw_die_ref));
3873 static void prune_unused_types PARAMS ((void));
3874 static int maybe_emit_file PARAMS ((int));
3875
3876 /* Section names used to hold DWARF debugging information. */
3877 #ifndef DEBUG_INFO_SECTION
3878 #define DEBUG_INFO_SECTION ".debug_info"
3879 #endif
3880 #ifndef DEBUG_ABBREV_SECTION
3881 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3882 #endif
3883 #ifndef DEBUG_ARANGES_SECTION
3884 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3885 #endif
3886 #ifndef DEBUG_MACINFO_SECTION
3887 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3888 #endif
3889 #ifndef DEBUG_LINE_SECTION
3890 #define DEBUG_LINE_SECTION ".debug_line"
3891 #endif
3892 #ifndef DEBUG_LOC_SECTION
3893 #define DEBUG_LOC_SECTION ".debug_loc"
3894 #endif
3895 #ifndef DEBUG_PUBNAMES_SECTION
3896 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3897 #endif
3898 #ifndef DEBUG_STR_SECTION
3899 #define DEBUG_STR_SECTION ".debug_str"
3900 #endif
3901 #ifndef DEBUG_RANGES_SECTION
3902 #define DEBUG_RANGES_SECTION ".debug_ranges"
3903 #endif
3904
3905 /* Standard ELF section names for compiled code and data. */
3906 #ifndef TEXT_SECTION_NAME
3907 #define TEXT_SECTION_NAME ".text"
3908 #endif
3909
3910 /* Section flags for .debug_str section. */
3911 #ifdef HAVE_GAS_SHF_MERGE
3912 #define DEBUG_STR_SECTION_FLAGS \
3913 (SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1)
3914 #else
3915 #define DEBUG_STR_SECTION_FLAGS SECTION_DEBUG
3916 #endif
3917
3918 /* Labels we insert at beginning sections we can reference instead of
3919 the section names themselves. */
3920
3921 #ifndef TEXT_SECTION_LABEL
3922 #define TEXT_SECTION_LABEL "Ltext"
3923 #endif
3924 #ifndef DEBUG_LINE_SECTION_LABEL
3925 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3926 #endif
3927 #ifndef DEBUG_INFO_SECTION_LABEL
3928 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3929 #endif
3930 #ifndef DEBUG_ABBREV_SECTION_LABEL
3931 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3932 #endif
3933 #ifndef DEBUG_LOC_SECTION_LABEL
3934 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3935 #endif
3936 #ifndef DEBUG_RANGES_SECTION_LABEL
3937 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3938 #endif
3939 #ifndef DEBUG_MACINFO_SECTION_LABEL
3940 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3941 #endif
3942
3943 /* Definitions of defaults for formats and names of various special
3944 (artificial) labels which may be generated within this file (when the -g
3945 options is used and DWARF_DEBUGGING_INFO is in effect.
3946 If necessary, these may be overridden from within the tm.h file, but
3947 typically, overriding these defaults is unnecessary. */
3948
3949 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3950 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3951 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3952 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3953 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3954 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3955 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3956 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3957
3958 #ifndef TEXT_END_LABEL
3959 #define TEXT_END_LABEL "Letext"
3960 #endif
3961 #ifndef BLOCK_BEGIN_LABEL
3962 #define BLOCK_BEGIN_LABEL "LBB"
3963 #endif
3964 #ifndef BLOCK_END_LABEL
3965 #define BLOCK_END_LABEL "LBE"
3966 #endif
3967 #ifndef LINE_CODE_LABEL
3968 #define LINE_CODE_LABEL "LM"
3969 #endif
3970 #ifndef SEPARATE_LINE_CODE_LABEL
3971 #define SEPARATE_LINE_CODE_LABEL "LSM"
3972 #endif
3973 \f
3974 /* We allow a language front-end to designate a function that is to be
3975 called to "demangle" any name before it it put into a DIE. */
3976
3977 static const char *(*demangle_name_func) PARAMS ((const char *));
3978
3979 void
3980 dwarf2out_set_demangle_name_func (func)
3981 const char *(*func) PARAMS ((const char *));
3982 {
3983 demangle_name_func = func;
3984 }
3985
3986 /* Test if rtl node points to a pseudo register. */
3987
3988 static inline int
3989 is_pseudo_reg (rtl)
3990 rtx rtl;
3991 {
3992 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3993 || (GET_CODE (rtl) == SUBREG
3994 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3995 }
3996
3997 /* Return a reference to a type, with its const and volatile qualifiers
3998 removed. */
3999
4000 static inline tree
4001 type_main_variant (type)
4002 tree type;
4003 {
4004 type = TYPE_MAIN_VARIANT (type);
4005
4006 /* ??? There really should be only one main variant among any group of
4007 variants of a given type (and all of the MAIN_VARIANT values for all
4008 members of the group should point to that one type) but sometimes the C
4009 front-end messes this up for array types, so we work around that bug
4010 here. */
4011 if (TREE_CODE (type) == ARRAY_TYPE)
4012 while (type != TYPE_MAIN_VARIANT (type))
4013 type = TYPE_MAIN_VARIANT (type);
4014
4015 return type;
4016 }
4017
4018 /* Return nonzero if the given type node represents a tagged type. */
4019
4020 static inline int
4021 is_tagged_type (type)
4022 tree type;
4023 {
4024 enum tree_code code = TREE_CODE (type);
4025
4026 return (code == RECORD_TYPE || code == UNION_TYPE
4027 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4028 }
4029
4030 /* Convert a DIE tag into its string name. */
4031
4032 static const char *
4033 dwarf_tag_name (tag)
4034 unsigned tag;
4035 {
4036 switch (tag)
4037 {
4038 case DW_TAG_padding:
4039 return "DW_TAG_padding";
4040 case DW_TAG_array_type:
4041 return "DW_TAG_array_type";
4042 case DW_TAG_class_type:
4043 return "DW_TAG_class_type";
4044 case DW_TAG_entry_point:
4045 return "DW_TAG_entry_point";
4046 case DW_TAG_enumeration_type:
4047 return "DW_TAG_enumeration_type";
4048 case DW_TAG_formal_parameter:
4049 return "DW_TAG_formal_parameter";
4050 case DW_TAG_imported_declaration:
4051 return "DW_TAG_imported_declaration";
4052 case DW_TAG_label:
4053 return "DW_TAG_label";
4054 case DW_TAG_lexical_block:
4055 return "DW_TAG_lexical_block";
4056 case DW_TAG_member:
4057 return "DW_TAG_member";
4058 case DW_TAG_pointer_type:
4059 return "DW_TAG_pointer_type";
4060 case DW_TAG_reference_type:
4061 return "DW_TAG_reference_type";
4062 case DW_TAG_compile_unit:
4063 return "DW_TAG_compile_unit";
4064 case DW_TAG_string_type:
4065 return "DW_TAG_string_type";
4066 case DW_TAG_structure_type:
4067 return "DW_TAG_structure_type";
4068 case DW_TAG_subroutine_type:
4069 return "DW_TAG_subroutine_type";
4070 case DW_TAG_typedef:
4071 return "DW_TAG_typedef";
4072 case DW_TAG_union_type:
4073 return "DW_TAG_union_type";
4074 case DW_TAG_unspecified_parameters:
4075 return "DW_TAG_unspecified_parameters";
4076 case DW_TAG_variant:
4077 return "DW_TAG_variant";
4078 case DW_TAG_common_block:
4079 return "DW_TAG_common_block";
4080 case DW_TAG_common_inclusion:
4081 return "DW_TAG_common_inclusion";
4082 case DW_TAG_inheritance:
4083 return "DW_TAG_inheritance";
4084 case DW_TAG_inlined_subroutine:
4085 return "DW_TAG_inlined_subroutine";
4086 case DW_TAG_module:
4087 return "DW_TAG_module";
4088 case DW_TAG_ptr_to_member_type:
4089 return "DW_TAG_ptr_to_member_type";
4090 case DW_TAG_set_type:
4091 return "DW_TAG_set_type";
4092 case DW_TAG_subrange_type:
4093 return "DW_TAG_subrange_type";
4094 case DW_TAG_with_stmt:
4095 return "DW_TAG_with_stmt";
4096 case DW_TAG_access_declaration:
4097 return "DW_TAG_access_declaration";
4098 case DW_TAG_base_type:
4099 return "DW_TAG_base_type";
4100 case DW_TAG_catch_block:
4101 return "DW_TAG_catch_block";
4102 case DW_TAG_const_type:
4103 return "DW_TAG_const_type";
4104 case DW_TAG_constant:
4105 return "DW_TAG_constant";
4106 case DW_TAG_enumerator:
4107 return "DW_TAG_enumerator";
4108 case DW_TAG_file_type:
4109 return "DW_TAG_file_type";
4110 case DW_TAG_friend:
4111 return "DW_TAG_friend";
4112 case DW_TAG_namelist:
4113 return "DW_TAG_namelist";
4114 case DW_TAG_namelist_item:
4115 return "DW_TAG_namelist_item";
4116 case DW_TAG_packed_type:
4117 return "DW_TAG_packed_type";
4118 case DW_TAG_subprogram:
4119 return "DW_TAG_subprogram";
4120 case DW_TAG_template_type_param:
4121 return "DW_TAG_template_type_param";
4122 case DW_TAG_template_value_param:
4123 return "DW_TAG_template_value_param";
4124 case DW_TAG_thrown_type:
4125 return "DW_TAG_thrown_type";
4126 case DW_TAG_try_block:
4127 return "DW_TAG_try_block";
4128 case DW_TAG_variant_part:
4129 return "DW_TAG_variant_part";
4130 case DW_TAG_variable:
4131 return "DW_TAG_variable";
4132 case DW_TAG_volatile_type:
4133 return "DW_TAG_volatile_type";
4134 case DW_TAG_MIPS_loop:
4135 return "DW_TAG_MIPS_loop";
4136 case DW_TAG_format_label:
4137 return "DW_TAG_format_label";
4138 case DW_TAG_function_template:
4139 return "DW_TAG_function_template";
4140 case DW_TAG_class_template:
4141 return "DW_TAG_class_template";
4142 case DW_TAG_GNU_BINCL:
4143 return "DW_TAG_GNU_BINCL";
4144 case DW_TAG_GNU_EINCL:
4145 return "DW_TAG_GNU_EINCL";
4146 default:
4147 return "DW_TAG_<unknown>";
4148 }
4149 }
4150
4151 /* Convert a DWARF attribute code into its string name. */
4152
4153 static const char *
4154 dwarf_attr_name (attr)
4155 unsigned attr;
4156 {
4157 switch (attr)
4158 {
4159 case DW_AT_sibling:
4160 return "DW_AT_sibling";
4161 case DW_AT_location:
4162 return "DW_AT_location";
4163 case DW_AT_name:
4164 return "DW_AT_name";
4165 case DW_AT_ordering:
4166 return "DW_AT_ordering";
4167 case DW_AT_subscr_data:
4168 return "DW_AT_subscr_data";
4169 case DW_AT_byte_size:
4170 return "DW_AT_byte_size";
4171 case DW_AT_bit_offset:
4172 return "DW_AT_bit_offset";
4173 case DW_AT_bit_size:
4174 return "DW_AT_bit_size";
4175 case DW_AT_element_list:
4176 return "DW_AT_element_list";
4177 case DW_AT_stmt_list:
4178 return "DW_AT_stmt_list";
4179 case DW_AT_low_pc:
4180 return "DW_AT_low_pc";
4181 case DW_AT_high_pc:
4182 return "DW_AT_high_pc";
4183 case DW_AT_language:
4184 return "DW_AT_language";
4185 case DW_AT_member:
4186 return "DW_AT_member";
4187 case DW_AT_discr:
4188 return "DW_AT_discr";
4189 case DW_AT_discr_value:
4190 return "DW_AT_discr_value";
4191 case DW_AT_visibility:
4192 return "DW_AT_visibility";
4193 case DW_AT_import:
4194 return "DW_AT_import";
4195 case DW_AT_string_length:
4196 return "DW_AT_string_length";
4197 case DW_AT_common_reference:
4198 return "DW_AT_common_reference";
4199 case DW_AT_comp_dir:
4200 return "DW_AT_comp_dir";
4201 case DW_AT_const_value:
4202 return "DW_AT_const_value";
4203 case DW_AT_containing_type:
4204 return "DW_AT_containing_type";
4205 case DW_AT_default_value:
4206 return "DW_AT_default_value";
4207 case DW_AT_inline:
4208 return "DW_AT_inline";
4209 case DW_AT_is_optional:
4210 return "DW_AT_is_optional";
4211 case DW_AT_lower_bound:
4212 return "DW_AT_lower_bound";
4213 case DW_AT_producer:
4214 return "DW_AT_producer";
4215 case DW_AT_prototyped:
4216 return "DW_AT_prototyped";
4217 case DW_AT_return_addr:
4218 return "DW_AT_return_addr";
4219 case DW_AT_start_scope:
4220 return "DW_AT_start_scope";
4221 case DW_AT_stride_size:
4222 return "DW_AT_stride_size";
4223 case DW_AT_upper_bound:
4224 return "DW_AT_upper_bound";
4225 case DW_AT_abstract_origin:
4226 return "DW_AT_abstract_origin";
4227 case DW_AT_accessibility:
4228 return "DW_AT_accessibility";
4229 case DW_AT_address_class:
4230 return "DW_AT_address_class";
4231 case DW_AT_artificial:
4232 return "DW_AT_artificial";
4233 case DW_AT_base_types:
4234 return "DW_AT_base_types";
4235 case DW_AT_calling_convention:
4236 return "DW_AT_calling_convention";
4237 case DW_AT_count:
4238 return "DW_AT_count";
4239 case DW_AT_data_member_location:
4240 return "DW_AT_data_member_location";
4241 case DW_AT_decl_column:
4242 return "DW_AT_decl_column";
4243 case DW_AT_decl_file:
4244 return "DW_AT_decl_file";
4245 case DW_AT_decl_line:
4246 return "DW_AT_decl_line";
4247 case DW_AT_declaration:
4248 return "DW_AT_declaration";
4249 case DW_AT_discr_list:
4250 return "DW_AT_discr_list";
4251 case DW_AT_encoding:
4252 return "DW_AT_encoding";
4253 case DW_AT_external:
4254 return "DW_AT_external";
4255 case DW_AT_frame_base:
4256 return "DW_AT_frame_base";
4257 case DW_AT_friend:
4258 return "DW_AT_friend";
4259 case DW_AT_identifier_case:
4260 return "DW_AT_identifier_case";
4261 case DW_AT_macro_info:
4262 return "DW_AT_macro_info";
4263 case DW_AT_namelist_items:
4264 return "DW_AT_namelist_items";
4265 case DW_AT_priority:
4266 return "DW_AT_priority";
4267 case DW_AT_segment:
4268 return "DW_AT_segment";
4269 case DW_AT_specification:
4270 return "DW_AT_specification";
4271 case DW_AT_static_link:
4272 return "DW_AT_static_link";
4273 case DW_AT_type:
4274 return "DW_AT_type";
4275 case DW_AT_use_location:
4276 return "DW_AT_use_location";
4277 case DW_AT_variable_parameter:
4278 return "DW_AT_variable_parameter";
4279 case DW_AT_virtuality:
4280 return "DW_AT_virtuality";
4281 case DW_AT_vtable_elem_location:
4282 return "DW_AT_vtable_elem_location";
4283
4284 case DW_AT_allocated:
4285 return "DW_AT_allocated";
4286 case DW_AT_associated:
4287 return "DW_AT_associated";
4288 case DW_AT_data_location:
4289 return "DW_AT_data_location";
4290 case DW_AT_stride:
4291 return "DW_AT_stride";
4292 case DW_AT_entry_pc:
4293 return "DW_AT_entry_pc";
4294 case DW_AT_use_UTF8:
4295 return "DW_AT_use_UTF8";
4296 case DW_AT_extension:
4297 return "DW_AT_extension";
4298 case DW_AT_ranges:
4299 return "DW_AT_ranges";
4300 case DW_AT_trampoline:
4301 return "DW_AT_trampoline";
4302 case DW_AT_call_column:
4303 return "DW_AT_call_column";
4304 case DW_AT_call_file:
4305 return "DW_AT_call_file";
4306 case DW_AT_call_line:
4307 return "DW_AT_call_line";
4308
4309 case DW_AT_MIPS_fde:
4310 return "DW_AT_MIPS_fde";
4311 case DW_AT_MIPS_loop_begin:
4312 return "DW_AT_MIPS_loop_begin";
4313 case DW_AT_MIPS_tail_loop_begin:
4314 return "DW_AT_MIPS_tail_loop_begin";
4315 case DW_AT_MIPS_epilog_begin:
4316 return "DW_AT_MIPS_epilog_begin";
4317 case DW_AT_MIPS_loop_unroll_factor:
4318 return "DW_AT_MIPS_loop_unroll_factor";
4319 case DW_AT_MIPS_software_pipeline_depth:
4320 return "DW_AT_MIPS_software_pipeline_depth";
4321 case DW_AT_MIPS_linkage_name:
4322 return "DW_AT_MIPS_linkage_name";
4323 case DW_AT_MIPS_stride:
4324 return "DW_AT_MIPS_stride";
4325 case DW_AT_MIPS_abstract_name:
4326 return "DW_AT_MIPS_abstract_name";
4327 case DW_AT_MIPS_clone_origin:
4328 return "DW_AT_MIPS_clone_origin";
4329 case DW_AT_MIPS_has_inlines:
4330 return "DW_AT_MIPS_has_inlines";
4331
4332 case DW_AT_sf_names:
4333 return "DW_AT_sf_names";
4334 case DW_AT_src_info:
4335 return "DW_AT_src_info";
4336 case DW_AT_mac_info:
4337 return "DW_AT_mac_info";
4338 case DW_AT_src_coords:
4339 return "DW_AT_src_coords";
4340 case DW_AT_body_begin:
4341 return "DW_AT_body_begin";
4342 case DW_AT_body_end:
4343 return "DW_AT_body_end";
4344 case DW_AT_GNU_vector:
4345 return "DW_AT_GNU_vector";
4346
4347 case DW_AT_VMS_rtnbeg_pd_address:
4348 return "DW_AT_VMS_rtnbeg_pd_address";
4349
4350 default:
4351 return "DW_AT_<unknown>";
4352 }
4353 }
4354
4355 /* Convert a DWARF value form code into its string name. */
4356
4357 static const char *
4358 dwarf_form_name (form)
4359 unsigned form;
4360 {
4361 switch (form)
4362 {
4363 case DW_FORM_addr:
4364 return "DW_FORM_addr";
4365 case DW_FORM_block2:
4366 return "DW_FORM_block2";
4367 case DW_FORM_block4:
4368 return "DW_FORM_block4";
4369 case DW_FORM_data2:
4370 return "DW_FORM_data2";
4371 case DW_FORM_data4:
4372 return "DW_FORM_data4";
4373 case DW_FORM_data8:
4374 return "DW_FORM_data8";
4375 case DW_FORM_string:
4376 return "DW_FORM_string";
4377 case DW_FORM_block:
4378 return "DW_FORM_block";
4379 case DW_FORM_block1:
4380 return "DW_FORM_block1";
4381 case DW_FORM_data1:
4382 return "DW_FORM_data1";
4383 case DW_FORM_flag:
4384 return "DW_FORM_flag";
4385 case DW_FORM_sdata:
4386 return "DW_FORM_sdata";
4387 case DW_FORM_strp:
4388 return "DW_FORM_strp";
4389 case DW_FORM_udata:
4390 return "DW_FORM_udata";
4391 case DW_FORM_ref_addr:
4392 return "DW_FORM_ref_addr";
4393 case DW_FORM_ref1:
4394 return "DW_FORM_ref1";
4395 case DW_FORM_ref2:
4396 return "DW_FORM_ref2";
4397 case DW_FORM_ref4:
4398 return "DW_FORM_ref4";
4399 case DW_FORM_ref8:
4400 return "DW_FORM_ref8";
4401 case DW_FORM_ref_udata:
4402 return "DW_FORM_ref_udata";
4403 case DW_FORM_indirect:
4404 return "DW_FORM_indirect";
4405 default:
4406 return "DW_FORM_<unknown>";
4407 }
4408 }
4409
4410 /* Convert a DWARF type code into its string name. */
4411
4412 #if 0
4413 static const char *
4414 dwarf_type_encoding_name (enc)
4415 unsigned enc;
4416 {
4417 switch (enc)
4418 {
4419 case DW_ATE_address:
4420 return "DW_ATE_address";
4421 case DW_ATE_boolean:
4422 return "DW_ATE_boolean";
4423 case DW_ATE_complex_float:
4424 return "DW_ATE_complex_float";
4425 case DW_ATE_float:
4426 return "DW_ATE_float";
4427 case DW_ATE_signed:
4428 return "DW_ATE_signed";
4429 case DW_ATE_signed_char:
4430 return "DW_ATE_signed_char";
4431 case DW_ATE_unsigned:
4432 return "DW_ATE_unsigned";
4433 case DW_ATE_unsigned_char:
4434 return "DW_ATE_unsigned_char";
4435 default:
4436 return "DW_ATE_<unknown>";
4437 }
4438 }
4439 #endif
4440 \f
4441 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4442 instance of an inlined instance of a decl which is local to an inline
4443 function, so we have to trace all of the way back through the origin chain
4444 to find out what sort of node actually served as the original seed for the
4445 given block. */
4446
4447 static tree
4448 decl_ultimate_origin (decl)
4449 tree decl;
4450 {
4451 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4452 nodes in the function to point to themselves; ignore that if
4453 we're trying to output the abstract instance of this function. */
4454 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4455 return NULL_TREE;
4456
4457 #ifdef ENABLE_CHECKING
4458 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4459 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4460 most distant ancestor, this should never happen. */
4461 abort ();
4462 #endif
4463
4464 return DECL_ABSTRACT_ORIGIN (decl);
4465 }
4466
4467 /* Determine the "ultimate origin" of a block. The block may be an inlined
4468 instance of an inlined instance of a block which is local to an inline
4469 function, so we have to trace all of the way back through the origin chain
4470 to find out what sort of node actually served as the original seed for the
4471 given block. */
4472
4473 static tree
4474 block_ultimate_origin (block)
4475 tree block;
4476 {
4477 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4478
4479 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4480 nodes in the function to point to themselves; ignore that if
4481 we're trying to output the abstract instance of this function. */
4482 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4483 return NULL_TREE;
4484
4485 if (immediate_origin == NULL_TREE)
4486 return NULL_TREE;
4487 else
4488 {
4489 tree ret_val;
4490 tree lookahead = immediate_origin;
4491
4492 do
4493 {
4494 ret_val = lookahead;
4495 lookahead = (TREE_CODE (ret_val) == BLOCK
4496 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4497 }
4498 while (lookahead != NULL && lookahead != ret_val);
4499
4500 return ret_val;
4501 }
4502 }
4503
4504 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4505 of a virtual function may refer to a base class, so we check the 'this'
4506 parameter. */
4507
4508 static tree
4509 decl_class_context (decl)
4510 tree decl;
4511 {
4512 tree context = NULL_TREE;
4513
4514 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4515 context = DECL_CONTEXT (decl);
4516 else
4517 context = TYPE_MAIN_VARIANT
4518 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4519
4520 if (context && !TYPE_P (context))
4521 context = NULL_TREE;
4522
4523 return context;
4524 }
4525 \f
4526 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4527 addition order, and correct that in reverse_all_dies. */
4528
4529 static inline void
4530 add_dwarf_attr (die, attr)
4531 dw_die_ref die;
4532 dw_attr_ref attr;
4533 {
4534 if (die != NULL && attr != NULL)
4535 {
4536 attr->dw_attr_next = die->die_attr;
4537 die->die_attr = attr;
4538 }
4539 }
4540
4541 static inline enum dw_val_class
4542 AT_class (a)
4543 dw_attr_ref a;
4544 {
4545 return a->dw_attr_val.val_class;
4546 }
4547
4548 /* Add a flag value attribute to a DIE. */
4549
4550 static inline void
4551 add_AT_flag (die, attr_kind, flag)
4552 dw_die_ref die;
4553 enum dwarf_attribute attr_kind;
4554 unsigned flag;
4555 {
4556 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4557
4558 attr->dw_attr_next = NULL;
4559 attr->dw_attr = attr_kind;
4560 attr->dw_attr_val.val_class = dw_val_class_flag;
4561 attr->dw_attr_val.v.val_flag = flag;
4562 add_dwarf_attr (die, attr);
4563 }
4564
4565 static inline unsigned
4566 AT_flag (a)
4567 dw_attr_ref a;
4568 {
4569 if (a && AT_class (a) == dw_val_class_flag)
4570 return a->dw_attr_val.v.val_flag;
4571
4572 abort ();
4573 }
4574
4575 /* Add a signed integer attribute value to a DIE. */
4576
4577 static inline void
4578 add_AT_int (die, attr_kind, int_val)
4579 dw_die_ref die;
4580 enum dwarf_attribute attr_kind;
4581 long int int_val;
4582 {
4583 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4584
4585 attr->dw_attr_next = NULL;
4586 attr->dw_attr = attr_kind;
4587 attr->dw_attr_val.val_class = dw_val_class_const;
4588 attr->dw_attr_val.v.val_int = int_val;
4589 add_dwarf_attr (die, attr);
4590 }
4591
4592 static inline long int
4593 AT_int (a)
4594 dw_attr_ref a;
4595 {
4596 if (a && AT_class (a) == dw_val_class_const)
4597 return a->dw_attr_val.v.val_int;
4598
4599 abort ();
4600 }
4601
4602 /* Add an unsigned integer attribute value to a DIE. */
4603
4604 static inline void
4605 add_AT_unsigned (die, attr_kind, unsigned_val)
4606 dw_die_ref die;
4607 enum dwarf_attribute attr_kind;
4608 unsigned long unsigned_val;
4609 {
4610 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4611
4612 attr->dw_attr_next = NULL;
4613 attr->dw_attr = attr_kind;
4614 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4615 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4616 add_dwarf_attr (die, attr);
4617 }
4618
4619 static inline unsigned long
4620 AT_unsigned (a)
4621 dw_attr_ref a;
4622 {
4623 if (a && AT_class (a) == dw_val_class_unsigned_const)
4624 return a->dw_attr_val.v.val_unsigned;
4625
4626 abort ();
4627 }
4628
4629 /* Add an unsigned double integer attribute value to a DIE. */
4630
4631 static inline void
4632 add_AT_long_long (die, attr_kind, val_hi, val_low)
4633 dw_die_ref die;
4634 enum dwarf_attribute attr_kind;
4635 unsigned long val_hi;
4636 unsigned long val_low;
4637 {
4638 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4639
4640 attr->dw_attr_next = NULL;
4641 attr->dw_attr = attr_kind;
4642 attr->dw_attr_val.val_class = dw_val_class_long_long;
4643 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4644 attr->dw_attr_val.v.val_long_long.low = val_low;
4645 add_dwarf_attr (die, attr);
4646 }
4647
4648 /* Add a floating point attribute value to a DIE and return it. */
4649
4650 static inline void
4651 add_AT_float (die, attr_kind, length, array)
4652 dw_die_ref die;
4653 enum dwarf_attribute attr_kind;
4654 unsigned length;
4655 long *array;
4656 {
4657 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4658
4659 attr->dw_attr_next = NULL;
4660 attr->dw_attr = attr_kind;
4661 attr->dw_attr_val.val_class = dw_val_class_float;
4662 attr->dw_attr_val.v.val_float.length = length;
4663 attr->dw_attr_val.v.val_float.array = array;
4664 add_dwarf_attr (die, attr);
4665 }
4666
4667 /* Hash and equality functions for debug_str_hash. */
4668
4669 static hashval_t
4670 debug_str_do_hash (x)
4671 const void * x;
4672 {
4673 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4674 }
4675
4676 static int
4677 debug_str_eq (x1, x2)
4678 const void * x1;
4679 const void * x2;
4680 {
4681 return strcmp ((((const struct indirect_string_node *)x1)->str),
4682 (const char *)x2) == 0;
4683 }
4684
4685 /* Add a string attribute value to a DIE. */
4686
4687 static inline void
4688 add_AT_string (die, attr_kind, str)
4689 dw_die_ref die;
4690 enum dwarf_attribute attr_kind;
4691 const char *str;
4692 {
4693 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4694 struct indirect_string_node *node;
4695 PTR *slot;
4696
4697 if (! debug_str_hash)
4698 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4699 debug_str_eq, NULL);
4700
4701 slot = htab_find_slot_with_hash (debug_str_hash, str,
4702 htab_hash_string (str), INSERT);
4703 if (*slot == NULL)
4704 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4705 node = (struct indirect_string_node *) *slot;
4706 node->str = ggc_alloc_string (str, -1);
4707 node->refcount++;
4708
4709 attr->dw_attr_next = NULL;
4710 attr->dw_attr = attr_kind;
4711 attr->dw_attr_val.val_class = dw_val_class_str;
4712 attr->dw_attr_val.v.val_str = node;
4713 add_dwarf_attr (die, attr);
4714 }
4715
4716 static inline const char *
4717 AT_string (a)
4718 dw_attr_ref a;
4719 {
4720 if (a && AT_class (a) == dw_val_class_str)
4721 return a->dw_attr_val.v.val_str->str;
4722
4723 abort ();
4724 }
4725
4726 /* Find out whether a string should be output inline in DIE
4727 or out-of-line in .debug_str section. */
4728
4729 static int
4730 AT_string_form (a)
4731 dw_attr_ref a;
4732 {
4733 if (a && AT_class (a) == dw_val_class_str)
4734 {
4735 struct indirect_string_node *node;
4736 unsigned int len;
4737 char label[32];
4738
4739 node = a->dw_attr_val.v.val_str;
4740 if (node->form)
4741 return node->form;
4742
4743 len = strlen (node->str) + 1;
4744
4745 /* If the string is shorter or equal to the size of the reference, it is
4746 always better to put it inline. */
4747 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4748 return node->form = DW_FORM_string;
4749
4750 /* If we cannot expect the linker to merge strings in .debug_str
4751 section, only put it into .debug_str if it is worth even in this
4752 single module. */
4753 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4754 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4755 return node->form = DW_FORM_string;
4756
4757 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4758 ++dw2_string_counter;
4759 node->label = xstrdup (label);
4760
4761 return node->form = DW_FORM_strp;
4762 }
4763
4764 abort ();
4765 }
4766
4767 /* Add a DIE reference attribute value to a DIE. */
4768
4769 static inline void
4770 add_AT_die_ref (die, attr_kind, targ_die)
4771 dw_die_ref die;
4772 enum dwarf_attribute attr_kind;
4773 dw_die_ref targ_die;
4774 {
4775 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4776
4777 attr->dw_attr_next = NULL;
4778 attr->dw_attr = attr_kind;
4779 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4780 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4781 attr->dw_attr_val.v.val_die_ref.external = 0;
4782 add_dwarf_attr (die, attr);
4783 }
4784
4785 static inline dw_die_ref
4786 AT_ref (a)
4787 dw_attr_ref a;
4788 {
4789 if (a && AT_class (a) == dw_val_class_die_ref)
4790 return a->dw_attr_val.v.val_die_ref.die;
4791
4792 abort ();
4793 }
4794
4795 static inline int
4796 AT_ref_external (a)
4797 dw_attr_ref a;
4798 {
4799 if (a && AT_class (a) == dw_val_class_die_ref)
4800 return a->dw_attr_val.v.val_die_ref.external;
4801
4802 return 0;
4803 }
4804
4805 static inline void
4806 set_AT_ref_external (a, i)
4807 dw_attr_ref a;
4808 int i;
4809 {
4810 if (a && AT_class (a) == dw_val_class_die_ref)
4811 a->dw_attr_val.v.val_die_ref.external = i;
4812 else
4813 abort ();
4814 }
4815
4816 /* Add an FDE reference attribute value to a DIE. */
4817
4818 static inline void
4819 add_AT_fde_ref (die, attr_kind, targ_fde)
4820 dw_die_ref die;
4821 enum dwarf_attribute attr_kind;
4822 unsigned targ_fde;
4823 {
4824 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4825
4826 attr->dw_attr_next = NULL;
4827 attr->dw_attr = attr_kind;
4828 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4829 attr->dw_attr_val.v.val_fde_index = targ_fde;
4830 add_dwarf_attr (die, attr);
4831 }
4832
4833 /* Add a location description attribute value to a DIE. */
4834
4835 static inline void
4836 add_AT_loc (die, attr_kind, loc)
4837 dw_die_ref die;
4838 enum dwarf_attribute attr_kind;
4839 dw_loc_descr_ref loc;
4840 {
4841 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4842
4843 attr->dw_attr_next = NULL;
4844 attr->dw_attr = attr_kind;
4845 attr->dw_attr_val.val_class = dw_val_class_loc;
4846 attr->dw_attr_val.v.val_loc = loc;
4847 add_dwarf_attr (die, attr);
4848 }
4849
4850 static inline dw_loc_descr_ref
4851 AT_loc (a)
4852 dw_attr_ref a;
4853 {
4854 if (a && AT_class (a) == dw_val_class_loc)
4855 return a->dw_attr_val.v.val_loc;
4856
4857 abort ();
4858 }
4859
4860 static inline void
4861 add_AT_loc_list (die, attr_kind, loc_list)
4862 dw_die_ref die;
4863 enum dwarf_attribute attr_kind;
4864 dw_loc_list_ref loc_list;
4865 {
4866 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4867
4868 attr->dw_attr_next = NULL;
4869 attr->dw_attr = attr_kind;
4870 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4871 attr->dw_attr_val.v.val_loc_list = loc_list;
4872 add_dwarf_attr (die, attr);
4873 have_location_lists = 1;
4874 }
4875
4876 static inline dw_loc_list_ref
4877 AT_loc_list (a)
4878 dw_attr_ref a;
4879 {
4880 if (a && AT_class (a) == dw_val_class_loc_list)
4881 return a->dw_attr_val.v.val_loc_list;
4882
4883 abort ();
4884 }
4885
4886 /* Add an address constant attribute value to a DIE. */
4887
4888 static inline void
4889 add_AT_addr (die, attr_kind, addr)
4890 dw_die_ref die;
4891 enum dwarf_attribute attr_kind;
4892 rtx addr;
4893 {
4894 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4895
4896 attr->dw_attr_next = NULL;
4897 attr->dw_attr = attr_kind;
4898 attr->dw_attr_val.val_class = dw_val_class_addr;
4899 attr->dw_attr_val.v.val_addr = addr;
4900 add_dwarf_attr (die, attr);
4901 }
4902
4903 static inline rtx
4904 AT_addr (a)
4905 dw_attr_ref a;
4906 {
4907 if (a && AT_class (a) == dw_val_class_addr)
4908 return a->dw_attr_val.v.val_addr;
4909
4910 abort ();
4911 }
4912
4913 /* Add a label identifier attribute value to a DIE. */
4914
4915 static inline void
4916 add_AT_lbl_id (die, attr_kind, lbl_id)
4917 dw_die_ref die;
4918 enum dwarf_attribute attr_kind;
4919 const char *lbl_id;
4920 {
4921 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4922
4923 attr->dw_attr_next = NULL;
4924 attr->dw_attr = attr_kind;
4925 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4926 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4927 add_dwarf_attr (die, attr);
4928 }
4929
4930 /* Add a section offset attribute value to a DIE. */
4931
4932 static inline void
4933 add_AT_lbl_offset (die, attr_kind, label)
4934 dw_die_ref die;
4935 enum dwarf_attribute attr_kind;
4936 const char *label;
4937 {
4938 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4939
4940 attr->dw_attr_next = NULL;
4941 attr->dw_attr = attr_kind;
4942 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4943 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4944 add_dwarf_attr (die, attr);
4945 }
4946
4947 /* Add an offset attribute value to a DIE. */
4948
4949 static inline void
4950 add_AT_offset (die, attr_kind, offset)
4951 dw_die_ref die;
4952 enum dwarf_attribute attr_kind;
4953 unsigned long offset;
4954 {
4955 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4956
4957 attr->dw_attr_next = NULL;
4958 attr->dw_attr = attr_kind;
4959 attr->dw_attr_val.val_class = dw_val_class_offset;
4960 attr->dw_attr_val.v.val_offset = offset;
4961 add_dwarf_attr (die, attr);
4962 }
4963
4964 /* Add an range_list attribute value to a DIE. */
4965
4966 static void
4967 add_AT_range_list (die, attr_kind, offset)
4968 dw_die_ref die;
4969 enum dwarf_attribute attr_kind;
4970 unsigned long offset;
4971 {
4972 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4973
4974 attr->dw_attr_next = NULL;
4975 attr->dw_attr = attr_kind;
4976 attr->dw_attr_val.val_class = dw_val_class_range_list;
4977 attr->dw_attr_val.v.val_offset = offset;
4978 add_dwarf_attr (die, attr);
4979 }
4980
4981 static inline const char *
4982 AT_lbl (a)
4983 dw_attr_ref a;
4984 {
4985 if (a && (AT_class (a) == dw_val_class_lbl_id
4986 || AT_class (a) == dw_val_class_lbl_offset))
4987 return a->dw_attr_val.v.val_lbl_id;
4988
4989 abort ();
4990 }
4991
4992 /* Get the attribute of type attr_kind. */
4993
4994 static inline dw_attr_ref
4995 get_AT (die, attr_kind)
4996 dw_die_ref die;
4997 enum dwarf_attribute attr_kind;
4998 {
4999 dw_attr_ref a;
5000 dw_die_ref spec = NULL;
5001
5002 if (die != NULL)
5003 {
5004 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5005 if (a->dw_attr == attr_kind)
5006 return a;
5007 else if (a->dw_attr == DW_AT_specification
5008 || a->dw_attr == DW_AT_abstract_origin)
5009 spec = AT_ref (a);
5010
5011 if (spec)
5012 return get_AT (spec, attr_kind);
5013 }
5014
5015 return NULL;
5016 }
5017
5018 /* Return the "low pc" attribute value, typically associated with a subprogram
5019 DIE. Return null if the "low pc" attribute is either not present, or if it
5020 cannot be represented as an assembler label identifier. */
5021
5022 static inline const char *
5023 get_AT_low_pc (die)
5024 dw_die_ref die;
5025 {
5026 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5027
5028 return a ? AT_lbl (a) : NULL;
5029 }
5030
5031 /* Return the "high pc" attribute value, typically associated with a subprogram
5032 DIE. Return null if the "high pc" attribute is either not present, or if it
5033 cannot be represented as an assembler label identifier. */
5034
5035 static inline const char *
5036 get_AT_hi_pc (die)
5037 dw_die_ref die;
5038 {
5039 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5040
5041 return a ? AT_lbl (a) : NULL;
5042 }
5043
5044 /* Return the value of the string attribute designated by ATTR_KIND, or
5045 NULL if it is not present. */
5046
5047 static inline const char *
5048 get_AT_string (die, attr_kind)
5049 dw_die_ref die;
5050 enum dwarf_attribute attr_kind;
5051 {
5052 dw_attr_ref a = get_AT (die, attr_kind);
5053
5054 return a ? AT_string (a) : NULL;
5055 }
5056
5057 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5058 if it is not present. */
5059
5060 static inline int
5061 get_AT_flag (die, attr_kind)
5062 dw_die_ref die;
5063 enum dwarf_attribute attr_kind;
5064 {
5065 dw_attr_ref a = get_AT (die, attr_kind);
5066
5067 return a ? AT_flag (a) : 0;
5068 }
5069
5070 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5071 if it is not present. */
5072
5073 static inline unsigned
5074 get_AT_unsigned (die, attr_kind)
5075 dw_die_ref die;
5076 enum dwarf_attribute attr_kind;
5077 {
5078 dw_attr_ref a = get_AT (die, attr_kind);
5079
5080 return a ? AT_unsigned (a) : 0;
5081 }
5082
5083 static inline dw_die_ref
5084 get_AT_ref (die, attr_kind)
5085 dw_die_ref die;
5086 enum dwarf_attribute attr_kind;
5087 {
5088 dw_attr_ref a = get_AT (die, attr_kind);
5089
5090 return a ? AT_ref (a) : NULL;
5091 }
5092
5093 static inline int
5094 is_c_family ()
5095 {
5096 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5097
5098 return (lang == DW_LANG_C || lang == DW_LANG_C89
