dwarf2out.c (gen_enumeration_type_die): Return the DIE that we just created.
[gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "real.h"
44 #include "rtl.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "reload.h"
49 #include "function.h"
50 #include "output.h"
51 #include "expr.h"
52 #include "libfuncs.h"
53 #include "except.h"
54 #include "dwarf2.h"
55 #include "dwarf2out.h"
56 #include "dwarf2asm.h"
57 #include "toplev.h"
58 #include "varray.h"
59 #include "ggc.h"
60 #include "md5.h"
61 #include "tm_p.h"
62 #include "diagnostic.h"
63 #include "debug.h"
64 #include "target.h"
65 #include "langhooks.h"
66 #include "hashtab.h"
67 #include "cgraph.h"
68
69 #ifdef DWARF2_DEBUGGING_INFO
70 static void dwarf2out_source_line (unsigned int, const char *);
71 #endif
72
73 /* DWARF2 Abbreviation Glossary:
74 CFA = Canonical Frame Address
75 a fixed address on the stack which identifies a call frame.
76 We define it to be the value of SP just before the call insn.
77 The CFA register and offset, which may change during the course
78 of the function, are used to calculate its value at runtime.
79 CFI = Call Frame Instruction
80 an instruction for the DWARF2 abstract machine
81 CIE = Common Information Entry
82 information describing information common to one or more FDEs
83 DIE = Debugging Information Entry
84 FDE = Frame Description Entry
85 information describing the stack call frame, in particular,
86 how to restore registers
87
88 DW_CFA_... = DWARF2 CFA call frame instruction
89 DW_TAG_... = DWARF2 DIE tag */
90
91 /* Decide whether we want to emit frame unwind information for the current
92 translation unit. */
93
94 int
95 dwarf2out_do_frame (void)
96 {
97 return (write_symbols == DWARF2_DEBUG
98 || write_symbols == VMS_AND_DWARF2_DEBUG
99 #ifdef DWARF2_FRAME_INFO
100 || DWARF2_FRAME_INFO
101 #endif
102 #ifdef DWARF2_UNWIND_INFO
103 || flag_unwind_tables
104 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
105 #endif
106 );
107 }
108
109 /* The size of the target's pointer type. */
110 #ifndef PTR_SIZE
111 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
112 #endif
113
114 /* Various versions of targetm.eh_frame_section. Note these must appear
115 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
116
117 /* Version of targetm.eh_frame_section for systems with named sections. */
118 void
119 named_section_eh_frame_section (void)
120 {
121 #ifdef EH_FRAME_SECTION_NAME
122 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
123 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
124 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
125 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
126 int flags;
127
128 flags = (! flag_pic
129 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
130 && (fde_encoding & 0x70) != DW_EH_PE_aligned
131 && (per_encoding & 0x70) != DW_EH_PE_absptr
132 && (per_encoding & 0x70) != DW_EH_PE_aligned
133 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
134 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
135 ? 0 : SECTION_WRITE;
136 named_section_flags (EH_FRAME_SECTION_NAME, flags);
137 #else
138 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
139 #endif
140 #endif
141 }
142
143 /* Version of targetm.eh_frame_section for systems using collect2. */
144 void
145 collect2_eh_frame_section (void)
146 {
147 tree label = get_file_function_name ('F');
148
149 data_section ();
150 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
151 (*targetm.asm_out.globalize_label) (asm_out_file, IDENTIFIER_POINTER (label));
152 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
153 }
154
155 /* Default version of targetm.eh_frame_section. */
156 void
157 default_eh_frame_section (void)
158 {
159 #ifdef EH_FRAME_SECTION_NAME
160 named_section_eh_frame_section ();
161 #else
162 collect2_eh_frame_section ();
163 #endif
164 }
165
166 /* Array of RTXes referenced by the debugging information, which therefore
167 must be kept around forever. */
168 static GTY(()) varray_type used_rtx_varray;
169
170 /* A pointer to the base of a list of incomplete types which might be
171 completed at some later time. incomplete_types_list needs to be a VARRAY
172 because we want to tell the garbage collector about it. */
173 static GTY(()) varray_type incomplete_types;
174
175 /* A pointer to the base of a table of references to declaration
176 scopes. This table is a display which tracks the nesting
177 of declaration scopes at the current scope and containing
178 scopes. This table is used to find the proper place to
179 define type declaration DIE's. */
180 static GTY(()) varray_type decl_scope_table;
181
182 /* How to start an assembler comment. */
183 #ifndef ASM_COMMENT_START
184 #define ASM_COMMENT_START ";#"
185 #endif
186
187 typedef struct dw_cfi_struct *dw_cfi_ref;
188 typedef struct dw_fde_struct *dw_fde_ref;
189 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
190
191 /* Call frames are described using a sequence of Call Frame
192 Information instructions. The register number, offset
193 and address fields are provided as possible operands;
194 their use is selected by the opcode field. */
195
196 enum dw_cfi_oprnd_type {
197 dw_cfi_oprnd_unused,
198 dw_cfi_oprnd_reg_num,
199 dw_cfi_oprnd_offset,
200 dw_cfi_oprnd_addr,
201 dw_cfi_oprnd_loc
202 };
203
204 typedef union dw_cfi_oprnd_struct GTY(())
205 {
206 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
207 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
208 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
209 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
210 }
211 dw_cfi_oprnd;
212
213 typedef struct dw_cfi_struct GTY(())
214 {
215 dw_cfi_ref dw_cfi_next;
216 enum dwarf_call_frame_info dw_cfi_opc;
217 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
218 dw_cfi_oprnd1;
219 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
220 dw_cfi_oprnd2;
221 }
222 dw_cfi_node;
223
224 /* This is how we define the location of the CFA. We use to handle it
225 as REG + OFFSET all the time, but now it can be more complex.
226 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
227 Instead of passing around REG and OFFSET, we pass a copy
228 of this structure. */
229 typedef struct cfa_loc GTY(())
230 {
231 unsigned long reg;
232 HOST_WIDE_INT offset;
233 HOST_WIDE_INT base_offset;
234 int indirect; /* 1 if CFA is accessed via a dereference. */
235 } dw_cfa_location;
236
237 /* All call frame descriptions (FDE's) in the GCC generated DWARF
238 refer to a single Common Information Entry (CIE), defined at
239 the beginning of the .debug_frame section. This use of a single
240 CIE obviates the need to keep track of multiple CIE's
241 in the DWARF generation routines below. */
242
243 typedef struct dw_fde_struct GTY(())
244 {
245 const char *dw_fde_begin;
246 const char *dw_fde_current_label;
247 const char *dw_fde_end;
248 dw_cfi_ref dw_fde_cfi;
249 unsigned funcdef_number;
250 unsigned all_throwers_are_sibcalls : 1;
251 unsigned nothrow : 1;
252 unsigned uses_eh_lsda : 1;
253 }
254 dw_fde_node;
255
256 /* Maximum size (in bytes) of an artificially generated label. */
257 #define MAX_ARTIFICIAL_LABEL_BYTES 30
258
259 /* The size of addresses as they appear in the Dwarf 2 data.
260 Some architectures use word addresses to refer to code locations,
261 but Dwarf 2 info always uses byte addresses. On such machines,
262 Dwarf 2 addresses need to be larger than the architecture's
263 pointers. */
264 #ifndef DWARF2_ADDR_SIZE
265 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
266 #endif
267
268 /* The size in bytes of a DWARF field indicating an offset or length
269 relative to a debug info section, specified to be 4 bytes in the
270 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
271 as PTR_SIZE. */
272
273 #ifndef DWARF_OFFSET_SIZE
274 #define DWARF_OFFSET_SIZE 4
275 #endif
276
277 /* According to the (draft) DWARF 3 specification, the initial length
278 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
279 bytes are 0xffffffff, followed by the length stored in the next 8
280 bytes.
281
282 However, the SGI/MIPS ABI uses an initial length which is equal to
283 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
284
285 #ifndef DWARF_INITIAL_LENGTH_SIZE
286 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
287 #endif
288
289 #define DWARF_VERSION 2
290
291 /* Round SIZE up to the nearest BOUNDARY. */
292 #define DWARF_ROUND(SIZE,BOUNDARY) \
293 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
294
295 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
296 #ifndef DWARF_CIE_DATA_ALIGNMENT
297 #ifdef STACK_GROWS_DOWNWARD
298 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
299 #else
300 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
301 #endif
302 #endif
303
304 /* A pointer to the base of a table that contains frame description
305 information for each routine. */
306 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
307
308 /* Number of elements currently allocated for fde_table. */
309 static GTY(()) unsigned fde_table_allocated;
310
311 /* Number of elements in fde_table currently in use. */
312 static GTY(()) unsigned fde_table_in_use;
313
314 /* Size (in elements) of increments by which we may expand the
315 fde_table. */
316 #define FDE_TABLE_INCREMENT 256
317
318 /* A list of call frame insns for the CIE. */
319 static GTY(()) dw_cfi_ref cie_cfi_head;
320
321 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
322 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
323 attribute that accelerates the lookup of the FDE associated
324 with the subprogram. This variable holds the table index of the FDE
325 associated with the current function (body) definition. */
326 static unsigned current_funcdef_fde;
327 #endif
328
329 struct indirect_string_node GTY(())
330 {
331 const char *str;
332 unsigned int refcount;
333 unsigned int form;
334 char *label;
335 };
336
337 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
338
339 static GTY(()) int dw2_string_counter;
340 static GTY(()) unsigned long dwarf2out_cfi_label_num;
341
342 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
343
344 /* Forward declarations for functions defined in this file. */
345
346 static char *stripattributes (const char *);
347 static const char *dwarf_cfi_name (unsigned);
348 static dw_cfi_ref new_cfi (void);
349 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
350 static void add_fde_cfi (const char *, dw_cfi_ref);
351 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
352 static void lookup_cfa (dw_cfa_location *);
353 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
354 static void initial_return_save (rtx);
355 static HOST_WIDE_INT stack_adjust_offset (rtx);
356 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
357 static void output_call_frame_info (int);
358 static void dwarf2out_stack_adjust (rtx);
359 static void queue_reg_save (const char *, rtx, HOST_WIDE_INT);
360 static void flush_queued_reg_saves (void);
361 static bool clobbers_queued_reg_save (rtx);
362 static void dwarf2out_frame_debug_expr (rtx, const char *);
363
364 /* Support for complex CFA locations. */
365 static void output_cfa_loc (dw_cfi_ref);
366 static void get_cfa_from_loc_descr (dw_cfa_location *,
367 struct dw_loc_descr_struct *);
368 static struct dw_loc_descr_struct *build_cfa_loc
369 (dw_cfa_location *);
370 static void def_cfa_1 (const char *, dw_cfa_location *);
371
372 /* How to start an assembler comment. */
373 #ifndef ASM_COMMENT_START
374 #define ASM_COMMENT_START ";#"
375 #endif
376
377 /* Data and reference forms for relocatable data. */
378 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
379 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
380
381 #ifndef DEBUG_FRAME_SECTION
382 #define DEBUG_FRAME_SECTION ".debug_frame"
383 #endif
384
385 #ifndef FUNC_BEGIN_LABEL
386 #define FUNC_BEGIN_LABEL "LFB"
387 #endif
388
389 #ifndef FUNC_END_LABEL
390 #define FUNC_END_LABEL "LFE"
391 #endif
392
393 #define FRAME_BEGIN_LABEL "Lframe"
394 #define CIE_AFTER_SIZE_LABEL "LSCIE"
395 #define CIE_END_LABEL "LECIE"
396 #define FDE_LABEL "LSFDE"
397 #define FDE_AFTER_SIZE_LABEL "LASFDE"
398 #define FDE_END_LABEL "LEFDE"
399 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
400 #define LINE_NUMBER_END_LABEL "LELT"
401 #define LN_PROLOG_AS_LABEL "LASLTP"
402 #define LN_PROLOG_END_LABEL "LELTP"
403 #define DIE_LABEL_PREFIX "DW"
404
405 /* The DWARF 2 CFA column which tracks the return address. Normally this
406 is the column for PC, or the first column after all of the hard
407 registers. */
408 #ifndef DWARF_FRAME_RETURN_COLUMN
409 #ifdef PC_REGNUM
410 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
411 #else
412 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
413 #endif
414 #endif
415
416 /* The mapping from gcc register number to DWARF 2 CFA column number. By
417 default, we just provide columns for all registers. */
418 #ifndef DWARF_FRAME_REGNUM
419 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
420 #endif
421
422 /* The offset from the incoming value of %sp to the top of the stack frame
423 for the current function. */
424 #ifndef INCOMING_FRAME_SP_OFFSET
425 #define INCOMING_FRAME_SP_OFFSET 0
426 #endif
427 \f
428 /* Hook used by __throw. */
429
430 rtx
431 expand_builtin_dwarf_sp_column (void)
432 {
433 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
434 }
435
436 /* Return a pointer to a copy of the section string name S with all
437 attributes stripped off, and an asterisk prepended (for assemble_name). */
438
439 static inline char *
440 stripattributes (const char *s)
441 {
442 char *stripped = xmalloc (strlen (s) + 2);
443 char *p = stripped;
444
445 *p++ = '*';
446
447 while (*s && *s != ',')
448 *p++ = *s++;
449
450 *p = '\0';
451 return stripped;
452 }
453
454 /* Generate code to initialize the register size table. */
455
456 void
457 expand_builtin_init_dwarf_reg_sizes (tree address)
458 {
459 int i;
460 enum machine_mode mode = TYPE_MODE (char_type_node);
461 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
462 rtx mem = gen_rtx_MEM (BLKmode, addr);
463 bool wrote_return_column = false;
464
465 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
466 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
467 {
468 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
469 enum machine_mode save_mode = reg_raw_mode[i];
470 HOST_WIDE_INT size;
471
472 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
473 save_mode = choose_hard_reg_mode (i, 1, true);
474 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
475 {
476 if (save_mode == VOIDmode)
477 continue;
478 wrote_return_column = true;
479 }
480 size = GET_MODE_SIZE (save_mode);
481 if (offset < 0)
482 continue;
483
484 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
485 }
486
487 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
488 if (! wrote_return_column)
489 abort ();
490 i = DWARF_ALT_FRAME_RETURN_COLUMN;
491 wrote_return_column = false;
492 #else
493 i = DWARF_FRAME_RETURN_COLUMN;
494 #endif
495
496 if (! wrote_return_column)
497 {
498 enum machine_mode save_mode = Pmode;
499 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
500 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
501 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
502 }
503 }
504
505 /* Convert a DWARF call frame info. operation to its string name */
506
507 static const char *
508 dwarf_cfi_name (unsigned int cfi_opc)
509 {
510 switch (cfi_opc)
511 {
512 case DW_CFA_advance_loc:
513 return "DW_CFA_advance_loc";
514 case DW_CFA_offset:
515 return "DW_CFA_offset";
516 case DW_CFA_restore:
517 return "DW_CFA_restore";
518 case DW_CFA_nop:
519 return "DW_CFA_nop";
520 case DW_CFA_set_loc:
521 return "DW_CFA_set_loc";
522 case DW_CFA_advance_loc1:
523 return "DW_CFA_advance_loc1";
524 case DW_CFA_advance_loc2:
525 return "DW_CFA_advance_loc2";
526 case DW_CFA_advance_loc4:
527 return "DW_CFA_advance_loc4";
528 case DW_CFA_offset_extended:
529 return "DW_CFA_offset_extended";
530 case DW_CFA_restore_extended:
531 return "DW_CFA_restore_extended";
532 case DW_CFA_undefined:
533 return "DW_CFA_undefined";
534 case DW_CFA_same_value:
535 return "DW_CFA_same_value";
536 case DW_CFA_register:
537 return "DW_CFA_register";
538 case DW_CFA_remember_state:
539 return "DW_CFA_remember_state";
540 case DW_CFA_restore_state:
541 return "DW_CFA_restore_state";
542 case DW_CFA_def_cfa:
543 return "DW_CFA_def_cfa";
544 case DW_CFA_def_cfa_register:
545 return "DW_CFA_def_cfa_register";
546 case DW_CFA_def_cfa_offset:
547 return "DW_CFA_def_cfa_offset";
548
549 /* DWARF 3 */
550 case DW_CFA_def_cfa_expression:
551 return "DW_CFA_def_cfa_expression";
552 case DW_CFA_expression:
553 return "DW_CFA_expression";
554 case DW_CFA_offset_extended_sf:
555 return "DW_CFA_offset_extended_sf";
556 case DW_CFA_def_cfa_sf:
557 return "DW_CFA_def_cfa_sf";
558 case DW_CFA_def_cfa_offset_sf:
559 return "DW_CFA_def_cfa_offset_sf";
560
561 /* SGI/MIPS specific */
562 case DW_CFA_MIPS_advance_loc8:
563 return "DW_CFA_MIPS_advance_loc8";
564
565 /* GNU extensions */
566 case DW_CFA_GNU_window_save:
567 return "DW_CFA_GNU_window_save";
568 case DW_CFA_GNU_args_size:
569 return "DW_CFA_GNU_args_size";
570 case DW_CFA_GNU_negative_offset_extended:
571 return "DW_CFA_GNU_negative_offset_extended";
572
573 default:
574 return "DW_CFA_<unknown>";
575 }
576 }
577
578 /* Return a pointer to a newly allocated Call Frame Instruction. */
579
580 static inline dw_cfi_ref
581 new_cfi (void)
582 {
583 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
584
585 cfi->dw_cfi_next = NULL;
586 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
587 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
588
589 return cfi;
590 }
591
592 /* Add a Call Frame Instruction to list of instructions. */
593
594 static inline void
595 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
596 {
597 dw_cfi_ref *p;
598
599 /* Find the end of the chain. */
600 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
601 ;
602
603 *p = cfi;
604 }
605
606 /* Generate a new label for the CFI info to refer to. */
607
608 char *
609 dwarf2out_cfi_label (void)
610 {
611 static char label[20];
612
613 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
614 ASM_OUTPUT_LABEL (asm_out_file, label);
615 return label;
616 }
617
618 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
619 or to the CIE if LABEL is NULL. */
620
621 static void
622 add_fde_cfi (const char *label, dw_cfi_ref cfi)
623 {
624 if (label)
625 {
626 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
627
628 if (*label == 0)
629 label = dwarf2out_cfi_label ();
630
631 if (fde->dw_fde_current_label == NULL
632 || strcmp (label, fde->dw_fde_current_label) != 0)
633 {
634 dw_cfi_ref xcfi;
635
636 fde->dw_fde_current_label = label = xstrdup (label);
637
638 /* Set the location counter to the new label. */
639 xcfi = new_cfi ();
640 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
641 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
642 add_cfi (&fde->dw_fde_cfi, xcfi);
643 }
644
645 add_cfi (&fde->dw_fde_cfi, cfi);
646 }
647
648 else
649 add_cfi (&cie_cfi_head, cfi);
650 }
651
652 /* Subroutine of lookup_cfa. */
653
654 static inline void
655 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
656 {
657 switch (cfi->dw_cfi_opc)
658 {
659 case DW_CFA_def_cfa_offset:
660 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
661 break;
662 case DW_CFA_def_cfa_register:
663 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
664 break;
665 case DW_CFA_def_cfa:
666 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
667 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
668 break;
669 case DW_CFA_def_cfa_expression:
670 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
671 break;
672 default:
673 break;
674 }
675 }
676
677 /* Find the previous value for the CFA. */
678
679 static void
680 lookup_cfa (dw_cfa_location *loc)
681 {
682 dw_cfi_ref cfi;
683
684 loc->reg = (unsigned long) -1;
685 loc->offset = 0;
686 loc->indirect = 0;
687 loc->base_offset = 0;
688
689 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
690 lookup_cfa_1 (cfi, loc);
691
692 if (fde_table_in_use)
693 {
694 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
695 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
696 lookup_cfa_1 (cfi, loc);
697 }
698 }
699
700 /* The current rule for calculating the DWARF2 canonical frame address. */
701 static dw_cfa_location cfa;
702
703 /* The register used for saving registers to the stack, and its offset
704 from the CFA. */
705 static dw_cfa_location cfa_store;
706
707 /* The running total of the size of arguments pushed onto the stack. */
708 static HOST_WIDE_INT args_size;
709
710 /* The last args_size we actually output. */
711 static HOST_WIDE_INT old_args_size;
712
713 /* Entry point to update the canonical frame address (CFA).
714 LABEL is passed to add_fde_cfi. The value of CFA is now to be
715 calculated from REG+OFFSET. */
716
717 void
718 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
719 {
720 dw_cfa_location loc;
721 loc.indirect = 0;
722 loc.base_offset = 0;
723 loc.reg = reg;
724 loc.offset = offset;
725 def_cfa_1 (label, &loc);
726 }
727
728 /* This routine does the actual work. The CFA is now calculated from
729 the dw_cfa_location structure. */
730
731 static void
732 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
733 {
734 dw_cfi_ref cfi;
735 dw_cfa_location old_cfa, loc;
736
737 cfa = *loc_p;
738 loc = *loc_p;
739
740 if (cfa_store.reg == loc.reg && loc.indirect == 0)
741 cfa_store.offset = loc.offset;
742
743 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
744 lookup_cfa (&old_cfa);
745
746 /* If nothing changed, no need to issue any call frame instructions. */
747 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
748 && loc.indirect == old_cfa.indirect
749 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
750 return;
751
752 cfi = new_cfi ();
753
754 if (loc.reg == old_cfa.reg && !loc.indirect)
755 {
756 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
757 indicating the CFA register did not change but the offset
758 did. */
759 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
760 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
761 }
762
763 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
764 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
765 && !loc.indirect)
766 {
767 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
768 indicating the CFA register has changed to <register> but the
769 offset has not changed. */
770 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
771 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
772 }
773 #endif
774
775 else if (loc.indirect == 0)
776 {
777 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
778 indicating the CFA register has changed to <register> with
779 the specified offset. */
780 cfi->dw_cfi_opc = DW_CFA_def_cfa;
781 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
782 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
783 }
784 else
785 {
786 /* Construct a DW_CFA_def_cfa_expression instruction to
787 calculate the CFA using a full location expression since no
788 register-offset pair is available. */
789 struct dw_loc_descr_struct *loc_list;
790
791 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
792 loc_list = build_cfa_loc (&loc);
793 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
794 }
795
796 add_fde_cfi (label, cfi);
797 }
798
799 /* Add the CFI for saving a register. REG is the CFA column number.
800 LABEL is passed to add_fde_cfi.
801 If SREG is -1, the register is saved at OFFSET from the CFA;
802 otherwise it is saved in SREG. */
803
804 static void
805 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
806 {
807 dw_cfi_ref cfi = new_cfi ();
808
809 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
810
811 /* The following comparison is correct. -1 is used to indicate that
812 the value isn't a register number. */
813 if (sreg == (unsigned int) -1)
814 {
815 if (reg & ~0x3f)
816 /* The register number won't fit in 6 bits, so we have to use
817 the long form. */
818 cfi->dw_cfi_opc = DW_CFA_offset_extended;
819 else
820 cfi->dw_cfi_opc = DW_CFA_offset;
821
822 #ifdef ENABLE_CHECKING
823 {
824 /* If we get an offset that is not a multiple of
825 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
826 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
827 description. */
828 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
829
830 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
831 abort ();
832 }
833 #endif
834 offset /= DWARF_CIE_DATA_ALIGNMENT;
835 if (offset < 0)
836 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
837
838 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
839 }
840 else if (sreg == reg)
841 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
842 return;
843 else
844 {
845 cfi->dw_cfi_opc = DW_CFA_register;
846 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
847 }
848
849 add_fde_cfi (label, cfi);
850 }
851
852 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
853 This CFI tells the unwinder that it needs to restore the window registers
854 from the previous frame's window save area.
855
856 ??? Perhaps we should note in the CIE where windows are saved (instead of
857 assuming 0(cfa)) and what registers are in the window. */
858
859 void
860 dwarf2out_window_save (const char *label)
861 {
862 dw_cfi_ref cfi = new_cfi ();
863
864 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
865 add_fde_cfi (label, cfi);
866 }
867
868 /* Add a CFI to update the running total of the size of arguments
869 pushed onto the stack. */
870
871 void
872 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
873 {
874 dw_cfi_ref cfi;
875
876 if (size == old_args_size)
877 return;
878
879 old_args_size = size;
880
881 cfi = new_cfi ();
882 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
883 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
884 add_fde_cfi (label, cfi);
885 }
886
887 /* Entry point for saving a register to the stack. REG is the GCC register
888 number. LABEL and OFFSET are passed to reg_save. */
889
890 void
891 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
892 {
893 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
894 }
895
896 /* Entry point for saving the return address in the stack.
897 LABEL and OFFSET are passed to reg_save. */
898
899 void
900 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
901 {
902 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
903 }
904
905 /* Entry point for saving the return address in a register.
906 LABEL and SREG are passed to reg_save. */
907
908 void
909 dwarf2out_return_reg (const char *label, unsigned int sreg)
910 {
911 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
912 }
913
914 /* Record the initial position of the return address. RTL is
915 INCOMING_RETURN_ADDR_RTX. */
916
917 static void
918 initial_return_save (rtx rtl)
919 {
920 unsigned int reg = (unsigned int) -1;
921 HOST_WIDE_INT offset = 0;
922
923 switch (GET_CODE (rtl))
924 {
925 case REG:
926 /* RA is in a register. */
927 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
928 break;
929
930 case MEM:
931 /* RA is on the stack. */
932 rtl = XEXP (rtl, 0);
933 switch (GET_CODE (rtl))
934 {
935 case REG:
936 if (REGNO (rtl) != STACK_POINTER_REGNUM)
937 abort ();
938 offset = 0;
939 break;
940
941 case PLUS:
942 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
943 abort ();
944 offset = INTVAL (XEXP (rtl, 1));
945 break;
946
947 case MINUS:
948 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
949 abort ();
950 offset = -INTVAL (XEXP (rtl, 1));
951 break;
952
953 default:
954 abort ();
955 }
956
957 break;
958
959 case PLUS:
960 /* The return address is at some offset from any value we can
961 actually load. For instance, on the SPARC it is in %i7+8. Just
962 ignore the offset for now; it doesn't matter for unwinding frames. */
963 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
964 abort ();
965 initial_return_save (XEXP (rtl, 0));
966 return;
967
968 default:
969 abort ();
970 }
971
972 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
973 }
974
975 /* Given a SET, calculate the amount of stack adjustment it
976 contains. */
977
978 static HOST_WIDE_INT
979 stack_adjust_offset (rtx pattern)
980 {
981 rtx src = SET_SRC (pattern);
982 rtx dest = SET_DEST (pattern);
983 HOST_WIDE_INT offset = 0;
984 enum rtx_code code;
985
986 if (dest == stack_pointer_rtx)
987 {
988 /* (set (reg sp) (plus (reg sp) (const_int))) */
989 code = GET_CODE (src);
990 if (! (code == PLUS || code == MINUS)
991 || XEXP (src, 0) != stack_pointer_rtx
992 || GET_CODE (XEXP (src, 1)) != CONST_INT)
993 return 0;
994
995 offset = INTVAL (XEXP (src, 1));
996 if (code == PLUS)
997 offset = -offset;
998 }
999 else if (GET_CODE (dest) == MEM)
1000 {
1001 /* (set (mem (pre_dec (reg sp))) (foo)) */
1002 src = XEXP (dest, 0);
1003 code = GET_CODE (src);
1004
1005 switch (code)
1006 {
1007 case PRE_MODIFY:
1008 case POST_MODIFY:
1009 if (XEXP (src, 0) == stack_pointer_rtx)
1010 {
1011 rtx val = XEXP (XEXP (src, 1), 1);
1012 /* We handle only adjustments by constant amount. */
1013 if (GET_CODE (XEXP (src, 1)) != PLUS ||
1014 GET_CODE (val) != CONST_INT)
1015 abort ();
1016 offset = -INTVAL (val);
1017 break;
1018 }
1019 return 0;
1020
1021 case PRE_DEC:
1022 case POST_DEC:
1023 if (XEXP (src, 0) == stack_pointer_rtx)
1024 {
1025 offset = GET_MODE_SIZE (GET_MODE (dest));
1026 break;
1027 }
1028 return 0;
1029
1030 case PRE_INC:
1031 case POST_INC:
1032 if (XEXP (src, 0) == stack_pointer_rtx)
1033 {
1034 offset = -GET_MODE_SIZE (GET_MODE (dest));
1035 break;
1036 }
1037 return 0;
1038
1039 default:
1040 return 0;
1041 }
1042 }
1043 else
1044 return 0;
1045
1046 return offset;
1047 }
1048
1049 /* Check INSN to see if it looks like a push or a stack adjustment, and
1050 make a note of it if it does. EH uses this information to find out how
1051 much extra space it needs to pop off the stack. */
1052
1053 static void
1054 dwarf2out_stack_adjust (rtx insn)
1055 {
1056 HOST_WIDE_INT offset;
1057 const char *label;
1058 int i;
1059
1060 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1061 {
1062 /* Extract the size of the args from the CALL rtx itself. */
1063 insn = PATTERN (insn);
1064 if (GET_CODE (insn) == PARALLEL)
1065 insn = XVECEXP (insn, 0, 0);
1066 if (GET_CODE (insn) == SET)
1067 insn = SET_SRC (insn);
1068 if (GET_CODE (insn) != CALL)
1069 abort ();
1070
1071 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1072 return;
1073 }
1074
1075 /* If only calls can throw, and we have a frame pointer,
1076 save up adjustments until we see the CALL_INSN. */
1077 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1078 return;
1079
1080 if (GET_CODE (insn) == BARRIER)
1081 {
1082 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1083 the compiler will have already emitted a stack adjustment, but
1084 doesn't bother for calls to noreturn functions. */
1085 #ifdef STACK_GROWS_DOWNWARD
1086 offset = -args_size;
1087 #else
1088 offset = args_size;
1089 #endif
1090 }
1091 else if (GET_CODE (PATTERN (insn)) == SET)
1092 offset = stack_adjust_offset (PATTERN (insn));
1093 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1094 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1095 {
1096 /* There may be stack adjustments inside compound insns. Search
1097 for them. */
1098 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1099 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1100 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1101 }
1102 else
1103 return;
1104
1105 if (offset == 0)
1106 return;
1107
1108 if (cfa.reg == STACK_POINTER_REGNUM)
1109 cfa.offset += offset;
1110
1111 #ifndef STACK_GROWS_DOWNWARD
1112 offset = -offset;
1113 #endif
1114
1115 args_size += offset;
1116 if (args_size < 0)
1117 args_size = 0;
1118
1119 label = dwarf2out_cfi_label ();
1120 def_cfa_1 (label, &cfa);
1121 dwarf2out_args_size (label, args_size);
1122 }
1123
1124 #endif
1125
1126 /* We delay emitting a register save until either (a) we reach the end
1127 of the prologue or (b) the register is clobbered. This clusters
1128 register saves so that there are fewer pc advances. */
1129
1130 struct queued_reg_save GTY(())
1131 {
1132 struct queued_reg_save *next;
1133 rtx reg;
1134 HOST_WIDE_INT cfa_offset;
1135 };
1136
1137 static GTY(()) struct queued_reg_save *queued_reg_saves;
1138
1139 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1140 static const char *last_reg_save_label;
1141
1142 static void
1143 queue_reg_save (const char *label, rtx reg, HOST_WIDE_INT offset)
1144 {
1145 struct queued_reg_save *q = ggc_alloc (sizeof (*q));
1146
1147 q->next = queued_reg_saves;
1148 q->reg = reg;
1149 q->cfa_offset = offset;
1150 queued_reg_saves = q;
1151
1152 last_reg_save_label = label;
1153 }
1154
1155 static void
1156 flush_queued_reg_saves (void)
1157 {
1158 struct queued_reg_save *q, *next;
1159
1160 for (q = queued_reg_saves; q; q = next)
1161 {
1162 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1163 next = q->next;
1164 }
1165
1166 queued_reg_saves = NULL;
1167 last_reg_save_label = NULL;
1168 }
1169
1170 static bool
1171 clobbers_queued_reg_save (rtx insn)
1172 {
1173 struct queued_reg_save *q;
1174
1175 for (q = queued_reg_saves; q; q = q->next)
1176 if (modified_in_p (q->reg, insn))
1177 return true;
1178
1179 return false;
1180 }
1181
1182
1183 /* A temporary register holding an integral value used in adjusting SP
1184 or setting up the store_reg. The "offset" field holds the integer
1185 value, not an offset. */
1186 static dw_cfa_location cfa_temp;
1187
1188 /* Record call frame debugging information for an expression EXPR,
1189 which either sets SP or FP (adjusting how we calculate the frame
1190 address) or saves a register to the stack. LABEL indicates the
1191 address of EXPR.
1192
1193 This function encodes a state machine mapping rtxes to actions on
1194 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1195 users need not read the source code.
1196
1197 The High-Level Picture
1198
1199 Changes in the register we use to calculate the CFA: Currently we
1200 assume that if you copy the CFA register into another register, we
1201 should take the other one as the new CFA register; this seems to
1202 work pretty well. If it's wrong for some target, it's simple
1203 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1204
1205 Changes in the register we use for saving registers to the stack:
1206 This is usually SP, but not always. Again, we deduce that if you
1207 copy SP into another register (and SP is not the CFA register),
1208 then the new register is the one we will be using for register
1209 saves. This also seems to work.
1210
1211 Register saves: There's not much guesswork about this one; if
1212 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1213 register save, and the register used to calculate the destination
1214 had better be the one we think we're using for this purpose.
1215
1216 Except: If the register being saved is the CFA register, and the
1217 offset is nonzero, we are saving the CFA, so we assume we have to
1218 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1219 the intent is to save the value of SP from the previous frame.
1220
1221 Invariants / Summaries of Rules
1222
1223 cfa current rule for calculating the CFA. It usually
1224 consists of a register and an offset.
1225 cfa_store register used by prologue code to save things to the stack
1226 cfa_store.offset is the offset from the value of
1227 cfa_store.reg to the actual CFA
1228 cfa_temp register holding an integral value. cfa_temp.offset
1229 stores the value, which will be used to adjust the
1230 stack pointer. cfa_temp is also used like cfa_store,
1231 to track stores to the stack via fp or a temp reg.
1232
1233 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1234 with cfa.reg as the first operand changes the cfa.reg and its
1235 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1236 cfa_temp.offset.
1237
1238 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1239 expression yielding a constant. This sets cfa_temp.reg
1240 and cfa_temp.offset.
1241
1242 Rule 5: Create a new register cfa_store used to save items to the
1243 stack.
1244
1245 Rules 10-14: Save a register to the stack. Define offset as the
1246 difference of the original location and cfa_store's
1247 location (or cfa_temp's location if cfa_temp is used).
1248
1249 The Rules
1250
1251 "{a,b}" indicates a choice of a xor b.
1252 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1253
1254 Rule 1:
1255 (set <reg1> <reg2>:cfa.reg)
1256 effects: cfa.reg = <reg1>
1257 cfa.offset unchanged
1258 cfa_temp.reg = <reg1>
1259 cfa_temp.offset = cfa.offset
1260
1261 Rule 2:
1262 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1263 {<const_int>,<reg>:cfa_temp.reg}))
1264 effects: cfa.reg = sp if fp used
1265 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1266 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1267 if cfa_store.reg==sp
1268
1269 Rule 3:
1270 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1271 effects: cfa.reg = fp
1272 cfa_offset += +/- <const_int>
1273
1274 Rule 4:
1275 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1276 constraints: <reg1> != fp
1277 <reg1> != sp
1278 effects: cfa.reg = <reg1>
1279 cfa_temp.reg = <reg1>
1280 cfa_temp.offset = cfa.offset
1281
1282 Rule 5:
1283 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1284 constraints: <reg1> != fp
1285 <reg1> != sp
1286 effects: cfa_store.reg = <reg1>
1287 cfa_store.offset = cfa.offset - cfa_temp.offset
1288
1289 Rule 6:
1290 (set <reg> <const_int>)
1291 effects: cfa_temp.reg = <reg>
1292 cfa_temp.offset = <const_int>
1293
1294 Rule 7:
1295 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1296 effects: cfa_temp.reg = <reg1>
1297 cfa_temp.offset |= <const_int>
1298
1299 Rule 8:
1300 (set <reg> (high <exp>))
1301 effects: none
1302
1303 Rule 9:
1304 (set <reg> (lo_sum <exp> <const_int>))
1305 effects: cfa_temp.reg = <reg>
1306 cfa_temp.offset = <const_int>
1307
1308 Rule 10:
1309 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1310 effects: cfa_store.offset -= <const_int>
1311 cfa.offset = cfa_store.offset if cfa.reg == sp
1312 cfa.reg = sp
1313 cfa.base_offset = -cfa_store.offset
1314
1315 Rule 11:
1316 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1317 effects: cfa_store.offset += -/+ mode_size(mem)
1318 cfa.offset = cfa_store.offset if cfa.reg == sp
1319 cfa.reg = sp
1320 cfa.base_offset = -cfa_store.offset
1321
1322 Rule 12:
1323 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1324
1325 <reg2>)
1326 effects: cfa.reg = <reg1>
1327 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1328
1329 Rule 13:
1330 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1331 effects: cfa.reg = <reg1>
1332 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1333
1334 Rule 14:
1335 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1336 effects: cfa.reg = <reg1>
1337 cfa.base_offset = -cfa_temp.offset
1338 cfa_temp.offset -= mode_size(mem) */
1339
1340 static void
1341 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1342 {
1343 rtx src, dest;
1344 HOST_WIDE_INT offset;
1345
1346 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1347 the PARALLEL independently. The first element is always processed if
1348 it is a SET. This is for backward compatibility. Other elements
1349 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1350 flag is set in them. */
1351 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1352 {
1353 int par_index;
1354 int limit = XVECLEN (expr, 0);
1355
1356 for (par_index = 0; par_index < limit; par_index++)
1357 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1358 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1359 || par_index == 0))
1360 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1361
1362 return;
1363 }
1364
1365 if (GET_CODE (expr) != SET)
1366 abort ();
1367
1368 src = SET_SRC (expr);
1369 dest = SET_DEST (expr);
1370
1371 switch (GET_CODE (dest))
1372 {
1373 case REG:
1374 /* Rule 1 */
1375 /* Update the CFA rule wrt SP or FP. Make sure src is
1376 relative to the current CFA register. */
1377 switch (GET_CODE (src))
1378 {
1379 /* Setting FP from SP. */
1380 case REG:
1381 if (cfa.reg == (unsigned) REGNO (src))
1382 /* OK. */
1383 ;
1384 else
1385 abort ();
1386
1387 /* We used to require that dest be either SP or FP, but the
1388 ARM copies SP to a temporary register, and from there to
1389 FP. So we just rely on the backends to only set
1390 RTX_FRAME_RELATED_P on appropriate insns. */
1391 cfa.reg = REGNO (dest);
1392 cfa_temp.reg = cfa.reg;
1393 cfa_temp.offset = cfa.offset;
1394 break;
1395
1396 case PLUS:
1397 case MINUS:
1398 case LO_SUM:
1399 if (dest == stack_pointer_rtx)
1400 {
1401 /* Rule 2 */
1402 /* Adjusting SP. */
1403 switch (GET_CODE (XEXP (src, 1)))
1404 {
1405 case CONST_INT:
1406 offset = INTVAL (XEXP (src, 1));
1407 break;
1408 case REG:
1409 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1410 abort ();
1411 offset = cfa_temp.offset;
1412 break;
1413 default:
1414 abort ();
1415 }
1416
1417 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1418 {
1419 /* Restoring SP from FP in the epilogue. */
1420 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1421 abort ();
1422 cfa.reg = STACK_POINTER_REGNUM;
1423 }
1424 else if (GET_CODE (src) == LO_SUM)
1425 /* Assume we've set the source reg of the LO_SUM from sp. */
1426 ;
1427 else if (XEXP (src, 0) != stack_pointer_rtx)
1428 abort ();
1429
1430 if (GET_CODE (src) != MINUS)
1431 offset = -offset;
1432 if (cfa.reg == STACK_POINTER_REGNUM)
1433 cfa.offset += offset;
1434 if (cfa_store.reg == STACK_POINTER_REGNUM)
1435 cfa_store.offset += offset;
1436 }
1437 else if (dest == hard_frame_pointer_rtx)
1438 {
1439 /* Rule 3 */
1440 /* Either setting the FP from an offset of the SP,
1441 or adjusting the FP */
1442 if (! frame_pointer_needed)
1443 abort ();
1444
1445 if (GET_CODE (XEXP (src, 0)) == REG
1446 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1447 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1448 {
1449 offset = INTVAL (XEXP (src, 1));
1450 if (GET_CODE (src) != MINUS)
1451 offset = -offset;
1452 cfa.offset += offset;
1453 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1454 }
1455 else
1456 abort ();
1457 }
1458 else
1459 {
1460 if (GET_CODE (src) == MINUS)
1461 abort ();
1462
1463 /* Rule 4 */
1464 if (GET_CODE (XEXP (src, 0)) == REG
1465 && REGNO (XEXP (src, 0)) == cfa.reg
1466 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1467 {
1468 /* Setting a temporary CFA register that will be copied
1469 into the FP later on. */
1470 offset = - INTVAL (XEXP (src, 1));
1471 cfa.offset += offset;
1472 cfa.reg = REGNO (dest);
1473 /* Or used to save regs to the stack. */
1474 cfa_temp.reg = cfa.reg;
1475 cfa_temp.offset = cfa.offset;
1476 }
1477
1478 /* Rule 5 */
1479 else if (GET_CODE (XEXP (src, 0)) == REG
1480 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1481 && XEXP (src, 1) == stack_pointer_rtx)
1482 {
1483 /* Setting a scratch register that we will use instead
1484 of SP for saving registers to the stack. */
1485 if (cfa.reg != STACK_POINTER_REGNUM)
1486 abort ();
1487 cfa_store.reg = REGNO (dest);
1488 cfa_store.offset = cfa.offset - cfa_temp.offset;
1489 }
1490
1491 /* Rule 9 */
1492 else if (GET_CODE (src) == LO_SUM
1493 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1494 {
1495 cfa_temp.reg = REGNO (dest);
1496 cfa_temp.offset = INTVAL (XEXP (src, 1));
1497 }
1498 else
1499 abort ();
1500 }
1501 break;
1502
1503 /* Rule 6 */
1504 case CONST_INT:
1505 cfa_temp.reg = REGNO (dest);
1506 cfa_temp.offset = INTVAL (src);
1507 break;
1508
1509 /* Rule 7 */
1510 case IOR:
1511 if (GET_CODE (XEXP (src, 0)) != REG
1512 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1513 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1514 abort ();
1515
1516 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1517 cfa_temp.reg = REGNO (dest);
1518 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1519 break;
1520
1521 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1522 which will fill in all of the bits. */
1523 /* Rule 8 */
1524 case HIGH:
1525 break;
1526
1527 default:
1528 abort ();
1529 }
1530
1531 def_cfa_1 (label, &cfa);
1532 break;
1533
1534 case MEM:
1535 if (GET_CODE (src) != REG)
1536 abort ();
1537
1538 /* Saving a register to the stack. Make sure dest is relative to the
1539 CFA register. */
1540 switch (GET_CODE (XEXP (dest, 0)))
1541 {
1542 /* Rule 10 */
1543 /* With a push. */
1544 case PRE_MODIFY:
1545 /* We can't handle variable size modifications. */
1546 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1547 abort ();
1548 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1549
1550 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1551 || cfa_store.reg != STACK_POINTER_REGNUM)
1552 abort ();
1553
1554 cfa_store.offset += offset;
1555 if (cfa.reg == STACK_POINTER_REGNUM)
1556 cfa.offset = cfa_store.offset;
1557
1558 offset = -cfa_store.offset;
1559 break;
1560
1561 /* Rule 11 */
1562 case PRE_INC:
1563 case PRE_DEC:
1564 offset = GET_MODE_SIZE (GET_MODE (dest));
1565 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1566 offset = -offset;
1567
1568 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1569 || cfa_store.reg != STACK_POINTER_REGNUM)
1570 abort ();
1571
1572 cfa_store.offset += offset;
1573 if (cfa.reg == STACK_POINTER_REGNUM)
1574 cfa.offset = cfa_store.offset;
1575
1576 offset = -cfa_store.offset;
1577 break;
1578
1579 /* Rule 12 */
1580 /* With an offset. */
1581 case PLUS:
1582 case MINUS:
1583 case LO_SUM:
1584 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1585 abort ();
1586 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1587 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1588 offset = -offset;
1589
1590 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1591 offset -= cfa_store.offset;
1592 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1593 offset -= cfa_temp.offset;
1594 else
1595 abort ();
1596 break;
1597
1598 /* Rule 13 */
1599 /* Without an offset. */
1600 case REG:
1601 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1602 offset = -cfa_store.offset;
1603 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1604 offset = -cfa_temp.offset;
1605 else
1606 abort ();
1607 break;
1608
1609 /* Rule 14 */
1610 case POST_INC:
1611 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1612 abort ();
1613 offset = -cfa_temp.offset;
1614 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1615 break;
1616
1617 default:
1618 abort ();
1619 }
1620
1621 if (REGNO (src) != STACK_POINTER_REGNUM
1622 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1623 && (unsigned) REGNO (src) == cfa.reg)
1624 {
1625 /* We're storing the current CFA reg into the stack. */
1626
1627 if (cfa.offset == 0)
1628 {
1629 /* If the source register is exactly the CFA, assume
1630 we're saving SP like any other register; this happens
1631 on the ARM. */
1632 def_cfa_1 (label, &cfa);
1633 queue_reg_save (label, stack_pointer_rtx, offset);
1634 break;
1635 }
1636 else
1637 {
1638 /* Otherwise, we'll need to look in the stack to
1639 calculate the CFA. */
1640 rtx x = XEXP (dest, 0);
1641
1642 if (GET_CODE (x) != REG)
1643 x = XEXP (x, 0);
1644 if (GET_CODE (x) != REG)
1645 abort ();
1646
1647 cfa.reg = REGNO (x);
1648 cfa.base_offset = offset;
1649 cfa.indirect = 1;
1650 def_cfa_1 (label, &cfa);
1651 break;
1652 }
1653 }
1654
1655 def_cfa_1 (label, &cfa);
1656 queue_reg_save (label, src, offset);
1657 break;
1658
1659 default:
1660 abort ();
1661 }
1662 }
1663
1664 /* Record call frame debugging information for INSN, which either
1665 sets SP or FP (adjusting how we calculate the frame address) or saves a
1666 register to the stack. If INSN is NULL_RTX, initialize our state. */
1667
1668 void
1669 dwarf2out_frame_debug (rtx insn)
1670 {
1671 const char *label;
1672 rtx src;
1673
1674 if (insn == NULL_RTX)
1675 {
1676 /* Flush any queued register saves. */
1677 flush_queued_reg_saves ();
1678
1679 /* Set up state for generating call frame debug info. */
1680 lookup_cfa (&cfa);
1681 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1682 abort ();
1683
1684 cfa.reg = STACK_POINTER_REGNUM;
1685 cfa_store = cfa;
1686 cfa_temp.reg = -1;
1687 cfa_temp.offset = 0;
1688 return;
1689 }
1690
1691 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1692 flush_queued_reg_saves ();
1693
1694 if (! RTX_FRAME_RELATED_P (insn))
1695 {
1696 if (!ACCUMULATE_OUTGOING_ARGS)
1697 dwarf2out_stack_adjust (insn);
1698
1699 return;
1700 }
1701
1702 label = dwarf2out_cfi_label ();
1703 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1704 if (src)
1705 insn = XEXP (src, 0);
1706 else
1707 insn = PATTERN (insn);
1708
1709 dwarf2out_frame_debug_expr (insn, label);
1710 }
1711
1712 #endif
1713
1714 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1715 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1716 (enum dwarf_call_frame_info cfi);
1717
1718 static enum dw_cfi_oprnd_type
1719 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1720 {
1721 switch (cfi)
1722 {
1723 case DW_CFA_nop:
1724 case DW_CFA_GNU_window_save:
1725 return dw_cfi_oprnd_unused;
1726
1727 case DW_CFA_set_loc:
1728 case DW_CFA_advance_loc1:
1729 case DW_CFA_advance_loc2:
1730 case DW_CFA_advance_loc4:
1731 case DW_CFA_MIPS_advance_loc8:
1732 return dw_cfi_oprnd_addr;
1733
1734 case DW_CFA_offset:
1735 case DW_CFA_offset_extended:
1736 case DW_CFA_def_cfa:
1737 case DW_CFA_offset_extended_sf:
1738 case DW_CFA_def_cfa_sf:
1739 case DW_CFA_restore_extended:
1740 case DW_CFA_undefined:
1741 case DW_CFA_same_value:
1742 case DW_CFA_def_cfa_register:
1743 case DW_CFA_register:
1744 return dw_cfi_oprnd_reg_num;
1745
1746 case DW_CFA_def_cfa_offset:
1747 case DW_CFA_GNU_args_size:
1748 case DW_CFA_def_cfa_offset_sf:
1749 return dw_cfi_oprnd_offset;
1750
1751 case DW_CFA_def_cfa_expression:
1752 case DW_CFA_expression:
1753 return dw_cfi_oprnd_loc;
1754
1755 default:
1756 abort ();
1757 }
1758 }
1759
1760 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1761 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1762 (enum dwarf_call_frame_info cfi);
1763
1764 static enum dw_cfi_oprnd_type
1765 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1766 {
1767 switch (cfi)
1768 {
1769 case DW_CFA_def_cfa:
1770 case DW_CFA_def_cfa_sf:
1771 case DW_CFA_offset:
1772 case DW_CFA_offset_extended_sf:
1773 case DW_CFA_offset_extended:
1774 return dw_cfi_oprnd_offset;
1775
1776 case DW_CFA_register:
1777 return dw_cfi_oprnd_reg_num;
1778
1779 default:
1780 return dw_cfi_oprnd_unused;
1781 }
1782 }
1783
1784 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1785
1786 /* Output a Call Frame Information opcode and its operand(s). */
1787
1788 static void
1789 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1790 {
1791 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1792 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1793 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1794 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1795 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1796 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1797 {
1798 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1799 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1800 "DW_CFA_offset, column 0x%lx",
1801 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1802 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1803 }
1804 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1805 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1806 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1807 "DW_CFA_restore, column 0x%lx",
1808 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1809 else
1810 {
1811 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1812 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1813
1814 switch (cfi->dw_cfi_opc)
1815 {
1816 case DW_CFA_set_loc:
1817 if (for_eh)
1818 dw2_asm_output_encoded_addr_rtx (
1819 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1820 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1821 NULL);
1822 else
1823 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1824 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1825 break;
1826
1827 case DW_CFA_advance_loc1:
1828 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1829 fde->dw_fde_current_label, NULL);
1830 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1831 break;
1832
1833 case DW_CFA_advance_loc2:
1834 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1835 fde->dw_fde_current_label, NULL);
1836 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1837 break;
1838
1839 case DW_CFA_advance_loc4:
1840 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1841 fde->dw_fde_current_label, NULL);
1842 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1843 break;
1844
1845 case DW_CFA_MIPS_advance_loc8:
1846 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1847 fde->dw_fde_current_label, NULL);
1848 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1849 break;
1850
1851 case DW_CFA_offset_extended:
1852 case DW_CFA_def_cfa:
1853 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1854 NULL);
1855 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1856 break;
1857
1858 case DW_CFA_offset_extended_sf:
1859 case DW_CFA_def_cfa_sf:
1860 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1861 NULL);
1862 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1863 break;
1864
1865 case DW_CFA_restore_extended:
1866 case DW_CFA_undefined:
1867 case DW_CFA_same_value:
1868 case DW_CFA_def_cfa_register:
1869 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1870 NULL);
1871 break;
1872
1873 case DW_CFA_register:
1874 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1875 NULL);
1876 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_reg_num,
1877 NULL);
1878 break;
1879
1880 case DW_CFA_def_cfa_offset:
1881 case DW_CFA_GNU_args_size:
1882 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1883 break;
1884
1885 case DW_CFA_def_cfa_offset_sf:
1886 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1887 break;
1888
1889 case DW_CFA_GNU_window_save:
1890 break;
1891
1892 case DW_CFA_def_cfa_expression:
1893 case DW_CFA_expression:
1894 output_cfa_loc (cfi);
1895 break;
1896
1897 case DW_CFA_GNU_negative_offset_extended:
1898 /* Obsoleted by DW_CFA_offset_extended_sf. */
1899 abort ();
1900
1901 default:
1902 break;
1903 }
1904 }
1905 }
1906
1907 /* Output the call frame information used to used to record information
1908 that relates to calculating the frame pointer, and records the
1909 location of saved registers. */
1910
1911 static void
1912 output_call_frame_info (int for_eh)
1913 {
1914 unsigned int i;
1915 dw_fde_ref fde;
1916 dw_cfi_ref cfi;
1917 char l1[20], l2[20], section_start_label[20];
1918 bool any_lsda_needed = false;
1919 char augmentation[6];
1920 int augmentation_size;
1921 int fde_encoding = DW_EH_PE_absptr;
1922 int per_encoding = DW_EH_PE_absptr;
1923 int lsda_encoding = DW_EH_PE_absptr;
1924
1925 /* Don't emit a CIE if there won't be any FDEs. */
1926 if (fde_table_in_use == 0)
1927 return;
1928
1929 /* If we don't have any functions we'll want to unwind out of, don't
1930 emit any EH unwind information. Note that if exceptions aren't
1931 enabled, we won't have collected nothrow information, and if we
1932 asked for asynchronous tables, we always want this info. */
1933 if (for_eh)
1934 {
1935 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
1936
1937 for (i = 0; i < fde_table_in_use; i++)
1938 if (fde_table[i].uses_eh_lsda)
1939 any_eh_needed = any_lsda_needed = true;
1940 else if (! fde_table[i].nothrow
1941 && ! fde_table[i].all_throwers_are_sibcalls)
1942 any_eh_needed = true;
1943
1944 if (! any_eh_needed)
1945 return;
1946 }
1947
1948 /* We're going to be generating comments, so turn on app. */
1949 if (flag_debug_asm)
1950 app_enable ();
1951
1952 if (for_eh)
1953 (*targetm.asm_out.eh_frame_section) ();
1954 else
1955 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1956
1957 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1958 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1959
1960 /* Output the CIE. */
1961 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1962 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1963 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1964 "Length of Common Information Entry");
1965 ASM_OUTPUT_LABEL (asm_out_file, l1);
1966
1967 /* Now that the CIE pointer is PC-relative for EH,
1968 use 0 to identify the CIE. */
1969 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1970 (for_eh ? 0 : DW_CIE_ID),
1971 "CIE Identifier Tag");
1972
1973 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1974
1975 augmentation[0] = 0;
1976 augmentation_size = 0;
1977 if (for_eh)
1978 {
1979 char *p;
1980
1981 /* Augmentation:
1982 z Indicates that a uleb128 is present to size the
1983 augmentation section.
