dwarf2out.c (is_ada, [...]): New functions.
[gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "real.h"
44 #include "rtl.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "reload.h"
49 #include "function.h"
50 #include "output.h"
51 #include "expr.h"
52 #include "libfuncs.h"
53 #include "except.h"
54 #include "dwarf2.h"
55 #include "dwarf2out.h"
56 #include "dwarf2asm.h"
57 #include "toplev.h"
58 #include "varray.h"
59 #include "ggc.h"
60 #include "md5.h"
61 #include "tm_p.h"
62 #include "diagnostic.h"
63 #include "debug.h"
64 #include "target.h"
65 #include "langhooks.h"
66 #include "hashtab.h"
67
68 #ifdef DWARF2_DEBUGGING_INFO
69 static void dwarf2out_source_line PARAMS ((unsigned int, const char *));
70 #endif
71
72 /* DWARF2 Abbreviation Glossary:
73 CFA = Canonical Frame Address
74 a fixed address on the stack which identifies a call frame.
75 We define it to be the value of SP just before the call insn.
76 The CFA register and offset, which may change during the course
77 of the function, are used to calculate its value at runtime.
78 CFI = Call Frame Instruction
79 an instruction for the DWARF2 abstract machine
80 CIE = Common Information Entry
81 information describing information common to one or more FDEs
82 DIE = Debugging Information Entry
83 FDE = Frame Description Entry
84 information describing the stack call frame, in particular,
85 how to restore registers
86
87 DW_CFA_... = DWARF2 CFA call frame instruction
88 DW_TAG_... = DWARF2 DIE tag */
89
90 /* Decide whether we want to emit frame unwind information for the current
91 translation unit. */
92
93 int
94 dwarf2out_do_frame ()
95 {
96 return (write_symbols == DWARF2_DEBUG
97 || write_symbols == VMS_AND_DWARF2_DEBUG
98 #ifdef DWARF2_FRAME_INFO
99 || DWARF2_FRAME_INFO
100 #endif
101 #ifdef DWARF2_UNWIND_INFO
102 || flag_unwind_tables
103 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
104 #endif
105 );
106 }
107
108 /* The size of the target's pointer type. */
109 #ifndef PTR_SIZE
110 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
111 #endif
112
113 /* Default version of targetm.eh_frame_section. Note this must appear
114 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro
115 guards. */
116
117 void
118 default_eh_frame_section ()
119 {
120 #ifdef EH_FRAME_SECTION_NAME
121 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
122 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
123 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
124 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
125 int flags;
126
127 flags = (! flag_pic
128 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
129 && (fde_encoding & 0x70) != DW_EH_PE_aligned
130 && (per_encoding & 0x70) != DW_EH_PE_absptr
131 && (per_encoding & 0x70) != DW_EH_PE_aligned
132 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
133 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
134 ? 0 : SECTION_WRITE;
135 named_section_flags (EH_FRAME_SECTION_NAME, flags);
136 #else
137 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
138 #endif
139 #else
140 tree label = get_file_function_name ('F');
141
142 data_section ();
143 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
144 (*targetm.asm_out.globalize_label) (asm_out_file, IDENTIFIER_POINTER (label));
145 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
146 #endif
147 }
148
149 /* Array of RTXes referenced by the debugging information, which therefore
150 must be kept around forever. */
151 static GTY(()) varray_type used_rtx_varray;
152
153 /* A pointer to the base of a list of incomplete types which might be
154 completed at some later time. incomplete_types_list needs to be a VARRAY
155 because we want to tell the garbage collector about it. */
156 static GTY(()) varray_type incomplete_types;
157
158 /* A pointer to the base of a table of references to declaration
159 scopes. This table is a display which tracks the nesting
160 of declaration scopes at the current scope and containing
161 scopes. This table is used to find the proper place to
162 define type declaration DIE's. */
163 static GTY(()) varray_type decl_scope_table;
164
165 /* How to start an assembler comment. */
166 #ifndef ASM_COMMENT_START
167 #define ASM_COMMENT_START ";#"
168 #endif
169
170 typedef struct dw_cfi_struct *dw_cfi_ref;
171 typedef struct dw_fde_struct *dw_fde_ref;
172 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
173
174 /* Call frames are described using a sequence of Call Frame
175 Information instructions. The register number, offset
176 and address fields are provided as possible operands;
177 their use is selected by the opcode field. */
178
179 enum dw_cfi_oprnd_type {
180 dw_cfi_oprnd_unused,
181 dw_cfi_oprnd_reg_num,
182 dw_cfi_oprnd_offset,
183 dw_cfi_oprnd_addr,
184 dw_cfi_oprnd_loc
185 };
186
187 typedef union dw_cfi_oprnd_struct GTY(())
188 {
189 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
190 long int GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
191 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
192 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
193 }
194 dw_cfi_oprnd;
195
196 typedef struct dw_cfi_struct GTY(())
197 {
198 dw_cfi_ref dw_cfi_next;
199 enum dwarf_call_frame_info dw_cfi_opc;
200 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
201 dw_cfi_oprnd1;
202 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
203 dw_cfi_oprnd2;
204 }
205 dw_cfi_node;
206
207 /* This is how we define the location of the CFA. We use to handle it
208 as REG + OFFSET all the time, but now it can be more complex.
209 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
210 Instead of passing around REG and OFFSET, we pass a copy
211 of this structure. */
212 typedef struct cfa_loc GTY(())
213 {
214 unsigned long reg;
215 long offset;
216 long base_offset;
217 int indirect; /* 1 if CFA is accessed via a dereference. */
218 } dw_cfa_location;
219
220 /* All call frame descriptions (FDE's) in the GCC generated DWARF
221 refer to a single Common Information Entry (CIE), defined at
222 the beginning of the .debug_frame section. This use of a single
223 CIE obviates the need to keep track of multiple CIE's
224 in the DWARF generation routines below. */
225
226 typedef struct dw_fde_struct GTY(())
227 {
228 const char *dw_fde_begin;
229 const char *dw_fde_current_label;
230 const char *dw_fde_end;
231 dw_cfi_ref dw_fde_cfi;
232 unsigned funcdef_number;
233 unsigned all_throwers_are_sibcalls : 1;
234 unsigned nothrow : 1;
235 unsigned uses_eh_lsda : 1;
236 }
237 dw_fde_node;
238
239 /* Maximum size (in bytes) of an artificially generated label. */
240 #define MAX_ARTIFICIAL_LABEL_BYTES 30
241
242 /* The size of addresses as they appear in the Dwarf 2 data.
243 Some architectures use word addresses to refer to code locations,
244 but Dwarf 2 info always uses byte addresses. On such machines,
245 Dwarf 2 addresses need to be larger than the architecture's
246 pointers. */
247 #ifndef DWARF2_ADDR_SIZE
248 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
249 #endif
250
251 /* The size in bytes of a DWARF field indicating an offset or length
252 relative to a debug info section, specified to be 4 bytes in the
253 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
254 as PTR_SIZE. */
255
256 #ifndef DWARF_OFFSET_SIZE
257 #define DWARF_OFFSET_SIZE 4
258 #endif
259
260 /* According to the (draft) DWARF 3 specification, the initial length
261 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
262 bytes are 0xffffffff, followed by the length stored in the next 8
263 bytes.
264
265 However, the SGI/MIPS ABI uses an initial length which is equal to
266 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
267
268 #ifndef DWARF_INITIAL_LENGTH_SIZE
269 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
270 #endif
271
272 #define DWARF_VERSION 2
273
274 /* Round SIZE up to the nearest BOUNDARY. */
275 #define DWARF_ROUND(SIZE,BOUNDARY) \
276 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
277
278 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
279 #ifndef DWARF_CIE_DATA_ALIGNMENT
280 #ifdef STACK_GROWS_DOWNWARD
281 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
282 #else
283 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
284 #endif
285 #endif
286
287 /* A pointer to the base of a table that contains frame description
288 information for each routine. */
289 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
290
291 /* Number of elements currently allocated for fde_table. */
292 static unsigned fde_table_allocated;
293
294 /* Number of elements in fde_table currently in use. */
295 static GTY(()) unsigned fde_table_in_use;
296
297 /* Size (in elements) of increments by which we may expand the
298 fde_table. */
299 #define FDE_TABLE_INCREMENT 256
300
301 /* A list of call frame insns for the CIE. */
302 static GTY(()) dw_cfi_ref cie_cfi_head;
303
304 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
305 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
306 attribute that accelerates the lookup of the FDE associated
307 with the subprogram. This variable holds the table index of the FDE
308 associated with the current function (body) definition. */
309 static unsigned current_funcdef_fde;
310 #endif
311
312 struct indirect_string_node GTY(())
313 {
314 const char *str;
315 unsigned int refcount;
316 unsigned int form;
317 char *label;
318 };
319
320 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
321
322 static GTY(()) int dw2_string_counter;
323 static GTY(()) unsigned long dwarf2out_cfi_label_num;
324
325 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
326
327 /* Forward declarations for functions defined in this file. */
328
329 static char *stripattributes PARAMS ((const char *));
330 static const char *dwarf_cfi_name PARAMS ((unsigned));
331 static dw_cfi_ref new_cfi PARAMS ((void));
332 static void add_cfi PARAMS ((dw_cfi_ref *, dw_cfi_ref));
333 static void add_fde_cfi PARAMS ((const char *, dw_cfi_ref));
334 static void lookup_cfa_1 PARAMS ((dw_cfi_ref,
335 dw_cfa_location *));
336 static void lookup_cfa PARAMS ((dw_cfa_location *));
337 static void reg_save PARAMS ((const char *, unsigned,
338 unsigned, long));
339 static void initial_return_save PARAMS ((rtx));
340 static long stack_adjust_offset PARAMS ((rtx));
341 static void output_cfi PARAMS ((dw_cfi_ref, dw_fde_ref, int));
342 static void output_call_frame_info PARAMS ((int));
343 static void dwarf2out_stack_adjust PARAMS ((rtx));
344 static void queue_reg_save PARAMS ((const char *, rtx, long));
345 static void flush_queued_reg_saves PARAMS ((void));
346 static bool clobbers_queued_reg_save PARAMS ((rtx));
347 static void dwarf2out_frame_debug_expr PARAMS ((rtx, const char *));
348
349 /* Support for complex CFA locations. */
350 static void output_cfa_loc PARAMS ((dw_cfi_ref));
351 static void get_cfa_from_loc_descr PARAMS ((dw_cfa_location *,
352 struct dw_loc_descr_struct *));
353 static struct dw_loc_descr_struct *build_cfa_loc
354 PARAMS ((dw_cfa_location *));
355 static void def_cfa_1 PARAMS ((const char *,
356 dw_cfa_location *));
357
358 /* How to start an assembler comment. */
359 #ifndef ASM_COMMENT_START
360 #define ASM_COMMENT_START ";#"
361 #endif
362
363 /* Data and reference forms for relocatable data. */
364 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
365 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
366
367 #ifndef DEBUG_FRAME_SECTION
368 #define DEBUG_FRAME_SECTION ".debug_frame"
369 #endif
370
371 #ifndef FUNC_BEGIN_LABEL
372 #define FUNC_BEGIN_LABEL "LFB"
373 #endif
374
375 #ifndef FUNC_END_LABEL
376 #define FUNC_END_LABEL "LFE"
377 #endif
378
379 #define FRAME_BEGIN_LABEL "Lframe"
380 #define CIE_AFTER_SIZE_LABEL "LSCIE"
381 #define CIE_END_LABEL "LECIE"
382 #define FDE_LABEL "LSFDE"
383 #define FDE_AFTER_SIZE_LABEL "LASFDE"
384 #define FDE_END_LABEL "LEFDE"
385 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
386 #define LINE_NUMBER_END_LABEL "LELT"
387 #define LN_PROLOG_AS_LABEL "LASLTP"
388 #define LN_PROLOG_END_LABEL "LELTP"
389 #define DIE_LABEL_PREFIX "DW"
390
391 /* The DWARF 2 CFA column which tracks the return address. Normally this
392 is the column for PC, or the first column after all of the hard
393 registers. */
394 #ifndef DWARF_FRAME_RETURN_COLUMN
395 #ifdef PC_REGNUM
396 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
397 #else
398 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
399 #endif
400 #endif
401
402 /* The mapping from gcc register number to DWARF 2 CFA column number. By
403 default, we just provide columns for all registers. */
404 #ifndef DWARF_FRAME_REGNUM
405 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
406 #endif
407
408 /* The offset from the incoming value of %sp to the top of the stack frame
409 for the current function. */
410 #ifndef INCOMING_FRAME_SP_OFFSET
411 #define INCOMING_FRAME_SP_OFFSET 0
412 #endif
413 \f
414 /* Hook used by __throw. */
415
416 rtx
417 expand_builtin_dwarf_fp_regnum ()
418 {
419 return GEN_INT (DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM));
420 }
421
422 /* Return a pointer to a copy of the section string name S with all
423 attributes stripped off, and an asterisk prepended (for assemble_name). */
424
425 static inline char *
426 stripattributes (s)
427 const char *s;
428 {
429 char *stripped = xmalloc (strlen (s) + 2);
430 char *p = stripped;
431
432 *p++ = '*';
433
434 while (*s && *s != ',')
435 *p++ = *s++;
436
437 *p = '\0';
438 return stripped;
439 }
440
441 /* Generate code to initialize the register size table. */
442
443 void
444 expand_builtin_init_dwarf_reg_sizes (address)
445 tree address;
446 {
447 int i;
448 enum machine_mode mode = TYPE_MODE (char_type_node);
449 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
450 rtx mem = gen_rtx_MEM (BLKmode, addr);
451
452 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
453 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
454 {
455 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
456 HOST_WIDE_INT size = GET_MODE_SIZE (reg_raw_mode[i]);
457
458 if (offset < 0)
459 continue;
460
461 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
462 }
463 }
464
465 /* Convert a DWARF call frame info. operation to its string name */
466
467 static const char *
468 dwarf_cfi_name (cfi_opc)
469 unsigned cfi_opc;
470 {
471 switch (cfi_opc)
472 {
473 case DW_CFA_advance_loc:
474 return "DW_CFA_advance_loc";
475 case DW_CFA_offset:
476 return "DW_CFA_offset";
477 case DW_CFA_restore:
478 return "DW_CFA_restore";
479 case DW_CFA_nop:
480 return "DW_CFA_nop";
481 case DW_CFA_set_loc:
482 return "DW_CFA_set_loc";
483 case DW_CFA_advance_loc1:
484 return "DW_CFA_advance_loc1";
485 case DW_CFA_advance_loc2:
486 return "DW_CFA_advance_loc2";
487 case DW_CFA_advance_loc4:
488 return "DW_CFA_advance_loc4";
489 case DW_CFA_offset_extended:
490 return "DW_CFA_offset_extended";
491 case DW_CFA_restore_extended:
492 return "DW_CFA_restore_extended";
493 case DW_CFA_undefined:
494 return "DW_CFA_undefined";
495 case DW_CFA_same_value:
496 return "DW_CFA_same_value";
497 case DW_CFA_register:
498 return "DW_CFA_register";
499 case DW_CFA_remember_state:
500 return "DW_CFA_remember_state";
501 case DW_CFA_restore_state:
502 return "DW_CFA_restore_state";
503 case DW_CFA_def_cfa:
504 return "DW_CFA_def_cfa";
505 case DW_CFA_def_cfa_register:
506 return "DW_CFA_def_cfa_register";
507 case DW_CFA_def_cfa_offset:
508 return "DW_CFA_def_cfa_offset";
509
510 /* DWARF 3 */
511 case DW_CFA_def_cfa_expression:
512 return "DW_CFA_def_cfa_expression";
513 case DW_CFA_expression:
514 return "DW_CFA_expression";
515 case DW_CFA_offset_extended_sf:
516 return "DW_CFA_offset_extended_sf";
517 case DW_CFA_def_cfa_sf:
518 return "DW_CFA_def_cfa_sf";
519 case DW_CFA_def_cfa_offset_sf:
520 return "DW_CFA_def_cfa_offset_sf";
521
522 /* SGI/MIPS specific */
523 case DW_CFA_MIPS_advance_loc8:
524 return "DW_CFA_MIPS_advance_loc8";
525
526 /* GNU extensions */
527 case DW_CFA_GNU_window_save:
528 return "DW_CFA_GNU_window_save";
529 case DW_CFA_GNU_args_size:
530 return "DW_CFA_GNU_args_size";
531 case DW_CFA_GNU_negative_offset_extended:
532 return "DW_CFA_GNU_negative_offset_extended";
533
534 default:
535 return "DW_CFA_<unknown>";
536 }
537 }
538
539 /* Return a pointer to a newly allocated Call Frame Instruction. */
540
541 static inline dw_cfi_ref
542 new_cfi ()
543 {
544 dw_cfi_ref cfi = (dw_cfi_ref) ggc_alloc (sizeof (dw_cfi_node));
545
546 cfi->dw_cfi_next = NULL;
547 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
548 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
549
550 return cfi;
551 }
552
553 /* Add a Call Frame Instruction to list of instructions. */
554
555 static inline void
556 add_cfi (list_head, cfi)
557 dw_cfi_ref *list_head;
558 dw_cfi_ref cfi;
559 {
560 dw_cfi_ref *p;
561
562 /* Find the end of the chain. */
563 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
564 ;
565
566 *p = cfi;
567 }
568
569 /* Generate a new label for the CFI info to refer to. */
570
571 char *
572 dwarf2out_cfi_label ()
573 {
574 static char label[20];
575
576 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
577 ASM_OUTPUT_LABEL (asm_out_file, label);
578 return label;
579 }
580
581 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
582 or to the CIE if LABEL is NULL. */
583
584 static void
585 add_fde_cfi (label, cfi)
586 const char *label;
587 dw_cfi_ref cfi;
588 {
589 if (label)
590 {
591 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
592
593 if (*label == 0)
594 label = dwarf2out_cfi_label ();
595
596 if (fde->dw_fde_current_label == NULL
597 || strcmp (label, fde->dw_fde_current_label) != 0)
598 {
599 dw_cfi_ref xcfi;
600
601 fde->dw_fde_current_label = label = xstrdup (label);
602
603 /* Set the location counter to the new label. */
604 xcfi = new_cfi ();
605 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
606 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
607 add_cfi (&fde->dw_fde_cfi, xcfi);
608 }
609
610 add_cfi (&fde->dw_fde_cfi, cfi);
611 }
612
613 else
614 add_cfi (&cie_cfi_head, cfi);
615 }
616
617 /* Subroutine of lookup_cfa. */
618
619 static inline void
620 lookup_cfa_1 (cfi, loc)
621 dw_cfi_ref cfi;
622 dw_cfa_location *loc;
623 {
624 switch (cfi->dw_cfi_opc)
625 {
626 case DW_CFA_def_cfa_offset:
627 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
628 break;
629 case DW_CFA_def_cfa_register:
630 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
631 break;
632 case DW_CFA_def_cfa:
633 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
634 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
635 break;
636 case DW_CFA_def_cfa_expression:
637 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
638 break;
639 default:
640 break;
641 }
642 }
643
644 /* Find the previous value for the CFA. */
645
646 static void
647 lookup_cfa (loc)
648 dw_cfa_location *loc;
649 {
650 dw_cfi_ref cfi;
651
652 loc->reg = (unsigned long) -1;
653 loc->offset = 0;
654 loc->indirect = 0;
655 loc->base_offset = 0;
656
657 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
658 lookup_cfa_1 (cfi, loc);
659
660 if (fde_table_in_use)
661 {
662 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
663 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
664 lookup_cfa_1 (cfi, loc);
665 }
666 }
667
668 /* The current rule for calculating the DWARF2 canonical frame address. */
669 static dw_cfa_location cfa;
670
671 /* The register used for saving registers to the stack, and its offset
672 from the CFA. */
673 static dw_cfa_location cfa_store;
674
675 /* The running total of the size of arguments pushed onto the stack. */
676 static long args_size;
677
678 /* The last args_size we actually output. */
679 static long old_args_size;
680
681 /* Entry point to update the canonical frame address (CFA).
682 LABEL is passed to add_fde_cfi. The value of CFA is now to be
683 calculated from REG+OFFSET. */
684
685 void
686 dwarf2out_def_cfa (label, reg, offset)
687 const char *label;
688 unsigned reg;
689 long offset;
690 {
691 dw_cfa_location loc;
692 loc.indirect = 0;
693 loc.base_offset = 0;
694 loc.reg = reg;
695 loc.offset = offset;
696 def_cfa_1 (label, &loc);
697 }
698
699 /* This routine does the actual work. The CFA is now calculated from
700 the dw_cfa_location structure. */
701
702 static void
703 def_cfa_1 (label, loc_p)
704 const char *label;
705 dw_cfa_location *loc_p;
706 {
707 dw_cfi_ref cfi;
708 dw_cfa_location old_cfa, loc;
709
710 cfa = *loc_p;
711 loc = *loc_p;
712
713 if (cfa_store.reg == loc.reg && loc.indirect == 0)
714 cfa_store.offset = loc.offset;
715
716 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
717 lookup_cfa (&old_cfa);
718
719 /* If nothing changed, no need to issue any call frame instructions. */
720 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
721 && loc.indirect == old_cfa.indirect
722 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
723 return;
724
725 cfi = new_cfi ();
726
727 if (loc.reg == old_cfa.reg && !loc.indirect)
728 {
729 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
730 indicating the CFA register did not change but the offset
731 did. */
732 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
733 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
734 }
735
736 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
737 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
738 && !loc.indirect)
739 {
740 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
741 indicating the CFA register has changed to <register> but the
742 offset has not changed. */
743 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
744 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
745 }
746 #endif
747
748 else if (loc.indirect == 0)
749 {
750 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
751 indicating the CFA register has changed to <register> with
752 the specified offset. */
753 cfi->dw_cfi_opc = DW_CFA_def_cfa;
754 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
755 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
756 }
757 else
758 {
759 /* Construct a DW_CFA_def_cfa_expression instruction to
760 calculate the CFA using a full location expression since no
761 register-offset pair is available. */
762 struct dw_loc_descr_struct *loc_list;
763
764 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
765 loc_list = build_cfa_loc (&loc);
766 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
767 }
768
769 add_fde_cfi (label, cfi);
770 }
771
772 /* Add the CFI for saving a register. REG is the CFA column number.
773 LABEL is passed to add_fde_cfi.
774 If SREG is -1, the register is saved at OFFSET from the CFA;
775 otherwise it is saved in SREG. */
776
777 static void
778 reg_save (label, reg, sreg, offset)
779 const char *label;
780 unsigned reg;
781 unsigned sreg;
782 long offset;
783 {
784 dw_cfi_ref cfi = new_cfi ();
785
786 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
787
788 /* The following comparison is correct. -1 is used to indicate that
789 the value isn't a register number. */
790 if (sreg == (unsigned int) -1)
791 {
792 if (reg & ~0x3f)
793 /* The register number won't fit in 6 bits, so we have to use
794 the long form. */
795 cfi->dw_cfi_opc = DW_CFA_offset_extended;
796 else
797 cfi->dw_cfi_opc = DW_CFA_offset;
798
799 #ifdef ENABLE_CHECKING
800 {
801 /* If we get an offset that is not a multiple of
802 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
803 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
804 description. */
805 long check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
806
807 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
808 abort ();
809 }
810 #endif
811 offset /= DWARF_CIE_DATA_ALIGNMENT;
812 if (offset < 0)
813 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
814
815 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
816 }
817 else if (sreg == reg)
818 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
819 return;
820 else
821 {
822 cfi->dw_cfi_opc = DW_CFA_register;
823 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
824 }
825
826 add_fde_cfi (label, cfi);
827 }
828
829 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
830 This CFI tells the unwinder that it needs to restore the window registers
831 from the previous frame's window save area.
832
833 ??? Perhaps we should note in the CIE where windows are saved (instead of
834 assuming 0(cfa)) and what registers are in the window. */
835
836 void
837 dwarf2out_window_save (label)
838 const char *label;
839 {
840 dw_cfi_ref cfi = new_cfi ();
841
842 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
843 add_fde_cfi (label, cfi);
844 }
845
846 /* Add a CFI to update the running total of the size of arguments
847 pushed onto the stack. */
848
849 void
850 dwarf2out_args_size (label, size)
851 const char *label;
852 long size;
853 {
854 dw_cfi_ref cfi;
855
856 if (size == old_args_size)
857 return;
858
859 old_args_size = size;
860
861 cfi = new_cfi ();
862 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
863 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
864 add_fde_cfi (label, cfi);
865 }
866
867 /* Entry point for saving a register to the stack. REG is the GCC register
868 number. LABEL and OFFSET are passed to reg_save. */
869
870 void
871 dwarf2out_reg_save (label, reg, offset)
872 const char *label;
873 unsigned reg;
874 long offset;
875 {
876 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
877 }
878
879 /* Entry point for saving the return address in the stack.
880 LABEL and OFFSET are passed to reg_save. */
881
882 void
883 dwarf2out_return_save (label, offset)
884 const char *label;
885 long offset;
886 {
887 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
888 }
889
890 /* Entry point for saving the return address in a register.
891 LABEL and SREG are passed to reg_save. */
892
893 void
894 dwarf2out_return_reg (label, sreg)
895 const char *label;
896 unsigned sreg;
897 {
898 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
899 }
900
901 /* Record the initial position of the return address. RTL is
902 INCOMING_RETURN_ADDR_RTX. */
903
904 static void
905 initial_return_save (rtl)
906 rtx rtl;
907 {
908 unsigned int reg = (unsigned int) -1;
909 HOST_WIDE_INT offset = 0;
910
911 switch (GET_CODE (rtl))
912 {
913 case REG:
914 /* RA is in a register. */
915 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
916 break;
917
918 case MEM:
919 /* RA is on the stack. */
920 rtl = XEXP (rtl, 0);
921 switch (GET_CODE (rtl))
922 {
923 case REG:
924 if (REGNO (rtl) != STACK_POINTER_REGNUM)
925 abort ();
926 offset = 0;
927 break;
928
929 case PLUS:
930 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
931 abort ();
932 offset = INTVAL (XEXP (rtl, 1));
933 break;
934
935 case MINUS:
936 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
937 abort ();
938 offset = -INTVAL (XEXP (rtl, 1));
939 break;
940
941 default:
942 abort ();
943 }
944
945 break;
946
947 case PLUS:
948 /* The return address is at some offset from any value we can
949 actually load. For instance, on the SPARC it is in %i7+8. Just
950 ignore the offset for now; it doesn't matter for unwinding frames. */
951 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
952 abort ();
953 initial_return_save (XEXP (rtl, 0));
954 return;
955
956 default:
957 abort ();
958 }
959
960 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
961 }
962
963 /* Given a SET, calculate the amount of stack adjustment it
964 contains. */
965
966 static long
967 stack_adjust_offset (pattern)
968 rtx pattern;
969 {
970 rtx src = SET_SRC (pattern);
971 rtx dest = SET_DEST (pattern);
972 HOST_WIDE_INT offset = 0;
973 enum rtx_code code;
974
975 if (dest == stack_pointer_rtx)
976 {
977 /* (set (reg sp) (plus (reg sp) (const_int))) */
978 code = GET_CODE (src);
979 if (! (code == PLUS || code == MINUS)
980 || XEXP (src, 0) != stack_pointer_rtx
981 || GET_CODE (XEXP (src, 1)) != CONST_INT)
982 return 0;
983
984 offset = INTVAL (XEXP (src, 1));
985 if (code == PLUS)
986 offset = -offset;
987 }
988 else if (GET_CODE (dest) == MEM)
989 {
990 /* (set (mem (pre_dec (reg sp))) (foo)) */
991 src = XEXP (dest, 0);
992 code = GET_CODE (src);
993
994 switch (code)
995 {
996 case PRE_MODIFY:
997 case POST_MODIFY:
998 if (XEXP (src, 0) == stack_pointer_rtx)
999 {
1000 rtx val = XEXP (XEXP (src, 1), 1);
1001 /* We handle only adjustments by constant amount. */
1002 if (GET_CODE (XEXP (src, 1)) != PLUS ||
1003 GET_CODE (val) != CONST_INT)
1004 abort ();
1005 offset = -INTVAL (val);
1006 break;
1007 }
1008 return 0;
1009
1010 case PRE_DEC:
1011 case POST_DEC:
1012 if (XEXP (src, 0) == stack_pointer_rtx)
1013 {
1014 offset = GET_MODE_SIZE (GET_MODE (dest));
1015 break;
1016 }
1017 return 0;
1018
1019 case PRE_INC:
1020 case POST_INC:
1021 if (XEXP (src, 0) == stack_pointer_rtx)
1022 {
1023 offset = -GET_MODE_SIZE (GET_MODE (dest));
1024 break;
1025 }
1026 return 0;
1027
1028 default:
1029 return 0;
1030 }
1031 }
1032 else
1033 return 0;
1034
1035 return offset;
1036 }
1037
1038 /* Check INSN to see if it looks like a push or a stack adjustment, and
1039 make a note of it if it does. EH uses this information to find out how
1040 much extra space it needs to pop off the stack. */
1041
1042 static void
1043 dwarf2out_stack_adjust (insn)
1044 rtx insn;
1045 {
1046 HOST_WIDE_INT offset;
1047 const char *label;
1048 int i;
1049
1050 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1051 {
1052 /* Extract the size of the args from the CALL rtx itself. */
1053 insn = PATTERN (insn);
1054 if (GET_CODE (insn) == PARALLEL)
1055 insn = XVECEXP (insn, 0, 0);
1056 if (GET_CODE (insn) == SET)
1057 insn = SET_SRC (insn);
1058 if (GET_CODE (insn) != CALL)
1059 abort ();
1060
1061 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1062 return;
1063 }
1064
1065 /* If only calls can throw, and we have a frame pointer,
1066 save up adjustments until we see the CALL_INSN. */
1067 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1068 return;
1069
1070 if (GET_CODE (insn) == BARRIER)
1071 {
1072 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1073 the compiler will have already emitted a stack adjustment, but
1074 doesn't bother for calls to noreturn functions. */
1075 #ifdef STACK_GROWS_DOWNWARD
1076 offset = -args_size;
1077 #else
1078 offset = args_size;
1079 #endif
1080 }
1081 else if (GET_CODE (PATTERN (insn)) == SET)
1082 offset = stack_adjust_offset (PATTERN (insn));
1083 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1084 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1085 {
1086 /* There may be stack adjustments inside compound insns. Search
1087 for them. */
1088 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1089 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1090 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1091 }
1092 else
1093 return;
1094
1095 if (offset == 0)
1096 return;
1097
1098 if (cfa.reg == STACK_POINTER_REGNUM)
1099 cfa.offset += offset;
1100
1101 #ifndef STACK_GROWS_DOWNWARD
1102 offset = -offset;
1103 #endif
1104
1105 args_size += offset;
1106 if (args_size < 0)
1107 args_size = 0;
1108
1109 label = dwarf2out_cfi_label ();
1110 def_cfa_1 (label, &cfa);
1111 dwarf2out_args_size (label, args_size);
1112 }
1113
1114 #endif
1115
1116 /* We delay emitting a register save until either (a) we reach the end
1117 of the prologue or (b) the register is clobbered. This clusters
1118 register saves so that there are fewer pc advances. */
1119
1120 struct queued_reg_save GTY(())
1121 {
1122 struct queued_reg_save *next;
1123 rtx reg;
1124 long cfa_offset;
1125 };
1126
1127 static GTY(()) struct queued_reg_save *queued_reg_saves;
1128
1129 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1130 static const char *last_reg_save_label;
1131
1132 static void
1133 queue_reg_save (label, reg, offset)
1134 const char *label;
1135 rtx reg;
1136 long offset;
1137 {
1138 struct queued_reg_save *q = ggc_alloc (sizeof (*q));
1139
1140 q->next = queued_reg_saves;
1141 q->reg = reg;
1142 q->cfa_offset = offset;
1143 queued_reg_saves = q;
1144
1145 last_reg_save_label = label;
1146 }
1147
1148 static void
1149 flush_queued_reg_saves ()
1150 {
1151 struct queued_reg_save *q, *next;
1152
1153 for (q = queued_reg_saves; q; q = next)
1154 {
1155 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1156 next = q->next;
1157 }
1158
1159 queued_reg_saves = NULL;
1160 last_reg_save_label = NULL;
1161 }
1162
1163 static bool
1164 clobbers_queued_reg_save (insn)
1165 rtx insn;
1166 {
1167 struct queued_reg_save *q;
1168
1169 for (q = queued_reg_saves; q; q = q->next)
1170 if (modified_in_p (q->reg, insn))
1171 return true;
1172
1173 return false;
1174 }
1175
1176
1177 /* A temporary register holding an integral value used in adjusting SP
1178 or setting up the store_reg. The "offset" field holds the integer
1179 value, not an offset. */
1180 static dw_cfa_location cfa_temp;
1181
1182 /* Record call frame debugging information for an expression EXPR,
1183 which either sets SP or FP (adjusting how we calculate the frame
1184 address) or saves a register to the stack. LABEL indicates the
1185 address of EXPR.
1186
1187 This function encodes a state machine mapping rtxes to actions on
1188 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1189 users need not read the source code.
1190
1191 The High-Level Picture
1192
1193 Changes in the register we use to calculate the CFA: Currently we
1194 assume that if you copy the CFA register into another register, we
1195 should take the other one as the new CFA register; this seems to
1196 work pretty well. If it's wrong for some target, it's simple
1197 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1198
1199 Changes in the register we use for saving registers to the stack:
1200 This is usually SP, but not always. Again, we deduce that if you
1201 copy SP into another register (and SP is not the CFA register),
1202 then the new register is the one we will be using for register
1203 saves. This also seems to work.
1204
1205 Register saves: There's not much guesswork about this one; if
1206 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1207 register save, and the register used to calculate the destination
1208 had better be the one we think we're using for this purpose.
1209
1210 Except: If the register being saved is the CFA register, and the
1211 offset is nonzero, we are saving the CFA, so we assume we have to
1212 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1213 the intent is to save the value of SP from the previous frame.
1214
1215 Invariants / Summaries of Rules
1216
1217 cfa current rule for calculating the CFA. It usually
1218 consists of a register and an offset.
1219 cfa_store register used by prologue code to save things to the stack
1220 cfa_store.offset is the offset from the value of
1221 cfa_store.reg to the actual CFA
1222 cfa_temp register holding an integral value. cfa_temp.offset
1223 stores the value, which will be used to adjust the
1224 stack pointer. cfa_temp is also used like cfa_store,
1225 to track stores to the stack via fp or a temp reg.
1226
1227 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1228 with cfa.reg as the first operand changes the cfa.reg and its
1229 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1230 cfa_temp.offset.
1231
1232 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1233 expression yielding a constant. This sets cfa_temp.reg
1234 and cfa_temp.offset.
1235
1236 Rule 5: Create a new register cfa_store used to save items to the
1237 stack.
1238
1239 Rules 10-14: Save a register to the stack. Define offset as the
1240 difference of the original location and cfa_store's
1241 location (or cfa_temp's location if cfa_temp is used).
1242
1243 The Rules
1244
1245 "{a,b}" indicates a choice of a xor b.
1246 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1247
1248 Rule 1:
1249 (set <reg1> <reg2>:cfa.reg)
1250 effects: cfa.reg = <reg1>
1251 cfa.offset unchanged
1252 cfa_temp.reg = <reg1>
1253 cfa_temp.offset = cfa.offset
1254
1255 Rule 2:
1256 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1257 {<const_int>,<reg>:cfa_temp.reg}))
1258 effects: cfa.reg = sp if fp used
1259 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1260 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1261 if cfa_store.reg==sp
1262
1263 Rule 3:
1264 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1265 effects: cfa.reg = fp
1266 cfa_offset += +/- <const_int>
1267
1268 Rule 4:
1269 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1270 constraints: <reg1> != fp
1271 <reg1> != sp
1272 effects: cfa.reg = <reg1>
1273 cfa_temp.reg = <reg1>
1274 cfa_temp.offset = cfa.offset
1275
1276 Rule 5:
1277 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1278 constraints: <reg1> != fp
1279 <reg1> != sp
1280 effects: cfa_store.reg = <reg1>
1281 cfa_store.offset = cfa.offset - cfa_temp.offset
1282
1283 Rule 6:
1284 (set <reg> <const_int>)
1285 effects: cfa_temp.reg = <reg>
1286 cfa_temp.offset = <const_int>
1287
1288 Rule 7:
1289 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1290 effects: cfa_temp.reg = <reg1>
1291 cfa_temp.offset |= <const_int>
1292
1293 Rule 8:
1294 (set <reg> (high <exp>))
1295 effects: none
1296
1297 Rule 9:
1298 (set <reg> (lo_sum <exp> <const_int>))
1299 effects: cfa_temp.reg = <reg>
1300 cfa_temp.offset = <const_int>
1301
1302 Rule 10:
1303 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1304 effects: cfa_store.offset -= <const_int>
1305 cfa.offset = cfa_store.offset if cfa.reg == sp
1306 cfa.reg = sp
1307 cfa.base_offset = -cfa_store.offset
1308
1309 Rule 11:
1310 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1311 effects: cfa_store.offset += -/+ mode_size(mem)
1312 cfa.offset = cfa_store.offset if cfa.reg == sp
1313 cfa.reg = sp
1314 cfa.base_offset = -cfa_store.offset
1315
1316 Rule 12:
1317 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1318
1319 <reg2>)
1320 effects: cfa.reg = <reg1>
1321 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1322
1323 Rule 13:
1324 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1325 effects: cfa.reg = <reg1>
1326 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1327
1328 Rule 14:
1329 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1330 effects: cfa.reg = <reg1>
1331 cfa.base_offset = -cfa_temp.offset
1332 cfa_temp.offset -= mode_size(mem) */
1333
1334 static void
1335 dwarf2out_frame_debug_expr (expr, label)
1336 rtx expr;
1337 const char *label;
1338 {
1339 rtx src, dest;
1340 HOST_WIDE_INT offset;
1341
1342 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1343 the PARALLEL independently. The first element is always processed if
1344 it is a SET. This is for backward compatibility. Other elements
1345 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1346 flag is set in them. */
1347 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1348 {
1349 int par_index;
1350 int limit = XVECLEN (expr, 0);
1351
1352 for (par_index = 0; par_index < limit; par_index++)
1353 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1354 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1355 || par_index == 0))
1356 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1357
1358 return;
1359 }
1360
1361 if (GET_CODE (expr) != SET)
1362 abort ();
1363
1364 src = SET_SRC (expr);
1365 dest = SET_DEST (expr);
1366
1367 switch (GET_CODE (dest))
1368 {
1369 case REG:
1370 /* Rule 1 */
1371 /* Update the CFA rule wrt SP or FP. Make sure src is
1372 relative to the current CFA register. */
1373 switch (GET_CODE (src))
1374 {
1375 /* Setting FP from SP. */
1376 case REG:
1377 if (cfa.reg == (unsigned) REGNO (src))
1378 /* OK. */
1379 ;
1380 else
1381 abort ();
1382
1383 /* We used to require that dest be either SP or FP, but the
1384 ARM copies SP to a temporary register, and from there to
1385 FP. So we just rely on the backends to only set
1386 RTX_FRAME_RELATED_P on appropriate insns. */
1387 cfa.reg = REGNO (dest);
1388 cfa_temp.reg = cfa.reg;
1389 cfa_temp.offset = cfa.offset;
1390 break;
1391
1392 case PLUS:
1393 case MINUS:
1394 case LO_SUM:
1395 if (dest == stack_pointer_rtx)
1396 {
1397 /* Rule 2 */
1398 /* Adjusting SP. */
1399 switch (GET_CODE (XEXP (src, 1)))
1400 {
1401 case CONST_INT:
1402 offset = INTVAL (XEXP (src, 1));
1403 break;
1404 case REG:
1405 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1406 abort ();
1407 offset = cfa_temp.offset;
1408 break;
1409 default:
1410 abort ();
1411 }
1412
1413 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1414 {
1415 /* Restoring SP from FP in the epilogue. */
1416 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1417 abort ();
1418 cfa.reg = STACK_POINTER_REGNUM;
1419 }
1420 else if (GET_CODE (src) == LO_SUM)
1421 /* Assume we've set the source reg of the LO_SUM from sp. */
1422 ;
1423 else if (XEXP (src, 0) != stack_pointer_rtx)
1424 abort ();
1425
1426 if (GET_CODE (src) != MINUS)
1427 offset = -offset;
1428 if (cfa.reg == STACK_POINTER_REGNUM)
1429 cfa.offset += offset;
1430 if (cfa_store.reg == STACK_POINTER_REGNUM)
1431 cfa_store.offset += offset;
1432 }
1433 else if (dest == hard_frame_pointer_rtx)
1434 {
1435 /* Rule 3 */
1436 /* Either setting the FP from an offset of the SP,
1437 or adjusting the FP */
1438 if (! frame_pointer_needed)
1439 abort ();
1440
1441 if (GET_CODE (XEXP (src, 0)) == REG
1442 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1443 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1444 {
1445 offset = INTVAL (XEXP (src, 1));
1446 if (GET_CODE (src) != MINUS)
1447 offset = -offset;
1448 cfa.offset += offset;
1449 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1450 }
1451 else
1452 abort ();
1453 }
1454 else
1455 {
1456 if (GET_CODE (src) == MINUS)
1457 abort ();
1458
1459 /* Rule 4 */
1460 if (GET_CODE (XEXP (src, 0)) == REG
1461 && REGNO (XEXP (src, 0)) == cfa.reg
1462 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1463 {
1464 /* Setting a temporary CFA register that will be copied
1465 into the FP later on. */
1466 offset = - INTVAL (XEXP (src, 1));
1467 cfa.offset += offset;
1468 cfa.reg = REGNO (dest);
1469 /* Or used to save regs to the stack. */
1470 cfa_temp.reg = cfa.reg;
1471 cfa_temp.offset = cfa.offset;
1472 }
1473
1474 /* Rule 5 */
1475 else if (GET_CODE (XEXP (src, 0)) == REG
1476 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1477 && XEXP (src, 1) == stack_pointer_rtx)
1478 {
1479 /* Setting a scratch register that we will use instead
1480 of SP for saving registers to the stack. */
1481 if (cfa.reg != STACK_POINTER_REGNUM)
1482 abort ();
1483 cfa_store.reg = REGNO (dest);
1484 cfa_store.offset = cfa.offset - cfa_temp.offset;
1485 }
1486
1487 /* Rule 9 */
1488 else if (GET_CODE (src) == LO_SUM
1489 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1490 {
1491 cfa_temp.reg = REGNO (dest);
1492 cfa_temp.offset = INTVAL (XEXP (src, 1));
1493 }
1494 else
1495 abort ();
1496 }
1497 break;
1498
1499 /* Rule 6 */
1500 case CONST_INT:
1501 cfa_temp.reg = REGNO (dest);
1502 cfa_temp.offset = INTVAL (src);
1503 break;
1504
1505 /* Rule 7 */
1506 case IOR:
1507 if (GET_CODE (XEXP (src, 0)) != REG
1508 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1509 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1510 abort ();
1511
1512 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1513 cfa_temp.reg = REGNO (dest);
1514 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1515 break;
1516
1517 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1518 which will fill in all of the bits. */
1519 /* Rule 8 */
1520 case HIGH:
1521 break;
1522
1523 default:
1524 abort ();
1525 }
1526
1527 def_cfa_1 (label, &cfa);
1528 break;
1529
1530 case MEM:
1531 if (GET_CODE (src) != REG)
1532 abort ();
1533
1534 /* Saving a register to the stack. Make sure dest is relative to the
1535 CFA register. */
1536 switch (GET_CODE (XEXP (dest, 0)))
1537 {
1538 /* Rule 10 */
1539 /* With a push. */
1540 case PRE_MODIFY:
1541 /* We can't handle variable size modifications. */
1542 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1543 abort ();
1544 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1545
1546 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1547 || cfa_store.reg != STACK_POINTER_REGNUM)
1548 abort ();
1549
1550 cfa_store.offset += offset;
1551 if (cfa.reg == STACK_POINTER_REGNUM)
1552 cfa.offset = cfa_store.offset;
1553
1554 offset = -cfa_store.offset;
1555 break;
1556
1557 /* Rule 11 */
1558 case PRE_INC:
1559 case PRE_DEC:
1560 offset = GET_MODE_SIZE (GET_MODE (dest));
1561 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1562 offset = -offset;
1563
1564 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1565 || cfa_store.reg != STACK_POINTER_REGNUM)
1566 abort ();
1567
1568 cfa_store.offset += offset;
1569 if (cfa.reg == STACK_POINTER_REGNUM)
1570 cfa.offset = cfa_store.offset;
1571
1572 offset = -cfa_store.offset;
1573 break;
1574
1575 /* Rule 12 */
1576 /* With an offset. */
1577 case PLUS:
1578 case MINUS:
1579 case LO_SUM:
1580 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1581 abort ();
1582 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1583 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1584 offset = -offset;
1585
1586 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1587 offset -= cfa_store.offset;
1588 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1589 offset -= cfa_temp.offset;
1590 else
1591 abort ();
1592 break;
1593
1594 /* Rule 13 */
1595 /* Without an offset. */
1596 case REG:
1597 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1598 offset = -cfa_store.offset;
1599 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1600 offset = -cfa_temp.offset;
1601 else
1602 abort ();
1603 break;
1604
1605 /* Rule 14 */
1606 case POST_INC:
1607 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1608 abort ();
1609 offset = -cfa_temp.offset;
1610 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1611 break;
1612
1613 default:
1614 abort ();
1615 }
1616
1617 if (REGNO (src) != STACK_POINTER_REGNUM
1618 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1619 && (unsigned) REGNO (src) == cfa.reg)
1620 {
1621 /* We're storing the current CFA reg into the stack. */
1622
1623 if (cfa.offset == 0)
1624 {
1625 /* If the source register is exactly the CFA, assume
1626 we're saving SP like any other register; this happens
1627 on the ARM. */
1628 def_cfa_1 (label, &cfa);
1629 queue_reg_save (label, stack_pointer_rtx, offset);
1630 break;
1631 }
1632 else
1633 {
1634 /* Otherwise, we'll need to look in the stack to
1635 calculate the CFA. */
1636 rtx x = XEXP (dest, 0);
1637
1638 if (GET_CODE (x) != REG)
1639 x = XEXP (x, 0);
1640 if (GET_CODE (x) != REG)
1641 abort ();
1642
1643 cfa.reg = REGNO (x);
1644 cfa.base_offset = offset;
1645 cfa.indirect = 1;
1646 def_cfa_1 (label, &cfa);
1647 break;
1648 }
1649 }
1650
1651 def_cfa_1 (label, &cfa);
1652 queue_reg_save (label, src, offset);
1653 break;
1654
1655 default:
1656 abort ();
1657 }
1658 }
1659
1660 /* Record call frame debugging information for INSN, which either
1661 sets SP or FP (adjusting how we calculate the frame address) or saves a
1662 register to the stack. If INSN is NULL_RTX, initialize our state. */
1663
1664 void
1665 dwarf2out_frame_debug (insn)
1666 rtx insn;
1667 {
1668 const char *label;
1669 rtx src;
1670
1671 if (insn == NULL_RTX)
1672 {
1673 /* Flush any queued register saves. */
1674 flush_queued_reg_saves ();
1675
1676 /* Set up state for generating call frame debug info. */
1677 lookup_cfa (&cfa);
1678 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1679 abort ();
1680
1681 cfa.reg = STACK_POINTER_REGNUM;
1682 cfa_store = cfa;
1683 cfa_temp.reg = -1;
1684 cfa_temp.offset = 0;
1685 return;
1686 }
1687
1688 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1689 flush_queued_reg_saves ();
1690
1691 if (! RTX_FRAME_RELATED_P (insn))
1692 {
1693 if (!ACCUMULATE_OUTGOING_ARGS)
1694 dwarf2out_stack_adjust (insn);
1695
1696 return;
1697 }
1698
1699 label = dwarf2out_cfi_label ();
1700 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1701 if (src)
1702 insn = XEXP (src, 0);
1703 else
1704 insn = PATTERN (insn);
1705
1706 dwarf2out_frame_debug_expr (insn, label);
1707 }
1708
1709 #endif
1710
1711 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1712 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1713 PARAMS ((enum dwarf_call_frame_info cfi));
1714
1715 static enum dw_cfi_oprnd_type
1716 dw_cfi_oprnd1_desc (cfi)
1717 enum dwarf_call_frame_info cfi;
1718 {
1719 switch (cfi)
1720 {
1721 case DW_CFA_nop:
1722 case DW_CFA_GNU_window_save:
1723 return dw_cfi_oprnd_unused;
1724
1725 case DW_CFA_set_loc:
1726 case DW_CFA_advance_loc1:
1727 case DW_CFA_advance_loc2:
1728 case DW_CFA_advance_loc4:
1729 case DW_CFA_MIPS_advance_loc8:
1730 return dw_cfi_oprnd_addr;
1731
1732 case DW_CFA_offset:
1733 case DW_CFA_offset_extended:
1734 case DW_CFA_def_cfa:
1735 case DW_CFA_offset_extended_sf:
1736 case DW_CFA_def_cfa_sf:
1737 case DW_CFA_restore_extended:
1738 case DW_CFA_undefined:
1739 case DW_CFA_same_value:
1740 case DW_CFA_def_cfa_register:
1741 case DW_CFA_register:
1742 return dw_cfi_oprnd_reg_num;
1743
1744 case DW_CFA_def_cfa_offset:
1745 case DW_CFA_GNU_args_size:
1746 case DW_CFA_def_cfa_offset_sf:
1747 return dw_cfi_oprnd_offset;
1748
1749 case DW_CFA_def_cfa_expression:
1750 case DW_CFA_expression:
1751 return dw_cfi_oprnd_loc;
1752
1753 default:
1754 abort ();
1755 }
1756 }
1757
1758 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1759 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1760 PARAMS ((enum dwarf_call_frame_info cfi));
1761
1762 static enum dw_cfi_oprnd_type
1763 dw_cfi_oprnd2_desc (cfi)
1764 enum dwarf_call_frame_info cfi;
1765 {
1766 switch (cfi)
1767 {
1768 case DW_CFA_def_cfa:
1769 case DW_CFA_def_cfa_sf:
1770 case DW_CFA_offset:
1771 case DW_CFA_offset_extended_sf:
1772 case DW_CFA_offset_extended:
1773 return dw_cfi_oprnd_offset;
1774
1775 case DW_CFA_register:
1776 return dw_cfi_oprnd_reg_num;
1777
1778 default:
1779 return dw_cfi_oprnd_unused;
1780 }
1781 }
1782
1783 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1784
1785 /* Output a Call Frame Information opcode and its operand(s). */
1786
1787 static void
1788 output_cfi (cfi, fde, for_eh)
1789 dw_cfi_ref cfi;
1790 dw_fde_ref fde;
1791 int for_eh;
1792 {
1793 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1794 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1795 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1796 "DW_CFA_advance_loc 0x%lx",
1797 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1798 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1799 {
1800 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1801 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1802 "DW_CFA_offset, column 0x%lx",
1803 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1804 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1805 }
1806 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1807 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1808 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1809 "DW_CFA_restore, column 0x%lx",
1810 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1811 else
1812 {
1813 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1814 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1815
1816 switch (cfi->dw_cfi_opc)
1817 {
1818 case DW_CFA_set_loc:
1819 if (for_eh)
1820 dw2_asm_output_encoded_addr_rtx (
1821 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1822 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1823 NULL);
1824 else
1825 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1826 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1827 break;
1828
1829 case DW_CFA_advance_loc1:
1830 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1831 fde->dw_fde_current_label, NULL);
1832 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1833 break;
1834
1835 case DW_CFA_advance_loc2:
1836 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1837 fde->dw_fde_current_label, NULL);
1838 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1839 break;
1840
1841 case DW_CFA_advance_loc4:
1842 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1843 fde->dw_fde_current_label, NULL);
1844 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1845 break;
1846
1847 case DW_CFA_MIPS_advance_loc8:
1848 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1849 fde->dw_fde_current_label, NULL);
1850 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1851 break;
1852
1853 case DW_CFA_offset_extended:
1854 case DW_CFA_def_cfa:
1855 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1856 NULL);
1857 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1858 break;
1859
1860 case DW_CFA_offset_extended_sf:
1861 case DW_CFA_def_cfa_sf:
1862 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1863 NULL);
1864 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1865 break;
1866
1867 case DW_CFA_restore_extended:
1868 case DW_CFA_undefined:
1869 case DW_CFA_same_value:
1870 case DW_CFA_def_cfa_register:
1871 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1872 NULL);
1873 break;
1874
1875 case DW_CFA_register:
1876 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1877 NULL);
1878 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_reg_num,
1879 NULL);
1880 break;
1881
1882 case DW_CFA_def_cfa_offset:
1883 case DW_CFA_GNU_args_size:
1884 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1885 break;
1886
1887 case DW_CFA_def_cfa_offset_sf:
1888 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1889 break;
1890
1891 case DW_CFA_GNU_window_save:
1892 break;
1893
1894 case DW_CFA_def_cfa_expression:
1895 case DW_CFA_expression:
1896 output_cfa_loc (cfi);
1897 break;
1898
1899 case DW_CFA_GNU_negative_offset_extended:
1900 /* Obsoleted by DW_CFA_offset_extended_sf. */
1901 abort ();
1902
1903 default:
1904 break;
1905 }
1906 }
1907 }
1908
1909 /* Output the call frame information used to used to record information
1910 that relates to calculating the frame pointer, and records the
1911 location of saved registers. */
1912
1913 static void
1914 output_call_frame_info (for_eh)
1915 int for_eh;
1916 {
1917 unsigned int i;
1918 dw_fde_ref fde;
1919 dw_cfi_ref cfi;
1920 char l1[20], l2[20], section_start_label[20];
1921 bool any_lsda_needed = false;
1922 char augmentation[6];
1923 int augmentation_size;
1924 int fde_encoding = DW_EH_PE_absptr;
1925 int per_encoding = DW_EH_PE_absptr;
1926 int lsda_encoding = DW_EH_PE_absptr;
1927
1928 /* Don't emit a CIE if there won't be any FDEs. */
1929 if (fde_table_in_use == 0)
1930 return;
1931
1932 /* If we don't have any functions we'll want to unwind out of, don't
1933 emit any EH unwind information. Note that if exceptions aren't
1934 enabled, we won't have collected nothrow information, and if we
1935 asked for asynchronous tables, we always want this info. */
1936 if (for_eh)
1937 {
1938 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
1939
1940 for (i = 0; i < fde_table_in_use; i++)
1941 if (fde_table[i].uses_eh_lsda)
1942 any_eh_needed = any_lsda_needed = true;
1943 else if (! fde_table[i].nothrow)
1944 any_eh_needed = true;
1945
1946 if (! any_eh_needed)
1947 return;
1948 }
1949
1950 /* We're going to be generating comments, so turn on app. */
1951 if (flag_debug_asm)
1952 app_enable ();
1953
1954 if (for_eh)
1955 (*targetm.asm_out.eh_frame_section) ();
1956 else
1957 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1958
1959 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1960 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1961
1962 /* Output the CIE. */
1963 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1964 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1965 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1966 "Length of Common Information Entry");
1967 ASM_OUTPUT_LABEL (asm_out_file, l1);
1968
1969 /* Now that the CIE pointer is PC-relative for EH,
1970 use 0 to identify the CIE. */
1971 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1972 (for_eh ? 0 : DW_CIE_ID),
1973 "CIE Identifier Tag");
1974
1975 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1976
1977 augmentation[0] = 0;
1978 augmentation_size = 0;
1979 if (for_eh)
1980 {
1981 char *p;
1982
1983 /* Augmentation:
1984 z Indicates that a uleb128 is present to size the
1985 augmentation section.