5099 || lang == DW_LANG_C_plus_plus);
5100 }
5101
5102 static inline int
5103 is_cxx ()
5104 {
5105 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5106 == DW_LANG_C_plus_plus);
5107 }
5108
5109 static inline int
5110 is_fortran ()
5111 {
5112 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5113
5114 return (lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90);
5115 }
5116
5117 static inline int
5118 is_java ()
5119 {
5120 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5121
5122 return (lang == DW_LANG_Java);
5123 }
5124
5125 /* Free up the memory used by A. */
5126
5127 static inline void free_AT PARAMS ((dw_attr_ref));
5128 static inline void
5129 free_AT (a)
5130 dw_attr_ref a;
5131 {
5132 if (AT_class (a) == dw_val_class_str)
5133 if (a->dw_attr_val.v.val_str->refcount)
5134 a->dw_attr_val.v.val_str->refcount--;
5135 }
5136
5137 /* Remove the specified attribute if present. */
5138
5139 static void
5140 remove_AT (die, attr_kind)
5141 dw_die_ref die;
5142 enum dwarf_attribute attr_kind;
5143 {
5144 dw_attr_ref *p;
5145 dw_attr_ref removed = NULL;
5146
5147 if (die != NULL)
5148 {
5149 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5150 if ((*p)->dw_attr == attr_kind)
5151 {
5152 removed = *p;
5153 *p = (*p)->dw_attr_next;
5154 break;
5155 }
5156
5157 if (removed != 0)
5158 free_AT (removed);
5159 }
5160 }
5161
5162 /* Free up the memory used by DIE. */
5163
5164 static inline void
5165 free_die (die)
5166 dw_die_ref die;
5167 {
5168 remove_children (die);
5169 }
5170
5171 /* Discard the children of this DIE. */
5172
5173 static void
5174 remove_children (die)
5175 dw_die_ref die;
5176 {
5177 dw_die_ref child_die = die->die_child;
5178
5179 die->die_child = NULL;
5180
5181 while (child_die != NULL)
5182 {
5183 dw_die_ref tmp_die = child_die;
5184 dw_attr_ref a;
5185
5186 child_die = child_die->die_sib;
5187
5188 for (a = tmp_die->die_attr; a != NULL;)
5189 {
5190 dw_attr_ref tmp_a = a;
5191
5192 a = a->dw_attr_next;
5193 free_AT (tmp_a);
5194 }
5195
5196 free_die (tmp_die);
5197 }
5198 }
5199
5200 /* Add a child DIE below its parent. We build the lists up in reverse
5201 addition order, and correct that in reverse_all_dies. */
5202
5203 static inline void
5204 add_child_die (die, child_die)
5205 dw_die_ref die;
5206 dw_die_ref child_die;
5207 {
5208 if (die != NULL && child_die != NULL)
5209 {
5210 if (die == child_die)
5211 abort ();
5212
5213 child_die->die_parent = die;
5214 child_die->die_sib = die->die_child;
5215 die->die_child = child_die;
5216 }
5217 }
5218
5219 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5220 is the specification, to the front of PARENT's list of children. */
5221
5222 static void
5223 splice_child_die (parent, child)
5224 dw_die_ref parent, child;
5225 {
5226 dw_die_ref *p;
5227
5228 /* We want the declaration DIE from inside the class, not the
5229 specification DIE at toplevel. */
5230 if (child->die_parent != parent)
5231 {
5232 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5233
5234 if (tmp)
5235 child = tmp;
5236 }
5237
5238 if (child->die_parent != parent
5239 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5240 abort ();
5241
5242 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5243 if (*p == child)
5244 {
5245 *p = child->die_sib;
5246 break;
5247 }
5248
5249 child->die_parent = parent;
5250 child->die_sib = parent->die_child;
5251 parent->die_child = child;
5252 }
5253
5254 /* Return a pointer to a newly created DIE node. */
5255
5256 static inline dw_die_ref
5257 new_die (tag_value, parent_die, t)
5258 enum dwarf_tag tag_value;
5259 dw_die_ref parent_die;
5260 tree t;
5261 {
5262 dw_die_ref die = (dw_die_ref) ggc_alloc_cleared (sizeof (die_node));
5263
5264 die->die_tag = tag_value;
5265
5266 if (parent_die != NULL)
5267 add_child_die (parent_die, die);
5268 else
5269 {
5270 limbo_die_node *limbo_node;
5271
5272 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5273 limbo_node->die = die;
5274 limbo_node->created_for = t;
5275 limbo_node->next = limbo_die_list;
5276 limbo_die_list = limbo_node;
5277 }
5278
5279 return die;
5280 }
5281
5282 /* Return the DIE associated with the given type specifier. */
5283
5284 static inline dw_die_ref
5285 lookup_type_die (type)
5286 tree type;
5287 {
5288 return TYPE_SYMTAB_DIE (type);
5289 }
5290
5291 /* Equate a DIE to a given type specifier. */
5292
5293 static inline void
5294 equate_type_number_to_die (type, type_die)
5295 tree type;
5296 dw_die_ref type_die;
5297 {
5298 TYPE_SYMTAB_DIE (type) = type_die;
5299 }
5300
5301 /* Return the DIE associated with a given declaration. */
5302
5303 static inline dw_die_ref
5304 lookup_decl_die (decl)
5305 tree decl;
5306 {
5307 unsigned decl_id = DECL_UID (decl);
5308
5309 return (decl_id < decl_die_table_in_use ? decl_die_table[decl_id] : NULL);
5310 }
5311
5312 /* Equate a DIE to a particular declaration. */
5313
5314 static void
5315 equate_decl_number_to_die (decl, decl_die)
5316 tree decl;
5317 dw_die_ref decl_die;
5318 {
5319 unsigned int decl_id = DECL_UID (decl);
5320 unsigned int num_allocated;
5321
5322 if (decl_id >= decl_die_table_allocated)
5323 {
5324 num_allocated
5325 = ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
5326 / DECL_DIE_TABLE_INCREMENT)
5327 * DECL_DIE_TABLE_INCREMENT;
5328
5329 decl_die_table = ggc_realloc (decl_die_table,
5330 sizeof (dw_die_ref) * num_allocated);
5331
5332 memset ((char *) &decl_die_table[decl_die_table_allocated], 0,
5333 (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
5334 decl_die_table_allocated = num_allocated;
5335 }
5336
5337 if (decl_id >= decl_die_table_in_use)
5338 decl_die_table_in_use = (decl_id + 1);
5339
5340 decl_die_table[decl_id] = decl_die;
5341 }
5342 \f
5343 /* Keep track of the number of spaces used to indent the
5344 output of the debugging routines that print the structure of
5345 the DIE internal representation. */
5346 static int print_indent;
5347
5348 /* Indent the line the number of spaces given by print_indent. */
5349
5350 static inline void
5351 print_spaces (outfile)
5352 FILE *outfile;
5353 {
5354 fprintf (outfile, "%*s", print_indent, "");
5355 }
5356
5357 /* Print the information associated with a given DIE, and its children.
5358 This routine is a debugging aid only. */
5359
5360 static void
5361 print_die (die, outfile)
5362 dw_die_ref die;
5363 FILE *outfile;
5364 {
5365 dw_attr_ref a;
5366 dw_die_ref c;
5367
5368 print_spaces (outfile);
5369 fprintf (outfile, "DIE %4lu: %s\n",
5370 die->die_offset, dwarf_tag_name (die->die_tag));
5371 print_spaces (outfile);
5372 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5373 fprintf (outfile, " offset: %lu\n", die->die_offset);
5374
5375 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5376 {
5377 print_spaces (outfile);
5378 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5379
5380 switch (AT_class (a))
5381 {
5382 case dw_val_class_addr:
5383 fprintf (outfile, "address");
5384 break;
5385 case dw_val_class_offset:
5386 fprintf (outfile, "offset");
5387 break;
5388 case dw_val_class_loc:
5389 fprintf (outfile, "location descriptor");
5390 break;
5391 case dw_val_class_loc_list:
5392 fprintf (outfile, "location list -> label:%s",
5393 AT_loc_list (a)->ll_symbol);
5394 break;
5395 case dw_val_class_range_list:
5396 fprintf (outfile, "range list");
5397 break;
5398 case dw_val_class_const:
5399 fprintf (outfile, "%ld", AT_int (a));
5400 break;
5401 case dw_val_class_unsigned_const:
5402 fprintf (outfile, "%lu", AT_unsigned (a));
5403 break;
5404 case dw_val_class_long_long:
5405 fprintf (outfile, "constant (%lu,%lu)",
5406 a->dw_attr_val.v.val_long_long.hi,
5407 a->dw_attr_val.v.val_long_long.low);
5408 break;
5409 case dw_val_class_float:
5410 fprintf (outfile, "floating-point constant");
5411 break;
5412 case dw_val_class_flag:
5413 fprintf (outfile, "%u", AT_flag (a));
5414 break;
5415 case dw_val_class_die_ref:
5416 if (AT_ref (a) != NULL)
5417 {
5418 if (AT_ref (a)->die_symbol)
5419 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5420 else
5421 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5422 }
5423 else
5424 fprintf (outfile, "die -> <null>");
5425 break;
5426 case dw_val_class_lbl_id:
5427 case dw_val_class_lbl_offset:
5428 fprintf (outfile, "label: %s", AT_lbl (a));
5429 break;
5430 case dw_val_class_str:
5431 if (AT_string (a) != NULL)
5432 fprintf (outfile, "\"%s\"", AT_string (a));
5433 else
5434 fprintf (outfile, "<null>");
5435 break;
5436 default:
5437 break;
5438 }
5439
5440 fprintf (outfile, "\n");
5441 }
5442
5443 if (die->die_child != NULL)
5444 {
5445 print_indent += 4;
5446 for (c = die->die_child; c != NULL; c = c->die_sib)
5447 print_die (c, outfile);
5448
5449 print_indent -= 4;
5450 }
5451 if (print_indent == 0)
5452 fprintf (outfile, "\n");
5453 }
5454
5455 /* Print the contents of the source code line number correspondence table.
5456 This routine is a debugging aid only. */
5457
5458 static void
5459 print_dwarf_line_table (outfile)
5460 FILE *outfile;
5461 {
5462 unsigned i;
5463 dw_line_info_ref line_info;
5464
5465 fprintf (outfile, "\n\nDWARF source line information\n");
5466 for (i = 1; i < line_info_table_in_use; i++)
5467 {
5468 line_info = &line_info_table[i];
5469 fprintf (outfile, "%5d: ", i);
5470 fprintf (outfile, "%-20s",
5471 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5472 fprintf (outfile, "%6ld", line_info->dw_line_num);
5473 fprintf (outfile, "\n");
5474 }
5475
5476 fprintf (outfile, "\n\n");
5477 }
5478
5479 /* Print the information collected for a given DIE. */
5480
5481 void
5482 debug_dwarf_die (die)
5483 dw_die_ref die;
5484 {
5485 print_die (die, stderr);
5486 }
5487
5488 /* Print all DWARF information collected for the compilation unit.
5489 This routine is a debugging aid only. */
5490
5491 void
5492 debug_dwarf ()
5493 {
5494 print_indent = 0;
5495 print_die (comp_unit_die, stderr);
5496 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5497 print_dwarf_line_table (stderr);
5498 }
5499 \f
5500 /* We build up the lists of children and attributes by pushing new ones
5501 onto the beginning of the list. Reverse the lists for DIE so that
5502 they are in order of addition. */
5503
5504 static void
5505 reverse_die_lists (die)
5506 dw_die_ref die;
5507 {
5508 dw_die_ref c, cp, cn;
5509 dw_attr_ref a, ap, an;
5510
5511 for (a = die->die_attr, ap = 0; a; a = an)
5512 {
5513 an = a->dw_attr_next;
5514 a->dw_attr_next = ap;
5515 ap = a;
5516 }
5517
5518 die->die_attr = ap;
5519
5520 for (c = die->die_child, cp = 0; c; c = cn)
5521 {
5522 cn = c->die_sib;
5523 c->die_sib = cp;
5524 cp = c;
5525 }
5526
5527 die->die_child = cp;
5528 }
5529
5530 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5531 reverse all dies in add_sibling_attributes, which runs through all the dies,
5532 it would reverse all the dies. Now, however, since we don't call
5533 reverse_die_lists in add_sibling_attributes, we need a routine to
5534 recursively reverse all the dies. This is that routine. */
5535
5536 static void
5537 reverse_all_dies (die)
5538 dw_die_ref die;
5539 {
5540 dw_die_ref c;
5541
5542 reverse_die_lists (die);
5543
5544 for (c = die->die_child; c; c = c->die_sib)
5545 reverse_all_dies (c);
5546 }
5547
5548 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5549 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5550 DIE that marks the start of the DIEs for this include file. */
5551
5552 static dw_die_ref
5553 push_new_compile_unit (old_unit, bincl_die)
5554 dw_die_ref old_unit, bincl_die;
5555 {
5556 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5557 dw_die_ref new_unit = gen_compile_unit_die (filename);
5558
5559 new_unit->die_sib = old_unit;
5560 return new_unit;
5561 }
5562
5563 /* Close an include-file CU and reopen the enclosing one. */
5564
5565 static dw_die_ref
5566 pop_compile_unit (old_unit)
5567 dw_die_ref old_unit;
5568 {
5569 dw_die_ref new_unit = old_unit->die_sib;
5570
5571 old_unit->die_sib = NULL;
5572 return new_unit;
5573 }
5574
5575 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5576 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5577
5578 /* Calculate the checksum of a location expression. */
5579
5580 static inline void
5581 loc_checksum (loc, ctx)
5582 dw_loc_descr_ref loc;
5583 struct md5_ctx *ctx;
5584 {
5585 CHECKSUM (loc->dw_loc_opc);
5586 CHECKSUM (loc->dw_loc_oprnd1);
5587 CHECKSUM (loc->dw_loc_oprnd2);
5588 }
5589
5590 /* Calculate the checksum of an attribute. */
5591
5592 static void
5593 attr_checksum (at, ctx, mark)
5594 dw_attr_ref at;
5595 struct md5_ctx *ctx;
5596 int *mark;
5597 {
5598 dw_loc_descr_ref loc;
5599 rtx r;
5600
5601 CHECKSUM (at->dw_attr);
5602
5603 /* We don't care about differences in file numbering. */
5604 if (at->dw_attr == DW_AT_decl_file
5605 /* Or that this was compiled with a different compiler snapshot; if
5606 the output is the same, that's what matters. */
5607 || at->dw_attr == DW_AT_producer)
5608 return;
5609
5610 switch (AT_class (at))
5611 {
5612 case dw_val_class_const:
5613 CHECKSUM (at->dw_attr_val.v.val_int);
5614 break;
5615 case dw_val_class_unsigned_const:
5616 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5617 break;
5618 case dw_val_class_long_long:
5619 CHECKSUM (at->dw_attr_val.v.val_long_long);
5620 break;
5621 case dw_val_class_float:
5622 CHECKSUM (at->dw_attr_val.v.val_float);
5623 break;
5624 case dw_val_class_flag:
5625 CHECKSUM (at->dw_attr_val.v.val_flag);
5626 break;
5627 case dw_val_class_str:
5628 CHECKSUM_STRING (AT_string (at));
5629 break;
5630
5631 case dw_val_class_addr:
5632 r = AT_addr (at);
5633 switch (GET_CODE (r))
5634 {
5635 case SYMBOL_REF:
5636 CHECKSUM_STRING (XSTR (r, 0));
5637 break;
5638
5639 default:
5640 abort ();
5641 }
5642 break;
5643
5644 case dw_val_class_offset:
5645 CHECKSUM (at->dw_attr_val.v.val_offset);
5646 break;
5647
5648 case dw_val_class_loc:
5649 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5650 loc_checksum (loc, ctx);
5651 break;
5652
5653 case dw_val_class_die_ref:
5654 die_checksum (AT_ref (at), ctx, mark);
5655 break;
5656
5657 case dw_val_class_fde_ref:
5658 case dw_val_class_lbl_id:
5659 case dw_val_class_lbl_offset:
5660 break;
5661
5662 default:
5663 break;
5664 }
5665 }
5666
5667 /* Calculate the checksum of a DIE. */
5668
5669 static void
5670 die_checksum (die, ctx, mark)
5671 dw_die_ref die;
5672 struct md5_ctx *ctx;
5673 int *mark;
5674 {
5675 dw_die_ref c;
5676 dw_attr_ref a;
5677
5678 /* To avoid infinite recursion. */
5679 if (die->die_mark)
5680 {
5681 CHECKSUM (die->die_mark);
5682 return;
5683 }
5684 die->die_mark = ++(*mark);
5685
5686 CHECKSUM (die->die_tag);
5687
5688 for (a = die->die_attr; a; a = a->dw_attr_next)
5689 attr_checksum (a, ctx, mark);
5690
5691 for (c = die->die_child; c; c = c->die_sib)
5692 die_checksum (c, ctx, mark);
5693 }
5694
5695 #undef CHECKSUM
5696 #undef CHECKSUM_STRING
5697
5698 /* Do the location expressions look same? */
5699 static inline int
5700 same_loc_p (loc1, loc2, mark)
5701 dw_loc_descr_ref loc1;
5702 dw_loc_descr_ref loc2;
5703 int *mark;
5704 {
5705 return loc1->dw_loc_opc == loc2->dw_loc_opc
5706 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5707 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5708 }
5709
5710 /* Do the values look the same? */
5711 static int
5712 same_dw_val_p (v1, v2, mark)
5713 dw_val_node *v1;
5714 dw_val_node *v2;
5715 int *mark;
5716 {
5717 dw_loc_descr_ref loc1, loc2;
5718 rtx r1, r2;
5719 unsigned i;
5720
5721 if (v1->val_class != v2->val_class)
5722 return 0;
5723
5724 switch (v1->val_class)
5725 {
5726 case dw_val_class_const:
5727 return v1->v.val_int == v2->v.val_int;
5728 case dw_val_class_unsigned_const:
5729 return v1->v.val_unsigned == v2->v.val_unsigned;
5730 case dw_val_class_long_long:
5731 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5732 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5733 case dw_val_class_float:
5734 if (v1->v.val_float.length != v2->v.val_float.length)
5735 return 0;
5736 for (i = 0; i < v1->v.val_float.length; i++)
5737 if (v1->v.val_float.array[i] != v2->v.val_float.array[i])
5738 return 0;
5739 return 1;
5740 case dw_val_class_flag:
5741 return v1->v.val_flag == v2->v.val_flag;
5742 case dw_val_class_str:
5743 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5744
5745 case dw_val_class_addr:
5746 r1 = v1->v.val_addr;
5747 r2 = v2->v.val_addr;
5748 if (GET_CODE (r1) != GET_CODE (r2))
5749 return 0;
5750 switch (GET_CODE (r1))
5751 {
5752 case SYMBOL_REF:
5753 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5754
5755 default:
5756 abort ();
5757 }
5758
5759 case dw_val_class_offset:
5760 return v1->v.val_offset == v2->v.val_offset;
5761
5762 case dw_val_class_loc:
5763 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5764 loc1 && loc2;
5765 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5766 if (!same_loc_p (loc1, loc2, mark))
5767 return 0;
5768 return !loc1 && !loc2;
5769
5770 case dw_val_class_die_ref:
5771 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5772
5773 case dw_val_class_fde_ref:
5774 case dw_val_class_lbl_id:
5775 case dw_val_class_lbl_offset:
5776 return 1;
5777
5778 default:
5779 return 1;
5780 }
5781 }
5782
5783 /* Do the attributes look the same? */
5784
5785 static int
5786 same_attr_p (at1, at2, mark)
5787 dw_attr_ref at1;
5788 dw_attr_ref at2;
5789 int *mark;
5790 {
5791 if (at1->dw_attr != at2->dw_attr)
5792 return 0;
5793
5794 /* We don't care about differences in file numbering. */
5795 if (at1->dw_attr == DW_AT_decl_file
5796 /* Or that this was compiled with a different compiler snapshot; if
5797 the output is the same, that's what matters. */
5798 || at1->dw_attr == DW_AT_producer)
5799 return 1;
5800
5801 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5802 }
5803
5804 /* Do the dies look the same? */
5805
5806 static int
5807 same_die_p (die1, die2, mark)
5808 dw_die_ref die1;
5809 dw_die_ref die2;
5810 int *mark;
5811 {
5812 dw_die_ref c1, c2;
5813 dw_attr_ref a1, a2;
5814
5815 /* To avoid infinite recursion. */
5816 if (die1->die_mark)
5817 return die1->die_mark == die2->die_mark;
5818 die1->die_mark = die2->die_mark = ++(*mark);
5819
5820 if (die1->die_tag != die2->die_tag)
5821 return 0;
5822
5823 for (a1 = die1->die_attr, a2 = die2->die_attr;
5824 a1 && a2;
5825 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5826 if (!same_attr_p (a1, a2, mark))
5827 return 0;
5828 if (a1 || a2)
5829 return 0;
5830
5831 for (c1 = die1->die_child, c2 = die2->die_child;
5832 c1 && c2;
5833 c1 = c1->die_sib, c2 = c2->die_sib)
5834 if (!same_die_p (c1, c2, mark))
5835 return 0;
5836 if (c1 || c2)
5837 return 0;
5838
5839 return 1;
5840 }
5841
5842 /* Do the dies look the same? Wrapper around same_die_p. */
5843
5844 static int
5845 same_die_p_wrap (die1, die2)
5846 dw_die_ref die1;
5847 dw_die_ref die2;
5848 {
5849 int mark = 0;
5850 int ret = same_die_p (die1, die2, &mark);
5851
5852 unmark_all_dies (die1);
5853 unmark_all_dies (die2);
5854
5855 return ret;
5856 }
5857
5858 /* The prefix to attach to symbols on DIEs in the current comdat debug
5859 info section. */
5860 static char *comdat_symbol_id;
5861
5862 /* The index of the current symbol within the current comdat CU. */
5863 static unsigned int comdat_symbol_number;
5864
5865 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5866 children, and set comdat_symbol_id accordingly. */
5867
5868 static void
5869 compute_section_prefix (unit_die)
5870 dw_die_ref unit_die;
5871 {
5872 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5873 const char *base = die_name ? lbasename (die_name) : "anonymous";
5874 char *name = (char *) alloca (strlen (base) + 64);
5875 char *p;
5876 int i, mark;
5877 unsigned char checksum[16];
5878 struct md5_ctx ctx;
5879
5880 /* Compute the checksum of the DIE, then append part of it as hex digits to
5881 the name filename of the unit. */
5882
5883 md5_init_ctx (&ctx);
5884 mark = 0;
5885 die_checksum (unit_die, &ctx, &mark);
5886 unmark_all_dies (unit_die);
5887 md5_finish_ctx (&ctx, checksum);
5888
5889 sprintf (name, "%s.", base);
5890 clean_symbol_name (name);
5891
5892 p = name + strlen (name);
5893 for (i = 0; i < 4; i++)
5894 {
5895 sprintf (p, "%.2x", checksum[i]);
5896 p += 2;
5897 }
5898
5899 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5900 comdat_symbol_number = 0;
5901 }
5902
5903 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5904
5905 static int
5906 is_type_die (die)
5907 dw_die_ref die;
5908 {
5909 switch (die->die_tag)
5910 {
5911 case DW_TAG_array_type:
5912 case DW_TAG_class_type:
5913 case DW_TAG_enumeration_type:
5914 case DW_TAG_pointer_type:
5915 case DW_TAG_reference_type:
5916 case DW_TAG_string_type:
5917 case DW_TAG_structure_type:
5918 case DW_TAG_subroutine_type:
5919 case DW_TAG_union_type:
5920 case DW_TAG_ptr_to_member_type:
5921 case DW_TAG_set_type:
5922 case DW_TAG_subrange_type:
5923 case DW_TAG_base_type:
5924 case DW_TAG_const_type:
5925 case DW_TAG_file_type:
5926 case DW_TAG_packed_type:
5927 case DW_TAG_volatile_type:
5928 case DW_TAG_typedef:
5929 return 1;
5930 default:
5931 return 0;
5932 }
5933 }
5934
5935 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5936 Basically, we want to choose the bits that are likely to be shared between
5937 compilations (types) and leave out the bits that are specific to individual
5938 compilations (functions). */
5939
5940 static int
5941 is_comdat_die (c)
5942 dw_die_ref c;
5943 {
5944 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5945 we do for stabs. The advantage is a greater likelihood of sharing between
5946 objects that don't include headers in the same order (and therefore would
5947 put the base types in a different comdat). jason 8/28/00 */
5948
5949 if (c->die_tag == DW_TAG_base_type)
5950 return 0;
5951
5952 if (c->die_tag == DW_TAG_pointer_type
5953 || c->die_tag == DW_TAG_reference_type
5954 || c->die_tag == DW_TAG_const_type
5955 || c->die_tag == DW_TAG_volatile_type)
5956 {
5957 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5958
5959 return t ? is_comdat_die (t) : 0;
5960 }
5961
5962 return is_type_die (c);
5963 }
5964
5965 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5966 compilation unit. */
5967
5968 static int
5969 is_symbol_die (c)
5970 dw_die_ref c;
5971 {
5972 return (is_type_die (c)
5973 || (get_AT (c, DW_AT_declaration)
5974 && !get_AT (c, DW_AT_specification)));
5975 }
5976
5977 static char *
5978 gen_internal_sym (prefix)
5979 const char *prefix;
5980 {
5981 char buf[256];
5982 static int label_num;
5983
5984 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5985 return xstrdup (buf);
5986 }
5987
5988 /* Assign symbols to all worthy DIEs under DIE. */
5989
5990 static void
5991 assign_symbol_names (die)
5992 dw_die_ref die;
5993 {
5994 dw_die_ref c;
5995
5996 if (is_symbol_die (die))
5997 {
5998 if (comdat_symbol_id)
5999 {
6000 char *p = alloca (strlen (comdat_symbol_id) + 64);
6001
6002 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6003 comdat_symbol_id, comdat_symbol_number++);
6004 die->die_symbol = xstrdup (p);
6005 }
6006 else
6007 die->die_symbol = gen_internal_sym ("LDIE");
6008 }
6009
6010 for (c = die->die_child; c != NULL; c = c->die_sib)
6011 assign_symbol_names (c);
6012 }
6013
6014 struct cu_hash_table_entry
6015 {
6016 dw_die_ref cu;
6017 unsigned min_comdat_num, max_comdat_num;
6018 struct cu_hash_table_entry *next;
6019 };
6020
6021 /* Routines to manipulate hash table of CUs. */
6022 static hashval_t
6023 htab_cu_hash (of)
6024 const void *of;
6025 {
6026 const struct cu_hash_table_entry *entry = of;
6027
6028 return htab_hash_string (entry->cu->die_symbol);
6029 }
6030
6031 static int
6032 htab_cu_eq (of1, of2)
6033 const void *of1;
6034 const void *of2;
6035 {
6036 const struct cu_hash_table_entry *entry1 = of1;
6037 const struct die_struct *entry2 = of2;
6038
6039 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6040 }
6041
6042 static void
6043 htab_cu_del (what)
6044 void *what;
6045 {
6046 struct cu_hash_table_entry *next, *entry = what;
6047
6048 while (entry)
6049 {
6050 next = entry->next;
6051 free (entry);
6052 entry = next;
6053 }
6054 }
6055
6056 /* Check whether we have already seen this CU and set up SYM_NUM
6057 accordingly. */
6058 static int
6059 check_duplicate_cu (cu, htable, sym_num)
6060 dw_die_ref cu;
6061 htab_t htable;
6062 unsigned *sym_num;
6063 {
6064 struct cu_hash_table_entry dummy;
6065 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6066
6067 dummy.max_comdat_num = 0;
6068
6069 slot = (struct cu_hash_table_entry **)
6070 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6071 INSERT);
6072 entry = *slot;
6073
6074 for (; entry; last = entry, entry = entry->next)
6075 {
6076 if (same_die_p_wrap (cu, entry->cu))
6077 break;
6078 }
6079
6080 if (entry)
6081 {
6082 *sym_num = entry->min_comdat_num;
6083 return 1;
6084 }
6085
6086 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6087 entry->cu = cu;
6088 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6089 entry->next = *slot;
6090 *slot = entry;
6091
6092 return 0;
6093 }
6094
6095 /* Record SYM_NUM to record of CU in HTABLE. */
6096 static void
6097 record_comdat_symbol_number (cu, htable, sym_num)
6098 dw_die_ref cu;
6099 htab_t htable;
6100 unsigned sym_num;
6101 {
6102 struct cu_hash_table_entry **slot, *entry;
6103
6104 slot = (struct cu_hash_table_entry **)
6105 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6106 NO_INSERT);
6107 entry = *slot;
6108
6109 entry->max_comdat_num = sym_num;
6110 }
6111
6112 /* Traverse the DIE (which is always comp_unit_die), and set up
6113 additional compilation units for each of the include files we see
6114 bracketed by BINCL/EINCL. */
6115
6116 static void
6117 break_out_includes (die)
6118 dw_die_ref die;
6119 {
6120 dw_die_ref *ptr;
6121 dw_die_ref unit = NULL;
6122 limbo_die_node *node, **pnode;
6123 htab_t cu_hash_table;
6124
6125 for (ptr = &(die->die_child); *ptr;)
6126 {
6127 dw_die_ref c = *ptr;
6128
6129 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6130 || (unit && is_comdat_die (c)))
6131 {
6132 /* This DIE is for a secondary CU; remove it from the main one. */
6133 *ptr = c->die_sib;
6134
6135 if (c->die_tag == DW_TAG_GNU_BINCL)
6136 {
6137 unit = push_new_compile_unit (unit, c);
6138 free_die (c);
6139 }
6140 else if (c->die_tag == DW_TAG_GNU_EINCL)
6141 {
6142 unit = pop_compile_unit (unit);
6143 free_die (c);
6144 }
6145 else
6146 add_child_die (unit, c);
6147 }
6148 else
6149 {
6150 /* Leave this DIE in the main CU. */
6151 ptr = &(c->die_sib);
6152 continue;
6153 }
6154 }
6155
6156 #if 0
6157 /* We can only use this in debugging, since the frontend doesn't check
6158 to make sure that we leave every include file we enter. */
6159 if (unit != NULL)
6160 abort ();
6161 #endif
6162
6163 assign_symbol_names (die);
6164 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6165 for (node = limbo_die_list, pnode = &limbo_die_list;
6166 node;
6167 node = node->next)
6168 {
6169 int is_dupl;
6170
6171 compute_section_prefix (node->die);
6172 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6173 &comdat_symbol_number);
6174 assign_symbol_names (node->die);
6175 if (is_dupl)
6176 *pnode = node->next;
6177 else
6178 {
6179 pnode = &node->next;
6180 record_comdat_symbol_number (node->die, cu_hash_table,
6181 comdat_symbol_number);
6182 }
6183 }
6184 htab_delete (cu_hash_table);
6185 }
6186
6187 /* Traverse the DIE and add a sibling attribute if it may have the
6188 effect of speeding up access to siblings. To save some space,
6189 avoid generating sibling attributes for DIE's without children. */
6190
6191 static void
6192 add_sibling_attributes (die)
6193 dw_die_ref die;
6194 {
6195 dw_die_ref c;
6196
6197 if (die->die_tag != DW_TAG_compile_unit
6198 && die->die_sib && die->die_child != NULL)
6199 /* Add the sibling link to the front of the attribute list. */
6200 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6201
6202 for (c = die->die_child; c != NULL; c = c->die_sib)
6203 add_sibling_attributes (c);
6204 }
6205
6206 /* Output all location lists for the DIE and its children. */
6207
6208 static void
6209 output_location_lists (die)
6210 dw_die_ref die;
6211 {
6212 dw_die_ref c;
6213 dw_attr_ref d_attr;
6214
6215 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6216 if (AT_class (d_attr) == dw_val_class_loc_list)
6217 output_loc_list (AT_loc_list (d_attr));
6218
6219 for (c = die->die_child; c != NULL; c = c->die_sib)
6220 output_location_lists (c);
6221
6222 }
6223
6224 /* The format of each DIE (and its attribute value pairs) is encoded in an
6225 abbreviation table. This routine builds the abbreviation table and assigns
6226 a unique abbreviation id for each abbreviation entry. The children of each
6227 die are visited recursively. */
6228
6229 static void
6230 build_abbrev_table (die)
6231 dw_die_ref die;
6232 {
6233 unsigned long abbrev_id;
6234 unsigned int n_alloc;
6235 dw_die_ref c;
6236 dw_attr_ref d_attr, a_attr;
6237
6238 /* Scan the DIE references, and mark as external any that refer to
6239 DIEs from other CUs (i.e. those which are not marked). */
6240 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6241 if (AT_class (d_attr) == dw_val_class_die_ref
6242 && AT_ref (d_attr)->die_mark == 0)
6243 {
6244 if (AT_ref (d_attr)->die_symbol == 0)
6245 abort ();
6246
6247 set_AT_ref_external (d_attr, 1);
6248 }
6249
6250 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6251 {
6252 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6253
6254 if (abbrev->die_tag == die->die_tag)
6255 {
6256 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6257 {
6258 a_attr = abbrev->die_attr;
6259 d_attr = die->die_attr;
6260
6261 while (a_attr != NULL && d_attr != NULL)
6262 {
6263 if ((a_attr->dw_attr != d_attr->dw_attr)
6264 || (value_format (a_attr) != value_format (d_attr)))
6265 break;
6266
6267 a_attr = a_attr->dw_attr_next;
6268 d_attr = d_attr->dw_attr_next;
6269 }
6270
6271 if (a_attr == NULL && d_attr == NULL)
6272 break;
6273 }
6274 }
6275 }
6276
6277 if (abbrev_id >= abbrev_die_table_in_use)
6278 {
6279 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6280 {
6281 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6282 abbrev_die_table = ggc_realloc (abbrev_die_table,
6283 sizeof (dw_die_ref) * n_alloc);
6284
6285 memset ((char *) &abbrev_die_table[abbrev_die_table_allocated], 0,
6286 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6287 abbrev_die_table_allocated = n_alloc;
6288 }
6289
6290 ++abbrev_die_table_in_use;
6291 abbrev_die_table[abbrev_id] = die;
6292 }
6293
6294 die->die_abbrev = abbrev_id;
6295 for (c = die->die_child; c != NULL; c = c->die_sib)
6296 build_abbrev_table (c);
6297 }
6298 \f
6299 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6300
6301 static int
6302 constant_size (value)
6303 long unsigned value;
6304 {
6305 int log;
6306
6307 if (value == 0)
6308 log = 0;
6309 else
6310 log = floor_log2 (value);
6311
6312 log = log / 8;
6313 log = 1 << (floor_log2 (log) + 1);
6314
6315 return log;
6316 }
6317
6318 /* Return the size of a DIE as it is represented in the
6319 .debug_info section. */
6320
6321 static unsigned long
6322 size_of_die (die)
6323 dw_die_ref die;
6324 {
6325 unsigned long size = 0;
6326 dw_attr_ref a;
6327
6328 size += size_of_uleb128 (die->die_abbrev);
6329 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6330 {
6331 switch (AT_class (a))
6332 {
6333 case dw_val_class_addr:
6334 size += DWARF2_ADDR_SIZE;
6335 break;
6336 case dw_val_class_offset:
6337 size += DWARF_OFFSET_SIZE;
6338 break;
6339 case dw_val_class_loc:
6340 {
6341 unsigned long lsize = size_of_locs (AT_loc (a));
6342
6343 /* Block length. */
6344 size += constant_size (lsize);
6345 size += lsize;
6346 }
6347 break;
6348 case dw_val_class_loc_list:
6349 size += DWARF_OFFSET_SIZE;
6350 break;
6351 case dw_val_class_range_list:
6352 size += DWARF_OFFSET_SIZE;
6353 break;
6354 case dw_val_class_const:
6355 size += size_of_sleb128 (AT_int (a));
6356 break;
6357 case dw_val_class_unsigned_const:
6358 size += constant_size (AT_unsigned (a));
6359 break;
6360 case dw_val_class_long_long:
6361 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6362 break;
6363 case dw_val_class_float:
6364 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
6365 break;
6366 case dw_val_class_flag:
6367 size += 1;
6368 break;
6369 case dw_val_class_die_ref:
6370 if (AT_ref_external (a))
6371 size += DWARF2_ADDR_SIZE;
6372 else
6373 size += DWARF_OFFSET_SIZE;
6374 break;
6375 case dw_val_class_fde_ref:
6376 size += DWARF_OFFSET_SIZE;
6377 break;
6378 case dw_val_class_lbl_id:
6379 size += DWARF2_ADDR_SIZE;
6380 break;
6381 case dw_val_class_lbl_offset:
6382 size += DWARF_OFFSET_SIZE;
6383 break;
6384 case dw_val_class_str:
6385 if (AT_string_form (a) == DW_FORM_strp)
6386 size += DWARF_OFFSET_SIZE;
6387 else
6388 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6389 break;
6390 default:
6391 abort ();
6392 }
6393 }
6394
6395 return size;
6396 }
6397
6398 /* Size the debugging information associated with a given DIE. Visits the
6399 DIE's children recursively. Updates the global variable next_die_offset, on
6400 each time through. Uses the current value of next_die_offset to update the
6401 die_offset field in each DIE. */
6402
6403 static void
6404 calc_die_sizes (die)
6405 dw_die_ref die;
6406 {
6407 dw_die_ref c;
6408
6409 die->die_offset = next_die_offset;
6410 next_die_offset += size_of_die (die);
6411
6412 for (c = die->die_child; c != NULL; c = c->die_sib)
6413 calc_die_sizes (c);
6414
6415 if (die->die_child != NULL)
6416 /* Count the null byte used to terminate sibling lists. */
6417 next_die_offset += 1;
6418 }
6419
6420 /* Set the marks for a die and its children. We do this so
6421 that we know whether or not a reference needs to use FORM_ref_addr; only
6422 DIEs in the same CU will be marked. We used to clear out the offset
6423 and use that as the flag, but ran into ordering problems. */
6424
6425 static void
6426 mark_dies (die)
6427 dw_die_ref die;
6428 {
6429 dw_die_ref c;
6430
6431 if (die->die_mark)
6432 abort ();
6433
6434 die->die_mark = 1;
6435 for (c = die->die_child; c; c = c->die_sib)
6436 mark_dies (c);
6437 }
6438
6439 /* Clear the marks for a die and its children. */
6440
6441 static void
6442 unmark_dies (die)
6443 dw_die_ref die;
6444 {
6445 dw_die_ref c;
6446
6447 if (!die->die_mark)
6448 abort ();
6449
6450 die->die_mark = 0;
6451 for (c = die->die_child; c; c = c->die_sib)
6452 unmark_dies (c);
6453 }
6454
6455 /* Clear the marks for a die, its children and referred dies. */
6456
6457 static void
6458 unmark_all_dies (die)
6459 dw_die_ref die;
6460 {
6461 dw_die_ref c;
6462 dw_attr_ref a;
6463
6464 if (!die->die_mark)
6465 return;
6466 die->die_mark = 0;
6467
6468 for (c = die->die_child; c; c = c->die_sib)
6469 unmark_all_dies (c);
6470
6471 for (a = die->die_attr; a; a = a->dw_attr_next)
6472 if (AT_class (a) == dw_val_class_die_ref)
6473 unmark_all_dies (AT_ref (a));
6474 }
6475
6476 /* Return the size of the .debug_pubnames table generated for the
6477 compilation unit. */
6478
6479 static unsigned long
6480 size_of_pubnames ()
6481 {
6482 unsigned long size;
6483 unsigned i;
6484
6485 size = DWARF_PUBNAMES_HEADER_SIZE;
6486 for (i = 0; i < pubname_table_in_use; i++)