1984 L Indicates the encoding (and thus presence) of
1985 an LSDA pointer in the FDE augmentation.
1986 R Indicates a non-default pointer encoding for
1987 FDE code pointers.
1988 P Indicates the presence of an encoding + language
1989 personality routine in the CIE augmentation. */
1990
1991 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1992 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
1993 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1994
1995 p = augmentation + 1;
1996 if (eh_personality_libfunc)
1997 {
1998 *p++ = 'P';
1999 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2000 }
2001 if (any_lsda_needed)
2002 {
2003 *p++ = 'L';
2004 augmentation_size += 1;
2005 }
2006 if (fde_encoding != DW_EH_PE_absptr)
2007 {
2008 *p++ = 'R';
2009 augmentation_size += 1;
2010 }
2011 if (p > augmentation + 1)
2012 {
2013 augmentation[0] = 'z';
2014 *p = '\0';
2015 }
2016
2017 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2018 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2019 {
2020 int offset = ( 4 /* Length */
2021 + 4 /* CIE Id */
2022 + 1 /* CIE version */
2023 + strlen (augmentation) + 1 /* Augmentation */
2024 + size_of_uleb128 (1) /* Code alignment */
2025 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2026 + 1 /* RA column */
2027 + 1 /* Augmentation size */
2028 + 1 /* Personality encoding */ );
2029 int pad = -offset & (PTR_SIZE - 1);
2030
2031 augmentation_size += pad;
2032
2033 /* Augmentations should be small, so there's scarce need to
2034 iterate for a solution. Die if we exceed one uleb128 byte. */
2035 if (size_of_uleb128 (augmentation_size) != 1)
2036 abort ();
2037 }
2038 }
2039
2040 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2041 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2042 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2043 "CIE Data Alignment Factor");
2044 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2045
2046 if (augmentation[0])
2047 {
2048 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2049 if (eh_personality_libfunc)
2050 {
2051 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2052 eh_data_format_name (per_encoding));
2053 dw2_asm_output_encoded_addr_rtx (per_encoding,
2054 eh_personality_libfunc, NULL);
2055 }
2056
2057 if (any_lsda_needed)
2058 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2059 eh_data_format_name (lsda_encoding));
2060
2061 if (fde_encoding != DW_EH_PE_absptr)
2062 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2063 eh_data_format_name (fde_encoding));
2064 }
2065
2066 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2067 output_cfi (cfi, NULL, for_eh);
2068
2069 /* Pad the CIE out to an address sized boundary. */
2070 ASM_OUTPUT_ALIGN (asm_out_file,
2071 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2072 ASM_OUTPUT_LABEL (asm_out_file, l2);
2073
2074 /* Loop through all of the FDE's. */
2075 for (i = 0; i < fde_table_in_use; i++)
2076 {
2077 fde = &fde_table[i];
2078
2079 /* Don't emit EH unwind info for leaf functions that don't need it. */
2080 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2081 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2082 && !fde->uses_eh_lsda)
2083 continue;
2084
2085 (*targetm.asm_out.internal_label) (asm_out_file, FDE_LABEL, for_eh + i * 2);
2086 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2087 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2088 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2089 "FDE Length");
2090 ASM_OUTPUT_LABEL (asm_out_file, l1);
2091
2092 if (for_eh)
2093 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2094 else
2095 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2096 "FDE CIE offset");
2097
2098 if (for_eh)
2099 {
2100 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2101 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
2102 "FDE initial location");
2103 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2104 fde->dw_fde_end, fde->dw_fde_begin,
2105 "FDE address range");
2106 }
2107 else
2108 {
2109 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2110 "FDE initial location");
2111 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2112 fde->dw_fde_end, fde->dw_fde_begin,
2113 "FDE address range");
2114 }
2115
2116 if (augmentation[0])
2117 {
2118 if (any_lsda_needed)
2119 {
2120 int size = size_of_encoded_value (lsda_encoding);
2121
2122 if (lsda_encoding == DW_EH_PE_aligned)
2123 {
2124 int offset = ( 4 /* Length */
2125 + 4 /* CIE offset */
2126 + 2 * size_of_encoded_value (fde_encoding)
2127 + 1 /* Augmentation size */ );
2128 int pad = -offset & (PTR_SIZE - 1);
2129
2130 size += pad;
2131 if (size_of_uleb128 (size) != 1)
2132 abort ();
2133 }
2134
2135 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2136
2137 if (fde->uses_eh_lsda)
2138 {
2139 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2140 fde->funcdef_number);
2141 dw2_asm_output_encoded_addr_rtx (
2142 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2143 "Language Specific Data Area");
2144 }
2145 else
2146 {
2147 if (lsda_encoding == DW_EH_PE_aligned)
2148 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2149 dw2_asm_output_data
2150 (size_of_encoded_value (lsda_encoding), 0,
2151 "Language Specific Data Area (none)");
2152 }
2153 }
2154 else
2155 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2156 }
2157
2158 /* Loop through the Call Frame Instructions associated with
2159 this FDE. */
2160 fde->dw_fde_current_label = fde->dw_fde_begin;
2161 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2162 output_cfi (cfi, fde, for_eh);
2163
2164 /* Pad the FDE out to an address sized boundary. */
2165 ASM_OUTPUT_ALIGN (asm_out_file,
2166 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2167 ASM_OUTPUT_LABEL (asm_out_file, l2);
2168 }
2169
2170 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2171 dw2_asm_output_data (4, 0, "End of Table");
2172 #ifdef MIPS_DEBUGGING_INFO
2173 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2174 get a value of 0. Putting .align 0 after the label fixes it. */
2175 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2176 #endif
2177
2178 /* Turn off app to make assembly quicker. */
2179 if (flag_debug_asm)
2180 app_disable ();
2181 }
2182
2183 /* Output a marker (i.e. a label) for the beginning of a function, before
2184 the prologue. */
2185
2186 void
2187 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2188 const char *file ATTRIBUTE_UNUSED)
2189 {
2190 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2191 dw_fde_ref fde;
2192
2193 current_function_func_begin_label = 0;
2194
2195 #ifdef IA64_UNWIND_INFO
2196 /* ??? current_function_func_begin_label is also used by except.c
2197 for call-site information. We must emit this label if it might
2198 be used. */
2199 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2200 && ! dwarf2out_do_frame ())
2201 return;
2202 #else
2203 if (! dwarf2out_do_frame ())
2204 return;
2205 #endif
2206
2207 function_section (current_function_decl);
2208 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2209 current_function_funcdef_no);
2210 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2211 current_function_funcdef_no);
2212 current_function_func_begin_label = get_identifier (label);
2213
2214 #ifdef IA64_UNWIND_INFO
2215 /* We can elide the fde allocation if we're not emitting debug info. */
2216 if (! dwarf2out_do_frame ())
2217 return;
2218 #endif
2219
2220 /* Expand the fde table if necessary. */
2221 if (fde_table_in_use == fde_table_allocated)
2222 {
2223 fde_table_allocated += FDE_TABLE_INCREMENT;
2224 fde_table = ggc_realloc (fde_table,
2225 fde_table_allocated * sizeof (dw_fde_node));
2226 memset (fde_table + fde_table_in_use, 0,
2227 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2228 }
2229
2230 /* Record the FDE associated with this function. */
2231 current_funcdef_fde = fde_table_in_use;
2232
2233 /* Add the new FDE at the end of the fde_table. */
2234 fde = &fde_table[fde_table_in_use++];
2235 fde->dw_fde_begin = xstrdup (label);
2236 fde->dw_fde_current_label = NULL;
2237 fde->dw_fde_end = NULL;
2238 fde->dw_fde_cfi = NULL;
2239 fde->funcdef_number = current_function_funcdef_no;
2240 fde->nothrow = current_function_nothrow;
2241 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2242 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2243
2244 args_size = old_args_size = 0;
2245
2246 /* We only want to output line number information for the genuine dwarf2
2247 prologue case, not the eh frame case. */
2248 #ifdef DWARF2_DEBUGGING_INFO
2249 if (file)
2250 dwarf2out_source_line (line, file);
2251 #endif
2252 }
2253
2254 /* Output a marker (i.e. a label) for the absolute end of the generated code
2255 for a function definition. This gets called *after* the epilogue code has
2256 been generated. */
2257
2258 void
2259 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2260 const char *file ATTRIBUTE_UNUSED)
2261 {
2262 dw_fde_ref fde;
2263 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2264
2265 /* Output a label to mark the endpoint of the code generated for this
2266 function. */
2267 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2268 current_function_funcdef_no);
2269 ASM_OUTPUT_LABEL (asm_out_file, label);
2270 fde = &fde_table[fde_table_in_use - 1];
2271 fde->dw_fde_end = xstrdup (label);
2272 }
2273
2274 void
2275 dwarf2out_frame_init (void)
2276 {
2277 /* Allocate the initial hunk of the fde_table. */
2278 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2279 fde_table_allocated = FDE_TABLE_INCREMENT;
2280 fde_table_in_use = 0;
2281
2282 /* Generate the CFA instructions common to all FDE's. Do it now for the
2283 sake of lookup_cfa. */
2284
2285 #ifdef DWARF2_UNWIND_INFO
2286 /* On entry, the Canonical Frame Address is at SP. */
2287 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2288 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2289 #endif
2290 }
2291
2292 void
2293 dwarf2out_frame_finish (void)
2294 {
2295 /* Output call frame information. */
2296 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2297 output_call_frame_info (0);
2298
2299 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2300 output_call_frame_info (1);
2301 }
2302 #endif
2303 \f
2304 /* And now, the subset of the debugging information support code necessary
2305 for emitting location expressions. */
2306
2307 /* We need some way to distinguish DW_OP_addr with a direct symbol
2308 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2309 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2310
2311
2312 typedef struct dw_val_struct *dw_val_ref;
2313 typedef struct die_struct *dw_die_ref;
2314 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2315 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2316
2317 /* Each DIE may have a series of attribute/value pairs. Values
2318 can take on several forms. The forms that are used in this
2319 implementation are listed below. */
2320
2321 enum dw_val_class
2322 {
2323 dw_val_class_addr,
2324 dw_val_class_offset,
2325 dw_val_class_loc,
2326 dw_val_class_loc_list,
2327 dw_val_class_range_list,
2328 dw_val_class_const,
2329 dw_val_class_unsigned_const,
2330 dw_val_class_long_long,
2331 dw_val_class_float,
2332 dw_val_class_flag,
2333 dw_val_class_die_ref,
2334 dw_val_class_fde_ref,
2335 dw_val_class_lbl_id,
2336 dw_val_class_lbl_offset,
2337 dw_val_class_str
2338 };
2339
2340 /* Describe a double word constant value. */
2341 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2342
2343 typedef struct dw_long_long_struct GTY(())
2344 {
2345 unsigned long hi;
2346 unsigned long low;
2347 }
2348 dw_long_long_const;
2349
2350 /* Describe a floating point constant value. */
2351
2352 typedef struct dw_fp_struct GTY(())
2353 {
2354 long * GTY((length ("%h.length"))) array;
2355 unsigned length;
2356 }
2357 dw_float_const;
2358
2359 /* The dw_val_node describes an attribute's value, as it is
2360 represented internally. */
2361
2362 typedef struct dw_val_struct GTY(())
2363 {
2364 enum dw_val_class val_class;
2365 union dw_val_struct_union
2366 {
2367 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2368 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2369 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2370 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2371 HOST_WIDE_INT GTY ((default (""))) val_int;
2372 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2373 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2374 dw_float_const GTY ((tag ("dw_val_class_float"))) val_float;
2375 struct dw_val_die_union
2376 {
2377 dw_die_ref die;
2378 int external;
2379 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2380 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2381 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2382 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2383 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2384 }
2385 GTY ((desc ("%1.val_class"))) v;
2386 }
2387 dw_val_node;
2388
2389 /* Locations in memory are described using a sequence of stack machine
2390 operations. */
2391
2392 typedef struct dw_loc_descr_struct GTY(())
2393 {
2394 dw_loc_descr_ref dw_loc_next;
2395 enum dwarf_location_atom dw_loc_opc;
2396 dw_val_node dw_loc_oprnd1;
2397 dw_val_node dw_loc_oprnd2;
2398 int dw_loc_addr;
2399 }
2400 dw_loc_descr_node;
2401
2402 /* Location lists are ranges + location descriptions for that range,
2403 so you can track variables that are in different places over
2404 their entire life. */
2405 typedef struct dw_loc_list_struct GTY(())
2406 {
2407 dw_loc_list_ref dw_loc_next;
2408 const char *begin; /* Label for begin address of range */
2409 const char *end; /* Label for end address of range */
2410 char *ll_symbol; /* Label for beginning of location list.
2411 Only on head of list */
2412 const char *section; /* Section this loclist is relative to */
2413 dw_loc_descr_ref expr;
2414 } dw_loc_list_node;
2415
2416 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2417
2418 static const char *dwarf_stack_op_name (unsigned);
2419 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2420 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2421 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2422 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2423 static unsigned long size_of_locs (dw_loc_descr_ref);
2424 static void output_loc_operands (dw_loc_descr_ref);
2425 static void output_loc_sequence (dw_loc_descr_ref);
2426
2427 /* Convert a DWARF stack opcode into its string name. */
2428
2429 static const char *
2430 dwarf_stack_op_name (unsigned int op)
2431 {
2432 switch (op)
2433 {
2434 case DW_OP_addr:
2435 case INTERNAL_DW_OP_tls_addr:
2436 return "DW_OP_addr";
2437 case DW_OP_deref:
2438 return "DW_OP_deref";
2439 case DW_OP_const1u:
2440 return "DW_OP_const1u";
2441 case DW_OP_const1s:
2442 return "DW_OP_const1s";
2443 case DW_OP_const2u:
2444 return "DW_OP_const2u";
2445 case DW_OP_const2s:
2446 return "DW_OP_const2s";
2447 case DW_OP_const4u:
2448 return "DW_OP_const4u";
2449 case DW_OP_const4s:
2450 return "DW_OP_const4s";
2451 case DW_OP_const8u:
2452 return "DW_OP_const8u";
2453 case DW_OP_const8s:
2454 return "DW_OP_const8s";
2455 case DW_OP_constu:
2456 return "DW_OP_constu";
2457 case DW_OP_consts:
2458 return "DW_OP_consts";
2459 case DW_OP_dup:
2460 return "DW_OP_dup";
2461 case DW_OP_drop:
2462 return "DW_OP_drop";
2463 case DW_OP_over:
2464 return "DW_OP_over";
2465 case DW_OP_pick:
2466 return "DW_OP_pick";
2467 case DW_OP_swap:
2468 return "DW_OP_swap";
2469 case DW_OP_rot:
2470 return "DW_OP_rot";
2471 case DW_OP_xderef:
2472 return "DW_OP_xderef";
2473 case DW_OP_abs:
2474 return "DW_OP_abs";
2475 case DW_OP_and:
2476 return "DW_OP_and";
2477 case DW_OP_div:
2478 return "DW_OP_div";
2479 case DW_OP_minus:
2480 return "DW_OP_minus";
2481 case DW_OP_mod:
2482 return "DW_OP_mod";
2483 case DW_OP_mul:
2484 return "DW_OP_mul";
2485 case DW_OP_neg:
2486 return "DW_OP_neg";
2487 case DW_OP_not:
2488 return "DW_OP_not";
2489 case DW_OP_or:
2490 return "DW_OP_or";
2491 case DW_OP_plus:
2492 return "DW_OP_plus";
2493 case DW_OP_plus_uconst:
2494 return "DW_OP_plus_uconst";
2495 case DW_OP_shl:
2496 return "DW_OP_shl";
2497 case DW_OP_shr:
2498 return "DW_OP_shr";
2499 case DW_OP_shra:
2500 return "DW_OP_shra";
2501 case DW_OP_xor:
2502 return "DW_OP_xor";
2503 case DW_OP_bra:
2504 return "DW_OP_bra";
2505 case DW_OP_eq:
2506 return "DW_OP_eq";
2507 case DW_OP_ge:
2508 return "DW_OP_ge";
2509 case DW_OP_gt:
2510 return "DW_OP_gt";
2511 case DW_OP_le:
2512 return "DW_OP_le";
2513 case DW_OP_lt:
2514 return "DW_OP_lt";
2515 case DW_OP_ne:
2516 return "DW_OP_ne";
2517 case DW_OP_skip:
2518 return "DW_OP_skip";
2519 case DW_OP_lit0:
2520 return "DW_OP_lit0";
2521 case DW_OP_lit1:
2522 return "DW_OP_lit1";
2523 case DW_OP_lit2:
2524 return "DW_OP_lit2";
2525 case DW_OP_lit3:
2526 return "DW_OP_lit3";
2527 case DW_OP_lit4:
2528 return "DW_OP_lit4";
2529 case DW_OP_lit5:
2530 return "DW_OP_lit5";
2531 case DW_OP_lit6:
2532 return "DW_OP_lit6";
2533 case DW_OP_lit7:
2534 return "DW_OP_lit7";
2535 case DW_OP_lit8:
2536 return "DW_OP_lit8";
2537 case DW_OP_lit9:
2538 return "DW_OP_lit9";
2539 case DW_OP_lit10:
2540 return "DW_OP_lit10";
2541 case DW_OP_lit11:
2542 return "DW_OP_lit11";
2543 case DW_OP_lit12:
2544 return "DW_OP_lit12";
2545 case DW_OP_lit13:
2546 return "DW_OP_lit13";
2547 case DW_OP_lit14:
2548 return "DW_OP_lit14";
2549 case DW_OP_lit15:
2550 return "DW_OP_lit15";
2551 case DW_OP_lit16:
2552 return "DW_OP_lit16";
2553 case DW_OP_lit17:
2554 return "DW_OP_lit17";
2555 case DW_OP_lit18:
2556 return "DW_OP_lit18";
2557 case DW_OP_lit19:
2558 return "DW_OP_lit19";
2559 case DW_OP_lit20:
2560 return "DW_OP_lit20";
2561 case DW_OP_lit21:
2562 return "DW_OP_lit21";
2563 case DW_OP_lit22:
2564 return "DW_OP_lit22";
2565 case DW_OP_lit23:
2566 return "DW_OP_lit23";
2567 case DW_OP_lit24:
2568 return "DW_OP_lit24";
2569 case DW_OP_lit25:
2570 return "DW_OP_lit25";
2571 case DW_OP_lit26:
2572 return "DW_OP_lit26";
2573 case DW_OP_lit27:
2574 return "DW_OP_lit27";
2575 case DW_OP_lit28:
2576 return "DW_OP_lit28";
2577 case DW_OP_lit29:
2578 return "DW_OP_lit29";
2579 case DW_OP_lit30:
2580 return "DW_OP_lit30";
2581 case DW_OP_lit31:
2582 return "DW_OP_lit31";
2583 case DW_OP_reg0:
2584 return "DW_OP_reg0";
2585 case DW_OP_reg1:
2586 return "DW_OP_reg1";
2587 case DW_OP_reg2:
2588 return "DW_OP_reg2";
2589 case DW_OP_reg3:
2590 return "DW_OP_reg3";
2591 case DW_OP_reg4:
2592 return "DW_OP_reg4";
2593 case DW_OP_reg5:
2594 return "DW_OP_reg5";
2595 case DW_OP_reg6:
2596 return "DW_OP_reg6";
2597 case DW_OP_reg7:
2598 return "DW_OP_reg7";
2599 case DW_OP_reg8:
2600 return "DW_OP_reg8";
2601 case DW_OP_reg9:
2602 return "DW_OP_reg9";
2603 case DW_OP_reg10:
2604 return "DW_OP_reg10";
2605 case DW_OP_reg11:
2606 return "DW_OP_reg11";
2607 case DW_OP_reg12:
2608 return "DW_OP_reg12";
2609 case DW_OP_reg13:
2610 return "DW_OP_reg13";
2611 case DW_OP_reg14:
2612 return "DW_OP_reg14";
2613 case DW_OP_reg15:
2614 return "DW_OP_reg15";
2615 case DW_OP_reg16:
2616 return "DW_OP_reg16";
2617 case DW_OP_reg17:
2618 return "DW_OP_reg17";
2619 case DW_OP_reg18:
2620 return "DW_OP_reg18";
2621 case DW_OP_reg19:
2622 return "DW_OP_reg19";
2623 case DW_OP_reg20:
2624 return "DW_OP_reg20";
2625 case DW_OP_reg21:
2626 return "DW_OP_reg21";
2627 case DW_OP_reg22:
2628 return "DW_OP_reg22";
2629 case DW_OP_reg23:
2630 return "DW_OP_reg23";
2631 case DW_OP_reg24:
2632 return "DW_OP_reg24";
2633 case DW_OP_reg25:
2634 return "DW_OP_reg25";
2635 case DW_OP_reg26:
2636 return "DW_OP_reg26";
2637 case DW_OP_reg27:
2638 return "DW_OP_reg27";
2639 case DW_OP_reg28:
2640 return "DW_OP_reg28";
2641 case DW_OP_reg29:
2642 return "DW_OP_reg29";
2643 case DW_OP_reg30:
2644 return "DW_OP_reg30";
2645 case DW_OP_reg31:
2646 return "DW_OP_reg31";
2647 case DW_OP_breg0:
2648 return "DW_OP_breg0";
2649 case DW_OP_breg1:
2650 return "DW_OP_breg1";
2651 case DW_OP_breg2:
2652 return "DW_OP_breg2";
2653 case DW_OP_breg3:
2654 return "DW_OP_breg3";
2655 case DW_OP_breg4:
2656 return "DW_OP_breg4";
2657 case DW_OP_breg5:
2658 return "DW_OP_breg5";
2659 case DW_OP_breg6:
2660 return "DW_OP_breg6";
2661 case DW_OP_breg7:
2662 return "DW_OP_breg7";
2663 case DW_OP_breg8:
2664 return "DW_OP_breg8";
2665 case DW_OP_breg9:
2666 return "DW_OP_breg9";
2667 case DW_OP_breg10:
2668 return "DW_OP_breg10";
2669 case DW_OP_breg11:
2670 return "DW_OP_breg11";
2671 case DW_OP_breg12:
2672 return "DW_OP_breg12";
2673 case DW_OP_breg13:
2674 return "DW_OP_breg13";
2675 case DW_OP_breg14:
2676 return "DW_OP_breg14";
2677 case DW_OP_breg15:
2678 return "DW_OP_breg15";
2679 case DW_OP_breg16:
2680 return "DW_OP_breg16";
2681 case DW_OP_breg17:
2682 return "DW_OP_breg17";
2683 case DW_OP_breg18:
2684 return "DW_OP_breg18";
2685 case DW_OP_breg19:
2686 return "DW_OP_breg19";
2687 case DW_OP_breg20:
2688 return "DW_OP_breg20";
2689 case DW_OP_breg21:
2690 return "DW_OP_breg21";
2691 case DW_OP_breg22:
2692 return "DW_OP_breg22";
2693 case DW_OP_breg23:
2694 return "DW_OP_breg23";
2695 case DW_OP_breg24:
2696 return "DW_OP_breg24";
2697 case DW_OP_breg25:
2698 return "DW_OP_breg25";
2699 case DW_OP_breg26:
2700 return "DW_OP_breg26";
2701 case DW_OP_breg27:
2702 return "DW_OP_breg27";
2703 case DW_OP_breg28:
2704 return "DW_OP_breg28";
2705 case DW_OP_breg29:
2706 return "DW_OP_breg29";
2707 case DW_OP_breg30:
2708 return "DW_OP_breg30";
2709 case DW_OP_breg31:
2710 return "DW_OP_breg31";
2711 case DW_OP_regx:
2712 return "DW_OP_regx";
2713 case DW_OP_fbreg:
2714 return "DW_OP_fbreg";
2715 case DW_OP_bregx:
2716 return "DW_OP_bregx";
2717 case DW_OP_piece:
2718 return "DW_OP_piece";
2719 case DW_OP_deref_size:
2720 return "DW_OP_deref_size";
2721 case DW_OP_xderef_size:
2722 return "DW_OP_xderef_size";
2723 case DW_OP_nop:
2724 return "DW_OP_nop";
2725 case DW_OP_push_object_address:
2726 return "DW_OP_push_object_address";
2727 case DW_OP_call2:
2728 return "DW_OP_call2";
2729 case DW_OP_call4:
2730 return "DW_OP_call4";
2731 case DW_OP_call_ref:
2732 return "DW_OP_call_ref";
2733 case DW_OP_GNU_push_tls_address:
2734 return "DW_OP_GNU_push_tls_address";
2735 default:
2736 return "OP_<unknown>";
2737 }
2738 }
2739
2740 /* Return a pointer to a newly allocated location description. Location
2741 descriptions are simple expression terms that can be strung
2742 together to form more complicated location (address) descriptions. */
2743
2744 static inline dw_loc_descr_ref
2745 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2746 unsigned HOST_WIDE_INT oprnd2)
2747 {
2748 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2749
2750 descr->dw_loc_opc = op;
2751 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2752 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2753 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2754 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2755
2756 return descr;
2757 }
2758
2759
2760 /* Add a location description term to a location description expression. */
2761
2762 static inline void
2763 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
2764 {
2765 dw_loc_descr_ref *d;
2766
2767 /* Find the end of the chain. */
2768 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2769 ;
2770
2771 *d = descr;
2772 }
2773
2774 /* Return the size of a location descriptor. */
2775
2776 static unsigned long
2777 size_of_loc_descr (dw_loc_descr_ref loc)
2778 {
2779 unsigned long size = 1;
2780
2781 switch (loc->dw_loc_opc)
2782 {
2783 case DW_OP_addr:
2784 case INTERNAL_DW_OP_tls_addr:
2785 size += DWARF2_ADDR_SIZE;
2786 break;
2787 case DW_OP_const1u:
2788 case DW_OP_const1s:
2789 size += 1;
2790 break;
2791 case DW_OP_const2u:
2792 case DW_OP_const2s:
2793 size += 2;
2794 break;
2795 case DW_OP_const4u:
2796 case DW_OP_const4s:
2797 size += 4;
2798 break;
2799 case DW_OP_const8u:
2800 case DW_OP_const8s:
2801 size += 8;
2802 break;
2803 case DW_OP_constu:
2804 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2805 break;
2806 case DW_OP_consts:
2807 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2808 break;
2809 case DW_OP_pick:
2810 size += 1;
2811 break;
2812 case DW_OP_plus_uconst:
2813 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2814 break;
2815 case DW_OP_skip:
2816 case DW_OP_bra:
2817 size += 2;
2818 break;
2819 case DW_OP_breg0:
2820 case DW_OP_breg1:
2821 case DW_OP_breg2:
2822 case DW_OP_breg3:
2823 case DW_OP_breg4:
2824 case DW_OP_breg5:
2825 case DW_OP_breg6:
2826 case DW_OP_breg7:
2827 case DW_OP_breg8:
2828 case DW_OP_breg9:
2829 case DW_OP_breg10:
2830 case DW_OP_breg11:
2831 case DW_OP_breg12:
2832 case DW_OP_breg13:
2833 case DW_OP_breg14:
2834 case DW_OP_breg15:
2835 case DW_OP_breg16:
2836 case DW_OP_breg17:
2837 case DW_OP_breg18:
2838 case DW_OP_breg19:
2839 case DW_OP_breg20:
2840 case DW_OP_breg21:
2841 case DW_OP_breg22:
2842 case DW_OP_breg23:
2843 case DW_OP_breg24:
2844 case DW_OP_breg25:
2845 case DW_OP_breg26:
2846 case DW_OP_breg27:
2847 case DW_OP_breg28:
2848 case DW_OP_breg29:
2849 case DW_OP_breg30:
2850 case DW_OP_breg31:
2851 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2852 break;
2853 case DW_OP_regx:
2854 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2855 break;
2856 case DW_OP_fbreg:
2857 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2858 break;
2859 case DW_OP_bregx:
2860 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2861 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2862 break;
2863 case DW_OP_piece:
2864 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2865 break;
2866 case DW_OP_deref_size:
2867 case DW_OP_xderef_size:
2868 size += 1;
2869 break;
2870 case DW_OP_call2:
2871 size += 2;
2872 break;
2873 case DW_OP_call4:
2874 size += 4;
2875 break;
2876 case DW_OP_call_ref:
2877 size += DWARF2_ADDR_SIZE;
2878 break;
2879 default:
2880 break;
2881 }
2882
2883 return size;
2884 }
2885
2886 /* Return the size of a series of location descriptors. */
2887
2888 static unsigned long
2889 size_of_locs (dw_loc_descr_ref loc)
2890 {
2891 unsigned long size;
2892
2893 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2894 {
2895 loc->dw_loc_addr = size;
2896 size += size_of_loc_descr (loc);
2897 }
2898
2899 return size;
2900 }
2901
2902 /* Output location description stack opcode's operands (if any). */
2903
2904 static void
2905 output_loc_operands (dw_loc_descr_ref loc)
2906 {
2907 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2908 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2909
2910 switch (loc->dw_loc_opc)
2911 {
2912 #ifdef DWARF2_DEBUGGING_INFO
2913 case DW_OP_addr:
2914 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2915 break;
2916 case DW_OP_const2u:
2917 case DW_OP_const2s:
2918 dw2_asm_output_data (2, val1->v.val_int, NULL);
2919 break;
2920 case DW_OP_const4u:
2921 case DW_OP_const4s:
2922 dw2_asm_output_data (4, val1->v.val_int, NULL);
2923 break;
2924 case DW_OP_const8u:
2925 case DW_OP_const8s:
2926 if (HOST_BITS_PER_LONG < 64)
2927 abort ();
2928 dw2_asm_output_data (8, val1->v.val_int, NULL);
2929 break;
2930 case DW_OP_skip:
2931 case DW_OP_bra:
2932 {
2933 int offset;
2934
2935 if (val1->val_class == dw_val_class_loc)
2936 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2937 else
2938 abort ();
2939
2940 dw2_asm_output_data (2, offset, NULL);
2941 }
2942 break;
2943 #else
2944 case DW_OP_addr:
2945 case DW_OP_const2u:
2946 case DW_OP_const2s:
2947 case DW_OP_const4u:
2948 case DW_OP_const4s:
2949 case DW_OP_const8u:
2950 case DW_OP_const8s:
2951 case DW_OP_skip:
2952 case DW_OP_bra:
2953 /* We currently don't make any attempt to make sure these are
2954 aligned properly like we do for the main unwind info, so
2955 don't support emitting things larger than a byte if we're
2956 only doing unwinding. */
2957 abort ();
2958 #endif
2959 case DW_OP_const1u:
2960 case DW_OP_const1s:
2961 dw2_asm_output_data (1, val1->v.val_int, NULL);
2962 break;
2963 case DW_OP_constu:
2964 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2965 break;
2966 case DW_OP_consts:
2967 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2968 break;
2969 case DW_OP_pick:
2970 dw2_asm_output_data (1, val1->v.val_int, NULL);
2971 break;
2972 case DW_OP_plus_uconst:
2973 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2974 break;
2975 case DW_OP_breg0:
2976 case DW_OP_breg1:
2977 case DW_OP_breg2:
2978 case DW_OP_breg3:
2979 case DW_OP_breg4:
2980 case DW_OP_breg5:
2981 case DW_OP_breg6:
2982 case DW_OP_breg7:
2983 case DW_OP_breg8:
2984 case DW_OP_breg9:
2985 case DW_OP_breg10:
2986 case DW_OP_breg11:
2987 case DW_OP_breg12:
2988 case DW_OP_breg13:
2989 case DW_OP_breg14:
2990 case DW_OP_breg15:
2991 case DW_OP_breg16:
2992 case DW_OP_breg17:
2993 case DW_OP_breg18:
2994 case DW_OP_breg19:
2995 case DW_OP_breg20:
2996 case DW_OP_breg21:
2997 case DW_OP_breg22:
2998 case DW_OP_breg23:
2999 case DW_OP_breg24:
3000 case DW_OP_breg25:
3001 case DW_OP_breg26:
3002 case DW_OP_breg27:
3003 case DW_OP_breg28:
3004 case DW_OP_breg29:
3005 case DW_OP_breg30:
3006 case DW_OP_breg31:
3007 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3008 break;
3009 case DW_OP_regx:
3010 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3011 break;
3012 case DW_OP_fbreg:
3013 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3014 break;
3015 case DW_OP_bregx:
3016 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3017 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3018 break;
3019 case DW_OP_piece:
3020 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3021 break;
3022 case DW_OP_deref_size:
3023 case DW_OP_xderef_size:
3024 dw2_asm_output_data (1, val1->v.val_int, NULL);
3025 break;
3026
3027 case INTERNAL_DW_OP_tls_addr:
3028 #ifdef ASM_OUTPUT_DWARF_DTPREL
3029 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3030 val1->v.val_addr);
3031 fputc ('\n', asm_out_file);
3032 #else
3033 abort ();
3034 #endif
3035 break;
3036
3037 default:
3038 /* Other codes have no operands. */
3039 break;
3040 }
3041 }
3042
3043 /* Output a sequence of location operations. */
3044
3045 static void
3046 output_loc_sequence (dw_loc_descr_ref loc)
3047 {
3048 for (; loc != NULL; loc = loc->dw_loc_next)
3049 {
3050 /* Output the opcode. */
3051 dw2_asm_output_data (1, loc->dw_loc_opc,
3052 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3053
3054 /* Output the operand(s) (if any). */
3055 output_loc_operands (loc);
3056 }
3057 }
3058
3059 /* This routine will generate the correct assembly data for a location
3060 description based on a cfi entry with a complex address. */
3061
3062 static void
3063 output_cfa_loc (dw_cfi_ref cfi)
3064 {
3065 dw_loc_descr_ref loc;
3066 unsigned long size;
3067
3068 /* Output the size of the block. */
3069 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3070 size = size_of_locs (loc);
3071 dw2_asm_output_data_uleb128 (size, NULL);
3072
3073 /* Now output the operations themselves. */
3074 output_loc_sequence (loc);
3075 }
3076
3077 /* This function builds a dwarf location descriptor sequence from
3078 a dw_cfa_location. */
3079
3080 static struct dw_loc_descr_struct *
3081 build_cfa_loc (dw_cfa_location *cfa)
3082 {
3083 struct dw_loc_descr_struct *head, *tmp;
3084
3085 if (cfa->indirect == 0)
3086 abort ();
3087
3088 if (cfa->base_offset)
3089 {
3090 if (cfa->reg <= 31)
3091 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3092 else
3093 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3094 }
3095 else if (cfa->reg <= 31)
3096 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3097 else
3098 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3099
3100 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3101 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3102 add_loc_descr (&head, tmp);
3103 if (cfa->offset != 0)
3104 {
3105 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3106 add_loc_descr (&head, tmp);
3107 }
3108
3109 return head;
3110 }
3111
3112 /* This function fills in aa dw_cfa_location structure from a dwarf location
3113 descriptor sequence. */
3114
3115 static void
3116 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3117 {
3118 struct dw_loc_descr_struct *ptr;
3119 cfa->offset = 0;
3120 cfa->base_offset = 0;
3121 cfa->indirect = 0;
3122 cfa->reg = -1;
3123
3124 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3125 {
3126 enum dwarf_location_atom op = ptr->dw_loc_opc;
3127
3128 switch (op)
3129 {
3130 case DW_OP_reg0:
3131 case DW_OP_reg1:
3132 case DW_OP_reg2:
3133 case DW_OP_reg3:
3134 case DW_OP_reg4:
3135 case DW_OP_reg5:
3136 case DW_OP_reg6:
3137 case DW_OP_reg7:
3138 case DW_OP_reg8:
3139 case DW_OP_reg9:
3140 case DW_OP_reg10:
3141 case DW_OP_reg11:
3142 case DW_OP_reg12:
3143 case DW_OP_reg13:
3144 case DW_OP_reg14:
3145 case DW_OP_reg15:
3146 case DW_OP_reg16:
3147 case DW_OP_reg17:
3148 case DW_OP_reg18:
3149 case DW_OP_reg19:
3150 case DW_OP_reg20:
3151 case DW_OP_reg21:
3152 case DW_OP_reg22:
3153 case DW_OP_reg23:
3154 case DW_OP_reg24:
3155 case DW_OP_reg25:
3156 case DW_OP_reg26:
3157 case DW_OP_reg27:
3158 case DW_OP_reg28:
3159 case DW_OP_reg29:
3160 case DW_OP_reg30:
3161 case DW_OP_reg31:
3162 cfa->reg = op - DW_OP_reg0;
3163 break;
3164 case DW_OP_regx:
3165 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3166 break;
3167 case DW_OP_breg0:
3168 case DW_OP_breg1:
3169 case DW_OP_breg2:
3170 case DW_OP_breg3:
3171 case DW_OP_breg4:
3172 case DW_OP_breg5:
3173 case DW_OP_breg6:
3174 case DW_OP_breg7:
3175 case DW_OP_breg8:
3176 case DW_OP_breg9:
3177 case DW_OP_breg10:
3178 case DW_OP_breg11:
3179 case DW_OP_breg12:
3180 case DW_OP_breg13:
3181 case DW_OP_breg14:
3182 case DW_OP_breg15:
3183 case DW_OP_breg16:
3184 case DW_OP_breg17:
3185 case DW_OP_breg18:
3186 case DW_OP_breg19:
3187 case DW_OP_breg20:
3188 case DW_OP_breg21:
3189 case DW_OP_breg22:
3190 case DW_OP_breg23:
3191 case DW_OP_breg24:
3192 case DW_OP_breg25:
3193 case DW_OP_breg26:
3194 case DW_OP_breg27:
3195 case DW_OP_breg28:
3196 case DW_OP_breg29:
3197 case DW_OP_breg30:
3198 case DW_OP_breg31:
3199 cfa->reg = op - DW_OP_breg0;
3200 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3201 break;
3202 case DW_OP_bregx:
3203 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3204 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3205 break;
3206 case DW_OP_deref:
3207 cfa->indirect = 1;
3208 break;
3209 case DW_OP_plus_uconst:
3210 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3211 break;
3212 default:
3213 internal_error ("DW_LOC_OP %s not implemented\n",
3214 dwarf_stack_op_name (ptr->dw_loc_opc));
3215 }
3216 }
3217 }
3218 #endif /* .debug_frame support */
3219 \f
3220 /* And now, the support for symbolic debugging information. */
3221 #ifdef DWARF2_DEBUGGING_INFO
3222
3223 /* .debug_str support. */
3224 static int output_indirect_string (void **, void *);
3225
3226 static void dwarf2out_init (const char *);
3227 static void dwarf2out_finish (const char *);
3228 static void dwarf2out_define (unsigned int, const char *);
3229 static void dwarf2out_undef (unsigned int, const char *);
3230 static void dwarf2out_start_source_file (unsigned, const char *);
3231 static void dwarf2out_end_source_file (unsigned);
3232 static void dwarf2out_begin_block (unsigned, unsigned);
3233 static void dwarf2out_end_block (unsigned, unsigned);
3234 static bool dwarf2out_ignore_block (tree);
3235 static void dwarf2out_global_decl (tree);
3236 static void dwarf2out_abstract_function (tree);
3237
3238 /* The debug hooks structure. */
3239
3240 const struct gcc_debug_hooks dwarf2_debug_hooks =
3241 {
3242 dwarf2out_init,
3243 dwarf2out_finish,
3244 dwarf2out_define,
3245 dwarf2out_undef,
3246 dwarf2out_start_source_file,
3247 dwarf2out_end_source_file,
3248 dwarf2out_begin_block,
3249 dwarf2out_end_block,
3250 dwarf2out_ignore_block,
3251 dwarf2out_source_line,
3252 dwarf2out_begin_prologue,
3253 debug_nothing_int_charstar, /* end_prologue */
3254 dwarf2out_end_epilogue,
3255 debug_nothing_tree, /* begin_function */
3256 debug_nothing_int, /* end_function */
3257 dwarf2out_decl, /* function_decl */
3258 dwarf2out_global_decl,
3259 debug_nothing_tree, /* deferred_inline_function */
3260 /* The DWARF 2 backend tries to reduce debugging bloat by not
3261 emitting the abstract description of inline functions until
3262 something tries to reference them. */
3263 dwarf2out_abstract_function, /* outlining_inline_function */
3264 debug_nothing_rtx, /* label */
3265 debug_nothing_int /* handle_pch */
3266 };
3267 #endif
3268 \f
3269 /* NOTE: In the comments in this file, many references are made to
3270 "Debugging Information Entries". This term is abbreviated as `DIE'
3271 throughout the remainder of this file. */
3272
3273 /* An internal representation of the DWARF output is built, and then
3274 walked to generate the DWARF debugging info. The walk of the internal
3275 representation is done after the entire program has been compiled.
3276 The types below are used to describe the internal representation. */
3277
3278 /* Various DIE's use offsets relative to the beginning of the
3279 .debug_info section to refer to each other. */
3280
3281 typedef long int dw_offset;
3282
3283 /* Define typedefs here to avoid circular dependencies. */
3284
3285 typedef struct dw_attr_struct *dw_attr_ref;
3286 typedef struct dw_line_info_struct *dw_line_info_ref;
3287 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3288 typedef struct pubname_struct *pubname_ref;
3289 typedef struct dw_ranges_struct *dw_ranges_ref;
3290
3291 /* Each entry in the line_info_table maintains the file and
3292 line number associated with the label generated for that
3293 entry. The label gives the PC value associated with
3294 the line number entry. */
3295
3296 typedef struct dw_line_info_struct GTY(())
3297 {
3298 unsigned long dw_file_num;
3299 unsigned long dw_line_num;
3300 }
3301 dw_line_info_entry;
3302
3303 /* Line information for functions in separate sections; each one gets its
3304 own sequence. */
3305 typedef struct dw_separate_line_info_struct GTY(())
3306 {
3307 unsigned long dw_file_num;
3308 unsigned long dw_line_num;
3309 unsigned long function;
3310 }
3311 dw_separate_line_info_entry;
3312
3313 /* Each DIE attribute has a field specifying the attribute kind,
3314 a link to the next attribute in the chain, and an attribute value.
3315 Attributes are typically linked below the DIE they modify. */
3316
3317 typedef struct dw_attr_struct GTY(())
3318 {
3319 enum dwarf_attribute dw_attr;
3320 dw_attr_ref dw_attr_next;
3321 dw_val_node dw_attr_val;
3322 }
3323 dw_attr_node;
3324
3325 /* The Debugging Information Entry (DIE) structure */
3326
3327 typedef struct die_struct GTY(())
3328 {
3329 enum dwarf_tag die_tag;
3330 char *die_symbol;
3331 dw_attr_ref die_attr;
3332 dw_die_ref die_parent;
3333 dw_die_ref die_child;
3334 dw_die_ref die_sib;
3335 dw_die_ref die_definition; /* ref from a specification to its definition */
3336 dw_offset die_offset;
3337 unsigned long die_abbrev;
3338 int die_mark;
3339 }
3340 die_node;
3341
3342 /* The pubname structure */
3343
3344 typedef struct pubname_struct GTY(())
3345 {
3346 dw_die_ref die;
3347 char *name;
3348 }
3349 pubname_entry;
3350
3351 struct dw_ranges_struct GTY(())
3352 {
3353 int block_num;
3354 };
3355
3356 /* The limbo die list structure. */
3357 typedef struct limbo_die_struct GTY(())
3358 {
3359 dw_die_ref die;
3360 tree created_for;
3361 struct limbo_die_struct *next;
3362 }
3363 limbo_die_node;
3364
3365 /* How to start an assembler comment. */
3366 #ifndef ASM_COMMENT_START
3367 #define ASM_COMMENT_START ";#"
3368 #endif
3369
3370 /* Define a macro which returns nonzero for a TYPE_DECL which was
3371 implicitly generated for a tagged type.
3372
3373 Note that unlike the gcc front end (which generates a NULL named
3374 TYPE_DECL node for each complete tagged type, each array type, and
3375 each function type node created) the g++ front end generates a
3376 _named_ TYPE_DECL node for each tagged type node created.
3377 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3378 generate a DW_TAG_typedef DIE for them. */
3379
3380 #define TYPE_DECL_IS_STUB(decl) \
3381 (DECL_NAME (decl) == NULL_TREE \
3382 || (DECL_ARTIFICIAL (decl) \
3383 && is_tagged_type (TREE_TYPE (decl)) \
3384 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3385 /* This is necessary for stub decls that \
3386 appear in nested inline functions. */ \
3387 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3388 && (decl_ultimate_origin (decl) \
3389 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3390
3391 /* Information concerning the compilation unit's programming
3392 language, and compiler version. */
3393
3394 /* Fixed size portion of the DWARF compilation unit header. */
3395 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3396 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3397
3398 /* Fixed size portion of public names info. */
3399 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3400
3401 /* Fixed size portion of the address range info. */
3402 #define DWARF_ARANGES_HEADER_SIZE \
3403 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3404 DWARF2_ADDR_SIZE * 2) \
3405 - DWARF_INITIAL_LENGTH_SIZE)
3406
3407 /* Size of padding portion in the address range info. It must be
3408 aligned to twice the pointer size. */
3409 #define DWARF_ARANGES_PAD_SIZE \
3410 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3411 DWARF2_ADDR_SIZE * 2) \
3412 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3413
3414 /* Use assembler line directives if available. */
3415 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3416 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3417 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3418 #else
3419 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3420 #endif
3421 #endif
3422
3423 /* Minimum line offset in a special line info. opcode.
