dwarf2out.c (add_location_or_const_value_attribute): Add support for PARALLEL.
[gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "real.h"
44 #include "rtl.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "reload.h"
49 #include "function.h"
50 #include "output.h"
51 #include "expr.h"
52 #include "libfuncs.h"
53 #include "except.h"
54 #include "dwarf2.h"
55 #include "dwarf2out.h"
56 #include "dwarf2asm.h"
57 #include "toplev.h"
58 #include "varray.h"
59 #include "ggc.h"
60 #include "md5.h"
61 #include "tm_p.h"
62 #include "diagnostic.h"
63 #include "debug.h"
64 #include "target.h"
65 #include "langhooks.h"
66 #include "hashtab.h"
67 #include "cgraph.h"
68
69 #ifdef DWARF2_DEBUGGING_INFO
70 static void dwarf2out_source_line (unsigned int, const char *);
71 #endif
72
73 /* DWARF2 Abbreviation Glossary:
74 CFA = Canonical Frame Address
75 a fixed address on the stack which identifies a call frame.
76 We define it to be the value of SP just before the call insn.
77 The CFA register and offset, which may change during the course
78 of the function, are used to calculate its value at runtime.
79 CFI = Call Frame Instruction
80 an instruction for the DWARF2 abstract machine
81 CIE = Common Information Entry
82 information describing information common to one or more FDEs
83 DIE = Debugging Information Entry
84 FDE = Frame Description Entry
85 information describing the stack call frame, in particular,
86 how to restore registers
87
88 DW_CFA_... = DWARF2 CFA call frame instruction
89 DW_TAG_... = DWARF2 DIE tag */
90
91 /* Decide whether we want to emit frame unwind information for the current
92 translation unit. */
93
94 int
95 dwarf2out_do_frame (void)
96 {
97 return (write_symbols == DWARF2_DEBUG
98 || write_symbols == VMS_AND_DWARF2_DEBUG
99 #ifdef DWARF2_FRAME_INFO
100 || DWARF2_FRAME_INFO
101 #endif
102 #ifdef DWARF2_UNWIND_INFO
103 || flag_unwind_tables
104 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
105 #endif
106 );
107 }
108
109 /* The size of the target's pointer type. */
110 #ifndef PTR_SIZE
111 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
112 #endif
113
114 /* Various versions of targetm.eh_frame_section. Note these must appear
115 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
116
117 /* Version of targetm.eh_frame_section for systems with named sections. */
118 void
119 named_section_eh_frame_section (void)
120 {
121 #ifdef EH_FRAME_SECTION_NAME
122 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
123 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
124 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
125 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
126 int flags;
127
128 flags = (! flag_pic
129 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
130 && (fde_encoding & 0x70) != DW_EH_PE_aligned
131 && (per_encoding & 0x70) != DW_EH_PE_absptr
132 && (per_encoding & 0x70) != DW_EH_PE_aligned
133 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
134 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
135 ? 0 : SECTION_WRITE;
136 named_section_flags (EH_FRAME_SECTION_NAME, flags);
137 #else
138 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
139 #endif
140 #endif
141 }
142
143 /* Version of targetm.eh_frame_section for systems using collect2. */
144 void
145 collect2_eh_frame_section (void)
146 {
147 tree label = get_file_function_name ('F');
148
149 data_section ();
150 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
151 (*targetm.asm_out.globalize_label) (asm_out_file, IDENTIFIER_POINTER (label));
152 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
153 }
154
155 /* Default version of targetm.eh_frame_section. */
156 void
157 default_eh_frame_section (void)
158 {
159 #ifdef EH_FRAME_SECTION_NAME
160 named_section_eh_frame_section ();
161 #else
162 collect2_eh_frame_section ();
163 #endif
164 }
165
166 /* Array of RTXes referenced by the debugging information, which therefore
167 must be kept around forever. */
168 static GTY(()) varray_type used_rtx_varray;
169
170 /* A pointer to the base of a list of incomplete types which might be
171 completed at some later time. incomplete_types_list needs to be a VARRAY
172 because we want to tell the garbage collector about it. */
173 static GTY(()) varray_type incomplete_types;
174
175 /* A pointer to the base of a table of references to declaration
176 scopes. This table is a display which tracks the nesting
177 of declaration scopes at the current scope and containing
178 scopes. This table is used to find the proper place to
179 define type declaration DIE's. */
180 static GTY(()) varray_type decl_scope_table;
181
182 /* How to start an assembler comment. */
183 #ifndef ASM_COMMENT_START
184 #define ASM_COMMENT_START ";#"
185 #endif
186
187 typedef struct dw_cfi_struct *dw_cfi_ref;
188 typedef struct dw_fde_struct *dw_fde_ref;
189 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
190
191 /* Call frames are described using a sequence of Call Frame
192 Information instructions. The register number, offset
193 and address fields are provided as possible operands;
194 their use is selected by the opcode field. */
195
196 enum dw_cfi_oprnd_type {
197 dw_cfi_oprnd_unused,
198 dw_cfi_oprnd_reg_num,
199 dw_cfi_oprnd_offset,
200 dw_cfi_oprnd_addr,
201 dw_cfi_oprnd_loc
202 };
203
204 typedef union dw_cfi_oprnd_struct GTY(())
205 {
206 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
207 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
208 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
209 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
210 }
211 dw_cfi_oprnd;
212
213 typedef struct dw_cfi_struct GTY(())
214 {
215 dw_cfi_ref dw_cfi_next;
216 enum dwarf_call_frame_info dw_cfi_opc;
217 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
218 dw_cfi_oprnd1;
219 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
220 dw_cfi_oprnd2;
221 }
222 dw_cfi_node;
223
224 /* This is how we define the location of the CFA. We use to handle it
225 as REG + OFFSET all the time, but now it can be more complex.
226 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
227 Instead of passing around REG and OFFSET, we pass a copy
228 of this structure. */
229 typedef struct cfa_loc GTY(())
230 {
231 unsigned long reg;
232 HOST_WIDE_INT offset;
233 HOST_WIDE_INT base_offset;
234 int indirect; /* 1 if CFA is accessed via a dereference. */
235 } dw_cfa_location;
236
237 /* All call frame descriptions (FDE's) in the GCC generated DWARF
238 refer to a single Common Information Entry (CIE), defined at
239 the beginning of the .debug_frame section. This use of a single
240 CIE obviates the need to keep track of multiple CIE's
241 in the DWARF generation routines below. */
242
243 typedef struct dw_fde_struct GTY(())
244 {
245 const char *dw_fde_begin;
246 const char *dw_fde_current_label;
247 const char *dw_fde_end;
248 dw_cfi_ref dw_fde_cfi;
249 unsigned funcdef_number;
250 unsigned all_throwers_are_sibcalls : 1;
251 unsigned nothrow : 1;
252 unsigned uses_eh_lsda : 1;
253 }
254 dw_fde_node;
255
256 /* Maximum size (in bytes) of an artificially generated label. */
257 #define MAX_ARTIFICIAL_LABEL_BYTES 30
258
259 /* The size of addresses as they appear in the Dwarf 2 data.
260 Some architectures use word addresses to refer to code locations,
261 but Dwarf 2 info always uses byte addresses. On such machines,
262 Dwarf 2 addresses need to be larger than the architecture's
263 pointers. */
264 #ifndef DWARF2_ADDR_SIZE
265 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
266 #endif
267
268 /* The size in bytes of a DWARF field indicating an offset or length
269 relative to a debug info section, specified to be 4 bytes in the
270 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
271 as PTR_SIZE. */
272
273 #ifndef DWARF_OFFSET_SIZE
274 #define DWARF_OFFSET_SIZE 4
275 #endif
276
277 /* According to the (draft) DWARF 3 specification, the initial length
278 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
279 bytes are 0xffffffff, followed by the length stored in the next 8
280 bytes.
281
282 However, the SGI/MIPS ABI uses an initial length which is equal to
283 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
284
285 #ifndef DWARF_INITIAL_LENGTH_SIZE
286 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
287 #endif
288
289 #define DWARF_VERSION 2
290
291 /* Round SIZE up to the nearest BOUNDARY. */
292 #define DWARF_ROUND(SIZE,BOUNDARY) \
293 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
294
295 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
296 #ifndef DWARF_CIE_DATA_ALIGNMENT
297 #ifdef STACK_GROWS_DOWNWARD
298 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
299 #else
300 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
301 #endif
302 #endif
303
304 /* A pointer to the base of a table that contains frame description
305 information for each routine. */
306 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
307
308 /* Number of elements currently allocated for fde_table. */
309 static GTY(()) unsigned fde_table_allocated;
310
311 /* Number of elements in fde_table currently in use. */
312 static GTY(()) unsigned fde_table_in_use;
313
314 /* Size (in elements) of increments by which we may expand the
315 fde_table. */
316 #define FDE_TABLE_INCREMENT 256
317
318 /* A list of call frame insns for the CIE. */
319 static GTY(()) dw_cfi_ref cie_cfi_head;
320
321 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
322 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
323 attribute that accelerates the lookup of the FDE associated
324 with the subprogram. This variable holds the table index of the FDE
325 associated with the current function (body) definition. */
326 static unsigned current_funcdef_fde;
327 #endif
328
329 struct indirect_string_node GTY(())
330 {
331 const char *str;
332 unsigned int refcount;
333 unsigned int form;
334 char *label;
335 };
336
337 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
338
339 static GTY(()) int dw2_string_counter;
340 static GTY(()) unsigned long dwarf2out_cfi_label_num;
341
342 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
343
344 /* Forward declarations for functions defined in this file. */
345
346 static char *stripattributes (const char *);
347 static const char *dwarf_cfi_name (unsigned);
348 static dw_cfi_ref new_cfi (void);
349 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
350 static void add_fde_cfi (const char *, dw_cfi_ref);
351 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
352 static void lookup_cfa (dw_cfa_location *);
353 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
354 static void initial_return_save (rtx);
355 static HOST_WIDE_INT stack_adjust_offset (rtx);
356 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
357 static void output_call_frame_info (int);
358 static void dwarf2out_stack_adjust (rtx);
359 static void queue_reg_save (const char *, rtx, HOST_WIDE_INT);
360 static void flush_queued_reg_saves (void);
361 static bool clobbers_queued_reg_save (rtx);
362 static void dwarf2out_frame_debug_expr (rtx, const char *);
363
364 /* Support for complex CFA locations. */
365 static void output_cfa_loc (dw_cfi_ref);
366 static void get_cfa_from_loc_descr (dw_cfa_location *,
367 struct dw_loc_descr_struct *);
368 static struct dw_loc_descr_struct *build_cfa_loc
369 (dw_cfa_location *);
370 static void def_cfa_1 (const char *, dw_cfa_location *);
371
372 /* How to start an assembler comment. */
373 #ifndef ASM_COMMENT_START
374 #define ASM_COMMENT_START ";#"
375 #endif
376
377 /* Data and reference forms for relocatable data. */
378 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
379 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
380
381 #ifndef DEBUG_FRAME_SECTION
382 #define DEBUG_FRAME_SECTION ".debug_frame"
383 #endif
384
385 #ifndef FUNC_BEGIN_LABEL
386 #define FUNC_BEGIN_LABEL "LFB"
387 #endif
388
389 #ifndef FUNC_END_LABEL
390 #define FUNC_END_LABEL "LFE"
391 #endif
392
393 #define FRAME_BEGIN_LABEL "Lframe"
394 #define CIE_AFTER_SIZE_LABEL "LSCIE"
395 #define CIE_END_LABEL "LECIE"
396 #define FDE_LABEL "LSFDE"
397 #define FDE_AFTER_SIZE_LABEL "LASFDE"
398 #define FDE_END_LABEL "LEFDE"
399 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
400 #define LINE_NUMBER_END_LABEL "LELT"
401 #define LN_PROLOG_AS_LABEL "LASLTP"
402 #define LN_PROLOG_END_LABEL "LELTP"
403 #define DIE_LABEL_PREFIX "DW"
404
405 /* The DWARF 2 CFA column which tracks the return address. Normally this
406 is the column for PC, or the first column after all of the hard
407 registers. */
408 #ifndef DWARF_FRAME_RETURN_COLUMN
409 #ifdef PC_REGNUM
410 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
411 #else
412 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
413 #endif
414 #endif
415
416 /* The mapping from gcc register number to DWARF 2 CFA column number. By
417 default, we just provide columns for all registers. */
418 #ifndef DWARF_FRAME_REGNUM
419 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
420 #endif
421
422 /* The offset from the incoming value of %sp to the top of the stack frame
423 for the current function. */
424 #ifndef INCOMING_FRAME_SP_OFFSET
425 #define INCOMING_FRAME_SP_OFFSET 0
426 #endif
427 \f
428 /* Hook used by __throw. */
429
430 rtx
431 expand_builtin_dwarf_sp_column (void)
432 {
433 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
434 }
435
436 /* Return a pointer to a copy of the section string name S with all
437 attributes stripped off, and an asterisk prepended (for assemble_name). */
438
439 static inline char *
440 stripattributes (const char *s)
441 {
442 char *stripped = xmalloc (strlen (s) + 2);
443 char *p = stripped;
444
445 *p++ = '*';
446
447 while (*s && *s != ',')
448 *p++ = *s++;
449
450 *p = '\0';
451 return stripped;
452 }
453
454 /* Generate code to initialize the register size table. */
455
456 void
457 expand_builtin_init_dwarf_reg_sizes (tree address)
458 {
459 int i;
460 enum machine_mode mode = TYPE_MODE (char_type_node);
461 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
462 rtx mem = gen_rtx_MEM (BLKmode, addr);
463 bool wrote_return_column = false;
464
465 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
466 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
467 {
468 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
469 enum machine_mode save_mode = reg_raw_mode[i];
470 HOST_WIDE_INT size;
471
472 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
473 save_mode = choose_hard_reg_mode (i, 1, true);
474 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
475 {
476 if (save_mode == VOIDmode)
477 continue;
478 wrote_return_column = true;
479 }
480 size = GET_MODE_SIZE (save_mode);
481 if (offset < 0)
482 continue;
483
484 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
485 }
486
487 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
488 if (! wrote_return_column)
489 abort ();
490 i = DWARF_ALT_FRAME_RETURN_COLUMN;
491 wrote_return_column = false;
492 #else
493 i = DWARF_FRAME_RETURN_COLUMN;
494 #endif
495
496 if (! wrote_return_column)
497 {
498 enum machine_mode save_mode = Pmode;
499 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
500 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
501 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
502 }
503 }
504
505 /* Convert a DWARF call frame info. operation to its string name */
506
507 static const char *
508 dwarf_cfi_name (unsigned int cfi_opc)
509 {
510 switch (cfi_opc)
511 {
512 case DW_CFA_advance_loc:
513 return "DW_CFA_advance_loc";
514 case DW_CFA_offset:
515 return "DW_CFA_offset";
516 case DW_CFA_restore:
517 return "DW_CFA_restore";
518 case DW_CFA_nop:
519 return "DW_CFA_nop";
520 case DW_CFA_set_loc:
521 return "DW_CFA_set_loc";
522 case DW_CFA_advance_loc1:
523 return "DW_CFA_advance_loc1";
524 case DW_CFA_advance_loc2:
525 return "DW_CFA_advance_loc2";
526 case DW_CFA_advance_loc4:
527 return "DW_CFA_advance_loc4";
528 case DW_CFA_offset_extended:
529 return "DW_CFA_offset_extended";
530 case DW_CFA_restore_extended:
531 return "DW_CFA_restore_extended";
532 case DW_CFA_undefined:
533 return "DW_CFA_undefined";
534 case DW_CFA_same_value:
535 return "DW_CFA_same_value";
536 case DW_CFA_register:
537 return "DW_CFA_register";
538 case DW_CFA_remember_state:
539 return "DW_CFA_remember_state";
540 case DW_CFA_restore_state:
541 return "DW_CFA_restore_state";
542 case DW_CFA_def_cfa:
543 return "DW_CFA_def_cfa";
544 case DW_CFA_def_cfa_register:
545 return "DW_CFA_def_cfa_register";
546 case DW_CFA_def_cfa_offset:
547 return "DW_CFA_def_cfa_offset";
548
549 /* DWARF 3 */
550 case DW_CFA_def_cfa_expression:
551 return "DW_CFA_def_cfa_expression";
552 case DW_CFA_expression:
553 return "DW_CFA_expression";
554 case DW_CFA_offset_extended_sf:
555 return "DW_CFA_offset_extended_sf";
556 case DW_CFA_def_cfa_sf:
557 return "DW_CFA_def_cfa_sf";
558 case DW_CFA_def_cfa_offset_sf:
559 return "DW_CFA_def_cfa_offset_sf";
560
561 /* SGI/MIPS specific */
562 case DW_CFA_MIPS_advance_loc8:
563 return "DW_CFA_MIPS_advance_loc8";
564
565 /* GNU extensions */
566 case DW_CFA_GNU_window_save:
567 return "DW_CFA_GNU_window_save";
568 case DW_CFA_GNU_args_size:
569 return "DW_CFA_GNU_args_size";
570 case DW_CFA_GNU_negative_offset_extended:
571 return "DW_CFA_GNU_negative_offset_extended";
572
573 default:
574 return "DW_CFA_<unknown>";
575 }
576 }
577
578 /* Return a pointer to a newly allocated Call Frame Instruction. */
579
580 static inline dw_cfi_ref
581 new_cfi (void)
582 {
583 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
584
585 cfi->dw_cfi_next = NULL;
586 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
587 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
588
589 return cfi;
590 }
591
592 /* Add a Call Frame Instruction to list of instructions. */
593
594 static inline void
595 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
596 {
597 dw_cfi_ref *p;
598
599 /* Find the end of the chain. */
600 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
601 ;
602
603 *p = cfi;
604 }
605
606 /* Generate a new label for the CFI info to refer to. */
607
608 char *
609 dwarf2out_cfi_label (void)
610 {
611 static char label[20];
612
613 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
614 ASM_OUTPUT_LABEL (asm_out_file, label);
615 return label;
616 }
617
618 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
619 or to the CIE if LABEL is NULL. */
620
621 static void
622 add_fde_cfi (const char *label, dw_cfi_ref cfi)
623 {
624 if (label)
625 {
626 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
627
628 if (*label == 0)
629 label = dwarf2out_cfi_label ();
630
631 if (fde->dw_fde_current_label == NULL
632 || strcmp (label, fde->dw_fde_current_label) != 0)
633 {
634 dw_cfi_ref xcfi;
635
636 fde->dw_fde_current_label = label = xstrdup (label);
637
638 /* Set the location counter to the new label. */
639 xcfi = new_cfi ();
640 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
641 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
642 add_cfi (&fde->dw_fde_cfi, xcfi);
643 }
644
645 add_cfi (&fde->dw_fde_cfi, cfi);
646 }
647
648 else
649 add_cfi (&cie_cfi_head, cfi);
650 }
651
652 /* Subroutine of lookup_cfa. */
653
654 static inline void
655 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
656 {
657 switch (cfi->dw_cfi_opc)
658 {
659 case DW_CFA_def_cfa_offset:
660 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
661 break;
662 case DW_CFA_def_cfa_register:
663 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
664 break;
665 case DW_CFA_def_cfa:
666 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
667 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
668 break;
669 case DW_CFA_def_cfa_expression:
670 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
671 break;
672 default:
673 break;
674 }
675 }
676
677 /* Find the previous value for the CFA. */
678
679 static void
680 lookup_cfa (dw_cfa_location *loc)
681 {
682 dw_cfi_ref cfi;
683
684 loc->reg = (unsigned long) -1;
685 loc->offset = 0;
686 loc->indirect = 0;
687 loc->base_offset = 0;
688
689 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
690 lookup_cfa_1 (cfi, loc);
691
692 if (fde_table_in_use)
693 {
694 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
695 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
696 lookup_cfa_1 (cfi, loc);
697 }
698 }
699
700 /* The current rule for calculating the DWARF2 canonical frame address. */
701 static dw_cfa_location cfa;
702
703 /* The register used for saving registers to the stack, and its offset
704 from the CFA. */
705 static dw_cfa_location cfa_store;
706
707 /* The running total of the size of arguments pushed onto the stack. */
708 static HOST_WIDE_INT args_size;
709
710 /* The last args_size we actually output. */
711 static HOST_WIDE_INT old_args_size;
712
713 /* Entry point to update the canonical frame address (CFA).
714 LABEL is passed to add_fde_cfi. The value of CFA is now to be
715 calculated from REG+OFFSET. */
716
717 void
718 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
719 {
720 dw_cfa_location loc;
721 loc.indirect = 0;
722 loc.base_offset = 0;
723 loc.reg = reg;
724 loc.offset = offset;
725 def_cfa_1 (label, &loc);
726 }
727
728 /* This routine does the actual work. The CFA is now calculated from
729 the dw_cfa_location structure. */
730
731 static void
732 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
733 {
734 dw_cfi_ref cfi;
735 dw_cfa_location old_cfa, loc;
736
737 cfa = *loc_p;
738 loc = *loc_p;
739
740 if (cfa_store.reg == loc.reg && loc.indirect == 0)
741 cfa_store.offset = loc.offset;
742
743 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
744 lookup_cfa (&old_cfa);
745
746 /* If nothing changed, no need to issue any call frame instructions. */
747 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
748 && loc.indirect == old_cfa.indirect
749 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
750 return;
751
752 cfi = new_cfi ();
753
754 if (loc.reg == old_cfa.reg && !loc.indirect)
755 {
756 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
757 indicating the CFA register did not change but the offset
758 did. */
759 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
760 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
761 }
762
763 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
764 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
765 && !loc.indirect)
766 {
767 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
768 indicating the CFA register has changed to <register> but the
769 offset has not changed. */
770 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
771 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
772 }
773 #endif
774
775 else if (loc.indirect == 0)
776 {
777 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
778 indicating the CFA register has changed to <register> with
779 the specified offset. */
780 cfi->dw_cfi_opc = DW_CFA_def_cfa;
781 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
782 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
783 }
784 else
785 {
786 /* Construct a DW_CFA_def_cfa_expression instruction to
787 calculate the CFA using a full location expression since no
788 register-offset pair is available. */
789 struct dw_loc_descr_struct *loc_list;
790
791 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
792 loc_list = build_cfa_loc (&loc);
793 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
794 }
795
796 add_fde_cfi (label, cfi);
797 }
798
799 /* Add the CFI for saving a register. REG is the CFA column number.
800 LABEL is passed to add_fde_cfi.
801 If SREG is -1, the register is saved at OFFSET from the CFA;
802 otherwise it is saved in SREG. */
803
804 static void
805 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
806 {
807 dw_cfi_ref cfi = new_cfi ();
808
809 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
810
811 /* The following comparison is correct. -1 is used to indicate that
812 the value isn't a register number. */
813 if (sreg == (unsigned int) -1)
814 {
815 if (reg & ~0x3f)
816 /* The register number won't fit in 6 bits, so we have to use
817 the long form. */
818 cfi->dw_cfi_opc = DW_CFA_offset_extended;
819 else
820 cfi->dw_cfi_opc = DW_CFA_offset;
821
822 #ifdef ENABLE_CHECKING
823 {
824 /* If we get an offset that is not a multiple of
825 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
826 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
827 description. */
828 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
829
830 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
831 abort ();
832 }
833 #endif
834 offset /= DWARF_CIE_DATA_ALIGNMENT;
835 if (offset < 0)
836 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
837
838 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
839 }
840 else if (sreg == reg)
841 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
842 return;
843 else
844 {
845 cfi->dw_cfi_opc = DW_CFA_register;
846 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
847 }
848
849 add_fde_cfi (label, cfi);
850 }
851
852 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
853 This CFI tells the unwinder that it needs to restore the window registers
854 from the previous frame's window save area.
855
856 ??? Perhaps we should note in the CIE where windows are saved (instead of
857 assuming 0(cfa)) and what registers are in the window. */
858
859 void
860 dwarf2out_window_save (const char *label)
861 {
862 dw_cfi_ref cfi = new_cfi ();
863
864 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
865 add_fde_cfi (label, cfi);
866 }
867
868 /* Add a CFI to update the running total of the size of arguments
869 pushed onto the stack. */
870
871 void
872 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
873 {
874 dw_cfi_ref cfi;
875
876 if (size == old_args_size)
877 return;
878
879 old_args_size = size;
880
881 cfi = new_cfi ();
882 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
883 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
884 add_fde_cfi (label, cfi);
885 }
886
887 /* Entry point for saving a register to the stack. REG is the GCC register
888 number. LABEL and OFFSET are passed to reg_save. */
889
890 void
891 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
892 {
893 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
894 }
895
896 /* Entry point for saving the return address in the stack.
897 LABEL and OFFSET are passed to reg_save. */
898
899 void
900 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
901 {
902 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
903 }
904
905 /* Entry point for saving the return address in a register.
906 LABEL and SREG are passed to reg_save. */
907
908 void
909 dwarf2out_return_reg (const char *label, unsigned int sreg)
910 {
911 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
912 }
913
914 /* Record the initial position of the return address. RTL is
915 INCOMING_RETURN_ADDR_RTX. */
916
917 static void
918 initial_return_save (rtx rtl)
919 {
920 unsigned int reg = (unsigned int) -1;
921 HOST_WIDE_INT offset = 0;
922
923 switch (GET_CODE (rtl))
924 {
925 case REG:
926 /* RA is in a register. */
927 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
928 break;
929
930 case MEM:
931 /* RA is on the stack. */
932 rtl = XEXP (rtl, 0);
933 switch (GET_CODE (rtl))
934 {
935 case REG:
936 if (REGNO (rtl) != STACK_POINTER_REGNUM)
937 abort ();
938 offset = 0;
939 break;
940
941 case PLUS:
942 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
943 abort ();
944 offset = INTVAL (XEXP (rtl, 1));
945 break;
946
947 case MINUS:
948 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
949 abort ();
950 offset = -INTVAL (XEXP (rtl, 1));
951 break;
952
953 default:
954 abort ();
955 }
956
957 break;
958
959 case PLUS:
960 /* The return address is at some offset from any value we can
961 actually load. For instance, on the SPARC it is in %i7+8. Just
962 ignore the offset for now; it doesn't matter for unwinding frames. */
963 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
964 abort ();
965 initial_return_save (XEXP (rtl, 0));
966 return;
967
968 default:
969 abort ();
970 }
971
972 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
973 }
974
975 /* Given a SET, calculate the amount of stack adjustment it
976 contains. */
977
978 static HOST_WIDE_INT
979 stack_adjust_offset (rtx pattern)
980 {
981 rtx src = SET_SRC (pattern);
982 rtx dest = SET_DEST (pattern);
983 HOST_WIDE_INT offset = 0;
984 enum rtx_code code;
985
986 if (dest == stack_pointer_rtx)
987 {
988 /* (set (reg sp) (plus (reg sp) (const_int))) */
989 code = GET_CODE (src);
990 if (! (code == PLUS || code == MINUS)
991 || XEXP (src, 0) != stack_pointer_rtx
992 || GET_CODE (XEXP (src, 1)) != CONST_INT)
993 return 0;
994
995 offset = INTVAL (XEXP (src, 1));
996 if (code == PLUS)
997 offset = -offset;
998 }
999 else if (GET_CODE (dest) == MEM)
1000 {
1001 /* (set (mem (pre_dec (reg sp))) (foo)) */
1002 src = XEXP (dest, 0);
1003 code = GET_CODE (src);
1004
1005 switch (code)
1006 {
1007 case PRE_MODIFY:
1008 case POST_MODIFY:
1009 if (XEXP (src, 0) == stack_pointer_rtx)
1010 {
1011 rtx val = XEXP (XEXP (src, 1), 1);
1012 /* We handle only adjustments by constant amount. */
1013 if (GET_CODE (XEXP (src, 1)) != PLUS ||
1014 GET_CODE (val) != CONST_INT)
1015 abort ();
1016 offset = -INTVAL (val);
1017 break;
1018 }
1019 return 0;
1020
1021 case PRE_DEC:
1022 case POST_DEC:
1023 if (XEXP (src, 0) == stack_pointer_rtx)
1024 {
1025 offset = GET_MODE_SIZE (GET_MODE (dest));
1026 break;
1027 }
1028 return 0;
1029
1030 case PRE_INC:
1031 case POST_INC:
1032 if (XEXP (src, 0) == stack_pointer_rtx)
1033 {
1034 offset = -GET_MODE_SIZE (GET_MODE (dest));
1035 break;
1036 }
1037 return 0;
1038
1039 default:
1040 return 0;
1041 }
1042 }
1043 else
1044 return 0;
1045
1046 return offset;
1047 }
1048
1049 /* Check INSN to see if it looks like a push or a stack adjustment, and
1050 make a note of it if it does. EH uses this information to find out how
1051 much extra space it needs to pop off the stack. */
1052
1053 static void
1054 dwarf2out_stack_adjust (rtx insn)
1055 {
1056 HOST_WIDE_INT offset;
1057 const char *label;
1058 int i;
1059
1060 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1061 {
1062 /* Extract the size of the args from the CALL rtx itself. */
1063 insn = PATTERN (insn);
1064 if (GET_CODE (insn) == PARALLEL)
1065 insn = XVECEXP (insn, 0, 0);
1066 if (GET_CODE (insn) == SET)
1067 insn = SET_SRC (insn);
1068 if (GET_CODE (insn) != CALL)
1069 abort ();
1070
1071 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1072 return;
1073 }
1074
1075 /* If only calls can throw, and we have a frame pointer,
1076 save up adjustments until we see the CALL_INSN. */
1077 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1078 return;
1079
1080 if (GET_CODE (insn) == BARRIER)
1081 {
1082 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1083 the compiler will have already emitted a stack adjustment, but
1084 doesn't bother for calls to noreturn functions. */
1085 #ifdef STACK_GROWS_DOWNWARD
1086 offset = -args_size;
1087 #else
1088 offset = args_size;
1089 #endif
1090 }
1091 else if (GET_CODE (PATTERN (insn)) == SET)
1092 offset = stack_adjust_offset (PATTERN (insn));
1093 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1094 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1095 {
1096 /* There may be stack adjustments inside compound insns. Search
1097 for them. */
1098 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1099 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1100 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1101 }
1102 else
1103 return;
1104
1105 if (offset == 0)
1106 return;
1107
1108 if (cfa.reg == STACK_POINTER_REGNUM)
1109 cfa.offset += offset;
1110
1111 #ifndef STACK_GROWS_DOWNWARD
1112 offset = -offset;
1113 #endif
1114
1115 args_size += offset;
1116 if (args_size < 0)
1117 args_size = 0;
1118
1119 label = dwarf2out_cfi_label ();
1120 def_cfa_1 (label, &cfa);
1121 dwarf2out_args_size (label, args_size);
1122 }
1123
1124 #endif
1125
1126 /* We delay emitting a register save until either (a) we reach the end
1127 of the prologue or (b) the register is clobbered. This clusters
1128 register saves so that there are fewer pc advances. */
1129
1130 struct queued_reg_save GTY(())
1131 {
1132 struct queued_reg_save *next;
1133 rtx reg;
1134 HOST_WIDE_INT cfa_offset;
1135 };
1136
1137 static GTY(()) struct queued_reg_save *queued_reg_saves;
1138
1139 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1140 static const char *last_reg_save_label;
1141
1142 static void
1143 queue_reg_save (const char *label, rtx reg, HOST_WIDE_INT offset)
1144 {
1145 struct queued_reg_save *q = ggc_alloc (sizeof (*q));
1146
1147 q->next = queued_reg_saves;
1148 q->reg = reg;
1149 q->cfa_offset = offset;
1150 queued_reg_saves = q;
1151
1152 last_reg_save_label = label;
1153 }
1154
1155 static void
1156 flush_queued_reg_saves (void)
1157 {
1158 struct queued_reg_save *q, *next;
1159
1160 for (q = queued_reg_saves; q; q = next)
1161 {
1162 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1163 next = q->next;
1164 }
1165
1166 queued_reg_saves = NULL;
1167 last_reg_save_label = NULL;
1168 }
1169
1170 static bool
1171 clobbers_queued_reg_save (rtx insn)
1172 {
1173 struct queued_reg_save *q;
1174
1175 for (q = queued_reg_saves; q; q = q->next)
1176 if (modified_in_p (q->reg, insn))
1177 return true;
1178
1179 return false;
1180 }
1181
1182
1183 /* A temporary register holding an integral value used in adjusting SP
1184 or setting up the store_reg. The "offset" field holds the integer
1185 value, not an offset. */
1186 static dw_cfa_location cfa_temp;
1187
1188 /* Record call frame debugging information for an expression EXPR,
1189 which either sets SP or FP (adjusting how we calculate the frame
1190 address) or saves a register to the stack. LABEL indicates the
1191 address of EXPR.
1192
1193 This function encodes a state machine mapping rtxes to actions on
1194 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1195 users need not read the source code.
1196
1197 The High-Level Picture
1198
1199 Changes in the register we use to calculate the CFA: Currently we
1200 assume that if you copy the CFA register into another register, we
1201 should take the other one as the new CFA register; this seems to
1202 work pretty well. If it's wrong for some target, it's simple
1203 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1204
1205 Changes in the register we use for saving registers to the stack:
1206 This is usually SP, but not always. Again, we deduce that if you
1207 copy SP into another register (and SP is not the CFA register),
1208 then the new register is the one we will be using for register
1209 saves. This also seems to work.
1210
1211 Register saves: There's not much guesswork about this one; if
1212 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1213 register save, and the register used to calculate the destination
1214 had better be the one we think we're using for this purpose.
1215
1216 Except: If the register being saved is the CFA register, and the
1217 offset is nonzero, we are saving the CFA, so we assume we have to
1218 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1219 the intent is to save the value of SP from the previous frame.
1220
1221 Invariants / Summaries of Rules
1222
1223 cfa current rule for calculating the CFA. It usually
1224 consists of a register and an offset.
1225 cfa_store register used by prologue code to save things to the stack
1226 cfa_store.offset is the offset from the value of
1227 cfa_store.reg to the actual CFA
1228 cfa_temp register holding an integral value. cfa_temp.offset
1229 stores the value, which will be used to adjust the
1230 stack pointer. cfa_temp is also used like cfa_store,
1231 to track stores to the stack via fp or a temp reg.
1232
1233 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1234 with cfa.reg as the first operand changes the cfa.reg and its
1235 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1236 cfa_temp.offset.
1237
1238 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1239 expression yielding a constant. This sets cfa_temp.reg
1240 and cfa_temp.offset.
1241
1242 Rule 5: Create a new register cfa_store used to save items to the
1243 stack.
1244
1245 Rules 10-14: Save a register to the stack. Define offset as the
1246 difference of the original location and cfa_store's
1247 location (or cfa_temp's location if cfa_temp is used).
1248
1249 The Rules
1250
1251 "{a,b}" indicates a choice of a xor b.
1252 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1253
1254 Rule 1:
1255 (set <reg1> <reg2>:cfa.reg)
1256 effects: cfa.reg = <reg1>
1257 cfa.offset unchanged
1258 cfa_temp.reg = <reg1>
1259 cfa_temp.offset = cfa.offset
1260
1261 Rule 2:
1262 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1263 {<const_int>,<reg>:cfa_temp.reg}))
1264 effects: cfa.reg = sp if fp used
1265 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1266 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1267 if cfa_store.reg==sp
1268
1269 Rule 3:
1270 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1271 effects: cfa.reg = fp
1272 cfa_offset += +/- <const_int>
1273
1274 Rule 4:
1275 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1276 constraints: <reg1> != fp
1277 <reg1> != sp
1278 effects: cfa.reg = <reg1>
1279 cfa_temp.reg = <reg1>
1280 cfa_temp.offset = cfa.offset
1281
1282 Rule 5:
1283 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1284 constraints: <reg1> != fp
1285 <reg1> != sp
1286 effects: cfa_store.reg = <reg1>
1287 cfa_store.offset = cfa.offset - cfa_temp.offset
1288
1289 Rule 6:
1290 (set <reg> <const_int>)
1291 effects: cfa_temp.reg = <reg>
1292 cfa_temp.offset = <const_int>
1293
1294 Rule 7:
1295 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1296 effects: cfa_temp.reg = <reg1>
1297 cfa_temp.offset |= <const_int>
1298
1299 Rule 8:
1300 (set <reg> (high <exp>))
1301 effects: none
1302
1303 Rule 9:
1304 (set <reg> (lo_sum <exp> <const_int>))
1305 effects: cfa_temp.reg = <reg>
1306 cfa_temp.offset = <const_int>
1307
1308 Rule 10:
1309 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1310 effects: cfa_store.offset -= <const_int>
1311 cfa.offset = cfa_store.offset if cfa.reg == sp
1312 cfa.reg = sp
1313 cfa.base_offset = -cfa_store.offset
1314
1315 Rule 11:
1316 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1317 effects: cfa_store.offset += -/+ mode_size(mem)
1318 cfa.offset = cfa_store.offset if cfa.reg == sp
1319 cfa.reg = sp
1320 cfa.base_offset = -cfa_store.offset
1321
1322 Rule 12:
1323 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1324
1325 <reg2>)
1326 effects: cfa.reg = <reg1>
1327 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1328
1329 Rule 13:
1330 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1331 effects: cfa.reg = <reg1>
1332 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1333
1334 Rule 14:
1335 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1336 effects: cfa.reg = <reg1>
1337 cfa.base_offset = -cfa_temp.offset
1338 cfa_temp.offset -= mode_size(mem) */
1339
1340 static void
1341 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1342 {
1343 rtx src, dest;
1344 HOST_WIDE_INT offset;
1345
1346 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1347 the PARALLEL independently. The first element is always processed if
1348 it is a SET. This is for backward compatibility. Other elements
1349 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1350 flag is set in them. */
1351 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1352 {
1353 int par_index;
1354 int limit = XVECLEN (expr, 0);
1355
1356 for (par_index = 0; par_index < limit; par_index++)
1357 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1358 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1359 || par_index == 0))
1360 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1361
1362 return;
1363 }
1364
1365 if (GET_CODE (expr) != SET)
1366 abort ();
1367
1368 src = SET_SRC (expr);
1369 dest = SET_DEST (expr);
1370
1371 switch (GET_CODE (dest))
1372 {
1373 case REG:
1374 /* Rule 1 */
1375 /* Update the CFA rule wrt SP or FP. Make sure src is
1376 relative to the current CFA register. */
1377 switch (GET_CODE (src))
1378 {
1379 /* Setting FP from SP. */
1380 case REG:
1381 if (cfa.reg == (unsigned) REGNO (src))
1382 /* OK. */
1383 ;
1384 else
1385 abort ();
1386
1387 /* We used to require that dest be either SP or FP, but the
1388 ARM copies SP to a temporary register, and from there to
1389 FP. So we just rely on the backends to only set
1390 RTX_FRAME_RELATED_P on appropriate insns. */
1391 cfa.reg = REGNO (dest);
1392 cfa_temp.reg = cfa.reg;
1393 cfa_temp.offset = cfa.offset;
1394 break;
1395
1396 case PLUS:
1397 case MINUS:
1398 case LO_SUM:
1399 if (dest == stack_pointer_rtx)
1400 {
1401 /* Rule 2 */
1402 /* Adjusting SP. */
1403 switch (GET_CODE (XEXP (src, 1)))
1404 {
1405 case CONST_INT:
1406 offset = INTVAL (XEXP (src, 1));
1407 break;
1408 case REG:
1409 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1410 abort ();
1411 offset = cfa_temp.offset;
1412 break;
1413 default:
1414 abort ();
1415 }
1416
1417 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1418 {
1419 /* Restoring SP from FP in the epilogue. */
1420 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1421 abort ();
1422 cfa.reg = STACK_POINTER_REGNUM;
1423 }
1424 else if (GET_CODE (src) == LO_SUM)
1425 /* Assume we've set the source reg of the LO_SUM from sp. */
1426 ;
1427 else if (XEXP (src, 0) != stack_pointer_rtx)
1428 abort ();
1429
1430 if (GET_CODE (src) != MINUS)
1431 offset = -offset;
1432 if (cfa.reg == STACK_POINTER_REGNUM)
1433 cfa.offset += offset;
1434 if (cfa_store.reg == STACK_POINTER_REGNUM)
1435 cfa_store.offset += offset;
1436 }
1437 else if (dest == hard_frame_pointer_rtx)
1438 {
1439 /* Rule 3 */
1440 /* Either setting the FP from an offset of the SP,
1441 or adjusting the FP */
1442 if (! frame_pointer_needed)
1443 abort ();
1444
1445 if (GET_CODE (XEXP (src, 0)) == REG
1446 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1447 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1448 {
1449 offset = INTVAL (XEXP (src, 1));
1450 if (GET_CODE (src) != MINUS)
1451 offset = -offset;
1452 cfa.offset += offset;
1453 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1454 }
1455 else
1456 abort ();
1457 }
1458 else
1459 {
1460 if (GET_CODE (src) == MINUS)
1461 abort ();
1462
1463 /* Rule 4 */
1464 if (GET_CODE (XEXP (src, 0)) == REG
1465 && REGNO (XEXP (src, 0)) == cfa.reg
1466 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1467 {
1468 /* Setting a temporary CFA register that will be copied
1469 into the FP later on. */
1470 offset = - INTVAL (XEXP (src, 1));
1471 cfa.offset += offset;
1472 cfa.reg = REGNO (dest);
1473 /* Or used to save regs to the stack. */
1474 cfa_temp.reg = cfa.reg;
1475 cfa_temp.offset = cfa.offset;
1476 }
1477
1478 /* Rule 5 */
1479 else if (GET_CODE (XEXP (src, 0)) == REG
1480 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1481 && XEXP (src, 1) == stack_pointer_rtx)
1482 {
1483 /* Setting a scratch register that we will use instead
1484 of SP for saving registers to the stack. */
1485 if (cfa.reg != STACK_POINTER_REGNUM)
1486 abort ();
1487 cfa_store.reg = REGNO (dest);
1488 cfa_store.offset = cfa.offset - cfa_temp.offset;
1489 }
1490
1491 /* Rule 9 */
1492 else if (GET_CODE (src) == LO_SUM
1493 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1494 {
1495 cfa_temp.reg = REGNO (dest);
1496 cfa_temp.offset = INTVAL (XEXP (src, 1));
1497 }
1498 else
1499 abort ();
1500 }
1501 break;
1502
1503 /* Rule 6 */
1504 case CONST_INT:
1505 cfa_temp.reg = REGNO (dest);
1506 cfa_temp.offset = INTVAL (src);
1507 break;
1508
1509 /* Rule 7 */
1510 case IOR:
1511 if (GET_CODE (XEXP (src, 0)) != REG
1512 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1513 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1514 abort ();
1515
1516 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1517 cfa_temp.reg = REGNO (dest);
1518 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1519 break;
1520
1521 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1522 which will fill in all of the bits. */
1523 /* Rule 8 */
1524 case HIGH:
1525 break;
1526
1527 default:
1528 abort ();
1529 }
1530
1531 def_cfa_1 (label, &cfa);
1532 break;
1533
1534 case MEM:
1535 if (GET_CODE (src) != REG)
1536 abort ();
1537
1538 /* Saving a register to the stack. Make sure dest is relative to the
1539 CFA register. */
1540 switch (GET_CODE (XEXP (dest, 0)))
1541 {
1542 /* Rule 10 */
1543 /* With a push. */
1544 case PRE_MODIFY:
1545 /* We can't handle variable size modifications. */
1546 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1547 abort ();
1548 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1549
1550 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1551 || cfa_store.reg != STACK_POINTER_REGNUM)
1552 abort ();
1553
1554 cfa_store.offset += offset;
1555 if (cfa.reg == STACK_POINTER_REGNUM)
1556 cfa.offset = cfa_store.offset;
1557
1558 offset = -cfa_store.offset;
1559 break;
1560
1561 /* Rule 11 */
1562 case PRE_INC:
1563 case PRE_DEC:
1564 offset = GET_MODE_SIZE (GET_MODE (dest));
1565 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1566 offset = -offset;
1567
1568 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1569 || cfa_store.reg != STACK_POINTER_REGNUM)
1570 abort ();
1571
1572 cfa_store.offset += offset;
1573 if (cfa.reg == STACK_POINTER_REGNUM)
1574 cfa.offset = cfa_store.offset;
1575
1576 offset = -cfa_store.offset;
1577 break;
1578
1579 /* Rule 12 */
1580 /* With an offset. */
1581 case PLUS:
1582 case MINUS:
1583 case LO_SUM:
1584 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1585 abort ();
1586 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1587 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1588 offset = -offset;
1589
1590 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1591 offset -= cfa_store.offset;
1592 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1593 offset -= cfa_temp.offset;
1594 else
1595 abort ();
1596 break;
1597
1598 /* Rule 13 */
1599 /* Without an offset. */
1600 case REG:
1601 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1602 offset = -cfa_store.offset;
1603 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1604 offset = -cfa_temp.offset;
1605 else
1606 abort ();
1607 break;
1608
1609 /* Rule 14 */
1610 case POST_INC:
1611 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1612 abort ();
1613 offset = -cfa_temp.offset;
1614 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1615 break;
1616
1617 default:
1618 abort ();
1619 }
1620
1621 if (REGNO (src) != STACK_POINTER_REGNUM
1622 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1623 && (unsigned) REGNO (src) == cfa.reg)
1624 {
1625 /* We're storing the current CFA reg into the stack. */
1626
1627 if (cfa.offset == 0)
1628 {
1629 /* If the source register is exactly the CFA, assume
1630 we're saving SP like any other register; this happens
1631 on the ARM. */
1632 def_cfa_1 (label, &cfa);
1633 queue_reg_save (label, stack_pointer_rtx, offset);
1634 break;
1635 }
1636 else
1637 {
1638 /* Otherwise, we'll need to look in the stack to
1639 calculate the CFA. */
1640 rtx x = XEXP (dest, 0);
1641
1642 if (GET_CODE (x) != REG)
1643 x = XEXP (x, 0);
1644 if (GET_CODE (x) != REG)
1645 abort ();
1646
1647 cfa.reg = REGNO (x);
1648 cfa.base_offset = offset;
1649 cfa.indirect = 1;
1650 def_cfa_1 (label, &cfa);
1651 break;
1652 }
1653 }
1654
1655 def_cfa_1 (label, &cfa);
1656 queue_reg_save (label, src, offset);
1657 break;
1658
1659 default:
1660 abort ();
1661 }
1662 }
1663
1664 /* Record call frame debugging information for INSN, which either
1665 sets SP or FP (adjusting how we calculate the frame address) or saves a
1666 register to the stack. If INSN is NULL_RTX, initialize our state. */
1667
1668 void
1669 dwarf2out_frame_debug (rtx insn)
1670 {
1671 const char *label;
1672 rtx src;
1673
1674 if (insn == NULL_RTX)
1675 {
1676 /* Flush any queued register saves. */
1677 flush_queued_reg_saves ();
1678
1679 /* Set up state for generating call frame debug info. */
1680 lookup_cfa (&cfa);
1681 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1682 abort ();
1683
1684 cfa.reg = STACK_POINTER_REGNUM;
1685 cfa_store = cfa;
1686 cfa_temp.reg = -1;
1687 cfa_temp.offset = 0;
1688 return;
1689 }
1690
1691 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1692 flush_queued_reg_saves ();
1693
1694 if (! RTX_FRAME_RELATED_P (insn))
1695 {
1696 if (!ACCUMULATE_OUTGOING_ARGS)
1697 dwarf2out_stack_adjust (insn);
1698
1699 return;
1700 }
1701
1702 label = dwarf2out_cfi_label ();
1703 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1704 if (src)
1705 insn = XEXP (src, 0);
1706 else
1707 insn = PATTERN (insn);
1708
1709 dwarf2out_frame_debug_expr (insn, label);
1710 }
1711
1712 #endif
1713
1714 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1715 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1716 (enum dwarf_call_frame_info cfi);
1717
1718 static enum dw_cfi_oprnd_type
1719 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1720 {
1721 switch (cfi)
1722 {
1723 case DW_CFA_nop:
1724 case DW_CFA_GNU_window_save:
1725 return dw_cfi_oprnd_unused;
1726
1727 case DW_CFA_set_loc:
1728 case DW_CFA_advance_loc1:
1729 case DW_CFA_advance_loc2:
1730 case DW_CFA_advance_loc4:
1731 case DW_CFA_MIPS_advance_loc8:
1732 return dw_cfi_oprnd_addr;
1733
1734 case DW_CFA_offset:
1735 case DW_CFA_offset_extended:
1736 case DW_CFA_def_cfa:
1737 case DW_CFA_offset_extended_sf:
1738 case DW_CFA_def_cfa_sf:
1739 case DW_CFA_restore_extended:
1740 case DW_CFA_undefined:
1741 case DW_CFA_same_value:
1742 case DW_CFA_def_cfa_register:
1743 case DW_CFA_register:
1744 return dw_cfi_oprnd_reg_num;
1745
1746 case DW_CFA_def_cfa_offset:
1747 case DW_CFA_GNU_args_size:
1748 case DW_CFA_def_cfa_offset_sf:
1749 return dw_cfi_oprnd_offset;
1750
1751 case DW_CFA_def_cfa_expression:
1752 case DW_CFA_expression:
1753 return dw_cfi_oprnd_loc;
1754
1755 default:
1756 abort ();
1757 }
1758 }
1759
1760 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1761 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1762 (enum dwarf_call_frame_info cfi);
1763
1764 static enum dw_cfi_oprnd_type
1765 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1766 {
1767 switch (cfi)
1768 {
1769 case DW_CFA_def_cfa:
1770 case DW_CFA_def_cfa_sf:
1771 case DW_CFA_offset:
1772 case DW_CFA_offset_extended_sf:
1773 case DW_CFA_offset_extended:
1774 return dw_cfi_oprnd_offset;
1775
1776 case DW_CFA_register:
1777 return dw_cfi_oprnd_reg_num;
1778
1779 default:
1780 return dw_cfi_oprnd_unused;
1781 }
1782 }
1783
1784 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1785
1786 /* Output a Call Frame Information opcode and its operand(s). */
1787
1788 static void
1789 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1790 {
1791 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1792 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1793 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1794 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1795 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1796 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1797 {
1798 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1799 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1800 "DW_CFA_offset, column 0x%lx",
1801 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1802 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1803 }
1804 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1805 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1806 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1807 "DW_CFA_restore, column 0x%lx",
1808 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1809 else
1810 {
1811 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1812 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1813
1814 switch (cfi->dw_cfi_opc)
1815 {
1816 case DW_CFA_set_loc:
1817 if (for_eh)
1818 dw2_asm_output_encoded_addr_rtx (
1819 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1820 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1821 NULL);
1822 else
1823 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1824 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1825 break;
1826
1827 case DW_CFA_advance_loc1:
1828 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1829 fde->dw_fde_current_label, NULL);
1830 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1831 break;
1832
1833 case DW_CFA_advance_loc2:
1834 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1835 fde->dw_fde_current_label, NULL);
1836 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1837 break;
1838
1839 case DW_CFA_advance_loc4:
1840 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1841 fde->dw_fde_current_label, NULL);
1842 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1843 break;
1844
1845 case DW_CFA_MIPS_advance_loc8:
1846 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1847 fde->dw_fde_current_label, NULL);
1848 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1849 break;
1850
1851 case DW_CFA_offset_extended:
1852 case DW_CFA_def_cfa:
1853 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1854 NULL);
1855 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1856 break;
1857
1858 case DW_CFA_offset_extended_sf:
1859 case DW_CFA_def_cfa_sf:
1860 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1861 NULL);
1862 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1863 break;
1864
1865 case DW_CFA_restore_extended:
1866 case DW_CFA_undefined:
1867 case DW_CFA_same_value:
1868 case DW_CFA_def_cfa_register:
1869 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1870 NULL);
1871 break;
1872
1873 case DW_CFA_register:
1874 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1875 NULL);
1876 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_reg_num,
1877 NULL);
1878 break;
1879
1880 case DW_CFA_def_cfa_offset:
1881 case DW_CFA_GNU_args_size:
1882 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1883 break;
1884
1885 case DW_CFA_def_cfa_offset_sf:
1886 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1887 break;
1888
1889 case DW_CFA_GNU_window_save:
1890 break;
1891
1892 case DW_CFA_def_cfa_expression:
1893 case DW_CFA_expression:
1894 output_cfa_loc (cfi);
1895 break;
1896
1897 case DW_CFA_GNU_negative_offset_extended:
1898 /* Obsoleted by DW_CFA_offset_extended_sf. */
1899 abort ();
1900
1901 default:
1902 break;
1903 }
1904 }
1905 }
1906
1907 /* Output the call frame information used to used to record information
1908 that relates to calculating the frame pointer, and records the
1909 location of saved registers. */
1910
1911 static void
1912 output_call_frame_info (int for_eh)
1913 {
1914 unsigned int i;
1915 dw_fde_ref fde;
1916 dw_cfi_ref cfi;
1917 char l1[20], l2[20], section_start_label[20];
1918 bool any_lsda_needed = false;
1919 char augmentation[6];
1920 int augmentation_size;
1921 int fde_encoding = DW_EH_PE_absptr;
1922 int per_encoding = DW_EH_PE_absptr;
1923 int lsda_encoding = DW_EH_PE_absptr;
1924
1925 /* Don't emit a CIE if there won't be any FDEs. */
1926 if (fde_table_in_use == 0)
1927 return;
1928
1929 /* If we don't have any functions we'll want to unwind out of, don't
1930 emit any EH unwind information. Note that if exceptions aren't
1931 enabled, we won't have collected nothrow information, and if we
1932 asked for asynchronous tables, we always want this info. */
1933 if (for_eh)
1934 {
1935 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
1936
1937 for (i = 0; i < fde_table_in_use; i++)
1938 if (fde_table[i].uses_eh_lsda)
1939 any_eh_needed = any_lsda_needed = true;
1940 else if (! fde_table[i].nothrow
1941 && ! fde_table[i].all_throwers_are_sibcalls)
1942 any_eh_needed = true;
1943
1944 if (! any_eh_needed)
1945 return;
1946 }
1947
1948 /* We're going to be generating comments, so turn on app. */
1949 if (flag_debug_asm)
1950 app_enable ();
1951
1952 if (for_eh)
1953 (*targetm.asm_out.eh_frame_section) ();
1954 else
1955 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1956
1957 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1958 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1959
1960 /* Output the CIE. */
1961 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1962 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1963 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1964 "Length of Common Information Entry");
1965 ASM_OUTPUT_LABEL (asm_out_file, l1);
1966
1967 /* Now that the CIE pointer is PC-relative for EH,
1968 use 0 to identify the CIE. */
1969 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1970 (for_eh ? 0 : DW_CIE_ID),
1971 "CIE Identifier Tag");
1972
1973 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1974
1975 augmentation[0] = 0;
1976 augmentation_size = 0;
1977 if (for_eh)
1978 {
1979 char *p;
1980
1981 /* Augmentation:
1982 z Indicates that a uleb128 is present to size the
1983 augmentation section.
