varasm.c (default_exception_section): Move to...
[gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "tree.h"
40 #include "flags.h"
41 #include "real.h"
42 #include "rtl.h"
43 #include "hard-reg-set.h"
44 #include "regs.h"
45 #include "insn-config.h"
46 #include "reload.h"
47 #include "function.h"
48 #include "output.h"
49 #include "expr.h"
50 #include "libfuncs.h"
51 #include "except.h"
52 #include "dwarf2.h"
53 #include "dwarf2out.h"
54 #include "dwarf2asm.h"
55 #include "toplev.h"
56 #include "varray.h"
57 #include "ggc.h"
58 #include "md5.h"
59 #include "tm_p.h"
60 #include "diagnostic.h"
61 #include "debug.h"
62 #include "target.h"
63 #include "langhooks.h"
64 #include "hashtable.h"
65 #include "hashtab.h"
66
67 #ifdef DWARF2_DEBUGGING_INFO
68 static void dwarf2out_source_line PARAMS ((unsigned int, const char *));
69 #endif
70
71 /* DWARF2 Abbreviation Glossary:
72 CFA = Canonical Frame Address
73 a fixed address on the stack which identifies a call frame.
74 We define it to be the value of SP just before the call insn.
75 The CFA register and offset, which may change during the course
76 of the function, are used to calculate its value at runtime.
77 CFI = Call Frame Instruction
78 an instruction for the DWARF2 abstract machine
79 CIE = Common Information Entry
80 information describing information common to one or more FDEs
81 DIE = Debugging Information Entry
82 FDE = Frame Description Entry
83 information describing the stack call frame, in particular,
84 how to restore registers
85
86 DW_CFA_... = DWARF2 CFA call frame instruction
87 DW_TAG_... = DWARF2 DIE tag */
88
89 /* Decide whether we want to emit frame unwind information for the current
90 translation unit. */
91
92 int
93 dwarf2out_do_frame ()
94 {
95 return (write_symbols == DWARF2_DEBUG
96 || write_symbols == VMS_AND_DWARF2_DEBUG
97 #ifdef DWARF2_FRAME_INFO
98 || DWARF2_FRAME_INFO
99 #endif
100 #ifdef DWARF2_UNWIND_INFO
101 || flag_unwind_tables
102 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
103 #endif
104 );
105 }
106
107 /* The size of the target's pointer type. */
108 #ifndef PTR_SIZE
109 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
110 #endif
111
112 /* Default version of targetm.eh_frame_section. Note this must appear
113 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro
114 guards. */
115
116 void
117 default_eh_frame_section ()
118 {
119 #ifdef EH_FRAME_SECTION_NAME
120 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
121 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
122 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
123 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
124 int flags;
125
126 flags = (! flag_pic
127 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
128 && (fde_encoding & 0x70) != DW_EH_PE_aligned
129 && (per_encoding & 0x70) != DW_EH_PE_absptr
130 && (per_encoding & 0x70) != DW_EH_PE_aligned
131 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
132 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
133 ? 0 : SECTION_WRITE;
134 named_section_flags (EH_FRAME_SECTION_NAME, flags);
135 #else
136 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
137 #endif
138 #else
139 tree label = get_file_function_name ('F');
140
141 data_section ();
142 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
143 (*targetm.asm_out.globalize_label) (asm_out_file, IDENTIFIER_POINTER (label));
144 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
145 #endif
146 }
147
148 /* Array of RTXes referenced by the debugging information, which therefore
149 must be kept around forever. */
150 static GTY(()) varray_type used_rtx_varray;
151
152 /* A pointer to the base of a list of incomplete types which might be
153 completed at some later time. incomplete_types_list needs to be a VARRAY
154 because we want to tell the garbage collector about it. */
155 static GTY(()) varray_type incomplete_types;
156
157 /* A pointer to the base of a table of references to declaration
158 scopes. This table is a display which tracks the nesting
159 of declaration scopes at the current scope and containing
160 scopes. This table is used to find the proper place to
161 define type declaration DIE's. */
162 static GTY(()) varray_type decl_scope_table;
163
164 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
165
166 /* How to start an assembler comment. */
167 #ifndef ASM_COMMENT_START
168 #define ASM_COMMENT_START ";#"
169 #endif
170
171 typedef struct dw_cfi_struct *dw_cfi_ref;
172 typedef struct dw_fde_struct *dw_fde_ref;
173 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
174
175 /* Call frames are described using a sequence of Call Frame
176 Information instructions. The register number, offset
177 and address fields are provided as possible operands;
178 their use is selected by the opcode field. */
179
180 typedef union dw_cfi_oprnd_struct
181 {
182 unsigned long dw_cfi_reg_num;
183 long int dw_cfi_offset;
184 const char *dw_cfi_addr;
185 struct dw_loc_descr_struct *dw_cfi_loc;
186 }
187 dw_cfi_oprnd;
188
189 typedef struct dw_cfi_struct
190 {
191 dw_cfi_ref dw_cfi_next;
192 enum dwarf_call_frame_info dw_cfi_opc;
193 dw_cfi_oprnd dw_cfi_oprnd1;
194 dw_cfi_oprnd dw_cfi_oprnd2;
195 }
196 dw_cfi_node;
197
198 /* This is how we define the location of the CFA. We use to handle it
199 as REG + OFFSET all the time, but now it can be more complex.
200 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
201 Instead of passing around REG and OFFSET, we pass a copy
202 of this structure. */
203 typedef struct cfa_loc
204 {
205 unsigned long reg;
206 long offset;
207 long base_offset;
208 int indirect; /* 1 if CFA is accessed via a dereference. */
209 } dw_cfa_location;
210
211 /* All call frame descriptions (FDE's) in the GCC generated DWARF
212 refer to a single Common Information Entry (CIE), defined at
213 the beginning of the .debug_frame section. This use of a single
214 CIE obviates the need to keep track of multiple CIE's
215 in the DWARF generation routines below. */
216
217 typedef struct dw_fde_struct
218 {
219 const char *dw_fde_begin;
220 const char *dw_fde_current_label;
221 const char *dw_fde_end;
222 dw_cfi_ref dw_fde_cfi;
223 unsigned funcdef_number;
224 unsigned all_throwers_are_sibcalls : 1;
225 unsigned nothrow : 1;
226 unsigned uses_eh_lsda : 1;
227 }
228 dw_fde_node;
229
230 /* Maximum size (in bytes) of an artificially generated label. */
231 #define MAX_ARTIFICIAL_LABEL_BYTES 30
232
233 /* The size of addresses as they appear in the Dwarf 2 data.
234 Some architectures use word addresses to refer to code locations,
235 but Dwarf 2 info always uses byte addresses. On such machines,
236 Dwarf 2 addresses need to be larger than the architecture's
237 pointers. */
238 #ifndef DWARF2_ADDR_SIZE
239 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
240 #endif
241
242 /* The size in bytes of a DWARF field indicating an offset or length
243 relative to a debug info section, specified to be 4 bytes in the
244 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
245 as PTR_SIZE. */
246
247 #ifndef DWARF_OFFSET_SIZE
248 #define DWARF_OFFSET_SIZE 4
249 #endif
250
251 #define DWARF_VERSION 2
252
253 /* Round SIZE up to the nearest BOUNDARY. */
254 #define DWARF_ROUND(SIZE,BOUNDARY) \
255 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
256
257 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
258 #ifndef DWARF_CIE_DATA_ALIGNMENT
259 #ifdef STACK_GROWS_DOWNWARD
260 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
261 #else
262 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
263 #endif
264 #endif
265
266 /* A pointer to the base of a table that contains frame description
267 information for each routine. */
268 static dw_fde_ref fde_table;
269
270 /* Number of elements currently allocated for fde_table. */
271 static unsigned fde_table_allocated;
272
273 /* Number of elements in fde_table currently in use. */
274 static unsigned fde_table_in_use;
275
276 /* Size (in elements) of increments by which we may expand the
277 fde_table. */
278 #define FDE_TABLE_INCREMENT 256
279
280 /* A list of call frame insns for the CIE. */
281 static dw_cfi_ref cie_cfi_head;
282
283 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
284 attribute that accelerates the lookup of the FDE associated
285 with the subprogram. This variable holds the table index of the FDE
286 associated with the current function (body) definition. */
287 static unsigned current_funcdef_fde;
288
289 struct ht *debug_str_hash;
290
291 struct indirect_string_node
292 {
293 struct ht_identifier id;
294 unsigned int refcount;
295 unsigned int form;
296 char *label;
297 };
298
299 /* Forward declarations for functions defined in this file. */
300
301 static char *stripattributes PARAMS ((const char *));
302 static const char *dwarf_cfi_name PARAMS ((unsigned));
303 static dw_cfi_ref new_cfi PARAMS ((void));
304 static void add_cfi PARAMS ((dw_cfi_ref *, dw_cfi_ref));
305 static void add_fde_cfi PARAMS ((const char *, dw_cfi_ref));
306 static void lookup_cfa_1 PARAMS ((dw_cfi_ref,
307 dw_cfa_location *));
308 static void lookup_cfa PARAMS ((dw_cfa_location *));
309 static void reg_save PARAMS ((const char *, unsigned,
310 unsigned, long));
311 static void initial_return_save PARAMS ((rtx));
312 static long stack_adjust_offset PARAMS ((rtx));
313 static void output_cfi PARAMS ((dw_cfi_ref, dw_fde_ref, int));
314 static void output_call_frame_info PARAMS ((int));
315 static void dwarf2out_stack_adjust PARAMS ((rtx));
316 static void queue_reg_save PARAMS ((const char *, rtx, long));
317 static void flush_queued_reg_saves PARAMS ((void));
318 static bool clobbers_queued_reg_save PARAMS ((rtx));
319 static void dwarf2out_frame_debug_expr PARAMS ((rtx, const char *));
320
321 /* Support for complex CFA locations. */
322 static void output_cfa_loc PARAMS ((dw_cfi_ref));
323 static void get_cfa_from_loc_descr PARAMS ((dw_cfa_location *,
324 struct dw_loc_descr_struct *));
325 static struct dw_loc_descr_struct *build_cfa_loc
326 PARAMS ((dw_cfa_location *));
327 static void def_cfa_1 PARAMS ((const char *,
328 dw_cfa_location *));
329
330 /* How to start an assembler comment. */
331 #ifndef ASM_COMMENT_START
332 #define ASM_COMMENT_START ";#"
333 #endif
334
335 /* Data and reference forms for relocatable data. */
336 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
337 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
338
339 #ifndef DEBUG_FRAME_SECTION
340 #define DEBUG_FRAME_SECTION ".debug_frame"
341 #endif
342
343 #ifndef FUNC_BEGIN_LABEL
344 #define FUNC_BEGIN_LABEL "LFB"
345 #endif
346
347 #ifndef FUNC_END_LABEL
348 #define FUNC_END_LABEL "LFE"
349 #endif
350
351 #define FRAME_BEGIN_LABEL "Lframe"
352 #define CIE_AFTER_SIZE_LABEL "LSCIE"
353 #define CIE_END_LABEL "LECIE"
354 #define FDE_LABEL "LSFDE"
355 #define FDE_AFTER_SIZE_LABEL "LASFDE"
356 #define FDE_END_LABEL "LEFDE"
357 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
358 #define LINE_NUMBER_END_LABEL "LELT"
359 #define LN_PROLOG_AS_LABEL "LASLTP"
360 #define LN_PROLOG_END_LABEL "LELTP"
361 #define DIE_LABEL_PREFIX "DW"
362
363 /* The DWARF 2 CFA column which tracks the return address. Normally this
364 is the column for PC, or the first column after all of the hard
365 registers. */
366 #ifndef DWARF_FRAME_RETURN_COLUMN
367 #ifdef PC_REGNUM
368 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
369 #else
370 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
371 #endif
372 #endif
373
374 /* The mapping from gcc register number to DWARF 2 CFA column number. By
375 default, we just provide columns for all registers. */
376 #ifndef DWARF_FRAME_REGNUM
377 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
378 #endif
379
380 /* The offset from the incoming value of %sp to the top of the stack frame
381 for the current function. */
382 #ifndef INCOMING_FRAME_SP_OFFSET
383 #define INCOMING_FRAME_SP_OFFSET 0
384 #endif
385 \f
386 /* Hook used by __throw. */
387
388 rtx
389 expand_builtin_dwarf_fp_regnum ()
390 {
391 return GEN_INT (DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM));
392 }
393
394 /* Return a pointer to a copy of the section string name S with all
395 attributes stripped off, and an asterisk prepended (for assemble_name). */
396
397 static inline char *
398 stripattributes (s)
399 const char *s;
400 {
401 char *stripped = xmalloc (strlen (s) + 2);
402 char *p = stripped;
403
404 *p++ = '*';
405
406 while (*s && *s != ',')
407 *p++ = *s++;
408
409 *p = '\0';
410 return stripped;
411 }
412
413 /* Generate code to initialize the register size table. */
414
415 void
416 expand_builtin_init_dwarf_reg_sizes (address)
417 tree address;
418 {
419 int i;
420 enum machine_mode mode = TYPE_MODE (char_type_node);
421 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
422 rtx mem = gen_rtx_MEM (BLKmode, addr);
423
424 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
425 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
426 {
427 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
428 HOST_WIDE_INT size = GET_MODE_SIZE (reg_raw_mode[i]);
429
430 if (offset < 0)
431 continue;
432
433 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
434 }
435 }
436
437 /* Convert a DWARF call frame info. operation to its string name */
438
439 static const char *
440 dwarf_cfi_name (cfi_opc)
441 unsigned cfi_opc;
442 {
443 switch (cfi_opc)
444 {
445 case DW_CFA_advance_loc:
446 return "DW_CFA_advance_loc";
447 case DW_CFA_offset:
448 return "DW_CFA_offset";
449 case DW_CFA_restore:
450 return "DW_CFA_restore";
451 case DW_CFA_nop:
452 return "DW_CFA_nop";
453 case DW_CFA_set_loc:
454 return "DW_CFA_set_loc";
455 case DW_CFA_advance_loc1:
456 return "DW_CFA_advance_loc1";
457 case DW_CFA_advance_loc2:
458 return "DW_CFA_advance_loc2";
459 case DW_CFA_advance_loc4:
460 return "DW_CFA_advance_loc4";
461 case DW_CFA_offset_extended:
462 return "DW_CFA_offset_extended";
463 case DW_CFA_restore_extended:
464 return "DW_CFA_restore_extended";
465 case DW_CFA_undefined:
466 return "DW_CFA_undefined";
467 case DW_CFA_same_value:
468 return "DW_CFA_same_value";
469 case DW_CFA_register:
470 return "DW_CFA_register";
471 case DW_CFA_remember_state:
472 return "DW_CFA_remember_state";
473 case DW_CFA_restore_state:
474 return "DW_CFA_restore_state";
475 case DW_CFA_def_cfa:
476 return "DW_CFA_def_cfa";
477 case DW_CFA_def_cfa_register:
478 return "DW_CFA_def_cfa_register";
479 case DW_CFA_def_cfa_offset:
480 return "DW_CFA_def_cfa_offset";
481
482 /* DWARF 3 */
483 case DW_CFA_def_cfa_expression:
484 return "DW_CFA_def_cfa_expression";
485 case DW_CFA_expression:
486 return "DW_CFA_expression";
487 case DW_CFA_offset_extended_sf:
488 return "DW_CFA_offset_extended_sf";
489 case DW_CFA_def_cfa_sf:
490 return "DW_CFA_def_cfa_sf";
491 case DW_CFA_def_cfa_offset_sf:
492 return "DW_CFA_def_cfa_offset_sf";
493
494 /* SGI/MIPS specific */
495 case DW_CFA_MIPS_advance_loc8:
496 return "DW_CFA_MIPS_advance_loc8";
497
498 /* GNU extensions */
499 case DW_CFA_GNU_window_save:
500 return "DW_CFA_GNU_window_save";
501 case DW_CFA_GNU_args_size:
502 return "DW_CFA_GNU_args_size";
503 case DW_CFA_GNU_negative_offset_extended:
504 return "DW_CFA_GNU_negative_offset_extended";
505
506 default:
507 return "DW_CFA_<unknown>";
508 }
509 }
510
511 /* Return a pointer to a newly allocated Call Frame Instruction. */
512
513 static inline dw_cfi_ref
514 new_cfi ()
515 {
516 dw_cfi_ref cfi = (dw_cfi_ref) xmalloc (sizeof (dw_cfi_node));
517
518 cfi->dw_cfi_next = NULL;
519 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
520 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
521
522 return cfi;
523 }
524
525 /* Add a Call Frame Instruction to list of instructions. */
526
527 static inline void
528 add_cfi (list_head, cfi)
529 dw_cfi_ref *list_head;
530 dw_cfi_ref cfi;
531 {
532 dw_cfi_ref *p;
533
534 /* Find the end of the chain. */
535 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
536 ;
537
538 *p = cfi;
539 }
540
541 /* Generate a new label for the CFI info to refer to. */
542
543 char *
544 dwarf2out_cfi_label ()
545 {
546 static char label[20];
547 static unsigned long label_num = 0;
548
549 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", label_num++);
550 ASM_OUTPUT_LABEL (asm_out_file, label);
551 return label;
552 }
553
554 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
555 or to the CIE if LABEL is NULL. */
556
557 static void
558 add_fde_cfi (label, cfi)
559 const char *label;
560 dw_cfi_ref cfi;
561 {
562 if (label)
563 {
564 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
565
566 if (*label == 0)
567 label = dwarf2out_cfi_label ();
568
569 if (fde->dw_fde_current_label == NULL
570 || strcmp (label, fde->dw_fde_current_label) != 0)
571 {
572 dw_cfi_ref xcfi;
573
574 fde->dw_fde_current_label = label = xstrdup (label);
575
576 /* Set the location counter to the new label. */
577 xcfi = new_cfi ();
578 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
579 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
580 add_cfi (&fde->dw_fde_cfi, xcfi);
581 }
582
583 add_cfi (&fde->dw_fde_cfi, cfi);
584 }
585
586 else
587 add_cfi (&cie_cfi_head, cfi);
588 }
589
590 /* Subroutine of lookup_cfa. */
591
592 static inline void
593 lookup_cfa_1 (cfi, loc)
594 dw_cfi_ref cfi;
595 dw_cfa_location *loc;
596 {
597 switch (cfi->dw_cfi_opc)
598 {
599 case DW_CFA_def_cfa_offset:
600 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
601 break;
602 case DW_CFA_def_cfa_register:
603 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
604 break;
605 case DW_CFA_def_cfa:
606 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
607 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
608 break;
609 case DW_CFA_def_cfa_expression:
610 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
611 break;
612 default:
613 break;
614 }
615 }
616
617 /* Find the previous value for the CFA. */
618
619 static void
620 lookup_cfa (loc)
621 dw_cfa_location *loc;
622 {
623 dw_cfi_ref cfi;
624
625 loc->reg = (unsigned long) -1;
626 loc->offset = 0;
627 loc->indirect = 0;
628 loc->base_offset = 0;
629
630 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
631 lookup_cfa_1 (cfi, loc);
632
633 if (fde_table_in_use)
634 {
635 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
636 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
637 lookup_cfa_1 (cfi, loc);
638 }
639 }
640
641 /* The current rule for calculating the DWARF2 canonical frame address. */
642 static dw_cfa_location cfa;
643
644 /* The register used for saving registers to the stack, and its offset
645 from the CFA. */
646 static dw_cfa_location cfa_store;
647
648 /* The running total of the size of arguments pushed onto the stack. */
649 static long args_size;
650
651 /* The last args_size we actually output. */
652 static long old_args_size;
653
654 /* Entry point to update the canonical frame address (CFA).
655 LABEL is passed to add_fde_cfi. The value of CFA is now to be
656 calculated from REG+OFFSET. */
657
658 void
659 dwarf2out_def_cfa (label, reg, offset)
660 const char *label;
661 unsigned reg;
662 long offset;
663 {
664 dw_cfa_location loc;
665 loc.indirect = 0;
666 loc.base_offset = 0;
667 loc.reg = reg;
668 loc.offset = offset;
669 def_cfa_1 (label, &loc);
670 }
671
672 /* This routine does the actual work. The CFA is now calculated from
673 the dw_cfa_location structure. */
674
675 static void
676 def_cfa_1 (label, loc_p)
677 const char *label;
678 dw_cfa_location *loc_p;
679 {
680 dw_cfi_ref cfi;
681 dw_cfa_location old_cfa, loc;
682
683 cfa = *loc_p;
684 loc = *loc_p;
685
686 if (cfa_store.reg == loc.reg && loc.indirect == 0)
687 cfa_store.offset = loc.offset;
688
689 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
690 lookup_cfa (&old_cfa);
691
692 /* If nothing changed, no need to issue any call frame instructions. */
693 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
694 && loc.indirect == old_cfa.indirect
695 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
696 return;
697
698 cfi = new_cfi ();
699
700 if (loc.reg == old_cfa.reg && !loc.indirect)
701 {
702 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
703 indicating the CFA register did not change but the offset
704 did. */
705 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
706 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
707 }
708
709 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
710 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
711 && !loc.indirect)
712 {
713 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
714 indicating the CFA register has changed to <register> but the
715 offset has not changed. */
716 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
717 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
718 }
719 #endif
720
721 else if (loc.indirect == 0)
722 {
723 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
724 indicating the CFA register has changed to <register> with
725 the specified offset. */
726 cfi->dw_cfi_opc = DW_CFA_def_cfa;
727 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
728 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
729 }
730 else
731 {
732 /* Construct a DW_CFA_def_cfa_expression instruction to
733 calculate the CFA using a full location expression since no
734 register-offset pair is available. */
735 struct dw_loc_descr_struct *loc_list;
736
737 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
738 loc_list = build_cfa_loc (&loc);
739 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
740 }
741
742 add_fde_cfi (label, cfi);
743 }
744
745 /* Add the CFI for saving a register. REG is the CFA column number.
746 LABEL is passed to add_fde_cfi.
747 If SREG is -1, the register is saved at OFFSET from the CFA;
748 otherwise it is saved in SREG. */
749
750 static void
751 reg_save (label, reg, sreg, offset)
752 const char *label;
753 unsigned reg;
754 unsigned sreg;
755 long offset;
756 {
757 dw_cfi_ref cfi = new_cfi ();
758
759 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
760
761 /* The following comparison is correct. -1 is used to indicate that
762 the value isn't a register number. */
763 if (sreg == (unsigned int) -1)
764 {
765 if (reg & ~0x3f)
766 /* The register number won't fit in 6 bits, so we have to use
767 the long form. */
768 cfi->dw_cfi_opc = DW_CFA_offset_extended;
769 else
770 cfi->dw_cfi_opc = DW_CFA_offset;
771
772 #ifdef ENABLE_CHECKING
773 {
774 /* If we get an offset that is not a multiple of
775 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
776 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
777 description. */
778 long check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
779
780 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
781 abort ();
782 }
783 #endif
784 offset /= DWARF_CIE_DATA_ALIGNMENT;
785 if (offset < 0)
786 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
787
788 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
789 }
790 else if (sreg == reg)
791 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
792 return;
793 else
794 {
795 cfi->dw_cfi_opc = DW_CFA_register;
796 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
797 }
798
799 add_fde_cfi (label, cfi);
800 }
801
802 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
803 This CFI tells the unwinder that it needs to restore the window registers
804 from the previous frame's window save area.
805
806 ??? Perhaps we should note in the CIE where windows are saved (instead of
807 assuming 0(cfa)) and what registers are in the window. */
808
809 void
810 dwarf2out_window_save (label)
811 const char *label;
812 {
813 dw_cfi_ref cfi = new_cfi ();
814
815 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
816 add_fde_cfi (label, cfi);
817 }
818
819 /* Add a CFI to update the running total of the size of arguments
820 pushed onto the stack. */
821
822 void
823 dwarf2out_args_size (label, size)
824 const char *label;
825 long size;
826 {
827 dw_cfi_ref cfi;
828
829 if (size == old_args_size)
830 return;
831
832 old_args_size = size;
833
834 cfi = new_cfi ();
835 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
836 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
837 add_fde_cfi (label, cfi);
838 }
839
840 /* Entry point for saving a register to the stack. REG is the GCC register
841 number. LABEL and OFFSET are passed to reg_save. */
842
843 void
844 dwarf2out_reg_save (label, reg, offset)
845 const char *label;
846 unsigned reg;
847 long offset;
848 {
849 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
850 }
851
852 /* Entry point for saving the return address in the stack.
853 LABEL and OFFSET are passed to reg_save. */
854
855 void
856 dwarf2out_return_save (label, offset)
857 const char *label;
858 long offset;
859 {
860 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
861 }
862
863 /* Entry point for saving the return address in a register.
864 LABEL and SREG are passed to reg_save. */
865
866 void
867 dwarf2out_return_reg (label, sreg)
868 const char *label;
869 unsigned sreg;
870 {
871 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
872 }
873
874 /* Record the initial position of the return address. RTL is
875 INCOMING_RETURN_ADDR_RTX. */
876
877 static void
878 initial_return_save (rtl)
879 rtx rtl;
880 {
881 unsigned int reg = (unsigned int) -1;
882 HOST_WIDE_INT offset = 0;
883
884 switch (GET_CODE (rtl))
885 {
886 case REG:
887 /* RA is in a register. */
888 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
889 break;
890
891 case MEM:
892 /* RA is on the stack. */
893 rtl = XEXP (rtl, 0);
894 switch (GET_CODE (rtl))
895 {
896 case REG:
897 if (REGNO (rtl) != STACK_POINTER_REGNUM)
898 abort ();
899 offset = 0;
900 break;
901
902 case PLUS:
903 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
904 abort ();
905 offset = INTVAL (XEXP (rtl, 1));
906 break;
907
908 case MINUS:
909 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
910 abort ();
911 offset = -INTVAL (XEXP (rtl, 1));
912 break;
913
914 default:
915 abort ();
916 }
917
918 break;
919
920 case PLUS:
921 /* The return address is at some offset from any value we can
922 actually load. For instance, on the SPARC it is in %i7+8. Just
923 ignore the offset for now; it doesn't matter for unwinding frames. */
924 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
925 abort ();
926 initial_return_save (XEXP (rtl, 0));
927 return;
928
929 default:
930 abort ();
931 }
932
933 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
934 }
935
936 /* Given a SET, calculate the amount of stack adjustment it
937 contains. */
938
939 static long
940 stack_adjust_offset (pattern)
941 rtx pattern;
942 {
943 rtx src = SET_SRC (pattern);
944 rtx dest = SET_DEST (pattern);
945 HOST_WIDE_INT offset = 0;
946 enum rtx_code code;
947
948 if (dest == stack_pointer_rtx)
949 {
950 /* (set (reg sp) (plus (reg sp) (const_int))) */
951 code = GET_CODE (src);
952 if (! (code == PLUS || code == MINUS)
953 || XEXP (src, 0) != stack_pointer_rtx
954 || GET_CODE (XEXP (src, 1)) != CONST_INT)
955 return 0;
956
957 offset = INTVAL (XEXP (src, 1));
958 if (code == PLUS)
959 offset = -offset;
960 }
961 else if (GET_CODE (dest) == MEM)
962 {
963 /* (set (mem (pre_dec (reg sp))) (foo)) */
964 src = XEXP (dest, 0);
965 code = GET_CODE (src);
966
967 switch (code)
968 {
969 case PRE_MODIFY:
970 case POST_MODIFY:
971 if (XEXP (src, 0) == stack_pointer_rtx)
972 {
973 rtx val = XEXP (XEXP (src, 1), 1);
974 /* We handle only adjustments by constant amount. */
975 if (GET_CODE (XEXP (src, 1)) != PLUS ||
976 GET_CODE (val) != CONST_INT)
977 abort ();
978 offset = -INTVAL (val);
979 break;
980 }
981 return 0;
982
983 case PRE_DEC:
984 case POST_DEC:
985 if (XEXP (src, 0) == stack_pointer_rtx)
986 {
987 offset = GET_MODE_SIZE (GET_MODE (dest));
988 break;
989 }
990 return 0;
991
992 case PRE_INC:
993 case POST_INC:
994 if (XEXP (src, 0) == stack_pointer_rtx)
995 {
996 offset = -GET_MODE_SIZE (GET_MODE (dest));
997 break;
998 }
999 return 0;
1000
1001 default:
1002 return 0;
1003 }
1004 }
1005 else
1006 return 0;
1007
1008 return offset;
1009 }
1010
1011 /* Check INSN to see if it looks like a push or a stack adjustment, and
1012 make a note of it if it does. EH uses this information to find out how
1013 much extra space it needs to pop off the stack. */
1014
1015 static void
1016 dwarf2out_stack_adjust (insn)
1017 rtx insn;
1018 {
1019 HOST_WIDE_INT offset;
1020 const char *label;
1021 int i;
1022
1023 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1024 {
1025 /* Extract the size of the args from the CALL rtx itself. */
1026 insn = PATTERN (insn);
1027 if (GET_CODE (insn) == PARALLEL)
1028 insn = XVECEXP (insn, 0, 0);
1029 if (GET_CODE (insn) == SET)
1030 insn = SET_SRC (insn);
1031 if (GET_CODE (insn) != CALL)
1032 abort ();
1033
1034 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1035 return;
1036 }
1037
1038 /* If only calls can throw, and we have a frame pointer,
1039 save up adjustments until we see the CALL_INSN. */
1040 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1041 return;
1042
1043 if (GET_CODE (insn) == BARRIER)
1044 {
1045 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1046 the compiler will have already emitted a stack adjustment, but
1047 doesn't bother for calls to noreturn functions. */
1048 #ifdef STACK_GROWS_DOWNWARD
1049 offset = -args_size;
1050 #else
1051 offset = args_size;
1052 #endif
1053 }
1054 else if (GET_CODE (PATTERN (insn)) == SET)
1055 offset = stack_adjust_offset (PATTERN (insn));
1056 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1057 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1058 {
1059 /* There may be stack adjustments inside compound insns. Search
1060 for them. */
1061 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1062 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1063 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1064 }
1065 else
1066 return;
1067
1068 if (offset == 0)
1069 return;
1070
1071 if (cfa.reg == STACK_POINTER_REGNUM)
1072 cfa.offset += offset;
1073
1074 #ifndef STACK_GROWS_DOWNWARD
1075 offset = -offset;
1076 #endif
1077
1078 args_size += offset;
1079 if (args_size < 0)
1080 args_size = 0;
1081
1082 label = dwarf2out_cfi_label ();
1083 def_cfa_1 (label, &cfa);
1084 dwarf2out_args_size (label, args_size);
1085 }
1086
1087 /* We delay emitting a register save until either (a) we reach the end
1088 of the prologue or (b) the register is clobbered. This clusters
1089 register saves so that there are fewer pc advances. */
1090
1091 struct queued_reg_save
1092 {
1093 struct queued_reg_save *next;
1094 rtx reg;
1095 long cfa_offset;
1096 };
1097
1098 static struct queued_reg_save *queued_reg_saves;
1099 static const char *last_reg_save_label;
1100
1101 static void
1102 queue_reg_save (label, reg, offset)
1103 const char *label;
1104 rtx reg;
1105 long offset;
1106 {
1107 struct queued_reg_save *q = (struct queued_reg_save *) xmalloc (sizeof (*q));
1108
1109 q->next = queued_reg_saves;
1110 q->reg = reg;
1111 q->cfa_offset = offset;
1112 queued_reg_saves = q;
1113
1114 last_reg_save_label = label;
1115 }
1116
1117 static void
1118 flush_queued_reg_saves ()
1119 {
1120 struct queued_reg_save *q, *next;
1121
1122 for (q = queued_reg_saves; q; q = next)
1123 {
1124 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1125 next = q->next;
1126 free (q);
1127 }
1128
1129 queued_reg_saves = NULL;
1130 last_reg_save_label = NULL;
1131 }
1132
1133 static bool
1134 clobbers_queued_reg_save (insn)
1135 rtx insn;
1136 {
1137 struct queued_reg_save *q;
1138
1139 for (q = queued_reg_saves; q; q = q->next)
1140 if (modified_in_p (q->reg, insn))
1141 return true;
1142
1143 return false;
1144 }
1145
1146
1147 /* A temporary register holding an integral value used in adjusting SP
1148 or setting up the store_reg. The "offset" field holds the integer
1149 value, not an offset. */
1150 static dw_cfa_location cfa_temp;
1151
1152 /* Record call frame debugging information for an expression EXPR,
1153 which either sets SP or FP (adjusting how we calculate the frame
1154 address) or saves a register to the stack. LABEL indicates the
1155 address of EXPR.
1156
1157 This function encodes a state machine mapping rtxes to actions on
1158 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1159 users need not read the source code.
1160
1161 The High-Level Picture
1162
1163 Changes in the register we use to calculate the CFA: Currently we
1164 assume that if you copy the CFA register into another register, we
1165 should take the other one as the new CFA register; this seems to
1166 work pretty well. If it's wrong for some target, it's simple
1167 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1168
1169 Changes in the register we use for saving registers to the stack:
1170 This is usually SP, but not always. Again, we deduce that if you
1171 copy SP into another register (and SP is not the CFA register),
1172 then the new register is the one we will be using for register
1173 saves. This also seems to work.
1174
1175 Register saves: There's not much guesswork about this one; if
1176 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1177 register save, and the register used to calculate the destination
1178 had better be the one we think we're using for this purpose.
1179
1180 Except: If the register being saved is the CFA register, and the
1181 offset is nonzero, we are saving the CFA, so we assume we have to
1182 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1183 the intent is to save the value of SP from the previous frame.
1184
1185 Invariants / Summaries of Rules
1186
1187 cfa current rule for calculating the CFA. It usually
1188 consists of a register and an offset.
1189 cfa_store register used by prologue code to save things to the stack
1190 cfa_store.offset is the offset from the value of
1191 cfa_store.reg to the actual CFA
1192 cfa_temp register holding an integral value. cfa_temp.offset
1193 stores the value, which will be used to adjust the
1194 stack pointer. cfa_temp is also used like cfa_store,
1195 to track stores to the stack via fp or a temp reg.
1196
1197 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1198 with cfa.reg as the first operand changes the cfa.reg and its
1199 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1200 cfa_temp.offset.
1201
1202 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1203 expression yielding a constant. This sets cfa_temp.reg
1204 and cfa_temp.offset.
1205
1206 Rule 5: Create a new register cfa_store used to save items to the
1207 stack.
1208
1209 Rules 10-14: Save a register to the stack. Define offset as the
1210 difference of the original location and cfa_store's
1211 location (or cfa_temp's location if cfa_temp is used).
1212
1213 The Rules
1214
1215 "{a,b}" indicates a choice of a xor b.
1216 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1217
1218 Rule 1:
1219 (set <reg1> <reg2>:cfa.reg)
1220 effects: cfa.reg = <reg1>
1221 cfa.offset unchanged
1222 cfa_temp.reg = <reg1>
1223 cfa_temp.offset = cfa.offset
1224
1225 Rule 2:
1226 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1227 {<const_int>,<reg>:cfa_temp.reg}))
1228 effects: cfa.reg = sp if fp used
1229 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1230 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1231 if cfa_store.reg==sp
1232
1233 Rule 3:
1234 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1235 effects: cfa.reg = fp
1236 cfa_offset += +/- <const_int>
1237
1238 Rule 4:
1239 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1240 constraints: <reg1> != fp
1241 <reg1> != sp
1242 effects: cfa.reg = <reg1>
1243 cfa_temp.reg = <reg1>
1244 cfa_temp.offset = cfa.offset
1245
1246 Rule 5:
1247 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1248 constraints: <reg1> != fp
1249 <reg1> != sp
1250 effects: cfa_store.reg = <reg1>
1251 cfa_store.offset = cfa.offset - cfa_temp.offset
1252
1253 Rule 6:
1254 (set <reg> <const_int>)
1255 effects: cfa_temp.reg = <reg>
1256 cfa_temp.offset = <const_int>
1257
1258 Rule 7:
1259 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1260 effects: cfa_temp.reg = <reg1>
1261 cfa_temp.offset |= <const_int>
1262
1263 Rule 8:
1264 (set <reg> (high <exp>))
1265 effects: none
1266
1267 Rule 9:
1268 (set <reg> (lo_sum <exp> <const_int>))
1269 effects: cfa_temp.reg = <reg>
1270 cfa_temp.offset = <const_int>
1271
1272 Rule 10:
1273 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1274 effects: cfa_store.offset -= <const_int>
1275 cfa.offset = cfa_store.offset if cfa.reg == sp
1276 cfa.reg = sp
1277 cfa.base_offset = -cfa_store.offset
1278
1279 Rule 11:
1280 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1281 effects: cfa_store.offset += -/+ mode_size(mem)
1282 cfa.offset = cfa_store.offset if cfa.reg == sp
1283 cfa.reg = sp
1284 cfa.base_offset = -cfa_store.offset
1285
1286 Rule 12:
1287 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1288
1289 <reg2>)
1290 effects: cfa.reg = <reg1>
1291 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1292
1293 Rule 13:
1294 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1295 effects: cfa.reg = <reg1>
1296 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1297
1298 Rule 14:
1299 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1300 effects: cfa.reg = <reg1>
1301 cfa.base_offset = -cfa_temp.offset
1302 cfa_temp.offset -= mode_size(mem) */
1303
1304 static void
1305 dwarf2out_frame_debug_expr (expr, label)
1306 rtx expr;
1307 const char *label;
1308 {
1309 rtx src, dest;
1310 HOST_WIDE_INT offset;
1311
1312 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1313 the PARALLEL independently. The first element is always processed if
1314 it is a SET. This is for backward compatibility. Other elements
1315 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1316 flag is set in them. */
1317 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1318 {
1319 int par_index;
1320 int limit = XVECLEN (expr, 0);
1321
1322 for (par_index = 0; par_index < limit; par_index++)
1323 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1324 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1325 || par_index == 0))
1326 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1327
1328 return;
1329 }
1330
1331 if (GET_CODE (expr) != SET)
1332 abort ();
1333
1334 src = SET_SRC (expr);
1335 dest = SET_DEST (expr);
1336
1337 switch (GET_CODE (dest))
1338 {
1339 case REG:
1340 /* Rule 1 */
1341 /* Update the CFA rule wrt SP or FP. Make sure src is
1342 relative to the current CFA register. */
1343 switch (GET_CODE (src))
1344 {
1345 /* Setting FP from SP. */
1346 case REG:
1347 if (cfa.reg == (unsigned) REGNO (src))
1348 /* OK. */
1349 ;
1350 else
1351 abort ();
1352
1353 /* We used to require that dest be either SP or FP, but the
1354 ARM copies SP to a temporary register, and from there to
1355 FP. So we just rely on the backends to only set
1356 RTX_FRAME_RELATED_P on appropriate insns. */
1357 cfa.reg = REGNO (dest);
1358 cfa_temp.reg = cfa.reg;
1359 cfa_temp.offset = cfa.offset;
1360 break;
1361
1362 case PLUS:
1363 case MINUS:
1364 case LO_SUM:
1365 if (dest == stack_pointer_rtx)
1366 {
1367 /* Rule 2 */
1368 /* Adjusting SP. */
1369 switch (GET_CODE (XEXP (src, 1)))
1370 {
1371 case CONST_INT:
1372 offset = INTVAL (XEXP (src, 1));
1373 break;
1374 case REG:
1375 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1376 abort ();
1377 offset = cfa_temp.offset;
1378 break;
1379 default:
1380 abort ();
1381 }
1382
1383 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1384 {
1385 /* Restoring SP from FP in the epilogue. */
1386 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1387 abort ();
1388 cfa.reg = STACK_POINTER_REGNUM;
1389 }
1390 else if (GET_CODE (src) == LO_SUM)
1391 /* Assume we've set the source reg of the LO_SUM from sp. */
1392 ;
1393 else if (XEXP (src, 0) != stack_pointer_rtx)
1394 abort ();
1395
1396 if (GET_CODE (src) != MINUS)
1397 offset = -offset;
1398 if (cfa.reg == STACK_POINTER_REGNUM)
1399 cfa.offset += offset;
1400 if (cfa_store.reg == STACK_POINTER_REGNUM)
1401 cfa_store.offset += offset;
1402 }
1403 else if (dest == hard_frame_pointer_rtx)
1404 {
1405 /* Rule 3 */
1406 /* Either setting the FP from an offset of the SP,
1407 or adjusting the FP */
1408 if (! frame_pointer_needed)
1409 abort ();
1410
1411 if (GET_CODE (XEXP (src, 0)) == REG
1412 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1413 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1414 {
1415 offset = INTVAL (XEXP (src, 1));
1416 if (GET_CODE (src) != MINUS)
1417 offset = -offset;
1418 cfa.offset += offset;
1419 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1420 }
1421 else
1422 abort ();
1423 }
1424 else
1425 {
1426 if (GET_CODE (src) == MINUS)
1427 abort ();
1428
1429 /* Rule 4 */
1430 if (GET_CODE (XEXP (src, 0)) == REG
1431 && REGNO (XEXP (src, 0)) == cfa.reg
1432 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1433 {
1434 /* Setting a temporary CFA register that will be copied
1435 into the FP later on. */
1436 offset = - INTVAL (XEXP (src, 1));
1437 cfa.offset += offset;
1438 cfa.reg = REGNO (dest);
1439 /* Or used to save regs to the stack. */
1440 cfa_temp.reg = cfa.reg;
1441 cfa_temp.offset = cfa.offset;
1442 }
1443
1444 /* Rule 5 */
1445 else if (GET_CODE (XEXP (src, 0)) == REG
1446 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1447 && XEXP (src, 1) == stack_pointer_rtx)
1448 {
1449 /* Setting a scratch register that we will use instead
1450 of SP for saving registers to the stack. */
1451 if (cfa.reg != STACK_POINTER_REGNUM)
1452 abort ();
1453 cfa_store.reg = REGNO (dest);
1454 cfa_store.offset = cfa.offset - cfa_temp.offset;
1455 }
1456
1457 /* Rule 9 */
1458 else if (GET_CODE (src) == LO_SUM
1459 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1460 {
1461 cfa_temp.reg = REGNO (dest);
1462 cfa_temp.offset = INTVAL (XEXP (src, 1));
1463 }
1464 else
1465 abort ();
1466 }
1467 break;
1468
1469 /* Rule 6 */
1470 case CONST_INT:
1471 cfa_temp.reg = REGNO (dest);
1472 cfa_temp.offset = INTVAL (src);
1473 break;
1474
1475 /* Rule 7 */
1476 case IOR:
1477 if (GET_CODE (XEXP (src, 0)) != REG
1478 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1479 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1480 abort ();
1481
1482 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1483 cfa_temp.reg = REGNO (dest);
1484 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1485 break;
1486
1487 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1488 which will fill in all of the bits. */
1489 /* Rule 8 */
1490 case HIGH:
1491 break;
1492
1493 default:
1494 abort ();
1495 }
1496
1497 def_cfa_1 (label, &cfa);
1498 break;
1499
1500 case MEM:
1501 if (GET_CODE (src) != REG)
1502 abort ();
1503
1504 /* Saving a register to the stack. Make sure dest is relative to the
1505 CFA register. */
1506 switch (GET_CODE (XEXP (dest, 0)))
1507 {
1508 /* Rule 10 */
1509 /* With a push. */
1510 case PRE_MODIFY:
1511 /* We can't handle variable size modifications. */
1512 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1513 abort ();
1514 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1515
1516 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1517 || cfa_store.reg != STACK_POINTER_REGNUM)
1518 abort ();
1519
1520 cfa_store.offset += offset;
1521 if (cfa.reg == STACK_POINTER_REGNUM)
1522 cfa.offset = cfa_store.offset;
1523
1524 offset = -cfa_store.offset;
1525 break;
1526
1527 /* Rule 11 */
1528 case PRE_INC:
1529 case PRE_DEC:
1530 offset = GET_MODE_SIZE (GET_MODE (dest));
1531 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1532 offset = -offset;
1533
1534 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1535 || cfa_store.reg != STACK_POINTER_REGNUM)
1536 abort ();
1537
1538 cfa_store.offset += offset;
1539 if (cfa.reg == STACK_POINTER_REGNUM)
1540 cfa.offset = cfa_store.offset;
1541
1542 offset = -cfa_store.offset;
1543 break;
1544
1545 /* Rule 12 */
1546 /* With an offset. */
1547 case PLUS:
1548 case MINUS:
1549 case LO_SUM:
1550 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1551 abort ();
1552 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1553 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1554 offset = -offset;
1555
1556 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1557 offset -= cfa_store.offset;
1558 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1559 offset -= cfa_temp.offset;
1560 else
1561 abort ();
1562 break;
1563
1564 /* Rule 13 */
1565 /* Without an offset. */
1566 case REG:
1567 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1568 offset = -cfa_store.offset;
1569 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1570 offset = -cfa_temp.offset;
1571 else
1572 abort ();
1573 break;
1574
1575 /* Rule 14 */
1576 case POST_INC:
1577 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1578 abort ();
1579 offset = -cfa_temp.offset;
1580 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1581 break;
1582
1583 default:
1584 abort ();
1585 }
1586
1587 if (REGNO (src) != STACK_POINTER_REGNUM
1588 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1589 && (unsigned) REGNO (src) == cfa.reg)
1590 {
1591 /* We're storing the current CFA reg into the stack. */
1592
1593 if (cfa.offset == 0)
1594 {
1595 /* If the source register is exactly the CFA, assume
1596 we're saving SP like any other register; this happens
1597 on the ARM. */
1598 def_cfa_1 (label, &cfa);
1599 queue_reg_save (label, stack_pointer_rtx, offset);
1600 break;
1601 }
1602 else
1603 {
1604 /* Otherwise, we'll need to look in the stack to
1605 calculate the CFA. */
1606 rtx x = XEXP (dest, 0);
1607
1608 if (GET_CODE (x) != REG)
1609 x = XEXP (x, 0);
1610 if (GET_CODE (x) != REG)
1611 abort ();
1612
1613 cfa.reg = REGNO (x);
1614 cfa.base_offset = offset;
1615 cfa.indirect = 1;
1616 def_cfa_1 (label, &cfa);
1617 break;
1618 }
1619 }
1620
1621 def_cfa_1 (label, &cfa);
1622 queue_reg_save (label, src, offset);
1623 break;
1624
1625 default:
1626 abort ();
1627 }
1628 }
1629
1630 /* Record call frame debugging information for INSN, which either
1631 sets SP or FP (adjusting how we calculate the frame address) or saves a
1632 register to the stack. If INSN is NULL_RTX, initialize our state. */
1633
1634 void
1635 dwarf2out_frame_debug (insn)
1636 rtx insn;
1637 {
1638 const char *label;
1639 rtx src;
1640
1641 if (insn == NULL_RTX)
1642 {
1643 /* Flush any queued register saves. */
1644 flush_queued_reg_saves ();
1645
1646 /* Set up state for generating call frame debug info. */
1647 lookup_cfa (&cfa);
1648 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1649 abort ();
1650
1651 cfa.reg = STACK_POINTER_REGNUM;
1652 cfa_store = cfa;
1653 cfa_temp.reg = -1;
1654 cfa_temp.offset = 0;
1655 return;
1656 }
1657
1658 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1659 flush_queued_reg_saves ();
1660
1661 if (! RTX_FRAME_RELATED_P (insn))
1662 {
1663 if (!ACCUMULATE_OUTGOING_ARGS)
1664 dwarf2out_stack_adjust (insn);
1665
1666 return;
1667 }
1668
1669 label = dwarf2out_cfi_label ();
1670 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1671 if (src)
1672 insn = XEXP (src, 0);
1673 else
1674 insn = PATTERN (insn);
1675
1676 dwarf2out_frame_debug_expr (insn, label);
1677 }
1678
1679 /* Output a Call Frame Information opcode and its operand(s). */
1680
1681 static void
1682 output_cfi (cfi, fde, for_eh)
1683 dw_cfi_ref cfi;
1684 dw_fde_ref fde;
1685 int for_eh;
1686 {
1687 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1688 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1689 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1690 "DW_CFA_advance_loc 0x%lx",
1691 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1692 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1693 {
1694 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1695 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1696 "DW_CFA_offset, column 0x%lx",
1697 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1698 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1699 }
1700 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1701 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1702 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1703 "DW_CFA_restore, column 0x%lx",
1704 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1705 else
1706 {
1707 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1708 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1709
1710 switch (cfi->dw_cfi_opc)
1711 {
1712 case DW_CFA_set_loc:
1713 if (for_eh)
1714 dw2_asm_output_encoded_addr_rtx (
1715 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1716 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1717 NULL);
1718 else
1719 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1720 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1721 break;
1722
1723 case DW_CFA_advance_loc1:
1724 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1725 fde->dw_fde_current_label, NULL);
1726 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1727 break;
1728
1729 case DW_CFA_advance_loc2:
1730 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1731 fde->dw_fde_current_label, NULL);
1732 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1733 break;
1734
1735 case DW_CFA_advance_loc4:
1736 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1737 fde->dw_fde_current_label, NULL);
1738 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1739 break;
1740
1741 case DW_CFA_MIPS_advance_loc8:
1742 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1743 fde->dw_fde_current_label, NULL);
1744 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1745 break;
1746
1747 case DW_CFA_offset_extended:
1748 case DW_CFA_def_cfa:
1749 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1750 NULL);
1751 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1752 break;
1753
1754 case DW_CFA_offset_extended_sf:
1755 case DW_CFA_def_cfa_sf:
1756 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1757 NULL);
1758 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1759 break;
1760
1761 case DW_CFA_restore_extended:
1762 case DW_CFA_undefined:
1763 case DW_CFA_same_value:
1764 case DW_CFA_def_cfa_register:
1765 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1766 NULL);
1767 break;
1768
1769 case DW_CFA_register:
1770 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1771 NULL);
1772 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_reg_num,
1773 NULL);
1774 break;
1775
1776 case DW_CFA_def_cfa_offset:
1777 case DW_CFA_GNU_args_size:
1778 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1779 break;
1780
1781 case DW_CFA_def_cfa_offset_sf:
1782 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1783 break;
1784
1785 case DW_CFA_GNU_window_save:
1786 break;
1787
1788 case DW_CFA_def_cfa_expression:
1789 case DW_CFA_expression:
1790 output_cfa_loc (cfi);
1791 break;
1792
1793 case DW_CFA_GNU_negative_offset_extended:
1794 /* Obsoleted by DW_CFA_offset_extended_sf. */
1795 abort ();
1796
1797 default:
1798 break;
1799 }
1800 }
1801 }
1802
1803 /* Output the call frame information used to used to record information
1804 that relates to calculating the frame pointer, and records the
1805 location of saved registers. */
1806
1807 static void
1808 output_call_frame_info (for_eh)
1809 int for_eh;
1810 {
1811 unsigned int i;
1812 dw_fde_ref fde;
1813 dw_cfi_ref cfi;
1814 char l1[20], l2[20], section_start_label[20];
1815 int any_lsda_needed = 0;
1816 char augmentation[6];
1817 int augmentation_size;
1818 int fde_encoding = DW_EH_PE_absptr;
1819 int per_encoding = DW_EH_PE_absptr;
1820 int lsda_encoding = DW_EH_PE_absptr;
1821
1822 /* Don't emit a CIE if there won't be any FDEs. */
1823 if (fde_table_in_use == 0)
1824 return;
1825
1826 /* If we don't have any functions we'll want to unwind out of, don't emit any
1827 EH unwind information. */
1828 if (for_eh)
1829 {
1830 int any_eh_needed = flag_asynchronous_unwind_tables;
1831
1832 for (i = 0; i < fde_table_in_use; i++)
1833 if (fde_table[i].uses_eh_lsda)
1834 any_eh_needed = any_lsda_needed = 1;
1835 else if (! fde_table[i].nothrow)
1836 any_eh_needed = 1;
1837
1838 if (! any_eh_needed)
1839 return;
1840 }
1841
1842 /* We're going to be generating comments, so turn on app. */
1843 if (flag_debug_asm)
1844 app_enable ();
1845
1846 if (for_eh)
1847 (*targetm.asm_out.eh_frame_section) ();
1848 else
1849 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1850
1851 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1852 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1853
1854 /* Output the CIE. */
1855 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1856 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1857 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1858 "Length of Common Information Entry");
1859 ASM_OUTPUT_LABEL (asm_out_file, l1);
1860
1861 /* Now that the CIE pointer is PC-relative for EH,
1862 use 0 to identify the CIE. */
1863 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1864 (for_eh ? 0 : DW_CIE_ID),
1865 "CIE Identifier Tag");
1866
1867 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1868
1869 augmentation[0] = 0;
1870 augmentation_size = 0;
1871 if (for_eh)
1872 {
1873 char *p;
1874
1875 /* Augmentation:
1876 z Indicates that a uleb128 is present to size the
1877 augmentation section.