3424 This value was chosen to give a reasonable range of values. */
3425 #define DWARF_LINE_BASE -10
3426
3427 /* First special line opcode - leave room for the standard opcodes. */
3428 #define DWARF_LINE_OPCODE_BASE 10
3429
3430 /* Range of line offsets in a special line info. opcode. */
3431 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3432
3433 /* Flag that indicates the initial value of the is_stmt_start flag.
3434 In the present implementation, we do not mark any lines as
3435 the beginning of a source statement, because that information
3436 is not made available by the GCC front-end. */
3437 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3438
3439 #ifdef DWARF2_DEBUGGING_INFO
3440 /* This location is used by calc_die_sizes() to keep track
3441 the offset of each DIE within the .debug_info section. */
3442 static unsigned long next_die_offset;
3443 #endif
3444
3445 /* Record the root of the DIE's built for the current compilation unit. */
3446 static GTY(()) dw_die_ref comp_unit_die;
3447
3448 /* A list of DIEs with a NULL parent waiting to be relocated. */
3449 static GTY(()) limbo_die_node *limbo_die_list;
3450
3451 /* Filenames referenced by this compilation unit. */
3452 static GTY(()) varray_type file_table;
3453 static GTY(()) varray_type file_table_emitted;
3454 static GTY(()) size_t file_table_last_lookup_index;
3455
3456 /* A pointer to the base of a table of references to DIE's that describe
3457 declarations. The table is indexed by DECL_UID() which is a unique
3458 number identifying each decl. */
3459 static GTY((length ("decl_die_table_allocated"))) dw_die_ref *decl_die_table;
3460
3461 /* Number of elements currently allocated for the decl_die_table. */
3462 static GTY(()) unsigned decl_die_table_allocated;
3463
3464 /* Number of elements in decl_die_table currently in use. */
3465 static GTY(()) unsigned decl_die_table_in_use;
3466
3467 /* Size (in elements) of increments by which we may expand the
3468 decl_die_table. */
3469 #define DECL_DIE_TABLE_INCREMENT 256
3470
3471 /* A pointer to the base of a list of references to DIE's that
3472 are uniquely identified by their tag, presence/absence of
3473 children DIE's, and list of attribute/value pairs. */
3474 static GTY((length ("abbrev_die_table_allocated")))
3475 dw_die_ref *abbrev_die_table;
3476
3477 /* Number of elements currently allocated for abbrev_die_table. */
3478 static GTY(()) unsigned abbrev_die_table_allocated;
3479
3480 /* Number of elements in type_die_table currently in use. */
3481 static GTY(()) unsigned abbrev_die_table_in_use;
3482
3483 /* Size (in elements) of increments by which we may expand the
3484 abbrev_die_table. */
3485 #define ABBREV_DIE_TABLE_INCREMENT 256
3486
3487 /* A pointer to the base of a table that contains line information
3488 for each source code line in .text in the compilation unit. */
3489 static GTY((length ("line_info_table_allocated")))
3490 dw_line_info_ref line_info_table;
3491
3492 /* Number of elements currently allocated for line_info_table. */
3493 static GTY(()) unsigned line_info_table_allocated;
3494
3495 /* Number of elements in line_info_table currently in use. */
3496 static GTY(()) unsigned line_info_table_in_use;
3497
3498 /* A pointer to the base of a table that contains line information
3499 for each source code line outside of .text in the compilation unit. */
3500 static GTY ((length ("separate_line_info_table_allocated")))
3501 dw_separate_line_info_ref separate_line_info_table;
3502
3503 /* Number of elements currently allocated for separate_line_info_table. */
3504 static GTY(()) unsigned separate_line_info_table_allocated;
3505
3506 /* Number of elements in separate_line_info_table currently in use. */
3507 static GTY(()) unsigned separate_line_info_table_in_use;
3508
3509 /* Size (in elements) of increments by which we may expand the
3510 line_info_table. */
3511 #define LINE_INFO_TABLE_INCREMENT 1024
3512
3513 /* A pointer to the base of a table that contains a list of publicly
3514 accessible names. */
3515 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3516
3517 /* Number of elements currently allocated for pubname_table. */
3518 static GTY(()) unsigned pubname_table_allocated;
3519
3520 /* Number of elements in pubname_table currently in use. */
3521 static GTY(()) unsigned pubname_table_in_use;
3522
3523 /* Size (in elements) of increments by which we may expand the
3524 pubname_table. */
3525 #define PUBNAME_TABLE_INCREMENT 64
3526
3527 /* Array of dies for which we should generate .debug_arange info. */
3528 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3529
3530 /* Number of elements currently allocated for arange_table. */
3531 static GTY(()) unsigned arange_table_allocated;
3532
3533 /* Number of elements in arange_table currently in use. */
3534 static GTY(()) unsigned arange_table_in_use;
3535
3536 /* Size (in elements) of increments by which we may expand the
3537 arange_table. */
3538 #define ARANGE_TABLE_INCREMENT 64
3539
3540 /* Array of dies for which we should generate .debug_ranges info. */
3541 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3542
3543 /* Number of elements currently allocated for ranges_table. */
3544 static GTY(()) unsigned ranges_table_allocated;
3545
3546 /* Number of elements in ranges_table currently in use. */
3547 static GTY(()) unsigned ranges_table_in_use;
3548
3549 /* Size (in elements) of increments by which we may expand the
3550 ranges_table. */
3551 #define RANGES_TABLE_INCREMENT 64
3552
3553 /* Whether we have location lists that need outputting */
3554 static GTY(()) unsigned have_location_lists;
3555
3556 #ifdef DWARF2_DEBUGGING_INFO
3557 /* Record whether the function being analyzed contains inlined functions. */
3558 static int current_function_has_inlines;
3559 #endif
3560 #if 0 && defined (MIPS_DEBUGGING_INFO)
3561 static int comp_unit_has_inlines;
3562 #endif
3563
3564 /* Number of file tables emitted in maybe_emit_file(). */
3565 static GTY(()) int emitcount = 0;
3566
3567 /* Number of internal labels generated by gen_internal_sym(). */
3568 static GTY(()) int label_num;
3569
3570 #ifdef DWARF2_DEBUGGING_INFO
3571
3572 /* Forward declarations for functions defined in this file. */
3573
3574 static int is_pseudo_reg (rtx);
3575 static tree type_main_variant (tree);
3576 static int is_tagged_type (tree);
3577 static const char *dwarf_tag_name (unsigned);
3578 static const char *dwarf_attr_name (unsigned);
3579 static const char *dwarf_form_name (unsigned);
3580 #if 0
3581 static const char *dwarf_type_encoding_name (unsigned);
3582 #endif
3583 static tree decl_ultimate_origin (tree);
3584 static tree block_ultimate_origin (tree);
3585 static tree decl_class_context (tree);
3586 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3587 static inline enum dw_val_class AT_class (dw_attr_ref);
3588 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3589 static inline unsigned AT_flag (dw_attr_ref);
3590 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3591 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3592 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3593 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3594 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3595 unsigned long);
3596 static void add_AT_float (dw_die_ref, enum dwarf_attribute, unsigned, long *);
3597 static hashval_t debug_str_do_hash (const void *);
3598 static int debug_str_eq (const void *, const void *);
3599 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3600 static inline const char *AT_string (dw_attr_ref);
3601 static int AT_string_form (dw_attr_ref);
3602 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3603 static void add_AT_specification (dw_die_ref, dw_die_ref);
3604 static inline dw_die_ref AT_ref (dw_attr_ref);
3605 static inline int AT_ref_external (dw_attr_ref);
3606 static inline void set_AT_ref_external (dw_attr_ref, int);
3607 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3608 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3609 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3610 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3611 dw_loc_list_ref);
3612 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3613 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3614 static inline rtx AT_addr (dw_attr_ref);
3615 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3616 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3617 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3618 unsigned HOST_WIDE_INT);
3619 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3620 unsigned long);
3621 static inline const char *AT_lbl (dw_attr_ref);
3622 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3623 static const char *get_AT_low_pc (dw_die_ref);
3624 static const char *get_AT_hi_pc (dw_die_ref);
3625 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3626 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3627 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3628 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3629 static bool is_c_family (void);
3630 static bool is_cxx (void);
3631 static bool is_java (void);
3632 static bool is_fortran (void);
3633 static bool is_ada (void);
3634 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3635 static inline void free_die (dw_die_ref);
3636 static void remove_children (dw_die_ref);
3637 static void add_child_die (dw_die_ref, dw_die_ref);
3638 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3639 static dw_die_ref lookup_type_die (tree);
3640 static void equate_type_number_to_die (tree, dw_die_ref);
3641 static dw_die_ref lookup_decl_die (tree);
3642 static void equate_decl_number_to_die (tree, dw_die_ref);
3643 static void print_spaces (FILE *);
3644 static void print_die (dw_die_ref, FILE *);
3645 static void print_dwarf_line_table (FILE *);
3646 static void reverse_die_lists (dw_die_ref);
3647 static void reverse_all_dies (dw_die_ref);
3648 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3649 static dw_die_ref pop_compile_unit (dw_die_ref);
3650 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3651 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3652 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3653 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3654 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3655 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3656 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3657 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3658 static void compute_section_prefix (dw_die_ref);
3659 static int is_type_die (dw_die_ref);
3660 static int is_comdat_die (dw_die_ref);
3661 static int is_symbol_die (dw_die_ref);
3662 static void assign_symbol_names (dw_die_ref);
3663 static void break_out_includes (dw_die_ref);
3664 static hashval_t htab_cu_hash (const void *);
3665 static int htab_cu_eq (const void *, const void *);
3666 static void htab_cu_del (void *);
3667 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3668 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3669 static void add_sibling_attributes (dw_die_ref);
3670 static void build_abbrev_table (dw_die_ref);
3671 static void output_location_lists (dw_die_ref);
3672 static int constant_size (long unsigned);
3673 static unsigned long size_of_die (dw_die_ref);
3674 static void calc_die_sizes (dw_die_ref);
3675 static void mark_dies (dw_die_ref);
3676 static void unmark_dies (dw_die_ref);
3677 static void unmark_all_dies (dw_die_ref);
3678 static unsigned long size_of_pubnames (void);
3679 static unsigned long size_of_aranges (void);
3680 static enum dwarf_form value_format (dw_attr_ref);
3681 static void output_value_format (dw_attr_ref);
3682 static void output_abbrev_section (void);
3683 static void output_die_symbol (dw_die_ref);
3684 static void output_die (dw_die_ref);
3685 static void output_compilation_unit_header (void);
3686 static void output_comp_unit (dw_die_ref, int);
3687 static const char *dwarf2_name (tree, int);
3688 static void add_pubname (tree, dw_die_ref);
3689 static void output_pubnames (void);
3690 static void add_arange (tree, dw_die_ref);
3691 static void output_aranges (void);
3692 static unsigned int add_ranges (tree);
3693 static void output_ranges (void);
3694 static void output_line_info (void);
3695 static void output_file_names (void);
3696 static dw_die_ref base_type_die (tree);
3697 static tree root_type (tree);
3698 static int is_base_type (tree);
3699 static bool is_ada_subrange_type (tree);
3700 static dw_die_ref subrange_type_die (tree, dw_die_ref);
3701 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3702 static int type_is_enum (tree);
3703 static unsigned int reg_number (rtx);
3704 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3705 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3706 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3707 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3708 static dw_loc_descr_ref based_loc_descr (unsigned, HOST_WIDE_INT);
3709 static int is_based_loc (rtx);
3710 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
3711 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3712 static dw_loc_descr_ref loc_descriptor (rtx);
3713 static dw_loc_descr_ref loc_descriptor_from_tree (tree, int);
3714 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3715 static tree field_type (tree);
3716 static unsigned int simple_type_align_in_bits (tree);
3717 static unsigned int simple_decl_align_in_bits (tree);
3718 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3719 static HOST_WIDE_INT field_byte_offset (tree);
3720 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3721 dw_loc_descr_ref);
3722 static void add_data_member_location_attribute (dw_die_ref, tree);
3723 static void add_const_value_attribute (dw_die_ref, rtx);
3724 static rtx rtl_for_decl_location (tree);
3725 static void add_location_or_const_value_attribute (dw_die_ref, tree);
3726 static void tree_add_const_value_attribute (dw_die_ref, tree);
3727 static void add_name_attribute (dw_die_ref, const char *);
3728 static void add_comp_dir_attribute (dw_die_ref);
3729 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
3730 static void add_subscript_info (dw_die_ref, tree);
3731 static void add_byte_size_attribute (dw_die_ref, tree);
3732 static void add_bit_offset_attribute (dw_die_ref, tree);
3733 static void add_bit_size_attribute (dw_die_ref, tree);
3734 static void add_prototyped_attribute (dw_die_ref, tree);
3735 static void add_abstract_origin_attribute (dw_die_ref, tree);
3736 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3737 static void add_src_coords_attributes (dw_die_ref, tree);
3738 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3739 static void push_decl_scope (tree);
3740 static void pop_decl_scope (void);
3741 static dw_die_ref scope_die_for (tree, dw_die_ref);
3742 static inline int local_scope_p (dw_die_ref);
3743 static inline int class_or_namespace_scope_p (dw_die_ref);
3744 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
3745 static const char *type_tag (tree);
3746 static tree member_declared_type (tree);
3747 #if 0
3748 static const char *decl_start_label (tree);
3749 #endif
3750 static void gen_array_type_die (tree, dw_die_ref);
3751 static void gen_set_type_die (tree, dw_die_ref);
3752 #if 0
3753 static void gen_entry_point_die (tree, dw_die_ref);
3754 #endif
3755 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
3756 static void gen_inlined_structure_type_die (tree, dw_die_ref);
3757 static void gen_inlined_union_type_die (tree, dw_die_ref);
3758 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
3759 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
3760 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3761 static void gen_formal_types_die (tree, dw_die_ref);
3762 static void gen_subprogram_die (tree, dw_die_ref);
3763 static void gen_variable_die (tree, dw_die_ref);
3764 static void gen_label_die (tree, dw_die_ref);
3765 static void gen_lexical_block_die (tree, dw_die_ref, int);
3766 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
3767 static void gen_field_die (tree, dw_die_ref);
3768 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3769 static dw_die_ref gen_compile_unit_die (const char *);
3770 static void gen_string_type_die (tree, dw_die_ref);
3771 static void gen_inheritance_die (tree, tree, dw_die_ref);
3772 static void gen_member_die (tree, dw_die_ref);
3773 static void gen_struct_or_union_type_die (tree, dw_die_ref);
3774 static void gen_subroutine_type_die (tree, dw_die_ref);
3775 static void gen_typedef_die (tree, dw_die_ref);
3776 static void gen_type_die (tree, dw_die_ref);
3777 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
3778 static void gen_block_die (tree, dw_die_ref, int);
3779 static void decls_for_scope (tree, dw_die_ref, int);
3780 static int is_redundant_typedef (tree);
3781 static void gen_namespace_die (tree);
3782 static void gen_decl_die (tree, dw_die_ref);
3783 static dw_die_ref force_namespace_die (tree);
3784 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
3785 static void declare_in_namespace (tree, dw_die_ref);
3786 static unsigned lookup_filename (const char *);
3787 static void init_file_table (void);
3788 static void retry_incomplete_types (void);
3789 static void gen_type_die_for_member (tree, tree, dw_die_ref);
3790 static void splice_child_die (dw_die_ref, dw_die_ref);
3791 static int file_info_cmp (const void *, const void *);
3792 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
3793 const char *, const char *, unsigned);
3794 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
3795 const char *, const char *,
3796 const char *);
3797 static void output_loc_list (dw_loc_list_ref);
3798 static char *gen_internal_sym (const char *);
3799
3800 static void prune_unmark_dies (dw_die_ref);
3801 static void prune_unused_types_mark (dw_die_ref, int);
3802 static void prune_unused_types_walk (dw_die_ref);
3803 static void prune_unused_types_walk_attribs (dw_die_ref);
3804 static void prune_unused_types_prune (dw_die_ref);
3805 static void prune_unused_types (void);
3806 static int maybe_emit_file (int);
3807
3808 /* Section names used to hold DWARF debugging information. */
3809 #ifndef DEBUG_INFO_SECTION
3810 #define DEBUG_INFO_SECTION ".debug_info"
3811 #endif
3812 #ifndef DEBUG_ABBREV_SECTION
3813 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3814 #endif
3815 #ifndef DEBUG_ARANGES_SECTION
3816 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3817 #endif
3818 #ifndef DEBUG_MACINFO_SECTION
3819 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3820 #endif
3821 #ifndef DEBUG_LINE_SECTION
3822 #define DEBUG_LINE_SECTION ".debug_line"
3823 #endif
3824 #ifndef DEBUG_LOC_SECTION
3825 #define DEBUG_LOC_SECTION ".debug_loc"
3826 #endif
3827 #ifndef DEBUG_PUBNAMES_SECTION
3828 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3829 #endif
3830 #ifndef DEBUG_STR_SECTION
3831 #define DEBUG_STR_SECTION ".debug_str"
3832 #endif
3833 #ifndef DEBUG_RANGES_SECTION
3834 #define DEBUG_RANGES_SECTION ".debug_ranges"
3835 #endif
3836
3837 /* Standard ELF section names for compiled code and data. */
3838 #ifndef TEXT_SECTION_NAME
3839 #define TEXT_SECTION_NAME ".text"
3840 #endif
3841
3842 /* Section flags for .debug_str section. */
3843 #define DEBUG_STR_SECTION_FLAGS \
3844 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
3845 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
3846 : SECTION_DEBUG)
3847
3848 /* Labels we insert at beginning sections we can reference instead of
3849 the section names themselves. */
3850
3851 #ifndef TEXT_SECTION_LABEL
3852 #define TEXT_SECTION_LABEL "Ltext"
3853 #endif
3854 #ifndef DEBUG_LINE_SECTION_LABEL
3855 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3856 #endif
3857 #ifndef DEBUG_INFO_SECTION_LABEL
3858 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3859 #endif
3860 #ifndef DEBUG_ABBREV_SECTION_LABEL
3861 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3862 #endif
3863 #ifndef DEBUG_LOC_SECTION_LABEL
3864 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3865 #endif
3866 #ifndef DEBUG_RANGES_SECTION_LABEL
3867 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3868 #endif
3869 #ifndef DEBUG_MACINFO_SECTION_LABEL
3870 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3871 #endif
3872
3873 /* Definitions of defaults for formats and names of various special
3874 (artificial) labels which may be generated within this file (when the -g
3875 options is used and DWARF2_DEBUGGING_INFO is in effect.
3876 If necessary, these may be overridden from within the tm.h file, but
3877 typically, overriding these defaults is unnecessary. */
3878
3879 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3880 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3881 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3882 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3883 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3884 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3885 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3886 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3887
3888 #ifndef TEXT_END_LABEL
3889 #define TEXT_END_LABEL "Letext"
3890 #endif
3891 #ifndef BLOCK_BEGIN_LABEL
3892 #define BLOCK_BEGIN_LABEL "LBB"
3893 #endif
3894 #ifndef BLOCK_END_LABEL
3895 #define BLOCK_END_LABEL "LBE"
3896 #endif
3897 #ifndef LINE_CODE_LABEL
3898 #define LINE_CODE_LABEL "LM"
3899 #endif
3900 #ifndef SEPARATE_LINE_CODE_LABEL
3901 #define SEPARATE_LINE_CODE_LABEL "LSM"
3902 #endif
3903 \f
3904 /* We allow a language front-end to designate a function that is to be
3905 called to "demangle" any name before it it put into a DIE. */
3906
3907 static const char *(*demangle_name_func) (const char *);
3908
3909 void
3910 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
3911 {
3912 demangle_name_func = func;
3913 }
3914
3915 /* Test if rtl node points to a pseudo register. */
3916
3917 static inline int
3918 is_pseudo_reg (rtx rtl)
3919 {
3920 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3921 || (GET_CODE (rtl) == SUBREG
3922 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3923 }
3924
3925 /* Return a reference to a type, with its const and volatile qualifiers
3926 removed. */
3927
3928 static inline tree
3929 type_main_variant (tree type)
3930 {
3931 type = TYPE_MAIN_VARIANT (type);
3932
3933 /* ??? There really should be only one main variant among any group of
3934 variants of a given type (and all of the MAIN_VARIANT values for all
3935 members of the group should point to that one type) but sometimes the C
3936 front-end messes this up for array types, so we work around that bug
3937 here. */
3938 if (TREE_CODE (type) == ARRAY_TYPE)
3939 while (type != TYPE_MAIN_VARIANT (type))
3940 type = TYPE_MAIN_VARIANT (type);
3941
3942 return type;
3943 }
3944
3945 /* Return nonzero if the given type node represents a tagged type. */
3946
3947 static inline int
3948 is_tagged_type (tree type)
3949 {
3950 enum tree_code code = TREE_CODE (type);
3951
3952 return (code == RECORD_TYPE || code == UNION_TYPE
3953 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
3954 }
3955
3956 /* Convert a DIE tag into its string name. */
3957
3958 static const char *
3959 dwarf_tag_name (unsigned int tag)
3960 {
3961 switch (tag)
3962 {
3963 case DW_TAG_padding:
3964 return "DW_TAG_padding";
3965 case DW_TAG_array_type:
3966 return "DW_TAG_array_type";
3967 case DW_TAG_class_type:
3968 return "DW_TAG_class_type";
3969 case DW_TAG_entry_point:
3970 return "DW_TAG_entry_point";
3971 case DW_TAG_enumeration_type:
3972 return "DW_TAG_enumeration_type";
3973 case DW_TAG_formal_parameter:
3974 return "DW_TAG_formal_parameter";
3975 case DW_TAG_imported_declaration:
3976 return "DW_TAG_imported_declaration";
3977 case DW_TAG_label:
3978 return "DW_TAG_label";
3979 case DW_TAG_lexical_block:
3980 return "DW_TAG_lexical_block";
3981 case DW_TAG_member:
3982 return "DW_TAG_member";
3983 case DW_TAG_pointer_type:
3984 return "DW_TAG_pointer_type";
3985 case DW_TAG_reference_type:
3986 return "DW_TAG_reference_type";
3987 case DW_TAG_compile_unit:
3988 return "DW_TAG_compile_unit";
3989 case DW_TAG_string_type:
3990 return "DW_TAG_string_type";
3991 case DW_TAG_structure_type:
3992 return "DW_TAG_structure_type";
3993 case DW_TAG_subroutine_type:
3994 return "DW_TAG_subroutine_type";
3995 case DW_TAG_typedef:
3996 return "DW_TAG_typedef";
3997 case DW_TAG_union_type:
3998 return "DW_TAG_union_type";
3999 case DW_TAG_unspecified_parameters:
4000 return "DW_TAG_unspecified_parameters";
4001 case DW_TAG_variant:
4002 return "DW_TAG_variant";
4003 case DW_TAG_common_block:
4004 return "DW_TAG_common_block";
4005 case DW_TAG_common_inclusion:
4006 return "DW_TAG_common_inclusion";
4007 case DW_TAG_inheritance:
4008 return "DW_TAG_inheritance";
4009 case DW_TAG_inlined_subroutine:
4010 return "DW_TAG_inlined_subroutine";
4011 case DW_TAG_module:
4012 return "DW_TAG_module";
4013 case DW_TAG_ptr_to_member_type:
4014 return "DW_TAG_ptr_to_member_type";
4015 case DW_TAG_set_type:
4016 return "DW_TAG_set_type";
4017 case DW_TAG_subrange_type:
4018 return "DW_TAG_subrange_type";
4019 case DW_TAG_with_stmt:
4020 return "DW_TAG_with_stmt";
4021 case DW_TAG_access_declaration:
4022 return "DW_TAG_access_declaration";
4023 case DW_TAG_base_type:
4024 return "DW_TAG_base_type";
4025 case DW_TAG_catch_block:
4026 return "DW_TAG_catch_block";
4027 case DW_TAG_const_type:
4028 return "DW_TAG_const_type";
4029 case DW_TAG_constant:
4030 return "DW_TAG_constant";
4031 case DW_TAG_enumerator:
4032 return "DW_TAG_enumerator";
4033 case DW_TAG_file_type:
4034 return "DW_TAG_file_type";
4035 case DW_TAG_friend:
4036 return "DW_TAG_friend";
4037 case DW_TAG_namelist:
4038 return "DW_TAG_namelist";
4039 case DW_TAG_namelist_item:
4040 return "DW_TAG_namelist_item";
4041 case DW_TAG_namespace:
4042 return "DW_TAG_namespace";
4043 case DW_TAG_packed_type:
4044 return "DW_TAG_packed_type";
4045 case DW_TAG_subprogram:
4046 return "DW_TAG_subprogram";
4047 case DW_TAG_template_type_param:
4048 return "DW_TAG_template_type_param";
4049 case DW_TAG_template_value_param:
4050 return "DW_TAG_template_value_param";
4051 case DW_TAG_thrown_type:
4052 return "DW_TAG_thrown_type";
4053 case DW_TAG_try_block:
4054 return "DW_TAG_try_block";
4055 case DW_TAG_variant_part:
4056 return "DW_TAG_variant_part";
4057 case DW_TAG_variable:
4058 return "DW_TAG_variable";
4059 case DW_TAG_volatile_type:
4060 return "DW_TAG_volatile_type";
4061 case DW_TAG_MIPS_loop:
4062 return "DW_TAG_MIPS_loop";
4063 case DW_TAG_format_label:
4064 return "DW_TAG_format_label";
4065 case DW_TAG_function_template:
4066 return "DW_TAG_function_template";
4067 case DW_TAG_class_template:
4068 return "DW_TAG_class_template";
4069 case DW_TAG_GNU_BINCL:
4070 return "DW_TAG_GNU_BINCL";
4071 case DW_TAG_GNU_EINCL:
4072 return "DW_TAG_GNU_EINCL";
4073 default:
4074 return "DW_TAG_<unknown>";
4075 }
4076 }
4077
4078 /* Convert a DWARF attribute code into its string name. */
4079
4080 static const char *
4081 dwarf_attr_name (unsigned int attr)
4082 {
4083 switch (attr)
4084 {
4085 case DW_AT_sibling:
4086 return "DW_AT_sibling";
4087 case DW_AT_location:
4088 return "DW_AT_location";
4089 case DW_AT_name:
4090 return "DW_AT_name";
4091 case DW_AT_ordering:
4092 return "DW_AT_ordering";
4093 case DW_AT_subscr_data:
4094 return "DW_AT_subscr_data";
4095 case DW_AT_byte_size:
4096 return "DW_AT_byte_size";
4097 case DW_AT_bit_offset:
4098 return "DW_AT_bit_offset";
4099 case DW_AT_bit_size:
4100 return "DW_AT_bit_size";
4101 case DW_AT_element_list:
4102 return "DW_AT_element_list";
4103 case DW_AT_stmt_list:
4104 return "DW_AT_stmt_list";
4105 case DW_AT_low_pc:
4106 return "DW_AT_low_pc";
4107 case DW_AT_high_pc:
4108 return "DW_AT_high_pc";
4109 case DW_AT_language:
4110 return "DW_AT_language";
4111 case DW_AT_member:
4112 return "DW_AT_member";
4113 case DW_AT_discr:
4114 return "DW_AT_discr";
4115 case DW_AT_discr_value:
4116 return "DW_AT_discr_value";
4117 case DW_AT_visibility:
4118 return "DW_AT_visibility";
4119 case DW_AT_import:
4120 return "DW_AT_import";
4121 case DW_AT_string_length:
4122 return "DW_AT_string_length";
4123 case DW_AT_common_reference:
4124 return "DW_AT_common_reference";
4125 case DW_AT_comp_dir:
4126 return "DW_AT_comp_dir";
4127 case DW_AT_const_value:
4128 return "DW_AT_const_value";
4129 case DW_AT_containing_type:
4130 return "DW_AT_containing_type";
4131 case DW_AT_default_value:
4132 return "DW_AT_default_value";
4133 case DW_AT_inline:
4134 return "DW_AT_inline";
4135 case DW_AT_is_optional:
4136 return "DW_AT_is_optional";
4137 case DW_AT_lower_bound:
4138 return "DW_AT_lower_bound";
4139 case DW_AT_producer:
4140 return "DW_AT_producer";
4141 case DW_AT_prototyped:
4142 return "DW_AT_prototyped";
4143 case DW_AT_return_addr:
4144 return "DW_AT_return_addr";
4145 case DW_AT_start_scope:
4146 return "DW_AT_start_scope";
4147 case DW_AT_stride_size:
4148 return "DW_AT_stride_size";
4149 case DW_AT_upper_bound:
4150 return "DW_AT_upper_bound";
4151 case DW_AT_abstract_origin:
4152 return "DW_AT_abstract_origin";
4153 case DW_AT_accessibility:
4154 return "DW_AT_accessibility";
4155 case DW_AT_address_class:
4156 return "DW_AT_address_class";
4157 case DW_AT_artificial:
4158 return "DW_AT_artificial";
4159 case DW_AT_base_types:
4160 return "DW_AT_base_types";
4161 case DW_AT_calling_convention:
4162 return "DW_AT_calling_convention";
4163 case DW_AT_count:
4164 return "DW_AT_count";
4165 case DW_AT_data_member_location:
4166 return "DW_AT_data_member_location";
4167 case DW_AT_decl_column:
4168 return "DW_AT_decl_column";
4169 case DW_AT_decl_file:
4170 return "DW_AT_decl_file";
4171 case DW_AT_decl_line:
4172 return "DW_AT_decl_line";
4173 case DW_AT_declaration:
4174 return "DW_AT_declaration";
4175 case DW_AT_discr_list:
4176 return "DW_AT_discr_list";
4177 case DW_AT_encoding:
4178 return "DW_AT_encoding";
4179 case DW_AT_external:
4180 return "DW_AT_external";
4181 case DW_AT_frame_base:
4182 return "DW_AT_frame_base";
4183 case DW_AT_friend:
4184 return "DW_AT_friend";
4185 case DW_AT_identifier_case:
4186 return "DW_AT_identifier_case";
4187 case DW_AT_macro_info:
4188 return "DW_AT_macro_info";
4189 case DW_AT_namelist_items:
4190 return "DW_AT_namelist_items";
4191 case DW_AT_priority:
4192 return "DW_AT_priority";
4193 case DW_AT_segment:
4194 return "DW_AT_segment";
4195 case DW_AT_specification:
4196 return "DW_AT_specification";
4197 case DW_AT_static_link:
4198 return "DW_AT_static_link";
4199 case DW_AT_type:
4200 return "DW_AT_type";
4201 case DW_AT_use_location:
4202 return "DW_AT_use_location";
4203 case DW_AT_variable_parameter:
4204 return "DW_AT_variable_parameter";
4205 case DW_AT_virtuality:
4206 return "DW_AT_virtuality";
4207 case DW_AT_vtable_elem_location:
4208 return "DW_AT_vtable_elem_location";
4209
4210 case DW_AT_allocated:
4211 return "DW_AT_allocated";
4212 case DW_AT_associated:
4213 return "DW_AT_associated";
4214 case DW_AT_data_location:
4215 return "DW_AT_data_location";
4216 case DW_AT_stride:
4217 return "DW_AT_stride";
4218 case DW_AT_entry_pc:
4219 return "DW_AT_entry_pc";
4220 case DW_AT_use_UTF8:
4221 return "DW_AT_use_UTF8";
4222 case DW_AT_extension:
4223 return "DW_AT_extension";
4224 case DW_AT_ranges:
4225 return "DW_AT_ranges";
4226 case DW_AT_trampoline:
4227 return "DW_AT_trampoline";
4228 case DW_AT_call_column:
4229 return "DW_AT_call_column";
4230 case DW_AT_call_file:
4231 return "DW_AT_call_file";
4232 case DW_AT_call_line:
4233 return "DW_AT_call_line";
4234
4235 case DW_AT_MIPS_fde:
4236 return "DW_AT_MIPS_fde";
4237 case DW_AT_MIPS_loop_begin:
4238 return "DW_AT_MIPS_loop_begin";
4239 case DW_AT_MIPS_tail_loop_begin:
4240 return "DW_AT_MIPS_tail_loop_begin";
4241 case DW_AT_MIPS_epilog_begin:
4242 return "DW_AT_MIPS_epilog_begin";
4243 case DW_AT_MIPS_loop_unroll_factor:
4244 return "DW_AT_MIPS_loop_unroll_factor";
4245 case DW_AT_MIPS_software_pipeline_depth:
4246 return "DW_AT_MIPS_software_pipeline_depth";
4247 case DW_AT_MIPS_linkage_name:
4248 return "DW_AT_MIPS_linkage_name";
4249 case DW_AT_MIPS_stride:
4250 return "DW_AT_MIPS_stride";
4251 case DW_AT_MIPS_abstract_name:
4252 return "DW_AT_MIPS_abstract_name";
4253 case DW_AT_MIPS_clone_origin:
4254 return "DW_AT_MIPS_clone_origin";
4255 case DW_AT_MIPS_has_inlines:
4256 return "DW_AT_MIPS_has_inlines";
4257
4258 case DW_AT_sf_names:
4259 return "DW_AT_sf_names";
4260 case DW_AT_src_info:
4261 return "DW_AT_src_info";
4262 case DW_AT_mac_info:
4263 return "DW_AT_mac_info";
4264 case DW_AT_src_coords:
4265 return "DW_AT_src_coords";
4266 case DW_AT_body_begin:
4267 return "DW_AT_body_begin";
4268 case DW_AT_body_end:
4269 return "DW_AT_body_end";
4270 case DW_AT_GNU_vector:
4271 return "DW_AT_GNU_vector";
4272
4273 case DW_AT_VMS_rtnbeg_pd_address:
4274 return "DW_AT_VMS_rtnbeg_pd_address";
4275
4276 default:
4277 return "DW_AT_<unknown>";
4278 }
4279 }
4280
4281 /* Convert a DWARF value form code into its string name. */
4282
4283 static const char *
4284 dwarf_form_name (unsigned int form)
4285 {
4286 switch (form)
4287 {
4288 case DW_FORM_addr:
4289 return "DW_FORM_addr";
4290 case DW_FORM_block2:
4291 return "DW_FORM_block2";
4292 case DW_FORM_block4:
4293 return "DW_FORM_block4";
4294 case DW_FORM_data2:
4295 return "DW_FORM_data2";
4296 case DW_FORM_data4:
4297 return "DW_FORM_data4";
4298 case DW_FORM_data8:
4299 return "DW_FORM_data8";
4300 case DW_FORM_string:
4301 return "DW_FORM_string";
4302 case DW_FORM_block:
4303 return "DW_FORM_block";
4304 case DW_FORM_block1:
4305 return "DW_FORM_block1";
4306 case DW_FORM_data1:
4307 return "DW_FORM_data1";
4308 case DW_FORM_flag:
4309 return "DW_FORM_flag";
4310 case DW_FORM_sdata:
4311 return "DW_FORM_sdata";
4312 case DW_FORM_strp:
4313 return "DW_FORM_strp";
4314 case DW_FORM_udata:
4315 return "DW_FORM_udata";
4316 case DW_FORM_ref_addr:
4317 return "DW_FORM_ref_addr";
4318 case DW_FORM_ref1:
4319 return "DW_FORM_ref1";
4320 case DW_FORM_ref2:
4321 return "DW_FORM_ref2";
4322 case DW_FORM_ref4:
4323 return "DW_FORM_ref4";
4324 case DW_FORM_ref8:
4325 return "DW_FORM_ref8";
4326 case DW_FORM_ref_udata:
4327 return "DW_FORM_ref_udata";
4328 case DW_FORM_indirect:
4329 return "DW_FORM_indirect";
4330 default:
4331 return "DW_FORM_<unknown>";
4332 }
4333 }
4334
4335 /* Convert a DWARF type code into its string name. */
4336
4337 #if 0
4338 static const char *
4339 dwarf_type_encoding_name (unsigned enc)
4340 {
4341 switch (enc)
4342 {
4343 case DW_ATE_address:
4344 return "DW_ATE_address";
4345 case DW_ATE_boolean:
4346 return "DW_ATE_boolean";
4347 case DW_ATE_complex_float:
4348 return "DW_ATE_complex_float";
4349 case DW_ATE_float:
4350 return "DW_ATE_float";
4351 case DW_ATE_signed:
4352 return "DW_ATE_signed";
4353 case DW_ATE_signed_char:
4354 return "DW_ATE_signed_char";
4355 case DW_ATE_unsigned:
4356 return "DW_ATE_unsigned";
4357 case DW_ATE_unsigned_char:
4358 return "DW_ATE_unsigned_char";
4359 default:
4360 return "DW_ATE_<unknown>";
4361 }
4362 }
4363 #endif
4364 \f
4365 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4366 instance of an inlined instance of a decl which is local to an inline
4367 function, so we have to trace all of the way back through the origin chain
4368 to find out what sort of node actually served as the original seed for the
4369 given block. */
4370
4371 static tree
4372 decl_ultimate_origin (tree decl)
4373 {
4374 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4375 nodes in the function to point to themselves; ignore that if
4376 we're trying to output the abstract instance of this function. */
4377 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4378 return NULL_TREE;
4379
4380 #ifdef ENABLE_CHECKING
4381 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4382 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4383 most distant ancestor, this should never happen. */
4384 abort ();
4385 #endif
4386
4387 return DECL_ABSTRACT_ORIGIN (decl);
4388 }
4389
4390 /* Determine the "ultimate origin" of a block. The block may be an inlined
4391 instance of an inlined instance of a block which is local to an inline
4392 function, so we have to trace all of the way back through the origin chain
4393 to find out what sort of node actually served as the original seed for the
4394 given block. */
4395
4396 static tree
4397 block_ultimate_origin (tree block)
4398 {
4399 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4400
4401 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4402 nodes in the function to point to themselves; ignore that if
4403 we're trying to output the abstract instance of this function. */
4404 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4405 return NULL_TREE;
4406
4407 if (immediate_origin == NULL_TREE)
4408 return NULL_TREE;
4409 else
4410 {
4411 tree ret_val;
4412 tree lookahead = immediate_origin;
4413
4414 do
4415 {
4416 ret_val = lookahead;
4417 lookahead = (TREE_CODE (ret_val) == BLOCK
4418 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4419 }
4420 while (lookahead != NULL && lookahead != ret_val);
4421
4422 return ret_val;
4423 }
4424 }
4425
4426 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4427 of a virtual function may refer to a base class, so we check the 'this'
4428 parameter. */
4429
4430 static tree
4431 decl_class_context (tree decl)
4432 {
4433 tree context = NULL_TREE;
4434
4435 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4436 context = DECL_CONTEXT (decl);
4437 else
4438 context = TYPE_MAIN_VARIANT
4439 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4440
4441 if (context && !TYPE_P (context))
4442 context = NULL_TREE;
4443
4444 return context;
4445 }
4446 \f
4447 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4448 addition order, and correct that in reverse_all_dies. */
4449
4450 static inline void
4451 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4452 {
4453 if (die != NULL && attr != NULL)
4454 {
4455 attr->dw_attr_next = die->die_attr;
4456 die->die_attr = attr;
4457 }
4458 }
4459
4460 static inline enum dw_val_class
4461 AT_class (dw_attr_ref a)
4462 {
4463 return a->dw_attr_val.val_class;
4464 }
4465
4466 /* Add a flag value attribute to a DIE. */
4467
4468 static inline void
4469 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4470 {
4471 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4472
4473 attr->dw_attr_next = NULL;
4474 attr->dw_attr = attr_kind;
4475 attr->dw_attr_val.val_class = dw_val_class_flag;
4476 attr->dw_attr_val.v.val_flag = flag;
4477 add_dwarf_attr (die, attr);
4478 }
4479
4480 static inline unsigned
4481 AT_flag (dw_attr_ref a)
4482 {
4483 if (a && AT_class (a) == dw_val_class_flag)
4484 return a->dw_attr_val.v.val_flag;
4485
4486 abort ();
4487 }
4488
4489 /* Add a signed integer attribute value to a DIE. */
4490
4491 static inline void
4492 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4493 {
4494 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4495
4496 attr->dw_attr_next = NULL;
4497 attr->dw_attr = attr_kind;
4498 attr->dw_attr_val.val_class = dw_val_class_const;
4499 attr->dw_attr_val.v.val_int = int_val;
4500 add_dwarf_attr (die, attr);
4501 }
4502
4503 static inline HOST_WIDE_INT
4504 AT_int (dw_attr_ref a)
4505 {
4506 if (a && AT_class (a) == dw_val_class_const)
4507 return a->dw_attr_val.v.val_int;
4508
4509 abort ();
4510 }
4511
4512 /* Add an unsigned integer attribute value to a DIE. */
4513
4514 static inline void
4515 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4516 unsigned HOST_WIDE_INT unsigned_val)
4517 {
4518 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4519
4520 attr->dw_attr_next = NULL;
4521 attr->dw_attr = attr_kind;
4522 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4523 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4524 add_dwarf_attr (die, attr);
4525 }
4526
4527 static inline unsigned HOST_WIDE_INT
4528 AT_unsigned (dw_attr_ref a)
4529 {
4530 if (a && AT_class (a) == dw_val_class_unsigned_const)
4531 return a->dw_attr_val.v.val_unsigned;
4532
4533 abort ();
4534 }
4535
4536 /* Add an unsigned double integer attribute value to a DIE. */
4537
4538 static inline void
4539 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4540 long unsigned int val_hi, long unsigned int val_low)
4541 {
4542 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4543
4544 attr->dw_attr_next = NULL;
4545 attr->dw_attr = attr_kind;
4546 attr->dw_attr_val.val_class = dw_val_class_long_long;
4547 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4548 attr->dw_attr_val.v.val_long_long.low = val_low;
4549 add_dwarf_attr (die, attr);
4550 }
4551
4552 /* Add a floating point attribute value to a DIE and return it. */
4553
4554 static inline void
4555 add_AT_float (dw_die_ref die, enum dwarf_attribute attr_kind,
4556 unsigned int length, long int *array)
4557 {
4558 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4559
4560 attr->dw_attr_next = NULL;
4561 attr->dw_attr = attr_kind;
4562 attr->dw_attr_val.val_class = dw_val_class_float;
4563 attr->dw_attr_val.v.val_float.length = length;
4564 attr->dw_attr_val.v.val_float.array = array;
4565 add_dwarf_attr (die, attr);
4566 }
4567
4568 /* Hash and equality functions for debug_str_hash. */
4569
4570 static hashval_t
4571 debug_str_do_hash (const void *x)
4572 {
4573 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4574 }
4575
4576 static int
4577 debug_str_eq (const void *x1, const void *x2)
4578 {
4579 return strcmp ((((const struct indirect_string_node *)x1)->str),
4580 (const char *)x2) == 0;
4581 }
4582
4583 /* Add a string attribute value to a DIE. */
4584
4585 static inline void
4586 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4587 {
4588 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4589 struct indirect_string_node *node;
4590 void **slot;
4591
4592 if (! debug_str_hash)
4593 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4594 debug_str_eq, NULL);
4595
4596 slot = htab_find_slot_with_hash (debug_str_hash, str,
4597 htab_hash_string (str), INSERT);
4598 if (*slot == NULL)
4599 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4600 node = (struct indirect_string_node *) *slot;
4601 node->str = ggc_strdup (str);
4602 node->refcount++;
4603
4604 attr->dw_attr_next = NULL;
4605 attr->dw_attr = attr_kind;
4606 attr->dw_attr_val.val_class = dw_val_class_str;
4607 attr->dw_attr_val.v.val_str = node;
4608 add_dwarf_attr (die, attr);
4609 }
4610
4611 static inline const char *
4612 AT_string (dw_attr_ref a)
4613 {
4614 if (a && AT_class (a) == dw_val_class_str)
4615 return a->dw_attr_val.v.val_str->str;
4616
4617 abort ();
4618 }
4619
4620 /* Find out whether a string should be output inline in DIE
4621 or out-of-line in .debug_str section. */
4622
4623 static int
4624 AT_string_form (dw_attr_ref a)
4625 {
4626 if (a && AT_class (a) == dw_val_class_str)
4627 {
4628 struct indirect_string_node *node;
4629 unsigned int len;
4630 char label[32];
4631
4632 node = a->dw_attr_val.v.val_str;
4633 if (node->form)
4634 return node->form;
4635
4636 len = strlen (node->str) + 1;
4637
4638 /* If the string is shorter or equal to the size of the reference, it is
4639 always better to put it inline. */
4640 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4641 return node->form = DW_FORM_string;
4642
4643 /* If we cannot expect the linker to merge strings in .debug_str
4644 section, only put it into .debug_str if it is worth even in this
4645 single module. */
4646 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4647 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4648 return node->form = DW_FORM_string;
4649
4650 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4651 ++dw2_string_counter;
4652 node->label = xstrdup (label);
4653
4654 return node->form = DW_FORM_strp;
4655 }
4656
4657 abort ();
4658 }
4659
4660 /* Add a DIE reference attribute value to a DIE. */
4661
4662 static inline void
4663 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4664 {
4665 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4666
4667 attr->dw_attr_next = NULL;
4668 attr->dw_attr = attr_kind;
4669 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4670 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4671 attr->dw_attr_val.v.val_die_ref.external = 0;
4672 add_dwarf_attr (die, attr);
4673 }
4674
4675 /* Add an AT_specification attribute to a DIE, and also make the back
4676 pointer from the specification to the definition. */
4677
4678 static inline void
4679 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4680 {
4681 add_AT_die_ref (die, DW_AT_specification, targ_die);
4682 if (targ_die->die_definition)
4683 abort ();
4684 targ_die->die_definition = die;
4685 }
4686
4687 static inline dw_die_ref
4688 AT_ref (dw_attr_ref a)
4689 {
4690 if (a && AT_class (a) == dw_val_class_die_ref)
4691 return a->dw_attr_val.v.val_die_ref.die;
4692
4693 abort ();
4694 }
4695
4696 static inline int
4697 AT_ref_external (dw_attr_ref a)
4698 {
4699 if (a && AT_class (a) == dw_val_class_die_ref)
4700 return a->dw_attr_val.v.val_die_ref.external;
4701
4702 return 0;
4703 }
4704
4705 static inline void
4706 set_AT_ref_external (dw_attr_ref a, int i)
4707 {
4708 if (a && AT_class (a) == dw_val_class_die_ref)
4709 a->dw_attr_val.v.val_die_ref.external = i;
4710 else
4711 abort ();
4712 }
4713
4714 /* Add an FDE reference attribute value to a DIE. */
4715
4716 static inline void
4717 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4718 {
4719 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4720
4721 attr->dw_attr_next = NULL;
4722 attr->dw_attr = attr_kind;
4723 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4724 attr->dw_attr_val.v.val_fde_index = targ_fde;
4725 add_dwarf_attr (die, attr);
4726 }
4727
4728 /* Add a location description attribute value to a DIE. */
4729
4730 static inline void
4731 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4732 {
4733 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4734
4735 attr->dw_attr_next = NULL;
4736 attr->dw_attr = attr_kind;
4737 attr->dw_attr_val.val_class = dw_val_class_loc;
4738 attr->dw_attr_val.v.val_loc = loc;
4739 add_dwarf_attr (die, attr);
4740 }
4741
4742 static inline dw_loc_descr_ref
4743 AT_loc (dw_attr_ref a)
4744 {
4745 if (a && AT_class (a) == dw_val_class_loc)
4746 return a->dw_attr_val.v.val_loc;
4747
4748 abort ();
4749 }
4750
4751 static inline void
4752 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4753 {
4754 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4755
4756 attr->dw_attr_next = NULL;
4757 attr->dw_attr = attr_kind;
4758 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4759 attr->dw_attr_val.v.val_loc_list = loc_list;
4760 add_dwarf_attr (die, attr);
4761 have_location_lists = 1;
4762 }
4763
4764 static inline dw_loc_list_ref
4765 AT_loc_list (dw_attr_ref a)
4766 {
4767 if (a && AT_class (a) == dw_val_class_loc_list)
4768 return a->dw_attr_val.v.val_loc_list;
4769
4770 abort ();
4771 }
4772
4773 /* Add an address constant attribute value to a DIE. */
4774
4775 static inline void
4776 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
4777 {
4778 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4779
4780 attr->dw_attr_next = NULL;
4781 attr->dw_attr = attr_kind;
4782 attr->dw_attr_val.val_class = dw_val_class_addr;
4783 attr->dw_attr_val.v.val_addr = addr;
4784 add_dwarf_attr (die, attr);
4785 }
4786
4787 static inline rtx
4788 AT_addr (dw_attr_ref a)
4789 {
4790 if (a && AT_class (a) == dw_val_class_addr)
4791 return a->dw_attr_val.v.val_addr;
4792
4793 abort ();
4794 }
4795
4796 /* Add a label identifier attribute value to a DIE. */
4797
4798 static inline void
4799 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
4800 {
4801 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4802
4803 attr->dw_attr_next = NULL;
4804 attr->dw_attr = attr_kind;
4805 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4806 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4807 add_dwarf_attr (die, attr);
4808 }
4809
4810 /* Add a section offset attribute value to a DIE. */
4811
4812 static inline void
4813 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
4814 {
4815 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4816
4817 attr->dw_attr_next = NULL;
4818 attr->dw_attr = attr_kind;
4819 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4820 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4821 add_dwarf_attr (die, attr);
4822 }
4823
4824 /* Add an offset attribute value to a DIE. */
4825
4826 static inline void
4827 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
4828 unsigned HOST_WIDE_INT offset)
4829 {
4830 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4831
4832 attr->dw_attr_next = NULL;
4833 attr->dw_attr = attr_kind;
4834 attr->dw_attr_val.val_class = dw_val_class_offset;
4835 attr->dw_attr_val.v.val_offset = offset;
4836 add_dwarf_attr (die, attr);
4837 }
4838
4839 /* Add an range_list attribute value to a DIE. */
4840
4841 static void
4842 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
4843 long unsigned int offset)
4844 {
4845 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4846
4847 attr->dw_attr_next = NULL;
4848 attr->dw_attr = attr_kind;
4849 attr->dw_attr_val.val_class = dw_val_class_range_list;
4850 attr->dw_attr_val.v.val_offset = offset;
4851 add_dwarf_attr (die, attr);
4852 }
4853
4854 static inline const char *
4855 AT_lbl (dw_attr_ref a)
4856 {
4857 if (a && (AT_class (a) == dw_val_class_lbl_id
4858 || AT_class (a) == dw_val_class_lbl_offset))
4859 return a->dw_attr_val.v.val_lbl_id;
4860
4861 abort ();
4862 }
4863
4864 /* Get the attribute of type attr_kind. */
4865
4866 static inline dw_attr_ref
4867 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4868 {
4869 dw_attr_ref a;
4870 dw_die_ref spec = NULL;
4871
4872 if (die != NULL)
4873 {
4874 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
4875 if (a->dw_attr == attr_kind)
4876 return a;
4877 else if (a->dw_attr == DW_AT_specification
4878 || a->dw_attr == DW_AT_abstract_origin)
4879 spec = AT_ref (a);
4880
4881 if (spec)
4882 return get_AT (spec, attr_kind);
4883 }
4884
4885 return NULL;
4886 }
4887
4888 /* Return the "low pc" attribute value, typically associated with a subprogram
4889 DIE. Return null if the "low pc" attribute is either not present, or if it
4890 cannot be represented as an assembler label identifier. */
4891
4892 static inline const char *
4893 get_AT_low_pc (dw_die_ref die)
4894 {
4895 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
4896
4897 return a ? AT_lbl (a) : NULL;
4898 }
4899
4900 /* Return the "high pc" attribute value, typically associated with a subprogram
4901 DIE. Return null if the "high pc" attribute is either not present, or if it
4902 cannot be represented as an assembler label identifier. */
4903
4904 static inline const char *
4905 get_AT_hi_pc (dw_die_ref die)
4906 {
4907 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
4908
4909 return a ? AT_lbl (a) : NULL;
4910 }
4911
4912 /* Return the value of the string attribute designated by ATTR_KIND, or
4913 NULL if it is not present. */
4914
4915 static inline const char *
4916 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
4917 {
4918 dw_attr_ref a = get_AT (die, attr_kind);
4919
4920 return a ? AT_string (a) : NULL;
4921 }
4922
4923 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
4924 if it is not present. */
4925
4926 static inline int
4927 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
4928 {
4929 dw_attr_ref a = get_AT (die, attr_kind);
4930
4931 return a ? AT_flag (a) : 0;
4932 }
4933
4934 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4935 if it is not present. */
4936
4937 static inline unsigned
4938 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
4939 {
4940 dw_attr_ref a = get_AT (die, attr_kind);
4941
4942 return a ? AT_unsigned (a) : 0;
4943 }
4944
4945 static inline dw_die_ref
4946 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
4947 {
4948 dw_attr_ref a = get_AT (die, attr_kind);
4949
4950 return a ? AT_ref (a) : NULL;
4951 }
4952
4953 /* Return TRUE if the language is C or C++. */
4954
4955 static inline bool
4956 is_c_family (void)
4957 {
4958 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4959
4960 return (lang == DW_LANG_C || lang == DW_LANG_C89
4961 || lang == DW_LANG_C_plus_plus);
4962 }
4963
4964 /* Return TRUE if the language is C++. */
4965
4966 static inline bool
4967 is_cxx (void)
4968 {
4969 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
4970 == DW_LANG_C_plus_plus);
4971 }
4972
4973 /* Return TRUE if the language is Fortran. */
4974
4975 static inline bool
4976 is_fortran (void)
4977 {
4978 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4979
4980 return lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90;
4981 }
4982
4983 /* Return TRUE if the language is Java. */
4984
4985 static inline bool
4986 is_java (void)
4987 {
4988 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4989
4990 return lang == DW_LANG_Java;
4991 }
4992
4993 /* Return TRUE if the language is Ada. */
4994
4995 static inline bool
4996 is_ada (void)
4997 {
4998 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4999
5000 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5001 }
5002
5003 /* Free up the memory used by A. */
5004
5005 static inline void free_AT (dw_attr_ref);
5006 static inline void
5007 free_AT (dw_attr_ref a)
5008 {
5009 if (AT_class (a) == dw_val_class_str)
5010 if (a->dw_attr_val.v.val_str->refcount)
5011 a->dw_attr_val.v.val_str->refcount--;
5012 }
5013
5014 /* Remove the specified attribute if present. */
5015
5016 static void
5017 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5018 {
5019 dw_attr_ref *p;
5020 dw_attr_ref removed = NULL;
5021
5022 if (die != NULL)
5023 {
5024 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5025 if ((*p)->dw_attr == attr_kind)
5026 {
5027 removed = *p;
5028 *p = (*p)->dw_attr_next;
5029 break;
5030 }
5031
5032 if (removed != 0)
5033 free_AT (removed);
5034 }
5035 }
5036
5037 /* Free up the memory used by DIE. */
5038
5039 static inline void
5040 free_die (dw_die_ref die)
5041 {
5042 remove_children (die);
5043 }
5044
5045 /* Discard the children of this DIE. */
5046
5047 static void
5048 remove_children (dw_die_ref die)
5049 {
5050 dw_die_ref child_die = die->die_child;
5051
5052 die->die_child = NULL;
5053
5054 while (child_die != NULL)
5055 {
5056 dw_die_ref tmp_die = child_die;
5057 dw_attr_ref a;
5058
5059 child_die = child_die->die_sib;
5060
5061 for (a = tmp_die->die_attr; a != NULL;)
5062 {
5063 dw_attr_ref tmp_a = a;
5064
5065 a = a->dw_attr_next;
5066 free_AT (tmp_a);
5067 }
5068
5069 free_die (tmp_die);
5070 }
5071 }
5072
5073 /* Add a child DIE below its parent. We build the lists up in reverse
5074 addition order, and correct that in reverse_all_dies. */
5075
5076 static inline void
5077 add_child_die (dw_die_ref die, dw_die_ref child_die)
5078 {
5079 if (die != NULL && child_die != NULL)
5080 {
5081 if (die == child_die)
5082 abort ();
5083
5084 child_die->die_parent = die;
5085 child_die->die_sib = die->die_child;
5086 die->die_child = child_die;
5087 }
5088 }
5089
5090 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5091 is the specification, to the front of PARENT's list of children. */
5092
5093 static void
5094 splice_child_die (dw_die_ref parent, dw_die_ref child)
5095 {
5096 dw_die_ref *p;
5097
5098 /* We want the declaration DIE from inside the class, not the
5099 specification DIE at toplevel. */
5100 if (child->die_parent != parent)
5101 {
5102 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5103
5104 if (tmp)
5105 child = tmp;
5106 }
5107
5108 if (child->die_parent != parent
5109 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5110 abort ();
5111
5112 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5113 if (*p == child)
5114 {
5115 *p = child->die_sib;
5116 break;
5117 }
5118
5119 child->die_parent = parent;
5120 child->die_sib = parent->die_child;
5121 parent->die_child = child;
5122 }
5123
5124 /* Return a pointer to a newly created DIE node. */
5125
5126 static inline dw_die_ref
5127 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5128 {
5129 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5130
5131 die->die_tag = tag_value;
5132
5133 if (parent_die != NULL)
5134 add_child_die (parent_die, die);
5135 else
5136 {
5137 limbo_die_node *limbo_node;
5138
5139 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5140 limbo_node->die = die;
5141 limbo_node->created_for = t;
5142 limbo_node->next = limbo_die_list;
5143 limbo_die_list = limbo_node;
5144 }
5145
5146 return die;
5147 }
5148
5149 /* Return the DIE associated with the given type specifier. */
5150
5151 static inline dw_die_ref
5152 lookup_type_die (tree type)
5153 {
5154 return TYPE_SYMTAB_DIE (type);
5155 }
5156
5157 /* Equate a DIE to a given type specifier. */
5158
5159 static inline void
5160 equate_type_number_to_die (tree type, dw_die_ref type_die)
5161 {
5162 TYPE_SYMTAB_DIE (type) = type_die;
5163 }
5164
5165 /* Return the DIE associated with a given declaration. */
5166
5167 static inline dw_die_ref
5168 lookup_decl_die (tree decl)
5169 {
5170 unsigned decl_id = DECL_UID (decl);
5171
5172 return (decl_id < decl_die_table_in_use ? decl_die_table[decl_id] : NULL);
5173 }
5174
5175 /* Equate a DIE to a particular declaration. */
5176
5177 static void
5178 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5179 {
5180 unsigned int decl_id = DECL_UID (decl);
5181 unsigned int num_allocated;
5182
5183 if (decl_id >= decl_die_table_allocated)
5184 {
5185 num_allocated
5186 = ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
5187 / DECL_DIE_TABLE_INCREMENT)
5188 * DECL_DIE_TABLE_INCREMENT;
5189
5190 decl_die_table = ggc_realloc (decl_die_table,
5191 sizeof (dw_die_ref) * num_allocated);
5192
5193 memset (&decl_die_table[decl_die_table_allocated], 0,
5194 (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
5195 decl_die_table_allocated = num_allocated;
5196 }
5197
5198 if (decl_id >= decl_die_table_in_use)
5199 decl_die_table_in_use = (decl_id + 1);
5200
5201 decl_die_table[decl_id] = decl_die;
5202 }
5203 \f
5204 /* Keep track of the number of spaces used to indent the
5205 output of the debugging routines that print the structure of
5206 the DIE internal representation. */
5207 static int print_indent;
5208
5209 /* Indent the line the number of spaces given by print_indent. */
5210
5211 static inline void
5212 print_spaces (FILE *outfile)
5213 {
5214 fprintf (outfile, "%*s", print_indent, "");
5215 }
5216
5217 /* Print the information associated with a given DIE, and its children.