1984 L Indicates the encoding (and thus presence) of
1985 an LSDA pointer in the FDE augmentation.
1986 R Indicates a non-default pointer encoding for
1987 FDE code pointers.
1988 P Indicates the presence of an encoding + language
1989 personality routine in the CIE augmentation. */
1990
1991 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1992 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
1993 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1994
1995 p = augmentation + 1;
1996 if (eh_personality_libfunc)
1997 {
1998 *p++ = 'P';
1999 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2000 }
2001 if (any_lsda_needed)
2002 {
2003 *p++ = 'L';
2004 augmentation_size += 1;
2005 }
2006 if (fde_encoding != DW_EH_PE_absptr)
2007 {
2008 *p++ = 'R';
2009 augmentation_size += 1;
2010 }
2011 if (p > augmentation + 1)
2012 {
2013 augmentation[0] = 'z';
2014 *p = '\0';
2015 }
2016
2017 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2018 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2019 {
2020 int offset = ( 4 /* Length */
2021 + 4 /* CIE Id */
2022 + 1 /* CIE version */
2023 + strlen (augmentation) + 1 /* Augmentation */
2024 + size_of_uleb128 (1) /* Code alignment */
2025 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2026 + 1 /* RA column */
2027 + 1 /* Augmentation size */
2028 + 1 /* Personality encoding */ );
2029 int pad = -offset & (PTR_SIZE - 1);
2030
2031 augmentation_size += pad;
2032
2033 /* Augmentations should be small, so there's scarce need to
2034 iterate for a solution. Die if we exceed one uleb128 byte. */
2035 if (size_of_uleb128 (augmentation_size) != 1)
2036 abort ();
2037 }
2038 }
2039
2040 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2041 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2042 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2043 "CIE Data Alignment Factor");
2044 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2045
2046 if (augmentation[0])
2047 {
2048 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2049 if (eh_personality_libfunc)
2050 {
2051 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2052 eh_data_format_name (per_encoding));
2053 dw2_asm_output_encoded_addr_rtx (per_encoding,
2054 eh_personality_libfunc, NULL);
2055 }
2056
2057 if (any_lsda_needed)
2058 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2059 eh_data_format_name (lsda_encoding));
2060
2061 if (fde_encoding != DW_EH_PE_absptr)
2062 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2063 eh_data_format_name (fde_encoding));
2064 }
2065
2066 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2067 output_cfi (cfi, NULL, for_eh);
2068
2069 /* Pad the CIE out to an address sized boundary. */
2070 ASM_OUTPUT_ALIGN (asm_out_file,
2071 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2072 ASM_OUTPUT_LABEL (asm_out_file, l2);
2073
2074 /* Loop through all of the FDE's. */
2075 for (i = 0; i < fde_table_in_use; i++)
2076 {
2077 fde = &fde_table[i];
2078
2079 /* Don't emit EH unwind info for leaf functions that don't need it. */
2080 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2081 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2082 && !fde->uses_eh_lsda)
2083 continue;
2084
2085 (*targetm.asm_out.internal_label) (asm_out_file, FDE_LABEL, for_eh + i * 2);
2086 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2087 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2088 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2089 "FDE Length");
2090 ASM_OUTPUT_LABEL (asm_out_file, l1);
2091
2092 if (for_eh)
2093 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2094 else
2095 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2096 "FDE CIE offset");
2097
2098 if (for_eh)
2099 {
2100 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2101 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
2102 "FDE initial location");
2103 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2104 fde->dw_fde_end, fde->dw_fde_begin,
2105 "FDE address range");
2106 }
2107 else
2108 {
2109 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2110 "FDE initial location");
2111 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2112 fde->dw_fde_end, fde->dw_fde_begin,
2113 "FDE address range");
2114 }
2115
2116 if (augmentation[0])
2117 {
2118 if (any_lsda_needed)
2119 {
2120 int size = size_of_encoded_value (lsda_encoding);
2121
2122 if (lsda_encoding == DW_EH_PE_aligned)
2123 {
2124 int offset = ( 4 /* Length */
2125 + 4 /* CIE offset */
2126 + 2 * size_of_encoded_value (fde_encoding)
2127 + 1 /* Augmentation size */ );
2128 int pad = -offset & (PTR_SIZE - 1);
2129
2130 size += pad;
2131 if (size_of_uleb128 (size) != 1)
2132 abort ();
2133 }
2134
2135 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2136
2137 if (fde->uses_eh_lsda)
2138 {
2139 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2140 fde->funcdef_number);
2141 dw2_asm_output_encoded_addr_rtx (
2142 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2143 "Language Specific Data Area");
2144 }
2145 else
2146 {
2147 if (lsda_encoding == DW_EH_PE_aligned)
2148 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2149 dw2_asm_output_data
2150 (size_of_encoded_value (lsda_encoding), 0,
2151 "Language Specific Data Area (none)");
2152 }
2153 }
2154 else
2155 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2156 }
2157
2158 /* Loop through the Call Frame Instructions associated with
2159 this FDE. */
2160 fde->dw_fde_current_label = fde->dw_fde_begin;
2161 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2162 output_cfi (cfi, fde, for_eh);
2163
2164 /* Pad the FDE out to an address sized boundary. */
2165 ASM_OUTPUT_ALIGN (asm_out_file,
2166 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2167 ASM_OUTPUT_LABEL (asm_out_file, l2);
2168 }
2169
2170 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2171 dw2_asm_output_data (4, 0, "End of Table");
2172 #ifdef MIPS_DEBUGGING_INFO
2173 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2174 get a value of 0. Putting .align 0 after the label fixes it. */
2175 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2176 #endif
2177
2178 /* Turn off app to make assembly quicker. */
2179 if (flag_debug_asm)
2180 app_disable ();
2181 }
2182
2183 /* Output a marker (i.e. a label) for the beginning of a function, before
2184 the prologue. */
2185
2186 void
2187 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2188 const char *file ATTRIBUTE_UNUSED)
2189 {
2190 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2191 dw_fde_ref fde;
2192
2193 current_function_func_begin_label = 0;
2194
2195 #ifdef IA64_UNWIND_INFO
2196 /* ??? current_function_func_begin_label is also used by except.c
2197 for call-site information. We must emit this label if it might
2198 be used. */
2199 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2200 && ! dwarf2out_do_frame ())
2201 return;
2202 #else
2203 if (! dwarf2out_do_frame ())
2204 return;
2205 #endif
2206
2207 function_section (current_function_decl);
2208 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2209 current_function_funcdef_no);
2210 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2211 current_function_funcdef_no);
2212 current_function_func_begin_label = get_identifier (label);
2213
2214 #ifdef IA64_UNWIND_INFO
2215 /* We can elide the fde allocation if we're not emitting debug info. */
2216 if (! dwarf2out_do_frame ())
2217 return;
2218 #endif
2219
2220 /* Expand the fde table if necessary. */
2221 if (fde_table_in_use == fde_table_allocated)
2222 {
2223 fde_table_allocated += FDE_TABLE_INCREMENT;
2224 fde_table = ggc_realloc (fde_table,
2225 fde_table_allocated * sizeof (dw_fde_node));
2226 memset (fde_table + fde_table_in_use, 0,
2227 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2228 }
2229
2230 /* Record the FDE associated with this function. */
2231 current_funcdef_fde = fde_table_in_use;
2232
2233 /* Add the new FDE at the end of the fde_table. */
2234 fde = &fde_table[fde_table_in_use++];
2235 fde->dw_fde_begin = xstrdup (label);
2236 fde->dw_fde_current_label = NULL;
2237 fde->dw_fde_end = NULL;
2238 fde->dw_fde_cfi = NULL;
2239 fde->funcdef_number = current_function_funcdef_no;
2240 fde->nothrow = current_function_nothrow;
2241 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2242 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2243
2244 args_size = old_args_size = 0;
2245
2246 /* We only want to output line number information for the genuine dwarf2
2247 prologue case, not the eh frame case. */
2248 #ifdef DWARF2_DEBUGGING_INFO
2249 if (file)
2250 dwarf2out_source_line (line, file);
2251 #endif
2252 }
2253
2254 /* Output a marker (i.e. a label) for the absolute end of the generated code
2255 for a function definition. This gets called *after* the epilogue code has
2256 been generated. */
2257
2258 void
2259 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2260 const char *file ATTRIBUTE_UNUSED)
2261 {
2262 dw_fde_ref fde;
2263 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2264
2265 /* Output a label to mark the endpoint of the code generated for this
2266 function. */
2267 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2268 current_function_funcdef_no);
2269 ASM_OUTPUT_LABEL (asm_out_file, label);
2270 fde = &fde_table[fde_table_in_use - 1];
2271 fde->dw_fde_end = xstrdup (label);
2272 }
2273
2274 void
2275 dwarf2out_frame_init (void)
2276 {
2277 /* Allocate the initial hunk of the fde_table. */
2278 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2279 fde_table_allocated = FDE_TABLE_INCREMENT;
2280 fde_table_in_use = 0;
2281
2282 /* Generate the CFA instructions common to all FDE's. Do it now for the
2283 sake of lookup_cfa. */
2284
2285 #ifdef DWARF2_UNWIND_INFO
2286 /* On entry, the Canonical Frame Address is at SP. */
2287 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2288 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2289 #endif
2290 }
2291
2292 void
2293 dwarf2out_frame_finish (void)
2294 {
2295 /* Output call frame information. */
2296 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2297 output_call_frame_info (0);
2298
2299 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2300 output_call_frame_info (1);
2301 }
2302 #endif
2303 \f
2304 /* And now, the subset of the debugging information support code necessary
2305 for emitting location expressions. */
2306
2307 /* We need some way to distinguish DW_OP_addr with a direct symbol
2308 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2309 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2310
2311
2312 typedef struct dw_val_struct *dw_val_ref;
2313 typedef struct die_struct *dw_die_ref;
2314 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2315 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2316
2317 /* Each DIE may have a series of attribute/value pairs. Values
2318 can take on several forms. The forms that are used in this
2319 implementation are listed below. */
2320
2321 enum dw_val_class
2322 {
2323 dw_val_class_addr,
2324 dw_val_class_offset,
2325 dw_val_class_loc,
2326 dw_val_class_loc_list,
2327 dw_val_class_range_list,
2328 dw_val_class_const,
2329 dw_val_class_unsigned_const,
2330 dw_val_class_long_long,
2331 dw_val_class_float,
2332 dw_val_class_flag,
2333 dw_val_class_die_ref,
2334 dw_val_class_fde_ref,
2335 dw_val_class_lbl_id,
2336 dw_val_class_lbl_offset,
2337 dw_val_class_str
2338 };
2339
2340 /* Describe a double word constant value. */
2341 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2342
2343 typedef struct dw_long_long_struct GTY(())
2344 {
2345 unsigned long hi;
2346 unsigned long low;
2347 }
2348 dw_long_long_const;
2349
2350 /* Describe a floating point constant value. */
2351
2352 typedef struct dw_fp_struct GTY(())
2353 {
2354 long * GTY((length ("%h.length"))) array;
2355 unsigned length;
2356 }
2357 dw_float_const;
2358
2359 /* The dw_val_node describes an attribute's value, as it is
2360 represented internally. */
2361
2362 typedef struct dw_val_struct GTY(())
2363 {
2364 enum dw_val_class val_class;
2365 union dw_val_struct_union
2366 {
2367 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2368 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2369 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2370 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2371 HOST_WIDE_INT GTY ((default (""))) val_int;
2372 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2373 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2374 dw_float_const GTY ((tag ("dw_val_class_float"))) val_float;
2375 struct dw_val_die_union
2376 {
2377 dw_die_ref die;
2378 int external;
2379 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2380 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2381 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2382 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2383 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2384 }
2385 GTY ((desc ("%1.val_class"))) v;
2386 }
2387 dw_val_node;
2388
2389 /* Locations in memory are described using a sequence of stack machine
2390 operations. */
2391
2392 typedef struct dw_loc_descr_struct GTY(())
2393 {
2394 dw_loc_descr_ref dw_loc_next;
2395 enum dwarf_location_atom dw_loc_opc;
2396 dw_val_node dw_loc_oprnd1;
2397 dw_val_node dw_loc_oprnd2;
2398 int dw_loc_addr;
2399 }
2400 dw_loc_descr_node;
2401
2402 /* Location lists are ranges + location descriptions for that range,
2403 so you can track variables that are in different places over
2404 their entire life. */
2405 typedef struct dw_loc_list_struct GTY(())
2406 {
2407 dw_loc_list_ref dw_loc_next;
2408 const char *begin; /* Label for begin address of range */
2409 const char *end; /* Label for end address of range */
2410 char *ll_symbol; /* Label for beginning of location list.
2411 Only on head of list */
2412 const char *section; /* Section this loclist is relative to */
2413 dw_loc_descr_ref expr;
2414 } dw_loc_list_node;
2415
2416 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2417
2418 static const char *dwarf_stack_op_name (unsigned);
2419 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2420 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2421 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2422 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2423 static unsigned long size_of_locs (dw_loc_descr_ref);
2424 static void output_loc_operands (dw_loc_descr_ref);
2425 static void output_loc_sequence (dw_loc_descr_ref);
2426
2427 /* Convert a DWARF stack opcode into its string name. */
2428
2429 static const char *
2430 dwarf_stack_op_name (unsigned int op)
2431 {
2432 switch (op)
2433 {
2434 case DW_OP_addr:
2435 case INTERNAL_DW_OP_tls_addr:
2436 return "DW_OP_addr";
2437 case DW_OP_deref:
2438 return "DW_OP_deref";
2439 case DW_OP_const1u:
2440 return "DW_OP_const1u";
2441 case DW_OP_const1s:
2442 return "DW_OP_const1s";
2443 case DW_OP_const2u:
2444 return "DW_OP_const2u";
2445 case DW_OP_const2s:
2446 return "DW_OP_const2s";
2447 case DW_OP_const4u:
2448 return "DW_OP_const4u";
2449 case DW_OP_const4s:
2450 return "DW_OP_const4s";
2451 case DW_OP_const8u:
2452 return "DW_OP_const8u";
2453 case DW_OP_const8s:
2454 return "DW_OP_const8s";
2455 case DW_OP_constu:
2456 return "DW_OP_constu";
2457 case DW_OP_consts:
2458 return "DW_OP_consts";
2459 case DW_OP_dup:
2460 return "DW_OP_dup";
2461 case DW_OP_drop:
2462 return "DW_OP_drop";
2463 case DW_OP_over:
2464 return "DW_OP_over";
2465 case DW_OP_pick:
2466 return "DW_OP_pick";
2467 case DW_OP_swap:
2468 return "DW_OP_swap";
2469 case DW_OP_rot:
2470 return "DW_OP_rot";
2471 case DW_OP_xderef:
2472 return "DW_OP_xderef";
2473 case DW_OP_abs:
2474 return "DW_OP_abs";
2475 case DW_OP_and:
2476 return "DW_OP_and";
2477 case DW_OP_div:
2478 return "DW_OP_div";
2479 case DW_OP_minus:
2480 return "DW_OP_minus";
2481 case DW_OP_mod:
2482 return "DW_OP_mod";
2483 case DW_OP_mul:
2484 return "DW_OP_mul";
2485 case DW_OP_neg:
2486 return "DW_OP_neg";
2487 case DW_OP_not:
2488 return "DW_OP_not";
2489 case DW_OP_or:
2490 return "DW_OP_or";
2491 case DW_OP_plus:
2492 return "DW_OP_plus";
2493 case DW_OP_plus_uconst:
2494 return "DW_OP_plus_uconst";
2495 case DW_OP_shl:
2496 return "DW_OP_shl";
2497 case DW_OP_shr:
2498 return "DW_OP_shr";
2499 case DW_OP_shra:
2500 return "DW_OP_shra";
2501 case DW_OP_xor:
2502 return "DW_OP_xor";
2503 case DW_OP_bra:
2504 return "DW_OP_bra";
2505 case DW_OP_eq:
2506 return "DW_OP_eq";
2507 case DW_OP_ge:
2508 return "DW_OP_ge";
2509 case DW_OP_gt:
2510 return "DW_OP_gt";
2511 case DW_OP_le:
2512 return "DW_OP_le";
2513 case DW_OP_lt:
2514 return "DW_OP_lt";
2515 case DW_OP_ne:
2516 return "DW_OP_ne";
2517 case DW_OP_skip:
2518 return "DW_OP_skip";
2519 case DW_OP_lit0:
2520 return "DW_OP_lit0";
2521 case DW_OP_lit1:
2522 return "DW_OP_lit1";
2523 case DW_OP_lit2:
2524 return "DW_OP_lit2";
2525 case DW_OP_lit3:
2526 return "DW_OP_lit3";
2527 case DW_OP_lit4:
2528 return "DW_OP_lit4";
2529 case DW_OP_lit5:
2530 return "DW_OP_lit5";
2531 case DW_OP_lit6:
2532 return "DW_OP_lit6";
2533 case DW_OP_lit7:
2534 return "DW_OP_lit7";
2535 case DW_OP_lit8:
2536 return "DW_OP_lit8";
2537 case DW_OP_lit9:
2538 return "DW_OP_lit9";
2539 case DW_OP_lit10:
2540 return "DW_OP_lit10";
2541 case DW_OP_lit11:
2542 return "DW_OP_lit11";
2543 case DW_OP_lit12:
2544 return "DW_OP_lit12";
2545 case DW_OP_lit13:
2546 return "DW_OP_lit13";
2547 case DW_OP_lit14:
2548 return "DW_OP_lit14";
2549 case DW_OP_lit15:
2550 return "DW_OP_lit15";
2551 case DW_OP_lit16:
2552 return "DW_OP_lit16";
2553 case DW_OP_lit17:
2554 return "DW_OP_lit17";
2555 case DW_OP_lit18:
2556 return "DW_OP_lit18";
2557 case DW_OP_lit19:
2558 return "DW_OP_lit19";
2559 case DW_OP_lit20:
2560 return "DW_OP_lit20";
2561 case DW_OP_lit21:
2562 return "DW_OP_lit21";
2563 case DW_OP_lit22:
2564 return "DW_OP_lit22";
2565 case DW_OP_lit23:
2566 return "DW_OP_lit23";
2567 case DW_OP_lit24:
2568 return "DW_OP_lit24";
2569 case DW_OP_lit25:
2570 return "DW_OP_lit25";
2571 case DW_OP_lit26:
2572 return "DW_OP_lit26";
2573 case DW_OP_lit27:
2574 return "DW_OP_lit27";
2575 case DW_OP_lit28:
2576 return "DW_OP_lit28";
2577 case DW_OP_lit29:
2578 return "DW_OP_lit29";
2579 case DW_OP_lit30:
2580 return "DW_OP_lit30";
2581 case DW_OP_lit31:
2582 return "DW_OP_lit31";
2583 case DW_OP_reg0:
2584 return "DW_OP_reg0";
2585 case DW_OP_reg1:
2586 return "DW_OP_reg1";
2587 case DW_OP_reg2:
2588 return "DW_OP_reg2";
2589 case DW_OP_reg3:
2590 return "DW_OP_reg3";
2591 case DW_OP_reg4:
2592 return "DW_OP_reg4";
2593 case DW_OP_reg5:
2594 return "DW_OP_reg5";
2595 case DW_OP_reg6:
2596 return "DW_OP_reg6";
2597 case DW_OP_reg7:
2598 return "DW_OP_reg7";
2599 case DW_OP_reg8:
2600 return "DW_OP_reg8";
2601 case DW_OP_reg9:
2602 return "DW_OP_reg9";
2603 case DW_OP_reg10:
2604 return "DW_OP_reg10";
2605 case DW_OP_reg11:
2606 return "DW_OP_reg11";
2607 case DW_OP_reg12:
2608 return "DW_OP_reg12";
2609 case DW_OP_reg13:
2610 return "DW_OP_reg13";
2611 case DW_OP_reg14:
2612 return "DW_OP_reg14";
2613 case DW_OP_reg15:
2614 return "DW_OP_reg15";
2615 case DW_OP_reg16:
2616 return "DW_OP_reg16";
2617 case DW_OP_reg17:
2618 return "DW_OP_reg17";
2619 case DW_OP_reg18:
2620 return "DW_OP_reg18";
2621 case DW_OP_reg19:
2622 return "DW_OP_reg19";
2623 case DW_OP_reg20:
2624 return "DW_OP_reg20";
2625 case DW_OP_reg21:
2626 return "DW_OP_reg21";
2627 case DW_OP_reg22:
2628 return "DW_OP_reg22";
2629 case DW_OP_reg23:
2630 return "DW_OP_reg23";
2631 case DW_OP_reg24:
2632 return "DW_OP_reg24";
2633 case DW_OP_reg25:
2634 return "DW_OP_reg25";
2635 case DW_OP_reg26:
2636 return "DW_OP_reg26";
2637 case DW_OP_reg27:
2638 return "DW_OP_reg27";
2639 case DW_OP_reg28:
2640 return "DW_OP_reg28";
2641 case DW_OP_reg29:
2642 return "DW_OP_reg29";
2643 case DW_OP_reg30:
2644 return "DW_OP_reg30";
2645 case DW_OP_reg31:
2646 return "DW_OP_reg31";
2647 case DW_OP_breg0:
2648 return "DW_OP_breg0";
2649 case DW_OP_breg1:
2650 return "DW_OP_breg1";
2651 case DW_OP_breg2:
2652 return "DW_OP_breg2";
2653 case DW_OP_breg3:
2654 return "DW_OP_breg3";
2655 case DW_OP_breg4:
2656 return "DW_OP_breg4";
2657 case DW_OP_breg5:
2658 return "DW_OP_breg5";
2659 case DW_OP_breg6:
2660 return "DW_OP_breg6";
2661 case DW_OP_breg7:
2662 return "DW_OP_breg7";
2663 case DW_OP_breg8:
2664 return "DW_OP_breg8";
2665 case DW_OP_breg9:
2666 return "DW_OP_breg9";
2667 case DW_OP_breg10:
2668 return "DW_OP_breg10";
2669 case DW_OP_breg11:
2670 return "DW_OP_breg11";
2671 case DW_OP_breg12:
2672 return "DW_OP_breg12";
2673 case DW_OP_breg13:
2674 return "DW_OP_breg13";
2675 case DW_OP_breg14:
2676 return "DW_OP_breg14";
2677 case DW_OP_breg15:
2678 return "DW_OP_breg15";
2679 case DW_OP_breg16:
2680 return "DW_OP_breg16";
2681 case DW_OP_breg17:
2682 return "DW_OP_breg17";
2683 case DW_OP_breg18:
2684 return "DW_OP_breg18";
2685 case DW_OP_breg19:
2686 return "DW_OP_breg19";
2687 case DW_OP_breg20:
2688 return "DW_OP_breg20";
2689 case DW_OP_breg21:
2690 return "DW_OP_breg21";
2691 case DW_OP_breg22:
2692 return "DW_OP_breg22";
2693 case DW_OP_breg23:
2694 return "DW_OP_breg23";
2695 case DW_OP_breg24:
2696 return "DW_OP_breg24";
2697 case DW_OP_breg25:
2698 return "DW_OP_breg25";
2699 case DW_OP_breg26:
2700 return "DW_OP_breg26";
2701 case DW_OP_breg27:
2702 return "DW_OP_breg27";
2703 case DW_OP_breg28:
2704 return "DW_OP_breg28";
2705 case DW_OP_breg29:
2706 return "DW_OP_breg29";
2707 case DW_OP_breg30:
2708 return "DW_OP_breg30";
2709 case DW_OP_breg31:
2710 return "DW_OP_breg31";
2711 case DW_OP_regx:
2712 return "DW_OP_regx";
2713 case DW_OP_fbreg:
2714 return "DW_OP_fbreg";
2715 case DW_OP_bregx:
2716 return "DW_OP_bregx";
2717 case DW_OP_piece:
2718 return "DW_OP_piece";
2719 case DW_OP_deref_size:
2720 return "DW_OP_deref_size";
2721 case DW_OP_xderef_size:
2722 return "DW_OP_xderef_size";
2723 case DW_OP_nop:
2724 return "DW_OP_nop";
2725 case DW_OP_push_object_address:
2726 return "DW_OP_push_object_address";
2727 case DW_OP_call2:
2728 return "DW_OP_call2";
2729 case DW_OP_call4:
2730 return "DW_OP_call4";
2731 case DW_OP_call_ref:
2732 return "DW_OP_call_ref";
2733 case DW_OP_GNU_push_tls_address:
2734 return "DW_OP_GNU_push_tls_address";
2735 default:
2736 return "OP_<unknown>";
2737 }
2738 }
2739
2740 /* Return a pointer to a newly allocated location description. Location
2741 descriptions are simple expression terms that can be strung
2742 together to form more complicated location (address) descriptions. */
2743
2744 static inline dw_loc_descr_ref
2745 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2746 unsigned HOST_WIDE_INT oprnd2)
2747 {
2748 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2749
2750 descr->dw_loc_opc = op;
2751 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2752 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2753 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2754 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2755
2756 return descr;
2757 }
2758
2759
2760 /* Add a location description term to a location description expression. */
2761
2762 static inline void
2763 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
2764 {
2765 dw_loc_descr_ref *d;
2766
2767 /* Find the end of the chain. */
2768 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2769 ;
2770
2771 *d = descr;
2772 }
2773
2774 /* Return the size of a location descriptor. */
2775
2776 static unsigned long
2777 size_of_loc_descr (dw_loc_descr_ref loc)
2778 {
2779 unsigned long size = 1;
2780
2781 switch (loc->dw_loc_opc)
2782 {
2783 case DW_OP_addr:
2784 case INTERNAL_DW_OP_tls_addr:
2785 size += DWARF2_ADDR_SIZE;
2786 break;
2787 case DW_OP_const1u:
2788 case DW_OP_const1s:
2789 size += 1;
2790 break;
2791 case DW_OP_const2u:
2792 case DW_OP_const2s:
2793 size += 2;
2794 break;
2795 case DW_OP_const4u:
2796 case DW_OP_const4s:
2797 size += 4;
2798 break;
2799 case DW_OP_const8u:
2800 case DW_OP_const8s:
2801 size += 8;
2802 break;
2803 case DW_OP_constu:
2804 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2805 break;
2806 case DW_OP_consts:
2807 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2808 break;
2809 case DW_OP_pick:
2810 size += 1;
2811 break;
2812 case DW_OP_plus_uconst:
2813 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2814 break;
2815 case DW_OP_skip:
2816 case DW_OP_bra:
2817 size += 2;
2818 break;
2819 case DW_OP_breg0:
2820 case DW_OP_breg1:
2821 case DW_OP_breg2:
2822 case DW_OP_breg3:
2823 case DW_OP_breg4:
2824 case DW_OP_breg5:
2825 case DW_OP_breg6:
2826 case DW_OP_breg7:
2827 case DW_OP_breg8:
2828 case DW_OP_breg9:
2829 case DW_OP_breg10:
2830 case DW_OP_breg11:
2831 case DW_OP_breg12:
2832 case DW_OP_breg13:
2833 case DW_OP_breg14:
2834 case DW_OP_breg15:
2835 case DW_OP_breg16:
2836 case DW_OP_breg17:
2837 case DW_OP_breg18:
2838 case DW_OP_breg19:
2839 case DW_OP_breg20:
2840 case DW_OP_breg21:
2841 case DW_OP_breg22:
2842 case DW_OP_breg23:
2843 case DW_OP_breg24:
2844 case DW_OP_breg25:
2845 case DW_OP_breg26:
2846 case DW_OP_breg27:
2847 case DW_OP_breg28:
2848 case DW_OP_breg29:
2849 case DW_OP_breg30:
2850 case DW_OP_breg31:
2851 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2852 break;
2853 case DW_OP_regx:
2854 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2855 break;
2856 case DW_OP_fbreg:
2857 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2858 break;
2859 case DW_OP_bregx:
2860 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2861 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2862 break;
2863 case DW_OP_piece:
2864 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2865 break;
2866 case DW_OP_deref_size:
2867 case DW_OP_xderef_size:
2868 size += 1;
2869 break;
2870 case DW_OP_call2:
2871 size += 2;
2872 break;
2873 case DW_OP_call4:
2874 size += 4;
2875 break;
2876 case DW_OP_call_ref:
2877 size += DWARF2_ADDR_SIZE;
2878 break;
2879 default:
2880 break;
2881 }
2882
2883 return size;
2884 }
2885
2886 /* Return the size of a series of location descriptors. */
2887
2888 static unsigned long
2889 size_of_locs (dw_loc_descr_ref loc)
2890 {
2891 unsigned long size;
2892
2893 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2894 {
2895 loc->dw_loc_addr = size;
2896 size += size_of_loc_descr (loc);
2897 }
2898
2899 return size;
2900 }
2901
2902 /* Output location description stack opcode's operands (if any). */
2903
2904 static void
2905 output_loc_operands (dw_loc_descr_ref loc)
2906 {
2907 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2908 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2909
2910 switch (loc->dw_loc_opc)
2911 {
2912 #ifdef DWARF2_DEBUGGING_INFO
2913 case DW_OP_addr:
2914 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2915 break;
2916 case DW_OP_const2u:
2917 case DW_OP_const2s:
2918 dw2_asm_output_data (2, val1->v.val_int, NULL);
2919 break;
2920 case DW_OP_const4u:
2921 case DW_OP_const4s:
2922 dw2_asm_output_data (4, val1->v.val_int, NULL);
2923 break;
2924 case DW_OP_const8u:
2925 case DW_OP_const8s:
2926 if (HOST_BITS_PER_LONG < 64)
2927 abort ();
2928 dw2_asm_output_data (8, val1->v.val_int, NULL);
2929 break;
2930 case DW_OP_skip:
2931 case DW_OP_bra:
2932 {
2933 int offset;
2934
2935 if (val1->val_class == dw_val_class_loc)
2936 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2937 else
2938 abort ();
2939
2940 dw2_asm_output_data (2, offset, NULL);
2941 }
2942 break;
2943 #else
2944 case DW_OP_addr:
2945 case DW_OP_const2u:
2946 case DW_OP_const2s:
2947 case DW_OP_const4u:
2948 case DW_OP_const4s:
2949 case DW_OP_const8u:
2950 case DW_OP_const8s:
2951 case DW_OP_skip:
2952 case DW_OP_bra:
2953 /* We currently don't make any attempt to make sure these are
2954 aligned properly like we do for the main unwind info, so
2955 don't support emitting things larger than a byte if we're
2956 only doing unwinding. */
2957 abort ();
2958 #endif
2959 case DW_OP_const1u:
2960 case DW_OP_const1s:
2961 dw2_asm_output_data (1, val1->v.val_int, NULL);
2962 break;
2963 case DW_OP_constu:
2964 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2965 break;
2966 case DW_OP_consts:
2967 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2968 break;
2969 case DW_OP_pick:
2970 dw2_asm_output_data (1, val1->v.val_int, NULL);
2971 break;
2972 case DW_OP_plus_uconst:
2973 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2974 break;
2975 case DW_OP_breg0:
2976 case DW_OP_breg1:
2977 case DW_OP_breg2:
2978 case DW_OP_breg3:
2979 case DW_OP_breg4:
2980 case DW_OP_breg5:
2981 case DW_OP_breg6:
2982 case DW_OP_breg7:
2983 case DW_OP_breg8:
2984 case DW_OP_breg9:
2985 case DW_OP_breg10:
2986 case DW_OP_breg11:
2987 case DW_OP_breg12:
2988 case DW_OP_breg13:
2989 case DW_OP_breg14:
2990 case DW_OP_breg15:
2991 case DW_OP_breg16:
2992 case DW_OP_breg17:
2993 case DW_OP_breg18:
2994 case DW_OP_breg19:
2995 case DW_OP_breg20:
2996 case DW_OP_breg21:
2997 case DW_OP_breg22:
2998 case DW_OP_breg23:
2999 case DW_OP_breg24:
3000 case DW_OP_breg25:
3001 case DW_OP_breg26:
3002 case DW_OP_breg27:
3003 case DW_OP_breg28:
3004 case DW_OP_breg29:
3005 case DW_OP_breg30:
3006 case DW_OP_breg31:
3007 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3008 break;
3009 case DW_OP_regx:
3010 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3011 break;
3012 case DW_OP_fbreg:
3013 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3014 break;
3015 case DW_OP_bregx:
3016 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3017 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3018 break;
3019 case DW_OP_piece:
3020 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3021 break;
3022 case DW_OP_deref_size:
3023 case DW_OP_xderef_size:
3024 dw2_asm_output_data (1, val1->v.val_int, NULL);
3025 break;
3026
3027 case INTERNAL_DW_OP_tls_addr:
3028 #ifdef ASM_OUTPUT_DWARF_DTPREL
3029 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3030 val1->v.val_addr);
3031 fputc ('\n', asm_out_file);
3032 #else
3033 abort ();
3034 #endif
3035 break;
3036
3037 default:
3038 /* Other codes have no operands. */
3039 break;
3040 }
3041 }
3042
3043 /* Output a sequence of location operations. */
3044
3045 static void
3046 output_loc_sequence (dw_loc_descr_ref loc)
3047 {
3048 for (; loc != NULL; loc = loc->dw_loc_next)
3049 {
3050 /* Output the opcode. */
3051 dw2_asm_output_data (1, loc->dw_loc_opc,
3052 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3053
3054 /* Output the operand(s) (if any). */
3055 output_loc_operands (loc);
3056 }
3057 }
3058
3059 /* This routine will generate the correct assembly data for a location
3060 description based on a cfi entry with a complex address. */
3061
3062 static void
3063 output_cfa_loc (dw_cfi_ref cfi)
3064 {
3065 dw_loc_descr_ref loc;
3066 unsigned long size;
3067
3068 /* Output the size of the block. */
3069 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3070 size = size_of_locs (loc);
3071 dw2_asm_output_data_uleb128 (size, NULL);
3072
3073 /* Now output the operations themselves. */
3074 output_loc_sequence (loc);
3075 }
3076
3077 /* This function builds a dwarf location descriptor sequence from
3078 a dw_cfa_location. */
3079
3080 static struct dw_loc_descr_struct *
3081 build_cfa_loc (dw_cfa_location *cfa)
3082 {
3083 struct dw_loc_descr_struct *head, *tmp;
3084
3085 if (cfa->indirect == 0)
3086 abort ();
3087
3088 if (cfa->base_offset)
3089 {
3090 if (cfa->reg <= 31)
3091 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3092 else
3093 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3094 }
3095 else if (cfa->reg <= 31)
3096 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3097 else
3098 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3099
3100 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3101 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3102 add_loc_descr (&head, tmp);
3103 if (cfa->offset != 0)
3104 {
3105 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3106 add_loc_descr (&head, tmp);
3107 }
3108
3109 return head;
3110 }
3111
3112 /* This function fills in aa dw_cfa_location structure from a dwarf location
3113 descriptor sequence. */
3114
3115 static void
3116 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3117 {
3118 struct dw_loc_descr_struct *ptr;
3119 cfa->offset = 0;
3120 cfa->base_offset = 0;
3121 cfa->indirect = 0;
3122 cfa->reg = -1;
3123
3124 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3125 {
3126 enum dwarf_location_atom op = ptr->dw_loc_opc;
3127
3128 switch (op)
3129 {
3130 case DW_OP_reg0:
3131 case DW_OP_reg1:
3132 case DW_OP_reg2:
3133 case DW_OP_reg3:
3134 case DW_OP_reg4:
3135 case DW_OP_reg5:
3136 case DW_OP_reg6:
3137 case DW_OP_reg7:
3138 case DW_OP_reg8:
3139 case DW_OP_reg9:
3140 case DW_OP_reg10:
3141 case DW_OP_reg11:
3142 case DW_OP_reg12:
3143 case DW_OP_reg13:
3144 case DW_OP_reg14:
3145 case DW_OP_reg15:
3146 case DW_OP_reg16:
3147 case DW_OP_reg17:
3148 case DW_OP_reg18:
3149 case DW_OP_reg19:
3150 case DW_OP_reg20:
3151 case DW_OP_reg21:
3152 case DW_OP_reg22:
3153 case DW_OP_reg23:
3154 case DW_OP_reg24:
3155 case DW_OP_reg25:
3156 case DW_OP_reg26:
3157 case DW_OP_reg27:
3158 case DW_OP_reg28:
3159 case DW_OP_reg29:
3160 case DW_OP_reg30:
3161 case DW_OP_reg31:
3162 cfa->reg = op - DW_OP_reg0;
3163 break;
3164 case DW_OP_regx:
3165 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3166 break;
3167 case DW_OP_breg0:
3168 case DW_OP_breg1:
3169 case DW_OP_breg2:
3170 case DW_OP_breg3:
3171 case DW_OP_breg4:
3172 case DW_OP_breg5:
3173 case DW_OP_breg6:
3174 case DW_OP_breg7:
3175 case DW_OP_breg8:
3176 case DW_OP_breg9:
3177 case DW_OP_breg10:
3178 case DW_OP_breg11:
3179 case DW_OP_breg12:
3180 case DW_OP_breg13:
3181 case DW_OP_breg14:
3182 case DW_OP_breg15:
3183 case DW_OP_breg16:
3184 case DW_OP_breg17:
3185 case DW_OP_breg18:
3186 case DW_OP_breg19:
3187 case DW_OP_breg20:
3188 case DW_OP_breg21:
3189 case DW_OP_breg22:
3190 case DW_OP_breg23:
3191 case DW_OP_breg24:
3192 case DW_OP_breg25:
3193 case DW_OP_breg26:
3194 case DW_OP_breg27:
3195 case DW_OP_breg28:
3196 case DW_OP_breg29:
3197 case DW_OP_breg30:
3198 case DW_OP_breg31:
3199 cfa->reg = op - DW_OP_breg0;
3200 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3201 break;
3202 case DW_OP_bregx:
3203 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3204 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3205 break;
3206 case DW_OP_deref:
3207 cfa->indirect = 1;
3208 break;
3209 case DW_OP_plus_uconst:
3210 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3211 break;
3212 default:
3213 internal_error ("DW_LOC_OP %s not implemented\n",
3214 dwarf_stack_op_name (ptr->dw_loc_opc));
3215 }
3216 }
3217 }
3218 #endif /* .debug_frame support */
3219 \f
3220 /* And now, the support for symbolic debugging information. */
3221 #ifdef DWARF2_DEBUGGING_INFO
3222
3223 /* .debug_str support. */
3224 static int output_indirect_string (void **, void *);
3225
3226 static void dwarf2out_init (const char *);
3227 static void dwarf2out_finish (const char *);
3228 static void dwarf2out_define (unsigned int, const char *);
3229 static void dwarf2out_undef (unsigned int, const char *);
3230 static void dwarf2out_start_source_file (unsigned, const char *);
3231 static void dwarf2out_end_source_file (unsigned);
3232 static void dwarf2out_begin_block (unsigned, unsigned);
3233 static void dwarf2out_end_block (unsigned, unsigned);
3234 static bool dwarf2out_ignore_block (tree);
3235 static void dwarf2out_global_decl (tree);
3236 static void dwarf2out_abstract_function (tree);
3237
3238 /* The debug hooks structure. */
3239
3240 const struct gcc_debug_hooks dwarf2_debug_hooks =
3241 {
3242 dwarf2out_init,
3243 dwarf2out_finish,
3244 dwarf2out_define,
3245 dwarf2out_undef,
3246 dwarf2out_start_source_file,
3247 dwarf2out_end_source_file,
3248 dwarf2out_begin_block,
3249 dwarf2out_end_block,
3250 dwarf2out_ignore_block,
3251 dwarf2out_source_line,
3252 dwarf2out_begin_prologue,
3253 debug_nothing_int_charstar, /* end_prologue */
3254 dwarf2out_end_epilogue,
3255 debug_nothing_tree, /* begin_function */
3256 debug_nothing_int, /* end_function */
3257 dwarf2out_decl, /* function_decl */
3258 dwarf2out_global_decl,
3259 debug_nothing_tree, /* deferred_inline_function */
3260 /* The DWARF 2 backend tries to reduce debugging bloat by not
3261 emitting the abstract description of inline functions until
3262 something tries to reference them. */
3263 dwarf2out_abstract_function, /* outlining_inline_function */
3264 debug_nothing_rtx, /* label */
3265 debug_nothing_int /* handle_pch */
3266 };
3267 #endif
3268 \f
3269 /* NOTE: In the comments in this file, many references are made to
3270 "Debugging Information Entries". This term is abbreviated as `DIE'
3271 throughout the remainder of this file. */
3272
3273 /* An internal representation of the DWARF output is built, and then
3274 walked to generate the DWARF debugging info. The walk of the internal
3275 representation is done after the entire program has been compiled.
3276 The types below are used to describe the internal representation. */
3277
3278 /* Various DIE's use offsets relative to the beginning of the
3279 .debug_info section to refer to each other. */
3280
3281 typedef long int dw_offset;
3282
3283 /* Define typedefs here to avoid circular dependencies. */
3284
3285 typedef struct dw_attr_struct *dw_attr_ref;
3286 typedef struct dw_line_info_struct *dw_line_info_ref;
3287 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3288 typedef struct pubname_struct *pubname_ref;
3289 typedef struct dw_ranges_struct *dw_ranges_ref;
3290
3291 /* Each entry in the line_info_table maintains the file and
3292 line number associated with the label generated for that
3293 entry. The label gives the PC value associated with
3294 the line number entry. */
3295
3296 typedef struct dw_line_info_struct GTY(())
3297 {
3298 unsigned long dw_file_num;
3299 unsigned long dw_line_num;
3300 }
3301 dw_line_info_entry;
3302
3303 /* Line information for functions in separate sections; each one gets its
3304 own sequence. */
3305 typedef struct dw_separate_line_info_struct GTY(())
3306 {
3307 unsigned long dw_file_num;
3308 unsigned long dw_line_num;
3309 unsigned long function;
3310 }
3311 dw_separate_line_info_entry;
3312
3313 /* Each DIE attribute has a field specifying the attribute kind,
3314 a link to the next attribute in the chain, and an attribute value.
3315 Attributes are typically linked below the DIE they modify. */
3316
3317 typedef struct dw_attr_struct GTY(())
3318 {
3319 enum dwarf_attribute dw_attr;
3320 dw_attr_ref dw_attr_next;
3321 dw_val_node dw_attr_val;
3322 }
3323 dw_attr_node;
3324
3325 /* The Debugging Information Entry (DIE) structure */
3326
3327 typedef struct die_struct GTY(())
3328 {
3329 enum dwarf_tag die_tag;
3330 char *die_symbol;
3331 dw_attr_ref die_attr;
3332 dw_die_ref die_parent;
3333 dw_die_ref die_child;
3334 dw_die_ref die_sib;
3335 dw_die_ref die_definition; /* ref from a specification to its definition */
3336 dw_offset die_offset;
3337 unsigned long die_abbrev;
3338 int die_mark;
3339 }
3340 die_node;
3341
3342 /* The pubname structure */
3343
3344 typedef struct pubname_struct GTY(())
3345 {
3346 dw_die_ref die;
3347 char *name;
3348 }
3349 pubname_entry;
3350
3351 struct dw_ranges_struct GTY(())
3352 {
3353 int block_num;
3354 };
3355
3356 /* The limbo die list structure. */
3357 typedef struct limbo_die_struct GTY(())
3358 {
3359 dw_die_ref die;
3360 tree created_for;
3361 struct limbo_die_struct *next;
3362 }
3363 limbo_die_node;
3364
3365 /* How to start an assembler comment. */
3366 #ifndef ASM_COMMENT_START
3367 #define ASM_COMMENT_START ";#"
3368 #endif
3369
3370 /* Define a macro which returns nonzero for a TYPE_DECL which was
3371 implicitly generated for a tagged type.
3372
3373 Note that unlike the gcc front end (which generates a NULL named
3374 TYPE_DECL node for each complete tagged type, each array type, and
3375 each function type node created) the g++ front end generates a
3376 _named_ TYPE_DECL node for each tagged type node created.
