c-decl.c (c_init_decl_processing): Clear input_file_name while building common nodes.
[gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "real.h"
44 #include "rtl.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "reload.h"
49 #include "function.h"
50 #include "output.h"
51 #include "expr.h"
52 #include "libfuncs.h"
53 #include "except.h"
54 #include "dwarf2.h"
55 #include "dwarf2out.h"
56 #include "dwarf2asm.h"
57 #include "toplev.h"
58 #include "varray.h"
59 #include "ggc.h"
60 #include "md5.h"
61 #include "tm_p.h"
62 #include "diagnostic.h"
63 #include "debug.h"
64 #include "target.h"
65 #include "langhooks.h"
66 #include "hashtab.h"
67
68 #ifdef DWARF2_DEBUGGING_INFO
69 static void dwarf2out_source_line PARAMS ((unsigned int, const char *));
70 #endif
71
72 /* DWARF2 Abbreviation Glossary:
73 CFA = Canonical Frame Address
74 a fixed address on the stack which identifies a call frame.
75 We define it to be the value of SP just before the call insn.
76 The CFA register and offset, which may change during the course
77 of the function, are used to calculate its value at runtime.
78 CFI = Call Frame Instruction
79 an instruction for the DWARF2 abstract machine
80 CIE = Common Information Entry
81 information describing information common to one or more FDEs
82 DIE = Debugging Information Entry
83 FDE = Frame Description Entry
84 information describing the stack call frame, in particular,
85 how to restore registers
86
87 DW_CFA_... = DWARF2 CFA call frame instruction
88 DW_TAG_... = DWARF2 DIE tag */
89
90 /* Decide whether we want to emit frame unwind information for the current
91 translation unit. */
92
93 int
94 dwarf2out_do_frame ()
95 {
96 return (write_symbols == DWARF2_DEBUG
97 || write_symbols == VMS_AND_DWARF2_DEBUG
98 #ifdef DWARF2_FRAME_INFO
99 || DWARF2_FRAME_INFO
100 #endif
101 #ifdef DWARF2_UNWIND_INFO
102 || flag_unwind_tables
103 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
104 #endif
105 );
106 }
107
108 /* The size of the target's pointer type. */
109 #ifndef PTR_SIZE
110 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
111 #endif
112
113 /* Default version of targetm.eh_frame_section. Note this must appear
114 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro
115 guards. */
116
117 void
118 default_eh_frame_section ()
119 {
120 #ifdef EH_FRAME_SECTION_NAME
121 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
122 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
123 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
124 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
125 int flags;
126
127 flags = (! flag_pic
128 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
129 && (fde_encoding & 0x70) != DW_EH_PE_aligned
130 && (per_encoding & 0x70) != DW_EH_PE_absptr
131 && (per_encoding & 0x70) != DW_EH_PE_aligned
132 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
133 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
134 ? 0 : SECTION_WRITE;
135 named_section_flags (EH_FRAME_SECTION_NAME, flags);
136 #else
137 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
138 #endif
139 #else
140 tree label = get_file_function_name ('F');
141
142 data_section ();
143 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
144 (*targetm.asm_out.globalize_label) (asm_out_file, IDENTIFIER_POINTER (label));
145 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
146 #endif
147 }
148
149 /* Array of RTXes referenced by the debugging information, which therefore
150 must be kept around forever. */
151 static GTY(()) varray_type used_rtx_varray;
152
153 /* A pointer to the base of a list of incomplete types which might be
154 completed at some later time. incomplete_types_list needs to be a VARRAY
155 because we want to tell the garbage collector about it. */
156 static GTY(()) varray_type incomplete_types;
157
158 /* A pointer to the base of a table of references to declaration
159 scopes. This table is a display which tracks the nesting
160 of declaration scopes at the current scope and containing
161 scopes. This table is used to find the proper place to
162 define type declaration DIE's. */
163 static GTY(()) varray_type decl_scope_table;
164
165 /* How to start an assembler comment. */
166 #ifndef ASM_COMMENT_START
167 #define ASM_COMMENT_START ";#"
168 #endif
169
170 typedef struct dw_cfi_struct *dw_cfi_ref;
171 typedef struct dw_fde_struct *dw_fde_ref;
172 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
173
174 /* Call frames are described using a sequence of Call Frame
175 Information instructions. The register number, offset
176 and address fields are provided as possible operands;
177 their use is selected by the opcode field. */
178
179 enum dw_cfi_oprnd_type {
180 dw_cfi_oprnd_unused,
181 dw_cfi_oprnd_reg_num,
182 dw_cfi_oprnd_offset,
183 dw_cfi_oprnd_addr,
184 dw_cfi_oprnd_loc
185 };
186
187 typedef union dw_cfi_oprnd_struct GTY(())
188 {
189 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
190 long int GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
191 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
192 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
193 }
194 dw_cfi_oprnd;
195
196 typedef struct dw_cfi_struct GTY(())
197 {
198 dw_cfi_ref dw_cfi_next;
199 enum dwarf_call_frame_info dw_cfi_opc;
200 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
201 dw_cfi_oprnd1;
202 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
203 dw_cfi_oprnd2;
204 }
205 dw_cfi_node;
206
207 /* This is how we define the location of the CFA. We use to handle it
208 as REG + OFFSET all the time, but now it can be more complex.
209 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
210 Instead of passing around REG and OFFSET, we pass a copy
211 of this structure. */
212 typedef struct cfa_loc GTY(())
213 {
214 unsigned long reg;
215 long offset;
216 long base_offset;
217 int indirect; /* 1 if CFA is accessed via a dereference. */
218 } dw_cfa_location;
219
220 /* All call frame descriptions (FDE's) in the GCC generated DWARF
221 refer to a single Common Information Entry (CIE), defined at
222 the beginning of the .debug_frame section. This use of a single
223 CIE obviates the need to keep track of multiple CIE's
224 in the DWARF generation routines below. */
225
226 typedef struct dw_fde_struct GTY(())
227 {
228 const char *dw_fde_begin;
229 const char *dw_fde_current_label;
230 const char *dw_fde_end;
231 dw_cfi_ref dw_fde_cfi;
232 unsigned funcdef_number;
233 unsigned all_throwers_are_sibcalls : 1;
234 unsigned nothrow : 1;
235 unsigned uses_eh_lsda : 1;
236 }
237 dw_fde_node;
238
239 /* Maximum size (in bytes) of an artificially generated label. */
240 #define MAX_ARTIFICIAL_LABEL_BYTES 30
241
242 /* The size of addresses as they appear in the Dwarf 2 data.
243 Some architectures use word addresses to refer to code locations,
244 but Dwarf 2 info always uses byte addresses. On such machines,
245 Dwarf 2 addresses need to be larger than the architecture's
246 pointers. */
247 #ifndef DWARF2_ADDR_SIZE
248 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
249 #endif
250
251 /* The size in bytes of a DWARF field indicating an offset or length
252 relative to a debug info section, specified to be 4 bytes in the
253 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
254 as PTR_SIZE. */
255
256 #ifndef DWARF_OFFSET_SIZE
257 #define DWARF_OFFSET_SIZE 4
258 #endif
259
260 /* According to the (draft) DWARF 3 specification, the initial length
261 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
262 bytes are 0xffffffff, followed by the length stored in the next 8
263 bytes.
264
265 However, the SGI/MIPS ABI uses an initial length which is equal to
266 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
267
268 #ifndef DWARF_INITIAL_LENGTH_SIZE
269 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
270 #endif
271
272 #define DWARF_VERSION 2
273
274 /* Round SIZE up to the nearest BOUNDARY. */
275 #define DWARF_ROUND(SIZE,BOUNDARY) \
276 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
277
278 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
279 #ifndef DWARF_CIE_DATA_ALIGNMENT
280 #ifdef STACK_GROWS_DOWNWARD
281 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
282 #else
283 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
284 #endif
285 #endif
286
287 /* A pointer to the base of a table that contains frame description
288 information for each routine. */
289 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
290
291 /* Number of elements currently allocated for fde_table. */
292 static GTY(()) unsigned fde_table_allocated;
293
294 /* Number of elements in fde_table currently in use. */
295 static GTY(()) unsigned fde_table_in_use;
296
297 /* Size (in elements) of increments by which we may expand the
298 fde_table. */
299 #define FDE_TABLE_INCREMENT 256
300
301 /* A list of call frame insns for the CIE. */
302 static GTY(()) dw_cfi_ref cie_cfi_head;
303
304 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
305 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
306 attribute that accelerates the lookup of the FDE associated
307 with the subprogram. This variable holds the table index of the FDE
308 associated with the current function (body) definition. */
309 static unsigned current_funcdef_fde;
310 #endif
311
312 struct indirect_string_node GTY(())
313 {
314 const char *str;
315 unsigned int refcount;
316 unsigned int form;
317 char *label;
318 };
319
320 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
321
322 static GTY(()) int dw2_string_counter;
323 static GTY(()) unsigned long dwarf2out_cfi_label_num;
324
325 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
326
327 /* Forward declarations for functions defined in this file. */
328
329 static char *stripattributes PARAMS ((const char *));
330 static const char *dwarf_cfi_name PARAMS ((unsigned));
331 static dw_cfi_ref new_cfi PARAMS ((void));
332 static void add_cfi PARAMS ((dw_cfi_ref *, dw_cfi_ref));
333 static void add_fde_cfi PARAMS ((const char *, dw_cfi_ref));
334 static void lookup_cfa_1 PARAMS ((dw_cfi_ref,
335 dw_cfa_location *));
336 static void lookup_cfa PARAMS ((dw_cfa_location *));
337 static void reg_save PARAMS ((const char *, unsigned,
338 unsigned, long));
339 static void initial_return_save PARAMS ((rtx));
340 static long stack_adjust_offset PARAMS ((rtx));
341 static void output_cfi PARAMS ((dw_cfi_ref, dw_fde_ref, int));
342 static void output_call_frame_info PARAMS ((int));
343 static void dwarf2out_stack_adjust PARAMS ((rtx));
344 static void queue_reg_save PARAMS ((const char *, rtx, long));
345 static void flush_queued_reg_saves PARAMS ((void));
346 static bool clobbers_queued_reg_save PARAMS ((rtx));
347 static void dwarf2out_frame_debug_expr PARAMS ((rtx, const char *));
348
349 /* Support for complex CFA locations. */
350 static void output_cfa_loc PARAMS ((dw_cfi_ref));
351 static void get_cfa_from_loc_descr PARAMS ((dw_cfa_location *,
352 struct dw_loc_descr_struct *));
353 static struct dw_loc_descr_struct *build_cfa_loc
354 PARAMS ((dw_cfa_location *));
355 static void def_cfa_1 PARAMS ((const char *,
356 dw_cfa_location *));
357
358 /* How to start an assembler comment. */
359 #ifndef ASM_COMMENT_START
360 #define ASM_COMMENT_START ";#"
361 #endif
362
363 /* Data and reference forms for relocatable data. */
364 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
365 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
366
367 #ifndef DEBUG_FRAME_SECTION
368 #define DEBUG_FRAME_SECTION ".debug_frame"
369 #endif
370
371 #ifndef FUNC_BEGIN_LABEL
372 #define FUNC_BEGIN_LABEL "LFB"
373 #endif
374
375 #ifndef FUNC_END_LABEL
376 #define FUNC_END_LABEL "LFE"
377 #endif
378
379 #define FRAME_BEGIN_LABEL "Lframe"
380 #define CIE_AFTER_SIZE_LABEL "LSCIE"
381 #define CIE_END_LABEL "LECIE"
382 #define FDE_LABEL "LSFDE"
383 #define FDE_AFTER_SIZE_LABEL "LASFDE"
384 #define FDE_END_LABEL "LEFDE"
385 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
386 #define LINE_NUMBER_END_LABEL "LELT"
387 #define LN_PROLOG_AS_LABEL "LASLTP"
388 #define LN_PROLOG_END_LABEL "LELTP"
389 #define DIE_LABEL_PREFIX "DW"
390
391 /* The DWARF 2 CFA column which tracks the return address. Normally this
392 is the column for PC, or the first column after all of the hard
393 registers. */
394 #ifndef DWARF_FRAME_RETURN_COLUMN
395 #ifdef PC_REGNUM
396 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
397 #else
398 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
399 #endif
400 #endif
401
402 /* The mapping from gcc register number to DWARF 2 CFA column number. By
403 default, we just provide columns for all registers. */
404 #ifndef DWARF_FRAME_REGNUM
405 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
406 #endif
407
408 /* The offset from the incoming value of %sp to the top of the stack frame
409 for the current function. */
410 #ifndef INCOMING_FRAME_SP_OFFSET
411 #define INCOMING_FRAME_SP_OFFSET 0
412 #endif
413 \f
414 /* Hook used by __throw. */
415
416 rtx
417 expand_builtin_dwarf_sp_column ()
418 {
419 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
420 }
421
422 /* Return a pointer to a copy of the section string name S with all
423 attributes stripped off, and an asterisk prepended (for assemble_name). */
424
425 static inline char *
426 stripattributes (s)
427 const char *s;
428 {
429 char *stripped = xmalloc (strlen (s) + 2);
430 char *p = stripped;
431
432 *p++ = '*';
433
434 while (*s && *s != ',')
435 *p++ = *s++;
436
437 *p = '\0';
438 return stripped;
439 }
440
441 /* Generate code to initialize the register size table. */
442
443 void
444 expand_builtin_init_dwarf_reg_sizes (address)
445 tree address;
446 {
447 int i;
448 enum machine_mode mode = TYPE_MODE (char_type_node);
449 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
450 rtx mem = gen_rtx_MEM (BLKmode, addr);
451
452 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
453 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
454 {
455 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
456 HOST_WIDE_INT size = GET_MODE_SIZE (reg_raw_mode[i]);
457
458 if (offset < 0)
459 continue;
460
461 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
462 }
463 }
464
465 /* Convert a DWARF call frame info. operation to its string name */
466
467 static const char *
468 dwarf_cfi_name (cfi_opc)
469 unsigned cfi_opc;
470 {
471 switch (cfi_opc)
472 {
473 case DW_CFA_advance_loc:
474 return "DW_CFA_advance_loc";
475 case DW_CFA_offset:
476 return "DW_CFA_offset";
477 case DW_CFA_restore:
478 return "DW_CFA_restore";
479 case DW_CFA_nop:
480 return "DW_CFA_nop";
481 case DW_CFA_set_loc:
482 return "DW_CFA_set_loc";
483 case DW_CFA_advance_loc1:
484 return "DW_CFA_advance_loc1";
485 case DW_CFA_advance_loc2:
486 return "DW_CFA_advance_loc2";
487 case DW_CFA_advance_loc4:
488 return "DW_CFA_advance_loc4";
489 case DW_CFA_offset_extended:
490 return "DW_CFA_offset_extended";
491 case DW_CFA_restore_extended:
492 return "DW_CFA_restore_extended";
493 case DW_CFA_undefined:
494 return "DW_CFA_undefined";
495 case DW_CFA_same_value:
496 return "DW_CFA_same_value";
497 case DW_CFA_register:
498 return "DW_CFA_register";
499 case DW_CFA_remember_state:
500 return "DW_CFA_remember_state";
501 case DW_CFA_restore_state:
502 return "DW_CFA_restore_state";
503 case DW_CFA_def_cfa:
504 return "DW_CFA_def_cfa";
505 case DW_CFA_def_cfa_register:
506 return "DW_CFA_def_cfa_register";
507 case DW_CFA_def_cfa_offset:
508 return "DW_CFA_def_cfa_offset";
509
510 /* DWARF 3 */
511 case DW_CFA_def_cfa_expression:
512 return "DW_CFA_def_cfa_expression";
513 case DW_CFA_expression:
514 return "DW_CFA_expression";
515 case DW_CFA_offset_extended_sf:
516 return "DW_CFA_offset_extended_sf";
517 case DW_CFA_def_cfa_sf:
518 return "DW_CFA_def_cfa_sf";
519 case DW_CFA_def_cfa_offset_sf:
520 return "DW_CFA_def_cfa_offset_sf";
521
522 /* SGI/MIPS specific */
523 case DW_CFA_MIPS_advance_loc8:
524 return "DW_CFA_MIPS_advance_loc8";
525
526 /* GNU extensions */
527 case DW_CFA_GNU_window_save:
528 return "DW_CFA_GNU_window_save";
529 case DW_CFA_GNU_args_size:
530 return "DW_CFA_GNU_args_size";
531 case DW_CFA_GNU_negative_offset_extended:
532 return "DW_CFA_GNU_negative_offset_extended";
533
534 default:
535 return "DW_CFA_<unknown>";
536 }
537 }
538
539 /* Return a pointer to a newly allocated Call Frame Instruction. */
540
541 static inline dw_cfi_ref
542 new_cfi ()
543 {
544 dw_cfi_ref cfi = (dw_cfi_ref) ggc_alloc (sizeof (dw_cfi_node));
545
546 cfi->dw_cfi_next = NULL;
547 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
548 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
549
550 return cfi;
551 }
552
553 /* Add a Call Frame Instruction to list of instructions. */
554
555 static inline void
556 add_cfi (list_head, cfi)
557 dw_cfi_ref *list_head;
558 dw_cfi_ref cfi;
559 {
560 dw_cfi_ref *p;
561
562 /* Find the end of the chain. */
563 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
564 ;
565
566 *p = cfi;
567 }
568
569 /* Generate a new label for the CFI info to refer to. */
570
571 char *
572 dwarf2out_cfi_label ()
573 {
574 static char label[20];
575
576 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
577 ASM_OUTPUT_LABEL (asm_out_file, label);
578 return label;
579 }
580
581 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
582 or to the CIE if LABEL is NULL. */
583
584 static void
585 add_fde_cfi (label, cfi)
586 const char *label;
587 dw_cfi_ref cfi;
588 {
589 if (label)
590 {
591 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
592
593 if (*label == 0)
594 label = dwarf2out_cfi_label ();
595
596 if (fde->dw_fde_current_label == NULL
597 || strcmp (label, fde->dw_fde_current_label) != 0)
598 {
599 dw_cfi_ref xcfi;
600
601 fde->dw_fde_current_label = label = xstrdup (label);
602
603 /* Set the location counter to the new label. */
604 xcfi = new_cfi ();
605 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
606 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
607 add_cfi (&fde->dw_fde_cfi, xcfi);
608 }
609
610 add_cfi (&fde->dw_fde_cfi, cfi);
611 }
612
613 else
614 add_cfi (&cie_cfi_head, cfi);
615 }
616
617 /* Subroutine of lookup_cfa. */
618
619 static inline void
620 lookup_cfa_1 (cfi, loc)
621 dw_cfi_ref cfi;
622 dw_cfa_location *loc;
623 {
624 switch (cfi->dw_cfi_opc)
625 {
626 case DW_CFA_def_cfa_offset:
627 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
628 break;
629 case DW_CFA_def_cfa_register:
630 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
631 break;
632 case DW_CFA_def_cfa:
633 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
634 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
635 break;
636 case DW_CFA_def_cfa_expression:
637 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
638 break;
639 default:
640 break;
641 }
642 }
643
644 /* Find the previous value for the CFA. */
645
646 static void
647 lookup_cfa (loc)
648 dw_cfa_location *loc;
649 {
650 dw_cfi_ref cfi;
651
652 loc->reg = (unsigned long) -1;
653 loc->offset = 0;
654 loc->indirect = 0;
655 loc->base_offset = 0;
656
657 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
658 lookup_cfa_1 (cfi, loc);
659
660 if (fde_table_in_use)
661 {
662 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
663 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
664 lookup_cfa_1 (cfi, loc);
665 }
666 }
667
668 /* The current rule for calculating the DWARF2 canonical frame address. */
669 static dw_cfa_location cfa;
670
671 /* The register used for saving registers to the stack, and its offset
672 from the CFA. */
673 static dw_cfa_location cfa_store;
674
675 /* The running total of the size of arguments pushed onto the stack. */
676 static long args_size;
677
678 /* The last args_size we actually output. */
679 static long old_args_size;
680
681 /* Entry point to update the canonical frame address (CFA).
682 LABEL is passed to add_fde_cfi. The value of CFA is now to be
683 calculated from REG+OFFSET. */
684
685 void
686 dwarf2out_def_cfa (label, reg, offset)
687 const char *label;
688 unsigned reg;
689 long offset;
690 {
691 dw_cfa_location loc;
692 loc.indirect = 0;
693 loc.base_offset = 0;
694 loc.reg = reg;
695 loc.offset = offset;
696 def_cfa_1 (label, &loc);
697 }
698
699 /* This routine does the actual work. The CFA is now calculated from
700 the dw_cfa_location structure. */
701
702 static void
703 def_cfa_1 (label, loc_p)
704 const char *label;
705 dw_cfa_location *loc_p;
706 {
707 dw_cfi_ref cfi;
708 dw_cfa_location old_cfa, loc;
709
710 cfa = *loc_p;
711 loc = *loc_p;
712
713 if (cfa_store.reg == loc.reg && loc.indirect == 0)
714 cfa_store.offset = loc.offset;
715
716 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
717 lookup_cfa (&old_cfa);
718
719 /* If nothing changed, no need to issue any call frame instructions. */
720 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
721 && loc.indirect == old_cfa.indirect
722 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
723 return;
724
725 cfi = new_cfi ();
726
727 if (loc.reg == old_cfa.reg && !loc.indirect)
728 {
729 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
730 indicating the CFA register did not change but the offset
731 did. */
732 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
733 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
734 }
735
736 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
737 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
738 && !loc.indirect)
739 {
740 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
741 indicating the CFA register has changed to <register> but the
742 offset has not changed. */
743 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
744 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
745 }
746 #endif
747
748 else if (loc.indirect == 0)
749 {
750 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
751 indicating the CFA register has changed to <register> with
752 the specified offset. */
753 cfi->dw_cfi_opc = DW_CFA_def_cfa;
754 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
755 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
756 }
757 else
758 {
759 /* Construct a DW_CFA_def_cfa_expression instruction to
760 calculate the CFA using a full location expression since no
761 register-offset pair is available. */
762 struct dw_loc_descr_struct *loc_list;
763
764 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
765 loc_list = build_cfa_loc (&loc);
766 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
767 }
768
769 add_fde_cfi (label, cfi);
770 }
771
772 /* Add the CFI for saving a register. REG is the CFA column number.
773 LABEL is passed to add_fde_cfi.
774 If SREG is -1, the register is saved at OFFSET from the CFA;
775 otherwise it is saved in SREG. */
776
777 static void
778 reg_save (label, reg, sreg, offset)
779 const char *label;
780 unsigned reg;
781 unsigned sreg;
782 long offset;
783 {
784 dw_cfi_ref cfi = new_cfi ();
785
786 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
787
788 /* The following comparison is correct. -1 is used to indicate that
789 the value isn't a register number. */
790 if (sreg == (unsigned int) -1)
791 {
792 if (reg & ~0x3f)
793 /* The register number won't fit in 6 bits, so we have to use
794 the long form. */
795 cfi->dw_cfi_opc = DW_CFA_offset_extended;
796 else
797 cfi->dw_cfi_opc = DW_CFA_offset;
798
799 #ifdef ENABLE_CHECKING
800 {
801 /* If we get an offset that is not a multiple of
802 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
803 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
804 description. */
805 long check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
806
807 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
808 abort ();
809 }
810 #endif
811 offset /= DWARF_CIE_DATA_ALIGNMENT;
812 if (offset < 0)
813 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
814
815 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
816 }
817 else if (sreg == reg)
818 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
819 return;
820 else
821 {
822 cfi->dw_cfi_opc = DW_CFA_register;
823 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
824 }
825
826 add_fde_cfi (label, cfi);
827 }
828
829 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
830 This CFI tells the unwinder that it needs to restore the window registers
831 from the previous frame's window save area.
832
833 ??? Perhaps we should note in the CIE where windows are saved (instead of
834 assuming 0(cfa)) and what registers are in the window. */
835
836 void
837 dwarf2out_window_save (label)
838 const char *label;
839 {
840 dw_cfi_ref cfi = new_cfi ();
841
842 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
843 add_fde_cfi (label, cfi);
844 }
845
846 /* Add a CFI to update the running total of the size of arguments
847 pushed onto the stack. */
848
849 void
850 dwarf2out_args_size (label, size)
851 const char *label;
852 long size;
853 {
854 dw_cfi_ref cfi;
855
856 if (size == old_args_size)
857 return;
858
859 old_args_size = size;
860
861 cfi = new_cfi ();
862 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
863 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
864 add_fde_cfi (label, cfi);
865 }
866
867 /* Entry point for saving a register to the stack. REG is the GCC register
868 number. LABEL and OFFSET are passed to reg_save. */
869
870 void
871 dwarf2out_reg_save (label, reg, offset)
872 const char *label;
873 unsigned reg;
874 long offset;
875 {
876 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
877 }
878
879 /* Entry point for saving the return address in the stack.
880 LABEL and OFFSET are passed to reg_save. */
881
882 void
883 dwarf2out_return_save (label, offset)
884 const char *label;
885 long offset;
886 {
887 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
888 }
889
890 /* Entry point for saving the return address in a register.
891 LABEL and SREG are passed to reg_save. */
892
893 void
894 dwarf2out_return_reg (label, sreg)
895 const char *label;
896 unsigned sreg;
897 {
898 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
899 }
900
901 /* Record the initial position of the return address. RTL is
902 INCOMING_RETURN_ADDR_RTX. */
903
904 static void
905 initial_return_save (rtl)
906 rtx rtl;
907 {
908 unsigned int reg = (unsigned int) -1;
909 HOST_WIDE_INT offset = 0;
910
911 switch (GET_CODE (rtl))
912 {
913 case REG:
914 /* RA is in a register. */
915 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
916 break;
917
918 case MEM:
919 /* RA is on the stack. */
920 rtl = XEXP (rtl, 0);
921 switch (GET_CODE (rtl))
922 {
923 case REG:
924 if (REGNO (rtl) != STACK_POINTER_REGNUM)
925 abort ();
926 offset = 0;
927 break;
928
929 case PLUS:
930 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
931 abort ();
932 offset = INTVAL (XEXP (rtl, 1));
933 break;
934
935 case MINUS:
936 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
937 abort ();
938 offset = -INTVAL (XEXP (rtl, 1));
939 break;
940
941 default:
942 abort ();
943 }
944
945 break;
946
947 case PLUS:
948 /* The return address is at some offset from any value we can
949 actually load. For instance, on the SPARC it is in %i7+8. Just
950 ignore the offset for now; it doesn't matter for unwinding frames. */
951 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
952 abort ();
953 initial_return_save (XEXP (rtl, 0));
954 return;
955
956 default:
957 abort ();
958 }
959
960 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
961 }
962
963 /* Given a SET, calculate the amount of stack adjustment it
964 contains. */
965
966 static long
967 stack_adjust_offset (pattern)
968 rtx pattern;
969 {
970 rtx src = SET_SRC (pattern);
971 rtx dest = SET_DEST (pattern);
972 HOST_WIDE_INT offset = 0;
973 enum rtx_code code;
974
975 if (dest == stack_pointer_rtx)
976 {
977 /* (set (reg sp) (plus (reg sp) (const_int))) */
978 code = GET_CODE (src);
979 if (! (code == PLUS || code == MINUS)
980 || XEXP (src, 0) != stack_pointer_rtx
981 || GET_CODE (XEXP (src, 1)) != CONST_INT)
982 return 0;
983
984 offset = INTVAL (XEXP (src, 1));
985 if (code == PLUS)
986 offset = -offset;
987 }
988 else if (GET_CODE (dest) == MEM)
989 {
990 /* (set (mem (pre_dec (reg sp))) (foo)) */
991 src = XEXP (dest, 0);
992 code = GET_CODE (src);
993
994 switch (code)
995 {
996 case PRE_MODIFY:
997 case POST_MODIFY:
998 if (XEXP (src, 0) == stack_pointer_rtx)
999 {
1000 rtx val = XEXP (XEXP (src, 1), 1);
1001 /* We handle only adjustments by constant amount. */
1002 if (GET_CODE (XEXP (src, 1)) != PLUS ||
1003 GET_CODE (val) != CONST_INT)
1004 abort ();
1005 offset = -INTVAL (val);
1006 break;
1007 }
1008 return 0;
1009
1010 case PRE_DEC:
1011 case POST_DEC:
1012 if (XEXP (src, 0) == stack_pointer_rtx)
1013 {
1014 offset = GET_MODE_SIZE (GET_MODE (dest));
1015 break;
1016 }
1017 return 0;
1018
1019 case PRE_INC:
1020 case POST_INC:
1021 if (XEXP (src, 0) == stack_pointer_rtx)
1022 {
1023 offset = -GET_MODE_SIZE (GET_MODE (dest));
1024 break;
1025 }
1026 return 0;
1027
1028 default:
1029 return 0;
1030 }
1031 }
1032 else
1033 return 0;
1034
1035 return offset;
1036 }
1037
1038 /* Check INSN to see if it looks like a push or a stack adjustment, and
1039 make a note of it if it does. EH uses this information to find out how
1040 much extra space it needs to pop off the stack. */
1041
1042 static void
1043 dwarf2out_stack_adjust (insn)
1044 rtx insn;
1045 {
1046 HOST_WIDE_INT offset;
1047 const char *label;
1048 int i;
1049
1050 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1051 {
1052 /* Extract the size of the args from the CALL rtx itself. */
1053 insn = PATTERN (insn);
1054 if (GET_CODE (insn) == PARALLEL)
1055 insn = XVECEXP (insn, 0, 0);
1056 if (GET_CODE (insn) == SET)
1057 insn = SET_SRC (insn);
1058 if (GET_CODE (insn) != CALL)
1059 abort ();
1060
1061 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1062 return;
1063 }
1064
1065 /* If only calls can throw, and we have a frame pointer,
1066 save up adjustments until we see the CALL_INSN. */
1067 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1068 return;
1069
1070 if (GET_CODE (insn) == BARRIER)
1071 {
1072 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1073 the compiler will have already emitted a stack adjustment, but
1074 doesn't bother for calls to noreturn functions. */
1075 #ifdef STACK_GROWS_DOWNWARD
1076 offset = -args_size;
1077 #else
1078 offset = args_size;
1079 #endif
1080 }
1081 else if (GET_CODE (PATTERN (insn)) == SET)
1082 offset = stack_adjust_offset (PATTERN (insn));
1083 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1084 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1085 {
1086 /* There may be stack adjustments inside compound insns. Search
1087 for them. */
1088 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1089 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1090 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1091 }
1092 else
1093 return;
1094
1095 if (offset == 0)
1096 return;
1097
1098 if (cfa.reg == STACK_POINTER_REGNUM)
1099 cfa.offset += offset;
1100
1101 #ifndef STACK_GROWS_DOWNWARD
1102 offset = -offset;
1103 #endif
1104
1105 args_size += offset;
1106 if (args_size < 0)
1107 args_size = 0;
1108
1109 label = dwarf2out_cfi_label ();
1110 def_cfa_1 (label, &cfa);
1111 dwarf2out_args_size (label, args_size);
1112 }
1113
1114 #endif
1115
1116 /* We delay emitting a register save until either (a) we reach the end
1117 of the prologue or (b) the register is clobbered. This clusters
1118 register saves so that there are fewer pc advances. */
1119
1120 struct queued_reg_save GTY(())
1121 {
1122 struct queued_reg_save *next;
1123 rtx reg;
1124 long cfa_offset;
1125 };
1126
1127 static GTY(()) struct queued_reg_save *queued_reg_saves;
1128
1129 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1130 static const char *last_reg_save_label;
1131
1132 static void
1133 queue_reg_save (label, reg, offset)
1134 const char *label;
1135 rtx reg;
1136 long offset;
1137 {
1138 struct queued_reg_save *q = ggc_alloc (sizeof (*q));
1139
1140 q->next = queued_reg_saves;
1141 q->reg = reg;
1142 q->cfa_offset = offset;
1143 queued_reg_saves = q;
1144
1145 last_reg_save_label = label;
1146 }
1147
1148 static void
1149 flush_queued_reg_saves ()
1150 {
1151 struct queued_reg_save *q, *next;
1152
1153 for (q = queued_reg_saves; q; q = next)
1154 {
1155 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1156 next = q->next;
1157 }
1158
1159 queued_reg_saves = NULL;
1160 last_reg_save_label = NULL;
1161 }
1162
1163 static bool
1164 clobbers_queued_reg_save (insn)
1165 rtx insn;
1166 {
1167 struct queued_reg_save *q;
1168
1169 for (q = queued_reg_saves; q; q = q->next)
1170 if (modified_in_p (q->reg, insn))
1171 return true;
1172
1173 return false;
1174 }
1175
1176
1177 /* A temporary register holding an integral value used in adjusting SP
1178 or setting up the store_reg. The "offset" field holds the integer
1179 value, not an offset. */
1180 static dw_cfa_location cfa_temp;
1181
1182 /* Record call frame debugging information for an expression EXPR,
1183 which either sets SP or FP (adjusting how we calculate the frame
1184 address) or saves a register to the stack. LABEL indicates the
1185 address of EXPR.
