re PR debug/13231 (Bad DWARF2 CFI when there is no frame pointer)
[gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "real.h"
44 #include "rtl.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "reload.h"
49 #include "function.h"
50 #include "output.h"
51 #include "expr.h"
52 #include "libfuncs.h"
53 #include "except.h"
54 #include "dwarf2.h"
55 #include "dwarf2out.h"
56 #include "dwarf2asm.h"
57 #include "toplev.h"
58 #include "varray.h"
59 #include "ggc.h"
60 #include "md5.h"
61 #include "tm_p.h"
62 #include "diagnostic.h"
63 #include "debug.h"
64 #include "target.h"
65 #include "langhooks.h"
66 #include "hashtab.h"
67 #include "cgraph.h"
68
69 #ifdef DWARF2_DEBUGGING_INFO
70 static void dwarf2out_source_line (unsigned int, const char *);
71 #endif
72
73 /* DWARF2 Abbreviation Glossary:
74 CFA = Canonical Frame Address
75 a fixed address on the stack which identifies a call frame.
76 We define it to be the value of SP just before the call insn.
77 The CFA register and offset, which may change during the course
78 of the function, are used to calculate its value at runtime.
79 CFI = Call Frame Instruction
80 an instruction for the DWARF2 abstract machine
81 CIE = Common Information Entry
82 information describing information common to one or more FDEs
83 DIE = Debugging Information Entry
84 FDE = Frame Description Entry
85 information describing the stack call frame, in particular,
86 how to restore registers
87
88 DW_CFA_... = DWARF2 CFA call frame instruction
89 DW_TAG_... = DWARF2 DIE tag */
90
91 /* Decide whether we want to emit frame unwind information for the current
92 translation unit. */
93
94 int
95 dwarf2out_do_frame (void)
96 {
97 return (write_symbols == DWARF2_DEBUG
98 || write_symbols == VMS_AND_DWARF2_DEBUG
99 #ifdef DWARF2_FRAME_INFO
100 || DWARF2_FRAME_INFO
101 #endif
102 #ifdef DWARF2_UNWIND_INFO
103 || flag_unwind_tables
104 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
105 #endif
106 );
107 }
108
109 /* The size of the target's pointer type. */
110 #ifndef PTR_SIZE
111 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
112 #endif
113
114 /* Various versions of targetm.eh_frame_section. Note these must appear
115 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
116
117 /* Version of targetm.eh_frame_section for systems with named sections. */
118 void
119 named_section_eh_frame_section (void)
120 {
121 #ifdef EH_FRAME_SECTION_NAME
122 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
123 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
124 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
125 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
126 int flags;
127
128 flags = (! flag_pic
129 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
130 && (fde_encoding & 0x70) != DW_EH_PE_aligned
131 && (per_encoding & 0x70) != DW_EH_PE_absptr
132 && (per_encoding & 0x70) != DW_EH_PE_aligned
133 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
134 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
135 ? 0 : SECTION_WRITE;
136 named_section_flags (EH_FRAME_SECTION_NAME, flags);
137 #else
138 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
139 #endif
140 #endif
141 }
142
143 /* Version of targetm.eh_frame_section for systems using collect2. */
144 void
145 collect2_eh_frame_section (void)
146 {
147 tree label = get_file_function_name ('F');
148
149 data_section ();
150 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
151 (*targetm.asm_out.globalize_label) (asm_out_file, IDENTIFIER_POINTER (label));
152 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
153 }
154
155 /* Default version of targetm.eh_frame_section. */
156 void
157 default_eh_frame_section (void)
158 {
159 #ifdef EH_FRAME_SECTION_NAME
160 named_section_eh_frame_section ();
161 #else
162 collect2_eh_frame_section ();
163 #endif
164 }
165
166 /* Array of RTXes referenced by the debugging information, which therefore
167 must be kept around forever. */
168 static GTY(()) varray_type used_rtx_varray;
169
170 /* A pointer to the base of a list of incomplete types which might be
171 completed at some later time. incomplete_types_list needs to be a VARRAY
172 because we want to tell the garbage collector about it. */
173 static GTY(()) varray_type incomplete_types;
174
175 /* A pointer to the base of a table of references to declaration
176 scopes. This table is a display which tracks the nesting
177 of declaration scopes at the current scope and containing
178 scopes. This table is used to find the proper place to
179 define type declaration DIE's. */
180 static GTY(()) varray_type decl_scope_table;
181
182 /* How to start an assembler comment. */
183 #ifndef ASM_COMMENT_START
184 #define ASM_COMMENT_START ";#"
185 #endif
186
187 typedef struct dw_cfi_struct *dw_cfi_ref;
188 typedef struct dw_fde_struct *dw_fde_ref;
189 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
190
191 /* Call frames are described using a sequence of Call Frame
192 Information instructions. The register number, offset
193 and address fields are provided as possible operands;
194 their use is selected by the opcode field. */
195
196 enum dw_cfi_oprnd_type {
197 dw_cfi_oprnd_unused,
198 dw_cfi_oprnd_reg_num,
199 dw_cfi_oprnd_offset,
200 dw_cfi_oprnd_addr,
201 dw_cfi_oprnd_loc
202 };
203
204 typedef union dw_cfi_oprnd_struct GTY(())
205 {
206 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
207 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
208 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
209 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
210 }
211 dw_cfi_oprnd;
212
213 typedef struct dw_cfi_struct GTY(())
214 {
215 dw_cfi_ref dw_cfi_next;
216 enum dwarf_call_frame_info dw_cfi_opc;
217 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
218 dw_cfi_oprnd1;
219 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
220 dw_cfi_oprnd2;
221 }
222 dw_cfi_node;
223
224 /* This is how we define the location of the CFA. We use to handle it
225 as REG + OFFSET all the time, but now it can be more complex.
226 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
227 Instead of passing around REG and OFFSET, we pass a copy
228 of this structure. */
229 typedef struct cfa_loc GTY(())
230 {
231 unsigned long reg;
232 HOST_WIDE_INT offset;
233 HOST_WIDE_INT base_offset;
234 int indirect; /* 1 if CFA is accessed via a dereference. */
235 } dw_cfa_location;
236
237 /* All call frame descriptions (FDE's) in the GCC generated DWARF
238 refer to a single Common Information Entry (CIE), defined at
239 the beginning of the .debug_frame section. This use of a single
240 CIE obviates the need to keep track of multiple CIE's
241 in the DWARF generation routines below. */
242
243 typedef struct dw_fde_struct GTY(())
244 {
245 const char *dw_fde_begin;
246 const char *dw_fde_current_label;
247 const char *dw_fde_end;
248 dw_cfi_ref dw_fde_cfi;
249 unsigned funcdef_number;
250 unsigned all_throwers_are_sibcalls : 1;
251 unsigned nothrow : 1;
252 unsigned uses_eh_lsda : 1;
253 }
254 dw_fde_node;
255
256 /* Maximum size (in bytes) of an artificially generated label. */
257 #define MAX_ARTIFICIAL_LABEL_BYTES 30
258
259 /* The size of addresses as they appear in the Dwarf 2 data.
260 Some architectures use word addresses to refer to code locations,
261 but Dwarf 2 info always uses byte addresses. On such machines,
262 Dwarf 2 addresses need to be larger than the architecture's
263 pointers. */
264 #ifndef DWARF2_ADDR_SIZE
265 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
266 #endif
267
268 /* The size in bytes of a DWARF field indicating an offset or length
269 relative to a debug info section, specified to be 4 bytes in the
270 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
271 as PTR_SIZE. */
272
273 #ifndef DWARF_OFFSET_SIZE
274 #define DWARF_OFFSET_SIZE 4
275 #endif
276
277 /* According to the (draft) DWARF 3 specification, the initial length
278 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
279 bytes are 0xffffffff, followed by the length stored in the next 8
280 bytes.
281
282 However, the SGI/MIPS ABI uses an initial length which is equal to
283 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
284
285 #ifndef DWARF_INITIAL_LENGTH_SIZE
286 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
287 #endif
288
289 #define DWARF_VERSION 2
290
291 /* Round SIZE up to the nearest BOUNDARY. */
292 #define DWARF_ROUND(SIZE,BOUNDARY) \
293 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
294
295 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
296 #ifndef DWARF_CIE_DATA_ALIGNMENT
297 #ifdef STACK_GROWS_DOWNWARD
298 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
299 #else
300 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
301 #endif
302 #endif
303
304 /* A pointer to the base of a table that contains frame description
305 information for each routine. */
306 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
307
308 /* Number of elements currently allocated for fde_table. */
309 static GTY(()) unsigned fde_table_allocated;
310
311 /* Number of elements in fde_table currently in use. */
312 static GTY(()) unsigned fde_table_in_use;
313
314 /* Size (in elements) of increments by which we may expand the
315 fde_table. */
316 #define FDE_TABLE_INCREMENT 256
317
318 /* A list of call frame insns for the CIE. */
319 static GTY(()) dw_cfi_ref cie_cfi_head;
320
321 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
322 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
323 attribute that accelerates the lookup of the FDE associated
324 with the subprogram. This variable holds the table index of the FDE
325 associated with the current function (body) definition. */
326 static unsigned current_funcdef_fde;
327 #endif
328
329 struct indirect_string_node GTY(())
330 {
331 const char *str;
332 unsigned int refcount;
333 unsigned int form;
334 char *label;
335 };
336
337 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
338
339 static GTY(()) int dw2_string_counter;
340 static GTY(()) unsigned long dwarf2out_cfi_label_num;
341
342 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
343
344 /* Forward declarations for functions defined in this file. */
345
346 static char *stripattributes (const char *);
347 static const char *dwarf_cfi_name (unsigned);
348 static dw_cfi_ref new_cfi (void);
349 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
350 static void add_fde_cfi (const char *, dw_cfi_ref);
351 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
352 static void lookup_cfa (dw_cfa_location *);
353 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
354 static void initial_return_save (rtx);
355 static HOST_WIDE_INT stack_adjust_offset (rtx);
356 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
357 static void output_call_frame_info (int);
358 static void dwarf2out_stack_adjust (rtx);
359 static void queue_reg_save (const char *, rtx, HOST_WIDE_INT);
360 static void flush_queued_reg_saves (void);
361 static bool clobbers_queued_reg_save (rtx);
362 static void dwarf2out_frame_debug_expr (rtx, const char *);
363
364 /* Support for complex CFA locations. */
365 static void output_cfa_loc (dw_cfi_ref);
366 static void get_cfa_from_loc_descr (dw_cfa_location *,
367 struct dw_loc_descr_struct *);
368 static struct dw_loc_descr_struct *build_cfa_loc
369 (dw_cfa_location *);
370 static void def_cfa_1 (const char *, dw_cfa_location *);
371
372 /* How to start an assembler comment. */
373 #ifndef ASM_COMMENT_START
374 #define ASM_COMMENT_START ";#"
375 #endif
376
377 /* Data and reference forms for relocatable data. */
378 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
379 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
380
381 #ifndef DEBUG_FRAME_SECTION
382 #define DEBUG_FRAME_SECTION ".debug_frame"
383 #endif
384
385 #ifndef FUNC_BEGIN_LABEL
386 #define FUNC_BEGIN_LABEL "LFB"
387 #endif
388
389 #ifndef FUNC_END_LABEL
390 #define FUNC_END_LABEL "LFE"
391 #endif
392
393 #define FRAME_BEGIN_LABEL "Lframe"
394 #define CIE_AFTER_SIZE_LABEL "LSCIE"
395 #define CIE_END_LABEL "LECIE"
396 #define FDE_LABEL "LSFDE"
397 #define FDE_AFTER_SIZE_LABEL "LASFDE"
398 #define FDE_END_LABEL "LEFDE"
399 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
400 #define LINE_NUMBER_END_LABEL "LELT"
401 #define LN_PROLOG_AS_LABEL "LASLTP"
402 #define LN_PROLOG_END_LABEL "LELTP"
403 #define DIE_LABEL_PREFIX "DW"
404
405 /* The DWARF 2 CFA column which tracks the return address. Normally this
406 is the column for PC, or the first column after all of the hard
407 registers. */
408 #ifndef DWARF_FRAME_RETURN_COLUMN
409 #ifdef PC_REGNUM
410 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
411 #else
412 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
413 #endif
414 #endif
415
416 /* The mapping from gcc register number to DWARF 2 CFA column number. By
417 default, we just provide columns for all registers. */
418 #ifndef DWARF_FRAME_REGNUM
419 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
420 #endif
421
422 /* The offset from the incoming value of %sp to the top of the stack frame
423 for the current function. */
424 #ifndef INCOMING_FRAME_SP_OFFSET
425 #define INCOMING_FRAME_SP_OFFSET 0
426 #endif
427 \f
428 /* Hook used by __throw. */
429
430 rtx
431 expand_builtin_dwarf_sp_column (void)
432 {
433 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
434 }
435
436 /* Return a pointer to a copy of the section string name S with all
437 attributes stripped off, and an asterisk prepended (for assemble_name). */
438
439 static inline char *
440 stripattributes (const char *s)
441 {
442 char *stripped = xmalloc (strlen (s) + 2);
443 char *p = stripped;
444
445 *p++ = '*';
446
447 while (*s && *s != ',')
448 *p++ = *s++;
449
450 *p = '\0';
451 return stripped;
452 }
453
454 /* Generate code to initialize the register size table. */
455
456 void
457 expand_builtin_init_dwarf_reg_sizes (tree address)
458 {
459 int i;
460 enum machine_mode mode = TYPE_MODE (char_type_node);
461 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
462 rtx mem = gen_rtx_MEM (BLKmode, addr);
463 bool wrote_return_column = false;
464
465 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
466 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
467 {
468 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
469 enum machine_mode save_mode = reg_raw_mode[i];
470 HOST_WIDE_INT size;
471
472 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
473 save_mode = choose_hard_reg_mode (i, 1, true);
474 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
475 {
476 if (save_mode == VOIDmode)
477 continue;
478 wrote_return_column = true;
479 }
480 size = GET_MODE_SIZE (save_mode);
481 if (offset < 0)
482 continue;
483
484 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
485 }
486
487 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
488 if (! wrote_return_column)
489 abort ();
490 i = DWARF_ALT_FRAME_RETURN_COLUMN;
491 wrote_return_column = false;
492 #else
493 i = DWARF_FRAME_RETURN_COLUMN;
494 #endif
495
496 if (! wrote_return_column)
497 {
498 enum machine_mode save_mode = Pmode;
499 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
500 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
501 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
502 }
503 }
504
505 /* Convert a DWARF call frame info. operation to its string name */
506
507 static const char *
508 dwarf_cfi_name (unsigned int cfi_opc)
509 {
510 switch (cfi_opc)
511 {
512 case DW_CFA_advance_loc:
513 return "DW_CFA_advance_loc";
514 case DW_CFA_offset:
515 return "DW_CFA_offset";
516 case DW_CFA_restore:
517 return "DW_CFA_restore";
518 case DW_CFA_nop:
519 return "DW_CFA_nop";
520 case DW_CFA_set_loc:
521 return "DW_CFA_set_loc";
522 case DW_CFA_advance_loc1:
523 return "DW_CFA_advance_loc1";
524 case DW_CFA_advance_loc2:
525 return "DW_CFA_advance_loc2";
526 case DW_CFA_advance_loc4:
527 return "DW_CFA_advance_loc4";
528 case DW_CFA_offset_extended:
529 return "DW_CFA_offset_extended";
530 case DW_CFA_restore_extended:
531 return "DW_CFA_restore_extended";
532 case DW_CFA_undefined:
533 return "DW_CFA_undefined";
534 case DW_CFA_same_value:
535 return "DW_CFA_same_value";
536 case DW_CFA_register:
537 return "DW_CFA_register";
538 case DW_CFA_remember_state:
539 return "DW_CFA_remember_state";
540 case DW_CFA_restore_state:
541 return "DW_CFA_restore_state";
542 case DW_CFA_def_cfa:
543 return "DW_CFA_def_cfa";
544 case DW_CFA_def_cfa_register:
545 return "DW_CFA_def_cfa_register";
546 case DW_CFA_def_cfa_offset:
547 return "DW_CFA_def_cfa_offset";
548
549 /* DWARF 3 */
550 case DW_CFA_def_cfa_expression:
551 return "DW_CFA_def_cfa_expression";
552 case DW_CFA_expression:
553 return "DW_CFA_expression";
554 case DW_CFA_offset_extended_sf:
555 return "DW_CFA_offset_extended_sf";
556 case DW_CFA_def_cfa_sf:
557 return "DW_CFA_def_cfa_sf";
558 case DW_CFA_def_cfa_offset_sf:
559 return "DW_CFA_def_cfa_offset_sf";
560
561 /* SGI/MIPS specific */
562 case DW_CFA_MIPS_advance_loc8:
563 return "DW_CFA_MIPS_advance_loc8";
564
565 /* GNU extensions */
566 case DW_CFA_GNU_window_save:
567 return "DW_CFA_GNU_window_save";
568 case DW_CFA_GNU_args_size:
569 return "DW_CFA_GNU_args_size";
570 case DW_CFA_GNU_negative_offset_extended:
571 return "DW_CFA_GNU_negative_offset_extended";
572
573 default:
574 return "DW_CFA_<unknown>";
575 }
576 }
577
578 /* Return a pointer to a newly allocated Call Frame Instruction. */
579
580 static inline dw_cfi_ref
581 new_cfi (void)
582 {
583 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
584
585 cfi->dw_cfi_next = NULL;
586 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
587 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
588
589 return cfi;
590 }
591
592 /* Add a Call Frame Instruction to list of instructions. */
593
594 static inline void
595 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
596 {
597 dw_cfi_ref *p;
598
599 /* Find the end of the chain. */
600 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
601 ;
602
603 *p = cfi;
604 }
605
606 /* Generate a new label for the CFI info to refer to. */
607
608 char *
609 dwarf2out_cfi_label (void)
610 {
611 static char label[20];
612
613 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
614 ASM_OUTPUT_LABEL (asm_out_file, label);
615 return label;
616 }
617
618 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
619 or to the CIE if LABEL is NULL. */
620
621 static void
622 add_fde_cfi (const char *label, dw_cfi_ref cfi)
623 {
624 if (label)
625 {
626 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
627
628 if (*label == 0)
629 label = dwarf2out_cfi_label ();
630
631 if (fde->dw_fde_current_label == NULL
632 || strcmp (label, fde->dw_fde_current_label) != 0)
633 {
634 dw_cfi_ref xcfi;
635
636 fde->dw_fde_current_label = label = xstrdup (label);
637
638 /* Set the location counter to the new label. */
639 xcfi = new_cfi ();
640 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
641 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
642 add_cfi (&fde->dw_fde_cfi, xcfi);
643 }
644
645 add_cfi (&fde->dw_fde_cfi, cfi);
646 }
647
648 else
649 add_cfi (&cie_cfi_head, cfi);
650 }
651
652 /* Subroutine of lookup_cfa. */
653
654 static inline void
655 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
656 {
657 switch (cfi->dw_cfi_opc)
658 {
659 case DW_CFA_def_cfa_offset:
660 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
661 break;
662 case DW_CFA_def_cfa_register:
663 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
664 break;
665 case DW_CFA_def_cfa:
666 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
667 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
668 break;
669 case DW_CFA_def_cfa_expression:
670 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
671 break;
672 default:
673 break;
674 }
675 }
676
677 /* Find the previous value for the CFA. */
678
679 static void
680 lookup_cfa (dw_cfa_location *loc)
681 {
682 dw_cfi_ref cfi;
683
684 loc->reg = (unsigned long) -1;
685 loc->offset = 0;
686 loc->indirect = 0;
687 loc->base_offset = 0;
688
689 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
690 lookup_cfa_1 (cfi, loc);
691
692 if (fde_table_in_use)
693 {
694 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
695 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
696 lookup_cfa_1 (cfi, loc);
697 }
698 }
699
700 /* The current rule for calculating the DWARF2 canonical frame address. */
701 static dw_cfa_location cfa;
702
703 /* The register used for saving registers to the stack, and its offset
704 from the CFA. */
705 static dw_cfa_location cfa_store;
706
707 /* The running total of the size of arguments pushed onto the stack. */
708 static HOST_WIDE_INT args_size;
709
710 /* The last args_size we actually output. */
711 static HOST_WIDE_INT old_args_size;
712
713 /* Entry point to update the canonical frame address (CFA).
714 LABEL is passed to add_fde_cfi. The value of CFA is now to be
715 calculated from REG+OFFSET. */
716
717 void
718 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
719 {
720 dw_cfa_location loc;
721 loc.indirect = 0;
722 loc.base_offset = 0;
723 loc.reg = reg;
724 loc.offset = offset;
725 def_cfa_1 (label, &loc);
726 }
727
728 /* This routine does the actual work. The CFA is now calculated from
729 the dw_cfa_location structure. */
730
731 static void
732 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
733 {
734 dw_cfi_ref cfi;
735 dw_cfa_location old_cfa, loc;
736
737 cfa = *loc_p;
738 loc = *loc_p;
739
740 if (cfa_store.reg == loc.reg && loc.indirect == 0)
741 cfa_store.offset = loc.offset;
742
743 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
744 lookup_cfa (&old_cfa);
745
746 /* If nothing changed, no need to issue any call frame instructions. */
747 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
748 && loc.indirect == old_cfa.indirect
749 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
750 return;
751
752 cfi = new_cfi ();
753
754 if (loc.reg == old_cfa.reg && !loc.indirect)
755 {
756 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
757 indicating the CFA register did not change but the offset
758 did. */
759 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
760 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
761 }
762
763 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
764 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
765 && !loc.indirect)
766 {
767 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
768 indicating the CFA register has changed to <register> but the
769 offset has not changed. */
770 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
771 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
772 }
773 #endif
774
775 else if (loc.indirect == 0)
776 {
777 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
778 indicating the CFA register has changed to <register> with
779 the specified offset. */
780 cfi->dw_cfi_opc = DW_CFA_def_cfa;
781 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
782 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
783 }
784 else
785 {
786 /* Construct a DW_CFA_def_cfa_expression instruction to
787 calculate the CFA using a full location expression since no
788 register-offset pair is available. */
789 struct dw_loc_descr_struct *loc_list;
790
791 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
792 loc_list = build_cfa_loc (&loc);
793 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
794 }
795
796 add_fde_cfi (label, cfi);
797 }
798
799 /* Add the CFI for saving a register. REG is the CFA column number.
800 LABEL is passed to add_fde_cfi.
801 If SREG is -1, the register is saved at OFFSET from the CFA;
802 otherwise it is saved in SREG. */
803
804 static void
805 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
806 {
807 dw_cfi_ref cfi = new_cfi ();
808
809 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
810
811 /* The following comparison is correct. -1 is used to indicate that
812 the value isn't a register number. */
813 if (sreg == (unsigned int) -1)
814 {
815 if (reg & ~0x3f)
816 /* The register number won't fit in 6 bits, so we have to use
817 the long form. */
818 cfi->dw_cfi_opc = DW_CFA_offset_extended;
819 else
820 cfi->dw_cfi_opc = DW_CFA_offset;
821
822 #ifdef ENABLE_CHECKING
823 {
824 /* If we get an offset that is not a multiple of
825 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
826 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
827 description. */
828 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
829
830 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
831 abort ();
832 }
833 #endif
834 offset /= DWARF_CIE_DATA_ALIGNMENT;
835 if (offset < 0)
836 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
837
838 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
839 }
840 else if (sreg == reg)
841 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
842 return;
843 else
844 {
845 cfi->dw_cfi_opc = DW_CFA_register;
846 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
847 }
848
849 add_fde_cfi (label, cfi);
850 }
851
852 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
853 This CFI tells the unwinder that it needs to restore the window registers
854 from the previous frame's window save area.
855
856 ??? Perhaps we should note in the CIE where windows are saved (instead of
857 assuming 0(cfa)) and what registers are in the window. */
858
859 void
860 dwarf2out_window_save (const char *label)
861 {
862 dw_cfi_ref cfi = new_cfi ();
863
864 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
865 add_fde_cfi (label, cfi);
866 }
867
868 /* Add a CFI to update the running total of the size of arguments
869 pushed onto the stack. */
870
871 void
872 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
873 {
874 dw_cfi_ref cfi;
875
876 if (size == old_args_size)
877 return;
878
879 old_args_size = size;
880
881 cfi = new_cfi ();
882 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
883 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
884 add_fde_cfi (label, cfi);
885 }
886
887 /* Entry point for saving a register to the stack. REG is the GCC register
888 number. LABEL and OFFSET are passed to reg_save. */
889
890 void
891 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
892 {
893 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
894 }
895
896 /* Entry point for saving the return address in the stack.
897 LABEL and OFFSET are passed to reg_save. */
898
899 void
900 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
901 {
902 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
903 }
904
905 /* Entry point for saving the return address in a register.
906 LABEL and SREG are passed to reg_save. */
907
908 void
909 dwarf2out_return_reg (const char *label, unsigned int sreg)
910 {
911 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
912 }
913
914 /* Record the initial position of the return address. RTL is
915 INCOMING_RETURN_ADDR_RTX. */
916
917 static void
918 initial_return_save (rtx rtl)
919 {
920 unsigned int reg = (unsigned int) -1;
921 HOST_WIDE_INT offset = 0;
922
923 switch (GET_CODE (rtl))
924 {
925 case REG:
926 /* RA is in a register. */
927 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
928 break;
929
930 case MEM:
931 /* RA is on the stack. */
932 rtl = XEXP (rtl, 0);
933 switch (GET_CODE (rtl))
934 {
935 case REG:
936 if (REGNO (rtl) != STACK_POINTER_REGNUM)
937 abort ();
938 offset = 0;
939 break;
940
941 case PLUS:
942 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
943 abort ();
944 offset = INTVAL (XEXP (rtl, 1));
945 break;
946
947 case MINUS:
948 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
949 abort ();
950 offset = -INTVAL (XEXP (rtl, 1));
951 break;
952
953 default:
954 abort ();
955 }
956
957 break;
958
959 case PLUS:
960 /* The return address is at some offset from any value we can
961 actually load. For instance, on the SPARC it is in %i7+8. Just
962 ignore the offset for now; it doesn't matter for unwinding frames. */
963 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
964 abort ();
965 initial_return_save (XEXP (rtl, 0));
966 return;
967
968 default:
969 abort ();
970 }
971
972 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
973 }
974
975 /* Given a SET, calculate the amount of stack adjustment it
976 contains. */
977
978 static HOST_WIDE_INT
979 stack_adjust_offset (rtx pattern)
980 {
981 rtx src = SET_SRC (pattern);
982 rtx dest = SET_DEST (pattern);
983 HOST_WIDE_INT offset = 0;
984 enum rtx_code code;
985
986 if (dest == stack_pointer_rtx)
987 {
988 /* (set (reg sp) (plus (reg sp) (const_int))) */
989 code = GET_CODE (src);
990 if (! (code == PLUS || code == MINUS)
991 || XEXP (src, 0) != stack_pointer_rtx
992 || GET_CODE (XEXP (src, 1)) != CONST_INT)
993 return 0;
994
995 offset = INTVAL (XEXP (src, 1));
996 if (code == PLUS)
997 offset = -offset;
998 }
999 else if (GET_CODE (dest) == MEM)
1000 {
1001 /* (set (mem (pre_dec (reg sp))) (foo)) */
1002 src = XEXP (dest, 0);
1003 code = GET_CODE (src);
1004
1005 switch (code)
1006 {
1007 case PRE_MODIFY:
1008 case POST_MODIFY:
1009 if (XEXP (src, 0) == stack_pointer_rtx)
1010 {
1011 rtx val = XEXP (XEXP (src, 1), 1);
1012 /* We handle only adjustments by constant amount. */
1013 if (GET_CODE (XEXP (src, 1)) != PLUS ||
1014 GET_CODE (val) != CONST_INT)
1015 abort ();
1016 offset = -INTVAL (val);
1017 break;
1018 }
1019 return 0;
1020
1021 case PRE_DEC:
1022 case POST_DEC:
1023 if (XEXP (src, 0) == stack_pointer_rtx)
1024 {
1025 offset = GET_MODE_SIZE (GET_MODE (dest));
1026 break;
1027 }
1028 return 0;
1029
1030 case PRE_INC:
1031 case POST_INC:
1032 if (XEXP (src, 0) == stack_pointer_rtx)
1033 {
1034 offset = -GET_MODE_SIZE (GET_MODE (dest));
1035 break;
1036 }
1037 return 0;
1038
1039 default:
1040 return 0;
1041 }
1042 }
1043 else
1044 return 0;
1045
1046 return offset;
1047 }
1048
1049 /* Check INSN to see if it looks like a push or a stack adjustment, and
1050 make a note of it if it does. EH uses this information to find out how
1051 much extra space it needs to pop off the stack. */
1052
1053 static void
1054 dwarf2out_stack_adjust (rtx insn)
1055 {
1056 HOST_WIDE_INT offset;
1057 const char *label;
1058 int i;
1059
1060 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1061 with this function. Proper support would require all frame-related
1062 insns to be marked, and to be able to handle saving state around
1063 epilogues textually in the middle of the function. */
1064 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1065 return;
1066
1067 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1068 {
1069 /* Extract the size of the args from the CALL rtx itself. */
1070 insn = PATTERN (insn);
1071 if (GET_CODE (insn) == PARALLEL)
1072 insn = XVECEXP (insn, 0, 0);
1073 if (GET_CODE (insn) == SET)
1074 insn = SET_SRC (insn);
1075 if (GET_CODE (insn) != CALL)
1076 abort ();
1077
1078 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1079 return;
1080 }
1081
1082 /* If only calls can throw, and we have a frame pointer,
1083 save up adjustments until we see the CALL_INSN. */
1084 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1085 return;
1086
1087 if (GET_CODE (insn) == BARRIER)
1088 {
1089 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1090 the compiler will have already emitted a stack adjustment, but
1091 doesn't bother for calls to noreturn functions. */
1092 #ifdef STACK_GROWS_DOWNWARD
1093 offset = -args_size;
1094 #else
1095 offset = args_size;
1096 #endif
1097 }
1098 else if (GET_CODE (PATTERN (insn)) == SET)
1099 offset = stack_adjust_offset (PATTERN (insn));
1100 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1101 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1102 {
1103 /* There may be stack adjustments inside compound insns. Search
1104 for them. */
1105 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1106 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1107 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1108 }
1109 else
1110 return;
1111
1112 if (offset == 0)
1113 return;
1114
1115 if (cfa.reg == STACK_POINTER_REGNUM)
1116 cfa.offset += offset;
1117
1118 #ifndef STACK_GROWS_DOWNWARD
1119 offset = -offset;
1120 #endif
1121
1122 args_size += offset;
1123 if (args_size < 0)
1124 args_size = 0;
1125
1126 label = dwarf2out_cfi_label ();
1127 def_cfa_1 (label, &cfa);
1128 dwarf2out_args_size (label, args_size);
1129 }
1130
1131 #endif
1132
1133 /* We delay emitting a register save until either (a) we reach the end
1134 of the prologue or (b) the register is clobbered. This clusters
1135 register saves so that there are fewer pc advances. */
1136
1137 struct queued_reg_save GTY(())
1138 {
1139 struct queued_reg_save *next;
1140 rtx reg;
1141 HOST_WIDE_INT cfa_offset;
1142 };
1143
1144 static GTY(()) struct queued_reg_save *queued_reg_saves;
1145
1146 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1147 static const char *last_reg_save_label;
1148
1149 static void
1150 queue_reg_save (const char *label, rtx reg, HOST_WIDE_INT offset)
1151 {
1152 struct queued_reg_save *q = ggc_alloc (sizeof (*q));
1153
1154 q->next = queued_reg_saves;
1155 q->reg = reg;
1156 q->cfa_offset = offset;
1157 queued_reg_saves = q;
1158
1159 last_reg_save_label = label;
1160 }
1161
1162 static void
1163 flush_queued_reg_saves (void)
1164 {
1165 struct queued_reg_save *q, *next;
1166
1167 for (q = queued_reg_saves; q; q = next)
1168 {
1169 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1170 next = q->next;
1171 }
1172
1173 queued_reg_saves = NULL;
1174 last_reg_save_label = NULL;
1175 }
1176
1177 static bool
1178 clobbers_queued_reg_save (rtx insn)
1179 {
1180 struct queued_reg_save *q;
1181
1182 for (q = queued_reg_saves; q; q = q->next)
1183 if (modified_in_p (q->reg, insn))
1184 return true;
1185
1186 return false;
1187 }
1188
1189
1190 /* A temporary register holding an integral value used in adjusting SP
1191 or setting up the store_reg. The "offset" field holds the integer
1192 value, not an offset. */
1193 static dw_cfa_location cfa_temp;
1194
1195 /* Record call frame debugging information for an expression EXPR,
1196 which either sets SP or FP (adjusting how we calculate the frame
1197 address) or saves a register to the stack. LABEL indicates the
1198 address of EXPR.
1199
1200 This function encodes a state machine mapping rtxes to actions on
1201 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1202 users need not read the source code.
1203
1204 The High-Level Picture
1205
1206 Changes in the register we use to calculate the CFA: Currently we
1207 assume that if you copy the CFA register into another register, we
1208 should take the other one as the new CFA register; this seems to
1209 work pretty well. If it's wrong for some target, it's simple
1210 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1211
1212 Changes in the register we use for saving registers to the stack:
1213 This is usually SP, but not always. Again, we deduce that if you
1214 copy SP into another register (and SP is not the CFA register),
1215 then the new register is the one we will be using for register
1216 saves. This also seems to work.
1217
1218 Register saves: There's not much guesswork about this one; if
1219 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1220 register save, and the register used to calculate the destination
1221 had better be the one we think we're using for this purpose.
1222
1223 Except: If the register being saved is the CFA register, and the
1224 offset is nonzero, we are saving the CFA, so we assume we have to
1225 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1226 the intent is to save the value of SP from the previous frame.
1227
1228 Invariants / Summaries of Rules
1229
1230 cfa current rule for calculating the CFA. It usually
1231 consists of a register and an offset.
1232 cfa_store register used by prologue code to save things to the stack
1233 cfa_store.offset is the offset from the value of
1234 cfa_store.reg to the actual CFA
1235 cfa_temp register holding an integral value. cfa_temp.offset
1236 stores the value, which will be used to adjust the
1237 stack pointer. cfa_temp is also used like cfa_store,
1238 to track stores to the stack via fp or a temp reg.
1239
1240 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1241 with cfa.reg as the first operand changes the cfa.reg and its
1242 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1243 cfa_temp.offset.
1244
1245 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1246 expression yielding a constant. This sets cfa_temp.reg
1247 and cfa_temp.offset.
1248
1249 Rule 5: Create a new register cfa_store used to save items to the
1250 stack.
1251
1252 Rules 10-14: Save a register to the stack. Define offset as the
1253 difference of the original location and cfa_store's
1254 location (or cfa_temp's location if cfa_temp is used).
1255
1256 The Rules
1257
1258 "{a,b}" indicates a choice of a xor b.
1259 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1260
1261 Rule 1:
1262 (set <reg1> <reg2>:cfa.reg)
1263 effects: cfa.reg = <reg1>
1264 cfa.offset unchanged
1265 cfa_temp.reg = <reg1>
1266 cfa_temp.offset = cfa.offset
1267
1268 Rule 2:
1269 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1270 {<const_int>,<reg>:cfa_temp.reg}))
1271 effects: cfa.reg = sp if fp used
1272 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1273 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1274 if cfa_store.reg==sp
1275
1276 Rule 3:
1277 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1278 effects: cfa.reg = fp
1279 cfa_offset += +/- <const_int>
1280
1281 Rule 4:
1282 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1283 constraints: <reg1> != fp
1284 <reg1> != sp
1285 effects: cfa.reg = <reg1>
1286 cfa_temp.reg = <reg1>
1287 cfa_temp.offset = cfa.offset
1288
1289 Rule 5:
1290 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1291 constraints: <reg1> != fp
1292 <reg1> != sp
1293 effects: cfa_store.reg = <reg1>
1294 cfa_store.offset = cfa.offset - cfa_temp.offset
1295
1296 Rule 6:
1297 (set <reg> <const_int>)
1298 effects: cfa_temp.reg = <reg>
1299 cfa_temp.offset = <const_int>
1300
1301 Rule 7:
1302 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1303 effects: cfa_temp.reg = <reg1>
1304 cfa_temp.offset |= <const_int>
1305
1306 Rule 8:
1307 (set <reg> (high <exp>))
1308 effects: none
1309
1310 Rule 9:
1311 (set <reg> (lo_sum <exp> <const_int>))
1312 effects: cfa_temp.reg = <reg>
1313 cfa_temp.offset = <const_int>
1314
1315 Rule 10:
1316 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1317 effects: cfa_store.offset -= <const_int>
1318 cfa.offset = cfa_store.offset if cfa.reg == sp
1319 cfa.reg = sp
1320 cfa.base_offset = -cfa_store.offset
1321
1322 Rule 11:
1323 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1324 effects: cfa_store.offset += -/+ mode_size(mem)
1325 cfa.offset = cfa_store.offset if cfa.reg == sp
1326 cfa.reg = sp
1327 cfa.base_offset = -cfa_store.offset
1328
1329 Rule 12:
1330 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1331
1332 <reg2>)
1333 effects: cfa.reg = <reg1>
1334 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1335
1336 Rule 13:
1337 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1338 effects: cfa.reg = <reg1>
1339 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1340
1341 Rule 14:
1342 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1343 effects: cfa.reg = <reg1>
1344 cfa.base_offset = -cfa_temp.offset
1345 cfa_temp.offset -= mode_size(mem) */
1346
1347 static void
1348 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1349 {
1350 rtx src, dest;
1351 HOST_WIDE_INT offset;
1352
1353 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1354 the PARALLEL independently. The first element is always processed if
1355 it is a SET. This is for backward compatibility. Other elements
1356 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1357 flag is set in them. */
1358 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1359 {
1360 int par_index;
1361 int limit = XVECLEN (expr, 0);
1362
1363 for (par_index = 0; par_index < limit; par_index++)
1364 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1365 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1366 || par_index == 0))
1367 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1368
1369 return;
1370 }
1371
1372 if (GET_CODE (expr) != SET)
1373 abort ();
1374
1375 src = SET_SRC (expr);
1376 dest = SET_DEST (expr);
1377
1378 switch (GET_CODE (dest))
1379 {
1380 case REG:
1381 /* Rule 1 */
1382 /* Update the CFA rule wrt SP or FP. Make sure src is
1383 relative to the current CFA register. */
1384 switch (GET_CODE (src))
1385 {
1386 /* Setting FP from SP. */
1387 case REG:
1388 if (cfa.reg == (unsigned) REGNO (src))
1389 /* OK. */
1390 ;
1391 else
1392 abort ();
1393
1394 /* We used to require that dest be either SP or FP, but the
1395 ARM copies SP to a temporary register, and from there to
1396 FP. So we just rely on the backends to only set
1397 RTX_FRAME_RELATED_P on appropriate insns. */
1398 cfa.reg = REGNO (dest);
1399 cfa_temp.reg = cfa.reg;
1400 cfa_temp.offset = cfa.offset;
1401 break;
1402
1403 case PLUS:
1404 case MINUS:
1405 case LO_SUM:
1406 if (dest == stack_pointer_rtx)
1407 {
1408 /* Rule 2 */
1409 /* Adjusting SP. */
1410 switch (GET_CODE (XEXP (src, 1)))
1411 {
1412 case CONST_INT:
1413 offset = INTVAL (XEXP (src, 1));
1414 break;
1415 case REG:
1416 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1417 abort ();
1418 offset = cfa_temp.offset;
1419 break;
1420 default:
1421 abort ();
1422 }
1423
1424 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1425 {
1426 /* Restoring SP from FP in the epilogue. */
1427 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1428 abort ();
1429 cfa.reg = STACK_POINTER_REGNUM;
1430 }
1431 else if (GET_CODE (src) == LO_SUM)
1432 /* Assume we've set the source reg of the LO_SUM from sp. */
1433 ;
1434 else if (XEXP (src, 0) != stack_pointer_rtx)
1435 abort ();
1436
1437 if (GET_CODE (src) != MINUS)
1438 offset = -offset;
1439 if (cfa.reg == STACK_POINTER_REGNUM)
1440 cfa.offset += offset;
1441 if (cfa_store.reg == STACK_POINTER_REGNUM)
1442 cfa_store.offset += offset;
1443 }
1444 else if (dest == hard_frame_pointer_rtx)
1445 {
1446 /* Rule 3 */
1447 /* Either setting the FP from an offset of the SP,
1448 or adjusting the FP */
1449 if (! frame_pointer_needed)
1450 abort ();
1451
1452 if (GET_CODE (XEXP (src, 0)) == REG
1453 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1454 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1455 {
1456 offset = INTVAL (XEXP (src, 1));
1457 if (GET_CODE (src) != MINUS)
1458 offset = -offset;
1459 cfa.offset += offset;
1460 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1461 }
1462 else
1463 abort ();
1464 }
1465 else
1466 {
1467 if (GET_CODE (src) == MINUS)
1468 abort ();
1469
1470 /* Rule 4 */
1471 if (GET_CODE (XEXP (src, 0)) == REG
1472 && REGNO (XEXP (src, 0)) == cfa.reg
1473 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1474 {
1475 /* Setting a temporary CFA register that will be copied
1476 into the FP later on. */
1477 offset = - INTVAL (XEXP (src, 1));
1478 cfa.offset += offset;
1479 cfa.reg = REGNO (dest);
1480 /* Or used to save regs to the stack. */
1481 cfa_temp.reg = cfa.reg;
1482 cfa_temp.offset = cfa.offset;
1483 }
1484
1485 /* Rule 5 */
1486 else if (GET_CODE (XEXP (src, 0)) == REG
1487 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1488 && XEXP (src, 1) == stack_pointer_rtx)
1489 {
1490 /* Setting a scratch register that we will use instead
1491 of SP for saving registers to the stack. */
1492 if (cfa.reg != STACK_POINTER_REGNUM)
1493 abort ();
1494 cfa_store.reg = REGNO (dest);
1495 cfa_store.offset = cfa.offset - cfa_temp.offset;
1496 }
1497
1498 /* Rule 9 */
1499 else if (GET_CODE (src) == LO_SUM
1500 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1501 {
1502 cfa_temp.reg = REGNO (dest);
1503 cfa_temp.offset = INTVAL (XEXP (src, 1));
1504 }
1505 else
1506 abort ();
1507 }
1508 break;
1509
1510 /* Rule 6 */
1511 case CONST_INT:
1512 cfa_temp.reg = REGNO (dest);
1513 cfa_temp.offset = INTVAL (src);
1514 break;
1515
1516 /* Rule 7 */
1517 case IOR:
1518 if (GET_CODE (XEXP (src, 0)) != REG
1519 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1520 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1521 abort ();
1522
1523 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1524 cfa_temp.reg = REGNO (dest);
1525 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1526 break;
1527
1528 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1529 which will fill in all of the bits. */
1530 /* Rule 8 */
1531 case HIGH:
1532 break;
1533
1534 default:
1535 abort ();
1536 }
1537
1538 def_cfa_1 (label, &cfa);
1539 break;
1540
1541 case MEM:
1542 if (GET_CODE (src) != REG)
1543 abort ();
1544
1545 /* Saving a register to the stack. Make sure dest is relative to the
1546 CFA register. */
1547 switch (GET_CODE (XEXP (dest, 0)))
1548 {
1549 /* Rule 10 */
1550 /* With a push. */
1551 case PRE_MODIFY:
1552 /* We can't handle variable size modifications. */
1553 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1554 abort ();
1555 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1556
1557 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1558 || cfa_store.reg != STACK_POINTER_REGNUM)
1559 abort ();
1560
1561 cfa_store.offset += offset;
1562 if (cfa.reg == STACK_POINTER_REGNUM)
1563 cfa.offset = cfa_store.offset;
1564
1565 offset = -cfa_store.offset;
1566 break;
1567
1568 /* Rule 11 */
1569 case PRE_INC:
1570 case PRE_DEC:
1571 offset = GET_MODE_SIZE (GET_MODE (dest));
1572 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1573 offset = -offset;
1574
1575 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1576 || cfa_store.reg != STACK_POINTER_REGNUM)
1577 abort ();
1578
1579 cfa_store.offset += offset;
1580 if (cfa.reg == STACK_POINTER_REGNUM)
1581 cfa.offset = cfa_store.offset;
1582
1583 offset = -cfa_store.offset;
1584 break;
1585
1586 /* Rule 12 */
1587 /* With an offset. */
1588 case PLUS:
1589 case MINUS:
1590 case LO_SUM:
1591 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1592 abort ();
1593 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1594 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1595 offset = -offset;
1596
1597 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1598 offset -= cfa_store.offset;
1599 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1600 offset -= cfa_temp.offset;
1601 else
1602 abort ();
1603 break;
1604
1605 /* Rule 13 */
1606 /* Without an offset. */
1607 case REG:
1608 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1609 offset = -cfa_store.offset;
1610 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1611 offset = -cfa_temp.offset;
1612 else
1613 abort ();
1614 break;
1615
1616 /* Rule 14 */
1617 case POST_INC:
1618 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1619 abort ();
1620 offset = -cfa_temp.offset;
1621 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1622 break;
1623
1624 default:
1625 abort ();
1626 }
1627
1628 if (REGNO (src) != STACK_POINTER_REGNUM
1629 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1630 && (unsigned) REGNO (src) == cfa.reg)
1631 {
1632 /* We're storing the current CFA reg into the stack. */
1633
1634 if (cfa.offset == 0)
1635 {
1636 /* If the source register is exactly the CFA, assume
1637 we're saving SP like any other register; this happens
1638 on the ARM. */
1639 def_cfa_1 (label, &cfa);
1640 queue_reg_save (label, stack_pointer_rtx, offset);
1641 break;
1642 }
1643 else
1644 {
1645 /* Otherwise, we'll need to look in the stack to
1646 calculate the CFA. */
1647 rtx x = XEXP (dest, 0);
1648
1649 if (GET_CODE (x) != REG)
1650 x = XEXP (x, 0);
1651 if (GET_CODE (x) != REG)
1652 abort ();
1653
1654 cfa.reg = REGNO (x);
1655 cfa.base_offset = offset;
1656 cfa.indirect = 1;
1657 def_cfa_1 (label, &cfa);
1658 break;
1659 }
1660 }
1661
1662 def_cfa_1 (label, &cfa);
1663 queue_reg_save (label, src, offset);
1664 break;
1665
1666 default:
1667 abort ();
1668 }
1669 }
1670
1671 /* Record call frame debugging information for INSN, which either
1672 sets SP or FP (adjusting how we calculate the frame address) or saves a
1673 register to the stack. If INSN is NULL_RTX, initialize our state. */
1674
1675 void
1676 dwarf2out_frame_debug (rtx insn)
1677 {
1678 const char *label;
1679 rtx src;
1680
1681 if (insn == NULL_RTX)
1682 {
1683 /* Flush any queued register saves. */
1684 flush_queued_reg_saves ();
1685
1686 /* Set up state for generating call frame debug info. */
1687 lookup_cfa (&cfa);
1688 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1689 abort ();
1690
1691 cfa.reg = STACK_POINTER_REGNUM;
1692 cfa_store = cfa;
1693 cfa_temp.reg = -1;
1694 cfa_temp.offset = 0;
1695 return;
1696 }
1697
1698 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1699 flush_queued_reg_saves ();
1700
1701 if (! RTX_FRAME_RELATED_P (insn))
1702 {
1703 if (!ACCUMULATE_OUTGOING_ARGS)
1704 dwarf2out_stack_adjust (insn);
1705
1706 return;
1707 }
1708
1709 label = dwarf2out_cfi_label ();
1710 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1711 if (src)
1712 insn = XEXP (src, 0);
1713 else
1714 insn = PATTERN (insn);
1715
1716 dwarf2out_frame_debug_expr (insn, label);
1717 }
1718
1719 #endif
1720
1721 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1722 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1723 (enum dwarf_call_frame_info cfi);
1724
1725 static enum dw_cfi_oprnd_type
1726 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1727 {
1728 switch (cfi)
1729 {
1730 case DW_CFA_nop:
1731 case DW_CFA_GNU_window_save:
1732 return dw_cfi_oprnd_unused;
1733
1734 case DW_CFA_set_loc:
1735 case DW_CFA_advance_loc1:
1736 case DW_CFA_advance_loc2:
1737 case DW_CFA_advance_loc4:
1738 case DW_CFA_MIPS_advance_loc8:
1739 return dw_cfi_oprnd_addr;
1740
1741 case DW_CFA_offset:
1742 case DW_CFA_offset_extended:
1743 case DW_CFA_def_cfa:
1744 case DW_CFA_offset_extended_sf:
1745 case DW_CFA_def_cfa_sf:
1746 case DW_CFA_restore_extended:
1747 case DW_CFA_undefined:
1748 case DW_CFA_same_value:
1749 case DW_CFA_def_cfa_register:
1750 case DW_CFA_register:
1751 return dw_cfi_oprnd_reg_num;
1752
1753 case DW_CFA_def_cfa_offset:
1754 case DW_CFA_GNU_args_size:
1755 case DW_CFA_def_cfa_offset_sf:
1756 return dw_cfi_oprnd_offset;
1757
1758 case DW_CFA_def_cfa_expression:
1759 case DW_CFA_expression:
1760 return dw_cfi_oprnd_loc;
1761
1762 default:
1763 abort ();
1764 }
1765 }
1766
1767 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1768 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1769 (enum dwarf_call_frame_info cfi);
1770
1771 static enum dw_cfi_oprnd_type
1772 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1773 {
1774 switch (cfi)
1775 {
1776 case DW_CFA_def_cfa:
1777 case DW_CFA_def_cfa_sf:
1778 case DW_CFA_offset:
1779 case DW_CFA_offset_extended_sf:
1780 case DW_CFA_offset_extended:
1781 return dw_cfi_oprnd_offset;
1782
1783 case DW_CFA_register:
1784 return dw_cfi_oprnd_reg_num;
1785
1786 default:
1787 return dw_cfi_oprnd_unused;
1788 }
1789 }
1790
1791 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1792
1793 /* Output a Call Frame Information opcode and its operand(s). */
1794
1795 static void
1796 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1797 {
1798 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1799 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1800 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1801 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1802 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1803 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1804 {
1805 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1806 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1807 "DW_CFA_offset, column 0x%lx",
1808 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1809 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1810 }
1811 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1812 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1813 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1814 "DW_CFA_restore, column 0x%lx",
1815 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1816 else
1817 {
1818 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1819 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1820
1821 switch (cfi->dw_cfi_opc)
1822 {
1823 case DW_CFA_set_loc:
1824 if (for_eh)
1825 dw2_asm_output_encoded_addr_rtx (
1826 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1827 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1828 NULL);
1829 else
1830 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1831 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1832 break;
1833
1834 case DW_CFA_advance_loc1:
1835 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1836 fde->dw_fde_current_label, NULL);
1837 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1838 break;
1839
1840 case DW_CFA_advance_loc2:
1841 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1842 fde->dw_fde_current_label, NULL);
1843 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1844 break;
1845
1846 case DW_CFA_advance_loc4:
1847 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1848 fde->dw_fde_current_label, NULL);
1849 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1850 break;
1851
1852 case DW_CFA_MIPS_advance_loc8:
1853 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1854 fde->dw_fde_current_label, NULL);
1855 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1856 break;
1857
1858 case DW_CFA_offset_extended:
1859 case DW_CFA_def_cfa:
1860 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1861 NULL);
1862 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1863 break;
1864
1865 case DW_CFA_offset_extended_sf:
1866 case DW_CFA_def_cfa_sf:
1867 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1868 NULL);
1869 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1870 break;
1871
1872 case DW_CFA_restore_extended:
1873 case DW_CFA_undefined:
1874 case DW_CFA_same_value:
1875 case DW_CFA_def_cfa_register:
1876 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1877 NULL);
1878 break;
1879
1880 case DW_CFA_register:
1881 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1882 NULL);
1883 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_reg_num,
1884 NULL);
1885 break;
1886
1887 case DW_CFA_def_cfa_offset:
1888 case DW_CFA_GNU_args_size:
1889 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1890 break;
1891
1892 case DW_CFA_def_cfa_offset_sf:
1893 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1894 break;
1895
1896 case DW_CFA_GNU_window_save:
1897 break;
1898
1899 case DW_CFA_def_cfa_expression:
1900 case DW_CFA_expression:
1901 output_cfa_loc (cfi);
1902 break;
1903
1904 case DW_CFA_GNU_negative_offset_extended:
1905 /* Obsoleted by DW_CFA_offset_extended_sf. */
1906 abort ();
1907
1908 default:
1909 break;
1910 }
1911 }
1912 }
1913
1914 /* Output the call frame information used to used to record information
1915 that relates to calculating the frame pointer, and records the
1916 location of saved registers. */
1917
1918 static void
1919 output_call_frame_info (int for_eh)
1920 {
1921 unsigned int i;
1922 dw_fde_ref fde;
1923 dw_cfi_ref cfi;
1924 char l1[20], l2[20], section_start_label[20];
1925 bool any_lsda_needed = false;
1926 char augmentation[6];
1927 int augmentation_size;
1928 int fde_encoding = DW_EH_PE_absptr;
1929 int per_encoding = DW_EH_PE_absptr;
1930 int lsda_encoding = DW_EH_PE_absptr;
1931
1932 /* Don't emit a CIE if there won't be any FDEs. */
1933 if (fde_table_in_use == 0)
1934 return;
1935
1936 /* If we don't have any functions we'll want to unwind out of, don't
1937 emit any EH unwind information. Note that if exceptions aren't
1938 enabled, we won't have collected nothrow information, and if we
1939 asked for asynchronous tables, we always want this info. */
1940 if (for_eh)
1941 {
1942 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
1943
1944 for (i = 0; i < fde_table_in_use; i++)
1945 if (fde_table[i].uses_eh_lsda)
1946 any_eh_needed = any_lsda_needed = true;
1947 else if (! fde_table[i].nothrow
1948 && ! fde_table[i].all_throwers_are_sibcalls)
1949 any_eh_needed = true;
1950
1951 if (! any_eh_needed)
1952 return;
1953 }
1954
1955 /* We're going to be generating comments, so turn on app. */
1956 if (flag_debug_asm)
1957 app_enable ();
1958
1959 if (for_eh)
1960 (*targetm.asm_out.eh_frame_section) ();
1961 else
1962 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1963
1964 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1965 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1966
1967 /* Output the CIE. */
1968 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1969 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1970 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1971 "Length of Common Information Entry");
1972 ASM_OUTPUT_LABEL (asm_out_file, l1);
1973
1974 /* Now that the CIE pointer is PC-relative for EH,
1975 use 0 to identify the CIE. */
1976 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1977 (for_eh ? 0 : DW_CIE_ID),
1978 "CIE Identifier Tag");
1979
1980 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1981
1982 augmentation[0] = 0;
1983 augmentation_size = 0;
1984 if (for_eh)
1985 {
1986 char *p;
1987
1988 /* Augmentation:
1989 z Indicates that a uleb128 is present to size the
1990 augmentation section.