1878 L Indicates the encoding (and thus presence) of
1879 an LSDA pointer in the FDE augmentation.
1880 R Indicates a non-default pointer encoding for
1881 FDE code pointers.
1882 P Indicates the presence of an encoding + language
1883 personality routine in the CIE augmentation. */
1884
1885 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1886 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
1887 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1888
1889 p = augmentation + 1;
1890 if (eh_personality_libfunc)
1891 {
1892 *p++ = 'P';
1893 augmentation_size += 1 + size_of_encoded_value (per_encoding);
1894 }
1895 if (any_lsda_needed)
1896 {
1897 *p++ = 'L';
1898 augmentation_size += 1;
1899 }
1900 if (fde_encoding != DW_EH_PE_absptr)
1901 {
1902 *p++ = 'R';
1903 augmentation_size += 1;
1904 }
1905 if (p > augmentation + 1)
1906 {
1907 augmentation[0] = 'z';
1908 *p = '\0';
1909 }
1910
1911 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
1912 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
1913 {
1914 int offset = ( 4 /* Length */
1915 + 4 /* CIE Id */
1916 + 1 /* CIE version */
1917 + strlen (augmentation) + 1 /* Augmentation */
1918 + size_of_uleb128 (1) /* Code alignment */
1919 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
1920 + 1 /* RA column */
1921 + 1 /* Augmentation size */
1922 + 1 /* Personality encoding */ );
1923 int pad = -offset & (PTR_SIZE - 1);
1924
1925 augmentation_size += pad;
1926
1927 /* Augmentations should be small, so there's scarce need to
1928 iterate for a solution. Die if we exceed one uleb128 byte. */
1929 if (size_of_uleb128 (augmentation_size) != 1)
1930 abort ();
1931 }
1932 }
1933
1934 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
1935 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
1936 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
1937 "CIE Data Alignment Factor");
1938 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
1939
1940 if (augmentation[0])
1941 {
1942 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
1943 if (eh_personality_libfunc)
1944 {
1945 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
1946 eh_data_format_name (per_encoding));
1947 dw2_asm_output_encoded_addr_rtx (per_encoding,
1948 eh_personality_libfunc, NULL);
1949 }
1950
1951 if (any_lsda_needed)
1952 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
1953 eh_data_format_name (lsda_encoding));
1954
1955 if (fde_encoding != DW_EH_PE_absptr)
1956 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
1957 eh_data_format_name (fde_encoding));
1958 }
1959
1960 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
1961 output_cfi (cfi, NULL, for_eh);
1962
1963 /* Pad the CIE out to an address sized boundary. */
1964 ASM_OUTPUT_ALIGN (asm_out_file,
1965 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
1966 ASM_OUTPUT_LABEL (asm_out_file, l2);
1967
1968 /* Loop through all of the FDE's. */
1969 for (i = 0; i < fde_table_in_use; i++)
1970 {
1971 fde = &fde_table[i];
1972
1973 /* Don't emit EH unwind info for leaf functions that don't need it. */
1974 if (!flag_asynchronous_unwind_tables && for_eh
1975 && (fde->nothrow || fde->all_throwers_are_sibcalls)
1976 && !fde->uses_eh_lsda)
1977 continue;
1978
1979 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, FDE_LABEL, for_eh + i * 2);
1980 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
1981 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
1982 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1983 "FDE Length");
1984 ASM_OUTPUT_LABEL (asm_out_file, l1);
1985
1986 if (for_eh)
1987 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
1988 else
1989 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
1990 "FDE CIE offset");
1991
1992 if (for_eh)
1993 {
1994 dw2_asm_output_encoded_addr_rtx (fde_encoding,
1995 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
1996 "FDE initial location");
1997 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
1998 fde->dw_fde_end, fde->dw_fde_begin,
1999 "FDE address range");
2000 }
2001 else
2002 {
2003 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2004 "FDE initial location");
2005 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2006 fde->dw_fde_end, fde->dw_fde_begin,
2007 "FDE address range");
2008 }
2009
2010 if (augmentation[0])
2011 {
2012 if (any_lsda_needed)
2013 {
2014 int size = size_of_encoded_value (lsda_encoding);
2015
2016 if (lsda_encoding == DW_EH_PE_aligned)
2017 {
2018 int offset = ( 4 /* Length */
2019 + 4 /* CIE offset */
2020 + 2 * size_of_encoded_value (fde_encoding)
2021 + 1 /* Augmentation size */ );
2022 int pad = -offset & (PTR_SIZE - 1);
2023
2024 size += pad;
2025 if (size_of_uleb128 (size) != 1)
2026 abort ();
2027 }
2028
2029 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2030
2031 if (fde->uses_eh_lsda)
2032 {
2033 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2034 fde->funcdef_number);
2035 dw2_asm_output_encoded_addr_rtx (
2036 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2037 "Language Specific Data Area");
2038 }
2039 else
2040 {
2041 if (lsda_encoding == DW_EH_PE_aligned)
2042 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2043 dw2_asm_output_data
2044 (size_of_encoded_value (lsda_encoding), 0,
2045 "Language Specific Data Area (none)");
2046 }
2047 }
2048 else
2049 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2050 }
2051
2052 /* Loop through the Call Frame Instructions associated with
2053 this FDE. */
2054 fde->dw_fde_current_label = fde->dw_fde_begin;
2055 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2056 output_cfi (cfi, fde, for_eh);
2057
2058 /* Pad the FDE out to an address sized boundary. */
2059 ASM_OUTPUT_ALIGN (asm_out_file,
2060 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2061 ASM_OUTPUT_LABEL (asm_out_file, l2);
2062 }
2063
2064 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2065 dw2_asm_output_data (4, 0, "End of Table");
2066 #ifdef MIPS_DEBUGGING_INFO
2067 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2068 get a value of 0. Putting .align 0 after the label fixes it. */
2069 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2070 #endif
2071
2072 /* Turn off app to make assembly quicker. */
2073 if (flag_debug_asm)
2074 app_disable ();
2075 }
2076
2077 /* Output a marker (i.e. a label) for the beginning of a function, before
2078 the prologue. */
2079
2080 void
2081 dwarf2out_begin_prologue (line, file)
2082 unsigned int line ATTRIBUTE_UNUSED;
2083 const char *file ATTRIBUTE_UNUSED;
2084 {
2085 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2086 dw_fde_ref fde;
2087
2088 current_function_func_begin_label = 0;
2089
2090 #ifdef IA64_UNWIND_INFO
2091 /* ??? current_function_func_begin_label is also used by except.c
2092 for call-site information. We must emit this label if it might
2093 be used. */
2094 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2095 && ! dwarf2out_do_frame ())
2096 return;
2097 #else
2098 if (! dwarf2out_do_frame ())
2099 return;
2100 #endif
2101
2102 function_section (current_function_decl);
2103 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2104 current_function_funcdef_no);
2105 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2106 current_function_funcdef_no);
2107 current_function_func_begin_label = get_identifier (label);
2108
2109 #ifdef IA64_UNWIND_INFO
2110 /* We can elide the fde allocation if we're not emitting debug info. */
2111 if (! dwarf2out_do_frame ())
2112 return;
2113 #endif
2114
2115 /* Expand the fde table if necessary. */
2116 if (fde_table_in_use == fde_table_allocated)
2117 {
2118 fde_table_allocated += FDE_TABLE_INCREMENT;
2119 fde_table
2120 = (dw_fde_ref) xrealloc (fde_table,
2121 fde_table_allocated * sizeof (dw_fde_node));
2122 }
2123
2124 /* Record the FDE associated with this function. */
2125 current_funcdef_fde = fde_table_in_use;
2126
2127 /* Add the new FDE at the end of the fde_table. */
2128 fde = &fde_table[fde_table_in_use++];
2129 fde->dw_fde_begin = xstrdup (label);
2130 fde->dw_fde_current_label = NULL;
2131 fde->dw_fde_end = NULL;
2132 fde->dw_fde_cfi = NULL;
2133 fde->funcdef_number = current_function_funcdef_no;
2134 fde->nothrow = current_function_nothrow;
2135 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2136 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2137
2138 args_size = old_args_size = 0;
2139
2140 /* We only want to output line number information for the genuine dwarf2
2141 prologue case, not the eh frame case. */
2142 #ifdef DWARF2_DEBUGGING_INFO
2143 if (file)
2144 dwarf2out_source_line (line, file);
2145 #endif
2146 }
2147
2148 /* Output a marker (i.e. a label) for the absolute end of the generated code
2149 for a function definition. This gets called *after* the epilogue code has
2150 been generated. */
2151
2152 void
2153 dwarf2out_end_epilogue (line, file)
2154 unsigned int line ATTRIBUTE_UNUSED;
2155 const char *file ATTRIBUTE_UNUSED;
2156 {
2157 dw_fde_ref fde;
2158 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2159
2160 /* Output a label to mark the endpoint of the code generated for this
2161 function. */
2162 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2163 current_function_funcdef_no);
2164 ASM_OUTPUT_LABEL (asm_out_file, label);
2165 fde = &fde_table[fde_table_in_use - 1];
2166 fde->dw_fde_end = xstrdup (label);
2167 }
2168
2169 void
2170 dwarf2out_frame_init ()
2171 {
2172 /* Allocate the initial hunk of the fde_table. */
2173 fde_table = (dw_fde_ref) xcalloc (FDE_TABLE_INCREMENT, sizeof (dw_fde_node));
2174 fde_table_allocated = FDE_TABLE_INCREMENT;
2175 fde_table_in_use = 0;
2176
2177 /* Generate the CFA instructions common to all FDE's. Do it now for the
2178 sake of lookup_cfa. */
2179
2180 #ifdef DWARF2_UNWIND_INFO
2181 /* On entry, the Canonical Frame Address is at SP. */
2182 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2183 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2184 #endif
2185 }
2186
2187 void
2188 dwarf2out_frame_finish ()
2189 {
2190 /* Output call frame information. */
2191 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2192 output_call_frame_info (0);
2193
2194 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2195 output_call_frame_info (1);
2196 }
2197 \f
2198 /* And now, the subset of the debugging information support code necessary
2199 for emitting location expressions. */
2200
2201 /* We need some way to distinguish DW_OP_addr with a direct symbol
2202 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2203 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2204
2205
2206 typedef struct dw_val_struct *dw_val_ref;
2207 typedef struct die_struct *dw_die_ref;
2208 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2209 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2210
2211 /* Each DIE may have a series of attribute/value pairs. Values
2212 can take on several forms. The forms that are used in this
2213 implementation are listed below. */
2214
2215 typedef enum
2216 {
2217 dw_val_class_addr,
2218 dw_val_class_offset,
2219 dw_val_class_loc,
2220 dw_val_class_loc_list,
2221 dw_val_class_range_list,
2222 dw_val_class_const,
2223 dw_val_class_unsigned_const,
2224 dw_val_class_long_long,
2225 dw_val_class_float,
2226 dw_val_class_flag,
2227 dw_val_class_die_ref,
2228 dw_val_class_fde_ref,
2229 dw_val_class_lbl_id,
2230 dw_val_class_lbl_offset,
2231 dw_val_class_str
2232 }
2233 dw_val_class;
2234
2235 /* Describe a double word constant value. */
2236 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2237
2238 typedef struct dw_long_long_struct
2239 {
2240 unsigned long hi;
2241 unsigned long low;
2242 }
2243 dw_long_long_const;
2244
2245 /* Describe a floating point constant value. */
2246
2247 typedef struct dw_fp_struct
2248 {
2249 long *array;
2250 unsigned length;
2251 }
2252 dw_float_const;
2253
2254 /* The dw_val_node describes an attribute's value, as it is
2255 represented internally. */
2256
2257 typedef struct dw_val_struct
2258 {
2259 dw_val_class val_class;
2260 union
2261 {
2262 rtx val_addr;
2263 long unsigned val_offset;
2264 dw_loc_list_ref val_loc_list;
2265 dw_loc_descr_ref val_loc;
2266 long int val_int;
2267 long unsigned val_unsigned;
2268 dw_long_long_const val_long_long;
2269 dw_float_const val_float;
2270 struct
2271 {
2272 dw_die_ref die;
2273 int external;
2274 } val_die_ref;
2275 unsigned val_fde_index;
2276 struct indirect_string_node *val_str;
2277 char *val_lbl_id;
2278 unsigned char val_flag;
2279 }
2280 v;
2281 }
2282 dw_val_node;
2283
2284 /* Locations in memory are described using a sequence of stack machine
2285 operations. */
2286
2287 typedef struct dw_loc_descr_struct
2288 {
2289 dw_loc_descr_ref dw_loc_next;
2290 enum dwarf_location_atom dw_loc_opc;
2291 dw_val_node dw_loc_oprnd1;
2292 dw_val_node dw_loc_oprnd2;
2293 int dw_loc_addr;
2294 }
2295 dw_loc_descr_node;
2296
2297 /* Location lists are ranges + location descriptions for that range,
2298 so you can track variables that are in different places over
2299 their entire life. */
2300 typedef struct dw_loc_list_struct
2301 {
2302 dw_loc_list_ref dw_loc_next;
2303 const char *begin; /* Label for begin address of range */
2304 const char *end; /* Label for end address of range */
2305 char *ll_symbol; /* Label for beginning of location list.
2306 Only on head of list */
2307 const char *section; /* Section this loclist is relative to */
2308 dw_loc_descr_ref expr;
2309 } dw_loc_list_node;
2310
2311 static const char *dwarf_stack_op_name PARAMS ((unsigned));
2312 static dw_loc_descr_ref new_loc_descr PARAMS ((enum dwarf_location_atom,
2313 unsigned long,
2314 unsigned long));
2315 static void add_loc_descr PARAMS ((dw_loc_descr_ref *,
2316 dw_loc_descr_ref));
2317 static unsigned long size_of_loc_descr PARAMS ((dw_loc_descr_ref));
2318 static unsigned long size_of_locs PARAMS ((dw_loc_descr_ref));
2319 static void output_loc_operands PARAMS ((dw_loc_descr_ref));
2320 static void output_loc_sequence PARAMS ((dw_loc_descr_ref));
2321
2322 /* Convert a DWARF stack opcode into its string name. */
2323
2324 static const char *
2325 dwarf_stack_op_name (op)
2326 unsigned op;
2327 {
2328 switch (op)
2329 {
2330 case DW_OP_addr:
2331 case INTERNAL_DW_OP_tls_addr:
2332 return "DW_OP_addr";
2333 case DW_OP_deref:
2334 return "DW_OP_deref";
2335 case DW_OP_const1u:
2336 return "DW_OP_const1u";
2337 case DW_OP_const1s:
2338 return "DW_OP_const1s";
2339 case DW_OP_const2u:
2340 return "DW_OP_const2u";
2341 case DW_OP_const2s:
2342 return "DW_OP_const2s";
2343 case DW_OP_const4u:
2344 return "DW_OP_const4u";
2345 case DW_OP_const4s:
2346 return "DW_OP_const4s";
2347 case DW_OP_const8u:
2348 return "DW_OP_const8u";
2349 case DW_OP_const8s:
2350 return "DW_OP_const8s";
2351 case DW_OP_constu:
2352 return "DW_OP_constu";
2353 case DW_OP_consts:
2354 return "DW_OP_consts";
2355 case DW_OP_dup:
2356 return "DW_OP_dup";
2357 case DW_OP_drop:
2358 return "DW_OP_drop";
2359 case DW_OP_over:
2360 return "DW_OP_over";
2361 case DW_OP_pick:
2362 return "DW_OP_pick";
2363 case DW_OP_swap:
2364 return "DW_OP_swap";
2365 case DW_OP_rot:
2366 return "DW_OP_rot";
2367 case DW_OP_xderef:
2368 return "DW_OP_xderef";
2369 case DW_OP_abs:
2370 return "DW_OP_abs";
2371 case DW_OP_and:
2372 return "DW_OP_and";
2373 case DW_OP_div:
2374 return "DW_OP_div";
2375 case DW_OP_minus:
2376 return "DW_OP_minus";
2377 case DW_OP_mod:
2378 return "DW_OP_mod";
2379 case DW_OP_mul:
2380 return "DW_OP_mul";
2381 case DW_OP_neg:
2382 return "DW_OP_neg";
2383 case DW_OP_not:
2384 return "DW_OP_not";
2385 case DW_OP_or:
2386 return "DW_OP_or";
2387 case DW_OP_plus:
2388 return "DW_OP_plus";
2389 case DW_OP_plus_uconst:
2390 return "DW_OP_plus_uconst";
2391 case DW_OP_shl:
2392 return "DW_OP_shl";
2393 case DW_OP_shr:
2394 return "DW_OP_shr";
2395 case DW_OP_shra:
2396 return "DW_OP_shra";
2397 case DW_OP_xor:
2398 return "DW_OP_xor";
2399 case DW_OP_bra:
2400 return "DW_OP_bra";
2401 case DW_OP_eq:
2402 return "DW_OP_eq";
2403 case DW_OP_ge:
2404 return "DW_OP_ge";
2405 case DW_OP_gt:
2406 return "DW_OP_gt";
2407 case DW_OP_le:
2408 return "DW_OP_le";
2409 case DW_OP_lt:
2410 return "DW_OP_lt";
2411 case DW_OP_ne:
2412 return "DW_OP_ne";
2413 case DW_OP_skip:
2414 return "DW_OP_skip";
2415 case DW_OP_lit0:
2416 return "DW_OP_lit0";
2417 case DW_OP_lit1:
2418 return "DW_OP_lit1";
2419 case DW_OP_lit2:
2420 return "DW_OP_lit2";
2421 case DW_OP_lit3:
2422 return "DW_OP_lit3";
2423 case DW_OP_lit4:
2424 return "DW_OP_lit4";
2425 case DW_OP_lit5:
2426 return "DW_OP_lit5";
2427 case DW_OP_lit6:
2428 return "DW_OP_lit6";
2429 case DW_OP_lit7:
2430 return "DW_OP_lit7";
2431 case DW_OP_lit8:
2432 return "DW_OP_lit8";
2433 case DW_OP_lit9:
2434 return "DW_OP_lit9";
2435 case DW_OP_lit10:
2436 return "DW_OP_lit10";
2437 case DW_OP_lit11:
2438 return "DW_OP_lit11";
2439 case DW_OP_lit12:
2440 return "DW_OP_lit12";
2441 case DW_OP_lit13:
2442 return "DW_OP_lit13";
2443 case DW_OP_lit14:
2444 return "DW_OP_lit14";
2445 case DW_OP_lit15:
2446 return "DW_OP_lit15";
2447 case DW_OP_lit16:
2448 return "DW_OP_lit16";
2449 case DW_OP_lit17:
2450 return "DW_OP_lit17";
2451 case DW_OP_lit18:
2452 return "DW_OP_lit18";
2453 case DW_OP_lit19:
2454 return "DW_OP_lit19";
2455 case DW_OP_lit20:
2456 return "DW_OP_lit20";
2457 case DW_OP_lit21:
2458 return "DW_OP_lit21";
2459 case DW_OP_lit22:
2460 return "DW_OP_lit22";
2461 case DW_OP_lit23:
2462 return "DW_OP_lit23";
2463 case DW_OP_lit24:
2464 return "DW_OP_lit24";
2465 case DW_OP_lit25:
2466 return "DW_OP_lit25";
2467 case DW_OP_lit26:
2468 return "DW_OP_lit26";
2469 case DW_OP_lit27:
2470 return "DW_OP_lit27";
2471 case DW_OP_lit28:
2472 return "DW_OP_lit28";
2473 case DW_OP_lit29:
2474 return "DW_OP_lit29";
2475 case DW_OP_lit30:
2476 return "DW_OP_lit30";
2477 case DW_OP_lit31:
2478 return "DW_OP_lit31";
2479 case DW_OP_reg0:
2480 return "DW_OP_reg0";
2481 case DW_OP_reg1:
2482 return "DW_OP_reg1";
2483 case DW_OP_reg2:
2484 return "DW_OP_reg2";
2485 case DW_OP_reg3:
2486 return "DW_OP_reg3";
2487 case DW_OP_reg4:
2488 return "DW_OP_reg4";
2489 case DW_OP_reg5:
2490 return "DW_OP_reg5";
2491 case DW_OP_reg6:
2492 return "DW_OP_reg6";
2493 case DW_OP_reg7:
2494 return "DW_OP_reg7";
2495 case DW_OP_reg8:
2496 return "DW_OP_reg8";
2497 case DW_OP_reg9:
2498 return "DW_OP_reg9";
2499 case DW_OP_reg10:
2500 return "DW_OP_reg10";
2501 case DW_OP_reg11:
2502 return "DW_OP_reg11";
2503 case DW_OP_reg12:
2504 return "DW_OP_reg12";
2505 case DW_OP_reg13:
2506 return "DW_OP_reg13";
2507 case DW_OP_reg14:
2508 return "DW_OP_reg14";
2509 case DW_OP_reg15:
2510 return "DW_OP_reg15";
2511 case DW_OP_reg16:
2512 return "DW_OP_reg16";
2513 case DW_OP_reg17:
2514 return "DW_OP_reg17";
2515 case DW_OP_reg18:
2516 return "DW_OP_reg18";
2517 case DW_OP_reg19:
2518 return "DW_OP_reg19";
2519 case DW_OP_reg20:
2520 return "DW_OP_reg20";
2521 case DW_OP_reg21:
2522 return "DW_OP_reg21";
2523 case DW_OP_reg22:
2524 return "DW_OP_reg22";
2525 case DW_OP_reg23:
2526 return "DW_OP_reg23";
2527 case DW_OP_reg24:
2528 return "DW_OP_reg24";
2529 case DW_OP_reg25:
2530 return "DW_OP_reg25";
2531 case DW_OP_reg26:
2532 return "DW_OP_reg26";
2533 case DW_OP_reg27:
2534 return "DW_OP_reg27";
2535 case DW_OP_reg28:
2536 return "DW_OP_reg28";
2537 case DW_OP_reg29:
2538 return "DW_OP_reg29";
2539 case DW_OP_reg30:
2540 return "DW_OP_reg30";
2541 case DW_OP_reg31:
2542 return "DW_OP_reg31";
2543 case DW_OP_breg0:
2544 return "DW_OP_breg0";
2545 case DW_OP_breg1:
2546 return "DW_OP_breg1";
2547 case DW_OP_breg2:
2548 return "DW_OP_breg2";
2549 case DW_OP_breg3:
2550 return "DW_OP_breg3";
2551 case DW_OP_breg4:
2552 return "DW_OP_breg4";
2553 case DW_OP_breg5:
2554 return "DW_OP_breg5";
2555 case DW_OP_breg6:
2556 return "DW_OP_breg6";
2557 case DW_OP_breg7:
2558 return "DW_OP_breg7";
2559 case DW_OP_breg8:
2560 return "DW_OP_breg8";
2561 case DW_OP_breg9:
2562 return "DW_OP_breg9";
2563 case DW_OP_breg10:
2564 return "DW_OP_breg10";
2565 case DW_OP_breg11:
2566 return "DW_OP_breg11";
2567 case DW_OP_breg12:
2568 return "DW_OP_breg12";
2569 case DW_OP_breg13:
2570 return "DW_OP_breg13";
2571 case DW_OP_breg14:
2572 return "DW_OP_breg14";
2573 case DW_OP_breg15:
2574 return "DW_OP_breg15";
2575 case DW_OP_breg16:
2576 return "DW_OP_breg16";
2577 case DW_OP_breg17:
2578 return "DW_OP_breg17";
2579 case DW_OP_breg18:
2580 return "DW_OP_breg18";
2581 case DW_OP_breg19:
2582 return "DW_OP_breg19";
2583 case DW_OP_breg20:
2584 return "DW_OP_breg20";
2585 case DW_OP_breg21:
2586 return "DW_OP_breg21";
2587 case DW_OP_breg22:
2588 return "DW_OP_breg22";
2589 case DW_OP_breg23:
2590 return "DW_OP_breg23";
2591 case DW_OP_breg24:
2592 return "DW_OP_breg24";
2593 case DW_OP_breg25:
2594 return "DW_OP_breg25";
2595 case DW_OP_breg26:
2596 return "DW_OP_breg26";
2597 case DW_OP_breg27:
2598 return "DW_OP_breg27";
2599 case DW_OP_breg28:
2600 return "DW_OP_breg28";
2601 case DW_OP_breg29:
2602 return "DW_OP_breg29";
2603 case DW_OP_breg30:
2604 return "DW_OP_breg30";
2605 case DW_OP_breg31:
2606 return "DW_OP_breg31";
2607 case DW_OP_regx:
2608 return "DW_OP_regx";
2609 case DW_OP_fbreg:
2610 return "DW_OP_fbreg";
2611 case DW_OP_bregx:
2612 return "DW_OP_bregx";
2613 case DW_OP_piece:
2614 return "DW_OP_piece";
2615 case DW_OP_deref_size:
2616 return "DW_OP_deref_size";
2617 case DW_OP_xderef_size:
2618 return "DW_OP_xderef_size";
2619 case DW_OP_nop:
2620 return "DW_OP_nop";
2621 case DW_OP_push_object_address:
2622 return "DW_OP_push_object_address";
2623 case DW_OP_call2:
2624 return "DW_OP_call2";
2625 case DW_OP_call4:
2626 return "DW_OP_call4";
2627 case DW_OP_call_ref:
2628 return "DW_OP_call_ref";
2629 case DW_OP_GNU_push_tls_address:
2630 return "DW_OP_GNU_push_tls_address";
2631 default:
2632 return "OP_<unknown>";
2633 }
2634 }
2635
2636 /* Return a pointer to a newly allocated location description. Location
2637 descriptions are simple expression terms that can be strung
2638 together to form more complicated location (address) descriptions. */
2639
2640 static inline dw_loc_descr_ref
2641 new_loc_descr (op, oprnd1, oprnd2)
2642 enum dwarf_location_atom op;
2643 unsigned long oprnd1;
2644 unsigned long oprnd2;
2645 {
2646 /* Use xcalloc here so we clear out all of the long_long constant in
2647 the union. */
2648 dw_loc_descr_ref descr
2649 = (dw_loc_descr_ref) xcalloc (1, sizeof (dw_loc_descr_node));
2650
2651 descr->dw_loc_opc = op;
2652 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2653 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2654 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2655 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2656
2657 return descr;
2658 }
2659
2660
2661 /* Add a location description term to a location description expression. */
2662
2663 static inline void
2664 add_loc_descr (list_head, descr)
2665 dw_loc_descr_ref *list_head;
2666 dw_loc_descr_ref descr;
2667 {
2668 dw_loc_descr_ref *d;
2669
2670 /* Find the end of the chain. */
2671 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2672 ;
2673
2674 *d = descr;
2675 }
2676
2677 /* Return the size of a location descriptor. */
2678
2679 static unsigned long
2680 size_of_loc_descr (loc)
2681 dw_loc_descr_ref loc;
2682 {
2683 unsigned long size = 1;
2684
2685 switch (loc->dw_loc_opc)
2686 {
2687 case DW_OP_addr:
2688 case INTERNAL_DW_OP_tls_addr:
2689 size += DWARF2_ADDR_SIZE;
2690 break;
2691 case DW_OP_const1u:
2692 case DW_OP_const1s:
2693 size += 1;
2694 break;
2695 case DW_OP_const2u:
2696 case DW_OP_const2s:
2697 size += 2;
2698 break;
2699 case DW_OP_const4u:
2700 case DW_OP_const4s:
2701 size += 4;
2702 break;
2703 case DW_OP_const8u:
2704 case DW_OP_const8s:
2705 size += 8;
2706 break;
2707 case DW_OP_constu:
2708 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2709 break;
2710 case DW_OP_consts:
2711 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2712 break;
2713 case DW_OP_pick:
2714 size += 1;
2715 break;
2716 case DW_OP_plus_uconst:
2717 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2718 break;
2719 case DW_OP_skip:
2720 case DW_OP_bra:
2721 size += 2;
2722 break;
2723 case DW_OP_breg0:
2724 case DW_OP_breg1:
2725 case DW_OP_breg2:
2726 case DW_OP_breg3:
2727 case DW_OP_breg4:
2728 case DW_OP_breg5:
2729 case DW_OP_breg6:
2730 case DW_OP_breg7:
2731 case DW_OP_breg8:
2732 case DW_OP_breg9:
2733 case DW_OP_breg10:
2734 case DW_OP_breg11:
2735 case DW_OP_breg12:
2736 case DW_OP_breg13:
2737 case DW_OP_breg14:
2738 case DW_OP_breg15:
2739 case DW_OP_breg16:
2740 case DW_OP_breg17:
2741 case DW_OP_breg18:
2742 case DW_OP_breg19:
2743 case DW_OP_breg20:
2744 case DW_OP_breg21:
2745 case DW_OP_breg22:
2746 case DW_OP_breg23:
2747 case DW_OP_breg24:
2748 case DW_OP_breg25:
2749 case DW_OP_breg26:
2750 case DW_OP_breg27:
2751 case DW_OP_breg28:
2752 case DW_OP_breg29:
2753 case DW_OP_breg30:
2754 case DW_OP_breg31:
2755 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2756 break;
2757 case DW_OP_regx:
2758 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2759 break;
2760 case DW_OP_fbreg:
2761 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2762 break;
2763 case DW_OP_bregx:
2764 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2765 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2766 break;
2767 case DW_OP_piece:
2768 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2769 break;
2770 case DW_OP_deref_size:
2771 case DW_OP_xderef_size:
2772 size += 1;
2773 break;
2774 case DW_OP_call2:
2775 size += 2;
2776 break;
2777 case DW_OP_call4:
2778 size += 4;
2779 break;
2780 case DW_OP_call_ref:
2781 size += DWARF2_ADDR_SIZE;
2782 break;
2783 default:
2784 break;
2785 }
2786
2787 return size;
2788 }
2789
2790 /* Return the size of a series of location descriptors. */
2791
2792 static unsigned long
2793 size_of_locs (loc)
2794 dw_loc_descr_ref loc;
2795 {
2796 unsigned long size;
2797
2798 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2799 {
2800 loc->dw_loc_addr = size;
2801 size += size_of_loc_descr (loc);
2802 }
2803
2804 return size;
2805 }
2806
2807 /* Output location description stack opcode's operands (if any). */
2808
2809 static void
2810 output_loc_operands (loc)
2811 dw_loc_descr_ref loc;
2812 {
2813 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2814 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2815
2816 switch (loc->dw_loc_opc)
2817 {
2818 #ifdef DWARF2_DEBUGGING_INFO
2819 case DW_OP_addr:
2820 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2821 break;
2822 case DW_OP_const2u:
2823 case DW_OP_const2s:
2824 dw2_asm_output_data (2, val1->v.val_int, NULL);
2825 break;
2826 case DW_OP_const4u:
2827 case DW_OP_const4s:
2828 dw2_asm_output_data (4, val1->v.val_int, NULL);
2829 break;
2830 case DW_OP_const8u:
2831 case DW_OP_const8s:
2832 if (HOST_BITS_PER_LONG < 64)
2833 abort ();
2834 dw2_asm_output_data (8, val1->v.val_int, NULL);
2835 break;
2836 case DW_OP_skip:
2837 case DW_OP_bra:
2838 {
2839 int offset;
2840
2841 if (val1->val_class == dw_val_class_loc)
2842 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2843 else
2844 abort ();
2845
2846 dw2_asm_output_data (2, offset, NULL);
2847 }
2848 break;
2849 #else
2850 case DW_OP_addr:
2851 case DW_OP_const2u:
2852 case DW_OP_const2s:
2853 case DW_OP_const4u:
2854 case DW_OP_const4s:
2855 case DW_OP_const8u:
2856 case DW_OP_const8s:
2857 case DW_OP_skip:
2858 case DW_OP_bra:
2859 /* We currently don't make any attempt to make sure these are
2860 aligned properly like we do for the main unwind info, so
2861 don't support emitting things larger than a byte if we're
2862 only doing unwinding. */
2863 abort ();
2864 #endif
2865 case DW_OP_const1u:
2866 case DW_OP_const1s:
2867 dw2_asm_output_data (1, val1->v.val_int, NULL);
2868 break;
2869 case DW_OP_constu:
2870 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2871 break;
2872 case DW_OP_consts:
2873 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2874 break;
2875 case DW_OP_pick:
2876 dw2_asm_output_data (1, val1->v.val_int, NULL);
2877 break;
2878 case DW_OP_plus_uconst:
2879 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2880 break;
2881 case DW_OP_breg0:
2882 case DW_OP_breg1:
2883 case DW_OP_breg2:
2884 case DW_OP_breg3:
2885 case DW_OP_breg4:
2886 case DW_OP_breg5:
2887 case DW_OP_breg6:
2888 case DW_OP_breg7:
2889 case DW_OP_breg8:
2890 case DW_OP_breg9:
2891 case DW_OP_breg10:
2892 case DW_OP_breg11:
2893 case DW_OP_breg12:
2894 case DW_OP_breg13:
2895 case DW_OP_breg14:
2896 case DW_OP_breg15:
2897 case DW_OP_breg16:
2898 case DW_OP_breg17:
2899 case DW_OP_breg18:
2900 case DW_OP_breg19:
2901 case DW_OP_breg20:
2902 case DW_OP_breg21:
2903 case DW_OP_breg22:
2904 case DW_OP_breg23:
2905 case DW_OP_breg24:
2906 case DW_OP_breg25:
2907 case DW_OP_breg26:
2908 case DW_OP_breg27:
2909 case DW_OP_breg28:
2910 case DW_OP_breg29:
2911 case DW_OP_breg30:
2912 case DW_OP_breg31:
2913 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2914 break;
2915 case DW_OP_regx:
2916 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2917 break;
2918 case DW_OP_fbreg:
2919 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2920 break;
2921 case DW_OP_bregx:
2922 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2923 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
2924 break;
2925 case DW_OP_piece:
2926 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2927 break;
2928 case DW_OP_deref_size:
2929 case DW_OP_xderef_size:
2930 dw2_asm_output_data (1, val1->v.val_int, NULL);
2931 break;
2932
2933 case INTERNAL_DW_OP_tls_addr:
2934 #ifdef ASM_OUTPUT_DWARF_DTPREL
2935 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
2936 val1->v.val_addr);
2937 fputc ('\n', asm_out_file);
2938 #else
2939 abort ();
2940 #endif
2941 break;
2942
2943 default:
2944 /* Other codes have no operands. */
2945 break;
2946 }
2947 }
2948
2949 /* Output a sequence of location operations. */
2950
2951 static void
2952 output_loc_sequence (loc)
2953 dw_loc_descr_ref loc;
2954 {
2955 for (; loc != NULL; loc = loc->dw_loc_next)
2956 {
2957 /* Output the opcode. */
2958 dw2_asm_output_data (1, loc->dw_loc_opc,
2959 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
2960
2961 /* Output the operand(s) (if any). */
2962 output_loc_operands (loc);
2963 }
2964 }
2965
2966 /* This routine will generate the correct assembly data for a location
2967 description based on a cfi entry with a complex address. */
2968
2969 static void
2970 output_cfa_loc (cfi)
2971 dw_cfi_ref cfi;
2972 {
2973 dw_loc_descr_ref loc;
2974 unsigned long size;
2975
2976 /* Output the size of the block. */
2977 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
2978 size = size_of_locs (loc);
2979 dw2_asm_output_data_uleb128 (size, NULL);
2980
2981 /* Now output the operations themselves. */
2982 output_loc_sequence (loc);
2983 }
2984
2985 /* This function builds a dwarf location descriptor sequence from
2986 a dw_cfa_location. */
2987
2988 static struct dw_loc_descr_struct *
2989 build_cfa_loc (cfa)
2990 dw_cfa_location *cfa;
2991 {
2992 struct dw_loc_descr_struct *head, *tmp;
2993
2994 if (cfa->indirect == 0)
2995 abort ();
2996
2997 if (cfa->base_offset)
2998 {
2999 if (cfa->reg <= 31)
3000 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3001 else
3002 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3003 }
3004 else if (cfa->reg <= 31)
3005 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3006 else
3007 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3008
3009 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3010 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3011 add_loc_descr (&head, tmp);
3012 if (cfa->offset != 0)
3013 {
3014 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3015 add_loc_descr (&head, tmp);
3016 }
3017
3018 return head;
3019 }
3020
3021 /* This function fills in aa dw_cfa_location structure from a dwarf location
3022 descriptor sequence. */
3023
3024 static void
3025 get_cfa_from_loc_descr (cfa, loc)
3026 dw_cfa_location *cfa;
3027 struct dw_loc_descr_struct *loc;
3028 {
3029 struct dw_loc_descr_struct *ptr;
3030 cfa->offset = 0;
3031 cfa->base_offset = 0;
3032 cfa->indirect = 0;
3033 cfa->reg = -1;
3034
3035 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3036 {
3037 enum dwarf_location_atom op = ptr->dw_loc_opc;
3038
3039 switch (op)
3040 {
3041 case DW_OP_reg0:
3042 case DW_OP_reg1:
3043 case DW_OP_reg2:
3044 case DW_OP_reg3:
3045 case DW_OP_reg4:
3046 case DW_OP_reg5:
3047 case DW_OP_reg6:
3048 case DW_OP_reg7:
3049 case DW_OP_reg8:
3050 case DW_OP_reg9:
3051 case DW_OP_reg10:
3052 case DW_OP_reg11:
3053 case DW_OP_reg12:
3054 case DW_OP_reg13:
3055 case DW_OP_reg14:
3056 case DW_OP_reg15:
3057 case DW_OP_reg16:
3058 case DW_OP_reg17:
3059 case DW_OP_reg18:
3060 case DW_OP_reg19:
3061 case DW_OP_reg20:
3062 case DW_OP_reg21:
3063 case DW_OP_reg22:
3064 case DW_OP_reg23:
3065 case DW_OP_reg24:
3066 case DW_OP_reg25:
3067 case DW_OP_reg26:
3068 case DW_OP_reg27:
3069 case DW_OP_reg28:
3070 case DW_OP_reg29:
3071 case DW_OP_reg30:
3072 case DW_OP_reg31:
3073 cfa->reg = op - DW_OP_reg0;
3074 break;
3075 case DW_OP_regx:
3076 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3077 break;
3078 case DW_OP_breg0:
3079 case DW_OP_breg1:
3080 case DW_OP_breg2:
3081 case DW_OP_breg3:
3082 case DW_OP_breg4:
3083 case DW_OP_breg5:
3084 case DW_OP_breg6:
3085 case DW_OP_breg7:
3086 case DW_OP_breg8:
3087 case DW_OP_breg9:
3088 case DW_OP_breg10:
3089 case DW_OP_breg11:
3090 case DW_OP_breg12:
3091 case DW_OP_breg13:
3092 case DW_OP_breg14:
3093 case DW_OP_breg15:
3094 case DW_OP_breg16:
3095 case DW_OP_breg17:
3096 case DW_OP_breg18:
3097 case DW_OP_breg19:
3098 case DW_OP_breg20:
3099 case DW_OP_breg21:
3100 case DW_OP_breg22:
3101 case DW_OP_breg23:
3102 case DW_OP_breg24:
3103 case DW_OP_breg25:
3104 case DW_OP_breg26:
3105 case DW_OP_breg27:
3106 case DW_OP_breg28:
3107 case DW_OP_breg29:
3108 case DW_OP_breg30:
3109 case DW_OP_breg31:
3110 cfa->reg = op - DW_OP_breg0;
3111 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3112 break;
3113 case DW_OP_bregx:
3114 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3115 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3116 break;
3117 case DW_OP_deref:
3118 cfa->indirect = 1;
3119 break;
3120 case DW_OP_plus_uconst:
3121 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3122 break;
3123 default:
3124 internal_error ("DW_LOC_OP %s not implemented\n",
3125 dwarf_stack_op_name (ptr->dw_loc_opc));
3126 }
3127 }
3128 }
3129 #endif /* .debug_frame support */
3130 \f
3131 /* And now, the support for symbolic debugging information. */
3132 #ifdef DWARF2_DEBUGGING_INFO
3133
3134 /* .debug_str support. */
3135 static hashnode indirect_string_alloc PARAMS ((hash_table *));
3136 static int output_indirect_string PARAMS ((struct cpp_reader *,
3137 hashnode, const PTR));
3138
3139
3140 static void dwarf2out_init PARAMS ((const char *));
3141 static void dwarf2out_finish PARAMS ((const char *));
3142 static void dwarf2out_define PARAMS ((unsigned int, const char *));
3143 static void dwarf2out_undef PARAMS ((unsigned int, const char *));
3144 static void dwarf2out_start_source_file PARAMS ((unsigned, const char *));
3145 static void dwarf2out_end_source_file PARAMS ((unsigned));
3146 static void dwarf2out_begin_block PARAMS ((unsigned, unsigned));
3147 static void dwarf2out_end_block PARAMS ((unsigned, unsigned));
3148 static bool dwarf2out_ignore_block PARAMS ((tree));
3149 static void dwarf2out_global_decl PARAMS ((tree));
3150 static void dwarf2out_abstract_function PARAMS ((tree));
3151
3152 /* The debug hooks structure. */
3153
3154 const struct gcc_debug_hooks dwarf2_debug_hooks =
3155 {
3156 dwarf2out_init,
3157 dwarf2out_finish,
3158 dwarf2out_define,
3159 dwarf2out_undef,
3160 dwarf2out_start_source_file,
3161 dwarf2out_end_source_file,
3162 dwarf2out_begin_block,
3163 dwarf2out_end_block,
3164 dwarf2out_ignore_block,
3165 dwarf2out_source_line,
3166 dwarf2out_begin_prologue,
3167 debug_nothing_int_charstar, /* end_prologue */
3168 dwarf2out_end_epilogue,
3169 debug_nothing_tree, /* begin_function */
3170 debug_nothing_int, /* end_function */
3171 dwarf2out_decl, /* function_decl */
3172 dwarf2out_global_decl,
3173 debug_nothing_tree, /* deferred_inline_function */
3174 /* The DWARF 2 backend tries to reduce debugging bloat by not
3175 emitting the abstract description of inline functions until
3176 something tries to reference them. */
3177 dwarf2out_abstract_function, /* outlining_inline_function */
3178 debug_nothing_rtx /* label */
3179 };
3180 \f
3181 /* NOTE: In the comments in this file, many references are made to
3182 "Debugging Information Entries". This term is abbreviated as `DIE'
3183 throughout the remainder of this file. */
3184
3185 /* An internal representation of the DWARF output is built, and then
3186 walked to generate the DWARF debugging info. The walk of the internal
3187 representation is done after the entire program has been compiled.
3188 The types below are used to describe the internal representation. */
3189
3190 /* Various DIE's use offsets relative to the beginning of the
3191 .debug_info section to refer to each other. */
3192
3193 typedef long int dw_offset;
3194
3195 /* Define typedefs here to avoid circular dependencies. */
3196
3197 typedef struct dw_attr_struct *dw_attr_ref;
3198 typedef struct dw_line_info_struct *dw_line_info_ref;
3199 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3200 typedef struct pubname_struct *pubname_ref;
3201 typedef struct dw_ranges_struct *dw_ranges_ref;
3202
3203 /* Each entry in the line_info_table maintains the file and
3204 line number associated with the label generated for that
3205 entry. The label gives the PC value associated with
3206 the line number entry. */
3207
3208 typedef struct dw_line_info_struct
3209 {
3210 unsigned long dw_file_num;
3211 unsigned long dw_line_num;
3212 }
3213 dw_line_info_entry;
3214
3215 /* Line information for functions in separate sections; each one gets its
3216 own sequence. */
3217 typedef struct dw_separate_line_info_struct
3218 {
3219 unsigned long dw_file_num;
3220 unsigned long dw_line_num;
3221 unsigned long function;
3222 }
3223 dw_separate_line_info_entry;
3224
3225 /* Each DIE attribute has a field specifying the attribute kind,
3226 a link to the next attribute in the chain, and an attribute value.
3227 Attributes are typically linked below the DIE they modify. */
3228
3229 typedef struct dw_attr_struct
3230 {
3231 enum dwarf_attribute dw_attr;
3232 dw_attr_ref dw_attr_next;
3233 dw_val_node dw_attr_val;
3234 }
3235 dw_attr_node;
3236
3237 /* The Debugging Information Entry (DIE) structure */
3238
3239 typedef struct die_struct
3240 {
3241 enum dwarf_tag die_tag;
3242 char *die_symbol;
3243 dw_attr_ref die_attr;
3244 dw_die_ref die_parent;
3245 dw_die_ref die_child;
3246 dw_die_ref die_sib;
3247 dw_offset die_offset;
3248 unsigned long die_abbrev;
3249 int die_mark;
3250 }
3251 die_node;
3252
3253 /* The pubname structure */
3254
3255 typedef struct pubname_struct
3256 {
3257 dw_die_ref die;
3258 char *name;
3259 }
3260 pubname_entry;
3261
3262 struct dw_ranges_struct
3263 {
3264 int block_num;
3265 };
3266
3267 /* The limbo die list structure. */
3268 typedef struct limbo_die_struct
3269 {
3270 dw_die_ref die;
3271 tree created_for;
3272 struct limbo_die_struct *next;
3273 }
3274 limbo_die_node;
3275
3276 /* How to start an assembler comment. */
3277 #ifndef ASM_COMMENT_START
3278 #define ASM_COMMENT_START ";#"
3279 #endif
3280
3281 /* Define a macro which returns nonzero for a TYPE_DECL which was
3282 implicitly generated for a tagged type.
3283
3284 Note that unlike the gcc front end (which generates a NULL named
3285 TYPE_DECL node for each complete tagged type, each array type, and
3286 each function type node created) the g++ front end generates a
3287 _named_ TYPE_DECL node for each tagged type node created.
3288 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3289 generate a DW_TAG_typedef DIE for them. */
3290
3291 #define TYPE_DECL_IS_STUB(decl) \
3292 (DECL_NAME (decl) == NULL_TREE \
3293 || (DECL_ARTIFICIAL (decl) \
3294 && is_tagged_type (TREE_TYPE (decl)) \
3295 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3296 /* This is necessary for stub decls that \
3297 appear in nested inline functions. */ \
3298 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3299 && (decl_ultimate_origin (decl) \
3300 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3301
3302 /* Information concerning the compilation unit's programming
3303 language, and compiler version. */
3304
3305 /* Fixed size portion of the DWARF compilation unit header. */
3306 #define DWARF_COMPILE_UNIT_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 3)
3307
3308 /* Fixed size portion of public names info. */
3309 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3310
3311 /* Fixed size portion of the address range info. */
3312 #define DWARF_ARANGES_HEADER_SIZE \
3313 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3314 - DWARF_OFFSET_SIZE)
3315
3316 /* Size of padding portion in the address range info. It must be
3317 aligned to twice the pointer size. */
3318 #define DWARF_ARANGES_PAD_SIZE \
3319 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3320 - (2 * DWARF_OFFSET_SIZE + 4))
3321
3322 /* Use assembler line directives if available. */
3323 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3324 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3325 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3326 #else
3327 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3328 #endif
3329 #endif
3330
3331 /* Minimum line offset in a special line info. opcode.
3332 This value was chosen to give a reasonable range of values. */
3333 #define DWARF_LINE_BASE -10
3334
3335 /* First special line opcode - leave room for the standard opcodes. */
3336 #define DWARF_LINE_OPCODE_BASE 10
3337
3338 /* Range of line offsets in a special line info. opcode. */
3339 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3340
3341 /* Flag that indicates the initial value of the is_stmt_start flag.