6487 {
6488 pubname_ref p = &pubname_table[i];
6489 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6490 }
6491
6492 size += DWARF_OFFSET_SIZE;
6493 return size;
6494 }
6495
6496 /* Return the size of the information in the .debug_aranges section. */
6497
6498 static unsigned long
6499 size_of_aranges ()
6500 {
6501 unsigned long size;
6502
6503 size = DWARF_ARANGES_HEADER_SIZE;
6504
6505 /* Count the address/length pair for this compilation unit. */
6506 size += 2 * DWARF2_ADDR_SIZE;
6507 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6508
6509 /* Count the two zero words used to terminated the address range table. */
6510 size += 2 * DWARF2_ADDR_SIZE;
6511 return size;
6512 }
6513 \f
6514 /* Select the encoding of an attribute value. */
6515
6516 static enum dwarf_form
6517 value_format (a)
6518 dw_attr_ref a;
6519 {
6520 switch (a->dw_attr_val.val_class)
6521 {
6522 case dw_val_class_addr:
6523 return DW_FORM_addr;
6524 case dw_val_class_range_list:
6525 case dw_val_class_offset:
6526 if (DWARF_OFFSET_SIZE == 4)
6527 return DW_FORM_data4;
6528 if (DWARF_OFFSET_SIZE == 8)
6529 return DW_FORM_data8;
6530 abort ();
6531 case dw_val_class_loc_list:
6532 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6533 .debug_loc section */
6534 return DW_FORM_data4;
6535 case dw_val_class_loc:
6536 switch (constant_size (size_of_locs (AT_loc (a))))
6537 {
6538 case 1:
6539 return DW_FORM_block1;
6540 case 2:
6541 return DW_FORM_block2;
6542 default:
6543 abort ();
6544 }
6545 case dw_val_class_const:
6546 return DW_FORM_sdata;
6547 case dw_val_class_unsigned_const:
6548 switch (constant_size (AT_unsigned (a)))
6549 {
6550 case 1:
6551 return DW_FORM_data1;
6552 case 2:
6553 return DW_FORM_data2;
6554 case 4:
6555 return DW_FORM_data4;
6556 case 8:
6557 return DW_FORM_data8;
6558 default:
6559 abort ();
6560 }
6561 case dw_val_class_long_long:
6562 return DW_FORM_block1;
6563 case dw_val_class_float:
6564 return DW_FORM_block1;
6565 case dw_val_class_flag:
6566 return DW_FORM_flag;
6567 case dw_val_class_die_ref:
6568 if (AT_ref_external (a))
6569 return DW_FORM_ref_addr;
6570 else
6571 return DW_FORM_ref;
6572 case dw_val_class_fde_ref:
6573 return DW_FORM_data;
6574 case dw_val_class_lbl_id:
6575 return DW_FORM_addr;
6576 case dw_val_class_lbl_offset:
6577 return DW_FORM_data;
6578 case dw_val_class_str:
6579 return AT_string_form (a);
6580
6581 default:
6582 abort ();
6583 }
6584 }
6585
6586 /* Output the encoding of an attribute value. */
6587
6588 static void
6589 output_value_format (a)
6590 dw_attr_ref a;
6591 {
6592 enum dwarf_form form = value_format (a);
6593
6594 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6595 }
6596
6597 /* Output the .debug_abbrev section which defines the DIE abbreviation
6598 table. */
6599
6600 static void
6601 output_abbrev_section ()
6602 {
6603 unsigned long abbrev_id;
6604
6605 dw_attr_ref a_attr;
6606
6607 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6608 {
6609 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6610
6611 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6612 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6613 dwarf_tag_name (abbrev->die_tag));
6614
6615 if (abbrev->die_child != NULL)
6616 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6617 else
6618 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6619
6620 for (a_attr = abbrev->die_attr; a_attr != NULL;
6621 a_attr = a_attr->dw_attr_next)
6622 {
6623 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6624 dwarf_attr_name (a_attr->dw_attr));
6625 output_value_format (a_attr);
6626 }
6627
6628 dw2_asm_output_data (1, 0, NULL);
6629 dw2_asm_output_data (1, 0, NULL);
6630 }
6631
6632 /* Terminate the table. */
6633 dw2_asm_output_data (1, 0, NULL);
6634 }
6635
6636 /* Output a symbol we can use to refer to this DIE from another CU. */
6637
6638 static inline void
6639 output_die_symbol (die)
6640 dw_die_ref die;
6641 {
6642 char *sym = die->die_symbol;
6643
6644 if (sym == 0)
6645 return;
6646
6647 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6648 /* We make these global, not weak; if the target doesn't support
6649 .linkonce, it doesn't support combining the sections, so debugging
6650 will break. */
6651 (*targetm.asm_out.globalize_label) (asm_out_file, sym);
6652
6653 ASM_OUTPUT_LABEL (asm_out_file, sym);
6654 }
6655
6656 /* Return a new location list, given the begin and end range, and the
6657 expression. gensym tells us whether to generate a new internal symbol for
6658 this location list node, which is done for the head of the list only. */
6659
6660 static inline dw_loc_list_ref
6661 new_loc_list (expr, begin, end, section, gensym)
6662 dw_loc_descr_ref expr;
6663 const char *begin;
6664 const char *end;
6665 const char *section;
6666 unsigned gensym;
6667 {
6668 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6669
6670 retlist->begin = begin;
6671 retlist->end = end;
6672 retlist->expr = expr;
6673 retlist->section = section;
6674 if (gensym)
6675 retlist->ll_symbol = gen_internal_sym ("LLST");
6676
6677 return retlist;
6678 }
6679
6680 /* Add a location description expression to a location list */
6681
6682 static inline void
6683 add_loc_descr_to_loc_list (list_head, descr, begin, end, section)
6684 dw_loc_list_ref *list_head;
6685 dw_loc_descr_ref descr;
6686 const char *begin;
6687 const char *end;
6688 const char *section;
6689 {
6690 dw_loc_list_ref *d;
6691
6692 /* Find the end of the chain. */
6693 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6694 ;
6695
6696 /* Add a new location list node to the list */
6697 *d = new_loc_list (descr, begin, end, section, 0);
6698 }
6699
6700 /* Output the location list given to us */
6701
6702 static void
6703 output_loc_list (list_head)
6704 dw_loc_list_ref list_head;
6705 {
6706 dw_loc_list_ref curr = list_head;
6707
6708 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6709
6710 /* ??? This shouldn't be needed now that we've forced the
6711 compilation unit base address to zero when there is code
6712 in more than one section. */
6713 if (strcmp (curr->section, ".text") == 0)
6714 {
6715 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6716 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT) 0,
6717 "Location list base address specifier fake entry");
6718 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6719 "Location list base address specifier base");
6720 }
6721
6722 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6723 {
6724 unsigned long size;
6725
6726 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6727 "Location list begin address (%s)",
6728 list_head->ll_symbol);
6729 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6730 "Location list end address (%s)",
6731 list_head->ll_symbol);
6732 size = size_of_locs (curr->expr);
6733
6734 /* Output the block length for this list of location operations. */
6735 if (size > 0xffff)
6736 abort ();
6737 dw2_asm_output_data (2, size, "%s", "Location expression size");
6738
6739 output_loc_sequence (curr->expr);
6740 }
6741
6742 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6743 "Location list terminator begin (%s)",
6744 list_head->ll_symbol);
6745 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6746 "Location list terminator end (%s)",
6747 list_head->ll_symbol);
6748 }
6749
6750 /* Output the DIE and its attributes. Called recursively to generate
6751 the definitions of each child DIE. */
6752
6753 static void
6754 output_die (die)
6755 dw_die_ref die;
6756 {
6757 dw_attr_ref a;
6758 dw_die_ref c;
6759 unsigned long size;
6760
6761 /* If someone in another CU might refer to us, set up a symbol for
6762 them to point to. */
6763 if (die->die_symbol)
6764 output_die_symbol (die);
6765
6766 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6767 die->die_offset, dwarf_tag_name (die->die_tag));
6768
6769 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6770 {
6771 const char *name = dwarf_attr_name (a->dw_attr);
6772
6773 switch (AT_class (a))
6774 {
6775 case dw_val_class_addr:
6776 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6777 break;
6778
6779 case dw_val_class_offset:
6780 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6781 "%s", name);
6782 break;
6783
6784 case dw_val_class_range_list:
6785 {
6786 char *p = strchr (ranges_section_label, '\0');
6787
6788 sprintf (p, "+0x%lx", a->dw_attr_val.v.val_offset);
6789 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6790 "%s", name);
6791 *p = '\0';
6792 }
6793 break;
6794
6795 case dw_val_class_loc:
6796 size = size_of_locs (AT_loc (a));
6797
6798 /* Output the block length for this list of location operations. */
6799 dw2_asm_output_data (constant_size (size), size, "%s", name);
6800
6801 output_loc_sequence (AT_loc (a));
6802 break;
6803
6804 case dw_val_class_const:
6805 /* ??? It would be slightly more efficient to use a scheme like is
6806 used for unsigned constants below, but gdb 4.x does not sign
6807 extend. Gdb 5.x does sign extend. */
6808 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6809 break;
6810
6811 case dw_val_class_unsigned_const:
6812 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6813 AT_unsigned (a), "%s", name);
6814 break;
6815
6816 case dw_val_class_long_long:
6817 {
6818 unsigned HOST_WIDE_INT first, second;
6819
6820 dw2_asm_output_data (1,
6821 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6822 "%s", name);
6823
6824 if (WORDS_BIG_ENDIAN)
6825 {
6826 first = a->dw_attr_val.v.val_long_long.hi;
6827 second = a->dw_attr_val.v.val_long_long.low;
6828 }
6829 else
6830 {
6831 first = a->dw_attr_val.v.val_long_long.low;
6832 second = a->dw_attr_val.v.val_long_long.hi;
6833 }
6834
6835 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6836 first, "long long constant");
6837 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6838 second, NULL);
6839 }
6840 break;
6841
6842 case dw_val_class_float:
6843 {
6844 unsigned int i;
6845
6846 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6847 "%s", name);
6848
6849 for (i = 0; i < a->dw_attr_val.v.val_float.length; i++)
6850 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6851 "fp constant word %u", i);
6852 break;
6853 }
6854
6855 case dw_val_class_flag:
6856 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6857 break;
6858
6859 case dw_val_class_loc_list:
6860 {
6861 char *sym = AT_loc_list (a)->ll_symbol;
6862
6863 if (sym == 0)
6864 abort ();
6865 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym,
6866 loc_section_label, "%s", name);
6867 }
6868 break;
6869
6870 case dw_val_class_die_ref:
6871 if (AT_ref_external (a))
6872 {
6873 char *sym = AT_ref (a)->die_symbol;
6874
6875 if (sym == 0)
6876 abort ();
6877 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6878 }
6879 else if (AT_ref (a)->die_offset == 0)
6880 abort ();
6881 else
6882 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6883 "%s", name);
6884 break;
6885
6886 case dw_val_class_fde_ref:
6887 {
6888 char l1[20];
6889
6890 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6891 a->dw_attr_val.v.val_fde_index * 2);
6892 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6893 }
6894 break;
6895
6896 case dw_val_class_lbl_id:
6897 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6898 break;
6899
6900 case dw_val_class_lbl_offset:
6901 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6902 break;
6903
6904 case dw_val_class_str:
6905 if (AT_string_form (a) == DW_FORM_strp)
6906 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6907 a->dw_attr_val.v.val_str->label,
6908 "%s: \"%s\"", name, AT_string (a));
6909 else
6910 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6911 break;
6912
6913 default:
6914 abort ();
6915 }
6916 }
6917
6918 for (c = die->die_child; c != NULL; c = c->die_sib)
6919 output_die (c);
6920
6921 /* Add null byte to terminate sibling list. */
6922 if (die->die_child != NULL)
6923 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6924 die->die_offset);
6925 }
6926
6927 /* Output the compilation unit that appears at the beginning of the
6928 .debug_info section, and precedes the DIE descriptions. */
6929
6930 static void
6931 output_compilation_unit_header ()
6932 {
6933 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6934 dw2_asm_output_data (4, 0xffffffff,
6935 "Initial length escape value indicating 64-bit DWARF extension");
6936 dw2_asm_output_data (DWARF_OFFSET_SIZE,
6937 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
6938 "Length of Compilation Unit Info");
6939 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6940 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6941 "Offset Into Abbrev. Section");
6942 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6943 }
6944
6945 /* Output the compilation unit DIE and its children. */
6946
6947 static void
6948 output_comp_unit (die, output_if_empty)
6949 dw_die_ref die;
6950 int output_if_empty;
6951 {
6952 const char *secname;
6953 char *oldsym, *tmp;
6954
6955 /* Unless we are outputting main CU, we may throw away empty ones. */
6956 if (!output_if_empty && die->die_child == NULL)
6957 return;
6958
6959 /* Even if there are no children of this DIE, we must output the information
6960 about the compilation unit. Otherwise, on an empty translation unit, we
6961 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6962 will then complain when examining the file. First mark all the DIEs in
6963 this CU so we know which get local refs. */
6964 mark_dies (die);
6965
6966 build_abbrev_table (die);
6967
6968 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6969 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6970 calc_die_sizes (die);
6971
6972 oldsym = die->die_symbol;
6973 if (oldsym)
6974 {
6975 tmp = (char *) alloca (strlen (oldsym) + 24);
6976
6977 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
6978 secname = tmp;
6979 die->die_symbol = NULL;
6980 }
6981 else
6982 secname = (const char *) DEBUG_INFO_SECTION;
6983
6984 /* Output debugging information. */
6985 named_section_flags (secname, SECTION_DEBUG);
6986 output_compilation_unit_header ();
6987 output_die (die);
6988
6989 /* Leave the marks on the main CU, so we can check them in
6990 output_pubnames. */
6991 if (oldsym)
6992 {
6993 unmark_dies (die);
6994 die->die_symbol = oldsym;
6995 }
6996 }
6997
6998 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
6999 output of lang_hooks.decl_printable_name for C++ looks like
7000 "A::f(int)". Let's drop the argument list, and maybe the scope. */
7001
7002 static const char *
7003 dwarf2_name (decl, scope)
7004 tree decl;
7005 int scope;
7006 {
7007 return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
7008 }
7009
7010 /* Add a new entry to .debug_pubnames if appropriate. */
7011
7012 static void
7013 add_pubname (decl, die)
7014 tree decl;
7015 dw_die_ref die;
7016 {
7017 pubname_ref p;
7018
7019 if (! TREE_PUBLIC (decl))
7020 return;
7021
7022 if (pubname_table_in_use == pubname_table_allocated)
7023 {
7024 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7025 pubname_table
7026 = (pubname_ref) ggc_realloc (pubname_table,
7027 (pubname_table_allocated
7028 * sizeof (pubname_entry)));
7029 memset (pubname_table + pubname_table_in_use, 0,
7030 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7031 }
7032
7033 p = &pubname_table[pubname_table_in_use++];
7034 p->die = die;
7035 p->name = xstrdup (dwarf2_name (decl, 1));
7036 }
7037
7038 /* Output the public names table used to speed up access to externally
7039 visible names. For now, only generate entries for externally
7040 visible procedures. */
7041
7042 static void
7043 output_pubnames ()
7044 {
7045 unsigned i;
7046 unsigned long pubnames_length = size_of_pubnames ();
7047
7048 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7049 dw2_asm_output_data (4, 0xffffffff,
7050 "Initial length escape value indicating 64-bit DWARF extension");
7051 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7052 "Length of Public Names Info");
7053 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7054 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7055 "Offset of Compilation Unit Info");
7056 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7057 "Compilation Unit Length");
7058
7059 for (i = 0; i < pubname_table_in_use; i++)
7060 {
7061 pubname_ref pub = &pubname_table[i];
7062
7063 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7064 if (pub->die->die_mark == 0)
7065 abort ();
7066
7067 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7068 "DIE offset");
7069
7070 dw2_asm_output_nstring (pub->name, -1, "external name");
7071 }
7072
7073 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7074 }
7075
7076 /* Add a new entry to .debug_aranges if appropriate. */
7077
7078 static void
7079 add_arange (decl, die)
7080 tree decl;
7081 dw_die_ref die;
7082 {
7083 if (! DECL_SECTION_NAME (decl))
7084 return;
7085
7086 if (arange_table_in_use == arange_table_allocated)
7087 {
7088 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7089 arange_table = ggc_realloc (arange_table,
7090 (arange_table_allocated
7091 * sizeof (dw_die_ref)));
7092 memset (arange_table + arange_table_in_use, 0,
7093 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7094 }
7095
7096 arange_table[arange_table_in_use++] = die;
7097 }
7098
7099 /* Output the information that goes into the .debug_aranges table.
7100 Namely, define the beginning and ending address range of the
7101 text section generated for this compilation unit. */
7102
7103 static void
7104 output_aranges ()
7105 {
7106 unsigned i;
7107 unsigned long aranges_length = size_of_aranges ();
7108
7109 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7110 dw2_asm_output_data (4, 0xffffffff,
7111 "Initial length escape value indicating 64-bit DWARF extension");
7112 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7113 "Length of Address Ranges Info");
7114 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7115 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7116 "Offset of Compilation Unit Info");
7117 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7118 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7119
7120 /* We need to align to twice the pointer size here. */
7121 if (DWARF_ARANGES_PAD_SIZE)
7122 {
7123 /* Pad using a 2 byte words so that padding is correct for any
7124 pointer size. */
7125 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7126 2 * DWARF2_ADDR_SIZE);
7127 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7128 dw2_asm_output_data (2, 0, NULL);
7129 }
7130
7131 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7132 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7133 text_section_label, "Length");
7134
7135 for (i = 0; i < arange_table_in_use; i++)
7136 {
7137 dw_die_ref die = arange_table[i];
7138
7139 /* We shouldn't see aranges for DIEs outside of the main CU. */
7140 if (die->die_mark == 0)
7141 abort ();
7142
7143 if (die->die_tag == DW_TAG_subprogram)
7144 {
7145 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7146 "Address");
7147 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7148 get_AT_low_pc (die), "Length");
7149 }
7150 else
7151 {
7152 /* A static variable; extract the symbol from DW_AT_location.
7153 Note that this code isn't currently hit, as we only emit
7154 aranges for functions (jason 9/23/99). */
7155 dw_attr_ref a = get_AT (die, DW_AT_location);
7156 dw_loc_descr_ref loc;
7157
7158 if (! a || AT_class (a) != dw_val_class_loc)
7159 abort ();
7160
7161 loc = AT_loc (a);
7162 if (loc->dw_loc_opc != DW_OP_addr)
7163 abort ();
7164
7165 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7166 loc->dw_loc_oprnd1.v.val_addr, "Address");
7167 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7168 get_AT_unsigned (die, DW_AT_byte_size),
7169 "Length");
7170 }
7171 }
7172
7173 /* Output the terminator words. */
7174 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7175 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7176 }
7177
7178 /* Add a new entry to .debug_ranges. Return the offset at which it
7179 was placed. */
7180
7181 static unsigned int
7182 add_ranges (block)
7183 tree block;
7184 {
7185 unsigned int in_use = ranges_table_in_use;
7186
7187 if (in_use == ranges_table_allocated)
7188 {
7189 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7190 ranges_table = (dw_ranges_ref)
7191 ggc_realloc (ranges_table, (ranges_table_allocated
7192 * sizeof (struct dw_ranges_struct)));
7193 memset (ranges_table + ranges_table_in_use, 0,
7194 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7195 }
7196
7197 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7198 ranges_table_in_use = in_use + 1;
7199
7200 return in_use * 2 * DWARF2_ADDR_SIZE;
7201 }
7202
7203 static void
7204 output_ranges ()
7205 {
7206 unsigned i;
7207 static const char *const start_fmt = "Offset 0x%x";
7208 const char *fmt = start_fmt;
7209
7210 for (i = 0; i < ranges_table_in_use; i++)
7211 {
7212 int block_num = ranges_table[i].block_num;
7213
7214 if (block_num)
7215 {
7216 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7217 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7218
7219 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7220 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7221
7222 /* If all code is in the text section, then the compilation
7223 unit base address defaults to DW_AT_low_pc, which is the
7224 base of the text section. */
7225 if (separate_line_info_table_in_use == 0)
7226 {
7227 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7228 text_section_label,
7229 fmt, i * 2 * DWARF2_ADDR_SIZE);
7230 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7231 text_section_label, NULL);
7232 }
7233
7234 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7235 compilation unit base address to zero, which allows us to
7236 use absolute addresses, and not worry about whether the
7237 target supports cross-section arithmetic. */
7238 else
7239 {
7240 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7241 fmt, i * 2 * DWARF2_ADDR_SIZE);
7242 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7243 }
7244
7245 fmt = NULL;
7246 }
7247 else
7248 {
7249 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7250 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7251 fmt = start_fmt;
7252 }
7253 }
7254 }
7255
7256 /* Data structure containing information about input files. */
7257 struct file_info
7258 {
7259 char *path; /* Complete file name. */
7260 char *fname; /* File name part. */
7261 int length; /* Length of entire string. */
7262 int file_idx; /* Index in input file table. */
7263 int dir_idx; /* Index in directory table. */
7264 };
7265
7266 /* Data structure containing information about directories with source
7267 files. */
7268 struct dir_info
7269 {
7270 char *path; /* Path including directory name. */
7271 int length; /* Path length. */
7272 int prefix; /* Index of directory entry which is a prefix. */
7273 int count; /* Number of files in this directory. */
7274 int dir_idx; /* Index of directory used as base. */
7275 int used; /* Used in the end? */
7276 };
7277
7278 /* Callback function for file_info comparison. We sort by looking at
7279 the directories in the path. */
7280
7281 static int
7282 file_info_cmp (p1, p2)
7283 const void *p1;
7284 const void *p2;
7285 {
7286 const struct file_info *s1 = p1;
7287 const struct file_info *s2 = p2;
7288 unsigned char *cp1;
7289 unsigned char *cp2;
7290
7291 /* Take care of file names without directories. We need to make sure that
7292 we return consistent values to qsort since some will get confused if
7293 we return the same value when identical operands are passed in opposite
7294 orders. So if neither has a directory, return 0 and otherwise return
7295 1 or -1 depending on which one has the directory. */
7296 if ((s1->path == s1->fname || s2->path == s2->fname))
7297 return (s2->path == s2->fname) - (s1->path == s1->fname);
7298
7299 cp1 = (unsigned char *) s1->path;
7300 cp2 = (unsigned char *) s2->path;
7301
7302 while (1)
7303 {
7304 ++cp1;
7305 ++cp2;
7306 /* Reached the end of the first path? If so, handle like above. */
7307 if ((cp1 == (unsigned char *) s1->fname)
7308 || (cp2 == (unsigned char *) s2->fname))
7309 return ((cp2 == (unsigned char *) s2->fname)
7310 - (cp1 == (unsigned char *) s1->fname));
7311
7312 /* Character of current path component the same? */
7313 else if (*cp1 != *cp2)
7314 return *cp1 - *cp2;
7315 }
7316 }
7317
7318 /* Output the directory table and the file name table. We try to minimize
7319 the total amount of memory needed. A heuristic is used to avoid large
7320 slowdowns with many input files. */
7321
7322 static void
7323 output_file_names ()
7324 {
7325 struct file_info *files;
7326 struct dir_info *dirs;
7327 int *saved;
7328 int *savehere;
7329 int *backmap;
7330 size_t ndirs;
7331 int idx_offset;
7332 size_t i;
7333 int idx;
7334
7335 /* Handle the case where file_table is empty. */
7336 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7337 {
7338 dw2_asm_output_data (1, 0, "End directory table");
7339 dw2_asm_output_data (1, 0, "End file name table");
7340 return;
7341 }
7342
7343 /* Allocate the various arrays we need. */
7344 files = (struct file_info *) alloca (VARRAY_ACTIVE_SIZE (file_table)
7345 * sizeof (struct file_info));
7346 dirs = (struct dir_info *) alloca (VARRAY_ACTIVE_SIZE (file_table)
7347 * sizeof (struct dir_info));
7348
7349 /* Sort the file names. */
7350 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7351 {
7352 char *f;
7353
7354 /* Skip all leading "./". */
7355 f = VARRAY_CHAR_PTR (file_table, i);
7356 while (f[0] == '.' && f[1] == '/')
7357 f += 2;
7358
7359 /* Create a new array entry. */
7360 files[i].path = f;
7361 files[i].length = strlen (f);
7362 files[i].file_idx = i;
7363
7364 /* Search for the file name part. */
7365 f = strrchr (f, '/');
7366 files[i].fname = f == NULL ? files[i].path : f + 1;
7367 }
7368
7369 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7370 sizeof (files[0]), file_info_cmp);
7371
7372 /* Find all the different directories used. */
7373 dirs[0].path = files[1].path;
7374 dirs[0].length = files[1].fname - files[1].path;
7375 dirs[0].prefix = -1;
7376 dirs[0].count = 1;
7377 dirs[0].dir_idx = 0;
7378 dirs[0].used = 0;
7379 files[1].dir_idx = 0;
7380 ndirs = 1;
7381
7382 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7383 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7384 && memcmp (dirs[ndirs - 1].path, files[i].path,
7385 dirs[ndirs - 1].length) == 0)
7386 {
7387 /* Same directory as last entry. */
7388 files[i].dir_idx = ndirs - 1;
7389 ++dirs[ndirs - 1].count;
7390 }
7391 else
7392 {
7393 size_t j;
7394
7395 /* This is a new directory. */
7396 dirs[ndirs].path = files[i].path;
7397 dirs[ndirs].length = files[i].fname - files[i].path;
7398 dirs[ndirs].count = 1;
7399 dirs[ndirs].dir_idx = ndirs;
7400 dirs[ndirs].used = 0;
7401 files[i].dir_idx = ndirs;
7402
7403 /* Search for a prefix. */
7404 dirs[ndirs].prefix = -1;
7405 for (j = 0; j < ndirs; j++)
7406 if (dirs[j].length < dirs[ndirs].length
7407 && dirs[j].length > 1
7408 && (dirs[ndirs].prefix == -1
7409 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7410 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7411 dirs[ndirs].prefix = j;
7412
7413 ++ndirs;
7414 }
7415
7416 /* Now to the actual work. We have to find a subset of the directories which
7417 allow expressing the file name using references to the directory table
7418 with the least amount of characters. We do not do an exhaustive search
7419 where we would have to check out every combination of every single
7420 possible prefix. Instead we use a heuristic which provides nearly optimal
7421 results in most cases and never is much off. */
7422 saved = (int *) alloca (ndirs * sizeof (int));
7423 savehere = (int *) alloca (ndirs * sizeof (int));
7424
7425 memset (saved, '\0', ndirs * sizeof (saved[0]));
7426 for (i = 0; i < ndirs; i++)
7427 {
7428 size_t j;
7429 int total;
7430
7431 /* We can always save some space for the current directory. But this
7432 does not mean it will be enough to justify adding the directory. */
7433 savehere[i] = dirs[i].length;
7434 total = (savehere[i] - saved[i]) * dirs[i].count;
7435
7436 for (j = i + 1; j < ndirs; j++)
7437 {
7438 savehere[j] = 0;
7439 if (saved[j] < dirs[i].length)
7440 {
7441 /* Determine whether the dirs[i] path is a prefix of the
7442 dirs[j] path. */
7443 int k;
7444
7445 k = dirs[j].prefix;
7446 while (k != -1 && k != (int) i)
7447 k = dirs[k].prefix;
7448
7449 if (k == (int) i)
7450 {
7451 /* Yes it is. We can possibly safe some memory but
7452 writing the filenames in dirs[j] relative to
7453 dirs[i]. */
7454 savehere[j] = dirs[i].length;
7455 total += (savehere[j] - saved[j]) * dirs[j].count;
7456 }
7457 }
7458 }
7459
7460 /* Check whether we can safe enough to justify adding the dirs[i]
7461 directory. */
7462 if (total > dirs[i].length + 1)
7463 {
7464 /* It's worthwhile adding. */
7465 for (j = i; j < ndirs; j++)
7466 if (savehere[j] > 0)
7467 {
7468 /* Remember how much we saved for this directory so far. */
7469 saved[j] = savehere[j];
7470
7471 /* Remember the prefix directory. */
7472 dirs[j].dir_idx = i;
7473 }
7474 }
7475 }
7476
7477 /* We have to emit them in the order they appear in the file_table array
7478 since the index is used in the debug info generation. To do this
7479 efficiently we generate a back-mapping of the indices first. */
7480 backmap = (int *) alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7481 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7482 {
7483 backmap[files[i].file_idx] = i;
7484
7485 /* Mark this directory as used. */
7486 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7487 }
7488
7489 /* That was it. We are ready to emit the information. First emit the
7490 directory name table. We have to make sure the first actually emitted
7491 directory name has index one; zero is reserved for the current working
7492 directory. Make sure we do not confuse these indices with the one for the
7493 constructed table (even though most of the time they are identical). */
7494 idx = 1;
7495 idx_offset = dirs[0].length > 0 ? 1 : 0;
7496 for (i = 1 - idx_offset; i < ndirs; i++)
7497 if (dirs[i].used != 0)
7498 {
7499 dirs[i].used = idx++;
7500 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7501 "Directory Entry: 0x%x", dirs[i].used);
7502 }
7503
7504 dw2_asm_output_data (1, 0, "End directory table");
7505
7506 /* Correct the index for the current working directory entry if it
7507 exists. */
7508 if (idx_offset == 0)
7509 dirs[0].used = 0;
7510
7511 /* Now write all the file names. */
7512 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7513 {
7514 int file_idx = backmap[i];
7515 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7516
7517 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7518 "File Entry: 0x%lx", (unsigned long) i);
7519
7520 /* Include directory index. */
7521 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7522
7523 /* Modification time. */
7524 dw2_asm_output_data_uleb128 (0, NULL);
7525
7526 /* File length in bytes. */
7527 dw2_asm_output_data_uleb128 (0, NULL);
7528 }
7529
7530 dw2_asm_output_data (1, 0, "End file name table");
7531 }
7532
7533
7534 /* Output the source line number correspondence information. This
7535 information goes into the .debug_line section. */
7536
7537 static void
7538 output_line_info ()
7539 {
7540 char l1[20], l2[20], p1[20], p2[20];
7541 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7542 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7543 unsigned opc;
7544 unsigned n_op_args;
7545 unsigned long lt_index;
7546 unsigned long current_line;
7547 long line_offset;
7548 long line_delta;
7549 unsigned long current_file;
7550 unsigned long function;
7551
7552 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7553 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7554 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7555 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7556
7557 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7558 dw2_asm_output_data (4, 0xffffffff,
7559 "Initial length escape value indicating 64-bit DWARF extension");
7560 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7561 "Length of Source Line Info");
7562 ASM_OUTPUT_LABEL (asm_out_file, l1);
7563
7564 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7565 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7566 ASM_OUTPUT_LABEL (asm_out_file, p1);
7567
7568 /* Define the architecture-dependent minimum instruction length (in
7569 bytes). In this implementation of DWARF, this field is used for
7570 information purposes only. Since GCC generates assembly language,
7571 we have no a priori knowledge of how many instruction bytes are
7572 generated for each source line, and therefore can use only the
7573 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7574 commands. Accordingly, we fix this as `1', which is "correct
7575 enough" for all architectures, and don't let the target override. */
7576 dw2_asm_output_data (1, 1,
7577 "Minimum Instruction Length");
7578
7579 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7580 "Default is_stmt_start flag");
7581 dw2_asm_output_data (1, DWARF_LINE_BASE,
7582 "Line Base Value (Special Opcodes)");
7583 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7584 "Line Range Value (Special Opcodes)");
7585 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7586 "Special Opcode Base");
7587
7588 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7589 {
7590 switch (opc)
7591 {
7592 case DW_LNS_advance_pc:
7593 case DW_LNS_advance_line:
7594 case DW_LNS_set_file:
7595 case DW_LNS_set_column:
7596 case DW_LNS_fixed_advance_pc:
7597 n_op_args = 1;
7598 break;
7599 default:
7600 n_op_args = 0;
7601 break;
7602 }
7603
7604 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7605 opc, n_op_args);
7606 }
7607
7608 /* Write out the information about the files we use. */
7609 output_file_names ();
7610 ASM_OUTPUT_LABEL (asm_out_file, p2);
7611
7612 /* We used to set the address register to the first location in the text
7613 section here, but that didn't accomplish anything since we already
7614 have a line note for the opening brace of the first function. */
7615
7616 /* Generate the line number to PC correspondence table, encoded as
7617 a series of state machine operations. */
7618 current_file = 1;
7619 current_line = 1;
7620 strcpy (prev_line_label, text_section_label);
7621 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7622 {
7623 dw_line_info_ref line_info = &line_info_table[lt_index];
7624
7625 #if 0
7626 /* Disable this optimization for now; GDB wants to see two line notes
7627 at the beginning of a function so it can find the end of the
7628 prologue. */
7629
7630 /* Don't emit anything for redundant notes. Just updating the
7631 address doesn't accomplish anything, because we already assume
7632 that anything after the last address is this line. */
7633 if (line_info->dw_line_num == current_line
7634 && line_info->dw_file_num == current_file)
7635 continue;
7636 #endif
7637
7638 /* Emit debug info for the address of the current line.
