* dwarf2out.c (loc_descriptor_from_tree, case CONSTRUCTOR): Fix error.
[gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "real.h"
44 #include "rtl.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "reload.h"
49 #include "function.h"
50 #include "output.h"
51 #include "expr.h"
52 #include "libfuncs.h"
53 #include "except.h"
54 #include "dwarf2.h"
55 #include "dwarf2out.h"
56 #include "dwarf2asm.h"
57 #include "toplev.h"
58 #include "varray.h"
59 #include "ggc.h"
60 #include "md5.h"
61 #include "tm_p.h"
62 #include "diagnostic.h"
63 #include "debug.h"
64 #include "target.h"
65 #include "langhooks.h"
66 #include "hashtab.h"
67
68 #ifdef DWARF2_DEBUGGING_INFO
69 static void dwarf2out_source_line (unsigned int, const char *);
70 #endif
71
72 /* DWARF2 Abbreviation Glossary:
73 CFA = Canonical Frame Address
74 a fixed address on the stack which identifies a call frame.
75 We define it to be the value of SP just before the call insn.
76 The CFA register and offset, which may change during the course
77 of the function, are used to calculate its value at runtime.
78 CFI = Call Frame Instruction
79 an instruction for the DWARF2 abstract machine
80 CIE = Common Information Entry
81 information describing information common to one or more FDEs
82 DIE = Debugging Information Entry
83 FDE = Frame Description Entry
84 information describing the stack call frame, in particular,
85 how to restore registers
86
87 DW_CFA_... = DWARF2 CFA call frame instruction
88 DW_TAG_... = DWARF2 DIE tag */
89
90 /* Decide whether we want to emit frame unwind information for the current
91 translation unit. */
92
93 int
94 dwarf2out_do_frame (void)
95 {
96 return (write_symbols == DWARF2_DEBUG
97 || write_symbols == VMS_AND_DWARF2_DEBUG
98 #ifdef DWARF2_FRAME_INFO
99 || DWARF2_FRAME_INFO
100 #endif
101 #ifdef DWARF2_UNWIND_INFO
102 || flag_unwind_tables
103 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
104 #endif
105 );
106 }
107
108 /* The size of the target's pointer type. */
109 #ifndef PTR_SIZE
110 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
111 #endif
112
113 /* Default version of targetm.eh_frame_section. Note this must appear
114 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro
115 guards. */
116
117 void
118 default_eh_frame_section (void)
119 {
120 #ifdef EH_FRAME_SECTION_NAME
121 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
122 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
123 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
124 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
125 int flags;
126
127 flags = (! flag_pic
128 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
129 && (fde_encoding & 0x70) != DW_EH_PE_aligned
130 && (per_encoding & 0x70) != DW_EH_PE_absptr
131 && (per_encoding & 0x70) != DW_EH_PE_aligned
132 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
133 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
134 ? 0 : SECTION_WRITE;
135 named_section_flags (EH_FRAME_SECTION_NAME, flags);
136 #else
137 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
138 #endif
139 #else
140 tree label = get_file_function_name ('F');
141
142 data_section ();
143 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
144 (*targetm.asm_out.globalize_label) (asm_out_file, IDENTIFIER_POINTER (label));
145 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
146 #endif
147 }
148
149 /* Array of RTXes referenced by the debugging information, which therefore
150 must be kept around forever. */
151 static GTY(()) varray_type used_rtx_varray;
152
153 /* A pointer to the base of a list of incomplete types which might be
154 completed at some later time. incomplete_types_list needs to be a VARRAY
155 because we want to tell the garbage collector about it. */
156 static GTY(()) varray_type incomplete_types;
157
158 /* A pointer to the base of a table of references to declaration
159 scopes. This table is a display which tracks the nesting
160 of declaration scopes at the current scope and containing
161 scopes. This table is used to find the proper place to
162 define type declaration DIE's. */
163 static GTY(()) varray_type decl_scope_table;
164
165 /* How to start an assembler comment. */
166 #ifndef ASM_COMMENT_START
167 #define ASM_COMMENT_START ";#"
168 #endif
169
170 typedef struct dw_cfi_struct *dw_cfi_ref;
171 typedef struct dw_fde_struct *dw_fde_ref;
172 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
173
174 /* Call frames are described using a sequence of Call Frame
175 Information instructions. The register number, offset
176 and address fields are provided as possible operands;
177 their use is selected by the opcode field. */
178
179 enum dw_cfi_oprnd_type {
180 dw_cfi_oprnd_unused,
181 dw_cfi_oprnd_reg_num,
182 dw_cfi_oprnd_offset,
183 dw_cfi_oprnd_addr,
184 dw_cfi_oprnd_loc
185 };
186
187 typedef union dw_cfi_oprnd_struct GTY(())
188 {
189 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
190 long int GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
191 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
192 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
193 }
194 dw_cfi_oprnd;
195
196 typedef struct dw_cfi_struct GTY(())
197 {
198 dw_cfi_ref dw_cfi_next;
199 enum dwarf_call_frame_info dw_cfi_opc;
200 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
201 dw_cfi_oprnd1;
202 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
203 dw_cfi_oprnd2;
204 }
205 dw_cfi_node;
206
207 /* This is how we define the location of the CFA. We use to handle it
208 as REG + OFFSET all the time, but now it can be more complex.
209 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
210 Instead of passing around REG and OFFSET, we pass a copy
211 of this structure. */
212 typedef struct cfa_loc GTY(())
213 {
214 unsigned long reg;
215 long offset;
216 long base_offset;
217 int indirect; /* 1 if CFA is accessed via a dereference. */
218 } dw_cfa_location;
219
220 /* All call frame descriptions (FDE's) in the GCC generated DWARF
221 refer to a single Common Information Entry (CIE), defined at
222 the beginning of the .debug_frame section. This use of a single
223 CIE obviates the need to keep track of multiple CIE's
224 in the DWARF generation routines below. */
225
226 typedef struct dw_fde_struct GTY(())
227 {
228 const char *dw_fde_begin;
229 const char *dw_fde_current_label;
230 const char *dw_fde_end;
231 dw_cfi_ref dw_fde_cfi;
232 unsigned funcdef_number;
233 unsigned all_throwers_are_sibcalls : 1;
234 unsigned nothrow : 1;
235 unsigned uses_eh_lsda : 1;
236 }
237 dw_fde_node;
238
239 /* Maximum size (in bytes) of an artificially generated label. */
240 #define MAX_ARTIFICIAL_LABEL_BYTES 30
241
242 /* The size of addresses as they appear in the Dwarf 2 data.
243 Some architectures use word addresses to refer to code locations,
244 but Dwarf 2 info always uses byte addresses. On such machines,
245 Dwarf 2 addresses need to be larger than the architecture's
246 pointers. */
247 #ifndef DWARF2_ADDR_SIZE
248 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
249 #endif
250
251 /* The size in bytes of a DWARF field indicating an offset or length
252 relative to a debug info section, specified to be 4 bytes in the
253 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
254 as PTR_SIZE. */
255
256 #ifndef DWARF_OFFSET_SIZE
257 #define DWARF_OFFSET_SIZE 4
258 #endif
259
260 /* According to the (draft) DWARF 3 specification, the initial length
261 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
262 bytes are 0xffffffff, followed by the length stored in the next 8
263 bytes.
264
265 However, the SGI/MIPS ABI uses an initial length which is equal to
266 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
267
268 #ifndef DWARF_INITIAL_LENGTH_SIZE
269 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
270 #endif
271
272 #define DWARF_VERSION 2
273
274 /* Round SIZE up to the nearest BOUNDARY. */
275 #define DWARF_ROUND(SIZE,BOUNDARY) \
276 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
277
278 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
279 #ifndef DWARF_CIE_DATA_ALIGNMENT
280 #ifdef STACK_GROWS_DOWNWARD
281 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
282 #else
283 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
284 #endif
285 #endif
286
287 /* A pointer to the base of a table that contains frame description
288 information for each routine. */
289 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
290
291 /* Number of elements currently allocated for fde_table. */
292 static GTY(()) unsigned fde_table_allocated;
293
294 /* Number of elements in fde_table currently in use. */
295 static GTY(()) unsigned fde_table_in_use;
296
297 /* Size (in elements) of increments by which we may expand the
298 fde_table. */
299 #define FDE_TABLE_INCREMENT 256
300
301 /* A list of call frame insns for the CIE. */
302 static GTY(()) dw_cfi_ref cie_cfi_head;
303
304 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
305 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
306 attribute that accelerates the lookup of the FDE associated
307 with the subprogram. This variable holds the table index of the FDE
308 associated with the current function (body) definition. */
309 static unsigned current_funcdef_fde;
310 #endif
311
312 struct indirect_string_node GTY(())
313 {
314 const char *str;
315 unsigned int refcount;
316 unsigned int form;
317 char *label;
318 };
319
320 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
321
322 static GTY(()) int dw2_string_counter;
323 static GTY(()) unsigned long dwarf2out_cfi_label_num;
324
325 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
326
327 /* Forward declarations for functions defined in this file. */
328
329 static char *stripattributes (const char *);
330 static const char *dwarf_cfi_name (unsigned);
331 static dw_cfi_ref new_cfi (void);
332 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
333 static void add_fde_cfi (const char *, dw_cfi_ref);
334 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
335 static void lookup_cfa (dw_cfa_location *);
336 static void reg_save (const char *, unsigned, unsigned, long);
337 static void initial_return_save (rtx);
338 static long stack_adjust_offset (rtx);
339 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
340 static void output_call_frame_info (int);
341 static void dwarf2out_stack_adjust (rtx);
342 static void queue_reg_save (const char *, rtx, long);
343 static void flush_queued_reg_saves (void);
344 static bool clobbers_queued_reg_save (rtx);
345 static void dwarf2out_frame_debug_expr (rtx, const char *);
346
347 /* Support for complex CFA locations. */
348 static void output_cfa_loc (dw_cfi_ref);
349 static void get_cfa_from_loc_descr (dw_cfa_location *,
350 struct dw_loc_descr_struct *);
351 static struct dw_loc_descr_struct *build_cfa_loc
352 (dw_cfa_location *);
353 static void def_cfa_1 (const char *, dw_cfa_location *);
354
355 /* How to start an assembler comment. */
356 #ifndef ASM_COMMENT_START
357 #define ASM_COMMENT_START ";#"
358 #endif
359
360 /* Data and reference forms for relocatable data. */
361 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
362 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
363
364 #ifndef DEBUG_FRAME_SECTION
365 #define DEBUG_FRAME_SECTION ".debug_frame"
366 #endif
367
368 #ifndef FUNC_BEGIN_LABEL
369 #define FUNC_BEGIN_LABEL "LFB"
370 #endif
371
372 #ifndef FUNC_END_LABEL
373 #define FUNC_END_LABEL "LFE"
374 #endif
375
376 #define FRAME_BEGIN_LABEL "Lframe"
377 #define CIE_AFTER_SIZE_LABEL "LSCIE"
378 #define CIE_END_LABEL "LECIE"
379 #define FDE_LABEL "LSFDE"
380 #define FDE_AFTER_SIZE_LABEL "LASFDE"
381 #define FDE_END_LABEL "LEFDE"
382 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
383 #define LINE_NUMBER_END_LABEL "LELT"
384 #define LN_PROLOG_AS_LABEL "LASLTP"
385 #define LN_PROLOG_END_LABEL "LELTP"
386 #define DIE_LABEL_PREFIX "DW"
387
388 /* The DWARF 2 CFA column which tracks the return address. Normally this
389 is the column for PC, or the first column after all of the hard
390 registers. */
391 #ifndef DWARF_FRAME_RETURN_COLUMN
392 #ifdef PC_REGNUM
393 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
394 #else
395 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
396 #endif
397 #endif
398
399 /* The mapping from gcc register number to DWARF 2 CFA column number. By
400 default, we just provide columns for all registers. */
401 #ifndef DWARF_FRAME_REGNUM
402 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
403 #endif
404
405 /* The offset from the incoming value of %sp to the top of the stack frame
406 for the current function. */
407 #ifndef INCOMING_FRAME_SP_OFFSET
408 #define INCOMING_FRAME_SP_OFFSET 0
409 #endif
410 \f
411 /* Hook used by __throw. */
412
413 rtx
414 expand_builtin_dwarf_sp_column (void)
415 {
416 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
417 }
418
419 /* Return a pointer to a copy of the section string name S with all
420 attributes stripped off, and an asterisk prepended (for assemble_name). */
421
422 static inline char *
423 stripattributes (const char *s)
424 {
425 char *stripped = xmalloc (strlen (s) + 2);
426 char *p = stripped;
427
428 *p++ = '*';
429
430 while (*s && *s != ',')
431 *p++ = *s++;
432
433 *p = '\0';
434 return stripped;
435 }
436
437 /* Generate code to initialize the register size table. */
438
439 void
440 expand_builtin_init_dwarf_reg_sizes (tree address)
441 {
442 int i;
443 enum machine_mode mode = TYPE_MODE (char_type_node);
444 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
445 rtx mem = gen_rtx_MEM (BLKmode, addr);
446 bool wrote_return_column = false;
447
448 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
449 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
450 {
451 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
452 enum machine_mode save_mode = reg_raw_mode[i];
453 HOST_WIDE_INT size;
454
455 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
456 save_mode = choose_hard_reg_mode (i, 1, true);
457 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
458 {
459 if (save_mode == VOIDmode)
460 continue;
461 wrote_return_column = true;
462 }
463 size = GET_MODE_SIZE (save_mode);
464 if (offset < 0)
465 continue;
466
467 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
468 }
469 if (! wrote_return_column)
470 {
471 enum machine_mode save_mode = Pmode;
472 HOST_WIDE_INT offset = DWARF_FRAME_RETURN_COLUMN * GET_MODE_SIZE (mode);
473 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
474 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
475 }
476 }
477
478 /* Convert a DWARF call frame info. operation to its string name */
479
480 static const char *
481 dwarf_cfi_name (unsigned int cfi_opc)
482 {
483 switch (cfi_opc)
484 {
485 case DW_CFA_advance_loc:
486 return "DW_CFA_advance_loc";
487 case DW_CFA_offset:
488 return "DW_CFA_offset";
489 case DW_CFA_restore:
490 return "DW_CFA_restore";
491 case DW_CFA_nop:
492 return "DW_CFA_nop";
493 case DW_CFA_set_loc:
494 return "DW_CFA_set_loc";
495 case DW_CFA_advance_loc1:
496 return "DW_CFA_advance_loc1";
497 case DW_CFA_advance_loc2:
498 return "DW_CFA_advance_loc2";
499 case DW_CFA_advance_loc4:
500 return "DW_CFA_advance_loc4";
501 case DW_CFA_offset_extended:
502 return "DW_CFA_offset_extended";
503 case DW_CFA_restore_extended:
504 return "DW_CFA_restore_extended";
505 case DW_CFA_undefined:
506 return "DW_CFA_undefined";
507 case DW_CFA_same_value:
508 return "DW_CFA_same_value";
509 case DW_CFA_register:
510 return "DW_CFA_register";
511 case DW_CFA_remember_state:
512 return "DW_CFA_remember_state";
513 case DW_CFA_restore_state:
514 return "DW_CFA_restore_state";
515 case DW_CFA_def_cfa:
516 return "DW_CFA_def_cfa";
517 case DW_CFA_def_cfa_register:
518 return "DW_CFA_def_cfa_register";
519 case DW_CFA_def_cfa_offset:
520 return "DW_CFA_def_cfa_offset";
521
522 /* DWARF 3 */
523 case DW_CFA_def_cfa_expression:
524 return "DW_CFA_def_cfa_expression";
525 case DW_CFA_expression:
526 return "DW_CFA_expression";
527 case DW_CFA_offset_extended_sf:
528 return "DW_CFA_offset_extended_sf";
529 case DW_CFA_def_cfa_sf:
530 return "DW_CFA_def_cfa_sf";
531 case DW_CFA_def_cfa_offset_sf:
532 return "DW_CFA_def_cfa_offset_sf";
533
534 /* SGI/MIPS specific */
535 case DW_CFA_MIPS_advance_loc8:
536 return "DW_CFA_MIPS_advance_loc8";
537
538 /* GNU extensions */
539 case DW_CFA_GNU_window_save:
540 return "DW_CFA_GNU_window_save";
541 case DW_CFA_GNU_args_size:
542 return "DW_CFA_GNU_args_size";
543 case DW_CFA_GNU_negative_offset_extended:
544 return "DW_CFA_GNU_negative_offset_extended";
545
546 default:
547 return "DW_CFA_<unknown>";
548 }
549 }
550
551 /* Return a pointer to a newly allocated Call Frame Instruction. */
552
553 static inline dw_cfi_ref
554 new_cfi (void)
555 {
556 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
557
558 cfi->dw_cfi_next = NULL;
559 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
560 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
561
562 return cfi;
563 }
564
565 /* Add a Call Frame Instruction to list of instructions. */
566
567 static inline void
568 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
569 {
570 dw_cfi_ref *p;
571
572 /* Find the end of the chain. */
573 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
574 ;
575
576 *p = cfi;
577 }
578
579 /* Generate a new label for the CFI info to refer to. */
580
581 char *
582 dwarf2out_cfi_label (void)
583 {
584 static char label[20];
585
586 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
587 ASM_OUTPUT_LABEL (asm_out_file, label);
588 return label;
589 }
590
591 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
592 or to the CIE if LABEL is NULL. */
593
594 static void
595 add_fde_cfi (const char *label, dw_cfi_ref cfi)
596 {
597 if (label)
598 {
599 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
600
601 if (*label == 0)
602 label = dwarf2out_cfi_label ();
603
604 if (fde->dw_fde_current_label == NULL
605 || strcmp (label, fde->dw_fde_current_label) != 0)
606 {
607 dw_cfi_ref xcfi;
608
609 fde->dw_fde_current_label = label = xstrdup (label);
610
611 /* Set the location counter to the new label. */
612 xcfi = new_cfi ();
613 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
614 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
615 add_cfi (&fde->dw_fde_cfi, xcfi);
616 }
617
618 add_cfi (&fde->dw_fde_cfi, cfi);
619 }
620
621 else
622 add_cfi (&cie_cfi_head, cfi);
623 }
624
625 /* Subroutine of lookup_cfa. */
626
627 static inline void
628 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
629 {
630 switch (cfi->dw_cfi_opc)
631 {
632 case DW_CFA_def_cfa_offset:
633 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
634 break;
635 case DW_CFA_def_cfa_register:
636 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
637 break;
638 case DW_CFA_def_cfa:
639 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
640 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
641 break;
642 case DW_CFA_def_cfa_expression:
643 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
644 break;
645 default:
646 break;
647 }
648 }
649
650 /* Find the previous value for the CFA. */
651
652 static void
653 lookup_cfa (dw_cfa_location *loc)
654 {
655 dw_cfi_ref cfi;
656
657 loc->reg = (unsigned long) -1;
658 loc->offset = 0;
659 loc->indirect = 0;
660 loc->base_offset = 0;
661
662 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
663 lookup_cfa_1 (cfi, loc);
664
665 if (fde_table_in_use)
666 {
667 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
668 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
669 lookup_cfa_1 (cfi, loc);
670 }
671 }
672
673 /* The current rule for calculating the DWARF2 canonical frame address. */
674 static dw_cfa_location cfa;
675
676 /* The register used for saving registers to the stack, and its offset
677 from the CFA. */
678 static dw_cfa_location cfa_store;
679
680 /* The running total of the size of arguments pushed onto the stack. */
681 static long args_size;
682
683 /* The last args_size we actually output. */
684 static long old_args_size;
685
686 /* Entry point to update the canonical frame address (CFA).
687 LABEL is passed to add_fde_cfi. The value of CFA is now to be
688 calculated from REG+OFFSET. */
689
690 void
691 dwarf2out_def_cfa (const char *label, unsigned int reg, long int offset)
692 {
693 dw_cfa_location loc;
694 loc.indirect = 0;
695 loc.base_offset = 0;
696 loc.reg = reg;
697 loc.offset = offset;
698 def_cfa_1 (label, &loc);
699 }
700
701 /* This routine does the actual work. The CFA is now calculated from
702 the dw_cfa_location structure. */
703
704 static void
705 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
706 {
707 dw_cfi_ref cfi;
708 dw_cfa_location old_cfa, loc;
709
710 cfa = *loc_p;
711 loc = *loc_p;
712
713 if (cfa_store.reg == loc.reg && loc.indirect == 0)
714 cfa_store.offset = loc.offset;
715
716 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
717 lookup_cfa (&old_cfa);
718
719 /* If nothing changed, no need to issue any call frame instructions. */
720 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
721 && loc.indirect == old_cfa.indirect
722 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
723 return;
724
725 cfi = new_cfi ();
726
727 if (loc.reg == old_cfa.reg && !loc.indirect)
728 {
729 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
730 indicating the CFA register did not change but the offset
731 did. */
732 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
733 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
734 }
735
736 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
737 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
738 && !loc.indirect)
739 {
740 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
741 indicating the CFA register has changed to <register> but the
742 offset has not changed. */
743 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
744 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
745 }
746 #endif
747
748 else if (loc.indirect == 0)
749 {
750 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
751 indicating the CFA register has changed to <register> with
752 the specified offset. */
753 cfi->dw_cfi_opc = DW_CFA_def_cfa;
754 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
755 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
756 }
757 else
758 {
759 /* Construct a DW_CFA_def_cfa_expression instruction to
760 calculate the CFA using a full location expression since no
761 register-offset pair is available. */
762 struct dw_loc_descr_struct *loc_list;
763
764 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
765 loc_list = build_cfa_loc (&loc);
766 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
767 }
768
769 add_fde_cfi (label, cfi);
770 }
771
772 /* Add the CFI for saving a register. REG is the CFA column number.
773 LABEL is passed to add_fde_cfi.
774 If SREG is -1, the register is saved at OFFSET from the CFA;
775 otherwise it is saved in SREG. */
776
777 static void
778 reg_save (const char *label, unsigned int reg, unsigned int sreg, long int offset)
779 {
780 dw_cfi_ref cfi = new_cfi ();
781
782 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
783
784 /* The following comparison is correct. -1 is used to indicate that
785 the value isn't a register number. */
786 if (sreg == (unsigned int) -1)
787 {
788 if (reg & ~0x3f)
789 /* The register number won't fit in 6 bits, so we have to use
790 the long form. */
791 cfi->dw_cfi_opc = DW_CFA_offset_extended;
792 else
793 cfi->dw_cfi_opc = DW_CFA_offset;
794
795 #ifdef ENABLE_CHECKING
796 {
797 /* If we get an offset that is not a multiple of
798 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
799 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
800 description. */
801 long check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
802
803 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
804 abort ();
805 }
806 #endif
807 offset /= DWARF_CIE_DATA_ALIGNMENT;
808 if (offset < 0)
809 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
810
811 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
812 }
813 else if (sreg == reg)
814 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
815 return;
816 else
817 {
818 cfi->dw_cfi_opc = DW_CFA_register;
819 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
820 }
821
822 add_fde_cfi (label, cfi);
823 }
824
825 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
826 This CFI tells the unwinder that it needs to restore the window registers
827 from the previous frame's window save area.
828
829 ??? Perhaps we should note in the CIE where windows are saved (instead of
830 assuming 0(cfa)) and what registers are in the window. */
831
832 void
833 dwarf2out_window_save (const char *label)
834 {
835 dw_cfi_ref cfi = new_cfi ();
836
837 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
838 add_fde_cfi (label, cfi);
839 }
840
841 /* Add a CFI to update the running total of the size of arguments
842 pushed onto the stack. */
843
844 void
845 dwarf2out_args_size (const char *label, long int size)
846 {
847 dw_cfi_ref cfi;
848
849 if (size == old_args_size)
850 return;
851
852 old_args_size = size;
853
854 cfi = new_cfi ();
855 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
856 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
857 add_fde_cfi (label, cfi);
858 }
859
860 /* Entry point for saving a register to the stack. REG is the GCC register
861 number. LABEL and OFFSET are passed to reg_save. */
862
863 void
864 dwarf2out_reg_save (const char *label, unsigned int reg, long int offset)
865 {
866 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
867 }
868
869 /* Entry point for saving the return address in the stack.
870 LABEL and OFFSET are passed to reg_save. */
871
872 void
873 dwarf2out_return_save (const char *label, long int offset)
874 {
875 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
876 }
877
878 /* Entry point for saving the return address in a register.
879 LABEL and SREG are passed to reg_save. */
880
881 void
882 dwarf2out_return_reg (const char *label, unsigned int sreg)
883 {
884 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
885 }
886
887 /* Record the initial position of the return address. RTL is
888 INCOMING_RETURN_ADDR_RTX. */
889
890 static void
891 initial_return_save (rtx rtl)
892 {
893 unsigned int reg = (unsigned int) -1;
894 HOST_WIDE_INT offset = 0;
895
896 switch (GET_CODE (rtl))
897 {
898 case REG:
899 /* RA is in a register. */
900 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
901 break;
902
903 case MEM:
904 /* RA is on the stack. */
905 rtl = XEXP (rtl, 0);
906 switch (GET_CODE (rtl))
907 {
908 case REG:
909 if (REGNO (rtl) != STACK_POINTER_REGNUM)
910 abort ();
911 offset = 0;
912 break;
913
914 case PLUS:
915 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
916 abort ();
917 offset = INTVAL (XEXP (rtl, 1));
918 break;
919
920 case MINUS:
921 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
922 abort ();
923 offset = -INTVAL (XEXP (rtl, 1));
924 break;
925
926 default:
927 abort ();
928 }
929
930 break;
931
932 case PLUS:
933 /* The return address is at some offset from any value we can
934 actually load. For instance, on the SPARC it is in %i7+8. Just
935 ignore the offset for now; it doesn't matter for unwinding frames. */
936 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
937 abort ();
938 initial_return_save (XEXP (rtl, 0));
939 return;
940
941 default:
942 abort ();
943 }
944
945 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
946 }
947
948 /* Given a SET, calculate the amount of stack adjustment it
949 contains. */
950
951 static long
952 stack_adjust_offset (rtx pattern)
953 {
954 rtx src = SET_SRC (pattern);
955 rtx dest = SET_DEST (pattern);
956 HOST_WIDE_INT offset = 0;
957 enum rtx_code code;
958
959 if (dest == stack_pointer_rtx)
960 {
961 /* (set (reg sp) (plus (reg sp) (const_int))) */
962 code = GET_CODE (src);
963 if (! (code == PLUS || code == MINUS)
964 || XEXP (src, 0) != stack_pointer_rtx
965 || GET_CODE (XEXP (src, 1)) != CONST_INT)
966 return 0;
967
968 offset = INTVAL (XEXP (src, 1));
969 if (code == PLUS)
970 offset = -offset;
971 }
972 else if (GET_CODE (dest) == MEM)
973 {
974 /* (set (mem (pre_dec (reg sp))) (foo)) */
975 src = XEXP (dest, 0);
976 code = GET_CODE (src);
977
978 switch (code)
979 {
980 case PRE_MODIFY:
981 case POST_MODIFY:
982 if (XEXP (src, 0) == stack_pointer_rtx)
983 {
984 rtx val = XEXP (XEXP (src, 1), 1);
985 /* We handle only adjustments by constant amount. */
986 if (GET_CODE (XEXP (src, 1)) != PLUS ||
987 GET_CODE (val) != CONST_INT)
988 abort ();
989 offset = -INTVAL (val);
990 break;
991 }
992 return 0;
993
994 case PRE_DEC:
995 case POST_DEC:
996 if (XEXP (src, 0) == stack_pointer_rtx)
997 {
998 offset = GET_MODE_SIZE (GET_MODE (dest));
999 break;
1000 }
1001 return 0;
1002
1003 case PRE_INC:
1004 case POST_INC:
1005 if (XEXP (src, 0) == stack_pointer_rtx)
1006 {
1007 offset = -GET_MODE_SIZE (GET_MODE (dest));
1008 break;
1009 }
1010 return 0;
1011
1012 default:
1013 return 0;
1014 }
1015 }
1016 else
1017 return 0;
1018
1019 return offset;
1020 }
1021
1022 /* Check INSN to see if it looks like a push or a stack adjustment, and
1023 make a note of it if it does. EH uses this information to find out how
1024 much extra space it needs to pop off the stack. */
1025
1026 static void
1027 dwarf2out_stack_adjust (rtx insn)
1028 {
1029 HOST_WIDE_INT offset;
1030 const char *label;
1031 int i;
1032
1033 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1034 {
1035 /* Extract the size of the args from the CALL rtx itself. */
1036 insn = PATTERN (insn);
1037 if (GET_CODE (insn) == PARALLEL)
1038 insn = XVECEXP (insn, 0, 0);
1039 if (GET_CODE (insn) == SET)
1040 insn = SET_SRC (insn);
1041 if (GET_CODE (insn) != CALL)
1042 abort ();
1043
1044 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1045 return;
1046 }
1047
1048 /* If only calls can throw, and we have a frame pointer,
1049 save up adjustments until we see the CALL_INSN. */
1050 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1051 return;
1052
1053 if (GET_CODE (insn) == BARRIER)
1054 {
1055 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1056 the compiler will have already emitted a stack adjustment, but
1057 doesn't bother for calls to noreturn functions. */
1058 #ifdef STACK_GROWS_DOWNWARD
1059 offset = -args_size;
1060 #else
1061 offset = args_size;
1062 #endif
1063 }
1064 else if (GET_CODE (PATTERN (insn)) == SET)
1065 offset = stack_adjust_offset (PATTERN (insn));
1066 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1067 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1068 {
1069 /* There may be stack adjustments inside compound insns. Search
1070 for them. */
1071 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1072 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1073 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1074 }
1075 else
1076 return;
1077
1078 if (offset == 0)
1079 return;
1080
1081 if (cfa.reg == STACK_POINTER_REGNUM)
1082 cfa.offset += offset;
1083
1084 #ifndef STACK_GROWS_DOWNWARD
1085 offset = -offset;
1086 #endif
1087
1088 args_size += offset;
1089 if (args_size < 0)
1090 args_size = 0;
1091
1092 label = dwarf2out_cfi_label ();
1093 def_cfa_1 (label, &cfa);
1094 dwarf2out_args_size (label, args_size);
1095 }
1096
1097 #endif
1098
1099 /* We delay emitting a register save until either (a) we reach the end
1100 of the prologue or (b) the register is clobbered. This clusters
1101 register saves so that there are fewer pc advances. */
1102
1103 struct queued_reg_save GTY(())
1104 {
1105 struct queued_reg_save *next;
1106 rtx reg;
1107 long cfa_offset;
1108 };
1109
1110 static GTY(()) struct queued_reg_save *queued_reg_saves;
1111
1112 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1113 static const char *last_reg_save_label;
1114
1115 static void
1116 queue_reg_save (const char *label, rtx reg, long int offset)
1117 {
1118 struct queued_reg_save *q = ggc_alloc (sizeof (*q));
1119
1120 q->next = queued_reg_saves;
1121 q->reg = reg;
1122 q->cfa_offset = offset;
1123 queued_reg_saves = q;
1124
1125 last_reg_save_label = label;
1126 }
1127
1128 static void
1129 flush_queued_reg_saves (void)
1130 {
1131 struct queued_reg_save *q, *next;
1132
1133 for (q = queued_reg_saves; q; q = next)
1134 {
1135 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1136 next = q->next;
1137 }
1138
1139 queued_reg_saves = NULL;
1140 last_reg_save_label = NULL;
1141 }
1142
1143 static bool
1144 clobbers_queued_reg_save (rtx insn)
1145 {
1146 struct queued_reg_save *q;
1147
1148 for (q = queued_reg_saves; q; q = q->next)
1149 if (modified_in_p (q->reg, insn))
1150 return true;
1151
1152 return false;
1153 }
1154
1155
1156 /* A temporary register holding an integral value used in adjusting SP
1157 or setting up the store_reg. The "offset" field holds the integer
1158 value, not an offset. */
1159 static dw_cfa_location cfa_temp;
1160
1161 /* Record call frame debugging information for an expression EXPR,
1162 which either sets SP or FP (adjusting how we calculate the frame
1163 address) or saves a register to the stack. LABEL indicates the
1164 address of EXPR.
1165
1166 This function encodes a state machine mapping rtxes to actions on
1167 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1168 users need not read the source code.
1169
1170 The High-Level Picture
1171
1172 Changes in the register we use to calculate the CFA: Currently we
1173 assume that if you copy the CFA register into another register, we
1174 should take the other one as the new CFA register; this seems to
1175 work pretty well. If it's wrong for some target, it's simple
1176 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1177
1178 Changes in the register we use for saving registers to the stack:
1179 This is usually SP, but not always. Again, we deduce that if you
1180 copy SP into another register (and SP is not the CFA register),
1181 then the new register is the one we will be using for register
1182 saves. This also seems to work.
1183
1184 Register saves: There's not much guesswork about this one; if
1185 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1186 register save, and the register used to calculate the destination
1187 had better be the one we think we're using for this purpose.
1188
1189 Except: If the register being saved is the CFA register, and the
1190 offset is nonzero, we are saving the CFA, so we assume we have to
1191 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1192 the intent is to save the value of SP from the previous frame.
1193
1194 Invariants / Summaries of Rules
1195
1196 cfa current rule for calculating the CFA. It usually
1197 consists of a register and an offset.
1198 cfa_store register used by prologue code to save things to the stack
1199 cfa_store.offset is the offset from the value of
1200 cfa_store.reg to the actual CFA
1201 cfa_temp register holding an integral value. cfa_temp.offset
1202 stores the value, which will be used to adjust the
1203 stack pointer. cfa_temp is also used like cfa_store,
1204 to track stores to the stack via fp or a temp reg.
1205
1206 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1207 with cfa.reg as the first operand changes the cfa.reg and its
1208 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1209 cfa_temp.offset.
1210
1211 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1212 expression yielding a constant. This sets cfa_temp.reg
1213 and cfa_temp.offset.
1214
1215 Rule 5: Create a new register cfa_store used to save items to the
1216 stack.
1217
1218 Rules 10-14: Save a register to the stack. Define offset as the
1219 difference of the original location and cfa_store's
1220 location (or cfa_temp's location if cfa_temp is used).
1221
1222 The Rules
1223
1224 "{a,b}" indicates a choice of a xor b.
1225 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1226
1227 Rule 1:
1228 (set <reg1> <reg2>:cfa.reg)
1229 effects: cfa.reg = <reg1>
1230 cfa.offset unchanged
1231 cfa_temp.reg = <reg1>
1232 cfa_temp.offset = cfa.offset
1233
1234 Rule 2:
1235 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1236 {<const_int>,<reg>:cfa_temp.reg}))
1237 effects: cfa.reg = sp if fp used
1238 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1239 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1240 if cfa_store.reg==sp
1241
1242 Rule 3:
1243 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1244 effects: cfa.reg = fp
1245 cfa_offset += +/- <const_int>
1246
1247 Rule 4:
1248 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1249 constraints: <reg1> != fp
1250 <reg1> != sp
1251 effects: cfa.reg = <reg1>
1252 cfa_temp.reg = <reg1>
1253 cfa_temp.offset = cfa.offset
1254
1255 Rule 5:
1256 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1257 constraints: <reg1> != fp
1258 <reg1> != sp
1259 effects: cfa_store.reg = <reg1>
1260 cfa_store.offset = cfa.offset - cfa_temp.offset
1261
1262 Rule 6:
1263 (set <reg> <const_int>)
1264 effects: cfa_temp.reg = <reg>
1265 cfa_temp.offset = <const_int>
1266
1267 Rule 7:
1268 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1269 effects: cfa_temp.reg = <reg1>
1270 cfa_temp.offset |= <const_int>
1271
1272 Rule 8:
1273 (set <reg> (high <exp>))
1274 effects: none
1275
1276 Rule 9:
1277 (set <reg> (lo_sum <exp> <const_int>))
1278 effects: cfa_temp.reg = <reg>
1279 cfa_temp.offset = <const_int>
1280
1281 Rule 10:
1282 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1283 effects: cfa_store.offset -= <const_int>
1284 cfa.offset = cfa_store.offset if cfa.reg == sp
1285 cfa.reg = sp
1286 cfa.base_offset = -cfa_store.offset
1287
1288 Rule 11:
1289 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1290 effects: cfa_store.offset += -/+ mode_size(mem)
1291 cfa.offset = cfa_store.offset if cfa.reg == sp
1292 cfa.reg = sp
1293 cfa.base_offset = -cfa_store.offset
1294
1295 Rule 12:
1296 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1297
1298 <reg2>)
1299 effects: cfa.reg = <reg1>
1300 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1301
1302 Rule 13:
1303 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1304 effects: cfa.reg = <reg1>
1305 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1306
1307 Rule 14:
1308 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1309 effects: cfa.reg = <reg1>
1310 cfa.base_offset = -cfa_temp.offset
1311 cfa_temp.offset -= mode_size(mem) */
1312
1313 static void
1314 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1315 {
1316 rtx src, dest;
1317 HOST_WIDE_INT offset;
1318
1319 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1320 the PARALLEL independently. The first element is always processed if
1321 it is a SET. This is for backward compatibility. Other elements
1322 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1323 flag is set in them. */
1324 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1325 {
1326 int par_index;
1327 int limit = XVECLEN (expr, 0);
1328
1329 for (par_index = 0; par_index < limit; par_index++)
1330 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1331 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1332 || par_index == 0))
1333 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1334
1335 return;
1336 }
1337
1338 if (GET_CODE (expr) != SET)
1339 abort ();
1340
1341 src = SET_SRC (expr);
1342 dest = SET_DEST (expr);
1343
1344 switch (GET_CODE (dest))
1345 {
1346 case REG:
1347 /* Rule 1 */
1348 /* Update the CFA rule wrt SP or FP. Make sure src is
1349 relative to the current CFA register. */
1350 switch (GET_CODE (src))
1351 {
1352 /* Setting FP from SP. */
1353 case REG:
1354 if (cfa.reg == (unsigned) REGNO (src))
1355 /* OK. */
1356 ;
1357 else
1358 abort ();
1359
1360 /* We used to require that dest be either SP or FP, but the
1361 ARM copies SP to a temporary register, and from there to
1362 FP. So we just rely on the backends to only set
1363 RTX_FRAME_RELATED_P on appropriate insns. */
1364 cfa.reg = REGNO (dest);
1365 cfa_temp.reg = cfa.reg;
1366 cfa_temp.offset = cfa.offset;
1367 break;
1368
1369 case PLUS:
1370 case MINUS:
1371 case LO_SUM:
1372 if (dest == stack_pointer_rtx)
1373 {
1374 /* Rule 2 */
1375 /* Adjusting SP. */
1376 switch (GET_CODE (XEXP (src, 1)))
1377 {
1378 case CONST_INT:
1379 offset = INTVAL (XEXP (src, 1));
1380 break;
1381 case REG:
1382 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1383 abort ();
1384 offset = cfa_temp.offset;
1385 break;
1386 default:
1387 abort ();
1388 }
1389
1390 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1391 {
1392 /* Restoring SP from FP in the epilogue. */
1393 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1394 abort ();
1395 cfa.reg = STACK_POINTER_REGNUM;
1396 }
1397 else if (GET_CODE (src) == LO_SUM)
1398 /* Assume we've set the source reg of the LO_SUM from sp. */
1399 ;
1400 else if (XEXP (src, 0) != stack_pointer_rtx)
1401 abort ();
1402
1403 if (GET_CODE (src) != MINUS)
1404 offset = -offset;
1405 if (cfa.reg == STACK_POINTER_REGNUM)
1406 cfa.offset += offset;
1407 if (cfa_store.reg == STACK_POINTER_REGNUM)
1408 cfa_store.offset += offset;
1409 }
1410 else if (dest == hard_frame_pointer_rtx)
1411 {
1412 /* Rule 3 */
1413 /* Either setting the FP from an offset of the SP,
1414 or adjusting the FP */
1415 if (! frame_pointer_needed)
1416 abort ();
1417
1418 if (GET_CODE (XEXP (src, 0)) == REG
1419 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1420 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1421 {
1422 offset = INTVAL (XEXP (src, 1));
1423 if (GET_CODE (src) != MINUS)
1424 offset = -offset;
1425 cfa.offset += offset;
1426 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1427 }
1428 else
1429 abort ();
1430 }
1431 else
1432 {
1433 if (GET_CODE (src) == MINUS)
1434 abort ();
1435
1436 /* Rule 4 */
1437 if (GET_CODE (XEXP (src, 0)) == REG
1438 && REGNO (XEXP (src, 0)) == cfa.reg
1439 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1440 {
1441 /* Setting a temporary CFA register that will be copied
1442 into the FP later on. */
1443 offset = - INTVAL (XEXP (src, 1));
1444 cfa.offset += offset;
1445 cfa.reg = REGNO (dest);
1446 /* Or used to save regs to the stack. */
1447 cfa_temp.reg = cfa.reg;
1448 cfa_temp.offset = cfa.offset;
1449 }
1450
1451 /* Rule 5 */
1452 else if (GET_CODE (XEXP (src, 0)) == REG
1453 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1454 && XEXP (src, 1) == stack_pointer_rtx)
1455 {
1456 /* Setting a scratch register that we will use instead
1457 of SP for saving registers to the stack. */
1458 if (cfa.reg != STACK_POINTER_REGNUM)
1459 abort ();
1460 cfa_store.reg = REGNO (dest);
1461 cfa_store.offset = cfa.offset - cfa_temp.offset;
1462 }
1463
1464 /* Rule 9 */
1465 else if (GET_CODE (src) == LO_SUM
1466 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1467 {
1468 cfa_temp.reg = REGNO (dest);
1469 cfa_temp.offset = INTVAL (XEXP (src, 1));
1470 }
1471 else
1472 abort ();
1473 }
1474 break;
1475
1476 /* Rule 6 */
1477 case CONST_INT:
1478 cfa_temp.reg = REGNO (dest);
1479 cfa_temp.offset = INTVAL (src);
1480 break;
1481
1482 /* Rule 7 */
1483 case IOR:
1484 if (GET_CODE (XEXP (src, 0)) != REG
1485 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1486 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1487 abort ();
1488
1489 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1490 cfa_temp.reg = REGNO (dest);
1491 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1492 break;
1493
1494 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1495 which will fill in all of the bits. */
1496 /* Rule 8 */
1497 case HIGH:
1498 break;
1499
1500 default:
1501 abort ();
1502 }
1503
1504 def_cfa_1 (label, &cfa);
1505 break;
1506
1507 case MEM:
1508 if (GET_CODE (src) != REG)
1509 abort ();
1510
1511 /* Saving a register to the stack. Make sure dest is relative to the
1512 CFA register. */
1513 switch (GET_CODE (XEXP (dest, 0)))
1514 {
1515 /* Rule 10 */
1516 /* With a push. */
1517 case PRE_MODIFY:
1518 /* We can't handle variable size modifications. */
1519 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1520 abort ();
1521 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1522
1523 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1524 || cfa_store.reg != STACK_POINTER_REGNUM)
1525 abort ();
1526
1527 cfa_store.offset += offset;
1528 if (cfa.reg == STACK_POINTER_REGNUM)
1529 cfa.offset = cfa_store.offset;
1530
1531 offset = -cfa_store.offset;
1532 break;
1533
1534 /* Rule 11 */
1535 case PRE_INC:
1536 case PRE_DEC:
1537 offset = GET_MODE_SIZE (GET_MODE (dest));
1538 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1539 offset = -offset;
1540
1541 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1542 || cfa_store.reg != STACK_POINTER_REGNUM)
1543 abort ();
1544
1545 cfa_store.offset += offset;
1546 if (cfa.reg == STACK_POINTER_REGNUM)
1547 cfa.offset = cfa_store.offset;
1548
1549 offset = -cfa_store.offset;
1550 break;
1551
1552 /* Rule 12 */
1553 /* With an offset. */
1554 case PLUS:
1555 case MINUS:
1556 case LO_SUM:
1557 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1558 abort ();
1559 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1560 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1561 offset = -offset;
1562
1563 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1564 offset -= cfa_store.offset;
1565 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1566 offset -= cfa_temp.offset;
1567 else
1568 abort ();
1569 break;
1570
1571 /* Rule 13 */
1572 /* Without an offset. */
1573 case REG:
1574 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1575 offset = -cfa_store.offset;
1576 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1577 offset = -cfa_temp.offset;
1578 else
1579 abort ();
1580 break;
1581
1582 /* Rule 14 */
1583 case POST_INC:
1584 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1585 abort ();
1586 offset = -cfa_temp.offset;
1587 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1588 break;
1589
1590 default:
1591 abort ();
1592 }
1593
1594 if (REGNO (src) != STACK_POINTER_REGNUM
1595 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1596 && (unsigned) REGNO (src) == cfa.reg)
1597 {
1598 /* We're storing the current CFA reg into the stack. */
1599
1600 if (cfa.offset == 0)
1601 {
1602 /* If the source register is exactly the CFA, assume
1603 we're saving SP like any other register; this happens
1604 on the ARM. */
1605 def_cfa_1 (label, &cfa);
1606 queue_reg_save (label, stack_pointer_rtx, offset);
1607 break;
1608 }
1609 else
1610 {
1611 /* Otherwise, we'll need to look in the stack to
1612 calculate the CFA. */
1613 rtx x = XEXP (dest, 0);
1614
1615 if (GET_CODE (x) != REG)
1616 x = XEXP (x, 0);
1617 if (GET_CODE (x) != REG)
1618 abort ();
1619
1620 cfa.reg = REGNO (x);
1621 cfa.base_offset = offset;
1622 cfa.indirect = 1;
1623 def_cfa_1 (label, &cfa);
1624 break;
1625 }
1626 }
1627
1628 def_cfa_1 (label, &cfa);
1629 queue_reg_save (label, src, offset);
1630 break;
1631
1632 default:
1633 abort ();
1634 }
1635 }
1636
1637 /* Record call frame debugging information for INSN, which either
1638 sets SP or FP (adjusting how we calculate the frame address) or saves a
1639 register to the stack. If INSN is NULL_RTX, initialize our state. */
1640
1641 void
1642 dwarf2out_frame_debug (rtx insn)
1643 {
1644 const char *label;
1645 rtx src;
1646
1647 if (insn == NULL_RTX)
1648 {
1649 /* Flush any queued register saves. */
1650 flush_queued_reg_saves ();
1651
1652 /* Set up state for generating call frame debug info. */
1653 lookup_cfa (&cfa);
1654 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1655 abort ();
1656
1657 cfa.reg = STACK_POINTER_REGNUM;
1658 cfa_store = cfa;
1659 cfa_temp.reg = -1;
1660 cfa_temp.offset = 0;
1661 return;
1662 }
1663
1664 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1665 flush_queued_reg_saves ();
1666
1667 if (! RTX_FRAME_RELATED_P (insn))
1668 {
1669 if (!ACCUMULATE_OUTGOING_ARGS)
1670 dwarf2out_stack_adjust (insn);
1671
1672 return;
1673 }
1674
1675 label = dwarf2out_cfi_label ();
1676 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1677 if (src)
1678 insn = XEXP (src, 0);
1679 else
1680 insn = PATTERN (insn);
1681
1682 dwarf2out_frame_debug_expr (insn, label);
1683 }
1684
1685 #endif
1686
1687 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1688 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1689 (enum dwarf_call_frame_info cfi);
1690
1691 static enum dw_cfi_oprnd_type
1692 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1693 {
1694 switch (cfi)
1695 {
1696 case DW_CFA_nop:
1697 case DW_CFA_GNU_window_save:
1698 return dw_cfi_oprnd_unused;
1699
1700 case DW_CFA_set_loc:
1701 case DW_CFA_advance_loc1:
1702 case DW_CFA_advance_loc2:
1703 case DW_CFA_advance_loc4:
1704 case DW_CFA_MIPS_advance_loc8:
1705 return dw_cfi_oprnd_addr;
1706
1707 case DW_CFA_offset:
1708 case DW_CFA_offset_extended:
1709 case DW_CFA_def_cfa:
1710 case DW_CFA_offset_extended_sf:
1711 case DW_CFA_def_cfa_sf:
1712 case DW_CFA_restore_extended:
1713 case DW_CFA_undefined:
1714 case DW_CFA_same_value:
1715 case DW_CFA_def_cfa_register:
1716 case DW_CFA_register:
1717 return dw_cfi_oprnd_reg_num;
1718
1719 case DW_CFA_def_cfa_offset:
1720 case DW_CFA_GNU_args_size:
1721 case DW_CFA_def_cfa_offset_sf:
1722 return dw_cfi_oprnd_offset;
1723
1724 case DW_CFA_def_cfa_expression:
1725 case DW_CFA_expression:
1726 return dw_cfi_oprnd_loc;
1727
1728 default:
1729 abort ();
1730 }
1731 }
1732
1733 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1734 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1735 (enum dwarf_call_frame_info cfi);
1736
1737 static enum dw_cfi_oprnd_type
1738 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1739 {
1740 switch (cfi)
1741 {
1742 case DW_CFA_def_cfa:
1743 case DW_CFA_def_cfa_sf:
1744 case DW_CFA_offset:
1745 case DW_CFA_offset_extended_sf:
1746 case DW_CFA_offset_extended:
1747 return dw_cfi_oprnd_offset;
1748
1749 case DW_CFA_register:
1750 return dw_cfi_oprnd_reg_num;
1751
1752 default:
1753 return dw_cfi_oprnd_unused;
1754 }
1755 }
1756
1757 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1758
1759 /* Output a Call Frame Information opcode and its operand(s). */
1760
1761 static void
1762 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1763 {
1764 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1765 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1766 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1767 "DW_CFA_advance_loc 0x%lx",
1768 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1769 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1770 {
1771 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1772 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1773 "DW_CFA_offset, column 0x%lx",
1774 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1775 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1776 }
1777 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1778 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1779 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1780 "DW_CFA_restore, column 0x%lx",
1781 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1782 else
1783 {
1784 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1785 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1786
1787 switch (cfi->dw_cfi_opc)
1788 {
1789 case DW_CFA_set_loc:
1790 if (for_eh)
1791 dw2_asm_output_encoded_addr_rtx (
1792 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1793 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1794 NULL);
1795 else
1796 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1797 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1798 break;
1799
1800 case DW_CFA_advance_loc1:
1801 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1802 fde->dw_fde_current_label, NULL);
1803 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1804 break;
1805
1806 case DW_CFA_advance_loc2:
1807 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1808 fde->dw_fde_current_label, NULL);
1809 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1810 break;
1811
1812 case DW_CFA_advance_loc4:
1813 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1814 fde->dw_fde_current_label, NULL);
1815 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1816 break;
1817
1818 case DW_CFA_MIPS_advance_loc8:
1819 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1820 fde->dw_fde_current_label, NULL);
1821 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1822 break;
1823
1824 case DW_CFA_offset_extended:
1825 case DW_CFA_def_cfa:
1826 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1827 NULL);
1828 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1829 break;
1830
1831 case DW_CFA_offset_extended_sf:
1832 case DW_CFA_def_cfa_sf:
1833 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1834 NULL);
1835 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1836 break;
1837
1838 case DW_CFA_restore_extended:
1839 case DW_CFA_undefined:
1840 case DW_CFA_same_value:
1841 case DW_CFA_def_cfa_register:
1842 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1843 NULL);
1844 break;
1845
1846 case DW_CFA_register:
1847 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1848 NULL);
1849 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_reg_num,
1850 NULL);
1851 break;
1852
1853 case DW_CFA_def_cfa_offset:
1854 case DW_CFA_GNU_args_size:
1855 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1856 break;
1857
1858 case DW_CFA_def_cfa_offset_sf:
1859 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1860 break;
1861
1862 case DW_CFA_GNU_window_save:
1863 break;
1864
1865 case DW_CFA_def_cfa_expression:
1866 case DW_CFA_expression:
1867 output_cfa_loc (cfi);
1868 break;
1869
1870 case DW_CFA_GNU_negative_offset_extended:
1871 /* Obsoleted by DW_CFA_offset_extended_sf. */
1872 abort ();
1873
1874 default:
1875 break;
1876 }
1877 }
1878 }
1879
1880 /* Output the call frame information used to used to record information
1881 that relates to calculating the frame pointer, and records the
1882 location of saved registers. */
1883
1884 static void
1885 output_call_frame_info (int for_eh)
1886 {
1887 unsigned int i;
1888 dw_fde_ref fde;
1889 dw_cfi_ref cfi;
1890 char l1[20], l2[20], section_start_label[20];
1891 bool any_lsda_needed = false;
1892 char augmentation[6];
1893 int augmentation_size;
1894 int fde_encoding = DW_EH_PE_absptr;
1895 int per_encoding = DW_EH_PE_absptr;
1896 int lsda_encoding = DW_EH_PE_absptr;
1897
1898 /* Don't emit a CIE if there won't be any FDEs. */
1899 if (fde_table_in_use == 0)
1900 return;
1901
1902 /* If we don't have any functions we'll want to unwind out of, don't
1903 emit any EH unwind information. Note that if exceptions aren't
1904 enabled, we won't have collected nothrow information, and if we
1905 asked for asynchronous tables, we always want this info. */
1906 if (for_eh)
1907 {
1908 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
1909
1910 for (i = 0; i < fde_table_in_use; i++)
1911 if (fde_table[i].uses_eh_lsda)
1912 any_eh_needed = any_lsda_needed = true;
1913 else if (! fde_table[i].nothrow
1914 && ! fde_table[i].all_throwers_are_sibcalls)
1915 any_eh_needed = true;
1916
1917 if (! any_eh_needed)
1918 return;
1919 }
1920
1921 /* We're going to be generating comments, so turn on app. */
1922 if (flag_debug_asm)
1923 app_enable ();
1924
1925 if (for_eh)
1926 (*targetm.asm_out.eh_frame_section) ();
1927 else
1928 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1929
1930 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1931 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1932
1933 /* Output the CIE. */
1934 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1935 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1936 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1937 "Length of Common Information Entry");
1938 ASM_OUTPUT_LABEL (asm_out_file, l1);
1939
1940 /* Now that the CIE pointer is PC-relative for EH,
1941 use 0 to identify the CIE. */
1942 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1943 (for_eh ? 0 : DW_CIE_ID),
1944 "CIE Identifier Tag");
1945
1946 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1947
1948 augmentation[0] = 0;
1949 augmentation_size = 0;
1950 if (for_eh)
1951 {
1952 char *p;
1953
1954 /* Augmentation:
1955 z Indicates that a uleb128 is present to size the
1956 augmentation section.