3342 In the present implementation, we do not mark any lines as
3343 the beginning of a source statement, because that information
3344 is not made available by the GCC front-end. */
3345 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3346
3347 /* This location is used by calc_die_sizes() to keep track
3348 the offset of each DIE within the .debug_info section. */
3349 static unsigned long next_die_offset;
3350
3351 /* Record the root of the DIE's built for the current compilation unit. */
3352 static dw_die_ref comp_unit_die;
3353
3354 /* We need special handling in dwarf2out_start_source_file if it is
3355 first one. */
3356 static int is_main_source;
3357
3358 /* A list of DIEs with a NULL parent waiting to be relocated. */
3359 static limbo_die_node *limbo_die_list = 0;
3360
3361 /* Structure used by lookup_filename to manage sets of filenames. */
3362 struct file_table
3363 {
3364 char **table;
3365 unsigned allocated;
3366 unsigned in_use;
3367 unsigned last_lookup_index;
3368 };
3369
3370 /* Size (in elements) of increments by which we may expand the filename
3371 table. */
3372 #define FILE_TABLE_INCREMENT 64
3373
3374 /* Filenames referenced by this compilation unit. */
3375 static struct file_table file_table;
3376
3377 /* Local pointer to the name of the main input file. Initialized in
3378 dwarf2out_init. */
3379 static const char *primary_filename;
3380
3381 /* A pointer to the base of a table of references to DIE's that describe
3382 declarations. The table is indexed by DECL_UID() which is a unique
3383 number identifying each decl. */
3384 static dw_die_ref *decl_die_table;
3385
3386 /* Number of elements currently allocated for the decl_die_table. */
3387 static unsigned decl_die_table_allocated;
3388
3389 /* Number of elements in decl_die_table currently in use. */
3390 static unsigned decl_die_table_in_use;
3391
3392 /* Size (in elements) of increments by which we may expand the
3393 decl_die_table. */
3394 #define DECL_DIE_TABLE_INCREMENT 256
3395
3396 /* A pointer to the base of a list of references to DIE's that
3397 are uniquely identified by their tag, presence/absence of
3398 children DIE's, and list of attribute/value pairs. */
3399 static dw_die_ref *abbrev_die_table;
3400
3401 /* Number of elements currently allocated for abbrev_die_table. */
3402 static unsigned abbrev_die_table_allocated;
3403
3404 /* Number of elements in type_die_table currently in use. */
3405 static unsigned abbrev_die_table_in_use;
3406
3407 /* Size (in elements) of increments by which we may expand the
3408 abbrev_die_table. */
3409 #define ABBREV_DIE_TABLE_INCREMENT 256
3410
3411 /* A pointer to the base of a table that contains line information
3412 for each source code line in .text in the compilation unit. */
3413 static dw_line_info_ref line_info_table;
3414
3415 /* Number of elements currently allocated for line_info_table. */
3416 static unsigned line_info_table_allocated;
3417
3418 /* Number of elements in separate_line_info_table currently in use. */
3419 static unsigned separate_line_info_table_in_use;
3420
3421 /* A pointer to the base of a table that contains line information
3422 for each source code line outside of .text in the compilation unit. */
3423 static dw_separate_line_info_ref separate_line_info_table;
3424
3425 /* Number of elements currently allocated for separate_line_info_table. */
3426 static unsigned separate_line_info_table_allocated;
3427
3428 /* Number of elements in line_info_table currently in use. */
3429 static unsigned line_info_table_in_use;
3430
3431 /* Size (in elements) of increments by which we may expand the
3432 line_info_table. */
3433 #define LINE_INFO_TABLE_INCREMENT 1024
3434
3435 /* A pointer to the base of a table that contains a list of publicly
3436 accessible names. */
3437 static pubname_ref pubname_table;
3438
3439 /* Number of elements currently allocated for pubname_table. */
3440 static unsigned pubname_table_allocated;
3441
3442 /* Number of elements in pubname_table currently in use. */
3443 static unsigned pubname_table_in_use;
3444
3445 /* Size (in elements) of increments by which we may expand the
3446 pubname_table. */
3447 #define PUBNAME_TABLE_INCREMENT 64
3448
3449 /* Array of dies for which we should generate .debug_arange info. */
3450 static dw_die_ref *arange_table;
3451
3452 /* Number of elements currently allocated for arange_table. */
3453 static unsigned arange_table_allocated;
3454
3455 /* Number of elements in arange_table currently in use. */
3456 static unsigned arange_table_in_use;
3457
3458 /* Size (in elements) of increments by which we may expand the
3459 arange_table. */
3460 #define ARANGE_TABLE_INCREMENT 64
3461
3462 /* Array of dies for which we should generate .debug_ranges info. */
3463 static dw_ranges_ref ranges_table;
3464
3465 /* Number of elements currently allocated for ranges_table. */
3466 static unsigned ranges_table_allocated;
3467
3468 /* Number of elements in ranges_table currently in use. */
3469 static unsigned ranges_table_in_use;
3470
3471 /* Size (in elements) of increments by which we may expand the
3472 ranges_table. */
3473 #define RANGES_TABLE_INCREMENT 64
3474
3475 /* Whether we have location lists that need outputting */
3476 static unsigned have_location_lists;
3477
3478 /* Record whether the function being analyzed contains inlined functions. */
3479 static int current_function_has_inlines;
3480 #if 0 && defined (MIPS_DEBUGGING_INFO)
3481 static int comp_unit_has_inlines;
3482 #endif
3483
3484 /* Forward declarations for functions defined in this file. */
3485
3486 static int is_pseudo_reg PARAMS ((rtx));
3487 static tree type_main_variant PARAMS ((tree));
3488 static int is_tagged_type PARAMS ((tree));
3489 static const char *dwarf_tag_name PARAMS ((unsigned));
3490 static const char *dwarf_attr_name PARAMS ((unsigned));
3491 static const char *dwarf_form_name PARAMS ((unsigned));
3492 #if 0
3493 static const char *dwarf_type_encoding_name PARAMS ((unsigned));
3494 #endif
3495 static tree decl_ultimate_origin PARAMS ((tree));
3496 static tree block_ultimate_origin PARAMS ((tree));
3497 static tree decl_class_context PARAMS ((tree));
3498 static void add_dwarf_attr PARAMS ((dw_die_ref, dw_attr_ref));
3499 static inline dw_val_class AT_class PARAMS ((dw_attr_ref));
3500 static void add_AT_flag PARAMS ((dw_die_ref,
3501 enum dwarf_attribute,
3502 unsigned));
3503 static inline unsigned AT_flag PARAMS ((dw_attr_ref));
3504 static void add_AT_int PARAMS ((dw_die_ref,
3505 enum dwarf_attribute, long));
3506 static inline long int AT_int PARAMS ((dw_attr_ref));
3507 static void add_AT_unsigned PARAMS ((dw_die_ref,
3508 enum dwarf_attribute,
3509 unsigned long));
3510 static inline unsigned long AT_unsigned PARAMS ((dw_attr_ref));
3511 static void add_AT_long_long PARAMS ((dw_die_ref,
3512 enum dwarf_attribute,
3513 unsigned long,
3514 unsigned long));
3515 static void add_AT_float PARAMS ((dw_die_ref,
3516 enum dwarf_attribute,
3517 unsigned, long *));
3518 static void add_AT_string PARAMS ((dw_die_ref,
3519 enum dwarf_attribute,
3520 const char *));
3521 static inline const char *AT_string PARAMS ((dw_attr_ref));
3522 static int AT_string_form PARAMS ((dw_attr_ref));
3523 static void add_AT_die_ref PARAMS ((dw_die_ref,
3524 enum dwarf_attribute,
3525 dw_die_ref));
3526 static inline dw_die_ref AT_ref PARAMS ((dw_attr_ref));
3527 static inline int AT_ref_external PARAMS ((dw_attr_ref));
3528 static inline void set_AT_ref_external PARAMS ((dw_attr_ref, int));
3529 static void add_AT_fde_ref PARAMS ((dw_die_ref,
3530 enum dwarf_attribute,
3531 unsigned));
3532 static void add_AT_loc PARAMS ((dw_die_ref,
3533 enum dwarf_attribute,
3534 dw_loc_descr_ref));
3535 static inline dw_loc_descr_ref AT_loc PARAMS ((dw_attr_ref));
3536 static void add_AT_loc_list PARAMS ((dw_die_ref,
3537 enum dwarf_attribute,
3538 dw_loc_list_ref));
3539 static inline dw_loc_list_ref AT_loc_list PARAMS ((dw_attr_ref));
3540 static void add_AT_addr PARAMS ((dw_die_ref,
3541 enum dwarf_attribute,
3542 rtx));
3543 static inline rtx AT_addr PARAMS ((dw_attr_ref));
3544 static void add_AT_lbl_id PARAMS ((dw_die_ref,
3545 enum dwarf_attribute,
3546 const char *));
3547 static void add_AT_lbl_offset PARAMS ((dw_die_ref,
3548 enum dwarf_attribute,
3549 const char *));
3550 static void add_AT_offset PARAMS ((dw_die_ref,
3551 enum dwarf_attribute,
3552 unsigned long));
3553 static void add_AT_range_list PARAMS ((dw_die_ref,
3554 enum dwarf_attribute,
3555 unsigned long));
3556 static inline const char *AT_lbl PARAMS ((dw_attr_ref));
3557 static dw_attr_ref get_AT PARAMS ((dw_die_ref,
3558 enum dwarf_attribute));
3559 static const char *get_AT_low_pc PARAMS ((dw_die_ref));
3560 static const char *get_AT_hi_pc PARAMS ((dw_die_ref));
3561 static const char *get_AT_string PARAMS ((dw_die_ref,
3562 enum dwarf_attribute));
3563 static int get_AT_flag PARAMS ((dw_die_ref,
3564 enum dwarf_attribute));
3565 static unsigned get_AT_unsigned PARAMS ((dw_die_ref,
3566 enum dwarf_attribute));
3567 static inline dw_die_ref get_AT_ref PARAMS ((dw_die_ref,
3568 enum dwarf_attribute));
3569 static int is_c_family PARAMS ((void));
3570 static int is_cxx PARAMS ((void));
3571 static int is_java PARAMS ((void));
3572 static int is_fortran PARAMS ((void));
3573 static void remove_AT PARAMS ((dw_die_ref,
3574 enum dwarf_attribute));
3575 static inline void free_die PARAMS ((dw_die_ref));
3576 static void remove_children PARAMS ((dw_die_ref));
3577 static void add_child_die PARAMS ((dw_die_ref, dw_die_ref));
3578 static dw_die_ref new_die PARAMS ((enum dwarf_tag, dw_die_ref,
3579 tree));
3580 static dw_die_ref lookup_type_die PARAMS ((tree));
3581 static void equate_type_number_to_die PARAMS ((tree, dw_die_ref));
3582 static dw_die_ref lookup_decl_die PARAMS ((tree));
3583 static void equate_decl_number_to_die PARAMS ((tree, dw_die_ref));
3584 static void print_spaces PARAMS ((FILE *));
3585 static void print_die PARAMS ((dw_die_ref, FILE *));
3586 static void print_dwarf_line_table PARAMS ((FILE *));
3587 static void reverse_die_lists PARAMS ((dw_die_ref));
3588 static void reverse_all_dies PARAMS ((dw_die_ref));
3589 static dw_die_ref push_new_compile_unit PARAMS ((dw_die_ref, dw_die_ref));
3590 static dw_die_ref pop_compile_unit PARAMS ((dw_die_ref));
3591 static void loc_checksum PARAMS ((dw_loc_descr_ref,
3592 struct md5_ctx *));
3593 static void attr_checksum PARAMS ((dw_attr_ref,
3594 struct md5_ctx *,
3595 int *));
3596 static void die_checksum PARAMS ((dw_die_ref,
3597 struct md5_ctx *,
3598 int *));
3599 static int same_loc_p PARAMS ((dw_loc_descr_ref,
3600 dw_loc_descr_ref, int *));
3601 static int same_dw_val_p PARAMS ((dw_val_node *, dw_val_node *,
3602 int *));
3603 static int same_attr_p PARAMS ((dw_attr_ref, dw_attr_ref, int *));
3604 static int same_die_p PARAMS ((dw_die_ref, dw_die_ref, int *));
3605 static int same_die_p_wrap PARAMS ((dw_die_ref, dw_die_ref));
3606 static void compute_section_prefix PARAMS ((dw_die_ref));
3607 static int is_type_die PARAMS ((dw_die_ref));
3608 static int is_comdat_die PARAMS ((dw_die_ref));
3609 static int is_symbol_die PARAMS ((dw_die_ref));
3610 static void assign_symbol_names PARAMS ((dw_die_ref));
3611 static void break_out_includes PARAMS ((dw_die_ref));
3612 static hashval_t htab_cu_hash PARAMS ((const void *));
3613 static int htab_cu_eq PARAMS ((const void *, const void *));
3614 static void htab_cu_del PARAMS ((void *));
3615 static int check_duplicate_cu PARAMS ((dw_die_ref, htab_t, unsigned *));
3616 static void record_comdat_symbol_number PARAMS ((dw_die_ref, htab_t, unsigned));
3617 static void add_sibling_attributes PARAMS ((dw_die_ref));
3618 static void build_abbrev_table PARAMS ((dw_die_ref));
3619 static void output_location_lists PARAMS ((dw_die_ref));
3620 static int constant_size PARAMS ((long unsigned));
3621 static unsigned long size_of_die PARAMS ((dw_die_ref));
3622 static void calc_die_sizes PARAMS ((dw_die_ref));
3623 static void mark_dies PARAMS ((dw_die_ref));
3624 static void unmark_dies PARAMS ((dw_die_ref));
3625 static void unmark_all_dies PARAMS ((dw_die_ref));
3626 static unsigned long size_of_pubnames PARAMS ((void));
3627 static unsigned long size_of_aranges PARAMS ((void));
3628 static enum dwarf_form value_format PARAMS ((dw_attr_ref));
3629 static void output_value_format PARAMS ((dw_attr_ref));
3630 static void output_abbrev_section PARAMS ((void));
3631 static void output_die_symbol PARAMS ((dw_die_ref));
3632 static void output_die PARAMS ((dw_die_ref));
3633 static void output_compilation_unit_header PARAMS ((void));
3634 static void output_comp_unit PARAMS ((dw_die_ref, int));
3635 static const char *dwarf2_name PARAMS ((tree, int));
3636 static void add_pubname PARAMS ((tree, dw_die_ref));
3637 static void output_pubnames PARAMS ((void));
3638 static void add_arange PARAMS ((tree, dw_die_ref));
3639 static void output_aranges PARAMS ((void));
3640 static unsigned int add_ranges PARAMS ((tree));
3641 static void output_ranges PARAMS ((void));
3642 static void output_line_info PARAMS ((void));
3643 static void output_file_names PARAMS ((void));
3644 static dw_die_ref base_type_die PARAMS ((tree));
3645 static tree root_type PARAMS ((tree));
3646 static int is_base_type PARAMS ((tree));
3647 static dw_die_ref modified_type_die PARAMS ((tree, int, int, dw_die_ref));
3648 static int type_is_enum PARAMS ((tree));
3649 static unsigned int reg_number PARAMS ((rtx));
3650 static dw_loc_descr_ref reg_loc_descriptor PARAMS ((rtx));
3651 static dw_loc_descr_ref int_loc_descriptor PARAMS ((HOST_WIDE_INT));
3652 static dw_loc_descr_ref based_loc_descr PARAMS ((unsigned, long));
3653 static int is_based_loc PARAMS ((rtx));
3654 static dw_loc_descr_ref mem_loc_descriptor PARAMS ((rtx, enum machine_mode mode));
3655 static dw_loc_descr_ref concat_loc_descriptor PARAMS ((rtx, rtx));
3656 static dw_loc_descr_ref loc_descriptor PARAMS ((rtx));
3657 static dw_loc_descr_ref loc_descriptor_from_tree PARAMS ((tree, int));
3658 static HOST_WIDE_INT ceiling PARAMS ((HOST_WIDE_INT, unsigned int));
3659 static tree field_type PARAMS ((tree));
3660 static unsigned int simple_type_align_in_bits PARAMS ((tree));
3661 static unsigned int simple_decl_align_in_bits PARAMS ((tree));
3662 static unsigned HOST_WIDE_INT simple_type_size_in_bits PARAMS ((tree));
3663 static HOST_WIDE_INT field_byte_offset PARAMS ((tree));
3664 static void add_AT_location_description PARAMS ((dw_die_ref,
3665 enum dwarf_attribute,
3666 dw_loc_descr_ref));
3667 static void add_data_member_location_attribute PARAMS ((dw_die_ref, tree));
3668 static void add_const_value_attribute PARAMS ((dw_die_ref, rtx));
3669 static rtx rtl_for_decl_location PARAMS ((tree));
3670 static void add_location_or_const_value_attribute PARAMS ((dw_die_ref, tree));
3671 static void tree_add_const_value_attribute PARAMS ((dw_die_ref, tree));
3672 static void add_name_attribute PARAMS ((dw_die_ref, const char *));
3673 static void add_bound_info PARAMS ((dw_die_ref,
3674 enum dwarf_attribute, tree));
3675 static void add_subscript_info PARAMS ((dw_die_ref, tree));
3676 static void add_byte_size_attribute PARAMS ((dw_die_ref, tree));
3677 static void add_bit_offset_attribute PARAMS ((dw_die_ref, tree));
3678 static void add_bit_size_attribute PARAMS ((dw_die_ref, tree));
3679 static void add_prototyped_attribute PARAMS ((dw_die_ref, tree));
3680 static void add_abstract_origin_attribute PARAMS ((dw_die_ref, tree));
3681 static void add_pure_or_virtual_attribute PARAMS ((dw_die_ref, tree));
3682 static void add_src_coords_attributes PARAMS ((dw_die_ref, tree));
3683 static void add_name_and_src_coords_attributes PARAMS ((dw_die_ref, tree));
3684 static void push_decl_scope PARAMS ((tree));
3685 static void pop_decl_scope PARAMS ((void));
3686 static dw_die_ref scope_die_for PARAMS ((tree, dw_die_ref));
3687 static inline int local_scope_p PARAMS ((dw_die_ref));
3688 static inline int class_scope_p PARAMS ((dw_die_ref));
3689 static void add_type_attribute PARAMS ((dw_die_ref, tree, int, int,
3690 dw_die_ref));
3691 static const char *type_tag PARAMS ((tree));
3692 static tree member_declared_type PARAMS ((tree));
3693 #if 0
3694 static const char *decl_start_label PARAMS ((tree));
3695 #endif
3696 static void gen_array_type_die PARAMS ((tree, dw_die_ref));
3697 static void gen_set_type_die PARAMS ((tree, dw_die_ref));
3698 #if 0
3699 static void gen_entry_point_die PARAMS ((tree, dw_die_ref));
3700 #endif
3701 static void gen_inlined_enumeration_type_die PARAMS ((tree, dw_die_ref));
3702 static void gen_inlined_structure_type_die PARAMS ((tree, dw_die_ref));
3703 static void gen_inlined_union_type_die PARAMS ((tree, dw_die_ref));
3704 static void gen_enumeration_type_die PARAMS ((tree, dw_die_ref));
3705 static dw_die_ref gen_formal_parameter_die PARAMS ((tree, dw_die_ref));
3706 static void gen_unspecified_parameters_die PARAMS ((tree, dw_die_ref));
3707 static void gen_formal_types_die PARAMS ((tree, dw_die_ref));
3708 static void gen_subprogram_die PARAMS ((tree, dw_die_ref));
3709 static void gen_variable_die PARAMS ((tree, dw_die_ref));
3710 static void gen_label_die PARAMS ((tree, dw_die_ref));
3711 static void gen_lexical_block_die PARAMS ((tree, dw_die_ref, int));
3712 static void gen_inlined_subroutine_die PARAMS ((tree, dw_die_ref, int));
3713 static void gen_field_die PARAMS ((tree, dw_die_ref));
3714 static void gen_ptr_to_mbr_type_die PARAMS ((tree, dw_die_ref));
3715 static dw_die_ref gen_compile_unit_die PARAMS ((const char *));
3716 static void gen_string_type_die PARAMS ((tree, dw_die_ref));
3717 static void gen_inheritance_die PARAMS ((tree, dw_die_ref));
3718 static void gen_member_die PARAMS ((tree, dw_die_ref));
3719 static void gen_struct_or_union_type_die PARAMS ((tree, dw_die_ref));
3720 static void gen_subroutine_type_die PARAMS ((tree, dw_die_ref));
3721 static void gen_typedef_die PARAMS ((tree, dw_die_ref));
3722 static void gen_type_die PARAMS ((tree, dw_die_ref));
3723 static void gen_tagged_type_instantiation_die PARAMS ((tree, dw_die_ref));
3724 static void gen_block_die PARAMS ((tree, dw_die_ref, int));
3725 static void decls_for_scope PARAMS ((tree, dw_die_ref, int));
3726 static int is_redundant_typedef PARAMS ((tree));
3727 static void gen_decl_die PARAMS ((tree, dw_die_ref));
3728 static unsigned lookup_filename PARAMS ((const char *));
3729 static void init_file_table PARAMS ((void));
3730 static void retry_incomplete_types PARAMS ((void));
3731 static void gen_type_die_for_member PARAMS ((tree, tree, dw_die_ref));
3732 static void splice_child_die PARAMS ((dw_die_ref, dw_die_ref));
3733 static int file_info_cmp PARAMS ((const void *, const void *));
3734 static dw_loc_list_ref new_loc_list PARAMS ((dw_loc_descr_ref,
3735 const char *, const char *,
3736 const char *, unsigned));
3737 static void add_loc_descr_to_loc_list PARAMS ((dw_loc_list_ref *,
3738 dw_loc_descr_ref,
3739 const char *, const char *, const char *));
3740 static void output_loc_list PARAMS ((dw_loc_list_ref));
3741 static char *gen_internal_sym PARAMS ((const char *));
3742 static void mark_limbo_die_list PARAMS ((void *));
3743
3744 /* Section names used to hold DWARF debugging information. */
3745 #ifndef DEBUG_INFO_SECTION
3746 #define DEBUG_INFO_SECTION ".debug_info"
3747 #endif
3748 #ifndef DEBUG_ABBREV_SECTION
3749 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3750 #endif
3751 #ifndef DEBUG_ARANGES_SECTION
3752 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3753 #endif
3754 #ifndef DEBUG_MACINFO_SECTION
3755 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3756 #endif
3757 #ifndef DEBUG_LINE_SECTION
3758 #define DEBUG_LINE_SECTION ".debug_line"
3759 #endif
3760 #ifndef DEBUG_LOC_SECTION
3761 #define DEBUG_LOC_SECTION ".debug_loc"
3762 #endif
3763 #ifndef DEBUG_PUBNAMES_SECTION
3764 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3765 #endif
3766 #ifndef DEBUG_STR_SECTION
3767 #define DEBUG_STR_SECTION ".debug_str"
3768 #endif
3769 #ifndef DEBUG_RANGES_SECTION
3770 #define DEBUG_RANGES_SECTION ".debug_ranges"
3771 #endif
3772
3773 /* Standard ELF section names for compiled code and data. */
3774 #ifndef TEXT_SECTION_NAME
3775 #define TEXT_SECTION_NAME ".text"
3776 #endif
3777
3778 /* Section flags for .debug_str section. */
3779 #ifdef HAVE_GAS_SHF_MERGE
3780 #define DEBUG_STR_SECTION_FLAGS \
3781 (SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1)
3782 #else
3783 #define DEBUG_STR_SECTION_FLAGS SECTION_DEBUG
3784 #endif
3785
3786 /* Labels we insert at beginning sections we can reference instead of
3787 the section names themselves. */
3788
3789 #ifndef TEXT_SECTION_LABEL
3790 #define TEXT_SECTION_LABEL "Ltext"
3791 #endif
3792 #ifndef DEBUG_LINE_SECTION_LABEL
3793 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3794 #endif
3795 #ifndef DEBUG_INFO_SECTION_LABEL
3796 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3797 #endif
3798 #ifndef DEBUG_ABBREV_SECTION_LABEL
3799 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3800 #endif
3801 #ifndef DEBUG_LOC_SECTION_LABEL
3802 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3803 #endif
3804 #ifndef DEBUG_RANGES_SECTION_LABEL
3805 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3806 #endif
3807 #ifndef DEBUG_MACINFO_SECTION_LABEL
3808 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3809 #endif
3810
3811 /* Definitions of defaults for formats and names of various special
3812 (artificial) labels which may be generated within this file (when the -g
3813 options is used and DWARF_DEBUGGING_INFO is in effect.
3814 If necessary, these may be overridden from within the tm.h file, but
3815 typically, overriding these defaults is unnecessary. */
3816
3817 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3818 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3819 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3820 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3821 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3822 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3823 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3824 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3825
3826 #ifndef TEXT_END_LABEL
3827 #define TEXT_END_LABEL "Letext"
3828 #endif
3829 #ifndef BLOCK_BEGIN_LABEL
3830 #define BLOCK_BEGIN_LABEL "LBB"
3831 #endif
3832 #ifndef BLOCK_END_LABEL
3833 #define BLOCK_END_LABEL "LBE"
3834 #endif
3835 #ifndef LINE_CODE_LABEL
3836 #define LINE_CODE_LABEL "LM"
3837 #endif
3838 #ifndef SEPARATE_LINE_CODE_LABEL
3839 #define SEPARATE_LINE_CODE_LABEL "LSM"
3840 #endif
3841 \f
3842 /* We allow a language front-end to designate a function that is to be
3843 called to "demangle" any name before it it put into a DIE. */
3844
3845 static const char *(*demangle_name_func) PARAMS ((const char *));
3846
3847 void
3848 dwarf2out_set_demangle_name_func (func)
3849 const char *(*func) PARAMS ((const char *));
3850 {
3851 demangle_name_func = func;
3852 }
3853
3854 /* Test if rtl node points to a pseudo register. */
3855
3856 static inline int
3857 is_pseudo_reg (rtl)
3858 rtx rtl;
3859 {
3860 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3861 || (GET_CODE (rtl) == SUBREG
3862 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3863 }
3864
3865 /* Return a reference to a type, with its const and volatile qualifiers
3866 removed. */
3867
3868 static inline tree
3869 type_main_variant (type)
3870 tree type;
3871 {
3872 type = TYPE_MAIN_VARIANT (type);
3873
3874 /* ??? There really should be only one main variant among any group of
3875 variants of a given type (and all of the MAIN_VARIANT values for all
3876 members of the group should point to that one type) but sometimes the C
3877 front-end messes this up for array types, so we work around that bug
3878 here. */
3879 if (TREE_CODE (type) == ARRAY_TYPE)
3880 while (type != TYPE_MAIN_VARIANT (type))
3881 type = TYPE_MAIN_VARIANT (type);
3882
3883 return type;
3884 }
3885
3886 /* Return nonzero if the given type node represents a tagged type. */
3887
3888 static inline int
3889 is_tagged_type (type)
3890 tree type;
3891 {
3892 enum tree_code code = TREE_CODE (type);
3893
3894 return (code == RECORD_TYPE || code == UNION_TYPE
3895 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
3896 }
3897
3898 /* Convert a DIE tag into its string name. */
3899
3900 static const char *
3901 dwarf_tag_name (tag)
3902 unsigned tag;
3903 {
3904 switch (tag)
3905 {
3906 case DW_TAG_padding:
3907 return "DW_TAG_padding";
3908 case DW_TAG_array_type:
3909 return "DW_TAG_array_type";
3910 case DW_TAG_class_type:
3911 return "DW_TAG_class_type";
3912 case DW_TAG_entry_point:
3913 return "DW_TAG_entry_point";
3914 case DW_TAG_enumeration_type:
3915 return "DW_TAG_enumeration_type";
3916 case DW_TAG_formal_parameter:
3917 return "DW_TAG_formal_parameter";
3918 case DW_TAG_imported_declaration:
3919 return "DW_TAG_imported_declaration";
3920 case DW_TAG_label:
3921 return "DW_TAG_label";
3922 case DW_TAG_lexical_block:
3923 return "DW_TAG_lexical_block";
3924 case DW_TAG_member:
3925 return "DW_TAG_member";
3926 case DW_TAG_pointer_type:
3927 return "DW_TAG_pointer_type";
3928 case DW_TAG_reference_type:
3929 return "DW_TAG_reference_type";
3930 case DW_TAG_compile_unit:
3931 return "DW_TAG_compile_unit";
3932 case DW_TAG_string_type:
3933 return "DW_TAG_string_type";
3934 case DW_TAG_structure_type:
3935 return "DW_TAG_structure_type";
3936 case DW_TAG_subroutine_type:
3937 return "DW_TAG_subroutine_type";
3938 case DW_TAG_typedef:
3939 return "DW_TAG_typedef";
3940 case DW_TAG_union_type:
3941 return "DW_TAG_union_type";
3942 case DW_TAG_unspecified_parameters:
3943 return "DW_TAG_unspecified_parameters";
3944 case DW_TAG_variant:
3945 return "DW_TAG_variant";
3946 case DW_TAG_common_block:
3947 return "DW_TAG_common_block";
3948 case DW_TAG_common_inclusion:
3949 return "DW_TAG_common_inclusion";
3950 case DW_TAG_inheritance:
3951 return "DW_TAG_inheritance";
3952 case DW_TAG_inlined_subroutine:
3953 return "DW_TAG_inlined_subroutine";
3954 case DW_TAG_module:
3955 return "DW_TAG_module";
3956 case DW_TAG_ptr_to_member_type:
3957 return "DW_TAG_ptr_to_member_type";
3958 case DW_TAG_set_type:
3959 return "DW_TAG_set_type";
3960 case DW_TAG_subrange_type:
3961 return "DW_TAG_subrange_type";
3962 case DW_TAG_with_stmt:
3963 return "DW_TAG_with_stmt";
3964 case DW_TAG_access_declaration:
3965 return "DW_TAG_access_declaration";
3966 case DW_TAG_base_type:
3967 return "DW_TAG_base_type";
3968 case DW_TAG_catch_block:
3969 return "DW_TAG_catch_block";
3970 case DW_TAG_const_type:
3971 return "DW_TAG_const_type";
3972 case DW_TAG_constant:
3973 return "DW_TAG_constant";
3974 case DW_TAG_enumerator:
3975 return "DW_TAG_enumerator";
3976 case DW_TAG_file_type:
3977 return "DW_TAG_file_type";
3978 case DW_TAG_friend:
3979 return "DW_TAG_friend";
3980 case DW_TAG_namelist:
3981 return "DW_TAG_namelist";
3982 case DW_TAG_namelist_item:
3983 return "DW_TAG_namelist_item";
3984 case DW_TAG_packed_type:
3985 return "DW_TAG_packed_type";
3986 case DW_TAG_subprogram:
3987 return "DW_TAG_subprogram";
3988 case DW_TAG_template_type_param:
3989 return "DW_TAG_template_type_param";
3990 case DW_TAG_template_value_param:
3991 return "DW_TAG_template_value_param";
3992 case DW_TAG_thrown_type:
3993 return "DW_TAG_thrown_type";
3994 case DW_TAG_try_block:
3995 return "DW_TAG_try_block";
3996 case DW_TAG_variant_part:
3997 return "DW_TAG_variant_part";
3998 case DW_TAG_variable:
3999 return "DW_TAG_variable";
4000 case DW_TAG_volatile_type:
4001 return "DW_TAG_volatile_type";
4002 case DW_TAG_MIPS_loop:
4003 return "DW_TAG_MIPS_loop";
4004 case DW_TAG_format_label:
4005 return "DW_TAG_format_label";
4006 case DW_TAG_function_template:
4007 return "DW_TAG_function_template";
4008 case DW_TAG_class_template:
4009 return "DW_TAG_class_template";
4010 case DW_TAG_GNU_BINCL:
4011 return "DW_TAG_GNU_BINCL";
4012 case DW_TAG_GNU_EINCL:
4013 return "DW_TAG_GNU_EINCL";
4014 default:
4015 return "DW_TAG_<unknown>";
4016 }
4017 }
4018
4019 /* Convert a DWARF attribute code into its string name. */
4020
4021 static const char *
4022 dwarf_attr_name (attr)
4023 unsigned attr;
4024 {
4025 switch (attr)
4026 {
4027 case DW_AT_sibling:
4028 return "DW_AT_sibling";
4029 case DW_AT_location:
4030 return "DW_AT_location";
4031 case DW_AT_name:
4032 return "DW_AT_name";
4033 case DW_AT_ordering:
4034 return "DW_AT_ordering";
4035 case DW_AT_subscr_data:
4036 return "DW_AT_subscr_data";
4037 case DW_AT_byte_size:
4038 return "DW_AT_byte_size";
4039 case DW_AT_bit_offset:
4040 return "DW_AT_bit_offset";
4041 case DW_AT_bit_size:
4042 return "DW_AT_bit_size";
4043 case DW_AT_element_list:
4044 return "DW_AT_element_list";
4045 case DW_AT_stmt_list:
4046 return "DW_AT_stmt_list";
4047 case DW_AT_low_pc:
4048 return "DW_AT_low_pc";
4049 case DW_AT_high_pc:
4050 return "DW_AT_high_pc";
4051 case DW_AT_language:
4052 return "DW_AT_language";
4053 case DW_AT_member:
4054 return "DW_AT_member";
4055 case DW_AT_discr:
4056 return "DW_AT_discr";
4057 case DW_AT_discr_value:
4058 return "DW_AT_discr_value";
4059 case DW_AT_visibility:
4060 return "DW_AT_visibility";
4061 case DW_AT_import:
4062 return "DW_AT_import";
4063 case DW_AT_string_length:
4064 return "DW_AT_string_length";
4065 case DW_AT_common_reference:
4066 return "DW_AT_common_reference";
4067 case DW_AT_comp_dir:
4068 return "DW_AT_comp_dir";
4069 case DW_AT_const_value:
4070 return "DW_AT_const_value";
4071 case DW_AT_containing_type:
4072 return "DW_AT_containing_type";
4073 case DW_AT_default_value:
4074 return "DW_AT_default_value";
4075 case DW_AT_inline:
4076 return "DW_AT_inline";
4077 case DW_AT_is_optional:
4078 return "DW_AT_is_optional";
4079 case DW_AT_lower_bound:
4080 return "DW_AT_lower_bound";
4081 case DW_AT_producer:
4082 return "DW_AT_producer";
4083 case DW_AT_prototyped:
4084 return "DW_AT_prototyped";
4085 case DW_AT_return_addr:
4086 return "DW_AT_return_addr";
4087 case DW_AT_start_scope:
4088 return "DW_AT_start_scope";
4089 case DW_AT_stride_size:
4090 return "DW_AT_stride_size";
4091 case DW_AT_upper_bound:
4092 return "DW_AT_upper_bound";
4093 case DW_AT_abstract_origin:
4094 return "DW_AT_abstract_origin";
4095 case DW_AT_accessibility:
4096 return "DW_AT_accessibility";
4097 case DW_AT_address_class:
4098 return "DW_AT_address_class";
4099 case DW_AT_artificial:
4100 return "DW_AT_artificial";
4101 case DW_AT_base_types:
4102 return "DW_AT_base_types";
4103 case DW_AT_calling_convention:
4104 return "DW_AT_calling_convention";
4105 case DW_AT_count:
4106 return "DW_AT_count";
4107 case DW_AT_data_member_location:
4108 return "DW_AT_data_member_location";
4109 case DW_AT_decl_column:
4110 return "DW_AT_decl_column";
4111 case DW_AT_decl_file:
4112 return "DW_AT_decl_file";
4113 case DW_AT_decl_line:
4114 return "DW_AT_decl_line";
4115 case DW_AT_declaration:
4116 return "DW_AT_declaration";
4117 case DW_AT_discr_list:
4118 return "DW_AT_discr_list";
4119 case DW_AT_encoding:
4120 return "DW_AT_encoding";
4121 case DW_AT_external:
4122 return "DW_AT_external";
4123 case DW_AT_frame_base:
4124 return "DW_AT_frame_base";
4125 case DW_AT_friend:
4126 return "DW_AT_friend";
4127 case DW_AT_identifier_case:
4128 return "DW_AT_identifier_case";
4129 case DW_AT_macro_info:
4130 return "DW_AT_macro_info";
4131 case DW_AT_namelist_items:
4132 return "DW_AT_namelist_items";
4133 case DW_AT_priority:
4134 return "DW_AT_priority";
4135 case DW_AT_segment:
4136 return "DW_AT_segment";
4137 case DW_AT_specification:
4138 return "DW_AT_specification";
4139 case DW_AT_static_link:
4140 return "DW_AT_static_link";
4141 case DW_AT_type:
4142 return "DW_AT_type";
4143 case DW_AT_use_location:
4144 return "DW_AT_use_location";
4145 case DW_AT_variable_parameter:
4146 return "DW_AT_variable_parameter";
4147 case DW_AT_virtuality:
4148 return "DW_AT_virtuality";
4149 case DW_AT_vtable_elem_location:
4150 return "DW_AT_vtable_elem_location";
4151
4152 case DW_AT_allocated:
4153 return "DW_AT_allocated";
4154 case DW_AT_associated:
4155 return "DW_AT_associated";
4156 case DW_AT_data_location:
4157 return "DW_AT_data_location";
4158 case DW_AT_stride:
4159 return "DW_AT_stride";
4160 case DW_AT_entry_pc:
4161 return "DW_AT_entry_pc";
4162 case DW_AT_use_UTF8:
4163 return "DW_AT_use_UTF8";
4164 case DW_AT_extension:
4165 return "DW_AT_extension";
4166 case DW_AT_ranges:
4167 return "DW_AT_ranges";
4168 case DW_AT_trampoline:
4169 return "DW_AT_trampoline";
4170 case DW_AT_call_column:
4171 return "DW_AT_call_column";
4172 case DW_AT_call_file:
4173 return "DW_AT_call_file";
4174 case DW_AT_call_line:
4175 return "DW_AT_call_line";
4176
4177 case DW_AT_MIPS_fde:
4178 return "DW_AT_MIPS_fde";
4179 case DW_AT_MIPS_loop_begin:
4180 return "DW_AT_MIPS_loop_begin";
4181 case DW_AT_MIPS_tail_loop_begin:
4182 return "DW_AT_MIPS_tail_loop_begin";
4183 case DW_AT_MIPS_epilog_begin:
4184 return "DW_AT_MIPS_epilog_begin";
4185 case DW_AT_MIPS_loop_unroll_factor:
4186 return "DW_AT_MIPS_loop_unroll_factor";
4187 case DW_AT_MIPS_software_pipeline_depth:
4188 return "DW_AT_MIPS_software_pipeline_depth";
4189 case DW_AT_MIPS_linkage_name:
4190 return "DW_AT_MIPS_linkage_name";
4191 case DW_AT_MIPS_stride:
4192 return "DW_AT_MIPS_stride";
4193 case DW_AT_MIPS_abstract_name:
4194 return "DW_AT_MIPS_abstract_name";
4195 case DW_AT_MIPS_clone_origin:
4196 return "DW_AT_MIPS_clone_origin";
4197 case DW_AT_MIPS_has_inlines:
4198 return "DW_AT_MIPS_has_inlines";
4199
4200 case DW_AT_sf_names:
4201 return "DW_AT_sf_names";
4202 case DW_AT_src_info:
4203 return "DW_AT_src_info";
4204 case DW_AT_mac_info:
4205 return "DW_AT_mac_info";
4206 case DW_AT_src_coords:
4207 return "DW_AT_src_coords";
4208 case DW_AT_body_begin:
4209 return "DW_AT_body_begin";
4210 case DW_AT_body_end:
4211 return "DW_AT_body_end";
4212 case DW_AT_GNU_vector:
4213 return "DW_AT_GNU_vector";
4214
4215 case DW_AT_VMS_rtnbeg_pd_address:
4216 return "DW_AT_VMS_rtnbeg_pd_address";
4217
4218 default:
4219 return "DW_AT_<unknown>";
4220 }
4221 }
4222
4223 /* Convert a DWARF value form code into its string name. */
4224
4225 static const char *
4226 dwarf_form_name (form)
4227 unsigned form;
4228 {
4229 switch (form)
4230 {
4231 case DW_FORM_addr:
4232 return "DW_FORM_addr";
4233 case DW_FORM_block2:
4234 return "DW_FORM_block2";
4235 case DW_FORM_block4:
4236 return "DW_FORM_block4";
4237 case DW_FORM_data2:
4238 return "DW_FORM_data2";
4239 case DW_FORM_data4:
4240 return "DW_FORM_data4";
4241 case DW_FORM_data8:
4242 return "DW_FORM_data8";
4243 case DW_FORM_string:
4244 return "DW_FORM_string";
4245 case DW_FORM_block:
4246 return "DW_FORM_block";
4247 case DW_FORM_block1:
4248 return "DW_FORM_block1";
4249 case DW_FORM_data1:
4250 return "DW_FORM_data1";
4251 case DW_FORM_flag:
4252 return "DW_FORM_flag";
4253 case DW_FORM_sdata:
4254 return "DW_FORM_sdata";
4255 case DW_FORM_strp:
4256 return "DW_FORM_strp";
4257 case DW_FORM_udata:
4258 return "DW_FORM_udata";
4259 case DW_FORM_ref_addr:
4260 return "DW_FORM_ref_addr";
4261 case DW_FORM_ref1:
4262 return "DW_FORM_ref1";
4263 case DW_FORM_ref2:
4264 return "DW_FORM_ref2";
4265 case DW_FORM_ref4:
4266 return "DW_FORM_ref4";
4267 case DW_FORM_ref8:
4268 return "DW_FORM_ref8";
4269 case DW_FORM_ref_udata:
4270 return "DW_FORM_ref_udata";
4271 case DW_FORM_indirect:
4272 return "DW_FORM_indirect";
4273 default:
4274 return "DW_FORM_<unknown>";
4275 }
4276 }
4277
4278 /* Convert a DWARF type code into its string name. */
4279
4280 #if 0
4281 static const char *
4282 dwarf_type_encoding_name (enc)
4283 unsigned enc;
4284 {
4285 switch (enc)
4286 {
4287 case DW_ATE_address:
4288 return "DW_ATE_address";
4289 case DW_ATE_boolean:
4290 return "DW_ATE_boolean";
4291 case DW_ATE_complex_float:
4292 return "DW_ATE_complex_float";
4293 case DW_ATE_float:
4294 return "DW_ATE_float";
4295 case DW_ATE_signed:
4296 return "DW_ATE_signed";
4297 case DW_ATE_signed_char:
4298 return "DW_ATE_signed_char";
4299 case DW_ATE_unsigned:
4300 return "DW_ATE_unsigned";
4301 case DW_ATE_unsigned_char:
4302 return "DW_ATE_unsigned_char";
4303 default:
4304 return "DW_ATE_<unknown>";
4305 }
4306 }
4307 #endif
4308 \f
4309 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4310 instance of an inlined instance of a decl which is local to an inline
4311 function, so we have to trace all of the way back through the origin chain
4312 to find out what sort of node actually served as the original seed for the
4313 given block. */
4314
4315 static tree
4316 decl_ultimate_origin (decl)
4317 tree decl;
4318 {
4319 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4320 nodes in the function to point to themselves; ignore that if
4321 we're trying to output the abstract instance of this function. */
4322 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4323 return NULL_TREE;
4324
4325 #ifdef ENABLE_CHECKING
4326 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4327 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4328 most distant ancestor, this should never happen. */
4329 abort ();
4330 #endif
4331
4332 return DECL_ABSTRACT_ORIGIN (decl);
4333 }
4334
4335 /* Determine the "ultimate origin" of a block. The block may be an inlined
4336 instance of an inlined instance of a block which is local to an inline
4337 function, so we have to trace all of the way back through the origin chain
4338 to find out what sort of node actually served as the original seed for the
4339 given block. */
4340
4341 static tree
4342 block_ultimate_origin (block)
4343 tree block;
4344 {
4345 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4346
4347 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4348 nodes in the function to point to themselves; ignore that if
4349 we're trying to output the abstract instance of this function. */
4350 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4351 return NULL_TREE;
4352
4353 if (immediate_origin == NULL_TREE)
4354 return NULL_TREE;
4355 else
4356 {
4357 tree ret_val;
4358 tree lookahead = immediate_origin;
4359
4360 do
4361 {
4362 ret_val = lookahead;
4363 lookahead = (TREE_CODE (ret_val) == BLOCK
4364 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4365 }
4366 while (lookahead != NULL && lookahead != ret_val);
4367
4368 return ret_val;
4369 }
4370 }
4371
4372 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4373 of a virtual function may refer to a base class, so we check the 'this'
4374 parameter. */
4375
4376 static tree
4377 decl_class_context (decl)
4378 tree decl;
4379 {
4380 tree context = NULL_TREE;
4381
4382 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4383 context = DECL_CONTEXT (decl);
4384 else
4385 context = TYPE_MAIN_VARIANT
4386 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4387
4388 if (context && !TYPE_P (context))
4389 context = NULL_TREE;
4390
4391 return context;
4392 }
4393 \f
4394 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4395 addition order, and correct that in reverse_all_dies. */
4396
4397 static inline void
4398 add_dwarf_attr (die, attr)
4399 dw_die_ref die;
4400 dw_attr_ref attr;
4401 {
4402 if (die != NULL && attr != NULL)
4403 {
4404 attr->dw_attr_next = die->die_attr;
4405 die->die_attr = attr;
4406 }
4407 }
4408
4409 static inline dw_val_class
4410 AT_class (a)
4411 dw_attr_ref a;
4412 {
4413 return a->dw_attr_val.val_class;
4414 }
4415
4416 /* Add a flag value attribute to a DIE. */
4417
4418 static inline void
4419 add_AT_flag (die, attr_kind, flag)
4420 dw_die_ref die;
4421 enum dwarf_attribute attr_kind;
4422 unsigned flag;
4423 {
4424 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4425
4426 attr->dw_attr_next = NULL;
4427 attr->dw_attr = attr_kind;
4428 attr->dw_attr_val.val_class = dw_val_class_flag;
4429 attr->dw_attr_val.v.val_flag = flag;
4430 add_dwarf_attr (die, attr);
4431 }
4432
4433 static inline unsigned
4434 AT_flag (a)
4435 dw_attr_ref a;
4436 {
4437 if (a && AT_class (a) == dw_val_class_flag)
4438 return a->dw_attr_val.v.val_flag;
4439
4440 abort ();
4441 }
4442
4443 /* Add a signed integer attribute value to a DIE. */
4444
4445 static inline void
4446 add_AT_int (die, attr_kind, int_val)
4447 dw_die_ref die;
4448 enum dwarf_attribute attr_kind;
4449 long int int_val;
4450 {
4451 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4452
4453 attr->dw_attr_next = NULL;
4454 attr->dw_attr = attr_kind;
4455 attr->dw_attr_val.val_class = dw_val_class_const;
4456 attr->dw_attr_val.v.val_int = int_val;
4457 add_dwarf_attr (die, attr);
4458 }
4459
4460 static inline long int
4461 AT_int (a)
4462 dw_attr_ref a;
4463 {
4464 if (a && AT_class (a) == dw_val_class_const)
4465 return a->dw_attr_val.v.val_int;
4466
4467 abort ();
4468 }
4469
4470 /* Add an unsigned integer attribute value to a DIE. */
4471
4472 static inline void
4473 add_AT_unsigned (die, attr_kind, unsigned_val)
4474 dw_die_ref die;
4475 enum dwarf_attribute attr_kind;
4476 unsigned long unsigned_val;
4477 {
4478 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4479
4480 attr->dw_attr_next = NULL;
4481 attr->dw_attr = attr_kind;
4482 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4483 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4484 add_dwarf_attr (die, attr);
4485 }
4486
4487 static inline unsigned long
4488 AT_unsigned (a)
4489 dw_attr_ref a;
4490 {
4491 if (a && AT_class (a) == dw_val_class_unsigned_const)
4492 return a->dw_attr_val.v.val_unsigned;
4493
4494 abort ();
4495 }
4496
4497 /* Add an unsigned double integer attribute value to a DIE. */
4498
4499 static inline void
4500 add_AT_long_long (die, attr_kind, val_hi, val_low)
4501 dw_die_ref die;
4502 enum dwarf_attribute attr_kind;
4503 unsigned long val_hi;
4504 unsigned long val_low;
4505 {
4506 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4507
4508 attr->dw_attr_next = NULL;
4509 attr->dw_attr = attr_kind;
4510 attr->dw_attr_val.val_class = dw_val_class_long_long;
4511 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4512 attr->dw_attr_val.v.val_long_long.low = val_low;
4513 add_dwarf_attr (die, attr);
4514 }
4515
4516 /* Add a floating point attribute value to a DIE and return it. */
4517
4518 static inline void
4519 add_AT_float (die, attr_kind, length, array)
4520 dw_die_ref die;
4521 enum dwarf_attribute attr_kind;
4522 unsigned length;
4523 long *array;
4524 {
4525 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4526
4527 attr->dw_attr_next = NULL;
4528 attr->dw_attr = attr_kind;
4529 attr->dw_attr_val.val_class = dw_val_class_float;
4530 attr->dw_attr_val.v.val_float.length = length;
4531 attr->dw_attr_val.v.val_float.array = array;
4532 add_dwarf_attr (die, attr);
4533 }
4534
4535 /* Add a string attribute value to a DIE. */
4536
4537 static inline void
4538 add_AT_string (die, attr_kind, str)
4539 dw_die_ref die;
4540 enum dwarf_attribute attr_kind;
4541 const char *str;
4542 {
4543 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4544 struct indirect_string_node *node;
4545
4546 if (! debug_str_hash)
4547 {
4548 debug_str_hash = ht_create (10);
4549 debug_str_hash->alloc_node = indirect_string_alloc;
4550 }
4551
4552 node = (struct indirect_string_node *)
4553 ht_lookup (debug_str_hash, (const unsigned char *) str,
4554 strlen (str), HT_ALLOC);
4555 node->refcount++;
4556
4557 attr->dw_attr_next = NULL;
4558 attr->dw_attr = attr_kind;
4559 attr->dw_attr_val.val_class = dw_val_class_str;
4560 attr->dw_attr_val.v.val_str = node;
4561 add_dwarf_attr (die, attr);
4562 }
4563
4564 static inline const char *
4565 AT_string (a)
4566 dw_attr_ref a;
4567 {
4568 if (a && AT_class (a) == dw_val_class_str)
4569 return (const char *) HT_STR (&a->dw_attr_val.v.val_str->id);
4570
4571 abort ();
4572 }
4573
4574 /* Find out whether a string should be output inline in DIE
4575 or out-of-line in .debug_str section. */
4576
4577 static int
4578 AT_string_form (a)
4579 dw_attr_ref a;
4580 {
4581 if (a && AT_class (a) == dw_val_class_str)
4582 {
4583 struct indirect_string_node *node;
4584 unsigned int len;
4585 extern int const_labelno;
4586 char label[32];
4587
4588 node = a->dw_attr_val.v.val_str;
4589 if (node->form)
4590 return node->form;
4591
4592 len = HT_LEN (&node->id) + 1;
4593
4594 /* If the string is shorter or equal to the size of the reference, it is
4595 always better to put it inline. */
4596 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4597 return node->form = DW_FORM_string;
4598
4599 /* If we cannot expect the linker to merge strings in .debug_str
4600 section, only put it into .debug_str if it is worth even in this
4601 single module. */
4602 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4603 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4604 return node->form = DW_FORM_string;
4605
4606 ASM_GENERATE_INTERNAL_LABEL (label, "LC", const_labelno);
4607 ++const_labelno;
4608 node->label = xstrdup (label);
4609
4610 return node->form = DW_FORM_strp;
4611 }
4612
4613 abort ();
4614 }
4615
4616 /* Add a DIE reference attribute value to a DIE. */
4617
4618 static inline void
4619 add_AT_die_ref (die, attr_kind, targ_die)
4620 dw_die_ref die;
4621 enum dwarf_attribute attr_kind;
4622 dw_die_ref targ_die;
4623 {
4624 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4625
4626 attr->dw_attr_next = NULL;
4627 attr->dw_attr = attr_kind;
4628 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4629 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4630 attr->dw_attr_val.v.val_die_ref.external = 0;
4631 add_dwarf_attr (die, attr);
4632 }
4633
4634 static inline dw_die_ref
4635 AT_ref (a)
4636 dw_attr_ref a;
4637 {
4638 if (a && AT_class (a) == dw_val_class_die_ref)
4639 return a->dw_attr_val.v.val_die_ref.die;
4640
4641 abort ();
4642 }
4643
4644 static inline int
4645 AT_ref_external (a)
4646 dw_attr_ref a;
4647 {
4648 if (a && AT_class (a) == dw_val_class_die_ref)
4649 return a->dw_attr_val.v.val_die_ref.external;
4650
4651 return 0;
4652 }
4653
4654 static inline void
4655 set_AT_ref_external (a, i)
4656 dw_attr_ref a;
4657 int i;
4658 {
4659 if (a && AT_class (a) == dw_val_class_die_ref)
4660 a->dw_attr_val.v.val_die_ref.external = i;
4661 else
4662 abort ();
4663 }
4664
4665 /* Add an FDE reference attribute value to a DIE. */
4666
4667 static inline void
4668 add_AT_fde_ref (die, attr_kind, targ_fde)
4669 dw_die_ref die;
4670 enum dwarf_attribute attr_kind;
4671 unsigned targ_fde;
4672 {
4673 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4674
4675 attr->dw_attr_next = NULL;
4676 attr->dw_attr = attr_kind;
4677 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4678 attr->dw_attr_val.v.val_fde_index = targ_fde;
4679 add_dwarf_attr (die, attr);
4680 }
4681
4682 /* Add a location description attribute value to a DIE. */
4683
4684 static inline void
4685 add_AT_loc (die, attr_kind, loc)
4686 dw_die_ref die;
4687 enum dwarf_attribute attr_kind;
4688 dw_loc_descr_ref loc;
4689 {
4690 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4691
4692 attr->dw_attr_next = NULL;
4693 attr->dw_attr = attr_kind;
4694 attr->dw_attr_val.val_class = dw_val_class_loc;
4695 attr->dw_attr_val.v.val_loc = loc;
4696 add_dwarf_attr (die, attr);
4697 }
4698
4699 static inline dw_loc_descr_ref
4700 AT_loc (a)
4701 dw_attr_ref a;
4702 {
4703 if (a && AT_class (a) == dw_val_class_loc)
4704 return a->dw_attr_val.v.val_loc;
4705
4706 abort ();
4707 }
4708
4709 static inline void
4710 add_AT_loc_list (die, attr_kind, loc_list)
4711 dw_die_ref die;
4712 enum dwarf_attribute attr_kind;
4713 dw_loc_list_ref loc_list;
4714 {