1991 L Indicates the encoding (and thus presence) of
1992 an LSDA pointer in the FDE augmentation.
1993 R Indicates a non-default pointer encoding for
1994 FDE code pointers.
1995 P Indicates the presence of an encoding + language
1996 personality routine in the CIE augmentation. */
1997
1998 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1999 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2000 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2001
2002 p = augmentation + 1;
2003 if (eh_personality_libfunc)
2004 {
2005 *p++ = 'P';
2006 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2007 }
2008 if (any_lsda_needed)
2009 {
2010 *p++ = 'L';
2011 augmentation_size += 1;
2012 }
2013 if (fde_encoding != DW_EH_PE_absptr)
2014 {
2015 *p++ = 'R';
2016 augmentation_size += 1;
2017 }
2018 if (p > augmentation + 1)
2019 {
2020 augmentation[0] = 'z';
2021 *p = '\0';
2022 }
2023
2024 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2025 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2026 {
2027 int offset = ( 4 /* Length */
2028 + 4 /* CIE Id */
2029 + 1 /* CIE version */
2030 + strlen (augmentation) + 1 /* Augmentation */
2031 + size_of_uleb128 (1) /* Code alignment */
2032 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2033 + 1 /* RA column */
2034 + 1 /* Augmentation size */
2035 + 1 /* Personality encoding */ );
2036 int pad = -offset & (PTR_SIZE - 1);
2037
2038 augmentation_size += pad;
2039
2040 /* Augmentations should be small, so there's scarce need to
2041 iterate for a solution. Die if we exceed one uleb128 byte. */
2042 if (size_of_uleb128 (augmentation_size) != 1)
2043 abort ();
2044 }
2045 }
2046
2047 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2048 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2049 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2050 "CIE Data Alignment Factor");
2051 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2052
2053 if (augmentation[0])
2054 {
2055 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2056 if (eh_personality_libfunc)
2057 {
2058 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2059 eh_data_format_name (per_encoding));
2060 dw2_asm_output_encoded_addr_rtx (per_encoding,
2061 eh_personality_libfunc, NULL);
2062 }
2063
2064 if (any_lsda_needed)
2065 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2066 eh_data_format_name (lsda_encoding));
2067
2068 if (fde_encoding != DW_EH_PE_absptr)
2069 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2070 eh_data_format_name (fde_encoding));
2071 }
2072
2073 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2074 output_cfi (cfi, NULL, for_eh);
2075
2076 /* Pad the CIE out to an address sized boundary. */
2077 ASM_OUTPUT_ALIGN (asm_out_file,
2078 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2079 ASM_OUTPUT_LABEL (asm_out_file, l2);
2080
2081 /* Loop through all of the FDE's. */
2082 for (i = 0; i < fde_table_in_use; i++)
2083 {
2084 fde = &fde_table[i];
2085
2086 /* Don't emit EH unwind info for leaf functions that don't need it. */
2087 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2088 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2089 && !fde->uses_eh_lsda)
2090 continue;
2091
2092 (*targetm.asm_out.internal_label) (asm_out_file, FDE_LABEL, for_eh + i * 2);
2093 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2094 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2095 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2096 "FDE Length");
2097 ASM_OUTPUT_LABEL (asm_out_file, l1);
2098
2099 if (for_eh)
2100 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2101 else
2102 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2103 "FDE CIE offset");
2104
2105 if (for_eh)
2106 {
2107 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2108 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
2109 "FDE initial location");
2110 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2111 fde->dw_fde_end, fde->dw_fde_begin,
2112 "FDE address range");
2113 }
2114 else
2115 {
2116 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2117 "FDE initial location");
2118 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2119 fde->dw_fde_end, fde->dw_fde_begin,
2120 "FDE address range");
2121 }
2122
2123 if (augmentation[0])
2124 {
2125 if (any_lsda_needed)
2126 {
2127 int size = size_of_encoded_value (lsda_encoding);
2128
2129 if (lsda_encoding == DW_EH_PE_aligned)
2130 {
2131 int offset = ( 4 /* Length */
2132 + 4 /* CIE offset */
2133 + 2 * size_of_encoded_value (fde_encoding)
2134 + 1 /* Augmentation size */ );
2135 int pad = -offset & (PTR_SIZE - 1);
2136
2137 size += pad;
2138 if (size_of_uleb128 (size) != 1)
2139 abort ();
2140 }
2141
2142 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2143
2144 if (fde->uses_eh_lsda)
2145 {
2146 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2147 fde->funcdef_number);
2148 dw2_asm_output_encoded_addr_rtx (
2149 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2150 "Language Specific Data Area");
2151 }
2152 else
2153 {
2154 if (lsda_encoding == DW_EH_PE_aligned)
2155 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2156 dw2_asm_output_data
2157 (size_of_encoded_value (lsda_encoding), 0,
2158 "Language Specific Data Area (none)");
2159 }
2160 }
2161 else
2162 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2163 }
2164
2165 /* Loop through the Call Frame Instructions associated with
2166 this FDE. */
2167 fde->dw_fde_current_label = fde->dw_fde_begin;
2168 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2169 output_cfi (cfi, fde, for_eh);
2170
2171 /* Pad the FDE out to an address sized boundary. */
2172 ASM_OUTPUT_ALIGN (asm_out_file,
2173 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2174 ASM_OUTPUT_LABEL (asm_out_file, l2);
2175 }
2176
2177 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2178 dw2_asm_output_data (4, 0, "End of Table");
2179 #ifdef MIPS_DEBUGGING_INFO
2180 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2181 get a value of 0. Putting .align 0 after the label fixes it. */
2182 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2183 #endif
2184
2185 /* Turn off app to make assembly quicker. */
2186 if (flag_debug_asm)
2187 app_disable ();
2188 }
2189
2190 /* Output a marker (i.e. a label) for the beginning of a function, before
2191 the prologue. */
2192
2193 void
2194 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2195 const char *file ATTRIBUTE_UNUSED)
2196 {
2197 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2198 dw_fde_ref fde;
2199
2200 current_function_func_begin_label = 0;
2201
2202 #ifdef IA64_UNWIND_INFO
2203 /* ??? current_function_func_begin_label is also used by except.c
2204 for call-site information. We must emit this label if it might
2205 be used. */
2206 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2207 && ! dwarf2out_do_frame ())
2208 return;
2209 #else
2210 if (! dwarf2out_do_frame ())
2211 return;
2212 #endif
2213
2214 function_section (current_function_decl);
2215 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2216 current_function_funcdef_no);
2217 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2218 current_function_funcdef_no);
2219 current_function_func_begin_label = get_identifier (label);
2220
2221 #ifdef IA64_UNWIND_INFO
2222 /* We can elide the fde allocation if we're not emitting debug info. */
2223 if (! dwarf2out_do_frame ())
2224 return;
2225 #endif
2226
2227 /* Expand the fde table if necessary. */
2228 if (fde_table_in_use == fde_table_allocated)
2229 {
2230 fde_table_allocated += FDE_TABLE_INCREMENT;
2231 fde_table = ggc_realloc (fde_table,
2232 fde_table_allocated * sizeof (dw_fde_node));
2233 memset (fde_table + fde_table_in_use, 0,
2234 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2235 }
2236
2237 /* Record the FDE associated with this function. */
2238 current_funcdef_fde = fde_table_in_use;
2239
2240 /* Add the new FDE at the end of the fde_table. */
2241 fde = &fde_table[fde_table_in_use++];
2242 fde->dw_fde_begin = xstrdup (label);
2243 fde->dw_fde_current_label = NULL;
2244 fde->dw_fde_end = NULL;
2245 fde->dw_fde_cfi = NULL;
2246 fde->funcdef_number = current_function_funcdef_no;
2247 fde->nothrow = current_function_nothrow;
2248 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2249 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2250
2251 args_size = old_args_size = 0;
2252
2253 /* We only want to output line number information for the genuine dwarf2
2254 prologue case, not the eh frame case. */
2255 #ifdef DWARF2_DEBUGGING_INFO
2256 if (file)
2257 dwarf2out_source_line (line, file);
2258 #endif
2259 }
2260
2261 /* Output a marker (i.e. a label) for the absolute end of the generated code
2262 for a function definition. This gets called *after* the epilogue code has
2263 been generated. */
2264
2265 void
2266 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2267 const char *file ATTRIBUTE_UNUSED)
2268 {
2269 dw_fde_ref fde;
2270 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2271
2272 /* Output a label to mark the endpoint of the code generated for this
2273 function. */
2274 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2275 current_function_funcdef_no);
2276 ASM_OUTPUT_LABEL (asm_out_file, label);
2277 fde = &fde_table[fde_table_in_use - 1];
2278 fde->dw_fde_end = xstrdup (label);
2279 }
2280
2281 void
2282 dwarf2out_frame_init (void)
2283 {
2284 /* Allocate the initial hunk of the fde_table. */
2285 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2286 fde_table_allocated = FDE_TABLE_INCREMENT;
2287 fde_table_in_use = 0;
2288
2289 /* Generate the CFA instructions common to all FDE's. Do it now for the
2290 sake of lookup_cfa. */
2291
2292 #ifdef DWARF2_UNWIND_INFO
2293 /* On entry, the Canonical Frame Address is at SP. */
2294 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2295 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2296 #endif
2297 }
2298
2299 void
2300 dwarf2out_frame_finish (void)
2301 {
2302 /* Output call frame information. */
2303 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2304 output_call_frame_info (0);
2305
2306 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2307 output_call_frame_info (1);
2308 }
2309 #endif
2310 \f
2311 /* And now, the subset of the debugging information support code necessary
2312 for emitting location expressions. */
2313
2314 /* We need some way to distinguish DW_OP_addr with a direct symbol
2315 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2316 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2317
2318
2319 typedef struct dw_val_struct *dw_val_ref;
2320 typedef struct die_struct *dw_die_ref;
2321 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2322 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2323
2324 /* Each DIE may have a series of attribute/value pairs. Values
2325 can take on several forms. The forms that are used in this
2326 implementation are listed below. */
2327
2328 enum dw_val_class
2329 {
2330 dw_val_class_addr,
2331 dw_val_class_offset,
2332 dw_val_class_loc,
2333 dw_val_class_loc_list,
2334 dw_val_class_range_list,
2335 dw_val_class_const,
2336 dw_val_class_unsigned_const,
2337 dw_val_class_long_long,
2338 dw_val_class_float,
2339 dw_val_class_flag,
2340 dw_val_class_die_ref,
2341 dw_val_class_fde_ref,
2342 dw_val_class_lbl_id,
2343 dw_val_class_lbl_offset,
2344 dw_val_class_str
2345 };
2346
2347 /* Describe a double word constant value. */
2348 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2349
2350 typedef struct dw_long_long_struct GTY(())
2351 {
2352 unsigned long hi;
2353 unsigned long low;
2354 }
2355 dw_long_long_const;
2356
2357 /* Describe a floating point constant value. */
2358
2359 typedef struct dw_fp_struct GTY(())
2360 {
2361 long * GTY((length ("%h.length"))) array;
2362 unsigned length;
2363 }
2364 dw_float_const;
2365
2366 /* The dw_val_node describes an attribute's value, as it is
2367 represented internally. */
2368
2369 typedef struct dw_val_struct GTY(())
2370 {
2371 enum dw_val_class val_class;
2372 union dw_val_struct_union
2373 {
2374 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2375 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2376 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2377 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2378 HOST_WIDE_INT GTY ((default (""))) val_int;
2379 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2380 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2381 dw_float_const GTY ((tag ("dw_val_class_float"))) val_float;
2382 struct dw_val_die_union
2383 {
2384 dw_die_ref die;
2385 int external;
2386 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2387 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2388 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2389 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2390 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2391 }
2392 GTY ((desc ("%1.val_class"))) v;
2393 }
2394 dw_val_node;
2395
2396 /* Locations in memory are described using a sequence of stack machine
2397 operations. */
2398
2399 typedef struct dw_loc_descr_struct GTY(())
2400 {
2401 dw_loc_descr_ref dw_loc_next;
2402 enum dwarf_location_atom dw_loc_opc;
2403 dw_val_node dw_loc_oprnd1;
2404 dw_val_node dw_loc_oprnd2;
2405 int dw_loc_addr;
2406 }
2407 dw_loc_descr_node;
2408
2409 /* Location lists are ranges + location descriptions for that range,
2410 so you can track variables that are in different places over
2411 their entire life. */
2412 typedef struct dw_loc_list_struct GTY(())
2413 {
2414 dw_loc_list_ref dw_loc_next;
2415 const char *begin; /* Label for begin address of range */
2416 const char *end; /* Label for end address of range */
2417 char *ll_symbol; /* Label for beginning of location list.
2418 Only on head of list */
2419 const char *section; /* Section this loclist is relative to */
2420 dw_loc_descr_ref expr;
2421 } dw_loc_list_node;
2422
2423 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2424
2425 static const char *dwarf_stack_op_name (unsigned);
2426 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2427 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2428 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2429 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2430 static unsigned long size_of_locs (dw_loc_descr_ref);
2431 static void output_loc_operands (dw_loc_descr_ref);
2432 static void output_loc_sequence (dw_loc_descr_ref);
2433
2434 /* Convert a DWARF stack opcode into its string name. */
2435
2436 static const char *
2437 dwarf_stack_op_name (unsigned int op)
2438 {
2439 switch (op)
2440 {
2441 case DW_OP_addr:
2442 case INTERNAL_DW_OP_tls_addr:
2443 return "DW_OP_addr";
2444 case DW_OP_deref:
2445 return "DW_OP_deref";
2446 case DW_OP_const1u:
2447 return "DW_OP_const1u";
2448 case DW_OP_const1s:
2449 return "DW_OP_const1s";
2450 case DW_OP_const2u:
2451 return "DW_OP_const2u";
2452 case DW_OP_const2s:
2453 return "DW_OP_const2s";
2454 case DW_OP_const4u:
2455 return "DW_OP_const4u";
2456 case DW_OP_const4s:
2457 return "DW_OP_const4s";
2458 case DW_OP_const8u:
2459 return "DW_OP_const8u";
2460 case DW_OP_const8s:
2461 return "DW_OP_const8s";
2462 case DW_OP_constu:
2463 return "DW_OP_constu";
2464 case DW_OP_consts:
2465 return "DW_OP_consts";
2466 case DW_OP_dup:
2467 return "DW_OP_dup";
2468 case DW_OP_drop:
2469 return "DW_OP_drop";
2470 case DW_OP_over:
2471 return "DW_OP_over";
2472 case DW_OP_pick:
2473 return "DW_OP_pick";
2474 case DW_OP_swap:
2475 return "DW_OP_swap";
2476 case DW_OP_rot:
2477 return "DW_OP_rot";
2478 case DW_OP_xderef:
2479 return "DW_OP_xderef";
2480 case DW_OP_abs:
2481 return "DW_OP_abs";
2482 case DW_OP_and:
2483 return "DW_OP_and";
2484 case DW_OP_div:
2485 return "DW_OP_div";
2486 case DW_OP_minus:
2487 return "DW_OP_minus";
2488 case DW_OP_mod:
2489 return "DW_OP_mod";
2490 case DW_OP_mul:
2491 return "DW_OP_mul";
2492 case DW_OP_neg:
2493 return "DW_OP_neg";
2494 case DW_OP_not:
2495 return "DW_OP_not";
2496 case DW_OP_or:
2497 return "DW_OP_or";
2498 case DW_OP_plus:
2499 return "DW_OP_plus";
2500 case DW_OP_plus_uconst:
2501 return "DW_OP_plus_uconst";
2502 case DW_OP_shl:
2503 return "DW_OP_shl";
2504 case DW_OP_shr:
2505 return "DW_OP_shr";
2506 case DW_OP_shra:
2507 return "DW_OP_shra";
2508 case DW_OP_xor:
2509 return "DW_OP_xor";
2510 case DW_OP_bra:
2511 return "DW_OP_bra";
2512 case DW_OP_eq:
2513 return "DW_OP_eq";
2514 case DW_OP_ge:
2515 return "DW_OP_ge";
2516 case DW_OP_gt:
2517 return "DW_OP_gt";
2518 case DW_OP_le:
2519 return "DW_OP_le";
2520 case DW_OP_lt:
2521 return "DW_OP_lt";
2522 case DW_OP_ne:
2523 return "DW_OP_ne";
2524 case DW_OP_skip:
2525 return "DW_OP_skip";
2526 case DW_OP_lit0:
2527 return "DW_OP_lit0";
2528 case DW_OP_lit1:
2529 return "DW_OP_lit1";
2530 case DW_OP_lit2:
2531 return "DW_OP_lit2";
2532 case DW_OP_lit3:
2533 return "DW_OP_lit3";
2534 case DW_OP_lit4:
2535 return "DW_OP_lit4";
2536 case DW_OP_lit5:
2537 return "DW_OP_lit5";
2538 case DW_OP_lit6:
2539 return "DW_OP_lit6";
2540 case DW_OP_lit7:
2541 return "DW_OP_lit7";
2542 case DW_OP_lit8:
2543 return "DW_OP_lit8";
2544 case DW_OP_lit9:
2545 return "DW_OP_lit9";
2546 case DW_OP_lit10:
2547 return "DW_OP_lit10";
2548 case DW_OP_lit11:
2549 return "DW_OP_lit11";
2550 case DW_OP_lit12:
2551 return "DW_OP_lit12";
2552 case DW_OP_lit13:
2553 return "DW_OP_lit13";
2554 case DW_OP_lit14:
2555 return "DW_OP_lit14";
2556 case DW_OP_lit15:
2557 return "DW_OP_lit15";
2558 case DW_OP_lit16:
2559 return "DW_OP_lit16";
2560 case DW_OP_lit17:
2561 return "DW_OP_lit17";
2562 case DW_OP_lit18:
2563 return "DW_OP_lit18";
2564 case DW_OP_lit19:
2565 return "DW_OP_lit19";
2566 case DW_OP_lit20:
2567 return "DW_OP_lit20";
2568 case DW_OP_lit21:
2569 return "DW_OP_lit21";
2570 case DW_OP_lit22:
2571 return "DW_OP_lit22";
2572 case DW_OP_lit23:
2573 return "DW_OP_lit23";
2574 case DW_OP_lit24:
2575 return "DW_OP_lit24";
2576 case DW_OP_lit25:
2577 return "DW_OP_lit25";
2578 case DW_OP_lit26:
2579 return "DW_OP_lit26";
2580 case DW_OP_lit27:
2581 return "DW_OP_lit27";
2582 case DW_OP_lit28:
2583 return "DW_OP_lit28";
2584 case DW_OP_lit29:
2585 return "DW_OP_lit29";
2586 case DW_OP_lit30:
2587 return "DW_OP_lit30";
2588 case DW_OP_lit31:
2589 return "DW_OP_lit31";
2590 case DW_OP_reg0:
2591 return "DW_OP_reg0";
2592 case DW_OP_reg1:
2593 return "DW_OP_reg1";
2594 case DW_OP_reg2:
2595 return "DW_OP_reg2";
2596 case DW_OP_reg3:
2597 return "DW_OP_reg3";
2598 case DW_OP_reg4:
2599 return "DW_OP_reg4";
2600 case DW_OP_reg5:
2601 return "DW_OP_reg5";
2602 case DW_OP_reg6:
2603 return "DW_OP_reg6";
2604 case DW_OP_reg7:
2605 return "DW_OP_reg7";
2606 case DW_OP_reg8:
2607 return "DW_OP_reg8";
2608 case DW_OP_reg9:
2609 return "DW_OP_reg9";
2610 case DW_OP_reg10:
2611 return "DW_OP_reg10";
2612 case DW_OP_reg11:
2613 return "DW_OP_reg11";
2614 case DW_OP_reg12:
2615 return "DW_OP_reg12";
2616 case DW_OP_reg13:
2617 return "DW_OP_reg13";
2618 case DW_OP_reg14:
2619 return "DW_OP_reg14";
2620 case DW_OP_reg15:
2621 return "DW_OP_reg15";
2622 case DW_OP_reg16:
2623 return "DW_OP_reg16";
2624 case DW_OP_reg17:
2625 return "DW_OP_reg17";
2626 case DW_OP_reg18:
2627 return "DW_OP_reg18";
2628 case DW_OP_reg19:
2629 return "DW_OP_reg19";
2630 case DW_OP_reg20:
2631 return "DW_OP_reg20";
2632 case DW_OP_reg21:
2633 return "DW_OP_reg21";
2634 case DW_OP_reg22:
2635 return "DW_OP_reg22";
2636 case DW_OP_reg23:
2637 return "DW_OP_reg23";
2638 case DW_OP_reg24:
2639 return "DW_OP_reg24";
2640 case DW_OP_reg25:
2641 return "DW_OP_reg25";
2642 case DW_OP_reg26:
2643 return "DW_OP_reg26";
2644 case DW_OP_reg27:
2645 return "DW_OP_reg27";
2646 case DW_OP_reg28:
2647 return "DW_OP_reg28";
2648 case DW_OP_reg29:
2649 return "DW_OP_reg29";
2650 case DW_OP_reg30:
2651 return "DW_OP_reg30";
2652 case DW_OP_reg31:
2653 return "DW_OP_reg31";
2654 case DW_OP_breg0:
2655 return "DW_OP_breg0";
2656 case DW_OP_breg1:
2657 return "DW_OP_breg1";
2658 case DW_OP_breg2:
2659 return "DW_OP_breg2";
2660 case DW_OP_breg3:
2661 return "DW_OP_breg3";
2662 case DW_OP_breg4:
2663 return "DW_OP_breg4";
2664 case DW_OP_breg5:
2665 return "DW_OP_breg5";
2666 case DW_OP_breg6:
2667 return "DW_OP_breg6";
2668 case DW_OP_breg7:
2669 return "DW_OP_breg7";
2670 case DW_OP_breg8:
2671 return "DW_OP_breg8";
2672 case DW_OP_breg9:
2673 return "DW_OP_breg9";
2674 case DW_OP_breg10:
2675 return "DW_OP_breg10";
2676 case DW_OP_breg11:
2677 return "DW_OP_breg11";
2678 case DW_OP_breg12:
2679 return "DW_OP_breg12";
2680 case DW_OP_breg13:
2681 return "DW_OP_breg13";
2682 case DW_OP_breg14:
2683 return "DW_OP_breg14";
2684 case DW_OP_breg15:
2685 return "DW_OP_breg15";
2686 case DW_OP_breg16:
2687 return "DW_OP_breg16";
2688 case DW_OP_breg17:
2689 return "DW_OP_breg17";
2690 case DW_OP_breg18:
2691 return "DW_OP_breg18";
2692 case DW_OP_breg19:
2693 return "DW_OP_breg19";
2694 case DW_OP_breg20:
2695 return "DW_OP_breg20";
2696 case DW_OP_breg21:
2697 return "DW_OP_breg21";
2698 case DW_OP_breg22:
2699 return "DW_OP_breg22";
2700 case DW_OP_breg23:
2701 return "DW_OP_breg23";
2702 case DW_OP_breg24:
2703 return "DW_OP_breg24";
2704 case DW_OP_breg25:
2705 return "DW_OP_breg25";
2706 case DW_OP_breg26:
2707 return "DW_OP_breg26";
2708 case DW_OP_breg27:
2709 return "DW_OP_breg27";
2710 case DW_OP_breg28:
2711 return "DW_OP_breg28";
2712 case DW_OP_breg29:
2713 return "DW_OP_breg29";
2714 case DW_OP_breg30:
2715 return "DW_OP_breg30";
2716 case DW_OP_breg31:
2717 return "DW_OP_breg31";
2718 case DW_OP_regx:
2719 return "DW_OP_regx";
2720 case DW_OP_fbreg:
2721 return "DW_OP_fbreg";
2722 case DW_OP_bregx:
2723 return "DW_OP_bregx";
2724 case DW_OP_piece:
2725 return "DW_OP_piece";
2726 case DW_OP_deref_size:
2727 return "DW_OP_deref_size";
2728 case DW_OP_xderef_size:
2729 return "DW_OP_xderef_size";
2730 case DW_OP_nop:
2731 return "DW_OP_nop";
2732 case DW_OP_push_object_address:
2733 return "DW_OP_push_object_address";
2734 case DW_OP_call2:
2735 return "DW_OP_call2";
2736 case DW_OP_call4:
2737 return "DW_OP_call4";
2738 case DW_OP_call_ref:
2739 return "DW_OP_call_ref";
2740 case DW_OP_GNU_push_tls_address:
2741 return "DW_OP_GNU_push_tls_address";
2742 default:
2743 return "OP_<unknown>";
2744 }
2745 }
2746
2747 /* Return a pointer to a newly allocated location description. Location
2748 descriptions are simple expression terms that can be strung
2749 together to form more complicated location (address) descriptions. */
2750
2751 static inline dw_loc_descr_ref
2752 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2753 unsigned HOST_WIDE_INT oprnd2)
2754 {
2755 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2756
2757 descr->dw_loc_opc = op;
2758 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2759 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2760 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2761 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2762
2763 return descr;
2764 }
2765
2766
2767 /* Add a location description term to a location description expression. */
2768
2769 static inline void
2770 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
2771 {
2772 dw_loc_descr_ref *d;
2773
2774 /* Find the end of the chain. */
2775 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2776 ;
2777
2778 *d = descr;
2779 }
2780
2781 /* Return the size of a location descriptor. */
2782
2783 static unsigned long
2784 size_of_loc_descr (dw_loc_descr_ref loc)
2785 {
2786 unsigned long size = 1;
2787
2788 switch (loc->dw_loc_opc)
2789 {
2790 case DW_OP_addr:
2791 case INTERNAL_DW_OP_tls_addr:
2792 size += DWARF2_ADDR_SIZE;
2793 break;
2794 case DW_OP_const1u:
2795 case DW_OP_const1s:
2796 size += 1;
2797 break;
2798 case DW_OP_const2u:
2799 case DW_OP_const2s:
2800 size += 2;
2801 break;
2802 case DW_OP_const4u:
2803 case DW_OP_const4s:
2804 size += 4;
2805 break;
2806 case DW_OP_const8u:
2807 case DW_OP_const8s:
2808 size += 8;
2809 break;
2810 case DW_OP_constu:
2811 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2812 break;
2813 case DW_OP_consts:
2814 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2815 break;
2816 case DW_OP_pick:
2817 size += 1;
2818 break;
2819 case DW_OP_plus_uconst:
2820 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2821 break;
2822 case DW_OP_skip:
2823 case DW_OP_bra:
2824 size += 2;
2825 break;
2826 case DW_OP_breg0:
2827 case DW_OP_breg1:
2828 case DW_OP_breg2:
2829 case DW_OP_breg3:
2830 case DW_OP_breg4:
2831 case DW_OP_breg5:
2832 case DW_OP_breg6:
2833 case DW_OP_breg7:
2834 case DW_OP_breg8:
2835 case DW_OP_breg9:
2836 case DW_OP_breg10:
2837 case DW_OP_breg11:
2838 case DW_OP_breg12:
2839 case DW_OP_breg13:
2840 case DW_OP_breg14:
2841 case DW_OP_breg15:
2842 case DW_OP_breg16:
2843 case DW_OP_breg17:
2844 case DW_OP_breg18:
2845 case DW_OP_breg19:
2846 case DW_OP_breg20:
2847 case DW_OP_breg21:
2848 case DW_OP_breg22:
2849 case DW_OP_breg23:
2850 case DW_OP_breg24:
2851 case DW_OP_breg25:
2852 case DW_OP_breg26:
2853 case DW_OP_breg27:
2854 case DW_OP_breg28:
2855 case DW_OP_breg29:
2856 case DW_OP_breg30:
2857 case DW_OP_breg31:
2858 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2859 break;
2860 case DW_OP_regx:
2861 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2862 break;
2863 case DW_OP_fbreg:
2864 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2865 break;
2866 case DW_OP_bregx:
2867 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2868 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2869 break;
2870 case DW_OP_piece:
2871 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2872 break;
2873 case DW_OP_deref_size:
2874 case DW_OP_xderef_size:
2875 size += 1;
2876 break;
2877 case DW_OP_call2:
2878 size += 2;
2879 break;
2880 case DW_OP_call4:
2881 size += 4;
2882 break;
2883 case DW_OP_call_ref:
2884 size += DWARF2_ADDR_SIZE;
2885 break;
2886 default:
2887 break;
2888 }
2889
2890 return size;
2891 }
2892
2893 /* Return the size of a series of location descriptors. */
2894
2895 static unsigned long
2896 size_of_locs (dw_loc_descr_ref loc)
2897 {
2898 unsigned long size;
2899
2900 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2901 {
2902 loc->dw_loc_addr = size;
2903 size += size_of_loc_descr (loc);
2904 }
2905
2906 return size;
2907 }
2908
2909 /* Output location description stack opcode's operands (if any). */
2910
2911 static void
2912 output_loc_operands (dw_loc_descr_ref loc)
2913 {
2914 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2915 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2916
2917 switch (loc->dw_loc_opc)
2918 {
2919 #ifdef DWARF2_DEBUGGING_INFO
2920 case DW_OP_addr:
2921 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2922 break;
2923 case DW_OP_const2u:
2924 case DW_OP_const2s:
2925 dw2_asm_output_data (2, val1->v.val_int, NULL);
2926 break;
2927 case DW_OP_const4u:
2928 case DW_OP_const4s:
2929 dw2_asm_output_data (4, val1->v.val_int, NULL);
2930 break;
2931 case DW_OP_const8u:
2932 case DW_OP_const8s:
2933 if (HOST_BITS_PER_LONG < 64)
2934 abort ();
2935 dw2_asm_output_data (8, val1->v.val_int, NULL);
2936 break;
2937 case DW_OP_skip:
2938 case DW_OP_bra:
2939 {
2940 int offset;
2941
2942 if (val1->val_class == dw_val_class_loc)
2943 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2944 else
2945 abort ();
2946
2947 dw2_asm_output_data (2, offset, NULL);
2948 }
2949 break;
2950 #else
2951 case DW_OP_addr:
2952 case DW_OP_const2u:
2953 case DW_OP_const2s:
2954 case DW_OP_const4u:
2955 case DW_OP_const4s:
2956 case DW_OP_const8u:
2957 case DW_OP_const8s:
2958 case DW_OP_skip:
2959 case DW_OP_bra:
2960 /* We currently don't make any attempt to make sure these are
2961 aligned properly like we do for the main unwind info, so
2962 don't support emitting things larger than a byte if we're
2963 only doing unwinding. */
2964 abort ();
2965 #endif
2966 case DW_OP_const1u:
2967 case DW_OP_const1s:
2968 dw2_asm_output_data (1, val1->v.val_int, NULL);
2969 break;
2970 case DW_OP_constu:
2971 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2972 break;
2973 case DW_OP_consts:
2974 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2975 break;
2976 case DW_OP_pick:
2977 dw2_asm_output_data (1, val1->v.val_int, NULL);
2978 break;
2979 case DW_OP_plus_uconst:
2980 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2981 break;
2982 case DW_OP_breg0:
2983 case DW_OP_breg1:
2984 case DW_OP_breg2:
2985 case DW_OP_breg3:
2986 case DW_OP_breg4:
2987 case DW_OP_breg5:
2988 case DW_OP_breg6:
2989 case DW_OP_breg7:
2990 case DW_OP_breg8:
2991 case DW_OP_breg9:
2992 case DW_OP_breg10:
2993 case DW_OP_breg11:
2994 case DW_OP_breg12:
2995 case DW_OP_breg13:
2996 case DW_OP_breg14:
2997 case DW_OP_breg15:
2998 case DW_OP_breg16:
2999 case DW_OP_breg17:
3000 case DW_OP_breg18:
3001 case DW_OP_breg19:
3002 case DW_OP_breg20:
3003 case DW_OP_breg21:
3004 case DW_OP_breg22:
3005 case DW_OP_breg23:
3006 case DW_OP_breg24:
3007 case DW_OP_breg25:
3008 case DW_OP_breg26:
3009 case DW_OP_breg27:
3010 case DW_OP_breg28:
3011 case DW_OP_breg29:
3012 case DW_OP_breg30:
3013 case DW_OP_breg31:
3014 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3015 break;
3016 case DW_OP_regx:
3017 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3018 break;
3019 case DW_OP_fbreg:
3020 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3021 break;
3022 case DW_OP_bregx:
3023 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3024 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3025 break;
3026 case DW_OP_piece:
3027 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3028 break;
3029 case DW_OP_deref_size:
3030 case DW_OP_xderef_size:
3031 dw2_asm_output_data (1, val1->v.val_int, NULL);
3032 break;
3033
3034 case INTERNAL_DW_OP_tls_addr:
3035 #ifdef ASM_OUTPUT_DWARF_DTPREL
3036 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3037 val1->v.val_addr);
3038 fputc ('\n', asm_out_file);
3039 #else
3040 abort ();
3041 #endif
3042 break;
3043
3044 default:
3045 /* Other codes have no operands. */
3046 break;
3047 }
3048 }
3049
3050 /* Output a sequence of location operations. */
3051
3052 static void
3053 output_loc_sequence (dw_loc_descr_ref loc)
3054 {
3055 for (; loc != NULL; loc = loc->dw_loc_next)
3056 {
3057 /* Output the opcode. */
3058 dw2_asm_output_data (1, loc->dw_loc_opc,
3059 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3060
3061 /* Output the operand(s) (if any). */
3062 output_loc_operands (loc);
3063 }
3064 }
3065
3066 /* This routine will generate the correct assembly data for a location
3067 description based on a cfi entry with a complex address. */
3068
3069 static void
3070 output_cfa_loc (dw_cfi_ref cfi)
3071 {
3072 dw_loc_descr_ref loc;
3073 unsigned long size;
3074
3075 /* Output the size of the block. */
3076 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3077 size = size_of_locs (loc);
3078 dw2_asm_output_data_uleb128 (size, NULL);
3079
3080 /* Now output the operations themselves. */
3081 output_loc_sequence (loc);
3082 }
3083
3084 /* This function builds a dwarf location descriptor sequence from
3085 a dw_cfa_location. */
3086
3087 static struct dw_loc_descr_struct *
3088 build_cfa_loc (dw_cfa_location *cfa)
3089 {
3090 struct dw_loc_descr_struct *head, *tmp;
3091
3092 if (cfa->indirect == 0)
3093 abort ();
3094
3095 if (cfa->base_offset)
3096 {
3097 if (cfa->reg <= 31)
3098 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3099 else
3100 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3101 }
3102 else if (cfa->reg <= 31)
3103 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3104 else
3105 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3106
3107 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3108 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3109 add_loc_descr (&head, tmp);
3110 if (cfa->offset != 0)
3111 {
3112 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3113 add_loc_descr (&head, tmp);
3114 }
3115
3116 return head;
3117 }
3118
3119 /* This function fills in aa dw_cfa_location structure from a dwarf location
3120 descriptor sequence. */
3121
3122 static void
3123 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3124 {
3125 struct dw_loc_descr_struct *ptr;
3126 cfa->offset = 0;
3127 cfa->base_offset = 0;
3128 cfa->indirect = 0;
3129 cfa->reg = -1;
3130
3131 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3132 {
3133 enum dwarf_location_atom op = ptr->dw_loc_opc;
3134
3135 switch (op)
3136 {
3137 case DW_OP_reg0:
3138 case DW_OP_reg1:
3139 case DW_OP_reg2:
3140 case DW_OP_reg3:
3141 case DW_OP_reg4:
3142 case DW_OP_reg5:
3143 case DW_OP_reg6:
3144 case DW_OP_reg7:
3145 case DW_OP_reg8:
3146 case DW_OP_reg9:
3147 case DW_OP_reg10:
3148 case DW_OP_reg11:
3149 case DW_OP_reg12:
3150 case DW_OP_reg13:
3151 case DW_OP_reg14:
3152 case DW_OP_reg15:
3153 case DW_OP_reg16:
3154 case DW_OP_reg17:
3155 case DW_OP_reg18:
3156 case DW_OP_reg19:
3157 case DW_OP_reg20:
3158 case DW_OP_reg21:
3159 case DW_OP_reg22:
3160 case DW_OP_reg23:
3161 case DW_OP_reg24:
3162 case DW_OP_reg25:
3163 case DW_OP_reg26:
3164 case DW_OP_reg27:
3165 case DW_OP_reg28:
3166 case DW_OP_reg29:
3167 case DW_OP_reg30:
3168 case DW_OP_reg31:
3169 cfa->reg = op - DW_OP_reg0;
3170 break;
3171 case DW_OP_regx:
3172 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3173 break;
3174 case DW_OP_breg0:
3175 case DW_OP_breg1:
3176 case DW_OP_breg2:
3177 case DW_OP_breg3:
3178 case DW_OP_breg4:
3179 case DW_OP_breg5:
3180 case DW_OP_breg6:
3181 case DW_OP_breg7:
3182 case DW_OP_breg8:
3183 case DW_OP_breg9:
3184 case DW_OP_breg10:
3185 case DW_OP_breg11:
3186 case DW_OP_breg12:
3187 case DW_OP_breg13:
3188 case DW_OP_breg14:
3189 case DW_OP_breg15:
3190 case DW_OP_breg16:
3191 case DW_OP_breg17:
3192 case DW_OP_breg18:
3193 case DW_OP_breg19:
3194 case DW_OP_breg20:
3195 case DW_OP_breg21:
3196 case DW_OP_breg22:
3197 case DW_OP_breg23:
3198 case DW_OP_breg24:
3199 case DW_OP_breg25:
3200 case DW_OP_breg26:
3201 case DW_OP_breg27:
3202 case DW_OP_breg28:
3203 case DW_OP_breg29:
3204 case DW_OP_breg30:
3205 case DW_OP_breg31:
3206 cfa->reg = op - DW_OP_breg0;
3207 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3208 break;
3209 case DW_OP_bregx:
3210 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3211 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3212 break;
3213 case DW_OP_deref:
3214 cfa->indirect = 1;
3215 break;
3216 case DW_OP_plus_uconst:
3217 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3218 break;
3219 default:
3220 internal_error ("DW_LOC_OP %s not implemented\n",
3221 dwarf_stack_op_name (ptr->dw_loc_opc));
3222 }
3223 }
3224 }
3225 #endif /* .debug_frame support */
3226 \f
3227 /* And now, the support for symbolic debugging information. */
3228 #ifdef DWARF2_DEBUGGING_INFO
3229
3230 /* .debug_str support. */
3231 static int output_indirect_string (void **, void *);
3232
3233 static void dwarf2out_init (const char *);
3234 static void dwarf2out_finish (const char *);
3235 static void dwarf2out_define (unsigned int, const char *);
3236 static void dwarf2out_undef (unsigned int, const char *);
3237 static void dwarf2out_start_source_file (unsigned, const char *);
3238 static void dwarf2out_end_source_file (unsigned);
3239 static void dwarf2out_begin_block (unsigned, unsigned);
3240 static void dwarf2out_end_block (unsigned, unsigned);
3241 static bool dwarf2out_ignore_block (tree);
3242 static void dwarf2out_global_decl (tree);
3243 static void dwarf2out_abstract_function (tree);
3244
3245 /* The debug hooks structure. */
3246
3247 const struct gcc_debug_hooks dwarf2_debug_hooks =
3248 {
3249 dwarf2out_init,
3250 dwarf2out_finish,
3251 dwarf2out_define,
3252 dwarf2out_undef,
3253 dwarf2out_start_source_file,
3254 dwarf2out_end_source_file,
3255 dwarf2out_begin_block,
3256 dwarf2out_end_block,
3257 dwarf2out_ignore_block,
3258 dwarf2out_source_line,
3259 dwarf2out_begin_prologue,
3260 debug_nothing_int_charstar, /* end_prologue */
3261 dwarf2out_end_epilogue,
3262 debug_nothing_tree, /* begin_function */
3263 debug_nothing_int, /* end_function */
3264 dwarf2out_decl, /* function_decl */
3265 dwarf2out_global_decl,
3266 debug_nothing_tree, /* deferred_inline_function */
3267 /* The DWARF 2 backend tries to reduce debugging bloat by not
3268 emitting the abstract description of inline functions until
3269 something tries to reference them. */
3270 dwarf2out_abstract_function, /* outlining_inline_function */
3271 debug_nothing_rtx, /* label */
3272 debug_nothing_int /* handle_pch */
3273 };
3274 #endif
3275 \f
3276 /* NOTE: In the comments in this file, many references are made to
3277 "Debugging Information Entries". This term is abbreviated as `DIE'
3278 throughout the remainder of this file. */
3279
3280 /* An internal representation of the DWARF output is built, and then
3281 walked to generate the DWARF debugging info. The walk of the internal
3282 representation is done after the entire program has been compiled.
3283 The types below are used to describe the internal representation. */
3284
3285 /* Various DIE's use offsets relative to the beginning of the
3286 .debug_info section to refer to each other. */
3287
3288 typedef long int dw_offset;
3289
3290 /* Define typedefs here to avoid circular dependencies. */
3291
3292 typedef struct dw_attr_struct *dw_attr_ref;
3293 typedef struct dw_line_info_struct *dw_line_info_ref;
3294 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3295 typedef struct pubname_struct *pubname_ref;
3296 typedef struct dw_ranges_struct *dw_ranges_ref;
3297
3298 /* Each entry in the line_info_table maintains the file and
3299 line number associated with the label generated for that
3300 entry. The label gives the PC value associated with
3301 the line number entry. */
3302
3303 typedef struct dw_line_info_struct GTY(())
3304 {
3305 unsigned long dw_file_num;
3306 unsigned long dw_line_num;
3307 }
3308 dw_line_info_entry;
3309
3310 /* Line information for functions in separate sections; each one gets its
3311 own sequence. */
3312 typedef struct dw_separate_line_info_struct GTY(())
3313 {
3314 unsigned long dw_file_num;
3315 unsigned long dw_line_num;
3316 unsigned long function;
3317 }
3318 dw_separate_line_info_entry;
3319
3320 /* Each DIE attribute has a field specifying the attribute kind,
3321 a link to the next attribute in the chain, and an attribute value.
3322 Attributes are typically linked below the DIE they modify. */
3323
3324 typedef struct dw_attr_struct GTY(())
3325 {
3326 enum dwarf_attribute dw_attr;
3327 dw_attr_ref dw_attr_next;
3328 dw_val_node dw_attr_val;
3329 }
3330 dw_attr_node;
3331
3332 /* The Debugging Information Entry (DIE) structure */
3333
3334 typedef struct die_struct GTY(())
3335 {
3336 enum dwarf_tag die_tag;
3337 char *die_symbol;
3338 dw_attr_ref die_attr;
3339 dw_die_ref die_parent;
3340 dw_die_ref die_child;
3341 dw_die_ref die_sib;
3342 dw_die_ref die_definition; /* ref from a specification to its definition */
3343 dw_offset die_offset;
3344 unsigned long die_abbrev;
3345 int die_mark;
3346 }
3347 die_node;
3348
3349 /* The pubname structure */
3350
3351 typedef struct pubname_struct GTY(())
3352 {
3353 dw_die_ref die;
3354 char *name;
3355 }
3356 pubname_entry;
3357
3358 struct dw_ranges_struct GTY(())
3359 {
3360 int block_num;
3361 };
3362
3363 /* The limbo die list structure. */
3364 typedef struct limbo_die_struct GTY(())
3365 {
3366 dw_die_ref die;
3367 tree created_for;
3368 struct limbo_die_struct *next;
3369 }
3370 limbo_die_node;
3371
3372 /* How to start an assembler comment. */
3373 #ifndef ASM_COMMENT_START
3374 #define ASM_COMMENT_START ";#"
3375 #endif
3376
3377 /* Define a macro which returns nonzero for a TYPE_DECL which was
3378 implicitly generated for a tagged type.
3379
3380 Note that unlike the gcc front end (which generates a NULL named
3381 TYPE_DECL node for each complete tagged type, each array type, and
3382 each function type node created) the g++ front end generates a
3383 _named_ TYPE_DECL node for each tagged type node created.
3384 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3385 generate a DW_TAG_typedef DIE for them. */
3386
3387 #define TYPE_DECL_IS_STUB(decl) \
3388 (DECL_NAME (decl) == NULL_TREE \
3389 || (DECL_ARTIFICIAL (decl) \
3390 && is_tagged_type (TREE_TYPE (decl)) \
3391 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3392 /* This is necessary for stub decls that \
3393 appear in nested inline functions. */ \
3394 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3395 && (decl_ultimate_origin (decl) \
3396 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3397
3398 /* Information concerning the compilation unit's programming
3399 language, and compiler version. */
3400
3401 /* Fixed size portion of the DWARF compilation unit header. */
3402 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3403 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3404
3405 /* Fixed size portion of public names info. */
3406 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3407
3408 /* Fixed size portion of the address range info. */
3409 #define DWARF_ARANGES_HEADER_SIZE \
3410 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3411 DWARF2_ADDR_SIZE * 2) \
3412 - DWARF_INITIAL_LENGTH_SIZE)
3413
3414 /* Size of padding portion in the address range info. It must be
3415 aligned to twice the pointer size. */
3416 #define DWARF_ARANGES_PAD_SIZE \
3417 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3418 DWARF2_ADDR_SIZE * 2) \
3419 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3420
3421 /* Use assembler line directives if available. */
3422 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3423 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3424 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3425 #else
3426 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3427 #endif
3428 #endif
3429
3430 /* Minimum line offset in a special line info. opcode.