1957 L Indicates the encoding (and thus presence) of
1958 an LSDA pointer in the FDE augmentation.
1959 R Indicates a non-default pointer encoding for
1960 FDE code pointers.
1961 P Indicates the presence of an encoding + language
1962 personality routine in the CIE augmentation. */
1963
1964 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1965 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
1966 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1967
1968 p = augmentation + 1;
1969 if (eh_personality_libfunc)
1970 {
1971 *p++ = 'P';
1972 augmentation_size += 1 + size_of_encoded_value (per_encoding);
1973 }
1974 if (any_lsda_needed)
1975 {
1976 *p++ = 'L';
1977 augmentation_size += 1;
1978 }
1979 if (fde_encoding != DW_EH_PE_absptr)
1980 {
1981 *p++ = 'R';
1982 augmentation_size += 1;
1983 }
1984 if (p > augmentation + 1)
1985 {
1986 augmentation[0] = 'z';
1987 *p = '\0';
1988 }
1989
1990 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
1991 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
1992 {
1993 int offset = ( 4 /* Length */
1994 + 4 /* CIE Id */
1995 + 1 /* CIE version */
1996 + strlen (augmentation) + 1 /* Augmentation */
1997 + size_of_uleb128 (1) /* Code alignment */
1998 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
1999 + 1 /* RA column */
2000 + 1 /* Augmentation size */
2001 + 1 /* Personality encoding */ );
2002 int pad = -offset & (PTR_SIZE - 1);
2003
2004 augmentation_size += pad;
2005
2006 /* Augmentations should be small, so there's scarce need to
2007 iterate for a solution. Die if we exceed one uleb128 byte. */
2008 if (size_of_uleb128 (augmentation_size) != 1)
2009 abort ();
2010 }
2011 }
2012
2013 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2014 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2015 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2016 "CIE Data Alignment Factor");
2017 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2018
2019 if (augmentation[0])
2020 {
2021 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2022 if (eh_personality_libfunc)
2023 {
2024 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2025 eh_data_format_name (per_encoding));
2026 dw2_asm_output_encoded_addr_rtx (per_encoding,
2027 eh_personality_libfunc, NULL);
2028 }
2029
2030 if (any_lsda_needed)
2031 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2032 eh_data_format_name (lsda_encoding));
2033
2034 if (fde_encoding != DW_EH_PE_absptr)
2035 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2036 eh_data_format_name (fde_encoding));
2037 }
2038
2039 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2040 output_cfi (cfi, NULL, for_eh);
2041
2042 /* Pad the CIE out to an address sized boundary. */
2043 ASM_OUTPUT_ALIGN (asm_out_file,
2044 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2045 ASM_OUTPUT_LABEL (asm_out_file, l2);
2046
2047 /* Loop through all of the FDE's. */
2048 for (i = 0; i < fde_table_in_use; i++)
2049 {
2050 fde = &fde_table[i];
2051
2052 /* Don't emit EH unwind info for leaf functions that don't need it. */
2053 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2054 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2055 && !fde->uses_eh_lsda)
2056 continue;
2057
2058 (*targetm.asm_out.internal_label) (asm_out_file, FDE_LABEL, for_eh + i * 2);
2059 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2060 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2061 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2062 "FDE Length");
2063 ASM_OUTPUT_LABEL (asm_out_file, l1);
2064
2065 if (for_eh)
2066 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2067 else
2068 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2069 "FDE CIE offset");
2070
2071 if (for_eh)
2072 {
2073 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2074 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
2075 "FDE initial location");
2076 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2077 fde->dw_fde_end, fde->dw_fde_begin,
2078 "FDE address range");
2079 }
2080 else
2081 {
2082 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2083 "FDE initial location");
2084 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2085 fde->dw_fde_end, fde->dw_fde_begin,
2086 "FDE address range");
2087 }
2088
2089 if (augmentation[0])
2090 {
2091 if (any_lsda_needed)
2092 {
2093 int size = size_of_encoded_value (lsda_encoding);
2094
2095 if (lsda_encoding == DW_EH_PE_aligned)
2096 {
2097 int offset = ( 4 /* Length */
2098 + 4 /* CIE offset */
2099 + 2 * size_of_encoded_value (fde_encoding)
2100 + 1 /* Augmentation size */ );
2101 int pad = -offset & (PTR_SIZE - 1);
2102
2103 size += pad;
2104 if (size_of_uleb128 (size) != 1)
2105 abort ();
2106 }
2107
2108 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2109
2110 if (fde->uses_eh_lsda)
2111 {
2112 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2113 fde->funcdef_number);
2114 dw2_asm_output_encoded_addr_rtx (
2115 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2116 "Language Specific Data Area");
2117 }
2118 else
2119 {
2120 if (lsda_encoding == DW_EH_PE_aligned)
2121 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2122 dw2_asm_output_data
2123 (size_of_encoded_value (lsda_encoding), 0,
2124 "Language Specific Data Area (none)");
2125 }
2126 }
2127 else
2128 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2129 }
2130
2131 /* Loop through the Call Frame Instructions associated with
2132 this FDE. */
2133 fde->dw_fde_current_label = fde->dw_fde_begin;
2134 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2135 output_cfi (cfi, fde, for_eh);
2136
2137 /* Pad the FDE out to an address sized boundary. */
2138 ASM_OUTPUT_ALIGN (asm_out_file,
2139 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2140 ASM_OUTPUT_LABEL (asm_out_file, l2);
2141 }
2142
2143 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2144 dw2_asm_output_data (4, 0, "End of Table");
2145 #ifdef MIPS_DEBUGGING_INFO
2146 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2147 get a value of 0. Putting .align 0 after the label fixes it. */
2148 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2149 #endif
2150
2151 /* Turn off app to make assembly quicker. */
2152 if (flag_debug_asm)
2153 app_disable ();
2154 }
2155
2156 /* Output a marker (i.e. a label) for the beginning of a function, before
2157 the prologue. */
2158
2159 void
2160 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2161 const char *file ATTRIBUTE_UNUSED)
2162 {
2163 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2164 dw_fde_ref fde;
2165
2166 current_function_func_begin_label = 0;
2167
2168 #ifdef IA64_UNWIND_INFO
2169 /* ??? current_function_func_begin_label is also used by except.c
2170 for call-site information. We must emit this label if it might
2171 be used. */
2172 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2173 && ! dwarf2out_do_frame ())
2174 return;
2175 #else
2176 if (! dwarf2out_do_frame ())
2177 return;
2178 #endif
2179
2180 function_section (current_function_decl);
2181 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2182 current_function_funcdef_no);
2183 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2184 current_function_funcdef_no);
2185 current_function_func_begin_label = get_identifier (label);
2186
2187 #ifdef IA64_UNWIND_INFO
2188 /* We can elide the fde allocation if we're not emitting debug info. */
2189 if (! dwarf2out_do_frame ())
2190 return;
2191 #endif
2192
2193 /* Expand the fde table if necessary. */
2194 if (fde_table_in_use == fde_table_allocated)
2195 {
2196 fde_table_allocated += FDE_TABLE_INCREMENT;
2197 fde_table = ggc_realloc (fde_table,
2198 fde_table_allocated * sizeof (dw_fde_node));
2199 memset (fde_table + fde_table_in_use, 0,
2200 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2201 }
2202
2203 /* Record the FDE associated with this function. */
2204 current_funcdef_fde = fde_table_in_use;
2205
2206 /* Add the new FDE at the end of the fde_table. */
2207 fde = &fde_table[fde_table_in_use++];
2208 fde->dw_fde_begin = xstrdup (label);
2209 fde->dw_fde_current_label = NULL;
2210 fde->dw_fde_end = NULL;
2211 fde->dw_fde_cfi = NULL;
2212 fde->funcdef_number = current_function_funcdef_no;
2213 fde->nothrow = current_function_nothrow;
2214 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2215 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2216
2217 args_size = old_args_size = 0;
2218
2219 /* We only want to output line number information for the genuine dwarf2
2220 prologue case, not the eh frame case. */
2221 #ifdef DWARF2_DEBUGGING_INFO
2222 if (file)
2223 dwarf2out_source_line (line, file);
2224 #endif
2225 }
2226
2227 /* Output a marker (i.e. a label) for the absolute end of the generated code
2228 for a function definition. This gets called *after* the epilogue code has
2229 been generated. */
2230
2231 void
2232 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2233 const char *file ATTRIBUTE_UNUSED)
2234 {
2235 dw_fde_ref fde;
2236 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2237
2238 /* Output a label to mark the endpoint of the code generated for this
2239 function. */
2240 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2241 current_function_funcdef_no);
2242 ASM_OUTPUT_LABEL (asm_out_file, label);
2243 fde = &fde_table[fde_table_in_use - 1];
2244 fde->dw_fde_end = xstrdup (label);
2245 }
2246
2247 void
2248 dwarf2out_frame_init (void)
2249 {
2250 /* Allocate the initial hunk of the fde_table. */
2251 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2252 fde_table_allocated = FDE_TABLE_INCREMENT;
2253 fde_table_in_use = 0;
2254
2255 /* Generate the CFA instructions common to all FDE's. Do it now for the
2256 sake of lookup_cfa. */
2257
2258 #ifdef DWARF2_UNWIND_INFO
2259 /* On entry, the Canonical Frame Address is at SP. */
2260 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2261 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2262 #endif
2263 }
2264
2265 void
2266 dwarf2out_frame_finish (void)
2267 {
2268 /* Output call frame information. */
2269 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2270 output_call_frame_info (0);
2271
2272 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2273 output_call_frame_info (1);
2274 }
2275 #endif
2276 \f
2277 /* And now, the subset of the debugging information support code necessary
2278 for emitting location expressions. */
2279
2280 /* We need some way to distinguish DW_OP_addr with a direct symbol
2281 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2282 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2283
2284
2285 typedef struct dw_val_struct *dw_val_ref;
2286 typedef struct die_struct *dw_die_ref;
2287 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2288 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2289
2290 /* Each DIE may have a series of attribute/value pairs. Values
2291 can take on several forms. The forms that are used in this
2292 implementation are listed below. */
2293
2294 enum dw_val_class
2295 {
2296 dw_val_class_addr,
2297 dw_val_class_offset,
2298 dw_val_class_loc,
2299 dw_val_class_loc_list,
2300 dw_val_class_range_list,
2301 dw_val_class_const,
2302 dw_val_class_unsigned_const,
2303 dw_val_class_long_long,
2304 dw_val_class_float,
2305 dw_val_class_flag,
2306 dw_val_class_die_ref,
2307 dw_val_class_fde_ref,
2308 dw_val_class_lbl_id,
2309 dw_val_class_lbl_offset,
2310 dw_val_class_str
2311 };
2312
2313 /* Describe a double word constant value. */
2314 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2315
2316 typedef struct dw_long_long_struct GTY(())
2317 {
2318 unsigned long hi;
2319 unsigned long low;
2320 }
2321 dw_long_long_const;
2322
2323 /* Describe a floating point constant value. */
2324
2325 typedef struct dw_fp_struct GTY(())
2326 {
2327 long * GTY((length ("%h.length"))) array;
2328 unsigned length;
2329 }
2330 dw_float_const;
2331
2332 /* The dw_val_node describes an attribute's value, as it is
2333 represented internally. */
2334
2335 typedef struct dw_val_struct GTY(())
2336 {
2337 enum dw_val_class val_class;
2338 union dw_val_struct_union
2339 {
2340 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2341 long unsigned GTY ((tag ("dw_val_class_offset"))) val_offset;
2342 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2343 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2344 long int GTY ((default (""))) val_int;
2345 long unsigned GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2346 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2347 dw_float_const GTY ((tag ("dw_val_class_float"))) val_float;
2348 struct dw_val_die_union
2349 {
2350 dw_die_ref die;
2351 int external;
2352 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2353 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2354 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2355 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2356 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2357 }
2358 GTY ((desc ("%1.val_class"))) v;
2359 }
2360 dw_val_node;
2361
2362 /* Locations in memory are described using a sequence of stack machine
2363 operations. */
2364
2365 typedef struct dw_loc_descr_struct GTY(())
2366 {
2367 dw_loc_descr_ref dw_loc_next;
2368 enum dwarf_location_atom dw_loc_opc;
2369 dw_val_node dw_loc_oprnd1;
2370 dw_val_node dw_loc_oprnd2;
2371 int dw_loc_addr;
2372 }
2373 dw_loc_descr_node;
2374
2375 /* Location lists are ranges + location descriptions for that range,
2376 so you can track variables that are in different places over
2377 their entire life. */
2378 typedef struct dw_loc_list_struct GTY(())
2379 {
2380 dw_loc_list_ref dw_loc_next;
2381 const char *begin; /* Label for begin address of range */
2382 const char *end; /* Label for end address of range */
2383 char *ll_symbol; /* Label for beginning of location list.
2384 Only on head of list */
2385 const char *section; /* Section this loclist is relative to */
2386 dw_loc_descr_ref expr;
2387 } dw_loc_list_node;
2388
2389 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2390
2391 static const char *dwarf_stack_op_name (unsigned);
2392 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2393 unsigned long, unsigned long);
2394 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2395 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2396 static unsigned long size_of_locs (dw_loc_descr_ref);
2397 static void output_loc_operands (dw_loc_descr_ref);
2398 static void output_loc_sequence (dw_loc_descr_ref);
2399
2400 /* Convert a DWARF stack opcode into its string name. */
2401
2402 static const char *
2403 dwarf_stack_op_name (unsigned int op)
2404 {
2405 switch (op)
2406 {
2407 case DW_OP_addr:
2408 case INTERNAL_DW_OP_tls_addr:
2409 return "DW_OP_addr";
2410 case DW_OP_deref:
2411 return "DW_OP_deref";
2412 case DW_OP_const1u:
2413 return "DW_OP_const1u";
2414 case DW_OP_const1s:
2415 return "DW_OP_const1s";
2416 case DW_OP_const2u:
2417 return "DW_OP_const2u";
2418 case DW_OP_const2s:
2419 return "DW_OP_const2s";
2420 case DW_OP_const4u:
2421 return "DW_OP_const4u";
2422 case DW_OP_const4s:
2423 return "DW_OP_const4s";
2424 case DW_OP_const8u:
2425 return "DW_OP_const8u";
2426 case DW_OP_const8s:
2427 return "DW_OP_const8s";
2428 case DW_OP_constu:
2429 return "DW_OP_constu";
2430 case DW_OP_consts:
2431 return "DW_OP_consts";
2432 case DW_OP_dup:
2433 return "DW_OP_dup";
2434 case DW_OP_drop:
2435 return "DW_OP_drop";
2436 case DW_OP_over:
2437 return "DW_OP_over";
2438 case DW_OP_pick:
2439 return "DW_OP_pick";
2440 case DW_OP_swap:
2441 return "DW_OP_swap";
2442 case DW_OP_rot:
2443 return "DW_OP_rot";
2444 case DW_OP_xderef:
2445 return "DW_OP_xderef";
2446 case DW_OP_abs:
2447 return "DW_OP_abs";
2448 case DW_OP_and:
2449 return "DW_OP_and";
2450 case DW_OP_div:
2451 return "DW_OP_div";
2452 case DW_OP_minus:
2453 return "DW_OP_minus";
2454 case DW_OP_mod:
2455 return "DW_OP_mod";
2456 case DW_OP_mul:
2457 return "DW_OP_mul";
2458 case DW_OP_neg:
2459 return "DW_OP_neg";
2460 case DW_OP_not:
2461 return "DW_OP_not";
2462 case DW_OP_or:
2463 return "DW_OP_or";
2464 case DW_OP_plus:
2465 return "DW_OP_plus";
2466 case DW_OP_plus_uconst:
2467 return "DW_OP_plus_uconst";
2468 case DW_OP_shl:
2469 return "DW_OP_shl";
2470 case DW_OP_shr:
2471 return "DW_OP_shr";
2472 case DW_OP_shra:
2473 return "DW_OP_shra";
2474 case DW_OP_xor:
2475 return "DW_OP_xor";
2476 case DW_OP_bra:
2477 return "DW_OP_bra";
2478 case DW_OP_eq:
2479 return "DW_OP_eq";
2480 case DW_OP_ge:
2481 return "DW_OP_ge";
2482 case DW_OP_gt:
2483 return "DW_OP_gt";
2484 case DW_OP_le:
2485 return "DW_OP_le";
2486 case DW_OP_lt:
2487 return "DW_OP_lt";
2488 case DW_OP_ne:
2489 return "DW_OP_ne";
2490 case DW_OP_skip:
2491 return "DW_OP_skip";
2492 case DW_OP_lit0:
2493 return "DW_OP_lit0";
2494 case DW_OP_lit1:
2495 return "DW_OP_lit1";
2496 case DW_OP_lit2:
2497 return "DW_OP_lit2";
2498 case DW_OP_lit3:
2499 return "DW_OP_lit3";
2500 case DW_OP_lit4:
2501 return "DW_OP_lit4";
2502 case DW_OP_lit5:
2503 return "DW_OP_lit5";
2504 case DW_OP_lit6:
2505 return "DW_OP_lit6";
2506 case DW_OP_lit7:
2507 return "DW_OP_lit7";
2508 case DW_OP_lit8:
2509 return "DW_OP_lit8";
2510 case DW_OP_lit9:
2511 return "DW_OP_lit9";
2512 case DW_OP_lit10:
2513 return "DW_OP_lit10";
2514 case DW_OP_lit11:
2515 return "DW_OP_lit11";
2516 case DW_OP_lit12:
2517 return "DW_OP_lit12";
2518 case DW_OP_lit13:
2519 return "DW_OP_lit13";
2520 case DW_OP_lit14:
2521 return "DW_OP_lit14";
2522 case DW_OP_lit15:
2523 return "DW_OP_lit15";
2524 case DW_OP_lit16:
2525 return "DW_OP_lit16";
2526 case DW_OP_lit17:
2527 return "DW_OP_lit17";
2528 case DW_OP_lit18:
2529 return "DW_OP_lit18";
2530 case DW_OP_lit19:
2531 return "DW_OP_lit19";
2532 case DW_OP_lit20:
2533 return "DW_OP_lit20";
2534 case DW_OP_lit21:
2535 return "DW_OP_lit21";
2536 case DW_OP_lit22:
2537 return "DW_OP_lit22";
2538 case DW_OP_lit23:
2539 return "DW_OP_lit23";
2540 case DW_OP_lit24:
2541 return "DW_OP_lit24";
2542 case DW_OP_lit25:
2543 return "DW_OP_lit25";
2544 case DW_OP_lit26:
2545 return "DW_OP_lit26";
2546 case DW_OP_lit27:
2547 return "DW_OP_lit27";
2548 case DW_OP_lit28:
2549 return "DW_OP_lit28";
2550 case DW_OP_lit29:
2551 return "DW_OP_lit29";
2552 case DW_OP_lit30:
2553 return "DW_OP_lit30";
2554 case DW_OP_lit31:
2555 return "DW_OP_lit31";
2556 case DW_OP_reg0:
2557 return "DW_OP_reg0";
2558 case DW_OP_reg1:
2559 return "DW_OP_reg1";
2560 case DW_OP_reg2:
2561 return "DW_OP_reg2";
2562 case DW_OP_reg3:
2563 return "DW_OP_reg3";
2564 case DW_OP_reg4:
2565 return "DW_OP_reg4";
2566 case DW_OP_reg5:
2567 return "DW_OP_reg5";
2568 case DW_OP_reg6:
2569 return "DW_OP_reg6";
2570 case DW_OP_reg7:
2571 return "DW_OP_reg7";
2572 case DW_OP_reg8:
2573 return "DW_OP_reg8";
2574 case DW_OP_reg9:
2575 return "DW_OP_reg9";
2576 case DW_OP_reg10:
2577 return "DW_OP_reg10";
2578 case DW_OP_reg11:
2579 return "DW_OP_reg11";
2580 case DW_OP_reg12:
2581 return "DW_OP_reg12";
2582 case DW_OP_reg13:
2583 return "DW_OP_reg13";
2584 case DW_OP_reg14:
2585 return "DW_OP_reg14";
2586 case DW_OP_reg15:
2587 return "DW_OP_reg15";
2588 case DW_OP_reg16:
2589 return "DW_OP_reg16";
2590 case DW_OP_reg17:
2591 return "DW_OP_reg17";
2592 case DW_OP_reg18:
2593 return "DW_OP_reg18";
2594 case DW_OP_reg19:
2595 return "DW_OP_reg19";
2596 case DW_OP_reg20:
2597 return "DW_OP_reg20";
2598 case DW_OP_reg21:
2599 return "DW_OP_reg21";
2600 case DW_OP_reg22:
2601 return "DW_OP_reg22";
2602 case DW_OP_reg23:
2603 return "DW_OP_reg23";
2604 case DW_OP_reg24:
2605 return "DW_OP_reg24";
2606 case DW_OP_reg25:
2607 return "DW_OP_reg25";
2608 case DW_OP_reg26:
2609 return "DW_OP_reg26";
2610 case DW_OP_reg27:
2611 return "DW_OP_reg27";
2612 case DW_OP_reg28:
2613 return "DW_OP_reg28";
2614 case DW_OP_reg29:
2615 return "DW_OP_reg29";
2616 case DW_OP_reg30:
2617 return "DW_OP_reg30";
2618 case DW_OP_reg31:
2619 return "DW_OP_reg31";
2620 case DW_OP_breg0:
2621 return "DW_OP_breg0";
2622 case DW_OP_breg1:
2623 return "DW_OP_breg1";
2624 case DW_OP_breg2:
2625 return "DW_OP_breg2";
2626 case DW_OP_breg3:
2627 return "DW_OP_breg3";
2628 case DW_OP_breg4:
2629 return "DW_OP_breg4";
2630 case DW_OP_breg5:
2631 return "DW_OP_breg5";
2632 case DW_OP_breg6:
2633 return "DW_OP_breg6";
2634 case DW_OP_breg7:
2635 return "DW_OP_breg7";
2636 case DW_OP_breg8:
2637 return "DW_OP_breg8";
2638 case DW_OP_breg9:
2639 return "DW_OP_breg9";
2640 case DW_OP_breg10:
2641 return "DW_OP_breg10";
2642 case DW_OP_breg11:
2643 return "DW_OP_breg11";
2644 case DW_OP_breg12:
2645 return "DW_OP_breg12";
2646 case DW_OP_breg13:
2647 return "DW_OP_breg13";
2648 case DW_OP_breg14:
2649 return "DW_OP_breg14";
2650 case DW_OP_breg15:
2651 return "DW_OP_breg15";
2652 case DW_OP_breg16:
2653 return "DW_OP_breg16";
2654 case DW_OP_breg17:
2655 return "DW_OP_breg17";
2656 case DW_OP_breg18:
2657 return "DW_OP_breg18";
2658 case DW_OP_breg19:
2659 return "DW_OP_breg19";
2660 case DW_OP_breg20:
2661 return "DW_OP_breg20";
2662 case DW_OP_breg21:
2663 return "DW_OP_breg21";
2664 case DW_OP_breg22:
2665 return "DW_OP_breg22";
2666 case DW_OP_breg23:
2667 return "DW_OP_breg23";
2668 case DW_OP_breg24:
2669 return "DW_OP_breg24";
2670 case DW_OP_breg25:
2671 return "DW_OP_breg25";
2672 case DW_OP_breg26:
2673 return "DW_OP_breg26";
2674 case DW_OP_breg27:
2675 return "DW_OP_breg27";
2676 case DW_OP_breg28:
2677 return "DW_OP_breg28";
2678 case DW_OP_breg29:
2679 return "DW_OP_breg29";
2680 case DW_OP_breg30:
2681 return "DW_OP_breg30";
2682 case DW_OP_breg31:
2683 return "DW_OP_breg31";
2684 case DW_OP_regx:
2685 return "DW_OP_regx";
2686 case DW_OP_fbreg:
2687 return "DW_OP_fbreg";
2688 case DW_OP_bregx:
2689 return "DW_OP_bregx";
2690 case DW_OP_piece:
2691 return "DW_OP_piece";
2692 case DW_OP_deref_size:
2693 return "DW_OP_deref_size";
2694 case DW_OP_xderef_size:
2695 return "DW_OP_xderef_size";
2696 case DW_OP_nop:
2697 return "DW_OP_nop";
2698 case DW_OP_push_object_address:
2699 return "DW_OP_push_object_address";
2700 case DW_OP_call2:
2701 return "DW_OP_call2";
2702 case DW_OP_call4:
2703 return "DW_OP_call4";
2704 case DW_OP_call_ref:
2705 return "DW_OP_call_ref";
2706 case DW_OP_GNU_push_tls_address:
2707 return "DW_OP_GNU_push_tls_address";
2708 default:
2709 return "OP_<unknown>";
2710 }
2711 }
2712
2713 /* Return a pointer to a newly allocated location description. Location
2714 descriptions are simple expression terms that can be strung
2715 together to form more complicated location (address) descriptions. */
2716
2717 static inline dw_loc_descr_ref
2718 new_loc_descr (enum dwarf_location_atom op, long unsigned int oprnd1,
2719 long unsigned int oprnd2)
2720 {
2721 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2722
2723 descr->dw_loc_opc = op;
2724 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2725 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2726 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2727 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2728
2729 return descr;
2730 }
2731
2732
2733 /* Add a location description term to a location description expression. */
2734
2735 static inline void
2736 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
2737 {
2738 dw_loc_descr_ref *d;
2739
2740 /* Find the end of the chain. */
2741 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2742 ;
2743
2744 *d = descr;
2745 }
2746
2747 /* Return the size of a location descriptor. */
2748
2749 static unsigned long
2750 size_of_loc_descr (dw_loc_descr_ref loc)
2751 {
2752 unsigned long size = 1;
2753
2754 switch (loc->dw_loc_opc)
2755 {
2756 case DW_OP_addr:
2757 case INTERNAL_DW_OP_tls_addr:
2758 size += DWARF2_ADDR_SIZE;
2759 break;
2760 case DW_OP_const1u:
2761 case DW_OP_const1s:
2762 size += 1;
2763 break;
2764 case DW_OP_const2u:
2765 case DW_OP_const2s:
2766 size += 2;
2767 break;
2768 case DW_OP_const4u:
2769 case DW_OP_const4s:
2770 size += 4;
2771 break;
2772 case DW_OP_const8u:
2773 case DW_OP_const8s:
2774 size += 8;
2775 break;
2776 case DW_OP_constu:
2777 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2778 break;
2779 case DW_OP_consts:
2780 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2781 break;
2782 case DW_OP_pick:
2783 size += 1;
2784 break;
2785 case DW_OP_plus_uconst:
2786 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2787 break;
2788 case DW_OP_skip:
2789 case DW_OP_bra:
2790 size += 2;
2791 break;
2792 case DW_OP_breg0:
2793 case DW_OP_breg1:
2794 case DW_OP_breg2:
2795 case DW_OP_breg3:
2796 case DW_OP_breg4:
2797 case DW_OP_breg5:
2798 case DW_OP_breg6:
2799 case DW_OP_breg7:
2800 case DW_OP_breg8:
2801 case DW_OP_breg9:
2802 case DW_OP_breg10:
2803 case DW_OP_breg11:
2804 case DW_OP_breg12:
2805 case DW_OP_breg13:
2806 case DW_OP_breg14:
2807 case DW_OP_breg15:
2808 case DW_OP_breg16:
2809 case DW_OP_breg17:
2810 case DW_OP_breg18:
2811 case DW_OP_breg19:
2812 case DW_OP_breg20:
2813 case DW_OP_breg21:
2814 case DW_OP_breg22:
2815 case DW_OP_breg23:
2816 case DW_OP_breg24:
2817 case DW_OP_breg25:
2818 case DW_OP_breg26:
2819 case DW_OP_breg27:
2820 case DW_OP_breg28:
2821 case DW_OP_breg29:
2822 case DW_OP_breg30:
2823 case DW_OP_breg31:
2824 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2825 break;
2826 case DW_OP_regx:
2827 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2828 break;
2829 case DW_OP_fbreg:
2830 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2831 break;
2832 case DW_OP_bregx:
2833 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2834 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2835 break;
2836 case DW_OP_piece:
2837 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2838 break;
2839 case DW_OP_deref_size:
2840 case DW_OP_xderef_size:
2841 size += 1;
2842 break;
2843 case DW_OP_call2:
2844 size += 2;
2845 break;
2846 case DW_OP_call4:
2847 size += 4;
2848 break;
2849 case DW_OP_call_ref:
2850 size += DWARF2_ADDR_SIZE;
2851 break;
2852 default:
2853 break;
2854 }
2855
2856 return size;
2857 }
2858
2859 /* Return the size of a series of location descriptors. */
2860
2861 static unsigned long
2862 size_of_locs (dw_loc_descr_ref loc)
2863 {
2864 unsigned long size;
2865
2866 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2867 {
2868 loc->dw_loc_addr = size;
2869 size += size_of_loc_descr (loc);
2870 }
2871
2872 return size;
2873 }
2874
2875 /* Output location description stack opcode's operands (if any). */
2876
2877 static void
2878 output_loc_operands (dw_loc_descr_ref loc)
2879 {
2880 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2881 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2882
2883 switch (loc->dw_loc_opc)
2884 {
2885 #ifdef DWARF2_DEBUGGING_INFO
2886 case DW_OP_addr:
2887 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2888 break;
2889 case DW_OP_const2u:
2890 case DW_OP_const2s:
2891 dw2_asm_output_data (2, val1->v.val_int, NULL);
2892 break;
2893 case DW_OP_const4u:
2894 case DW_OP_const4s:
2895 dw2_asm_output_data (4, val1->v.val_int, NULL);
2896 break;
2897 case DW_OP_const8u:
2898 case DW_OP_const8s:
2899 if (HOST_BITS_PER_LONG < 64)
2900 abort ();
2901 dw2_asm_output_data (8, val1->v.val_int, NULL);
2902 break;
2903 case DW_OP_skip:
2904 case DW_OP_bra:
2905 {
2906 int offset;
2907
2908 if (val1->val_class == dw_val_class_loc)
2909 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2910 else
2911 abort ();
2912
2913 dw2_asm_output_data (2, offset, NULL);
2914 }
2915 break;
2916 #else
2917 case DW_OP_addr:
2918 case DW_OP_const2u:
2919 case DW_OP_const2s:
2920 case DW_OP_const4u:
2921 case DW_OP_const4s:
2922 case DW_OP_const8u:
2923 case DW_OP_const8s:
2924 case DW_OP_skip:
2925 case DW_OP_bra:
2926 /* We currently don't make any attempt to make sure these are
2927 aligned properly like we do for the main unwind info, so
2928 don't support emitting things larger than a byte if we're
2929 only doing unwinding. */
2930 abort ();
2931 #endif
2932 case DW_OP_const1u:
2933 case DW_OP_const1s:
2934 dw2_asm_output_data (1, val1->v.val_int, NULL);
2935 break;
2936 case DW_OP_constu:
2937 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2938 break;
2939 case DW_OP_consts:
2940 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2941 break;
2942 case DW_OP_pick:
2943 dw2_asm_output_data (1, val1->v.val_int, NULL);
2944 break;
2945 case DW_OP_plus_uconst:
2946 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2947 break;
2948 case DW_OP_breg0:
2949 case DW_OP_breg1:
2950 case DW_OP_breg2:
2951 case DW_OP_breg3:
2952 case DW_OP_breg4:
2953 case DW_OP_breg5:
2954 case DW_OP_breg6:
2955 case DW_OP_breg7:
2956 case DW_OP_breg8:
2957 case DW_OP_breg9:
2958 case DW_OP_breg10:
2959 case DW_OP_breg11:
2960 case DW_OP_breg12:
2961 case DW_OP_breg13:
2962 case DW_OP_breg14:
2963 case DW_OP_breg15:
2964 case DW_OP_breg16:
2965 case DW_OP_breg17:
2966 case DW_OP_breg18:
2967 case DW_OP_breg19:
2968 case DW_OP_breg20:
2969 case DW_OP_breg21:
2970 case DW_OP_breg22:
2971 case DW_OP_breg23:
2972 case DW_OP_breg24:
2973 case DW_OP_breg25:
2974 case DW_OP_breg26:
2975 case DW_OP_breg27:
2976 case DW_OP_breg28:
2977 case DW_OP_breg29:
2978 case DW_OP_breg30:
2979 case DW_OP_breg31:
2980 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2981 break;
2982 case DW_OP_regx:
2983 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2984 break;
2985 case DW_OP_fbreg:
2986 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2987 break;
2988 case DW_OP_bregx:
2989 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2990 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
2991 break;
2992 case DW_OP_piece:
2993 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2994 break;
2995 case DW_OP_deref_size:
2996 case DW_OP_xderef_size:
2997 dw2_asm_output_data (1, val1->v.val_int, NULL);
2998 break;
2999
3000 case INTERNAL_DW_OP_tls_addr:
3001 #ifdef ASM_OUTPUT_DWARF_DTPREL
3002 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3003 val1->v.val_addr);
3004 fputc ('\n', asm_out_file);
3005 #else
3006 abort ();
3007 #endif
3008 break;
3009
3010 default:
3011 /* Other codes have no operands. */
3012 break;
3013 }
3014 }
3015
3016 /* Output a sequence of location operations. */
3017
3018 static void
3019 output_loc_sequence (dw_loc_descr_ref loc)
3020 {
3021 for (; loc != NULL; loc = loc->dw_loc_next)
3022 {
3023 /* Output the opcode. */
3024 dw2_asm_output_data (1, loc->dw_loc_opc,
3025 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3026
3027 /* Output the operand(s) (if any). */
3028 output_loc_operands (loc);
3029 }
3030 }
3031
3032 /* This routine will generate the correct assembly data for a location
3033 description based on a cfi entry with a complex address. */
3034
3035 static void
3036 output_cfa_loc (dw_cfi_ref cfi)
3037 {
3038 dw_loc_descr_ref loc;
3039 unsigned long size;
3040
3041 /* Output the size of the block. */
3042 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3043 size = size_of_locs (loc);
3044 dw2_asm_output_data_uleb128 (size, NULL);
3045
3046 /* Now output the operations themselves. */
3047 output_loc_sequence (loc);
3048 }
3049
3050 /* This function builds a dwarf location descriptor sequence from
3051 a dw_cfa_location. */
3052
3053 static struct dw_loc_descr_struct *
3054 build_cfa_loc (dw_cfa_location *cfa)
3055 {
3056 struct dw_loc_descr_struct *head, *tmp;
3057
3058 if (cfa->indirect == 0)
3059 abort ();
3060
3061 if (cfa->base_offset)
3062 {
3063 if (cfa->reg <= 31)
3064 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3065 else
3066 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3067 }
3068 else if (cfa->reg <= 31)
3069 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3070 else
3071 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3072
3073 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3074 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3075 add_loc_descr (&head, tmp);
3076 if (cfa->offset != 0)
3077 {
3078 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3079 add_loc_descr (&head, tmp);
3080 }
3081
3082 return head;
3083 }
3084
3085 /* This function fills in aa dw_cfa_location structure from a dwarf location
3086 descriptor sequence. */
3087
3088 static void
3089 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3090 {
3091 struct dw_loc_descr_struct *ptr;
3092 cfa->offset = 0;
3093 cfa->base_offset = 0;
3094 cfa->indirect = 0;
3095 cfa->reg = -1;
3096
3097 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3098 {
3099 enum dwarf_location_atom op = ptr->dw_loc_opc;
3100
3101 switch (op)
3102 {
3103 case DW_OP_reg0:
3104 case DW_OP_reg1:
3105 case DW_OP_reg2:
3106 case DW_OP_reg3:
3107 case DW_OP_reg4:
3108 case DW_OP_reg5:
3109 case DW_OP_reg6:
3110 case DW_OP_reg7:
3111 case DW_OP_reg8:
3112 case DW_OP_reg9:
3113 case DW_OP_reg10:
3114 case DW_OP_reg11:
3115 case DW_OP_reg12:
3116 case DW_OP_reg13:
3117 case DW_OP_reg14:
3118 case DW_OP_reg15:
3119 case DW_OP_reg16:
3120 case DW_OP_reg17:
3121 case DW_OP_reg18:
3122 case DW_OP_reg19:
3123 case DW_OP_reg20:
3124 case DW_OP_reg21:
3125 case DW_OP_reg22:
3126 case DW_OP_reg23:
3127 case DW_OP_reg24:
3128 case DW_OP_reg25:
3129 case DW_OP_reg26:
3130 case DW_OP_reg27:
3131 case DW_OP_reg28:
3132 case DW_OP_reg29:
3133 case DW_OP_reg30:
3134 case DW_OP_reg31:
3135 cfa->reg = op - DW_OP_reg0;
3136 break;
3137 case DW_OP_regx:
3138 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3139 break;
3140 case DW_OP_breg0:
3141 case DW_OP_breg1:
3142 case DW_OP_breg2:
3143 case DW_OP_breg3:
3144 case DW_OP_breg4:
3145 case DW_OP_breg5:
3146 case DW_OP_breg6:
3147 case DW_OP_breg7:
3148 case DW_OP_breg8:
3149 case DW_OP_breg9:
3150 case DW_OP_breg10:
3151 case DW_OP_breg11:
3152 case DW_OP_breg12:
3153 case DW_OP_breg13:
3154 case DW_OP_breg14:
3155 case DW_OP_breg15:
3156 case DW_OP_breg16:
3157 case DW_OP_breg17:
3158 case DW_OP_breg18:
3159 case DW_OP_breg19:
3160 case DW_OP_breg20:
3161 case DW_OP_breg21:
3162 case DW_OP_breg22:
3163 case DW_OP_breg23:
3164 case DW_OP_breg24:
3165 case DW_OP_breg25:
3166 case DW_OP_breg26:
3167 case DW_OP_breg27:
3168 case DW_OP_breg28:
3169 case DW_OP_breg29:
3170 case DW_OP_breg30:
3171 case DW_OP_breg31:
3172 cfa->reg = op - DW_OP_breg0;
3173 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3174 break;
3175 case DW_OP_bregx:
3176 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3177 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3178 break;
3179 case DW_OP_deref:
3180 cfa->indirect = 1;
3181 break;
3182 case DW_OP_plus_uconst:
3183 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3184 break;
3185 default:
3186 internal_error ("DW_LOC_OP %s not implemented\n",
3187 dwarf_stack_op_name (ptr->dw_loc_opc));
3188 }
3189 }
3190 }
3191 #endif /* .debug_frame support */
3192 \f
3193 /* And now, the support for symbolic debugging information. */
3194 #ifdef DWARF2_DEBUGGING_INFO
3195
3196 /* .debug_str support. */
3197 static int output_indirect_string (void **, void *);
3198
3199 static void dwarf2out_init (const char *);
3200 static void dwarf2out_finish (const char *);
3201 static void dwarf2out_define (unsigned int, const char *);
3202 static void dwarf2out_undef (unsigned int, const char *);
3203 static void dwarf2out_start_source_file (unsigned, const char *);
3204 static void dwarf2out_end_source_file (unsigned);
3205 static void dwarf2out_begin_block (unsigned, unsigned);
3206 static void dwarf2out_end_block (unsigned, unsigned);
3207 static bool dwarf2out_ignore_block (tree);
3208 static void dwarf2out_global_decl (tree);
3209 static void dwarf2out_abstract_function (tree);
3210
3211 /* The debug hooks structure. */
3212
3213 const struct gcc_debug_hooks dwarf2_debug_hooks =
3214 {
3215 dwarf2out_init,
3216 dwarf2out_finish,
3217 dwarf2out_define,
3218 dwarf2out_undef,
3219 dwarf2out_start_source_file,
3220 dwarf2out_end_source_file,
3221 dwarf2out_begin_block,
3222 dwarf2out_end_block,
3223 dwarf2out_ignore_block,
3224 dwarf2out_source_line,
3225 dwarf2out_begin_prologue,
3226 debug_nothing_int_charstar, /* end_prologue */
3227 dwarf2out_end_epilogue,
3228 debug_nothing_tree, /* begin_function */
3229 debug_nothing_int, /* end_function */
3230 dwarf2out_decl, /* function_decl */
3231 dwarf2out_global_decl,
3232 debug_nothing_tree, /* deferred_inline_function */
3233 /* The DWARF 2 backend tries to reduce debugging bloat by not
3234 emitting the abstract description of inline functions until
3235 something tries to reference them. */
3236 dwarf2out_abstract_function, /* outlining_inline_function */
3237 debug_nothing_rtx, /* label */
3238 debug_nothing_int /* handle_pch */
3239 };
3240 #endif
3241 \f
3242 /* NOTE: In the comments in this file, many references are made to
3243 "Debugging Information Entries". This term is abbreviated as `DIE'
3244 throughout the remainder of this file. */
3245
3246 /* An internal representation of the DWARF output is built, and then
3247 walked to generate the DWARF debugging info. The walk of the internal
3248 representation is done after the entire program has been compiled.
3249 The types below are used to describe the internal representation. */
3250
3251 /* Various DIE's use offsets relative to the beginning of the
3252 .debug_info section to refer to each other. */
3253
3254 typedef long int dw_offset;
3255
3256 /* Define typedefs here to avoid circular dependencies. */
3257
3258 typedef struct dw_attr_struct *dw_attr_ref;
3259 typedef struct dw_line_info_struct *dw_line_info_ref;
3260 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3261 typedef struct pubname_struct *pubname_ref;
3262 typedef struct dw_ranges_struct *dw_ranges_ref;
3263
3264 /* Each entry in the line_info_table maintains the file and
3265 line number associated with the label generated for that
3266 entry. The label gives the PC value associated with
3267 the line number entry. */
3268
3269 typedef struct dw_line_info_struct GTY(())
3270 {
3271 unsigned long dw_file_num;
3272 unsigned long dw_line_num;
3273 }
3274 dw_line_info_entry;
3275
3276 /* Line information for functions in separate sections; each one gets its
3277 own sequence. */
3278 typedef struct dw_separate_line_info_struct GTY(())
3279 {
3280 unsigned long dw_file_num;
3281 unsigned long dw_line_num;
3282 unsigned long function;
3283 }
3284 dw_separate_line_info_entry;
3285
3286 /* Each DIE attribute has a field specifying the attribute kind,
3287 a link to the next attribute in the chain, and an attribute value.
3288 Attributes are typically linked below the DIE they modify. */
3289
3290 typedef struct dw_attr_struct GTY(())
3291 {
3292 enum dwarf_attribute dw_attr;
3293 dw_attr_ref dw_attr_next;
3294 dw_val_node dw_attr_val;
3295 }
3296 dw_attr_node;
3297
3298 /* The Debugging Information Entry (DIE) structure */
3299
3300 typedef struct die_struct GTY(())
3301 {
3302 enum dwarf_tag die_tag;
3303 char *die_symbol;
3304 dw_attr_ref die_attr;
3305 dw_die_ref die_parent;
3306 dw_die_ref die_child;
3307 dw_die_ref die_sib;
3308 dw_offset die_offset;
3309 unsigned long die_abbrev;
3310 int die_mark;
3311 }
3312 die_node;
3313
3314 /* The pubname structure */
3315
3316 typedef struct pubname_struct GTY(())
3317 {
3318 dw_die_ref die;
3319 char *name;
3320 }
3321 pubname_entry;
3322
3323 struct dw_ranges_struct GTY(())
3324 {
3325 int block_num;
3326 };
3327
3328 /* The limbo die list structure. */
3329 typedef struct limbo_die_struct GTY(())
3330 {
3331 dw_die_ref die;
3332 tree created_for;
3333 struct limbo_die_struct *next;
3334 }
3335 limbo_die_node;
3336
3337 /* How to start an assembler comment. */
3338 #ifndef ASM_COMMENT_START
3339 #define ASM_COMMENT_START ";#"
3340 #endif
3341
3342 /* Define a macro which returns nonzero for a TYPE_DECL which was
3343 implicitly generated for a tagged type.
3344
3345 Note that unlike the gcc front end (which generates a NULL named
3346 TYPE_DECL node for each complete tagged type, each array type, and
3347 each function type node created) the g++ front end generates a
3348 _named_ TYPE_DECL node for each tagged type node created.