1986 L Indicates the encoding (and thus presence) of
1987 an LSDA pointer in the FDE augmentation.
1988 R Indicates a non-default pointer encoding for
1989 FDE code pointers.
1990 P Indicates the presence of an encoding + language
1991 personality routine in the CIE augmentation. */
1992
1993 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1994 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
1995 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1996
1997 p = augmentation + 1;
1998 if (eh_personality_libfunc)
1999 {
2000 *p++ = 'P';
2001 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2002 }
2003 if (any_lsda_needed)
2004 {
2005 *p++ = 'L';
2006 augmentation_size += 1;
2007 }
2008 if (fde_encoding != DW_EH_PE_absptr)
2009 {
2010 *p++ = 'R';
2011 augmentation_size += 1;
2012 }
2013 if (p > augmentation + 1)
2014 {
2015 augmentation[0] = 'z';
2016 *p = '\0';
2017 }
2018
2019 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2020 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2021 {
2022 int offset = ( 4 /* Length */
2023 + 4 /* CIE Id */
2024 + 1 /* CIE version */
2025 + strlen (augmentation) + 1 /* Augmentation */
2026 + size_of_uleb128 (1) /* Code alignment */
2027 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2028 + 1 /* RA column */
2029 + 1 /* Augmentation size */
2030 + 1 /* Personality encoding */ );
2031 int pad = -offset & (PTR_SIZE - 1);
2032
2033 augmentation_size += pad;
2034
2035 /* Augmentations should be small, so there's scarce need to
2036 iterate for a solution. Die if we exceed one uleb128 byte. */
2037 if (size_of_uleb128 (augmentation_size) != 1)
2038 abort ();
2039 }
2040 }
2041
2042 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2043 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2044 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2045 "CIE Data Alignment Factor");
2046 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2047
2048 if (augmentation[0])
2049 {
2050 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2051 if (eh_personality_libfunc)
2052 {
2053 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2054 eh_data_format_name (per_encoding));
2055 dw2_asm_output_encoded_addr_rtx (per_encoding,
2056 eh_personality_libfunc, NULL);
2057 }
2058
2059 if (any_lsda_needed)
2060 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2061 eh_data_format_name (lsda_encoding));
2062
2063 if (fde_encoding != DW_EH_PE_absptr)
2064 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2065 eh_data_format_name (fde_encoding));
2066 }
2067
2068 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2069 output_cfi (cfi, NULL, for_eh);
2070
2071 /* Pad the CIE out to an address sized boundary. */
2072 ASM_OUTPUT_ALIGN (asm_out_file,
2073 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2074 ASM_OUTPUT_LABEL (asm_out_file, l2);
2075
2076 /* Loop through all of the FDE's. */
2077 for (i = 0; i < fde_table_in_use; i++)
2078 {
2079 fde = &fde_table[i];
2080
2081 /* Don't emit EH unwind info for leaf functions that don't need it. */
2082 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2083 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2084 && !fde->uses_eh_lsda)
2085 continue;
2086
2087 (*targetm.asm_out.internal_label) (asm_out_file, FDE_LABEL, for_eh + i * 2);
2088 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2089 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2090 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2091 "FDE Length");
2092 ASM_OUTPUT_LABEL (asm_out_file, l1);
2093
2094 if (for_eh)
2095 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2096 else
2097 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2098 "FDE CIE offset");
2099
2100 if (for_eh)
2101 {
2102 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2103 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
2104 "FDE initial location");
2105 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2106 fde->dw_fde_end, fde->dw_fde_begin,
2107 "FDE address range");
2108 }
2109 else
2110 {
2111 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2112 "FDE initial location");
2113 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2114 fde->dw_fde_end, fde->dw_fde_begin,
2115 "FDE address range");
2116 }
2117
2118 if (augmentation[0])
2119 {
2120 if (any_lsda_needed)
2121 {
2122 int size = size_of_encoded_value (lsda_encoding);
2123
2124 if (lsda_encoding == DW_EH_PE_aligned)
2125 {
2126 int offset = ( 4 /* Length */
2127 + 4 /* CIE offset */
2128 + 2 * size_of_encoded_value (fde_encoding)
2129 + 1 /* Augmentation size */ );
2130 int pad = -offset & (PTR_SIZE - 1);
2131
2132 size += pad;
2133 if (size_of_uleb128 (size) != 1)
2134 abort ();
2135 }
2136
2137 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2138
2139 if (fde->uses_eh_lsda)
2140 {
2141 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2142 fde->funcdef_number);
2143 dw2_asm_output_encoded_addr_rtx (
2144 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2145 "Language Specific Data Area");
2146 }
2147 else
2148 {
2149 if (lsda_encoding == DW_EH_PE_aligned)
2150 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2151 dw2_asm_output_data
2152 (size_of_encoded_value (lsda_encoding), 0,
2153 "Language Specific Data Area (none)");
2154 }
2155 }
2156 else
2157 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2158 }
2159
2160 /* Loop through the Call Frame Instructions associated with
2161 this FDE. */
2162 fde->dw_fde_current_label = fde->dw_fde_begin;
2163 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2164 output_cfi (cfi, fde, for_eh);
2165
2166 /* Pad the FDE out to an address sized boundary. */
2167 ASM_OUTPUT_ALIGN (asm_out_file,
2168 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2169 ASM_OUTPUT_LABEL (asm_out_file, l2);
2170 }
2171
2172 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2173 dw2_asm_output_data (4, 0, "End of Table");
2174 #ifdef MIPS_DEBUGGING_INFO
2175 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2176 get a value of 0. Putting .align 0 after the label fixes it. */
2177 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2178 #endif
2179
2180 /* Turn off app to make assembly quicker. */
2181 if (flag_debug_asm)
2182 app_disable ();
2183 }
2184
2185 /* Output a marker (i.e. a label) for the beginning of a function, before
2186 the prologue. */
2187
2188 void
2189 dwarf2out_begin_prologue (line, file)
2190 unsigned int line ATTRIBUTE_UNUSED;
2191 const char *file ATTRIBUTE_UNUSED;
2192 {
2193 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2194 dw_fde_ref fde;
2195
2196 current_function_func_begin_label = 0;
2197
2198 #ifdef IA64_UNWIND_INFO
2199 /* ??? current_function_func_begin_label is also used by except.c
2200 for call-site information. We must emit this label if it might
2201 be used. */
2202 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2203 && ! dwarf2out_do_frame ())
2204 return;
2205 #else
2206 if (! dwarf2out_do_frame ())
2207 return;
2208 #endif
2209
2210 function_section (current_function_decl);
2211 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2212 current_function_funcdef_no);
2213 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2214 current_function_funcdef_no);
2215 current_function_func_begin_label = get_identifier (label);
2216
2217 #ifdef IA64_UNWIND_INFO
2218 /* We can elide the fde allocation if we're not emitting debug info. */
2219 if (! dwarf2out_do_frame ())
2220 return;
2221 #endif
2222
2223 /* Expand the fde table if necessary. */
2224 if (fde_table_in_use == fde_table_allocated)
2225 {
2226 fde_table_allocated += FDE_TABLE_INCREMENT;
2227 fde_table = ggc_realloc (fde_table,
2228 fde_table_allocated * sizeof (dw_fde_node));
2229 memset (fde_table + fde_table_in_use, 0,
2230 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2231 }
2232
2233 /* Record the FDE associated with this function. */
2234 current_funcdef_fde = fde_table_in_use;
2235
2236 /* Add the new FDE at the end of the fde_table. */
2237 fde = &fde_table[fde_table_in_use++];
2238 fde->dw_fde_begin = xstrdup (label);
2239 fde->dw_fde_current_label = NULL;
2240 fde->dw_fde_end = NULL;
2241 fde->dw_fde_cfi = NULL;
2242 fde->funcdef_number = current_function_funcdef_no;
2243 fde->nothrow = current_function_nothrow;
2244 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2245 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2246
2247 args_size = old_args_size = 0;
2248
2249 /* We only want to output line number information for the genuine dwarf2
2250 prologue case, not the eh frame case. */
2251 #ifdef DWARF2_DEBUGGING_INFO
2252 if (file)
2253 dwarf2out_source_line (line, file);
2254 #endif
2255 }
2256
2257 /* Output a marker (i.e. a label) for the absolute end of the generated code
2258 for a function definition. This gets called *after* the epilogue code has
2259 been generated. */
2260
2261 void
2262 dwarf2out_end_epilogue (line, file)
2263 unsigned int line ATTRIBUTE_UNUSED;
2264 const char *file ATTRIBUTE_UNUSED;
2265 {
2266 dw_fde_ref fde;
2267 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2268
2269 /* Output a label to mark the endpoint of the code generated for this
2270 function. */
2271 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2272 current_function_funcdef_no);
2273 ASM_OUTPUT_LABEL (asm_out_file, label);
2274 fde = &fde_table[fde_table_in_use - 1];
2275 fde->dw_fde_end = xstrdup (label);
2276 }
2277
2278 void
2279 dwarf2out_frame_init ()
2280 {
2281 /* Allocate the initial hunk of the fde_table. */
2282 fde_table = (dw_fde_ref) ggc_alloc_cleared (FDE_TABLE_INCREMENT
2283 * sizeof (dw_fde_node));
2284 fde_table_allocated = FDE_TABLE_INCREMENT;
2285 fde_table_in_use = 0;
2286
2287 /* Generate the CFA instructions common to all FDE's. Do it now for the
2288 sake of lookup_cfa. */
2289
2290 #ifdef DWARF2_UNWIND_INFO
2291 /* On entry, the Canonical Frame Address is at SP. */
2292 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2293 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2294 #endif
2295 }
2296
2297 void
2298 dwarf2out_frame_finish ()
2299 {
2300 /* Output call frame information. */
2301 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2302 output_call_frame_info (0);
2303
2304 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2305 output_call_frame_info (1);
2306 }
2307 #endif
2308 \f
2309 /* And now, the subset of the debugging information support code necessary
2310 for emitting location expressions. */
2311
2312 /* We need some way to distinguish DW_OP_addr with a direct symbol
2313 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2314 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2315
2316
2317 typedef struct dw_val_struct *dw_val_ref;
2318 typedef struct die_struct *dw_die_ref;
2319 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2320 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2321
2322 /* Each DIE may have a series of attribute/value pairs. Values
2323 can take on several forms. The forms that are used in this
2324 implementation are listed below. */
2325
2326 enum dw_val_class
2327 {
2328 dw_val_class_addr,
2329 dw_val_class_offset,
2330 dw_val_class_loc,
2331 dw_val_class_loc_list,
2332 dw_val_class_range_list,
2333 dw_val_class_const,
2334 dw_val_class_unsigned_const,
2335 dw_val_class_long_long,
2336 dw_val_class_float,
2337 dw_val_class_flag,
2338 dw_val_class_die_ref,
2339 dw_val_class_fde_ref,
2340 dw_val_class_lbl_id,
2341 dw_val_class_lbl_offset,
2342 dw_val_class_str
2343 };
2344
2345 /* Describe a double word constant value. */
2346 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2347
2348 typedef struct dw_long_long_struct GTY(())
2349 {
2350 unsigned long hi;
2351 unsigned long low;
2352 }
2353 dw_long_long_const;
2354
2355 /* Describe a floating point constant value. */
2356
2357 typedef struct dw_fp_struct GTY(())
2358 {
2359 long * GTY((length ("%h.length"))) array;
2360 unsigned length;
2361 }
2362 dw_float_const;
2363
2364 /* The dw_val_node describes an attribute's value, as it is
2365 represented internally. */
2366
2367 typedef struct dw_val_struct GTY(())
2368 {
2369 enum dw_val_class val_class;
2370 union dw_val_struct_union
2371 {
2372 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2373 long unsigned GTY ((tag ("dw_val_class_offset"))) val_offset;
2374 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2375 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2376 long int GTY ((default (""))) val_int;
2377 long unsigned GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2378 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2379 dw_float_const GTY ((tag ("dw_val_class_float"))) val_float;
2380 struct dw_val_die_union
2381 {
2382 dw_die_ref die;
2383 int external;
2384 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2385 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2386 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2387 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2388 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2389 }
2390 GTY ((desc ("%1.val_class"))) v;
2391 }
2392 dw_val_node;
2393
2394 /* Locations in memory are described using a sequence of stack machine
2395 operations. */
2396
2397 typedef struct dw_loc_descr_struct GTY(())
2398 {
2399 dw_loc_descr_ref dw_loc_next;
2400 enum dwarf_location_atom dw_loc_opc;
2401 dw_val_node dw_loc_oprnd1;
2402 dw_val_node dw_loc_oprnd2;
2403 int dw_loc_addr;
2404 }
2405 dw_loc_descr_node;
2406
2407 /* Location lists are ranges + location descriptions for that range,
2408 so you can track variables that are in different places over
2409 their entire life. */
2410 typedef struct dw_loc_list_struct GTY(())
2411 {
2412 dw_loc_list_ref dw_loc_next;
2413 const char *begin; /* Label for begin address of range */
2414 const char *end; /* Label for end address of range */
2415 char *ll_symbol; /* Label for beginning of location list.
2416 Only on head of list */
2417 const char *section; /* Section this loclist is relative to */
2418 dw_loc_descr_ref expr;
2419 } dw_loc_list_node;
2420
2421 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2422
2423 static const char *dwarf_stack_op_name PARAMS ((unsigned));
2424 static dw_loc_descr_ref new_loc_descr PARAMS ((enum dwarf_location_atom,
2425 unsigned long,
2426 unsigned long));
2427 static void add_loc_descr PARAMS ((dw_loc_descr_ref *,
2428 dw_loc_descr_ref));
2429 static unsigned long size_of_loc_descr PARAMS ((dw_loc_descr_ref));
2430 static unsigned long size_of_locs PARAMS ((dw_loc_descr_ref));
2431 static void output_loc_operands PARAMS ((dw_loc_descr_ref));
2432 static void output_loc_sequence PARAMS ((dw_loc_descr_ref));
2433
2434 /* Convert a DWARF stack opcode into its string name. */
2435
2436 static const char *
2437 dwarf_stack_op_name (op)
2438 unsigned op;
2439 {
2440 switch (op)
2441 {
2442 case DW_OP_addr:
2443 case INTERNAL_DW_OP_tls_addr:
2444 return "DW_OP_addr";
2445 case DW_OP_deref:
2446 return "DW_OP_deref";
2447 case DW_OP_const1u:
2448 return "DW_OP_const1u";
2449 case DW_OP_const1s:
2450 return "DW_OP_const1s";
2451 case DW_OP_const2u:
2452 return "DW_OP_const2u";
2453 case DW_OP_const2s:
2454 return "DW_OP_const2s";
2455 case DW_OP_const4u:
2456 return "DW_OP_const4u";
2457 case DW_OP_const4s:
2458 return "DW_OP_const4s";
2459 case DW_OP_const8u:
2460 return "DW_OP_const8u";
2461 case DW_OP_const8s:
2462 return "DW_OP_const8s";
2463 case DW_OP_constu:
2464 return "DW_OP_constu";
2465 case DW_OP_consts:
2466 return "DW_OP_consts";
2467 case DW_OP_dup:
2468 return "DW_OP_dup";
2469 case DW_OP_drop:
2470 return "DW_OP_drop";
2471 case DW_OP_over:
2472 return "DW_OP_over";
2473 case DW_OP_pick:
2474 return "DW_OP_pick";
2475 case DW_OP_swap:
2476 return "DW_OP_swap";
2477 case DW_OP_rot:
2478 return "DW_OP_rot";
2479 case DW_OP_xderef:
2480 return "DW_OP_xderef";
2481 case DW_OP_abs:
2482 return "DW_OP_abs";
2483 case DW_OP_and:
2484 return "DW_OP_and";
2485 case DW_OP_div:
2486 return "DW_OP_div";
2487 case DW_OP_minus:
2488 return "DW_OP_minus";
2489 case DW_OP_mod:
2490 return "DW_OP_mod";
2491 case DW_OP_mul:
2492 return "DW_OP_mul";
2493 case DW_OP_neg:
2494 return "DW_OP_neg";
2495 case DW_OP_not:
2496 return "DW_OP_not";
2497 case DW_OP_or:
2498 return "DW_OP_or";
2499 case DW_OP_plus:
2500 return "DW_OP_plus";
2501 case DW_OP_plus_uconst:
2502 return "DW_OP_plus_uconst";
2503 case DW_OP_shl:
2504 return "DW_OP_shl";
2505 case DW_OP_shr:
2506 return "DW_OP_shr";
2507 case DW_OP_shra:
2508 return "DW_OP_shra";
2509 case DW_OP_xor:
2510 return "DW_OP_xor";
2511 case DW_OP_bra:
2512 return "DW_OP_bra";
2513 case DW_OP_eq:
2514 return "DW_OP_eq";
2515 case DW_OP_ge:
2516 return "DW_OP_ge";
2517 case DW_OP_gt:
2518 return "DW_OP_gt";
2519 case DW_OP_le:
2520 return "DW_OP_le";
2521 case DW_OP_lt:
2522 return "DW_OP_lt";
2523 case DW_OP_ne:
2524 return "DW_OP_ne";
2525 case DW_OP_skip:
2526 return "DW_OP_skip";
2527 case DW_OP_lit0:
2528 return "DW_OP_lit0";
2529 case DW_OP_lit1:
2530 return "DW_OP_lit1";
2531 case DW_OP_lit2:
2532 return "DW_OP_lit2";
2533 case DW_OP_lit3:
2534 return "DW_OP_lit3";
2535 case DW_OP_lit4:
2536 return "DW_OP_lit4";
2537 case DW_OP_lit5:
2538 return "DW_OP_lit5";
2539 case DW_OP_lit6:
2540 return "DW_OP_lit6";
2541 case DW_OP_lit7:
2542 return "DW_OP_lit7";
2543 case DW_OP_lit8:
2544 return "DW_OP_lit8";
2545 case DW_OP_lit9:
2546 return "DW_OP_lit9";
2547 case DW_OP_lit10:
2548 return "DW_OP_lit10";
2549 case DW_OP_lit11:
2550 return "DW_OP_lit11";
2551 case DW_OP_lit12:
2552 return "DW_OP_lit12";
2553 case DW_OP_lit13:
2554 return "DW_OP_lit13";
2555 case DW_OP_lit14:
2556 return "DW_OP_lit14";
2557 case DW_OP_lit15:
2558 return "DW_OP_lit15";
2559 case DW_OP_lit16:
2560 return "DW_OP_lit16";
2561 case DW_OP_lit17:
2562 return "DW_OP_lit17";
2563 case DW_OP_lit18:
2564 return "DW_OP_lit18";
2565 case DW_OP_lit19:
2566 return "DW_OP_lit19";
2567 case DW_OP_lit20:
2568 return "DW_OP_lit20";
2569 case DW_OP_lit21:
2570 return "DW_OP_lit21";
2571 case DW_OP_lit22:
2572 return "DW_OP_lit22";
2573 case DW_OP_lit23:
2574 return "DW_OP_lit23";
2575 case DW_OP_lit24:
2576 return "DW_OP_lit24";
2577 case DW_OP_lit25:
2578 return "DW_OP_lit25";
2579 case DW_OP_lit26:
2580 return "DW_OP_lit26";
2581 case DW_OP_lit27:
2582 return "DW_OP_lit27";
2583 case DW_OP_lit28:
2584 return "DW_OP_lit28";
2585 case DW_OP_lit29:
2586 return "DW_OP_lit29";
2587 case DW_OP_lit30:
2588 return "DW_OP_lit30";
2589 case DW_OP_lit31:
2590 return "DW_OP_lit31";
2591 case DW_OP_reg0:
2592 return "DW_OP_reg0";
2593 case DW_OP_reg1:
2594 return "DW_OP_reg1";
2595 case DW_OP_reg2:
2596 return "DW_OP_reg2";
2597 case DW_OP_reg3:
2598 return "DW_OP_reg3";
2599 case DW_OP_reg4:
2600 return "DW_OP_reg4";
2601 case DW_OP_reg5:
2602 return "DW_OP_reg5";
2603 case DW_OP_reg6:
2604 return "DW_OP_reg6";
2605 case DW_OP_reg7:
2606 return "DW_OP_reg7";
2607 case DW_OP_reg8:
2608 return "DW_OP_reg8";
2609 case DW_OP_reg9:
2610 return "DW_OP_reg9";
2611 case DW_OP_reg10:
2612 return "DW_OP_reg10";
2613 case DW_OP_reg11:
2614 return "DW_OP_reg11";
2615 case DW_OP_reg12:
2616 return "DW_OP_reg12";
2617 case DW_OP_reg13:
2618 return "DW_OP_reg13";
2619 case DW_OP_reg14:
2620 return "DW_OP_reg14";
2621 case DW_OP_reg15:
2622 return "DW_OP_reg15";
2623 case DW_OP_reg16:
2624 return "DW_OP_reg16";
2625 case DW_OP_reg17:
2626 return "DW_OP_reg17";
2627 case DW_OP_reg18:
2628 return "DW_OP_reg18";
2629 case DW_OP_reg19:
2630 return "DW_OP_reg19";
2631 case DW_OP_reg20:
2632 return "DW_OP_reg20";
2633 case DW_OP_reg21:
2634 return "DW_OP_reg21";
2635 case DW_OP_reg22:
2636 return "DW_OP_reg22";
2637 case DW_OP_reg23:
2638 return "DW_OP_reg23";
2639 case DW_OP_reg24:
2640 return "DW_OP_reg24";
2641 case DW_OP_reg25:
2642 return "DW_OP_reg25";
2643 case DW_OP_reg26:
2644 return "DW_OP_reg26";
2645 case DW_OP_reg27:
2646 return "DW_OP_reg27";
2647 case DW_OP_reg28:
2648 return "DW_OP_reg28";
2649 case DW_OP_reg29:
2650 return "DW_OP_reg29";
2651 case DW_OP_reg30:
2652 return "DW_OP_reg30";
2653 case DW_OP_reg31:
2654 return "DW_OP_reg31";
2655 case DW_OP_breg0:
2656 return "DW_OP_breg0";
2657 case DW_OP_breg1:
2658 return "DW_OP_breg1";
2659 case DW_OP_breg2:
2660 return "DW_OP_breg2";
2661 case DW_OP_breg3:
2662 return "DW_OP_breg3";
2663 case DW_OP_breg4:
2664 return "DW_OP_breg4";
2665 case DW_OP_breg5:
2666 return "DW_OP_breg5";
2667 case DW_OP_breg6:
2668 return "DW_OP_breg6";
2669 case DW_OP_breg7:
2670 return "DW_OP_breg7";
2671 case DW_OP_breg8:
2672 return "DW_OP_breg8";
2673 case DW_OP_breg9:
2674 return "DW_OP_breg9";
2675 case DW_OP_breg10:
2676 return "DW_OP_breg10";
2677 case DW_OP_breg11:
2678 return "DW_OP_breg11";
2679 case DW_OP_breg12:
2680 return "DW_OP_breg12";
2681 case DW_OP_breg13:
2682 return "DW_OP_breg13";
2683 case DW_OP_breg14:
2684 return "DW_OP_breg14";
2685 case DW_OP_breg15:
2686 return "DW_OP_breg15";
2687 case DW_OP_breg16:
2688 return "DW_OP_breg16";
2689 case DW_OP_breg17:
2690 return "DW_OP_breg17";
2691 case DW_OP_breg18:
2692 return "DW_OP_breg18";
2693 case DW_OP_breg19:
2694 return "DW_OP_breg19";
2695 case DW_OP_breg20:
2696 return "DW_OP_breg20";
2697 case DW_OP_breg21:
2698 return "DW_OP_breg21";
2699 case DW_OP_breg22:
2700 return "DW_OP_breg22";
2701 case DW_OP_breg23:
2702 return "DW_OP_breg23";
2703 case DW_OP_breg24:
2704 return "DW_OP_breg24";
2705 case DW_OP_breg25:
2706 return "DW_OP_breg25";
2707 case DW_OP_breg26:
2708 return "DW_OP_breg26";
2709 case DW_OP_breg27:
2710 return "DW_OP_breg27";
2711 case DW_OP_breg28:
2712 return "DW_OP_breg28";
2713 case DW_OP_breg29:
2714 return "DW_OP_breg29";
2715 case DW_OP_breg30:
2716 return "DW_OP_breg30";
2717 case DW_OP_breg31:
2718 return "DW_OP_breg31";
2719 case DW_OP_regx:
2720 return "DW_OP_regx";
2721 case DW_OP_fbreg:
2722 return "DW_OP_fbreg";
2723 case DW_OP_bregx:
2724 return "DW_OP_bregx";
2725 case DW_OP_piece:
2726 return "DW_OP_piece";
2727 case DW_OP_deref_size:
2728 return "DW_OP_deref_size";
2729 case DW_OP_xderef_size:
2730 return "DW_OP_xderef_size";
2731 case DW_OP_nop:
2732 return "DW_OP_nop";
2733 case DW_OP_push_object_address:
2734 return "DW_OP_push_object_address";
2735 case DW_OP_call2:
2736 return "DW_OP_call2";
2737 case DW_OP_call4:
2738 return "DW_OP_call4";
2739 case DW_OP_call_ref:
2740 return "DW_OP_call_ref";
2741 case DW_OP_GNU_push_tls_address:
2742 return "DW_OP_GNU_push_tls_address";
2743 default:
2744 return "OP_<unknown>";
2745 }
2746 }
2747
2748 /* Return a pointer to a newly allocated location description. Location
2749 descriptions are simple expression terms that can be strung
2750 together to form more complicated location (address) descriptions. */
2751
2752 static inline dw_loc_descr_ref
2753 new_loc_descr (op, oprnd1, oprnd2)
2754 enum dwarf_location_atom op;
2755 unsigned long oprnd1;
2756 unsigned long oprnd2;
2757 {
2758 dw_loc_descr_ref descr
2759 = (dw_loc_descr_ref) ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2760
2761 descr->dw_loc_opc = op;
2762 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2763 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2764 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2765 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2766
2767 return descr;
2768 }
2769
2770
2771 /* Add a location description term to a location description expression. */
2772
2773 static inline void
2774 add_loc_descr (list_head, descr)
2775 dw_loc_descr_ref *list_head;
2776 dw_loc_descr_ref descr;
2777 {
2778 dw_loc_descr_ref *d;
2779
2780 /* Find the end of the chain. */
2781 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2782 ;
2783
2784 *d = descr;
2785 }
2786
2787 /* Return the size of a location descriptor. */
2788
2789 static unsigned long
2790 size_of_loc_descr (loc)
2791 dw_loc_descr_ref loc;
2792 {
2793 unsigned long size = 1;
2794
2795 switch (loc->dw_loc_opc)
2796 {
2797 case DW_OP_addr:
2798 case INTERNAL_DW_OP_tls_addr:
2799 size += DWARF2_ADDR_SIZE;
2800 break;
2801 case DW_OP_const1u:
2802 case DW_OP_const1s:
2803 size += 1;
2804 break;
2805 case DW_OP_const2u:
2806 case DW_OP_const2s:
2807 size += 2;
2808 break;
2809 case DW_OP_const4u:
2810 case DW_OP_const4s:
2811 size += 4;
2812 break;
2813 case DW_OP_const8u:
2814 case DW_OP_const8s:
2815 size += 8;
2816 break;
2817 case DW_OP_constu:
2818 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2819 break;
2820 case DW_OP_consts:
2821 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2822 break;
2823 case DW_OP_pick:
2824 size += 1;
2825 break;
2826 case DW_OP_plus_uconst:
2827 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2828 break;
2829 case DW_OP_skip:
2830 case DW_OP_bra:
2831 size += 2;
2832 break;
2833 case DW_OP_breg0:
2834 case DW_OP_breg1:
2835 case DW_OP_breg2:
2836 case DW_OP_breg3:
2837 case DW_OP_breg4:
2838 case DW_OP_breg5:
2839 case DW_OP_breg6:
2840 case DW_OP_breg7:
2841 case DW_OP_breg8:
2842 case DW_OP_breg9:
2843 case DW_OP_breg10:
2844 case DW_OP_breg11:
2845 case DW_OP_breg12:
2846 case DW_OP_breg13:
2847 case DW_OP_breg14:
2848 case DW_OP_breg15:
2849 case DW_OP_breg16:
2850 case DW_OP_breg17:
2851 case DW_OP_breg18:
2852 case DW_OP_breg19:
2853 case DW_OP_breg20:
2854 case DW_OP_breg21:
2855 case DW_OP_breg22:
2856 case DW_OP_breg23:
2857 case DW_OP_breg24:
2858 case DW_OP_breg25:
2859 case DW_OP_breg26:
2860 case DW_OP_breg27:
2861 case DW_OP_breg28:
2862 case DW_OP_breg29:
2863 case DW_OP_breg30:
2864 case DW_OP_breg31:
2865 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2866 break;
2867 case DW_OP_regx:
2868 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2869 break;
2870 case DW_OP_fbreg:
2871 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2872 break;
2873 case DW_OP_bregx:
2874 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2875 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2876 break;
2877 case DW_OP_piece:
2878 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2879 break;
2880 case DW_OP_deref_size:
2881 case DW_OP_xderef_size:
2882 size += 1;
2883 break;
2884 case DW_OP_call2:
2885 size += 2;
2886 break;
2887 case DW_OP_call4:
2888 size += 4;
2889 break;
2890 case DW_OP_call_ref:
2891 size += DWARF2_ADDR_SIZE;
2892 break;
2893 default:
2894 break;
2895 }
2896
2897 return size;
2898 }
2899
2900 /* Return the size of a series of location descriptors. */
2901
2902 static unsigned long
2903 size_of_locs (loc)
2904 dw_loc_descr_ref loc;
2905 {
2906 unsigned long size;
2907
2908 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2909 {
2910 loc->dw_loc_addr = size;
2911 size += size_of_loc_descr (loc);
2912 }
2913
2914 return size;
2915 }
2916
2917 /* Output location description stack opcode's operands (if any). */
2918
2919 static void
2920 output_loc_operands (loc)
2921 dw_loc_descr_ref loc;
2922 {
2923 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2924 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2925
2926 switch (loc->dw_loc_opc)
2927 {
2928 #ifdef DWARF2_DEBUGGING_INFO
2929 case DW_OP_addr:
2930 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2931 break;
2932 case DW_OP_const2u:
2933 case DW_OP_const2s:
2934 dw2_asm_output_data (2, val1->v.val_int, NULL);
2935 break;
2936 case DW_OP_const4u:
2937 case DW_OP_const4s:
2938 dw2_asm_output_data (4, val1->v.val_int, NULL);
2939 break;
2940 case DW_OP_const8u:
2941 case DW_OP_const8s:
2942 if (HOST_BITS_PER_LONG < 64)
2943 abort ();
2944 dw2_asm_output_data (8, val1->v.val_int, NULL);
2945 break;
2946 case DW_OP_skip:
2947 case DW_OP_bra:
2948 {
2949 int offset;
2950
2951 if (val1->val_class == dw_val_class_loc)
2952 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2953 else
2954 abort ();
2955
2956 dw2_asm_output_data (2, offset, NULL);
2957 }
2958 break;
2959 #else
2960 case DW_OP_addr:
2961 case DW_OP_const2u:
2962 case DW_OP_const2s:
2963 case DW_OP_const4u:
2964 case DW_OP_const4s:
2965 case DW_OP_const8u:
2966 case DW_OP_const8s:
2967 case DW_OP_skip:
2968 case DW_OP_bra:
2969 /* We currently don't make any attempt to make sure these are
2970 aligned properly like we do for the main unwind info, so
2971 don't support emitting things larger than a byte if we're
2972 only doing unwinding. */
2973 abort ();
2974 #endif
2975 case DW_OP_const1u:
2976 case DW_OP_const1s:
2977 dw2_asm_output_data (1, val1->v.val_int, NULL);
2978 break;
2979 case DW_OP_constu:
2980 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2981 break;
2982 case DW_OP_consts:
2983 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2984 break;
2985 case DW_OP_pick:
2986 dw2_asm_output_data (1, val1->v.val_int, NULL);
2987 break;
2988 case DW_OP_plus_uconst:
2989 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2990 break;
2991 case DW_OP_breg0:
2992 case DW_OP_breg1:
2993 case DW_OP_breg2:
2994 case DW_OP_breg3:
2995 case DW_OP_breg4:
2996 case DW_OP_breg5:
2997 case DW_OP_breg6:
2998 case DW_OP_breg7:
2999 case DW_OP_breg8:
3000 case DW_OP_breg9:
3001 case DW_OP_breg10:
3002 case DW_OP_breg11:
3003 case DW_OP_breg12:
3004 case DW_OP_breg13:
3005 case DW_OP_breg14:
3006 case DW_OP_breg15:
3007 case DW_OP_breg16:
3008 case DW_OP_breg17:
3009 case DW_OP_breg18:
3010 case DW_OP_breg19:
3011 case DW_OP_breg20:
3012 case DW_OP_breg21:
3013 case DW_OP_breg22:
3014 case DW_OP_breg23:
3015 case DW_OP_breg24:
3016 case DW_OP_breg25:
3017 case DW_OP_breg26:
3018 case DW_OP_breg27:
3019 case DW_OP_breg28:
3020 case DW_OP_breg29:
3021 case DW_OP_breg30:
3022 case DW_OP_breg31:
3023 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3024 break;
3025 case DW_OP_regx:
3026 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3027 break;
3028 case DW_OP_fbreg:
3029 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3030 break;
3031 case DW_OP_bregx:
3032 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3033 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3034 break;
3035 case DW_OP_piece:
3036 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3037 break;
3038 case DW_OP_deref_size:
3039 case DW_OP_xderef_size:
3040 dw2_asm_output_data (1, val1->v.val_int, NULL);
3041 break;
3042
3043 case INTERNAL_DW_OP_tls_addr:
3044 #ifdef ASM_OUTPUT_DWARF_DTPREL
3045 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3046 val1->v.val_addr);
3047 fputc ('\n', asm_out_file);
3048 #else
3049 abort ();
3050 #endif
3051 break;
3052
3053 default:
3054 /* Other codes have no operands. */
3055 break;
3056 }
3057 }
3058
3059 /* Output a sequence of location operations. */
3060
3061 static void
3062 output_loc_sequence (loc)
3063 dw_loc_descr_ref loc;
3064 {
3065 for (; loc != NULL; loc = loc->dw_loc_next)
3066 {
3067 /* Output the opcode. */
3068 dw2_asm_output_data (1, loc->dw_loc_opc,
3069 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3070
3071 /* Output the operand(s) (if any). */
3072 output_loc_operands (loc);
3073 }
3074 }
3075
3076 /* This routine will generate the correct assembly data for a location
3077 description based on a cfi entry with a complex address. */
3078
3079 static void
3080 output_cfa_loc (cfi)
3081 dw_cfi_ref cfi;
3082 {
3083 dw_loc_descr_ref loc;
3084 unsigned long size;
3085
3086 /* Output the size of the block. */
3087 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3088 size = size_of_locs (loc);
3089 dw2_asm_output_data_uleb128 (size, NULL);
3090
3091 /* Now output the operations themselves. */
3092 output_loc_sequence (loc);
3093 }
3094
3095 /* This function builds a dwarf location descriptor sequence from
3096 a dw_cfa_location. */
3097
3098 static struct dw_loc_descr_struct *
3099 build_cfa_loc (cfa)
3100 dw_cfa_location *cfa;
3101 {
3102 struct dw_loc_descr_struct *head, *tmp;
3103
3104 if (cfa->indirect == 0)
3105 abort ();
3106
3107 if (cfa->base_offset)
3108 {
3109 if (cfa->reg <= 31)
3110 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3111 else
3112 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3113 }
3114 else if (cfa->reg <= 31)
3115 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3116 else
3117 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3118
3119 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3120 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3121 add_loc_descr (&head, tmp);
3122 if (cfa->offset != 0)
3123 {
3124 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3125 add_loc_descr (&head, tmp);
3126 }
3127
3128 return head;
3129 }
3130
3131 /* This function fills in aa dw_cfa_location structure from a dwarf location
3132 descriptor sequence. */
3133
3134 static void
3135 get_cfa_from_loc_descr (cfa, loc)
3136 dw_cfa_location *cfa;
3137 struct dw_loc_descr_struct *loc;
3138 {
3139 struct dw_loc_descr_struct *ptr;
3140 cfa->offset = 0;
3141 cfa->base_offset = 0;
3142 cfa->indirect = 0;
3143 cfa->reg = -1;
3144
3145 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3146 {
3147 enum dwarf_location_atom op = ptr->dw_loc_opc;
3148
3149 switch (op)
3150 {
3151 case DW_OP_reg0:
3152 case DW_OP_reg1:
3153 case DW_OP_reg2:
3154 case DW_OP_reg3:
3155 case DW_OP_reg4:
3156 case DW_OP_reg5:
3157 case DW_OP_reg6:
3158 case DW_OP_reg7:
3159 case DW_OP_reg8:
3160 case DW_OP_reg9:
3161 case DW_OP_reg10:
3162 case DW_OP_reg11:
3163 case DW_OP_reg12:
3164 case DW_OP_reg13:
3165 case DW_OP_reg14:
3166 case DW_OP_reg15:
3167 case DW_OP_reg16:
3168 case DW_OP_reg17:
3169 case DW_OP_reg18:
3170 case DW_OP_reg19:
3171 case DW_OP_reg20:
3172 case DW_OP_reg21:
3173 case DW_OP_reg22:
3174 case DW_OP_reg23:
3175 case DW_OP_reg24:
3176 case DW_OP_reg25:
3177 case DW_OP_reg26:
3178 case DW_OP_reg27:
3179 case DW_OP_reg28:
3180 case DW_OP_reg29:
3181 case DW_OP_reg30:
3182 case DW_OP_reg31:
3183 cfa->reg = op - DW_OP_reg0;
3184 break;
3185 case DW_OP_regx:
3186 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3187 break;
3188 case DW_OP_breg0:
3189 case DW_OP_breg1:
3190 case DW_OP_breg2:
3191 case DW_OP_breg3:
3192 case DW_OP_breg4:
3193 case DW_OP_breg5:
3194 case DW_OP_breg6:
3195 case DW_OP_breg7:
3196 case DW_OP_breg8:
3197 case DW_OP_breg9:
3198 case DW_OP_breg10:
3199 case DW_OP_breg11:
3200 case DW_OP_breg12:
3201 case DW_OP_breg13:
3202 case DW_OP_breg14:
3203 case DW_OP_breg15:
3204 case DW_OP_breg16:
3205 case DW_OP_breg17:
3206 case DW_OP_breg18:
3207 case DW_OP_breg19:
3208 case DW_OP_breg20:
3209 case DW_OP_breg21:
3210 case DW_OP_breg22:
3211 case DW_OP_breg23:
3212 case DW_OP_breg24:
3213 case DW_OP_breg25:
3214 case DW_OP_breg26:
3215 case DW_OP_breg27:
3216 case DW_OP_breg28:
3217 case DW_OP_breg29:
3218 case DW_OP_breg30:
3219 case DW_OP_breg31:
3220 cfa->reg = op - DW_OP_breg0;
3221 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3222 break;
3223 case DW_OP_bregx:
3224 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3225 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3226 break;
3227 case DW_OP_deref:
3228 cfa->indirect = 1;
3229 break;
3230 case DW_OP_plus_uconst:
3231 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3232 break;
3233 default:
3234 internal_error ("DW_LOC_OP %s not implemented\n",
3235 dwarf_stack_op_name (ptr->dw_loc_opc));
3236 }
3237 }
3238 }
3239 #endif /* .debug_frame support */
3240 \f
3241 /* And now, the support for symbolic debugging information. */
3242 #ifdef DWARF2_DEBUGGING_INFO
3243
3244 /* .debug_str support. */
3245 static int output_indirect_string PARAMS ((void **, void *));
3246
3247 static void dwarf2out_init PARAMS ((const char *));
3248 static void dwarf2out_finish PARAMS ((const char *));
3249 static void dwarf2out_define PARAMS ((unsigned int, const char *));
3250 static void dwarf2out_undef PARAMS ((unsigned int, const char *));
3251 static void dwarf2out_start_source_file PARAMS ((unsigned, const char *));
3252 static void dwarf2out_end_source_file PARAMS ((unsigned));
3253 static void dwarf2out_begin_block PARAMS ((unsigned, unsigned));
3254 static void dwarf2out_end_block PARAMS ((unsigned, unsigned));
3255 static bool dwarf2out_ignore_block PARAMS ((tree));
3256 static void dwarf2out_global_decl PARAMS ((tree));
3257 static void dwarf2out_abstract_function PARAMS ((tree));
3258
3259 /* The debug hooks structure. */
3260
3261 const struct gcc_debug_hooks dwarf2_debug_hooks =
3262 {
3263 dwarf2out_init,
3264 dwarf2out_finish,
3265 dwarf2out_define,
3266 dwarf2out_undef,
3267 dwarf2out_start_source_file,
3268 dwarf2out_end_source_file,
3269 dwarf2out_begin_block,
3270 dwarf2out_end_block,
3271 dwarf2out_ignore_block,
3272 dwarf2out_source_line,
3273 dwarf2out_begin_prologue,
3274 debug_nothing_int_charstar, /* end_prologue */
3275 dwarf2out_end_epilogue,
3276 debug_nothing_tree, /* begin_function */
3277 debug_nothing_int, /* end_function */
3278 dwarf2out_decl, /* function_decl */
3279 dwarf2out_global_decl,
3280 debug_nothing_tree, /* deferred_inline_function */
3281 /* The DWARF 2 backend tries to reduce debugging bloat by not
3282 emitting the abstract description of inline functions until
3283 something tries to reference them. */
3284 dwarf2out_abstract_function, /* outlining_inline_function */
3285 debug_nothing_rtx, /* label */
3286 debug_nothing_int /* handle_pch */
3287 };
3288 #endif
3289 \f
3290 /* NOTE: In the comments in this file, many references are made to
3291 "Debugging Information Entries". This term is abbreviated as `DIE'
3292 throughout the remainder of this file. */
3293
3294 /* An internal representation of the DWARF output is built, and then
3295 walked to generate the DWARF debugging info. The walk of the internal
3296 representation is done after the entire program has been compiled.
3297 The types below are used to describe the internal representation. */
3298
3299 /* Various DIE's use offsets relative to the beginning of the
3300 .debug_info section to refer to each other. */
3301
3302 typedef long int dw_offset;
3303
3304 /* Define typedefs here to avoid circular dependencies. */
3305
3306 typedef struct dw_attr_struct *dw_attr_ref;
3307 typedef struct dw_line_info_struct *dw_line_info_ref;
3308 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3309 typedef struct pubname_struct *pubname_ref;
3310 typedef struct dw_ranges_struct *dw_ranges_ref;
3311
3312 /* Each entry in the line_info_table maintains the file and
3313 line number associated with the label generated for that
3314 entry. The label gives the PC value associated with
3315 the line number entry. */
3316
3317 typedef struct dw_line_info_struct GTY(())
3318 {
3319 unsigned long dw_file_num;
3320 unsigned long dw_line_num;
3321 }
3322 dw_line_info_entry;
3323
3324 /* Line information for functions in separate sections; each one gets its
3325 own sequence. */
3326 typedef struct dw_separate_line_info_struct GTY(())
3327 {
3328 unsigned long dw_file_num;
3329 unsigned long dw_line_num;
3330 unsigned long function;
3331 }
3332 dw_separate_line_info_entry;
3333
3334 /* Each DIE attribute has a field specifying the attribute kind,
3335 a link to the next attribute in the chain, and an attribute value.
3336 Attributes are typically linked below the DIE they modify. */
3337
3338 typedef struct dw_attr_struct GTY(())
3339 {
3340 enum dwarf_attribute dw_attr;
3341 dw_attr_ref dw_attr_next;
3342 dw_val_node dw_attr_val;
3343 }
3344 dw_attr_node;
3345
3346 /* The Debugging Information Entry (DIE) structure */
3347
3348 typedef struct die_struct GTY(())
3349 {
3350 enum dwarf_tag die_tag;
3351 char *die_symbol;
3352 dw_attr_ref die_attr;
3353 dw_die_ref die_parent;
3354 dw_die_ref die_child;
3355 dw_die_ref die_sib;
3356 dw_offset die_offset;
3357 unsigned long die_abbrev;
3358 int die_mark;
3359 }
3360 die_node;
3361
3362 /* The pubname structure */
3363
3364 typedef struct pubname_struct GTY(())
3365 {
3366 dw_die_ref die;
3367 char *name;
3368 }
3369 pubname_entry;
3370
3371 struct dw_ranges_struct GTY(())
3372 {
3373 int block_num;
3374 };
3375
3376 /* The limbo die list structure. */
3377 typedef struct limbo_die_struct GTY(())
3378 {
3379 dw_die_ref die;
3380 tree created_for;
3381 struct limbo_die_struct *next;
3382 }
3383 limbo_die_node;
3384
3385 /* How to start an assembler comment. */
3386 #ifndef ASM_COMMENT_START
3387 #define ASM_COMMENT_START ";#"
3388 #endif
3389
3390 /* Define a macro which returns nonzero for a TYPE_DECL which was
3391 implicitly generated for a tagged type.
3392
3393 Note that unlike the gcc front end (which generates a NULL named
3394 TYPE_DECL node for each complete tagged type, each array type, and
3395 each function type node created) the g++ front end generates a
3396 _named_ TYPE_DECL node for each tagged type node created.
3397 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3398 generate a DW_TAG_typedef DIE for them. */
3399
3400 #define TYPE_DECL_IS_STUB(decl) \
3401 (DECL_NAME (decl) == NULL_TREE \
3402 || (DECL_ARTIFICIAL (decl) \
3403 && is_tagged_type (TREE_TYPE (decl)) \
3404 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3405 /* This is necessary for stub decls that \
3406 appear in nested inline functions. */ \
3407 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3408 && (decl_ultimate_origin (decl) \
3409 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3410
3411 /* Information concerning the compilation unit's programming
3412 language, and compiler version. */
3413
3414 /* Fixed size portion of the DWARF compilation unit header. */
3415 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3416 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3417
3418 /* Fixed size portion of public names info. */
3419 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3420
3421 /* Fixed size portion of the address range info. */
3422 #define DWARF_ARANGES_HEADER_SIZE \
3423 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3424 DWARF2_ADDR_SIZE * 2) \
3425 - DWARF_INITIAL_LENGTH_SIZE)
3426
3427 /* Size of padding portion in the address range info. It must be
3428 aligned to twice the pointer size. */
3429 #define DWARF_ARANGES_PAD_SIZE \
3430 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3431 DWARF2_ADDR_SIZE * 2) \
3432 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3433
3434 /* Use assembler line directives if available. */
3435 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3436 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3437 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3438 #else
3439 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3440 #endif
3441 #endif
3442
3443 /* Minimum line offset in a special line info. opcode.
3444 This value was chosen to give a reasonable range of values. */
3445 #define DWARF_LINE_BASE -10
3446
3447 /* First special line opcode - leave room for the standard opcodes. */
3448 #define DWARF_LINE_OPCODE_BASE 10
3449
3450 /* Range of line offsets in a special line info. opcode. */
3451 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3452
3453 /* Flag that indicates the initial value of the is_stmt_start flag.