4715 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4716
4717 attr->dw_attr_next = NULL;
4718 attr->dw_attr = attr_kind;
4719 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4720 attr->dw_attr_val.v.val_loc_list = loc_list;
4721 add_dwarf_attr (die, attr);
4722 have_location_lists = 1;
4723 }
4724
4725 static inline dw_loc_list_ref
4726 AT_loc_list (a)
4727 dw_attr_ref a;
4728 {
4729 if (a && AT_class (a) == dw_val_class_loc_list)
4730 return a->dw_attr_val.v.val_loc_list;
4731
4732 abort ();
4733 }
4734
4735 /* Add an address constant attribute value to a DIE. */
4736
4737 static inline void
4738 add_AT_addr (die, attr_kind, addr)
4739 dw_die_ref die;
4740 enum dwarf_attribute attr_kind;
4741 rtx addr;
4742 {
4743 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4744
4745 attr->dw_attr_next = NULL;
4746 attr->dw_attr = attr_kind;
4747 attr->dw_attr_val.val_class = dw_val_class_addr;
4748 attr->dw_attr_val.v.val_addr = addr;
4749 add_dwarf_attr (die, attr);
4750 }
4751
4752 static inline rtx
4753 AT_addr (a)
4754 dw_attr_ref a;
4755 {
4756 if (a && AT_class (a) == dw_val_class_addr)
4757 return a->dw_attr_val.v.val_addr;
4758
4759 abort ();
4760 }
4761
4762 /* Add a label identifier attribute value to a DIE. */
4763
4764 static inline void
4765 add_AT_lbl_id (die, attr_kind, lbl_id)
4766 dw_die_ref die;
4767 enum dwarf_attribute attr_kind;
4768 const char *lbl_id;
4769 {
4770 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4771
4772 attr->dw_attr_next = NULL;
4773 attr->dw_attr = attr_kind;
4774 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4775 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4776 add_dwarf_attr (die, attr);
4777 }
4778
4779 /* Add a section offset attribute value to a DIE. */
4780
4781 static inline void
4782 add_AT_lbl_offset (die, attr_kind, label)
4783 dw_die_ref die;
4784 enum dwarf_attribute attr_kind;
4785 const char *label;
4786 {
4787 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4788
4789 attr->dw_attr_next = NULL;
4790 attr->dw_attr = attr_kind;
4791 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4792 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4793 add_dwarf_attr (die, attr);
4794 }
4795
4796 /* Add an offset attribute value to a DIE. */
4797
4798 static inline void
4799 add_AT_offset (die, attr_kind, offset)
4800 dw_die_ref die;
4801 enum dwarf_attribute attr_kind;
4802 unsigned long offset;
4803 {
4804 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4805
4806 attr->dw_attr_next = NULL;
4807 attr->dw_attr = attr_kind;
4808 attr->dw_attr_val.val_class = dw_val_class_offset;
4809 attr->dw_attr_val.v.val_offset = offset;
4810 add_dwarf_attr (die, attr);
4811 }
4812
4813 /* Add an range_list attribute value to a DIE. */
4814
4815 static void
4816 add_AT_range_list (die, attr_kind, offset)
4817 dw_die_ref die;
4818 enum dwarf_attribute attr_kind;
4819 unsigned long offset;
4820 {
4821 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4822
4823 attr->dw_attr_next = NULL;
4824 attr->dw_attr = attr_kind;
4825 attr->dw_attr_val.val_class = dw_val_class_range_list;
4826 attr->dw_attr_val.v.val_offset = offset;
4827 add_dwarf_attr (die, attr);
4828 }
4829
4830 static inline const char *
4831 AT_lbl (a)
4832 dw_attr_ref a;
4833 {
4834 if (a && (AT_class (a) == dw_val_class_lbl_id
4835 || AT_class (a) == dw_val_class_lbl_offset))
4836 return a->dw_attr_val.v.val_lbl_id;
4837
4838 abort ();
4839 }
4840
4841 /* Get the attribute of type attr_kind. */
4842
4843 static inline dw_attr_ref
4844 get_AT (die, attr_kind)
4845 dw_die_ref die;
4846 enum dwarf_attribute attr_kind;
4847 {
4848 dw_attr_ref a;
4849 dw_die_ref spec = NULL;
4850
4851 if (die != NULL)
4852 {
4853 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
4854 if (a->dw_attr == attr_kind)
4855 return a;
4856 else if (a->dw_attr == DW_AT_specification
4857 || a->dw_attr == DW_AT_abstract_origin)
4858 spec = AT_ref (a);
4859
4860 if (spec)
4861 return get_AT (spec, attr_kind);
4862 }
4863
4864 return NULL;
4865 }
4866
4867 /* Return the "low pc" attribute value, typically associated with a subprogram
4868 DIE. Return null if the "low pc" attribute is either not present, or if it
4869 cannot be represented as an assembler label identifier. */
4870
4871 static inline const char *
4872 get_AT_low_pc (die)
4873 dw_die_ref die;
4874 {
4875 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
4876
4877 return a ? AT_lbl (a) : NULL;
4878 }
4879
4880 /* Return the "high pc" attribute value, typically associated with a subprogram
4881 DIE. Return null if the "high pc" attribute is either not present, or if it
4882 cannot be represented as an assembler label identifier. */
4883
4884 static inline const char *
4885 get_AT_hi_pc (die)
4886 dw_die_ref die;
4887 {
4888 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
4889
4890 return a ? AT_lbl (a) : NULL;
4891 }
4892
4893 /* Return the value of the string attribute designated by ATTR_KIND, or
4894 NULL if it is not present. */
4895
4896 static inline const char *
4897 get_AT_string (die, attr_kind)
4898 dw_die_ref die;
4899 enum dwarf_attribute attr_kind;
4900 {
4901 dw_attr_ref a = get_AT (die, attr_kind);
4902
4903 return a ? AT_string (a) : NULL;
4904 }
4905
4906 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
4907 if it is not present. */
4908
4909 static inline int
4910 get_AT_flag (die, attr_kind)
4911 dw_die_ref die;
4912 enum dwarf_attribute attr_kind;
4913 {
4914 dw_attr_ref a = get_AT (die, attr_kind);
4915
4916 return a ? AT_flag (a) : 0;
4917 }
4918
4919 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4920 if it is not present. */
4921
4922 static inline unsigned
4923 get_AT_unsigned (die, attr_kind)
4924 dw_die_ref die;
4925 enum dwarf_attribute attr_kind;
4926 {
4927 dw_attr_ref a = get_AT (die, attr_kind);
4928
4929 return a ? AT_unsigned (a) : 0;
4930 }
4931
4932 static inline dw_die_ref
4933 get_AT_ref (die, attr_kind)
4934 dw_die_ref die;
4935 enum dwarf_attribute attr_kind;
4936 {
4937 dw_attr_ref a = get_AT (die, attr_kind);
4938
4939 return a ? AT_ref (a) : NULL;
4940 }
4941
4942 static inline int
4943 is_c_family ()
4944 {
4945 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4946
4947 return (lang == DW_LANG_C || lang == DW_LANG_C89
4948 || lang == DW_LANG_C_plus_plus);
4949 }
4950
4951 static inline int
4952 is_cxx ()
4953 {
4954 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
4955 == DW_LANG_C_plus_plus);
4956 }
4957
4958 static inline int
4959 is_fortran ()
4960 {
4961 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4962
4963 return (lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90);
4964 }
4965
4966 static inline int
4967 is_java ()
4968 {
4969 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4970
4971 return (lang == DW_LANG_Java);
4972 }
4973
4974 /* Free up the memory used by A. */
4975
4976 static inline void free_AT PARAMS ((dw_attr_ref));
4977 static inline void
4978 free_AT (a)
4979 dw_attr_ref a;
4980 {
4981 switch (AT_class (a))
4982 {
4983 case dw_val_class_str:
4984 if (a->dw_attr_val.v.val_str->refcount)
4985 a->dw_attr_val.v.val_str->refcount--;
4986 break;
4987
4988 case dw_val_class_lbl_id:
4989 case dw_val_class_lbl_offset:
4990 free (a->dw_attr_val.v.val_lbl_id);
4991 break;
4992
4993 case dw_val_class_float:
4994 free (a->dw_attr_val.v.val_float.array);
4995 break;
4996
4997 default:
4998 break;
4999 }
5000
5001 free (a);
5002 }
5003
5004 /* Remove the specified attribute if present. */
5005
5006 static void
5007 remove_AT (die, attr_kind)
5008 dw_die_ref die;
5009 enum dwarf_attribute attr_kind;
5010 {
5011 dw_attr_ref *p;
5012 dw_attr_ref removed = NULL;
5013
5014 if (die != NULL)
5015 {
5016 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5017 if ((*p)->dw_attr == attr_kind)
5018 {
5019 removed = *p;
5020 *p = (*p)->dw_attr_next;
5021 break;
5022 }
5023
5024 if (removed != 0)
5025 free_AT (removed);
5026 }
5027 }
5028
5029 /* Free up the memory used by DIE. */
5030
5031 static inline void
5032 free_die (die)
5033 dw_die_ref die;
5034 {
5035 remove_children (die);
5036 free (die);
5037 }
5038
5039 /* Discard the children of this DIE. */
5040
5041 static void
5042 remove_children (die)
5043 dw_die_ref die;
5044 {
5045 dw_die_ref child_die = die->die_child;
5046
5047 die->die_child = NULL;
5048
5049 while (child_die != NULL)
5050 {
5051 dw_die_ref tmp_die = child_die;
5052 dw_attr_ref a;
5053
5054 child_die = child_die->die_sib;
5055
5056 for (a = tmp_die->die_attr; a != NULL;)
5057 {
5058 dw_attr_ref tmp_a = a;
5059
5060 a = a->dw_attr_next;
5061 free_AT (tmp_a);
5062 }
5063
5064 free_die (tmp_die);
5065 }
5066 }
5067
5068 /* Add a child DIE below its parent. We build the lists up in reverse
5069 addition order, and correct that in reverse_all_dies. */
5070
5071 static inline void
5072 add_child_die (die, child_die)
5073 dw_die_ref die;
5074 dw_die_ref child_die;
5075 {
5076 if (die != NULL && child_die != NULL)
5077 {
5078 if (die == child_die)
5079 abort ();
5080
5081 child_die->die_parent = die;
5082 child_die->die_sib = die->die_child;
5083 die->die_child = child_die;
5084 }
5085 }
5086
5087 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5088 is the specification, to the front of PARENT's list of children. */
5089
5090 static void
5091 splice_child_die (parent, child)
5092 dw_die_ref parent, child;
5093 {
5094 dw_die_ref *p;
5095
5096 /* We want the declaration DIE from inside the class, not the
5097 specification DIE at toplevel. */
5098 if (child->die_parent != parent)
5099 {
5100 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5101
5102 if (tmp)
5103 child = tmp;
5104 }
5105
5106 if (child->die_parent != parent
5107 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5108 abort ();
5109
5110 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5111 if (*p == child)
5112 {
5113 *p = child->die_sib;
5114 break;
5115 }
5116
5117 child->die_sib = parent->die_child;
5118 parent->die_child = child;
5119 }
5120
5121 /* Return a pointer to a newly created DIE node. */
5122
5123 static inline dw_die_ref
5124 new_die (tag_value, parent_die, t)
5125 enum dwarf_tag tag_value;
5126 dw_die_ref parent_die;
5127 tree t;
5128 {
5129 dw_die_ref die = (dw_die_ref) xcalloc (1, sizeof (die_node));
5130
5131 die->die_tag = tag_value;
5132
5133 if (parent_die != NULL)
5134 add_child_die (parent_die, die);
5135 else
5136 {
5137 limbo_die_node *limbo_node;
5138
5139 limbo_node = (limbo_die_node *) xmalloc (sizeof (limbo_die_node));
5140 limbo_node->die = die;
5141 limbo_node->created_for = t;
5142 limbo_node->next = limbo_die_list;
5143 limbo_die_list = limbo_node;
5144 }
5145
5146 return die;
5147 }
5148
5149 /* Return the DIE associated with the given type specifier. */
5150
5151 static inline dw_die_ref
5152 lookup_type_die (type)
5153 tree type;
5154 {
5155 return TYPE_SYMTAB_DIE (type);
5156 }
5157
5158 /* Equate a DIE to a given type specifier. */
5159
5160 static inline void
5161 equate_type_number_to_die (type, type_die)
5162 tree type;
5163 dw_die_ref type_die;
5164 {
5165 TYPE_SYMTAB_DIE (type) = type_die;
5166 }
5167
5168 /* Return the DIE associated with a given declaration. */
5169
5170 static inline dw_die_ref
5171 lookup_decl_die (decl)
5172 tree decl;
5173 {
5174 unsigned decl_id = DECL_UID (decl);
5175
5176 return (decl_id < decl_die_table_in_use ? decl_die_table[decl_id] : NULL);
5177 }
5178
5179 /* Equate a DIE to a particular declaration. */
5180
5181 static void
5182 equate_decl_number_to_die (decl, decl_die)
5183 tree decl;
5184 dw_die_ref decl_die;
5185 {
5186 unsigned int decl_id = DECL_UID (decl);
5187 unsigned int num_allocated;
5188
5189 if (decl_id >= decl_die_table_allocated)
5190 {
5191 num_allocated
5192 = ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
5193 / DECL_DIE_TABLE_INCREMENT)
5194 * DECL_DIE_TABLE_INCREMENT;
5195
5196 decl_die_table
5197 = (dw_die_ref *) xrealloc (decl_die_table,
5198 sizeof (dw_die_ref) * num_allocated);
5199
5200 memset ((char *) &decl_die_table[decl_die_table_allocated], 0,
5201 (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
5202 decl_die_table_allocated = num_allocated;
5203 }
5204
5205 if (decl_id >= decl_die_table_in_use)
5206 decl_die_table_in_use = (decl_id + 1);
5207
5208 decl_die_table[decl_id] = decl_die;
5209 }
5210 \f
5211 /* Keep track of the number of spaces used to indent the
5212 output of the debugging routines that print the structure of
5213 the DIE internal representation. */
5214 static int print_indent;
5215
5216 /* Indent the line the number of spaces given by print_indent. */
5217
5218 static inline void
5219 print_spaces (outfile)
5220 FILE *outfile;
5221 {
5222 fprintf (outfile, "%*s", print_indent, "");
5223 }
5224
5225 /* Print the information associated with a given DIE, and its children.
5226 This routine is a debugging aid only. */
5227
5228 static void
5229 print_die (die, outfile)
5230 dw_die_ref die;
5231 FILE *outfile;
5232 {
5233 dw_attr_ref a;
5234 dw_die_ref c;
5235
5236 print_spaces (outfile);
5237 fprintf (outfile, "DIE %4lu: %s\n",
5238 die->die_offset, dwarf_tag_name (die->die_tag));
5239 print_spaces (outfile);
5240 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5241 fprintf (outfile, " offset: %lu\n", die->die_offset);
5242
5243 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5244 {
5245 print_spaces (outfile);
5246 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5247
5248 switch (AT_class (a))
5249 {
5250 case dw_val_class_addr:
5251 fprintf (outfile, "address");
5252 break;
5253 case dw_val_class_offset:
5254 fprintf (outfile, "offset");
5255 break;
5256 case dw_val_class_loc:
5257 fprintf (outfile, "location descriptor");
5258 break;
5259 case dw_val_class_loc_list:
5260 fprintf (outfile, "location list -> label:%s",
5261 AT_loc_list (a)->ll_symbol);
5262 break;
5263 case dw_val_class_range_list:
5264 fprintf (outfile, "range list");
5265 break;
5266 case dw_val_class_const:
5267 fprintf (outfile, "%ld", AT_int (a));
5268 break;
5269 case dw_val_class_unsigned_const:
5270 fprintf (outfile, "%lu", AT_unsigned (a));
5271 break;
5272 case dw_val_class_long_long:
5273 fprintf (outfile, "constant (%lu,%lu)",
5274 a->dw_attr_val.v.val_long_long.hi,
5275 a->dw_attr_val.v.val_long_long.low);
5276 break;
5277 case dw_val_class_float:
5278 fprintf (outfile, "floating-point constant");
5279 break;
5280 case dw_val_class_flag:
5281 fprintf (outfile, "%u", AT_flag (a));
5282 break;
5283 case dw_val_class_die_ref:
5284 if (AT_ref (a) != NULL)
5285 {
5286 if (AT_ref (a)->die_symbol)
5287 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5288 else
5289 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5290 }
5291 else
5292 fprintf (outfile, "die -> <null>");
5293 break;
5294 case dw_val_class_lbl_id:
5295 case dw_val_class_lbl_offset:
5296 fprintf (outfile, "label: %s", AT_lbl (a));
5297 break;
5298 case dw_val_class_str:
5299 if (AT_string (a) != NULL)
5300 fprintf (outfile, "\"%s\"", AT_string (a));
5301 else
5302 fprintf (outfile, "<null>");
5303 break;
5304 default:
5305 break;
5306 }
5307
5308 fprintf (outfile, "\n");
5309 }
5310
5311 if (die->die_child != NULL)
5312 {
5313 print_indent += 4;
5314 for (c = die->die_child; c != NULL; c = c->die_sib)
5315 print_die (c, outfile);
5316
5317 print_indent -= 4;
5318 }
5319 if (print_indent == 0)
5320 fprintf (outfile, "\n");
5321 }
5322
5323 /* Print the contents of the source code line number correspondence table.
5324 This routine is a debugging aid only. */
5325
5326 static void
5327 print_dwarf_line_table (outfile)
5328 FILE *outfile;
5329 {
5330 unsigned i;
5331 dw_line_info_ref line_info;
5332
5333 fprintf (outfile, "\n\nDWARF source line information\n");
5334 for (i = 1; i < line_info_table_in_use; i++)
5335 {
5336 line_info = &line_info_table[i];
5337 fprintf (outfile, "%5d: ", i);
5338 fprintf (outfile, "%-20s", file_table.table[line_info->dw_file_num]);
5339 fprintf (outfile, "%6ld", line_info->dw_line_num);
5340 fprintf (outfile, "\n");
5341 }
5342
5343 fprintf (outfile, "\n\n");
5344 }
5345
5346 /* Print the information collected for a given DIE. */
5347
5348 void
5349 debug_dwarf_die (die)
5350 dw_die_ref die;
5351 {
5352 print_die (die, stderr);
5353 }
5354
5355 /* Print all DWARF information collected for the compilation unit.
5356 This routine is a debugging aid only. */
5357
5358 void
5359 debug_dwarf ()
5360 {
5361 print_indent = 0;
5362 print_die (comp_unit_die, stderr);
5363 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5364 print_dwarf_line_table (stderr);
5365 }
5366 \f
5367 /* We build up the lists of children and attributes by pushing new ones
5368 onto the beginning of the list. Reverse the lists for DIE so that
5369 they are in order of addition. */
5370
5371 static void
5372 reverse_die_lists (die)
5373 dw_die_ref die;
5374 {
5375 dw_die_ref c, cp, cn;
5376 dw_attr_ref a, ap, an;
5377
5378 for (a = die->die_attr, ap = 0; a; a = an)
5379 {
5380 an = a->dw_attr_next;
5381 a->dw_attr_next = ap;
5382 ap = a;
5383 }
5384
5385 die->die_attr = ap;
5386
5387 for (c = die->die_child, cp = 0; c; c = cn)
5388 {
5389 cn = c->die_sib;
5390 c->die_sib = cp;
5391 cp = c;
5392 }
5393
5394 die->die_child = cp;
5395 }
5396
5397 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5398 reverse all dies in add_sibling_attributes, which runs through all the dies,
5399 it would reverse all the dies. Now, however, since we don't call
5400 reverse_die_lists in add_sibling_attributes, we need a routine to
5401 recursively reverse all the dies. This is that routine. */
5402
5403 static void
5404 reverse_all_dies (die)
5405 dw_die_ref die;
5406 {
5407 dw_die_ref c;
5408
5409 reverse_die_lists (die);
5410
5411 for (c = die->die_child; c; c = c->die_sib)
5412 reverse_all_dies (c);
5413 }
5414
5415 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5416 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5417 DIE that marks the start of the DIEs for this include file. */
5418
5419 static dw_die_ref
5420 push_new_compile_unit (old_unit, bincl_die)
5421 dw_die_ref old_unit, bincl_die;
5422 {
5423 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5424 dw_die_ref new_unit = gen_compile_unit_die (filename);
5425
5426 new_unit->die_sib = old_unit;
5427 return new_unit;
5428 }
5429
5430 /* Close an include-file CU and reopen the enclosing one. */
5431
5432 static dw_die_ref
5433 pop_compile_unit (old_unit)
5434 dw_die_ref old_unit;
5435 {
5436 dw_die_ref new_unit = old_unit->die_sib;
5437
5438 old_unit->die_sib = NULL;
5439 return new_unit;
5440 }
5441
5442 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5443 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5444
5445 /* Calculate the checksum of a location expression. */
5446
5447 static inline void
5448 loc_checksum (loc, ctx)
5449 dw_loc_descr_ref loc;
5450 struct md5_ctx *ctx;
5451 {
5452 CHECKSUM (loc->dw_loc_opc);
5453 CHECKSUM (loc->dw_loc_oprnd1);
5454 CHECKSUM (loc->dw_loc_oprnd2);
5455 }
5456
5457 /* Calculate the checksum of an attribute. */
5458
5459 static void
5460 attr_checksum (at, ctx, mark)
5461 dw_attr_ref at;
5462 struct md5_ctx *ctx;
5463 int *mark;
5464 {
5465 dw_loc_descr_ref loc;
5466 rtx r;
5467
5468 CHECKSUM (at->dw_attr);
5469
5470 /* We don't care about differences in file numbering. */
5471 if (at->dw_attr == DW_AT_decl_file
5472 /* Or that this was compiled with a different compiler snapshot; if
5473 the output is the same, that's what matters. */
5474 || at->dw_attr == DW_AT_producer)
5475 return;
5476
5477 switch (AT_class (at))
5478 {
5479 case dw_val_class_const:
5480 CHECKSUM (at->dw_attr_val.v.val_int);
5481 break;
5482 case dw_val_class_unsigned_const:
5483 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5484 break;
5485 case dw_val_class_long_long:
5486 CHECKSUM (at->dw_attr_val.v.val_long_long);
5487 break;
5488 case dw_val_class_float:
5489 CHECKSUM (at->dw_attr_val.v.val_float);
5490 break;
5491 case dw_val_class_flag:
5492 CHECKSUM (at->dw_attr_val.v.val_flag);
5493 break;
5494 case dw_val_class_str:
5495 CHECKSUM_STRING (AT_string (at));
5496 break;
5497
5498 case dw_val_class_addr:
5499 r = AT_addr (at);
5500 switch (GET_CODE (r))
5501 {
5502 case SYMBOL_REF:
5503 CHECKSUM_STRING (XSTR (r, 0));
5504 break;
5505
5506 default:
5507 abort ();
5508 }
5509 break;
5510
5511 case dw_val_class_offset:
5512 CHECKSUM (at->dw_attr_val.v.val_offset);
5513 break;
5514
5515 case dw_val_class_loc:
5516 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5517 loc_checksum (loc, ctx);
5518 break;
5519
5520 case dw_val_class_die_ref:
5521 die_checksum (AT_ref (at), ctx, mark);
5522 break;
5523
5524 case dw_val_class_fde_ref:
5525 case dw_val_class_lbl_id:
5526 case dw_val_class_lbl_offset:
5527 break;
5528
5529 default:
5530 break;
5531 }
5532 }
5533
5534 /* Calculate the checksum of a DIE. */
5535
5536 static void
5537 die_checksum (die, ctx, mark)
5538 dw_die_ref die;
5539 struct md5_ctx *ctx;
5540 int *mark;
5541 {
5542 dw_die_ref c;
5543 dw_attr_ref a;
5544
5545 /* To avoid infinite recursion. */
5546 if (die->die_mark)
5547 {
5548 CHECKSUM (die->die_mark);
5549 return;
5550 }
5551 die->die_mark = ++(*mark);
5552
5553 CHECKSUM (die->die_tag);
5554
5555 for (a = die->die_attr; a; a = a->dw_attr_next)
5556 attr_checksum (a, ctx, mark);
5557
5558 for (c = die->die_child; c; c = c->die_sib)
5559 die_checksum (c, ctx, mark);
5560 }
5561
5562 #undef CHECKSUM
5563 #undef CHECKSUM_STRING
5564
5565 /* Do the location expressions look same? */
5566 static inline int
5567 same_loc_p (loc1, loc2, mark)
5568 dw_loc_descr_ref loc1;
5569 dw_loc_descr_ref loc2;
5570 int *mark;
5571 {
5572 return loc1->dw_loc_opc == loc2->dw_loc_opc
5573 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5574 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5575 }
5576
5577 /* Do the values look the same? */
5578 static int
5579 same_dw_val_p (v1, v2, mark)
5580 dw_val_node *v1;
5581 dw_val_node *v2;
5582 int *mark;
5583 {
5584 dw_loc_descr_ref loc1, loc2;
5585 rtx r1, r2;
5586 unsigned i;
5587
5588 if (v1->val_class != v2->val_class)
5589 return 0;
5590
5591 switch (v1->val_class)
5592 {
5593 case dw_val_class_const:
5594 return v1->v.val_int == v2->v.val_int;
5595 case dw_val_class_unsigned_const:
5596 return v1->v.val_unsigned == v2->v.val_unsigned;
5597 case dw_val_class_long_long:
5598 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5599 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5600 case dw_val_class_float:
5601 if (v1->v.val_float.length != v2->v.val_float.length)
5602 return 0;
5603 for (i = 0; i < v1->v.val_float.length; i++)
5604 if (v1->v.val_float.array[i] != v2->v.val_float.array[i])
5605 return 0;
5606 return 1;
5607 case dw_val_class_flag:
5608 return v1->v.val_flag == v2->v.val_flag;
5609 case dw_val_class_str:
5610 return !strcmp((const char *) HT_STR (&v1->v.val_str->id),
5611 (const char *) HT_STR (&v2->v.val_str->id));
5612
5613 case dw_val_class_addr:
5614 r1 = v1->v.val_addr;
5615 r2 = v2->v.val_addr;
5616 if (GET_CODE (r1) != GET_CODE (r2))
5617 return 0;
5618 switch (GET_CODE (r1))
5619 {
5620 case SYMBOL_REF:
5621 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5622
5623 default:
5624 abort ();
5625 }
5626
5627 case dw_val_class_offset:
5628 return v1->v.val_offset == v2->v.val_offset;
5629
5630 case dw_val_class_loc:
5631 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5632 loc1 && loc2;
5633 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5634 if (!same_loc_p (loc1, loc2, mark))
5635 return 0;
5636 return !loc1 && !loc2;
5637
5638 case dw_val_class_die_ref:
5639 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5640
5641 case dw_val_class_fde_ref:
5642 case dw_val_class_lbl_id:
5643 case dw_val_class_lbl_offset:
5644 return 1;
5645
5646 default:
5647 return 1;
5648 }
5649 }
5650
5651 /* Do the attributes look the same? */
5652
5653 static int
5654 same_attr_p (at1, at2, mark)
5655 dw_attr_ref at1;
5656 dw_attr_ref at2;
5657 int *mark;
5658 {
5659 if (at1->dw_attr != at2->dw_attr)
5660 return 0;
5661
5662 /* We don't care about differences in file numbering. */
5663 if (at1->dw_attr == DW_AT_decl_file
5664 /* Or that this was compiled with a different compiler snapshot; if
5665 the output is the same, that's what matters. */
5666 || at1->dw_attr == DW_AT_producer)
5667 return 1;
5668
5669 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5670 }
5671
5672 /* Do the dies look the same? */
5673
5674 static int
5675 same_die_p (die1, die2, mark)
5676 dw_die_ref die1;
5677 dw_die_ref die2;
5678 int *mark;
5679 {
5680 dw_die_ref c1, c2;
5681 dw_attr_ref a1, a2;
5682
5683 /* To avoid infinite recursion. */
5684 if (die1->die_mark)
5685 return die1->die_mark == die2->die_mark;
5686 die1->die_mark = die2->die_mark = ++(*mark);
5687
5688 if (die1->die_tag != die2->die_tag)
5689 return 0;
5690
5691 for (a1 = die1->die_attr, a2 = die2->die_attr;
5692 a1 && a2;
5693 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5694 if (!same_attr_p (a1, a2, mark))
5695 return 0;
5696 if (a1 || a2)
5697 return 0;
5698
5699 for (c1 = die1->die_child, c2 = die2->die_child;
5700 c1 && c2;
5701 c1 = c1->die_sib, c2 = c2->die_sib)
5702 if (!same_die_p (c1, c2, mark))
5703 return 0;
5704 if (c1 || c2)
5705 return 0;
5706
5707 return 1;
5708 }
5709
5710 /* Do the dies look the same? Wrapper around same_die_p. */
5711
5712 static int
5713 same_die_p_wrap (die1, die2)
5714 dw_die_ref die1;
5715 dw_die_ref die2;
5716 {
5717 int mark = 0;
5718 int ret = same_die_p (die1, die2, &mark);
5719
5720 unmark_all_dies (die1);
5721 unmark_all_dies (die2);
5722
5723 return ret;
5724 }
5725
5726 /* The prefix to attach to symbols on DIEs in the current comdat debug
5727 info section. */
5728 static char *comdat_symbol_id;
5729
5730 /* The index of the current symbol within the current comdat CU. */
5731 static unsigned int comdat_symbol_number;
5732
5733 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5734 children, and set comdat_symbol_id accordingly. */
5735
5736 static void
5737 compute_section_prefix (unit_die)
5738 dw_die_ref unit_die;
5739 {
5740 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5741 const char *base = die_name ? lbasename (die_name) : "anonymous";
5742 char *name = (char *) alloca (strlen (base) + 64);
5743 char *p;
5744 int i, mark;
5745 unsigned char checksum[16];
5746 struct md5_ctx ctx;
5747
5748 /* Compute the checksum of the DIE, then append part of it as hex digits to
5749 the name filename of the unit. */
5750
5751 md5_init_ctx (&ctx);
5752 mark = 0;
5753 die_checksum (unit_die, &ctx, &mark);
5754 unmark_all_dies (unit_die);
5755 md5_finish_ctx (&ctx, checksum);
5756
5757 sprintf (name, "%s.", base);
5758 clean_symbol_name (name);
5759
5760 p = name + strlen (name);
5761 for (i = 0; i < 4; i++)
5762 {
5763 sprintf (p, "%.2x", checksum[i]);
5764 p += 2;
5765 }
5766
5767 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5768 comdat_symbol_number = 0;
5769 }
5770
5771 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5772
5773 static int
5774 is_type_die (die)
5775 dw_die_ref die;
5776 {
5777 switch (die->die_tag)
5778 {
5779 case DW_TAG_array_type:
5780 case DW_TAG_class_type:
5781 case DW_TAG_enumeration_type:
5782 case DW_TAG_pointer_type:
5783 case DW_TAG_reference_type:
5784 case DW_TAG_string_type:
5785 case DW_TAG_structure_type:
5786 case DW_TAG_subroutine_type:
5787 case DW_TAG_union_type:
5788 case DW_TAG_ptr_to_member_type:
5789 case DW_TAG_set_type:
5790 case DW_TAG_subrange_type:
5791 case DW_TAG_base_type:
5792 case DW_TAG_const_type:
5793 case DW_TAG_file_type:
5794 case DW_TAG_packed_type:
5795 case DW_TAG_volatile_type:
5796 case DW_TAG_typedef:
5797 return 1;
5798 default:
5799 return 0;
5800 }
5801 }
5802
5803 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5804 Basically, we want to choose the bits that are likely to be shared between
5805 compilations (types) and leave out the bits that are specific to individual
5806 compilations (functions). */
5807
5808 static int
5809 is_comdat_die (c)
5810 dw_die_ref c;
5811 {
5812 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5813 we do for stabs. The advantage is a greater likelihood of sharing between
5814 objects that don't include headers in the same order (and therefore would
5815 put the base types in a different comdat). jason 8/28/00 */
5816
5817 if (c->die_tag == DW_TAG_base_type)
5818 return 0;
5819
5820 if (c->die_tag == DW_TAG_pointer_type
5821 || c->die_tag == DW_TAG_reference_type
5822 || c->die_tag == DW_TAG_const_type
5823 || c->die_tag == DW_TAG_volatile_type)
5824 {
5825 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5826
5827 return t ? is_comdat_die (t) : 0;
5828 }
5829
5830 return is_type_die (c);
5831 }
5832
5833 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5834 compilation unit. */
5835
5836 static int
5837 is_symbol_die (c)
5838 dw_die_ref c;
5839 {
5840 return (is_type_die (c)
5841 || (get_AT (c, DW_AT_declaration)
5842 && !get_AT (c, DW_AT_specification)));
5843 }
5844
5845 static char *
5846 gen_internal_sym (prefix)
5847 const char *prefix;
5848 {
5849 char buf[256];
5850 static int label_num;
5851
5852 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5853 return xstrdup (buf);
5854 }
5855
5856 /* Assign symbols to all worthy DIEs under DIE. */
5857
5858 static void
5859 assign_symbol_names (die)
5860 dw_die_ref die;
5861 {
5862 dw_die_ref c;
5863
5864 if (is_symbol_die (die))
5865 {
5866 if (comdat_symbol_id)
5867 {
5868 char *p = alloca (strlen (comdat_symbol_id) + 64);
5869
5870 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
5871 comdat_symbol_id, comdat_symbol_number++);
5872 die->die_symbol = xstrdup (p);
5873 }
5874 else
5875 die->die_symbol = gen_internal_sym ("LDIE");
5876 }
5877
5878 for (c = die->die_child; c != NULL; c = c->die_sib)
5879 assign_symbol_names (c);
5880 }
5881
5882 struct cu_hash_table_entry
5883 {
5884 dw_die_ref cu;
5885 unsigned min_comdat_num, max_comdat_num;
5886 struct cu_hash_table_entry *next;
5887 };
5888
5889 /* Routines to manipulate hash table of CUs. */
5890 static hashval_t
5891 htab_cu_hash (of)
5892 const void *of;
5893 {
5894 const struct cu_hash_table_entry *entry = of;
5895
5896 return htab_hash_string (entry->cu->die_symbol);
5897 }
5898
5899 static int
5900 htab_cu_eq (of1, of2)
5901 const void *of1;
5902 const void *of2;
5903 {
5904 const struct cu_hash_table_entry *entry1 = of1;
5905 const struct die_struct *entry2 = of2;
5906
5907 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
5908 }
5909
5910 static void
5911 htab_cu_del (what)
5912 void *what;
5913 {
5914 struct cu_hash_table_entry *next, *entry = what;
5915
5916 while (entry)
5917 {
5918 next = entry->next;
5919 free (entry);
5920 entry = next;
5921 }
5922 }
5923
5924 /* Check whether we have already seen this CU and set up SYM_NUM
5925 accordingly. */
5926 static int
5927 check_duplicate_cu (cu, htable, sym_num)
5928 dw_die_ref cu;
5929 htab_t htable;
5930 unsigned *sym_num;
5931 {
5932 struct cu_hash_table_entry dummy;
5933 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
5934
5935 dummy.max_comdat_num = 0;
5936
5937 slot = (struct cu_hash_table_entry **)
5938 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
5939 INSERT);
5940 entry = *slot;
5941
5942 for (; entry; last = entry, entry = entry->next)
5943 {
5944 if (same_die_p_wrap (cu, entry->cu))
5945 break;
5946 }
5947
5948 if (entry)
5949 {
5950 *sym_num = entry->min_comdat_num;
5951 return 1;
5952 }
5953
5954 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
5955 entry->cu = cu;
5956 entry->min_comdat_num = *sym_num = last->max_comdat_num;
5957 entry->next = *slot;
5958 *slot = entry;
5959
5960 return 0;
5961 }
5962
5963 /* Record SYM_NUM to record of CU in HTABLE. */
5964 static void
5965 record_comdat_symbol_number (cu, htable, sym_num)
5966 dw_die_ref cu;
5967 htab_t htable;
5968 unsigned sym_num;
5969 {
5970 struct cu_hash_table_entry **slot, *entry;
5971
5972 slot = (struct cu_hash_table_entry **)
5973 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
5974 NO_INSERT);
5975 entry = *slot;
5976
5977 entry->max_comdat_num = sym_num;
5978 }
5979
5980 /* Traverse the DIE (which is always comp_unit_die), and set up
5981 additional compilation units for each of the include files we see
5982 bracketed by BINCL/EINCL. */
5983
5984 static void
5985 break_out_includes (die)
5986 dw_die_ref die;
5987 {
5988 dw_die_ref *ptr;
5989 dw_die_ref unit = NULL;
5990 limbo_die_node *node, **pnode;
5991 htab_t cu_hash_table;
5992
5993 for (ptr = &(die->die_child); *ptr;)
5994 {
5995 dw_die_ref c = *ptr;
5996
5997 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
5998 || (unit && is_comdat_die (c)))
5999 {
6000 /* This DIE is for a secondary CU; remove it from the main one. */
6001 *ptr = c->die_sib;
6002
6003 if (c->die_tag == DW_TAG_GNU_BINCL)
6004 {
6005 unit = push_new_compile_unit (unit, c);
6006 free_die (c);
6007 }
6008 else if (c->die_tag == DW_TAG_GNU_EINCL)
6009 {
6010 unit = pop_compile_unit (unit);
6011 free_die (c);
6012 }
6013 else
6014 add_child_die (unit, c);
6015 }
6016 else
6017 {
6018 /* Leave this DIE in the main CU. */
6019 ptr = &(c->die_sib);
6020 continue;
6021 }
6022 }
6023
6024 #if 0
6025 /* We can only use this in debugging, since the frontend doesn't check
6026 to make sure that we leave every include file we enter. */
6027 if (unit != NULL)
6028 abort ();
6029 #endif
6030
6031 assign_symbol_names (die);
6032 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6033 for (node = limbo_die_list, pnode = &limbo_die_list;
6034 node;
6035 node = node->next)
6036 {
6037 int is_dupl;
6038
6039 compute_section_prefix (node->die);
6040 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6041 &comdat_symbol_number);
6042 assign_symbol_names (node->die);
6043 if (is_dupl)
6044 *pnode = node->next;
6045 else
6046 {
6047 pnode = &node->next;
6048 record_comdat_symbol_number (node->die, cu_hash_table,
6049 comdat_symbol_number);
6050 }
6051 }
6052 htab_delete (cu_hash_table);
6053 }
6054
6055 /* Traverse the DIE and add a sibling attribute if it may have the
6056 effect of speeding up access to siblings. To save some space,
6057 avoid generating sibling attributes for DIE's without children. */
6058
6059 static void
6060 add_sibling_attributes (die)
6061 dw_die_ref die;
6062 {
6063 dw_die_ref c;
6064
6065 if (die->die_tag != DW_TAG_compile_unit
6066 && die->die_sib && die->die_child != NULL)
6067 /* Add the sibling link to the front of the attribute list. */
6068 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6069
6070 for (c = die->die_child; c != NULL; c = c->die_sib)
6071 add_sibling_attributes (c);
6072 }
6073
6074 /* Output all location lists for the DIE and its children. */
6075
6076 static void
6077 output_location_lists (die)
6078 dw_die_ref die;
6079 {
6080 dw_die_ref c;
6081 dw_attr_ref d_attr;
6082
6083 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6084 if (AT_class (d_attr) == dw_val_class_loc_list)
6085 output_loc_list (AT_loc_list (d_attr));
6086
6087 for (c = die->die_child; c != NULL; c = c->die_sib)
6088 output_location_lists (c);
6089
6090 }
6091
6092 /* The format of each DIE (and its attribute value pairs) is encoded in an
6093 abbreviation table. This routine builds the abbreviation table and assigns
6094 a unique abbreviation id for each abbreviation entry. The children of each
6095 die are visited recursively. */
6096
6097 static void
6098 build_abbrev_table (die)
6099 dw_die_ref die;
6100 {
6101 unsigned long abbrev_id;
6102 unsigned int n_alloc;
6103 dw_die_ref c;
6104 dw_attr_ref d_attr, a_attr;
6105
6106 /* Scan the DIE references, and mark as external any that refer to
6107 DIEs from other CUs (i.e. those which are not marked). */
6108 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6109 if (AT_class (d_attr) == dw_val_class_die_ref
6110 && AT_ref (d_attr)->die_mark == 0)
6111 {
6112 if (AT_ref (d_attr)->die_symbol == 0)
6113 abort ();
6114
6115 set_AT_ref_external (d_attr, 1);
6116 }
6117
6118 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6119 {
6120 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6121
6122 if (abbrev->die_tag == die->die_tag)
6123 {
6124 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6125 {
6126 a_attr = abbrev->die_attr;
6127 d_attr = die->die_attr;
6128
6129 while (a_attr != NULL && d_attr != NULL)
6130 {
6131 if ((a_attr->dw_attr != d_attr->dw_attr)
6132 || (value_format (a_attr) != value_format (d_attr)))
6133 break;
6134
6135 a_attr = a_attr->dw_attr_next;
6136 d_attr = d_attr->dw_attr_next;
6137 }
6138
6139 if (a_attr == NULL && d_attr == NULL)
6140 break;
6141 }
6142 }
6143 }
6144
6145 if (abbrev_id >= abbrev_die_table_in_use)
6146 {
6147 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6148 {
6149 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6150 abbrev_die_table
6151 = (dw_die_ref *) xrealloc (abbrev_die_table,
6152 sizeof (dw_die_ref) * n_alloc);
6153
6154 memset ((char *) &abbrev_die_table[abbrev_die_table_allocated], 0,
6155 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6156 abbrev_die_table_allocated = n_alloc;
6157 }
6158
6159 ++abbrev_die_table_in_use;
6160 abbrev_die_table[abbrev_id] = die;
6161 }
6162
6163 die->die_abbrev = abbrev_id;
6164 for (c = die->die_child; c != NULL; c = c->die_sib)
6165 build_abbrev_table (c);
6166 }
6167 \f
6168 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6169
6170 static int
6171 constant_size (value)
6172 long unsigned value;
6173 {
6174 int log;
6175
6176 if (value == 0)
6177 log = 0;
6178 else
6179 log = floor_log2 (value);
6180
6181 log = log / 8;
6182 log = 1 << (floor_log2 (log) + 1);
6183
6184 return log;
6185 }
6186
6187 /* Return the size of a DIE as it is represented in the
6188 .debug_info section. */
6189
6190 static unsigned long
6191 size_of_die (die)
6192 dw_die_ref die;
6193 {
6194 unsigned long size = 0;
6195 dw_attr_ref a;
6196
6197 size += size_of_uleb128 (die->die_abbrev);
6198 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6199 {
6200 switch (AT_class (a))
6201 {
6202 case dw_val_class_addr:
6203 size += DWARF2_ADDR_SIZE;
6204 break;
6205 case dw_val_class_offset:
6206 size += DWARF_OFFSET_SIZE;
6207 break;
6208 case dw_val_class_loc:
6209 {
6210 unsigned long lsize = size_of_locs (AT_loc (a));
6211
6212 /* Block length. */
6213 size += constant_size (lsize);
6214 size += lsize;
6215 }
6216 break;
6217 case dw_val_class_loc_list:
6218 size += DWARF_OFFSET_SIZE;
6219 break;
6220 case dw_val_class_range_list:
6221 size += DWARF_OFFSET_SIZE;
6222 break;
6223 case dw_val_class_const:
6224 size += size_of_sleb128 (AT_int (a));
6225 break;
6226 case dw_val_class_unsigned_const:
6227 size += constant_size (AT_unsigned (a));
6228 break;
6229 case dw_val_class_long_long:
6230 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6231 break;
6232 case dw_val_class_float:
6233 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
6234 break;
6235 case dw_val_class_flag:
6236 size += 1;
6237 break;
6238 case dw_val_class_die_ref:
6239 size += DWARF_OFFSET_SIZE;
6240 break;
6241 case dw_val_class_fde_ref:
6242 size += DWARF_OFFSET_SIZE;
6243 break;
6244 case dw_val_class_lbl_id:
6245 size += DWARF2_ADDR_SIZE;
6246 break;
6247 case dw_val_class_lbl_offset:
6248 size += DWARF_OFFSET_SIZE;
6249 break;
6250 case dw_val_class_str:
6251 if (AT_string_form (a) == DW_FORM_strp)
6252 size += DWARF_OFFSET_SIZE;
6253 else
6254 size += HT_LEN (&a->dw_attr_val.v.val_str->id) + 1;
6255 break;
6256 default:
6257 abort ();
6258 }
6259 }
6260
6261 return size;
6262 }
6263
6264 /* Size the debugging information associated with a given DIE. Visits the
6265 DIE's children recursively. Updates the global variable next_die_offset, on
6266 each time through. Uses the current value of next_die_offset to update the
6267 die_offset field in each DIE. */
6268
6269 static void
6270 calc_die_sizes (die)
6271 dw_die_ref die;
6272 {
6273 dw_die_ref c;
6274
6275 die->die_offset = next_die_offset;
6276 next_die_offset += size_of_die (die);
6277
6278 for (c = die->die_child; c != NULL; c = c->die_sib)
6279 calc_die_sizes (c);
6280
6281 if (die->die_child != NULL)
6282 /* Count the null byte used to terminate sibling lists. */
6283 next_die_offset += 1;
6284 }
6285
6286 /* Set the marks for a die and its children. We do this so
6287 that we know whether or not a reference needs to use FORM_ref_addr; only
6288 DIEs in the same CU will be marked. We used to clear out the offset
6289 and use that as the flag, but ran into ordering problems. */
6290
6291 static void
6292 mark_dies (die)
6293 dw_die_ref die;
6294 {
6295 dw_die_ref c;
6296
6297 if (die->die_mark)
6298 abort ();
6299
6300 die->die_mark = 1;
6301 for (c = die->die_child; c; c = c->die_sib)
6302 mark_dies (c);
6303 }
6304
6305 /* Clear the marks for a die and its children. */
6306
6307 static void
6308 unmark_dies (die)
6309 dw_die_ref die;
6310 {
6311 dw_die_ref c;
6312
6313 if (!die->die_mark)
6314 abort ();
6315
6316 die->die_mark = 0;
6317 for (c = die->die_child; c; c = c->die_sib)
6318 unmark_dies (c);
6319 }
6320
6321 /* Clear the marks for a die, its children and referred dies. */
6322
6323 static void
6324 unmark_all_dies (die)
6325 dw_die_ref die;
6326 {
6327 dw_die_ref c;
6328 dw_attr_ref a;
6329
6330 if (!die->die_mark)
6331 return;
6332 die->die_mark = 0;
6333
6334 for (c = die->die_child; c; c = c->die_sib)
6335 unmark_all_dies (c);
6336
6337 for (a = die->die_attr; a; a = a->dw_attr_next)
6338 if (AT_class (a) == dw_val_class_die_ref)
6339 unmark_all_dies (AT_ref (a));
6340 }
6341
6342 /* Return the size of the .debug_pubnames table generated for the
6343 compilation unit. */
6344
6345 static unsigned long
6346 size_of_pubnames ()
6347 {
6348 unsigned long size;
6349 unsigned i;
6350
6351 size = DWARF_PUBNAMES_HEADER_SIZE;
6352 for (i = 0; i < pubname_table_in_use; i++)
6353 {
6354 pubname_ref p = &pubname_table[i];
6355 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6356 }
6357
6358 size += DWARF_OFFSET_SIZE;
6359 return size;
6360 }
6361
6362 /* Return the size of the information in the .debug_aranges section. */
6363
6364 static unsigned long
6365 size_of_aranges ()
6366 {
6367 unsigned long size;
6368
6369 size = DWARF_ARANGES_HEADER_SIZE;
6370
6371 /* Count the address/length pair for this compilation unit. */
6372 size += 2 * DWARF2_ADDR_SIZE;
6373 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6374
6375 /* Count the two zero words used to terminated the address range table. */
6376 size += 2 * DWARF2_ADDR_SIZE;
6377 return size;
6378 }
6379 \f
6380 /* Select the encoding of an attribute value. */
6381
6382 static enum dwarf_form
6383 value_format (a)
6384 dw_attr_ref a;
6385 {
6386 switch (a->dw_attr_val.val_class)
6387 {
6388 case dw_val_class_addr:
6389 return DW_FORM_addr;
6390 case dw_val_class_range_list:
6391 case dw_val_class_offset:
6392 if (DWARF_OFFSET_SIZE == 4)
6393 return DW_FORM_data4;
6394 if (DWARF_OFFSET_SIZE == 8)
6395 return DW_FORM_data8;
6396 abort ();
6397 case dw_val_class_loc_list:
6398 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6399 .debug_loc section */
6400 return DW_FORM_data4;
6401 case dw_val_class_loc:
6402 switch (constant_size (size_of_locs (AT_loc (a))))
6403 {
6404 case 1:
6405 return DW_FORM_block1;
6406 case 2:
6407 return DW_FORM_block2;
6408 default:
6409 abort ();
6410 }
6411 case dw_val_class_const:
6412 return DW_FORM_sdata;
6413 case dw_val_class_unsigned_const:
6414 switch (constant_size (AT_unsigned (a)))
6415 {
6416 case 1:
6417 return DW_FORM_data1;
6418 case 2:
6419 return DW_FORM_data2;
6420 case 4:
6421 return DW_FORM_data4;
6422 case 8:
6423 return DW_FORM_data8;
6424 default:
6425 abort ();
6426 }
6427 case dw_val_class_long_long:
6428 return DW_FORM_block1;
6429 case dw_val_class_float:
6430 return DW_FORM_block1;
6431 case dw_val_class_flag:
6432 return DW_FORM_flag;
6433 case dw_val_class_die_ref:
6434 if (AT_ref_external (a))
6435 return DW_FORM_ref_addr;
6436 else
6437 return DW_FORM_ref;
6438 case dw_val_class_fde_ref:
6439 return DW_FORM_data;
6440 case dw_val_class_lbl_id:
6441 return DW_FORM_addr;
6442 case dw_val_class_lbl_offset:
6443 return DW_FORM_data;
6444 case dw_val_class_str:
6445 return AT_string_form (a);
6446
6447 default:
6448 abort ();
6449 }
6450 }
6451
6452 /* Output the encoding of an attribute value. */
6453
6454 static void
6455 output_value_format (a)
6456 dw_attr_ref a;
6457 {
6458 enum dwarf_form form = value_format (a);
6459
6460 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6461 }
6462
6463 /* Output the .debug_abbrev section which defines the DIE abbreviation
6464 table. */
6465
6466 static void
6467 output_abbrev_section ()
6468 {
6469 unsigned long abbrev_id;
6470
6471 dw_attr_ref a_attr;
6472
6473 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6474 {
6475 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6476
6477 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6478 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6479 dwarf_tag_name (abbrev->die_tag));
6480
6481 if (abbrev->die_child != NULL)
6482 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6483 else
6484 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6485
6486 for (a_attr = abbrev->die_attr; a_attr != NULL;
6487 a_attr = a_attr->dw_attr_next)
6488 {
6489 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6490 dwarf_attr_name (a_attr->dw_attr));
6491 output_value_format (a_attr);
6492 }
6493
6494 dw2_asm_output_data (1, 0, NULL);
6495 dw2_asm_output_data (1, 0, NULL);
6496 }
6497
6498 /* Terminate the table. */
6499 dw2_asm_output_data (1, 0, NULL);
6500 }
6501
6502 /* Output a symbol we can use to refer to this DIE from another CU. */
6503
6504 static inline void
6505 output_die_symbol (die)
6506 dw_die_ref die;
6507 {
6508 char *sym = die->die_symbol;
6509
6510 if (sym == 0)
6511 return;
6512
6513 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6514 /* We make these global, not weak; if the target doesn't support
6515 .linkonce, it doesn't support combining the sections, so debugging
6516 will break. */
6517 (*targetm.asm_out.globalize_label) (asm_out_file, sym);
6518
6519 ASM_OUTPUT_LABEL (asm_out_file, sym);
6520 }
6521
6522 /* Return a new location list, given the begin and end range, and the
6523 expression. gensym tells us whether to generate a new internal symbol for
6524 this location list node, which is done for the head of the list only. */
6525
6526 static inline dw_loc_list_ref
6527 new_loc_list (expr, begin, end, section, gensym)
6528 dw_loc_descr_ref expr;
6529 const char *begin;
6530 const char *end;
6531 const char *section;
6532 unsigned gensym;
6533 {
6534 dw_loc_list_ref retlist
6535 = (dw_loc_list_ref) xcalloc (1, sizeof (dw_loc_list_node));
6536
6537 retlist->begin = begin;
6538 retlist->end = end;
6539 retlist->expr = expr;
6540 retlist->section = section;
6541 if (gensym)
6542 retlist->ll_symbol = gen_internal_sym ("LLST");
6543
6544 return retlist;
6545 }
6546
6547 /* Add a location description expression to a location list */
6548
6549 static inline void
6550 add_loc_descr_to_loc_list (list_head, descr, begin, end, section)
6551 dw_loc_list_ref *list_head;
6552 dw_loc_descr_ref descr;
6553 const char *begin;
6554 const char *end;
6555 const char *section;
6556 {
6557 dw_loc_list_ref *d;
6558
6559 /* Find the end of the chain. */
6560 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6561 ;
6562
6563 /* Add a new location list node to the list */
6564 *d = new_loc_list (descr, begin, end, section, 0);
6565 }
6566
6567 /* Output the location list given to us */