7639
7640 Unfortunately, we have little choice here currently, and must always
7641 use the most general form. GCC does not know the address delta
7642 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7643 attributes which will give an upper bound on the address range. We
7644 could perhaps use length attributes to determine when it is safe to
7645 use DW_LNS_fixed_advance_pc. */
7646
7647 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7648 if (0)
7649 {
7650 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7651 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7652 "DW_LNS_fixed_advance_pc");
7653 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7654 }
7655 else
7656 {
7657 /* This can handle any delta. This takes
7658 4+DWARF2_ADDR_SIZE bytes. */
7659 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7660 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7661 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7662 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7663 }
7664
7665 strcpy (prev_line_label, line_label);
7666
7667 /* Emit debug info for the source file of the current line, if
7668 different from the previous line. */
7669 if (line_info->dw_file_num != current_file)
7670 {
7671 current_file = line_info->dw_file_num;
7672 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7673 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7674 VARRAY_CHAR_PTR (file_table,
7675 current_file));
7676 }
7677
7678 /* Emit debug info for the current line number, choosing the encoding
7679 that uses the least amount of space. */
7680 if (line_info->dw_line_num != current_line)
7681 {
7682 line_offset = line_info->dw_line_num - current_line;
7683 line_delta = line_offset - DWARF_LINE_BASE;
7684 current_line = line_info->dw_line_num;
7685 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7686 /* This can handle deltas from -10 to 234, using the current
7687 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7688 takes 1 byte. */
7689 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7690 "line %lu", current_line);
7691 else
7692 {
7693 /* This can handle any delta. This takes at least 4 bytes,
7694 depending on the value being encoded. */
7695 dw2_asm_output_data (1, DW_LNS_advance_line,
7696 "advance to line %lu", current_line);
7697 dw2_asm_output_data_sleb128 (line_offset, NULL);
7698 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7699 }
7700 }
7701 else
7702 /* We still need to start a new row, so output a copy insn. */
7703 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7704 }
7705
7706 /* Emit debug info for the address of the end of the function. */
7707 if (0)
7708 {
7709 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7710 "DW_LNS_fixed_advance_pc");
7711 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7712 }
7713 else
7714 {
7715 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7716 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7717 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7718 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7719 }
7720
7721 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7722 dw2_asm_output_data_uleb128 (1, NULL);
7723 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7724
7725 function = 0;
7726 current_file = 1;
7727 current_line = 1;
7728 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7729 {
7730 dw_separate_line_info_ref line_info
7731 = &separate_line_info_table[lt_index];
7732
7733 #if 0
7734 /* Don't emit anything for redundant notes. */
7735 if (line_info->dw_line_num == current_line
7736 && line_info->dw_file_num == current_file
7737 && line_info->function == function)
7738 goto cont;
7739 #endif
7740
7741 /* Emit debug info for the address of the current line. If this is
7742 a new function, or the first line of a function, then we need
7743 to handle it differently. */
7744 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7745 lt_index);
7746 if (function != line_info->function)
7747 {
7748 function = line_info->function;
7749
7750 /* Set the address register to the first line in the function */
7751 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7752 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7753 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7754 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7755 }
7756 else
7757 {
7758 /* ??? See the DW_LNS_advance_pc comment above. */
7759 if (0)
7760 {
7761 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7762 "DW_LNS_fixed_advance_pc");
7763 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7764 }
7765 else
7766 {
7767 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7768 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7769 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7770 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7771 }
7772 }
7773
7774 strcpy (prev_line_label, line_label);
7775
7776 /* Emit debug info for the source file of the current line, if
7777 different from the previous line. */
7778 if (line_info->dw_file_num != current_file)
7779 {
7780 current_file = line_info->dw_file_num;
7781 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7782 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7783 VARRAY_CHAR_PTR (file_table,
7784 current_file));
7785 }
7786
7787 /* Emit debug info for the current line number, choosing the encoding
7788 that uses the least amount of space. */
7789 if (line_info->dw_line_num != current_line)
7790 {
7791 line_offset = line_info->dw_line_num - current_line;
7792 line_delta = line_offset - DWARF_LINE_BASE;
7793 current_line = line_info->dw_line_num;
7794 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7795 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7796 "line %lu", current_line);
7797 else
7798 {
7799 dw2_asm_output_data (1, DW_LNS_advance_line,
7800 "advance to line %lu", current_line);
7801 dw2_asm_output_data_sleb128 (line_offset, NULL);
7802 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7803 }
7804 }
7805 else
7806 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7807
7808 #if 0
7809 cont:
7810 #endif
7811
7812 lt_index++;
7813
7814 /* If we're done with a function, end its sequence. */
7815 if (lt_index == separate_line_info_table_in_use
7816 || separate_line_info_table[lt_index].function != function)
7817 {
7818 current_file = 1;
7819 current_line = 1;
7820
7821 /* Emit debug info for the address of the end of the function. */
7822 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7823 if (0)
7824 {
7825 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7826 "DW_LNS_fixed_advance_pc");
7827 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7828 }
7829 else
7830 {
7831 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7832 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7833 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7834 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7835 }
7836
7837 /* Output the marker for the end of this sequence. */
7838 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7839 dw2_asm_output_data_uleb128 (1, NULL);
7840 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7841 }
7842 }
7843
7844 /* Output the marker for the end of the line number info. */
7845 ASM_OUTPUT_LABEL (asm_out_file, l2);
7846 }
7847 \f
7848 /* Given a pointer to a tree node for some base type, return a pointer to
7849 a DIE that describes the given type.
7850
7851 This routine must only be called for GCC type nodes that correspond to
7852 Dwarf base (fundamental) types. */
7853
7854 static dw_die_ref
7855 base_type_die (type)
7856 tree type;
7857 {
7858 dw_die_ref base_type_result;
7859 const char *type_name;
7860 enum dwarf_type encoding;
7861 tree name = TYPE_NAME (type);
7862
7863 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7864 return 0;
7865
7866 if (name)
7867 {
7868 if (TREE_CODE (name) == TYPE_DECL)
7869 name = DECL_NAME (name);
7870
7871 type_name = IDENTIFIER_POINTER (name);
7872 }
7873 else
7874 type_name = "__unknown__";
7875
7876 switch (TREE_CODE (type))
7877 {
7878 case INTEGER_TYPE:
7879 /* Carefully distinguish the C character types, without messing
7880 up if the language is not C. Note that we check only for the names
7881 that contain spaces; other names might occur by coincidence in other
7882 languages. */
7883 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7884 && (type == char_type_node
7885 || ! strcmp (type_name, "signed char")
7886 || ! strcmp (type_name, "unsigned char"))))
7887 {
7888 if (TREE_UNSIGNED (type))
7889 encoding = DW_ATE_unsigned;
7890 else
7891 encoding = DW_ATE_signed;
7892 break;
7893 }
7894 /* else fall through. */
7895
7896 case CHAR_TYPE:
7897 /* GNU Pascal/Ada CHAR type. Not used in C. */
7898 if (TREE_UNSIGNED (type))
7899 encoding = DW_ATE_unsigned_char;
7900 else
7901 encoding = DW_ATE_signed_char;
7902 break;
7903
7904 case REAL_TYPE:
7905 encoding = DW_ATE_float;
7906 break;
7907
7908 /* Dwarf2 doesn't know anything about complex ints, so use
7909 a user defined type for it. */
7910 case COMPLEX_TYPE:
7911 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7912 encoding = DW_ATE_complex_float;
7913 else
7914 encoding = DW_ATE_lo_user;
7915 break;
7916
7917 case BOOLEAN_TYPE:
7918 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7919 encoding = DW_ATE_boolean;
7920 break;
7921
7922 default:
7923 /* No other TREE_CODEs are Dwarf fundamental types. */
7924 abort ();
7925 }
7926
7927 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7928 if (demangle_name_func)
7929 type_name = (*demangle_name_func) (type_name);
7930
7931 add_AT_string (base_type_result, DW_AT_name, type_name);
7932 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7933 int_size_in_bytes (type));
7934 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7935
7936 return base_type_result;
7937 }
7938
7939 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7940 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7941 a given type is generally the same as the given type, except that if the
7942 given type is a pointer or reference type, then the root type of the given
7943 type is the root type of the "basis" type for the pointer or reference
7944 type. (This definition of the "root" type is recursive.) Also, the root
7945 type of a `const' qualified type or a `volatile' qualified type is the
7946 root type of the given type without the qualifiers. */
7947
7948 static tree
7949 root_type (type)
7950 tree type;
7951 {
7952 if (TREE_CODE (type) == ERROR_MARK)
7953 return error_mark_node;
7954
7955 switch (TREE_CODE (type))
7956 {
7957 case ERROR_MARK:
7958 return error_mark_node;
7959
7960 case POINTER_TYPE:
7961 case REFERENCE_TYPE:
7962 return type_main_variant (root_type (TREE_TYPE (type)));
7963
7964 default:
7965 return type_main_variant (type);
7966 }
7967 }
7968
7969 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7970 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7971
7972 static inline int
7973 is_base_type (type)
7974 tree type;
7975 {
7976 switch (TREE_CODE (type))
7977 {
7978 case ERROR_MARK:
7979 case VOID_TYPE:
7980 case INTEGER_TYPE:
7981 case REAL_TYPE:
7982 case COMPLEX_TYPE:
7983 case BOOLEAN_TYPE:
7984 case CHAR_TYPE:
7985 return 1;
7986
7987 case SET_TYPE:
7988 case ARRAY_TYPE:
7989 case RECORD_TYPE:
7990 case UNION_TYPE:
7991 case QUAL_UNION_TYPE:
7992 case ENUMERAL_TYPE:
7993 case FUNCTION_TYPE:
7994 case METHOD_TYPE:
7995 case POINTER_TYPE:
7996 case REFERENCE_TYPE:
7997 case FILE_TYPE:
7998 case OFFSET_TYPE:
7999 case LANG_TYPE:
8000 case VECTOR_TYPE:
8001 return 0;
8002
8003 default:
8004 abort ();
8005 }
8006
8007 return 0;
8008 }
8009
8010 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8011 node, return the size in bits for the type if it is a constant, or else
8012 return the alignment for the type if the type's size is not constant, or
8013 else return BITS_PER_WORD if the type actually turns out to be an
8014 ERROR_MARK node. */
8015
8016 static inline unsigned HOST_WIDE_INT
8017 simple_type_size_in_bits (type)
8018 tree type;
8019 {
8020
8021 if (TREE_CODE (type) == ERROR_MARK)
8022 return BITS_PER_WORD;
8023 else if (TYPE_SIZE (type) == NULL_TREE)
8024 return 0;
8025 else if (host_integerp (TYPE_SIZE (type), 1))
8026 return tree_low_cst (TYPE_SIZE (type), 1);
8027 else
8028 return TYPE_ALIGN (type);
8029 }
8030
8031 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8032 entry that chains various modifiers in front of the given type. */
8033
8034 static dw_die_ref
8035 modified_type_die (type, is_const_type, is_volatile_type, context_die)
8036 tree type;
8037 int is_const_type;
8038 int is_volatile_type;
8039 dw_die_ref context_die;
8040 {
8041 enum tree_code code = TREE_CODE (type);
8042 dw_die_ref mod_type_die = NULL;
8043 dw_die_ref sub_die = NULL;
8044 tree item_type = NULL;
8045
8046 if (code != ERROR_MARK)
8047 {
8048 tree qualified_type;
8049
8050 /* See if we already have the appropriately qualified variant of
8051 this type. */
8052 qualified_type
8053 = get_qualified_type (type,
8054 ((is_const_type ? TYPE_QUAL_CONST : 0)
8055 | (is_volatile_type
8056 ? TYPE_QUAL_VOLATILE : 0)));
8057
8058 /* If we do, then we can just use its DIE, if it exists. */
8059 if (qualified_type)
8060 {
8061 mod_type_die = lookup_type_die (qualified_type);
8062 if (mod_type_die)
8063 return mod_type_die;
8064 }
8065
8066 /* Handle C typedef types. */
8067 if (qualified_type && TYPE_NAME (qualified_type)
8068 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8069 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8070 {
8071 tree type_name = TYPE_NAME (qualified_type);
8072 tree dtype = TREE_TYPE (type_name);
8073
8074 if (qualified_type == dtype)
8075 {
8076 /* For a named type, use the typedef. */
8077 gen_type_die (qualified_type, context_die);
8078 mod_type_die = lookup_type_die (qualified_type);
8079 }
8080 else if (is_const_type < TYPE_READONLY (dtype)
8081 || is_volatile_type < TYPE_VOLATILE (dtype))
8082 /* cv-unqualified version of named type. Just use the unnamed
8083 type to which it refers. */
8084 mod_type_die
8085 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8086 is_const_type, is_volatile_type,
8087 context_die);
8088
8089 /* Else cv-qualified version of named type; fall through. */
8090 }
8091
8092 if (mod_type_die)
8093 /* OK. */
8094 ;
8095 else if (is_const_type)
8096 {
8097 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8098 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8099 }
8100 else if (is_volatile_type)
8101 {
8102 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8103 sub_die = modified_type_die (type, 0, 0, context_die);
8104 }
8105 else if (code == POINTER_TYPE)
8106 {
8107 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8108 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8109 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8110 #if 0
8111 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8112 #endif
8113 item_type = TREE_TYPE (type);
8114 }
8115 else if (code == REFERENCE_TYPE)
8116 {
8117 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8118 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8119 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8120 #if 0
8121 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8122 #endif
8123 item_type = TREE_TYPE (type);
8124 }
8125 else if (is_base_type (type))
8126 mod_type_die = base_type_die (type);
8127 else
8128 {
8129 gen_type_die (type, context_die);
8130
8131 /* We have to get the type_main_variant here (and pass that to the
8132 `lookup_type_die' routine) because the ..._TYPE node we have
8133 might simply be a *copy* of some original type node (where the
8134 copy was created to help us keep track of typedef names) and
8135 that copy might have a different TYPE_UID from the original
8136 ..._TYPE node. */
8137 if (TREE_CODE (type) != VECTOR_TYPE)
8138 mod_type_die = lookup_type_die (type_main_variant (type));
8139 else
8140 /* Vectors have the debugging information in the type,
8141 not the main variant. */
8142 mod_type_die = lookup_type_die (type);
8143 if (mod_type_die == NULL)
8144 abort ();
8145 }
8146
8147 /* We want to equate the qualified type to the die below. */
8148 type = qualified_type;
8149 }
8150
8151 if (type)
8152 equate_type_number_to_die (type, mod_type_die);
8153 if (item_type)
8154 /* We must do this after the equate_type_number_to_die call, in case
8155 this is a recursive type. This ensures that the modified_type_die
8156 recursion will terminate even if the type is recursive. Recursive
8157 types are possible in Ada. */
8158 sub_die = modified_type_die (item_type,
8159 TYPE_READONLY (item_type),
8160 TYPE_VOLATILE (item_type),
8161 context_die);
8162
8163 if (sub_die != NULL)
8164 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8165
8166 return mod_type_die;
8167 }
8168
8169 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8170 an enumerated type. */
8171
8172 static inline int
8173 type_is_enum (type)
8174 tree type;
8175 {
8176 return TREE_CODE (type) == ENUMERAL_TYPE;
8177 }
8178
8179 /* Return the register number described by a given RTL node. */
8180
8181 static unsigned int
8182 reg_number (rtl)
8183 rtx rtl;
8184 {
8185 unsigned regno = REGNO (rtl);
8186
8187 if (regno >= FIRST_PSEUDO_REGISTER)
8188 abort ();
8189
8190 return DBX_REGISTER_NUMBER (regno);
8191 }
8192
8193 /* Return a location descriptor that designates a machine register or
8194 zero if there is none. */
8195
8196 static dw_loc_descr_ref
8197 reg_loc_descriptor (rtl)
8198 rtx rtl;
8199 {
8200 unsigned reg;
8201 rtx regs;
8202
8203 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8204 return 0;
8205
8206 reg = reg_number (rtl);
8207 regs = (*targetm.dwarf_register_span) (rtl);
8208
8209 if (HARD_REGNO_NREGS (reg, GET_MODE (rtl)) > 1
8210 || regs)
8211 return multiple_reg_loc_descriptor (rtl, regs);
8212 else
8213 return one_reg_loc_descriptor (reg);
8214 }
8215
8216 /* Return a location descriptor that designates a machine register for
8217 a given hard register number. */
8218
8219 static dw_loc_descr_ref
8220 one_reg_loc_descriptor (regno)
8221 unsigned int regno;
8222 {
8223 if (regno <= 31)
8224 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8225 else
8226 return new_loc_descr (DW_OP_regx, regno, 0);
8227 }
8228
8229 /* Given an RTL of a register, return a location descriptor that
8230 designates a value that spans more than one register. */
8231
8232 static dw_loc_descr_ref
8233 multiple_reg_loc_descriptor (rtl, regs)
8234 rtx rtl, regs;
8235 {
8236 int nregs, size, i;
8237 unsigned reg;
8238 dw_loc_descr_ref loc_result = NULL;
8239
8240 reg = reg_number (rtl);
8241 nregs = HARD_REGNO_NREGS (reg, GET_MODE (rtl));
8242
8243 /* Simple, contiguous registers. */
8244 if (regs == NULL_RTX)
8245 {
8246 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8247
8248 loc_result = NULL;
8249 while (nregs--)
8250 {
8251 dw_loc_descr_ref t;
8252
8253 t = one_reg_loc_descriptor (reg);
8254 add_loc_descr (&loc_result, t);
8255 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8256 ++reg;
8257 }
8258 return loc_result;
8259 }
8260
8261 /* Now onto stupid register sets in non contiguous locations. */
8262
8263 if (GET_CODE (regs) != PARALLEL)
8264 abort ();
8265
8266 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8267 loc_result = NULL;
8268
8269 for (i = 0; i < XVECLEN (regs, 0); ++i)
8270 {
8271 dw_loc_descr_ref t;
8272
8273 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8274 add_loc_descr (&loc_result, t);
8275 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8276 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8277 }
8278 return loc_result;
8279 }
8280
8281 /* Return a location descriptor that designates a constant. */
8282
8283 static dw_loc_descr_ref
8284 int_loc_descriptor (i)
8285 HOST_WIDE_INT i;
8286 {
8287 enum dwarf_location_atom op;
8288
8289 /* Pick the smallest representation of a constant, rather than just
8290 defaulting to the LEB encoding. */
8291 if (i >= 0)
8292 {
8293 if (i <= 31)
8294 op = DW_OP_lit0 + i;
8295 else if (i <= 0xff)
8296 op = DW_OP_const1u;
8297 else if (i <= 0xffff)
8298 op = DW_OP_const2u;
8299 else if (HOST_BITS_PER_WIDE_INT == 32
8300 || i <= 0xffffffff)
8301 op = DW_OP_const4u;
8302 else
8303 op = DW_OP_constu;
8304 }
8305 else
8306 {
8307 if (i >= -0x80)
8308 op = DW_OP_const1s;
8309 else if (i >= -0x8000)
8310 op = DW_OP_const2s;
8311 else if (HOST_BITS_PER_WIDE_INT == 32
8312 || i >= -0x80000000)
8313 op = DW_OP_const4s;
8314 else
8315 op = DW_OP_consts;
8316 }
8317
8318 return new_loc_descr (op, i, 0);
8319 }
8320
8321 /* Return a location descriptor that designates a base+offset location. */
8322
8323 static dw_loc_descr_ref
8324 based_loc_descr (reg, offset)
8325 unsigned reg;
8326 long int offset;
8327 {
8328 dw_loc_descr_ref loc_result;
8329 /* For the "frame base", we use the frame pointer or stack pointer
8330 registers, since the RTL for local variables is relative to one of
8331 them. */
8332 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8333 ? HARD_FRAME_POINTER_REGNUM
8334 : STACK_POINTER_REGNUM);
8335
8336 if (reg == fp_reg)
8337 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8338 else if (reg <= 31)
8339 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8340 else
8341 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8342
8343 return loc_result;
8344 }
8345
8346 /* Return true if this RTL expression describes a base+offset calculation. */
8347
8348 static inline int
8349 is_based_loc (rtl)
8350 rtx rtl;
8351 {
8352 return (GET_CODE (rtl) == PLUS
8353 && ((GET_CODE (XEXP (rtl, 0)) == REG
8354 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8355 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8356 }
8357
8358 /* The following routine converts the RTL for a variable or parameter
8359 (resident in memory) into an equivalent Dwarf representation of a
8360 mechanism for getting the address of that same variable onto the top of a
8361 hypothetical "address evaluation" stack.
8362
8363 When creating memory location descriptors, we are effectively transforming
8364 the RTL for a memory-resident object into its Dwarf postfix expression
8365 equivalent. This routine recursively descends an RTL tree, turning
8366 it into Dwarf postfix code as it goes.
8367
8368 MODE is the mode of the memory reference, needed to handle some
8369 autoincrement addressing modes.
8370
8371 Return 0 if we can't represent the location. */
8372
8373 static dw_loc_descr_ref
8374 mem_loc_descriptor (rtl, mode)
8375 rtx rtl;
8376 enum machine_mode mode;
8377 {
8378 dw_loc_descr_ref mem_loc_result = NULL;
8379
8380 /* Note that for a dynamically sized array, the location we will generate a
8381 description of here will be the lowest numbered location which is
8382 actually within the array. That's *not* necessarily the same as the
8383 zeroth element of the array. */
8384
8385 rtl = (*targetm.delegitimize_address) (rtl);
8386
8387 switch (GET_CODE (rtl))
8388 {
8389 case POST_INC:
8390 case POST_DEC:
8391 case POST_MODIFY:
8392 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8393 just fall into the SUBREG code. */
8394
8395 /* ... fall through ... */
8396
8397 case SUBREG:
8398 /* The case of a subreg may arise when we have a local (register)
8399 variable or a formal (register) parameter which doesn't quite fill
8400 up an entire register. For now, just assume that it is
8401 legitimate to make the Dwarf info refer to the whole register which
8402 contains the given subreg. */
8403 rtl = SUBREG_REG (rtl);
8404
8405 /* ... fall through ... */
8406
8407 case REG:
8408 /* Whenever a register number forms a part of the description of the
8409 method for calculating the (dynamic) address of a memory resident
8410 object, DWARF rules require the register number be referred to as
8411 a "base register". This distinction is not based in any way upon
8412 what category of register the hardware believes the given register
8413 belongs to. This is strictly DWARF terminology we're dealing with
8414 here. Note that in cases where the location of a memory-resident
8415 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8416 OP_CONST (0)) the actual DWARF location descriptor that we generate
8417 may just be OP_BASEREG (basereg). This may look deceptively like
8418 the object in question was allocated to a register (rather than in
8419 memory) so DWARF consumers need to be aware of the subtle
8420 distinction between OP_REG and OP_BASEREG. */
8421 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8422 mem_loc_result = based_loc_descr (reg_number (rtl), 0);
8423 break;
8424
8425 case MEM:
8426 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8427 if (mem_loc_result != 0)
8428 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8429 break;
8430
8431 case LO_SUM:
8432 rtl = XEXP (rtl, 1);
8433
8434 /* ... fall through ... */
8435
8436 case LABEL_REF:
8437 /* Some ports can transform a symbol ref into a label ref, because
8438 the symbol ref is too far away and has to be dumped into a constant
8439 pool. */
8440 case CONST:
8441 case SYMBOL_REF:
8442 /* Alternatively, the symbol in the constant pool might be referenced
8443 by a different symbol. */
8444 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8445 {
8446 bool marked;
8447 rtx tmp = get_pool_constant_mark (rtl, &marked);
8448
8449 if (GET_CODE (tmp) == SYMBOL_REF)
8450 {
8451 rtl = tmp;
8452 if (CONSTANT_POOL_ADDRESS_P (tmp))
8453 get_pool_constant_mark (tmp, &marked);
8454 else
8455 marked = true;
8456 }
8457
8458 /* If all references to this pool constant were optimized away,
8459 it was not output and thus we can't represent it.
8460 FIXME: might try to use DW_OP_const_value here, though
8461 DW_OP_piece complicates it. */
8462 if (!marked)
8463 return 0;
8464 }
8465
8466 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8467 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8468 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8469 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8470 break;
8471
8472 case PRE_MODIFY:
8473 /* Extract the PLUS expression nested inside and fall into
8474 PLUS code below. */
8475 rtl = XEXP (rtl, 1);
8476 goto plus;
8477
8478 case PRE_INC:
8479 case PRE_DEC:
8480 /* Turn these into a PLUS expression and fall into the PLUS code
8481 below. */
8482 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8483 GEN_INT (GET_CODE (rtl) == PRE_INC
8484 ? GET_MODE_UNIT_SIZE (mode)
8485 : -GET_MODE_UNIT_SIZE (mode)));
8486
8487 /* ... fall through ... */
8488
8489 case PLUS:
8490 plus:
8491 if (is_based_loc (rtl))
8492 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
8493 INTVAL (XEXP (rtl, 1)));
8494 else
8495 {
8496 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8497 if (mem_loc_result == 0)
8498 break;
8499
8500 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8501 && INTVAL (XEXP (rtl, 1)) >= 0)
8502 add_loc_descr (&mem_loc_result,
8503 new_loc_descr (DW_OP_plus_uconst,
8504 INTVAL (XEXP (rtl, 1)), 0));
8505 else
8506 {
8507 add_loc_descr (&mem_loc_result,
8508 mem_loc_descriptor (XEXP (rtl, 1), mode));
8509 add_loc_descr (&mem_loc_result,
8510 new_loc_descr (DW_OP_plus, 0, 0));
8511 }
8512 }
8513 break;
8514
8515 case MULT:
8516 {
8517 /* If a pseudo-reg is optimized away, it is possible for it to
8518 be replaced with a MEM containing a multiply. */
8519 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8520 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8521
8522 if (op0 == 0 || op1 == 0)
8523 break;
8524
8525 mem_loc_result = op0;
8526 add_loc_descr (&mem_loc_result, op1);
8527 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
8528 break;
8529 }
8530
8531 case CONST_INT:
8532 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8533 break;
8534
8535 case ADDRESSOF:
8536 /* If this is a MEM, return its address. Otherwise, we can't
8537 represent this. */
8538 if (GET_CODE (XEXP (rtl, 0)) == MEM)
8539 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode);
8540 else
8541 return 0;
8542
8543 default:
8544 abort ();
8545 }
8546
8547 return mem_loc_result;
8548 }
8549
8550 /* Return a descriptor that describes the concatenation of two locations.
8551 This is typically a complex variable. */
8552
8553 static dw_loc_descr_ref
8554 concat_loc_descriptor (x0, x1)
8555 rtx x0, x1;
8556 {
8557 dw_loc_descr_ref cc_loc_result = NULL;
8558 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8559 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8560
8561 if (x0_ref == 0 || x1_ref == 0)
8562 return 0;
8563
8564 cc_loc_result = x0_ref;
8565 add_loc_descr (&cc_loc_result,
8566 new_loc_descr (DW_OP_piece,
8567 GET_MODE_SIZE (GET_MODE (x0)), 0));
8568
8569 add_loc_descr (&cc_loc_result, x1_ref);
8570 add_loc_descr (&cc_loc_result,
8571 new_loc_descr (DW_OP_piece,
8572 GET_MODE_SIZE (GET_MODE (x1)), 0));
8573
8574 return cc_loc_result;
8575 }
8576
8577 /* Output a proper Dwarf location descriptor for a variable or parameter
8578 which is either allocated in a register or in a memory location. For a
8579 register, we just generate an OP_REG and the register number. For a
8580 memory location we provide a Dwarf postfix expression describing how to
8581 generate the (dynamic) address of the object onto the address stack.