3454 In the present implementation, we do not mark any lines as
3455 the beginning of a source statement, because that information
3456 is not made available by the GCC front-end. */
3457 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3458
3459 #ifdef DWARF2_DEBUGGING_INFO
3460 /* This location is used by calc_die_sizes() to keep track
3461 the offset of each DIE within the .debug_info section. */
3462 static unsigned long next_die_offset;
3463 #endif
3464
3465 /* Record the root of the DIE's built for the current compilation unit. */
3466 static GTY(()) dw_die_ref comp_unit_die;
3467
3468 #ifdef DWARF2_DEBUGGING_INFO
3469 /* We need special handling in dwarf2out_start_source_file if it is
3470 first one. */
3471 static int is_main_source;
3472 #endif
3473
3474 /* A list of DIEs with a NULL parent waiting to be relocated. */
3475 static GTY(()) limbo_die_node *limbo_die_list;
3476
3477 /* Filenames referenced by this compilation unit. */
3478 static GTY(()) varray_type file_table;
3479 static GTY(()) varray_type file_table_emitted;
3480 static GTY(()) size_t file_table_last_lookup_index;
3481
3482 /* A pointer to the base of a table of references to DIE's that describe
3483 declarations. The table is indexed by DECL_UID() which is a unique
3484 number identifying each decl. */
3485 static GTY((length ("decl_die_table_allocated"))) dw_die_ref *decl_die_table;
3486
3487 /* Number of elements currently allocated for the decl_die_table. */
3488 static unsigned decl_die_table_allocated;
3489
3490 #ifdef DWARF2_DEBUGGING_INFO
3491 /* Number of elements in decl_die_table currently in use. */
3492 static unsigned decl_die_table_in_use;
3493 #endif
3494
3495 /* Size (in elements) of increments by which we may expand the
3496 decl_die_table. */
3497 #define DECL_DIE_TABLE_INCREMENT 256
3498
3499 /* A pointer to the base of a list of references to DIE's that
3500 are uniquely identified by their tag, presence/absence of
3501 children DIE's, and list of attribute/value pairs. */
3502 static GTY((length ("abbrev_die_table_allocated")))
3503 dw_die_ref *abbrev_die_table;
3504
3505 /* Number of elements currently allocated for abbrev_die_table. */
3506 static unsigned abbrev_die_table_allocated;
3507
3508 #ifdef DWARF2_DEBUGGING_INFO
3509 /* Number of elements in type_die_table currently in use. */
3510 static unsigned abbrev_die_table_in_use;
3511 #endif
3512
3513 /* Size (in elements) of increments by which we may expand the
3514 abbrev_die_table. */
3515 #define ABBREV_DIE_TABLE_INCREMENT 256
3516
3517 /* A pointer to the base of a table that contains line information
3518 for each source code line in .text in the compilation unit. */
3519 static GTY((length ("line_info_table_allocated")))
3520 dw_line_info_ref line_info_table;
3521
3522 /* Number of elements currently allocated for line_info_table. */
3523 static unsigned line_info_table_allocated;
3524
3525 #ifdef DWARF2_DEBUGGING_INFO
3526 /* Number of elements in line_info_table currently in use. */
3527 static unsigned line_info_table_in_use;
3528 #endif
3529
3530 /* A pointer to the base of a table that contains line information
3531 for each source code line outside of .text in the compilation unit. */
3532 static GTY ((length ("separate_line_info_table_allocated")))
3533 dw_separate_line_info_ref separate_line_info_table;
3534
3535 /* Number of elements currently allocated for separate_line_info_table. */
3536 static unsigned separate_line_info_table_allocated;
3537
3538 #ifdef DWARF2_DEBUGGING_INFO
3539 /* Number of elements in separate_line_info_table currently in use. */
3540 static unsigned separate_line_info_table_in_use;
3541 #endif
3542
3543 /* Size (in elements) of increments by which we may expand the
3544 line_info_table. */
3545 #define LINE_INFO_TABLE_INCREMENT 1024
3546
3547 /* A pointer to the base of a table that contains a list of publicly
3548 accessible names. */
3549 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3550
3551 /* Number of elements currently allocated for pubname_table. */
3552 static unsigned pubname_table_allocated;
3553
3554 #ifdef DWARF2_DEBUGGING_INFO
3555 /* Number of elements in pubname_table currently in use. */
3556 static unsigned pubname_table_in_use;
3557 #endif
3558
3559 /* Size (in elements) of increments by which we may expand the
3560 pubname_table. */
3561 #define PUBNAME_TABLE_INCREMENT 64
3562
3563 /* Array of dies for which we should generate .debug_arange info. */
3564 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3565
3566 /* Number of elements currently allocated for arange_table. */
3567 static unsigned arange_table_allocated;
3568
3569 #ifdef DWARF2_DEBUGGING_INFO
3570 /* Number of elements in arange_table currently in use. */
3571 static unsigned arange_table_in_use;
3572 #endif
3573
3574 /* Size (in elements) of increments by which we may expand the
3575 arange_table. */
3576 #define ARANGE_TABLE_INCREMENT 64
3577
3578 /* Array of dies for which we should generate .debug_ranges info. */
3579 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3580
3581 /* Number of elements currently allocated for ranges_table. */
3582 static unsigned ranges_table_allocated;
3583
3584 #ifdef DWARF2_DEBUGGING_INFO
3585 /* Number of elements in ranges_table currently in use. */
3586 static unsigned ranges_table_in_use;
3587
3588 /* Size (in elements) of increments by which we may expand the
3589 ranges_table. */
3590 #define RANGES_TABLE_INCREMENT 64
3591
3592 /* Whether we have location lists that need outputting */
3593 static unsigned have_location_lists;
3594
3595 /* Record whether the function being analyzed contains inlined functions. */
3596 static int current_function_has_inlines;
3597 #endif
3598 #if 0 && defined (MIPS_DEBUGGING_INFO)
3599 static int comp_unit_has_inlines;
3600 #endif
3601
3602 #ifdef DWARF2_DEBUGGING_INFO
3603
3604 /* Forward declarations for functions defined in this file. */
3605
3606 static int is_pseudo_reg PARAMS ((rtx));
3607 static tree type_main_variant PARAMS ((tree));
3608 static int is_tagged_type PARAMS ((tree));
3609 static const char *dwarf_tag_name PARAMS ((unsigned));
3610 static const char *dwarf_attr_name PARAMS ((unsigned));
3611 static const char *dwarf_form_name PARAMS ((unsigned));
3612 #if 0
3613 static const char *dwarf_type_encoding_name PARAMS ((unsigned));
3614 #endif
3615 static tree decl_ultimate_origin PARAMS ((tree));
3616 static tree block_ultimate_origin PARAMS ((tree));
3617 static tree decl_class_context PARAMS ((tree));
3618 static void add_dwarf_attr PARAMS ((dw_die_ref, dw_attr_ref));
3619 static inline enum dw_val_class AT_class PARAMS ((dw_attr_ref));
3620 static void add_AT_flag PARAMS ((dw_die_ref,
3621 enum dwarf_attribute,
3622 unsigned));
3623 static inline unsigned AT_flag PARAMS ((dw_attr_ref));
3624 static void add_AT_int PARAMS ((dw_die_ref,
3625 enum dwarf_attribute, long));
3626 static inline long int AT_int PARAMS ((dw_attr_ref));
3627 static void add_AT_unsigned PARAMS ((dw_die_ref,
3628 enum dwarf_attribute,
3629 unsigned long));
3630 static inline unsigned long AT_unsigned PARAMS ((dw_attr_ref));
3631 static void add_AT_long_long PARAMS ((dw_die_ref,
3632 enum dwarf_attribute,
3633 unsigned long,
3634 unsigned long));
3635 static void add_AT_float PARAMS ((dw_die_ref,
3636 enum dwarf_attribute,
3637 unsigned, long *));
3638 static hashval_t debug_str_do_hash PARAMS ((const void *));
3639 static int debug_str_eq PARAMS ((const void *, const void *));
3640 static void add_AT_string PARAMS ((dw_die_ref,
3641 enum dwarf_attribute,
3642 const char *));
3643 static inline const char *AT_string PARAMS ((dw_attr_ref));
3644 static int AT_string_form PARAMS ((dw_attr_ref));
3645 static void add_AT_die_ref PARAMS ((dw_die_ref,
3646 enum dwarf_attribute,
3647 dw_die_ref));
3648 static inline dw_die_ref AT_ref PARAMS ((dw_attr_ref));
3649 static inline int AT_ref_external PARAMS ((dw_attr_ref));
3650 static inline void set_AT_ref_external PARAMS ((dw_attr_ref, int));
3651 static void add_AT_fde_ref PARAMS ((dw_die_ref,
3652 enum dwarf_attribute,
3653 unsigned));
3654 static void add_AT_loc PARAMS ((dw_die_ref,
3655 enum dwarf_attribute,
3656 dw_loc_descr_ref));
3657 static inline dw_loc_descr_ref AT_loc PARAMS ((dw_attr_ref));
3658 static void add_AT_loc_list PARAMS ((dw_die_ref,
3659 enum dwarf_attribute,
3660 dw_loc_list_ref));
3661 static inline dw_loc_list_ref AT_loc_list PARAMS ((dw_attr_ref));
3662 static void add_AT_addr PARAMS ((dw_die_ref,
3663 enum dwarf_attribute,
3664 rtx));
3665 static inline rtx AT_addr PARAMS ((dw_attr_ref));
3666 static void add_AT_lbl_id PARAMS ((dw_die_ref,
3667 enum dwarf_attribute,
3668 const char *));
3669 static void add_AT_lbl_offset PARAMS ((dw_die_ref,
3670 enum dwarf_attribute,
3671 const char *));
3672 static void add_AT_offset PARAMS ((dw_die_ref,
3673 enum dwarf_attribute,
3674 unsigned long));
3675 static void add_AT_range_list PARAMS ((dw_die_ref,
3676 enum dwarf_attribute,
3677 unsigned long));
3678 static inline const char *AT_lbl PARAMS ((dw_attr_ref));
3679 static dw_attr_ref get_AT PARAMS ((dw_die_ref,
3680 enum dwarf_attribute));
3681 static const char *get_AT_low_pc PARAMS ((dw_die_ref));
3682 static const char *get_AT_hi_pc PARAMS ((dw_die_ref));
3683 static const char *get_AT_string PARAMS ((dw_die_ref,
3684 enum dwarf_attribute));
3685 static int get_AT_flag PARAMS ((dw_die_ref,
3686 enum dwarf_attribute));
3687 static unsigned get_AT_unsigned PARAMS ((dw_die_ref,
3688 enum dwarf_attribute));
3689 static inline dw_die_ref get_AT_ref PARAMS ((dw_die_ref,
3690 enum dwarf_attribute));
3691 static bool is_c_family PARAMS ((void));
3692 static bool is_cxx PARAMS ((void));
3693 static bool is_java PARAMS ((void));
3694 static bool is_fortran PARAMS ((void));
3695 static bool is_ada PARAMS ((void));
3696 static void remove_AT PARAMS ((dw_die_ref,
3697 enum dwarf_attribute));
3698 static inline void free_die PARAMS ((dw_die_ref));
3699 static void remove_children PARAMS ((dw_die_ref));
3700 static void add_child_die PARAMS ((dw_die_ref, dw_die_ref));
3701 static dw_die_ref new_die PARAMS ((enum dwarf_tag, dw_die_ref,
3702 tree));
3703 static dw_die_ref lookup_type_die PARAMS ((tree));
3704 static void equate_type_number_to_die PARAMS ((tree, dw_die_ref));
3705 static dw_die_ref lookup_decl_die PARAMS ((tree));
3706 static void equate_decl_number_to_die PARAMS ((tree, dw_die_ref));
3707 static void print_spaces PARAMS ((FILE *));
3708 static void print_die PARAMS ((dw_die_ref, FILE *));
3709 static void print_dwarf_line_table PARAMS ((FILE *));
3710 static void reverse_die_lists PARAMS ((dw_die_ref));
3711 static void reverse_all_dies PARAMS ((dw_die_ref));
3712 static dw_die_ref push_new_compile_unit PARAMS ((dw_die_ref, dw_die_ref));
3713 static dw_die_ref pop_compile_unit PARAMS ((dw_die_ref));
3714 static void loc_checksum PARAMS ((dw_loc_descr_ref,
3715 struct md5_ctx *));
3716 static void attr_checksum PARAMS ((dw_attr_ref,
3717 struct md5_ctx *,
3718 int *));
3719 static void die_checksum PARAMS ((dw_die_ref,
3720 struct md5_ctx *,
3721 int *));
3722 static int same_loc_p PARAMS ((dw_loc_descr_ref,
3723 dw_loc_descr_ref, int *));
3724 static int same_dw_val_p PARAMS ((dw_val_node *, dw_val_node *,
3725 int *));
3726 static int same_attr_p PARAMS ((dw_attr_ref, dw_attr_ref, int *));
3727 static int same_die_p PARAMS ((dw_die_ref, dw_die_ref, int *));
3728 static int same_die_p_wrap PARAMS ((dw_die_ref, dw_die_ref));
3729 static void compute_section_prefix PARAMS ((dw_die_ref));
3730 static int is_type_die PARAMS ((dw_die_ref));
3731 static int is_comdat_die PARAMS ((dw_die_ref));
3732 static int is_symbol_die PARAMS ((dw_die_ref));
3733 static void assign_symbol_names PARAMS ((dw_die_ref));
3734 static void break_out_includes PARAMS ((dw_die_ref));
3735 static hashval_t htab_cu_hash PARAMS ((const void *));
3736 static int htab_cu_eq PARAMS ((const void *, const void *));
3737 static void htab_cu_del PARAMS ((void *));
3738 static int check_duplicate_cu PARAMS ((dw_die_ref, htab_t, unsigned *));
3739 static void record_comdat_symbol_number PARAMS ((dw_die_ref, htab_t, unsigned));
3740 static void add_sibling_attributes PARAMS ((dw_die_ref));
3741 static void build_abbrev_table PARAMS ((dw_die_ref));
3742 static void output_location_lists PARAMS ((dw_die_ref));
3743 static int constant_size PARAMS ((long unsigned));
3744 static unsigned long size_of_die PARAMS ((dw_die_ref));
3745 static void calc_die_sizes PARAMS ((dw_die_ref));
3746 static void mark_dies PARAMS ((dw_die_ref));
3747 static void unmark_dies PARAMS ((dw_die_ref));
3748 static void unmark_all_dies PARAMS ((dw_die_ref));
3749 static unsigned long size_of_pubnames PARAMS ((void));
3750 static unsigned long size_of_aranges PARAMS ((void));
3751 static enum dwarf_form value_format PARAMS ((dw_attr_ref));
3752 static void output_value_format PARAMS ((dw_attr_ref));
3753 static void output_abbrev_section PARAMS ((void));
3754 static void output_die_symbol PARAMS ((dw_die_ref));
3755 static void output_die PARAMS ((dw_die_ref));
3756 static void output_compilation_unit_header PARAMS ((void));
3757 static void output_comp_unit PARAMS ((dw_die_ref, int));
3758 static const char *dwarf2_name PARAMS ((tree, int));
3759 static void add_pubname PARAMS ((tree, dw_die_ref));
3760 static void output_pubnames PARAMS ((void));
3761 static void add_arange PARAMS ((tree, dw_die_ref));
3762 static void output_aranges PARAMS ((void));
3763 static unsigned int add_ranges PARAMS ((tree));
3764 static void output_ranges PARAMS ((void));
3765 static void output_line_info PARAMS ((void));
3766 static void output_file_names PARAMS ((void));
3767 static dw_die_ref base_type_die PARAMS ((tree));
3768 static tree root_type PARAMS ((tree));
3769 static int is_base_type PARAMS ((tree));
3770 static bool is_ada_subrange_type PARAMS ((tree));
3771 static dw_die_ref subrange_type_die PARAMS ((tree));
3772 static dw_die_ref modified_type_die PARAMS ((tree, int, int, dw_die_ref));
3773 static int type_is_enum PARAMS ((tree));
3774 static unsigned int reg_number PARAMS ((rtx));
3775 static dw_loc_descr_ref reg_loc_descriptor PARAMS ((rtx));
3776 static dw_loc_descr_ref one_reg_loc_descriptor PARAMS ((unsigned int));
3777 static dw_loc_descr_ref multiple_reg_loc_descriptor PARAMS ((rtx, rtx));
3778 static dw_loc_descr_ref int_loc_descriptor PARAMS ((HOST_WIDE_INT));
3779 static dw_loc_descr_ref based_loc_descr PARAMS ((unsigned, long));
3780 static int is_based_loc PARAMS ((rtx));
3781 static dw_loc_descr_ref mem_loc_descriptor PARAMS ((rtx, enum machine_mode mode));
3782 static dw_loc_descr_ref concat_loc_descriptor PARAMS ((rtx, rtx));
3783 static dw_loc_descr_ref loc_descriptor PARAMS ((rtx));
3784 static dw_loc_descr_ref loc_descriptor_from_tree PARAMS ((tree, int));
3785 static HOST_WIDE_INT ceiling PARAMS ((HOST_WIDE_INT, unsigned int));
3786 static tree field_type PARAMS ((tree));
3787 static unsigned int simple_type_align_in_bits PARAMS ((tree));
3788 static unsigned int simple_decl_align_in_bits PARAMS ((tree));
3789 static unsigned HOST_WIDE_INT simple_type_size_in_bits PARAMS ((tree));
3790 static HOST_WIDE_INT field_byte_offset PARAMS ((tree));
3791 static void add_AT_location_description PARAMS ((dw_die_ref,
3792 enum dwarf_attribute,
3793 dw_loc_descr_ref));
3794 static void add_data_member_location_attribute PARAMS ((dw_die_ref, tree));
3795 static void add_const_value_attribute PARAMS ((dw_die_ref, rtx));
3796 static rtx rtl_for_decl_location PARAMS ((tree));
3797 static void add_location_or_const_value_attribute PARAMS ((dw_die_ref, tree));
3798 static void tree_add_const_value_attribute PARAMS ((dw_die_ref, tree));
3799 static void add_name_attribute PARAMS ((dw_die_ref, const char *));
3800 static void add_comp_dir_attribute PARAMS ((dw_die_ref));
3801 static void add_bound_info PARAMS ((dw_die_ref,
3802 enum dwarf_attribute, tree));
3803 static void add_subscript_info PARAMS ((dw_die_ref, tree));
3804 static void add_byte_size_attribute PARAMS ((dw_die_ref, tree));
3805 static void add_bit_offset_attribute PARAMS ((dw_die_ref, tree));
3806 static void add_bit_size_attribute PARAMS ((dw_die_ref, tree));
3807 static void add_prototyped_attribute PARAMS ((dw_die_ref, tree));
3808 static void add_abstract_origin_attribute PARAMS ((dw_die_ref, tree));
3809 static void add_pure_or_virtual_attribute PARAMS ((dw_die_ref, tree));
3810 static void add_src_coords_attributes PARAMS ((dw_die_ref, tree));
3811 static void add_name_and_src_coords_attributes PARAMS ((dw_die_ref, tree));
3812 static void push_decl_scope PARAMS ((tree));
3813 static void pop_decl_scope PARAMS ((void));
3814 static dw_die_ref scope_die_for PARAMS ((tree, dw_die_ref));
3815 static inline int local_scope_p PARAMS ((dw_die_ref));
3816 static inline int class_scope_p PARAMS ((dw_die_ref));
3817 static void add_type_attribute PARAMS ((dw_die_ref, tree, int, int,
3818 dw_die_ref));
3819 static const char *type_tag PARAMS ((tree));
3820 static tree member_declared_type PARAMS ((tree));
3821 #if 0
3822 static const char *decl_start_label PARAMS ((tree));
3823 #endif
3824 static void gen_array_type_die PARAMS ((tree, dw_die_ref));
3825 static void gen_set_type_die PARAMS ((tree, dw_die_ref));
3826 #if 0
3827 static void gen_entry_point_die PARAMS ((tree, dw_die_ref));
3828 #endif
3829 static void gen_inlined_enumeration_type_die PARAMS ((tree, dw_die_ref));
3830 static void gen_inlined_structure_type_die PARAMS ((tree, dw_die_ref));
3831 static void gen_inlined_union_type_die PARAMS ((tree, dw_die_ref));
3832 static void gen_enumeration_type_die PARAMS ((tree, dw_die_ref));
3833 static dw_die_ref gen_formal_parameter_die PARAMS ((tree, dw_die_ref));
3834 static void gen_unspecified_parameters_die PARAMS ((tree, dw_die_ref));
3835 static void gen_formal_types_die PARAMS ((tree, dw_die_ref));
3836 static void gen_subprogram_die PARAMS ((tree, dw_die_ref));
3837 static void gen_variable_die PARAMS ((tree, dw_die_ref));
3838 static void gen_label_die PARAMS ((tree, dw_die_ref));
3839 static void gen_lexical_block_die PARAMS ((tree, dw_die_ref, int));
3840 static void gen_inlined_subroutine_die PARAMS ((tree, dw_die_ref, int));
3841 static void gen_field_die PARAMS ((tree, dw_die_ref));
3842 static void gen_ptr_to_mbr_type_die PARAMS ((tree, dw_die_ref));
3843 static dw_die_ref gen_compile_unit_die PARAMS ((const char *));
3844 static void gen_string_type_die PARAMS ((tree, dw_die_ref));
3845 static void gen_inheritance_die PARAMS ((tree, tree, dw_die_ref));
3846 static void gen_member_die PARAMS ((tree, dw_die_ref));
3847 static void gen_struct_or_union_type_die PARAMS ((tree, dw_die_ref));
3848 static void gen_subroutine_type_die PARAMS ((tree, dw_die_ref));
3849 static void gen_typedef_die PARAMS ((tree, dw_die_ref));
3850 static void gen_type_die PARAMS ((tree, dw_die_ref));
3851 static void gen_tagged_type_instantiation_die PARAMS ((tree, dw_die_ref));
3852 static void gen_block_die PARAMS ((tree, dw_die_ref, int));
3853 static void decls_for_scope PARAMS ((tree, dw_die_ref, int));
3854 static int is_redundant_typedef PARAMS ((tree));
3855 static void gen_decl_die PARAMS ((tree, dw_die_ref));
3856 static unsigned lookup_filename PARAMS ((const char *));
3857 static void init_file_table PARAMS ((void));
3858 static void retry_incomplete_types PARAMS ((void));
3859 static void gen_type_die_for_member PARAMS ((tree, tree, dw_die_ref));
3860 static void splice_child_die PARAMS ((dw_die_ref, dw_die_ref));
3861 static int file_info_cmp PARAMS ((const void *, const void *));
3862 static dw_loc_list_ref new_loc_list PARAMS ((dw_loc_descr_ref,
3863 const char *, const char *,
3864 const char *, unsigned));
3865 static void add_loc_descr_to_loc_list PARAMS ((dw_loc_list_ref *,
3866 dw_loc_descr_ref,
3867 const char *, const char *, const char *));
3868 static void output_loc_list PARAMS ((dw_loc_list_ref));
3869 static char *gen_internal_sym PARAMS ((const char *));
3870
3871 static void prune_unmark_dies PARAMS ((dw_die_ref));
3872 static void prune_unused_types_mark PARAMS ((dw_die_ref, int));
3873 static void prune_unused_types_walk PARAMS ((dw_die_ref));
3874 static void prune_unused_types_walk_attribs PARAMS ((dw_die_ref));
3875 static void prune_unused_types_prune PARAMS ((dw_die_ref));
3876 static void prune_unused_types PARAMS ((void));
3877 static int maybe_emit_file PARAMS ((int));
3878
3879 /* Section names used to hold DWARF debugging information. */
3880 #ifndef DEBUG_INFO_SECTION
3881 #define DEBUG_INFO_SECTION ".debug_info"
3882 #endif
3883 #ifndef DEBUG_ABBREV_SECTION
3884 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3885 #endif
3886 #ifndef DEBUG_ARANGES_SECTION
3887 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3888 #endif
3889 #ifndef DEBUG_MACINFO_SECTION
3890 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3891 #endif
3892 #ifndef DEBUG_LINE_SECTION
3893 #define DEBUG_LINE_SECTION ".debug_line"
3894 #endif
3895 #ifndef DEBUG_LOC_SECTION
3896 #define DEBUG_LOC_SECTION ".debug_loc"
3897 #endif
3898 #ifndef DEBUG_PUBNAMES_SECTION
3899 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3900 #endif
3901 #ifndef DEBUG_STR_SECTION
3902 #define DEBUG_STR_SECTION ".debug_str"
3903 #endif
3904 #ifndef DEBUG_RANGES_SECTION
3905 #define DEBUG_RANGES_SECTION ".debug_ranges"
3906 #endif
3907
3908 /* Standard ELF section names for compiled code and data. */
3909 #ifndef TEXT_SECTION_NAME
3910 #define TEXT_SECTION_NAME ".text"
3911 #endif
3912
3913 /* Section flags for .debug_str section. */
3914 #ifdef HAVE_GAS_SHF_MERGE
3915 #define DEBUG_STR_SECTION_FLAGS \
3916 (SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1)
3917 #else
3918 #define DEBUG_STR_SECTION_FLAGS SECTION_DEBUG
3919 #endif
3920
3921 /* Labels we insert at beginning sections we can reference instead of
3922 the section names themselves. */
3923
3924 #ifndef TEXT_SECTION_LABEL
3925 #define TEXT_SECTION_LABEL "Ltext"
3926 #endif
3927 #ifndef DEBUG_LINE_SECTION_LABEL
3928 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3929 #endif
3930 #ifndef DEBUG_INFO_SECTION_LABEL
3931 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3932 #endif
3933 #ifndef DEBUG_ABBREV_SECTION_LABEL
3934 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3935 #endif
3936 #ifndef DEBUG_LOC_SECTION_LABEL
3937 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3938 #endif
3939 #ifndef DEBUG_RANGES_SECTION_LABEL
3940 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3941 #endif
3942 #ifndef DEBUG_MACINFO_SECTION_LABEL
3943 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3944 #endif
3945
3946 /* Definitions of defaults for formats and names of various special
3947 (artificial) labels which may be generated within this file (when the -g
3948 options is used and DWARF_DEBUGGING_INFO is in effect.
3949 If necessary, these may be overridden from within the tm.h file, but
3950 typically, overriding these defaults is unnecessary. */
3951
3952 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3953 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3954 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3955 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3956 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3957 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3958 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3959 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3960
3961 #ifndef TEXT_END_LABEL
3962 #define TEXT_END_LABEL "Letext"
3963 #endif
3964 #ifndef BLOCK_BEGIN_LABEL
3965 #define BLOCK_BEGIN_LABEL "LBB"
3966 #endif
3967 #ifndef BLOCK_END_LABEL
3968 #define BLOCK_END_LABEL "LBE"
3969 #endif
3970 #ifndef LINE_CODE_LABEL
3971 #define LINE_CODE_LABEL "LM"
3972 #endif
3973 #ifndef SEPARATE_LINE_CODE_LABEL
3974 #define SEPARATE_LINE_CODE_LABEL "LSM"
3975 #endif
3976 \f
3977 /* We allow a language front-end to designate a function that is to be
3978 called to "demangle" any name before it it put into a DIE. */
3979
3980 static const char *(*demangle_name_func) PARAMS ((const char *));
3981
3982 void
3983 dwarf2out_set_demangle_name_func (func)
3984 const char *(*func) PARAMS ((const char *));
3985 {
3986 demangle_name_func = func;
3987 }
3988
3989 /* Test if rtl node points to a pseudo register. */
3990
3991 static inline int
3992 is_pseudo_reg (rtl)
3993 rtx rtl;
3994 {
3995 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3996 || (GET_CODE (rtl) == SUBREG
3997 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3998 }
3999
4000 /* Return a reference to a type, with its const and volatile qualifiers
4001 removed. */
4002
4003 static inline tree
4004 type_main_variant (type)
4005 tree type;
4006 {
4007 type = TYPE_MAIN_VARIANT (type);
4008
4009 /* ??? There really should be only one main variant among any group of
4010 variants of a given type (and all of the MAIN_VARIANT values for all
4011 members of the group should point to that one type) but sometimes the C
4012 front-end messes this up for array types, so we work around that bug
4013 here. */
4014 if (TREE_CODE (type) == ARRAY_TYPE)
4015 while (type != TYPE_MAIN_VARIANT (type))
4016 type = TYPE_MAIN_VARIANT (type);
4017
4018 return type;
4019 }
4020
4021 /* Return nonzero if the given type node represents a tagged type. */
4022
4023 static inline int
4024 is_tagged_type (type)
4025 tree type;
4026 {
4027 enum tree_code code = TREE_CODE (type);
4028
4029 return (code == RECORD_TYPE || code == UNION_TYPE
4030 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4031 }
4032
4033 /* Convert a DIE tag into its string name. */
4034
4035 static const char *
4036 dwarf_tag_name (tag)
4037 unsigned tag;
4038 {
4039 switch (tag)
4040 {
4041 case DW_TAG_padding:
4042 return "DW_TAG_padding";
4043 case DW_TAG_array_type:
4044 return "DW_TAG_array_type";
4045 case DW_TAG_class_type:
4046 return "DW_TAG_class_type";
4047 case DW_TAG_entry_point:
4048 return "DW_TAG_entry_point";
4049 case DW_TAG_enumeration_type:
4050 return "DW_TAG_enumeration_type";
4051 case DW_TAG_formal_parameter:
4052 return "DW_TAG_formal_parameter";
4053 case DW_TAG_imported_declaration:
4054 return "DW_TAG_imported_declaration";
4055 case DW_TAG_label:
4056 return "DW_TAG_label";
4057 case DW_TAG_lexical_block:
4058 return "DW_TAG_lexical_block";
4059 case DW_TAG_member:
4060 return "DW_TAG_member";
4061 case DW_TAG_pointer_type:
4062 return "DW_TAG_pointer_type";
4063 case DW_TAG_reference_type:
4064 return "DW_TAG_reference_type";
4065 case DW_TAG_compile_unit:
4066 return "DW_TAG_compile_unit";
4067 case DW_TAG_string_type:
4068 return "DW_TAG_string_type";
4069 case DW_TAG_structure_type:
4070 return "DW_TAG_structure_type";
4071 case DW_TAG_subroutine_type:
4072 return "DW_TAG_subroutine_type";
4073 case DW_TAG_typedef:
4074 return "DW_TAG_typedef";
4075 case DW_TAG_union_type:
4076 return "DW_TAG_union_type";
4077 case DW_TAG_unspecified_parameters:
4078 return "DW_TAG_unspecified_parameters";
4079 case DW_TAG_variant:
4080 return "DW_TAG_variant";
4081 case DW_TAG_common_block:
4082 return "DW_TAG_common_block";
4083 case DW_TAG_common_inclusion:
4084 return "DW_TAG_common_inclusion";
4085 case DW_TAG_inheritance:
4086 return "DW_TAG_inheritance";
4087 case DW_TAG_inlined_subroutine:
4088 return "DW_TAG_inlined_subroutine";
4089 case DW_TAG_module:
4090 return "DW_TAG_module";
4091 case DW_TAG_ptr_to_member_type:
4092 return "DW_TAG_ptr_to_member_type";
4093 case DW_TAG_set_type:
4094 return "DW_TAG_set_type";
4095 case DW_TAG_subrange_type:
4096 return "DW_TAG_subrange_type";
4097 case DW_TAG_with_stmt:
4098 return "DW_TAG_with_stmt";
4099 case DW_TAG_access_declaration:
4100 return "DW_TAG_access_declaration";
4101 case DW_TAG_base_type:
4102 return "DW_TAG_base_type";
4103 case DW_TAG_catch_block:
4104 return "DW_TAG_catch_block";
4105 case DW_TAG_const_type:
4106 return "DW_TAG_const_type";
4107 case DW_TAG_constant:
4108 return "DW_TAG_constant";
4109 case DW_TAG_enumerator:
4110 return "DW_TAG_enumerator";
4111 case DW_TAG_file_type:
4112 return "DW_TAG_file_type";
4113 case DW_TAG_friend:
4114 return "DW_TAG_friend";
4115 case DW_TAG_namelist:
4116 return "DW_TAG_namelist";
4117 case DW_TAG_namelist_item:
4118 return "DW_TAG_namelist_item";
4119 case DW_TAG_packed_type:
4120 return "DW_TAG_packed_type";
4121 case DW_TAG_subprogram:
4122 return "DW_TAG_subprogram";
4123 case DW_TAG_template_type_param:
4124 return "DW_TAG_template_type_param";
4125 case DW_TAG_template_value_param:
4126 return "DW_TAG_template_value_param";
4127 case DW_TAG_thrown_type:
4128 return "DW_TAG_thrown_type";
4129 case DW_TAG_try_block:
4130 return "DW_TAG_try_block";
4131 case DW_TAG_variant_part:
4132 return "DW_TAG_variant_part";
4133 case DW_TAG_variable:
4134 return "DW_TAG_variable";
4135 case DW_TAG_volatile_type:
4136 return "DW_TAG_volatile_type";
4137 case DW_TAG_MIPS_loop:
4138 return "DW_TAG_MIPS_loop";
4139 case DW_TAG_format_label:
4140 return "DW_TAG_format_label";
4141 case DW_TAG_function_template:
4142 return "DW_TAG_function_template";
4143 case DW_TAG_class_template:
4144 return "DW_TAG_class_template";
4145 case DW_TAG_GNU_BINCL:
4146 return "DW_TAG_GNU_BINCL";
4147 case DW_TAG_GNU_EINCL:
4148 return "DW_TAG_GNU_EINCL";
4149 default:
4150 return "DW_TAG_<unknown>";
4151 }
4152 }
4153
4154 /* Convert a DWARF attribute code into its string name. */
4155
4156 static const char *
4157 dwarf_attr_name (attr)
4158 unsigned attr;
4159 {
4160 switch (attr)
4161 {
4162 case DW_AT_sibling:
4163 return "DW_AT_sibling";
4164 case DW_AT_location:
4165 return "DW_AT_location";
4166 case DW_AT_name:
4167 return "DW_AT_name";
4168 case DW_AT_ordering:
4169 return "DW_AT_ordering";
4170 case DW_AT_subscr_data:
4171 return "DW_AT_subscr_data";
4172 case DW_AT_byte_size:
4173 return "DW_AT_byte_size";
4174 case DW_AT_bit_offset:
4175 return "DW_AT_bit_offset";
4176 case DW_AT_bit_size:
4177 return "DW_AT_bit_size";
4178 case DW_AT_element_list:
4179 return "DW_AT_element_list";
4180 case DW_AT_stmt_list:
4181 return "DW_AT_stmt_list";
4182 case DW_AT_low_pc:
4183 return "DW_AT_low_pc";
4184 case DW_AT_high_pc:
4185 return "DW_AT_high_pc";
4186 case DW_AT_language:
4187 return "DW_AT_language";
4188 case DW_AT_member:
4189 return "DW_AT_member";
4190 case DW_AT_discr:
4191 return "DW_AT_discr";
4192 case DW_AT_discr_value:
4193 return "DW_AT_discr_value";
4194 case DW_AT_visibility:
4195 return "DW_AT_visibility";
4196 case DW_AT_import:
4197 return "DW_AT_import";
4198 case DW_AT_string_length:
4199 return "DW_AT_string_length";
4200 case DW_AT_common_reference:
4201 return "DW_AT_common_reference";
4202 case DW_AT_comp_dir:
4203 return "DW_AT_comp_dir";
4204 case DW_AT_const_value:
4205 return "DW_AT_const_value";
4206 case DW_AT_containing_type:
4207 return "DW_AT_containing_type";
4208 case DW_AT_default_value:
4209 return "DW_AT_default_value";
4210 case DW_AT_inline:
4211 return "DW_AT_inline";
4212 case DW_AT_is_optional:
4213 return "DW_AT_is_optional";
4214 case DW_AT_lower_bound:
4215 return "DW_AT_lower_bound";
4216 case DW_AT_producer:
4217 return "DW_AT_producer";
4218 case DW_AT_prototyped:
4219 return "DW_AT_prototyped";
4220 case DW_AT_return_addr:
4221 return "DW_AT_return_addr";
4222 case DW_AT_start_scope:
4223 return "DW_AT_start_scope";
4224 case DW_AT_stride_size:
4225 return "DW_AT_stride_size";
4226 case DW_AT_upper_bound:
4227 return "DW_AT_upper_bound";
4228 case DW_AT_abstract_origin:
4229 return "DW_AT_abstract_origin";
4230 case DW_AT_accessibility:
4231 return "DW_AT_accessibility";
4232 case DW_AT_address_class:
4233 return "DW_AT_address_class";
4234 case DW_AT_artificial:
4235 return "DW_AT_artificial";
4236 case DW_AT_base_types:
4237 return "DW_AT_base_types";
4238 case DW_AT_calling_convention:
4239 return "DW_AT_calling_convention";
4240 case DW_AT_count:
4241 return "DW_AT_count";
4242 case DW_AT_data_member_location:
4243 return "DW_AT_data_member_location";
4244 case DW_AT_decl_column:
4245 return "DW_AT_decl_column";
4246 case DW_AT_decl_file:
4247 return "DW_AT_decl_file";
4248 case DW_AT_decl_line:
4249 return "DW_AT_decl_line";
4250 case DW_AT_declaration:
4251 return "DW_AT_declaration";
4252 case DW_AT_discr_list:
4253 return "DW_AT_discr_list";
4254 case DW_AT_encoding:
4255 return "DW_AT_encoding";
4256 case DW_AT_external:
4257 return "DW_AT_external";
4258 case DW_AT_frame_base:
4259 return "DW_AT_frame_base";
4260 case DW_AT_friend:
4261 return "DW_AT_friend";
4262 case DW_AT_identifier_case:
4263 return "DW_AT_identifier_case";
4264 case DW_AT_macro_info:
4265 return "DW_AT_macro_info";
4266 case DW_AT_namelist_items:
4267 return "DW_AT_namelist_items";
4268 case DW_AT_priority:
4269 return "DW_AT_priority";
4270 case DW_AT_segment:
4271 return "DW_AT_segment";
4272 case DW_AT_specification:
4273 return "DW_AT_specification";
4274 case DW_AT_static_link:
4275 return "DW_AT_static_link";
4276 case DW_AT_type:
4277 return "DW_AT_type";
4278 case DW_AT_use_location:
4279 return "DW_AT_use_location";
4280 case DW_AT_variable_parameter:
4281 return "DW_AT_variable_parameter";
4282 case DW_AT_virtuality:
4283 return "DW_AT_virtuality";
4284 case DW_AT_vtable_elem_location:
4285 return "DW_AT_vtable_elem_location";
4286
4287 case DW_AT_allocated:
4288 return "DW_AT_allocated";
4289 case DW_AT_associated:
4290 return "DW_AT_associated";
4291 case DW_AT_data_location:
4292 return "DW_AT_data_location";
4293 case DW_AT_stride:
4294 return "DW_AT_stride";
4295 case DW_AT_entry_pc:
4296 return "DW_AT_entry_pc";
4297 case DW_AT_use_UTF8:
4298 return "DW_AT_use_UTF8";
4299 case DW_AT_extension:
4300 return "DW_AT_extension";
4301 case DW_AT_ranges:
4302 return "DW_AT_ranges";
4303 case DW_AT_trampoline:
4304 return "DW_AT_trampoline";
4305 case DW_AT_call_column:
4306 return "DW_AT_call_column";
4307 case DW_AT_call_file:
4308 return "DW_AT_call_file";
4309 case DW_AT_call_line:
4310 return "DW_AT_call_line";
4311
4312 case DW_AT_MIPS_fde:
4313 return "DW_AT_MIPS_fde";
4314 case DW_AT_MIPS_loop_begin:
4315 return "DW_AT_MIPS_loop_begin";
4316 case DW_AT_MIPS_tail_loop_begin:
4317 return "DW_AT_MIPS_tail_loop_begin";
4318 case DW_AT_MIPS_epilog_begin:
4319 return "DW_AT_MIPS_epilog_begin";
4320 case DW_AT_MIPS_loop_unroll_factor:
4321 return "DW_AT_MIPS_loop_unroll_factor";
4322 case DW_AT_MIPS_software_pipeline_depth:
4323 return "DW_AT_MIPS_software_pipeline_depth";
4324 case DW_AT_MIPS_linkage_name:
4325 return "DW_AT_MIPS_linkage_name";
4326 case DW_AT_MIPS_stride:
4327 return "DW_AT_MIPS_stride";
4328 case DW_AT_MIPS_abstract_name:
4329 return "DW_AT_MIPS_abstract_name";
4330 case DW_AT_MIPS_clone_origin:
4331 return "DW_AT_MIPS_clone_origin";
4332 case DW_AT_MIPS_has_inlines:
4333 return "DW_AT_MIPS_has_inlines";
4334
4335 case DW_AT_sf_names:
4336 return "DW_AT_sf_names";
4337 case DW_AT_src_info:
4338 return "DW_AT_src_info";
4339 case DW_AT_mac_info:
4340 return "DW_AT_mac_info";
4341 case DW_AT_src_coords:
4342 return "DW_AT_src_coords";
4343 case DW_AT_body_begin:
4344 return "DW_AT_body_begin";
4345 case DW_AT_body_end:
4346 return "DW_AT_body_end";
4347 case DW_AT_GNU_vector:
4348 return "DW_AT_GNU_vector";
4349
4350 case DW_AT_VMS_rtnbeg_pd_address:
4351 return "DW_AT_VMS_rtnbeg_pd_address";
4352
4353 default:
4354 return "DW_AT_<unknown>";
4355 }
4356 }
4357
4358 /* Convert a DWARF value form code into its string name. */
4359
4360 static const char *
4361 dwarf_form_name (form)
4362 unsigned form;
4363 {
4364 switch (form)
4365 {
4366 case DW_FORM_addr:
4367 return "DW_FORM_addr";
4368 case DW_FORM_block2:
4369 return "DW_FORM_block2";
4370 case DW_FORM_block4:
4371 return "DW_FORM_block4";
4372 case DW_FORM_data2:
4373 return "DW_FORM_data2";
4374 case DW_FORM_data4:
4375 return "DW_FORM_data4";
4376 case DW_FORM_data8:
4377 return "DW_FORM_data8";
4378 case DW_FORM_string:
4379 return "DW_FORM_string";
4380 case DW_FORM_block:
4381 return "DW_FORM_block";
4382 case DW_FORM_block1:
4383 return "DW_FORM_block1";
4384 case DW_FORM_data1:
4385 return "DW_FORM_data1";
4386 case DW_FORM_flag:
4387 return "DW_FORM_flag";
4388 case DW_FORM_sdata:
4389 return "DW_FORM_sdata";
4390 case DW_FORM_strp:
4391 return "DW_FORM_strp";
4392 case DW_FORM_udata:
4393 return "DW_FORM_udata";
4394 case DW_FORM_ref_addr:
4395 return "DW_FORM_ref_addr";
4396 case DW_FORM_ref1:
4397 return "DW_FORM_ref1";
4398 case DW_FORM_ref2:
4399 return "DW_FORM_ref2";
4400 case DW_FORM_ref4:
4401 return "DW_FORM_ref4";
4402 case DW_FORM_ref8:
4403 return "DW_FORM_ref8";
4404 case DW_FORM_ref_udata:
4405 return "DW_FORM_ref_udata";
4406 case DW_FORM_indirect:
4407 return "DW_FORM_indirect";
4408 default:
4409 return "DW_FORM_<unknown>";
4410 }
4411 }
4412
4413 /* Convert a DWARF type code into its string name. */
4414
4415 #if 0
4416 static const char *
4417 dwarf_type_encoding_name (enc)
4418 unsigned enc;
4419 {
4420 switch (enc)
4421 {
4422 case DW_ATE_address:
4423 return "DW_ATE_address";
4424 case DW_ATE_boolean:
4425 return "DW_ATE_boolean";
4426 case DW_ATE_complex_float:
4427 return "DW_ATE_complex_float";
4428 case DW_ATE_float:
4429 return "DW_ATE_float";
4430 case DW_ATE_signed:
4431 return "DW_ATE_signed";
4432 case DW_ATE_signed_char:
4433 return "DW_ATE_signed_char";
4434 case DW_ATE_unsigned:
4435 return "DW_ATE_unsigned";
4436 case DW_ATE_unsigned_char:
4437 return "DW_ATE_unsigned_char";
4438 default:
4439 return "DW_ATE_<unknown>";
4440 }
4441 }
4442 #endif
4443 \f
4444 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4445 instance of an inlined instance of a decl which is local to an inline
4446 function, so we have to trace all of the way back through the origin chain
4447 to find out what sort of node actually served as the original seed for the
4448 given block. */
4449
4450 static tree
4451 decl_ultimate_origin (decl)
4452 tree decl;
4453 {
4454 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4455 nodes in the function to point to themselves; ignore that if
4456 we're trying to output the abstract instance of this function. */
4457 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4458 return NULL_TREE;
4459
4460 #ifdef ENABLE_CHECKING
4461 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4462 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4463 most distant ancestor, this should never happen. */
4464 abort ();
4465 #endif
4466
4467 return DECL_ABSTRACT_ORIGIN (decl);
4468 }
4469
4470 /* Determine the "ultimate origin" of a block. The block may be an inlined
4471 instance of an inlined instance of a block which is local to an inline
4472 function, so we have to trace all of the way back through the origin chain
4473 to find out what sort of node actually served as the original seed for the
4474 given block. */
4475
4476 static tree
4477 block_ultimate_origin (block)
4478 tree block;
4479 {
4480 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4481
4482 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4483 nodes in the function to point to themselves; ignore that if
4484 we're trying to output the abstract instance of this function. */
4485 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4486 return NULL_TREE;
4487
4488 if (immediate_origin == NULL_TREE)
4489 return NULL_TREE;
4490 else
4491 {
4492 tree ret_val;
4493 tree lookahead = immediate_origin;
4494
4495 do
4496 {
4497 ret_val = lookahead;
4498 lookahead = (TREE_CODE (ret_val) == BLOCK
4499 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4500 }
4501 while (lookahead != NULL && lookahead != ret_val);
4502
4503 return ret_val;
4504 }
4505 }
4506
4507 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4508 of a virtual function may refer to a base class, so we check the 'this'
4509 parameter. */
4510
4511 static tree
4512 decl_class_context (decl)
4513 tree decl;
4514 {
4515 tree context = NULL_TREE;
4516
4517 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4518 context = DECL_CONTEXT (decl);
4519 else
4520 context = TYPE_MAIN_VARIANT
4521 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4522
4523 if (context && !TYPE_P (context))
4524 context = NULL_TREE;
4525
4526 return context;
4527 }
4528 \f
4529 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4530 addition order, and correct that in reverse_all_dies. */
4531
4532 static inline void
4533 add_dwarf_attr (die, attr)
4534 dw_die_ref die;
4535 dw_attr_ref attr;
4536 {
4537 if (die != NULL && attr != NULL)
4538 {
4539 attr->dw_attr_next = die->die_attr;
4540 die->die_attr = attr;
4541 }
4542 }
4543
4544 static inline enum dw_val_class
4545 AT_class (a)
4546 dw_attr_ref a;
4547 {
4548 return a->dw_attr_val.val_class;
4549 }
4550
4551 /* Add a flag value attribute to a DIE. */
4552
4553 static inline void
4554 add_AT_flag (die, attr_kind, flag)
4555 dw_die_ref die;
4556 enum dwarf_attribute attr_kind;
4557 unsigned flag;
4558 {
4559 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4560
4561 attr->dw_attr_next = NULL;
4562 attr->dw_attr = attr_kind;
4563 attr->dw_attr_val.val_class = dw_val_class_flag;
4564 attr->dw_attr_val.v.val_flag = flag;
4565 add_dwarf_attr (die, attr);
4566 }
4567
4568 static inline unsigned
4569 AT_flag (a)
4570 dw_attr_ref a;
4571 {
4572 if (a && AT_class (a) == dw_val_class_flag)
4573 return a->dw_attr_val.v.val_flag;
4574
4575 abort ();
4576 }
4577
4578 /* Add a signed integer attribute value to a DIE. */
4579
4580 static inline void
4581 add_AT_int (die, attr_kind, int_val)
4582 dw_die_ref die;
4583 enum dwarf_attribute attr_kind;
4584 long int int_val;
4585 {
4586 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4587
4588 attr->dw_attr_next = NULL;
4589 attr->dw_attr = attr_kind;
4590 attr->dw_attr_val.val_class = dw_val_class_const;
4591 attr->dw_attr_val.v.val_int = int_val;
4592 add_dwarf_attr (die, attr);
4593 }
4594
4595 static inline long int
4596 AT_int (a)
4597 dw_attr_ref a;
4598 {
4599 if (a && AT_class (a) == dw_val_class_const)
4600 return a->dw_attr_val.v.val_int;
4601
4602 abort ();
4603 }
4604
4605 /* Add an unsigned integer attribute value to a DIE. */
4606
4607 static inline void
4608 add_AT_unsigned (die, attr_kind, unsigned_val)
4609 dw_die_ref die;
4610 enum dwarf_attribute attr_kind;
4611 unsigned long unsigned_val;
4612 {
4613 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4614
4615 attr->dw_attr_next = NULL;
4616 attr->dw_attr = attr_kind;
4617 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4618 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4619 add_dwarf_attr (die, attr);
4620 }
4621
4622 static inline unsigned long
4623 AT_unsigned (a)
4624 dw_attr_ref a;
4625 {
4626 if (a && AT_class (a) == dw_val_class_unsigned_const)
4627 return a->dw_attr_val.v.val_unsigned;
4628
4629 abort ();
4630 }
4631
4632 /* Add an unsigned double integer attribute value to a DIE. */
4633
4634 static inline void
4635 add_AT_long_long (die, attr_kind, val_hi, val_low)
4636 dw_die_ref die;
4637 enum dwarf_attribute attr_kind;
4638 unsigned long val_hi;
4639 unsigned long val_low;
4640 {
4641 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4642
4643 attr->dw_attr_next = NULL;
4644 attr->dw_attr = attr_kind;
4645 attr->dw_attr_val.val_class = dw_val_class_long_long;
4646 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4647 attr->dw_attr_val.v.val_long_long.low = val_low;
4648 add_dwarf_attr (die, attr);
4649 }
4650
4651 /* Add a floating point attribute value to a DIE and return it. */
4652
4653 static inline void
4654 add_AT_float (die, attr_kind, length, array)
4655 dw_die_ref die;
4656 enum dwarf_attribute attr_kind;
4657 unsigned length;
4658 long *array;
4659 {
4660 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4661
4662 attr->dw_attr_next = NULL;
4663 attr->dw_attr = attr_kind;
4664 attr->dw_attr_val.val_class = dw_val_class_float;
4665 attr->dw_attr_val.v.val_float.length = length;
4666 attr->dw_attr_val.v.val_float.array = array;
4667 add_dwarf_attr (die, attr);
4668 }
4669
4670 /* Hash and equality functions for debug_str_hash. */
4671
4672 static hashval_t
4673 debug_str_do_hash (x)
4674 const void * x;
4675 {
4676 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4677 }
4678
4679 static int
4680 debug_str_eq (x1, x2)
4681 const void * x1;
4682 const void * x2;
4683 {
4684 return strcmp ((((const struct indirect_string_node *)x1)->str),
4685 (const char *)x2) == 0;
4686 }
4687
4688 /* Add a string attribute value to a DIE. */
4689
4690 static inline void
4691 add_AT_string (die, attr_kind, str)
4692 dw_die_ref die;
4693 enum dwarf_attribute attr_kind;
4694 const char *str;
4695 {
4696 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4697 struct indirect_string_node *node;
4698 PTR *slot;
4699
4700 if (! debug_str_hash)
4701 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4702 debug_str_eq, NULL);
4703
4704 slot = htab_find_slot_with_hash (debug_str_hash, str,
4705 htab_hash_string (str), INSERT);
4706 if (*slot == NULL)
4707 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4708 node = (struct indirect_string_node *) *slot;
4709 node->str = ggc_alloc_string (str, -1);
4710 node->refcount++;
4711
4712 attr->dw_attr_next = NULL;
4713 attr->dw_attr = attr_kind;
4714 attr->dw_attr_val.val_class = dw_val_class_str;
4715 attr->dw_attr_val.v.val_str = node;
4716 add_dwarf_attr (die, attr);
4717 }
4718
4719 static inline const char *
4720 AT_string (a)
4721 dw_attr_ref a;
4722 {
4723 if (a && AT_class (a) == dw_val_class_str)
4724 return a->dw_attr_val.v.val_str->str;
4725
4726 abort ();
4727 }
4728
4729 /* Find out whether a string should be output inline in DIE
4730 or out-of-line in .debug_str section. */
4731
4732 static int
4733 AT_string_form (a)
4734 dw_attr_ref a;
4735 {
4736 if (a && AT_class (a) == dw_val_class_str)
4737 {
4738 struct indirect_string_node *node;
4739 unsigned int len;
4740 char label[32];
4741
4742 node = a->dw_attr_val.v.val_str;
4743 if (node->form)
4744 return node->form;
4745
4746 len = strlen (node->str) + 1;
4747
4748 /* If the string is shorter or equal to the size of the reference, it is
4749 always better to put it inline. */
4750 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4751 return node->form = DW_FORM_string;
4752
4753 /* If we cannot expect the linker to merge strings in .debug_str
4754 section, only put it into .debug_str if it is worth even in this
4755 single module. */
4756 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4757 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4758 return node->form = DW_FORM_string;
4759
4760 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4761 ++dw2_string_counter;
4762 node->label = xstrdup (label);
4763
4764 return node->form = DW_FORM_strp;
4765 }
4766
4767 abort ();
4768 }
4769
4770 /* Add a DIE reference attribute value to a DIE. */
4771
4772 static inline void
4773 add_AT_die_ref (die, attr_kind, targ_die)
4774 dw_die_ref die;
4775 enum dwarf_attribute attr_kind;
4776 dw_die_ref targ_die;
4777 {
4778 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4779
4780 attr->dw_attr_next = NULL;
4781 attr->dw_attr = attr_kind;
4782 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4783 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4784 attr->dw_attr_val.v.val_die_ref.external = 0;
4785 add_dwarf_attr (die, attr);
4786 }
4787
4788 static inline dw_die_ref
4789 AT_ref (a)
4790 dw_attr_ref a;
4791 {
4792 if (a && AT_class (a) == dw_val_class_die_ref)
4793 return a->dw_attr_val.v.val_die_ref.die;
4794
4795 abort ();
4796 }
4797
4798 static inline int
4799 AT_ref_external (a)
4800 dw_attr_ref a;
4801 {
4802 if (a && AT_class (a) == dw_val_class_die_ref)
4803 return a->dw_attr_val.v.val_die_ref.external;
4804
4805 return 0;
4806 }
4807
4808 static inline void
4809 set_AT_ref_external (a, i)
4810 dw_attr_ref a;
4811 int i;
4812 {
4813 if (a && AT_class (a) == dw_val_class_die_ref)
4814 a->dw_attr_val.v.val_die_ref.external = i;
4815 else
4816 abort ();
4817 }
4818
4819 /* Add an FDE reference attribute value to a DIE. */
4820
4821 static inline void
4822 add_AT_fde_ref (die, attr_kind, targ_fde)
4823 dw_die_ref die;
4824 enum dwarf_attribute attr_kind;
4825 unsigned targ_fde;
4826 {
4827 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4828
4829 attr->dw_attr_next = NULL;
4830 attr->dw_attr = attr_kind;
4831 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4832 attr->dw_attr_val.v.val_fde_index = targ_fde;
4833 add_dwarf_attr (die, attr);
4834 }
4835
4836 /* Add a location description attribute value to a DIE. */
4837
4838 static inline void
4839 add_AT_loc (die, attr_kind, loc)
4840 dw_die_ref die;
4841 enum dwarf_attribute attr_kind;
4842 dw_loc_descr_ref loc;
4843 {
4844 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4845
4846 attr->dw_attr_next = NULL;
4847 attr->dw_attr = attr_kind;
4848 attr->dw_attr_val.val_class = dw_val_class_loc;
4849 attr->dw_attr_val.v.val_loc = loc;
4850 add_dwarf_attr (die, attr);
4851 }
4852
4853 static inline dw_loc_descr_ref
4854 AT_loc (a)
4855 dw_attr_ref a;
4856 {
4857 if (a && AT_class (a) == dw_val_class_loc)
4858 return a->dw_attr_val.v.val_loc;
4859
4860 abort ();
4861 }
4862
4863 static inline void
4864 add_AT_loc_list (die, attr_kind, loc_list)
4865 dw_die_ref die;
4866 enum dwarf_attribute attr_kind;
4867 dw_loc_list_ref loc_list;
4868 {
4869 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4870
4871 attr->dw_attr_next = NULL;
4872 attr->dw_attr = attr_kind;
4873 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4874 attr->dw_attr_val.v.val_loc_list = loc_list;
4875 add_dwarf_attr (die, attr);
4876 have_location_lists = 1;
4877 }
4878
4879 static inline dw_loc_list_ref
4880 AT_loc_list (a)
4881 dw_attr_ref a;
4882 {
4883 if (a && AT_class (a) == dw_val_class_loc_list)
4884 return a->dw_attr_val.v.val_loc_list;
4885
4886 abort ();
4887 }
4888
4889 /* Add an address constant attribute value to a DIE. */
4890
4891 static inline void
4892 add_AT_addr (die, attr_kind, addr)
4893 dw_die_ref die;
4894 enum dwarf_attribute attr_kind;
4895 rtx addr;
4896 {