3377 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3378 generate a DW_TAG_typedef DIE for them. */
3379
3380 #define TYPE_DECL_IS_STUB(decl) \
3381 (DECL_NAME (decl) == NULL_TREE \
3382 || (DECL_ARTIFICIAL (decl) \
3383 && is_tagged_type (TREE_TYPE (decl)) \
3384 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3385 /* This is necessary for stub decls that \
3386 appear in nested inline functions. */ \
3387 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3388 && (decl_ultimate_origin (decl) \
3389 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3390
3391 /* Information concerning the compilation unit's programming
3392 language, and compiler version. */
3393
3394 /* Fixed size portion of the DWARF compilation unit header. */
3395 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3396 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3397
3398 /* Fixed size portion of public names info. */
3399 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3400
3401 /* Fixed size portion of the address range info. */
3402 #define DWARF_ARANGES_HEADER_SIZE \
3403 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3404 DWARF2_ADDR_SIZE * 2) \
3405 - DWARF_INITIAL_LENGTH_SIZE)
3406
3407 /* Size of padding portion in the address range info. It must be
3408 aligned to twice the pointer size. */
3409 #define DWARF_ARANGES_PAD_SIZE \
3410 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3411 DWARF2_ADDR_SIZE * 2) \
3412 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3413
3414 /* Use assembler line directives if available. */
3415 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3416 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3417 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3418 #else
3419 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3420 #endif
3421 #endif
3422
3423 /* Minimum line offset in a special line info. opcode.
3424 This value was chosen to give a reasonable range of values. */
3425 #define DWARF_LINE_BASE -10
3426
3427 /* First special line opcode - leave room for the standard opcodes. */
3428 #define DWARF_LINE_OPCODE_BASE 10
3429
3430 /* Range of line offsets in a special line info. opcode. */
3431 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3432
3433 /* Flag that indicates the initial value of the is_stmt_start flag.
3434 In the present implementation, we do not mark any lines as
3435 the beginning of a source statement, because that information
3436 is not made available by the GCC front-end. */
3437 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3438
3439 #ifdef DWARF2_DEBUGGING_INFO
3440 /* This location is used by calc_die_sizes() to keep track
3441 the offset of each DIE within the .debug_info section. */
3442 static unsigned long next_die_offset;
3443 #endif
3444
3445 /* Record the root of the DIE's built for the current compilation unit. */
3446 static GTY(()) dw_die_ref comp_unit_die;
3447
3448 /* A list of DIEs with a NULL parent waiting to be relocated. */
3449 static GTY(()) limbo_die_node *limbo_die_list;
3450
3451 /* Filenames referenced by this compilation unit. */
3452 static GTY(()) varray_type file_table;
3453 static GTY(()) varray_type file_table_emitted;
3454 static GTY(()) size_t file_table_last_lookup_index;
3455
3456 /* A pointer to the base of a table of references to DIE's that describe
3457 declarations. The table is indexed by DECL_UID() which is a unique
3458 number identifying each decl. */
3459 static GTY((length ("decl_die_table_allocated"))) dw_die_ref *decl_die_table;
3460
3461 /* Number of elements currently allocated for the decl_die_table. */
3462 static GTY(()) unsigned decl_die_table_allocated;
3463
3464 /* Number of elements in decl_die_table currently in use. */
3465 static GTY(()) unsigned decl_die_table_in_use;
3466
3467 /* Size (in elements) of increments by which we may expand the
3468 decl_die_table. */
3469 #define DECL_DIE_TABLE_INCREMENT 256
3470
3471 /* A pointer to the base of a list of references to DIE's that
3472 are uniquely identified by their tag, presence/absence of
3473 children DIE's, and list of attribute/value pairs. */
3474 static GTY((length ("abbrev_die_table_allocated")))
3475 dw_die_ref *abbrev_die_table;
3476
3477 /* Number of elements currently allocated for abbrev_die_table. */
3478 static GTY(()) unsigned abbrev_die_table_allocated;
3479
3480 /* Number of elements in type_die_table currently in use. */
3481 static GTY(()) unsigned abbrev_die_table_in_use;
3482
3483 /* Size (in elements) of increments by which we may expand the
3484 abbrev_die_table. */
3485 #define ABBREV_DIE_TABLE_INCREMENT 256
3486
3487 /* A pointer to the base of a table that contains line information
3488 for each source code line in .text in the compilation unit. */
3489 static GTY((length ("line_info_table_allocated")))
3490 dw_line_info_ref line_info_table;
3491
3492 /* Number of elements currently allocated for line_info_table. */
3493 static GTY(()) unsigned line_info_table_allocated;
3494
3495 /* Number of elements in line_info_table currently in use. */
3496 static GTY(()) unsigned line_info_table_in_use;
3497
3498 /* A pointer to the base of a table that contains line information
3499 for each source code line outside of .text in the compilation unit. */
3500 static GTY ((length ("separate_line_info_table_allocated")))
3501 dw_separate_line_info_ref separate_line_info_table;
3502
3503 /* Number of elements currently allocated for separate_line_info_table. */
3504 static GTY(()) unsigned separate_line_info_table_allocated;
3505
3506 /* Number of elements in separate_line_info_table currently in use. */
3507 static GTY(()) unsigned separate_line_info_table_in_use;
3508
3509 /* Size (in elements) of increments by which we may expand the
3510 line_info_table. */
3511 #define LINE_INFO_TABLE_INCREMENT 1024
3512
3513 /* A pointer to the base of a table that contains a list of publicly
3514 accessible names. */
3515 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3516
3517 /* Number of elements currently allocated for pubname_table. */
3518 static GTY(()) unsigned pubname_table_allocated;
3519
3520 /* Number of elements in pubname_table currently in use. */
3521 static GTY(()) unsigned pubname_table_in_use;
3522
3523 /* Size (in elements) of increments by which we may expand the
3524 pubname_table. */
3525 #define PUBNAME_TABLE_INCREMENT 64
3526
3527 /* Array of dies for which we should generate .debug_arange info. */
3528 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3529
3530 /* Number of elements currently allocated for arange_table. */
3531 static GTY(()) unsigned arange_table_allocated;
3532
3533 /* Number of elements in arange_table currently in use. */
3534 static GTY(()) unsigned arange_table_in_use;
3535
3536 /* Size (in elements) of increments by which we may expand the
3537 arange_table. */
3538 #define ARANGE_TABLE_INCREMENT 64
3539
3540 /* Array of dies for which we should generate .debug_ranges info. */
3541 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3542
3543 /* Number of elements currently allocated for ranges_table. */
3544 static GTY(()) unsigned ranges_table_allocated;
3545
3546 /* Number of elements in ranges_table currently in use. */
3547 static GTY(()) unsigned ranges_table_in_use;
3548
3549 /* Size (in elements) of increments by which we may expand the
3550 ranges_table. */
3551 #define RANGES_TABLE_INCREMENT 64
3552
3553 /* Whether we have location lists that need outputting */
3554 static GTY(()) unsigned have_location_lists;
3555
3556 #ifdef DWARF2_DEBUGGING_INFO
3557 /* Record whether the function being analyzed contains inlined functions. */
3558 static int current_function_has_inlines;
3559 #endif
3560 #if 0 && defined (MIPS_DEBUGGING_INFO)
3561 static int comp_unit_has_inlines;
3562 #endif
3563
3564 /* Number of file tables emitted in maybe_emit_file(). */
3565 static GTY(()) int emitcount = 0;
3566
3567 /* Number of internal labels generated by gen_internal_sym(). */
3568 static GTY(()) int label_num;
3569
3570 #ifdef DWARF2_DEBUGGING_INFO
3571
3572 /* Forward declarations for functions defined in this file. */
3573
3574 static int is_pseudo_reg (rtx);
3575 static tree type_main_variant (tree);
3576 static int is_tagged_type (tree);
3577 static const char *dwarf_tag_name (unsigned);
3578 static const char *dwarf_attr_name (unsigned);
3579 static const char *dwarf_form_name (unsigned);
3580 #if 0
3581 static const char *dwarf_type_encoding_name (unsigned);
3582 #endif
3583 static tree decl_ultimate_origin (tree);
3584 static tree block_ultimate_origin (tree);
3585 static tree decl_class_context (tree);
3586 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3587 static inline enum dw_val_class AT_class (dw_attr_ref);
3588 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3589 static inline unsigned AT_flag (dw_attr_ref);
3590 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3591 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3592 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3593 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3594 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3595 unsigned long);
3596 static void add_AT_float (dw_die_ref, enum dwarf_attribute, unsigned, long *);
3597 static hashval_t debug_str_do_hash (const void *);
3598 static int debug_str_eq (const void *, const void *);
3599 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3600 static inline const char *AT_string (dw_attr_ref);
3601 static int AT_string_form (dw_attr_ref);
3602 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3603 static void add_AT_specification (dw_die_ref, dw_die_ref);
3604 static inline dw_die_ref AT_ref (dw_attr_ref);
3605 static inline int AT_ref_external (dw_attr_ref);
3606 static inline void set_AT_ref_external (dw_attr_ref, int);
3607 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3608 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3609 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3610 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3611 dw_loc_list_ref);
3612 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3613 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3614 static inline rtx AT_addr (dw_attr_ref);
3615 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3616 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3617 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3618 unsigned HOST_WIDE_INT);
3619 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3620 unsigned long);
3621 static inline const char *AT_lbl (dw_attr_ref);
3622 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3623 static const char *get_AT_low_pc (dw_die_ref);
3624 static const char *get_AT_hi_pc (dw_die_ref);
3625 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3626 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3627 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3628 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3629 static bool is_c_family (void);
3630 static bool is_cxx (void);
3631 static bool is_java (void);
3632 static bool is_fortran (void);
3633 static bool is_ada (void);
3634 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3635 static inline void free_die (dw_die_ref);
3636 static void remove_children (dw_die_ref);
3637 static void add_child_die (dw_die_ref, dw_die_ref);
3638 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3639 static dw_die_ref lookup_type_die (tree);
3640 static void equate_type_number_to_die (tree, dw_die_ref);
3641 static dw_die_ref lookup_decl_die (tree);
3642 static void equate_decl_number_to_die (tree, dw_die_ref);
3643 static void print_spaces (FILE *);
3644 static void print_die (dw_die_ref, FILE *);
3645 static void print_dwarf_line_table (FILE *);
3646 static void reverse_die_lists (dw_die_ref);
3647 static void reverse_all_dies (dw_die_ref);
3648 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3649 static dw_die_ref pop_compile_unit (dw_die_ref);
3650 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3651 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3652 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3653 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3654 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3655 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3656 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3657 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3658 static void compute_section_prefix (dw_die_ref);
3659 static int is_type_die (dw_die_ref);
3660 static int is_comdat_die (dw_die_ref);
3661 static int is_symbol_die (dw_die_ref);
3662 static void assign_symbol_names (dw_die_ref);
3663 static void break_out_includes (dw_die_ref);
3664 static hashval_t htab_cu_hash (const void *);
3665 static int htab_cu_eq (const void *, const void *);
3666 static void htab_cu_del (void *);
3667 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3668 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3669 static void add_sibling_attributes (dw_die_ref);
3670 static void build_abbrev_table (dw_die_ref);
3671 static void output_location_lists (dw_die_ref);
3672 static int constant_size (long unsigned);
3673 static unsigned long size_of_die (dw_die_ref);
3674 static void calc_die_sizes (dw_die_ref);
3675 static void mark_dies (dw_die_ref);
3676 static void unmark_dies (dw_die_ref);
3677 static void unmark_all_dies (dw_die_ref);
3678 static unsigned long size_of_pubnames (void);
3679 static unsigned long size_of_aranges (void);
3680 static enum dwarf_form value_format (dw_attr_ref);
3681 static void output_value_format (dw_attr_ref);
3682 static void output_abbrev_section (void);
3683 static void output_die_symbol (dw_die_ref);
3684 static void output_die (dw_die_ref);
3685 static void output_compilation_unit_header (void);
3686 static void output_comp_unit (dw_die_ref, int);
3687 static const char *dwarf2_name (tree, int);
3688 static void add_pubname (tree, dw_die_ref);
3689 static void output_pubnames (void);
3690 static void add_arange (tree, dw_die_ref);
3691 static void output_aranges (void);
3692 static unsigned int add_ranges (tree);
3693 static void output_ranges (void);
3694 static void output_line_info (void);
3695 static void output_file_names (void);
3696 static dw_die_ref base_type_die (tree);
3697 static tree root_type (tree);
3698 static int is_base_type (tree);
3699 static bool is_ada_subrange_type (tree);
3700 static dw_die_ref subrange_type_die (tree);
3701 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3702 static int type_is_enum (tree);
3703 static unsigned int reg_number (rtx);
3704 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3705 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3706 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3707 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3708 static dw_loc_descr_ref based_loc_descr (unsigned, HOST_WIDE_INT);
3709 static int is_based_loc (rtx);
3710 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
3711 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3712 static dw_loc_descr_ref loc_descriptor (rtx);
3713 static dw_loc_descr_ref loc_descriptor_from_tree (tree, int);
3714 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3715 static tree field_type (tree);
3716 static unsigned int simple_type_align_in_bits (tree);
3717 static unsigned int simple_decl_align_in_bits (tree);
3718 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3719 static HOST_WIDE_INT field_byte_offset (tree);
3720 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3721 dw_loc_descr_ref);
3722 static void add_data_member_location_attribute (dw_die_ref, tree);
3723 static void add_const_value_attribute (dw_die_ref, rtx);
3724 static rtx rtl_for_decl_location (tree);
3725 static void add_location_or_const_value_attribute (dw_die_ref, tree);
3726 static void tree_add_const_value_attribute (dw_die_ref, tree);
3727 static void add_name_attribute (dw_die_ref, const char *);
3728 static void add_comp_dir_attribute (dw_die_ref);
3729 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
3730 static void add_subscript_info (dw_die_ref, tree);
3731 static void add_byte_size_attribute (dw_die_ref, tree);
3732 static void add_bit_offset_attribute (dw_die_ref, tree);
3733 static void add_bit_size_attribute (dw_die_ref, tree);
3734 static void add_prototyped_attribute (dw_die_ref, tree);
3735 static void add_abstract_origin_attribute (dw_die_ref, tree);
3736 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3737 static void add_src_coords_attributes (dw_die_ref, tree);
3738 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3739 static void push_decl_scope (tree);
3740 static void pop_decl_scope (void);
3741 static dw_die_ref scope_die_for (tree, dw_die_ref);
3742 static inline int local_scope_p (dw_die_ref);
3743 static inline int class_scope_p (dw_die_ref);
3744 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
3745 static const char *type_tag (tree);
3746 static tree member_declared_type (tree);
3747 #if 0
3748 static const char *decl_start_label (tree);
3749 #endif
3750 static void gen_array_type_die (tree, dw_die_ref);
3751 static void gen_set_type_die (tree, dw_die_ref);
3752 #if 0
3753 static void gen_entry_point_die (tree, dw_die_ref);
3754 #endif
3755 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
3756 static void gen_inlined_structure_type_die (tree, dw_die_ref);
3757 static void gen_inlined_union_type_die (tree, dw_die_ref);
3758 static void gen_enumeration_type_die (tree, dw_die_ref);
3759 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
3760 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3761 static void gen_formal_types_die (tree, dw_die_ref);
3762 static void gen_subprogram_die (tree, dw_die_ref);
3763 static void gen_variable_die (tree, dw_die_ref);
3764 static void gen_label_die (tree, dw_die_ref);
3765 static void gen_lexical_block_die (tree, dw_die_ref, int);
3766 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
3767 static void gen_field_die (tree, dw_die_ref);
3768 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3769 static dw_die_ref gen_compile_unit_die (const char *);
3770 static void gen_string_type_die (tree, dw_die_ref);
3771 static void gen_inheritance_die (tree, tree, dw_die_ref);
3772 static void gen_member_die (tree, dw_die_ref);
3773 static void gen_struct_or_union_type_die (tree, dw_die_ref);
3774 static void gen_subroutine_type_die (tree, dw_die_ref);
3775 static void gen_typedef_die (tree, dw_die_ref);
3776 static void gen_type_die (tree, dw_die_ref);
3777 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
3778 static void gen_block_die (tree, dw_die_ref, int);
3779 static void decls_for_scope (tree, dw_die_ref, int);
3780 static int is_redundant_typedef (tree);
3781 static void gen_decl_die (tree, dw_die_ref);
3782 static unsigned lookup_filename (const char *);
3783 static void init_file_table (void);
3784 static void retry_incomplete_types (void);
3785 static void gen_type_die_for_member (tree, tree, dw_die_ref);
3786 static void splice_child_die (dw_die_ref, dw_die_ref);
3787 static int file_info_cmp (const void *, const void *);
3788 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
3789 const char *, const char *, unsigned);
3790 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
3791 const char *, const char *,
3792 const char *);
3793 static void output_loc_list (dw_loc_list_ref);
3794 static char *gen_internal_sym (const char *);
3795
3796 static void prune_unmark_dies (dw_die_ref);
3797 static void prune_unused_types_mark (dw_die_ref, int);
3798 static void prune_unused_types_walk (dw_die_ref);
3799 static void prune_unused_types_walk_attribs (dw_die_ref);
3800 static void prune_unused_types_prune (dw_die_ref);
3801 static void prune_unused_types (void);
3802 static int maybe_emit_file (int);
3803
3804 /* Section names used to hold DWARF debugging information. */
3805 #ifndef DEBUG_INFO_SECTION
3806 #define DEBUG_INFO_SECTION ".debug_info"
3807 #endif
3808 #ifndef DEBUG_ABBREV_SECTION
3809 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3810 #endif
3811 #ifndef DEBUG_ARANGES_SECTION
3812 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3813 #endif
3814 #ifndef DEBUG_MACINFO_SECTION
3815 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3816 #endif
3817 #ifndef DEBUG_LINE_SECTION
3818 #define DEBUG_LINE_SECTION ".debug_line"
3819 #endif
3820 #ifndef DEBUG_LOC_SECTION
3821 #define DEBUG_LOC_SECTION ".debug_loc"
3822 #endif
3823 #ifndef DEBUG_PUBNAMES_SECTION
3824 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3825 #endif
3826 #ifndef DEBUG_STR_SECTION
3827 #define DEBUG_STR_SECTION ".debug_str"
3828 #endif
3829 #ifndef DEBUG_RANGES_SECTION
3830 #define DEBUG_RANGES_SECTION ".debug_ranges"
3831 #endif
3832
3833 /* Standard ELF section names for compiled code and data. */
3834 #ifndef TEXT_SECTION_NAME
3835 #define TEXT_SECTION_NAME ".text"
3836 #endif
3837
3838 /* Section flags for .debug_str section. */
3839 #define DEBUG_STR_SECTION_FLAGS \
3840 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
3841 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
3842 : SECTION_DEBUG)
3843
3844 /* Labels we insert at beginning sections we can reference instead of
3845 the section names themselves. */
3846
3847 #ifndef TEXT_SECTION_LABEL
3848 #define TEXT_SECTION_LABEL "Ltext"
3849 #endif
3850 #ifndef DEBUG_LINE_SECTION_LABEL
3851 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3852 #endif
3853 #ifndef DEBUG_INFO_SECTION_LABEL
3854 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3855 #endif
3856 #ifndef DEBUG_ABBREV_SECTION_LABEL
3857 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3858 #endif
3859 #ifndef DEBUG_LOC_SECTION_LABEL
3860 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3861 #endif
3862 #ifndef DEBUG_RANGES_SECTION_LABEL
3863 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3864 #endif
3865 #ifndef DEBUG_MACINFO_SECTION_LABEL
3866 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3867 #endif
3868
3869 /* Definitions of defaults for formats and names of various special
3870 (artificial) labels which may be generated within this file (when the -g
3871 options is used and DWARF_DEBUGGING_INFO is in effect.
3872 If necessary, these may be overridden from within the tm.h file, but
3873 typically, overriding these defaults is unnecessary. */
3874
3875 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3876 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3877 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3878 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3879 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3880 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3881 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3882 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3883
3884 #ifndef TEXT_END_LABEL
3885 #define TEXT_END_LABEL "Letext"
3886 #endif
3887 #ifndef BLOCK_BEGIN_LABEL
3888 #define BLOCK_BEGIN_LABEL "LBB"
3889 #endif
3890 #ifndef BLOCK_END_LABEL
3891 #define BLOCK_END_LABEL "LBE"
3892 #endif
3893 #ifndef LINE_CODE_LABEL
3894 #define LINE_CODE_LABEL "LM"
3895 #endif
3896 #ifndef SEPARATE_LINE_CODE_LABEL
3897 #define SEPARATE_LINE_CODE_LABEL "LSM"
3898 #endif
3899 \f
3900 /* We allow a language front-end to designate a function that is to be
3901 called to "demangle" any name before it it put into a DIE. */
3902
3903 static const char *(*demangle_name_func) (const char *);
3904
3905 void
3906 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
3907 {
3908 demangle_name_func = func;
3909 }
3910
3911 /* Test if rtl node points to a pseudo register. */
3912
3913 static inline int
3914 is_pseudo_reg (rtx rtl)
3915 {
3916 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3917 || (GET_CODE (rtl) == SUBREG
3918 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3919 }
3920
3921 /* Return a reference to a type, with its const and volatile qualifiers
3922 removed. */
3923
3924 static inline tree
3925 type_main_variant (tree type)
3926 {
3927 type = TYPE_MAIN_VARIANT (type);
3928
3929 /* ??? There really should be only one main variant among any group of
3930 variants of a given type (and all of the MAIN_VARIANT values for all
3931 members of the group should point to that one type) but sometimes the C
3932 front-end messes this up for array types, so we work around that bug
3933 here. */
3934 if (TREE_CODE (type) == ARRAY_TYPE)
3935 while (type != TYPE_MAIN_VARIANT (type))
3936 type = TYPE_MAIN_VARIANT (type);
3937
3938 return type;
3939 }
3940
3941 /* Return nonzero if the given type node represents a tagged type. */
3942
3943 static inline int
3944 is_tagged_type (tree type)
3945 {
3946 enum tree_code code = TREE_CODE (type);
3947
3948 return (code == RECORD_TYPE || code == UNION_TYPE
3949 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
3950 }
3951
3952 /* Convert a DIE tag into its string name. */
3953
3954 static const char *
3955 dwarf_tag_name (unsigned int tag)
3956 {
3957 switch (tag)
3958 {
3959 case DW_TAG_padding:
3960 return "DW_TAG_padding";
3961 case DW_TAG_array_type:
3962 return "DW_TAG_array_type";
3963 case DW_TAG_class_type:
3964 return "DW_TAG_class_type";
3965 case DW_TAG_entry_point:
3966 return "DW_TAG_entry_point";
3967 case DW_TAG_enumeration_type:
3968 return "DW_TAG_enumeration_type";
3969 case DW_TAG_formal_parameter:
3970 return "DW_TAG_formal_parameter";
3971 case DW_TAG_imported_declaration:
3972 return "DW_TAG_imported_declaration";
3973 case DW_TAG_label:
3974 return "DW_TAG_label";
3975 case DW_TAG_lexical_block:
3976 return "DW_TAG_lexical_block";
3977 case DW_TAG_member:
3978 return "DW_TAG_member";
3979 case DW_TAG_pointer_type:
3980 return "DW_TAG_pointer_type";
3981 case DW_TAG_reference_type:
3982 return "DW_TAG_reference_type";
3983 case DW_TAG_compile_unit:
3984 return "DW_TAG_compile_unit";
3985 case DW_TAG_string_type:
3986 return "DW_TAG_string_type";
3987 case DW_TAG_structure_type:
3988 return "DW_TAG_structure_type";
3989 case DW_TAG_subroutine_type:
3990 return "DW_TAG_subroutine_type";
3991 case DW_TAG_typedef:
3992 return "DW_TAG_typedef";
3993 case DW_TAG_union_type:
3994 return "DW_TAG_union_type";
3995 case DW_TAG_unspecified_parameters:
3996 return "DW_TAG_unspecified_parameters";
3997 case DW_TAG_variant:
3998 return "DW_TAG_variant";
3999 case DW_TAG_common_block:
4000 return "DW_TAG_common_block";
4001 case DW_TAG_common_inclusion:
4002 return "DW_TAG_common_inclusion";
4003 case DW_TAG_inheritance:
4004 return "DW_TAG_inheritance";
4005 case DW_TAG_inlined_subroutine:
4006 return "DW_TAG_inlined_subroutine";
4007 case DW_TAG_module:
4008 return "DW_TAG_module";
4009 case DW_TAG_ptr_to_member_type:
4010 return "DW_TAG_ptr_to_member_type";
4011 case DW_TAG_set_type:
4012 return "DW_TAG_set_type";
4013 case DW_TAG_subrange_type:
4014 return "DW_TAG_subrange_type";
4015 case DW_TAG_with_stmt:
4016 return "DW_TAG_with_stmt";
4017 case DW_TAG_access_declaration:
4018 return "DW_TAG_access_declaration";
4019 case DW_TAG_base_type:
4020 return "DW_TAG_base_type";
4021 case DW_TAG_catch_block:
4022 return "DW_TAG_catch_block";
4023 case DW_TAG_const_type:
4024 return "DW_TAG_const_type";
4025 case DW_TAG_constant:
4026 return "DW_TAG_constant";
4027 case DW_TAG_enumerator:
4028 return "DW_TAG_enumerator";
4029 case DW_TAG_file_type:
4030 return "DW_TAG_file_type";
4031 case DW_TAG_friend:
4032 return "DW_TAG_friend";
4033 case DW_TAG_namelist:
4034 return "DW_TAG_namelist";
4035 case DW_TAG_namelist_item:
4036 return "DW_TAG_namelist_item";
4037 case DW_TAG_packed_type:
4038 return "DW_TAG_packed_type";
4039 case DW_TAG_subprogram:
4040 return "DW_TAG_subprogram";
4041 case DW_TAG_template_type_param:
4042 return "DW_TAG_template_type_param";
4043 case DW_TAG_template_value_param:
4044 return "DW_TAG_template_value_param";
4045 case DW_TAG_thrown_type:
4046 return "DW_TAG_thrown_type";
4047 case DW_TAG_try_block:
4048 return "DW_TAG_try_block";
4049 case DW_TAG_variant_part:
4050 return "DW_TAG_variant_part";
4051 case DW_TAG_variable:
4052 return "DW_TAG_variable";
4053 case DW_TAG_volatile_type:
4054 return "DW_TAG_volatile_type";
4055 case DW_TAG_MIPS_loop:
4056 return "DW_TAG_MIPS_loop";
4057 case DW_TAG_format_label:
4058 return "DW_TAG_format_label";
4059 case DW_TAG_function_template:
4060 return "DW_TAG_function_template";
4061 case DW_TAG_class_template:
4062 return "DW_TAG_class_template";
4063 case DW_TAG_GNU_BINCL:
4064 return "DW_TAG_GNU_BINCL";
4065 case DW_TAG_GNU_EINCL:
4066 return "DW_TAG_GNU_EINCL";
4067 default:
4068 return "DW_TAG_<unknown>";
4069 }
4070 }
4071
4072 /* Convert a DWARF attribute code into its string name. */
4073
4074 static const char *
4075 dwarf_attr_name (unsigned int attr)
4076 {
4077 switch (attr)
4078 {
4079 case DW_AT_sibling:
4080 return "DW_AT_sibling";
4081 case DW_AT_location:
4082 return "DW_AT_location";
4083 case DW_AT_name:
4084 return "DW_AT_name";
4085 case DW_AT_ordering:
4086 return "DW_AT_ordering";
4087 case DW_AT_subscr_data:
4088 return "DW_AT_subscr_data";
4089 case DW_AT_byte_size:
4090 return "DW_AT_byte_size";
4091 case DW_AT_bit_offset:
4092 return "DW_AT_bit_offset";
4093 case DW_AT_bit_size:
4094 return "DW_AT_bit_size";
4095 case DW_AT_element_list:
4096 return "DW_AT_element_list";
4097 case DW_AT_stmt_list:
4098 return "DW_AT_stmt_list";
4099 case DW_AT_low_pc:
4100 return "DW_AT_low_pc";
4101 case DW_AT_high_pc:
4102 return "DW_AT_high_pc";
4103 case DW_AT_language:
4104 return "DW_AT_language";
4105 case DW_AT_member:
4106 return "DW_AT_member";
4107 case DW_AT_discr:
4108 return "DW_AT_discr";
4109 case DW_AT_discr_value:
4110 return "DW_AT_discr_value";
4111 case DW_AT_visibility:
4112 return "DW_AT_visibility";
4113 case DW_AT_import:
4114 return "DW_AT_import";
4115 case DW_AT_string_length:
4116 return "DW_AT_string_length";
4117 case DW_AT_common_reference:
4118 return "DW_AT_common_reference";
4119 case DW_AT_comp_dir:
4120 return "DW_AT_comp_dir";
4121 case DW_AT_const_value:
4122 return "DW_AT_const_value";
4123 case DW_AT_containing_type:
4124 return "DW_AT_containing_type";
4125 case DW_AT_default_value:
4126 return "DW_AT_default_value";
4127 case DW_AT_inline:
4128 return "DW_AT_inline";
4129 case DW_AT_is_optional:
4130 return "DW_AT_is_optional";
4131 case DW_AT_lower_bound:
4132 return "DW_AT_lower_bound";
4133 case DW_AT_producer:
4134 return "DW_AT_producer";
4135 case DW_AT_prototyped:
4136 return "DW_AT_prototyped";
4137 case DW_AT_return_addr:
4138 return "DW_AT_return_addr";
4139 case DW_AT_start_scope:
4140 return "DW_AT_start_scope";
4141 case DW_AT_stride_size:
4142 return "DW_AT_stride_size";
4143 case DW_AT_upper_bound:
4144 return "DW_AT_upper_bound";
4145 case DW_AT_abstract_origin:
4146 return "DW_AT_abstract_origin";
4147 case DW_AT_accessibility:
4148 return "DW_AT_accessibility";
4149 case DW_AT_address_class:
4150 return "DW_AT_address_class";
4151 case DW_AT_artificial:
4152 return "DW_AT_artificial";
4153 case DW_AT_base_types:
4154 return "DW_AT_base_types";
4155 case DW_AT_calling_convention:
4156 return "DW_AT_calling_convention";
4157 case DW_AT_count:
4158 return "DW_AT_count";
4159 case DW_AT_data_member_location:
4160 return "DW_AT_data_member_location";
4161 case DW_AT_decl_column:
4162 return "DW_AT_decl_column";
4163 case DW_AT_decl_file:
4164 return "DW_AT_decl_file";
4165 case DW_AT_decl_line:
4166 return "DW_AT_decl_line";
4167 case DW_AT_declaration:
4168 return "DW_AT_declaration";
4169 case DW_AT_discr_list:
4170 return "DW_AT_discr_list";
4171 case DW_AT_encoding:
4172 return "DW_AT_encoding";
4173 case DW_AT_external:
4174 return "DW_AT_external";
4175 case DW_AT_frame_base:
4176 return "DW_AT_frame_base";
4177 case DW_AT_friend:
4178 return "DW_AT_friend";
4179 case DW_AT_identifier_case:
4180 return "DW_AT_identifier_case";
4181 case DW_AT_macro_info:
4182 return "DW_AT_macro_info";
4183 case DW_AT_namelist_items:
4184 return "DW_AT_namelist_items";
4185 case DW_AT_priority:
4186 return "DW_AT_priority";
4187 case DW_AT_segment:
4188 return "DW_AT_segment";
4189 case DW_AT_specification:
4190 return "DW_AT_specification";
4191 case DW_AT_static_link:
4192 return "DW_AT_static_link";
4193 case DW_AT_type:
4194 return "DW_AT_type";
4195 case DW_AT_use_location:
4196 return "DW_AT_use_location";
4197 case DW_AT_variable_parameter:
4198 return "DW_AT_variable_parameter";
4199 case DW_AT_virtuality:
4200 return "DW_AT_virtuality";
4201 case DW_AT_vtable_elem_location:
4202 return "DW_AT_vtable_elem_location";
4203
4204 case DW_AT_allocated:
4205 return "DW_AT_allocated";
4206 case DW_AT_associated:
4207 return "DW_AT_associated";
4208 case DW_AT_data_location:
4209 return "DW_AT_data_location";
4210 case DW_AT_stride:
4211 return "DW_AT_stride";
4212 case DW_AT_entry_pc:
4213 return "DW_AT_entry_pc";
4214 case DW_AT_use_UTF8:
4215 return "DW_AT_use_UTF8";
4216 case DW_AT_extension:
4217 return "DW_AT_extension";
4218 case DW_AT_ranges:
4219 return "DW_AT_ranges";
4220 case DW_AT_trampoline:
4221 return "DW_AT_trampoline";
4222 case DW_AT_call_column:
4223 return "DW_AT_call_column";
4224 case DW_AT_call_file:
4225 return "DW_AT_call_file";
4226 case DW_AT_call_line:
4227 return "DW_AT_call_line";
4228
4229 case DW_AT_MIPS_fde:
4230 return "DW_AT_MIPS_fde";
4231 case DW_AT_MIPS_loop_begin:
4232 return "DW_AT_MIPS_loop_begin";
4233 case DW_AT_MIPS_tail_loop_begin:
4234 return "DW_AT_MIPS_tail_loop_begin";
4235 case DW_AT_MIPS_epilog_begin:
4236 return "DW_AT_MIPS_epilog_begin";
4237 case DW_AT_MIPS_loop_unroll_factor:
4238 return "DW_AT_MIPS_loop_unroll_factor";
4239 case DW_AT_MIPS_software_pipeline_depth:
4240 return "DW_AT_MIPS_software_pipeline_depth";
4241 case DW_AT_MIPS_linkage_name:
4242 return "DW_AT_MIPS_linkage_name";
4243 case DW_AT_MIPS_stride:
4244 return "DW_AT_MIPS_stride";
4245 case DW_AT_MIPS_abstract_name:
4246 return "DW_AT_MIPS_abstract_name";
4247 case DW_AT_MIPS_clone_origin:
4248 return "DW_AT_MIPS_clone_origin";
4249 case DW_AT_MIPS_has_inlines:
4250 return "DW_AT_MIPS_has_inlines";
4251
4252 case DW_AT_sf_names:
4253 return "DW_AT_sf_names";
4254 case DW_AT_src_info:
4255 return "DW_AT_src_info";
4256 case DW_AT_mac_info:
4257 return "DW_AT_mac_info";
4258 case DW_AT_src_coords:
4259 return "DW_AT_src_coords";
4260 case DW_AT_body_begin:
4261 return "DW_AT_body_begin";
4262 case DW_AT_body_end:
4263 return "DW_AT_body_end";
4264 case DW_AT_GNU_vector:
4265 return "DW_AT_GNU_vector";
4266
4267 case DW_AT_VMS_rtnbeg_pd_address:
4268 return "DW_AT_VMS_rtnbeg_pd_address";
4269
4270 default:
4271 return "DW_AT_<unknown>";
4272 }
4273 }
4274
4275 /* Convert a DWARF value form code into its string name. */
4276
4277 static const char *
4278 dwarf_form_name (unsigned int form)
4279 {
4280 switch (form)
4281 {
4282 case DW_FORM_addr:
4283 return "DW_FORM_addr";
4284 case DW_FORM_block2:
4285 return "DW_FORM_block2";
4286 case DW_FORM_block4:
4287 return "DW_FORM_block4";
4288 case DW_FORM_data2:
4289 return "DW_FORM_data2";
4290 case DW_FORM_data4:
4291 return "DW_FORM_data4";
4292 case DW_FORM_data8:
4293 return "DW_FORM_data8";
4294 case DW_FORM_string:
4295 return "DW_FORM_string";
4296 case DW_FORM_block:
4297 return "DW_FORM_block";
4298 case DW_FORM_block1:
4299 return "DW_FORM_block1";
4300 case DW_FORM_data1:
4301 return "DW_FORM_data1";
4302 case DW_FORM_flag:
4303 return "DW_FORM_flag";
4304 case DW_FORM_sdata:
4305 return "DW_FORM_sdata";
4306 case DW_FORM_strp:
4307 return "DW_FORM_strp";
4308 case DW_FORM_udata:
4309 return "DW_FORM_udata";
4310 case DW_FORM_ref_addr:
4311 return "DW_FORM_ref_addr";
4312 case DW_FORM_ref1:
4313 return "DW_FORM_ref1";
4314 case DW_FORM_ref2:
4315 return "DW_FORM_ref2";
4316 case DW_FORM_ref4:
4317 return "DW_FORM_ref4";
4318 case DW_FORM_ref8:
4319 return "DW_FORM_ref8";
4320 case DW_FORM_ref_udata:
4321 return "DW_FORM_ref_udata";
4322 case DW_FORM_indirect:
4323 return "DW_FORM_indirect";
4324 default:
4325 return "DW_FORM_<unknown>";
4326 }
4327 }
4328
4329 /* Convert a DWARF type code into its string name. */
4330
4331 #if 0
4332 static const char *
4333 dwarf_type_encoding_name (unsigned enc)
4334 {
4335 switch (enc)
4336 {
4337 case DW_ATE_address:
4338 return "DW_ATE_address";
4339 case DW_ATE_boolean:
4340 return "DW_ATE_boolean";
4341 case DW_ATE_complex_float:
4342 return "DW_ATE_complex_float";
4343 case DW_ATE_float:
4344 return "DW_ATE_float";
4345 case DW_ATE_signed:
4346 return "DW_ATE_signed";
4347 case DW_ATE_signed_char:
4348 return "DW_ATE_signed_char";
4349 case DW_ATE_unsigned:
4350 return "DW_ATE_unsigned";
4351 case DW_ATE_unsigned_char:
4352 return "DW_ATE_unsigned_char";
4353 default:
4354 return "DW_ATE_<unknown>";
4355 }
4356 }
4357 #endif
4358 \f
4359 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4360 instance of an inlined instance of a decl which is local to an inline
4361 function, so we have to trace all of the way back through the origin chain
4362 to find out what sort of node actually served as the original seed for the
4363 given block. */
4364
4365 static tree
4366 decl_ultimate_origin (tree decl)
4367 {
4368 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4369 nodes in the function to point to themselves; ignore that if
4370 we're trying to output the abstract instance of this function. */
4371 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4372 return NULL_TREE;
4373
4374 #ifdef ENABLE_CHECKING
4375 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4376 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4377 most distant ancestor, this should never happen. */
4378 abort ();
4379 #endif
4380
4381 return DECL_ABSTRACT_ORIGIN (decl);
4382 }
4383
4384 /* Determine the "ultimate origin" of a block. The block may be an inlined
4385 instance of an inlined instance of a block which is local to an inline
4386 function, so we have to trace all of the way back through the origin chain
4387 to find out what sort of node actually served as the original seed for the
4388 given block. */
4389
4390 static tree
4391 block_ultimate_origin (tree block)
4392 {
4393 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4394
4395 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4396 nodes in the function to point to themselves; ignore that if
4397 we're trying to output the abstract instance of this function. */
4398 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4399 return NULL_TREE;
4400
4401 if (immediate_origin == NULL_TREE)
4402 return NULL_TREE;
4403 else
4404 {
4405 tree ret_val;
4406 tree lookahead = immediate_origin;
4407
4408 do
4409 {
4410 ret_val = lookahead;
4411 lookahead = (TREE_CODE (ret_val) == BLOCK
4412 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4413 }
4414 while (lookahead != NULL && lookahead != ret_val);
4415
4416 return ret_val;
4417 }
4418 }
4419
4420 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4421 of a virtual function may refer to a base class, so we check the 'this'
4422 parameter. */
4423
4424 static tree
4425 decl_class_context (tree decl)
4426 {
4427 tree context = NULL_TREE;
4428
4429 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4430 context = DECL_CONTEXT (decl);
4431 else
4432 context = TYPE_MAIN_VARIANT
4433 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4434
4435 if (context && !TYPE_P (context))
4436 context = NULL_TREE;
4437
4438 return context;
4439 }
4440 \f
4441 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4442 addition order, and correct that in reverse_all_dies. */
4443
4444 static inline void
4445 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4446 {
4447 if (die != NULL && attr != NULL)
4448 {
4449 attr->dw_attr_next = die->die_attr;
4450 die->die_attr = attr;
4451 }
4452 }
4453
4454 static inline enum dw_val_class
4455 AT_class (dw_attr_ref a)
4456 {
4457 return a->dw_attr_val.val_class;
4458 }
4459
4460 /* Add a flag value attribute to a DIE. */
4461
4462 static inline void
4463 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4464 {
4465 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4466
4467 attr->dw_attr_next = NULL;
4468 attr->dw_attr = attr_kind;
4469 attr->dw_attr_val.val_class = dw_val_class_flag;
4470 attr->dw_attr_val.v.val_flag = flag;
4471 add_dwarf_attr (die, attr);
4472 }
4473
4474 static inline unsigned
4475 AT_flag (dw_attr_ref a)
4476 {
4477 if (a && AT_class (a) == dw_val_class_flag)
4478 return a->dw_attr_val.v.val_flag;
4479
4480 abort ();
4481 }
4482
4483 /* Add a signed integer attribute value to a DIE. */
4484
4485 static inline void
4486 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4487 {
4488 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4489
4490 attr->dw_attr_next = NULL;
4491 attr->dw_attr = attr_kind;
4492 attr->dw_attr_val.val_class = dw_val_class_const;
4493 attr->dw_attr_val.v.val_int = int_val;
4494 add_dwarf_attr (die, attr);
4495 }
4496
4497 static inline HOST_WIDE_INT
4498 AT_int (dw_attr_ref a)
4499 {
4500 if (a && AT_class (a) == dw_val_class_const)
4501 return a->dw_attr_val.v.val_int;
4502
4503 abort ();
4504 }
4505
4506 /* Add an unsigned integer attribute value to a DIE. */
4507
4508 static inline void
4509 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4510 unsigned HOST_WIDE_INT unsigned_val)
4511 {
4512 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4513
4514 attr->dw_attr_next = NULL;
4515 attr->dw_attr = attr_kind;
4516 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4517 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4518 add_dwarf_attr (die, attr);
4519 }
4520
4521 static inline unsigned HOST_WIDE_INT
4522 AT_unsigned (dw_attr_ref a)
4523 {
4524 if (a && AT_class (a) == dw_val_class_unsigned_const)
4525 return a->dw_attr_val.v.val_unsigned;
4526
4527 abort ();
4528 }
4529
4530 /* Add an unsigned double integer attribute value to a DIE. */
4531
4532 static inline void
4533 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4534 long unsigned int val_hi, long unsigned int val_low)
4535 {
4536 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4537
4538 attr->dw_attr_next = NULL;
4539 attr->dw_attr = attr_kind;
4540 attr->dw_attr_val.val_class = dw_val_class_long_long;
4541 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4542 attr->dw_attr_val.v.val_long_long.low = val_low;
4543 add_dwarf_attr (die, attr);
4544 }
4545
4546 /* Add a floating point attribute value to a DIE and return it. */
4547
4548 static inline void
4549 add_AT_float (dw_die_ref die, enum dwarf_attribute attr_kind,
4550 unsigned int length, long int *array)
4551 {
4552 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4553
4554 attr->dw_attr_next = NULL;
4555 attr->dw_attr = attr_kind;
4556 attr->dw_attr_val.val_class = dw_val_class_float;
4557 attr->dw_attr_val.v.val_float.length = length;
4558 attr->dw_attr_val.v.val_float.array = array;
4559 add_dwarf_attr (die, attr);
4560 }
4561
4562 /* Hash and equality functions for debug_str_hash. */
4563
4564 static hashval_t
4565 debug_str_do_hash (const void *x)
4566 {
4567 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4568 }
4569
4570 static int
4571 debug_str_eq (const void *x1, const void *x2)
4572 {
4573 return strcmp ((((const struct indirect_string_node *)x1)->str),
4574 (const char *)x2) == 0;
4575 }
4576
4577 /* Add a string attribute value to a DIE. */
4578
4579 static inline void
4580 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4581 {
4582 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4583 struct indirect_string_node *node;
4584 void **slot;
4585
4586 if (! debug_str_hash)
4587 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4588 debug_str_eq, NULL);
4589
4590 slot = htab_find_slot_with_hash (debug_str_hash, str,
4591 htab_hash_string (str), INSERT);
4592 if (*slot == NULL)
4593 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4594 node = (struct indirect_string_node *) *slot;
4595 node->str = ggc_strdup (str);
4596 node->refcount++;
4597
4598 attr->dw_attr_next = NULL;
4599 attr->dw_attr = attr_kind;
4600 attr->dw_attr_val.val_class = dw_val_class_str;
4601 attr->dw_attr_val.v.val_str = node;
4602 add_dwarf_attr (die, attr);
4603 }
4604
4605 static inline const char *
4606 AT_string (dw_attr_ref a)
4607 {
4608 if (a && AT_class (a) == dw_val_class_str)
4609 return a->dw_attr_val.v.val_str->str;
4610
4611 abort ();
4612 }
4613
4614 /* Find out whether a string should be output inline in DIE
4615 or out-of-line in .debug_str section. */
4616
4617 static int
4618 AT_string_form (dw_attr_ref a)
4619 {
4620 if (a && AT_class (a) == dw_val_class_str)
4621 {
4622 struct indirect_string_node *node;
4623 unsigned int len;
4624 char label[32];
4625
4626 node = a->dw_attr_val.v.val_str;
4627 if (node->form)
4628 return node->form;
4629
4630 len = strlen (node->str) + 1;
4631
4632 /* If the string is shorter or equal to the size of the reference, it is
4633 always better to put it inline. */
4634 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4635 return node->form = DW_FORM_string;
4636
4637 /* If we cannot expect the linker to merge strings in .debug_str
4638 section, only put it into .debug_str if it is worth even in this
4639 single module. */
4640 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4641 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4642 return node->form = DW_FORM_string;
4643
4644 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4645 ++dw2_string_counter;
4646 node->label = xstrdup (label);
4647
4648 return node->form = DW_FORM_strp;
4649 }
4650
4651 abort ();
4652 }
4653
4654 /* Add a DIE reference attribute value to a DIE. */
4655
4656 static inline void
4657 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4658 {
4659 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4660
4661 attr->dw_attr_next = NULL;
4662 attr->dw_attr = attr_kind;
4663 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4664 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4665 attr->dw_attr_val.v.val_die_ref.external = 0;
4666 add_dwarf_attr (die, attr);
4667 }
4668
4669 /* Add an AT_specification attribute to a DIE, and also make the back
4670 pointer from the specification to the definition. */
4671
4672 static inline void
4673 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4674 {
4675 add_AT_die_ref (die, DW_AT_specification, targ_die);
4676 if (targ_die->die_definition)
4677 abort ();
4678 targ_die->die_definition = die;
4679 }
4680
4681 static inline dw_die_ref
4682 AT_ref (dw_attr_ref a)
4683 {
4684 if (a && AT_class (a) == dw_val_class_die_ref)
4685 return a->dw_attr_val.v.val_die_ref.die;
4686
4687 abort ();
4688 }
4689
4690 static inline int
4691 AT_ref_external (dw_attr_ref a)
4692 {
4693 if (a && AT_class (a) == dw_val_class_die_ref)
4694 return a->dw_attr_val.v.val_die_ref.external;
4695
4696 return 0;
4697 }
4698
4699 static inline void
4700 set_AT_ref_external (dw_attr_ref a, int i)
4701 {
4702 if (a && AT_class (a) == dw_val_class_die_ref)
4703 a->dw_attr_val.v.val_die_ref.external = i;
4704 else
4705 abort ();
4706 }
4707
4708 /* Add an FDE reference attribute value to a DIE. */
4709
4710 static inline void
4711 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4712 {
4713 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4714
4715 attr->dw_attr_next = NULL;
4716 attr->dw_attr = attr_kind;
4717 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4718 attr->dw_attr_val.v.val_fde_index = targ_fde;
4719 add_dwarf_attr (die, attr);
4720 }
4721
4722 /* Add a location description attribute value to a DIE. */
4723
4724 static inline void
4725 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4726 {
4727 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4728
4729 attr->dw_attr_next = NULL;
4730 attr->dw_attr = attr_kind;
4731 attr->dw_attr_val.val_class = dw_val_class_loc;
4732 attr->dw_attr_val.v.val_loc = loc;
4733 add_dwarf_attr (die, attr);
4734 }
4735
4736 static inline dw_loc_descr_ref
4737 AT_loc (dw_attr_ref a)
4738 {
4739 if (a && AT_class (a) == dw_val_class_loc)
4740 return a->dw_attr_val.v.val_loc;
4741
4742 abort ();
4743 }
4744
4745 static inline void
4746 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4747 {
4748 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4749
4750 attr->dw_attr_next = NULL;
4751 attr->dw_attr = attr_kind;
4752 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4753 attr->dw_attr_val.v.val_loc_list = loc_list;
4754 add_dwarf_attr (die, attr);
4755 have_location_lists = 1;
4756 }
4757
4758 static inline dw_loc_list_ref
4759 AT_loc_list (dw_attr_ref a)
4760 {
4761 if (a && AT_class (a) == dw_val_class_loc_list)
4762 return a->dw_attr_val.v.val_loc_list;
4763
4764 abort ();
4765 }
4766
4767 /* Add an address constant attribute value to a DIE. */
4768
4769 static inline void
4770 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
4771 {
4772 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4773
4774 attr->dw_attr_next = NULL;
4775 attr->dw_attr = attr_kind;
4776 attr->dw_attr_val.val_class = dw_val_class_addr;
4777 attr->dw_attr_val.v.val_addr = addr;
4778 add_dwarf_attr (die, attr);
4779 }
4780
4781 static inline rtx
4782 AT_addr (dw_attr_ref a)
4783 {
4784 if (a && AT_class (a) == dw_val_class_addr)
4785 return a->dw_attr_val.v.val_addr;
4786
4787 abort ();
4788 }
4789
4790 /* Add a label identifier attribute value to a DIE. */
4791
4792 static inline void
4793 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
4794 {
4795 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4796
4797 attr->dw_attr_next = NULL;
4798 attr->dw_attr = attr_kind;
4799 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4800 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4801 add_dwarf_attr (die, attr);
4802 }
4803
4804 /* Add a section offset attribute value to a DIE. */
4805
4806 static inline void
4807 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
4808 {
4809 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4810
4811 attr->dw_attr_next = NULL;
4812 attr->dw_attr = attr_kind;
4813 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4814 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4815 add_dwarf_attr (die, attr);
4816 }
4817
4818 /* Add an offset attribute value to a DIE. */
4819
4820 static inline void
4821 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
4822 unsigned HOST_WIDE_INT offset)
4823 {
4824 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4825
4826 attr->dw_attr_next = NULL;
4827 attr->dw_attr = attr_kind;
4828 attr->dw_attr_val.val_class = dw_val_class_offset;
4829 attr->dw_attr_val.v.val_offset = offset;
4830 add_dwarf_attr (die, attr);
4831 }
4832
4833 /* Add an range_list attribute value to a DIE. */
4834
4835 static void
4836 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
4837 long unsigned int offset)
4838 {
4839 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4840
4841 attr->dw_attr_next = NULL;
4842 attr->dw_attr = attr_kind;
4843 attr->dw_attr_val.val_class = dw_val_class_range_list;
4844 attr->dw_attr_val.v.val_offset = offset;
4845 add_dwarf_attr (die, attr);
4846 }
4847
4848 static inline const char *
4849 AT_lbl (dw_attr_ref a)
4850 {
4851 if (a && (AT_class (a) == dw_val_class_lbl_id
4852 || AT_class (a) == dw_val_class_lbl_offset))
4853 return a->dw_attr_val.v.val_lbl_id;
4854
4855 abort ();
4856 }
4857
4858 /* Get the attribute of type attr_kind. */
4859
4860 static inline dw_attr_ref
4861 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4862 {
4863 dw_attr_ref a;
4864 dw_die_ref spec = NULL;
4865
4866 if (die != NULL)
4867 {
4868 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
4869 if (a->dw_attr == attr_kind)
4870 return a;
4871 else if (a->dw_attr == DW_AT_specification
4872 || a->dw_attr == DW_AT_abstract_origin)
4873 spec = AT_ref (a);
4874
4875 if (spec)
4876 return get_AT (spec, attr_kind);
4877 }
4878
4879 return NULL;
4880 }
4881
4882 /* Return the "low pc" attribute value, typically associated with a subprogram
4883 DIE. Return null if the "low pc" attribute is either not present, or if it
4884 cannot be represented as an assembler label identifier. */
4885
4886 static inline const char *
4887 get_AT_low_pc (dw_die_ref die)
4888 {
4889 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
4890
4891 return a ? AT_lbl (a) : NULL;
4892 }
4893
4894 /* Return the "high pc" attribute value, typically associated with a subprogram
4895 DIE. Return null if the "high pc" attribute is either not present, or if it
4896 cannot be represented as an assembler label identifier. */
4897
4898 static inline const char *
4899 get_AT_hi_pc (dw_die_ref die)
4900 {
4901 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
4902
4903 return a ? AT_lbl (a) : NULL;
4904 }
4905
4906 /* Return the value of the string attribute designated by ATTR_KIND, or
4907 NULL if it is not present. */
4908
4909 static inline const char *
4910 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
4911 {
4912 dw_attr_ref a = get_AT (die, attr_kind);
4913
4914 return a ? AT_string (a) : NULL;
4915 }
4916
4917 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
4918 if it is not present. */
4919
4920 static inline int
4921 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
4922 {
4923 dw_attr_ref a = get_AT (die, attr_kind);
4924
4925 return a ? AT_flag (a) : 0;
4926 }
4927
4928 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4929 if it is not present. */
4930
4931 static inline unsigned
4932 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
4933 {
4934 dw_attr_ref a = get_AT (die, attr_kind);
4935
4936 return a ? AT_unsigned (a) : 0;
4937 }
4938
4939 static inline dw_die_ref
4940 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
4941 {
4942 dw_attr_ref a = get_AT (die, attr_kind);
4943
4944 return a ? AT_ref (a) : NULL;
4945 }
4946
4947 /* Return TRUE if the language is C or C++. */
4948
4949 static inline bool
4950 is_c_family (void)
4951 {
4952 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4953
4954 return (lang == DW_LANG_C || lang == DW_LANG_C89
4955 || lang == DW_LANG_C_plus_plus);
4956 }
4957
4958 /* Return TRUE if the language is C++. */
4959
4960 static inline bool
4961 is_cxx (void)
4962 {
4963 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
4964 == DW_LANG_C_plus_plus);
4965 }
4966
4967 /* Return TRUE if the language is Fortran. */
4968
4969 static inline bool
4970 is_fortran (void)
4971 {
4972 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4973
4974 return lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90;
4975 }
4976
4977 /* Return TRUE if the language is Java. */
4978
4979 static inline bool
4980 is_java (void)
4981 {
4982 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4983
4984 return lang == DW_LANG_Java;
4985 }
4986
4987 /* Return TRUE if the language is Ada. */
4988
4989 static inline bool
4990 is_ada (void)
4991 {
4992 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4993
4994 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
4995 }
4996
4997 /* Free up the memory used by A. */
4998
4999 static inline void free_AT (dw_attr_ref);
5000 static inline void
5001 free_AT (dw_attr_ref a)
5002 {
5003 if (AT_class (a) == dw_val_class_str)
5004 if (a->dw_attr_val.v.val_str->refcount)
5005 a->dw_attr_val.v.val_str->refcount--;
5006 }
5007
5008 /* Remove the specified attribute if present. */
5009
5010 static void
5011 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5012 {
5013 dw_attr_ref *p;
5014 dw_attr_ref removed = NULL;
5015
5016 if (die != NULL)
5017 {
5018 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5019 if ((*p)->dw_attr == attr_kind)
5020 {
5021 removed = *p;
5022 *p = (*p)->dw_attr_next;
5023 break;
5024 }
5025
5026 if (removed != 0)
5027 free_AT (removed);
5028 }
5029 }
5030
5031 /* Free up the memory used by DIE. */
5032
5033 static inline void
5034 free_die (dw_die_ref die)
5035 {
5036 remove_children (die);
5037 }
5038
5039 /* Discard the children of this DIE. */
5040
5041 static void
5042 remove_children (dw_die_ref die)
5043 {
5044 dw_die_ref child_die = die->die_child;
5045
5046 die->die_child = NULL;
5047
5048 while (child_die != NULL)
5049 {
5050 dw_die_ref tmp_die = child_die;
5051 dw_attr_ref a;
5052
5053 child_die = child_die->die_sib;
5054
5055 for (a = tmp_die->die_attr; a != NULL;)
5056 {
5057 dw_attr_ref tmp_a = a;
5058
5059 a = a->dw_attr_next;
5060 free_AT (tmp_a);
5061 }
5062
5063 free_die (tmp_die);
5064 }
5065 }
5066
5067 /* Add a child DIE below its parent. We build the lists up in reverse
5068 addition order, and correct that in reverse_all_dies. */
5069
5070 static inline void
5071 add_child_die (dw_die_ref die, dw_die_ref child_die)
5072 {
5073 if (die != NULL && child_die != NULL)
5074 {
5075 if (die == child_die)
5076 abort ();
5077
5078 child_die->die_parent = die;
5079 child_die->die_sib = die->die_child;
5080 die->die_child = child_die;
5081 }
5082 }
5083
5084 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5085 is the specification, to the front of PARENT's list of children. */
5086
5087 static void
5088 splice_child_die (dw_die_ref parent, dw_die_ref child)
5089 {
5090 dw_die_ref *p;
5091
5092 /* We want the declaration DIE from inside the class, not the
5093 specification DIE at toplevel. */
5094 if (child->die_parent != parent)
5095 {
5096 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5097
5098 if (tmp)
5099 child = tmp;
5100 }
5101
5102 if (child->die_parent != parent
5103 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5104 abort ();
5105
5106 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5107 if (*p == child)
5108 {
5109 *p = child->die_sib;
5110 break;
5111 }
5112
5113 child->die_parent = parent;
5114 child->die_sib = parent->die_child;
5115 parent->die_child = child;
5116 }
5117
5118 /* Return a pointer to a newly created DIE node. */
5119
5120 static inline dw_die_ref
5121 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5122 {
5123 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5124
5125 die->die_tag = tag_value;
5126
5127 if (parent_die != NULL)
5128 add_child_die (parent_die, die);
5129 else
5130 {
5131 limbo_die_node *limbo_node;
5132
5133 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5134 limbo_node->die = die;
5135 limbo_node->created_for = t;
5136 limbo_node->next = limbo_die_list;
5137 limbo_die_list = limbo_node;
5138 }
5139
5140 return die;
5141 }
5142
5143 /* Return the DIE associated with the given type specifier. */
5144
5145 static inline dw_die_ref
5146 lookup_type_die (tree type)
5147 {
5148 return TYPE_SYMTAB_DIE (type);
5149 }
5150
5151 /* Equate a DIE to a given type specifier. */
5152
5153 static inline void
5154 equate_type_number_to_die (tree type, dw_die_ref type_die)
5155 {
5156 TYPE_SYMTAB_DIE (type) = type_die;
5157 }
5158
5159 /* Return the DIE associated with a given declaration. */
5160
5161 static inline dw_die_ref
5162 lookup_decl_die (tree decl)
5163 {
5164 unsigned decl_id = DECL_UID (decl);
5165
5166 return (decl_id < decl_die_table_in_use ? decl_die_table[decl_id] : NULL);
5167 }
5168
5169 /* Equate a DIE to a particular declaration. */
5170
5171 static void
5172 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5173 {
5174 unsigned int decl_id = DECL_UID (decl);
5175 unsigned int num_allocated;
5176
5177 if (decl_id >= decl_die_table_allocated)
5178 {
5179 num_allocated
5180 = ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
5181 / DECL_DIE_TABLE_INCREMENT)
5182 * DECL_DIE_TABLE_INCREMENT;
5183
5184 decl_die_table = ggc_realloc (decl_die_table,
5185 sizeof (dw_die_ref) * num_allocated);
5186
5187 memset (&decl_die_table[decl_die_table_allocated], 0,
5188 (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
5189 decl_die_table_allocated = num_allocated;
5190 }
5191
5192 if (decl_id >= decl_die_table_in_use)
5193 decl_die_table_in_use = (decl_id + 1);
5194
5195 decl_die_table[decl_id] = decl_die;
5196 }
5197 \f
5198 /* Keep track of the number of spaces used to indent the
5199 output of the debugging routines that print the structure of
5200 the DIE internal representation. */
5201 static int print_indent;
5202
5203 /* Indent the line the number of spaces given by print_indent. */
5204
5205 static inline void
5206 print_spaces (FILE *outfile)
5207 {
5208 fprintf (outfile, "%*s", print_indent, "");
5209 }
5210
5211 /* Print the information associated with a given DIE, and its children.