3431 This value was chosen to give a reasonable range of values. */
3432 #define DWARF_LINE_BASE -10
3433
3434 /* First special line opcode - leave room for the standard opcodes. */
3435 #define DWARF_LINE_OPCODE_BASE 10
3436
3437 /* Range of line offsets in a special line info. opcode. */
3438 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3439
3440 /* Flag that indicates the initial value of the is_stmt_start flag.
3441 In the present implementation, we do not mark any lines as
3442 the beginning of a source statement, because that information
3443 is not made available by the GCC front-end. */
3444 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3445
3446 #ifdef DWARF2_DEBUGGING_INFO
3447 /* This location is used by calc_die_sizes() to keep track
3448 the offset of each DIE within the .debug_info section. */
3449 static unsigned long next_die_offset;
3450 #endif
3451
3452 /* Record the root of the DIE's built for the current compilation unit. */
3453 static GTY(()) dw_die_ref comp_unit_die;
3454
3455 /* A list of DIEs with a NULL parent waiting to be relocated. */
3456 static GTY(()) limbo_die_node *limbo_die_list;
3457
3458 /* Filenames referenced by this compilation unit. */
3459 static GTY(()) varray_type file_table;
3460 static GTY(()) varray_type file_table_emitted;
3461 static GTY(()) size_t file_table_last_lookup_index;
3462
3463 /* A pointer to the base of a table of references to DIE's that describe
3464 declarations. The table is indexed by DECL_UID() which is a unique
3465 number identifying each decl. */
3466 static GTY((length ("decl_die_table_allocated"))) dw_die_ref *decl_die_table;
3467
3468 /* Number of elements currently allocated for the decl_die_table. */
3469 static GTY(()) unsigned decl_die_table_allocated;
3470
3471 /* Number of elements in decl_die_table currently in use. */
3472 static GTY(()) unsigned decl_die_table_in_use;
3473
3474 /* Size (in elements) of increments by which we may expand the
3475 decl_die_table. */
3476 #define DECL_DIE_TABLE_INCREMENT 256
3477
3478 /* A pointer to the base of a list of references to DIE's that
3479 are uniquely identified by their tag, presence/absence of
3480 children DIE's, and list of attribute/value pairs. */
3481 static GTY((length ("abbrev_die_table_allocated")))
3482 dw_die_ref *abbrev_die_table;
3483
3484 /* Number of elements currently allocated for abbrev_die_table. */
3485 static GTY(()) unsigned abbrev_die_table_allocated;
3486
3487 /* Number of elements in type_die_table currently in use. */
3488 static GTY(()) unsigned abbrev_die_table_in_use;
3489
3490 /* Size (in elements) of increments by which we may expand the
3491 abbrev_die_table. */
3492 #define ABBREV_DIE_TABLE_INCREMENT 256
3493
3494 /* A pointer to the base of a table that contains line information
3495 for each source code line in .text in the compilation unit. */
3496 static GTY((length ("line_info_table_allocated")))
3497 dw_line_info_ref line_info_table;
3498
3499 /* Number of elements currently allocated for line_info_table. */
3500 static GTY(()) unsigned line_info_table_allocated;
3501
3502 /* Number of elements in line_info_table currently in use. */
3503 static GTY(()) unsigned line_info_table_in_use;
3504
3505 /* A pointer to the base of a table that contains line information
3506 for each source code line outside of .text in the compilation unit. */
3507 static GTY ((length ("separate_line_info_table_allocated")))
3508 dw_separate_line_info_ref separate_line_info_table;
3509
3510 /* Number of elements currently allocated for separate_line_info_table. */
3511 static GTY(()) unsigned separate_line_info_table_allocated;
3512
3513 /* Number of elements in separate_line_info_table currently in use. */
3514 static GTY(()) unsigned separate_line_info_table_in_use;
3515
3516 /* Size (in elements) of increments by which we may expand the
3517 line_info_table. */
3518 #define LINE_INFO_TABLE_INCREMENT 1024
3519
3520 /* A pointer to the base of a table that contains a list of publicly
3521 accessible names. */
3522 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3523
3524 /* Number of elements currently allocated for pubname_table. */
3525 static GTY(()) unsigned pubname_table_allocated;
3526
3527 /* Number of elements in pubname_table currently in use. */
3528 static GTY(()) unsigned pubname_table_in_use;
3529
3530 /* Size (in elements) of increments by which we may expand the
3531 pubname_table. */
3532 #define PUBNAME_TABLE_INCREMENT 64
3533
3534 /* Array of dies for which we should generate .debug_arange info. */
3535 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3536
3537 /* Number of elements currently allocated for arange_table. */
3538 static GTY(()) unsigned arange_table_allocated;
3539
3540 /* Number of elements in arange_table currently in use. */
3541 static GTY(()) unsigned arange_table_in_use;
3542
3543 /* Size (in elements) of increments by which we may expand the
3544 arange_table. */
3545 #define ARANGE_TABLE_INCREMENT 64
3546
3547 /* Array of dies for which we should generate .debug_ranges info. */
3548 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3549
3550 /* Number of elements currently allocated for ranges_table. */
3551 static GTY(()) unsigned ranges_table_allocated;
3552
3553 /* Number of elements in ranges_table currently in use. */
3554 static GTY(()) unsigned ranges_table_in_use;
3555
3556 /* Size (in elements) of increments by which we may expand the
3557 ranges_table. */
3558 #define RANGES_TABLE_INCREMENT 64
3559
3560 /* Whether we have location lists that need outputting */
3561 static GTY(()) unsigned have_location_lists;
3562
3563 #ifdef DWARF2_DEBUGGING_INFO
3564 /* Record whether the function being analyzed contains inlined functions. */
3565 static int current_function_has_inlines;
3566 #endif
3567 #if 0 && defined (MIPS_DEBUGGING_INFO)
3568 static int comp_unit_has_inlines;
3569 #endif
3570
3571 /* Number of file tables emitted in maybe_emit_file(). */
3572 static GTY(()) int emitcount = 0;
3573
3574 /* Number of internal labels generated by gen_internal_sym(). */
3575 static GTY(()) int label_num;
3576
3577 #ifdef DWARF2_DEBUGGING_INFO
3578
3579 /* Forward declarations for functions defined in this file. */
3580
3581 static int is_pseudo_reg (rtx);
3582 static tree type_main_variant (tree);
3583 static int is_tagged_type (tree);
3584 static const char *dwarf_tag_name (unsigned);
3585 static const char *dwarf_attr_name (unsigned);
3586 static const char *dwarf_form_name (unsigned);
3587 #if 0
3588 static const char *dwarf_type_encoding_name (unsigned);
3589 #endif
3590 static tree decl_ultimate_origin (tree);
3591 static tree block_ultimate_origin (tree);
3592 static tree decl_class_context (tree);
3593 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3594 static inline enum dw_val_class AT_class (dw_attr_ref);
3595 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3596 static inline unsigned AT_flag (dw_attr_ref);
3597 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3598 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3599 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3600 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3601 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3602 unsigned long);
3603 static void add_AT_float (dw_die_ref, enum dwarf_attribute, unsigned, long *);
3604 static hashval_t debug_str_do_hash (const void *);
3605 static int debug_str_eq (const void *, const void *);
3606 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3607 static inline const char *AT_string (dw_attr_ref);
3608 static int AT_string_form (dw_attr_ref);
3609 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3610 static void add_AT_specification (dw_die_ref, dw_die_ref);
3611 static inline dw_die_ref AT_ref (dw_attr_ref);
3612 static inline int AT_ref_external (dw_attr_ref);
3613 static inline void set_AT_ref_external (dw_attr_ref, int);
3614 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3615 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3616 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3617 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3618 dw_loc_list_ref);
3619 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3620 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3621 static inline rtx AT_addr (dw_attr_ref);
3622 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3623 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3624 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3625 unsigned HOST_WIDE_INT);
3626 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3627 unsigned long);
3628 static inline const char *AT_lbl (dw_attr_ref);
3629 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3630 static const char *get_AT_low_pc (dw_die_ref);
3631 static const char *get_AT_hi_pc (dw_die_ref);
3632 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3633 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3634 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3635 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3636 static bool is_c_family (void);
3637 static bool is_cxx (void);
3638 static bool is_java (void);
3639 static bool is_fortran (void);
3640 static bool is_ada (void);
3641 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3642 static inline void free_die (dw_die_ref);
3643 static void remove_children (dw_die_ref);
3644 static void add_child_die (dw_die_ref, dw_die_ref);
3645 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3646 static dw_die_ref lookup_type_die (tree);
3647 static void equate_type_number_to_die (tree, dw_die_ref);
3648 static dw_die_ref lookup_decl_die (tree);
3649 static void equate_decl_number_to_die (tree, dw_die_ref);
3650 static void print_spaces (FILE *);
3651 static void print_die (dw_die_ref, FILE *);
3652 static void print_dwarf_line_table (FILE *);
3653 static void reverse_die_lists (dw_die_ref);
3654 static void reverse_all_dies (dw_die_ref);
3655 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3656 static dw_die_ref pop_compile_unit (dw_die_ref);
3657 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3658 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3659 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3660 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3661 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3662 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3663 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3664 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3665 static void compute_section_prefix (dw_die_ref);
3666 static int is_type_die (dw_die_ref);
3667 static int is_comdat_die (dw_die_ref);
3668 static int is_symbol_die (dw_die_ref);
3669 static void assign_symbol_names (dw_die_ref);
3670 static void break_out_includes (dw_die_ref);
3671 static hashval_t htab_cu_hash (const void *);
3672 static int htab_cu_eq (const void *, const void *);
3673 static void htab_cu_del (void *);
3674 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3675 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3676 static void add_sibling_attributes (dw_die_ref);
3677 static void build_abbrev_table (dw_die_ref);
3678 static void output_location_lists (dw_die_ref);
3679 static int constant_size (long unsigned);
3680 static unsigned long size_of_die (dw_die_ref);
3681 static void calc_die_sizes (dw_die_ref);
3682 static void mark_dies (dw_die_ref);
3683 static void unmark_dies (dw_die_ref);
3684 static void unmark_all_dies (dw_die_ref);
3685 static unsigned long size_of_pubnames (void);
3686 static unsigned long size_of_aranges (void);
3687 static enum dwarf_form value_format (dw_attr_ref);
3688 static void output_value_format (dw_attr_ref);
3689 static void output_abbrev_section (void);
3690 static void output_die_symbol (dw_die_ref);
3691 static void output_die (dw_die_ref);
3692 static void output_compilation_unit_header (void);
3693 static void output_comp_unit (dw_die_ref, int);
3694 static const char *dwarf2_name (tree, int);
3695 static void add_pubname (tree, dw_die_ref);
3696 static void output_pubnames (void);
3697 static void add_arange (tree, dw_die_ref);
3698 static void output_aranges (void);
3699 static unsigned int add_ranges (tree);
3700 static void output_ranges (void);
3701 static void output_line_info (void);
3702 static void output_file_names (void);
3703 static dw_die_ref base_type_die (tree);
3704 static tree root_type (tree);
3705 static int is_base_type (tree);
3706 static bool is_ada_subrange_type (tree);
3707 static dw_die_ref subrange_type_die (tree, dw_die_ref);
3708 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3709 static int type_is_enum (tree);
3710 static unsigned int reg_number (rtx);
3711 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3712 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3713 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3714 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3715 static dw_loc_descr_ref based_loc_descr (unsigned, HOST_WIDE_INT);
3716 static int is_based_loc (rtx);
3717 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
3718 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3719 static dw_loc_descr_ref loc_descriptor (rtx);
3720 static dw_loc_descr_ref loc_descriptor_from_tree (tree, int);
3721 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3722 static tree field_type (tree);
3723 static unsigned int simple_type_align_in_bits (tree);
3724 static unsigned int simple_decl_align_in_bits (tree);
3725 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3726 static HOST_WIDE_INT field_byte_offset (tree);
3727 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3728 dw_loc_descr_ref);
3729 static void add_data_member_location_attribute (dw_die_ref, tree);
3730 static void add_const_value_attribute (dw_die_ref, rtx);
3731 static rtx rtl_for_decl_location (tree);
3732 static void add_location_or_const_value_attribute (dw_die_ref, tree);
3733 static void tree_add_const_value_attribute (dw_die_ref, tree);
3734 static void add_name_attribute (dw_die_ref, const char *);
3735 static void add_comp_dir_attribute (dw_die_ref);
3736 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
3737 static void add_subscript_info (dw_die_ref, tree);
3738 static void add_byte_size_attribute (dw_die_ref, tree);
3739 static void add_bit_offset_attribute (dw_die_ref, tree);
3740 static void add_bit_size_attribute (dw_die_ref, tree);
3741 static void add_prototyped_attribute (dw_die_ref, tree);
3742 static void add_abstract_origin_attribute (dw_die_ref, tree);
3743 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3744 static void add_src_coords_attributes (dw_die_ref, tree);
3745 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3746 static void push_decl_scope (tree);
3747 static void pop_decl_scope (void);
3748 static dw_die_ref scope_die_for (tree, dw_die_ref);
3749 static inline int local_scope_p (dw_die_ref);
3750 static inline int class_or_namespace_scope_p (dw_die_ref);
3751 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
3752 static const char *type_tag (tree);
3753 static tree member_declared_type (tree);
3754 #if 0
3755 static const char *decl_start_label (tree);
3756 #endif
3757 static void gen_array_type_die (tree, dw_die_ref);
3758 static void gen_set_type_die (tree, dw_die_ref);
3759 #if 0
3760 static void gen_entry_point_die (tree, dw_die_ref);
3761 #endif
3762 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
3763 static void gen_inlined_structure_type_die (tree, dw_die_ref);
3764 static void gen_inlined_union_type_die (tree, dw_die_ref);
3765 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
3766 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
3767 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3768 static void gen_formal_types_die (tree, dw_die_ref);
3769 static void gen_subprogram_die (tree, dw_die_ref);
3770 static void gen_variable_die (tree, dw_die_ref);
3771 static void gen_label_die (tree, dw_die_ref);
3772 static void gen_lexical_block_die (tree, dw_die_ref, int);
3773 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
3774 static void gen_field_die (tree, dw_die_ref);
3775 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3776 static dw_die_ref gen_compile_unit_die (const char *);
3777 static void gen_string_type_die (tree, dw_die_ref);
3778 static void gen_inheritance_die (tree, tree, dw_die_ref);
3779 static void gen_member_die (tree, dw_die_ref);
3780 static void gen_struct_or_union_type_die (tree, dw_die_ref);
3781 static void gen_subroutine_type_die (tree, dw_die_ref);
3782 static void gen_typedef_die (tree, dw_die_ref);
3783 static void gen_type_die (tree, dw_die_ref);
3784 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
3785 static void gen_block_die (tree, dw_die_ref, int);
3786 static void decls_for_scope (tree, dw_die_ref, int);
3787 static int is_redundant_typedef (tree);
3788 static void gen_namespace_die (tree);
3789 static void gen_decl_die (tree, dw_die_ref);
3790 static dw_die_ref force_namespace_die (tree);
3791 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
3792 static void declare_in_namespace (tree, dw_die_ref);
3793 static unsigned lookup_filename (const char *);
3794 static void init_file_table (void);
3795 static void retry_incomplete_types (void);
3796 static void gen_type_die_for_member (tree, tree, dw_die_ref);
3797 static void splice_child_die (dw_die_ref, dw_die_ref);
3798 static int file_info_cmp (const void *, const void *);
3799 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
3800 const char *, const char *, unsigned);
3801 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
3802 const char *, const char *,
3803 const char *);
3804 static void output_loc_list (dw_loc_list_ref);
3805 static char *gen_internal_sym (const char *);
3806
3807 static void prune_unmark_dies (dw_die_ref);
3808 static void prune_unused_types_mark (dw_die_ref, int);
3809 static void prune_unused_types_walk (dw_die_ref);
3810 static void prune_unused_types_walk_attribs (dw_die_ref);
3811 static void prune_unused_types_prune (dw_die_ref);
3812 static void prune_unused_types (void);
3813 static int maybe_emit_file (int);
3814
3815 /* Section names used to hold DWARF debugging information. */
3816 #ifndef DEBUG_INFO_SECTION
3817 #define DEBUG_INFO_SECTION ".debug_info"
3818 #endif
3819 #ifndef DEBUG_ABBREV_SECTION
3820 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3821 #endif
3822 #ifndef DEBUG_ARANGES_SECTION
3823 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3824 #endif
3825 #ifndef DEBUG_MACINFO_SECTION
3826 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3827 #endif
3828 #ifndef DEBUG_LINE_SECTION
3829 #define DEBUG_LINE_SECTION ".debug_line"
3830 #endif
3831 #ifndef DEBUG_LOC_SECTION
3832 #define DEBUG_LOC_SECTION ".debug_loc"
3833 #endif
3834 #ifndef DEBUG_PUBNAMES_SECTION
3835 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3836 #endif
3837 #ifndef DEBUG_STR_SECTION
3838 #define DEBUG_STR_SECTION ".debug_str"
3839 #endif
3840 #ifndef DEBUG_RANGES_SECTION
3841 #define DEBUG_RANGES_SECTION ".debug_ranges"
3842 #endif
3843
3844 /* Standard ELF section names for compiled code and data. */
3845 #ifndef TEXT_SECTION_NAME
3846 #define TEXT_SECTION_NAME ".text"
3847 #endif
3848
3849 /* Section flags for .debug_str section. */
3850 #define DEBUG_STR_SECTION_FLAGS \
3851 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
3852 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
3853 : SECTION_DEBUG)
3854
3855 /* Labels we insert at beginning sections we can reference instead of
3856 the section names themselves. */
3857
3858 #ifndef TEXT_SECTION_LABEL
3859 #define TEXT_SECTION_LABEL "Ltext"
3860 #endif
3861 #ifndef DEBUG_LINE_SECTION_LABEL
3862 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3863 #endif
3864 #ifndef DEBUG_INFO_SECTION_LABEL
3865 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3866 #endif
3867 #ifndef DEBUG_ABBREV_SECTION_LABEL
3868 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3869 #endif
3870 #ifndef DEBUG_LOC_SECTION_LABEL
3871 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3872 #endif
3873 #ifndef DEBUG_RANGES_SECTION_LABEL
3874 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3875 #endif
3876 #ifndef DEBUG_MACINFO_SECTION_LABEL
3877 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3878 #endif
3879
3880 /* Definitions of defaults for formats and names of various special
3881 (artificial) labels which may be generated within this file (when the -g
3882 options is used and DWARF2_DEBUGGING_INFO is in effect.
3883 If necessary, these may be overridden from within the tm.h file, but
3884 typically, overriding these defaults is unnecessary. */
3885
3886 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3887 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3888 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3889 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3890 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3891 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3892 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3893 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3894
3895 #ifndef TEXT_END_LABEL
3896 #define TEXT_END_LABEL "Letext"
3897 #endif
3898 #ifndef BLOCK_BEGIN_LABEL
3899 #define BLOCK_BEGIN_LABEL "LBB"
3900 #endif
3901 #ifndef BLOCK_END_LABEL
3902 #define BLOCK_END_LABEL "LBE"
3903 #endif
3904 #ifndef LINE_CODE_LABEL
3905 #define LINE_CODE_LABEL "LM"
3906 #endif
3907 #ifndef SEPARATE_LINE_CODE_LABEL
3908 #define SEPARATE_LINE_CODE_LABEL "LSM"
3909 #endif
3910 \f
3911 /* We allow a language front-end to designate a function that is to be
3912 called to "demangle" any name before it it put into a DIE. */
3913
3914 static const char *(*demangle_name_func) (const char *);
3915
3916 void
3917 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
3918 {
3919 demangle_name_func = func;
3920 }
3921
3922 /* Test if rtl node points to a pseudo register. */
3923
3924 static inline int
3925 is_pseudo_reg (rtx rtl)
3926 {
3927 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3928 || (GET_CODE (rtl) == SUBREG
3929 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3930 }
3931
3932 /* Return a reference to a type, with its const and volatile qualifiers
3933 removed. */
3934
3935 static inline tree
3936 type_main_variant (tree type)
3937 {
3938 type = TYPE_MAIN_VARIANT (type);
3939
3940 /* ??? There really should be only one main variant among any group of
3941 variants of a given type (and all of the MAIN_VARIANT values for all
3942 members of the group should point to that one type) but sometimes the C
3943 front-end messes this up for array types, so we work around that bug
3944 here. */
3945 if (TREE_CODE (type) == ARRAY_TYPE)
3946 while (type != TYPE_MAIN_VARIANT (type))
3947 type = TYPE_MAIN_VARIANT (type);
3948
3949 return type;
3950 }
3951
3952 /* Return nonzero if the given type node represents a tagged type. */
3953
3954 static inline int
3955 is_tagged_type (tree type)
3956 {
3957 enum tree_code code = TREE_CODE (type);
3958
3959 return (code == RECORD_TYPE || code == UNION_TYPE
3960 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
3961 }
3962
3963 /* Convert a DIE tag into its string name. */
3964
3965 static const char *
3966 dwarf_tag_name (unsigned int tag)
3967 {
3968 switch (tag)
3969 {
3970 case DW_TAG_padding:
3971 return "DW_TAG_padding";
3972 case DW_TAG_array_type:
3973 return "DW_TAG_array_type";
3974 case DW_TAG_class_type:
3975 return "DW_TAG_class_type";
3976 case DW_TAG_entry_point:
3977 return "DW_TAG_entry_point";
3978 case DW_TAG_enumeration_type:
3979 return "DW_TAG_enumeration_type";
3980 case DW_TAG_formal_parameter:
3981 return "DW_TAG_formal_parameter";
3982 case DW_TAG_imported_declaration:
3983 return "DW_TAG_imported_declaration";
3984 case DW_TAG_label:
3985 return "DW_TAG_label";
3986 case DW_TAG_lexical_block:
3987 return "DW_TAG_lexical_block";
3988 case DW_TAG_member:
3989 return "DW_TAG_member";
3990 case DW_TAG_pointer_type:
3991 return "DW_TAG_pointer_type";
3992 case DW_TAG_reference_type:
3993 return "DW_TAG_reference_type";
3994 case DW_TAG_compile_unit:
3995 return "DW_TAG_compile_unit";
3996 case DW_TAG_string_type:
3997 return "DW_TAG_string_type";
3998 case DW_TAG_structure_type:
3999 return "DW_TAG_structure_type";
4000 case DW_TAG_subroutine_type:
4001 return "DW_TAG_subroutine_type";
4002 case DW_TAG_typedef:
4003 return "DW_TAG_typedef";
4004 case DW_TAG_union_type:
4005 return "DW_TAG_union_type";
4006 case DW_TAG_unspecified_parameters:
4007 return "DW_TAG_unspecified_parameters";
4008 case DW_TAG_variant:
4009 return "DW_TAG_variant";
4010 case DW_TAG_common_block:
4011 return "DW_TAG_common_block";
4012 case DW_TAG_common_inclusion:
4013 return "DW_TAG_common_inclusion";
4014 case DW_TAG_inheritance:
4015 return "DW_TAG_inheritance";
4016 case DW_TAG_inlined_subroutine:
4017 return "DW_TAG_inlined_subroutine";
4018 case DW_TAG_module:
4019 return "DW_TAG_module";
4020 case DW_TAG_ptr_to_member_type:
4021 return "DW_TAG_ptr_to_member_type";
4022 case DW_TAG_set_type:
4023 return "DW_TAG_set_type";
4024 case DW_TAG_subrange_type:
4025 return "DW_TAG_subrange_type";
4026 case DW_TAG_with_stmt:
4027 return "DW_TAG_with_stmt";
4028 case DW_TAG_access_declaration:
4029 return "DW_TAG_access_declaration";
4030 case DW_TAG_base_type:
4031 return "DW_TAG_base_type";
4032 case DW_TAG_catch_block:
4033 return "DW_TAG_catch_block";
4034 case DW_TAG_const_type:
4035 return "DW_TAG_const_type";
4036 case DW_TAG_constant:
4037 return "DW_TAG_constant";
4038 case DW_TAG_enumerator:
4039 return "DW_TAG_enumerator";
4040 case DW_TAG_file_type:
4041 return "DW_TAG_file_type";
4042 case DW_TAG_friend:
4043 return "DW_TAG_friend";
4044 case DW_TAG_namelist:
4045 return "DW_TAG_namelist";
4046 case DW_TAG_namelist_item:
4047 return "DW_TAG_namelist_item";
4048 case DW_TAG_namespace:
4049 return "DW_TAG_namespace";
4050 case DW_TAG_packed_type:
4051 return "DW_TAG_packed_type";
4052 case DW_TAG_subprogram:
4053 return "DW_TAG_subprogram";
4054 case DW_TAG_template_type_param:
4055 return "DW_TAG_template_type_param";
4056 case DW_TAG_template_value_param:
4057 return "DW_TAG_template_value_param";
4058 case DW_TAG_thrown_type:
4059 return "DW_TAG_thrown_type";
4060 case DW_TAG_try_block:
4061 return "DW_TAG_try_block";
4062 case DW_TAG_variant_part:
4063 return "DW_TAG_variant_part";
4064 case DW_TAG_variable:
4065 return "DW_TAG_variable";
4066 case DW_TAG_volatile_type:
4067 return "DW_TAG_volatile_type";
4068 case DW_TAG_MIPS_loop:
4069 return "DW_TAG_MIPS_loop";
4070 case DW_TAG_format_label:
4071 return "DW_TAG_format_label";
4072 case DW_TAG_function_template:
4073 return "DW_TAG_function_template";
4074 case DW_TAG_class_template:
4075 return "DW_TAG_class_template";
4076 case DW_TAG_GNU_BINCL:
4077 return "DW_TAG_GNU_BINCL";
4078 case DW_TAG_GNU_EINCL:
4079 return "DW_TAG_GNU_EINCL";
4080 default:
4081 return "DW_TAG_<unknown>";
4082 }
4083 }
4084
4085 /* Convert a DWARF attribute code into its string name. */
4086
4087 static const char *
4088 dwarf_attr_name (unsigned int attr)
4089 {
4090 switch (attr)
4091 {
4092 case DW_AT_sibling:
4093 return "DW_AT_sibling";
4094 case DW_AT_location:
4095 return "DW_AT_location";
4096 case DW_AT_name:
4097 return "DW_AT_name";
4098 case DW_AT_ordering:
4099 return "DW_AT_ordering";
4100 case DW_AT_subscr_data:
4101 return "DW_AT_subscr_data";
4102 case DW_AT_byte_size:
4103 return "DW_AT_byte_size";
4104 case DW_AT_bit_offset:
4105 return "DW_AT_bit_offset";
4106 case DW_AT_bit_size:
4107 return "DW_AT_bit_size";
4108 case DW_AT_element_list:
4109 return "DW_AT_element_list";
4110 case DW_AT_stmt_list:
4111 return "DW_AT_stmt_list";
4112 case DW_AT_low_pc:
4113 return "DW_AT_low_pc";
4114 case DW_AT_high_pc:
4115 return "DW_AT_high_pc";
4116 case DW_AT_language:
4117 return "DW_AT_language";
4118 case DW_AT_member:
4119 return "DW_AT_member";
4120 case DW_AT_discr:
4121 return "DW_AT_discr";
4122 case DW_AT_discr_value:
4123 return "DW_AT_discr_value";
4124 case DW_AT_visibility:
4125 return "DW_AT_visibility";
4126 case DW_AT_import:
4127 return "DW_AT_import";
4128 case DW_AT_string_length:
4129 return "DW_AT_string_length";
4130 case DW_AT_common_reference:
4131 return "DW_AT_common_reference";
4132 case DW_AT_comp_dir:
4133 return "DW_AT_comp_dir";
4134 case DW_AT_const_value:
4135 return "DW_AT_const_value";
4136 case DW_AT_containing_type:
4137 return "DW_AT_containing_type";
4138 case DW_AT_default_value:
4139 return "DW_AT_default_value";
4140 case DW_AT_inline:
4141 return "DW_AT_inline";
4142 case DW_AT_is_optional:
4143 return "DW_AT_is_optional";
4144 case DW_AT_lower_bound:
4145 return "DW_AT_lower_bound";
4146 case DW_AT_producer:
4147 return "DW_AT_producer";
4148 case DW_AT_prototyped:
4149 return "DW_AT_prototyped";
4150 case DW_AT_return_addr:
4151 return "DW_AT_return_addr";
4152 case DW_AT_start_scope:
4153 return "DW_AT_start_scope";
4154 case DW_AT_stride_size:
4155 return "DW_AT_stride_size";
4156 case DW_AT_upper_bound:
4157 return "DW_AT_upper_bound";
4158 case DW_AT_abstract_origin:
4159 return "DW_AT_abstract_origin";
4160 case DW_AT_accessibility:
4161 return "DW_AT_accessibility";
4162 case DW_AT_address_class:
4163 return "DW_AT_address_class";
4164 case DW_AT_artificial:
4165 return "DW_AT_artificial";
4166 case DW_AT_base_types:
4167 return "DW_AT_base_types";
4168 case DW_AT_calling_convention:
4169 return "DW_AT_calling_convention";
4170 case DW_AT_count:
4171 return "DW_AT_count";
4172 case DW_AT_data_member_location:
4173 return "DW_AT_data_member_location";
4174 case DW_AT_decl_column:
4175 return "DW_AT_decl_column";
4176 case DW_AT_decl_file:
4177 return "DW_AT_decl_file";
4178 case DW_AT_decl_line:
4179 return "DW_AT_decl_line";
4180 case DW_AT_declaration:
4181 return "DW_AT_declaration";
4182 case DW_AT_discr_list:
4183 return "DW_AT_discr_list";
4184 case DW_AT_encoding:
4185 return "DW_AT_encoding";
4186 case DW_AT_external:
4187 return "DW_AT_external";
4188 case DW_AT_frame_base:
4189 return "DW_AT_frame_base";
4190 case DW_AT_friend:
4191 return "DW_AT_friend";
4192 case DW_AT_identifier_case:
4193 return "DW_AT_identifier_case";
4194 case DW_AT_macro_info:
4195 return "DW_AT_macro_info";
4196 case DW_AT_namelist_items:
4197 return "DW_AT_namelist_items";
4198 case DW_AT_priority:
4199 return "DW_AT_priority";
4200 case DW_AT_segment:
4201 return "DW_AT_segment";
4202 case DW_AT_specification:
4203 return "DW_AT_specification";
4204 case DW_AT_static_link:
4205 return "DW_AT_static_link";
4206 case DW_AT_type:
4207 return "DW_AT_type";
4208 case DW_AT_use_location:
4209 return "DW_AT_use_location";
4210 case DW_AT_variable_parameter:
4211 return "DW_AT_variable_parameter";
4212 case DW_AT_virtuality:
4213 return "DW_AT_virtuality";
4214 case DW_AT_vtable_elem_location:
4215 return "DW_AT_vtable_elem_location";
4216
4217 case DW_AT_allocated:
4218 return "DW_AT_allocated";
4219 case DW_AT_associated:
4220 return "DW_AT_associated";
4221 case DW_AT_data_location:
4222 return "DW_AT_data_location";
4223 case DW_AT_stride:
4224 return "DW_AT_stride";
4225 case DW_AT_entry_pc:
4226 return "DW_AT_entry_pc";
4227 case DW_AT_use_UTF8:
4228 return "DW_AT_use_UTF8";
4229 case DW_AT_extension:
4230 return "DW_AT_extension";
4231 case DW_AT_ranges:
4232 return "DW_AT_ranges";
4233 case DW_AT_trampoline:
4234 return "DW_AT_trampoline";
4235 case DW_AT_call_column:
4236 return "DW_AT_call_column";
4237 case DW_AT_call_file:
4238 return "DW_AT_call_file";
4239 case DW_AT_call_line:
4240 return "DW_AT_call_line";
4241
4242 case DW_AT_MIPS_fde:
4243 return "DW_AT_MIPS_fde";
4244 case DW_AT_MIPS_loop_begin:
4245 return "DW_AT_MIPS_loop_begin";
4246 case DW_AT_MIPS_tail_loop_begin:
4247 return "DW_AT_MIPS_tail_loop_begin";
4248 case DW_AT_MIPS_epilog_begin:
4249 return "DW_AT_MIPS_epilog_begin";
4250 case DW_AT_MIPS_loop_unroll_factor:
4251 return "DW_AT_MIPS_loop_unroll_factor";
4252 case DW_AT_MIPS_software_pipeline_depth:
4253 return "DW_AT_MIPS_software_pipeline_depth";
4254 case DW_AT_MIPS_linkage_name:
4255 return "DW_AT_MIPS_linkage_name";
4256 case DW_AT_MIPS_stride:
4257 return "DW_AT_MIPS_stride";
4258 case DW_AT_MIPS_abstract_name:
4259 return "DW_AT_MIPS_abstract_name";
4260 case DW_AT_MIPS_clone_origin:
4261 return "DW_AT_MIPS_clone_origin";
4262 case DW_AT_MIPS_has_inlines:
4263 return "DW_AT_MIPS_has_inlines";
4264
4265 case DW_AT_sf_names:
4266 return "DW_AT_sf_names";
4267 case DW_AT_src_info:
4268 return "DW_AT_src_info";
4269 case DW_AT_mac_info:
4270 return "DW_AT_mac_info";
4271 case DW_AT_src_coords:
4272 return "DW_AT_src_coords";
4273 case DW_AT_body_begin:
4274 return "DW_AT_body_begin";
4275 case DW_AT_body_end:
4276 return "DW_AT_body_end";
4277 case DW_AT_GNU_vector:
4278 return "DW_AT_GNU_vector";
4279
4280 case DW_AT_VMS_rtnbeg_pd_address:
4281 return "DW_AT_VMS_rtnbeg_pd_address";
4282
4283 default:
4284 return "DW_AT_<unknown>";
4285 }
4286 }
4287
4288 /* Convert a DWARF value form code into its string name. */
4289
4290 static const char *
4291 dwarf_form_name (unsigned int form)
4292 {
4293 switch (form)
4294 {
4295 case DW_FORM_addr:
4296 return "DW_FORM_addr";
4297 case DW_FORM_block2:
4298 return "DW_FORM_block2";
4299 case DW_FORM_block4:
4300 return "DW_FORM_block4";
4301 case DW_FORM_data2:
4302 return "DW_FORM_data2";
4303 case DW_FORM_data4:
4304 return "DW_FORM_data4";
4305 case DW_FORM_data8:
4306 return "DW_FORM_data8";
4307 case DW_FORM_string:
4308 return "DW_FORM_string";
4309 case DW_FORM_block:
4310 return "DW_FORM_block";
4311 case DW_FORM_block1:
4312 return "DW_FORM_block1";
4313 case DW_FORM_data1:
4314 return "DW_FORM_data1";
4315 case DW_FORM_flag:
4316 return "DW_FORM_flag";
4317 case DW_FORM_sdata:
4318 return "DW_FORM_sdata";
4319 case DW_FORM_strp:
4320 return "DW_FORM_strp";
4321 case DW_FORM_udata:
4322 return "DW_FORM_udata";
4323 case DW_FORM_ref_addr:
4324 return "DW_FORM_ref_addr";
4325 case DW_FORM_ref1:
4326 return "DW_FORM_ref1";
4327 case DW_FORM_ref2:
4328 return "DW_FORM_ref2";
4329 case DW_FORM_ref4:
4330 return "DW_FORM_ref4";
4331 case DW_FORM_ref8:
4332 return "DW_FORM_ref8";
4333 case DW_FORM_ref_udata:
4334 return "DW_FORM_ref_udata";
4335 case DW_FORM_indirect:
4336 return "DW_FORM_indirect";
4337 default:
4338 return "DW_FORM_<unknown>";
4339 }
4340 }
4341
4342 /* Convert a DWARF type code into its string name. */
4343
4344 #if 0
4345 static const char *
4346 dwarf_type_encoding_name (unsigned enc)
4347 {
4348 switch (enc)
4349 {
4350 case DW_ATE_address:
4351 return "DW_ATE_address";
4352 case DW_ATE_boolean:
4353 return "DW_ATE_boolean";
4354 case DW_ATE_complex_float:
4355 return "DW_ATE_complex_float";
4356 case DW_ATE_float:
4357 return "DW_ATE_float";
4358 case DW_ATE_signed:
4359 return "DW_ATE_signed";
4360 case DW_ATE_signed_char:
4361 return "DW_ATE_signed_char";
4362 case DW_ATE_unsigned:
4363 return "DW_ATE_unsigned";
4364 case DW_ATE_unsigned_char:
4365 return "DW_ATE_unsigned_char";
4366 default:
4367 return "DW_ATE_<unknown>";
4368 }
4369 }
4370 #endif
4371 \f
4372 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4373 instance of an inlined instance of a decl which is local to an inline
4374 function, so we have to trace all of the way back through the origin chain
4375 to find out what sort of node actually served as the original seed for the
4376 given block. */
4377
4378 static tree
4379 decl_ultimate_origin (tree decl)
4380 {
4381 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4382 nodes in the function to point to themselves; ignore that if
4383 we're trying to output the abstract instance of this function. */
4384 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4385 return NULL_TREE;
4386
4387 #ifdef ENABLE_CHECKING
4388 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4389 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4390 most distant ancestor, this should never happen. */
4391 abort ();
4392 #endif
4393
4394 return DECL_ABSTRACT_ORIGIN (decl);
4395 }
4396
4397 /* Determine the "ultimate origin" of a block. The block may be an inlined
4398 instance of an inlined instance of a block which is local to an inline
4399 function, so we have to trace all of the way back through the origin chain
4400 to find out what sort of node actually served as the original seed for the
4401 given block. */
4402
4403 static tree
4404 block_ultimate_origin (tree block)
4405 {
4406 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4407
4408 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4409 nodes in the function to point to themselves; ignore that if
4410 we're trying to output the abstract instance of this function. */
4411 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4412 return NULL_TREE;
4413
4414 if (immediate_origin == NULL_TREE)
4415 return NULL_TREE;
4416 else
4417 {
4418 tree ret_val;
4419 tree lookahead = immediate_origin;
4420
4421 do
4422 {
4423 ret_val = lookahead;
4424 lookahead = (TREE_CODE (ret_val) == BLOCK
4425 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4426 }
4427 while (lookahead != NULL && lookahead != ret_val);
4428
4429 return ret_val;
4430 }
4431 }
4432
4433 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4434 of a virtual function may refer to a base class, so we check the 'this'
4435 parameter. */
4436
4437 static tree
4438 decl_class_context (tree decl)
4439 {
4440 tree context = NULL_TREE;
4441
4442 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4443 context = DECL_CONTEXT (decl);
4444 else
4445 context = TYPE_MAIN_VARIANT
4446 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4447
4448 if (context && !TYPE_P (context))
4449 context = NULL_TREE;
4450
4451 return context;
4452 }
4453 \f
4454 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4455 addition order, and correct that in reverse_all_dies. */
4456
4457 static inline void
4458 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4459 {
4460 if (die != NULL && attr != NULL)
4461 {
4462 attr->dw_attr_next = die->die_attr;
4463 die->die_attr = attr;
4464 }
4465 }
4466
4467 static inline enum dw_val_class
4468 AT_class (dw_attr_ref a)
4469 {
4470 return a->dw_attr_val.val_class;
4471 }
4472
4473 /* Add a flag value attribute to a DIE. */
4474
4475 static inline void
4476 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4477 {
4478 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4479
4480 attr->dw_attr_next = NULL;
4481 attr->dw_attr = attr_kind;
4482 attr->dw_attr_val.val_class = dw_val_class_flag;
4483 attr->dw_attr_val.v.val_flag = flag;
4484 add_dwarf_attr (die, attr);
4485 }
4486
4487 static inline unsigned
4488 AT_flag (dw_attr_ref a)
4489 {
4490 if (a && AT_class (a) == dw_val_class_flag)
4491 return a->dw_attr_val.v.val_flag;
4492
4493 abort ();
4494 }
4495
4496 /* Add a signed integer attribute value to a DIE. */
4497
4498 static inline void
4499 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4500 {
4501 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4502
4503 attr->dw_attr_next = NULL;
4504 attr->dw_attr = attr_kind;
4505 attr->dw_attr_val.val_class = dw_val_class_const;
4506 attr->dw_attr_val.v.val_int = int_val;
4507 add_dwarf_attr (die, attr);
4508 }
4509
4510 static inline HOST_WIDE_INT
4511 AT_int (dw_attr_ref a)
4512 {
4513 if (a && AT_class (a) == dw_val_class_const)
4514 return a->dw_attr_val.v.val_int;
4515
4516 abort ();
4517 }
4518
4519 /* Add an unsigned integer attribute value to a DIE. */
4520
4521 static inline void
4522 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4523 unsigned HOST_WIDE_INT unsigned_val)
4524 {
4525 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4526
4527 attr->dw_attr_next = NULL;
4528 attr->dw_attr = attr_kind;
4529 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4530 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4531 add_dwarf_attr (die, attr);
4532 }
4533
4534 static inline unsigned HOST_WIDE_INT
4535 AT_unsigned (dw_attr_ref a)
4536 {
4537 if (a && AT_class (a) == dw_val_class_unsigned_const)
4538 return a->dw_attr_val.v.val_unsigned;
4539
4540 abort ();
4541 }
4542
4543 /* Add an unsigned double integer attribute value to a DIE. */
4544
4545 static inline void
4546 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4547 long unsigned int val_hi, long unsigned int val_low)
4548 {
4549 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4550
4551 attr->dw_attr_next = NULL;
4552 attr->dw_attr = attr_kind;
4553 attr->dw_attr_val.val_class = dw_val_class_long_long;
4554 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4555 attr->dw_attr_val.v.val_long_long.low = val_low;
4556 add_dwarf_attr (die, attr);
4557 }
4558
4559 /* Add a floating point attribute value to a DIE and return it. */
4560
4561 static inline void
4562 add_AT_float (dw_die_ref die, enum dwarf_attribute attr_kind,
4563 unsigned int length, long int *array)
4564 {
4565 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4566
4567 attr->dw_attr_next = NULL;
4568 attr->dw_attr = attr_kind;
4569 attr->dw_attr_val.val_class = dw_val_class_float;
4570 attr->dw_attr_val.v.val_float.length = length;
4571 attr->dw_attr_val.v.val_float.array = array;
4572 add_dwarf_attr (die, attr);
4573 }
4574
4575 /* Hash and equality functions for debug_str_hash. */
4576
4577 static hashval_t
4578 debug_str_do_hash (const void *x)
4579 {
4580 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4581 }
4582
4583 static int
4584 debug_str_eq (const void *x1, const void *x2)
4585 {
4586 return strcmp ((((const struct indirect_string_node *)x1)->str),
4587 (const char *)x2) == 0;
4588 }
4589
4590 /* Add a string attribute value to a DIE. */
4591
4592 static inline void
4593 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4594 {
4595 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4596 struct indirect_string_node *node;
4597 void **slot;
4598
4599 if (! debug_str_hash)
4600 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4601 debug_str_eq, NULL);
4602
4603 slot = htab_find_slot_with_hash (debug_str_hash, str,
4604 htab_hash_string (str), INSERT);
4605 if (*slot == NULL)
4606 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4607 node = (struct indirect_string_node *) *slot;
4608 node->str = ggc_strdup (str);
4609 node->refcount++;
4610
4611 attr->dw_attr_next = NULL;
4612 attr->dw_attr = attr_kind;
4613 attr->dw_attr_val.val_class = dw_val_class_str;
4614 attr->dw_attr_val.v.val_str = node;
4615 add_dwarf_attr (die, attr);
4616 }
4617
4618 static inline const char *
4619 AT_string (dw_attr_ref a)
4620 {
4621 if (a && AT_class (a) == dw_val_class_str)
4622 return a->dw_attr_val.v.val_str->str;
4623
4624 abort ();
4625 }
4626
4627 /* Find out whether a string should be output inline in DIE
4628 or out-of-line in .debug_str section. */
4629
4630 static int
4631 AT_string_form (dw_attr_ref a)
4632 {
4633 if (a && AT_class (a) == dw_val_class_str)
4634 {
4635 struct indirect_string_node *node;
4636 unsigned int len;
4637 char label[32];
4638
4639 node = a->dw_attr_val.v.val_str;
4640 if (node->form)
4641 return node->form;
4642
4643 len = strlen (node->str) + 1;
4644
4645 /* If the string is shorter or equal to the size of the reference, it is
4646 always better to put it inline. */
4647 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4648 return node->form = DW_FORM_string;
4649
4650 /* If we cannot expect the linker to merge strings in .debug_str
4651 section, only put it into .debug_str if it is worth even in this
4652 single module. */
4653 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4654 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4655 return node->form = DW_FORM_string;
4656
4657 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4658 ++dw2_string_counter;
4659 node->label = xstrdup (label);
4660
4661 return node->form = DW_FORM_strp;
4662 }
4663
4664 abort ();
4665 }
4666
4667 /* Add a DIE reference attribute value to a DIE. */
4668
4669 static inline void
4670 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4671 {
4672 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4673
4674 attr->dw_attr_next = NULL;
4675 attr->dw_attr = attr_kind;
4676 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4677 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4678 attr->dw_attr_val.v.val_die_ref.external = 0;
4679 add_dwarf_attr (die, attr);
4680 }
4681
4682 /* Add an AT_specification attribute to a DIE, and also make the back
4683 pointer from the specification to the definition. */
4684
4685 static inline void
4686 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4687 {
4688 add_AT_die_ref (die, DW_AT_specification, targ_die);
4689 if (targ_die->die_definition)
4690 abort ();
4691 targ_die->die_definition = die;
4692 }
4693
4694 static inline dw_die_ref
4695 AT_ref (dw_attr_ref a)
4696 {
4697 if (a && AT_class (a) == dw_val_class_die_ref)
4698 return a->dw_attr_val.v.val_die_ref.die;
4699
4700 abort ();
4701 }
4702
4703 static inline int
4704 AT_ref_external (dw_attr_ref a)
4705 {
4706 if (a && AT_class (a) == dw_val_class_die_ref)
4707 return a->dw_attr_val.v.val_die_ref.external;
4708
4709 return 0;
4710 }
4711
4712 static inline void
4713 set_AT_ref_external (dw_attr_ref a, int i)
4714 {
4715 if (a && AT_class (a) == dw_val_class_die_ref)
4716 a->dw_attr_val.v.val_die_ref.external = i;
4717 else
4718 abort ();
4719 }
4720
4721 /* Add an FDE reference attribute value to a DIE. */
4722
4723 static inline void
4724 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4725 {
4726 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4727
4728 attr->dw_attr_next = NULL;
4729 attr->dw_attr = attr_kind;
4730 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4731 attr->dw_attr_val.v.val_fde_index = targ_fde;
4732 add_dwarf_attr (die, attr);
4733 }
4734
4735 /* Add a location description attribute value to a DIE. */
4736
4737 static inline void
4738 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4739 {
4740 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4741
4742 attr->dw_attr_next = NULL;
4743 attr->dw_attr = attr_kind;
4744 attr->dw_attr_val.val_class = dw_val_class_loc;
4745 attr->dw_attr_val.v.val_loc = loc;
4746 add_dwarf_attr (die, attr);
4747 }
4748
4749 static inline dw_loc_descr_ref
4750 AT_loc (dw_attr_ref a)
4751 {
4752 if (a && AT_class (a) == dw_val_class_loc)
4753 return a->dw_attr_val.v.val_loc;
4754
4755 abort ();
4756 }
4757
4758 static inline void
4759 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4760 {
4761 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4762
4763 attr->dw_attr_next = NULL;
4764 attr->dw_attr = attr_kind;
4765 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4766 attr->dw_attr_val.v.val_loc_list = loc_list;
4767 add_dwarf_attr (die, attr);
4768 have_location_lists = 1;
4769 }
4770
4771 static inline dw_loc_list_ref
4772 AT_loc_list (dw_attr_ref a)
4773 {
4774 if (a && AT_class (a) == dw_val_class_loc_list)
4775 return a->dw_attr_val.v.val_loc_list;
4776
4777 abort ();
4778 }
4779
4780 /* Add an address constant attribute value to a DIE. */
4781
4782 static inline void
4783 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
4784 {
4785 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4786
4787 attr->dw_attr_next = NULL;
4788 attr->dw_attr = attr_kind;
4789 attr->dw_attr_val.val_class = dw_val_class_addr;
4790 attr->dw_attr_val.v.val_addr = addr;
4791 add_dwarf_attr (die, attr);
4792 }
4793
4794 static inline rtx
4795 AT_addr (dw_attr_ref a)
4796 {
4797 if (a && AT_class (a) == dw_val_class_addr)
4798 return a->dw_attr_val.v.val_addr;
4799
4800 abort ();
4801 }
4802
4803 /* Add a label identifier attribute value to a DIE. */
4804
4805 static inline void
4806 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
4807 {
4808 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4809
4810 attr->dw_attr_next = NULL;
4811 attr->dw_attr = attr_kind;
4812 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4813 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4814 add_dwarf_attr (die, attr);
4815 }
4816
4817 /* Add a section offset attribute value to a DIE. */
4818
4819 static inline void
4820 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
4821 {
4822 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4823
4824 attr->dw_attr_next = NULL;
4825 attr->dw_attr = attr_kind;
4826 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4827 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4828 add_dwarf_attr (die, attr);
4829 }
4830
4831 /* Add an offset attribute value to a DIE. */
4832
4833 static inline void
4834 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
4835 unsigned HOST_WIDE_INT offset)
4836 {
4837 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4838
4839 attr->dw_attr_next = NULL;
4840 attr->dw_attr = attr_kind;
4841 attr->dw_attr_val.val_class = dw_val_class_offset;
4842 attr->dw_attr_val.v.val_offset = offset;
4843 add_dwarf_attr (die, attr);
4844 }
4845
4846 /* Add an range_list attribute value to a DIE. */
4847
4848 static void
4849 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
4850 long unsigned int offset)
4851 {
4852 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4853
4854 attr->dw_attr_next = NULL;
4855 attr->dw_attr = attr_kind;
4856 attr->dw_attr_val.val_class = dw_val_class_range_list;
4857 attr->dw_attr_val.v.val_offset = offset;
4858 add_dwarf_attr (die, attr);
4859 }
4860
4861 static inline const char *
4862 AT_lbl (dw_attr_ref a)
4863 {
4864 if (a && (AT_class (a) == dw_val_class_lbl_id
4865 || AT_class (a) == dw_val_class_lbl_offset))
4866 return a->dw_attr_val.v.val_lbl_id;
4867
4868 abort ();
4869 }
4870
4871 /* Get the attribute of type attr_kind. */
4872
4873 static inline dw_attr_ref
4874 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4875 {
4876 dw_attr_ref a;
4877 dw_die_ref spec = NULL;
4878
4879 if (die != NULL)
4880 {
4881 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
4882 if (a->dw_attr == attr_kind)
4883 return a;
4884 else if (a->dw_attr == DW_AT_specification
4885 || a->dw_attr == DW_AT_abstract_origin)
4886 spec = AT_ref (a);
4887
4888 if (spec)
4889 return get_AT (spec, attr_kind);
4890 }
4891
4892 return NULL;
4893 }
4894
4895 /* Return the "low pc" attribute value, typically associated with a subprogram
4896 DIE. Return null if the "low pc" attribute is either not present, or if it
4897 cannot be represented as an assembler label identifier. */
4898
4899 static inline const char *
4900 get_AT_low_pc (dw_die_ref die)
4901 {
4902 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
4903
4904 return a ? AT_lbl (a) : NULL;
4905 }
4906
4907 /* Return the "high pc" attribute value, typically associated with a subprogram
4908 DIE. Return null if the "high pc" attribute is either not present, or if it
4909 cannot be represented as an assembler label identifier. */
4910
4911 static inline const char *
4912 get_AT_hi_pc (dw_die_ref die)
4913 {
4914 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
4915
4916 return a ? AT_lbl (a) : NULL;
4917 }
4918
4919 /* Return the value of the string attribute designated by ATTR_KIND, or
4920 NULL if it is not present. */
4921
4922 static inline const char *
4923 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
4924 {
4925 dw_attr_ref a = get_AT (die, attr_kind);
4926
4927 return a ? AT_string (a) : NULL;
4928 }
4929
4930 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
4931 if it is not present. */
4932
4933 static inline int
4934 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
4935 {
4936 dw_attr_ref a = get_AT (die, attr_kind);
4937
4938 return a ? AT_flag (a) : 0;
4939 }
4940
4941 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4942 if it is not present. */
4943
4944 static inline unsigned
4945 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
4946 {
4947 dw_attr_ref a = get_AT (die, attr_kind);
4948
4949 return a ? AT_unsigned (a) : 0;
4950 }
4951
4952 static inline dw_die_ref
4953 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
4954 {
4955 dw_attr_ref a = get_AT (die, attr_kind);
4956
4957 return a ? AT_ref (a) : NULL;
4958 }
4959
4960 /* Return TRUE if the language is C or C++. */
4961
4962 static inline bool
4963 is_c_family (void)
4964 {
4965 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4966
4967 return (lang == DW_LANG_C || lang == DW_LANG_C89
4968 || lang == DW_LANG_C_plus_plus);
4969 }
4970
4971 /* Return TRUE if the language is C++. */
4972
4973 static inline bool
4974 is_cxx (void)
4975 {
4976 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
4977 == DW_LANG_C_plus_plus);
4978 }
4979
4980 /* Return TRUE if the language is Fortran. */
4981
4982 static inline bool
4983 is_fortran (void)
4984 {
4985 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4986
4987 return lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90;
4988 }
4989
4990 /* Return TRUE if the language is Java. */
4991
4992 static inline bool
4993 is_java (void)
4994 {
4995 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4996
4997 return lang == DW_LANG_Java;
4998 }
4999
5000 /* Return TRUE if the language is Ada. */
5001
5002 static inline bool
5003 is_ada (void)
5004 {
5005 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5006
5007 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5008 }
5009
5010 /* Free up the memory used by A. */
5011
5012 static inline void free_AT (dw_attr_ref);
5013 static inline void
5014 free_AT (dw_attr_ref a)
5015 {
5016 if (AT_class (a) == dw_val_class_str)
5017 if (a->dw_attr_val.v.val_str->refcount)
5018 a->dw_attr_val.v.val_str->refcount--;
5019 }
5020
5021 /* Remove the specified attribute if present. */
5022
5023 static void
5024 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5025 {
5026 dw_attr_ref *p;
5027 dw_attr_ref removed = NULL;
5028
5029 if (die != NULL)
5030 {
5031 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5032 if ((*p)->dw_attr == attr_kind)
5033 {
5034 removed = *p;
5035 *p = (*p)->dw_attr_next;
5036 break;
5037 }
5038
5039 if (removed != 0)
5040 free_AT (removed);
5041 }
5042 }
5043
5044 /* Free up the memory used by DIE. */
5045
5046 static inline void
5047 free_die (dw_die_ref die)
5048 {
5049 remove_children (die);
5050 }
5051
5052 /* Discard the children of this DIE. */
5053
5054 static void
5055 remove_children (dw_die_ref die)
5056 {
5057 dw_die_ref child_die = die->die_child;
5058
5059 die->die_child = NULL;
5060
5061 while (child_die != NULL)
5062 {
5063 dw_die_ref tmp_die = child_die;
5064 dw_attr_ref a;
5065
5066 child_die = child_die->die_sib;
5067
5068 for (a = tmp_die->die_attr; a != NULL;)
5069 {
5070 dw_attr_ref tmp_a = a;
5071
5072 a = a->dw_attr_next;
5073 free_AT (tmp_a);
5074 }
5075
5076 free_die (tmp_die);
5077 }
5078 }
5079
5080 /* Add a child DIE below its parent. We build the lists up in reverse
5081 addition order, and correct that in reverse_all_dies. */
5082
5083 static inline void
5084 add_child_die (dw_die_ref die, dw_die_ref child_die)
5085 {
5086 if (die != NULL && child_die != NULL)
5087 {
5088 if (die == child_die)
5089 abort ();
5090
5091 child_die->die_parent = die;
5092 child_die->die_sib = die->die_child;
5093 die->die_child = child_die;
5094 }
5095 }
5096
5097 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5098 is the specification, to the front of PARENT's list of children. */
5099
5100 static void
5101 splice_child_die (dw_die_ref parent, dw_die_ref child)
5102 {
5103 dw_die_ref *p;
5104
5105 /* We want the declaration DIE from inside the class, not the
5106 specification DIE at toplevel. */
5107 if (child->die_parent != parent)
5108 {
5109 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5110
5111 if (tmp)
5112 child = tmp;
5113 }
5114
5115 if (child->die_parent != parent
5116 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5117 abort ();
5118
5119 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5120 if (*p == child)
5121 {
5122 *p = child->die_sib;
5123 break;
5124 }
5125
5126 child->die_parent = parent;
5127 child->die_sib = parent->die_child;
5128 parent->die_child = child;
5129 }
5130
5131 /* Return a pointer to a newly created DIE node. */
5132
5133 static inline dw_die_ref
5134 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5135 {
5136 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5137
5138 die->die_tag = tag_value;
5139
5140 if (parent_die != NULL)
5141 add_child_die (parent_die, die);
5142 else
5143 {
5144 limbo_die_node *limbo_node;
5145
5146 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5147 limbo_node->die = die;
5148 limbo_node->created_for = t;
5149 limbo_node->next = limbo_die_list;
5150 limbo_die_list = limbo_node;
5151 }
5152
5153 return die;
5154 }
5155
5156 /* Return the DIE associated with the given type specifier. */
5157
5158 static inline dw_die_ref
5159 lookup_type_die (tree type)
5160 {
5161 return TYPE_SYMTAB_DIE (type);
5162 }
5163
5164 /* Equate a DIE to a given type specifier. */
5165
5166 static inline void
5167 equate_type_number_to_die (tree type, dw_die_ref type_die)
5168 {
5169 TYPE_SYMTAB_DIE (type) = type_die;
5170 }
5171
5172 /* Return the DIE associated with a given declaration. */
5173
5174 static inline dw_die_ref
5175 lookup_decl_die (tree decl)
5176 {
5177 unsigned decl_id = DECL_UID (decl);
5178
5179 return (decl_id < decl_die_table_in_use ? decl_die_table[decl_id] : NULL);
5180 }
5181
5182 /* Equate a DIE to a particular declaration. */
5183
5184 static void
5185 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5186 {
5187 unsigned int decl_id = DECL_UID (decl);
5188 unsigned int num_allocated;
5189
5190 if (decl_id >= decl_die_table_allocated)
5191 {
5192 num_allocated
5193 = ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
5194 / DECL_DIE_TABLE_INCREMENT)
5195 * DECL_DIE_TABLE_INCREMENT;
5196
5197 decl_die_table = ggc_realloc (decl_die_table,
5198 sizeof (dw_die_ref) * num_allocated);
5199
5200 memset (&decl_die_table[decl_die_table_allocated], 0,
5201 (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
5202 decl_die_table_allocated = num_allocated;
5203 }
5204
5205 if (decl_id >= decl_die_table_in_use)
5206 decl_die_table_in_use = (decl_id + 1);
5207
5208 decl_die_table[decl_id] = decl_die;
5209 }
5210 \f
5211 /* Keep track of the number of spaces used to indent the
5212 output of the debugging routines that print the structure of
5213 the DIE internal representation. */
5214 static int print_indent;
5215
5216 /* Indent the line the number of spaces given by print_indent. */
5217
5218 static inline void
5219 print_spaces (FILE *outfile)
5220 {
5221 fprintf (outfile, "%*s", print_indent, "");
5222 }
5223
5224 /* Print the information associated with a given DIE, and its children.