4897 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4898
4899 attr->dw_attr_next = NULL;
4900 attr->dw_attr = attr_kind;
4901 attr->dw_attr_val.val_class = dw_val_class_addr;
4902 attr->dw_attr_val.v.val_addr = addr;
4903 add_dwarf_attr (die, attr);
4904 }
4905
4906 static inline rtx
4907 AT_addr (a)
4908 dw_attr_ref a;
4909 {
4910 if (a && AT_class (a) == dw_val_class_addr)
4911 return a->dw_attr_val.v.val_addr;
4912
4913 abort ();
4914 }
4915
4916 /* Add a label identifier attribute value to a DIE. */
4917
4918 static inline void
4919 add_AT_lbl_id (die, attr_kind, lbl_id)
4920 dw_die_ref die;
4921 enum dwarf_attribute attr_kind;
4922 const char *lbl_id;
4923 {
4924 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4925
4926 attr->dw_attr_next = NULL;
4927 attr->dw_attr = attr_kind;
4928 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4929 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4930 add_dwarf_attr (die, attr);
4931 }
4932
4933 /* Add a section offset attribute value to a DIE. */
4934
4935 static inline void
4936 add_AT_lbl_offset (die, attr_kind, label)
4937 dw_die_ref die;
4938 enum dwarf_attribute attr_kind;
4939 const char *label;
4940 {
4941 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4942
4943 attr->dw_attr_next = NULL;
4944 attr->dw_attr = attr_kind;
4945 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4946 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4947 add_dwarf_attr (die, attr);
4948 }
4949
4950 /* Add an offset attribute value to a DIE. */
4951
4952 static inline void
4953 add_AT_offset (die, attr_kind, offset)
4954 dw_die_ref die;
4955 enum dwarf_attribute attr_kind;
4956 unsigned long offset;
4957 {
4958 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4959
4960 attr->dw_attr_next = NULL;
4961 attr->dw_attr = attr_kind;
4962 attr->dw_attr_val.val_class = dw_val_class_offset;
4963 attr->dw_attr_val.v.val_offset = offset;
4964 add_dwarf_attr (die, attr);
4965 }
4966
4967 /* Add an range_list attribute value to a DIE. */
4968
4969 static void
4970 add_AT_range_list (die, attr_kind, offset)
4971 dw_die_ref die;
4972 enum dwarf_attribute attr_kind;
4973 unsigned long offset;
4974 {
4975 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4976
4977 attr->dw_attr_next = NULL;
4978 attr->dw_attr = attr_kind;
4979 attr->dw_attr_val.val_class = dw_val_class_range_list;
4980 attr->dw_attr_val.v.val_offset = offset;
4981 add_dwarf_attr (die, attr);
4982 }
4983
4984 static inline const char *
4985 AT_lbl (a)
4986 dw_attr_ref a;
4987 {
4988 if (a && (AT_class (a) == dw_val_class_lbl_id
4989 || AT_class (a) == dw_val_class_lbl_offset))
4990 return a->dw_attr_val.v.val_lbl_id;
4991
4992 abort ();
4993 }
4994
4995 /* Get the attribute of type attr_kind. */
4996
4997 static inline dw_attr_ref
4998 get_AT (die, attr_kind)
4999 dw_die_ref die;
5000 enum dwarf_attribute attr_kind;
5001 {
5002 dw_attr_ref a;
5003 dw_die_ref spec = NULL;
5004
5005 if (die != NULL)
5006 {
5007 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5008 if (a->dw_attr == attr_kind)
5009 return a;
5010 else if (a->dw_attr == DW_AT_specification
5011 || a->dw_attr == DW_AT_abstract_origin)
5012 spec = AT_ref (a);
5013
5014 if (spec)
5015 return get_AT (spec, attr_kind);
5016 }
5017
5018 return NULL;
5019 }
5020
5021 /* Return the "low pc" attribute value, typically associated with a subprogram
5022 DIE. Return null if the "low pc" attribute is either not present, or if it
5023 cannot be represented as an assembler label identifier. */
5024
5025 static inline const char *
5026 get_AT_low_pc (die)
5027 dw_die_ref die;
5028 {
5029 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5030
5031 return a ? AT_lbl (a) : NULL;
5032 }
5033
5034 /* Return the "high pc" attribute value, typically associated with a subprogram
5035 DIE. Return null if the "high pc" attribute is either not present, or if it
5036 cannot be represented as an assembler label identifier. */
5037
5038 static inline const char *
5039 get_AT_hi_pc (die)
5040 dw_die_ref die;
5041 {
5042 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5043
5044 return a ? AT_lbl (a) : NULL;
5045 }
5046
5047 /* Return the value of the string attribute designated by ATTR_KIND, or
5048 NULL if it is not present. */
5049
5050 static inline const char *
5051 get_AT_string (die, attr_kind)
5052 dw_die_ref die;
5053 enum dwarf_attribute attr_kind;
5054 {
5055 dw_attr_ref a = get_AT (die, attr_kind);
5056
5057 return a ? AT_string (a) : NULL;
5058 }
5059
5060 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5061 if it is not present. */
5062
5063 static inline int
5064 get_AT_flag (die, attr_kind)
5065 dw_die_ref die;
5066 enum dwarf_attribute attr_kind;
5067 {
5068 dw_attr_ref a = get_AT (die, attr_kind);
5069
5070 return a ? AT_flag (a) : 0;
5071 }
5072
5073 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5074 if it is not present. */
5075
5076 static inline unsigned
5077 get_AT_unsigned (die, attr_kind)
5078 dw_die_ref die;
5079 enum dwarf_attribute attr_kind;
5080 {
5081 dw_attr_ref a = get_AT (die, attr_kind);
5082
5083 return a ? AT_unsigned (a) : 0;
5084 }
5085
5086 static inline dw_die_ref
5087 get_AT_ref (die, attr_kind)
5088 dw_die_ref die;
5089 enum dwarf_attribute attr_kind;
5090 {
5091 dw_attr_ref a = get_AT (die, attr_kind);
5092
5093 return a ? AT_ref (a) : NULL;
5094 }
5095
5096 /* Return TRUE if the language is C or C++. */
5097
5098 static inline bool
5099 is_c_family ()
5100 {
5101 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5102
5103 return (lang == DW_LANG_C || lang == DW_LANG_C89
5104 || lang == DW_LANG_C_plus_plus);
5105 }
5106
5107 /* Return TRUE if the language is C++. */
5108
5109 static inline bool
5110 is_cxx ()
5111 {
5112 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5113 == DW_LANG_C_plus_plus);
5114 }
5115
5116 /* Return TRUE if the language is Fortran. */
5117
5118 static inline bool
5119 is_fortran ()
5120 {
5121 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5122
5123 return lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90;
5124 }
5125
5126 /* Return TRUE if the language is Java. */
5127
5128 static inline bool
5129 is_java ()
5130 {
5131 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5132
5133 return lang == DW_LANG_Java;
5134 }
5135
5136 /* Return TRUE if the language is Ada. */
5137
5138 static inline bool
5139 is_ada ()
5140 {
5141 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5142
5143 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5144 }
5145
5146 /* Free up the memory used by A. */
5147
5148 static inline void free_AT PARAMS ((dw_attr_ref));
5149 static inline void
5150 free_AT (a)
5151 dw_attr_ref a;
5152 {
5153 if (AT_class (a) == dw_val_class_str)
5154 if (a->dw_attr_val.v.val_str->refcount)
5155 a->dw_attr_val.v.val_str->refcount--;
5156 }
5157
5158 /* Remove the specified attribute if present. */
5159
5160 static void
5161 remove_AT (die, attr_kind)
5162 dw_die_ref die;
5163 enum dwarf_attribute attr_kind;
5164 {
5165 dw_attr_ref *p;
5166 dw_attr_ref removed = NULL;
5167
5168 if (die != NULL)
5169 {
5170 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5171 if ((*p)->dw_attr == attr_kind)
5172 {
5173 removed = *p;
5174 *p = (*p)->dw_attr_next;
5175 break;
5176 }
5177
5178 if (removed != 0)
5179 free_AT (removed);
5180 }
5181 }
5182
5183 /* Free up the memory used by DIE. */
5184
5185 static inline void
5186 free_die (die)
5187 dw_die_ref die;
5188 {
5189 remove_children (die);
5190 }
5191
5192 /* Discard the children of this DIE. */
5193
5194 static void
5195 remove_children (die)
5196 dw_die_ref die;
5197 {
5198 dw_die_ref child_die = die->die_child;
5199
5200 die->die_child = NULL;
5201
5202 while (child_die != NULL)
5203 {
5204 dw_die_ref tmp_die = child_die;
5205 dw_attr_ref a;
5206
5207 child_die = child_die->die_sib;
5208
5209 for (a = tmp_die->die_attr; a != NULL;)
5210 {
5211 dw_attr_ref tmp_a = a;
5212
5213 a = a->dw_attr_next;
5214 free_AT (tmp_a);
5215 }
5216
5217 free_die (tmp_die);
5218 }
5219 }
5220
5221 /* Add a child DIE below its parent. We build the lists up in reverse
5222 addition order, and correct that in reverse_all_dies. */
5223
5224 static inline void
5225 add_child_die (die, child_die)
5226 dw_die_ref die;
5227 dw_die_ref child_die;
5228 {
5229 if (die != NULL && child_die != NULL)
5230 {
5231 if (die == child_die)
5232 abort ();
5233
5234 child_die->die_parent = die;
5235 child_die->die_sib = die->die_child;
5236 die->die_child = child_die;
5237 }
5238 }
5239
5240 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5241 is the specification, to the front of PARENT's list of children. */
5242
5243 static void
5244 splice_child_die (parent, child)
5245 dw_die_ref parent, child;
5246 {
5247 dw_die_ref *p;
5248
5249 /* We want the declaration DIE from inside the class, not the
5250 specification DIE at toplevel. */
5251 if (child->die_parent != parent)
5252 {
5253 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5254
5255 if (tmp)
5256 child = tmp;
5257 }
5258
5259 if (child->die_parent != parent
5260 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5261 abort ();
5262
5263 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5264 if (*p == child)
5265 {
5266 *p = child->die_sib;
5267 break;
5268 }
5269
5270 child->die_parent = parent;
5271 child->die_sib = parent->die_child;
5272 parent->die_child = child;
5273 }
5274
5275 /* Return a pointer to a newly created DIE node. */
5276
5277 static inline dw_die_ref
5278 new_die (tag_value, parent_die, t)
5279 enum dwarf_tag tag_value;
5280 dw_die_ref parent_die;
5281 tree t;
5282 {
5283 dw_die_ref die = (dw_die_ref) ggc_alloc_cleared (sizeof (die_node));
5284
5285 die->die_tag = tag_value;
5286
5287 if (parent_die != NULL)
5288 add_child_die (parent_die, die);
5289 else
5290 {
5291 limbo_die_node *limbo_node;
5292
5293 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5294 limbo_node->die = die;
5295 limbo_node->created_for = t;
5296 limbo_node->next = limbo_die_list;
5297 limbo_die_list = limbo_node;
5298 }
5299
5300 return die;
5301 }
5302
5303 /* Return the DIE associated with the given type specifier. */
5304
5305 static inline dw_die_ref
5306 lookup_type_die (type)
5307 tree type;
5308 {
5309 return TYPE_SYMTAB_DIE (type);
5310 }
5311
5312 /* Equate a DIE to a given type specifier. */
5313
5314 static inline void
5315 equate_type_number_to_die (type, type_die)
5316 tree type;
5317 dw_die_ref type_die;
5318 {
5319 TYPE_SYMTAB_DIE (type) = type_die;
5320 }
5321
5322 /* Return the DIE associated with a given declaration. */
5323
5324 static inline dw_die_ref
5325 lookup_decl_die (decl)
5326 tree decl;
5327 {
5328 unsigned decl_id = DECL_UID (decl);
5329
5330 return (decl_id < decl_die_table_in_use ? decl_die_table[decl_id] : NULL);
5331 }
5332
5333 /* Equate a DIE to a particular declaration. */
5334
5335 static void
5336 equate_decl_number_to_die (decl, decl_die)
5337 tree decl;
5338 dw_die_ref decl_die;
5339 {
5340 unsigned int decl_id = DECL_UID (decl);
5341 unsigned int num_allocated;
5342
5343 if (decl_id >= decl_die_table_allocated)
5344 {
5345 num_allocated
5346 = ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
5347 / DECL_DIE_TABLE_INCREMENT)
5348 * DECL_DIE_TABLE_INCREMENT;
5349
5350 decl_die_table = ggc_realloc (decl_die_table,
5351 sizeof (dw_die_ref) * num_allocated);
5352
5353 memset ((char *) &decl_die_table[decl_die_table_allocated], 0,
5354 (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
5355 decl_die_table_allocated = num_allocated;
5356 }
5357
5358 if (decl_id >= decl_die_table_in_use)
5359 decl_die_table_in_use = (decl_id + 1);
5360
5361 decl_die_table[decl_id] = decl_die;
5362 }
5363 \f
5364 /* Keep track of the number of spaces used to indent the
5365 output of the debugging routines that print the structure of
5366 the DIE internal representation. */
5367 static int print_indent;
5368
5369 /* Indent the line the number of spaces given by print_indent. */
5370
5371 static inline void
5372 print_spaces (outfile)
5373 FILE *outfile;
5374 {
5375 fprintf (outfile, "%*s", print_indent, "");
5376 }
5377
5378 /* Print the information associated with a given DIE, and its children.
5379 This routine is a debugging aid only. */
5380
5381 static void
5382 print_die (die, outfile)
5383 dw_die_ref die;
5384 FILE *outfile;
5385 {
5386 dw_attr_ref a;
5387 dw_die_ref c;
5388
5389 print_spaces (outfile);
5390 fprintf (outfile, "DIE %4lu: %s\n",
5391 die->die_offset, dwarf_tag_name (die->die_tag));
5392 print_spaces (outfile);
5393 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5394 fprintf (outfile, " offset: %lu\n", die->die_offset);
5395
5396 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5397 {
5398 print_spaces (outfile);
5399 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5400
5401 switch (AT_class (a))
5402 {
5403 case dw_val_class_addr:
5404 fprintf (outfile, "address");
5405 break;
5406 case dw_val_class_offset:
5407 fprintf (outfile, "offset");
5408 break;
5409 case dw_val_class_loc:
5410 fprintf (outfile, "location descriptor");
5411 break;
5412 case dw_val_class_loc_list:
5413 fprintf (outfile, "location list -> label:%s",
5414 AT_loc_list (a)->ll_symbol);
5415 break;
5416 case dw_val_class_range_list:
5417 fprintf (outfile, "range list");
5418 break;
5419 case dw_val_class_const:
5420 fprintf (outfile, "%ld", AT_int (a));
5421 break;
5422 case dw_val_class_unsigned_const:
5423 fprintf (outfile, "%lu", AT_unsigned (a));
5424 break;
5425 case dw_val_class_long_long:
5426 fprintf (outfile, "constant (%lu,%lu)",
5427 a->dw_attr_val.v.val_long_long.hi,
5428 a->dw_attr_val.v.val_long_long.low);
5429 break;
5430 case dw_val_class_float:
5431 fprintf (outfile, "floating-point constant");
5432 break;
5433 case dw_val_class_flag:
5434 fprintf (outfile, "%u", AT_flag (a));
5435 break;
5436 case dw_val_class_die_ref:
5437 if (AT_ref (a) != NULL)
5438 {
5439 if (AT_ref (a)->die_symbol)
5440 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5441 else
5442 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5443 }
5444 else
5445 fprintf (outfile, "die -> <null>");
5446 break;
5447 case dw_val_class_lbl_id:
5448 case dw_val_class_lbl_offset:
5449 fprintf (outfile, "label: %s", AT_lbl (a));
5450 break;
5451 case dw_val_class_str:
5452 if (AT_string (a) != NULL)
5453 fprintf (outfile, "\"%s\"", AT_string (a));
5454 else
5455 fprintf (outfile, "<null>");
5456 break;
5457 default:
5458 break;
5459 }
5460
5461 fprintf (outfile, "\n");
5462 }
5463
5464 if (die->die_child != NULL)
5465 {
5466 print_indent += 4;
5467 for (c = die->die_child; c != NULL; c = c->die_sib)
5468 print_die (c, outfile);
5469
5470 print_indent -= 4;
5471 }
5472 if (print_indent == 0)
5473 fprintf (outfile, "\n");
5474 }
5475
5476 /* Print the contents of the source code line number correspondence table.
5477 This routine is a debugging aid only. */
5478
5479 static void
5480 print_dwarf_line_table (outfile)
5481 FILE *outfile;
5482 {
5483 unsigned i;
5484 dw_line_info_ref line_info;
5485
5486 fprintf (outfile, "\n\nDWARF source line information\n");
5487 for (i = 1; i < line_info_table_in_use; i++)
5488 {
5489 line_info = &line_info_table[i];
5490 fprintf (outfile, "%5d: ", i);
5491 fprintf (outfile, "%-20s",
5492 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5493 fprintf (outfile, "%6ld", line_info->dw_line_num);
5494 fprintf (outfile, "\n");
5495 }
5496
5497 fprintf (outfile, "\n\n");
5498 }
5499
5500 /* Print the information collected for a given DIE. */
5501
5502 void
5503 debug_dwarf_die (die)
5504 dw_die_ref die;
5505 {
5506 print_die (die, stderr);
5507 }
5508
5509 /* Print all DWARF information collected for the compilation unit.
5510 This routine is a debugging aid only. */
5511
5512 void
5513 debug_dwarf ()
5514 {
5515 print_indent = 0;
5516 print_die (comp_unit_die, stderr);
5517 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5518 print_dwarf_line_table (stderr);
5519 }
5520 \f
5521 /* We build up the lists of children and attributes by pushing new ones
5522 onto the beginning of the list. Reverse the lists for DIE so that
5523 they are in order of addition. */
5524
5525 static void
5526 reverse_die_lists (die)
5527 dw_die_ref die;
5528 {
5529 dw_die_ref c, cp, cn;
5530 dw_attr_ref a, ap, an;
5531
5532 for (a = die->die_attr, ap = 0; a; a = an)
5533 {
5534 an = a->dw_attr_next;
5535 a->dw_attr_next = ap;
5536 ap = a;
5537 }
5538
5539 die->die_attr = ap;
5540
5541 for (c = die->die_child, cp = 0; c; c = cn)
5542 {
5543 cn = c->die_sib;
5544 c->die_sib = cp;
5545 cp = c;
5546 }
5547
5548 die->die_child = cp;
5549 }
5550
5551 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5552 reverse all dies in add_sibling_attributes, which runs through all the dies,
5553 it would reverse all the dies. Now, however, since we don't call
5554 reverse_die_lists in add_sibling_attributes, we need a routine to
5555 recursively reverse all the dies. This is that routine. */
5556
5557 static void
5558 reverse_all_dies (die)
5559 dw_die_ref die;
5560 {
5561 dw_die_ref c;
5562
5563 reverse_die_lists (die);
5564
5565 for (c = die->die_child; c; c = c->die_sib)
5566 reverse_all_dies (c);
5567 }
5568
5569 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5570 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5571 DIE that marks the start of the DIEs for this include file. */
5572
5573 static dw_die_ref
5574 push_new_compile_unit (old_unit, bincl_die)
5575 dw_die_ref old_unit, bincl_die;
5576 {
5577 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5578 dw_die_ref new_unit = gen_compile_unit_die (filename);
5579
5580 new_unit->die_sib = old_unit;
5581 return new_unit;
5582 }
5583
5584 /* Close an include-file CU and reopen the enclosing one. */
5585
5586 static dw_die_ref
5587 pop_compile_unit (old_unit)
5588 dw_die_ref old_unit;
5589 {
5590 dw_die_ref new_unit = old_unit->die_sib;
5591
5592 old_unit->die_sib = NULL;
5593 return new_unit;
5594 }
5595
5596 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5597 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5598
5599 /* Calculate the checksum of a location expression. */
5600
5601 static inline void
5602 loc_checksum (loc, ctx)
5603 dw_loc_descr_ref loc;
5604 struct md5_ctx *ctx;
5605 {
5606 CHECKSUM (loc->dw_loc_opc);
5607 CHECKSUM (loc->dw_loc_oprnd1);
5608 CHECKSUM (loc->dw_loc_oprnd2);
5609 }
5610
5611 /* Calculate the checksum of an attribute. */
5612
5613 static void
5614 attr_checksum (at, ctx, mark)
5615 dw_attr_ref at;
5616 struct md5_ctx *ctx;
5617 int *mark;
5618 {
5619 dw_loc_descr_ref loc;
5620 rtx r;
5621
5622 CHECKSUM (at->dw_attr);
5623
5624 /* We don't care about differences in file numbering. */
5625 if (at->dw_attr == DW_AT_decl_file
5626 /* Or that this was compiled with a different compiler snapshot; if
5627 the output is the same, that's what matters. */
5628 || at->dw_attr == DW_AT_producer)
5629 return;
5630
5631 switch (AT_class (at))
5632 {
5633 case dw_val_class_const:
5634 CHECKSUM (at->dw_attr_val.v.val_int);
5635 break;
5636 case dw_val_class_unsigned_const:
5637 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5638 break;
5639 case dw_val_class_long_long:
5640 CHECKSUM (at->dw_attr_val.v.val_long_long);
5641 break;
5642 case dw_val_class_float:
5643 CHECKSUM (at->dw_attr_val.v.val_float);
5644 break;
5645 case dw_val_class_flag:
5646 CHECKSUM (at->dw_attr_val.v.val_flag);
5647 break;
5648 case dw_val_class_str:
5649 CHECKSUM_STRING (AT_string (at));
5650 break;
5651
5652 case dw_val_class_addr:
5653 r = AT_addr (at);
5654 switch (GET_CODE (r))
5655 {
5656 case SYMBOL_REF:
5657 CHECKSUM_STRING (XSTR (r, 0));
5658 break;
5659
5660 default:
5661 abort ();
5662 }
5663 break;
5664
5665 case dw_val_class_offset:
5666 CHECKSUM (at->dw_attr_val.v.val_offset);
5667 break;
5668
5669 case dw_val_class_loc:
5670 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5671 loc_checksum (loc, ctx);
5672 break;
5673
5674 case dw_val_class_die_ref:
5675 die_checksum (AT_ref (at), ctx, mark);
5676 break;
5677
5678 case dw_val_class_fde_ref:
5679 case dw_val_class_lbl_id:
5680 case dw_val_class_lbl_offset:
5681 break;
5682
5683 default:
5684 break;
5685 }
5686 }
5687
5688 /* Calculate the checksum of a DIE. */
5689
5690 static void
5691 die_checksum (die, ctx, mark)
5692 dw_die_ref die;
5693 struct md5_ctx *ctx;
5694 int *mark;
5695 {
5696 dw_die_ref c;
5697 dw_attr_ref a;
5698
5699 /* To avoid infinite recursion. */
5700 if (die->die_mark)
5701 {
5702 CHECKSUM (die->die_mark);
5703 return;
5704 }
5705 die->die_mark = ++(*mark);
5706
5707 CHECKSUM (die->die_tag);
5708
5709 for (a = die->die_attr; a; a = a->dw_attr_next)
5710 attr_checksum (a, ctx, mark);
5711
5712 for (c = die->die_child; c; c = c->die_sib)
5713 die_checksum (c, ctx, mark);
5714 }
5715
5716 #undef CHECKSUM
5717 #undef CHECKSUM_STRING
5718
5719 /* Do the location expressions look same? */
5720 static inline int
5721 same_loc_p (loc1, loc2, mark)
5722 dw_loc_descr_ref loc1;
5723 dw_loc_descr_ref loc2;
5724 int *mark;
5725 {
5726 return loc1->dw_loc_opc == loc2->dw_loc_opc
5727 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5728 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5729 }
5730
5731 /* Do the values look the same? */
5732 static int
5733 same_dw_val_p (v1, v2, mark)
5734 dw_val_node *v1;
5735 dw_val_node *v2;
5736 int *mark;
5737 {
5738 dw_loc_descr_ref loc1, loc2;
5739 rtx r1, r2;
5740 unsigned i;
5741
5742 if (v1->val_class != v2->val_class)
5743 return 0;
5744
5745 switch (v1->val_class)
5746 {
5747 case dw_val_class_const:
5748 return v1->v.val_int == v2->v.val_int;
5749 case dw_val_class_unsigned_const:
5750 return v1->v.val_unsigned == v2->v.val_unsigned;
5751 case dw_val_class_long_long:
5752 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5753 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5754 case dw_val_class_float:
5755 if (v1->v.val_float.length != v2->v.val_float.length)
5756 return 0;
5757 for (i = 0; i < v1->v.val_float.length; i++)
5758 if (v1->v.val_float.array[i] != v2->v.val_float.array[i])
5759 return 0;
5760 return 1;
5761 case dw_val_class_flag:
5762 return v1->v.val_flag == v2->v.val_flag;
5763 case dw_val_class_str:
5764 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5765
5766 case dw_val_class_addr:
5767 r1 = v1->v.val_addr;
5768 r2 = v2->v.val_addr;
5769 if (GET_CODE (r1) != GET_CODE (r2))
5770 return 0;
5771 switch (GET_CODE (r1))
5772 {
5773 case SYMBOL_REF:
5774 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5775
5776 default:
5777 abort ();
5778 }
5779
5780 case dw_val_class_offset:
5781 return v1->v.val_offset == v2->v.val_offset;
5782
5783 case dw_val_class_loc:
5784 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5785 loc1 && loc2;
5786 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5787 if (!same_loc_p (loc1, loc2, mark))
5788 return 0;
5789 return !loc1 && !loc2;
5790
5791 case dw_val_class_die_ref:
5792 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5793
5794 case dw_val_class_fde_ref:
5795 case dw_val_class_lbl_id:
5796 case dw_val_class_lbl_offset:
5797 return 1;
5798
5799 default:
5800 return 1;
5801 }
5802 }
5803
5804 /* Do the attributes look the same? */
5805
5806 static int
5807 same_attr_p (at1, at2, mark)
5808 dw_attr_ref at1;
5809 dw_attr_ref at2;
5810 int *mark;
5811 {
5812 if (at1->dw_attr != at2->dw_attr)
5813 return 0;
5814
5815 /* We don't care about differences in file numbering. */
5816 if (at1->dw_attr == DW_AT_decl_file
5817 /* Or that this was compiled with a different compiler snapshot; if
5818 the output is the same, that's what matters. */
5819 || at1->dw_attr == DW_AT_producer)
5820 return 1;
5821
5822 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5823 }
5824
5825 /* Do the dies look the same? */
5826
5827 static int
5828 same_die_p (die1, die2, mark)
5829 dw_die_ref die1;
5830 dw_die_ref die2;
5831 int *mark;
5832 {
5833 dw_die_ref c1, c2;
5834 dw_attr_ref a1, a2;
5835
5836 /* To avoid infinite recursion. */
5837 if (die1->die_mark)
5838 return die1->die_mark == die2->die_mark;
5839 die1->die_mark = die2->die_mark = ++(*mark);
5840
5841 if (die1->die_tag != die2->die_tag)
5842 return 0;
5843
5844 for (a1 = die1->die_attr, a2 = die2->die_attr;
5845 a1 && a2;
5846 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5847 if (!same_attr_p (a1, a2, mark))
5848 return 0;
5849 if (a1 || a2)
5850 return 0;
5851
5852 for (c1 = die1->die_child, c2 = die2->die_child;
5853 c1 && c2;
5854 c1 = c1->die_sib, c2 = c2->die_sib)
5855 if (!same_die_p (c1, c2, mark))
5856 return 0;
5857 if (c1 || c2)
5858 return 0;
5859
5860 return 1;
5861 }
5862
5863 /* Do the dies look the same? Wrapper around same_die_p. */
5864
5865 static int
5866 same_die_p_wrap (die1, die2)
5867 dw_die_ref die1;
5868 dw_die_ref die2;
5869 {
5870 int mark = 0;
5871 int ret = same_die_p (die1, die2, &mark);
5872
5873 unmark_all_dies (die1);
5874 unmark_all_dies (die2);
5875
5876 return ret;
5877 }
5878
5879 /* The prefix to attach to symbols on DIEs in the current comdat debug
5880 info section. */
5881 static char *comdat_symbol_id;
5882
5883 /* The index of the current symbol within the current comdat CU. */
5884 static unsigned int comdat_symbol_number;
5885
5886 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5887 children, and set comdat_symbol_id accordingly. */
5888
5889 static void
5890 compute_section_prefix (unit_die)
5891 dw_die_ref unit_die;
5892 {
5893 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5894 const char *base = die_name ? lbasename (die_name) : "anonymous";
5895 char *name = (char *) alloca (strlen (base) + 64);
5896 char *p;
5897 int i, mark;
5898 unsigned char checksum[16];
5899 struct md5_ctx ctx;
5900
5901 /* Compute the checksum of the DIE, then append part of it as hex digits to
5902 the name filename of the unit. */
5903
5904 md5_init_ctx (&ctx);
5905 mark = 0;
5906 die_checksum (unit_die, &ctx, &mark);
5907 unmark_all_dies (unit_die);
5908 md5_finish_ctx (&ctx, checksum);
5909
5910 sprintf (name, "%s.", base);
5911 clean_symbol_name (name);
5912
5913 p = name + strlen (name);
5914 for (i = 0; i < 4; i++)
5915 {
5916 sprintf (p, "%.2x", checksum[i]);
5917 p += 2;
5918 }
5919
5920 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5921 comdat_symbol_number = 0;
5922 }
5923
5924 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5925
5926 static int
5927 is_type_die (die)
5928 dw_die_ref die;
5929 {
5930 switch (die->die_tag)
5931 {
5932 case DW_TAG_array_type:
5933 case DW_TAG_class_type:
5934 case DW_TAG_enumeration_type:
5935 case DW_TAG_pointer_type:
5936 case DW_TAG_reference_type:
5937 case DW_TAG_string_type:
5938 case DW_TAG_structure_type:
5939 case DW_TAG_subroutine_type:
5940 case DW_TAG_union_type:
5941 case DW_TAG_ptr_to_member_type:
5942 case DW_TAG_set_type:
5943 case DW_TAG_subrange_type:
5944 case DW_TAG_base_type:
5945 case DW_TAG_const_type:
5946 case DW_TAG_file_type:
5947 case DW_TAG_packed_type:
5948 case DW_TAG_volatile_type:
5949 case DW_TAG_typedef:
5950 return 1;
5951 default:
5952 return 0;
5953 }
5954 }
5955
5956 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5957 Basically, we want to choose the bits that are likely to be shared between
5958 compilations (types) and leave out the bits that are specific to individual
5959 compilations (functions). */
5960
5961 static int
5962 is_comdat_die (c)
5963 dw_die_ref c;
5964 {
5965 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5966 we do for stabs. The advantage is a greater likelihood of sharing between
5967 objects that don't include headers in the same order (and therefore would
5968 put the base types in a different comdat). jason 8/28/00 */
5969
5970 if (c->die_tag == DW_TAG_base_type)
5971 return 0;
5972
5973 if (c->die_tag == DW_TAG_pointer_type
5974 || c->die_tag == DW_TAG_reference_type
5975 || c->die_tag == DW_TAG_const_type
5976 || c->die_tag == DW_TAG_volatile_type)
5977 {
5978 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5979
5980 return t ? is_comdat_die (t) : 0;
5981 }
5982
5983 return is_type_die (c);
5984 }
5985
5986 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5987 compilation unit. */
5988
5989 static int
5990 is_symbol_die (c)
5991 dw_die_ref c;
5992 {
5993 return (is_type_die (c)
5994 || (get_AT (c, DW_AT_declaration)
5995 && !get_AT (c, DW_AT_specification)));
5996 }
5997
5998 static char *
5999 gen_internal_sym (prefix)
6000 const char *prefix;
6001 {
6002 char buf[256];
6003 static int label_num;
6004
6005 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6006 return xstrdup (buf);
6007 }
6008
6009 /* Assign symbols to all worthy DIEs under DIE. */
6010
6011 static void
6012 assign_symbol_names (die)
6013 dw_die_ref die;
6014 {
6015 dw_die_ref c;
6016
6017 if (is_symbol_die (die))
6018 {
6019 if (comdat_symbol_id)
6020 {
6021 char *p = alloca (strlen (comdat_symbol_id) + 64);
6022
6023 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6024 comdat_symbol_id, comdat_symbol_number++);
6025 die->die_symbol = xstrdup (p);
6026 }
6027 else
6028 die->die_symbol = gen_internal_sym ("LDIE");
6029 }
6030
6031 for (c = die->die_child; c != NULL; c = c->die_sib)
6032 assign_symbol_names (c);
6033 }
6034
6035 struct cu_hash_table_entry
6036 {
6037 dw_die_ref cu;
6038 unsigned min_comdat_num, max_comdat_num;
6039 struct cu_hash_table_entry *next;
6040 };
6041
6042 /* Routines to manipulate hash table of CUs. */
6043 static hashval_t
6044 htab_cu_hash (of)
6045 const void *of;
6046 {
6047 const struct cu_hash_table_entry *entry = of;
6048
6049 return htab_hash_string (entry->cu->die_symbol);
6050 }
6051
6052 static int
6053 htab_cu_eq (of1, of2)
6054 const void *of1;
6055 const void *of2;
6056 {
6057 const struct cu_hash_table_entry *entry1 = of1;
6058 const struct die_struct *entry2 = of2;
6059
6060 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6061 }
6062
6063 static void
6064 htab_cu_del (what)
6065 void *what;
6066 {
6067 struct cu_hash_table_entry *next, *entry = what;
6068
6069 while (entry)
6070 {
6071 next = entry->next;
6072 free (entry);
6073 entry = next;
6074 }
6075 }
6076
6077 /* Check whether we have already seen this CU and set up SYM_NUM
6078 accordingly. */
6079 static int
6080 check_duplicate_cu (cu, htable, sym_num)
6081 dw_die_ref cu;
6082 htab_t htable;
6083 unsigned *sym_num;
6084 {
6085 struct cu_hash_table_entry dummy;
6086 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6087
6088 dummy.max_comdat_num = 0;
6089
6090 slot = (struct cu_hash_table_entry **)
6091 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6092 INSERT);
6093 entry = *slot;
6094
6095 for (; entry; last = entry, entry = entry->next)
6096 {
6097 if (same_die_p_wrap (cu, entry->cu))
6098 break;
6099 }
6100
6101 if (entry)
6102 {
6103 *sym_num = entry->min_comdat_num;
6104 return 1;
6105 }
6106
6107 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6108 entry->cu = cu;
6109 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6110 entry->next = *slot;
6111 *slot = entry;
6112
6113 return 0;
6114 }
6115
6116 /* Record SYM_NUM to record of CU in HTABLE. */
6117 static void
6118 record_comdat_symbol_number (cu, htable, sym_num)
6119 dw_die_ref cu;
6120 htab_t htable;
6121 unsigned sym_num;
6122 {
6123 struct cu_hash_table_entry **slot, *entry;
6124
6125 slot = (struct cu_hash_table_entry **)
6126 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6127 NO_INSERT);
6128 entry = *slot;
6129
6130 entry->max_comdat_num = sym_num;
6131 }
6132
6133 /* Traverse the DIE (which is always comp_unit_die), and set up
6134 additional compilation units for each of the include files we see
6135 bracketed by BINCL/EINCL. */
6136
6137 static void
6138 break_out_includes (die)
6139 dw_die_ref die;
6140 {
6141 dw_die_ref *ptr;
6142 dw_die_ref unit = NULL;
6143 limbo_die_node *node, **pnode;
6144 htab_t cu_hash_table;
6145
6146 for (ptr = &(die->die_child); *ptr;)
6147 {
6148 dw_die_ref c = *ptr;
6149
6150 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6151 || (unit && is_comdat_die (c)))
6152 {
6153 /* This DIE is for a secondary CU; remove it from the main one. */
6154 *ptr = c->die_sib;
6155
6156 if (c->die_tag == DW_TAG_GNU_BINCL)
6157 {
6158 unit = push_new_compile_unit (unit, c);
6159 free_die (c);
6160 }
6161 else if (c->die_tag == DW_TAG_GNU_EINCL)
6162 {
6163 unit = pop_compile_unit (unit);
6164 free_die (c);
6165 }
6166 else
6167 add_child_die (unit, c);
6168 }
6169 else
6170 {
6171 /* Leave this DIE in the main CU. */
6172 ptr = &(c->die_sib);
6173 continue;
6174 }
6175 }
6176
6177 #if 0
6178 /* We can only use this in debugging, since the frontend doesn't check
6179 to make sure that we leave every include file we enter. */
6180 if (unit != NULL)
6181 abort ();
6182 #endif
6183
6184 assign_symbol_names (die);
6185 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6186 for (node = limbo_die_list, pnode = &limbo_die_list;
6187 node;
6188 node = node->next)
6189 {
6190 int is_dupl;
6191
6192 compute_section_prefix (node->die);
6193 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6194 &comdat_symbol_number);
6195 assign_symbol_names (node->die);
6196 if (is_dupl)
6197 *pnode = node->next;
6198 else
6199 {
6200 pnode = &node->next;
6201 record_comdat_symbol_number (node->die, cu_hash_table,
6202 comdat_symbol_number);
6203 }
6204 }
6205 htab_delete (cu_hash_table);
6206 }
6207
6208 /* Traverse the DIE and add a sibling attribute if it may have the
6209 effect of speeding up access to siblings. To save some space,
6210 avoid generating sibling attributes for DIE's without children. */
6211
6212 static void
6213 add_sibling_attributes (die)
6214 dw_die_ref die;
6215 {
6216 dw_die_ref c;
6217
6218 if (die->die_tag != DW_TAG_compile_unit
6219 && die->die_sib && die->die_child != NULL)
6220 /* Add the sibling link to the front of the attribute list. */
6221 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6222
6223 for (c = die->die_child; c != NULL; c = c->die_sib)
6224 add_sibling_attributes (c);
6225 }
6226
6227 /* Output all location lists for the DIE and its children. */
6228
6229 static void
6230 output_location_lists (die)
6231 dw_die_ref die;
6232 {
6233 dw_die_ref c;
6234 dw_attr_ref d_attr;
6235
6236 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6237 if (AT_class (d_attr) == dw_val_class_loc_list)
6238 output_loc_list (AT_loc_list (d_attr));
6239
6240 for (c = die->die_child; c != NULL; c = c->die_sib)
6241 output_location_lists (c);
6242
6243 }
6244
6245 /* The format of each DIE (and its attribute value pairs) is encoded in an
6246 abbreviation table. This routine builds the abbreviation table and assigns
6247 a unique abbreviation id for each abbreviation entry. The children of each
6248 die are visited recursively. */
6249
6250 static void
6251 build_abbrev_table (die)
6252 dw_die_ref die;
6253 {
6254 unsigned long abbrev_id;
6255 unsigned int n_alloc;
6256 dw_die_ref c;
6257 dw_attr_ref d_attr, a_attr;
6258
6259 /* Scan the DIE references, and mark as external any that refer to
6260 DIEs from other CUs (i.e. those which are not marked). */
6261 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6262 if (AT_class (d_attr) == dw_val_class_die_ref
6263 && AT_ref (d_attr)->die_mark == 0)
6264 {
6265 if (AT_ref (d_attr)->die_symbol == 0)
6266 abort ();
6267
6268 set_AT_ref_external (d_attr, 1);
6269 }
6270
6271 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6272 {
6273 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6274
6275 if (abbrev->die_tag == die->die_tag)
6276 {
6277 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6278 {
6279 a_attr = abbrev->die_attr;
6280 d_attr = die->die_attr;
6281
6282 while (a_attr != NULL && d_attr != NULL)
6283 {
6284 if ((a_attr->dw_attr != d_attr->dw_attr)
6285 || (value_format (a_attr) != value_format (d_attr)))
6286 break;
6287
6288 a_attr = a_attr->dw_attr_next;
6289 d_attr = d_attr->dw_attr_next;
6290 }
6291
6292 if (a_attr == NULL && d_attr == NULL)
6293 break;
6294 }
6295 }
6296 }
6297
6298 if (abbrev_id >= abbrev_die_table_in_use)
6299 {
6300 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6301 {
6302 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6303 abbrev_die_table = ggc_realloc (abbrev_die_table,
6304 sizeof (dw_die_ref) * n_alloc);
6305
6306 memset ((char *) &abbrev_die_table[abbrev_die_table_allocated], 0,
6307 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6308 abbrev_die_table_allocated = n_alloc;
6309 }
6310
6311 ++abbrev_die_table_in_use;
6312 abbrev_die_table[abbrev_id] = die;
6313 }
6314
6315 die->die_abbrev = abbrev_id;
6316 for (c = die->die_child; c != NULL; c = c->die_sib)
6317 build_abbrev_table (c);
6318 }
6319 \f
6320 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6321
6322 static int
6323 constant_size (value)
6324 long unsigned value;
6325 {
6326 int log;
6327
6328 if (value == 0)
6329 log = 0;
6330 else
6331 log = floor_log2 (value);
6332
6333 log = log / 8;
6334 log = 1 << (floor_log2 (log) + 1);
6335
6336 return log;
6337 }
6338
6339 /* Return the size of a DIE as it is represented in the
6340 .debug_info section. */
6341
6342 static unsigned long
6343 size_of_die (die)
6344 dw_die_ref die;
6345 {
6346 unsigned long size = 0;
6347 dw_attr_ref a;
6348
6349 size += size_of_uleb128 (die->die_abbrev);
6350 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6351 {
6352 switch (AT_class (a))
6353 {
6354 case dw_val_class_addr:
6355 size += DWARF2_ADDR_SIZE;
6356 break;
6357 case dw_val_class_offset:
6358 size += DWARF_OFFSET_SIZE;
6359 break;
6360 case dw_val_class_loc:
6361 {
6362 unsigned long lsize = size_of_locs (AT_loc (a));
6363
6364 /* Block length. */
6365 size += constant_size (lsize);
6366 size += lsize;
6367 }
6368 break;
6369 case dw_val_class_loc_list:
6370 size += DWARF_OFFSET_SIZE;
6371 break;
6372 case dw_val_class_range_list:
6373 size += DWARF_OFFSET_SIZE;
6374 break;
6375 case dw_val_class_const:
6376 size += size_of_sleb128 (AT_int (a));
6377 break;
6378 case dw_val_class_unsigned_const:
6379 size += constant_size (AT_unsigned (a));
6380 break;
6381 case dw_val_class_long_long:
6382 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6383 break;
6384 case dw_val_class_float:
6385 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
6386 break;
6387 case dw_val_class_flag:
6388 size += 1;
6389 break;
6390 case dw_val_class_die_ref:
6391 if (AT_ref_external (a))
6392 size += DWARF2_ADDR_SIZE;
6393 else
6394 size += DWARF_OFFSET_SIZE;
6395 break;
6396 case dw_val_class_fde_ref:
6397 size += DWARF_OFFSET_SIZE;
6398 break;
6399 case dw_val_class_lbl_id:
6400 size += DWARF2_ADDR_SIZE;
6401 break;
6402 case dw_val_class_lbl_offset:
6403 size += DWARF_OFFSET_SIZE;
6404 break;
6405 case dw_val_class_str:
6406 if (AT_string_form (a) == DW_FORM_strp)
6407 size += DWARF_OFFSET_SIZE;
6408 else
6409 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6410 break;
6411 default:
6412 abort ();
6413 }
6414 }
6415
6416 return size;
6417 }
6418
6419 /* Size the debugging information associated with a given DIE. Visits the
6420 DIE's children recursively. Updates the global variable next_die_offset, on
6421 each time through. Uses the current value of next_die_offset to update the
6422 die_offset field in each DIE. */
6423
6424 static void
6425 calc_die_sizes (die)
6426 dw_die_ref die;
6427 {
6428 dw_die_ref c;
6429
6430 die->die_offset = next_die_offset;
6431 next_die_offset += size_of_die (die);
6432
6433 for (c = die->die_child; c != NULL; c = c->die_sib)
6434 calc_die_sizes (c);
6435
6436 if (die->die_child != NULL)
6437 /* Count the null byte used to terminate sibling lists. */
6438 next_die_offset += 1;
6439 }
6440
6441 /* Set the marks for a die and its children. We do this so
6442 that we know whether or not a reference needs to use FORM_ref_addr; only
6443 DIEs in the same CU will be marked. We used to clear out the offset
6444 and use that as the flag, but ran into ordering problems. */
6445
6446 static void
6447 mark_dies (die)
6448 dw_die_ref die;
6449 {
6450 dw_die_ref c;
6451
6452 if (die->die_mark)
6453 abort ();
6454
6455 die->die_mark = 1;
6456 for (c = die->die_child; c; c = c->die_sib)
6457 mark_dies (c);
6458 }
6459
6460 /* Clear the marks for a die and its children. */
6461
6462 static void
6463 unmark_dies (die)
6464 dw_die_ref die;
6465 {
6466 dw_die_ref c;
6467
6468 if (!die->die_mark)
6469 abort ();
6470
6471 die->die_mark = 0;
6472 for (c = die->die_child; c; c = c->die_sib)
6473 unmark_dies (c);
6474 }
6475
6476 /* Clear the marks for a die, its children and referred dies. */
6477
6478 static void
6479 unmark_all_dies (die)
6480 dw_die_ref die;
6481 {
6482 dw_die_ref c;
6483 dw_attr_ref a;
6484
6485 if (!die->die_mark)
6486 return;
6487 die->die_mark = 0;
6488
6489 for (c = die->die_child; c; c = c->die_sib)
6490 unmark_all_dies (c);
6491
6492 for (a = die->die_attr; a; a = a->dw_attr_next)
6493 if (AT_class (a) == dw_val_class_die_ref)
6494 unmark_all_dies (AT_ref (a));
6495 }
6496
6497 /* Return the size of the .debug_pubnames table generated for the
6498 compilation unit. */
6499
6500 static unsigned long
6501 size_of_pubnames ()
6502 {
6503 unsigned long size;
6504 unsigned i;
6505
6506 size = DWARF_PUBNAMES_HEADER_SIZE;
6507 for (i = 0; i < pubname_table_in_use; i++)
6508 {
6509 pubname_ref p = &pubname_table[i];
6510 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6511 }
6512
6513 size += DWARF_OFFSET_SIZE;
6514 return size;
6515 }
6516
6517 /* Return the size of the information in the .debug_aranges section. */
6518
6519 static unsigned long
6520 size_of_aranges ()
6521 {
6522 unsigned long size;
6523
6524 size = DWARF_ARANGES_HEADER_SIZE;
6525
6526 /* Count the address/length pair for this compilation unit. */
6527 size += 2 * DWARF2_ADDR_SIZE;
6528 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6529
6530 /* Count the two zero words used to terminated the address range table. */
6531 size += 2 * DWARF2_ADDR_SIZE;
6532 return size;
6533 }
6534 \f
6535 /* Select the encoding of an attribute value. */
6536
6537 static enum dwarf_form
6538 value_format (a)
6539 dw_attr_ref a;
6540 {
6541 switch (a->dw_attr_val.val_class)
6542 {
6543 case dw_val_class_addr:
6544 return DW_FORM_addr;
6545 case dw_val_class_range_list:
6546 case dw_val_class_offset:
6547 if (DWARF_OFFSET_SIZE == 4)
6548 return DW_FORM_data4;
6549 if (DWARF_OFFSET_SIZE == 8)
6550 return DW_FORM_data8;
6551 abort ();
6552 case dw_val_class_loc_list:
6553 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6554 .debug_loc section */
6555 return DW_FORM_data4;
6556 case dw_val_class_loc:
6557 switch (constant_size (size_of_locs (AT_loc (a))))
6558 {
6559 case 1:
6560 return DW_FORM_block1;
6561 case 2:
6562 return DW_FORM_block2;
6563 default:
6564 abort ();
6565 }
6566 case dw_val_class_const:
6567 return DW_FORM_sdata;
6568 case dw_val_class_unsigned_const:
6569 switch (constant_size (AT_unsigned (a)))
6570 {
6571 case 1:
6572 return DW_FORM_data1;
6573 case 2:
6574 return DW_FORM_data2;
6575 case 4:
6576 return DW_FORM_data4;
6577 case 8:
6578 return DW_FORM_data8;
6579 default:
6580 abort ();
6581 }
6582 case dw_val_class_long_long:
6583 return DW_FORM_block1;
6584 case dw_val_class_float:
6585 return DW_FORM_block1;
6586 case dw_val_class_flag:
6587 return DW_FORM_flag;
6588 case dw_val_class_die_ref:
6589 if (AT_ref_external (a))
6590 return DW_FORM_ref_addr;
6591 else
6592 return DW_FORM_ref;
6593 case dw_val_class_fde_ref:
6594 return DW_FORM_data;
6595 case dw_val_class_lbl_id:
6596 return DW_FORM_addr;
6597 case dw_val_class_lbl_offset:
6598 return DW_FORM_data;
6599 case dw_val_class_str:
6600 return AT_string_form (a);
6601
6602 default:
6603 abort ();
6604 }
6605 }
6606
6607 /* Output the encoding of an attribute value. */
6608
6609 static void
6610 output_value_format (a)
6611 dw_attr_ref a;
6612 {
6613 enum dwarf_form form = value_format (a);
6614
6615 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6616 }
6617
6618 /* Output the .debug_abbrev section which defines the DIE abbreviation
6619 table. */
6620
6621 static void
6622 output_abbrev_section ()
6623 {
6624 unsigned long abbrev_id;
6625
6626 dw_attr_ref a_attr;
6627
6628 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6629 {
6630 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6631
6632 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6633 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6634 dwarf_tag_name (abbrev->die_tag));
6635
6636 if (abbrev->die_child != NULL)
6637 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6638 else
6639 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6640
6641 for (a_attr = abbrev->die_attr; a_attr != NULL;
6642 a_attr = a_attr->dw_attr_next)
6643 {
6644 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6645 dwarf_attr_name (a_attr->dw_attr));
6646 output_value_format (a_attr);
6647 }
6648
6649 dw2_asm_output_data (1, 0, NULL);
6650 dw2_asm_output_data (1, 0, NULL);
6651 }
6652
6653 /* Terminate the table. */
6654 dw2_asm_output_data (1, 0, NULL);
6655 }
6656
6657 /* Output a symbol we can use to refer to this DIE from another CU. */
6658
6659 static inline void
6660 output_die_symbol (die)
6661 dw_die_ref die;
6662 {
6663 char *sym = die->die_symbol;
6664
6665 if (sym == 0)
6666 return;
6667
6668 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6669 /* We make these global, not weak; if the target doesn't support
6670 .linkonce, it doesn't support combining the sections, so debugging
6671 will break. */
6672 (*targetm.asm_out.globalize_label) (asm_out_file, sym);
6673
6674 ASM_OUTPUT_LABEL (asm_out_file, sym);
6675 }
6676
6677 /* Return a new location list, given the begin and end range, and the
6678 expression. gensym tells us whether to generate a new internal symbol for
6679 this location list node, which is done for the head of the list only. */
6680
6681 static inline dw_loc_list_ref
6682 new_loc_list (expr, begin, end, section, gensym)
6683 dw_loc_descr_ref expr;
6684 const char *begin;
6685 const char *end;
6686 const char *section;
6687 unsigned gensym;
6688 {
6689 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6690
6691 retlist->begin = begin;
6692 retlist->end = end;
6693 retlist->expr = expr;
6694 retlist->section = section;
6695 if (gensym)
6696 retlist->ll_symbol = gen_internal_sym ("LLST");
6697
6698 return retlist;
6699 }
6700
6701 /* Add a location description expression to a location list */
6702
6703 static inline void
6704 add_loc_descr_to_loc_list (list_head, descr, begin, end, section)
6705 dw_loc_list_ref *list_head;
6706 dw_loc_descr_ref descr;
6707 const char *begin;
6708 const char *end;
6709 const char *section;
6710 {
6711 dw_loc_list_ref *d;
6712
6713 /* Find the end of the chain. */
6714 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6715 ;
6716
6717 /* Add a new location list node to the list */
6718 *d = new_loc_list (descr, begin, end, section, 0);
6719 }
6720
6721 /* Output the location list given to us */
6722
6723 static void
6724 output_loc_list (list_head)
6725 dw_loc_list_ref list_head;
6726 {
6727 dw_loc_list_ref curr = list_head;
6728
6729 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6730
6731 /* ??? This shouldn't be needed now that we've forced the
6732 compilation unit base address to zero when there is code
6733 in more than one section. */
6734 if (strcmp (curr->section, ".text") == 0)
6735 {
6736 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6737 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT) 0,
6738 "Location list base address specifier fake entry");
6739 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6740 "Location list base address specifier base");
6741 }
6742
6743 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6744 {
6745 unsigned long size;
6746
6747 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6748 "Location list begin address (%s)",
6749 list_head->ll_symbol);
6750 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6751 "Location list end address (%s)",
6752 list_head->ll_symbol);
6753 size = size_of_locs (curr->expr);
6754
6755 /* Output the block length for this list of location operations. */
6756 if (size > 0xffff)
6757 abort ();
6758 dw2_asm_output_data (2, size, "%s", "Location expression size");
6759
6760 output_loc_sequence (curr->expr);
6761 }
6762
6763 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6764 "Location list terminator begin (%s)",
6765 list_head->ll_symbol);
6766 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6767 "Location list terminator end (%s)",
6768 list_head->ll_symbol);
6769 }
6770
6771 /* Output the DIE and its attributes. Called recursively to generate
6772 the definitions of each child DIE. */
6773
6774 static void
6775 output_die (die)
6776 dw_die_ref die;
6777 {
6778 dw_attr_ref a;
6779 dw_die_ref c;
6780 unsigned long size;
6781
6782 /* If someone in another CU might refer to us, set up a symbol for
6783 them to point to. */
6784 if (die->die_symbol)
6785 output_die_symbol (die);
6786
6787 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6788 die->die_offset, dwarf_tag_name (die->die_tag));
6789
6790 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6791 {
6792 const char *name = dwarf_attr_name (a->dw_attr);
6793
6794 switch (AT_class (a))
6795 {
6796 case dw_val_class_addr:
6797 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6798 break;
6799
6800 case dw_val_class_offset:
6801 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6802 "%s", name);
6803 break;
6804
6805 case dw_val_class_range_list:
6806 {
6807 char *p = strchr (ranges_section_label, '\0');
6808
6809 sprintf (p, "+0x%lx", a->dw_attr_val.v.val_offset);
6810 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6811 "%s", name);
6812 *p = '\0';
6813 }
6814 break;
6815
6816 case dw_val_class_loc:
6817 size = size_of_locs (AT_loc (a));
6818
6819 /* Output the block length for this list of location operations. */
6820 dw2_asm_output_data (constant_size (size), size, "%s", name);
6821
6822 output_loc_sequence (AT_loc (a));
6823 break;
6824
6825 case dw_val_class_const:
6826 /* ??? It would be slightly more efficient to use a scheme like is
6827 used for unsigned constants below, but gdb 4.x does not sign
6828 extend. Gdb 5.x does sign extend. */
6829 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6830 break;
6831
6832 case dw_val_class_unsigned_const:
6833 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6834 AT_unsigned (a), "%s", name);
6835 break;
6836
6837 case dw_val_class_long_long:
6838 {
6839 unsigned HOST_WIDE_INT first, second;
6840
6841 dw2_asm_output_data (1,
6842 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6843 "%s", name);
6844
6845 if (WORDS_BIG_ENDIAN)
6846 {
6847 first = a->dw_attr_val.v.val_long_long.hi;
6848 second = a->dw_attr_val.v.val_long_long.low;
6849 }
6850 else
6851 {
6852 first = a->dw_attr_val.v.val_long_long.low;
6853 second = a->dw_attr_val.v.val_long_long.hi;
6854 }
6855
6856 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6857 first, "long long constant");
6858 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6859 second, NULL);
6860 }
6861 break;
6862
6863 case dw_val_class_float:
6864 {
6865 unsigned int i;
6866
6867 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6868 "%s", name);
6869
6870 for (i = 0; i < a->dw_attr_val.v.val_float.length; i++)
6871 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6872 "fp constant word %u", i);
6873 break;
6874 }
6875
6876 case dw_val_class_flag:
6877 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6878 break;
6879
6880 case dw_val_class_loc_list:
6881 {
6882 char *sym = AT_loc_list (a)->ll_symbol;
6883
6884 if (sym == 0)
6885 abort ();
6886 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym,
6887 loc_section_label, "%s", name);
6888 }
6889 break;
6890
6891 case dw_val_class_die_ref:
6892 if (AT_ref_external (a))
6893 {
6894 char *sym = AT_ref (a)->die_symbol;
6895
6896 if (sym == 0)
6897 abort ();
6898 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6899 }
6900 else if (AT_ref (a)->die_offset == 0)
6901 abort ();
6902 else
6903 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6904 "%s", name);
6905 break;
6906
6907 case dw_val_class_fde_ref:
6908 {
6909 char l1[20];
6910
6911 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6912 a->dw_attr_val.v.val_fde_index * 2);
6913 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6914 }
6915 break;
6916
6917 case dw_val_class_lbl_id:
6918 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6919 break;
6920
6921 case dw_val_class_lbl_offset:
6922 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6923 break;
6924
6925 case dw_val_class_str:
6926 if (AT_string_form (a) == DW_FORM_strp)
6927 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6928 a->dw_attr_val.v.val_str->label,
6929 "%s: \"%s\"", name, AT_string (a));
6930 else
6931 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6932 break;
6933
6934 default:
6935 abort ();
6936 }
6937 }
6938
6939 for (c = die->die_child; c != NULL; c = c->die_sib)
6940 output_die (c);
6941
6942 /* Add null byte to terminate sibling list. */
6943 if (die->die_child != NULL)
6944 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6945 die->die_offset);
6946 }
6947
6948 /* Output the compilation unit that appears at the beginning of the
6949 .debug_info section, and precedes the DIE descriptions. */
6950
6951 static void
6952 output_compilation_unit_header ()
6953 {
6954 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6955 dw2_asm_output_data (4, 0xffffffff,
6956 "Initial length escape value indicating 64-bit DWARF extension");
6957 dw2_asm_output_data (DWARF_OFFSET_SIZE,
6958 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
6959 "Length of Compilation Unit Info");
6960 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6961 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6962 "Offset Into Abbrev. Section");
6963 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6964 }
6965
6966 /* Output the compilation unit DIE and its children. */
6967
6968 static void
6969 output_comp_unit (die, output_if_empty)
6970 dw_die_ref die;
6971 int output_if_empty;
6972 {
6973 const char *secname;
6974 char *oldsym, *tmp;
6975
6976 /* Unless we are outputting main CU, we may throw away empty ones. */
6977 if (!output_if_empty && die->die_child == NULL)
6978 return;
6979
6980 /* Even if there are no children of this DIE, we must output the information
6981 about the compilation unit. Otherwise, on an empty translation unit, we
6982 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6983 will then complain when examining the file. First mark all the DIEs in
6984 this CU so we know which get local refs. */
6985 mark_dies (die);
6986
6987 build_abbrev_table (die);
6988
6989 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6990 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6991 calc_die_sizes (die);
6992
6993 oldsym = die->die_symbol;
6994 if (oldsym)
6995 {
6996 tmp = (char *) alloca (strlen (oldsym) + 24);
6997
6998 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
6999 secname = tmp;
7000 die->die_symbol = NULL;
7001 }
7002 else
7003 secname = (const char *) DEBUG_INFO_SECTION;
7004
7005 /* Output debugging information. */
7006 named_section_flags (secname, SECTION_DEBUG);
7007 output_compilation_unit_header ();
7008 output_die (die);
7009
7010 /* Leave the marks on the main CU, so we can check them in
7011 output_pubnames. */
7012 if (oldsym)
7013 {
7014 unmark_dies (die);
7015 die->die_symbol = oldsym;
7016 }
7017 }
7018
7019 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
7020 output of lang_hooks.decl_printable_name for C++ looks like
7021 "A::f(int)". Let's drop the argument list, and maybe the scope. */
7022
7023 static const char *
7024 dwarf2_name (decl, scope)
7025 tree decl;
7026 int scope;
7027 {
7028 return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
7029 }
7030
7031 /* Add a new entry to .debug_pubnames if appropriate. */
7032
7033 static void
7034 add_pubname (decl, die)
7035 tree decl;
7036 dw_die_ref die;
7037 {
7038 pubname_ref p;
7039
7040 if (! TREE_PUBLIC (decl))
7041 return;
7042
7043 if (pubname_table_in_use == pubname_table_allocated)
7044 {
7045 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7046 pubname_table
7047 = (pubname_ref) ggc_realloc (pubname_table,
7048 (pubname_table_allocated
7049 * sizeof (pubname_entry)));
7050 memset (pubname_table + pubname_table_in_use, 0,
7051 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7052 }
7053
7054 p = &pubname_table[pubname_table_in_use++];
7055 p->die = die;
7056 p->name = xstrdup (dwarf2_name (decl, 1));
7057 }
7058
7059 /* Output the public names table used to speed up access to externally
7060 visible names. For now, only generate entries for externally
7061 visible procedures. */
7062
7063 static void
7064 output_pubnames ()
7065 {
7066 unsigned i;
7067 unsigned long pubnames_length = size_of_pubnames ();
7068
7069 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7070 dw2_asm_output_data (4, 0xffffffff,
7071 "Initial length escape value indicating 64-bit DWARF extension");
7072 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7073 "Length of Public Names Info");
7074 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7075 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7076 "Offset of Compilation Unit Info");
7077 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7078 "Compilation Unit Length");
7079
7080 for (i = 0; i < pubname_table_in_use; i++)
7081 {
7082 pubname_ref pub = &pubname_table[i];
7083
7084 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7085 if (pub->die->die_mark == 0)
7086 abort ();
7087
7088 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7089 "DIE offset");
7090
7091 dw2_asm_output_nstring (pub->name, -1, "external name");
7092 }
7093
7094 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7095 }
7096
7097 /* Add a new entry to .debug_aranges if appropriate. */
7098
7099 static void
7100 add_arange (decl, die)
7101 tree decl;
7102 dw_die_ref die;
7103 {
7104 if (! DECL_SECTION_NAME (decl))
7105 return;
7106
7107 if (arange_table_in_use == arange_table_allocated)
7108 {
7109 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7110 arange_table = ggc_realloc (arange_table,
7111 (arange_table_allocated
7112 * sizeof (dw_die_ref)));
7113 memset (arange_table + arange_table_in_use, 0,
7114 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7115 }
7116
7117 arange_table[arange_table_in_use++] = die;
7118 }
7119
7120 /* Output the information that goes into the .debug_aranges table.
7121 Namely, define the beginning and ending address range of the
7122 text section generated for this compilation unit. */
7123
7124 static void
7125 output_aranges ()
7126 {
7127 unsigned i;
7128 unsigned long aranges_length = size_of_aranges ();
7129
7130 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7131 dw2_asm_output_data (4, 0xffffffff,
7132 "Initial length escape value indicating 64-bit DWARF extension");
7133 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7134 "Length of Address Ranges Info");
7135 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7136 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7137 "Offset of Compilation Unit Info");
7138 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7139 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7140
7141 /* We need to align to twice the pointer size here. */
7142 if (DWARF_ARANGES_PAD_SIZE)
7143 {
7144 /* Pad using a 2 byte words so that padding is correct for any
7145 pointer size. */
7146 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7147 2 * DWARF2_ADDR_SIZE);
7148 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7149 dw2_asm_output_data (2, 0, NULL);
7150 }
7151
7152 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7153 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7154 text_section_label, "Length");
7155
7156 for (i = 0; i < arange_table_in_use; i++)
7157 {
7158 dw_die_ref die = arange_table[i];
7159
7160 /* We shouldn't see aranges for DIEs outside of the main CU. */
7161 if (die->die_mark == 0)
7162 abort ();
7163
7164 if (die->die_tag == DW_TAG_subprogram)
7165 {
7166 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7167 "Address");
7168 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7169 get_AT_low_pc (die), "Length");
7170 }
7171 else
7172 {
7173 /* A static variable; extract the symbol from DW_AT_location.
7174 Note that this code isn't currently hit, as we only emit
7175 aranges for functions (jason 9/23/99). */
7176 dw_attr_ref a = get_AT (die, DW_AT_location);
7177 dw_loc_descr_ref loc;
7178
7179 if (! a || AT_class (a) != dw_val_class_loc)
7180 abort ();
7181
7182 loc = AT_loc (a);
7183 if (loc->dw_loc_opc != DW_OP_addr)
7184 abort ();
7185
7186 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7187 loc->dw_loc_oprnd1.v.val_addr, "Address");
7188 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7189 get_AT_unsigned (die, DW_AT_byte_size),
7190 "Length");
7191 }
7192 }
7193
7194 /* Output the terminator words. */
7195 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7196 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7197 }
7198
7199 /* Add a new entry to .debug_ranges. Return the offset at which it
7200 was placed. */
7201
7202 static unsigned int
7203 add_ranges (block)
7204 tree block;
7205 {
7206 unsigned int in_use = ranges_table_in_use;
7207
7208 if (in_use == ranges_table_allocated)
7209 {
7210 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7211 ranges_table = (dw_ranges_ref)
7212 ggc_realloc (ranges_table, (ranges_table_allocated
7213 * sizeof (struct dw_ranges_struct)));
7214 memset (ranges_table + ranges_table_in_use, 0,
7215 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7216 }
7217
7218 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7219 ranges_table_in_use = in_use + 1;
7220
7221 return in_use * 2 * DWARF2_ADDR_SIZE;
7222 }
7223
7224 static void
7225 output_ranges ()
7226 {
7227 unsigned i;
7228 static const char *const start_fmt = "Offset 0x%x";
7229 const char *fmt = start_fmt;
7230
7231 for (i = 0; i < ranges_table_in_use; i++)
7232 {
7233 int block_num = ranges_table[i].block_num;
7234
7235 if (block_num)
7236 {
7237 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7238 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7239
7240 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7241 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7242
7243 /* If all code is in the text section, then the compilation
7244 unit base address defaults to DW_AT_low_pc, which is the
7245 base of the text section. */
7246 if (separate_line_info_table_in_use == 0)
7247 {
7248 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7249 text_section_label,
7250 fmt, i * 2 * DWARF2_ADDR_SIZE);
7251 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7252 text_section_label, NULL);
7253 }
7254
7255 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7256 compilation unit base address to zero, which allows us to
7257 use absolute addresses, and not worry about whether the
7258 target supports cross-section arithmetic. */
7259 else
7260 {
7261 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7262 fmt, i * 2 * DWARF2_ADDR_SIZE);
7263 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7264 }
7265
7266 fmt = NULL;
7267 }
7268 else
7269 {
7270 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7271 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7272 fmt = start_fmt;
7273 }
7274 }
7275 }
7276
7277 /* Data structure containing information about input files. */
7278 struct file_info
7279 {
7280 char *path; /* Complete file name. */
7281 char *fname; /* File name part. */
7282 int length; /* Length of entire string. */
7283 int file_idx; /* Index in input file table. */
7284 int dir_idx; /* Index in directory table. */
7285 };
7286
7287 /* Data structure containing information about directories with source
7288 files. */
7289 struct dir_info
7290 {
7291 char *path; /* Path including directory name. */
7292 int length; /* Path length. */
7293 int prefix; /* Index of directory entry which is a prefix. */
7294 int count; /* Number of files in this directory. */
7295 int dir_idx; /* Index of directory used as base. */
7296 int used; /* Used in the end? */
7297 };
7298
7299 /* Callback function for file_info comparison. We sort by looking at
7300 the directories in the path. */
7301
7302 static int
7303 file_info_cmp (p1, p2)
7304 const void *p1;
7305 const void *p2;
7306 {
7307 const struct file_info *s1 = p1;
7308 const struct file_info *s2 = p2;
7309 unsigned char *cp1;
7310 unsigned char *cp2;
7311
7312 /* Take care of file names without directories. We need to make sure that
7313 we return consistent values to qsort since some will get confused if
7314 we return the same value when identical operands are passed in opposite
7315 orders. So if neither has a directory, return 0 and otherwise return
7316 1 or -1 depending on which one has the directory. */
7317 if ((s1->path == s1->fname || s2->path == s2->fname))
7318 return (s2->path == s2->fname) - (s1->path == s1->fname);
7319
7320 cp1 = (unsigned char *) s1->path;
7321 cp2 = (unsigned char *) s2->path;
7322
7323 while (1)
7324 {
7325 ++cp1;
7326 ++cp2;
7327 /* Reached the end of the first path? If so, handle like above. */
7328 if ((cp1 == (unsigned char *) s1->fname)
7329 || (cp2 == (unsigned char *) s2->fname))
7330 return ((cp2 == (unsigned char *) s2->fname)
7331 - (cp1 == (unsigned char *) s1->fname));
7332
7333 /* Character of current path component the same? */
7334 else if (*cp1 != *cp2)
7335 return *cp1 - *cp2;
7336 }
7337 }
7338
7339 /* Output the directory table and the file name table. We try to minimize
7340 the total amount of memory needed. A heuristic is used to avoid large
7341 slowdowns with many input files. */
7342
7343 static void
7344 output_file_names ()
7345 {
7346 struct file_info *files;
7347 struct dir_info *dirs;
7348 int *saved;
7349 int *savehere;
7350 int *backmap;
7351 size_t ndirs;
7352 int idx_offset;
7353 size_t i;
7354 int idx;
7355
7356 /* Handle the case where file_table is empty. */
7357 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7358 {
7359 dw2_asm_output_data (1, 0, "End directory table");
7360 dw2_asm_output_data (1, 0, "End file name table");
7361 return;
7362 }
7363
7364 /* Allocate the various arrays we need. */
7365 files = (struct file_info *) alloca (VARRAY_ACTIVE_SIZE (file_table)
7366 * sizeof (struct file_info));
7367 dirs = (struct dir_info *) alloca (VARRAY_ACTIVE_SIZE (file_table)
7368 * sizeof (struct dir_info));
7369
7370 /* Sort the file names. */
7371 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7372 {
7373 char *f;
7374
7375 /* Skip all leading "./". */
7376 f = VARRAY_CHAR_PTR (file_table, i);
7377 while (f[0] == '.' && f[1] == '/')
7378 f += 2;
7379
7380 /* Create a new array entry. */
7381 files[i].path = f;
7382 files[i].length = strlen (f);
7383 files[i].file_idx = i;
7384
7385 /* Search for the file name part. */
7386 f = strrchr (f, '/');
7387 files[i].fname = f == NULL ? files[i].path : f + 1;
7388 }
7389
7390 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7391 sizeof (files[0]), file_info_cmp);
7392
7393 /* Find all the different directories used. */
7394 dirs[0].path = files[1].path;
7395 dirs[0].length = files[1].fname - files[1].path;
7396 dirs[0].prefix = -1;
7397 dirs[0].count = 1;
7398 dirs[0].dir_idx = 0;
7399 dirs[0].used = 0;
7400 files[1].dir_idx = 0;
7401 ndirs = 1;
7402
7403 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7404 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7405 && memcmp (dirs[ndirs - 1].path, files[i].path,
7406 dirs[ndirs - 1].length) == 0)
7407 {
7408 /* Same directory as last entry. */
7409 files[i].dir_idx = ndirs - 1;
7410 ++dirs[ndirs - 1].count;
7411 }
7412 else
7413 {
7414 size_t j;
7415
7416 /* This is a new directory. */
7417 dirs[ndirs].path = files[i].path;
7418 dirs[ndirs].length = files[i].fname - files[i].path;
7419 dirs[ndirs].count = 1;
7420 dirs[ndirs].dir_idx = ndirs;
7421 dirs[ndirs].used = 0;
7422 files[i].dir_idx = ndirs;
7423
7424 /* Search for a prefix. */
7425 dirs[ndirs].prefix = -1;
7426 for (j = 0; j < ndirs; j++)
7427 if (dirs[j].length < dirs[ndirs].length
7428 && dirs[j].length > 1
7429 && (dirs[ndirs].prefix == -1
7430 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7431 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7432 dirs[ndirs].prefix = j;
7433
7434 ++ndirs;
7435 }
7436
7437 /* Now to the actual work. We have to find a subset of the directories which
7438 allow expressing the file name using references to the directory table
7439 with the least amount of characters. We do not do an exhaustive search
7440 where we would have to check out every combination of every single
7441 possible prefix. Instead we use a heuristic which provides nearly optimal
7442 results in most cases and never is much off. */
7443 saved = (int *) alloca (ndirs * sizeof (int));
7444 savehere = (int *) alloca (ndirs * sizeof (int));
7445
7446 memset (saved, '\0', ndirs * sizeof (saved[0]));
7447 for (i = 0; i < ndirs; i++)
7448 {
7449 size_t j;
7450 int total;
7451
7452 /* We can always save some space for the current directory. But this
7453 does not mean it will be enough to justify adding the directory. */
7454 savehere[i] = dirs[i].length;
7455 total = (savehere[i] - saved[i]) * dirs[i].count;
7456
7457 for (j = i + 1; j < ndirs; j++)
7458 {
7459 savehere[j] = 0;
7460 if (saved[j] < dirs[i].length)
7461 {
7462 /* Determine whether the dirs[i] path is a prefix of the
7463 dirs[j] path. */
7464 int k;
7465
7466 k = dirs[j].prefix;
7467 while (k != -1 && k != (int) i)
7468 k = dirs[k].prefix;
7469
7470 if (k == (int) i)
7471 {
7472 /* Yes it is. We can possibly safe some memory but
7473 writing the filenames in dirs[j] relative to
7474 dirs[i]. */
7475 savehere[j] = dirs[i].length;
7476 total += (savehere[j] - saved[j]) * dirs[j].count;
7477 }
7478 }
7479 }
7480
7481 /* Check whether we can safe enough to justify adding the dirs[i]
7482 directory. */
7483 if (total > dirs[i].length + 1)
7484 {
7485 /* It's worthwhile adding. */
7486 for (j = i; j < ndirs; j++)
7487 if (savehere[j] > 0)
7488 {
7489 /* Remember how much we saved for this directory so far. */
7490 saved[j] = savehere[j];
7491
7492 /* Remember the prefix directory. */
7493 dirs[j].dir_idx = i;
7494 }
7495 }
7496 }
7497
7498 /* We have to emit them in the order they appear in the file_table array
7499 since the index is used in the debug info generation. To do this
7500 efficiently we generate a back-mapping of the indices first. */
7501 backmap = (int *) alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7502 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7503 {
7504 backmap[files[i].file_idx] = i;
7505
7506 /* Mark this directory as used. */
7507 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7508 }
7509
7510 /* That was it. We are ready to emit the information. First emit the
7511 directory name table. We have to make sure the first actually emitted
7512 directory name has index one; zero is reserved for the current working
7513 directory. Make sure we do not confuse these indices with the one for the
7514 constructed table (even though most of the time they are identical). */
7515 idx = 1;
7516 idx_offset = dirs[0].length > 0 ? 1 : 0;
7517 for (i = 1 - idx_offset; i < ndirs; i++)
7518 if (dirs[i].used != 0)
7519 {
7520 dirs[i].used = idx++;
7521 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7522 "Directory Entry: 0x%x", dirs[i].used);
7523 }
7524
7525 dw2_asm_output_data (1, 0, "End directory table");
7526
7527 /* Correct the index for the current working directory entry if it
7528 exists. */
7529 if (idx_offset == 0)
7530 dirs[0].used = 0;
7531
7532 /* Now write all the file names. */
7533 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7534 {
7535 int file_idx = backmap[i];
7536 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7537
7538 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7539 "File Entry: 0x%lx", (unsigned long) i);
7540
7541 /* Include directory index. */
7542 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7543
7544 /* Modification time. */
7545 dw2_asm_output_data_uleb128 (0, NULL);
7546
7547 /* File length in bytes. */
7548 dw2_asm_output_data_uleb128 (0, NULL);
7549 }
7550
7551 dw2_asm_output_data (1, 0, "End file name table");
7552 }
7553
7554
7555 /* Output the source line number correspondence information. This
7556 information goes into the .debug_line section. */
7557
7558 static void
7559 output_line_info ()
7560 {
7561 char l1[20], l2[20], p1[20], p2[20];
7562 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7563 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7564 unsigned opc;
7565 unsigned n_op_args;
7566 unsigned long lt_index;
7567 unsigned long current_line;
7568 long line_offset;
7569 long line_delta;
7570 unsigned long current_file;
7571 unsigned long function;
7572
7573 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7574 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7575 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7576 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7577
7578 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7579 dw2_asm_output_data (4, 0xffffffff,
7580 "Initial length escape value indicating 64-bit DWARF extension");
7581 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7582 "Length of Source Line Info");
7583 ASM_OUTPUT_LABEL (asm_out_file, l1);
7584
7585 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7586 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7587 ASM_OUTPUT_LABEL (asm_out_file, p1);
7588
7589 /* Define the architecture-dependent minimum instruction length (in
7590 bytes). In this implementation of DWARF, this field is used for
7591 information purposes only. Since GCC generates assembly language,
7592 we have no a priori knowledge of how many instruction bytes are
7593 generated for each source line, and therefore can use only the
7594 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7595 commands. Accordingly, we fix this as `1', which is "correct
7596 enough" for all architectures, and don't let the target override. */
7597 dw2_asm_output_data (1, 1,
7598 "Minimum Instruction Length");
7599
7600 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7601 "Default is_stmt_start flag");
7602 dw2_asm_output_data (1, DWARF_LINE_BASE,
7603 "Line Base Value (Special Opcodes)");
7604 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7605 "Line Range Value (Special Opcodes)");
7606 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7607 "Special Opcode Base");
7608
7609 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7610 {
7611 switch (opc)
7612 {
7613 case DW_LNS_advance_pc:
7614 case DW_LNS_advance_line:
7615 case DW_LNS_set_file:
7616 case DW_LNS_set_column:
7617 case DW_LNS_fixed_advance_pc:
7618 n_op_args = 1;
7619 break;
7620 default:
7621 n_op_args = 0;
7622 break;
7623 }
7624
7625 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7626 opc, n_op_args);
7627 }
7628
7629 /* Write out the information about the files we use. */
7630 output_file_names ();
7631 ASM_OUTPUT_LABEL (asm_out_file, p2);
7632
7633 /* We used to set the address register to the first location in the text
7634 section here, but that didn't accomplish anything since we already
7635 have a line note for the opening brace of the first function. */
7636
7637 /* Generate the line number to PC correspondence table, encoded as
7638 a series of state machine operations. */
7639 current_file = 1;
7640 current_line = 1;
7641 strcpy (prev_line_label, text_section_label);
7642 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7643 {
7644 dw_line_info_ref line_info = &line_info_table[lt_index];
7645
7646 #if 0
7647 /* Disable this optimization for now; GDB wants to see two line notes
7648 at the beginning of a function so it can find the end of the
7649 prologue. */
7650
7651 /* Don't emit anything for redundant notes. Just updating the
7652 address doesn't accomplish anything, because we already assume
7653 that anything after the last address is this line. */
7654 if (line_info->dw_line_num == current_line
7655 && line_info->dw_file_num == current_file)
7656 continue;
7657 #endif
7658
7659 /* Emit debug info for the address of the current line.
7660
7661 Unfortunately, we have little choice here currently, and must always
7662 use the most general form. GCC does not know the address delta
7663 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7664 attributes which will give an upper bound on the address range. We
7665 could perhaps use length attributes to determine when it is safe to
7666 use DW_LNS_fixed_advance_pc. */
7667
7668 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7669 if (0)
7670 {
7671 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7672 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7673 "DW_LNS_fixed_advance_pc");
7674 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7675 }
7676 else
7677 {
7678 /* This can handle any delta. This takes
7679 4+DWARF2_ADDR_SIZE bytes. */
7680 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7681 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7682 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7683 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7684 }
7685
7686 strcpy (prev_line_label, line_label);
7687
7688 /* Emit debug info for the source file of the current line, if
7689 different from the previous line. */
7690 if (line_info->dw_file_num != current_file)
7691 {
7692 current_file = line_info->dw_file_num;
7693 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7694 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7695 VARRAY_CHAR_PTR (file_table,
7696 current_file));
7697 }
7698
7699 /* Emit debug info for the current line number, choosing the encoding
7700 that uses the least amount of space. */
7701 if (line_info->dw_line_num != current_line)
7702 {
7703 line_offset = line_info->dw_line_num - current_line;
7704 line_delta = line_offset - DWARF_LINE_BASE;
7705 current_line = line_info->dw_line_num;
7706 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7707 /* This can handle deltas from -10 to 234, using the current
7708 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7709 takes 1 byte. */
7710 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7711 "line %lu", current_line);
7712 else
7713 {
7714 /* This can handle any delta. This takes at least 4 bytes,
7715 depending on the value being encoded. */
7716 dw2_asm_output_data (1, DW_LNS_advance_line,
7717 "advance to line %lu", current_line);
7718 dw2_asm_output_data_sleb128 (line_offset, NULL);
7719 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7720 }
7721 }
7722 else
7723 /* We still need to start a new row, so output a copy insn. */
7724 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7725 }
7726
7727 /* Emit debug info for the address of the end of the function. */
7728 if (0)
7729 {
7730 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7731 "DW_LNS_fixed_advance_pc");
7732 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7733 }
7734 else
7735 {
7736 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7737 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7738 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7739 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7740 }
7741
7742 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7743 dw2_asm_output_data_uleb128 (1, NULL);
7744 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7745
7746 function = 0;
7747 current_file = 1;
7748 current_line = 1;
7749 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7750 {
7751 dw_separate_line_info_ref line_info
7752 = &separate_line_info_table[lt_index];
7753
7754 #if 0
7755 /* Don't emit anything for redundant notes. */
7756 if (line_info->dw_line_num == current_line
7757 && line_info->dw_file_num == current_file
7758 && line_info->function == function)
7759 goto cont;
7760 #endif
7761
7762 /* Emit debug info for the address of the current line. If this is
7763 a new function, or the first line of a function, then we need
7764 to handle it differently. */
7765 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7766 lt_index);
7767 if (function != line_info->function)
7768 {
7769 function = line_info->function;
7770
7771 /* Set the address register to the first line in the function */
7772 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7773 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7774 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7775 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7776 }
7777 else
7778 {
7779 /* ??? See the DW_LNS_advance_pc comment above. */
7780 if (0)
7781 {
7782 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7783 "DW_LNS_fixed_advance_pc");
7784 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7785 }
7786 else
7787 {
7788 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7789 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7790 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7791 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7792 }
7793 }
7794
7795 strcpy (prev_line_label, line_label);
7796
7797 /* Emit debug info for the source file of the current line, if
7798 different from the previous line. */
7799 if (line_info->dw_file_num != current_file)
7800 {
7801 current_file = line_info->dw_file_num;
7802 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7803 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7804 VARRAY_CHAR_PTR (file_table,
7805 current_file));
7806 }
7807
7808 /* Emit debug info for the current line number, choosing the encoding
7809 that uses the least amount of space. */
7810 if (line_info->dw_line_num != current_line)
7811 {
7812 line_offset = line_info->dw_line_num - current_line;
7813 line_delta = line_offset - DWARF_LINE_BASE;
7814 current_line = line_info->dw_line_num;
7815 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7816 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7817 "line %lu", current_line);
7818 else
7819 {
7820 dw2_asm_output_data (1, DW_LNS_advance_line,
7821 "advance to line %lu", current_line);
7822 dw2_asm_output_data_sleb128 (line_offset, NULL);
7823 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7824 }
7825 }
7826 else
7827 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7828
7829 #if 0
7830 cont:
7831 #endif
7832
7833 lt_index++;
7834
7835 /* If we're done with a function, end its sequence. */
7836 if (lt_index == separate_line_info_table_in_use
7837 || separate_line_info_table[lt_index].function != function)
7838 {
7839 current_file = 1;
7840 current_line = 1;
7841
7842 /* Emit debug info for the address of the end of the function. */
7843 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7844 if (0)
7845 {
7846 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7847 "DW_LNS_fixed_advance_pc");
7848 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7849 }
7850 else
7851 {
7852 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7853 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7854 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7855 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7856 }
7857
7858 /* Output the marker for the end of this sequence. */
7859 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7860 dw2_asm_output_data_uleb128 (1, NULL);
7861 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7862 }
7863 }
7864
7865 /* Output the marker for the end of the line number info. */
7866 ASM_OUTPUT_LABEL (asm_out_file, l2);
7867 }
7868 \f
7869 /* Given a pointer to a tree node for some base type, return a pointer to
7870 a DIE that describes the given type.
7871
7872 This routine must only be called for GCC type nodes that correspond to
7873 Dwarf base (fundamental) types. */
7874
7875 static dw_die_ref
7876 base_type_die (type)
7877 tree type;
7878 {
7879 dw_die_ref base_type_result;
7880 const char *type_name;
7881 enum dwarf_type encoding;
7882 tree name = TYPE_NAME (type);
7883
7884 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7885 return 0;
7886
7887 if (name)
7888 {
7889 if (TREE_CODE (name) == TYPE_DECL)
7890 name = DECL_NAME (name);
7891
7892 type_name = IDENTIFIER_POINTER (name);
7893 }
7894 else
7895 type_name = "__unknown__";
7896
7897 switch (TREE_CODE (type))
7898 {
7899 case INTEGER_TYPE:
7900 /* Carefully distinguish the C character types, without messing
7901 up if the language is not C. Note that we check only for the names
7902 that contain spaces; other names might occur by coincidence in other
7903 languages. */
7904 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7905 && (type == char_type_node
7906 || ! strcmp (type_name, "signed char")
7907 || ! strcmp (type_name, "unsigned char"))))
7908 {
7909 if (TREE_UNSIGNED (type))
7910 encoding = DW_ATE_unsigned;
7911 else
7912 encoding = DW_ATE_signed;
7913 break;
7914 }
7915 /* else fall through. */
7916
7917 case CHAR_TYPE:
7918 /* GNU Pascal/Ada CHAR type. Not used in C. */
7919 if (TREE_UNSIGNED (type))
7920 encoding = DW_ATE_unsigned_char;
7921 else
7922 encoding = DW_ATE_signed_char;
7923 break;
7924
7925 case REAL_TYPE:
7926 encoding = DW_ATE_float;
7927 break;
7928
7929 /* Dwarf2 doesn't know anything about complex ints, so use
7930 a user defined type for it. */
7931 case COMPLEX_TYPE:
7932 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7933 encoding = DW_ATE_complex_float;
7934 else
7935 encoding = DW_ATE_lo_user;
7936 break;
7937
7938 case BOOLEAN_TYPE:
7939 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7940 encoding = DW_ATE_boolean;
7941 break;
7942
7943 default:
7944 /* No other TREE_CODEs are Dwarf fundamental types. */
7945 abort ();
7946 }
7947
7948 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7949 if (demangle_name_func)
7950 type_name = (*demangle_name_func) (type_name);
7951
7952 add_AT_string (base_type_result, DW_AT_name, type_name);
7953 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7954 int_size_in_bytes (type));
7955 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7956
7957 return base_type_result;
7958 }
7959
7960 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7961 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7962 a given type is generally the same as the given type, except that if the
7963 given type is a pointer or reference type, then the root type of the given
7964 type is the root type of the "basis" type for the pointer or reference
7965 type. (This definition of the "root" type is recursive.) Also, the root
7966 type of a `const' qualified type or a `volatile' qualified type is the
7967 root type of the given type without the qualifiers. */
7968
7969 static tree
7970 root_type (type)
7971 tree type;
7972 {
7973 if (TREE_CODE (type) == ERROR_MARK)
7974 return error_mark_node;
7975
7976 switch (TREE_CODE (type))
7977 {
7978 case ERROR_MARK:
7979 return error_mark_node;
7980
7981 case POINTER_TYPE:
7982 case REFERENCE_TYPE:
7983 return type_main_variant (root_type (TREE_TYPE (type)));
7984
7985 default:
7986 return type_main_variant (type);
7987 }
7988 }
7989
7990 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7991 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7992
7993 static inline int
7994 is_base_type (type)
7995 tree type;
7996 {
7997 switch (TREE_CODE (type))
7998 {
7999 case ERROR_MARK:
8000 case VOID_TYPE:
8001 case INTEGER_TYPE:
8002 case REAL_TYPE:
8003 case COMPLEX_TYPE:
8004 case BOOLEAN_TYPE:
8005 case CHAR_TYPE:
8006 return 1;
8007
8008 case SET_TYPE:
8009 case ARRAY_TYPE:
8010 case RECORD_TYPE:
8011 case UNION_TYPE:
8012 case QUAL_UNION_TYPE:
8013 case ENUMERAL_TYPE:
8014 case FUNCTION_TYPE:
8015 case METHOD_TYPE:
8016 case POINTER_TYPE:
8017 case REFERENCE_TYPE:
8018 case FILE_TYPE:
8019 case OFFSET_TYPE:
8020 case LANG_TYPE:
8021 case VECTOR_TYPE:
8022 return 0;
8023
8024 default:
8025 abort ();
8026 }
8027
8028 return 0;
8029 }
8030
8031 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8032 node, return the size in bits for the type if it is a constant, or else
8033 return the alignment for the type if the type's size is not constant, or
8034 else return BITS_PER_WORD if the type actually turns out to be an
8035 ERROR_MARK node. */
8036
8037 static inline unsigned HOST_WIDE_INT
8038 simple_type_size_in_bits (type)
8039 tree type;
8040 {
8041
8042 if (TREE_CODE (type) == ERROR_MARK)
8043 return BITS_PER_WORD;
8044 else if (TYPE_SIZE (type) == NULL_TREE)
8045 return 0;
8046 else if (host_integerp (TYPE_SIZE (type), 1))
8047 return tree_low_cst (TYPE_SIZE (type), 1);
8048 else
8049 return TYPE_ALIGN (type);
8050 }
8051
8052 /* Return true if the debug information for the given type should be
8053 emitted as a subrange type. */
8054
8055 static inline bool
8056 is_ada_subrange_type (type)
8057 tree type;
8058 {
8059 /* We do this for INTEGER_TYPEs that have names, parent types, and when
8060 we are compiling Ada code. */
8061 return (TREE_CODE (type) == INTEGER_TYPE
8062 && TYPE_NAME (type) != 0 && TREE_TYPE (type) != 0
8063 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
8064 && TREE_UNSIGNED (TREE_TYPE (type)) && is_ada ());
8065 }
8066
8067 /* Given a pointer to a tree node for a subrange type, return a pointer
8068 to a DIE that describes the given type. */
8069
8070 static dw_die_ref
8071 subrange_type_die (type)
8072 tree type;
8073 {
8074 dw_die_ref subtype_die;
8075 dw_die_ref subrange_die;
8076 tree name = TYPE_NAME (type);
8077
8078 subtype_die = base_type_die (TREE_TYPE (type));
8079
8080 if (TREE_CODE (name) == TYPE_DECL)
8081 name = DECL_NAME (name);
8082
8083 subrange_die = new_die (DW_TAG_subrange_type, comp_unit_die, type);
8084 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
8085 if (TYPE_MIN_VALUE (type) != NULL)
8086 add_bound_info (subrange_die, DW_AT_lower_bound,
8087 TYPE_MIN_VALUE (type));
8088 if (TYPE_MAX_VALUE (type) != NULL)
8089 add_bound_info (subrange_die, DW_AT_upper_bound,
8090 TYPE_MAX_VALUE (type));
8091 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
8092
8093 return subrange_die;
8094 }
8095
8096 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8097 entry that chains various modifiers in front of the given type. */
8098
8099 static dw_die_ref
8100 modified_type_die (type, is_const_type, is_volatile_type, context_die)
8101 tree type;
8102 int is_const_type;
8103 int is_volatile_type;
8104 dw_die_ref context_die;
8105 {
8106 enum tree_code code = TREE_CODE (type);
8107 dw_die_ref mod_type_die = NULL;
8108 dw_die_ref sub_die = NULL;
8109 tree item_type = NULL;
8110
8111 if (code != ERROR_MARK)
8112 {
8113 tree qualified_type;
8114
8115 /* See if we already have the appropriately qualified variant of
8116 this type. */
8117 qualified_type
8118 = get_qualified_type (type,
8119 ((is_const_type ? TYPE_QUAL_CONST : 0)
8120 | (is_volatile_type
8121 ? TYPE_QUAL_VOLATILE : 0)));
8122
8123 /* If we do, then we can just use its DIE, if it exists. */
8124 if (qualified_type)
8125 {
8126 mod_type_die = lookup_type_die (qualified_type);
8127 if (mod_type_die)
8128 return mod_type_die;
8129 }
8130
8131 /* Handle C typedef types. */
8132 if (qualified_type && TYPE_NAME (qualified_type)
8133 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8134 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8135 {
8136 tree type_name = TYPE_NAME (qualified_type);
8137 tree dtype = TREE_TYPE (type_name);
8138
8139 if (qualified_type == dtype)
8140 {
8141 /* For a named type, use the typedef. */
8142 gen_type_die (qualified_type, context_die);
8143 mod_type_die = lookup_type_die (qualified_type);
8144 }
8145 else if (is_const_type < TYPE_READONLY (dtype)
8146 || is_volatile_type < TYPE_VOLATILE (dtype))
8147 /* cv-unqualified version of named type. Just use the unnamed
8148 type to which it refers. */
8149 mod_type_die
8150 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8151 is_const_type, is_volatile_type,
8152 context_die);
8153
8154 /* Else cv-qualified version of named type; fall through. */
8155 }
8156
8157 if (mod_type_die)
8158 /* OK. */
8159 ;
8160 else if (is_const_type)
8161 {
8162 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8163 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8164 }
8165 else if (is_volatile_type)
8166 {
8167 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8168 sub_die = modified_type_die (type, 0, 0, context_die);
8169 }
8170 else if (code == POINTER_TYPE)
8171 {
8172 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8173 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8174 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8175 #if 0
8176 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8177 #endif
8178 item_type = TREE_TYPE (type);
8179 }
8180 else if (code == REFERENCE_TYPE)
8181 {
8182 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8183 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8184 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8185 #if 0
8186 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8187 #endif
8188 item_type = TREE_TYPE (type);
8189 }
8190 else if (is_ada_subrange_type (type))
8191 mod_type_die = subrange_type_die (type);
8192 else if (is_base_type (type))
8193 mod_type_die = base_type_die (type);
8194 else
8195 {
8196 gen_type_die (type, context_die);
8197
8198 /* We have to get the type_main_variant here (and pass that to the
8199 `lookup_type_die' routine) because the ..._TYPE node we have
8200 might simply be a *copy* of some original type node (where the
8201 copy was created to help us keep track of typedef names) and
8202 that copy might have a different TYPE_UID from the original
8203 ..._TYPE node. */
8204 if (TREE_CODE (type) != VECTOR_TYPE)
8205 mod_type_die = lookup_type_die (type_main_variant (type));
8206 else
8207 /* Vectors have the debugging information in the type,
8208 not the main variant. */
8209 mod_type_die = lookup_type_die (type);
8210 if (mod_type_die == NULL)
8211 abort ();
8212 }
8213
8214 /* We want to equate the qualified type to the die below. */
8215 type = qualified_type;
8216 }
8217
8218 if (type)
8219 equate_type_number_to_die (type, mod_type_die);
8220 if (item_type)
8221 /* We must do this after the equate_type_number_to_die call, in case
8222 this is a recursive type. This ensures that the modified_type_die
8223 recursion will terminate even if the type is recursive. Recursive
8224 types are possible in Ada. */
8225 sub_die = modified_type_die (item_type,
8226 TYPE_READONLY (item_type),
8227 TYPE_VOLATILE (item_type),
8228 context_die);
8229
8230 if (sub_die != NULL)
8231 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8232
8233 return mod_type_die;
8234 }
8235
8236 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8237 an enumerated type. */
8238
8239 static inline int
8240 type_is_enum (type)
8241 tree type;
8242 {
8243 return TREE_CODE (type) == ENUMERAL_TYPE;
8244 }
8245
8246 /* Return the register number described by a given RTL node. */
8247
8248 static unsigned int
8249 reg_number (rtl)
8250 rtx rtl;
8251 {
8252 unsigned regno = REGNO (rtl);
8253
8254 if (regno >= FIRST_PSEUDO_REGISTER)
8255 abort ();
8256
8257 return DBX_REGISTER_NUMBER (regno);
8258 }
8259
8260 /* Return a location descriptor that designates a machine register or
8261 zero if there is none. */
8262
8263 static dw_loc_descr_ref
8264 reg_loc_descriptor (rtl)
8265 rtx rtl;
8266 {
8267 unsigned reg;
8268 rtx regs;
8269
8270 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8271 return 0;
8272
8273 reg = reg_number (rtl);
8274 regs = (*targetm.dwarf_register_span) (rtl);
8275
8276 if (HARD_REGNO_NREGS (reg, GET_MODE (rtl)) > 1
8277 || regs)
8278 return multiple_reg_loc_descriptor (rtl, regs);
8279 else
8280 return one_reg_loc_descriptor (reg);
8281 }
8282
8283 /* Return a location descriptor that designates a machine register for
8284 a given hard register number. */
8285
8286 static dw_loc_descr_ref
8287 one_reg_loc_descriptor (regno)
8288 unsigned int regno;
8289 {
8290 if (regno <= 31)
8291 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8292 else
8293 return new_loc_descr (DW_OP_regx, regno, 0);
8294 }
8295
8296 /* Given an RTL of a register, return a location descriptor that
8297 designates a value that spans more than one register. */
8298
8299 static dw_loc_descr_ref
8300 multiple_reg_loc_descriptor (rtl, regs)
8301 rtx rtl, regs;
8302 {
8303 int nregs, size, i;
8304 unsigned reg;
8305 dw_loc_descr_ref loc_result = NULL;
8306
8307 reg = reg_number (rtl);
8308 nregs = HARD_REGNO_NREGS (reg, GET_MODE (rtl));
8309
8310 /* Simple, contiguous registers. */
8311 if (regs == NULL_RTX)
8312 {
8313 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8314
8315 loc_result = NULL;
8316 while (nregs--)
8317 {
8318 dw_loc_descr_ref t;
8319
8320 t = one_reg_loc_descriptor (reg);
8321 add_loc_descr (&loc_result, t);
8322 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8323 ++reg;
8324 }
8325 return loc_result;
8326 }
8327
8328 /* Now onto stupid register sets in non contiguous locations. */
8329
8330 if (GET_CODE (regs) != PARALLEL)
8331 abort ();
8332
8333 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8334 loc_result = NULL;
8335
8336 for (i = 0; i < XVECLEN (regs, 0); ++i)
8337 {
8338 dw_loc_descr_ref t;
8339
8340 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8341 add_loc_descr (&loc_result, t);
8342 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8343 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8344 }
8345 return loc_result;
8346 }
8347
8348 /* Return a location descriptor that designates a constant. */
8349
8350 static dw_loc_descr_ref
8351 int_loc_descriptor (i)
8352 HOST_WIDE_INT i;
8353 {
8354 enum dwarf_location_atom op;
8355
8356 /* Pick the smallest representation of a constant, rather than just
8357 defaulting to the LEB encoding. */
8358 if (i >= 0)
8359 {
8360 if (i <= 31)
8361 op = DW_OP_lit0 + i;
8362 else if (i <= 0xff)
8363 op = DW_OP_const1u;
8364 else if (i <= 0xffff)
8365 op = DW_OP_const2u;
8366 else if (HOST_BITS_PER_WIDE_INT == 32
8367 || i <= 0xffffffff)
8368 op = DW_OP_const4u;
8369 else
8370 op = DW_OP_constu;
8371 }
8372 else
8373 {
8374 if (i >= -0x80)
8375 op = DW_OP_const1s;
8376 else if (i >= -0x8000)
8377 op = DW_OP_const2s;
8378 else if (HOST_BITS_PER_WIDE_INT == 32
8379 || i >= -0x80000000)
8380 op = DW_OP_const4s;
8381 else
8382 op = DW_OP_consts;
8383 }
8384
8385 return new_loc_descr (op, i, 0);
8386 }
8387
8388 /* Return a location descriptor that designates a base+offset location. */
8389
8390 static dw_loc_descr_ref
8391 based_loc_descr (reg, offset)
8392 unsigned reg;
8393 long int offset;
8394 {
8395 dw_loc_descr_ref loc_result;
8396 /* For the "frame base", we use the frame pointer or stack pointer
8397 registers, since the RTL for local variables is relative to one of
8398 them. */
8399 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8400 ? HARD_FRAME_POINTER_REGNUM
8401 : STACK_POINTER_REGNUM);
8402
8403 if (reg == fp_reg)
8404 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8405 else if (reg <= 31)
8406 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8407 else
8408 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8409
8410 return loc_result;
8411 }
8412
8413 /* Return true if this RTL expression describes a base+offset calculation. */
8414
8415 static inline int
8416 is_based_loc (rtl)
8417 rtx rtl;
8418 {
8419 return (GET_CODE (rtl) == PLUS
8420 && ((GET_CODE (XEXP (rtl, 0)) == REG
8421 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8422 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8423 }
8424
8425 /* The following routine converts the RTL for a variable or parameter
8426 (resident in memory) into an equivalent Dwarf representation of a
8427 mechanism for getting the address of that same variable onto the top of a
8428 hypothetical "address evaluation" stack.