5212 This routine is a debugging aid only. */
5213
5214 static void
5215 print_die (dw_die_ref die, FILE *outfile)
5216 {
5217 dw_attr_ref a;
5218 dw_die_ref c;
5219
5220 print_spaces (outfile);
5221 fprintf (outfile, "DIE %4lu: %s\n",
5222 die->die_offset, dwarf_tag_name (die->die_tag));
5223 print_spaces (outfile);
5224 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5225 fprintf (outfile, " offset: %lu\n", die->die_offset);
5226
5227 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5228 {
5229 print_spaces (outfile);
5230 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5231
5232 switch (AT_class (a))
5233 {
5234 case dw_val_class_addr:
5235 fprintf (outfile, "address");
5236 break;
5237 case dw_val_class_offset:
5238 fprintf (outfile, "offset");
5239 break;
5240 case dw_val_class_loc:
5241 fprintf (outfile, "location descriptor");
5242 break;
5243 case dw_val_class_loc_list:
5244 fprintf (outfile, "location list -> label:%s",
5245 AT_loc_list (a)->ll_symbol);
5246 break;
5247 case dw_val_class_range_list:
5248 fprintf (outfile, "range list");
5249 break;
5250 case dw_val_class_const:
5251 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5252 break;
5253 case dw_val_class_unsigned_const:
5254 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5255 break;
5256 case dw_val_class_long_long:
5257 fprintf (outfile, "constant (%lu,%lu)",
5258 a->dw_attr_val.v.val_long_long.hi,
5259 a->dw_attr_val.v.val_long_long.low);
5260 break;
5261 case dw_val_class_float:
5262 fprintf (outfile, "floating-point constant");
5263 break;
5264 case dw_val_class_flag:
5265 fprintf (outfile, "%u", AT_flag (a));
5266 break;
5267 case dw_val_class_die_ref:
5268 if (AT_ref (a) != NULL)
5269 {
5270 if (AT_ref (a)->die_symbol)
5271 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5272 else
5273 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5274 }
5275 else
5276 fprintf (outfile, "die -> <null>");
5277 break;
5278 case dw_val_class_lbl_id:
5279 case dw_val_class_lbl_offset:
5280 fprintf (outfile, "label: %s", AT_lbl (a));
5281 break;
5282 case dw_val_class_str:
5283 if (AT_string (a) != NULL)
5284 fprintf (outfile, "\"%s\"", AT_string (a));
5285 else
5286 fprintf (outfile, "<null>");
5287 break;
5288 default:
5289 break;
5290 }
5291
5292 fprintf (outfile, "\n");
5293 }
5294
5295 if (die->die_child != NULL)
5296 {
5297 print_indent += 4;
5298 for (c = die->die_child; c != NULL; c = c->die_sib)
5299 print_die (c, outfile);
5300
5301 print_indent -= 4;
5302 }
5303 if (print_indent == 0)
5304 fprintf (outfile, "\n");
5305 }
5306
5307 /* Print the contents of the source code line number correspondence table.
5308 This routine is a debugging aid only. */
5309
5310 static void
5311 print_dwarf_line_table (FILE *outfile)
5312 {
5313 unsigned i;
5314 dw_line_info_ref line_info;
5315
5316 fprintf (outfile, "\n\nDWARF source line information\n");
5317 for (i = 1; i < line_info_table_in_use; i++)
5318 {
5319 line_info = &line_info_table[i];
5320 fprintf (outfile, "%5d: ", i);
5321 fprintf (outfile, "%-20s",
5322 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5323 fprintf (outfile, "%6ld", line_info->dw_line_num);
5324 fprintf (outfile, "\n");
5325 }
5326
5327 fprintf (outfile, "\n\n");
5328 }
5329
5330 /* Print the information collected for a given DIE. */
5331
5332 void
5333 debug_dwarf_die (dw_die_ref die)
5334 {
5335 print_die (die, stderr);
5336 }
5337
5338 /* Print all DWARF information collected for the compilation unit.
5339 This routine is a debugging aid only. */
5340
5341 void
5342 debug_dwarf (void)
5343 {
5344 print_indent = 0;
5345 print_die (comp_unit_die, stderr);
5346 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5347 print_dwarf_line_table (stderr);
5348 }
5349 \f
5350 /* We build up the lists of children and attributes by pushing new ones
5351 onto the beginning of the list. Reverse the lists for DIE so that
5352 they are in order of addition. */
5353
5354 static void
5355 reverse_die_lists (dw_die_ref die)
5356 {
5357 dw_die_ref c, cp, cn;
5358 dw_attr_ref a, ap, an;
5359
5360 for (a = die->die_attr, ap = 0; a; a = an)
5361 {
5362 an = a->dw_attr_next;
5363 a->dw_attr_next = ap;
5364 ap = a;
5365 }
5366
5367 die->die_attr = ap;
5368
5369 for (c = die->die_child, cp = 0; c; c = cn)
5370 {
5371 cn = c->die_sib;
5372 c->die_sib = cp;
5373 cp = c;
5374 }
5375
5376 die->die_child = cp;
5377 }
5378
5379 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5380 reverse all dies in add_sibling_attributes, which runs through all the dies,
5381 it would reverse all the dies. Now, however, since we don't call
5382 reverse_die_lists in add_sibling_attributes, we need a routine to
5383 recursively reverse all the dies. This is that routine. */
5384
5385 static void
5386 reverse_all_dies (dw_die_ref die)
5387 {
5388 dw_die_ref c;
5389
5390 reverse_die_lists (die);
5391
5392 for (c = die->die_child; c; c = c->die_sib)
5393 reverse_all_dies (c);
5394 }
5395
5396 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5397 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5398 DIE that marks the start of the DIEs for this include file. */
5399
5400 static dw_die_ref
5401 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5402 {
5403 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5404 dw_die_ref new_unit = gen_compile_unit_die (filename);
5405
5406 new_unit->die_sib = old_unit;
5407 return new_unit;
5408 }
5409
5410 /* Close an include-file CU and reopen the enclosing one. */
5411
5412 static dw_die_ref
5413 pop_compile_unit (dw_die_ref old_unit)
5414 {
5415 dw_die_ref new_unit = old_unit->die_sib;
5416
5417 old_unit->die_sib = NULL;
5418 return new_unit;
5419 }
5420
5421 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5422 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5423
5424 /* Calculate the checksum of a location expression. */
5425
5426 static inline void
5427 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5428 {
5429 CHECKSUM (loc->dw_loc_opc);
5430 CHECKSUM (loc->dw_loc_oprnd1);
5431 CHECKSUM (loc->dw_loc_oprnd2);
5432 }
5433
5434 /* Calculate the checksum of an attribute. */
5435
5436 static void
5437 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5438 {
5439 dw_loc_descr_ref loc;
5440 rtx r;
5441
5442 CHECKSUM (at->dw_attr);
5443
5444 /* We don't care about differences in file numbering. */
5445 if (at->dw_attr == DW_AT_decl_file
5446 /* Or that this was compiled with a different compiler snapshot; if
5447 the output is the same, that's what matters. */
5448 || at->dw_attr == DW_AT_producer)
5449 return;
5450
5451 switch (AT_class (at))
5452 {
5453 case dw_val_class_const:
5454 CHECKSUM (at->dw_attr_val.v.val_int);
5455 break;
5456 case dw_val_class_unsigned_const:
5457 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5458 break;
5459 case dw_val_class_long_long:
5460 CHECKSUM (at->dw_attr_val.v.val_long_long);
5461 break;
5462 case dw_val_class_float:
5463 CHECKSUM (at->dw_attr_val.v.val_float);
5464 break;
5465 case dw_val_class_flag:
5466 CHECKSUM (at->dw_attr_val.v.val_flag);
5467 break;
5468 case dw_val_class_str:
5469 CHECKSUM_STRING (AT_string (at));
5470 break;
5471
5472 case dw_val_class_addr:
5473 r = AT_addr (at);
5474 switch (GET_CODE (r))
5475 {
5476 case SYMBOL_REF:
5477 CHECKSUM_STRING (XSTR (r, 0));
5478 break;
5479
5480 default:
5481 abort ();
5482 }
5483 break;
5484
5485 case dw_val_class_offset:
5486 CHECKSUM (at->dw_attr_val.v.val_offset);
5487 break;
5488
5489 case dw_val_class_loc:
5490 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5491 loc_checksum (loc, ctx);
5492 break;
5493
5494 case dw_val_class_die_ref:
5495 die_checksum (AT_ref (at), ctx, mark);
5496 break;
5497
5498 case dw_val_class_fde_ref:
5499 case dw_val_class_lbl_id:
5500 case dw_val_class_lbl_offset:
5501 break;
5502
5503 default:
5504 break;
5505 }
5506 }
5507
5508 /* Calculate the checksum of a DIE. */
5509
5510 static void
5511 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5512 {
5513 dw_die_ref c;
5514 dw_attr_ref a;
5515
5516 /* To avoid infinite recursion. */
5517 if (die->die_mark)
5518 {
5519 CHECKSUM (die->die_mark);
5520 return;
5521 }
5522 die->die_mark = ++(*mark);
5523
5524 CHECKSUM (die->die_tag);
5525
5526 for (a = die->die_attr; a; a = a->dw_attr_next)
5527 attr_checksum (a, ctx, mark);
5528
5529 for (c = die->die_child; c; c = c->die_sib)
5530 die_checksum (c, ctx, mark);
5531 }
5532
5533 #undef CHECKSUM
5534 #undef CHECKSUM_STRING
5535
5536 /* Do the location expressions look same? */
5537 static inline int
5538 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5539 {
5540 return loc1->dw_loc_opc == loc2->dw_loc_opc
5541 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5542 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5543 }
5544
5545 /* Do the values look the same? */
5546 static int
5547 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5548 {
5549 dw_loc_descr_ref loc1, loc2;
5550 rtx r1, r2;
5551 unsigned i;
5552
5553 if (v1->val_class != v2->val_class)
5554 return 0;
5555
5556 switch (v1->val_class)
5557 {
5558 case dw_val_class_const:
5559 return v1->v.val_int == v2->v.val_int;
5560 case dw_val_class_unsigned_const:
5561 return v1->v.val_unsigned == v2->v.val_unsigned;
5562 case dw_val_class_long_long:
5563 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5564 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5565 case dw_val_class_float:
5566 if (v1->v.val_float.length != v2->v.val_float.length)
5567 return 0;
5568 for (i = 0; i < v1->v.val_float.length; i++)
5569 if (v1->v.val_float.array[i] != v2->v.val_float.array[i])
5570 return 0;
5571 return 1;
5572 case dw_val_class_flag:
5573 return v1->v.val_flag == v2->v.val_flag;
5574 case dw_val_class_str:
5575 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5576
5577 case dw_val_class_addr:
5578 r1 = v1->v.val_addr;
5579 r2 = v2->v.val_addr;
5580 if (GET_CODE (r1) != GET_CODE (r2))
5581 return 0;
5582 switch (GET_CODE (r1))
5583 {
5584 case SYMBOL_REF:
5585 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5586
5587 default:
5588 abort ();
5589 }
5590
5591 case dw_val_class_offset:
5592 return v1->v.val_offset == v2->v.val_offset;
5593
5594 case dw_val_class_loc:
5595 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5596 loc1 && loc2;
5597 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5598 if (!same_loc_p (loc1, loc2, mark))
5599 return 0;
5600 return !loc1 && !loc2;
5601
5602 case dw_val_class_die_ref:
5603 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5604
5605 case dw_val_class_fde_ref:
5606 case dw_val_class_lbl_id:
5607 case dw_val_class_lbl_offset:
5608 return 1;
5609
5610 default:
5611 return 1;
5612 }
5613 }
5614
5615 /* Do the attributes look the same? */
5616
5617 static int
5618 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5619 {
5620 if (at1->dw_attr != at2->dw_attr)
5621 return 0;
5622
5623 /* We don't care about differences in file numbering. */
5624 if (at1->dw_attr == DW_AT_decl_file
5625 /* Or that this was compiled with a different compiler snapshot; if
5626 the output is the same, that's what matters. */
5627 || at1->dw_attr == DW_AT_producer)
5628 return 1;
5629
5630 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5631 }
5632
5633 /* Do the dies look the same? */
5634
5635 static int
5636 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5637 {
5638 dw_die_ref c1, c2;
5639 dw_attr_ref a1, a2;
5640
5641 /* To avoid infinite recursion. */
5642 if (die1->die_mark)
5643 return die1->die_mark == die2->die_mark;
5644 die1->die_mark = die2->die_mark = ++(*mark);
5645
5646 if (die1->die_tag != die2->die_tag)
5647 return 0;
5648
5649 for (a1 = die1->die_attr, a2 = die2->die_attr;
5650 a1 && a2;
5651 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5652 if (!same_attr_p (a1, a2, mark))
5653 return 0;
5654 if (a1 || a2)
5655 return 0;
5656
5657 for (c1 = die1->die_child, c2 = die2->die_child;
5658 c1 && c2;
5659 c1 = c1->die_sib, c2 = c2->die_sib)
5660 if (!same_die_p (c1, c2, mark))
5661 return 0;
5662 if (c1 || c2)
5663 return 0;
5664
5665 return 1;
5666 }
5667
5668 /* Do the dies look the same? Wrapper around same_die_p. */
5669
5670 static int
5671 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5672 {
5673 int mark = 0;
5674 int ret = same_die_p (die1, die2, &mark);
5675
5676 unmark_all_dies (die1);
5677 unmark_all_dies (die2);
5678
5679 return ret;
5680 }
5681
5682 /* The prefix to attach to symbols on DIEs in the current comdat debug
5683 info section. */
5684 static char *comdat_symbol_id;
5685
5686 /* The index of the current symbol within the current comdat CU. */
5687 static unsigned int comdat_symbol_number;
5688
5689 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5690 children, and set comdat_symbol_id accordingly. */
5691
5692 static void
5693 compute_section_prefix (dw_die_ref unit_die)
5694 {
5695 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5696 const char *base = die_name ? lbasename (die_name) : "anonymous";
5697 char *name = alloca (strlen (base) + 64);
5698 char *p;
5699 int i, mark;
5700 unsigned char checksum[16];
5701 struct md5_ctx ctx;
5702
5703 /* Compute the checksum of the DIE, then append part of it as hex digits to
5704 the name filename of the unit. */
5705
5706 md5_init_ctx (&ctx);
5707 mark = 0;
5708 die_checksum (unit_die, &ctx, &mark);
5709 unmark_all_dies (unit_die);
5710 md5_finish_ctx (&ctx, checksum);
5711
5712 sprintf (name, "%s.", base);
5713 clean_symbol_name (name);
5714
5715 p = name + strlen (name);
5716 for (i = 0; i < 4; i++)
5717 {
5718 sprintf (p, "%.2x", checksum[i]);
5719 p += 2;
5720 }
5721
5722 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5723 comdat_symbol_number = 0;
5724 }
5725
5726 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5727
5728 static int
5729 is_type_die (dw_die_ref die)
5730 {
5731 switch (die->die_tag)
5732 {
5733 case DW_TAG_array_type:
5734 case DW_TAG_class_type:
5735 case DW_TAG_enumeration_type:
5736 case DW_TAG_pointer_type:
5737 case DW_TAG_reference_type:
5738 case DW_TAG_string_type:
5739 case DW_TAG_structure_type:
5740 case DW_TAG_subroutine_type:
5741 case DW_TAG_union_type:
5742 case DW_TAG_ptr_to_member_type:
5743 case DW_TAG_set_type:
5744 case DW_TAG_subrange_type:
5745 case DW_TAG_base_type:
5746 case DW_TAG_const_type:
5747 case DW_TAG_file_type:
5748 case DW_TAG_packed_type:
5749 case DW_TAG_volatile_type:
5750 case DW_TAG_typedef:
5751 return 1;
5752 default:
5753 return 0;
5754 }
5755 }
5756
5757 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5758 Basically, we want to choose the bits that are likely to be shared between
5759 compilations (types) and leave out the bits that are specific to individual
5760 compilations (functions). */
5761
5762 static int
5763 is_comdat_die (dw_die_ref c)
5764 {
5765 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5766 we do for stabs. The advantage is a greater likelihood of sharing between
5767 objects that don't include headers in the same order (and therefore would
5768 put the base types in a different comdat). jason 8/28/00 */
5769
5770 if (c->die_tag == DW_TAG_base_type)
5771 return 0;
5772
5773 if (c->die_tag == DW_TAG_pointer_type
5774 || c->die_tag == DW_TAG_reference_type
5775 || c->die_tag == DW_TAG_const_type
5776 || c->die_tag == DW_TAG_volatile_type)
5777 {
5778 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5779
5780 return t ? is_comdat_die (t) : 0;
5781 }
5782
5783 return is_type_die (c);
5784 }
5785
5786 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5787 compilation unit. */
5788
5789 static int
5790 is_symbol_die (dw_die_ref c)
5791 {
5792 return (is_type_die (c)
5793 || (get_AT (c, DW_AT_declaration)
5794 && !get_AT (c, DW_AT_specification)));
5795 }
5796
5797 static char *
5798 gen_internal_sym (const char *prefix)
5799 {
5800 char buf[256];
5801
5802 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5803 return xstrdup (buf);
5804 }
5805
5806 /* Assign symbols to all worthy DIEs under DIE. */
5807
5808 static void
5809 assign_symbol_names (dw_die_ref die)
5810 {
5811 dw_die_ref c;
5812
5813 if (is_symbol_die (die))
5814 {
5815 if (comdat_symbol_id)
5816 {
5817 char *p = alloca (strlen (comdat_symbol_id) + 64);
5818
5819 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
5820 comdat_symbol_id, comdat_symbol_number++);
5821 die->die_symbol = xstrdup (p);
5822 }
5823 else
5824 die->die_symbol = gen_internal_sym ("LDIE");
5825 }
5826
5827 for (c = die->die_child; c != NULL; c = c->die_sib)
5828 assign_symbol_names (c);
5829 }
5830
5831 struct cu_hash_table_entry
5832 {
5833 dw_die_ref cu;
5834 unsigned min_comdat_num, max_comdat_num;
5835 struct cu_hash_table_entry *next;
5836 };
5837
5838 /* Routines to manipulate hash table of CUs. */
5839 static hashval_t
5840 htab_cu_hash (const void *of)
5841 {
5842 const struct cu_hash_table_entry *entry = of;
5843
5844 return htab_hash_string (entry->cu->die_symbol);
5845 }
5846
5847 static int
5848 htab_cu_eq (const void *of1, const void *of2)
5849 {
5850 const struct cu_hash_table_entry *entry1 = of1;
5851 const struct die_struct *entry2 = of2;
5852
5853 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
5854 }
5855
5856 static void
5857 htab_cu_del (void *what)
5858 {
5859 struct cu_hash_table_entry *next, *entry = what;
5860
5861 while (entry)
5862 {
5863 next = entry->next;
5864 free (entry);
5865 entry = next;
5866 }
5867 }
5868
5869 /* Check whether we have already seen this CU and set up SYM_NUM
5870 accordingly. */
5871 static int
5872 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
5873 {
5874 struct cu_hash_table_entry dummy;
5875 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
5876
5877 dummy.max_comdat_num = 0;
5878
5879 slot = (struct cu_hash_table_entry **)
5880 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
5881 INSERT);
5882 entry = *slot;
5883
5884 for (; entry; last = entry, entry = entry->next)
5885 {
5886 if (same_die_p_wrap (cu, entry->cu))
5887 break;
5888 }
5889
5890 if (entry)
5891 {
5892 *sym_num = entry->min_comdat_num;
5893 return 1;
5894 }
5895
5896 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
5897 entry->cu = cu;
5898 entry->min_comdat_num = *sym_num = last->max_comdat_num;
5899 entry->next = *slot;
5900 *slot = entry;
5901
5902 return 0;
5903 }
5904
5905 /* Record SYM_NUM to record of CU in HTABLE. */
5906 static void
5907 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
5908 {
5909 struct cu_hash_table_entry **slot, *entry;
5910
5911 slot = (struct cu_hash_table_entry **)
5912 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
5913 NO_INSERT);
5914 entry = *slot;
5915
5916 entry->max_comdat_num = sym_num;
5917 }
5918
5919 /* Traverse the DIE (which is always comp_unit_die), and set up
5920 additional compilation units for each of the include files we see
5921 bracketed by BINCL/EINCL. */
5922
5923 static void
5924 break_out_includes (dw_die_ref die)
5925 {
5926 dw_die_ref *ptr;
5927 dw_die_ref unit = NULL;
5928 limbo_die_node *node, **pnode;
5929 htab_t cu_hash_table;
5930
5931 for (ptr = &(die->die_child); *ptr;)
5932 {
5933 dw_die_ref c = *ptr;
5934
5935 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
5936 || (unit && is_comdat_die (c)))
5937 {
5938 /* This DIE is for a secondary CU; remove it from the main one. */
5939 *ptr = c->die_sib;
5940
5941 if (c->die_tag == DW_TAG_GNU_BINCL)
5942 {
5943 unit = push_new_compile_unit (unit, c);
5944 free_die (c);
5945 }
5946 else if (c->die_tag == DW_TAG_GNU_EINCL)
5947 {
5948 unit = pop_compile_unit (unit);
5949 free_die (c);
5950 }
5951 else
5952 add_child_die (unit, c);
5953 }
5954 else
5955 {
5956 /* Leave this DIE in the main CU. */
5957 ptr = &(c->die_sib);
5958 continue;
5959 }
5960 }
5961
5962 #if 0
5963 /* We can only use this in debugging, since the frontend doesn't check
5964 to make sure that we leave every include file we enter. */
5965 if (unit != NULL)
5966 abort ();
5967 #endif
5968
5969 assign_symbol_names (die);
5970 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
5971 for (node = limbo_die_list, pnode = &limbo_die_list;
5972 node;
5973 node = node->next)
5974 {
5975 int is_dupl;
5976
5977 compute_section_prefix (node->die);
5978 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
5979 &comdat_symbol_number);
5980 assign_symbol_names (node->die);
5981 if (is_dupl)
5982 *pnode = node->next;
5983 else
5984 {
5985 pnode = &node->next;
5986 record_comdat_symbol_number (node->die, cu_hash_table,
5987 comdat_symbol_number);
5988 }
5989 }
5990 htab_delete (cu_hash_table);
5991 }
5992
5993 /* Traverse the DIE and add a sibling attribute if it may have the
5994 effect of speeding up access to siblings. To save some space,
5995 avoid generating sibling attributes for DIE's without children. */
5996
5997 static void
5998 add_sibling_attributes (dw_die_ref die)
5999 {
6000 dw_die_ref c;
6001
6002 if (die->die_tag != DW_TAG_compile_unit
6003 && die->die_sib && die->die_child != NULL)
6004 /* Add the sibling link to the front of the attribute list. */
6005 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6006
6007 for (c = die->die_child; c != NULL; c = c->die_sib)
6008 add_sibling_attributes (c);
6009 }
6010
6011 /* Output all location lists for the DIE and its children. */
6012
6013 static void
6014 output_location_lists (dw_die_ref die)
6015 {
6016 dw_die_ref c;
6017 dw_attr_ref d_attr;
6018
6019 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6020 if (AT_class (d_attr) == dw_val_class_loc_list)
6021 output_loc_list (AT_loc_list (d_attr));
6022
6023 for (c = die->die_child; c != NULL; c = c->die_sib)
6024 output_location_lists (c);
6025
6026 }
6027
6028 /* The format of each DIE (and its attribute value pairs) is encoded in an
6029 abbreviation table. This routine builds the abbreviation table and assigns
6030 a unique abbreviation id for each abbreviation entry. The children of each
6031 die are visited recursively. */
6032
6033 static void
6034 build_abbrev_table (dw_die_ref die)
6035 {
6036 unsigned long abbrev_id;
6037 unsigned int n_alloc;
6038 dw_die_ref c;
6039 dw_attr_ref d_attr, a_attr;
6040
6041 /* Scan the DIE references, and mark as external any that refer to
6042 DIEs from other CUs (i.e. those which are not marked). */
6043 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6044 if (AT_class (d_attr) == dw_val_class_die_ref
6045 && AT_ref (d_attr)->die_mark == 0)
6046 {
6047 if (AT_ref (d_attr)->die_symbol == 0)
6048 abort ();
6049
6050 set_AT_ref_external (d_attr, 1);
6051 }
6052
6053 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6054 {
6055 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6056
6057 if (abbrev->die_tag == die->die_tag)
6058 {
6059 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6060 {
6061 a_attr = abbrev->die_attr;
6062 d_attr = die->die_attr;
6063
6064 while (a_attr != NULL && d_attr != NULL)
6065 {
6066 if ((a_attr->dw_attr != d_attr->dw_attr)
6067 || (value_format (a_attr) != value_format (d_attr)))
6068 break;
6069
6070 a_attr = a_attr->dw_attr_next;
6071 d_attr = d_attr->dw_attr_next;
6072 }
6073
6074 if (a_attr == NULL && d_attr == NULL)
6075 break;
6076 }
6077 }
6078 }
6079
6080 if (abbrev_id >= abbrev_die_table_in_use)
6081 {
6082 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6083 {
6084 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6085 abbrev_die_table = ggc_realloc (abbrev_die_table,
6086 sizeof (dw_die_ref) * n_alloc);
6087
6088 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6089 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6090 abbrev_die_table_allocated = n_alloc;
6091 }
6092
6093 ++abbrev_die_table_in_use;
6094 abbrev_die_table[abbrev_id] = die;
6095 }
6096
6097 die->die_abbrev = abbrev_id;
6098 for (c = die->die_child; c != NULL; c = c->die_sib)
6099 build_abbrev_table (c);
6100 }
6101 \f
6102 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6103
6104 static int
6105 constant_size (long unsigned int value)
6106 {
6107 int log;
6108
6109 if (value == 0)
6110 log = 0;
6111 else
6112 log = floor_log2 (value);
6113
6114 log = log / 8;
6115 log = 1 << (floor_log2 (log) + 1);
6116
6117 return log;
6118 }
6119
6120 /* Return the size of a DIE as it is represented in the
6121 .debug_info section. */
6122
6123 static unsigned long
6124 size_of_die (dw_die_ref die)
6125 {
6126 unsigned long size = 0;
6127 dw_attr_ref a;
6128
6129 size += size_of_uleb128 (die->die_abbrev);
6130 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6131 {
6132 switch (AT_class (a))
6133 {
6134 case dw_val_class_addr:
6135 size += DWARF2_ADDR_SIZE;
6136 break;
6137 case dw_val_class_offset:
6138 size += DWARF_OFFSET_SIZE;
6139 break;
6140 case dw_val_class_loc:
6141 {
6142 unsigned long lsize = size_of_locs (AT_loc (a));
6143
6144 /* Block length. */
6145 size += constant_size (lsize);
6146 size += lsize;
6147 }
6148 break;
6149 case dw_val_class_loc_list:
6150 size += DWARF_OFFSET_SIZE;
6151 break;
6152 case dw_val_class_range_list:
6153 size += DWARF_OFFSET_SIZE;
6154 break;
6155 case dw_val_class_const:
6156 size += size_of_sleb128 (AT_int (a));
6157 break;
6158 case dw_val_class_unsigned_const:
6159 size += constant_size (AT_unsigned (a));
6160 break;
6161 case dw_val_class_long_long:
6162 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6163 break;
6164 case dw_val_class_float:
6165 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
6166 break;
6167 case dw_val_class_flag:
6168 size += 1;
6169 break;
6170 case dw_val_class_die_ref:
6171 if (AT_ref_external (a))
6172 size += DWARF2_ADDR_SIZE;
6173 else
6174 size += DWARF_OFFSET_SIZE;
6175 break;
6176 case dw_val_class_fde_ref:
6177 size += DWARF_OFFSET_SIZE;
6178 break;
6179 case dw_val_class_lbl_id:
6180 size += DWARF2_ADDR_SIZE;
6181 break;
6182 case dw_val_class_lbl_offset:
6183 size += DWARF_OFFSET_SIZE;
6184 break;
6185 case dw_val_class_str:
6186 if (AT_string_form (a) == DW_FORM_strp)
6187 size += DWARF_OFFSET_SIZE;
6188 else
6189 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6190 break;
6191 default:
6192 abort ();
6193 }
6194 }
6195
6196 return size;
6197 }
6198
6199 /* Size the debugging information associated with a given DIE. Visits the
6200 DIE's children recursively. Updates the global variable next_die_offset, on
6201 each time through. Uses the current value of next_die_offset to update the
6202 die_offset field in each DIE. */
6203
6204 static void
6205 calc_die_sizes (dw_die_ref die)
6206 {
6207 dw_die_ref c;
6208
6209 die->die_offset = next_die_offset;
6210 next_die_offset += size_of_die (die);
6211
6212 for (c = die->die_child; c != NULL; c = c->die_sib)
6213 calc_die_sizes (c);
6214
6215 if (die->die_child != NULL)
6216 /* Count the null byte used to terminate sibling lists. */
6217 next_die_offset += 1;
6218 }
6219
6220 /* Set the marks for a die and its children. We do this so
6221 that we know whether or not a reference needs to use FORM_ref_addr; only
6222 DIEs in the same CU will be marked. We used to clear out the offset
6223 and use that as the flag, but ran into ordering problems. */
6224
6225 static void
6226 mark_dies (dw_die_ref die)
6227 {
6228 dw_die_ref c;
6229
6230 if (die->die_mark)
6231 abort ();
6232
6233 die->die_mark = 1;
6234 for (c = die->die_child; c; c = c->die_sib)
6235 mark_dies (c);
6236 }
6237
6238 /* Clear the marks for a die and its children. */
6239
6240 static void
6241 unmark_dies (dw_die_ref die)
6242 {
6243 dw_die_ref c;
6244
6245 if (!die->die_mark)
6246 abort ();
6247
6248 die->die_mark = 0;
6249 for (c = die->die_child; c; c = c->die_sib)
6250 unmark_dies (c);
6251 }
6252
6253 /* Clear the marks for a die, its children and referred dies. */
6254
6255 static void
6256 unmark_all_dies (dw_die_ref die)
6257 {
6258 dw_die_ref c;
6259 dw_attr_ref a;
6260
6261 if (!die->die_mark)
6262 return;
6263 die->die_mark = 0;
6264
6265 for (c = die->die_child; c; c = c->die_sib)
6266 unmark_all_dies (c);
6267
6268 for (a = die->die_attr; a; a = a->dw_attr_next)
6269 if (AT_class (a) == dw_val_class_die_ref)
6270 unmark_all_dies (AT_ref (a));
6271 }
6272
6273 /* Return the size of the .debug_pubnames table generated for the
6274 compilation unit. */
6275
6276 static unsigned long
6277 size_of_pubnames (void)
6278 {
6279 unsigned long size;
6280 unsigned i;
6281
6282 size = DWARF_PUBNAMES_HEADER_SIZE;
6283 for (i = 0; i < pubname_table_in_use; i++)
6284 {
6285 pubname_ref p = &pubname_table[i];
6286 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6287 }
6288
6289 size += DWARF_OFFSET_SIZE;
6290 return size;
6291 }
6292
6293 /* Return the size of the information in the .debug_aranges section. */
6294
6295 static unsigned long
6296 size_of_aranges (void)
6297 {
6298 unsigned long size;
6299
6300 size = DWARF_ARANGES_HEADER_SIZE;
6301
6302 /* Count the address/length pair for this compilation unit. */
6303 size += 2 * DWARF2_ADDR_SIZE;
6304 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6305
6306 /* Count the two zero words used to terminated the address range table. */
6307 size += 2 * DWARF2_ADDR_SIZE;
6308 return size;
6309 }
6310 \f
6311 /* Select the encoding of an attribute value. */
6312
6313 static enum dwarf_form
6314 value_format (dw_attr_ref a)
6315 {
6316 switch (a->dw_attr_val.val_class)
6317 {
6318 case dw_val_class_addr:
6319 return DW_FORM_addr;
6320 case dw_val_class_range_list:
6321 case dw_val_class_offset:
6322 if (DWARF_OFFSET_SIZE == 4)
6323 return DW_FORM_data4;
6324 if (DWARF_OFFSET_SIZE == 8)
6325 return DW_FORM_data8;
6326 abort ();
6327 case dw_val_class_loc_list:
6328 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6329 .debug_loc section */
6330 return DW_FORM_data4;
6331 case dw_val_class_loc:
6332 switch (constant_size (size_of_locs (AT_loc (a))))
6333 {
6334 case 1:
6335 return DW_FORM_block1;
6336 case 2:
6337 return DW_FORM_block2;
6338 default:
6339 abort ();
6340 }
6341 case dw_val_class_const:
6342 return DW_FORM_sdata;
6343 case dw_val_class_unsigned_const:
6344 switch (constant_size (AT_unsigned (a)))
6345 {
6346 case 1:
6347 return DW_FORM_data1;
6348 case 2:
6349 return DW_FORM_data2;
6350 case 4:
6351 return DW_FORM_data4;
6352 case 8:
6353 return DW_FORM_data8;
6354 default:
6355 abort ();
6356 }
6357 case dw_val_class_long_long:
6358 return DW_FORM_block1;
6359 case dw_val_class_float:
6360 return DW_FORM_block1;
6361 case dw_val_class_flag:
6362 return DW_FORM_flag;
6363 case dw_val_class_die_ref:
6364 if (AT_ref_external (a))
6365 return DW_FORM_ref_addr;
6366 else
6367 return DW_FORM_ref;
6368 case dw_val_class_fde_ref:
6369 return DW_FORM_data;
6370 case dw_val_class_lbl_id:
6371 return DW_FORM_addr;
6372 case dw_val_class_lbl_offset:
6373 return DW_FORM_data;
6374 case dw_val_class_str:
6375 return AT_string_form (a);
6376
6377 default:
6378 abort ();
6379 }
6380 }
6381
6382 /* Output the encoding of an attribute value. */
6383
6384 static void
6385 output_value_format (dw_attr_ref a)
6386 {
6387 enum dwarf_form form = value_format (a);
6388
6389 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6390 }
6391
6392 /* Output the .debug_abbrev section which defines the DIE abbreviation
6393 table. */
6394
6395 static void
6396 output_abbrev_section (void)
6397 {
6398 unsigned long abbrev_id;
6399
6400 dw_attr_ref a_attr;
6401
6402 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6403 {
6404 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6405
6406 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6407 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6408 dwarf_tag_name (abbrev->die_tag));
6409
6410 if (abbrev->die_child != NULL)
6411 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6412 else
6413 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6414
6415 for (a_attr = abbrev->die_attr; a_attr != NULL;
6416 a_attr = a_attr->dw_attr_next)
6417 {
6418 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6419 dwarf_attr_name (a_attr->dw_attr));
6420 output_value_format (a_attr);
6421 }
6422
6423 dw2_asm_output_data (1, 0, NULL);
6424 dw2_asm_output_data (1, 0, NULL);
6425 }
6426
6427 /* Terminate the table. */
6428 dw2_asm_output_data (1, 0, NULL);
6429 }
6430
6431 /* Output a symbol we can use to refer to this DIE from another CU. */
6432
6433 static inline void
6434 output_die_symbol (dw_die_ref die)
6435 {
6436 char *sym = die->die_symbol;
6437
6438 if (sym == 0)
6439 return;
6440
6441 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6442 /* We make these global, not weak; if the target doesn't support
6443 .linkonce, it doesn't support combining the sections, so debugging
6444 will break. */
6445 (*targetm.asm_out.globalize_label) (asm_out_file, sym);
6446
6447 ASM_OUTPUT_LABEL (asm_out_file, sym);
6448 }
6449
6450 /* Return a new location list, given the begin and end range, and the
6451 expression. gensym tells us whether to generate a new internal symbol for
6452 this location list node, which is done for the head of the list only. */
6453
6454 static inline dw_loc_list_ref
6455 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6456 const char *section, unsigned int gensym)
6457 {
6458 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6459
6460 retlist->begin = begin;
6461 retlist->end = end;
6462 retlist->expr = expr;
6463 retlist->section = section;
6464 if (gensym)
6465 retlist->ll_symbol = gen_internal_sym ("LLST");
6466
6467 return retlist;
6468 }
6469
6470 /* Add a location description expression to a location list. */
6471
6472 static inline void
6473 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6474 const char *begin, const char *end,
6475 const char *section)
6476 {
6477 dw_loc_list_ref *d;
6478
6479 /* Find the end of the chain. */
6480 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6481 ;
6482
6483 /* Add a new location list node to the list. */
6484 *d = new_loc_list (descr, begin, end, section, 0);
6485 }
6486
6487 /* Output the location list given to us. */
6488
6489 static void
6490 output_loc_list (dw_loc_list_ref list_head)
6491 {
6492 dw_loc_list_ref curr = list_head;
6493
6494 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6495
6496 /* ??? This shouldn't be needed now that we've forced the
6497 compilation unit base address to zero when there is code
6498 in more than one section. */
6499 if (strcmp (curr->section, ".text") == 0)
6500 {
6501 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6502 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT) 0,
6503 "Location list base address specifier fake entry");
6504 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6505 "Location list base address specifier base");
6506 }
6507
6508 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6509 {
6510 unsigned long size;
6511
6512 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6513 "Location list begin address (%s)",
6514 list_head->ll_symbol);
6515 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6516 "Location list end address (%s)",
6517 list_head->ll_symbol);
6518 size = size_of_locs (curr->expr);
6519
6520 /* Output the block length for this list of location operations. */
6521 if (size > 0xffff)
6522 abort ();
6523 dw2_asm_output_data (2, size, "%s", "Location expression size");
6524
6525 output_loc_sequence (curr->expr);
6526 }
6527
6528 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6529 "Location list terminator begin (%s)",
6530 list_head->ll_symbol);
6531 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6532 "Location list terminator end (%s)",
6533 list_head->ll_symbol);
6534 }
6535
6536 /* Output the DIE and its attributes. Called recursively to generate
6537 the definitions of each child DIE. */
6538
6539 static void
6540 output_die (dw_die_ref die)
6541 {
6542 dw_attr_ref a;
6543 dw_die_ref c;
6544 unsigned long size;
6545
6546 /* If someone in another CU might refer to us, set up a symbol for
6547 them to point to. */
6548 if (die->die_symbol)
6549 output_die_symbol (die);
6550
6551 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6552 die->die_offset, dwarf_tag_name (die->die_tag));
6553
6554 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6555 {
6556 const char *name = dwarf_attr_name (a->dw_attr);
6557
6558 switch (AT_class (a))
6559 {
6560 case dw_val_class_addr:
6561 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6562 break;
6563
6564 case dw_val_class_offset:
6565 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6566 "%s", name);
6567 break;
6568
6569 case dw_val_class_range_list:
6570 {
6571 char *p = strchr (ranges_section_label, '\0');
6572
6573 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6574 a->dw_attr_val.v.val_offset);
6575 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6576 "%s", name);
6577 *p = '\0';
6578 }
6579 break;
6580
6581 case dw_val_class_loc:
6582 size = size_of_locs (AT_loc (a));
6583
6584 /* Output the block length for this list of location operations. */
6585 dw2_asm_output_data (constant_size (size), size, "%s", name);
6586
6587 output_loc_sequence (AT_loc (a));
6588 break;
6589
6590 case dw_val_class_const:
6591 /* ??? It would be slightly more efficient to use a scheme like is
6592 used for unsigned constants below, but gdb 4.x does not sign
6593 extend. Gdb 5.x does sign extend. */
6594 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6595 break;
6596
6597 case dw_val_class_unsigned_const:
6598 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6599 AT_unsigned (a), "%s", name);
6600 break;
6601
6602 case dw_val_class_long_long:
6603 {
6604 unsigned HOST_WIDE_INT first, second;
6605
6606 dw2_asm_output_data (1,
6607 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6608 "%s", name);
6609
6610 if (WORDS_BIG_ENDIAN)
6611 {
6612 first = a->dw_attr_val.v.val_long_long.hi;
6613 second = a->dw_attr_val.v.val_long_long.low;
6614 }
6615 else
6616 {
6617 first = a->dw_attr_val.v.val_long_long.low;
6618 second = a->dw_attr_val.v.val_long_long.hi;
6619 }
6620
6621 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6622 first, "long long constant");
6623 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6624 second, NULL);
6625 }
6626 break;
6627
6628 case dw_val_class_float:
6629 {
6630 unsigned int i;
6631
6632 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6633 "%s", name);
6634
6635 for (i = 0; i < a->dw_attr_val.v.val_float.length; i++)
6636 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6637 "fp constant word %u", i);
6638 break;
6639 }
6640
6641 case dw_val_class_flag:
6642 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6643 break;
6644
6645 case dw_val_class_loc_list:
6646 {
6647 char *sym = AT_loc_list (a)->ll_symbol;
6648
6649 if (sym == 0)
6650 abort ();
6651 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym,
6652 loc_section_label, "%s", name);
6653 }
6654 break;
6655
6656 case dw_val_class_die_ref:
6657 if (AT_ref_external (a))
6658 {
6659 char *sym = AT_ref (a)->die_symbol;
6660
6661 if (sym == 0)
6662 abort ();
6663 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6664 }
6665 else if (AT_ref (a)->die_offset == 0)
6666 abort ();
6667 else
6668 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6669 "%s", name);
6670 break;
6671
6672 case dw_val_class_fde_ref:
6673 {
6674 char l1[20];
6675
6676 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6677 a->dw_attr_val.v.val_fde_index * 2);
6678 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6679 }
6680 break;
6681
6682 case dw_val_class_lbl_id:
6683 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6684 break;
6685
6686 case dw_val_class_lbl_offset:
6687 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6688 break;
6689
6690 case dw_val_class_str:
6691 if (AT_string_form (a) == DW_FORM_strp)
6692 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6693 a->dw_attr_val.v.val_str->label,
6694 "%s: \"%s\"", name, AT_string (a));
6695 else
6696 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6697 break;
6698
6699 default:
6700 abort ();
6701 }
6702 }
6703
6704 for (c = die->die_child; c != NULL; c = c->die_sib)
6705 output_die (c);
6706
6707 /* Add null byte to terminate sibling list. */
6708 if (die->die_child != NULL)
6709 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6710 die->die_offset);
6711 }
6712
6713 /* Output the compilation unit that appears at the beginning of the
6714 .debug_info section, and precedes the DIE descriptions. */
6715
6716 static void
6717 output_compilation_unit_header (void)
6718 {
6719 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6720 dw2_asm_output_data (4, 0xffffffff,
6721 "Initial length escape value indicating 64-bit DWARF extension");
6722 dw2_asm_output_data (DWARF_OFFSET_SIZE,
6723 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
6724 "Length of Compilation Unit Info");
6725 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6726 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6727 "Offset Into Abbrev. Section");
6728 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6729 }
6730
6731 /* Output the compilation unit DIE and its children. */
6732
6733 static void
6734 output_comp_unit (dw_die_ref die, int output_if_empty)
6735 {
6736 const char *secname;
6737 char *oldsym, *tmp;
6738
6739 /* Unless we are outputting main CU, we may throw away empty ones. */
6740 if (!output_if_empty && die->die_child == NULL)
6741 return;
6742
6743 /* Even if there are no children of this DIE, we must output the information
6744 about the compilation unit. Otherwise, on an empty translation unit, we
6745 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6746 will then complain when examining the file. First mark all the DIEs in
6747 this CU so we know which get local refs. */
6748 mark_dies (die);
6749
6750 build_abbrev_table (die);
6751
6752 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6753 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6754 calc_die_sizes (die);
6755
6756 oldsym = die->die_symbol;
6757 if (oldsym)
6758 {
6759 tmp = alloca (strlen (oldsym) + 24);
6760
6761 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
6762 secname = tmp;
6763 die->die_symbol = NULL;
6764 }
6765 else
6766 secname = (const char *) DEBUG_INFO_SECTION;
6767
6768 /* Output debugging information. */
6769 named_section_flags (secname, SECTION_DEBUG);
6770 output_compilation_unit_header ();
6771 output_die (die);
6772
6773 /* Leave the marks on the main CU, so we can check them in
6774 output_pubnames. */
6775 if (oldsym)
6776 {
6777 unmark_dies (die);
6778 die->die_symbol = oldsym;
6779 }
6780 }
6781
6782 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
6783 output of lang_hooks.decl_printable_name for C++ looks like
6784 "A::f(int)". Let's drop the argument list, and maybe the scope. */
6785
6786 static const char *
6787 dwarf2_name (tree decl, int scope)
6788 {
6789 return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
6790 }
6791
6792 /* Add a new entry to .debug_pubnames if appropriate. */
6793
6794 static void
6795 add_pubname (tree decl, dw_die_ref die)
6796 {
6797 pubname_ref p;
6798
6799 if (! TREE_PUBLIC (decl))
6800 return;
6801
6802 if (pubname_table_in_use == pubname_table_allocated)
6803 {
6804 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
6805 pubname_table
6806 = ggc_realloc (pubname_table,
6807 (pubname_table_allocated * sizeof (pubname_entry)));
6808 memset (pubname_table + pubname_table_in_use, 0,
6809 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
6810 }
6811
6812 p = &pubname_table[pubname_table_in_use++];
6813 p->die = die;
6814 p->name = xstrdup (dwarf2_name (decl, 1));
6815 }
6816
6817 /* Output the public names table used to speed up access to externally
6818 visible names. For now, only generate entries for externally
6819 visible procedures. */
6820
6821 static void
6822 output_pubnames (void)
6823 {
6824 unsigned i;
6825 unsigned long pubnames_length = size_of_pubnames ();
6826
6827 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6828 dw2_asm_output_data (4, 0xffffffff,
6829 "Initial length escape value indicating 64-bit DWARF extension");
6830 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
6831 "Length of Public Names Info");
6832 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6833 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6834 "Offset of Compilation Unit Info");
6835 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
6836 "Compilation Unit Length");
6837
6838 for (i = 0; i < pubname_table_in_use; i++)
6839 {
6840 pubname_ref pub = &pubname_table[i];
6841
6842 /* We shouldn't see pubnames for DIEs outside of the main CU. */
6843 if (pub->die->die_mark == 0)
6844 abort ();
6845
6846 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
6847 "DIE offset");
6848
6849 dw2_asm_output_nstring (pub->name, -1, "external name");
6850 }
6851
6852 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
6853 }
6854
6855 /* Add a new entry to .debug_aranges if appropriate. */
6856
6857 static void
6858 add_arange (tree decl, dw_die_ref die)
6859 {
6860 if (! DECL_SECTION_NAME (decl))
6861 return;
6862
6863 if (arange_table_in_use == arange_table_allocated)
6864 {
6865 arange_table_allocated += ARANGE_TABLE_INCREMENT;
6866 arange_table = ggc_realloc (arange_table,
6867 (arange_table_allocated
6868 * sizeof (dw_die_ref)));
6869 memset (arange_table + arange_table_in_use, 0,
6870 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
6871 }
6872
6873 arange_table[arange_table_in_use++] = die;
6874 }
6875
6876 /* Output the information that goes into the .debug_aranges table.