1186
1187 This function encodes a state machine mapping rtxes to actions on
1188 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1189 users need not read the source code.
1190
1191 The High-Level Picture
1192
1193 Changes in the register we use to calculate the CFA: Currently we
1194 assume that if you copy the CFA register into another register, we
1195 should take the other one as the new CFA register; this seems to
1196 work pretty well. If it's wrong for some target, it's simple
1197 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1198
1199 Changes in the register we use for saving registers to the stack:
1200 This is usually SP, but not always. Again, we deduce that if you
1201 copy SP into another register (and SP is not the CFA register),
1202 then the new register is the one we will be using for register
1203 saves. This also seems to work.
1204
1205 Register saves: There's not much guesswork about this one; if
1206 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1207 register save, and the register used to calculate the destination
1208 had better be the one we think we're using for this purpose.
1209
1210 Except: If the register being saved is the CFA register, and the
1211 offset is nonzero, we are saving the CFA, so we assume we have to
1212 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1213 the intent is to save the value of SP from the previous frame.
1214
1215 Invariants / Summaries of Rules
1216
1217 cfa current rule for calculating the CFA. It usually
1218 consists of a register and an offset.
1219 cfa_store register used by prologue code to save things to the stack
1220 cfa_store.offset is the offset from the value of
1221 cfa_store.reg to the actual CFA
1222 cfa_temp register holding an integral value. cfa_temp.offset
1223 stores the value, which will be used to adjust the
1224 stack pointer. cfa_temp is also used like cfa_store,
1225 to track stores to the stack via fp or a temp reg.
1226
1227 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1228 with cfa.reg as the first operand changes the cfa.reg and its
1229 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1230 cfa_temp.offset.
1231
1232 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1233 expression yielding a constant. This sets cfa_temp.reg
1234 and cfa_temp.offset.
1235
1236 Rule 5: Create a new register cfa_store used to save items to the
1237 stack.
1238
1239 Rules 10-14: Save a register to the stack. Define offset as the
1240 difference of the original location and cfa_store's
1241 location (or cfa_temp's location if cfa_temp is used).
1242
1243 The Rules
1244
1245 "{a,b}" indicates a choice of a xor b.
1246 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1247
1248 Rule 1:
1249 (set <reg1> <reg2>:cfa.reg)
1250 effects: cfa.reg = <reg1>
1251 cfa.offset unchanged
1252 cfa_temp.reg = <reg1>
1253 cfa_temp.offset = cfa.offset
1254
1255 Rule 2:
1256 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1257 {<const_int>,<reg>:cfa_temp.reg}))
1258 effects: cfa.reg = sp if fp used
1259 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1260 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1261 if cfa_store.reg==sp
1262
1263 Rule 3:
1264 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1265 effects: cfa.reg = fp
1266 cfa_offset += +/- <const_int>
1267
1268 Rule 4:
1269 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1270 constraints: <reg1> != fp
1271 <reg1> != sp
1272 effects: cfa.reg = <reg1>
1273 cfa_temp.reg = <reg1>
1274 cfa_temp.offset = cfa.offset
1275
1276 Rule 5:
1277 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1278 constraints: <reg1> != fp
1279 <reg1> != sp
1280 effects: cfa_store.reg = <reg1>
1281 cfa_store.offset = cfa.offset - cfa_temp.offset
1282
1283 Rule 6:
1284 (set <reg> <const_int>)
1285 effects: cfa_temp.reg = <reg>
1286 cfa_temp.offset = <const_int>
1287
1288 Rule 7:
1289 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1290 effects: cfa_temp.reg = <reg1>
1291 cfa_temp.offset |= <const_int>
1292
1293 Rule 8:
1294 (set <reg> (high <exp>))
1295 effects: none
1296
1297 Rule 9:
1298 (set <reg> (lo_sum <exp> <const_int>))
1299 effects: cfa_temp.reg = <reg>
1300 cfa_temp.offset = <const_int>
1301
1302 Rule 10:
1303 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1304 effects: cfa_store.offset -= <const_int>
1305 cfa.offset = cfa_store.offset if cfa.reg == sp
1306 cfa.reg = sp
1307 cfa.base_offset = -cfa_store.offset
1308
1309 Rule 11:
1310 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1311 effects: cfa_store.offset += -/+ mode_size(mem)
1312 cfa.offset = cfa_store.offset if cfa.reg == sp
1313 cfa.reg = sp
1314 cfa.base_offset = -cfa_store.offset
1315
1316 Rule 12:
1317 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1318
1319 <reg2>)
1320 effects: cfa.reg = <reg1>
1321 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1322
1323 Rule 13:
1324 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1325 effects: cfa.reg = <reg1>
1326 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1327
1328 Rule 14:
1329 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1330 effects: cfa.reg = <reg1>
1331 cfa.base_offset = -cfa_temp.offset
1332 cfa_temp.offset -= mode_size(mem) */
1333
1334 static void
1335 dwarf2out_frame_debug_expr (expr, label)
1336 rtx expr;
1337 const char *label;
1338 {
1339 rtx src, dest;
1340 HOST_WIDE_INT offset;
1341
1342 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1343 the PARALLEL independently. The first element is always processed if
1344 it is a SET. This is for backward compatibility. Other elements
1345 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1346 flag is set in them. */
1347 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1348 {
1349 int par_index;
1350 int limit = XVECLEN (expr, 0);
1351
1352 for (par_index = 0; par_index < limit; par_index++)
1353 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1354 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1355 || par_index == 0))
1356 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1357
1358 return;
1359 }
1360
1361 if (GET_CODE (expr) != SET)
1362 abort ();
1363
1364 src = SET_SRC (expr);
1365 dest = SET_DEST (expr);
1366
1367 switch (GET_CODE (dest))
1368 {
1369 case REG:
1370 /* Rule 1 */
1371 /* Update the CFA rule wrt SP or FP. Make sure src is
1372 relative to the current CFA register. */
1373 switch (GET_CODE (src))
1374 {
1375 /* Setting FP from SP. */
1376 case REG:
1377 if (cfa.reg == (unsigned) REGNO (src))
1378 /* OK. */
1379 ;
1380 else
1381 abort ();
1382
1383 /* We used to require that dest be either SP or FP, but the
1384 ARM copies SP to a temporary register, and from there to
1385 FP. So we just rely on the backends to only set
1386 RTX_FRAME_RELATED_P on appropriate insns. */
1387 cfa.reg = REGNO (dest);
1388 cfa_temp.reg = cfa.reg;
1389 cfa_temp.offset = cfa.offset;
1390 break;
1391
1392 case PLUS:
1393 case MINUS:
1394 case LO_SUM:
1395 if (dest == stack_pointer_rtx)
1396 {
1397 /* Rule 2 */
1398 /* Adjusting SP. */
1399 switch (GET_CODE (XEXP (src, 1)))
1400 {
1401 case CONST_INT:
1402 offset = INTVAL (XEXP (src, 1));
1403 break;
1404 case REG:
1405 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1406 abort ();
1407 offset = cfa_temp.offset;
1408 break;
1409 default:
1410 abort ();
1411 }
1412
1413 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1414 {
1415 /* Restoring SP from FP in the epilogue. */
1416 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1417 abort ();
1418 cfa.reg = STACK_POINTER_REGNUM;
1419 }
1420 else if (GET_CODE (src) == LO_SUM)
1421 /* Assume we've set the source reg of the LO_SUM from sp. */
1422 ;
1423 else if (XEXP (src, 0) != stack_pointer_rtx)
1424 abort ();
1425
1426 if (GET_CODE (src) != MINUS)
1427 offset = -offset;
1428 if (cfa.reg == STACK_POINTER_REGNUM)
1429 cfa.offset += offset;
1430 if (cfa_store.reg == STACK_POINTER_REGNUM)
1431 cfa_store.offset += offset;
1432 }
1433 else if (dest == hard_frame_pointer_rtx)
1434 {
1435 /* Rule 3 */
1436 /* Either setting the FP from an offset of the SP,
1437 or adjusting the FP */
1438 if (! frame_pointer_needed)
1439 abort ();
1440
1441 if (GET_CODE (XEXP (src, 0)) == REG
1442 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1443 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1444 {
1445 offset = INTVAL (XEXP (src, 1));
1446 if (GET_CODE (src) != MINUS)
1447 offset = -offset;
1448 cfa.offset += offset;
1449 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1450 }
1451 else
1452 abort ();
1453 }
1454 else
1455 {
1456 if (GET_CODE (src) == MINUS)
1457 abort ();
1458
1459 /* Rule 4 */
1460 if (GET_CODE (XEXP (src, 0)) == REG
1461 && REGNO (XEXP (src, 0)) == cfa.reg
1462 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1463 {
1464 /* Setting a temporary CFA register that will be copied
1465 into the FP later on. */
1466 offset = - INTVAL (XEXP (src, 1));
1467 cfa.offset += offset;
1468 cfa.reg = REGNO (dest);
1469 /* Or used to save regs to the stack. */
1470 cfa_temp.reg = cfa.reg;
1471 cfa_temp.offset = cfa.offset;
1472 }
1473
1474 /* Rule 5 */
1475 else if (GET_CODE (XEXP (src, 0)) == REG
1476 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1477 && XEXP (src, 1) == stack_pointer_rtx)
1478 {
1479 /* Setting a scratch register that we will use instead
1480 of SP for saving registers to the stack. */
1481 if (cfa.reg != STACK_POINTER_REGNUM)
1482 abort ();
1483 cfa_store.reg = REGNO (dest);
1484 cfa_store.offset = cfa.offset - cfa_temp.offset;
1485 }
1486
1487 /* Rule 9 */
1488 else if (GET_CODE (src) == LO_SUM
1489 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1490 {
1491 cfa_temp.reg = REGNO (dest);
1492 cfa_temp.offset = INTVAL (XEXP (src, 1));
1493 }
1494 else
1495 abort ();
1496 }
1497 break;
1498
1499 /* Rule 6 */
1500 case CONST_INT:
1501 cfa_temp.reg = REGNO (dest);
1502 cfa_temp.offset = INTVAL (src);
1503 break;
1504
1505 /* Rule 7 */
1506 case IOR:
1507 if (GET_CODE (XEXP (src, 0)) != REG
1508 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1509 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1510 abort ();
1511
1512 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1513 cfa_temp.reg = REGNO (dest);
1514 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1515 break;
1516
1517 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1518 which will fill in all of the bits. */
1519 /* Rule 8 */
1520 case HIGH:
1521 break;
1522
1523 default:
1524 abort ();
1525 }
1526
1527 def_cfa_1 (label, &cfa);
1528 break;
1529
1530 case MEM:
1531 if (GET_CODE (src) != REG)
1532 abort ();
1533
1534 /* Saving a register to the stack. Make sure dest is relative to the
1535 CFA register. */
1536 switch (GET_CODE (XEXP (dest, 0)))
1537 {
1538 /* Rule 10 */
1539 /* With a push. */
1540 case PRE_MODIFY:
1541 /* We can't handle variable size modifications. */
1542 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1543 abort ();
1544 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1545
1546 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1547 || cfa_store.reg != STACK_POINTER_REGNUM)
1548 abort ();
1549
1550 cfa_store.offset += offset;
1551 if (cfa.reg == STACK_POINTER_REGNUM)
1552 cfa.offset = cfa_store.offset;
1553
1554 offset = -cfa_store.offset;
1555 break;
1556
1557 /* Rule 11 */
1558 case PRE_INC:
1559 case PRE_DEC:
1560 offset = GET_MODE_SIZE (GET_MODE (dest));
1561 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1562 offset = -offset;
1563
1564 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1565 || cfa_store.reg != STACK_POINTER_REGNUM)
1566 abort ();
1567
1568 cfa_store.offset += offset;
1569 if (cfa.reg == STACK_POINTER_REGNUM)
1570 cfa.offset = cfa_store.offset;
1571
1572 offset = -cfa_store.offset;
1573 break;
1574
1575 /* Rule 12 */
1576 /* With an offset. */
1577 case PLUS:
1578 case MINUS:
1579 case LO_SUM:
1580 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1581 abort ();
1582 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1583 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1584 offset = -offset;
1585
1586 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1587 offset -= cfa_store.offset;
1588 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1589 offset -= cfa_temp.offset;
1590 else
1591 abort ();
1592 break;
1593
1594 /* Rule 13 */
1595 /* Without an offset. */
1596 case REG:
1597 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1598 offset = -cfa_store.offset;
1599 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1600 offset = -cfa_temp.offset;
1601 else
1602 abort ();
1603 break;
1604
1605 /* Rule 14 */
1606 case POST_INC:
1607 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1608 abort ();
1609 offset = -cfa_temp.offset;
1610 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1611 break;
1612
1613 default:
1614 abort ();
1615 }
1616
1617 if (REGNO (src) != STACK_POINTER_REGNUM
1618 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1619 && (unsigned) REGNO (src) == cfa.reg)
1620 {
1621 /* We're storing the current CFA reg into the stack. */
1622
1623 if (cfa.offset == 0)
1624 {
1625 /* If the source register is exactly the CFA, assume
1626 we're saving SP like any other register; this happens
1627 on the ARM. */
1628 def_cfa_1 (label, &cfa);
1629 queue_reg_save (label, stack_pointer_rtx, offset);
1630 break;
1631 }
1632 else
1633 {
1634 /* Otherwise, we'll need to look in the stack to
1635 calculate the CFA. */
1636 rtx x = XEXP (dest, 0);
1637
1638 if (GET_CODE (x) != REG)
1639 x = XEXP (x, 0);
1640 if (GET_CODE (x) != REG)
1641 abort ();
1642
1643 cfa.reg = REGNO (x);
1644 cfa.base_offset = offset;
1645 cfa.indirect = 1;
1646 def_cfa_1 (label, &cfa);
1647 break;
1648 }
1649 }
1650
1651 def_cfa_1 (label, &cfa);
1652 queue_reg_save (label, src, offset);
1653 break;
1654
1655 default:
1656 abort ();
1657 }
1658 }
1659
1660 /* Record call frame debugging information for INSN, which either
1661 sets SP or FP (adjusting how we calculate the frame address) or saves a
1662 register to the stack. If INSN is NULL_RTX, initialize our state. */
1663
1664 void
1665 dwarf2out_frame_debug (insn)
1666 rtx insn;
1667 {
1668 const char *label;
1669 rtx src;
1670
1671 if (insn == NULL_RTX)
1672 {
1673 /* Flush any queued register saves. */
1674 flush_queued_reg_saves ();
1675
1676 /* Set up state for generating call frame debug info. */
1677 lookup_cfa (&cfa);
1678 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1679 abort ();
1680
1681 cfa.reg = STACK_POINTER_REGNUM;
1682 cfa_store = cfa;
1683 cfa_temp.reg = -1;
1684 cfa_temp.offset = 0;
1685 return;
1686 }
1687
1688 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1689 flush_queued_reg_saves ();
1690
1691 if (! RTX_FRAME_RELATED_P (insn))
1692 {
1693 if (!ACCUMULATE_OUTGOING_ARGS)
1694 dwarf2out_stack_adjust (insn);
1695
1696 return;
1697 }
1698
1699 label = dwarf2out_cfi_label ();
1700 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1701 if (src)
1702 insn = XEXP (src, 0);
1703 else
1704 insn = PATTERN (insn);
1705
1706 dwarf2out_frame_debug_expr (insn, label);
1707 }
1708
1709 #endif
1710
1711 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1712 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1713 PARAMS ((enum dwarf_call_frame_info cfi));
1714
1715 static enum dw_cfi_oprnd_type
1716 dw_cfi_oprnd1_desc (cfi)
1717 enum dwarf_call_frame_info cfi;
1718 {
1719 switch (cfi)
1720 {
1721 case DW_CFA_nop:
1722 case DW_CFA_GNU_window_save:
1723 return dw_cfi_oprnd_unused;
1724
1725 case DW_CFA_set_loc:
1726 case DW_CFA_advance_loc1:
1727 case DW_CFA_advance_loc2:
1728 case DW_CFA_advance_loc4:
1729 case DW_CFA_MIPS_advance_loc8:
1730 return dw_cfi_oprnd_addr;
1731
1732 case DW_CFA_offset:
1733 case DW_CFA_offset_extended:
1734 case DW_CFA_def_cfa:
1735 case DW_CFA_offset_extended_sf:
1736 case DW_CFA_def_cfa_sf:
1737 case DW_CFA_restore_extended:
1738 case DW_CFA_undefined:
1739 case DW_CFA_same_value:
1740 case DW_CFA_def_cfa_register:
1741 case DW_CFA_register:
1742 return dw_cfi_oprnd_reg_num;
1743
1744 case DW_CFA_def_cfa_offset:
1745 case DW_CFA_GNU_args_size:
1746 case DW_CFA_def_cfa_offset_sf:
1747 return dw_cfi_oprnd_offset;
1748
1749 case DW_CFA_def_cfa_expression:
1750 case DW_CFA_expression:
1751 return dw_cfi_oprnd_loc;
1752
1753 default:
1754 abort ();
1755 }
1756 }
1757
1758 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1759 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1760 PARAMS ((enum dwarf_call_frame_info cfi));
1761
1762 static enum dw_cfi_oprnd_type
1763 dw_cfi_oprnd2_desc (cfi)
1764 enum dwarf_call_frame_info cfi;
1765 {
1766 switch (cfi)
1767 {
1768 case DW_CFA_def_cfa:
1769 case DW_CFA_def_cfa_sf:
1770 case DW_CFA_offset:
1771 case DW_CFA_offset_extended_sf:
1772 case DW_CFA_offset_extended:
1773 return dw_cfi_oprnd_offset;
1774
1775 case DW_CFA_register:
1776 return dw_cfi_oprnd_reg_num;
1777
1778 default:
1779 return dw_cfi_oprnd_unused;
1780 }
1781 }
1782
1783 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1784
1785 /* Output a Call Frame Information opcode and its operand(s). */
1786
1787 static void
1788 output_cfi (cfi, fde, for_eh)
1789 dw_cfi_ref cfi;
1790 dw_fde_ref fde;
1791 int for_eh;
1792 {
1793 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1794 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1795 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1796 "DW_CFA_advance_loc 0x%lx",
1797 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1798 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1799 {
1800 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1801 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1802 "DW_CFA_offset, column 0x%lx",
1803 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1804 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1805 }
1806 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1807 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1808 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1809 "DW_CFA_restore, column 0x%lx",
1810 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1811 else
1812 {
1813 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1814 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1815
1816 switch (cfi->dw_cfi_opc)
1817 {
1818 case DW_CFA_set_loc:
1819 if (for_eh)
1820 dw2_asm_output_encoded_addr_rtx (
1821 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1822 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1823 NULL);
1824 else
1825 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1826 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1827 break;
1828
1829 case DW_CFA_advance_loc1:
1830 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1831 fde->dw_fde_current_label, NULL);
1832 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1833 break;
1834
1835 case DW_CFA_advance_loc2:
1836 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1837 fde->dw_fde_current_label, NULL);
1838 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1839 break;
1840
1841 case DW_CFA_advance_loc4:
1842 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1843 fde->dw_fde_current_label, NULL);
1844 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1845 break;
1846
1847 case DW_CFA_MIPS_advance_loc8:
1848 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1849 fde->dw_fde_current_label, NULL);
1850 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1851 break;
1852
1853 case DW_CFA_offset_extended:
1854 case DW_CFA_def_cfa:
1855 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1856 NULL);
1857 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1858 break;
1859
1860 case DW_CFA_offset_extended_sf:
1861 case DW_CFA_def_cfa_sf:
1862 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1863 NULL);
1864 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1865 break;
1866
1867 case DW_CFA_restore_extended:
1868 case DW_CFA_undefined:
1869 case DW_CFA_same_value:
1870 case DW_CFA_def_cfa_register:
1871 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1872 NULL);
1873 break;
1874
1875 case DW_CFA_register:
1876 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1877 NULL);
1878 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_reg_num,
1879 NULL);
1880 break;
1881
1882 case DW_CFA_def_cfa_offset:
1883 case DW_CFA_GNU_args_size:
1884 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1885 break;
1886
1887 case DW_CFA_def_cfa_offset_sf:
1888 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1889 break;
1890
1891 case DW_CFA_GNU_window_save:
1892 break;
1893
1894 case DW_CFA_def_cfa_expression:
1895 case DW_CFA_expression:
1896 output_cfa_loc (cfi);
1897 break;
1898
1899 case DW_CFA_GNU_negative_offset_extended:
1900 /* Obsoleted by DW_CFA_offset_extended_sf. */
1901 abort ();
1902
1903 default:
1904 break;
1905 }
1906 }
1907 }
1908
1909 /* Output the call frame information used to used to record information
1910 that relates to calculating the frame pointer, and records the
1911 location of saved registers. */
1912
1913 static void
1914 output_call_frame_info (for_eh)
1915 int for_eh;
1916 {
1917 unsigned int i;
1918 dw_fde_ref fde;
1919 dw_cfi_ref cfi;
1920 char l1[20], l2[20], section_start_label[20];
1921 bool any_lsda_needed = false;
1922 char augmentation[6];
1923 int augmentation_size;
1924 int fde_encoding = DW_EH_PE_absptr;
1925 int per_encoding = DW_EH_PE_absptr;
1926 int lsda_encoding = DW_EH_PE_absptr;
1927
1928 /* Don't emit a CIE if there won't be any FDEs. */
1929 if (fde_table_in_use == 0)
1930 return;
1931
1932 /* If we don't have any functions we'll want to unwind out of, don't
1933 emit any EH unwind information. Note that if exceptions aren't
1934 enabled, we won't have collected nothrow information, and if we
1935 asked for asynchronous tables, we always want this info. */
1936 if (for_eh)
1937 {
1938 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
1939
1940 for (i = 0; i < fde_table_in_use; i++)
1941 if (fde_table[i].uses_eh_lsda)
1942 any_eh_needed = any_lsda_needed = true;
1943 else if (! fde_table[i].nothrow
1944 && ! fde_table[i].all_throwers_are_sibcalls)
1945 any_eh_needed = true;
1946
1947 if (! any_eh_needed)
1948 return;
1949 }
1950
1951 /* We're going to be generating comments, so turn on app. */
1952 if (flag_debug_asm)
1953 app_enable ();
1954
1955 if (for_eh)
1956 (*targetm.asm_out.eh_frame_section) ();
1957 else
1958 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1959
1960 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1961 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1962
1963 /* Output the CIE. */
1964 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1965 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1966 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1967 "Length of Common Information Entry");
1968 ASM_OUTPUT_LABEL (asm_out_file, l1);
1969
1970 /* Now that the CIE pointer is PC-relative for EH,
1971 use 0 to identify the CIE. */
1972 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1973 (for_eh ? 0 : DW_CIE_ID),
1974 "CIE Identifier Tag");
1975
1976 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1977
1978 augmentation[0] = 0;
1979 augmentation_size = 0;
1980 if (for_eh)
1981 {
1982 char *p;
1983
1984 /* Augmentation:
1985 z Indicates that a uleb128 is present to size the
1986 augmentation section.
1987 L Indicates the encoding (and thus presence) of
1988 an LSDA pointer in the FDE augmentation.