5218 This routine is a debugging aid only. */
5219
5220 static void
5221 print_die (dw_die_ref die, FILE *outfile)
5222 {
5223 dw_attr_ref a;
5224 dw_die_ref c;
5225
5226 print_spaces (outfile);
5227 fprintf (outfile, "DIE %4lu: %s\n",
5228 die->die_offset, dwarf_tag_name (die->die_tag));
5229 print_spaces (outfile);
5230 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5231 fprintf (outfile, " offset: %lu\n", die->die_offset);
5232
5233 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5234 {
5235 print_spaces (outfile);
5236 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5237
5238 switch (AT_class (a))
5239 {
5240 case dw_val_class_addr:
5241 fprintf (outfile, "address");
5242 break;
5243 case dw_val_class_offset:
5244 fprintf (outfile, "offset");
5245 break;
5246 case dw_val_class_loc:
5247 fprintf (outfile, "location descriptor");
5248 break;
5249 case dw_val_class_loc_list:
5250 fprintf (outfile, "location list -> label:%s",
5251 AT_loc_list (a)->ll_symbol);
5252 break;
5253 case dw_val_class_range_list:
5254 fprintf (outfile, "range list");
5255 break;
5256 case dw_val_class_const:
5257 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5258 break;
5259 case dw_val_class_unsigned_const:
5260 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5261 break;
5262 case dw_val_class_long_long:
5263 fprintf (outfile, "constant (%lu,%lu)",
5264 a->dw_attr_val.v.val_long_long.hi,
5265 a->dw_attr_val.v.val_long_long.low);
5266 break;
5267 case dw_val_class_float:
5268 fprintf (outfile, "floating-point constant");
5269 break;
5270 case dw_val_class_flag:
5271 fprintf (outfile, "%u", AT_flag (a));
5272 break;
5273 case dw_val_class_die_ref:
5274 if (AT_ref (a) != NULL)
5275 {
5276 if (AT_ref (a)->die_symbol)
5277 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5278 else
5279 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5280 }
5281 else
5282 fprintf (outfile, "die -> <null>");
5283 break;
5284 case dw_val_class_lbl_id:
5285 case dw_val_class_lbl_offset:
5286 fprintf (outfile, "label: %s", AT_lbl (a));
5287 break;
5288 case dw_val_class_str:
5289 if (AT_string (a) != NULL)
5290 fprintf (outfile, "\"%s\"", AT_string (a));
5291 else
5292 fprintf (outfile, "<null>");
5293 break;
5294 default:
5295 break;
5296 }
5297
5298 fprintf (outfile, "\n");
5299 }
5300
5301 if (die->die_child != NULL)
5302 {
5303 print_indent += 4;
5304 for (c = die->die_child; c != NULL; c = c->die_sib)
5305 print_die (c, outfile);
5306
5307 print_indent -= 4;
5308 }
5309 if (print_indent == 0)
5310 fprintf (outfile, "\n");
5311 }
5312
5313 /* Print the contents of the source code line number correspondence table.
5314 This routine is a debugging aid only. */
5315
5316 static void
5317 print_dwarf_line_table (FILE *outfile)
5318 {
5319 unsigned i;
5320 dw_line_info_ref line_info;
5321
5322 fprintf (outfile, "\n\nDWARF source line information\n");
5323 for (i = 1; i < line_info_table_in_use; i++)
5324 {
5325 line_info = &line_info_table[i];
5326 fprintf (outfile, "%5d: ", i);
5327 fprintf (outfile, "%-20s",
5328 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5329 fprintf (outfile, "%6ld", line_info->dw_line_num);
5330 fprintf (outfile, "\n");
5331 }
5332
5333 fprintf (outfile, "\n\n");
5334 }
5335
5336 /* Print the information collected for a given DIE. */
5337
5338 void
5339 debug_dwarf_die (dw_die_ref die)
5340 {
5341 print_die (die, stderr);
5342 }
5343
5344 /* Print all DWARF information collected for the compilation unit.
5345 This routine is a debugging aid only. */
5346
5347 void
5348 debug_dwarf (void)
5349 {
5350 print_indent = 0;
5351 print_die (comp_unit_die, stderr);
5352 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5353 print_dwarf_line_table (stderr);
5354 }
5355 \f
5356 /* We build up the lists of children and attributes by pushing new ones
5357 onto the beginning of the list. Reverse the lists for DIE so that
5358 they are in order of addition. */
5359
5360 static void
5361 reverse_die_lists (dw_die_ref die)
5362 {
5363 dw_die_ref c, cp, cn;
5364 dw_attr_ref a, ap, an;
5365
5366 for (a = die->die_attr, ap = 0; a; a = an)
5367 {
5368 an = a->dw_attr_next;
5369 a->dw_attr_next = ap;
5370 ap = a;
5371 }
5372
5373 die->die_attr = ap;
5374
5375 for (c = die->die_child, cp = 0; c; c = cn)
5376 {
5377 cn = c->die_sib;
5378 c->die_sib = cp;
5379 cp = c;
5380 }
5381
5382 die->die_child = cp;
5383 }
5384
5385 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5386 reverse all dies in add_sibling_attributes, which runs through all the dies,
5387 it would reverse all the dies. Now, however, since we don't call
5388 reverse_die_lists in add_sibling_attributes, we need a routine to
5389 recursively reverse all the dies. This is that routine. */
5390
5391 static void
5392 reverse_all_dies (dw_die_ref die)
5393 {
5394 dw_die_ref c;
5395
5396 reverse_die_lists (die);
5397
5398 for (c = die->die_child; c; c = c->die_sib)
5399 reverse_all_dies (c);
5400 }
5401
5402 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5403 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5404 DIE that marks the start of the DIEs for this include file. */
5405
5406 static dw_die_ref
5407 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5408 {
5409 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5410 dw_die_ref new_unit = gen_compile_unit_die (filename);
5411
5412 new_unit->die_sib = old_unit;
5413 return new_unit;
5414 }
5415
5416 /* Close an include-file CU and reopen the enclosing one. */
5417
5418 static dw_die_ref
5419 pop_compile_unit (dw_die_ref old_unit)
5420 {
5421 dw_die_ref new_unit = old_unit->die_sib;
5422
5423 old_unit->die_sib = NULL;
5424 return new_unit;
5425 }
5426
5427 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5428 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5429
5430 /* Calculate the checksum of a location expression. */
5431
5432 static inline void
5433 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5434 {
5435 CHECKSUM (loc->dw_loc_opc);
5436 CHECKSUM (loc->dw_loc_oprnd1);
5437 CHECKSUM (loc->dw_loc_oprnd2);
5438 }
5439
5440 /* Calculate the checksum of an attribute. */
5441
5442 static void
5443 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5444 {
5445 dw_loc_descr_ref loc;
5446 rtx r;
5447
5448 CHECKSUM (at->dw_attr);
5449
5450 /* We don't care about differences in file numbering. */
5451 if (at->dw_attr == DW_AT_decl_file
5452 /* Or that this was compiled with a different compiler snapshot; if
5453 the output is the same, that's what matters. */
5454 || at->dw_attr == DW_AT_producer)
5455 return;
5456
5457 switch (AT_class (at))
5458 {
5459 case dw_val_class_const:
5460 CHECKSUM (at->dw_attr_val.v.val_int);
5461 break;
5462 case dw_val_class_unsigned_const:
5463 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5464 break;
5465 case dw_val_class_long_long:
5466 CHECKSUM (at->dw_attr_val.v.val_long_long);
5467 break;
5468 case dw_val_class_float:
5469 CHECKSUM (at->dw_attr_val.v.val_float);
5470 break;
5471 case dw_val_class_flag:
5472 CHECKSUM (at->dw_attr_val.v.val_flag);
5473 break;
5474 case dw_val_class_str:
5475 CHECKSUM_STRING (AT_string (at));
5476 break;
5477
5478 case dw_val_class_addr:
5479 r = AT_addr (at);
5480 switch (GET_CODE (r))
5481 {
5482 case SYMBOL_REF:
5483 CHECKSUM_STRING (XSTR (r, 0));
5484 break;
5485
5486 default:
5487 abort ();
5488 }
5489 break;
5490
5491 case dw_val_class_offset:
5492 CHECKSUM (at->dw_attr_val.v.val_offset);
5493 break;
5494
5495 case dw_val_class_loc:
5496 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5497 loc_checksum (loc, ctx);
5498 break;
5499
5500 case dw_val_class_die_ref:
5501 die_checksum (AT_ref (at), ctx, mark);
5502 break;
5503
5504 case dw_val_class_fde_ref:
5505 case dw_val_class_lbl_id:
5506 case dw_val_class_lbl_offset:
5507 break;
5508
5509 default:
5510 break;
5511 }
5512 }
5513
5514 /* Calculate the checksum of a DIE. */
5515
5516 static void
5517 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5518 {
5519 dw_die_ref c;
5520 dw_attr_ref a;
5521
5522 /* To avoid infinite recursion. */
5523 if (die->die_mark)
5524 {
5525 CHECKSUM (die->die_mark);
5526 return;
5527 }
5528 die->die_mark = ++(*mark);
5529
5530 CHECKSUM (die->die_tag);
5531
5532 for (a = die->die_attr; a; a = a->dw_attr_next)
5533 attr_checksum (a, ctx, mark);
5534
5535 for (c = die->die_child; c; c = c->die_sib)
5536 die_checksum (c, ctx, mark);
5537 }
5538
5539 #undef CHECKSUM
5540 #undef CHECKSUM_STRING
5541
5542 /* Do the location expressions look same? */
5543 static inline int
5544 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5545 {
5546 return loc1->dw_loc_opc == loc2->dw_loc_opc
5547 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5548 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5549 }
5550
5551 /* Do the values look the same? */
5552 static int
5553 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5554 {
5555 dw_loc_descr_ref loc1, loc2;
5556 rtx r1, r2;
5557 unsigned i;
5558
5559 if (v1->val_class != v2->val_class)
5560 return 0;
5561
5562 switch (v1->val_class)
5563 {
5564 case dw_val_class_const:
5565 return v1->v.val_int == v2->v.val_int;
5566 case dw_val_class_unsigned_const:
5567 return v1->v.val_unsigned == v2->v.val_unsigned;
5568 case dw_val_class_long_long:
5569 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5570 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5571 case dw_val_class_float:
5572 if (v1->v.val_float.length != v2->v.val_float.length)
5573 return 0;
5574 for (i = 0; i < v1->v.val_float.length; i++)
5575 if (v1->v.val_float.array[i] != v2->v.val_float.array[i])
5576 return 0;
5577 return 1;
5578 case dw_val_class_flag:
5579 return v1->v.val_flag == v2->v.val_flag;
5580 case dw_val_class_str:
5581 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5582
5583 case dw_val_class_addr:
5584 r1 = v1->v.val_addr;
5585 r2 = v2->v.val_addr;
5586 if (GET_CODE (r1) != GET_CODE (r2))
5587 return 0;
5588 switch (GET_CODE (r1))
5589 {
5590 case SYMBOL_REF:
5591 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5592
5593 default:
5594 abort ();
5595 }
5596
5597 case dw_val_class_offset:
5598 return v1->v.val_offset == v2->v.val_offset;
5599
5600 case dw_val_class_loc:
5601 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5602 loc1 && loc2;
5603 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5604 if (!same_loc_p (loc1, loc2, mark))
5605 return 0;
5606 return !loc1 && !loc2;
5607
5608 case dw_val_class_die_ref:
5609 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5610
5611 case dw_val_class_fde_ref:
5612 case dw_val_class_lbl_id:
5613 case dw_val_class_lbl_offset:
5614 return 1;
5615
5616 default:
5617 return 1;
5618 }
5619 }
5620
5621 /* Do the attributes look the same? */
5622
5623 static int
5624 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5625 {
5626 if (at1->dw_attr != at2->dw_attr)
5627 return 0;
5628
5629 /* We don't care about differences in file numbering. */
5630 if (at1->dw_attr == DW_AT_decl_file
5631 /* Or that this was compiled with a different compiler snapshot; if
5632 the output is the same, that's what matters. */
5633 || at1->dw_attr == DW_AT_producer)
5634 return 1;
5635
5636 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5637 }
5638
5639 /* Do the dies look the same? */
5640
5641 static int
5642 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5643 {
5644 dw_die_ref c1, c2;
5645 dw_attr_ref a1, a2;
5646
5647 /* To avoid infinite recursion. */
5648 if (die1->die_mark)
5649 return die1->die_mark == die2->die_mark;
5650 die1->die_mark = die2->die_mark = ++(*mark);
5651
5652 if (die1->die_tag != die2->die_tag)
5653 return 0;
5654
5655 for (a1 = die1->die_attr, a2 = die2->die_attr;
5656 a1 && a2;
5657 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5658 if (!same_attr_p (a1, a2, mark))
5659 return 0;
5660 if (a1 || a2)
5661 return 0;
5662
5663 for (c1 = die1->die_child, c2 = die2->die_child;
5664 c1 && c2;
5665 c1 = c1->die_sib, c2 = c2->die_sib)
5666 if (!same_die_p (c1, c2, mark))
5667 return 0;
5668 if (c1 || c2)
5669 return 0;
5670
5671 return 1;
5672 }
5673
5674 /* Do the dies look the same? Wrapper around same_die_p. */
5675
5676 static int
5677 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5678 {
5679 int mark = 0;
5680 int ret = same_die_p (die1, die2, &mark);
5681
5682 unmark_all_dies (die1);
5683 unmark_all_dies (die2);
5684
5685 return ret;
5686 }
5687
5688 /* The prefix to attach to symbols on DIEs in the current comdat debug
5689 info section. */
5690 static char *comdat_symbol_id;
5691
5692 /* The index of the current symbol within the current comdat CU. */
5693 static unsigned int comdat_symbol_number;
5694
5695 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5696 children, and set comdat_symbol_id accordingly. */
5697
5698 static void
5699 compute_section_prefix (dw_die_ref unit_die)
5700 {
5701 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5702 const char *base = die_name ? lbasename (die_name) : "anonymous";
5703 char *name = alloca (strlen (base) + 64);
5704 char *p;
5705 int i, mark;
5706 unsigned char checksum[16];
5707 struct md5_ctx ctx;
5708
5709 /* Compute the checksum of the DIE, then append part of it as hex digits to
5710 the name filename of the unit. */
5711
5712 md5_init_ctx (&ctx);
5713 mark = 0;
5714 die_checksum (unit_die, &ctx, &mark);
5715 unmark_all_dies (unit_die);
5716 md5_finish_ctx (&ctx, checksum);
5717
5718 sprintf (name, "%s.", base);
5719 clean_symbol_name (name);
5720
5721 p = name + strlen (name);
5722 for (i = 0; i < 4; i++)
5723 {
5724 sprintf (p, "%.2x", checksum[i]);
5725 p += 2;
5726 }
5727
5728 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5729 comdat_symbol_number = 0;
5730 }
5731
5732 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5733
5734 static int
5735 is_type_die (dw_die_ref die)
5736 {
5737 switch (die->die_tag)
5738 {
5739 case DW_TAG_array_type:
5740 case DW_TAG_class_type:
5741 case DW_TAG_enumeration_type:
5742 case DW_TAG_pointer_type:
5743 case DW_TAG_reference_type:
5744 case DW_TAG_string_type:
5745 case DW_TAG_structure_type:
5746 case DW_TAG_subroutine_type:
5747 case DW_TAG_union_type:
5748 case DW_TAG_ptr_to_member_type:
5749 case DW_TAG_set_type:
5750 case DW_TAG_subrange_type:
5751 case DW_TAG_base_type:
5752 case DW_TAG_const_type:
5753 case DW_TAG_file_type:
5754 case DW_TAG_packed_type:
5755 case DW_TAG_volatile_type:
5756 case DW_TAG_typedef:
5757 return 1;
5758 default:
5759 return 0;
5760 }
5761 }
5762
5763 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5764 Basically, we want to choose the bits that are likely to be shared between
5765 compilations (types) and leave out the bits that are specific to individual
5766 compilations (functions). */
5767
5768 static int
5769 is_comdat_die (dw_die_ref c)
5770 {
5771 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5772 we do for stabs. The advantage is a greater likelihood of sharing between
5773 objects that don't include headers in the same order (and therefore would
5774 put the base types in a different comdat). jason 8/28/00 */
5775
5776 if (c->die_tag == DW_TAG_base_type)
5777 return 0;
5778
5779 if (c->die_tag == DW_TAG_pointer_type
5780 || c->die_tag == DW_TAG_reference_type
5781 || c->die_tag == DW_TAG_const_type
5782 || c->die_tag == DW_TAG_volatile_type)
5783 {
5784 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5785
5786 return t ? is_comdat_die (t) : 0;
5787 }
5788
5789 return is_type_die (c);
5790 }
5791
5792 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5793 compilation unit. */
5794
5795 static int
5796 is_symbol_die (dw_die_ref c)
5797 {
5798 return (is_type_die (c)
5799 || (get_AT (c, DW_AT_declaration)
5800 && !get_AT (c, DW_AT_specification)));
5801 }
5802
5803 static char *
5804 gen_internal_sym (const char *prefix)
5805 {
5806 char buf[256];
5807
5808 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5809 return xstrdup (buf);
5810 }
5811
5812 /* Assign symbols to all worthy DIEs under DIE. */
5813
5814 static void
5815 assign_symbol_names (dw_die_ref die)
5816 {
5817 dw_die_ref c;
5818
5819 if (is_symbol_die (die))
5820 {
5821 if (comdat_symbol_id)
5822 {
5823 char *p = alloca (strlen (comdat_symbol_id) + 64);
5824
5825 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
5826 comdat_symbol_id, comdat_symbol_number++);
5827 die->die_symbol = xstrdup (p);
5828 }
5829 else
5830 die->die_symbol = gen_internal_sym ("LDIE");
5831 }
5832
5833 for (c = die->die_child; c != NULL; c = c->die_sib)
5834 assign_symbol_names (c);
5835 }
5836
5837 struct cu_hash_table_entry
5838 {
5839 dw_die_ref cu;
5840 unsigned min_comdat_num, max_comdat_num;
5841 struct cu_hash_table_entry *next;
5842 };
5843
5844 /* Routines to manipulate hash table of CUs. */
5845 static hashval_t
5846 htab_cu_hash (const void *of)
5847 {
5848 const struct cu_hash_table_entry *entry = of;
5849
5850 return htab_hash_string (entry->cu->die_symbol);
5851 }
5852
5853 static int
5854 htab_cu_eq (const void *of1, const void *of2)
5855 {
5856 const struct cu_hash_table_entry *entry1 = of1;
5857 const struct die_struct *entry2 = of2;
5858
5859 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
5860 }
5861
5862 static void
5863 htab_cu_del (void *what)
5864 {
5865 struct cu_hash_table_entry *next, *entry = what;
5866
5867 while (entry)
5868 {
5869 next = entry->next;
5870 free (entry);
5871 entry = next;
5872 }
5873 }
5874
5875 /* Check whether we have already seen this CU and set up SYM_NUM
5876 accordingly. */
5877 static int
5878 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
5879 {
5880 struct cu_hash_table_entry dummy;
5881 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
5882
5883 dummy.max_comdat_num = 0;
5884
5885 slot = (struct cu_hash_table_entry **)
5886 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
5887 INSERT);
5888 entry = *slot;
5889
5890 for (; entry; last = entry, entry = entry->next)
5891 {
5892 if (same_die_p_wrap (cu, entry->cu))
5893 break;
5894 }
5895
5896 if (entry)
5897 {
5898 *sym_num = entry->min_comdat_num;
5899 return 1;
5900 }
5901
5902 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
5903 entry->cu = cu;
5904 entry->min_comdat_num = *sym_num = last->max_comdat_num;
5905 entry->next = *slot;
5906 *slot = entry;
5907
5908 return 0;
5909 }
5910
5911 /* Record SYM_NUM to record of CU in HTABLE. */
5912 static void
5913 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
5914 {
5915 struct cu_hash_table_entry **slot, *entry;
5916
5917 slot = (struct cu_hash_table_entry **)
5918 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
5919 NO_INSERT);
5920 entry = *slot;
5921
5922 entry->max_comdat_num = sym_num;
5923 }
5924
5925 /* Traverse the DIE (which is always comp_unit_die), and set up
5926 additional compilation units for each of the include files we see
5927 bracketed by BINCL/EINCL. */
5928
5929 static void
5930 break_out_includes (dw_die_ref die)
5931 {
5932 dw_die_ref *ptr;
5933 dw_die_ref unit = NULL;
5934 limbo_die_node *node, **pnode;
5935 htab_t cu_hash_table;
5936
5937 for (ptr = &(die->die_child); *ptr;)
5938 {
5939 dw_die_ref c = *ptr;
5940
5941 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
5942 || (unit && is_comdat_die (c)))
5943 {
5944 /* This DIE is for a secondary CU; remove it from the main one. */
5945 *ptr = c->die_sib;
5946
5947 if (c->die_tag == DW_TAG_GNU_BINCL)
5948 {
5949 unit = push_new_compile_unit (unit, c);
5950 free_die (c);
5951 }
5952 else if (c->die_tag == DW_TAG_GNU_EINCL)
5953 {
5954 unit = pop_compile_unit (unit);
5955 free_die (c);
5956 }
5957 else
5958 add_child_die (unit, c);
5959 }
5960 else
5961 {
5962 /* Leave this DIE in the main CU. */
5963 ptr = &(c->die_sib);
5964 continue;
5965 }
5966 }
5967
5968 #if 0
5969 /* We can only use this in debugging, since the frontend doesn't check
5970 to make sure that we leave every include file we enter. */
5971 if (unit != NULL)
5972 abort ();
5973 #endif
5974
5975 assign_symbol_names (die);
5976 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
5977 for (node = limbo_die_list, pnode = &limbo_die_list;
5978 node;
5979 node = node->next)
5980 {
5981 int is_dupl;
5982
5983 compute_section_prefix (node->die);
5984 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
5985 &comdat_symbol_number);
5986 assign_symbol_names (node->die);
5987 if (is_dupl)
5988 *pnode = node->next;
5989 else
5990 {
5991 pnode = &node->next;
5992 record_comdat_symbol_number (node->die, cu_hash_table,
5993 comdat_symbol_number);
5994 }
5995 }
5996 htab_delete (cu_hash_table);
5997 }
5998
5999 /* Traverse the DIE and add a sibling attribute if it may have the
6000 effect of speeding up access to siblings. To save some space,
6001 avoid generating sibling attributes for DIE's without children. */
6002
6003 static void
6004 add_sibling_attributes (dw_die_ref die)
6005 {
6006 dw_die_ref c;
6007
6008 if (die->die_tag != DW_TAG_compile_unit
6009 && die->die_sib && die->die_child != NULL)
6010 /* Add the sibling link to the front of the attribute list. */
6011 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6012
6013 for (c = die->die_child; c != NULL; c = c->die_sib)
6014 add_sibling_attributes (c);
6015 }
6016
6017 /* Output all location lists for the DIE and its children. */
6018
6019 static void
6020 output_location_lists (dw_die_ref die)
6021 {
6022 dw_die_ref c;
6023 dw_attr_ref d_attr;
6024
6025 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6026 if (AT_class (d_attr) == dw_val_class_loc_list)
6027 output_loc_list (AT_loc_list (d_attr));
6028
6029 for (c = die->die_child; c != NULL; c = c->die_sib)
6030 output_location_lists (c);
6031
6032 }
6033
6034 /* The format of each DIE (and its attribute value pairs) is encoded in an
6035 abbreviation table. This routine builds the abbreviation table and assigns
6036 a unique abbreviation id for each abbreviation entry. The children of each
6037 die are visited recursively. */
6038
6039 static void
6040 build_abbrev_table (dw_die_ref die)
6041 {
6042 unsigned long abbrev_id;
6043 unsigned int n_alloc;
6044 dw_die_ref c;
6045 dw_attr_ref d_attr, a_attr;
6046
6047 /* Scan the DIE references, and mark as external any that refer to
6048 DIEs from other CUs (i.e. those which are not marked). */
6049 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6050 if (AT_class (d_attr) == dw_val_class_die_ref
6051 && AT_ref (d_attr)->die_mark == 0)
6052 {
6053 if (AT_ref (d_attr)->die_symbol == 0)
6054 abort ();
6055
6056 set_AT_ref_external (d_attr, 1);
6057 }
6058
6059 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6060 {
6061 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6062
6063 if (abbrev->die_tag == die->die_tag)
6064 {
6065 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6066 {
6067 a_attr = abbrev->die_attr;
6068 d_attr = die->die_attr;
6069
6070 while (a_attr != NULL && d_attr != NULL)
6071 {
6072 if ((a_attr->dw_attr != d_attr->dw_attr)
6073 || (value_format (a_attr) != value_format (d_attr)))
6074 break;
6075
6076 a_attr = a_attr->dw_attr_next;
6077 d_attr = d_attr->dw_attr_next;
6078 }
6079
6080 if (a_attr == NULL && d_attr == NULL)
6081 break;
6082 }
6083 }
6084 }
6085
6086 if (abbrev_id >= abbrev_die_table_in_use)
6087 {
6088 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6089 {
6090 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6091 abbrev_die_table = ggc_realloc (abbrev_die_table,
6092 sizeof (dw_die_ref) * n_alloc);
6093
6094 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6095 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6096 abbrev_die_table_allocated = n_alloc;
6097 }
6098
6099 ++abbrev_die_table_in_use;
6100 abbrev_die_table[abbrev_id] = die;
6101 }
6102
6103 die->die_abbrev = abbrev_id;
6104 for (c = die->die_child; c != NULL; c = c->die_sib)
6105 build_abbrev_table (c);
6106 }
6107 \f
6108 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6109
6110 static int
6111 constant_size (long unsigned int value)
6112 {
6113 int log;
6114
6115 if (value == 0)
6116 log = 0;
6117 else
6118 log = floor_log2 (value);
6119
6120 log = log / 8;
6121 log = 1 << (floor_log2 (log) + 1);
6122
6123 return log;
6124 }
6125
6126 /* Return the size of a DIE as it is represented in the
6127 .debug_info section. */
6128
6129 static unsigned long
6130 size_of_die (dw_die_ref die)
6131 {
6132 unsigned long size = 0;
6133 dw_attr_ref a;
6134
6135 size += size_of_uleb128 (die->die_abbrev);
6136 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6137 {
6138 switch (AT_class (a))
6139 {
6140 case dw_val_class_addr:
6141 size += DWARF2_ADDR_SIZE;
6142 break;
6143 case dw_val_class_offset:
6144 size += DWARF_OFFSET_SIZE;
6145 break;
6146 case dw_val_class_loc:
6147 {
6148 unsigned long lsize = size_of_locs (AT_loc (a));
6149
6150 /* Block length. */
6151 size += constant_size (lsize);
6152 size += lsize;
6153 }
6154 break;
6155 case dw_val_class_loc_list:
6156 size += DWARF_OFFSET_SIZE;
6157 break;
6158 case dw_val_class_range_list:
6159 size += DWARF_OFFSET_SIZE;
6160 break;
6161 case dw_val_class_const:
6162 size += size_of_sleb128 (AT_int (a));
6163 break;
6164 case dw_val_class_unsigned_const:
6165 size += constant_size (AT_unsigned (a));
6166 break;
6167 case dw_val_class_long_long:
6168 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6169 break;
6170 case dw_val_class_float:
6171 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
6172 break;
6173 case dw_val_class_flag:
6174 size += 1;
6175 break;
6176 case dw_val_class_die_ref:
6177 if (AT_ref_external (a))
6178 size += DWARF2_ADDR_SIZE;
6179 else
6180 size += DWARF_OFFSET_SIZE;
6181 break;
6182 case dw_val_class_fde_ref:
6183 size += DWARF_OFFSET_SIZE;
6184 break;
6185 case dw_val_class_lbl_id:
6186 size += DWARF2_ADDR_SIZE;
6187 break;
6188 case dw_val_class_lbl_offset:
6189 size += DWARF_OFFSET_SIZE;
6190 break;
6191 case dw_val_class_str:
6192 if (AT_string_form (a) == DW_FORM_strp)
6193 size += DWARF_OFFSET_SIZE;
6194 else
6195 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6196 break;
6197 default:
6198 abort ();
6199 }
6200 }
6201
6202 return size;
6203 }
6204
6205 /* Size the debugging information associated with a given DIE. Visits the
6206 DIE's children recursively. Updates the global variable next_die_offset, on
6207 each time through. Uses the current value of next_die_offset to update the
6208 die_offset field in each DIE. */
6209
6210 static void
6211 calc_die_sizes (dw_die_ref die)
6212 {
6213 dw_die_ref c;
6214
6215 die->die_offset = next_die_offset;
6216 next_die_offset += size_of_die (die);
6217
6218 for (c = die->die_child; c != NULL; c = c->die_sib)
6219 calc_die_sizes (c);
6220
6221 if (die->die_child != NULL)
6222 /* Count the null byte used to terminate sibling lists. */
6223 next_die_offset += 1;
6224 }
6225
6226 /* Set the marks for a die and its children. We do this so
6227 that we know whether or not a reference needs to use FORM_ref_addr; only
6228 DIEs in the same CU will be marked. We used to clear out the offset
6229 and use that as the flag, but ran into ordering problems. */
6230
6231 static void
6232 mark_dies (dw_die_ref die)
6233 {
6234 dw_die_ref c;
6235
6236 if (die->die_mark)
6237 abort ();
6238
6239 die->die_mark = 1;
6240 for (c = die->die_child; c; c = c->die_sib)
6241 mark_dies (c);
6242 }
6243
6244 /* Clear the marks for a die and its children. */
6245
6246 static void
6247 unmark_dies (dw_die_ref die)
6248 {
6249 dw_die_ref c;
6250
6251 if (!die->die_mark)
6252 abort ();
6253
6254 die->die_mark = 0;
6255 for (c = die->die_child; c; c = c->die_sib)
6256 unmark_dies (c);
6257 }
6258
6259 /* Clear the marks for a die, its children and referred dies. */
6260
6261 static void
6262 unmark_all_dies (dw_die_ref die)
6263 {
6264 dw_die_ref c;
6265 dw_attr_ref a;
6266
6267 if (!die->die_mark)
6268 return;
6269 die->die_mark = 0;
6270
6271 for (c = die->die_child; c; c = c->die_sib)
6272 unmark_all_dies (c);
6273
6274 for (a = die->die_attr; a; a = a->dw_attr_next)
6275 if (AT_class (a) == dw_val_class_die_ref)
6276 unmark_all_dies (AT_ref (a));
6277 }
6278
6279 /* Return the size of the .debug_pubnames table generated for the
6280 compilation unit. */
6281
6282 static unsigned long
6283 size_of_pubnames (void)
6284 {
6285 unsigned long size;
6286 unsigned i;
6287
6288 size = DWARF_PUBNAMES_HEADER_SIZE;
6289 for (i = 0; i < pubname_table_in_use; i++)
6290 {
6291 pubname_ref p = &pubname_table[i];
6292 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6293 }
6294
6295 size += DWARF_OFFSET_SIZE;
6296 return size;
6297 }
6298
6299 /* Return the size of the information in the .debug_aranges section. */
6300
6301 static unsigned long
6302 size_of_aranges (void)
6303 {
6304 unsigned long size;
6305
6306 size = DWARF_ARANGES_HEADER_SIZE;
6307
6308 /* Count the address/length pair for this compilation unit. */
6309 size += 2 * DWARF2_ADDR_SIZE;
6310 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6311
6312 /* Count the two zero words used to terminated the address range table. */
6313 size += 2 * DWARF2_ADDR_SIZE;
6314 return size;
6315 }
6316 \f
6317 /* Select the encoding of an attribute value. */
6318
6319 static enum dwarf_form
6320 value_format (dw_attr_ref a)
6321 {
6322 switch (a->dw_attr_val.val_class)
6323 {
6324 case dw_val_class_addr:
6325 return DW_FORM_addr;
6326 case dw_val_class_range_list:
6327 case dw_val_class_offset:
6328 if (DWARF_OFFSET_SIZE == 4)
6329 return DW_FORM_data4;
6330 if (DWARF_OFFSET_SIZE == 8)
6331 return DW_FORM_data8;
6332 abort ();
6333 case dw_val_class_loc_list:
6334 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6335 .debug_loc section */
6336 return DW_FORM_data4;
6337 case dw_val_class_loc:
6338 switch (constant_size (size_of_locs (AT_loc (a))))
6339 {
6340 case 1:
6341 return DW_FORM_block1;
6342 case 2:
6343 return DW_FORM_block2;
6344 default:
6345 abort ();
6346 }
6347 case dw_val_class_const:
6348 return DW_FORM_sdata;
6349 case dw_val_class_unsigned_const:
6350 switch (constant_size (AT_unsigned (a)))
6351 {
6352 case 1:
6353 return DW_FORM_data1;
6354 case 2:
6355 return DW_FORM_data2;
6356 case 4:
6357 return DW_FORM_data4;
6358 case 8:
6359 return DW_FORM_data8;
6360 default:
6361 abort ();
6362 }
6363 case dw_val_class_long_long:
6364 return DW_FORM_block1;
6365 case dw_val_class_float:
6366 return DW_FORM_block1;
6367 case dw_val_class_flag:
6368 return DW_FORM_flag;
6369 case dw_val_class_die_ref:
6370 if (AT_ref_external (a))
6371 return DW_FORM_ref_addr;
6372 else
6373 return DW_FORM_ref;
6374 case dw_val_class_fde_ref:
6375 return DW_FORM_data;
6376 case dw_val_class_lbl_id:
6377 return DW_FORM_addr;
6378 case dw_val_class_lbl_offset:
6379 return DW_FORM_data;
6380 case dw_val_class_str:
6381 return AT_string_form (a);
6382
6383 default:
6384 abort ();
6385 }
6386 }
6387
6388 /* Output the encoding of an attribute value. */
6389
6390 static void
6391 output_value_format (dw_attr_ref a)
6392 {
6393 enum dwarf_form form = value_format (a);
6394
6395 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6396 }
6397
6398 /* Output the .debug_abbrev section which defines the DIE abbreviation
6399 table. */
6400
6401 static void
6402 output_abbrev_section (void)
6403 {
6404 unsigned long abbrev_id;
6405
6406 dw_attr_ref a_attr;
6407
6408 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6409 {
6410 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6411
6412 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6413 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6414 dwarf_tag_name (abbrev->die_tag));
6415
6416 if (abbrev->die_child != NULL)
6417 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6418 else
6419 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6420
6421 for (a_attr = abbrev->die_attr; a_attr != NULL;
6422 a_attr = a_attr->dw_attr_next)
6423 {
6424 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6425 dwarf_attr_name (a_attr->dw_attr));
6426 output_value_format (a_attr);
6427 }
6428
6429 dw2_asm_output_data (1, 0, NULL);
6430 dw2_asm_output_data (1, 0, NULL);
6431 }
6432
6433 /* Terminate the table. */
6434 dw2_asm_output_data (1, 0, NULL);
6435 }
6436
6437 /* Output a symbol we can use to refer to this DIE from another CU. */
6438
6439 static inline void
6440 output_die_symbol (dw_die_ref die)
6441 {
6442 char *sym = die->die_symbol;
6443
6444 if (sym == 0)
6445 return;
6446
6447 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6448 /* We make these global, not weak; if the target doesn't support
6449 .linkonce, it doesn't support combining the sections, so debugging
6450 will break. */
6451 (*targetm.asm_out.globalize_label) (asm_out_file, sym);
6452
6453 ASM_OUTPUT_LABEL (asm_out_file, sym);
6454 }
6455
6456 /* Return a new location list, given the begin and end range, and the
6457 expression. gensym tells us whether to generate a new internal symbol for
6458 this location list node, which is done for the head of the list only. */
6459
6460 static inline dw_loc_list_ref
6461 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6462 const char *section, unsigned int gensym)
6463 {
6464 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6465
6466 retlist->begin = begin;
6467 retlist->end = end;
6468 retlist->expr = expr;
6469 retlist->section = section;
6470 if (gensym)
6471 retlist->ll_symbol = gen_internal_sym ("LLST");
6472
6473 return retlist;
6474 }
6475
6476 /* Add a location description expression to a location list. */
6477
6478 static inline void
6479 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6480 const char *begin, const char *end,
6481 const char *section)
6482 {
6483 dw_loc_list_ref *d;
6484
6485 /* Find the end of the chain. */
6486 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6487 ;
6488
6489 /* Add a new location list node to the list. */
6490 *d = new_loc_list (descr, begin, end, section, 0);
6491 }
6492
6493 /* Output the location list given to us. */
6494
6495 static void
6496 output_loc_list (dw_loc_list_ref list_head)
6497 {
6498 dw_loc_list_ref curr = list_head;
6499
6500 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6501
6502 /* ??? This shouldn't be needed now that we've forced the
6503 compilation unit base address to zero when there is code
6504 in more than one section. */
6505 if (strcmp (curr->section, ".text") == 0)
6506 {
6507 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6508 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT) 0,
6509 "Location list base address specifier fake entry");
6510 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6511 "Location list base address specifier base");
6512 }
6513
6514 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6515 {
6516 unsigned long size;
6517
6518 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6519 "Location list begin address (%s)",
6520 list_head->ll_symbol);
6521 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6522 "Location list end address (%s)",
6523 list_head->ll_symbol);
6524 size = size_of_locs (curr->expr);
6525
6526 /* Output the block length for this list of location operations. */
6527 if (size > 0xffff)
6528 abort ();
6529 dw2_asm_output_data (2, size, "%s", "Location expression size");
6530
6531 output_loc_sequence (curr->expr);
6532 }
6533
6534 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6535 "Location list terminator begin (%s)",
6536 list_head->ll_symbol);
6537 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6538 "Location list terminator end (%s)",
6539 list_head->ll_symbol);
6540 }
6541
6542 /* Output the DIE and its attributes. Called recursively to generate
6543 the definitions of each child DIE. */
6544
6545 static void
6546 output_die (dw_die_ref die)
6547 {
6548 dw_attr_ref a;
6549 dw_die_ref c;
6550 unsigned long size;
6551
6552 /* If someone in another CU might refer to us, set up a symbol for
6553 them to point to. */
6554 if (die->die_symbol)
6555 output_die_symbol (die);
6556
6557 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6558 die->die_offset, dwarf_tag_name (die->die_tag));
6559
6560 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6561 {
6562 const char *name = dwarf_attr_name (a->dw_attr);
6563
6564 switch (AT_class (a))
6565 {
6566 case dw_val_class_addr:
6567 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6568 break;
6569
6570 case dw_val_class_offset:
6571 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6572 "%s", name);
6573 break;
6574
6575 case dw_val_class_range_list:
6576 {
6577 char *p = strchr (ranges_section_label, '\0');
6578
6579 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6580 a->dw_attr_val.v.val_offset);
6581 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6582 "%s", name);
6583 *p = '\0';
6584 }
6585 break;
6586
6587 case dw_val_class_loc:
6588 size = size_of_locs (AT_loc (a));
6589
6590 /* Output the block length for this list of location operations. */
6591 dw2_asm_output_data (constant_size (size), size, "%s", name);
6592
6593 output_loc_sequence (AT_loc (a));
6594 break;
6595
6596 case dw_val_class_const:
6597 /* ??? It would be slightly more efficient to use a scheme like is
6598 used for unsigned constants below, but gdb 4.x does not sign
6599 extend. Gdb 5.x does sign extend. */
6600 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6601 break;
6602
6603 case dw_val_class_unsigned_const:
6604 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6605 AT_unsigned (a), "%s", name);
6606 break;
6607
6608 case dw_val_class_long_long:
6609 {
6610 unsigned HOST_WIDE_INT first, second;
6611
6612 dw2_asm_output_data (1,
6613 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6614 "%s", name);
6615
6616 if (WORDS_BIG_ENDIAN)
6617 {
6618 first = a->dw_attr_val.v.val_long_long.hi;
6619 second = a->dw_attr_val.v.val_long_long.low;
6620 }
6621 else
6622 {
6623 first = a->dw_attr_val.v.val_long_long.low;
6624 second = a->dw_attr_val.v.val_long_long.hi;
6625 }
6626
6627 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6628 first, "long long constant");
6629 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6630 second, NULL);
6631 }
6632 break;
6633
6634 case dw_val_class_float:
6635 {
6636 unsigned int i;
6637
6638 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6639 "%s", name);
6640
6641 for (i = 0; i < a->dw_attr_val.v.val_float.length; i++)
6642 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6643 "fp constant word %u", i);
6644 break;
6645 }
6646
6647 case dw_val_class_flag:
6648 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6649 break;
6650
6651 case dw_val_class_loc_list:
6652 {
6653 char *sym = AT_loc_list (a)->ll_symbol;
6654
6655 if (sym == 0)
6656 abort ();
6657 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym,
6658 loc_section_label, "%s", name);
6659 }
6660 break;
6661
6662 case dw_val_class_die_ref:
6663 if (AT_ref_external (a))
6664 {
6665 char *sym = AT_ref (a)->die_symbol;
6666
6667 if (sym == 0)
6668 abort ();
6669 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6670 }
6671 else if (AT_ref (a)->die_offset == 0)
6672 abort ();
6673 else
6674 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6675 "%s", name);
6676 break;
6677
6678 case dw_val_class_fde_ref:
6679 {
6680 char l1[20];
6681
6682 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6683 a->dw_attr_val.v.val_fde_index * 2);
6684 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6685 }
6686 break;
6687
6688 case dw_val_class_lbl_id:
6689 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6690 break;
6691
6692 case dw_val_class_lbl_offset:
6693 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6694 break;
6695
6696 case dw_val_class_str:
6697 if (AT_string_form (a) == DW_FORM_strp)
6698 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6699 a->dw_attr_val.v.val_str->label,
6700 "%s: \"%s\"", name, AT_string (a));
6701 else
6702 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6703 break;
6704
6705 default:
6706 abort ();
6707 }
6708 }
6709
6710 for (c = die->die_child; c != NULL; c = c->die_sib)
6711 output_die (c);
6712
6713 /* Add null byte to terminate sibling list. */
6714 if (die->die_child != NULL)
6715 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6716 die->die_offset);
6717 }
6718
6719 /* Output the compilation unit that appears at the beginning of the
6720 .debug_info section, and precedes the DIE descriptions. */
6721
6722 static void
6723 output_compilation_unit_header (void)
6724 {
6725 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6726 dw2_asm_output_data (4, 0xffffffff,
6727 "Initial length escape value indicating 64-bit DWARF extension");
6728 dw2_asm_output_data (DWARF_OFFSET_SIZE,
6729 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
6730 "Length of Compilation Unit Info");
6731 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6732 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6733 "Offset Into Abbrev. Section");
6734 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6735 }
6736
6737 /* Output the compilation unit DIE and its children. */
6738
6739 static void
6740 output_comp_unit (dw_die_ref die, int output_if_empty)
6741 {
6742 const char *secname;
6743 char *oldsym, *tmp;
6744
6745 /* Unless we are outputting main CU, we may throw away empty ones. */
6746 if (!output_if_empty && die->die_child == NULL)
6747 return;
6748
6749 /* Even if there are no children of this DIE, we must output the information
6750 about the compilation unit. Otherwise, on an empty translation unit, we
6751 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6752 will then complain when examining the file. First mark all the DIEs in
6753 this CU so we know which get local refs. */
6754 mark_dies (die);
6755
6756 build_abbrev_table (die);
6757
6758 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6759 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6760 calc_die_sizes (die);
6761
6762 oldsym = die->die_symbol;
6763 if (oldsym)
6764 {
6765 tmp = alloca (strlen (oldsym) + 24);
6766
6767 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
6768 secname = tmp;
6769 die->die_symbol = NULL;
6770 }
6771 else
6772 secname = (const char *) DEBUG_INFO_SECTION;
6773
6774 /* Output debugging information. */
6775 named_section_flags (secname, SECTION_DEBUG);
6776 output_compilation_unit_header ();
6777 output_die (die);
6778
6779 /* Leave the marks on the main CU, so we can check them in
6780 output_pubnames. */
6781 if (oldsym)
6782 {
6783 unmark_dies (die);
6784 die->die_symbol = oldsym;
6785 }
6786 }
6787
6788 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
6789 output of lang_hooks.decl_printable_name for C++ looks like
6790 "A::f(int)". Let's drop the argument list, and maybe the scope. */
6791
6792 static const char *
6793 dwarf2_name (tree decl, int scope)
6794 {
6795 return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
6796 }
6797
6798 /* Add a new entry to .debug_pubnames if appropriate. */
6799
6800 static void
6801 add_pubname (tree decl, dw_die_ref die)
6802 {
6803 pubname_ref p;
6804
6805 if (! TREE_PUBLIC (decl))
6806 return;
6807
6808 if (pubname_table_in_use == pubname_table_allocated)
6809 {
6810 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
6811 pubname_table
6812 = ggc_realloc (pubname_table,
6813 (pubname_table_allocated * sizeof (pubname_entry)));
6814 memset (pubname_table + pubname_table_in_use, 0,
6815 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
6816 }
6817
6818 p = &pubname_table[pubname_table_in_use++];
6819 p->die = die;
6820 p->name = xstrdup (dwarf2_name (decl, 1));
6821 }
6822
6823 /* Output the public names table used to speed up access to externally
6824 visible names. For now, only generate entries for externally
6825 visible procedures. */
6826
6827 static void
6828 output_pubnames (void)
6829 {
6830 unsigned i;
6831 unsigned long pubnames_length = size_of_pubnames ();
6832
6833 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6834 dw2_asm_output_data (4, 0xffffffff,
6835 "Initial length escape value indicating 64-bit DWARF extension");
6836 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
6837 "Length of Public Names Info");
6838 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6839 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6840 "Offset of Compilation Unit Info");
6841 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
6842 "Compilation Unit Length");
6843
6844 for (i = 0; i < pubname_table_in_use; i++)
6845 {
6846 pubname_ref pub = &pubname_table[i];
6847
6848 /* We shouldn't see pubnames for DIEs outside of the main CU. */
6849 if (pub->die->die_mark == 0)
6850 abort ();
6851
6852 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
6853 "DIE offset");
6854
6855 dw2_asm_output_nstring (pub->name, -1, "external name");
6856 }
6857
6858 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
6859 }
6860
6861 /* Add a new entry to .debug_aranges if appropriate. */
6862
6863 static void
6864 add_arange (tree decl, dw_die_ref die)
6865 {
6866 if (! DECL_SECTION_NAME (decl))
6867 return;
6868
6869 if (arange_table_in_use == arange_table_allocated)
6870 {
6871 arange_table_allocated += ARANGE_TABLE_INCREMENT;
6872 arange_table = ggc_realloc (arange_table,
6873 (arange_table_allocated
6874 * sizeof (dw_die_ref)));
6875 memset (arange_table + arange_table_in_use, 0,
6876 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
6877 }
6878
6879 arange_table[arange_table_in_use++] = die;
6880 }
6881
6882 /* Output the information that goes into the .debug_aranges table.