8429
8430 When creating memory location descriptors, we are effectively transforming
8431 the RTL for a memory-resident object into its Dwarf postfix expression
8432 equivalent. This routine recursively descends an RTL tree, turning
8433 it into Dwarf postfix code as it goes.
8434
8435 MODE is the mode of the memory reference, needed to handle some
8436 autoincrement addressing modes.
8437
8438 Return 0 if we can't represent the location. */
8439
8440 static dw_loc_descr_ref
8441 mem_loc_descriptor (rtl, mode)
8442 rtx rtl;
8443 enum machine_mode mode;
8444 {
8445 dw_loc_descr_ref mem_loc_result = NULL;
8446
8447 /* Note that for a dynamically sized array, the location we will generate a
8448 description of here will be the lowest numbered location which is
8449 actually within the array. That's *not* necessarily the same as the
8450 zeroth element of the array. */
8451
8452 rtl = (*targetm.delegitimize_address) (rtl);
8453
8454 switch (GET_CODE (rtl))
8455 {
8456 case POST_INC:
8457 case POST_DEC:
8458 case POST_MODIFY:
8459 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8460 just fall into the SUBREG code. */
8461
8462 /* ... fall through ... */
8463
8464 case SUBREG:
8465 /* The case of a subreg may arise when we have a local (register)
8466 variable or a formal (register) parameter which doesn't quite fill
8467 up an entire register. For now, just assume that it is
8468 legitimate to make the Dwarf info refer to the whole register which
8469 contains the given subreg. */
8470 rtl = SUBREG_REG (rtl);
8471
8472 /* ... fall through ... */
8473
8474 case REG:
8475 /* Whenever a register number forms a part of the description of the
8476 method for calculating the (dynamic) address of a memory resident
8477 object, DWARF rules require the register number be referred to as
8478 a "base register". This distinction is not based in any way upon
8479 what category of register the hardware believes the given register
8480 belongs to. This is strictly DWARF terminology we're dealing with
8481 here. Note that in cases where the location of a memory-resident
8482 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8483 OP_CONST (0)) the actual DWARF location descriptor that we generate
8484 may just be OP_BASEREG (basereg). This may look deceptively like
8485 the object in question was allocated to a register (rather than in
8486 memory) so DWARF consumers need to be aware of the subtle
8487 distinction between OP_REG and OP_BASEREG. */
8488 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8489 mem_loc_result = based_loc_descr (reg_number (rtl), 0);
8490 break;
8491
8492 case MEM:
8493 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8494 if (mem_loc_result != 0)
8495 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8496 break;
8497
8498 case LO_SUM:
8499 rtl = XEXP (rtl, 1);
8500
8501 /* ... fall through ... */
8502
8503 case LABEL_REF:
8504 /* Some ports can transform a symbol ref into a label ref, because
8505 the symbol ref is too far away and has to be dumped into a constant
8506 pool. */
8507 case CONST:
8508 case SYMBOL_REF:
8509 /* Alternatively, the symbol in the constant pool might be referenced
8510 by a different symbol. */
8511 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8512 {
8513 bool marked;
8514 rtx tmp = get_pool_constant_mark (rtl, &marked);
8515
8516 if (GET_CODE (tmp) == SYMBOL_REF)
8517 {
8518 rtl = tmp;
8519 if (CONSTANT_POOL_ADDRESS_P (tmp))
8520 get_pool_constant_mark (tmp, &marked);
8521 else
8522 marked = true;
8523 }
8524
8525 /* If all references to this pool constant were optimized away,
8526 it was not output and thus we can't represent it.
8527 FIXME: might try to use DW_OP_const_value here, though
8528 DW_OP_piece complicates it. */
8529 if (!marked)
8530 return 0;
8531 }
8532
8533 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8534 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8535 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8536 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8537 break;
8538
8539 case PRE_MODIFY:
8540 /* Extract the PLUS expression nested inside and fall into
8541 PLUS code below. */
8542 rtl = XEXP (rtl, 1);
8543 goto plus;
8544
8545 case PRE_INC:
8546 case PRE_DEC:
8547 /* Turn these into a PLUS expression and fall into the PLUS code
8548 below. */
8549 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8550 GEN_INT (GET_CODE (rtl) == PRE_INC
8551 ? GET_MODE_UNIT_SIZE (mode)
8552 : -GET_MODE_UNIT_SIZE (mode)));
8553
8554 /* ... fall through ... */
8555
8556 case PLUS:
8557 plus:
8558 if (is_based_loc (rtl))
8559 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
8560 INTVAL (XEXP (rtl, 1)));
8561 else
8562 {
8563 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8564 if (mem_loc_result == 0)
8565 break;
8566
8567 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8568 && INTVAL (XEXP (rtl, 1)) >= 0)
8569 add_loc_descr (&mem_loc_result,
8570 new_loc_descr (DW_OP_plus_uconst,
8571 INTVAL (XEXP (rtl, 1)), 0));
8572 else
8573 {
8574 add_loc_descr (&mem_loc_result,
8575 mem_loc_descriptor (XEXP (rtl, 1), mode));
8576 add_loc_descr (&mem_loc_result,
8577 new_loc_descr (DW_OP_plus, 0, 0));
8578 }
8579 }
8580 break;
8581
8582 case MULT:
8583 {
8584 /* If a pseudo-reg is optimized away, it is possible for it to
8585 be replaced with a MEM containing a multiply. */
8586 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8587 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8588
8589 if (op0 == 0 || op1 == 0)
8590 break;
8591
8592 mem_loc_result = op0;
8593 add_loc_descr (&mem_loc_result, op1);
8594 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
8595 break;
8596 }
8597
8598 case CONST_INT:
8599 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8600 break;
8601
8602 case ADDRESSOF:
8603 /* If this is a MEM, return its address. Otherwise, we can't
8604 represent this. */
8605 if (GET_CODE (XEXP (rtl, 0)) == MEM)
8606 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode);
8607 else
8608 return 0;
8609
8610 default:
8611 abort ();
8612 }
8613
8614 return mem_loc_result;
8615 }
8616
8617 /* Return a descriptor that describes the concatenation of two locations.
8618 This is typically a complex variable. */
8619
8620 static dw_loc_descr_ref
8621 concat_loc_descriptor (x0, x1)
8622 rtx x0, x1;
8623 {
8624 dw_loc_descr_ref cc_loc_result = NULL;
8625 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8626 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8627
8628 if (x0_ref == 0 || x1_ref == 0)
8629 return 0;
8630
8631 cc_loc_result = x0_ref;
8632 add_loc_descr (&cc_loc_result,
8633 new_loc_descr (DW_OP_piece,
8634 GET_MODE_SIZE (GET_MODE (x0)), 0));
8635
8636 add_loc_descr (&cc_loc_result, x1_ref);
8637 add_loc_descr (&cc_loc_result,
8638 new_loc_descr (DW_OP_piece,
8639 GET_MODE_SIZE (GET_MODE (x1)), 0));
8640
8641 return cc_loc_result;
8642 }
8643
8644 /* Output a proper Dwarf location descriptor for a variable or parameter
8645 which is either allocated in a register or in a memory location. For a
8646 register, we just generate an OP_REG and the register number. For a
8647 memory location we provide a Dwarf postfix expression describing how to
8648 generate the (dynamic) address of the object onto the address stack.
8649
8650 If we don't know how to describe it, return 0. */
8651
8652 static dw_loc_descr_ref
8653 loc_descriptor (rtl)
8654 rtx rtl;
8655 {
8656 dw_loc_descr_ref loc_result = NULL;
8657
8658 switch (GET_CODE (rtl))
8659 {
8660 case SUBREG:
8661 /* The case of a subreg may arise when we have a local (register)
8662 variable or a formal (register) parameter which doesn't quite fill
8663 up an entire register. For now, just assume that it is
8664 legitimate to make the Dwarf info refer to the whole register which
8665 contains the given subreg. */
8666 rtl = SUBREG_REG (rtl);
8667
8668 /* ... fall through ... */
8669
8670 case REG:
8671 loc_result = reg_loc_descriptor (rtl);
8672 break;
8673
8674 case MEM:
8675 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8676 break;
8677
8678 case CONCAT:
8679 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8680 break;
8681
8682 default:
8683 abort ();
8684 }
8685
8686 return loc_result;
8687 }
8688
8689 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8690 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8691 looking for an address. Otherwise, we return a value. If we can't make a
8692 descriptor, return 0. */
8693
8694 static dw_loc_descr_ref
8695 loc_descriptor_from_tree (loc, addressp)
8696 tree loc;
8697 int addressp;
8698 {
8699 dw_loc_descr_ref ret, ret1;
8700 int indirect_p = 0;
8701 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8702 enum dwarf_location_atom op;
8703
8704 /* ??? Most of the time we do not take proper care for sign/zero
8705 extending the values properly. Hopefully this won't be a real
8706 problem... */
8707
8708 switch (TREE_CODE (loc))
8709 {
8710 case ERROR_MARK:
8711 return 0;
8712
8713 case WITH_RECORD_EXPR:
8714 case PLACEHOLDER_EXPR:
8715 /* This case involves extracting fields from an object to determine the
8716 position of other fields. We don't try to encode this here. The
8717 only user of this is Ada, which encodes the needed information using
8718 the names of types. */
8719 return 0;
8720
8721 case CALL_EXPR:
8722 return 0;
8723
8724 case ADDR_EXPR:
8725 /* We can support this only if we can look through conversions and
8726 find an INDIRECT_EXPR. */
8727 for (loc = TREE_OPERAND (loc, 0);
8728 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8729 || TREE_CODE (loc) == NON_LVALUE_EXPR
8730 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8731 || TREE_CODE (loc) == SAVE_EXPR;
8732 loc = TREE_OPERAND (loc, 0))
8733 ;
8734
8735 return (TREE_CODE (loc) == INDIRECT_REF
8736 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8737 : 0);
8738
8739 case VAR_DECL:
8740 if (DECL_THREAD_LOCAL (loc))
8741 {
8742 rtx rtl;
8743
8744 #ifndef ASM_OUTPUT_DWARF_DTPREL
8745 /* If this is not defined, we have no way to emit the data. */
8746 return 0;
8747 #endif
8748
8749 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8750 look up addresses of objects in the current module. */
8751 if (DECL_EXTERNAL (loc))
8752 return 0;
8753
8754 rtl = rtl_for_decl_location (loc);
8755 if (rtl == NULL_RTX)
8756 return 0;
8757
8758 if (GET_CODE (rtl) != MEM)
8759 return 0;
8760 rtl = XEXP (rtl, 0);
8761 if (! CONSTANT_P (rtl))
8762 return 0;
8763
8764 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8765 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8766 ret->dw_loc_oprnd1.v.val_addr = rtl;
8767
8768 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8769 add_loc_descr (&ret, ret1);
8770
8771 indirect_p = 1;
8772 break;
8773 }
8774 /* FALLTHRU */
8775
8776 case PARM_DECL:
8777 {
8778 rtx rtl = rtl_for_decl_location (loc);
8779
8780 if (rtl == NULL_RTX)
8781 return 0;
8782 else if (CONSTANT_P (rtl))
8783 {
8784 ret = new_loc_descr (DW_OP_addr, 0, 0);
8785 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8786 ret->dw_loc_oprnd1.v.val_addr = rtl;
8787 indirect_p = 1;
8788 }
8789 else
8790 {
8791 enum machine_mode mode = GET_MODE (rtl);
8792
8793 if (GET_CODE (rtl) == MEM)
8794 {
8795 indirect_p = 1;
8796 rtl = XEXP (rtl, 0);
8797 }
8798
8799 ret = mem_loc_descriptor (rtl, mode);
8800 }
8801 }
8802 break;
8803
8804 case INDIRECT_REF:
8805 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8806 indirect_p = 1;
8807 break;
8808
8809 case COMPOUND_EXPR:
8810 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8811
8812 case NOP_EXPR:
8813 case CONVERT_EXPR:
8814 case NON_LVALUE_EXPR:
8815 case VIEW_CONVERT_EXPR:
8816 case SAVE_EXPR:
8817 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8818
8819 case COMPONENT_REF:
8820 case BIT_FIELD_REF:
8821 case ARRAY_REF:
8822 case ARRAY_RANGE_REF:
8823 {
8824 tree obj, offset;
8825 HOST_WIDE_INT bitsize, bitpos, bytepos;
8826 enum machine_mode mode;
8827 int volatilep;
8828
8829 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8830 &unsignedp, &volatilep);
8831
8832 if (obj == loc)
8833 return 0;
8834
8835 ret = loc_descriptor_from_tree (obj, 1);
8836 if (ret == 0
8837 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8838 return 0;
8839
8840 if (offset != NULL_TREE)
8841 {
8842 /* Variable offset. */
8843 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8844 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8845 }
8846
8847 if (!addressp)
8848 indirect_p = 1;
8849
8850 bytepos = bitpos / BITS_PER_UNIT;
8851 if (bytepos > 0)
8852 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8853 else if (bytepos < 0)
8854 {
8855 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8856 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8857 }
8858 break;
8859 }
8860
8861 case INTEGER_CST:
8862 if (host_integerp (loc, 0))
8863 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8864 else
8865 return 0;
8866 break;
8867
8868 case TRUTH_AND_EXPR:
8869 case TRUTH_ANDIF_EXPR:
8870 case BIT_AND_EXPR:
8871 op = DW_OP_and;
8872 goto do_binop;
8873
8874 case TRUTH_XOR_EXPR:
8875 case BIT_XOR_EXPR:
8876 op = DW_OP_xor;
8877 goto do_binop;
8878
8879 case TRUTH_OR_EXPR:
8880 case TRUTH_ORIF_EXPR:
8881 case BIT_IOR_EXPR:
8882 op = DW_OP_or;
8883 goto do_binop;
8884
8885 case FLOOR_DIV_EXPR:
8886 case CEIL_DIV_EXPR:
8887 case ROUND_DIV_EXPR:
8888 case TRUNC_DIV_EXPR:
8889 op = DW_OP_div;
8890 goto do_binop;
8891
8892 case MINUS_EXPR:
8893 op = DW_OP_minus;
8894 goto do_binop;
8895
8896 case FLOOR_MOD_EXPR:
8897 case CEIL_MOD_EXPR:
8898 case ROUND_MOD_EXPR:
8899 case TRUNC_MOD_EXPR:
8900 op = DW_OP_mod;
8901 goto do_binop;
8902
8903 case MULT_EXPR:
8904 op = DW_OP_mul;
8905 goto do_binop;
8906
8907 case LSHIFT_EXPR:
8908 op = DW_OP_shl;
8909 goto do_binop;
8910
8911 case RSHIFT_EXPR:
8912 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8913 goto do_binop;
8914
8915 case PLUS_EXPR:
8916 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8917 && host_integerp (TREE_OPERAND (loc, 1), 0))
8918 {
8919 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8920 if (ret == 0)
8921 return 0;
8922
8923 add_loc_descr (&ret,
8924 new_loc_descr (DW_OP_plus_uconst,
8925 tree_low_cst (TREE_OPERAND (loc, 1),
8926 0),
8927 0));
8928 break;
8929 }
8930
8931 op = DW_OP_plus;
8932 goto do_binop;
8933
8934 case LE_EXPR:
8935 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8936 return 0;
8937
8938 op = DW_OP_le;
8939 goto do_binop;
8940
8941 case GE_EXPR:
8942 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8943 return 0;
8944
8945 op = DW_OP_ge;
8946 goto do_binop;
8947
8948 case LT_EXPR:
8949 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8950 return 0;
8951
8952 op = DW_OP_lt;
8953 goto do_binop;
8954
8955 case GT_EXPR:
8956 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8957 return 0;
8958
8959 op = DW_OP_gt;
8960 goto do_binop;
8961
8962 case EQ_EXPR:
8963 op = DW_OP_eq;
8964 goto do_binop;
8965
8966 case NE_EXPR:
8967 op = DW_OP_ne;
8968 goto do_binop;
8969
8970 do_binop:
8971 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8972 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8973 if (ret == 0 || ret1 == 0)
8974 return 0;
8975
8976 add_loc_descr (&ret, ret1);
8977 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8978 break;
8979
8980 case TRUTH_NOT_EXPR:
8981 case BIT_NOT_EXPR:
8982 op = DW_OP_not;
8983 goto do_unop;
8984
8985 case ABS_EXPR:
8986 op = DW_OP_abs;
8987 goto do_unop;
8988
8989 case NEGATE_EXPR:
8990 op = DW_OP_neg;
8991 goto do_unop;
8992
8993 do_unop:
8994 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8995 if (ret == 0)
8996 return 0;
8997
8998 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8999 break;
9000
9001 case MAX_EXPR:
9002 loc = build (COND_EXPR, TREE_TYPE (loc),
9003 build (LT_EXPR, integer_type_node,
9004 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9005 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9006
9007 /* ... fall through ... */
9008
9009 case COND_EXPR:
9010 {
9011 dw_loc_descr_ref lhs
9012 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
9013 dw_loc_descr_ref rhs
9014 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
9015 dw_loc_descr_ref bra_node, jump_node, tmp;
9016
9017 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
9018 if (ret == 0 || lhs == 0 || rhs == 0)
9019 return 0;
9020
9021 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9022 add_loc_descr (&ret, bra_node);
9023
9024 add_loc_descr (&ret, rhs);
9025 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9026 add_loc_descr (&ret, jump_node);
9027
9028 add_loc_descr (&ret, lhs);
9029 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9030 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9031
9032 /* ??? Need a node to point the skip at. Use a nop. */
9033 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9034 add_loc_descr (&ret, tmp);
9035 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9036 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9037 }
9038 break;
9039
9040 default:
9041 abort ();
9042 }
9043
9044 /* Show if we can't fill the request for an address. */
9045 if (addressp && indirect_p == 0)
9046 return 0;
9047
9048 /* If we've got an address and don't want one, dereference. */
9049 if (!addressp && indirect_p > 0)
9050 {
9051 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9052
9053 if (size > DWARF2_ADDR_SIZE || size == -1)
9054 return 0;
9055 else if (size == DWARF2_ADDR_SIZE)
9056 op = DW_OP_deref;
9057 else
9058 op = DW_OP_deref_size;
9059
9060 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9061 }
9062
9063 return ret;
9064 }
9065
9066 /* Given a value, round it up to the lowest multiple of `boundary'
9067 which is not less than the value itself. */
9068
9069 static inline HOST_WIDE_INT
9070 ceiling (value, boundary)
9071 HOST_WIDE_INT value;
9072 unsigned int boundary;
9073 {
9074 return (((value + boundary - 1) / boundary) * boundary);
9075 }
9076
9077 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9078 pointer to the declared type for the relevant field variable, or return
9079 `integer_type_node' if the given node turns out to be an
9080 ERROR_MARK node. */
9081
9082 static inline tree
9083 field_type (decl)
9084 tree decl;
9085 {
9086 tree type;
9087
9088 if (TREE_CODE (decl) == ERROR_MARK)
9089 return integer_type_node;
9090
9091 type = DECL_BIT_FIELD_TYPE (decl);
9092 if (type == NULL_TREE)
9093 type = TREE_TYPE (decl);
9094
9095 return type;
9096 }
9097
9098 /* Given a pointer to a tree node, return the alignment in bits for
9099 it, or else return BITS_PER_WORD if the node actually turns out to
9100 be an ERROR_MARK node. */
9101
9102 static inline unsigned
9103 simple_type_align_in_bits (type)
9104 tree type;
9105 {
9106 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9107 }
9108
9109 static inline unsigned
9110 simple_decl_align_in_bits (decl)
9111 tree decl;
9112 {
9113 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9114 }
9115
9116 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9117 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9118 or return 0 if we are unable to determine what that offset is, either
9119 because the argument turns out to be a pointer to an ERROR_MARK node, or
9120 because the offset is actually variable. (We can't handle the latter case
9121 just yet). */
9122
9123 static HOST_WIDE_INT
9124 field_byte_offset (decl)
9125 tree decl;
9126 {
9127 unsigned int type_align_in_bits;
9128 unsigned int decl_align_in_bits;
9129 unsigned HOST_WIDE_INT type_size_in_bits;
9130 HOST_WIDE_INT object_offset_in_bits;
9131 tree type;
9132 tree field_size_tree;
9133 HOST_WIDE_INT bitpos_int;
9134 HOST_WIDE_INT deepest_bitpos;
9135 unsigned HOST_WIDE_INT field_size_in_bits;
9136
9137 if (TREE_CODE (decl) == ERROR_MARK)
9138 return 0;
9139 else if (TREE_CODE (decl) != FIELD_DECL)
9140 abort ();
9141
9142 type = field_type (decl);
9143 field_size_tree = DECL_SIZE (decl);
9144
9145 /* The size could be unspecified if there was an error, or for
9146 a flexible array member. */
9147 if (! field_size_tree)
9148 field_size_tree = bitsize_zero_node;
9149
9150 /* We cannot yet cope with fields whose positions are variable, so
9151 for now, when we see such things, we simply return 0. Someday, we may
9152 be able to handle such cases, but it will be damn difficult. */
9153 if (! host_integerp (bit_position (decl), 0))
9154 return 0;
9155
9156 bitpos_int = int_bit_position (decl);
9157
9158 /* If we don't know the size of the field, pretend it's a full word. */
9159 if (host_integerp (field_size_tree, 1))
9160 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9161 else
9162 field_size_in_bits = BITS_PER_WORD;
9163
9164 type_size_in_bits = simple_type_size_in_bits (type);
9165 type_align_in_bits = simple_type_align_in_bits (type);
9166 decl_align_in_bits = simple_decl_align_in_bits (decl);
9167
9168 /* The GCC front-end doesn't make any attempt to keep track of the starting
9169 bit offset (relative to the start of the containing structure type) of the
9170 hypothetical "containing object" for a bit-field. Thus, when computing
9171 the byte offset value for the start of the "containing object" of a
9172 bit-field, we must deduce this information on our own. This can be rather
9173 tricky to do in some cases. For example, handling the following structure
9174 type definition when compiling for an i386/i486 target (which only aligns
9175 long long's to 32-bit boundaries) can be very tricky:
9176
9177 struct S { int field1; long long field2:31; };
9178
9179 Fortunately, there is a simple rule-of-thumb which can be used in such
9180 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9181 structure shown above. It decides to do this based upon one simple rule
9182 for bit-field allocation. GCC allocates each "containing object" for each
9183 bit-field at the first (i.e. lowest addressed) legitimate alignment
9184 boundary (based upon the required minimum alignment for the declared type
9185 of the field) which it can possibly use, subject to the condition that
9186 there is still enough available space remaining in the containing object
9187 (when allocated at the selected point) to fully accommodate all of the
9188 bits of the bit-field itself.
9189
9190 This simple rule makes it obvious why GCC allocates 8 bytes for each
9191 object of the structure type shown above. When looking for a place to
9192 allocate the "containing object" for `field2', the compiler simply tries
9193 to allocate a 64-bit "containing object" at each successive 32-bit
9194 boundary (starting at zero) until it finds a place to allocate that 64-
9195 bit field such that at least 31 contiguous (and previously unallocated)
9196 bits remain within that selected 64 bit field. (As it turns out, for the
9197 example above, the compiler finds it is OK to allocate the "containing
9198 object" 64-bit field at bit-offset zero within the structure type.)
9199
9200 Here we attempt to work backwards from the limited set of facts we're
9201 given, and we try to deduce from those facts, where GCC must have believed
9202 that the containing object started (within the structure type). The value
9203 we deduce is then used (by the callers of this routine) to generate
9204 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9205 and, in the case of DW_AT_location, regular fields as well). */
9206
9207 /* Figure out the bit-distance from the start of the structure to the
9208 "deepest" bit of the bit-field. */
9209 deepest_bitpos = bitpos_int + field_size_in_bits;
9210
9211 /* This is the tricky part. Use some fancy footwork to deduce where the
9212 lowest addressed bit of the containing object must be. */
9213 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9214
9215 /* Round up to type_align by default. This works best for bitfields. */
9216 object_offset_in_bits += type_align_in_bits - 1;
9217 object_offset_in_bits /= type_align_in_bits;
9218 object_offset_in_bits *= type_align_in_bits;
9219
9220 if (object_offset_in_bits > bitpos_int)
9221 {
9222 /* Sigh, the decl must be packed. */
9223 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9224
9225 /* Round up to decl_align instead. */
9226 object_offset_in_bits += decl_align_in_bits - 1;
9227 object_offset_in_bits /= decl_align_in_bits;
9228 object_offset_in_bits *= decl_align_in_bits;
9229 }
9230
9231 return object_offset_in_bits / BITS_PER_UNIT;
9232 }
9233 \f
9234 /* The following routines define various Dwarf attributes and any data
9235 associated with them. */
9236
9237 /* Add a location description attribute value to a DIE.
9238
9239 This emits location attributes suitable for whole variables and
9240 whole parameters. Note that the location attributes for struct fields are
9241 generated by the routine `data_member_location_attribute' below. */
9242
9243 static inline void
9244 add_AT_location_description (die, attr_kind, descr)
9245 dw_die_ref die;
9246 enum dwarf_attribute attr_kind;
9247 dw_loc_descr_ref descr;
9248 {
9249 if (descr != 0)
9250 add_AT_loc (die, attr_kind, descr);
9251 }
9252
9253 /* Attach the specialized form of location attribute used for data members of
9254 struct and union types. In the special case of a FIELD_DECL node which
9255 represents a bit-field, the "offset" part of this special location
9256 descriptor must indicate the distance in bytes from the lowest-addressed
9257 byte of the containing struct or union type to the lowest-addressed byte of
9258 the "containing object" for the bit-field. (See the `field_byte_offset'
9259 function above).
9260
9261 For any given bit-field, the "containing object" is a hypothetical object
9262 (of some integral or enum type) within which the given bit-field lives. The
9263 type of this hypothetical "containing object" is always the same as the
9264 declared type of the individual bit-field itself (for GCC anyway... the
9265 DWARF spec doesn't actually mandate this). Note that it is the size (in
9266 bytes) of the hypothetical "containing object" which will be given in the
9267 DW_AT_byte_size attribute for this bit-field. (See the
9268 `byte_size_attribute' function below.) It is also used when calculating the
9269 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9270 function below.) */
9271
9272 static void
9273 add_data_member_location_attribute (die, decl)
9274 dw_die_ref die;
9275 tree decl;
9276 {
9277 long offset;
9278 dw_loc_descr_ref loc_descr = 0;
9279
9280 if (TREE_CODE (decl) == TREE_VEC)
9281 {
9282 /* We're working on the TAG_inheritance for a base class. */
9283 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
9284 {
9285 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9286 aren't at a fixed offset from all (sub)objects of the same
9287 type. We need to extract the appropriate offset from our
9288 vtable. The following dwarf expression means
9289
9290 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9291
9292 This is specific to the V3 ABI, of course. */
9293
9294 dw_loc_descr_ref tmp;
9295
9296 /* Make a copy of the object address. */
9297 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9298 add_loc_descr (&loc_descr, tmp);
9299
9300 /* Extract the vtable address. */
9301 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9302 add_loc_descr (&loc_descr, tmp);
9303
9304 /* Calculate the address of the offset. */
9305 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9306 if (offset >= 0)
9307 abort ();
9308
9309 tmp = int_loc_descriptor (-offset);
9310 add_loc_descr (&loc_descr, tmp);
9311 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9312 add_loc_descr (&loc_descr, tmp);
9313
9314 /* Extract the offset. */
9315 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9316 add_loc_descr (&loc_descr, tmp);
9317
9318 /* Add it to the object address. */
9319 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9320 add_loc_descr (&loc_descr, tmp);
9321 }
9322 else
9323 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9324 }
9325 else
9326 offset = field_byte_offset (decl);
9327
9328 if (! loc_descr)
9329 {
9330 enum dwarf_location_atom op;
9331
9332 /* The DWARF2 standard says that we should assume that the structure
9333 address is already on the stack, so we can specify a structure field
9334 address by using DW_OP_plus_uconst. */
9335
9336 #ifdef MIPS_DEBUGGING_INFO
9337 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9338 operator correctly. It works only if we leave the offset on the
9339 stack. */
9340 op = DW_OP_constu;
9341 #else
9342 op = DW_OP_plus_uconst;
9343 #endif
9344
9345 loc_descr = new_loc_descr (op, offset, 0);
9346 }
9347
9348 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9349 }
9350
9351 /* Attach an DW_AT_const_value attribute for a variable or a parameter which
9352 does not have a "location" either in memory or in a register. These
9353 things can arise in GNU C when a constant is passed as an actual parameter
9354 to an inlined function. They can also arise in C++ where declared
9355 constants do not necessarily get memory "homes". */
9356
9357 static void
9358 add_const_value_attribute (die, rtl)
9359 dw_die_ref die;
9360 rtx rtl;
9361 {
9362 switch (GET_CODE (rtl))
9363 {
9364 case CONST_INT:
9365 /* Note that a CONST_INT rtx could represent either an integer
9366 or a floating-point constant. A CONST_INT is used whenever
9367 the constant will fit into a single word. In all such
9368 cases, the original mode of the constant value is wiped
9369 out, and the CONST_INT rtx is assigned VOIDmode. */
9370 {
9371 HOST_WIDE_INT val = INTVAL (rtl);
9372
9373 /* ??? We really should be using HOST_WIDE_INT throughout. */
9374 if (val < 0 && (long) val == val)
9375 add_AT_int (die, DW_AT_const_value, (long) val);
9376 else if ((unsigned long) val == (unsigned HOST_WIDE_INT) val)
9377 add_AT_unsigned (die, DW_AT_const_value, (unsigned long) val);
9378 else
9379 {
9380 #if HOST_BITS_PER_LONG * 2 == HOST_BITS_PER_WIDE_INT
9381 add_AT_long_long (die, DW_AT_const_value,
9382 val >> HOST_BITS_PER_LONG, val);
9383 #else
9384 abort ();
9385 #endif
9386 }
9387 }
9388 break;
9389
9390 case CONST_DOUBLE:
9391 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9392 floating-point constant. A CONST_DOUBLE is used whenever the
9393 constant requires more than one word in order to be adequately
9394 represented. We output CONST_DOUBLEs as blocks. */
9395 {
9396 enum machine_mode mode = GET_MODE (rtl);
9397
9398 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9399 {
9400 unsigned length = GET_MODE_SIZE (mode) / 4;
9401 long *array = (long *) ggc_alloc (sizeof (long) * length);
9402 REAL_VALUE_TYPE rv;
9403
9404 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9405 switch (mode)
9406 {
9407 case SFmode:
9408 REAL_VALUE_TO_TARGET_SINGLE (rv, array[0]);
9409 break;
9410
9411 case DFmode:
9412 REAL_VALUE_TO_TARGET_DOUBLE (rv, array);
9413 break;
9414
9415 case XFmode:
9416 case TFmode:
9417 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, array);
9418 break;
9419
9420 default:
9421 abort ();
9422 }
9423
9424 add_AT_float (die, DW_AT_const_value, length, array);
9425 }
9426 else
9427 {
9428 /* ??? We really should be using HOST_WIDE_INT throughout. */
9429 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9430 abort ();
9431
9432 add_AT_long_long (die, DW_AT_const_value,
9433 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9434 }
9435 }
9436 break;
9437
9438 case CONST_STRING:
9439 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9440 break;
9441
9442 case SYMBOL_REF:
9443 case LABEL_REF:
9444 case CONST:
9445 add_AT_addr (die, DW_AT_const_value, rtl);
9446 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9447 break;
9448
9449 case PLUS:
9450 /* In cases where an inlined instance of an inline function is passed
9451 the address of an `auto' variable (which is local to the caller) we
9452 can get a situation where the DECL_RTL of the artificial local
9453 variable (for the inlining) which acts as a stand-in for the
9454 corresponding formal parameter (of the inline function) will look
9455 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9456 exactly a compile-time constant expression, but it isn't the address
9457 of the (artificial) local variable either. Rather, it represents the
9458 *value* which the artificial local variable always has during its
9459 lifetime. We currently have no way to represent such quasi-constant
9460 values in Dwarf, so for now we just punt and generate nothing. */
9461 break;
9462
9463 default:
9464 /* No other kinds of rtx should be possible here. */
9465 abort ();
9466 }
9467
9468 }
9469
9470 static rtx
9471 rtl_for_decl_location (decl)
9472 tree decl;
9473 {
9474 rtx rtl;
9475
9476 /* Here we have to decide where we are going to say the parameter "lives"
9477 (as far as the debugger is concerned). We only have a couple of
9478 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9479
9480 DECL_RTL normally indicates where the parameter lives during most of the
9481 activation of the function. If optimization is enabled however, this
9482 could be either NULL or else a pseudo-reg. Both of those cases indicate
9483 that the parameter doesn't really live anywhere (as far as the code
9484 generation parts of GCC are concerned) during most of the function's
9485 activation. That will happen (for example) if the parameter is never
9486 referenced within the function.
9487
9488 We could just generate a location descriptor here for all non-NULL
9489 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9490 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9491 where DECL_RTL is NULL or is a pseudo-reg.
9492
9493 Note however that we can only get away with using DECL_INCOMING_RTL as
9494 a backup substitute for DECL_RTL in certain limited cases. In cases
9495 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9496 we can be sure that the parameter was passed using the same type as it is
9497 declared to have within the function, and that its DECL_INCOMING_RTL
9498 points us to a place where a value of that type is passed.
9499
9500 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9501 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9502 because in these cases DECL_INCOMING_RTL points us to a value of some
9503 type which is *different* from the type of the parameter itself. Thus,
9504 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9505 such cases, the debugger would end up (for example) trying to fetch a
9506 `float' from a place which actually contains the first part of a
9507 `double'. That would lead to really incorrect and confusing
9508 output at debug-time.
9509
9510 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9511 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9512 are a couple of exceptions however. On little-endian machines we can
9513 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9514 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9515 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9516 when (on a little-endian machine) a non-prototyped function has a
9517 parameter declared to be of type `short' or `char'. In such cases,
9518 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9519 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9520 passed `int' value. If the debugger then uses that address to fetch
9521 a `short' or a `char' (on a little-endian machine) the result will be
9522 the correct data, so we allow for such exceptional cases below.
9523
9524 Note that our goal here is to describe the place where the given formal
9525 parameter lives during most of the function's activation (i.e. between the
9526 end of the prologue and the start of the epilogue). We'll do that as best
9527 as we can. Note however that if the given formal parameter is modified
9528 sometime during the execution of the function, then a stack backtrace (at
9529 debug-time) will show the function as having been called with the *new*
9530 value rather than the value which was originally passed in. This happens
9531 rarely enough that it is not a major problem, but it *is* a problem, and
9532 I'd like to fix it.
9533
9534 A future version of dwarf2out.c may generate two additional attributes for
9535 any given DW_TAG_formal_parameter DIE which will describe the "passed
9536 type" and the "passed location" for the given formal parameter in addition
9537 to the attributes we now generate to indicate the "declared type" and the
9538 "active location" for each parameter. This additional set of attributes
9539 could be used by debuggers for stack backtraces. Separately, note that
9540 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9541 This happens (for example) for inlined-instances of inline function formal
9542 parameters which are never referenced. This really shouldn't be
9543 happening. All PARM_DECL nodes should get valid non-NULL
9544 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9545 values for inlined instances of inline function parameters, so when we see
9546 such cases, we are just out-of-luck for the time being (until integrate.c
9547 gets fixed). */
9548
9549 /* Use DECL_RTL as the "location" unless we find something better. */
9550 rtl = DECL_RTL_IF_SET (decl);
9551
9552 /* When generating abstract instances, ignore everything except
9553 constants, symbols living in memory, and symbols living in
9554 fixed registers. */
9555 if (! reload_completed)
9556 {
9557 if (rtl
9558 && (CONSTANT_P (rtl)
9559 || (GET_CODE (rtl) == MEM
9560 && CONSTANT_P (XEXP (rtl, 0)))
9561 || (GET_CODE (rtl) == REG
9562 && TREE_CODE (decl) == VAR_DECL
9563 && TREE_STATIC (decl))))
9564 {
9565 rtl = (*targetm.delegitimize_address) (rtl);
9566 return rtl;
9567 }
9568 rtl = NULL_RTX;
9569 }
9570 else if (TREE_CODE (decl) == PARM_DECL)
9571 {
9572 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9573 {
9574 tree declared_type = type_main_variant (TREE_TYPE (decl));
9575 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9576
9577 /* This decl represents a formal parameter which was optimized out.
9578 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9579 all cases where (rtl == NULL_RTX) just below. */
9580 if (declared_type == passed_type)
9581 rtl = DECL_INCOMING_RTL (decl);
9582 else if (! BYTES_BIG_ENDIAN
9583 && TREE_CODE (declared_type) == INTEGER_TYPE
9584 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9585 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9586 rtl = DECL_INCOMING_RTL (decl);
9587 }
9588
9589 /* If the parm was passed in registers, but lives on the stack, then
9590 make a big endian correction if the mode of the type of the
9591 parameter is not the same as the mode of the rtl. */
9592 /* ??? This is the same series of checks that are made in dbxout.c before
9593 we reach the big endian correction code there. It isn't clear if all
9594 of these checks are necessary here, but keeping them all is the safe
9595 thing to do. */
9596 else if (GET_CODE (rtl) == MEM
9597 && XEXP (rtl, 0) != const0_rtx
9598 && ! CONSTANT_P (XEXP (rtl, 0))
9599 /* Not passed in memory. */
9600 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
9601 /* Not passed by invisible reference. */
9602 && (GET_CODE (XEXP (rtl, 0)) != REG
9603 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9604 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9605 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9606 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9607 #endif
9608 )
9609 /* Big endian correction check. */
9610 && BYTES_BIG_ENDIAN
9611 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9612 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9613 < UNITS_PER_WORD))
9614 {
9615 int offset = (UNITS_PER_WORD
9616 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9617
9618 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9619 plus_constant (XEXP (rtl, 0), offset));
9620 }
9621 }
9622
9623 if (rtl != NULL_RTX)
9624 {
9625 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9626 #ifdef LEAF_REG_REMAP
9627 if (current_function_uses_only_leaf_regs)
9628 leaf_renumber_regs_insn (rtl);
9629 #endif
9630 }
9631
9632 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9633 and will have been substituted directly into all expressions that use it.
9634 C does not have such a concept, but C++ and other languages do. */
9635 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9636 {
9637 /* If a variable is initialized with a string constant without embedded
9638 zeros, build CONST_STRING. */
9639 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9640 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9641 {
9642 tree arrtype = TREE_TYPE (decl);
9643 tree enttype = TREE_TYPE (arrtype);
9644 tree domain = TYPE_DOMAIN (arrtype);
9645 tree init = DECL_INITIAL (decl);
9646 enum machine_mode mode = TYPE_MODE (enttype);
9647
9648 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9649 && domain
9650 && integer_zerop (TYPE_MIN_VALUE (domain))
9651 && compare_tree_int (TYPE_MAX_VALUE (domain),
9652 TREE_STRING_LENGTH (init) - 1) == 0
9653 && ((size_t) TREE_STRING_LENGTH (init)
9654 == strlen (TREE_STRING_POINTER (init)) + 1))
9655 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9656 }
9657 /* If the initializer is something that we know will expand into an
9658 immediate RTL constant, expand it now. Expanding anything else
9659 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9660 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9661 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9662 {
9663 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9664 EXPAND_INITIALIZER);
9665 /* If expand_expr returns a MEM, it wasn't immediate. */
9666 if (rtl && GET_CODE (rtl) == MEM)
9667 abort ();
9668 }
9669 }
9670
9671 if (rtl)
9672 rtl = (*targetm.delegitimize_address) (rtl);
9673
9674 /* If we don't look past the constant pool, we risk emitting a
9675 reference to a constant pool entry that isn't referenced from
9676 code, and thus is not emitted. */
9677 if (rtl)
9678 rtl = avoid_constant_pool_reference (rtl);
9679
9680 return rtl;
9681 }
9682
9683 /* Generate *either* an DW_AT_location attribute or else an DW_AT_const_value
9684 data attribute for a variable or a parameter. We generate the
9685 DW_AT_const_value attribute only in those cases where the given variable
9686 or parameter does not have a true "location" either in memory or in a
9687 register. This can happen (for example) when a constant is passed as an
9688 actual argument in a call to an inline function. (It's possible that
9689 these things can crop up in other ways also.) Note that one type of
9690 constant value which can be passed into an inlined function is a constant
9691 pointer. This can happen for example if an actual argument in an inlined
9692 function call evaluates to a compile-time constant address. */
9693
9694 static void
9695 add_location_or_const_value_attribute (die, decl)
9696 dw_die_ref die;
9697 tree decl;
9698 {
9699 rtx rtl;
9700 dw_loc_descr_ref descr;
9701
9702 if (TREE_CODE (decl) == ERROR_MARK)
9703 return;
9704 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
9705 abort ();
9706
9707 rtl = rtl_for_decl_location (decl);
9708 if (rtl == NULL_RTX)
9709 return;
9710
9711 switch (GET_CODE (rtl))
9712 {
9713 case ADDRESSOF:
9714 /* The address of a variable that was optimized away;
9715 don't emit anything. */
9716 break;
9717
9718 case CONST_INT:
9719 case CONST_DOUBLE:
9720 case CONST_STRING:
9721 case SYMBOL_REF:
9722 case LABEL_REF:
9723 case CONST:
9724 case PLUS:
9725 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9726 add_const_value_attribute (die, rtl);
9727 break;
9728
9729 case MEM:
9730 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
9731 {
9732 /* Need loc_descriptor_from_tree since that's where we know
9733 how to handle TLS variables. Want the object's address
9734 since the top-level DW_AT_location assumes such. See
9735 the confusion in loc_descriptor for reference. */
9736 descr = loc_descriptor_from_tree (decl, 1);
9737 }
9738 else
9739 {
9740 case REG:
9741 case SUBREG:
9742 case CONCAT:
9743 descr = loc_descriptor (rtl);
9744 }
9745 add_AT_location_description (die, DW_AT_location, descr);
9746 break;
9747
9748 default:
9749 abort ();
9750 }
9751 }
9752
9753 /* If we don't have a copy of this variable in memory for some reason (such
9754 as a C++ member constant that doesn't have an out-of-line definition),
9755 we should tell the debugger about the constant value. */
9756
9757 static void
9758 tree_add_const_value_attribute (var_die, decl)
9759 dw_die_ref var_die;
9760 tree decl;
9761 {
9762 tree init = DECL_INITIAL (decl);
9763 tree type = TREE_TYPE (decl);
9764
9765 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9766 && initializer_constant_valid_p (init, type) == null_pointer_node)
9767 /* OK */;
9768 else
9769 return;
9770
9771 switch (TREE_CODE (type))
9772 {
9773 case INTEGER_TYPE:
9774 if (host_integerp (init, 0))
9775 add_AT_unsigned (var_die, DW_AT_const_value,
9776 tree_low_cst (init, 0));
9777 else
9778 add_AT_long_long (var_die, DW_AT_const_value,
9779 TREE_INT_CST_HIGH (init),
9780 TREE_INT_CST_LOW (init));
9781 break;
9782
9783 default:;
9784 }
9785 }
9786
9787 /* Generate an DW_AT_name attribute given some string value to be included as
9788 the value of the attribute. */
9789
9790 static void
9791 add_name_attribute (die, name_string)
9792 dw_die_ref die;
9793 const char *name_string;
9794 {
9795 if (name_string != NULL && *name_string != 0)
9796 {
9797 if (demangle_name_func)
9798 name_string = (*demangle_name_func) (name_string);
9799
9800 add_AT_string (die, DW_AT_name, name_string);
9801 }
9802 }
9803
9804 /* Generate an DW_AT_comp_dir attribute for DIE. */
9805
9806 static void
9807 add_comp_dir_attribute (die)
9808 dw_die_ref die;
9809 {
9810 const char *wd = getpwd ();
9811 if (wd != NULL)
9812 add_AT_string (die, DW_AT_comp_dir, wd);
9813 }
9814
9815 /* Given a tree node describing an array bound (either lower or upper) output
9816 a representation for that bound. */
9817
9818 static void
9819 add_bound_info (subrange_die, bound_attr, bound)
9820 dw_die_ref subrange_die;
9821 enum dwarf_attribute bound_attr;
9822 tree bound;
9823 {
9824 switch (TREE_CODE (bound))
9825 {
9826 case ERROR_MARK:
9827 return;
9828
9829 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9830 case INTEGER_CST:
9831 if (! host_integerp (bound, 0)
9832 || (bound_attr == DW_AT_lower_bound
9833 && (((is_c_family () || is_java ()) && integer_zerop (bound))
9834 || (is_fortran () && integer_onep (bound)))))
9835 /* use the default */
9836 ;
9837 else
9838 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
9839 break;
9840
9841 case CONVERT_EXPR:
9842 case NOP_EXPR:
9843 case NON_LVALUE_EXPR:
9844 case VIEW_CONVERT_EXPR:
9845 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9846 break;
9847
9848 case SAVE_EXPR:
9849 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9850 access the upper bound values may be bogus. If they refer to a
9851 register, they may only describe how to get at these values at the
9852 points in the generated code right after they have just been
9853 computed. Worse yet, in the typical case, the upper bound values
9854 will not even *be* computed in the optimized code (though the
9855 number of elements will), so these SAVE_EXPRs are entirely
9856 bogus. In order to compensate for this fact, we check here to see
9857 if optimization is enabled, and if so, we don't add an attribute
9858 for the (unknown and unknowable) upper bound. This should not
9859 cause too much trouble for existing (stupid?) debuggers because
9860 they have to deal with empty upper bounds location descriptions
9861 anyway in order to be able to deal with incomplete array types.
9862 Of course an intelligent debugger (GDB?) should be able to
9863 comprehend that a missing upper bound specification in an array
9864 type used for a storage class `auto' local array variable
9865 indicates that the upper bound is both unknown (at compile- time)
9866 and unknowable (at run-time) due to optimization.
9867
9868 We assume that a MEM rtx is safe because gcc wouldn't put the
9869 value there unless it was going to be used repeatedly in the
9870 function, i.e. for cleanups. */
9871 if (SAVE_EXPR_RTL (bound)
9872 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
9873 {
9874 dw_die_ref ctx = lookup_decl_die (current_function_decl);
9875 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
9876 rtx loc = SAVE_EXPR_RTL (bound);
9877
9878 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9879 it references an outer function's frame. */
9880 if (GET_CODE (loc) == MEM)
9881 {
9882 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9883
9884 if (XEXP (loc, 0) != new_addr)
9885 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
9886 }
9887
9888 add_AT_flag (decl_die, DW_AT_artificial, 1);
9889 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9890 add_AT_location_description (decl_die, DW_AT_location,
9891 loc_descriptor (loc));
9892 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9893 }
9894
9895 /* Else leave out the attribute. */
9896 break;
9897
9898 case VAR_DECL:
9899 case PARM_DECL:
9900 {
9901 dw_die_ref decl_die = lookup_decl_die (bound);
9902
9903 /* ??? Can this happen, or should the variable have been bound
9904 first? Probably it can, since I imagine that we try to create
9905 the types of parameters in the order in which they exist in
9906 the list, and won't have created a forward reference to a
9907 later parameter. */
9908 if (decl_die != NULL)
9909 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9910 break;
9911 }
9912
9913 default:
9914 {
9915 /* Otherwise try to create a stack operation procedure to
9916 evaluate the value of the array bound. */
9917
9918 dw_die_ref ctx, decl_die;
9919 dw_loc_descr_ref loc;
9920
9921 loc = loc_descriptor_from_tree (bound, 0);
9922 if (loc == NULL)
9923 break;
9924
9925 if (current_function_decl == 0)
9926 ctx = comp_unit_die;
9927 else
9928 ctx = lookup_decl_die (current_function_decl);
9929
9930 /* If we weren't able to find a context, it's most likely the case
9931 that we are processing the return type of the function. So
9932 make a SAVE_EXPR to point to it and have the limbo DIE code
9933 find the proper die. The save_expr function doesn't always
9934 make a SAVE_EXPR, so do it ourselves. */
9935 if (ctx == 0)
9936 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9937 current_function_decl, NULL_TREE);
9938
9939 decl_die = new_die (DW_TAG_variable, ctx, bound);
9940 add_AT_flag (decl_die, DW_AT_artificial, 1);
9941 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9942 add_AT_loc (decl_die, DW_AT_location, loc);
9943
9944 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9945 break;
9946 }
9947 }
9948 }
9949
9950 /* Note that the block of subscript information for an array type also
9951 includes information about the element type of type given array type. */
9952
9953 static void
9954 add_subscript_info (type_die, type)
9955 dw_die_ref type_die;
9956 tree type;
9957 {
9958 #ifndef MIPS_DEBUGGING_INFO
9959 unsigned dimension_number;
9960 #endif
9961 tree lower, upper;
9962 dw_die_ref subrange_die;
9963
9964 /* The GNU compilers represent multidimensional array types as sequences of
9965 one dimensional array types whose element types are themselves array
9966 types. Here we squish that down, so that each multidimensional array
9967 type gets only one array_type DIE in the Dwarf debugging info. The draft
9968 Dwarf specification say that we are allowed to do this kind of
9969 compression in C (because there is no difference between an array or
9970 arrays and a multidimensional array in C) but for other source languages
9971 (e.g. Ada) we probably shouldn't do this. */
9972
9973 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9974 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9975 We work around this by disabling this feature. See also
9976 gen_array_type_die. */
9977 #ifndef MIPS_DEBUGGING_INFO
9978 for (dimension_number = 0;
9979 TREE_CODE (type) == ARRAY_TYPE;
9980 type = TREE_TYPE (type), dimension_number++)
9981 #endif
9982 {
9983 tree domain = TYPE_DOMAIN (type);
9984
9985 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
9986 and (in GNU C only) variable bounds. Handle all three forms
9987 here. */
9988 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
9989 if (domain)
9990 {
9991 /* We have an array type with specified bounds. */
9992 lower = TYPE_MIN_VALUE (domain);
9993 upper = TYPE_MAX_VALUE (domain);
9994
9995 /* define the index type. */
9996 if (TREE_TYPE (domain))
9997 {
9998 /* ??? This is probably an Ada unnamed subrange type. Ignore the
9999 TREE_TYPE field. We can't emit debug info for this
10000 because it is an unnamed integral type. */
10001 if (TREE_CODE (domain) == INTEGER_TYPE
10002 && TYPE_NAME (domain) == NULL_TREE
10003 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10004 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10005 ;
10006 else
10007 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10008 type_die);
10009 }
10010
10011 /* ??? If upper is NULL, the array has unspecified length,
10012 but it does have a lower bound. This happens with Fortran
10013 dimension arr(N:*)
10014 Since the debugger is definitely going to need to know N
10015 to produce useful results, go ahead and output the lower
10016 bound solo, and hope the debugger can cope. */
10017
10018 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10019 if (upper)
10020 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10021 }
10022
10023 /* Otherwise we have an array type with an unspecified length. The
10024 DWARF-2 spec does not say how to handle this; let's just leave out the
10025 bounds. */
10026 }
10027 }
10028
10029 static void
10030 add_byte_size_attribute (die, tree_node)
10031 dw_die_ref die;
10032 tree tree_node;
10033 {
10034 unsigned size;
10035
10036 switch (TREE_CODE (tree_node))
10037 {
10038 case ERROR_MARK:
10039 size = 0;
10040 break;
10041 case ENUMERAL_TYPE:
10042 case RECORD_TYPE:
10043 case UNION_TYPE:
10044 case QUAL_UNION_TYPE:
10045 size = int_size_in_bytes (tree_node);
10046 break;
10047 case FIELD_DECL:
10048 /* For a data member of a struct or union, the DW_AT_byte_size is
10049 generally given as the number of bytes normally allocated for an
10050 object of the *declared* type of the member itself. This is true
10051 even for bit-fields. */
10052 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10053 break;
10054 default:
10055 abort ();
10056 }
10057
10058 /* Note that `size' might be -1 when we get to this point. If it is, that
10059 indicates that the byte size of the entity in question is variable. We
10060 have no good way of expressing this fact in Dwarf at the present time,
10061 so just let the -1 pass on through. */
10062 add_AT_unsigned (die, DW_AT_byte_size, size);
10063 }
10064
10065 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10066 which specifies the distance in bits from the highest order bit of the
10067 "containing object" for the bit-field to the highest order bit of the
10068 bit-field itself.