1989 R Indicates a non-default pointer encoding for
1990 FDE code pointers.
1991 P Indicates the presence of an encoding + language
1992 personality routine in the CIE augmentation. */
1993
1994 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1995 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
1996 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1997
1998 p = augmentation + 1;
1999 if (eh_personality_libfunc)
2000 {
2001 *p++ = 'P';
2002 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2003 }
2004 if (any_lsda_needed)
2005 {
2006 *p++ = 'L';
2007 augmentation_size += 1;
2008 }
2009 if (fde_encoding != DW_EH_PE_absptr)
2010 {
2011 *p++ = 'R';
2012 augmentation_size += 1;
2013 }
2014 if (p > augmentation + 1)
2015 {
2016 augmentation[0] = 'z';
2017 *p = '\0';
2018 }
2019
2020 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2021 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2022 {
2023 int offset = ( 4 /* Length */
2024 + 4 /* CIE Id */
2025 + 1 /* CIE version */
2026 + strlen (augmentation) + 1 /* Augmentation */
2027 + size_of_uleb128 (1) /* Code alignment */
2028 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2029 + 1 /* RA column */
2030 + 1 /* Augmentation size */
2031 + 1 /* Personality encoding */ );
2032 int pad = -offset & (PTR_SIZE - 1);
2033
2034 augmentation_size += pad;
2035
2036 /* Augmentations should be small, so there's scarce need to
2037 iterate for a solution. Die if we exceed one uleb128 byte. */
2038 if (size_of_uleb128 (augmentation_size) != 1)
2039 abort ();
2040 }
2041 }
2042
2043 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2044 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2045 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2046 "CIE Data Alignment Factor");
2047 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2048
2049 if (augmentation[0])
2050 {
2051 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2052 if (eh_personality_libfunc)
2053 {
2054 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2055 eh_data_format_name (per_encoding));
2056 dw2_asm_output_encoded_addr_rtx (per_encoding,
2057 eh_personality_libfunc, NULL);
2058 }
2059
2060 if (any_lsda_needed)
2061 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2062 eh_data_format_name (lsda_encoding));
2063
2064 if (fde_encoding != DW_EH_PE_absptr)
2065 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2066 eh_data_format_name (fde_encoding));
2067 }
2068
2069 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2070 output_cfi (cfi, NULL, for_eh);
2071
2072 /* Pad the CIE out to an address sized boundary. */
2073 ASM_OUTPUT_ALIGN (asm_out_file,
2074 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2075 ASM_OUTPUT_LABEL (asm_out_file, l2);
2076
2077 /* Loop through all of the FDE's. */
2078 for (i = 0; i < fde_table_in_use; i++)
2079 {
2080 fde = &fde_table[i];
2081
2082 /* Don't emit EH unwind info for leaf functions that don't need it. */
2083 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2084 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2085 && !fde->uses_eh_lsda)
2086 continue;
2087
2088 (*targetm.asm_out.internal_label) (asm_out_file, FDE_LABEL, for_eh + i * 2);
2089 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2090 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2091 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2092 "FDE Length");
2093 ASM_OUTPUT_LABEL (asm_out_file, l1);
2094
2095 if (for_eh)
2096 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2097 else
2098 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2099 "FDE CIE offset");
2100
2101 if (for_eh)
2102 {
2103 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2104 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
2105 "FDE initial location");
2106 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2107 fde->dw_fde_end, fde->dw_fde_begin,
2108 "FDE address range");
2109 }
2110 else
2111 {
2112 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2113 "FDE initial location");
2114 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2115 fde->dw_fde_end, fde->dw_fde_begin,
2116 "FDE address range");
2117 }
2118
2119 if (augmentation[0])
2120 {
2121 if (any_lsda_needed)
2122 {
2123 int size = size_of_encoded_value (lsda_encoding);
2124
2125 if (lsda_encoding == DW_EH_PE_aligned)
2126 {
2127 int offset = ( 4 /* Length */
2128 + 4 /* CIE offset */
2129 + 2 * size_of_encoded_value (fde_encoding)
2130 + 1 /* Augmentation size */ );
2131 int pad = -offset & (PTR_SIZE - 1);
2132
2133 size += pad;
2134 if (size_of_uleb128 (size) != 1)
2135 abort ();
2136 }
2137
2138 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2139
2140 if (fde->uses_eh_lsda)
2141 {
2142 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2143 fde->funcdef_number);
2144 dw2_asm_output_encoded_addr_rtx (
2145 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2146 "Language Specific Data Area");
2147 }
2148 else
2149 {
2150 if (lsda_encoding == DW_EH_PE_aligned)
2151 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2152 dw2_asm_output_data
2153 (size_of_encoded_value (lsda_encoding), 0,
2154 "Language Specific Data Area (none)");
2155 }
2156 }
2157 else
2158 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2159 }
2160
2161 /* Loop through the Call Frame Instructions associated with
2162 this FDE. */
2163 fde->dw_fde_current_label = fde->dw_fde_begin;
2164 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2165 output_cfi (cfi, fde, for_eh);
2166
2167 /* Pad the FDE out to an address sized boundary. */
2168 ASM_OUTPUT_ALIGN (asm_out_file,
2169 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2170 ASM_OUTPUT_LABEL (asm_out_file, l2);
2171 }
2172
2173 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2174 dw2_asm_output_data (4, 0, "End of Table");
2175 #ifdef MIPS_DEBUGGING_INFO
2176 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2177 get a value of 0. Putting .align 0 after the label fixes it. */
2178 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2179 #endif
2180
2181 /* Turn off app to make assembly quicker. */
2182 if (flag_debug_asm)
2183 app_disable ();
2184 }
2185
2186 /* Output a marker (i.e. a label) for the beginning of a function, before
2187 the prologue. */
2188
2189 void
2190 dwarf2out_begin_prologue (line, file)
2191 unsigned int line ATTRIBUTE_UNUSED;
2192 const char *file ATTRIBUTE_UNUSED;
2193 {
2194 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2195 dw_fde_ref fde;
2196
2197 current_function_func_begin_label = 0;
2198
2199 #ifdef IA64_UNWIND_INFO
2200 /* ??? current_function_func_begin_label is also used by except.c
2201 for call-site information. We must emit this label if it might
2202 be used. */
2203 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2204 && ! dwarf2out_do_frame ())
2205 return;
2206 #else
2207 if (! dwarf2out_do_frame ())
2208 return;
2209 #endif
2210
2211 function_section (current_function_decl);
2212 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2213 current_function_funcdef_no);
2214 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2215 current_function_funcdef_no);
2216 current_function_func_begin_label = get_identifier (label);
2217
2218 #ifdef IA64_UNWIND_INFO
2219 /* We can elide the fde allocation if we're not emitting debug info. */
2220 if (! dwarf2out_do_frame ())
2221 return;
2222 #endif
2223
2224 /* Expand the fde table if necessary. */
2225 if (fde_table_in_use == fde_table_allocated)
2226 {
2227 fde_table_allocated += FDE_TABLE_INCREMENT;
2228 fde_table = ggc_realloc (fde_table,
2229 fde_table_allocated * sizeof (dw_fde_node));
2230 memset (fde_table + fde_table_in_use, 0,
2231 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2232 }
2233
2234 /* Record the FDE associated with this function. */
2235 current_funcdef_fde = fde_table_in_use;
2236
2237 /* Add the new FDE at the end of the fde_table. */
2238 fde = &fde_table[fde_table_in_use++];
2239 fde->dw_fde_begin = xstrdup (label);
2240 fde->dw_fde_current_label = NULL;
2241 fde->dw_fde_end = NULL;
2242 fde->dw_fde_cfi = NULL;
2243 fde->funcdef_number = current_function_funcdef_no;
2244 fde->nothrow = current_function_nothrow;
2245 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2246 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2247
2248 args_size = old_args_size = 0;
2249
2250 /* We only want to output line number information for the genuine dwarf2
2251 prologue case, not the eh frame case. */
2252 #ifdef DWARF2_DEBUGGING_INFO
2253 if (file)
2254 dwarf2out_source_line (line, file);
2255 #endif
2256 }
2257
2258 /* Output a marker (i.e. a label) for the absolute end of the generated code
2259 for a function definition. This gets called *after* the epilogue code has
2260 been generated. */
2261
2262 void
2263 dwarf2out_end_epilogue (line, file)
2264 unsigned int line ATTRIBUTE_UNUSED;
2265 const char *file ATTRIBUTE_UNUSED;
2266 {
2267 dw_fde_ref fde;
2268 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2269
2270 /* Output a label to mark the endpoint of the code generated for this
2271 function. */
2272 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2273 current_function_funcdef_no);
2274 ASM_OUTPUT_LABEL (asm_out_file, label);
2275 fde = &fde_table[fde_table_in_use - 1];
2276 fde->dw_fde_end = xstrdup (label);
2277 }
2278
2279 void
2280 dwarf2out_frame_init ()
2281 {
2282 /* Allocate the initial hunk of the fde_table. */
2283 fde_table = (dw_fde_ref) ggc_alloc_cleared (FDE_TABLE_INCREMENT
2284 * sizeof (dw_fde_node));
2285 fde_table_allocated = FDE_TABLE_INCREMENT;
2286 fde_table_in_use = 0;
2287
2288 /* Generate the CFA instructions common to all FDE's. Do it now for the
2289 sake of lookup_cfa. */
2290
2291 #ifdef DWARF2_UNWIND_INFO
2292 /* On entry, the Canonical Frame Address is at SP. */
2293 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2294 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2295 #endif
2296 }
2297
2298 void
2299 dwarf2out_frame_finish ()
2300 {
2301 /* Output call frame information. */
2302 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2303 output_call_frame_info (0);
2304
2305 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2306 output_call_frame_info (1);
2307 }
2308 #endif
2309 \f
2310 /* And now, the subset of the debugging information support code necessary
2311 for emitting location expressions. */
2312
2313 /* We need some way to distinguish DW_OP_addr with a direct symbol
2314 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2315 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2316
2317
2318 typedef struct dw_val_struct *dw_val_ref;
2319 typedef struct die_struct *dw_die_ref;
2320 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2321 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2322
2323 /* Each DIE may have a series of attribute/value pairs. Values
2324 can take on several forms. The forms that are used in this
2325 implementation are listed below. */
2326
2327 enum dw_val_class
2328 {
2329 dw_val_class_addr,
2330 dw_val_class_offset,
2331 dw_val_class_loc,
2332 dw_val_class_loc_list,
2333 dw_val_class_range_list,
2334 dw_val_class_const,
2335 dw_val_class_unsigned_const,
2336 dw_val_class_long_long,
2337 dw_val_class_float,
2338 dw_val_class_flag,
2339 dw_val_class_die_ref,
2340 dw_val_class_fde_ref,
2341 dw_val_class_lbl_id,
2342 dw_val_class_lbl_offset,
2343 dw_val_class_str
2344 };
2345
2346 /* Describe a double word constant value. */
2347 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2348
2349 typedef struct dw_long_long_struct GTY(())
2350 {
2351 unsigned long hi;
2352 unsigned long low;
2353 }
2354 dw_long_long_const;
2355
2356 /* Describe a floating point constant value. */
2357
2358 typedef struct dw_fp_struct GTY(())
2359 {
2360 long * GTY((length ("%h.length"))) array;
2361 unsigned length;
2362 }
2363 dw_float_const;
2364
2365 /* The dw_val_node describes an attribute's value, as it is
2366 represented internally. */
2367
2368 typedef struct dw_val_struct GTY(())
2369 {
2370 enum dw_val_class val_class;
2371 union dw_val_struct_union
2372 {
2373 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2374 long unsigned GTY ((tag ("dw_val_class_offset"))) val_offset;
2375 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2376 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2377 long int GTY ((default (""))) val_int;
2378 long unsigned GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2379 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2380 dw_float_const GTY ((tag ("dw_val_class_float"))) val_float;
2381 struct dw_val_die_union
2382 {
2383 dw_die_ref die;
2384 int external;
2385 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2386 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2387 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2388 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2389 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2390 }
2391 GTY ((desc ("%1.val_class"))) v;
2392 }
2393 dw_val_node;
2394
2395 /* Locations in memory are described using a sequence of stack machine
2396 operations. */
2397
2398 typedef struct dw_loc_descr_struct GTY(())
2399 {
2400 dw_loc_descr_ref dw_loc_next;
2401 enum dwarf_location_atom dw_loc_opc;
2402 dw_val_node dw_loc_oprnd1;
2403 dw_val_node dw_loc_oprnd2;
2404 int dw_loc_addr;
2405 }
2406 dw_loc_descr_node;
2407
2408 /* Location lists are ranges + location descriptions for that range,
2409 so you can track variables that are in different places over
2410 their entire life. */
2411 typedef struct dw_loc_list_struct GTY(())
2412 {
2413 dw_loc_list_ref dw_loc_next;
2414 const char *begin; /* Label for begin address of range */
2415 const char *end; /* Label for end address of range */
2416 char *ll_symbol; /* Label for beginning of location list.
2417 Only on head of list */
2418 const char *section; /* Section this loclist is relative to */
2419 dw_loc_descr_ref expr;
2420 } dw_loc_list_node;
2421
2422 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2423
2424 static const char *dwarf_stack_op_name PARAMS ((unsigned));
2425 static dw_loc_descr_ref new_loc_descr PARAMS ((enum dwarf_location_atom,
2426 unsigned long,
2427 unsigned long));
2428 static void add_loc_descr PARAMS ((dw_loc_descr_ref *,
2429 dw_loc_descr_ref));
2430 static unsigned long size_of_loc_descr PARAMS ((dw_loc_descr_ref));
2431 static unsigned long size_of_locs PARAMS ((dw_loc_descr_ref));
2432 static void output_loc_operands PARAMS ((dw_loc_descr_ref));
2433 static void output_loc_sequence PARAMS ((dw_loc_descr_ref));
2434
2435 /* Convert a DWARF stack opcode into its string name. */
2436
2437 static const char *
2438 dwarf_stack_op_name (op)
2439 unsigned op;
2440 {
2441 switch (op)
2442 {
2443 case DW_OP_addr:
2444 case INTERNAL_DW_OP_tls_addr:
2445 return "DW_OP_addr";
2446 case DW_OP_deref:
2447 return "DW_OP_deref";
2448 case DW_OP_const1u:
2449 return "DW_OP_const1u";
2450 case DW_OP_const1s:
2451 return "DW_OP_const1s";
2452 case DW_OP_const2u:
2453 return "DW_OP_const2u";
2454 case DW_OP_const2s:
2455 return "DW_OP_const2s";
2456 case DW_OP_const4u:
2457 return "DW_OP_const4u";
2458 case DW_OP_const4s:
2459 return "DW_OP_const4s";
2460 case DW_OP_const8u:
2461 return "DW_OP_const8u";
2462 case DW_OP_const8s:
2463 return "DW_OP_const8s";
2464 case DW_OP_constu:
2465 return "DW_OP_constu";
2466 case DW_OP_consts:
2467 return "DW_OP_consts";
2468 case DW_OP_dup:
2469 return "DW_OP_dup";
2470 case DW_OP_drop:
2471 return "DW_OP_drop";
2472 case DW_OP_over:
2473 return "DW_OP_over";
2474 case DW_OP_pick:
2475 return "DW_OP_pick";
2476 case DW_OP_swap:
2477 return "DW_OP_swap";
2478 case DW_OP_rot:
2479 return "DW_OP_rot";
2480 case DW_OP_xderef:
2481 return "DW_OP_xderef";
2482 case DW_OP_abs:
2483 return "DW_OP_abs";
2484 case DW_OP_and:
2485 return "DW_OP_and";
2486 case DW_OP_div:
2487 return "DW_OP_div";
2488 case DW_OP_minus:
2489 return "DW_OP_minus";
2490 case DW_OP_mod:
2491 return "DW_OP_mod";
2492 case DW_OP_mul:
2493 return "DW_OP_mul";
2494 case DW_OP_neg:
2495 return "DW_OP_neg";
2496 case DW_OP_not:
2497 return "DW_OP_not";
2498 case DW_OP_or:
2499 return "DW_OP_or";
2500 case DW_OP_plus:
2501 return "DW_OP_plus";
2502 case DW_OP_plus_uconst:
2503 return "DW_OP_plus_uconst";
2504 case DW_OP_shl:
2505 return "DW_OP_shl";
2506 case DW_OP_shr:
2507 return "DW_OP_shr";
2508 case DW_OP_shra:
2509 return "DW_OP_shra";
2510 case DW_OP_xor:
2511 return "DW_OP_xor";
2512 case DW_OP_bra:
2513 return "DW_OP_bra";
2514 case DW_OP_eq:
2515 return "DW_OP_eq";
2516 case DW_OP_ge:
2517 return "DW_OP_ge";
2518 case DW_OP_gt:
2519 return "DW_OP_gt";
2520 case DW_OP_le:
2521 return "DW_OP_le";
2522 case DW_OP_lt:
2523 return "DW_OP_lt";
2524 case DW_OP_ne:
2525 return "DW_OP_ne";
2526 case DW_OP_skip:
2527 return "DW_OP_skip";
2528 case DW_OP_lit0:
2529 return "DW_OP_lit0";
2530 case DW_OP_lit1:
2531 return "DW_OP_lit1";
2532 case DW_OP_lit2:
2533 return "DW_OP_lit2";
2534 case DW_OP_lit3:
2535 return "DW_OP_lit3";
2536 case DW_OP_lit4:
2537 return "DW_OP_lit4";
2538 case DW_OP_lit5:
2539 return "DW_OP_lit5";
2540 case DW_OP_lit6:
2541 return "DW_OP_lit6";
2542 case DW_OP_lit7:
2543 return "DW_OP_lit7";
2544 case DW_OP_lit8:
2545 return "DW_OP_lit8";
2546 case DW_OP_lit9:
2547 return "DW_OP_lit9";
2548 case DW_OP_lit10:
2549 return "DW_OP_lit10";
2550 case DW_OP_lit11:
2551 return "DW_OP_lit11";
2552 case DW_OP_lit12:
2553 return "DW_OP_lit12";
2554 case DW_OP_lit13:
2555 return "DW_OP_lit13";
2556 case DW_OP_lit14:
2557 return "DW_OP_lit14";
2558 case DW_OP_lit15:
2559 return "DW_OP_lit15";
2560 case DW_OP_lit16:
2561 return "DW_OP_lit16";
2562 case DW_OP_lit17:
2563 return "DW_OP_lit17";
2564 case DW_OP_lit18:
2565 return "DW_OP_lit18";
2566 case DW_OP_lit19:
2567 return "DW_OP_lit19";
2568 case DW_OP_lit20:
2569 return "DW_OP_lit20";
2570 case DW_OP_lit21:
2571 return "DW_OP_lit21";
2572 case DW_OP_lit22:
2573 return "DW_OP_lit22";
2574 case DW_OP_lit23:
2575 return "DW_OP_lit23";
2576 case DW_OP_lit24:
2577 return "DW_OP_lit24";
2578 case DW_OP_lit25:
2579 return "DW_OP_lit25";
2580 case DW_OP_lit26:
2581 return "DW_OP_lit26";
2582 case DW_OP_lit27:
2583 return "DW_OP_lit27";
2584 case DW_OP_lit28:
2585 return "DW_OP_lit28";
2586 case DW_OP_lit29:
2587 return "DW_OP_lit29";
2588 case DW_OP_lit30:
2589 return "DW_OP_lit30";
2590 case DW_OP_lit31:
2591 return "DW_OP_lit31";
2592 case DW_OP_reg0:
2593 return "DW_OP_reg0";
2594 case DW_OP_reg1:
2595 return "DW_OP_reg1";
2596 case DW_OP_reg2:
2597 return "DW_OP_reg2";
2598 case DW_OP_reg3:
2599 return "DW_OP_reg3";
2600 case DW_OP_reg4:
2601 return "DW_OP_reg4";
2602 case DW_OP_reg5:
2603 return "DW_OP_reg5";
2604 case DW_OP_reg6:
2605 return "DW_OP_reg6";
2606 case DW_OP_reg7:
2607 return "DW_OP_reg7";
2608 case DW_OP_reg8:
2609 return "DW_OP_reg8";
2610 case DW_OP_reg9:
2611 return "DW_OP_reg9";
2612 case DW_OP_reg10:
2613 return "DW_OP_reg10";
2614 case DW_OP_reg11:
2615 return "DW_OP_reg11";
2616 case DW_OP_reg12:
2617 return "DW_OP_reg12";
2618 case DW_OP_reg13:
2619 return "DW_OP_reg13";
2620 case DW_OP_reg14:
2621 return "DW_OP_reg14";
2622 case DW_OP_reg15:
2623 return "DW_OP_reg15";
2624 case DW_OP_reg16:
2625 return "DW_OP_reg16";
2626 case DW_OP_reg17:
2627 return "DW_OP_reg17";
2628 case DW_OP_reg18:
2629 return "DW_OP_reg18";
2630 case DW_OP_reg19:
2631 return "DW_OP_reg19";
2632 case DW_OP_reg20:
2633 return "DW_OP_reg20";
2634 case DW_OP_reg21:
2635 return "DW_OP_reg21";
2636 case DW_OP_reg22:
2637 return "DW_OP_reg22";
2638 case DW_OP_reg23:
2639 return "DW_OP_reg23";
2640 case DW_OP_reg24:
2641 return "DW_OP_reg24";
2642 case DW_OP_reg25:
2643 return "DW_OP_reg25";
2644 case DW_OP_reg26:
2645 return "DW_OP_reg26";
2646 case DW_OP_reg27:
2647 return "DW_OP_reg27";
2648 case DW_OP_reg28:
2649 return "DW_OP_reg28";
2650 case DW_OP_reg29:
2651 return "DW_OP_reg29";
2652 case DW_OP_reg30:
2653 return "DW_OP_reg30";
2654 case DW_OP_reg31:
2655 return "DW_OP_reg31";
2656 case DW_OP_breg0:
2657 return "DW_OP_breg0";
2658 case DW_OP_breg1:
2659 return "DW_OP_breg1";
2660 case DW_OP_breg2:
2661 return "DW_OP_breg2";
2662 case DW_OP_breg3:
2663 return "DW_OP_breg3";
2664 case DW_OP_breg4:
2665 return "DW_OP_breg4";
2666 case DW_OP_breg5:
2667 return "DW_OP_breg5";
2668 case DW_OP_breg6:
2669 return "DW_OP_breg6";
2670 case DW_OP_breg7:
2671 return "DW_OP_breg7";
2672 case DW_OP_breg8:
2673 return "DW_OP_breg8";
2674 case DW_OP_breg9:
2675 return "DW_OP_breg9";
2676 case DW_OP_breg10:
2677 return "DW_OP_breg10";
2678 case DW_OP_breg11:
2679 return "DW_OP_breg11";
2680 case DW_OP_breg12:
2681 return "DW_OP_breg12";
2682 case DW_OP_breg13:
2683 return "DW_OP_breg13";
2684 case DW_OP_breg14:
2685 return "DW_OP_breg14";
2686 case DW_OP_breg15:
2687 return "DW_OP_breg15";
2688 case DW_OP_breg16:
2689 return "DW_OP_breg16";
2690 case DW_OP_breg17:
2691 return "DW_OP_breg17";
2692 case DW_OP_breg18:
2693 return "DW_OP_breg18";
2694 case DW_OP_breg19:
2695 return "DW_OP_breg19";
2696 case DW_OP_breg20:
2697 return "DW_OP_breg20";
2698 case DW_OP_breg21:
2699 return "DW_OP_breg21";
2700 case DW_OP_breg22:
2701 return "DW_OP_breg22";
2702 case DW_OP_breg23:
2703 return "DW_OP_breg23";
2704 case DW_OP_breg24:
2705 return "DW_OP_breg24";
2706 case DW_OP_breg25:
2707 return "DW_OP_breg25";
2708 case DW_OP_breg26:
2709 return "DW_OP_breg26";
2710 case DW_OP_breg27:
2711 return "DW_OP_breg27";
2712 case DW_OP_breg28:
2713 return "DW_OP_breg28";
2714 case DW_OP_breg29:
2715 return "DW_OP_breg29";
2716 case DW_OP_breg30:
2717 return "DW_OP_breg30";
2718 case DW_OP_breg31:
2719 return "DW_OP_breg31";
2720 case DW_OP_regx:
2721 return "DW_OP_regx";
2722 case DW_OP_fbreg:
2723 return "DW_OP_fbreg";
2724 case DW_OP_bregx:
2725 return "DW_OP_bregx";
2726 case DW_OP_piece:
2727 return "DW_OP_piece";
2728 case DW_OP_deref_size:
2729 return "DW_OP_deref_size";
2730 case DW_OP_xderef_size:
2731 return "DW_OP_xderef_size";
2732 case DW_OP_nop:
2733 return "DW_OP_nop";
2734 case DW_OP_push_object_address:
2735 return "DW_OP_push_object_address";
2736 case DW_OP_call2:
2737 return "DW_OP_call2";
2738 case DW_OP_call4:
2739 return "DW_OP_call4";
2740 case DW_OP_call_ref:
2741 return "DW_OP_call_ref";
2742 case DW_OP_GNU_push_tls_address:
2743 return "DW_OP_GNU_push_tls_address";
2744 default:
2745 return "OP_<unknown>";
2746 }
2747 }
2748
2749 /* Return a pointer to a newly allocated location description. Location
2750 descriptions are simple expression terms that can be strung
2751 together to form more complicated location (address) descriptions. */
2752
2753 static inline dw_loc_descr_ref
2754 new_loc_descr (op, oprnd1, oprnd2)
2755 enum dwarf_location_atom op;
2756 unsigned long oprnd1;
2757 unsigned long oprnd2;
2758 {
2759 dw_loc_descr_ref descr
2760 = (dw_loc_descr_ref) ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2761
2762 descr->dw_loc_opc = op;
2763 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2764 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2765 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2766 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2767
2768 return descr;
2769 }
2770
2771
2772 /* Add a location description term to a location description expression. */
2773
2774 static inline void
2775 add_loc_descr (list_head, descr)
2776 dw_loc_descr_ref *list_head;
2777 dw_loc_descr_ref descr;
2778 {
2779 dw_loc_descr_ref *d;
2780
2781 /* Find the end of the chain. */
2782 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2783 ;
2784
2785 *d = descr;
2786 }
2787
2788 /* Return the size of a location descriptor. */
2789
2790 static unsigned long
2791 size_of_loc_descr (loc)
2792 dw_loc_descr_ref loc;
2793 {
2794 unsigned long size = 1;
2795
2796 switch (loc->dw_loc_opc)
2797 {
2798 case DW_OP_addr:
2799 case INTERNAL_DW_OP_tls_addr:
2800 size += DWARF2_ADDR_SIZE;
2801 break;
2802 case DW_OP_const1u:
2803 case DW_OP_const1s:
2804 size += 1;
2805 break;
2806 case DW_OP_const2u:
2807 case DW_OP_const2s:
2808 size += 2;
2809 break;
2810 case DW_OP_const4u:
2811 case DW_OP_const4s:
2812 size += 4;
2813 break;
2814 case DW_OP_const8u:
2815 case DW_OP_const8s:
2816 size += 8;
2817 break;
2818 case DW_OP_constu:
2819 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2820 break;
2821 case DW_OP_consts:
2822 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2823 break;
2824 case DW_OP_pick:
2825 size += 1;
2826 break;
2827 case DW_OP_plus_uconst:
2828 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2829 break;
2830 case DW_OP_skip:
2831 case DW_OP_bra:
2832 size += 2;
2833 break;
2834 case DW_OP_breg0:
2835 case DW_OP_breg1:
2836 case DW_OP_breg2:
2837 case DW_OP_breg3:
2838 case DW_OP_breg4:
2839 case DW_OP_breg5:
2840 case DW_OP_breg6:
2841 case DW_OP_breg7:
2842 case DW_OP_breg8:
2843 case DW_OP_breg9:
2844 case DW_OP_breg10:
2845 case DW_OP_breg11:
2846 case DW_OP_breg12:
2847 case DW_OP_breg13:
2848 case DW_OP_breg14:
2849 case DW_OP_breg15:
2850 case DW_OP_breg16:
2851 case DW_OP_breg17:
2852 case DW_OP_breg18:
2853 case DW_OP_breg19:
2854 case DW_OP_breg20:
2855 case DW_OP_breg21:
2856 case DW_OP_breg22:
2857 case DW_OP_breg23:
2858 case DW_OP_breg24:
2859 case DW_OP_breg25:
2860 case DW_OP_breg26:
2861 case DW_OP_breg27:
2862 case DW_OP_breg28:
2863 case DW_OP_breg29:
2864 case DW_OP_breg30:
2865 case DW_OP_breg31:
2866 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2867 break;
2868 case DW_OP_regx:
2869 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2870 break;
2871 case DW_OP_fbreg:
2872 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2873 break;
2874 case DW_OP_bregx:
2875 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2876 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2877 break;
2878 case DW_OP_piece:
2879 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2880 break;
2881 case DW_OP_deref_size:
2882 case DW_OP_xderef_size:
2883 size += 1;
2884 break;
2885 case DW_OP_call2:
2886 size += 2;
2887 break;
2888 case DW_OP_call4:
2889 size += 4;
2890 break;
2891 case DW_OP_call_ref:
2892 size += DWARF2_ADDR_SIZE;
2893 break;
2894 default:
2895 break;
2896 }
2897
2898 return size;
2899 }
2900
2901 /* Return the size of a series of location descriptors. */
2902
2903 static unsigned long
2904 size_of_locs (loc)
2905 dw_loc_descr_ref loc;
2906 {
2907 unsigned long size;
2908
2909 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2910 {
2911 loc->dw_loc_addr = size;
2912 size += size_of_loc_descr (loc);
2913 }
2914
2915 return size;
2916 }
2917
2918 /* Output location description stack opcode's operands (if any). */
2919
2920 static void
2921 output_loc_operands (loc)
2922 dw_loc_descr_ref loc;
2923 {
2924 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2925 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2926
2927 switch (loc->dw_loc_opc)
2928 {
2929 #ifdef DWARF2_DEBUGGING_INFO
2930 case DW_OP_addr:
2931 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2932 break;
2933 case DW_OP_const2u:
2934 case DW_OP_const2s:
2935 dw2_asm_output_data (2, val1->v.val_int, NULL);
2936 break;
2937 case DW_OP_const4u:
2938 case DW_OP_const4s:
2939 dw2_asm_output_data (4, val1->v.val_int, NULL);
2940 break;
2941 case DW_OP_const8u:
2942 case DW_OP_const8s:
2943 if (HOST_BITS_PER_LONG < 64)
2944 abort ();
2945 dw2_asm_output_data (8, val1->v.val_int, NULL);
2946 break;
2947 case DW_OP_skip:
2948 case DW_OP_bra:
2949 {
2950 int offset;
2951
2952 if (val1->val_class == dw_val_class_loc)
2953 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2954 else
2955 abort ();
2956
2957 dw2_asm_output_data (2, offset, NULL);
2958 }
2959 break;
2960 #else
2961 case DW_OP_addr:
2962 case DW_OP_const2u:
2963 case DW_OP_const2s:
2964 case DW_OP_const4u:
2965 case DW_OP_const4s:
2966 case DW_OP_const8u:
2967 case DW_OP_const8s:
2968 case DW_OP_skip:
2969 case DW_OP_bra:
2970 /* We currently don't make any attempt to make sure these are
2971 aligned properly like we do for the main unwind info, so
2972 don't support emitting things larger than a byte if we're
2973 only doing unwinding. */
2974 abort ();
2975 #endif
2976 case DW_OP_const1u:
2977 case DW_OP_const1s:
2978 dw2_asm_output_data (1, val1->v.val_int, NULL);
2979 break;
2980 case DW_OP_constu:
2981 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2982 break;
2983 case DW_OP_consts:
2984 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2985 break;
2986 case DW_OP_pick:
2987 dw2_asm_output_data (1, val1->v.val_int, NULL);
2988 break;
2989 case DW_OP_plus_uconst:
2990 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2991 break;
2992 case DW_OP_breg0:
2993 case DW_OP_breg1:
2994 case DW_OP_breg2:
2995 case DW_OP_breg3:
2996 case DW_OP_breg4:
2997 case DW_OP_breg5:
2998 case DW_OP_breg6:
2999 case DW_OP_breg7:
3000 case DW_OP_breg8:
3001 case DW_OP_breg9:
3002 case DW_OP_breg10:
3003 case DW_OP_breg11:
3004 case DW_OP_breg12:
3005 case DW_OP_breg13:
3006 case DW_OP_breg14:
3007 case DW_OP_breg15:
3008 case DW_OP_breg16:
3009 case DW_OP_breg17:
3010 case DW_OP_breg18:
3011 case DW_OP_breg19:
3012 case DW_OP_breg20:
3013 case DW_OP_breg21:
3014 case DW_OP_breg22:
3015 case DW_OP_breg23:
3016 case DW_OP_breg24:
3017 case DW_OP_breg25:
3018 case DW_OP_breg26:
3019 case DW_OP_breg27:
3020 case DW_OP_breg28:
3021 case DW_OP_breg29:
3022 case DW_OP_breg30:
3023 case DW_OP_breg31:
3024 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3025 break;
3026 case DW_OP_regx:
3027 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3028 break;
3029 case DW_OP_fbreg:
3030 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3031 break;
3032 case DW_OP_bregx:
3033 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3034 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3035 break;
3036 case DW_OP_piece:
3037 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3038 break;
3039 case DW_OP_deref_size:
3040 case DW_OP_xderef_size:
3041 dw2_asm_output_data (1, val1->v.val_int, NULL);
3042 break;
3043
3044 case INTERNAL_DW_OP_tls_addr:
3045 #ifdef ASM_OUTPUT_DWARF_DTPREL
3046 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3047 val1->v.val_addr);
3048 fputc ('\n', asm_out_file);
3049 #else
3050 abort ();
3051 #endif
3052 break;
3053
3054 default:
3055 /* Other codes have no operands. */
3056 break;
3057 }
3058 }
3059
3060 /* Output a sequence of location operations. */
3061
3062 static void
3063 output_loc_sequence (loc)
3064 dw_loc_descr_ref loc;
3065 {
3066 for (; loc != NULL; loc = loc->dw_loc_next)
3067 {
3068 /* Output the opcode. */
3069 dw2_asm_output_data (1, loc->dw_loc_opc,
3070 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3071
3072 /* Output the operand(s) (if any). */
3073 output_loc_operands (loc);
3074 }
3075 }
3076
3077 /* This routine will generate the correct assembly data for a location
3078 description based on a cfi entry with a complex address. */
3079
3080 static void
3081 output_cfa_loc (cfi)
3082 dw_cfi_ref cfi;
3083 {
3084 dw_loc_descr_ref loc;
3085 unsigned long size;
3086
3087 /* Output the size of the block. */
3088 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3089 size = size_of_locs (loc);
3090 dw2_asm_output_data_uleb128 (size, NULL);
3091
3092 /* Now output the operations themselves. */
3093 output_loc_sequence (loc);
3094 }
3095
3096 /* This function builds a dwarf location descriptor sequence from
3097 a dw_cfa_location. */
3098
3099 static struct dw_loc_descr_struct *
3100 build_cfa_loc (cfa)
3101 dw_cfa_location *cfa;
3102 {
3103 struct dw_loc_descr_struct *head, *tmp;
3104
3105 if (cfa->indirect == 0)
3106 abort ();
3107
3108 if (cfa->base_offset)
3109 {
3110 if (cfa->reg <= 31)
3111 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3112 else
3113 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3114 }
3115 else if (cfa->reg <= 31)
3116 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3117 else
3118 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3119
3120 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3121 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3122 add_loc_descr (&head, tmp);
3123 if (cfa->offset != 0)
3124 {
3125 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3126 add_loc_descr (&head, tmp);
3127 }
3128
3129 return head;
3130 }
3131
3132 /* This function fills in aa dw_cfa_location structure from a dwarf location
3133 descriptor sequence. */
3134
3135 static void
3136 get_cfa_from_loc_descr (cfa, loc)
3137 dw_cfa_location *cfa;
3138 struct dw_loc_descr_struct *loc;
3139 {
3140 struct dw_loc_descr_struct *ptr;
3141 cfa->offset = 0;
3142 cfa->base_offset = 0;
3143 cfa->indirect = 0;
3144 cfa->reg = -1;
3145
3146 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3147 {
3148 enum dwarf_location_atom op = ptr->dw_loc_opc;
3149
3150 switch (op)
3151 {
3152 case DW_OP_reg0:
3153 case DW_OP_reg1:
3154 case DW_OP_reg2:
3155 case DW_OP_reg3:
3156 case DW_OP_reg4:
3157 case DW_OP_reg5:
3158 case DW_OP_reg6:
3159 case DW_OP_reg7:
3160 case DW_OP_reg8:
3161 case DW_OP_reg9:
3162 case DW_OP_reg10:
3163 case DW_OP_reg11:
3164 case DW_OP_reg12:
3165 case DW_OP_reg13:
3166 case DW_OP_reg14:
3167 case DW_OP_reg15:
3168 case DW_OP_reg16:
3169 case DW_OP_reg17:
3170 case DW_OP_reg18:
3171 case DW_OP_reg19:
3172 case DW_OP_reg20:
3173 case DW_OP_reg21:
3174 case DW_OP_reg22:
3175 case DW_OP_reg23:
3176 case DW_OP_reg24:
3177 case DW_OP_reg25:
3178 case DW_OP_reg26:
3179 case DW_OP_reg27:
3180 case DW_OP_reg28:
3181 case DW_OP_reg29:
3182 case DW_OP_reg30:
3183 case DW_OP_reg31:
3184 cfa->reg = op - DW_OP_reg0;
3185 break;
3186 case DW_OP_regx:
3187 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3188 break;
3189 case DW_OP_breg0:
3190 case DW_OP_breg1:
3191 case DW_OP_breg2:
3192 case DW_OP_breg3:
3193 case DW_OP_breg4:
3194 case DW_OP_breg5:
3195 case DW_OP_breg6:
3196 case DW_OP_breg7:
3197 case DW_OP_breg8:
3198 case DW_OP_breg9:
3199 case DW_OP_breg10:
3200 case DW_OP_breg11:
3201 case DW_OP_breg12:
3202 case DW_OP_breg13:
3203 case DW_OP_breg14:
3204 case DW_OP_breg15:
3205 case DW_OP_breg16:
3206 case DW_OP_breg17:
3207 case DW_OP_breg18:
3208 case DW_OP_breg19:
3209 case DW_OP_breg20:
3210 case DW_OP_breg21:
3211 case DW_OP_breg22:
3212 case DW_OP_breg23:
3213 case DW_OP_breg24:
3214 case DW_OP_breg25:
3215 case DW_OP_breg26:
3216 case DW_OP_breg27:
3217 case DW_OP_breg28:
3218 case DW_OP_breg29:
3219 case DW_OP_breg30:
3220 case DW_OP_breg31:
3221 cfa->reg = op - DW_OP_breg0;
3222 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3223 break;
3224 case DW_OP_bregx:
3225 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3226 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3227 break;
3228 case DW_OP_deref:
3229 cfa->indirect = 1;
3230 break;
3231 case DW_OP_plus_uconst:
3232 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3233 break;
3234 default:
3235 internal_error ("DW_LOC_OP %s not implemented\n",
3236 dwarf_stack_op_name (ptr->dw_loc_opc));
3237 }
3238 }
3239 }
3240 #endif /* .debug_frame support */
3241 \f
3242 /* And now, the support for symbolic debugging information. */
3243 #ifdef DWARF2_DEBUGGING_INFO
3244
3245 /* .debug_str support. */
3246 static int output_indirect_string PARAMS ((void **, void *));
3247
3248 static void dwarf2out_init PARAMS ((const char *));
3249 static void dwarf2out_finish PARAMS ((const char *));
3250 static void dwarf2out_define PARAMS ((unsigned int, const char *));
3251 static void dwarf2out_undef PARAMS ((unsigned int, const char *));
3252 static void dwarf2out_start_source_file PARAMS ((unsigned, const char *));
3253 static void dwarf2out_end_source_file PARAMS ((unsigned));
3254 static void dwarf2out_begin_block PARAMS ((unsigned, unsigned));
3255 static void dwarf2out_end_block PARAMS ((unsigned, unsigned));
3256 static bool dwarf2out_ignore_block PARAMS ((tree));
3257 static void dwarf2out_global_decl PARAMS ((tree));
3258 static void dwarf2out_abstract_function PARAMS ((tree));
3259
3260 /* The debug hooks structure. */
3261
3262 const struct gcc_debug_hooks dwarf2_debug_hooks =
3263 {
3264 dwarf2out_init,
3265 dwarf2out_finish,
3266 dwarf2out_define,
3267 dwarf2out_undef,
3268 dwarf2out_start_source_file,
3269 dwarf2out_end_source_file,
3270 dwarf2out_begin_block,
3271 dwarf2out_end_block,
3272 dwarf2out_ignore_block,
3273 dwarf2out_source_line,
3274 dwarf2out_begin_prologue,
3275 debug_nothing_int_charstar, /* end_prologue */
3276 dwarf2out_end_epilogue,
3277 debug_nothing_tree, /* begin_function */
3278 debug_nothing_int, /* end_function */
3279 dwarf2out_decl, /* function_decl */
3280 dwarf2out_global_decl,
3281 debug_nothing_tree, /* deferred_inline_function */
3282 /* The DWARF 2 backend tries to reduce debugging bloat by not
3283 emitting the abstract description of inline functions until
3284 something tries to reference them. */
3285 dwarf2out_abstract_function, /* outlining_inline_function */
3286 debug_nothing_rtx, /* label */
3287 debug_nothing_int /* handle_pch */
3288 };
3289 #endif
3290 \f
3291 /* NOTE: In the comments in this file, many references are made to
3292 "Debugging Information Entries". This term is abbreviated as `DIE'
3293 throughout the remainder of this file. */
3294
3295 /* An internal representation of the DWARF output is built, and then
3296 walked to generate the DWARF debugging info. The walk of the internal
3297 representation is done after the entire program has been compiled.