3349 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3350 generate a DW_TAG_typedef DIE for them. */
3351
3352 #define TYPE_DECL_IS_STUB(decl) \
3353 (DECL_NAME (decl) == NULL_TREE \
3354 || (DECL_ARTIFICIAL (decl) \
3355 && is_tagged_type (TREE_TYPE (decl)) \
3356 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3357 /* This is necessary for stub decls that \
3358 appear in nested inline functions. */ \
3359 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3360 && (decl_ultimate_origin (decl) \
3361 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3362
3363 /* Information concerning the compilation unit's programming
3364 language, and compiler version. */
3365
3366 /* Fixed size portion of the DWARF compilation unit header. */
3367 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3368 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3369
3370 /* Fixed size portion of public names info. */
3371 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3372
3373 /* Fixed size portion of the address range info. */
3374 #define DWARF_ARANGES_HEADER_SIZE \
3375 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3376 DWARF2_ADDR_SIZE * 2) \
3377 - DWARF_INITIAL_LENGTH_SIZE)
3378
3379 /* Size of padding portion in the address range info. It must be
3380 aligned to twice the pointer size. */
3381 #define DWARF_ARANGES_PAD_SIZE \
3382 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3383 DWARF2_ADDR_SIZE * 2) \
3384 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3385
3386 /* Use assembler line directives if available. */
3387 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3388 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3389 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3390 #else
3391 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3392 #endif
3393 #endif
3394
3395 /* Minimum line offset in a special line info. opcode.
3396 This value was chosen to give a reasonable range of values. */
3397 #define DWARF_LINE_BASE -10
3398
3399 /* First special line opcode - leave room for the standard opcodes. */
3400 #define DWARF_LINE_OPCODE_BASE 10
3401
3402 /* Range of line offsets in a special line info. opcode. */
3403 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3404
3405 /* Flag that indicates the initial value of the is_stmt_start flag.
3406 In the present implementation, we do not mark any lines as
3407 the beginning of a source statement, because that information
3408 is not made available by the GCC front-end. */
3409 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3410
3411 #ifdef DWARF2_DEBUGGING_INFO
3412 /* This location is used by calc_die_sizes() to keep track
3413 the offset of each DIE within the .debug_info section. */
3414 static unsigned long next_die_offset;
3415 #endif
3416
3417 /* Record the root of the DIE's built for the current compilation unit. */
3418 static GTY(()) dw_die_ref comp_unit_die;
3419
3420 #ifdef DWARF2_DEBUGGING_INFO
3421 /* We need special handling in dwarf2out_start_source_file if it is
3422 first one. */
3423 static int is_main_source;
3424 #endif
3425
3426 /* A list of DIEs with a NULL parent waiting to be relocated. */
3427 static GTY(()) limbo_die_node *limbo_die_list;
3428
3429 /* Filenames referenced by this compilation unit. */
3430 static GTY(()) varray_type file_table;
3431 static GTY(()) varray_type file_table_emitted;
3432 static GTY(()) size_t file_table_last_lookup_index;
3433
3434 /* A pointer to the base of a table of references to DIE's that describe
3435 declarations. The table is indexed by DECL_UID() which is a unique
3436 number identifying each decl. */
3437 static GTY((length ("decl_die_table_allocated"))) dw_die_ref *decl_die_table;
3438
3439 /* Number of elements currently allocated for the decl_die_table. */
3440 static GTY(()) unsigned decl_die_table_allocated;
3441
3442 /* Number of elements in decl_die_table currently in use. */
3443 static GTY(()) unsigned decl_die_table_in_use;
3444
3445 /* Size (in elements) of increments by which we may expand the
3446 decl_die_table. */
3447 #define DECL_DIE_TABLE_INCREMENT 256
3448
3449 /* A pointer to the base of a list of references to DIE's that
3450 are uniquely identified by their tag, presence/absence of
3451 children DIE's, and list of attribute/value pairs. */
3452 static GTY((length ("abbrev_die_table_allocated")))
3453 dw_die_ref *abbrev_die_table;
3454
3455 /* Number of elements currently allocated for abbrev_die_table. */
3456 static GTY(()) unsigned abbrev_die_table_allocated;
3457
3458 /* Number of elements in type_die_table currently in use. */
3459 static GTY(()) unsigned abbrev_die_table_in_use;
3460
3461 /* Size (in elements) of increments by which we may expand the
3462 abbrev_die_table. */
3463 #define ABBREV_DIE_TABLE_INCREMENT 256
3464
3465 /* A pointer to the base of a table that contains line information
3466 for each source code line in .text in the compilation unit. */
3467 static GTY((length ("line_info_table_allocated")))
3468 dw_line_info_ref line_info_table;
3469
3470 /* Number of elements currently allocated for line_info_table. */
3471 static GTY(()) unsigned line_info_table_allocated;
3472
3473 /* Number of elements in line_info_table currently in use. */
3474 static GTY(()) unsigned line_info_table_in_use;
3475
3476 /* A pointer to the base of a table that contains line information
3477 for each source code line outside of .text in the compilation unit. */
3478 static GTY ((length ("separate_line_info_table_allocated")))
3479 dw_separate_line_info_ref separate_line_info_table;
3480
3481 /* Number of elements currently allocated for separate_line_info_table. */
3482 static GTY(()) unsigned separate_line_info_table_allocated;
3483
3484 /* Number of elements in separate_line_info_table currently in use. */
3485 static GTY(()) unsigned separate_line_info_table_in_use;
3486
3487 /* Size (in elements) of increments by which we may expand the
3488 line_info_table. */
3489 #define LINE_INFO_TABLE_INCREMENT 1024
3490
3491 /* A pointer to the base of a table that contains a list of publicly
3492 accessible names. */
3493 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3494
3495 /* Number of elements currently allocated for pubname_table. */
3496 static GTY(()) unsigned pubname_table_allocated;
3497
3498 /* Number of elements in pubname_table currently in use. */
3499 static GTY(()) unsigned pubname_table_in_use;
3500
3501 /* Size (in elements) of increments by which we may expand the
3502 pubname_table. */
3503 #define PUBNAME_TABLE_INCREMENT 64
3504
3505 /* Array of dies for which we should generate .debug_arange info. */
3506 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3507
3508 /* Number of elements currently allocated for arange_table. */
3509 static GTY(()) unsigned arange_table_allocated;
3510
3511 /* Number of elements in arange_table currently in use. */
3512 static GTY(()) unsigned arange_table_in_use;
3513
3514 /* Size (in elements) of increments by which we may expand the
3515 arange_table. */
3516 #define ARANGE_TABLE_INCREMENT 64
3517
3518 /* Array of dies for which we should generate .debug_ranges info. */
3519 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3520
3521 /* Number of elements currently allocated for ranges_table. */
3522 static GTY(()) unsigned ranges_table_allocated;
3523
3524 /* Number of elements in ranges_table currently in use. */
3525 static GTY(()) unsigned ranges_table_in_use;
3526
3527 /* Size (in elements) of increments by which we may expand the
3528 ranges_table. */
3529 #define RANGES_TABLE_INCREMENT 64
3530
3531 /* Whether we have location lists that need outputting */
3532 static GTY(()) unsigned have_location_lists;
3533
3534 #ifdef DWARF2_DEBUGGING_INFO
3535 /* Record whether the function being analyzed contains inlined functions. */
3536 static int current_function_has_inlines;
3537 #endif
3538 #if 0 && defined (MIPS_DEBUGGING_INFO)
3539 static int comp_unit_has_inlines;
3540 #endif
3541
3542 /* Number of file tables emitted in maybe_emit_file(). */
3543 static GTY(()) int emitcount = 0;
3544
3545 /* Number of internal labels generated by gen_internal_sym(). */
3546 static GTY(()) int label_num;
3547
3548 #ifdef DWARF2_DEBUGGING_INFO
3549
3550 /* Forward declarations for functions defined in this file. */
3551
3552 static int is_pseudo_reg (rtx);
3553 static tree type_main_variant (tree);
3554 static int is_tagged_type (tree);
3555 static const char *dwarf_tag_name (unsigned);
3556 static const char *dwarf_attr_name (unsigned);
3557 static const char *dwarf_form_name (unsigned);
3558 #if 0
3559 static const char *dwarf_type_encoding_name (unsigned);
3560 #endif
3561 static tree decl_ultimate_origin (tree);
3562 static tree block_ultimate_origin (tree);
3563 static tree decl_class_context (tree);
3564 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3565 static inline enum dw_val_class AT_class (dw_attr_ref);
3566 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3567 static inline unsigned AT_flag (dw_attr_ref);
3568 static void add_AT_int (dw_die_ref, enum dwarf_attribute, long);
3569 static inline long int AT_int (dw_attr_ref);
3570 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned long);
3571 static inline unsigned long AT_unsigned (dw_attr_ref);
3572 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3573 unsigned long);
3574 static void add_AT_float (dw_die_ref, enum dwarf_attribute, unsigned, long *);
3575 static hashval_t debug_str_do_hash (const void *);
3576 static int debug_str_eq (const void *, const void *);
3577 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3578 static inline const char *AT_string (dw_attr_ref);
3579 static int AT_string_form (dw_attr_ref);
3580 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3581 static inline dw_die_ref AT_ref (dw_attr_ref);
3582 static inline int AT_ref_external (dw_attr_ref);
3583 static inline void set_AT_ref_external (dw_attr_ref, int);
3584 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3585 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3586 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3587 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3588 dw_loc_list_ref);
3589 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3590 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3591 static inline rtx AT_addr (dw_attr_ref);
3592 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3593 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3594 static void add_AT_offset (dw_die_ref, enum dwarf_attribute, unsigned long);
3595 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3596 unsigned long);
3597 static inline const char *AT_lbl (dw_attr_ref);
3598 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3599 static const char *get_AT_low_pc (dw_die_ref);
3600 static const char *get_AT_hi_pc (dw_die_ref);
3601 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3602 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3603 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3604 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3605 static bool is_c_family (void);
3606 static bool is_cxx (void);
3607 static bool is_java (void);
3608 static bool is_fortran (void);
3609 static bool is_ada (void);
3610 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3611 static inline void free_die (dw_die_ref);
3612 static void remove_children (dw_die_ref);
3613 static void add_child_die (dw_die_ref, dw_die_ref);
3614 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3615 static dw_die_ref lookup_type_die (tree);
3616 static void equate_type_number_to_die (tree, dw_die_ref);
3617 static dw_die_ref lookup_decl_die (tree);
3618 static void equate_decl_number_to_die (tree, dw_die_ref);
3619 static void print_spaces (FILE *);
3620 static void print_die (dw_die_ref, FILE *);
3621 static void print_dwarf_line_table (FILE *);
3622 static void reverse_die_lists (dw_die_ref);
3623 static void reverse_all_dies (dw_die_ref);
3624 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3625 static dw_die_ref pop_compile_unit (dw_die_ref);
3626 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3627 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3628 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3629 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3630 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3631 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3632 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3633 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3634 static void compute_section_prefix (dw_die_ref);
3635 static int is_type_die (dw_die_ref);
3636 static int is_comdat_die (dw_die_ref);
3637 static int is_symbol_die (dw_die_ref);
3638 static void assign_symbol_names (dw_die_ref);
3639 static void break_out_includes (dw_die_ref);
3640 static hashval_t htab_cu_hash (const void *);
3641 static int htab_cu_eq (const void *, const void *);
3642 static void htab_cu_del (void *);
3643 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3644 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3645 static void add_sibling_attributes (dw_die_ref);
3646 static void build_abbrev_table (dw_die_ref);
3647 static void output_location_lists (dw_die_ref);
3648 static int constant_size (long unsigned);
3649 static unsigned long size_of_die (dw_die_ref);
3650 static void calc_die_sizes (dw_die_ref);
3651 static void mark_dies (dw_die_ref);
3652 static void unmark_dies (dw_die_ref);
3653 static void unmark_all_dies (dw_die_ref);
3654 static unsigned long size_of_pubnames (void);
3655 static unsigned long size_of_aranges (void);
3656 static enum dwarf_form value_format (dw_attr_ref);
3657 static void output_value_format (dw_attr_ref);
3658 static void output_abbrev_section (void);
3659 static void output_die_symbol (dw_die_ref);
3660 static void output_die (dw_die_ref);
3661 static void output_compilation_unit_header (void);
3662 static void output_comp_unit (dw_die_ref, int);
3663 static const char *dwarf2_name (tree, int);
3664 static void add_pubname (tree, dw_die_ref);
3665 static void output_pubnames (void);
3666 static void add_arange (tree, dw_die_ref);
3667 static void output_aranges (void);
3668 static unsigned int add_ranges (tree);
3669 static void output_ranges (void);
3670 static void output_line_info (void);
3671 static void output_file_names (void);
3672 static dw_die_ref base_type_die (tree);
3673 static tree root_type (tree);
3674 static int is_base_type (tree);
3675 static bool is_ada_subrange_type (tree);
3676 static dw_die_ref subrange_type_die (tree);
3677 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3678 static int type_is_enum (tree);
3679 static unsigned int reg_number (rtx);
3680 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3681 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3682 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3683 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3684 static dw_loc_descr_ref based_loc_descr (unsigned, long);
3685 static int is_based_loc (rtx);
3686 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
3687 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3688 static dw_loc_descr_ref loc_descriptor (rtx);
3689 static dw_loc_descr_ref loc_descriptor_from_tree (tree, int);
3690 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3691 static tree field_type (tree);
3692 static unsigned int simple_type_align_in_bits (tree);
3693 static unsigned int simple_decl_align_in_bits (tree);
3694 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3695 static HOST_WIDE_INT field_byte_offset (tree);
3696 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3697 dw_loc_descr_ref);
3698 static void add_data_member_location_attribute (dw_die_ref, tree);
3699 static void add_const_value_attribute (dw_die_ref, rtx);
3700 static rtx rtl_for_decl_location (tree);
3701 static void add_location_or_const_value_attribute (dw_die_ref, tree);
3702 static void tree_add_const_value_attribute (dw_die_ref, tree);
3703 static void add_name_attribute (dw_die_ref, const char *);
3704 static void add_comp_dir_attribute (dw_die_ref);
3705 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
3706 static void add_subscript_info (dw_die_ref, tree);
3707 static void add_byte_size_attribute (dw_die_ref, tree);
3708 static void add_bit_offset_attribute (dw_die_ref, tree);
3709 static void add_bit_size_attribute (dw_die_ref, tree);
3710 static void add_prototyped_attribute (dw_die_ref, tree);
3711 static void add_abstract_origin_attribute (dw_die_ref, tree);
3712 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3713 static void add_src_coords_attributes (dw_die_ref, tree);
3714 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3715 static void push_decl_scope (tree);
3716 static void pop_decl_scope (void);
3717 static dw_die_ref scope_die_for (tree, dw_die_ref);
3718 static inline int local_scope_p (dw_die_ref);
3719 static inline int class_scope_p (dw_die_ref);
3720 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
3721 static const char *type_tag (tree);
3722 static tree member_declared_type (tree);
3723 #if 0
3724 static const char *decl_start_label (tree);
3725 #endif
3726 static void gen_array_type_die (tree, dw_die_ref);
3727 static void gen_set_type_die (tree, dw_die_ref);
3728 #if 0
3729 static void gen_entry_point_die (tree, dw_die_ref);
3730 #endif
3731 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
3732 static void gen_inlined_structure_type_die (tree, dw_die_ref);
3733 static void gen_inlined_union_type_die (tree, dw_die_ref);
3734 static void gen_enumeration_type_die (tree, dw_die_ref);
3735 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
3736 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3737 static void gen_formal_types_die (tree, dw_die_ref);
3738 static void gen_subprogram_die (tree, dw_die_ref);
3739 static void gen_variable_die (tree, dw_die_ref);
3740 static void gen_label_die (tree, dw_die_ref);
3741 static void gen_lexical_block_die (tree, dw_die_ref, int);
3742 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
3743 static void gen_field_die (tree, dw_die_ref);
3744 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3745 static dw_die_ref gen_compile_unit_die (const char *);
3746 static void gen_string_type_die (tree, dw_die_ref);
3747 static void gen_inheritance_die (tree, tree, dw_die_ref);
3748 static void gen_member_die (tree, dw_die_ref);
3749 static void gen_struct_or_union_type_die (tree, dw_die_ref);
3750 static void gen_subroutine_type_die (tree, dw_die_ref);
3751 static void gen_typedef_die (tree, dw_die_ref);
3752 static void gen_type_die (tree, dw_die_ref);
3753 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
3754 static void gen_block_die (tree, dw_die_ref, int);
3755 static void decls_for_scope (tree, dw_die_ref, int);
3756 static int is_redundant_typedef (tree);
3757 static void gen_decl_die (tree, dw_die_ref);
3758 static unsigned lookup_filename (const char *);
3759 static void init_file_table (void);
3760 static void retry_incomplete_types (void);
3761 static void gen_type_die_for_member (tree, tree, dw_die_ref);
3762 static void splice_child_die (dw_die_ref, dw_die_ref);
3763 static int file_info_cmp (const void *, const void *);
3764 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
3765 const char *, const char *, unsigned);
3766 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
3767 const char *, const char *,
3768 const char *);
3769 static void output_loc_list (dw_loc_list_ref);
3770 static char *gen_internal_sym (const char *);
3771
3772 static void prune_unmark_dies (dw_die_ref);
3773 static void prune_unused_types_mark (dw_die_ref, int);
3774 static void prune_unused_types_walk (dw_die_ref);
3775 static void prune_unused_types_walk_attribs (dw_die_ref);
3776 static void prune_unused_types_prune (dw_die_ref);
3777 static void prune_unused_types (void);
3778 static int maybe_emit_file (int);
3779
3780 /* Section names used to hold DWARF debugging information. */
3781 #ifndef DEBUG_INFO_SECTION
3782 #define DEBUG_INFO_SECTION ".debug_info"
3783 #endif
3784 #ifndef DEBUG_ABBREV_SECTION
3785 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3786 #endif
3787 #ifndef DEBUG_ARANGES_SECTION
3788 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3789 #endif
3790 #ifndef DEBUG_MACINFO_SECTION
3791 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3792 #endif
3793 #ifndef DEBUG_LINE_SECTION
3794 #define DEBUG_LINE_SECTION ".debug_line"
3795 #endif
3796 #ifndef DEBUG_LOC_SECTION
3797 #define DEBUG_LOC_SECTION ".debug_loc"
3798 #endif
3799 #ifndef DEBUG_PUBNAMES_SECTION
3800 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3801 #endif
3802 #ifndef DEBUG_STR_SECTION
3803 #define DEBUG_STR_SECTION ".debug_str"
3804 #endif
3805 #ifndef DEBUG_RANGES_SECTION
3806 #define DEBUG_RANGES_SECTION ".debug_ranges"
3807 #endif
3808
3809 /* Standard ELF section names for compiled code and data. */
3810 #ifndef TEXT_SECTION_NAME
3811 #define TEXT_SECTION_NAME ".text"
3812 #endif
3813
3814 /* Section flags for .debug_str section. */
3815 #ifdef HAVE_GAS_SHF_MERGE
3816 #define DEBUG_STR_SECTION_FLAGS \
3817 (flag_merge_constants \
3818 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
3819 : SECTION_DEBUG)
3820 #else
3821 #define DEBUG_STR_SECTION_FLAGS SECTION_DEBUG
3822 #endif
3823
3824 /* Labels we insert at beginning sections we can reference instead of
3825 the section names themselves. */
3826
3827 #ifndef TEXT_SECTION_LABEL
3828 #define TEXT_SECTION_LABEL "Ltext"
3829 #endif
3830 #ifndef DEBUG_LINE_SECTION_LABEL
3831 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3832 #endif
3833 #ifndef DEBUG_INFO_SECTION_LABEL
3834 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3835 #endif
3836 #ifndef DEBUG_ABBREV_SECTION_LABEL
3837 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3838 #endif
3839 #ifndef DEBUG_LOC_SECTION_LABEL
3840 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3841 #endif
3842 #ifndef DEBUG_RANGES_SECTION_LABEL
3843 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3844 #endif
3845 #ifndef DEBUG_MACINFO_SECTION_LABEL
3846 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3847 #endif
3848
3849 /* Definitions of defaults for formats and names of various special
3850 (artificial) labels which may be generated within this file (when the -g
3851 options is used and DWARF_DEBUGGING_INFO is in effect.
3852 If necessary, these may be overridden from within the tm.h file, but
3853 typically, overriding these defaults is unnecessary. */
3854
3855 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3856 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3857 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3858 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3859 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3860 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3861 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3862 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3863
3864 #ifndef TEXT_END_LABEL
3865 #define TEXT_END_LABEL "Letext"
3866 #endif
3867 #ifndef BLOCK_BEGIN_LABEL
3868 #define BLOCK_BEGIN_LABEL "LBB"
3869 #endif
3870 #ifndef BLOCK_END_LABEL
3871 #define BLOCK_END_LABEL "LBE"
3872 #endif
3873 #ifndef LINE_CODE_LABEL
3874 #define LINE_CODE_LABEL "LM"
3875 #endif
3876 #ifndef SEPARATE_LINE_CODE_LABEL
3877 #define SEPARATE_LINE_CODE_LABEL "LSM"
3878 #endif
3879 \f
3880 /* We allow a language front-end to designate a function that is to be
3881 called to "demangle" any name before it it put into a DIE. */
3882
3883 static const char *(*demangle_name_func) (const char *);
3884
3885 void
3886 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
3887 {
3888 demangle_name_func = func;
3889 }
3890
3891 /* Test if rtl node points to a pseudo register. */
3892
3893 static inline int
3894 is_pseudo_reg (rtx rtl)
3895 {
3896 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3897 || (GET_CODE (rtl) == SUBREG
3898 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3899 }
3900
3901 /* Return a reference to a type, with its const and volatile qualifiers
3902 removed. */
3903
3904 static inline tree
3905 type_main_variant (tree type)
3906 {
3907 type = TYPE_MAIN_VARIANT (type);
3908
3909 /* ??? There really should be only one main variant among any group of
3910 variants of a given type (and all of the MAIN_VARIANT values for all
3911 members of the group should point to that one type) but sometimes the C
3912 front-end messes this up for array types, so we work around that bug
3913 here. */
3914 if (TREE_CODE (type) == ARRAY_TYPE)
3915 while (type != TYPE_MAIN_VARIANT (type))
3916 type = TYPE_MAIN_VARIANT (type);
3917
3918 return type;
3919 }
3920
3921 /* Return nonzero if the given type node represents a tagged type. */
3922
3923 static inline int
3924 is_tagged_type (tree type)
3925 {
3926 enum tree_code code = TREE_CODE (type);
3927
3928 return (code == RECORD_TYPE || code == UNION_TYPE
3929 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
3930 }
3931
3932 /* Convert a DIE tag into its string name. */
3933
3934 static const char *
3935 dwarf_tag_name (unsigned int tag)
3936 {
3937 switch (tag)
3938 {
3939 case DW_TAG_padding:
3940 return "DW_TAG_padding";
3941 case DW_TAG_array_type:
3942 return "DW_TAG_array_type";
3943 case DW_TAG_class_type:
3944 return "DW_TAG_class_type";
3945 case DW_TAG_entry_point:
3946 return "DW_TAG_entry_point";
3947 case DW_TAG_enumeration_type:
3948 return "DW_TAG_enumeration_type";
3949 case DW_TAG_formal_parameter:
3950 return "DW_TAG_formal_parameter";
3951 case DW_TAG_imported_declaration:
3952 return "DW_TAG_imported_declaration";
3953 case DW_TAG_label:
3954 return "DW_TAG_label";
3955 case DW_TAG_lexical_block:
3956 return "DW_TAG_lexical_block";
3957 case DW_TAG_member:
3958 return "DW_TAG_member";
3959 case DW_TAG_pointer_type:
3960 return "DW_TAG_pointer_type";
3961 case DW_TAG_reference_type:
3962 return "DW_TAG_reference_type";
3963 case DW_TAG_compile_unit:
3964 return "DW_TAG_compile_unit";
3965 case DW_TAG_string_type:
3966 return "DW_TAG_string_type";
3967 case DW_TAG_structure_type:
3968 return "DW_TAG_structure_type";
3969 case DW_TAG_subroutine_type:
3970 return "DW_TAG_subroutine_type";
3971 case DW_TAG_typedef:
3972 return "DW_TAG_typedef";
3973 case DW_TAG_union_type:
3974 return "DW_TAG_union_type";
3975 case DW_TAG_unspecified_parameters:
3976 return "DW_TAG_unspecified_parameters";
3977 case DW_TAG_variant:
3978 return "DW_TAG_variant";
3979 case DW_TAG_common_block:
3980 return "DW_TAG_common_block";
3981 case DW_TAG_common_inclusion:
3982 return "DW_TAG_common_inclusion";
3983 case DW_TAG_inheritance:
3984 return "DW_TAG_inheritance";
3985 case DW_TAG_inlined_subroutine:
3986 return "DW_TAG_inlined_subroutine";
3987 case DW_TAG_module:
3988 return "DW_TAG_module";
3989 case DW_TAG_ptr_to_member_type:
3990 return "DW_TAG_ptr_to_member_type";
3991 case DW_TAG_set_type:
3992 return "DW_TAG_set_type";
3993 case DW_TAG_subrange_type:
3994 return "DW_TAG_subrange_type";
3995 case DW_TAG_with_stmt:
3996 return "DW_TAG_with_stmt";
3997 case DW_TAG_access_declaration:
3998 return "DW_TAG_access_declaration";
3999 case DW_TAG_base_type:
4000 return "DW_TAG_base_type";
4001 case DW_TAG_catch_block:
4002 return "DW_TAG_catch_block";
4003 case DW_TAG_const_type:
4004 return "DW_TAG_const_type";
4005 case DW_TAG_constant:
4006 return "DW_TAG_constant";
4007 case DW_TAG_enumerator:
4008 return "DW_TAG_enumerator";
4009 case DW_TAG_file_type:
4010 return "DW_TAG_file_type";
4011 case DW_TAG_friend:
4012 return "DW_TAG_friend";
4013 case DW_TAG_namelist:
4014 return "DW_TAG_namelist";
4015 case DW_TAG_namelist_item:
4016 return "DW_TAG_namelist_item";
4017 case DW_TAG_packed_type:
4018 return "DW_TAG_packed_type";
4019 case DW_TAG_subprogram:
4020 return "DW_TAG_subprogram";
4021 case DW_TAG_template_type_param:
4022 return "DW_TAG_template_type_param";
4023 case DW_TAG_template_value_param:
4024 return "DW_TAG_template_value_param";
4025 case DW_TAG_thrown_type:
4026 return "DW_TAG_thrown_type";
4027 case DW_TAG_try_block:
4028 return "DW_TAG_try_block";
4029 case DW_TAG_variant_part:
4030 return "DW_TAG_variant_part";
4031 case DW_TAG_variable:
4032 return "DW_TAG_variable";
4033 case DW_TAG_volatile_type:
4034 return "DW_TAG_volatile_type";
4035 case DW_TAG_MIPS_loop:
4036 return "DW_TAG_MIPS_loop";
4037 case DW_TAG_format_label:
4038 return "DW_TAG_format_label";
4039 case DW_TAG_function_template:
4040 return "DW_TAG_function_template";
4041 case DW_TAG_class_template:
4042 return "DW_TAG_class_template";
4043 case DW_TAG_GNU_BINCL:
4044 return "DW_TAG_GNU_BINCL";
4045 case DW_TAG_GNU_EINCL:
4046 return "DW_TAG_GNU_EINCL";
4047 default:
4048 return "DW_TAG_<unknown>";
4049 }
4050 }
4051
4052 /* Convert a DWARF attribute code into its string name. */
4053
4054 static const char *
4055 dwarf_attr_name (unsigned int attr)
4056 {
4057 switch (attr)
4058 {
4059 case DW_AT_sibling:
4060 return "DW_AT_sibling";
4061 case DW_AT_location:
4062 return "DW_AT_location";
4063 case DW_AT_name:
4064 return "DW_AT_name";
4065 case DW_AT_ordering:
4066 return "DW_AT_ordering";
4067 case DW_AT_subscr_data:
4068 return "DW_AT_subscr_data";
4069 case DW_AT_byte_size:
4070 return "DW_AT_byte_size";
4071 case DW_AT_bit_offset:
4072 return "DW_AT_bit_offset";
4073 case DW_AT_bit_size:
4074 return "DW_AT_bit_size";
4075 case DW_AT_element_list:
4076 return "DW_AT_element_list";
4077 case DW_AT_stmt_list:
4078 return "DW_AT_stmt_list";
4079 case DW_AT_low_pc:
4080 return "DW_AT_low_pc";
4081 case DW_AT_high_pc:
4082 return "DW_AT_high_pc";
4083 case DW_AT_language:
4084 return "DW_AT_language";
4085 case DW_AT_member:
4086 return "DW_AT_member";
4087 case DW_AT_discr:
4088 return "DW_AT_discr";
4089 case DW_AT_discr_value:
4090 return "DW_AT_discr_value";
4091 case DW_AT_visibility:
4092 return "DW_AT_visibility";
4093 case DW_AT_import:
4094 return "DW_AT_import";
4095 case DW_AT_string_length:
4096 return "DW_AT_string_length";
4097 case DW_AT_common_reference:
4098 return "DW_AT_common_reference";
4099 case DW_AT_comp_dir:
4100 return "DW_AT_comp_dir";
4101 case DW_AT_const_value:
4102 return "DW_AT_const_value";
4103 case DW_AT_containing_type:
4104 return "DW_AT_containing_type";
4105 case DW_AT_default_value:
4106 return "DW_AT_default_value";
4107 case DW_AT_inline:
4108 return "DW_AT_inline";
4109 case DW_AT_is_optional:
4110 return "DW_AT_is_optional";
4111 case DW_AT_lower_bound:
4112 return "DW_AT_lower_bound";
4113 case DW_AT_producer:
4114 return "DW_AT_producer";
4115 case DW_AT_prototyped:
4116 return "DW_AT_prototyped";
4117 case DW_AT_return_addr:
4118 return "DW_AT_return_addr";
4119 case DW_AT_start_scope:
4120 return "DW_AT_start_scope";
4121 case DW_AT_stride_size:
4122 return "DW_AT_stride_size";
4123 case DW_AT_upper_bound:
4124 return "DW_AT_upper_bound";
4125 case DW_AT_abstract_origin:
4126 return "DW_AT_abstract_origin";
4127 case DW_AT_accessibility:
4128 return "DW_AT_accessibility";
4129 case DW_AT_address_class:
4130 return "DW_AT_address_class";
4131 case DW_AT_artificial:
4132 return "DW_AT_artificial";
4133 case DW_AT_base_types:
4134 return "DW_AT_base_types";
4135 case DW_AT_calling_convention:
4136 return "DW_AT_calling_convention";
4137 case DW_AT_count:
4138 return "DW_AT_count";
4139 case DW_AT_data_member_location:
4140 return "DW_AT_data_member_location";
4141 case DW_AT_decl_column:
4142 return "DW_AT_decl_column";
4143 case DW_AT_decl_file:
4144 return "DW_AT_decl_file";
4145 case DW_AT_decl_line:
4146 return "DW_AT_decl_line";
4147 case DW_AT_declaration:
4148 return "DW_AT_declaration";
4149 case DW_AT_discr_list:
4150 return "DW_AT_discr_list";
4151 case DW_AT_encoding:
4152 return "DW_AT_encoding";
4153 case DW_AT_external:
4154 return "DW_AT_external";
4155 case DW_AT_frame_base:
4156 return "DW_AT_frame_base";
4157 case DW_AT_friend:
4158 return "DW_AT_friend";
4159 case DW_AT_identifier_case:
4160 return "DW_AT_identifier_case";
4161 case DW_AT_macro_info:
4162 return "DW_AT_macro_info";
4163 case DW_AT_namelist_items:
4164 return "DW_AT_namelist_items";
4165 case DW_AT_priority:
4166 return "DW_AT_priority";
4167 case DW_AT_segment:
4168 return "DW_AT_segment";
4169 case DW_AT_specification:
4170 return "DW_AT_specification";
4171 case DW_AT_static_link:
4172 return "DW_AT_static_link";
4173 case DW_AT_type:
4174 return "DW_AT_type";
4175 case DW_AT_use_location:
4176 return "DW_AT_use_location";
4177 case DW_AT_variable_parameter:
4178 return "DW_AT_variable_parameter";
4179 case DW_AT_virtuality:
4180 return "DW_AT_virtuality";
4181 case DW_AT_vtable_elem_location:
4182 return "DW_AT_vtable_elem_location";
4183
4184 case DW_AT_allocated:
4185 return "DW_AT_allocated";
4186 case DW_AT_associated:
4187 return "DW_AT_associated";
4188 case DW_AT_data_location:
4189 return "DW_AT_data_location";
4190 case DW_AT_stride:
4191 return "DW_AT_stride";
4192 case DW_AT_entry_pc:
4193 return "DW_AT_entry_pc";
4194 case DW_AT_use_UTF8:
4195 return "DW_AT_use_UTF8";
4196 case DW_AT_extension:
4197 return "DW_AT_extension";
4198 case DW_AT_ranges:
4199 return "DW_AT_ranges";
4200 case DW_AT_trampoline:
4201 return "DW_AT_trampoline";
4202 case DW_AT_call_column:
4203 return "DW_AT_call_column";
4204 case DW_AT_call_file:
4205 return "DW_AT_call_file";
4206 case DW_AT_call_line:
4207 return "DW_AT_call_line";
4208
4209 case DW_AT_MIPS_fde:
4210 return "DW_AT_MIPS_fde";
4211 case DW_AT_MIPS_loop_begin:
4212 return "DW_AT_MIPS_loop_begin";
4213 case DW_AT_MIPS_tail_loop_begin:
4214 return "DW_AT_MIPS_tail_loop_begin";
4215 case DW_AT_MIPS_epilog_begin:
4216 return "DW_AT_MIPS_epilog_begin";
4217 case DW_AT_MIPS_loop_unroll_factor:
4218 return "DW_AT_MIPS_loop_unroll_factor";
4219 case DW_AT_MIPS_software_pipeline_depth:
4220 return "DW_AT_MIPS_software_pipeline_depth";
4221 case DW_AT_MIPS_linkage_name:
4222 return "DW_AT_MIPS_linkage_name";
4223 case DW_AT_MIPS_stride:
4224 return "DW_AT_MIPS_stride";
4225 case DW_AT_MIPS_abstract_name:
4226 return "DW_AT_MIPS_abstract_name";
4227 case DW_AT_MIPS_clone_origin:
4228 return "DW_AT_MIPS_clone_origin";
4229 case DW_AT_MIPS_has_inlines:
4230 return "DW_AT_MIPS_has_inlines";
4231
4232 case DW_AT_sf_names:
4233 return "DW_AT_sf_names";
4234 case DW_AT_src_info:
4235 return "DW_AT_src_info";
4236 case DW_AT_mac_info:
4237 return "DW_AT_mac_info";
4238 case DW_AT_src_coords:
4239 return "DW_AT_src_coords";
4240 case DW_AT_body_begin:
4241 return "DW_AT_body_begin";
4242 case DW_AT_body_end:
4243 return "DW_AT_body_end";
4244 case DW_AT_GNU_vector:
4245 return "DW_AT_GNU_vector";
4246
4247 case DW_AT_VMS_rtnbeg_pd_address:
4248 return "DW_AT_VMS_rtnbeg_pd_address";
4249
4250 default:
4251 return "DW_AT_<unknown>";
4252 }
4253 }
4254
4255 /* Convert a DWARF value form code into its string name. */
4256
4257 static const char *
4258 dwarf_form_name (unsigned int form)
4259 {
4260 switch (form)
4261 {
4262 case DW_FORM_addr:
4263 return "DW_FORM_addr";
4264 case DW_FORM_block2:
4265 return "DW_FORM_block2";
4266 case DW_FORM_block4:
4267 return "DW_FORM_block4";
4268 case DW_FORM_data2:
4269 return "DW_FORM_data2";
4270 case DW_FORM_data4:
4271 return "DW_FORM_data4";
4272 case DW_FORM_data8:
4273 return "DW_FORM_data8";
4274 case DW_FORM_string:
4275 return "DW_FORM_string";
4276 case DW_FORM_block:
4277 return "DW_FORM_block";
4278 case DW_FORM_block1:
4279 return "DW_FORM_block1";
4280 case DW_FORM_data1:
4281 return "DW_FORM_data1";
4282 case DW_FORM_flag:
4283 return "DW_FORM_flag";
4284 case DW_FORM_sdata:
4285 return "DW_FORM_sdata";
4286 case DW_FORM_strp:
4287 return "DW_FORM_strp";
4288 case DW_FORM_udata:
4289 return "DW_FORM_udata";
4290 case DW_FORM_ref_addr:
4291 return "DW_FORM_ref_addr";
4292 case DW_FORM_ref1:
4293 return "DW_FORM_ref1";
4294 case DW_FORM_ref2:
4295 return "DW_FORM_ref2";
4296 case DW_FORM_ref4:
4297 return "DW_FORM_ref4";
4298 case DW_FORM_ref8:
4299 return "DW_FORM_ref8";
4300 case DW_FORM_ref_udata:
4301 return "DW_FORM_ref_udata";
4302 case DW_FORM_indirect:
4303 return "DW_FORM_indirect";
4304 default:
4305 return "DW_FORM_<unknown>";
4306 }
4307 }
4308
4309 /* Convert a DWARF type code into its string name. */
4310
4311 #if 0
4312 static const char *
4313 dwarf_type_encoding_name (unsigned enc)
4314 {
4315 switch (enc)
4316 {
4317 case DW_ATE_address:
4318 return "DW_ATE_address";
4319 case DW_ATE_boolean:
4320 return "DW_ATE_boolean";
4321 case DW_ATE_complex_float:
4322 return "DW_ATE_complex_float";
4323 case DW_ATE_float:
4324 return "DW_ATE_float";
4325 case DW_ATE_signed:
4326 return "DW_ATE_signed";
4327 case DW_ATE_signed_char:
4328 return "DW_ATE_signed_char";
4329 case DW_ATE_unsigned:
4330 return "DW_ATE_unsigned";
4331 case DW_ATE_unsigned_char:
4332 return "DW_ATE_unsigned_char";
4333 default:
4334 return "DW_ATE_<unknown>";
4335 }
4336 }
4337 #endif
4338 \f
4339 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4340 instance of an inlined instance of a decl which is local to an inline
4341 function, so we have to trace all of the way back through the origin chain
4342 to find out what sort of node actually served as the original seed for the
4343 given block. */
4344
4345 static tree
4346 decl_ultimate_origin (tree decl)
4347 {
4348 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4349 nodes in the function to point to themselves; ignore that if
4350 we're trying to output the abstract instance of this function. */
4351 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4352 return NULL_TREE;
4353
4354 #ifdef ENABLE_CHECKING
4355 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4356 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4357 most distant ancestor, this should never happen. */
4358 abort ();
4359 #endif
4360
4361 return DECL_ABSTRACT_ORIGIN (decl);
4362 }
4363
4364 /* Determine the "ultimate origin" of a block. The block may be an inlined
4365 instance of an inlined instance of a block which is local to an inline
4366 function, so we have to trace all of the way back through the origin chain
4367 to find out what sort of node actually served as the original seed for the
4368 given block. */
4369
4370 static tree
4371 block_ultimate_origin (tree block)
4372 {
4373 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4374
4375 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4376 nodes in the function to point to themselves; ignore that if
4377 we're trying to output the abstract instance of this function. */
4378 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4379 return NULL_TREE;
4380
4381 if (immediate_origin == NULL_TREE)
4382 return NULL_TREE;
4383 else
4384 {
4385 tree ret_val;
4386 tree lookahead = immediate_origin;
4387
4388 do
4389 {
4390 ret_val = lookahead;
4391 lookahead = (TREE_CODE (ret_val) == BLOCK
4392 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4393 }
4394 while (lookahead != NULL && lookahead != ret_val);
4395
4396 return ret_val;
4397 }
4398 }
4399
4400 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4401 of a virtual function may refer to a base class, so we check the 'this'
4402 parameter. */
4403
4404 static tree
4405 decl_class_context (tree decl)
4406 {
4407 tree context = NULL_TREE;
4408
4409 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4410 context = DECL_CONTEXT (decl);
4411 else
4412 context = TYPE_MAIN_VARIANT
4413 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4414
4415 if (context && !TYPE_P (context))
4416 context = NULL_TREE;
4417
4418 return context;
4419 }
4420 \f
4421 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4422 addition order, and correct that in reverse_all_dies. */
4423
4424 static inline void
4425 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4426 {
4427 if (die != NULL && attr != NULL)
4428 {
4429 attr->dw_attr_next = die->die_attr;
4430 die->die_attr = attr;
4431 }
4432 }
4433
4434 static inline enum dw_val_class
4435 AT_class (dw_attr_ref a)
4436 {
4437 return a->dw_attr_val.val_class;
4438 }
4439
4440 /* Add a flag value attribute to a DIE. */
4441
4442 static inline void
4443 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4444 {
4445 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4446
4447 attr->dw_attr_next = NULL;
4448 attr->dw_attr = attr_kind;
4449 attr->dw_attr_val.val_class = dw_val_class_flag;
4450 attr->dw_attr_val.v.val_flag = flag;
4451 add_dwarf_attr (die, attr);
4452 }
4453
4454 static inline unsigned
4455 AT_flag (dw_attr_ref a)
4456 {
4457 if (a && AT_class (a) == dw_val_class_flag)
4458 return a->dw_attr_val.v.val_flag;
4459
4460 abort ();
4461 }
4462
4463 /* Add a signed integer attribute value to a DIE. */
4464
4465 static inline void
4466 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, long int int_val)
4467 {
4468 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4469
4470 attr->dw_attr_next = NULL;
4471 attr->dw_attr = attr_kind;
4472 attr->dw_attr_val.val_class = dw_val_class_const;
4473 attr->dw_attr_val.v.val_int = int_val;
4474 add_dwarf_attr (die, attr);
4475 }
4476
4477 static inline long int
4478 AT_int (dw_attr_ref a)
4479 {
4480 if (a && AT_class (a) == dw_val_class_const)
4481 return a->dw_attr_val.v.val_int;
4482
4483 abort ();
4484 }
4485
4486 /* Add an unsigned integer attribute value to a DIE. */
4487
4488 static inline void
4489 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4490 long unsigned int unsigned_val)
4491 {
4492 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4493
4494 attr->dw_attr_next = NULL;
4495 attr->dw_attr = attr_kind;
4496 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4497 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4498 add_dwarf_attr (die, attr);
4499 }
4500
4501 static inline unsigned long
4502 AT_unsigned (dw_attr_ref a)
4503 {
4504 if (a && AT_class (a) == dw_val_class_unsigned_const)
4505 return a->dw_attr_val.v.val_unsigned;
4506
4507 abort ();
4508 }
4509
4510 /* Add an unsigned double integer attribute value to a DIE. */
4511
4512 static inline void
4513 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4514 long unsigned int val_hi, long unsigned int val_low)
4515 {
4516 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4517
4518 attr->dw_attr_next = NULL;
4519 attr->dw_attr = attr_kind;
4520 attr->dw_attr_val.val_class = dw_val_class_long_long;
4521 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4522 attr->dw_attr_val.v.val_long_long.low = val_low;
4523 add_dwarf_attr (die, attr);
4524 }
4525
4526 /* Add a floating point attribute value to a DIE and return it. */
4527
4528 static inline void
4529 add_AT_float (dw_die_ref die, enum dwarf_attribute attr_kind,
4530 unsigned int length, long int *array)
4531 {
4532 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4533
4534 attr->dw_attr_next = NULL;
4535 attr->dw_attr = attr_kind;
4536 attr->dw_attr_val.val_class = dw_val_class_float;
4537 attr->dw_attr_val.v.val_float.length = length;
4538 attr->dw_attr_val.v.val_float.array = array;
4539 add_dwarf_attr (die, attr);
4540 }
4541
4542 /* Hash and equality functions for debug_str_hash. */
4543
4544 static hashval_t
4545 debug_str_do_hash (const void *x)
4546 {
4547 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4548 }
4549
4550 static int
4551 debug_str_eq (const void *x1, const void *x2)
4552 {
4553 return strcmp ((((const struct indirect_string_node *)x1)->str),
4554 (const char *)x2) == 0;
4555 }
4556
4557 /* Add a string attribute value to a DIE. */
4558
4559 static inline void
4560 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4561 {
4562 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4563 struct indirect_string_node *node;
4564 void **slot;
4565
4566 if (! debug_str_hash)
4567 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4568 debug_str_eq, NULL);
4569
4570 slot = htab_find_slot_with_hash (debug_str_hash, str,
4571 htab_hash_string (str), INSERT);
4572 if (*slot == NULL)
4573 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4574 node = (struct indirect_string_node *) *slot;
4575 node->str = ggc_strdup (str);
4576 node->refcount++;
4577
4578 attr->dw_attr_next = NULL;
4579 attr->dw_attr = attr_kind;
4580 attr->dw_attr_val.val_class = dw_val_class_str;
4581 attr->dw_attr_val.v.val_str = node;
4582 add_dwarf_attr (die, attr);
4583 }
4584
4585 static inline const char *
4586 AT_string (dw_attr_ref a)
4587 {
4588 if (a && AT_class (a) == dw_val_class_str)
4589 return a->dw_attr_val.v.val_str->str;
4590
4591 abort ();
4592 }
4593
4594 /* Find out whether a string should be output inline in DIE
4595 or out-of-line in .debug_str section. */
4596
4597 static int
4598 AT_string_form (dw_attr_ref a)
4599 {
4600 if (a && AT_class (a) == dw_val_class_str)
4601 {
4602 struct indirect_string_node *node;
4603 unsigned int len;
4604 char label[32];
4605
4606 node = a->dw_attr_val.v.val_str;
4607 if (node->form)
4608 return node->form;
4609
4610 len = strlen (node->str) + 1;
4611
4612 /* If the string is shorter or equal to the size of the reference, it is
4613 always better to put it inline. */
4614 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4615 return node->form = DW_FORM_string;
4616
4617 /* If we cannot expect the linker to merge strings in .debug_str
4618 section, only put it into .debug_str if it is worth even in this
4619 single module. */
4620 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4621 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4622 return node->form = DW_FORM_string;
4623
4624 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4625 ++dw2_string_counter;
4626 node->label = xstrdup (label);
4627
4628 return node->form = DW_FORM_strp;
4629 }
4630
4631 abort ();
4632 }
4633
4634 /* Add a DIE reference attribute value to a DIE. */
4635
4636 static inline void
4637 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4638 {
4639 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4640
4641 attr->dw_attr_next = NULL;
4642 attr->dw_attr = attr_kind;
4643 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4644 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4645 attr->dw_attr_val.v.val_die_ref.external = 0;
4646 add_dwarf_attr (die, attr);
4647 }
4648
4649 static inline dw_die_ref
4650 AT_ref (dw_attr_ref a)
4651 {
4652 if (a && AT_class (a) == dw_val_class_die_ref)
4653 return a->dw_attr_val.v.val_die_ref.die;
4654
4655 abort ();
4656 }
4657
4658 static inline int
4659 AT_ref_external (dw_attr_ref a)
4660 {
4661 if (a && AT_class (a) == dw_val_class_die_ref)
4662 return a->dw_attr_val.v.val_die_ref.external;
4663
4664 return 0;
4665 }
4666
4667 static inline void
4668 set_AT_ref_external (dw_attr_ref a, int i)
4669 {
4670 if (a && AT_class (a) == dw_val_class_die_ref)
4671 a->dw_attr_val.v.val_die_ref.external = i;
4672 else
4673 abort ();
4674 }
4675
4676 /* Add an FDE reference attribute value to a DIE. */
4677
4678 static inline void
4679 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4680 {
4681 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4682
4683 attr->dw_attr_next = NULL;
4684 attr->dw_attr = attr_kind;
4685 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4686 attr->dw_attr_val.v.val_fde_index = targ_fde;
4687 add_dwarf_attr (die, attr);
4688 }
4689
4690 /* Add a location description attribute value to a DIE. */
4691
4692 static inline void
4693 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4694 {
4695 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4696
4697 attr->dw_attr_next = NULL;
4698 attr->dw_attr = attr_kind;
4699 attr->dw_attr_val.val_class = dw_val_class_loc;
4700 attr->dw_attr_val.v.val_loc = loc;
4701 add_dwarf_attr (die, attr);
4702 }
4703
4704 static inline dw_loc_descr_ref
4705 AT_loc (dw_attr_ref a)
4706 {
4707 if (a && AT_class (a) == dw_val_class_loc)
4708 return a->dw_attr_val.v.val_loc;
4709
4710 abort ();
4711 }
4712
4713 static inline void
4714 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4715 {
4716 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4717
4718 attr->dw_attr_next = NULL;
4719 attr->dw_attr = attr_kind;
4720 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4721 attr->dw_attr_val.v.val_loc_list = loc_list;
4722 add_dwarf_attr (die, attr);
4723 have_location_lists = 1;
4724 }
4725
4726 static inline dw_loc_list_ref
4727 AT_loc_list (dw_attr_ref a)
4728 {
4729 if (a && AT_class (a) == dw_val_class_loc_list)
4730 return a->dw_attr_val.v.val_loc_list;
4731
4732 abort ();
4733 }
4734
4735 /* Add an address constant attribute value to a DIE. */
4736
4737 static inline void
4738 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
4739 {
4740 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4741
4742 attr->dw_attr_next = NULL;
4743 attr->dw_attr = attr_kind;
4744 attr->dw_attr_val.val_class = dw_val_class_addr;
4745 attr->dw_attr_val.v.val_addr = addr;
4746 add_dwarf_attr (die, attr);
4747 }
4748
4749 static inline rtx
4750 AT_addr (dw_attr_ref a)
4751 {
4752 if (a && AT_class (a) == dw_val_class_addr)
4753 return a->dw_attr_val.v.val_addr;
4754
4755 abort ();
4756 }
4757
4758 /* Add a label identifier attribute value to a DIE. */
4759
4760 static inline void
4761 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
4762 {
4763 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4764
4765 attr->dw_attr_next = NULL;
4766 attr->dw_attr = attr_kind;
4767 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4768 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4769 add_dwarf_attr (die, attr);
4770 }
4771
4772 /* Add a section offset attribute value to a DIE. */
4773
4774 static inline void
4775 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
4776 {
4777 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4778
4779 attr->dw_attr_next = NULL;
4780 attr->dw_attr = attr_kind;
4781 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4782 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4783 add_dwarf_attr (die, attr);
4784 }
4785
4786 /* Add an offset attribute value to a DIE. */
4787
4788 static inline void
4789 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind, long unsigned int offset)
4790 {
4791 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4792
4793 attr->dw_attr_next = NULL;
4794 attr->dw_attr = attr_kind;
4795 attr->dw_attr_val.val_class = dw_val_class_offset;
4796 attr->dw_attr_val.v.val_offset = offset;
4797 add_dwarf_attr (die, attr);
4798 }
4799
4800 /* Add an range_list attribute value to a DIE. */
4801
4802 static void
4803 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
4804 long unsigned int offset)
4805 {
4806 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4807
4808 attr->dw_attr_next = NULL;
4809 attr->dw_attr = attr_kind;
4810 attr->dw_attr_val.val_class = dw_val_class_range_list;
4811 attr->dw_attr_val.v.val_offset = offset;
4812 add_dwarf_attr (die, attr);
4813 }
4814
4815 static inline const char *
4816 AT_lbl (dw_attr_ref a)
4817 {
4818 if (a && (AT_class (a) == dw_val_class_lbl_id
4819 || AT_class (a) == dw_val_class_lbl_offset))
4820 return a->dw_attr_val.v.val_lbl_id;
4821
4822 abort ();
4823 }
4824
4825 /* Get the attribute of type attr_kind. */
4826
4827 static inline dw_attr_ref
4828 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4829 {
4830 dw_attr_ref a;
4831 dw_die_ref spec = NULL;
4832
4833 if (die != NULL)
4834 {
4835 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
4836 if (a->dw_attr == attr_kind)
4837 return a;
4838 else if (a->dw_attr == DW_AT_specification
4839 || a->dw_attr == DW_AT_abstract_origin)
4840 spec = AT_ref (a);
4841
4842 if (spec)
4843 return get_AT (spec, attr_kind);
4844 }
4845
4846 return NULL;
4847 }
4848
4849 /* Return the "low pc" attribute value, typically associated with a subprogram
4850 DIE. Return null if the "low pc" attribute is either not present, or if it
4851 cannot be represented as an assembler label identifier. */
4852
4853 static inline const char *
4854 get_AT_low_pc (dw_die_ref die)
4855 {
4856 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
4857
4858 return a ? AT_lbl (a) : NULL;
4859 }
4860
4861 /* Return the "high pc" attribute value, typically associated with a subprogram
4862 DIE. Return null if the "high pc" attribute is either not present, or if it
4863 cannot be represented as an assembler label identifier. */
4864
4865 static inline const char *
4866 get_AT_hi_pc (dw_die_ref die)
4867 {
4868 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
4869
4870 return a ? AT_lbl (a) : NULL;
4871 }
4872
4873 /* Return the value of the string attribute designated by ATTR_KIND, or
4874 NULL if it is not present. */
4875
4876 static inline const char *
4877 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
4878 {
4879 dw_attr_ref a = get_AT (die, attr_kind);
4880
4881 return a ? AT_string (a) : NULL;
4882 }
4883
4884 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
4885 if it is not present. */
4886
4887 static inline int
4888 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
4889 {
4890 dw_attr_ref a = get_AT (die, attr_kind);
4891
4892 return a ? AT_flag (a) : 0;
4893 }
4894
4895 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4896 if it is not present. */
4897
4898 static inline unsigned
4899 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
4900 {
4901 dw_attr_ref a = get_AT (die, attr_kind);
4902
4903 return a ? AT_unsigned (a) : 0;
4904 }
4905
4906 static inline dw_die_ref
4907 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
4908 {
4909 dw_attr_ref a = get_AT (die, attr_kind);
4910
4911 return a ? AT_ref (a) : NULL;
4912 }
4913
4914 /* Return TRUE if the language is C or C++. */
4915
4916 static inline bool
4917 is_c_family (void)
4918 {
4919 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4920
4921 return (lang == DW_LANG_C || lang == DW_LANG_C89
4922 || lang == DW_LANG_C_plus_plus);
4923 }
4924
4925 /* Return TRUE if the language is C++. */
4926
4927 static inline bool
4928 is_cxx (void)
4929 {
4930 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
4931 == DW_LANG_C_plus_plus);
4932 }
4933
4934 /* Return TRUE if the language is Fortran. */
4935
4936 static inline bool
4937 is_fortran (void)
4938 {
4939 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4940
4941 return lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90;
4942 }
4943
4944 /* Return TRUE if the language is Java. */
4945
4946 static inline bool
4947 is_java (void)
4948 {
4949 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4950
4951 return lang == DW_LANG_Java;
4952 }
4953
4954 /* Return TRUE if the language is Ada. */
4955
4956 static inline bool
4957 is_ada (void)
4958 {
4959 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4960
4961 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
4962 }
4963
4964 /* Free up the memory used by A. */
4965
4966 static inline void free_AT (dw_attr_ref);
4967 static inline void
4968 free_AT (dw_attr_ref a)
4969 {
4970 if (AT_class (a) == dw_val_class_str)
4971 if (a->dw_attr_val.v.val_str->refcount)
4972 a->dw_attr_val.v.val_str->refcount--;
4973 }
4974
4975 /* Remove the specified attribute if present. */
4976
4977 static void
4978 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4979 {
4980 dw_attr_ref *p;
4981 dw_attr_ref removed = NULL;
4982
4983 if (die != NULL)
4984 {
4985 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
4986 if ((*p)->dw_attr == attr_kind)
4987 {
4988 removed = *p;
4989 *p = (*p)->dw_attr_next;
4990 break;
4991 }
4992
4993 if (removed != 0)
4994 free_AT (removed);
4995 }
4996 }
4997
4998 /* Free up the memory used by DIE. */
4999
5000 static inline void
5001 free_die (dw_die_ref die)
5002 {
5003 remove_children (die);
5004 }
5005
5006 /* Discard the children of this DIE. */
5007
5008 static void
5009 remove_children (dw_die_ref die)
5010 {
5011 dw_die_ref child_die = die->die_child;
5012
5013 die->die_child = NULL;
5014
5015 while (child_die != NULL)
5016 {
5017 dw_die_ref tmp_die = child_die;
5018 dw_attr_ref a;
5019
5020 child_die = child_die->die_sib;
5021
5022 for (a = tmp_die->die_attr; a != NULL;)
5023 {
5024 dw_attr_ref tmp_a = a;
5025
5026 a = a->dw_attr_next;
5027 free_AT (tmp_a);
5028 }
5029
5030 free_die (tmp_die);
5031 }
5032 }
5033
5034 /* Add a child DIE below its parent. We build the lists up in reverse
5035 addition order, and correct that in reverse_all_dies. */
5036
5037 static inline void
5038 add_child_die (dw_die_ref die, dw_die_ref child_die)
5039 {
5040 if (die != NULL && child_die != NULL)
5041 {
5042 if (die == child_die)
5043 abort ();
5044
5045 child_die->die_parent = die;
5046 child_die->die_sib = die->die_child;
5047 die->die_child = child_die;
5048 }
5049 }
5050
5051 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5052 is the specification, to the front of PARENT's list of children. */
5053
5054 static void
5055 splice_child_die (dw_die_ref parent, dw_die_ref child)
5056 {
5057 dw_die_ref *p;
5058
5059 /* We want the declaration DIE from inside the class, not the
5060 specification DIE at toplevel. */
5061 if (child->die_parent != parent)
5062 {
5063 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5064
5065 if (tmp)
5066 child = tmp;
5067 }
5068
5069 if (child->die_parent != parent
5070 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5071 abort ();
5072
5073 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5074 if (*p == child)
5075 {
5076 *p = child->die_sib;
5077 break;
5078 }
5079
5080 child->die_parent = parent;
5081 child->die_sib = parent->die_child;
5082 parent->die_child = child;
5083 }
5084
5085 /* Return a pointer to a newly created DIE node. */
5086
5087 static inline dw_die_ref
5088 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5089 {
5090 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5091
5092 die->die_tag = tag_value;
5093
5094 if (parent_die != NULL)
5095 add_child_die (parent_die, die);
5096 else
5097 {
5098 limbo_die_node *limbo_node;
5099
5100 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5101 limbo_node->die = die;
5102 limbo_node->created_for = t;
5103 limbo_node->next = limbo_die_list;
5104 limbo_die_list = limbo_node;
5105 }
5106
5107 return die;
5108 }
5109
5110 /* Return the DIE associated with the given type specifier. */
5111
5112 static inline dw_die_ref
5113 lookup_type_die (tree type)
5114 {
5115 return TYPE_SYMTAB_DIE (type);
5116 }
5117
5118 /* Equate a DIE to a given type specifier. */
5119
5120 static inline void
5121 equate_type_number_to_die (tree type, dw_die_ref type_die)
5122 {
5123 TYPE_SYMTAB_DIE (type) = type_die;
5124 }
5125
5126 /* Return the DIE associated with a given declaration. */
5127
5128 static inline dw_die_ref
5129 lookup_decl_die (tree decl)
5130 {
5131 unsigned decl_id = DECL_UID (decl);
5132
5133 return (decl_id < decl_die_table_in_use ? decl_die_table[decl_id] : NULL);
5134 }
5135
5136 /* Equate a DIE to a particular declaration. */
5137
5138 static void
5139 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5140 {
5141 unsigned int decl_id = DECL_UID (decl);
5142 unsigned int num_allocated;
5143
5144 if (decl_id >= decl_die_table_allocated)
5145 {
5146 num_allocated
5147 = ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
5148 / DECL_DIE_TABLE_INCREMENT)
5149 * DECL_DIE_TABLE_INCREMENT;
5150
5151 decl_die_table = ggc_realloc (decl_die_table,
5152 sizeof (dw_die_ref) * num_allocated);
5153
5154 memset (&decl_die_table[decl_die_table_allocated], 0,
5155 (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
5156 decl_die_table_allocated = num_allocated;
5157 }
5158
5159 if (decl_id >= decl_die_table_in_use)
5160 decl_die_table_in_use = (decl_id + 1);
5161
5162 decl_die_table[decl_id] = decl_die;
5163 }
5164 \f
5165 /* Keep track of the number of spaces used to indent the
5166 output of the debugging routines that print the structure of
5167 the DIE internal representation. */
5168 static int print_indent;
5169
5170 /* Indent the line the number of spaces given by print_indent. */
5171
5172 static inline void
5173 print_spaces (FILE *outfile)
5174 {
5175 fprintf (outfile, "%*s", print_indent, "");
5176 }
5177
5178 /* Print the information associated with a given DIE, and its children.