10069
10070 For any given bit-field, the "containing object" is a hypothetical object
10071 (of some integral or enum type) within which the given bit-field lives. The
10072 type of this hypothetical "containing object" is always the same as the
10073 declared type of the individual bit-field itself. The determination of the
10074 exact location of the "containing object" for a bit-field is rather
10075 complicated. It's handled by the `field_byte_offset' function (above).
10076
10077 Note that it is the size (in bytes) of the hypothetical "containing object"
10078 which will be given in the DW_AT_byte_size attribute for this bit-field.
10079 (See `byte_size_attribute' above). */
10080
10081 static inline void
10082 add_bit_offset_attribute (die, decl)
10083 dw_die_ref die;
10084 tree decl;
10085 {
10086 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10087 tree type = DECL_BIT_FIELD_TYPE (decl);
10088 HOST_WIDE_INT bitpos_int;
10089 HOST_WIDE_INT highest_order_object_bit_offset;
10090 HOST_WIDE_INT highest_order_field_bit_offset;
10091 HOST_WIDE_INT unsigned bit_offset;
10092
10093 /* Must be a field and a bit field. */
10094 if (!type
10095 || TREE_CODE (decl) != FIELD_DECL)
10096 abort ();
10097
10098 /* We can't yet handle bit-fields whose offsets are variable, so if we
10099 encounter such things, just return without generating any attribute
10100 whatsoever. Likewise for variable or too large size. */
10101 if (! host_integerp (bit_position (decl), 0)
10102 || ! host_integerp (DECL_SIZE (decl), 1))
10103 return;
10104
10105 bitpos_int = int_bit_position (decl);
10106
10107 /* Note that the bit offset is always the distance (in bits) from the
10108 highest-order bit of the "containing object" to the highest-order bit of
10109 the bit-field itself. Since the "high-order end" of any object or field
10110 is different on big-endian and little-endian machines, the computation
10111 below must take account of these differences. */
10112 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10113 highest_order_field_bit_offset = bitpos_int;
10114
10115 if (! BYTES_BIG_ENDIAN)
10116 {
10117 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10118 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10119 }
10120
10121 bit_offset
10122 = (! BYTES_BIG_ENDIAN
10123 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10124 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10125
10126 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10127 }
10128
10129 /* For a FIELD_DECL node which represents a bit field, output an attribute
10130 which specifies the length in bits of the given field. */
10131
10132 static inline void
10133 add_bit_size_attribute (die, decl)
10134 dw_die_ref die;
10135 tree decl;
10136 {
10137 /* Must be a field and a bit field. */
10138 if (TREE_CODE (decl) != FIELD_DECL
10139 || ! DECL_BIT_FIELD_TYPE (decl))
10140 abort ();
10141
10142 if (host_integerp (DECL_SIZE (decl), 1))
10143 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10144 }
10145
10146 /* If the compiled language is ANSI C, then add a 'prototyped'
10147 attribute, if arg types are given for the parameters of a function. */
10148
10149 static inline void
10150 add_prototyped_attribute (die, func_type)
10151 dw_die_ref die;
10152 tree func_type;
10153 {
10154 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10155 && TYPE_ARG_TYPES (func_type) != NULL)
10156 add_AT_flag (die, DW_AT_prototyped, 1);
10157 }
10158
10159 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10160 by looking in either the type declaration or object declaration
10161 equate table. */
10162
10163 static inline void
10164 add_abstract_origin_attribute (die, origin)
10165 dw_die_ref die;
10166 tree origin;
10167 {
10168 dw_die_ref origin_die = NULL;
10169
10170 if (TREE_CODE (origin) != FUNCTION_DECL)
10171 {
10172 /* We may have gotten separated from the block for the inlined
10173 function, if we're in an exception handler or some such; make
10174 sure that the abstract function has been written out.
10175
10176 Doing this for nested functions is wrong, however; functions are
10177 distinct units, and our context might not even be inline. */
10178 tree fn = origin;
10179
10180 if (TYPE_P (fn))
10181 fn = TYPE_STUB_DECL (fn);
10182
10183 fn = decl_function_context (fn);
10184 if (fn)
10185 dwarf2out_abstract_function (fn);
10186 }
10187
10188 if (DECL_P (origin))
10189 origin_die = lookup_decl_die (origin);
10190 else if (TYPE_P (origin))
10191 origin_die = lookup_type_die (origin);
10192
10193 if (origin_die == NULL)
10194 abort ();
10195
10196 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10197 }
10198
10199 /* We do not currently support the pure_virtual attribute. */
10200
10201 static inline void
10202 add_pure_or_virtual_attribute (die, func_decl)
10203 dw_die_ref die;
10204 tree func_decl;
10205 {
10206 if (DECL_VINDEX (func_decl))
10207 {
10208 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10209
10210 if (host_integerp (DECL_VINDEX (func_decl), 0))
10211 add_AT_loc (die, DW_AT_vtable_elem_location,
10212 new_loc_descr (DW_OP_constu,
10213 tree_low_cst (DECL_VINDEX (func_decl), 0),
10214 0));
10215
10216 /* GNU extension: Record what type this method came from originally. */
10217 if (debug_info_level > DINFO_LEVEL_TERSE)
10218 add_AT_die_ref (die, DW_AT_containing_type,
10219 lookup_type_die (DECL_CONTEXT (func_decl)));
10220 }
10221 }
10222 \f
10223 /* Add source coordinate attributes for the given decl. */
10224
10225 static void
10226 add_src_coords_attributes (die, decl)
10227 dw_die_ref die;
10228 tree decl;
10229 {
10230 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10231
10232 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10233 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10234 }
10235
10236 /* Add an DW_AT_name attribute and source coordinate attribute for the
10237 given decl, but only if it actually has a name. */
10238
10239 static void
10240 add_name_and_src_coords_attributes (die, decl)
10241 dw_die_ref die;
10242 tree decl;
10243 {
10244 tree decl_name;
10245
10246 decl_name = DECL_NAME (decl);
10247 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10248 {
10249 add_name_attribute (die, dwarf2_name (decl, 0));
10250 if (! DECL_ARTIFICIAL (decl))
10251 add_src_coords_attributes (die, decl);
10252
10253 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10254 && TREE_PUBLIC (decl)
10255 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10256 && !DECL_ABSTRACT (decl))
10257 add_AT_string (die, DW_AT_MIPS_linkage_name,
10258 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10259 }
10260
10261 #ifdef VMS_DEBUGGING_INFO
10262 /* Get the function's name, as described by its RTL. This may be different
10263 from the DECL_NAME name used in the source file. */
10264 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10265 {
10266 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10267 XEXP (DECL_RTL (decl), 0));
10268 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10269 }
10270 #endif
10271 }
10272
10273 /* Push a new declaration scope. */
10274
10275 static void
10276 push_decl_scope (scope)
10277 tree scope;
10278 {
10279 VARRAY_PUSH_TREE (decl_scope_table, scope);
10280 }
10281
10282 /* Pop a declaration scope. */
10283
10284 static inline void
10285 pop_decl_scope ()
10286 {
10287 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
10288 abort ();
10289
10290 VARRAY_POP (decl_scope_table);
10291 }
10292
10293 /* Return the DIE for the scope that immediately contains this type.
10294 Non-named types get global scope. Named types nested in other
10295 types get their containing scope if it's open, or global scope
10296 otherwise. All other types (i.e. function-local named types) get
10297 the current active scope. */
10298
10299 static dw_die_ref
10300 scope_die_for (t, context_die)
10301 tree t;
10302 dw_die_ref context_die;
10303 {
10304 dw_die_ref scope_die = NULL;
10305 tree containing_scope;
10306 int i;
10307
10308 /* Non-types always go in the current scope. */
10309 if (! TYPE_P (t))
10310 abort ();
10311
10312 containing_scope = TYPE_CONTEXT (t);
10313
10314 /* Ignore namespaces for the moment. */
10315 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10316 containing_scope = NULL_TREE;
10317
10318 /* Ignore function type "scopes" from the C frontend. They mean that
10319 a tagged type is local to a parmlist of a function declarator, but
10320 that isn't useful to DWARF. */
10321 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10322 containing_scope = NULL_TREE;
10323
10324 if (containing_scope == NULL_TREE)
10325 scope_die = comp_unit_die;
10326 else if (TYPE_P (containing_scope))
10327 {
10328 /* For types, we can just look up the appropriate DIE. But
10329 first we check to see if we're in the middle of emitting it
10330 so we know where the new DIE should go. */
10331 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10332 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10333 break;
10334
10335 if (i < 0)
10336 {
10337 if (debug_info_level > DINFO_LEVEL_TERSE
10338 && !TREE_ASM_WRITTEN (containing_scope))
10339 abort ();
10340
10341 /* If none of the current dies are suitable, we get file scope. */
10342 scope_die = comp_unit_die;
10343 }
10344 else
10345 scope_die = lookup_type_die (containing_scope);
10346 }
10347 else
10348 scope_die = context_die;
10349
10350 return scope_die;
10351 }
10352
10353 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10354
10355 static inline int
10356 local_scope_p (context_die)
10357 dw_die_ref context_die;
10358 {
10359 for (; context_die; context_die = context_die->die_parent)
10360 if (context_die->die_tag == DW_TAG_inlined_subroutine
10361 || context_die->die_tag == DW_TAG_subprogram)
10362 return 1;
10363
10364 return 0;
10365 }
10366
10367 /* Returns nonzero if CONTEXT_DIE is a class. */
10368
10369 static inline int
10370 class_scope_p (context_die)
10371 dw_die_ref context_die;
10372 {
10373 return (context_die
10374 && (context_die->die_tag == DW_TAG_structure_type
10375 || context_die->die_tag == DW_TAG_union_type));
10376 }
10377
10378 /* Many forms of DIEs require a "type description" attribute. This
10379 routine locates the proper "type descriptor" die for the type given
10380 by 'type', and adds an DW_AT_type attribute below the given die. */
10381
10382 static void
10383 add_type_attribute (object_die, type, decl_const, decl_volatile, context_die)
10384 dw_die_ref object_die;
10385 tree type;
10386 int decl_const;
10387 int decl_volatile;
10388 dw_die_ref context_die;
10389 {
10390 enum tree_code code = TREE_CODE (type);
10391 dw_die_ref type_die = NULL;
10392
10393 /* ??? If this type is an unnamed subrange type of an integral or
10394 floating-point type, use the inner type. This is because we have no
10395 support for unnamed types in base_type_die. This can happen if this is
10396 an Ada subrange type. Correct solution is emit a subrange type die. */
10397 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10398 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10399 type = TREE_TYPE (type), code = TREE_CODE (type);
10400
10401 if (code == ERROR_MARK
10402 /* Handle a special case. For functions whose return type is void, we
10403 generate *no* type attribute. (Note that no object may have type
10404 `void', so this only applies to function return types). */
10405 || code == VOID_TYPE)
10406 return;
10407
10408 type_die = modified_type_die (type,
10409 decl_const || TYPE_READONLY (type),
10410 decl_volatile || TYPE_VOLATILE (type),
10411 context_die);
10412
10413 if (type_die != NULL)
10414 add_AT_die_ref (object_die, DW_AT_type, type_die);
10415 }
10416
10417 /* Given a tree pointer to a struct, class, union, or enum type node, return
10418 a pointer to the (string) tag name for the given type, or zero if the type
10419 was declared without a tag. */
10420
10421 static const char *
10422 type_tag (type)
10423 tree type;
10424 {
10425 const char *name = 0;
10426
10427 if (TYPE_NAME (type) != 0)
10428 {
10429 tree t = 0;
10430
10431 /* Find the IDENTIFIER_NODE for the type name. */
10432 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10433 t = TYPE_NAME (type);
10434
10435 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10436 a TYPE_DECL node, regardless of whether or not a `typedef' was
10437 involved. */
10438 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10439 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10440 t = DECL_NAME (TYPE_NAME (type));
10441
10442 /* Now get the name as a string, or invent one. */
10443 if (t != 0)
10444 name = IDENTIFIER_POINTER (t);
10445 }
10446
10447 return (name == 0 || *name == '\0') ? 0 : name;
10448 }
10449
10450 /* Return the type associated with a data member, make a special check
10451 for bit field types. */
10452
10453 static inline tree
10454 member_declared_type (member)
10455 tree member;
10456 {
10457 return (DECL_BIT_FIELD_TYPE (member)
10458 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10459 }
10460
10461 /* Get the decl's label, as described by its RTL. This may be different
10462 from the DECL_NAME name used in the source file. */
10463
10464 #if 0
10465 static const char *
10466 decl_start_label (decl)
10467 tree decl;
10468 {
10469 rtx x;
10470 const char *fnname;
10471
10472 x = DECL_RTL (decl);
10473 if (GET_CODE (x) != MEM)
10474 abort ();
10475
10476 x = XEXP (x, 0);
10477 if (GET_CODE (x) != SYMBOL_REF)
10478 abort ();
10479
10480 fnname = XSTR (x, 0);
10481 return fnname;
10482 }
10483 #endif
10484 \f
10485 /* These routines generate the internal representation of the DIE's for
10486 the compilation unit. Debugging information is collected by walking
10487 the declaration trees passed in from dwarf2out_decl(). */
10488
10489 static void
10490 gen_array_type_die (type, context_die)
10491 tree type;
10492 dw_die_ref context_die;
10493 {
10494 dw_die_ref scope_die = scope_die_for (type, context_die);
10495 dw_die_ref array_die;
10496 tree element_type;
10497
10498 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10499 the inner array type comes before the outer array type. Thus we must
10500 call gen_type_die before we call new_die. See below also. */
10501 #ifdef MIPS_DEBUGGING_INFO
10502 gen_type_die (TREE_TYPE (type), context_die);
10503 #endif
10504
10505 array_die = new_die (DW_TAG_array_type, scope_die, type);
10506 add_name_attribute (array_die, type_tag (type));
10507 equate_type_number_to_die (type, array_die);
10508
10509 if (TREE_CODE (type) == VECTOR_TYPE)
10510 {
10511 /* The frontend feeds us a representation for the vector as a struct
10512 containing an array. Pull out the array type. */
10513 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10514 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10515 }
10516
10517 #if 0
10518 /* We default the array ordering. SDB will probably do
10519 the right things even if DW_AT_ordering is not present. It's not even
10520 an issue until we start to get into multidimensional arrays anyway. If
10521 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10522 then we'll have to put the DW_AT_ordering attribute back in. (But if
10523 and when we find out that we need to put these in, we will only do so
10524 for multidimensional arrays. */
10525 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10526 #endif
10527
10528 #ifdef MIPS_DEBUGGING_INFO
10529 /* The SGI compilers handle arrays of unknown bound by setting
10530 AT_declaration and not emitting any subrange DIEs. */
10531 if (! TYPE_DOMAIN (type))
10532 add_AT_unsigned (array_die, DW_AT_declaration, 1);
10533 else
10534 #endif
10535 add_subscript_info (array_die, type);
10536
10537 /* Add representation of the type of the elements of this array type. */
10538 element_type = TREE_TYPE (type);
10539
10540 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10541 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10542 We work around this by disabling this feature. See also
10543 add_subscript_info. */
10544 #ifndef MIPS_DEBUGGING_INFO
10545 while (TREE_CODE (element_type) == ARRAY_TYPE)
10546 element_type = TREE_TYPE (element_type);
10547
10548 gen_type_die (element_type, context_die);
10549 #endif
10550
10551 add_type_attribute (array_die, element_type, 0, 0, context_die);
10552 }
10553
10554 static void
10555 gen_set_type_die (type, context_die)
10556 tree type;
10557 dw_die_ref context_die;
10558 {
10559 dw_die_ref type_die
10560 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10561
10562 equate_type_number_to_die (type, type_die);
10563 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10564 }
10565
10566 #if 0
10567 static void
10568 gen_entry_point_die (decl, context_die)
10569 tree decl;
10570 dw_die_ref context_die;
10571 {
10572 tree origin = decl_ultimate_origin (decl);
10573 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10574
10575 if (origin != NULL)
10576 add_abstract_origin_attribute (decl_die, origin);
10577 else
10578 {
10579 add_name_and_src_coords_attributes (decl_die, decl);
10580 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10581 0, 0, context_die);
10582 }
10583
10584 if (DECL_ABSTRACT (decl))
10585 equate_decl_number_to_die (decl, decl_die);
10586 else
10587 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10588 }
10589 #endif
10590
10591 /* Walk through the list of incomplete types again, trying once more to
10592 emit full debugging info for them. */
10593
10594 static void
10595 retry_incomplete_types ()
10596 {
10597 int i;
10598
10599 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10600 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10601 }
10602
10603 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10604
10605 static void
10606 gen_inlined_enumeration_type_die (type, context_die)
10607 tree type;
10608 dw_die_ref context_die;
10609 {
10610 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10611
10612 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10613 be incomplete and such types are not marked. */
10614 add_abstract_origin_attribute (type_die, type);
10615 }
10616
10617 /* Generate a DIE to represent an inlined instance of a structure type. */
10618
10619 static void
10620 gen_inlined_structure_type_die (type, context_die)
10621 tree type;
10622 dw_die_ref context_die;
10623 {
10624 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10625
10626 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10627 be incomplete and such types are not marked. */
10628 add_abstract_origin_attribute (type_die, type);
10629 }
10630
10631 /* Generate a DIE to represent an inlined instance of a union type. */
10632
10633 static void
10634 gen_inlined_union_type_die (type, context_die)
10635 tree type;
10636 dw_die_ref context_die;
10637 {
10638 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10639
10640 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10641 be incomplete and such types are not marked. */
10642 add_abstract_origin_attribute (type_die, type);
10643 }
10644
10645 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10646 include all of the information about the enumeration values also. Each
10647 enumerated type name/value is listed as a child of the enumerated type
10648 DIE. */
10649
10650 static void
10651 gen_enumeration_type_die (type, context_die)
10652 tree type;
10653 dw_die_ref context_die;
10654 {
10655 dw_die_ref type_die = lookup_type_die (type);
10656
10657 if (type_die == NULL)
10658 {
10659 type_die = new_die (DW_TAG_enumeration_type,
10660 scope_die_for (type, context_die), type);
10661 equate_type_number_to_die (type, type_die);
10662 add_name_attribute (type_die, type_tag (type));
10663 }
10664 else if (! TYPE_SIZE (type))
10665 return;
10666 else
10667 remove_AT (type_die, DW_AT_declaration);
10668
10669 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10670 given enum type is incomplete, do not generate the DW_AT_byte_size
10671 attribute or the DW_AT_element_list attribute. */
10672 if (TYPE_SIZE (type))
10673 {
10674 tree link;
10675
10676 TREE_ASM_WRITTEN (type) = 1;
10677 add_byte_size_attribute (type_die, type);
10678 if (TYPE_STUB_DECL (type) != NULL_TREE)
10679 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10680
10681 /* If the first reference to this type was as the return type of an
10682 inline function, then it may not have a parent. Fix this now. */
10683 if (type_die->die_parent == NULL)
10684 add_child_die (scope_die_for (type, context_die), type_die);
10685
10686 for (link = TYPE_FIELDS (type);
10687 link != NULL; link = TREE_CHAIN (link))
10688 {
10689 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10690
10691 add_name_attribute (enum_die,
10692 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10693
10694 if (host_integerp (TREE_VALUE (link), 0))
10695 {
10696 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
10697 add_AT_int (enum_die, DW_AT_const_value,
10698 tree_low_cst (TREE_VALUE (link), 0));
10699 else
10700 add_AT_unsigned (enum_die, DW_AT_const_value,
10701 tree_low_cst (TREE_VALUE (link), 0));
10702 }
10703 }
10704 }
10705 else
10706 add_AT_flag (type_die, DW_AT_declaration, 1);
10707 }
10708
10709 /* Generate a DIE to represent either a real live formal parameter decl or to
10710 represent just the type of some formal parameter position in some function
10711 type.
10712
10713 Note that this routine is a bit unusual because its argument may be a
10714 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10715 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10716 node. If it's the former then this function is being called to output a
10717 DIE to represent a formal parameter object (or some inlining thereof). If
10718 it's the latter, then this function is only being called to output a
10719 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10720 argument type of some subprogram type. */
10721
10722 static dw_die_ref
10723 gen_formal_parameter_die (node, context_die)
10724 tree node;
10725 dw_die_ref context_die;
10726 {
10727 dw_die_ref parm_die
10728 = new_die (DW_TAG_formal_parameter, context_die, node);
10729 tree origin;
10730
10731 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10732 {
10733 case 'd':
10734 origin = decl_ultimate_origin (node);
10735 if (origin != NULL)
10736 add_abstract_origin_attribute (parm_die, origin);
10737 else
10738 {
10739 add_name_and_src_coords_attributes (parm_die, node);
10740 add_type_attribute (parm_die, TREE_TYPE (node),
10741 TREE_READONLY (node),
10742 TREE_THIS_VOLATILE (node),
10743 context_die);
10744 if (DECL_ARTIFICIAL (node))
10745 add_AT_flag (parm_die, DW_AT_artificial, 1);
10746 }
10747
10748 equate_decl_number_to_die (node, parm_die);
10749 if (! DECL_ABSTRACT (node))
10750 add_location_or_const_value_attribute (parm_die, node);
10751
10752 break;
10753
10754 case 't':
10755 /* We were called with some kind of a ..._TYPE node. */
10756 add_type_attribute (parm_die, node, 0, 0, context_die);
10757 break;
10758
10759 default:
10760 abort ();
10761 }
10762
10763 return parm_die;
10764 }
10765
10766 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10767 at the end of an (ANSI prototyped) formal parameters list. */
10768
10769 static void
10770 gen_unspecified_parameters_die (decl_or_type, context_die)
10771 tree decl_or_type;
10772 dw_die_ref context_die;
10773 {
10774 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10775 }
10776
10777 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10778 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10779 parameters as specified in some function type specification (except for
10780 those which appear as part of a function *definition*). */
10781
10782 static void
10783 gen_formal_types_die (function_or_method_type, context_die)
10784 tree function_or_method_type;
10785 dw_die_ref context_die;
10786 {
10787 tree link;
10788 tree formal_type = NULL;
10789 tree first_parm_type;
10790 tree arg;
10791
10792 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10793 {
10794 arg = DECL_ARGUMENTS (function_or_method_type);
10795 function_or_method_type = TREE_TYPE (function_or_method_type);
10796 }
10797 else
10798 arg = NULL_TREE;
10799
10800 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10801
10802 /* Make our first pass over the list of formal parameter types and output a
10803 DW_TAG_formal_parameter DIE for each one. */
10804 for (link = first_parm_type; link; )
10805 {
10806 dw_die_ref parm_die;
10807
10808 formal_type = TREE_VALUE (link);
10809 if (formal_type == void_type_node)
10810 break;
10811
10812 /* Output a (nameless) DIE to represent the formal parameter itself. */
10813 parm_die = gen_formal_parameter_die (formal_type, context_die);
10814 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10815 && link == first_parm_type)
10816 || (arg && DECL_ARTIFICIAL (arg)))
10817 add_AT_flag (parm_die, DW_AT_artificial, 1);
10818
10819 link = TREE_CHAIN (link);
10820 if (arg)
10821 arg = TREE_CHAIN (arg);
10822 }
10823
10824 /* If this function type has an ellipsis, add a
10825 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10826 if (formal_type != void_type_node)
10827 gen_unspecified_parameters_die (function_or_method_type, context_die);
10828
10829 /* Make our second (and final) pass over the list of formal parameter types
10830 and output DIEs to represent those types (as necessary). */
10831 for (link = TYPE_ARG_TYPES (function_or_method_type);
10832 link && TREE_VALUE (link);
10833 link = TREE_CHAIN (link))
10834 gen_type_die (TREE_VALUE (link), context_die);
10835 }
10836
10837 /* We want to generate the DIE for TYPE so that we can generate the
10838 die for MEMBER, which has been defined; we will need to refer back
10839 to the member declaration nested within TYPE. If we're trying to
10840 generate minimal debug info for TYPE, processing TYPE won't do the
10841 trick; we need to attach the member declaration by hand. */
10842
10843 static void
10844 gen_type_die_for_member (type, member, context_die)
10845 tree type, member;
10846 dw_die_ref context_die;
10847 {
10848 gen_type_die (type, context_die);
10849
10850 /* If we're trying to avoid duplicate debug info, we may not have
10851 emitted the member decl for this function. Emit it now. */
10852 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10853 && ! lookup_decl_die (member))
10854 {
10855 if (decl_ultimate_origin (member))
10856 abort ();
10857
10858 push_decl_scope (type);
10859 if (TREE_CODE (member) == FUNCTION_DECL)
10860 gen_subprogram_die (member, lookup_type_die (type));
10861 else
10862 gen_variable_die (member, lookup_type_die (type));
10863
10864 pop_decl_scope ();
10865 }
10866 }
10867
10868 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10869 may later generate inlined and/or out-of-line instances of. */
10870
10871 static void
10872 dwarf2out_abstract_function (decl)
10873 tree decl;
10874 {
10875 dw_die_ref old_die;
10876 tree save_fn;
10877 tree context;
10878 int was_abstract = DECL_ABSTRACT (decl);
10879
10880 /* Make sure we have the actual abstract inline, not a clone. */
10881 decl = DECL_ORIGIN (decl);
10882
10883 old_die = lookup_decl_die (decl);
10884 if (old_die && get_AT_unsigned (old_die, DW_AT_inline))
10885 /* We've already generated the abstract instance. */
10886 return;
10887
10888 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10889 we don't get confused by DECL_ABSTRACT. */
10890 if (debug_info_level > DINFO_LEVEL_TERSE)
10891 {
10892 context = decl_class_context (decl);
10893 if (context)
10894 gen_type_die_for_member
10895 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10896 }
10897
10898 /* Pretend we've just finished compiling this function. */
10899 save_fn = current_function_decl;
10900 current_function_decl = decl;
10901
10902 set_decl_abstract_flags (decl, 1);
10903 dwarf2out_decl (decl);
10904 if (! was_abstract)
10905 set_decl_abstract_flags (decl, 0);
10906
10907 current_function_decl = save_fn;
10908 }
10909
10910 /* Generate a DIE to represent a declared function (either file-scope or
10911 block-local). */
10912
10913 static void
10914 gen_subprogram_die (decl, context_die)
10915 tree decl;
10916 dw_die_ref context_die;
10917 {
10918 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10919 tree origin = decl_ultimate_origin (decl);
10920 dw_die_ref subr_die;
10921 rtx fp_reg;
10922 tree fn_arg_types;
10923 tree outer_scope;
10924 dw_die_ref old_die = lookup_decl_die (decl);
10925 int declaration = (current_function_decl != decl
10926 || class_scope_p (context_die));
10927
10928 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10929 started to generate the abstract instance of an inline, decided to output
10930 its containing class, and proceeded to emit the declaration of the inline
10931 from the member list for the class. If so, DECLARATION takes priority;
10932 we'll get back to the abstract instance when done with the class. */
10933
10934 /* The class-scope declaration DIE must be the primary DIE. */
10935 if (origin && declaration && class_scope_p (context_die))
10936 {
10937 origin = NULL;
10938 if (old_die)
10939 abort ();
10940 }
10941
10942 if (origin != NULL)
10943 {
10944 if (declaration && ! local_scope_p (context_die))
10945 abort ();
10946
10947 /* Fixup die_parent for the abstract instance of a nested
10948 inline function. */
10949 if (old_die && old_die->die_parent == NULL)
10950 add_child_die (context_die, old_die);
10951
10952 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10953 add_abstract_origin_attribute (subr_die, origin);
10954 }
10955 else if (old_die)
10956 {
10957 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10958
10959 if (!get_AT_flag (old_die, DW_AT_declaration)
10960 /* We can have a normal definition following an inline one in the
10961 case of redefinition of GNU C extern inlines.
10962 It seems reasonable to use AT_specification in this case. */
10963 && !get_AT_unsigned (old_die, DW_AT_inline))
10964 {
10965 /* ??? This can happen if there is a bug in the program, for
10966 instance, if it has duplicate function definitions. Ideally,
10967 we should detect this case and ignore it. For now, if we have
10968 already reported an error, any error at all, then assume that
10969 we got here because of an input error, not a dwarf2 bug. */
10970 if (errorcount)
10971 return;
10972 abort ();
10973 }
10974
10975 /* If the definition comes from the same place as the declaration,
10976 maybe use the old DIE. We always want the DIE for this function
10977 that has the *_pc attributes to be under comp_unit_die so the
10978 debugger can find it. We also need to do this for abstract
10979 instances of inlines, since the spec requires the out-of-line copy
10980 to have the same parent. For local class methods, this doesn't
10981 apply; we just use the old DIE. */
10982 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
10983 && (DECL_ARTIFICIAL (decl)
10984 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10985 && (get_AT_unsigned (old_die, DW_AT_decl_line)
10986 == (unsigned) DECL_SOURCE_LINE (decl)))))
10987 {
10988 subr_die = old_die;
10989
10990 /* Clear out the declaration attribute and the parm types. */
10991 remove_AT (subr_die, DW_AT_declaration);
10992 remove_children (subr_die);
10993 }
10994 else
10995 {
10996 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10997 add_AT_die_ref (subr_die, DW_AT_specification, old_die);
10998 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10999 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
11000 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11001 != (unsigned) DECL_SOURCE_LINE (decl))
11002 add_AT_unsigned
11003 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
11004 }
11005 }
11006 else
11007 {
11008 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11009
11010 if (TREE_PUBLIC (decl))
11011 add_AT_flag (subr_die, DW_AT_external, 1);
11012
11013 add_name_and_src_coords_attributes (subr_die, decl);
11014 if (debug_info_level > DINFO_LEVEL_TERSE)
11015 {
11016 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11017 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11018 0, 0, context_die);
11019 }
11020
11021 add_pure_or_virtual_attribute (subr_die, decl);
11022 if (DECL_ARTIFICIAL (decl))
11023 add_AT_flag (subr_die, DW_AT_artificial, 1);
11024
11025 if (TREE_PROTECTED (decl))
11026 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11027 else if (TREE_PRIVATE (decl))
11028 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11029 }
11030
11031 if (declaration)
11032 {
11033 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
11034 {
11035 add_AT_flag (subr_die, DW_AT_declaration, 1);
11036
11037 /* The first time we see a member function, it is in the context of
11038 the class to which it belongs. We make sure of this by emitting
11039 the class first. The next time is the definition, which is
11040 handled above. The two may come from the same source text. */
11041 if (DECL_CONTEXT (decl) || DECL_ABSTRACT (decl))
11042 equate_decl_number_to_die (decl, subr_die);
11043 }
11044 }
11045 else if (DECL_ABSTRACT (decl))
11046 {
11047 if (DECL_INLINE (decl) && !flag_no_inline)
11048 {
11049 /* ??? Checking DECL_DEFER_OUTPUT is correct for static
11050 inline functions, but not for extern inline functions.
11051 We can't get this completely correct because information
11052 about whether the function was declared inline is not
11053 saved anywhere. */
11054 if (DECL_DEFER_OUTPUT (decl))
11055 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11056 else
11057 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11058 }
11059 else
11060 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11061
11062 equate_decl_number_to_die (decl, subr_die);
11063 }
11064 else if (!DECL_EXTERNAL (decl))
11065 {
11066 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
11067 equate_decl_number_to_die (decl, subr_die);
11068
11069 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11070 current_function_funcdef_no);
11071 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11072 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11073 current_function_funcdef_no);
11074 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11075
11076 add_pubname (decl, subr_die);
11077 add_arange (decl, subr_die);
11078
11079 #ifdef MIPS_DEBUGGING_INFO
11080 /* Add a reference to the FDE for this routine. */
11081 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11082 #endif
11083
11084 /* Define the "frame base" location for this routine. We use the
11085 frame pointer or stack pointer registers, since the RTL for local
11086 variables is relative to one of them. */
11087 fp_reg
11088 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11089 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11090
11091 #if 0
11092 /* ??? This fails for nested inline functions, because context_display
11093 is not part of the state saved/restored for inline functions. */
11094 if (current_function_needs_context)
11095 add_AT_location_description (subr_die, DW_AT_static_link,
11096 loc_descriptor (lookup_static_chain (decl)));
11097 #endif
11098 }
11099
11100 /* Now output descriptions of the arguments for this function. This gets
11101 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11102 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11103 `...' at the end of the formal parameter list. In order to find out if
11104 there was a trailing ellipsis or not, we must instead look at the type
11105 associated with the FUNCTION_DECL. This will be a node of type
11106 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11107 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11108 an ellipsis at the end. */
11109
11110 /* In the case where we are describing a mere function declaration, all we
11111 need to do here (and all we *can* do here) is to describe the *types* of
11112 its formal parameters. */
11113 if (debug_info_level <= DINFO_LEVEL_TERSE)
11114 ;
11115 else if (declaration)
11116 gen_formal_types_die (decl, subr_die);
11117 else
11118 {
11119 /* Generate DIEs to represent all known formal parameters */
11120 tree arg_decls = DECL_ARGUMENTS (decl);
11121 tree parm;
11122
11123 /* When generating DIEs, generate the unspecified_parameters DIE
11124 instead if we come across the arg "__builtin_va_alist" */
11125 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11126 if (TREE_CODE (parm) == PARM_DECL)
11127 {
11128 if (DECL_NAME (parm)
11129 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11130 "__builtin_va_alist"))
11131 gen_unspecified_parameters_die (parm, subr_die);
11132 else
11133 gen_decl_die (parm, subr_die);
11134 }
11135
11136 /* Decide whether we need an unspecified_parameters DIE at the end.
11137 There are 2 more cases to do this for: 1) the ansi ... declaration -
11138 this is detectable when the end of the arg list is not a
11139 void_type_node 2) an unprototyped function declaration (not a
11140 definition). This just means that we have no info about the
11141 parameters at all. */
11142 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11143 if (fn_arg_types != NULL)
11144 {
11145 /* this is the prototyped case, check for ... */
11146 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11147 gen_unspecified_parameters_die (decl, subr_die);
11148 }
11149 else if (DECL_INITIAL (decl) == NULL_TREE)
11150 gen_unspecified_parameters_die (decl, subr_die);
11151 }
11152
11153 /* Output Dwarf info for all of the stuff within the body of the function
11154 (if it has one - it may be just a declaration). */
11155 outer_scope = DECL_INITIAL (decl);
11156
11157 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11158 a function. This BLOCK actually represents the outermost binding contour
11159 for the function, i.e. the contour in which the function's formal
11160 parameters and labels get declared. Curiously, it appears that the front
11161 end doesn't actually put the PARM_DECL nodes for the current function onto
11162 the BLOCK_VARS list for this outer scope, but are strung off of the
11163 DECL_ARGUMENTS list for the function instead.
11164
11165 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11166 the LABEL_DECL nodes for the function however, and we output DWARF info
11167 for those in decls_for_scope. Just within the `outer_scope' there will be
11168 a BLOCK node representing the function's outermost pair of curly braces,
11169 and any blocks used for the base and member initializers of a C++
11170 constructor function. */
11171 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11172 {
11173 current_function_has_inlines = 0;
11174 decls_for_scope (outer_scope, subr_die, 0);
11175
11176 #if 0 && defined (MIPS_DEBUGGING_INFO)
11177 if (current_function_has_inlines)
11178 {
11179 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11180 if (! comp_unit_has_inlines)
11181 {
11182 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11183 comp_unit_has_inlines = 1;
11184 }
11185 }
11186 #endif
11187 }
11188 }
11189
11190 /* Generate a DIE to represent a declared data object. */
11191
11192 static void
11193 gen_variable_die (decl, context_die)
11194 tree decl;
11195 dw_die_ref context_die;
11196 {
11197 tree origin = decl_ultimate_origin (decl);
11198 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11199
11200 dw_die_ref old_die = lookup_decl_die (decl);
11201 int declaration = (DECL_EXTERNAL (decl)
11202 || class_scope_p (context_die));
11203
11204 if (origin != NULL)
11205 add_abstract_origin_attribute (var_die, origin);
11206
11207 /* Loop unrolling can create multiple blocks that refer to the same
11208 static variable, so we must test for the DW_AT_declaration flag.
11209
11210 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11211 copy decls and set the DECL_ABSTRACT flag on them instead of
11212 sharing them.
11213
11214 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11215 else if (old_die && TREE_STATIC (decl)
11216 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11217 {
11218 /* This is a definition of a C++ class level static. */
11219 add_AT_die_ref (var_die, DW_AT_specification, old_die);
11220 if (DECL_NAME (decl))
11221 {
11222 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
11223
11224 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11225 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11226
11227 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11228 != (unsigned) DECL_SOURCE_LINE (decl))
11229
11230 add_AT_unsigned (var_die, DW_AT_decl_line,
11231 DECL_SOURCE_LINE (decl));
11232 }
11233 }
11234 else
11235 {
11236 add_name_and_src_coords_attributes (var_die, decl);
11237 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11238 TREE_THIS_VOLATILE (decl), context_die);
11239
11240 if (TREE_PUBLIC (decl))
11241 add_AT_flag (var_die, DW_AT_external, 1);
11242
11243 if (DECL_ARTIFICIAL (decl))
11244 add_AT_flag (var_die, DW_AT_artificial, 1);
11245
11246 if (TREE_PROTECTED (decl))
11247 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11248 else if (TREE_PRIVATE (decl))
11249 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11250 }
11251
11252 if (declaration)
11253 add_AT_flag (var_die, DW_AT_declaration, 1);
11254
11255 if (class_scope_p (context_die) || DECL_ABSTRACT (decl))
11256 equate_decl_number_to_die (decl, var_die);
11257
11258 if (! declaration && ! DECL_ABSTRACT (decl))
11259 {
11260 add_location_or_const_value_attribute (var_die, decl);
11261 add_pubname (decl, var_die);
11262 }
11263 else
11264 tree_add_const_value_attribute (var_die, decl);
11265 }
11266
11267 /* Generate a DIE to represent a label identifier. */
11268
11269 static void
11270 gen_label_die (decl, context_die)
11271 tree decl;
11272 dw_die_ref context_die;
11273 {
11274 tree origin = decl_ultimate_origin (decl);
11275 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11276 rtx insn;
11277 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11278
11279 if (origin != NULL)
11280 add_abstract_origin_attribute (lbl_die, origin);
11281 else
11282 add_name_and_src_coords_attributes (lbl_die, decl);
11283
11284 if (DECL_ABSTRACT (decl))
11285 equate_decl_number_to_die (decl, lbl_die);
11286 else
11287 {
11288 insn = DECL_RTL (decl);
11289
11290 /* Deleted labels are programmer specified labels which have been
11291 eliminated because of various optimisations. We still emit them
11292 here so that it is possible to put breakpoints on them. */
11293 if (GET_CODE (insn) == CODE_LABEL
11294 || ((GET_CODE (insn) == NOTE
11295 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
11296 {
11297 /* When optimization is enabled (via -O) some parts of the compiler
11298 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11299 represent source-level labels which were explicitly declared by
11300 the user. This really shouldn't be happening though, so catch
11301 it if it ever does happen. */
11302 if (INSN_DELETED_P (insn))
11303 abort ();
11304
11305 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11306 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11307 }
11308 }
11309 }
11310
11311 /* Generate a DIE for a lexical block. */
11312
11313 static void
11314 gen_lexical_block_die (stmt, context_die, depth)
11315 tree stmt;
11316 dw_die_ref context_die;
11317 int depth;
11318 {
11319 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11320 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11321
11322 if (! BLOCK_ABSTRACT (stmt))
11323 {
11324 if (BLOCK_FRAGMENT_CHAIN (stmt))
11325 {
11326 tree chain;
11327
11328 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11329
11330 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11331 do
11332 {
11333 add_ranges (chain);
11334 chain = BLOCK_FRAGMENT_CHAIN (chain);
11335 }
11336 while (chain);
11337 add_ranges (NULL);
11338 }
11339 else
11340 {
11341 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11342 BLOCK_NUMBER (stmt));
11343 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11344 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11345 BLOCK_NUMBER (stmt));
11346 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11347 }
11348 }
11349
11350 decls_for_scope (stmt, stmt_die, depth);
11351 }
11352
11353 /* Generate a DIE for an inlined subprogram. */
11354
11355 static void
11356 gen_inlined_subroutine_die (stmt, context_die, depth)
11357 tree stmt;
11358 dw_die_ref context_die;
11359 int depth;
11360 {
11361 if (! BLOCK_ABSTRACT (stmt))
11362 {
11363 dw_die_ref subr_die
11364 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11365 tree decl = block_ultimate_origin (stmt);
11366 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11367
11368 /* Emit info for the abstract instance first, if we haven't yet. */
11369 dwarf2out_abstract_function (decl);
11370
11371 add_abstract_origin_attribute (subr_die, decl);
11372 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11373 BLOCK_NUMBER (stmt));
11374 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11375 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11376 BLOCK_NUMBER (stmt));
11377 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11378 decls_for_scope (stmt, subr_die, depth);
11379 current_function_has_inlines = 1;
11380 }
11381 else
11382 /* We may get here if we're the outer block of function A that was
11383 inlined into function B that was inlined into function C. When
11384 generating debugging info for C, dwarf2out_abstract_function(B)
11385 would mark all inlined blocks as abstract, including this one.
11386 So, we wouldn't (and shouldn't) expect labels to be generated
11387 for this one. Instead, just emit debugging info for
11388 declarations within the block. This is particularly important
11389 in the case of initializers of arguments passed from B to us:
11390 if they're statement expressions containing declarations, we
11391 wouldn't generate dies for their abstract variables, and then,
11392 when generating dies for the real variables, we'd die (pun
11393 intended :-) */
11394 gen_lexical_block_die (stmt, context_die, depth);
11395 }
11396
11397 /* Generate a DIE for a field in a record, or structure. */
11398
11399 static void
11400 gen_field_die (decl, context_die)
11401 tree decl;
11402 dw_die_ref context_die;
11403 {
11404 dw_die_ref decl_die = new_die (DW_TAG_member, context_die, decl);
11405
11406 add_name_and_src_coords_attributes (decl_die, decl);
11407 add_type_attribute (decl_die, member_declared_type (decl),
11408 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11409 context_die);
11410
11411 if (DECL_BIT_FIELD_TYPE (decl))
11412 {
11413 add_byte_size_attribute (decl_die, decl);
11414 add_bit_size_attribute (decl_die, decl);
11415 add_bit_offset_attribute (decl_die, decl);
11416 }
11417
11418 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11419 add_data_member_location_attribute (decl_die, decl);
11420
11421 if (DECL_ARTIFICIAL (decl))
11422 add_AT_flag (decl_die, DW_AT_artificial, 1);
11423
11424 if (TREE_PROTECTED (decl))
11425 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11426 else if (TREE_PRIVATE (decl))
11427 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11428 }
11429
11430 #if 0
11431 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11432 Use modified_type_die instead.
11433 We keep this code here just in case these types of DIEs may be needed to
11434 represent certain things in other languages (e.g. Pascal) someday. */
11435
11436 static void
11437 gen_pointer_type_die (type, context_die)
11438 tree type;
11439 dw_die_ref context_die;
11440 {
11441 dw_die_ref ptr_die
11442 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11443
11444 equate_type_number_to_die (type, ptr_die);
11445 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11446 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11447 }
11448
11449 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11450 Use modified_type_die instead.
11451 We keep this code here just in case these types of DIEs may be needed to
11452 represent certain things in other languages (e.g. Pascal) someday. */
11453
11454 static void
11455 gen_reference_type_die (type, context_die)
11456 tree type;
11457 dw_die_ref context_die;
11458 {
11459 dw_die_ref ref_die
11460 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11461
11462 equate_type_number_to_die (type, ref_die);
11463 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11464 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11465 }
11466 #endif
11467
11468 /* Generate a DIE for a pointer to a member type. */
11469
11470 static void
11471 gen_ptr_to_mbr_type_die (type, context_die)
11472 tree type;
11473 dw_die_ref context_die;
11474 {
11475 dw_die_ref ptr_die
11476 = new_die (DW_TAG_ptr_to_member_type,
11477 scope_die_for (type, context_die), type);
11478
11479 equate_type_number_to_die (type, ptr_die);
11480 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11481 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11482 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11483 }
11484
11485 /* Generate the DIE for the compilation unit. */
11486
11487 static dw_die_ref
11488 gen_compile_unit_die (filename)
11489 const char *filename;
11490 {
11491 dw_die_ref die;
11492 char producer[250];
11493 const char *language_string = lang_hooks.name;
11494 int language;
11495
11496 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11497
11498 if (filename)
11499 {
11500 add_name_attribute (die, filename);
11501 if (filename[0] != DIR_SEPARATOR)
11502 add_comp_dir_attribute (die);
11503 }
11504
11505 sprintf (producer, "%s %s", language_string, version_string);
11506
11507 #ifdef MIPS_DEBUGGING_INFO
11508 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11509 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11510 not appear in the producer string, the debugger reaches the conclusion
11511 that the object file is stripped and has no debugging information.
11512 To get the MIPS/SGI debugger to believe that there is debugging
11513 information in the object file, we add a -g to the producer string. */
11514 if (debug_info_level > DINFO_LEVEL_TERSE)
11515 strcat (producer, " -g");
11516 #endif
11517
11518 add_AT_string (die, DW_AT_producer, producer);
11519
11520 if (strcmp (language_string, "GNU C++") == 0)
11521 language = DW_LANG_C_plus_plus;
11522 else if (strcmp (language_string, "GNU Ada") == 0)
11523 language = DW_LANG_Ada95;
11524 else if (strcmp (language_string, "GNU F77") == 0)
11525 language = DW_LANG_Fortran77;
11526 else if (strcmp (language_string, "GNU Pascal") == 0)
11527 language = DW_LANG_Pascal83;
11528 else if (strcmp (language_string, "GNU Java") == 0)
11529 language = DW_LANG_Java;
11530 else
11531 language = DW_LANG_C89;
11532
11533 add_AT_unsigned (die, DW_AT_language, language);
11534 return die;
11535 }
11536
11537 /* Generate a DIE for a string type. */
11538
11539 static void
11540 gen_string_type_die (type, context_die)
11541 tree type;
11542 dw_die_ref context_die;
11543 {
11544 dw_die_ref type_die
11545 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11546
11547 equate_type_number_to_die (type, type_die);
11548
11549 /* ??? Fudge the string length attribute for now.