3298 The types below are used to describe the internal representation. */
3299
3300 /* Various DIE's use offsets relative to the beginning of the
3301 .debug_info section to refer to each other. */
3302
3303 typedef long int dw_offset;
3304
3305 /* Define typedefs here to avoid circular dependencies. */
3306
3307 typedef struct dw_attr_struct *dw_attr_ref;
3308 typedef struct dw_line_info_struct *dw_line_info_ref;
3309 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3310 typedef struct pubname_struct *pubname_ref;
3311 typedef struct dw_ranges_struct *dw_ranges_ref;
3312
3313 /* Each entry in the line_info_table maintains the file and
3314 line number associated with the label generated for that
3315 entry. The label gives the PC value associated with
3316 the line number entry. */
3317
3318 typedef struct dw_line_info_struct GTY(())
3319 {
3320 unsigned long dw_file_num;
3321 unsigned long dw_line_num;
3322 }
3323 dw_line_info_entry;
3324
3325 /* Line information for functions in separate sections; each one gets its
3326 own sequence. */
3327 typedef struct dw_separate_line_info_struct GTY(())
3328 {
3329 unsigned long dw_file_num;
3330 unsigned long dw_line_num;
3331 unsigned long function;
3332 }
3333 dw_separate_line_info_entry;
3334
3335 /* Each DIE attribute has a field specifying the attribute kind,
3336 a link to the next attribute in the chain, and an attribute value.
3337 Attributes are typically linked below the DIE they modify. */
3338
3339 typedef struct dw_attr_struct GTY(())
3340 {
3341 enum dwarf_attribute dw_attr;
3342 dw_attr_ref dw_attr_next;
3343 dw_val_node dw_attr_val;
3344 }
3345 dw_attr_node;
3346
3347 /* The Debugging Information Entry (DIE) structure */
3348
3349 typedef struct die_struct GTY(())
3350 {
3351 enum dwarf_tag die_tag;
3352 char *die_symbol;
3353 dw_attr_ref die_attr;
3354 dw_die_ref die_parent;
3355 dw_die_ref die_child;
3356 dw_die_ref die_sib;
3357 dw_offset die_offset;
3358 unsigned long die_abbrev;
3359 int die_mark;
3360 }
3361 die_node;
3362
3363 /* The pubname structure */
3364
3365 typedef struct pubname_struct GTY(())
3366 {
3367 dw_die_ref die;
3368 char *name;
3369 }
3370 pubname_entry;
3371
3372 struct dw_ranges_struct GTY(())
3373 {
3374 int block_num;
3375 };
3376
3377 /* The limbo die list structure. */
3378 typedef struct limbo_die_struct GTY(())
3379 {
3380 dw_die_ref die;
3381 tree created_for;
3382 struct limbo_die_struct *next;
3383 }
3384 limbo_die_node;
3385
3386 /* How to start an assembler comment. */
3387 #ifndef ASM_COMMENT_START
3388 #define ASM_COMMENT_START ";#"
3389 #endif
3390
3391 /* Define a macro which returns nonzero for a TYPE_DECL which was
3392 implicitly generated for a tagged type.
3393
3394 Note that unlike the gcc front end (which generates a NULL named
3395 TYPE_DECL node for each complete tagged type, each array type, and
3396 each function type node created) the g++ front end generates a
3397 _named_ TYPE_DECL node for each tagged type node created.
3398 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3399 generate a DW_TAG_typedef DIE for them. */
3400
3401 #define TYPE_DECL_IS_STUB(decl) \
3402 (DECL_NAME (decl) == NULL_TREE \
3403 || (DECL_ARTIFICIAL (decl) \
3404 && is_tagged_type (TREE_TYPE (decl)) \
3405 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3406 /* This is necessary for stub decls that \
3407 appear in nested inline functions. */ \
3408 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3409 && (decl_ultimate_origin (decl) \
3410 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3411
3412 /* Information concerning the compilation unit's programming
3413 language, and compiler version. */
3414
3415 /* Fixed size portion of the DWARF compilation unit header. */
3416 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3417 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3418
3419 /* Fixed size portion of public names info. */
3420 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3421
3422 /* Fixed size portion of the address range info. */
3423 #define DWARF_ARANGES_HEADER_SIZE \
3424 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3425 DWARF2_ADDR_SIZE * 2) \
3426 - DWARF_INITIAL_LENGTH_SIZE)
3427
3428 /* Size of padding portion in the address range info. It must be
3429 aligned to twice the pointer size. */
3430 #define DWARF_ARANGES_PAD_SIZE \
3431 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3432 DWARF2_ADDR_SIZE * 2) \
3433 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3434
3435 /* Use assembler line directives if available. */
3436 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3437 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3438 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3439 #else
3440 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3441 #endif
3442 #endif
3443
3444 /* Minimum line offset in a special line info. opcode.
3445 This value was chosen to give a reasonable range of values. */
3446 #define DWARF_LINE_BASE -10
3447
3448 /* First special line opcode - leave room for the standard opcodes. */
3449 #define DWARF_LINE_OPCODE_BASE 10
3450
3451 /* Range of line offsets in a special line info. opcode. */
3452 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3453
3454 /* Flag that indicates the initial value of the is_stmt_start flag.
3455 In the present implementation, we do not mark any lines as
3456 the beginning of a source statement, because that information
3457 is not made available by the GCC front-end. */
3458 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3459
3460 #ifdef DWARF2_DEBUGGING_INFO
3461 /* This location is used by calc_die_sizes() to keep track
3462 the offset of each DIE within the .debug_info section. */
3463 static unsigned long next_die_offset;
3464 #endif
3465
3466 /* Record the root of the DIE's built for the current compilation unit. */
3467 static GTY(()) dw_die_ref comp_unit_die;
3468
3469 #ifdef DWARF2_DEBUGGING_INFO
3470 /* We need special handling in dwarf2out_start_source_file if it is
3471 first one. */
3472 static int is_main_source;
3473 #endif
3474
3475 /* A list of DIEs with a NULL parent waiting to be relocated. */
3476 static GTY(()) limbo_die_node *limbo_die_list;
3477
3478 /* Filenames referenced by this compilation unit. */
3479 static GTY(()) varray_type file_table;
3480 static GTY(()) varray_type file_table_emitted;
3481 static GTY(()) size_t file_table_last_lookup_index;
3482
3483 /* A pointer to the base of a table of references to DIE's that describe
3484 declarations. The table is indexed by DECL_UID() which is a unique
3485 number identifying each decl. */
3486 static GTY((length ("decl_die_table_allocated"))) dw_die_ref *decl_die_table;
3487
3488 /* Number of elements currently allocated for the decl_die_table. */
3489 static GTY(()) unsigned decl_die_table_allocated;
3490
3491 /* Number of elements in decl_die_table currently in use. */
3492 static GTY(()) unsigned decl_die_table_in_use;
3493
3494 /* Size (in elements) of increments by which we may expand the
3495 decl_die_table. */
3496 #define DECL_DIE_TABLE_INCREMENT 256
3497
3498 /* A pointer to the base of a list of references to DIE's that
3499 are uniquely identified by their tag, presence/absence of
3500 children DIE's, and list of attribute/value pairs. */
3501 static GTY((length ("abbrev_die_table_allocated")))
3502 dw_die_ref *abbrev_die_table;
3503
3504 /* Number of elements currently allocated for abbrev_die_table. */
3505 static GTY(()) unsigned abbrev_die_table_allocated;
3506
3507 /* Number of elements in type_die_table currently in use. */
3508 static GTY(()) unsigned abbrev_die_table_in_use;
3509
3510 /* Size (in elements) of increments by which we may expand the
3511 abbrev_die_table. */
3512 #define ABBREV_DIE_TABLE_INCREMENT 256
3513
3514 /* A pointer to the base of a table that contains line information
3515 for each source code line in .text in the compilation unit. */
3516 static GTY((length ("line_info_table_allocated")))
3517 dw_line_info_ref line_info_table;
3518
3519 /* Number of elements currently allocated for line_info_table. */
3520 static GTY(()) unsigned line_info_table_allocated;
3521
3522 /* Number of elements in line_info_table currently in use. */
3523 static GTY(()) unsigned line_info_table_in_use;
3524
3525 /* A pointer to the base of a table that contains line information
3526 for each source code line outside of .text in the compilation unit. */
3527 static GTY ((length ("separate_line_info_table_allocated")))
3528 dw_separate_line_info_ref separate_line_info_table;
3529
3530 /* Number of elements currently allocated for separate_line_info_table. */
3531 static GTY(()) unsigned separate_line_info_table_allocated;
3532
3533 /* Number of elements in separate_line_info_table currently in use. */
3534 static GTY(()) unsigned separate_line_info_table_in_use;
3535
3536 /* Size (in elements) of increments by which we may expand the
3537 line_info_table. */
3538 #define LINE_INFO_TABLE_INCREMENT 1024
3539
3540 /* A pointer to the base of a table that contains a list of publicly
3541 accessible names. */
3542 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3543
3544 /* Number of elements currently allocated for pubname_table. */
3545 static GTY(()) unsigned pubname_table_allocated;
3546
3547 /* Number of elements in pubname_table currently in use. */
3548 static GTY(()) unsigned pubname_table_in_use;
3549
3550 /* Size (in elements) of increments by which we may expand the
3551 pubname_table. */
3552 #define PUBNAME_TABLE_INCREMENT 64
3553
3554 /* Array of dies for which we should generate .debug_arange info. */
3555 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3556
3557 /* Number of elements currently allocated for arange_table. */
3558 static GTY(()) unsigned arange_table_allocated;
3559
3560 /* Number of elements in arange_table currently in use. */
3561 static GTY(()) unsigned arange_table_in_use;
3562
3563 /* Size (in elements) of increments by which we may expand the
3564 arange_table. */
3565 #define ARANGE_TABLE_INCREMENT 64
3566
3567 /* Array of dies for which we should generate .debug_ranges info. */
3568 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3569
3570 /* Number of elements currently allocated for ranges_table. */
3571 static GTY(()) unsigned ranges_table_allocated;
3572
3573 /* Number of elements in ranges_table currently in use. */
3574 static GTY(()) unsigned ranges_table_in_use;
3575
3576 /* Size (in elements) of increments by which we may expand the
3577 ranges_table. */
3578 #define RANGES_TABLE_INCREMENT 64
3579
3580 /* Whether we have location lists that need outputting */
3581 static GTY(()) unsigned have_location_lists;
3582
3583 #ifdef DWARF2_DEBUGGING_INFO
3584 /* Record whether the function being analyzed contains inlined functions. */
3585 static int current_function_has_inlines;
3586 #endif
3587 #if 0 && defined (MIPS_DEBUGGING_INFO)
3588 static int comp_unit_has_inlines;
3589 #endif
3590
3591 /* Number of file tables emited in maybe_emit_file(). */
3592 static GTY(()) int emitcount = 0;
3593
3594 /* Number of internal labels generated by gen_internal_sym(). */
3595 static GTY(()) int label_num;
3596
3597 #ifdef DWARF2_DEBUGGING_INFO
3598
3599 /* Forward declarations for functions defined in this file. */
3600
3601 static int is_pseudo_reg PARAMS ((rtx));
3602 static tree type_main_variant PARAMS ((tree));
3603 static int is_tagged_type PARAMS ((tree));
3604 static const char *dwarf_tag_name PARAMS ((unsigned));
3605 static const char *dwarf_attr_name PARAMS ((unsigned));
3606 static const char *dwarf_form_name PARAMS ((unsigned));
3607 #if 0
3608 static const char *dwarf_type_encoding_name PARAMS ((unsigned));
3609 #endif
3610 static tree decl_ultimate_origin PARAMS ((tree));
3611 static tree block_ultimate_origin PARAMS ((tree));
3612 static tree decl_class_context PARAMS ((tree));
3613 static void add_dwarf_attr PARAMS ((dw_die_ref, dw_attr_ref));
3614 static inline enum dw_val_class AT_class PARAMS ((dw_attr_ref));
3615 static void add_AT_flag PARAMS ((dw_die_ref,
3616 enum dwarf_attribute,
3617 unsigned));
3618 static inline unsigned AT_flag PARAMS ((dw_attr_ref));
3619 static void add_AT_int PARAMS ((dw_die_ref,
3620 enum dwarf_attribute, long));
3621 static inline long int AT_int PARAMS ((dw_attr_ref));
3622 static void add_AT_unsigned PARAMS ((dw_die_ref,
3623 enum dwarf_attribute,
3624 unsigned long));
3625 static inline unsigned long AT_unsigned PARAMS ((dw_attr_ref));
3626 static void add_AT_long_long PARAMS ((dw_die_ref,
3627 enum dwarf_attribute,
3628 unsigned long,
3629 unsigned long));
3630 static void add_AT_float PARAMS ((dw_die_ref,
3631 enum dwarf_attribute,
3632 unsigned, long *));
3633 static hashval_t debug_str_do_hash PARAMS ((const void *));
3634 static int debug_str_eq PARAMS ((const void *, const void *));
3635 static void add_AT_string PARAMS ((dw_die_ref,
3636 enum dwarf_attribute,
3637 const char *));
3638 static inline const char *AT_string PARAMS ((dw_attr_ref));
3639 static int AT_string_form PARAMS ((dw_attr_ref));
3640 static void add_AT_die_ref PARAMS ((dw_die_ref,
3641 enum dwarf_attribute,
3642 dw_die_ref));
3643 static inline dw_die_ref AT_ref PARAMS ((dw_attr_ref));
3644 static inline int AT_ref_external PARAMS ((dw_attr_ref));
3645 static inline void set_AT_ref_external PARAMS ((dw_attr_ref, int));
3646 static void add_AT_fde_ref PARAMS ((dw_die_ref,
3647 enum dwarf_attribute,
3648 unsigned));
3649 static void add_AT_loc PARAMS ((dw_die_ref,
3650 enum dwarf_attribute,
3651 dw_loc_descr_ref));
3652 static inline dw_loc_descr_ref AT_loc PARAMS ((dw_attr_ref));
3653 static void add_AT_loc_list PARAMS ((dw_die_ref,
3654 enum dwarf_attribute,
3655 dw_loc_list_ref));
3656 static inline dw_loc_list_ref AT_loc_list PARAMS ((dw_attr_ref));
3657 static void add_AT_addr PARAMS ((dw_die_ref,
3658 enum dwarf_attribute,
3659 rtx));
3660 static inline rtx AT_addr PARAMS ((dw_attr_ref));
3661 static void add_AT_lbl_id PARAMS ((dw_die_ref,
3662 enum dwarf_attribute,
3663 const char *));
3664 static void add_AT_lbl_offset PARAMS ((dw_die_ref,
3665 enum dwarf_attribute,
3666 const char *));
3667 static void add_AT_offset PARAMS ((dw_die_ref,
3668 enum dwarf_attribute,
3669 unsigned long));
3670 static void add_AT_range_list PARAMS ((dw_die_ref,
3671 enum dwarf_attribute,
3672 unsigned long));
3673 static inline const char *AT_lbl PARAMS ((dw_attr_ref));
3674 static dw_attr_ref get_AT PARAMS ((dw_die_ref,
3675 enum dwarf_attribute));
3676 static const char *get_AT_low_pc PARAMS ((dw_die_ref));
3677 static const char *get_AT_hi_pc PARAMS ((dw_die_ref));
3678 static const char *get_AT_string PARAMS ((dw_die_ref,
3679 enum dwarf_attribute));
3680 static int get_AT_flag PARAMS ((dw_die_ref,
3681 enum dwarf_attribute));
3682 static unsigned get_AT_unsigned PARAMS ((dw_die_ref,
3683 enum dwarf_attribute));
3684 static inline dw_die_ref get_AT_ref PARAMS ((dw_die_ref,
3685 enum dwarf_attribute));
3686 static bool is_c_family PARAMS ((void));
3687 static bool is_cxx PARAMS ((void));
3688 static bool is_java PARAMS ((void));
3689 static bool is_fortran PARAMS ((void));
3690 static bool is_ada PARAMS ((void));
3691 static void remove_AT PARAMS ((dw_die_ref,
3692 enum dwarf_attribute));
3693 static inline void free_die PARAMS ((dw_die_ref));
3694 static void remove_children PARAMS ((dw_die_ref));
3695 static void add_child_die PARAMS ((dw_die_ref, dw_die_ref));
3696 static dw_die_ref new_die PARAMS ((enum dwarf_tag, dw_die_ref,
3697 tree));
3698 static dw_die_ref lookup_type_die PARAMS ((tree));
3699 static void equate_type_number_to_die PARAMS ((tree, dw_die_ref));
3700 static dw_die_ref lookup_decl_die PARAMS ((tree));
3701 static void equate_decl_number_to_die PARAMS ((tree, dw_die_ref));
3702 static void print_spaces PARAMS ((FILE *));
3703 static void print_die PARAMS ((dw_die_ref, FILE *));
3704 static void print_dwarf_line_table PARAMS ((FILE *));
3705 static void reverse_die_lists PARAMS ((dw_die_ref));
3706 static void reverse_all_dies PARAMS ((dw_die_ref));
3707 static dw_die_ref push_new_compile_unit PARAMS ((dw_die_ref, dw_die_ref));
3708 static dw_die_ref pop_compile_unit PARAMS ((dw_die_ref));
3709 static void loc_checksum PARAMS ((dw_loc_descr_ref,
3710 struct md5_ctx *));
3711 static void attr_checksum PARAMS ((dw_attr_ref,
3712 struct md5_ctx *,
3713 int *));
3714 static void die_checksum PARAMS ((dw_die_ref,
3715 struct md5_ctx *,
3716 int *));
3717 static int same_loc_p PARAMS ((dw_loc_descr_ref,
3718 dw_loc_descr_ref, int *));
3719 static int same_dw_val_p PARAMS ((dw_val_node *, dw_val_node *,
3720 int *));
3721 static int same_attr_p PARAMS ((dw_attr_ref, dw_attr_ref, int *));
3722 static int same_die_p PARAMS ((dw_die_ref, dw_die_ref, int *));
3723 static int same_die_p_wrap PARAMS ((dw_die_ref, dw_die_ref));
3724 static void compute_section_prefix PARAMS ((dw_die_ref));
3725 static int is_type_die PARAMS ((dw_die_ref));
3726 static int is_comdat_die PARAMS ((dw_die_ref));
3727 static int is_symbol_die PARAMS ((dw_die_ref));
3728 static void assign_symbol_names PARAMS ((dw_die_ref));
3729 static void break_out_includes PARAMS ((dw_die_ref));
3730 static hashval_t htab_cu_hash PARAMS ((const void *));
3731 static int htab_cu_eq PARAMS ((const void *, const void *));
3732 static void htab_cu_del PARAMS ((void *));
3733 static int check_duplicate_cu PARAMS ((dw_die_ref, htab_t, unsigned *));
3734 static void record_comdat_symbol_number PARAMS ((dw_die_ref, htab_t, unsigned));
3735 static void add_sibling_attributes PARAMS ((dw_die_ref));
3736 static void build_abbrev_table PARAMS ((dw_die_ref));
3737 static void output_location_lists PARAMS ((dw_die_ref));
3738 static int constant_size PARAMS ((long unsigned));
3739 static unsigned long size_of_die PARAMS ((dw_die_ref));
3740 static void calc_die_sizes PARAMS ((dw_die_ref));
3741 static void mark_dies PARAMS ((dw_die_ref));
3742 static void unmark_dies PARAMS ((dw_die_ref));
3743 static void unmark_all_dies PARAMS ((dw_die_ref));
3744 static unsigned long size_of_pubnames PARAMS ((void));
3745 static unsigned long size_of_aranges PARAMS ((void));
3746 static enum dwarf_form value_format PARAMS ((dw_attr_ref));
3747 static void output_value_format PARAMS ((dw_attr_ref));
3748 static void output_abbrev_section PARAMS ((void));
3749 static void output_die_symbol PARAMS ((dw_die_ref));
3750 static void output_die PARAMS ((dw_die_ref));
3751 static void output_compilation_unit_header PARAMS ((void));
3752 static void output_comp_unit PARAMS ((dw_die_ref, int));
3753 static const char *dwarf2_name PARAMS ((tree, int));
3754 static void add_pubname PARAMS ((tree, dw_die_ref));
3755 static void output_pubnames PARAMS ((void));
3756 static void add_arange PARAMS ((tree, dw_die_ref));
3757 static void output_aranges PARAMS ((void));
3758 static unsigned int add_ranges PARAMS ((tree));
3759 static void output_ranges PARAMS ((void));
3760 static void output_line_info PARAMS ((void));
3761 static void output_file_names PARAMS ((void));
3762 static dw_die_ref base_type_die PARAMS ((tree));
3763 static tree root_type PARAMS ((tree));
3764 static int is_base_type PARAMS ((tree));
3765 static bool is_ada_subrange_type PARAMS ((tree));
3766 static dw_die_ref subrange_type_die PARAMS ((tree));
3767 static dw_die_ref modified_type_die PARAMS ((tree, int, int, dw_die_ref));
3768 static int type_is_enum PARAMS ((tree));
3769 static unsigned int reg_number PARAMS ((rtx));
3770 static dw_loc_descr_ref reg_loc_descriptor PARAMS ((rtx));
3771 static dw_loc_descr_ref one_reg_loc_descriptor PARAMS ((unsigned int));
3772 static dw_loc_descr_ref multiple_reg_loc_descriptor PARAMS ((rtx, rtx));
3773 static dw_loc_descr_ref int_loc_descriptor PARAMS ((HOST_WIDE_INT));
3774 static dw_loc_descr_ref based_loc_descr PARAMS ((unsigned, long));
3775 static int is_based_loc PARAMS ((rtx));
3776 static dw_loc_descr_ref mem_loc_descriptor PARAMS ((rtx, enum machine_mode mode));
3777 static dw_loc_descr_ref concat_loc_descriptor PARAMS ((rtx, rtx));
3778 static dw_loc_descr_ref loc_descriptor PARAMS ((rtx));
3779 static dw_loc_descr_ref loc_descriptor_from_tree PARAMS ((tree, int));
3780 static HOST_WIDE_INT ceiling PARAMS ((HOST_WIDE_INT, unsigned int));
3781 static tree field_type PARAMS ((tree));
3782 static unsigned int simple_type_align_in_bits PARAMS ((tree));
3783 static unsigned int simple_decl_align_in_bits PARAMS ((tree));
3784 static unsigned HOST_WIDE_INT simple_type_size_in_bits PARAMS ((tree));
3785 static HOST_WIDE_INT field_byte_offset PARAMS ((tree));
3786 static void add_AT_location_description PARAMS ((dw_die_ref,
3787 enum dwarf_attribute,
3788 dw_loc_descr_ref));
3789 static void add_data_member_location_attribute PARAMS ((dw_die_ref, tree));
3790 static void add_const_value_attribute PARAMS ((dw_die_ref, rtx));
3791 static rtx rtl_for_decl_location PARAMS ((tree));
3792 static void add_location_or_const_value_attribute PARAMS ((dw_die_ref, tree));
3793 static void tree_add_const_value_attribute PARAMS ((dw_die_ref, tree));
3794 static void add_name_attribute PARAMS ((dw_die_ref, const char *));
3795 static void add_comp_dir_attribute PARAMS ((dw_die_ref));
3796 static void add_bound_info PARAMS ((dw_die_ref,
3797 enum dwarf_attribute, tree));
3798 static void add_subscript_info PARAMS ((dw_die_ref, tree));
3799 static void add_byte_size_attribute PARAMS ((dw_die_ref, tree));
3800 static void add_bit_offset_attribute PARAMS ((dw_die_ref, tree));
3801 static void add_bit_size_attribute PARAMS ((dw_die_ref, tree));
3802 static void add_prototyped_attribute PARAMS ((dw_die_ref, tree));
3803 static void add_abstract_origin_attribute PARAMS ((dw_die_ref, tree));
3804 static void add_pure_or_virtual_attribute PARAMS ((dw_die_ref, tree));
3805 static void add_src_coords_attributes PARAMS ((dw_die_ref, tree));
3806 static void add_name_and_src_coords_attributes PARAMS ((dw_die_ref, tree));
3807 static void push_decl_scope PARAMS ((tree));
3808 static void pop_decl_scope PARAMS ((void));
3809 static dw_die_ref scope_die_for PARAMS ((tree, dw_die_ref));
3810 static inline int local_scope_p PARAMS ((dw_die_ref));
3811 static inline int class_scope_p PARAMS ((dw_die_ref));
3812 static void add_type_attribute PARAMS ((dw_die_ref, tree, int, int,
3813 dw_die_ref));
3814 static const char *type_tag PARAMS ((tree));
3815 static tree member_declared_type PARAMS ((tree));
3816 #if 0
3817 static const char *decl_start_label PARAMS ((tree));
3818 #endif
3819 static void gen_array_type_die PARAMS ((tree, dw_die_ref));
3820 static void gen_set_type_die PARAMS ((tree, dw_die_ref));
3821 #if 0
3822 static void gen_entry_point_die PARAMS ((tree, dw_die_ref));
3823 #endif
3824 static void gen_inlined_enumeration_type_die PARAMS ((tree, dw_die_ref));
3825 static void gen_inlined_structure_type_die PARAMS ((tree, dw_die_ref));
3826 static void gen_inlined_union_type_die PARAMS ((tree, dw_die_ref));
3827 static void gen_enumeration_type_die PARAMS ((tree, dw_die_ref));
3828 static dw_die_ref gen_formal_parameter_die PARAMS ((tree, dw_die_ref));
3829 static void gen_unspecified_parameters_die PARAMS ((tree, dw_die_ref));
3830 static void gen_formal_types_die PARAMS ((tree, dw_die_ref));
3831 static void gen_subprogram_die PARAMS ((tree, dw_die_ref));
3832 static void gen_variable_die PARAMS ((tree, dw_die_ref));
3833 static void gen_label_die PARAMS ((tree, dw_die_ref));
3834 static void gen_lexical_block_die PARAMS ((tree, dw_die_ref, int));
3835 static void gen_inlined_subroutine_die PARAMS ((tree, dw_die_ref, int));
3836 static void gen_field_die PARAMS ((tree, dw_die_ref));
3837 static void gen_ptr_to_mbr_type_die PARAMS ((tree, dw_die_ref));
3838 static dw_die_ref gen_compile_unit_die PARAMS ((const char *));
3839 static void gen_string_type_die PARAMS ((tree, dw_die_ref));
3840 static void gen_inheritance_die PARAMS ((tree, tree, dw_die_ref));
3841 static void gen_member_die PARAMS ((tree, dw_die_ref));
3842 static void gen_struct_or_union_type_die PARAMS ((tree, dw_die_ref));
3843 static void gen_subroutine_type_die PARAMS ((tree, dw_die_ref));
3844 static void gen_typedef_die PARAMS ((tree, dw_die_ref));
3845 static void gen_type_die PARAMS ((tree, dw_die_ref));
3846 static void gen_tagged_type_instantiation_die PARAMS ((tree, dw_die_ref));
3847 static void gen_block_die PARAMS ((tree, dw_die_ref, int));
3848 static void decls_for_scope PARAMS ((tree, dw_die_ref, int));
3849 static int is_redundant_typedef PARAMS ((tree));
3850 static void gen_decl_die PARAMS ((tree, dw_die_ref));
3851 static unsigned lookup_filename PARAMS ((const char *));
3852 static void init_file_table PARAMS ((void));
3853 static void retry_incomplete_types PARAMS ((void));
3854 static void gen_type_die_for_member PARAMS ((tree, tree, dw_die_ref));
3855 static void splice_child_die PARAMS ((dw_die_ref, dw_die_ref));
3856 static int file_info_cmp PARAMS ((const void *, const void *));
3857 static dw_loc_list_ref new_loc_list PARAMS ((dw_loc_descr_ref,
3858 const char *, const char *,
3859 const char *, unsigned));
3860 static void add_loc_descr_to_loc_list PARAMS ((dw_loc_list_ref *,
3861 dw_loc_descr_ref,
3862 const char *, const char *, const char *));
3863 static void output_loc_list PARAMS ((dw_loc_list_ref));
3864 static char *gen_internal_sym PARAMS ((const char *));
3865
3866 static void prune_unmark_dies PARAMS ((dw_die_ref));
3867 static void prune_unused_types_mark PARAMS ((dw_die_ref, int));
3868 static void prune_unused_types_walk PARAMS ((dw_die_ref));
3869 static void prune_unused_types_walk_attribs PARAMS ((dw_die_ref));
3870 static void prune_unused_types_prune PARAMS ((dw_die_ref));
3871 static void prune_unused_types PARAMS ((void));
3872 static int maybe_emit_file PARAMS ((int));
3873
3874 /* Section names used to hold DWARF debugging information. */
3875 #ifndef DEBUG_INFO_SECTION
3876 #define DEBUG_INFO_SECTION ".debug_info"
3877 #endif
3878 #ifndef DEBUG_ABBREV_SECTION
3879 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3880 #endif
3881 #ifndef DEBUG_ARANGES_SECTION
3882 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3883 #endif
3884 #ifndef DEBUG_MACINFO_SECTION
3885 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3886 #endif
3887 #ifndef DEBUG_LINE_SECTION
3888 #define DEBUG_LINE_SECTION ".debug_line"
3889 #endif
3890 #ifndef DEBUG_LOC_SECTION
3891 #define DEBUG_LOC_SECTION ".debug_loc"
3892 #endif
3893 #ifndef DEBUG_PUBNAMES_SECTION
3894 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3895 #endif
3896 #ifndef DEBUG_STR_SECTION
3897 #define DEBUG_STR_SECTION ".debug_str"
3898 #endif
3899 #ifndef DEBUG_RANGES_SECTION
3900 #define DEBUG_RANGES_SECTION ".debug_ranges"
3901 #endif
3902
3903 /* Standard ELF section names for compiled code and data. */
3904 #ifndef TEXT_SECTION_NAME
3905 #define TEXT_SECTION_NAME ".text"
3906 #endif
3907
3908 /* Section flags for .debug_str section. */
3909 #ifdef HAVE_GAS_SHF_MERGE
3910 #define DEBUG_STR_SECTION_FLAGS \
3911 (flag_merge_constants \
3912 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
3913 : SECTION_DEBUG)
3914 #else
3915 #define DEBUG_STR_SECTION_FLAGS SECTION_DEBUG
3916 #endif
3917
3918 /* Labels we insert at beginning sections we can reference instead of
3919 the section names themselves. */
3920
3921 #ifndef TEXT_SECTION_LABEL
3922 #define TEXT_SECTION_LABEL "Ltext"
3923 #endif
3924 #ifndef DEBUG_LINE_SECTION_LABEL
3925 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3926 #endif
3927 #ifndef DEBUG_INFO_SECTION_LABEL
3928 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3929 #endif
3930 #ifndef DEBUG_ABBREV_SECTION_LABEL
3931 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3932 #endif
3933 #ifndef DEBUG_LOC_SECTION_LABEL
3934 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3935 #endif
3936 #ifndef DEBUG_RANGES_SECTION_LABEL
3937 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3938 #endif
3939 #ifndef DEBUG_MACINFO_SECTION_LABEL
3940 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3941 #endif
3942
3943 /* Definitions of defaults for formats and names of various special
3944 (artificial) labels which may be generated within this file (when the -g
3945 options is used and DWARF_DEBUGGING_INFO is in effect.