6877 Namely, define the beginning and ending address range of the
6878 text section generated for this compilation unit. */
6879
6880 static void
6881 output_aranges (void)
6882 {
6883 unsigned i;
6884 unsigned long aranges_length = size_of_aranges ();
6885
6886 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6887 dw2_asm_output_data (4, 0xffffffff,
6888 "Initial length escape value indicating 64-bit DWARF extension");
6889 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
6890 "Length of Address Ranges Info");
6891 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6892 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6893 "Offset of Compilation Unit Info");
6894 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
6895 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
6896
6897 /* We need to align to twice the pointer size here. */
6898 if (DWARF_ARANGES_PAD_SIZE)
6899 {
6900 /* Pad using a 2 byte words so that padding is correct for any
6901 pointer size. */
6902 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
6903 2 * DWARF2_ADDR_SIZE);
6904 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
6905 dw2_asm_output_data (2, 0, NULL);
6906 }
6907
6908 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
6909 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
6910 text_section_label, "Length");
6911
6912 for (i = 0; i < arange_table_in_use; i++)
6913 {
6914 dw_die_ref die = arange_table[i];
6915
6916 /* We shouldn't see aranges for DIEs outside of the main CU. */
6917 if (die->die_mark == 0)
6918 abort ();
6919
6920 if (die->die_tag == DW_TAG_subprogram)
6921 {
6922 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
6923 "Address");
6924 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
6925 get_AT_low_pc (die), "Length");
6926 }
6927 else
6928 {
6929 /* A static variable; extract the symbol from DW_AT_location.
6930 Note that this code isn't currently hit, as we only emit
6931 aranges for functions (jason 9/23/99). */
6932 dw_attr_ref a = get_AT (die, DW_AT_location);
6933 dw_loc_descr_ref loc;
6934
6935 if (! a || AT_class (a) != dw_val_class_loc)
6936 abort ();
6937
6938 loc = AT_loc (a);
6939 if (loc->dw_loc_opc != DW_OP_addr)
6940 abort ();
6941
6942 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
6943 loc->dw_loc_oprnd1.v.val_addr, "Address");
6944 dw2_asm_output_data (DWARF2_ADDR_SIZE,
6945 get_AT_unsigned (die, DW_AT_byte_size),
6946 "Length");
6947 }
6948 }
6949
6950 /* Output the terminator words. */
6951 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6952 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6953 }
6954
6955 /* Add a new entry to .debug_ranges. Return the offset at which it
6956 was placed. */
6957
6958 static unsigned int
6959 add_ranges (tree block)
6960 {
6961 unsigned int in_use = ranges_table_in_use;
6962
6963 if (in_use == ranges_table_allocated)
6964 {
6965 ranges_table_allocated += RANGES_TABLE_INCREMENT;
6966 ranges_table
6967 = ggc_realloc (ranges_table, (ranges_table_allocated
6968 * sizeof (struct dw_ranges_struct)));
6969 memset (ranges_table + ranges_table_in_use, 0,
6970 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
6971 }
6972
6973 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
6974 ranges_table_in_use = in_use + 1;
6975
6976 return in_use * 2 * DWARF2_ADDR_SIZE;
6977 }
6978
6979 static void
6980 output_ranges (void)
6981 {
6982 unsigned i;
6983 static const char *const start_fmt = "Offset 0x%x";
6984 const char *fmt = start_fmt;
6985
6986 for (i = 0; i < ranges_table_in_use; i++)
6987 {
6988 int block_num = ranges_table[i].block_num;
6989
6990 if (block_num)
6991 {
6992 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
6993 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
6994
6995 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
6996 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
6997
6998 /* If all code is in the text section, then the compilation
6999 unit base address defaults to DW_AT_low_pc, which is the
7000 base of the text section. */
7001 if (separate_line_info_table_in_use == 0)
7002 {
7003 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7004 text_section_label,
7005 fmt, i * 2 * DWARF2_ADDR_SIZE);
7006 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7007 text_section_label, NULL);
7008 }
7009
7010 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7011 compilation unit base address to zero, which allows us to
7012 use absolute addresses, and not worry about whether the
7013 target supports cross-section arithmetic. */
7014 else
7015 {
7016 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7017 fmt, i * 2 * DWARF2_ADDR_SIZE);
7018 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7019 }
7020
7021 fmt = NULL;
7022 }
7023 else
7024 {
7025 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7026 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7027 fmt = start_fmt;
7028 }
7029 }
7030 }
7031
7032 /* Data structure containing information about input files. */
7033 struct file_info
7034 {
7035 char *path; /* Complete file name. */
7036 char *fname; /* File name part. */
7037 int length; /* Length of entire string. */
7038 int file_idx; /* Index in input file table. */
7039 int dir_idx; /* Index in directory table. */
7040 };
7041
7042 /* Data structure containing information about directories with source
7043 files. */
7044 struct dir_info
7045 {
7046 char *path; /* Path including directory name. */
7047 int length; /* Path length. */
7048 int prefix; /* Index of directory entry which is a prefix. */
7049 int count; /* Number of files in this directory. */
7050 int dir_idx; /* Index of directory used as base. */
7051 int used; /* Used in the end? */
7052 };
7053
7054 /* Callback function for file_info comparison. We sort by looking at
7055 the directories in the path. */
7056
7057 static int
7058 file_info_cmp (const void *p1, const void *p2)
7059 {
7060 const struct file_info *s1 = p1;
7061 const struct file_info *s2 = p2;
7062 unsigned char *cp1;
7063 unsigned char *cp2;
7064
7065 /* Take care of file names without directories. We need to make sure that
7066 we return consistent values to qsort since some will get confused if
7067 we return the same value when identical operands are passed in opposite
7068 orders. So if neither has a directory, return 0 and otherwise return
7069 1 or -1 depending on which one has the directory. */
7070 if ((s1->path == s1->fname || s2->path == s2->fname))
7071 return (s2->path == s2->fname) - (s1->path == s1->fname);
7072
7073 cp1 = (unsigned char *) s1->path;
7074 cp2 = (unsigned char *) s2->path;
7075
7076 while (1)
7077 {
7078 ++cp1;
7079 ++cp2;
7080 /* Reached the end of the first path? If so, handle like above. */
7081 if ((cp1 == (unsigned char *) s1->fname)
7082 || (cp2 == (unsigned char *) s2->fname))
7083 return ((cp2 == (unsigned char *) s2->fname)
7084 - (cp1 == (unsigned char *) s1->fname));
7085
7086 /* Character of current path component the same? */
7087 else if (*cp1 != *cp2)
7088 return *cp1 - *cp2;
7089 }
7090 }
7091
7092 /* Output the directory table and the file name table. We try to minimize
7093 the total amount of memory needed. A heuristic is used to avoid large
7094 slowdowns with many input files. */
7095
7096 static void
7097 output_file_names (void)
7098 {
7099 struct file_info *files;
7100 struct dir_info *dirs;
7101 int *saved;
7102 int *savehere;
7103 int *backmap;
7104 size_t ndirs;
7105 int idx_offset;
7106 size_t i;
7107 int idx;
7108
7109 /* Handle the case where file_table is empty. */
7110 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7111 {
7112 dw2_asm_output_data (1, 0, "End directory table");
7113 dw2_asm_output_data (1, 0, "End file name table");
7114 return;
7115 }
7116
7117 /* Allocate the various arrays we need. */
7118 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7119 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7120
7121 /* Sort the file names. */
7122 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7123 {
7124 char *f;
7125
7126 /* Skip all leading "./". */
7127 f = VARRAY_CHAR_PTR (file_table, i);
7128 while (f[0] == '.' && f[1] == '/')
7129 f += 2;
7130
7131 /* Create a new array entry. */
7132 files[i].path = f;
7133 files[i].length = strlen (f);
7134 files[i].file_idx = i;
7135
7136 /* Search for the file name part. */
7137 f = strrchr (f, '/');
7138 files[i].fname = f == NULL ? files[i].path : f + 1;
7139 }
7140
7141 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7142 sizeof (files[0]), file_info_cmp);
7143
7144 /* Find all the different directories used. */
7145 dirs[0].path = files[1].path;
7146 dirs[0].length = files[1].fname - files[1].path;
7147 dirs[0].prefix = -1;
7148 dirs[0].count = 1;
7149 dirs[0].dir_idx = 0;
7150 dirs[0].used = 0;
7151 files[1].dir_idx = 0;
7152 ndirs = 1;
7153
7154 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7155 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7156 && memcmp (dirs[ndirs - 1].path, files[i].path,
7157 dirs[ndirs - 1].length) == 0)
7158 {
7159 /* Same directory as last entry. */
7160 files[i].dir_idx = ndirs - 1;
7161 ++dirs[ndirs - 1].count;
7162 }
7163 else
7164 {
7165 size_t j;
7166
7167 /* This is a new directory. */
7168 dirs[ndirs].path = files[i].path;
7169 dirs[ndirs].length = files[i].fname - files[i].path;
7170 dirs[ndirs].count = 1;
7171 dirs[ndirs].dir_idx = ndirs;
7172 dirs[ndirs].used = 0;
7173 files[i].dir_idx = ndirs;
7174
7175 /* Search for a prefix. */
7176 dirs[ndirs].prefix = -1;
7177 for (j = 0; j < ndirs; j++)
7178 if (dirs[j].length < dirs[ndirs].length
7179 && dirs[j].length > 1
7180 && (dirs[ndirs].prefix == -1
7181 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7182 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7183 dirs[ndirs].prefix = j;
7184
7185 ++ndirs;
7186 }
7187
7188 /* Now to the actual work. We have to find a subset of the directories which
7189 allow expressing the file name using references to the directory table
7190 with the least amount of characters. We do not do an exhaustive search
7191 where we would have to check out every combination of every single
7192 possible prefix. Instead we use a heuristic which provides nearly optimal
7193 results in most cases and never is much off. */
7194 saved = alloca (ndirs * sizeof (int));
7195 savehere = alloca (ndirs * sizeof (int));
7196
7197 memset (saved, '\0', ndirs * sizeof (saved[0]));
7198 for (i = 0; i < ndirs; i++)
7199 {
7200 size_t j;
7201 int total;
7202
7203 /* We can always save some space for the current directory. But this
7204 does not mean it will be enough to justify adding the directory. */
7205 savehere[i] = dirs[i].length;
7206 total = (savehere[i] - saved[i]) * dirs[i].count;
7207
7208 for (j = i + 1; j < ndirs; j++)
7209 {
7210 savehere[j] = 0;
7211 if (saved[j] < dirs[i].length)
7212 {
7213 /* Determine whether the dirs[i] path is a prefix of the
7214 dirs[j] path. */
7215 int k;
7216
7217 k = dirs[j].prefix;
7218 while (k != -1 && k != (int) i)
7219 k = dirs[k].prefix;
7220
7221 if (k == (int) i)
7222 {
7223 /* Yes it is. We can possibly safe some memory but
7224 writing the filenames in dirs[j] relative to
7225 dirs[i]. */
7226 savehere[j] = dirs[i].length;
7227 total += (savehere[j] - saved[j]) * dirs[j].count;
7228 }
7229 }
7230 }
7231
7232 /* Check whether we can safe enough to justify adding the dirs[i]
7233 directory. */
7234 if (total > dirs[i].length + 1)
7235 {
7236 /* It's worthwhile adding. */
7237 for (j = i; j < ndirs; j++)
7238 if (savehere[j] > 0)
7239 {
7240 /* Remember how much we saved for this directory so far. */
7241 saved[j] = savehere[j];
7242
7243 /* Remember the prefix directory. */
7244 dirs[j].dir_idx = i;
7245 }
7246 }
7247 }
7248
7249 /* We have to emit them in the order they appear in the file_table array
7250 since the index is used in the debug info generation. To do this
7251 efficiently we generate a back-mapping of the indices first. */
7252 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7253 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7254 {
7255 backmap[files[i].file_idx] = i;
7256
7257 /* Mark this directory as used. */
7258 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7259 }
7260
7261 /* That was it. We are ready to emit the information. First emit the
7262 directory name table. We have to make sure the first actually emitted
7263 directory name has index one; zero is reserved for the current working
7264 directory. Make sure we do not confuse these indices with the one for the
7265 constructed table (even though most of the time they are identical). */
7266 idx = 1;
7267 idx_offset = dirs[0].length > 0 ? 1 : 0;
7268 for (i = 1 - idx_offset; i < ndirs; i++)
7269 if (dirs[i].used != 0)
7270 {
7271 dirs[i].used = idx++;
7272 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7273 "Directory Entry: 0x%x", dirs[i].used);
7274 }
7275
7276 dw2_asm_output_data (1, 0, "End directory table");
7277
7278 /* Correct the index for the current working directory entry if it
7279 exists. */
7280 if (idx_offset == 0)
7281 dirs[0].used = 0;
7282
7283 /* Now write all the file names. */
7284 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7285 {
7286 int file_idx = backmap[i];
7287 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7288
7289 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7290 "File Entry: 0x%lx", (unsigned long) i);
7291
7292 /* Include directory index. */
7293 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7294
7295 /* Modification time. */
7296 dw2_asm_output_data_uleb128 (0, NULL);
7297
7298 /* File length in bytes. */
7299 dw2_asm_output_data_uleb128 (0, NULL);
7300 }
7301
7302 dw2_asm_output_data (1, 0, "End file name table");
7303 }
7304
7305
7306 /* Output the source line number correspondence information. This
7307 information goes into the .debug_line section. */
7308
7309 static void
7310 output_line_info (void)
7311 {
7312 char l1[20], l2[20], p1[20], p2[20];
7313 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7314 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7315 unsigned opc;
7316 unsigned n_op_args;
7317 unsigned long lt_index;
7318 unsigned long current_line;
7319 long line_offset;
7320 long line_delta;
7321 unsigned long current_file;
7322 unsigned long function;
7323
7324 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7325 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7326 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7327 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7328
7329 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7330 dw2_asm_output_data (4, 0xffffffff,
7331 "Initial length escape value indicating 64-bit DWARF extension");
7332 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7333 "Length of Source Line Info");
7334 ASM_OUTPUT_LABEL (asm_out_file, l1);
7335
7336 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7337 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7338 ASM_OUTPUT_LABEL (asm_out_file, p1);
7339
7340 /* Define the architecture-dependent minimum instruction length (in
7341 bytes). In this implementation of DWARF, this field is used for
7342 information purposes only. Since GCC generates assembly language,
7343 we have no a priori knowledge of how many instruction bytes are
7344 generated for each source line, and therefore can use only the
7345 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7346 commands. Accordingly, we fix this as `1', which is "correct
7347 enough" for all architectures, and don't let the target override. */
7348 dw2_asm_output_data (1, 1,
7349 "Minimum Instruction Length");
7350
7351 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7352 "Default is_stmt_start flag");
7353 dw2_asm_output_data (1, DWARF_LINE_BASE,
7354 "Line Base Value (Special Opcodes)");
7355 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7356 "Line Range Value (Special Opcodes)");
7357 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7358 "Special Opcode Base");
7359
7360 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7361 {
7362 switch (opc)
7363 {
7364 case DW_LNS_advance_pc:
7365 case DW_LNS_advance_line:
7366 case DW_LNS_set_file:
7367 case DW_LNS_set_column:
7368 case DW_LNS_fixed_advance_pc:
7369 n_op_args = 1;
7370 break;
7371 default:
7372 n_op_args = 0;
7373 break;
7374 }
7375
7376 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7377 opc, n_op_args);
7378 }
7379
7380 /* Write out the information about the files we use. */
7381 output_file_names ();
7382 ASM_OUTPUT_LABEL (asm_out_file, p2);
7383
7384 /* We used to set the address register to the first location in the text
7385 section here, but that didn't accomplish anything since we already
7386 have a line note for the opening brace of the first function. */
7387
7388 /* Generate the line number to PC correspondence table, encoded as
7389 a series of state machine operations. */
7390 current_file = 1;
7391 current_line = 1;
7392 strcpy (prev_line_label, text_section_label);
7393 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7394 {
7395 dw_line_info_ref line_info = &line_info_table[lt_index];
7396
7397 #if 0
7398 /* Disable this optimization for now; GDB wants to see two line notes
7399 at the beginning of a function so it can find the end of the
7400 prologue. */
7401
7402 /* Don't emit anything for redundant notes. Just updating the
7403 address doesn't accomplish anything, because we already assume
7404 that anything after the last address is this line. */
7405 if (line_info->dw_line_num == current_line
7406 && line_info->dw_file_num == current_file)
7407 continue;
7408 #endif
7409
7410 /* Emit debug info for the address of the current line.
7411
7412 Unfortunately, we have little choice here currently, and must always
7413 use the most general form. GCC does not know the address delta
7414 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7415 attributes which will give an upper bound on the address range. We
7416 could perhaps use length attributes to determine when it is safe to
7417 use DW_LNS_fixed_advance_pc. */
7418
7419 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7420 if (0)
7421 {
7422 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7423 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7424 "DW_LNS_fixed_advance_pc");
7425 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7426 }
7427 else
7428 {
7429 /* This can handle any delta. This takes
7430 4+DWARF2_ADDR_SIZE bytes. */
7431 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7432 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7433 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7434 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7435 }
7436
7437 strcpy (prev_line_label, line_label);
7438
7439 /* Emit debug info for the source file of the current line, if
7440 different from the previous line. */
7441 if (line_info->dw_file_num != current_file)
7442 {
7443 current_file = line_info->dw_file_num;
7444 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7445 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7446 VARRAY_CHAR_PTR (file_table,
7447 current_file));
7448 }
7449
7450 /* Emit debug info for the current line number, choosing the encoding
7451 that uses the least amount of space. */
7452 if (line_info->dw_line_num != current_line)
7453 {
7454 line_offset = line_info->dw_line_num - current_line;
7455 line_delta = line_offset - DWARF_LINE_BASE;
7456 current_line = line_info->dw_line_num;
7457 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7458 /* This can handle deltas from -10 to 234, using the current
7459 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7460 takes 1 byte. */
7461 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7462 "line %lu", current_line);
7463 else
7464 {
7465 /* This can handle any delta. This takes at least 4 bytes,
7466 depending on the value being encoded. */
7467 dw2_asm_output_data (1, DW_LNS_advance_line,
7468 "advance to line %lu", current_line);
7469 dw2_asm_output_data_sleb128 (line_offset, NULL);
7470 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7471 }
7472 }
7473 else
7474 /* We still need to start a new row, so output a copy insn. */
7475 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7476 }
7477
7478 /* Emit debug info for the address of the end of the function. */
7479 if (0)
7480 {
7481 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7482 "DW_LNS_fixed_advance_pc");
7483 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7484 }
7485 else
7486 {
7487 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7488 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7489 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7490 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7491 }
7492
7493 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7494 dw2_asm_output_data_uleb128 (1, NULL);
7495 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7496
7497 function = 0;
7498 current_file = 1;
7499 current_line = 1;
7500 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7501 {
7502 dw_separate_line_info_ref line_info
7503 = &separate_line_info_table[lt_index];
7504
7505 #if 0
7506 /* Don't emit anything for redundant notes. */
7507 if (line_info->dw_line_num == current_line
7508 && line_info->dw_file_num == current_file
7509 && line_info->function == function)
7510 goto cont;
7511 #endif
7512
7513 /* Emit debug info for the address of the current line. If this is
7514 a new function, or the first line of a function, then we need
7515 to handle it differently. */
7516 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7517 lt_index);
7518 if (function != line_info->function)
7519 {
7520 function = line_info->function;
7521
7522 /* Set the address register to the first line in the function. */
7523 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7524 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7525 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7526 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7527 }
7528 else
7529 {
7530 /* ??? See the DW_LNS_advance_pc comment above. */
7531 if (0)
7532 {
7533 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7534 "DW_LNS_fixed_advance_pc");
7535 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7536 }
7537 else
7538 {
7539 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7540 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7541 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7542 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7543 }
7544 }
7545
7546 strcpy (prev_line_label, line_label);
7547
7548 /* Emit debug info for the source file of the current line, if
7549 different from the previous line. */
7550 if (line_info->dw_file_num != current_file)
7551 {
7552 current_file = line_info->dw_file_num;
7553 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7554 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7555 VARRAY_CHAR_PTR (file_table,
7556 current_file));
7557 }
7558
7559 /* Emit debug info for the current line number, choosing the encoding
7560 that uses the least amount of space. */
7561 if (line_info->dw_line_num != current_line)
7562 {
7563 line_offset = line_info->dw_line_num - current_line;
7564 line_delta = line_offset - DWARF_LINE_BASE;
7565 current_line = line_info->dw_line_num;
7566 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7567 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7568 "line %lu", current_line);
7569 else
7570 {
7571 dw2_asm_output_data (1, DW_LNS_advance_line,
7572 "advance to line %lu", current_line);
7573 dw2_asm_output_data_sleb128 (line_offset, NULL);
7574 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7575 }
7576 }
7577 else
7578 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7579
7580 #if 0
7581 cont:
7582 #endif
7583
7584 lt_index++;
7585
7586 /* If we're done with a function, end its sequence. */
7587 if (lt_index == separate_line_info_table_in_use
7588 || separate_line_info_table[lt_index].function != function)
7589 {
7590 current_file = 1;
7591 current_line = 1;
7592
7593 /* Emit debug info for the address of the end of the function. */
7594 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7595 if (0)
7596 {
7597 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7598 "DW_LNS_fixed_advance_pc");
7599 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7600 }
7601 else
7602 {
7603 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7604 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7605 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7606 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7607 }
7608
7609 /* Output the marker for the end of this sequence. */
7610 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7611 dw2_asm_output_data_uleb128 (1, NULL);
7612 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7613 }
7614 }
7615
7616 /* Output the marker for the end of the line number info. */
7617 ASM_OUTPUT_LABEL (asm_out_file, l2);
7618 }
7619 \f
7620 /* Given a pointer to a tree node for some base type, return a pointer to
7621 a DIE that describes the given type.
7622
7623 This routine must only be called for GCC type nodes that correspond to
7624 Dwarf base (fundamental) types. */
7625
7626 static dw_die_ref
7627 base_type_die (tree type)
7628 {
7629 dw_die_ref base_type_result;
7630 const char *type_name;
7631 enum dwarf_type encoding;
7632 tree name = TYPE_NAME (type);
7633
7634 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7635 return 0;
7636
7637 if (name)
7638 {
7639 if (TREE_CODE (name) == TYPE_DECL)
7640 name = DECL_NAME (name);
7641
7642 type_name = IDENTIFIER_POINTER (name);
7643 }
7644 else
7645 type_name = "__unknown__";
7646
7647 switch (TREE_CODE (type))
7648 {
7649 case INTEGER_TYPE:
7650 /* Carefully distinguish the C character types, without messing
7651 up if the language is not C. Note that we check only for the names
7652 that contain spaces; other names might occur by coincidence in other
7653 languages. */
7654 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7655 && (type == char_type_node
7656 || ! strcmp (type_name, "signed char")
7657 || ! strcmp (type_name, "unsigned char"))))
7658 {
7659 if (TREE_UNSIGNED (type))
7660 encoding = DW_ATE_unsigned;
7661 else
7662 encoding = DW_ATE_signed;
7663 break;
7664 }
7665 /* else fall through. */
7666
7667 case CHAR_TYPE:
7668 /* GNU Pascal/Ada CHAR type. Not used in C. */
7669 if (TREE_UNSIGNED (type))
7670 encoding = DW_ATE_unsigned_char;
7671 else
7672 encoding = DW_ATE_signed_char;
7673 break;
7674
7675 case REAL_TYPE:
7676 encoding = DW_ATE_float;
7677 break;
7678
7679 /* Dwarf2 doesn't know anything about complex ints, so use
7680 a user defined type for it. */
7681 case COMPLEX_TYPE:
7682 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7683 encoding = DW_ATE_complex_float;
7684 else
7685 encoding = DW_ATE_lo_user;
7686 break;
7687
7688 case BOOLEAN_TYPE:
7689 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7690 encoding = DW_ATE_boolean;
7691 break;
7692
7693 default:
7694 /* No other TREE_CODEs are Dwarf fundamental types. */
7695 abort ();
7696 }
7697
7698 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7699 if (demangle_name_func)
7700 type_name = (*demangle_name_func) (type_name);
7701
7702 add_AT_string (base_type_result, DW_AT_name, type_name);
7703 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7704 int_size_in_bytes (type));
7705 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7706
7707 return base_type_result;
7708 }
7709
7710 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7711 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7712 a given type is generally the same as the given type, except that if the
7713 given type is a pointer or reference type, then the root type of the given
7714 type is the root type of the "basis" type for the pointer or reference
7715 type. (This definition of the "root" type is recursive.) Also, the root
7716 type of a `const' qualified type or a `volatile' qualified type is the
7717 root type of the given type without the qualifiers. */
7718
7719 static tree
7720 root_type (tree type)
7721 {
7722 if (TREE_CODE (type) == ERROR_MARK)
7723 return error_mark_node;
7724
7725 switch (TREE_CODE (type))
7726 {
7727 case ERROR_MARK:
7728 return error_mark_node;
7729
7730 case POINTER_TYPE:
7731 case REFERENCE_TYPE:
7732 return type_main_variant (root_type (TREE_TYPE (type)));
7733
7734 default:
7735 return type_main_variant (type);
7736 }
7737 }
7738
7739 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7740 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7741
7742 static inline int
7743 is_base_type (tree type)
7744 {
7745 switch (TREE_CODE (type))
7746 {
7747 case ERROR_MARK:
7748 case VOID_TYPE:
7749 case INTEGER_TYPE:
7750 case REAL_TYPE:
7751 case COMPLEX_TYPE:
7752 case BOOLEAN_TYPE:
7753 case CHAR_TYPE:
7754 return 1;
7755
7756 case SET_TYPE:
7757 case ARRAY_TYPE:
7758 case RECORD_TYPE:
7759 case UNION_TYPE:
7760 case QUAL_UNION_TYPE:
7761 case ENUMERAL_TYPE:
7762 case FUNCTION_TYPE:
7763 case METHOD_TYPE:
7764 case POINTER_TYPE:
7765 case REFERENCE_TYPE:
7766 case FILE_TYPE:
7767 case OFFSET_TYPE:
7768 case LANG_TYPE:
7769 case VECTOR_TYPE:
7770 return 0;
7771
7772 default:
7773 abort ();
7774 }
7775
7776 return 0;
7777 }
7778
7779 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
7780 node, return the size in bits for the type if it is a constant, or else
7781 return the alignment for the type if the type's size is not constant, or
7782 else return BITS_PER_WORD if the type actually turns out to be an
7783 ERROR_MARK node. */
7784
7785 static inline unsigned HOST_WIDE_INT
7786 simple_type_size_in_bits (tree type)
7787 {
7788 if (TREE_CODE (type) == ERROR_MARK)
7789 return BITS_PER_WORD;
7790 else if (TYPE_SIZE (type) == NULL_TREE)
7791 return 0;
7792 else if (host_integerp (TYPE_SIZE (type), 1))
7793 return tree_low_cst (TYPE_SIZE (type), 1);
7794 else
7795 return TYPE_ALIGN (type);
7796 }
7797
7798 /* Return true if the debug information for the given type should be
7799 emitted as a subrange type. */
7800
7801 static inline bool
7802 is_ada_subrange_type (tree type)
7803 {
7804 /* We do this for INTEGER_TYPEs that have names, parent types, and when
7805 we are compiling Ada code. */
7806 return (TREE_CODE (type) == INTEGER_TYPE
7807 && TYPE_NAME (type) != 0 && TREE_TYPE (type) != 0
7808 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
7809 && TREE_UNSIGNED (TREE_TYPE (type)) && is_ada ());
7810 }
7811
7812 /* Given a pointer to a tree node for a subrange type, return a pointer
7813 to a DIE that describes the given type. */
7814
7815 static dw_die_ref
7816 subrange_type_die (tree type)
7817 {
7818 dw_die_ref subtype_die;
7819 dw_die_ref subrange_die;
7820 tree name = TYPE_NAME (type);
7821
7822 subtype_die = base_type_die (TREE_TYPE (type));
7823
7824 if (TREE_CODE (name) == TYPE_DECL)
7825 name = DECL_NAME (name);
7826
7827 subrange_die = new_die (DW_TAG_subrange_type, comp_unit_die, type);
7828 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
7829 if (TYPE_MIN_VALUE (type) != NULL)
7830 add_bound_info (subrange_die, DW_AT_lower_bound,
7831 TYPE_MIN_VALUE (type));
7832 if (TYPE_MAX_VALUE (type) != NULL)
7833 add_bound_info (subrange_die, DW_AT_upper_bound,
7834 TYPE_MAX_VALUE (type));
7835 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
7836
7837 return subrange_die;
7838 }
7839
7840 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
7841 entry that chains various modifiers in front of the given type. */
7842
7843 static dw_die_ref
7844 modified_type_die (tree type, int is_const_type, int is_volatile_type,
7845 dw_die_ref context_die)
7846 {
7847 enum tree_code code = TREE_CODE (type);
7848 dw_die_ref mod_type_die = NULL;
7849 dw_die_ref sub_die = NULL;
7850 tree item_type = NULL;
7851
7852 if (code != ERROR_MARK)
7853 {
7854 tree qualified_type;
7855
7856 /* See if we already have the appropriately qualified variant of
7857 this type. */
7858 qualified_type
7859 = get_qualified_type (type,
7860 ((is_const_type ? TYPE_QUAL_CONST : 0)
7861 | (is_volatile_type
7862 ? TYPE_QUAL_VOLATILE : 0)));
7863
7864 /* If we do, then we can just use its DIE, if it exists. */
7865 if (qualified_type)
7866 {
7867 mod_type_die = lookup_type_die (qualified_type);
7868 if (mod_type_die)
7869 return mod_type_die;
7870 }
7871
7872 /* Handle C typedef types. */
7873 if (qualified_type && TYPE_NAME (qualified_type)
7874 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
7875 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
7876 {
7877 tree type_name = TYPE_NAME (qualified_type);
7878 tree dtype = TREE_TYPE (type_name);
7879
7880 if (qualified_type == dtype)
7881 {
7882 /* For a named type, use the typedef. */
7883 gen_type_die (qualified_type, context_die);
7884 mod_type_die = lookup_type_die (qualified_type);
7885 }
7886 else if (is_const_type < TYPE_READONLY (dtype)
7887 || is_volatile_type < TYPE_VOLATILE (dtype))
7888 /* cv-unqualified version of named type. Just use the unnamed
7889 type to which it refers. */
7890 mod_type_die
7891 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
7892 is_const_type, is_volatile_type,
7893 context_die);
7894
7895 /* Else cv-qualified version of named type; fall through. */
7896 }
7897
7898 if (mod_type_die)
7899 /* OK. */
7900 ;
7901 else if (is_const_type)
7902 {
7903 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
7904 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
7905 }
7906 else if (is_volatile_type)
7907 {
7908 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
7909 sub_die = modified_type_die (type, 0, 0, context_die);
7910 }
7911 else if (code == POINTER_TYPE)
7912 {
7913 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
7914 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
7915 simple_type_size_in_bits (type) / BITS_PER_UNIT);
7916 #if 0
7917 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7918 #endif
7919 item_type = TREE_TYPE (type);
7920 }
7921 else if (code == REFERENCE_TYPE)
7922 {
7923 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
7924 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
7925 simple_type_size_in_bits (type) / BITS_PER_UNIT);
7926 #if 0
7927 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7928 #endif
7929 item_type = TREE_TYPE (type);
7930 }
7931 else if (is_ada_subrange_type (type))
7932 mod_type_die = subrange_type_die (type);
7933 else if (is_base_type (type))
7934 mod_type_die = base_type_die (type);
7935 else
7936 {
7937 gen_type_die (type, context_die);
7938
7939 /* We have to get the type_main_variant here (and pass that to the
7940 `lookup_type_die' routine) because the ..._TYPE node we have
7941 might simply be a *copy* of some original type node (where the
7942 copy was created to help us keep track of typedef names) and
7943 that copy might have a different TYPE_UID from the original
7944 ..._TYPE node. */
7945 if (TREE_CODE (type) != VECTOR_TYPE)
7946 mod_type_die = lookup_type_die (type_main_variant (type));
7947 else
7948 /* Vectors have the debugging information in the type,
7949 not the main variant. */
7950 mod_type_die = lookup_type_die (type);
7951 if (mod_type_die == NULL)
7952 abort ();
7953 }
7954
7955 /* We want to equate the qualified type to the die below. */
7956 type = qualified_type;
7957 }
7958
7959 if (type)
7960 equate_type_number_to_die (type, mod_type_die);
7961 if (item_type)
7962 /* We must do this after the equate_type_number_to_die call, in case
7963 this is a recursive type. This ensures that the modified_type_die
7964 recursion will terminate even if the type is recursive. Recursive
7965 types are possible in Ada. */
7966 sub_die = modified_type_die (item_type,
7967 TYPE_READONLY (item_type),
7968 TYPE_VOLATILE (item_type),
7969 context_die);
7970
7971 if (sub_die != NULL)
7972 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
7973
7974 return mod_type_die;
7975 }
7976
7977 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
7978 an enumerated type. */
7979
7980 static inline int
7981 type_is_enum (tree type)
7982 {
7983 return TREE_CODE (type) == ENUMERAL_TYPE;
7984 }
7985
7986 /* Return the register number described by a given RTL node. */
7987
7988 static unsigned int
7989 reg_number (rtx rtl)
7990 {
7991 unsigned regno = REGNO (rtl);
7992
7993 if (regno >= FIRST_PSEUDO_REGISTER)
7994 abort ();
7995
7996 return DBX_REGISTER_NUMBER (regno);
7997 }
7998
7999 /* Return a location descriptor that designates a machine register or
8000 zero if there is none. */
8001
8002 static dw_loc_descr_ref
8003 reg_loc_descriptor (rtx rtl)
8004 {
8005 unsigned reg;
8006 rtx regs;
8007
8008 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8009 return 0;
8010
8011 reg = reg_number (rtl);
8012 regs = (*targetm.dwarf_register_span) (rtl);
8013
8014 if (HARD_REGNO_NREGS (reg, GET_MODE (rtl)) > 1
8015 || regs)
8016 return multiple_reg_loc_descriptor (rtl, regs);
8017 else
8018 return one_reg_loc_descriptor (reg);
8019 }
8020
8021 /* Return a location descriptor that designates a machine register for
8022 a given hard register number. */
8023
8024 static dw_loc_descr_ref
8025 one_reg_loc_descriptor (unsigned int regno)
8026 {
8027 if (regno <= 31)
8028 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8029 else
8030 return new_loc_descr (DW_OP_regx, regno, 0);
8031 }
8032
8033 /* Given an RTL of a register, return a location descriptor that
8034 designates a value that spans more than one register. */
8035
8036 static dw_loc_descr_ref
8037 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8038 {
8039 int nregs, size, i;
8040 unsigned reg;
8041 dw_loc_descr_ref loc_result = NULL;
8042
8043 reg = reg_number (rtl);
8044 nregs = HARD_REGNO_NREGS (reg, GET_MODE (rtl));
8045
8046 /* Simple, contiguous registers. */
8047 if (regs == NULL_RTX)
8048 {
8049 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8050
8051 loc_result = NULL;
8052 while (nregs--)
8053 {
8054 dw_loc_descr_ref t;
8055
8056 t = one_reg_loc_descriptor (reg);
8057 add_loc_descr (&loc_result, t);
8058 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8059 ++reg;
8060 }
8061 return loc_result;
8062 }
8063
8064 /* Now onto stupid register sets in non contiguous locations. */
8065
8066 if (GET_CODE (regs) != PARALLEL)
8067 abort ();
8068
8069 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8070 loc_result = NULL;
8071
8072 for (i = 0; i < XVECLEN (regs, 0); ++i)
8073 {
8074 dw_loc_descr_ref t;
8075
8076 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8077 add_loc_descr (&loc_result, t);
8078 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8079 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8080 }
8081 return loc_result;
8082 }
8083
8084 /* Return a location descriptor that designates a constant. */
8085
8086 static dw_loc_descr_ref
8087 int_loc_descriptor (HOST_WIDE_INT i)
8088 {
8089 enum dwarf_location_atom op;
8090
8091 /* Pick the smallest representation of a constant, rather than just
8092 defaulting to the LEB encoding. */
8093 if (i >= 0)
8094 {
8095 if (i <= 31)
8096 op = DW_OP_lit0 + i;
8097 else if (i <= 0xff)
8098 op = DW_OP_const1u;
8099 else if (i <= 0xffff)
8100 op = DW_OP_const2u;
8101 else if (HOST_BITS_PER_WIDE_INT == 32
8102 || i <= 0xffffffff)
8103 op = DW_OP_const4u;
8104 else
8105 op = DW_OP_constu;
8106 }
8107 else
8108 {
8109 if (i >= -0x80)
8110 op = DW_OP_const1s;
8111 else if (i >= -0x8000)
8112 op = DW_OP_const2s;
8113 else if (HOST_BITS_PER_WIDE_INT == 32
8114 || i >= -0x80000000)
8115 op = DW_OP_const4s;
8116 else
8117 op = DW_OP_consts;
8118 }
8119
8120 return new_loc_descr (op, i, 0);
8121 }
8122
8123 /* Return a location descriptor that designates a base+offset location. */
8124
8125 static dw_loc_descr_ref
8126 based_loc_descr (unsigned int reg, HOST_WIDE_INT offset)
8127 {
8128 dw_loc_descr_ref loc_result;
8129 /* For the "frame base", we use the frame pointer or stack pointer
8130 registers, since the RTL for local variables is relative to one of
8131 them. */
8132 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8133 ? HARD_FRAME_POINTER_REGNUM
8134 : STACK_POINTER_REGNUM);
8135
8136 if (reg == fp_reg)
8137 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8138 else if (reg <= 31)
8139 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8140 else
8141 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8142
8143 return loc_result;
8144 }
8145
8146 /* Return true if this RTL expression describes a base+offset calculation. */
8147
8148 static inline int
8149 is_based_loc (rtx rtl)
8150 {
8151 return (GET_CODE (rtl) == PLUS
8152 && ((GET_CODE (XEXP (rtl, 0)) == REG
8153 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8154 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8155 }
8156
8157 /* The following routine converts the RTL for a variable or parameter
8158 (resident in memory) into an equivalent Dwarf representation of a
8159 mechanism for getting the address of that same variable onto the top of a
8160 hypothetical "address evaluation" stack.
8161
8162 When creating memory location descriptors, we are effectively transforming
8163 the RTL for a memory-resident object into its Dwarf postfix expression
8164 equivalent. This routine recursively descends an RTL tree, turning
8165 it into Dwarf postfix code as it goes.
8166
8167 MODE is the mode of the memory reference, needed to handle some
8168 autoincrement addressing modes.
8169
8170 Return 0 if we can't represent the location. */
8171
8172 static dw_loc_descr_ref
8173 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8174 {
8175 dw_loc_descr_ref mem_loc_result = NULL;
8176
8177 /* Note that for a dynamically sized array, the location we will generate a
8178 description of here will be the lowest numbered location which is
8179 actually within the array. That's *not* necessarily the same as the
8180 zeroth element of the array. */
8181
8182 rtl = (*targetm.delegitimize_address) (rtl);
8183
8184 switch (GET_CODE (rtl))
8185 {
8186 case POST_INC:
8187 case POST_DEC:
8188 case POST_MODIFY:
8189 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8190 just fall into the SUBREG code. */
8191
8192 /* ... fall through ... */
8193
8194 case SUBREG:
8195 /* The case of a subreg may arise when we have a local (register)
8196 variable or a formal (register) parameter which doesn't quite fill
8197 up an entire register. For now, just assume that it is
8198 legitimate to make the Dwarf info refer to the whole register which
8199 contains the given subreg. */
8200 rtl = SUBREG_REG (rtl);
8201
8202 /* ... fall through ... */
8203
8204 case REG:
8205 /* Whenever a register number forms a part of the description of the
8206 method for calculating the (dynamic) address of a memory resident
8207 object, DWARF rules require the register number be referred to as
8208 a "base register". This distinction is not based in any way upon
8209 what category of register the hardware believes the given register
8210 belongs to. This is strictly DWARF terminology we're dealing with
8211 here. Note that in cases where the location of a memory-resident
8212 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8213 OP_CONST (0)) the actual DWARF location descriptor that we generate
8214 may just be OP_BASEREG (basereg). This may look deceptively like
8215 the object in question was allocated to a register (rather than in
8216 memory) so DWARF consumers need to be aware of the subtle
8217 distinction between OP_REG and OP_BASEREG. */
8218 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8219 mem_loc_result = based_loc_descr (reg_number (rtl), 0);
8220 break;
8221
8222 case MEM:
8223 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8224 if (mem_loc_result != 0)
8225 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8226 break;
8227
8228 case LO_SUM:
8229 rtl = XEXP (rtl, 1);
8230
8231 /* ... fall through ... */
8232
8233 case LABEL_REF:
8234 /* Some ports can transform a symbol ref into a label ref, because
8235 the symbol ref is too far away and has to be dumped into a constant
8236 pool. */
8237 case CONST:
8238 case SYMBOL_REF:
8239 /* Alternatively, the symbol in the constant pool might be referenced
8240 by a different symbol. */
8241 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8242 {
8243 bool marked;
8244 rtx tmp = get_pool_constant_mark (rtl, &marked);
8245
8246 if (GET_CODE (tmp) == SYMBOL_REF)
8247 {
8248 rtl = tmp;
8249 if (CONSTANT_POOL_ADDRESS_P (tmp))
8250 get_pool_constant_mark (tmp, &marked);
8251 else
8252 marked = true;
8253 }
8254
8255 /* If all references to this pool constant were optimized away,
8256 it was not output and thus we can't represent it.