5179 This routine is a debugging aid only. */
5180
5181 static void
5182 print_die (dw_die_ref die, FILE *outfile)
5183 {
5184 dw_attr_ref a;
5185 dw_die_ref c;
5186
5187 print_spaces (outfile);
5188 fprintf (outfile, "DIE %4lu: %s\n",
5189 die->die_offset, dwarf_tag_name (die->die_tag));
5190 print_spaces (outfile);
5191 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5192 fprintf (outfile, " offset: %lu\n", die->die_offset);
5193
5194 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5195 {
5196 print_spaces (outfile);
5197 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5198
5199 switch (AT_class (a))
5200 {
5201 case dw_val_class_addr:
5202 fprintf (outfile, "address");
5203 break;
5204 case dw_val_class_offset:
5205 fprintf (outfile, "offset");
5206 break;
5207 case dw_val_class_loc:
5208 fprintf (outfile, "location descriptor");
5209 break;
5210 case dw_val_class_loc_list:
5211 fprintf (outfile, "location list -> label:%s",
5212 AT_loc_list (a)->ll_symbol);
5213 break;
5214 case dw_val_class_range_list:
5215 fprintf (outfile, "range list");
5216 break;
5217 case dw_val_class_const:
5218 fprintf (outfile, "%ld", AT_int (a));
5219 break;
5220 case dw_val_class_unsigned_const:
5221 fprintf (outfile, "%lu", AT_unsigned (a));
5222 break;
5223 case dw_val_class_long_long:
5224 fprintf (outfile, "constant (%lu,%lu)",
5225 a->dw_attr_val.v.val_long_long.hi,
5226 a->dw_attr_val.v.val_long_long.low);
5227 break;
5228 case dw_val_class_float:
5229 fprintf (outfile, "floating-point constant");
5230 break;
5231 case dw_val_class_flag:
5232 fprintf (outfile, "%u", AT_flag (a));
5233 break;
5234 case dw_val_class_die_ref:
5235 if (AT_ref (a) != NULL)
5236 {
5237 if (AT_ref (a)->die_symbol)
5238 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5239 else
5240 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5241 }
5242 else
5243 fprintf (outfile, "die -> <null>");
5244 break;
5245 case dw_val_class_lbl_id:
5246 case dw_val_class_lbl_offset:
5247 fprintf (outfile, "label: %s", AT_lbl (a));
5248 break;
5249 case dw_val_class_str:
5250 if (AT_string (a) != NULL)
5251 fprintf (outfile, "\"%s\"", AT_string (a));
5252 else
5253 fprintf (outfile, "<null>");
5254 break;
5255 default:
5256 break;
5257 }
5258
5259 fprintf (outfile, "\n");
5260 }
5261
5262 if (die->die_child != NULL)
5263 {
5264 print_indent += 4;
5265 for (c = die->die_child; c != NULL; c = c->die_sib)
5266 print_die (c, outfile);
5267
5268 print_indent -= 4;
5269 }
5270 if (print_indent == 0)
5271 fprintf (outfile, "\n");
5272 }
5273
5274 /* Print the contents of the source code line number correspondence table.
5275 This routine is a debugging aid only. */
5276
5277 static void
5278 print_dwarf_line_table (FILE *outfile)
5279 {
5280 unsigned i;
5281 dw_line_info_ref line_info;
5282
5283 fprintf (outfile, "\n\nDWARF source line information\n");
5284 for (i = 1; i < line_info_table_in_use; i++)
5285 {
5286 line_info = &line_info_table[i];
5287 fprintf (outfile, "%5d: ", i);
5288 fprintf (outfile, "%-20s",
5289 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5290 fprintf (outfile, "%6ld", line_info->dw_line_num);
5291 fprintf (outfile, "\n");
5292 }
5293
5294 fprintf (outfile, "\n\n");
5295 }
5296
5297 /* Print the information collected for a given DIE. */
5298
5299 void
5300 debug_dwarf_die (dw_die_ref die)
5301 {
5302 print_die (die, stderr);
5303 }
5304
5305 /* Print all DWARF information collected for the compilation unit.
5306 This routine is a debugging aid only. */
5307
5308 void
5309 debug_dwarf (void)
5310 {
5311 print_indent = 0;
5312 print_die (comp_unit_die, stderr);
5313 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5314 print_dwarf_line_table (stderr);
5315 }
5316 \f
5317 /* We build up the lists of children and attributes by pushing new ones
5318 onto the beginning of the list. Reverse the lists for DIE so that
5319 they are in order of addition. */
5320
5321 static void
5322 reverse_die_lists (dw_die_ref die)
5323 {
5324 dw_die_ref c, cp, cn;
5325 dw_attr_ref a, ap, an;
5326
5327 for (a = die->die_attr, ap = 0; a; a = an)
5328 {
5329 an = a->dw_attr_next;
5330 a->dw_attr_next = ap;
5331 ap = a;
5332 }
5333
5334 die->die_attr = ap;
5335
5336 for (c = die->die_child, cp = 0; c; c = cn)
5337 {
5338 cn = c->die_sib;
5339 c->die_sib = cp;
5340 cp = c;
5341 }
5342
5343 die->die_child = cp;
5344 }
5345
5346 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5347 reverse all dies in add_sibling_attributes, which runs through all the dies,
5348 it would reverse all the dies. Now, however, since we don't call
5349 reverse_die_lists in add_sibling_attributes, we need a routine to
5350 recursively reverse all the dies. This is that routine. */
5351
5352 static void
5353 reverse_all_dies (dw_die_ref die)
5354 {
5355 dw_die_ref c;
5356
5357 reverse_die_lists (die);
5358
5359 for (c = die->die_child; c; c = c->die_sib)
5360 reverse_all_dies (c);
5361 }
5362
5363 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5364 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5365 DIE that marks the start of the DIEs for this include file. */
5366
5367 static dw_die_ref
5368 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5369 {
5370 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5371 dw_die_ref new_unit = gen_compile_unit_die (filename);
5372
5373 new_unit->die_sib = old_unit;
5374 return new_unit;
5375 }
5376
5377 /* Close an include-file CU and reopen the enclosing one. */
5378
5379 static dw_die_ref
5380 pop_compile_unit (dw_die_ref old_unit)
5381 {
5382 dw_die_ref new_unit = old_unit->die_sib;
5383
5384 old_unit->die_sib = NULL;
5385 return new_unit;
5386 }
5387
5388 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5389 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5390
5391 /* Calculate the checksum of a location expression. */
5392
5393 static inline void
5394 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5395 {
5396 CHECKSUM (loc->dw_loc_opc);
5397 CHECKSUM (loc->dw_loc_oprnd1);
5398 CHECKSUM (loc->dw_loc_oprnd2);
5399 }
5400
5401 /* Calculate the checksum of an attribute. */
5402
5403 static void
5404 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5405 {
5406 dw_loc_descr_ref loc;
5407 rtx r;
5408
5409 CHECKSUM (at->dw_attr);
5410
5411 /* We don't care about differences in file numbering. */
5412 if (at->dw_attr == DW_AT_decl_file
5413 /* Or that this was compiled with a different compiler snapshot; if
5414 the output is the same, that's what matters. */
5415 || at->dw_attr == DW_AT_producer)
5416 return;
5417
5418 switch (AT_class (at))
5419 {
5420 case dw_val_class_const:
5421 CHECKSUM (at->dw_attr_val.v.val_int);
5422 break;
5423 case dw_val_class_unsigned_const:
5424 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5425 break;
5426 case dw_val_class_long_long:
5427 CHECKSUM (at->dw_attr_val.v.val_long_long);
5428 break;
5429 case dw_val_class_float:
5430 CHECKSUM (at->dw_attr_val.v.val_float);
5431 break;
5432 case dw_val_class_flag:
5433 CHECKSUM (at->dw_attr_val.v.val_flag);
5434 break;
5435 case dw_val_class_str:
5436 CHECKSUM_STRING (AT_string (at));
5437 break;
5438
5439 case dw_val_class_addr:
5440 r = AT_addr (at);
5441 switch (GET_CODE (r))
5442 {
5443 case SYMBOL_REF:
5444 CHECKSUM_STRING (XSTR (r, 0));
5445 break;
5446
5447 default:
5448 abort ();
5449 }
5450 break;
5451
5452 case dw_val_class_offset:
5453 CHECKSUM (at->dw_attr_val.v.val_offset);
5454 break;
5455
5456 case dw_val_class_loc:
5457 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5458 loc_checksum (loc, ctx);
5459 break;
5460
5461 case dw_val_class_die_ref:
5462 die_checksum (AT_ref (at), ctx, mark);
5463 break;
5464
5465 case dw_val_class_fde_ref:
5466 case dw_val_class_lbl_id:
5467 case dw_val_class_lbl_offset:
5468 break;
5469
5470 default:
5471 break;
5472 }
5473 }
5474
5475 /* Calculate the checksum of a DIE. */
5476
5477 static void
5478 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5479 {
5480 dw_die_ref c;
5481 dw_attr_ref a;
5482
5483 /* To avoid infinite recursion. */
5484 if (die->die_mark)
5485 {
5486 CHECKSUM (die->die_mark);
5487 return;
5488 }
5489 die->die_mark = ++(*mark);
5490
5491 CHECKSUM (die->die_tag);
5492
5493 for (a = die->die_attr; a; a = a->dw_attr_next)
5494 attr_checksum (a, ctx, mark);
5495
5496 for (c = die->die_child; c; c = c->die_sib)
5497 die_checksum (c, ctx, mark);
5498 }
5499
5500 #undef CHECKSUM
5501 #undef CHECKSUM_STRING
5502
5503 /* Do the location expressions look same? */
5504 static inline int
5505 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5506 {
5507 return loc1->dw_loc_opc == loc2->dw_loc_opc
5508 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5509 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5510 }
5511
5512 /* Do the values look the same? */
5513 static int
5514 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5515 {
5516 dw_loc_descr_ref loc1, loc2;
5517 rtx r1, r2;
5518 unsigned i;
5519
5520 if (v1->val_class != v2->val_class)
5521 return 0;
5522
5523 switch (v1->val_class)
5524 {
5525 case dw_val_class_const:
5526 return v1->v.val_int == v2->v.val_int;
5527 case dw_val_class_unsigned_const:
5528 return v1->v.val_unsigned == v2->v.val_unsigned;
5529 case dw_val_class_long_long:
5530 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5531 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5532 case dw_val_class_float:
5533 if (v1->v.val_float.length != v2->v.val_float.length)
5534 return 0;
5535 for (i = 0; i < v1->v.val_float.length; i++)
5536 if (v1->v.val_float.array[i] != v2->v.val_float.array[i])
5537 return 0;
5538 return 1;
5539 case dw_val_class_flag:
5540 return v1->v.val_flag == v2->v.val_flag;
5541 case dw_val_class_str:
5542 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5543
5544 case dw_val_class_addr:
5545 r1 = v1->v.val_addr;
5546 r2 = v2->v.val_addr;
5547 if (GET_CODE (r1) != GET_CODE (r2))
5548 return 0;
5549 switch (GET_CODE (r1))
5550 {
5551 case SYMBOL_REF:
5552 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5553
5554 default:
5555 abort ();
5556 }
5557
5558 case dw_val_class_offset:
5559 return v1->v.val_offset == v2->v.val_offset;
5560
5561 case dw_val_class_loc:
5562 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5563 loc1 && loc2;
5564 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5565 if (!same_loc_p (loc1, loc2, mark))
5566 return 0;
5567 return !loc1 && !loc2;
5568
5569 case dw_val_class_die_ref:
5570 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5571
5572 case dw_val_class_fde_ref:
5573 case dw_val_class_lbl_id:
5574 case dw_val_class_lbl_offset:
5575 return 1;
5576
5577 default:
5578 return 1;
5579 }
5580 }
5581
5582 /* Do the attributes look the same? */
5583
5584 static int
5585 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5586 {
5587 if (at1->dw_attr != at2->dw_attr)
5588 return 0;
5589
5590 /* We don't care about differences in file numbering. */
5591 if (at1->dw_attr == DW_AT_decl_file
5592 /* Or that this was compiled with a different compiler snapshot; if
5593 the output is the same, that's what matters. */
5594 || at1->dw_attr == DW_AT_producer)
5595 return 1;
5596
5597 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5598 }
5599
5600 /* Do the dies look the same? */
5601
5602 static int
5603 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5604 {
5605 dw_die_ref c1, c2;
5606 dw_attr_ref a1, a2;
5607
5608 /* To avoid infinite recursion. */
5609 if (die1->die_mark)
5610 return die1->die_mark == die2->die_mark;
5611 die1->die_mark = die2->die_mark = ++(*mark);
5612
5613 if (die1->die_tag != die2->die_tag)
5614 return 0;
5615
5616 for (a1 = die1->die_attr, a2 = die2->die_attr;
5617 a1 && a2;
5618 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5619 if (!same_attr_p (a1, a2, mark))
5620 return 0;
5621 if (a1 || a2)
5622 return 0;
5623
5624 for (c1 = die1->die_child, c2 = die2->die_child;
5625 c1 && c2;
5626 c1 = c1->die_sib, c2 = c2->die_sib)
5627 if (!same_die_p (c1, c2, mark))
5628 return 0;
5629 if (c1 || c2)
5630 return 0;
5631
5632 return 1;
5633 }
5634
5635 /* Do the dies look the same? Wrapper around same_die_p. */
5636
5637 static int
5638 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5639 {
5640 int mark = 0;
5641 int ret = same_die_p (die1, die2, &mark);
5642
5643 unmark_all_dies (die1);
5644 unmark_all_dies (die2);
5645
5646 return ret;
5647 }
5648
5649 /* The prefix to attach to symbols on DIEs in the current comdat debug
5650 info section. */
5651 static char *comdat_symbol_id;
5652
5653 /* The index of the current symbol within the current comdat CU. */
5654 static unsigned int comdat_symbol_number;
5655
5656 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5657 children, and set comdat_symbol_id accordingly. */
5658
5659 static void
5660 compute_section_prefix (dw_die_ref unit_die)
5661 {
5662 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5663 const char *base = die_name ? lbasename (die_name) : "anonymous";
5664 char *name = alloca (strlen (base) + 64);
5665 char *p;
5666 int i, mark;
5667 unsigned char checksum[16];
5668 struct md5_ctx ctx;
5669
5670 /* Compute the checksum of the DIE, then append part of it as hex digits to
5671 the name filename of the unit. */
5672
5673 md5_init_ctx (&ctx);
5674 mark = 0;
5675 die_checksum (unit_die, &ctx, &mark);
5676 unmark_all_dies (unit_die);
5677 md5_finish_ctx (&ctx, checksum);
5678
5679 sprintf (name, "%s.", base);
5680 clean_symbol_name (name);
5681
5682 p = name + strlen (name);
5683 for (i = 0; i < 4; i++)
5684 {
5685 sprintf (p, "%.2x", checksum[i]);
5686 p += 2;
5687 }
5688
5689 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5690 comdat_symbol_number = 0;
5691 }
5692
5693 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5694
5695 static int
5696 is_type_die (dw_die_ref die)
5697 {
5698 switch (die->die_tag)
5699 {
5700 case DW_TAG_array_type:
5701 case DW_TAG_class_type:
5702 case DW_TAG_enumeration_type:
5703 case DW_TAG_pointer_type:
5704 case DW_TAG_reference_type:
5705 case DW_TAG_string_type:
5706 case DW_TAG_structure_type:
5707 case DW_TAG_subroutine_type:
5708 case DW_TAG_union_type:
5709 case DW_TAG_ptr_to_member_type:
5710 case DW_TAG_set_type:
5711 case DW_TAG_subrange_type:
5712 case DW_TAG_base_type:
5713 case DW_TAG_const_type:
5714 case DW_TAG_file_type:
5715 case DW_TAG_packed_type:
5716 case DW_TAG_volatile_type:
5717 case DW_TAG_typedef:
5718 return 1;
5719 default:
5720 return 0;
5721 }
5722 }
5723
5724 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5725 Basically, we want to choose the bits that are likely to be shared between
5726 compilations (types) and leave out the bits that are specific to individual
5727 compilations (functions). */
5728
5729 static int
5730 is_comdat_die (dw_die_ref c)
5731 {
5732 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5733 we do for stabs. The advantage is a greater likelihood of sharing between
5734 objects that don't include headers in the same order (and therefore would
5735 put the base types in a different comdat). jason 8/28/00 */
5736
5737 if (c->die_tag == DW_TAG_base_type)
5738 return 0;
5739
5740 if (c->die_tag == DW_TAG_pointer_type
5741 || c->die_tag == DW_TAG_reference_type
5742 || c->die_tag == DW_TAG_const_type
5743 || c->die_tag == DW_TAG_volatile_type)
5744 {
5745 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5746
5747 return t ? is_comdat_die (t) : 0;
5748 }
5749
5750 return is_type_die (c);
5751 }
5752
5753 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5754 compilation unit. */
5755
5756 static int
5757 is_symbol_die (dw_die_ref c)
5758 {
5759 return (is_type_die (c)
5760 || (get_AT (c, DW_AT_declaration)
5761 && !get_AT (c, DW_AT_specification)));
5762 }
5763
5764 static char *
5765 gen_internal_sym (const char *prefix)
5766 {
5767 char buf[256];
5768
5769 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5770 return xstrdup (buf);
5771 }
5772
5773 /* Assign symbols to all worthy DIEs under DIE. */
5774
5775 static void
5776 assign_symbol_names (dw_die_ref die)
5777 {
5778 dw_die_ref c;
5779
5780 if (is_symbol_die (die))
5781 {
5782 if (comdat_symbol_id)
5783 {
5784 char *p = alloca (strlen (comdat_symbol_id) + 64);
5785
5786 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
5787 comdat_symbol_id, comdat_symbol_number++);
5788 die->die_symbol = xstrdup (p);
5789 }
5790 else
5791 die->die_symbol = gen_internal_sym ("LDIE");
5792 }
5793
5794 for (c = die->die_child; c != NULL; c = c->die_sib)
5795 assign_symbol_names (c);
5796 }
5797
5798 struct cu_hash_table_entry
5799 {
5800 dw_die_ref cu;
5801 unsigned min_comdat_num, max_comdat_num;
5802 struct cu_hash_table_entry *next;
5803 };
5804
5805 /* Routines to manipulate hash table of CUs. */
5806 static hashval_t
5807 htab_cu_hash (const void *of)
5808 {
5809 const struct cu_hash_table_entry *entry = of;
5810
5811 return htab_hash_string (entry->cu->die_symbol);
5812 }
5813
5814 static int
5815 htab_cu_eq (const void *of1, const void *of2)
5816 {
5817 const struct cu_hash_table_entry *entry1 = of1;
5818 const struct die_struct *entry2 = of2;
5819
5820 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
5821 }
5822
5823 static void
5824 htab_cu_del (void *what)
5825 {
5826 struct cu_hash_table_entry *next, *entry = what;
5827
5828 while (entry)
5829 {
5830 next = entry->next;
5831 free (entry);
5832 entry = next;
5833 }
5834 }
5835
5836 /* Check whether we have already seen this CU and set up SYM_NUM
5837 accordingly. */
5838 static int
5839 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
5840 {
5841 struct cu_hash_table_entry dummy;
5842 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
5843
5844 dummy.max_comdat_num = 0;
5845
5846 slot = (struct cu_hash_table_entry **)
5847 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
5848 INSERT);
5849 entry = *slot;
5850
5851 for (; entry; last = entry, entry = entry->next)
5852 {
5853 if (same_die_p_wrap (cu, entry->cu))
5854 break;
5855 }
5856
5857 if (entry)
5858 {
5859 *sym_num = entry->min_comdat_num;
5860 return 1;
5861 }
5862
5863 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
5864 entry->cu = cu;
5865 entry->min_comdat_num = *sym_num = last->max_comdat_num;
5866 entry->next = *slot;
5867 *slot = entry;
5868
5869 return 0;
5870 }
5871
5872 /* Record SYM_NUM to record of CU in HTABLE. */
5873 static void
5874 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
5875 {
5876 struct cu_hash_table_entry **slot, *entry;
5877
5878 slot = (struct cu_hash_table_entry **)
5879 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
5880 NO_INSERT);
5881 entry = *slot;
5882
5883 entry->max_comdat_num = sym_num;
5884 }
5885
5886 /* Traverse the DIE (which is always comp_unit_die), and set up
5887 additional compilation units for each of the include files we see
5888 bracketed by BINCL/EINCL. */
5889
5890 static void
5891 break_out_includes (dw_die_ref die)
5892 {
5893 dw_die_ref *ptr;
5894 dw_die_ref unit = NULL;
5895 limbo_die_node *node, **pnode;
5896 htab_t cu_hash_table;
5897
5898 for (ptr = &(die->die_child); *ptr;)
5899 {
5900 dw_die_ref c = *ptr;
5901
5902 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
5903 || (unit && is_comdat_die (c)))
5904 {
5905 /* This DIE is for a secondary CU; remove it from the main one. */
5906 *ptr = c->die_sib;
5907
5908 if (c->die_tag == DW_TAG_GNU_BINCL)
5909 {
5910 unit = push_new_compile_unit (unit, c);
5911 free_die (c);
5912 }
5913 else if (c->die_tag == DW_TAG_GNU_EINCL)
5914 {
5915 unit = pop_compile_unit (unit);
5916 free_die (c);
5917 }
5918 else
5919 add_child_die (unit, c);
5920 }
5921 else
5922 {
5923 /* Leave this DIE in the main CU. */
5924 ptr = &(c->die_sib);
5925 continue;
5926 }
5927 }
5928
5929 #if 0
5930 /* We can only use this in debugging, since the frontend doesn't check
5931 to make sure that we leave every include file we enter. */
5932 if (unit != NULL)
5933 abort ();
5934 #endif
5935
5936 assign_symbol_names (die);
5937 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
5938 for (node = limbo_die_list, pnode = &limbo_die_list;
5939 node;
5940 node = node->next)
5941 {
5942 int is_dupl;
5943
5944 compute_section_prefix (node->die);
5945 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
5946 &comdat_symbol_number);
5947 assign_symbol_names (node->die);
5948 if (is_dupl)
5949 *pnode = node->next;
5950 else
5951 {
5952 pnode = &node->next;
5953 record_comdat_symbol_number (node->die, cu_hash_table,
5954 comdat_symbol_number);
5955 }
5956 }
5957 htab_delete (cu_hash_table);
5958 }
5959
5960 /* Traverse the DIE and add a sibling attribute if it may have the
5961 effect of speeding up access to siblings. To save some space,
5962 avoid generating sibling attributes for DIE's without children. */
5963
5964 static void
5965 add_sibling_attributes (dw_die_ref die)
5966 {
5967 dw_die_ref c;
5968
5969 if (die->die_tag != DW_TAG_compile_unit
5970 && die->die_sib && die->die_child != NULL)
5971 /* Add the sibling link to the front of the attribute list. */
5972 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
5973
5974 for (c = die->die_child; c != NULL; c = c->die_sib)
5975 add_sibling_attributes (c);
5976 }
5977
5978 /* Output all location lists for the DIE and its children. */
5979
5980 static void
5981 output_location_lists (dw_die_ref die)
5982 {
5983 dw_die_ref c;
5984 dw_attr_ref d_attr;
5985
5986 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
5987 if (AT_class (d_attr) == dw_val_class_loc_list)
5988 output_loc_list (AT_loc_list (d_attr));
5989
5990 for (c = die->die_child; c != NULL; c = c->die_sib)
5991 output_location_lists (c);
5992
5993 }
5994
5995 /* The format of each DIE (and its attribute value pairs) is encoded in an
5996 abbreviation table. This routine builds the abbreviation table and assigns
5997 a unique abbreviation id for each abbreviation entry. The children of each
5998 die are visited recursively. */
5999
6000 static void
6001 build_abbrev_table (dw_die_ref die)
6002 {
6003 unsigned long abbrev_id;
6004 unsigned int n_alloc;
6005 dw_die_ref c;
6006 dw_attr_ref d_attr, a_attr;
6007
6008 /* Scan the DIE references, and mark as external any that refer to
6009 DIEs from other CUs (i.e. those which are not marked). */
6010 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6011 if (AT_class (d_attr) == dw_val_class_die_ref
6012 && AT_ref (d_attr)->die_mark == 0)
6013 {
6014 if (AT_ref (d_attr)->die_symbol == 0)
6015 abort ();
6016
6017 set_AT_ref_external (d_attr, 1);
6018 }
6019
6020 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6021 {
6022 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6023
6024 if (abbrev->die_tag == die->die_tag)
6025 {
6026 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6027 {
6028 a_attr = abbrev->die_attr;
6029 d_attr = die->die_attr;
6030
6031 while (a_attr != NULL && d_attr != NULL)
6032 {
6033 if ((a_attr->dw_attr != d_attr->dw_attr)
6034 || (value_format (a_attr) != value_format (d_attr)))
6035 break;
6036
6037 a_attr = a_attr->dw_attr_next;
6038 d_attr = d_attr->dw_attr_next;
6039 }
6040
6041 if (a_attr == NULL && d_attr == NULL)
6042 break;
6043 }
6044 }
6045 }
6046
6047 if (abbrev_id >= abbrev_die_table_in_use)
6048 {
6049 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6050 {
6051 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6052 abbrev_die_table = ggc_realloc (abbrev_die_table,
6053 sizeof (dw_die_ref) * n_alloc);
6054
6055 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6056 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6057 abbrev_die_table_allocated = n_alloc;
6058 }
6059
6060 ++abbrev_die_table_in_use;
6061 abbrev_die_table[abbrev_id] = die;
6062 }
6063
6064 die->die_abbrev = abbrev_id;
6065 for (c = die->die_child; c != NULL; c = c->die_sib)
6066 build_abbrev_table (c);
6067 }
6068 \f
6069 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6070
6071 static int
6072 constant_size (long unsigned int value)
6073 {
6074 int log;
6075
6076 if (value == 0)
6077 log = 0;
6078 else
6079 log = floor_log2 (value);
6080
6081 log = log / 8;
6082 log = 1 << (floor_log2 (log) + 1);
6083
6084 return log;
6085 }
6086
6087 /* Return the size of a DIE as it is represented in the
6088 .debug_info section. */
6089
6090 static unsigned long
6091 size_of_die (dw_die_ref die)
6092 {
6093 unsigned long size = 0;
6094 dw_attr_ref a;
6095
6096 size += size_of_uleb128 (die->die_abbrev);
6097 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6098 {
6099 switch (AT_class (a))
6100 {
6101 case dw_val_class_addr:
6102 size += DWARF2_ADDR_SIZE;
6103 break;
6104 case dw_val_class_offset:
6105 size += DWARF_OFFSET_SIZE;
6106 break;
6107 case dw_val_class_loc:
6108 {
6109 unsigned long lsize = size_of_locs (AT_loc (a));
6110
6111 /* Block length. */
6112 size += constant_size (lsize);
6113 size += lsize;
6114 }
6115 break;
6116 case dw_val_class_loc_list:
6117 size += DWARF_OFFSET_SIZE;
6118 break;
6119 case dw_val_class_range_list:
6120 size += DWARF_OFFSET_SIZE;
6121 break;
6122 case dw_val_class_const:
6123 size += size_of_sleb128 (AT_int (a));
6124 break;
6125 case dw_val_class_unsigned_const:
6126 size += constant_size (AT_unsigned (a));
6127 break;
6128 case dw_val_class_long_long:
6129 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6130 break;
6131 case dw_val_class_float:
6132 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
6133 break;
6134 case dw_val_class_flag:
6135 size += 1;
6136 break;
6137 case dw_val_class_die_ref:
6138 if (AT_ref_external (a))
6139 size += DWARF2_ADDR_SIZE;
6140 else
6141 size += DWARF_OFFSET_SIZE;
6142 break;
6143 case dw_val_class_fde_ref:
6144 size += DWARF_OFFSET_SIZE;
6145 break;
6146 case dw_val_class_lbl_id:
6147 size += DWARF2_ADDR_SIZE;
6148 break;
6149 case dw_val_class_lbl_offset:
6150 size += DWARF_OFFSET_SIZE;
6151 break;
6152 case dw_val_class_str:
6153 if (AT_string_form (a) == DW_FORM_strp)
6154 size += DWARF_OFFSET_SIZE;
6155 else
6156 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6157 break;
6158 default:
6159 abort ();
6160 }
6161 }
6162
6163 return size;
6164 }
6165
6166 /* Size the debugging information associated with a given DIE. Visits the
6167 DIE's children recursively. Updates the global variable next_die_offset, on
6168 each time through. Uses the current value of next_die_offset to update the
6169 die_offset field in each DIE. */
6170
6171 static void
6172 calc_die_sizes (dw_die_ref die)
6173 {
6174 dw_die_ref c;
6175
6176 die->die_offset = next_die_offset;
6177 next_die_offset += size_of_die (die);
6178
6179 for (c = die->die_child; c != NULL; c = c->die_sib)
6180 calc_die_sizes (c);
6181
6182 if (die->die_child != NULL)
6183 /* Count the null byte used to terminate sibling lists. */
6184 next_die_offset += 1;
6185 }
6186
6187 /* Set the marks for a die and its children. We do this so
6188 that we know whether or not a reference needs to use FORM_ref_addr; only
6189 DIEs in the same CU will be marked. We used to clear out the offset
6190 and use that as the flag, but ran into ordering problems. */
6191
6192 static void
6193 mark_dies (dw_die_ref die)
6194 {
6195 dw_die_ref c;
6196
6197 if (die->die_mark)
6198 abort ();
6199
6200 die->die_mark = 1;
6201 for (c = die->die_child; c; c = c->die_sib)
6202 mark_dies (c);
6203 }
6204
6205 /* Clear the marks for a die and its children. */
6206
6207 static void
6208 unmark_dies (dw_die_ref die)
6209 {
6210 dw_die_ref c;
6211
6212 if (!die->die_mark)
6213 abort ();
6214
6215 die->die_mark = 0;
6216 for (c = die->die_child; c; c = c->die_sib)
6217 unmark_dies (c);
6218 }
6219
6220 /* Clear the marks for a die, its children and referred dies. */
6221
6222 static void
6223 unmark_all_dies (dw_die_ref die)
6224 {
6225 dw_die_ref c;
6226 dw_attr_ref a;
6227
6228 if (!die->die_mark)
6229 return;
6230 die->die_mark = 0;
6231
6232 for (c = die->die_child; c; c = c->die_sib)
6233 unmark_all_dies (c);
6234
6235 for (a = die->die_attr; a; a = a->dw_attr_next)
6236 if (AT_class (a) == dw_val_class_die_ref)
6237 unmark_all_dies (AT_ref (a));
6238 }
6239
6240 /* Return the size of the .debug_pubnames table generated for the
6241 compilation unit. */
6242
6243 static unsigned long
6244 size_of_pubnames (void)
6245 {
6246 unsigned long size;
6247 unsigned i;
6248
6249 size = DWARF_PUBNAMES_HEADER_SIZE;
6250 for (i = 0; i < pubname_table_in_use; i++)
6251 {
6252 pubname_ref p = &pubname_table[i];
6253 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6254 }
6255
6256 size += DWARF_OFFSET_SIZE;
6257 return size;
6258 }
6259
6260 /* Return the size of the information in the .debug_aranges section. */
6261
6262 static unsigned long
6263 size_of_aranges (void)
6264 {
6265 unsigned long size;
6266
6267 size = DWARF_ARANGES_HEADER_SIZE;
6268
6269 /* Count the address/length pair for this compilation unit. */
6270 size += 2 * DWARF2_ADDR_SIZE;
6271 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6272
6273 /* Count the two zero words used to terminated the address range table. */
6274 size += 2 * DWARF2_ADDR_SIZE;
6275 return size;
6276 }
6277 \f
6278 /* Select the encoding of an attribute value. */
6279
6280 static enum dwarf_form
6281 value_format (dw_attr_ref a)
6282 {
6283 switch (a->dw_attr_val.val_class)
6284 {
6285 case dw_val_class_addr:
6286 return DW_FORM_addr;
6287 case dw_val_class_range_list:
6288 case dw_val_class_offset:
6289 if (DWARF_OFFSET_SIZE == 4)
6290 return DW_FORM_data4;
6291 if (DWARF_OFFSET_SIZE == 8)
6292 return DW_FORM_data8;
6293 abort ();
6294 case dw_val_class_loc_list:
6295 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6296 .debug_loc section */
6297 return DW_FORM_data4;
6298 case dw_val_class_loc:
6299 switch (constant_size (size_of_locs (AT_loc (a))))
6300 {
6301 case 1:
6302 return DW_FORM_block1;
6303 case 2:
6304 return DW_FORM_block2;
6305 default:
6306 abort ();
6307 }
6308 case dw_val_class_const:
6309 return DW_FORM_sdata;
6310 case dw_val_class_unsigned_const:
6311 switch (constant_size (AT_unsigned (a)))
6312 {
6313 case 1:
6314 return DW_FORM_data1;
6315 case 2:
6316 return DW_FORM_data2;
6317 case 4:
6318 return DW_FORM_data4;
6319 case 8:
6320 return DW_FORM_data8;
6321 default:
6322 abort ();
6323 }
6324 case dw_val_class_long_long:
6325 return DW_FORM_block1;
6326 case dw_val_class_float:
6327 return DW_FORM_block1;
6328 case dw_val_class_flag:
6329 return DW_FORM_flag;
6330 case dw_val_class_die_ref:
6331 if (AT_ref_external (a))
6332 return DW_FORM_ref_addr;
6333 else
6334 return DW_FORM_ref;
6335 case dw_val_class_fde_ref:
6336 return DW_FORM_data;
6337 case dw_val_class_lbl_id:
6338 return DW_FORM_addr;
6339 case dw_val_class_lbl_offset:
6340 return DW_FORM_data;
6341 case dw_val_class_str:
6342 return AT_string_form (a);
6343
6344 default:
6345 abort ();
6346 }
6347 }
6348
6349 /* Output the encoding of an attribute value. */
6350
6351 static void
6352 output_value_format (dw_attr_ref a)
6353 {
6354 enum dwarf_form form = value_format (a);
6355
6356 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6357 }
6358
6359 /* Output the .debug_abbrev section which defines the DIE abbreviation
6360 table. */
6361
6362 static void
6363 output_abbrev_section (void)
6364 {
6365 unsigned long abbrev_id;
6366
6367 dw_attr_ref a_attr;
6368
6369 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6370 {
6371 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6372
6373 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6374 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6375 dwarf_tag_name (abbrev->die_tag));
6376
6377 if (abbrev->die_child != NULL)
6378 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6379 else
6380 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6381
6382 for (a_attr = abbrev->die_attr; a_attr != NULL;
6383 a_attr = a_attr->dw_attr_next)
6384 {
6385 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6386 dwarf_attr_name (a_attr->dw_attr));
6387 output_value_format (a_attr);
6388 }
6389
6390 dw2_asm_output_data (1, 0, NULL);
6391 dw2_asm_output_data (1, 0, NULL);
6392 }
6393
6394 /* Terminate the table. */
6395 dw2_asm_output_data (1, 0, NULL);
6396 }
6397
6398 /* Output a symbol we can use to refer to this DIE from another CU. */
6399
6400 static inline void
6401 output_die_symbol (dw_die_ref die)
6402 {
6403 char *sym = die->die_symbol;
6404
6405 if (sym == 0)
6406 return;
6407
6408 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6409 /* We make these global, not weak; if the target doesn't support
6410 .linkonce, it doesn't support combining the sections, so debugging
6411 will break. */
6412 (*targetm.asm_out.globalize_label) (asm_out_file, sym);
6413
6414 ASM_OUTPUT_LABEL (asm_out_file, sym);
6415 }
6416
6417 /* Return a new location list, given the begin and end range, and the
6418 expression. gensym tells us whether to generate a new internal symbol for
6419 this location list node, which is done for the head of the list only. */
6420
6421 static inline dw_loc_list_ref
6422 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6423 const char *section, unsigned int gensym)
6424 {
6425 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6426
6427 retlist->begin = begin;
6428 retlist->end = end;
6429 retlist->expr = expr;
6430 retlist->section = section;
6431 if (gensym)
6432 retlist->ll_symbol = gen_internal_sym ("LLST");
6433
6434 return retlist;
6435 }
6436
6437 /* Add a location description expression to a location list. */
6438
6439 static inline void
6440 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6441 const char *begin, const char *end,
6442 const char *section)
6443 {
6444 dw_loc_list_ref *d;
6445
6446 /* Find the end of the chain. */
6447 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6448 ;
6449
6450 /* Add a new location list node to the list. */
6451 *d = new_loc_list (descr, begin, end, section, 0);
6452 }
6453
6454 /* Output the location list given to us. */
6455
6456 static void
6457 output_loc_list (dw_loc_list_ref list_head)
6458 {
6459 dw_loc_list_ref curr = list_head;
6460
6461 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6462
6463 /* ??? This shouldn't be needed now that we've forced the
6464 compilation unit base address to zero when there is code
6465 in more than one section. */
6466 if (strcmp (curr->section, ".text") == 0)
6467 {
6468 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6469 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT) 0,
6470 "Location list base address specifier fake entry");
6471 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6472 "Location list base address specifier base");
6473 }
6474
6475 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6476 {
6477 unsigned long size;
6478
6479 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6480 "Location list begin address (%s)",
6481 list_head->ll_symbol);
6482 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6483 "Location list end address (%s)",
6484 list_head->ll_symbol);
6485 size = size_of_locs (curr->expr);
6486
6487 /* Output the block length for this list of location operations. */
6488 if (size > 0xffff)
6489 abort ();
6490 dw2_asm_output_data (2, size, "%s", "Location expression size");
6491
6492 output_loc_sequence (curr->expr);
6493 }
6494
6495 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6496 "Location list terminator begin (%s)",
6497 list_head->ll_symbol);
6498 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6499 "Location list terminator end (%s)",
6500 list_head->ll_symbol);
6501 }
6502
6503 /* Output the DIE and its attributes. Called recursively to generate
6504 the definitions of each child DIE. */
6505
6506 static void
6507 output_die (dw_die_ref die)
6508 {
6509 dw_attr_ref a;
6510 dw_die_ref c;
6511 unsigned long size;
6512
6513 /* If someone in another CU might refer to us, set up a symbol for
6514 them to point to. */
6515 if (die->die_symbol)
6516 output_die_symbol (die);
6517
6518 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6519 die->die_offset, dwarf_tag_name (die->die_tag));
6520
6521 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6522 {
6523 const char *name = dwarf_attr_name (a->dw_attr);
6524
6525 switch (AT_class (a))
6526 {
6527 case dw_val_class_addr:
6528 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6529 break;
6530
6531 case dw_val_class_offset:
6532 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6533 "%s", name);
6534 break;
6535
6536 case dw_val_class_range_list:
6537 {
6538 char *p = strchr (ranges_section_label, '\0');
6539
6540 sprintf (p, "+0x%lx", a->dw_attr_val.v.val_offset);
6541 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6542 "%s", name);
6543 *p = '\0';
6544 }
6545 break;
6546
6547 case dw_val_class_loc:
6548 size = size_of_locs (AT_loc (a));
6549
6550 /* Output the block length for this list of location operations. */
6551 dw2_asm_output_data (constant_size (size), size, "%s", name);
6552
6553 output_loc_sequence (AT_loc (a));
6554 break;
6555
6556 case dw_val_class_const:
6557 /* ??? It would be slightly more efficient to use a scheme like is
6558 used for unsigned constants below, but gdb 4.x does not sign
6559 extend. Gdb 5.x does sign extend. */
6560 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6561 break;
6562
6563 case dw_val_class_unsigned_const:
6564 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6565 AT_unsigned (a), "%s", name);
6566 break;
6567
6568 case dw_val_class_long_long:
6569 {
6570 unsigned HOST_WIDE_INT first, second;
6571
6572 dw2_asm_output_data (1,
6573 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6574 "%s", name);
6575
6576 if (WORDS_BIG_ENDIAN)
6577 {
6578 first = a->dw_attr_val.v.val_long_long.hi;
6579 second = a->dw_attr_val.v.val_long_long.low;
6580 }
6581 else
6582 {
6583 first = a->dw_attr_val.v.val_long_long.low;
6584 second = a->dw_attr_val.v.val_long_long.hi;
6585 }
6586
6587 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6588 first, "long long constant");
6589 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6590 second, NULL);
6591 }
6592 break;
6593
6594 case dw_val_class_float:
6595 {
6596 unsigned int i;
6597
6598 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6599 "%s", name);
6600
6601 for (i = 0; i < a->dw_attr_val.v.val_float.length; i++)
6602 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6603 "fp constant word %u", i);
6604 break;
6605 }
6606
6607 case dw_val_class_flag:
6608 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6609 break;
6610
6611 case dw_val_class_loc_list:
6612 {
6613 char *sym = AT_loc_list (a)->ll_symbol;
6614
6615 if (sym == 0)
6616 abort ();
6617 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym,
6618 loc_section_label, "%s", name);
6619 }
6620 break;
6621
6622 case dw_val_class_die_ref:
6623 if (AT_ref_external (a))
6624 {
6625 char *sym = AT_ref (a)->die_symbol;
6626
6627 if (sym == 0)
6628 abort ();
6629 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6630 }
6631 else if (AT_ref (a)->die_offset == 0)
6632 abort ();
6633 else
6634 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6635 "%s", name);
6636 break;
6637
6638 case dw_val_class_fde_ref:
6639 {
6640 char l1[20];
6641
6642 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6643 a->dw_attr_val.v.val_fde_index * 2);
6644 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6645 }
6646 break;
6647
6648 case dw_val_class_lbl_id:
6649 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6650 break;
6651
6652 case dw_val_class_lbl_offset:
6653 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6654 break;
6655
6656 case dw_val_class_str:
6657 if (AT_string_form (a) == DW_FORM_strp)
6658 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6659 a->dw_attr_val.v.val_str->label,
6660 "%s: \"%s\"", name, AT_string (a));
6661 else
6662 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6663 break;
6664
6665 default:
6666 abort ();
6667 }
6668 }
6669
6670 for (c = die->die_child; c != NULL; c = c->die_sib)
6671 output_die (c);
6672
6673 /* Add null byte to terminate sibling list. */
6674 if (die->die_child != NULL)
6675 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6676 die->die_offset);
6677 }
6678
6679 /* Output the compilation unit that appears at the beginning of the
6680 .debug_info section, and precedes the DIE descriptions. */
6681
6682 static void
6683 output_compilation_unit_header (void)
6684 {
6685 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6686 dw2_asm_output_data (4, 0xffffffff,
6687 "Initial length escape value indicating 64-bit DWARF extension");
6688 dw2_asm_output_data (DWARF_OFFSET_SIZE,
6689 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
6690 "Length of Compilation Unit Info");
6691 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6692 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6693 "Offset Into Abbrev. Section");
6694 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6695 }
6696
6697 /* Output the compilation unit DIE and its children. */
6698
6699 static void
6700 output_comp_unit (dw_die_ref die, int output_if_empty)
6701 {
6702 const char *secname;
6703 char *oldsym, *tmp;
6704
6705 /* Unless we are outputting main CU, we may throw away empty ones. */
6706 if (!output_if_empty && die->die_child == NULL)
6707 return;
6708
6709 /* Even if there are no children of this DIE, we must output the information
6710 about the compilation unit. Otherwise, on an empty translation unit, we
6711 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6712 will then complain when examining the file. First mark all the DIEs in
6713 this CU so we know which get local refs. */
6714 mark_dies (die);
6715
6716 build_abbrev_table (die);
6717
6718 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6719 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6720 calc_die_sizes (die);
6721
6722 oldsym = die->die_symbol;
6723 if (oldsym)
6724 {
6725 tmp = alloca (strlen (oldsym) + 24);
6726
6727 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
6728 secname = tmp;
6729 die->die_symbol = NULL;
6730 }
6731 else
6732 secname = (const char *) DEBUG_INFO_SECTION;
6733
6734 /* Output debugging information. */
6735 named_section_flags (secname, SECTION_DEBUG);
6736 output_compilation_unit_header ();
6737 output_die (die);
6738
6739 /* Leave the marks on the main CU, so we can check them in
6740 output_pubnames. */
6741 if (oldsym)
6742 {
6743 unmark_dies (die);
6744 die->die_symbol = oldsym;
6745 }
6746 }
6747
6748 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
6749 output of lang_hooks.decl_printable_name for C++ looks like
6750 "A::f(int)". Let's drop the argument list, and maybe the scope. */
6751
6752 static const char *
6753 dwarf2_name (tree decl, int scope)
6754 {
6755 return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
6756 }
6757
6758 /* Add a new entry to .debug_pubnames if appropriate. */
6759
6760 static void
6761 add_pubname (tree decl, dw_die_ref die)
6762 {
6763 pubname_ref p;
6764
6765 if (! TREE_PUBLIC (decl))
6766 return;
6767
6768 if (pubname_table_in_use == pubname_table_allocated)
6769 {
6770 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
6771 pubname_table
6772 = ggc_realloc (pubname_table,
6773 (pubname_table_allocated * sizeof (pubname_entry)));
6774 memset (pubname_table + pubname_table_in_use, 0,
6775 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
6776 }
6777
6778 p = &pubname_table[pubname_table_in_use++];
6779 p->die = die;
6780 p->name = xstrdup (dwarf2_name (decl, 1));
6781 }
6782
6783 /* Output the public names table used to speed up access to externally
6784 visible names. For now, only generate entries for externally
6785 visible procedures. */
6786
6787 static void
6788 output_pubnames (void)
6789 {
6790 unsigned i;
6791 unsigned long pubnames_length = size_of_pubnames ();
6792
6793 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6794 dw2_asm_output_data (4, 0xffffffff,
6795 "Initial length escape value indicating 64-bit DWARF extension");
6796 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
6797 "Length of Public Names Info");
6798 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6799 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6800 "Offset of Compilation Unit Info");
6801 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
6802 "Compilation Unit Length");
6803
6804 for (i = 0; i < pubname_table_in_use; i++)
6805 {
6806 pubname_ref pub = &pubname_table[i];
6807
6808 /* We shouldn't see pubnames for DIEs outside of the main CU. */
6809 if (pub->die->die_mark == 0)
6810 abort ();
6811
6812 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
6813 "DIE offset");
6814
6815 dw2_asm_output_nstring (pub->name, -1, "external name");
6816 }
6817
6818 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
6819 }
6820
6821 /* Add a new entry to .debug_aranges if appropriate. */
6822
6823 static void
6824 add_arange (tree decl, dw_die_ref die)
6825 {
6826 if (! DECL_SECTION_NAME (decl))
6827 return;
6828
6829 if (arange_table_in_use == arange_table_allocated)
6830 {
6831 arange_table_allocated += ARANGE_TABLE_INCREMENT;
6832 arange_table = ggc_realloc (arange_table,
6833 (arange_table_allocated
6834 * sizeof (dw_die_ref)));
6835 memset (arange_table + arange_table_in_use, 0,
6836 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
6837 }
6838
6839 arange_table[arange_table_in_use++] = die;
6840 }
6841
6842 /* Output the information that goes into the .debug_aranges table.