6568
6569 static void
6570 output_loc_list (list_head)
6571 dw_loc_list_ref list_head;
6572 {
6573 dw_loc_list_ref curr = list_head;
6574
6575 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6576
6577 /* ??? This shouldn't be needed now that we've forced the
6578 compilation unit base address to zero when there is code
6579 in more than one section. */
6580 if (strcmp (curr->section, ".text") == 0)
6581 {
6582 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6583 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT) 0,
6584 "Location list base address specifier fake entry");
6585 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6586 "Location list base address specifier base");
6587 }
6588
6589 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6590 {
6591 unsigned long size;
6592
6593 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6594 "Location list begin address (%s)",
6595 list_head->ll_symbol);
6596 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6597 "Location list end address (%s)",
6598 list_head->ll_symbol);
6599 size = size_of_locs (curr->expr);
6600
6601 /* Output the block length for this list of location operations. */
6602 if (size > 0xffff)
6603 abort ();
6604 dw2_asm_output_data (2, size, "%s", "Location expression size");
6605
6606 output_loc_sequence (curr->expr);
6607 }
6608
6609 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6610 "Location list terminator begin (%s)",
6611 list_head->ll_symbol);
6612 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6613 "Location list terminator end (%s)",
6614 list_head->ll_symbol);
6615 }
6616
6617 /* Output the DIE and its attributes. Called recursively to generate
6618 the definitions of each child DIE. */
6619
6620 static void
6621 output_die (die)
6622 dw_die_ref die;
6623 {
6624 dw_attr_ref a;
6625 dw_die_ref c;
6626 unsigned long size;
6627
6628 /* If someone in another CU might refer to us, set up a symbol for
6629 them to point to. */
6630 if (die->die_symbol)
6631 output_die_symbol (die);
6632
6633 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6634 die->die_offset, dwarf_tag_name (die->die_tag));
6635
6636 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6637 {
6638 const char *name = dwarf_attr_name (a->dw_attr);
6639
6640 switch (AT_class (a))
6641 {
6642 case dw_val_class_addr:
6643 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6644 break;
6645
6646 case dw_val_class_offset:
6647 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6648 "%s", name);
6649 break;
6650
6651 case dw_val_class_range_list:
6652 {
6653 char *p = strchr (ranges_section_label, '\0');
6654
6655 sprintf (p, "+0x%lx", a->dw_attr_val.v.val_offset);
6656 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6657 "%s", name);
6658 *p = '\0';
6659 }
6660 break;
6661
6662 case dw_val_class_loc:
6663 size = size_of_locs (AT_loc (a));
6664
6665 /* Output the block length for this list of location operations. */
6666 dw2_asm_output_data (constant_size (size), size, "%s", name);
6667
6668 output_loc_sequence (AT_loc (a));
6669 break;
6670
6671 case dw_val_class_const:
6672 /* ??? It would be slightly more efficient to use a scheme like is
6673 used for unsigned constants below, but gdb 4.x does not sign
6674 extend. Gdb 5.x does sign extend. */
6675 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6676 break;
6677
6678 case dw_val_class_unsigned_const:
6679 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6680 AT_unsigned (a), "%s", name);
6681 break;
6682
6683 case dw_val_class_long_long:
6684 {
6685 unsigned HOST_WIDE_INT first, second;
6686
6687 dw2_asm_output_data (1,
6688 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6689 "%s", name);
6690
6691 if (WORDS_BIG_ENDIAN)
6692 {
6693 first = a->dw_attr_val.v.val_long_long.hi;
6694 second = a->dw_attr_val.v.val_long_long.low;
6695 }
6696 else
6697 {
6698 first = a->dw_attr_val.v.val_long_long.low;
6699 second = a->dw_attr_val.v.val_long_long.hi;
6700 }
6701
6702 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6703 first, "long long constant");
6704 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6705 second, NULL);
6706 }
6707 break;
6708
6709 case dw_val_class_float:
6710 {
6711 unsigned int i;
6712
6713 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6714 "%s", name);
6715
6716 for (i = 0; i < a->dw_attr_val.v.val_float.length; i++)
6717 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6718 "fp constant word %u", i);
6719 break;
6720 }
6721
6722 case dw_val_class_flag:
6723 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6724 break;
6725
6726 case dw_val_class_loc_list:
6727 {
6728 char *sym = AT_loc_list (a)->ll_symbol;
6729
6730 if (sym == 0)
6731 abort ();
6732 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym,
6733 loc_section_label, "%s", name);
6734 }
6735 break;
6736
6737 case dw_val_class_die_ref:
6738 if (AT_ref_external (a))
6739 {
6740 char *sym = AT_ref (a)->die_symbol;
6741
6742 if (sym == 0)
6743 abort ();
6744 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6745 }
6746 else if (AT_ref (a)->die_offset == 0)
6747 abort ();
6748 else
6749 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6750 "%s", name);
6751 break;
6752
6753 case dw_val_class_fde_ref:
6754 {
6755 char l1[20];
6756
6757 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6758 a->dw_attr_val.v.val_fde_index * 2);
6759 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6760 }
6761 break;
6762
6763 case dw_val_class_lbl_id:
6764 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6765 break;
6766
6767 case dw_val_class_lbl_offset:
6768 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6769 break;
6770
6771 case dw_val_class_str:
6772 if (AT_string_form (a) == DW_FORM_strp)
6773 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6774 a->dw_attr_val.v.val_str->label,
6775 "%s: \"%s\"", name, AT_string (a));
6776 else
6777 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6778 break;
6779
6780 default:
6781 abort ();
6782 }
6783 }
6784
6785 for (c = die->die_child; c != NULL; c = c->die_sib)
6786 output_die (c);
6787
6788 /* Add null byte to terminate sibling list. */
6789 if (die->die_child != NULL)
6790 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6791 die->die_offset);
6792 }
6793
6794 /* Output the compilation unit that appears at the beginning of the
6795 .debug_info section, and precedes the DIE descriptions. */
6796
6797 static void
6798 output_compilation_unit_header ()
6799 {
6800 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset - DWARF_OFFSET_SIZE,
6801 "Length of Compilation Unit Info");
6802 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6803 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6804 "Offset Into Abbrev. Section");
6805 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6806 }
6807
6808 /* Output the compilation unit DIE and its children. */
6809
6810 static void
6811 output_comp_unit (die, output_if_empty)
6812 dw_die_ref die;
6813 int output_if_empty;
6814 {
6815 const char *secname;
6816 char *oldsym, *tmp;
6817
6818 /* Unless we are outputting main CU, we may throw away empty ones. */
6819 if (!output_if_empty && die->die_child == NULL)
6820 return;
6821
6822 /* Even if there are no children of this DIE, we must output the information
6823 about the compilation unit. Otherwise, on an empty translation unit, we
6824 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6825 will then complain when examining the file. First mark all the DIEs in
6826 this CU so we know which get local refs. */
6827 mark_dies (die);
6828
6829 build_abbrev_table (die);
6830
6831 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6832 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6833 calc_die_sizes (die);
6834
6835 oldsym = die->die_symbol;
6836 if (oldsym)
6837 {
6838 tmp = (char *) alloca (strlen (oldsym) + 24);
6839
6840 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
6841 secname = tmp;
6842 die->die_symbol = NULL;
6843 }
6844 else
6845 secname = (const char *) DEBUG_INFO_SECTION;
6846
6847 /* Output debugging information. */
6848 named_section_flags (secname, SECTION_DEBUG);
6849 output_compilation_unit_header ();
6850 output_die (die);
6851
6852 /* Leave the marks on the main CU, so we can check them in
6853 output_pubnames. */
6854 if (oldsym)
6855 {
6856 unmark_dies (die);
6857 die->die_symbol = oldsym;
6858 }
6859 }
6860
6861 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
6862 output of lang_hooks.decl_printable_name for C++ looks like
6863 "A::f(int)". Let's drop the argument list, and maybe the scope. */
6864
6865 static const char *
6866 dwarf2_name (decl, scope)
6867 tree decl;
6868 int scope;
6869 {
6870 return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
6871 }
6872
6873 /* Add a new entry to .debug_pubnames if appropriate. */
6874
6875 static void
6876 add_pubname (decl, die)
6877 tree decl;
6878 dw_die_ref die;
6879 {
6880 pubname_ref p;
6881
6882 if (! TREE_PUBLIC (decl))
6883 return;
6884
6885 if (pubname_table_in_use == pubname_table_allocated)
6886 {
6887 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
6888 pubname_table
6889 = (pubname_ref) xrealloc (pubname_table,
6890 (pubname_table_allocated
6891 * sizeof (pubname_entry)));
6892 }
6893
6894 p = &pubname_table[pubname_table_in_use++];
6895 p->die = die;
6896 p->name = xstrdup (dwarf2_name (decl, 1));
6897 }
6898
6899 /* Output the public names table used to speed up access to externally
6900 visible names. For now, only generate entries for externally
6901 visible procedures. */
6902
6903 static void
6904 output_pubnames ()
6905 {
6906 unsigned i;
6907 unsigned long pubnames_length = size_of_pubnames ();
6908
6909 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
6910 "Length of Public Names Info");
6911 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6912 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6913 "Offset of Compilation Unit Info");
6914 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
6915 "Compilation Unit Length");
6916
6917 for (i = 0; i < pubname_table_in_use; i++)
6918 {
6919 pubname_ref pub = &pubname_table[i];
6920
6921 /* We shouldn't see pubnames for DIEs outside of the main CU. */
6922 if (pub->die->die_mark == 0)
6923 abort ();
6924
6925 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
6926 "DIE offset");
6927
6928 dw2_asm_output_nstring (pub->name, -1, "external name");
6929 }
6930
6931 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
6932 }
6933
6934 /* Add a new entry to .debug_aranges if appropriate. */
6935
6936 static void
6937 add_arange (decl, die)
6938 tree decl;
6939 dw_die_ref die;
6940 {
6941 if (! DECL_SECTION_NAME (decl))
6942 return;
6943
6944 if (arange_table_in_use == arange_table_allocated)
6945 {
6946 arange_table_allocated += ARANGE_TABLE_INCREMENT;
6947 arange_table = (dw_die_ref *)
6948 xrealloc (arange_table, arange_table_allocated * sizeof (dw_die_ref));
6949 }
6950
6951 arange_table[arange_table_in_use++] = die;
6952 }
6953
6954 /* Output the information that goes into the .debug_aranges table.
6955 Namely, define the beginning and ending address range of the
6956 text section generated for this compilation unit. */
6957
6958 static void
6959 output_aranges ()
6960 {
6961 unsigned i;
6962 unsigned long aranges_length = size_of_aranges ();
6963
6964 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
6965 "Length of Address Ranges Info");
6966 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6967 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6968 "Offset of Compilation Unit Info");
6969 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
6970 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
6971
6972 /* We need to align to twice the pointer size here. */
6973 if (DWARF_ARANGES_PAD_SIZE)
6974 {
6975 /* Pad using a 2 byte words so that padding is correct for any
6976 pointer size. */
6977 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
6978 2 * DWARF2_ADDR_SIZE);
6979 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
6980 dw2_asm_output_data (2, 0, NULL);
6981 }
6982
6983 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
6984 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
6985 text_section_label, "Length");
6986
6987 for (i = 0; i < arange_table_in_use; i++)
6988 {
6989 dw_die_ref die = arange_table[i];
6990
6991 /* We shouldn't see aranges for DIEs outside of the main CU. */
6992 if (die->die_mark == 0)
6993 abort ();
6994
6995 if (die->die_tag == DW_TAG_subprogram)
6996 {
6997 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
6998 "Address");
6999 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7000 get_AT_low_pc (die), "Length");
7001 }
7002 else
7003 {
7004 /* A static variable; extract the symbol from DW_AT_location.
7005 Note that this code isn't currently hit, as we only emit
7006 aranges for functions (jason 9/23/99). */
7007 dw_attr_ref a = get_AT (die, DW_AT_location);
7008 dw_loc_descr_ref loc;
7009
7010 if (! a || AT_class (a) != dw_val_class_loc)
7011 abort ();
7012
7013 loc = AT_loc (a);
7014 if (loc->dw_loc_opc != DW_OP_addr)
7015 abort ();
7016
7017 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7018 loc->dw_loc_oprnd1.v.val_addr, "Address");
7019 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7020 get_AT_unsigned (die, DW_AT_byte_size),
7021 "Length");
7022 }
7023 }
7024
7025 /* Output the terminator words. */
7026 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7027 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7028 }
7029
7030 /* Add a new entry to .debug_ranges. Return the offset at which it
7031 was placed. */
7032
7033 static unsigned int
7034 add_ranges (block)
7035 tree block;
7036 {
7037 unsigned int in_use = ranges_table_in_use;
7038
7039 if (in_use == ranges_table_allocated)
7040 {
7041 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7042 ranges_table = (dw_ranges_ref)
7043 xrealloc (ranges_table, (ranges_table_allocated
7044 * sizeof (struct dw_ranges_struct)));
7045 }
7046
7047 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7048 ranges_table_in_use = in_use + 1;
7049
7050 return in_use * 2 * DWARF2_ADDR_SIZE;
7051 }
7052
7053 static void
7054 output_ranges ()
7055 {
7056 unsigned i;
7057 static const char *const start_fmt = "Offset 0x%x";
7058 const char *fmt = start_fmt;
7059
7060 for (i = 0; i < ranges_table_in_use; i++)
7061 {
7062 int block_num = ranges_table[i].block_num;
7063
7064 if (block_num)
7065 {
7066 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7067 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7068
7069 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7070 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7071
7072 /* If all code is in the text section, then the compilation
7073 unit base address defaults to DW_AT_low_pc, which is the
7074 base of the text section. */
7075 if (separate_line_info_table_in_use == 0)
7076 {
7077 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7078 text_section_label,
7079 fmt, i * 2 * DWARF2_ADDR_SIZE);
7080 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7081 text_section_label, NULL);
7082 }
7083
7084 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7085 compilation unit base address to zero, which allows us to
7086 use absolute addresses, and not worry about whether the
7087 target supports cross-section arithmetic. */
7088 else
7089 {
7090 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7091 fmt, i * 2 * DWARF2_ADDR_SIZE);
7092 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7093 }
7094
7095 fmt = NULL;
7096 }
7097 else
7098 {
7099 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7100 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7101 fmt = start_fmt;
7102 }
7103 }
7104 }
7105
7106 /* Data structure containing information about input files. */
7107 struct file_info
7108 {
7109 char *path; /* Complete file name. */
7110 char *fname; /* File name part. */
7111 int length; /* Length of entire string. */
7112 int file_idx; /* Index in input file table. */
7113 int dir_idx; /* Index in directory table. */
7114 };
7115
7116 /* Data structure containing information about directories with source
7117 files. */
7118 struct dir_info
7119 {
7120 char *path; /* Path including directory name. */
7121 int length; /* Path length. */
7122 int prefix; /* Index of directory entry which is a prefix. */
7123 int count; /* Number of files in this directory. */
7124 int dir_idx; /* Index of directory used as base. */
7125 int used; /* Used in the end? */
7126 };
7127
7128 /* Callback function for file_info comparison. We sort by looking at
7129 the directories in the path. */
7130
7131 static int
7132 file_info_cmp (p1, p2)
7133 const void *p1;
7134 const void *p2;
7135 {
7136 const struct file_info *s1 = p1;
7137 const struct file_info *s2 = p2;
7138 unsigned char *cp1;
7139 unsigned char *cp2;
7140
7141 /* Take care of file names without directories. We need to make sure that
7142 we return consistent values to qsort since some will get confused if
7143 we return the same value when identical operands are passed in opposite
7144 orders. So if neither has a directory, return 0 and otherwise return
7145 1 or -1 depending on which one has the directory. */
7146 if ((s1->path == s1->fname || s2->path == s2->fname))
7147 return (s2->path == s2->fname) - (s1->path == s1->fname);
7148
7149 cp1 = (unsigned char *) s1->path;
7150 cp2 = (unsigned char *) s2->path;
7151
7152 while (1)
7153 {
7154 ++cp1;
7155 ++cp2;
7156 /* Reached the end of the first path? If so, handle like above. */
7157 if ((cp1 == (unsigned char *) s1->fname)
7158 || (cp2 == (unsigned char *) s2->fname))
7159 return ((cp2 == (unsigned char *) s2->fname)
7160 - (cp1 == (unsigned char *) s1->fname));
7161
7162 /* Character of current path component the same? */
7163 else if (*cp1 != *cp2)
7164 return *cp1 - *cp2;
7165 }
7166 }
7167
7168 /* Output the directory table and the file name table. We try to minimize
7169 the total amount of memory needed. A heuristic is used to avoid large
7170 slowdowns with many input files. */
7171
7172 static void
7173 output_file_names ()
7174 {
7175 struct file_info *files;
7176 struct dir_info *dirs;
7177 int *saved;
7178 int *savehere;
7179 int *backmap;
7180 int ndirs;
7181 int idx_offset;
7182 int i;
7183 int idx;
7184
7185 /* Allocate the various arrays we need. */
7186 files = (struct file_info *) alloca (file_table.in_use
7187 * sizeof (struct file_info));
7188 dirs = (struct dir_info *) alloca (file_table.in_use
7189 * sizeof (struct dir_info));
7190
7191 /* Sort the file names. */
7192 for (i = 1; i < (int) file_table.in_use; i++)
7193 {
7194 char *f;
7195
7196 /* Skip all leading "./". */
7197 f = file_table.table[i];
7198 while (f[0] == '.' && f[1] == '/')
7199 f += 2;
7200
7201 /* Create a new array entry. */
7202 files[i].path = f;
7203 files[i].length = strlen (f);
7204 files[i].file_idx = i;
7205
7206 /* Search for the file name part. */
7207 f = strrchr (f, '/');
7208 files[i].fname = f == NULL ? files[i].path : f + 1;
7209 }
7210
7211 qsort (files + 1, file_table.in_use - 1, sizeof (files[0]), file_info_cmp);
7212
7213 /* Find all the different directories used. */
7214 dirs[0].path = files[1].path;
7215 dirs[0].length = files[1].fname - files[1].path;
7216 dirs[0].prefix = -1;
7217 dirs[0].count = 1;
7218 dirs[0].dir_idx = 0;
7219 dirs[0].used = 0;
7220 files[1].dir_idx = 0;
7221 ndirs = 1;
7222
7223 for (i = 2; i < (int) file_table.in_use; i++)
7224 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7225 && memcmp (dirs[ndirs - 1].path, files[i].path,
7226 dirs[ndirs - 1].length) == 0)
7227 {
7228 /* Same directory as last entry. */
7229 files[i].dir_idx = ndirs - 1;
7230 ++dirs[ndirs - 1].count;
7231 }
7232 else
7233 {
7234 int j;
7235
7236 /* This is a new directory. */
7237 dirs[ndirs].path = files[i].path;
7238 dirs[ndirs].length = files[i].fname - files[i].path;
7239 dirs[ndirs].count = 1;
7240 dirs[ndirs].dir_idx = ndirs;
7241 dirs[ndirs].used = 0;
7242 files[i].dir_idx = ndirs;
7243
7244 /* Search for a prefix. */
7245 dirs[ndirs].prefix = -1;
7246 for (j = 0; j < ndirs; j++)
7247 if (dirs[j].length < dirs[ndirs].length
7248 && dirs[j].length > 1
7249 && (dirs[ndirs].prefix == -1
7250 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7251 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7252 dirs[ndirs].prefix = j;
7253
7254 ++ndirs;
7255 }
7256
7257 /* Now to the actual work. We have to find a subset of the directories which
7258 allow expressing the file name using references to the directory table
7259 with the least amount of characters. We do not do an exhaustive search
7260 where we would have to check out every combination of every single
7261 possible prefix. Instead we use a heuristic which provides nearly optimal
7262 results in most cases and never is much off. */
7263 saved = (int *) alloca (ndirs * sizeof (int));
7264 savehere = (int *) alloca (ndirs * sizeof (int));
7265
7266 memset (saved, '\0', ndirs * sizeof (saved[0]));
7267 for (i = 0; i < ndirs; i++)
7268 {
7269 int j;
7270 int total;
7271
7272 /* We can always save some space for the current directory. But this
7273 does not mean it will be enough to justify adding the directory. */
7274 savehere[i] = dirs[i].length;
7275 total = (savehere[i] - saved[i]) * dirs[i].count;
7276
7277 for (j = i + 1; j < ndirs; j++)
7278 {
7279 savehere[j] = 0;
7280 if (saved[j] < dirs[i].length)
7281 {
7282 /* Determine whether the dirs[i] path is a prefix of the
7283 dirs[j] path. */
7284 int k;
7285
7286 k = dirs[j].prefix;
7287 while (k != -1 && k != i)
7288 k = dirs[k].prefix;
7289
7290 if (k == i)
7291 {
7292 /* Yes it is. We can possibly safe some memory but
7293 writing the filenames in dirs[j] relative to
7294 dirs[i]. */
7295 savehere[j] = dirs[i].length;
7296 total += (savehere[j] - saved[j]) * dirs[j].count;
7297 }
7298 }
7299 }
7300
7301 /* Check whether we can safe enough to justify adding the dirs[i]
7302 directory. */
7303 if (total > dirs[i].length + 1)
7304 {
7305 /* It's worthwhile adding. */
7306 for (j = i; j < ndirs; j++)
7307 if (savehere[j] > 0)
7308 {
7309 /* Remember how much we saved for this directory so far. */
7310 saved[j] = savehere[j];
7311
7312 /* Remember the prefix directory. */
7313 dirs[j].dir_idx = i;
7314 }
7315 }
7316 }
7317
7318 /* We have to emit them in the order they appear in the file_table array
7319 since the index is used in the debug info generation. To do this
7320 efficiently we generate a back-mapping of the indices first. */
7321 backmap = (int *) alloca (file_table.in_use * sizeof (int));
7322 for (i = 1; i < (int) file_table.in_use; i++)
7323 {
7324 backmap[files[i].file_idx] = i;
7325
7326 /* Mark this directory as used. */
7327 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7328 }
7329
7330 /* That was it. We are ready to emit the information. First emit the
7331 directory name table. We have to make sure the first actually emitted
7332 directory name has index one; zero is reserved for the current working
7333 directory. Make sure we do not confuse these indices with the one for the
7334 constructed table (even though most of the time they are identical). */
7335 idx = 1;
7336 idx_offset = dirs[0].length > 0 ? 1 : 0;
7337 for (i = 1 - idx_offset; i < ndirs; i++)
7338 if (dirs[i].used != 0)
7339 {
7340 dirs[i].used = idx++;
7341 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7342 "Directory Entry: 0x%x", dirs[i].used);
7343 }
7344
7345 dw2_asm_output_data (1, 0, "End directory table");
7346
7347 /* Correct the index for the current working directory entry if it
7348 exists. */
7349 if (idx_offset == 0)
7350 dirs[0].used = 0;
7351
7352 /* Now write all the file names. */
7353 for (i = 1; i < (int) file_table.in_use; i++)
7354 {
7355 int file_idx = backmap[i];
7356 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7357
7358 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7359 "File Entry: 0x%x", i);
7360
7361 /* Include directory index. */
7362 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7363
7364 /* Modification time. */
7365 dw2_asm_output_data_uleb128 (0, NULL);
7366
7367 /* File length in bytes. */
7368 dw2_asm_output_data_uleb128 (0, NULL);
7369 }
7370
7371 dw2_asm_output_data (1, 0, "End file name table");
7372 }
7373
7374
7375 /* Output the source line number correspondence information. This
7376 information goes into the .debug_line section. */
7377
7378 static void
7379 output_line_info ()
7380 {
7381 char l1[20], l2[20], p1[20], p2[20];
7382 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7383 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7384 unsigned opc;
7385 unsigned n_op_args;
7386 unsigned long lt_index;
7387 unsigned long current_line;
7388 long line_offset;
7389 long line_delta;
7390 unsigned long current_file;
7391 unsigned long function;
7392
7393 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7394 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7395 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7396 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7397
7398 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7399 "Length of Source Line Info");
7400 ASM_OUTPUT_LABEL (asm_out_file, l1);
7401
7402 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7403 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7404 ASM_OUTPUT_LABEL (asm_out_file, p1);
7405
7406 /* Define the architecture-dependent minimum instruction length (in
7407 bytes). In this implementation of DWARF, this field is used for
7408 information purposes only. Since GCC generates assembly language,
7409 we have no a priori knowledge of how many instruction bytes are
7410 generated for each source line, and therefore can use only the
7411 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7412 commands. Accordingly, we fix this as `1', which is "correct
7413 enough" for all architectures, and don't let the target override. */
7414 dw2_asm_output_data (1, 1,
7415 "Minimum Instruction Length");
7416
7417 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7418 "Default is_stmt_start flag");
7419 dw2_asm_output_data (1, DWARF_LINE_BASE,
7420 "Line Base Value (Special Opcodes)");
7421 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7422 "Line Range Value (Special Opcodes)");
7423 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7424 "Special Opcode Base");
7425
7426 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7427 {
7428 switch (opc)
7429 {
7430 case DW_LNS_advance_pc:
7431 case DW_LNS_advance_line:
7432 case DW_LNS_set_file:
7433 case DW_LNS_set_column:
7434 case DW_LNS_fixed_advance_pc:
7435 n_op_args = 1;
7436 break;
7437 default:
7438 n_op_args = 0;
7439 break;
7440 }
7441
7442 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7443 opc, n_op_args);
7444 }
7445
7446 /* Write out the information about the files we use. */
7447 output_file_names ();
7448 ASM_OUTPUT_LABEL (asm_out_file, p2);
7449
7450 /* We used to set the address register to the first location in the text
7451 section here, but that didn't accomplish anything since we already
7452 have a line note for the opening brace of the first function. */
7453
7454 /* Generate the line number to PC correspondence table, encoded as
7455 a series of state machine operations. */
7456 current_file = 1;
7457 current_line = 1;
7458 strcpy (prev_line_label, text_section_label);
7459 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7460 {
7461 dw_line_info_ref line_info = &line_info_table[lt_index];
7462
7463 #if 0
7464 /* Disable this optimization for now; GDB wants to see two line notes
7465 at the beginning of a function so it can find the end of the
7466 prologue. */
7467
7468 /* Don't emit anything for redundant notes. Just updating the
7469 address doesn't accomplish anything, because we already assume
7470 that anything after the last address is this line. */
7471 if (line_info->dw_line_num == current_line
7472 && line_info->dw_file_num == current_file)
7473 continue;
7474 #endif
7475
7476 /* Emit debug info for the address of the current line.
7477
7478 Unfortunately, we have little choice here currently, and must always
7479 use the most general form. GCC does not know the address delta
7480 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7481 attributes which will give an upper bound on the address range. We
7482 could perhaps use length attributes to determine when it is safe to
7483 use DW_LNS_fixed_advance_pc. */
7484
7485 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7486 if (0)
7487 {
7488 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7489 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7490 "DW_LNS_fixed_advance_pc");
7491 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7492 }
7493 else
7494 {
7495 /* This can handle any delta. This takes
7496 4+DWARF2_ADDR_SIZE bytes. */
7497 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7498 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7499 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7500 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7501 }
7502
7503 strcpy (prev_line_label, line_label);
7504
7505 /* Emit debug info for the source file of the current line, if
7506 different from the previous line. */
7507 if (line_info->dw_file_num != current_file)
7508 {
7509 current_file = line_info->dw_file_num;
7510 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7511 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7512 file_table.table[current_file]);
7513 }
7514
7515 /* Emit debug info for the current line number, choosing the encoding
7516 that uses the least amount of space. */
7517 if (line_info->dw_line_num != current_line)
7518 {
7519 line_offset = line_info->dw_line_num - current_line;
7520 line_delta = line_offset - DWARF_LINE_BASE;
7521 current_line = line_info->dw_line_num;
7522 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7523 /* This can handle deltas from -10 to 234, using the current
7524 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7525 takes 1 byte. */
7526 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7527 "line %lu", current_line);
7528 else
7529 {
7530 /* This can handle any delta. This takes at least 4 bytes,
7531 depending on the value being encoded. */
7532 dw2_asm_output_data (1, DW_LNS_advance_line,
7533 "advance to line %lu", current_line);
7534 dw2_asm_output_data_sleb128 (line_offset, NULL);
7535 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7536 }
7537 }
7538 else
7539 /* We still need to start a new row, so output a copy insn. */
7540 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7541 }
7542
7543 /* Emit debug info for the address of the end of the function. */
7544 if (0)
7545 {
7546 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7547 "DW_LNS_fixed_advance_pc");
7548 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7549 }
7550 else
7551 {
7552 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7553 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7554 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7555 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7556 }
7557
7558 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7559 dw2_asm_output_data_uleb128 (1, NULL);
7560 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7561
7562 function = 0;
7563 current_file = 1;
7564 current_line = 1;
7565 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7566 {
7567 dw_separate_line_info_ref line_info
7568 = &separate_line_info_table[lt_index];
7569
7570 #if 0
7571 /* Don't emit anything for redundant notes. */
7572 if (line_info->dw_line_num == current_line
7573 && line_info->dw_file_num == current_file
7574 && line_info->function == function)
7575 goto cont;
7576 #endif
7577
7578 /* Emit debug info for the address of the current line. If this is
7579 a new function, or the first line of a function, then we need
7580 to handle it differently. */
7581 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7582 lt_index);
7583 if (function != line_info->function)
7584 {
7585 function = line_info->function;
7586
7587 /* Set the address register to the first line in the function */
7588 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7589 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7590 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7591 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7592 }
7593 else
7594 {
7595 /* ??? See the DW_LNS_advance_pc comment above. */
7596 if (0)
7597 {
7598 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7599 "DW_LNS_fixed_advance_pc");
7600 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7601 }
7602 else
7603 {
7604 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7605 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7606 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7607 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7608 }
7609 }
7610
7611 strcpy (prev_line_label, line_label);
7612
7613 /* Emit debug info for the source file of the current line, if
7614 different from the previous line. */
7615 if (line_info->dw_file_num != current_file)
7616 {
7617 current_file = line_info->dw_file_num;
7618 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7619 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7620 file_table.table[current_file]);
7621 }
7622
7623 /* Emit debug info for the current line number, choosing the encoding
7624 that uses the least amount of space. */
7625 if (line_info->dw_line_num != current_line)
7626 {
7627 line_offset = line_info->dw_line_num - current_line;
7628 line_delta = line_offset - DWARF_LINE_BASE;
7629 current_line = line_info->dw_line_num;
7630 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7631 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7632 "line %lu", current_line);
7633 else
7634 {
7635 dw2_asm_output_data (1, DW_LNS_advance_line,
7636 "advance to line %lu", current_line);
7637 dw2_asm_output_data_sleb128 (line_offset, NULL);
7638 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7639 }
7640 }
7641 else
7642 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7643
7644 #if 0
7645 cont:
7646 #endif
7647
7648 lt_index++;
7649
7650 /* If we're done with a function, end its sequence. */
7651 if (lt_index == separate_line_info_table_in_use
7652 || separate_line_info_table[lt_index].function != function)
7653 {
7654 current_file = 1;
7655 current_line = 1;
7656
7657 /* Emit debug info for the address of the end of the function. */
7658 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7659 if (0)
7660 {
7661 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7662 "DW_LNS_fixed_advance_pc");
7663 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7664 }
7665 else
7666 {
7667 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7668 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7669 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7670 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7671 }
7672
7673 /* Output the marker for the end of this sequence. */
7674 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7675 dw2_asm_output_data_uleb128 (1, NULL);
7676 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7677 }
7678 }
7679
7680 /* Output the marker for the end of the line number info. */
7681 ASM_OUTPUT_LABEL (asm_out_file, l2);
7682 }
7683 \f
7684 /* Given a pointer to a tree node for some base type, return a pointer to
7685 a DIE that describes the given type.
7686
7687 This routine must only be called for GCC type nodes that correspond to
7688 Dwarf base (fundamental) types. */
7689
7690 static dw_die_ref
7691 base_type_die (type)
7692 tree type;
7693 {
7694 dw_die_ref base_type_result;
7695 const char *type_name;
7696 enum dwarf_type encoding;
7697 tree name = TYPE_NAME (type);
7698
7699 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7700 return 0;
7701
7702 if (name)
7703 {
7704 if (TREE_CODE (name) == TYPE_DECL)
7705 name = DECL_NAME (name);
7706
7707 type_name = IDENTIFIER_POINTER (name);
7708 }
7709 else
7710 type_name = "__unknown__";
7711
7712 switch (TREE_CODE (type))
7713 {
7714 case INTEGER_TYPE:
7715 /* Carefully distinguish the C character types, without messing
7716 up if the language is not C. Note that we check only for the names
7717 that contain spaces; other names might occur by coincidence in other
7718 languages. */
7719 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7720 && (type == char_type_node
7721 || ! strcmp (type_name, "signed char")
7722 || ! strcmp (type_name, "unsigned char"))))
7723 {
7724 if (TREE_UNSIGNED (type))
7725 encoding = DW_ATE_unsigned;
7726 else
7727 encoding = DW_ATE_signed;
7728 break;
7729 }
7730 /* else fall through. */
7731
7732 case CHAR_TYPE:
7733 /* GNU Pascal/Ada CHAR type. Not used in C. */
7734 if (TREE_UNSIGNED (type))
7735 encoding = DW_ATE_unsigned_char;
7736 else
7737 encoding = DW_ATE_signed_char;
7738 break;
7739
7740 case REAL_TYPE:
7741 encoding = DW_ATE_float;
7742 break;
7743
7744 /* Dwarf2 doesn't know anything about complex ints, so use
7745 a user defined type for it. */
7746 case COMPLEX_TYPE:
7747 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7748 encoding = DW_ATE_complex_float;
7749 else
7750 encoding = DW_ATE_lo_user;
7751 break;
7752
7753 case BOOLEAN_TYPE:
7754 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7755 encoding = DW_ATE_boolean;
7756 break;
7757
7758 default:
7759 /* No other TREE_CODEs are Dwarf fundamental types. */
7760 abort ();
7761 }
7762
7763 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7764 if (demangle_name_func)
7765 type_name = (*demangle_name_func) (type_name);
7766
7767 add_AT_string (base_type_result, DW_AT_name, type_name);
7768 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7769 int_size_in_bytes (type));
7770 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7771
7772 return base_type_result;
7773 }
7774
7775 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7776 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7777 a given type is generally the same as the given type, except that if the
7778 given type is a pointer or reference type, then the root type of the given
7779 type is the root type of the "basis" type for the pointer or reference
7780 type. (This definition of the "root" type is recursive.) Also, the root
7781 type of a `const' qualified type or a `volatile' qualified type is the
7782 root type of the given type without the qualifiers. */
7783
7784 static tree
7785 root_type (type)
7786 tree type;
7787 {
7788 if (TREE_CODE (type) == ERROR_MARK)
7789 return error_mark_node;
7790
7791 switch (TREE_CODE (type))
7792 {
7793 case ERROR_MARK:
7794 return error_mark_node;
7795
7796 case POINTER_TYPE:
7797 case REFERENCE_TYPE:
7798 return type_main_variant (root_type (TREE_TYPE (type)));
7799
7800 default:
7801 return type_main_variant (type);
7802 }
7803 }
7804
7805 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7806 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7807
7808 static inline int
7809 is_base_type (type)
7810 tree type;
7811 {
7812 switch (TREE_CODE (type))
7813 {
7814 case ERROR_MARK:
7815 case VOID_TYPE:
7816 case INTEGER_TYPE:
7817 case REAL_TYPE:
7818 case COMPLEX_TYPE:
7819 case BOOLEAN_TYPE:
7820 case CHAR_TYPE:
7821 return 1;
7822
7823 case SET_TYPE:
7824 case ARRAY_TYPE:
7825 case RECORD_TYPE:
7826 case UNION_TYPE:
7827 case QUAL_UNION_TYPE:
7828 case ENUMERAL_TYPE:
7829 case FUNCTION_TYPE:
7830 case METHOD_TYPE:
7831 case POINTER_TYPE:
7832 case REFERENCE_TYPE:
7833 case FILE_TYPE:
7834 case OFFSET_TYPE:
7835 case LANG_TYPE:
7836 case VECTOR_TYPE:
7837 return 0;
7838
7839 default:
7840 abort ();
7841 }
7842
7843 return 0;
7844 }
7845
7846 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
7847 entry that chains various modifiers in front of the given type. */
7848
7849 static dw_die_ref
7850 modified_type_die (type, is_const_type, is_volatile_type, context_die)
7851 tree type;
7852 int is_const_type;
7853 int is_volatile_type;
7854 dw_die_ref context_die;
7855 {
7856 enum tree_code code = TREE_CODE (type);
7857 dw_die_ref mod_type_die = NULL;
7858 dw_die_ref sub_die = NULL;
7859 tree item_type = NULL;
7860
7861 if (code != ERROR_MARK)
7862 {
7863 tree qualified_type;
7864
7865 /* See if we already have the appropriately qualified variant of
7866 this type. */
7867 qualified_type
7868 = get_qualified_type (type,
7869 ((is_const_type ? TYPE_QUAL_CONST : 0)
7870 | (is_volatile_type
7871 ? TYPE_QUAL_VOLATILE : 0)));
7872
7873 /* If we do, then we can just use its DIE, if it exists. */
7874 if (qualified_type)
7875 {
7876 mod_type_die = lookup_type_die (qualified_type);
7877 if (mod_type_die)
7878 return mod_type_die;
7879 }
7880
7881 /* Handle C typedef types. */
7882 if (qualified_type && TYPE_NAME (qualified_type)
7883 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
7884 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
7885 {
7886 tree type_name = TYPE_NAME (qualified_type);
7887 tree dtype = TREE_TYPE (type_name);
7888
7889 if (qualified_type == dtype)
7890 {
7891 /* For a named type, use the typedef. */
7892 gen_type_die (qualified_type, context_die);
7893 mod_type_die = lookup_type_die (qualified_type);
7894 }
7895 else if (is_const_type < TYPE_READONLY (dtype)
7896 || is_volatile_type < TYPE_VOLATILE (dtype))
7897 /* cv-unqualified version of named type. Just use the unnamed
7898 type to which it refers. */
7899 mod_type_die
7900 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
7901 is_const_type, is_volatile_type,
7902 context_die);
7903
7904 /* Else cv-qualified version of named type; fall through. */
7905 }
7906
7907 if (mod_type_die)
7908 /* OK. */
7909 ;
7910 else if (is_const_type)
7911 {
7912 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
7913 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
7914 }
7915 else if (is_volatile_type)
7916 {
7917 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
7918 sub_die = modified_type_die (type, 0, 0, context_die);
7919 }
7920 else if (code == POINTER_TYPE)
7921 {
7922 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
7923 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
7924 #if 0
7925 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7926 #endif
7927 item_type = TREE_TYPE (type);
7928 }
7929 else if (code == REFERENCE_TYPE)
7930 {
7931 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
7932 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
7933 #if 0
7934 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7935 #endif
7936 item_type = TREE_TYPE (type);
7937 }
7938 else if (is_base_type (type))
7939 mod_type_die = base_type_die (type);
7940 else
7941 {
7942 gen_type_die (type, context_die);
7943
7944 /* We have to get the type_main_variant here (and pass that to the
7945 `lookup_type_die' routine) because the ..._TYPE node we have
7946 might simply be a *copy* of some original type node (where the
7947 copy was created to help us keep track of typedef names) and
7948 that copy might have a different TYPE_UID from the original
7949 ..._TYPE node. */
7950 if (TREE_CODE (type) != VECTOR_TYPE)
7951 mod_type_die = lookup_type_die (type_main_variant (type));
7952 else
7953 /* Vectors have the debugging information in the type,
7954 not the main variant. */
7955 mod_type_die = lookup_type_die (type);
7956 if (mod_type_die == NULL)
7957 abort ();
7958 }
7959
7960 /* We want to equate the qualified type to the die below. */
7961 type = qualified_type;
7962 }
7963
7964 if (type)
7965 equate_type_number_to_die (type, mod_type_die);
7966 if (item_type)
7967 /* We must do this after the equate_type_number_to_die call, in case
7968 this is a recursive type. This ensures that the modified_type_die
7969 recursion will terminate even if the type is recursive. Recursive
7970 types are possible in Ada. */
7971 sub_die = modified_type_die (item_type,
7972 TYPE_READONLY (item_type),
7973 TYPE_VOLATILE (item_type),
7974 context_die);
7975
7976 if (sub_die != NULL)
7977 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
7978
7979 return mod_type_die;
7980 }
7981
7982 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
7983 an enumerated type. */
7984
7985 static inline int
7986 type_is_enum (type)
7987 tree type;
7988 {
7989 return TREE_CODE (type) == ENUMERAL_TYPE;
7990 }
7991
7992 /* Return the register number described by a given RTL node. */
7993
7994 static unsigned int
7995 reg_number (rtl)
7996 rtx rtl;
7997 {
7998 unsigned regno = REGNO (rtl);
7999
8000 if (regno >= FIRST_PSEUDO_REGISTER)
8001 abort ();
8002
8003 return DBX_REGISTER_NUMBER (regno);
8004 }
8005
8006 /* Return a location descriptor that designates a machine register or
8007 zero if there is no such. */
8008
8009 static dw_loc_descr_ref
8010 reg_loc_descriptor (rtl)
8011 rtx rtl;
8012 {
8013 dw_loc_descr_ref loc_result = NULL;
8014 unsigned reg;
8015
8016 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8017 return 0;
8018
8019 reg = reg_number (rtl);
8020 if (reg <= 31)
8021 loc_result = new_loc_descr (DW_OP_reg0 + reg, 0, 0);
8022 else
8023 loc_result = new_loc_descr (DW_OP_regx, reg, 0);
8024
8025 return loc_result;
8026 }
8027
8028 /* Return a location descriptor that designates a constant. */
8029
8030 static dw_loc_descr_ref
8031 int_loc_descriptor (i)
8032 HOST_WIDE_INT i;
8033 {
8034 enum dwarf_location_atom op;
8035
8036 /* Pick the smallest representation of a constant, rather than just
8037 defaulting to the LEB encoding. */
8038 if (i >= 0)
8039 {
8040 if (i <= 31)
8041 op = DW_OP_lit0 + i;
8042 else if (i <= 0xff)
8043 op = DW_OP_const1u;
8044 else if (i <= 0xffff)
8045 op = DW_OP_const2u;
8046 else if (HOST_BITS_PER_WIDE_INT == 32
8047 || i <= 0xffffffff)
8048 op = DW_OP_const4u;
8049 else
8050 op = DW_OP_constu;
8051 }
8052 else
8053 {
8054 if (i >= -0x80)
8055 op = DW_OP_const1s;
8056 else if (i >= -0x8000)
8057 op = DW_OP_const2s;
8058 else if (HOST_BITS_PER_WIDE_INT == 32
8059 || i >= -0x80000000)
8060 op = DW_OP_const4s;
8061 else
8062 op = DW_OP_consts;
8063 }
8064
8065 return new_loc_descr (op, i, 0);
8066 }
8067
8068 /* Return a location descriptor that designates a base+offset location. */
8069
8070 static dw_loc_descr_ref
8071 based_loc_descr (reg, offset)
8072 unsigned reg;
8073 long int offset;
8074 {
8075 dw_loc_descr_ref loc_result;
8076 /* For the "frame base", we use the frame pointer or stack pointer
8077 registers, since the RTL for local variables is relative to one of
8078 them. */
8079 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8080 ? HARD_FRAME_POINTER_REGNUM
8081 : STACK_POINTER_REGNUM);
8082
8083 if (reg == fp_reg)
8084 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8085 else if (reg <= 31)
8086 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8087 else
8088 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8089
8090 return loc_result;
8091 }
8092
8093 /* Return true if this RTL expression describes a base+offset calculation. */
8094
8095 static inline int
8096 is_based_loc (rtl)
8097 rtx rtl;
8098 {
8099 return (GET_CODE (rtl) == PLUS
8100 && ((GET_CODE (XEXP (rtl, 0)) == REG
8101 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8102 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8103 }
8104
8105 /* The following routine converts the RTL for a variable or parameter
8106 (resident in memory) into an equivalent Dwarf representation of a
8107 mechanism for getting the address of that same variable onto the top of a
8108 hypothetical "address evaluation" stack.