6883 Namely, define the beginning and ending address range of the
6884 text section generated for this compilation unit. */
6885
6886 static void
6887 output_aranges (void)
6888 {
6889 unsigned i;
6890 unsigned long aranges_length = size_of_aranges ();
6891
6892 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6893 dw2_asm_output_data (4, 0xffffffff,
6894 "Initial length escape value indicating 64-bit DWARF extension");
6895 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
6896 "Length of Address Ranges Info");
6897 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6898 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6899 "Offset of Compilation Unit Info");
6900 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
6901 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
6902
6903 /* We need to align to twice the pointer size here. */
6904 if (DWARF_ARANGES_PAD_SIZE)
6905 {
6906 /* Pad using a 2 byte words so that padding is correct for any
6907 pointer size. */
6908 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
6909 2 * DWARF2_ADDR_SIZE);
6910 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
6911 dw2_asm_output_data (2, 0, NULL);
6912 }
6913
6914 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
6915 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
6916 text_section_label, "Length");
6917
6918 for (i = 0; i < arange_table_in_use; i++)
6919 {
6920 dw_die_ref die = arange_table[i];
6921
6922 /* We shouldn't see aranges for DIEs outside of the main CU. */
6923 if (die->die_mark == 0)
6924 abort ();
6925
6926 if (die->die_tag == DW_TAG_subprogram)
6927 {
6928 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
6929 "Address");
6930 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
6931 get_AT_low_pc (die), "Length");
6932 }
6933 else
6934 {
6935 /* A static variable; extract the symbol from DW_AT_location.
6936 Note that this code isn't currently hit, as we only emit
6937 aranges for functions (jason 9/23/99). */
6938 dw_attr_ref a = get_AT (die, DW_AT_location);
6939 dw_loc_descr_ref loc;
6940
6941 if (! a || AT_class (a) != dw_val_class_loc)
6942 abort ();
6943
6944 loc = AT_loc (a);
6945 if (loc->dw_loc_opc != DW_OP_addr)
6946 abort ();
6947
6948 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
6949 loc->dw_loc_oprnd1.v.val_addr, "Address");
6950 dw2_asm_output_data (DWARF2_ADDR_SIZE,
6951 get_AT_unsigned (die, DW_AT_byte_size),
6952 "Length");
6953 }
6954 }
6955
6956 /* Output the terminator words. */
6957 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6958 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6959 }
6960
6961 /* Add a new entry to .debug_ranges. Return the offset at which it
6962 was placed. */
6963
6964 static unsigned int
6965 add_ranges (tree block)
6966 {
6967 unsigned int in_use = ranges_table_in_use;
6968
6969 if (in_use == ranges_table_allocated)
6970 {
6971 ranges_table_allocated += RANGES_TABLE_INCREMENT;
6972 ranges_table
6973 = ggc_realloc (ranges_table, (ranges_table_allocated
6974 * sizeof (struct dw_ranges_struct)));
6975 memset (ranges_table + ranges_table_in_use, 0,
6976 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
6977 }
6978
6979 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
6980 ranges_table_in_use = in_use + 1;
6981
6982 return in_use * 2 * DWARF2_ADDR_SIZE;
6983 }
6984
6985 static void
6986 output_ranges (void)
6987 {
6988 unsigned i;
6989 static const char *const start_fmt = "Offset 0x%x";
6990 const char *fmt = start_fmt;
6991
6992 for (i = 0; i < ranges_table_in_use; i++)
6993 {
6994 int block_num = ranges_table[i].block_num;
6995
6996 if (block_num)
6997 {
6998 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
6999 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7000
7001 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7002 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7003
7004 /* If all code is in the text section, then the compilation
7005 unit base address defaults to DW_AT_low_pc, which is the
7006 base of the text section. */
7007 if (separate_line_info_table_in_use == 0)
7008 {
7009 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7010 text_section_label,
7011 fmt, i * 2 * DWARF2_ADDR_SIZE);
7012 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7013 text_section_label, NULL);
7014 }
7015
7016 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7017 compilation unit base address to zero, which allows us to
7018 use absolute addresses, and not worry about whether the
7019 target supports cross-section arithmetic. */
7020 else
7021 {
7022 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7023 fmt, i * 2 * DWARF2_ADDR_SIZE);
7024 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7025 }
7026
7027 fmt = NULL;
7028 }
7029 else
7030 {
7031 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7032 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7033 fmt = start_fmt;
7034 }
7035 }
7036 }
7037
7038 /* Data structure containing information about input files. */
7039 struct file_info
7040 {
7041 char *path; /* Complete file name. */
7042 char *fname; /* File name part. */
7043 int length; /* Length of entire string. */
7044 int file_idx; /* Index in input file table. */
7045 int dir_idx; /* Index in directory table. */
7046 };
7047
7048 /* Data structure containing information about directories with source
7049 files. */
7050 struct dir_info
7051 {
7052 char *path; /* Path including directory name. */
7053 int length; /* Path length. */
7054 int prefix; /* Index of directory entry which is a prefix. */
7055 int count; /* Number of files in this directory. */
7056 int dir_idx; /* Index of directory used as base. */
7057 int used; /* Used in the end? */
7058 };
7059
7060 /* Callback function for file_info comparison. We sort by looking at
7061 the directories in the path. */
7062
7063 static int
7064 file_info_cmp (const void *p1, const void *p2)
7065 {
7066 const struct file_info *s1 = p1;
7067 const struct file_info *s2 = p2;
7068 unsigned char *cp1;
7069 unsigned char *cp2;
7070
7071 /* Take care of file names without directories. We need to make sure that
7072 we return consistent values to qsort since some will get confused if
7073 we return the same value when identical operands are passed in opposite
7074 orders. So if neither has a directory, return 0 and otherwise return
7075 1 or -1 depending on which one has the directory. */
7076 if ((s1->path == s1->fname || s2->path == s2->fname))
7077 return (s2->path == s2->fname) - (s1->path == s1->fname);
7078
7079 cp1 = (unsigned char *) s1->path;
7080 cp2 = (unsigned char *) s2->path;
7081
7082 while (1)
7083 {
7084 ++cp1;
7085 ++cp2;
7086 /* Reached the end of the first path? If so, handle like above. */
7087 if ((cp1 == (unsigned char *) s1->fname)
7088 || (cp2 == (unsigned char *) s2->fname))
7089 return ((cp2 == (unsigned char *) s2->fname)
7090 - (cp1 == (unsigned char *) s1->fname));
7091
7092 /* Character of current path component the same? */
7093 else if (*cp1 != *cp2)
7094 return *cp1 - *cp2;
7095 }
7096 }
7097
7098 /* Output the directory table and the file name table. We try to minimize
7099 the total amount of memory needed. A heuristic is used to avoid large
7100 slowdowns with many input files. */
7101
7102 static void
7103 output_file_names (void)
7104 {
7105 struct file_info *files;
7106 struct dir_info *dirs;
7107 int *saved;
7108 int *savehere;
7109 int *backmap;
7110 size_t ndirs;
7111 int idx_offset;
7112 size_t i;
7113 int idx;
7114
7115 /* Handle the case where file_table is empty. */
7116 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7117 {
7118 dw2_asm_output_data (1, 0, "End directory table");
7119 dw2_asm_output_data (1, 0, "End file name table");
7120 return;
7121 }
7122
7123 /* Allocate the various arrays we need. */
7124 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7125 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7126
7127 /* Sort the file names. */
7128 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7129 {
7130 char *f;
7131
7132 /* Skip all leading "./". */
7133 f = VARRAY_CHAR_PTR (file_table, i);
7134 while (f[0] == '.' && f[1] == '/')
7135 f += 2;
7136
7137 /* Create a new array entry. */
7138 files[i].path = f;
7139 files[i].length = strlen (f);
7140 files[i].file_idx = i;
7141
7142 /* Search for the file name part. */
7143 f = strrchr (f, '/');
7144 files[i].fname = f == NULL ? files[i].path : f + 1;
7145 }
7146
7147 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7148 sizeof (files[0]), file_info_cmp);
7149
7150 /* Find all the different directories used. */
7151 dirs[0].path = files[1].path;
7152 dirs[0].length = files[1].fname - files[1].path;
7153 dirs[0].prefix = -1;
7154 dirs[0].count = 1;
7155 dirs[0].dir_idx = 0;
7156 dirs[0].used = 0;
7157 files[1].dir_idx = 0;
7158 ndirs = 1;
7159
7160 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7161 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7162 && memcmp (dirs[ndirs - 1].path, files[i].path,
7163 dirs[ndirs - 1].length) == 0)
7164 {
7165 /* Same directory as last entry. */
7166 files[i].dir_idx = ndirs - 1;
7167 ++dirs[ndirs - 1].count;
7168 }
7169 else
7170 {
7171 size_t j;
7172
7173 /* This is a new directory. */
7174 dirs[ndirs].path = files[i].path;
7175 dirs[ndirs].length = files[i].fname - files[i].path;
7176 dirs[ndirs].count = 1;
7177 dirs[ndirs].dir_idx = ndirs;
7178 dirs[ndirs].used = 0;
7179 files[i].dir_idx = ndirs;
7180
7181 /* Search for a prefix. */
7182 dirs[ndirs].prefix = -1;
7183 for (j = 0; j < ndirs; j++)
7184 if (dirs[j].length < dirs[ndirs].length
7185 && dirs[j].length > 1
7186 && (dirs[ndirs].prefix == -1
7187 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7188 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7189 dirs[ndirs].prefix = j;
7190
7191 ++ndirs;
7192 }
7193
7194 /* Now to the actual work. We have to find a subset of the directories which
7195 allow expressing the file name using references to the directory table
7196 with the least amount of characters. We do not do an exhaustive search
7197 where we would have to check out every combination of every single
7198 possible prefix. Instead we use a heuristic which provides nearly optimal
7199 results in most cases and never is much off. */
7200 saved = alloca (ndirs * sizeof (int));
7201 savehere = alloca (ndirs * sizeof (int));
7202
7203 memset (saved, '\0', ndirs * sizeof (saved[0]));
7204 for (i = 0; i < ndirs; i++)
7205 {
7206 size_t j;
7207 int total;
7208
7209 /* We can always save some space for the current directory. But this
7210 does not mean it will be enough to justify adding the directory. */
7211 savehere[i] = dirs[i].length;
7212 total = (savehere[i] - saved[i]) * dirs[i].count;
7213
7214 for (j = i + 1; j < ndirs; j++)
7215 {
7216 savehere[j] = 0;
7217 if (saved[j] < dirs[i].length)
7218 {
7219 /* Determine whether the dirs[i] path is a prefix of the
7220 dirs[j] path. */
7221 int k;
7222
7223 k = dirs[j].prefix;
7224 while (k != -1 && k != (int) i)
7225 k = dirs[k].prefix;
7226
7227 if (k == (int) i)
7228 {
7229 /* Yes it is. We can possibly safe some memory but
7230 writing the filenames in dirs[j] relative to
7231 dirs[i]. */
7232 savehere[j] = dirs[i].length;
7233 total += (savehere[j] - saved[j]) * dirs[j].count;
7234 }
7235 }
7236 }
7237
7238 /* Check whether we can safe enough to justify adding the dirs[i]
7239 directory. */
7240 if (total > dirs[i].length + 1)
7241 {
7242 /* It's worthwhile adding. */
7243 for (j = i; j < ndirs; j++)
7244 if (savehere[j] > 0)
7245 {
7246 /* Remember how much we saved for this directory so far. */
7247 saved[j] = savehere[j];
7248
7249 /* Remember the prefix directory. */
7250 dirs[j].dir_idx = i;
7251 }
7252 }
7253 }
7254
7255 /* We have to emit them in the order they appear in the file_table array
7256 since the index is used in the debug info generation. To do this
7257 efficiently we generate a back-mapping of the indices first. */
7258 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7259 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7260 {
7261 backmap[files[i].file_idx] = i;
7262
7263 /* Mark this directory as used. */
7264 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7265 }
7266
7267 /* That was it. We are ready to emit the information. First emit the
7268 directory name table. We have to make sure the first actually emitted
7269 directory name has index one; zero is reserved for the current working
7270 directory. Make sure we do not confuse these indices with the one for the
7271 constructed table (even though most of the time they are identical). */
7272 idx = 1;
7273 idx_offset = dirs[0].length > 0 ? 1 : 0;
7274 for (i = 1 - idx_offset; i < ndirs; i++)
7275 if (dirs[i].used != 0)
7276 {
7277 dirs[i].used = idx++;
7278 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7279 "Directory Entry: 0x%x", dirs[i].used);
7280 }
7281
7282 dw2_asm_output_data (1, 0, "End directory table");
7283
7284 /* Correct the index for the current working directory entry if it
7285 exists. */
7286 if (idx_offset == 0)
7287 dirs[0].used = 0;
7288
7289 /* Now write all the file names. */
7290 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7291 {
7292 int file_idx = backmap[i];
7293 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7294
7295 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7296 "File Entry: 0x%lx", (unsigned long) i);
7297
7298 /* Include directory index. */
7299 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7300
7301 /* Modification time. */
7302 dw2_asm_output_data_uleb128 (0, NULL);
7303
7304 /* File length in bytes. */
7305 dw2_asm_output_data_uleb128 (0, NULL);
7306 }
7307
7308 dw2_asm_output_data (1, 0, "End file name table");
7309 }
7310
7311
7312 /* Output the source line number correspondence information. This
7313 information goes into the .debug_line section. */
7314
7315 static void
7316 output_line_info (void)
7317 {
7318 char l1[20], l2[20], p1[20], p2[20];
7319 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7320 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7321 unsigned opc;
7322 unsigned n_op_args;
7323 unsigned long lt_index;
7324 unsigned long current_line;
7325 long line_offset;
7326 long line_delta;
7327 unsigned long current_file;
7328 unsigned long function;
7329
7330 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7331 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7332 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7333 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7334
7335 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7336 dw2_asm_output_data (4, 0xffffffff,
7337 "Initial length escape value indicating 64-bit DWARF extension");
7338 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7339 "Length of Source Line Info");
7340 ASM_OUTPUT_LABEL (asm_out_file, l1);
7341
7342 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7343 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7344 ASM_OUTPUT_LABEL (asm_out_file, p1);
7345
7346 /* Define the architecture-dependent minimum instruction length (in
7347 bytes). In this implementation of DWARF, this field is used for
7348 information purposes only. Since GCC generates assembly language,
7349 we have no a priori knowledge of how many instruction bytes are
7350 generated for each source line, and therefore can use only the
7351 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7352 commands. Accordingly, we fix this as `1', which is "correct
7353 enough" for all architectures, and don't let the target override. */
7354 dw2_asm_output_data (1, 1,
7355 "Minimum Instruction Length");
7356
7357 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7358 "Default is_stmt_start flag");
7359 dw2_asm_output_data (1, DWARF_LINE_BASE,
7360 "Line Base Value (Special Opcodes)");
7361 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7362 "Line Range Value (Special Opcodes)");
7363 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7364 "Special Opcode Base");
7365
7366 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7367 {
7368 switch (opc)
7369 {
7370 case DW_LNS_advance_pc:
7371 case DW_LNS_advance_line:
7372 case DW_LNS_set_file:
7373 case DW_LNS_set_column:
7374 case DW_LNS_fixed_advance_pc:
7375 n_op_args = 1;
7376 break;
7377 default:
7378 n_op_args = 0;
7379 break;
7380 }
7381
7382 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7383 opc, n_op_args);
7384 }
7385
7386 /* Write out the information about the files we use. */
7387 output_file_names ();
7388 ASM_OUTPUT_LABEL (asm_out_file, p2);
7389
7390 /* We used to set the address register to the first location in the text
7391 section here, but that didn't accomplish anything since we already
7392 have a line note for the opening brace of the first function. */
7393
7394 /* Generate the line number to PC correspondence table, encoded as
7395 a series of state machine operations. */
7396 current_file = 1;
7397 current_line = 1;
7398 strcpy (prev_line_label, text_section_label);
7399 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7400 {
7401 dw_line_info_ref line_info = &line_info_table[lt_index];
7402
7403 #if 0
7404 /* Disable this optimization for now; GDB wants to see two line notes
7405 at the beginning of a function so it can find the end of the
7406 prologue. */
7407
7408 /* Don't emit anything for redundant notes. Just updating the
7409 address doesn't accomplish anything, because we already assume
7410 that anything after the last address is this line. */
7411 if (line_info->dw_line_num == current_line
7412 && line_info->dw_file_num == current_file)
7413 continue;
7414 #endif
7415
7416 /* Emit debug info for the address of the current line.
7417
7418 Unfortunately, we have little choice here currently, and must always
7419 use the most general form. GCC does not know the address delta
7420 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7421 attributes which will give an upper bound on the address range. We
7422 could perhaps use length attributes to determine when it is safe to
7423 use DW_LNS_fixed_advance_pc. */
7424
7425 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7426 if (0)
7427 {
7428 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7429 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7430 "DW_LNS_fixed_advance_pc");
7431 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7432 }
7433 else
7434 {
7435 /* This can handle any delta. This takes
7436 4+DWARF2_ADDR_SIZE bytes. */
7437 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7438 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7439 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7440 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7441 }
7442
7443 strcpy (prev_line_label, line_label);
7444
7445 /* Emit debug info for the source file of the current line, if
7446 different from the previous line. */
7447 if (line_info->dw_file_num != current_file)
7448 {
7449 current_file = line_info->dw_file_num;
7450 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7451 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7452 VARRAY_CHAR_PTR (file_table,
7453 current_file));
7454 }
7455
7456 /* Emit debug info for the current line number, choosing the encoding
7457 that uses the least amount of space. */
7458 if (line_info->dw_line_num != current_line)
7459 {
7460 line_offset = line_info->dw_line_num - current_line;
7461 line_delta = line_offset - DWARF_LINE_BASE;
7462 current_line = line_info->dw_line_num;
7463 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7464 /* This can handle deltas from -10 to 234, using the current
7465 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7466 takes 1 byte. */
7467 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7468 "line %lu", current_line);
7469 else
7470 {
7471 /* This can handle any delta. This takes at least 4 bytes,
7472 depending on the value being encoded. */
7473 dw2_asm_output_data (1, DW_LNS_advance_line,
7474 "advance to line %lu", current_line);
7475 dw2_asm_output_data_sleb128 (line_offset, NULL);
7476 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7477 }
7478 }
7479 else
7480 /* We still need to start a new row, so output a copy insn. */
7481 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7482 }
7483
7484 /* Emit debug info for the address of the end of the function. */
7485 if (0)
7486 {
7487 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7488 "DW_LNS_fixed_advance_pc");
7489 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7490 }
7491 else
7492 {
7493 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7494 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7495 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7496 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7497 }
7498
7499 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7500 dw2_asm_output_data_uleb128 (1, NULL);
7501 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7502
7503 function = 0;
7504 current_file = 1;
7505 current_line = 1;
7506 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7507 {
7508 dw_separate_line_info_ref line_info
7509 = &separate_line_info_table[lt_index];
7510
7511 #if 0
7512 /* Don't emit anything for redundant notes. */
7513 if (line_info->dw_line_num == current_line
7514 && line_info->dw_file_num == current_file
7515 && line_info->function == function)
7516 goto cont;
7517 #endif
7518
7519 /* Emit debug info for the address of the current line. If this is
7520 a new function, or the first line of a function, then we need
7521 to handle it differently. */
7522 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7523 lt_index);
7524 if (function != line_info->function)
7525 {
7526 function = line_info->function;
7527
7528 /* Set the address register to the first line in the function. */
7529 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7530 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7531 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7532 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7533 }
7534 else
7535 {
7536 /* ??? See the DW_LNS_advance_pc comment above. */
7537 if (0)
7538 {
7539 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7540 "DW_LNS_fixed_advance_pc");
7541 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7542 }
7543 else
7544 {
7545 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7546 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7547 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7548 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7549 }
7550 }
7551
7552 strcpy (prev_line_label, line_label);
7553
7554 /* Emit debug info for the source file of the current line, if
7555 different from the previous line. */
7556 if (line_info->dw_file_num != current_file)
7557 {
7558 current_file = line_info->dw_file_num;
7559 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7560 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7561 VARRAY_CHAR_PTR (file_table,
7562 current_file));
7563 }
7564
7565 /* Emit debug info for the current line number, choosing the encoding
7566 that uses the least amount of space. */
7567 if (line_info->dw_line_num != current_line)
7568 {
7569 line_offset = line_info->dw_line_num - current_line;
7570 line_delta = line_offset - DWARF_LINE_BASE;
7571 current_line = line_info->dw_line_num;
7572 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7573 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7574 "line %lu", current_line);
7575 else
7576 {
7577 dw2_asm_output_data (1, DW_LNS_advance_line,
7578 "advance to line %lu", current_line);
7579 dw2_asm_output_data_sleb128 (line_offset, NULL);
7580 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7581 }
7582 }
7583 else
7584 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7585
7586 #if 0
7587 cont:
7588 #endif
7589
7590 lt_index++;
7591
7592 /* If we're done with a function, end its sequence. */
7593 if (lt_index == separate_line_info_table_in_use
7594 || separate_line_info_table[lt_index].function != function)
7595 {
7596 current_file = 1;
7597 current_line = 1;
7598
7599 /* Emit debug info for the address of the end of the function. */
7600 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7601 if (0)
7602 {
7603 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7604 "DW_LNS_fixed_advance_pc");
7605 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7606 }
7607 else
7608 {
7609 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7610 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7611 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7612 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7613 }
7614
7615 /* Output the marker for the end of this sequence. */
7616 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7617 dw2_asm_output_data_uleb128 (1, NULL);
7618 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7619 }
7620 }
7621
7622 /* Output the marker for the end of the line number info. */
7623 ASM_OUTPUT_LABEL (asm_out_file, l2);
7624 }
7625 \f
7626 /* Given a pointer to a tree node for some base type, return a pointer to
7627 a DIE that describes the given type.
7628
7629 This routine must only be called for GCC type nodes that correspond to
7630 Dwarf base (fundamental) types. */
7631
7632 static dw_die_ref
7633 base_type_die (tree type)
7634 {
7635 dw_die_ref base_type_result;
7636 const char *type_name;
7637 enum dwarf_type encoding;
7638 tree name = TYPE_NAME (type);
7639
7640 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7641 return 0;
7642
7643 if (name)
7644 {
7645 if (TREE_CODE (name) == TYPE_DECL)
7646 name = DECL_NAME (name);
7647
7648 type_name = IDENTIFIER_POINTER (name);
7649 }
7650 else
7651 type_name = "__unknown__";
7652
7653 switch (TREE_CODE (type))
7654 {
7655 case INTEGER_TYPE:
7656 /* Carefully distinguish the C character types, without messing
7657 up if the language is not C. Note that we check only for the names
7658 that contain spaces; other names might occur by coincidence in other
7659 languages. */
7660 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7661 && (type == char_type_node
7662 || ! strcmp (type_name, "signed char")
7663 || ! strcmp (type_name, "unsigned char"))))
7664 {
7665 if (TREE_UNSIGNED (type))
7666 encoding = DW_ATE_unsigned;
7667 else
7668 encoding = DW_ATE_signed;
7669 break;
7670 }
7671 /* else fall through. */
7672
7673 case CHAR_TYPE:
7674 /* GNU Pascal/Ada CHAR type. Not used in C. */
7675 if (TREE_UNSIGNED (type))
7676 encoding = DW_ATE_unsigned_char;
7677 else
7678 encoding = DW_ATE_signed_char;
7679 break;
7680
7681 case REAL_TYPE:
7682 encoding = DW_ATE_float;
7683 break;
7684
7685 /* Dwarf2 doesn't know anything about complex ints, so use
7686 a user defined type for it. */
7687 case COMPLEX_TYPE:
7688 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7689 encoding = DW_ATE_complex_float;
7690 else
7691 encoding = DW_ATE_lo_user;
7692 break;
7693
7694 case BOOLEAN_TYPE:
7695 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7696 encoding = DW_ATE_boolean;
7697 break;
7698
7699 default:
7700 /* No other TREE_CODEs are Dwarf fundamental types. */
7701 abort ();
7702 }
7703
7704 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7705 if (demangle_name_func)
7706 type_name = (*demangle_name_func) (type_name);
7707
7708 add_AT_string (base_type_result, DW_AT_name, type_name);
7709 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7710 int_size_in_bytes (type));
7711 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7712
7713 return base_type_result;
7714 }
7715
7716 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7717 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7718 a given type is generally the same as the given type, except that if the
7719 given type is a pointer or reference type, then the root type of the given
7720 type is the root type of the "basis" type for the pointer or reference
7721 type. (This definition of the "root" type is recursive.) Also, the root
7722 type of a `const' qualified type or a `volatile' qualified type is the
7723 root type of the given type without the qualifiers. */
7724
7725 static tree
7726 root_type (tree type)
7727 {
7728 if (TREE_CODE (type) == ERROR_MARK)
7729 return error_mark_node;
7730
7731 switch (TREE_CODE (type))
7732 {
7733 case ERROR_MARK:
7734 return error_mark_node;
7735
7736 case POINTER_TYPE:
7737 case REFERENCE_TYPE:
7738 return type_main_variant (root_type (TREE_TYPE (type)));
7739
7740 default:
7741 return type_main_variant (type);
7742 }
7743 }
7744
7745 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7746 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7747
7748 static inline int
7749 is_base_type (tree type)
7750 {
7751 switch (TREE_CODE (type))
7752 {
7753 case ERROR_MARK:
7754 case VOID_TYPE:
7755 case INTEGER_TYPE:
7756 case REAL_TYPE:
7757 case COMPLEX_TYPE:
7758 case BOOLEAN_TYPE:
7759 case CHAR_TYPE:
7760 return 1;
7761
7762 case SET_TYPE:
7763 case ARRAY_TYPE:
7764 case RECORD_TYPE:
7765 case UNION_TYPE:
7766 case QUAL_UNION_TYPE:
7767 case ENUMERAL_TYPE:
7768 case FUNCTION_TYPE:
7769 case METHOD_TYPE:
7770 case POINTER_TYPE:
7771 case REFERENCE_TYPE:
7772 case FILE_TYPE:
7773 case OFFSET_TYPE:
7774 case LANG_TYPE:
7775 case VECTOR_TYPE:
7776 return 0;
7777
7778 default:
7779 abort ();
7780 }
7781
7782 return 0;
7783 }
7784
7785 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
7786 node, return the size in bits for the type if it is a constant, or else
7787 return the alignment for the type if the type's size is not constant, or
7788 else return BITS_PER_WORD if the type actually turns out to be an
7789 ERROR_MARK node. */
7790
7791 static inline unsigned HOST_WIDE_INT
7792 simple_type_size_in_bits (tree type)
7793 {
7794 if (TREE_CODE (type) == ERROR_MARK)
7795 return BITS_PER_WORD;
7796 else if (TYPE_SIZE (type) == NULL_TREE)
7797 return 0;
7798 else if (host_integerp (TYPE_SIZE (type), 1))
7799 return tree_low_cst (TYPE_SIZE (type), 1);
7800 else
7801 return TYPE_ALIGN (type);
7802 }
7803
7804 /* Return true if the debug information for the given type should be
7805 emitted as a subrange type. */
7806
7807 static inline bool
7808 is_ada_subrange_type (tree type)
7809 {
7810 /* We should use a subrange type in the following situations:
7811 - For Ada modular types: These types are stored as integer subtypes
7812 of an unsigned integer type;
7813 - For subtypes of an Ada enumeration type: These types are stored
7814 as integer subtypes of enumeral types.
7815
7816 This subrange type is mostly for the benefit of debugger users.
7817 A nameless type would therefore not be very useful, so no need
7818 to generate a subrange type in these cases. */
7819 tree subtype = TREE_TYPE (type);
7820
7821 if (is_ada ()
7822 && TREE_CODE (type) == INTEGER_TYPE
7823 && TYPE_NAME (type) != NULL_TREE
7824 && subtype != NULL_TREE)
7825 {
7826 if (TREE_CODE (subtype) == INTEGER_TYPE && TREE_UNSIGNED (subtype))
7827 return true;
7828 if (TREE_CODE (subtype) == ENUMERAL_TYPE)
7829 return true;
7830 }
7831 return false;
7832 }
7833
7834 /* Given a pointer to a tree node for a subrange type, return a pointer
7835 to a DIE that describes the given type. */
7836
7837 static dw_die_ref
7838 subrange_type_die (tree type, dw_die_ref context_die)
7839 {
7840 dw_die_ref subtype_die;
7841 dw_die_ref subrange_die;
7842 tree name = TYPE_NAME (type);
7843
7844 if (context_die == NULL)
7845 context_die = comp_unit_die;
7846
7847 if (TREE_CODE (TREE_TYPE (type)) == ENUMERAL_TYPE)
7848 subtype_die = gen_enumeration_type_die (TREE_TYPE (type), context_die);
7849 else
7850 subtype_die = base_type_die (TREE_TYPE (type));
7851
7852 if (TREE_CODE (name) == TYPE_DECL)
7853 name = DECL_NAME (name);
7854
7855 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
7856 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
7857 if (TYPE_MIN_VALUE (type) != NULL)
7858 add_bound_info (subrange_die, DW_AT_lower_bound,
7859 TYPE_MIN_VALUE (type));
7860 if (TYPE_MAX_VALUE (type) != NULL)
7861 add_bound_info (subrange_die, DW_AT_upper_bound,
7862 TYPE_MAX_VALUE (type));
7863 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
7864
7865 return subrange_die;
7866 }
7867
7868 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
7869 entry that chains various modifiers in front of the given type. */
7870
7871 static dw_die_ref
7872 modified_type_die (tree type, int is_const_type, int is_volatile_type,
7873 dw_die_ref context_die)
7874 {
7875 enum tree_code code = TREE_CODE (type);
7876 dw_die_ref mod_type_die = NULL;
7877 dw_die_ref sub_die = NULL;
7878 tree item_type = NULL;
7879
7880 if (code != ERROR_MARK)
7881 {
7882 tree qualified_type;
7883
7884 /* See if we already have the appropriately qualified variant of
7885 this type. */
7886 qualified_type
7887 = get_qualified_type (type,
7888 ((is_const_type ? TYPE_QUAL_CONST : 0)
7889 | (is_volatile_type
7890 ? TYPE_QUAL_VOLATILE : 0)));
7891
7892 /* If we do, then we can just use its DIE, if it exists. */
7893 if (qualified_type)
7894 {
7895 mod_type_die = lookup_type_die (qualified_type);
7896 if (mod_type_die)
7897 return mod_type_die;
7898 }
7899
7900 /* Handle C typedef types. */
7901 if (qualified_type && TYPE_NAME (qualified_type)
7902 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
7903 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
7904 {
7905 tree type_name = TYPE_NAME (qualified_type);
7906 tree dtype = TREE_TYPE (type_name);
7907
7908 if (qualified_type == dtype)
7909 {
7910 /* For a named type, use the typedef. */
7911 gen_type_die (qualified_type, context_die);
7912 mod_type_die = lookup_type_die (qualified_type);
7913 }
7914 else if (is_const_type < TYPE_READONLY (dtype)
7915 || is_volatile_type < TYPE_VOLATILE (dtype))
7916 /* cv-unqualified version of named type. Just use the unnamed
7917 type to which it refers. */
7918 mod_type_die
7919 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
7920 is_const_type, is_volatile_type,
7921 context_die);
7922
7923 /* Else cv-qualified version of named type; fall through. */
7924 }
7925
7926 if (mod_type_die)
7927 /* OK. */
7928 ;
7929 else if (is_const_type)
7930 {
7931 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
7932 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
7933 }
7934 else if (is_volatile_type)
7935 {
7936 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
7937 sub_die = modified_type_die (type, 0, 0, context_die);
7938 }
7939 else if (code == POINTER_TYPE)
7940 {
7941 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
7942 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
7943 simple_type_size_in_bits (type) / BITS_PER_UNIT);
7944 #if 0
7945 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7946 #endif
7947 item_type = TREE_TYPE (type);
7948 }
7949 else if (code == REFERENCE_TYPE)
7950 {
7951 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
7952 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
7953 simple_type_size_in_bits (type) / BITS_PER_UNIT);
7954 #if 0
7955 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7956 #endif
7957 item_type = TREE_TYPE (type);
7958 }
7959 else if (is_ada_subrange_type (type))
7960 mod_type_die = subrange_type_die (type, context_die);
7961 else if (is_base_type (type))
7962 mod_type_die = base_type_die (type);
7963 else
7964 {
7965 gen_type_die (type, context_die);
7966
7967 /* We have to get the type_main_variant here (and pass that to the
7968 `lookup_type_die' routine) because the ..._TYPE node we have
7969 might simply be a *copy* of some original type node (where the
7970 copy was created to help us keep track of typedef names) and
7971 that copy might have a different TYPE_UID from the original
7972 ..._TYPE node. */
7973 if (TREE_CODE (type) != VECTOR_TYPE)
7974 mod_type_die = lookup_type_die (type_main_variant (type));
7975 else
7976 /* Vectors have the debugging information in the type,
7977 not the main variant. */
7978 mod_type_die = lookup_type_die (type);
7979 if (mod_type_die == NULL)
7980 abort ();
7981 }
7982
7983 /* We want to equate the qualified type to the die below. */
7984 type = qualified_type;
7985 }
7986
7987 if (type)
7988 equate_type_number_to_die (type, mod_type_die);
7989 if (item_type)
7990 /* We must do this after the equate_type_number_to_die call, in case
7991 this is a recursive type. This ensures that the modified_type_die
7992 recursion will terminate even if the type is recursive. Recursive
7993 types are possible in Ada. */
7994 sub_die = modified_type_die (item_type,
7995 TYPE_READONLY (item_type),
7996 TYPE_VOLATILE (item_type),
7997 context_die);
7998
7999 if (sub_die != NULL)
8000 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8001
8002 return mod_type_die;
8003 }
8004
8005 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8006 an enumerated type. */
8007
8008 static inline int
8009 type_is_enum (tree type)
8010 {
8011 return TREE_CODE (type) == ENUMERAL_TYPE;
8012 }
8013
8014 /* Return the register number described by a given RTL node. */
8015
8016 static unsigned int
8017 reg_number (rtx rtl)
8018 {
8019 unsigned regno = REGNO (rtl);
8020
8021 if (regno >= FIRST_PSEUDO_REGISTER)
8022 abort ();
8023
8024 return DBX_REGISTER_NUMBER (regno);
8025 }
8026
8027 /* Return a location descriptor that designates a machine register or
8028 zero if there is none. */
8029
8030 static dw_loc_descr_ref
8031 reg_loc_descriptor (rtx rtl)
8032 {
8033 unsigned reg;
8034 rtx regs;
8035
8036 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8037 return 0;
8038
8039 reg = reg_number (rtl);
8040 regs = (*targetm.dwarf_register_span) (rtl);
8041
8042 if (HARD_REGNO_NREGS (reg, GET_MODE (rtl)) > 1
8043 || regs)
8044 return multiple_reg_loc_descriptor (rtl, regs);
8045 else
8046 return one_reg_loc_descriptor (reg);
8047 }
8048
8049 /* Return a location descriptor that designates a machine register for
8050 a given hard register number. */
8051
8052 static dw_loc_descr_ref
8053 one_reg_loc_descriptor (unsigned int regno)
8054 {
8055 if (regno <= 31)
8056 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8057 else
8058 return new_loc_descr (DW_OP_regx, regno, 0);
8059 }
8060
8061 /* Given an RTL of a register, return a location descriptor that
8062 designates a value that spans more than one register. */
8063
8064 static dw_loc_descr_ref
8065 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8066 {
8067 int nregs, size, i;
8068 unsigned reg;
8069 dw_loc_descr_ref loc_result = NULL;
8070
8071 reg = reg_number (rtl);
8072 nregs = HARD_REGNO_NREGS (reg, GET_MODE (rtl));
8073
8074 /* Simple, contiguous registers. */
8075 if (regs == NULL_RTX)
8076 {
8077 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8078
8079 loc_result = NULL;
8080 while (nregs--)
8081 {
8082 dw_loc_descr_ref t;
8083
8084 t = one_reg_loc_descriptor (reg);
8085 add_loc_descr (&loc_result, t);
8086 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8087 ++reg;
8088 }
8089 return loc_result;
8090 }
8091
8092 /* Now onto stupid register sets in non contiguous locations. */
8093
8094 if (GET_CODE (regs) != PARALLEL)
8095 abort ();
8096
8097 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8098 loc_result = NULL;
8099
8100 for (i = 0; i < XVECLEN (regs, 0); ++i)
8101 {
8102 dw_loc_descr_ref t;
8103
8104 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8105 add_loc_descr (&loc_result, t);
8106 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8107 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8108 }
8109 return loc_result;
8110 }
8111
8112 /* Return a location descriptor that designates a constant. */
8113
8114 static dw_loc_descr_ref
8115 int_loc_descriptor (HOST_WIDE_INT i)
8116 {
8117 enum dwarf_location_atom op;
8118
8119 /* Pick the smallest representation of a constant, rather than just
8120 defaulting to the LEB encoding. */
8121 if (i >= 0)
8122 {
8123 if (i <= 31)
8124 op = DW_OP_lit0 + i;
8125 else if (i <= 0xff)
8126 op = DW_OP_const1u;
8127 else if (i <= 0xffff)
8128 op = DW_OP_const2u;
8129 else if (HOST_BITS_PER_WIDE_INT == 32
8130 || i <= 0xffffffff)
8131 op = DW_OP_const4u;
8132 else
8133 op = DW_OP_constu;
8134 }
8135 else
8136 {
8137 if (i >= -0x80)
8138 op = DW_OP_const1s;
8139 else if (i >= -0x8000)
8140 op = DW_OP_const2s;
8141 else if (HOST_BITS_PER_WIDE_INT == 32
8142 || i >= -0x80000000)
8143 op = DW_OP_const4s;
8144 else
8145 op = DW_OP_consts;
8146 }
8147
8148 return new_loc_descr (op, i, 0);
8149 }
8150
8151 /* Return a location descriptor that designates a base+offset location. */
8152
8153 static dw_loc_descr_ref
8154 based_loc_descr (unsigned int reg, HOST_WIDE_INT offset)
8155 {
8156 dw_loc_descr_ref loc_result;
8157 /* For the "frame base", we use the frame pointer or stack pointer
8158 registers, since the RTL for local variables is relative to one of
8159 them. */
8160 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8161 ? HARD_FRAME_POINTER_REGNUM
8162 : STACK_POINTER_REGNUM);
8163
8164 if (reg == fp_reg)
8165 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8166 else if (reg <= 31)
8167 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8168 else
8169 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8170
8171 return loc_result;
8172 }
8173
8174 /* Return true if this RTL expression describes a base+offset calculation. */
8175
8176 static inline int
8177 is_based_loc (rtx rtl)
8178 {
8179 return (GET_CODE (rtl) == PLUS
8180 && ((GET_CODE (XEXP (rtl, 0)) == REG
8181 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8182 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8183 }
8184
8185 /* The following routine converts the RTL for a variable or parameter
8186 (resident in memory) into an equivalent Dwarf representation of a
8187 mechanism for getting the address of that same variable onto the top of a
8188 hypothetical "address evaluation" stack.
8189
8190 When creating memory location descriptors, we are effectively transforming
8191 the RTL for a memory-resident object into its Dwarf postfix expression
8192 equivalent. This routine recursively descends an RTL tree, turning
8193 it into Dwarf postfix code as it goes.
8194
8195 MODE is the mode of the memory reference, needed to handle some
8196 autoincrement addressing modes.
8197
8198 Return 0 if we can't represent the location. */
8199
8200 static dw_loc_descr_ref
8201 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8202 {
8203 dw_loc_descr_ref mem_loc_result = NULL;
8204
8205 /* Note that for a dynamically sized array, the location we will generate a
8206 description of here will be the lowest numbered location which is
8207 actually within the array. That's *not* necessarily the same as the
8208 zeroth element of the array. */
8209
8210 rtl = (*targetm.delegitimize_address) (rtl);
8211
8212 switch (GET_CODE (rtl))
8213 {
8214 case POST_INC:
8215 case POST_DEC:
8216 case POST_MODIFY:
8217 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8218 just fall into the SUBREG code. */
8219
8220 /* ... fall through ... */
8221
8222 case SUBREG:
8223 /* The case of a subreg may arise when we have a local (register)
8224 variable or a formal (register) parameter which doesn't quite fill
8225 up an entire register. For now, just assume that it is
8226 legitimate to make the Dwarf info refer to the whole register which
8227 contains the given subreg. */
8228 rtl = SUBREG_REG (rtl);
8229
8230 /* ... fall through ... */
8231
8232 case REG:
8233 /* Whenever a register number forms a part of the description of the
8234 method for calculating the (dynamic) address of a memory resident
8235 object, DWARF rules require the register number be referred to as
8236 a "base register". This distinction is not based in any way upon
8237 what category of register the hardware believes the given register
8238 belongs to. This is strictly DWARF terminology we're dealing with
8239 here. Note that in cases where the location of a memory-resident
8240 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8241 OP_CONST (0)) the actual DWARF location descriptor that we generate
8242 may just be OP_BASEREG (basereg). This may look deceptively like
8243 the object in question was allocated to a register (rather than in
8244 memory) so DWARF consumers need to be aware of the subtle
8245 distinction between OP_REG and OP_BASEREG. */
8246 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8247 mem_loc_result = based_loc_descr (reg_number (rtl), 0);
8248 break;
8249
8250 case MEM:
8251 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8252 if (mem_loc_result != 0)
8253 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8254 break;
8255
8256 case LO_SUM:
8257 rtl = XEXP (rtl, 1);
8258
8259 /* ... fall through ... */
8260
8261 case LABEL_REF:
8262 /* Some ports can transform a symbol ref into a label ref, because
8263 the symbol ref is too far away and has to be dumped into a constant
8264 pool. */
8265 case CONST:
8266 case SYMBOL_REF:
8267 /* Alternatively, the symbol in the constant pool might be referenced
8268 by a different symbol. */
8269 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8270 {
8271 bool marked;
8272 rtx tmp = get_pool_constant_mark (rtl, &marked);
8273
8274 if (GET_CODE (tmp) == SYMBOL_REF)
8275 {
8276 rtl = tmp;
8277 if (CONSTANT_POOL_ADDRESS_P (tmp))
8278 get_pool_constant_mark (tmp, &marked);
8279 else
8280 marked = true;
8281 }
8282
8283 /* If all references to this pool constant were optimized away,
8284 it was not output and thus we can't represent it.