3946 If necessary, these may be overridden from within the tm.h file, but
3947 typically, overriding these defaults is unnecessary. */
3948
3949 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3950 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3951 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3952 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3953 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3954 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3955 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3956 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3957
3958 #ifndef TEXT_END_LABEL
3959 #define TEXT_END_LABEL "Letext"
3960 #endif
3961 #ifndef BLOCK_BEGIN_LABEL
3962 #define BLOCK_BEGIN_LABEL "LBB"
3963 #endif
3964 #ifndef BLOCK_END_LABEL
3965 #define BLOCK_END_LABEL "LBE"
3966 #endif
3967 #ifndef LINE_CODE_LABEL
3968 #define LINE_CODE_LABEL "LM"
3969 #endif
3970 #ifndef SEPARATE_LINE_CODE_LABEL
3971 #define SEPARATE_LINE_CODE_LABEL "LSM"
3972 #endif
3973 \f
3974 /* We allow a language front-end to designate a function that is to be
3975 called to "demangle" any name before it it put into a DIE. */
3976
3977 static const char *(*demangle_name_func) PARAMS ((const char *));
3978
3979 void
3980 dwarf2out_set_demangle_name_func (func)
3981 const char *(*func) PARAMS ((const char *));
3982 {
3983 demangle_name_func = func;
3984 }
3985
3986 /* Test if rtl node points to a pseudo register. */
3987
3988 static inline int
3989 is_pseudo_reg (rtl)
3990 rtx rtl;
3991 {
3992 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3993 || (GET_CODE (rtl) == SUBREG
3994 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3995 }
3996
3997 /* Return a reference to a type, with its const and volatile qualifiers
3998 removed. */
3999
4000 static inline tree
4001 type_main_variant (type)
4002 tree type;
4003 {
4004 type = TYPE_MAIN_VARIANT (type);
4005
4006 /* ??? There really should be only one main variant among any group of
4007 variants of a given type (and all of the MAIN_VARIANT values for all
4008 members of the group should point to that one type) but sometimes the C
4009 front-end messes this up for array types, so we work around that bug
4010 here. */
4011 if (TREE_CODE (type) == ARRAY_TYPE)
4012 while (type != TYPE_MAIN_VARIANT (type))
4013 type = TYPE_MAIN_VARIANT (type);
4014
4015 return type;
4016 }
4017
4018 /* Return nonzero if the given type node represents a tagged type. */
4019
4020 static inline int
4021 is_tagged_type (type)
4022 tree type;
4023 {
4024 enum tree_code code = TREE_CODE (type);
4025
4026 return (code == RECORD_TYPE || code == UNION_TYPE
4027 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4028 }
4029
4030 /* Convert a DIE tag into its string name. */
4031
4032 static const char *
4033 dwarf_tag_name (tag)
4034 unsigned tag;
4035 {
4036 switch (tag)
4037 {
4038 case DW_TAG_padding:
4039 return "DW_TAG_padding";
4040 case DW_TAG_array_type:
4041 return "DW_TAG_array_type";
4042 case DW_TAG_class_type:
4043 return "DW_TAG_class_type";
4044 case DW_TAG_entry_point:
4045 return "DW_TAG_entry_point";
4046 case DW_TAG_enumeration_type:
4047 return "DW_TAG_enumeration_type";
4048 case DW_TAG_formal_parameter:
4049 return "DW_TAG_formal_parameter";
4050 case DW_TAG_imported_declaration:
4051 return "DW_TAG_imported_declaration";
4052 case DW_TAG_label:
4053 return "DW_TAG_label";
4054 case DW_TAG_lexical_block:
4055 return "DW_TAG_lexical_block";
4056 case DW_TAG_member:
4057 return "DW_TAG_member";
4058 case DW_TAG_pointer_type:
4059 return "DW_TAG_pointer_type";
4060 case DW_TAG_reference_type:
4061 return "DW_TAG_reference_type";
4062 case DW_TAG_compile_unit:
4063 return "DW_TAG_compile_unit";
4064 case DW_TAG_string_type:
4065 return "DW_TAG_string_type";
4066 case DW_TAG_structure_type:
4067 return "DW_TAG_structure_type";
4068 case DW_TAG_subroutine_type:
4069 return "DW_TAG_subroutine_type";
4070 case DW_TAG_typedef:
4071 return "DW_TAG_typedef";
4072 case DW_TAG_union_type:
4073 return "DW_TAG_union_type";
4074 case DW_TAG_unspecified_parameters:
4075 return "DW_TAG_unspecified_parameters";
4076 case DW_TAG_variant:
4077 return "DW_TAG_variant";
4078 case DW_TAG_common_block:
4079 return "DW_TAG_common_block";
4080 case DW_TAG_common_inclusion:
4081 return "DW_TAG_common_inclusion";
4082 case DW_TAG_inheritance:
4083 return "DW_TAG_inheritance";
4084 case DW_TAG_inlined_subroutine:
4085 return "DW_TAG_inlined_subroutine";
4086 case DW_TAG_module:
4087 return "DW_TAG_module";
4088 case DW_TAG_ptr_to_member_type:
4089 return "DW_TAG_ptr_to_member_type";
4090 case DW_TAG_set_type:
4091 return "DW_TAG_set_type";
4092 case DW_TAG_subrange_type:
4093 return "DW_TAG_subrange_type";
4094 case DW_TAG_with_stmt:
4095 return "DW_TAG_with_stmt";
4096 case DW_TAG_access_declaration:
4097 return "DW_TAG_access_declaration";
4098 case DW_TAG_base_type:
4099 return "DW_TAG_base_type";
4100 case DW_TAG_catch_block:
4101 return "DW_TAG_catch_block";
4102 case DW_TAG_const_type:
4103 return "DW_TAG_const_type";
4104 case DW_TAG_constant:
4105 return "DW_TAG_constant";
4106 case DW_TAG_enumerator:
4107 return "DW_TAG_enumerator";
4108 case DW_TAG_file_type:
4109 return "DW_TAG_file_type";
4110 case DW_TAG_friend:
4111 return "DW_TAG_friend";
4112 case DW_TAG_namelist:
4113 return "DW_TAG_namelist";
4114 case DW_TAG_namelist_item:
4115 return "DW_TAG_namelist_item";
4116 case DW_TAG_packed_type:
4117 return "DW_TAG_packed_type";
4118 case DW_TAG_subprogram:
4119 return "DW_TAG_subprogram";
4120 case DW_TAG_template_type_param:
4121 return "DW_TAG_template_type_param";
4122 case DW_TAG_template_value_param:
4123 return "DW_TAG_template_value_param";
4124 case DW_TAG_thrown_type:
4125 return "DW_TAG_thrown_type";
4126 case DW_TAG_try_block:
4127 return "DW_TAG_try_block";
4128 case DW_TAG_variant_part:
4129 return "DW_TAG_variant_part";
4130 case DW_TAG_variable:
4131 return "DW_TAG_variable";
4132 case DW_TAG_volatile_type:
4133 return "DW_TAG_volatile_type";
4134 case DW_TAG_MIPS_loop:
4135 return "DW_TAG_MIPS_loop";
4136 case DW_TAG_format_label:
4137 return "DW_TAG_format_label";
4138 case DW_TAG_function_template:
4139 return "DW_TAG_function_template";
4140 case DW_TAG_class_template:
4141 return "DW_TAG_class_template";
4142 case DW_TAG_GNU_BINCL:
4143 return "DW_TAG_GNU_BINCL";
4144 case DW_TAG_GNU_EINCL:
4145 return "DW_TAG_GNU_EINCL";
4146 default:
4147 return "DW_TAG_<unknown>";
4148 }
4149 }
4150
4151 /* Convert a DWARF attribute code into its string name. */
4152
4153 static const char *
4154 dwarf_attr_name (attr)
4155 unsigned attr;
4156 {
4157 switch (attr)
4158 {
4159 case DW_AT_sibling:
4160 return "DW_AT_sibling";
4161 case DW_AT_location:
4162 return "DW_AT_location";
4163 case DW_AT_name:
4164 return "DW_AT_name";
4165 case DW_AT_ordering:
4166 return "DW_AT_ordering";
4167 case DW_AT_subscr_data:
4168 return "DW_AT_subscr_data";
4169 case DW_AT_byte_size:
4170 return "DW_AT_byte_size";
4171 case DW_AT_bit_offset:
4172 return "DW_AT_bit_offset";
4173 case DW_AT_bit_size:
4174 return "DW_AT_bit_size";
4175 case DW_AT_element_list:
4176 return "DW_AT_element_list";
4177 case DW_AT_stmt_list:
4178 return "DW_AT_stmt_list";
4179 case DW_AT_low_pc:
4180 return "DW_AT_low_pc";
4181 case DW_AT_high_pc:
4182 return "DW_AT_high_pc";
4183 case DW_AT_language:
4184 return "DW_AT_language";
4185 case DW_AT_member:
4186 return "DW_AT_member";
4187 case DW_AT_discr:
4188 return "DW_AT_discr";
4189 case DW_AT_discr_value:
4190 return "DW_AT_discr_value";
4191 case DW_AT_visibility:
4192 return "DW_AT_visibility";
4193 case DW_AT_import:
4194 return "DW_AT_import";
4195 case DW_AT_string_length:
4196 return "DW_AT_string_length";
4197 case DW_AT_common_reference:
4198 return "DW_AT_common_reference";
4199 case DW_AT_comp_dir:
4200 return "DW_AT_comp_dir";
4201 case DW_AT_const_value:
4202 return "DW_AT_const_value";
4203 case DW_AT_containing_type:
4204 return "DW_AT_containing_type";
4205 case DW_AT_default_value:
4206 return "DW_AT_default_value";
4207 case DW_AT_inline:
4208 return "DW_AT_inline";
4209 case DW_AT_is_optional:
4210 return "DW_AT_is_optional";
4211 case DW_AT_lower_bound:
4212 return "DW_AT_lower_bound";
4213 case DW_AT_producer:
4214 return "DW_AT_producer";
4215 case DW_AT_prototyped:
4216 return "DW_AT_prototyped";
4217 case DW_AT_return_addr:
4218 return "DW_AT_return_addr";
4219 case DW_AT_start_scope:
4220 return "DW_AT_start_scope";
4221 case DW_AT_stride_size:
4222 return "DW_AT_stride_size";
4223 case DW_AT_upper_bound:
4224 return "DW_AT_upper_bound";
4225 case DW_AT_abstract_origin:
4226 return "DW_AT_abstract_origin";
4227 case DW_AT_accessibility:
4228 return "DW_AT_accessibility";
4229 case DW_AT_address_class:
4230 return "DW_AT_address_class";
4231 case DW_AT_artificial:
4232 return "DW_AT_artificial";
4233 case DW_AT_base_types:
4234 return "DW_AT_base_types";
4235 case DW_AT_calling_convention:
4236 return "DW_AT_calling_convention";
4237 case DW_AT_count:
4238 return "DW_AT_count";
4239 case DW_AT_data_member_location:
4240 return "DW_AT_data_member_location";
4241 case DW_AT_decl_column:
4242 return "DW_AT_decl_column";
4243 case DW_AT_decl_file:
4244 return "DW_AT_decl_file";
4245 case DW_AT_decl_line:
4246 return "DW_AT_decl_line";
4247 case DW_AT_declaration:
4248 return "DW_AT_declaration";
4249 case DW_AT_discr_list:
4250 return "DW_AT_discr_list";
4251 case DW_AT_encoding:
4252 return "DW_AT_encoding";
4253 case DW_AT_external:
4254 return "DW_AT_external";
4255 case DW_AT_frame_base:
4256 return "DW_AT_frame_base";
4257 case DW_AT_friend:
4258 return "DW_AT_friend";
4259 case DW_AT_identifier_case:
4260 return "DW_AT_identifier_case";
4261 case DW_AT_macro_info:
4262 return "DW_AT_macro_info";
4263 case DW_AT_namelist_items:
4264 return "DW_AT_namelist_items";
4265 case DW_AT_priority:
4266 return "DW_AT_priority";
4267 case DW_AT_segment:
4268 return "DW_AT_segment";
4269 case DW_AT_specification:
4270 return "DW_AT_specification";
4271 case DW_AT_static_link:
4272 return "DW_AT_static_link";
4273 case DW_AT_type:
4274 return "DW_AT_type";
4275 case DW_AT_use_location:
4276 return "DW_AT_use_location";
4277 case DW_AT_variable_parameter:
4278 return "DW_AT_variable_parameter";
4279 case DW_AT_virtuality:
4280 return "DW_AT_virtuality";
4281 case DW_AT_vtable_elem_location:
4282 return "DW_AT_vtable_elem_location";
4283
4284 case DW_AT_allocated:
4285 return "DW_AT_allocated";
4286 case DW_AT_associated:
4287 return "DW_AT_associated";
4288 case DW_AT_data_location:
4289 return "DW_AT_data_location";
4290 case DW_AT_stride:
4291 return "DW_AT_stride";
4292 case DW_AT_entry_pc:
4293 return "DW_AT_entry_pc";
4294 case DW_AT_use_UTF8:
4295 return "DW_AT_use_UTF8";
4296 case DW_AT_extension:
4297 return "DW_AT_extension";
4298 case DW_AT_ranges:
4299 return "DW_AT_ranges";
4300 case DW_AT_trampoline:
4301 return "DW_AT_trampoline";
4302 case DW_AT_call_column:
4303 return "DW_AT_call_column";
4304 case DW_AT_call_file:
4305 return "DW_AT_call_file";
4306 case DW_AT_call_line:
4307 return "DW_AT_call_line";
4308
4309 case DW_AT_MIPS_fde:
4310 return "DW_AT_MIPS_fde";
4311 case DW_AT_MIPS_loop_begin:
4312 return "DW_AT_MIPS_loop_begin";
4313 case DW_AT_MIPS_tail_loop_begin:
4314 return "DW_AT_MIPS_tail_loop_begin";
4315 case DW_AT_MIPS_epilog_begin:
4316 return "DW_AT_MIPS_epilog_begin";
4317 case DW_AT_MIPS_loop_unroll_factor:
4318 return "DW_AT_MIPS_loop_unroll_factor";
4319 case DW_AT_MIPS_software_pipeline_depth:
4320 return "DW_AT_MIPS_software_pipeline_depth";
4321 case DW_AT_MIPS_linkage_name:
4322 return "DW_AT_MIPS_linkage_name";
4323 case DW_AT_MIPS_stride:
4324 return "DW_AT_MIPS_stride";
4325 case DW_AT_MIPS_abstract_name:
4326 return "DW_AT_MIPS_abstract_name";
4327 case DW_AT_MIPS_clone_origin:
4328 return "DW_AT_MIPS_clone_origin";
4329 case DW_AT_MIPS_has_inlines:
4330 return "DW_AT_MIPS_has_inlines";
4331
4332 case DW_AT_sf_names:
4333 return "DW_AT_sf_names";
4334 case DW_AT_src_info:
4335 return "DW_AT_src_info";
4336 case DW_AT_mac_info:
4337 return "DW_AT_mac_info";
4338 case DW_AT_src_coords:
4339 return "DW_AT_src_coords";
4340 case DW_AT_body_begin:
4341 return "DW_AT_body_begin";
4342 case DW_AT_body_end:
4343 return "DW_AT_body_end";
4344 case DW_AT_GNU_vector:
4345 return "DW_AT_GNU_vector";
4346
4347 case DW_AT_VMS_rtnbeg_pd_address:
4348 return "DW_AT_VMS_rtnbeg_pd_address";
4349
4350 default:
4351 return "DW_AT_<unknown>";
4352 }
4353 }
4354
4355 /* Convert a DWARF value form code into its string name. */
4356
4357 static const char *
4358 dwarf_form_name (form)
4359 unsigned form;
4360 {
4361 switch (form)
4362 {
4363 case DW_FORM_addr:
4364 return "DW_FORM_addr";
4365 case DW_FORM_block2:
4366 return "DW_FORM_block2";
4367 case DW_FORM_block4:
4368 return "DW_FORM_block4";
4369 case DW_FORM_data2:
4370 return "DW_FORM_data2";
4371 case DW_FORM_data4:
4372 return "DW_FORM_data4";
4373 case DW_FORM_data8:
4374 return "DW_FORM_data8";
4375 case DW_FORM_string:
4376 return "DW_FORM_string";
4377 case DW_FORM_block:
4378 return "DW_FORM_block";
4379 case DW_FORM_block1:
4380 return "DW_FORM_block1";
4381 case DW_FORM_data1:
4382 return "DW_FORM_data1";
4383 case DW_FORM_flag:
4384 return "DW_FORM_flag";
4385 case DW_FORM_sdata:
4386 return "DW_FORM_sdata";
4387 case DW_FORM_strp:
4388 return "DW_FORM_strp";
4389 case DW_FORM_udata:
4390 return "DW_FORM_udata";
4391 case DW_FORM_ref_addr:
4392 return "DW_FORM_ref_addr";
4393 case DW_FORM_ref1:
4394 return "DW_FORM_ref1";
4395 case DW_FORM_ref2:
4396 return "DW_FORM_ref2";
4397 case DW_FORM_ref4:
4398 return "DW_FORM_ref4";
4399 case DW_FORM_ref8:
4400 return "DW_FORM_ref8";
4401 case DW_FORM_ref_udata:
4402 return "DW_FORM_ref_udata";
4403 case DW_FORM_indirect:
4404 return "DW_FORM_indirect";
4405 default:
4406 return "DW_FORM_<unknown>";
4407 }
4408 }
4409
4410 /* Convert a DWARF type code into its string name. */
4411
4412 #if 0
4413 static const char *
4414 dwarf_type_encoding_name (enc)
4415 unsigned enc;
4416 {
4417 switch (enc)
4418 {
4419 case DW_ATE_address:
4420 return "DW_ATE_address";
4421 case DW_ATE_boolean:
4422 return "DW_ATE_boolean";
4423 case DW_ATE_complex_float:
4424 return "DW_ATE_complex_float";
4425 case DW_ATE_float:
4426 return "DW_ATE_float";
4427 case DW_ATE_signed:
4428 return "DW_ATE_signed";
4429 case DW_ATE_signed_char:
4430 return "DW_ATE_signed_char";
4431 case DW_ATE_unsigned:
4432 return "DW_ATE_unsigned";
4433 case DW_ATE_unsigned_char:
4434 return "DW_ATE_unsigned_char";
4435 default:
4436 return "DW_ATE_<unknown>";
4437 }
4438 }
4439 #endif
4440 \f
4441 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4442 instance of an inlined instance of a decl which is local to an inline
4443 function, so we have to trace all of the way back through the origin chain
4444 to find out what sort of node actually served as the original seed for the
4445 given block. */
4446
4447 static tree
4448 decl_ultimate_origin (decl)
4449 tree decl;
4450 {
4451 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4452 nodes in the function to point to themselves; ignore that if
4453 we're trying to output the abstract instance of this function. */
4454 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4455 return NULL_TREE;
4456
4457 #ifdef ENABLE_CHECKING
4458 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4459 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4460 most distant ancestor, this should never happen. */
4461 abort ();
4462 #endif
4463
4464 return DECL_ABSTRACT_ORIGIN (decl);
4465 }
4466
4467 /* Determine the "ultimate origin" of a block. The block may be an inlined
4468 instance of an inlined instance of a block which is local to an inline
4469 function, so we have to trace all of the way back through the origin chain
4470 to find out what sort of node actually served as the original seed for the
4471 given block. */
4472
4473 static tree
4474 block_ultimate_origin (block)
4475 tree block;
4476 {
4477 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4478
4479 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4480 nodes in the function to point to themselves; ignore that if
4481 we're trying to output the abstract instance of this function. */
4482 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4483 return NULL_TREE;
4484
4485 if (immediate_origin == NULL_TREE)
4486 return NULL_TREE;
4487 else
4488 {
4489 tree ret_val;
4490 tree lookahead = immediate_origin;
4491
4492 do
4493 {
4494 ret_val = lookahead;
4495 lookahead = (TREE_CODE (ret_val) == BLOCK
4496 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4497 }
4498 while (lookahead != NULL && lookahead != ret_val);
4499
4500 return ret_val;
4501 }
4502 }
4503
4504 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4505 of a virtual function may refer to a base class, so we check the 'this'
4506 parameter. */
4507
4508 static tree
4509 decl_class_context (decl)
4510 tree decl;
4511 {
4512 tree context = NULL_TREE;
4513
4514 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4515 context = DECL_CONTEXT (decl);
4516 else
4517 context = TYPE_MAIN_VARIANT
4518 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4519
4520 if (context && !TYPE_P (context))
4521 context = NULL_TREE;
4522
4523 return context;
4524 }
4525 \f
4526 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4527 addition order, and correct that in reverse_all_dies. */
4528
4529 static inline void
4530 add_dwarf_attr (die, attr)
4531 dw_die_ref die;
4532 dw_attr_ref attr;
4533 {
4534 if (die != NULL && attr != NULL)
4535 {
4536 attr->dw_attr_next = die->die_attr;
4537 die->die_attr = attr;
4538 }
4539 }
4540
4541 static inline enum dw_val_class
4542 AT_class (a)
4543 dw_attr_ref a;
4544 {
4545 return a->dw_attr_val.val_class;
4546 }
4547
4548 /* Add a flag value attribute to a DIE. */
4549
4550 static inline void
4551 add_AT_flag (die, attr_kind, flag)
4552 dw_die_ref die;
4553 enum dwarf_attribute attr_kind;
4554 unsigned flag;
4555 {
4556 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4557
4558 attr->dw_attr_next = NULL;
4559 attr->dw_attr = attr_kind;
4560 attr->dw_attr_val.val_class = dw_val_class_flag;
4561 attr->dw_attr_val.v.val_flag = flag;
4562 add_dwarf_attr (die, attr);
4563 }
4564
4565 static inline unsigned
4566 AT_flag (a)
4567 dw_attr_ref a;
4568 {
4569 if (a && AT_class (a) == dw_val_class_flag)
4570 return a->dw_attr_val.v.val_flag;
4571
4572 abort ();
4573 }
4574
4575 /* Add a signed integer attribute value to a DIE. */
4576
4577 static inline void
4578 add_AT_int (die, attr_kind, int_val)
4579 dw_die_ref die;
4580 enum dwarf_attribute attr_kind;
4581 long int int_val;
4582 {
4583 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4584
4585 attr->dw_attr_next = NULL;
4586 attr->dw_attr = attr_kind;
4587 attr->dw_attr_val.val_class = dw_val_class_const;
4588 attr->dw_attr_val.v.val_int = int_val;
4589 add_dwarf_attr (die, attr);
4590 }
4591
4592 static inline long int
4593 AT_int (a)
4594 dw_attr_ref a;
4595 {
4596 if (a && AT_class (a) == dw_val_class_const)
4597 return a->dw_attr_val.v.val_int;
4598
4599 abort ();
4600 }
4601
4602 /* Add an unsigned integer attribute value to a DIE. */
4603
4604 static inline void
4605 add_AT_unsigned (die, attr_kind, unsigned_val)
4606 dw_die_ref die;
4607 enum dwarf_attribute attr_kind;
4608 unsigned long unsigned_val;
4609 {
4610 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4611
4612 attr->dw_attr_next = NULL;
4613 attr->dw_attr = attr_kind;
4614 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4615 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4616 add_dwarf_attr (die, attr);
4617 }
4618
4619 static inline unsigned long
4620 AT_unsigned (a)
4621 dw_attr_ref a;
4622 {
4623 if (a && AT_class (a) == dw_val_class_unsigned_const)
4624 return a->dw_attr_val.v.val_unsigned;
4625
4626 abort ();
4627 }
4628
4629 /* Add an unsigned double integer attribute value to a DIE. */
4630
4631 static inline void
4632 add_AT_long_long (die, attr_kind, val_hi, val_low)
4633 dw_die_ref die;
4634 enum dwarf_attribute attr_kind;
4635 unsigned long val_hi;
4636 unsigned long val_low;
4637 {
4638 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4639
4640 attr->dw_attr_next = NULL;
4641 attr->dw_attr = attr_kind;
4642 attr->dw_attr_val.val_class = dw_val_class_long_long;
4643 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4644 attr->dw_attr_val.v.val_long_long.low = val_low;
4645 add_dwarf_attr (die, attr);
4646 }
4647
4648 /* Add a floating point attribute value to a DIE and return it. */
4649
4650 static inline void
4651 add_AT_float (die, attr_kind, length, array)
4652 dw_die_ref die;
4653 enum dwarf_attribute attr_kind;
4654 unsigned length;
4655 long *array;
4656 {
4657 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4658
4659 attr->dw_attr_next = NULL;
4660 attr->dw_attr = attr_kind;
4661 attr->dw_attr_val.val_class = dw_val_class_float;
4662 attr->dw_attr_val.v.val_float.length = length;
4663 attr->dw_attr_val.v.val_float.array = array;
4664 add_dwarf_attr (die, attr);
4665 }
4666
4667 /* Hash and equality functions for debug_str_hash. */
4668
4669 static hashval_t
4670 debug_str_do_hash (x)
4671 const void * x;
4672 {
4673 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4674 }
4675
4676 static int
4677 debug_str_eq (x1, x2)
4678 const void * x1;
4679 const void * x2;
4680 {