8257 FIXME: might try to use DW_OP_const_value here, though
8258 DW_OP_piece complicates it. */
8259 if (!marked)
8260 return 0;
8261 }
8262
8263 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8264 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8265 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8266 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8267 break;
8268
8269 case PRE_MODIFY:
8270 /* Extract the PLUS expression nested inside and fall into
8271 PLUS code below. */
8272 rtl = XEXP (rtl, 1);
8273 goto plus;
8274
8275 case PRE_INC:
8276 case PRE_DEC:
8277 /* Turn these into a PLUS expression and fall into the PLUS code
8278 below. */
8279 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8280 GEN_INT (GET_CODE (rtl) == PRE_INC
8281 ? GET_MODE_UNIT_SIZE (mode)
8282 : -GET_MODE_UNIT_SIZE (mode)));
8283
8284 /* ... fall through ... */
8285
8286 case PLUS:
8287 plus:
8288 if (is_based_loc (rtl))
8289 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
8290 INTVAL (XEXP (rtl, 1)));
8291 else
8292 {
8293 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8294 if (mem_loc_result == 0)
8295 break;
8296
8297 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8298 && INTVAL (XEXP (rtl, 1)) >= 0)
8299 add_loc_descr (&mem_loc_result,
8300 new_loc_descr (DW_OP_plus_uconst,
8301 INTVAL (XEXP (rtl, 1)), 0));
8302 else
8303 {
8304 add_loc_descr (&mem_loc_result,
8305 mem_loc_descriptor (XEXP (rtl, 1), mode));
8306 add_loc_descr (&mem_loc_result,
8307 new_loc_descr (DW_OP_plus, 0, 0));
8308 }
8309 }
8310 break;
8311
8312 case MULT:
8313 {
8314 /* If a pseudo-reg is optimized away, it is possible for it to
8315 be replaced with a MEM containing a multiply. */
8316 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8317 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8318
8319 if (op0 == 0 || op1 == 0)
8320 break;
8321
8322 mem_loc_result = op0;
8323 add_loc_descr (&mem_loc_result, op1);
8324 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
8325 break;
8326 }
8327
8328 case CONST_INT:
8329 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8330 break;
8331
8332 case ADDRESSOF:
8333 /* If this is a MEM, return its address. Otherwise, we can't
8334 represent this. */
8335 if (GET_CODE (XEXP (rtl, 0)) == MEM)
8336 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode);
8337 else
8338 return 0;
8339
8340 default:
8341 abort ();
8342 }
8343
8344 return mem_loc_result;
8345 }
8346
8347 /* Return a descriptor that describes the concatenation of two locations.
8348 This is typically a complex variable. */
8349
8350 static dw_loc_descr_ref
8351 concat_loc_descriptor (rtx x0, rtx x1)
8352 {
8353 dw_loc_descr_ref cc_loc_result = NULL;
8354 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8355 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8356
8357 if (x0_ref == 0 || x1_ref == 0)
8358 return 0;
8359
8360 cc_loc_result = x0_ref;
8361 add_loc_descr (&cc_loc_result,
8362 new_loc_descr (DW_OP_piece,
8363 GET_MODE_SIZE (GET_MODE (x0)), 0));
8364
8365 add_loc_descr (&cc_loc_result, x1_ref);
8366 add_loc_descr (&cc_loc_result,
8367 new_loc_descr (DW_OP_piece,
8368 GET_MODE_SIZE (GET_MODE (x1)), 0));
8369
8370 return cc_loc_result;
8371 }
8372
8373 /* Output a proper Dwarf location descriptor for a variable or parameter
8374 which is either allocated in a register or in a memory location. For a
8375 register, we just generate an OP_REG and the register number. For a
8376 memory location we provide a Dwarf postfix expression describing how to
8377 generate the (dynamic) address of the object onto the address stack.
8378
8379 If we don't know how to describe it, return 0. */
8380
8381 static dw_loc_descr_ref
8382 loc_descriptor (rtx rtl)
8383 {
8384 dw_loc_descr_ref loc_result = NULL;
8385
8386 switch (GET_CODE (rtl))
8387 {
8388 case SUBREG:
8389 /* The case of a subreg may arise when we have a local (register)
8390 variable or a formal (register) parameter which doesn't quite fill
8391 up an entire register. For now, just assume that it is
8392 legitimate to make the Dwarf info refer to the whole register which
8393 contains the given subreg. */
8394 rtl = SUBREG_REG (rtl);
8395
8396 /* ... fall through ... */
8397
8398 case REG:
8399 loc_result = reg_loc_descriptor (rtl);
8400 break;
8401
8402 case MEM:
8403 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8404 break;
8405
8406 case CONCAT:
8407 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8408 break;
8409
8410 default:
8411 abort ();
8412 }
8413
8414 return loc_result;
8415 }
8416
8417 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8418 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8419 looking for an address. Otherwise, we return a value. If we can't make a
8420 descriptor, return 0. */
8421
8422 static dw_loc_descr_ref
8423 loc_descriptor_from_tree (tree loc, int addressp)
8424 {
8425 dw_loc_descr_ref ret, ret1;
8426 int indirect_p = 0;
8427 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8428 enum dwarf_location_atom op;
8429
8430 /* ??? Most of the time we do not take proper care for sign/zero
8431 extending the values properly. Hopefully this won't be a real
8432 problem... */
8433
8434 switch (TREE_CODE (loc))
8435 {
8436 case ERROR_MARK:
8437 return 0;
8438
8439 case WITH_RECORD_EXPR:
8440 case PLACEHOLDER_EXPR:
8441 /* This case involves extracting fields from an object to determine the
8442 position of other fields. We don't try to encode this here. The
8443 only user of this is Ada, which encodes the needed information using
8444 the names of types. */
8445 return 0;
8446
8447 case CALL_EXPR:
8448 return 0;
8449
8450 case ADDR_EXPR:
8451 /* We can support this only if we can look through conversions and
8452 find an INDIRECT_EXPR. */
8453 for (loc = TREE_OPERAND (loc, 0);
8454 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8455 || TREE_CODE (loc) == NON_LVALUE_EXPR
8456 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8457 || TREE_CODE (loc) == SAVE_EXPR;
8458 loc = TREE_OPERAND (loc, 0))
8459 ;
8460
8461 return (TREE_CODE (loc) == INDIRECT_REF
8462 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8463 : 0);
8464
8465 case VAR_DECL:
8466 if (DECL_THREAD_LOCAL (loc))
8467 {
8468 rtx rtl;
8469
8470 #ifndef ASM_OUTPUT_DWARF_DTPREL
8471 /* If this is not defined, we have no way to emit the data. */
8472 return 0;
8473 #endif
8474
8475 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8476 look up addresses of objects in the current module. */
8477 if (DECL_EXTERNAL (loc))
8478 return 0;
8479
8480 rtl = rtl_for_decl_location (loc);
8481 if (rtl == NULL_RTX)
8482 return 0;
8483
8484 if (GET_CODE (rtl) != MEM)
8485 return 0;
8486 rtl = XEXP (rtl, 0);
8487 if (! CONSTANT_P (rtl))
8488 return 0;
8489
8490 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8491 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8492 ret->dw_loc_oprnd1.v.val_addr = rtl;
8493
8494 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8495 add_loc_descr (&ret, ret1);
8496
8497 indirect_p = 1;
8498 break;
8499 }
8500 /* FALLTHRU */
8501
8502 case PARM_DECL:
8503 {
8504 rtx rtl = rtl_for_decl_location (loc);
8505
8506 if (rtl == NULL_RTX)
8507 return 0;
8508 else if (CONSTANT_P (rtl))
8509 {
8510 ret = new_loc_descr (DW_OP_addr, 0, 0);
8511 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8512 ret->dw_loc_oprnd1.v.val_addr = rtl;
8513 indirect_p = 1;
8514 }
8515 else
8516 {
8517 enum machine_mode mode = GET_MODE (rtl);
8518
8519 if (GET_CODE (rtl) == MEM)
8520 {
8521 indirect_p = 1;
8522 rtl = XEXP (rtl, 0);
8523 }
8524
8525 ret = mem_loc_descriptor (rtl, mode);
8526 }
8527 }
8528 break;
8529
8530 case INDIRECT_REF:
8531 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8532 indirect_p = 1;
8533 break;
8534
8535 case COMPOUND_EXPR:
8536 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8537
8538 case NOP_EXPR:
8539 case CONVERT_EXPR:
8540 case NON_LVALUE_EXPR:
8541 case VIEW_CONVERT_EXPR:
8542 case SAVE_EXPR:
8543 case MODIFY_EXPR:
8544 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8545
8546 case COMPONENT_REF:
8547 case BIT_FIELD_REF:
8548 case ARRAY_REF:
8549 case ARRAY_RANGE_REF:
8550 {
8551 tree obj, offset;
8552 HOST_WIDE_INT bitsize, bitpos, bytepos;
8553 enum machine_mode mode;
8554 int volatilep;
8555
8556 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8557 &unsignedp, &volatilep);
8558
8559 if (obj == loc)
8560 return 0;
8561
8562 ret = loc_descriptor_from_tree (obj, 1);
8563 if (ret == 0
8564 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8565 return 0;
8566
8567 if (offset != NULL_TREE)
8568 {
8569 /* Variable offset. */
8570 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8571 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8572 }
8573
8574 if (!addressp)
8575 indirect_p = 1;
8576
8577 bytepos = bitpos / BITS_PER_UNIT;
8578 if (bytepos > 0)
8579 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8580 else if (bytepos < 0)
8581 {
8582 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8583 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8584 }
8585 break;
8586 }
8587
8588 case INTEGER_CST:
8589 if (host_integerp (loc, 0))
8590 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8591 else
8592 return 0;
8593 break;
8594
8595 case CONSTRUCTOR:
8596 {
8597 /* Get an RTL for this, if something has been emitted. */
8598 rtx rtl = lookup_constant_def (loc);
8599 enum machine_mode mode;
8600
8601 if (GET_CODE (rtl) != MEM)
8602 return 0;
8603 mode = GET_MODE (rtl);
8604 rtl = XEXP (rtl, 0);
8605
8606 rtl = (*targetm.delegitimize_address) (rtl);
8607
8608 indirect_p = 1;
8609 ret = mem_loc_descriptor (rtl, mode);
8610 break;
8611 }
8612
8613 case TRUTH_AND_EXPR:
8614 case TRUTH_ANDIF_EXPR:
8615 case BIT_AND_EXPR:
8616 op = DW_OP_and;
8617 goto do_binop;
8618
8619 case TRUTH_XOR_EXPR:
8620 case BIT_XOR_EXPR:
8621 op = DW_OP_xor;
8622 goto do_binop;
8623
8624 case TRUTH_OR_EXPR:
8625 case TRUTH_ORIF_EXPR:
8626 case BIT_IOR_EXPR:
8627 op = DW_OP_or;
8628 goto do_binop;
8629
8630 case FLOOR_DIV_EXPR:
8631 case CEIL_DIV_EXPR:
8632 case ROUND_DIV_EXPR:
8633 case TRUNC_DIV_EXPR:
8634 op = DW_OP_div;
8635 goto do_binop;
8636
8637 case MINUS_EXPR:
8638 op = DW_OP_minus;
8639 goto do_binop;
8640
8641 case FLOOR_MOD_EXPR:
8642 case CEIL_MOD_EXPR:
8643 case ROUND_MOD_EXPR:
8644 case TRUNC_MOD_EXPR:
8645 op = DW_OP_mod;
8646 goto do_binop;
8647
8648 case MULT_EXPR:
8649 op = DW_OP_mul;
8650 goto do_binop;
8651
8652 case LSHIFT_EXPR:
8653 op = DW_OP_shl;
8654 goto do_binop;
8655
8656 case RSHIFT_EXPR:
8657 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8658 goto do_binop;
8659
8660 case PLUS_EXPR:
8661 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8662 && host_integerp (TREE_OPERAND (loc, 1), 0))
8663 {
8664 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8665 if (ret == 0)
8666 return 0;
8667
8668 add_loc_descr (&ret,
8669 new_loc_descr (DW_OP_plus_uconst,
8670 tree_low_cst (TREE_OPERAND (loc, 1),
8671 0),
8672 0));
8673 break;
8674 }
8675
8676 op = DW_OP_plus;
8677 goto do_binop;
8678
8679 case LE_EXPR:
8680 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8681 return 0;
8682
8683 op = DW_OP_le;
8684 goto do_binop;
8685
8686 case GE_EXPR:
8687 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8688 return 0;
8689
8690 op = DW_OP_ge;
8691 goto do_binop;
8692
8693 case LT_EXPR:
8694 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8695 return 0;
8696
8697 op = DW_OP_lt;
8698 goto do_binop;
8699
8700 case GT_EXPR:
8701 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8702 return 0;
8703
8704 op = DW_OP_gt;
8705 goto do_binop;
8706
8707 case EQ_EXPR:
8708 op = DW_OP_eq;
8709 goto do_binop;
8710
8711 case NE_EXPR:
8712 op = DW_OP_ne;
8713 goto do_binop;
8714
8715 do_binop:
8716 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8717 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8718 if (ret == 0 || ret1 == 0)
8719 return 0;
8720
8721 add_loc_descr (&ret, ret1);
8722 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8723 break;
8724
8725 case TRUTH_NOT_EXPR:
8726 case BIT_NOT_EXPR:
8727 op = DW_OP_not;
8728 goto do_unop;
8729
8730 case ABS_EXPR:
8731 op = DW_OP_abs;
8732 goto do_unop;
8733
8734 case NEGATE_EXPR:
8735 op = DW_OP_neg;
8736 goto do_unop;
8737
8738 do_unop:
8739 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8740 if (ret == 0)
8741 return 0;
8742
8743 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8744 break;
8745
8746 case MAX_EXPR:
8747 loc = build (COND_EXPR, TREE_TYPE (loc),
8748 build (LT_EXPR, integer_type_node,
8749 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8750 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
8751
8752 /* ... fall through ... */
8753
8754 case COND_EXPR:
8755 {
8756 dw_loc_descr_ref lhs
8757 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8758 dw_loc_descr_ref rhs
8759 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
8760 dw_loc_descr_ref bra_node, jump_node, tmp;
8761
8762 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8763 if (ret == 0 || lhs == 0 || rhs == 0)
8764 return 0;
8765
8766 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
8767 add_loc_descr (&ret, bra_node);
8768
8769 add_loc_descr (&ret, rhs);
8770 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
8771 add_loc_descr (&ret, jump_node);
8772
8773 add_loc_descr (&ret, lhs);
8774 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8775 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
8776
8777 /* ??? Need a node to point the skip at. Use a nop. */
8778 tmp = new_loc_descr (DW_OP_nop, 0, 0);
8779 add_loc_descr (&ret, tmp);
8780 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8781 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
8782 }
8783 break;
8784
8785 default:
8786 /* Leave front-end specific codes as simply unknown. This comes
8787 up, for instance, with the C STMT_EXPR. */
8788 if ((unsigned int) TREE_CODE (loc)
8789 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
8790 return 0;
8791
8792 /* Otherwise this is a generic code; we should just lists all of
8793 these explicitly. Aborting means we forgot one. */
8794 abort ();
8795 }
8796
8797 /* Show if we can't fill the request for an address. */
8798 if (addressp && indirect_p == 0)
8799 return 0;
8800
8801 /* If we've got an address and don't want one, dereference. */
8802 if (!addressp && indirect_p > 0)
8803 {
8804 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
8805
8806 if (size > DWARF2_ADDR_SIZE || size == -1)
8807 return 0;
8808 else if (size == DWARF2_ADDR_SIZE)
8809 op = DW_OP_deref;
8810 else
8811 op = DW_OP_deref_size;
8812
8813 add_loc_descr (&ret, new_loc_descr (op, size, 0));
8814 }
8815
8816 return ret;
8817 }
8818
8819 /* Given a value, round it up to the lowest multiple of `boundary'
8820 which is not less than the value itself. */
8821
8822 static inline HOST_WIDE_INT
8823 ceiling (HOST_WIDE_INT value, unsigned int boundary)
8824 {
8825 return (((value + boundary - 1) / boundary) * boundary);
8826 }
8827
8828 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
8829 pointer to the declared type for the relevant field variable, or return
8830 `integer_type_node' if the given node turns out to be an
8831 ERROR_MARK node. */
8832
8833 static inline tree
8834 field_type (tree decl)
8835 {
8836 tree type;
8837
8838 if (TREE_CODE (decl) == ERROR_MARK)
8839 return integer_type_node;
8840
8841 type = DECL_BIT_FIELD_TYPE (decl);
8842 if (type == NULL_TREE)
8843 type = TREE_TYPE (decl);
8844
8845 return type;
8846 }
8847
8848 /* Given a pointer to a tree node, return the alignment in bits for
8849 it, or else return BITS_PER_WORD if the node actually turns out to
8850 be an ERROR_MARK node. */
8851
8852 static inline unsigned
8853 simple_type_align_in_bits (tree type)
8854 {
8855 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
8856 }
8857
8858 static inline unsigned
8859 simple_decl_align_in_bits (tree decl)
8860 {
8861 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
8862 }
8863
8864 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
8865 lowest addressed byte of the "containing object" for the given FIELD_DECL,
8866 or return 0 if we are unable to determine what that offset is, either
8867 because the argument turns out to be a pointer to an ERROR_MARK node, or
8868 because the offset is actually variable. (We can't handle the latter case
8869 just yet). */
8870
8871 static HOST_WIDE_INT
8872 field_byte_offset (tree decl)
8873 {
8874 unsigned int type_align_in_bits;
8875 unsigned int decl_align_in_bits;
8876 unsigned HOST_WIDE_INT type_size_in_bits;
8877 HOST_WIDE_INT object_offset_in_bits;
8878 tree type;
8879 tree field_size_tree;
8880 HOST_WIDE_INT bitpos_int;
8881 HOST_WIDE_INT deepest_bitpos;
8882 unsigned HOST_WIDE_INT field_size_in_bits;
8883
8884 if (TREE_CODE (decl) == ERROR_MARK)
8885 return 0;
8886 else if (TREE_CODE (decl) != FIELD_DECL)
8887 abort ();
8888
8889 type = field_type (decl);
8890 field_size_tree = DECL_SIZE (decl);
8891
8892 /* The size could be unspecified if there was an error, or for
8893 a flexible array member. */
8894 if (! field_size_tree)
8895 field_size_tree = bitsize_zero_node;
8896
8897 /* We cannot yet cope with fields whose positions are variable, so
8898 for now, when we see such things, we simply return 0. Someday, we may
8899 be able to handle such cases, but it will be damn difficult. */
8900 if (! host_integerp (bit_position (decl), 0))
8901 return 0;
8902
8903 bitpos_int = int_bit_position (decl);
8904
8905 /* If we don't know the size of the field, pretend it's a full word. */
8906 if (host_integerp (field_size_tree, 1))
8907 field_size_in_bits = tree_low_cst (field_size_tree, 1);
8908 else
8909 field_size_in_bits = BITS_PER_WORD;
8910
8911 type_size_in_bits = simple_type_size_in_bits (type);
8912 type_align_in_bits = simple_type_align_in_bits (type);
8913 decl_align_in_bits = simple_decl_align_in_bits (decl);
8914
8915 /* The GCC front-end doesn't make any attempt to keep track of the starting
8916 bit offset (relative to the start of the containing structure type) of the
8917 hypothetical "containing object" for a bit-field. Thus, when computing
8918 the byte offset value for the start of the "containing object" of a
8919 bit-field, we must deduce this information on our own. This can be rather
8920 tricky to do in some cases. For example, handling the following structure
8921 type definition when compiling for an i386/i486 target (which only aligns
8922 long long's to 32-bit boundaries) can be very tricky:
8923
8924 struct S { int field1; long long field2:31; };
8925
8926 Fortunately, there is a simple rule-of-thumb which can be used in such
8927 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
8928 structure shown above. It decides to do this based upon one simple rule
8929 for bit-field allocation. GCC allocates each "containing object" for each
8930 bit-field at the first (i.e. lowest addressed) legitimate alignment
8931 boundary (based upon the required minimum alignment for the declared type
8932 of the field) which it can possibly use, subject to the condition that
8933 there is still enough available space remaining in the containing object
8934 (when allocated at the selected point) to fully accommodate all of the
8935 bits of the bit-field itself.
8936
8937 This simple rule makes it obvious why GCC allocates 8 bytes for each
8938 object of the structure type shown above. When looking for a place to
8939 allocate the "containing object" for `field2', the compiler simply tries
8940 to allocate a 64-bit "containing object" at each successive 32-bit
8941 boundary (starting at zero) until it finds a place to allocate that 64-
8942 bit field such that at least 31 contiguous (and previously unallocated)
8943 bits remain within that selected 64 bit field. (As it turns out, for the
8944 example above, the compiler finds it is OK to allocate the "containing
8945 object" 64-bit field at bit-offset zero within the structure type.)
8946
8947 Here we attempt to work backwards from the limited set of facts we're
8948 given, and we try to deduce from those facts, where GCC must have believed
8949 that the containing object started (within the structure type). The value
8950 we deduce is then used (by the callers of this routine) to generate
8951 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
8952 and, in the case of DW_AT_location, regular fields as well). */
8953
8954 /* Figure out the bit-distance from the start of the structure to the
8955 "deepest" bit of the bit-field. */
8956 deepest_bitpos = bitpos_int + field_size_in_bits;
8957
8958 /* This is the tricky part. Use some fancy footwork to deduce where the
8959 lowest addressed bit of the containing object must be. */
8960 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8961
8962 /* Round up to type_align by default. This works best for bitfields. */
8963 object_offset_in_bits += type_align_in_bits - 1;
8964 object_offset_in_bits /= type_align_in_bits;
8965 object_offset_in_bits *= type_align_in_bits;
8966
8967 if (object_offset_in_bits > bitpos_int)
8968 {
8969 /* Sigh, the decl must be packed. */
8970 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8971
8972 /* Round up to decl_align instead. */
8973 object_offset_in_bits += decl_align_in_bits - 1;
8974 object_offset_in_bits /= decl_align_in_bits;
8975 object_offset_in_bits *= decl_align_in_bits;
8976 }
8977
8978 return object_offset_in_bits / BITS_PER_UNIT;
8979 }
8980 \f
8981 /* The following routines define various Dwarf attributes and any data
8982 associated with them. */
8983
8984 /* Add a location description attribute value to a DIE.
8985
8986 This emits location attributes suitable for whole variables and
8987 whole parameters. Note that the location attributes for struct fields are
8988 generated by the routine `data_member_location_attribute' below. */
8989
8990 static inline void
8991 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
8992 dw_loc_descr_ref descr)
8993 {
8994 if (descr != 0)
8995 add_AT_loc (die, attr_kind, descr);
8996 }
8997
8998 /* Attach the specialized form of location attribute used for data members of
8999 struct and union types. In the special case of a FIELD_DECL node which
9000 represents a bit-field, the "offset" part of this special location
9001 descriptor must indicate the distance in bytes from the lowest-addressed
9002 byte of the containing struct or union type to the lowest-addressed byte of
9003 the "containing object" for the bit-field. (See the `field_byte_offset'
9004 function above).
9005
9006 For any given bit-field, the "containing object" is a hypothetical object
9007 (of some integral or enum type) within which the given bit-field lives. The
9008 type of this hypothetical "containing object" is always the same as the
9009 declared type of the individual bit-field itself (for GCC anyway... the
9010 DWARF spec doesn't actually mandate this). Note that it is the size (in
9011 bytes) of the hypothetical "containing object" which will be given in the
9012 DW_AT_byte_size attribute for this bit-field. (See the
9013 `byte_size_attribute' function below.) It is also used when calculating the
9014 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9015 function below.) */
9016
9017 static void
9018 add_data_member_location_attribute (dw_die_ref die, tree decl)
9019 {
9020 HOST_WIDE_INT offset;
9021 dw_loc_descr_ref loc_descr = 0;
9022
9023 if (TREE_CODE (decl) == TREE_VEC)
9024 {
9025 /* We're working on the TAG_inheritance for a base class. */
9026 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
9027 {
9028 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9029 aren't at a fixed offset from all (sub)objects of the same
9030 type. We need to extract the appropriate offset from our
9031 vtable. The following dwarf expression means
9032
9033 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9034
9035 This is specific to the V3 ABI, of course. */
9036
9037 dw_loc_descr_ref tmp;
9038
9039 /* Make a copy of the object address. */
9040 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9041 add_loc_descr (&loc_descr, tmp);
9042
9043 /* Extract the vtable address. */
9044 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9045 add_loc_descr (&loc_descr, tmp);
9046
9047 /* Calculate the address of the offset. */
9048 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9049 if (offset >= 0)
9050 abort ();
9051
9052 tmp = int_loc_descriptor (-offset);
9053 add_loc_descr (&loc_descr, tmp);
9054 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9055 add_loc_descr (&loc_descr, tmp);
9056
9057 /* Extract the offset. */
9058 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9059 add_loc_descr (&loc_descr, tmp);
9060
9061 /* Add it to the object address. */
9062 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9063 add_loc_descr (&loc_descr, tmp);
9064 }
9065 else
9066 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9067 }
9068 else
9069 offset = field_byte_offset (decl);
9070
9071 if (! loc_descr)
9072 {
9073 enum dwarf_location_atom op;
9074
9075 /* The DWARF2 standard says that we should assume that the structure
9076 address is already on the stack, so we can specify a structure field
9077 address by using DW_OP_plus_uconst. */
9078
9079 #ifdef MIPS_DEBUGGING_INFO
9080 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9081 operator correctly. It works only if we leave the offset on the
9082 stack. */
9083 op = DW_OP_constu;
9084 #else
9085 op = DW_OP_plus_uconst;
9086 #endif
9087
9088 loc_descr = new_loc_descr (op, offset, 0);
9089 }
9090
9091 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9092 }
9093
9094 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9095 does not have a "location" either in memory or in a register. These
9096 things can arise in GNU C when a constant is passed as an actual parameter
9097 to an inlined function. They can also arise in C++ where declared
9098 constants do not necessarily get memory "homes". */
9099
9100 static void
9101 add_const_value_attribute (dw_die_ref die, rtx rtl)
9102 {
9103 switch (GET_CODE (rtl))
9104 {
9105 case CONST_INT:
9106 /* Note that a CONST_INT rtx could represent either an integer
9107 or a floating-point constant. A CONST_INT is used whenever
9108 the constant will fit into a single word. In all such
9109 cases, the original mode of the constant value is wiped
9110 out, and the CONST_INT rtx is assigned VOIDmode. */
9111 {
9112 HOST_WIDE_INT val = INTVAL (rtl);
9113
9114 if (val < 0)
9115 add_AT_int (die, DW_AT_const_value, val);
9116 else
9117 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9118 }
9119 break;
9120
9121 case CONST_DOUBLE:
9122 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9123 floating-point constant. A CONST_DOUBLE is used whenever the
9124 constant requires more than one word in order to be adequately
9125 represented. We output CONST_DOUBLEs as blocks. */
9126 {
9127 enum machine_mode mode = GET_MODE (rtl);
9128
9129 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9130 {
9131 unsigned length = GET_MODE_SIZE (mode) / 4;
9132 long *array = ggc_alloc (sizeof (long) * length);
9133 REAL_VALUE_TYPE rv;
9134
9135 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9136 real_to_target (array, &rv, mode);
9137
9138 add_AT_float (die, DW_AT_const_value, length, array);
9139 }
9140 else
9141 {
9142 /* ??? We really should be using HOST_WIDE_INT throughout. */
9143 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9144 abort ();
9145
9146 add_AT_long_long (die, DW_AT_const_value,
9147 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9148 }
9149 }
9150 break;
9151
9152 case CONST_STRING:
9153 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9154 break;
9155
9156 case SYMBOL_REF:
9157 case LABEL_REF:
9158 case CONST:
9159 add_AT_addr (die, DW_AT_const_value, rtl);
9160 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9161 break;
9162
9163 case PLUS:
9164 /* In cases where an inlined instance of an inline function is passed
9165 the address of an `auto' variable (which is local to the caller) we
9166 can get a situation where the DECL_RTL of the artificial local
9167 variable (for the inlining) which acts as a stand-in for the
9168 corresponding formal parameter (of the inline function) will look
9169 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9170 exactly a compile-time constant expression, but it isn't the address
9171 of the (artificial) local variable either. Rather, it represents the
9172 *value* which the artificial local variable always has during its
9173 lifetime. We currently have no way to represent such quasi-constant
9174 values in Dwarf, so for now we just punt and generate nothing. */
9175 break;
9176
9177 default:
9178 /* No other kinds of rtx should be possible here. */
9179 abort ();
9180 }
9181
9182 }
9183
9184 static rtx
9185 rtl_for_decl_location (tree decl)
9186 {
9187 rtx rtl;
9188
9189 /* Here we have to decide where we are going to say the parameter "lives"
9190 (as far as the debugger is concerned). We only have a couple of
9191 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9192
9193 DECL_RTL normally indicates where the parameter lives during most of the
9194 activation of the function. If optimization is enabled however, this
9195 could be either NULL or else a pseudo-reg. Both of those cases indicate
9196 that the parameter doesn't really live anywhere (as far as the code
9197 generation parts of GCC are concerned) during most of the function's
9198 activation. That will happen (for example) if the parameter is never
9199 referenced within the function.
9200
9201 We could just generate a location descriptor here for all non-NULL
9202 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9203 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9204 where DECL_RTL is NULL or is a pseudo-reg.
9205
9206 Note however that we can only get away with using DECL_INCOMING_RTL as
9207 a backup substitute for DECL_RTL in certain limited cases. In cases
9208 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9209 we can be sure that the parameter was passed using the same type as it is
9210 declared to have within the function, and that its DECL_INCOMING_RTL
9211 points us to a place where a value of that type is passed.
9212
9213 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9214 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9215 because in these cases DECL_INCOMING_RTL points us to a value of some
9216 type which is *different* from the type of the parameter itself. Thus,
9217 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9218 such cases, the debugger would end up (for example) trying to fetch a
9219 `float' from a place which actually contains the first part of a
9220 `double'. That would lead to really incorrect and confusing
9221 output at debug-time.
9222
9223 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9224 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9225 are a couple of exceptions however. On little-endian machines we can
9226 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9227 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9228 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9229 when (on a little-endian machine) a non-prototyped function has a
9230 parameter declared to be of type `short' or `char'. In such cases,
9231 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9232 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9233 passed `int' value. If the debugger then uses that address to fetch
9234 a `short' or a `char' (on a little-endian machine) the result will be
9235 the correct data, so we allow for such exceptional cases below.
9236
9237 Note that our goal here is to describe the place where the given formal
9238 parameter lives during most of the function's activation (i.e. between the
9239 end of the prologue and the start of the epilogue). We'll do that as best
9240 as we can. Note however that if the given formal parameter is modified
9241 sometime during the execution of the function, then a stack backtrace (at
9242 debug-time) will show the function as having been called with the *new*
9243 value rather than the value which was originally passed in. This happens
9244 rarely enough that it is not a major problem, but it *is* a problem, and
9245 I'd like to fix it.
9246
9247 A future version of dwarf2out.c may generate two additional attributes for
9248 any given DW_TAG_formal_parameter DIE which will describe the "passed
9249 type" and the "passed location" for the given formal parameter in addition
9250 to the attributes we now generate to indicate the "declared type" and the
9251 "active location" for each parameter. This additional set of attributes
9252 could be used by debuggers for stack backtraces. Separately, note that
9253 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9254 This happens (for example) for inlined-instances of inline function formal
9255 parameters which are never referenced. This really shouldn't be
9256 happening. All PARM_DECL nodes should get valid non-NULL
9257 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9258 values for inlined instances of inline function parameters, so when we see
9259 such cases, we are just out-of-luck for the time being (until integrate.c
9260 gets fixed). */
9261
9262 /* Use DECL_RTL as the "location" unless we find something better. */
9263 rtl = DECL_RTL_IF_SET (decl);
9264
9265 /* When generating abstract instances, ignore everything except
9266 constants, symbols living in memory, and symbols living in
9267 fixed registers. */
9268 if (! reload_completed)
9269 {
9270 if (rtl
9271 && (CONSTANT_P (rtl)
9272 || (GET_CODE (rtl) == MEM
9273 && CONSTANT_P (XEXP (rtl, 0)))
9274 || (GET_CODE (rtl) == REG
9275 && TREE_CODE (decl) == VAR_DECL
9276 && TREE_STATIC (decl))))
9277 {
9278 rtl = (*targetm.delegitimize_address) (rtl);
9279 return rtl;
9280 }
9281 rtl = NULL_RTX;
9282 }
9283 else if (TREE_CODE (decl) == PARM_DECL)
9284 {
9285 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9286 {
9287 tree declared_type = type_main_variant (TREE_TYPE (decl));
9288 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9289
9290 /* This decl represents a formal parameter which was optimized out.
9291 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9292 all cases where (rtl == NULL_RTX) just below. */
9293 if (declared_type == passed_type)
9294 rtl = DECL_INCOMING_RTL (decl);
9295 else if (! BYTES_BIG_ENDIAN
9296 && TREE_CODE (declared_type) == INTEGER_TYPE
9297 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9298 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9299 rtl = DECL_INCOMING_RTL (decl);
9300 }
9301
9302 /* If the parm was passed in registers, but lives on the stack, then
9303 make a big endian correction if the mode of the type of the
9304 parameter is not the same as the mode of the rtl. */
9305 /* ??? This is the same series of checks that are made in dbxout.c before
9306 we reach the big endian correction code there. It isn't clear if all
9307 of these checks are necessary here, but keeping them all is the safe
9308 thing to do. */
9309 else if (GET_CODE (rtl) == MEM
9310 && XEXP (rtl, 0) != const0_rtx
9311 && ! CONSTANT_P (XEXP (rtl, 0))
9312 /* Not passed in memory. */
9313 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
9314 /* Not passed by invisible reference. */
9315 && (GET_CODE (XEXP (rtl, 0)) != REG
9316 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9317 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9318 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9319 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9320 #endif
9321 )
9322 /* Big endian correction check. */
9323 && BYTES_BIG_ENDIAN
9324 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9325 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9326 < UNITS_PER_WORD))
9327 {
9328 int offset = (UNITS_PER_WORD
9329 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9330
9331 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9332 plus_constant (XEXP (rtl, 0), offset));
9333 }
9334 }
9335
9336 if (rtl != NULL_RTX)
9337 {
9338 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9339 #ifdef LEAF_REG_REMAP
9340 if (current_function_uses_only_leaf_regs)
9341 leaf_renumber_regs_insn (rtl);
9342 #endif
9343 }
9344
9345 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9346 and will have been substituted directly into all expressions that use it.
9347 C does not have such a concept, but C++ and other languages do. */
9348 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9349 {
9350 /* If a variable is initialized with a string constant without embedded
9351 zeros, build CONST_STRING. */
9352 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9353 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9354 {
9355 tree arrtype = TREE_TYPE (decl);
9356 tree enttype = TREE_TYPE (arrtype);
9357 tree domain = TYPE_DOMAIN (arrtype);
9358 tree init = DECL_INITIAL (decl);
9359 enum machine_mode mode = TYPE_MODE (enttype);
9360
9361 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9362 && domain
9363 && integer_zerop (TYPE_MIN_VALUE (domain))
9364 && compare_tree_int (TYPE_MAX_VALUE (domain),
9365 TREE_STRING_LENGTH (init) - 1) == 0
9366 && ((size_t) TREE_STRING_LENGTH (init)
9367 == strlen (TREE_STRING_POINTER (init)) + 1))
9368 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9369 }
9370 /* If the initializer is something that we know will expand into an
9371 immediate RTL constant, expand it now. Expanding anything else
9372 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9373 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9374 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9375 {
9376 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9377 EXPAND_INITIALIZER);
9378 /* If expand_expr returns a MEM, it wasn't immediate. */
9379 if (rtl && GET_CODE (rtl) == MEM)
9380 abort ();
9381 }
9382 }
9383
9384 if (rtl)
9385 rtl = (*targetm.delegitimize_address) (rtl);
9386
9387 /* If we don't look past the constant pool, we risk emitting a
9388 reference to a constant pool entry that isn't referenced from
9389 code, and thus is not emitted. */
9390 if (rtl)
9391 rtl = avoid_constant_pool_reference (rtl);
9392
9393 return rtl;
9394 }
9395
9396 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
9397 data attribute for a variable or a parameter. We generate the
9398 DW_AT_const_value attribute only in those cases where the given variable
9399 or parameter does not have a true "location" either in memory or in a
9400 register. This can happen (for example) when a constant is passed as an
9401 actual argument in a call to an inline function. (It's possible that
9402 these things can crop up in other ways also.) Note that one type of
9403 constant value which can be passed into an inlined function is a constant
9404 pointer. This can happen for example if an actual argument in an inlined
9405 function call evaluates to a compile-time constant address. */
9406
9407 static void
9408 add_location_or_const_value_attribute (dw_die_ref die, tree decl)
9409 {
9410 rtx rtl;
9411 dw_loc_descr_ref descr;
9412
9413 if (TREE_CODE (decl) == ERROR_MARK)
9414 return;
9415 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
9416 abort ();
9417
9418 rtl = rtl_for_decl_location (decl);
9419 if (rtl == NULL_RTX)
9420 return;
9421
9422 switch (GET_CODE (rtl))
9423 {
9424 case ADDRESSOF:
9425 /* The address of a variable that was optimized away;
9426 don't emit anything. */
9427 break;
9428
9429 case CONST_INT:
9430 case CONST_DOUBLE:
9431 case CONST_STRING:
9432 case SYMBOL_REF:
9433 case LABEL_REF:
9434 case CONST:
9435 case PLUS:
9436 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9437 add_const_value_attribute (die, rtl);
9438 break;
9439
9440 case MEM:
9441 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
9442 {
9443 /* Need loc_descriptor_from_tree since that's where we know
9444 how to handle TLS variables. Want the object's address
9445 since the top-level DW_AT_location assumes such. See
9446 the confusion in loc_descriptor for reference. */
9447 descr = loc_descriptor_from_tree (decl, 1);
9448 }
9449 else
9450 {
9451 case REG:
9452 case SUBREG:
9453 case CONCAT:
9454 descr = loc_descriptor (rtl);
9455 }
9456 add_AT_location_description (die, DW_AT_location, descr);
9457 break;
9458
9459 case PARALLEL:
9460 {
9461 rtvec par_elems = XVEC (rtl, 0);
9462 int num_elem = GET_NUM_ELEM (par_elems);
9463 enum machine_mode mode;
9464 int i;
9465
9466 /* Create the first one, so we have something to add to. */
9467 descr = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
9468 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
9469 add_loc_descr (&descr,
9470 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
9471 for (i = 1; i < num_elem; i++)
9472 {
9473 dw_loc_descr_ref temp;
9474
9475 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
9476 add_loc_descr (&descr, temp);
9477 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
9478 add_loc_descr (&descr,
9479 new_loc_descr (DW_OP_piece,
9480 GET_MODE_SIZE (mode), 0));
9481 }
9482 }
9483 add_AT_location_description (die, DW_AT_location, descr);
9484 break;
9485
9486 default:
9487 abort ();
9488 }
9489 }
9490
9491 /* If we don't have a copy of this variable in memory for some reason (such
9492 as a C++ member constant that doesn't have an out-of-line definition),
9493 we should tell the debugger about the constant value. */
9494
9495 static void
9496 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
9497 {
9498 tree init = DECL_INITIAL (decl);
9499 tree type = TREE_TYPE (decl);
9500
9501 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9502 && initializer_constant_valid_p (init, type) == null_pointer_node)
9503 /* OK */;
9504 else
9505 return;
9506
9507 switch (TREE_CODE (type))
9508 {
9509 case INTEGER_TYPE:
9510 if (host_integerp (init, 0))
9511 add_AT_unsigned (var_die, DW_AT_const_value,
9512 tree_low_cst (init, 0));
9513 else
9514 add_AT_long_long (var_die, DW_AT_const_value,
9515 TREE_INT_CST_HIGH (init),
9516 TREE_INT_CST_LOW (init));
9517 break;
9518
9519 default:;
9520 }
9521 }
9522
9523 /* Generate a DW_AT_name attribute given some string value to be included as
9524 the value of the attribute. */
9525
9526 static void
9527 add_name_attribute (dw_die_ref die, const char *name_string)
9528 {
9529 if (name_string != NULL && *name_string != 0)
9530 {
9531 if (demangle_name_func)
9532 name_string = (*demangle_name_func) (name_string);
9533
9534 add_AT_string (die, DW_AT_name, name_string);
9535 }
9536 }
9537
9538 /* Generate a DW_AT_comp_dir attribute for DIE. */
9539
9540 static void
9541 add_comp_dir_attribute (dw_die_ref die)
9542 {
9543 const char *wd = get_src_pwd ();
9544 if (wd != NULL)
9545 add_AT_string (die, DW_AT_comp_dir, wd);
9546 }
9547
9548 /* Given a tree node describing an array bound (either lower or upper) output
9549 a representation for that bound. */
9550
9551 static void
9552 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
9553 {
9554 switch (TREE_CODE (bound))
9555 {
9556 case ERROR_MARK:
9557 return;
9558
9559 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9560 case INTEGER_CST:
9561 if (! host_integerp (bound, 0)
9562 || (bound_attr == DW_AT_lower_bound
9563 && (((is_c_family () || is_java ()) && integer_zerop (bound))
9564 || (is_fortran () && integer_onep (bound)))))
9565 /* use the default */
9566 ;
9567 else
9568 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
9569 break;
9570
9571 case CONVERT_EXPR:
9572 case NOP_EXPR:
9573 case NON_LVALUE_EXPR:
9574 case VIEW_CONVERT_EXPR:
9575 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9576 break;
9577
9578 case SAVE_EXPR:
9579 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9580 access the upper bound values may be bogus. If they refer to a
9581 register, they may only describe how to get at these values at the
9582 points in the generated code right after they have just been
9583 computed. Worse yet, in the typical case, the upper bound values
9584 will not even *be* computed in the optimized code (though the
9585 number of elements will), so these SAVE_EXPRs are entirely
9586 bogus. In order to compensate for this fact, we check here to see
9587 if optimization is enabled, and if so, we don't add an attribute
9588 for the (unknown and unknowable) upper bound. This should not
9589 cause too much trouble for existing (stupid?) debuggers because
9590 they have to deal with empty upper bounds location descriptions
9591 anyway in order to be able to deal with incomplete array types.
9592 Of course an intelligent debugger (GDB?) should be able to
9593 comprehend that a missing upper bound specification in an array
9594 type used for a storage class `auto' local array variable
9595 indicates that the upper bound is both unknown (at compile- time)
9596 and unknowable (at run-time) due to optimization.
9597
9598 We assume that a MEM rtx is safe because gcc wouldn't put the
9599 value there unless it was going to be used repeatedly in the
9600 function, i.e. for cleanups. */
9601 if (SAVE_EXPR_RTL (bound)
9602 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
9603 {
9604 dw_die_ref ctx = lookup_decl_die (current_function_decl);
9605 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
9606 rtx loc = SAVE_EXPR_RTL (bound);
9607
9608 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9609 it references an outer function's frame. */
9610 if (GET_CODE (loc) == MEM)
9611 {
9612 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9613
9614 if (XEXP (loc, 0) != new_addr)
9615 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
9616 }
9617
9618 add_AT_flag (decl_die, DW_AT_artificial, 1);
9619 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9620 add_AT_location_description (decl_die, DW_AT_location,
9621 loc_descriptor (loc));
9622 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9623 }
9624
9625 /* Else leave out the attribute. */
9626 break;
9627
9628 case VAR_DECL:
9629 case PARM_DECL:
9630 {
9631 dw_die_ref decl_die = lookup_decl_die (bound);
9632
9633 /* ??? Can this happen, or should the variable have been bound
9634 first? Probably it can, since I imagine that we try to create
9635 the types of parameters in the order in which they exist in
9636 the list, and won't have created a forward reference to a
9637 later parameter. */
9638 if (decl_die != NULL)
9639 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9640 break;
9641 }
9642
9643 default:
9644 {
9645 /* Otherwise try to create a stack operation procedure to
9646 evaluate the value of the array bound. */
9647
9648 dw_die_ref ctx, decl_die;
9649 dw_loc_descr_ref loc;
9650
9651 loc = loc_descriptor_from_tree (bound, 0);
9652 if (loc == NULL)
9653 break;
9654
9655 if (current_function_decl == 0)
9656 ctx = comp_unit_die;
9657 else
9658 ctx = lookup_decl_die (current_function_decl);
9659
9660 /* If we weren't able to find a context, it's most likely the case
9661 that we are processing the return type of the function. So
9662 make a SAVE_EXPR to point to it and have the limbo DIE code
9663 find the proper die. The save_expr function doesn't always
9664 make a SAVE_EXPR, so do it ourselves. */
9665 if (ctx == 0)
9666 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9667 current_function_decl, NULL_TREE);
9668
9669 decl_die = new_die (DW_TAG_variable, ctx, bound);
9670 add_AT_flag (decl_die, DW_AT_artificial, 1);
9671 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9672 add_AT_loc (decl_die, DW_AT_location, loc);
9673
9674 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9675 break;
9676 }
9677 }
9678 }
9679
9680 /* Note that the block of subscript information for an array type also
9681 includes information about the element type of type given array type. */
9682
9683 static void
9684 add_subscript_info (dw_die_ref type_die, tree type)
9685 {
9686 #ifndef MIPS_DEBUGGING_INFO
9687 unsigned dimension_number;
9688 #endif
9689 tree lower, upper;
9690 dw_die_ref subrange_die;
9691
9692 /* The GNU compilers represent multidimensional array types as sequences of
9693 one dimensional array types whose element types are themselves array
9694 types. Here we squish that down, so that each multidimensional array
9695 type gets only one array_type DIE in the Dwarf debugging info. The draft
9696 Dwarf specification say that we are allowed to do this kind of
9697 compression in C (because there is no difference between an array or
9698 arrays and a multidimensional array in C) but for other source languages
9699 (e.g. Ada) we probably shouldn't do this. */
9700
9701 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9702 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9703 We work around this by disabling this feature. See also
9704 gen_array_type_die. */
9705 #ifndef MIPS_DEBUGGING_INFO
9706 for (dimension_number = 0;
9707 TREE_CODE (type) == ARRAY_TYPE;
9708 type = TREE_TYPE (type), dimension_number++)
9709 #endif
9710 {
9711 tree domain = TYPE_DOMAIN (type);
9712
9713 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
9714 and (in GNU C only) variable bounds. Handle all three forms
9715 here. */
9716 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
9717 if (domain)
9718 {
9719 /* We have an array type with specified bounds. */
9720 lower = TYPE_MIN_VALUE (domain);
9721 upper = TYPE_MAX_VALUE (domain);
9722
9723 /* Define the index type. */
9724 if (TREE_TYPE (domain))
9725 {
9726 /* ??? This is probably an Ada unnamed subrange type. Ignore the
9727 TREE_TYPE field. We can't emit debug info for this
9728 because it is an unnamed integral type. */
9729 if (TREE_CODE (domain) == INTEGER_TYPE
9730 && TYPE_NAME (domain) == NULL_TREE
9731 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
9732 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
9733 ;
9734 else
9735 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
9736 type_die);
9737 }
9738
9739 /* ??? If upper is NULL, the array has unspecified length,
9740 but it does have a lower bound. This happens with Fortran
9741 dimension arr(N:*)
9742 Since the debugger is definitely going to need to know N
9743 to produce useful results, go ahead and output the lower
9744 bound solo, and hope the debugger can cope. */
9745
9746 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
9747 if (upper)
9748 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
9749 }
9750
9751 /* Otherwise we have an array type with an unspecified length. The
9752 DWARF-2 spec does not say how to handle this; let's just leave out the
9753 bounds. */
9754 }
9755 }
9756
9757 static void
9758 add_byte_size_attribute (dw_die_ref die, tree tree_node)
9759 {
9760 unsigned size;
9761
9762 switch (TREE_CODE (tree_node))
9763 {
9764 case ERROR_MARK:
9765 size = 0;
9766 break;
9767 case ENUMERAL_TYPE:
9768 case RECORD_TYPE:
9769 case UNION_TYPE:
9770 case QUAL_UNION_TYPE:
9771 size = int_size_in_bytes (tree_node);
9772 break;
9773 case FIELD_DECL:
9774 /* For a data member of a struct or union, the DW_AT_byte_size is
9775 generally given as the number of bytes normally allocated for an
9776 object of the *declared* type of the member itself. This is true
9777 even for bit-fields. */
9778 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
9779 break;
9780 default:
9781 abort ();
9782 }
9783
9784 /* Note that `size' might be -1 when we get to this point. If it is, that
9785 indicates that the byte size of the entity in question is variable. We
9786 have no good way of expressing this fact in Dwarf at the present time,
9787 so just let the -1 pass on through. */
9788 add_AT_unsigned (die, DW_AT_byte_size, size);
9789 }
9790
9791 /* For a FIELD_DECL node which represents a bit-field, output an attribute
9792 which specifies the distance in bits from the highest order bit of the
9793 "containing object" for the bit-field to the highest order bit of the
9794 bit-field itself.