5225 This routine is a debugging aid only. */
5226
5227 static void
5228 print_die (dw_die_ref die, FILE *outfile)
5229 {
5230 dw_attr_ref a;
5231 dw_die_ref c;
5232
5233 print_spaces (outfile);
5234 fprintf (outfile, "DIE %4lu: %s\n",
5235 die->die_offset, dwarf_tag_name (die->die_tag));
5236 print_spaces (outfile);
5237 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5238 fprintf (outfile, " offset: %lu\n", die->die_offset);
5239
5240 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5241 {
5242 print_spaces (outfile);
5243 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5244
5245 switch (AT_class (a))
5246 {
5247 case dw_val_class_addr:
5248 fprintf (outfile, "address");
5249 break;
5250 case dw_val_class_offset:
5251 fprintf (outfile, "offset");
5252 break;
5253 case dw_val_class_loc:
5254 fprintf (outfile, "location descriptor");
5255 break;
5256 case dw_val_class_loc_list:
5257 fprintf (outfile, "location list -> label:%s",
5258 AT_loc_list (a)->ll_symbol);
5259 break;
5260 case dw_val_class_range_list:
5261 fprintf (outfile, "range list");
5262 break;
5263 case dw_val_class_const:
5264 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5265 break;
5266 case dw_val_class_unsigned_const:
5267 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5268 break;
5269 case dw_val_class_long_long:
5270 fprintf (outfile, "constant (%lu,%lu)",
5271 a->dw_attr_val.v.val_long_long.hi,
5272 a->dw_attr_val.v.val_long_long.low);
5273 break;
5274 case dw_val_class_float:
5275 fprintf (outfile, "floating-point constant");
5276 break;
5277 case dw_val_class_flag:
5278 fprintf (outfile, "%u", AT_flag (a));
5279 break;
5280 case dw_val_class_die_ref:
5281 if (AT_ref (a) != NULL)
5282 {
5283 if (AT_ref (a)->die_symbol)
5284 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5285 else
5286 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5287 }
5288 else
5289 fprintf (outfile, "die -> <null>");
5290 break;
5291 case dw_val_class_lbl_id:
5292 case dw_val_class_lbl_offset:
5293 fprintf (outfile, "label: %s", AT_lbl (a));
5294 break;
5295 case dw_val_class_str:
5296 if (AT_string (a) != NULL)
5297 fprintf (outfile, "\"%s\"", AT_string (a));
5298 else
5299 fprintf (outfile, "<null>");
5300 break;
5301 default:
5302 break;
5303 }
5304
5305 fprintf (outfile, "\n");
5306 }
5307
5308 if (die->die_child != NULL)
5309 {
5310 print_indent += 4;
5311 for (c = die->die_child; c != NULL; c = c->die_sib)
5312 print_die (c, outfile);
5313
5314 print_indent -= 4;
5315 }
5316 if (print_indent == 0)
5317 fprintf (outfile, "\n");
5318 }
5319
5320 /* Print the contents of the source code line number correspondence table.
5321 This routine is a debugging aid only. */
5322
5323 static void
5324 print_dwarf_line_table (FILE *outfile)
5325 {
5326 unsigned i;
5327 dw_line_info_ref line_info;
5328
5329 fprintf (outfile, "\n\nDWARF source line information\n");
5330 for (i = 1; i < line_info_table_in_use; i++)
5331 {
5332 line_info = &line_info_table[i];
5333 fprintf (outfile, "%5d: ", i);
5334 fprintf (outfile, "%-20s",
5335 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5336 fprintf (outfile, "%6ld", line_info->dw_line_num);
5337 fprintf (outfile, "\n");
5338 }
5339
5340 fprintf (outfile, "\n\n");
5341 }
5342
5343 /* Print the information collected for a given DIE. */
5344
5345 void
5346 debug_dwarf_die (dw_die_ref die)
5347 {
5348 print_die (die, stderr);
5349 }
5350
5351 /* Print all DWARF information collected for the compilation unit.
5352 This routine is a debugging aid only. */
5353
5354 void
5355 debug_dwarf (void)
5356 {
5357 print_indent = 0;
5358 print_die (comp_unit_die, stderr);
5359 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5360 print_dwarf_line_table (stderr);
5361 }
5362 \f
5363 /* We build up the lists of children and attributes by pushing new ones
5364 onto the beginning of the list. Reverse the lists for DIE so that
5365 they are in order of addition. */
5366
5367 static void
5368 reverse_die_lists (dw_die_ref die)
5369 {
5370 dw_die_ref c, cp, cn;
5371 dw_attr_ref a, ap, an;
5372
5373 for (a = die->die_attr, ap = 0; a; a = an)
5374 {
5375 an = a->dw_attr_next;
5376 a->dw_attr_next = ap;
5377 ap = a;
5378 }
5379
5380 die->die_attr = ap;
5381
5382 for (c = die->die_child, cp = 0; c; c = cn)
5383 {
5384 cn = c->die_sib;
5385 c->die_sib = cp;
5386 cp = c;
5387 }
5388
5389 die->die_child = cp;
5390 }
5391
5392 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5393 reverse all dies in add_sibling_attributes, which runs through all the dies,
5394 it would reverse all the dies. Now, however, since we don't call
5395 reverse_die_lists in add_sibling_attributes, we need a routine to
5396 recursively reverse all the dies. This is that routine. */
5397
5398 static void
5399 reverse_all_dies (dw_die_ref die)
5400 {
5401 dw_die_ref c;
5402
5403 reverse_die_lists (die);
5404
5405 for (c = die->die_child; c; c = c->die_sib)
5406 reverse_all_dies (c);
5407 }
5408
5409 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5410 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5411 DIE that marks the start of the DIEs for this include file. */
5412
5413 static dw_die_ref
5414 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5415 {
5416 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5417 dw_die_ref new_unit = gen_compile_unit_die (filename);
5418
5419 new_unit->die_sib = old_unit;
5420 return new_unit;
5421 }
5422
5423 /* Close an include-file CU and reopen the enclosing one. */
5424
5425 static dw_die_ref
5426 pop_compile_unit (dw_die_ref old_unit)
5427 {
5428 dw_die_ref new_unit = old_unit->die_sib;
5429
5430 old_unit->die_sib = NULL;
5431 return new_unit;
5432 }
5433
5434 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5435 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5436
5437 /* Calculate the checksum of a location expression. */
5438
5439 static inline void
5440 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5441 {
5442 CHECKSUM (loc->dw_loc_opc);
5443 CHECKSUM (loc->dw_loc_oprnd1);
5444 CHECKSUM (loc->dw_loc_oprnd2);
5445 }
5446
5447 /* Calculate the checksum of an attribute. */
5448
5449 static void
5450 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5451 {
5452 dw_loc_descr_ref loc;
5453 rtx r;
5454
5455 CHECKSUM (at->dw_attr);
5456
5457 /* We don't care about differences in file numbering. */
5458 if (at->dw_attr == DW_AT_decl_file
5459 /* Or that this was compiled with a different compiler snapshot; if
5460 the output is the same, that's what matters. */
5461 || at->dw_attr == DW_AT_producer)
5462 return;
5463
5464 switch (AT_class (at))
5465 {
5466 case dw_val_class_const:
5467 CHECKSUM (at->dw_attr_val.v.val_int);
5468 break;
5469 case dw_val_class_unsigned_const:
5470 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5471 break;
5472 case dw_val_class_long_long:
5473 CHECKSUM (at->dw_attr_val.v.val_long_long);
5474 break;
5475 case dw_val_class_float:
5476 CHECKSUM (at->dw_attr_val.v.val_float);
5477 break;
5478 case dw_val_class_flag:
5479 CHECKSUM (at->dw_attr_val.v.val_flag);
5480 break;
5481 case dw_val_class_str:
5482 CHECKSUM_STRING (AT_string (at));
5483 break;
5484
5485 case dw_val_class_addr:
5486 r = AT_addr (at);
5487 switch (GET_CODE (r))
5488 {
5489 case SYMBOL_REF:
5490 CHECKSUM_STRING (XSTR (r, 0));
5491 break;
5492
5493 default:
5494 abort ();
5495 }
5496 break;
5497
5498 case dw_val_class_offset:
5499 CHECKSUM (at->dw_attr_val.v.val_offset);
5500 break;
5501
5502 case dw_val_class_loc:
5503 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5504 loc_checksum (loc, ctx);
5505 break;
5506
5507 case dw_val_class_die_ref:
5508 die_checksum (AT_ref (at), ctx, mark);
5509 break;
5510
5511 case dw_val_class_fde_ref:
5512 case dw_val_class_lbl_id:
5513 case dw_val_class_lbl_offset:
5514 break;
5515
5516 default:
5517 break;
5518 }
5519 }
5520
5521 /* Calculate the checksum of a DIE. */
5522
5523 static void
5524 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5525 {
5526 dw_die_ref c;
5527 dw_attr_ref a;
5528
5529 /* To avoid infinite recursion. */
5530 if (die->die_mark)
5531 {
5532 CHECKSUM (die->die_mark);
5533 return;
5534 }
5535 die->die_mark = ++(*mark);
5536
5537 CHECKSUM (die->die_tag);
5538
5539 for (a = die->die_attr; a; a = a->dw_attr_next)
5540 attr_checksum (a, ctx, mark);
5541
5542 for (c = die->die_child; c; c = c->die_sib)
5543 die_checksum (c, ctx, mark);
5544 }
5545
5546 #undef CHECKSUM
5547 #undef CHECKSUM_STRING
5548
5549 /* Do the location expressions look same? */
5550 static inline int
5551 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5552 {
5553 return loc1->dw_loc_opc == loc2->dw_loc_opc
5554 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5555 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5556 }
5557
5558 /* Do the values look the same? */
5559 static int
5560 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5561 {
5562 dw_loc_descr_ref loc1, loc2;
5563 rtx r1, r2;
5564 unsigned i;
5565
5566 if (v1->val_class != v2->val_class)
5567 return 0;
5568
5569 switch (v1->val_class)
5570 {
5571 case dw_val_class_const:
5572 return v1->v.val_int == v2->v.val_int;
5573 case dw_val_class_unsigned_const:
5574 return v1->v.val_unsigned == v2->v.val_unsigned;
5575 case dw_val_class_long_long:
5576 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5577 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5578 case dw_val_class_float:
5579 if (v1->v.val_float.length != v2->v.val_float.length)
5580 return 0;
5581 for (i = 0; i < v1->v.val_float.length; i++)
5582 if (v1->v.val_float.array[i] != v2->v.val_float.array[i])
5583 return 0;
5584 return 1;
5585 case dw_val_class_flag:
5586 return v1->v.val_flag == v2->v.val_flag;
5587 case dw_val_class_str:
5588 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5589
5590 case dw_val_class_addr:
5591 r1 = v1->v.val_addr;
5592 r2 = v2->v.val_addr;
5593 if (GET_CODE (r1) != GET_CODE (r2))
5594 return 0;
5595 switch (GET_CODE (r1))
5596 {
5597 case SYMBOL_REF:
5598 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5599
5600 default:
5601 abort ();
5602 }
5603
5604 case dw_val_class_offset:
5605 return v1->v.val_offset == v2->v.val_offset;
5606
5607 case dw_val_class_loc:
5608 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5609 loc1 && loc2;
5610 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5611 if (!same_loc_p (loc1, loc2, mark))
5612 return 0;
5613 return !loc1 && !loc2;
5614
5615 case dw_val_class_die_ref:
5616 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5617
5618 case dw_val_class_fde_ref:
5619 case dw_val_class_lbl_id:
5620 case dw_val_class_lbl_offset:
5621 return 1;
5622
5623 default:
5624 return 1;
5625 }
5626 }
5627
5628 /* Do the attributes look the same? */
5629
5630 static int
5631 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5632 {
5633 if (at1->dw_attr != at2->dw_attr)
5634 return 0;
5635
5636 /* We don't care about differences in file numbering. */
5637 if (at1->dw_attr == DW_AT_decl_file
5638 /* Or that this was compiled with a different compiler snapshot; if
5639 the output is the same, that's what matters. */
5640 || at1->dw_attr == DW_AT_producer)
5641 return 1;
5642
5643 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5644 }
5645
5646 /* Do the dies look the same? */
5647
5648 static int
5649 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5650 {
5651 dw_die_ref c1, c2;
5652 dw_attr_ref a1, a2;
5653
5654 /* To avoid infinite recursion. */
5655 if (die1->die_mark)
5656 return die1->die_mark == die2->die_mark;
5657 die1->die_mark = die2->die_mark = ++(*mark);
5658
5659 if (die1->die_tag != die2->die_tag)
5660 return 0;
5661
5662 for (a1 = die1->die_attr, a2 = die2->die_attr;
5663 a1 && a2;
5664 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5665 if (!same_attr_p (a1, a2, mark))
5666 return 0;
5667 if (a1 || a2)
5668 return 0;
5669
5670 for (c1 = die1->die_child, c2 = die2->die_child;
5671 c1 && c2;
5672 c1 = c1->die_sib, c2 = c2->die_sib)
5673 if (!same_die_p (c1, c2, mark))
5674 return 0;
5675 if (c1 || c2)
5676 return 0;
5677
5678 return 1;
5679 }
5680
5681 /* Do the dies look the same? Wrapper around same_die_p. */
5682
5683 static int
5684 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5685 {
5686 int mark = 0;
5687 int ret = same_die_p (die1, die2, &mark);
5688
5689 unmark_all_dies (die1);
5690 unmark_all_dies (die2);
5691
5692 return ret;
5693 }
5694
5695 /* The prefix to attach to symbols on DIEs in the current comdat debug
5696 info section. */
5697 static char *comdat_symbol_id;
5698
5699 /* The index of the current symbol within the current comdat CU. */
5700 static unsigned int comdat_symbol_number;
5701
5702 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5703 children, and set comdat_symbol_id accordingly. */
5704
5705 static void
5706 compute_section_prefix (dw_die_ref unit_die)
5707 {
5708 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5709 const char *base = die_name ? lbasename (die_name) : "anonymous";
5710 char *name = alloca (strlen (base) + 64);
5711 char *p;
5712 int i, mark;
5713 unsigned char checksum[16];
5714 struct md5_ctx ctx;
5715
5716 /* Compute the checksum of the DIE, then append part of it as hex digits to
5717 the name filename of the unit. */
5718
5719 md5_init_ctx (&ctx);
5720 mark = 0;
5721 die_checksum (unit_die, &ctx, &mark);
5722 unmark_all_dies (unit_die);
5723 md5_finish_ctx (&ctx, checksum);
5724
5725 sprintf (name, "%s.", base);
5726 clean_symbol_name (name);
5727
5728 p = name + strlen (name);
5729 for (i = 0; i < 4; i++)
5730 {
5731 sprintf (p, "%.2x", checksum[i]);
5732 p += 2;
5733 }
5734
5735 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5736 comdat_symbol_number = 0;
5737 }
5738
5739 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5740
5741 static int
5742 is_type_die (dw_die_ref die)
5743 {
5744 switch (die->die_tag)
5745 {
5746 case DW_TAG_array_type:
5747 case DW_TAG_class_type:
5748 case DW_TAG_enumeration_type:
5749 case DW_TAG_pointer_type:
5750 case DW_TAG_reference_type:
5751 case DW_TAG_string_type:
5752 case DW_TAG_structure_type:
5753 case DW_TAG_subroutine_type:
5754 case DW_TAG_union_type:
5755 case DW_TAG_ptr_to_member_type:
5756 case DW_TAG_set_type:
5757 case DW_TAG_subrange_type:
5758 case DW_TAG_base_type:
5759 case DW_TAG_const_type:
5760 case DW_TAG_file_type:
5761 case DW_TAG_packed_type:
5762 case DW_TAG_volatile_type:
5763 case DW_TAG_typedef:
5764 return 1;
5765 default:
5766 return 0;
5767 }
5768 }
5769
5770 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5771 Basically, we want to choose the bits that are likely to be shared between
5772 compilations (types) and leave out the bits that are specific to individual
5773 compilations (functions). */
5774
5775 static int
5776 is_comdat_die (dw_die_ref c)
5777 {
5778 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5779 we do for stabs. The advantage is a greater likelihood of sharing between
5780 objects that don't include headers in the same order (and therefore would
5781 put the base types in a different comdat). jason 8/28/00 */
5782
5783 if (c->die_tag == DW_TAG_base_type)
5784 return 0;
5785
5786 if (c->die_tag == DW_TAG_pointer_type
5787 || c->die_tag == DW_TAG_reference_type
5788 || c->die_tag == DW_TAG_const_type
5789 || c->die_tag == DW_TAG_volatile_type)
5790 {
5791 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5792
5793 return t ? is_comdat_die (t) : 0;
5794 }
5795
5796 return is_type_die (c);
5797 }
5798
5799 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5800 compilation unit. */
5801
5802 static int
5803 is_symbol_die (dw_die_ref c)
5804 {
5805 return (is_type_die (c)
5806 || (get_AT (c, DW_AT_declaration)
5807 && !get_AT (c, DW_AT_specification)));
5808 }
5809
5810 static char *
5811 gen_internal_sym (const char *prefix)
5812 {
5813 char buf[256];
5814
5815 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5816 return xstrdup (buf);
5817 }
5818
5819 /* Assign symbols to all worthy DIEs under DIE. */
5820
5821 static void
5822 assign_symbol_names (dw_die_ref die)
5823 {
5824 dw_die_ref c;
5825
5826 if (is_symbol_die (die))
5827 {
5828 if (comdat_symbol_id)
5829 {
5830 char *p = alloca (strlen (comdat_symbol_id) + 64);
5831
5832 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
5833 comdat_symbol_id, comdat_symbol_number++);
5834 die->die_symbol = xstrdup (p);
5835 }
5836 else
5837 die->die_symbol = gen_internal_sym ("LDIE");
5838 }
5839
5840 for (c = die->die_child; c != NULL; c = c->die_sib)
5841 assign_symbol_names (c);
5842 }
5843
5844 struct cu_hash_table_entry
5845 {
5846 dw_die_ref cu;
5847 unsigned min_comdat_num, max_comdat_num;
5848 struct cu_hash_table_entry *next;
5849 };
5850
5851 /* Routines to manipulate hash table of CUs. */
5852 static hashval_t
5853 htab_cu_hash (const void *of)
5854 {
5855 const struct cu_hash_table_entry *entry = of;
5856
5857 return htab_hash_string (entry->cu->die_symbol);
5858 }
5859
5860 static int
5861 htab_cu_eq (const void *of1, const void *of2)
5862 {
5863 const struct cu_hash_table_entry *entry1 = of1;
5864 const struct die_struct *entry2 = of2;
5865
5866 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
5867 }
5868
5869 static void
5870 htab_cu_del (void *what)
5871 {
5872 struct cu_hash_table_entry *next, *entry = what;
5873
5874 while (entry)
5875 {
5876 next = entry->next;
5877 free (entry);
5878 entry = next;
5879 }
5880 }
5881
5882 /* Check whether we have already seen this CU and set up SYM_NUM
5883 accordingly. */
5884 static int
5885 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
5886 {
5887 struct cu_hash_table_entry dummy;
5888 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
5889
5890 dummy.max_comdat_num = 0;
5891
5892 slot = (struct cu_hash_table_entry **)
5893 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
5894 INSERT);
5895 entry = *slot;
5896
5897 for (; entry; last = entry, entry = entry->next)
5898 {
5899 if (same_die_p_wrap (cu, entry->cu))
5900 break;
5901 }
5902
5903 if (entry)
5904 {
5905 *sym_num = entry->min_comdat_num;
5906 return 1;
5907 }
5908
5909 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
5910 entry->cu = cu;
5911 entry->min_comdat_num = *sym_num = last->max_comdat_num;
5912 entry->next = *slot;
5913 *slot = entry;
5914
5915 return 0;
5916 }
5917
5918 /* Record SYM_NUM to record of CU in HTABLE. */
5919 static void
5920 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
5921 {
5922 struct cu_hash_table_entry **slot, *entry;
5923
5924 slot = (struct cu_hash_table_entry **)
5925 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
5926 NO_INSERT);
5927 entry = *slot;
5928
5929 entry->max_comdat_num = sym_num;
5930 }
5931
5932 /* Traverse the DIE (which is always comp_unit_die), and set up
5933 additional compilation units for each of the include files we see
5934 bracketed by BINCL/EINCL. */
5935
5936 static void
5937 break_out_includes (dw_die_ref die)
5938 {
5939 dw_die_ref *ptr;
5940 dw_die_ref unit = NULL;
5941 limbo_die_node *node, **pnode;
5942 htab_t cu_hash_table;
5943
5944 for (ptr = &(die->die_child); *ptr;)
5945 {
5946 dw_die_ref c = *ptr;
5947
5948 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
5949 || (unit && is_comdat_die (c)))
5950 {
5951 /* This DIE is for a secondary CU; remove it from the main one. */
5952 *ptr = c->die_sib;
5953
5954 if (c->die_tag == DW_TAG_GNU_BINCL)
5955 {
5956 unit = push_new_compile_unit (unit, c);
5957 free_die (c);
5958 }
5959 else if (c->die_tag == DW_TAG_GNU_EINCL)
5960 {
5961 unit = pop_compile_unit (unit);
5962 free_die (c);
5963 }
5964 else
5965 add_child_die (unit, c);
5966 }
5967 else
5968 {
5969 /* Leave this DIE in the main CU. */
5970 ptr = &(c->die_sib);
5971 continue;
5972 }
5973 }
5974
5975 #if 0
5976 /* We can only use this in debugging, since the frontend doesn't check
5977 to make sure that we leave every include file we enter. */
5978 if (unit != NULL)
5979 abort ();
5980 #endif
5981
5982 assign_symbol_names (die);
5983 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
5984 for (node = limbo_die_list, pnode = &limbo_die_list;
5985 node;
5986 node = node->next)
5987 {
5988 int is_dupl;
5989
5990 compute_section_prefix (node->die);
5991 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
5992 &comdat_symbol_number);
5993 assign_symbol_names (node->die);
5994 if (is_dupl)
5995 *pnode = node->next;
5996 else
5997 {
5998 pnode = &node->next;
5999 record_comdat_symbol_number (node->die, cu_hash_table,
6000 comdat_symbol_number);
6001 }
6002 }
6003 htab_delete (cu_hash_table);
6004 }
6005
6006 /* Traverse the DIE and add a sibling attribute if it may have the
6007 effect of speeding up access to siblings. To save some space,
6008 avoid generating sibling attributes for DIE's without children. */
6009
6010 static void
6011 add_sibling_attributes (dw_die_ref die)
6012 {
6013 dw_die_ref c;
6014
6015 if (die->die_tag != DW_TAG_compile_unit
6016 && die->die_sib && die->die_child != NULL)
6017 /* Add the sibling link to the front of the attribute list. */
6018 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6019
6020 for (c = die->die_child; c != NULL; c = c->die_sib)
6021 add_sibling_attributes (c);
6022 }
6023
6024 /* Output all location lists for the DIE and its children. */
6025
6026 static void
6027 output_location_lists (dw_die_ref die)
6028 {
6029 dw_die_ref c;
6030 dw_attr_ref d_attr;
6031
6032 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6033 if (AT_class (d_attr) == dw_val_class_loc_list)
6034 output_loc_list (AT_loc_list (d_attr));
6035
6036 for (c = die->die_child; c != NULL; c = c->die_sib)
6037 output_location_lists (c);
6038
6039 }
6040
6041 /* The format of each DIE (and its attribute value pairs) is encoded in an
6042 abbreviation table. This routine builds the abbreviation table and assigns
6043 a unique abbreviation id for each abbreviation entry. The children of each
6044 die are visited recursively. */
6045
6046 static void
6047 build_abbrev_table (dw_die_ref die)
6048 {
6049 unsigned long abbrev_id;
6050 unsigned int n_alloc;
6051 dw_die_ref c;
6052 dw_attr_ref d_attr, a_attr;
6053
6054 /* Scan the DIE references, and mark as external any that refer to
6055 DIEs from other CUs (i.e. those which are not marked). */
6056 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6057 if (AT_class (d_attr) == dw_val_class_die_ref
6058 && AT_ref (d_attr)->die_mark == 0)
6059 {
6060 if (AT_ref (d_attr)->die_symbol == 0)
6061 abort ();
6062
6063 set_AT_ref_external (d_attr, 1);
6064 }
6065
6066 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6067 {
6068 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6069
6070 if (abbrev->die_tag == die->die_tag)
6071 {
6072 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6073 {
6074 a_attr = abbrev->die_attr;
6075 d_attr = die->die_attr;
6076
6077 while (a_attr != NULL && d_attr != NULL)
6078 {
6079 if ((a_attr->dw_attr != d_attr->dw_attr)
6080 || (value_format (a_attr) != value_format (d_attr)))
6081 break;
6082
6083 a_attr = a_attr->dw_attr_next;
6084 d_attr = d_attr->dw_attr_next;
6085 }
6086
6087 if (a_attr == NULL && d_attr == NULL)
6088 break;
6089 }
6090 }
6091 }
6092
6093 if (abbrev_id >= abbrev_die_table_in_use)
6094 {
6095 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6096 {
6097 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6098 abbrev_die_table = ggc_realloc (abbrev_die_table,
6099 sizeof (dw_die_ref) * n_alloc);
6100
6101 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6102 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6103 abbrev_die_table_allocated = n_alloc;
6104 }
6105
6106 ++abbrev_die_table_in_use;
6107 abbrev_die_table[abbrev_id] = die;
6108 }
6109
6110 die->die_abbrev = abbrev_id;
6111 for (c = die->die_child; c != NULL; c = c->die_sib)
6112 build_abbrev_table (c);
6113 }
6114 \f
6115 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6116
6117 static int
6118 constant_size (long unsigned int value)
6119 {
6120 int log;
6121
6122 if (value == 0)
6123 log = 0;
6124 else
6125 log = floor_log2 (value);
6126
6127 log = log / 8;
6128 log = 1 << (floor_log2 (log) + 1);
6129
6130 return log;
6131 }
6132
6133 /* Return the size of a DIE as it is represented in the
6134 .debug_info section. */
6135
6136 static unsigned long
6137 size_of_die (dw_die_ref die)
6138 {
6139 unsigned long size = 0;
6140 dw_attr_ref a;
6141
6142 size += size_of_uleb128 (die->die_abbrev);
6143 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6144 {
6145 switch (AT_class (a))
6146 {
6147 case dw_val_class_addr:
6148 size += DWARF2_ADDR_SIZE;
6149 break;
6150 case dw_val_class_offset:
6151 size += DWARF_OFFSET_SIZE;
6152 break;
6153 case dw_val_class_loc:
6154 {
6155 unsigned long lsize = size_of_locs (AT_loc (a));
6156
6157 /* Block length. */
6158 size += constant_size (lsize);
6159 size += lsize;
6160 }
6161 break;
6162 case dw_val_class_loc_list:
6163 size += DWARF_OFFSET_SIZE;
6164 break;
6165 case dw_val_class_range_list:
6166 size += DWARF_OFFSET_SIZE;
6167 break;
6168 case dw_val_class_const:
6169 size += size_of_sleb128 (AT_int (a));
6170 break;
6171 case dw_val_class_unsigned_const:
6172 size += constant_size (AT_unsigned (a));
6173 break;
6174 case dw_val_class_long_long:
6175 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6176 break;
6177 case dw_val_class_float:
6178 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
6179 break;
6180 case dw_val_class_flag:
6181 size += 1;
6182 break;
6183 case dw_val_class_die_ref:
6184 if (AT_ref_external (a))
6185 size += DWARF2_ADDR_SIZE;
6186 else
6187 size += DWARF_OFFSET_SIZE;
6188 break;
6189 case dw_val_class_fde_ref:
6190 size += DWARF_OFFSET_SIZE;
6191 break;
6192 case dw_val_class_lbl_id:
6193 size += DWARF2_ADDR_SIZE;
6194 break;
6195 case dw_val_class_lbl_offset:
6196 size += DWARF_OFFSET_SIZE;
6197 break;
6198 case dw_val_class_str:
6199 if (AT_string_form (a) == DW_FORM_strp)
6200 size += DWARF_OFFSET_SIZE;
6201 else
6202 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6203 break;
6204 default:
6205 abort ();
6206 }
6207 }
6208
6209 return size;
6210 }
6211
6212 /* Size the debugging information associated with a given DIE. Visits the
6213 DIE's children recursively. Updates the global variable next_die_offset, on
6214 each time through. Uses the current value of next_die_offset to update the
6215 die_offset field in each DIE. */
6216
6217 static void
6218 calc_die_sizes (dw_die_ref die)
6219 {
6220 dw_die_ref c;
6221
6222 die->die_offset = next_die_offset;
6223 next_die_offset += size_of_die (die);
6224
6225 for (c = die->die_child; c != NULL; c = c->die_sib)
6226 calc_die_sizes (c);
6227
6228 if (die->die_child != NULL)
6229 /* Count the null byte used to terminate sibling lists. */
6230 next_die_offset += 1;
6231 }
6232
6233 /* Set the marks for a die and its children. We do this so
6234 that we know whether or not a reference needs to use FORM_ref_addr; only
6235 DIEs in the same CU will be marked. We used to clear out the offset
6236 and use that as the flag, but ran into ordering problems. */
6237
6238 static void
6239 mark_dies (dw_die_ref die)
6240 {
6241 dw_die_ref c;
6242
6243 if (die->die_mark)
6244 abort ();
6245
6246 die->die_mark = 1;
6247 for (c = die->die_child; c; c = c->die_sib)
6248 mark_dies (c);
6249 }
6250
6251 /* Clear the marks for a die and its children. */
6252
6253 static void
6254 unmark_dies (dw_die_ref die)
6255 {
6256 dw_die_ref c;
6257
6258 if (!die->die_mark)
6259 abort ();
6260
6261 die->die_mark = 0;
6262 for (c = die->die_child; c; c = c->die_sib)
6263 unmark_dies (c);
6264 }
6265
6266 /* Clear the marks for a die, its children and referred dies. */
6267
6268 static void
6269 unmark_all_dies (dw_die_ref die)
6270 {
6271 dw_die_ref c;
6272 dw_attr_ref a;
6273
6274 if (!die->die_mark)
6275 return;
6276 die->die_mark = 0;
6277
6278 for (c = die->die_child; c; c = c->die_sib)
6279 unmark_all_dies (c);
6280
6281 for (a = die->die_attr; a; a = a->dw_attr_next)
6282 if (AT_class (a) == dw_val_class_die_ref)
6283 unmark_all_dies (AT_ref (a));
6284 }
6285
6286 /* Return the size of the .debug_pubnames table generated for the
6287 compilation unit. */
6288
6289 static unsigned long
6290 size_of_pubnames (void)
6291 {
6292 unsigned long size;
6293 unsigned i;
6294
6295 size = DWARF_PUBNAMES_HEADER_SIZE;
6296 for (i = 0; i < pubname_table_in_use; i++)
6297 {
6298 pubname_ref p = &pubname_table[i];
6299 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6300 }
6301
6302 size += DWARF_OFFSET_SIZE;
6303 return size;
6304 }
6305
6306 /* Return the size of the information in the .debug_aranges section. */
6307
6308 static unsigned long
6309 size_of_aranges (void)
6310 {
6311 unsigned long size;
6312
6313 size = DWARF_ARANGES_HEADER_SIZE;
6314
6315 /* Count the address/length pair for this compilation unit. */
6316 size += 2 * DWARF2_ADDR_SIZE;
6317 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6318
6319 /* Count the two zero words used to terminated the address range table. */
6320 size += 2 * DWARF2_ADDR_SIZE;
6321 return size;
6322 }
6323 \f
6324 /* Select the encoding of an attribute value. */
6325
6326 static enum dwarf_form
6327 value_format (dw_attr_ref a)
6328 {
6329 switch (a->dw_attr_val.val_class)
6330 {
6331 case dw_val_class_addr:
6332 return DW_FORM_addr;
6333 case dw_val_class_range_list:
6334 case dw_val_class_offset:
6335 if (DWARF_OFFSET_SIZE == 4)
6336 return DW_FORM_data4;
6337 if (DWARF_OFFSET_SIZE == 8)
6338 return DW_FORM_data8;
6339 abort ();
6340 case dw_val_class_loc_list:
6341 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6342 .debug_loc section */
6343 return DW_FORM_data4;
6344 case dw_val_class_loc:
6345 switch (constant_size (size_of_locs (AT_loc (a))))
6346 {
6347 case 1:
6348 return DW_FORM_block1;
6349 case 2:
6350 return DW_FORM_block2;
6351 default:
6352 abort ();
6353 }
6354 case dw_val_class_const:
6355 return DW_FORM_sdata;
6356 case dw_val_class_unsigned_const:
6357 switch (constant_size (AT_unsigned (a)))
6358 {
6359 case 1:
6360 return DW_FORM_data1;
6361 case 2:
6362 return DW_FORM_data2;
6363 case 4:
6364 return DW_FORM_data4;
6365 case 8:
6366 return DW_FORM_data8;
6367 default:
6368 abort ();
6369 }
6370 case dw_val_class_long_long:
6371 return DW_FORM_block1;
6372 case dw_val_class_float:
6373 return DW_FORM_block1;
6374 case dw_val_class_flag:
6375 return DW_FORM_flag;
6376 case dw_val_class_die_ref:
6377 if (AT_ref_external (a))
6378 return DW_FORM_ref_addr;
6379 else
6380 return DW_FORM_ref;
6381 case dw_val_class_fde_ref:
6382 return DW_FORM_data;
6383 case dw_val_class_lbl_id:
6384 return DW_FORM_addr;
6385 case dw_val_class_lbl_offset:
6386 return DW_FORM_data;
6387 case dw_val_class_str:
6388 return AT_string_form (a);
6389
6390 default:
6391 abort ();
6392 }
6393 }
6394
6395 /* Output the encoding of an attribute value. */
6396
6397 static void
6398 output_value_format (dw_attr_ref a)
6399 {
6400 enum dwarf_form form = value_format (a);
6401
6402 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6403 }
6404
6405 /* Output the .debug_abbrev section which defines the DIE abbreviation
6406 table. */
6407
6408 static void
6409 output_abbrev_section (void)
6410 {
6411 unsigned long abbrev_id;
6412
6413 dw_attr_ref a_attr;
6414
6415 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6416 {
6417 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6418
6419 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6420 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6421 dwarf_tag_name (abbrev->die_tag));
6422
6423 if (abbrev->die_child != NULL)
6424 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6425 else
6426 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6427
6428 for (a_attr = abbrev->die_attr; a_attr != NULL;
6429 a_attr = a_attr->dw_attr_next)
6430 {
6431 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6432 dwarf_attr_name (a_attr->dw_attr));
6433 output_value_format (a_attr);
6434 }
6435
6436 dw2_asm_output_data (1, 0, NULL);
6437 dw2_asm_output_data (1, 0, NULL);
6438 }
6439
6440 /* Terminate the table. */
6441 dw2_asm_output_data (1, 0, NULL);
6442 }
6443
6444 /* Output a symbol we can use to refer to this DIE from another CU. */
6445
6446 static inline void
6447 output_die_symbol (dw_die_ref die)
6448 {
6449 char *sym = die->die_symbol;
6450
6451 if (sym == 0)
6452 return;
6453
6454 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6455 /* We make these global, not weak; if the target doesn't support
6456 .linkonce, it doesn't support combining the sections, so debugging
6457 will break. */
6458 (*targetm.asm_out.globalize_label) (asm_out_file, sym);
6459
6460 ASM_OUTPUT_LABEL (asm_out_file, sym);
6461 }
6462
6463 /* Return a new location list, given the begin and end range, and the
6464 expression. gensym tells us whether to generate a new internal symbol for
6465 this location list node, which is done for the head of the list only. */
6466
6467 static inline dw_loc_list_ref
6468 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6469 const char *section, unsigned int gensym)
6470 {
6471 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6472
6473 retlist->begin = begin;
6474 retlist->end = end;
6475 retlist->expr = expr;
6476 retlist->section = section;
6477 if (gensym)
6478 retlist->ll_symbol = gen_internal_sym ("LLST");
6479
6480 return retlist;
6481 }
6482
6483 /* Add a location description expression to a location list. */
6484
6485 static inline void
6486 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6487 const char *begin, const char *end,
6488 const char *section)
6489 {
6490 dw_loc_list_ref *d;
6491
6492 /* Find the end of the chain. */
6493 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6494 ;
6495
6496 /* Add a new location list node to the list. */
6497 *d = new_loc_list (descr, begin, end, section, 0);
6498 }
6499
6500 /* Output the location list given to us. */
6501
6502 static void
6503 output_loc_list (dw_loc_list_ref list_head)
6504 {
6505 dw_loc_list_ref curr = list_head;
6506
6507 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6508
6509 /* ??? This shouldn't be needed now that we've forced the
6510 compilation unit base address to zero when there is code
6511 in more than one section. */
6512 if (strcmp (curr->section, ".text") == 0)
6513 {
6514 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6515 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT) 0,
6516 "Location list base address specifier fake entry");
6517 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6518 "Location list base address specifier base");
6519 }
6520
6521 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6522 {
6523 unsigned long size;
6524
6525 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6526 "Location list begin address (%s)",
6527 list_head->ll_symbol);
6528 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6529 "Location list end address (%s)",
6530 list_head->ll_symbol);
6531 size = size_of_locs (curr->expr);
6532
6533 /* Output the block length for this list of location operations. */
6534 if (size > 0xffff)
6535 abort ();
6536 dw2_asm_output_data (2, size, "%s", "Location expression size");
6537
6538 output_loc_sequence (curr->expr);
6539 }
6540
6541 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6542 "Location list terminator begin (%s)",
6543 list_head->ll_symbol);
6544 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6545 "Location list terminator end (%s)",
6546 list_head->ll_symbol);
6547 }
6548
6549 /* Output the DIE and its attributes. Called recursively to generate
6550 the definitions of each child DIE. */
6551
6552 static void
6553 output_die (dw_die_ref die)
6554 {
6555 dw_attr_ref a;
6556 dw_die_ref c;
6557 unsigned long size;
6558
6559 /* If someone in another CU might refer to us, set up a symbol for
6560 them to point to. */
6561 if (die->die_symbol)
6562 output_die_symbol (die);
6563
6564 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6565 die->die_offset, dwarf_tag_name (die->die_tag));
6566
6567 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6568 {
6569 const char *name = dwarf_attr_name (a->dw_attr);
6570
6571 switch (AT_class (a))
6572 {
6573 case dw_val_class_addr:
6574 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6575 break;
6576
6577 case dw_val_class_offset:
6578 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6579 "%s", name);
6580 break;
6581
6582 case dw_val_class_range_list:
6583 {
6584 char *p = strchr (ranges_section_label, '\0');
6585
6586 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6587 a->dw_attr_val.v.val_offset);
6588 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6589 "%s", name);
6590 *p = '\0';
6591 }
6592 break;
6593
6594 case dw_val_class_loc:
6595 size = size_of_locs (AT_loc (a));
6596
6597 /* Output the block length for this list of location operations. */
6598 dw2_asm_output_data (constant_size (size), size, "%s", name);
6599
6600 output_loc_sequence (AT_loc (a));
6601 break;
6602
6603 case dw_val_class_const:
6604 /* ??? It would be slightly more efficient to use a scheme like is
6605 used for unsigned constants below, but gdb 4.x does not sign
6606 extend. Gdb 5.x does sign extend. */
6607 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6608 break;
6609
6610 case dw_val_class_unsigned_const:
6611 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6612 AT_unsigned (a), "%s", name);
6613 break;
6614
6615 case dw_val_class_long_long:
6616 {
6617 unsigned HOST_WIDE_INT first, second;
6618
6619 dw2_asm_output_data (1,
6620 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6621 "%s", name);
6622
6623 if (WORDS_BIG_ENDIAN)
6624 {
6625 first = a->dw_attr_val.v.val_long_long.hi;
6626 second = a->dw_attr_val.v.val_long_long.low;
6627 }
6628 else
6629 {
6630 first = a->dw_attr_val.v.val_long_long.low;
6631 second = a->dw_attr_val.v.val_long_long.hi;
6632 }
6633
6634 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6635 first, "long long constant");
6636 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6637 second, NULL);
6638 }
6639 break;
6640
6641 case dw_val_class_float:
6642 {
6643 unsigned int i;
6644
6645 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6646 "%s", name);
6647
6648 for (i = 0; i < a->dw_attr_val.v.val_float.length; i++)
6649 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6650 "fp constant word %u", i);
6651 break;
6652 }
6653
6654 case dw_val_class_flag:
6655 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6656 break;
6657
6658 case dw_val_class_loc_list:
6659 {
6660 char *sym = AT_loc_list (a)->ll_symbol;
6661
6662 if (sym == 0)
6663 abort ();
6664 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym,
6665 loc_section_label, "%s", name);
6666 }
6667 break;
6668
6669 case dw_val_class_die_ref:
6670 if (AT_ref_external (a))
6671 {
6672 char *sym = AT_ref (a)->die_symbol;
6673
6674 if (sym == 0)
6675 abort ();
6676 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6677 }
6678 else if (AT_ref (a)->die_offset == 0)
6679 abort ();
6680 else
6681 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6682 "%s", name);
6683 break;
6684
6685 case dw_val_class_fde_ref:
6686 {
6687 char l1[20];
6688
6689 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6690 a->dw_attr_val.v.val_fde_index * 2);
6691 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6692 }
6693 break;
6694
6695 case dw_val_class_lbl_id:
6696 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6697 break;
6698
6699 case dw_val_class_lbl_offset:
6700 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6701 break;
6702
6703 case dw_val_class_str:
6704 if (AT_string_form (a) == DW_FORM_strp)
6705 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6706 a->dw_attr_val.v.val_str->label,
6707 "%s: \"%s\"", name, AT_string (a));
6708 else
6709 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6710 break;
6711
6712 default:
6713 abort ();
6714 }
6715 }
6716
6717 for (c = die->die_child; c != NULL; c = c->die_sib)
6718 output_die (c);
6719
6720 /* Add null byte to terminate sibling list. */
6721 if (die->die_child != NULL)
6722 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6723 die->die_offset);
6724 }
6725
6726 /* Output the compilation unit that appears at the beginning of the
6727 .debug_info section, and precedes the DIE descriptions. */
6728
6729 static void
6730 output_compilation_unit_header (void)
6731 {
6732 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6733 dw2_asm_output_data (4, 0xffffffff,
6734 "Initial length escape value indicating 64-bit DWARF extension");
6735 dw2_asm_output_data (DWARF_OFFSET_SIZE,
6736 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
6737 "Length of Compilation Unit Info");
6738 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6739 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6740 "Offset Into Abbrev. Section");
6741 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6742 }
6743
6744 /* Output the compilation unit DIE and its children. */
6745
6746 static void
6747 output_comp_unit (dw_die_ref die, int output_if_empty)
6748 {
6749 const char *secname;
6750 char *oldsym, *tmp;
6751
6752 /* Unless we are outputting main CU, we may throw away empty ones. */
6753 if (!output_if_empty && die->die_child == NULL)
6754 return;
6755
6756 /* Even if there are no children of this DIE, we must output the information
6757 about the compilation unit. Otherwise, on an empty translation unit, we
6758 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6759 will then complain when examining the file. First mark all the DIEs in
6760 this CU so we know which get local refs. */
6761 mark_dies (die);
6762
6763 build_abbrev_table (die);
6764
6765 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6766 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6767 calc_die_sizes (die);
6768
6769 oldsym = die->die_symbol;
6770 if (oldsym)
6771 {
6772 tmp = alloca (strlen (oldsym) + 24);
6773
6774 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
6775 secname = tmp;
6776 die->die_symbol = NULL;
6777 }
6778 else
6779 secname = (const char *) DEBUG_INFO_SECTION;
6780
6781 /* Output debugging information. */
6782 named_section_flags (secname, SECTION_DEBUG);
6783 output_compilation_unit_header ();
6784 output_die (die);
6785
6786 /* Leave the marks on the main CU, so we can check them in
6787 output_pubnames. */
6788 if (oldsym)
6789 {
6790 unmark_dies (die);
6791 die->die_symbol = oldsym;
6792 }
6793 }
6794
6795 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
6796 output of lang_hooks.decl_printable_name for C++ looks like
6797 "A::f(int)". Let's drop the argument list, and maybe the scope. */
6798
6799 static const char *
6800 dwarf2_name (tree decl, int scope)
6801 {
6802 return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
6803 }
6804
6805 /* Add a new entry to .debug_pubnames if appropriate. */
6806
6807 static void
6808 add_pubname (tree decl, dw_die_ref die)
6809 {
6810 pubname_ref p;
6811
6812 if (! TREE_PUBLIC (decl))
6813 return;
6814
6815 if (pubname_table_in_use == pubname_table_allocated)
6816 {
6817 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
6818 pubname_table
6819 = ggc_realloc (pubname_table,
6820 (pubname_table_allocated * sizeof (pubname_entry)));
6821 memset (pubname_table + pubname_table_in_use, 0,
6822 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
6823 }
6824
6825 p = &pubname_table[pubname_table_in_use++];
6826 p->die = die;
6827 p->name = xstrdup (dwarf2_name (decl, 1));
6828 }
6829
6830 /* Output the public names table used to speed up access to externally
6831 visible names. For now, only generate entries for externally
6832 visible procedures. */
6833
6834 static void
6835 output_pubnames (void)
6836 {
6837 unsigned i;
6838 unsigned long pubnames_length = size_of_pubnames ();
6839
6840 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6841 dw2_asm_output_data (4, 0xffffffff,
6842 "Initial length escape value indicating 64-bit DWARF extension");
6843 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
6844 "Length of Public Names Info");
6845 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6846 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6847 "Offset of Compilation Unit Info");
6848 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
6849 "Compilation Unit Length");
6850
6851 for (i = 0; i < pubname_table_in_use; i++)
6852 {
6853 pubname_ref pub = &pubname_table[i];
6854
6855 /* We shouldn't see pubnames for DIEs outside of the main CU. */
6856 if (pub->die->die_mark == 0)
6857 abort ();
6858
6859 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
6860 "DIE offset");
6861
6862 dw2_asm_output_nstring (pub->name, -1, "external name");
6863 }
6864
6865 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
6866 }
6867
6868 /* Add a new entry to .debug_aranges if appropriate. */
6869
6870 static void
6871 add_arange (tree decl, dw_die_ref die)
6872 {
6873 if (! DECL_SECTION_NAME (decl))
6874 return;
6875
6876 if (arange_table_in_use == arange_table_allocated)
6877 {
6878 arange_table_allocated += ARANGE_TABLE_INCREMENT;
6879 arange_table = ggc_realloc (arange_table,
6880 (arange_table_allocated
6881 * sizeof (dw_die_ref)));
6882 memset (arange_table + arange_table_in_use, 0,
6883 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
6884 }
6885
6886 arange_table[arange_table_in_use++] = die;
6887 }
6888
6889 /* Output the information that goes into the .debug_aranges table.