4681 return strcmp ((((const struct indirect_string_node *)x1)->str),
4682 (const char *)x2) == 0;
4683 }
4684
4685 /* Add a string attribute value to a DIE. */
4686
4687 static inline void
4688 add_AT_string (die, attr_kind, str)
4689 dw_die_ref die;
4690 enum dwarf_attribute attr_kind;
4691 const char *str;
4692 {
4693 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4694 struct indirect_string_node *node;
4695 PTR *slot;
4696
4697 if (! debug_str_hash)
4698 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4699 debug_str_eq, NULL);
4700
4701 slot = htab_find_slot_with_hash (debug_str_hash, str,
4702 htab_hash_string (str), INSERT);
4703 if (*slot == NULL)
4704 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4705 node = (struct indirect_string_node *) *slot;
4706 node->str = ggc_alloc_string (str, -1);
4707 node->refcount++;
4708
4709 attr->dw_attr_next = NULL;
4710 attr->dw_attr = attr_kind;
4711 attr->dw_attr_val.val_class = dw_val_class_str;
4712 attr->dw_attr_val.v.val_str = node;
4713 add_dwarf_attr (die, attr);
4714 }
4715
4716 static inline const char *
4717 AT_string (a)
4718 dw_attr_ref a;
4719 {
4720 if (a && AT_class (a) == dw_val_class_str)
4721 return a->dw_attr_val.v.val_str->str;
4722
4723 abort ();
4724 }
4725
4726 /* Find out whether a string should be output inline in DIE
4727 or out-of-line in .debug_str section. */
4728
4729 static int
4730 AT_string_form (a)
4731 dw_attr_ref a;
4732 {
4733 if (a && AT_class (a) == dw_val_class_str)
4734 {
4735 struct indirect_string_node *node;
4736 unsigned int len;
4737 char label[32];
4738
4739 node = a->dw_attr_val.v.val_str;
4740 if (node->form)
4741 return node->form;
4742
4743 len = strlen (node->str) + 1;
4744
4745 /* If the string is shorter or equal to the size of the reference, it is
4746 always better to put it inline. */
4747 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4748 return node->form = DW_FORM_string;
4749
4750 /* If we cannot expect the linker to merge strings in .debug_str
4751 section, only put it into .debug_str if it is worth even in this
4752 single module. */
4753 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4754 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4755 return node->form = DW_FORM_string;
4756
4757 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4758 ++dw2_string_counter;
4759 node->label = xstrdup (label);
4760
4761 return node->form = DW_FORM_strp;
4762 }
4763
4764 abort ();
4765 }
4766
4767 /* Add a DIE reference attribute value to a DIE. */
4768
4769 static inline void
4770 add_AT_die_ref (die, attr_kind, targ_die)
4771 dw_die_ref die;
4772 enum dwarf_attribute attr_kind;
4773 dw_die_ref targ_die;
4774 {
4775 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4776
4777 attr->dw_attr_next = NULL;
4778 attr->dw_attr = attr_kind;
4779 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4780 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4781 attr->dw_attr_val.v.val_die_ref.external = 0;
4782 add_dwarf_attr (die, attr);
4783 }
4784
4785 static inline dw_die_ref
4786 AT_ref (a)
4787 dw_attr_ref a;
4788 {
4789 if (a && AT_class (a) == dw_val_class_die_ref)
4790 return a->dw_attr_val.v.val_die_ref.die;
4791
4792 abort ();
4793 }
4794
4795 static inline int
4796 AT_ref_external (a)
4797 dw_attr_ref a;
4798 {
4799 if (a && AT_class (a) == dw_val_class_die_ref)
4800 return a->dw_attr_val.v.val_die_ref.external;
4801
4802 return 0;
4803 }
4804
4805 static inline void
4806 set_AT_ref_external (a, i)
4807 dw_attr_ref a;
4808 int i;
4809 {
4810 if (a && AT_class (a) == dw_val_class_die_ref)
4811 a->dw_attr_val.v.val_die_ref.external = i;
4812 else
4813 abort ();
4814 }
4815
4816 /* Add an FDE reference attribute value to a DIE. */
4817
4818 static inline void
4819 add_AT_fde_ref (die, attr_kind, targ_fde)
4820 dw_die_ref die;
4821 enum dwarf_attribute attr_kind;
4822 unsigned targ_fde;
4823 {
4824 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4825
4826 attr->dw_attr_next = NULL;
4827 attr->dw_attr = attr_kind;
4828 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4829 attr->dw_attr_val.v.val_fde_index = targ_fde;
4830 add_dwarf_attr (die, attr);
4831 }
4832
4833 /* Add a location description attribute value to a DIE. */
4834
4835 static inline void
4836 add_AT_loc (die, attr_kind, loc)
4837 dw_die_ref die;
4838 enum dwarf_attribute attr_kind;
4839 dw_loc_descr_ref loc;
4840 {
4841 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4842
4843 attr->dw_attr_next = NULL;
4844 attr->dw_attr = attr_kind;
4845 attr->dw_attr_val.val_class = dw_val_class_loc;
4846 attr->dw_attr_val.v.val_loc = loc;
4847 add_dwarf_attr (die, attr);
4848 }
4849
4850 static inline dw_loc_descr_ref
4851 AT_loc (a)
4852 dw_attr_ref a;
4853 {
4854 if (a && AT_class (a) == dw_val_class_loc)
4855 return a->dw_attr_val.v.val_loc;
4856
4857 abort ();
4858 }
4859
4860 static inline void
4861 add_AT_loc_list (die, attr_kind, loc_list)
4862 dw_die_ref die;
4863 enum dwarf_attribute attr_kind;
4864 dw_loc_list_ref loc_list;
4865 {
4866 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4867
4868 attr->dw_attr_next = NULL;
4869 attr->dw_attr = attr_kind;
4870 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4871 attr->dw_attr_val.v.val_loc_list = loc_list;
4872 add_dwarf_attr (die, attr);
4873 have_location_lists = 1;
4874 }
4875
4876 static inline dw_loc_list_ref
4877 AT_loc_list (a)
4878 dw_attr_ref a;
4879 {
4880 if (a && AT_class (a) == dw_val_class_loc_list)
4881 return a->dw_attr_val.v.val_loc_list;
4882
4883 abort ();
4884 }
4885
4886 /* Add an address constant attribute value to a DIE. */
4887
4888 static inline void
4889 add_AT_addr (die, attr_kind, addr)
4890 dw_die_ref die;
4891 enum dwarf_attribute attr_kind;
4892 rtx addr;
4893 {
4894 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4895
4896 attr->dw_attr_next = NULL;
4897 attr->dw_attr = attr_kind;
4898 attr->dw_attr_val.val_class = dw_val_class_addr;
4899 attr->dw_attr_val.v.val_addr = addr;
4900 add_dwarf_attr (die, attr);
4901 }
4902
4903 static inline rtx
4904 AT_addr (a)
4905 dw_attr_ref a;
4906 {
4907 if (a && AT_class (a) == dw_val_class_addr)
4908 return a->dw_attr_val.v.val_addr;
4909
4910 abort ();
4911 }
4912
4913 /* Add a label identifier attribute value to a DIE. */
4914
4915 static inline void
4916 add_AT_lbl_id (die, attr_kind, lbl_id)
4917 dw_die_ref die;
4918 enum dwarf_attribute attr_kind;
4919 const char *lbl_id;
4920 {
4921 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4922
4923 attr->dw_attr_next = NULL;
4924 attr->dw_attr = attr_kind;
4925 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4926 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4927 add_dwarf_attr (die, attr);
4928 }
4929
4930 /* Add a section offset attribute value to a DIE. */
4931
4932 static inline void
4933 add_AT_lbl_offset (die, attr_kind, label)
4934 dw_die_ref die;
4935 enum dwarf_attribute attr_kind;
4936 const char *label;
4937 {
4938 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4939
4940 attr->dw_attr_next = NULL;
4941 attr->dw_attr = attr_kind;
4942 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4943 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4944 add_dwarf_attr (die, attr);
4945 }
4946
4947 /* Add an offset attribute value to a DIE. */
4948
4949 static inline void
4950 add_AT_offset (die, attr_kind, offset)
4951 dw_die_ref die;
4952 enum dwarf_attribute attr_kind;
4953 unsigned long offset;
4954 {
4955 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4956
4957 attr->dw_attr_next = NULL;
4958 attr->dw_attr = attr_kind;
4959 attr->dw_attr_val.val_class = dw_val_class_offset;
4960 attr->dw_attr_val.v.val_offset = offset;
4961 add_dwarf_attr (die, attr);
4962 }
4963
4964 /* Add an range_list attribute value to a DIE. */
4965
4966 static void
4967 add_AT_range_list (die, attr_kind, offset)
4968 dw_die_ref die;
4969 enum dwarf_attribute attr_kind;
4970 unsigned long offset;
4971 {
4972 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4973
4974 attr->dw_attr_next = NULL;
4975 attr->dw_attr = attr_kind;
4976 attr->dw_attr_val.val_class = dw_val_class_range_list;
4977 attr->dw_attr_val.v.val_offset = offset;
4978 add_dwarf_attr (die, attr);
4979 }
4980
4981 static inline const char *
4982 AT_lbl (a)
4983 dw_attr_ref a;
4984 {
4985 if (a && (AT_class (a) == dw_val_class_lbl_id
4986 || AT_class (a) == dw_val_class_lbl_offset))
4987 return a->dw_attr_val.v.val_lbl_id;
4988
4989 abort ();
4990 }
4991
4992 /* Get the attribute of type attr_kind. */
4993
4994 static inline dw_attr_ref
4995 get_AT (die, attr_kind)
4996 dw_die_ref die;
4997 enum dwarf_attribute attr_kind;
4998 {
4999 dw_attr_ref a;
5000 dw_die_ref spec = NULL;
5001
5002 if (die != NULL)
5003 {
5004 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5005 if (a->dw_attr == attr_kind)
5006 return a;
5007 else if (a->dw_attr == DW_AT_specification
5008 || a->dw_attr == DW_AT_abstract_origin)
5009 spec = AT_ref (a);
5010
5011 if (spec)
5012 return get_AT (spec, attr_kind);
5013 }
5014
5015 return NULL;
5016 }
5017
5018 /* Return the "low pc" attribute value, typically associated with a subprogram
5019 DIE. Return null if the "low pc" attribute is either not present, or if it
5020 cannot be represented as an assembler label identifier. */
5021
5022 static inline const char *
5023 get_AT_low_pc (die)
5024 dw_die_ref die;
5025 {
5026 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5027
5028 return a ? AT_lbl (a) : NULL;
5029 }
5030
5031 /* Return the "high pc" attribute value, typically associated with a subprogram
5032 DIE. Return null if the "high pc" attribute is either not present, or if it
5033 cannot be represented as an assembler label identifier. */
5034
5035 static inline const char *
5036 get_AT_hi_pc (die)
5037 dw_die_ref die;
5038 {
5039 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5040
5041 return a ? AT_lbl (a) : NULL;
5042 }
5043
5044 /* Return the value of the string attribute designated by ATTR_KIND, or
5045 NULL if it is not present. */
5046
5047 static inline const char *
5048 get_AT_string (die, attr_kind)
5049 dw_die_ref die;
5050 enum dwarf_attribute attr_kind;
5051 {
5052 dw_attr_ref a = get_AT (die, attr_kind);
5053
5054 return a ? AT_string (a) : NULL;
5055 }
5056
5057 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5058 if it is not present. */
5059
5060 static inline int
5061 get_AT_flag (die, attr_kind)
5062 dw_die_ref die;
5063 enum dwarf_attribute attr_kind;
5064 {
5065 dw_attr_ref a = get_AT (die, attr_kind);
5066
5067 return a ? AT_flag (a) : 0;
5068 }
5069
5070 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5071 if it is not present. */
5072
5073 static inline unsigned
5074 get_AT_unsigned (die, attr_kind)
5075 dw_die_ref die;
5076 enum dwarf_attribute attr_kind;
5077 {
5078 dw_attr_ref a = get_AT (die, attr_kind);
5079
5080 return a ? AT_unsigned (a) : 0;
5081 }
5082
5083 static inline dw_die_ref
5084 get_AT_ref (die, attr_kind)
5085 dw_die_ref die;
5086 enum dwarf_attribute attr_kind;
5087 {
5088 dw_attr_ref a = get_AT (die, attr_kind);
5089
5090 return a ? AT_ref (a) : NULL;
5091 }
5092
5093 /* Return TRUE if the language is C or C++. */
5094
5095 static inline bool
5096 is_c_family ()
5097 {
5098 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5099
5100 return (lang == DW_LANG_C || lang == DW_LANG_C89
5101 || lang == DW_LANG_C_plus_plus);
5102 }
5103
5104 /* Return TRUE if the language is C++. */
5105
5106 static inline bool
5107 is_cxx ()
5108 {
5109 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5110 == DW_LANG_C_plus_plus);
5111 }
5112
5113 /* Return TRUE if the language is Fortran. */
5114
5115 static inline bool
5116 is_fortran ()
5117 {
5118 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5119
5120 return lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90;
5121 }
5122
5123 /* Return TRUE if the language is Java. */
5124
5125 static inline bool
5126 is_java ()
5127 {
5128 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5129
5130 return lang == DW_LANG_Java;
5131 }
5132
5133 /* Return TRUE if the language is Ada. */
5134
5135 static inline bool
5136 is_ada ()
5137 {
5138 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5139
5140 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5141 }
5142
5143 /* Free up the memory used by A. */
5144
5145 static inline void free_AT PARAMS ((dw_attr_ref));
5146 static inline void
5147 free_AT (a)
5148 dw_attr_ref a;
5149 {
5150 if (AT_class (a) == dw_val_class_str)
5151 if (a->dw_attr_val.v.val_str->refcount)
5152 a->dw_attr_val.v.val_str->refcount--;
5153 }
5154
5155 /* Remove the specified attribute if present. */
5156
5157 static void
5158 remove_AT (die, attr_kind)
5159 dw_die_ref die;
5160 enum dwarf_attribute attr_kind;
5161 {
5162 dw_attr_ref *p;
5163 dw_attr_ref removed = NULL;
5164
5165 if (die != NULL)
5166 {
5167 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5168 if ((*p)->dw_attr == attr_kind)
5169 {
5170 removed = *p;
5171 *p = (*p)->dw_attr_next;
5172 break;
5173 }
5174
5175 if (removed != 0)
5176 free_AT (removed);
5177 }
5178 }
5179
5180 /* Free up the memory used by DIE. */
5181
5182 static inline void
5183 free_die (die)
5184 dw_die_ref die;
5185 {
5186 remove_children (die);
5187 }
5188
5189 /* Discard the children of this DIE. */
5190
5191 static void
5192 remove_children (die)
5193 dw_die_ref die;
5194 {
5195 dw_die_ref child_die = die->die_child;
5196
5197 die->die_child = NULL;
5198
5199 while (child_die != NULL)
5200 {
5201 dw_die_ref tmp_die = child_die;
5202 dw_attr_ref a;
5203
5204 child_die = child_die->die_sib;
5205
5206 for (a = tmp_die->die_attr; a != NULL;)
5207 {
5208 dw_attr_ref tmp_a = a;
5209
5210 a = a->dw_attr_next;
5211 free_AT (tmp_a);
5212 }
5213
5214 free_die (tmp_die);
5215 }
5216 }
5217
5218 /* Add a child DIE below its parent. We build the lists up in reverse
5219 addition order, and correct that in reverse_all_dies. */
5220
5221 static inline void
5222 add_child_die (die, child_die)
5223 dw_die_ref die;
5224 dw_die_ref child_die;
5225 {
5226 if (die != NULL && child_die != NULL)
5227 {
5228 if (die == child_die)
5229 abort ();
5230
5231 child_die->die_parent = die;
5232 child_die->die_sib = die->die_child;
5233 die->die_child = child_die;
5234 }
5235 }
5236
5237 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5238 is the specification, to the front of PARENT's list of children. */
5239
5240 static void
5241 splice_child_die (parent, child)
5242 dw_die_ref parent, child;
5243 {
5244 dw_die_ref *p;
5245
5246 /* We want the declaration DIE from inside the class, not the
5247 specification DIE at toplevel. */
5248 if (child->die_parent != parent)
5249 {
5250 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5251
5252 if (tmp)
5253 child = tmp;
5254 }
5255
5256 if (child->die_parent != parent
5257 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5258 abort ();
5259
5260 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5261 if (*p == child)
5262 {
5263 *p = child->die_sib;
5264 break;
5265 }
5266
5267 child->die_parent = parent;
5268 child->die_sib = parent->die_child;
5269 parent->die_child = child;
5270 }
5271
5272 /* Return a pointer to a newly created DIE node. */
5273
5274 static inline dw_die_ref
5275 new_die (tag_value, parent_die, t)
5276 enum dwarf_tag tag_value;
5277 dw_die_ref parent_die;
5278 tree t;
5279 {
5280 dw_die_ref die = (dw_die_ref) ggc_alloc_cleared (sizeof (die_node));
5281
5282 die->die_tag = tag_value;
5283
5284 if (parent_die != NULL)
5285 add_child_die (parent_die, die);
5286 else
5287 {
5288 limbo_die_node *limbo_node;
5289
5290 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5291 limbo_node->die = die;
5292 limbo_node->created_for = t;
5293 limbo_node->next = limbo_die_list;
5294 limbo_die_list = limbo_node;
5295 }
5296
5297 return die;
5298 }
5299
5300 /* Return the DIE associated with the given type specifier. */
5301
5302 static inline dw_die_ref
5303 lookup_type_die (type)
5304 tree type;
5305 {
5306 return TYPE_SYMTAB_DIE (type);
5307 }
5308
5309 /* Equate a DIE to a given type specifier. */
5310
5311 static inline void
5312 equate_type_number_to_die (type, type_die)
5313 tree type;
5314 dw_die_ref type_die;
5315 {
5316 TYPE_SYMTAB_DIE (type) = type_die;
5317 }
5318
5319 /* Return the DIE associated with a given declaration. */
5320
5321 static inline dw_die_ref
5322 lookup_decl_die (decl)
5323 tree decl;
5324 {
5325 unsigned decl_id = DECL_UID (decl);
5326
5327 return (decl_id < decl_die_table_in_use ? decl_die_table[decl_id] : NULL);
5328 }
5329
5330 /* Equate a DIE to a particular declaration. */
5331
5332 static void
5333 equate_decl_number_to_die (decl, decl_die)
5334 tree decl;
5335 dw_die_ref decl_die;
5336 {
5337 unsigned int decl_id = DECL_UID (decl);
5338 unsigned int num_allocated;
5339
5340 if (decl_id >= decl_die_table_allocated)
5341 {
5342 num_allocated
5343 = ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
5344 / DECL_DIE_TABLE_INCREMENT)
5345 * DECL_DIE_TABLE_INCREMENT;
5346
5347 decl_die_table = ggc_realloc (decl_die_table,
5348 sizeof (dw_die_ref) * num_allocated);
5349
5350 memset ((char *) &decl_die_table[decl_die_table_allocated], 0,
5351 (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
5352 decl_die_table_allocated = num_allocated;
5353 }
5354
5355 if (decl_id >= decl_die_table_in_use)
5356 decl_die_table_in_use = (decl_id + 1);
5357
5358 decl_die_table[decl_id] = decl_die;
5359 }
5360 \f
5361 /* Keep track of the number of spaces used to indent the
5362 output of the debugging routines that print the structure of
5363 the DIE internal representation. */
5364 static int print_indent;
5365
5366 /* Indent the line the number of spaces given by print_indent. */
5367
5368 static inline void
5369 print_spaces (outfile)
5370 FILE *outfile;
5371 {
5372 fprintf (outfile, "%*s", print_indent, "");
5373 }
5374
5375 /* Print the information associated with a given DIE, and its children.
5376 This routine is a debugging aid only. */
5377
5378 static void
5379 print_die (die, outfile)
5380 dw_die_ref die;
5381 FILE *outfile;
5382 {
5383 dw_attr_ref a;
5384 dw_die_ref c;
5385
5386 print_spaces (outfile);
5387 fprintf (outfile, "DIE %4lu: %s\n",
5388 die->die_offset, dwarf_tag_name (die->die_tag));
5389 print_spaces (outfile);
5390 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5391 fprintf (outfile, " offset: %lu\n", die->die_offset);
5392
5393 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5394 {
5395 print_spaces (outfile);
5396 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5397
5398 switch (AT_class (a))
5399 {
5400 case dw_val_class_addr:
5401 fprintf (outfile, "address");
5402 break;
5403 case dw_val_class_offset:
5404 fprintf (outfile, "offset");
5405 break;
5406 case dw_val_class_loc:
5407 fprintf (outfile, "location descriptor");
5408 break;
5409 case dw_val_class_loc_list:
5410 fprintf (outfile, "location list -> label:%s",
5411 AT_loc_list (a)->ll_symbol);
5412 break;
5413 case dw_val_class_range_list:
5414 fprintf (outfile, "range list");
5415 break;
5416 case dw_val_class_const:
5417 fprintf (outfile, "%ld", AT_int (a));
5418 break;
5419 case dw_val_class_unsigned_const:
5420 fprintf (outfile, "%lu", AT_unsigned (a));
5421 break;
5422 case dw_val_class_long_long:
5423 fprintf (outfile, "constant (%lu,%lu)",
5424 a->dw_attr_val.v.val_long_long.hi,
5425 a->dw_attr_val.v.val_long_long.low);
5426 break;
5427 case dw_val_class_float:
5428 fprintf (outfile, "floating-point constant");
5429 break;
5430 case dw_val_class_flag:
5431 fprintf (outfile, "%u", AT_flag (a));
5432 break;
5433 case dw_val_class_die_ref:
5434 if (AT_ref (a) != NULL)
5435 {
5436 if (AT_ref (a)->die_symbol)
5437 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5438 else
5439 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5440 }
5441 else
5442 fprintf (outfile, "die -> <null>");
5443 break;
5444 case dw_val_class_lbl_id:
5445 case dw_val_class_lbl_offset:
5446 fprintf (outfile, "label: %s", AT_lbl (a));
5447 break;
5448 case dw_val_class_str:
5449 if (AT_string (a) != NULL)
5450 fprintf (outfile, "\"%s\"", AT_string (a));
5451 else
5452 fprintf (outfile, "<null>");
5453 break;
5454 default:
5455 break;
5456 }
5457
5458 fprintf (outfile, "\n");
5459 }
5460
5461 if (die->die_child != NULL)
5462 {
5463 print_indent += 4;
5464 for (c = die->die_child; c != NULL; c = c->die_sib)
5465 print_die (c, outfile);
5466
5467 print_indent -= 4;
5468 }
5469 if (print_indent == 0)
5470 fprintf (outfile, "\n");
5471 }
5472
5473 /* Print the contents of the source code line number correspondence table.
5474 This routine is a debugging aid only. */
5475
5476 static void
5477 print_dwarf_line_table (outfile)
5478 FILE *outfile;
5479 {
5480 unsigned i;
5481 dw_line_info_ref line_info;
5482
5483 fprintf (outfile, "\n\nDWARF source line information\n");
5484 for (i = 1; i < line_info_table_in_use; i++)
5485 {
5486 line_info = &line_info_table[i];
5487 fprintf (outfile, "%5d: ", i);
5488 fprintf (outfile, "%-20s",
5489 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5490 fprintf (outfile, "%6ld", line_info->dw_line_num);
5491 fprintf (outfile, "\n");
5492 }
5493
5494 fprintf (outfile, "\n\n");
5495 }
5496
5497 /* Print the information collected for a given DIE. */
5498
5499 void
5500 debug_dwarf_die (die)
5501 dw_die_ref die;
5502 {
5503 print_die (die, stderr);
5504 }
5505
5506 /* Print all DWARF information collected for the compilation unit.