9795
9796 For any given bit-field, the "containing object" is a hypothetical object
9797 (of some integral or enum type) within which the given bit-field lives. The
9798 type of this hypothetical "containing object" is always the same as the
9799 declared type of the individual bit-field itself. The determination of the
9800 exact location of the "containing object" for a bit-field is rather
9801 complicated. It's handled by the `field_byte_offset' function (above).
9802
9803 Note that it is the size (in bytes) of the hypothetical "containing object"
9804 which will be given in the DW_AT_byte_size attribute for this bit-field.
9805 (See `byte_size_attribute' above). */
9806
9807 static inline void
9808 add_bit_offset_attribute (dw_die_ref die, tree decl)
9809 {
9810 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
9811 tree type = DECL_BIT_FIELD_TYPE (decl);
9812 HOST_WIDE_INT bitpos_int;
9813 HOST_WIDE_INT highest_order_object_bit_offset;
9814 HOST_WIDE_INT highest_order_field_bit_offset;
9815 HOST_WIDE_INT unsigned bit_offset;
9816
9817 /* Must be a field and a bit field. */
9818 if (!type
9819 || TREE_CODE (decl) != FIELD_DECL)
9820 abort ();
9821
9822 /* We can't yet handle bit-fields whose offsets are variable, so if we
9823 encounter such things, just return without generating any attribute
9824 whatsoever. Likewise for variable or too large size. */
9825 if (! host_integerp (bit_position (decl), 0)
9826 || ! host_integerp (DECL_SIZE (decl), 1))
9827 return;
9828
9829 bitpos_int = int_bit_position (decl);
9830
9831 /* Note that the bit offset is always the distance (in bits) from the
9832 highest-order bit of the "containing object" to the highest-order bit of
9833 the bit-field itself. Since the "high-order end" of any object or field
9834 is different on big-endian and little-endian machines, the computation
9835 below must take account of these differences. */
9836 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
9837 highest_order_field_bit_offset = bitpos_int;
9838
9839 if (! BYTES_BIG_ENDIAN)
9840 {
9841 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
9842 highest_order_object_bit_offset += simple_type_size_in_bits (type);
9843 }
9844
9845 bit_offset
9846 = (! BYTES_BIG_ENDIAN
9847 ? highest_order_object_bit_offset - highest_order_field_bit_offset
9848 : highest_order_field_bit_offset - highest_order_object_bit_offset);
9849
9850 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
9851 }
9852
9853 /* For a FIELD_DECL node which represents a bit field, output an attribute
9854 which specifies the length in bits of the given field. */
9855
9856 static inline void
9857 add_bit_size_attribute (dw_die_ref die, tree decl)
9858 {
9859 /* Must be a field and a bit field. */
9860 if (TREE_CODE (decl) != FIELD_DECL
9861 || ! DECL_BIT_FIELD_TYPE (decl))
9862 abort ();
9863
9864 if (host_integerp (DECL_SIZE (decl), 1))
9865 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
9866 }
9867
9868 /* If the compiled language is ANSI C, then add a 'prototyped'
9869 attribute, if arg types are given for the parameters of a function. */
9870
9871 static inline void
9872 add_prototyped_attribute (dw_die_ref die, tree func_type)
9873 {
9874 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
9875 && TYPE_ARG_TYPES (func_type) != NULL)
9876 add_AT_flag (die, DW_AT_prototyped, 1);
9877 }
9878
9879 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
9880 by looking in either the type declaration or object declaration
9881 equate table. */
9882
9883 static inline void
9884 add_abstract_origin_attribute (dw_die_ref die, tree origin)
9885 {
9886 dw_die_ref origin_die = NULL;
9887
9888 if (TREE_CODE (origin) != FUNCTION_DECL)
9889 {
9890 /* We may have gotten separated from the block for the inlined
9891 function, if we're in an exception handler or some such; make
9892 sure that the abstract function has been written out.
9893
9894 Doing this for nested functions is wrong, however; functions are
9895 distinct units, and our context might not even be inline. */
9896 tree fn = origin;
9897
9898 if (TYPE_P (fn))
9899 fn = TYPE_STUB_DECL (fn);
9900
9901 fn = decl_function_context (fn);
9902 if (fn)
9903 dwarf2out_abstract_function (fn);
9904 }
9905
9906 if (DECL_P (origin))
9907 origin_die = lookup_decl_die (origin);
9908 else if (TYPE_P (origin))
9909 origin_die = lookup_type_die (origin);
9910
9911 if (origin_die == NULL)
9912 abort ();
9913
9914 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
9915 }
9916
9917 /* We do not currently support the pure_virtual attribute. */
9918
9919 static inline void
9920 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
9921 {
9922 if (DECL_VINDEX (func_decl))
9923 {
9924 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
9925
9926 if (host_integerp (DECL_VINDEX (func_decl), 0))
9927 add_AT_loc (die, DW_AT_vtable_elem_location,
9928 new_loc_descr (DW_OP_constu,
9929 tree_low_cst (DECL_VINDEX (func_decl), 0),
9930 0));
9931
9932 /* GNU extension: Record what type this method came from originally. */
9933 if (debug_info_level > DINFO_LEVEL_TERSE)
9934 add_AT_die_ref (die, DW_AT_containing_type,
9935 lookup_type_die (DECL_CONTEXT (func_decl)));
9936 }
9937 }
9938 \f
9939 /* Add source coordinate attributes for the given decl. */
9940
9941 static void
9942 add_src_coords_attributes (dw_die_ref die, tree decl)
9943 {
9944 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
9945
9946 add_AT_unsigned (die, DW_AT_decl_file, file_index);
9947 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
9948 }
9949
9950 /* Add a DW_AT_name attribute and source coordinate attribute for the
9951 given decl, but only if it actually has a name. */
9952
9953 static void
9954 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
9955 {
9956 tree decl_name;
9957
9958 decl_name = DECL_NAME (decl);
9959 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
9960 {
9961 add_name_attribute (die, dwarf2_name (decl, 0));
9962 if (! DECL_ARTIFICIAL (decl))
9963 add_src_coords_attributes (die, decl);
9964
9965 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
9966 && TREE_PUBLIC (decl)
9967 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
9968 && !DECL_ABSTRACT (decl))
9969 add_AT_string (die, DW_AT_MIPS_linkage_name,
9970 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
9971 }
9972
9973 #ifdef VMS_DEBUGGING_INFO
9974 /* Get the function's name, as described by its RTL. This may be different
9975 from the DECL_NAME name used in the source file. */
9976 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
9977 {
9978 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
9979 XEXP (DECL_RTL (decl), 0));
9980 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
9981 }
9982 #endif
9983 }
9984
9985 /* Push a new declaration scope. */
9986
9987 static void
9988 push_decl_scope (tree scope)
9989 {
9990 VARRAY_PUSH_TREE (decl_scope_table, scope);
9991 }
9992
9993 /* Pop a declaration scope. */
9994
9995 static inline void
9996 pop_decl_scope (void)
9997 {
9998 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
9999 abort ();
10000
10001 VARRAY_POP (decl_scope_table);
10002 }
10003
10004 /* Return the DIE for the scope that immediately contains this type.
10005 Non-named types get global scope. Named types nested in other
10006 types get their containing scope if it's open, or global scope
10007 otherwise. All other types (i.e. function-local named types) get
10008 the current active scope. */
10009
10010 static dw_die_ref
10011 scope_die_for (tree t, dw_die_ref context_die)
10012 {
10013 dw_die_ref scope_die = NULL;
10014 tree containing_scope;
10015 int i;
10016
10017 /* Non-types always go in the current scope. */
10018 if (! TYPE_P (t))
10019 abort ();
10020
10021 containing_scope = TYPE_CONTEXT (t);
10022
10023 /* Ignore namespaces for the moment. */
10024 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10025 containing_scope = NULL_TREE;
10026
10027 /* Ignore function type "scopes" from the C frontend. They mean that
10028 a tagged type is local to a parmlist of a function declarator, but
10029 that isn't useful to DWARF. */
10030 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10031 containing_scope = NULL_TREE;
10032
10033 if (containing_scope == NULL_TREE)
10034 scope_die = comp_unit_die;
10035 else if (TYPE_P (containing_scope))
10036 {
10037 /* For types, we can just look up the appropriate DIE. But
10038 first we check to see if we're in the middle of emitting it
10039 so we know where the new DIE should go. */
10040 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10041 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10042 break;
10043
10044 if (i < 0)
10045 {
10046 if (debug_info_level > DINFO_LEVEL_TERSE
10047 && !TREE_ASM_WRITTEN (containing_scope))
10048 abort ();
10049
10050 /* If none of the current dies are suitable, we get file scope. */
10051 scope_die = comp_unit_die;
10052 }
10053 else
10054 scope_die = lookup_type_die (containing_scope);
10055 }
10056 else
10057 scope_die = context_die;
10058
10059 return scope_die;
10060 }
10061
10062 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10063
10064 static inline int
10065 local_scope_p (dw_die_ref context_die)
10066 {
10067 for (; context_die; context_die = context_die->die_parent)
10068 if (context_die->die_tag == DW_TAG_inlined_subroutine
10069 || context_die->die_tag == DW_TAG_subprogram)
10070 return 1;
10071
10072 return 0;
10073 }
10074
10075 /* Returns nonzero if CONTEXT_DIE is a class. */
10076
10077 static inline int
10078 class_scope_p (dw_die_ref context_die)
10079 {
10080 return (context_die
10081 && (context_die->die_tag == DW_TAG_structure_type
10082 || context_die->die_tag == DW_TAG_union_type));
10083 }
10084
10085 /* Many forms of DIEs require a "type description" attribute. This
10086 routine locates the proper "type descriptor" die for the type given
10087 by 'type', and adds a DW_AT_type attribute below the given die. */
10088
10089 static void
10090 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10091 int decl_volatile, dw_die_ref context_die)
10092 {
10093 enum tree_code code = TREE_CODE (type);
10094 dw_die_ref type_die = NULL;
10095
10096 /* ??? If this type is an unnamed subrange type of an integral or
10097 floating-point type, use the inner type. This is because we have no
10098 support for unnamed types in base_type_die. This can happen if this is
10099 an Ada subrange type. Correct solution is emit a subrange type die. */
10100 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10101 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10102 type = TREE_TYPE (type), code = TREE_CODE (type);
10103
10104 if (code == ERROR_MARK
10105 /* Handle a special case. For functions whose return type is void, we
10106 generate *no* type attribute. (Note that no object may have type
10107 `void', so this only applies to function return types). */
10108 || code == VOID_TYPE)
10109 return;
10110
10111 type_die = modified_type_die (type,
10112 decl_const || TYPE_READONLY (type),
10113 decl_volatile || TYPE_VOLATILE (type),
10114 context_die);
10115
10116 if (type_die != NULL)
10117 add_AT_die_ref (object_die, DW_AT_type, type_die);
10118 }
10119
10120 /* Given a tree pointer to a struct, class, union, or enum type node, return
10121 a pointer to the (string) tag name for the given type, or zero if the type
10122 was declared without a tag. */
10123
10124 static const char *
10125 type_tag (tree type)
10126 {
10127 const char *name = 0;
10128
10129 if (TYPE_NAME (type) != 0)
10130 {
10131 tree t = 0;
10132
10133 /* Find the IDENTIFIER_NODE for the type name. */
10134 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10135 t = TYPE_NAME (type);
10136
10137 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10138 a TYPE_DECL node, regardless of whether or not a `typedef' was
10139 involved. */
10140 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10141 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10142 t = DECL_NAME (TYPE_NAME (type));
10143
10144 /* Now get the name as a string, or invent one. */
10145 if (t != 0)
10146 name = IDENTIFIER_POINTER (t);
10147 }
10148
10149 return (name == 0 || *name == '\0') ? 0 : name;
10150 }
10151
10152 /* Return the type associated with a data member, make a special check
10153 for bit field types. */
10154
10155 static inline tree
10156 member_declared_type (tree member)
10157 {
10158 return (DECL_BIT_FIELD_TYPE (member)
10159 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10160 }
10161
10162 /* Get the decl's label, as described by its RTL. This may be different
10163 from the DECL_NAME name used in the source file. */
10164
10165 #if 0
10166 static const char *
10167 decl_start_label (tree decl)
10168 {
10169 rtx x;
10170 const char *fnname;
10171
10172 x = DECL_RTL (decl);
10173 if (GET_CODE (x) != MEM)
10174 abort ();
10175
10176 x = XEXP (x, 0);
10177 if (GET_CODE (x) != SYMBOL_REF)
10178 abort ();
10179
10180 fnname = XSTR (x, 0);
10181 return fnname;
10182 }
10183 #endif
10184 \f
10185 /* These routines generate the internal representation of the DIE's for
10186 the compilation unit. Debugging information is collected by walking
10187 the declaration trees passed in from dwarf2out_decl(). */
10188
10189 static void
10190 gen_array_type_die (tree type, dw_die_ref context_die)
10191 {
10192 dw_die_ref scope_die = scope_die_for (type, context_die);
10193 dw_die_ref array_die;
10194 tree element_type;
10195
10196 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10197 the inner array type comes before the outer array type. Thus we must
10198 call gen_type_die before we call new_die. See below also. */
10199 #ifdef MIPS_DEBUGGING_INFO
10200 gen_type_die (TREE_TYPE (type), context_die);
10201 #endif
10202
10203 array_die = new_die (DW_TAG_array_type, scope_die, type);
10204 add_name_attribute (array_die, type_tag (type));
10205 equate_type_number_to_die (type, array_die);
10206
10207 if (TREE_CODE (type) == VECTOR_TYPE)
10208 {
10209 /* The frontend feeds us a representation for the vector as a struct
10210 containing an array. Pull out the array type. */
10211 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10212 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10213 }
10214
10215 #if 0
10216 /* We default the array ordering. SDB will probably do
10217 the right things even if DW_AT_ordering is not present. It's not even
10218 an issue until we start to get into multidimensional arrays anyway. If
10219 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10220 then we'll have to put the DW_AT_ordering attribute back in. (But if
10221 and when we find out that we need to put these in, we will only do so
10222 for multidimensional arrays. */
10223 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10224 #endif
10225
10226 #ifdef MIPS_DEBUGGING_INFO
10227 /* The SGI compilers handle arrays of unknown bound by setting
10228 AT_declaration and not emitting any subrange DIEs. */
10229 if (! TYPE_DOMAIN (type))
10230 add_AT_flag (array_die, DW_AT_declaration, 1);
10231 else
10232 #endif
10233 add_subscript_info (array_die, type);
10234
10235 /* Add representation of the type of the elements of this array type. */
10236 element_type = TREE_TYPE (type);
10237
10238 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10239 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10240 We work around this by disabling this feature. See also
10241 add_subscript_info. */
10242 #ifndef MIPS_DEBUGGING_INFO
10243 while (TREE_CODE (element_type) == ARRAY_TYPE)
10244 element_type = TREE_TYPE (element_type);
10245
10246 gen_type_die (element_type, context_die);
10247 #endif
10248
10249 add_type_attribute (array_die, element_type, 0, 0, context_die);
10250 }
10251
10252 static void
10253 gen_set_type_die (tree type, dw_die_ref context_die)
10254 {
10255 dw_die_ref type_die
10256 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10257
10258 equate_type_number_to_die (type, type_die);
10259 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10260 }
10261
10262 #if 0
10263 static void
10264 gen_entry_point_die (tree decl, dw_die_ref context_die)
10265 {
10266 tree origin = decl_ultimate_origin (decl);
10267 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10268
10269 if (origin != NULL)
10270 add_abstract_origin_attribute (decl_die, origin);
10271 else
10272 {
10273 add_name_and_src_coords_attributes (decl_die, decl);
10274 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10275 0, 0, context_die);
10276 }
10277
10278 if (DECL_ABSTRACT (decl))
10279 equate_decl_number_to_die (decl, decl_die);
10280 else
10281 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10282 }
10283 #endif
10284
10285 /* Walk through the list of incomplete types again, trying once more to
10286 emit full debugging info for them. */
10287
10288 static void
10289 retry_incomplete_types (void)
10290 {
10291 int i;
10292
10293 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10294 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10295 }
10296
10297 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10298
10299 static void
10300 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
10301 {
10302 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10303
10304 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10305 be incomplete and such types are not marked. */
10306 add_abstract_origin_attribute (type_die, type);
10307 }
10308
10309 /* Generate a DIE to represent an inlined instance of a structure type. */
10310
10311 static void
10312 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
10313 {
10314 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10315
10316 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10317 be incomplete and such types are not marked. */
10318 add_abstract_origin_attribute (type_die, type);
10319 }
10320
10321 /* Generate a DIE to represent an inlined instance of a union type. */
10322
10323 static void
10324 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
10325 {
10326 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10327
10328 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10329 be incomplete and such types are not marked. */
10330 add_abstract_origin_attribute (type_die, type);
10331 }
10332
10333 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10334 include all of the information about the enumeration values also. Each
10335 enumerated type name/value is listed as a child of the enumerated type
10336 DIE. */
10337
10338 static void
10339 gen_enumeration_type_die (tree type, dw_die_ref context_die)
10340 {
10341 dw_die_ref type_die = lookup_type_die (type);
10342
10343 if (type_die == NULL)
10344 {
10345 type_die = new_die (DW_TAG_enumeration_type,
10346 scope_die_for (type, context_die), type);
10347 equate_type_number_to_die (type, type_die);
10348 add_name_attribute (type_die, type_tag (type));
10349 }
10350 else if (! TYPE_SIZE (type))
10351 return;
10352 else
10353 remove_AT (type_die, DW_AT_declaration);
10354
10355 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10356 given enum type is incomplete, do not generate the DW_AT_byte_size
10357 attribute or the DW_AT_element_list attribute. */
10358 if (TYPE_SIZE (type))
10359 {
10360 tree link;
10361
10362 TREE_ASM_WRITTEN (type) = 1;
10363 add_byte_size_attribute (type_die, type);
10364 if (TYPE_STUB_DECL (type) != NULL_TREE)
10365 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10366
10367 /* If the first reference to this type was as the return type of an
10368 inline function, then it may not have a parent. Fix this now. */
10369 if (type_die->die_parent == NULL)
10370 add_child_die (scope_die_for (type, context_die), type_die);
10371
10372 for (link = TYPE_FIELDS (type);
10373 link != NULL; link = TREE_CHAIN (link))
10374 {
10375 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10376
10377 add_name_attribute (enum_die,
10378 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10379
10380 if (host_integerp (TREE_VALUE (link),
10381 TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (link)))))
10382 {
10383 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
10384 add_AT_int (enum_die, DW_AT_const_value,
10385 tree_low_cst (TREE_VALUE (link), 0));
10386 else
10387 add_AT_unsigned (enum_die, DW_AT_const_value,
10388 tree_low_cst (TREE_VALUE (link), 1));
10389 }
10390 }
10391 }
10392 else
10393 add_AT_flag (type_die, DW_AT_declaration, 1);
10394 }
10395
10396 /* Generate a DIE to represent either a real live formal parameter decl or to
10397 represent just the type of some formal parameter position in some function
10398 type.
10399
10400 Note that this routine is a bit unusual because its argument may be a
10401 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10402 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10403 node. If it's the former then this function is being called to output a
10404 DIE to represent a formal parameter object (or some inlining thereof). If
10405 it's the latter, then this function is only being called to output a
10406 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10407 argument type of some subprogram type. */
10408
10409 static dw_die_ref
10410 gen_formal_parameter_die (tree node, dw_die_ref context_die)
10411 {
10412 dw_die_ref parm_die
10413 = new_die (DW_TAG_formal_parameter, context_die, node);
10414 tree origin;
10415
10416 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10417 {
10418 case 'd':
10419 origin = decl_ultimate_origin (node);
10420 if (origin != NULL)
10421 add_abstract_origin_attribute (parm_die, origin);
10422 else
10423 {
10424 add_name_and_src_coords_attributes (parm_die, node);
10425 add_type_attribute (parm_die, TREE_TYPE (node),
10426 TREE_READONLY (node),
10427 TREE_THIS_VOLATILE (node),
10428 context_die);
10429 if (DECL_ARTIFICIAL (node))
10430 add_AT_flag (parm_die, DW_AT_artificial, 1);
10431 }
10432
10433 equate_decl_number_to_die (node, parm_die);
10434 if (! DECL_ABSTRACT (node))
10435 add_location_or_const_value_attribute (parm_die, node);
10436
10437 break;
10438
10439 case 't':
10440 /* We were called with some kind of a ..._TYPE node. */
10441 add_type_attribute (parm_die, node, 0, 0, context_die);
10442 break;
10443
10444 default:
10445 abort ();
10446 }
10447
10448 return parm_die;
10449 }
10450
10451 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10452 at the end of an (ANSI prototyped) formal parameters list. */
10453
10454 static void
10455 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
10456 {
10457 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10458 }
10459
10460 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10461 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10462 parameters as specified in some function type specification (except for
10463 those which appear as part of a function *definition*). */
10464
10465 static void
10466 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
10467 {
10468 tree link;
10469 tree formal_type = NULL;
10470 tree first_parm_type;
10471 tree arg;
10472
10473 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10474 {
10475 arg = DECL_ARGUMENTS (function_or_method_type);
10476 function_or_method_type = TREE_TYPE (function_or_method_type);
10477 }
10478 else
10479 arg = NULL_TREE;
10480
10481 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10482
10483 /* Make our first pass over the list of formal parameter types and output a
10484 DW_TAG_formal_parameter DIE for each one. */
10485 for (link = first_parm_type; link; )
10486 {
10487 dw_die_ref parm_die;
10488
10489 formal_type = TREE_VALUE (link);
10490 if (formal_type == void_type_node)
10491 break;
10492
10493 /* Output a (nameless) DIE to represent the formal parameter itself. */
10494 parm_die = gen_formal_parameter_die (formal_type, context_die);
10495 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10496 && link == first_parm_type)
10497 || (arg && DECL_ARTIFICIAL (arg)))
10498 add_AT_flag (parm_die, DW_AT_artificial, 1);
10499
10500 link = TREE_CHAIN (link);
10501 if (arg)
10502 arg = TREE_CHAIN (arg);
10503 }
10504
10505 /* If this function type has an ellipsis, add a
10506 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10507 if (formal_type != void_type_node)
10508 gen_unspecified_parameters_die (function_or_method_type, context_die);
10509
10510 /* Make our second (and final) pass over the list of formal parameter types
10511 and output DIEs to represent those types (as necessary). */
10512 for (link = TYPE_ARG_TYPES (function_or_method_type);
10513 link && TREE_VALUE (link);
10514 link = TREE_CHAIN (link))
10515 gen_type_die (TREE_VALUE (link), context_die);
10516 }
10517
10518 /* We want to generate the DIE for TYPE so that we can generate the
10519 die for MEMBER, which has been defined; we will need to refer back
10520 to the member declaration nested within TYPE. If we're trying to
10521 generate minimal debug info for TYPE, processing TYPE won't do the
10522 trick; we need to attach the member declaration by hand. */
10523
10524 static void
10525 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
10526 {
10527 gen_type_die (type, context_die);
10528
10529 /* If we're trying to avoid duplicate debug info, we may not have
10530 emitted the member decl for this function. Emit it now. */
10531 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10532 && ! lookup_decl_die (member))
10533 {
10534 if (decl_ultimate_origin (member))
10535 abort ();
10536
10537 push_decl_scope (type);
10538 if (TREE_CODE (member) == FUNCTION_DECL)
10539 gen_subprogram_die (member, lookup_type_die (type));
10540 else
10541 gen_variable_die (member, lookup_type_die (type));
10542
10543 pop_decl_scope ();
10544 }
10545 }
10546
10547 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10548 may later generate inlined and/or out-of-line instances of. */
10549
10550 static void
10551 dwarf2out_abstract_function (tree decl)
10552 {
10553 dw_die_ref old_die;
10554 tree save_fn;
10555 tree context;
10556 int was_abstract = DECL_ABSTRACT (decl);
10557
10558 /* Make sure we have the actual abstract inline, not a clone. */
10559 decl = DECL_ORIGIN (decl);
10560
10561 old_die = lookup_decl_die (decl);
10562 if (old_die && get_AT (old_die, DW_AT_inline))
10563 /* We've already generated the abstract instance. */
10564 return;
10565
10566 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10567 we don't get confused by DECL_ABSTRACT. */
10568 if (debug_info_level > DINFO_LEVEL_TERSE)
10569 {
10570 context = decl_class_context (decl);
10571 if (context)
10572 gen_type_die_for_member
10573 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10574 }
10575
10576 /* Pretend we've just finished compiling this function. */
10577 save_fn = current_function_decl;
10578 current_function_decl = decl;
10579
10580 set_decl_abstract_flags (decl, 1);
10581 dwarf2out_decl (decl);
10582 if (! was_abstract)
10583 set_decl_abstract_flags (decl, 0);
10584
10585 current_function_decl = save_fn;
10586 }
10587
10588 /* Generate a DIE to represent a declared function (either file-scope or
10589 block-local). */
10590
10591 static void
10592 gen_subprogram_die (tree decl, dw_die_ref context_die)
10593 {
10594 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10595 tree origin = decl_ultimate_origin (decl);
10596 dw_die_ref subr_die;
10597 rtx fp_reg;
10598 tree fn_arg_types;
10599 tree outer_scope;
10600 dw_die_ref old_die = lookup_decl_die (decl);
10601 int declaration = (current_function_decl != decl
10602 || class_scope_p (context_die));
10603
10604 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10605 started to generate the abstract instance of an inline, decided to output
10606 its containing class, and proceeded to emit the declaration of the inline
10607 from the member list for the class. If so, DECLARATION takes priority;
10608 we'll get back to the abstract instance when done with the class. */
10609
10610 /* The class-scope declaration DIE must be the primary DIE. */
10611 if (origin && declaration && class_scope_p (context_die))
10612 {
10613 origin = NULL;
10614 if (old_die)
10615 abort ();
10616 }
10617
10618 if (origin != NULL)
10619 {
10620 if (declaration && ! local_scope_p (context_die))
10621 abort ();
10622
10623 /* Fixup die_parent for the abstract instance of a nested
10624 inline function. */
10625 if (old_die && old_die->die_parent == NULL)
10626 add_child_die (context_die, old_die);
10627
10628 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10629 add_abstract_origin_attribute (subr_die, origin);
10630 }
10631 else if (old_die)
10632 {
10633 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10634
10635 if (!get_AT_flag (old_die, DW_AT_declaration)
10636 /* We can have a normal definition following an inline one in the
10637 case of redefinition of GNU C extern inlines.
10638 It seems reasonable to use AT_specification in this case. */
10639 && !get_AT (old_die, DW_AT_inline))
10640 {
10641 /* ??? This can happen if there is a bug in the program, for
10642 instance, if it has duplicate function definitions. Ideally,
10643 we should detect this case and ignore it. For now, if we have
10644 already reported an error, any error at all, then assume that
10645 we got here because of an input error, not a dwarf2 bug. */
10646 if (errorcount)
10647 return;
10648 abort ();
10649 }
10650
10651 /* If the definition comes from the same place as the declaration,
10652 maybe use the old DIE. We always want the DIE for this function
10653 that has the *_pc attributes to be under comp_unit_die so the
10654 debugger can find it. We also need to do this for abstract
10655 instances of inlines, since the spec requires the out-of-line copy
10656 to have the same parent. For local class methods, this doesn't
10657 apply; we just use the old DIE. */
10658 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
10659 && (DECL_ARTIFICIAL (decl)
10660 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10661 && (get_AT_unsigned (old_die, DW_AT_decl_line)
10662 == (unsigned) DECL_SOURCE_LINE (decl)))))
10663 {
10664 subr_die = old_die;
10665
10666 /* Clear out the declaration attribute and the parm types. */
10667 remove_AT (subr_die, DW_AT_declaration);
10668 remove_children (subr_die);
10669 }
10670 else
10671 {
10672 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10673 add_AT_specification (subr_die, old_die);
10674 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10675 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
10676 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10677 != (unsigned) DECL_SOURCE_LINE (decl))
10678 add_AT_unsigned
10679 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10680 }
10681 }
10682 else
10683 {
10684 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10685
10686 if (TREE_PUBLIC (decl))
10687 add_AT_flag (subr_die, DW_AT_external, 1);
10688
10689 add_name_and_src_coords_attributes (subr_die, decl);
10690 if (debug_info_level > DINFO_LEVEL_TERSE)
10691 {
10692 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
10693 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
10694 0, 0, context_die);
10695 }
10696
10697 add_pure_or_virtual_attribute (subr_die, decl);
10698 if (DECL_ARTIFICIAL (decl))
10699 add_AT_flag (subr_die, DW_AT_artificial, 1);
10700
10701 if (TREE_PROTECTED (decl))
10702 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
10703 else if (TREE_PRIVATE (decl))
10704 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
10705 }
10706
10707 if (declaration)
10708 {
10709 if (!old_die || !get_AT (old_die, DW_AT_inline))
10710 {
10711 add_AT_flag (subr_die, DW_AT_declaration, 1);
10712
10713 /* The first time we see a member function, it is in the context of
10714 the class to which it belongs. We make sure of this by emitting
10715 the class first. The next time is the definition, which is
10716 handled above. The two may come from the same source text. */
10717 if (DECL_CONTEXT (decl) || DECL_ABSTRACT (decl))
10718 equate_decl_number_to_die (decl, subr_die);
10719 }
10720 }
10721 else if (DECL_ABSTRACT (decl))
10722 {
10723 if (DECL_DECLARED_INLINE_P (decl))
10724 {
10725 if (cgraph_function_possibly_inlined_p (decl))
10726 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
10727 else
10728 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
10729 }
10730 else
10731 {
10732 if (cgraph_function_possibly_inlined_p (decl))
10733 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
10734 else
10735 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
10736 }
10737
10738 equate_decl_number_to_die (decl, subr_die);
10739 }
10740 else if (!DECL_EXTERNAL (decl))
10741 {
10742 if (!old_die || !get_AT (old_die, DW_AT_inline))
10743 equate_decl_number_to_die (decl, subr_die);
10744
10745 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
10746 current_function_funcdef_no);
10747 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
10748 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10749 current_function_funcdef_no);
10750 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
10751
10752 add_pubname (decl, subr_die);
10753 add_arange (decl, subr_die);
10754
10755 #ifdef MIPS_DEBUGGING_INFO
10756 /* Add a reference to the FDE for this routine. */
10757 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
10758 #endif
10759
10760 /* Define the "frame base" location for this routine. We use the
10761 frame pointer or stack pointer registers, since the RTL for local
10762 variables is relative to one of them. */
10763 fp_reg
10764 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
10765 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
10766
10767 #if 0
10768 /* ??? This fails for nested inline functions, because context_display
10769 is not part of the state saved/restored for inline functions. */
10770 if (current_function_needs_context)
10771 add_AT_location_description (subr_die, DW_AT_static_link,
10772 loc_descriptor (lookup_static_chain (decl)));
10773 #endif
10774 }
10775
10776 /* Now output descriptions of the arguments for this function. This gets
10777 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
10778 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
10779 `...' at the end of the formal parameter list. In order to find out if
10780 there was a trailing ellipsis or not, we must instead look at the type
10781 associated with the FUNCTION_DECL. This will be a node of type
10782 FUNCTION_TYPE. If the chain of type nodes hanging off of this
10783 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
10784 an ellipsis at the end. */
10785
10786 /* In the case where we are describing a mere function declaration, all we
10787 need to do here (and all we *can* do here) is to describe the *types* of
10788 its formal parameters. */
10789 if (debug_info_level <= DINFO_LEVEL_TERSE)
10790 ;
10791 else if (declaration)
10792 gen_formal_types_die (decl, subr_die);
10793 else
10794 {
10795 /* Generate DIEs to represent all known formal parameters. */
10796 tree arg_decls = DECL_ARGUMENTS (decl);
10797 tree parm;
10798
10799 /* When generating DIEs, generate the unspecified_parameters DIE
10800 instead if we come across the arg "__builtin_va_alist" */
10801 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
10802 if (TREE_CODE (parm) == PARM_DECL)
10803 {
10804 if (DECL_NAME (parm)
10805 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
10806 "__builtin_va_alist"))
10807 gen_unspecified_parameters_die (parm, subr_die);
10808 else
10809 gen_decl_die (parm, subr_die);
10810 }
10811
10812 /* Decide whether we need an unspecified_parameters DIE at the end.
10813 There are 2 more cases to do this for: 1) the ansi ... declaration -
10814 this is detectable when the end of the arg list is not a
10815 void_type_node 2) an unprototyped function declaration (not a
10816 definition). This just means that we have no info about the
10817 parameters at all. */
10818 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
10819 if (fn_arg_types != NULL)
10820 {
10821 /* This is the prototyped case, check for.... */
10822 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
10823 gen_unspecified_parameters_die (decl, subr_die);
10824 }
10825 else if (DECL_INITIAL (decl) == NULL_TREE)
10826 gen_unspecified_parameters_die (decl, subr_die);
10827 }
10828
10829 /* Output Dwarf info for all of the stuff within the body of the function
10830 (if it has one - it may be just a declaration). */
10831 outer_scope = DECL_INITIAL (decl);
10832
10833 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
10834 a function. This BLOCK actually represents the outermost binding contour
10835 for the function, i.e. the contour in which the function's formal
10836 parameters and labels get declared. Curiously, it appears that the front
10837 end doesn't actually put the PARM_DECL nodes for the current function onto
10838 the BLOCK_VARS list for this outer scope, but are strung off of the
10839 DECL_ARGUMENTS list for the function instead.
10840
10841 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
10842 the LABEL_DECL nodes for the function however, and we output DWARF info
10843 for those in decls_for_scope. Just within the `outer_scope' there will be
10844 a BLOCK node representing the function's outermost pair of curly braces,
10845 and any blocks used for the base and member initializers of a C++
10846 constructor function. */
10847 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
10848 {
10849 current_function_has_inlines = 0;
10850 decls_for_scope (outer_scope, subr_die, 0);
10851
10852 #if 0 && defined (MIPS_DEBUGGING_INFO)
10853 if (current_function_has_inlines)
10854 {
10855 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
10856 if (! comp_unit_has_inlines)
10857 {
10858 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
10859 comp_unit_has_inlines = 1;
10860 }
10861 }
10862 #endif
10863 }
10864 }
10865
10866 /* Generate a DIE to represent a declared data object. */
10867
10868 static void
10869 gen_variable_die (tree decl, dw_die_ref context_die)
10870 {
10871 tree origin = decl_ultimate_origin (decl);
10872 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
10873
10874 dw_die_ref old_die = lookup_decl_die (decl);
10875 int declaration = (DECL_EXTERNAL (decl)
10876 || class_scope_p (context_die));
10877
10878 if (origin != NULL)
10879 add_abstract_origin_attribute (var_die, origin);
10880
10881 /* Loop unrolling can create multiple blocks that refer to the same
10882 static variable, so we must test for the DW_AT_declaration flag.
10883
10884 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
10885 copy decls and set the DECL_ABSTRACT flag on them instead of
10886 sharing them.
10887
10888 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
10889 else if (old_die && TREE_STATIC (decl)
10890 && get_AT_flag (old_die, DW_AT_declaration) == 1)
10891 {
10892 /* This is a definition of a C++ class level static. */
10893 add_AT_specification (var_die, old_die);
10894 if (DECL_NAME (decl))
10895 {
10896 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10897
10898 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10899 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
10900
10901 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10902 != (unsigned) DECL_SOURCE_LINE (decl))
10903
10904 add_AT_unsigned (var_die, DW_AT_decl_line,
10905 DECL_SOURCE_LINE (decl));
10906 }
10907 }
10908 else
10909 {
10910 add_name_and_src_coords_attributes (var_die, decl);
10911 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
10912 TREE_THIS_VOLATILE (decl), context_die);
10913
10914 if (TREE_PUBLIC (decl))
10915 add_AT_flag (var_die, DW_AT_external, 1);
10916
10917 if (DECL_ARTIFICIAL (decl))
10918 add_AT_flag (var_die, DW_AT_artificial, 1);
10919
10920 if (TREE_PROTECTED (decl))
10921 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
10922 else if (TREE_PRIVATE (decl))
10923 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
10924 }
10925
10926 if (declaration)
10927 add_AT_flag (var_die, DW_AT_declaration, 1);
10928
10929 if (class_scope_p (context_die) || DECL_ABSTRACT (decl))
10930 equate_decl_number_to_die (decl, var_die);
10931
10932 if (! declaration && ! DECL_ABSTRACT (decl))
10933 {
10934 add_location_or_const_value_attribute (var_die, decl);
10935 add_pubname (decl, var_die);
10936 }
10937 else
10938 tree_add_const_value_attribute (var_die, decl);
10939 }
10940
10941 /* Generate a DIE to represent a label identifier. */
10942
10943 static void
10944 gen_label_die (tree decl, dw_die_ref context_die)
10945 {
10946 tree origin = decl_ultimate_origin (decl);
10947 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
10948 rtx insn;
10949 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10950
10951 if (origin != NULL)
10952 add_abstract_origin_attribute (lbl_die, origin);
10953 else
10954 add_name_and_src_coords_attributes (lbl_die, decl);
10955
10956 if (DECL_ABSTRACT (decl))
10957 equate_decl_number_to_die (decl, lbl_die);
10958 else
10959 {
10960 insn = DECL_RTL_IF_SET (decl);
10961
10962 /* Deleted labels are programmer specified labels which have been
10963 eliminated because of various optimizations. We still emit them
10964 here so that it is possible to put breakpoints on them. */
10965 if (insn
10966 && (GET_CODE (insn) == CODE_LABEL
10967 || ((GET_CODE (insn) == NOTE
10968 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
10969 {
10970 /* When optimization is enabled (via -O) some parts of the compiler
10971 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
10972 represent source-level labels which were explicitly declared by
10973 the user. This really shouldn't be happening though, so catch
10974 it if it ever does happen. */
10975 if (INSN_DELETED_P (insn))
10976 abort ();
10977
10978 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
10979 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
10980 }
10981 }
10982 }
10983
10984 /* Generate a DIE for a lexical block. */
10985
10986 static void
10987 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
10988 {
10989 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
10990 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10991
10992 if (! BLOCK_ABSTRACT (stmt))
10993 {
10994 if (BLOCK_FRAGMENT_CHAIN (stmt))
10995 {
10996 tree chain;
10997
10998 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
10999
11000 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11001 do
11002 {
11003 add_ranges (chain);
11004 chain = BLOCK_FRAGMENT_CHAIN (chain);
11005 }
11006 while (chain);
11007 add_ranges (NULL);
11008 }
11009 else
11010 {
11011 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11012 BLOCK_NUMBER (stmt));
11013 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11014 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11015 BLOCK_NUMBER (stmt));
11016 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11017 }
11018 }
11019
11020 decls_for_scope (stmt, stmt_die, depth);
11021 }
11022
11023 /* Generate a DIE for an inlined subprogram. */
11024
11025 static void
11026 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11027 {
11028 tree decl = block_ultimate_origin (stmt);
11029
11030 /* Emit info for the abstract instance first, if we haven't yet. We
11031 must emit this even if the block is abstract, otherwise when we
11032 emit the block below (or elsewhere), we may end up trying to emit
11033 a die whose origin die hasn't been emitted, and crashing. */
11034 dwarf2out_abstract_function (decl);
11035
11036 if (! BLOCK_ABSTRACT (stmt))
11037 {
11038 dw_die_ref subr_die
11039 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11040 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11041
11042 add_abstract_origin_attribute (subr_die, decl);
11043 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11044 BLOCK_NUMBER (stmt));
11045 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11046 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11047 BLOCK_NUMBER (stmt));
11048 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11049 decls_for_scope (stmt, subr_die, depth);
11050 current_function_has_inlines = 1;
11051 }
11052 else
11053 /* We may get here if we're the outer block of function A that was
11054 inlined into function B that was inlined into function C. When
11055 generating debugging info for C, dwarf2out_abstract_function(B)
11056 would mark all inlined blocks as abstract, including this one.
11057 So, we wouldn't (and shouldn't) expect labels to be generated
11058 for this one. Instead, just emit debugging info for
11059 declarations within the block. This is particularly important
11060 in the case of initializers of arguments passed from B to us:
11061 if they're statement expressions containing declarations, we
11062 wouldn't generate dies for their abstract variables, and then,
11063 when generating dies for the real variables, we'd die (pun
11064 intended :-) */
11065 gen_lexical_block_die (stmt, context_die, depth);
11066 }
11067
11068 /* Generate a DIE for a field in a record, or structure. */
11069
11070 static void
11071 gen_field_die (tree decl, dw_die_ref context_die)
11072 {
11073 dw_die_ref decl_die;
11074
11075 if (TREE_TYPE (decl) == error_mark_node)
11076 return;
11077
11078 decl_die = new_die (DW_TAG_member, context_die, decl);
11079 add_name_and_src_coords_attributes (decl_die, decl);
11080 add_type_attribute (decl_die, member_declared_type (decl),
11081 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11082 context_die);
11083
11084 if (DECL_BIT_FIELD_TYPE (decl))
11085 {
11086 add_byte_size_attribute (decl_die, decl);
11087 add_bit_size_attribute (decl_die, decl);
11088 add_bit_offset_attribute (decl_die, decl);
11089 }
11090
11091 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11092 add_data_member_location_attribute (decl_die, decl);
11093
11094 if (DECL_ARTIFICIAL (decl))
11095 add_AT_flag (decl_die, DW_AT_artificial, 1);
11096
11097 if (TREE_PROTECTED (decl))
11098 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11099 else if (TREE_PRIVATE (decl))
11100 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11101 }
11102
11103 #if 0
11104 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11105 Use modified_type_die instead.
11106 We keep this code here just in case these types of DIEs may be needed to
11107 represent certain things in other languages (e.g. Pascal) someday. */
11108
11109 static void
11110 gen_pointer_type_die (tree type, dw_die_ref context_die)
11111 {
11112 dw_die_ref ptr_die
11113 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11114
11115 equate_type_number_to_die (type, ptr_die);
11116 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11117 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11118 }
11119
11120 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11121 Use modified_type_die instead.
11122 We keep this code here just in case these types of DIEs may be needed to
11123 represent certain things in other languages (e.g. Pascal) someday. */
11124
11125 static void
11126 gen_reference_type_die (tree type, dw_die_ref context_die)
11127 {
11128 dw_die_ref ref_die
11129 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11130
11131 equate_type_number_to_die (type, ref_die);
11132 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11133 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11134 }
11135 #endif
11136
11137 /* Generate a DIE for a pointer to a member type. */
11138
11139 static void
11140 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11141 {
11142 dw_die_ref ptr_die
11143 = new_die (DW_TAG_ptr_to_member_type,
11144 scope_die_for (type, context_die), type);
11145
11146 equate_type_number_to_die (type, ptr_die);
11147 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11148 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11149 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11150 }
11151
11152 /* Generate the DIE for the compilation unit. */
11153
11154 static dw_die_ref
11155 gen_compile_unit_die (const char *filename)
11156 {
11157 dw_die_ref die;
11158 char producer[250];
11159 const char *language_string = lang_hooks.name;
11160 int language;
11161
11162 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11163
11164 if (filename)
11165 {
11166 add_name_attribute (die, filename);
11167 /* Don't add cwd for <built-in>. */
11168 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11169 add_comp_dir_attribute (die);
11170 }
11171
11172 sprintf (producer, "%s %s", language_string, version_string);
11173
11174 #ifdef MIPS_DEBUGGING_INFO
11175 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11176 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11177 not appear in the producer string, the debugger reaches the conclusion
11178 that the object file is stripped and has no debugging information.
11179 To get the MIPS/SGI debugger to believe that there is debugging
11180 information in the object file, we add a -g to the producer string. */
11181 if (debug_info_level > DINFO_LEVEL_TERSE)
11182 strcat (producer, " -g");
11183 #endif
11184
11185 add_AT_string (die, DW_AT_producer, producer);
11186
11187 if (strcmp (language_string, "GNU C++") == 0)
11188 language = DW_LANG_C_plus_plus;
11189 else if (strcmp (language_string, "GNU Ada") == 0)
11190 language = DW_LANG_Ada95;
11191 else if (strcmp (language_string, "GNU F77") == 0)
11192 language = DW_LANG_Fortran77;
11193 else if (strcmp (language_string, "GNU Pascal") == 0)
11194 language = DW_LANG_Pascal83;
11195 else if (strcmp (language_string, "GNU Java") == 0)
11196 language = DW_LANG_Java;
11197 else
11198 language = DW_LANG_C89;
11199
11200 add_AT_unsigned (die, DW_AT_language, language);
11201 return die;
11202 }
11203
11204 /* Generate a DIE for a string type. */
11205
11206 static void
11207 gen_string_type_die (tree type, dw_die_ref context_die)
11208 {
11209 dw_die_ref type_die
11210 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11211
11212 equate_type_number_to_die (type, type_die);
11213
11214 /* ??? Fudge the string length attribute for now.