6890 Namely, define the beginning and ending address range of the
6891 text section generated for this compilation unit. */
6892
6893 static void
6894 output_aranges (void)
6895 {
6896 unsigned i;
6897 unsigned long aranges_length = size_of_aranges ();
6898
6899 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6900 dw2_asm_output_data (4, 0xffffffff,
6901 "Initial length escape value indicating 64-bit DWARF extension");
6902 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
6903 "Length of Address Ranges Info");
6904 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6905 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6906 "Offset of Compilation Unit Info");
6907 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
6908 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
6909
6910 /* We need to align to twice the pointer size here. */
6911 if (DWARF_ARANGES_PAD_SIZE)
6912 {
6913 /* Pad using a 2 byte words so that padding is correct for any
6914 pointer size. */
6915 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
6916 2 * DWARF2_ADDR_SIZE);
6917 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
6918 dw2_asm_output_data (2, 0, NULL);
6919 }
6920
6921 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
6922 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
6923 text_section_label, "Length");
6924
6925 for (i = 0; i < arange_table_in_use; i++)
6926 {
6927 dw_die_ref die = arange_table[i];
6928
6929 /* We shouldn't see aranges for DIEs outside of the main CU. */
6930 if (die->die_mark == 0)
6931 abort ();
6932
6933 if (die->die_tag == DW_TAG_subprogram)
6934 {
6935 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
6936 "Address");
6937 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
6938 get_AT_low_pc (die), "Length");
6939 }
6940 else
6941 {
6942 /* A static variable; extract the symbol from DW_AT_location.
6943 Note that this code isn't currently hit, as we only emit
6944 aranges for functions (jason 9/23/99). */
6945 dw_attr_ref a = get_AT (die, DW_AT_location);
6946 dw_loc_descr_ref loc;
6947
6948 if (! a || AT_class (a) != dw_val_class_loc)
6949 abort ();
6950
6951 loc = AT_loc (a);
6952 if (loc->dw_loc_opc != DW_OP_addr)
6953 abort ();
6954
6955 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
6956 loc->dw_loc_oprnd1.v.val_addr, "Address");
6957 dw2_asm_output_data (DWARF2_ADDR_SIZE,
6958 get_AT_unsigned (die, DW_AT_byte_size),
6959 "Length");
6960 }
6961 }
6962
6963 /* Output the terminator words. */
6964 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6965 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6966 }
6967
6968 /* Add a new entry to .debug_ranges. Return the offset at which it
6969 was placed. */
6970
6971 static unsigned int
6972 add_ranges (tree block)
6973 {
6974 unsigned int in_use = ranges_table_in_use;
6975
6976 if (in_use == ranges_table_allocated)
6977 {
6978 ranges_table_allocated += RANGES_TABLE_INCREMENT;
6979 ranges_table
6980 = ggc_realloc (ranges_table, (ranges_table_allocated
6981 * sizeof (struct dw_ranges_struct)));
6982 memset (ranges_table + ranges_table_in_use, 0,
6983 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
6984 }
6985
6986 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
6987 ranges_table_in_use = in_use + 1;
6988
6989 return in_use * 2 * DWARF2_ADDR_SIZE;
6990 }
6991
6992 static void
6993 output_ranges (void)
6994 {
6995 unsigned i;
6996 static const char *const start_fmt = "Offset 0x%x";
6997 const char *fmt = start_fmt;
6998
6999 for (i = 0; i < ranges_table_in_use; i++)
7000 {
7001 int block_num = ranges_table[i].block_num;
7002
7003 if (block_num)
7004 {
7005 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7006 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7007
7008 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7009 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7010
7011 /* If all code is in the text section, then the compilation
7012 unit base address defaults to DW_AT_low_pc, which is the
7013 base of the text section. */
7014 if (separate_line_info_table_in_use == 0)
7015 {
7016 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7017 text_section_label,
7018 fmt, i * 2 * DWARF2_ADDR_SIZE);
7019 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7020 text_section_label, NULL);
7021 }
7022
7023 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7024 compilation unit base address to zero, which allows us to
7025 use absolute addresses, and not worry about whether the
7026 target supports cross-section arithmetic. */
7027 else
7028 {
7029 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7030 fmt, i * 2 * DWARF2_ADDR_SIZE);
7031 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7032 }
7033
7034 fmt = NULL;
7035 }
7036 else
7037 {
7038 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7039 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7040 fmt = start_fmt;
7041 }
7042 }
7043 }
7044
7045 /* Data structure containing information about input files. */
7046 struct file_info
7047 {
7048 char *path; /* Complete file name. */
7049 char *fname; /* File name part. */
7050 int length; /* Length of entire string. */
7051 int file_idx; /* Index in input file table. */
7052 int dir_idx; /* Index in directory table. */
7053 };
7054
7055 /* Data structure containing information about directories with source
7056 files. */
7057 struct dir_info
7058 {
7059 char *path; /* Path including directory name. */
7060 int length; /* Path length. */
7061 int prefix; /* Index of directory entry which is a prefix. */
7062 int count; /* Number of files in this directory. */
7063 int dir_idx; /* Index of directory used as base. */
7064 int used; /* Used in the end? */
7065 };
7066
7067 /* Callback function for file_info comparison. We sort by looking at
7068 the directories in the path. */
7069
7070 static int
7071 file_info_cmp (const void *p1, const void *p2)
7072 {
7073 const struct file_info *s1 = p1;
7074 const struct file_info *s2 = p2;
7075 unsigned char *cp1;
7076 unsigned char *cp2;
7077
7078 /* Take care of file names without directories. We need to make sure that
7079 we return consistent values to qsort since some will get confused if
7080 we return the same value when identical operands are passed in opposite
7081 orders. So if neither has a directory, return 0 and otherwise return
7082 1 or -1 depending on which one has the directory. */
7083 if ((s1->path == s1->fname || s2->path == s2->fname))
7084 return (s2->path == s2->fname) - (s1->path == s1->fname);
7085
7086 cp1 = (unsigned char *) s1->path;
7087 cp2 = (unsigned char *) s2->path;
7088
7089 while (1)
7090 {
7091 ++cp1;
7092 ++cp2;
7093 /* Reached the end of the first path? If so, handle like above. */
7094 if ((cp1 == (unsigned char *) s1->fname)
7095 || (cp2 == (unsigned char *) s2->fname))
7096 return ((cp2 == (unsigned char *) s2->fname)
7097 - (cp1 == (unsigned char *) s1->fname));
7098
7099 /* Character of current path component the same? */
7100 else if (*cp1 != *cp2)
7101 return *cp1 - *cp2;
7102 }
7103 }
7104
7105 /* Output the directory table and the file name table. We try to minimize
7106 the total amount of memory needed. A heuristic is used to avoid large
7107 slowdowns with many input files. */
7108
7109 static void
7110 output_file_names (void)
7111 {
7112 struct file_info *files;
7113 struct dir_info *dirs;
7114 int *saved;
7115 int *savehere;
7116 int *backmap;
7117 size_t ndirs;
7118 int idx_offset;
7119 size_t i;
7120 int idx;
7121
7122 /* Handle the case where file_table is empty. */
7123 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7124 {
7125 dw2_asm_output_data (1, 0, "End directory table");
7126 dw2_asm_output_data (1, 0, "End file name table");
7127 return;
7128 }
7129
7130 /* Allocate the various arrays we need. */
7131 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7132 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7133
7134 /* Sort the file names. */
7135 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7136 {
7137 char *f;
7138
7139 /* Skip all leading "./". */
7140 f = VARRAY_CHAR_PTR (file_table, i);
7141 while (f[0] == '.' && f[1] == '/')
7142 f += 2;
7143
7144 /* Create a new array entry. */
7145 files[i].path = f;
7146 files[i].length = strlen (f);
7147 files[i].file_idx = i;
7148
7149 /* Search for the file name part. */
7150 f = strrchr (f, '/');
7151 files[i].fname = f == NULL ? files[i].path : f + 1;
7152 }
7153
7154 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7155 sizeof (files[0]), file_info_cmp);
7156
7157 /* Find all the different directories used. */
7158 dirs[0].path = files[1].path;
7159 dirs[0].length = files[1].fname - files[1].path;
7160 dirs[0].prefix = -1;
7161 dirs[0].count = 1;
7162 dirs[0].dir_idx = 0;
7163 dirs[0].used = 0;
7164 files[1].dir_idx = 0;
7165 ndirs = 1;
7166
7167 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7168 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7169 && memcmp (dirs[ndirs - 1].path, files[i].path,
7170 dirs[ndirs - 1].length) == 0)
7171 {
7172 /* Same directory as last entry. */
7173 files[i].dir_idx = ndirs - 1;
7174 ++dirs[ndirs - 1].count;
7175 }
7176 else
7177 {
7178 size_t j;
7179
7180 /* This is a new directory. */
7181 dirs[ndirs].path = files[i].path;
7182 dirs[ndirs].length = files[i].fname - files[i].path;
7183 dirs[ndirs].count = 1;
7184 dirs[ndirs].dir_idx = ndirs;
7185 dirs[ndirs].used = 0;
7186 files[i].dir_idx = ndirs;
7187
7188 /* Search for a prefix. */
7189 dirs[ndirs].prefix = -1;
7190 for (j = 0; j < ndirs; j++)
7191 if (dirs[j].length < dirs[ndirs].length
7192 && dirs[j].length > 1
7193 && (dirs[ndirs].prefix == -1
7194 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7195 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7196 dirs[ndirs].prefix = j;
7197
7198 ++ndirs;
7199 }
7200
7201 /* Now to the actual work. We have to find a subset of the directories which
7202 allow expressing the file name using references to the directory table
7203 with the least amount of characters. We do not do an exhaustive search
7204 where we would have to check out every combination of every single
7205 possible prefix. Instead we use a heuristic which provides nearly optimal
7206 results in most cases and never is much off. */
7207 saved = alloca (ndirs * sizeof (int));
7208 savehere = alloca (ndirs * sizeof (int));
7209
7210 memset (saved, '\0', ndirs * sizeof (saved[0]));
7211 for (i = 0; i < ndirs; i++)
7212 {
7213 size_t j;
7214 int total;
7215
7216 /* We can always save some space for the current directory. But this
7217 does not mean it will be enough to justify adding the directory. */
7218 savehere[i] = dirs[i].length;
7219 total = (savehere[i] - saved[i]) * dirs[i].count;
7220
7221 for (j = i + 1; j < ndirs; j++)
7222 {
7223 savehere[j] = 0;
7224 if (saved[j] < dirs[i].length)
7225 {
7226 /* Determine whether the dirs[i] path is a prefix of the
7227 dirs[j] path. */
7228 int k;
7229
7230 k = dirs[j].prefix;
7231 while (k != -1 && k != (int) i)
7232 k = dirs[k].prefix;
7233
7234 if (k == (int) i)
7235 {
7236 /* Yes it is. We can possibly safe some memory but
7237 writing the filenames in dirs[j] relative to
7238 dirs[i]. */
7239 savehere[j] = dirs[i].length;
7240 total += (savehere[j] - saved[j]) * dirs[j].count;
7241 }
7242 }
7243 }
7244
7245 /* Check whether we can safe enough to justify adding the dirs[i]
7246 directory. */
7247 if (total > dirs[i].length + 1)
7248 {
7249 /* It's worthwhile adding. */
7250 for (j = i; j < ndirs; j++)
7251 if (savehere[j] > 0)
7252 {
7253 /* Remember how much we saved for this directory so far. */
7254 saved[j] = savehere[j];
7255
7256 /* Remember the prefix directory. */
7257 dirs[j].dir_idx = i;
7258 }
7259 }
7260 }
7261
7262 /* We have to emit them in the order they appear in the file_table array
7263 since the index is used in the debug info generation. To do this
7264 efficiently we generate a back-mapping of the indices first. */
7265 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7266 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7267 {
7268 backmap[files[i].file_idx] = i;
7269
7270 /* Mark this directory as used. */
7271 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7272 }
7273
7274 /* That was it. We are ready to emit the information. First emit the
7275 directory name table. We have to make sure the first actually emitted
7276 directory name has index one; zero is reserved for the current working
7277 directory. Make sure we do not confuse these indices with the one for the
7278 constructed table (even though most of the time they are identical). */
7279 idx = 1;
7280 idx_offset = dirs[0].length > 0 ? 1 : 0;
7281 for (i = 1 - idx_offset; i < ndirs; i++)
7282 if (dirs[i].used != 0)
7283 {
7284 dirs[i].used = idx++;
7285 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7286 "Directory Entry: 0x%x", dirs[i].used);
7287 }
7288
7289 dw2_asm_output_data (1, 0, "End directory table");
7290
7291 /* Correct the index for the current working directory entry if it
7292 exists. */
7293 if (idx_offset == 0)
7294 dirs[0].used = 0;
7295
7296 /* Now write all the file names. */
7297 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7298 {
7299 int file_idx = backmap[i];
7300 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7301
7302 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7303 "File Entry: 0x%lx", (unsigned long) i);
7304
7305 /* Include directory index. */
7306 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7307
7308 /* Modification time. */
7309 dw2_asm_output_data_uleb128 (0, NULL);
7310
7311 /* File length in bytes. */
7312 dw2_asm_output_data_uleb128 (0, NULL);
7313 }
7314
7315 dw2_asm_output_data (1, 0, "End file name table");
7316 }
7317
7318
7319 /* Output the source line number correspondence information. This
7320 information goes into the .debug_line section. */
7321
7322 static void
7323 output_line_info (void)
7324 {
7325 char l1[20], l2[20], p1[20], p2[20];
7326 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7327 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7328 unsigned opc;
7329 unsigned n_op_args;
7330 unsigned long lt_index;
7331 unsigned long current_line;
7332 long line_offset;
7333 long line_delta;
7334 unsigned long current_file;
7335 unsigned long function;
7336
7337 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7338 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7339 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7340 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7341
7342 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7343 dw2_asm_output_data (4, 0xffffffff,
7344 "Initial length escape value indicating 64-bit DWARF extension");
7345 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7346 "Length of Source Line Info");
7347 ASM_OUTPUT_LABEL (asm_out_file, l1);
7348
7349 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7350 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7351 ASM_OUTPUT_LABEL (asm_out_file, p1);
7352
7353 /* Define the architecture-dependent minimum instruction length (in
7354 bytes). In this implementation of DWARF, this field is used for
7355 information purposes only. Since GCC generates assembly language,
7356 we have no a priori knowledge of how many instruction bytes are
7357 generated for each source line, and therefore can use only the
7358 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7359 commands. Accordingly, we fix this as `1', which is "correct
7360 enough" for all architectures, and don't let the target override. */
7361 dw2_asm_output_data (1, 1,
7362 "Minimum Instruction Length");
7363
7364 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7365 "Default is_stmt_start flag");
7366 dw2_asm_output_data (1, DWARF_LINE_BASE,
7367 "Line Base Value (Special Opcodes)");
7368 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7369 "Line Range Value (Special Opcodes)");
7370 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7371 "Special Opcode Base");
7372
7373 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7374 {
7375 switch (opc)
7376 {
7377 case DW_LNS_advance_pc:
7378 case DW_LNS_advance_line:
7379 case DW_LNS_set_file:
7380 case DW_LNS_set_column:
7381 case DW_LNS_fixed_advance_pc:
7382 n_op_args = 1;
7383 break;
7384 default:
7385 n_op_args = 0;
7386 break;
7387 }
7388
7389 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7390 opc, n_op_args);
7391 }
7392
7393 /* Write out the information about the files we use. */
7394 output_file_names ();
7395 ASM_OUTPUT_LABEL (asm_out_file, p2);
7396
7397 /* We used to set the address register to the first location in the text
7398 section here, but that didn't accomplish anything since we already
7399 have a line note for the opening brace of the first function. */
7400
7401 /* Generate the line number to PC correspondence table, encoded as
7402 a series of state machine operations. */
7403 current_file = 1;
7404 current_line = 1;
7405 strcpy (prev_line_label, text_section_label);
7406 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7407 {
7408 dw_line_info_ref line_info = &line_info_table[lt_index];
7409
7410 #if 0
7411 /* Disable this optimization for now; GDB wants to see two line notes
7412 at the beginning of a function so it can find the end of the
7413 prologue. */
7414
7415 /* Don't emit anything for redundant notes. Just updating the
7416 address doesn't accomplish anything, because we already assume
7417 that anything after the last address is this line. */
7418 if (line_info->dw_line_num == current_line
7419 && line_info->dw_file_num == current_file)
7420 continue;
7421 #endif
7422
7423 /* Emit debug info for the address of the current line.
7424
7425 Unfortunately, we have little choice here currently, and must always
7426 use the most general form. GCC does not know the address delta
7427 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7428 attributes which will give an upper bound on the address range. We
7429 could perhaps use length attributes to determine when it is safe to
7430 use DW_LNS_fixed_advance_pc. */
7431
7432 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7433 if (0)
7434 {
7435 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7436 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7437 "DW_LNS_fixed_advance_pc");
7438 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7439 }
7440 else
7441 {
7442 /* This can handle any delta. This takes
7443 4+DWARF2_ADDR_SIZE bytes. */
7444 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7445 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7446 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7447 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7448 }
7449
7450 strcpy (prev_line_label, line_label);
7451
7452 /* Emit debug info for the source file of the current line, if
7453 different from the previous line. */
7454 if (line_info->dw_file_num != current_file)
7455 {
7456 current_file = line_info->dw_file_num;
7457 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7458 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7459 VARRAY_CHAR_PTR (file_table,
7460 current_file));
7461 }
7462
7463 /* Emit debug info for the current line number, choosing the encoding
7464 that uses the least amount of space. */
7465 if (line_info->dw_line_num != current_line)
7466 {
7467 line_offset = line_info->dw_line_num - current_line;
7468 line_delta = line_offset - DWARF_LINE_BASE;
7469 current_line = line_info->dw_line_num;
7470 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7471 /* This can handle deltas from -10 to 234, using the current
7472 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7473 takes 1 byte. */
7474 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7475 "line %lu", current_line);
7476 else
7477 {
7478 /* This can handle any delta. This takes at least 4 bytes,
7479 depending on the value being encoded. */
7480 dw2_asm_output_data (1, DW_LNS_advance_line,
7481 "advance to line %lu", current_line);
7482 dw2_asm_output_data_sleb128 (line_offset, NULL);
7483 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7484 }
7485 }
7486 else
7487 /* We still need to start a new row, so output a copy insn. */
7488 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7489 }
7490
7491 /* Emit debug info for the address of the end of the function. */
7492 if (0)
7493 {
7494 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7495 "DW_LNS_fixed_advance_pc");
7496 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7497 }
7498 else
7499 {
7500 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7501 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7502 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7503 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7504 }
7505
7506 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7507 dw2_asm_output_data_uleb128 (1, NULL);
7508 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7509
7510 function = 0;
7511 current_file = 1;
7512 current_line = 1;
7513 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7514 {
7515 dw_separate_line_info_ref line_info
7516 = &separate_line_info_table[lt_index];
7517
7518 #if 0
7519 /* Don't emit anything for redundant notes. */
7520 if (line_info->dw_line_num == current_line
7521 && line_info->dw_file_num == current_file
7522 && line_info->function == function)
7523 goto cont;
7524 #endif
7525
7526 /* Emit debug info for the address of the current line. If this is
7527 a new function, or the first line of a function, then we need
7528 to handle it differently. */
7529 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7530 lt_index);
7531 if (function != line_info->function)
7532 {
7533 function = line_info->function;
7534
7535 /* Set the address register to the first line in the function. */
7536 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7537 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7538 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7539 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7540 }
7541 else
7542 {
7543 /* ??? See the DW_LNS_advance_pc comment above. */
7544 if (0)
7545 {
7546 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7547 "DW_LNS_fixed_advance_pc");
7548 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7549 }
7550 else
7551 {
7552 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7553 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7554 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7555 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7556 }
7557 }
7558
7559 strcpy (prev_line_label, line_label);
7560
7561 /* Emit debug info for the source file of the current line, if
7562 different from the previous line. */
7563 if (line_info->dw_file_num != current_file)
7564 {
7565 current_file = line_info->dw_file_num;
7566 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7567 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7568 VARRAY_CHAR_PTR (file_table,
7569 current_file));
7570 }
7571
7572 /* Emit debug info for the current line number, choosing the encoding
7573 that uses the least amount of space. */
7574 if (line_info->dw_line_num != current_line)
7575 {
7576 line_offset = line_info->dw_line_num - current_line;
7577 line_delta = line_offset - DWARF_LINE_BASE;
7578 current_line = line_info->dw_line_num;
7579 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7580 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7581 "line %lu", current_line);
7582 else
7583 {
7584 dw2_asm_output_data (1, DW_LNS_advance_line,
7585 "advance to line %lu", current_line);
7586 dw2_asm_output_data_sleb128 (line_offset, NULL);
7587 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7588 }
7589 }
7590 else
7591 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7592
7593 #if 0
7594 cont:
7595 #endif
7596
7597 lt_index++;
7598
7599 /* If we're done with a function, end its sequence. */
7600 if (lt_index == separate_line_info_table_in_use
7601 || separate_line_info_table[lt_index].function != function)
7602 {
7603 current_file = 1;
7604 current_line = 1;
7605
7606 /* Emit debug info for the address of the end of the function. */
7607 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7608 if (0)
7609 {
7610 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7611 "DW_LNS_fixed_advance_pc");
7612 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7613 }
7614 else
7615 {
7616 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7617 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7618 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7619 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7620 }
7621
7622 /* Output the marker for the end of this sequence. */
7623 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7624 dw2_asm_output_data_uleb128 (1, NULL);
7625 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7626 }
7627 }
7628
7629 /* Output the marker for the end of the line number info. */
7630 ASM_OUTPUT_LABEL (asm_out_file, l2);
7631 }
7632 \f
7633 /* Given a pointer to a tree node for some base type, return a pointer to
7634 a DIE that describes the given type.
7635
7636 This routine must only be called for GCC type nodes that correspond to
7637 Dwarf base (fundamental) types. */
7638
7639 static dw_die_ref
7640 base_type_die (tree type)
7641 {
7642 dw_die_ref base_type_result;
7643 const char *type_name;
7644 enum dwarf_type encoding;
7645 tree name = TYPE_NAME (type);
7646
7647 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7648 return 0;
7649
7650 if (name)
7651 {
7652 if (TREE_CODE (name) == TYPE_DECL)
7653 name = DECL_NAME (name);
7654
7655 type_name = IDENTIFIER_POINTER (name);
7656 }
7657 else
7658 type_name = "__unknown__";
7659
7660 switch (TREE_CODE (type))
7661 {
7662 case INTEGER_TYPE:
7663 /* Carefully distinguish the C character types, without messing
7664 up if the language is not C. Note that we check only for the names
7665 that contain spaces; other names might occur by coincidence in other
7666 languages. */
7667 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7668 && (type == char_type_node
7669 || ! strcmp (type_name, "signed char")
7670 || ! strcmp (type_name, "unsigned char"))))
7671 {
7672 if (TREE_UNSIGNED (type))
7673 encoding = DW_ATE_unsigned;
7674 else
7675 encoding = DW_ATE_signed;
7676 break;
7677 }
7678 /* else fall through. */
7679
7680 case CHAR_TYPE:
7681 /* GNU Pascal/Ada CHAR type. Not used in C. */
7682 if (TREE_UNSIGNED (type))
7683 encoding = DW_ATE_unsigned_char;
7684 else
7685 encoding = DW_ATE_signed_char;
7686 break;
7687
7688 case REAL_TYPE:
7689 encoding = DW_ATE_float;
7690 break;
7691
7692 /* Dwarf2 doesn't know anything about complex ints, so use
7693 a user defined type for it. */
7694 case COMPLEX_TYPE:
7695 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7696 encoding = DW_ATE_complex_float;
7697 else
7698 encoding = DW_ATE_lo_user;
7699 break;
7700
7701 case BOOLEAN_TYPE:
7702 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7703 encoding = DW_ATE_boolean;
7704 break;
7705
7706 default:
7707 /* No other TREE_CODEs are Dwarf fundamental types. */
7708 abort ();
7709 }
7710
7711 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7712 if (demangle_name_func)
7713 type_name = (*demangle_name_func) (type_name);
7714
7715 add_AT_string (base_type_result, DW_AT_name, type_name);
7716 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7717 int_size_in_bytes (type));
7718 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7719
7720 return base_type_result;
7721 }
7722
7723 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7724 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7725 a given type is generally the same as the given type, except that if the
7726 given type is a pointer or reference type, then the root type of the given
7727 type is the root type of the "basis" type for the pointer or reference
7728 type. (This definition of the "root" type is recursive.) Also, the root
7729 type of a `const' qualified type or a `volatile' qualified type is the
7730 root type of the given type without the qualifiers. */
7731
7732 static tree
7733 root_type (tree type)
7734 {
7735 if (TREE_CODE (type) == ERROR_MARK)
7736 return error_mark_node;
7737
7738 switch (TREE_CODE (type))
7739 {
7740 case ERROR_MARK:
7741 return error_mark_node;
7742
7743 case POINTER_TYPE:
7744 case REFERENCE_TYPE:
7745 return type_main_variant (root_type (TREE_TYPE (type)));
7746
7747 default:
7748 return type_main_variant (type);
7749 }
7750 }
7751
7752 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7753 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7754
7755 static inline int
7756 is_base_type (tree type)
7757 {
7758 switch (TREE_CODE (type))
7759 {
7760 case ERROR_MARK:
7761 case VOID_TYPE:
7762 case INTEGER_TYPE:
7763 case REAL_TYPE:
7764 case COMPLEX_TYPE:
7765 case BOOLEAN_TYPE:
7766 case CHAR_TYPE:
7767 return 1;
7768
7769 case SET_TYPE:
7770 case ARRAY_TYPE:
7771 case RECORD_TYPE:
7772 case UNION_TYPE:
7773 case QUAL_UNION_TYPE:
7774 case ENUMERAL_TYPE:
7775 case FUNCTION_TYPE:
7776 case METHOD_TYPE:
7777 case POINTER_TYPE:
7778 case REFERENCE_TYPE:
7779 case FILE_TYPE:
7780 case OFFSET_TYPE:
7781 case LANG_TYPE:
7782 case VECTOR_TYPE:
7783 return 0;
7784
7785 default:
7786 abort ();
7787 }
7788
7789 return 0;
7790 }
7791
7792 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
7793 node, return the size in bits for the type if it is a constant, or else
7794 return the alignment for the type if the type's size is not constant, or
7795 else return BITS_PER_WORD if the type actually turns out to be an
7796 ERROR_MARK node. */
7797
7798 static inline unsigned HOST_WIDE_INT
7799 simple_type_size_in_bits (tree type)
7800 {
7801 if (TREE_CODE (type) == ERROR_MARK)
7802 return BITS_PER_WORD;
7803 else if (TYPE_SIZE (type) == NULL_TREE)
7804 return 0;
7805 else if (host_integerp (TYPE_SIZE (type), 1))
7806 return tree_low_cst (TYPE_SIZE (type), 1);
7807 else
7808 return TYPE_ALIGN (type);
7809 }
7810
7811 /* Return true if the debug information for the given type should be
7812 emitted as a subrange type. */
7813
7814 static inline bool
7815 is_ada_subrange_type (tree type)
7816 {
7817 /* We should use a subrange type in the following situations:
7818 - For Ada modular types: These types are stored as integer subtypes
7819 of an unsigned integer type;
7820 - For subtypes of an Ada enumeration type: These types are stored
7821 as integer subtypes of enumeral types.
7822
7823 This subrange type is mostly for the benefit of debugger users.
7824 A nameless type would therefore not be very useful, so no need
7825 to generate a subrange type in these cases. */
7826 tree subtype = TREE_TYPE (type);
7827
7828 if (is_ada ()
7829 && TREE_CODE (type) == INTEGER_TYPE
7830 && subtype != NULL_TREE)
7831 {
7832 if (TREE_CODE (subtype) == INTEGER_TYPE && TREE_UNSIGNED (subtype))
7833 return true;
7834 if (TREE_CODE (subtype) == ENUMERAL_TYPE)
7835 return true;
7836 }
7837 return false;
7838 }
7839
7840 /* Given a pointer to a tree node for a subrange type, return a pointer
7841 to a DIE that describes the given type. */
7842
7843 static dw_die_ref
7844 subrange_type_die (tree type, dw_die_ref context_die)
7845 {
7846 dw_die_ref subtype_die;
7847 dw_die_ref subrange_die;
7848 tree name = TYPE_NAME (type);
7849
7850 if (context_die == NULL)
7851 context_die = comp_unit_die;
7852
7853 if (TREE_CODE (TREE_TYPE (type)) == ENUMERAL_TYPE)
7854 subtype_die = gen_enumeration_type_die (TREE_TYPE (type), context_die);
7855 else
7856 subtype_die = base_type_die (TREE_TYPE (type));
7857
7858 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
7859
7860 if (name != NULL)
7861 {
7862 if (TREE_CODE (name) == TYPE_DECL)
7863 name = DECL_NAME (name);
7864 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
7865 }
7866
7867 if (TYPE_MIN_VALUE (type) != NULL)
7868 add_bound_info (subrange_die, DW_AT_lower_bound,
7869 TYPE_MIN_VALUE (type));
7870 if (TYPE_MAX_VALUE (type) != NULL)
7871 add_bound_info (subrange_die, DW_AT_upper_bound,
7872 TYPE_MAX_VALUE (type));
7873 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
7874
7875 return subrange_die;
7876 }
7877
7878 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
7879 entry that chains various modifiers in front of the given type. */
7880
7881 static dw_die_ref
7882 modified_type_die (tree type, int is_const_type, int is_volatile_type,
7883 dw_die_ref context_die)
7884 {
7885 enum tree_code code = TREE_CODE (type);
7886 dw_die_ref mod_type_die = NULL;
7887 dw_die_ref sub_die = NULL;
7888 tree item_type = NULL;
7889
7890 if (code != ERROR_MARK)
7891 {
7892 tree qualified_type;
7893
7894 /* See if we already have the appropriately qualified variant of
7895 this type. */
7896 qualified_type
7897 = get_qualified_type (type,
7898 ((is_const_type ? TYPE_QUAL_CONST : 0)
7899 | (is_volatile_type
7900 ? TYPE_QUAL_VOLATILE : 0)));
7901
7902 /* If we do, then we can just use its DIE, if it exists. */
7903 if (qualified_type)
7904 {
7905 mod_type_die = lookup_type_die (qualified_type);
7906 if (mod_type_die)
7907 return mod_type_die;
7908 }
7909
7910 /* Handle C typedef types. */
7911 if (qualified_type && TYPE_NAME (qualified_type)
7912 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
7913 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
7914 {
7915 tree type_name = TYPE_NAME (qualified_type);
7916 tree dtype = TREE_TYPE (type_name);
7917
7918 if (qualified_type == dtype)
7919 {
7920 /* For a named type, use the typedef. */
7921 gen_type_die (qualified_type, context_die);
7922 mod_type_die = lookup_type_die (qualified_type);
7923 }
7924 else if (is_const_type < TYPE_READONLY (dtype)
7925 || is_volatile_type < TYPE_VOLATILE (dtype))
7926 /* cv-unqualified version of named type. Just use the unnamed
7927 type to which it refers. */
7928 mod_type_die
7929 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
7930 is_const_type, is_volatile_type,
7931 context_die);
7932
7933 /* Else cv-qualified version of named type; fall through. */
7934 }
7935
7936 if (mod_type_die)
7937 /* OK. */
7938 ;
7939 else if (is_const_type)
7940 {
7941 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
7942 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
7943 }
7944 else if (is_volatile_type)
7945 {
7946 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
7947 sub_die = modified_type_die (type, 0, 0, context_die);
7948 }
7949 else if (code == POINTER_TYPE)
7950 {
7951 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
7952 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
7953 simple_type_size_in_bits (type) / BITS_PER_UNIT);
7954 #if 0
7955 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7956 #endif
7957 item_type = TREE_TYPE (type);
7958 }
7959 else if (code == REFERENCE_TYPE)
7960 {
7961 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
7962 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
7963 simple_type_size_in_bits (type) / BITS_PER_UNIT);
7964 #if 0
7965 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7966 #endif
7967 item_type = TREE_TYPE (type);
7968 }
7969 else if (is_ada_subrange_type (type))
7970 mod_type_die = subrange_type_die (type, context_die);
7971 else if (is_base_type (type))
7972 mod_type_die = base_type_die (type);
7973 else
7974 {
7975 gen_type_die (type, context_die);
7976
7977 /* We have to get the type_main_variant here (and pass that to the
7978 `lookup_type_die' routine) because the ..._TYPE node we have
7979 might simply be a *copy* of some original type node (where the
7980 copy was created to help us keep track of typedef names) and
7981 that copy might have a different TYPE_UID from the original
7982 ..._TYPE node. */
7983 if (TREE_CODE (type) != VECTOR_TYPE)
7984 mod_type_die = lookup_type_die (type_main_variant (type));
7985 else
7986 /* Vectors have the debugging information in the type,
7987 not the main variant. */
7988 mod_type_die = lookup_type_die (type);
7989 if (mod_type_die == NULL)
7990 abort ();
7991 }
7992
7993 /* We want to equate the qualified type to the die below. */
7994 type = qualified_type;
7995 }
7996
7997 if (type)
7998 equate_type_number_to_die (type, mod_type_die);
7999 if (item_type)
8000 /* We must do this after the equate_type_number_to_die call, in case
8001 this is a recursive type. This ensures that the modified_type_die
8002 recursion will terminate even if the type is recursive. Recursive
8003 types are possible in Ada. */
8004 sub_die = modified_type_die (item_type,
8005 TYPE_READONLY (item_type),
8006 TYPE_VOLATILE (item_type),
8007 context_die);
8008
8009 if (sub_die != NULL)
8010 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8011
8012 return mod_type_die;
8013 }
8014
8015 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8016 an enumerated type. */
8017
8018 static inline int
8019 type_is_enum (tree type)
8020 {
8021 return TREE_CODE (type) == ENUMERAL_TYPE;
8022 }
8023
8024 /* Return the register number described by a given RTL node. */
8025
8026 static unsigned int
8027 reg_number (rtx rtl)
8028 {
8029 unsigned regno = REGNO (rtl);
8030
8031 if (regno >= FIRST_PSEUDO_REGISTER)
8032 abort ();
8033
8034 return DBX_REGISTER_NUMBER (regno);
8035 }
8036
8037 /* Return a location descriptor that designates a machine register or
8038 zero if there is none. */
8039
8040 static dw_loc_descr_ref
8041 reg_loc_descriptor (rtx rtl)
8042 {
8043 unsigned reg;
8044 rtx regs;
8045
8046 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8047 return 0;
8048
8049 reg = reg_number (rtl);
8050 regs = (*targetm.dwarf_register_span) (rtl);
8051
8052 if (HARD_REGNO_NREGS (reg, GET_MODE (rtl)) > 1
8053 || regs)
8054 return multiple_reg_loc_descriptor (rtl, regs);
8055 else
8056 return one_reg_loc_descriptor (reg);
8057 }
8058
8059 /* Return a location descriptor that designates a machine register for
8060 a given hard register number. */
8061
8062 static dw_loc_descr_ref
8063 one_reg_loc_descriptor (unsigned int regno)
8064 {
8065 if (regno <= 31)
8066 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8067 else
8068 return new_loc_descr (DW_OP_regx, regno, 0);
8069 }
8070
8071 /* Given an RTL of a register, return a location descriptor that
8072 designates a value that spans more than one register. */
8073
8074 static dw_loc_descr_ref
8075 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8076 {
8077 int nregs, size, i;
8078 unsigned reg;
8079 dw_loc_descr_ref loc_result = NULL;
8080
8081 reg = reg_number (rtl);
8082 nregs = HARD_REGNO_NREGS (reg, GET_MODE (rtl));
8083
8084 /* Simple, contiguous registers. */
8085 if (regs == NULL_RTX)
8086 {
8087 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8088
8089 loc_result = NULL;
8090 while (nregs--)
8091 {
8092 dw_loc_descr_ref t;
8093
8094 t = one_reg_loc_descriptor (reg);
8095 add_loc_descr (&loc_result, t);
8096 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8097 ++reg;
8098 }
8099 return loc_result;
8100 }
8101
8102 /* Now onto stupid register sets in non contiguous locations. */
8103
8104 if (GET_CODE (regs) != PARALLEL)
8105 abort ();
8106
8107 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8108 loc_result = NULL;
8109
8110 for (i = 0; i < XVECLEN (regs, 0); ++i)
8111 {
8112 dw_loc_descr_ref t;
8113
8114 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8115 add_loc_descr (&loc_result, t);
8116 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8117 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8118 }
8119 return loc_result;
8120 }
8121
8122 /* Return a location descriptor that designates a constant. */
8123
8124 static dw_loc_descr_ref
8125 int_loc_descriptor (HOST_WIDE_INT i)
8126 {
8127 enum dwarf_location_atom op;
8128
8129 /* Pick the smallest representation of a constant, rather than just
8130 defaulting to the LEB encoding. */
8131 if (i >= 0)
8132 {
8133 if (i <= 31)
8134 op = DW_OP_lit0 + i;
8135 else if (i <= 0xff)
8136 op = DW_OP_const1u;
8137 else if (i <= 0xffff)
8138 op = DW_OP_const2u;
8139 else if (HOST_BITS_PER_WIDE_INT == 32
8140 || i <= 0xffffffff)
8141 op = DW_OP_const4u;
8142 else
8143 op = DW_OP_constu;
8144 }
8145 else
8146 {
8147 if (i >= -0x80)
8148 op = DW_OP_const1s;
8149 else if (i >= -0x8000)
8150 op = DW_OP_const2s;
8151 else if (HOST_BITS_PER_WIDE_INT == 32
8152 || i >= -0x80000000)
8153 op = DW_OP_const4s;
8154 else
8155 op = DW_OP_consts;
8156 }
8157
8158 return new_loc_descr (op, i, 0);
8159 }
8160
8161 /* Return a location descriptor that designates a base+offset location. */
8162
8163 static dw_loc_descr_ref
8164 based_loc_descr (unsigned int reg, HOST_WIDE_INT offset)
8165 {
8166 dw_loc_descr_ref loc_result;
8167 /* For the "frame base", we use the frame pointer or stack pointer
8168 registers, since the RTL for local variables is relative to one of
8169 them. */
8170 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8171 ? HARD_FRAME_POINTER_REGNUM
8172 : STACK_POINTER_REGNUM);
8173
8174 if (reg == fp_reg)
8175 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8176 else if (reg <= 31)
8177 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8178 else
8179 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8180
8181 return loc_result;
8182 }
8183
8184 /* Return true if this RTL expression describes a base+offset calculation. */
8185
8186 static inline int
8187 is_based_loc (rtx rtl)
8188 {
8189 return (GET_CODE (rtl) == PLUS
8190 && ((GET_CODE (XEXP (rtl, 0)) == REG
8191 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8192 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8193 }
8194
8195 /* The following routine converts the RTL for a variable or parameter
8196 (resident in memory) into an equivalent Dwarf representation of a
8197 mechanism for getting the address of that same variable onto the top of a
8198 hypothetical "address evaluation" stack.
8199
8200 When creating memory location descriptors, we are effectively transforming
8201 the RTL for a memory-resident object into its Dwarf postfix expression
8202 equivalent. This routine recursively descends an RTL tree, turning
8203 it into Dwarf postfix code as it goes.
8204
8205 MODE is the mode of the memory reference, needed to handle some
8206 autoincrement addressing modes.
8207
8208 Return 0 if we can't represent the location. */
8209
8210 static dw_loc_descr_ref
8211 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8212 {
8213 dw_loc_descr_ref mem_loc_result = NULL;
8214
8215 /* Note that for a dynamically sized array, the location we will generate a
8216 description of here will be the lowest numbered location which is
8217 actually within the array. That's *not* necessarily the same as the
8218 zeroth element of the array. */
8219
8220 rtl = (*targetm.delegitimize_address) (rtl);
8221
8222 switch (GET_CODE (rtl))
8223 {
8224 case POST_INC:
8225 case POST_DEC:
8226 case POST_MODIFY:
8227 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8228 just fall into the SUBREG code. */
8229
8230 /* ... fall through ... */
8231
8232 case SUBREG:
8233 /* The case of a subreg may arise when we have a local (register)
8234 variable or a formal (register) parameter which doesn't quite fill
8235 up an entire register. For now, just assume that it is
8236 legitimate to make the Dwarf info refer to the whole register which
8237 contains the given subreg. */
8238 rtl = SUBREG_REG (rtl);
8239
8240 /* ... fall through ... */
8241
8242 case REG:
8243 /* Whenever a register number forms a part of the description of the
8244 method for calculating the (dynamic) address of a memory resident
8245 object, DWARF rules require the register number be referred to as
8246 a "base register". This distinction is not based in any way upon
8247 what category of register the hardware believes the given register
8248 belongs to. This is strictly DWARF terminology we're dealing with
8249 here. Note that in cases where the location of a memory-resident
8250 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8251 OP_CONST (0)) the actual DWARF location descriptor that we generate
8252 may just be OP_BASEREG (basereg). This may look deceptively like
8253 the object in question was allocated to a register (rather than in
8254 memory) so DWARF consumers need to be aware of the subtle
8255 distinction between OP_REG and OP_BASEREG. */
8256 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8257 mem_loc_result = based_loc_descr (reg_number (rtl), 0);
8258 break;
8259
8260 case MEM:
8261 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8262 if (mem_loc_result != 0)
8263 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8264 break;
8265
8266 case LO_SUM:
8267 rtl = XEXP (rtl, 1);
8268
8269 /* ... fall through ... */
8270
8271 case LABEL_REF:
8272 /* Some ports can transform a symbol ref into a label ref, because
8273 the symbol ref is too far away and has to be dumped into a constant
8274 pool. */
8275 case CONST:
8276 case SYMBOL_REF:
8277 /* Alternatively, the symbol in the constant pool might be referenced
8278 by a different symbol. */
8279 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8280 {
8281 bool marked;
8282 rtx tmp = get_pool_constant_mark (rtl, &marked);
8283
8284 if (GET_CODE (tmp) == SYMBOL_REF)
8285 {
8286 rtl = tmp;
8287 if (CONSTANT_POOL_ADDRESS_P (tmp))
8288 get_pool_constant_mark (tmp, &marked);
8289 else
8290 marked = true;
8291 }
8292
8293 /* If all references to this pool constant were optimized away,
8294 it was not output and thus we can't represent it.