6843 Namely, define the beginning and ending address range of the
6844 text section generated for this compilation unit. */
6845
6846 static void
6847 output_aranges (void)
6848 {
6849 unsigned i;
6850 unsigned long aranges_length = size_of_aranges ();
6851
6852 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6853 dw2_asm_output_data (4, 0xffffffff,
6854 "Initial length escape value indicating 64-bit DWARF extension");
6855 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
6856 "Length of Address Ranges Info");
6857 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6858 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6859 "Offset of Compilation Unit Info");
6860 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
6861 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
6862
6863 /* We need to align to twice the pointer size here. */
6864 if (DWARF_ARANGES_PAD_SIZE)
6865 {
6866 /* Pad using a 2 byte words so that padding is correct for any
6867 pointer size. */
6868 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
6869 2 * DWARF2_ADDR_SIZE);
6870 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
6871 dw2_asm_output_data (2, 0, NULL);
6872 }
6873
6874 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
6875 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
6876 text_section_label, "Length");
6877
6878 for (i = 0; i < arange_table_in_use; i++)
6879 {
6880 dw_die_ref die = arange_table[i];
6881
6882 /* We shouldn't see aranges for DIEs outside of the main CU. */
6883 if (die->die_mark == 0)
6884 abort ();
6885
6886 if (die->die_tag == DW_TAG_subprogram)
6887 {
6888 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
6889 "Address");
6890 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
6891 get_AT_low_pc (die), "Length");
6892 }
6893 else
6894 {
6895 /* A static variable; extract the symbol from DW_AT_location.
6896 Note that this code isn't currently hit, as we only emit
6897 aranges for functions (jason 9/23/99). */
6898 dw_attr_ref a = get_AT (die, DW_AT_location);
6899 dw_loc_descr_ref loc;
6900
6901 if (! a || AT_class (a) != dw_val_class_loc)
6902 abort ();
6903
6904 loc = AT_loc (a);
6905 if (loc->dw_loc_opc != DW_OP_addr)
6906 abort ();
6907
6908 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
6909 loc->dw_loc_oprnd1.v.val_addr, "Address");
6910 dw2_asm_output_data (DWARF2_ADDR_SIZE,
6911 get_AT_unsigned (die, DW_AT_byte_size),
6912 "Length");
6913 }
6914 }
6915
6916 /* Output the terminator words. */
6917 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6918 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6919 }
6920
6921 /* Add a new entry to .debug_ranges. Return the offset at which it
6922 was placed. */
6923
6924 static unsigned int
6925 add_ranges (tree block)
6926 {
6927 unsigned int in_use = ranges_table_in_use;
6928
6929 if (in_use == ranges_table_allocated)
6930 {
6931 ranges_table_allocated += RANGES_TABLE_INCREMENT;
6932 ranges_table
6933 = ggc_realloc (ranges_table, (ranges_table_allocated
6934 * sizeof (struct dw_ranges_struct)));
6935 memset (ranges_table + ranges_table_in_use, 0,
6936 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
6937 }
6938
6939 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
6940 ranges_table_in_use = in_use + 1;
6941
6942 return in_use * 2 * DWARF2_ADDR_SIZE;
6943 }
6944
6945 static void
6946 output_ranges (void)
6947 {
6948 unsigned i;
6949 static const char *const start_fmt = "Offset 0x%x";
6950 const char *fmt = start_fmt;
6951
6952 for (i = 0; i < ranges_table_in_use; i++)
6953 {
6954 int block_num = ranges_table[i].block_num;
6955
6956 if (block_num)
6957 {
6958 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
6959 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
6960
6961 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
6962 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
6963
6964 /* If all code is in the text section, then the compilation
6965 unit base address defaults to DW_AT_low_pc, which is the
6966 base of the text section. */
6967 if (separate_line_info_table_in_use == 0)
6968 {
6969 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
6970 text_section_label,
6971 fmt, i * 2 * DWARF2_ADDR_SIZE);
6972 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
6973 text_section_label, NULL);
6974 }
6975
6976 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
6977 compilation unit base address to zero, which allows us to
6978 use absolute addresses, and not worry about whether the
6979 target supports cross-section arithmetic. */
6980 else
6981 {
6982 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
6983 fmt, i * 2 * DWARF2_ADDR_SIZE);
6984 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
6985 }
6986
6987 fmt = NULL;
6988 }
6989 else
6990 {
6991 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6992 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6993 fmt = start_fmt;
6994 }
6995 }
6996 }
6997
6998 /* Data structure containing information about input files. */
6999 struct file_info
7000 {
7001 char *path; /* Complete file name. */
7002 char *fname; /* File name part. */
7003 int length; /* Length of entire string. */
7004 int file_idx; /* Index in input file table. */
7005 int dir_idx; /* Index in directory table. */
7006 };
7007
7008 /* Data structure containing information about directories with source
7009 files. */
7010 struct dir_info
7011 {
7012 char *path; /* Path including directory name. */
7013 int length; /* Path length. */
7014 int prefix; /* Index of directory entry which is a prefix. */
7015 int count; /* Number of files in this directory. */
7016 int dir_idx; /* Index of directory used as base. */
7017 int used; /* Used in the end? */
7018 };
7019
7020 /* Callback function for file_info comparison. We sort by looking at
7021 the directories in the path. */
7022
7023 static int
7024 file_info_cmp (const void *p1, const void *p2)
7025 {
7026 const struct file_info *s1 = p1;
7027 const struct file_info *s2 = p2;
7028 unsigned char *cp1;
7029 unsigned char *cp2;
7030
7031 /* Take care of file names without directories. We need to make sure that
7032 we return consistent values to qsort since some will get confused if
7033 we return the same value when identical operands are passed in opposite
7034 orders. So if neither has a directory, return 0 and otherwise return
7035 1 or -1 depending on which one has the directory. */
7036 if ((s1->path == s1->fname || s2->path == s2->fname))
7037 return (s2->path == s2->fname) - (s1->path == s1->fname);
7038
7039 cp1 = (unsigned char *) s1->path;
7040 cp2 = (unsigned char *) s2->path;
7041
7042 while (1)
7043 {
7044 ++cp1;
7045 ++cp2;
7046 /* Reached the end of the first path? If so, handle like above. */
7047 if ((cp1 == (unsigned char *) s1->fname)
7048 || (cp2 == (unsigned char *) s2->fname))
7049 return ((cp2 == (unsigned char *) s2->fname)
7050 - (cp1 == (unsigned char *) s1->fname));
7051
7052 /* Character of current path component the same? */
7053 else if (*cp1 != *cp2)
7054 return *cp1 - *cp2;
7055 }
7056 }
7057
7058 /* Output the directory table and the file name table. We try to minimize
7059 the total amount of memory needed. A heuristic is used to avoid large
7060 slowdowns with many input files. */
7061
7062 static void
7063 output_file_names (void)
7064 {
7065 struct file_info *files;
7066 struct dir_info *dirs;
7067 int *saved;
7068 int *savehere;
7069 int *backmap;
7070 size_t ndirs;
7071 int idx_offset;
7072 size_t i;
7073 int idx;
7074
7075 /* Handle the case where file_table is empty. */
7076 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7077 {
7078 dw2_asm_output_data (1, 0, "End directory table");
7079 dw2_asm_output_data (1, 0, "End file name table");
7080 return;
7081 }
7082
7083 /* Allocate the various arrays we need. */
7084 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7085 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7086
7087 /* Sort the file names. */
7088 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7089 {
7090 char *f;
7091
7092 /* Skip all leading "./". */
7093 f = VARRAY_CHAR_PTR (file_table, i);
7094 while (f[0] == '.' && f[1] == '/')
7095 f += 2;
7096
7097 /* Create a new array entry. */
7098 files[i].path = f;
7099 files[i].length = strlen (f);
7100 files[i].file_idx = i;
7101
7102 /* Search for the file name part. */
7103 f = strrchr (f, '/');
7104 files[i].fname = f == NULL ? files[i].path : f + 1;
7105 }
7106
7107 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7108 sizeof (files[0]), file_info_cmp);
7109
7110 /* Find all the different directories used. */
7111 dirs[0].path = files[1].path;
7112 dirs[0].length = files[1].fname - files[1].path;
7113 dirs[0].prefix = -1;
7114 dirs[0].count = 1;
7115 dirs[0].dir_idx = 0;
7116 dirs[0].used = 0;
7117 files[1].dir_idx = 0;
7118 ndirs = 1;
7119
7120 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7121 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7122 && memcmp (dirs[ndirs - 1].path, files[i].path,
7123 dirs[ndirs - 1].length) == 0)
7124 {
7125 /* Same directory as last entry. */
7126 files[i].dir_idx = ndirs - 1;
7127 ++dirs[ndirs - 1].count;
7128 }
7129 else
7130 {
7131 size_t j;
7132
7133 /* This is a new directory. */
7134 dirs[ndirs].path = files[i].path;
7135 dirs[ndirs].length = files[i].fname - files[i].path;
7136 dirs[ndirs].count = 1;
7137 dirs[ndirs].dir_idx = ndirs;
7138 dirs[ndirs].used = 0;
7139 files[i].dir_idx = ndirs;
7140
7141 /* Search for a prefix. */
7142 dirs[ndirs].prefix = -1;
7143 for (j = 0; j < ndirs; j++)
7144 if (dirs[j].length < dirs[ndirs].length
7145 && dirs[j].length > 1
7146 && (dirs[ndirs].prefix == -1
7147 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7148 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7149 dirs[ndirs].prefix = j;
7150
7151 ++ndirs;
7152 }
7153
7154 /* Now to the actual work. We have to find a subset of the directories which
7155 allow expressing the file name using references to the directory table
7156 with the least amount of characters. We do not do an exhaustive search
7157 where we would have to check out every combination of every single
7158 possible prefix. Instead we use a heuristic which provides nearly optimal
7159 results in most cases and never is much off. */
7160 saved = alloca (ndirs * sizeof (int));
7161 savehere = alloca (ndirs * sizeof (int));
7162
7163 memset (saved, '\0', ndirs * sizeof (saved[0]));
7164 for (i = 0; i < ndirs; i++)
7165 {
7166 size_t j;
7167 int total;
7168
7169 /* We can always save some space for the current directory. But this
7170 does not mean it will be enough to justify adding the directory. */
7171 savehere[i] = dirs[i].length;
7172 total = (savehere[i] - saved[i]) * dirs[i].count;
7173
7174 for (j = i + 1; j < ndirs; j++)
7175 {
7176 savehere[j] = 0;
7177 if (saved[j] < dirs[i].length)
7178 {
7179 /* Determine whether the dirs[i] path is a prefix of the
7180 dirs[j] path. */
7181 int k;
7182
7183 k = dirs[j].prefix;
7184 while (k != -1 && k != (int) i)
7185 k = dirs[k].prefix;
7186
7187 if (k == (int) i)
7188 {
7189 /* Yes it is. We can possibly safe some memory but
7190 writing the filenames in dirs[j] relative to
7191 dirs[i]. */
7192 savehere[j] = dirs[i].length;
7193 total += (savehere[j] - saved[j]) * dirs[j].count;
7194 }
7195 }
7196 }
7197
7198 /* Check whether we can safe enough to justify adding the dirs[i]
7199 directory. */
7200 if (total > dirs[i].length + 1)
7201 {
7202 /* It's worthwhile adding. */
7203 for (j = i; j < ndirs; j++)
7204 if (savehere[j] > 0)
7205 {
7206 /* Remember how much we saved for this directory so far. */
7207 saved[j] = savehere[j];
7208
7209 /* Remember the prefix directory. */
7210 dirs[j].dir_idx = i;
7211 }
7212 }
7213 }
7214
7215 /* We have to emit them in the order they appear in the file_table array
7216 since the index is used in the debug info generation. To do this
7217 efficiently we generate a back-mapping of the indices first. */
7218 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7219 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7220 {
7221 backmap[files[i].file_idx] = i;
7222
7223 /* Mark this directory as used. */
7224 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7225 }
7226
7227 /* That was it. We are ready to emit the information. First emit the
7228 directory name table. We have to make sure the first actually emitted
7229 directory name has index one; zero is reserved for the current working
7230 directory. Make sure we do not confuse these indices with the one for the
7231 constructed table (even though most of the time they are identical). */
7232 idx = 1;
7233 idx_offset = dirs[0].length > 0 ? 1 : 0;
7234 for (i = 1 - idx_offset; i < ndirs; i++)
7235 if (dirs[i].used != 0)
7236 {
7237 dirs[i].used = idx++;
7238 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7239 "Directory Entry: 0x%x", dirs[i].used);
7240 }
7241
7242 dw2_asm_output_data (1, 0, "End directory table");
7243
7244 /* Correct the index for the current working directory entry if it
7245 exists. */
7246 if (idx_offset == 0)
7247 dirs[0].used = 0;
7248
7249 /* Now write all the file names. */
7250 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7251 {
7252 int file_idx = backmap[i];
7253 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7254
7255 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7256 "File Entry: 0x%lx", (unsigned long) i);
7257
7258 /* Include directory index. */
7259 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7260
7261 /* Modification time. */
7262 dw2_asm_output_data_uleb128 (0, NULL);
7263
7264 /* File length in bytes. */
7265 dw2_asm_output_data_uleb128 (0, NULL);
7266 }
7267
7268 dw2_asm_output_data (1, 0, "End file name table");
7269 }
7270
7271
7272 /* Output the source line number correspondence information. This
7273 information goes into the .debug_line section. */
7274
7275 static void
7276 output_line_info (void)
7277 {
7278 char l1[20], l2[20], p1[20], p2[20];
7279 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7280 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7281 unsigned opc;
7282 unsigned n_op_args;
7283 unsigned long lt_index;
7284 unsigned long current_line;
7285 long line_offset;
7286 long line_delta;
7287 unsigned long current_file;
7288 unsigned long function;
7289
7290 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7291 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7292 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7293 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7294
7295 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7296 dw2_asm_output_data (4, 0xffffffff,
7297 "Initial length escape value indicating 64-bit DWARF extension");
7298 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7299 "Length of Source Line Info");
7300 ASM_OUTPUT_LABEL (asm_out_file, l1);
7301
7302 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7303 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7304 ASM_OUTPUT_LABEL (asm_out_file, p1);
7305
7306 /* Define the architecture-dependent minimum instruction length (in
7307 bytes). In this implementation of DWARF, this field is used for
7308 information purposes only. Since GCC generates assembly language,
7309 we have no a priori knowledge of how many instruction bytes are
7310 generated for each source line, and therefore can use only the
7311 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7312 commands. Accordingly, we fix this as `1', which is "correct
7313 enough" for all architectures, and don't let the target override. */
7314 dw2_asm_output_data (1, 1,
7315 "Minimum Instruction Length");
7316
7317 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7318 "Default is_stmt_start flag");
7319 dw2_asm_output_data (1, DWARF_LINE_BASE,
7320 "Line Base Value (Special Opcodes)");
7321 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7322 "Line Range Value (Special Opcodes)");
7323 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7324 "Special Opcode Base");
7325
7326 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7327 {
7328 switch (opc)
7329 {
7330 case DW_LNS_advance_pc:
7331 case DW_LNS_advance_line:
7332 case DW_LNS_set_file:
7333 case DW_LNS_set_column:
7334 case DW_LNS_fixed_advance_pc:
7335 n_op_args = 1;
7336 break;
7337 default:
7338 n_op_args = 0;
7339 break;
7340 }
7341
7342 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7343 opc, n_op_args);
7344 }
7345
7346 /* Write out the information about the files we use. */
7347 output_file_names ();
7348 ASM_OUTPUT_LABEL (asm_out_file, p2);
7349
7350 /* We used to set the address register to the first location in the text
7351 section here, but that didn't accomplish anything since we already
7352 have a line note for the opening brace of the first function. */
7353
7354 /* Generate the line number to PC correspondence table, encoded as
7355 a series of state machine operations. */
7356 current_file = 1;
7357 current_line = 1;
7358 strcpy (prev_line_label, text_section_label);
7359 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7360 {
7361 dw_line_info_ref line_info = &line_info_table[lt_index];
7362
7363 #if 0
7364 /* Disable this optimization for now; GDB wants to see two line notes
7365 at the beginning of a function so it can find the end of the
7366 prologue. */
7367
7368 /* Don't emit anything for redundant notes. Just updating the
7369 address doesn't accomplish anything, because we already assume
7370 that anything after the last address is this line. */
7371 if (line_info->dw_line_num == current_line
7372 && line_info->dw_file_num == current_file)
7373 continue;
7374 #endif
7375
7376 /* Emit debug info for the address of the current line.
7377
7378 Unfortunately, we have little choice here currently, and must always
7379 use the most general form. GCC does not know the address delta
7380 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7381 attributes which will give an upper bound on the address range. We
7382 could perhaps use length attributes to determine when it is safe to
7383 use DW_LNS_fixed_advance_pc. */
7384
7385 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7386 if (0)
7387 {
7388 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7389 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7390 "DW_LNS_fixed_advance_pc");
7391 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7392 }
7393 else
7394 {
7395 /* This can handle any delta. This takes
7396 4+DWARF2_ADDR_SIZE bytes. */
7397 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7398 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7399 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7400 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7401 }
7402
7403 strcpy (prev_line_label, line_label);
7404
7405 /* Emit debug info for the source file of the current line, if
7406 different from the previous line. */
7407 if (line_info->dw_file_num != current_file)
7408 {
7409 current_file = line_info->dw_file_num;
7410 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7411 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7412 VARRAY_CHAR_PTR (file_table,
7413 current_file));
7414 }
7415
7416 /* Emit debug info for the current line number, choosing the encoding
7417 that uses the least amount of space. */
7418 if (line_info->dw_line_num != current_line)
7419 {
7420 line_offset = line_info->dw_line_num - current_line;
7421 line_delta = line_offset - DWARF_LINE_BASE;
7422 current_line = line_info->dw_line_num;
7423 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7424 /* This can handle deltas from -10 to 234, using the current
7425 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7426 takes 1 byte. */
7427 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7428 "line %lu", current_line);
7429 else
7430 {
7431 /* This can handle any delta. This takes at least 4 bytes,
7432 depending on the value being encoded. */
7433 dw2_asm_output_data (1, DW_LNS_advance_line,
7434 "advance to line %lu", current_line);
7435 dw2_asm_output_data_sleb128 (line_offset, NULL);
7436 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7437 }
7438 }
7439 else
7440 /* We still need to start a new row, so output a copy insn. */
7441 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7442 }
7443
7444 /* Emit debug info for the address of the end of the function. */
7445 if (0)
7446 {
7447 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7448 "DW_LNS_fixed_advance_pc");
7449 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7450 }
7451 else
7452 {
7453 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7454 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7455 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7456 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7457 }
7458
7459 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7460 dw2_asm_output_data_uleb128 (1, NULL);
7461 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7462
7463 function = 0;
7464 current_file = 1;
7465 current_line = 1;
7466 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7467 {
7468 dw_separate_line_info_ref line_info
7469 = &separate_line_info_table[lt_index];
7470
7471 #if 0
7472 /* Don't emit anything for redundant notes. */
7473 if (line_info->dw_line_num == current_line
7474 && line_info->dw_file_num == current_file
7475 && line_info->function == function)
7476 goto cont;
7477 #endif
7478
7479 /* Emit debug info for the address of the current line. If this is
7480 a new function, or the first line of a function, then we need
7481 to handle it differently. */
7482 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7483 lt_index);
7484 if (function != line_info->function)
7485 {
7486 function = line_info->function;
7487
7488 /* Set the address register to the first line in the function. */
7489 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7490 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7491 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7492 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7493 }
7494 else
7495 {
7496 /* ??? See the DW_LNS_advance_pc comment above. */
7497 if (0)
7498 {
7499 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7500 "DW_LNS_fixed_advance_pc");
7501 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7502 }
7503 else
7504 {
7505 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7506 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7507 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7508 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7509 }
7510 }
7511
7512 strcpy (prev_line_label, line_label);
7513
7514 /* Emit debug info for the source file of the current line, if
7515 different from the previous line. */
7516 if (line_info->dw_file_num != current_file)
7517 {
7518 current_file = line_info->dw_file_num;
7519 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7520 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7521 VARRAY_CHAR_PTR (file_table,
7522 current_file));
7523 }
7524
7525 /* Emit debug info for the current line number, choosing the encoding
7526 that uses the least amount of space. */
7527 if (line_info->dw_line_num != current_line)
7528 {
7529 line_offset = line_info->dw_line_num - current_line;
7530 line_delta = line_offset - DWARF_LINE_BASE;
7531 current_line = line_info->dw_line_num;
7532 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7533 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7534 "line %lu", current_line);
7535 else
7536 {
7537 dw2_asm_output_data (1, DW_LNS_advance_line,
7538 "advance to line %lu", current_line);
7539 dw2_asm_output_data_sleb128 (line_offset, NULL);
7540 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7541 }
7542 }
7543 else
7544 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7545
7546 #if 0
7547 cont:
7548 #endif
7549
7550 lt_index++;
7551
7552 /* If we're done with a function, end its sequence. */
7553 if (lt_index == separate_line_info_table_in_use
7554 || separate_line_info_table[lt_index].function != function)
7555 {
7556 current_file = 1;
7557 current_line = 1;
7558
7559 /* Emit debug info for the address of the end of the function. */
7560 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7561 if (0)
7562 {
7563 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7564 "DW_LNS_fixed_advance_pc");
7565 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7566 }
7567 else
7568 {
7569 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7570 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7571 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7572 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7573 }
7574
7575 /* Output the marker for the end of this sequence. */
7576 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7577 dw2_asm_output_data_uleb128 (1, NULL);
7578 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7579 }
7580 }
7581
7582 /* Output the marker for the end of the line number info. */
7583 ASM_OUTPUT_LABEL (asm_out_file, l2);
7584 }
7585 \f
7586 /* Given a pointer to a tree node for some base type, return a pointer to
7587 a DIE that describes the given type.
7588
7589 This routine must only be called for GCC type nodes that correspond to
7590 Dwarf base (fundamental) types. */
7591
7592 static dw_die_ref
7593 base_type_die (tree type)
7594 {
7595 dw_die_ref base_type_result;
7596 const char *type_name;
7597 enum dwarf_type encoding;
7598 tree name = TYPE_NAME (type);
7599
7600 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7601 return 0;
7602
7603 if (name)
7604 {
7605 if (TREE_CODE (name) == TYPE_DECL)
7606 name = DECL_NAME (name);
7607
7608 type_name = IDENTIFIER_POINTER (name);
7609 }
7610 else
7611 type_name = "__unknown__";
7612
7613 switch (TREE_CODE (type))
7614 {
7615 case INTEGER_TYPE:
7616 /* Carefully distinguish the C character types, without messing
7617 up if the language is not C. Note that we check only for the names
7618 that contain spaces; other names might occur by coincidence in other
7619 languages. */
7620 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7621 && (type == char_type_node
7622 || ! strcmp (type_name, "signed char")
7623 || ! strcmp (type_name, "unsigned char"))))
7624 {
7625 if (TREE_UNSIGNED (type))
7626 encoding = DW_ATE_unsigned;
7627 else
7628 encoding = DW_ATE_signed;
7629 break;
7630 }
7631 /* else fall through. */
7632
7633 case CHAR_TYPE:
7634 /* GNU Pascal/Ada CHAR type. Not used in C. */
7635 if (TREE_UNSIGNED (type))
7636 encoding = DW_ATE_unsigned_char;
7637 else
7638 encoding = DW_ATE_signed_char;
7639 break;
7640
7641 case REAL_TYPE:
7642 encoding = DW_ATE_float;
7643 break;
7644
7645 /* Dwarf2 doesn't know anything about complex ints, so use
7646 a user defined type for it. */
7647 case COMPLEX_TYPE:
7648 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7649 encoding = DW_ATE_complex_float;
7650 else
7651 encoding = DW_ATE_lo_user;
7652 break;
7653
7654 case BOOLEAN_TYPE:
7655 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7656 encoding = DW_ATE_boolean;
7657 break;
7658
7659 default:
7660 /* No other TREE_CODEs are Dwarf fundamental types. */
7661 abort ();
7662 }
7663
7664 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7665 if (demangle_name_func)
7666 type_name = (*demangle_name_func) (type_name);
7667
7668 add_AT_string (base_type_result, DW_AT_name, type_name);
7669 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7670 int_size_in_bytes (type));
7671 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7672
7673 return base_type_result;
7674 }
7675
7676 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7677 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7678 a given type is generally the same as the given type, except that if the
7679 given type is a pointer or reference type, then the root type of the given
7680 type is the root type of the "basis" type for the pointer or reference
7681 type. (This definition of the "root" type is recursive.) Also, the root
7682 type of a `const' qualified type or a `volatile' qualified type is the
7683 root type of the given type without the qualifiers. */
7684
7685 static tree
7686 root_type (tree type)
7687 {
7688 if (TREE_CODE (type) == ERROR_MARK)
7689 return error_mark_node;
7690
7691 switch (TREE_CODE (type))
7692 {
7693 case ERROR_MARK:
7694 return error_mark_node;
7695
7696 case POINTER_TYPE:
7697 case REFERENCE_TYPE:
7698 return type_main_variant (root_type (TREE_TYPE (type)));
7699
7700 default:
7701 return type_main_variant (type);
7702 }
7703 }
7704
7705 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7706 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7707
7708 static inline int
7709 is_base_type (tree type)
7710 {
7711 switch (TREE_CODE (type))
7712 {
7713 case ERROR_MARK:
7714 case VOID_TYPE:
7715 case INTEGER_TYPE:
7716 case REAL_TYPE:
7717 case COMPLEX_TYPE:
7718 case BOOLEAN_TYPE:
7719 case CHAR_TYPE:
7720 return 1;
7721
7722 case SET_TYPE:
7723 case ARRAY_TYPE:
7724 case RECORD_TYPE:
7725 case UNION_TYPE:
7726 case QUAL_UNION_TYPE:
7727 case ENUMERAL_TYPE:
7728 case FUNCTION_TYPE:
7729 case METHOD_TYPE:
7730 case POINTER_TYPE:
7731 case REFERENCE_TYPE:
7732 case FILE_TYPE:
7733 case OFFSET_TYPE:
7734 case LANG_TYPE:
7735 case VECTOR_TYPE:
7736 return 0;
7737
7738 default:
7739 abort ();
7740 }
7741
7742 return 0;
7743 }
7744
7745 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
7746 node, return the size in bits for the type if it is a constant, or else
7747 return the alignment for the type if the type's size is not constant, or
7748 else return BITS_PER_WORD if the type actually turns out to be an
7749 ERROR_MARK node. */
7750
7751 static inline unsigned HOST_WIDE_INT
7752 simple_type_size_in_bits (tree type)
7753 {
7754 if (TREE_CODE (type) == ERROR_MARK)
7755 return BITS_PER_WORD;
7756 else if (TYPE_SIZE (type) == NULL_TREE)
7757 return 0;
7758 else if (host_integerp (TYPE_SIZE (type), 1))
7759 return tree_low_cst (TYPE_SIZE (type), 1);
7760 else
7761 return TYPE_ALIGN (type);
7762 }
7763
7764 /* Return true if the debug information for the given type should be
7765 emitted as a subrange type. */
7766
7767 static inline bool
7768 is_ada_subrange_type (tree type)
7769 {
7770 /* We do this for INTEGER_TYPEs that have names, parent types, and when
7771 we are compiling Ada code. */
7772 return (TREE_CODE (type) == INTEGER_TYPE
7773 && TYPE_NAME (type) != 0 && TREE_TYPE (type) != 0
7774 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
7775 && TREE_UNSIGNED (TREE_TYPE (type)) && is_ada ());
7776 }
7777
7778 /* Given a pointer to a tree node for a subrange type, return a pointer
7779 to a DIE that describes the given type. */
7780
7781 static dw_die_ref
7782 subrange_type_die (tree type)
7783 {
7784 dw_die_ref subtype_die;
7785 dw_die_ref subrange_die;
7786 tree name = TYPE_NAME (type);
7787
7788 subtype_die = base_type_die (TREE_TYPE (type));
7789
7790 if (TREE_CODE (name) == TYPE_DECL)
7791 name = DECL_NAME (name);
7792
7793 subrange_die = new_die (DW_TAG_subrange_type, comp_unit_die, type);
7794 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
7795 if (TYPE_MIN_VALUE (type) != NULL)
7796 add_bound_info (subrange_die, DW_AT_lower_bound,
7797 TYPE_MIN_VALUE (type));
7798 if (TYPE_MAX_VALUE (type) != NULL)
7799 add_bound_info (subrange_die, DW_AT_upper_bound,
7800 TYPE_MAX_VALUE (type));
7801 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
7802
7803 return subrange_die;
7804 }
7805
7806 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
7807 entry that chains various modifiers in front of the given type. */
7808
7809 static dw_die_ref
7810 modified_type_die (tree type, int is_const_type, int is_volatile_type,
7811 dw_die_ref context_die)
7812 {
7813 enum tree_code code = TREE_CODE (type);
7814 dw_die_ref mod_type_die = NULL;
7815 dw_die_ref sub_die = NULL;
7816 tree item_type = NULL;
7817
7818 if (code != ERROR_MARK)
7819 {
7820 tree qualified_type;
7821
7822 /* See if we already have the appropriately qualified variant of
7823 this type. */
7824 qualified_type
7825 = get_qualified_type (type,
7826 ((is_const_type ? TYPE_QUAL_CONST : 0)
7827 | (is_volatile_type
7828 ? TYPE_QUAL_VOLATILE : 0)));
7829
7830 /* If we do, then we can just use its DIE, if it exists. */
7831 if (qualified_type)
7832 {
7833 mod_type_die = lookup_type_die (qualified_type);
7834 if (mod_type_die)
7835 return mod_type_die;
7836 }
7837
7838 /* Handle C typedef types. */
7839 if (qualified_type && TYPE_NAME (qualified_type)
7840 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
7841 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
7842 {
7843 tree type_name = TYPE_NAME (qualified_type);
7844 tree dtype = TREE_TYPE (type_name);
7845
7846 if (qualified_type == dtype)
7847 {
7848 /* For a named type, use the typedef. */
7849 gen_type_die (qualified_type, context_die);
7850 mod_type_die = lookup_type_die (qualified_type);
7851 }
7852 else if (is_const_type < TYPE_READONLY (dtype)
7853 || is_volatile_type < TYPE_VOLATILE (dtype))
7854 /* cv-unqualified version of named type. Just use the unnamed
7855 type to which it refers. */
7856 mod_type_die
7857 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
7858 is_const_type, is_volatile_type,
7859 context_die);
7860
7861 /* Else cv-qualified version of named type; fall through. */
7862 }
7863
7864 if (mod_type_die)
7865 /* OK. */
7866 ;
7867 else if (is_const_type)
7868 {
7869 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
7870 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
7871 }
7872 else if (is_volatile_type)
7873 {
7874 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
7875 sub_die = modified_type_die (type, 0, 0, context_die);
7876 }
7877 else if (code == POINTER_TYPE)
7878 {
7879 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
7880 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
7881 simple_type_size_in_bits (type) / BITS_PER_UNIT);
7882 #if 0
7883 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7884 #endif
7885 item_type = TREE_TYPE (type);
7886 }
7887 else if (code == REFERENCE_TYPE)
7888 {
7889 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
7890 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
7891 simple_type_size_in_bits (type) / BITS_PER_UNIT);
7892 #if 0
7893 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7894 #endif
7895 item_type = TREE_TYPE (type);
7896 }
7897 else if (is_ada_subrange_type (type))
7898 mod_type_die = subrange_type_die (type);
7899 else if (is_base_type (type))
7900 mod_type_die = base_type_die (type);
7901 else
7902 {
7903 gen_type_die (type, context_die);
7904
7905 /* We have to get the type_main_variant here (and pass that to the
7906 `lookup_type_die' routine) because the ..._TYPE node we have
7907 might simply be a *copy* of some original type node (where the
7908 copy was created to help us keep track of typedef names) and
7909 that copy might have a different TYPE_UID from the original
7910 ..._TYPE node. */
7911 if (TREE_CODE (type) != VECTOR_TYPE)
7912 mod_type_die = lookup_type_die (type_main_variant (type));
7913 else
7914 /* Vectors have the debugging information in the type,
7915 not the main variant. */
7916 mod_type_die = lookup_type_die (type);
7917 if (mod_type_die == NULL)
7918 abort ();
7919 }
7920
7921 /* We want to equate the qualified type to the die below. */
7922 type = qualified_type;
7923 }
7924
7925 if (type)
7926 equate_type_number_to_die (type, mod_type_die);
7927 if (item_type)
7928 /* We must do this after the equate_type_number_to_die call, in case
7929 this is a recursive type. This ensures that the modified_type_die
7930 recursion will terminate even if the type is recursive. Recursive
7931 types are possible in Ada. */
7932 sub_die = modified_type_die (item_type,
7933 TYPE_READONLY (item_type),
7934 TYPE_VOLATILE (item_type),
7935 context_die);
7936
7937 if (sub_die != NULL)
7938 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
7939
7940 return mod_type_die;
7941 }
7942
7943 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
7944 an enumerated type. */
7945
7946 static inline int
7947 type_is_enum (tree type)
7948 {
7949 return TREE_CODE (type) == ENUMERAL_TYPE;
7950 }
7951
7952 /* Return the register number described by a given RTL node. */
7953
7954 static unsigned int
7955 reg_number (rtx rtl)
7956 {
7957 unsigned regno = REGNO (rtl);
7958
7959 if (regno >= FIRST_PSEUDO_REGISTER)
7960 abort ();
7961
7962 return DBX_REGISTER_NUMBER (regno);
7963 }
7964
7965 /* Return a location descriptor that designates a machine register or
7966 zero if there is none. */
7967
7968 static dw_loc_descr_ref
7969 reg_loc_descriptor (rtx rtl)
7970 {
7971 unsigned reg;
7972 rtx regs;
7973
7974 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
7975 return 0;
7976
7977 reg = reg_number (rtl);
7978 regs = (*targetm.dwarf_register_span) (rtl);
7979
7980 if (HARD_REGNO_NREGS (reg, GET_MODE (rtl)) > 1
7981 || regs)
7982 return multiple_reg_loc_descriptor (rtl, regs);
7983 else
7984 return one_reg_loc_descriptor (reg);
7985 }
7986
7987 /* Return a location descriptor that designates a machine register for
7988 a given hard register number. */
7989
7990 static dw_loc_descr_ref
7991 one_reg_loc_descriptor (unsigned int regno)
7992 {
7993 if (regno <= 31)
7994 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
7995 else
7996 return new_loc_descr (DW_OP_regx, regno, 0);
7997 }
7998
7999 /* Given an RTL of a register, return a location descriptor that
8000 designates a value that spans more than one register. */
8001
8002 static dw_loc_descr_ref
8003 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8004 {
8005 int nregs, size, i;
8006 unsigned reg;
8007 dw_loc_descr_ref loc_result = NULL;
8008
8009 reg = reg_number (rtl);
8010 nregs = HARD_REGNO_NREGS (reg, GET_MODE (rtl));
8011
8012 /* Simple, contiguous registers. */
8013 if (regs == NULL_RTX)
8014 {
8015 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8016
8017 loc_result = NULL;
8018 while (nregs--)
8019 {
8020 dw_loc_descr_ref t;
8021
8022 t = one_reg_loc_descriptor (reg);
8023 add_loc_descr (&loc_result, t);
8024 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8025 ++reg;
8026 }
8027 return loc_result;
8028 }
8029
8030 /* Now onto stupid register sets in non contiguous locations. */
8031
8032 if (GET_CODE (regs) != PARALLEL)
8033 abort ();
8034
8035 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8036 loc_result = NULL;
8037
8038 for (i = 0; i < XVECLEN (regs, 0); ++i)
8039 {
8040 dw_loc_descr_ref t;
8041
8042 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8043 add_loc_descr (&loc_result, t);
8044 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8045 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8046 }
8047 return loc_result;
8048 }
8049
8050 /* Return a location descriptor that designates a constant. */
8051
8052 static dw_loc_descr_ref
8053 int_loc_descriptor (HOST_WIDE_INT i)
8054 {
8055 enum dwarf_location_atom op;
8056
8057 /* Pick the smallest representation of a constant, rather than just
8058 defaulting to the LEB encoding. */
8059 if (i >= 0)
8060 {
8061 if (i <= 31)
8062 op = DW_OP_lit0 + i;
8063 else if (i <= 0xff)
8064 op = DW_OP_const1u;
8065 else if (i <= 0xffff)
8066 op = DW_OP_const2u;
8067 else if (HOST_BITS_PER_WIDE_INT == 32
8068 || i <= 0xffffffff)
8069 op = DW_OP_const4u;
8070 else
8071 op = DW_OP_constu;
8072 }
8073 else
8074 {
8075 if (i >= -0x80)
8076 op = DW_OP_const1s;
8077 else if (i >= -0x8000)
8078 op = DW_OP_const2s;
8079 else if (HOST_BITS_PER_WIDE_INT == 32
8080 || i >= -0x80000000)
8081 op = DW_OP_const4s;
8082 else
8083 op = DW_OP_consts;
8084 }
8085
8086 return new_loc_descr (op, i, 0);
8087 }
8088
8089 /* Return a location descriptor that designates a base+offset location. */
8090
8091 static dw_loc_descr_ref
8092 based_loc_descr (unsigned int reg, long int offset)
8093 {
8094 dw_loc_descr_ref loc_result;
8095 /* For the "frame base", we use the frame pointer or stack pointer
8096 registers, since the RTL for local variables is relative to one of
8097 them. */
8098 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8099 ? HARD_FRAME_POINTER_REGNUM
8100 : STACK_POINTER_REGNUM);
8101
8102 if (reg == fp_reg)
8103 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8104 else if (reg <= 31)
8105 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8106 else
8107 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8108
8109 return loc_result;
8110 }
8111
8112 /* Return true if this RTL expression describes a base+offset calculation. */
8113
8114 static inline int
8115 is_based_loc (rtx rtl)
8116 {
8117 return (GET_CODE (rtl) == PLUS
8118 && ((GET_CODE (XEXP (rtl, 0)) == REG
8119 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8120 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8121 }
8122
8123 /* The following routine converts the RTL for a variable or parameter
8124 (resident in memory) into an equivalent Dwarf representation of a
8125 mechanism for getting the address of that same variable onto the top of a
8126 hypothetical "address evaluation" stack.
8127
8128 When creating memory location descriptors, we are effectively transforming
8129 the RTL for a memory-resident object into its Dwarf postfix expression
8130 equivalent. This routine recursively descends an RTL tree, turning
8131 it into Dwarf postfix code as it goes.
8132
8133 MODE is the mode of the memory reference, needed to handle some
8134 autoincrement addressing modes.
8135
8136 Return 0 if we can't represent the location. */
8137
8138 static dw_loc_descr_ref
8139 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8140 {
8141 dw_loc_descr_ref mem_loc_result = NULL;
8142
8143 /* Note that for a dynamically sized array, the location we will generate a
8144 description of here will be the lowest numbered location which is
8145 actually within the array. That's *not* necessarily the same as the
8146 zeroth element of the array. */
8147
8148 rtl = (*targetm.delegitimize_address) (rtl);
8149
8150 switch (GET_CODE (rtl))
8151 {
8152 case POST_INC:
8153 case POST_DEC:
8154 case POST_MODIFY:
8155 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8156 just fall into the SUBREG code. */
8157
8158 /* ... fall through ... */
8159
8160 case SUBREG:
8161 /* The case of a subreg may arise when we have a local (register)
8162 variable or a formal (register) parameter which doesn't quite fill
8163 up an entire register. For now, just assume that it is
8164 legitimate to make the Dwarf info refer to the whole register which
8165 contains the given subreg. */
8166 rtl = SUBREG_REG (rtl);
8167
8168 /* ... fall through ... */
8169
8170 case REG:
8171 /* Whenever a register number forms a part of the description of the
8172 method for calculating the (dynamic) address of a memory resident
8173 object, DWARF rules require the register number be referred to as
8174 a "base register". This distinction is not based in any way upon
8175 what category of register the hardware believes the given register
8176 belongs to. This is strictly DWARF terminology we're dealing with
8177 here. Note that in cases where the location of a memory-resident
8178 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8179 OP_CONST (0)) the actual DWARF location descriptor that we generate
8180 may just be OP_BASEREG (basereg). This may look deceptively like
8181 the object in question was allocated to a register (rather than in
8182 memory) so DWARF consumers need to be aware of the subtle
8183 distinction between OP_REG and OP_BASEREG. */
8184 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8185 mem_loc_result = based_loc_descr (reg_number (rtl), 0);
8186 break;
8187
8188 case MEM:
8189 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8190 if (mem_loc_result != 0)
8191 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8192 break;
8193
8194 case LO_SUM:
8195 rtl = XEXP (rtl, 1);
8196
8197 /* ... fall through ... */
8198
8199 case LABEL_REF:
8200 /* Some ports can transform a symbol ref into a label ref, because
8201 the symbol ref is too far away and has to be dumped into a constant
8202 pool. */
8203 case CONST:
8204 case SYMBOL_REF:
8205 /* Alternatively, the symbol in the constant pool might be referenced
8206 by a different symbol. */
8207 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8208 {
8209 bool marked;
8210 rtx tmp = get_pool_constant_mark (rtl, &marked);
8211
8212 if (GET_CODE (tmp) == SYMBOL_REF)
8213 {
8214 rtl = tmp;
8215 if (CONSTANT_POOL_ADDRESS_P (tmp))
8216 get_pool_constant_mark (tmp, &marked);
8217 else
8218 marked = true;
8219 }
8220
8221 /* If all references to this pool constant were optimized away,
8222 it was not output and thus we can't represent it.