11215 TODO: add string length info. */
11216 #if 0
11217 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11218 bound_representation (upper_bound, 0, 'u');
11219 #endif
11220 }
11221
11222 /* Generate the DIE for a base class. */
11223
11224 static void
11225 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11226 {
11227 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11228
11229 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11230 add_data_member_location_attribute (die, binfo);
11231
11232 if (TREE_VIA_VIRTUAL (binfo))
11233 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11234
11235 if (access == access_public_node)
11236 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11237 else if (access == access_protected_node)
11238 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11239 }
11240
11241 /* Generate a DIE for a class member. */
11242
11243 static void
11244 gen_member_die (tree type, dw_die_ref context_die)
11245 {
11246 tree member;
11247 tree binfo = TYPE_BINFO (type);
11248 dw_die_ref child;
11249
11250 /* If this is not an incomplete type, output descriptions of each of its
11251 members. Note that as we output the DIEs necessary to represent the
11252 members of this record or union type, we will also be trying to output
11253 DIEs to represent the *types* of those members. However the `type'
11254 function (above) will specifically avoid generating type DIEs for member
11255 types *within* the list of member DIEs for this (containing) type except
11256 for those types (of members) which are explicitly marked as also being
11257 members of this (containing) type themselves. The g++ front- end can
11258 force any given type to be treated as a member of some other (containing)
11259 type by setting the TYPE_CONTEXT of the given (member) type to point to
11260 the TREE node representing the appropriate (containing) type. */
11261
11262 /* First output info about the base classes. */
11263 if (binfo && BINFO_BASETYPES (binfo))
11264 {
11265 tree bases = BINFO_BASETYPES (binfo);
11266 tree accesses = BINFO_BASEACCESSES (binfo);
11267 int n_bases = TREE_VEC_LENGTH (bases);
11268 int i;
11269
11270 for (i = 0; i < n_bases; i++)
11271 gen_inheritance_die (TREE_VEC_ELT (bases, i),
11272 (accesses ? TREE_VEC_ELT (accesses, i)
11273 : access_public_node), context_die);
11274 }
11275
11276 /* Now output info about the data members and type members. */
11277 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11278 {
11279 /* If we thought we were generating minimal debug info for TYPE
11280 and then changed our minds, some of the member declarations
11281 may have already been defined. Don't define them again, but
11282 do put them in the right order. */
11283
11284 child = lookup_decl_die (member);
11285 if (child)
11286 splice_child_die (context_die, child);
11287 else
11288 gen_decl_die (member, context_die);
11289 }
11290
11291 /* Now output info about the function members (if any). */
11292 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11293 {
11294 /* Don't include clones in the member list. */
11295 if (DECL_ABSTRACT_ORIGIN (member))
11296 continue;
11297
11298 child = lookup_decl_die (member);
11299 if (child)
11300 splice_child_die (context_die, child);
11301 else
11302 gen_decl_die (member, context_die);
11303 }
11304 }
11305
11306 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11307 is set, we pretend that the type was never defined, so we only get the
11308 member DIEs needed by later specification DIEs. */
11309
11310 static void
11311 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
11312 {
11313 dw_die_ref type_die = lookup_type_die (type);
11314 dw_die_ref scope_die = 0;
11315 int nested = 0;
11316 int complete = (TYPE_SIZE (type)
11317 && (! TYPE_STUB_DECL (type)
11318 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11319
11320 if (type_die && ! complete)
11321 return;
11322
11323 if (TYPE_CONTEXT (type) != NULL_TREE
11324 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type)))
11325 nested = 1;
11326
11327 scope_die = scope_die_for (type, context_die);
11328
11329 if (! type_die || (nested && scope_die == comp_unit_die))
11330 /* First occurrence of type or toplevel definition of nested class. */
11331 {
11332 dw_die_ref old_die = type_die;
11333
11334 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11335 ? DW_TAG_structure_type : DW_TAG_union_type,
11336 scope_die, type);
11337 equate_type_number_to_die (type, type_die);
11338 if (old_die)
11339 add_AT_specification (type_die, old_die);
11340 else
11341 add_name_attribute (type_die, type_tag (type));
11342 }
11343 else
11344 remove_AT (type_die, DW_AT_declaration);
11345
11346 /* If this type has been completed, then give it a byte_size attribute and
11347 then give a list of members. */
11348 if (complete)
11349 {
11350 /* Prevent infinite recursion in cases where the type of some member of
11351 this type is expressed in terms of this type itself. */
11352 TREE_ASM_WRITTEN (type) = 1;
11353 add_byte_size_attribute (type_die, type);
11354 if (TYPE_STUB_DECL (type) != NULL_TREE)
11355 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11356
11357 /* If the first reference to this type was as the return type of an
11358 inline function, then it may not have a parent. Fix this now. */
11359 if (type_die->die_parent == NULL)
11360 add_child_die (scope_die, type_die);
11361
11362 push_decl_scope (type);
11363 gen_member_die (type, type_die);
11364 pop_decl_scope ();
11365
11366 /* GNU extension: Record what type our vtable lives in. */
11367 if (TYPE_VFIELD (type))
11368 {
11369 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11370
11371 gen_type_die (vtype, context_die);
11372 add_AT_die_ref (type_die, DW_AT_containing_type,
11373 lookup_type_die (vtype));
11374 }
11375 }
11376 else
11377 {
11378 add_AT_flag (type_die, DW_AT_declaration, 1);
11379
11380 /* We don't need to do this for function-local types. */
11381 if (TYPE_STUB_DECL (type)
11382 && ! decl_function_context (TYPE_STUB_DECL (type)))
11383 VARRAY_PUSH_TREE (incomplete_types, type);
11384 }
11385 }
11386
11387 /* Generate a DIE for a subroutine _type_. */
11388
11389 static void
11390 gen_subroutine_type_die (tree type, dw_die_ref context_die)
11391 {
11392 tree return_type = TREE_TYPE (type);
11393 dw_die_ref subr_die
11394 = new_die (DW_TAG_subroutine_type,
11395 scope_die_for (type, context_die), type);
11396
11397 equate_type_number_to_die (type, subr_die);
11398 add_prototyped_attribute (subr_die, type);
11399 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11400 gen_formal_types_die (type, subr_die);
11401 }
11402
11403 /* Generate a DIE for a type definition. */
11404
11405 static void
11406 gen_typedef_die (tree decl, dw_die_ref context_die)
11407 {
11408 dw_die_ref type_die;
11409 tree origin;
11410
11411 if (TREE_ASM_WRITTEN (decl))
11412 return;
11413
11414 TREE_ASM_WRITTEN (decl) = 1;
11415 type_die = new_die (DW_TAG_typedef, context_die, decl);
11416 origin = decl_ultimate_origin (decl);
11417 if (origin != NULL)
11418 add_abstract_origin_attribute (type_die, origin);
11419 else
11420 {
11421 tree type;
11422
11423 add_name_and_src_coords_attributes (type_die, decl);
11424 if (DECL_ORIGINAL_TYPE (decl))
11425 {
11426 type = DECL_ORIGINAL_TYPE (decl);
11427
11428 if (type == TREE_TYPE (decl))
11429 abort ();
11430 else
11431 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11432 }
11433 else
11434 type = TREE_TYPE (decl);
11435
11436 add_type_attribute (type_die, type, TREE_READONLY (decl),
11437 TREE_THIS_VOLATILE (decl), context_die);
11438 }
11439
11440 if (DECL_ABSTRACT (decl))
11441 equate_decl_number_to_die (decl, type_die);
11442 }
11443
11444 /* Generate a type description DIE. */
11445
11446 static void
11447 gen_type_die (tree type, dw_die_ref context_die)
11448 {
11449 int need_pop;
11450
11451 if (type == NULL_TREE || type == error_mark_node)
11452 return;
11453
11454 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11455 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11456 {
11457 if (TREE_ASM_WRITTEN (type))
11458 return;
11459
11460 /* Prevent broken recursion; we can't hand off to the same type. */
11461 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
11462 abort ();
11463
11464 TREE_ASM_WRITTEN (type) = 1;
11465 gen_decl_die (TYPE_NAME (type), context_die);
11466 return;
11467 }
11468
11469 /* We are going to output a DIE to represent the unqualified version
11470 of this type (i.e. without any const or volatile qualifiers) so
11471 get the main variant (i.e. the unqualified version) of this type
11472 now. (Vectors are special because the debugging info is in the
11473 cloned type itself). */
11474 if (TREE_CODE (type) != VECTOR_TYPE)
11475 type = type_main_variant (type);
11476
11477 if (TREE_ASM_WRITTEN (type))
11478 return;
11479
11480 switch (TREE_CODE (type))
11481 {
11482 case ERROR_MARK:
11483 break;
11484
11485 case POINTER_TYPE:
11486 case REFERENCE_TYPE:
11487 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11488 ensures that the gen_type_die recursion will terminate even if the
11489 type is recursive. Recursive types are possible in Ada. */
11490 /* ??? We could perhaps do this for all types before the switch
11491 statement. */
11492 TREE_ASM_WRITTEN (type) = 1;
11493
11494 /* For these types, all that is required is that we output a DIE (or a
11495 set of DIEs) to represent the "basis" type. */
11496 gen_type_die (TREE_TYPE (type), context_die);
11497 break;
11498
11499 case OFFSET_TYPE:
11500 /* This code is used for C++ pointer-to-data-member types.
11501 Output a description of the relevant class type. */
11502 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
11503
11504 /* Output a description of the type of the object pointed to. */
11505 gen_type_die (TREE_TYPE (type), context_die);
11506
11507 /* Now output a DIE to represent this pointer-to-data-member type
11508 itself. */
11509 gen_ptr_to_mbr_type_die (type, context_die);
11510 break;
11511
11512 case SET_TYPE:
11513 gen_type_die (TYPE_DOMAIN (type), context_die);
11514 gen_set_type_die (type, context_die);
11515 break;
11516
11517 case FILE_TYPE:
11518 gen_type_die (TREE_TYPE (type), context_die);
11519 abort (); /* No way to represent these in Dwarf yet! */
11520 break;
11521
11522 case FUNCTION_TYPE:
11523 /* Force out return type (in case it wasn't forced out already). */
11524 gen_type_die (TREE_TYPE (type), context_die);
11525 gen_subroutine_type_die (type, context_die);
11526 break;
11527
11528 case METHOD_TYPE:
11529 /* Force out return type (in case it wasn't forced out already). */
11530 gen_type_die (TREE_TYPE (type), context_die);
11531 gen_subroutine_type_die (type, context_die);
11532 break;
11533
11534 case ARRAY_TYPE:
11535 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11536 {
11537 gen_type_die (TREE_TYPE (type), context_die);
11538 gen_string_type_die (type, context_die);
11539 }
11540 else
11541 gen_array_type_die (type, context_die);
11542 break;
11543
11544 case VECTOR_TYPE:
11545 gen_array_type_die (type, context_die);
11546 break;
11547
11548 case ENUMERAL_TYPE:
11549 case RECORD_TYPE:
11550 case UNION_TYPE:
11551 case QUAL_UNION_TYPE:
11552 /* If this is a nested type whose containing class hasn't been written
11553 out yet, writing it out will cover this one, too. This does not apply
11554 to instantiations of member class templates; they need to be added to
11555 the containing class as they are generated. FIXME: This hurts the
11556 idea of combining type decls from multiple TUs, since we can't predict
11557 what set of template instantiations we'll get. */
11558 if (TYPE_CONTEXT (type)
11559 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11560 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
11561 {
11562 gen_type_die (TYPE_CONTEXT (type), context_die);
11563
11564 if (TREE_ASM_WRITTEN (type))
11565 return;
11566
11567 /* If that failed, attach ourselves to the stub. */
11568 push_decl_scope (TYPE_CONTEXT (type));
11569 context_die = lookup_type_die (TYPE_CONTEXT (type));
11570 need_pop = 1;
11571 }
11572 else
11573 need_pop = 0;
11574
11575 if (TREE_CODE (type) == ENUMERAL_TYPE)
11576 gen_enumeration_type_die (type, context_die);
11577 else
11578 gen_struct_or_union_type_die (type, context_die);
11579
11580 if (need_pop)
11581 pop_decl_scope ();
11582
11583 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11584 it up if it is ever completed. gen_*_type_die will set it for us
11585 when appropriate. */
11586 return;
11587
11588 case VOID_TYPE:
11589 case INTEGER_TYPE:
11590 case REAL_TYPE:
11591 case COMPLEX_TYPE:
11592 case BOOLEAN_TYPE:
11593 case CHAR_TYPE:
11594 /* No DIEs needed for fundamental types. */
11595 break;
11596
11597 case LANG_TYPE:
11598 /* No Dwarf representation currently defined. */
11599 break;
11600
11601 default:
11602 abort ();
11603 }
11604
11605 TREE_ASM_WRITTEN (type) = 1;
11606 }
11607
11608 /* Generate a DIE for a tagged type instantiation. */
11609
11610 static void
11611 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
11612 {
11613 if (type == NULL_TREE || type == error_mark_node)
11614 return;
11615
11616 /* We are going to output a DIE to represent the unqualified version of
11617 this type (i.e. without any const or volatile qualifiers) so make sure
11618 that we have the main variant (i.e. the unqualified version) of this
11619 type now. */
11620 if (type != type_main_variant (type))
11621 abort ();
11622
11623 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11624 an instance of an unresolved type. */
11625
11626 switch (TREE_CODE (type))
11627 {
11628 case ERROR_MARK:
11629 break;
11630
11631 case ENUMERAL_TYPE:
11632 gen_inlined_enumeration_type_die (type, context_die);
11633 break;
11634
11635 case RECORD_TYPE:
11636 gen_inlined_structure_type_die (type, context_die);
11637 break;
11638
11639 case UNION_TYPE:
11640 case QUAL_UNION_TYPE:
11641 gen_inlined_union_type_die (type, context_die);
11642 break;
11643
11644 default:
11645 abort ();
11646 }
11647 }
11648
11649 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11650 things which are local to the given block. */
11651
11652 static void
11653 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
11654 {
11655 int must_output_die = 0;
11656 tree origin;
11657 tree decl;
11658 enum tree_code origin_code;
11659
11660 /* Ignore blocks never really used to make RTL. */
11661 if (stmt == NULL_TREE || !TREE_USED (stmt)
11662 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
11663 return;
11664
11665 /* If the block is one fragment of a non-contiguous block, do not
11666 process the variables, since they will have been done by the
11667 origin block. Do process subblocks. */
11668 if (BLOCK_FRAGMENT_ORIGIN (stmt))
11669 {
11670 tree sub;
11671
11672 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
11673 gen_block_die (sub, context_die, depth + 1);
11674
11675 return;
11676 }
11677
11678 /* Determine the "ultimate origin" of this block. This block may be an
11679 inlined instance of an inlined instance of inline function, so we have
11680 to trace all of the way back through the origin chain to find out what
11681 sort of node actually served as the original seed for the creation of
11682 the current block. */
11683 origin = block_ultimate_origin (stmt);
11684 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
11685
11686 /* Determine if we need to output any Dwarf DIEs at all to represent this
11687 block. */
11688 if (origin_code == FUNCTION_DECL)
11689 /* The outer scopes for inlinings *must* always be represented. We
11690 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
11691 must_output_die = 1;
11692 else
11693 {
11694 /* In the case where the current block represents an inlining of the
11695 "body block" of an inline function, we must *NOT* output any DIE for
11696 this block because we have already output a DIE to represent the whole
11697 inlined function scope and the "body block" of any function doesn't
11698 really represent a different scope according to ANSI C rules. So we
11699 check here to make sure that this block does not represent a "body
11700 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
11701 if (! is_body_block (origin ? origin : stmt))
11702 {
11703 /* Determine if this block directly contains any "significant"
11704 local declarations which we will need to output DIEs for. */
11705 if (debug_info_level > DINFO_LEVEL_TERSE)
11706 /* We are not in terse mode so *any* local declaration counts
11707 as being a "significant" one. */
11708 must_output_die = (BLOCK_VARS (stmt) != NULL);
11709 else
11710 /* We are in terse mode, so only local (nested) function
11711 definitions count as "significant" local declarations. */
11712 for (decl = BLOCK_VARS (stmt);
11713 decl != NULL; decl = TREE_CHAIN (decl))
11714 if (TREE_CODE (decl) == FUNCTION_DECL
11715 && DECL_INITIAL (decl))
11716 {
11717 must_output_die = 1;
11718 break;
11719 }
11720 }
11721 }
11722
11723 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
11724 DIE for any block which contains no significant local declarations at
11725 all. Rather, in such cases we just call `decls_for_scope' so that any
11726 needed Dwarf info for any sub-blocks will get properly generated. Note
11727 that in terse mode, our definition of what constitutes a "significant"
11728 local declaration gets restricted to include only inlined function
11729 instances and local (nested) function definitions. */
11730 if (must_output_die)
11731 {
11732 if (origin_code == FUNCTION_DECL)
11733 gen_inlined_subroutine_die (stmt, context_die, depth);
11734 else
11735 gen_lexical_block_die (stmt, context_die, depth);
11736 }
11737 else
11738 decls_for_scope (stmt, context_die, depth);
11739 }
11740
11741 /* Generate all of the decls declared within a given scope and (recursively)
11742 all of its sub-blocks. */
11743
11744 static void
11745 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
11746 {
11747 tree decl;
11748 tree subblocks;
11749
11750 /* Ignore blocks never really used to make RTL. */
11751 if (stmt == NULL_TREE || ! TREE_USED (stmt))
11752 return;
11753
11754 /* Output the DIEs to represent all of the data objects and typedefs
11755 declared directly within this block but not within any nested
11756 sub-blocks. Also, nested function and tag DIEs have been
11757 generated with a parent of NULL; fix that up now. */
11758 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
11759 {
11760 dw_die_ref die;
11761
11762 if (TREE_CODE (decl) == FUNCTION_DECL)
11763 die = lookup_decl_die (decl);
11764 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
11765 die = lookup_type_die (TREE_TYPE (decl));
11766 else
11767 die = NULL;
11768
11769 if (die != NULL && die->die_parent == NULL)
11770 add_child_die (context_die, die);
11771 else
11772 gen_decl_die (decl, context_die);
11773 }
11774
11775 /* If we're at -g1, we're not interested in subblocks. */
11776 if (debug_info_level <= DINFO_LEVEL_TERSE)
11777 return;
11778
11779 /* Output the DIEs to represent all sub-blocks (and the items declared
11780 therein) of this block. */
11781 for (subblocks = BLOCK_SUBBLOCKS (stmt);
11782 subblocks != NULL;
11783 subblocks = BLOCK_CHAIN (subblocks))
11784 gen_block_die (subblocks, context_die, depth + 1);
11785 }
11786
11787 /* Is this a typedef we can avoid emitting? */
11788
11789 static inline int
11790 is_redundant_typedef (tree decl)
11791 {
11792 if (TYPE_DECL_IS_STUB (decl))
11793 return 1;
11794
11795 if (DECL_ARTIFICIAL (decl)
11796 && DECL_CONTEXT (decl)
11797 && is_tagged_type (DECL_CONTEXT (decl))
11798 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
11799 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
11800 /* Also ignore the artificial member typedef for the class name. */
11801 return 1;
11802
11803 return 0;
11804 }
11805
11806 /* Generate Dwarf debug information for a decl described by DECL. */
11807
11808 static void
11809 gen_decl_die (tree decl, dw_die_ref context_die)
11810 {
11811 tree origin;
11812
11813 if (DECL_P (decl) && DECL_IGNORED_P (decl))
11814 return;
11815
11816 switch (TREE_CODE (decl))
11817 {
11818 case ERROR_MARK:
11819 break;
11820
11821 case CONST_DECL:
11822 /* The individual enumerators of an enum type get output when we output
11823 the Dwarf representation of the relevant enum type itself. */
11824 break;
11825
11826 case FUNCTION_DECL:
11827 /* Don't output any DIEs to represent mere function declarations,
11828 unless they are class members or explicit block externs. */
11829 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
11830 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
11831 break;
11832
11833 /* If we're emitting a clone, emit info for the abstract instance. */
11834 if (DECL_ORIGIN (decl) != decl)
11835 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
11836
11837 /* If we're emitting an out-of-line copy of an inline function,
11838 emit info for the abstract instance and set up to refer to it. */
11839 else if (cgraph_function_possibly_inlined_p (decl)
11840 && ! DECL_ABSTRACT (decl)
11841 && ! class_scope_p (context_die)
11842 /* dwarf2out_abstract_function won't emit a die if this is just
11843 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
11844 that case, because that works only if we have a die. */
11845 && DECL_INITIAL (decl) != NULL_TREE)
11846 {
11847 dwarf2out_abstract_function (decl);
11848 set_decl_origin_self (decl);
11849 }
11850
11851 /* Otherwise we're emitting the primary DIE for this decl. */
11852 else if (debug_info_level > DINFO_LEVEL_TERSE)
11853 {
11854 /* Before we describe the FUNCTION_DECL itself, make sure that we
11855 have described its return type. */
11856 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
11857
11858 /* And its virtual context. */
11859 if (DECL_VINDEX (decl) != NULL_TREE)
11860 gen_type_die (DECL_CONTEXT (decl), context_die);
11861
11862 /* And its containing type. */
11863 origin = decl_class_context (decl);
11864 if (origin != NULL_TREE)
11865 gen_type_die_for_member (origin, decl, context_die);
11866 }
11867
11868 /* Now output a DIE to represent the function itself. */
11869 gen_subprogram_die (decl, context_die);
11870 break;
11871
11872 case TYPE_DECL:
11873 /* If we are in terse mode, don't generate any DIEs to represent any
11874 actual typedefs. */
11875 if (debug_info_level <= DINFO_LEVEL_TERSE)
11876 break;
11877
11878 /* In the special case of a TYPE_DECL node representing the declaration
11879 of some type tag, if the given TYPE_DECL is marked as having been
11880 instantiated from some other (original) TYPE_DECL node (e.g. one which
11881 was generated within the original definition of an inline function) we
11882 have to generate a special (abbreviated) DW_TAG_structure_type,
11883 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
11884 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
11885 {
11886 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
11887 break;
11888 }
11889
11890 if (is_redundant_typedef (decl))
11891 gen_type_die (TREE_TYPE (decl), context_die);
11892 else
11893 /* Output a DIE to represent the typedef itself. */
11894 gen_typedef_die (decl, context_die);
11895 break;
11896
11897 case LABEL_DECL:
11898 if (debug_info_level >= DINFO_LEVEL_NORMAL)
11899 gen_label_die (decl, context_die);
11900 break;
11901
11902 case VAR_DECL:
11903 /* If we are in terse mode, don't generate any DIEs to represent any
11904 variable declarations or definitions. */
11905 if (debug_info_level <= DINFO_LEVEL_TERSE)
11906 break;
11907
11908 /* Output any DIEs that are needed to specify the type of this data
11909 object. */
11910 gen_type_die (TREE_TYPE (decl), context_die);
11911
11912 /* And its containing type. */
11913 origin = decl_class_context (decl);
11914 if (origin != NULL_TREE)
11915 gen_type_die_for_member (origin, decl, context_die);
11916
11917 /* Now output the DIE to represent the data object itself. This gets
11918 complicated because of the possibility that the VAR_DECL really
11919 represents an inlined instance of a formal parameter for an inline
11920 function. */
11921 origin = decl_ultimate_origin (decl);
11922 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
11923 gen_formal_parameter_die (decl, context_die);
11924 else
11925 gen_variable_die (decl, context_die);
11926 break;
11927
11928 case FIELD_DECL:
11929 /* Ignore the nameless fields that are used to skip bits but handle C++
11930 anonymous unions. */
11931 if (DECL_NAME (decl) != NULL_TREE
11932 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
11933 {
11934 gen_type_die (member_declared_type (decl), context_die);
11935 gen_field_die (decl, context_die);
11936 }
11937 break;
11938
11939 case PARM_DECL:
11940 gen_type_die (TREE_TYPE (decl), context_die);
11941 gen_formal_parameter_die (decl, context_die);
11942 break;
11943
11944 case NAMESPACE_DECL:
11945 /* Ignore for now. */
11946 break;
11947
11948 default:
11949 if ((int)TREE_CODE (decl) > NUM_TREE_CODES)
11950 /* Probably some frontend-internal decl. Assume we don't care. */
11951 break;
11952 abort ();
11953 }
11954 }
11955 \f
11956 /* Add Ada "use" clause information for SGI Workshop debugger. */
11957
11958 void
11959 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
11960 {
11961 unsigned int file_index;
11962
11963 if (filename != NULL)
11964 {
11965 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
11966 tree context_list_decl
11967 = build_decl (LABEL_DECL, get_identifier (context_list),
11968 void_type_node);
11969
11970 TREE_PUBLIC (context_list_decl) = TRUE;
11971 add_name_attribute (unit_die, context_list);
11972 file_index = lookup_filename (filename);
11973 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
11974 add_pubname (context_list_decl, unit_die);
11975 }
11976 }
11977
11978 /* Output debug information for global decl DECL. Called from toplev.c after
11979 compilation proper has finished. */
11980
11981 static void
11982 dwarf2out_global_decl (tree decl)
11983 {
11984 /* Output DWARF2 information for file-scope tentative data object
11985 declarations, file-scope (extern) function declarations (which had no
11986 corresponding body) and file-scope tagged type declarations and
11987 definitions which have not yet been forced out. */
11988 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
11989 dwarf2out_decl (decl);
11990 }
11991
11992 /* Write the debugging output for DECL. */
11993
11994 void
11995 dwarf2out_decl (tree decl)
11996 {
11997 dw_die_ref context_die = comp_unit_die;
11998
11999 switch (TREE_CODE (decl))
12000 {
12001 case ERROR_MARK:
12002 return;
12003
12004 case FUNCTION_DECL:
12005 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
12006 builtin function. Explicit programmer-supplied declarations of
12007 these same functions should NOT be ignored however. */
12008 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
12009 return;
12010
12011 /* What we would really like to do here is to filter out all mere
12012 file-scope declarations of file-scope functions which are never
12013 referenced later within this translation unit (and keep all of ones
12014 that *are* referenced later on) but we aren't clairvoyant, so we have
12015 no idea which functions will be referenced in the future (i.e. later
12016 on within the current translation unit). So here we just ignore all
12017 file-scope function declarations which are not also definitions. If
12018 and when the debugger needs to know something about these functions,
12019 it will have to hunt around and find the DWARF information associated
12020 with the definition of the function.
12021
12022 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12023 nodes represent definitions and which ones represent mere
12024 declarations. We have to check DECL_INITIAL instead. That's because
12025 the C front-end supports some weird semantics for "extern inline"
12026 function definitions. These can get inlined within the current
12027 translation unit (an thus, we need to generate Dwarf info for their
12028 abstract instances so that the Dwarf info for the concrete inlined
12029 instances can have something to refer to) but the compiler never
12030 generates any out-of-lines instances of such things (despite the fact
12031 that they *are* definitions).
12032
12033 The important point is that the C front-end marks these "extern
12034 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12035 them anyway. Note that the C++ front-end also plays some similar games
12036 for inline function definitions appearing within include files which
12037 also contain `#pragma interface' pragmas. */
12038 if (DECL_INITIAL (decl) == NULL_TREE)
12039 return;
12040
12041 /* If we're a nested function, initially use a parent of NULL; if we're
12042 a plain function, this will be fixed up in decls_for_scope. If
12043 we're a method, it will be ignored, since we already have a DIE. */
12044 if (decl_function_context (decl)
12045 /* But if we're in terse mode, we don't care about scope. */
12046 && debug_info_level > DINFO_LEVEL_TERSE)
12047 context_die = NULL;
12048 break;
12049
12050 case VAR_DECL:
12051 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12052 declaration and if the declaration was never even referenced from
12053 within this entire compilation unit. We suppress these DIEs in
12054 order to save space in the .debug section (by eliminating entries
12055 which are probably useless). Note that we must not suppress
12056 block-local extern declarations (whether used or not) because that
12057 would screw-up the debugger's name lookup mechanism and cause it to
12058 miss things which really ought to be in scope at a given point. */
12059 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12060 return;
12061
12062 /* If we are in terse mode, don't generate any DIEs to represent any
12063 variable declarations or definitions. */
12064 if (debug_info_level <= DINFO_LEVEL_TERSE)
12065 return;
12066 break;
12067
12068 case TYPE_DECL:
12069 /* Don't emit stubs for types unless they are needed by other DIEs. */
12070 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12071 return;
12072
12073 /* Don't bother trying to generate any DIEs to represent any of the
12074 normal built-in types for the language we are compiling. */
12075 if (DECL_SOURCE_LINE (decl) == 0)
12076 {
12077 /* OK, we need to generate one for `bool' so GDB knows what type
12078 comparisons have. */
12079 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12080 == DW_LANG_C_plus_plus)
12081 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12082 && ! DECL_IGNORED_P (decl))
12083 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12084
12085 return;
12086 }
12087
12088 /* If we are in terse mode, don't generate any DIEs for types. */
12089 if (debug_info_level <= DINFO_LEVEL_TERSE)
12090 return;
12091
12092 /* If we're a function-scope tag, initially use a parent of NULL;
12093 this will be fixed up in decls_for_scope. */
12094 if (decl_function_context (decl))
12095 context_die = NULL;
12096
12097 break;
12098
12099 default:
12100 return;
12101 }
12102
12103 gen_decl_die (decl, context_die);
12104 }
12105
12106 /* Output a marker (i.e. a label) for the beginning of the generated code for
12107 a lexical block. */
12108
12109 static void
12110 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
12111 unsigned int blocknum)
12112 {
12113 function_section (current_function_decl);
12114 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12115 }
12116
12117 /* Output a marker (i.e. a label) for the end of the generated code for a
12118 lexical block. */
12119
12120 static void
12121 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
12122 {
12123 function_section (current_function_decl);
12124 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12125 }
12126
12127 /* Returns nonzero if it is appropriate not to emit any debugging
12128 information for BLOCK, because it doesn't contain any instructions.
12129
12130 Don't allow this for blocks with nested functions or local classes
12131 as we would end up with orphans, and in the presence of scheduling
12132 we may end up calling them anyway. */
12133
12134 static bool
12135 dwarf2out_ignore_block (tree block)
12136 {
12137 tree decl;
12138
12139 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12140 if (TREE_CODE (decl) == FUNCTION_DECL
12141 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12142 return 0;
12143
12144 return 1;
12145 }
12146
12147 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12148 dwarf2out.c) and return its "index". The index of each (known) filename is
12149 just a unique number which is associated with only that one filename. We
12150 need such numbers for the sake of generating labels (in the .debug_sfnames
12151 section) and references to those files numbers (in the .debug_srcinfo
12152 and.debug_macinfo sections). If the filename given as an argument is not
12153 found in our current list, add it to the list and assign it the next
12154 available unique index number. In order to speed up searches, we remember
12155 the index of the filename was looked up last. This handles the majority of
12156 all searches. */
12157
12158 static unsigned
12159 lookup_filename (const char *file_name)
12160 {
12161 size_t i, n;
12162 char *save_file_name;
12163
12164 /* Check to see if the file name that was searched on the previous
12165 call matches this file name. If so, return the index. */
12166 if (file_table_last_lookup_index != 0)
12167 {
12168 const char *last
12169 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12170 if (strcmp (file_name, last) == 0)
12171 return file_table_last_lookup_index;
12172 }
12173
12174 /* Didn't match the previous lookup, search the table */
12175 n = VARRAY_ACTIVE_SIZE (file_table);
12176 for (i = 1; i < n; i++)
12177 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12178 {
12179 file_table_last_lookup_index = i;
12180 return i;
12181 }
12182
12183 /* Add the new entry to the end of the filename table. */
12184 file_table_last_lookup_index = n;
12185 save_file_name = (char *) ggc_strdup (file_name);
12186 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12187 VARRAY_PUSH_UINT (file_table_emitted, 0);
12188
12189 return i;
12190 }
12191
12192 static int
12193 maybe_emit_file (int fileno)
12194 {
12195 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12196 {
12197 if (!VARRAY_UINT (file_table_emitted, fileno))
12198 {
12199 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12200 fprintf (asm_out_file, "\t.file %u ",
12201 VARRAY_UINT (file_table_emitted, fileno));
12202 output_quoted_string (asm_out_file,
12203 VARRAY_CHAR_PTR (file_table, fileno));
12204 fputc ('\n', asm_out_file);
12205 }
12206 return VARRAY_UINT (file_table_emitted, fileno);
12207 }
12208 else
12209 return fileno;
12210 }
12211
12212 static void
12213 init_file_table (void)
12214 {
12215 /* Allocate the initial hunk of the file_table. */
12216 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
12217 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
12218
12219 /* Skip the first entry - file numbers begin at 1. */
12220 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
12221 VARRAY_PUSH_UINT (file_table_emitted, 0);
12222 file_table_last_lookup_index = 0;
12223 }
12224
12225 /* Output a label to mark the beginning of a source code line entry
12226 and record information relating to this source line, in
12227 'line_info_table' for later output of the .debug_line section. */
12228
12229 static void
12230 dwarf2out_source_line (unsigned int line, const char *filename)
12231 {
12232 if (debug_info_level >= DINFO_LEVEL_NORMAL
12233 && line != 0)
12234 {
12235 function_section (current_function_decl);
12236
12237 /* If requested, emit something human-readable. */
12238 if (flag_debug_asm)
12239 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
12240 filename, line);
12241
12242 if (DWARF2_ASM_LINE_DEBUG_INFO)
12243 {
12244 unsigned file_num = lookup_filename (filename);
12245
12246 file_num = maybe_emit_file (file_num);
12247
12248 /* Emit the .loc directive understood by GNU as. */
12249 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
12250
12251 /* Indicate that line number info exists. */
12252 line_info_table_in_use++;
12253
12254 /* Indicate that multiple line number tables exist. */
12255 if (DECL_SECTION_NAME (current_function_decl))
12256 separate_line_info_table_in_use++;
12257 }
12258 else if (DECL_SECTION_NAME (current_function_decl))
12259 {
12260 dw_separate_line_info_ref line_info;
12261 (*targetm.asm_out.internal_label) (asm_out_file, SEPARATE_LINE_CODE_LABEL,
12262 separate_line_info_table_in_use);
12263
12264 /* expand the line info table if necessary */
12265 if (separate_line_info_table_in_use
12266 == separate_line_info_table_allocated)
12267 {
12268 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12269 separate_line_info_table
12270 = ggc_realloc (separate_line_info_table,
12271 separate_line_info_table_allocated
12272 * sizeof (dw_separate_line_info_entry));
12273 memset (separate_line_info_table
12274 + separate_line_info_table_in_use,
12275 0,
12276 (LINE_INFO_TABLE_INCREMENT
12277 * sizeof (dw_separate_line_info_entry)));
12278 }
12279
12280 /* Add the new entry at the end of the line_info_table. */
12281 line_info
12282 = &separate_line_info_table[separate_line_info_table_in_use++];
12283 line_info->dw_file_num = lookup_filename (filename);
12284 line_info->dw_line_num = line;
12285 line_info->function = current_function_funcdef_no;
12286 }
12287 else
12288 {
12289 dw_line_info_ref line_info;
12290
12291 (*targetm.asm_out.internal_label) (asm_out_file, LINE_CODE_LABEL,
12292 line_info_table_in_use);
12293
12294 /* Expand the line info table if necessary. */
12295 if (line_info_table_in_use == line_info_table_allocated)
12296 {
12297 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12298 line_info_table
12299 = ggc_realloc (line_info_table,
12300 (line_info_table_allocated
12301 * sizeof (dw_line_info_entry)));
12302 memset (line_info_table + line_info_table_in_use, 0,
12303 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
12304 }
12305
12306 /* Add the new entry at the end of the line_info_table. */
12307 line_info = &line_info_table[line_info_table_in_use++];
12308 line_info->dw_file_num = lookup_filename (filename);
12309 line_info->dw_line_num = line;
12310 }
12311 }
12312 }
12313
12314 /* Record the beginning of a new source file. */
12315
12316 static void
12317 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
12318 {
12319 if (flag_eliminate_dwarf2_dups)
12320 {
12321 /* Record the beginning of the file for break_out_includes. */
12322 dw_die_ref bincl_die;
12323
12324 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
12325 add_AT_string (bincl_die, DW_AT_name, filename);
12326 }
12327
12328 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12329 {
12330 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12331 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
12332 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
12333 lineno);
12334 maybe_emit_file (lookup_filename (filename));
12335 dw2_asm_output_data_uleb128 (lookup_filename (filename),
12336 "Filename we just started");
12337 }
12338 }
12339
12340 /* Record the end of a source file. */
12341
12342 static void
12343 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
12344 {
12345 if (flag_eliminate_dwarf2_dups)
12346 /* Record the end of the file for break_out_includes. */
12347 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
12348
12349 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12350 {
12351 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12352 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12353 }
12354 }
12355
12356 /* Called from debug_define in toplev.c. The `buffer' parameter contains
12357 the tail part of the directive line, i.e. the part which is past the
12358 initial whitespace, #, whitespace, directive-name, whitespace part. */
12359
12360 static void
12361 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
12362 const char *buffer ATTRIBUTE_UNUSED)
12363 {
12364 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12365 {
12366 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12367 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
12368 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12369 dw2_asm_output_nstring (buffer, -1, "The macro");
12370 }
12371 }
12372
12373 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
12374 the tail part of the directive line, i.e. the part which is past the
12375 initial whitespace, #, whitespace, directive-name, whitespace part. */
12376
12377 static void
12378 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
12379 const char *buffer ATTRIBUTE_UNUSED)
12380 {
12381 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12382 {
12383 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12384 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
12385 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12386 dw2_asm_output_nstring (buffer, -1, "The macro");
12387 }
12388 }
12389
12390 /* Set up for Dwarf output at the start of compilation. */
12391
12392 static void
12393 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
12394 {
12395 init_file_table ();
12396
12397 /* Allocate the initial hunk of the decl_die_table. */
12398 decl_die_table = ggc_alloc_cleared (DECL_DIE_TABLE_INCREMENT
12399 * sizeof (dw_die_ref));
12400 decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
12401 decl_die_table_in_use = 0;
12402
12403 /* Allocate the initial hunk of the decl_scope_table. */
12404 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
12405
12406 /* Allocate the initial hunk of the abbrev_die_table. */
12407 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
12408 * sizeof (dw_die_ref));
12409 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
12410 /* Zero-th entry is allocated, but unused */
12411 abbrev_die_table_in_use = 1;
12412
12413 /* Allocate the initial hunk of the line_info_table. */
12414 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
12415 * sizeof (dw_line_info_entry));
12416 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
12417
12418 /* Zero-th entry is allocated, but unused */
12419 line_info_table_in_use = 1;
12420
12421 /* Generate the initial DIE for the .debug section. Note that the (string)
12422 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
12423 will (typically) be a relative pathname and that this pathname should be
12424 taken as being relative to the directory from which the compiler was
12425 invoked when the given (base) source file was compiled. We will fill
12426 in this value in dwarf2out_finish. */
12427 comp_unit_die = gen_compile_unit_die (NULL);
12428
12429 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
12430
12431 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
12432
12433 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
12434 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
12435 DEBUG_ABBREV_SECTION_LABEL, 0);
12436 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12437 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
12438 else
12439 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
12440
12441 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
12442 DEBUG_INFO_SECTION_LABEL, 0);
12443 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
12444 DEBUG_LINE_SECTION_LABEL, 0);
12445 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
12446 DEBUG_RANGES_SECTION_LABEL, 0);
12447 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12448 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
12449 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
12450 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
12451 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12452 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
12453
12454 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12455 {
12456 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12457 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
12458 DEBUG_MACINFO_SECTION_LABEL, 0);
12459 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
12460 }
12461
12462 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12463 {
12464 text_section ();
12465 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
12466 }
12467 }
12468
12469 /* A helper function for dwarf2out_finish called through
12470 ht_forall. Emit one queued .debug_str string. */
12471
12472 static int
12473 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
12474 {
12475 struct indirect_string_node *node = (struct indirect_string_node *) *h;
12476
12477 if (node->form == DW_FORM_strp)
12478 {
12479 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
12480 ASM_OUTPUT_LABEL (asm_out_file, node->label);
12481 assemble_string (node->str, strlen (node->str) + 1);
12482 }
12483
12484 return 1;
12485 }
12486
12487
12488
12489 /* Clear the marks for a die and its children.
12490 Be cool if the mark isn't set. */
12491
12492 static void
12493 prune_unmark_dies (dw_die_ref die)
12494 {
12495 dw_die_ref c;
12496 die->die_mark = 0;
12497 for (c = die->die_child; c; c = c->die_sib)
12498 prune_unmark_dies (c);
12499 }
12500
12501
12502 /* Given DIE that we're marking as used, find any other dies
12503 it references as attributes and mark them as used. */
12504
12505 static void
12506 prune_unused_types_walk_attribs (dw_die_ref die)
12507 {
12508 dw_attr_ref a;
12509
12510 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
12511 {
12512 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
12513 {
12514 /* A reference to another DIE.
12515 Make sure that it will get emitted. */
12516 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
12517 }
12518 else if (a->dw_attr == DW_AT_decl_file)
12519 {
12520 /* A reference to a file. Make sure the file name is emitted. */
12521 a->dw_attr_val.v.val_unsigned =
12522 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
12523 }
12524 }
12525 }
12526
12527
12528 /* Mark DIE as being used. If DOKIDS is true, then walk down
12529 to DIE's children. */
12530
12531 static void
12532 prune_unused_types_mark (dw_die_ref die, int dokids)
12533 {
12534 dw_die_ref c;
12535
12536 if (die->die_mark == 0)
12537 {
12538 /* We haven't done this node yet. Mark it as used. */
12539 die->die_mark = 1;
12540
12541 /* We also have to mark its parents as used.
12542 (But we don't want to mark our parents' kids due to this.) */
12543 if (die->die_parent)
12544 prune_unused_types_mark (die->die_parent, 0);
12545
12546 /* Mark any referenced nodes. */
12547 prune_unused_types_walk_attribs (die);
12548
12549 /* If this node is a specification,
12550 also mark the definition, if it exists. */
12551 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
12552 prune_unused_types_mark (die->die_definition, 1);
12553 }
12554
12555 if (dokids && die->die_mark != 2)
12556 {
12557 /* We need to walk the children, but haven't done so yet.
12558 Remember that we've walked the kids. */
12559 die->die_mark = 2;
12560
12561 /* Walk them. */
12562 for (c = die->die_child; c; c = c->die_sib)
12563 {
12564 /* If this is an array type, we need to make sure our
12565 kids get marked, even if they're types. */
12566 if (die->die_tag == DW_TAG_array_type)
12567 prune_unused_types_mark (c, 1);
12568 else
12569 prune_unused_types_walk (c);
12570 }
12571 }
12572 }
12573
12574
12575 /* Walk the tree DIE and mark types that we actually use. */
12576
12577 static void
12578 prune_unused_types_walk (dw_die_ref die)
12579 {
12580 dw_die_ref c;
12581
12582 /* Don't do anything if this node is already marked. */
12583 if (die->die_mark)
12584 return;
12585
12586 switch (die->die_tag) {
12587 case DW_TAG_const_type:
12588 case DW_TAG_packed_type:
12589 case DW_TAG_pointer_type:
12590 case DW_TAG_reference_type:
12591 case DW_TAG_volatile_type:
12592 case DW_TAG_typedef:
12593 case DW_TAG_array_type:
12594 case DW_TAG_structure_type:
12595 case DW_TAG_union_type:
12596 case DW_TAG_class_type:
12597 case DW_TAG_friend:
12598 case DW_TAG_variant_part:
12599 case DW_TAG_enumeration_type:
12600 case DW_TAG_subroutine_type:
12601 case DW_TAG_string_type:
12602 case DW_TAG_set_type:
12603 case DW_TAG_subrange_type:
12604 case DW_TAG_ptr_to_member_type:
12605 case DW_TAG_file_type:
12606 /* It's a type node --- don't mark it. */
12607 return;
12608
12609 default:
12610 /* Mark everything else. */
12611 break;
12612 }
12613
12614 die->die_mark = 1;
12615
12616 /* Now, mark any dies referenced from here. */
12617 prune_unused_types_walk_attribs (die);
12618
12619 /* Mark children. */
12620 for (c = die->die_child; c; c = c->die_sib)
12621 prune_unused_types_walk (c);
12622 }
12623
12624
12625 /* Remove from the tree DIE any dies that aren't marked. */
12626
12627 static void
12628 prune_unused_types_prune (dw_die_ref die)
12629 {
12630 dw_die_ref c, p, n;
12631 if (!die->die_mark)
12632 abort();
12633
12634 p = NULL;
12635 for (c = die->die_child; c; c = n)
12636 {
12637 n = c->die_sib;
12638 if (c->die_mark)
12639 {
12640 prune_unused_types_prune (c);
12641 p = c;
12642 }
12643 else
12644 {
12645 if (p)
12646 p->die_sib = n;
12647 else
12648 die->die_child = n;
12649 free_die (c);
12650 }
12651 }
12652 }
12653
12654
12655 /* Remove dies representing declarations that we never use. */
12656
12657 static void
12658 prune_unused_types (void)
12659 {
12660 unsigned int i;
12661 limbo_die_node *node;
12662
12663 /* Clear all the marks. */
12664 prune_unmark_dies (comp_unit_die);
12665 for (node = limbo_die_list; node; node = node->next)
12666 prune_unmark_dies (node->die);
12667
12668 /* Set the mark on nodes that are actually used. */
12669 prune_unused_types_walk (comp_unit_die);
12670 for (node = limbo_die_list; node; node = node->next)
12671 prune_unused_types_walk (node->die);
12672
12673 /* Also set the mark on nodes referenced from the
12674 pubname_table or arange_table. */
12675 for (i = 0; i < pubname_table_in_use; i++)
12676 prune_unused_types_mark (pubname_table[i].die, 1);
12677 for (i = 0; i < arange_table_in_use; i++)
12678 prune_unused_types_mark (arange_table[i], 1);
12679
12680 /* Get rid of nodes that aren't marked. */
12681 prune_unused_types_prune (comp_unit_die);
12682 for (node = limbo_die_list; node; node = node->next)
12683 prune_unused_types_prune (node->die);
12684
12685 /* Leave the marks clear. */
12686 prune_unmark_dies (comp_unit_die);
12687 for (node = limbo_die_list; node; node = node->next)
12688 prune_unmark_dies (node->die);
12689 }
12690
12691 /* Output stuff that dwarf requires at the end of every file,
12692 and generate the DWARF-2 debugging info. */
12693
12694 static void
12695 dwarf2out_finish (const char *filename)
12696 {
12697 limbo_die_node *node, *next_node;
12698 dw_die_ref die = 0;
12699
12700 /* Add the name for the main input file now. We delayed this from
12701 dwarf2out_init to avoid complications with PCH. */
12702 add_name_attribute (comp_unit_die, filename);
12703 if (filename[0] != DIR_SEPARATOR)
12704 add_comp_dir_attribute (comp_unit_die);
12705 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
12706 {
12707 size_t i;
12708 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
12709 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
12710 /* Don't add cwd for <built-in>. */
12711 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
12712 {
12713 add_comp_dir_attribute (comp_unit_die);
12714 break;
12715 }
12716 }
12717
12718 /* Traverse the limbo die list, and add parent/child links. The only
12719 dies without parents that should be here are concrete instances of
12720 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
12721 For concrete instances, we can get the parent die from the abstract
12722 instance. */
12723 for (node = limbo_die_list; node; node = next_node)
12724 {
12725 next_node = node->next;
12726 die = node->die;
12727
12728 if (die->die_parent == NULL)
12729 {
12730 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
12731 tree context;
12732
12733 if (origin)
12734 add_child_die (origin->die_parent, die);
12735 else if (die == comp_unit_die)
12736 ;
12737 /* If this was an expression for a bound involved in a function
12738 return type, it may be a SAVE_EXPR for which we weren't able
12739 to find a DIE previously. So try now. */
12740 else if (node->created_for
12741 && TREE_CODE (node->created_for) == SAVE_EXPR
12742 && 0 != (origin = (lookup_decl_die
12743 (SAVE_EXPR_CONTEXT
12744 (node->created_for)))))
12745 add_child_die (origin, die);
12746 else if (errorcount > 0 || sorrycount > 0)
12747 /* It's OK to be confused by errors in the input. */
12748 add_child_die (comp_unit_die, die);
12749 else if (node->created_for
12750 && ((DECL_P (node->created_for)
12751 && (context = DECL_CONTEXT (node->created_for)))
12752 || (TYPE_P (node->created_for)
12753 && (context = TYPE_CONTEXT (node->created_for))))
12754 && TREE_CODE (context) == FUNCTION_DECL)
12755 {
12756 /* In certain situations, the lexical block containing a
12757 nested function can be optimized away, which results
12758 in the nested function die being orphaned. Likewise
12759 with the return type of that nested function. Force
12760 this to be a child of the containing function. */
12761 origin = lookup_decl_die (context);
12762 if (! origin)
12763 abort ();
12764 add_child_die (origin, die);
12765 }
12766 else
12767 abort ();
12768 }
12769 }
12770
12771 limbo_die_list = NULL;
12772
12773 /* Walk through the list of incomplete types again, trying once more to
12774 emit full debugging info for them. */
12775 retry_incomplete_types ();
12776
12777 /* We need to reverse all the dies before break_out_includes, or
12778 we'll see the end of an include file before the beginning. */
12779 reverse_all_dies (comp_unit_die);
12780
12781 if (flag_eliminate_unused_debug_types)
12782 prune_unused_types ();
12783
12784 /* Generate separate CUs for each of the include files we've seen.
12785 They will go into limbo_die_list. */
12786 if (flag_eliminate_dwarf2_dups)
12787 break_out_includes (comp_unit_die);
12788
12789 /* Traverse the DIE's and add add sibling attributes to those DIE's
12790 that have children. */
12791 add_sibling_attributes (comp_unit_die);
12792 for (node = limbo_die_list; node; node = node->next)
12793 add_sibling_attributes (node->die);
12794
12795 /* Output a terminator label for the .text section. */
12796 text_section ();
12797 (*targetm.asm_out.internal_label) (asm_out_file, TEXT_END_LABEL, 0);
12798
12799 /* Output the source line correspondence table. We must do this
12800 even if there is no line information. Otherwise, on an empty
12801 translation unit, we will generate a present, but empty,
12802 .debug_info section. IRIX 6.5 `nm' will then complain when
12803 examining the file. */
12804 if (! DWARF2_ASM_LINE_DEBUG_INFO)
12805 {
12806 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12807 output_line_info ();
12808 }
12809
12810 /* Output location list section if necessary. */
12811 if (have_location_lists)
12812 {
12813 /* Output the location lists info. */
12814 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
12815 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
12816 DEBUG_LOC_SECTION_LABEL, 0);
12817 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
12818 output_location_lists (die);
12819 have_location_lists = 0;
12820 }
12821
12822 /* We can only use the low/high_pc attributes if all of the code was
12823 in .text. */
12824 if (separate_line_info_table_in_use == 0)
12825 {
12826 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
12827 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
12828 }
12829
12830 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
12831 "base address". Use zero so that these addresses become absolute. */
12832 else if (have_location_lists || ranges_table_in_use)
12833 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
12834
12835 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12836 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
12837 debug_line_section_label);
12838
12839 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12840 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
12841
12842 /* Output all of the compilation units. We put the main one last so that
12843 the offsets are available to output_pubnames. */
12844 for (node = limbo_die_list; node; node = node->next)
12845 output_comp_unit (node->die, 0);
12846
12847 output_comp_unit (comp_unit_die, 0);
12848
12849 /* Output the abbreviation table. */
12850 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12851 output_abbrev_section ();
12852
12853 /* Output public names table if necessary. */
12854 if (pubname_table_in_use)
12855 {
12856 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
12857 output_pubnames ();
12858 }
12859
12860 /* Output the address range information. We only put functions in the arange
12861 table, so don't write it out if we don't have any. */
12862 if (fde_table_in_use)
12863 {
12864 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
12865 output_aranges ();
12866 }
12867
12868 /* Output ranges section if necessary. */
12869 if (ranges_table_in_use)
12870 {
12871 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
12872 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
12873 output_ranges ();
12874 }
12875
12876 /* Have to end the primary source file. */
12877 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12878 {
12879 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12880 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12881 dw2_asm_output_data (1, 0, "End compilation unit");
12882 }
12883
12884 /* If we emitted any DW_FORM_strp form attribute, output the string
12885 table too. */
12886 if (debug_str_hash)
12887 htab_traverse (debug_str_hash, output_indirect_string, NULL);
12888 }
12889 #else
12890
12891 /* This should never be used, but its address is needed for comparisons. */
12892 const struct gcc_debug_hooks dwarf2_debug_hooks;
12893
12894 #endif /* DWARF2_DEBUGGING_INFO */
12895
12896 #include "gt-dwarf2out.h"