8582
8583 If we don't know how to describe it, return 0. */
8584
8585 static dw_loc_descr_ref
8586 loc_descriptor (rtl)
8587 rtx rtl;
8588 {
8589 dw_loc_descr_ref loc_result = NULL;
8590
8591 switch (GET_CODE (rtl))
8592 {
8593 case SUBREG:
8594 /* The case of a subreg may arise when we have a local (register)
8595 variable or a formal (register) parameter which doesn't quite fill
8596 up an entire register. For now, just assume that it is
8597 legitimate to make the Dwarf info refer to the whole register which
8598 contains the given subreg. */
8599 rtl = SUBREG_REG (rtl);
8600
8601 /* ... fall through ... */
8602
8603 case REG:
8604 loc_result = reg_loc_descriptor (rtl);
8605 break;
8606
8607 case MEM:
8608 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8609 break;
8610
8611 case CONCAT:
8612 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8613 break;
8614
8615 default:
8616 abort ();
8617 }
8618
8619 return loc_result;
8620 }
8621
8622 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8623 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8624 looking for an address. Otherwise, we return a value. If we can't make a
8625 descriptor, return 0. */
8626
8627 static dw_loc_descr_ref
8628 loc_descriptor_from_tree (loc, addressp)
8629 tree loc;
8630 int addressp;
8631 {
8632 dw_loc_descr_ref ret, ret1;
8633 int indirect_p = 0;
8634 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8635 enum dwarf_location_atom op;
8636
8637 /* ??? Most of the time we do not take proper care for sign/zero
8638 extending the values properly. Hopefully this won't be a real
8639 problem... */
8640
8641 switch (TREE_CODE (loc))
8642 {
8643 case ERROR_MARK:
8644 return 0;
8645
8646 case WITH_RECORD_EXPR:
8647 case PLACEHOLDER_EXPR:
8648 /* This case involves extracting fields from an object to determine the
8649 position of other fields. We don't try to encode this here. The
8650 only user of this is Ada, which encodes the needed information using
8651 the names of types. */
8652 return 0;
8653
8654 case CALL_EXPR:
8655 return 0;
8656
8657 case ADDR_EXPR:
8658 /* We can support this only if we can look through conversions and
8659 find an INDIRECT_EXPR. */
8660 for (loc = TREE_OPERAND (loc, 0);
8661 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8662 || TREE_CODE (loc) == NON_LVALUE_EXPR
8663 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8664 || TREE_CODE (loc) == SAVE_EXPR;
8665 loc = TREE_OPERAND (loc, 0))
8666 ;
8667
8668 return (TREE_CODE (loc) == INDIRECT_REF
8669 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8670 : 0);
8671
8672 case VAR_DECL:
8673 if (DECL_THREAD_LOCAL (loc))
8674 {
8675 rtx rtl;
8676
8677 #ifndef ASM_OUTPUT_DWARF_DTPREL
8678 /* If this is not defined, we have no way to emit the data. */
8679 return 0;
8680 #endif
8681
8682 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8683 look up addresses of objects in the current module. */
8684 if (DECL_EXTERNAL (loc))
8685 return 0;
8686
8687 rtl = rtl_for_decl_location (loc);
8688 if (rtl == NULL_RTX)
8689 return 0;
8690
8691 if (GET_CODE (rtl) != MEM)
8692 return 0;
8693 rtl = XEXP (rtl, 0);
8694 if (! CONSTANT_P (rtl))
8695 return 0;
8696
8697 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8698 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8699 ret->dw_loc_oprnd1.v.val_addr = rtl;
8700
8701 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8702 add_loc_descr (&ret, ret1);
8703
8704 indirect_p = 1;
8705 break;
8706 }
8707 /* FALLTHRU */
8708
8709 case PARM_DECL:
8710 {
8711 rtx rtl = rtl_for_decl_location (loc);
8712
8713 if (rtl == NULL_RTX)
8714 return 0;
8715 else if (CONSTANT_P (rtl))
8716 {
8717 ret = new_loc_descr (DW_OP_addr, 0, 0);
8718 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8719 ret->dw_loc_oprnd1.v.val_addr = rtl;
8720 indirect_p = 1;
8721 }
8722 else
8723 {
8724 enum machine_mode mode = GET_MODE (rtl);
8725
8726 if (GET_CODE (rtl) == MEM)
8727 {
8728 indirect_p = 1;
8729 rtl = XEXP (rtl, 0);
8730 }
8731
8732 ret = mem_loc_descriptor (rtl, mode);
8733 }
8734 }
8735 break;
8736
8737 case INDIRECT_REF:
8738 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8739 indirect_p = 1;
8740 break;
8741
8742 case COMPOUND_EXPR:
8743 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8744
8745 case NOP_EXPR:
8746 case CONVERT_EXPR:
8747 case NON_LVALUE_EXPR:
8748 case VIEW_CONVERT_EXPR:
8749 case SAVE_EXPR:
8750 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8751
8752 case COMPONENT_REF:
8753 case BIT_FIELD_REF:
8754 case ARRAY_REF:
8755 case ARRAY_RANGE_REF:
8756 {
8757 tree obj, offset;
8758 HOST_WIDE_INT bitsize, bitpos, bytepos;
8759 enum machine_mode mode;
8760 int volatilep;
8761
8762 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8763 &unsignedp, &volatilep);
8764
8765 if (obj == loc)
8766 return 0;
8767
8768 ret = loc_descriptor_from_tree (obj, 1);
8769 if (ret == 0
8770 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8771 return 0;
8772
8773 if (offset != NULL_TREE)
8774 {
8775 /* Variable offset. */
8776 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8777 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8778 }
8779
8780 if (!addressp)
8781 indirect_p = 1;
8782
8783 bytepos = bitpos / BITS_PER_UNIT;
8784 if (bytepos > 0)
8785 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8786 else if (bytepos < 0)
8787 {
8788 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8789 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8790 }
8791 break;
8792 }
8793
8794 case INTEGER_CST:
8795 if (host_integerp (loc, 0))
8796 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8797 else
8798 return 0;
8799 break;
8800
8801 case TRUTH_AND_EXPR:
8802 case TRUTH_ANDIF_EXPR:
8803 case BIT_AND_EXPR:
8804 op = DW_OP_and;
8805 goto do_binop;
8806
8807 case TRUTH_XOR_EXPR:
8808 case BIT_XOR_EXPR:
8809 op = DW_OP_xor;
8810 goto do_binop;
8811
8812 case TRUTH_OR_EXPR:
8813 case TRUTH_ORIF_EXPR:
8814 case BIT_IOR_EXPR:
8815 op = DW_OP_or;
8816 goto do_binop;
8817
8818 case TRUNC_DIV_EXPR:
8819 op = DW_OP_div;
8820 goto do_binop;
8821
8822 case MINUS_EXPR:
8823 op = DW_OP_minus;
8824 goto do_binop;
8825
8826 case TRUNC_MOD_EXPR:
8827 op = DW_OP_mod;
8828 goto do_binop;
8829
8830 case MULT_EXPR:
8831 op = DW_OP_mul;
8832 goto do_binop;
8833
8834 case LSHIFT_EXPR:
8835 op = DW_OP_shl;
8836 goto do_binop;
8837
8838 case RSHIFT_EXPR:
8839 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8840 goto do_binop;
8841
8842 case PLUS_EXPR:
8843 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8844 && host_integerp (TREE_OPERAND (loc, 1), 0))
8845 {
8846 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8847 if (ret == 0)
8848 return 0;
8849
8850 add_loc_descr (&ret,
8851 new_loc_descr (DW_OP_plus_uconst,
8852 tree_low_cst (TREE_OPERAND (loc, 1),
8853 0),
8854 0));
8855 break;
8856 }
8857
8858 op = DW_OP_plus;
8859 goto do_binop;
8860
8861 case LE_EXPR:
8862 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8863 return 0;
8864
8865 op = DW_OP_le;
8866 goto do_binop;
8867
8868 case GE_EXPR:
8869 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8870 return 0;
8871
8872 op = DW_OP_ge;
8873 goto do_binop;
8874
8875 case LT_EXPR:
8876 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8877 return 0;
8878
8879 op = DW_OP_lt;
8880 goto do_binop;
8881
8882 case GT_EXPR:
8883 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8884 return 0;
8885
8886 op = DW_OP_gt;
8887 goto do_binop;
8888
8889 case EQ_EXPR:
8890 op = DW_OP_eq;
8891 goto do_binop;
8892
8893 case NE_EXPR:
8894 op = DW_OP_ne;
8895 goto do_binop;
8896
8897 do_binop:
8898 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8899 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8900 if (ret == 0 || ret1 == 0)
8901 return 0;
8902
8903 add_loc_descr (&ret, ret1);
8904 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8905 break;
8906
8907 case TRUTH_NOT_EXPR:
8908 case BIT_NOT_EXPR:
8909 op = DW_OP_not;
8910 goto do_unop;
8911
8912 case ABS_EXPR:
8913 op = DW_OP_abs;
8914 goto do_unop;
8915
8916 case NEGATE_EXPR:
8917 op = DW_OP_neg;
8918 goto do_unop;
8919
8920 do_unop:
8921 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8922 if (ret == 0)
8923 return 0;
8924
8925 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8926 break;
8927
8928 case MAX_EXPR:
8929 loc = build (COND_EXPR, TREE_TYPE (loc),
8930 build (LT_EXPR, integer_type_node,
8931 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8932 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
8933
8934 /* ... fall through ... */
8935
8936 case COND_EXPR:
8937 {
8938 dw_loc_descr_ref lhs
8939 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8940 dw_loc_descr_ref rhs
8941 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
8942 dw_loc_descr_ref bra_node, jump_node, tmp;
8943
8944 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8945 if (ret == 0 || lhs == 0 || rhs == 0)
8946 return 0;
8947
8948 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
8949 add_loc_descr (&ret, bra_node);
8950
8951 add_loc_descr (&ret, rhs);
8952 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
8953 add_loc_descr (&ret, jump_node);
8954
8955 add_loc_descr (&ret, lhs);
8956 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8957 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
8958
8959 /* ??? Need a node to point the skip at. Use a nop. */
8960 tmp = new_loc_descr (DW_OP_nop, 0, 0);
8961 add_loc_descr (&ret, tmp);
8962 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8963 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
8964 }
8965 break;
8966
8967 default:
8968 abort ();
8969 }
8970
8971 /* Show if we can't fill the request for an address. */
8972 if (addressp && indirect_p == 0)
8973 return 0;
8974
8975 /* If we've got an address and don't want one, dereference. */
8976 if (!addressp && indirect_p > 0)
8977 {
8978 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
8979
8980 if (size > DWARF2_ADDR_SIZE || size == -1)
8981 return 0;
8982 else if (size == DWARF2_ADDR_SIZE)
8983 op = DW_OP_deref;
8984 else
8985 op = DW_OP_deref_size;
8986
8987 add_loc_descr (&ret, new_loc_descr (op, size, 0));
8988 }
8989
8990 return ret;
8991 }
8992
8993 /* Given a value, round it up to the lowest multiple of `boundary'
8994 which is not less than the value itself. */
8995
8996 static inline HOST_WIDE_INT
8997 ceiling (value, boundary)
8998 HOST_WIDE_INT value;
8999 unsigned int boundary;
9000 {
9001 return (((value + boundary - 1) / boundary) * boundary);
9002 }
9003
9004 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9005 pointer to the declared type for the relevant field variable, or return
9006 `integer_type_node' if the given node turns out to be an
9007 ERROR_MARK node. */
9008
9009 static inline tree
9010 field_type (decl)
9011 tree decl;
9012 {
9013 tree type;
9014
9015 if (TREE_CODE (decl) == ERROR_MARK)
9016 return integer_type_node;
9017
9018 type = DECL_BIT_FIELD_TYPE (decl);
9019 if (type == NULL_TREE)
9020 type = TREE_TYPE (decl);
9021
9022 return type;
9023 }
9024
9025 /* Given a pointer to a tree node, return the alignment in bits for
9026 it, or else return BITS_PER_WORD if the node actually turns out to
9027 be an ERROR_MARK node. */
9028
9029 static inline unsigned
9030 simple_type_align_in_bits (type)
9031 tree type;
9032 {
9033 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9034 }
9035
9036 static inline unsigned
9037 simple_decl_align_in_bits (decl)
9038 tree decl;
9039 {
9040 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9041 }
9042
9043 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9044 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9045 or return 0 if we are unable to determine what that offset is, either
9046 because the argument turns out to be a pointer to an ERROR_MARK node, or
9047 because the offset is actually variable. (We can't handle the latter case
9048 just yet). */
9049
9050 static HOST_WIDE_INT
9051 field_byte_offset (decl)
9052 tree decl;
9053 {
9054 unsigned int type_align_in_bits;
9055 unsigned int decl_align_in_bits;
9056 unsigned HOST_WIDE_INT type_size_in_bits;
9057 HOST_WIDE_INT object_offset_in_bits;
9058 tree type;
9059 tree field_size_tree;
9060 HOST_WIDE_INT bitpos_int;
9061 HOST_WIDE_INT deepest_bitpos;
9062 unsigned HOST_WIDE_INT field_size_in_bits;
9063
9064 if (TREE_CODE (decl) == ERROR_MARK)
9065 return 0;
9066 else if (TREE_CODE (decl) != FIELD_DECL)
9067 abort ();
9068
9069 type = field_type (decl);
9070 field_size_tree = DECL_SIZE (decl);
9071
9072 /* The size could be unspecified if there was an error, or for
9073 a flexible array member. */
9074 if (! field_size_tree)
9075 field_size_tree = bitsize_zero_node;
9076
9077 /* We cannot yet cope with fields whose positions are variable, so
9078 for now, when we see such things, we simply return 0. Someday, we may
9079 be able to handle such cases, but it will be damn difficult. */
9080 if (! host_integerp (bit_position (decl), 0))
9081 return 0;
9082
9083 bitpos_int = int_bit_position (decl);
9084
9085 /* If we don't know the size of the field, pretend it's a full word. */
9086 if (host_integerp (field_size_tree, 1))
9087 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9088 else
9089 field_size_in_bits = BITS_PER_WORD;
9090
9091 type_size_in_bits = simple_type_size_in_bits (type);
9092 type_align_in_bits = simple_type_align_in_bits (type);
9093 decl_align_in_bits = simple_decl_align_in_bits (decl);
9094
9095 /* The GCC front-end doesn't make any attempt to keep track of the starting
9096 bit offset (relative to the start of the containing structure type) of the
9097 hypothetical "containing object" for a bit-field. Thus, when computing
9098 the byte offset value for the start of the "containing object" of a
9099 bit-field, we must deduce this information on our own. This can be rather
9100 tricky to do in some cases. For example, handling the following structure
9101 type definition when compiling for an i386/i486 target (which only aligns
9102 long long's to 32-bit boundaries) can be very tricky:
9103
9104 struct S { int field1; long long field2:31; };
9105
9106 Fortunately, there is a simple rule-of-thumb which can be used in such
9107 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9108 structure shown above. It decides to do this based upon one simple rule
9109 for bit-field allocation. GCC allocates each "containing object" for each
9110 bit-field at the first (i.e. lowest addressed) legitimate alignment
9111 boundary (based upon the required minimum alignment for the declared type
9112 of the field) which it can possibly use, subject to the condition that
9113 there is still enough available space remaining in the containing object
9114 (when allocated at the selected point) to fully accommodate all of the
9115 bits of the bit-field itself.
9116
9117 This simple rule makes it obvious why GCC allocates 8 bytes for each
9118 object of the structure type shown above. When looking for a place to
9119 allocate the "containing object" for `field2', the compiler simply tries
9120 to allocate a 64-bit "containing object" at each successive 32-bit
9121 boundary (starting at zero) until it finds a place to allocate that 64-
9122 bit field such that at least 31 contiguous (and previously unallocated)
9123 bits remain within that selected 64 bit field. (As it turns out, for the
9124 example above, the compiler finds it is OK to allocate the "containing
9125 object" 64-bit field at bit-offset zero within the structure type.)
9126
9127 Here we attempt to work backwards from the limited set of facts we're
9128 given, and we try to deduce from those facts, where GCC must have believed
9129 that the containing object started (within the structure type). The value
9130 we deduce is then used (by the callers of this routine) to generate
9131 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9132 and, in the case of DW_AT_location, regular fields as well). */
9133
9134 /* Figure out the bit-distance from the start of the structure to the
9135 "deepest" bit of the bit-field. */
9136 deepest_bitpos = bitpos_int + field_size_in_bits;
9137
9138 /* This is the tricky part. Use some fancy footwork to deduce where the
9139 lowest addressed bit of the containing object must be. */
9140 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9141
9142 /* Round up to type_align by default. This works best for bitfields. */
9143 object_offset_in_bits += type_align_in_bits - 1;
9144 object_offset_in_bits /= type_align_in_bits;
9145 object_offset_in_bits *= type_align_in_bits;
9146
9147 if (object_offset_in_bits > bitpos_int)
9148 {
9149 /* Sigh, the decl must be packed. */
9150 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9151
9152 /* Round up to decl_align instead. */
9153 object_offset_in_bits += decl_align_in_bits - 1;
9154 object_offset_in_bits /= decl_align_in_bits;
9155 object_offset_in_bits *= decl_align_in_bits;
9156 }
9157
9158 return object_offset_in_bits / BITS_PER_UNIT;
9159 }
9160 \f
9161 /* The following routines define various Dwarf attributes and any data
9162 associated with them. */
9163
9164 /* Add a location description attribute value to a DIE.
9165
9166 This emits location attributes suitable for whole variables and
9167 whole parameters. Note that the location attributes for struct fields are
9168 generated by the routine `data_member_location_attribute' below. */
9169
9170 static inline void
9171 add_AT_location_description (die, attr_kind, descr)
9172 dw_die_ref die;
9173 enum dwarf_attribute attr_kind;
9174 dw_loc_descr_ref descr;
9175 {
9176 if (descr != 0)
9177 add_AT_loc (die, attr_kind, descr);
9178 }
9179
9180 /* Attach the specialized form of location attribute used for data members of
9181 struct and union types. In the special case of a FIELD_DECL node which
9182 represents a bit-field, the "offset" part of this special location
9183 descriptor must indicate the distance in bytes from the lowest-addressed
9184 byte of the containing struct or union type to the lowest-addressed byte of
9185 the "containing object" for the bit-field. (See the `field_byte_offset'
9186 function above).
9187
9188 For any given bit-field, the "containing object" is a hypothetical object
9189 (of some integral or enum type) within which the given bit-field lives. The
9190 type of this hypothetical "containing object" is always the same as the
9191 declared type of the individual bit-field itself (for GCC anyway... the
9192 DWARF spec doesn't actually mandate this). Note that it is the size (in
9193 bytes) of the hypothetical "containing object" which will be given in the
9194 DW_AT_byte_size attribute for this bit-field. (See the
9195 `byte_size_attribute' function below.) It is also used when calculating the
9196 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9197 function below.) */
9198
9199 static void
9200 add_data_member_location_attribute (die, decl)
9201 dw_die_ref die;
9202 tree decl;
9203 {
9204 long offset;
9205 dw_loc_descr_ref loc_descr = 0;
9206
9207 if (TREE_CODE (decl) == TREE_VEC)
9208 {
9209 /* We're working on the TAG_inheritance for a base class. */
9210 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
9211 {
9212 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9213 aren't at a fixed offset from all (sub)objects of the same
9214 type. We need to extract the appropriate offset from our
9215 vtable. The following dwarf expression means
9216
9217 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9218
9219 This is specific to the V3 ABI, of course. */
9220
9221 dw_loc_descr_ref tmp;
9222
9223 /* Make a copy of the object address. */
9224 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9225 add_loc_descr (&loc_descr, tmp);
9226
9227 /* Extract the vtable address. */
9228 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9229 add_loc_descr (&loc_descr, tmp);
9230
9231 /* Calculate the address of the offset. */
9232 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9233 if (offset >= 0)
9234 abort ();
9235
9236 tmp = int_loc_descriptor (-offset);
9237 add_loc_descr (&loc_descr, tmp);
9238 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9239 add_loc_descr (&loc_descr, tmp);
9240
9241 /* Extract the offset. */
9242 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9243 add_loc_descr (&loc_descr, tmp);
9244
9245 /* Add it to the object address. */
9246 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9247 add_loc_descr (&loc_descr, tmp);
9248 }
9249 else
9250 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9251 }
9252 else
9253 offset = field_byte_offset (decl);
9254
9255 if (! loc_descr)
9256 {
9257 enum dwarf_location_atom op;
9258
9259 /* The DWARF2 standard says that we should assume that the structure
9260 address is already on the stack, so we can specify a structure field
9261 address by using DW_OP_plus_uconst. */
9262
9263 #ifdef MIPS_DEBUGGING_INFO
9264 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9265 operator correctly. It works only if we leave the offset on the
9266 stack. */
9267 op = DW_OP_constu;
9268 #else
9269 op = DW_OP_plus_uconst;
9270 #endif
9271
9272 loc_descr = new_loc_descr (op, offset, 0);
9273 }
9274
9275 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9276 }
9277
9278 /* Attach an DW_AT_const_value attribute for a variable or a parameter which
9279 does not have a "location" either in memory or in a register. These
9280 things can arise in GNU C when a constant is passed as an actual parameter
9281 to an inlined function. They can also arise in C++ where declared
9282 constants do not necessarily get memory "homes". */
9283
9284 static void
9285 add_const_value_attribute (die, rtl)
9286 dw_die_ref die;
9287 rtx rtl;
9288 {
9289 switch (GET_CODE (rtl))
9290 {
9291 case CONST_INT:
9292 /* Note that a CONST_INT rtx could represent either an integer
9293 or a floating-point constant. A CONST_INT is used whenever
9294 the constant will fit into a single word. In all such
9295 cases, the original mode of the constant value is wiped
9296 out, and the CONST_INT rtx is assigned VOIDmode. */
9297 {
9298 HOST_WIDE_INT val = INTVAL (rtl);
9299
9300 /* ??? We really should be using HOST_WIDE_INT throughout. */
9301 if (val < 0 && (long) val == val)
9302 add_AT_int (die, DW_AT_const_value, (long) val);
9303 else if ((unsigned long) val == (unsigned HOST_WIDE_INT) val)
9304 add_AT_unsigned (die, DW_AT_const_value, (unsigned long) val);
9305 else
9306 {
9307 #if HOST_BITS_PER_LONG * 2 == HOST_BITS_PER_WIDE_INT
9308 add_AT_long_long (die, DW_AT_const_value,
9309 val >> HOST_BITS_PER_LONG, val);
9310 #else
9311 abort ();
9312 #endif
9313 }
9314 }
9315 break;
9316
9317 case CONST_DOUBLE:
9318 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9319 floating-point constant. A CONST_DOUBLE is used whenever the
9320 constant requires more than one word in order to be adequately
9321 represented. We output CONST_DOUBLEs as blocks. */
9322 {
9323 enum machine_mode mode = GET_MODE (rtl);
9324
9325 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9326 {
9327 unsigned length = GET_MODE_SIZE (mode) / 4;
9328 long *array = (long *) ggc_alloc (sizeof (long) * length);
9329 REAL_VALUE_TYPE rv;
9330
9331 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9332 switch (mode)
9333 {
9334 case SFmode:
9335 REAL_VALUE_TO_TARGET_SINGLE (rv, array[0]);
9336 break;
9337
9338 case DFmode:
9339 REAL_VALUE_TO_TARGET_DOUBLE (rv, array);
9340 break;
9341
9342 case XFmode:
9343 case TFmode:
9344 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, array);
9345 break;
9346
9347 default:
9348 abort ();
9349 }
9350
9351 add_AT_float (die, DW_AT_const_value, length, array);
9352 }
9353 else
9354 {
9355 /* ??? We really should be using HOST_WIDE_INT throughout. */
9356 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9357 abort ();
9358
9359 add_AT_long_long (die, DW_AT_const_value,
9360 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9361 }
9362 }
9363 break;
9364
9365 case CONST_STRING:
9366 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9367 break;
9368
9369 case SYMBOL_REF:
9370 case LABEL_REF:
9371 case CONST:
9372 add_AT_addr (die, DW_AT_const_value, rtl);
9373 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9374 break;
9375
9376 case PLUS:
9377 /* In cases where an inlined instance of an inline function is passed
9378 the address of an `auto' variable (which is local to the caller) we
9379 can get a situation where the DECL_RTL of the artificial local
9380 variable (for the inlining) which acts as a stand-in for the
9381 corresponding formal parameter (of the inline function) will look
9382 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9383 exactly a compile-time constant expression, but it isn't the address
9384 of the (artificial) local variable either. Rather, it represents the
9385 *value* which the artificial local variable always has during its
9386 lifetime. We currently have no way to represent such quasi-constant
9387 values in Dwarf, so for now we just punt and generate nothing. */
9388 break;
9389
9390 default:
9391 /* No other kinds of rtx should be possible here. */
9392 abort ();
9393 }
9394
9395 }
9396
9397 static rtx
9398 rtl_for_decl_location (decl)
9399 tree decl;
9400 {
9401 rtx rtl;
9402
9403 /* Here we have to decide where we are going to say the parameter "lives"
9404 (as far as the debugger is concerned). We only have a couple of
9405 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9406
9407 DECL_RTL normally indicates where the parameter lives during most of the
9408 activation of the function. If optimization is enabled however, this
9409 could be either NULL or else a pseudo-reg. Both of those cases indicate
9410 that the parameter doesn't really live anywhere (as far as the code
9411 generation parts of GCC are concerned) during most of the function's
9412 activation. That will happen (for example) if the parameter is never
9413 referenced within the function.
9414
9415 We could just generate a location descriptor here for all non-NULL
9416 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9417 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9418 where DECL_RTL is NULL or is a pseudo-reg.
9419
9420 Note however that we can only get away with using DECL_INCOMING_RTL as
9421 a backup substitute for DECL_RTL in certain limited cases. In cases
9422 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9423 we can be sure that the parameter was passed using the same type as it is
9424 declared to have within the function, and that its DECL_INCOMING_RTL
9425 points us to a place where a value of that type is passed.
9426
9427 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9428 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9429 because in these cases DECL_INCOMING_RTL points us to a value of some
9430 type which is *different* from the type of the parameter itself. Thus,
9431 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9432 such cases, the debugger would end up (for example) trying to fetch a
9433 `float' from a place which actually contains the first part of a
9434 `double'. That would lead to really incorrect and confusing
9435 output at debug-time.
9436
9437 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9438 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9439 are a couple of exceptions however. On little-endian machines we can
9440 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9441 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9442 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9443 when (on a little-endian machine) a non-prototyped function has a
9444 parameter declared to be of type `short' or `char'. In such cases,
9445 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9446 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9447 passed `int' value. If the debugger then uses that address to fetch
9448 a `short' or a `char' (on a little-endian machine) the result will be
9449 the correct data, so we allow for such exceptional cases below.
9450
9451 Note that our goal here is to describe the place where the given formal
9452 parameter lives during most of the function's activation (i.e. between the
9453 end of the prologue and the start of the epilogue). We'll do that as best
9454 as we can. Note however that if the given formal parameter is modified
9455 sometime during the execution of the function, then a stack backtrace (at
9456 debug-time) will show the function as having been called with the *new*
9457 value rather than the value which was originally passed in. This happens
9458 rarely enough that it is not a major problem, but it *is* a problem, and
9459 I'd like to fix it.
9460
9461 A future version of dwarf2out.c may generate two additional attributes for
9462 any given DW_TAG_formal_parameter DIE which will describe the "passed
9463 type" and the "passed location" for the given formal parameter in addition
9464 to the attributes we now generate to indicate the "declared type" and the
9465 "active location" for each parameter. This additional set of attributes
9466 could be used by debuggers for stack backtraces. Separately, note that
9467 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9468 This happens (for example) for inlined-instances of inline function formal
9469 parameters which are never referenced. This really shouldn't be
9470 happening. All PARM_DECL nodes should get valid non-NULL
9471 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9472 values for inlined instances of inline function parameters, so when we see
9473 such cases, we are just out-of-luck for the time being (until integrate.c
9474 gets fixed). */
9475
9476 /* Use DECL_RTL as the "location" unless we find something better. */
9477 rtl = DECL_RTL_IF_SET (decl);
9478
9479 /* When generating abstract instances, ignore everything except
9480 constants, symbols living in memory, and symbols living in
9481 fixed registers. */
9482 if (! reload_completed)
9483 {
9484 if (rtl
9485 && (CONSTANT_P (rtl)
9486 || (GET_CODE (rtl) == MEM
9487 && CONSTANT_P (XEXP (rtl, 0)))
9488 || (GET_CODE (rtl) == REG
9489 && TREE_CODE (decl) == VAR_DECL
9490 && TREE_STATIC (decl))))
9491 {
9492 rtl = (*targetm.delegitimize_address) (rtl);
9493 return rtl;
9494 }
9495 rtl = NULL_RTX;
9496 }
9497 else if (TREE_CODE (decl) == PARM_DECL)
9498 {
9499 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9500 {
9501 tree declared_type = type_main_variant (TREE_TYPE (decl));
9502 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9503
9504 /* This decl represents a formal parameter which was optimized out.
9505 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9506 all cases where (rtl == NULL_RTX) just below. */
9507 if (declared_type == passed_type)
9508 rtl = DECL_INCOMING_RTL (decl);
9509 else if (! BYTES_BIG_ENDIAN
9510 && TREE_CODE (declared_type) == INTEGER_TYPE
9511 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9512 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9513 rtl = DECL_INCOMING_RTL (decl);
9514 }
9515
9516 /* If the parm was passed in registers, but lives on the stack, then
9517 make a big endian correction if the mode of the type of the
9518 parameter is not the same as the mode of the rtl. */
9519 /* ??? This is the same series of checks that are made in dbxout.c before
9520 we reach the big endian correction code there. It isn't clear if all
9521 of these checks are necessary here, but keeping them all is the safe
9522 thing to do. */
9523 else if (GET_CODE (rtl) == MEM
9524 && XEXP (rtl, 0) != const0_rtx
9525 && ! CONSTANT_P (XEXP (rtl, 0))
9526 /* Not passed in memory. */
9527 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
9528 /* Not passed by invisible reference. */
9529 && (GET_CODE (XEXP (rtl, 0)) != REG
9530 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9531 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9532 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9533 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9534 #endif
9535 )
9536 /* Big endian correction check. */
9537 && BYTES_BIG_ENDIAN
9538 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9539 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9540 < UNITS_PER_WORD))
9541 {
9542 int offset = (UNITS_PER_WORD
9543 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9544
9545 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9546 plus_constant (XEXP (rtl, 0), offset));
9547 }
9548 }
9549
9550 if (rtl != NULL_RTX)
9551 {
9552 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9553 #ifdef LEAF_REG_REMAP
9554 if (current_function_uses_only_leaf_regs)
9555 leaf_renumber_regs_insn (rtl);
9556 #endif
9557 }
9558
9559 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9560 and will have been substituted directly into all expressions that use it.
9561 C does not have such a concept, but C++ and other languages do. */
9562 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9563 {
9564 /* If a variable is initialized with a string constant without embedded
9565 zeros, build CONST_STRING. */
9566 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9567 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9568 {
9569 tree arrtype = TREE_TYPE (decl);
9570 tree enttype = TREE_TYPE (arrtype);
9571 tree domain = TYPE_DOMAIN (arrtype);
9572 tree init = DECL_INITIAL (decl);
9573 enum machine_mode mode = TYPE_MODE (enttype);
9574
9575 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9576 && domain
9577 && integer_zerop (TYPE_MIN_VALUE (domain))
9578 && compare_tree_int (TYPE_MAX_VALUE (domain),
9579 TREE_STRING_LENGTH (init) - 1) == 0
9580 && ((size_t) TREE_STRING_LENGTH (init)
9581 == strlen (TREE_STRING_POINTER (init)) + 1))
9582 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9583 }
9584 /* If the initializer is something that we know will expand into an
9585 immediate RTL constant, expand it now. Expanding anything else
9586 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9587 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9588 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9589 {
9590 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9591 EXPAND_INITIALIZER);
9592 /* If expand_expr returns a MEM, it wasn't immediate. */
9593 if (rtl && GET_CODE (rtl) == MEM)
9594 abort ();
9595 }
9596 }
9597
9598 if (rtl)
9599 rtl = (*targetm.delegitimize_address) (rtl);
9600
9601 /* If we don't look past the constant pool, we risk emitting a
9602 reference to a constant pool entry that isn't referenced from
9603 code, and thus is not emitted. */
9604 if (rtl)
9605 rtl = avoid_constant_pool_reference (rtl);
9606
9607 return rtl;
9608 }
9609
9610 /* Generate *either* an DW_AT_location attribute or else an DW_AT_const_value
9611 data attribute for a variable or a parameter. We generate the
9612 DW_AT_const_value attribute only in those cases where the given variable
9613 or parameter does not have a true "location" either in memory or in a
9614 register. This can happen (for example) when a constant is passed as an
9615 actual argument in a call to an inline function. (It's possible that
9616 these things can crop up in other ways also.) Note that one type of
9617 constant value which can be passed into an inlined function is a constant
9618 pointer. This can happen for example if an actual argument in an inlined
9619 function call evaluates to a compile-time constant address. */
9620
9621 static void
9622 add_location_or_const_value_attribute (die, decl)
9623 dw_die_ref die;
9624 tree decl;
9625 {
9626 rtx rtl;
9627 dw_loc_descr_ref descr;
9628
9629 if (TREE_CODE (decl) == ERROR_MARK)
9630 return;
9631 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
9632 abort ();
9633
9634 rtl = rtl_for_decl_location (decl);
9635 if (rtl == NULL_RTX)
9636 return;
9637
9638 switch (GET_CODE (rtl))
9639 {
9640 case ADDRESSOF:
9641 /* The address of a variable that was optimized away;
9642 don't emit anything. */
9643 break;
9644
9645 case CONST_INT:
9646 case CONST_DOUBLE:
9647 case CONST_STRING:
9648 case SYMBOL_REF:
9649 case LABEL_REF:
9650 case CONST:
9651 case PLUS:
9652 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9653 add_const_value_attribute (die, rtl);
9654 break;
9655
9656 case MEM:
9657 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
9658 {
9659 /* Need loc_descriptor_from_tree since that's where we know
9660 how to handle TLS variables. Want the object's address
9661 since the top-level DW_AT_location assumes such. See
9662 the confusion in loc_descriptor for reference. */
9663 descr = loc_descriptor_from_tree (decl, 1);
9664 }
9665 else
9666 {
9667 case REG:
9668 case SUBREG:
9669 case CONCAT:
9670 descr = loc_descriptor (rtl);
9671 }
9672 add_AT_location_description (die, DW_AT_location, descr);
9673 break;
9674
9675 default:
9676 abort ();
9677 }
9678 }
9679
9680 /* If we don't have a copy of this variable in memory for some reason (such
9681 as a C++ member constant that doesn't have an out-of-line definition),
9682 we should tell the debugger about the constant value. */
9683
9684 static void
9685 tree_add_const_value_attribute (var_die, decl)
9686 dw_die_ref var_die;
9687 tree decl;
9688 {
9689 tree init = DECL_INITIAL (decl);
9690 tree type = TREE_TYPE (decl);
9691
9692 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9693 && initializer_constant_valid_p (init, type) == null_pointer_node)
9694 /* OK */;
9695 else
9696 return;
9697
9698 switch (TREE_CODE (type))
9699 {
9700 case INTEGER_TYPE:
9701 if (host_integerp (init, 0))
9702 add_AT_unsigned (var_die, DW_AT_const_value,
9703 tree_low_cst (init, 0));
9704 else
9705 add_AT_long_long (var_die, DW_AT_const_value,
9706 TREE_INT_CST_HIGH (init),
9707 TREE_INT_CST_LOW (init));
9708 break;
9709
9710 default:;
9711 }
9712 }
9713
9714 /* Generate an DW_AT_name attribute given some string value to be included as
9715 the value of the attribute. */
9716
9717 static void
9718 add_name_attribute (die, name_string)
9719 dw_die_ref die;
9720 const char *name_string;
9721 {
9722 if (name_string != NULL && *name_string != 0)
9723 {
9724 if (demangle_name_func)
9725 name_string = (*demangle_name_func) (name_string);
9726
9727 add_AT_string (die, DW_AT_name, name_string);
9728 }
9729 }
9730
9731 /* Generate an DW_AT_comp_dir attribute for DIE. */
9732
9733 static void
9734 add_comp_dir_attribute (die)
9735 dw_die_ref die;
9736 {
9737 const char *wd = getpwd ();
9738 if (wd != NULL)
9739 add_AT_string (die, DW_AT_comp_dir, wd);
9740 }
9741
9742 /* Given a tree node describing an array bound (either lower or upper) output
9743 a representation for that bound. */
9744
9745 static void
9746 add_bound_info (subrange_die, bound_attr, bound)
9747 dw_die_ref subrange_die;
9748 enum dwarf_attribute bound_attr;
9749 tree bound;
9750 {
9751 switch (TREE_CODE (bound))
9752 {
9753 case ERROR_MARK:
9754 return;
9755
9756 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9757 case INTEGER_CST:
9758 if (! host_integerp (bound, 0)
9759 || (bound_attr == DW_AT_lower_bound
9760 && (((is_c_family () || is_java ()) && integer_zerop (bound))
9761 || (is_fortran () && integer_onep (bound)))))
9762 /* use the default */
9763 ;
9764 else
9765 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
9766 break;
9767
9768 case CONVERT_EXPR:
9769 case NOP_EXPR:
9770 case NON_LVALUE_EXPR:
9771 case VIEW_CONVERT_EXPR:
9772 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9773 break;
9774
9775 case SAVE_EXPR:
9776 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9777 access the upper bound values may be bogus. If they refer to a
9778 register, they may only describe how to get at these values at the
9779 points in the generated code right after they have just been
9780 computed. Worse yet, in the typical case, the upper bound values
9781 will not even *be* computed in the optimized code (though the
9782 number of elements will), so these SAVE_EXPRs are entirely
9783 bogus. In order to compensate for this fact, we check here to see
9784 if optimization is enabled, and if so, we don't add an attribute
9785 for the (unknown and unknowable) upper bound. This should not
9786 cause too much trouble for existing (stupid?) debuggers because
9787 they have to deal with empty upper bounds location descriptions
9788 anyway in order to be able to deal with incomplete array types.