8295 FIXME: might try to use DW_OP_const_value here, though
8296 DW_OP_piece complicates it. */
8297 if (!marked)
8298 return 0;
8299 }
8300
8301 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8302 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8303 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8304 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8305 break;
8306
8307 case PRE_MODIFY:
8308 /* Extract the PLUS expression nested inside and fall into
8309 PLUS code below. */
8310 rtl = XEXP (rtl, 1);
8311 goto plus;
8312
8313 case PRE_INC:
8314 case PRE_DEC:
8315 /* Turn these into a PLUS expression and fall into the PLUS code
8316 below. */
8317 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8318 GEN_INT (GET_CODE (rtl) == PRE_INC
8319 ? GET_MODE_UNIT_SIZE (mode)
8320 : -GET_MODE_UNIT_SIZE (mode)));
8321
8322 /* ... fall through ... */
8323
8324 case PLUS:
8325 plus:
8326 if (is_based_loc (rtl))
8327 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
8328 INTVAL (XEXP (rtl, 1)));
8329 else
8330 {
8331 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8332 if (mem_loc_result == 0)
8333 break;
8334
8335 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8336 && INTVAL (XEXP (rtl, 1)) >= 0)
8337 add_loc_descr (&mem_loc_result,
8338 new_loc_descr (DW_OP_plus_uconst,
8339 INTVAL (XEXP (rtl, 1)), 0));
8340 else
8341 {
8342 add_loc_descr (&mem_loc_result,
8343 mem_loc_descriptor (XEXP (rtl, 1), mode));
8344 add_loc_descr (&mem_loc_result,
8345 new_loc_descr (DW_OP_plus, 0, 0));
8346 }
8347 }
8348 break;
8349
8350 case MULT:
8351 {
8352 /* If a pseudo-reg is optimized away, it is possible for it to
8353 be replaced with a MEM containing a multiply. */
8354 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8355 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8356
8357 if (op0 == 0 || op1 == 0)
8358 break;
8359
8360 mem_loc_result = op0;
8361 add_loc_descr (&mem_loc_result, op1);
8362 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
8363 break;
8364 }
8365
8366 case CONST_INT:
8367 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8368 break;
8369
8370 case ADDRESSOF:
8371 /* If this is a MEM, return its address. Otherwise, we can't
8372 represent this. */
8373 if (GET_CODE (XEXP (rtl, 0)) == MEM)
8374 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode);
8375 else
8376 return 0;
8377
8378 default:
8379 abort ();
8380 }
8381
8382 return mem_loc_result;
8383 }
8384
8385 /* Return a descriptor that describes the concatenation of two locations.
8386 This is typically a complex variable. */
8387
8388 static dw_loc_descr_ref
8389 concat_loc_descriptor (rtx x0, rtx x1)
8390 {
8391 dw_loc_descr_ref cc_loc_result = NULL;
8392 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8393 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8394
8395 if (x0_ref == 0 || x1_ref == 0)
8396 return 0;
8397
8398 cc_loc_result = x0_ref;
8399 add_loc_descr (&cc_loc_result,
8400 new_loc_descr (DW_OP_piece,
8401 GET_MODE_SIZE (GET_MODE (x0)), 0));
8402
8403 add_loc_descr (&cc_loc_result, x1_ref);
8404 add_loc_descr (&cc_loc_result,
8405 new_loc_descr (DW_OP_piece,
8406 GET_MODE_SIZE (GET_MODE (x1)), 0));
8407
8408 return cc_loc_result;
8409 }
8410
8411 /* Output a proper Dwarf location descriptor for a variable or parameter
8412 which is either allocated in a register or in a memory location. For a
8413 register, we just generate an OP_REG and the register number. For a
8414 memory location we provide a Dwarf postfix expression describing how to
8415 generate the (dynamic) address of the object onto the address stack.
8416
8417 If we don't know how to describe it, return 0. */
8418
8419 static dw_loc_descr_ref
8420 loc_descriptor (rtx rtl)
8421 {
8422 dw_loc_descr_ref loc_result = NULL;
8423
8424 switch (GET_CODE (rtl))
8425 {
8426 case SUBREG:
8427 /* The case of a subreg may arise when we have a local (register)
8428 variable or a formal (register) parameter which doesn't quite fill
8429 up an entire register. For now, just assume that it is
8430 legitimate to make the Dwarf info refer to the whole register which
8431 contains the given subreg. */
8432 rtl = SUBREG_REG (rtl);
8433
8434 /* ... fall through ... */
8435
8436 case REG:
8437 loc_result = reg_loc_descriptor (rtl);
8438 break;
8439
8440 case MEM:
8441 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8442 break;
8443
8444 case CONCAT:
8445 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8446 break;
8447
8448 default:
8449 abort ();
8450 }
8451
8452 return loc_result;
8453 }
8454
8455 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8456 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8457 looking for an address. Otherwise, we return a value. If we can't make a
8458 descriptor, return 0. */
8459
8460 static dw_loc_descr_ref
8461 loc_descriptor_from_tree (tree loc, int addressp)
8462 {
8463 dw_loc_descr_ref ret, ret1;
8464 int indirect_p = 0;
8465 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8466 enum dwarf_location_atom op;
8467
8468 /* ??? Most of the time we do not take proper care for sign/zero
8469 extending the values properly. Hopefully this won't be a real
8470 problem... */
8471
8472 switch (TREE_CODE (loc))
8473 {
8474 case ERROR_MARK:
8475 return 0;
8476
8477 case WITH_RECORD_EXPR:
8478 case PLACEHOLDER_EXPR:
8479 /* This case involves extracting fields from an object to determine the
8480 position of other fields. We don't try to encode this here. The
8481 only user of this is Ada, which encodes the needed information using
8482 the names of types. */
8483 return 0;
8484
8485 case CALL_EXPR:
8486 return 0;
8487
8488 case ADDR_EXPR:
8489 /* We can support this only if we can look through conversions and
8490 find an INDIRECT_EXPR. */
8491 for (loc = TREE_OPERAND (loc, 0);
8492 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8493 || TREE_CODE (loc) == NON_LVALUE_EXPR
8494 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8495 || TREE_CODE (loc) == SAVE_EXPR;
8496 loc = TREE_OPERAND (loc, 0))
8497 ;
8498
8499 return (TREE_CODE (loc) == INDIRECT_REF
8500 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8501 : 0);
8502
8503 case VAR_DECL:
8504 if (DECL_THREAD_LOCAL (loc))
8505 {
8506 rtx rtl;
8507
8508 #ifndef ASM_OUTPUT_DWARF_DTPREL
8509 /* If this is not defined, we have no way to emit the data. */
8510 return 0;
8511 #endif
8512
8513 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8514 look up addresses of objects in the current module. */
8515 if (DECL_EXTERNAL (loc))
8516 return 0;
8517
8518 rtl = rtl_for_decl_location (loc);
8519 if (rtl == NULL_RTX)
8520 return 0;
8521
8522 if (GET_CODE (rtl) != MEM)
8523 return 0;
8524 rtl = XEXP (rtl, 0);
8525 if (! CONSTANT_P (rtl))
8526 return 0;
8527
8528 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8529 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8530 ret->dw_loc_oprnd1.v.val_addr = rtl;
8531
8532 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8533 add_loc_descr (&ret, ret1);
8534
8535 indirect_p = 1;
8536 break;
8537 }
8538 /* Fall through. */
8539
8540 case PARM_DECL:
8541 {
8542 rtx rtl = rtl_for_decl_location (loc);
8543
8544 if (rtl == NULL_RTX)
8545 return 0;
8546 else if (CONSTANT_P (rtl))
8547 {
8548 ret = new_loc_descr (DW_OP_addr, 0, 0);
8549 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8550 ret->dw_loc_oprnd1.v.val_addr = rtl;
8551 indirect_p = 1;
8552 }
8553 else
8554 {
8555 enum machine_mode mode = GET_MODE (rtl);
8556
8557 if (GET_CODE (rtl) == MEM)
8558 {
8559 indirect_p = 1;
8560 rtl = XEXP (rtl, 0);
8561 }
8562
8563 ret = mem_loc_descriptor (rtl, mode);
8564 }
8565 }
8566 break;
8567
8568 case INDIRECT_REF:
8569 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8570 indirect_p = 1;
8571 break;
8572
8573 case COMPOUND_EXPR:
8574 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8575
8576 case NOP_EXPR:
8577 case CONVERT_EXPR:
8578 case NON_LVALUE_EXPR:
8579 case VIEW_CONVERT_EXPR:
8580 case SAVE_EXPR:
8581 case MODIFY_EXPR:
8582 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8583
8584 case COMPONENT_REF:
8585 case BIT_FIELD_REF:
8586 case ARRAY_REF:
8587 case ARRAY_RANGE_REF:
8588 {
8589 tree obj, offset;
8590 HOST_WIDE_INT bitsize, bitpos, bytepos;
8591 enum machine_mode mode;
8592 int volatilep;
8593
8594 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8595 &unsignedp, &volatilep);
8596
8597 if (obj == loc)
8598 return 0;
8599
8600 ret = loc_descriptor_from_tree (obj, 1);
8601 if (ret == 0
8602 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8603 return 0;
8604
8605 if (offset != NULL_TREE)
8606 {
8607 /* Variable offset. */
8608 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8609 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8610 }
8611
8612 if (!addressp)
8613 indirect_p = 1;
8614
8615 bytepos = bitpos / BITS_PER_UNIT;
8616 if (bytepos > 0)
8617 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8618 else if (bytepos < 0)
8619 {
8620 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8621 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8622 }
8623 break;
8624 }
8625
8626 case INTEGER_CST:
8627 if (host_integerp (loc, 0))
8628 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8629 else
8630 return 0;
8631 break;
8632
8633 case CONSTRUCTOR:
8634 {
8635 /* Get an RTL for this, if something has been emitted. */
8636 rtx rtl = lookup_constant_def (loc);
8637 enum machine_mode mode;
8638
8639 if (GET_CODE (rtl) != MEM)
8640 return 0;
8641 mode = GET_MODE (rtl);
8642 rtl = XEXP (rtl, 0);
8643
8644 rtl = (*targetm.delegitimize_address) (rtl);
8645
8646 indirect_p = 1;
8647 ret = mem_loc_descriptor (rtl, mode);
8648 break;
8649 }
8650
8651 case TRUTH_AND_EXPR:
8652 case TRUTH_ANDIF_EXPR:
8653 case BIT_AND_EXPR:
8654 op = DW_OP_and;
8655 goto do_binop;
8656
8657 case TRUTH_XOR_EXPR:
8658 case BIT_XOR_EXPR:
8659 op = DW_OP_xor;
8660 goto do_binop;
8661
8662 case TRUTH_OR_EXPR:
8663 case TRUTH_ORIF_EXPR:
8664 case BIT_IOR_EXPR:
8665 op = DW_OP_or;
8666 goto do_binop;
8667
8668 case FLOOR_DIV_EXPR:
8669 case CEIL_DIV_EXPR:
8670 case ROUND_DIV_EXPR:
8671 case TRUNC_DIV_EXPR:
8672 op = DW_OP_div;
8673 goto do_binop;
8674
8675 case MINUS_EXPR:
8676 op = DW_OP_minus;
8677 goto do_binop;
8678
8679 case FLOOR_MOD_EXPR:
8680 case CEIL_MOD_EXPR:
8681 case ROUND_MOD_EXPR:
8682 case TRUNC_MOD_EXPR:
8683 op = DW_OP_mod;
8684 goto do_binop;
8685
8686 case MULT_EXPR:
8687 op = DW_OP_mul;
8688 goto do_binop;
8689
8690 case LSHIFT_EXPR:
8691 op = DW_OP_shl;
8692 goto do_binop;
8693
8694 case RSHIFT_EXPR:
8695 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8696 goto do_binop;
8697
8698 case PLUS_EXPR:
8699 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8700 && host_integerp (TREE_OPERAND (loc, 1), 0))
8701 {
8702 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8703 if (ret == 0)
8704 return 0;
8705
8706 add_loc_descr (&ret,
8707 new_loc_descr (DW_OP_plus_uconst,
8708 tree_low_cst (TREE_OPERAND (loc, 1),
8709 0),
8710 0));
8711 break;
8712 }
8713
8714 op = DW_OP_plus;
8715 goto do_binop;
8716
8717 case LE_EXPR:
8718 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8719 return 0;
8720
8721 op = DW_OP_le;
8722 goto do_binop;
8723
8724 case GE_EXPR:
8725 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8726 return 0;
8727
8728 op = DW_OP_ge;
8729 goto do_binop;
8730
8731 case LT_EXPR:
8732 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8733 return 0;
8734
8735 op = DW_OP_lt;
8736 goto do_binop;
8737
8738 case GT_EXPR:
8739 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8740 return 0;
8741
8742 op = DW_OP_gt;
8743 goto do_binop;
8744
8745 case EQ_EXPR:
8746 op = DW_OP_eq;
8747 goto do_binop;
8748
8749 case NE_EXPR:
8750 op = DW_OP_ne;
8751 goto do_binop;
8752
8753 do_binop:
8754 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8755 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8756 if (ret == 0 || ret1 == 0)
8757 return 0;
8758
8759 add_loc_descr (&ret, ret1);
8760 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8761 break;
8762
8763 case TRUTH_NOT_EXPR:
8764 case BIT_NOT_EXPR:
8765 op = DW_OP_not;
8766 goto do_unop;
8767
8768 case ABS_EXPR:
8769 op = DW_OP_abs;
8770 goto do_unop;
8771
8772 case NEGATE_EXPR:
8773 op = DW_OP_neg;
8774 goto do_unop;
8775
8776 do_unop:
8777 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8778 if (ret == 0)
8779 return 0;
8780
8781 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8782 break;
8783
8784 case MAX_EXPR:
8785 loc = build (COND_EXPR, TREE_TYPE (loc),
8786 build (LT_EXPR, integer_type_node,
8787 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8788 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
8789
8790 /* ... fall through ... */
8791
8792 case COND_EXPR:
8793 {
8794 dw_loc_descr_ref lhs
8795 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8796 dw_loc_descr_ref rhs
8797 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
8798 dw_loc_descr_ref bra_node, jump_node, tmp;
8799
8800 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8801 if (ret == 0 || lhs == 0 || rhs == 0)
8802 return 0;
8803
8804 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
8805 add_loc_descr (&ret, bra_node);
8806
8807 add_loc_descr (&ret, rhs);
8808 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
8809 add_loc_descr (&ret, jump_node);
8810
8811 add_loc_descr (&ret, lhs);
8812 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8813 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
8814
8815 /* ??? Need a node to point the skip at. Use a nop. */
8816 tmp = new_loc_descr (DW_OP_nop, 0, 0);
8817 add_loc_descr (&ret, tmp);
8818 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8819 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
8820 }
8821 break;
8822
8823 default:
8824 /* Leave front-end specific codes as simply unknown. This comes
8825 up, for instance, with the C STMT_EXPR. */
8826 if ((unsigned int) TREE_CODE (loc)
8827 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
8828 return 0;
8829
8830 /* Otherwise this is a generic code; we should just lists all of
8831 these explicitly. Aborting means we forgot one. */
8832 abort ();
8833 }
8834
8835 /* Show if we can't fill the request for an address. */
8836 if (addressp && indirect_p == 0)
8837 return 0;
8838
8839 /* If we've got an address and don't want one, dereference. */
8840 if (!addressp && indirect_p > 0)
8841 {
8842 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
8843
8844 if (size > DWARF2_ADDR_SIZE || size == -1)
8845 return 0;
8846 else if (size == DWARF2_ADDR_SIZE)
8847 op = DW_OP_deref;
8848 else
8849 op = DW_OP_deref_size;
8850
8851 add_loc_descr (&ret, new_loc_descr (op, size, 0));
8852 }
8853
8854 return ret;
8855 }
8856
8857 /* Given a value, round it up to the lowest multiple of `boundary'
8858 which is not less than the value itself. */
8859
8860 static inline HOST_WIDE_INT
8861 ceiling (HOST_WIDE_INT value, unsigned int boundary)
8862 {
8863 return (((value + boundary - 1) / boundary) * boundary);
8864 }
8865
8866 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
8867 pointer to the declared type for the relevant field variable, or return
8868 `integer_type_node' if the given node turns out to be an
8869 ERROR_MARK node. */
8870
8871 static inline tree
8872 field_type (tree decl)
8873 {
8874 tree type;
8875
8876 if (TREE_CODE (decl) == ERROR_MARK)
8877 return integer_type_node;
8878
8879 type = DECL_BIT_FIELD_TYPE (decl);
8880 if (type == NULL_TREE)
8881 type = TREE_TYPE (decl);
8882
8883 return type;
8884 }
8885
8886 /* Given a pointer to a tree node, return the alignment in bits for
8887 it, or else return BITS_PER_WORD if the node actually turns out to
8888 be an ERROR_MARK node. */
8889
8890 static inline unsigned
8891 simple_type_align_in_bits (tree type)
8892 {
8893 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
8894 }
8895
8896 static inline unsigned
8897 simple_decl_align_in_bits (tree decl)
8898 {
8899 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
8900 }
8901
8902 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
8903 lowest addressed byte of the "containing object" for the given FIELD_DECL,
8904 or return 0 if we are unable to determine what that offset is, either
8905 because the argument turns out to be a pointer to an ERROR_MARK node, or
8906 because the offset is actually variable. (We can't handle the latter case
8907 just yet). */
8908
8909 static HOST_WIDE_INT
8910 field_byte_offset (tree decl)
8911 {
8912 unsigned int type_align_in_bits;
8913 unsigned int decl_align_in_bits;
8914 unsigned HOST_WIDE_INT type_size_in_bits;
8915 HOST_WIDE_INT object_offset_in_bits;
8916 tree type;
8917 tree field_size_tree;
8918 HOST_WIDE_INT bitpos_int;
8919 HOST_WIDE_INT deepest_bitpos;
8920 unsigned HOST_WIDE_INT field_size_in_bits;
8921
8922 if (TREE_CODE (decl) == ERROR_MARK)
8923 return 0;
8924 else if (TREE_CODE (decl) != FIELD_DECL)
8925 abort ();
8926
8927 type = field_type (decl);
8928 field_size_tree = DECL_SIZE (decl);
8929
8930 /* The size could be unspecified if there was an error, or for
8931 a flexible array member. */
8932 if (! field_size_tree)
8933 field_size_tree = bitsize_zero_node;
8934
8935 /* We cannot yet cope with fields whose positions are variable, so
8936 for now, when we see such things, we simply return 0. Someday, we may
8937 be able to handle such cases, but it will be damn difficult. */
8938 if (! host_integerp (bit_position (decl), 0))
8939 return 0;
8940
8941 bitpos_int = int_bit_position (decl);
8942
8943 /* If we don't know the size of the field, pretend it's a full word. */
8944 if (host_integerp (field_size_tree, 1))
8945 field_size_in_bits = tree_low_cst (field_size_tree, 1);
8946 else
8947 field_size_in_bits = BITS_PER_WORD;
8948
8949 type_size_in_bits = simple_type_size_in_bits (type);
8950 type_align_in_bits = simple_type_align_in_bits (type);
8951 decl_align_in_bits = simple_decl_align_in_bits (decl);
8952
8953 /* The GCC front-end doesn't make any attempt to keep track of the starting
8954 bit offset (relative to the start of the containing structure type) of the
8955 hypothetical "containing object" for a bit-field. Thus, when computing
8956 the byte offset value for the start of the "containing object" of a
8957 bit-field, we must deduce this information on our own. This can be rather
8958 tricky to do in some cases. For example, handling the following structure
8959 type definition when compiling for an i386/i486 target (which only aligns
8960 long long's to 32-bit boundaries) can be very tricky:
8961
8962 struct S { int field1; long long field2:31; };
8963
8964 Fortunately, there is a simple rule-of-thumb which can be used in such
8965 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
8966 structure shown above. It decides to do this based upon one simple rule
8967 for bit-field allocation. GCC allocates each "containing object" for each
8968 bit-field at the first (i.e. lowest addressed) legitimate alignment
8969 boundary (based upon the required minimum alignment for the declared type
8970 of the field) which it can possibly use, subject to the condition that
8971 there is still enough available space remaining in the containing object
8972 (when allocated at the selected point) to fully accommodate all of the
8973 bits of the bit-field itself.
8974
8975 This simple rule makes it obvious why GCC allocates 8 bytes for each
8976 object of the structure type shown above. When looking for a place to
8977 allocate the "containing object" for `field2', the compiler simply tries
8978 to allocate a 64-bit "containing object" at each successive 32-bit
8979 boundary (starting at zero) until it finds a place to allocate that 64-
8980 bit field such that at least 31 contiguous (and previously unallocated)
8981 bits remain within that selected 64 bit field. (As it turns out, for the
8982 example above, the compiler finds it is OK to allocate the "containing
8983 object" 64-bit field at bit-offset zero within the structure type.)
8984
8985 Here we attempt to work backwards from the limited set of facts we're
8986 given, and we try to deduce from those facts, where GCC must have believed
8987 that the containing object started (within the structure type). The value
8988 we deduce is then used (by the callers of this routine) to generate
8989 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
8990 and, in the case of DW_AT_location, regular fields as well). */
8991
8992 /* Figure out the bit-distance from the start of the structure to the
8993 "deepest" bit of the bit-field. */
8994 deepest_bitpos = bitpos_int + field_size_in_bits;
8995
8996 /* This is the tricky part. Use some fancy footwork to deduce where the
8997 lowest addressed bit of the containing object must be. */
8998 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8999
9000 /* Round up to type_align by default. This works best for bitfields. */
9001 object_offset_in_bits += type_align_in_bits - 1;
9002 object_offset_in_bits /= type_align_in_bits;
9003 object_offset_in_bits *= type_align_in_bits;
9004
9005 if (object_offset_in_bits > bitpos_int)
9006 {
9007 /* Sigh, the decl must be packed. */
9008 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9009
9010 /* Round up to decl_align instead. */
9011 object_offset_in_bits += decl_align_in_bits - 1;
9012 object_offset_in_bits /= decl_align_in_bits;
9013 object_offset_in_bits *= decl_align_in_bits;
9014 }
9015
9016 return object_offset_in_bits / BITS_PER_UNIT;
9017 }
9018 \f
9019 /* The following routines define various Dwarf attributes and any data
9020 associated with them. */
9021
9022 /* Add a location description attribute value to a DIE.
9023
9024 This emits location attributes suitable for whole variables and
9025 whole parameters. Note that the location attributes for struct fields are
9026 generated by the routine `data_member_location_attribute' below. */
9027
9028 static inline void
9029 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9030 dw_loc_descr_ref descr)
9031 {
9032 if (descr != 0)
9033 add_AT_loc (die, attr_kind, descr);
9034 }
9035
9036 /* Attach the specialized form of location attribute used for data members of
9037 struct and union types. In the special case of a FIELD_DECL node which
9038 represents a bit-field, the "offset" part of this special location
9039 descriptor must indicate the distance in bytes from the lowest-addressed
9040 byte of the containing struct or union type to the lowest-addressed byte of
9041 the "containing object" for the bit-field. (See the `field_byte_offset'
9042 function above).
9043
9044 For any given bit-field, the "containing object" is a hypothetical object
9045 (of some integral or enum type) within which the given bit-field lives. The
9046 type of this hypothetical "containing object" is always the same as the
9047 declared type of the individual bit-field itself (for GCC anyway... the
9048 DWARF spec doesn't actually mandate this). Note that it is the size (in
9049 bytes) of the hypothetical "containing object" which will be given in the
9050 DW_AT_byte_size attribute for this bit-field. (See the
9051 `byte_size_attribute' function below.) It is also used when calculating the
9052 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9053 function below.) */
9054
9055 static void
9056 add_data_member_location_attribute (dw_die_ref die, tree decl)
9057 {
9058 HOST_WIDE_INT offset;
9059 dw_loc_descr_ref loc_descr = 0;
9060
9061 if (TREE_CODE (decl) == TREE_VEC)
9062 {
9063 /* We're working on the TAG_inheritance for a base class. */
9064 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
9065 {
9066 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9067 aren't at a fixed offset from all (sub)objects of the same
9068 type. We need to extract the appropriate offset from our
9069 vtable. The following dwarf expression means
9070
9071 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9072
9073 This is specific to the V3 ABI, of course. */
9074
9075 dw_loc_descr_ref tmp;
9076
9077 /* Make a copy of the object address. */
9078 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9079 add_loc_descr (&loc_descr, tmp);
9080
9081 /* Extract the vtable address. */
9082 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9083 add_loc_descr (&loc_descr, tmp);
9084
9085 /* Calculate the address of the offset. */
9086 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9087 if (offset >= 0)
9088 abort ();
9089
9090 tmp = int_loc_descriptor (-offset);
9091 add_loc_descr (&loc_descr, tmp);
9092 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9093 add_loc_descr (&loc_descr, tmp);
9094
9095 /* Extract the offset. */
9096 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9097 add_loc_descr (&loc_descr, tmp);
9098
9099 /* Add it to the object address. */
9100 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9101 add_loc_descr (&loc_descr, tmp);
9102 }
9103 else
9104 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9105 }
9106 else
9107 offset = field_byte_offset (decl);
9108
9109 if (! loc_descr)
9110 {
9111 enum dwarf_location_atom op;
9112
9113 /* The DWARF2 standard says that we should assume that the structure
9114 address is already on the stack, so we can specify a structure field
9115 address by using DW_OP_plus_uconst. */
9116
9117 #ifdef MIPS_DEBUGGING_INFO
9118 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9119 operator correctly. It works only if we leave the offset on the
9120 stack. */
9121 op = DW_OP_constu;
9122 #else
9123 op = DW_OP_plus_uconst;
9124 #endif
9125
9126 loc_descr = new_loc_descr (op, offset, 0);
9127 }
9128
9129 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9130 }
9131
9132 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9133 does not have a "location" either in memory or in a register. These
9134 things can arise in GNU C when a constant is passed as an actual parameter
9135 to an inlined function. They can also arise in C++ where declared
9136 constants do not necessarily get memory "homes". */
9137
9138 static void
9139 add_const_value_attribute (dw_die_ref die, rtx rtl)
9140 {
9141 switch (GET_CODE (rtl))
9142 {
9143 case CONST_INT:
9144 {
9145 HOST_WIDE_INT val = INTVAL (rtl);
9146
9147 if (val < 0)
9148 add_AT_int (die, DW_AT_const_value, val);
9149 else
9150 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9151 }
9152 break;
9153
9154 case CONST_DOUBLE:
9155 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9156 floating-point constant. A CONST_DOUBLE is used whenever the
9157 constant requires more than one word in order to be adequately
9158 represented. We output CONST_DOUBLEs as blocks. */
9159 {
9160 enum machine_mode mode = GET_MODE (rtl);
9161
9162 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9163 {
9164 unsigned length = GET_MODE_SIZE (mode) / 4;
9165 long *array = ggc_alloc (sizeof (long) * length);
9166 REAL_VALUE_TYPE rv;
9167
9168 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9169 real_to_target (array, &rv, mode);
9170
9171 add_AT_float (die, DW_AT_const_value, length, array);
9172 }
9173 else
9174 {
9175 /* ??? We really should be using HOST_WIDE_INT throughout. */
9176 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9177 abort ();
9178
9179 add_AT_long_long (die, DW_AT_const_value,
9180 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9181 }
9182 }
9183 break;
9184
9185 case CONST_STRING:
9186 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9187 break;
9188
9189 case SYMBOL_REF:
9190 case LABEL_REF:
9191 case CONST:
9192 add_AT_addr (die, DW_AT_const_value, rtl);
9193 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9194 break;
9195
9196 case PLUS:
9197 /* In cases where an inlined instance of an inline function is passed
9198 the address of an `auto' variable (which is local to the caller) we
9199 can get a situation where the DECL_RTL of the artificial local
9200 variable (for the inlining) which acts as a stand-in for the
9201 corresponding formal parameter (of the inline function) will look
9202 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9203 exactly a compile-time constant expression, but it isn't the address
9204 of the (artificial) local variable either. Rather, it represents the
9205 *value* which the artificial local variable always has during its
9206 lifetime. We currently have no way to represent such quasi-constant
9207 values in Dwarf, so for now we just punt and generate nothing. */
9208 break;
9209
9210 default:
9211 /* No other kinds of rtx should be possible here. */
9212 abort ();
9213 }
9214
9215 }
9216
9217 static rtx
9218 rtl_for_decl_location (tree decl)
9219 {
9220 rtx rtl;
9221
9222 /* Here we have to decide where we are going to say the parameter "lives"
9223 (as far as the debugger is concerned). We only have a couple of
9224 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9225
9226 DECL_RTL normally indicates where the parameter lives during most of the
9227 activation of the function. If optimization is enabled however, this
9228 could be either NULL or else a pseudo-reg. Both of those cases indicate
9229 that the parameter doesn't really live anywhere (as far as the code
9230 generation parts of GCC are concerned) during most of the function's
9231 activation. That will happen (for example) if the parameter is never
9232 referenced within the function.
9233
9234 We could just generate a location descriptor here for all non-NULL
9235 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9236 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9237 where DECL_RTL is NULL or is a pseudo-reg.
9238
9239 Note however that we can only get away with using DECL_INCOMING_RTL as
9240 a backup substitute for DECL_RTL in certain limited cases. In cases
9241 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9242 we can be sure that the parameter was passed using the same type as it is
9243 declared to have within the function, and that its DECL_INCOMING_RTL
9244 points us to a place where a value of that type is passed.
9245
9246 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9247 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9248 because in these cases DECL_INCOMING_RTL points us to a value of some
9249 type which is *different* from the type of the parameter itself. Thus,
9250 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9251 such cases, the debugger would end up (for example) trying to fetch a
9252 `float' from a place which actually contains the first part of a
9253 `double'. That would lead to really incorrect and confusing
9254 output at debug-time.
9255
9256 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9257 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9258 are a couple of exceptions however. On little-endian machines we can
9259 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9260 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9261 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9262 when (on a little-endian machine) a non-prototyped function has a
9263 parameter declared to be of type `short' or `char'. In such cases,
9264 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9265 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9266 passed `int' value. If the debugger then uses that address to fetch
9267 a `short' or a `char' (on a little-endian machine) the result will be
9268 the correct data, so we allow for such exceptional cases below.
9269
9270 Note that our goal here is to describe the place where the given formal
9271 parameter lives during most of the function's activation (i.e. between the
9272 end of the prologue and the start of the epilogue). We'll do that as best
9273 as we can. Note however that if the given formal parameter is modified
9274 sometime during the execution of the function, then a stack backtrace (at
9275 debug-time) will show the function as having been called with the *new*
9276 value rather than the value which was originally passed in. This happens
9277 rarely enough that it is not a major problem, but it *is* a problem, and
9278 I'd like to fix it.
9279
9280 A future version of dwarf2out.c may generate two additional attributes for
9281 any given DW_TAG_formal_parameter DIE which will describe the "passed
9282 type" and the "passed location" for the given formal parameter in addition
9283 to the attributes we now generate to indicate the "declared type" and the
9284 "active location" for each parameter. This additional set of attributes
9285 could be used by debuggers for stack backtraces. Separately, note that
9286 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9287 This happens (for example) for inlined-instances of inline function formal
9288 parameters which are never referenced. This really shouldn't be
9289 happening. All PARM_DECL nodes should get valid non-NULL
9290 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9291 values for inlined instances of inline function parameters, so when we see
9292 such cases, we are just out-of-luck for the time being (until integrate.c
9293 gets fixed). */
9294
9295 /* Use DECL_RTL as the "location" unless we find something better. */
9296 rtl = DECL_RTL_IF_SET (decl);
9297
9298 /* When generating abstract instances, ignore everything except
9299 constants, symbols living in memory, and symbols living in
9300 fixed registers. */
9301 if (! reload_completed)
9302 {
9303 if (rtl
9304 && (CONSTANT_P (rtl)
9305 || (GET_CODE (rtl) == MEM
9306 && CONSTANT_P (XEXP (rtl, 0)))
9307 || (GET_CODE (rtl) == REG
9308 && TREE_CODE (decl) == VAR_DECL
9309 && TREE_STATIC (decl))))
9310 {
9311 rtl = (*targetm.delegitimize_address) (rtl);
9312 return rtl;
9313 }
9314 rtl = NULL_RTX;
9315 }
9316 else if (TREE_CODE (decl) == PARM_DECL)
9317 {
9318 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9319 {
9320 tree declared_type = type_main_variant (TREE_TYPE (decl));
9321 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9322
9323 /* This decl represents a formal parameter which was optimized out.
9324 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9325 all cases where (rtl == NULL_RTX) just below. */
9326 if (declared_type == passed_type)
9327 rtl = DECL_INCOMING_RTL (decl);
9328 else if (! BYTES_BIG_ENDIAN
9329 && TREE_CODE (declared_type) == INTEGER_TYPE
9330 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9331 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9332 rtl = DECL_INCOMING_RTL (decl);
9333 }
9334
9335 /* If the parm was passed in registers, but lives on the stack, then
9336 make a big endian correction if the mode of the type of the
9337 parameter is not the same as the mode of the rtl. */
9338 /* ??? This is the same series of checks that are made in dbxout.c before
9339 we reach the big endian correction code there. It isn't clear if all
9340 of these checks are necessary here, but keeping them all is the safe
9341 thing to do. */
9342 else if (GET_CODE (rtl) == MEM
9343 && XEXP (rtl, 0) != const0_rtx
9344 && ! CONSTANT_P (XEXP (rtl, 0))
9345 /* Not passed in memory. */
9346 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
9347 /* Not passed by invisible reference. */
9348 && (GET_CODE (XEXP (rtl, 0)) != REG
9349 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9350 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9351 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9352 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9353 #endif
9354 )
9355 /* Big endian correction check. */
9356 && BYTES_BIG_ENDIAN
9357 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9358 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9359 < UNITS_PER_WORD))
9360 {
9361 int offset = (UNITS_PER_WORD
9362 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9363
9364 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9365 plus_constant (XEXP (rtl, 0), offset));
9366 }
9367 }
9368
9369 if (rtl != NULL_RTX)
9370 {
9371 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9372 #ifdef LEAF_REG_REMAP
9373 if (current_function_uses_only_leaf_regs)
9374 leaf_renumber_regs_insn (rtl);
9375 #endif
9376 }
9377
9378 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9379 and will have been substituted directly into all expressions that use it.
9380 C does not have such a concept, but C++ and other languages do. */
9381 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9382 {
9383 /* If a variable is initialized with a string constant without embedded
9384 zeros, build CONST_STRING. */
9385 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9386 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9387 {
9388 tree arrtype = TREE_TYPE (decl);
9389 tree enttype = TREE_TYPE (arrtype);
9390 tree domain = TYPE_DOMAIN (arrtype);
9391 tree init = DECL_INITIAL (decl);
9392 enum machine_mode mode = TYPE_MODE (enttype);
9393
9394 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9395 && domain
9396 && integer_zerop (TYPE_MIN_VALUE (domain))
9397 && compare_tree_int (TYPE_MAX_VALUE (domain),
9398 TREE_STRING_LENGTH (init) - 1) == 0
9399 && ((size_t) TREE_STRING_LENGTH (init)
9400 == strlen (TREE_STRING_POINTER (init)) + 1))
9401 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9402 }
9403 /* If the initializer is something that we know will expand into an
9404 immediate RTL constant, expand it now. Expanding anything else
9405 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9406 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9407 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9408 {
9409 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9410 EXPAND_INITIALIZER);
9411 /* If expand_expr returns a MEM, it wasn't immediate. */
9412 if (rtl && GET_CODE (rtl) == MEM)
9413 abort ();
9414 }
9415 }
9416
9417 if (rtl)
9418 rtl = (*targetm.delegitimize_address) (rtl);
9419
9420 /* If we don't look past the constant pool, we risk emitting a
9421 reference to a constant pool entry that isn't referenced from
9422 code, and thus is not emitted. */
9423 if (rtl)
9424 rtl = avoid_constant_pool_reference (rtl);
9425
9426 return rtl;
9427 }
9428
9429 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
9430 data attribute for a variable or a parameter. We generate the
9431 DW_AT_const_value attribute only in those cases where the given variable
9432 or parameter does not have a true "location" either in memory or in a
9433 register. This can happen (for example) when a constant is passed as an
9434 actual argument in a call to an inline function. (It's possible that
9435 these things can crop up in other ways also.) Note that one type of
9436 constant value which can be passed into an inlined function is a constant
9437 pointer. This can happen for example if an actual argument in an inlined
9438 function call evaluates to a compile-time constant address. */
9439
9440 static void
9441 add_location_or_const_value_attribute (dw_die_ref die, tree decl)
9442 {
9443 rtx rtl;
9444 dw_loc_descr_ref descr;
9445
9446 if (TREE_CODE (decl) == ERROR_MARK)
9447 return;
9448 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
9449 abort ();
9450
9451 rtl = rtl_for_decl_location (decl);
9452 if (rtl == NULL_RTX)
9453 return;
9454
9455 switch (GET_CODE (rtl))
9456 {
9457 case ADDRESSOF:
9458 /* The address of a variable that was optimized away;
9459 don't emit anything. */
9460 break;
9461
9462 case CONST_INT:
9463 case CONST_DOUBLE:
9464 case CONST_STRING:
9465 case SYMBOL_REF:
9466 case LABEL_REF:
9467 case CONST:
9468 case PLUS:
9469 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9470 add_const_value_attribute (die, rtl);
9471 break;
9472
9473 case MEM:
9474 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
9475 {
9476 /* Need loc_descriptor_from_tree since that's where we know
9477 how to handle TLS variables. Want the object's address
9478 since the top-level DW_AT_location assumes such. See
9479 the confusion in loc_descriptor for reference. */
9480 descr = loc_descriptor_from_tree (decl, 1);
9481 }
9482 else
9483 {
9484 case REG:
9485 case SUBREG:
9486 case CONCAT:
9487 descr = loc_descriptor (rtl);
9488 }
9489 add_AT_location_description (die, DW_AT_location, descr);
9490 break;
9491
9492 case PARALLEL:
9493 {
9494 rtvec par_elems = XVEC (rtl, 0);
9495 int num_elem = GET_NUM_ELEM (par_elems);
9496 enum machine_mode mode;
9497 int i;
9498
9499 /* Create the first one, so we have something to add to. */
9500 descr = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
9501 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
9502 add_loc_descr (&descr,
9503 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
9504 for (i = 1; i < num_elem; i++)
9505 {
9506 dw_loc_descr_ref temp;
9507
9508 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
9509 add_loc_descr (&descr, temp);
9510 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
9511 add_loc_descr (&descr,
9512 new_loc_descr (DW_OP_piece,
9513 GET_MODE_SIZE (mode), 0));
9514 }
9515 }
9516 add_AT_location_description (die, DW_AT_location, descr);
9517 break;
9518
9519 default:
9520 abort ();
9521 }
9522 }
9523
9524 /* If we don't have a copy of this variable in memory for some reason (such
9525 as a C++ member constant that doesn't have an out-of-line definition),
9526 we should tell the debugger about the constant value. */
9527
9528 static void
9529 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
9530 {
9531 tree init = DECL_INITIAL (decl);
9532 tree type = TREE_TYPE (decl);
9533
9534 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9535 && initializer_constant_valid_p (init, type) == null_pointer_node)
9536 /* OK */;
9537 else
9538 return;
9539
9540 switch (TREE_CODE (type))
9541 {
9542 case INTEGER_TYPE:
9543 if (host_integerp (init, 0))
9544 add_AT_unsigned (var_die, DW_AT_const_value,
9545 tree_low_cst (init, 0));
9546 else
9547 add_AT_long_long (var_die, DW_AT_const_value,
9548 TREE_INT_CST_HIGH (init),
9549 TREE_INT_CST_LOW (init));
9550 break;
9551
9552 default:;
9553 }
9554 }
9555
9556 /* Generate a DW_AT_name attribute given some string value to be included as
9557 the value of the attribute. */
9558
9559 static void
9560 add_name_attribute (dw_die_ref die, const char *name_string)
9561 {
9562 if (name_string != NULL && *name_string != 0)
9563 {
9564 if (demangle_name_func)
9565 name_string = (*demangle_name_func) (name_string);
9566
9567 add_AT_string (die, DW_AT_name, name_string);
9568 }
9569 }
9570
9571 /* Generate a DW_AT_comp_dir attribute for DIE. */
9572
9573 static void
9574 add_comp_dir_attribute (dw_die_ref die)
9575 {
9576 const char *wd = get_src_pwd ();
9577 if (wd != NULL)
9578 add_AT_string (die, DW_AT_comp_dir, wd);
9579 }
9580
9581 /* Given a tree node describing an array bound (either lower or upper) output
9582 a representation for that bound. */
9583
9584 static void
9585 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
9586 {
9587 switch (TREE_CODE (bound))
9588 {
9589 case ERROR_MARK:
9590 return;
9591
9592 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9593 case INTEGER_CST:
9594 if (! host_integerp (bound, 0)
9595 || (bound_attr == DW_AT_lower_bound
9596 && (((is_c_family () || is_java ()) && integer_zerop (bound))
9597 || (is_fortran () && integer_onep (bound)))))
9598 /* use the default */
9599 ;
9600 else
9601 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
9602 break;
9603
9604 case CONVERT_EXPR:
9605 case NOP_EXPR:
9606 case NON_LVALUE_EXPR:
9607 case VIEW_CONVERT_EXPR:
9608 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9609 break;
9610
9611 case SAVE_EXPR:
9612 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9613 access the upper bound values may be bogus. If they refer to a
9614 register, they may only describe how to get at these values at the
9615 points in the generated code right after they have just been
9616 computed. Worse yet, in the typical case, the upper bound values
9617 will not even *be* computed in the optimized code (though the
9618 number of elements will), so these SAVE_EXPRs are entirely
9619 bogus. In order to compensate for this fact, we check here to see
9620 if optimization is enabled, and if so, we don't add an attribute
9621 for the (unknown and unknowable) upper bound. This should not
9622 cause too much trouble for existing (stupid?) debuggers because
9623 they have to deal with empty upper bounds location descriptions
9624 anyway in order to be able to deal with incomplete array types.
9625 Of course an intelligent debugger (GDB?) should be able to
9626 comprehend that a missing upper bound specification in an array
9627 type used for a storage class `auto' local array variable
9628 indicates that the upper bound is both unknown (at compile- time)
9629 and unknowable (at run-time) due to optimization.
9630
9631 We assume that a MEM rtx is safe because gcc wouldn't put the
9632 value there unless it was going to be used repeatedly in the
9633 function, i.e. for cleanups. */
9634 if (SAVE_EXPR_RTL (bound)
9635 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
9636 {
9637 dw_die_ref ctx = lookup_decl_die (current_function_decl);
9638 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
9639 rtx loc = SAVE_EXPR_RTL (bound);
9640
9641 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9642 it references an outer function's frame. */
9643 if (GET_CODE (loc) == MEM)
9644 {
9645 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9646
9647 if (XEXP (loc, 0) != new_addr)
9648 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
9649 }
9650
9651 add_AT_flag (decl_die, DW_AT_artificial, 1);
9652 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9653 add_AT_location_description (decl_die, DW_AT_location,
9654 loc_descriptor (loc));
9655 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9656 }
9657
9658 /* Else leave out the attribute. */
9659 break;
9660
9661 case VAR_DECL:
9662 case PARM_DECL:
9663 {
9664 dw_die_ref decl_die = lookup_decl_die (bound);
9665
9666 /* ??? Can this happen, or should the variable have been bound
9667 first? Probably it can, since I imagine that we try to create
9668 the types of parameters in the order in which they exist in
9669 the list, and won't have created a forward reference to a
9670 later parameter. */
9671 if (decl_die != NULL)
9672 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9673 break;
9674 }
9675
9676 default:
9677 {
9678 /* Otherwise try to create a stack operation procedure to
9679 evaluate the value of the array bound. */
9680
9681 dw_die_ref ctx, decl_die;
9682 dw_loc_descr_ref loc;
9683
9684 loc = loc_descriptor_from_tree (bound, 0);
9685 if (loc == NULL)
9686 break;
9687
9688 if (current_function_decl == 0)
9689 ctx = comp_unit_die;
9690 else
9691 ctx = lookup_decl_die (current_function_decl);
9692
9693 /* If we weren't able to find a context, it's most likely the case
9694 that we are processing the return type of the function. So
9695 make a SAVE_EXPR to point to it and have the limbo DIE code
9696 find the proper die. The save_expr function doesn't always
9697 make a SAVE_EXPR, so do it ourselves. */
9698 if (ctx == 0)
9699 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9700 current_function_decl, NULL_TREE);
9701
9702 decl_die = new_die (DW_TAG_variable, ctx, bound);
9703 add_AT_flag (decl_die, DW_AT_artificial, 1);
9704 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9705 add_AT_loc (decl_die, DW_AT_location, loc);
9706
9707 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9708 break;
9709 }
9710 }
9711 }
9712
9713 /* Note that the block of subscript information for an array type also
9714 includes information about the element type of type given array type. */
9715
9716 static void
9717 add_subscript_info (dw_die_ref type_die, tree type)
9718 {
9719 #ifndef MIPS_DEBUGGING_INFO
9720 unsigned dimension_number;
9721 #endif
9722 tree lower, upper;
9723 dw_die_ref subrange_die;
9724
9725 /* The GNU compilers represent multidimensional array types as sequences of
9726 one dimensional array types whose element types are themselves array
9727 types. Here we squish that down, so that each multidimensional array
9728 type gets only one array_type DIE in the Dwarf debugging info. The draft
9729 Dwarf specification say that we are allowed to do this kind of
9730 compression in C (because there is no difference between an array or
9731 arrays and a multidimensional array in C) but for other source languages
9732 (e.g. Ada) we probably shouldn't do this. */
9733
9734 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9735 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9736 We work around this by disabling this feature. See also
9737 gen_array_type_die. */
9738 #ifndef MIPS_DEBUGGING_INFO
9739 for (dimension_number = 0;
9740 TREE_CODE (type) == ARRAY_TYPE;
9741 type = TREE_TYPE (type), dimension_number++)
9742 #endif
9743 {
9744 tree domain = TYPE_DOMAIN (type);
9745
9746 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
9747 and (in GNU C only) variable bounds. Handle all three forms
9748 here. */
9749 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
9750 if (domain)
9751 {
9752 /* We have an array type with specified bounds. */
9753 lower = TYPE_MIN_VALUE (domain);
9754 upper = TYPE_MAX_VALUE (domain);
9755
9756 /* Define the index type. */
9757 if (TREE_TYPE (domain))
9758 {
9759 /* ??? This is probably an Ada unnamed subrange type. Ignore the
9760 TREE_TYPE field. We can't emit debug info for this
9761 because it is an unnamed integral type. */
9762 if (TREE_CODE (domain) == INTEGER_TYPE
9763 && TYPE_NAME (domain) == NULL_TREE
9764 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
9765 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
9766 ;
9767 else
9768 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
9769 type_die);
9770 }
9771
9772 /* ??? If upper is NULL, the array has unspecified length,
9773 but it does have a lower bound. This happens with Fortran
9774 dimension arr(N:*)
9775 Since the debugger is definitely going to need to know N
9776 to produce useful results, go ahead and output the lower
9777 bound solo, and hope the debugger can cope. */
9778
9779 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
9780 if (upper)
9781 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
9782 }
9783
9784 /* Otherwise we have an array type with an unspecified length. The
9785 DWARF-2 spec does not say how to handle this; let's just leave out the
9786 bounds. */
9787 }
9788 }
9789
9790 static void
9791 add_byte_size_attribute (dw_die_ref die, tree tree_node)
9792 {
9793 unsigned size;
9794
9795 switch (TREE_CODE (tree_node))
9796 {
9797 case ERROR_MARK:
9798 size = 0;
9799 break;
9800 case ENUMERAL_TYPE:
9801 case RECORD_TYPE:
9802 case UNION_TYPE:
9803 case QUAL_UNION_TYPE:
9804 size = int_size_in_bytes (tree_node);
9805 break;
9806 case FIELD_DECL:
9807 /* For a data member of a struct or union, the DW_AT_byte_size is
9808 generally given as the number of bytes normally allocated for an
9809 object of the *declared* type of the member itself. This is true
9810 even for bit-fields. */
9811 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
9812 break;
9813 default:
9814 abort ();
9815 }
9816
9817 /* Note that `size' might be -1 when we get to this point. If it is, that
9818 indicates that the byte size of the entity in question is variable. We
9819 have no good way of expressing this fact in Dwarf at the present time,
9820 so just let the -1 pass on through. */
9821 add_AT_unsigned (die, DW_AT_byte_size, size);
9822 }
9823
9824 /* For a FIELD_DECL node which represents a bit-field, output an attribute
9825 which specifies the distance in bits from the highest order bit of the
9826 "containing object" for the bit-field to the highest order bit of the
9827 bit-field itself.
9828
9829 For any given bit-field, the "containing object" is a hypothetical object
9830 (of some integral or enum type) within which the given bit-field lives. The
9831 type of this hypothetical "containing object" is always the same as the
9832 declared type of the individual bit-field itself. The determination of the
9833 exact location of the "containing object" for a bit-field is rather
9834 complicated. It's handled by the `field_byte_offset' function (above).
9835
9836 Note that it is the size (in bytes) of the hypothetical "containing object"
9837 which will be given in the DW_AT_byte_size attribute for this bit-field.