8285 FIXME: might try to use DW_OP_const_value here, though
8286 DW_OP_piece complicates it. */
8287 if (!marked)
8288 return 0;
8289 }
8290
8291 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8292 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8293 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8294 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8295 break;
8296
8297 case PRE_MODIFY:
8298 /* Extract the PLUS expression nested inside and fall into
8299 PLUS code below. */
8300 rtl = XEXP (rtl, 1);
8301 goto plus;
8302
8303 case PRE_INC:
8304 case PRE_DEC:
8305 /* Turn these into a PLUS expression and fall into the PLUS code
8306 below. */
8307 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8308 GEN_INT (GET_CODE (rtl) == PRE_INC
8309 ? GET_MODE_UNIT_SIZE (mode)
8310 : -GET_MODE_UNIT_SIZE (mode)));
8311
8312 /* ... fall through ... */
8313
8314 case PLUS:
8315 plus:
8316 if (is_based_loc (rtl))
8317 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
8318 INTVAL (XEXP (rtl, 1)));
8319 else
8320 {
8321 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8322 if (mem_loc_result == 0)
8323 break;
8324
8325 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8326 && INTVAL (XEXP (rtl, 1)) >= 0)
8327 add_loc_descr (&mem_loc_result,
8328 new_loc_descr (DW_OP_plus_uconst,
8329 INTVAL (XEXP (rtl, 1)), 0));
8330 else
8331 {
8332 add_loc_descr (&mem_loc_result,
8333 mem_loc_descriptor (XEXP (rtl, 1), mode));
8334 add_loc_descr (&mem_loc_result,
8335 new_loc_descr (DW_OP_plus, 0, 0));
8336 }
8337 }
8338 break;
8339
8340 case MULT:
8341 {
8342 /* If a pseudo-reg is optimized away, it is possible for it to
8343 be replaced with a MEM containing a multiply. */
8344 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8345 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8346
8347 if (op0 == 0 || op1 == 0)
8348 break;
8349
8350 mem_loc_result = op0;
8351 add_loc_descr (&mem_loc_result, op1);
8352 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
8353 break;
8354 }
8355
8356 case CONST_INT:
8357 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8358 break;
8359
8360 case ADDRESSOF:
8361 /* If this is a MEM, return its address. Otherwise, we can't
8362 represent this. */
8363 if (GET_CODE (XEXP (rtl, 0)) == MEM)
8364 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode);
8365 else
8366 return 0;
8367
8368 default:
8369 abort ();
8370 }
8371
8372 return mem_loc_result;
8373 }
8374
8375 /* Return a descriptor that describes the concatenation of two locations.
8376 This is typically a complex variable. */
8377
8378 static dw_loc_descr_ref
8379 concat_loc_descriptor (rtx x0, rtx x1)
8380 {
8381 dw_loc_descr_ref cc_loc_result = NULL;
8382 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8383 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8384
8385 if (x0_ref == 0 || x1_ref == 0)
8386 return 0;
8387
8388 cc_loc_result = x0_ref;
8389 add_loc_descr (&cc_loc_result,
8390 new_loc_descr (DW_OP_piece,
8391 GET_MODE_SIZE (GET_MODE (x0)), 0));
8392
8393 add_loc_descr (&cc_loc_result, x1_ref);
8394 add_loc_descr (&cc_loc_result,
8395 new_loc_descr (DW_OP_piece,
8396 GET_MODE_SIZE (GET_MODE (x1)), 0));
8397
8398 return cc_loc_result;
8399 }
8400
8401 /* Output a proper Dwarf location descriptor for a variable or parameter
8402 which is either allocated in a register or in a memory location. For a
8403 register, we just generate an OP_REG and the register number. For a
8404 memory location we provide a Dwarf postfix expression describing how to
8405 generate the (dynamic) address of the object onto the address stack.
8406
8407 If we don't know how to describe it, return 0. */
8408
8409 static dw_loc_descr_ref
8410 loc_descriptor (rtx rtl)
8411 {
8412 dw_loc_descr_ref loc_result = NULL;
8413
8414 switch (GET_CODE (rtl))
8415 {
8416 case SUBREG:
8417 /* The case of a subreg may arise when we have a local (register)
8418 variable or a formal (register) parameter which doesn't quite fill
8419 up an entire register. For now, just assume that it is
8420 legitimate to make the Dwarf info refer to the whole register which
8421 contains the given subreg. */
8422 rtl = SUBREG_REG (rtl);
8423
8424 /* ... fall through ... */
8425
8426 case REG:
8427 loc_result = reg_loc_descriptor (rtl);
8428 break;
8429
8430 case MEM:
8431 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8432 break;
8433
8434 case CONCAT:
8435 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8436 break;
8437
8438 default:
8439 abort ();
8440 }
8441
8442 return loc_result;
8443 }
8444
8445 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8446 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8447 looking for an address. Otherwise, we return a value. If we can't make a
8448 descriptor, return 0. */
8449
8450 static dw_loc_descr_ref
8451 loc_descriptor_from_tree (tree loc, int addressp)
8452 {
8453 dw_loc_descr_ref ret, ret1;
8454 int indirect_p = 0;
8455 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8456 enum dwarf_location_atom op;
8457
8458 /* ??? Most of the time we do not take proper care for sign/zero
8459 extending the values properly. Hopefully this won't be a real
8460 problem... */
8461
8462 switch (TREE_CODE (loc))
8463 {
8464 case ERROR_MARK:
8465 return 0;
8466
8467 case WITH_RECORD_EXPR:
8468 case PLACEHOLDER_EXPR:
8469 /* This case involves extracting fields from an object to determine the
8470 position of other fields. We don't try to encode this here. The
8471 only user of this is Ada, which encodes the needed information using
8472 the names of types. */
8473 return 0;
8474
8475 case CALL_EXPR:
8476 return 0;
8477
8478 case ADDR_EXPR:
8479 /* We can support this only if we can look through conversions and
8480 find an INDIRECT_EXPR. */
8481 for (loc = TREE_OPERAND (loc, 0);
8482 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8483 || TREE_CODE (loc) == NON_LVALUE_EXPR
8484 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8485 || TREE_CODE (loc) == SAVE_EXPR;
8486 loc = TREE_OPERAND (loc, 0))
8487 ;
8488
8489 return (TREE_CODE (loc) == INDIRECT_REF
8490 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8491 : 0);
8492
8493 case VAR_DECL:
8494 if (DECL_THREAD_LOCAL (loc))
8495 {
8496 rtx rtl;
8497
8498 #ifndef ASM_OUTPUT_DWARF_DTPREL
8499 /* If this is not defined, we have no way to emit the data. */
8500 return 0;
8501 #endif
8502
8503 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8504 look up addresses of objects in the current module. */
8505 if (DECL_EXTERNAL (loc))
8506 return 0;
8507
8508 rtl = rtl_for_decl_location (loc);
8509 if (rtl == NULL_RTX)
8510 return 0;
8511
8512 if (GET_CODE (rtl) != MEM)
8513 return 0;
8514 rtl = XEXP (rtl, 0);
8515 if (! CONSTANT_P (rtl))
8516 return 0;
8517
8518 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8519 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8520 ret->dw_loc_oprnd1.v.val_addr = rtl;
8521
8522 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8523 add_loc_descr (&ret, ret1);
8524
8525 indirect_p = 1;
8526 break;
8527 }
8528 /* Fall through. */
8529
8530 case PARM_DECL:
8531 {
8532 rtx rtl = rtl_for_decl_location (loc);
8533
8534 if (rtl == NULL_RTX)
8535 return 0;
8536 else if (CONSTANT_P (rtl))
8537 {
8538 ret = new_loc_descr (DW_OP_addr, 0, 0);
8539 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8540 ret->dw_loc_oprnd1.v.val_addr = rtl;
8541 indirect_p = 1;
8542 }
8543 else
8544 {
8545 enum machine_mode mode = GET_MODE (rtl);
8546
8547 if (GET_CODE (rtl) == MEM)
8548 {
8549 indirect_p = 1;
8550 rtl = XEXP (rtl, 0);
8551 }
8552
8553 ret = mem_loc_descriptor (rtl, mode);
8554 }
8555 }
8556 break;
8557
8558 case INDIRECT_REF:
8559 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8560 indirect_p = 1;
8561 break;
8562
8563 case COMPOUND_EXPR:
8564 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8565
8566 case NOP_EXPR:
8567 case CONVERT_EXPR:
8568 case NON_LVALUE_EXPR:
8569 case VIEW_CONVERT_EXPR:
8570 case SAVE_EXPR:
8571 case MODIFY_EXPR:
8572 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8573
8574 case COMPONENT_REF:
8575 case BIT_FIELD_REF:
8576 case ARRAY_REF:
8577 case ARRAY_RANGE_REF:
8578 {
8579 tree obj, offset;
8580 HOST_WIDE_INT bitsize, bitpos, bytepos;
8581 enum machine_mode mode;
8582 int volatilep;
8583
8584 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8585 &unsignedp, &volatilep);
8586
8587 if (obj == loc)
8588 return 0;
8589
8590 ret = loc_descriptor_from_tree (obj, 1);
8591 if (ret == 0
8592 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8593 return 0;
8594
8595 if (offset != NULL_TREE)
8596 {
8597 /* Variable offset. */
8598 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8599 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8600 }
8601
8602 if (!addressp)
8603 indirect_p = 1;
8604
8605 bytepos = bitpos / BITS_PER_UNIT;
8606 if (bytepos > 0)
8607 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8608 else if (bytepos < 0)
8609 {
8610 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8611 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8612 }
8613 break;
8614 }
8615
8616 case INTEGER_CST:
8617 if (host_integerp (loc, 0))
8618 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8619 else
8620 return 0;
8621 break;
8622
8623 case CONSTRUCTOR:
8624 {
8625 /* Get an RTL for this, if something has been emitted. */
8626 rtx rtl = lookup_constant_def (loc);
8627 enum machine_mode mode;
8628
8629 if (GET_CODE (rtl) != MEM)
8630 return 0;
8631 mode = GET_MODE (rtl);
8632 rtl = XEXP (rtl, 0);
8633
8634 rtl = (*targetm.delegitimize_address) (rtl);
8635
8636 indirect_p = 1;
8637 ret = mem_loc_descriptor (rtl, mode);
8638 break;
8639 }
8640
8641 case TRUTH_AND_EXPR:
8642 case TRUTH_ANDIF_EXPR:
8643 case BIT_AND_EXPR:
8644 op = DW_OP_and;
8645 goto do_binop;
8646
8647 case TRUTH_XOR_EXPR:
8648 case BIT_XOR_EXPR:
8649 op = DW_OP_xor;
8650 goto do_binop;
8651
8652 case TRUTH_OR_EXPR:
8653 case TRUTH_ORIF_EXPR:
8654 case BIT_IOR_EXPR:
8655 op = DW_OP_or;
8656 goto do_binop;
8657
8658 case FLOOR_DIV_EXPR:
8659 case CEIL_DIV_EXPR:
8660 case ROUND_DIV_EXPR:
8661 case TRUNC_DIV_EXPR:
8662 op = DW_OP_div;
8663 goto do_binop;
8664
8665 case MINUS_EXPR:
8666 op = DW_OP_minus;
8667 goto do_binop;
8668
8669 case FLOOR_MOD_EXPR:
8670 case CEIL_MOD_EXPR:
8671 case ROUND_MOD_EXPR:
8672 case TRUNC_MOD_EXPR:
8673 op = DW_OP_mod;
8674 goto do_binop;
8675
8676 case MULT_EXPR:
8677 op = DW_OP_mul;
8678 goto do_binop;
8679
8680 case LSHIFT_EXPR:
8681 op = DW_OP_shl;
8682 goto do_binop;
8683
8684 case RSHIFT_EXPR:
8685 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8686 goto do_binop;
8687
8688 case PLUS_EXPR:
8689 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8690 && host_integerp (TREE_OPERAND (loc, 1), 0))
8691 {
8692 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8693 if (ret == 0)
8694 return 0;
8695
8696 add_loc_descr (&ret,
8697 new_loc_descr (DW_OP_plus_uconst,
8698 tree_low_cst (TREE_OPERAND (loc, 1),
8699 0),
8700 0));
8701 break;
8702 }
8703
8704 op = DW_OP_plus;
8705 goto do_binop;
8706
8707 case LE_EXPR:
8708 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8709 return 0;
8710
8711 op = DW_OP_le;
8712 goto do_binop;
8713
8714 case GE_EXPR:
8715 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8716 return 0;
8717
8718 op = DW_OP_ge;
8719 goto do_binop;
8720
8721 case LT_EXPR:
8722 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8723 return 0;
8724
8725 op = DW_OP_lt;
8726 goto do_binop;
8727
8728 case GT_EXPR:
8729 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8730 return 0;
8731
8732 op = DW_OP_gt;
8733 goto do_binop;
8734
8735 case EQ_EXPR:
8736 op = DW_OP_eq;
8737 goto do_binop;
8738
8739 case NE_EXPR:
8740 op = DW_OP_ne;
8741 goto do_binop;
8742
8743 do_binop:
8744 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8745 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8746 if (ret == 0 || ret1 == 0)
8747 return 0;
8748
8749 add_loc_descr (&ret, ret1);
8750 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8751 break;
8752
8753 case TRUTH_NOT_EXPR:
8754 case BIT_NOT_EXPR:
8755 op = DW_OP_not;
8756 goto do_unop;
8757
8758 case ABS_EXPR:
8759 op = DW_OP_abs;
8760 goto do_unop;
8761
8762 case NEGATE_EXPR:
8763 op = DW_OP_neg;
8764 goto do_unop;
8765
8766 do_unop:
8767 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8768 if (ret == 0)
8769 return 0;
8770
8771 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8772 break;
8773
8774 case MAX_EXPR:
8775 loc = build (COND_EXPR, TREE_TYPE (loc),
8776 build (LT_EXPR, integer_type_node,
8777 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8778 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
8779
8780 /* ... fall through ... */
8781
8782 case COND_EXPR:
8783 {
8784 dw_loc_descr_ref lhs
8785 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8786 dw_loc_descr_ref rhs
8787 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
8788 dw_loc_descr_ref bra_node, jump_node, tmp;
8789
8790 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8791 if (ret == 0 || lhs == 0 || rhs == 0)
8792 return 0;
8793
8794 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
8795 add_loc_descr (&ret, bra_node);
8796
8797 add_loc_descr (&ret, rhs);
8798 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
8799 add_loc_descr (&ret, jump_node);
8800
8801 add_loc_descr (&ret, lhs);
8802 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8803 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
8804
8805 /* ??? Need a node to point the skip at. Use a nop. */
8806 tmp = new_loc_descr (DW_OP_nop, 0, 0);
8807 add_loc_descr (&ret, tmp);
8808 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8809 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
8810 }
8811 break;
8812
8813 default:
8814 /* Leave front-end specific codes as simply unknown. This comes
8815 up, for instance, with the C STMT_EXPR. */
8816 if ((unsigned int) TREE_CODE (loc)
8817 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
8818 return 0;
8819
8820 /* Otherwise this is a generic code; we should just lists all of
8821 these explicitly. Aborting means we forgot one. */
8822 abort ();
8823 }
8824
8825 /* Show if we can't fill the request for an address. */
8826 if (addressp && indirect_p == 0)
8827 return 0;
8828
8829 /* If we've got an address and don't want one, dereference. */
8830 if (!addressp && indirect_p > 0)
8831 {
8832 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
8833
8834 if (size > DWARF2_ADDR_SIZE || size == -1)
8835 return 0;
8836 else if (size == DWARF2_ADDR_SIZE)
8837 op = DW_OP_deref;
8838 else
8839 op = DW_OP_deref_size;
8840
8841 add_loc_descr (&ret, new_loc_descr (op, size, 0));
8842 }
8843
8844 return ret;
8845 }
8846
8847 /* Given a value, round it up to the lowest multiple of `boundary'
8848 which is not less than the value itself. */
8849
8850 static inline HOST_WIDE_INT
8851 ceiling (HOST_WIDE_INT value, unsigned int boundary)
8852 {
8853 return (((value + boundary - 1) / boundary) * boundary);
8854 }
8855
8856 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
8857 pointer to the declared type for the relevant field variable, or return
8858 `integer_type_node' if the given node turns out to be an
8859 ERROR_MARK node. */
8860
8861 static inline tree
8862 field_type (tree decl)
8863 {
8864 tree type;
8865
8866 if (TREE_CODE (decl) == ERROR_MARK)
8867 return integer_type_node;
8868
8869 type = DECL_BIT_FIELD_TYPE (decl);
8870 if (type == NULL_TREE)
8871 type = TREE_TYPE (decl);
8872
8873 return type;
8874 }
8875
8876 /* Given a pointer to a tree node, return the alignment in bits for
8877 it, or else return BITS_PER_WORD if the node actually turns out to
8878 be an ERROR_MARK node. */
8879
8880 static inline unsigned
8881 simple_type_align_in_bits (tree type)
8882 {
8883 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
8884 }
8885
8886 static inline unsigned
8887 simple_decl_align_in_bits (tree decl)
8888 {
8889 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
8890 }
8891
8892 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
8893 lowest addressed byte of the "containing object" for the given FIELD_DECL,
8894 or return 0 if we are unable to determine what that offset is, either
8895 because the argument turns out to be a pointer to an ERROR_MARK node, or
8896 because the offset is actually variable. (We can't handle the latter case
8897 just yet). */
8898
8899 static HOST_WIDE_INT
8900 field_byte_offset (tree decl)
8901 {
8902 unsigned int type_align_in_bits;
8903 unsigned int decl_align_in_bits;
8904 unsigned HOST_WIDE_INT type_size_in_bits;
8905 HOST_WIDE_INT object_offset_in_bits;
8906 tree type;
8907 tree field_size_tree;
8908 HOST_WIDE_INT bitpos_int;
8909 HOST_WIDE_INT deepest_bitpos;
8910 unsigned HOST_WIDE_INT field_size_in_bits;
8911
8912 if (TREE_CODE (decl) == ERROR_MARK)
8913 return 0;
8914 else if (TREE_CODE (decl) != FIELD_DECL)
8915 abort ();
8916
8917 type = field_type (decl);
8918 field_size_tree = DECL_SIZE (decl);
8919
8920 /* The size could be unspecified if there was an error, or for
8921 a flexible array member. */
8922 if (! field_size_tree)
8923 field_size_tree = bitsize_zero_node;
8924
8925 /* We cannot yet cope with fields whose positions are variable, so
8926 for now, when we see such things, we simply return 0. Someday, we may
8927 be able to handle such cases, but it will be damn difficult. */
8928 if (! host_integerp (bit_position (decl), 0))
8929 return 0;
8930
8931 bitpos_int = int_bit_position (decl);
8932
8933 /* If we don't know the size of the field, pretend it's a full word. */
8934 if (host_integerp (field_size_tree, 1))
8935 field_size_in_bits = tree_low_cst (field_size_tree, 1);
8936 else
8937 field_size_in_bits = BITS_PER_WORD;
8938
8939 type_size_in_bits = simple_type_size_in_bits (type);
8940 type_align_in_bits = simple_type_align_in_bits (type);
8941 decl_align_in_bits = simple_decl_align_in_bits (decl);
8942
8943 /* The GCC front-end doesn't make any attempt to keep track of the starting
8944 bit offset (relative to the start of the containing structure type) of the
8945 hypothetical "containing object" for a bit-field. Thus, when computing
8946 the byte offset value for the start of the "containing object" of a
8947 bit-field, we must deduce this information on our own. This can be rather
8948 tricky to do in some cases. For example, handling the following structure
8949 type definition when compiling for an i386/i486 target (which only aligns
8950 long long's to 32-bit boundaries) can be very tricky:
8951
8952 struct S { int field1; long long field2:31; };
8953
8954 Fortunately, there is a simple rule-of-thumb which can be used in such
8955 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
8956 structure shown above. It decides to do this based upon one simple rule
8957 for bit-field allocation. GCC allocates each "containing object" for each
8958 bit-field at the first (i.e. lowest addressed) legitimate alignment
8959 boundary (based upon the required minimum alignment for the declared type
8960 of the field) which it can possibly use, subject to the condition that
8961 there is still enough available space remaining in the containing object
8962 (when allocated at the selected point) to fully accommodate all of the
8963 bits of the bit-field itself.
8964
8965 This simple rule makes it obvious why GCC allocates 8 bytes for each
8966 object of the structure type shown above. When looking for a place to
8967 allocate the "containing object" for `field2', the compiler simply tries
8968 to allocate a 64-bit "containing object" at each successive 32-bit
8969 boundary (starting at zero) until it finds a place to allocate that 64-
8970 bit field such that at least 31 contiguous (and previously unallocated)
8971 bits remain within that selected 64 bit field. (As it turns out, for the
8972 example above, the compiler finds it is OK to allocate the "containing
8973 object" 64-bit field at bit-offset zero within the structure type.)
8974
8975 Here we attempt to work backwards from the limited set of facts we're
8976 given, and we try to deduce from those facts, where GCC must have believed
8977 that the containing object started (within the structure type). The value
8978 we deduce is then used (by the callers of this routine) to generate
8979 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
8980 and, in the case of DW_AT_location, regular fields as well). */
8981
8982 /* Figure out the bit-distance from the start of the structure to the
8983 "deepest" bit of the bit-field. */
8984 deepest_bitpos = bitpos_int + field_size_in_bits;
8985
8986 /* This is the tricky part. Use some fancy footwork to deduce where the
8987 lowest addressed bit of the containing object must be. */
8988 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8989
8990 /* Round up to type_align by default. This works best for bitfields. */
8991 object_offset_in_bits += type_align_in_bits - 1;
8992 object_offset_in_bits /= type_align_in_bits;
8993 object_offset_in_bits *= type_align_in_bits;
8994
8995 if (object_offset_in_bits > bitpos_int)
8996 {
8997 /* Sigh, the decl must be packed. */
8998 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8999
9000 /* Round up to decl_align instead. */
9001 object_offset_in_bits += decl_align_in_bits - 1;
9002 object_offset_in_bits /= decl_align_in_bits;
9003 object_offset_in_bits *= decl_align_in_bits;
9004 }
9005
9006 return object_offset_in_bits / BITS_PER_UNIT;
9007 }
9008 \f
9009 /* The following routines define various Dwarf attributes and any data
9010 associated with them. */
9011
9012 /* Add a location description attribute value to a DIE.
9013
9014 This emits location attributes suitable for whole variables and
9015 whole parameters. Note that the location attributes for struct fields are
9016 generated by the routine `data_member_location_attribute' below. */
9017
9018 static inline void
9019 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9020 dw_loc_descr_ref descr)
9021 {
9022 if (descr != 0)
9023 add_AT_loc (die, attr_kind, descr);
9024 }
9025
9026 /* Attach the specialized form of location attribute used for data members of
9027 struct and union types. In the special case of a FIELD_DECL node which
9028 represents a bit-field, the "offset" part of this special location
9029 descriptor must indicate the distance in bytes from the lowest-addressed
9030 byte of the containing struct or union type to the lowest-addressed byte of
9031 the "containing object" for the bit-field. (See the `field_byte_offset'
9032 function above).
9033
9034 For any given bit-field, the "containing object" is a hypothetical object
9035 (of some integral or enum type) within which the given bit-field lives. The
9036 type of this hypothetical "containing object" is always the same as the
9037 declared type of the individual bit-field itself (for GCC anyway... the
9038 DWARF spec doesn't actually mandate this). Note that it is the size (in
9039 bytes) of the hypothetical "containing object" which will be given in the
9040 DW_AT_byte_size attribute for this bit-field. (See the
9041 `byte_size_attribute' function below.) It is also used when calculating the
9042 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9043 function below.) */
9044
9045 static void
9046 add_data_member_location_attribute (dw_die_ref die, tree decl)
9047 {
9048 HOST_WIDE_INT offset;
9049 dw_loc_descr_ref loc_descr = 0;
9050
9051 if (TREE_CODE (decl) == TREE_VEC)
9052 {
9053 /* We're working on the TAG_inheritance for a base class. */
9054 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
9055 {
9056 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9057 aren't at a fixed offset from all (sub)objects of the same
9058 type. We need to extract the appropriate offset from our
9059 vtable. The following dwarf expression means
9060
9061 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9062
9063 This is specific to the V3 ABI, of course. */
9064
9065 dw_loc_descr_ref tmp;
9066
9067 /* Make a copy of the object address. */
9068 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9069 add_loc_descr (&loc_descr, tmp);
9070
9071 /* Extract the vtable address. */
9072 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9073 add_loc_descr (&loc_descr, tmp);
9074
9075 /* Calculate the address of the offset. */
9076 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9077 if (offset >= 0)
9078 abort ();
9079
9080 tmp = int_loc_descriptor (-offset);
9081 add_loc_descr (&loc_descr, tmp);
9082 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9083 add_loc_descr (&loc_descr, tmp);
9084
9085 /* Extract the offset. */
9086 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9087 add_loc_descr (&loc_descr, tmp);
9088
9089 /* Add it to the object address. */
9090 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9091 add_loc_descr (&loc_descr, tmp);
9092 }
9093 else
9094 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9095 }
9096 else
9097 offset = field_byte_offset (decl);
9098
9099 if (! loc_descr)
9100 {
9101 enum dwarf_location_atom op;
9102
9103 /* The DWARF2 standard says that we should assume that the structure
9104 address is already on the stack, so we can specify a structure field
9105 address by using DW_OP_plus_uconst. */
9106
9107 #ifdef MIPS_DEBUGGING_INFO
9108 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9109 operator correctly. It works only if we leave the offset on the
9110 stack. */
9111 op = DW_OP_constu;
9112 #else
9113 op = DW_OP_plus_uconst;
9114 #endif
9115
9116 loc_descr = new_loc_descr (op, offset, 0);
9117 }
9118
9119 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9120 }
9121
9122 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9123 does not have a "location" either in memory or in a register. These
9124 things can arise in GNU C when a constant is passed as an actual parameter
9125 to an inlined function. They can also arise in C++ where declared
9126 constants do not necessarily get memory "homes". */
9127
9128 static void
9129 add_const_value_attribute (dw_die_ref die, rtx rtl)
9130 {
9131 switch (GET_CODE (rtl))
9132 {
9133 case CONST_INT:
9134 {
9135 HOST_WIDE_INT val = INTVAL (rtl);
9136
9137 if (val < 0)
9138 add_AT_int (die, DW_AT_const_value, val);
9139 else
9140 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9141 }
9142 break;
9143
9144 case CONST_DOUBLE:
9145 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9146 floating-point constant. A CONST_DOUBLE is used whenever the
9147 constant requires more than one word in order to be adequately
9148 represented. We output CONST_DOUBLEs as blocks. */
9149 {
9150 enum machine_mode mode = GET_MODE (rtl);
9151
9152 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9153 {
9154 unsigned length = GET_MODE_SIZE (mode) / 4;
9155 long *array = ggc_alloc (sizeof (long) * length);
9156 REAL_VALUE_TYPE rv;
9157
9158 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9159 real_to_target (array, &rv, mode);
9160
9161 add_AT_float (die, DW_AT_const_value, length, array);
9162 }
9163 else
9164 {
9165 /* ??? We really should be using HOST_WIDE_INT throughout. */
9166 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9167 abort ();
9168
9169 add_AT_long_long (die, DW_AT_const_value,
9170 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9171 }
9172 }
9173 break;
9174
9175 case CONST_STRING:
9176 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9177 break;
9178
9179 case SYMBOL_REF:
9180 case LABEL_REF:
9181 case CONST:
9182 add_AT_addr (die, DW_AT_const_value, rtl);
9183 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9184 break;
9185
9186 case PLUS:
9187 /* In cases where an inlined instance of an inline function is passed
9188 the address of an `auto' variable (which is local to the caller) we
9189 can get a situation where the DECL_RTL of the artificial local
9190 variable (for the inlining) which acts as a stand-in for the
9191 corresponding formal parameter (of the inline function) will look
9192 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9193 exactly a compile-time constant expression, but it isn't the address
9194 of the (artificial) local variable either. Rather, it represents the
9195 *value* which the artificial local variable always has during its
9196 lifetime. We currently have no way to represent such quasi-constant
9197 values in Dwarf, so for now we just punt and generate nothing. */
9198 break;
9199
9200 default:
9201 /* No other kinds of rtx should be possible here. */
9202 abort ();
9203 }
9204
9205 }
9206
9207 static rtx
9208 rtl_for_decl_location (tree decl)
9209 {
9210 rtx rtl;
9211
9212 /* Here we have to decide where we are going to say the parameter "lives"
9213 (as far as the debugger is concerned). We only have a couple of
9214 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9215
9216 DECL_RTL normally indicates where the parameter lives during most of the
9217 activation of the function. If optimization is enabled however, this
9218 could be either NULL or else a pseudo-reg. Both of those cases indicate
9219 that the parameter doesn't really live anywhere (as far as the code
9220 generation parts of GCC are concerned) during most of the function's
9221 activation. That will happen (for example) if the parameter is never
9222 referenced within the function.
9223
9224 We could just generate a location descriptor here for all non-NULL
9225 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9226 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9227 where DECL_RTL is NULL or is a pseudo-reg.
9228
9229 Note however that we can only get away with using DECL_INCOMING_RTL as
9230 a backup substitute for DECL_RTL in certain limited cases. In cases
9231 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9232 we can be sure that the parameter was passed using the same type as it is
9233 declared to have within the function, and that its DECL_INCOMING_RTL
9234 points us to a place where a value of that type is passed.
9235
9236 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9237 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9238 because in these cases DECL_INCOMING_RTL points us to a value of some
9239 type which is *different* from the type of the parameter itself. Thus,
9240 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9241 such cases, the debugger would end up (for example) trying to fetch a
9242 `float' from a place which actually contains the first part of a
9243 `double'. That would lead to really incorrect and confusing
9244 output at debug-time.
9245
9246 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9247 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9248 are a couple of exceptions however. On little-endian machines we can
9249 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9250 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9251 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9252 when (on a little-endian machine) a non-prototyped function has a
9253 parameter declared to be of type `short' or `char'. In such cases,
9254 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9255 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9256 passed `int' value. If the debugger then uses that address to fetch
9257 a `short' or a `char' (on a little-endian machine) the result will be
9258 the correct data, so we allow for such exceptional cases below.
9259
9260 Note that our goal here is to describe the place where the given formal
9261 parameter lives during most of the function's activation (i.e. between the
9262 end of the prologue and the start of the epilogue). We'll do that as best
9263 as we can. Note however that if the given formal parameter is modified
9264 sometime during the execution of the function, then a stack backtrace (at
9265 debug-time) will show the function as having been called with the *new*
9266 value rather than the value which was originally passed in. This happens
9267 rarely enough that it is not a major problem, but it *is* a problem, and
9268 I'd like to fix it.
9269
9270 A future version of dwarf2out.c may generate two additional attributes for
9271 any given DW_TAG_formal_parameter DIE which will describe the "passed
9272 type" and the "passed location" for the given formal parameter in addition
9273 to the attributes we now generate to indicate the "declared type" and the
9274 "active location" for each parameter. This additional set of attributes
9275 could be used by debuggers for stack backtraces. Separately, note that
9276 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9277 This happens (for example) for inlined-instances of inline function formal
9278 parameters which are never referenced. This really shouldn't be
9279 happening. All PARM_DECL nodes should get valid non-NULL
9280 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9281 values for inlined instances of inline function parameters, so when we see
9282 such cases, we are just out-of-luck for the time being (until integrate.c
9283 gets fixed). */
9284
9285 /* Use DECL_RTL as the "location" unless we find something better. */
9286 rtl = DECL_RTL_IF_SET (decl);
9287
9288 /* When generating abstract instances, ignore everything except
9289 constants, symbols living in memory, and symbols living in
9290 fixed registers. */
9291 if (! reload_completed)
9292 {
9293 if (rtl
9294 && (CONSTANT_P (rtl)
9295 || (GET_CODE (rtl) == MEM
9296 && CONSTANT_P (XEXP (rtl, 0)))
9297 || (GET_CODE (rtl) == REG
9298 && TREE_CODE (decl) == VAR_DECL
9299 && TREE_STATIC (decl))))
9300 {
9301 rtl = (*targetm.delegitimize_address) (rtl);
9302 return rtl;
9303 }
9304 rtl = NULL_RTX;
9305 }
9306 else if (TREE_CODE (decl) == PARM_DECL)
9307 {
9308 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9309 {
9310 tree declared_type = type_main_variant (TREE_TYPE (decl));
9311 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9312
9313 /* This decl represents a formal parameter which was optimized out.
9314 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9315 all cases where (rtl == NULL_RTX) just below. */
9316 if (declared_type == passed_type)
9317 rtl = DECL_INCOMING_RTL (decl);
9318 else if (! BYTES_BIG_ENDIAN
9319 && TREE_CODE (declared_type) == INTEGER_TYPE
9320 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9321 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9322 rtl = DECL_INCOMING_RTL (decl);
9323 }
9324
9325 /* If the parm was passed in registers, but lives on the stack, then
9326 make a big endian correction if the mode of the type of the
9327 parameter is not the same as the mode of the rtl. */
9328 /* ??? This is the same series of checks that are made in dbxout.c before
9329 we reach the big endian correction code there. It isn't clear if all
9330 of these checks are necessary here, but keeping them all is the safe
9331 thing to do. */
9332 else if (GET_CODE (rtl) == MEM
9333 && XEXP (rtl, 0) != const0_rtx
9334 && ! CONSTANT_P (XEXP (rtl, 0))
9335 /* Not passed in memory. */
9336 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
9337 /* Not passed by invisible reference. */
9338 && (GET_CODE (XEXP (rtl, 0)) != REG
9339 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9340 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9341 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9342 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9343 #endif
9344 )
9345 /* Big endian correction check. */
9346 && BYTES_BIG_ENDIAN
9347 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9348 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9349 < UNITS_PER_WORD))
9350 {
9351 int offset = (UNITS_PER_WORD
9352 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9353
9354 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9355 plus_constant (XEXP (rtl, 0), offset));
9356 }
9357 }
9358
9359 if (rtl != NULL_RTX)
9360 {
9361 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9362 #ifdef LEAF_REG_REMAP
9363 if (current_function_uses_only_leaf_regs)
9364 leaf_renumber_regs_insn (rtl);
9365 #endif
9366 }
9367
9368 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9369 and will have been substituted directly into all expressions that use it.
9370 C does not have such a concept, but C++ and other languages do. */
9371 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9372 {
9373 /* If a variable is initialized with a string constant without embedded
9374 zeros, build CONST_STRING. */
9375 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9376 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9377 {
9378 tree arrtype = TREE_TYPE (decl);
9379 tree enttype = TREE_TYPE (arrtype);
9380 tree domain = TYPE_DOMAIN (arrtype);
9381 tree init = DECL_INITIAL (decl);
9382 enum machine_mode mode = TYPE_MODE (enttype);
9383
9384 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9385 && domain
9386 && integer_zerop (TYPE_MIN_VALUE (domain))
9387 && compare_tree_int (TYPE_MAX_VALUE (domain),
9388 TREE_STRING_LENGTH (init) - 1) == 0
9389 && ((size_t) TREE_STRING_LENGTH (init)
9390 == strlen (TREE_STRING_POINTER (init)) + 1))
9391 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9392 }
9393 /* If the initializer is something that we know will expand into an
9394 immediate RTL constant, expand it now. Expanding anything else
9395 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9396 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9397 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9398 {
9399 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9400 EXPAND_INITIALIZER);
9401 /* If expand_expr returns a MEM, it wasn't immediate. */
9402 if (rtl && GET_CODE (rtl) == MEM)
9403 abort ();
9404 }
9405 }
9406
9407 if (rtl)
9408 rtl = (*targetm.delegitimize_address) (rtl);
9409
9410 /* If we don't look past the constant pool, we risk emitting a
9411 reference to a constant pool entry that isn't referenced from
9412 code, and thus is not emitted. */
9413 if (rtl)
9414 rtl = avoid_constant_pool_reference (rtl);
9415
9416 return rtl;
9417 }
9418
9419 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
9420 data attribute for a variable or a parameter. We generate the
9421 DW_AT_const_value attribute only in those cases where the given variable
9422 or parameter does not have a true "location" either in memory or in a
9423 register. This can happen (for example) when a constant is passed as an
9424 actual argument in a call to an inline function. (It's possible that
9425 these things can crop up in other ways also.) Note that one type of
9426 constant value which can be passed into an inlined function is a constant
9427 pointer. This can happen for example if an actual argument in an inlined
9428 function call evaluates to a compile-time constant address. */
9429
9430 static void
9431 add_location_or_const_value_attribute (dw_die_ref die, tree decl)
9432 {
9433 rtx rtl;
9434 dw_loc_descr_ref descr;
9435
9436 if (TREE_CODE (decl) == ERROR_MARK)
9437 return;
9438 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
9439 abort ();
9440
9441 rtl = rtl_for_decl_location (decl);
9442 if (rtl == NULL_RTX)
9443 return;
9444
9445 switch (GET_CODE (rtl))
9446 {
9447 case ADDRESSOF:
9448 /* The address of a variable that was optimized away;
9449 don't emit anything. */
9450 break;
9451
9452 case CONST_INT:
9453 case CONST_DOUBLE:
9454 case CONST_STRING:
9455 case SYMBOL_REF:
9456 case LABEL_REF:
9457 case CONST:
9458 case PLUS:
9459 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9460 add_const_value_attribute (die, rtl);
9461 break;
9462
9463 case MEM:
9464 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
9465 {
9466 /* Need loc_descriptor_from_tree since that's where we know
9467 how to handle TLS variables. Want the object's address
9468 since the top-level DW_AT_location assumes such. See
9469 the confusion in loc_descriptor for reference. */
9470 descr = loc_descriptor_from_tree (decl, 1);
9471 }
9472 else
9473 {
9474 case REG:
9475 case SUBREG:
9476 case CONCAT:
9477 descr = loc_descriptor (rtl);
9478 }
9479 add_AT_location_description (die, DW_AT_location, descr);
9480 break;
9481
9482 case PARALLEL:
9483 {
9484 rtvec par_elems = XVEC (rtl, 0);
9485 int num_elem = GET_NUM_ELEM (par_elems);
9486 enum machine_mode mode;
9487 int i;
9488
9489 /* Create the first one, so we have something to add to. */
9490 descr = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
9491 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
9492 add_loc_descr (&descr,
9493 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
9494 for (i = 1; i < num_elem; i++)
9495 {
9496 dw_loc_descr_ref temp;
9497
9498 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
9499 add_loc_descr (&descr, temp);
9500 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
9501 add_loc_descr (&descr,
9502 new_loc_descr (DW_OP_piece,
9503 GET_MODE_SIZE (mode), 0));
9504 }
9505 }
9506 add_AT_location_description (die, DW_AT_location, descr);
9507 break;
9508
9509 default:
9510 abort ();
9511 }
9512 }
9513
9514 /* If we don't have a copy of this variable in memory for some reason (such
9515 as a C++ member constant that doesn't have an out-of-line definition),
9516 we should tell the debugger about the constant value. */
9517
9518 static void
9519 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
9520 {
9521 tree init = DECL_INITIAL (decl);
9522 tree type = TREE_TYPE (decl);
9523
9524 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9525 && initializer_constant_valid_p (init, type) == null_pointer_node)
9526 /* OK */;
9527 else
9528 return;
9529
9530 switch (TREE_CODE (type))
9531 {
9532 case INTEGER_TYPE:
9533 if (host_integerp (init, 0))
9534 add_AT_unsigned (var_die, DW_AT_const_value,
9535 tree_low_cst (init, 0));
9536 else
9537 add_AT_long_long (var_die, DW_AT_const_value,
9538 TREE_INT_CST_HIGH (init),
9539 TREE_INT_CST_LOW (init));
9540 break;
9541
9542 default:;
9543 }
9544 }
9545
9546 /* Generate a DW_AT_name attribute given some string value to be included as
9547 the value of the attribute. */
9548
9549 static void
9550 add_name_attribute (dw_die_ref die, const char *name_string)
9551 {
9552 if (name_string != NULL && *name_string != 0)
9553 {
9554 if (demangle_name_func)
9555 name_string = (*demangle_name_func) (name_string);
9556
9557 add_AT_string (die, DW_AT_name, name_string);
9558 }
9559 }
9560
9561 /* Generate a DW_AT_comp_dir attribute for DIE. */
9562
9563 static void
9564 add_comp_dir_attribute (dw_die_ref die)
9565 {
9566 const char *wd = get_src_pwd ();
9567 if (wd != NULL)
9568 add_AT_string (die, DW_AT_comp_dir, wd);
9569 }
9570
9571 /* Given a tree node describing an array bound (either lower or upper) output
9572 a representation for that bound. */
9573
9574 static void
9575 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
9576 {
9577 switch (TREE_CODE (bound))
9578 {
9579 case ERROR_MARK:
9580 return;
9581
9582 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9583 case INTEGER_CST:
9584 if (! host_integerp (bound, 0)
9585 || (bound_attr == DW_AT_lower_bound
9586 && (((is_c_family () || is_java ()) && integer_zerop (bound))
9587 || (is_fortran () && integer_onep (bound)))))
9588 /* use the default */
9589 ;
9590 else
9591 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
9592 break;
9593
9594 case CONVERT_EXPR:
9595 case NOP_EXPR:
9596 case NON_LVALUE_EXPR:
9597 case VIEW_CONVERT_EXPR:
9598 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9599 break;
9600
9601 case SAVE_EXPR:
9602 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9603 access the upper bound values may be bogus. If they refer to a
9604 register, they may only describe how to get at these values at the
9605 points in the generated code right after they have just been
9606 computed. Worse yet, in the typical case, the upper bound values
9607 will not even *be* computed in the optimized code (though the
9608 number of elements will), so these SAVE_EXPRs are entirely
9609 bogus. In order to compensate for this fact, we check here to see
9610 if optimization is enabled, and if so, we don't add an attribute
9611 for the (unknown and unknowable) upper bound. This should not
9612 cause too much trouble for existing (stupid?) debuggers because
9613 they have to deal with empty upper bounds location descriptions
9614 anyway in order to be able to deal with incomplete array types.
9615 Of course an intelligent debugger (GDB?) should be able to
9616 comprehend that a missing upper bound specification in an array
9617 type used for a storage class `auto' local array variable
9618 indicates that the upper bound is both unknown (at compile- time)
9619 and unknowable (at run-time) due to optimization.
9620
9621 We assume that a MEM rtx is safe because gcc wouldn't put the
9622 value there unless it was going to be used repeatedly in the
9623 function, i.e. for cleanups. */
9624 if (SAVE_EXPR_RTL (bound)
9625 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
9626 {
9627 dw_die_ref ctx = lookup_decl_die (current_function_decl);
9628 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
9629 rtx loc = SAVE_EXPR_RTL (bound);
9630
9631 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9632 it references an outer function's frame. */
9633 if (GET_CODE (loc) == MEM)
9634 {
9635 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9636
9637 if (XEXP (loc, 0) != new_addr)
9638 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
9639 }
9640
9641 add_AT_flag (decl_die, DW_AT_artificial, 1);
9642 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9643 add_AT_location_description (decl_die, DW_AT_location,
9644 loc_descriptor (loc));
9645 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9646 }
9647
9648 /* Else leave out the attribute. */
9649 break;
9650
9651 case VAR_DECL:
9652 case PARM_DECL:
9653 {
9654 dw_die_ref decl_die = lookup_decl_die (bound);
9655
9656 /* ??? Can this happen, or should the variable have been bound
9657 first? Probably it can, since I imagine that we try to create
9658 the types of parameters in the order in which they exist in
9659 the list, and won't have created a forward reference to a
9660 later parameter. */
9661 if (decl_die != NULL)
9662 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9663 break;
9664 }
9665
9666 default:
9667 {
9668 /* Otherwise try to create a stack operation procedure to
9669 evaluate the value of the array bound. */
9670
9671 dw_die_ref ctx, decl_die;
9672 dw_loc_descr_ref loc;
9673
9674 loc = loc_descriptor_from_tree (bound, 0);
9675 if (loc == NULL)
9676 break;
9677
9678 if (current_function_decl == 0)
9679 ctx = comp_unit_die;
9680 else
9681 ctx = lookup_decl_die (current_function_decl);
9682
9683 /* If we weren't able to find a context, it's most likely the case
9684 that we are processing the return type of the function. So
9685 make a SAVE_EXPR to point to it and have the limbo DIE code
9686 find the proper die. The save_expr function doesn't always
9687 make a SAVE_EXPR, so do it ourselves. */
9688 if (ctx == 0)
9689 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9690 current_function_decl, NULL_TREE);
9691
9692 decl_die = new_die (DW_TAG_variable, ctx, bound);
9693 add_AT_flag (decl_die, DW_AT_artificial, 1);
9694 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9695 add_AT_loc (decl_die, DW_AT_location, loc);
9696
9697 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9698 break;
9699 }
9700 }
9701 }
9702
9703 /* Note that the block of subscript information for an array type also
9704 includes information about the element type of type given array type. */
9705
9706 static void
9707 add_subscript_info (dw_die_ref type_die, tree type)
9708 {
9709 #ifndef MIPS_DEBUGGING_INFO
9710 unsigned dimension_number;
9711 #endif
9712 tree lower, upper;
9713 dw_die_ref subrange_die;
9714
9715 /* The GNU compilers represent multidimensional array types as sequences of
9716 one dimensional array types whose element types are themselves array
9717 types. Here we squish that down, so that each multidimensional array
9718 type gets only one array_type DIE in the Dwarf debugging info. The draft
9719 Dwarf specification say that we are allowed to do this kind of
9720 compression in C (because there is no difference between an array or
9721 arrays and a multidimensional array in C) but for other source languages
9722 (e.g. Ada) we probably shouldn't do this. */
9723
9724 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9725 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9726 We work around this by disabling this feature. See also
9727 gen_array_type_die. */
9728 #ifndef MIPS_DEBUGGING_INFO
9729 for (dimension_number = 0;
9730 TREE_CODE (type) == ARRAY_TYPE;
9731 type = TREE_TYPE (type), dimension_number++)
9732 #endif
9733 {
9734 tree domain = TYPE_DOMAIN (type);
9735
9736 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
9737 and (in GNU C only) variable bounds. Handle all three forms
9738 here. */
9739 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
9740 if (domain)
9741 {
9742 /* We have an array type with specified bounds. */
9743 lower = TYPE_MIN_VALUE (domain);
9744 upper = TYPE_MAX_VALUE (domain);
9745
9746 /* Define the index type. */
9747 if (TREE_TYPE (domain))
9748 {
9749 /* ??? This is probably an Ada unnamed subrange type. Ignore the
9750 TREE_TYPE field. We can't emit debug info for this
9751 because it is an unnamed integral type. */
9752 if (TREE_CODE (domain) == INTEGER_TYPE
9753 && TYPE_NAME (domain) == NULL_TREE
9754 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
9755 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
9756 ;
9757 else
9758 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
9759 type_die);
9760 }
9761
9762 /* ??? If upper is NULL, the array has unspecified length,
9763 but it does have a lower bound. This happens with Fortran
9764 dimension arr(N:*)
9765 Since the debugger is definitely going to need to know N
9766 to produce useful results, go ahead and output the lower
9767 bound solo, and hope the debugger can cope. */
9768
9769 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
9770 if (upper)
9771 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
9772 }
9773
9774 /* Otherwise we have an array type with an unspecified length. The
9775 DWARF-2 spec does not say how to handle this; let's just leave out the
9776 bounds. */
9777 }
9778 }
9779
9780 static void
9781 add_byte_size_attribute (dw_die_ref die, tree tree_node)
9782 {
9783 unsigned size;
9784
9785 switch (TREE_CODE (tree_node))
9786 {
9787 case ERROR_MARK:
9788 size = 0;
9789 break;
9790 case ENUMERAL_TYPE:
9791 case RECORD_TYPE:
9792 case UNION_TYPE:
9793 case QUAL_UNION_TYPE:
9794 size = int_size_in_bytes (tree_node);
9795 break;
9796 case FIELD_DECL:
9797 /* For a data member of a struct or union, the DW_AT_byte_size is
9798 generally given as the number of bytes normally allocated for an
9799 object of the *declared* type of the member itself. This is true
9800 even for bit-fields. */
9801 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
9802 break;
9803 default:
9804 abort ();
9805 }
9806
9807 /* Note that `size' might be -1 when we get to this point. If it is, that
9808 indicates that the byte size of the entity in question is variable. We
9809 have no good way of expressing this fact in Dwarf at the present time,
9810 so just let the -1 pass on through. */
9811 add_AT_unsigned (die, DW_AT_byte_size, size);
9812 }
9813
9814 /* For a FIELD_DECL node which represents a bit-field, output an attribute
9815 which specifies the distance in bits from the highest order bit of the
9816 "containing object" for the bit-field to the highest order bit of the
9817 bit-field itself.
9818
9819 For any given bit-field, the "containing object" is a hypothetical object
9820 (of some integral or enum type) within which the given bit-field lives. The
9821 type of this hypothetical "containing object" is always the same as the
9822 declared type of the individual bit-field itself. The determination of the
9823 exact location of the "containing object" for a bit-field is rather
9824 complicated. It's handled by the `field_byte_offset' function (above).
9825
9826 Note that it is the size (in bytes) of the hypothetical "containing object"
9827 which will be given in the DW_AT_byte_size attribute for this bit-field.