8109
8110 When creating memory location descriptors, we are effectively transforming
8111 the RTL for a memory-resident object into its Dwarf postfix expression
8112 equivalent. This routine recursively descends an RTL tree, turning
8113 it into Dwarf postfix code as it goes.
8114
8115 MODE is the mode of the memory reference, needed to handle some
8116 autoincrement addressing modes.
8117
8118 Return 0 if we can't represent the location. */
8119
8120 static dw_loc_descr_ref
8121 mem_loc_descriptor (rtl, mode)
8122 rtx rtl;
8123 enum machine_mode mode;
8124 {
8125 dw_loc_descr_ref mem_loc_result = NULL;
8126
8127 /* Note that for a dynamically sized array, the location we will generate a
8128 description of here will be the lowest numbered location which is
8129 actually within the array. That's *not* necessarily the same as the
8130 zeroth element of the array. */
8131
8132 #ifdef ASM_SIMPLIFY_DWARF_ADDR
8133 rtl = ASM_SIMPLIFY_DWARF_ADDR (rtl);
8134 #endif
8135
8136 switch (GET_CODE (rtl))
8137 {
8138 case POST_INC:
8139 case POST_DEC:
8140 case POST_MODIFY:
8141 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8142 just fall into the SUBREG code. */
8143
8144 /* ... fall through ... */
8145
8146 case SUBREG:
8147 /* The case of a subreg may arise when we have a local (register)
8148 variable or a formal (register) parameter which doesn't quite fill
8149 up an entire register. For now, just assume that it is
8150 legitimate to make the Dwarf info refer to the whole register which
8151 contains the given subreg. */
8152 rtl = SUBREG_REG (rtl);
8153
8154 /* ... fall through ... */
8155
8156 case REG:
8157 /* Whenever a register number forms a part of the description of the
8158 method for calculating the (dynamic) address of a memory resident
8159 object, DWARF rules require the register number be referred to as
8160 a "base register". This distinction is not based in any way upon
8161 what category of register the hardware believes the given register
8162 belongs to. This is strictly DWARF terminology we're dealing with
8163 here. Note that in cases where the location of a memory-resident
8164 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8165 OP_CONST (0)) the actual DWARF location descriptor that we generate
8166 may just be OP_BASEREG (basereg). This may look deceptively like
8167 the object in question was allocated to a register (rather than in
8168 memory) so DWARF consumers need to be aware of the subtle
8169 distinction between OP_REG and OP_BASEREG. */
8170 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8171 mem_loc_result = based_loc_descr (reg_number (rtl), 0);
8172 break;
8173
8174 case MEM:
8175 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8176 if (mem_loc_result != 0)
8177 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8178 break;
8179
8180 case LABEL_REF:
8181 /* Some ports can transform a symbol ref into a label ref, because
8182 the symbol ref is too far away and has to be dumped into a constant
8183 pool. */
8184 case CONST:
8185 case SYMBOL_REF:
8186 /* Alternatively, the symbol in the constant pool might be referenced
8187 by a different symbol. */
8188 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8189 {
8190 bool marked;
8191 rtx tmp = get_pool_constant_mark (rtl, &marked);
8192
8193 if (GET_CODE (tmp) == SYMBOL_REF)
8194 {
8195 rtl = tmp;
8196 if (CONSTANT_POOL_ADDRESS_P (tmp))
8197 get_pool_constant_mark (tmp, &marked);
8198 else
8199 marked = true;
8200 }
8201
8202 /* If all references to this pool constant were optimized away,
8203 it was not output and thus we can't represent it.
8204 FIXME: might try to use DW_OP_const_value here, though
8205 DW_OP_piece complicates it. */
8206 if (!marked)
8207 return 0;
8208 }
8209
8210 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8211 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8212 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8213 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8214 break;
8215
8216 case PRE_MODIFY:
8217 /* Extract the PLUS expression nested inside and fall into
8218 PLUS code below. */
8219 rtl = XEXP (rtl, 1);
8220 goto plus;
8221
8222 case PRE_INC:
8223 case PRE_DEC:
8224 /* Turn these into a PLUS expression and fall into the PLUS code
8225 below. */
8226 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8227 GEN_INT (GET_CODE (rtl) == PRE_INC
8228 ? GET_MODE_UNIT_SIZE (mode)
8229 : -GET_MODE_UNIT_SIZE (mode)));
8230
8231 /* ... fall through ... */
8232
8233 case PLUS:
8234 plus:
8235 if (is_based_loc (rtl))
8236 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
8237 INTVAL (XEXP (rtl, 1)));
8238 else
8239 {
8240 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8241 if (mem_loc_result == 0)
8242 break;
8243
8244 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8245 && INTVAL (XEXP (rtl, 1)) >= 0)
8246 add_loc_descr (&mem_loc_result,
8247 new_loc_descr (DW_OP_plus_uconst,
8248 INTVAL (XEXP (rtl, 1)), 0));
8249 else
8250 {
8251 add_loc_descr (&mem_loc_result,
8252 mem_loc_descriptor (XEXP (rtl, 1), mode));
8253 add_loc_descr (&mem_loc_result,
8254 new_loc_descr (DW_OP_plus, 0, 0));
8255 }
8256 }
8257 break;
8258
8259 case MULT:
8260 {
8261 /* If a pseudo-reg is optimized away, it is possible for it to
8262 be replaced with a MEM containing a multiply. */
8263 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8264 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8265
8266 if (op0 == 0 || op1 == 0)
8267 break;
8268
8269 mem_loc_result = op0;
8270 add_loc_descr (&mem_loc_result, op1);
8271 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
8272 break;
8273 }
8274
8275 case CONST_INT:
8276 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8277 break;
8278
8279 case ADDRESSOF:
8280 /* If this is a MEM, return its address. Otherwise, we can't
8281 represent this. */
8282 if (GET_CODE (XEXP (rtl, 0)) == MEM)
8283 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode);
8284 else
8285 return 0;
8286
8287 default:
8288 abort ();
8289 }
8290
8291 return mem_loc_result;
8292 }
8293
8294 /* Return a descriptor that describes the concatenation of two locations.
8295 This is typically a complex variable. */
8296
8297 static dw_loc_descr_ref
8298 concat_loc_descriptor (x0, x1)
8299 rtx x0, x1;
8300 {
8301 dw_loc_descr_ref cc_loc_result = NULL;
8302 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8303 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8304
8305 if (x0_ref == 0 || x1_ref == 0)
8306 return 0;
8307
8308 cc_loc_result = x0_ref;
8309 add_loc_descr (&cc_loc_result,
8310 new_loc_descr (DW_OP_piece,
8311 GET_MODE_SIZE (GET_MODE (x0)), 0));
8312
8313 add_loc_descr (&cc_loc_result, x1_ref);
8314 add_loc_descr (&cc_loc_result,
8315 new_loc_descr (DW_OP_piece,
8316 GET_MODE_SIZE (GET_MODE (x1)), 0));
8317
8318 return cc_loc_result;
8319 }
8320
8321 /* Output a proper Dwarf location descriptor for a variable or parameter
8322 which is either allocated in a register or in a memory location. For a
8323 register, we just generate an OP_REG and the register number. For a
8324 memory location we provide a Dwarf postfix expression describing how to
8325 generate the (dynamic) address of the object onto the address stack.
8326
8327 If we don't know how to describe it, return 0. */
8328
8329 static dw_loc_descr_ref
8330 loc_descriptor (rtl)
8331 rtx rtl;
8332 {
8333 dw_loc_descr_ref loc_result = NULL;
8334
8335 switch (GET_CODE (rtl))
8336 {
8337 case SUBREG:
8338 /* The case of a subreg may arise when we have a local (register)
8339 variable or a formal (register) parameter which doesn't quite fill
8340 up an entire register. For now, just assume that it is
8341 legitimate to make the Dwarf info refer to the whole register which
8342 contains the given subreg. */
8343 rtl = SUBREG_REG (rtl);
8344
8345 /* ... fall through ... */
8346
8347 case REG:
8348 loc_result = reg_loc_descriptor (rtl);
8349 break;
8350
8351 case MEM:
8352 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8353 break;
8354
8355 case CONCAT:
8356 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8357 break;
8358
8359 default:
8360 abort ();
8361 }
8362
8363 return loc_result;
8364 }
8365
8366 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8367 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8368 looking for an address. Otherwise, we return a value. If we can't make a
8369 descriptor, return 0. */
8370
8371 static dw_loc_descr_ref
8372 loc_descriptor_from_tree (loc, addressp)
8373 tree loc;
8374 int addressp;
8375 {
8376 dw_loc_descr_ref ret, ret1;
8377 int indirect_p = 0;
8378 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8379 enum dwarf_location_atom op;
8380
8381 /* ??? Most of the time we do not take proper care for sign/zero
8382 extending the values properly. Hopefully this won't be a real
8383 problem... */
8384
8385 switch (TREE_CODE (loc))
8386 {
8387 case ERROR_MARK:
8388 return 0;
8389
8390 case WITH_RECORD_EXPR:
8391 case PLACEHOLDER_EXPR:
8392 /* This case involves extracting fields from an object to determine the
8393 position of other fields. We don't try to encode this here. The
8394 only user of this is Ada, which encodes the needed information using
8395 the names of types. */
8396 return 0;
8397
8398 case CALL_EXPR:
8399 return 0;
8400
8401 case ADDR_EXPR:
8402 /* We can support this only if we can look through conversions and
8403 find an INDIRECT_EXPR. */
8404 for (loc = TREE_OPERAND (loc, 0);
8405 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8406 || TREE_CODE (loc) == NON_LVALUE_EXPR
8407 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8408 || TREE_CODE (loc) == SAVE_EXPR;
8409 loc = TREE_OPERAND (loc, 0))
8410 ;
8411
8412 return (TREE_CODE (loc) == INDIRECT_REF
8413 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8414 : 0);
8415
8416 case VAR_DECL:
8417 if (DECL_THREAD_LOCAL (loc))
8418 {
8419 rtx rtl;
8420
8421 #ifndef ASM_OUTPUT_DWARF_DTPREL
8422 /* If this is not defined, we have no way to emit the data. */
8423 return 0;
8424 #endif
8425
8426 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8427 look up addresses of objects in the current module. */
8428 if (DECL_EXTERNAL (loc))
8429 return 0;
8430
8431 rtl = rtl_for_decl_location (loc);
8432 if (rtl == NULL_RTX)
8433 return 0;
8434
8435 if (GET_CODE (rtl) != MEM)
8436 return 0;
8437 rtl = XEXP (rtl, 0);
8438 if (! CONSTANT_P (rtl))
8439 return 0;
8440
8441 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8442 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8443 ret->dw_loc_oprnd1.v.val_addr = rtl;
8444
8445 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8446 add_loc_descr (&ret, ret1);
8447
8448 indirect_p = 1;
8449 break;
8450 }
8451 /* FALLTHRU */
8452
8453 case PARM_DECL:
8454 {
8455 rtx rtl = rtl_for_decl_location (loc);
8456
8457 if (rtl == NULL_RTX)
8458 return 0;
8459 else if (CONSTANT_P (rtl))
8460 {
8461 ret = new_loc_descr (DW_OP_addr, 0, 0);
8462 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8463 ret->dw_loc_oprnd1.v.val_addr = rtl;
8464 indirect_p = 1;
8465 }
8466 else
8467 {
8468 enum machine_mode mode = GET_MODE (rtl);
8469
8470 if (GET_CODE (rtl) == MEM)
8471 {
8472 indirect_p = 1;
8473 rtl = XEXP (rtl, 0);
8474 }
8475
8476 ret = mem_loc_descriptor (rtl, mode);
8477 }
8478 }
8479 break;
8480
8481 case INDIRECT_REF:
8482 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8483 indirect_p = 1;
8484 break;
8485
8486 case COMPOUND_EXPR:
8487 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8488
8489 case NOP_EXPR:
8490 case CONVERT_EXPR:
8491 case NON_LVALUE_EXPR:
8492 case VIEW_CONVERT_EXPR:
8493 case SAVE_EXPR:
8494 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8495
8496 case COMPONENT_REF:
8497 case BIT_FIELD_REF:
8498 case ARRAY_REF:
8499 case ARRAY_RANGE_REF:
8500 {
8501 tree obj, offset;
8502 HOST_WIDE_INT bitsize, bitpos, bytepos;
8503 enum machine_mode mode;
8504 int volatilep;
8505
8506 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8507 &unsignedp, &volatilep);
8508
8509 if (obj == loc)
8510 return 0;
8511
8512 ret = loc_descriptor_from_tree (obj, 1);
8513 if (ret == 0
8514 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8515 return 0;
8516
8517 if (offset != NULL_TREE)
8518 {
8519 /* Variable offset. */
8520 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8521 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8522 }
8523
8524 if (!addressp)
8525 indirect_p = 1;
8526
8527 bytepos = bitpos / BITS_PER_UNIT;
8528 if (bytepos > 0)
8529 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8530 else if (bytepos < 0)
8531 {
8532 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8533 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8534 }
8535 break;
8536 }
8537
8538 case INTEGER_CST:
8539 if (host_integerp (loc, 0))
8540 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8541 else
8542 return 0;
8543 break;
8544
8545 case TRUTH_AND_EXPR:
8546 case TRUTH_ANDIF_EXPR:
8547 case BIT_AND_EXPR:
8548 op = DW_OP_and;
8549 goto do_binop;
8550
8551 case TRUTH_XOR_EXPR:
8552 case BIT_XOR_EXPR:
8553 op = DW_OP_xor;
8554 goto do_binop;
8555
8556 case TRUTH_OR_EXPR:
8557 case TRUTH_ORIF_EXPR:
8558 case BIT_IOR_EXPR:
8559 op = DW_OP_or;
8560 goto do_binop;
8561
8562 case TRUNC_DIV_EXPR:
8563 op = DW_OP_div;
8564 goto do_binop;
8565
8566 case MINUS_EXPR:
8567 op = DW_OP_minus;
8568 goto do_binop;
8569
8570 case TRUNC_MOD_EXPR:
8571 op = DW_OP_mod;
8572 goto do_binop;
8573
8574 case MULT_EXPR:
8575 op = DW_OP_mul;
8576 goto do_binop;
8577
8578 case LSHIFT_EXPR:
8579 op = DW_OP_shl;
8580 goto do_binop;
8581
8582 case RSHIFT_EXPR:
8583 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8584 goto do_binop;
8585
8586 case PLUS_EXPR:
8587 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8588 && host_integerp (TREE_OPERAND (loc, 1), 0))
8589 {
8590 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8591 if (ret == 0)
8592 return 0;
8593
8594 add_loc_descr (&ret,
8595 new_loc_descr (DW_OP_plus_uconst,
8596 tree_low_cst (TREE_OPERAND (loc, 1),
8597 0),
8598 0));
8599 break;
8600 }
8601
8602 op = DW_OP_plus;
8603 goto do_binop;
8604
8605 case LE_EXPR:
8606 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8607 return 0;
8608
8609 op = DW_OP_le;
8610 goto do_binop;
8611
8612 case GE_EXPR:
8613 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8614 return 0;
8615
8616 op = DW_OP_ge;
8617 goto do_binop;
8618
8619 case LT_EXPR:
8620 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8621 return 0;
8622
8623 op = DW_OP_lt;
8624 goto do_binop;
8625
8626 case GT_EXPR:
8627 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8628 return 0;
8629
8630 op = DW_OP_gt;
8631 goto do_binop;
8632
8633 case EQ_EXPR:
8634 op = DW_OP_eq;
8635 goto do_binop;
8636
8637 case NE_EXPR:
8638 op = DW_OP_ne;
8639 goto do_binop;
8640
8641 do_binop:
8642 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8643 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8644 if (ret == 0 || ret1 == 0)
8645 return 0;
8646
8647 add_loc_descr (&ret, ret1);
8648 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8649 break;
8650
8651 case TRUTH_NOT_EXPR:
8652 case BIT_NOT_EXPR:
8653 op = DW_OP_not;
8654 goto do_unop;
8655
8656 case ABS_EXPR:
8657 op = DW_OP_abs;
8658 goto do_unop;
8659
8660 case NEGATE_EXPR:
8661 op = DW_OP_neg;
8662 goto do_unop;
8663
8664 do_unop:
8665 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8666 if (ret == 0)
8667 return 0;
8668
8669 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8670 break;
8671
8672 case MAX_EXPR:
8673 loc = build (COND_EXPR, TREE_TYPE (loc),
8674 build (LT_EXPR, integer_type_node,
8675 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8676 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
8677
8678 /* ... fall through ... */
8679
8680 case COND_EXPR:
8681 {
8682 dw_loc_descr_ref lhs
8683 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8684 dw_loc_descr_ref rhs
8685 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
8686 dw_loc_descr_ref bra_node, jump_node, tmp;
8687
8688 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8689 if (ret == 0 || lhs == 0 || rhs == 0)
8690 return 0;
8691
8692 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
8693 add_loc_descr (&ret, bra_node);
8694
8695 add_loc_descr (&ret, rhs);
8696 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
8697 add_loc_descr (&ret, jump_node);
8698
8699 add_loc_descr (&ret, lhs);
8700 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8701 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
8702
8703 /* ??? Need a node to point the skip at. Use a nop. */
8704 tmp = new_loc_descr (DW_OP_nop, 0, 0);
8705 add_loc_descr (&ret, tmp);
8706 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8707 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
8708 }
8709 break;
8710
8711 default:
8712 abort ();
8713 }
8714
8715 /* Show if we can't fill the request for an address. */
8716 if (addressp && indirect_p == 0)
8717 return 0;
8718
8719 /* If we've got an address and don't want one, dereference. */
8720 if (!addressp && indirect_p > 0)
8721 {
8722 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
8723
8724 if (size > DWARF2_ADDR_SIZE || size == -1)
8725 return 0;
8726 else if (size == DWARF2_ADDR_SIZE)
8727 op = DW_OP_deref;
8728 else
8729 op = DW_OP_deref_size;
8730
8731 add_loc_descr (&ret, new_loc_descr (op, size, 0));
8732 }
8733
8734 return ret;
8735 }
8736
8737 /* Given a value, round it up to the lowest multiple of `boundary'
8738 which is not less than the value itself. */
8739
8740 static inline HOST_WIDE_INT
8741 ceiling (value, boundary)
8742 HOST_WIDE_INT value;
8743 unsigned int boundary;
8744 {
8745 return (((value + boundary - 1) / boundary) * boundary);
8746 }
8747
8748 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
8749 pointer to the declared type for the relevant field variable, or return
8750 `integer_type_node' if the given node turns out to be an
8751 ERROR_MARK node. */
8752
8753 static inline tree
8754 field_type (decl)
8755 tree decl;
8756 {
8757 tree type;
8758
8759 if (TREE_CODE (decl) == ERROR_MARK)
8760 return integer_type_node;
8761
8762 type = DECL_BIT_FIELD_TYPE (decl);
8763 if (type == NULL_TREE)
8764 type = TREE_TYPE (decl);
8765
8766 return type;
8767 }
8768
8769 /* Given a pointer to a tree node, return the alignment in bits for
8770 it, or else return BITS_PER_WORD if the node actually turns out to
8771 be an ERROR_MARK node. */
8772
8773 static inline unsigned
8774 simple_type_align_in_bits (type)
8775 tree type;
8776 {
8777 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
8778 }
8779
8780 static inline unsigned
8781 simple_decl_align_in_bits (decl)
8782 tree decl;
8783 {
8784 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
8785 }
8786
8787 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8788 node, return the size in bits for the type if it is a constant, or else
8789 return the alignment for the type if the type's size is not constant, or
8790 else return BITS_PER_WORD if the type actually turns out to be an
8791 ERROR_MARK node. */
8792
8793 static inline unsigned HOST_WIDE_INT
8794 simple_type_size_in_bits (type)
8795 tree type;
8796 {
8797
8798 if (TREE_CODE (type) == ERROR_MARK)
8799 return BITS_PER_WORD;
8800 else if (TYPE_SIZE (type) == NULL_TREE)
8801 return 0;
8802 else if (host_integerp (TYPE_SIZE (type), 1))
8803 return tree_low_cst (TYPE_SIZE (type), 1);
8804 else
8805 return TYPE_ALIGN (type);
8806 }
8807
8808 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
8809 lowest addressed byte of the "containing object" for the given FIELD_DECL,
8810 or return 0 if we are unable to determine what that offset is, either
8811 because the argument turns out to be a pointer to an ERROR_MARK node, or
8812 because the offset is actually variable. (We can't handle the latter case
8813 just yet). */
8814
8815 static HOST_WIDE_INT
8816 field_byte_offset (decl)
8817 tree decl;
8818 {
8819 unsigned int type_align_in_bits;
8820 unsigned int decl_align_in_bits;
8821 unsigned HOST_WIDE_INT type_size_in_bits;
8822 HOST_WIDE_INT object_offset_in_bits;
8823 tree type;
8824 tree field_size_tree;
8825 HOST_WIDE_INT bitpos_int;
8826 HOST_WIDE_INT deepest_bitpos;
8827 unsigned HOST_WIDE_INT field_size_in_bits;
8828
8829 if (TREE_CODE (decl) == ERROR_MARK)
8830 return 0;
8831 else if (TREE_CODE (decl) != FIELD_DECL)
8832 abort ();
8833
8834 type = field_type (decl);
8835 field_size_tree = DECL_SIZE (decl);
8836
8837 /* The size could be unspecified if there was an error, or for
8838 a flexible array member. */
8839 if (! field_size_tree)
8840 field_size_tree = bitsize_zero_node;
8841
8842 /* We cannot yet cope with fields whose positions are variable, so
8843 for now, when we see such things, we simply return 0. Someday, we may
8844 be able to handle such cases, but it will be damn difficult. */
8845 if (! host_integerp (bit_position (decl), 0))
8846 return 0;
8847
8848 bitpos_int = int_bit_position (decl);
8849
8850 /* If we don't know the size of the field, pretend it's a full word. */
8851 if (host_integerp (field_size_tree, 1))
8852 field_size_in_bits = tree_low_cst (field_size_tree, 1);
8853 else
8854 field_size_in_bits = BITS_PER_WORD;
8855
8856 type_size_in_bits = simple_type_size_in_bits (type);
8857 type_align_in_bits = simple_type_align_in_bits (type);
8858 decl_align_in_bits = simple_decl_align_in_bits (decl);
8859
8860 /* The GCC front-end doesn't make any attempt to keep track of the starting
8861 bit offset (relative to the start of the containing structure type) of the
8862 hypothetical "containing object" for a bit-field. Thus, when computing
8863 the byte offset value for the start of the "containing object" of a
8864 bit-field, we must deduce this information on our own. This can be rather
8865 tricky to do in some cases. For example, handling the following structure
8866 type definition when compiling for an i386/i486 target (which only aligns
8867 long long's to 32-bit boundaries) can be very tricky:
8868
8869 struct S { int field1; long long field2:31; };
8870
8871 Fortunately, there is a simple rule-of-thumb which can be used in such
8872 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
8873 structure shown above. It decides to do this based upon one simple rule
8874 for bit-field allocation. GCC allocates each "containing object" for each
8875 bit-field at the first (i.e. lowest addressed) legitimate alignment
8876 boundary (based upon the required minimum alignment for the declared type
8877 of the field) which it can possibly use, subject to the condition that
8878 there is still enough available space remaining in the containing object
8879 (when allocated at the selected point) to fully accommodate all of the
8880 bits of the bit-field itself.
8881
8882 This simple rule makes it obvious why GCC allocates 8 bytes for each
8883 object of the structure type shown above. When looking for a place to
8884 allocate the "containing object" for `field2', the compiler simply tries
8885 to allocate a 64-bit "containing object" at each successive 32-bit
8886 boundary (starting at zero) until it finds a place to allocate that 64-
8887 bit field such that at least 31 contiguous (and previously unallocated)
8888 bits remain within that selected 64 bit field. (As it turns out, for the
8889 example above, the compiler finds it is OK to allocate the "containing
8890 object" 64-bit field at bit-offset zero within the structure type.)
8891
8892 Here we attempt to work backwards from the limited set of facts we're
8893 given, and we try to deduce from those facts, where GCC must have believed
8894 that the containing object started (within the structure type). The value
8895 we deduce is then used (by the callers of this routine) to generate
8896 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
8897 and, in the case of DW_AT_location, regular fields as well). */
8898
8899 /* Figure out the bit-distance from the start of the structure to the
8900 "deepest" bit of the bit-field. */
8901 deepest_bitpos = bitpos_int + field_size_in_bits;
8902
8903 /* This is the tricky part. Use some fancy footwork to deduce where the
8904 lowest addressed bit of the containing object must be. */
8905 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8906
8907 /* Round up to type_align by default. This works best for bitfields. */
8908 object_offset_in_bits += type_align_in_bits - 1;
8909 object_offset_in_bits /= type_align_in_bits;
8910 object_offset_in_bits *= type_align_in_bits;
8911
8912 if (object_offset_in_bits > bitpos_int)
8913 {
8914 /* Sigh, the decl must be packed. */
8915 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8916
8917 /* Round up to decl_align instead. */
8918 object_offset_in_bits += decl_align_in_bits - 1;
8919 object_offset_in_bits /= decl_align_in_bits;
8920 object_offset_in_bits *= decl_align_in_bits;
8921 }
8922
8923 return object_offset_in_bits / BITS_PER_UNIT;
8924 }
8925 \f
8926 /* The following routines define various Dwarf attributes and any data
8927 associated with them. */
8928
8929 /* Add a location description attribute value to a DIE.
8930
8931 This emits location attributes suitable for whole variables and
8932 whole parameters. Note that the location attributes for struct fields are
8933 generated by the routine `data_member_location_attribute' below. */
8934
8935 static inline void
8936 add_AT_location_description (die, attr_kind, descr)
8937 dw_die_ref die;
8938 enum dwarf_attribute attr_kind;
8939 dw_loc_descr_ref descr;
8940 {
8941 if (descr != 0)
8942 add_AT_loc (die, attr_kind, descr);
8943 }
8944
8945 /* Attach the specialized form of location attribute used for data members of
8946 struct and union types. In the special case of a FIELD_DECL node which
8947 represents a bit-field, the "offset" part of this special location
8948 descriptor must indicate the distance in bytes from the lowest-addressed
8949 byte of the containing struct or union type to the lowest-addressed byte of
8950 the "containing object" for the bit-field. (See the `field_byte_offset'
8951 function above).
8952
8953 For any given bit-field, the "containing object" is a hypothetical object
8954 (of some integral or enum type) within which the given bit-field lives. The
8955 type of this hypothetical "containing object" is always the same as the
8956 declared type of the individual bit-field itself (for GCC anyway... the
8957 DWARF spec doesn't actually mandate this). Note that it is the size (in
8958 bytes) of the hypothetical "containing object" which will be given in the
8959 DW_AT_byte_size attribute for this bit-field. (See the
8960 `byte_size_attribute' function below.) It is also used when calculating the
8961 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
8962 function below.) */
8963
8964 static void
8965 add_data_member_location_attribute (die, decl)
8966 dw_die_ref die;
8967 tree decl;
8968 {
8969 long offset;
8970 dw_loc_descr_ref loc_descr = 0;
8971
8972 if (TREE_CODE (decl) == TREE_VEC)
8973 {
8974 /* We're working on the TAG_inheritance for a base class. */
8975 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
8976 {
8977 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
8978 aren't at a fixed offset from all (sub)objects of the same
8979 type. We need to extract the appropriate offset from our
8980 vtable. The following dwarf expression means
8981
8982 BaseAddr = ObAddr + *((*ObAddr) - Offset)
8983
8984 This is specific to the V3 ABI, of course. */
8985
8986 dw_loc_descr_ref tmp;
8987
8988 /* Make a copy of the object address. */
8989 tmp = new_loc_descr (DW_OP_dup, 0, 0);
8990 add_loc_descr (&loc_descr, tmp);
8991
8992 /* Extract the vtable address. */
8993 tmp = new_loc_descr (DW_OP_deref, 0, 0);
8994 add_loc_descr (&loc_descr, tmp);
8995
8996 /* Calculate the address of the offset. */
8997 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
8998 if (offset >= 0)
8999 abort ();
9000
9001 tmp = int_loc_descriptor (-offset);
9002 add_loc_descr (&loc_descr, tmp);
9003 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9004 add_loc_descr (&loc_descr, tmp);
9005
9006 /* Extract the offset. */
9007 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9008 add_loc_descr (&loc_descr, tmp);
9009
9010 /* Add it to the object address. */
9011 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9012 add_loc_descr (&loc_descr, tmp);
9013 }
9014 else
9015 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9016 }
9017 else
9018 offset = field_byte_offset (decl);
9019
9020 if (! loc_descr)
9021 {
9022 enum dwarf_location_atom op;
9023
9024 /* The DWARF2 standard says that we should assume that the structure
9025 address is already on the stack, so we can specify a structure field
9026 address by using DW_OP_plus_uconst. */
9027
9028 #ifdef MIPS_DEBUGGING_INFO
9029 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9030 operator correctly. It works only if we leave the offset on the
9031 stack. */
9032 op = DW_OP_constu;
9033 #else
9034 op = DW_OP_plus_uconst;
9035 #endif
9036
9037 loc_descr = new_loc_descr (op, offset, 0);
9038 }
9039
9040 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9041 }
9042
9043 /* Attach an DW_AT_const_value attribute for a variable or a parameter which
9044 does not have a "location" either in memory or in a register. These
9045 things can arise in GNU C when a constant is passed as an actual parameter
9046 to an inlined function. They can also arise in C++ where declared
9047 constants do not necessarily get memory "homes". */
9048
9049 static void
9050 add_const_value_attribute (die, rtl)
9051 dw_die_ref die;
9052 rtx rtl;
9053 {
9054 switch (GET_CODE (rtl))
9055 {
9056 case CONST_INT:
9057 /* Note that a CONST_INT rtx could represent either an integer
9058 or a floating-point constant. A CONST_INT is used whenever
9059 the constant will fit into a single word. In all such
9060 cases, the original mode of the constant value is wiped
9061 out, and the CONST_INT rtx is assigned VOIDmode. */
9062 {
9063 HOST_WIDE_INT val = INTVAL (rtl);
9064
9065 /* ??? We really should be using HOST_WIDE_INT throughout. */
9066 if (val < 0 && (long) val == val)
9067 add_AT_int (die, DW_AT_const_value, (long) val);
9068 else if ((unsigned long) val == (unsigned HOST_WIDE_INT) val)
9069 add_AT_unsigned (die, DW_AT_const_value, (unsigned long) val);
9070 else
9071 {
9072 #if HOST_BITS_PER_LONG * 2 == HOST_BITS_PER_WIDE_INT
9073 add_AT_long_long (die, DW_AT_const_value,
9074 val >> HOST_BITS_PER_LONG, val);
9075 #else
9076 abort ();
9077 #endif
9078 }
9079 }
9080 break;
9081
9082 case CONST_DOUBLE:
9083 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9084 floating-point constant. A CONST_DOUBLE is used whenever the
9085 constant requires more than one word in order to be adequately
9086 represented. We output CONST_DOUBLEs as blocks. */
9087 {
9088 enum machine_mode mode = GET_MODE (rtl);
9089
9090 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9091 {
9092 unsigned length = GET_MODE_SIZE (mode) / 4;
9093 long *array = (long *) xmalloc (sizeof (long) * length);
9094 REAL_VALUE_TYPE rv;
9095
9096 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9097 switch (mode)
9098 {
9099 case SFmode:
9100 REAL_VALUE_TO_TARGET_SINGLE (rv, array[0]);
9101 break;
9102
9103 case DFmode:
9104 REAL_VALUE_TO_TARGET_DOUBLE (rv, array);
9105 break;
9106
9107 case XFmode:
9108 case TFmode:
9109 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, array);
9110 break;
9111
9112 default:
9113 abort ();
9114 }
9115
9116 add_AT_float (die, DW_AT_const_value, length, array);
9117 }
9118 else
9119 {
9120 /* ??? We really should be using HOST_WIDE_INT throughout. */
9121 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9122 abort ();
9123
9124 add_AT_long_long (die, DW_AT_const_value,
9125 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9126 }
9127 }
9128 break;
9129
9130 case CONST_STRING:
9131 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9132 break;
9133
9134 case SYMBOL_REF:
9135 case LABEL_REF:
9136 case CONST:
9137 add_AT_addr (die, DW_AT_const_value, rtl);
9138 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9139 break;
9140
9141 case PLUS:
9142 /* In cases where an inlined instance of an inline function is passed
9143 the address of an `auto' variable (which is local to the caller) we
9144 can get a situation where the DECL_RTL of the artificial local
9145 variable (for the inlining) which acts as a stand-in for the
9146 corresponding formal parameter (of the inline function) will look
9147 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9148 exactly a compile-time constant expression, but it isn't the address
9149 of the (artificial) local variable either. Rather, it represents the
9150 *value* which the artificial local variable always has during its
9151 lifetime. We currently have no way to represent such quasi-constant
9152 values in Dwarf, so for now we just punt and generate nothing. */
9153 break;
9154
9155 default:
9156 /* No other kinds of rtx should be possible here. */
9157 abort ();
9158 }
9159
9160 }
9161
9162 static rtx
9163 rtl_for_decl_location (decl)
9164 tree decl;
9165 {
9166 rtx rtl;
9167
9168 /* Here we have to decide where we are going to say the parameter "lives"
9169 (as far as the debugger is concerned). We only have a couple of
9170 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9171
9172 DECL_RTL normally indicates where the parameter lives during most of the
9173 activation of the function. If optimization is enabled however, this
9174 could be either NULL or else a pseudo-reg. Both of those cases indicate
9175 that the parameter doesn't really live anywhere (as far as the code
9176 generation parts of GCC are concerned) during most of the function's
9177 activation. That will happen (for example) if the parameter is never
9178 referenced within the function.
9179
9180 We could just generate a location descriptor here for all non-NULL
9181 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9182 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9183 where DECL_RTL is NULL or is a pseudo-reg.
9184
9185 Note however that we can only get away with using DECL_INCOMING_RTL as
9186 a backup substitute for DECL_RTL in certain limited cases. In cases
9187 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9188 we can be sure that the parameter was passed using the same type as it is
9189 declared to have within the function, and that its DECL_INCOMING_RTL
9190 points us to a place where a value of that type is passed.
9191
9192 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9193 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9194 because in these cases DECL_INCOMING_RTL points us to a value of some
9195 type which is *different* from the type of the parameter itself. Thus,
9196 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9197 such cases, the debugger would end up (for example) trying to fetch a
9198 `float' from a place which actually contains the first part of a
9199 `double'. That would lead to really incorrect and confusing
9200 output at debug-time.
9201
9202 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9203 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9204 are a couple of exceptions however. On little-endian machines we can
9205 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9206 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9207 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9208 when (on a little-endian machine) a non-prototyped function has a
9209 parameter declared to be of type `short' or `char'. In such cases,
9210 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9211 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9212 passed `int' value. If the debugger then uses that address to fetch
9213 a `short' or a `char' (on a little-endian machine) the result will be
9214 the correct data, so we allow for such exceptional cases below.
9215
9216 Note that our goal here is to describe the place where the given formal
9217 parameter lives during most of the function's activation (i.e. between the
9218 end of the prologue and the start of the epilogue). We'll do that as best
9219 as we can. Note however that if the given formal parameter is modified
9220 sometime during the execution of the function, then a stack backtrace (at
9221 debug-time) will show the function as having been called with the *new*
9222 value rather than the value which was originally passed in. This happens
9223 rarely enough that it is not a major problem, but it *is* a problem, and
9224 I'd like to fix it.
9225
9226 A future version of dwarf2out.c may generate two additional attributes for
9227 any given DW_TAG_formal_parameter DIE which will describe the "passed
9228 type" and the "passed location" for the given formal parameter in addition
9229 to the attributes we now generate to indicate the "declared type" and the
9230 "active location" for each parameter. This additional set of attributes
9231 could be used by debuggers for stack backtraces. Separately, note that
9232 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9233 This happens (for example) for inlined-instances of inline function formal
9234 parameters which are never referenced. This really shouldn't be
9235 happening. All PARM_DECL nodes should get valid non-NULL
9236 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9237 values for inlined instances of inline function parameters, so when we see
9238 such cases, we are just out-of-luck for the time being (until integrate.c
9239 gets fixed). */
9240
9241 /* Use DECL_RTL as the "location" unless we find something better. */
9242 rtl = DECL_RTL_IF_SET (decl);
9243
9244 /* When generating abstract instances, ignore everything except
9245 constants and symbols living in memory. */
9246 if (! reload_completed)
9247 {
9248 if (rtl
9249 && (CONSTANT_P (rtl)
9250 || (GET_CODE (rtl) == MEM
9251 && CONSTANT_P (XEXP (rtl, 0)))))
9252 {
9253 #ifdef ASM_SIMPLIFY_DWARF_ADDR
9254 rtl = ASM_SIMPLIFY_DWARF_ADDR (rtl);
9255 #endif
9256 return rtl;
9257 }
9258 rtl = NULL_RTX;
9259 }
9260 else if (TREE_CODE (decl) == PARM_DECL)
9261 {
9262 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9263 {
9264 tree declared_type = type_main_variant (TREE_TYPE (decl));
9265 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9266
9267 /* This decl represents a formal parameter which was optimized out.
9268 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9269 all cases where (rtl == NULL_RTX) just below. */
9270 if (declared_type == passed_type)
9271 rtl = DECL_INCOMING_RTL (decl);
9272 else if (! BYTES_BIG_ENDIAN
9273 && TREE_CODE (declared_type) == INTEGER_TYPE
9274 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9275 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9276 rtl = DECL_INCOMING_RTL (decl);
9277 }
9278
9279 /* If the parm was passed in registers, but lives on the stack, then
9280 make a big endian correction if the mode of the type of the
9281 parameter is not the same as the mode of the rtl. */
9282 /* ??? This is the same series of checks that are made in dbxout.c before
9283 we reach the big endian correction code there. It isn't clear if all
9284 of these checks are necessary here, but keeping them all is the safe
9285 thing to do. */
9286 else if (GET_CODE (rtl) == MEM
9287 && XEXP (rtl, 0) != const0_rtx
9288 && ! CONSTANT_P (XEXP (rtl, 0))
9289 /* Not passed in memory. */
9290 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
9291 /* Not passed by invisible reference. */
9292 && (GET_CODE (XEXP (rtl, 0)) != REG
9293 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9294 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9295 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9296 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9297 #endif
9298 )
9299 /* Big endian correction check. */
9300 && BYTES_BIG_ENDIAN
9301 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9302 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9303 < UNITS_PER_WORD))
9304 {
9305 int offset = (UNITS_PER_WORD
9306 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9307
9308 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9309 plus_constant (XEXP (rtl, 0), offset));
9310 }
9311 }
9312
9313 if (rtl != NULL_RTX)
9314 {
9315 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9316 #ifdef LEAF_REG_REMAP
9317 if (current_function_uses_only_leaf_regs)
9318 leaf_renumber_regs_insn (rtl);
9319 #endif
9320 }
9321
9322 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9323 and will have been substituted directly into all expressions that use it.
9324 C does not have such a concept, but C++ and other languages do. */
9325 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9326 {
9327 /* If a variable is initialized with a string constant without embedded
9328 zeros, build CONST_STRING. */
9329 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9330 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9331 {
9332 tree arrtype = TREE_TYPE (decl);
9333 tree enttype = TREE_TYPE (arrtype);
9334 tree domain = TYPE_DOMAIN (arrtype);
9335 tree init = DECL_INITIAL (decl);
9336 enum machine_mode mode = TYPE_MODE (enttype);
9337
9338 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9339 && domain
9340 && integer_zerop (TYPE_MIN_VALUE (domain))
9341 && compare_tree_int (TYPE_MAX_VALUE (domain),
9342 TREE_STRING_LENGTH (init) - 1) == 0
9343 && ((size_t) TREE_STRING_LENGTH (init)
9344 == strlen (TREE_STRING_POINTER (init)) + 1))
9345 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9346 }
9347 /* If the initializer is something that we know will expand into an
9348 immediate RTL constant, expand it now. Expanding anything else
9349 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9350 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9351 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9352 {
9353 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9354 EXPAND_INITIALIZER);
9355 /* If expand_expr returns a MEM, it wasn't immediate. */
9356 if (rtl && GET_CODE (rtl) == MEM)
9357 abort ();
9358 }
9359 }
9360
9361 #ifdef ASM_SIMPLIFY_DWARF_ADDR
9362 if (rtl)
9363 rtl = ASM_SIMPLIFY_DWARF_ADDR (rtl);
9364 #endif
9365
9366 /* If we don't look past the constant pool, we risk emitting a
9367 reference to a constant pool entry that isn't referenced from
9368 code, and thus is not emitted. */
9369 if (rtl)
9370 rtl = avoid_constant_pool_reference (rtl);
9371
9372 return rtl;
9373 }
9374
9375 /* Generate *either* an DW_AT_location attribute or else an DW_AT_const_value
9376 data attribute for a variable or a parameter. We generate the
9377 DW_AT_const_value attribute only in those cases where the given variable
9378 or parameter does not have a true "location" either in memory or in a
9379 register. This can happen (for example) when a constant is passed as an
9380 actual argument in a call to an inline function. (It's possible that
9381 these things can crop up in other ways also.) Note that one type of
9382 constant value which can be passed into an inlined function is a constant
9383 pointer. This can happen for example if an actual argument in an inlined
9384 function call evaluates to a compile-time constant address. */
9385
9386 static void
9387 add_location_or_const_value_attribute (die, decl)
9388 dw_die_ref die;
9389 tree decl;
9390 {
9391 rtx rtl;
9392 dw_loc_descr_ref descr;
9393
9394 if (TREE_CODE (decl) == ERROR_MARK)
9395 return;
9396 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
9397 abort ();
9398
9399 rtl = rtl_for_decl_location (decl);
9400 if (rtl == NULL_RTX)
9401 return;
9402
9403 switch (GET_CODE (rtl))
9404 {
9405 case ADDRESSOF:
9406 /* The address of a variable that was optimized away;
9407 don't emit anything. */
9408 break;
9409
9410 case CONST_INT:
9411 case CONST_DOUBLE:
9412 case CONST_STRING:
9413 case SYMBOL_REF:
9414 case LABEL_REF:
9415 case CONST:
9416 case PLUS:
9417 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9418 add_const_value_attribute (die, rtl);
9419 break;
9420
9421 case MEM:
9422 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
9423 {
9424 /* Need loc_descriptor_from_tree since that's where we know
9425 how to handle TLS variables. Want the object's address
9426 since the top-level DW_AT_location assumes such. See
9427 the confusion in loc_descriptor for reference. */
9428 descr = loc_descriptor_from_tree (decl, 1);
9429 }
9430 else
9431 {
9432 case REG:
9433 case SUBREG:
9434 case CONCAT:
9435 descr = loc_descriptor (rtl);
9436 }
9437 add_AT_location_description (die, DW_AT_location, descr);
9438 break;
9439
9440 default:
9441 abort ();
9442 }
9443 }
9444
9445 /* If we don't have a copy of this variable in memory for some reason (such
9446 as a C++ member constant that doesn't have an out-of-line definition),
9447 we should tell the debugger about the constant value. */
9448
9449 static void
9450 tree_add_const_value_attribute (var_die, decl)
9451 dw_die_ref var_die;
9452 tree decl;
9453 {
9454 tree init = DECL_INITIAL (decl);
9455 tree type = TREE_TYPE (decl);
9456
9457 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9458 && initializer_constant_valid_p (init, type) == null_pointer_node)
9459 /* OK */;
9460 else
9461 return;
9462
9463 switch (TREE_CODE (type))
9464 {
9465 case INTEGER_TYPE:
9466 if (host_integerp (init, 0))
9467 add_AT_unsigned (var_die, DW_AT_const_value,
9468 tree_low_cst (init, 0));
9469 else
9470 add_AT_long_long (var_die, DW_AT_const_value,
9471 TREE_INT_CST_HIGH (init),
9472 TREE_INT_CST_LOW (init));
9473 break;
9474
9475 default:;
9476 }
9477 }
9478
9479 /* Generate an DW_AT_name attribute given some string value to be included as
9480 the value of the attribute. */
9481
9482 static inline void
9483 add_name_attribute (die, name_string)
9484 dw_die_ref die;
9485 const char *name_string;
9486 {
9487 if (name_string != NULL && *name_string != 0)
9488 {
9489 if (demangle_name_func)
9490 name_string = (*demangle_name_func) (name_string);
9491
9492 add_AT_string (die, DW_AT_name, name_string);
9493 }
9494 }
9495
9496 /* Given a tree node describing an array bound (either lower or upper) output
9497 a representation for that bound. */
9498
9499 static void
9500 add_bound_info (subrange_die, bound_attr, bound)
9501 dw_die_ref subrange_die;
9502 enum dwarf_attribute bound_attr;
9503 tree bound;
9504 {
9505 switch (TREE_CODE (bound))
9506 {
9507 case ERROR_MARK:
9508 return;
9509
9510 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9511 case INTEGER_CST:
9512 if (! host_integerp (bound, 0)
9513 || (bound_attr == DW_AT_lower_bound
9514 && (((is_c_family () || is_java ()) && integer_zerop (bound))
9515 || (is_fortran () && integer_onep (bound)))))
9516 /* use the default */
9517 ;
9518 else
9519 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
9520 break;
9521
9522 case CONVERT_EXPR:
9523 case NOP_EXPR:
9524 case NON_LVALUE_EXPR:
9525 case VIEW_CONVERT_EXPR:
9526 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9527 break;
9528
9529 case SAVE_EXPR:
9530 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9531 access the upper bound values may be bogus. If they refer to a
9532 register, they may only describe how to get at these values at the
9533 points in the generated code right after they have just been
9534 computed. Worse yet, in the typical case, the upper bound values
9535 will not even *be* computed in the optimized code (though the
9536 number of elements will), so these SAVE_EXPRs are entirely
9537 bogus. In order to compensate for this fact, we check here to see
9538 if optimization is enabled, and if so, we don't add an attribute
9539 for the (unknown and unknowable) upper bound. This should not
9540 cause too much trouble for existing (stupid?) debuggers because
9541 they have to deal with empty upper bounds location descriptions
9542 anyway in order to be able to deal with incomplete array types.
9543 Of course an intelligent debugger (GDB?) should be able to
9544 comprehend that a missing upper bound specification in an array
9545 type used for a storage class `auto' local array variable
9546 indicates that the upper bound is both unknown (at compile- time)
9547 and unknowable (at run-time) due to optimization.