9838 (See `byte_size_attribute' above). */
9839
9840 static inline void
9841 add_bit_offset_attribute (dw_die_ref die, tree decl)
9842 {
9843 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
9844 tree type = DECL_BIT_FIELD_TYPE (decl);
9845 HOST_WIDE_INT bitpos_int;
9846 HOST_WIDE_INT highest_order_object_bit_offset;
9847 HOST_WIDE_INT highest_order_field_bit_offset;
9848 HOST_WIDE_INT unsigned bit_offset;
9849
9850 /* Must be a field and a bit field. */
9851 if (!type
9852 || TREE_CODE (decl) != FIELD_DECL)
9853 abort ();
9854
9855 /* We can't yet handle bit-fields whose offsets are variable, so if we
9856 encounter such things, just return without generating any attribute
9857 whatsoever. Likewise for variable or too large size. */
9858 if (! host_integerp (bit_position (decl), 0)
9859 || ! host_integerp (DECL_SIZE (decl), 1))
9860 return;
9861
9862 bitpos_int = int_bit_position (decl);
9863
9864 /* Note that the bit offset is always the distance (in bits) from the
9865 highest-order bit of the "containing object" to the highest-order bit of
9866 the bit-field itself. Since the "high-order end" of any object or field
9867 is different on big-endian and little-endian machines, the computation
9868 below must take account of these differences. */
9869 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
9870 highest_order_field_bit_offset = bitpos_int;
9871
9872 if (! BYTES_BIG_ENDIAN)
9873 {
9874 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
9875 highest_order_object_bit_offset += simple_type_size_in_bits (type);
9876 }
9877
9878 bit_offset
9879 = (! BYTES_BIG_ENDIAN
9880 ? highest_order_object_bit_offset - highest_order_field_bit_offset
9881 : highest_order_field_bit_offset - highest_order_object_bit_offset);
9882
9883 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
9884 }
9885
9886 /* For a FIELD_DECL node which represents a bit field, output an attribute
9887 which specifies the length in bits of the given field. */
9888
9889 static inline void
9890 add_bit_size_attribute (dw_die_ref die, tree decl)
9891 {
9892 /* Must be a field and a bit field. */
9893 if (TREE_CODE (decl) != FIELD_DECL
9894 || ! DECL_BIT_FIELD_TYPE (decl))
9895 abort ();
9896
9897 if (host_integerp (DECL_SIZE (decl), 1))
9898 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
9899 }
9900
9901 /* If the compiled language is ANSI C, then add a 'prototyped'
9902 attribute, if arg types are given for the parameters of a function. */
9903
9904 static inline void
9905 add_prototyped_attribute (dw_die_ref die, tree func_type)
9906 {
9907 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
9908 && TYPE_ARG_TYPES (func_type) != NULL)
9909 add_AT_flag (die, DW_AT_prototyped, 1);
9910 }
9911
9912 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
9913 by looking in either the type declaration or object declaration
9914 equate table. */
9915
9916 static inline void
9917 add_abstract_origin_attribute (dw_die_ref die, tree origin)
9918 {
9919 dw_die_ref origin_die = NULL;
9920
9921 if (TREE_CODE (origin) != FUNCTION_DECL)
9922 {
9923 /* We may have gotten separated from the block for the inlined
9924 function, if we're in an exception handler or some such; make
9925 sure that the abstract function has been written out.
9926
9927 Doing this for nested functions is wrong, however; functions are
9928 distinct units, and our context might not even be inline. */
9929 tree fn = origin;
9930
9931 if (TYPE_P (fn))
9932 fn = TYPE_STUB_DECL (fn);
9933
9934 fn = decl_function_context (fn);
9935 if (fn)
9936 dwarf2out_abstract_function (fn);
9937 }
9938
9939 if (DECL_P (origin))
9940 origin_die = lookup_decl_die (origin);
9941 else if (TYPE_P (origin))
9942 origin_die = lookup_type_die (origin);
9943
9944 if (origin_die == NULL)
9945 abort ();
9946
9947 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
9948 }
9949
9950 /* We do not currently support the pure_virtual attribute. */
9951
9952 static inline void
9953 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
9954 {
9955 if (DECL_VINDEX (func_decl))
9956 {
9957 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
9958
9959 if (host_integerp (DECL_VINDEX (func_decl), 0))
9960 add_AT_loc (die, DW_AT_vtable_elem_location,
9961 new_loc_descr (DW_OP_constu,
9962 tree_low_cst (DECL_VINDEX (func_decl), 0),
9963 0));
9964
9965 /* GNU extension: Record what type this method came from originally. */
9966 if (debug_info_level > DINFO_LEVEL_TERSE)
9967 add_AT_die_ref (die, DW_AT_containing_type,
9968 lookup_type_die (DECL_CONTEXT (func_decl)));
9969 }
9970 }
9971 \f
9972 /* Add source coordinate attributes for the given decl. */
9973
9974 static void
9975 add_src_coords_attributes (dw_die_ref die, tree decl)
9976 {
9977 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
9978
9979 add_AT_unsigned (die, DW_AT_decl_file, file_index);
9980 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
9981 }
9982
9983 /* Add a DW_AT_name attribute and source coordinate attribute for the
9984 given decl, but only if it actually has a name. */
9985
9986 static void
9987 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
9988 {
9989 tree decl_name;
9990
9991 decl_name = DECL_NAME (decl);
9992 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
9993 {
9994 add_name_attribute (die, dwarf2_name (decl, 0));
9995 if (! DECL_ARTIFICIAL (decl))
9996 add_src_coords_attributes (die, decl);
9997
9998 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
9999 && TREE_PUBLIC (decl)
10000 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10001 && !DECL_ABSTRACT (decl))
10002 add_AT_string (die, DW_AT_MIPS_linkage_name,
10003 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10004 }
10005
10006 #ifdef VMS_DEBUGGING_INFO
10007 /* Get the function's name, as described by its RTL. This may be different
10008 from the DECL_NAME name used in the source file. */
10009 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10010 {
10011 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10012 XEXP (DECL_RTL (decl), 0));
10013 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10014 }
10015 #endif
10016 }
10017
10018 /* Push a new declaration scope. */
10019
10020 static void
10021 push_decl_scope (tree scope)
10022 {
10023 VARRAY_PUSH_TREE (decl_scope_table, scope);
10024 }
10025
10026 /* Pop a declaration scope. */
10027
10028 static inline void
10029 pop_decl_scope (void)
10030 {
10031 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
10032 abort ();
10033
10034 VARRAY_POP (decl_scope_table);
10035 }
10036
10037 /* Return the DIE for the scope that immediately contains this type.
10038 Non-named types get global scope. Named types nested in other
10039 types get their containing scope if it's open, or global scope
10040 otherwise. All other types (i.e. function-local named types) get
10041 the current active scope. */
10042
10043 static dw_die_ref
10044 scope_die_for (tree t, dw_die_ref context_die)
10045 {
10046 dw_die_ref scope_die = NULL;
10047 tree containing_scope;
10048 int i;
10049
10050 /* Non-types always go in the current scope. */
10051 if (! TYPE_P (t))
10052 abort ();
10053
10054 containing_scope = TYPE_CONTEXT (t);
10055
10056 /* Use the containing namespace if it was passed in (for a declaration). */
10057 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10058 {
10059 if (context_die == lookup_decl_die (containing_scope))
10060 /* OK */;
10061 else
10062 containing_scope = NULL_TREE;
10063 }
10064
10065 /* Ignore function type "scopes" from the C frontend. They mean that
10066 a tagged type is local to a parmlist of a function declarator, but
10067 that isn't useful to DWARF. */
10068 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10069 containing_scope = NULL_TREE;
10070
10071 if (containing_scope == NULL_TREE)
10072 scope_die = comp_unit_die;
10073 else if (TYPE_P (containing_scope))
10074 {
10075 /* For types, we can just look up the appropriate DIE. But
10076 first we check to see if we're in the middle of emitting it
10077 so we know where the new DIE should go. */
10078 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10079 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10080 break;
10081
10082 if (i < 0)
10083 {
10084 if (debug_info_level > DINFO_LEVEL_TERSE
10085 && !TREE_ASM_WRITTEN (containing_scope))
10086 abort ();
10087
10088 /* If none of the current dies are suitable, we get file scope. */
10089 scope_die = comp_unit_die;
10090 }
10091 else
10092 scope_die = lookup_type_die (containing_scope);
10093 }
10094 else
10095 scope_die = context_die;
10096
10097 return scope_die;
10098 }
10099
10100 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10101
10102 static inline int
10103 local_scope_p (dw_die_ref context_die)
10104 {
10105 for (; context_die; context_die = context_die->die_parent)
10106 if (context_die->die_tag == DW_TAG_inlined_subroutine
10107 || context_die->die_tag == DW_TAG_subprogram)
10108 return 1;
10109
10110 return 0;
10111 }
10112
10113 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10114 whether or not to treat a DIE in this context as a declaration. */
10115
10116 static inline int
10117 class_or_namespace_scope_p (dw_die_ref context_die)
10118 {
10119 return (context_die
10120 && (context_die->die_tag == DW_TAG_structure_type
10121 || context_die->die_tag == DW_TAG_union_type
10122 || context_die->die_tag == DW_TAG_namespace));
10123 }
10124
10125 /* Many forms of DIEs require a "type description" attribute. This
10126 routine locates the proper "type descriptor" die for the type given
10127 by 'type', and adds a DW_AT_type attribute below the given die. */
10128
10129 static void
10130 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10131 int decl_volatile, dw_die_ref context_die)
10132 {
10133 enum tree_code code = TREE_CODE (type);
10134 dw_die_ref type_die = NULL;
10135
10136 /* ??? If this type is an unnamed subrange type of an integral or
10137 floating-point type, use the inner type. This is because we have no
10138 support for unnamed types in base_type_die. This can happen if this is
10139 an Ada subrange type. Correct solution is emit a subrange type die. */
10140 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10141 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10142 type = TREE_TYPE (type), code = TREE_CODE (type);
10143
10144 if (code == ERROR_MARK
10145 /* Handle a special case. For functions whose return type is void, we
10146 generate *no* type attribute. (Note that no object may have type
10147 `void', so this only applies to function return types). */
10148 || code == VOID_TYPE)
10149 return;
10150
10151 type_die = modified_type_die (type,
10152 decl_const || TYPE_READONLY (type),
10153 decl_volatile || TYPE_VOLATILE (type),
10154 context_die);
10155
10156 if (type_die != NULL)
10157 add_AT_die_ref (object_die, DW_AT_type, type_die);
10158 }
10159
10160 /* Given a tree pointer to a struct, class, union, or enum type node, return
10161 a pointer to the (string) tag name for the given type, or zero if the type
10162 was declared without a tag. */
10163
10164 static const char *
10165 type_tag (tree type)
10166 {
10167 const char *name = 0;
10168
10169 if (TYPE_NAME (type) != 0)
10170 {
10171 tree t = 0;
10172
10173 /* Find the IDENTIFIER_NODE for the type name. */
10174 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10175 t = TYPE_NAME (type);
10176
10177 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10178 a TYPE_DECL node, regardless of whether or not a `typedef' was
10179 involved. */
10180 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10181 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10182 t = DECL_NAME (TYPE_NAME (type));
10183
10184 /* Now get the name as a string, or invent one. */
10185 if (t != 0)
10186 name = IDENTIFIER_POINTER (t);
10187 }
10188
10189 return (name == 0 || *name == '\0') ? 0 : name;
10190 }
10191
10192 /* Return the type associated with a data member, make a special check
10193 for bit field types. */
10194
10195 static inline tree
10196 member_declared_type (tree member)
10197 {
10198 return (DECL_BIT_FIELD_TYPE (member)
10199 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10200 }
10201
10202 /* Get the decl's label, as described by its RTL. This may be different
10203 from the DECL_NAME name used in the source file. */
10204
10205 #if 0
10206 static const char *
10207 decl_start_label (tree decl)
10208 {
10209 rtx x;
10210 const char *fnname;
10211
10212 x = DECL_RTL (decl);
10213 if (GET_CODE (x) != MEM)
10214 abort ();
10215
10216 x = XEXP (x, 0);
10217 if (GET_CODE (x) != SYMBOL_REF)
10218 abort ();
10219
10220 fnname = XSTR (x, 0);
10221 return fnname;
10222 }
10223 #endif
10224 \f
10225 /* These routines generate the internal representation of the DIE's for
10226 the compilation unit. Debugging information is collected by walking
10227 the declaration trees passed in from dwarf2out_decl(). */
10228
10229 static void
10230 gen_array_type_die (tree type, dw_die_ref context_die)
10231 {
10232 dw_die_ref scope_die = scope_die_for (type, context_die);
10233 dw_die_ref array_die;
10234 tree element_type;
10235
10236 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10237 the inner array type comes before the outer array type. Thus we must
10238 call gen_type_die before we call new_die. See below also. */
10239 #ifdef MIPS_DEBUGGING_INFO
10240 gen_type_die (TREE_TYPE (type), context_die);
10241 #endif
10242
10243 array_die = new_die (DW_TAG_array_type, scope_die, type);
10244 add_name_attribute (array_die, type_tag (type));
10245 equate_type_number_to_die (type, array_die);
10246
10247 if (TREE_CODE (type) == VECTOR_TYPE)
10248 {
10249 /* The frontend feeds us a representation for the vector as a struct
10250 containing an array. Pull out the array type. */
10251 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10252 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10253 }
10254
10255 #if 0
10256 /* We default the array ordering. SDB will probably do
10257 the right things even if DW_AT_ordering is not present. It's not even
10258 an issue until we start to get into multidimensional arrays anyway. If
10259 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10260 then we'll have to put the DW_AT_ordering attribute back in. (But if
10261 and when we find out that we need to put these in, we will only do so
10262 for multidimensional arrays. */
10263 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10264 #endif
10265
10266 #ifdef MIPS_DEBUGGING_INFO
10267 /* The SGI compilers handle arrays of unknown bound by setting
10268 AT_declaration and not emitting any subrange DIEs. */
10269 if (! TYPE_DOMAIN (type))
10270 add_AT_flag (array_die, DW_AT_declaration, 1);
10271 else
10272 #endif
10273 add_subscript_info (array_die, type);
10274
10275 /* Add representation of the type of the elements of this array type. */
10276 element_type = TREE_TYPE (type);
10277
10278 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10279 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10280 We work around this by disabling this feature. See also
10281 add_subscript_info. */
10282 #ifndef MIPS_DEBUGGING_INFO
10283 while (TREE_CODE (element_type) == ARRAY_TYPE)
10284 element_type = TREE_TYPE (element_type);
10285
10286 gen_type_die (element_type, context_die);
10287 #endif
10288
10289 add_type_attribute (array_die, element_type, 0, 0, context_die);
10290 }
10291
10292 static void
10293 gen_set_type_die (tree type, dw_die_ref context_die)
10294 {
10295 dw_die_ref type_die
10296 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10297
10298 equate_type_number_to_die (type, type_die);
10299 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10300 }
10301
10302 #if 0
10303 static void
10304 gen_entry_point_die (tree decl, dw_die_ref context_die)
10305 {
10306 tree origin = decl_ultimate_origin (decl);
10307 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10308
10309 if (origin != NULL)
10310 add_abstract_origin_attribute (decl_die, origin);
10311 else
10312 {
10313 add_name_and_src_coords_attributes (decl_die, decl);
10314 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10315 0, 0, context_die);
10316 }
10317
10318 if (DECL_ABSTRACT (decl))
10319 equate_decl_number_to_die (decl, decl_die);
10320 else
10321 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10322 }
10323 #endif
10324
10325 /* Walk through the list of incomplete types again, trying once more to
10326 emit full debugging info for them. */
10327
10328 static void
10329 retry_incomplete_types (void)
10330 {
10331 int i;
10332
10333 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10334 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10335 }
10336
10337 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10338
10339 static void
10340 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
10341 {
10342 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10343
10344 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10345 be incomplete and such types are not marked. */
10346 add_abstract_origin_attribute (type_die, type);
10347 }
10348
10349 /* Generate a DIE to represent an inlined instance of a structure type. */
10350
10351 static void
10352 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
10353 {
10354 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10355
10356 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10357 be incomplete and such types are not marked. */
10358 add_abstract_origin_attribute (type_die, type);
10359 }
10360
10361 /* Generate a DIE to represent an inlined instance of a union type. */
10362
10363 static void
10364 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
10365 {
10366 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10367
10368 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10369 be incomplete and such types are not marked. */
10370 add_abstract_origin_attribute (type_die, type);
10371 }
10372
10373 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10374 include all of the information about the enumeration values also. Each
10375 enumerated type name/value is listed as a child of the enumerated type
10376 DIE. */
10377
10378 static dw_die_ref
10379 gen_enumeration_type_die (tree type, dw_die_ref context_die)
10380 {
10381 dw_die_ref type_die = lookup_type_die (type);
10382
10383 if (type_die == NULL)
10384 {
10385 type_die = new_die (DW_TAG_enumeration_type,
10386 scope_die_for (type, context_die), type);
10387 equate_type_number_to_die (type, type_die);
10388 add_name_attribute (type_die, type_tag (type));
10389 }
10390 else if (! TYPE_SIZE (type))
10391 return type_die;
10392 else
10393 remove_AT (type_die, DW_AT_declaration);
10394
10395 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10396 given enum type is incomplete, do not generate the DW_AT_byte_size
10397 attribute or the DW_AT_element_list attribute. */
10398 if (TYPE_SIZE (type))
10399 {
10400 tree link;
10401
10402 TREE_ASM_WRITTEN (type) = 1;
10403 add_byte_size_attribute (type_die, type);
10404 if (TYPE_STUB_DECL (type) != NULL_TREE)
10405 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10406
10407 /* If the first reference to this type was as the return type of an
10408 inline function, then it may not have a parent. Fix this now. */
10409 if (type_die->die_parent == NULL)
10410 add_child_die (scope_die_for (type, context_die), type_die);
10411
10412 for (link = TYPE_FIELDS (type);
10413 link != NULL; link = TREE_CHAIN (link))
10414 {
10415 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10416
10417 add_name_attribute (enum_die,
10418 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10419
10420 if (host_integerp (TREE_VALUE (link),
10421 TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (link)))))
10422 {
10423 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
10424 add_AT_int (enum_die, DW_AT_const_value,
10425 tree_low_cst (TREE_VALUE (link), 0));
10426 else
10427 add_AT_unsigned (enum_die, DW_AT_const_value,
10428 tree_low_cst (TREE_VALUE (link), 1));
10429 }
10430 }
10431 }
10432 else
10433 add_AT_flag (type_die, DW_AT_declaration, 1);
10434
10435 return type_die;
10436 }
10437
10438 /* Generate a DIE to represent either a real live formal parameter decl or to
10439 represent just the type of some formal parameter position in some function
10440 type.
10441
10442 Note that this routine is a bit unusual because its argument may be a
10443 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10444 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10445 node. If it's the former then this function is being called to output a
10446 DIE to represent a formal parameter object (or some inlining thereof). If
10447 it's the latter, then this function is only being called to output a
10448 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10449 argument type of some subprogram type. */
10450
10451 static dw_die_ref
10452 gen_formal_parameter_die (tree node, dw_die_ref context_die)
10453 {
10454 dw_die_ref parm_die
10455 = new_die (DW_TAG_formal_parameter, context_die, node);
10456 tree origin;
10457
10458 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10459 {
10460 case 'd':
10461 origin = decl_ultimate_origin (node);
10462 if (origin != NULL)
10463 add_abstract_origin_attribute (parm_die, origin);
10464 else
10465 {
10466 add_name_and_src_coords_attributes (parm_die, node);
10467 add_type_attribute (parm_die, TREE_TYPE (node),
10468 TREE_READONLY (node),
10469 TREE_THIS_VOLATILE (node),
10470 context_die);
10471 if (DECL_ARTIFICIAL (node))
10472 add_AT_flag (parm_die, DW_AT_artificial, 1);
10473 }
10474
10475 equate_decl_number_to_die (node, parm_die);
10476 if (! DECL_ABSTRACT (node))
10477 add_location_or_const_value_attribute (parm_die, node);
10478
10479 break;
10480
10481 case 't':
10482 /* We were called with some kind of a ..._TYPE node. */
10483 add_type_attribute (parm_die, node, 0, 0, context_die);
10484 break;
10485
10486 default:
10487 abort ();
10488 }
10489
10490 return parm_die;
10491 }
10492
10493 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10494 at the end of an (ANSI prototyped) formal parameters list. */
10495
10496 static void
10497 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
10498 {
10499 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10500 }
10501
10502 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10503 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10504 parameters as specified in some function type specification (except for
10505 those which appear as part of a function *definition*). */
10506
10507 static void
10508 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
10509 {
10510 tree link;
10511 tree formal_type = NULL;
10512 tree first_parm_type;
10513 tree arg;
10514
10515 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10516 {
10517 arg = DECL_ARGUMENTS (function_or_method_type);
10518 function_or_method_type = TREE_TYPE (function_or_method_type);
10519 }
10520 else
10521 arg = NULL_TREE;
10522
10523 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10524
10525 /* Make our first pass over the list of formal parameter types and output a
10526 DW_TAG_formal_parameter DIE for each one. */
10527 for (link = first_parm_type; link; )
10528 {
10529 dw_die_ref parm_die;
10530
10531 formal_type = TREE_VALUE (link);
10532 if (formal_type == void_type_node)
10533 break;
10534
10535 /* Output a (nameless) DIE to represent the formal parameter itself. */
10536 parm_die = gen_formal_parameter_die (formal_type, context_die);
10537 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10538 && link == first_parm_type)
10539 || (arg && DECL_ARTIFICIAL (arg)))
10540 add_AT_flag (parm_die, DW_AT_artificial, 1);
10541
10542 link = TREE_CHAIN (link);
10543 if (arg)
10544 arg = TREE_CHAIN (arg);
10545 }
10546
10547 /* If this function type has an ellipsis, add a
10548 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10549 if (formal_type != void_type_node)
10550 gen_unspecified_parameters_die (function_or_method_type, context_die);
10551
10552 /* Make our second (and final) pass over the list of formal parameter types
10553 and output DIEs to represent those types (as necessary). */
10554 for (link = TYPE_ARG_TYPES (function_or_method_type);
10555 link && TREE_VALUE (link);
10556 link = TREE_CHAIN (link))
10557 gen_type_die (TREE_VALUE (link), context_die);
10558 }
10559
10560 /* We want to generate the DIE for TYPE so that we can generate the
10561 die for MEMBER, which has been defined; we will need to refer back
10562 to the member declaration nested within TYPE. If we're trying to
10563 generate minimal debug info for TYPE, processing TYPE won't do the
10564 trick; we need to attach the member declaration by hand. */
10565
10566 static void
10567 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
10568 {
10569 gen_type_die (type, context_die);
10570
10571 /* If we're trying to avoid duplicate debug info, we may not have
10572 emitted the member decl for this function. Emit it now. */
10573 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10574 && ! lookup_decl_die (member))
10575 {
10576 if (decl_ultimate_origin (member))
10577 abort ();
10578
10579 push_decl_scope (type);
10580 if (TREE_CODE (member) == FUNCTION_DECL)
10581 gen_subprogram_die (member, lookup_type_die (type));
10582 else
10583 gen_variable_die (member, lookup_type_die (type));
10584
10585 pop_decl_scope ();
10586 }
10587 }
10588
10589 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10590 may later generate inlined and/or out-of-line instances of. */
10591
10592 static void
10593 dwarf2out_abstract_function (tree decl)
10594 {
10595 dw_die_ref old_die;
10596 tree save_fn;
10597 tree context;
10598 int was_abstract = DECL_ABSTRACT (decl);
10599
10600 /* Make sure we have the actual abstract inline, not a clone. */
10601 decl = DECL_ORIGIN (decl);
10602
10603 old_die = lookup_decl_die (decl);
10604 if (old_die && get_AT (old_die, DW_AT_inline))
10605 /* We've already generated the abstract instance. */
10606 return;
10607
10608 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10609 we don't get confused by DECL_ABSTRACT. */
10610 if (debug_info_level > DINFO_LEVEL_TERSE)
10611 {
10612 context = decl_class_context (decl);
10613 if (context)
10614 gen_type_die_for_member
10615 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10616 }
10617
10618 /* Pretend we've just finished compiling this function. */
10619 save_fn = current_function_decl;
10620 current_function_decl = decl;
10621
10622 set_decl_abstract_flags (decl, 1);
10623 dwarf2out_decl (decl);
10624 if (! was_abstract)
10625 set_decl_abstract_flags (decl, 0);
10626
10627 current_function_decl = save_fn;
10628 }
10629
10630 /* Generate a DIE to represent a declared function (either file-scope or
10631 block-local). */
10632
10633 static void
10634 gen_subprogram_die (tree decl, dw_die_ref context_die)
10635 {
10636 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10637 tree origin = decl_ultimate_origin (decl);
10638 dw_die_ref subr_die;
10639 rtx fp_reg;
10640 tree fn_arg_types;
10641 tree outer_scope;
10642 dw_die_ref old_die = lookup_decl_die (decl);
10643 int declaration = (current_function_decl != decl
10644 || class_or_namespace_scope_p (context_die));
10645
10646 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10647 started to generate the abstract instance of an inline, decided to output
10648 its containing class, and proceeded to emit the declaration of the inline
10649 from the member list for the class. If so, DECLARATION takes priority;
10650 we'll get back to the abstract instance when done with the class. */
10651
10652 /* The class-scope declaration DIE must be the primary DIE. */
10653 if (origin && declaration && class_or_namespace_scope_p (context_die))
10654 {
10655 origin = NULL;
10656 if (old_die)
10657 abort ();
10658 }
10659
10660 if (origin != NULL)
10661 {
10662 if (declaration && ! local_scope_p (context_die))
10663 abort ();
10664
10665 /* Fixup die_parent for the abstract instance of a nested
10666 inline function. */
10667 if (old_die && old_die->die_parent == NULL)
10668 add_child_die (context_die, old_die);
10669
10670 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10671 add_abstract_origin_attribute (subr_die, origin);
10672 }
10673 else if (old_die)
10674 {
10675 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10676
10677 if (!get_AT_flag (old_die, DW_AT_declaration)
10678 /* We can have a normal definition following an inline one in the
10679 case of redefinition of GNU C extern inlines.
10680 It seems reasonable to use AT_specification in this case. */
10681 && !get_AT (old_die, DW_AT_inline))
10682 {
10683 /* ??? This can happen if there is a bug in the program, for
10684 instance, if it has duplicate function definitions. Ideally,
10685 we should detect this case and ignore it. For now, if we have
10686 already reported an error, any error at all, then assume that
10687 we got here because of an input error, not a dwarf2 bug. */
10688 if (errorcount)
10689 return;
10690 abort ();
10691 }
10692
10693 /* If the definition comes from the same place as the declaration,
10694 maybe use the old DIE. We always want the DIE for this function
10695 that has the *_pc attributes to be under comp_unit_die so the
10696 debugger can find it. We also need to do this for abstract
10697 instances of inlines, since the spec requires the out-of-line copy
10698 to have the same parent. For local class methods, this doesn't
10699 apply; we just use the old DIE. */
10700 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
10701 && (DECL_ARTIFICIAL (decl)
10702 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10703 && (get_AT_unsigned (old_die, DW_AT_decl_line)
10704 == (unsigned) DECL_SOURCE_LINE (decl)))))
10705 {
10706 subr_die = old_die;
10707
10708 /* Clear out the declaration attribute and the parm types. */
10709 remove_AT (subr_die, DW_AT_declaration);
10710 remove_children (subr_die);
10711 }
10712 else
10713 {
10714 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10715 add_AT_specification (subr_die, old_die);
10716 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10717 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
10718 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10719 != (unsigned) DECL_SOURCE_LINE (decl))
10720 add_AT_unsigned
10721 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10722 }
10723 }
10724 else
10725 {
10726 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10727
10728 if (TREE_PUBLIC (decl))
10729 add_AT_flag (subr_die, DW_AT_external, 1);
10730
10731 add_name_and_src_coords_attributes (subr_die, decl);
10732 if (debug_info_level > DINFO_LEVEL_TERSE)
10733 {
10734 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
10735 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
10736 0, 0, context_die);
10737 }
10738
10739 add_pure_or_virtual_attribute (subr_die, decl);
10740 if (DECL_ARTIFICIAL (decl))
10741 add_AT_flag (subr_die, DW_AT_artificial, 1);
10742
10743 if (TREE_PROTECTED (decl))
10744 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
10745 else if (TREE_PRIVATE (decl))
10746 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
10747 }
10748
10749 if (declaration)
10750 {
10751 if (!old_die || !get_AT (old_die, DW_AT_inline))
10752 {
10753 add_AT_flag (subr_die, DW_AT_declaration, 1);
10754
10755 /* The first time we see a member function, it is in the context of
10756 the class to which it belongs. We make sure of this by emitting
10757 the class first. The next time is the definition, which is
10758 handled above. The two may come from the same source text. */
10759 if (DECL_CONTEXT (decl) || DECL_ABSTRACT (decl))
10760 equate_decl_number_to_die (decl, subr_die);
10761 }
10762 }
10763 else if (DECL_ABSTRACT (decl))
10764 {
10765 if (DECL_DECLARED_INLINE_P (decl))
10766 {
10767 if (cgraph_function_possibly_inlined_p (decl))
10768 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
10769 else
10770 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
10771 }
10772 else
10773 {
10774 if (cgraph_function_possibly_inlined_p (decl))
10775 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
10776 else
10777 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
10778 }
10779
10780 equate_decl_number_to_die (decl, subr_die);
10781 }
10782 else if (!DECL_EXTERNAL (decl))
10783 {
10784 if (!old_die || !get_AT (old_die, DW_AT_inline))
10785 equate_decl_number_to_die (decl, subr_die);
10786
10787 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
10788 current_function_funcdef_no);
10789 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
10790 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10791 current_function_funcdef_no);
10792 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
10793
10794 add_pubname (decl, subr_die);
10795 add_arange (decl, subr_die);
10796
10797 #ifdef MIPS_DEBUGGING_INFO
10798 /* Add a reference to the FDE for this routine. */
10799 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
10800 #endif
10801
10802 /* Define the "frame base" location for this routine. We use the
10803 frame pointer or stack pointer registers, since the RTL for local
10804 variables is relative to one of them. */
10805 fp_reg
10806 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
10807 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
10808
10809 #if 0
10810 /* ??? This fails for nested inline functions, because context_display
10811 is not part of the state saved/restored for inline functions. */
10812 if (current_function_needs_context)
10813 add_AT_location_description (subr_die, DW_AT_static_link,
10814 loc_descriptor (lookup_static_chain (decl)));
10815 #endif
10816 }
10817
10818 /* Now output descriptions of the arguments for this function. This gets
10819 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
10820 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
10821 `...' at the end of the formal parameter list. In order to find out if
10822 there was a trailing ellipsis or not, we must instead look at the type
10823 associated with the FUNCTION_DECL. This will be a node of type
10824 FUNCTION_TYPE. If the chain of type nodes hanging off of this
10825 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
10826 an ellipsis at the end. */
10827
10828 /* In the case where we are describing a mere function declaration, all we
10829 need to do here (and all we *can* do here) is to describe the *types* of
10830 its formal parameters. */
10831 if (debug_info_level <= DINFO_LEVEL_TERSE)
10832 ;
10833 else if (declaration)
10834 gen_formal_types_die (decl, subr_die);
10835 else
10836 {
10837 /* Generate DIEs to represent all known formal parameters. */
10838 tree arg_decls = DECL_ARGUMENTS (decl);
10839 tree parm;
10840
10841 /* When generating DIEs, generate the unspecified_parameters DIE
10842 instead if we come across the arg "__builtin_va_alist" */
10843 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
10844 if (TREE_CODE (parm) == PARM_DECL)
10845 {
10846 if (DECL_NAME (parm)
10847 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
10848 "__builtin_va_alist"))
10849 gen_unspecified_parameters_die (parm, subr_die);
10850 else
10851 gen_decl_die (parm, subr_die);
10852 }
10853
10854 /* Decide whether we need an unspecified_parameters DIE at the end.
10855 There are 2 more cases to do this for: 1) the ansi ... declaration -
10856 this is detectable when the end of the arg list is not a
10857 void_type_node 2) an unprototyped function declaration (not a
10858 definition). This just means that we have no info about the
10859 parameters at all. */
10860 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
10861 if (fn_arg_types != NULL)
10862 {
10863 /* This is the prototyped case, check for.... */
10864 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
10865 gen_unspecified_parameters_die (decl, subr_die);
10866 }
10867 else if (DECL_INITIAL (decl) == NULL_TREE)
10868 gen_unspecified_parameters_die (decl, subr_die);
10869 }
10870
10871 /* Output Dwarf info for all of the stuff within the body of the function
10872 (if it has one - it may be just a declaration). */
10873 outer_scope = DECL_INITIAL (decl);
10874
10875 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
10876 a function. This BLOCK actually represents the outermost binding contour
10877 for the function, i.e. the contour in which the function's formal
10878 parameters and labels get declared. Curiously, it appears that the front
10879 end doesn't actually put the PARM_DECL nodes for the current function onto
10880 the BLOCK_VARS list for this outer scope, but are strung off of the
10881 DECL_ARGUMENTS list for the function instead.
10882
10883 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
10884 the LABEL_DECL nodes for the function however, and we output DWARF info
10885 for those in decls_for_scope. Just within the `outer_scope' there will be
10886 a BLOCK node representing the function's outermost pair of curly braces,
10887 and any blocks used for the base and member initializers of a C++
10888 constructor function. */
10889 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
10890 {
10891 current_function_has_inlines = 0;
10892 decls_for_scope (outer_scope, subr_die, 0);
10893
10894 #if 0 && defined (MIPS_DEBUGGING_INFO)
10895 if (current_function_has_inlines)
10896 {
10897 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
10898 if (! comp_unit_has_inlines)
10899 {
10900 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
10901 comp_unit_has_inlines = 1;
10902 }
10903 }
10904 #endif
10905 }
10906 }
10907
10908 /* Generate a DIE to represent a declared data object. */
10909
10910 static void
10911 gen_variable_die (tree decl, dw_die_ref context_die)
10912 {
10913 tree origin = decl_ultimate_origin (decl);
10914 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
10915
10916 dw_die_ref old_die = lookup_decl_die (decl);
10917 int declaration = (DECL_EXTERNAL (decl)
10918 || class_or_namespace_scope_p (context_die));
10919
10920 if (origin != NULL)
10921 add_abstract_origin_attribute (var_die, origin);
10922
10923 /* Loop unrolling can create multiple blocks that refer to the same
10924 static variable, so we must test for the DW_AT_declaration flag.
10925
10926 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
10927 copy decls and set the DECL_ABSTRACT flag on them instead of
10928 sharing them.
10929
10930 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
10931 else if (old_die && TREE_STATIC (decl)
10932 && get_AT_flag (old_die, DW_AT_declaration) == 1)
10933 {
10934 /* This is a definition of a C++ class level static. */
10935 add_AT_specification (var_die, old_die);
10936 if (DECL_NAME (decl))
10937 {
10938 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10939
10940 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10941 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
10942
10943 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10944 != (unsigned) DECL_SOURCE_LINE (decl))
10945
10946 add_AT_unsigned (var_die, DW_AT_decl_line,
10947 DECL_SOURCE_LINE (decl));
10948 }
10949 }
10950 else
10951 {
10952 add_name_and_src_coords_attributes (var_die, decl);
10953 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
10954 TREE_THIS_VOLATILE (decl), context_die);
10955
10956 if (TREE_PUBLIC (decl))
10957 add_AT_flag (var_die, DW_AT_external, 1);
10958
10959 if (DECL_ARTIFICIAL (decl))
10960 add_AT_flag (var_die, DW_AT_artificial, 1);
10961
10962 if (TREE_PROTECTED (decl))
10963 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
10964 else if (TREE_PRIVATE (decl))
10965 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
10966 }
10967
10968 if (declaration)
10969 add_AT_flag (var_die, DW_AT_declaration, 1);
10970
10971 if (class_or_namespace_scope_p (context_die) || DECL_ABSTRACT (decl))
10972 equate_decl_number_to_die (decl, var_die);
10973
10974 if (! declaration && ! DECL_ABSTRACT (decl))
10975 {
10976 add_location_or_const_value_attribute (var_die, decl);
10977 add_pubname (decl, var_die);
10978 }
10979 else
10980 tree_add_const_value_attribute (var_die, decl);
10981 }
10982
10983 /* Generate a DIE to represent a label identifier. */
10984
10985 static void
10986 gen_label_die (tree decl, dw_die_ref context_die)
10987 {
10988 tree origin = decl_ultimate_origin (decl);
10989 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
10990 rtx insn;
10991 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10992
10993 if (origin != NULL)
10994 add_abstract_origin_attribute (lbl_die, origin);
10995 else
10996 add_name_and_src_coords_attributes (lbl_die, decl);
10997
10998 if (DECL_ABSTRACT (decl))
10999 equate_decl_number_to_die (decl, lbl_die);
11000 else
11001 {
11002 insn = DECL_RTL_IF_SET (decl);
11003
11004 /* Deleted labels are programmer specified labels which have been
11005 eliminated because of various optimizations. We still emit them
11006 here so that it is possible to put breakpoints on them. */
11007 if (insn
11008 && (GET_CODE (insn) == CODE_LABEL
11009 || ((GET_CODE (insn) == NOTE
11010 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11011 {
11012 /* When optimization is enabled (via -O) some parts of the compiler
11013 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11014 represent source-level labels which were explicitly declared by
11015 the user. This really shouldn't be happening though, so catch
11016 it if it ever does happen. */
11017 if (INSN_DELETED_P (insn))
11018 abort ();
11019
11020 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11021 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11022 }
11023 }
11024 }
11025
11026 /* Generate a DIE for a lexical block. */
11027
11028 static void
11029 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11030 {
11031 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11032 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11033
11034 if (! BLOCK_ABSTRACT (stmt))
11035 {
11036 if (BLOCK_FRAGMENT_CHAIN (stmt))
11037 {
11038 tree chain;
11039
11040 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11041
11042 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11043 do
11044 {
11045 add_ranges (chain);
11046 chain = BLOCK_FRAGMENT_CHAIN (chain);
11047 }
11048 while (chain);
11049 add_ranges (NULL);
11050 }
11051 else
11052 {
11053 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11054 BLOCK_NUMBER (stmt));
11055 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11056 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11057 BLOCK_NUMBER (stmt));
11058 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11059 }
11060 }
11061
11062 decls_for_scope (stmt, stmt_die, depth);
11063 }
11064
11065 /* Generate a DIE for an inlined subprogram. */
11066
11067 static void
11068 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11069 {
11070 tree decl = block_ultimate_origin (stmt);
11071
11072 /* Emit info for the abstract instance first, if we haven't yet. We
11073 must emit this even if the block is abstract, otherwise when we
11074 emit the block below (or elsewhere), we may end up trying to emit
11075 a die whose origin die hasn't been emitted, and crashing. */
11076 dwarf2out_abstract_function (decl);
11077
11078 if (! BLOCK_ABSTRACT (stmt))
11079 {
11080 dw_die_ref subr_die
11081 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11082 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11083
11084 add_abstract_origin_attribute (subr_die, decl);
11085 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11086 BLOCK_NUMBER (stmt));
11087 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11088 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11089 BLOCK_NUMBER (stmt));
11090 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11091 decls_for_scope (stmt, subr_die, depth);
11092 current_function_has_inlines = 1;
11093 }
11094 else
11095 /* We may get here if we're the outer block of function A that was
11096 inlined into function B that was inlined into function C. When
11097 generating debugging info for C, dwarf2out_abstract_function(B)
11098 would mark all inlined blocks as abstract, including this one.
11099 So, we wouldn't (and shouldn't) expect labels to be generated
11100 for this one. Instead, just emit debugging info for
11101 declarations within the block. This is particularly important
11102 in the case of initializers of arguments passed from B to us:
11103 if they're statement expressions containing declarations, we
11104 wouldn't generate dies for their abstract variables, and then,
11105 when generating dies for the real variables, we'd die (pun
11106 intended :-) */
11107 gen_lexical_block_die (stmt, context_die, depth);
11108 }
11109
11110 /* Generate a DIE for a field in a record, or structure. */
11111
11112 static void
11113 gen_field_die (tree decl, dw_die_ref context_die)
11114 {
11115 dw_die_ref decl_die;
11116
11117 if (TREE_TYPE (decl) == error_mark_node)
11118 return;
11119
11120 decl_die = new_die (DW_TAG_member, context_die, decl);
11121 add_name_and_src_coords_attributes (decl_die, decl);
11122 add_type_attribute (decl_die, member_declared_type (decl),
11123 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11124 context_die);
11125
11126 if (DECL_BIT_FIELD_TYPE (decl))
11127 {
11128 add_byte_size_attribute (decl_die, decl);
11129 add_bit_size_attribute (decl_die, decl);
11130 add_bit_offset_attribute (decl_die, decl);
11131 }
11132
11133 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11134 add_data_member_location_attribute (decl_die, decl);
11135
11136 if (DECL_ARTIFICIAL (decl))
11137 add_AT_flag (decl_die, DW_AT_artificial, 1);
11138
11139 if (TREE_PROTECTED (decl))
11140 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11141 else if (TREE_PRIVATE (decl))
11142 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11143 }
11144
11145 #if 0
11146 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11147 Use modified_type_die instead.
11148 We keep this code here just in case these types of DIEs may be needed to
11149 represent certain things in other languages (e.g. Pascal) someday. */
11150
11151 static void
11152 gen_pointer_type_die (tree type, dw_die_ref context_die)
11153 {
11154 dw_die_ref ptr_die
11155 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11156
11157 equate_type_number_to_die (type, ptr_die);
11158 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11159 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11160 }
11161
11162 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11163 Use modified_type_die instead.
11164 We keep this code here just in case these types of DIEs may be needed to
11165 represent certain things in other languages (e.g. Pascal) someday. */
11166
11167 static void
11168 gen_reference_type_die (tree type, dw_die_ref context_die)
11169 {
11170 dw_die_ref ref_die
11171 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11172
11173 equate_type_number_to_die (type, ref_die);
11174 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11175 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11176 }
11177 #endif
11178
11179 /* Generate a DIE for a pointer to a member type. */
11180
11181 static void
11182 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11183 {
11184 dw_die_ref ptr_die
11185 = new_die (DW_TAG_ptr_to_member_type,
11186 scope_die_for (type, context_die), type);
11187
11188 equate_type_number_to_die (type, ptr_die);
11189 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11190 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11191 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11192 }
11193
11194 /* Generate the DIE for the compilation unit. */
11195
11196 static dw_die_ref
11197 gen_compile_unit_die (const char *filename)
11198 {
11199 dw_die_ref die;
11200 char producer[250];
11201 const char *language_string = lang_hooks.name;
11202 int language;
11203
11204 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11205
11206 if (filename)
11207 {
11208 add_name_attribute (die, filename);
11209 /* Don't add cwd for <built-in>. */
11210 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11211 add_comp_dir_attribute (die);
11212 }
11213
11214 sprintf (producer, "%s %s", language_string, version_string);
11215
11216 #ifdef MIPS_DEBUGGING_INFO
11217 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11218 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11219 not appear in the producer string, the debugger reaches the conclusion
11220 that the object file is stripped and has no debugging information.
11221 To get the MIPS/SGI debugger to believe that there is debugging
11222 information in the object file, we add a -g to the producer string. */
11223 if (debug_info_level > DINFO_LEVEL_TERSE)
11224 strcat (producer, " -g");
11225 #endif
11226
11227 add_AT_string (die, DW_AT_producer, producer);
11228
11229 if (strcmp (language_string, "GNU C++") == 0)
11230 language = DW_LANG_C_plus_plus;
11231 else if (strcmp (language_string, "GNU Ada") == 0)
11232 language = DW_LANG_Ada95;
11233 else if (strcmp (language_string, "GNU F77") == 0)
11234 language = DW_LANG_Fortran77;
11235 else if (strcmp (language_string, "GNU Pascal") == 0)
11236 language = DW_LANG_Pascal83;
11237 else if (strcmp (language_string, "GNU Java") == 0)
11238 language = DW_LANG_Java;
11239 else
11240 language = DW_LANG_C89;
11241
11242 add_AT_unsigned (die, DW_AT_language, language);
11243 return die;
11244 }
11245
11246 /* Generate a DIE for a string type. */
11247
11248 static void
11249 gen_string_type_die (tree type, dw_die_ref context_die)
11250 {
11251 dw_die_ref type_die
11252 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11253
11254 equate_type_number_to_die (type, type_die);
11255
11256 /* ??? Fudge the string length attribute for now.
11257 TODO: add string length info. */
11258 #if 0
11259 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11260 bound_representation (upper_bound, 0, 'u');
11261 #endif
11262 }
11263
11264 /* Generate the DIE for a base class. */
11265
11266 static void
11267 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11268 {
11269 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11270
11271 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11272 add_data_member_location_attribute (die, binfo);
11273
11274 if (TREE_VIA_VIRTUAL (binfo))
11275 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11276
11277 if (access == access_public_node)
11278 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11279 else if (access == access_protected_node)
11280 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11281 }
11282
11283 /* Generate a DIE for a class member. */
11284
11285 static void
11286 gen_member_die (tree type, dw_die_ref context_die)
11287 {
11288 tree member;
11289 tree binfo = TYPE_BINFO (type);
11290 dw_die_ref child;
11291
11292 /* If this is not an incomplete type, output descriptions of each of its
11293 members. Note that as we output the DIEs necessary to represent the
11294 members of this record or union type, we will also be trying to output
11295 DIEs to represent the *types* of those members. However the `type'
11296 function (above) will specifically avoid generating type DIEs for member
11297 types *within* the list of member DIEs for this (containing) type except
11298 for those types (of members) which are explicitly marked as also being
11299 members of this (containing) type themselves. The g++ front- end can
11300 force any given type to be treated as a member of some other (containing)
11301 type by setting the TYPE_CONTEXT of the given (member) type to point to
11302 the TREE node representing the appropriate (containing) type. */
11303
11304 /* First output info about the base classes. */
11305 if (binfo && BINFO_BASETYPES (binfo))
11306 {
11307 tree bases = BINFO_BASETYPES (binfo);
11308 tree accesses = BINFO_BASEACCESSES (binfo);
11309 int n_bases = TREE_VEC_LENGTH (bases);
11310 int i;
11311
11312 for (i = 0; i < n_bases; i++)
11313 gen_inheritance_die (TREE_VEC_ELT (bases, i),
11314 (accesses ? TREE_VEC_ELT (accesses, i)
11315 : access_public_node), context_die);
11316 }
11317
11318 /* Now output info about the data members and type members. */
11319 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11320 {
11321 /* If we thought we were generating minimal debug info for TYPE
11322 and then changed our minds, some of the member declarations
11323 may have already been defined. Don't define them again, but
11324 do put them in the right order. */
11325
11326 child = lookup_decl_die (member);
11327 if (child)
11328 splice_child_die (context_die, child);
11329 else
11330 gen_decl_die (member, context_die);
11331 }
11332
11333 /* Now output info about the function members (if any). */
11334 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11335 {
11336 /* Don't include clones in the member list. */
11337 if (DECL_ABSTRACT_ORIGIN (member))
11338 continue;
11339
11340 child = lookup_decl_die (member);
11341 if (child)
11342 splice_child_die (context_die, child);
11343 else
11344 gen_decl_die (member, context_die);
11345 }
11346 }
11347
11348 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11349 is set, we pretend that the type was never defined, so we only get the
11350 member DIEs needed by later specification DIEs. */
11351
11352 static void
11353 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
11354 {
11355 dw_die_ref type_die = lookup_type_die (type);
11356 dw_die_ref scope_die = 0;
11357 int nested = 0;
11358 int complete = (TYPE_SIZE (type)
11359 && (! TYPE_STUB_DECL (type)
11360 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11361 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
11362
11363 if (type_die && ! complete)
11364 return;
11365
11366 if (TYPE_CONTEXT (type) != NULL_TREE
11367 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11368 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
11369 nested = 1;
11370
11371 scope_die = scope_die_for (type, context_die);
11372
11373 if (! type_die || (nested && scope_die == comp_unit_die))
11374 /* First occurrence of type or toplevel definition of nested class. */
11375 {
11376 dw_die_ref old_die = type_die;
11377
11378 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11379 ? DW_TAG_structure_type : DW_TAG_union_type,
11380 scope_die, type);
11381 equate_type_number_to_die (type, type_die);
11382 if (old_die)
11383 add_AT_specification (type_die, old_die);
11384 else
11385 add_name_attribute (type_die, type_tag (type));
11386 }
11387 else
11388 remove_AT (type_die, DW_AT_declaration);
11389
11390 /* If this type has been completed, then give it a byte_size attribute and
11391 then give a list of members. */
11392 if (complete && !ns_decl)
11393 {
11394 /* Prevent infinite recursion in cases where the type of some member of
11395 this type is expressed in terms of this type itself. */
11396 TREE_ASM_WRITTEN (type) = 1;
11397 add_byte_size_attribute (type_die, type);
11398 if (TYPE_STUB_DECL (type) != NULL_TREE)
11399 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11400
11401 /* If the first reference to this type was as the return type of an
11402 inline function, then it may not have a parent. Fix this now. */
11403 if (type_die->die_parent == NULL)
11404 add_child_die (scope_die, type_die);
11405
11406 push_decl_scope (type);
11407 gen_member_die (type, type_die);
11408 pop_decl_scope ();
11409
11410 /* GNU extension: Record what type our vtable lives in. */
11411 if (TYPE_VFIELD (type))
11412 {
11413 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11414
11415 gen_type_die (vtype, context_die);
11416 add_AT_die_ref (type_die, DW_AT_containing_type,
11417 lookup_type_die (vtype));
11418 }
11419 }
11420 else
11421 {
11422 add_AT_flag (type_die, DW_AT_declaration, 1);
11423
11424 /* We don't need to do this for function-local types. */
11425 if (TYPE_STUB_DECL (type)
11426 && ! decl_function_context (TYPE_STUB_DECL (type)))
11427 VARRAY_PUSH_TREE (incomplete_types, type);
11428 }
11429 }
11430
11431 /* Generate a DIE for a subroutine _type_. */
11432
11433 static void
11434 gen_subroutine_type_die (tree type, dw_die_ref context_die)
11435 {
11436 tree return_type = TREE_TYPE (type);
11437 dw_die_ref subr_die
11438 = new_die (DW_TAG_subroutine_type,
11439 scope_die_for (type, context_die), type);
11440
11441 equate_type_number_to_die (type, subr_die);
11442 add_prototyped_attribute (subr_die, type);
11443 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11444 gen_formal_types_die (type, subr_die);
11445 }
11446
11447 /* Generate a DIE for a type definition. */
11448
11449 static void
11450 gen_typedef_die (tree decl, dw_die_ref context_die)
11451 {
11452 dw_die_ref type_die;
11453 tree origin;
11454
11455 if (TREE_ASM_WRITTEN (decl))
11456 return;
11457
11458 TREE_ASM_WRITTEN (decl) = 1;
11459 type_die = new_die (DW_TAG_typedef, context_die, decl);
11460 origin = decl_ultimate_origin (decl);
11461 if (origin != NULL)
11462 add_abstract_origin_attribute (type_die, origin);
11463 else
11464 {
11465 tree type;
11466
11467 add_name_and_src_coords_attributes (type_die, decl);
11468 if (DECL_ORIGINAL_TYPE (decl))
11469 {
11470 type = DECL_ORIGINAL_TYPE (decl);
11471
11472 if (type == TREE_TYPE (decl))
11473 abort ();
11474 else
11475 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11476 }
11477 else
11478 type = TREE_TYPE (decl);
11479
11480 add_type_attribute (type_die, type, TREE_READONLY (decl),
11481 TREE_THIS_VOLATILE (decl), context_die);
11482 }
11483
11484 if (DECL_ABSTRACT (decl))
11485 equate_decl_number_to_die (decl, type_die);
11486 }
11487
11488 /* Generate a type description DIE. */
11489
11490 static void
11491 gen_type_die (tree type, dw_die_ref context_die)
11492 {
11493 int need_pop;
11494
11495 if (type == NULL_TREE || type == error_mark_node)
11496 return;
11497
11498 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11499 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11500 {
11501 if (TREE_ASM_WRITTEN (type))
11502 return;
11503
11504 /* Prevent broken recursion; we can't hand off to the same type. */
11505 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
11506 abort ();
11507
11508 TREE_ASM_WRITTEN (type) = 1;
11509 gen_decl_die (TYPE_NAME (type), context_die);
11510 return;
11511 }
11512
11513 /* We are going to output a DIE to represent the unqualified version
11514 of this type (i.e. without any const or volatile qualifiers) so
11515 get the main variant (i.e. the unqualified version) of this type
11516 now. (Vectors are special because the debugging info is in the
11517 cloned type itself). */
11518 if (TREE_CODE (type) != VECTOR_TYPE)
11519 type = type_main_variant (type);
11520
11521 if (TREE_ASM_WRITTEN (type))
11522 return;
11523
11524 switch (TREE_CODE (type))
11525 {
11526 case ERROR_MARK:
11527 break;
11528
11529 case POINTER_TYPE:
11530 case REFERENCE_TYPE:
11531 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11532 ensures that the gen_type_die recursion will terminate even if the
11533 type is recursive. Recursive types are possible in Ada. */
11534 /* ??? We could perhaps do this for all types before the switch
11535 statement. */
11536 TREE_ASM_WRITTEN (type) = 1;
11537
11538 /* For these types, all that is required is that we output a DIE (or a
11539 set of DIEs) to represent the "basis" type. */
11540 gen_type_die (TREE_TYPE (type), context_die);
11541 break;
11542
11543 case OFFSET_TYPE:
11544 /* This code is used for C++ pointer-to-data-member types.