9828 (See `byte_size_attribute' above). */
9829
9830 static inline void
9831 add_bit_offset_attribute (dw_die_ref die, tree decl)
9832 {
9833 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
9834 tree type = DECL_BIT_FIELD_TYPE (decl);
9835 HOST_WIDE_INT bitpos_int;
9836 HOST_WIDE_INT highest_order_object_bit_offset;
9837 HOST_WIDE_INT highest_order_field_bit_offset;
9838 HOST_WIDE_INT unsigned bit_offset;
9839
9840 /* Must be a field and a bit field. */
9841 if (!type
9842 || TREE_CODE (decl) != FIELD_DECL)
9843 abort ();
9844
9845 /* We can't yet handle bit-fields whose offsets are variable, so if we
9846 encounter such things, just return without generating any attribute
9847 whatsoever. Likewise for variable or too large size. */
9848 if (! host_integerp (bit_position (decl), 0)
9849 || ! host_integerp (DECL_SIZE (decl), 1))
9850 return;
9851
9852 bitpos_int = int_bit_position (decl);
9853
9854 /* Note that the bit offset is always the distance (in bits) from the
9855 highest-order bit of the "containing object" to the highest-order bit of
9856 the bit-field itself. Since the "high-order end" of any object or field
9857 is different on big-endian and little-endian machines, the computation
9858 below must take account of these differences. */
9859 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
9860 highest_order_field_bit_offset = bitpos_int;
9861
9862 if (! BYTES_BIG_ENDIAN)
9863 {
9864 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
9865 highest_order_object_bit_offset += simple_type_size_in_bits (type);
9866 }
9867
9868 bit_offset
9869 = (! BYTES_BIG_ENDIAN
9870 ? highest_order_object_bit_offset - highest_order_field_bit_offset
9871 : highest_order_field_bit_offset - highest_order_object_bit_offset);
9872
9873 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
9874 }
9875
9876 /* For a FIELD_DECL node which represents a bit field, output an attribute
9877 which specifies the length in bits of the given field. */
9878
9879 static inline void
9880 add_bit_size_attribute (dw_die_ref die, tree decl)
9881 {
9882 /* Must be a field and a bit field. */
9883 if (TREE_CODE (decl) != FIELD_DECL
9884 || ! DECL_BIT_FIELD_TYPE (decl))
9885 abort ();
9886
9887 if (host_integerp (DECL_SIZE (decl), 1))
9888 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
9889 }
9890
9891 /* If the compiled language is ANSI C, then add a 'prototyped'
9892 attribute, if arg types are given for the parameters of a function. */
9893
9894 static inline void
9895 add_prototyped_attribute (dw_die_ref die, tree func_type)
9896 {
9897 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
9898 && TYPE_ARG_TYPES (func_type) != NULL)
9899 add_AT_flag (die, DW_AT_prototyped, 1);
9900 }
9901
9902 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
9903 by looking in either the type declaration or object declaration
9904 equate table. */
9905
9906 static inline void
9907 add_abstract_origin_attribute (dw_die_ref die, tree origin)
9908 {
9909 dw_die_ref origin_die = NULL;
9910
9911 if (TREE_CODE (origin) != FUNCTION_DECL)
9912 {
9913 /* We may have gotten separated from the block for the inlined
9914 function, if we're in an exception handler or some such; make
9915 sure that the abstract function has been written out.
9916
9917 Doing this for nested functions is wrong, however; functions are
9918 distinct units, and our context might not even be inline. */
9919 tree fn = origin;
9920
9921 if (TYPE_P (fn))
9922 fn = TYPE_STUB_DECL (fn);
9923
9924 fn = decl_function_context (fn);
9925 if (fn)
9926 dwarf2out_abstract_function (fn);
9927 }
9928
9929 if (DECL_P (origin))
9930 origin_die = lookup_decl_die (origin);
9931 else if (TYPE_P (origin))
9932 origin_die = lookup_type_die (origin);
9933
9934 if (origin_die == NULL)
9935 abort ();
9936
9937 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
9938 }
9939
9940 /* We do not currently support the pure_virtual attribute. */
9941
9942 static inline void
9943 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
9944 {
9945 if (DECL_VINDEX (func_decl))
9946 {
9947 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
9948
9949 if (host_integerp (DECL_VINDEX (func_decl), 0))
9950 add_AT_loc (die, DW_AT_vtable_elem_location,
9951 new_loc_descr (DW_OP_constu,
9952 tree_low_cst (DECL_VINDEX (func_decl), 0),
9953 0));
9954
9955 /* GNU extension: Record what type this method came from originally. */
9956 if (debug_info_level > DINFO_LEVEL_TERSE)
9957 add_AT_die_ref (die, DW_AT_containing_type,
9958 lookup_type_die (DECL_CONTEXT (func_decl)));
9959 }
9960 }
9961 \f
9962 /* Add source coordinate attributes for the given decl. */
9963
9964 static void
9965 add_src_coords_attributes (dw_die_ref die, tree decl)
9966 {
9967 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
9968
9969 add_AT_unsigned (die, DW_AT_decl_file, file_index);
9970 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
9971 }
9972
9973 /* Add a DW_AT_name attribute and source coordinate attribute for the
9974 given decl, but only if it actually has a name. */
9975
9976 static void
9977 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
9978 {
9979 tree decl_name;
9980
9981 decl_name = DECL_NAME (decl);
9982 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
9983 {
9984 add_name_attribute (die, dwarf2_name (decl, 0));
9985 if (! DECL_ARTIFICIAL (decl))
9986 add_src_coords_attributes (die, decl);
9987
9988 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
9989 && TREE_PUBLIC (decl)
9990 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
9991 && !DECL_ABSTRACT (decl))
9992 add_AT_string (die, DW_AT_MIPS_linkage_name,
9993 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
9994 }
9995
9996 #ifdef VMS_DEBUGGING_INFO
9997 /* Get the function's name, as described by its RTL. This may be different
9998 from the DECL_NAME name used in the source file. */
9999 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10000 {
10001 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10002 XEXP (DECL_RTL (decl), 0));
10003 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10004 }
10005 #endif
10006 }
10007
10008 /* Push a new declaration scope. */
10009
10010 static void
10011 push_decl_scope (tree scope)
10012 {
10013 VARRAY_PUSH_TREE (decl_scope_table, scope);
10014 }
10015
10016 /* Pop a declaration scope. */
10017
10018 static inline void
10019 pop_decl_scope (void)
10020 {
10021 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
10022 abort ();
10023
10024 VARRAY_POP (decl_scope_table);
10025 }
10026
10027 /* Return the DIE for the scope that immediately contains this type.
10028 Non-named types get global scope. Named types nested in other
10029 types get their containing scope if it's open, or global scope
10030 otherwise. All other types (i.e. function-local named types) get
10031 the current active scope. */
10032
10033 static dw_die_ref
10034 scope_die_for (tree t, dw_die_ref context_die)
10035 {
10036 dw_die_ref scope_die = NULL;
10037 tree containing_scope;
10038 int i;
10039
10040 /* Non-types always go in the current scope. */
10041 if (! TYPE_P (t))
10042 abort ();
10043
10044 containing_scope = TYPE_CONTEXT (t);
10045
10046 /* Use the containing namespace if it was passed in (for a declaration). */
10047 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10048 {
10049 if (context_die == lookup_decl_die (containing_scope))
10050 /* OK */;
10051 else
10052 containing_scope = NULL_TREE;
10053 }
10054
10055 /* Ignore function type "scopes" from the C frontend. They mean that
10056 a tagged type is local to a parmlist of a function declarator, but
10057 that isn't useful to DWARF. */
10058 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10059 containing_scope = NULL_TREE;
10060
10061 if (containing_scope == NULL_TREE)
10062 scope_die = comp_unit_die;
10063 else if (TYPE_P (containing_scope))
10064 {
10065 /* For types, we can just look up the appropriate DIE. But
10066 first we check to see if we're in the middle of emitting it
10067 so we know where the new DIE should go. */
10068 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10069 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10070 break;
10071
10072 if (i < 0)
10073 {
10074 if (debug_info_level > DINFO_LEVEL_TERSE
10075 && !TREE_ASM_WRITTEN (containing_scope))
10076 abort ();
10077
10078 /* If none of the current dies are suitable, we get file scope. */
10079 scope_die = comp_unit_die;
10080 }
10081 else
10082 scope_die = lookup_type_die (containing_scope);
10083 }
10084 else
10085 scope_die = context_die;
10086
10087 return scope_die;
10088 }
10089
10090 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10091
10092 static inline int
10093 local_scope_p (dw_die_ref context_die)
10094 {
10095 for (; context_die; context_die = context_die->die_parent)
10096 if (context_die->die_tag == DW_TAG_inlined_subroutine
10097 || context_die->die_tag == DW_TAG_subprogram)
10098 return 1;
10099
10100 return 0;
10101 }
10102
10103 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10104 whether or not to treat a DIE in this context as a declaration. */
10105
10106 static inline int
10107 class_or_namespace_scope_p (dw_die_ref context_die)
10108 {
10109 return (context_die
10110 && (context_die->die_tag == DW_TAG_structure_type
10111 || context_die->die_tag == DW_TAG_union_type
10112 || context_die->die_tag == DW_TAG_namespace));
10113 }
10114
10115 /* Many forms of DIEs require a "type description" attribute. This
10116 routine locates the proper "type descriptor" die for the type given
10117 by 'type', and adds a DW_AT_type attribute below the given die. */
10118
10119 static void
10120 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10121 int decl_volatile, dw_die_ref context_die)
10122 {
10123 enum tree_code code = TREE_CODE (type);
10124 dw_die_ref type_die = NULL;
10125
10126 /* ??? If this type is an unnamed subrange type of an integral or
10127 floating-point type, use the inner type. This is because we have no
10128 support for unnamed types in base_type_die. This can happen if this is
10129 an Ada subrange type. Correct solution is emit a subrange type die. */
10130 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10131 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10132 type = TREE_TYPE (type), code = TREE_CODE (type);
10133
10134 if (code == ERROR_MARK
10135 /* Handle a special case. For functions whose return type is void, we
10136 generate *no* type attribute. (Note that no object may have type
10137 `void', so this only applies to function return types). */
10138 || code == VOID_TYPE)
10139 return;
10140
10141 type_die = modified_type_die (type,
10142 decl_const || TYPE_READONLY (type),
10143 decl_volatile || TYPE_VOLATILE (type),
10144 context_die);
10145
10146 if (type_die != NULL)
10147 add_AT_die_ref (object_die, DW_AT_type, type_die);
10148 }
10149
10150 /* Given a tree pointer to a struct, class, union, or enum type node, return
10151 a pointer to the (string) tag name for the given type, or zero if the type
10152 was declared without a tag. */
10153
10154 static const char *
10155 type_tag (tree type)
10156 {
10157 const char *name = 0;
10158
10159 if (TYPE_NAME (type) != 0)
10160 {
10161 tree t = 0;
10162
10163 /* Find the IDENTIFIER_NODE for the type name. */
10164 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10165 t = TYPE_NAME (type);
10166
10167 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10168 a TYPE_DECL node, regardless of whether or not a `typedef' was
10169 involved. */
10170 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10171 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10172 t = DECL_NAME (TYPE_NAME (type));
10173
10174 /* Now get the name as a string, or invent one. */
10175 if (t != 0)
10176 name = IDENTIFIER_POINTER (t);
10177 }
10178
10179 return (name == 0 || *name == '\0') ? 0 : name;
10180 }
10181
10182 /* Return the type associated with a data member, make a special check
10183 for bit field types. */
10184
10185 static inline tree
10186 member_declared_type (tree member)
10187 {
10188 return (DECL_BIT_FIELD_TYPE (member)
10189 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10190 }
10191
10192 /* Get the decl's label, as described by its RTL. This may be different
10193 from the DECL_NAME name used in the source file. */
10194
10195 #if 0
10196 static const char *
10197 decl_start_label (tree decl)
10198 {
10199 rtx x;
10200 const char *fnname;
10201
10202 x = DECL_RTL (decl);
10203 if (GET_CODE (x) != MEM)
10204 abort ();
10205
10206 x = XEXP (x, 0);
10207 if (GET_CODE (x) != SYMBOL_REF)
10208 abort ();
10209
10210 fnname = XSTR (x, 0);
10211 return fnname;
10212 }
10213 #endif
10214 \f
10215 /* These routines generate the internal representation of the DIE's for
10216 the compilation unit. Debugging information is collected by walking
10217 the declaration trees passed in from dwarf2out_decl(). */
10218
10219 static void
10220 gen_array_type_die (tree type, dw_die_ref context_die)
10221 {
10222 dw_die_ref scope_die = scope_die_for (type, context_die);
10223 dw_die_ref array_die;
10224 tree element_type;
10225
10226 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10227 the inner array type comes before the outer array type. Thus we must
10228 call gen_type_die before we call new_die. See below also. */
10229 #ifdef MIPS_DEBUGGING_INFO
10230 gen_type_die (TREE_TYPE (type), context_die);
10231 #endif
10232
10233 array_die = new_die (DW_TAG_array_type, scope_die, type);
10234 add_name_attribute (array_die, type_tag (type));
10235 equate_type_number_to_die (type, array_die);
10236
10237 if (TREE_CODE (type) == VECTOR_TYPE)
10238 {
10239 /* The frontend feeds us a representation for the vector as a struct
10240 containing an array. Pull out the array type. */
10241 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10242 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10243 }
10244
10245 #if 0
10246 /* We default the array ordering. SDB will probably do
10247 the right things even if DW_AT_ordering is not present. It's not even
10248 an issue until we start to get into multidimensional arrays anyway. If
10249 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10250 then we'll have to put the DW_AT_ordering attribute back in. (But if
10251 and when we find out that we need to put these in, we will only do so
10252 for multidimensional arrays. */
10253 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10254 #endif
10255
10256 #ifdef MIPS_DEBUGGING_INFO
10257 /* The SGI compilers handle arrays of unknown bound by setting
10258 AT_declaration and not emitting any subrange DIEs. */
10259 if (! TYPE_DOMAIN (type))
10260 add_AT_flag (array_die, DW_AT_declaration, 1);
10261 else
10262 #endif
10263 add_subscript_info (array_die, type);
10264
10265 /* Add representation of the type of the elements of this array type. */
10266 element_type = TREE_TYPE (type);
10267
10268 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10269 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10270 We work around this by disabling this feature. See also
10271 add_subscript_info. */
10272 #ifndef MIPS_DEBUGGING_INFO
10273 while (TREE_CODE (element_type) == ARRAY_TYPE)
10274 element_type = TREE_TYPE (element_type);
10275
10276 gen_type_die (element_type, context_die);
10277 #endif
10278
10279 add_type_attribute (array_die, element_type, 0, 0, context_die);
10280 }
10281
10282 static void
10283 gen_set_type_die (tree type, dw_die_ref context_die)
10284 {
10285 dw_die_ref type_die
10286 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10287
10288 equate_type_number_to_die (type, type_die);
10289 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10290 }
10291
10292 #if 0
10293 static void
10294 gen_entry_point_die (tree decl, dw_die_ref context_die)
10295 {
10296 tree origin = decl_ultimate_origin (decl);
10297 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10298
10299 if (origin != NULL)
10300 add_abstract_origin_attribute (decl_die, origin);
10301 else
10302 {
10303 add_name_and_src_coords_attributes (decl_die, decl);
10304 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10305 0, 0, context_die);
10306 }
10307
10308 if (DECL_ABSTRACT (decl))
10309 equate_decl_number_to_die (decl, decl_die);
10310 else
10311 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10312 }
10313 #endif
10314
10315 /* Walk through the list of incomplete types again, trying once more to
10316 emit full debugging info for them. */
10317
10318 static void
10319 retry_incomplete_types (void)
10320 {
10321 int i;
10322
10323 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10324 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10325 }
10326
10327 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10328
10329 static void
10330 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
10331 {
10332 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10333
10334 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10335 be incomplete and such types are not marked. */
10336 add_abstract_origin_attribute (type_die, type);
10337 }
10338
10339 /* Generate a DIE to represent an inlined instance of a structure type. */
10340
10341 static void
10342 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
10343 {
10344 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10345
10346 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10347 be incomplete and such types are not marked. */
10348 add_abstract_origin_attribute (type_die, type);
10349 }
10350
10351 /* Generate a DIE to represent an inlined instance of a union type. */
10352
10353 static void
10354 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
10355 {
10356 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10357
10358 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10359 be incomplete and such types are not marked. */
10360 add_abstract_origin_attribute (type_die, type);
10361 }
10362
10363 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10364 include all of the information about the enumeration values also. Each
10365 enumerated type name/value is listed as a child of the enumerated type
10366 DIE. */
10367
10368 static dw_die_ref
10369 gen_enumeration_type_die (tree type, dw_die_ref context_die)
10370 {
10371 dw_die_ref type_die = lookup_type_die (type);
10372
10373 if (type_die == NULL)
10374 {
10375 type_die = new_die (DW_TAG_enumeration_type,
10376 scope_die_for (type, context_die), type);
10377 equate_type_number_to_die (type, type_die);
10378 add_name_attribute (type_die, type_tag (type));
10379 }
10380 else if (! TYPE_SIZE (type))
10381 return type_die;
10382 else
10383 remove_AT (type_die, DW_AT_declaration);
10384
10385 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10386 given enum type is incomplete, do not generate the DW_AT_byte_size
10387 attribute or the DW_AT_element_list attribute. */
10388 if (TYPE_SIZE (type))
10389 {
10390 tree link;
10391
10392 TREE_ASM_WRITTEN (type) = 1;
10393 add_byte_size_attribute (type_die, type);
10394 if (TYPE_STUB_DECL (type) != NULL_TREE)
10395 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10396
10397 /* If the first reference to this type was as the return type of an
10398 inline function, then it may not have a parent. Fix this now. */
10399 if (type_die->die_parent == NULL)
10400 add_child_die (scope_die_for (type, context_die), type_die);
10401
10402 for (link = TYPE_FIELDS (type);
10403 link != NULL; link = TREE_CHAIN (link))
10404 {
10405 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10406
10407 add_name_attribute (enum_die,
10408 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10409
10410 if (host_integerp (TREE_VALUE (link),
10411 TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (link)))))
10412 {
10413 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
10414 add_AT_int (enum_die, DW_AT_const_value,
10415 tree_low_cst (TREE_VALUE (link), 0));
10416 else
10417 add_AT_unsigned (enum_die, DW_AT_const_value,
10418 tree_low_cst (TREE_VALUE (link), 1));
10419 }
10420 }
10421 }
10422 else
10423 add_AT_flag (type_die, DW_AT_declaration, 1);
10424
10425 return type_die;
10426 }
10427
10428 /* Generate a DIE to represent either a real live formal parameter decl or to
10429 represent just the type of some formal parameter position in some function
10430 type.
10431
10432 Note that this routine is a bit unusual because its argument may be a
10433 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10434 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10435 node. If it's the former then this function is being called to output a
10436 DIE to represent a formal parameter object (or some inlining thereof). If
10437 it's the latter, then this function is only being called to output a
10438 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10439 argument type of some subprogram type. */
10440
10441 static dw_die_ref
10442 gen_formal_parameter_die (tree node, dw_die_ref context_die)
10443 {
10444 dw_die_ref parm_die
10445 = new_die (DW_TAG_formal_parameter, context_die, node);
10446 tree origin;
10447
10448 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10449 {
10450 case 'd':
10451 origin = decl_ultimate_origin (node);
10452 if (origin != NULL)
10453 add_abstract_origin_attribute (parm_die, origin);
10454 else
10455 {
10456 add_name_and_src_coords_attributes (parm_die, node);
10457 add_type_attribute (parm_die, TREE_TYPE (node),
10458 TREE_READONLY (node),
10459 TREE_THIS_VOLATILE (node),
10460 context_die);
10461 if (DECL_ARTIFICIAL (node))
10462 add_AT_flag (parm_die, DW_AT_artificial, 1);
10463 }
10464
10465 equate_decl_number_to_die (node, parm_die);
10466 if (! DECL_ABSTRACT (node))
10467 add_location_or_const_value_attribute (parm_die, node);
10468
10469 break;
10470
10471 case 't':
10472 /* We were called with some kind of a ..._TYPE node. */
10473 add_type_attribute (parm_die, node, 0, 0, context_die);
10474 break;
10475
10476 default:
10477 abort ();
10478 }
10479
10480 return parm_die;
10481 }
10482
10483 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10484 at the end of an (ANSI prototyped) formal parameters list. */
10485
10486 static void
10487 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
10488 {
10489 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10490 }
10491
10492 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10493 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10494 parameters as specified in some function type specification (except for
10495 those which appear as part of a function *definition*). */
10496
10497 static void
10498 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
10499 {
10500 tree link;
10501 tree formal_type = NULL;
10502 tree first_parm_type;
10503 tree arg;
10504
10505 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10506 {
10507 arg = DECL_ARGUMENTS (function_or_method_type);
10508 function_or_method_type = TREE_TYPE (function_or_method_type);
10509 }
10510 else
10511 arg = NULL_TREE;
10512
10513 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10514
10515 /* Make our first pass over the list of formal parameter types and output a
10516 DW_TAG_formal_parameter DIE for each one. */
10517 for (link = first_parm_type; link; )
10518 {
10519 dw_die_ref parm_die;
10520
10521 formal_type = TREE_VALUE (link);
10522 if (formal_type == void_type_node)
10523 break;
10524
10525 /* Output a (nameless) DIE to represent the formal parameter itself. */
10526 parm_die = gen_formal_parameter_die (formal_type, context_die);
10527 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10528 && link == first_parm_type)
10529 || (arg && DECL_ARTIFICIAL (arg)))
10530 add_AT_flag (parm_die, DW_AT_artificial, 1);
10531
10532 link = TREE_CHAIN (link);
10533 if (arg)
10534 arg = TREE_CHAIN (arg);
10535 }
10536
10537 /* If this function type has an ellipsis, add a
10538 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10539 if (formal_type != void_type_node)
10540 gen_unspecified_parameters_die (function_or_method_type, context_die);
10541
10542 /* Make our second (and final) pass over the list of formal parameter types
10543 and output DIEs to represent those types (as necessary). */
10544 for (link = TYPE_ARG_TYPES (function_or_method_type);
10545 link && TREE_VALUE (link);
10546 link = TREE_CHAIN (link))
10547 gen_type_die (TREE_VALUE (link), context_die);
10548 }
10549
10550 /* We want to generate the DIE for TYPE so that we can generate the
10551 die for MEMBER, which has been defined; we will need to refer back
10552 to the member declaration nested within TYPE. If we're trying to
10553 generate minimal debug info for TYPE, processing TYPE won't do the
10554 trick; we need to attach the member declaration by hand. */
10555
10556 static void
10557 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
10558 {
10559 gen_type_die (type, context_die);
10560
10561 /* If we're trying to avoid duplicate debug info, we may not have
10562 emitted the member decl for this function. Emit it now. */
10563 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10564 && ! lookup_decl_die (member))
10565 {
10566 if (decl_ultimate_origin (member))
10567 abort ();
10568
10569 push_decl_scope (type);
10570 if (TREE_CODE (member) == FUNCTION_DECL)
10571 gen_subprogram_die (member, lookup_type_die (type));
10572 else
10573 gen_variable_die (member, lookup_type_die (type));
10574
10575 pop_decl_scope ();
10576 }
10577 }
10578
10579 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10580 may later generate inlined and/or out-of-line instances of. */
10581
10582 static void
10583 dwarf2out_abstract_function (tree decl)
10584 {
10585 dw_die_ref old_die;
10586 tree save_fn;
10587 tree context;
10588 int was_abstract = DECL_ABSTRACT (decl);
10589
10590 /* Make sure we have the actual abstract inline, not a clone. */
10591 decl = DECL_ORIGIN (decl);
10592
10593 old_die = lookup_decl_die (decl);
10594 if (old_die && get_AT (old_die, DW_AT_inline))
10595 /* We've already generated the abstract instance. */
10596 return;
10597
10598 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10599 we don't get confused by DECL_ABSTRACT. */
10600 if (debug_info_level > DINFO_LEVEL_TERSE)
10601 {
10602 context = decl_class_context (decl);
10603 if (context)
10604 gen_type_die_for_member
10605 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10606 }
10607
10608 /* Pretend we've just finished compiling this function. */
10609 save_fn = current_function_decl;
10610 current_function_decl = decl;
10611
10612 set_decl_abstract_flags (decl, 1);
10613 dwarf2out_decl (decl);
10614 if (! was_abstract)
10615 set_decl_abstract_flags (decl, 0);
10616
10617 current_function_decl = save_fn;
10618 }
10619
10620 /* Generate a DIE to represent a declared function (either file-scope or
10621 block-local). */
10622
10623 static void
10624 gen_subprogram_die (tree decl, dw_die_ref context_die)
10625 {
10626 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10627 tree origin = decl_ultimate_origin (decl);
10628 dw_die_ref subr_die;
10629 rtx fp_reg;
10630 tree fn_arg_types;
10631 tree outer_scope;
10632 dw_die_ref old_die = lookup_decl_die (decl);
10633 int declaration = (current_function_decl != decl
10634 || class_or_namespace_scope_p (context_die));
10635
10636 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10637 started to generate the abstract instance of an inline, decided to output
10638 its containing class, and proceeded to emit the declaration of the inline
10639 from the member list for the class. If so, DECLARATION takes priority;
10640 we'll get back to the abstract instance when done with the class. */
10641
10642 /* The class-scope declaration DIE must be the primary DIE. */
10643 if (origin && declaration && class_or_namespace_scope_p (context_die))
10644 {
10645 origin = NULL;
10646 if (old_die)
10647 abort ();
10648 }
10649
10650 if (origin != NULL)
10651 {
10652 if (declaration && ! local_scope_p (context_die))
10653 abort ();
10654
10655 /* Fixup die_parent for the abstract instance of a nested
10656 inline function. */
10657 if (old_die && old_die->die_parent == NULL)
10658 add_child_die (context_die, old_die);
10659
10660 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10661 add_abstract_origin_attribute (subr_die, origin);
10662 }
10663 else if (old_die)
10664 {
10665 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10666
10667 if (!get_AT_flag (old_die, DW_AT_declaration)
10668 /* We can have a normal definition following an inline one in the
10669 case of redefinition of GNU C extern inlines.
10670 It seems reasonable to use AT_specification in this case. */
10671 && !get_AT (old_die, DW_AT_inline))
10672 {
10673 /* ??? This can happen if there is a bug in the program, for
10674 instance, if it has duplicate function definitions. Ideally,
10675 we should detect this case and ignore it. For now, if we have
10676 already reported an error, any error at all, then assume that
10677 we got here because of an input error, not a dwarf2 bug. */
10678 if (errorcount)
10679 return;
10680 abort ();
10681 }
10682
10683 /* If the definition comes from the same place as the declaration,
10684 maybe use the old DIE. We always want the DIE for this function
10685 that has the *_pc attributes to be under comp_unit_die so the
10686 debugger can find it. We also need to do this for abstract
10687 instances of inlines, since the spec requires the out-of-line copy
10688 to have the same parent. For local class methods, this doesn't
10689 apply; we just use the old DIE. */
10690 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
10691 && (DECL_ARTIFICIAL (decl)
10692 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10693 && (get_AT_unsigned (old_die, DW_AT_decl_line)
10694 == (unsigned) DECL_SOURCE_LINE (decl)))))
10695 {
10696 subr_die = old_die;
10697
10698 /* Clear out the declaration attribute and the parm types. */
10699 remove_AT (subr_die, DW_AT_declaration);
10700 remove_children (subr_die);
10701 }
10702 else
10703 {
10704 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10705 add_AT_specification (subr_die, old_die);
10706 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10707 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
10708 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10709 != (unsigned) DECL_SOURCE_LINE (decl))
10710 add_AT_unsigned
10711 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10712 }
10713 }
10714 else
10715 {
10716 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10717
10718 if (TREE_PUBLIC (decl))
10719 add_AT_flag (subr_die, DW_AT_external, 1);
10720
10721 add_name_and_src_coords_attributes (subr_die, decl);
10722 if (debug_info_level > DINFO_LEVEL_TERSE)
10723 {
10724 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
10725 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
10726 0, 0, context_die);
10727 }
10728
10729 add_pure_or_virtual_attribute (subr_die, decl);
10730 if (DECL_ARTIFICIAL (decl))
10731 add_AT_flag (subr_die, DW_AT_artificial, 1);
10732
10733 if (TREE_PROTECTED (decl))
10734 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
10735 else if (TREE_PRIVATE (decl))
10736 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
10737 }
10738
10739 if (declaration)
10740 {
10741 if (!old_die || !get_AT (old_die, DW_AT_inline))
10742 {
10743 add_AT_flag (subr_die, DW_AT_declaration, 1);
10744
10745 /* The first time we see a member function, it is in the context of
10746 the class to which it belongs. We make sure of this by emitting
10747 the class first. The next time is the definition, which is
10748 handled above. The two may come from the same source text. */
10749 if (DECL_CONTEXT (decl) || DECL_ABSTRACT (decl))
10750 equate_decl_number_to_die (decl, subr_die);
10751 }
10752 }
10753 else if (DECL_ABSTRACT (decl))
10754 {
10755 if (DECL_DECLARED_INLINE_P (decl))
10756 {
10757 if (cgraph_function_possibly_inlined_p (decl))
10758 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
10759 else
10760 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
10761 }
10762 else
10763 {
10764 if (cgraph_function_possibly_inlined_p (decl))
10765 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
10766 else
10767 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
10768 }
10769
10770 equate_decl_number_to_die (decl, subr_die);
10771 }
10772 else if (!DECL_EXTERNAL (decl))
10773 {
10774 if (!old_die || !get_AT (old_die, DW_AT_inline))
10775 equate_decl_number_to_die (decl, subr_die);
10776
10777 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
10778 current_function_funcdef_no);
10779 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
10780 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10781 current_function_funcdef_no);
10782 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
10783
10784 add_pubname (decl, subr_die);
10785 add_arange (decl, subr_die);
10786
10787 #ifdef MIPS_DEBUGGING_INFO
10788 /* Add a reference to the FDE for this routine. */
10789 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
10790 #endif
10791
10792 /* Define the "frame base" location for this routine. We use the
10793 frame pointer or stack pointer registers, since the RTL for local
10794 variables is relative to one of them. */
10795 fp_reg
10796 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
10797 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
10798
10799 #if 0
10800 /* ??? This fails for nested inline functions, because context_display
10801 is not part of the state saved/restored for inline functions. */
10802 if (current_function_needs_context)
10803 add_AT_location_description (subr_die, DW_AT_static_link,
10804 loc_descriptor (lookup_static_chain (decl)));
10805 #endif
10806 }
10807
10808 /* Now output descriptions of the arguments for this function. This gets
10809 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
10810 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
10811 `...' at the end of the formal parameter list. In order to find out if
10812 there was a trailing ellipsis or not, we must instead look at the type
10813 associated with the FUNCTION_DECL. This will be a node of type
10814 FUNCTION_TYPE. If the chain of type nodes hanging off of this
10815 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
10816 an ellipsis at the end. */
10817
10818 /* In the case where we are describing a mere function declaration, all we
10819 need to do here (and all we *can* do here) is to describe the *types* of
10820 its formal parameters. */
10821 if (debug_info_level <= DINFO_LEVEL_TERSE)
10822 ;
10823 else if (declaration)
10824 gen_formal_types_die (decl, subr_die);
10825 else
10826 {
10827 /* Generate DIEs to represent all known formal parameters. */
10828 tree arg_decls = DECL_ARGUMENTS (decl);
10829 tree parm;
10830
10831 /* When generating DIEs, generate the unspecified_parameters DIE
10832 instead if we come across the arg "__builtin_va_alist" */
10833 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
10834 if (TREE_CODE (parm) == PARM_DECL)
10835 {
10836 if (DECL_NAME (parm)
10837 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
10838 "__builtin_va_alist"))
10839 gen_unspecified_parameters_die (parm, subr_die);
10840 else
10841 gen_decl_die (parm, subr_die);
10842 }
10843
10844 /* Decide whether we need an unspecified_parameters DIE at the end.
10845 There are 2 more cases to do this for: 1) the ansi ... declaration -
10846 this is detectable when the end of the arg list is not a
10847 void_type_node 2) an unprototyped function declaration (not a
10848 definition). This just means that we have no info about the
10849 parameters at all. */
10850 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
10851 if (fn_arg_types != NULL)
10852 {
10853 /* This is the prototyped case, check for.... */
10854 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
10855 gen_unspecified_parameters_die (decl, subr_die);
10856 }
10857 else if (DECL_INITIAL (decl) == NULL_TREE)
10858 gen_unspecified_parameters_die (decl, subr_die);
10859 }
10860
10861 /* Output Dwarf info for all of the stuff within the body of the function
10862 (if it has one - it may be just a declaration). */
10863 outer_scope = DECL_INITIAL (decl);
10864
10865 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
10866 a function. This BLOCK actually represents the outermost binding contour
10867 for the function, i.e. the contour in which the function's formal
10868 parameters and labels get declared. Curiously, it appears that the front
10869 end doesn't actually put the PARM_DECL nodes for the current function onto
10870 the BLOCK_VARS list for this outer scope, but are strung off of the
10871 DECL_ARGUMENTS list for the function instead.
10872
10873 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
10874 the LABEL_DECL nodes for the function however, and we output DWARF info
10875 for those in decls_for_scope. Just within the `outer_scope' there will be
10876 a BLOCK node representing the function's outermost pair of curly braces,
10877 and any blocks used for the base and member initializers of a C++
10878 constructor function. */
10879 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
10880 {
10881 current_function_has_inlines = 0;
10882 decls_for_scope (outer_scope, subr_die, 0);
10883
10884 #if 0 && defined (MIPS_DEBUGGING_INFO)
10885 if (current_function_has_inlines)
10886 {
10887 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
10888 if (! comp_unit_has_inlines)
10889 {
10890 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
10891 comp_unit_has_inlines = 1;
10892 }
10893 }
10894 #endif
10895 }
10896 }
10897
10898 /* Generate a DIE to represent a declared data object. */
10899
10900 static void
10901 gen_variable_die (tree decl, dw_die_ref context_die)
10902 {
10903 tree origin = decl_ultimate_origin (decl);
10904 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
10905
10906 dw_die_ref old_die = lookup_decl_die (decl);
10907 int declaration = (DECL_EXTERNAL (decl)
10908 || class_or_namespace_scope_p (context_die));
10909
10910 if (origin != NULL)
10911 add_abstract_origin_attribute (var_die, origin);
10912
10913 /* Loop unrolling can create multiple blocks that refer to the same
10914 static variable, so we must test for the DW_AT_declaration flag.
10915
10916 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
10917 copy decls and set the DECL_ABSTRACT flag on them instead of
10918 sharing them.
10919
10920 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
10921 else if (old_die && TREE_STATIC (decl)
10922 && get_AT_flag (old_die, DW_AT_declaration) == 1)
10923 {
10924 /* This is a definition of a C++ class level static. */
10925 add_AT_specification (var_die, old_die);
10926 if (DECL_NAME (decl))
10927 {
10928 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10929
10930 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10931 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
10932
10933 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10934 != (unsigned) DECL_SOURCE_LINE (decl))
10935
10936 add_AT_unsigned (var_die, DW_AT_decl_line,
10937 DECL_SOURCE_LINE (decl));
10938 }
10939 }
10940 else
10941 {
10942 add_name_and_src_coords_attributes (var_die, decl);
10943 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
10944 TREE_THIS_VOLATILE (decl), context_die);
10945
10946 if (TREE_PUBLIC (decl))
10947 add_AT_flag (var_die, DW_AT_external, 1);
10948
10949 if (DECL_ARTIFICIAL (decl))
10950 add_AT_flag (var_die, DW_AT_artificial, 1);
10951
10952 if (TREE_PROTECTED (decl))
10953 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
10954 else if (TREE_PRIVATE (decl))
10955 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
10956 }
10957
10958 if (declaration)
10959 add_AT_flag (var_die, DW_AT_declaration, 1);
10960
10961 if (class_or_namespace_scope_p (context_die) || DECL_ABSTRACT (decl))
10962 equate_decl_number_to_die (decl, var_die);
10963
10964 if (! declaration && ! DECL_ABSTRACT (decl))
10965 {
10966 add_location_or_const_value_attribute (var_die, decl);
10967 add_pubname (decl, var_die);
10968 }
10969 else
10970 tree_add_const_value_attribute (var_die, decl);
10971 }
10972
10973 /* Generate a DIE to represent a label identifier. */
10974
10975 static void
10976 gen_label_die (tree decl, dw_die_ref context_die)
10977 {
10978 tree origin = decl_ultimate_origin (decl);
10979 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
10980 rtx insn;
10981 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10982
10983 if (origin != NULL)
10984 add_abstract_origin_attribute (lbl_die, origin);
10985 else
10986 add_name_and_src_coords_attributes (lbl_die, decl);
10987
10988 if (DECL_ABSTRACT (decl))
10989 equate_decl_number_to_die (decl, lbl_die);
10990 else
10991 {
10992 insn = DECL_RTL_IF_SET (decl);
10993
10994 /* Deleted labels are programmer specified labels which have been
10995 eliminated because of various optimizations. We still emit them
10996 here so that it is possible to put breakpoints on them. */
10997 if (insn
10998 && (GET_CODE (insn) == CODE_LABEL
10999 || ((GET_CODE (insn) == NOTE
11000 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11001 {
11002 /* When optimization is enabled (via -O) some parts of the compiler
11003 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11004 represent source-level labels which were explicitly declared by
11005 the user. This really shouldn't be happening though, so catch
11006 it if it ever does happen. */
11007 if (INSN_DELETED_P (insn))
11008 abort ();
11009
11010 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11011 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11012 }
11013 }
11014 }
11015
11016 /* Generate a DIE for a lexical block. */
11017
11018 static void
11019 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11020 {
11021 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11022 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11023
11024 if (! BLOCK_ABSTRACT (stmt))
11025 {
11026 if (BLOCK_FRAGMENT_CHAIN (stmt))
11027 {
11028 tree chain;
11029
11030 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11031
11032 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11033 do
11034 {
11035 add_ranges (chain);
11036 chain = BLOCK_FRAGMENT_CHAIN (chain);
11037 }
11038 while (chain);
11039 add_ranges (NULL);
11040 }
11041 else
11042 {
11043 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11044 BLOCK_NUMBER (stmt));
11045 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11046 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11047 BLOCK_NUMBER (stmt));
11048 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11049 }
11050 }
11051
11052 decls_for_scope (stmt, stmt_die, depth);
11053 }
11054
11055 /* Generate a DIE for an inlined subprogram. */
11056
11057 static void
11058 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11059 {
11060 tree decl = block_ultimate_origin (stmt);
11061
11062 /* Emit info for the abstract instance first, if we haven't yet. We
11063 must emit this even if the block is abstract, otherwise when we
11064 emit the block below (or elsewhere), we may end up trying to emit
11065 a die whose origin die hasn't been emitted, and crashing. */
11066 dwarf2out_abstract_function (decl);
11067
11068 if (! BLOCK_ABSTRACT (stmt))
11069 {
11070 dw_die_ref subr_die
11071 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11072 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11073
11074 add_abstract_origin_attribute (subr_die, decl);
11075 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11076 BLOCK_NUMBER (stmt));
11077 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11078 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11079 BLOCK_NUMBER (stmt));
11080 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11081 decls_for_scope (stmt, subr_die, depth);
11082 current_function_has_inlines = 1;
11083 }
11084 else
11085 /* We may get here if we're the outer block of function A that was
11086 inlined into function B that was inlined into function C. When
11087 generating debugging info for C, dwarf2out_abstract_function(B)
11088 would mark all inlined blocks as abstract, including this one.
11089 So, we wouldn't (and shouldn't) expect labels to be generated
11090 for this one. Instead, just emit debugging info for
11091 declarations within the block. This is particularly important
11092 in the case of initializers of arguments passed from B to us:
11093 if they're statement expressions containing declarations, we
11094 wouldn't generate dies for their abstract variables, and then,
11095 when generating dies for the real variables, we'd die (pun
11096 intended :-) */
11097 gen_lexical_block_die (stmt, context_die, depth);
11098 }
11099
11100 /* Generate a DIE for a field in a record, or structure. */
11101
11102 static void
11103 gen_field_die (tree decl, dw_die_ref context_die)
11104 {
11105 dw_die_ref decl_die;
11106
11107 if (TREE_TYPE (decl) == error_mark_node)
11108 return;
11109
11110 decl_die = new_die (DW_TAG_member, context_die, decl);
11111 add_name_and_src_coords_attributes (decl_die, decl);
11112 add_type_attribute (decl_die, member_declared_type (decl),
11113 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11114 context_die);
11115
11116 if (DECL_BIT_FIELD_TYPE (decl))
11117 {
11118 add_byte_size_attribute (decl_die, decl);
11119 add_bit_size_attribute (decl_die, decl);
11120 add_bit_offset_attribute (decl_die, decl);
11121 }
11122
11123 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11124 add_data_member_location_attribute (decl_die, decl);
11125
11126 if (DECL_ARTIFICIAL (decl))
11127 add_AT_flag (decl_die, DW_AT_artificial, 1);
11128
11129 if (TREE_PROTECTED (decl))
11130 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11131 else if (TREE_PRIVATE (decl))
11132 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11133 }
11134
11135 #if 0
11136 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11137 Use modified_type_die instead.
11138 We keep this code here just in case these types of DIEs may be needed to
11139 represent certain things in other languages (e.g. Pascal) someday. */
11140
11141 static void
11142 gen_pointer_type_die (tree type, dw_die_ref context_die)
11143 {
11144 dw_die_ref ptr_die
11145 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11146
11147 equate_type_number_to_die (type, ptr_die);
11148 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11149 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11150 }
11151
11152 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11153 Use modified_type_die instead.
11154 We keep this code here just in case these types of DIEs may be needed to
11155 represent certain things in other languages (e.g. Pascal) someday. */
11156
11157 static void
11158 gen_reference_type_die (tree type, dw_die_ref context_die)
11159 {
11160 dw_die_ref ref_die
11161 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11162
11163 equate_type_number_to_die (type, ref_die);
11164 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11165 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11166 }
11167 #endif
11168
11169 /* Generate a DIE for a pointer to a member type. */
11170
11171 static void
11172 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11173 {
11174 dw_die_ref ptr_die
11175 = new_die (DW_TAG_ptr_to_member_type,
11176 scope_die_for (type, context_die), type);
11177
11178 equate_type_number_to_die (type, ptr_die);
11179 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11180 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11181 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11182 }
11183
11184 /* Generate the DIE for the compilation unit. */
11185
11186 static dw_die_ref
11187 gen_compile_unit_die (const char *filename)
11188 {
11189 dw_die_ref die;
11190 char producer[250];
11191 const char *language_string = lang_hooks.name;
11192 int language;
11193
11194 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11195
11196 if (filename)
11197 {
11198 add_name_attribute (die, filename);
11199 /* Don't add cwd for <built-in>. */
11200 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11201 add_comp_dir_attribute (die);
11202 }
11203
11204 sprintf (producer, "%s %s", language_string, version_string);
11205
11206 #ifdef MIPS_DEBUGGING_INFO
11207 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11208 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11209 not appear in the producer string, the debugger reaches the conclusion
11210 that the object file is stripped and has no debugging information.
11211 To get the MIPS/SGI debugger to believe that there is debugging
11212 information in the object file, we add a -g to the producer string. */
11213 if (debug_info_level > DINFO_LEVEL_TERSE)
11214 strcat (producer, " -g");
11215 #endif
11216
11217 add_AT_string (die, DW_AT_producer, producer);
11218
11219 if (strcmp (language_string, "GNU C++") == 0)
11220 language = DW_LANG_C_plus_plus;
11221 else if (strcmp (language_string, "GNU Ada") == 0)
11222 language = DW_LANG_Ada95;
11223 else if (strcmp (language_string, "GNU F77") == 0)
11224 language = DW_LANG_Fortran77;
11225 else if (strcmp (language_string, "GNU Pascal") == 0)
11226 language = DW_LANG_Pascal83;
11227 else if (strcmp (language_string, "GNU Java") == 0)
11228 language = DW_LANG_Java;
11229 else
11230 language = DW_LANG_C89;
11231
11232 add_AT_unsigned (die, DW_AT_language, language);
11233 return die;
11234 }
11235
11236 /* Generate a DIE for a string type. */
11237
11238 static void
11239 gen_string_type_die (tree type, dw_die_ref context_die)
11240 {
11241 dw_die_ref type_die
11242 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11243
11244 equate_type_number_to_die (type, type_die);
11245
11246 /* ??? Fudge the string length attribute for now.
11247 TODO: add string length info. */
11248 #if 0
11249 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11250 bound_representation (upper_bound, 0, 'u');
11251 #endif
11252 }
11253
11254 /* Generate the DIE for a base class. */
11255
11256 static void
11257 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11258 {
11259 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11260
11261 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11262 add_data_member_location_attribute (die, binfo);
11263
11264 if (TREE_VIA_VIRTUAL (binfo))
11265 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11266
11267 if (access == access_public_node)
11268 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11269 else if (access == access_protected_node)
11270 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11271 }
11272
11273 /* Generate a DIE for a class member. */
11274
11275 static void
11276 gen_member_die (tree type, dw_die_ref context_die)
11277 {
11278 tree member;
11279 tree binfo = TYPE_BINFO (type);
11280 dw_die_ref child;
11281
11282 /* If this is not an incomplete type, output descriptions of each of its
11283 members. Note that as we output the DIEs necessary to represent the
11284 members of this record or union type, we will also be trying to output
11285 DIEs to represent the *types* of those members. However the `type'
11286 function (above) will specifically avoid generating type DIEs for member
11287 types *within* the list of member DIEs for this (containing) type except
11288 for those types (of members) which are explicitly marked as also being
11289 members of this (containing) type themselves. The g++ front- end can
11290 force any given type to be treated as a member of some other (containing)
11291 type by setting the TYPE_CONTEXT of the given (member) type to point to
11292 the TREE node representing the appropriate (containing) type. */
11293
11294 /* First output info about the base classes. */
11295 if (binfo && BINFO_BASETYPES (binfo))
11296 {
11297 tree bases = BINFO_BASETYPES (binfo);
11298 tree accesses = BINFO_BASEACCESSES (binfo);
11299 int n_bases = TREE_VEC_LENGTH (bases);
11300 int i;
11301
11302 for (i = 0; i < n_bases; i++)
11303 gen_inheritance_die (TREE_VEC_ELT (bases, i),
11304 (accesses ? TREE_VEC_ELT (accesses, i)
11305 : access_public_node), context_die);
11306 }
11307
11308 /* Now output info about the data members and type members. */
11309 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11310 {
11311 /* If we thought we were generating minimal debug info for TYPE
11312 and then changed our minds, some of the member declarations
11313 may have already been defined. Don't define them again, but
11314 do put them in the right order. */
11315
11316 child = lookup_decl_die (member);
11317 if (child)
11318 splice_child_die (context_die, child);
11319 else
11320 gen_decl_die (member, context_die);
11321 }
11322
11323 /* Now output info about the function members (if any). */
11324 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11325 {
11326 /* Don't include clones in the member list. */
11327 if (DECL_ABSTRACT_ORIGIN (member))
11328 continue;
11329
11330 child = lookup_decl_die (member);
11331 if (child)
11332 splice_child_die (context_die, child);
11333 else
11334 gen_decl_die (member, context_die);
11335 }
11336 }
11337
11338 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11339 is set, we pretend that the type was never defined, so we only get the
11340 member DIEs needed by later specification DIEs. */
11341
11342 static void
11343 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
11344 {
11345 dw_die_ref type_die = lookup_type_die (type);
11346 dw_die_ref scope_die = 0;
11347 int nested = 0;
11348 int complete = (TYPE_SIZE (type)
11349 && (! TYPE_STUB_DECL (type)
11350 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11351 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
11352
11353 if (type_die && ! complete)
11354 return;
11355
11356 if (TYPE_CONTEXT (type) != NULL_TREE
11357 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11358 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
11359 nested = 1;
11360
11361 scope_die = scope_die_for (type, context_die);
11362
11363 if (! type_die || (nested && scope_die == comp_unit_die))
11364 /* First occurrence of type or toplevel definition of nested class. */
11365 {
11366 dw_die_ref old_die = type_die;
11367
11368 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11369 ? DW_TAG_structure_type : DW_TAG_union_type,
11370 scope_die, type);
11371 equate_type_number_to_die (type, type_die);
11372 if (old_die)
11373 add_AT_specification (type_die, old_die);
11374 else
11375 add_name_attribute (type_die, type_tag (type));
11376 }
11377 else
11378 remove_AT (type_die, DW_AT_declaration);
11379
11380 /* If this type has been completed, then give it a byte_size attribute and
11381 then give a list of members. */
11382 if (complete && !ns_decl)
11383 {
11384 /* Prevent infinite recursion in cases where the type of some member of
11385 this type is expressed in terms of this type itself. */
11386 TREE_ASM_WRITTEN (type) = 1;
11387 add_byte_size_attribute (type_die, type);
11388 if (TYPE_STUB_DECL (type) != NULL_TREE)
11389 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11390
11391 /* If the first reference to this type was as the return type of an
11392 inline function, then it may not have a parent. Fix this now. */
11393 if (type_die->die_parent == NULL)
11394 add_child_die (scope_die, type_die);
11395
11396 push_decl_scope (type);
11397 gen_member_die (type, type_die);
11398 pop_decl_scope ();
11399
11400 /* GNU extension: Record what type our vtable lives in. */
11401 if (TYPE_VFIELD (type))
11402 {
11403 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11404
11405 gen_type_die (vtype, context_die);
11406 add_AT_die_ref (type_die, DW_AT_containing_type,
11407 lookup_type_die (vtype));
11408 }
11409 }
11410 else
11411 {
11412 add_AT_flag (type_die, DW_AT_declaration, 1);
11413
11414 /* We don't need to do this for function-local types. */
11415 if (TYPE_STUB_DECL (type)
11416 && ! decl_function_context (TYPE_STUB_DECL (type)))
11417 VARRAY_PUSH_TREE (incomplete_types, type);
11418 }
11419 }
11420
11421 /* Generate a DIE for a subroutine _type_. */
11422
11423 static void
11424 gen_subroutine_type_die (tree type, dw_die_ref context_die)
11425 {
11426 tree return_type = TREE_TYPE (type);
11427 dw_die_ref subr_die
11428 = new_die (DW_TAG_subroutine_type,
11429 scope_die_for (type, context_die), type);
11430
11431 equate_type_number_to_die (type, subr_die);
11432 add_prototyped_attribute (subr_die, type);
11433 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11434 gen_formal_types_die (type, subr_die);
11435 }
11436
11437 /* Generate a DIE for a type definition. */
11438
11439 static void
11440 gen_typedef_die (tree decl, dw_die_ref context_die)
11441 {
11442 dw_die_ref type_die;
11443 tree origin;
11444
11445 if (TREE_ASM_WRITTEN (decl))
11446 return;
11447
11448 TREE_ASM_WRITTEN (decl) = 1;
11449 type_die = new_die (DW_TAG_typedef, context_die, decl);
11450 origin = decl_ultimate_origin (decl);
11451 if (origin != NULL)
11452 add_abstract_origin_attribute (type_die, origin);
11453 else
11454 {
11455 tree type;
11456
11457 add_name_and_src_coords_attributes (type_die, decl);
11458 if (DECL_ORIGINAL_TYPE (decl))
11459 {
11460 type = DECL_ORIGINAL_TYPE (decl);
11461
11462 if (type == TREE_TYPE (decl))
11463 abort ();
11464 else
11465 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11466 }
11467 else
11468 type = TREE_TYPE (decl);
11469
11470 add_type_attribute (type_die, type, TREE_READONLY (decl),
11471 TREE_THIS_VOLATILE (decl), context_die);
11472 }
11473
11474 if (DECL_ABSTRACT (decl))
11475 equate_decl_number_to_die (decl, type_die);
11476 }
11477
11478 /* Generate a type description DIE. */
11479
11480 static void
11481 gen_type_die (tree type, dw_die_ref context_die)
11482 {
11483 int need_pop;
11484
11485 if (type == NULL_TREE || type == error_mark_node)
11486 return;
11487
11488 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11489 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11490 {
11491 if (TREE_ASM_WRITTEN (type))
11492 return;
11493
11494 /* Prevent broken recursion; we can't hand off to the same type. */
11495 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
11496 abort ();
11497
11498 TREE_ASM_WRITTEN (type) = 1;
11499 gen_decl_die (TYPE_NAME (type), context_die);
11500 return;
11501 }
11502
11503 /* We are going to output a DIE to represent the unqualified version
11504 of this type (i.e. without any const or volatile qualifiers) so
11505 get the main variant (i.e. the unqualified version) of this type
11506 now. (Vectors are special because the debugging info is in the
11507 cloned type itself). */
11508 if (TREE_CODE (type) != VECTOR_TYPE)
11509 type = type_main_variant (type);
11510
11511 if (TREE_ASM_WRITTEN (type))
11512 return;
11513
11514 switch (TREE_CODE (type))
11515 {
11516 case ERROR_MARK:
11517 break;
11518
11519 case POINTER_TYPE:
11520 case REFERENCE_TYPE:
11521 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11522 ensures that the gen_type_die recursion will terminate even if the
11523 type is recursive. Recursive types are possible in Ada. */
11524 /* ??? We could perhaps do this for all types before the switch
11525 statement. */
11526 TREE_ASM_WRITTEN (type) = 1;
11527
11528 /* For these types, all that is required is that we output a DIE (or a
11529 set of DIEs) to represent the "basis" type. */
11530 gen_type_die (TREE_TYPE (type), context_die);
11531 break;
11532
11533 case OFFSET_TYPE:
11534 /* This code is used for C++ pointer-to-data-member types.