8223 FIXME: might try to use DW_OP_const_value here, though
8224 DW_OP_piece complicates it. */
8225 if (!marked)
8226 return 0;
8227 }
8228
8229 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8230 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8231 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8232 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8233 break;
8234
8235 case PRE_MODIFY:
8236 /* Extract the PLUS expression nested inside and fall into
8237 PLUS code below. */
8238 rtl = XEXP (rtl, 1);
8239 goto plus;
8240
8241 case PRE_INC:
8242 case PRE_DEC:
8243 /* Turn these into a PLUS expression and fall into the PLUS code
8244 below. */
8245 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8246 GEN_INT (GET_CODE (rtl) == PRE_INC
8247 ? GET_MODE_UNIT_SIZE (mode)
8248 : -GET_MODE_UNIT_SIZE (mode)));
8249
8250 /* ... fall through ... */
8251
8252 case PLUS:
8253 plus:
8254 if (is_based_loc (rtl))
8255 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
8256 INTVAL (XEXP (rtl, 1)));
8257 else
8258 {
8259 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8260 if (mem_loc_result == 0)
8261 break;
8262
8263 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8264 && INTVAL (XEXP (rtl, 1)) >= 0)
8265 add_loc_descr (&mem_loc_result,
8266 new_loc_descr (DW_OP_plus_uconst,
8267 INTVAL (XEXP (rtl, 1)), 0));
8268 else
8269 {
8270 add_loc_descr (&mem_loc_result,
8271 mem_loc_descriptor (XEXP (rtl, 1), mode));
8272 add_loc_descr (&mem_loc_result,
8273 new_loc_descr (DW_OP_plus, 0, 0));
8274 }
8275 }
8276 break;
8277
8278 case MULT:
8279 {
8280 /* If a pseudo-reg is optimized away, it is possible for it to
8281 be replaced with a MEM containing a multiply. */
8282 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8283 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8284
8285 if (op0 == 0 || op1 == 0)
8286 break;
8287
8288 mem_loc_result = op0;
8289 add_loc_descr (&mem_loc_result, op1);
8290 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
8291 break;
8292 }
8293
8294 case CONST_INT:
8295 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8296 break;
8297
8298 case ADDRESSOF:
8299 /* If this is a MEM, return its address. Otherwise, we can't
8300 represent this. */
8301 if (GET_CODE (XEXP (rtl, 0)) == MEM)
8302 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode);
8303 else
8304 return 0;
8305
8306 default:
8307 abort ();
8308 }
8309
8310 return mem_loc_result;
8311 }
8312
8313 /* Return a descriptor that describes the concatenation of two locations.
8314 This is typically a complex variable. */
8315
8316 static dw_loc_descr_ref
8317 concat_loc_descriptor (rtx x0, rtx x1)
8318 {
8319 dw_loc_descr_ref cc_loc_result = NULL;
8320 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8321 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8322
8323 if (x0_ref == 0 || x1_ref == 0)
8324 return 0;
8325
8326 cc_loc_result = x0_ref;
8327 add_loc_descr (&cc_loc_result,
8328 new_loc_descr (DW_OP_piece,
8329 GET_MODE_SIZE (GET_MODE (x0)), 0));
8330
8331 add_loc_descr (&cc_loc_result, x1_ref);
8332 add_loc_descr (&cc_loc_result,
8333 new_loc_descr (DW_OP_piece,
8334 GET_MODE_SIZE (GET_MODE (x1)), 0));
8335
8336 return cc_loc_result;
8337 }
8338
8339 /* Output a proper Dwarf location descriptor for a variable or parameter
8340 which is either allocated in a register or in a memory location. For a
8341 register, we just generate an OP_REG and the register number. For a
8342 memory location we provide a Dwarf postfix expression describing how to
8343 generate the (dynamic) address of the object onto the address stack.
8344
8345 If we don't know how to describe it, return 0. */
8346
8347 static dw_loc_descr_ref
8348 loc_descriptor (rtx rtl)
8349 {
8350 dw_loc_descr_ref loc_result = NULL;
8351
8352 switch (GET_CODE (rtl))
8353 {
8354 case SUBREG:
8355 /* The case of a subreg may arise when we have a local (register)
8356 variable or a formal (register) parameter which doesn't quite fill
8357 up an entire register. For now, just assume that it is
8358 legitimate to make the Dwarf info refer to the whole register which
8359 contains the given subreg. */
8360 rtl = SUBREG_REG (rtl);
8361
8362 /* ... fall through ... */
8363
8364 case REG:
8365 loc_result = reg_loc_descriptor (rtl);
8366 break;
8367
8368 case MEM:
8369 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8370 break;
8371
8372 case CONCAT:
8373 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8374 break;
8375
8376 default:
8377 abort ();
8378 }
8379
8380 return loc_result;
8381 }
8382
8383 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8384 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8385 looking for an address. Otherwise, we return a value. If we can't make a
8386 descriptor, return 0. */
8387
8388 static dw_loc_descr_ref
8389 loc_descriptor_from_tree (tree loc, int addressp)
8390 {
8391 dw_loc_descr_ref ret, ret1;
8392 int indirect_p = 0;
8393 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8394 enum dwarf_location_atom op;
8395
8396 /* ??? Most of the time we do not take proper care for sign/zero
8397 extending the values properly. Hopefully this won't be a real
8398 problem... */
8399
8400 switch (TREE_CODE (loc))
8401 {
8402 case ERROR_MARK:
8403 return 0;
8404
8405 case WITH_RECORD_EXPR:
8406 case PLACEHOLDER_EXPR:
8407 /* This case involves extracting fields from an object to determine the
8408 position of other fields. We don't try to encode this here. The
8409 only user of this is Ada, which encodes the needed information using
8410 the names of types. */
8411 return 0;
8412
8413 case CALL_EXPR:
8414 return 0;
8415
8416 case ADDR_EXPR:
8417 /* We can support this only if we can look through conversions and
8418 find an INDIRECT_EXPR. */
8419 for (loc = TREE_OPERAND (loc, 0);
8420 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8421 || TREE_CODE (loc) == NON_LVALUE_EXPR
8422 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8423 || TREE_CODE (loc) == SAVE_EXPR;
8424 loc = TREE_OPERAND (loc, 0))
8425 ;
8426
8427 return (TREE_CODE (loc) == INDIRECT_REF
8428 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8429 : 0);
8430
8431 case VAR_DECL:
8432 if (DECL_THREAD_LOCAL (loc))
8433 {
8434 rtx rtl;
8435
8436 #ifndef ASM_OUTPUT_DWARF_DTPREL
8437 /* If this is not defined, we have no way to emit the data. */
8438 return 0;
8439 #endif
8440
8441 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8442 look up addresses of objects in the current module. */
8443 if (DECL_EXTERNAL (loc))
8444 return 0;
8445
8446 rtl = rtl_for_decl_location (loc);
8447 if (rtl == NULL_RTX)
8448 return 0;
8449
8450 if (GET_CODE (rtl) != MEM)
8451 return 0;
8452 rtl = XEXP (rtl, 0);
8453 if (! CONSTANT_P (rtl))
8454 return 0;
8455
8456 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8457 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8458 ret->dw_loc_oprnd1.v.val_addr = rtl;
8459
8460 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8461 add_loc_descr (&ret, ret1);
8462
8463 indirect_p = 1;
8464 break;
8465 }
8466 /* FALLTHRU */
8467
8468 case PARM_DECL:
8469 {
8470 rtx rtl = rtl_for_decl_location (loc);
8471
8472 if (rtl == NULL_RTX)
8473 return 0;
8474 else if (CONSTANT_P (rtl))
8475 {
8476 ret = new_loc_descr (DW_OP_addr, 0, 0);
8477 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8478 ret->dw_loc_oprnd1.v.val_addr = rtl;
8479 indirect_p = 1;
8480 }
8481 else
8482 {
8483 enum machine_mode mode = GET_MODE (rtl);
8484
8485 if (GET_CODE (rtl) == MEM)
8486 {
8487 indirect_p = 1;
8488 rtl = XEXP (rtl, 0);
8489 }
8490
8491 ret = mem_loc_descriptor (rtl, mode);
8492 }
8493 }
8494 break;
8495
8496 case INDIRECT_REF:
8497 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8498 indirect_p = 1;
8499 break;
8500
8501 case COMPOUND_EXPR:
8502 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8503
8504 case NOP_EXPR:
8505 case CONVERT_EXPR:
8506 case NON_LVALUE_EXPR:
8507 case VIEW_CONVERT_EXPR:
8508 case SAVE_EXPR:
8509 case MODIFY_EXPR:
8510 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8511
8512 case COMPONENT_REF:
8513 case BIT_FIELD_REF:
8514 case ARRAY_REF:
8515 case ARRAY_RANGE_REF:
8516 {
8517 tree obj, offset;
8518 HOST_WIDE_INT bitsize, bitpos, bytepos;
8519 enum machine_mode mode;
8520 int volatilep;
8521
8522 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8523 &unsignedp, &volatilep);
8524
8525 if (obj == loc)
8526 return 0;
8527
8528 ret = loc_descriptor_from_tree (obj, 1);
8529 if (ret == 0
8530 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8531 return 0;
8532
8533 if (offset != NULL_TREE)
8534 {
8535 /* Variable offset. */
8536 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8537 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8538 }
8539
8540 if (!addressp)
8541 indirect_p = 1;
8542
8543 bytepos = bitpos / BITS_PER_UNIT;
8544 if (bytepos > 0)
8545 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8546 else if (bytepos < 0)
8547 {
8548 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8549 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8550 }
8551 break;
8552 }
8553
8554 case INTEGER_CST:
8555 if (host_integerp (loc, 0))
8556 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8557 else
8558 return 0;
8559 break;
8560
8561 case CONSTRUCTOR:
8562 {
8563 /* Get an RTL for this, which will may have the effect of outputting
8564 it. This may violates the principle of not having -g affect
8565 the generated code, but it's in the data segment and it's hard
8566 to see a case where it won't already have been output. */
8567 rtx rtl = output_constant_def (loc, 0);
8568
8569 #ifdef ASM_SIMPLIFY_DWARF_ADDR
8570 rtl = ASM_SIMPLIFY_DWARF_ADDR (rtl);
8571 #endif
8572 indirect_p = 1;
8573 ret = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8574 break;
8575 }
8576
8577 case TRUTH_AND_EXPR:
8578 case TRUTH_ANDIF_EXPR:
8579 case BIT_AND_EXPR:
8580 op = DW_OP_and;
8581 goto do_binop;
8582
8583 case TRUTH_XOR_EXPR:
8584 case BIT_XOR_EXPR:
8585 op = DW_OP_xor;
8586 goto do_binop;
8587
8588 case TRUTH_OR_EXPR:
8589 case TRUTH_ORIF_EXPR:
8590 case BIT_IOR_EXPR:
8591 op = DW_OP_or;
8592 goto do_binop;
8593
8594 case FLOOR_DIV_EXPR:
8595 case CEIL_DIV_EXPR:
8596 case ROUND_DIV_EXPR:
8597 case TRUNC_DIV_EXPR:
8598 op = DW_OP_div;
8599 goto do_binop;
8600
8601 case MINUS_EXPR:
8602 op = DW_OP_minus;
8603 goto do_binop;
8604
8605 case FLOOR_MOD_EXPR:
8606 case CEIL_MOD_EXPR:
8607 case ROUND_MOD_EXPR:
8608 case TRUNC_MOD_EXPR:
8609 op = DW_OP_mod;
8610 goto do_binop;
8611
8612 case MULT_EXPR:
8613 op = DW_OP_mul;
8614 goto do_binop;
8615
8616 case LSHIFT_EXPR:
8617 op = DW_OP_shl;
8618 goto do_binop;
8619
8620 case RSHIFT_EXPR:
8621 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8622 goto do_binop;
8623
8624 case PLUS_EXPR:
8625 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8626 && host_integerp (TREE_OPERAND (loc, 1), 0))
8627 {
8628 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8629 if (ret == 0)
8630 return 0;
8631
8632 add_loc_descr (&ret,
8633 new_loc_descr (DW_OP_plus_uconst,
8634 tree_low_cst (TREE_OPERAND (loc, 1),
8635 0),
8636 0));
8637 break;
8638 }
8639
8640 op = DW_OP_plus;
8641 goto do_binop;
8642
8643 case LE_EXPR:
8644 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8645 return 0;
8646
8647 op = DW_OP_le;
8648 goto do_binop;
8649
8650 case GE_EXPR:
8651 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8652 return 0;
8653
8654 op = DW_OP_ge;
8655 goto do_binop;
8656
8657 case LT_EXPR:
8658 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8659 return 0;
8660
8661 op = DW_OP_lt;
8662 goto do_binop;
8663
8664 case GT_EXPR:
8665 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8666 return 0;
8667
8668 op = DW_OP_gt;
8669 goto do_binop;
8670
8671 case EQ_EXPR:
8672 op = DW_OP_eq;
8673 goto do_binop;
8674
8675 case NE_EXPR:
8676 op = DW_OP_ne;
8677 goto do_binop;
8678
8679 do_binop:
8680 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8681 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8682 if (ret == 0 || ret1 == 0)
8683 return 0;
8684
8685 add_loc_descr (&ret, ret1);
8686 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8687 break;
8688
8689 case TRUTH_NOT_EXPR:
8690 case BIT_NOT_EXPR:
8691 op = DW_OP_not;
8692 goto do_unop;
8693
8694 case ABS_EXPR:
8695 op = DW_OP_abs;
8696 goto do_unop;
8697
8698 case NEGATE_EXPR:
8699 op = DW_OP_neg;
8700 goto do_unop;
8701
8702 do_unop:
8703 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8704 if (ret == 0)
8705 return 0;
8706
8707 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8708 break;
8709
8710 case MAX_EXPR:
8711 loc = build (COND_EXPR, TREE_TYPE (loc),
8712 build (LT_EXPR, integer_type_node,
8713 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8714 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
8715
8716 /* ... fall through ... */
8717
8718 case COND_EXPR:
8719 {
8720 dw_loc_descr_ref lhs
8721 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8722 dw_loc_descr_ref rhs
8723 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
8724 dw_loc_descr_ref bra_node, jump_node, tmp;
8725
8726 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8727 if (ret == 0 || lhs == 0 || rhs == 0)
8728 return 0;
8729
8730 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
8731 add_loc_descr (&ret, bra_node);
8732
8733 add_loc_descr (&ret, rhs);
8734 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
8735 add_loc_descr (&ret, jump_node);
8736
8737 add_loc_descr (&ret, lhs);
8738 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8739 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
8740
8741 /* ??? Need a node to point the skip at. Use a nop. */
8742 tmp = new_loc_descr (DW_OP_nop, 0, 0);
8743 add_loc_descr (&ret, tmp);
8744 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8745 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
8746 }
8747 break;
8748
8749 default:
8750 /* Leave front-end specific codes as simply unknown. This comes
8751 up, for instance, with the C STMT_EXPR. */
8752 if ((unsigned int) TREE_CODE (loc)
8753 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
8754 return 0;
8755
8756 /* Otherwise this is a generic code; we should just lists all of
8757 these explicitly. Aborting means we forgot one. */
8758 abort ();
8759 }
8760
8761 /* Show if we can't fill the request for an address. */
8762 if (addressp && indirect_p == 0)
8763 return 0;
8764
8765 /* If we've got an address and don't want one, dereference. */
8766 if (!addressp && indirect_p > 0)
8767 {
8768 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
8769
8770 if (size > DWARF2_ADDR_SIZE || size == -1)
8771 return 0;
8772 else if (size == DWARF2_ADDR_SIZE)
8773 op = DW_OP_deref;
8774 else
8775 op = DW_OP_deref_size;
8776
8777 add_loc_descr (&ret, new_loc_descr (op, size, 0));
8778 }
8779
8780 return ret;
8781 }
8782
8783 /* Given a value, round it up to the lowest multiple of `boundary'
8784 which is not less than the value itself. */
8785
8786 static inline HOST_WIDE_INT
8787 ceiling (HOST_WIDE_INT value, unsigned int boundary)
8788 {
8789 return (((value + boundary - 1) / boundary) * boundary);
8790 }
8791
8792 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
8793 pointer to the declared type for the relevant field variable, or return
8794 `integer_type_node' if the given node turns out to be an
8795 ERROR_MARK node. */
8796
8797 static inline tree
8798 field_type (tree decl)
8799 {
8800 tree type;
8801
8802 if (TREE_CODE (decl) == ERROR_MARK)
8803 return integer_type_node;
8804
8805 type = DECL_BIT_FIELD_TYPE (decl);
8806 if (type == NULL_TREE)
8807 type = TREE_TYPE (decl);
8808
8809 return type;
8810 }
8811
8812 /* Given a pointer to a tree node, return the alignment in bits for
8813 it, or else return BITS_PER_WORD if the node actually turns out to
8814 be an ERROR_MARK node. */
8815
8816 static inline unsigned
8817 simple_type_align_in_bits (tree type)
8818 {
8819 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
8820 }
8821
8822 static inline unsigned
8823 simple_decl_align_in_bits (tree decl)
8824 {
8825 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
8826 }
8827
8828 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
8829 lowest addressed byte of the "containing object" for the given FIELD_DECL,
8830 or return 0 if we are unable to determine what that offset is, either
8831 because the argument turns out to be a pointer to an ERROR_MARK node, or
8832 because the offset is actually variable. (We can't handle the latter case
8833 just yet). */
8834
8835 static HOST_WIDE_INT
8836 field_byte_offset (tree decl)
8837 {
8838 unsigned int type_align_in_bits;
8839 unsigned int decl_align_in_bits;
8840 unsigned HOST_WIDE_INT type_size_in_bits;
8841 HOST_WIDE_INT object_offset_in_bits;
8842 tree type;
8843 tree field_size_tree;
8844 HOST_WIDE_INT bitpos_int;
8845 HOST_WIDE_INT deepest_bitpos;
8846 unsigned HOST_WIDE_INT field_size_in_bits;
8847
8848 if (TREE_CODE (decl) == ERROR_MARK)
8849 return 0;
8850 else if (TREE_CODE (decl) != FIELD_DECL)
8851 abort ();
8852
8853 type = field_type (decl);
8854 field_size_tree = DECL_SIZE (decl);
8855
8856 /* The size could be unspecified if there was an error, or for
8857 a flexible array member. */
8858 if (! field_size_tree)
8859 field_size_tree = bitsize_zero_node;
8860
8861 /* We cannot yet cope with fields whose positions are variable, so
8862 for now, when we see such things, we simply return 0. Someday, we may
8863 be able to handle such cases, but it will be damn difficult. */
8864 if (! host_integerp (bit_position (decl), 0))
8865 return 0;
8866
8867 bitpos_int = int_bit_position (decl);
8868
8869 /* If we don't know the size of the field, pretend it's a full word. */
8870 if (host_integerp (field_size_tree, 1))
8871 field_size_in_bits = tree_low_cst (field_size_tree, 1);
8872 else
8873 field_size_in_bits = BITS_PER_WORD;
8874
8875 type_size_in_bits = simple_type_size_in_bits (type);
8876 type_align_in_bits = simple_type_align_in_bits (type);
8877 decl_align_in_bits = simple_decl_align_in_bits (decl);
8878
8879 /* The GCC front-end doesn't make any attempt to keep track of the starting
8880 bit offset (relative to the start of the containing structure type) of the
8881 hypothetical "containing object" for a bit-field. Thus, when computing
8882 the byte offset value for the start of the "containing object" of a
8883 bit-field, we must deduce this information on our own. This can be rather
8884 tricky to do in some cases. For example, handling the following structure
8885 type definition when compiling for an i386/i486 target (which only aligns
8886 long long's to 32-bit boundaries) can be very tricky:
8887
8888 struct S { int field1; long long field2:31; };
8889
8890 Fortunately, there is a simple rule-of-thumb which can be used in such
8891 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
8892 structure shown above. It decides to do this based upon one simple rule
8893 for bit-field allocation. GCC allocates each "containing object" for each
8894 bit-field at the first (i.e. lowest addressed) legitimate alignment
8895 boundary (based upon the required minimum alignment for the declared type
8896 of the field) which it can possibly use, subject to the condition that
8897 there is still enough available space remaining in the containing object
8898 (when allocated at the selected point) to fully accommodate all of the
8899 bits of the bit-field itself.
8900
8901 This simple rule makes it obvious why GCC allocates 8 bytes for each
8902 object of the structure type shown above. When looking for a place to
8903 allocate the "containing object" for `field2', the compiler simply tries
8904 to allocate a 64-bit "containing object" at each successive 32-bit
8905 boundary (starting at zero) until it finds a place to allocate that 64-
8906 bit field such that at least 31 contiguous (and previously unallocated)
8907 bits remain within that selected 64 bit field. (As it turns out, for the
8908 example above, the compiler finds it is OK to allocate the "containing
8909 object" 64-bit field at bit-offset zero within the structure type.)
8910
8911 Here we attempt to work backwards from the limited set of facts we're
8912 given, and we try to deduce from those facts, where GCC must have believed
8913 that the containing object started (within the structure type). The value
8914 we deduce is then used (by the callers of this routine) to generate
8915 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
8916 and, in the case of DW_AT_location, regular fields as well). */
8917
8918 /* Figure out the bit-distance from the start of the structure to the
8919 "deepest" bit of the bit-field. */
8920 deepest_bitpos = bitpos_int + field_size_in_bits;
8921
8922 /* This is the tricky part. Use some fancy footwork to deduce where the
8923 lowest addressed bit of the containing object must be. */
8924 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8925
8926 /* Round up to type_align by default. This works best for bitfields. */
8927 object_offset_in_bits += type_align_in_bits - 1;
8928 object_offset_in_bits /= type_align_in_bits;
8929 object_offset_in_bits *= type_align_in_bits;
8930
8931 if (object_offset_in_bits > bitpos_int)
8932 {
8933 /* Sigh, the decl must be packed. */
8934 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8935
8936 /* Round up to decl_align instead. */
8937 object_offset_in_bits += decl_align_in_bits - 1;
8938 object_offset_in_bits /= decl_align_in_bits;
8939 object_offset_in_bits *= decl_align_in_bits;
8940 }
8941
8942 return object_offset_in_bits / BITS_PER_UNIT;
8943 }
8944 \f
8945 /* The following routines define various Dwarf attributes and any data
8946 associated with them. */
8947
8948 /* Add a location description attribute value to a DIE.
8949
8950 This emits location attributes suitable for whole variables and
8951 whole parameters. Note that the location attributes for struct fields are
8952 generated by the routine `data_member_location_attribute' below. */
8953
8954 static inline void
8955 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
8956 dw_loc_descr_ref descr)
8957 {
8958 if (descr != 0)
8959 add_AT_loc (die, attr_kind, descr);
8960 }
8961
8962 /* Attach the specialized form of location attribute used for data members of
8963 struct and union types. In the special case of a FIELD_DECL node which
8964 represents a bit-field, the "offset" part of this special location
8965 descriptor must indicate the distance in bytes from the lowest-addressed
8966 byte of the containing struct or union type to the lowest-addressed byte of
8967 the "containing object" for the bit-field. (See the `field_byte_offset'
8968 function above).
8969
8970 For any given bit-field, the "containing object" is a hypothetical object
8971 (of some integral or enum type) within which the given bit-field lives. The
8972 type of this hypothetical "containing object" is always the same as the
8973 declared type of the individual bit-field itself (for GCC anyway... the
8974 DWARF spec doesn't actually mandate this). Note that it is the size (in
8975 bytes) of the hypothetical "containing object" which will be given in the
8976 DW_AT_byte_size attribute for this bit-field. (See the
8977 `byte_size_attribute' function below.) It is also used when calculating the
8978 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
8979 function below.) */
8980
8981 static void
8982 add_data_member_location_attribute (dw_die_ref die, tree decl)
8983 {
8984 long offset;
8985 dw_loc_descr_ref loc_descr = 0;
8986
8987 if (TREE_CODE (decl) == TREE_VEC)
8988 {
8989 /* We're working on the TAG_inheritance for a base class. */
8990 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
8991 {
8992 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
8993 aren't at a fixed offset from all (sub)objects of the same
8994 type. We need to extract the appropriate offset from our
8995 vtable. The following dwarf expression means
8996
8997 BaseAddr = ObAddr + *((*ObAddr) - Offset)
8998
8999 This is specific to the V3 ABI, of course. */
9000
9001 dw_loc_descr_ref tmp;
9002
9003 /* Make a copy of the object address. */
9004 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9005 add_loc_descr (&loc_descr, tmp);
9006
9007 /* Extract the vtable address. */
9008 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9009 add_loc_descr (&loc_descr, tmp);
9010
9011 /* Calculate the address of the offset. */
9012 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9013 if (offset >= 0)
9014 abort ();
9015
9016 tmp = int_loc_descriptor (-offset);
9017 add_loc_descr (&loc_descr, tmp);
9018 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9019 add_loc_descr (&loc_descr, tmp);
9020
9021 /* Extract the offset. */
9022 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9023 add_loc_descr (&loc_descr, tmp);
9024
9025 /* Add it to the object address. */
9026 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9027 add_loc_descr (&loc_descr, tmp);
9028 }
9029 else
9030 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9031 }
9032 else
9033 offset = field_byte_offset (decl);
9034
9035 if (! loc_descr)
9036 {
9037 enum dwarf_location_atom op;
9038
9039 /* The DWARF2 standard says that we should assume that the structure
9040 address is already on the stack, so we can specify a structure field
9041 address by using DW_OP_plus_uconst. */
9042
9043 #ifdef MIPS_DEBUGGING_INFO
9044 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9045 operator correctly. It works only if we leave the offset on the
9046 stack. */
9047 op = DW_OP_constu;
9048 #else
9049 op = DW_OP_plus_uconst;
9050 #endif
9051
9052 loc_descr = new_loc_descr (op, offset, 0);
9053 }
9054
9055 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9056 }
9057
9058 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9059 does not have a "location" either in memory or in a register. These
9060 things can arise in GNU C when a constant is passed as an actual parameter
9061 to an inlined function. They can also arise in C++ where declared
9062 constants do not necessarily get memory "homes". */
9063
9064 static void
9065 add_const_value_attribute (dw_die_ref die, rtx rtl)
9066 {
9067 switch (GET_CODE (rtl))
9068 {
9069 case CONST_INT:
9070 /* Note that a CONST_INT rtx could represent either an integer
9071 or a floating-point constant. A CONST_INT is used whenever
9072 the constant will fit into a single word. In all such
9073 cases, the original mode of the constant value is wiped
9074 out, and the CONST_INT rtx is assigned VOIDmode. */
9075 {
9076 HOST_WIDE_INT val = INTVAL (rtl);
9077
9078 /* ??? We really should be using HOST_WIDE_INT throughout. */
9079 if (val < 0 && (long) val == val)
9080 add_AT_int (die, DW_AT_const_value, (long) val);
9081 else if ((unsigned long) val == (unsigned HOST_WIDE_INT) val)
9082 add_AT_unsigned (die, DW_AT_const_value, (unsigned long) val);
9083 else
9084 {
9085 #if HOST_BITS_PER_LONG * 2 == HOST_BITS_PER_WIDE_INT
9086 add_AT_long_long (die, DW_AT_const_value,
9087 val >> HOST_BITS_PER_LONG, val);
9088 #else
9089 abort ();
9090 #endif
9091 }
9092 }
9093 break;
9094
9095 case CONST_DOUBLE:
9096 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9097 floating-point constant. A CONST_DOUBLE is used whenever the
9098 constant requires more than one word in order to be adequately
9099 represented. We output CONST_DOUBLEs as blocks. */
9100 {
9101 enum machine_mode mode = GET_MODE (rtl);
9102
9103 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9104 {
9105 unsigned length = GET_MODE_SIZE (mode) / 4;
9106 long *array = ggc_alloc (sizeof (long) * length);
9107 REAL_VALUE_TYPE rv;
9108
9109 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9110 switch (mode)
9111 {
9112 case SFmode:
9113 REAL_VALUE_TO_TARGET_SINGLE (rv, array[0]);
9114 break;
9115
9116 case DFmode:
9117 REAL_VALUE_TO_TARGET_DOUBLE (rv, array);
9118 break;
9119
9120 case XFmode:
9121 case TFmode:
9122 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, array);
9123 break;
9124
9125 default:
9126 abort ();
9127 }
9128
9129 add_AT_float (die, DW_AT_const_value, length, array);
9130 }
9131 else
9132 {
9133 /* ??? We really should be using HOST_WIDE_INT throughout. */
9134 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9135 abort ();
9136
9137 add_AT_long_long (die, DW_AT_const_value,
9138 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9139 }
9140 }
9141 break;
9142
9143 case CONST_STRING:
9144 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9145 break;
9146
9147 case SYMBOL_REF:
9148 case LABEL_REF:
9149 case CONST:
9150 add_AT_addr (die, DW_AT_const_value, rtl);
9151 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9152 break;
9153
9154 case PLUS:
9155 /* In cases where an inlined instance of an inline function is passed
9156 the address of an `auto' variable (which is local to the caller) we
9157 can get a situation where the DECL_RTL of the artificial local
9158 variable (for the inlining) which acts as a stand-in for the
9159 corresponding formal parameter (of the inline function) will look
9160 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9161 exactly a compile-time constant expression, but it isn't the address
9162 of the (artificial) local variable either. Rather, it represents the
9163 *value* which the artificial local variable always has during its
9164 lifetime. We currently have no way to represent such quasi-constant
9165 values in Dwarf, so for now we just punt and generate nothing. */
9166 break;
9167
9168 default:
9169 /* No other kinds of rtx should be possible here. */
9170 abort ();
9171 }
9172
9173 }
9174
9175 static rtx
9176 rtl_for_decl_location (tree decl)
9177 {
9178 rtx rtl;
9179
9180 /* Here we have to decide where we are going to say the parameter "lives"
9181 (as far as the debugger is concerned). We only have a couple of
9182 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9183
9184 DECL_RTL normally indicates where the parameter lives during most of the
9185 activation of the function. If optimization is enabled however, this
9186 could be either NULL or else a pseudo-reg. Both of those cases indicate
9187 that the parameter doesn't really live anywhere (as far as the code
9188 generation parts of GCC are concerned) during most of the function's
9189 activation. That will happen (for example) if the parameter is never
9190 referenced within the function.
9191
9192 We could just generate a location descriptor here for all non-NULL
9193 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9194 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9195 where DECL_RTL is NULL or is a pseudo-reg.
9196
9197 Note however that we can only get away with using DECL_INCOMING_RTL as
9198 a backup substitute for DECL_RTL in certain limited cases. In cases
9199 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9200 we can be sure that the parameter was passed using the same type as it is
9201 declared to have within the function, and that its DECL_INCOMING_RTL
9202 points us to a place where a value of that type is passed.
9203
9204 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9205 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9206 because in these cases DECL_INCOMING_RTL points us to a value of some
9207 type which is *different* from the type of the parameter itself. Thus,
9208 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9209 such cases, the debugger would end up (for example) trying to fetch a
9210 `float' from a place which actually contains the first part of a
9211 `double'. That would lead to really incorrect and confusing
9212 output at debug-time.
9213
9214 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9215 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9216 are a couple of exceptions however. On little-endian machines we can
9217 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9218 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9219 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9220 when (on a little-endian machine) a non-prototyped function has a
9221 parameter declared to be of type `short' or `char'. In such cases,
9222 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9223 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9224 passed `int' value. If the debugger then uses that address to fetch
9225 a `short' or a `char' (on a little-endian machine) the result will be
9226 the correct data, so we allow for such exceptional cases below.
9227
9228 Note that our goal here is to describe the place where the given formal
9229 parameter lives during most of the function's activation (i.e. between the
9230 end of the prologue and the start of the epilogue). We'll do that as best
9231 as we can. Note however that if the given formal parameter is modified
9232 sometime during the execution of the function, then a stack backtrace (at
9233 debug-time) will show the function as having been called with the *new*
9234 value rather than the value which was originally passed in. This happens
9235 rarely enough that it is not a major problem, but it *is* a problem, and
9236 I'd like to fix it.
9237
9238 A future version of dwarf2out.c may generate two additional attributes for
9239 any given DW_TAG_formal_parameter DIE which will describe the "passed
9240 type" and the "passed location" for the given formal parameter in addition
9241 to the attributes we now generate to indicate the "declared type" and the
9242 "active location" for each parameter. This additional set of attributes
9243 could be used by debuggers for stack backtraces. Separately, note that
9244 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9245 This happens (for example) for inlined-instances of inline function formal
9246 parameters which are never referenced. This really shouldn't be
9247 happening. All PARM_DECL nodes should get valid non-NULL
9248 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9249 values for inlined instances of inline function parameters, so when we see
9250 such cases, we are just out-of-luck for the time being (until integrate.c
9251 gets fixed). */
9252
9253 /* Use DECL_RTL as the "location" unless we find something better. */
9254 rtl = DECL_RTL_IF_SET (decl);
9255
9256 /* When generating abstract instances, ignore everything except
9257 constants, symbols living in memory, and symbols living in
9258 fixed registers. */
9259 if (! reload_completed)
9260 {
9261 if (rtl
9262 && (CONSTANT_P (rtl)
9263 || (GET_CODE (rtl) == MEM
9264 && CONSTANT_P (XEXP (rtl, 0)))
9265 || (GET_CODE (rtl) == REG
9266 && TREE_CODE (decl) == VAR_DECL
9267 && TREE_STATIC (decl))))
9268 {
9269 rtl = (*targetm.delegitimize_address) (rtl);
9270 return rtl;
9271 }
9272 rtl = NULL_RTX;
9273 }
9274 else if (TREE_CODE (decl) == PARM_DECL)
9275 {
9276 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9277 {
9278 tree declared_type = type_main_variant (TREE_TYPE (decl));
9279 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9280
9281 /* This decl represents a formal parameter which was optimized out.
9282 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9283 all cases where (rtl == NULL_RTX) just below. */
9284 if (declared_type == passed_type)
9285 rtl = DECL_INCOMING_RTL (decl);
9286 else if (! BYTES_BIG_ENDIAN
9287 && TREE_CODE (declared_type) == INTEGER_TYPE
9288 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9289 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9290 rtl = DECL_INCOMING_RTL (decl);
9291 }
9292
9293 /* If the parm was passed in registers, but lives on the stack, then
9294 make a big endian correction if the mode of the type of the
9295 parameter is not the same as the mode of the rtl. */
9296 /* ??? This is the same series of checks that are made in dbxout.c before
9297 we reach the big endian correction code there. It isn't clear if all
9298 of these checks are necessary here, but keeping them all is the safe
9299 thing to do. */
9300 else if (GET_CODE (rtl) == MEM
9301 && XEXP (rtl, 0) != const0_rtx
9302 && ! CONSTANT_P (XEXP (rtl, 0))
9303 /* Not passed in memory. */
9304 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
9305 /* Not passed by invisible reference. */
9306 && (GET_CODE (XEXP (rtl, 0)) != REG
9307 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9308 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9309 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9310 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9311 #endif
9312 )
9313 /* Big endian correction check. */
9314 && BYTES_BIG_ENDIAN
9315 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9316 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9317 < UNITS_PER_WORD))
9318 {
9319 int offset = (UNITS_PER_WORD
9320 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9321
9322 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9323 plus_constant (XEXP (rtl, 0), offset));
9324 }
9325 }
9326
9327 if (rtl != NULL_RTX)
9328 {
9329 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9330 #ifdef LEAF_REG_REMAP
9331 if (current_function_uses_only_leaf_regs)
9332 leaf_renumber_regs_insn (rtl);
9333 #endif
9334 }
9335
9336 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9337 and will have been substituted directly into all expressions that use it.
9338 C does not have such a concept, but C++ and other languages do. */
9339 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9340 {
9341 /* If a variable is initialized with a string constant without embedded
9342 zeros, build CONST_STRING. */
9343 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9344 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9345 {
9346 tree arrtype = TREE_TYPE (decl);
9347 tree enttype = TREE_TYPE (arrtype);
9348 tree domain = TYPE_DOMAIN (arrtype);
9349 tree init = DECL_INITIAL (decl);
9350 enum machine_mode mode = TYPE_MODE (enttype);
9351
9352 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9353 && domain
9354 && integer_zerop (TYPE_MIN_VALUE (domain))
9355 && compare_tree_int (TYPE_MAX_VALUE (domain),
9356 TREE_STRING_LENGTH (init) - 1) == 0
9357 && ((size_t) TREE_STRING_LENGTH (init)
9358 == strlen (TREE_STRING_POINTER (init)) + 1))
9359 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9360 }
9361 /* If the initializer is something that we know will expand into an
9362 immediate RTL constant, expand it now. Expanding anything else
9363 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9364 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9365 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9366 {
9367 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9368 EXPAND_INITIALIZER);
9369 /* If expand_expr returns a MEM, it wasn't immediate. */
9370 if (rtl && GET_CODE (rtl) == MEM)
9371 abort ();
9372 }
9373 }
9374
9375 if (rtl)
9376 rtl = (*targetm.delegitimize_address) (rtl);
9377
9378 /* If we don't look past the constant pool, we risk emitting a
9379 reference to a constant pool entry that isn't referenced from
9380 code, and thus is not emitted. */
9381 if (rtl)
9382 rtl = avoid_constant_pool_reference (rtl);
9383
9384 return rtl;
9385 }
9386
9387 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
9388 data attribute for a variable or a parameter. We generate the
9389 DW_AT_const_value attribute only in those cases where the given variable
9390 or parameter does not have a true "location" either in memory or in a
9391 register. This can happen (for example) when a constant is passed as an
9392 actual argument in a call to an inline function. (It's possible that
9393 these things can crop up in other ways also.) Note that one type of
9394 constant value which can be passed into an inlined function is a constant
9395 pointer. This can happen for example if an actual argument in an inlined
9396 function call evaluates to a compile-time constant address. */
9397
9398 static void
9399 add_location_or_const_value_attribute (dw_die_ref die, tree decl)
9400 {
9401 rtx rtl;
9402 dw_loc_descr_ref descr;
9403
9404 if (TREE_CODE (decl) == ERROR_MARK)
9405 return;
9406 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
9407 abort ();
9408
9409 rtl = rtl_for_decl_location (decl);
9410 if (rtl == NULL_RTX)
9411 return;
9412
9413 switch (GET_CODE (rtl))
9414 {
9415 case ADDRESSOF:
9416 /* The address of a variable that was optimized away;
9417 don't emit anything. */
9418 break;
9419
9420 case CONST_INT:
9421 case CONST_DOUBLE:
9422 case CONST_STRING:
9423 case SYMBOL_REF:
9424 case LABEL_REF:
9425 case CONST:
9426 case PLUS:
9427 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9428 add_const_value_attribute (die, rtl);
9429 break;
9430
9431 case MEM:
9432 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
9433 {
9434 /* Need loc_descriptor_from_tree since that's where we know
9435 how to handle TLS variables. Want the object's address
9436 since the top-level DW_AT_location assumes such. See
9437 the confusion in loc_descriptor for reference. */
9438 descr = loc_descriptor_from_tree (decl, 1);
9439 }
9440 else
9441 {
9442 case REG:
9443 case SUBREG:
9444 case CONCAT:
9445 descr = loc_descriptor (rtl);
9446 }
9447 add_AT_location_description (die, DW_AT_location, descr);
9448 break;
9449
9450 default:
9451 abort ();
9452 }
9453 }
9454
9455 /* If we don't have a copy of this variable in memory for some reason (such
9456 as a C++ member constant that doesn't have an out-of-line definition),
9457 we should tell the debugger about the constant value. */
9458
9459 static void
9460 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
9461 {
9462 tree init = DECL_INITIAL (decl);
9463 tree type = TREE_TYPE (decl);
9464
9465 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9466 && initializer_constant_valid_p (init, type) == null_pointer_node)
9467 /* OK */;
9468 else
9469 return;
9470
9471 switch (TREE_CODE (type))
9472 {
9473 case INTEGER_TYPE:
9474 if (host_integerp (init, 0))
9475 add_AT_unsigned (var_die, DW_AT_const_value,
9476 tree_low_cst (init, 0));
9477 else
9478 add_AT_long_long (var_die, DW_AT_const_value,
9479 TREE_INT_CST_HIGH (init),
9480 TREE_INT_CST_LOW (init));
9481 break;
9482
9483 default:;
9484 }
9485 }
9486
9487 /* Generate a DW_AT_name attribute given some string value to be included as
9488 the value of the attribute. */
9489
9490 static void
9491 add_name_attribute (dw_die_ref die, const char *name_string)
9492 {
9493 if (name_string != NULL && *name_string != 0)
9494 {
9495 if (demangle_name_func)
9496 name_string = (*demangle_name_func) (name_string);
9497
9498 add_AT_string (die, DW_AT_name, name_string);
9499 }
9500 }
9501
9502 /* Generate a DW_AT_comp_dir attribute for DIE. */
9503
9504 static void
9505 add_comp_dir_attribute (dw_die_ref die)
9506 {
9507 const char *wd = getpwd ();
9508 if (wd != NULL)
9509 add_AT_string (die, DW_AT_comp_dir, wd);
9510 }
9511
9512 /* Given a tree node describing an array bound (either lower or upper) output
9513 a representation for that bound. */
9514
9515 static void
9516 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
9517 {
9518 switch (TREE_CODE (bound))
9519 {
9520 case ERROR_MARK:
9521 return;
9522
9523 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9524 case INTEGER_CST:
9525 if (! host_integerp (bound, 0)
9526 || (bound_attr == DW_AT_lower_bound
9527 && (((is_c_family () || is_java ()) && integer_zerop (bound))
9528 || (is_fortran () && integer_onep (bound)))))
9529 /* use the default */
9530 ;
9531 else
9532 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
9533 break;
9534
9535 case CONVERT_EXPR:
9536 case NOP_EXPR:
9537 case NON_LVALUE_EXPR:
9538 case VIEW_CONVERT_EXPR:
9539 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9540 break;
9541
9542 case SAVE_EXPR:
9543 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9544 access the upper bound values may be bogus. If they refer to a
9545 register, they may only describe how to get at these values at the
9546 points in the generated code right after they have just been
9547 computed. Worse yet, in the typical case, the upper bound values
9548 will not even *be* computed in the optimized code (though the
9549 number of elements will), so these SAVE_EXPRs are entirely
9550 bogus. In order to compensate for this fact, we check here to see
9551 if optimization is enabled, and if so, we don't add an attribute
9552 for the (unknown and unknowable) upper bound. This should not
9553 cause too much trouble for existing (stupid?) debuggers because
9554 they have to deal with empty upper bounds location descriptions
9555 anyway in order to be able to deal with incomplete array types.
9556 Of course an intelligent debugger (GDB?) should be able to
9557 comprehend that a missing upper bound specification in an array
9558 type used for a storage class `auto' local array variable
9559 indicates that the upper bound is both unknown (at compile- time)
9560 and unknowable (at run-time) due to optimization.
9561
9562 We assume that a MEM rtx is safe because gcc wouldn't put the
9563 value there unless it was going to be used repeatedly in the
9564 function, i.e. for cleanups. */
9565 if (SAVE_EXPR_RTL (bound)
9566 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
9567 {
9568 dw_die_ref ctx = lookup_decl_die (current_function_decl);
9569 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
9570 rtx loc = SAVE_EXPR_RTL (bound);
9571
9572 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9573 it references an outer function's frame. */
9574 if (GET_CODE (loc) == MEM)
9575 {
9576 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9577
9578 if (XEXP (loc, 0) != new_addr)
9579 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
9580 }
9581
9582 add_AT_flag (decl_die, DW_AT_artificial, 1);
9583 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9584 add_AT_location_description (decl_die, DW_AT_location,
9585 loc_descriptor (loc));
9586 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9587 }
9588
9589 /* Else leave out the attribute. */
9590 break;
9591
9592 case VAR_DECL:
9593 case PARM_DECL:
9594 {
9595 dw_die_ref decl_die = lookup_decl_die (bound);
9596
9597 /* ??? Can this happen, or should the variable have been bound
9598 first? Probably it can, since I imagine that we try to create
9599 the types of parameters in the order in which they exist in
9600 the list, and won't have created a forward reference to a
9601 later parameter. */
9602 if (decl_die != NULL)
9603 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9604 break;
9605 }
9606
9607 default:
9608 {
9609 /* Otherwise try to create a stack operation procedure to
9610 evaluate the value of the array bound. */
9611
9612 dw_die_ref ctx, decl_die;
9613 dw_loc_descr_ref loc;
9614
9615 loc = loc_descriptor_from_tree (bound, 0);
9616 if (loc == NULL)
9617 break;
9618
9619 if (current_function_decl == 0)
9620 ctx = comp_unit_die;
9621 else
9622 ctx = lookup_decl_die (current_function_decl);
9623
9624 /* If we weren't able to find a context, it's most likely the case
9625 that we are processing the return type of the function. So
9626 make a SAVE_EXPR to point to it and have the limbo DIE code
9627 find the proper die. The save_expr function doesn't always
9628 make a SAVE_EXPR, so do it ourselves. */
9629 if (ctx == 0)
9630 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9631 current_function_decl, NULL_TREE);
9632
9633 decl_die = new_die (DW_TAG_variable, ctx, bound);
9634 add_AT_flag (decl_die, DW_AT_artificial, 1);
9635 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9636 add_AT_loc (decl_die, DW_AT_location, loc);
9637
9638 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9639 break;
9640 }
9641 }
9642 }
9643
9644 /* Note that the block of subscript information for an array type also
9645 includes information about the element type of type given array type. */
9646
9647 static void
9648 add_subscript_info (dw_die_ref type_die, tree type)
9649 {
9650 #ifndef MIPS_DEBUGGING_INFO
9651 unsigned dimension_number;
9652 #endif
9653 tree lower, upper;
9654 dw_die_ref subrange_die;
9655
9656 /* The GNU compilers represent multidimensional array types as sequences of
9657 one dimensional array types whose element types are themselves array
9658 types. Here we squish that down, so that each multidimensional array
9659 type gets only one array_type DIE in the Dwarf debugging info. The draft
9660 Dwarf specification say that we are allowed to do this kind of
9661 compression in C (because there is no difference between an array or
9662 arrays and a multidimensional array in C) but for other source languages
9663 (e.g. Ada) we probably shouldn't do this. */
9664
9665 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9666 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9667 We work around this by disabling this feature. See also
9668 gen_array_type_die. */
9669 #ifndef MIPS_DEBUGGING_INFO
9670 for (dimension_number = 0;
9671 TREE_CODE (type) == ARRAY_TYPE;
9672 type = TREE_TYPE (type), dimension_number++)
9673 #endif
9674 {
9675 tree domain = TYPE_DOMAIN (type);
9676
9677 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
9678 and (in GNU C only) variable bounds. Handle all three forms
9679 here. */
9680 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
9681 if (domain)
9682 {
9683 /* We have an array type with specified bounds. */
9684 lower = TYPE_MIN_VALUE (domain);
9685 upper = TYPE_MAX_VALUE (domain);
9686
9687 /* define the index type. */
9688 if (TREE_TYPE (domain))
9689 {
9690 /* ??? This is probably an Ada unnamed subrange type. Ignore the
9691 TREE_TYPE field. We can't emit debug info for this
9692 because it is an unnamed integral type. */
9693 if (TREE_CODE (domain) == INTEGER_TYPE
9694 && TYPE_NAME (domain) == NULL_TREE
9695 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
9696 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
9697 ;
9698 else
9699 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
9700 type_die);
9701 }
9702
9703 /* ??? If upper is NULL, the array has unspecified length,
9704 but it does have a lower bound. This happens with Fortran
9705 dimension arr(N:*)
9706 Since the debugger is definitely going to need to know N
9707 to produce useful results, go ahead and output the lower
9708 bound solo, and hope the debugger can cope. */
9709
9710 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
9711 if (upper)
9712 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
9713 }
9714
9715 /* Otherwise we have an array type with an unspecified length. The
9716 DWARF-2 spec does not say how to handle this; let's just leave out the
9717 bounds. */
9718 }
9719 }
9720
9721 static void
9722 add_byte_size_attribute (dw_die_ref die, tree tree_node)
9723 {
9724 unsigned size;
9725
9726 switch (TREE_CODE (tree_node))
9727 {
9728 case ERROR_MARK:
9729 size = 0;
9730 break;
9731 case ENUMERAL_TYPE:
9732 case RECORD_TYPE:
9733 case UNION_TYPE:
9734 case QUAL_UNION_TYPE:
9735 size = int_size_in_bytes (tree_node);
9736 break;
9737 case FIELD_DECL:
9738 /* For a data member of a struct or union, the DW_AT_byte_size is
9739 generally given as the number of bytes normally allocated for an
9740 object of the *declared* type of the member itself. This is true
9741 even for bit-fields. */
9742 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
9743 break;
9744 default:
9745 abort ();
9746 }
9747
9748 /* Note that `size' might be -1 when we get to this point. If it is, that
9749 indicates that the byte size of the entity in question is variable. We
9750 have no good way of expressing this fact in Dwarf at the present time,
9751 so just let the -1 pass on through. */
9752 add_AT_unsigned (die, DW_AT_byte_size, size);
9753 }
9754
9755 /* For a FIELD_DECL node which represents a bit-field, output an attribute
9756 which specifies the distance in bits from the highest order bit of the
9757 "containing object" for the bit-field to the highest order bit of the
9758 bit-field itself.