11545 Output a description of the relevant class type. */
11546 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
11547
11548 /* Output a description of the type of the object pointed to. */
11549 gen_type_die (TREE_TYPE (type), context_die);
11550
11551 /* Now output a DIE to represent this pointer-to-data-member type
11552 itself. */
11553 gen_ptr_to_mbr_type_die (type, context_die);
11554 break;
11555
11556 case SET_TYPE:
11557 gen_type_die (TYPE_DOMAIN (type), context_die);
11558 gen_set_type_die (type, context_die);
11559 break;
11560
11561 case FILE_TYPE:
11562 gen_type_die (TREE_TYPE (type), context_die);
11563 abort (); /* No way to represent these in Dwarf yet! */
11564 break;
11565
11566 case FUNCTION_TYPE:
11567 /* Force out return type (in case it wasn't forced out already). */
11568 gen_type_die (TREE_TYPE (type), context_die);
11569 gen_subroutine_type_die (type, context_die);
11570 break;
11571
11572 case METHOD_TYPE:
11573 /* Force out return type (in case it wasn't forced out already). */
11574 gen_type_die (TREE_TYPE (type), context_die);
11575 gen_subroutine_type_die (type, context_die);
11576 break;
11577
11578 case ARRAY_TYPE:
11579 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11580 {
11581 gen_type_die (TREE_TYPE (type), context_die);
11582 gen_string_type_die (type, context_die);
11583 }
11584 else
11585 gen_array_type_die (type, context_die);
11586 break;
11587
11588 case VECTOR_TYPE:
11589 gen_array_type_die (type, context_die);
11590 break;
11591
11592 case ENUMERAL_TYPE:
11593 case RECORD_TYPE:
11594 case UNION_TYPE:
11595 case QUAL_UNION_TYPE:
11596 /* If this is a nested type whose containing class hasn't been written
11597 out yet, writing it out will cover this one, too. This does not apply
11598 to instantiations of member class templates; they need to be added to
11599 the containing class as they are generated. FIXME: This hurts the
11600 idea of combining type decls from multiple TUs, since we can't predict
11601 what set of template instantiations we'll get. */
11602 if (TYPE_CONTEXT (type)
11603 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11604 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
11605 {
11606 gen_type_die (TYPE_CONTEXT (type), context_die);
11607
11608 if (TREE_ASM_WRITTEN (type))
11609 return;
11610
11611 /* If that failed, attach ourselves to the stub. */
11612 push_decl_scope (TYPE_CONTEXT (type));
11613 context_die = lookup_type_die (TYPE_CONTEXT (type));
11614 need_pop = 1;
11615 }
11616 else
11617 {
11618 declare_in_namespace (type, context_die);
11619 need_pop = 0;
11620 }
11621
11622 if (TREE_CODE (type) == ENUMERAL_TYPE)
11623 gen_enumeration_type_die (type, context_die);
11624 else
11625 gen_struct_or_union_type_die (type, context_die);
11626
11627 if (need_pop)
11628 pop_decl_scope ();
11629
11630 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11631 it up if it is ever completed. gen_*_type_die will set it for us
11632 when appropriate. */
11633 return;
11634
11635 case VOID_TYPE:
11636 case INTEGER_TYPE:
11637 case REAL_TYPE:
11638 case COMPLEX_TYPE:
11639 case BOOLEAN_TYPE:
11640 case CHAR_TYPE:
11641 /* No DIEs needed for fundamental types. */
11642 break;
11643
11644 case LANG_TYPE:
11645 /* No Dwarf representation currently defined. */
11646 break;
11647
11648 default:
11649 abort ();
11650 }
11651
11652 TREE_ASM_WRITTEN (type) = 1;
11653 }
11654
11655 /* Generate a DIE for a tagged type instantiation. */
11656
11657 static void
11658 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
11659 {
11660 if (type == NULL_TREE || type == error_mark_node)
11661 return;
11662
11663 /* We are going to output a DIE to represent the unqualified version of
11664 this type (i.e. without any const or volatile qualifiers) so make sure
11665 that we have the main variant (i.e. the unqualified version) of this
11666 type now. */
11667 if (type != type_main_variant (type))
11668 abort ();
11669
11670 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11671 an instance of an unresolved type. */
11672
11673 switch (TREE_CODE (type))
11674 {
11675 case ERROR_MARK:
11676 break;
11677
11678 case ENUMERAL_TYPE:
11679 gen_inlined_enumeration_type_die (type, context_die);
11680 break;
11681
11682 case RECORD_TYPE:
11683 gen_inlined_structure_type_die (type, context_die);
11684 break;
11685
11686 case UNION_TYPE:
11687 case QUAL_UNION_TYPE:
11688 gen_inlined_union_type_die (type, context_die);
11689 break;
11690
11691 default:
11692 abort ();
11693 }
11694 }
11695
11696 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11697 things which are local to the given block. */
11698
11699 static void
11700 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
11701 {
11702 int must_output_die = 0;
11703 tree origin;
11704 tree decl;
11705 enum tree_code origin_code;
11706
11707 /* Ignore blocks never really used to make RTL. */
11708 if (stmt == NULL_TREE || !TREE_USED (stmt)
11709 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
11710 return;
11711
11712 /* If the block is one fragment of a non-contiguous block, do not
11713 process the variables, since they will have been done by the
11714 origin block. Do process subblocks. */
11715 if (BLOCK_FRAGMENT_ORIGIN (stmt))
11716 {
11717 tree sub;
11718
11719 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
11720 gen_block_die (sub, context_die, depth + 1);
11721
11722 return;
11723 }
11724
11725 /* Determine the "ultimate origin" of this block. This block may be an
11726 inlined instance of an inlined instance of inline function, so we have
11727 to trace all of the way back through the origin chain to find out what
11728 sort of node actually served as the original seed for the creation of
11729 the current block. */
11730 origin = block_ultimate_origin (stmt);
11731 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
11732
11733 /* Determine if we need to output any Dwarf DIEs at all to represent this
11734 block. */
11735 if (origin_code == FUNCTION_DECL)
11736 /* The outer scopes for inlinings *must* always be represented. We
11737 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
11738 must_output_die = 1;
11739 else
11740 {
11741 /* In the case where the current block represents an inlining of the
11742 "body block" of an inline function, we must *NOT* output any DIE for
11743 this block because we have already output a DIE to represent the whole
11744 inlined function scope and the "body block" of any function doesn't
11745 really represent a different scope according to ANSI C rules. So we
11746 check here to make sure that this block does not represent a "body
11747 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
11748 if (! is_body_block (origin ? origin : stmt))
11749 {
11750 /* Determine if this block directly contains any "significant"
11751 local declarations which we will need to output DIEs for. */
11752 if (debug_info_level > DINFO_LEVEL_TERSE)
11753 /* We are not in terse mode so *any* local declaration counts
11754 as being a "significant" one. */
11755 must_output_die = (BLOCK_VARS (stmt) != NULL);
11756 else
11757 /* We are in terse mode, so only local (nested) function
11758 definitions count as "significant" local declarations. */
11759 for (decl = BLOCK_VARS (stmt);
11760 decl != NULL; decl = TREE_CHAIN (decl))
11761 if (TREE_CODE (decl) == FUNCTION_DECL
11762 && DECL_INITIAL (decl))
11763 {
11764 must_output_die = 1;
11765 break;
11766 }
11767 }
11768 }
11769
11770 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
11771 DIE for any block which contains no significant local declarations at
11772 all. Rather, in such cases we just call `decls_for_scope' so that any
11773 needed Dwarf info for any sub-blocks will get properly generated. Note
11774 that in terse mode, our definition of what constitutes a "significant"
11775 local declaration gets restricted to include only inlined function
11776 instances and local (nested) function definitions. */
11777 if (must_output_die)
11778 {
11779 if (origin_code == FUNCTION_DECL)
11780 gen_inlined_subroutine_die (stmt, context_die, depth);
11781 else
11782 gen_lexical_block_die (stmt, context_die, depth);
11783 }
11784 else
11785 decls_for_scope (stmt, context_die, depth);
11786 }
11787
11788 /* Generate all of the decls declared within a given scope and (recursively)
11789 all of its sub-blocks. */
11790
11791 static void
11792 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
11793 {
11794 tree decl;
11795 tree subblocks;
11796
11797 /* Ignore blocks never really used to make RTL. */
11798 if (stmt == NULL_TREE || ! TREE_USED (stmt))
11799 return;
11800
11801 /* Output the DIEs to represent all of the data objects and typedefs
11802 declared directly within this block but not within any nested
11803 sub-blocks. Also, nested function and tag DIEs have been
11804 generated with a parent of NULL; fix that up now. */
11805 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
11806 {
11807 dw_die_ref die;
11808
11809 if (TREE_CODE (decl) == FUNCTION_DECL)
11810 die = lookup_decl_die (decl);
11811 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
11812 die = lookup_type_die (TREE_TYPE (decl));
11813 else
11814 die = NULL;
11815
11816 if (die != NULL && die->die_parent == NULL)
11817 add_child_die (context_die, die);
11818 else
11819 gen_decl_die (decl, context_die);
11820 }
11821
11822 /* If we're at -g1, we're not interested in subblocks. */
11823 if (debug_info_level <= DINFO_LEVEL_TERSE)
11824 return;
11825
11826 /* Output the DIEs to represent all sub-blocks (and the items declared
11827 therein) of this block. */
11828 for (subblocks = BLOCK_SUBBLOCKS (stmt);
11829 subblocks != NULL;
11830 subblocks = BLOCK_CHAIN (subblocks))
11831 gen_block_die (subblocks, context_die, depth + 1);
11832 }
11833
11834 /* Is this a typedef we can avoid emitting? */
11835
11836 static inline int
11837 is_redundant_typedef (tree decl)
11838 {
11839 if (TYPE_DECL_IS_STUB (decl))
11840 return 1;
11841
11842 if (DECL_ARTIFICIAL (decl)
11843 && DECL_CONTEXT (decl)
11844 && is_tagged_type (DECL_CONTEXT (decl))
11845 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
11846 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
11847 /* Also ignore the artificial member typedef for the class name. */
11848 return 1;
11849
11850 return 0;
11851 }
11852
11853 /* Returns the DIE for namespace NS or aborts.
11854
11855 Note that namespaces don't really have a lexical context, so there's no
11856 need to pass in a context_die. They always go inside their containing
11857 namespace, or comp_unit_die if none. */
11858
11859 static dw_die_ref
11860 force_namespace_die (tree ns)
11861 {
11862 dw_die_ref ns_die;
11863
11864 dwarf2out_decl (ns);
11865 ns_die = lookup_decl_die (ns);
11866 if (!ns_die)
11867 abort();
11868
11869 return ns_die;
11870 }
11871
11872 /* Force out any required namespaces to be able to output DECL,
11873 and return the new context_die for it, if it's changed. */
11874
11875 static dw_die_ref
11876 setup_namespace_context (tree thing, dw_die_ref context_die)
11877 {
11878 tree context = DECL_P (thing) ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing);
11879 if (context && TREE_CODE (context) == NAMESPACE_DECL)
11880 /* Force out the namespace. */
11881 context_die = force_namespace_die (context);
11882
11883 return context_die;
11884 }
11885
11886 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
11887 type) within its namespace, if appropriate.
11888
11889 For compatibility with older debuggers, namespace DIEs only contain
11890 declarations; all definitions are emitted at CU scope. */
11891
11892 static void
11893 declare_in_namespace (tree thing, dw_die_ref context_die)
11894 {
11895 dw_die_ref ns_context;
11896
11897 if (debug_info_level <= DINFO_LEVEL_TERSE)
11898 return;
11899
11900 ns_context = setup_namespace_context (thing, context_die);
11901
11902 if (ns_context != context_die)
11903 {
11904 if (DECL_P (thing))
11905 gen_decl_die (thing, ns_context);
11906 else
11907 gen_type_die (thing, ns_context);
11908 }
11909 }
11910
11911 /* Generate a DIE for a namespace or namespace alias. */
11912
11913 static void
11914 gen_namespace_die (tree decl)
11915 {
11916 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
11917
11918 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
11919 they are an alias of. */
11920 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
11921 {
11922 /* Output a real namespace. */
11923 dw_die_ref namespace_die
11924 = new_die (DW_TAG_namespace, context_die, decl);
11925 add_name_and_src_coords_attributes (namespace_die, decl);
11926 equate_decl_number_to_die (decl, namespace_die);
11927 }
11928 else
11929 {
11930 /* Output a namespace alias. */
11931
11932 /* Force out the namespace we are an alias of, if necessary. */
11933 dw_die_ref origin_die
11934 = force_namespace_die (DECL_ABSTRACT_ORIGIN (decl));
11935
11936 /* Now create the namespace alias DIE. */
11937 dw_die_ref namespace_die
11938 = new_die (DW_TAG_imported_declaration, context_die, decl);
11939 add_name_and_src_coords_attributes (namespace_die, decl);
11940 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
11941 equate_decl_number_to_die (decl, namespace_die);
11942 }
11943 }
11944
11945 /* Generate Dwarf debug information for a decl described by DECL. */
11946
11947 static void
11948 gen_decl_die (tree decl, dw_die_ref context_die)
11949 {
11950 tree origin;
11951
11952 if (DECL_P (decl) && DECL_IGNORED_P (decl))
11953 return;
11954
11955 switch (TREE_CODE (decl))
11956 {
11957 case ERROR_MARK:
11958 break;
11959
11960 case CONST_DECL:
11961 /* The individual enumerators of an enum type get output when we output
11962 the Dwarf representation of the relevant enum type itself. */
11963 break;
11964
11965 case FUNCTION_DECL:
11966 /* Don't output any DIEs to represent mere function declarations,
11967 unless they are class members or explicit block externs. */
11968 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
11969 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
11970 break;
11971
11972 /* If we're emitting a clone, emit info for the abstract instance. */
11973 if (DECL_ORIGIN (decl) != decl)
11974 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
11975
11976 /* If we're emitting an out-of-line copy of an inline function,
11977 emit info for the abstract instance and set up to refer to it. */
11978 else if (cgraph_function_possibly_inlined_p (decl)
11979 && ! DECL_ABSTRACT (decl)
11980 && ! class_or_namespace_scope_p (context_die)
11981 /* dwarf2out_abstract_function won't emit a die if this is just
11982 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
11983 that case, because that works only if we have a die. */
11984 && DECL_INITIAL (decl) != NULL_TREE)
11985 {
11986 dwarf2out_abstract_function (decl);
11987 set_decl_origin_self (decl);
11988 }
11989
11990 /* Otherwise we're emitting the primary DIE for this decl. */
11991 else if (debug_info_level > DINFO_LEVEL_TERSE)
11992 {
11993 /* Before we describe the FUNCTION_DECL itself, make sure that we
11994 have described its return type. */
11995 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
11996
11997 /* And its virtual context. */
11998 if (DECL_VINDEX (decl) != NULL_TREE)
11999 gen_type_die (DECL_CONTEXT (decl), context_die);
12000
12001 /* And its containing type. */
12002 origin = decl_class_context (decl);
12003 if (origin != NULL_TREE)
12004 gen_type_die_for_member (origin, decl, context_die);
12005
12006 /* And its containing namespace. */
12007 declare_in_namespace (decl, context_die);
12008 }
12009
12010 /* Now output a DIE to represent the function itself. */
12011 gen_subprogram_die (decl, context_die);
12012 break;
12013
12014 case TYPE_DECL:
12015 /* If we are in terse mode, don't generate any DIEs to represent any
12016 actual typedefs. */
12017 if (debug_info_level <= DINFO_LEVEL_TERSE)
12018 break;
12019
12020 /* In the special case of a TYPE_DECL node representing the declaration
12021 of some type tag, if the given TYPE_DECL is marked as having been
12022 instantiated from some other (original) TYPE_DECL node (e.g. one which
12023 was generated within the original definition of an inline function) we
12024 have to generate a special (abbreviated) DW_TAG_structure_type,
12025 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12026 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12027 {
12028 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12029 break;
12030 }
12031
12032 if (is_redundant_typedef (decl))
12033 gen_type_die (TREE_TYPE (decl), context_die);
12034 else
12035 /* Output a DIE to represent the typedef itself. */
12036 gen_typedef_die (decl, context_die);
12037 break;
12038
12039 case LABEL_DECL:
12040 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12041 gen_label_die (decl, context_die);
12042 break;
12043
12044 case VAR_DECL:
12045 /* If we are in terse mode, don't generate any DIEs to represent any
12046 variable declarations or definitions. */
12047 if (debug_info_level <= DINFO_LEVEL_TERSE)
12048 break;
12049
12050 /* Output any DIEs that are needed to specify the type of this data
12051 object. */
12052 gen_type_die (TREE_TYPE (decl), context_die);
12053
12054 /* And its containing type. */
12055 origin = decl_class_context (decl);
12056 if (origin != NULL_TREE)
12057 gen_type_die_for_member (origin, decl, context_die);
12058
12059 /* And its containing namespace. */
12060 declare_in_namespace (decl, context_die);
12061
12062 /* Now output the DIE to represent the data object itself. This gets
12063 complicated because of the possibility that the VAR_DECL really
12064 represents an inlined instance of a formal parameter for an inline
12065 function. */
12066 origin = decl_ultimate_origin (decl);
12067 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12068 gen_formal_parameter_die (decl, context_die);
12069 else
12070 gen_variable_die (decl, context_die);
12071 break;
12072
12073 case FIELD_DECL:
12074 /* Ignore the nameless fields that are used to skip bits but handle C++
12075 anonymous unions. */
12076 if (DECL_NAME (decl) != NULL_TREE
12077 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
12078 {
12079 gen_type_die (member_declared_type (decl), context_die);
12080 gen_field_die (decl, context_die);
12081 }
12082 break;
12083
12084 case PARM_DECL:
12085 gen_type_die (TREE_TYPE (decl), context_die);
12086 gen_formal_parameter_die (decl, context_die);
12087 break;
12088
12089 case NAMESPACE_DECL:
12090 gen_namespace_die (decl);
12091 break;
12092
12093 default:
12094 if ((int)TREE_CODE (decl) > NUM_TREE_CODES)
12095 /* Probably some frontend-internal decl. Assume we don't care. */
12096 break;
12097 abort ();
12098 }
12099 }
12100 \f
12101 /* Add Ada "use" clause information for SGI Workshop debugger. */
12102
12103 void
12104 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
12105 {
12106 unsigned int file_index;
12107
12108 if (filename != NULL)
12109 {
12110 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12111 tree context_list_decl
12112 = build_decl (LABEL_DECL, get_identifier (context_list),
12113 void_type_node);
12114
12115 TREE_PUBLIC (context_list_decl) = TRUE;
12116 add_name_attribute (unit_die, context_list);
12117 file_index = lookup_filename (filename);
12118 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12119 add_pubname (context_list_decl, unit_die);
12120 }
12121 }
12122
12123 /* Output debug information for global decl DECL. Called from toplev.c after
12124 compilation proper has finished. */
12125
12126 static void
12127 dwarf2out_global_decl (tree decl)
12128 {
12129 /* Output DWARF2 information for file-scope tentative data object
12130 declarations, file-scope (extern) function declarations (which had no
12131 corresponding body) and file-scope tagged type declarations and
12132 definitions which have not yet been forced out. */
12133 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12134 dwarf2out_decl (decl);
12135 }
12136
12137 /* Write the debugging output for DECL. */
12138
12139 void
12140 dwarf2out_decl (tree decl)
12141 {
12142 dw_die_ref context_die = comp_unit_die;
12143
12144 switch (TREE_CODE (decl))
12145 {
12146 case ERROR_MARK:
12147 return;
12148
12149 case FUNCTION_DECL:
12150 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
12151 builtin function. Explicit programmer-supplied declarations of
12152 these same functions should NOT be ignored however. */
12153 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
12154 return;
12155
12156 /* What we would really like to do here is to filter out all mere
12157 file-scope declarations of file-scope functions which are never
12158 referenced later within this translation unit (and keep all of ones
12159 that *are* referenced later on) but we aren't clairvoyant, so we have
12160 no idea which functions will be referenced in the future (i.e. later
12161 on within the current translation unit). So here we just ignore all
12162 file-scope function declarations which are not also definitions. If
12163 and when the debugger needs to know something about these functions,
12164 it will have to hunt around and find the DWARF information associated
12165 with the definition of the function.
12166
12167 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12168 nodes represent definitions and which ones represent mere
12169 declarations. We have to check DECL_INITIAL instead. That's because
12170 the C front-end supports some weird semantics for "extern inline"
12171 function definitions. These can get inlined within the current
12172 translation unit (an thus, we need to generate Dwarf info for their
12173 abstract instances so that the Dwarf info for the concrete inlined
12174 instances can have something to refer to) but the compiler never
12175 generates any out-of-lines instances of such things (despite the fact
12176 that they *are* definitions).
12177
12178 The important point is that the C front-end marks these "extern
12179 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12180 them anyway. Note that the C++ front-end also plays some similar games
12181 for inline function definitions appearing within include files which
12182 also contain `#pragma interface' pragmas. */
12183 if (DECL_INITIAL (decl) == NULL_TREE)
12184 return;
12185
12186 /* If we're a nested function, initially use a parent of NULL; if we're
12187 a plain function, this will be fixed up in decls_for_scope. If
12188 we're a method, it will be ignored, since we already have a DIE. */
12189 if (decl_function_context (decl)
12190 /* But if we're in terse mode, we don't care about scope. */
12191 && debug_info_level > DINFO_LEVEL_TERSE)
12192 context_die = NULL;
12193 break;
12194
12195 case VAR_DECL:
12196 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12197 declaration and if the declaration was never even referenced from
12198 within this entire compilation unit. We suppress these DIEs in
12199 order to save space in the .debug section (by eliminating entries
12200 which are probably useless). Note that we must not suppress
12201 block-local extern declarations (whether used or not) because that
12202 would screw-up the debugger's name lookup mechanism and cause it to
12203 miss things which really ought to be in scope at a given point. */
12204 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12205 return;
12206
12207 /* If we are in terse mode, don't generate any DIEs to represent any
12208 variable declarations or definitions. */
12209 if (debug_info_level <= DINFO_LEVEL_TERSE)
12210 return;
12211 break;
12212
12213 case NAMESPACE_DECL:
12214 if (debug_info_level <= DINFO_LEVEL_TERSE)
12215 return;
12216 if (lookup_decl_die (decl) != NULL)
12217 return;
12218 break;
12219
12220 case TYPE_DECL:
12221 /* Don't emit stubs for types unless they are needed by other DIEs. */
12222 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12223 return;
12224
12225 /* Don't bother trying to generate any DIEs to represent any of the
12226 normal built-in types for the language we are compiling. */
12227 if (DECL_SOURCE_LINE (decl) == 0)
12228 {
12229 /* OK, we need to generate one for `bool' so GDB knows what type
12230 comparisons have. */
12231 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12232 == DW_LANG_C_plus_plus)
12233 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12234 && ! DECL_IGNORED_P (decl))
12235 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12236
12237 return;
12238 }
12239
12240 /* If we are in terse mode, don't generate any DIEs for types. */
12241 if (debug_info_level <= DINFO_LEVEL_TERSE)
12242 return;
12243
12244 /* If we're a function-scope tag, initially use a parent of NULL;
12245 this will be fixed up in decls_for_scope. */
12246 if (decl_function_context (decl))
12247 context_die = NULL;
12248
12249 break;
12250
12251 default:
12252 return;
12253 }
12254
12255 gen_decl_die (decl, context_die);
12256 }
12257
12258 /* Output a marker (i.e. a label) for the beginning of the generated code for
12259 a lexical block. */
12260
12261 static void
12262 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
12263 unsigned int blocknum)
12264 {
12265 function_section (current_function_decl);
12266 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12267 }
12268
12269 /* Output a marker (i.e. a label) for the end of the generated code for a
12270 lexical block. */
12271
12272 static void
12273 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
12274 {
12275 function_section (current_function_decl);
12276 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12277 }
12278
12279 /* Returns nonzero if it is appropriate not to emit any debugging
12280 information for BLOCK, because it doesn't contain any instructions.
12281
12282 Don't allow this for blocks with nested functions or local classes
12283 as we would end up with orphans, and in the presence of scheduling
12284 we may end up calling them anyway. */
12285
12286 static bool
12287 dwarf2out_ignore_block (tree block)
12288 {
12289 tree decl;
12290
12291 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12292 if (TREE_CODE (decl) == FUNCTION_DECL
12293 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12294 return 0;
12295
12296 return 1;
12297 }
12298
12299 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12300 dwarf2out.c) and return its "index". The index of each (known) filename is
12301 just a unique number which is associated with only that one filename. We
12302 need such numbers for the sake of generating labels (in the .debug_sfnames
12303 section) and references to those files numbers (in the .debug_srcinfo
12304 and.debug_macinfo sections). If the filename given as an argument is not
12305 found in our current list, add it to the list and assign it the next
12306 available unique index number. In order to speed up searches, we remember
12307 the index of the filename was looked up last. This handles the majority of
12308 all searches. */
12309
12310 static unsigned
12311 lookup_filename (const char *file_name)
12312 {
12313 size_t i, n;
12314 char *save_file_name;
12315
12316 /* Check to see if the file name that was searched on the previous
12317 call matches this file name. If so, return the index. */
12318 if (file_table_last_lookup_index != 0)
12319 {
12320 const char *last
12321 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12322 if (strcmp (file_name, last) == 0)
12323 return file_table_last_lookup_index;
12324 }
12325
12326 /* Didn't match the previous lookup, search the table */
12327 n = VARRAY_ACTIVE_SIZE (file_table);
12328 for (i = 1; i < n; i++)
12329 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12330 {
12331 file_table_last_lookup_index = i;
12332 return i;
12333 }
12334
12335 /* Add the new entry to the end of the filename table. */
12336 file_table_last_lookup_index = n;
12337 save_file_name = (char *) ggc_strdup (file_name);
12338 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12339 VARRAY_PUSH_UINT (file_table_emitted, 0);
12340
12341 return i;
12342 }
12343
12344 static int
12345 maybe_emit_file (int fileno)
12346 {
12347 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12348 {
12349 if (!VARRAY_UINT (file_table_emitted, fileno))
12350 {
12351 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12352 fprintf (asm_out_file, "\t.file %u ",
12353 VARRAY_UINT (file_table_emitted, fileno));
12354 output_quoted_string (asm_out_file,
12355 VARRAY_CHAR_PTR (file_table, fileno));
12356 fputc ('\n', asm_out_file);
12357 }
12358 return VARRAY_UINT (file_table_emitted, fileno);
12359 }
12360 else
12361 return fileno;
12362 }
12363
12364 static void
12365 init_file_table (void)
12366 {
12367 /* Allocate the initial hunk of the file_table. */
12368 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
12369 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
12370
12371 /* Skip the first entry - file numbers begin at 1. */
12372 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
12373 VARRAY_PUSH_UINT (file_table_emitted, 0);
12374 file_table_last_lookup_index = 0;
12375 }
12376
12377 /* Output a label to mark the beginning of a source code line entry
12378 and record information relating to this source line, in
12379 'line_info_table' for later output of the .debug_line section. */
12380
12381 static void
12382 dwarf2out_source_line (unsigned int line, const char *filename)
12383 {
12384 if (debug_info_level >= DINFO_LEVEL_NORMAL
12385 && line != 0)
12386 {
12387 function_section (current_function_decl);
12388
12389 /* If requested, emit something human-readable. */
12390 if (flag_debug_asm)
12391 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
12392 filename, line);
12393
12394 if (DWARF2_ASM_LINE_DEBUG_INFO)
12395 {
12396 unsigned file_num = lookup_filename (filename);
12397
12398 file_num = maybe_emit_file (file_num);
12399
12400 /* Emit the .loc directive understood by GNU as. */
12401 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
12402
12403 /* Indicate that line number info exists. */
12404 line_info_table_in_use++;
12405
12406 /* Indicate that multiple line number tables exist. */
12407 if (DECL_SECTION_NAME (current_function_decl))
12408 separate_line_info_table_in_use++;
12409 }
12410 else if (DECL_SECTION_NAME (current_function_decl))
12411 {
12412 dw_separate_line_info_ref line_info;
12413 (*targetm.asm_out.internal_label) (asm_out_file, SEPARATE_LINE_CODE_LABEL,
12414 separate_line_info_table_in_use);
12415
12416 /* expand the line info table if necessary */
12417 if (separate_line_info_table_in_use
12418 == separate_line_info_table_allocated)
12419 {
12420 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12421 separate_line_info_table
12422 = ggc_realloc (separate_line_info_table,
12423 separate_line_info_table_allocated
12424 * sizeof (dw_separate_line_info_entry));
12425 memset (separate_line_info_table
12426 + separate_line_info_table_in_use,
12427 0,
12428 (LINE_INFO_TABLE_INCREMENT
12429 * sizeof (dw_separate_line_info_entry)));
12430 }
12431
12432 /* Add the new entry at the end of the line_info_table. */
12433 line_info
12434 = &separate_line_info_table[separate_line_info_table_in_use++];
12435 line_info->dw_file_num = lookup_filename (filename);
12436 line_info->dw_line_num = line;
12437 line_info->function = current_function_funcdef_no;
12438 }
12439 else
12440 {
12441 dw_line_info_ref line_info;
12442
12443 (*targetm.asm_out.internal_label) (asm_out_file, LINE_CODE_LABEL,
12444 line_info_table_in_use);
12445
12446 /* Expand the line info table if necessary. */
12447 if (line_info_table_in_use == line_info_table_allocated)
12448 {
12449 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12450 line_info_table
12451 = ggc_realloc (line_info_table,
12452 (line_info_table_allocated
12453 * sizeof (dw_line_info_entry)));
12454 memset (line_info_table + line_info_table_in_use, 0,
12455 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
12456 }
12457
12458 /* Add the new entry at the end of the line_info_table. */
12459 line_info = &line_info_table[line_info_table_in_use++];
12460 line_info->dw_file_num = lookup_filename (filename);
12461 line_info->dw_line_num = line;
12462 }
12463 }
12464 }
12465
12466 /* Record the beginning of a new source file. */
12467
12468 static void
12469 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
12470 {
12471 if (flag_eliminate_dwarf2_dups)
12472 {
12473 /* Record the beginning of the file for break_out_includes. */
12474 dw_die_ref bincl_die;
12475
12476 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
12477 add_AT_string (bincl_die, DW_AT_name, filename);
12478 }
12479
12480 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12481 {
12482 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12483 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
12484 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
12485 lineno);
12486 maybe_emit_file (lookup_filename (filename));
12487 dw2_asm_output_data_uleb128 (lookup_filename (filename),
12488 "Filename we just started");
12489 }
12490 }
12491
12492 /* Record the end of a source file. */
12493
12494 static void
12495 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
12496 {
12497 if (flag_eliminate_dwarf2_dups)
12498 /* Record the end of the file for break_out_includes. */
12499 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
12500
12501 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12502 {
12503 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12504 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12505 }
12506 }
12507
12508 /* Called from debug_define in toplev.c. The `buffer' parameter contains
12509 the tail part of the directive line, i.e. the part which is past the
12510 initial whitespace, #, whitespace, directive-name, whitespace part. */
12511
12512 static void
12513 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
12514 const char *buffer ATTRIBUTE_UNUSED)
12515 {
12516 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12517 {
12518 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12519 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
12520 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12521 dw2_asm_output_nstring (buffer, -1, "The macro");
12522 }
12523 }
12524
12525 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
12526 the tail part of the directive line, i.e. the part which is past the
12527 initial whitespace, #, whitespace, directive-name, whitespace part. */
12528
12529 static void
12530 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
12531 const char *buffer ATTRIBUTE_UNUSED)
12532 {
12533 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12534 {
12535 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12536 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
12537 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12538 dw2_asm_output_nstring (buffer, -1, "The macro");
12539 }
12540 }
12541
12542 /* Set up for Dwarf output at the start of compilation. */
12543
12544 static void
12545 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
12546 {
12547 init_file_table ();
12548
12549 /* Allocate the initial hunk of the decl_die_table. */
12550 decl_die_table = ggc_alloc_cleared (DECL_DIE_TABLE_INCREMENT
12551 * sizeof (dw_die_ref));
12552 decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
12553 decl_die_table_in_use = 0;
12554
12555 /* Allocate the initial hunk of the decl_scope_table. */
12556 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
12557
12558 /* Allocate the initial hunk of the abbrev_die_table. */
12559 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
12560 * sizeof (dw_die_ref));
12561 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
12562 /* Zero-th entry is allocated, but unused */
12563 abbrev_die_table_in_use = 1;
12564
12565 /* Allocate the initial hunk of the line_info_table. */
12566 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
12567 * sizeof (dw_line_info_entry));
12568 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
12569
12570 /* Zero-th entry is allocated, but unused */
12571 line_info_table_in_use = 1;
12572
12573 /* Generate the initial DIE for the .debug section. Note that the (string)
12574 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
12575 will (typically) be a relative pathname and that this pathname should be
12576 taken as being relative to the directory from which the compiler was
12577 invoked when the given (base) source file was compiled. We will fill
12578 in this value in dwarf2out_finish. */
12579 comp_unit_die = gen_compile_unit_die (NULL);
12580
12581 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
12582
12583 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
12584
12585 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
12586 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
12587 DEBUG_ABBREV_SECTION_LABEL, 0);
12588 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12589 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
12590 else
12591 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
12592
12593 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
12594 DEBUG_INFO_SECTION_LABEL, 0);
12595 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
12596 DEBUG_LINE_SECTION_LABEL, 0);
12597 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
12598 DEBUG_RANGES_SECTION_LABEL, 0);
12599 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12600 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
12601 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
12602 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
12603 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12604 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
12605
12606 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12607 {
12608 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12609 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
12610 DEBUG_MACINFO_SECTION_LABEL, 0);
12611 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
12612 }
12613
12614 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12615 {
12616 text_section ();
12617 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
12618 }
12619 }
12620
12621 /* A helper function for dwarf2out_finish called through
12622 ht_forall. Emit one queued .debug_str string. */
12623
12624 static int
12625 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
12626 {
12627 struct indirect_string_node *node = (struct indirect_string_node *) *h;
12628
12629 if (node->form == DW_FORM_strp)
12630 {
12631 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
12632 ASM_OUTPUT_LABEL (asm_out_file, node->label);
12633 assemble_string (node->str, strlen (node->str) + 1);
12634 }
12635
12636 return 1;
12637 }
12638
12639
12640
12641 /* Clear the marks for a die and its children.
12642 Be cool if the mark isn't set. */
12643
12644 static void
12645 prune_unmark_dies (dw_die_ref die)
12646 {
12647 dw_die_ref c;
12648 die->die_mark = 0;
12649 for (c = die->die_child; c; c = c->die_sib)
12650 prune_unmark_dies (c);
12651 }
12652
12653
12654 /* Given DIE that we're marking as used, find any other dies
12655 it references as attributes and mark them as used. */
12656
12657 static void
12658 prune_unused_types_walk_attribs (dw_die_ref die)
12659 {
12660 dw_attr_ref a;
12661
12662 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
12663 {
12664 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
12665 {
12666 /* A reference to another DIE.
12667 Make sure that it will get emitted. */
12668 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
12669 }
12670 else if (a->dw_attr == DW_AT_decl_file)
12671 {
12672 /* A reference to a file. Make sure the file name is emitted. */
12673 a->dw_attr_val.v.val_unsigned =
12674 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
12675 }
12676 }
12677 }
12678
12679
12680 /* Mark DIE as being used. If DOKIDS is true, then walk down
12681 to DIE's children. */
12682
12683 static void
12684 prune_unused_types_mark (dw_die_ref die, int dokids)
12685 {
12686 dw_die_ref c;
12687
12688 if (die->die_mark == 0)
12689 {
12690 /* We haven't done this node yet. Mark it as used. */
12691 die->die_mark = 1;
12692
12693 /* We also have to mark its parents as used.
12694 (But we don't want to mark our parents' kids due to this.) */
12695 if (die->die_parent)
12696 prune_unused_types_mark (die->die_parent, 0);
12697
12698 /* Mark any referenced nodes. */
12699 prune_unused_types_walk_attribs (die);
12700
12701 /* If this node is a specification,
12702 also mark the definition, if it exists. */
12703 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
12704 prune_unused_types_mark (die->die_definition, 1);
12705 }
12706
12707 if (dokids && die->die_mark != 2)
12708 {
12709 /* We need to walk the children, but haven't done so yet.
12710 Remember that we've walked the kids. */
12711 die->die_mark = 2;
12712
12713 /* Walk them. */
12714 for (c = die->die_child; c; c = c->die_sib)
12715 {
12716 /* If this is an array type, we need to make sure our
12717 kids get marked, even if they're types. */
12718 if (die->die_tag == DW_TAG_array_type)
12719 prune_unused_types_mark (c, 1);
12720 else
12721 prune_unused_types_walk (c);
12722 }
12723 }
12724 }
12725
12726
12727 /* Walk the tree DIE and mark types that we actually use. */
12728
12729 static void
12730 prune_unused_types_walk (dw_die_ref die)
12731 {
12732 dw_die_ref c;
12733
12734 /* Don't do anything if this node is already marked. */
12735 if (die->die_mark)
12736 return;
12737
12738 switch (die->die_tag) {
12739 case DW_TAG_const_type:
12740 case DW_TAG_packed_type:
12741 case DW_TAG_pointer_type:
12742 case DW_TAG_reference_type:
12743 case DW_TAG_volatile_type:
12744 case DW_TAG_typedef:
12745 case DW_TAG_array_type:
12746 case DW_TAG_structure_type:
12747 case DW_TAG_union_type:
12748 case DW_TAG_class_type:
12749 case DW_TAG_friend:
12750 case DW_TAG_variant_part:
12751 case DW_TAG_enumeration_type:
12752 case DW_TAG_subroutine_type:
12753 case DW_TAG_string_type:
12754 case DW_TAG_set_type:
12755 case DW_TAG_subrange_type:
12756 case DW_TAG_ptr_to_member_type:
12757 case DW_TAG_file_type:
12758 /* It's a type node --- don't mark it. */
12759 return;
12760
12761 default:
12762 /* Mark everything else. */
12763 break;
12764 }
12765
12766 die->die_mark = 1;
12767
12768 /* Now, mark any dies referenced from here. */
12769 prune_unused_types_walk_attribs (die);
12770
12771 /* Mark children. */
12772 for (c = die->die_child; c; c = c->die_sib)
12773 prune_unused_types_walk (c);
12774 }
12775
12776
12777 /* Remove from the tree DIE any dies that aren't marked. */
12778
12779 static void
12780 prune_unused_types_prune (dw_die_ref die)
12781 {
12782 dw_die_ref c, p, n;
12783 if (!die->die_mark)
12784 abort();
12785
12786 p = NULL;
12787 for (c = die->die_child; c; c = n)
12788 {
12789 n = c->die_sib;
12790 if (c->die_mark)
12791 {
12792 prune_unused_types_prune (c);
12793 p = c;
12794 }
12795 else
12796 {
12797 if (p)
12798 p->die_sib = n;
12799 else
12800 die->die_child = n;
12801 free_die (c);
12802 }
12803 }
12804 }
12805
12806
12807 /* Remove dies representing declarations that we never use. */
12808
12809 static void
12810 prune_unused_types (void)
12811 {
12812 unsigned int i;
12813 limbo_die_node *node;
12814
12815 /* Clear all the marks. */
12816 prune_unmark_dies (comp_unit_die);
12817 for (node = limbo_die_list; node; node = node->next)
12818 prune_unmark_dies (node->die);
12819
12820 /* Set the mark on nodes that are actually used. */
12821 prune_unused_types_walk (comp_unit_die);
12822 for (node = limbo_die_list; node; node = node->next)
12823 prune_unused_types_walk (node->die);
12824
12825 /* Also set the mark on nodes referenced from the
12826 pubname_table or arange_table. */
12827 for (i = 0; i < pubname_table_in_use; i++)
12828 prune_unused_types_mark (pubname_table[i].die, 1);
12829 for (i = 0; i < arange_table_in_use; i++)
12830 prune_unused_types_mark (arange_table[i], 1);
12831
12832 /* Get rid of nodes that aren't marked. */
12833 prune_unused_types_prune (comp_unit_die);
12834 for (node = limbo_die_list; node; node = node->next)
12835 prune_unused_types_prune (node->die);
12836
12837 /* Leave the marks clear. */
12838 prune_unmark_dies (comp_unit_die);
12839 for (node = limbo_die_list; node; node = node->next)
12840 prune_unmark_dies (node->die);
12841 }
12842
12843 /* Output stuff that dwarf requires at the end of every file,
12844 and generate the DWARF-2 debugging info. */
12845
12846 static void
12847 dwarf2out_finish (const char *filename)
12848 {
12849 limbo_die_node *node, *next_node;
12850 dw_die_ref die = 0;
12851
12852 /* Add the name for the main input file now. We delayed this from
12853 dwarf2out_init to avoid complications with PCH. */
12854 add_name_attribute (comp_unit_die, filename);
12855 if (filename[0] != DIR_SEPARATOR)
12856 add_comp_dir_attribute (comp_unit_die);
12857 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
12858 {
12859 size_t i;
12860 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
12861 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
12862 /* Don't add cwd for <built-in>. */
12863 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
12864 {
12865 add_comp_dir_attribute (comp_unit_die);
12866 break;
12867 }
12868 }
12869
12870 /* Traverse the limbo die list, and add parent/child links. The only
12871 dies without parents that should be here are concrete instances of
12872 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
12873 For concrete instances, we can get the parent die from the abstract
12874 instance. */
12875 for (node = limbo_die_list; node; node = next_node)
12876 {
12877 next_node = node->next;
12878 die = node->die;
12879
12880 if (die->die_parent == NULL)
12881 {
12882 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
12883 tree context;
12884
12885 if (origin)
12886 add_child_die (origin->die_parent, die);
12887 else if (die == comp_unit_die)
12888 ;
12889 /* If this was an expression for a bound involved in a function
12890 return type, it may be a SAVE_EXPR for which we weren't able
12891 to find a DIE previously. So try now. */
12892 else if (node->created_for
12893 && TREE_CODE (node->created_for) == SAVE_EXPR
12894 && 0 != (origin = (lookup_decl_die
12895 (SAVE_EXPR_CONTEXT
12896 (node->created_for)))))
12897 add_child_die (origin, die);
12898 else if (errorcount > 0 || sorrycount > 0)
12899 /* It's OK to be confused by errors in the input. */
12900 add_child_die (comp_unit_die, die);
12901 else if (node->created_for
12902 && ((DECL_P (node->created_for)
12903 && (context = DECL_CONTEXT (node->created_for)))
12904 || (TYPE_P (node->created_for)
12905 && (context = TYPE_CONTEXT (node->created_for))))
12906 && TREE_CODE (context) == FUNCTION_DECL)
12907 {
12908 /* In certain situations, the lexical block containing a
12909 nested function can be optimized away, which results
12910 in the nested function die being orphaned. Likewise
12911 with the return type of that nested function. Force
12912 this to be a child of the containing function. */
12913 origin = lookup_decl_die (context);
12914 if (! origin)
12915 abort ();
12916 add_child_die (origin, die);
12917 }
12918 else
12919 abort ();
12920 }
12921 }
12922
12923 limbo_die_list = NULL;
12924
12925 /* Walk through the list of incomplete types again, trying once more to
12926 emit full debugging info for them. */
12927 retry_incomplete_types ();
12928
12929 /* We need to reverse all the dies before break_out_includes, or
12930 we'll see the end of an include file before the beginning. */
12931 reverse_all_dies (comp_unit_die);
12932
12933 if (flag_eliminate_unused_debug_types)
12934 prune_unused_types ();
12935
12936 /* Generate separate CUs for each of the include files we've seen.
12937 They will go into limbo_die_list. */
12938 if (flag_eliminate_dwarf2_dups)
12939 break_out_includes (comp_unit_die);
12940
12941 /* Traverse the DIE's and add add sibling attributes to those DIE's
12942 that have children. */
12943 add_sibling_attributes (comp_unit_die);
12944 for (node = limbo_die_list; node; node = node->next)
12945 add_sibling_attributes (node->die);
12946
12947 /* Output a terminator label for the .text section. */
12948 text_section ();
12949 (*targetm.asm_out.internal_label) (asm_out_file, TEXT_END_LABEL, 0);
12950
12951 /* Output the source line correspondence table. We must do this
12952 even if there is no line information. Otherwise, on an empty
12953 translation unit, we will generate a present, but empty,
12954 .debug_info section. IRIX 6.5 `nm' will then complain when
12955 examining the file. */
12956 if (! DWARF2_ASM_LINE_DEBUG_INFO)
12957 {
12958 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12959 output_line_info ();
12960 }
12961
12962 /* Output location list section if necessary. */
12963 if (have_location_lists)
12964 {
12965 /* Output the location lists info. */
12966 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
12967 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
12968 DEBUG_LOC_SECTION_LABEL, 0);
12969 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
12970 output_location_lists (die);
12971 have_location_lists = 0;
12972 }
12973
12974 /* We can only use the low/high_pc attributes if all of the code was
12975 in .text. */
12976 if (separate_line_info_table_in_use == 0)
12977 {
12978 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
12979 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
12980 }
12981
12982 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
12983 "base address". Use zero so that these addresses become absolute. */
12984 else if (have_location_lists || ranges_table_in_use)
12985 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
12986
12987 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12988 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
12989 debug_line_section_label);
12990
12991 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12992 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
12993
12994 /* Output all of the compilation units. We put the main one last so that
12995 the offsets are available to output_pubnames. */
12996 for (node = limbo_die_list; node; node = node->next)
12997 output_comp_unit (node->die, 0);
12998
12999 output_comp_unit (comp_unit_die, 0);
13000
13001 /* Output the abbreviation table. */
13002 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13003 output_abbrev_section ();
13004
13005 /* Output public names table if necessary. */
13006 if (pubname_table_in_use)
13007 {
13008 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13009 output_pubnames ();
13010 }
13011
13012 /* Output the address range information. We only put functions in the arange
13013 table, so don't write it out if we don't have any. */
13014 if (fde_table_in_use)
13015 {
13016 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13017 output_aranges ();
13018 }
13019
13020 /* Output ranges section if necessary. */
13021 if (ranges_table_in_use)
13022 {
13023 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13024 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13025 output_ranges ();
13026 }
13027
13028 /* Have to end the primary source file. */
13029 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13030 {
13031 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13032 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13033 dw2_asm_output_data (1, 0, "End compilation unit");
13034 }
13035
13036 /* If we emitted any DW_FORM_strp form attribute, output the string
13037 table too. */
13038 if (debug_str_hash)
13039 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13040 }
13041 #else
13042
13043 /* This should never be used, but its address is needed for comparisons. */
13044 const struct gcc_debug_hooks dwarf2_debug_hooks;
13045
13046 #endif /* DWARF2_DEBUGGING_INFO */
13047
13048 #include "gt-dwarf2out.h"