9548
9549 We assume that a MEM rtx is safe because gcc wouldn't put the
9550 value there unless it was going to be used repeatedly in the
9551 function, i.e. for cleanups. */
9552 if (SAVE_EXPR_RTL (bound)
9553 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
9554 {
9555 dw_die_ref ctx = lookup_decl_die (current_function_decl);
9556 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
9557 rtx loc = SAVE_EXPR_RTL (bound);
9558
9559 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9560 it references an outer function's frame. */
9561 if (GET_CODE (loc) == MEM)
9562 {
9563 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9564
9565 if (XEXP (loc, 0) != new_addr)
9566 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
9567 }
9568
9569 add_AT_flag (decl_die, DW_AT_artificial, 1);
9570 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9571 add_AT_location_description (decl_die, DW_AT_location,
9572 loc_descriptor (loc));
9573 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9574 }
9575
9576 /* Else leave out the attribute. */
9577 break;
9578
9579 case VAR_DECL:
9580 case PARM_DECL:
9581 {
9582 dw_die_ref decl_die = lookup_decl_die (bound);
9583
9584 /* ??? Can this happen, or should the variable have been bound
9585 first? Probably it can, since I imagine that we try to create
9586 the types of parameters in the order in which they exist in
9587 the list, and won't have created a forward reference to a
9588 later parameter. */
9589 if (decl_die != NULL)
9590 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9591 break;
9592 }
9593
9594 default:
9595 {
9596 /* Otherwise try to create a stack operation procedure to
9597 evaluate the value of the array bound. */
9598
9599 dw_die_ref ctx, decl_die;
9600 dw_loc_descr_ref loc;
9601
9602 loc = loc_descriptor_from_tree (bound, 0);
9603 if (loc == NULL)
9604 break;
9605
9606 if (current_function_decl == 0)
9607 ctx = comp_unit_die;
9608 else
9609 ctx = lookup_decl_die (current_function_decl);
9610
9611 /* If we weren't able to find a context, it's most likely the case
9612 that we are processing the return type of the function. So
9613 make a SAVE_EXPR to point to it and have the limbo DIE code
9614 find the proper die. The save_expr function doesn't always
9615 make a SAVE_EXPR, so do it ourselves. */
9616 if (ctx == 0)
9617 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9618 current_function_decl, NULL_TREE);
9619
9620 decl_die = new_die (DW_TAG_variable, ctx, bound);
9621 add_AT_flag (decl_die, DW_AT_artificial, 1);
9622 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9623 add_AT_loc (decl_die, DW_AT_location, loc);
9624
9625 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9626 break;
9627 }
9628 }
9629 }
9630
9631 /* Note that the block of subscript information for an array type also
9632 includes information about the element type of type given array type. */
9633
9634 static void
9635 add_subscript_info (type_die, type)
9636 dw_die_ref type_die;
9637 tree type;
9638 {
9639 #ifndef MIPS_DEBUGGING_INFO
9640 unsigned dimension_number;
9641 #endif
9642 tree lower, upper;
9643 dw_die_ref subrange_die;
9644
9645 /* The GNU compilers represent multidimensional array types as sequences of
9646 one dimensional array types whose element types are themselves array
9647 types. Here we squish that down, so that each multidimensional array
9648 type gets only one array_type DIE in the Dwarf debugging info. The draft
9649 Dwarf specification say that we are allowed to do this kind of
9650 compression in C (because there is no difference between an array or
9651 arrays and a multidimensional array in C) but for other source languages
9652 (e.g. Ada) we probably shouldn't do this. */
9653
9654 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9655 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9656 We work around this by disabling this feature. See also
9657 gen_array_type_die. */
9658 #ifndef MIPS_DEBUGGING_INFO
9659 for (dimension_number = 0;
9660 TREE_CODE (type) == ARRAY_TYPE;
9661 type = TREE_TYPE (type), dimension_number++)
9662 #endif
9663 {
9664 tree domain = TYPE_DOMAIN (type);
9665
9666 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
9667 and (in GNU C only) variable bounds. Handle all three forms
9668 here. */
9669 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
9670 if (domain)
9671 {
9672 /* We have an array type with specified bounds. */
9673 lower = TYPE_MIN_VALUE (domain);
9674 upper = TYPE_MAX_VALUE (domain);
9675
9676 /* define the index type. */
9677 if (TREE_TYPE (domain))
9678 {
9679 /* ??? This is probably an Ada unnamed subrange type. Ignore the
9680 TREE_TYPE field. We can't emit debug info for this
9681 because it is an unnamed integral type. */
9682 if (TREE_CODE (domain) == INTEGER_TYPE
9683 && TYPE_NAME (domain) == NULL_TREE
9684 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
9685 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
9686 ;
9687 else
9688 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
9689 type_die);
9690 }
9691
9692 /* ??? If upper is NULL, the array has unspecified length,
9693 but it does have a lower bound. This happens with Fortran
9694 dimension arr(N:*)
9695 Since the debugger is definitely going to need to know N
9696 to produce useful results, go ahead and output the lower
9697 bound solo, and hope the debugger can cope. */
9698
9699 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
9700 if (upper)
9701 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
9702 }
9703
9704 /* Otherwise we have an array type with an unspecified length. The
9705 DWARF-2 spec does not say how to handle this; let's just leave out the
9706 bounds. */
9707 }
9708 }
9709
9710 static void
9711 add_byte_size_attribute (die, tree_node)
9712 dw_die_ref die;
9713 tree tree_node;
9714 {
9715 unsigned size;
9716
9717 switch (TREE_CODE (tree_node))
9718 {
9719 case ERROR_MARK:
9720 size = 0;
9721 break;
9722 case ENUMERAL_TYPE:
9723 case RECORD_TYPE:
9724 case UNION_TYPE:
9725 case QUAL_UNION_TYPE:
9726 size = int_size_in_bytes (tree_node);
9727 break;
9728 case FIELD_DECL:
9729 /* For a data member of a struct or union, the DW_AT_byte_size is
9730 generally given as the number of bytes normally allocated for an
9731 object of the *declared* type of the member itself. This is true
9732 even for bit-fields. */
9733 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
9734 break;
9735 default:
9736 abort ();
9737 }
9738
9739 /* Note that `size' might be -1 when we get to this point. If it is, that
9740 indicates that the byte size of the entity in question is variable. We
9741 have no good way of expressing this fact in Dwarf at the present time,
9742 so just let the -1 pass on through. */
9743 add_AT_unsigned (die, DW_AT_byte_size, size);
9744 }
9745
9746 /* For a FIELD_DECL node which represents a bit-field, output an attribute
9747 which specifies the distance in bits from the highest order bit of the
9748 "containing object" for the bit-field to the highest order bit of the
9749 bit-field itself.
9750
9751 For any given bit-field, the "containing object" is a hypothetical object
9752 (of some integral or enum type) within which the given bit-field lives. The
9753 type of this hypothetical "containing object" is always the same as the
9754 declared type of the individual bit-field itself. The determination of the
9755 exact location of the "containing object" for a bit-field is rather
9756 complicated. It's handled by the `field_byte_offset' function (above).
9757
9758 Note that it is the size (in bytes) of the hypothetical "containing object"
9759 which will be given in the DW_AT_byte_size attribute for this bit-field.
9760 (See `byte_size_attribute' above). */
9761
9762 static inline void
9763 add_bit_offset_attribute (die, decl)
9764 dw_die_ref die;
9765 tree decl;
9766 {
9767 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
9768 tree type = DECL_BIT_FIELD_TYPE (decl);
9769 HOST_WIDE_INT bitpos_int;
9770 HOST_WIDE_INT highest_order_object_bit_offset;
9771 HOST_WIDE_INT highest_order_field_bit_offset;
9772 HOST_WIDE_INT unsigned bit_offset;
9773
9774 /* Must be a field and a bit field. */
9775 if (!type
9776 || TREE_CODE (decl) != FIELD_DECL)
9777 abort ();
9778
9779 /* We can't yet handle bit-fields whose offsets are variable, so if we
9780 encounter such things, just return without generating any attribute
9781 whatsoever. Likewise for variable or too large size. */
9782 if (! host_integerp (bit_position (decl), 0)
9783 || ! host_integerp (DECL_SIZE (decl), 1))
9784 return;
9785
9786 bitpos_int = int_bit_position (decl);
9787
9788 /* Note that the bit offset is always the distance (in bits) from the
9789 highest-order bit of the "containing object" to the highest-order bit of
9790 the bit-field itself. Since the "high-order end" of any object or field
9791 is different on big-endian and little-endian machines, the computation
9792 below must take account of these differences. */
9793 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
9794 highest_order_field_bit_offset = bitpos_int;
9795
9796 if (! BYTES_BIG_ENDIAN)
9797 {
9798 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
9799 highest_order_object_bit_offset += simple_type_size_in_bits (type);
9800 }
9801
9802 bit_offset
9803 = (! BYTES_BIG_ENDIAN
9804 ? highest_order_object_bit_offset - highest_order_field_bit_offset
9805 : highest_order_field_bit_offset - highest_order_object_bit_offset);
9806
9807 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
9808 }
9809
9810 /* For a FIELD_DECL node which represents a bit field, output an attribute
9811 which specifies the length in bits of the given field. */
9812
9813 static inline void
9814 add_bit_size_attribute (die, decl)
9815 dw_die_ref die;
9816 tree decl;
9817 {
9818 /* Must be a field and a bit field. */
9819 if (TREE_CODE (decl) != FIELD_DECL
9820 || ! DECL_BIT_FIELD_TYPE (decl))
9821 abort ();
9822
9823 if (host_integerp (DECL_SIZE (decl), 1))
9824 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
9825 }
9826
9827 /* If the compiled language is ANSI C, then add a 'prototyped'
9828 attribute, if arg types are given for the parameters of a function. */
9829
9830 static inline void
9831 add_prototyped_attribute (die, func_type)
9832 dw_die_ref die;
9833 tree func_type;
9834 {
9835 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
9836 && TYPE_ARG_TYPES (func_type) != NULL)
9837 add_AT_flag (die, DW_AT_prototyped, 1);
9838 }
9839
9840 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
9841 by looking in either the type declaration or object declaration
9842 equate table. */
9843
9844 static inline void
9845 add_abstract_origin_attribute (die, origin)
9846 dw_die_ref die;
9847 tree origin;
9848 {
9849 dw_die_ref origin_die = NULL;
9850
9851 if (TREE_CODE (origin) != FUNCTION_DECL)
9852 {
9853 /* We may have gotten separated from the block for the inlined
9854 function, if we're in an exception handler or some such; make
9855 sure that the abstract function has been written out.
9856
9857 Doing this for nested functions is wrong, however; functions are
9858 distinct units, and our context might not even be inline. */
9859 tree fn = origin;
9860
9861 if (TYPE_P (fn))
9862 fn = TYPE_STUB_DECL (fn);
9863
9864 fn = decl_function_context (fn);
9865 if (fn)
9866 dwarf2out_abstract_function (fn);
9867 }
9868
9869 if (DECL_P (origin))
9870 origin_die = lookup_decl_die (origin);
9871 else if (TYPE_P (origin))
9872 origin_die = lookup_type_die (origin);
9873
9874 if (origin_die == NULL)
9875 abort ();
9876
9877 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
9878 }
9879
9880 /* We do not currently support the pure_virtual attribute. */
9881
9882 static inline void
9883 add_pure_or_virtual_attribute (die, func_decl)
9884 dw_die_ref die;
9885 tree func_decl;
9886 {
9887 if (DECL_VINDEX (func_decl))
9888 {
9889 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
9890
9891 if (host_integerp (DECL_VINDEX (func_decl), 0))
9892 add_AT_loc (die, DW_AT_vtable_elem_location,
9893 new_loc_descr (DW_OP_constu,
9894 tree_low_cst (DECL_VINDEX (func_decl), 0),
9895 0));
9896
9897 /* GNU extension: Record what type this method came from originally. */
9898 if (debug_info_level > DINFO_LEVEL_TERSE)
9899 add_AT_die_ref (die, DW_AT_containing_type,
9900 lookup_type_die (DECL_CONTEXT (func_decl)));
9901 }
9902 }
9903 \f
9904 /* Add source coordinate attributes for the given decl. */
9905
9906 static void
9907 add_src_coords_attributes (die, decl)
9908 dw_die_ref die;
9909 tree decl;
9910 {
9911 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
9912
9913 add_AT_unsigned (die, DW_AT_decl_file, file_index);
9914 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
9915 }
9916
9917 /* Add an DW_AT_name attribute and source coordinate attribute for the
9918 given decl, but only if it actually has a name. */
9919
9920 static void
9921 add_name_and_src_coords_attributes (die, decl)
9922 dw_die_ref die;
9923 tree decl;
9924 {
9925 tree decl_name;
9926
9927 decl_name = DECL_NAME (decl);
9928 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
9929 {
9930 add_name_attribute (die, dwarf2_name (decl, 0));
9931 if (! DECL_ARTIFICIAL (decl))
9932 add_src_coords_attributes (die, decl);
9933
9934 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
9935 && TREE_PUBLIC (decl)
9936 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
9937 && !DECL_ABSTRACT (decl))
9938 add_AT_string (die, DW_AT_MIPS_linkage_name,
9939 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
9940 }
9941
9942 #ifdef VMS_DEBUGGING_INFO
9943 /* Get the function's name, as described by its RTL. This may be different
9944 from the DECL_NAME name used in the source file. */
9945 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
9946 {
9947 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
9948 XEXP (DECL_RTL (decl), 0));
9949 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
9950 }
9951 #endif
9952 }
9953
9954 /* Push a new declaration scope. */
9955
9956 static void
9957 push_decl_scope (scope)
9958 tree scope;
9959 {
9960 VARRAY_PUSH_TREE (decl_scope_table, scope);
9961 }
9962
9963 /* Pop a declaration scope. */
9964
9965 static inline void
9966 pop_decl_scope ()
9967 {
9968 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
9969 abort ();
9970
9971 VARRAY_POP (decl_scope_table);
9972 }
9973
9974 /* Return the DIE for the scope that immediately contains this type.
9975 Non-named types get global scope. Named types nested in other
9976 types get their containing scope if it's open, or global scope
9977 otherwise. All other types (i.e. function-local named types) get
9978 the current active scope. */
9979
9980 static dw_die_ref
9981 scope_die_for (t, context_die)
9982 tree t;
9983 dw_die_ref context_die;
9984 {
9985 dw_die_ref scope_die = NULL;
9986 tree containing_scope;
9987 int i;
9988
9989 /* Non-types always go in the current scope. */
9990 if (! TYPE_P (t))
9991 abort ();
9992
9993 containing_scope = TYPE_CONTEXT (t);
9994
9995 /* Ignore namespaces for the moment. */
9996 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
9997 containing_scope = NULL_TREE;
9998
9999 /* Ignore function type "scopes" from the C frontend. They mean that
10000 a tagged type is local to a parmlist of a function declarator, but
10001 that isn't useful to DWARF. */
10002 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10003 containing_scope = NULL_TREE;
10004
10005 if (containing_scope == NULL_TREE)
10006 scope_die = comp_unit_die;
10007 else if (TYPE_P (containing_scope))
10008 {
10009 /* For types, we can just look up the appropriate DIE. But
10010 first we check to see if we're in the middle of emitting it
10011 so we know where the new DIE should go. */
10012 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10013 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10014 break;
10015
10016 if (i < 0)
10017 {
10018 if (debug_info_level > DINFO_LEVEL_TERSE
10019 && !TREE_ASM_WRITTEN (containing_scope))
10020 abort ();
10021
10022 /* If none of the current dies are suitable, we get file scope. */
10023 scope_die = comp_unit_die;
10024 }
10025 else
10026 scope_die = lookup_type_die (containing_scope);
10027 }
10028 else
10029 scope_die = context_die;
10030
10031 return scope_die;
10032 }
10033
10034 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10035
10036 static inline int
10037 local_scope_p (context_die)
10038 dw_die_ref context_die;
10039 {
10040 for (; context_die; context_die = context_die->die_parent)
10041 if (context_die->die_tag == DW_TAG_inlined_subroutine
10042 || context_die->die_tag == DW_TAG_subprogram)
10043 return 1;
10044
10045 return 0;
10046 }
10047
10048 /* Returns nonzero if CONTEXT_DIE is a class. */
10049
10050 static inline int
10051 class_scope_p (context_die)
10052 dw_die_ref context_die;
10053 {
10054 return (context_die
10055 && (context_die->die_tag == DW_TAG_structure_type
10056 || context_die->die_tag == DW_TAG_union_type));
10057 }
10058
10059 /* Many forms of DIEs require a "type description" attribute. This
10060 routine locates the proper "type descriptor" die for the type given
10061 by 'type', and adds an DW_AT_type attribute below the given die. */
10062
10063 static void
10064 add_type_attribute (object_die, type, decl_const, decl_volatile, context_die)
10065 dw_die_ref object_die;
10066 tree type;
10067 int decl_const;
10068 int decl_volatile;
10069 dw_die_ref context_die;
10070 {
10071 enum tree_code code = TREE_CODE (type);
10072 dw_die_ref type_die = NULL;
10073
10074 /* ??? If this type is an unnamed subrange type of an integral or
10075 floating-point type, use the inner type. This is because we have no
10076 support for unnamed types in base_type_die. This can happen if this is
10077 an Ada subrange type. Correct solution is emit a subrange type die. */
10078 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10079 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10080 type = TREE_TYPE (type), code = TREE_CODE (type);
10081
10082 if (code == ERROR_MARK
10083 /* Handle a special case. For functions whose return type is void, we
10084 generate *no* type attribute. (Note that no object may have type
10085 `void', so this only applies to function return types). */
10086 || code == VOID_TYPE)
10087 return;
10088
10089 type_die = modified_type_die (type,
10090 decl_const || TYPE_READONLY (type),
10091 decl_volatile || TYPE_VOLATILE (type),
10092 context_die);
10093
10094 if (type_die != NULL)
10095 add_AT_die_ref (object_die, DW_AT_type, type_die);
10096 }
10097
10098 /* Given a tree pointer to a struct, class, union, or enum type node, return
10099 a pointer to the (string) tag name for the given type, or zero if the type
10100 was declared without a tag. */
10101
10102 static const char *
10103 type_tag (type)
10104 tree type;
10105 {
10106 const char *name = 0;
10107
10108 if (TYPE_NAME (type) != 0)
10109 {
10110 tree t = 0;
10111
10112 /* Find the IDENTIFIER_NODE for the type name. */
10113 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10114 t = TYPE_NAME (type);
10115
10116 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10117 a TYPE_DECL node, regardless of whether or not a `typedef' was
10118 involved. */
10119 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10120 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10121 t = DECL_NAME (TYPE_NAME (type));
10122
10123 /* Now get the name as a string, or invent one. */
10124 if (t != 0)
10125 name = IDENTIFIER_POINTER (t);
10126 }
10127
10128 return (name == 0 || *name == '\0') ? 0 : name;
10129 }
10130
10131 /* Return the type associated with a data member, make a special check
10132 for bit field types. */
10133
10134 static inline tree
10135 member_declared_type (member)
10136 tree member;
10137 {
10138 return (DECL_BIT_FIELD_TYPE (member)
10139 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10140 }
10141
10142 /* Get the decl's label, as described by its RTL. This may be different
10143 from the DECL_NAME name used in the source file. */
10144
10145 #if 0
10146 static const char *
10147 decl_start_label (decl)
10148 tree decl;
10149 {
10150 rtx x;
10151 const char *fnname;
10152
10153 x = DECL_RTL (decl);
10154 if (GET_CODE (x) != MEM)
10155 abort ();
10156
10157 x = XEXP (x, 0);
10158 if (GET_CODE (x) != SYMBOL_REF)
10159 abort ();
10160
10161 fnname = XSTR (x, 0);
10162 return fnname;
10163 }
10164 #endif
10165 \f
10166 /* These routines generate the internal representation of the DIE's for
10167 the compilation unit. Debugging information is collected by walking
10168 the declaration trees passed in from dwarf2out_decl(). */
10169
10170 static void
10171 gen_array_type_die (type, context_die)
10172 tree type;
10173 dw_die_ref context_die;
10174 {
10175 dw_die_ref scope_die = scope_die_for (type, context_die);
10176 dw_die_ref array_die;
10177 tree element_type;
10178
10179 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10180 the inner array type comes before the outer array type. Thus we must
10181 call gen_type_die before we call new_die. See below also. */
10182 #ifdef MIPS_DEBUGGING_INFO
10183 gen_type_die (TREE_TYPE (type), context_die);
10184 #endif
10185
10186 array_die = new_die (DW_TAG_array_type, scope_die, type);
10187 add_name_attribute (array_die, type_tag (type));
10188 equate_type_number_to_die (type, array_die);
10189
10190 if (TREE_CODE (type) == VECTOR_TYPE)
10191 {
10192 /* The frontend feeds us a representation for the vector as a struct
10193 containing an array. Pull out the array type. */
10194 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10195 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10196 }
10197
10198 #if 0
10199 /* We default the array ordering. SDB will probably do
10200 the right things even if DW_AT_ordering is not present. It's not even
10201 an issue until we start to get into multidimensional arrays anyway. If
10202 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10203 then we'll have to put the DW_AT_ordering attribute back in. (But if
10204 and when we find out that we need to put these in, we will only do so
10205 for multidimensional arrays. */
10206 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10207 #endif
10208
10209 #ifdef MIPS_DEBUGGING_INFO
10210 /* The SGI compilers handle arrays of unknown bound by setting
10211 AT_declaration and not emitting any subrange DIEs. */
10212 if (! TYPE_DOMAIN (type))
10213 add_AT_unsigned (array_die, DW_AT_declaration, 1);
10214 else
10215 #endif
10216 add_subscript_info (array_die, type);
10217
10218 /* Add representation of the type of the elements of this array type. */
10219 element_type = TREE_TYPE (type);
10220
10221 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10222 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10223 We work around this by disabling this feature. See also
10224 add_subscript_info. */
10225 #ifndef MIPS_DEBUGGING_INFO
10226 while (TREE_CODE (element_type) == ARRAY_TYPE)
10227 element_type = TREE_TYPE (element_type);
10228
10229 gen_type_die (element_type, context_die);
10230 #endif
10231
10232 add_type_attribute (array_die, element_type, 0, 0, context_die);
10233 }
10234
10235 static void
10236 gen_set_type_die (type, context_die)
10237 tree type;
10238 dw_die_ref context_die;
10239 {
10240 dw_die_ref type_die
10241 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10242
10243 equate_type_number_to_die (type, type_die);
10244 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10245 }
10246
10247 #if 0
10248 static void
10249 gen_entry_point_die (decl, context_die)
10250 tree decl;
10251 dw_die_ref context_die;
10252 {
10253 tree origin = decl_ultimate_origin (decl);
10254 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10255
10256 if (origin != NULL)
10257 add_abstract_origin_attribute (decl_die, origin);
10258 else
10259 {
10260 add_name_and_src_coords_attributes (decl_die, decl);
10261 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10262 0, 0, context_die);
10263 }
10264
10265 if (DECL_ABSTRACT (decl))
10266 equate_decl_number_to_die (decl, decl_die);
10267 else
10268 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10269 }
10270 #endif
10271
10272 /* Walk through the list of incomplete types again, trying once more to
10273 emit full debugging info for them. */
10274
10275 static void
10276 retry_incomplete_types ()
10277 {
10278 int i;
10279
10280 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10281 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10282 }
10283
10284 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10285
10286 static void
10287 gen_inlined_enumeration_type_die (type, context_die)
10288 tree type;
10289 dw_die_ref context_die;
10290 {
10291 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10292
10293 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10294 be incomplete and such types are not marked. */
10295 add_abstract_origin_attribute (type_die, type);
10296 }
10297
10298 /* Generate a DIE to represent an inlined instance of a structure type. */
10299
10300 static void
10301 gen_inlined_structure_type_die (type, context_die)
10302 tree type;
10303 dw_die_ref context_die;
10304 {
10305 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10306
10307 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10308 be incomplete and such types are not marked. */
10309 add_abstract_origin_attribute (type_die, type);
10310 }
10311
10312 /* Generate a DIE to represent an inlined instance of a union type. */
10313
10314 static void
10315 gen_inlined_union_type_die (type, context_die)
10316 tree type;
10317 dw_die_ref context_die;
10318 {
10319 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10320
10321 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10322 be incomplete and such types are not marked. */
10323 add_abstract_origin_attribute (type_die, type);
10324 }
10325
10326 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10327 include all of the information about the enumeration values also. Each
10328 enumerated type name/value is listed as a child of the enumerated type
10329 DIE. */
10330
10331 static void
10332 gen_enumeration_type_die (type, context_die)
10333 tree type;
10334 dw_die_ref context_die;
10335 {
10336 dw_die_ref type_die = lookup_type_die (type);
10337
10338 if (type_die == NULL)
10339 {
10340 type_die = new_die (DW_TAG_enumeration_type,
10341 scope_die_for (type, context_die), type);
10342 equate_type_number_to_die (type, type_die);
10343 add_name_attribute (type_die, type_tag (type));
10344 }
10345 else if (! TYPE_SIZE (type))
10346 return;
10347 else
10348 remove_AT (type_die, DW_AT_declaration);
10349
10350 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10351 given enum type is incomplete, do not generate the DW_AT_byte_size
10352 attribute or the DW_AT_element_list attribute. */
10353 if (TYPE_SIZE (type))
10354 {
10355 tree link;
10356
10357 TREE_ASM_WRITTEN (type) = 1;
10358 add_byte_size_attribute (type_die, type);
10359 if (TYPE_STUB_DECL (type) != NULL_TREE)
10360 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10361
10362 /* If the first reference to this type was as the return type of an
10363 inline function, then it may not have a parent. Fix this now. */
10364 if (type_die->die_parent == NULL)
10365 add_child_die (scope_die_for (type, context_die), type_die);
10366
10367 for (link = TYPE_FIELDS (type);
10368 link != NULL; link = TREE_CHAIN (link))
10369 {
10370 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10371
10372 add_name_attribute (enum_die,
10373 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10374
10375 if (host_integerp (TREE_VALUE (link), 0))
10376 {
10377 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
10378 add_AT_int (enum_die, DW_AT_const_value,
10379 tree_low_cst (TREE_VALUE (link), 0));
10380 else
10381 add_AT_unsigned (enum_die, DW_AT_const_value,
10382 tree_low_cst (TREE_VALUE (link), 0));
10383 }
10384 }
10385 }
10386 else
10387 add_AT_flag (type_die, DW_AT_declaration, 1);
10388 }
10389
10390 /* Generate a DIE to represent either a real live formal parameter decl or to
10391 represent just the type of some formal parameter position in some function
10392 type.
10393
10394 Note that this routine is a bit unusual because its argument may be a
10395 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10396 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10397 node. If it's the former then this function is being called to output a
10398 DIE to represent a formal parameter object (or some inlining thereof). If
10399 it's the latter, then this function is only being called to output a
10400 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10401 argument type of some subprogram type. */
10402
10403 static dw_die_ref
10404 gen_formal_parameter_die (node, context_die)
10405 tree node;
10406 dw_die_ref context_die;
10407 {
10408 dw_die_ref parm_die
10409 = new_die (DW_TAG_formal_parameter, context_die, node);
10410 tree origin;
10411
10412 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10413 {
10414 case 'd':
10415 origin = decl_ultimate_origin (node);
10416 if (origin != NULL)
10417 add_abstract_origin_attribute (parm_die, origin);
10418 else
10419 {
10420 add_name_and_src_coords_attributes (parm_die, node);
10421 add_type_attribute (parm_die, TREE_TYPE (node),
10422 TREE_READONLY (node),
10423 TREE_THIS_VOLATILE (node),
10424 context_die);
10425 if (DECL_ARTIFICIAL (node))
10426 add_AT_flag (parm_die, DW_AT_artificial, 1);
10427 }
10428
10429 equate_decl_number_to_die (node, parm_die);
10430 if (! DECL_ABSTRACT (node))
10431 add_location_or_const_value_attribute (parm_die, node);
10432
10433 break;
10434
10435 case 't':
10436 /* We were called with some kind of a ..._TYPE node. */
10437 add_type_attribute (parm_die, node, 0, 0, context_die);
10438 break;
10439
10440 default:
10441 abort ();
10442 }
10443
10444 return parm_die;
10445 }
10446
10447 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10448 at the end of an (ANSI prototyped) formal parameters list. */
10449
10450 static void
10451 gen_unspecified_parameters_die (decl_or_type, context_die)
10452 tree decl_or_type;
10453 dw_die_ref context_die;
10454 {
10455 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10456 }
10457
10458 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10459 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10460 parameters as specified in some function type specification (except for
10461 those which appear as part of a function *definition*). */
10462
10463 static void
10464 gen_formal_types_die (function_or_method_type, context_die)
10465 tree function_or_method_type;
10466 dw_die_ref context_die;
10467 {
10468 tree link;
10469 tree formal_type = NULL;
10470 tree first_parm_type;
10471 tree arg;
10472
10473 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10474 {
10475 arg = DECL_ARGUMENTS (function_or_method_type);
10476 function_or_method_type = TREE_TYPE (function_or_method_type);
10477 }
10478 else
10479 arg = NULL_TREE;
10480
10481 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10482
10483 /* Make our first pass over the list of formal parameter types and output a
10484 DW_TAG_formal_parameter DIE for each one. */
10485 for (link = first_parm_type; link; )
10486 {
10487 dw_die_ref parm_die;
10488
10489 formal_type = TREE_VALUE (link);
10490 if (formal_type == void_type_node)
10491 break;
10492
10493 /* Output a (nameless) DIE to represent the formal parameter itself. */
10494 parm_die = gen_formal_parameter_die (formal_type, context_die);
10495 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10496 && link == first_parm_type)
10497 || (arg && DECL_ARTIFICIAL (arg)))
10498 add_AT_flag (parm_die, DW_AT_artificial, 1);
10499
10500 link = TREE_CHAIN (link);
10501 if (arg)
10502 arg = TREE_CHAIN (arg);
10503 }
10504
10505 /* If this function type has an ellipsis, add a
10506 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10507 if (formal_type != void_type_node)
10508 gen_unspecified_parameters_die (function_or_method_type, context_die);
10509
10510 /* Make our second (and final) pass over the list of formal parameter types
10511 and output DIEs to represent those types (as necessary). */
10512 for (link = TYPE_ARG_TYPES (function_or_method_type);
10513 link && TREE_VALUE (link);
10514 link = TREE_CHAIN (link))
10515 gen_type_die (TREE_VALUE (link), context_die);
10516 }
10517
10518 /* We want to generate the DIE for TYPE so that we can generate the
10519 die for MEMBER, which has been defined; we will need to refer back
10520 to the member declaration nested within TYPE. If we're trying to
10521 generate minimal debug info for TYPE, processing TYPE won't do the
10522 trick; we need to attach the member declaration by hand. */
10523
10524 static void
10525 gen_type_die_for_member (type, member, context_die)
10526 tree type, member;
10527 dw_die_ref context_die;
10528 {
10529 gen_type_die (type, context_die);
10530
10531 /* If we're trying to avoid duplicate debug info, we may not have
10532 emitted the member decl for this function. Emit it now. */
10533 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10534 && ! lookup_decl_die (member))
10535 {
10536 if (decl_ultimate_origin (member))
10537 abort ();
10538
10539 push_decl_scope (type);
10540 if (TREE_CODE (member) == FUNCTION_DECL)
10541 gen_subprogram_die (member, lookup_type_die (type));
10542 else
10543 gen_variable_die (member, lookup_type_die (type));
10544
10545 pop_decl_scope ();
10546 }
10547 }
10548
10549 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10550 may later generate inlined and/or out-of-line instances of. */
10551
10552 static void
10553 dwarf2out_abstract_function (decl)
10554 tree decl;
10555 {
10556 dw_die_ref old_die;
10557 tree save_fn;
10558 tree context;
10559 int was_abstract = DECL_ABSTRACT (decl);
10560
10561 /* Make sure we have the actual abstract inline, not a clone. */
10562 decl = DECL_ORIGIN (decl);
10563
10564 old_die = lookup_decl_die (decl);
10565 if (old_die && get_AT_unsigned (old_die, DW_AT_inline))
10566 /* We've already generated the abstract instance. */
10567 return;
10568
10569 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10570 we don't get confused by DECL_ABSTRACT. */
10571 if (debug_info_level > DINFO_LEVEL_TERSE)
10572 {
10573 context = decl_class_context (decl);
10574 if (context)
10575 gen_type_die_for_member
10576 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10577 }
10578
10579 /* Pretend we've just finished compiling this function. */
10580 save_fn = current_function_decl;
10581 current_function_decl = decl;
10582
10583 set_decl_abstract_flags (decl, 1);
10584 dwarf2out_decl (decl);
10585 if (! was_abstract)
10586 set_decl_abstract_flags (decl, 0);
10587
10588 current_function_decl = save_fn;
10589 }
10590
10591 /* Generate a DIE to represent a declared function (either file-scope or
10592 block-local). */
10593
10594 static void
10595 gen_subprogram_die (decl, context_die)
10596 tree decl;
10597 dw_die_ref context_die;
10598 {
10599 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10600 tree origin = decl_ultimate_origin (decl);
10601 dw_die_ref subr_die;
10602 rtx fp_reg;
10603 tree fn_arg_types;
10604 tree outer_scope;
10605 dw_die_ref old_die = lookup_decl_die (decl);
10606 int declaration = (current_function_decl != decl
10607 || class_scope_p (context_die));
10608
10609 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10610 started to generate the abstract instance of an inline, decided to output
10611 its containing class, and proceeded to emit the declaration of the inline
10612 from the member list for the class. If so, DECLARATION takes priority;
10613 we'll get back to the abstract instance when done with the class. */
10614
10615 /* The class-scope declaration DIE must be the primary DIE. */
10616 if (origin && declaration && class_scope_p (context_die))
10617 {
10618 origin = NULL;
10619 if (old_die)
10620 abort ();
10621 }
10622
10623 if (origin != NULL)
10624 {
10625 if (declaration && ! local_scope_p (context_die))
10626 abort ();
10627
10628 /* Fixup die_parent for the abstract instance of a nested
10629 inline function. */
10630 if (old_die && old_die->die_parent == NULL)
10631 add_child_die (context_die, old_die);
10632
10633 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10634 add_abstract_origin_attribute (subr_die, origin);
10635 }
10636 else if (old_die)
10637 {
10638 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10639
10640 if (!get_AT_flag (old_die, DW_AT_declaration)
10641 /* We can have a normal definition following an inline one in the
10642 case of redefinition of GNU C extern inlines.
10643 It seems reasonable to use AT_specification in this case. */
10644 && !get_AT_unsigned (old_die, DW_AT_inline))
10645 {
10646 /* ??? This can happen if there is a bug in the program, for
10647 instance, if it has duplicate function definitions. Ideally,
10648 we should detect this case and ignore it. For now, if we have
10649 already reported an error, any error at all, then assume that
10650 we got here because of an input error, not a dwarf2 bug. */
10651 if (errorcount)
10652 return;
10653 abort ();
10654 }
10655
10656 /* If the definition comes from the same place as the declaration,
10657 maybe use the old DIE. We always want the DIE for this function
10658 that has the *_pc attributes to be under comp_unit_die so the
10659 debugger can find it. We also need to do this for abstract
10660 instances of inlines, since the spec requires the out-of-line copy
10661 to have the same parent. For local class methods, this doesn't
10662 apply; we just use the old DIE. */
10663 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
10664 && (DECL_ARTIFICIAL (decl)
10665 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10666 && (get_AT_unsigned (old_die, DW_AT_decl_line)
10667 == (unsigned) DECL_SOURCE_LINE (decl)))))
10668 {
10669 subr_die = old_die;
10670
10671 /* Clear out the declaration attribute and the parm types. */
10672 remove_AT (subr_die, DW_AT_declaration);
10673 remove_children (subr_die);
10674 }
10675 else
10676 {
10677 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10678 add_AT_die_ref (subr_die, DW_AT_specification, old_die);
10679 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10680 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
10681 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10682 != (unsigned) DECL_SOURCE_LINE (decl))
10683 add_AT_unsigned
10684 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10685 }
10686 }
10687 else
10688 {
10689 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10690
10691 if (TREE_PUBLIC (decl))
10692 add_AT_flag (subr_die, DW_AT_external, 1);
10693
10694 add_name_and_src_coords_attributes (subr_die, decl);
10695 if (debug_info_level > DINFO_LEVEL_TERSE)
10696 {
10697 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
10698 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
10699 0, 0, context_die);
10700 }
10701
10702 add_pure_or_virtual_attribute (subr_die, decl);
10703 if (DECL_ARTIFICIAL (decl))
10704 add_AT_flag (subr_die, DW_AT_artificial, 1);
10705
10706 if (TREE_PROTECTED (decl))
10707 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
10708 else if (TREE_PRIVATE (decl))
10709 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
10710 }
10711
10712 if (declaration)
10713 {
10714 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
10715 {
10716 add_AT_flag (subr_die, DW_AT_declaration, 1);
10717
10718 /* The first time we see a member function, it is in the context of
10719 the class to which it belongs. We make sure of this by emitting
10720 the class first. The next time is the definition, which is
10721 handled above. The two may come from the same source text. */
10722 if (DECL_CONTEXT (decl) || DECL_ABSTRACT (decl))
10723 equate_decl_number_to_die (decl, subr_die);
10724 }
10725 }
10726 else if (DECL_ABSTRACT (decl))
10727 {
10728 if (DECL_INLINE (decl) && !flag_no_inline)
10729 {
10730 /* ??? Checking DECL_DEFER_OUTPUT is correct for static
10731 inline functions, but not for extern inline functions.
10732 We can't get this completely correct because information
10733 about whether the function was declared inline is not
10734 saved anywhere. */
10735 if (DECL_DEFER_OUTPUT (decl))
10736 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
10737 else
10738 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
10739 }
10740 else
10741 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
10742
10743 equate_decl_number_to_die (decl, subr_die);
10744 }
10745 else if (!DECL_EXTERNAL (decl))
10746 {
10747 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
10748 equate_decl_number_to_die (decl, subr_die);
10749
10750 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
10751 current_function_funcdef_no);
10752 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
10753 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10754 current_function_funcdef_no);
10755 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
10756
10757 add_pubname (decl, subr_die);
10758 add_arange (decl, subr_die);
10759
10760 #ifdef MIPS_DEBUGGING_INFO
10761 /* Add a reference to the FDE for this routine. */
10762 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
10763 #endif
10764
10765 /* Define the "frame base" location for this routine. We use the
10766 frame pointer or stack pointer registers, since the RTL for local
10767 variables is relative to one of them. */
10768 fp_reg
10769 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
10770 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
10771
10772 #if 0
10773 /* ??? This fails for nested inline functions, because context_display
10774 is not part of the state saved/restored for inline functions. */
10775 if (current_function_needs_context)
10776 add_AT_location_description (subr_die, DW_AT_static_link,
10777 loc_descriptor (lookup_static_chain (decl)));
10778 #endif
10779 }
10780
10781 /* Now output descriptions of the arguments for this function. This gets
10782 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
10783 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
10784 `...' at the end of the formal parameter list. In order to find out if
10785 there was a trailing ellipsis or not, we must instead look at the type
10786 associated with the FUNCTION_DECL. This will be a node of type
10787 FUNCTION_TYPE. If the chain of type nodes hanging off of this
10788 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
10789 an ellipsis at the end. */
10790
10791 /* In the case where we are describing a mere function declaration, all we
10792 need to do here (and all we *can* do here) is to describe the *types* of
10793 its formal parameters. */
10794 if (debug_info_level <= DINFO_LEVEL_TERSE)
10795 ;
10796 else if (declaration)
10797 gen_formal_types_die (decl, subr_die);
10798 else
10799 {
10800 /* Generate DIEs to represent all known formal parameters */
10801 tree arg_decls = DECL_ARGUMENTS (decl);
10802 tree parm;
10803
10804 /* When generating DIEs, generate the unspecified_parameters DIE
10805 instead if we come across the arg "__builtin_va_alist" */
10806 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
10807 if (TREE_CODE (parm) == PARM_DECL)
10808 {
10809 if (DECL_NAME (parm)
10810 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
10811 "__builtin_va_alist"))
10812 gen_unspecified_parameters_die (parm, subr_die);
10813 else
10814 gen_decl_die (parm, subr_die);
10815 }
10816
10817 /* Decide whether we need an unspecified_parameters DIE at the end.
10818 There are 2 more cases to do this for: 1) the ansi ... declaration -
10819 this is detectable when the end of the arg list is not a
10820 void_type_node 2) an unprototyped function declaration (not a
10821 definition). This just means that we have no info about the
10822 parameters at all. */
10823 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
10824 if (fn_arg_types != NULL)
10825 {
10826 /* this is the prototyped case, check for ... */
10827 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
10828 gen_unspecified_parameters_die (decl, subr_die);
10829 }
10830 else if (DECL_INITIAL (decl) == NULL_TREE)
10831 gen_unspecified_parameters_die (decl, subr_die);
10832 }
10833
10834 /* Output Dwarf info for all of the stuff within the body of the function
10835 (if it has one - it may be just a declaration). */
10836 outer_scope = DECL_INITIAL (decl);
10837
10838 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
10839 a function. This BLOCK actually represents the outermost binding contour
10840 for the function, i.e. the contour in which the function's formal
10841 parameters and labels get declared. Curiously, it appears that the front
10842 end doesn't actually put the PARM_DECL nodes for the current function onto
10843 the BLOCK_VARS list for this outer scope, but are strung off of the
10844 DECL_ARGUMENTS list for the function instead.
10845
10846 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
10847 the LABEL_DECL nodes for the function however, and we output DWARF info
10848 for those in decls_for_scope. Just within the `outer_scope' there will be
10849 a BLOCK node representing the function's outermost pair of curly braces,
10850 and any blocks used for the base and member initializers of a C++
10851 constructor function. */
10852 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
10853 {
10854 current_function_has_inlines = 0;
10855 decls_for_scope (outer_scope, subr_die, 0);
10856
10857 #if 0 && defined (MIPS_DEBUGGING_INFO)
10858 if (current_function_has_inlines)
10859 {
10860 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
10861 if (! comp_unit_has_inlines)
10862 {
10863 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
10864 comp_unit_has_inlines = 1;
10865 }
10866 }
10867 #endif
10868 }
10869 }
10870
10871 /* Generate a DIE to represent a declared data object. */
10872
10873 static void
10874 gen_variable_die (decl, context_die)
10875 tree decl;
10876 dw_die_ref context_die;
10877 {
10878 tree origin = decl_ultimate_origin (decl);
10879 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
10880
10881 dw_die_ref old_die = lookup_decl_die (decl);
10882 int declaration = (DECL_EXTERNAL (decl)
10883 || class_scope_p (context_die));
10884
10885 if (origin != NULL)
10886 add_abstract_origin_attribute (var_die, origin);
10887
10888 /* Loop unrolling can create multiple blocks that refer to the same
10889 static variable, so we must test for the DW_AT_declaration flag.
10890
10891 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
10892 copy decls and set the DECL_ABSTRACT flag on them instead of
10893 sharing them.
10894
10895 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
10896 else if (old_die && TREE_STATIC (decl)
10897 && get_AT_flag (old_die, DW_AT_declaration) == 1)
10898 {
10899 /* This is a definition of a C++ class level static. */
10900 add_AT_die_ref (var_die, DW_AT_specification, old_die);
10901 if (DECL_NAME (decl))
10902 {
10903 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10904
10905 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10906 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
10907
10908 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10909 != (unsigned) DECL_SOURCE_LINE (decl))
10910
10911 add_AT_unsigned (var_die, DW_AT_decl_line,
10912 DECL_SOURCE_LINE (decl));
10913 }
10914 }
10915 else
10916 {
10917 add_name_and_src_coords_attributes (var_die, decl);
10918 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
10919 TREE_THIS_VOLATILE (decl), context_die);
10920
10921 if (TREE_PUBLIC (decl))
10922 add_AT_flag (var_die, DW_AT_external, 1);
10923
10924 if (DECL_ARTIFICIAL (decl))
10925 add_AT_flag (var_die, DW_AT_artificial, 1);
10926
10927 if (TREE_PROTECTED (decl))
10928 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
10929 else if (TREE_PRIVATE (decl))
10930 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
10931 }
10932
10933 if (declaration)
10934 add_AT_flag (var_die, DW_AT_declaration, 1);
10935
10936 if (class_scope_p (context_die) || DECL_ABSTRACT (decl))
10937 equate_decl_number_to_die (decl, var_die);
10938
10939 if (! declaration && ! DECL_ABSTRACT (decl))
10940 {
10941 add_location_or_const_value_attribute (var_die, decl);
10942 add_pubname (decl, var_die);
10943 }
10944 else
10945 tree_add_const_value_attribute (var_die, decl);
10946 }
10947
10948 /* Generate a DIE to represent a label identifier. */
10949
10950 static void
10951 gen_label_die (decl, context_die)
10952 tree decl;
10953 dw_die_ref context_die;
10954 {
10955 tree origin = decl_ultimate_origin (decl);
10956 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
10957 rtx insn;
10958 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10959
10960 if (origin != NULL)
10961 add_abstract_origin_attribute (lbl_die, origin);
10962 else
10963 add_name_and_src_coords_attributes (lbl_die, decl);
10964
10965 if (DECL_ABSTRACT (decl))
10966 equate_decl_number_to_die (decl, lbl_die);
10967 else
10968 {
10969 insn = DECL_RTL (decl);
10970
10971 /* Deleted labels are programmer specified labels which have been
10972 eliminated because of various optimisations. We still emit them
10973 here so that it is possible to put breakpoints on them. */
10974 if (GET_CODE (insn) == CODE_LABEL
10975 || ((GET_CODE (insn) == NOTE
10976 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
10977 {
10978 /* When optimization is enabled (via -O) some parts of the compiler
10979 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
10980 represent source-level labels which were explicitly declared by
10981 the user. This really shouldn't be happening though, so catch
10982 it if it ever does happen. */
10983 if (INSN_DELETED_P (insn))
10984 abort ();
10985
10986 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
10987 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
10988 }
10989 }
10990 }
10991
10992 /* Generate a DIE for a lexical block. */
10993
10994 static void
10995 gen_lexical_block_die (stmt, context_die, depth)
10996 tree stmt;
10997 dw_die_ref context_die;
10998 int depth;
10999 {
11000 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11001 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11002
11003 if (! BLOCK_ABSTRACT (stmt))
11004 {
11005 if (BLOCK_FRAGMENT_CHAIN (stmt))
11006 {
11007 tree chain;
11008
11009 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11010
11011 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11012 do
11013 {
11014 add_ranges (chain);
11015 chain = BLOCK_FRAGMENT_CHAIN (chain);
11016 }
11017 while (chain);
11018 add_ranges (NULL);
11019 }
11020 else
11021 {
11022 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11023 BLOCK_NUMBER (stmt));
11024 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11025 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11026 BLOCK_NUMBER (stmt));
11027 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11028 }
11029 }
11030
11031 decls_for_scope (stmt, stmt_die, depth);
11032 }
11033
11034 /* Generate a DIE for an inlined subprogram. */
11035
11036 static void
11037 gen_inlined_subroutine_die (stmt, context_die, depth)
11038 tree stmt;
11039 dw_die_ref context_die;
11040 int depth;
11041 {
11042 if (! BLOCK_ABSTRACT (stmt))
11043 {
11044 dw_die_ref subr_die
11045 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11046 tree decl = block_ultimate_origin (stmt);
11047 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11048
11049 /* Emit info for the abstract instance first, if we haven't yet. */
11050 dwarf2out_abstract_function (decl);
11051
11052 add_abstract_origin_attribute (subr_die, decl);
11053 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11054 BLOCK_NUMBER (stmt));
11055 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11056 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11057 BLOCK_NUMBER (stmt));
11058 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11059 decls_for_scope (stmt, subr_die, depth);
11060 current_function_has_inlines = 1;
11061 }
11062 else
11063 /* We may get here if we're the outer block of function A that was
11064 inlined into function B that was inlined into function C. When
11065 generating debugging info for C, dwarf2out_abstract_function(B)
11066 would mark all inlined blocks as abstract, including this one.
11067 So, we wouldn't (and shouldn't) expect labels to be generated
11068 for this one. Instead, just emit debugging info for
11069 declarations within the block. This is particularly important
11070 in the case of initializers of arguments passed from B to us:
11071 if they're statement expressions containing declarations, we
11072 wouldn't generate dies for their abstract variables, and then,
11073 when generating dies for the real variables, we'd die (pun
11074 intended :-) */
11075 gen_lexical_block_die (stmt, context_die, depth);
11076 }
11077
11078 /* Generate a DIE for a field in a record, or structure. */
11079
11080 static void
11081 gen_field_die (decl, context_die)
11082 tree decl;
11083 dw_die_ref context_die;
11084 {
11085 dw_die_ref decl_die = new_die (DW_TAG_member, context_die, decl);
11086
11087 add_name_and_src_coords_attributes (decl_die, decl);
11088 add_type_attribute (decl_die, member_declared_type (decl),
11089 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11090 context_die);
11091
11092 if (DECL_BIT_FIELD_TYPE (decl))
11093 {
11094 add_byte_size_attribute (decl_die, decl);
11095 add_bit_size_attribute (decl_die, decl);
11096 add_bit_offset_attribute (decl_die, decl);
11097 }
11098
11099 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11100 add_data_member_location_attribute (decl_die, decl);
11101
11102 if (DECL_ARTIFICIAL (decl))
11103 add_AT_flag (decl_die, DW_AT_artificial, 1);
11104
11105 if (TREE_PROTECTED (decl))
11106 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11107 else if (TREE_PRIVATE (decl))
11108 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11109 }
11110
11111 #if 0
11112 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11113 Use modified_type_die instead.
11114 We keep this code here just in case these types of DIEs may be needed to
11115 represent certain things in other languages (e.g. Pascal) someday. */
11116
11117 static void
11118 gen_pointer_type_die (type, context_die)
11119 tree type;
11120 dw_die_ref context_die;
11121 {
11122 dw_die_ref ptr_die
11123 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11124
11125 equate_type_number_to_die (type, ptr_die);
11126 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11127 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11128 }
11129
11130 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11131 Use modified_type_die instead.
11132 We keep this code here just in case these types of DIEs may be needed to
11133 represent certain things in other languages (e.g. Pascal) someday. */
11134
11135 static void
11136 gen_reference_type_die (type, context_die)
11137 tree type;
11138 dw_die_ref context_die;
11139 {
11140 dw_die_ref ref_die
11141 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11142
11143 equate_type_number_to_die (type, ref_die);
11144 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11145 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11146 }
11147 #endif
11148
11149 /* Generate a DIE for a pointer to a member type. */
11150
11151 static void
11152 gen_ptr_to_mbr_type_die (type, context_die)
11153 tree type;
11154 dw_die_ref context_die;
11155 {
11156 dw_die_ref ptr_die
11157 = new_die (DW_TAG_ptr_to_member_type,
11158 scope_die_for (type, context_die), type);
11159
11160 equate_type_number_to_die (type, ptr_die);
11161 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11162 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11163 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11164 }
11165
11166 /* Generate the DIE for the compilation unit. */
11167
11168 static dw_die_ref
11169 gen_compile_unit_die (filename)
11170 const char *filename;
11171 {
11172 dw_die_ref die;
11173 char producer[250];
11174 const char *wd = getpwd ();
11175 const char *language_string = lang_hooks.name;
11176 int language;
11177
11178 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11179 add_name_attribute (die, filename);
11180
11181 if (wd != NULL && filename[0] != DIR_SEPARATOR)
11182 add_AT_string (die, DW_AT_comp_dir, wd);
11183
11184 sprintf (producer, "%s %s", language_string, version_string);
11185
11186 #ifdef MIPS_DEBUGGING_INFO
11187 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11188 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11189 not appear in the producer string, the debugger reaches the conclusion
11190 that the object file is stripped and has no debugging information.