5507 This routine is a debugging aid only. */
5508
5509 void
5510 debug_dwarf ()
5511 {
5512 print_indent = 0;
5513 print_die (comp_unit_die, stderr);
5514 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5515 print_dwarf_line_table (stderr);
5516 }
5517 \f
5518 /* We build up the lists of children and attributes by pushing new ones
5519 onto the beginning of the list. Reverse the lists for DIE so that
5520 they are in order of addition. */
5521
5522 static void
5523 reverse_die_lists (die)
5524 dw_die_ref die;
5525 {
5526 dw_die_ref c, cp, cn;
5527 dw_attr_ref a, ap, an;
5528
5529 for (a = die->die_attr, ap = 0; a; a = an)
5530 {
5531 an = a->dw_attr_next;
5532 a->dw_attr_next = ap;
5533 ap = a;
5534 }
5535
5536 die->die_attr = ap;
5537
5538 for (c = die->die_child, cp = 0; c; c = cn)
5539 {
5540 cn = c->die_sib;
5541 c->die_sib = cp;
5542 cp = c;
5543 }
5544
5545 die->die_child = cp;
5546 }
5547
5548 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5549 reverse all dies in add_sibling_attributes, which runs through all the dies,
5550 it would reverse all the dies. Now, however, since we don't call
5551 reverse_die_lists in add_sibling_attributes, we need a routine to
5552 recursively reverse all the dies. This is that routine. */
5553
5554 static void
5555 reverse_all_dies (die)
5556 dw_die_ref die;
5557 {
5558 dw_die_ref c;
5559
5560 reverse_die_lists (die);
5561
5562 for (c = die->die_child; c; c = c->die_sib)
5563 reverse_all_dies (c);
5564 }
5565
5566 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5567 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5568 DIE that marks the start of the DIEs for this include file. */
5569
5570 static dw_die_ref
5571 push_new_compile_unit (old_unit, bincl_die)
5572 dw_die_ref old_unit, bincl_die;
5573 {
5574 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5575 dw_die_ref new_unit = gen_compile_unit_die (filename);
5576
5577 new_unit->die_sib = old_unit;
5578 return new_unit;
5579 }
5580
5581 /* Close an include-file CU and reopen the enclosing one. */
5582
5583 static dw_die_ref
5584 pop_compile_unit (old_unit)
5585 dw_die_ref old_unit;
5586 {
5587 dw_die_ref new_unit = old_unit->die_sib;
5588
5589 old_unit->die_sib = NULL;
5590 return new_unit;
5591 }
5592
5593 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5594 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5595
5596 /* Calculate the checksum of a location expression. */
5597
5598 static inline void
5599 loc_checksum (loc, ctx)
5600 dw_loc_descr_ref loc;
5601 struct md5_ctx *ctx;
5602 {
5603 CHECKSUM (loc->dw_loc_opc);
5604 CHECKSUM (loc->dw_loc_oprnd1);
5605 CHECKSUM (loc->dw_loc_oprnd2);
5606 }
5607
5608 /* Calculate the checksum of an attribute. */
5609
5610 static void
5611 attr_checksum (at, ctx, mark)
5612 dw_attr_ref at;
5613 struct md5_ctx *ctx;
5614 int *mark;
5615 {
5616 dw_loc_descr_ref loc;
5617 rtx r;
5618
5619 CHECKSUM (at->dw_attr);
5620
5621 /* We don't care about differences in file numbering. */
5622 if (at->dw_attr == DW_AT_decl_file
5623 /* Or that this was compiled with a different compiler snapshot; if
5624 the output is the same, that's what matters. */
5625 || at->dw_attr == DW_AT_producer)
5626 return;
5627
5628 switch (AT_class (at))
5629 {
5630 case dw_val_class_const:
5631 CHECKSUM (at->dw_attr_val.v.val_int);
5632 break;
5633 case dw_val_class_unsigned_const:
5634 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5635 break;
5636 case dw_val_class_long_long:
5637 CHECKSUM (at->dw_attr_val.v.val_long_long);
5638 break;
5639 case dw_val_class_float:
5640 CHECKSUM (at->dw_attr_val.v.val_float);
5641 break;
5642 case dw_val_class_flag:
5643 CHECKSUM (at->dw_attr_val.v.val_flag);
5644 break;
5645 case dw_val_class_str:
5646 CHECKSUM_STRING (AT_string (at));
5647 break;
5648
5649 case dw_val_class_addr:
5650 r = AT_addr (at);
5651 switch (GET_CODE (r))
5652 {
5653 case SYMBOL_REF:
5654 CHECKSUM_STRING (XSTR (r, 0));
5655 break;
5656
5657 default:
5658 abort ();
5659 }
5660 break;
5661
5662 case dw_val_class_offset:
5663 CHECKSUM (at->dw_attr_val.v.val_offset);
5664 break;
5665
5666 case dw_val_class_loc:
5667 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5668 loc_checksum (loc, ctx);
5669 break;
5670
5671 case dw_val_class_die_ref:
5672 die_checksum (AT_ref (at), ctx, mark);
5673 break;
5674
5675 case dw_val_class_fde_ref:
5676 case dw_val_class_lbl_id:
5677 case dw_val_class_lbl_offset:
5678 break;
5679
5680 default:
5681 break;
5682 }
5683 }
5684
5685 /* Calculate the checksum of a DIE. */
5686
5687 static void
5688 die_checksum (die, ctx, mark)
5689 dw_die_ref die;
5690 struct md5_ctx *ctx;
5691 int *mark;
5692 {
5693 dw_die_ref c;
5694 dw_attr_ref a;
5695
5696 /* To avoid infinite recursion. */
5697 if (die->die_mark)
5698 {
5699 CHECKSUM (die->die_mark);
5700 return;
5701 }
5702 die->die_mark = ++(*mark);
5703
5704 CHECKSUM (die->die_tag);
5705
5706 for (a = die->die_attr; a; a = a->dw_attr_next)
5707 attr_checksum (a, ctx, mark);
5708
5709 for (c = die->die_child; c; c = c->die_sib)
5710 die_checksum (c, ctx, mark);
5711 }
5712
5713 #undef CHECKSUM
5714 #undef CHECKSUM_STRING
5715
5716 /* Do the location expressions look same? */
5717 static inline int
5718 same_loc_p (loc1, loc2, mark)
5719 dw_loc_descr_ref loc1;
5720 dw_loc_descr_ref loc2;
5721 int *mark;
5722 {
5723 return loc1->dw_loc_opc == loc2->dw_loc_opc
5724 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5725 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5726 }
5727
5728 /* Do the values look the same? */
5729 static int
5730 same_dw_val_p (v1, v2, mark)
5731 dw_val_node *v1;
5732 dw_val_node *v2;
5733 int *mark;
5734 {
5735 dw_loc_descr_ref loc1, loc2;
5736 rtx r1, r2;
5737 unsigned i;
5738
5739 if (v1->val_class != v2->val_class)
5740 return 0;
5741
5742 switch (v1->val_class)
5743 {
5744 case dw_val_class_const:
5745 return v1->v.val_int == v2->v.val_int;
5746 case dw_val_class_unsigned_const:
5747 return v1->v.val_unsigned == v2->v.val_unsigned;
5748 case dw_val_class_long_long:
5749 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5750 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5751 case dw_val_class_float:
5752 if (v1->v.val_float.length != v2->v.val_float.length)
5753 return 0;
5754 for (i = 0; i < v1->v.val_float.length; i++)
5755 if (v1->v.val_float.array[i] != v2->v.val_float.array[i])
5756 return 0;
5757 return 1;
5758 case dw_val_class_flag:
5759 return v1->v.val_flag == v2->v.val_flag;
5760 case dw_val_class_str:
5761 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5762
5763 case dw_val_class_addr:
5764 r1 = v1->v.val_addr;
5765 r2 = v2->v.val_addr;
5766 if (GET_CODE (r1) != GET_CODE (r2))
5767 return 0;
5768 switch (GET_CODE (r1))
5769 {
5770 case SYMBOL_REF:
5771 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5772
5773 default:
5774 abort ();
5775 }
5776
5777 case dw_val_class_offset:
5778 return v1->v.val_offset == v2->v.val_offset;
5779
5780 case dw_val_class_loc:
5781 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5782 loc1 && loc2;
5783 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5784 if (!same_loc_p (loc1, loc2, mark))
5785 return 0;
5786 return !loc1 && !loc2;
5787
5788 case dw_val_class_die_ref:
5789 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5790
5791 case dw_val_class_fde_ref:
5792 case dw_val_class_lbl_id:
5793 case dw_val_class_lbl_offset:
5794 return 1;
5795
5796 default:
5797 return 1;
5798 }
5799 }
5800
5801 /* Do the attributes look the same? */
5802
5803 static int
5804 same_attr_p (at1, at2, mark)
5805 dw_attr_ref at1;
5806 dw_attr_ref at2;
5807 int *mark;
5808 {
5809 if (at1->dw_attr != at2->dw_attr)
5810 return 0;
5811
5812 /* We don't care about differences in file numbering. */
5813 if (at1->dw_attr == DW_AT_decl_file
5814 /* Or that this was compiled with a different compiler snapshot; if
5815 the output is the same, that's what matters. */
5816 || at1->dw_attr == DW_AT_producer)
5817 return 1;
5818
5819 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5820 }
5821
5822 /* Do the dies look the same? */
5823
5824 static int
5825 same_die_p (die1, die2, mark)
5826 dw_die_ref die1;
5827 dw_die_ref die2;
5828 int *mark;
5829 {
5830 dw_die_ref c1, c2;
5831 dw_attr_ref a1, a2;
5832
5833 /* To avoid infinite recursion. */
5834 if (die1->die_mark)
5835 return die1->die_mark == die2->die_mark;
5836 die1->die_mark = die2->die_mark = ++(*mark);
5837
5838 if (die1->die_tag != die2->die_tag)
5839 return 0;
5840
5841 for (a1 = die1->die_attr, a2 = die2->die_attr;
5842 a1 && a2;
5843 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5844 if (!same_attr_p (a1, a2, mark))
5845 return 0;
5846 if (a1 || a2)
5847 return 0;
5848
5849 for (c1 = die1->die_child, c2 = die2->die_child;
5850 c1 && c2;
5851 c1 = c1->die_sib, c2 = c2->die_sib)
5852 if (!same_die_p (c1, c2, mark))
5853 return 0;
5854 if (c1 || c2)
5855 return 0;
5856
5857 return 1;
5858 }
5859
5860 /* Do the dies look the same? Wrapper around same_die_p. */
5861
5862 static int
5863 same_die_p_wrap (die1, die2)
5864 dw_die_ref die1;
5865 dw_die_ref die2;
5866 {
5867 int mark = 0;
5868 int ret = same_die_p (die1, die2, &mark);
5869
5870 unmark_all_dies (die1);
5871 unmark_all_dies (die2);
5872
5873 return ret;
5874 }
5875
5876 /* The prefix to attach to symbols on DIEs in the current comdat debug
5877 info section. */
5878 static char *comdat_symbol_id;
5879
5880 /* The index of the current symbol within the current comdat CU. */
5881 static unsigned int comdat_symbol_number;
5882
5883 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5884 children, and set comdat_symbol_id accordingly. */
5885
5886 static void
5887 compute_section_prefix (unit_die)
5888 dw_die_ref unit_die;
5889 {
5890 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5891 const char *base = die_name ? lbasename (die_name) : "anonymous";
5892 char *name = (char *) alloca (strlen (base) + 64);
5893 char *p;
5894 int i, mark;
5895 unsigned char checksum[16];
5896 struct md5_ctx ctx;
5897
5898 /* Compute the checksum of the DIE, then append part of it as hex digits to
5899 the name filename of the unit. */
5900
5901 md5_init_ctx (&ctx);
5902 mark = 0;
5903 die_checksum (unit_die, &ctx, &mark);
5904 unmark_all_dies (unit_die);
5905 md5_finish_ctx (&ctx, checksum);
5906
5907 sprintf (name, "%s.", base);
5908 clean_symbol_name (name);
5909
5910 p = name + strlen (name);
5911 for (i = 0; i < 4; i++)
5912 {
5913 sprintf (p, "%.2x", checksum[i]);
5914 p += 2;
5915 }
5916
5917 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5918 comdat_symbol_number = 0;
5919 }
5920
5921 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5922
5923 static int
5924 is_type_die (die)
5925 dw_die_ref die;
5926 {
5927 switch (die->die_tag)
5928 {
5929 case DW_TAG_array_type:
5930 case DW_TAG_class_type:
5931 case DW_TAG_enumeration_type:
5932 case DW_TAG_pointer_type:
5933 case DW_TAG_reference_type:
5934 case DW_TAG_string_type:
5935 case DW_TAG_structure_type:
5936 case DW_TAG_subroutine_type:
5937 case DW_TAG_union_type:
5938 case DW_TAG_ptr_to_member_type:
5939 case DW_TAG_set_type:
5940 case DW_TAG_subrange_type:
5941 case DW_TAG_base_type:
5942 case DW_TAG_const_type:
5943 case DW_TAG_file_type:
5944 case DW_TAG_packed_type:
5945 case DW_TAG_volatile_type:
5946 case DW_TAG_typedef:
5947 return 1;
5948 default:
5949 return 0;
5950 }
5951 }
5952
5953 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5954 Basically, we want to choose the bits that are likely to be shared between
5955 compilations (types) and leave out the bits that are specific to individual
5956 compilations (functions). */
5957
5958 static int
5959 is_comdat_die (c)
5960 dw_die_ref c;
5961 {
5962 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5963 we do for stabs. The advantage is a greater likelihood of sharing between
5964 objects that don't include headers in the same order (and therefore would
5965 put the base types in a different comdat). jason 8/28/00 */
5966
5967 if (c->die_tag == DW_TAG_base_type)
5968 return 0;
5969
5970 if (c->die_tag == DW_TAG_pointer_type
5971 || c->die_tag == DW_TAG_reference_type
5972 || c->die_tag == DW_TAG_const_type
5973 || c->die_tag == DW_TAG_volatile_type)
5974 {
5975 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5976
5977 return t ? is_comdat_die (t) : 0;
5978 }
5979
5980 return is_type_die (c);
5981 }
5982
5983 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5984 compilation unit. */
5985
5986 static int
5987 is_symbol_die (c)
5988 dw_die_ref c;
5989 {
5990 return (is_type_die (c)
5991 || (get_AT (c, DW_AT_declaration)
5992 && !get_AT (c, DW_AT_specification)));
5993 }
5994
5995 static char *
5996 gen_internal_sym (prefix)
5997 const char *prefix;
5998 {
5999 char buf[256];
6000
6001 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6002 return xstrdup (buf);
6003 }
6004
6005 /* Assign symbols to all worthy DIEs under DIE. */
6006
6007 static void
6008 assign_symbol_names (die)
6009 dw_die_ref die;
6010 {
6011 dw_die_ref c;
6012
6013 if (is_symbol_die (die))
6014 {
6015 if (comdat_symbol_id)
6016 {
6017 char *p = alloca (strlen (comdat_symbol_id) + 64);
6018
6019 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6020 comdat_symbol_id, comdat_symbol_number++);
6021 die->die_symbol = xstrdup (p);
6022 }
6023 else
6024 die->die_symbol = gen_internal_sym ("LDIE");
6025 }
6026
6027 for (c = die->die_child; c != NULL; c = c->die_sib)
6028 assign_symbol_names (c);
6029 }
6030
6031 struct cu_hash_table_entry
6032 {
6033 dw_die_ref cu;
6034 unsigned min_comdat_num, max_comdat_num;
6035 struct cu_hash_table_entry *next;
6036 };
6037
6038 /* Routines to manipulate hash table of CUs. */
6039 static hashval_t
6040 htab_cu_hash (of)
6041 const void *of;
6042 {
6043 const struct cu_hash_table_entry *entry = of;
6044
6045 return htab_hash_string (entry->cu->die_symbol);
6046 }
6047
6048 static int
6049 htab_cu_eq (of1, of2)
6050 const void *of1;
6051 const void *of2;
6052 {
6053 const struct cu_hash_table_entry *entry1 = of1;
6054 const struct die_struct *entry2 = of2;
6055
6056 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6057 }
6058
6059 static void
6060 htab_cu_del (what)
6061 void *what;
6062 {
6063 struct cu_hash_table_entry *next, *entry = what;
6064
6065 while (entry)
6066 {
6067 next = entry->next;
6068 free (entry);
6069 entry = next;
6070 }
6071 }
6072
6073 /* Check whether we have already seen this CU and set up SYM_NUM
6074 accordingly. */
6075 static int
6076 check_duplicate_cu (cu, htable, sym_num)
6077 dw_die_ref cu;
6078 htab_t htable;
6079 unsigned *sym_num;
6080 {
6081 struct cu_hash_table_entry dummy;
6082 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6083
6084 dummy.max_comdat_num = 0;
6085
6086 slot = (struct cu_hash_table_entry **)
6087 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6088 INSERT);
6089 entry = *slot;
6090
6091 for (; entry; last = entry, entry = entry->next)
6092 {
6093 if (same_die_p_wrap (cu, entry->cu))
6094 break;
6095 }
6096
6097 if (entry)
6098 {
6099 *sym_num = entry->min_comdat_num;
6100 return 1;
6101 }
6102
6103 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6104 entry->cu = cu;
6105 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6106 entry->next = *slot;
6107 *slot = entry;
6108
6109 return 0;
6110 }
6111
6112 /* Record SYM_NUM to record of CU in HTABLE. */
6113 static void
6114 record_comdat_symbol_number (cu, htable, sym_num)
6115 dw_die_ref cu;
6116 htab_t htable;
6117 unsigned sym_num;
6118 {
6119 struct cu_hash_table_entry **slot, *entry;
6120
6121 slot = (struct cu_hash_table_entry **)
6122 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6123 NO_INSERT);
6124 entry = *slot;
6125
6126 entry->max_comdat_num = sym_num;
6127 }
6128
6129 /* Traverse the DIE (which is always comp_unit_die), and set up
6130 additional compilation units for each of the include files we see
6131 bracketed by BINCL/EINCL. */
6132
6133 static void
6134 break_out_includes (die)
6135 dw_die_ref die;
6136 {
6137 dw_die_ref *ptr;
6138 dw_die_ref unit = NULL;
6139 limbo_die_node *node, **pnode;
6140 htab_t cu_hash_table;
6141
6142 for (ptr = &(die->die_child); *ptr;)
6143 {
6144 dw_die_ref c = *ptr;
6145
6146 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6147 || (unit && is_comdat_die (c)))
6148 {
6149 /* This DIE is for a secondary CU; remove it from the main one. */
6150 *ptr = c->die_sib;
6151
6152 if (c->die_tag == DW_TAG_GNU_BINCL)
6153 {
6154 unit = push_new_compile_unit (unit, c);
6155 free_die (c);
6156 }
6157 else if (c->die_tag == DW_TAG_GNU_EINCL)
6158 {
6159 unit = pop_compile_unit (unit);
6160 free_die (c);
6161 }
6162 else
6163 add_child_die (unit, c);
6164 }
6165 else
6166 {
6167 /* Leave this DIE in the main CU. */
6168 ptr = &(c->die_sib);
6169 continue;
6170 }
6171 }
6172
6173 #if 0
6174 /* We can only use this in debugging, since the frontend doesn't check
6175 to make sure that we leave every include file we enter. */
6176 if (unit != NULL)
6177 abort ();
6178 #endif
6179
6180 assign_symbol_names (die);
6181 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6182 for (node = limbo_die_list, pnode = &limbo_die_list;
6183 node;
6184 node = node->next)
6185 {
6186 int is_dupl;
6187
6188 compute_section_prefix (node->die);
6189 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6190 &comdat_symbol_number);
6191 assign_symbol_names (node->die);
6192 if (is_dupl)
6193 *pnode = node->next;
6194 else
6195 {
6196 pnode = &node->next;
6197 record_comdat_symbol_number (node->die, cu_hash_table,
6198 comdat_symbol_number);
6199 }
6200 }
6201 htab_delete (cu_hash_table);
6202 }
6203
6204 /* Traverse the DIE and add a sibling attribute if it may have the
6205 effect of speeding up access to siblings. To save some space,
6206 avoid generating sibling attributes for DIE's without children. */
6207
6208 static void
6209 add_sibling_attributes (die)
6210 dw_die_ref die;
6211 {
6212 dw_die_ref c;
6213
6214 if (die->die_tag != DW_TAG_compile_unit
6215 && die->die_sib && die->die_child != NULL)
6216 /* Add the sibling link to the front of the attribute list. */
6217 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6218
6219 for (c = die->die_child; c != NULL; c = c->die_sib)
6220 add_sibling_attributes (c);
6221 }
6222
6223 /* Output all location lists for the DIE and its children. */
6224
6225 static void
6226 output_location_lists (die)
6227 dw_die_ref die;
6228 {
6229 dw_die_ref c;
6230 dw_attr_ref d_attr;
6231
6232 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6233 if (AT_class (d_attr) == dw_val_class_loc_list)
6234 output_loc_list (AT_loc_list (d_attr));
6235
6236 for (c = die->die_child; c != NULL; c = c->die_sib)
6237 output_location_lists (c);
6238
6239 }
6240
6241 /* The format of each DIE (and its attribute value pairs) is encoded in an
6242 abbreviation table. This routine builds the abbreviation table and assigns
6243 a unique abbreviation id for each abbreviation entry. The children of each
6244 die are visited recursively. */
6245
6246 static void
6247 build_abbrev_table (die)
6248 dw_die_ref die;
6249 {
6250 unsigned long abbrev_id;
6251 unsigned int n_alloc;
6252 dw_die_ref c;
6253 dw_attr_ref d_attr, a_attr;
6254
6255 /* Scan the DIE references, and mark as external any that refer to
6256 DIEs from other CUs (i.e. those which are not marked). */
6257 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6258 if (AT_class (d_attr) == dw_val_class_die_ref
6259 && AT_ref (d_attr)->die_mark == 0)
6260 {
6261 if (AT_ref (d_attr)->die_symbol == 0)
6262 abort ();
6263
6264 set_AT_ref_external (d_attr, 1);
6265 }
6266
6267 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6268 {
6269 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6270
6271 if (abbrev->die_tag == die->die_tag)
6272 {
6273 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6274 {
6275 a_attr = abbrev->die_attr;
6276 d_attr = die->die_attr;
6277
6278 while (a_attr != NULL && d_attr != NULL)
6279 {
6280 if ((a_attr->dw_attr != d_attr->dw_attr)
6281 || (value_format (a_attr) != value_format (d_attr)))
6282 break;
6283
6284 a_attr = a_attr->dw_attr_next;
6285 d_attr = d_attr->dw_attr_next;
6286 }
6287
6288 if (a_attr == NULL && d_attr == NULL)
6289 break;
6290 }
6291 }
6292 }
6293
6294 if (abbrev_id >= abbrev_die_table_in_use)
6295 {
6296 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6297 {
6298 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6299 abbrev_die_table = ggc_realloc (abbrev_die_table,
6300 sizeof (dw_die_ref) * n_alloc);
6301
6302 memset ((char *) &abbrev_die_table[abbrev_die_table_allocated], 0,
6303 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6304 abbrev_die_table_allocated = n_alloc;
6305 }
6306
6307 ++abbrev_die_table_in_use;
6308 abbrev_die_table[abbrev_id] = die;
6309 }
6310
6311 die->die_abbrev = abbrev_id;
6312 for (c = die->die_child; c != NULL; c = c->die_sib)
6313 build_abbrev_table (c);
6314 }
6315 \f
6316 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6317
6318 static int
6319 constant_size (value)
6320 long unsigned value;
6321 {
6322 int log;
6323
6324 if (value == 0)
6325 log = 0;
6326 else
6327 log = floor_log2 (value);
6328
6329 log = log / 8;
6330 log = 1 << (floor_log2 (log) + 1);
6331
6332 return log;
6333 }
6334
6335 /* Return the size of a DIE as it is represented in the
6336 .debug_info section. */
6337
6338 static unsigned long
6339 size_of_die (die)
6340 dw_die_ref die;
6341 {
6342 unsigned long size = 0;
6343 dw_attr_ref a;
6344
6345 size += size_of_uleb128 (die->die_abbrev);
6346 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6347 {
6348 switch (AT_class (a))
6349 {
6350 case dw_val_class_addr:
6351 size += DWARF2_ADDR_SIZE;
6352 break;
6353 case dw_val_class_offset:
6354 size += DWARF_OFFSET_SIZE;
6355 break;
6356 case dw_val_class_loc:
6357 {
6358 unsigned long lsize = size_of_locs (AT_loc (a));
6359
6360 /* Block length. */
6361 size += constant_size (lsize);
6362 size += lsize;
6363 }
6364 break;
6365 case dw_val_class_loc_list:
6366 size += DWARF_OFFSET_SIZE;
6367 break;
6368 case dw_val_class_range_list:
6369 size += DWARF_OFFSET_SIZE;
6370 break;
6371 case dw_val_class_const:
6372 size += size_of_sleb128 (AT_int (a));
6373 break;
6374 case dw_val_class_unsigned_const:
6375 size += constant_size (AT_unsigned (a));
6376 break;
6377 case dw_val_class_long_long:
6378 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6379 break;
6380 case dw_val_class_float:
6381 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
6382 break;
6383 case dw_val_class_flag:
6384 size += 1;
6385 break;
6386 case dw_val_class_die_ref:
6387 if (AT_ref_external (a))
6388 size += DWARF2_ADDR_SIZE;
6389 else
6390 size += DWARF_OFFSET_SIZE;
6391 break;
6392 case dw_val_class_fde_ref:
6393 size += DWARF_OFFSET_SIZE;
6394 break;
6395 case dw_val_class_lbl_id:
6396 size += DWARF2_ADDR_SIZE;
6397 break;
6398 case dw_val_class_lbl_offset:
6399 size += DWARF_OFFSET_SIZE;
6400 break;
6401 case dw_val_class_str:
6402 if (AT_string_form (a) == DW_FORM_strp)
6403 size += DWARF_OFFSET_SIZE;
6404 else
6405 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6406 break;
6407 default:
6408 abort ();
6409 }
6410 }
6411
6412 return size;
6413 }
6414
6415 /* Size the debugging information associated with a given DIE. Visits the
6416 DIE's children recursively. Updates the global variable next_die_offset, on
6417 each time through. Uses the current value of next_die_offset to update the
6418 die_offset field in each DIE. */
6419
6420 static void
6421 calc_die_sizes (die)
6422 dw_die_ref die;
6423 {
6424 dw_die_ref c;
6425
6426 die->die_offset = next_die_offset;
6427 next_die_offset += size_of_die (die);
6428
6429 for (c = die->die_child; c != NULL; c = c->die_sib)
6430 calc_die_sizes (c);
6431
6432 if (die->die_child != NULL)
6433 /* Count the null byte used to terminate sibling lists. */
6434 next_die_offset += 1;
6435 }
6436
6437 /* Set the marks for a die and its children. We do this so
6438 that we know whether or not a reference needs to use FORM_ref_addr; only
6439 DIEs in the same CU will be marked. We used to clear out the offset
6440 and use that as the flag, but ran into ordering problems. */
6441
6442 static void
6443 mark_dies (die)
6444 dw_die_ref die;
6445 {
6446 dw_die_ref c;
6447
6448 if (die->die_mark)
6449 abort ();
6450
6451 die->die_mark = 1;
6452 for (c = die->die_child; c; c = c->die_sib)
6453 mark_dies (c);
6454 }
6455
6456 /* Clear the marks for a die and its children. */
6457
6458 static void
6459 unmark_dies (die)
6460 dw_die_ref die;
6461 {
6462 dw_die_ref c;
6463
6464 if (!die->die_mark)
6465 abort ();
6466
6467 die->die_mark = 0;
6468 for (c = die->die_child; c; c = c->die_sib)
6469 unmark_dies (c);
6470 }
6471
6472 /* Clear the marks for a die, its children and referred dies. */
6473
6474 static void
6475 unmark_all_dies (die)
6476 dw_die_ref die;
6477 {
6478 dw_die_ref c;
6479 dw_attr_ref a;
6480
6481 if (!die->die_mark)
6482 return;
6483 die->die_mark = 0;
6484
6485 for (c = die->die_child; c; c = c->die_sib)
6486 unmark_all_dies (c);
6487
6488 for (a = die->die_attr; a; a = a->dw_attr_next)
6489 if (AT_class (a) == dw_val_class_die_ref)
6490 unmark_all_dies (AT_ref (a));
6491 }
6492
6493 /* Return the size of the .debug_pubnames table generated for the
6494 compilation unit. */
6495
6496 static unsigned long
6497 size_of_pubnames ()
6498 {
6499 unsigned long size;
6500 unsigned i;
6501
6502 size = DWARF_PUBNAMES_HEADER_SIZE;
6503 for (i = 0; i < pubname_table_in_use; i++)
6504 {
6505 pubname_ref p = &pubname_table[i];
6506 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6507 }
6508
6509 size += DWARF_OFFSET_SIZE;
6510 return size;
6511 }
6512
6513 /* Return the size of the information in the .debug_aranges section. */
6514
6515 static unsigned long
6516 size_of_aranges ()
6517 {
6518 unsigned long size;
6519
6520 size = DWARF_ARANGES_HEADER_SIZE;
6521
6522 /* Count the address/length pair for this compilation unit. */
6523 size += 2 * DWARF2_ADDR_SIZE;
6524 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6525
6526 /* Count the two zero words used to terminated the address range table. */
6527 size += 2 * DWARF2_ADDR_SIZE;
6528 return size;
6529 }
6530 \f
6531 /* Select the encoding of an attribute value. */
6532
6533 static enum dwarf_form
6534 value_format (a)
6535 dw_attr_ref a;
6536 {
6537 switch (a->dw_attr_val.val_class)
6538 {
6539 case dw_val_class_addr:
6540 return DW_FORM_addr;
6541 case dw_val_class_range_list:
6542 case dw_val_class_offset:
6543 if (DWARF_OFFSET_SIZE == 4)
6544 return DW_FORM_data4;
6545 if (DWARF_OFFSET_SIZE == 8)
6546 return DW_FORM_data8;
6547 abort ();
6548 case dw_val_class_loc_list:
6549 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6550 .debug_loc section */
6551 return DW_FORM_data4;
6552 case dw_val_class_loc:
6553 switch (constant_size (size_of_locs (AT_loc (a))))
6554 {
6555 case 1:
6556 return DW_FORM_block1;
6557 case 2:
6558 return DW_FORM_block2;
6559 default:
6560 abort ();
6561 }
6562 case dw_val_class_const:
6563 return DW_FORM_sdata;
6564 case dw_val_class_unsigned_const:
6565 switch (constant_size (AT_unsigned (a)))
6566 {
6567 case 1:
6568 return DW_FORM_data1;
6569 case 2:
6570 return DW_FORM_data2;
6571 case 4:
6572 return DW_FORM_data4;
6573 case 8:
6574 return DW_FORM_data8;
6575 default:
6576 abort ();
6577 }
6578 case dw_val_class_long_long:
6579 return DW_FORM_block1;
6580 case dw_val_class_float:
6581 return DW_FORM_block1;
6582 case dw_val_class_flag:
6583 return DW_FORM_flag;
6584 case dw_val_class_die_ref:
6585 if (AT_ref_external (a))
6586 return DW_FORM_ref_addr;
6587 else
6588 return DW_FORM_ref;
6589 case dw_val_class_fde_ref:
6590 return DW_FORM_data;
6591 case dw_val_class_lbl_id:
6592 return DW_FORM_addr;
6593 case dw_val_class_lbl_offset:
6594 return DW_FORM_data;
6595 case dw_val_class_str:
6596 return AT_string_form (a);
6597
6598 default:
6599 abort ();
6600 }
6601 }
6602
6603 /* Output the encoding of an attribute value. */
6604
6605 static void
6606 output_value_format (a)
6607 dw_attr_ref a;
6608 {
6609 enum dwarf_form form = value_format (a);
6610
6611 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6612 }
6613
6614 /* Output the .debug_abbrev section which defines the DIE abbreviation
6615 table. */
6616
6617 static void
6618 output_abbrev_section ()
6619 {
6620 unsigned long abbrev_id;
6621
6622 dw_attr_ref a_attr;
6623
6624 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6625 {
6626 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6627
6628 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6629 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6630 dwarf_tag_name (abbrev->die_tag));
6631
6632 if (abbrev->die_child != NULL)
6633 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6634 else
6635 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6636
6637 for (a_attr = abbrev->die_attr; a_attr != NULL;
6638 a_attr = a_attr->dw_attr_next)
6639 {
6640 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6641 dwarf_attr_name (a_attr->dw_attr));
6642 output_value_format (a_attr);
6643 }
6644
6645 dw2_asm_output_data (1, 0, NULL);
6646 dw2_asm_output_data (1, 0, NULL);
6647 }
6648
6649 /* Terminate the table. */
6650 dw2_asm_output_data (1, 0, NULL);
6651 }
6652
6653 /* Output a symbol we can use to refer to this DIE from another CU. */
6654
6655 static inline void
6656 output_die_symbol (die)
6657 dw_die_ref die;
6658 {
6659 char *sym = die->die_symbol;
6660
6661 if (sym == 0)
6662 return;
6663
6664 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6665 /* We make these global, not weak; if the target doesn't support
6666 .linkonce, it doesn't support combining the sections, so debugging
6667 will break. */
6668 (*targetm.asm_out.globalize_label) (asm_out_file, sym);
6669
6670 ASM_OUTPUT_LABEL (asm_out_file, sym);
6671 }
6672
6673 /* Return a new location list, given the begin and end range, and the
6674 expression. gensym tells us whether to generate a new internal symbol for
6675 this location list node, which is done for the head of the list only. */
6676
6677 static inline dw_loc_list_ref
6678 new_loc_list (expr, begin, end, section, gensym)
6679 dw_loc_descr_ref expr;
6680 const char *begin;
6681 const char *end;
6682 const char *section;
6683 unsigned gensym;
6684 {
6685 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6686
6687 retlist->begin = begin;
6688 retlist->end = end;
6689 retlist->expr = expr;
6690 retlist->section = section;
6691 if (gensym)
6692 retlist->ll_symbol = gen_internal_sym ("LLST");
6693
6694 return retlist;
6695 }
6696
6697 /* Add a location description expression to a location list */
6698
6699 static inline void
6700 add_loc_descr_to_loc_list (list_head, descr, begin, end, section)
6701 dw_loc_list_ref *list_head;
6702 dw_loc_descr_ref descr;
6703 const char *begin;
6704 const char *end;
6705 const char *section;
6706 {
6707 dw_loc_list_ref *d;
6708
6709 /* Find the end of the chain. */
6710 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6711 ;
6712
6713 /* Add a new location list node to the list */
6714 *d = new_loc_list (descr, begin, end, section, 0);
6715 }
6716
6717 /* Output the location list given to us */
6718
6719 static void
6720 output_loc_list (list_head)
6721 dw_loc_list_ref list_head;
6722 {
6723 dw_loc_list_ref curr = list_head;
6724
6725 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6726
6727 /* ??? This shouldn't be needed now that we've forced the
6728 compilation unit base address to zero when there is code
6729 in more than one section. */
6730 if (strcmp (curr->section, ".text") == 0)
6731 {
6732 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6733 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT) 0,
6734 "Location list base address specifier fake entry");
6735 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6736 "Location list base address specifier base");
6737 }
6738
6739 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6740 {
6741 unsigned long size;
6742
6743 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6744 "Location list begin address (%s)",
6745 list_head->ll_symbol);
6746 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6747 "Location list end address (%s)",
6748 list_head->ll_symbol);
6749 size = size_of_locs (curr->expr);
6750
6751 /* Output the block length for this list of location operations. */
6752 if (size > 0xffff)
6753 abort ();
6754 dw2_asm_output_data (2, size, "%s", "Location expression size");
6755
6756 output_loc_sequence (curr->expr);
6757 }
6758
6759 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6760 "Location list terminator begin (%s)",
6761 list_head->ll_symbol);
6762 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6763 "Location list terminator end (%s)",
6764 list_head->ll_symbol);
6765 }
6766
6767 /* Output the DIE and its attributes. Called recursively to generate
6768 the definitions of each child DIE. */
6769
6770 static void
6771 output_die (die)
6772 dw_die_ref die;
6773 {
6774 dw_attr_ref a;
6775 dw_die_ref c;
6776 unsigned long size;
6777
6778 /* If someone in another CU might refer to us, set up a symbol for
6779 them to point to. */
6780 if (die->die_symbol)
6781 output_die_symbol (die);
6782
6783 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6784 die->die_offset, dwarf_tag_name (die->die_tag));
6785
6786 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6787 {
6788 const char *name = dwarf_attr_name (a->dw_attr);
6789
6790 switch (AT_class (a))
6791 {
6792 case dw_val_class_addr:
6793 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6794 break;
6795
6796 case dw_val_class_offset:
6797 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6798 "%s", name);
6799 break;
6800
6801 case dw_val_class_range_list:
6802 {
6803 char *p = strchr (ranges_section_label, '\0');
6804
6805 sprintf (p, "+0x%lx", a->dw_attr_val.v.val_offset);
6806 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6807 "%s", name);
6808 *p = '\0';
6809 }
6810 break;
6811
6812 case dw_val_class_loc:
6813 size = size_of_locs (AT_loc (a));
6814
6815 /* Output the block length for this list of location operations. */
6816 dw2_asm_output_data (constant_size (size), size, "%s", name);
6817
6818 output_loc_sequence (AT_loc (a));
6819 break;
6820
6821 case dw_val_class_const:
6822 /* ??? It would be slightly more efficient to use a scheme like is
6823 used for unsigned constants below, but gdb 4.x does not sign
6824 extend. Gdb 5.x does sign extend. */
6825 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6826 break;
6827
6828 case dw_val_class_unsigned_const:
6829 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6830 AT_unsigned (a), "%s", name);
6831 break;
6832
6833 case dw_val_class_long_long:
6834 {
6835 unsigned HOST_WIDE_INT first, second;
6836
6837 dw2_asm_output_data (1,
6838 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6839 "%s", name);
6840
6841 if (WORDS_BIG_ENDIAN)
6842 {
6843 first = a->dw_attr_val.v.val_long_long.hi;
6844 second = a->dw_attr_val.v.val_long_long.low;
6845 }
6846 else
6847 {
6848 first = a->dw_attr_val.v.val_long_long.low;
6849 second = a->dw_attr_val.v.val_long_long.hi;
6850 }
6851
6852 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6853 first, "long long constant");
6854 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6855 second, NULL);
6856 }
6857 break;
6858
6859 case dw_val_class_float:
6860 {
6861 unsigned int i;
6862
6863 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6864 "%s", name);
6865
6866 for (i = 0; i < a->dw_attr_val.v.val_float.length; i++)
6867 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6868 "fp constant word %u", i);
6869 break;
6870 }
6871
6872 case dw_val_class_flag:
6873 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6874 break;
6875
6876 case dw_val_class_loc_list:
6877 {
6878 char *sym = AT_loc_list (a)->ll_symbol;
6879
6880 if (sym == 0)
6881 abort ();
6882 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym,
6883 loc_section_label, "%s", name);
6884 }
6885 break;
6886
6887 case dw_val_class_die_ref:
6888 if (AT_ref_external (a))
6889 {
6890 char *sym = AT_ref (a)->die_symbol;
6891
6892 if (sym == 0)
6893 abort ();
6894 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6895 }
6896 else if (AT_ref (a)->die_offset == 0)
6897 abort ();
6898 else
6899 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6900 "%s", name);
6901 break;
6902
6903 case dw_val_class_fde_ref:
6904 {
6905 char l1[20];
6906
6907 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6908 a->dw_attr_val.v.val_fde_index * 2);
6909 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6910 }
6911 break;
6912
6913 case dw_val_class_lbl_id:
6914 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6915 break;
6916
6917 case dw_val_class_lbl_offset:
6918 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6919 break;
6920
6921 case dw_val_class_str:
6922 if (AT_string_form (a) == DW_FORM_strp)
6923 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6924 a->dw_attr_val.v.val_str->label,
6925 "%s: \"%s\"", name, AT_string (a));
6926 else
6927 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6928 break;
6929
6930 default:
6931 abort ();
6932 }
6933 }
6934
6935 for (c = die->die_child; c != NULL; c = c->die_sib)
6936 output_die (c);
6937
6938 /* Add null byte to terminate sibling list. */
6939 if (die->die_child != NULL)
6940 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6941 die->die_offset);
6942 }
6943
6944 /* Output the compilation unit that appears at the beginning of the
6945 .debug_info section, and precedes the DIE descriptions. */
6946
6947 static void
6948 output_compilation_unit_header ()
6949 {
6950 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6951 dw2_asm_output_data (4, 0xffffffff,
6952 "Initial length escape value indicating 64-bit DWARF extension");
6953 dw2_asm_output_data (DWARF_OFFSET_SIZE,
6954 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
6955 "Length of Compilation Unit Info");
6956 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6957 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6958 "Offset Into Abbrev. Section");
6959 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6960 }
6961
6962 /* Output the compilation unit DIE and its children. */
6963
6964 static void
6965 output_comp_unit (die, output_if_empty)
6966 dw_die_ref die;
6967 int output_if_empty;
6968 {
6969 const char *secname;
6970 char *oldsym, *tmp;
6971
6972 /* Unless we are outputting main CU, we may throw away empty ones. */
6973 if (!output_if_empty && die->die_child == NULL)
6974 return;
6975
6976 /* Even if there are no children of this DIE, we must output the information
6977 about the compilation unit. Otherwise, on an empty translation unit, we
6978 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6979 will then complain when examining the file. First mark all the DIEs in
6980 this CU so we know which get local refs. */
6981 mark_dies (die);
6982
6983 build_abbrev_table (die);
6984
6985 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6986 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6987 calc_die_sizes (die);
6988
6989 oldsym = die->die_symbol;
6990 if (oldsym)
6991 {
6992 tmp = (char *) alloca (strlen (oldsym) + 24);
6993
6994 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
6995 secname = tmp;
6996 die->die_symbol = NULL;
6997 }
6998 else
6999 secname = (const char *) DEBUG_INFO_SECTION;
7000
7001 /* Output debugging information. */
7002 named_section_flags (secname, SECTION_DEBUG);
7003 output_compilation_unit_header ();
7004 output_die (die);
7005
7006 /* Leave the marks on the main CU, so we can check them in
7007 output_pubnames. */
7008 if (oldsym)
7009 {
7010 unmark_dies (die);
7011 die->die_symbol = oldsym;
7012 }
7013 }
7014
7015 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
7016 output of lang_hooks.decl_printable_name for C++ looks like
7017 "A::f(int)". Let's drop the argument list, and maybe the scope. */
7018
7019 static const char *
7020 dwarf2_name (decl, scope)
7021 tree decl;
7022 int scope;
7023 {
7024 return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
7025 }
7026
7027 /* Add a new entry to .debug_pubnames if appropriate. */
7028
7029 static void
7030 add_pubname (decl, die)
7031 tree decl;
7032 dw_die_ref die;
7033 {
7034 pubname_ref p;
7035
7036 if (! TREE_PUBLIC (decl))
7037 return;
7038
7039 if (pubname_table_in_use == pubname_table_allocated)
7040 {
7041 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7042 pubname_table
7043 = (pubname_ref) ggc_realloc (pubname_table,
7044 (pubname_table_allocated
7045 * sizeof (pubname_entry)));
7046 memset (pubname_table + pubname_table_in_use, 0,
7047 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7048 }
7049
7050 p = &pubname_table[pubname_table_in_use++];
7051 p->die = die;
7052 p->name = xstrdup (dwarf2_name (decl, 1));
7053 }
7054
7055 /* Output the public names table used to speed up access to externally
7056 visible names. For now, only generate entries for externally
7057 visible procedures. */
7058
7059 static void
7060 output_pubnames ()
7061 {
7062 unsigned i;
7063 unsigned long pubnames_length = size_of_pubnames ();
7064
7065 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7066 dw2_asm_output_data (4, 0xffffffff,
7067 "Initial length escape value indicating 64-bit DWARF extension");
7068 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7069 "Length of Public Names Info");
7070 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7071 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7072 "Offset of Compilation Unit Info");
7073 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7074 "Compilation Unit Length");
7075
7076 for (i = 0; i < pubname_table_in_use; i++)
7077 {
7078 pubname_ref pub = &pubname_table[i];
7079
7080 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7081 if (pub->die->die_mark == 0)
7082 abort ();
7083
7084 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7085 "DIE offset");
7086
7087 dw2_asm_output_nstring (pub->name, -1, "external name");
7088 }
7089
7090 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7091 }
7092
7093 /* Add a new entry to .debug_aranges if appropriate. */
7094
7095 static void
7096 add_arange (decl, die)
7097 tree decl;
7098 dw_die_ref die;
7099 {
7100 if (! DECL_SECTION_NAME (decl))
7101 return;
7102
7103 if (arange_table_in_use == arange_table_allocated)
7104 {
7105 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7106 arange_table = ggc_realloc (arange_table,
7107 (arange_table_allocated
7108 * sizeof (dw_die_ref)));
7109 memset (arange_table + arange_table_in_use, 0,
7110 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7111 }
7112
7113 arange_table[arange_table_in_use++] = die;
7114 }
7115
7116 /* Output the information that goes into the .debug_aranges table.