11550 TODO: add string length info. */
11551 #if 0
11552 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11553 bound_representation (upper_bound, 0, 'u');
11554 #endif
11555 }
11556
11557 /* Generate the DIE for a base class. */
11558
11559 static void
11560 gen_inheritance_die (binfo, access, context_die)
11561 tree binfo, access;
11562 dw_die_ref context_die;
11563 {
11564 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11565
11566 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11567 add_data_member_location_attribute (die, binfo);
11568
11569 if (TREE_VIA_VIRTUAL (binfo))
11570 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11571
11572 if (access == access_public_node)
11573 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11574 else if (access == access_protected_node)
11575 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11576 }
11577
11578 /* Generate a DIE for a class member. */
11579
11580 static void
11581 gen_member_die (type, context_die)
11582 tree type;
11583 dw_die_ref context_die;
11584 {
11585 tree member;
11586 tree binfo = TYPE_BINFO (type);
11587 dw_die_ref child;
11588
11589 /* If this is not an incomplete type, output descriptions of each of its
11590 members. Note that as we output the DIEs necessary to represent the
11591 members of this record or union type, we will also be trying to output
11592 DIEs to represent the *types* of those members. However the `type'
11593 function (above) will specifically avoid generating type DIEs for member
11594 types *within* the list of member DIEs for this (containing) type except
11595 for those types (of members) which are explicitly marked as also being
11596 members of this (containing) type themselves. The g++ front- end can
11597 force any given type to be treated as a member of some other (containing)
11598 type by setting the TYPE_CONTEXT of the given (member) type to point to
11599 the TREE node representing the appropriate (containing) type. */
11600
11601 /* First output info about the base classes. */
11602 if (binfo && BINFO_BASETYPES (binfo))
11603 {
11604 tree bases = BINFO_BASETYPES (binfo);
11605 tree accesses = BINFO_BASEACCESSES (binfo);
11606 int n_bases = TREE_VEC_LENGTH (bases);
11607 int i;
11608
11609 for (i = 0; i < n_bases; i++)
11610 gen_inheritance_die (TREE_VEC_ELT (bases, i),
11611 (accesses ? TREE_VEC_ELT (accesses, i)
11612 : access_public_node), context_die);
11613 }
11614
11615 /* Now output info about the data members and type members. */
11616 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11617 {
11618 /* If we thought we were generating minimal debug info for TYPE
11619 and then changed our minds, some of the member declarations
11620 may have already been defined. Don't define them again, but
11621 do put them in the right order. */
11622
11623 child = lookup_decl_die (member);
11624 if (child)
11625 splice_child_die (context_die, child);
11626 else
11627 gen_decl_die (member, context_die);
11628 }
11629
11630 /* Now output info about the function members (if any). */
11631 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11632 {
11633 /* Don't include clones in the member list. */
11634 if (DECL_ABSTRACT_ORIGIN (member))
11635 continue;
11636
11637 child = lookup_decl_die (member);
11638 if (child)
11639 splice_child_die (context_die, child);
11640 else
11641 gen_decl_die (member, context_die);
11642 }
11643 }
11644
11645 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11646 is set, we pretend that the type was never defined, so we only get the
11647 member DIEs needed by later specification DIEs. */
11648
11649 static void
11650 gen_struct_or_union_type_die (type, context_die)
11651 tree type;
11652 dw_die_ref context_die;
11653 {
11654 dw_die_ref type_die = lookup_type_die (type);
11655 dw_die_ref scope_die = 0;
11656 int nested = 0;
11657 int complete = (TYPE_SIZE (type)
11658 && (! TYPE_STUB_DECL (type)
11659 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11660
11661 if (type_die && ! complete)
11662 return;
11663
11664 if (TYPE_CONTEXT (type) != NULL_TREE
11665 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type)))
11666 nested = 1;
11667
11668 scope_die = scope_die_for (type, context_die);
11669
11670 if (! type_die || (nested && scope_die == comp_unit_die))
11671 /* First occurrence of type or toplevel definition of nested class. */
11672 {
11673 dw_die_ref old_die = type_die;
11674
11675 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11676 ? DW_TAG_structure_type : DW_TAG_union_type,
11677 scope_die, type);
11678 equate_type_number_to_die (type, type_die);
11679 if (old_die)
11680 add_AT_die_ref (type_die, DW_AT_specification, old_die);
11681 else
11682 add_name_attribute (type_die, type_tag (type));
11683 }
11684 else
11685 remove_AT (type_die, DW_AT_declaration);
11686
11687 /* If this type has been completed, then give it a byte_size attribute and
11688 then give a list of members. */
11689 if (complete)
11690 {
11691 /* Prevent infinite recursion in cases where the type of some member of
11692 this type is expressed in terms of this type itself. */
11693 TREE_ASM_WRITTEN (type) = 1;
11694 add_byte_size_attribute (type_die, type);
11695 if (TYPE_STUB_DECL (type) != NULL_TREE)
11696 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11697
11698 /* If the first reference to this type was as the return type of an
11699 inline function, then it may not have a parent. Fix this now. */
11700 if (type_die->die_parent == NULL)
11701 add_child_die (scope_die, type_die);
11702
11703 push_decl_scope (type);
11704 gen_member_die (type, type_die);
11705 pop_decl_scope ();
11706
11707 /* GNU extension: Record what type our vtable lives in. */
11708 if (TYPE_VFIELD (type))
11709 {
11710 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11711
11712 gen_type_die (vtype, context_die);
11713 add_AT_die_ref (type_die, DW_AT_containing_type,
11714 lookup_type_die (vtype));
11715 }
11716 }
11717 else
11718 {
11719 add_AT_flag (type_die, DW_AT_declaration, 1);
11720
11721 /* We don't need to do this for function-local types. */
11722 if (TYPE_STUB_DECL (type)
11723 && ! decl_function_context (TYPE_STUB_DECL (type)))
11724 VARRAY_PUSH_TREE (incomplete_types, type);
11725 }
11726 }
11727
11728 /* Generate a DIE for a subroutine _type_. */
11729
11730 static void
11731 gen_subroutine_type_die (type, context_die)
11732 tree type;
11733 dw_die_ref context_die;
11734 {
11735 tree return_type = TREE_TYPE (type);
11736 dw_die_ref subr_die
11737 = new_die (DW_TAG_subroutine_type,
11738 scope_die_for (type, context_die), type);
11739
11740 equate_type_number_to_die (type, subr_die);
11741 add_prototyped_attribute (subr_die, type);
11742 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11743 gen_formal_types_die (type, subr_die);
11744 }
11745
11746 /* Generate a DIE for a type definition */
11747
11748 static void
11749 gen_typedef_die (decl, context_die)
11750 tree decl;
11751 dw_die_ref context_die;
11752 {
11753 dw_die_ref type_die;
11754 tree origin;
11755
11756 if (TREE_ASM_WRITTEN (decl))
11757 return;
11758
11759 TREE_ASM_WRITTEN (decl) = 1;
11760 type_die = new_die (DW_TAG_typedef, context_die, decl);
11761 origin = decl_ultimate_origin (decl);
11762 if (origin != NULL)
11763 add_abstract_origin_attribute (type_die, origin);
11764 else
11765 {
11766 tree type;
11767
11768 add_name_and_src_coords_attributes (type_die, decl);
11769 if (DECL_ORIGINAL_TYPE (decl))
11770 {
11771 type = DECL_ORIGINAL_TYPE (decl);
11772
11773 if (type == TREE_TYPE (decl))
11774 abort ();
11775 else
11776 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11777 }
11778 else
11779 type = TREE_TYPE (decl);
11780
11781 add_type_attribute (type_die, type, TREE_READONLY (decl),
11782 TREE_THIS_VOLATILE (decl), context_die);
11783 }
11784
11785 if (DECL_ABSTRACT (decl))
11786 equate_decl_number_to_die (decl, type_die);
11787 }
11788
11789 /* Generate a type description DIE. */
11790
11791 static void
11792 gen_type_die (type, context_die)
11793 tree type;
11794 dw_die_ref context_die;
11795 {
11796 int need_pop;
11797
11798 if (type == NULL_TREE || type == error_mark_node)
11799 return;
11800
11801 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11802 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11803 {
11804 if (TREE_ASM_WRITTEN (type))
11805 return;
11806
11807 /* Prevent broken recursion; we can't hand off to the same type. */
11808 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
11809 abort ();
11810
11811 TREE_ASM_WRITTEN (type) = 1;
11812 gen_decl_die (TYPE_NAME (type), context_die);
11813 return;
11814 }
11815
11816 /* We are going to output a DIE to represent the unqualified version
11817 of this type (i.e. without any const or volatile qualifiers) so
11818 get the main variant (i.e. the unqualified version) of this type
11819 now. (Vectors are special because the debugging info is in the
11820 cloned type itself). */
11821 if (TREE_CODE (type) != VECTOR_TYPE)
11822 type = type_main_variant (type);
11823
11824 if (TREE_ASM_WRITTEN (type))
11825 return;
11826
11827 switch (TREE_CODE (type))
11828 {
11829 case ERROR_MARK:
11830 break;
11831
11832 case POINTER_TYPE:
11833 case REFERENCE_TYPE:
11834 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11835 ensures that the gen_type_die recursion will terminate even if the
11836 type is recursive. Recursive types are possible in Ada. */
11837 /* ??? We could perhaps do this for all types before the switch
11838 statement. */
11839 TREE_ASM_WRITTEN (type) = 1;
11840
11841 /* For these types, all that is required is that we output a DIE (or a
11842 set of DIEs) to represent the "basis" type. */
11843 gen_type_die (TREE_TYPE (type), context_die);
11844 break;
11845
11846 case OFFSET_TYPE:
11847 /* This code is used for C++ pointer-to-data-member types.
11848 Output a description of the relevant class type. */
11849 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
11850
11851 /* Output a description of the type of the object pointed to. */
11852 gen_type_die (TREE_TYPE (type), context_die);
11853
11854 /* Now output a DIE to represent this pointer-to-data-member type
11855 itself. */
11856 gen_ptr_to_mbr_type_die (type, context_die);
11857 break;
11858
11859 case SET_TYPE:
11860 gen_type_die (TYPE_DOMAIN (type), context_die);
11861 gen_set_type_die (type, context_die);
11862 break;
11863
11864 case FILE_TYPE:
11865 gen_type_die (TREE_TYPE (type), context_die);
11866 abort (); /* No way to represent these in Dwarf yet! */
11867 break;
11868
11869 case FUNCTION_TYPE:
11870 /* Force out return type (in case it wasn't forced out already). */
11871 gen_type_die (TREE_TYPE (type), context_die);
11872 gen_subroutine_type_die (type, context_die);
11873 break;
11874
11875 case METHOD_TYPE:
11876 /* Force out return type (in case it wasn't forced out already). */
11877 gen_type_die (TREE_TYPE (type), context_die);
11878 gen_subroutine_type_die (type, context_die);
11879 break;
11880
11881 case ARRAY_TYPE:
11882 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11883 {
11884 gen_type_die (TREE_TYPE (type), context_die);
11885 gen_string_type_die (type, context_die);
11886 }
11887 else
11888 gen_array_type_die (type, context_die);
11889 break;
11890
11891 case VECTOR_TYPE:
11892 gen_array_type_die (type, context_die);
11893 break;
11894
11895 case ENUMERAL_TYPE:
11896 case RECORD_TYPE:
11897 case UNION_TYPE:
11898 case QUAL_UNION_TYPE:
11899 /* If this is a nested type whose containing class hasn't been written
11900 out yet, writing it out will cover this one, too. This does not apply
11901 to instantiations of member class templates; they need to be added to
11902 the containing class as they are generated. FIXME: This hurts the
11903 idea of combining type decls from multiple TUs, since we can't predict
11904 what set of template instantiations we'll get. */
11905 if (TYPE_CONTEXT (type)
11906 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11907 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
11908 {
11909 gen_type_die (TYPE_CONTEXT (type), context_die);
11910
11911 if (TREE_ASM_WRITTEN (type))
11912 return;
11913
11914 /* If that failed, attach ourselves to the stub. */
11915 push_decl_scope (TYPE_CONTEXT (type));
11916 context_die = lookup_type_die (TYPE_CONTEXT (type));
11917 need_pop = 1;
11918 }
11919 else
11920 need_pop = 0;
11921
11922 if (TREE_CODE (type) == ENUMERAL_TYPE)
11923 gen_enumeration_type_die (type, context_die);
11924 else
11925 gen_struct_or_union_type_die (type, context_die);
11926
11927 if (need_pop)
11928 pop_decl_scope ();
11929
11930 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11931 it up if it is ever completed. gen_*_type_die will set it for us
11932 when appropriate. */
11933 return;
11934
11935 case VOID_TYPE:
11936 case INTEGER_TYPE:
11937 case REAL_TYPE:
11938 case COMPLEX_TYPE:
11939 case BOOLEAN_TYPE:
11940 case CHAR_TYPE:
11941 /* No DIEs needed for fundamental types. */
11942 break;
11943
11944 case LANG_TYPE:
11945 /* No Dwarf representation currently defined. */
11946 break;
11947
11948 default:
11949 abort ();
11950 }
11951
11952 TREE_ASM_WRITTEN (type) = 1;
11953 }
11954
11955 /* Generate a DIE for a tagged type instantiation. */
11956
11957 static void
11958 gen_tagged_type_instantiation_die (type, context_die)
11959 tree type;
11960 dw_die_ref context_die;
11961 {
11962 if (type == NULL_TREE || type == error_mark_node)
11963 return;
11964
11965 /* We are going to output a DIE to represent the unqualified version of
11966 this type (i.e. without any const or volatile qualifiers) so make sure
11967 that we have the main variant (i.e. the unqualified version) of this
11968 type now. */
11969 if (type != type_main_variant (type))
11970 abort ();
11971
11972 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11973 an instance of an unresolved type. */
11974
11975 switch (TREE_CODE (type))
11976 {
11977 case ERROR_MARK:
11978 break;
11979
11980 case ENUMERAL_TYPE:
11981 gen_inlined_enumeration_type_die (type, context_die);
11982 break;
11983
11984 case RECORD_TYPE:
11985 gen_inlined_structure_type_die (type, context_die);
11986 break;
11987
11988 case UNION_TYPE:
11989 case QUAL_UNION_TYPE:
11990 gen_inlined_union_type_die (type, context_die);
11991 break;
11992
11993 default:
11994 abort ();
11995 }
11996 }
11997
11998 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11999 things which are local to the given block. */
12000
12001 static void
12002 gen_block_die (stmt, context_die, depth)
12003 tree stmt;
12004 dw_die_ref context_die;
12005 int depth;
12006 {
12007 int must_output_die = 0;
12008 tree origin;
12009 tree decl;
12010 enum tree_code origin_code;
12011
12012 /* Ignore blocks never really used to make RTL. */
12013 if (stmt == NULL_TREE || !TREE_USED (stmt)
12014 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
12015 return;
12016
12017 /* If the block is one fragment of a non-contiguous block, do not
12018 process the variables, since they will have been done by the
12019 origin block. Do process subblocks. */
12020 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12021 {
12022 tree sub;
12023
12024 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12025 gen_block_die (sub, context_die, depth + 1);
12026
12027 return;
12028 }
12029
12030 /* Determine the "ultimate origin" of this block. This block may be an
12031 inlined instance of an inlined instance of inline function, so we have
12032 to trace all of the way back through the origin chain to find out what
12033 sort of node actually served as the original seed for the creation of
12034 the current block. */
12035 origin = block_ultimate_origin (stmt);
12036 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12037
12038 /* Determine if we need to output any Dwarf DIEs at all to represent this
12039 block. */
12040 if (origin_code == FUNCTION_DECL)
12041 /* The outer scopes for inlinings *must* always be represented. We
12042 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12043 must_output_die = 1;
12044 else
12045 {
12046 /* In the case where the current block represents an inlining of the
12047 "body block" of an inline function, we must *NOT* output any DIE for
12048 this block because we have already output a DIE to represent the whole
12049 inlined function scope and the "body block" of any function doesn't
12050 really represent a different scope according to ANSI C rules. So we
12051 check here to make sure that this block does not represent a "body
12052 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12053 if (! is_body_block (origin ? origin : stmt))
12054 {
12055 /* Determine if this block directly contains any "significant"
12056 local declarations which we will need to output DIEs for. */
12057 if (debug_info_level > DINFO_LEVEL_TERSE)
12058 /* We are not in terse mode so *any* local declaration counts
12059 as being a "significant" one. */
12060 must_output_die = (BLOCK_VARS (stmt) != NULL);
12061 else
12062 /* We are in terse mode, so only local (nested) function
12063 definitions count as "significant" local declarations. */
12064 for (decl = BLOCK_VARS (stmt);
12065 decl != NULL; decl = TREE_CHAIN (decl))
12066 if (TREE_CODE (decl) == FUNCTION_DECL
12067 && DECL_INITIAL (decl))
12068 {
12069 must_output_die = 1;
12070 break;
12071 }
12072 }
12073 }
12074
12075 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12076 DIE for any block which contains no significant local declarations at
12077 all. Rather, in such cases we just call `decls_for_scope' so that any
12078 needed Dwarf info for any sub-blocks will get properly generated. Note
12079 that in terse mode, our definition of what constitutes a "significant"
12080 local declaration gets restricted to include only inlined function
12081 instances and local (nested) function definitions. */
12082 if (must_output_die)
12083 {
12084 if (origin_code == FUNCTION_DECL)
12085 gen_inlined_subroutine_die (stmt, context_die, depth);
12086 else
12087 gen_lexical_block_die (stmt, context_die, depth);
12088 }
12089 else
12090 decls_for_scope (stmt, context_die, depth);
12091 }
12092
12093 /* Generate all of the decls declared within a given scope and (recursively)
12094 all of its sub-blocks. */
12095
12096 static void
12097 decls_for_scope (stmt, context_die, depth)
12098 tree stmt;
12099 dw_die_ref context_die;
12100 int depth;
12101 {
12102 tree decl;
12103 tree subblocks;
12104
12105 /* Ignore blocks never really used to make RTL. */
12106 if (stmt == NULL_TREE || ! TREE_USED (stmt))
12107 return;
12108
12109 /* Output the DIEs to represent all of the data objects and typedefs
12110 declared directly within this block but not within any nested
12111 sub-blocks. Also, nested function and tag DIEs have been
12112 generated with a parent of NULL; fix that up now. */
12113 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12114 {
12115 dw_die_ref die;
12116
12117 if (TREE_CODE (decl) == FUNCTION_DECL)
12118 die = lookup_decl_die (decl);
12119 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12120 die = lookup_type_die (TREE_TYPE (decl));
12121 else
12122 die = NULL;
12123
12124 if (die != NULL && die->die_parent == NULL)
12125 add_child_die (context_die, die);
12126 else
12127 gen_decl_die (decl, context_die);
12128 }
12129
12130 /* If we're at -g1, we're not interested in subblocks. */
12131 if (debug_info_level <= DINFO_LEVEL_TERSE)
12132 return;
12133
12134 /* Output the DIEs to represent all sub-blocks (and the items declared
12135 therein) of this block. */
12136 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12137 subblocks != NULL;
12138 subblocks = BLOCK_CHAIN (subblocks))
12139 gen_block_die (subblocks, context_die, depth + 1);
12140 }
12141
12142 /* Is this a typedef we can avoid emitting? */
12143
12144 static inline int
12145 is_redundant_typedef (decl)
12146 tree decl;
12147 {
12148 if (TYPE_DECL_IS_STUB (decl))
12149 return 1;
12150
12151 if (DECL_ARTIFICIAL (decl)
12152 && DECL_CONTEXT (decl)
12153 && is_tagged_type (DECL_CONTEXT (decl))
12154 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12155 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12156 /* Also ignore the artificial member typedef for the class name. */
12157 return 1;
12158
12159 return 0;
12160 }
12161
12162 /* Generate Dwarf debug information for a decl described by DECL. */
12163
12164 static void
12165 gen_decl_die (decl, context_die)
12166 tree decl;
12167 dw_die_ref context_die;
12168 {
12169 tree origin;
12170
12171 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12172 return;
12173
12174 switch (TREE_CODE (decl))
12175 {
12176 case ERROR_MARK:
12177 break;
12178
12179 case CONST_DECL:
12180 /* The individual enumerators of an enum type get output when we output
12181 the Dwarf representation of the relevant enum type itself. */
12182 break;
12183
12184 case FUNCTION_DECL:
12185 /* Don't output any DIEs to represent mere function declarations,
12186 unless they are class members or explicit block externs. */
12187 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12188 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12189 break;
12190
12191 /* If we're emitting a clone, emit info for the abstract instance. */
12192 if (DECL_ORIGIN (decl) != decl)
12193 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12194
12195 /* If we're emitting an out-of-line copy of an inline function,
12196 emit info for the abstract instance and set up to refer to it. */
12197 else if (DECL_INLINE (decl) && ! DECL_ABSTRACT (decl)
12198 && ! class_scope_p (context_die)
12199 /* dwarf2out_abstract_function won't emit a die if this is just
12200 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12201 that case, because that works only if we have a die. */
12202 && DECL_INITIAL (decl) != NULL_TREE)
12203 {
12204 dwarf2out_abstract_function (decl);
12205 set_decl_origin_self (decl);
12206 }
12207
12208 /* Otherwise we're emitting the primary DIE for this decl. */
12209 else if (debug_info_level > DINFO_LEVEL_TERSE)
12210 {
12211 /* Before we describe the FUNCTION_DECL itself, make sure that we
12212 have described its return type. */
12213 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12214
12215 /* And its virtual context. */
12216 if (DECL_VINDEX (decl) != NULL_TREE)
12217 gen_type_die (DECL_CONTEXT (decl), context_die);
12218
12219 /* And its containing type. */
12220 origin = decl_class_context (decl);
12221 if (origin != NULL_TREE)
12222 gen_type_die_for_member (origin, decl, context_die);
12223 }
12224
12225 /* Now output a DIE to represent the function itself. */
12226 gen_subprogram_die (decl, context_die);
12227 break;
12228
12229 case TYPE_DECL:
12230 /* If we are in terse mode, don't generate any DIEs to represent any
12231 actual typedefs. */
12232 if (debug_info_level <= DINFO_LEVEL_TERSE)
12233 break;
12234
12235 /* In the special case of a TYPE_DECL node representing the declaration
12236 of some type tag, if the given TYPE_DECL is marked as having been
12237 instantiated from some other (original) TYPE_DECL node (e.g. one which
12238 was generated within the original definition of an inline function) we
12239 have to generate a special (abbreviated) DW_TAG_structure_type,
12240 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12241 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12242 {
12243 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12244 break;
12245 }
12246
12247 if (is_redundant_typedef (decl))
12248 gen_type_die (TREE_TYPE (decl), context_die);
12249 else
12250 /* Output a DIE to represent the typedef itself. */
12251 gen_typedef_die (decl, context_die);
12252 break;
12253
12254 case LABEL_DECL:
12255 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12256 gen_label_die (decl, context_die);
12257 break;
12258
12259 case VAR_DECL:
12260 /* If we are in terse mode, don't generate any DIEs to represent any
12261 variable declarations or definitions. */
12262 if (debug_info_level <= DINFO_LEVEL_TERSE)
12263 break;
12264
12265 /* Output any DIEs that are needed to specify the type of this data
12266 object. */
12267 gen_type_die (TREE_TYPE (decl), context_die);
12268
12269 /* And its containing type. */
12270 origin = decl_class_context (decl);
12271 if (origin != NULL_TREE)
12272 gen_type_die_for_member (origin, decl, context_die);
12273
12274 /* Now output the DIE to represent the data object itself. This gets
12275 complicated because of the possibility that the VAR_DECL really
12276 represents an inlined instance of a formal parameter for an inline
12277 function. */
12278 origin = decl_ultimate_origin (decl);
12279 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12280 gen_formal_parameter_die (decl, context_die);
12281 else
12282 gen_variable_die (decl, context_die);
12283 break;
12284
12285 case FIELD_DECL:
12286 /* Ignore the nameless fields that are used to skip bits but handle C++
12287 anonymous unions. */
12288 if (DECL_NAME (decl) != NULL_TREE
12289 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
12290 {
12291 gen_type_die (member_declared_type (decl), context_die);
12292 gen_field_die (decl, context_die);
12293 }
12294 break;
12295
12296 case PARM_DECL:
12297 gen_type_die (TREE_TYPE (decl), context_die);
12298 gen_formal_parameter_die (decl, context_die);
12299 break;
12300
12301 case NAMESPACE_DECL:
12302 /* Ignore for now. */
12303 break;
12304
12305 default:
12306 if ((int)TREE_CODE (decl) > NUM_TREE_CODES)
12307 /* Probably some frontend-internal decl. Assume we don't care. */
12308 break;
12309 abort ();
12310 }
12311 }
12312 \f
12313 /* Add Ada "use" clause information for SGI Workshop debugger. */
12314
12315 void
12316 dwarf2out_add_library_unit_info (filename, context_list)
12317 const char *filename;
12318 const char *context_list;
12319 {
12320 unsigned int file_index;
12321
12322 if (filename != NULL)
12323 {
12324 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12325 tree context_list_decl
12326 = build_decl (LABEL_DECL, get_identifier (context_list),
12327 void_type_node);
12328
12329 TREE_PUBLIC (context_list_decl) = TRUE;
12330 add_name_attribute (unit_die, context_list);
12331 file_index = lookup_filename (filename);
12332 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12333 add_pubname (context_list_decl, unit_die);
12334 }
12335 }
12336
12337 /* Output debug information for global decl DECL. Called from toplev.c after
12338 compilation proper has finished. */
12339
12340 static void
12341 dwarf2out_global_decl (decl)
12342 tree decl;
12343 {
12344 /* Output DWARF2 information for file-scope tentative data object
12345 declarations, file-scope (extern) function declarations (which had no
12346 corresponding body) and file-scope tagged type declarations and
12347 definitions which have not yet been forced out. */
12348 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12349 dwarf2out_decl (decl);
12350 }
12351
12352 /* Write the debugging output for DECL. */
12353
12354 void
12355 dwarf2out_decl (decl)
12356 tree decl;
12357 {
12358 dw_die_ref context_die = comp_unit_die;
12359
12360 switch (TREE_CODE (decl))
12361 {
12362 case ERROR_MARK:
12363 return;
12364
12365 case FUNCTION_DECL:
12366 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
12367 builtin function. Explicit programmer-supplied declarations of
12368 these same functions should NOT be ignored however. */
12369 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
12370 return;
12371
12372 /* What we would really like to do here is to filter out all mere
12373 file-scope declarations of file-scope functions which are never
12374 referenced later within this translation unit (and keep all of ones
12375 that *are* referenced later on) but we aren't clairvoyant, so we have
12376 no idea which functions will be referenced in the future (i.e. later
12377 on within the current translation unit). So here we just ignore all
12378 file-scope function declarations which are not also definitions. If
12379 and when the debugger needs to know something about these functions,
12380 it will have to hunt around and find the DWARF information associated
12381 with the definition of the function.
12382
12383 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12384 nodes represent definitions and which ones represent mere
12385 declarations. We have to check DECL_INITIAL instead. That's because
12386 the C front-end supports some weird semantics for "extern inline"
12387 function definitions. These can get inlined within the current
12388 translation unit (an thus, we need to generate Dwarf info for their
12389 abstract instances so that the Dwarf info for the concrete inlined
12390 instances can have something to refer to) but the compiler never
12391 generates any out-of-lines instances of such things (despite the fact
12392 that they *are* definitions).
12393
12394 The important point is that the C front-end marks these "extern
12395 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12396 them anyway. Note that the C++ front-end also plays some similar games
12397 for inline function definitions appearing within include files which
12398 also contain `#pragma interface' pragmas. */
12399 if (DECL_INITIAL (decl) == NULL_TREE)
12400 return;
12401
12402 /* If we're a nested function, initially use a parent of NULL; if we're
12403 a plain function, this will be fixed up in decls_for_scope. If
12404 we're a method, it will be ignored, since we already have a DIE. */
12405 if (decl_function_context (decl)
12406 /* But if we're in terse mode, we don't care about scope. */
12407 && debug_info_level > DINFO_LEVEL_TERSE)
12408 context_die = NULL;
12409 break;
12410
12411 case VAR_DECL:
12412 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12413 declaration and if the declaration was never even referenced from
12414 within this entire compilation unit. We suppress these DIEs in
12415 order to save space in the .debug section (by eliminating entries
12416 which are probably useless). Note that we must not suppress
12417 block-local extern declarations (whether used or not) because that
12418 would screw-up the debugger's name lookup mechanism and cause it to
12419 miss things which really ought to be in scope at a given point. */
12420 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12421 return;
12422
12423 /* If we are in terse mode, don't generate any DIEs to represent any
12424 variable declarations or definitions. */
12425 if (debug_info_level <= DINFO_LEVEL_TERSE)
12426 return;
12427 break;
12428
12429 case TYPE_DECL:
12430 /* Don't emit stubs for types unless they are needed by other DIEs. */
12431 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12432 return;
12433
12434 /* Don't bother trying to generate any DIEs to represent any of the
12435 normal built-in types for the language we are compiling. */
12436 if (DECL_SOURCE_LINE (decl) == 0)
12437 {
12438 /* OK, we need to generate one for `bool' so GDB knows what type
12439 comparisons have. */
12440 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12441 == DW_LANG_C_plus_plus)
12442 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12443 && ! DECL_IGNORED_P (decl))
12444 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12445
12446 return;
12447 }
12448
12449 /* If we are in terse mode, don't generate any DIEs for types. */
12450 if (debug_info_level <= DINFO_LEVEL_TERSE)
12451 return;
12452
12453 /* If we're a function-scope tag, initially use a parent of NULL;
12454 this will be fixed up in decls_for_scope. */
12455 if (decl_function_context (decl))
12456 context_die = NULL;
12457
12458 break;
12459
12460 default:
12461 return;
12462 }
12463
12464 gen_decl_die (decl, context_die);
12465 }
12466
12467 /* Output a marker (i.e. a label) for the beginning of the generated code for
12468 a lexical block. */
12469
12470 static void
12471 dwarf2out_begin_block (line, blocknum)
12472 unsigned int line ATTRIBUTE_UNUSED;
12473 unsigned int blocknum;
12474 {
12475 function_section (current_function_decl);
12476 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12477 }
12478
12479 /* Output a marker (i.e. a label) for the end of the generated code for a
12480 lexical block. */
12481
12482 static void
12483 dwarf2out_end_block (line, blocknum)
12484 unsigned int line ATTRIBUTE_UNUSED;
12485 unsigned int blocknum;
12486 {
12487 function_section (current_function_decl);
12488 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12489 }
12490
12491 /* Returns nonzero if it is appropriate not to emit any debugging
12492 information for BLOCK, because it doesn't contain any instructions.
12493
12494 Don't allow this for blocks with nested functions or local classes
12495 as we would end up with orphans, and in the presence of scheduling
12496 we may end up calling them anyway. */
12497
12498 static bool
12499 dwarf2out_ignore_block (block)
12500 tree block;
12501 {
12502 tree decl;
12503
12504 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12505 if (TREE_CODE (decl) == FUNCTION_DECL
12506 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12507 return 0;
12508
12509 return 1;
12510 }
12511
12512 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12513 dwarf2out.c) and return its "index". The index of each (known) filename is
12514 just a unique number which is associated with only that one filename. We
12515 need such numbers for the sake of generating labels (in the .debug_sfnames
12516 section) and references to those files numbers (in the .debug_srcinfo
12517 and.debug_macinfo sections). If the filename given as an argument is not
12518 found in our current list, add it to the list and assign it the next
12519 available unique index number. In order to speed up searches, we remember
12520 the index of the filename was looked up last. This handles the majority of
12521 all searches. */
12522
12523 static unsigned
12524 lookup_filename (file_name)
12525 const char *file_name;
12526 {
12527 size_t i, n;
12528 char *save_file_name;
12529
12530 /* Check to see if the file name that was searched on the previous
12531 call matches this file name. If so, return the index. */
12532 if (file_table_last_lookup_index != 0)
12533 {
12534 const char *last
12535 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12536 if (strcmp (file_name, last) == 0)
12537 return file_table_last_lookup_index;
12538 }
12539
12540 /* Didn't match the previous lookup, search the table */
12541 n = VARRAY_ACTIVE_SIZE (file_table);
12542 for (i = 1; i < n; i++)
12543 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12544 {
12545 file_table_last_lookup_index = i;
12546 return i;
12547 }
12548
12549 /* Add the new entry to the end of the filename table. */
12550 file_table_last_lookup_index = n;
12551 save_file_name = (char *) ggc_strdup (file_name);
12552 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12553 VARRAY_PUSH_UINT (file_table_emitted, 0);
12554
12555 return i;
12556 }
12557
12558 static int
12559 maybe_emit_file (fileno)
12560 int fileno;
12561 {
12562 static int emitcount = 0;
12563 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12564 {
12565 if (!VARRAY_UINT (file_table_emitted, fileno))
12566 {
12567 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12568 fprintf (asm_out_file, "\t.file %u ",
12569 VARRAY_UINT (file_table_emitted, fileno));
12570 output_quoted_string (asm_out_file,
12571 VARRAY_CHAR_PTR (file_table, fileno));
12572 fputc ('\n', asm_out_file);
12573 }
12574 return VARRAY_UINT (file_table_emitted, fileno);
12575 }
12576 else
12577 return fileno;
12578 }
12579
12580 static void
12581 init_file_table ()
12582 {
12583 /* Allocate the initial hunk of the file_table. */
12584 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
12585 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
12586
12587 /* Skip the first entry - file numbers begin at 1. */
12588 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
12589 VARRAY_PUSH_UINT (file_table_emitted, 0);
12590 file_table_last_lookup_index = 0;
12591 }
12592
12593 /* Output a label to mark the beginning of a source code line entry
12594 and record information relating to this source line, in
12595 'line_info_table' for later output of the .debug_line section. */
12596
12597 static void
12598 dwarf2out_source_line (line, filename)
12599 unsigned int line;
12600 const char *filename;
12601 {
12602 if (debug_info_level >= DINFO_LEVEL_NORMAL
12603 && line != 0)
12604 {
12605 function_section (current_function_decl);
12606
12607 /* If requested, emit something human-readable. */
12608 if (flag_debug_asm)
12609 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
12610 filename, line);
12611
12612 if (DWARF2_ASM_LINE_DEBUG_INFO)
12613 {
12614 unsigned file_num = lookup_filename (filename);
12615
12616 file_num = maybe_emit_file (file_num);
12617
12618 /* Emit the .loc directive understood by GNU as. */
12619 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
12620
12621 /* Indicate that line number info exists. */
12622 line_info_table_in_use++;
12623
12624 /* Indicate that multiple line number tables exist. */
12625 if (DECL_SECTION_NAME (current_function_decl))
12626 separate_line_info_table_in_use++;
12627 }
12628 else if (DECL_SECTION_NAME (current_function_decl))
12629 {
12630 dw_separate_line_info_ref line_info;
12631 (*targetm.asm_out.internal_label) (asm_out_file, SEPARATE_LINE_CODE_LABEL,
12632 separate_line_info_table_in_use);
12633
12634 /* expand the line info table if necessary */
12635 if (separate_line_info_table_in_use
12636 == separate_line_info_table_allocated)
12637 {
12638 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12639 separate_line_info_table
12640 = (dw_separate_line_info_ref)
12641 ggc_realloc (separate_line_info_table,
12642 separate_line_info_table_allocated
12643 * sizeof (dw_separate_line_info_entry));
12644 memset ((separate_line_info_table
12645 + separate_line_info_table_in_use),
12646 0,
12647 (LINE_INFO_TABLE_INCREMENT
12648 * sizeof (dw_separate_line_info_entry)));
12649 }
12650
12651 /* Add the new entry at the end of the line_info_table. */
12652 line_info
12653 = &separate_line_info_table[separate_line_info_table_in_use++];
12654 line_info->dw_file_num = lookup_filename (filename);
12655 line_info->dw_line_num = line;
12656 line_info->function = current_function_funcdef_no;
12657 }
12658 else
12659 {
12660 dw_line_info_ref line_info;
12661
12662 (*targetm.asm_out.internal_label) (asm_out_file, LINE_CODE_LABEL,
12663 line_info_table_in_use);
12664
12665 /* Expand the line info table if necessary. */
12666 if (line_info_table_in_use == line_info_table_allocated)
12667 {
12668 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12669 line_info_table
12670 = ggc_realloc (line_info_table,
12671 (line_info_table_allocated
12672 * sizeof (dw_line_info_entry)));
12673 memset (line_info_table + line_info_table_in_use, 0,
12674 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
12675 }
12676
12677 /* Add the new entry at the end of the line_info_table. */
12678 line_info = &line_info_table[line_info_table_in_use++];
12679 line_info->dw_file_num = lookup_filename (filename);
12680 line_info->dw_line_num = line;
12681 }
12682 }
12683 }
12684
12685 /* Record the beginning of a new source file. */
12686
12687 static void
12688 dwarf2out_start_source_file (lineno, filename)
12689 unsigned int lineno;
12690 const char *filename;
12691 {
12692 if (flag_eliminate_dwarf2_dups && !is_main_source)
12693 {
12694 /* Record the beginning of the file for break_out_includes. */
12695 dw_die_ref bincl_die;
12696
12697 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
12698 add_AT_string (bincl_die, DW_AT_name, filename);
12699 }
12700
12701 is_main_source = 0;
12702
12703 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12704 {
12705 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12706 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
12707 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
12708 lineno);
12709 maybe_emit_file (lookup_filename (filename));
12710 dw2_asm_output_data_uleb128 (lookup_filename (filename),
12711 "Filename we just started");
12712 }
12713 }
12714
12715 /* Record the end of a source file. */
12716
12717 static void
12718 dwarf2out_end_source_file (lineno)
12719 unsigned int lineno ATTRIBUTE_UNUSED;
12720 {
12721 if (flag_eliminate_dwarf2_dups)
12722 /* Record the end of the file for break_out_includes. */
12723 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
12724
12725 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12726 {
12727 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12728 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12729 }
12730 }
12731
12732 /* Called from debug_define in toplev.c. The `buffer' parameter contains
12733 the tail part of the directive line, i.e. the part which is past the
12734 initial whitespace, #, whitespace, directive-name, whitespace part. */
12735
12736 static void
12737 dwarf2out_define (lineno, buffer)
12738 unsigned lineno ATTRIBUTE_UNUSED;
12739 const char *buffer ATTRIBUTE_UNUSED;
12740 {
12741 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12742 {
12743 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12744 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
12745 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12746 dw2_asm_output_nstring (buffer, -1, "The macro");
12747 }
12748 }
12749
12750 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
12751 the tail part of the directive line, i.e. the part which is past the
12752 initial whitespace, #, whitespace, directive-name, whitespace part. */
12753
12754 static void
12755 dwarf2out_undef (lineno, buffer)
12756 unsigned lineno ATTRIBUTE_UNUSED;
12757 const char *buffer ATTRIBUTE_UNUSED;
12758 {
12759 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12760 {
12761 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12762 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
12763 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12764 dw2_asm_output_nstring (buffer, -1, "The macro");
12765 }
12766 }
12767
12768 /* Set up for Dwarf output at the start of compilation. */
12769
12770 static void
12771 dwarf2out_init (input_filename)
12772 const char *input_filename ATTRIBUTE_UNUSED;
12773 {
12774 init_file_table ();
12775
12776 /* Allocate the initial hunk of the decl_die_table. */
12777 decl_die_table = ggc_alloc_cleared (DECL_DIE_TABLE_INCREMENT
12778 * sizeof (dw_die_ref));
12779 decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
12780 decl_die_table_in_use = 0;
12781
12782 /* Allocate the initial hunk of the decl_scope_table. */
12783 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
12784
12785 /* Allocate the initial hunk of the abbrev_die_table. */
12786 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
12787 * sizeof (dw_die_ref));
12788 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
12789 /* Zero-th entry is allocated, but unused */
12790 abbrev_die_table_in_use = 1;
12791
12792 /* Allocate the initial hunk of the line_info_table. */
12793 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
12794 * sizeof (dw_line_info_entry));
12795 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
12796
12797 /* Zero-th entry is allocated, but unused */
12798 line_info_table_in_use = 1;
12799
12800 /* Generate the initial DIE for the .debug section. Note that the (string)
12801 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
12802 will (typically) be a relative pathname and that this pathname should be
12803 taken as being relative to the directory from which the compiler was
12804 invoked when the given (base) source file was compiled. We will fill
12805 in this value in dwarf2out_finish. */
12806 comp_unit_die = gen_compile_unit_die (NULL);
12807 is_main_source = 1;
12808
12809 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
12810
12811 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
12812
12813 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
12814 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
12815 DEBUG_ABBREV_SECTION_LABEL, 0);
12816 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12817 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
12818 else
12819 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
12820
12821 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
12822 DEBUG_INFO_SECTION_LABEL, 0);
12823 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
12824 DEBUG_LINE_SECTION_LABEL, 0);
12825 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
12826 DEBUG_RANGES_SECTION_LABEL, 0);
12827 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12828 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
12829 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
12830 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
12831 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12832 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
12833
12834 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12835 {
12836 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12837 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
12838 DEBUG_MACINFO_SECTION_LABEL, 0);
12839 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
12840 }
12841
12842 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12843 {
12844 text_section ();
12845 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
12846 }
12847 }
12848
12849 /* A helper function for dwarf2out_finish called through
12850 ht_forall. Emit one queued .debug_str string. */
12851
12852 static int
12853 output_indirect_string (h, v)
12854 void **h;
12855 void *v ATTRIBUTE_UNUSED;
12856 {
12857 struct indirect_string_node *node = (struct indirect_string_node *) *h;
12858
12859 if (node->form == DW_FORM_strp)
12860 {
12861 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
12862 ASM_OUTPUT_LABEL (asm_out_file, node->label);
12863 assemble_string (node->str, strlen (node->str) + 1);
12864 }
12865
12866 return 1;
12867 }
12868
12869
12870
12871 /* Clear the marks for a die and its children.
12872 Be cool if the mark isn't set. */
12873
12874 static void
12875 prune_unmark_dies (die)
12876 dw_die_ref die;
12877 {
12878 dw_die_ref c;
12879 die->die_mark = 0;
12880 for (c = die->die_child; c; c = c->die_sib)
12881 prune_unmark_dies (c);
12882 }
12883
12884
12885 /* Given DIE that we're marking as used, find any other dies
12886 it references as attributes and mark them as used. */
12887
12888 static void
12889 prune_unused_types_walk_attribs (die)
12890 dw_die_ref die;
12891 {
12892 dw_attr_ref a;
12893
12894 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
12895 {
12896 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
12897 {
12898 /* A reference to another DIE.
12899 Make sure that it will get emitted. */
12900 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
12901 }
12902 else if (a->dw_attr == DW_AT_decl_file)
12903 {
12904 /* A reference to a file. Make sure the file name is emitted. */
12905 a->dw_attr_val.v.val_unsigned =
12906 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
12907 }
12908 }
12909 }
12910
12911
12912 /* Mark DIE as being used. If DOKIDS is true, then walk down
12913 to DIE's children. */
12914
12915 static void
12916 prune_unused_types_mark (die, dokids)
12917 dw_die_ref die;
12918 int dokids;
12919 {
12920 dw_die_ref c;
12921
12922 if (die->die_mark == 0)
12923 {
12924 /* We haven't done this node yet. Mark it as used. */
12925 die->die_mark = 1;
12926
12927 /* We also have to mark its parents as used.
12928 (But we don't want to mark our parents' kids due to this.) */
12929 if (die->die_parent)
12930 prune_unused_types_mark (die->die_parent, 0);
12931
12932 /* Mark any referenced nodes. */
12933 prune_unused_types_walk_attribs (die);
12934 }
12935
12936 if (dokids && die->die_mark != 2)
12937 {
12938 /* We need to walk the children, but haven't done so yet.
12939 Remember that we've walked the kids. */
12940 die->die_mark = 2;
12941
12942 /* Walk them. */
12943 for (c = die->die_child; c; c = c->die_sib)
12944 {
12945 /* If this is an array type, we need to make sure our
12946 kids get marked, even if they're types. */
12947 if (die->die_tag == DW_TAG_array_type)
12948 prune_unused_types_mark (c, 1);
12949 else
12950 prune_unused_types_walk (c);
12951 }
12952 }
12953 }
12954
12955
12956 /* Walk the tree DIE and mark types that we actually use. */
12957
12958 static void
12959 prune_unused_types_walk (die)
12960 dw_die_ref die;
12961 {
12962 dw_die_ref c;
12963
12964 /* Don't do anything if this node is already marked. */
12965 if (die->die_mark)
12966 return;
12967
12968 switch (die->die_tag) {
12969 case DW_TAG_const_type:
12970 case DW_TAG_packed_type:
12971 case DW_TAG_pointer_type:
12972 case DW_TAG_reference_type:
12973 case DW_TAG_volatile_type:
12974 case DW_TAG_typedef:
12975 case DW_TAG_array_type:
12976 case DW_TAG_structure_type:
12977 case DW_TAG_union_type:
12978 case DW_TAG_class_type:
12979 case DW_TAG_friend:
12980 case DW_TAG_variant_part:
12981 case DW_TAG_enumeration_type:
12982 case DW_TAG_subroutine_type:
12983 case DW_TAG_string_type:
12984 case DW_TAG_set_type:
12985 case DW_TAG_subrange_type:
12986 case DW_TAG_ptr_to_member_type:
12987 case DW_TAG_file_type:
12988 /* It's a type node --- don't mark it. */
12989 return;
12990
12991 default:
12992 /* Mark everything else. */
12993 break;
12994 }
12995
12996 die->die_mark = 1;
12997
12998 /* Now, mark any dies referenced from here. */
12999 prune_unused_types_walk_attribs (die);
13000
13001 /* Mark children. */
13002 for (c = die->die_child; c; c = c->die_sib)
13003 prune_unused_types_walk (c);
13004 }
13005
13006
13007 /* Remove from the tree DIE any dies that aren't marked. */
13008
13009 static void
13010 prune_unused_types_prune (die)
13011 dw_die_ref die;
13012 {
13013 dw_die_ref c, p, n;
13014 if (!die->die_mark)
13015 abort();
13016
13017 p = NULL;
13018 for (c = die->die_child; c; c = n)
13019 {
13020 n = c->die_sib;
13021 if (c->die_mark)
13022 {
13023 prune_unused_types_prune (c);
13024 p = c;
13025 }
13026 else
13027 {
13028 if (p)
13029 p->die_sib = n;
13030 else
13031 die->die_child = n;
13032 free_die (c);
13033 }
13034 }
13035 }
13036
13037
13038 /* Remove dies representing declarations that we never use. */
13039
13040 static void
13041 prune_unused_types ()
13042 {
13043 unsigned int i;
13044 limbo_die_node *node;
13045
13046 /* Clear all the marks. */
13047 prune_unmark_dies (comp_unit_die);
13048 for (node = limbo_die_list; node; node = node->next)
13049 prune_unmark_dies (node->die);
13050
13051 /* Set the mark on nodes that are actually used. */
13052 prune_unused_types_walk (comp_unit_die);
13053 for (node = limbo_die_list; node; node = node->next)
13054 prune_unused_types_walk (node->die);
13055
13056 /* Also set the mark on nodes referenced from the
13057 pubname_table or arange_table. */
13058 for (i = 0; i < pubname_table_in_use; i++)
13059 prune_unused_types_mark (pubname_table[i].die, 1);
13060 for (i = 0; i < arange_table_in_use; i++)
13061 prune_unused_types_mark (arange_table[i], 1);
13062
13063 /* Get rid of nodes that aren't marked. */
13064 prune_unused_types_prune (comp_unit_die);
13065 for (node = limbo_die_list; node; node = node->next)
13066 prune_unused_types_prune (node->die);
13067
13068 /* Leave the marks clear. */
13069 prune_unmark_dies (comp_unit_die);
13070 for (node = limbo_die_list; node; node = node->next)
13071 prune_unmark_dies (node->die);
13072 }
13073
13074 /* Output stuff that dwarf requires at the end of every file,
13075 and generate the DWARF-2 debugging info. */
13076
13077 static void
13078 dwarf2out_finish (input_filename)
13079 const char *input_filename;
13080 {
13081 limbo_die_node *node, *next_node;
13082 dw_die_ref die = 0;
13083
13084 /* Add the name for the main input file now. We delayed this from
13085 dwarf2out_init to avoid complications with PCH. */
13086 add_name_attribute (comp_unit_die, input_filename);
13087 if (input_filename[0] != DIR_SEPARATOR)
13088 add_comp_dir_attribute (comp_unit_die);
13089 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13090 {
13091 size_t i;
13092 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13093 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR)
13094 {
13095 add_comp_dir_attribute (comp_unit_die);
13096 break;
13097 }
13098 }
13099
13100 /* Traverse the limbo die list, and add parent/child links. The only
13101 dies without parents that should be here are concrete instances of
13102 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13103 For concrete instances, we can get the parent die from the abstract
13104 instance. */
13105 for (node = limbo_die_list; node; node = next_node)
13106 {
13107 next_node = node->next;
13108 die = node->die;
13109
13110 if (die->die_parent == NULL)
13111 {
13112 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13113 tree context;
13114
13115 if (origin)
13116 add_child_die (origin->die_parent, die);
13117 else if (die == comp_unit_die)
13118 ;
13119 /* If this was an expression for a bound involved in a function
13120 return type, it may be a SAVE_EXPR for which we weren't able
13121 to find a DIE previously. So try now. */
13122 else if (node->created_for
13123 && TREE_CODE (node->created_for) == SAVE_EXPR
13124 && 0 != (origin = (lookup_decl_die
13125 (SAVE_EXPR_CONTEXT
13126 (node->created_for)))))
13127 add_child_die (origin, die);
13128 else if (errorcount > 0 || sorrycount > 0)
13129 /* It's OK to be confused by errors in the input. */
13130 add_child_die (comp_unit_die, die);
13131 else if (node->created_for
13132 && ((DECL_P (node->created_for)
13133 && (context = DECL_CONTEXT (node->created_for)))
13134 || (TYPE_P (node->created_for)
13135 && (context = TYPE_CONTEXT (node->created_for))))
13136 && TREE_CODE (context) == FUNCTION_DECL)
13137 {
13138 /* In certain situations, the lexical block containing a
13139 nested function can be optimized away, which results
13140 in the nested function die being orphaned. Likewise
13141 with the return type of that nested function. Force
13142 this to be a child of the containing function. */
13143 origin = lookup_decl_die (context);
13144 if (! origin)
13145 abort ();
13146 add_child_die (origin, die);
13147 }
13148 else
13149 abort ();
13150 }
13151 }
13152
13153 limbo_die_list = NULL;
13154
13155 /* Walk through the list of incomplete types again, trying once more to
13156 emit full debugging info for them. */
13157 retry_incomplete_types ();
13158
13159 /* We need to reverse all the dies before break_out_includes, or
13160 we'll see the end of an include file before the beginning. */
13161 reverse_all_dies (comp_unit_die);
13162
13163 if (flag_eliminate_unused_debug_types)
13164 prune_unused_types ();
13165
13166 /* Generate separate CUs for each of the include files we've seen.
13167 They will go into limbo_die_list. */
13168 if (flag_eliminate_dwarf2_dups)
13169 break_out_includes (comp_unit_die);
13170
13171 /* Traverse the DIE's and add add sibling attributes to those DIE's
13172 that have children. */
13173 add_sibling_attributes (comp_unit_die);
13174 for (node = limbo_die_list; node; node = node->next)
13175 add_sibling_attributes (node->die);
13176
13177 /* Output a terminator label for the .text section. */
13178 text_section ();
13179 (*targetm.asm_out.internal_label) (asm_out_file, TEXT_END_LABEL, 0);
13180
13181 /* Output the source line correspondence table. We must do this
13182 even if there is no line information. Otherwise, on an empty
13183 translation unit, we will generate a present, but empty,
13184 .debug_info section. IRIX 6.5 `nm' will then complain when
13185 examining the file. */
13186 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13187 {
13188 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13189 output_line_info ();
13190 }
13191
13192 /* Output location list section if necessary. */
13193 if (have_location_lists)
13194 {
13195 /* Output the location lists info. */
13196 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13197 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13198 DEBUG_LOC_SECTION_LABEL, 0);
13199 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13200 output_location_lists (die);
13201 have_location_lists = 0;
13202 }
13203
13204 /* We can only use the low/high_pc attributes if all of the code was
13205 in .text. */
13206 if (separate_line_info_table_in_use == 0)
13207 {
13208 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13209 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13210 }
13211
13212 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13213 "base address". Use zero so that these addresses become absolute. */
13214 else if (have_location_lists || ranges_table_in_use)
13215 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13216
13217 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13218 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13219 debug_line_section_label);
13220
13221 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13222 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13223
13224 /* Output all of the compilation units. We put the main one last so that
13225 the offsets are available to output_pubnames. */
13226 for (node = limbo_die_list; node; node = node->next)
13227 output_comp_unit (node->die, 0);
13228
13229 output_comp_unit (comp_unit_die, 0);
13230
13231 /* Output the abbreviation table. */
13232 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13233 output_abbrev_section ();
13234
13235 /* Output public names table if necessary. */
13236 if (pubname_table_in_use)
13237 {
13238 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13239 output_pubnames ();
13240 }
13241
13242 /* Output the address range information. We only put functions in the arange
13243 table, so don't write it out if we don't have any. */
13244 if (fde_table_in_use)
13245 {
13246 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13247 output_aranges ();
13248 }
13249
13250 /* Output ranges section if necessary. */
13251 if (ranges_table_in_use)
13252 {
13253 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13254 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13255 output_ranges ();
13256 }
13257
13258 /* Have to end the primary source file. */
13259 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13260 {
13261 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13262 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13263 dw2_asm_output_data (1, 0, "End compilation unit");
13264 }
13265
13266 /* If we emitted any DW_FORM_strp form attribute, output the string
13267 table too. */
13268 if (debug_str_hash)
13269 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13270 }
13271 #else
13272
13273 /* This should never be used, but its address is needed for comparisons. */
13274 const struct gcc_debug_hooks dwarf2_debug_hooks;
13275
13276 #endif /* DWARF2_DEBUGGING_INFO */
13277
13278 #include "gt-dwarf2out.h"