9789 Of course an intelligent debugger (GDB?) should be able to
9790 comprehend that a missing upper bound specification in an array
9791 type used for a storage class `auto' local array variable
9792 indicates that the upper bound is both unknown (at compile- time)
9793 and unknowable (at run-time) due to optimization.
9794
9795 We assume that a MEM rtx is safe because gcc wouldn't put the
9796 value there unless it was going to be used repeatedly in the
9797 function, i.e. for cleanups. */
9798 if (SAVE_EXPR_RTL (bound)
9799 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
9800 {
9801 dw_die_ref ctx = lookup_decl_die (current_function_decl);
9802 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
9803 rtx loc = SAVE_EXPR_RTL (bound);
9804
9805 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9806 it references an outer function's frame. */
9807 if (GET_CODE (loc) == MEM)
9808 {
9809 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9810
9811 if (XEXP (loc, 0) != new_addr)
9812 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
9813 }
9814
9815 add_AT_flag (decl_die, DW_AT_artificial, 1);
9816 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9817 add_AT_location_description (decl_die, DW_AT_location,
9818 loc_descriptor (loc));
9819 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9820 }
9821
9822 /* Else leave out the attribute. */
9823 break;
9824
9825 case VAR_DECL:
9826 case PARM_DECL:
9827 {
9828 dw_die_ref decl_die = lookup_decl_die (bound);
9829
9830 /* ??? Can this happen, or should the variable have been bound
9831 first? Probably it can, since I imagine that we try to create
9832 the types of parameters in the order in which they exist in
9833 the list, and won't have created a forward reference to a
9834 later parameter. */
9835 if (decl_die != NULL)
9836 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9837 break;
9838 }
9839
9840 default:
9841 {
9842 /* Otherwise try to create a stack operation procedure to
9843 evaluate the value of the array bound. */
9844
9845 dw_die_ref ctx, decl_die;
9846 dw_loc_descr_ref loc;
9847
9848 loc = loc_descriptor_from_tree (bound, 0);
9849 if (loc == NULL)
9850 break;
9851
9852 if (current_function_decl == 0)
9853 ctx = comp_unit_die;
9854 else
9855 ctx = lookup_decl_die (current_function_decl);
9856
9857 /* If we weren't able to find a context, it's most likely the case
9858 that we are processing the return type of the function. So
9859 make a SAVE_EXPR to point to it and have the limbo DIE code
9860 find the proper die. The save_expr function doesn't always
9861 make a SAVE_EXPR, so do it ourselves. */
9862 if (ctx == 0)
9863 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9864 current_function_decl, NULL_TREE);
9865
9866 decl_die = new_die (DW_TAG_variable, ctx, bound);
9867 add_AT_flag (decl_die, DW_AT_artificial, 1);
9868 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9869 add_AT_loc (decl_die, DW_AT_location, loc);
9870
9871 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9872 break;
9873 }
9874 }
9875 }
9876
9877 /* Note that the block of subscript information for an array type also
9878 includes information about the element type of type given array type. */
9879
9880 static void
9881 add_subscript_info (type_die, type)
9882 dw_die_ref type_die;
9883 tree type;
9884 {
9885 #ifndef MIPS_DEBUGGING_INFO
9886 unsigned dimension_number;
9887 #endif
9888 tree lower, upper;
9889 dw_die_ref subrange_die;
9890
9891 /* The GNU compilers represent multidimensional array types as sequences of
9892 one dimensional array types whose element types are themselves array
9893 types. Here we squish that down, so that each multidimensional array
9894 type gets only one array_type DIE in the Dwarf debugging info. The draft
9895 Dwarf specification say that we are allowed to do this kind of
9896 compression in C (because there is no difference between an array or
9897 arrays and a multidimensional array in C) but for other source languages
9898 (e.g. Ada) we probably shouldn't do this. */
9899
9900 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9901 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9902 We work around this by disabling this feature. See also
9903 gen_array_type_die. */
9904 #ifndef MIPS_DEBUGGING_INFO
9905 for (dimension_number = 0;
9906 TREE_CODE (type) == ARRAY_TYPE;
9907 type = TREE_TYPE (type), dimension_number++)
9908 #endif
9909 {
9910 tree domain = TYPE_DOMAIN (type);
9911
9912 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
9913 and (in GNU C only) variable bounds. Handle all three forms
9914 here. */
9915 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
9916 if (domain)
9917 {
9918 /* We have an array type with specified bounds. */
9919 lower = TYPE_MIN_VALUE (domain);
9920 upper = TYPE_MAX_VALUE (domain);
9921
9922 /* define the index type. */
9923 if (TREE_TYPE (domain))
9924 {
9925 /* ??? This is probably an Ada unnamed subrange type. Ignore the
9926 TREE_TYPE field. We can't emit debug info for this
9927 because it is an unnamed integral type. */
9928 if (TREE_CODE (domain) == INTEGER_TYPE
9929 && TYPE_NAME (domain) == NULL_TREE
9930 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
9931 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
9932 ;
9933 else
9934 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
9935 type_die);
9936 }
9937
9938 /* ??? If upper is NULL, the array has unspecified length,
9939 but it does have a lower bound. This happens with Fortran
9940 dimension arr(N:*)
9941 Since the debugger is definitely going to need to know N
9942 to produce useful results, go ahead and output the lower
9943 bound solo, and hope the debugger can cope. */
9944
9945 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
9946 if (upper)
9947 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
9948 }
9949
9950 /* Otherwise we have an array type with an unspecified length. The
9951 DWARF-2 spec does not say how to handle this; let's just leave out the
9952 bounds. */
9953 }
9954 }
9955
9956 static void
9957 add_byte_size_attribute (die, tree_node)
9958 dw_die_ref die;
9959 tree tree_node;
9960 {
9961 unsigned size;
9962
9963 switch (TREE_CODE (tree_node))
9964 {
9965 case ERROR_MARK:
9966 size = 0;
9967 break;
9968 case ENUMERAL_TYPE:
9969 case RECORD_TYPE:
9970 case UNION_TYPE:
9971 case QUAL_UNION_TYPE:
9972 size = int_size_in_bytes (tree_node);
9973 break;
9974 case FIELD_DECL:
9975 /* For a data member of a struct or union, the DW_AT_byte_size is
9976 generally given as the number of bytes normally allocated for an
9977 object of the *declared* type of the member itself. This is true
9978 even for bit-fields. */
9979 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
9980 break;
9981 default:
9982 abort ();
9983 }
9984
9985 /* Note that `size' might be -1 when we get to this point. If it is, that
9986 indicates that the byte size of the entity in question is variable. We
9987 have no good way of expressing this fact in Dwarf at the present time,
9988 so just let the -1 pass on through. */
9989 add_AT_unsigned (die, DW_AT_byte_size, size);
9990 }
9991
9992 /* For a FIELD_DECL node which represents a bit-field, output an attribute
9993 which specifies the distance in bits from the highest order bit of the
9994 "containing object" for the bit-field to the highest order bit of the
9995 bit-field itself.
9996
9997 For any given bit-field, the "containing object" is a hypothetical object
9998 (of some integral or enum type) within which the given bit-field lives. The
9999 type of this hypothetical "containing object" is always the same as the
10000 declared type of the individual bit-field itself. The determination of the
10001 exact location of the "containing object" for a bit-field is rather
10002 complicated. It's handled by the `field_byte_offset' function (above).
10003
10004 Note that it is the size (in bytes) of the hypothetical "containing object"
10005 which will be given in the DW_AT_byte_size attribute for this bit-field.
10006 (See `byte_size_attribute' above). */
10007
10008 static inline void
10009 add_bit_offset_attribute (die, decl)
10010 dw_die_ref die;
10011 tree decl;
10012 {
10013 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10014 tree type = DECL_BIT_FIELD_TYPE (decl);
10015 HOST_WIDE_INT bitpos_int;
10016 HOST_WIDE_INT highest_order_object_bit_offset;
10017 HOST_WIDE_INT highest_order_field_bit_offset;
10018 HOST_WIDE_INT unsigned bit_offset;
10019
10020 /* Must be a field and a bit field. */
10021 if (!type
10022 || TREE_CODE (decl) != FIELD_DECL)
10023 abort ();
10024
10025 /* We can't yet handle bit-fields whose offsets are variable, so if we
10026 encounter such things, just return without generating any attribute
10027 whatsoever. Likewise for variable or too large size. */
10028 if (! host_integerp (bit_position (decl), 0)
10029 || ! host_integerp (DECL_SIZE (decl), 1))
10030 return;
10031
10032 bitpos_int = int_bit_position (decl);
10033
10034 /* Note that the bit offset is always the distance (in bits) from the
10035 highest-order bit of the "containing object" to the highest-order bit of
10036 the bit-field itself. Since the "high-order end" of any object or field
10037 is different on big-endian and little-endian machines, the computation
10038 below must take account of these differences. */
10039 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10040 highest_order_field_bit_offset = bitpos_int;
10041
10042 if (! BYTES_BIG_ENDIAN)
10043 {
10044 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10045 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10046 }
10047
10048 bit_offset
10049 = (! BYTES_BIG_ENDIAN
10050 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10051 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10052
10053 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10054 }
10055
10056 /* For a FIELD_DECL node which represents a bit field, output an attribute
10057 which specifies the length in bits of the given field. */
10058
10059 static inline void
10060 add_bit_size_attribute (die, decl)
10061 dw_die_ref die;
10062 tree decl;
10063 {
10064 /* Must be a field and a bit field. */
10065 if (TREE_CODE (decl) != FIELD_DECL
10066 || ! DECL_BIT_FIELD_TYPE (decl))
10067 abort ();
10068
10069 if (host_integerp (DECL_SIZE (decl), 1))
10070 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10071 }
10072
10073 /* If the compiled language is ANSI C, then add a 'prototyped'
10074 attribute, if arg types are given for the parameters of a function. */
10075
10076 static inline void
10077 add_prototyped_attribute (die, func_type)
10078 dw_die_ref die;
10079 tree func_type;
10080 {
10081 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10082 && TYPE_ARG_TYPES (func_type) != NULL)
10083 add_AT_flag (die, DW_AT_prototyped, 1);
10084 }
10085
10086 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10087 by looking in either the type declaration or object declaration
10088 equate table. */
10089
10090 static inline void
10091 add_abstract_origin_attribute (die, origin)
10092 dw_die_ref die;
10093 tree origin;
10094 {
10095 dw_die_ref origin_die = NULL;
10096
10097 if (TREE_CODE (origin) != FUNCTION_DECL)
10098 {
10099 /* We may have gotten separated from the block for the inlined
10100 function, if we're in an exception handler or some such; make
10101 sure that the abstract function has been written out.
10102
10103 Doing this for nested functions is wrong, however; functions are
10104 distinct units, and our context might not even be inline. */
10105 tree fn = origin;
10106
10107 if (TYPE_P (fn))
10108 fn = TYPE_STUB_DECL (fn);
10109
10110 fn = decl_function_context (fn);
10111 if (fn)
10112 dwarf2out_abstract_function (fn);
10113 }
10114
10115 if (DECL_P (origin))
10116 origin_die = lookup_decl_die (origin);
10117 else if (TYPE_P (origin))
10118 origin_die = lookup_type_die (origin);
10119
10120 if (origin_die == NULL)
10121 abort ();
10122
10123 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10124 }
10125
10126 /* We do not currently support the pure_virtual attribute. */
10127
10128 static inline void
10129 add_pure_or_virtual_attribute (die, func_decl)
10130 dw_die_ref die;
10131 tree func_decl;
10132 {
10133 if (DECL_VINDEX (func_decl))
10134 {
10135 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10136
10137 if (host_integerp (DECL_VINDEX (func_decl), 0))
10138 add_AT_loc (die, DW_AT_vtable_elem_location,
10139 new_loc_descr (DW_OP_constu,
10140 tree_low_cst (DECL_VINDEX (func_decl), 0),
10141 0));
10142
10143 /* GNU extension: Record what type this method came from originally. */
10144 if (debug_info_level > DINFO_LEVEL_TERSE)
10145 add_AT_die_ref (die, DW_AT_containing_type,
10146 lookup_type_die (DECL_CONTEXT (func_decl)));
10147 }
10148 }
10149 \f
10150 /* Add source coordinate attributes for the given decl. */
10151
10152 static void
10153 add_src_coords_attributes (die, decl)
10154 dw_die_ref die;
10155 tree decl;
10156 {
10157 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10158
10159 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10160 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10161 }
10162
10163 /* Add an DW_AT_name attribute and source coordinate attribute for the
10164 given decl, but only if it actually has a name. */
10165
10166 static void
10167 add_name_and_src_coords_attributes (die, decl)
10168 dw_die_ref die;
10169 tree decl;
10170 {
10171 tree decl_name;
10172
10173 decl_name = DECL_NAME (decl);
10174 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10175 {
10176 add_name_attribute (die, dwarf2_name (decl, 0));
10177 if (! DECL_ARTIFICIAL (decl))
10178 add_src_coords_attributes (die, decl);
10179
10180 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10181 && TREE_PUBLIC (decl)
10182 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10183 && !DECL_ABSTRACT (decl))
10184 add_AT_string (die, DW_AT_MIPS_linkage_name,
10185 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10186 }
10187
10188 #ifdef VMS_DEBUGGING_INFO
10189 /* Get the function's name, as described by its RTL. This may be different
10190 from the DECL_NAME name used in the source file. */
10191 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10192 {
10193 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10194 XEXP (DECL_RTL (decl), 0));
10195 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10196 }
10197 #endif
10198 }
10199
10200 /* Push a new declaration scope. */
10201
10202 static void
10203 push_decl_scope (scope)
10204 tree scope;
10205 {
10206 VARRAY_PUSH_TREE (decl_scope_table, scope);
10207 }
10208
10209 /* Pop a declaration scope. */
10210
10211 static inline void
10212 pop_decl_scope ()
10213 {
10214 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
10215 abort ();
10216
10217 VARRAY_POP (decl_scope_table);
10218 }
10219
10220 /* Return the DIE for the scope that immediately contains this type.
10221 Non-named types get global scope. Named types nested in other
10222 types get their containing scope if it's open, or global scope
10223 otherwise. All other types (i.e. function-local named types) get
10224 the current active scope. */
10225
10226 static dw_die_ref
10227 scope_die_for (t, context_die)
10228 tree t;
10229 dw_die_ref context_die;
10230 {
10231 dw_die_ref scope_die = NULL;
10232 tree containing_scope;
10233 int i;
10234
10235 /* Non-types always go in the current scope. */
10236 if (! TYPE_P (t))
10237 abort ();
10238
10239 containing_scope = TYPE_CONTEXT (t);
10240
10241 /* Ignore namespaces for the moment. */
10242 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10243 containing_scope = NULL_TREE;
10244
10245 /* Ignore function type "scopes" from the C frontend. They mean that
10246 a tagged type is local to a parmlist of a function declarator, but
10247 that isn't useful to DWARF. */
10248 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10249 containing_scope = NULL_TREE;
10250
10251 if (containing_scope == NULL_TREE)
10252 scope_die = comp_unit_die;
10253 else if (TYPE_P (containing_scope))
10254 {
10255 /* For types, we can just look up the appropriate DIE. But
10256 first we check to see if we're in the middle of emitting it
10257 so we know where the new DIE should go. */
10258 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10259 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10260 break;
10261
10262 if (i < 0)
10263 {
10264 if (debug_info_level > DINFO_LEVEL_TERSE
10265 && !TREE_ASM_WRITTEN (containing_scope))
10266 abort ();
10267
10268 /* If none of the current dies are suitable, we get file scope. */
10269 scope_die = comp_unit_die;
10270 }
10271 else
10272 scope_die = lookup_type_die (containing_scope);
10273 }
10274 else
10275 scope_die = context_die;
10276
10277 return scope_die;
10278 }
10279
10280 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10281
10282 static inline int
10283 local_scope_p (context_die)
10284 dw_die_ref context_die;
10285 {
10286 for (; context_die; context_die = context_die->die_parent)
10287 if (context_die->die_tag == DW_TAG_inlined_subroutine
10288 || context_die->die_tag == DW_TAG_subprogram)
10289 return 1;
10290
10291 return 0;
10292 }
10293
10294 /* Returns nonzero if CONTEXT_DIE is a class. */
10295
10296 static inline int
10297 class_scope_p (context_die)
10298 dw_die_ref context_die;
10299 {
10300 return (context_die
10301 && (context_die->die_tag == DW_TAG_structure_type
10302 || context_die->die_tag == DW_TAG_union_type));
10303 }
10304
10305 /* Many forms of DIEs require a "type description" attribute. This
10306 routine locates the proper "type descriptor" die for the type given
10307 by 'type', and adds an DW_AT_type attribute below the given die. */
10308
10309 static void
10310 add_type_attribute (object_die, type, decl_const, decl_volatile, context_die)
10311 dw_die_ref object_die;
10312 tree type;
10313 int decl_const;
10314 int decl_volatile;
10315 dw_die_ref context_die;
10316 {
10317 enum tree_code code = TREE_CODE (type);
10318 dw_die_ref type_die = NULL;
10319
10320 /* ??? If this type is an unnamed subrange type of an integral or
10321 floating-point type, use the inner type. This is because we have no
10322 support for unnamed types in base_type_die. This can happen if this is
10323 an Ada subrange type. Correct solution is emit a subrange type die. */
10324 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10325 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10326 type = TREE_TYPE (type), code = TREE_CODE (type);
10327
10328 if (code == ERROR_MARK
10329 /* Handle a special case. For functions whose return type is void, we
10330 generate *no* type attribute. (Note that no object may have type
10331 `void', so this only applies to function return types). */
10332 || code == VOID_TYPE)
10333 return;
10334
10335 type_die = modified_type_die (type,
10336 decl_const || TYPE_READONLY (type),
10337 decl_volatile || TYPE_VOLATILE (type),
10338 context_die);
10339
10340 if (type_die != NULL)
10341 add_AT_die_ref (object_die, DW_AT_type, type_die);
10342 }
10343
10344 /* Given a tree pointer to a struct, class, union, or enum type node, return
10345 a pointer to the (string) tag name for the given type, or zero if the type
10346 was declared without a tag. */
10347
10348 static const char *
10349 type_tag (type)
10350 tree type;
10351 {
10352 const char *name = 0;
10353
10354 if (TYPE_NAME (type) != 0)
10355 {
10356 tree t = 0;
10357
10358 /* Find the IDENTIFIER_NODE for the type name. */
10359 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10360 t = TYPE_NAME (type);
10361
10362 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10363 a TYPE_DECL node, regardless of whether or not a `typedef' was
10364 involved. */
10365 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10366 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10367 t = DECL_NAME (TYPE_NAME (type));
10368
10369 /* Now get the name as a string, or invent one. */
10370 if (t != 0)
10371 name = IDENTIFIER_POINTER (t);
10372 }
10373
10374 return (name == 0 || *name == '\0') ? 0 : name;
10375 }
10376
10377 /* Return the type associated with a data member, make a special check
10378 for bit field types. */
10379
10380 static inline tree
10381 member_declared_type (member)
10382 tree member;
10383 {
10384 return (DECL_BIT_FIELD_TYPE (member)
10385 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10386 }
10387
10388 /* Get the decl's label, as described by its RTL. This may be different
10389 from the DECL_NAME name used in the source file. */
10390
10391 #if 0
10392 static const char *
10393 decl_start_label (decl)
10394 tree decl;
10395 {
10396 rtx x;
10397 const char *fnname;
10398
10399 x = DECL_RTL (decl);
10400 if (GET_CODE (x) != MEM)
10401 abort ();
10402
10403 x = XEXP (x, 0);
10404 if (GET_CODE (x) != SYMBOL_REF)
10405 abort ();
10406
10407 fnname = XSTR (x, 0);
10408 return fnname;
10409 }
10410 #endif
10411 \f
10412 /* These routines generate the internal representation of the DIE's for
10413 the compilation unit. Debugging information is collected by walking
10414 the declaration trees passed in from dwarf2out_decl(). */
10415
10416 static void
10417 gen_array_type_die (type, context_die)
10418 tree type;
10419 dw_die_ref context_die;
10420 {
10421 dw_die_ref scope_die = scope_die_for (type, context_die);
10422 dw_die_ref array_die;
10423 tree element_type;
10424
10425 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10426 the inner array type comes before the outer array type. Thus we must
10427 call gen_type_die before we call new_die. See below also. */
10428 #ifdef MIPS_DEBUGGING_INFO
10429 gen_type_die (TREE_TYPE (type), context_die);
10430 #endif
10431
10432 array_die = new_die (DW_TAG_array_type, scope_die, type);
10433 add_name_attribute (array_die, type_tag (type));
10434 equate_type_number_to_die (type, array_die);
10435
10436 if (TREE_CODE (type) == VECTOR_TYPE)
10437 {
10438 /* The frontend feeds us a representation for the vector as a struct
10439 containing an array. Pull out the array type. */
10440 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10441 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10442 }
10443
10444 #if 0
10445 /* We default the array ordering. SDB will probably do
10446 the right things even if DW_AT_ordering is not present. It's not even
10447 an issue until we start to get into multidimensional arrays anyway. If
10448 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10449 then we'll have to put the DW_AT_ordering attribute back in. (But if
10450 and when we find out that we need to put these in, we will only do so
10451 for multidimensional arrays. */
10452 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10453 #endif
10454
10455 #ifdef MIPS_DEBUGGING_INFO
10456 /* The SGI compilers handle arrays of unknown bound by setting
10457 AT_declaration and not emitting any subrange DIEs. */
10458 if (! TYPE_DOMAIN (type))
10459 add_AT_unsigned (array_die, DW_AT_declaration, 1);
10460 else
10461 #endif
10462 add_subscript_info (array_die, type);
10463
10464 /* Add representation of the type of the elements of this array type. */
10465 element_type = TREE_TYPE (type);
10466
10467 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10468 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10469 We work around this by disabling this feature. See also
10470 add_subscript_info. */
10471 #ifndef MIPS_DEBUGGING_INFO
10472 while (TREE_CODE (element_type) == ARRAY_TYPE)
10473 element_type = TREE_TYPE (element_type);
10474
10475 gen_type_die (element_type, context_die);
10476 #endif
10477
10478 add_type_attribute (array_die, element_type, 0, 0, context_die);
10479 }
10480
10481 static void
10482 gen_set_type_die (type, context_die)
10483 tree type;
10484 dw_die_ref context_die;
10485 {
10486 dw_die_ref type_die
10487 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10488
10489 equate_type_number_to_die (type, type_die);
10490 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10491 }
10492
10493 #if 0
10494 static void
10495 gen_entry_point_die (decl, context_die)
10496 tree decl;
10497 dw_die_ref context_die;
10498 {
10499 tree origin = decl_ultimate_origin (decl);
10500 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10501
10502 if (origin != NULL)
10503 add_abstract_origin_attribute (decl_die, origin);
10504 else
10505 {
10506 add_name_and_src_coords_attributes (decl_die, decl);
10507 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10508 0, 0, context_die);
10509 }
10510
10511 if (DECL_ABSTRACT (decl))
10512 equate_decl_number_to_die (decl, decl_die);
10513 else
10514 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10515 }
10516 #endif
10517
10518 /* Walk through the list of incomplete types again, trying once more to
10519 emit full debugging info for them. */
10520
10521 static void
10522 retry_incomplete_types ()
10523 {
10524 int i;
10525
10526 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10527 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10528 }
10529
10530 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10531
10532 static void
10533 gen_inlined_enumeration_type_die (type, context_die)
10534 tree type;
10535 dw_die_ref context_die;
10536 {
10537 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10538
10539 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10540 be incomplete and such types are not marked. */
10541 add_abstract_origin_attribute (type_die, type);
10542 }
10543
10544 /* Generate a DIE to represent an inlined instance of a structure type. */
10545
10546 static void
10547 gen_inlined_structure_type_die (type, context_die)
10548 tree type;
10549 dw_die_ref context_die;
10550 {
10551 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10552
10553 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10554 be incomplete and such types are not marked. */
10555 add_abstract_origin_attribute (type_die, type);
10556 }
10557
10558 /* Generate a DIE to represent an inlined instance of a union type. */
10559
10560 static void
10561 gen_inlined_union_type_die (type, context_die)
10562 tree type;
10563 dw_die_ref context_die;
10564 {
10565 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10566
10567 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10568 be incomplete and such types are not marked. */
10569 add_abstract_origin_attribute (type_die, type);
10570 }
10571
10572 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10573 include all of the information about the enumeration values also. Each
10574 enumerated type name/value is listed as a child of the enumerated type
10575 DIE. */
10576
10577 static void
10578 gen_enumeration_type_die (type, context_die)
10579 tree type;
10580 dw_die_ref context_die;
10581 {
10582 dw_die_ref type_die = lookup_type_die (type);
10583
10584 if (type_die == NULL)
10585 {
10586 type_die = new_die (DW_TAG_enumeration_type,
10587 scope_die_for (type, context_die), type);
10588 equate_type_number_to_die (type, type_die);
10589 add_name_attribute (type_die, type_tag (type));
10590 }
10591 else if (! TYPE_SIZE (type))
10592 return;
10593 else
10594 remove_AT (type_die, DW_AT_declaration);
10595
10596 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10597 given enum type is incomplete, do not generate the DW_AT_byte_size
10598 attribute or the DW_AT_element_list attribute. */
10599 if (TYPE_SIZE (type))
10600 {
10601 tree link;
10602
10603 TREE_ASM_WRITTEN (type) = 1;
10604 add_byte_size_attribute (type_die, type);
10605 if (TYPE_STUB_DECL (type) != NULL_TREE)
10606 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10607
10608 /* If the first reference to this type was as the return type of an
10609 inline function, then it may not have a parent. Fix this now. */
10610 if (type_die->die_parent == NULL)
10611 add_child_die (scope_die_for (type, context_die), type_die);
10612
10613 for (link = TYPE_FIELDS (type);
10614 link != NULL; link = TREE_CHAIN (link))
10615 {
10616 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10617
10618 add_name_attribute (enum_die,
10619 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10620
10621 if (host_integerp (TREE_VALUE (link), 0))
10622 {
10623 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
10624 add_AT_int (enum_die, DW_AT_const_value,
10625 tree_low_cst (TREE_VALUE (link), 0));
10626 else
10627 add_AT_unsigned (enum_die, DW_AT_const_value,
10628 tree_low_cst (TREE_VALUE (link), 0));
10629 }
10630 }
10631 }
10632 else
10633 add_AT_flag (type_die, DW_AT_declaration, 1);
10634 }
10635
10636 /* Generate a DIE to represent either a real live formal parameter decl or to
10637 represent just the type of some formal parameter position in some function
10638 type.
10639
10640 Note that this routine is a bit unusual because its argument may be a
10641 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10642 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10643 node. If it's the former then this function is being called to output a
10644 DIE to represent a formal parameter object (or some inlining thereof). If
10645 it's the latter, then this function is only being called to output a
10646 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10647 argument type of some subprogram type. */
10648
10649 static dw_die_ref
10650 gen_formal_parameter_die (node, context_die)
10651 tree node;
10652 dw_die_ref context_die;
10653 {
10654 dw_die_ref parm_die
10655 = new_die (DW_TAG_formal_parameter, context_die, node);
10656 tree origin;
10657
10658 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10659 {
10660 case 'd':
10661 origin = decl_ultimate_origin (node);
10662 if (origin != NULL)
10663 add_abstract_origin_attribute (parm_die, origin);
10664 else
10665 {
10666 add_name_and_src_coords_attributes (parm_die, node);
10667 add_type_attribute (parm_die, TREE_TYPE (node),
10668 TREE_READONLY (node),
10669 TREE_THIS_VOLATILE (node),
10670 context_die);
10671 if (DECL_ARTIFICIAL (node))
10672 add_AT_flag (parm_die, DW_AT_artificial, 1);
10673 }
10674
10675 equate_decl_number_to_die (node, parm_die);
10676 if (! DECL_ABSTRACT (node))
10677 add_location_or_const_value_attribute (parm_die, node);
10678
10679 break;
10680
10681 case 't':
10682 /* We were called with some kind of a ..._TYPE node. */
10683 add_type_attribute (parm_die, node, 0, 0, context_die);
10684 break;
10685
10686 default:
10687 abort ();
10688 }
10689
10690 return parm_die;
10691 }
10692
10693 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10694 at the end of an (ANSI prototyped) formal parameters list. */
10695
10696 static void
10697 gen_unspecified_parameters_die (decl_or_type, context_die)
10698 tree decl_or_type;
10699 dw_die_ref context_die;
10700 {
10701 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10702 }
10703
10704 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10705 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10706 parameters as specified in some function type specification (except for
10707 those which appear as part of a function *definition*). */
10708
10709 static void
10710 gen_formal_types_die (function_or_method_type, context_die)
10711 tree function_or_method_type;
10712 dw_die_ref context_die;
10713 {
10714 tree link;
10715 tree formal_type = NULL;
10716 tree first_parm_type;
10717 tree arg;
10718
10719 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10720 {
10721 arg = DECL_ARGUMENTS (function_or_method_type);
10722 function_or_method_type = TREE_TYPE (function_or_method_type);
10723 }
10724 else
10725 arg = NULL_TREE;
10726
10727 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10728
10729 /* Make our first pass over the list of formal parameter types and output a
10730 DW_TAG_formal_parameter DIE for each one. */
10731 for (link = first_parm_type; link; )
10732 {
10733 dw_die_ref parm_die;
10734
10735 formal_type = TREE_VALUE (link);
10736 if (formal_type == void_type_node)
10737 break;
10738
10739 /* Output a (nameless) DIE to represent the formal parameter itself. */
10740 parm_die = gen_formal_parameter_die (formal_type, context_die);
10741 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10742 && link == first_parm_type)
10743 || (arg && DECL_ARTIFICIAL (arg)))
10744 add_AT_flag (parm_die, DW_AT_artificial, 1);
10745
10746 link = TREE_CHAIN (link);
10747 if (arg)
10748 arg = TREE_CHAIN (arg);
10749 }
10750
10751 /* If this function type has an ellipsis, add a
10752 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10753 if (formal_type != void_type_node)
10754 gen_unspecified_parameters_die (function_or_method_type, context_die);
10755
10756 /* Make our second (and final) pass over the list of formal parameter types
10757 and output DIEs to represent those types (as necessary). */
10758 for (link = TYPE_ARG_TYPES (function_or_method_type);
10759 link && TREE_VALUE (link);
10760 link = TREE_CHAIN (link))
10761 gen_type_die (TREE_VALUE (link), context_die);
10762 }
10763
10764 /* We want to generate the DIE for TYPE so that we can generate the
10765 die for MEMBER, which has been defined; we will need to refer back
10766 to the member declaration nested within TYPE. If we're trying to
10767 generate minimal debug info for TYPE, processing TYPE won't do the
10768 trick; we need to attach the member declaration by hand. */
10769
10770 static void
10771 gen_type_die_for_member (type, member, context_die)
10772 tree type, member;
10773 dw_die_ref context_die;
10774 {
10775 gen_type_die (type, context_die);
10776
10777 /* If we're trying to avoid duplicate debug info, we may not have
10778 emitted the member decl for this function. Emit it now. */
10779 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10780 && ! lookup_decl_die (member))
10781 {
10782 if (decl_ultimate_origin (member))
10783 abort ();
10784
10785 push_decl_scope (type);
10786 if (TREE_CODE (member) == FUNCTION_DECL)
10787 gen_subprogram_die (member, lookup_type_die (type));
10788 else
10789 gen_variable_die (member, lookup_type_die (type));
10790
10791 pop_decl_scope ();
10792 }
10793 }
10794
10795 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10796 may later generate inlined and/or out-of-line instances of. */
10797
10798 static void
10799 dwarf2out_abstract_function (decl)
10800 tree decl;
10801 {
10802 dw_die_ref old_die;
10803 tree save_fn;
10804 tree context;
10805 int was_abstract = DECL_ABSTRACT (decl);
10806
10807 /* Make sure we have the actual abstract inline, not a clone. */
10808 decl = DECL_ORIGIN (decl);
10809
10810 old_die = lookup_decl_die (decl);
10811 if (old_die && get_AT_unsigned (old_die, DW_AT_inline))
10812 /* We've already generated the abstract instance. */
10813 return;
10814
10815 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10816 we don't get confused by DECL_ABSTRACT. */
10817 if (debug_info_level > DINFO_LEVEL_TERSE)
10818 {
10819 context = decl_class_context (decl);
10820 if (context)
10821 gen_type_die_for_member
10822 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10823 }
10824
10825 /* Pretend we've just finished compiling this function. */
10826 save_fn = current_function_decl;
10827 current_function_decl = decl;
10828
10829 set_decl_abstract_flags (decl, 1);
10830 dwarf2out_decl (decl);
10831 if (! was_abstract)
10832 set_decl_abstract_flags (decl, 0);
10833
10834 current_function_decl = save_fn;
10835 }
10836
10837 /* Generate a DIE to represent a declared function (either file-scope or
10838 block-local). */
10839
10840 static void
10841 gen_subprogram_die (decl, context_die)
10842 tree decl;
10843 dw_die_ref context_die;
10844 {
10845 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10846 tree origin = decl_ultimate_origin (decl);
10847 dw_die_ref subr_die;
10848 rtx fp_reg;
10849 tree fn_arg_types;
10850 tree outer_scope;
10851 dw_die_ref old_die = lookup_decl_die (decl);
10852 int declaration = (current_function_decl != decl
10853 || class_scope_p (context_die));
10854
10855 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10856 started to generate the abstract instance of an inline, decided to output
10857 its containing class, and proceeded to emit the declaration of the inline
10858 from the member list for the class. If so, DECLARATION takes priority;
10859 we'll get back to the abstract instance when done with the class. */
10860
10861 /* The class-scope declaration DIE must be the primary DIE. */
10862 if (origin && declaration && class_scope_p (context_die))
10863 {
10864 origin = NULL;
10865 if (old_die)
10866 abort ();
10867 }
10868
10869 if (origin != NULL)
10870 {
10871 if (declaration && ! local_scope_p (context_die))
10872 abort ();
10873
10874 /* Fixup die_parent for the abstract instance of a nested
10875 inline function. */
10876 if (old_die && old_die->die_parent == NULL)
10877 add_child_die (context_die, old_die);
10878
10879 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10880 add_abstract_origin_attribute (subr_die, origin);
10881 }
10882 else if (old_die)
10883 {
10884 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10885
10886 if (!get_AT_flag (old_die, DW_AT_declaration)
10887 /* We can have a normal definition following an inline one in the
10888 case of redefinition of GNU C extern inlines.