11191 To get the MIPS/SGI debugger to believe that there is debugging
11192 information in the object file, we add a -g to the producer string. */
11193 if (debug_info_level > DINFO_LEVEL_TERSE)
11194 strcat (producer, " -g");
11195 #endif
11196
11197 add_AT_string (die, DW_AT_producer, producer);
11198
11199 if (strcmp (language_string, "GNU C++") == 0)
11200 language = DW_LANG_C_plus_plus;
11201 else if (strcmp (language_string, "GNU Ada") == 0)
11202 language = DW_LANG_Ada83;
11203 else if (strcmp (language_string, "GNU F77") == 0)
11204 language = DW_LANG_Fortran77;
11205 else if (strcmp (language_string, "GNU Pascal") == 0)
11206 language = DW_LANG_Pascal83;
11207 else if (strcmp (language_string, "GNU Java") == 0)
11208 language = DW_LANG_Java;
11209 else
11210 language = DW_LANG_C89;
11211
11212 add_AT_unsigned (die, DW_AT_language, language);
11213 return die;
11214 }
11215
11216 /* Generate a DIE for a string type. */
11217
11218 static void
11219 gen_string_type_die (type, context_die)
11220 tree type;
11221 dw_die_ref context_die;
11222 {
11223 dw_die_ref type_die
11224 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11225
11226 equate_type_number_to_die (type, type_die);
11227
11228 /* ??? Fudge the string length attribute for now.
11229 TODO: add string length info. */
11230 #if 0
11231 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11232 bound_representation (upper_bound, 0, 'u');
11233 #endif
11234 }
11235
11236 /* Generate the DIE for a base class. */
11237
11238 static void
11239 gen_inheritance_die (binfo, context_die)
11240 tree binfo;
11241 dw_die_ref context_die;
11242 {
11243 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11244
11245 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11246 add_data_member_location_attribute (die, binfo);
11247
11248 if (TREE_VIA_VIRTUAL (binfo))
11249 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11250
11251 if (TREE_VIA_PUBLIC (binfo))
11252 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11253 else if (TREE_VIA_PROTECTED (binfo))
11254 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11255 }
11256
11257 /* Generate a DIE for a class member. */
11258
11259 static void
11260 gen_member_die (type, context_die)
11261 tree type;
11262 dw_die_ref context_die;
11263 {
11264 tree member;
11265 dw_die_ref child;
11266
11267 /* If this is not an incomplete type, output descriptions of each of its
11268 members. Note that as we output the DIEs necessary to represent the
11269 members of this record or union type, we will also be trying to output
11270 DIEs to represent the *types* of those members. However the `type'
11271 function (above) will specifically avoid generating type DIEs for member
11272 types *within* the list of member DIEs for this (containing) type except
11273 for those types (of members) which are explicitly marked as also being
11274 members of this (containing) type themselves. The g++ front- end can
11275 force any given type to be treated as a member of some other (containing)
11276 type by setting the TYPE_CONTEXT of the given (member) type to point to
11277 the TREE node representing the appropriate (containing) type. */
11278
11279 /* First output info about the base classes. */
11280 if (TYPE_BINFO (type) && TYPE_BINFO_BASETYPES (type))
11281 {
11282 tree bases = TYPE_BINFO_BASETYPES (type);
11283 int n_bases = TREE_VEC_LENGTH (bases);
11284 int i;
11285
11286 for (i = 0; i < n_bases; i++)
11287 gen_inheritance_die (TREE_VEC_ELT (bases, i), context_die);
11288 }
11289
11290 /* Now output info about the data members and type members. */
11291 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11292 {
11293 /* If we thought we were generating minimal debug info for TYPE
11294 and then changed our minds, some of the member declarations
11295 may have already been defined. Don't define them again, but
11296 do put them in the right order. */
11297
11298 child = lookup_decl_die (member);
11299 if (child)
11300 splice_child_die (context_die, child);
11301 else
11302 gen_decl_die (member, context_die);
11303 }
11304
11305 /* Now output info about the function members (if any). */
11306 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11307 {
11308 /* Don't include clones in the member list. */
11309 if (DECL_ABSTRACT_ORIGIN (member))
11310 continue;
11311
11312 child = lookup_decl_die (member);
11313 if (child)
11314 splice_child_die (context_die, child);
11315 else
11316 gen_decl_die (member, context_die);
11317 }
11318 }
11319
11320 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11321 is set, we pretend that the type was never defined, so we only get the
11322 member DIEs needed by later specification DIEs. */
11323
11324 static void
11325 gen_struct_or_union_type_die (type, context_die)
11326 tree type;
11327 dw_die_ref context_die;
11328 {
11329 dw_die_ref type_die = lookup_type_die (type);
11330 dw_die_ref scope_die = 0;
11331 int nested = 0;
11332 int complete = (TYPE_SIZE (type)
11333 && (! TYPE_STUB_DECL (type)
11334 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11335
11336 if (type_die && ! complete)
11337 return;
11338
11339 if (TYPE_CONTEXT (type) != NULL_TREE
11340 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type)))
11341 nested = 1;
11342
11343 scope_die = scope_die_for (type, context_die);
11344
11345 if (! type_die || (nested && scope_die == comp_unit_die))
11346 /* First occurrence of type or toplevel definition of nested class. */
11347 {
11348 dw_die_ref old_die = type_die;
11349
11350 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11351 ? DW_TAG_structure_type : DW_TAG_union_type,
11352 scope_die, type);
11353 equate_type_number_to_die (type, type_die);
11354 if (old_die)
11355 add_AT_die_ref (type_die, DW_AT_specification, old_die);
11356 else
11357 add_name_attribute (type_die, type_tag (type));
11358 }
11359 else
11360 remove_AT (type_die, DW_AT_declaration);
11361
11362 /* If this type has been completed, then give it a byte_size attribute and
11363 then give a list of members. */
11364 if (complete)
11365 {
11366 /* Prevent infinite recursion in cases where the type of some member of
11367 this type is expressed in terms of this type itself. */
11368 TREE_ASM_WRITTEN (type) = 1;
11369 add_byte_size_attribute (type_die, type);
11370 if (TYPE_STUB_DECL (type) != NULL_TREE)
11371 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11372
11373 /* If the first reference to this type was as the return type of an
11374 inline function, then it may not have a parent. Fix this now. */
11375 if (type_die->die_parent == NULL)
11376 add_child_die (scope_die, type_die);
11377
11378 push_decl_scope (type);
11379 gen_member_die (type, type_die);
11380 pop_decl_scope ();
11381
11382 /* GNU extension: Record what type our vtable lives in. */
11383 if (TYPE_VFIELD (type))
11384 {
11385 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11386
11387 gen_type_die (vtype, context_die);
11388 add_AT_die_ref (type_die, DW_AT_containing_type,
11389 lookup_type_die (vtype));
11390 }
11391 }
11392 else
11393 {
11394 add_AT_flag (type_die, DW_AT_declaration, 1);
11395
11396 /* We don't need to do this for function-local types. */
11397 if (TYPE_STUB_DECL (type)
11398 && ! decl_function_context (TYPE_STUB_DECL (type)))
11399 VARRAY_PUSH_TREE (incomplete_types, type);
11400 }
11401 }
11402
11403 /* Generate a DIE for a subroutine _type_. */
11404
11405 static void
11406 gen_subroutine_type_die (type, context_die)
11407 tree type;
11408 dw_die_ref context_die;
11409 {
11410 tree return_type = TREE_TYPE (type);
11411 dw_die_ref subr_die
11412 = new_die (DW_TAG_subroutine_type,
11413 scope_die_for (type, context_die), type);
11414
11415 equate_type_number_to_die (type, subr_die);
11416 add_prototyped_attribute (subr_die, type);
11417 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11418 gen_formal_types_die (type, subr_die);
11419 }
11420
11421 /* Generate a DIE for a type definition */
11422
11423 static void
11424 gen_typedef_die (decl, context_die)
11425 tree decl;
11426 dw_die_ref context_die;
11427 {
11428 dw_die_ref type_die;
11429 tree origin;
11430
11431 if (TREE_ASM_WRITTEN (decl))
11432 return;
11433
11434 TREE_ASM_WRITTEN (decl) = 1;
11435 type_die = new_die (DW_TAG_typedef, context_die, decl);
11436 origin = decl_ultimate_origin (decl);
11437 if (origin != NULL)
11438 add_abstract_origin_attribute (type_die, origin);
11439 else
11440 {
11441 tree type;
11442
11443 add_name_and_src_coords_attributes (type_die, decl);
11444 if (DECL_ORIGINAL_TYPE (decl))
11445 {
11446 type = DECL_ORIGINAL_TYPE (decl);
11447
11448 if (type == TREE_TYPE (decl))
11449 abort ();
11450 else
11451 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11452 }
11453 else
11454 type = TREE_TYPE (decl);
11455
11456 add_type_attribute (type_die, type, TREE_READONLY (decl),
11457 TREE_THIS_VOLATILE (decl), context_die);
11458 }
11459
11460 if (DECL_ABSTRACT (decl))
11461 equate_decl_number_to_die (decl, type_die);
11462 }
11463
11464 /* Generate a type description DIE. */
11465
11466 static void
11467 gen_type_die (type, context_die)
11468 tree type;
11469 dw_die_ref context_die;
11470 {
11471 int need_pop;
11472
11473 if (type == NULL_TREE || type == error_mark_node)
11474 return;
11475
11476 /* We are going to output a DIE to represent the unqualified version
11477 of this type (i.e. without any const or volatile qualifiers) so
11478 get the main variant (i.e. the unqualified version) of this type
11479 now. (Vectors are special because the debugging info is in the
11480 cloned type itself). */
11481 if (TREE_CODE (type) != VECTOR_TYPE)
11482 type = type_main_variant (type);
11483
11484 if (TREE_ASM_WRITTEN (type))
11485 return;
11486
11487 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11488 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11489 {
11490 /* Prevent broken recursion; we can't hand off to the same type. */
11491 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
11492 abort ();
11493
11494 TREE_ASM_WRITTEN (type) = 1;
11495 gen_decl_die (TYPE_NAME (type), context_die);
11496 return;
11497 }
11498
11499 switch (TREE_CODE (type))
11500 {
11501 case ERROR_MARK:
11502 break;
11503
11504 case POINTER_TYPE:
11505 case REFERENCE_TYPE:
11506 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11507 ensures that the gen_type_die recursion will terminate even if the
11508 type is recursive. Recursive types are possible in Ada. */
11509 /* ??? We could perhaps do this for all types before the switch
11510 statement. */
11511 TREE_ASM_WRITTEN (type) = 1;
11512
11513 /* For these types, all that is required is that we output a DIE (or a
11514 set of DIEs) to represent the "basis" type. */
11515 gen_type_die (TREE_TYPE (type), context_die);
11516 break;
11517
11518 case OFFSET_TYPE:
11519 /* This code is used for C++ pointer-to-data-member types.
11520 Output a description of the relevant class type. */
11521 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
11522
11523 /* Output a description of the type of the object pointed to. */
11524 gen_type_die (TREE_TYPE (type), context_die);
11525
11526 /* Now output a DIE to represent this pointer-to-data-member type
11527 itself. */
11528 gen_ptr_to_mbr_type_die (type, context_die);
11529 break;
11530
11531 case SET_TYPE:
11532 gen_type_die (TYPE_DOMAIN (type), context_die);
11533 gen_set_type_die (type, context_die);
11534 break;
11535
11536 case FILE_TYPE:
11537 gen_type_die (TREE_TYPE (type), context_die);
11538 abort (); /* No way to represent these in Dwarf yet! */
11539 break;
11540
11541 case FUNCTION_TYPE:
11542 /* Force out return type (in case it wasn't forced out already). */
11543 gen_type_die (TREE_TYPE (type), context_die);
11544 gen_subroutine_type_die (type, context_die);
11545 break;
11546
11547 case METHOD_TYPE:
11548 /* Force out return type (in case it wasn't forced out already). */
11549 gen_type_die (TREE_TYPE (type), context_die);
11550 gen_subroutine_type_die (type, context_die);
11551 break;
11552
11553 case ARRAY_TYPE:
11554 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11555 {
11556 gen_type_die (TREE_TYPE (type), context_die);
11557 gen_string_type_die (type, context_die);
11558 }
11559 else
11560 gen_array_type_die (type, context_die);
11561 break;
11562
11563 case VECTOR_TYPE:
11564 gen_array_type_die (type, context_die);
11565 break;
11566
11567 case ENUMERAL_TYPE:
11568 case RECORD_TYPE:
11569 case UNION_TYPE:
11570 case QUAL_UNION_TYPE:
11571 /* If this is a nested type whose containing class hasn't been written
11572 out yet, writing it out will cover this one, too. This does not apply
11573 to instantiations of member class templates; they need to be added to
11574 the containing class as they are generated. FIXME: This hurts the
11575 idea of combining type decls from multiple TUs, since we can't predict
11576 what set of template instantiations we'll get. */
11577 if (TYPE_CONTEXT (type)
11578 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11579 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
11580 {
11581 gen_type_die (TYPE_CONTEXT (type), context_die);
11582
11583 if (TREE_ASM_WRITTEN (type))
11584 return;
11585
11586 /* If that failed, attach ourselves to the stub. */
11587 push_decl_scope (TYPE_CONTEXT (type));
11588 context_die = lookup_type_die (TYPE_CONTEXT (type));
11589 need_pop = 1;
11590 }
11591 else
11592 need_pop = 0;
11593
11594 if (TREE_CODE (type) == ENUMERAL_TYPE)
11595 gen_enumeration_type_die (type, context_die);
11596 else
11597 gen_struct_or_union_type_die (type, context_die);
11598
11599 if (need_pop)
11600 pop_decl_scope ();
11601
11602 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11603 it up if it is ever completed. gen_*_type_die will set it for us
11604 when appropriate. */
11605 return;
11606
11607 case VOID_TYPE:
11608 case INTEGER_TYPE:
11609 case REAL_TYPE:
11610 case COMPLEX_TYPE:
11611 case BOOLEAN_TYPE:
11612 case CHAR_TYPE:
11613 /* No DIEs needed for fundamental types. */
11614 break;
11615
11616 case LANG_TYPE:
11617 /* No Dwarf representation currently defined. */
11618 break;
11619
11620 default:
11621 abort ();
11622 }
11623
11624 TREE_ASM_WRITTEN (type) = 1;
11625 }
11626
11627 /* Generate a DIE for a tagged type instantiation. */
11628
11629 static void
11630 gen_tagged_type_instantiation_die (type, context_die)
11631 tree type;
11632 dw_die_ref context_die;
11633 {
11634 if (type == NULL_TREE || type == error_mark_node)
11635 return;
11636
11637 /* We are going to output a DIE to represent the unqualified version of
11638 this type (i.e. without any const or volatile qualifiers) so make sure
11639 that we have the main variant (i.e. the unqualified version) of this
11640 type now. */
11641 if (type != type_main_variant (type))
11642 abort ();
11643
11644 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11645 an instance of an unresolved type. */
11646
11647 switch (TREE_CODE (type))
11648 {
11649 case ERROR_MARK:
11650 break;
11651
11652 case ENUMERAL_TYPE:
11653 gen_inlined_enumeration_type_die (type, context_die);
11654 break;
11655
11656 case RECORD_TYPE:
11657 gen_inlined_structure_type_die (type, context_die);
11658 break;
11659
11660 case UNION_TYPE:
11661 case QUAL_UNION_TYPE:
11662 gen_inlined_union_type_die (type, context_die);
11663 break;
11664
11665 default:
11666 abort ();
11667 }
11668 }
11669
11670 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11671 things which are local to the given block. */
11672
11673 static void
11674 gen_block_die (stmt, context_die, depth)
11675 tree stmt;
11676 dw_die_ref context_die;
11677 int depth;
11678 {
11679 int must_output_die = 0;
11680 tree origin;
11681 tree decl;
11682 enum tree_code origin_code;
11683
11684 /* Ignore blocks never really used to make RTL. */
11685 if (stmt == NULL_TREE || !TREE_USED (stmt)
11686 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
11687 return;
11688
11689 /* If the block is one fragment of a non-contiguous block, do not
11690 process the variables, since they will have been done by the
11691 origin block. Do process subblocks. */
11692 if (BLOCK_FRAGMENT_ORIGIN (stmt))
11693 {
11694 tree sub;
11695
11696 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
11697 gen_block_die (sub, context_die, depth + 1);
11698
11699 return;
11700 }
11701
11702 /* Determine the "ultimate origin" of this block. This block may be an
11703 inlined instance of an inlined instance of inline function, so we have
11704 to trace all of the way back through the origin chain to find out what
11705 sort of node actually served as the original seed for the creation of
11706 the current block. */
11707 origin = block_ultimate_origin (stmt);
11708 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
11709
11710 /* Determine if we need to output any Dwarf DIEs at all to represent this
11711 block. */
11712 if (origin_code == FUNCTION_DECL)
11713 /* The outer scopes for inlinings *must* always be represented. We
11714 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
11715 must_output_die = 1;
11716 else
11717 {
11718 /* In the case where the current block represents an inlining of the
11719 "body block" of an inline function, we must *NOT* output any DIE for
11720 this block because we have already output a DIE to represent the whole
11721 inlined function scope and the "body block" of any function doesn't
11722 really represent a different scope according to ANSI C rules. So we
11723 check here to make sure that this block does not represent a "body
11724 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
11725 if (! is_body_block (origin ? origin : stmt))
11726 {
11727 /* Determine if this block directly contains any "significant"
11728 local declarations which we will need to output DIEs for. */
11729 if (debug_info_level > DINFO_LEVEL_TERSE)
11730 /* We are not in terse mode so *any* local declaration counts
11731 as being a "significant" one. */
11732 must_output_die = (BLOCK_VARS (stmt) != NULL);
11733 else
11734 /* We are in terse mode, so only local (nested) function
11735 definitions count as "significant" local declarations. */
11736 for (decl = BLOCK_VARS (stmt);
11737 decl != NULL; decl = TREE_CHAIN (decl))
11738 if (TREE_CODE (decl) == FUNCTION_DECL
11739 && DECL_INITIAL (decl))
11740 {
11741 must_output_die = 1;
11742 break;
11743 }
11744 }
11745 }
11746
11747 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
11748 DIE for any block which contains no significant local declarations at
11749 all. Rather, in such cases we just call `decls_for_scope' so that any
11750 needed Dwarf info for any sub-blocks will get properly generated. Note
11751 that in terse mode, our definition of what constitutes a "significant"
11752 local declaration gets restricted to include only inlined function
11753 instances and local (nested) function definitions. */
11754 if (must_output_die)
11755 {
11756 if (origin_code == FUNCTION_DECL)
11757 gen_inlined_subroutine_die (stmt, context_die, depth);
11758 else
11759 gen_lexical_block_die (stmt, context_die, depth);
11760 }
11761 else
11762 decls_for_scope (stmt, context_die, depth);
11763 }
11764
11765 /* Generate all of the decls declared within a given scope and (recursively)
11766 all of its sub-blocks. */
11767
11768 static void
11769 decls_for_scope (stmt, context_die, depth)
11770 tree stmt;
11771 dw_die_ref context_die;
11772 int depth;
11773 {
11774 tree decl;
11775 tree subblocks;
11776
11777 /* Ignore blocks never really used to make RTL. */
11778 if (stmt == NULL_TREE || ! TREE_USED (stmt))
11779 return;
11780
11781 /* Output the DIEs to represent all of the data objects and typedefs
11782 declared directly within this block but not within any nested
11783 sub-blocks. Also, nested function and tag DIEs have been
11784 generated with a parent of NULL; fix that up now. */
11785 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
11786 {
11787 dw_die_ref die;
11788
11789 if (TREE_CODE (decl) == FUNCTION_DECL)
11790 die = lookup_decl_die (decl);
11791 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
11792 die = lookup_type_die (TREE_TYPE (decl));
11793 else
11794 die = NULL;
11795
11796 if (die != NULL && die->die_parent == NULL)
11797 add_child_die (context_die, die);
11798 else
11799 gen_decl_die (decl, context_die);
11800 }
11801
11802 /* Output the DIEs to represent all sub-blocks (and the items declared
11803 therein) of this block. */
11804 for (subblocks = BLOCK_SUBBLOCKS (stmt);
11805 subblocks != NULL;
11806 subblocks = BLOCK_CHAIN (subblocks))
11807 gen_block_die (subblocks, context_die, depth + 1);
11808 }
11809
11810 /* Is this a typedef we can avoid emitting? */
11811
11812 static inline int
11813 is_redundant_typedef (decl)
11814 tree decl;
11815 {
11816 if (TYPE_DECL_IS_STUB (decl))
11817 return 1;
11818
11819 if (DECL_ARTIFICIAL (decl)
11820 && DECL_CONTEXT (decl)
11821 && is_tagged_type (DECL_CONTEXT (decl))
11822 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
11823 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
11824 /* Also ignore the artificial member typedef for the class name. */
11825 return 1;
11826
11827 return 0;
11828 }
11829
11830 /* Generate Dwarf debug information for a decl described by DECL. */
11831
11832 static void
11833 gen_decl_die (decl, context_die)
11834 tree decl;
11835 dw_die_ref context_die;
11836 {
11837 tree origin;
11838
11839 if (DECL_P (decl) && DECL_IGNORED_P (decl))
11840 return;
11841
11842 switch (TREE_CODE (decl))
11843 {
11844 case ERROR_MARK:
11845 break;
11846
11847 case CONST_DECL:
11848 /* The individual enumerators of an enum type get output when we output
11849 the Dwarf representation of the relevant enum type itself. */
11850 break;
11851
11852 case FUNCTION_DECL:
11853 /* Don't output any DIEs to represent mere function declarations,
11854 unless they are class members or explicit block externs. */
11855 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
11856 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
11857 break;
11858
11859 /* If we're emitting a clone, emit info for the abstract instance. */
11860 if (DECL_ORIGIN (decl) != decl)
11861 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
11862
11863 /* If we're emitting an out-of-line copy of an inline function,
11864 emit info for the abstract instance and set up to refer to it. */
11865 else if (DECL_INLINE (decl) && ! DECL_ABSTRACT (decl)
11866 && ! class_scope_p (context_die)
11867 /* dwarf2out_abstract_function won't emit a die if this is just
11868 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
11869 that case, because that works only if we have a die. */
11870 && DECL_INITIAL (decl) != NULL_TREE)
11871 {
11872 dwarf2out_abstract_function (decl);
11873 set_decl_origin_self (decl);
11874 }
11875
11876 /* Otherwise we're emitting the primary DIE for this decl. */
11877 else if (debug_info_level > DINFO_LEVEL_TERSE)
11878 {
11879 /* Before we describe the FUNCTION_DECL itself, make sure that we
11880 have described its return type. */
11881 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
11882
11883 /* And its virtual context. */
11884 if (DECL_VINDEX (decl) != NULL_TREE)
11885 gen_type_die (DECL_CONTEXT (decl), context_die);
11886
11887 /* And its containing type. */
11888 origin = decl_class_context (decl);
11889 if (origin != NULL_TREE)
11890 gen_type_die_for_member (origin, decl, context_die);
11891 }
11892
11893 /* Now output a DIE to represent the function itself. */
11894 gen_subprogram_die (decl, context_die);
11895 break;
11896
11897 case TYPE_DECL:
11898 /* If we are in terse mode, don't generate any DIEs to represent any
11899 actual typedefs. */
11900 if (debug_info_level <= DINFO_LEVEL_TERSE)
11901 break;
11902
11903 /* In the special case of a TYPE_DECL node representing the declaration
11904 of some type tag, if the given TYPE_DECL is marked as having been
11905 instantiated from some other (original) TYPE_DECL node (e.g. one which
11906 was generated within the original definition of an inline function) we
11907 have to generate a special (abbreviated) DW_TAG_structure_type,
11908 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
11909 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
11910 {
11911 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
11912 break;
11913 }
11914
11915 if (is_redundant_typedef (decl))
11916 gen_type_die (TREE_TYPE (decl), context_die);
11917 else
11918 /* Output a DIE to represent the typedef itself. */
11919 gen_typedef_die (decl, context_die);
11920 break;
11921
11922 case LABEL_DECL:
11923 if (debug_info_level >= DINFO_LEVEL_NORMAL)
11924 gen_label_die (decl, context_die);
11925 break;
11926
11927 case VAR_DECL:
11928 /* If we are in terse mode, don't generate any DIEs to represent any
11929 variable declarations or definitions. */
11930 if (debug_info_level <= DINFO_LEVEL_TERSE)
11931 break;
11932
11933 /* Output any DIEs that are needed to specify the type of this data
11934 object. */
11935 gen_type_die (TREE_TYPE (decl), context_die);
11936
11937 /* And its containing type. */
11938 origin = decl_class_context (decl);
11939 if (origin != NULL_TREE)
11940 gen_type_die_for_member (origin, decl, context_die);
11941
11942 /* Now output the DIE to represent the data object itself. This gets
11943 complicated because of the possibility that the VAR_DECL really
11944 represents an inlined instance of a formal parameter for an inline
11945 function. */
11946 origin = decl_ultimate_origin (decl);
11947 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
11948 gen_formal_parameter_die (decl, context_die);
11949 else
11950 gen_variable_die (decl, context_die);
11951 break;
11952
11953 case FIELD_DECL:
11954 /* Ignore the nameless fields that are used to skip bits but handle C++
11955 anonymous unions. */
11956 if (DECL_NAME (decl) != NULL_TREE
11957 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
11958 {
11959 gen_type_die (member_declared_type (decl), context_die);
11960 gen_field_die (decl, context_die);
11961 }
11962 break;
11963
11964 case PARM_DECL:
11965 gen_type_die (TREE_TYPE (decl), context_die);
11966 gen_formal_parameter_die (decl, context_die);
11967 break;
11968
11969 case NAMESPACE_DECL:
11970 /* Ignore for now. */
11971 break;
11972
11973 default:
11974 abort ();
11975 }
11976 }
11977
11978 static void
11979 mark_limbo_die_list (ptr)
11980 void *ptr ATTRIBUTE_UNUSED;
11981 {
11982 limbo_die_node *node;
11983 for (node = limbo_die_list; node; node = node->next)
11984 ggc_mark_tree (node->created_for);
11985 }
11986 \f
11987 /* Add Ada "use" clause information for SGI Workshop debugger. */
11988
11989 void
11990 dwarf2out_add_library_unit_info (filename, context_list)
11991 const char *filename;
11992 const char *context_list;
11993 {
11994 unsigned int file_index;
11995
11996 if (filename != NULL)
11997 {
11998 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
11999 tree context_list_decl
12000 = build_decl (LABEL_DECL, get_identifier (context_list),
12001 void_type_node);
12002
12003 TREE_PUBLIC (context_list_decl) = TRUE;
12004 add_name_attribute (unit_die, context_list);
12005 file_index = lookup_filename (filename);
12006 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12007 add_pubname (context_list_decl, unit_die);
12008 }
12009 }
12010
12011 /* Output debug information for global decl DECL. Called from toplev.c after
12012 compilation proper has finished. */
12013
12014 static void
12015 dwarf2out_global_decl (decl)
12016 tree decl;
12017 {
12018 /* Output DWARF2 information for file-scope tentative data object
12019 declarations, file-scope (extern) function declarations (which had no
12020 corresponding body) and file-scope tagged type declarations and
12021 definitions which have not yet been forced out. */
12022 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12023 dwarf2out_decl (decl);
12024 }
12025
12026 /* Write the debugging output for DECL. */
12027
12028 void
12029 dwarf2out_decl (decl)
12030 tree decl;
12031 {
12032 dw_die_ref context_die = comp_unit_die;
12033
12034 switch (TREE_CODE (decl))
12035 {
12036 case ERROR_MARK:
12037 return;
12038
12039 case FUNCTION_DECL:
12040 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
12041 builtin function. Explicit programmer-supplied declarations of
12042 these same functions should NOT be ignored however. */
12043 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
12044 return;
12045
12046 /* What we would really like to do here is to filter out all mere
12047 file-scope declarations of file-scope functions which are never
12048 referenced later within this translation unit (and keep all of ones
12049 that *are* referenced later on) but we aren't clairvoyant, so we have
12050 no idea which functions will be referenced in the future (i.e. later
12051 on within the current translation unit). So here we just ignore all
12052 file-scope function declarations which are not also definitions. If
12053 and when the debugger needs to know something about these functions,
12054 it will have to hunt around and find the DWARF information associated
12055 with the definition of the function.
12056
12057 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12058 nodes represent definitions and which ones represent mere
12059 declarations. We have to check DECL_INITIAL instead. That's because
12060 the C front-end supports some weird semantics for "extern inline"
12061 function definitions. These can get inlined within the current
12062 translation unit (an thus, we need to generate Dwarf info for their
12063 abstract instances so that the Dwarf info for the concrete inlined
12064 instances can have something to refer to) but the compiler never
12065 generates any out-of-lines instances of such things (despite the fact
12066 that they *are* definitions).
12067
12068 The important point is that the C front-end marks these "extern
12069 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12070 them anyway. Note that the C++ front-end also plays some similar games
12071 for inline function definitions appearing within include files which
12072 also contain `#pragma interface' pragmas. */
12073 if (DECL_INITIAL (decl) == NULL_TREE)
12074 return;
12075
12076 /* If we're a nested function, initially use a parent of NULL; if we're
12077 a plain function, this will be fixed up in decls_for_scope. If
12078 we're a method, it will be ignored, since we already have a DIE. */
12079 if (decl_function_context (decl))
12080 context_die = NULL;
12081 break;
12082
12083 case VAR_DECL:
12084 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12085 declaration and if the declaration was never even referenced from
12086 within this entire compilation unit. We suppress these DIEs in
12087 order to save space in the .debug section (by eliminating entries
12088 which are probably useless). Note that we must not suppress
12089 block-local extern declarations (whether used or not) because that
12090 would screw-up the debugger's name lookup mechanism and cause it to
12091 miss things which really ought to be in scope at a given point. */
12092 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12093 return;
12094
12095 /* If we are in terse mode, don't generate any DIEs to represent any
12096 variable declarations or definitions. */
12097 if (debug_info_level <= DINFO_LEVEL_TERSE)
12098 return;
12099 break;
12100
12101 case TYPE_DECL:
12102 /* Don't emit stubs for types unless they are needed by other DIEs. */
12103 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12104 return;
12105
12106 /* Don't bother trying to generate any DIEs to represent any of the
12107 normal built-in types for the language we are compiling. */
12108 if (DECL_SOURCE_LINE (decl) == 0)
12109 {
12110 /* OK, we need to generate one for `bool' so GDB knows what type
12111 comparisons have. */
12112 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12113 == DW_LANG_C_plus_plus)
12114 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12115 && ! DECL_IGNORED_P (decl))
12116 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12117
12118 return;
12119 }
12120
12121 /* If we are in terse mode, don't generate any DIEs for types. */
12122 if (debug_info_level <= DINFO_LEVEL_TERSE)
12123 return;
12124
12125 /* If we're a function-scope tag, initially use a parent of NULL;
12126 this will be fixed up in decls_for_scope. */
12127 if (decl_function_context (decl))
12128 context_die = NULL;
12129
12130 break;
12131
12132 default:
12133 return;
12134 }
12135
12136 gen_decl_die (decl, context_die);
12137 }
12138
12139 /* Output a marker (i.e. a label) for the beginning of the generated code for
12140 a lexical block. */
12141
12142 static void
12143 dwarf2out_begin_block (line, blocknum)
12144 unsigned int line ATTRIBUTE_UNUSED;
12145 unsigned int blocknum;
12146 {
12147 function_section (current_function_decl);
12148 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12149 }
12150
12151 /* Output a marker (i.e. a label) for the end of the generated code for a
12152 lexical block. */
12153
12154 static void
12155 dwarf2out_end_block (line, blocknum)
12156 unsigned int line ATTRIBUTE_UNUSED;
12157 unsigned int blocknum;
12158 {
12159 function_section (current_function_decl);
12160 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12161 }
12162
12163 /* Returns nonzero if it is appropriate not to emit any debugging
12164 information for BLOCK, because it doesn't contain any instructions.
12165
12166 Don't allow this for blocks with nested functions or local classes
12167 as we would end up with orphans, and in the presence of scheduling
12168 we may end up calling them anyway. */
12169
12170 static bool
12171 dwarf2out_ignore_block (block)
12172 tree block;
12173 {
12174 tree decl;
12175
12176 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12177 if (TREE_CODE (decl) == FUNCTION_DECL
12178 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12179 return 0;
12180
12181 return 1;
12182 }
12183
12184 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12185 dwarf2out.c) and return its "index". The index of each (known) filename is
12186 just a unique number which is associated with only that one filename. We
12187 need such numbers for the sake of generating labels (in the .debug_sfnames
12188 section) and references to those files numbers (in the .debug_srcinfo
12189 and.debug_macinfo sections). If the filename given as an argument is not
12190 found in our current list, add it to the list and assign it the next
12191 available unique index number. In order to speed up searches, we remember
12192 the index of the filename was looked up last. This handles the majority of
12193 all searches. */
12194
12195 static unsigned
12196 lookup_filename (file_name)
12197 const char *file_name;
12198 {
12199 unsigned i;
12200
12201 /* ??? Why isn't DECL_SOURCE_FILE left null instead. */
12202 if (strcmp (file_name, "<internal>") == 0
12203 || strcmp (file_name, "<built-in>") == 0)
12204 return 0;
12205
12206 /* Check to see if the file name that was searched on the previous
12207 call matches this file name. If so, return the index. */
12208 if (file_table.last_lookup_index != 0)
12209 if (0 == strcmp (file_name,
12210 file_table.table[file_table.last_lookup_index]))
12211 return file_table.last_lookup_index;
12212
12213 /* Didn't match the previous lookup, search the table */
12214 for (i = 1; i < file_table.in_use; i++)
12215 if (strcmp (file_name, file_table.table[i]) == 0)
12216 {
12217 file_table.last_lookup_index = i;
12218 return i;
12219 }
12220
12221 /* Prepare to add a new table entry by making sure there is enough space in
12222 the table to do so. If not, expand the current table. */
12223 if (i == file_table.allocated)
12224 {
12225 file_table.allocated = i + FILE_TABLE_INCREMENT;
12226 file_table.table = (char **)
12227 xrealloc (file_table.table, file_table.allocated * sizeof (char *));
12228 }
12229
12230 /* Add the new entry to the end of the filename table. */
12231 file_table.table[i] = xstrdup (file_name);
12232 file_table.in_use = i + 1;
12233 file_table.last_lookup_index = i;
12234
12235 if (DWARF2_ASM_LINE_DEBUG_INFO)
12236 {
12237 fprintf (asm_out_file, "\t.file %u ", i);
12238 output_quoted_string (asm_out_file, file_name);
12239 fputc ('\n', asm_out_file);
12240 }
12241
12242 return i;
12243 }
12244
12245 static void
12246 init_file_table ()
12247 {
12248 /* Allocate the initial hunk of the file_table. */
12249 file_table.table = (char **) xcalloc (FILE_TABLE_INCREMENT, sizeof (char *));
12250 file_table.allocated = FILE_TABLE_INCREMENT;
12251
12252 /* Skip the first entry - file numbers begin at 1. */
12253 file_table.in_use = 1;
12254 file_table.last_lookup_index = 0;
12255 }
12256
12257 /* Output a label to mark the beginning of a source code line entry
12258 and record information relating to this source line, in
12259 'line_info_table' for later output of the .debug_line section. */
12260
12261 static void
12262 dwarf2out_source_line (line, filename)
12263 unsigned int line;
12264 const char *filename;
12265 {
12266 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12267 {
12268 function_section (current_function_decl);
12269
12270 /* If requested, emit something human-readable. */
12271 if (flag_debug_asm)
12272 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
12273 filename, line);
12274
12275 if (DWARF2_ASM_LINE_DEBUG_INFO)
12276 {
12277 unsigned file_num = lookup_filename (filename);
12278
12279 /* Emit the .loc directive understood by GNU as. */
12280 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
12281
12282 /* Indicate that line number info exists. */
12283 line_info_table_in_use++;
12284
12285 /* Indicate that multiple line number tables exist. */
12286 if (DECL_SECTION_NAME (current_function_decl))
12287 separate_line_info_table_in_use++;
12288 }
12289 else if (DECL_SECTION_NAME (current_function_decl))
12290 {
12291 dw_separate_line_info_ref line_info;
12292 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, SEPARATE_LINE_CODE_LABEL,
12293 separate_line_info_table_in_use);
12294
12295 /* expand the line info table if necessary */
12296 if (separate_line_info_table_in_use
12297 == separate_line_info_table_allocated)
12298 {
12299 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12300 separate_line_info_table
12301 = (dw_separate_line_info_ref)
12302 xrealloc (separate_line_info_table,
12303 separate_line_info_table_allocated
12304 * sizeof (dw_separate_line_info_entry));
12305 }
12306
12307 /* Add the new entry at the end of the line_info_table. */
12308 line_info
12309 = &separate_line_info_table[separate_line_info_table_in_use++];
12310 line_info->dw_file_num = lookup_filename (filename);
12311 line_info->dw_line_num = line;
12312 line_info->function = current_function_funcdef_no;
12313 }
12314 else
12315 {
12316 dw_line_info_ref line_info;
12317
12318 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, LINE_CODE_LABEL,
12319 line_info_table_in_use);
12320
12321 /* Expand the line info table if necessary. */
12322 if (line_info_table_in_use == line_info_table_allocated)
12323 {
12324 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12325 line_info_table
12326 = (dw_line_info_ref)
12327 xrealloc (line_info_table,
12328 (line_info_table_allocated
12329 * sizeof (dw_line_info_entry)));
12330 }
12331
12332 /* Add the new entry at the end of the line_info_table. */
12333 line_info = &line_info_table[line_info_table_in_use++];
12334 line_info->dw_file_num = lookup_filename (filename);
12335 line_info->dw_line_num = line;
12336 }
12337 }
12338 }
12339
12340 /* Record the beginning of a new source file. */
12341
12342 static void
12343 dwarf2out_start_source_file (lineno, filename)
12344 unsigned int lineno;
12345 const char *filename;
12346 {
12347 if (flag_eliminate_dwarf2_dups && !is_main_source)
12348 {
12349 /* Record the beginning of the file for break_out_includes. */
12350 dw_die_ref bincl_die;
12351
12352 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
12353 add_AT_string (bincl_die, DW_AT_name, filename);
12354 }
12355
12356 is_main_source = 0;
12357
12358 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12359 {
12360 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12361 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
12362 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
12363 lineno);
12364 dw2_asm_output_data_uleb128 (lookup_filename (filename),
12365 "Filename we just started");
12366 }
12367 }
12368
12369 /* Record the end of a source file. */
12370
12371 static void
12372 dwarf2out_end_source_file (lineno)
12373 unsigned int lineno ATTRIBUTE_UNUSED;
12374 {
12375 if (flag_eliminate_dwarf2_dups)
12376 /* Record the end of the file for break_out_includes. */
12377 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
12378
12379 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12380 {
12381 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12382 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12383 }
12384 }
12385
12386 /* Called from debug_define in toplev.c. The `buffer' parameter contains
12387 the tail part of the directive line, i.e. the part which is past the
12388 initial whitespace, #, whitespace, directive-name, whitespace part. */
12389
12390 static void
12391 dwarf2out_define (lineno, buffer)
12392 unsigned lineno ATTRIBUTE_UNUSED;
12393 const char *buffer ATTRIBUTE_UNUSED;
12394 {
12395 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12396 {
12397 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12398 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
12399 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12400 dw2_asm_output_nstring (buffer, -1, "The macro");
12401 }
12402 }
12403
12404 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
12405 the tail part of the directive line, i.e. the part which is past the
12406 initial whitespace, #, whitespace, directive-name, whitespace part. */
12407
12408 static void
12409 dwarf2out_undef (lineno, buffer)
12410 unsigned lineno ATTRIBUTE_UNUSED;
12411 const char *buffer ATTRIBUTE_UNUSED;
12412 {
12413 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12414 {
12415 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12416 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
12417 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12418 dw2_asm_output_nstring (buffer, -1, "The macro");
12419 }
12420 }
12421
12422 /* Set up for Dwarf output at the start of compilation. */
12423
12424 static void
12425 dwarf2out_init (main_input_filename)
12426 const char *main_input_filename;
12427 {
12428 init_file_table ();
12429
12430 /* Remember the name of the primary input file. */
12431 primary_filename = main_input_filename;
12432
12433 /* Add it to the file table first, under the assumption that we'll
12434 be emitting line number data for it first, which avoids having
12435 to add an initial DW_LNS_set_file. */
12436 lookup_filename (main_input_filename);
12437
12438 /* Allocate the initial hunk of the decl_die_table. */
12439 decl_die_table
12440 = (dw_die_ref *) xcalloc (DECL_DIE_TABLE_INCREMENT, sizeof (dw_die_ref));
12441 decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
12442 decl_die_table_in_use = 0;
12443
12444 /* Allocate the initial hunk of the decl_scope_table. */
12445 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
12446
12447 /* Allocate the initial hunk of the abbrev_die_table. */
12448 abbrev_die_table
12449 = (dw_die_ref *) xcalloc (ABBREV_DIE_TABLE_INCREMENT,
12450 sizeof (dw_die_ref));
12451 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
12452 /* Zero-th entry is allocated, but unused */
12453 abbrev_die_table_in_use = 1;
12454
12455 /* Allocate the initial hunk of the line_info_table. */
12456 line_info_table
12457 = (dw_line_info_ref) xcalloc (LINE_INFO_TABLE_INCREMENT,
12458 sizeof (dw_line_info_entry));
12459 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
12460
12461 /* Zero-th entry is allocated, but unused */
12462 line_info_table_in_use = 1;
12463
12464 /* Generate the initial DIE for the .debug section. Note that the (string)
12465 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
12466 will (typically) be a relative pathname and that this pathname should be
12467 taken as being relative to the directory from which the compiler was
12468 invoked when the given (base) source file was compiled. */
12469 comp_unit_die = gen_compile_unit_die (main_input_filename);
12470 is_main_source = 1;
12471
12472 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
12473
12474 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
12475
12476 ggc_add_root (&limbo_die_list, 1, 1, mark_limbo_die_list);
12477
12478 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
12479 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
12480 DEBUG_ABBREV_SECTION_LABEL, 0);
12481 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12482 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
12483 else
12484 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
12485
12486 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
12487 DEBUG_INFO_SECTION_LABEL, 0);
12488 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
12489 DEBUG_LINE_SECTION_LABEL, 0);
12490 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
12491 DEBUG_RANGES_SECTION_LABEL, 0);
12492 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12493 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
12494 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
12495 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
12496 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12497 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
12498
12499 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12500 {
12501 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12502 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
12503 DEBUG_MACINFO_SECTION_LABEL, 0);
12504 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
12505 }
12506
12507 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12508 {
12509 text_section ();
12510 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
12511 }
12512 }
12513
12514 /* Allocate a string in .debug_str hash table. */
12515
12516 static hashnode
12517 indirect_string_alloc (tab)
12518 hash_table *tab ATTRIBUTE_UNUSED;
12519 {
12520 struct indirect_string_node *node;
12521
12522 node = xmalloc (sizeof (struct indirect_string_node));
12523 node->refcount = 0;
12524 node->form = 0;
12525 node->label = NULL;
12526
12527 return (hashnode) node;
12528 }
12529
12530 /* A helper function for dwarf2out_finish called through
12531 ht_forall. Emit one queued .debug_str string. */
12532
12533 static int
12534 output_indirect_string (pfile, h, v)
12535 struct cpp_reader *pfile ATTRIBUTE_UNUSED;
12536 hashnode h;
12537 const PTR v ATTRIBUTE_UNUSED;
12538 {
12539 struct indirect_string_node *node = (struct indirect_string_node *) h;
12540
12541 if (node->form == DW_FORM_strp)
12542 {
12543 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
12544 ASM_OUTPUT_LABEL (asm_out_file, node->label);
12545 assemble_string ((const char *) HT_STR (&node->id),
12546 HT_LEN (&node->id) + 1);
12547 }
12548
12549 return 1;
12550 }
12551
12552 /* Output stuff that dwarf requires at the end of every file,
12553 and generate the DWARF-2 debugging info. */
12554
12555 static void
12556 dwarf2out_finish (input_filename)
12557 const char *input_filename ATTRIBUTE_UNUSED;
12558 {
12559 limbo_die_node *node, *next_node;
12560 dw_die_ref die = 0;
12561
12562 /* Traverse the limbo die list, and add parent/child links. The only
12563 dies without parents that should be here are concrete instances of
12564 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
12565 For concrete instances, we can get the parent die from the abstract
12566 instance. */
12567 for (node = limbo_die_list; node; node = next_node)
12568 {
12569 next_node = node->next;
12570 die = node->die;
12571
12572 if (die->die_parent == NULL)
12573 {
12574 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
12575 tree context;
12576
12577 if (origin)
12578 add_child_die (origin->die_parent, die);
12579 else if (die == comp_unit_die)
12580 ;
12581 /* If this was an expression for a bound involved in a function
12582 return type, it may be a SAVE_EXPR for which we weren't able
12583 to find a DIE previously. So try now. */
12584 else if (node->created_for
12585 && TREE_CODE (node->created_for) == SAVE_EXPR
12586 && 0 != (origin = (lookup_decl_die
12587 (SAVE_EXPR_CONTEXT
12588 (node->created_for)))))
12589 add_child_die (origin, die);
12590 else if (errorcount > 0 || sorrycount > 0)
12591 /* It's OK to be confused by errors in the input. */
12592 add_child_die (comp_unit_die, die);
12593 else if (node->created_for
12594 && ((DECL_P (node->created_for)
12595 && (context = DECL_CONTEXT (node->created_for)))
12596 || (TYPE_P (node->created_for)
12597 && (context = TYPE_CONTEXT (node->created_for))))
12598 && TREE_CODE (context) == FUNCTION_DECL)
12599 {
12600 /* In certain situations, the lexical block containing a
12601 nested function can be optimized away, which results
12602 in the nested function die being orphaned. Likewise
12603 with the return type of that nested function. Force
12604 this to be a child of the containing function. */
12605 origin = lookup_decl_die (context);
12606 if (! origin)
12607 abort ();
12608 add_child_die (origin, die);
12609 }
12610 else
12611 abort ();
12612 }
12613
12614 free (node);
12615 }
12616
12617 limbo_die_list = NULL;
12618
12619 /* Walk through the list of incomplete types again, trying once more to
12620 emit full debugging info for them. */
12621 retry_incomplete_types ();
12622
12623 /* We need to reverse all the dies before break_out_includes, or
12624 we'll see the end of an include file before the beginning. */
12625 reverse_all_dies (comp_unit_die);
12626
12627 /* Generate separate CUs for each of the include files we've seen.
12628 They will go into limbo_die_list. */
12629 if (flag_eliminate_dwarf2_dups)
12630 break_out_includes (comp_unit_die);
12631
12632 /* Traverse the DIE's and add add sibling attributes to those DIE's
12633 that have children. */
12634 add_sibling_attributes (comp_unit_die);
12635 for (node = limbo_die_list; node; node = node->next)
12636 add_sibling_attributes (node->die);
12637
12638 /* Output a terminator label for the .text section. */
12639 text_section ();
12640 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, TEXT_END_LABEL, 0);
12641
12642 /* Output the source line correspondence table. We must do this
12643 even if there is no line information. Otherwise, on an empty
12644 translation unit, we will generate a present, but empty,
12645 .debug_info section. IRIX 6.5 `nm' will then complain when
12646 examining the file. */
12647 if (! DWARF2_ASM_LINE_DEBUG_INFO)
12648 {
12649 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12650 output_line_info ();
12651 }
12652
12653 /* Output location list section if necessary. */
12654 if (have_location_lists)
12655 {
12656 /* Output the location lists info. */
12657 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
12658 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
12659 DEBUG_LOC_SECTION_LABEL, 0);
12660 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
12661 output_location_lists (die);
12662 have_location_lists = 0;
12663 }
12664
12665 /* We can only use the low/high_pc attributes if all of the code was
12666 in .text. */
12667 if (separate_line_info_table_in_use == 0)
12668 {
12669 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
12670 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
12671 }
12672
12673 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
12674 "base address". Use zero so that these addresses become absolute. */
12675 else if (have_location_lists || ranges_table_in_use)
12676 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
12677
12678 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12679 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
12680 debug_line_section_label);
12681
12682 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12683 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
12684
12685 /* Output all of the compilation units. We put the main one last so that
12686 the offsets are available to output_pubnames. */
12687 for (node = limbo_die_list; node; node = node->next)
12688 output_comp_unit (node->die, 0);
12689
12690 output_comp_unit (comp_unit_die, 0);
12691
12692 /* Output the abbreviation table. */
12693 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12694 output_abbrev_section ();
12695
12696 /* Output public names table if necessary. */
12697 if (pubname_table_in_use)
12698 {
12699 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
12700 output_pubnames ();
12701 }
12702
12703 /* Output the address range information. We only put functions in the arange
12704 table, so don't write it out if we don't have any. */
12705 if (fde_table_in_use)
12706 {
12707 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
12708 output_aranges ();
12709 }
12710
12711 /* Output ranges section if necessary. */
12712 if (ranges_table_in_use)
12713 {
12714 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
12715 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
12716 output_ranges ();
12717 }
12718
12719 /* Have to end the primary source file. */
12720 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12721 {
12722 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12723 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12724 dw2_asm_output_data (1, 0, "End compilation unit");
12725 }
12726
12727 /* If we emitted any DW_FORM_strp form attribute, output the string
12728 table too. */
12729 if (debug_str_hash)
12730 ht_forall (debug_str_hash, output_indirect_string, NULL);
12731 }
12732 #else
12733
12734 /* This should never be used, but its address is needed for comparisons. */
12735 const struct gcc_debug_hooks dwarf2_debug_hooks;
12736
12737 #endif /* DWARF2_DEBUGGING_INFO */
12738
12739 #include "gt-dwarf2out.h"