9759
9760 For any given bit-field, the "containing object" is a hypothetical object
9761 (of some integral or enum type) within which the given bit-field lives. The
9762 type of this hypothetical "containing object" is always the same as the
9763 declared type of the individual bit-field itself. The determination of the
9764 exact location of the "containing object" for a bit-field is rather
9765 complicated. It's handled by the `field_byte_offset' function (above).
9766
9767 Note that it is the size (in bytes) of the hypothetical "containing object"
9768 which will be given in the DW_AT_byte_size attribute for this bit-field.
9769 (See `byte_size_attribute' above). */
9770
9771 static inline void
9772 add_bit_offset_attribute (dw_die_ref die, tree decl)
9773 {
9774 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
9775 tree type = DECL_BIT_FIELD_TYPE (decl);
9776 HOST_WIDE_INT bitpos_int;
9777 HOST_WIDE_INT highest_order_object_bit_offset;
9778 HOST_WIDE_INT highest_order_field_bit_offset;
9779 HOST_WIDE_INT unsigned bit_offset;
9780
9781 /* Must be a field and a bit field. */
9782 if (!type
9783 || TREE_CODE (decl) != FIELD_DECL)
9784 abort ();
9785
9786 /* We can't yet handle bit-fields whose offsets are variable, so if we
9787 encounter such things, just return without generating any attribute
9788 whatsoever. Likewise for variable or too large size. */
9789 if (! host_integerp (bit_position (decl), 0)
9790 || ! host_integerp (DECL_SIZE (decl), 1))
9791 return;
9792
9793 bitpos_int = int_bit_position (decl);
9794
9795 /* Note that the bit offset is always the distance (in bits) from the
9796 highest-order bit of the "containing object" to the highest-order bit of
9797 the bit-field itself. Since the "high-order end" of any object or field
9798 is different on big-endian and little-endian machines, the computation
9799 below must take account of these differences. */
9800 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
9801 highest_order_field_bit_offset = bitpos_int;
9802
9803 if (! BYTES_BIG_ENDIAN)
9804 {
9805 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
9806 highest_order_object_bit_offset += simple_type_size_in_bits (type);
9807 }
9808
9809 bit_offset
9810 = (! BYTES_BIG_ENDIAN
9811 ? highest_order_object_bit_offset - highest_order_field_bit_offset
9812 : highest_order_field_bit_offset - highest_order_object_bit_offset);
9813
9814 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
9815 }
9816
9817 /* For a FIELD_DECL node which represents a bit field, output an attribute
9818 which specifies the length in bits of the given field. */
9819
9820 static inline void
9821 add_bit_size_attribute (dw_die_ref die, tree decl)
9822 {
9823 /* Must be a field and a bit field. */
9824 if (TREE_CODE (decl) != FIELD_DECL
9825 || ! DECL_BIT_FIELD_TYPE (decl))
9826 abort ();
9827
9828 if (host_integerp (DECL_SIZE (decl), 1))
9829 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
9830 }
9831
9832 /* If the compiled language is ANSI C, then add a 'prototyped'
9833 attribute, if arg types are given for the parameters of a function. */
9834
9835 static inline void
9836 add_prototyped_attribute (dw_die_ref die, tree func_type)
9837 {
9838 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
9839 && TYPE_ARG_TYPES (func_type) != NULL)
9840 add_AT_flag (die, DW_AT_prototyped, 1);
9841 }
9842
9843 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
9844 by looking in either the type declaration or object declaration
9845 equate table. */
9846
9847 static inline void
9848 add_abstract_origin_attribute (dw_die_ref die, tree origin)
9849 {
9850 dw_die_ref origin_die = NULL;
9851
9852 if (TREE_CODE (origin) != FUNCTION_DECL)
9853 {
9854 /* We may have gotten separated from the block for the inlined
9855 function, if we're in an exception handler or some such; make
9856 sure that the abstract function has been written out.
9857
9858 Doing this for nested functions is wrong, however; functions are
9859 distinct units, and our context might not even be inline. */
9860 tree fn = origin;
9861
9862 if (TYPE_P (fn))
9863 fn = TYPE_STUB_DECL (fn);
9864
9865 fn = decl_function_context (fn);
9866 if (fn)
9867 dwarf2out_abstract_function (fn);
9868 }
9869
9870 if (DECL_P (origin))
9871 origin_die = lookup_decl_die (origin);
9872 else if (TYPE_P (origin))
9873 origin_die = lookup_type_die (origin);
9874
9875 if (origin_die == NULL)
9876 abort ();
9877
9878 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
9879 }
9880
9881 /* We do not currently support the pure_virtual attribute. */
9882
9883 static inline void
9884 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
9885 {
9886 if (DECL_VINDEX (func_decl))
9887 {
9888 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
9889
9890 if (host_integerp (DECL_VINDEX (func_decl), 0))
9891 add_AT_loc (die, DW_AT_vtable_elem_location,
9892 new_loc_descr (DW_OP_constu,
9893 tree_low_cst (DECL_VINDEX (func_decl), 0),
9894 0));
9895
9896 /* GNU extension: Record what type this method came from originally. */
9897 if (debug_info_level > DINFO_LEVEL_TERSE)
9898 add_AT_die_ref (die, DW_AT_containing_type,
9899 lookup_type_die (DECL_CONTEXT (func_decl)));
9900 }
9901 }
9902 \f
9903 /* Add source coordinate attributes for the given decl. */
9904
9905 static void
9906 add_src_coords_attributes (dw_die_ref die, tree decl)
9907 {
9908 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
9909
9910 add_AT_unsigned (die, DW_AT_decl_file, file_index);
9911 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
9912 }
9913
9914 /* Add a DW_AT_name attribute and source coordinate attribute for the
9915 given decl, but only if it actually has a name. */
9916
9917 static void
9918 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
9919 {
9920 tree decl_name;
9921
9922 decl_name = DECL_NAME (decl);
9923 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
9924 {
9925 add_name_attribute (die, dwarf2_name (decl, 0));
9926 if (! DECL_ARTIFICIAL (decl))
9927 add_src_coords_attributes (die, decl);
9928
9929 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
9930 && TREE_PUBLIC (decl)
9931 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
9932 && !DECL_ABSTRACT (decl))
9933 add_AT_string (die, DW_AT_MIPS_linkage_name,
9934 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
9935 }
9936
9937 #ifdef VMS_DEBUGGING_INFO
9938 /* Get the function's name, as described by its RTL. This may be different
9939 from the DECL_NAME name used in the source file. */
9940 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
9941 {
9942 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
9943 XEXP (DECL_RTL (decl), 0));
9944 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
9945 }
9946 #endif
9947 }
9948
9949 /* Push a new declaration scope. */
9950
9951 static void
9952 push_decl_scope (tree scope)
9953 {
9954 VARRAY_PUSH_TREE (decl_scope_table, scope);
9955 }
9956
9957 /* Pop a declaration scope. */
9958
9959 static inline void
9960 pop_decl_scope (void)
9961 {
9962 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
9963 abort ();
9964
9965 VARRAY_POP (decl_scope_table);
9966 }
9967
9968 /* Return the DIE for the scope that immediately contains this type.
9969 Non-named types get global scope. Named types nested in other
9970 types get their containing scope if it's open, or global scope
9971 otherwise. All other types (i.e. function-local named types) get
9972 the current active scope. */
9973
9974 static dw_die_ref
9975 scope_die_for (tree t, dw_die_ref context_die)
9976 {
9977 dw_die_ref scope_die = NULL;
9978 tree containing_scope;
9979 int i;
9980
9981 /* Non-types always go in the current scope. */
9982 if (! TYPE_P (t))
9983 abort ();
9984
9985 containing_scope = TYPE_CONTEXT (t);
9986
9987 /* Ignore namespaces for the moment. */
9988 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
9989 containing_scope = NULL_TREE;
9990
9991 /* Ignore function type "scopes" from the C frontend. They mean that
9992 a tagged type is local to a parmlist of a function declarator, but
9993 that isn't useful to DWARF. */
9994 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
9995 containing_scope = NULL_TREE;
9996
9997 if (containing_scope == NULL_TREE)
9998 scope_die = comp_unit_die;
9999 else if (TYPE_P (containing_scope))
10000 {
10001 /* For types, we can just look up the appropriate DIE. But
10002 first we check to see if we're in the middle of emitting it
10003 so we know where the new DIE should go. */
10004 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10005 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10006 break;
10007
10008 if (i < 0)
10009 {
10010 if (debug_info_level > DINFO_LEVEL_TERSE
10011 && !TREE_ASM_WRITTEN (containing_scope))
10012 abort ();
10013
10014 /* If none of the current dies are suitable, we get file scope. */
10015 scope_die = comp_unit_die;
10016 }
10017 else
10018 scope_die = lookup_type_die (containing_scope);
10019 }
10020 else
10021 scope_die = context_die;
10022
10023 return scope_die;
10024 }
10025
10026 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10027
10028 static inline int
10029 local_scope_p (dw_die_ref context_die)
10030 {
10031 for (; context_die; context_die = context_die->die_parent)
10032 if (context_die->die_tag == DW_TAG_inlined_subroutine
10033 || context_die->die_tag == DW_TAG_subprogram)
10034 return 1;
10035
10036 return 0;
10037 }
10038
10039 /* Returns nonzero if CONTEXT_DIE is a class. */
10040
10041 static inline int
10042 class_scope_p (dw_die_ref context_die)
10043 {
10044 return (context_die
10045 && (context_die->die_tag == DW_TAG_structure_type
10046 || context_die->die_tag == DW_TAG_union_type));
10047 }
10048
10049 /* Many forms of DIEs require a "type description" attribute. This
10050 routine locates the proper "type descriptor" die for the type given
10051 by 'type', and adds a DW_AT_type attribute below the given die. */
10052
10053 static void
10054 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10055 int decl_volatile, dw_die_ref context_die)
10056 {
10057 enum tree_code code = TREE_CODE (type);
10058 dw_die_ref type_die = NULL;
10059
10060 /* ??? If this type is an unnamed subrange type of an integral or
10061 floating-point type, use the inner type. This is because we have no
10062 support for unnamed types in base_type_die. This can happen if this is
10063 an Ada subrange type. Correct solution is emit a subrange type die. */
10064 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10065 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10066 type = TREE_TYPE (type), code = TREE_CODE (type);
10067
10068 if (code == ERROR_MARK
10069 /* Handle a special case. For functions whose return type is void, we
10070 generate *no* type attribute. (Note that no object may have type
10071 `void', so this only applies to function return types). */
10072 || code == VOID_TYPE)
10073 return;
10074
10075 type_die = modified_type_die (type,
10076 decl_const || TYPE_READONLY (type),
10077 decl_volatile || TYPE_VOLATILE (type),
10078 context_die);
10079
10080 if (type_die != NULL)
10081 add_AT_die_ref (object_die, DW_AT_type, type_die);
10082 }
10083
10084 /* Given a tree pointer to a struct, class, union, or enum type node, return
10085 a pointer to the (string) tag name for the given type, or zero if the type
10086 was declared without a tag. */
10087
10088 static const char *
10089 type_tag (tree type)
10090 {
10091 const char *name = 0;
10092
10093 if (TYPE_NAME (type) != 0)
10094 {
10095 tree t = 0;
10096
10097 /* Find the IDENTIFIER_NODE for the type name. */
10098 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10099 t = TYPE_NAME (type);
10100
10101 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10102 a TYPE_DECL node, regardless of whether or not a `typedef' was
10103 involved. */
10104 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10105 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10106 t = DECL_NAME (TYPE_NAME (type));
10107
10108 /* Now get the name as a string, or invent one. */
10109 if (t != 0)
10110 name = IDENTIFIER_POINTER (t);
10111 }
10112
10113 return (name == 0 || *name == '\0') ? 0 : name;
10114 }
10115
10116 /* Return the type associated with a data member, make a special check
10117 for bit field types. */
10118
10119 static inline tree
10120 member_declared_type (tree member)
10121 {
10122 return (DECL_BIT_FIELD_TYPE (member)
10123 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10124 }
10125
10126 /* Get the decl's label, as described by its RTL. This may be different
10127 from the DECL_NAME name used in the source file. */
10128
10129 #if 0
10130 static const char *
10131 decl_start_label (tree decl)
10132 {
10133 rtx x;
10134 const char *fnname;
10135
10136 x = DECL_RTL (decl);
10137 if (GET_CODE (x) != MEM)
10138 abort ();
10139
10140 x = XEXP (x, 0);
10141 if (GET_CODE (x) != SYMBOL_REF)
10142 abort ();
10143
10144 fnname = XSTR (x, 0);
10145 return fnname;
10146 }
10147 #endif
10148 \f
10149 /* These routines generate the internal representation of the DIE's for
10150 the compilation unit. Debugging information is collected by walking
10151 the declaration trees passed in from dwarf2out_decl(). */
10152
10153 static void
10154 gen_array_type_die (tree type, dw_die_ref context_die)
10155 {
10156 dw_die_ref scope_die = scope_die_for (type, context_die);
10157 dw_die_ref array_die;
10158 tree element_type;
10159
10160 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10161 the inner array type comes before the outer array type. Thus we must
10162 call gen_type_die before we call new_die. See below also. */
10163 #ifdef MIPS_DEBUGGING_INFO
10164 gen_type_die (TREE_TYPE (type), context_die);
10165 #endif
10166
10167 array_die = new_die (DW_TAG_array_type, scope_die, type);
10168 add_name_attribute (array_die, type_tag (type));
10169 equate_type_number_to_die (type, array_die);
10170
10171 if (TREE_CODE (type) == VECTOR_TYPE)
10172 {
10173 /* The frontend feeds us a representation for the vector as a struct
10174 containing an array. Pull out the array type. */
10175 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10176 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10177 }
10178
10179 #if 0
10180 /* We default the array ordering. SDB will probably do
10181 the right things even if DW_AT_ordering is not present. It's not even
10182 an issue until we start to get into multidimensional arrays anyway. If
10183 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10184 then we'll have to put the DW_AT_ordering attribute back in. (But if
10185 and when we find out that we need to put these in, we will only do so
10186 for multidimensional arrays. */
10187 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10188 #endif
10189
10190 #ifdef MIPS_DEBUGGING_INFO
10191 /* The SGI compilers handle arrays of unknown bound by setting
10192 AT_declaration and not emitting any subrange DIEs. */
10193 if (! TYPE_DOMAIN (type))
10194 add_AT_unsigned (array_die, DW_AT_declaration, 1);
10195 else
10196 #endif
10197 add_subscript_info (array_die, type);
10198
10199 /* Add representation of the type of the elements of this array type. */
10200 element_type = TREE_TYPE (type);
10201
10202 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10203 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10204 We work around this by disabling this feature. See also
10205 add_subscript_info. */
10206 #ifndef MIPS_DEBUGGING_INFO
10207 while (TREE_CODE (element_type) == ARRAY_TYPE)
10208 element_type = TREE_TYPE (element_type);
10209
10210 gen_type_die (element_type, context_die);
10211 #endif
10212
10213 add_type_attribute (array_die, element_type, 0, 0, context_die);
10214 }
10215
10216 static void
10217 gen_set_type_die (tree type, dw_die_ref context_die)
10218 {
10219 dw_die_ref type_die
10220 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10221
10222 equate_type_number_to_die (type, type_die);
10223 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10224 }
10225
10226 #if 0
10227 static void
10228 gen_entry_point_die (tree decl, dw_die_ref context_die)
10229 {
10230 tree origin = decl_ultimate_origin (decl);
10231 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10232
10233 if (origin != NULL)
10234 add_abstract_origin_attribute (decl_die, origin);
10235 else
10236 {
10237 add_name_and_src_coords_attributes (decl_die, decl);
10238 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10239 0, 0, context_die);
10240 }
10241
10242 if (DECL_ABSTRACT (decl))
10243 equate_decl_number_to_die (decl, decl_die);
10244 else
10245 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10246 }
10247 #endif
10248
10249 /* Walk through the list of incomplete types again, trying once more to
10250 emit full debugging info for them. */
10251
10252 static void
10253 retry_incomplete_types (void)
10254 {
10255 int i;
10256
10257 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10258 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10259 }
10260
10261 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10262
10263 static void
10264 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
10265 {
10266 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10267
10268 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10269 be incomplete and such types are not marked. */
10270 add_abstract_origin_attribute (type_die, type);
10271 }
10272
10273 /* Generate a DIE to represent an inlined instance of a structure type. */
10274
10275 static void
10276 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
10277 {
10278 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10279
10280 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10281 be incomplete and such types are not marked. */
10282 add_abstract_origin_attribute (type_die, type);
10283 }
10284
10285 /* Generate a DIE to represent an inlined instance of a union type. */
10286
10287 static void
10288 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
10289 {
10290 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10291
10292 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10293 be incomplete and such types are not marked. */
10294 add_abstract_origin_attribute (type_die, type);
10295 }
10296
10297 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10298 include all of the information about the enumeration values also. Each
10299 enumerated type name/value is listed as a child of the enumerated type
10300 DIE. */
10301
10302 static void
10303 gen_enumeration_type_die (tree type, dw_die_ref context_die)
10304 {
10305 dw_die_ref type_die = lookup_type_die (type);
10306
10307 if (type_die == NULL)
10308 {
10309 type_die = new_die (DW_TAG_enumeration_type,
10310 scope_die_for (type, context_die), type);
10311 equate_type_number_to_die (type, type_die);
10312 add_name_attribute (type_die, type_tag (type));
10313 }
10314 else if (! TYPE_SIZE (type))
10315 return;
10316 else
10317 remove_AT (type_die, DW_AT_declaration);
10318
10319 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10320 given enum type is incomplete, do not generate the DW_AT_byte_size
10321 attribute or the DW_AT_element_list attribute. */
10322 if (TYPE_SIZE (type))
10323 {
10324 tree link;
10325
10326 TREE_ASM_WRITTEN (type) = 1;
10327 add_byte_size_attribute (type_die, type);
10328 if (TYPE_STUB_DECL (type) != NULL_TREE)
10329 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10330
10331 /* If the first reference to this type was as the return type of an
10332 inline function, then it may not have a parent. Fix this now. */
10333 if (type_die->die_parent == NULL)
10334 add_child_die (scope_die_for (type, context_die), type_die);
10335
10336 for (link = TYPE_FIELDS (type);
10337 link != NULL; link = TREE_CHAIN (link))
10338 {
10339 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10340
10341 add_name_attribute (enum_die,
10342 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10343
10344 if (host_integerp (TREE_VALUE (link),
10345 TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (link)))))
10346 {
10347 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
10348 add_AT_int (enum_die, DW_AT_const_value,
10349 tree_low_cst (TREE_VALUE (link), 0));
10350 else
10351 add_AT_unsigned (enum_die, DW_AT_const_value,
10352 tree_low_cst (TREE_VALUE (link), 1));
10353 }
10354 }
10355 }
10356 else
10357 add_AT_flag (type_die, DW_AT_declaration, 1);
10358 }
10359
10360 /* Generate a DIE to represent either a real live formal parameter decl or to
10361 represent just the type of some formal parameter position in some function
10362 type.
10363
10364 Note that this routine is a bit unusual because its argument may be a
10365 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10366 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10367 node. If it's the former then this function is being called to output a
10368 DIE to represent a formal parameter object (or some inlining thereof). If
10369 it's the latter, then this function is only being called to output a
10370 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10371 argument type of some subprogram type. */
10372
10373 static dw_die_ref
10374 gen_formal_parameter_die (tree node, dw_die_ref context_die)
10375 {
10376 dw_die_ref parm_die
10377 = new_die (DW_TAG_formal_parameter, context_die, node);
10378 tree origin;
10379
10380 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10381 {
10382 case 'd':
10383 origin = decl_ultimate_origin (node);
10384 if (origin != NULL)
10385 add_abstract_origin_attribute (parm_die, origin);
10386 else
10387 {
10388 add_name_and_src_coords_attributes (parm_die, node);
10389 add_type_attribute (parm_die, TREE_TYPE (node),
10390 TREE_READONLY (node),
10391 TREE_THIS_VOLATILE (node),
10392 context_die);
10393 if (DECL_ARTIFICIAL (node))
10394 add_AT_flag (parm_die, DW_AT_artificial, 1);
10395 }
10396
10397 equate_decl_number_to_die (node, parm_die);
10398 if (! DECL_ABSTRACT (node))
10399 add_location_or_const_value_attribute (parm_die, node);
10400
10401 break;
10402
10403 case 't':
10404 /* We were called with some kind of a ..._TYPE node. */
10405 add_type_attribute (parm_die, node, 0, 0, context_die);
10406 break;
10407
10408 default:
10409 abort ();
10410 }
10411
10412 return parm_die;
10413 }
10414
10415 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10416 at the end of an (ANSI prototyped) formal parameters list. */
10417
10418 static void
10419 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
10420 {
10421 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10422 }
10423
10424 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10425 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10426 parameters as specified in some function type specification (except for
10427 those which appear as part of a function *definition*). */
10428
10429 static void
10430 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
10431 {
10432 tree link;
10433 tree formal_type = NULL;
10434 tree first_parm_type;
10435 tree arg;
10436
10437 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10438 {
10439 arg = DECL_ARGUMENTS (function_or_method_type);
10440 function_or_method_type = TREE_TYPE (function_or_method_type);
10441 }
10442 else
10443 arg = NULL_TREE;
10444
10445 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10446
10447 /* Make our first pass over the list of formal parameter types and output a
10448 DW_TAG_formal_parameter DIE for each one. */
10449 for (link = first_parm_type; link; )
10450 {
10451 dw_die_ref parm_die;
10452
10453 formal_type = TREE_VALUE (link);
10454 if (formal_type == void_type_node)
10455 break;
10456
10457 /* Output a (nameless) DIE to represent the formal parameter itself. */
10458 parm_die = gen_formal_parameter_die (formal_type, context_die);
10459 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10460 && link == first_parm_type)
10461 || (arg && DECL_ARTIFICIAL (arg)))
10462 add_AT_flag (parm_die, DW_AT_artificial, 1);
10463
10464 link = TREE_CHAIN (link);
10465 if (arg)
10466 arg = TREE_CHAIN (arg);
10467 }
10468
10469 /* If this function type has an ellipsis, add a
10470 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10471 if (formal_type != void_type_node)
10472 gen_unspecified_parameters_die (function_or_method_type, context_die);
10473
10474 /* Make our second (and final) pass over the list of formal parameter types
10475 and output DIEs to represent those types (as necessary). */
10476 for (link = TYPE_ARG_TYPES (function_or_method_type);
10477 link && TREE_VALUE (link);
10478 link = TREE_CHAIN (link))
10479 gen_type_die (TREE_VALUE (link), context_die);
10480 }
10481
10482 /* We want to generate the DIE for TYPE so that we can generate the
10483 die for MEMBER, which has been defined; we will need to refer back
10484 to the member declaration nested within TYPE. If we're trying to
10485 generate minimal debug info for TYPE, processing TYPE won't do the
10486 trick; we need to attach the member declaration by hand. */
10487
10488 static void
10489 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
10490 {
10491 gen_type_die (type, context_die);
10492
10493 /* If we're trying to avoid duplicate debug info, we may not have
10494 emitted the member decl for this function. Emit it now. */
10495 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10496 && ! lookup_decl_die (member))
10497 {
10498 if (decl_ultimate_origin (member))
10499 abort ();
10500
10501 push_decl_scope (type);
10502 if (TREE_CODE (member) == FUNCTION_DECL)
10503 gen_subprogram_die (member, lookup_type_die (type));
10504 else
10505 gen_variable_die (member, lookup_type_die (type));
10506
10507 pop_decl_scope ();
10508 }
10509 }
10510
10511 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10512 may later generate inlined and/or out-of-line instances of. */
10513
10514 static void
10515 dwarf2out_abstract_function (tree decl)
10516 {
10517 dw_die_ref old_die;
10518 tree save_fn;
10519 tree context;
10520 int was_abstract = DECL_ABSTRACT (decl);
10521
10522 /* Make sure we have the actual abstract inline, not a clone. */
10523 decl = DECL_ORIGIN (decl);
10524
10525 old_die = lookup_decl_die (decl);
10526 if (old_die && get_AT_unsigned (old_die, DW_AT_inline))
10527 /* We've already generated the abstract instance. */
10528 return;
10529
10530 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10531 we don't get confused by DECL_ABSTRACT. */
10532 if (debug_info_level > DINFO_LEVEL_TERSE)
10533 {
10534 context = decl_class_context (decl);
10535 if (context)
10536 gen_type_die_for_member
10537 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10538 }
10539
10540 /* Pretend we've just finished compiling this function. */
10541 save_fn = current_function_decl;
10542 current_function_decl = decl;
10543
10544 set_decl_abstract_flags (decl, 1);
10545 dwarf2out_decl (decl);
10546 if (! was_abstract)
10547 set_decl_abstract_flags (decl, 0);
10548
10549 current_function_decl = save_fn;
10550 }
10551
10552 /* Generate a DIE to represent a declared function (either file-scope or
10553 block-local). */
10554
10555 static void
10556 gen_subprogram_die (tree decl, dw_die_ref context_die)
10557 {
10558 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10559 tree origin = decl_ultimate_origin (decl);
10560 dw_die_ref subr_die;
10561 rtx fp_reg;
10562 tree fn_arg_types;
10563 tree outer_scope;
10564 dw_die_ref old_die = lookup_decl_die (decl);
10565 int declaration = (current_function_decl != decl
10566 || class_scope_p (context_die));
10567
10568 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10569 started to generate the abstract instance of an inline, decided to output
10570 its containing class, and proceeded to emit the declaration of the inline
10571 from the member list for the class. If so, DECLARATION takes priority;
10572 we'll get back to the abstract instance when done with the class. */
10573
10574 /* The class-scope declaration DIE must be the primary DIE. */
10575 if (origin && declaration && class_scope_p (context_die))
10576 {
10577 origin = NULL;
10578 if (old_die)
10579 abort ();
10580 }
10581
10582 if (origin != NULL)
10583 {
10584 if (declaration && ! local_scope_p (context_die))
10585 abort ();
10586
10587 /* Fixup die_parent for the abstract instance of a nested
10588 inline function. */
10589 if (old_die && old_die->die_parent == NULL)
10590 add_child_die (context_die, old_die);
10591
10592 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10593 add_abstract_origin_attribute (subr_die, origin);
10594 }
10595 else if (old_die)
10596 {
10597 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10598
10599 if (!get_AT_flag (old_die, DW_AT_declaration)
10600 /* We can have a normal definition following an inline one in the
10601 case of redefinition of GNU C extern inlines.
10602 It seems reasonable to use AT_specification in this case. */
10603 && !get_AT_unsigned (old_die, DW_AT_inline))
10604 {
10605 /* ??? This can happen if there is a bug in the program, for
10606 instance, if it has duplicate function definitions. Ideally,
10607 we should detect this case and ignore it. For now, if we have
10608 already reported an error, any error at all, then assume that
10609 we got here because of an input error, not a dwarf2 bug. */
10610 if (errorcount)
10611 return;
10612 abort ();
10613 }
10614
10615 /* If the definition comes from the same place as the declaration,
10616 maybe use the old DIE. We always want the DIE for this function
10617 that has the *_pc attributes to be under comp_unit_die so the
10618 debugger can find it. We also need to do this for abstract
10619 instances of inlines, since the spec requires the out-of-line copy
10620 to have the same parent. For local class methods, this doesn't
10621 apply; we just use the old DIE. */
10622 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
10623 && (DECL_ARTIFICIAL (decl)
10624 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10625 && (get_AT_unsigned (old_die, DW_AT_decl_line)
10626 == (unsigned) DECL_SOURCE_LINE (decl)))))
10627 {
10628 subr_die = old_die;
10629
10630 /* Clear out the declaration attribute and the parm types. */
10631 remove_AT (subr_die, DW_AT_declaration);
10632 remove_children (subr_die);
10633 }
10634 else
10635 {
10636 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10637 add_AT_die_ref (subr_die, DW_AT_specification, old_die);
10638 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10639 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
10640 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10641 != (unsigned) DECL_SOURCE_LINE (decl))
10642 add_AT_unsigned
10643 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10644 }
10645 }
10646 else
10647 {
10648 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10649
10650 if (TREE_PUBLIC (decl))
10651 add_AT_flag (subr_die, DW_AT_external, 1);
10652
10653 add_name_and_src_coords_attributes (subr_die, decl);
10654 if (debug_info_level > DINFO_LEVEL_TERSE)
10655 {
10656 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
10657 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
10658 0, 0, context_die);
10659 }
10660
10661 add_pure_or_virtual_attribute (subr_die, decl);
10662 if (DECL_ARTIFICIAL (decl))
10663 add_AT_flag (subr_die, DW_AT_artificial, 1);
10664
10665 if (TREE_PROTECTED (decl))
10666 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
10667 else if (TREE_PRIVATE (decl))
10668 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
10669 }
10670
10671 if (declaration)
10672 {
10673 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
10674 {
10675 add_AT_flag (subr_die, DW_AT_declaration, 1);
10676
10677 /* The first time we see a member function, it is in the context of
10678 the class to which it belongs. We make sure of this by emitting
10679 the class first. The next time is the definition, which is
10680 handled above. The two may come from the same source text. */
10681 if (DECL_CONTEXT (decl) || DECL_ABSTRACT (decl))
10682 equate_decl_number_to_die (decl, subr_die);
10683 }
10684 }
10685 else if (DECL_ABSTRACT (decl))
10686 {
10687 if (DECL_INLINE (decl) && !flag_no_inline)
10688 {
10689 /* ??? Checking DECL_DEFER_OUTPUT is correct for static
10690 inline functions, but not for extern inline functions.
10691 We can't get this completely correct because information
10692 about whether the function was declared inline is not
10693 saved anywhere. */
10694 if (DECL_DEFER_OUTPUT (decl))
10695 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
10696 else
10697 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
10698 }
10699 else
10700 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
10701
10702 equate_decl_number_to_die (decl, subr_die);
10703 }
10704 else if (!DECL_EXTERNAL (decl))
10705 {
10706 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
10707 equate_decl_number_to_die (decl, subr_die);
10708
10709 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
10710 current_function_funcdef_no);
10711 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
10712 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10713 current_function_funcdef_no);
10714 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
10715
10716 add_pubname (decl, subr_die);
10717 add_arange (decl, subr_die);
10718
10719 #ifdef MIPS_DEBUGGING_INFO
10720 /* Add a reference to the FDE for this routine. */
10721 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
10722 #endif
10723
10724 /* Define the "frame base" location for this routine. We use the
10725 frame pointer or stack pointer registers, since the RTL for local
10726 variables is relative to one of them. */
10727 fp_reg
10728 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
10729 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
10730
10731 #if 0
10732 /* ??? This fails for nested inline functions, because context_display
10733 is not part of the state saved/restored for inline functions. */
10734 if (current_function_needs_context)
10735 add_AT_location_description (subr_die, DW_AT_static_link,
10736 loc_descriptor (lookup_static_chain (decl)));
10737 #endif
10738 }
10739
10740 /* Now output descriptions of the arguments for this function. This gets
10741 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
10742 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
10743 `...' at the end of the formal parameter list. In order to find out if
10744 there was a trailing ellipsis or not, we must instead look at the type
10745 associated with the FUNCTION_DECL. This will be a node of type
10746 FUNCTION_TYPE. If the chain of type nodes hanging off of this
10747 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
10748 an ellipsis at the end. */
10749
10750 /* In the case where we are describing a mere function declaration, all we
10751 need to do here (and all we *can* do here) is to describe the *types* of
10752 its formal parameters. */
10753 if (debug_info_level <= DINFO_LEVEL_TERSE)
10754 ;
10755 else if (declaration)
10756 gen_formal_types_die (decl, subr_die);
10757 else
10758 {
10759 /* Generate DIEs to represent all known formal parameters. */
10760 tree arg_decls = DECL_ARGUMENTS (decl);
10761 tree parm;
10762
10763 /* When generating DIEs, generate the unspecified_parameters DIE
10764 instead if we come across the arg "__builtin_va_alist" */
10765 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
10766 if (TREE_CODE (parm) == PARM_DECL)
10767 {
10768 if (DECL_NAME (parm)
10769 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
10770 "__builtin_va_alist"))
10771 gen_unspecified_parameters_die (parm, subr_die);
10772 else
10773 gen_decl_die (parm, subr_die);
10774 }
10775
10776 /* Decide whether we need an unspecified_parameters DIE at the end.
10777 There are 2 more cases to do this for: 1) the ansi ... declaration -
10778 this is detectable when the end of the arg list is not a
10779 void_type_node 2) an unprototyped function declaration (not a
10780 definition). This just means that we have no info about the
10781 parameters at all. */
10782 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
10783 if (fn_arg_types != NULL)
10784 {
10785 /* this is the prototyped case, check for ... */
10786 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
10787 gen_unspecified_parameters_die (decl, subr_die);
10788 }
10789 else if (DECL_INITIAL (decl) == NULL_TREE)
10790 gen_unspecified_parameters_die (decl, subr_die);
10791 }
10792
10793 /* Output Dwarf info for all of the stuff within the body of the function
10794 (if it has one - it may be just a declaration). */
10795 outer_scope = DECL_INITIAL (decl);
10796
10797 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
10798 a function. This BLOCK actually represents the outermost binding contour
10799 for the function, i.e. the contour in which the function's formal
10800 parameters and labels get declared. Curiously, it appears that the front
10801 end doesn't actually put the PARM_DECL nodes for the current function onto
10802 the BLOCK_VARS list for this outer scope, but are strung off of the
10803 DECL_ARGUMENTS list for the function instead.
10804
10805 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
10806 the LABEL_DECL nodes for the function however, and we output DWARF info
10807 for those in decls_for_scope. Just within the `outer_scope' there will be
10808 a BLOCK node representing the function's outermost pair of curly braces,
10809 and any blocks used for the base and member initializers of a C++
10810 constructor function. */
10811 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
10812 {
10813 current_function_has_inlines = 0;
10814 decls_for_scope (outer_scope, subr_die, 0);
10815
10816 #if 0 && defined (MIPS_DEBUGGING_INFO)
10817 if (current_function_has_inlines)
10818 {
10819 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
10820 if (! comp_unit_has_inlines)
10821 {
10822 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
10823 comp_unit_has_inlines = 1;
10824 }
10825 }
10826 #endif
10827 }
10828 }
10829
10830 /* Generate a DIE to represent a declared data object. */
10831
10832 static void
10833 gen_variable_die (tree decl, dw_die_ref context_die)
10834 {
10835 tree origin = decl_ultimate_origin (decl);
10836 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
10837
10838 dw_die_ref old_die = lookup_decl_die (decl);
10839 int declaration = (DECL_EXTERNAL (decl)
10840 || class_scope_p (context_die));
10841
10842 if (origin != NULL)
10843 add_abstract_origin_attribute (var_die, origin);
10844
10845 /* Loop unrolling can create multiple blocks that refer to the same
10846 static variable, so we must test for the DW_AT_declaration flag.
10847
10848 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
10849 copy decls and set the DECL_ABSTRACT flag on them instead of
10850 sharing them.
10851
10852 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
10853 else if (old_die && TREE_STATIC (decl)
10854 && get_AT_flag (old_die, DW_AT_declaration) == 1)
10855 {
10856 /* This is a definition of a C++ class level static. */
10857 add_AT_die_ref (var_die, DW_AT_specification, old_die);
10858 if (DECL_NAME (decl))
10859 {
10860 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10861
10862 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10863 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
10864
10865 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10866 != (unsigned) DECL_SOURCE_LINE (decl))
10867
10868 add_AT_unsigned (var_die, DW_AT_decl_line,
10869 DECL_SOURCE_LINE (decl));
10870 }
10871 }
10872 else
10873 {
10874 add_name_and_src_coords_attributes (var_die, decl);
10875 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
10876 TREE_THIS_VOLATILE (decl), context_die);
10877
10878 if (TREE_PUBLIC (decl))
10879 add_AT_flag (var_die, DW_AT_external, 1);
10880
10881 if (DECL_ARTIFICIAL (decl))
10882 add_AT_flag (var_die, DW_AT_artificial, 1);
10883
10884 if (TREE_PROTECTED (decl))
10885 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
10886 else if (TREE_PRIVATE (decl))
10887 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
10888 }
10889
10890 if (declaration)
10891 add_AT_flag (var_die, DW_AT_declaration, 1);
10892
10893 if (class_scope_p (context_die) || DECL_ABSTRACT (decl))
10894 equate_decl_number_to_die (decl, var_die);
10895
10896 if (! declaration && ! DECL_ABSTRACT (decl))
10897 {
10898 add_location_or_const_value_attribute (var_die, decl);
10899 add_pubname (decl, var_die);
10900 }
10901 else
10902 tree_add_const_value_attribute (var_die, decl);
10903 }
10904
10905 /* Generate a DIE to represent a label identifier. */
10906
10907 static void
10908 gen_label_die (tree decl, dw_die_ref context_die)
10909 {
10910 tree origin = decl_ultimate_origin (decl);
10911 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
10912 rtx insn;
10913 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10914
10915 if (origin != NULL)
10916 add_abstract_origin_attribute (lbl_die, origin);
10917 else
10918 add_name_and_src_coords_attributes (lbl_die, decl);
10919
10920 if (DECL_ABSTRACT (decl))
10921 equate_decl_number_to_die (decl, lbl_die);
10922 else
10923 {
10924 insn = DECL_RTL (decl);
10925
10926 /* Deleted labels are programmer specified labels which have been
10927 eliminated because of various optimizations. We still emit them
10928 here so that it is possible to put breakpoints on them. */
10929 if (GET_CODE (insn) == CODE_LABEL
10930 || ((GET_CODE (insn) == NOTE
10931 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
10932 {
10933 /* When optimization is enabled (via -O) some parts of the compiler
10934 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
10935 represent source-level labels which were explicitly declared by
10936 the user. This really shouldn't be happening though, so catch
10937 it if it ever does happen. */
10938 if (INSN_DELETED_P (insn))
10939 abort ();
10940
10941 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
10942 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
10943 }
10944 }
10945 }
10946
10947 /* Generate a DIE for a lexical block. */
10948
10949 static void
10950 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
10951 {
10952 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
10953 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10954
10955 if (! BLOCK_ABSTRACT (stmt))
10956 {
10957 if (BLOCK_FRAGMENT_CHAIN (stmt))
10958 {
10959 tree chain;
10960
10961 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
10962
10963 chain = BLOCK_FRAGMENT_CHAIN (stmt);
10964 do
10965 {
10966 add_ranges (chain);
10967 chain = BLOCK_FRAGMENT_CHAIN (chain);
10968 }
10969 while (chain);
10970 add_ranges (NULL);
10971 }
10972 else
10973 {
10974 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
10975 BLOCK_NUMBER (stmt));
10976 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
10977 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
10978 BLOCK_NUMBER (stmt));
10979 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
10980 }
10981 }
10982
10983 decls_for_scope (stmt, stmt_die, depth);
10984 }
10985
10986 /* Generate a DIE for an inlined subprogram. */
10987
10988 static void
10989 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
10990 {
10991 if (! BLOCK_ABSTRACT (stmt))
10992 {
10993 dw_die_ref subr_die
10994 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
10995 tree decl = block_ultimate_origin (stmt);
10996 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10997
10998 /* Emit info for the abstract instance first, if we haven't yet. */
10999 dwarf2out_abstract_function (decl);
11000
11001 add_abstract_origin_attribute (subr_die, decl);
11002 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11003 BLOCK_NUMBER (stmt));
11004 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11005 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11006 BLOCK_NUMBER (stmt));
11007 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11008 decls_for_scope (stmt, subr_die, depth);
11009 current_function_has_inlines = 1;
11010 }
11011 else
11012 /* We may get here if we're the outer block of function A that was
11013 inlined into function B that was inlined into function C. When
11014 generating debugging info for C, dwarf2out_abstract_function(B)
11015 would mark all inlined blocks as abstract, including this one.
11016 So, we wouldn't (and shouldn't) expect labels to be generated
11017 for this one. Instead, just emit debugging info for
11018 declarations within the block. This is particularly important
11019 in the case of initializers of arguments passed from B to us:
11020 if they're statement expressions containing declarations, we
11021 wouldn't generate dies for their abstract variables, and then,
11022 when generating dies for the real variables, we'd die (pun
11023 intended :-) */
11024 gen_lexical_block_die (stmt, context_die, depth);
11025 }
11026
11027 /* Generate a DIE for a field in a record, or structure. */
11028
11029 static void
11030 gen_field_die (tree decl, dw_die_ref context_die)
11031 {
11032 dw_die_ref decl_die;
11033
11034 if (TREE_TYPE (decl) == error_mark_node)
11035 return;
11036
11037 decl_die = new_die (DW_TAG_member, context_die, decl);
11038 add_name_and_src_coords_attributes (decl_die, decl);
11039 add_type_attribute (decl_die, member_declared_type (decl),
11040 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11041 context_die);
11042
11043 if (DECL_BIT_FIELD_TYPE (decl))
11044 {
11045 add_byte_size_attribute (decl_die, decl);
11046 add_bit_size_attribute (decl_die, decl);
11047 add_bit_offset_attribute (decl_die, decl);
11048 }
11049
11050 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11051 add_data_member_location_attribute (decl_die, decl);
11052
11053 if (DECL_ARTIFICIAL (decl))
11054 add_AT_flag (decl_die, DW_AT_artificial, 1);
11055
11056 if (TREE_PROTECTED (decl))
11057 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11058 else if (TREE_PRIVATE (decl))
11059 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11060 }
11061
11062 #if 0
11063 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11064 Use modified_type_die instead.
11065 We keep this code here just in case these types of DIEs may be needed to
11066 represent certain things in other languages (e.g. Pascal) someday. */
11067
11068 static void
11069 gen_pointer_type_die (tree type, dw_die_ref context_die)
11070 {
11071 dw_die_ref ptr_die
11072 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11073
11074 equate_type_number_to_die (type, ptr_die);
11075 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11076 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11077 }
11078
11079 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11080 Use modified_type_die instead.
11081 We keep this code here just in case these types of DIEs may be needed to
11082 represent certain things in other languages (e.g. Pascal) someday. */
11083
11084 static void
11085 gen_reference_type_die (tree type, dw_die_ref context_die)
11086 {
11087 dw_die_ref ref_die
11088 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11089
11090 equate_type_number_to_die (type, ref_die);
11091 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11092 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11093 }
11094 #endif
11095
11096 /* Generate a DIE for a pointer to a member type. */
11097
11098 static void
11099 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11100 {
11101 dw_die_ref ptr_die
11102 = new_die (DW_TAG_ptr_to_member_type,
11103 scope_die_for (type, context_die), type);
11104
11105 equate_type_number_to_die (type, ptr_die);
11106 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11107 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11108 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11109 }
11110
11111 /* Generate the DIE for the compilation unit. */
11112
11113 static dw_die_ref
11114 gen_compile_unit_die (const char *filename)
11115 {
11116 dw_die_ref die;
11117 char producer[250];
11118 const char *language_string = lang_hooks.name;
11119 int language;
11120
11121 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11122
11123 if (filename)
11124 {
11125 add_name_attribute (die, filename);
11126 /* Don't add cwd for <built-in>. */
11127 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11128 add_comp_dir_attribute (die);
11129 }
11130
11131 sprintf (producer, "%s %s", language_string, version_string);
11132
11133 #ifdef MIPS_DEBUGGING_INFO
11134 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11135 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11136 not appear in the producer string, the debugger reaches the conclusion
11137 that the object file is stripped and has no debugging information.
11138 To get the MIPS/SGI debugger to believe that there is debugging
11139 information in the object file, we add a -g to the producer string. */
11140 if (debug_info_level > DINFO_LEVEL_TERSE)
11141 strcat (producer, " -g");
11142 #endif
11143
11144 add_AT_string (die, DW_AT_producer, producer);
11145
11146 if (strcmp (language_string, "GNU C++") == 0)
11147 language = DW_LANG_C_plus_plus;
11148 else if (strcmp (language_string, "GNU Ada") == 0)
11149 language = DW_LANG_Ada95;
11150 else if (strcmp (language_string, "GNU F77") == 0)
11151 language = DW_LANG_Fortran77;
11152 else if (strcmp (language_string, "GNU Pascal") == 0)
11153 language = DW_LANG_Pascal83;
11154 else if (strcmp (language_string, "GNU Java") == 0)
11155 language = DW_LANG_Java;
11156 else
11157 language = DW_LANG_C89;
11158
11159 add_AT_unsigned (die, DW_AT_language, language);
11160 return die;
11161 }
11162
11163 /* Generate a DIE for a string type. */
11164
11165 static void
11166 gen_string_type_die (tree type, dw_die_ref context_die)
11167 {
11168 dw_die_ref type_die
11169 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11170
11171 equate_type_number_to_die (type, type_die);
11172
11173 /* ??? Fudge the string length attribute for now.