10889 It seems reasonable to use AT_specification in this case. */
10890 && !get_AT_unsigned (old_die, DW_AT_inline))
10891 {
10892 /* ??? This can happen if there is a bug in the program, for
10893 instance, if it has duplicate function definitions. Ideally,
10894 we should detect this case and ignore it. For now, if we have
10895 already reported an error, any error at all, then assume that
10896 we got here because of an input error, not a dwarf2 bug. */
10897 if (errorcount)
10898 return;
10899 abort ();
10900 }
10901
10902 /* If the definition comes from the same place as the declaration,
10903 maybe use the old DIE. We always want the DIE for this function
10904 that has the *_pc attributes to be under comp_unit_die so the
10905 debugger can find it. We also need to do this for abstract
10906 instances of inlines, since the spec requires the out-of-line copy
10907 to have the same parent. For local class methods, this doesn't
10908 apply; we just use the old DIE. */
10909 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
10910 && (DECL_ARTIFICIAL (decl)
10911 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10912 && (get_AT_unsigned (old_die, DW_AT_decl_line)
10913 == (unsigned) DECL_SOURCE_LINE (decl)))))
10914 {
10915 subr_die = old_die;
10916
10917 /* Clear out the declaration attribute and the parm types. */
10918 remove_AT (subr_die, DW_AT_declaration);
10919 remove_children (subr_die);
10920 }
10921 else
10922 {
10923 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10924 add_AT_die_ref (subr_die, DW_AT_specification, old_die);
10925 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10926 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
10927 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10928 != (unsigned) DECL_SOURCE_LINE (decl))
10929 add_AT_unsigned
10930 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10931 }
10932 }
10933 else
10934 {
10935 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10936
10937 if (TREE_PUBLIC (decl))
10938 add_AT_flag (subr_die, DW_AT_external, 1);
10939
10940 add_name_and_src_coords_attributes (subr_die, decl);
10941 if (debug_info_level > DINFO_LEVEL_TERSE)
10942 {
10943 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
10944 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
10945 0, 0, context_die);
10946 }
10947
10948 add_pure_or_virtual_attribute (subr_die, decl);
10949 if (DECL_ARTIFICIAL (decl))
10950 add_AT_flag (subr_die, DW_AT_artificial, 1);
10951
10952 if (TREE_PROTECTED (decl))
10953 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
10954 else if (TREE_PRIVATE (decl))
10955 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
10956 }
10957
10958 if (declaration)
10959 {
10960 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
10961 {
10962 add_AT_flag (subr_die, DW_AT_declaration, 1);
10963
10964 /* The first time we see a member function, it is in the context of
10965 the class to which it belongs. We make sure of this by emitting
10966 the class first. The next time is the definition, which is
10967 handled above. The two may come from the same source text. */
10968 if (DECL_CONTEXT (decl) || DECL_ABSTRACT (decl))
10969 equate_decl_number_to_die (decl, subr_die);
10970 }
10971 }
10972 else if (DECL_ABSTRACT (decl))
10973 {
10974 if (DECL_INLINE (decl) && !flag_no_inline)
10975 {
10976 /* ??? Checking DECL_DEFER_OUTPUT is correct for static
10977 inline functions, but not for extern inline functions.
10978 We can't get this completely correct because information
10979 about whether the function was declared inline is not
10980 saved anywhere. */
10981 if (DECL_DEFER_OUTPUT (decl))
10982 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
10983 else
10984 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
10985 }
10986 else
10987 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
10988
10989 equate_decl_number_to_die (decl, subr_die);
10990 }
10991 else if (!DECL_EXTERNAL (decl))
10992 {
10993 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
10994 equate_decl_number_to_die (decl, subr_die);
10995
10996 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
10997 current_function_funcdef_no);
10998 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
10999 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11000 current_function_funcdef_no);
11001 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11002
11003 add_pubname (decl, subr_die);
11004 add_arange (decl, subr_die);
11005
11006 #ifdef MIPS_DEBUGGING_INFO
11007 /* Add a reference to the FDE for this routine. */
11008 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11009 #endif
11010
11011 /* Define the "frame base" location for this routine. We use the
11012 frame pointer or stack pointer registers, since the RTL for local
11013 variables is relative to one of them. */
11014 fp_reg
11015 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11016 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11017
11018 #if 0
11019 /* ??? This fails for nested inline functions, because context_display
11020 is not part of the state saved/restored for inline functions. */
11021 if (current_function_needs_context)
11022 add_AT_location_description (subr_die, DW_AT_static_link,
11023 loc_descriptor (lookup_static_chain (decl)));
11024 #endif
11025 }
11026
11027 /* Now output descriptions of the arguments for this function. This gets
11028 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11029 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11030 `...' at the end of the formal parameter list. In order to find out if
11031 there was a trailing ellipsis or not, we must instead look at the type
11032 associated with the FUNCTION_DECL. This will be a node of type
11033 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11034 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11035 an ellipsis at the end. */
11036
11037 /* In the case where we are describing a mere function declaration, all we
11038 need to do here (and all we *can* do here) is to describe the *types* of
11039 its formal parameters. */
11040 if (debug_info_level <= DINFO_LEVEL_TERSE)
11041 ;
11042 else if (declaration)
11043 gen_formal_types_die (decl, subr_die);
11044 else
11045 {
11046 /* Generate DIEs to represent all known formal parameters */
11047 tree arg_decls = DECL_ARGUMENTS (decl);
11048 tree parm;
11049
11050 /* When generating DIEs, generate the unspecified_parameters DIE
11051 instead if we come across the arg "__builtin_va_alist" */
11052 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11053 if (TREE_CODE (parm) == PARM_DECL)
11054 {
11055 if (DECL_NAME (parm)
11056 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11057 "__builtin_va_alist"))
11058 gen_unspecified_parameters_die (parm, subr_die);
11059 else
11060 gen_decl_die (parm, subr_die);
11061 }
11062
11063 /* Decide whether we need an unspecified_parameters DIE at the end.
11064 There are 2 more cases to do this for: 1) the ansi ... declaration -
11065 this is detectable when the end of the arg list is not a
11066 void_type_node 2) an unprototyped function declaration (not a
11067 definition). This just means that we have no info about the
11068 parameters at all. */
11069 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11070 if (fn_arg_types != NULL)
11071 {
11072 /* this is the prototyped case, check for ... */
11073 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11074 gen_unspecified_parameters_die (decl, subr_die);
11075 }
11076 else if (DECL_INITIAL (decl) == NULL_TREE)
11077 gen_unspecified_parameters_die (decl, subr_die);
11078 }
11079
11080 /* Output Dwarf info for all of the stuff within the body of the function
11081 (if it has one - it may be just a declaration). */
11082 outer_scope = DECL_INITIAL (decl);
11083
11084 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11085 a function. This BLOCK actually represents the outermost binding contour
11086 for the function, i.e. the contour in which the function's formal
11087 parameters and labels get declared. Curiously, it appears that the front
11088 end doesn't actually put the PARM_DECL nodes for the current function onto
11089 the BLOCK_VARS list for this outer scope, but are strung off of the
11090 DECL_ARGUMENTS list for the function instead.
11091
11092 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11093 the LABEL_DECL nodes for the function however, and we output DWARF info
11094 for those in decls_for_scope. Just within the `outer_scope' there will be
11095 a BLOCK node representing the function's outermost pair of curly braces,
11096 and any blocks used for the base and member initializers of a C++
11097 constructor function. */
11098 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11099 {
11100 current_function_has_inlines = 0;
11101 decls_for_scope (outer_scope, subr_die, 0);
11102
11103 #if 0 && defined (MIPS_DEBUGGING_INFO)
11104 if (current_function_has_inlines)
11105 {
11106 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11107 if (! comp_unit_has_inlines)
11108 {
11109 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11110 comp_unit_has_inlines = 1;
11111 }
11112 }
11113 #endif
11114 }
11115 }
11116
11117 /* Generate a DIE to represent a declared data object. */
11118
11119 static void
11120 gen_variable_die (decl, context_die)
11121 tree decl;
11122 dw_die_ref context_die;
11123 {
11124 tree origin = decl_ultimate_origin (decl);
11125 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11126
11127 dw_die_ref old_die = lookup_decl_die (decl);
11128 int declaration = (DECL_EXTERNAL (decl)
11129 || class_scope_p (context_die));
11130
11131 if (origin != NULL)
11132 add_abstract_origin_attribute (var_die, origin);
11133
11134 /* Loop unrolling can create multiple blocks that refer to the same
11135 static variable, so we must test for the DW_AT_declaration flag.
11136
11137 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11138 copy decls and set the DECL_ABSTRACT flag on them instead of
11139 sharing them.
11140
11141 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11142 else if (old_die && TREE_STATIC (decl)
11143 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11144 {
11145 /* This is a definition of a C++ class level static. */
11146 add_AT_die_ref (var_die, DW_AT_specification, old_die);
11147 if (DECL_NAME (decl))
11148 {
11149 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
11150
11151 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11152 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11153
11154 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11155 != (unsigned) DECL_SOURCE_LINE (decl))
11156
11157 add_AT_unsigned (var_die, DW_AT_decl_line,
11158 DECL_SOURCE_LINE (decl));
11159 }
11160 }
11161 else
11162 {
11163 add_name_and_src_coords_attributes (var_die, decl);
11164 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11165 TREE_THIS_VOLATILE (decl), context_die);
11166
11167 if (TREE_PUBLIC (decl))
11168 add_AT_flag (var_die, DW_AT_external, 1);
11169
11170 if (DECL_ARTIFICIAL (decl))
11171 add_AT_flag (var_die, DW_AT_artificial, 1);
11172
11173 if (TREE_PROTECTED (decl))
11174 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11175 else if (TREE_PRIVATE (decl))
11176 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11177 }
11178
11179 if (declaration)
11180 add_AT_flag (var_die, DW_AT_declaration, 1);
11181
11182 if (class_scope_p (context_die) || DECL_ABSTRACT (decl))
11183 equate_decl_number_to_die (decl, var_die);
11184
11185 if (! declaration && ! DECL_ABSTRACT (decl))
11186 {
11187 add_location_or_const_value_attribute (var_die, decl);
11188 add_pubname (decl, var_die);
11189 }
11190 else
11191 tree_add_const_value_attribute (var_die, decl);
11192 }
11193
11194 /* Generate a DIE to represent a label identifier. */
11195
11196 static void
11197 gen_label_die (decl, context_die)
11198 tree decl;
11199 dw_die_ref context_die;
11200 {
11201 tree origin = decl_ultimate_origin (decl);
11202 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11203 rtx insn;
11204 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11205
11206 if (origin != NULL)
11207 add_abstract_origin_attribute (lbl_die, origin);
11208 else
11209 add_name_and_src_coords_attributes (lbl_die, decl);
11210
11211 if (DECL_ABSTRACT (decl))
11212 equate_decl_number_to_die (decl, lbl_die);
11213 else
11214 {
11215 insn = DECL_RTL (decl);
11216
11217 /* Deleted labels are programmer specified labels which have been
11218 eliminated because of various optimisations. We still emit them
11219 here so that it is possible to put breakpoints on them. */
11220 if (GET_CODE (insn) == CODE_LABEL
11221 || ((GET_CODE (insn) == NOTE
11222 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
11223 {
11224 /* When optimization is enabled (via -O) some parts of the compiler
11225 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11226 represent source-level labels which were explicitly declared by
11227 the user. This really shouldn't be happening though, so catch
11228 it if it ever does happen. */
11229 if (INSN_DELETED_P (insn))
11230 abort ();
11231
11232 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11233 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11234 }
11235 }
11236 }
11237
11238 /* Generate a DIE for a lexical block. */
11239
11240 static void
11241 gen_lexical_block_die (stmt, context_die, depth)
11242 tree stmt;
11243 dw_die_ref context_die;
11244 int depth;
11245 {
11246 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11247 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11248
11249 if (! BLOCK_ABSTRACT (stmt))
11250 {
11251 if (BLOCK_FRAGMENT_CHAIN (stmt))
11252 {
11253 tree chain;
11254
11255 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11256
11257 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11258 do
11259 {
11260 add_ranges (chain);
11261 chain = BLOCK_FRAGMENT_CHAIN (chain);
11262 }
11263 while (chain);
11264 add_ranges (NULL);
11265 }
11266 else
11267 {
11268 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11269 BLOCK_NUMBER (stmt));
11270 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11271 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11272 BLOCK_NUMBER (stmt));
11273 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11274 }
11275 }
11276
11277 decls_for_scope (stmt, stmt_die, depth);
11278 }
11279
11280 /* Generate a DIE for an inlined subprogram. */
11281
11282 static void
11283 gen_inlined_subroutine_die (stmt, context_die, depth)
11284 tree stmt;
11285 dw_die_ref context_die;
11286 int depth;
11287 {
11288 if (! BLOCK_ABSTRACT (stmt))
11289 {
11290 dw_die_ref subr_die
11291 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11292 tree decl = block_ultimate_origin (stmt);
11293 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11294
11295 /* Emit info for the abstract instance first, if we haven't yet. */
11296 dwarf2out_abstract_function (decl);
11297
11298 add_abstract_origin_attribute (subr_die, decl);
11299 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11300 BLOCK_NUMBER (stmt));
11301 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11302 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11303 BLOCK_NUMBER (stmt));
11304 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11305 decls_for_scope (stmt, subr_die, depth);
11306 current_function_has_inlines = 1;
11307 }
11308 else
11309 /* We may get here if we're the outer block of function A that was
11310 inlined into function B that was inlined into function C. When
11311 generating debugging info for C, dwarf2out_abstract_function(B)
11312 would mark all inlined blocks as abstract, including this one.
11313 So, we wouldn't (and shouldn't) expect labels to be generated
11314 for this one. Instead, just emit debugging info for
11315 declarations within the block. This is particularly important
11316 in the case of initializers of arguments passed from B to us:
11317 if they're statement expressions containing declarations, we
11318 wouldn't generate dies for their abstract variables, and then,
11319 when generating dies for the real variables, we'd die (pun
11320 intended :-) */
11321 gen_lexical_block_die (stmt, context_die, depth);
11322 }
11323
11324 /* Generate a DIE for a field in a record, or structure. */
11325
11326 static void
11327 gen_field_die (decl, context_die)
11328 tree decl;
11329 dw_die_ref context_die;
11330 {
11331 dw_die_ref decl_die = new_die (DW_TAG_member, context_die, decl);
11332
11333 add_name_and_src_coords_attributes (decl_die, decl);
11334 add_type_attribute (decl_die, member_declared_type (decl),
11335 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11336 context_die);
11337
11338 if (DECL_BIT_FIELD_TYPE (decl))
11339 {
11340 add_byte_size_attribute (decl_die, decl);
11341 add_bit_size_attribute (decl_die, decl);
11342 add_bit_offset_attribute (decl_die, decl);
11343 }
11344
11345 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11346 add_data_member_location_attribute (decl_die, decl);
11347
11348 if (DECL_ARTIFICIAL (decl))
11349 add_AT_flag (decl_die, DW_AT_artificial, 1);
11350
11351 if (TREE_PROTECTED (decl))
11352 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11353 else if (TREE_PRIVATE (decl))
11354 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11355 }
11356
11357 #if 0
11358 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11359 Use modified_type_die instead.
11360 We keep this code here just in case these types of DIEs may be needed to
11361 represent certain things in other languages (e.g. Pascal) someday. */
11362
11363 static void
11364 gen_pointer_type_die (type, context_die)
11365 tree type;
11366 dw_die_ref context_die;
11367 {
11368 dw_die_ref ptr_die
11369 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11370
11371 equate_type_number_to_die (type, ptr_die);
11372 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11373 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11374 }
11375
11376 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11377 Use modified_type_die instead.
11378 We keep this code here just in case these types of DIEs may be needed to
11379 represent certain things in other languages (e.g. Pascal) someday. */
11380
11381 static void
11382 gen_reference_type_die (type, context_die)
11383 tree type;
11384 dw_die_ref context_die;
11385 {
11386 dw_die_ref ref_die
11387 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11388
11389 equate_type_number_to_die (type, ref_die);
11390 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11391 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11392 }
11393 #endif
11394
11395 /* Generate a DIE for a pointer to a member type. */
11396
11397 static void
11398 gen_ptr_to_mbr_type_die (type, context_die)
11399 tree type;
11400 dw_die_ref context_die;
11401 {
11402 dw_die_ref ptr_die
11403 = new_die (DW_TAG_ptr_to_member_type,
11404 scope_die_for (type, context_die), type);
11405
11406 equate_type_number_to_die (type, ptr_die);
11407 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11408 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11409 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11410 }
11411
11412 /* Generate the DIE for the compilation unit. */
11413
11414 static dw_die_ref
11415 gen_compile_unit_die (filename)
11416 const char *filename;
11417 {
11418 dw_die_ref die;
11419 char producer[250];
11420 const char *language_string = lang_hooks.name;
11421 int language;
11422
11423 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11424
11425 if (filename)
11426 {
11427 add_name_attribute (die, filename);
11428 if (filename[0] != DIR_SEPARATOR)
11429 add_comp_dir_attribute (die);
11430 }
11431
11432 sprintf (producer, "%s %s", language_string, version_string);
11433
11434 #ifdef MIPS_DEBUGGING_INFO
11435 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11436 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11437 not appear in the producer string, the debugger reaches the conclusion
11438 that the object file is stripped and has no debugging information.
11439 To get the MIPS/SGI debugger to believe that there is debugging
11440 information in the object file, we add a -g to the producer string. */
11441 if (debug_info_level > DINFO_LEVEL_TERSE)
11442 strcat (producer, " -g");
11443 #endif
11444
11445 add_AT_string (die, DW_AT_producer, producer);
11446
11447 if (strcmp (language_string, "GNU C++") == 0)
11448 language = DW_LANG_C_plus_plus;
11449 else if (strcmp (language_string, "GNU Ada") == 0)
11450 language = DW_LANG_Ada95;
11451 else if (strcmp (language_string, "GNU F77") == 0)
11452 language = DW_LANG_Fortran77;
11453 else if (strcmp (language_string, "GNU Pascal") == 0)
11454 language = DW_LANG_Pascal83;
11455 else if (strcmp (language_string, "GNU Java") == 0)
11456 language = DW_LANG_Java;
11457 else
11458 language = DW_LANG_C89;
11459
11460 add_AT_unsigned (die, DW_AT_language, language);
11461 return die;
11462 }
11463
11464 /* Generate a DIE for a string type. */
11465
11466 static void
11467 gen_string_type_die (type, context_die)
11468 tree type;
11469 dw_die_ref context_die;
11470 {
11471 dw_die_ref type_die
11472 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11473
11474 equate_type_number_to_die (type, type_die);
11475
11476 /* ??? Fudge the string length attribute for now.
11477 TODO: add string length info. */
11478 #if 0
11479 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11480 bound_representation (upper_bound, 0, 'u');
11481 #endif
11482 }
11483
11484 /* Generate the DIE for a base class. */
11485
11486 static void
11487 gen_inheritance_die (binfo, access, context_die)
11488 tree binfo, access;
11489 dw_die_ref context_die;
11490 {
11491 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11492
11493 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11494 add_data_member_location_attribute (die, binfo);
11495
11496 if (TREE_VIA_VIRTUAL (binfo))
11497 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11498
11499 if (access == access_public_node)
11500 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11501 else if (access == access_protected_node)
11502 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11503 }
11504
11505 /* Generate a DIE for a class member. */
11506
11507 static void
11508 gen_member_die (type, context_die)
11509 tree type;
11510 dw_die_ref context_die;
11511 {
11512 tree member;
11513 tree binfo = TYPE_BINFO (type);
11514 dw_die_ref child;
11515
11516 /* If this is not an incomplete type, output descriptions of each of its
11517 members. Note that as we output the DIEs necessary to represent the
11518 members of this record or union type, we will also be trying to output
11519 DIEs to represent the *types* of those members. However the `type'
11520 function (above) will specifically avoid generating type DIEs for member
11521 types *within* the list of member DIEs for this (containing) type except
11522 for those types (of members) which are explicitly marked as also being
11523 members of this (containing) type themselves. The g++ front- end can
11524 force any given type to be treated as a member of some other (containing)
11525 type by setting the TYPE_CONTEXT of the given (member) type to point to
11526 the TREE node representing the appropriate (containing) type. */
11527
11528 /* First output info about the base classes. */
11529 if (binfo && BINFO_BASETYPES (binfo))
11530 {
11531 tree bases = BINFO_BASETYPES (binfo);
11532 tree accesses = BINFO_BASEACCESSES (binfo);
11533 int n_bases = TREE_VEC_LENGTH (bases);
11534 int i;
11535
11536 for (i = 0; i < n_bases; i++)
11537 gen_inheritance_die (TREE_VEC_ELT (bases, i),
11538 (accesses ? TREE_VEC_ELT (accesses, i)
11539 : access_public_node), context_die);
11540 }
11541
11542 /* Now output info about the data members and type members. */
11543 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11544 {
11545 /* If we thought we were generating minimal debug info for TYPE
11546 and then changed our minds, some of the member declarations
11547 may have already been defined. Don't define them again, but
11548 do put them in the right order. */
11549
11550 child = lookup_decl_die (member);
11551 if (child)
11552 splice_child_die (context_die, child);
11553 else
11554 gen_decl_die (member, context_die);
11555 }
11556
11557 /* Now output info about the function members (if any). */
11558 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11559 {
11560 /* Don't include clones in the member list. */
11561 if (DECL_ABSTRACT_ORIGIN (member))
11562 continue;
11563
11564 child = lookup_decl_die (member);
11565 if (child)
11566 splice_child_die (context_die, child);
11567 else
11568 gen_decl_die (member, context_die);
11569 }
11570 }
11571
11572 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11573 is set, we pretend that the type was never defined, so we only get the
11574 member DIEs needed by later specification DIEs. */
11575
11576 static void
11577 gen_struct_or_union_type_die (type, context_die)
11578 tree type;
11579 dw_die_ref context_die;
11580 {
11581 dw_die_ref type_die = lookup_type_die (type);
11582 dw_die_ref scope_die = 0;
11583 int nested = 0;
11584 int complete = (TYPE_SIZE (type)
11585 && (! TYPE_STUB_DECL (type)
11586 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11587
11588 if (type_die && ! complete)
11589 return;
11590
11591 if (TYPE_CONTEXT (type) != NULL_TREE
11592 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type)))
11593 nested = 1;
11594
11595 scope_die = scope_die_for (type, context_die);
11596
11597 if (! type_die || (nested && scope_die == comp_unit_die))
11598 /* First occurrence of type or toplevel definition of nested class. */
11599 {
11600 dw_die_ref old_die = type_die;
11601
11602 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11603 ? DW_TAG_structure_type : DW_TAG_union_type,
11604 scope_die, type);
11605 equate_type_number_to_die (type, type_die);
11606 if (old_die)
11607 add_AT_die_ref (type_die, DW_AT_specification, old_die);
11608 else
11609 add_name_attribute (type_die, type_tag (type));
11610 }
11611 else
11612 remove_AT (type_die, DW_AT_declaration);
11613
11614 /* If this type has been completed, then give it a byte_size attribute and
11615 then give a list of members. */
11616 if (complete)
11617 {
11618 /* Prevent infinite recursion in cases where the type of some member of
11619 this type is expressed in terms of this type itself. */
11620 TREE_ASM_WRITTEN (type) = 1;
11621 add_byte_size_attribute (type_die, type);
11622 if (TYPE_STUB_DECL (type) != NULL_TREE)
11623 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11624
11625 /* If the first reference to this type was as the return type of an
11626 inline function, then it may not have a parent. Fix this now. */
11627 if (type_die->die_parent == NULL)
11628 add_child_die (scope_die, type_die);
11629
11630 push_decl_scope (type);
11631 gen_member_die (type, type_die);
11632 pop_decl_scope ();
11633
11634 /* GNU extension: Record what type our vtable lives in. */
11635 if (TYPE_VFIELD (type))
11636 {
11637 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11638
11639 gen_type_die (vtype, context_die);
11640 add_AT_die_ref (type_die, DW_AT_containing_type,
11641 lookup_type_die (vtype));
11642 }
11643 }
11644 else
11645 {
11646 add_AT_flag (type_die, DW_AT_declaration, 1);
11647
11648 /* We don't need to do this for function-local types. */
11649 if (TYPE_STUB_DECL (type)
11650 && ! decl_function_context (TYPE_STUB_DECL (type)))
11651 VARRAY_PUSH_TREE (incomplete_types, type);
11652 }
11653 }
11654
11655 /* Generate a DIE for a subroutine _type_. */
11656
11657 static void
11658 gen_subroutine_type_die (type, context_die)
11659 tree type;
11660 dw_die_ref context_die;
11661 {
11662 tree return_type = TREE_TYPE (type);
11663 dw_die_ref subr_die
11664 = new_die (DW_TAG_subroutine_type,
11665 scope_die_for (type, context_die), type);
11666
11667 equate_type_number_to_die (type, subr_die);
11668 add_prototyped_attribute (subr_die, type);
11669 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11670 gen_formal_types_die (type, subr_die);
11671 }
11672
11673 /* Generate a DIE for a type definition */
11674
11675 static void
11676 gen_typedef_die (decl, context_die)
11677 tree decl;
11678 dw_die_ref context_die;
11679 {
11680 dw_die_ref type_die;
11681 tree origin;
11682
11683 if (TREE_ASM_WRITTEN (decl))
11684 return;
11685
11686 TREE_ASM_WRITTEN (decl) = 1;
11687 type_die = new_die (DW_TAG_typedef, context_die, decl);
11688 origin = decl_ultimate_origin (decl);
11689 if (origin != NULL)
11690 add_abstract_origin_attribute (type_die, origin);
11691 else
11692 {
11693 tree type;
11694
11695 add_name_and_src_coords_attributes (type_die, decl);
11696 if (DECL_ORIGINAL_TYPE (decl))
11697 {
11698 type = DECL_ORIGINAL_TYPE (decl);
11699
11700 if (type == TREE_TYPE (decl))
11701 abort ();
11702 else
11703 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11704 }
11705 else
11706 type = TREE_TYPE (decl);
11707
11708 add_type_attribute (type_die, type, TREE_READONLY (decl),
11709 TREE_THIS_VOLATILE (decl), context_die);
11710 }
11711
11712 if (DECL_ABSTRACT (decl))
11713 equate_decl_number_to_die (decl, type_die);
11714 }
11715
11716 /* Generate a type description DIE. */
11717
11718 static void
11719 gen_type_die (type, context_die)
11720 tree type;
11721 dw_die_ref context_die;
11722 {
11723 int need_pop;
11724
11725 if (type == NULL_TREE || type == error_mark_node)
11726 return;
11727
11728 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11729 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11730 {
11731 if (TREE_ASM_WRITTEN (type))
11732 return;
11733
11734 /* Prevent broken recursion; we can't hand off to the same type. */
11735 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
11736 abort ();
11737
11738 TREE_ASM_WRITTEN (type) = 1;
11739 gen_decl_die (TYPE_NAME (type), context_die);
11740 return;
11741 }
11742
11743 /* We are going to output a DIE to represent the unqualified version
11744 of this type (i.e. without any const or volatile qualifiers) so
11745 get the main variant (i.e. the unqualified version) of this type
11746 now. (Vectors are special because the debugging info is in the
11747 cloned type itself). */
11748 if (TREE_CODE (type) != VECTOR_TYPE)
11749 type = type_main_variant (type);
11750
11751 if (TREE_ASM_WRITTEN (type))
11752 return;
11753
11754 switch (TREE_CODE (type))
11755 {
11756 case ERROR_MARK:
11757 break;
11758
11759 case POINTER_TYPE:
11760 case REFERENCE_TYPE:
11761 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11762 ensures that the gen_type_die recursion will terminate even if the
11763 type is recursive. Recursive types are possible in Ada. */
11764 /* ??? We could perhaps do this for all types before the switch
11765 statement. */
11766 TREE_ASM_WRITTEN (type) = 1;
11767
11768 /* For these types, all that is required is that we output a DIE (or a
11769 set of DIEs) to represent the "basis" type. */
11770 gen_type_die (TREE_TYPE (type), context_die);
11771 break;
11772
11773 case OFFSET_TYPE:
11774 /* This code is used for C++ pointer-to-data-member types.
11775 Output a description of the relevant class type. */
11776 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
11777
11778 /* Output a description of the type of the object pointed to. */
11779 gen_type_die (TREE_TYPE (type), context_die);
11780
11781 /* Now output a DIE to represent this pointer-to-data-member type
11782 itself. */
11783 gen_ptr_to_mbr_type_die (type, context_die);
11784 break;
11785
11786 case SET_TYPE:
11787 gen_type_die (TYPE_DOMAIN (type), context_die);
11788 gen_set_type_die (type, context_die);
11789 break;
11790
11791 case FILE_TYPE:
11792 gen_type_die (TREE_TYPE (type), context_die);
11793 abort (); /* No way to represent these in Dwarf yet! */
11794 break;
11795
11796 case FUNCTION_TYPE:
11797 /* Force out return type (in case it wasn't forced out already). */
11798 gen_type_die (TREE_TYPE (type), context_die);
11799 gen_subroutine_type_die (type, context_die);
11800 break;
11801
11802 case METHOD_TYPE:
11803 /* Force out return type (in case it wasn't forced out already). */
11804 gen_type_die (TREE_TYPE (type), context_die);
11805 gen_subroutine_type_die (type, context_die);
11806 break;
11807
11808 case ARRAY_TYPE:
11809 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11810 {
11811 gen_type_die (TREE_TYPE (type), context_die);
11812 gen_string_type_die (type, context_die);
11813 }
11814 else
11815 gen_array_type_die (type, context_die);
11816 break;
11817
11818 case VECTOR_TYPE:
11819 gen_array_type_die (type, context_die);
11820 break;
11821
11822 case ENUMERAL_TYPE:
11823 case RECORD_TYPE:
11824 case UNION_TYPE:
11825 case QUAL_UNION_TYPE:
11826 /* If this is a nested type whose containing class hasn't been written
11827 out yet, writing it out will cover this one, too. This does not apply
11828 to instantiations of member class templates; they need to be added to
11829 the containing class as they are generated. FIXME: This hurts the
11830 idea of combining type decls from multiple TUs, since we can't predict
11831 what set of template instantiations we'll get. */
11832 if (TYPE_CONTEXT (type)
11833 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11834 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
11835 {
11836 gen_type_die (TYPE_CONTEXT (type), context_die);
11837
11838 if (TREE_ASM_WRITTEN (type))
11839 return;
11840
11841 /* If that failed, attach ourselves to the stub. */
11842 push_decl_scope (TYPE_CONTEXT (type));
11843 context_die = lookup_type_die (TYPE_CONTEXT (type));
11844 need_pop = 1;
11845 }
11846 else
11847 need_pop = 0;
11848
11849 if (TREE_CODE (type) == ENUMERAL_TYPE)
11850 gen_enumeration_type_die (type, context_die);
11851 else
11852 gen_struct_or_union_type_die (type, context_die);
11853
11854 if (need_pop)
11855 pop_decl_scope ();
11856
11857 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11858 it up if it is ever completed. gen_*_type_die will set it for us
11859 when appropriate. */
11860 return;
11861
11862 case VOID_TYPE:
11863 case INTEGER_TYPE:
11864 case REAL_TYPE:
11865 case COMPLEX_TYPE:
11866 case BOOLEAN_TYPE:
11867 case CHAR_TYPE:
11868 /* No DIEs needed for fundamental types. */
11869 break;
11870
11871 case LANG_TYPE:
11872 /* No Dwarf representation currently defined. */
11873 break;
11874
11875 default:
11876 abort ();
11877 }
11878
11879 TREE_ASM_WRITTEN (type) = 1;
11880 }
11881
11882 /* Generate a DIE for a tagged type instantiation. */
11883
11884 static void
11885 gen_tagged_type_instantiation_die (type, context_die)
11886 tree type;
11887 dw_die_ref context_die;
11888 {
11889 if (type == NULL_TREE || type == error_mark_node)
11890 return;
11891
11892 /* We are going to output a DIE to represent the unqualified version of
11893 this type (i.e. without any const or volatile qualifiers) so make sure
11894 that we have the main variant (i.e. the unqualified version) of this
11895 type now. */
11896 if (type != type_main_variant (type))
11897 abort ();
11898
11899 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11900 an instance of an unresolved type. */
11901
11902 switch (TREE_CODE (type))
11903 {
11904 case ERROR_MARK:
11905 break;
11906
11907 case ENUMERAL_TYPE:
11908 gen_inlined_enumeration_type_die (type, context_die);
11909 break;
11910
11911 case RECORD_TYPE:
11912 gen_inlined_structure_type_die (type, context_die);
11913 break;
11914
11915 case UNION_TYPE:
11916 case QUAL_UNION_TYPE:
11917 gen_inlined_union_type_die (type, context_die);
11918 break;
11919
11920 default:
11921 abort ();
11922 }
11923 }
11924
11925 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11926 things which are local to the given block. */
11927
11928 static void
11929 gen_block_die (stmt, context_die, depth)
11930 tree stmt;
11931 dw_die_ref context_die;
11932 int depth;
11933 {
11934 int must_output_die = 0;
11935 tree origin;
11936 tree decl;
11937 enum tree_code origin_code;
11938
11939 /* Ignore blocks never really used to make RTL. */
11940 if (stmt == NULL_TREE || !TREE_USED (stmt)
11941 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
11942 return;
11943
11944 /* If the block is one fragment of a non-contiguous block, do not
11945 process the variables, since they will have been done by the
11946 origin block. Do process subblocks. */
11947 if (BLOCK_FRAGMENT_ORIGIN (stmt))
11948 {
11949 tree sub;
11950
11951 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
11952 gen_block_die (sub, context_die, depth + 1);
11953
11954 return;
11955 }
11956
11957 /* Determine the "ultimate origin" of this block. This block may be an
11958 inlined instance of an inlined instance of inline function, so we have
11959 to trace all of the way back through the origin chain to find out what
11960 sort of node actually served as the original seed for the creation of
11961 the current block. */
11962 origin = block_ultimate_origin (stmt);
11963 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
11964
11965 /* Determine if we need to output any Dwarf DIEs at all to represent this
11966 block. */
11967 if (origin_code == FUNCTION_DECL)
11968 /* The outer scopes for inlinings *must* always be represented. We
11969 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
11970 must_output_die = 1;
11971 else
11972 {
11973 /* In the case where the current block represents an inlining of the
11974 "body block" of an inline function, we must *NOT* output any DIE for
11975 this block because we have already output a DIE to represent the whole
11976 inlined function scope and the "body block" of any function doesn't
11977 really represent a different scope according to ANSI C rules. So we
11978 check here to make sure that this block does not represent a "body
11979 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
11980 if (! is_body_block (origin ? origin : stmt))
11981 {
11982 /* Determine if this block directly contains any "significant"
11983 local declarations which we will need to output DIEs for. */
11984 if (debug_info_level > DINFO_LEVEL_TERSE)
11985 /* We are not in terse mode so *any* local declaration counts
11986 as being a "significant" one. */
11987 must_output_die = (BLOCK_VARS (stmt) != NULL);
11988 else
11989 /* We are in terse mode, so only local (nested) function
11990 definitions count as "significant" local declarations. */
11991 for (decl = BLOCK_VARS (stmt);
11992 decl != NULL; decl = TREE_CHAIN (decl))
11993 if (TREE_CODE (decl) == FUNCTION_DECL
11994 && DECL_INITIAL (decl))
11995 {
11996 must_output_die = 1;
11997 break;
11998 }
11999 }
12000 }
12001
12002 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12003 DIE for any block which contains no significant local declarations at
12004 all. Rather, in such cases we just call `decls_for_scope' so that any
12005 needed Dwarf info for any sub-blocks will get properly generated. Note
12006 that in terse mode, our definition of what constitutes a "significant"
12007 local declaration gets restricted to include only inlined function
12008 instances and local (nested) function definitions. */
12009 if (must_output_die)
12010 {
12011 if (origin_code == FUNCTION_DECL)
12012 gen_inlined_subroutine_die (stmt, context_die, depth);
12013 else
12014 gen_lexical_block_die (stmt, context_die, depth);
12015 }
12016 else
12017 decls_for_scope (stmt, context_die, depth);
12018 }
12019
12020 /* Generate all of the decls declared within a given scope and (recursively)
12021 all of its sub-blocks. */
12022
12023 static void
12024 decls_for_scope (stmt, context_die, depth)
12025 tree stmt;
12026 dw_die_ref context_die;
12027 int depth;
12028 {
12029 tree decl;
12030 tree subblocks;
12031
12032 /* Ignore blocks never really used to make RTL. */
12033 if (stmt == NULL_TREE || ! TREE_USED (stmt))
12034 return;
12035
12036 /* Output the DIEs to represent all of the data objects and typedefs
12037 declared directly within this block but not within any nested
12038 sub-blocks. Also, nested function and tag DIEs have been
12039 generated with a parent of NULL; fix that up now. */
12040 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12041 {
12042 dw_die_ref die;
12043
12044 if (TREE_CODE (decl) == FUNCTION_DECL)
12045 die = lookup_decl_die (decl);
12046 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12047 die = lookup_type_die (TREE_TYPE (decl));
12048 else
12049 die = NULL;
12050
12051 if (die != NULL && die->die_parent == NULL)
12052 add_child_die (context_die, die);
12053 else
12054 gen_decl_die (decl, context_die);
12055 }
12056
12057 /* If we're at -g1, we're not interested in subblocks. */
12058 if (debug_info_level <= DINFO_LEVEL_TERSE)
12059 return;
12060
12061 /* Output the DIEs to represent all sub-blocks (and the items declared
12062 therein) of this block. */
12063 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12064 subblocks != NULL;
12065 subblocks = BLOCK_CHAIN (subblocks))
12066 gen_block_die (subblocks, context_die, depth + 1);
12067 }
12068
12069 /* Is this a typedef we can avoid emitting? */
12070
12071 static inline int
12072 is_redundant_typedef (decl)
12073 tree decl;
12074 {
12075 if (TYPE_DECL_IS_STUB (decl))
12076 return 1;
12077
12078 if (DECL_ARTIFICIAL (decl)
12079 && DECL_CONTEXT (decl)
12080 && is_tagged_type (DECL_CONTEXT (decl))
12081 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12082 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12083 /* Also ignore the artificial member typedef for the class name. */
12084 return 1;
12085
12086 return 0;
12087 }
12088
12089 /* Generate Dwarf debug information for a decl described by DECL. */
12090
12091 static void
12092 gen_decl_die (decl, context_die)
12093 tree decl;
12094 dw_die_ref context_die;
12095 {
12096 tree origin;
12097
12098 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12099 return;
12100
12101 switch (TREE_CODE (decl))
12102 {
12103 case ERROR_MARK:
12104 break;
12105
12106 case CONST_DECL:
12107 /* The individual enumerators of an enum type get output when we output
12108 the Dwarf representation of the relevant enum type itself. */
12109 break;
12110
12111 case FUNCTION_DECL:
12112 /* Don't output any DIEs to represent mere function declarations,
12113 unless they are class members or explicit block externs. */
12114 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12115 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12116 break;
12117
12118 /* If we're emitting a clone, emit info for the abstract instance. */
12119 if (DECL_ORIGIN (decl) != decl)
12120 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12121
12122 /* If we're emitting an out-of-line copy of an inline function,
12123 emit info for the abstract instance and set up to refer to it. */
12124 else if (DECL_INLINE (decl) && ! DECL_ABSTRACT (decl)
12125 && ! class_scope_p (context_die)
12126 /* dwarf2out_abstract_function won't emit a die if this is just
12127 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12128 that case, because that works only if we have a die. */
12129 && DECL_INITIAL (decl) != NULL_TREE)
12130 {
12131 dwarf2out_abstract_function (decl);
12132 set_decl_origin_self (decl);
12133 }
12134
12135 /* Otherwise we're emitting the primary DIE for this decl. */
12136 else if (debug_info_level > DINFO_LEVEL_TERSE)
12137 {
12138 /* Before we describe the FUNCTION_DECL itself, make sure that we
12139 have described its return type. */
12140 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12141
12142 /* And its virtual context. */
12143 if (DECL_VINDEX (decl) != NULL_TREE)
12144 gen_type_die (DECL_CONTEXT (decl), context_die);
12145
12146 /* And its containing type. */
12147 origin = decl_class_context (decl);
12148 if (origin != NULL_TREE)
12149 gen_type_die_for_member (origin, decl, context_die);
12150 }
12151
12152 /* Now output a DIE to represent the function itself. */
12153 gen_subprogram_die (decl, context_die);
12154 break;
12155
12156 case TYPE_DECL:
12157 /* If we are in terse mode, don't generate any DIEs to represent any
12158 actual typedefs. */
12159 if (debug_info_level <= DINFO_LEVEL_TERSE)
12160 break;
12161
12162 /* In the special case of a TYPE_DECL node representing the declaration
12163 of some type tag, if the given TYPE_DECL is marked as having been
12164 instantiated from some other (original) TYPE_DECL node (e.g. one which
12165 was generated within the original definition of an inline function) we
12166 have to generate a special (abbreviated) DW_TAG_structure_type,
12167 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12168 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12169 {
12170 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12171 break;
12172 }
12173
12174 if (is_redundant_typedef (decl))
12175 gen_type_die (TREE_TYPE (decl), context_die);
12176 else
12177 /* Output a DIE to represent the typedef itself. */
12178 gen_typedef_die (decl, context_die);
12179 break;
12180
12181 case LABEL_DECL:
12182 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12183 gen_label_die (decl, context_die);
12184 break;
12185
12186 case VAR_DECL:
12187 /* If we are in terse mode, don't generate any DIEs to represent any
12188 variable declarations or definitions. */
12189 if (debug_info_level <= DINFO_LEVEL_TERSE)
12190 break;
12191
12192 /* Output any DIEs that are needed to specify the type of this data
12193 object. */
12194 gen_type_die (TREE_TYPE (decl), context_die);
12195
12196 /* And its containing type. */
12197 origin = decl_class_context (decl);
12198 if (origin != NULL_TREE)
12199 gen_type_die_for_member (origin, decl, context_die);
12200
12201 /* Now output the DIE to represent the data object itself. This gets
12202 complicated because of the possibility that the VAR_DECL really
12203 represents an inlined instance of a formal parameter for an inline
12204 function. */
12205 origin = decl_ultimate_origin (decl);
12206 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12207 gen_formal_parameter_die (decl, context_die);
12208 else
12209 gen_variable_die (decl, context_die);
12210 break;
12211
12212 case FIELD_DECL:
12213 /* Ignore the nameless fields that are used to skip bits but handle C++
12214 anonymous unions. */
12215 if (DECL_NAME (decl) != NULL_TREE
12216 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
12217 {
12218 gen_type_die (member_declared_type (decl), context_die);
12219 gen_field_die (decl, context_die);
12220 }
12221 break;
12222
12223 case PARM_DECL:
12224 gen_type_die (TREE_TYPE (decl), context_die);
12225 gen_formal_parameter_die (decl, context_die);
12226 break;
12227
12228 case NAMESPACE_DECL:
12229 /* Ignore for now. */
12230 break;
12231
12232 default:
12233 if ((int)TREE_CODE (decl) > NUM_TREE_CODES)
12234 /* Probably some frontend-internal decl. Assume we don't care. */
12235 break;
12236 abort ();
12237 }
12238 }
12239 \f
12240 /* Add Ada "use" clause information for SGI Workshop debugger. */
12241
12242 void
12243 dwarf2out_add_library_unit_info (filename, context_list)
12244 const char *filename;
12245 const char *context_list;
12246 {
12247 unsigned int file_index;
12248
12249 if (filename != NULL)
12250 {
12251 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12252 tree context_list_decl
12253 = build_decl (LABEL_DECL, get_identifier (context_list),
12254 void_type_node);
12255
12256 TREE_PUBLIC (context_list_decl) = TRUE;
12257 add_name_attribute (unit_die, context_list);
12258 file_index = lookup_filename (filename);
12259 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12260 add_pubname (context_list_decl, unit_die);
12261 }
12262 }
12263
12264 /* Output debug information for global decl DECL. Called from toplev.c after
12265 compilation proper has finished. */
12266
12267 static void
12268 dwarf2out_global_decl (decl)
12269 tree decl;
12270 {
12271 /* Output DWARF2 information for file-scope tentative data object
12272 declarations, file-scope (extern) function declarations (which had no
12273 corresponding body) and file-scope tagged type declarations and
12274 definitions which have not yet been forced out. */
12275 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12276 dwarf2out_decl (decl);
12277 }
12278
12279 /* Write the debugging output for DECL. */
12280
12281 void
12282 dwarf2out_decl (decl)
12283 tree decl;
12284 {
12285 dw_die_ref context_die = comp_unit_die;
12286
12287 switch (TREE_CODE (decl))
12288 {
12289 case ERROR_MARK:
12290 return;
12291
12292 case FUNCTION_DECL:
12293 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
12294 builtin function. Explicit programmer-supplied declarations of
12295 these same functions should NOT be ignored however. */
12296 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
12297 return;
12298
12299 /* What we would really like to do here is to filter out all mere
12300 file-scope declarations of file-scope functions which are never
12301 referenced later within this translation unit (and keep all of ones
12302 that *are* referenced later on) but we aren't clairvoyant, so we have
12303 no idea which functions will be referenced in the future (i.e. later
12304 on within the current translation unit). So here we just ignore all
12305 file-scope function declarations which are not also definitions. If
12306 and when the debugger needs to know something about these functions,
12307 it will have to hunt around and find the DWARF information associated
12308 with the definition of the function.