11535 Output a description of the relevant class type. */
11536 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
11537
11538 /* Output a description of the type of the object pointed to. */
11539 gen_type_die (TREE_TYPE (type), context_die);
11540
11541 /* Now output a DIE to represent this pointer-to-data-member type
11542 itself. */
11543 gen_ptr_to_mbr_type_die (type, context_die);
11544 break;
11545
11546 case SET_TYPE:
11547 gen_type_die (TYPE_DOMAIN (type), context_die);
11548 gen_set_type_die (type, context_die);
11549 break;
11550
11551 case FILE_TYPE:
11552 gen_type_die (TREE_TYPE (type), context_die);
11553 abort (); /* No way to represent these in Dwarf yet! */
11554 break;
11555
11556 case FUNCTION_TYPE:
11557 /* Force out return type (in case it wasn't forced out already). */
11558 gen_type_die (TREE_TYPE (type), context_die);
11559 gen_subroutine_type_die (type, context_die);
11560 break;
11561
11562 case METHOD_TYPE:
11563 /* Force out return type (in case it wasn't forced out already). */
11564 gen_type_die (TREE_TYPE (type), context_die);
11565 gen_subroutine_type_die (type, context_die);
11566 break;
11567
11568 case ARRAY_TYPE:
11569 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11570 {
11571 gen_type_die (TREE_TYPE (type), context_die);
11572 gen_string_type_die (type, context_die);
11573 }
11574 else
11575 gen_array_type_die (type, context_die);
11576 break;
11577
11578 case VECTOR_TYPE:
11579 gen_array_type_die (type, context_die);
11580 break;
11581
11582 case ENUMERAL_TYPE:
11583 case RECORD_TYPE:
11584 case UNION_TYPE:
11585 case QUAL_UNION_TYPE:
11586 /* If this is a nested type whose containing class hasn't been written
11587 out yet, writing it out will cover this one, too. This does not apply
11588 to instantiations of member class templates; they need to be added to
11589 the containing class as they are generated. FIXME: This hurts the
11590 idea of combining type decls from multiple TUs, since we can't predict
11591 what set of template instantiations we'll get. */
11592 if (TYPE_CONTEXT (type)
11593 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11594 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
11595 {
11596 gen_type_die (TYPE_CONTEXT (type), context_die);
11597
11598 if (TREE_ASM_WRITTEN (type))
11599 return;
11600
11601 /* If that failed, attach ourselves to the stub. */
11602 push_decl_scope (TYPE_CONTEXT (type));
11603 context_die = lookup_type_die (TYPE_CONTEXT (type));
11604 need_pop = 1;
11605 }
11606 else
11607 {
11608 declare_in_namespace (type, context_die);
11609 need_pop = 0;
11610 }
11611
11612 if (TREE_CODE (type) == ENUMERAL_TYPE)
11613 gen_enumeration_type_die (type, context_die);
11614 else
11615 gen_struct_or_union_type_die (type, context_die);
11616
11617 if (need_pop)
11618 pop_decl_scope ();
11619
11620 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11621 it up if it is ever completed. gen_*_type_die will set it for us
11622 when appropriate. */
11623 return;
11624
11625 case VOID_TYPE:
11626 case INTEGER_TYPE:
11627 case REAL_TYPE:
11628 case COMPLEX_TYPE:
11629 case BOOLEAN_TYPE:
11630 case CHAR_TYPE:
11631 /* No DIEs needed for fundamental types. */
11632 break;
11633
11634 case LANG_TYPE:
11635 /* No Dwarf representation currently defined. */
11636 break;
11637
11638 default:
11639 abort ();
11640 }
11641
11642 TREE_ASM_WRITTEN (type) = 1;
11643 }
11644
11645 /* Generate a DIE for a tagged type instantiation. */
11646
11647 static void
11648 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
11649 {
11650 if (type == NULL_TREE || type == error_mark_node)
11651 return;
11652
11653 /* We are going to output a DIE to represent the unqualified version of
11654 this type (i.e. without any const or volatile qualifiers) so make sure
11655 that we have the main variant (i.e. the unqualified version) of this
11656 type now. */
11657 if (type != type_main_variant (type))
11658 abort ();
11659
11660 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11661 an instance of an unresolved type. */
11662
11663 switch (TREE_CODE (type))
11664 {
11665 case ERROR_MARK:
11666 break;
11667
11668 case ENUMERAL_TYPE:
11669 gen_inlined_enumeration_type_die (type, context_die);
11670 break;
11671
11672 case RECORD_TYPE:
11673 gen_inlined_structure_type_die (type, context_die);
11674 break;
11675
11676 case UNION_TYPE:
11677 case QUAL_UNION_TYPE:
11678 gen_inlined_union_type_die (type, context_die);
11679 break;
11680
11681 default:
11682 abort ();
11683 }
11684 }
11685
11686 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11687 things which are local to the given block. */
11688
11689 static void
11690 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
11691 {
11692 int must_output_die = 0;
11693 tree origin;
11694 tree decl;
11695 enum tree_code origin_code;
11696
11697 /* Ignore blocks never really used to make RTL. */
11698 if (stmt == NULL_TREE || !TREE_USED (stmt)
11699 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
11700 return;
11701
11702 /* If the block is one fragment of a non-contiguous block, do not
11703 process the variables, since they will have been done by the
11704 origin block. Do process subblocks. */
11705 if (BLOCK_FRAGMENT_ORIGIN (stmt))
11706 {
11707 tree sub;
11708
11709 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
11710 gen_block_die (sub, context_die, depth + 1);
11711
11712 return;
11713 }
11714
11715 /* Determine the "ultimate origin" of this block. This block may be an
11716 inlined instance of an inlined instance of inline function, so we have
11717 to trace all of the way back through the origin chain to find out what
11718 sort of node actually served as the original seed for the creation of
11719 the current block. */
11720 origin = block_ultimate_origin (stmt);
11721 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
11722
11723 /* Determine if we need to output any Dwarf DIEs at all to represent this
11724 block. */
11725 if (origin_code == FUNCTION_DECL)
11726 /* The outer scopes for inlinings *must* always be represented. We
11727 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
11728 must_output_die = 1;
11729 else
11730 {
11731 /* In the case where the current block represents an inlining of the
11732 "body block" of an inline function, we must *NOT* output any DIE for
11733 this block because we have already output a DIE to represent the whole
11734 inlined function scope and the "body block" of any function doesn't
11735 really represent a different scope according to ANSI C rules. So we
11736 check here to make sure that this block does not represent a "body
11737 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
11738 if (! is_body_block (origin ? origin : stmt))
11739 {
11740 /* Determine if this block directly contains any "significant"
11741 local declarations which we will need to output DIEs for. */
11742 if (debug_info_level > DINFO_LEVEL_TERSE)
11743 /* We are not in terse mode so *any* local declaration counts
11744 as being a "significant" one. */
11745 must_output_die = (BLOCK_VARS (stmt) != NULL);
11746 else
11747 /* We are in terse mode, so only local (nested) function
11748 definitions count as "significant" local declarations. */
11749 for (decl = BLOCK_VARS (stmt);
11750 decl != NULL; decl = TREE_CHAIN (decl))
11751 if (TREE_CODE (decl) == FUNCTION_DECL
11752 && DECL_INITIAL (decl))
11753 {
11754 must_output_die = 1;
11755 break;
11756 }
11757 }
11758 }
11759
11760 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
11761 DIE for any block which contains no significant local declarations at
11762 all. Rather, in such cases we just call `decls_for_scope' so that any
11763 needed Dwarf info for any sub-blocks will get properly generated. Note
11764 that in terse mode, our definition of what constitutes a "significant"
11765 local declaration gets restricted to include only inlined function
11766 instances and local (nested) function definitions. */
11767 if (must_output_die)
11768 {
11769 if (origin_code == FUNCTION_DECL)
11770 gen_inlined_subroutine_die (stmt, context_die, depth);
11771 else
11772 gen_lexical_block_die (stmt, context_die, depth);
11773 }
11774 else
11775 decls_for_scope (stmt, context_die, depth);
11776 }
11777
11778 /* Generate all of the decls declared within a given scope and (recursively)
11779 all of its sub-blocks. */
11780
11781 static void
11782 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
11783 {
11784 tree decl;
11785 tree subblocks;
11786
11787 /* Ignore blocks never really used to make RTL. */
11788 if (stmt == NULL_TREE || ! TREE_USED (stmt))
11789 return;
11790
11791 /* Output the DIEs to represent all of the data objects and typedefs
11792 declared directly within this block but not within any nested
11793 sub-blocks. Also, nested function and tag DIEs have been
11794 generated with a parent of NULL; fix that up now. */
11795 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
11796 {
11797 dw_die_ref die;
11798
11799 if (TREE_CODE (decl) == FUNCTION_DECL)
11800 die = lookup_decl_die (decl);
11801 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
11802 die = lookup_type_die (TREE_TYPE (decl));
11803 else
11804 die = NULL;
11805
11806 if (die != NULL && die->die_parent == NULL)
11807 add_child_die (context_die, die);
11808 else
11809 gen_decl_die (decl, context_die);
11810 }
11811
11812 /* If we're at -g1, we're not interested in subblocks. */
11813 if (debug_info_level <= DINFO_LEVEL_TERSE)
11814 return;
11815
11816 /* Output the DIEs to represent all sub-blocks (and the items declared
11817 therein) of this block. */
11818 for (subblocks = BLOCK_SUBBLOCKS (stmt);
11819 subblocks != NULL;
11820 subblocks = BLOCK_CHAIN (subblocks))
11821 gen_block_die (subblocks, context_die, depth + 1);
11822 }
11823
11824 /* Is this a typedef we can avoid emitting? */
11825
11826 static inline int
11827 is_redundant_typedef (tree decl)
11828 {
11829 if (TYPE_DECL_IS_STUB (decl))
11830 return 1;
11831
11832 if (DECL_ARTIFICIAL (decl)
11833 && DECL_CONTEXT (decl)
11834 && is_tagged_type (DECL_CONTEXT (decl))
11835 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
11836 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
11837 /* Also ignore the artificial member typedef for the class name. */
11838 return 1;
11839
11840 return 0;
11841 }
11842
11843 /* Returns the DIE for namespace NS or aborts.
11844
11845 Note that namespaces don't really have a lexical context, so there's no
11846 need to pass in a context_die. They always go inside their containing
11847 namespace, or comp_unit_die if none. */
11848
11849 static dw_die_ref
11850 force_namespace_die (tree ns)
11851 {
11852 dw_die_ref ns_die;
11853
11854 dwarf2out_decl (ns);
11855 ns_die = lookup_decl_die (ns);
11856 if (!ns_die)
11857 abort();
11858
11859 return ns_die;
11860 }
11861
11862 /* Force out any required namespaces to be able to output DECL,
11863 and return the new context_die for it, if it's changed. */
11864
11865 static dw_die_ref
11866 setup_namespace_context (tree thing, dw_die_ref context_die)
11867 {
11868 tree context = DECL_P (thing) ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing);
11869 if (context && TREE_CODE (context) == NAMESPACE_DECL)
11870 /* Force out the namespace. */
11871 context_die = force_namespace_die (context);
11872
11873 return context_die;
11874 }
11875
11876 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
11877 type) within its namespace, if appropriate.
11878
11879 For compatibility with older debuggers, namespace DIEs only contain
11880 declarations; all definitions are emitted at CU scope. */
11881
11882 static void
11883 declare_in_namespace (tree thing, dw_die_ref context_die)
11884 {
11885 dw_die_ref ns_context;
11886
11887 if (debug_info_level <= DINFO_LEVEL_TERSE)
11888 return;
11889
11890 ns_context = setup_namespace_context (thing, context_die);
11891
11892 if (ns_context != context_die)
11893 {
11894 if (DECL_P (thing))
11895 gen_decl_die (thing, ns_context);
11896 else
11897 gen_type_die (thing, ns_context);
11898 }
11899 }
11900
11901 /* Generate a DIE for a namespace or namespace alias. */
11902
11903 static void
11904 gen_namespace_die (tree decl)
11905 {
11906 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
11907
11908 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
11909 they are an alias of. */
11910 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
11911 {
11912 /* Output a real namespace. */
11913 dw_die_ref namespace_die
11914 = new_die (DW_TAG_namespace, context_die, decl);
11915 add_name_and_src_coords_attributes (namespace_die, decl);
11916 equate_decl_number_to_die (decl, namespace_die);
11917 }
11918 else
11919 {
11920 /* Output a namespace alias. */
11921
11922 /* Force out the namespace we are an alias of, if necessary. */
11923 dw_die_ref origin_die
11924 = force_namespace_die (DECL_ABSTRACT_ORIGIN (decl));
11925
11926 /* Now create the namespace alias DIE. */
11927 dw_die_ref namespace_die
11928 = new_die (DW_TAG_imported_declaration, context_die, decl);
11929 add_name_and_src_coords_attributes (namespace_die, decl);
11930 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
11931 equate_decl_number_to_die (decl, namespace_die);
11932 }
11933 }
11934
11935 /* Generate Dwarf debug information for a decl described by DECL. */
11936
11937 static void
11938 gen_decl_die (tree decl, dw_die_ref context_die)
11939 {
11940 tree origin;
11941
11942 if (DECL_P (decl) && DECL_IGNORED_P (decl))
11943 return;
11944
11945 switch (TREE_CODE (decl))
11946 {
11947 case ERROR_MARK:
11948 break;
11949
11950 case CONST_DECL:
11951 /* The individual enumerators of an enum type get output when we output
11952 the Dwarf representation of the relevant enum type itself. */
11953 break;
11954
11955 case FUNCTION_DECL:
11956 /* Don't output any DIEs to represent mere function declarations,
11957 unless they are class members or explicit block externs. */
11958 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
11959 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
11960 break;
11961
11962 /* If we're emitting a clone, emit info for the abstract instance. */
11963 if (DECL_ORIGIN (decl) != decl)
11964 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
11965
11966 /* If we're emitting an out-of-line copy of an inline function,
11967 emit info for the abstract instance and set up to refer to it. */
11968 else if (cgraph_function_possibly_inlined_p (decl)
11969 && ! DECL_ABSTRACT (decl)
11970 && ! class_or_namespace_scope_p (context_die)
11971 /* dwarf2out_abstract_function won't emit a die if this is just
11972 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
11973 that case, because that works only if we have a die. */
11974 && DECL_INITIAL (decl) != NULL_TREE)
11975 {
11976 dwarf2out_abstract_function (decl);
11977 set_decl_origin_self (decl);
11978 }
11979
11980 /* Otherwise we're emitting the primary DIE for this decl. */
11981 else if (debug_info_level > DINFO_LEVEL_TERSE)
11982 {
11983 /* Before we describe the FUNCTION_DECL itself, make sure that we
11984 have described its return type. */
11985 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
11986
11987 /* And its virtual context. */
11988 if (DECL_VINDEX (decl) != NULL_TREE)
11989 gen_type_die (DECL_CONTEXT (decl), context_die);
11990
11991 /* And its containing type. */
11992 origin = decl_class_context (decl);
11993 if (origin != NULL_TREE)
11994 gen_type_die_for_member (origin, decl, context_die);
11995
11996 /* And its containing namespace. */
11997 declare_in_namespace (decl, context_die);
11998 }
11999
12000 /* Now output a DIE to represent the function itself. */
12001 gen_subprogram_die (decl, context_die);
12002 break;
12003
12004 case TYPE_DECL:
12005 /* If we are in terse mode, don't generate any DIEs to represent any
12006 actual typedefs. */
12007 if (debug_info_level <= DINFO_LEVEL_TERSE)
12008 break;
12009
12010 /* In the special case of a TYPE_DECL node representing the declaration
12011 of some type tag, if the given TYPE_DECL is marked as having been
12012 instantiated from some other (original) TYPE_DECL node (e.g. one which
12013 was generated within the original definition of an inline function) we
12014 have to generate a special (abbreviated) DW_TAG_structure_type,
12015 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12016 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12017 {
12018 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12019 break;
12020 }
12021
12022 if (is_redundant_typedef (decl))
12023 gen_type_die (TREE_TYPE (decl), context_die);
12024 else
12025 /* Output a DIE to represent the typedef itself. */
12026 gen_typedef_die (decl, context_die);
12027 break;
12028
12029 case LABEL_DECL:
12030 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12031 gen_label_die (decl, context_die);
12032 break;
12033
12034 case VAR_DECL:
12035 /* If we are in terse mode, don't generate any DIEs to represent any
12036 variable declarations or definitions. */
12037 if (debug_info_level <= DINFO_LEVEL_TERSE)
12038 break;
12039
12040 /* Output any DIEs that are needed to specify the type of this data
12041 object. */
12042 gen_type_die (TREE_TYPE (decl), context_die);
12043
12044 /* And its containing type. */
12045 origin = decl_class_context (decl);
12046 if (origin != NULL_TREE)
12047 gen_type_die_for_member (origin, decl, context_die);
12048
12049 /* And its containing namespace. */
12050 declare_in_namespace (decl, context_die);
12051
12052 /* Now output the DIE to represent the data object itself. This gets
12053 complicated because of the possibility that the VAR_DECL really
12054 represents an inlined instance of a formal parameter for an inline
12055 function. */
12056 origin = decl_ultimate_origin (decl);
12057 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12058 gen_formal_parameter_die (decl, context_die);
12059 else
12060 gen_variable_die (decl, context_die);
12061 break;
12062
12063 case FIELD_DECL:
12064 /* Ignore the nameless fields that are used to skip bits but handle C++
12065 anonymous unions. */
12066 if (DECL_NAME (decl) != NULL_TREE
12067 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
12068 {
12069 gen_type_die (member_declared_type (decl), context_die);
12070 gen_field_die (decl, context_die);
12071 }
12072 break;
12073
12074 case PARM_DECL:
12075 gen_type_die (TREE_TYPE (decl), context_die);
12076 gen_formal_parameter_die (decl, context_die);
12077 break;
12078
12079 case NAMESPACE_DECL:
12080 gen_namespace_die (decl);
12081 break;
12082
12083 default:
12084 if ((int)TREE_CODE (decl) > NUM_TREE_CODES)
12085 /* Probably some frontend-internal decl. Assume we don't care. */
12086 break;
12087 abort ();
12088 }
12089 }
12090 \f
12091 /* Add Ada "use" clause information for SGI Workshop debugger. */
12092
12093 void
12094 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
12095 {
12096 unsigned int file_index;
12097
12098 if (filename != NULL)
12099 {
12100 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12101 tree context_list_decl
12102 = build_decl (LABEL_DECL, get_identifier (context_list),
12103 void_type_node);
12104
12105 TREE_PUBLIC (context_list_decl) = TRUE;
12106 add_name_attribute (unit_die, context_list);
12107 file_index = lookup_filename (filename);
12108 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12109 add_pubname (context_list_decl, unit_die);
12110 }
12111 }
12112
12113 /* Output debug information for global decl DECL. Called from toplev.c after
12114 compilation proper has finished. */
12115
12116 static void
12117 dwarf2out_global_decl (tree decl)
12118 {
12119 /* Output DWARF2 information for file-scope tentative data object
12120 declarations, file-scope (extern) function declarations (which had no
12121 corresponding body) and file-scope tagged type declarations and
12122 definitions which have not yet been forced out. */
12123 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12124 dwarf2out_decl (decl);
12125 }
12126
12127 /* Write the debugging output for DECL. */
12128
12129 void
12130 dwarf2out_decl (tree decl)
12131 {
12132 dw_die_ref context_die = comp_unit_die;
12133
12134 switch (TREE_CODE (decl))
12135 {
12136 case ERROR_MARK:
12137 return;
12138
12139 case FUNCTION_DECL:
12140 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
12141 builtin function. Explicit programmer-supplied declarations of
12142 these same functions should NOT be ignored however. */
12143 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
12144 return;
12145
12146 /* What we would really like to do here is to filter out all mere
12147 file-scope declarations of file-scope functions which are never
12148 referenced later within this translation unit (and keep all of ones
12149 that *are* referenced later on) but we aren't clairvoyant, so we have
12150 no idea which functions will be referenced in the future (i.e. later
12151 on within the current translation unit). So here we just ignore all
12152 file-scope function declarations which are not also definitions. If
12153 and when the debugger needs to know something about these functions,
12154 it will have to hunt around and find the DWARF information associated
12155 with the definition of the function.
12156
12157 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12158 nodes represent definitions and which ones represent mere
12159 declarations. We have to check DECL_INITIAL instead. That's because
12160 the C front-end supports some weird semantics for "extern inline"
12161 function definitions. These can get inlined within the current
12162 translation unit (an thus, we need to generate Dwarf info for their
12163 abstract instances so that the Dwarf info for the concrete inlined
12164 instances can have something to refer to) but the compiler never
12165 generates any out-of-lines instances of such things (despite the fact
12166 that they *are* definitions).
12167
12168 The important point is that the C front-end marks these "extern
12169 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12170 them anyway. Note that the C++ front-end also plays some similar games
12171 for inline function definitions appearing within include files which
12172 also contain `#pragma interface' pragmas. */
12173 if (DECL_INITIAL (decl) == NULL_TREE)
12174 return;
12175
12176 /* If we're a nested function, initially use a parent of NULL; if we're
12177 a plain function, this will be fixed up in decls_for_scope. If
12178 we're a method, it will be ignored, since we already have a DIE. */
12179 if (decl_function_context (decl)
12180 /* But if we're in terse mode, we don't care about scope. */
12181 && debug_info_level > DINFO_LEVEL_TERSE)
12182 context_die = NULL;
12183 break;
12184
12185 case VAR_DECL:
12186 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12187 declaration and if the declaration was never even referenced from
12188 within this entire compilation unit. We suppress these DIEs in
12189 order to save space in the .debug section (by eliminating entries
12190 which are probably useless). Note that we must not suppress
12191 block-local extern declarations (whether used or not) because that
12192 would screw-up the debugger's name lookup mechanism and cause it to
12193 miss things which really ought to be in scope at a given point. */
12194 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12195 return;
12196
12197 /* If we are in terse mode, don't generate any DIEs to represent any
12198 variable declarations or definitions. */
12199 if (debug_info_level <= DINFO_LEVEL_TERSE)
12200 return;
12201 break;
12202
12203 case NAMESPACE_DECL:
12204 if (debug_info_level <= DINFO_LEVEL_TERSE)
12205 return;
12206 if (lookup_decl_die (decl) != NULL)
12207 return;
12208 break;
12209
12210 case TYPE_DECL:
12211 /* Don't emit stubs for types unless they are needed by other DIEs. */
12212 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12213 return;
12214
12215 /* Don't bother trying to generate any DIEs to represent any of the
12216 normal built-in types for the language we are compiling. */
12217 if (DECL_SOURCE_LINE (decl) == 0)
12218 {
12219 /* OK, we need to generate one for `bool' so GDB knows what type
12220 comparisons have. */
12221 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12222 == DW_LANG_C_plus_plus)
12223 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12224 && ! DECL_IGNORED_P (decl))
12225 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12226
12227 return;
12228 }
12229
12230 /* If we are in terse mode, don't generate any DIEs for types. */
12231 if (debug_info_level <= DINFO_LEVEL_TERSE)
12232 return;
12233
12234 /* If we're a function-scope tag, initially use a parent of NULL;
12235 this will be fixed up in decls_for_scope. */
12236 if (decl_function_context (decl))
12237 context_die = NULL;
12238
12239 break;
12240
12241 default:
12242 return;
12243 }
12244
12245 gen_decl_die (decl, context_die);
12246 }
12247
12248 /* Output a marker (i.e. a label) for the beginning of the generated code for
12249 a lexical block. */
12250
12251 static void
12252 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
12253 unsigned int blocknum)
12254 {
12255 function_section (current_function_decl);
12256 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12257 }
12258
12259 /* Output a marker (i.e. a label) for the end of the generated code for a
12260 lexical block. */
12261
12262 static void
12263 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
12264 {
12265 function_section (current_function_decl);
12266 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12267 }
12268
12269 /* Returns nonzero if it is appropriate not to emit any debugging
12270 information for BLOCK, because it doesn't contain any instructions.
12271
12272 Don't allow this for blocks with nested functions or local classes
12273 as we would end up with orphans, and in the presence of scheduling
12274 we may end up calling them anyway. */
12275
12276 static bool
12277 dwarf2out_ignore_block (tree block)
12278 {
12279 tree decl;
12280
12281 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12282 if (TREE_CODE (decl) == FUNCTION_DECL
12283 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12284 return 0;
12285
12286 return 1;
12287 }
12288
12289 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12290 dwarf2out.c) and return its "index". The index of each (known) filename is
12291 just a unique number which is associated with only that one filename. We
12292 need such numbers for the sake of generating labels (in the .debug_sfnames
12293 section) and references to those files numbers (in the .debug_srcinfo
12294 and.debug_macinfo sections). If the filename given as an argument is not
12295 found in our current list, add it to the list and assign it the next
12296 available unique index number. In order to speed up searches, we remember
12297 the index of the filename was looked up last. This handles the majority of
12298 all searches. */
12299
12300 static unsigned
12301 lookup_filename (const char *file_name)
12302 {
12303 size_t i, n;
12304 char *save_file_name;
12305
12306 /* Check to see if the file name that was searched on the previous
12307 call matches this file name. If so, return the index. */
12308 if (file_table_last_lookup_index != 0)
12309 {
12310 const char *last
12311 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12312 if (strcmp (file_name, last) == 0)
12313 return file_table_last_lookup_index;
12314 }
12315
12316 /* Didn't match the previous lookup, search the table */
12317 n = VARRAY_ACTIVE_SIZE (file_table);
12318 for (i = 1; i < n; i++)
12319 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12320 {
12321 file_table_last_lookup_index = i;
12322 return i;
12323 }
12324
12325 /* Add the new entry to the end of the filename table. */
12326 file_table_last_lookup_index = n;
12327 save_file_name = (char *) ggc_strdup (file_name);
12328 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12329 VARRAY_PUSH_UINT (file_table_emitted, 0);
12330
12331 return i;
12332 }
12333
12334 static int
12335 maybe_emit_file (int fileno)
12336 {
12337 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12338 {
12339 if (!VARRAY_UINT (file_table_emitted, fileno))
12340 {
12341 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12342 fprintf (asm_out_file, "\t.file %u ",
12343 VARRAY_UINT (file_table_emitted, fileno));
12344 output_quoted_string (asm_out_file,
12345 VARRAY_CHAR_PTR (file_table, fileno));
12346 fputc ('\n', asm_out_file);
12347 }
12348 return VARRAY_UINT (file_table_emitted, fileno);
12349 }
12350 else
12351 return fileno;
12352 }
12353
12354 static void
12355 init_file_table (void)
12356 {
12357 /* Allocate the initial hunk of the file_table. */
12358 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
12359 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
12360
12361 /* Skip the first entry - file numbers begin at 1. */
12362 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
12363 VARRAY_PUSH_UINT (file_table_emitted, 0);
12364 file_table_last_lookup_index = 0;
12365 }
12366
12367 /* Output a label to mark the beginning of a source code line entry
12368 and record information relating to this source line, in
12369 'line_info_table' for later output of the .debug_line section. */
12370
12371 static void
12372 dwarf2out_source_line (unsigned int line, const char *filename)
12373 {
12374 if (debug_info_level >= DINFO_LEVEL_NORMAL
12375 && line != 0)
12376 {
12377 function_section (current_function_decl);
12378
12379 /* If requested, emit something human-readable. */
12380 if (flag_debug_asm)
12381 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
12382 filename, line);
12383
12384 if (DWARF2_ASM_LINE_DEBUG_INFO)
12385 {
12386 unsigned file_num = lookup_filename (filename);
12387
12388 file_num = maybe_emit_file (file_num);
12389
12390 /* Emit the .loc directive understood by GNU as. */
12391 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
12392
12393 /* Indicate that line number info exists. */
12394 line_info_table_in_use++;
12395
12396 /* Indicate that multiple line number tables exist. */
12397 if (DECL_SECTION_NAME (current_function_decl))
12398 separate_line_info_table_in_use++;
12399 }
12400 else if (DECL_SECTION_NAME (current_function_decl))
12401 {
12402 dw_separate_line_info_ref line_info;
12403 (*targetm.asm_out.internal_label) (asm_out_file, SEPARATE_LINE_CODE_LABEL,
12404 separate_line_info_table_in_use);
12405
12406 /* expand the line info table if necessary */
12407 if (separate_line_info_table_in_use
12408 == separate_line_info_table_allocated)
12409 {
12410 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12411 separate_line_info_table
12412 = ggc_realloc (separate_line_info_table,
12413 separate_line_info_table_allocated
12414 * sizeof (dw_separate_line_info_entry));
12415 memset (separate_line_info_table
12416 + separate_line_info_table_in_use,
12417 0,
12418 (LINE_INFO_TABLE_INCREMENT
12419 * sizeof (dw_separate_line_info_entry)));
12420 }
12421
12422 /* Add the new entry at the end of the line_info_table. */
12423 line_info
12424 = &separate_line_info_table[separate_line_info_table_in_use++];
12425 line_info->dw_file_num = lookup_filename (filename);
12426 line_info->dw_line_num = line;
12427 line_info->function = current_function_funcdef_no;
12428 }
12429 else
12430 {
12431 dw_line_info_ref line_info;
12432
12433 (*targetm.asm_out.internal_label) (asm_out_file, LINE_CODE_LABEL,
12434 line_info_table_in_use);
12435
12436 /* Expand the line info table if necessary. */
12437 if (line_info_table_in_use == line_info_table_allocated)
12438 {
12439 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12440 line_info_table
12441 = ggc_realloc (line_info_table,
12442 (line_info_table_allocated
12443 * sizeof (dw_line_info_entry)));
12444 memset (line_info_table + line_info_table_in_use, 0,
12445 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
12446 }
12447
12448 /* Add the new entry at the end of the line_info_table. */
12449 line_info = &line_info_table[line_info_table_in_use++];
12450 line_info->dw_file_num = lookup_filename (filename);
12451 line_info->dw_line_num = line;
12452 }
12453 }
12454 }
12455
12456 /* Record the beginning of a new source file. */
12457
12458 static void
12459 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
12460 {
12461 if (flag_eliminate_dwarf2_dups)
12462 {
12463 /* Record the beginning of the file for break_out_includes. */
12464 dw_die_ref bincl_die;
12465
12466 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
12467 add_AT_string (bincl_die, DW_AT_name, filename);
12468 }
12469
12470 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12471 {
12472 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12473 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
12474 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
12475 lineno);
12476 maybe_emit_file (lookup_filename (filename));
12477 dw2_asm_output_data_uleb128 (lookup_filename (filename),
12478 "Filename we just started");
12479 }
12480 }
12481
12482 /* Record the end of a source file. */
12483
12484 static void
12485 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
12486 {
12487 if (flag_eliminate_dwarf2_dups)
12488 /* Record the end of the file for break_out_includes. */
12489 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
12490
12491 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12492 {
12493 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12494 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12495 }
12496 }
12497
12498 /* Called from debug_define in toplev.c. The `buffer' parameter contains
12499 the tail part of the directive line, i.e. the part which is past the
12500 initial whitespace, #, whitespace, directive-name, whitespace part. */
12501
12502 static void
12503 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
12504 const char *buffer ATTRIBUTE_UNUSED)
12505 {
12506 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12507 {
12508 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12509 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
12510 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12511 dw2_asm_output_nstring (buffer, -1, "The macro");
12512 }
12513 }
12514
12515 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
12516 the tail part of the directive line, i.e. the part which is past the
12517 initial whitespace, #, whitespace, directive-name, whitespace part. */
12518
12519 static void
12520 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
12521 const char *buffer ATTRIBUTE_UNUSED)
12522 {
12523 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12524 {
12525 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12526 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
12527 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12528 dw2_asm_output_nstring (buffer, -1, "The macro");
12529 }
12530 }
12531
12532 /* Set up for Dwarf output at the start of compilation. */
12533
12534 static void
12535 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
12536 {
12537 init_file_table ();
12538
12539 /* Allocate the initial hunk of the decl_die_table. */
12540 decl_die_table = ggc_alloc_cleared (DECL_DIE_TABLE_INCREMENT
12541 * sizeof (dw_die_ref));
12542 decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
12543 decl_die_table_in_use = 0;
12544
12545 /* Allocate the initial hunk of the decl_scope_table. */
12546 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
12547
12548 /* Allocate the initial hunk of the abbrev_die_table. */
12549 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
12550 * sizeof (dw_die_ref));
12551 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
12552 /* Zero-th entry is allocated, but unused */
12553 abbrev_die_table_in_use = 1;
12554
12555 /* Allocate the initial hunk of the line_info_table. */
12556 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
12557 * sizeof (dw_line_info_entry));
12558 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
12559
12560 /* Zero-th entry is allocated, but unused */
12561 line_info_table_in_use = 1;
12562
12563 /* Generate the initial DIE for the .debug section. Note that the (string)
12564 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
12565 will (typically) be a relative pathname and that this pathname should be
12566 taken as being relative to the directory from which the compiler was
12567 invoked when the given (base) source file was compiled. We will fill
12568 in this value in dwarf2out_finish. */
12569 comp_unit_die = gen_compile_unit_die (NULL);
12570
12571 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
12572
12573 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
12574
12575 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
12576 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
12577 DEBUG_ABBREV_SECTION_LABEL, 0);
12578 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12579 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
12580 else
12581 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
12582
12583 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
12584 DEBUG_INFO_SECTION_LABEL, 0);
12585 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
12586 DEBUG_LINE_SECTION_LABEL, 0);
12587 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
12588 DEBUG_RANGES_SECTION_LABEL, 0);
12589 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12590 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
12591 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
12592 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
12593 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12594 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
12595
12596 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12597 {
12598 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12599 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
12600 DEBUG_MACINFO_SECTION_LABEL, 0);
12601 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
12602 }
12603
12604 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12605 {
12606 text_section ();
12607 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
12608 }
12609 }
12610
12611 /* A helper function for dwarf2out_finish called through
12612 ht_forall. Emit one queued .debug_str string. */
12613
12614 static int
12615 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
12616 {
12617 struct indirect_string_node *node = (struct indirect_string_node *) *h;
12618
12619 if (node->form == DW_FORM_strp)
12620 {
12621 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
12622 ASM_OUTPUT_LABEL (asm_out_file, node->label);
12623 assemble_string (node->str, strlen (node->str) + 1);
12624 }
12625
12626 return 1;
12627 }
12628
12629
12630
12631 /* Clear the marks for a die and its children.
12632 Be cool if the mark isn't set. */
12633
12634 static void
12635 prune_unmark_dies (dw_die_ref die)
12636 {
12637 dw_die_ref c;
12638 die->die_mark = 0;
12639 for (c = die->die_child; c; c = c->die_sib)
12640 prune_unmark_dies (c);
12641 }
12642
12643
12644 /* Given DIE that we're marking as used, find any other dies
12645 it references as attributes and mark them as used. */
12646
12647 static void
12648 prune_unused_types_walk_attribs (dw_die_ref die)
12649 {
12650 dw_attr_ref a;
12651
12652 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
12653 {
12654 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
12655 {
12656 /* A reference to another DIE.
12657 Make sure that it will get emitted. */
12658 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
12659 }
12660 else if (a->dw_attr == DW_AT_decl_file)
12661 {
12662 /* A reference to a file. Make sure the file name is emitted. */
12663 a->dw_attr_val.v.val_unsigned =
12664 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
12665 }
12666 }
12667 }
12668
12669
12670 /* Mark DIE as being used. If DOKIDS is true, then walk down
12671 to DIE's children. */
12672
12673 static void
12674 prune_unused_types_mark (dw_die_ref die, int dokids)
12675 {
12676 dw_die_ref c;
12677
12678 if (die->die_mark == 0)
12679 {
12680 /* We haven't done this node yet. Mark it as used. */
12681 die->die_mark = 1;
12682
12683 /* We also have to mark its parents as used.
12684 (But we don't want to mark our parents' kids due to this.) */
12685 if (die->die_parent)
12686 prune_unused_types_mark (die->die_parent, 0);
12687
12688 /* Mark any referenced nodes. */
12689 prune_unused_types_walk_attribs (die);
12690
12691 /* If this node is a specification,
12692 also mark the definition, if it exists. */
12693 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
12694 prune_unused_types_mark (die->die_definition, 1);
12695 }
12696
12697 if (dokids && die->die_mark != 2)
12698 {
12699 /* We need to walk the children, but haven't done so yet.
12700 Remember that we've walked the kids. */
12701 die->die_mark = 2;
12702
12703 /* Walk them. */
12704 for (c = die->die_child; c; c = c->die_sib)
12705 {
12706 /* If this is an array type, we need to make sure our
12707 kids get marked, even if they're types. */
12708 if (die->die_tag == DW_TAG_array_type)
12709 prune_unused_types_mark (c, 1);
12710 else
12711 prune_unused_types_walk (c);
12712 }
12713 }
12714 }
12715
12716
12717 /* Walk the tree DIE and mark types that we actually use. */
12718
12719 static void
12720 prune_unused_types_walk (dw_die_ref die)
12721 {
12722 dw_die_ref c;
12723
12724 /* Don't do anything if this node is already marked. */
12725 if (die->die_mark)
12726 return;
12727
12728 switch (die->die_tag) {
12729 case DW_TAG_const_type:
12730 case DW_TAG_packed_type:
12731 case DW_TAG_pointer_type:
12732 case DW_TAG_reference_type:
12733 case DW_TAG_volatile_type:
12734 case DW_TAG_typedef:
12735 case DW_TAG_array_type:
12736 case DW_TAG_structure_type:
12737 case DW_TAG_union_type:
12738 case DW_TAG_class_type:
12739 case DW_TAG_friend:
12740 case DW_TAG_variant_part:
12741 case DW_TAG_enumeration_type:
12742 case DW_TAG_subroutine_type:
12743 case DW_TAG_string_type:
12744 case DW_TAG_set_type:
12745 case DW_TAG_subrange_type:
12746 case DW_TAG_ptr_to_member_type:
12747 case DW_TAG_file_type:
12748 /* It's a type node --- don't mark it. */
12749 return;
12750
12751 default:
12752 /* Mark everything else. */
12753 break;
12754 }
12755
12756 die->die_mark = 1;
12757
12758 /* Now, mark any dies referenced from here. */
12759 prune_unused_types_walk_attribs (die);
12760
12761 /* Mark children. */
12762 for (c = die->die_child; c; c = c->die_sib)
12763 prune_unused_types_walk (c);
12764 }
12765
12766
12767 /* Remove from the tree DIE any dies that aren't marked. */
12768
12769 static void
12770 prune_unused_types_prune (dw_die_ref die)
12771 {
12772 dw_die_ref c, p, n;
12773 if (!die->die_mark)
12774 abort();
12775
12776 p = NULL;
12777 for (c = die->die_child; c; c = n)
12778 {
12779 n = c->die_sib;
12780 if (c->die_mark)
12781 {
12782 prune_unused_types_prune (c);
12783 p = c;
12784 }
12785 else
12786 {
12787 if (p)
12788 p->die_sib = n;
12789 else
12790 die->die_child = n;
12791 free_die (c);
12792 }
12793 }
12794 }
12795
12796
12797 /* Remove dies representing declarations that we never use. */
12798
12799 static void
12800 prune_unused_types (void)
12801 {
12802 unsigned int i;
12803 limbo_die_node *node;
12804
12805 /* Clear all the marks. */
12806 prune_unmark_dies (comp_unit_die);
12807 for (node = limbo_die_list; node; node = node->next)
12808 prune_unmark_dies (node->die);
12809
12810 /* Set the mark on nodes that are actually used. */
12811 prune_unused_types_walk (comp_unit_die);
12812 for (node = limbo_die_list; node; node = node->next)
12813 prune_unused_types_walk (node->die);
12814
12815 /* Also set the mark on nodes referenced from the
12816 pubname_table or arange_table. */
12817 for (i = 0; i < pubname_table_in_use; i++)
12818 prune_unused_types_mark (pubname_table[i].die, 1);
12819 for (i = 0; i < arange_table_in_use; i++)
12820 prune_unused_types_mark (arange_table[i], 1);
12821
12822 /* Get rid of nodes that aren't marked. */
12823 prune_unused_types_prune (comp_unit_die);
12824 for (node = limbo_die_list; node; node = node->next)
12825 prune_unused_types_prune (node->die);
12826
12827 /* Leave the marks clear. */
12828 prune_unmark_dies (comp_unit_die);
12829 for (node = limbo_die_list; node; node = node->next)
12830 prune_unmark_dies (node->die);
12831 }
12832
12833 /* Output stuff that dwarf requires at the end of every file,
12834 and generate the DWARF-2 debugging info. */
12835
12836 static void
12837 dwarf2out_finish (const char *filename)
12838 {
12839 limbo_die_node *node, *next_node;
12840 dw_die_ref die = 0;
12841
12842 /* Add the name for the main input file now. We delayed this from
12843 dwarf2out_init to avoid complications with PCH. */
12844 add_name_attribute (comp_unit_die, filename);
12845 if (filename[0] != DIR_SEPARATOR)
12846 add_comp_dir_attribute (comp_unit_die);
12847 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
12848 {
12849 size_t i;
12850 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
12851 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
12852 /* Don't add cwd for <built-in>. */
12853 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
12854 {
12855 add_comp_dir_attribute (comp_unit_die);
12856 break;
12857 }
12858 }
12859
12860 /* Traverse the limbo die list, and add parent/child links. The only
12861 dies without parents that should be here are concrete instances of
12862 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
12863 For concrete instances, we can get the parent die from the abstract
12864 instance. */
12865 for (node = limbo_die_list; node; node = next_node)
12866 {
12867 next_node = node->next;
12868 die = node->die;
12869
12870 if (die->die_parent == NULL)
12871 {
12872 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
12873 tree context;
12874
12875 if (origin)
12876 add_child_die (origin->die_parent, die);
12877 else if (die == comp_unit_die)
12878 ;
12879 /* If this was an expression for a bound involved in a function
12880 return type, it may be a SAVE_EXPR for which we weren't able
12881 to find a DIE previously. So try now. */
12882 else if (node->created_for
12883 && TREE_CODE (node->created_for) == SAVE_EXPR
12884 && 0 != (origin = (lookup_decl_die
12885 (SAVE_EXPR_CONTEXT
12886 (node->created_for)))))
12887 add_child_die (origin, die);
12888 else if (errorcount > 0 || sorrycount > 0)
12889 /* It's OK to be confused by errors in the input. */
12890 add_child_die (comp_unit_die, die);
12891 else if (node->created_for
12892 && ((DECL_P (node->created_for)
12893 && (context = DECL_CONTEXT (node->created_for)))
12894 || (TYPE_P (node->created_for)
12895 && (context = TYPE_CONTEXT (node->created_for))))
12896 && TREE_CODE (context) == FUNCTION_DECL)
12897 {
12898 /* In certain situations, the lexical block containing a
12899 nested function can be optimized away, which results
12900 in the nested function die being orphaned. Likewise
12901 with the return type of that nested function. Force
12902 this to be a child of the containing function. */
12903 origin = lookup_decl_die (context);
12904 if (! origin)
12905 abort ();
12906 add_child_die (origin, die);
12907 }
12908 else
12909 abort ();
12910 }
12911 }
12912
12913 limbo_die_list = NULL;
12914
12915 /* Walk through the list of incomplete types again, trying once more to
12916 emit full debugging info for them. */
12917 retry_incomplete_types ();
12918
12919 /* We need to reverse all the dies before break_out_includes, or
12920 we'll see the end of an include file before the beginning. */
12921 reverse_all_dies (comp_unit_die);
12922
12923 if (flag_eliminate_unused_debug_types)
12924 prune_unused_types ();
12925
12926 /* Generate separate CUs for each of the include files we've seen.
12927 They will go into limbo_die_list. */
12928 if (flag_eliminate_dwarf2_dups)
12929 break_out_includes (comp_unit_die);
12930
12931 /* Traverse the DIE's and add add sibling attributes to those DIE's
12932 that have children. */
12933 add_sibling_attributes (comp_unit_die);
12934 for (node = limbo_die_list; node; node = node->next)
12935 add_sibling_attributes (node->die);
12936
12937 /* Output a terminator label for the .text section. */
12938 text_section ();
12939 (*targetm.asm_out.internal_label) (asm_out_file, TEXT_END_LABEL, 0);
12940
12941 /* Output the source line correspondence table. We must do this
12942 even if there is no line information. Otherwise, on an empty
12943 translation unit, we will generate a present, but empty,
12944 .debug_info section. IRIX 6.5 `nm' will then complain when
12945 examining the file. */
12946 if (! DWARF2_ASM_LINE_DEBUG_INFO)
12947 {
12948 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12949 output_line_info ();
12950 }
12951
12952 /* Output location list section if necessary. */
12953 if (have_location_lists)
12954 {
12955 /* Output the location lists info. */
12956 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
12957 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
12958 DEBUG_LOC_SECTION_LABEL, 0);
12959 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
12960 output_location_lists (die);
12961 have_location_lists = 0;
12962 }
12963
12964 /* We can only use the low/high_pc attributes if all of the code was
12965 in .text. */
12966 if (separate_line_info_table_in_use == 0)
12967 {
12968 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
12969 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
12970 }
12971
12972 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
12973 "base address". Use zero so that these addresses become absolute. */
12974 else if (have_location_lists || ranges_table_in_use)
12975 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
12976
12977 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12978 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
12979 debug_line_section_label);
12980
12981 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12982 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
12983
12984 /* Output all of the compilation units. We put the main one last so that
12985 the offsets are available to output_pubnames. */
12986 for (node = limbo_die_list; node; node = node->next)
12987 output_comp_unit (node->die, 0);
12988
12989 output_comp_unit (comp_unit_die, 0);
12990
12991 /* Output the abbreviation table. */
12992 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12993 output_abbrev_section ();
12994
12995 /* Output public names table if necessary. */
12996 if (pubname_table_in_use)
12997 {
12998 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
12999 output_pubnames ();
13000 }
13001
13002 /* Output the address range information. We only put functions in the arange
13003 table, so don't write it out if we don't have any. */
13004 if (fde_table_in_use)
13005 {
13006 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13007 output_aranges ();
13008 }
13009
13010 /* Output ranges section if necessary. */
13011 if (ranges_table_in_use)
13012 {
13013 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13014 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13015 output_ranges ();
13016 }
13017
13018 /* Have to end the primary source file. */
13019 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13020 {
13021 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13022 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13023 dw2_asm_output_data (1, 0, "End compilation unit");
13024 }
13025
13026 /* If we emitted any DW_FORM_strp form attribute, output the string
13027 table too. */
13028 if (debug_str_hash)
13029 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13030 }
13031 #else
13032
13033 /* This should never be used, but its address is needed for comparisons. */
13034 const struct gcc_debug_hooks dwarf2_debug_hooks;
13035
13036 #endif /* DWARF2_DEBUGGING_INFO */
13037
13038 #include "gt-dwarf2out.h"