11174 TODO: add string length info. */
11175 #if 0
11176 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11177 bound_representation (upper_bound, 0, 'u');
11178 #endif
11179 }
11180
11181 /* Generate the DIE for a base class. */
11182
11183 static void
11184 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11185 {
11186 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11187
11188 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11189 add_data_member_location_attribute (die, binfo);
11190
11191 if (TREE_VIA_VIRTUAL (binfo))
11192 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11193
11194 if (access == access_public_node)
11195 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11196 else if (access == access_protected_node)
11197 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11198 }
11199
11200 /* Generate a DIE for a class member. */
11201
11202 static void
11203 gen_member_die (tree type, dw_die_ref context_die)
11204 {
11205 tree member;
11206 tree binfo = TYPE_BINFO (type);
11207 dw_die_ref child;
11208
11209 /* If this is not an incomplete type, output descriptions of each of its
11210 members. Note that as we output the DIEs necessary to represent the
11211 members of this record or union type, we will also be trying to output
11212 DIEs to represent the *types* of those members. However the `type'
11213 function (above) will specifically avoid generating type DIEs for member
11214 types *within* the list of member DIEs for this (containing) type except
11215 for those types (of members) which are explicitly marked as also being
11216 members of this (containing) type themselves. The g++ front- end can
11217 force any given type to be treated as a member of some other (containing)
11218 type by setting the TYPE_CONTEXT of the given (member) type to point to
11219 the TREE node representing the appropriate (containing) type. */
11220
11221 /* First output info about the base classes. */
11222 if (binfo && BINFO_BASETYPES (binfo))
11223 {
11224 tree bases = BINFO_BASETYPES (binfo);
11225 tree accesses = BINFO_BASEACCESSES (binfo);
11226 int n_bases = TREE_VEC_LENGTH (bases);
11227 int i;
11228
11229 for (i = 0; i < n_bases; i++)
11230 gen_inheritance_die (TREE_VEC_ELT (bases, i),
11231 (accesses ? TREE_VEC_ELT (accesses, i)
11232 : access_public_node), context_die);
11233 }
11234
11235 /* Now output info about the data members and type members. */
11236 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11237 {
11238 /* If we thought we were generating minimal debug info for TYPE
11239 and then changed our minds, some of the member declarations
11240 may have already been defined. Don't define them again, but
11241 do put them in the right order. */
11242
11243 child = lookup_decl_die (member);
11244 if (child)
11245 splice_child_die (context_die, child);
11246 else
11247 gen_decl_die (member, context_die);
11248 }
11249
11250 /* Now output info about the function members (if any). */
11251 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11252 {
11253 /* Don't include clones in the member list. */
11254 if (DECL_ABSTRACT_ORIGIN (member))
11255 continue;
11256
11257 child = lookup_decl_die (member);
11258 if (child)
11259 splice_child_die (context_die, child);
11260 else
11261 gen_decl_die (member, context_die);
11262 }
11263 }
11264
11265 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11266 is set, we pretend that the type was never defined, so we only get the
11267 member DIEs needed by later specification DIEs. */
11268
11269 static void
11270 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
11271 {
11272 dw_die_ref type_die = lookup_type_die (type);
11273 dw_die_ref scope_die = 0;
11274 int nested = 0;
11275 int complete = (TYPE_SIZE (type)
11276 && (! TYPE_STUB_DECL (type)
11277 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11278
11279 if (type_die && ! complete)
11280 return;
11281
11282 if (TYPE_CONTEXT (type) != NULL_TREE
11283 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type)))
11284 nested = 1;
11285
11286 scope_die = scope_die_for (type, context_die);
11287
11288 if (! type_die || (nested && scope_die == comp_unit_die))
11289 /* First occurrence of type or toplevel definition of nested class. */
11290 {
11291 dw_die_ref old_die = type_die;
11292
11293 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11294 ? DW_TAG_structure_type : DW_TAG_union_type,
11295 scope_die, type);
11296 equate_type_number_to_die (type, type_die);
11297 if (old_die)
11298 add_AT_die_ref (type_die, DW_AT_specification, old_die);
11299 else
11300 add_name_attribute (type_die, type_tag (type));
11301 }
11302 else
11303 remove_AT (type_die, DW_AT_declaration);
11304
11305 /* If this type has been completed, then give it a byte_size attribute and
11306 then give a list of members. */
11307 if (complete)
11308 {
11309 /* Prevent infinite recursion in cases where the type of some member of
11310 this type is expressed in terms of this type itself. */
11311 TREE_ASM_WRITTEN (type) = 1;
11312 add_byte_size_attribute (type_die, type);
11313 if (TYPE_STUB_DECL (type) != NULL_TREE)
11314 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11315
11316 /* If the first reference to this type was as the return type of an
11317 inline function, then it may not have a parent. Fix this now. */
11318 if (type_die->die_parent == NULL)
11319 add_child_die (scope_die, type_die);
11320
11321 push_decl_scope (type);
11322 gen_member_die (type, type_die);
11323 pop_decl_scope ();
11324
11325 /* GNU extension: Record what type our vtable lives in. */
11326 if (TYPE_VFIELD (type))
11327 {
11328 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11329
11330 gen_type_die (vtype, context_die);
11331 add_AT_die_ref (type_die, DW_AT_containing_type,
11332 lookup_type_die (vtype));
11333 }
11334 }
11335 else
11336 {
11337 add_AT_flag (type_die, DW_AT_declaration, 1);
11338
11339 /* We don't need to do this for function-local types. */
11340 if (TYPE_STUB_DECL (type)
11341 && ! decl_function_context (TYPE_STUB_DECL (type)))
11342 VARRAY_PUSH_TREE (incomplete_types, type);
11343 }
11344 }
11345
11346 /* Generate a DIE for a subroutine _type_. */
11347
11348 static void
11349 gen_subroutine_type_die (tree type, dw_die_ref context_die)
11350 {
11351 tree return_type = TREE_TYPE (type);
11352 dw_die_ref subr_die
11353 = new_die (DW_TAG_subroutine_type,
11354 scope_die_for (type, context_die), type);
11355
11356 equate_type_number_to_die (type, subr_die);
11357 add_prototyped_attribute (subr_die, type);
11358 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11359 gen_formal_types_die (type, subr_die);
11360 }
11361
11362 /* Generate a DIE for a type definition. */
11363
11364 static void
11365 gen_typedef_die (tree decl, dw_die_ref context_die)
11366 {
11367 dw_die_ref type_die;
11368 tree origin;
11369
11370 if (TREE_ASM_WRITTEN (decl))
11371 return;
11372
11373 TREE_ASM_WRITTEN (decl) = 1;
11374 type_die = new_die (DW_TAG_typedef, context_die, decl);
11375 origin = decl_ultimate_origin (decl);
11376 if (origin != NULL)
11377 add_abstract_origin_attribute (type_die, origin);
11378 else
11379 {
11380 tree type;
11381
11382 add_name_and_src_coords_attributes (type_die, decl);
11383 if (DECL_ORIGINAL_TYPE (decl))
11384 {
11385 type = DECL_ORIGINAL_TYPE (decl);
11386
11387 if (type == TREE_TYPE (decl))
11388 abort ();
11389 else
11390 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11391 }
11392 else
11393 type = TREE_TYPE (decl);
11394
11395 add_type_attribute (type_die, type, TREE_READONLY (decl),
11396 TREE_THIS_VOLATILE (decl), context_die);
11397 }
11398
11399 if (DECL_ABSTRACT (decl))
11400 equate_decl_number_to_die (decl, type_die);
11401 }
11402
11403 /* Generate a type description DIE. */
11404
11405 static void
11406 gen_type_die (tree type, dw_die_ref context_die)
11407 {
11408 int need_pop;
11409
11410 if (type == NULL_TREE || type == error_mark_node)
11411 return;
11412
11413 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11414 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11415 {
11416 if (TREE_ASM_WRITTEN (type))
11417 return;
11418
11419 /* Prevent broken recursion; we can't hand off to the same type. */
11420 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
11421 abort ();
11422
11423 TREE_ASM_WRITTEN (type) = 1;
11424 gen_decl_die (TYPE_NAME (type), context_die);
11425 return;
11426 }
11427
11428 /* We are going to output a DIE to represent the unqualified version
11429 of this type (i.e. without any const or volatile qualifiers) so
11430 get the main variant (i.e. the unqualified version) of this type
11431 now. (Vectors are special because the debugging info is in the
11432 cloned type itself). */
11433 if (TREE_CODE (type) != VECTOR_TYPE)
11434 type = type_main_variant (type);
11435
11436 if (TREE_ASM_WRITTEN (type))
11437 return;
11438
11439 switch (TREE_CODE (type))
11440 {
11441 case ERROR_MARK:
11442 break;
11443
11444 case POINTER_TYPE:
11445 case REFERENCE_TYPE:
11446 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11447 ensures that the gen_type_die recursion will terminate even if the
11448 type is recursive. Recursive types are possible in Ada. */
11449 /* ??? We could perhaps do this for all types before the switch
11450 statement. */
11451 TREE_ASM_WRITTEN (type) = 1;
11452
11453 /* For these types, all that is required is that we output a DIE (or a
11454 set of DIEs) to represent the "basis" type. */
11455 gen_type_die (TREE_TYPE (type), context_die);
11456 break;
11457
11458 case OFFSET_TYPE:
11459 /* This code is used for C++ pointer-to-data-member types.
11460 Output a description of the relevant class type. */
11461 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
11462
11463 /* Output a description of the type of the object pointed to. */
11464 gen_type_die (TREE_TYPE (type), context_die);
11465
11466 /* Now output a DIE to represent this pointer-to-data-member type
11467 itself. */
11468 gen_ptr_to_mbr_type_die (type, context_die);
11469 break;
11470
11471 case SET_TYPE:
11472 gen_type_die (TYPE_DOMAIN (type), context_die);
11473 gen_set_type_die (type, context_die);
11474 break;
11475
11476 case FILE_TYPE:
11477 gen_type_die (TREE_TYPE (type), context_die);
11478 abort (); /* No way to represent these in Dwarf yet! */
11479 break;
11480
11481 case FUNCTION_TYPE:
11482 /* Force out return type (in case it wasn't forced out already). */
11483 gen_type_die (TREE_TYPE (type), context_die);
11484 gen_subroutine_type_die (type, context_die);
11485 break;
11486
11487 case METHOD_TYPE:
11488 /* Force out return type (in case it wasn't forced out already). */
11489 gen_type_die (TREE_TYPE (type), context_die);
11490 gen_subroutine_type_die (type, context_die);
11491 break;
11492
11493 case ARRAY_TYPE:
11494 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11495 {
11496 gen_type_die (TREE_TYPE (type), context_die);
11497 gen_string_type_die (type, context_die);
11498 }
11499 else
11500 gen_array_type_die (type, context_die);
11501 break;
11502
11503 case VECTOR_TYPE:
11504 gen_array_type_die (type, context_die);
11505 break;
11506
11507 case ENUMERAL_TYPE:
11508 case RECORD_TYPE:
11509 case UNION_TYPE:
11510 case QUAL_UNION_TYPE:
11511 /* If this is a nested type whose containing class hasn't been written
11512 out yet, writing it out will cover this one, too. This does not apply
11513 to instantiations of member class templates; they need to be added to
11514 the containing class as they are generated. FIXME: This hurts the
11515 idea of combining type decls from multiple TUs, since we can't predict
11516 what set of template instantiations we'll get. */
11517 if (TYPE_CONTEXT (type)
11518 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11519 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
11520 {
11521 gen_type_die (TYPE_CONTEXT (type), context_die);
11522
11523 if (TREE_ASM_WRITTEN (type))
11524 return;
11525
11526 /* If that failed, attach ourselves to the stub. */
11527 push_decl_scope (TYPE_CONTEXT (type));
11528 context_die = lookup_type_die (TYPE_CONTEXT (type));
11529 need_pop = 1;
11530 }
11531 else
11532 need_pop = 0;
11533
11534 if (TREE_CODE (type) == ENUMERAL_TYPE)
11535 gen_enumeration_type_die (type, context_die);
11536 else
11537 gen_struct_or_union_type_die (type, context_die);
11538
11539 if (need_pop)
11540 pop_decl_scope ();
11541
11542 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11543 it up if it is ever completed. gen_*_type_die will set it for us
11544 when appropriate. */
11545 return;
11546
11547 case VOID_TYPE:
11548 case INTEGER_TYPE:
11549 case REAL_TYPE:
11550 case COMPLEX_TYPE:
11551 case BOOLEAN_TYPE:
11552 case CHAR_TYPE:
11553 /* No DIEs needed for fundamental types. */
11554 break;
11555
11556 case LANG_TYPE:
11557 /* No Dwarf representation currently defined. */
11558 break;
11559
11560 default:
11561 abort ();
11562 }
11563
11564 TREE_ASM_WRITTEN (type) = 1;
11565 }
11566
11567 /* Generate a DIE for a tagged type instantiation. */
11568
11569 static void
11570 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
11571 {
11572 if (type == NULL_TREE || type == error_mark_node)
11573 return;
11574
11575 /* We are going to output a DIE to represent the unqualified version of
11576 this type (i.e. without any const or volatile qualifiers) so make sure
11577 that we have the main variant (i.e. the unqualified version) of this
11578 type now. */
11579 if (type != type_main_variant (type))
11580 abort ();
11581
11582 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11583 an instance of an unresolved type. */
11584
11585 switch (TREE_CODE (type))
11586 {
11587 case ERROR_MARK:
11588 break;
11589
11590 case ENUMERAL_TYPE:
11591 gen_inlined_enumeration_type_die (type, context_die);
11592 break;
11593
11594 case RECORD_TYPE:
11595 gen_inlined_structure_type_die (type, context_die);
11596 break;
11597
11598 case UNION_TYPE:
11599 case QUAL_UNION_TYPE:
11600 gen_inlined_union_type_die (type, context_die);
11601 break;
11602
11603 default:
11604 abort ();
11605 }
11606 }
11607
11608 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11609 things which are local to the given block. */
11610
11611 static void
11612 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
11613 {
11614 int must_output_die = 0;
11615 tree origin;
11616 tree decl;
11617 enum tree_code origin_code;
11618
11619 /* Ignore blocks never really used to make RTL. */
11620 if (stmt == NULL_TREE || !TREE_USED (stmt)
11621 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
11622 return;
11623
11624 /* If the block is one fragment of a non-contiguous block, do not
11625 process the variables, since they will have been done by the
11626 origin block. Do process subblocks. */
11627 if (BLOCK_FRAGMENT_ORIGIN (stmt))
11628 {
11629 tree sub;
11630
11631 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
11632 gen_block_die (sub, context_die, depth + 1);
11633
11634 return;
11635 }
11636
11637 /* Determine the "ultimate origin" of this block. This block may be an
11638 inlined instance of an inlined instance of inline function, so we have
11639 to trace all of the way back through the origin chain to find out what
11640 sort of node actually served as the original seed for the creation of
11641 the current block. */
11642 origin = block_ultimate_origin (stmt);
11643 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
11644
11645 /* Determine if we need to output any Dwarf DIEs at all to represent this
11646 block. */
11647 if (origin_code == FUNCTION_DECL)
11648 /* The outer scopes for inlinings *must* always be represented. We
11649 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
11650 must_output_die = 1;
11651 else
11652 {
11653 /* In the case where the current block represents an inlining of the
11654 "body block" of an inline function, we must *NOT* output any DIE for
11655 this block because we have already output a DIE to represent the whole
11656 inlined function scope and the "body block" of any function doesn't
11657 really represent a different scope according to ANSI C rules. So we
11658 check here to make sure that this block does not represent a "body
11659 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
11660 if (! is_body_block (origin ? origin : stmt))
11661 {
11662 /* Determine if this block directly contains any "significant"
11663 local declarations which we will need to output DIEs for. */
11664 if (debug_info_level > DINFO_LEVEL_TERSE)
11665 /* We are not in terse mode so *any* local declaration counts
11666 as being a "significant" one. */
11667 must_output_die = (BLOCK_VARS (stmt) != NULL);
11668 else
11669 /* We are in terse mode, so only local (nested) function
11670 definitions count as "significant" local declarations. */
11671 for (decl = BLOCK_VARS (stmt);
11672 decl != NULL; decl = TREE_CHAIN (decl))
11673 if (TREE_CODE (decl) == FUNCTION_DECL
11674 && DECL_INITIAL (decl))
11675 {
11676 must_output_die = 1;
11677 break;
11678 }
11679 }
11680 }
11681
11682 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
11683 DIE for any block which contains no significant local declarations at
11684 all. Rather, in such cases we just call `decls_for_scope' so that any
11685 needed Dwarf info for any sub-blocks will get properly generated. Note
11686 that in terse mode, our definition of what constitutes a "significant"
11687 local declaration gets restricted to include only inlined function
11688 instances and local (nested) function definitions. */
11689 if (must_output_die)
11690 {
11691 if (origin_code == FUNCTION_DECL)
11692 gen_inlined_subroutine_die (stmt, context_die, depth);
11693 else
11694 gen_lexical_block_die (stmt, context_die, depth);
11695 }
11696 else
11697 decls_for_scope (stmt, context_die, depth);
11698 }
11699
11700 /* Generate all of the decls declared within a given scope and (recursively)
11701 all of its sub-blocks. */
11702
11703 static void
11704 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
11705 {
11706 tree decl;
11707 tree subblocks;
11708
11709 /* Ignore blocks never really used to make RTL. */
11710 if (stmt == NULL_TREE || ! TREE_USED (stmt))
11711 return;
11712
11713 /* Output the DIEs to represent all of the data objects and typedefs
11714 declared directly within this block but not within any nested
11715 sub-blocks. Also, nested function and tag DIEs have been
11716 generated with a parent of NULL; fix that up now. */
11717 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
11718 {
11719 dw_die_ref die;
11720
11721 if (TREE_CODE (decl) == FUNCTION_DECL)
11722 die = lookup_decl_die (decl);
11723 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
11724 die = lookup_type_die (TREE_TYPE (decl));
11725 else
11726 die = NULL;
11727
11728 if (die != NULL && die->die_parent == NULL)
11729 add_child_die (context_die, die);
11730 else
11731 gen_decl_die (decl, context_die);
11732 }
11733
11734 /* If we're at -g1, we're not interested in subblocks. */
11735 if (debug_info_level <= DINFO_LEVEL_TERSE)
11736 return;
11737
11738 /* Output the DIEs to represent all sub-blocks (and the items declared
11739 therein) of this block. */
11740 for (subblocks = BLOCK_SUBBLOCKS (stmt);
11741 subblocks != NULL;
11742 subblocks = BLOCK_CHAIN (subblocks))
11743 gen_block_die (subblocks, context_die, depth + 1);
11744 }
11745
11746 /* Is this a typedef we can avoid emitting? */
11747
11748 static inline int
11749 is_redundant_typedef (tree decl)
11750 {
11751 if (TYPE_DECL_IS_STUB (decl))
11752 return 1;
11753
11754 if (DECL_ARTIFICIAL (decl)
11755 && DECL_CONTEXT (decl)
11756 && is_tagged_type (DECL_CONTEXT (decl))
11757 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
11758 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
11759 /* Also ignore the artificial member typedef for the class name. */
11760 return 1;
11761
11762 return 0;
11763 }
11764
11765 /* Generate Dwarf debug information for a decl described by DECL. */
11766
11767 static void
11768 gen_decl_die (tree decl, dw_die_ref context_die)
11769 {
11770 tree origin;
11771
11772 if (DECL_P (decl) && DECL_IGNORED_P (decl))
11773 return;
11774
11775 switch (TREE_CODE (decl))
11776 {
11777 case ERROR_MARK:
11778 break;
11779
11780 case CONST_DECL:
11781 /* The individual enumerators of an enum type get output when we output
11782 the Dwarf representation of the relevant enum type itself. */
11783 break;
11784
11785 case FUNCTION_DECL:
11786 /* Don't output any DIEs to represent mere function declarations,
11787 unless they are class members or explicit block externs. */
11788 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
11789 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
11790 break;
11791
11792 /* If we're emitting a clone, emit info for the abstract instance. */
11793 if (DECL_ORIGIN (decl) != decl)
11794 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
11795
11796 /* If we're emitting an out-of-line copy of an inline function,
11797 emit info for the abstract instance and set up to refer to it. */
11798 else if (DECL_INLINE (decl) && ! DECL_ABSTRACT (decl)
11799 && ! class_scope_p (context_die)
11800 /* dwarf2out_abstract_function won't emit a die if this is just
11801 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
11802 that case, because that works only if we have a die. */
11803 && DECL_INITIAL (decl) != NULL_TREE)
11804 {
11805 dwarf2out_abstract_function (decl);
11806 set_decl_origin_self (decl);
11807 }
11808
11809 /* Otherwise we're emitting the primary DIE for this decl. */
11810 else if (debug_info_level > DINFO_LEVEL_TERSE)
11811 {
11812 /* Before we describe the FUNCTION_DECL itself, make sure that we
11813 have described its return type. */
11814 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
11815
11816 /* And its virtual context. */
11817 if (DECL_VINDEX (decl) != NULL_TREE)
11818 gen_type_die (DECL_CONTEXT (decl), context_die);
11819
11820 /* And its containing type. */
11821 origin = decl_class_context (decl);
11822 if (origin != NULL_TREE)
11823 gen_type_die_for_member (origin, decl, context_die);
11824 }
11825
11826 /* Now output a DIE to represent the function itself. */
11827 gen_subprogram_die (decl, context_die);
11828 break;
11829
11830 case TYPE_DECL:
11831 /* If we are in terse mode, don't generate any DIEs to represent any
11832 actual typedefs. */
11833 if (debug_info_level <= DINFO_LEVEL_TERSE)
11834 break;
11835
11836 /* In the special case of a TYPE_DECL node representing the declaration
11837 of some type tag, if the given TYPE_DECL is marked as having been
11838 instantiated from some other (original) TYPE_DECL node (e.g. one which
11839 was generated within the original definition of an inline function) we
11840 have to generate a special (abbreviated) DW_TAG_structure_type,
11841 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
11842 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
11843 {
11844 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
11845 break;
11846 }
11847
11848 if (is_redundant_typedef (decl))
11849 gen_type_die (TREE_TYPE (decl), context_die);
11850 else
11851 /* Output a DIE to represent the typedef itself. */
11852 gen_typedef_die (decl, context_die);
11853 break;
11854
11855 case LABEL_DECL:
11856 if (debug_info_level >= DINFO_LEVEL_NORMAL)
11857 gen_label_die (decl, context_die);
11858 break;
11859
11860 case VAR_DECL:
11861 /* If we are in terse mode, don't generate any DIEs to represent any
11862 variable declarations or definitions. */
11863 if (debug_info_level <= DINFO_LEVEL_TERSE)
11864 break;
11865
11866 /* Output any DIEs that are needed to specify the type of this data
11867 object. */
11868 gen_type_die (TREE_TYPE (decl), context_die);
11869
11870 /* And its containing type. */
11871 origin = decl_class_context (decl);
11872 if (origin != NULL_TREE)
11873 gen_type_die_for_member (origin, decl, context_die);
11874
11875 /* Now output the DIE to represent the data object itself. This gets
11876 complicated because of the possibility that the VAR_DECL really
11877 represents an inlined instance of a formal parameter for an inline
11878 function. */
11879 origin = decl_ultimate_origin (decl);
11880 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
11881 gen_formal_parameter_die (decl, context_die);
11882 else
11883 gen_variable_die (decl, context_die);
11884 break;
11885
11886 case FIELD_DECL:
11887 /* Ignore the nameless fields that are used to skip bits but handle C++
11888 anonymous unions. */
11889 if (DECL_NAME (decl) != NULL_TREE
11890 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
11891 {
11892 gen_type_die (member_declared_type (decl), context_die);
11893 gen_field_die (decl, context_die);
11894 }
11895 break;
11896
11897 case PARM_DECL:
11898 gen_type_die (TREE_TYPE (decl), context_die);
11899 gen_formal_parameter_die (decl, context_die);
11900 break;
11901
11902 case NAMESPACE_DECL:
11903 /* Ignore for now. */
11904 break;
11905
11906 default:
11907 if ((int)TREE_CODE (decl) > NUM_TREE_CODES)
11908 /* Probably some frontend-internal decl. Assume we don't care. */
11909 break;
11910 abort ();
11911 }
11912 }
11913 \f
11914 /* Add Ada "use" clause information for SGI Workshop debugger. */
11915
11916 void
11917 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
11918 {
11919 unsigned int file_index;
11920
11921 if (filename != NULL)
11922 {
11923 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
11924 tree context_list_decl
11925 = build_decl (LABEL_DECL, get_identifier (context_list),
11926 void_type_node);
11927
11928 TREE_PUBLIC (context_list_decl) = TRUE;
11929 add_name_attribute (unit_die, context_list);
11930 file_index = lookup_filename (filename);
11931 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
11932 add_pubname (context_list_decl, unit_die);
11933 }
11934 }
11935
11936 /* Output debug information for global decl DECL. Called from toplev.c after
11937 compilation proper has finished. */
11938
11939 static void
11940 dwarf2out_global_decl (tree decl)
11941 {
11942 /* Output DWARF2 information for file-scope tentative data object
11943 declarations, file-scope (extern) function declarations (which had no
11944 corresponding body) and file-scope tagged type declarations and
11945 definitions which have not yet been forced out. */
11946 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
11947 dwarf2out_decl (decl);
11948 }
11949
11950 /* Write the debugging output for DECL. */
11951
11952 void
11953 dwarf2out_decl (tree decl)
11954 {
11955 dw_die_ref context_die = comp_unit_die;
11956
11957 switch (TREE_CODE (decl))
11958 {
11959 case ERROR_MARK:
11960 return;
11961
11962 case FUNCTION_DECL:
11963 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
11964 builtin function. Explicit programmer-supplied declarations of
11965 these same functions should NOT be ignored however. */
11966 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
11967 return;
11968
11969 /* What we would really like to do here is to filter out all mere
11970 file-scope declarations of file-scope functions which are never
11971 referenced later within this translation unit (and keep all of ones
11972 that *are* referenced later on) but we aren't clairvoyant, so we have
11973 no idea which functions will be referenced in the future (i.e. later
11974 on within the current translation unit). So here we just ignore all
11975 file-scope function declarations which are not also definitions. If
11976 and when the debugger needs to know something about these functions,
11977 it will have to hunt around and find the DWARF information associated
11978 with the definition of the function.
11979
11980 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
11981 nodes represent definitions and which ones represent mere
11982 declarations. We have to check DECL_INITIAL instead. That's because
11983 the C front-end supports some weird semantics for "extern inline"
11984 function definitions. These can get inlined within the current
11985 translation unit (an thus, we need to generate Dwarf info for their
11986 abstract instances so that the Dwarf info for the concrete inlined
11987 instances can have something to refer to) but the compiler never
11988 generates any out-of-lines instances of such things (despite the fact
11989 that they *are* definitions).
11990
11991 The important point is that the C front-end marks these "extern
11992 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
11993 them anyway. Note that the C++ front-end also plays some similar games
11994 for inline function definitions appearing within include files which
11995 also contain `#pragma interface' pragmas. */
11996 if (DECL_INITIAL (decl) == NULL_TREE)
11997 return;
11998
11999 /* If we're a nested function, initially use a parent of NULL; if we're
12000 a plain function, this will be fixed up in decls_for_scope. If
12001 we're a method, it will be ignored, since we already have a DIE. */
12002 if (decl_function_context (decl)
12003 /* But if we're in terse mode, we don't care about scope. */
12004 && debug_info_level > DINFO_LEVEL_TERSE)
12005 context_die = NULL;
12006 break;
12007
12008 case VAR_DECL:
12009 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12010 declaration and if the declaration was never even referenced from
12011 within this entire compilation unit. We suppress these DIEs in
12012 order to save space in the .debug section (by eliminating entries
12013 which are probably useless). Note that we must not suppress
12014 block-local extern declarations (whether used or not) because that
12015 would screw-up the debugger's name lookup mechanism and cause it to
12016 miss things which really ought to be in scope at a given point. */
12017 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12018 return;
12019
12020 /* If we are in terse mode, don't generate any DIEs to represent any
12021 variable declarations or definitions. */
12022 if (debug_info_level <= DINFO_LEVEL_TERSE)
12023 return;
12024 break;
12025
12026 case TYPE_DECL:
12027 /* Don't emit stubs for types unless they are needed by other DIEs. */
12028 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12029 return;
12030
12031 /* Don't bother trying to generate any DIEs to represent any of the
12032 normal built-in types for the language we are compiling. */
12033 if (DECL_SOURCE_LINE (decl) == 0)
12034 {
12035 /* OK, we need to generate one for `bool' so GDB knows what type
12036 comparisons have. */
12037 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12038 == DW_LANG_C_plus_plus)
12039 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12040 && ! DECL_IGNORED_P (decl))
12041 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12042
12043 return;
12044 }
12045
12046 /* If we are in terse mode, don't generate any DIEs for types. */
12047 if (debug_info_level <= DINFO_LEVEL_TERSE)
12048 return;
12049
12050 /* If we're a function-scope tag, initially use a parent of NULL;
12051 this will be fixed up in decls_for_scope. */
12052 if (decl_function_context (decl))
12053 context_die = NULL;
12054
12055 break;
12056
12057 default:
12058 return;
12059 }
12060
12061 gen_decl_die (decl, context_die);
12062 }
12063
12064 /* Output a marker (i.e. a label) for the beginning of the generated code for
12065 a lexical block. */
12066
12067 static void
12068 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
12069 unsigned int blocknum)
12070 {
12071 function_section (current_function_decl);
12072 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12073 }
12074
12075 /* Output a marker (i.e. a label) for the end of the generated code for a
12076 lexical block. */
12077
12078 static void
12079 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
12080 {
12081 function_section (current_function_decl);
12082 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12083 }
12084
12085 /* Returns nonzero if it is appropriate not to emit any debugging
12086 information for BLOCK, because it doesn't contain any instructions.
12087
12088 Don't allow this for blocks with nested functions or local classes
12089 as we would end up with orphans, and in the presence of scheduling
12090 we may end up calling them anyway. */
12091
12092 static bool
12093 dwarf2out_ignore_block (tree block)
12094 {
12095 tree decl;
12096
12097 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12098 if (TREE_CODE (decl) == FUNCTION_DECL
12099 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12100 return 0;
12101
12102 return 1;
12103 }
12104
12105 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12106 dwarf2out.c) and return its "index". The index of each (known) filename is
12107 just a unique number which is associated with only that one filename. We
12108 need such numbers for the sake of generating labels (in the .debug_sfnames
12109 section) and references to those files numbers (in the .debug_srcinfo
12110 and.debug_macinfo sections). If the filename given as an argument is not
12111 found in our current list, add it to the list and assign it the next
12112 available unique index number. In order to speed up searches, we remember
12113 the index of the filename was looked up last. This handles the majority of
12114 all searches. */
12115
12116 static unsigned
12117 lookup_filename (const char *file_name)
12118 {
12119 size_t i, n;
12120 char *save_file_name;
12121
12122 /* Check to see if the file name that was searched on the previous
12123 call matches this file name. If so, return the index. */
12124 if (file_table_last_lookup_index != 0)
12125 {
12126 const char *last
12127 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12128 if (strcmp (file_name, last) == 0)
12129 return file_table_last_lookup_index;
12130 }
12131
12132 /* Didn't match the previous lookup, search the table */
12133 n = VARRAY_ACTIVE_SIZE (file_table);
12134 for (i = 1; i < n; i++)
12135 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12136 {
12137 file_table_last_lookup_index = i;
12138 return i;
12139 }
12140
12141 /* Add the new entry to the end of the filename table. */
12142 file_table_last_lookup_index = n;
12143 save_file_name = (char *) ggc_strdup (file_name);
12144 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12145 VARRAY_PUSH_UINT (file_table_emitted, 0);
12146
12147 return i;
12148 }
12149
12150 static int
12151 maybe_emit_file (int fileno)
12152 {
12153 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12154 {
12155 if (!VARRAY_UINT (file_table_emitted, fileno))
12156 {
12157 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12158 fprintf (asm_out_file, "\t.file %u ",
12159 VARRAY_UINT (file_table_emitted, fileno));
12160 output_quoted_string (asm_out_file,
12161 VARRAY_CHAR_PTR (file_table, fileno));
12162 fputc ('\n', asm_out_file);
12163 }
12164 return VARRAY_UINT (file_table_emitted, fileno);
12165 }
12166 else
12167 return fileno;
12168 }
12169
12170 static void
12171 init_file_table (void)
12172 {
12173 /* Allocate the initial hunk of the file_table. */
12174 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
12175 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
12176
12177 /* Skip the first entry - file numbers begin at 1. */
12178 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
12179 VARRAY_PUSH_UINT (file_table_emitted, 0);
12180 file_table_last_lookup_index = 0;
12181 }
12182
12183 /* Output a label to mark the beginning of a source code line entry
12184 and record information relating to this source line, in
12185 'line_info_table' for later output of the .debug_line section. */
12186
12187 static void
12188 dwarf2out_source_line (unsigned int line, const char *filename)
12189 {
12190 if (debug_info_level >= DINFO_LEVEL_NORMAL
12191 && line != 0)
12192 {
12193 function_section (current_function_decl);
12194
12195 /* If requested, emit something human-readable. */
12196 if (flag_debug_asm)
12197 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
12198 filename, line);
12199
12200 if (DWARF2_ASM_LINE_DEBUG_INFO)
12201 {
12202 unsigned file_num = lookup_filename (filename);
12203
12204 file_num = maybe_emit_file (file_num);
12205
12206 /* Emit the .loc directive understood by GNU as. */
12207 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
12208
12209 /* Indicate that line number info exists. */
12210 line_info_table_in_use++;
12211
12212 /* Indicate that multiple line number tables exist. */
12213 if (DECL_SECTION_NAME (current_function_decl))
12214 separate_line_info_table_in_use++;
12215 }
12216 else if (DECL_SECTION_NAME (current_function_decl))
12217 {
12218 dw_separate_line_info_ref line_info;
12219 (*targetm.asm_out.internal_label) (asm_out_file, SEPARATE_LINE_CODE_LABEL,
12220 separate_line_info_table_in_use);
12221
12222 /* expand the line info table if necessary */
12223 if (separate_line_info_table_in_use
12224 == separate_line_info_table_allocated)
12225 {
12226 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12227 separate_line_info_table
12228 = ggc_realloc (separate_line_info_table,
12229 separate_line_info_table_allocated
12230 * sizeof (dw_separate_line_info_entry));
12231 memset (separate_line_info_table
12232 + separate_line_info_table_in_use,
12233 0,
12234 (LINE_INFO_TABLE_INCREMENT
12235 * sizeof (dw_separate_line_info_entry)));
12236 }
12237
12238 /* Add the new entry at the end of the line_info_table. */
12239 line_info
12240 = &separate_line_info_table[separate_line_info_table_in_use++];
12241 line_info->dw_file_num = lookup_filename (filename);
12242 line_info->dw_line_num = line;
12243 line_info->function = current_function_funcdef_no;
12244 }
12245 else
12246 {
12247 dw_line_info_ref line_info;
12248
12249 (*targetm.asm_out.internal_label) (asm_out_file, LINE_CODE_LABEL,
12250 line_info_table_in_use);
12251
12252 /* Expand the line info table if necessary. */
12253 if (line_info_table_in_use == line_info_table_allocated)
12254 {
12255 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12256 line_info_table
12257 = ggc_realloc (line_info_table,
12258 (line_info_table_allocated
12259 * sizeof (dw_line_info_entry)));
12260 memset (line_info_table + line_info_table_in_use, 0,
12261 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
12262 }
12263
12264 /* Add the new entry at the end of the line_info_table. */
12265 line_info = &line_info_table[line_info_table_in_use++];
12266 line_info->dw_file_num = lookup_filename (filename);
12267 line_info->dw_line_num = line;
12268 }
12269 }
12270 }
12271
12272 /* Record the beginning of a new source file. */
12273
12274 static void
12275 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
12276 {
12277 if (flag_eliminate_dwarf2_dups && !is_main_source)
12278 {
12279 /* Record the beginning of the file for break_out_includes. */
12280 dw_die_ref bincl_die;
12281
12282 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
12283 add_AT_string (bincl_die, DW_AT_name, filename);
12284 }
12285
12286 is_main_source = 0;
12287
12288 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12289 {
12290 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12291 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
12292 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
12293 lineno);
12294 maybe_emit_file (lookup_filename (filename));
12295 dw2_asm_output_data_uleb128 (lookup_filename (filename),
12296 "Filename we just started");
12297 }
12298 }
12299
12300 /* Record the end of a source file. */
12301
12302 static void
12303 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
12304 {
12305 if (flag_eliminate_dwarf2_dups)
12306 /* Record the end of the file for break_out_includes. */
12307 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
12308
12309 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12310 {
12311 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12312 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12313 }
12314 }
12315
12316 /* Called from debug_define in toplev.c. The `buffer' parameter contains
12317 the tail part of the directive line, i.e. the part which is past the
12318 initial whitespace, #, whitespace, directive-name, whitespace part. */
12319
12320 static void
12321 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
12322 const char *buffer ATTRIBUTE_UNUSED)
12323 {
12324 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12325 {
12326 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12327 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
12328 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12329 dw2_asm_output_nstring (buffer, -1, "The macro");
12330 }
12331 }
12332
12333 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
12334 the tail part of the directive line, i.e. the part which is past the
12335 initial whitespace, #, whitespace, directive-name, whitespace part. */
12336
12337 static void
12338 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
12339 const char *buffer ATTRIBUTE_UNUSED)
12340 {
12341 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12342 {
12343 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12344 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
12345 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12346 dw2_asm_output_nstring (buffer, -1, "The macro");
12347 }
12348 }
12349
12350 /* Set up for Dwarf output at the start of compilation. */
12351
12352 static void
12353 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
12354 {
12355 init_file_table ();
12356
12357 /* Allocate the initial hunk of the decl_die_table. */
12358 decl_die_table = ggc_alloc_cleared (DECL_DIE_TABLE_INCREMENT
12359 * sizeof (dw_die_ref));
12360 decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
12361 decl_die_table_in_use = 0;
12362
12363 /* Allocate the initial hunk of the decl_scope_table. */
12364 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
12365
12366 /* Allocate the initial hunk of the abbrev_die_table. */
12367 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
12368 * sizeof (dw_die_ref));
12369 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
12370 /* Zero-th entry is allocated, but unused */
12371 abbrev_die_table_in_use = 1;
12372
12373 /* Allocate the initial hunk of the line_info_table. */
12374 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
12375 * sizeof (dw_line_info_entry));
12376 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
12377
12378 /* Zero-th entry is allocated, but unused */
12379 line_info_table_in_use = 1;
12380
12381 /* Generate the initial DIE for the .debug section. Note that the (string)
12382 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
12383 will (typically) be a relative pathname and that this pathname should be
12384 taken as being relative to the directory from which the compiler was
12385 invoked when the given (base) source file was compiled. We will fill
12386 in this value in dwarf2out_finish. */
12387 comp_unit_die = gen_compile_unit_die (NULL);
12388 is_main_source = 1;
12389
12390 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
12391
12392 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
12393
12394 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
12395 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
12396 DEBUG_ABBREV_SECTION_LABEL, 0);
12397 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12398 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
12399 else
12400 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
12401
12402 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
12403 DEBUG_INFO_SECTION_LABEL, 0);
12404 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
12405 DEBUG_LINE_SECTION_LABEL, 0);
12406 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
12407 DEBUG_RANGES_SECTION_LABEL, 0);
12408 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12409 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
12410 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
12411 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
12412 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12413 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
12414
12415 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12416 {
12417 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12418 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
12419 DEBUG_MACINFO_SECTION_LABEL, 0);
12420 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
12421 }
12422
12423 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12424 {
12425 text_section ();
12426 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
12427 }
12428 }
12429
12430 /* A helper function for dwarf2out_finish called through
12431 ht_forall. Emit one queued .debug_str string. */
12432
12433 static int
12434 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
12435 {
12436 struct indirect_string_node *node = (struct indirect_string_node *) *h;
12437
12438 if (node->form == DW_FORM_strp)
12439 {
12440 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
12441 ASM_OUTPUT_LABEL (asm_out_file, node->label);
12442 assemble_string (node->str, strlen (node->str) + 1);
12443 }
12444
12445 return 1;
12446 }
12447
12448
12449
12450 /* Clear the marks for a die and its children.
12451 Be cool if the mark isn't set. */
12452
12453 static void
12454 prune_unmark_dies (dw_die_ref die)
12455 {
12456 dw_die_ref c;
12457 die->die_mark = 0;
12458 for (c = die->die_child; c; c = c->die_sib)
12459 prune_unmark_dies (c);
12460 }
12461
12462
12463 /* Given DIE that we're marking as used, find any other dies
12464 it references as attributes and mark them as used. */
12465
12466 static void
12467 prune_unused_types_walk_attribs (dw_die_ref die)
12468 {
12469 dw_attr_ref a;
12470
12471 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
12472 {
12473 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
12474 {
12475 /* A reference to another DIE.
12476 Make sure that it will get emitted. */
12477 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
12478 }
12479 else if (a->dw_attr == DW_AT_decl_file)
12480 {
12481 /* A reference to a file. Make sure the file name is emitted. */
12482 a->dw_attr_val.v.val_unsigned =
12483 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
12484 }
12485 }
12486 }
12487
12488
12489 /* Mark DIE as being used. If DOKIDS is true, then walk down
12490 to DIE's children. */
12491
12492 static void
12493 prune_unused_types_mark (dw_die_ref die, int dokids)
12494 {
12495 dw_die_ref c;
12496
12497 if (die->die_mark == 0)
12498 {
12499 /* We haven't done this node yet. Mark it as used. */
12500 die->die_mark = 1;
12501
12502 /* We also have to mark its parents as used.
12503 (But we don't want to mark our parents' kids due to this.) */
12504 if (die->die_parent)
12505 prune_unused_types_mark (die->die_parent, 0);
12506
12507 /* Mark any referenced nodes. */
12508 prune_unused_types_walk_attribs (die);
12509 }
12510
12511 if (dokids && die->die_mark != 2)
12512 {
12513 /* We need to walk the children, but haven't done so yet.
12514 Remember that we've walked the kids. */
12515 die->die_mark = 2;
12516
12517 /* Walk them. */
12518 for (c = die->die_child; c; c = c->die_sib)
12519 {
12520 /* If this is an array type, we need to make sure our
12521 kids get marked, even if they're types. */
12522 if (die->die_tag == DW_TAG_array_type)
12523 prune_unused_types_mark (c, 1);
12524 else
12525 prune_unused_types_walk (c);
12526 }
12527 }
12528 }
12529
12530
12531 /* Walk the tree DIE and mark types that we actually use. */
12532
12533 static void
12534 prune_unused_types_walk (dw_die_ref die)
12535 {
12536 dw_die_ref c;
12537
12538 /* Don't do anything if this node is already marked. */
12539 if (die->die_mark)
12540 return;
12541
12542 switch (die->die_tag) {
12543 case DW_TAG_const_type:
12544 case DW_TAG_packed_type:
12545 case DW_TAG_pointer_type:
12546 case DW_TAG_reference_type:
12547 case DW_TAG_volatile_type:
12548 case DW_TAG_typedef:
12549 case DW_TAG_array_type:
12550 case DW_TAG_structure_type:
12551 case DW_TAG_union_type:
12552 case DW_TAG_class_type:
12553 case DW_TAG_friend:
12554 case DW_TAG_variant_part:
12555 case DW_TAG_enumeration_type:
12556 case DW_TAG_subroutine_type:
12557 case DW_TAG_string_type:
12558 case DW_TAG_set_type:
12559 case DW_TAG_subrange_type:
12560 case DW_TAG_ptr_to_member_type:
12561 case DW_TAG_file_type:
12562 /* It's a type node --- don't mark it. */
12563 return;
12564
12565 default:
12566 /* Mark everything else. */
12567 break;
12568 }
12569
12570 die->die_mark = 1;
12571
12572 /* Now, mark any dies referenced from here. */
12573 prune_unused_types_walk_attribs (die);
12574
12575 /* Mark children. */
12576 for (c = die->die_child; c; c = c->die_sib)
12577 prune_unused_types_walk (c);
12578 }
12579
12580
12581 /* Remove from the tree DIE any dies that aren't marked. */
12582
12583 static void
12584 prune_unused_types_prune (dw_die_ref die)
12585 {
12586 dw_die_ref c, p, n;
12587 if (!die->die_mark)
12588 abort();
12589
12590 p = NULL;
12591 for (c = die->die_child; c; c = n)
12592 {
12593 n = c->die_sib;
12594 if (c->die_mark)
12595 {
12596 prune_unused_types_prune (c);
12597 p = c;
12598 }
12599 else
12600 {
12601 if (p)
12602 p->die_sib = n;
12603 else
12604 die->die_child = n;
12605 free_die (c);
12606 }
12607 }
12608 }
12609
12610
12611 /* Remove dies representing declarations that we never use. */
12612
12613 static void
12614 prune_unused_types (void)
12615 {
12616 unsigned int i;
12617 limbo_die_node *node;
12618
12619 /* Clear all the marks. */
12620 prune_unmark_dies (comp_unit_die);
12621 for (node = limbo_die_list; node; node = node->next)
12622 prune_unmark_dies (node->die);
12623
12624 /* Set the mark on nodes that are actually used. */
12625 prune_unused_types_walk (comp_unit_die);
12626 for (node = limbo_die_list; node; node = node->next)
12627 prune_unused_types_walk (node->die);
12628
12629 /* Also set the mark on nodes referenced from the
12630 pubname_table or arange_table. */
12631 for (i = 0; i < pubname_table_in_use; i++)
12632 prune_unused_types_mark (pubname_table[i].die, 1);
12633 for (i = 0; i < arange_table_in_use; i++)
12634 prune_unused_types_mark (arange_table[i], 1);
12635
12636 /* Get rid of nodes that aren't marked. */
12637 prune_unused_types_prune (comp_unit_die);
12638 for (node = limbo_die_list; node; node = node->next)
12639 prune_unused_types_prune (node->die);
12640
12641 /* Leave the marks clear. */
12642 prune_unmark_dies (comp_unit_die);
12643 for (node = limbo_die_list; node; node = node->next)
12644 prune_unmark_dies (node->die);
12645 }
12646
12647 /* Output stuff that dwarf requires at the end of every file,
12648 and generate the DWARF-2 debugging info. */
12649
12650 static void
12651 dwarf2out_finish (const char *filename)
12652 {
12653 limbo_die_node *node, *next_node;
12654 dw_die_ref die = 0;
12655
12656 /* Add the name for the main input file now. We delayed this from
12657 dwarf2out_init to avoid complications with PCH. */
12658 add_name_attribute (comp_unit_die, filename);
12659 if (filename[0] != DIR_SEPARATOR)
12660 add_comp_dir_attribute (comp_unit_die);
12661 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
12662 {
12663 size_t i;
12664 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
12665 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
12666 /* Don't add cwd for <built-in>. */
12667 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
12668 {
12669 add_comp_dir_attribute (comp_unit_die);
12670 break;
12671 }
12672 }
12673
12674 /* Traverse the limbo die list, and add parent/child links. The only
12675 dies without parents that should be here are concrete instances of
12676 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
12677 For concrete instances, we can get the parent die from the abstract
12678 instance. */
12679 for (node = limbo_die_list; node; node = next_node)
12680 {
12681 next_node = node->next;
12682 die = node->die;
12683
12684 if (die->die_parent == NULL)
12685 {
12686 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
12687 tree context;
12688
12689 if (origin)
12690 add_child_die (origin->die_parent, die);
12691 else if (die == comp_unit_die)
12692 ;
12693 /* If this was an expression for a bound involved in a function
12694 return type, it may be a SAVE_EXPR for which we weren't able
12695 to find a DIE previously. So try now. */
12696 else if (node->created_for
12697 && TREE_CODE (node->created_for) == SAVE_EXPR
12698 && 0 != (origin = (lookup_decl_die
12699 (SAVE_EXPR_CONTEXT
12700 (node->created_for)))))
12701 add_child_die (origin, die);
12702 else if (errorcount > 0 || sorrycount > 0)
12703 /* It's OK to be confused by errors in the input. */
12704 add_child_die (comp_unit_die, die);
12705 else if (node->created_for
12706 && ((DECL_P (node->created_for)
12707 && (context = DECL_CONTEXT (node->created_for)))
12708 || (TYPE_P (node->created_for)
12709 && (context = TYPE_CONTEXT (node->created_for))))
12710 && TREE_CODE (context) == FUNCTION_DECL)
12711 {
12712 /* In certain situations, the lexical block containing a
12713 nested function can be optimized away, which results
12714 in the nested function die being orphaned. Likewise
12715 with the return type of that nested function. Force
12716 this to be a child of the containing function. */
12717 origin = lookup_decl_die (context);
12718 if (! origin)
12719 abort ();
12720 add_child_die (origin, die);
12721 }
12722 else
12723 abort ();
12724 }
12725 }
12726
12727 limbo_die_list = NULL;
12728
12729 /* Walk through the list of incomplete types again, trying once more to
12730 emit full debugging info for them. */
12731 retry_incomplete_types ();
12732
12733 /* We need to reverse all the dies before break_out_includes, or
12734 we'll see the end of an include file before the beginning. */
12735 reverse_all_dies (comp_unit_die);
12736
12737 if (flag_eliminate_unused_debug_types)
12738 prune_unused_types ();
12739
12740 /* Generate separate CUs for each of the include files we've seen.
12741 They will go into limbo_die_list. */
12742 if (flag_eliminate_dwarf2_dups)
12743 break_out_includes (comp_unit_die);
12744
12745 /* Traverse the DIE's and add add sibling attributes to those DIE's
12746 that have children. */
12747 add_sibling_attributes (comp_unit_die);
12748 for (node = limbo_die_list; node; node = node->next)
12749 add_sibling_attributes (node->die);
12750
12751 /* Output a terminator label for the .text section. */
12752 text_section ();
12753 (*targetm.asm_out.internal_label) (asm_out_file, TEXT_END_LABEL, 0);
12754
12755 /* Output the source line correspondence table. We must do this
12756 even if there is no line information. Otherwise, on an empty
12757 translation unit, we will generate a present, but empty,
12758 .debug_info section. IRIX 6.5 `nm' will then complain when
12759 examining the file. */
12760 if (! DWARF2_ASM_LINE_DEBUG_INFO)
12761 {
12762 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12763 output_line_info ();
12764 }
12765
12766 /* Output location list section if necessary. */
12767 if (have_location_lists)
12768 {
12769 /* Output the location lists info. */
12770 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
12771 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
12772 DEBUG_LOC_SECTION_LABEL, 0);
12773 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
12774 output_location_lists (die);
12775 have_location_lists = 0;
12776 }
12777
12778 /* We can only use the low/high_pc attributes if all of the code was
12779 in .text. */
12780 if (separate_line_info_table_in_use == 0)
12781 {
12782 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
12783 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
12784 }
12785
12786 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
12787 "base address". Use zero so that these addresses become absolute. */
12788 else if (have_location_lists || ranges_table_in_use)
12789 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
12790
12791 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12792 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
12793 debug_line_section_label);
12794
12795 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12796 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
12797
12798 /* Output all of the compilation units. We put the main one last so that
12799 the offsets are available to output_pubnames. */
12800 for (node = limbo_die_list; node; node = node->next)
12801 output_comp_unit (node->die, 0);
12802
12803 output_comp_unit (comp_unit_die, 0);
12804
12805 /* Output the abbreviation table. */
12806 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12807 output_abbrev_section ();
12808
12809 /* Output public names table if necessary. */
12810 if (pubname_table_in_use)
12811 {
12812 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
12813 output_pubnames ();
12814 }
12815
12816 /* Output the address range information. We only put functions in the arange
12817 table, so don't write it out if we don't have any. */
12818 if (fde_table_in_use)
12819 {
12820 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
12821 output_aranges ();
12822 }
12823
12824 /* Output ranges section if necessary. */
12825 if (ranges_table_in_use)
12826 {
12827 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
12828 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
12829 output_ranges ();
12830 }
12831
12832 /* Have to end the primary source file. */
12833 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12834 {
12835 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12836 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12837 dw2_asm_output_data (1, 0, "End compilation unit");
12838 }
12839
12840 /* If we emitted any DW_FORM_strp form attribute, output the string
12841 table too. */
12842 if (debug_str_hash)
12843 htab_traverse (debug_str_hash, output_indirect_string, NULL);
12844 }
12845 #else
12846
12847 /* This should never be used, but its address is needed for comparisons. */
12848 const struct gcc_debug_hooks dwarf2_debug_hooks;
12849
12850 #endif /* DWARF2_DEBUGGING_INFO */
12851
12852 #include "gt-dwarf2out.h"