12309
12310 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12311 nodes represent definitions and which ones represent mere
12312 declarations. We have to check DECL_INITIAL instead. That's because
12313 the C front-end supports some weird semantics for "extern inline"
12314 function definitions. These can get inlined within the current
12315 translation unit (an thus, we need to generate Dwarf info for their
12316 abstract instances so that the Dwarf info for the concrete inlined
12317 instances can have something to refer to) but the compiler never
12318 generates any out-of-lines instances of such things (despite the fact
12319 that they *are* definitions).
12320
12321 The important point is that the C front-end marks these "extern
12322 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12323 them anyway. Note that the C++ front-end also plays some similar games
12324 for inline function definitions appearing within include files which
12325 also contain `#pragma interface' pragmas. */
12326 if (DECL_INITIAL (decl) == NULL_TREE)
12327 return;
12328
12329 /* If we're a nested function, initially use a parent of NULL; if we're
12330 a plain function, this will be fixed up in decls_for_scope. If
12331 we're a method, it will be ignored, since we already have a DIE. */
12332 if (decl_function_context (decl)
12333 /* But if we're in terse mode, we don't care about scope. */
12334 && debug_info_level > DINFO_LEVEL_TERSE)
12335 context_die = NULL;
12336 break;
12337
12338 case VAR_DECL:
12339 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12340 declaration and if the declaration was never even referenced from
12341 within this entire compilation unit. We suppress these DIEs in
12342 order to save space in the .debug section (by eliminating entries
12343 which are probably useless). Note that we must not suppress
12344 block-local extern declarations (whether used or not) because that
12345 would screw-up the debugger's name lookup mechanism and cause it to
12346 miss things which really ought to be in scope at a given point. */
12347 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12348 return;
12349
12350 /* If we are in terse mode, don't generate any DIEs to represent any
12351 variable declarations or definitions. */
12352 if (debug_info_level <= DINFO_LEVEL_TERSE)
12353 return;
12354 break;
12355
12356 case TYPE_DECL:
12357 /* Don't emit stubs for types unless they are needed by other DIEs. */
12358 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12359 return;
12360
12361 /* Don't bother trying to generate any DIEs to represent any of the
12362 normal built-in types for the language we are compiling. */
12363 if (DECL_SOURCE_LINE (decl) == 0)
12364 {
12365 /* OK, we need to generate one for `bool' so GDB knows what type
12366 comparisons have. */
12367 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12368 == DW_LANG_C_plus_plus)
12369 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12370 && ! DECL_IGNORED_P (decl))
12371 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12372
12373 return;
12374 }
12375
12376 /* If we are in terse mode, don't generate any DIEs for types. */
12377 if (debug_info_level <= DINFO_LEVEL_TERSE)
12378 return;
12379
12380 /* If we're a function-scope tag, initially use a parent of NULL;
12381 this will be fixed up in decls_for_scope. */
12382 if (decl_function_context (decl))
12383 context_die = NULL;
12384
12385 break;
12386
12387 default:
12388 return;
12389 }
12390
12391 gen_decl_die (decl, context_die);
12392 }
12393
12394 /* Output a marker (i.e. a label) for the beginning of the generated code for
12395 a lexical block. */
12396
12397 static void
12398 dwarf2out_begin_block (line, blocknum)
12399 unsigned int line ATTRIBUTE_UNUSED;
12400 unsigned int blocknum;
12401 {
12402 function_section (current_function_decl);
12403 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12404 }
12405
12406 /* Output a marker (i.e. a label) for the end of the generated code for a
12407 lexical block. */
12408
12409 static void
12410 dwarf2out_end_block (line, blocknum)
12411 unsigned int line ATTRIBUTE_UNUSED;
12412 unsigned int blocknum;
12413 {
12414 function_section (current_function_decl);
12415 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12416 }
12417
12418 /* Returns nonzero if it is appropriate not to emit any debugging
12419 information for BLOCK, because it doesn't contain any instructions.
12420
12421 Don't allow this for blocks with nested functions or local classes
12422 as we would end up with orphans, and in the presence of scheduling
12423 we may end up calling them anyway. */
12424
12425 static bool
12426 dwarf2out_ignore_block (block)
12427 tree block;
12428 {
12429 tree decl;
12430
12431 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12432 if (TREE_CODE (decl) == FUNCTION_DECL
12433 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12434 return 0;
12435
12436 return 1;
12437 }
12438
12439 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12440 dwarf2out.c) and return its "index". The index of each (known) filename is
12441 just a unique number which is associated with only that one filename. We
12442 need such numbers for the sake of generating labels (in the .debug_sfnames
12443 section) and references to those files numbers (in the .debug_srcinfo
12444 and.debug_macinfo sections). If the filename given as an argument is not
12445 found in our current list, add it to the list and assign it the next
12446 available unique index number. In order to speed up searches, we remember
12447 the index of the filename was looked up last. This handles the majority of
12448 all searches. */
12449
12450 static unsigned
12451 lookup_filename (file_name)
12452 const char *file_name;
12453 {
12454 size_t i, n;
12455 char *save_file_name;
12456
12457 /* Check to see if the file name that was searched on the previous
12458 call matches this file name. If so, return the index. */
12459 if (file_table_last_lookup_index != 0)
12460 {
12461 const char *last
12462 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12463 if (strcmp (file_name, last) == 0)
12464 return file_table_last_lookup_index;
12465 }
12466
12467 /* Didn't match the previous lookup, search the table */
12468 n = VARRAY_ACTIVE_SIZE (file_table);
12469 for (i = 1; i < n; i++)
12470 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12471 {
12472 file_table_last_lookup_index = i;
12473 return i;
12474 }
12475
12476 /* Add the new entry to the end of the filename table. */
12477 file_table_last_lookup_index = n;
12478 save_file_name = (char *) ggc_strdup (file_name);
12479 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12480 VARRAY_PUSH_UINT (file_table_emitted, 0);
12481
12482 return i;
12483 }
12484
12485 static int
12486 maybe_emit_file (fileno)
12487 int fileno;
12488 {
12489 static int emitcount = 0;
12490 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12491 {
12492 if (!VARRAY_UINT (file_table_emitted, fileno))
12493 {
12494 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12495 fprintf (asm_out_file, "\t.file %u ",
12496 VARRAY_UINT (file_table_emitted, fileno));
12497 output_quoted_string (asm_out_file,
12498 VARRAY_CHAR_PTR (file_table, fileno));
12499 fputc ('\n', asm_out_file);
12500 }
12501 return VARRAY_UINT (file_table_emitted, fileno);
12502 }
12503 else
12504 return fileno;
12505 }
12506
12507 static void
12508 init_file_table ()
12509 {
12510 /* Allocate the initial hunk of the file_table. */
12511 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
12512 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
12513
12514 /* Skip the first entry - file numbers begin at 1. */
12515 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
12516 VARRAY_PUSH_UINT (file_table_emitted, 0);
12517 file_table_last_lookup_index = 0;
12518 }
12519
12520 /* Output a label to mark the beginning of a source code line entry
12521 and record information relating to this source line, in
12522 'line_info_table' for later output of the .debug_line section. */
12523
12524 static void
12525 dwarf2out_source_line (line, filename)
12526 unsigned int line;
12527 const char *filename;
12528 {
12529 if (debug_info_level >= DINFO_LEVEL_NORMAL
12530 && line != 0)
12531 {
12532 function_section (current_function_decl);
12533
12534 /* If requested, emit something human-readable. */
12535 if (flag_debug_asm)
12536 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
12537 filename, line);
12538
12539 if (DWARF2_ASM_LINE_DEBUG_INFO)
12540 {
12541 unsigned file_num = lookup_filename (filename);
12542
12543 file_num = maybe_emit_file (file_num);
12544
12545 /* Emit the .loc directive understood by GNU as. */
12546 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
12547
12548 /* Indicate that line number info exists. */
12549 line_info_table_in_use++;
12550
12551 /* Indicate that multiple line number tables exist. */
12552 if (DECL_SECTION_NAME (current_function_decl))
12553 separate_line_info_table_in_use++;
12554 }
12555 else if (DECL_SECTION_NAME (current_function_decl))
12556 {
12557 dw_separate_line_info_ref line_info;
12558 (*targetm.asm_out.internal_label) (asm_out_file, SEPARATE_LINE_CODE_LABEL,
12559 separate_line_info_table_in_use);
12560
12561 /* expand the line info table if necessary */
12562 if (separate_line_info_table_in_use
12563 == separate_line_info_table_allocated)
12564 {
12565 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12566 separate_line_info_table
12567 = (dw_separate_line_info_ref)
12568 ggc_realloc (separate_line_info_table,
12569 separate_line_info_table_allocated
12570 * sizeof (dw_separate_line_info_entry));
12571 memset ((separate_line_info_table
12572 + separate_line_info_table_in_use),
12573 0,
12574 (LINE_INFO_TABLE_INCREMENT
12575 * sizeof (dw_separate_line_info_entry)));
12576 }
12577
12578 /* Add the new entry at the end of the line_info_table. */
12579 line_info
12580 = &separate_line_info_table[separate_line_info_table_in_use++];
12581 line_info->dw_file_num = lookup_filename (filename);
12582 line_info->dw_line_num = line;
12583 line_info->function = current_function_funcdef_no;
12584 }
12585 else
12586 {
12587 dw_line_info_ref line_info;
12588
12589 (*targetm.asm_out.internal_label) (asm_out_file, LINE_CODE_LABEL,
12590 line_info_table_in_use);
12591
12592 /* Expand the line info table if necessary. */
12593 if (line_info_table_in_use == line_info_table_allocated)
12594 {
12595 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12596 line_info_table
12597 = ggc_realloc (line_info_table,
12598 (line_info_table_allocated
12599 * sizeof (dw_line_info_entry)));
12600 memset (line_info_table + line_info_table_in_use, 0,
12601 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
12602 }
12603
12604 /* Add the new entry at the end of the line_info_table. */
12605 line_info = &line_info_table[line_info_table_in_use++];
12606 line_info->dw_file_num = lookup_filename (filename);
12607 line_info->dw_line_num = line;
12608 }
12609 }
12610 }
12611
12612 /* Record the beginning of a new source file. */
12613
12614 static void
12615 dwarf2out_start_source_file (lineno, filename)
12616 unsigned int lineno;
12617 const char *filename;
12618 {
12619 if (flag_eliminate_dwarf2_dups && !is_main_source)
12620 {
12621 /* Record the beginning of the file for break_out_includes. */
12622 dw_die_ref bincl_die;
12623
12624 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
12625 add_AT_string (bincl_die, DW_AT_name, filename);
12626 }
12627
12628 is_main_source = 0;
12629
12630 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12631 {
12632 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12633 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
12634 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
12635 lineno);
12636 maybe_emit_file (lookup_filename (filename));
12637 dw2_asm_output_data_uleb128 (lookup_filename (filename),
12638 "Filename we just started");
12639 }
12640 }
12641
12642 /* Record the end of a source file. */
12643
12644 static void
12645 dwarf2out_end_source_file (lineno)
12646 unsigned int lineno ATTRIBUTE_UNUSED;
12647 {
12648 if (flag_eliminate_dwarf2_dups)
12649 /* Record the end of the file for break_out_includes. */
12650 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
12651
12652 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12653 {
12654 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12655 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12656 }
12657 }
12658
12659 /* Called from debug_define in toplev.c. The `buffer' parameter contains
12660 the tail part of the directive line, i.e. the part which is past the
12661 initial whitespace, #, whitespace, directive-name, whitespace part. */
12662
12663 static void
12664 dwarf2out_define (lineno, buffer)
12665 unsigned lineno ATTRIBUTE_UNUSED;
12666 const char *buffer ATTRIBUTE_UNUSED;
12667 {
12668 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12669 {
12670 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12671 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
12672 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12673 dw2_asm_output_nstring (buffer, -1, "The macro");
12674 }
12675 }
12676
12677 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
12678 the tail part of the directive line, i.e. the part which is past the
12679 initial whitespace, #, whitespace, directive-name, whitespace part. */
12680
12681 static void
12682 dwarf2out_undef (lineno, buffer)
12683 unsigned lineno ATTRIBUTE_UNUSED;
12684 const char *buffer ATTRIBUTE_UNUSED;
12685 {
12686 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12687 {
12688 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12689 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
12690 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12691 dw2_asm_output_nstring (buffer, -1, "The macro");
12692 }
12693 }
12694
12695 /* Set up for Dwarf output at the start of compilation. */
12696
12697 static void
12698 dwarf2out_init (input_filename)
12699 const char *input_filename ATTRIBUTE_UNUSED;
12700 {
12701 init_file_table ();
12702
12703 /* Allocate the initial hunk of the decl_die_table. */
12704 decl_die_table = ggc_alloc_cleared (DECL_DIE_TABLE_INCREMENT
12705 * sizeof (dw_die_ref));
12706 decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
12707 decl_die_table_in_use = 0;
12708
12709 /* Allocate the initial hunk of the decl_scope_table. */
12710 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
12711
12712 /* Allocate the initial hunk of the abbrev_die_table. */
12713 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
12714 * sizeof (dw_die_ref));
12715 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
12716 /* Zero-th entry is allocated, but unused */
12717 abbrev_die_table_in_use = 1;
12718
12719 /* Allocate the initial hunk of the line_info_table. */
12720 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
12721 * sizeof (dw_line_info_entry));
12722 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
12723
12724 /* Zero-th entry is allocated, but unused */
12725 line_info_table_in_use = 1;
12726
12727 /* Generate the initial DIE for the .debug section. Note that the (string)
12728 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
12729 will (typically) be a relative pathname and that this pathname should be
12730 taken as being relative to the directory from which the compiler was
12731 invoked when the given (base) source file was compiled. We will fill
12732 in this value in dwarf2out_finish. */
12733 comp_unit_die = gen_compile_unit_die (NULL);
12734 is_main_source = 1;
12735
12736 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
12737
12738 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
12739
12740 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
12741 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
12742 DEBUG_ABBREV_SECTION_LABEL, 0);
12743 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12744 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
12745 else
12746 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
12747
12748 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
12749 DEBUG_INFO_SECTION_LABEL, 0);
12750 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
12751 DEBUG_LINE_SECTION_LABEL, 0);
12752 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
12753 DEBUG_RANGES_SECTION_LABEL, 0);
12754 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12755 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
12756 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
12757 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
12758 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12759 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
12760
12761 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12762 {
12763 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12764 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
12765 DEBUG_MACINFO_SECTION_LABEL, 0);
12766 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
12767 }
12768
12769 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12770 {
12771 text_section ();
12772 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
12773 }
12774 }
12775
12776 /* A helper function for dwarf2out_finish called through
12777 ht_forall. Emit one queued .debug_str string. */
12778
12779 static int
12780 output_indirect_string (h, v)
12781 void **h;
12782 void *v ATTRIBUTE_UNUSED;
12783 {
12784 struct indirect_string_node *node = (struct indirect_string_node *) *h;
12785
12786 if (node->form == DW_FORM_strp)
12787 {
12788 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
12789 ASM_OUTPUT_LABEL (asm_out_file, node->label);
12790 assemble_string (node->str, strlen (node->str) + 1);
12791 }
12792
12793 return 1;
12794 }
12795
12796
12797
12798 /* Clear the marks for a die and its children.
12799 Be cool if the mark isn't set. */
12800
12801 static void
12802 prune_unmark_dies (die)
12803 dw_die_ref die;
12804 {
12805 dw_die_ref c;
12806 die->die_mark = 0;
12807 for (c = die->die_child; c; c = c->die_sib)
12808 prune_unmark_dies (c);
12809 }
12810
12811
12812 /* Given DIE that we're marking as used, find any other dies
12813 it references as attributes and mark them as used. */
12814
12815 static void
12816 prune_unused_types_walk_attribs (die)
12817 dw_die_ref die;
12818 {
12819 dw_attr_ref a;
12820
12821 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
12822 {
12823 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
12824 {
12825 /* A reference to another DIE.
12826 Make sure that it will get emitted. */
12827 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
12828 }
12829 else if (a->dw_attr == DW_AT_decl_file)
12830 {
12831 /* A reference to a file. Make sure the file name is emitted. */
12832 a->dw_attr_val.v.val_unsigned =
12833 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
12834 }
12835 }
12836 }
12837
12838
12839 /* Mark DIE as being used. If DOKIDS is true, then walk down
12840 to DIE's children. */
12841
12842 static void
12843 prune_unused_types_mark (die, dokids)
12844 dw_die_ref die;
12845 int dokids;
12846 {
12847 dw_die_ref c;
12848
12849 if (die->die_mark == 0)
12850 {
12851 /* We haven't done this node yet. Mark it as used. */
12852 die->die_mark = 1;
12853
12854 /* We also have to mark its parents as used.
12855 (But we don't want to mark our parents' kids due to this.) */
12856 if (die->die_parent)
12857 prune_unused_types_mark (die->die_parent, 0);
12858
12859 /* Mark any referenced nodes. */
12860 prune_unused_types_walk_attribs (die);
12861 }
12862
12863 if (dokids && die->die_mark != 2)
12864 {
12865 /* We need to walk the children, but haven't done so yet.
12866 Remember that we've walked the kids. */
12867 die->die_mark = 2;
12868
12869 /* Walk them. */
12870 for (c = die->die_child; c; c = c->die_sib)
12871 {
12872 /* If this is an array type, we need to make sure our
12873 kids get marked, even if they're types. */
12874 if (die->die_tag == DW_TAG_array_type)
12875 prune_unused_types_mark (c, 1);
12876 else
12877 prune_unused_types_walk (c);
12878 }
12879 }
12880 }
12881
12882
12883 /* Walk the tree DIE and mark types that we actually use. */
12884
12885 static void
12886 prune_unused_types_walk (die)
12887 dw_die_ref die;
12888 {
12889 dw_die_ref c;
12890
12891 /* Don't do anything if this node is already marked. */
12892 if (die->die_mark)
12893 return;
12894
12895 switch (die->die_tag) {
12896 case DW_TAG_const_type:
12897 case DW_TAG_packed_type:
12898 case DW_TAG_pointer_type:
12899 case DW_TAG_reference_type:
12900 case DW_TAG_volatile_type:
12901 case DW_TAG_typedef:
12902 case DW_TAG_array_type:
12903 case DW_TAG_structure_type:
12904 case DW_TAG_union_type:
12905 case DW_TAG_class_type:
12906 case DW_TAG_friend:
12907 case DW_TAG_variant_part:
12908 case DW_TAG_enumeration_type:
12909 case DW_TAG_subroutine_type:
12910 case DW_TAG_string_type:
12911 case DW_TAG_set_type:
12912 case DW_TAG_subrange_type:
12913 case DW_TAG_ptr_to_member_type:
12914 case DW_TAG_file_type:
12915 /* It's a type node --- don't mark it. */
12916 return;
12917
12918 default:
12919 /* Mark everything else. */
12920 break;
12921 }
12922
12923 die->die_mark = 1;
12924
12925 /* Now, mark any dies referenced from here. */
12926 prune_unused_types_walk_attribs (die);
12927
12928 /* Mark children. */
12929 for (c = die->die_child; c; c = c->die_sib)
12930 prune_unused_types_walk (c);
12931 }
12932
12933
12934 /* Remove from the tree DIE any dies that aren't marked. */
12935
12936 static void
12937 prune_unused_types_prune (die)
12938 dw_die_ref die;
12939 {
12940 dw_die_ref c, p, n;
12941 if (!die->die_mark)
12942 abort();
12943
12944 p = NULL;
12945 for (c = die->die_child; c; c = n)
12946 {
12947 n = c->die_sib;
12948 if (c->die_mark)
12949 {
12950 prune_unused_types_prune (c);
12951 p = c;
12952 }
12953 else
12954 {
12955 if (p)
12956 p->die_sib = n;
12957 else
12958 die->die_child = n;
12959 free_die (c);
12960 }
12961 }
12962 }
12963
12964
12965 /* Remove dies representing declarations that we never use. */
12966
12967 static void
12968 prune_unused_types ()
12969 {
12970 unsigned int i;
12971 limbo_die_node *node;
12972
12973 /* Clear all the marks. */
12974 prune_unmark_dies (comp_unit_die);
12975 for (node = limbo_die_list; node; node = node->next)
12976 prune_unmark_dies (node->die);
12977
12978 /* Set the mark on nodes that are actually used. */
12979 prune_unused_types_walk (comp_unit_die);
12980 for (node = limbo_die_list; node; node = node->next)
12981 prune_unused_types_walk (node->die);
12982
12983 /* Also set the mark on nodes referenced from the
12984 pubname_table or arange_table. */
12985 for (i = 0; i < pubname_table_in_use; i++)
12986 prune_unused_types_mark (pubname_table[i].die, 1);
12987 for (i = 0; i < arange_table_in_use; i++)
12988 prune_unused_types_mark (arange_table[i], 1);
12989
12990 /* Get rid of nodes that aren't marked. */
12991 prune_unused_types_prune (comp_unit_die);
12992 for (node = limbo_die_list; node; node = node->next)
12993 prune_unused_types_prune (node->die);
12994
12995 /* Leave the marks clear. */
12996 prune_unmark_dies (comp_unit_die);
12997 for (node = limbo_die_list; node; node = node->next)
12998 prune_unmark_dies (node->die);
12999 }
13000
13001 /* Output stuff that dwarf requires at the end of every file,
13002 and generate the DWARF-2 debugging info. */
13003
13004 static void
13005 dwarf2out_finish (input_filename)
13006 const char *input_filename;
13007 {
13008 limbo_die_node *node, *next_node;
13009 dw_die_ref die = 0;
13010
13011 /* Add the name for the main input file now. We delayed this from
13012 dwarf2out_init to avoid complications with PCH. */
13013 add_name_attribute (comp_unit_die, input_filename);
13014 if (input_filename[0] != DIR_SEPARATOR)
13015 add_comp_dir_attribute (comp_unit_die);
13016 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13017 {
13018 size_t i;
13019 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13020 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR)
13021 {
13022 add_comp_dir_attribute (comp_unit_die);
13023 break;
13024 }
13025 }
13026
13027 /* Traverse the limbo die list, and add parent/child links. The only
13028 dies without parents that should be here are concrete instances of
13029 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13030 For concrete instances, we can get the parent die from the abstract
13031 instance. */
13032 for (node = limbo_die_list; node; node = next_node)
13033 {
13034 next_node = node->next;
13035 die = node->die;
13036
13037 if (die->die_parent == NULL)
13038 {
13039 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13040 tree context;
13041
13042 if (origin)
13043 add_child_die (origin->die_parent, die);
13044 else if (die == comp_unit_die)
13045 ;
13046 /* If this was an expression for a bound involved in a function
13047 return type, it may be a SAVE_EXPR for which we weren't able
13048 to find a DIE previously. So try now. */
13049 else if (node->created_for
13050 && TREE_CODE (node->created_for) == SAVE_EXPR
13051 && 0 != (origin = (lookup_decl_die
13052 (SAVE_EXPR_CONTEXT
13053 (node->created_for)))))
13054 add_child_die (origin, die);
13055 else if (errorcount > 0 || sorrycount > 0)
13056 /* It's OK to be confused by errors in the input. */
13057 add_child_die (comp_unit_die, die);
13058 else if (node->created_for
13059 && ((DECL_P (node->created_for)
13060 && (context = DECL_CONTEXT (node->created_for)))
13061 || (TYPE_P (node->created_for)
13062 && (context = TYPE_CONTEXT (node->created_for))))
13063 && TREE_CODE (context) == FUNCTION_DECL)
13064 {
13065 /* In certain situations, the lexical block containing a
13066 nested function can be optimized away, which results
13067 in the nested function die being orphaned. Likewise
13068 with the return type of that nested function. Force
13069 this to be a child of the containing function. */
13070 origin = lookup_decl_die (context);
13071 if (! origin)
13072 abort ();
13073 add_child_die (origin, die);
13074 }
13075 else
13076 abort ();
13077 }
13078 }
13079
13080 limbo_die_list = NULL;
13081
13082 /* Walk through the list of incomplete types again, trying once more to
13083 emit full debugging info for them. */
13084 retry_incomplete_types ();
13085
13086 /* We need to reverse all the dies before break_out_includes, or
13087 we'll see the end of an include file before the beginning. */
13088 reverse_all_dies (comp_unit_die);
13089
13090 if (flag_eliminate_unused_debug_types)
13091 prune_unused_types ();
13092
13093 /* Generate separate CUs for each of the include files we've seen.
13094 They will go into limbo_die_list. */
13095 if (flag_eliminate_dwarf2_dups)
13096 break_out_includes (comp_unit_die);
13097
13098 /* Traverse the DIE's and add add sibling attributes to those DIE's
13099 that have children. */
13100 add_sibling_attributes (comp_unit_die);
13101 for (node = limbo_die_list; node; node = node->next)
13102 add_sibling_attributes (node->die);
13103
13104 /* Output a terminator label for the .text section. */
13105 text_section ();
13106 (*targetm.asm_out.internal_label) (asm_out_file, TEXT_END_LABEL, 0);
13107
13108 /* Output the source line correspondence table. We must do this
13109 even if there is no line information. Otherwise, on an empty
13110 translation unit, we will generate a present, but empty,
13111 .debug_info section. IRIX 6.5 `nm' will then complain when
13112 examining the file. */
13113 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13114 {
13115 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13116 output_line_info ();
13117 }
13118
13119 /* Output location list section if necessary. */
13120 if (have_location_lists)
13121 {
13122 /* Output the location lists info. */
13123 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13124 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13125 DEBUG_LOC_SECTION_LABEL, 0);
13126 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13127 output_location_lists (die);
13128 have_location_lists = 0;
13129 }
13130
13131 /* We can only use the low/high_pc attributes if all of the code was
13132 in .text. */
13133 if (separate_line_info_table_in_use == 0)
13134 {
13135 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13136 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13137 }
13138
13139 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13140 "base address". Use zero so that these addresses become absolute. */
13141 else if (have_location_lists || ranges_table_in_use)
13142 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13143
13144 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13145 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13146 debug_line_section_label);
13147
13148 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13149 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13150
13151 /* Output all of the compilation units. We put the main one last so that
13152 the offsets are available to output_pubnames. */
13153 for (node = limbo_die_list; node; node = node->next)
13154 output_comp_unit (node->die, 0);
13155
13156 output_comp_unit (comp_unit_die, 0);
13157
13158 /* Output the abbreviation table. */
13159 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13160 output_abbrev_section ();
13161
13162 /* Output public names table if necessary. */
13163 if (pubname_table_in_use)
13164 {
13165 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13166 output_pubnames ();
13167 }
13168
13169 /* Output the address range information. We only put functions in the arange
13170 table, so don't write it out if we don't have any. */
13171 if (fde_table_in_use)
13172 {
13173 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13174 output_aranges ();
13175 }
13176
13177 /* Output ranges section if necessary. */
13178 if (ranges_table_in_use)
13179 {
13180 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13181 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13182 output_ranges ();
13183 }
13184
13185 /* Have to end the primary source file. */
13186 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13187 {
13188 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13189 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13190 dw2_asm_output_data (1, 0, "End compilation unit");
13191 }
13192
13193 /* If we emitted any DW_FORM_strp form attribute, output the string
13194 table too. */
13195 if (debug_str_hash)
13196 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13197 }
13198 #else
13199
13200 /* This should never be used, but its address is needed for comparisons. */
13201 const struct gcc_debug_hooks dwarf2_debug_hooks;
13202
13203 #endif /* DWARF2_DEBUGGING_INFO */
13204
13205 #include "gt-dwarf2out.h"