7117 Namely, define the beginning and ending address range of the
7118 text section generated for this compilation unit. */
7119
7120 static void
7121 output_aranges ()
7122 {
7123 unsigned i;
7124 unsigned long aranges_length = size_of_aranges ();
7125
7126 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7127 dw2_asm_output_data (4, 0xffffffff,
7128 "Initial length escape value indicating 64-bit DWARF extension");
7129 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7130 "Length of Address Ranges Info");
7131 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7132 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7133 "Offset of Compilation Unit Info");
7134 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7135 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7136
7137 /* We need to align to twice the pointer size here. */
7138 if (DWARF_ARANGES_PAD_SIZE)
7139 {
7140 /* Pad using a 2 byte words so that padding is correct for any
7141 pointer size. */
7142 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7143 2 * DWARF2_ADDR_SIZE);
7144 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7145 dw2_asm_output_data (2, 0, NULL);
7146 }
7147
7148 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7149 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7150 text_section_label, "Length");
7151
7152 for (i = 0; i < arange_table_in_use; i++)
7153 {
7154 dw_die_ref die = arange_table[i];
7155
7156 /* We shouldn't see aranges for DIEs outside of the main CU. */
7157 if (die->die_mark == 0)
7158 abort ();
7159
7160 if (die->die_tag == DW_TAG_subprogram)
7161 {
7162 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7163 "Address");
7164 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7165 get_AT_low_pc (die), "Length");
7166 }
7167 else
7168 {
7169 /* A static variable; extract the symbol from DW_AT_location.
7170 Note that this code isn't currently hit, as we only emit
7171 aranges for functions (jason 9/23/99). */
7172 dw_attr_ref a = get_AT (die, DW_AT_location);
7173 dw_loc_descr_ref loc;
7174
7175 if (! a || AT_class (a) != dw_val_class_loc)
7176 abort ();
7177
7178 loc = AT_loc (a);
7179 if (loc->dw_loc_opc != DW_OP_addr)
7180 abort ();
7181
7182 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7183 loc->dw_loc_oprnd1.v.val_addr, "Address");
7184 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7185 get_AT_unsigned (die, DW_AT_byte_size),
7186 "Length");
7187 }
7188 }
7189
7190 /* Output the terminator words. */
7191 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7192 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7193 }
7194
7195 /* Add a new entry to .debug_ranges. Return the offset at which it
7196 was placed. */
7197
7198 static unsigned int
7199 add_ranges (block)
7200 tree block;
7201 {
7202 unsigned int in_use = ranges_table_in_use;
7203
7204 if (in_use == ranges_table_allocated)
7205 {
7206 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7207 ranges_table = (dw_ranges_ref)
7208 ggc_realloc (ranges_table, (ranges_table_allocated
7209 * sizeof (struct dw_ranges_struct)));
7210 memset (ranges_table + ranges_table_in_use, 0,
7211 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7212 }
7213
7214 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7215 ranges_table_in_use = in_use + 1;
7216
7217 return in_use * 2 * DWARF2_ADDR_SIZE;
7218 }
7219
7220 static void
7221 output_ranges ()
7222 {
7223 unsigned i;
7224 static const char *const start_fmt = "Offset 0x%x";
7225 const char *fmt = start_fmt;
7226
7227 for (i = 0; i < ranges_table_in_use; i++)
7228 {
7229 int block_num = ranges_table[i].block_num;
7230
7231 if (block_num)
7232 {
7233 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7234 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7235
7236 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7237 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7238
7239 /* If all code is in the text section, then the compilation
7240 unit base address defaults to DW_AT_low_pc, which is the
7241 base of the text section. */
7242 if (separate_line_info_table_in_use == 0)
7243 {
7244 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7245 text_section_label,
7246 fmt, i * 2 * DWARF2_ADDR_SIZE);
7247 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7248 text_section_label, NULL);
7249 }
7250
7251 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7252 compilation unit base address to zero, which allows us to
7253 use absolute addresses, and not worry about whether the
7254 target supports cross-section arithmetic. */
7255 else
7256 {
7257 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7258 fmt, i * 2 * DWARF2_ADDR_SIZE);
7259 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7260 }
7261
7262 fmt = NULL;
7263 }
7264 else
7265 {
7266 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7267 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7268 fmt = start_fmt;
7269 }
7270 }
7271 }
7272
7273 /* Data structure containing information about input files. */
7274 struct file_info
7275 {
7276 char *path; /* Complete file name. */
7277 char *fname; /* File name part. */
7278 int length; /* Length of entire string. */
7279 int file_idx; /* Index in input file table. */
7280 int dir_idx; /* Index in directory table. */
7281 };
7282
7283 /* Data structure containing information about directories with source
7284 files. */
7285 struct dir_info
7286 {
7287 char *path; /* Path including directory name. */
7288 int length; /* Path length. */
7289 int prefix; /* Index of directory entry which is a prefix. */
7290 int count; /* Number of files in this directory. */
7291 int dir_idx; /* Index of directory used as base. */
7292 int used; /* Used in the end? */
7293 };
7294
7295 /* Callback function for file_info comparison. We sort by looking at
7296 the directories in the path. */
7297
7298 static int
7299 file_info_cmp (p1, p2)
7300 const void *p1;
7301 const void *p2;
7302 {
7303 const struct file_info *s1 = p1;
7304 const struct file_info *s2 = p2;
7305 unsigned char *cp1;
7306 unsigned char *cp2;
7307
7308 /* Take care of file names without directories. We need to make sure that
7309 we return consistent values to qsort since some will get confused if
7310 we return the same value when identical operands are passed in opposite
7311 orders. So if neither has a directory, return 0 and otherwise return
7312 1 or -1 depending on which one has the directory. */
7313 if ((s1->path == s1->fname || s2->path == s2->fname))
7314 return (s2->path == s2->fname) - (s1->path == s1->fname);
7315
7316 cp1 = (unsigned char *) s1->path;
7317 cp2 = (unsigned char *) s2->path;
7318
7319 while (1)
7320 {
7321 ++cp1;
7322 ++cp2;
7323 /* Reached the end of the first path? If so, handle like above. */
7324 if ((cp1 == (unsigned char *) s1->fname)
7325 || (cp2 == (unsigned char *) s2->fname))
7326 return ((cp2 == (unsigned char *) s2->fname)
7327 - (cp1 == (unsigned char *) s1->fname));
7328
7329 /* Character of current path component the same? */
7330 else if (*cp1 != *cp2)
7331 return *cp1 - *cp2;
7332 }
7333 }
7334
7335 /* Output the directory table and the file name table. We try to minimize
7336 the total amount of memory needed. A heuristic is used to avoid large
7337 slowdowns with many input files. */
7338
7339 static void
7340 output_file_names ()
7341 {
7342 struct file_info *files;
7343 struct dir_info *dirs;
7344 int *saved;
7345 int *savehere;
7346 int *backmap;
7347 size_t ndirs;
7348 int idx_offset;
7349 size_t i;
7350 int idx;
7351
7352 /* Handle the case where file_table is empty. */
7353 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7354 {
7355 dw2_asm_output_data (1, 0, "End directory table");
7356 dw2_asm_output_data (1, 0, "End file name table");
7357 return;
7358 }
7359
7360 /* Allocate the various arrays we need. */
7361 files = (struct file_info *) alloca (VARRAY_ACTIVE_SIZE (file_table)
7362 * sizeof (struct file_info));
7363 dirs = (struct dir_info *) alloca (VARRAY_ACTIVE_SIZE (file_table)
7364 * sizeof (struct dir_info));
7365
7366 /* Sort the file names. */
7367 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7368 {
7369 char *f;
7370
7371 /* Skip all leading "./". */
7372 f = VARRAY_CHAR_PTR (file_table, i);
7373 while (f[0] == '.' && f[1] == '/')
7374 f += 2;
7375
7376 /* Create a new array entry. */
7377 files[i].path = f;
7378 files[i].length = strlen (f);
7379 files[i].file_idx = i;
7380
7381 /* Search for the file name part. */
7382 f = strrchr (f, '/');
7383 files[i].fname = f == NULL ? files[i].path : f + 1;
7384 }
7385
7386 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7387 sizeof (files[0]), file_info_cmp);
7388
7389 /* Find all the different directories used. */
7390 dirs[0].path = files[1].path;
7391 dirs[0].length = files[1].fname - files[1].path;
7392 dirs[0].prefix = -1;
7393 dirs[0].count = 1;
7394 dirs[0].dir_idx = 0;
7395 dirs[0].used = 0;
7396 files[1].dir_idx = 0;
7397 ndirs = 1;
7398
7399 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7400 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7401 && memcmp (dirs[ndirs - 1].path, files[i].path,
7402 dirs[ndirs - 1].length) == 0)
7403 {
7404 /* Same directory as last entry. */
7405 files[i].dir_idx = ndirs - 1;
7406 ++dirs[ndirs - 1].count;
7407 }
7408 else
7409 {
7410 size_t j;
7411
7412 /* This is a new directory. */
7413 dirs[ndirs].path = files[i].path;
7414 dirs[ndirs].length = files[i].fname - files[i].path;
7415 dirs[ndirs].count = 1;
7416 dirs[ndirs].dir_idx = ndirs;
7417 dirs[ndirs].used = 0;
7418 files[i].dir_idx = ndirs;
7419
7420 /* Search for a prefix. */
7421 dirs[ndirs].prefix = -1;
7422 for (j = 0; j < ndirs; j++)
7423 if (dirs[j].length < dirs[ndirs].length
7424 && dirs[j].length > 1
7425 && (dirs[ndirs].prefix == -1
7426 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7427 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7428 dirs[ndirs].prefix = j;
7429
7430 ++ndirs;
7431 }
7432
7433 /* Now to the actual work. We have to find a subset of the directories which
7434 allow expressing the file name using references to the directory table
7435 with the least amount of characters. We do not do an exhaustive search
7436 where we would have to check out every combination of every single
7437 possible prefix. Instead we use a heuristic which provides nearly optimal
7438 results in most cases and never is much off. */
7439 saved = (int *) alloca (ndirs * sizeof (int));
7440 savehere = (int *) alloca (ndirs * sizeof (int));
7441
7442 memset (saved, '\0', ndirs * sizeof (saved[0]));
7443 for (i = 0; i < ndirs; i++)
7444 {
7445 size_t j;
7446 int total;
7447
7448 /* We can always save some space for the current directory. But this
7449 does not mean it will be enough to justify adding the directory. */
7450 savehere[i] = dirs[i].length;
7451 total = (savehere[i] - saved[i]) * dirs[i].count;
7452
7453 for (j = i + 1; j < ndirs; j++)
7454 {
7455 savehere[j] = 0;
7456 if (saved[j] < dirs[i].length)
7457 {
7458 /* Determine whether the dirs[i] path is a prefix of the
7459 dirs[j] path. */
7460 int k;
7461
7462 k = dirs[j].prefix;
7463 while (k != -1 && k != (int) i)
7464 k = dirs[k].prefix;
7465
7466 if (k == (int) i)
7467 {
7468 /* Yes it is. We can possibly safe some memory but
7469 writing the filenames in dirs[j] relative to
7470 dirs[i]. */
7471 savehere[j] = dirs[i].length;
7472 total += (savehere[j] - saved[j]) * dirs[j].count;
7473 }
7474 }
7475 }
7476
7477 /* Check whether we can safe enough to justify adding the dirs[i]
7478 directory. */
7479 if (total > dirs[i].length + 1)
7480 {
7481 /* It's worthwhile adding. */
7482 for (j = i; j < ndirs; j++)
7483 if (savehere[j] > 0)
7484 {
7485 /* Remember how much we saved for this directory so far. */
7486 saved[j] = savehere[j];
7487
7488 /* Remember the prefix directory. */
7489 dirs[j].dir_idx = i;
7490 }
7491 }
7492 }
7493
7494 /* We have to emit them in the order they appear in the file_table array
7495 since the index is used in the debug info generation. To do this
7496 efficiently we generate a back-mapping of the indices first. */
7497 backmap = (int *) alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7498 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7499 {
7500 backmap[files[i].file_idx] = i;
7501
7502 /* Mark this directory as used. */
7503 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7504 }
7505
7506 /* That was it. We are ready to emit the information. First emit the
7507 directory name table. We have to make sure the first actually emitted
7508 directory name has index one; zero is reserved for the current working
7509 directory. Make sure we do not confuse these indices with the one for the
7510 constructed table (even though most of the time they are identical). */
7511 idx = 1;
7512 idx_offset = dirs[0].length > 0 ? 1 : 0;
7513 for (i = 1 - idx_offset; i < ndirs; i++)
7514 if (dirs[i].used != 0)
7515 {
7516 dirs[i].used = idx++;
7517 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7518 "Directory Entry: 0x%x", dirs[i].used);
7519 }
7520
7521 dw2_asm_output_data (1, 0, "End directory table");
7522
7523 /* Correct the index for the current working directory entry if it
7524 exists. */
7525 if (idx_offset == 0)
7526 dirs[0].used = 0;
7527
7528 /* Now write all the file names. */
7529 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7530 {
7531 int file_idx = backmap[i];
7532 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7533
7534 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7535 "File Entry: 0x%lx", (unsigned long) i);
7536
7537 /* Include directory index. */
7538 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7539
7540 /* Modification time. */
7541 dw2_asm_output_data_uleb128 (0, NULL);
7542
7543 /* File length in bytes. */
7544 dw2_asm_output_data_uleb128 (0, NULL);
7545 }
7546
7547 dw2_asm_output_data (1, 0, "End file name table");
7548 }
7549
7550
7551 /* Output the source line number correspondence information. This
7552 information goes into the .debug_line section. */
7553
7554 static void
7555 output_line_info ()
7556 {
7557 char l1[20], l2[20], p1[20], p2[20];
7558 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7559 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7560 unsigned opc;
7561 unsigned n_op_args;
7562 unsigned long lt_index;
7563 unsigned long current_line;
7564 long line_offset;
7565 long line_delta;
7566 unsigned long current_file;
7567 unsigned long function;
7568
7569 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7570 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7571 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7572 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7573
7574 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7575 dw2_asm_output_data (4, 0xffffffff,
7576 "Initial length escape value indicating 64-bit DWARF extension");
7577 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7578 "Length of Source Line Info");
7579 ASM_OUTPUT_LABEL (asm_out_file, l1);
7580
7581 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7582 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7583 ASM_OUTPUT_LABEL (asm_out_file, p1);
7584
7585 /* Define the architecture-dependent minimum instruction length (in
7586 bytes). In this implementation of DWARF, this field is used for
7587 information purposes only. Since GCC generates assembly language,
7588 we have no a priori knowledge of how many instruction bytes are
7589 generated for each source line, and therefore can use only the
7590 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7591 commands. Accordingly, we fix this as `1', which is "correct
7592 enough" for all architectures, and don't let the target override. */
7593 dw2_asm_output_data (1, 1,
7594 "Minimum Instruction Length");
7595
7596 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7597 "Default is_stmt_start flag");
7598 dw2_asm_output_data (1, DWARF_LINE_BASE,
7599 "Line Base Value (Special Opcodes)");
7600 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7601 "Line Range Value (Special Opcodes)");
7602 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7603 "Special Opcode Base");
7604
7605 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7606 {
7607 switch (opc)
7608 {
7609 case DW_LNS_advance_pc:
7610 case DW_LNS_advance_line:
7611 case DW_LNS_set_file:
7612 case DW_LNS_set_column:
7613 case DW_LNS_fixed_advance_pc:
7614 n_op_args = 1;
7615 break;
7616 default:
7617 n_op_args = 0;
7618 break;
7619 }
7620
7621 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7622 opc, n_op_args);
7623 }
7624
7625 /* Write out the information about the files we use. */
7626 output_file_names ();
7627 ASM_OUTPUT_LABEL (asm_out_file, p2);
7628
7629 /* We used to set the address register to the first location in the text
7630 section here, but that didn't accomplish anything since we already
7631 have a line note for the opening brace of the first function. */
7632
7633 /* Generate the line number to PC correspondence table, encoded as
7634 a series of state machine operations. */
7635 current_file = 1;
7636 current_line = 1;
7637 strcpy (prev_line_label, text_section_label);
7638 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7639 {
7640 dw_line_info_ref line_info = &line_info_table[lt_index];
7641
7642 #if 0
7643 /* Disable this optimization for now; GDB wants to see two line notes
7644 at the beginning of a function so it can find the end of the
7645 prologue. */
7646
7647 /* Don't emit anything for redundant notes. Just updating the
7648 address doesn't accomplish anything, because we already assume
7649 that anything after the last address is this line. */
7650 if (line_info->dw_line_num == current_line
7651 && line_info->dw_file_num == current_file)
7652 continue;
7653 #endif
7654
7655 /* Emit debug info for the address of the current line.
7656
7657 Unfortunately, we have little choice here currently, and must always
7658 use the most general form. GCC does not know the address delta
7659 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7660 attributes which will give an upper bound on the address range. We
7661 could perhaps use length attributes to determine when it is safe to
7662 use DW_LNS_fixed_advance_pc. */
7663
7664 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7665 if (0)
7666 {
7667 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7668 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7669 "DW_LNS_fixed_advance_pc");
7670 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7671 }
7672 else
7673 {
7674 /* This can handle any delta. This takes
7675 4+DWARF2_ADDR_SIZE bytes. */
7676 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7677 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7678 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7679 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7680 }
7681
7682 strcpy (prev_line_label, line_label);
7683
7684 /* Emit debug info for the source file of the current line, if
7685 different from the previous line. */
7686 if (line_info->dw_file_num != current_file)
7687 {
7688 current_file = line_info->dw_file_num;
7689 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7690 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7691 VARRAY_CHAR_PTR (file_table,
7692 current_file));
7693 }
7694
7695 /* Emit debug info for the current line number, choosing the encoding
7696 that uses the least amount of space. */
7697 if (line_info->dw_line_num != current_line)
7698 {
7699 line_offset = line_info->dw_line_num - current_line;
7700 line_delta = line_offset - DWARF_LINE_BASE;
7701 current_line = line_info->dw_line_num;
7702 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7703 /* This can handle deltas from -10 to 234, using the current
7704 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7705 takes 1 byte. */
7706 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7707 "line %lu", current_line);
7708 else
7709 {
7710 /* This can handle any delta. This takes at least 4 bytes,
7711 depending on the value being encoded. */
7712 dw2_asm_output_data (1, DW_LNS_advance_line,
7713 "advance to line %lu", current_line);
7714 dw2_asm_output_data_sleb128 (line_offset, NULL);
7715 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7716 }
7717 }
7718 else
7719 /* We still need to start a new row, so output a copy insn. */
7720 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7721 }
7722
7723 /* Emit debug info for the address of the end of the function. */
7724 if (0)
7725 {
7726 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7727 "DW_LNS_fixed_advance_pc");
7728 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7729 }
7730 else
7731 {
7732 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7733 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7734 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7735 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7736 }
7737
7738 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7739 dw2_asm_output_data_uleb128 (1, NULL);
7740 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7741
7742 function = 0;
7743 current_file = 1;
7744 current_line = 1;
7745 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7746 {
7747 dw_separate_line_info_ref line_info
7748 = &separate_line_info_table[lt_index];
7749
7750 #if 0
7751 /* Don't emit anything for redundant notes. */
7752 if (line_info->dw_line_num == current_line
7753 && line_info->dw_file_num == current_file
7754 && line_info->function == function)
7755 goto cont;
7756 #endif
7757
7758 /* Emit debug info for the address of the current line. If this is
7759 a new function, or the first line of a function, then we need
7760 to handle it differently. */
7761 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7762 lt_index);
7763 if (function != line_info->function)
7764 {
7765 function = line_info->function;
7766
7767 /* Set the address register to the first line in the function */
7768 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7769 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7770 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7771 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7772 }
7773 else
7774 {
7775 /* ??? See the DW_LNS_advance_pc comment above. */
7776 if (0)
7777 {
7778 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7779 "DW_LNS_fixed_advance_pc");
7780 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7781 }
7782 else
7783 {
7784 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7785 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7786 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7787 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7788 }
7789 }
7790
7791 strcpy (prev_line_label, line_label);
7792
7793 /* Emit debug info for the source file of the current line, if
7794 different from the previous line. */
7795 if (line_info->dw_file_num != current_file)
7796 {
7797 current_file = line_info->dw_file_num;
7798 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7799 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7800 VARRAY_CHAR_PTR (file_table,
7801 current_file));
7802 }
7803
7804 /* Emit debug info for the current line number, choosing the encoding
7805 that uses the least amount of space. */
7806 if (line_info->dw_line_num != current_line)
7807 {
7808 line_offset = line_info->dw_line_num - current_line;
7809 line_delta = line_offset - DWARF_LINE_BASE;
7810 current_line = line_info->dw_line_num;
7811 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7812 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7813 "line %lu", current_line);
7814 else
7815 {
7816 dw2_asm_output_data (1, DW_LNS_advance_line,
7817 "advance to line %lu", current_line);
7818 dw2_asm_output_data_sleb128 (line_offset, NULL);
7819 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7820 }
7821 }
7822 else
7823 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7824
7825 #if 0
7826 cont:
7827 #endif
7828
7829 lt_index++;
7830
7831 /* If we're done with a function, end its sequence. */
7832 if (lt_index == separate_line_info_table_in_use
7833 || separate_line_info_table[lt_index].function != function)
7834 {
7835 current_file = 1;
7836 current_line = 1;
7837
7838 /* Emit debug info for the address of the end of the function. */
7839 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7840 if (0)
7841 {
7842 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7843 "DW_LNS_fixed_advance_pc");
7844 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7845 }
7846 else
7847 {
7848 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7849 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7850 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7851 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7852 }
7853
7854 /* Output the marker for the end of this sequence. */
7855 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7856 dw2_asm_output_data_uleb128 (1, NULL);
7857 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7858 }
7859 }
7860
7861 /* Output the marker for the end of the line number info. */
7862 ASM_OUTPUT_LABEL (asm_out_file, l2);
7863 }
7864 \f
7865 /* Given a pointer to a tree node for some base type, return a pointer to
7866 a DIE that describes the given type.
7867
7868 This routine must only be called for GCC type nodes that correspond to
7869 Dwarf base (fundamental) types. */
7870
7871 static dw_die_ref
7872 base_type_die (type)
7873 tree type;
7874 {
7875 dw_die_ref base_type_result;
7876 const char *type_name;
7877 enum dwarf_type encoding;
7878 tree name = TYPE_NAME (type);
7879
7880 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7881 return 0;
7882
7883 if (name)
7884 {
7885 if (TREE_CODE (name) == TYPE_DECL)
7886 name = DECL_NAME (name);
7887
7888 type_name = IDENTIFIER_POINTER (name);
7889 }
7890 else
7891 type_name = "__unknown__";
7892
7893 switch (TREE_CODE (type))
7894 {
7895 case INTEGER_TYPE:
7896 /* Carefully distinguish the C character types, without messing
7897 up if the language is not C. Note that we check only for the names
7898 that contain spaces; other names might occur by coincidence in other
7899 languages. */
7900 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7901 && (type == char_type_node
7902 || ! strcmp (type_name, "signed char")
7903 || ! strcmp (type_name, "unsigned char"))))
7904 {
7905 if (TREE_UNSIGNED (type))
7906 encoding = DW_ATE_unsigned;
7907 else
7908 encoding = DW_ATE_signed;
7909 break;
7910 }
7911 /* else fall through. */
7912
7913 case CHAR_TYPE:
7914 /* GNU Pascal/Ada CHAR type. Not used in C. */
7915 if (TREE_UNSIGNED (type))
7916 encoding = DW_ATE_unsigned_char;
7917 else
7918 encoding = DW_ATE_signed_char;
7919 break;
7920
7921 case REAL_TYPE:
7922 encoding = DW_ATE_float;
7923 break;
7924
7925 /* Dwarf2 doesn't know anything about complex ints, so use
7926 a user defined type for it. */
7927 case COMPLEX_TYPE:
7928 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7929 encoding = DW_ATE_complex_float;
7930 else
7931 encoding = DW_ATE_lo_user;
7932 break;
7933
7934 case BOOLEAN_TYPE:
7935 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7936 encoding = DW_ATE_boolean;
7937 break;
7938
7939 default:
7940 /* No other TREE_CODEs are Dwarf fundamental types. */
7941 abort ();
7942 }
7943
7944 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7945 if (demangle_name_func)
7946 type_name = (*demangle_name_func) (type_name);
7947
7948 add_AT_string (base_type_result, DW_AT_name, type_name);
7949 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7950 int_size_in_bytes (type));
7951 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7952
7953 return base_type_result;
7954 }
7955
7956 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7957 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7958 a given type is generally the same as the given type, except that if the
7959 given type is a pointer or reference type, then the root type of the given
7960 type is the root type of the "basis" type for the pointer or reference
7961 type. (This definition of the "root" type is recursive.) Also, the root
7962 type of a `const' qualified type or a `volatile' qualified type is the
7963 root type of the given type without the qualifiers. */
7964
7965 static tree
7966 root_type (type)
7967 tree type;
7968 {
7969 if (TREE_CODE (type) == ERROR_MARK)
7970 return error_mark_node;
7971
7972 switch (TREE_CODE (type))
7973 {
7974 case ERROR_MARK:
7975 return error_mark_node;
7976
7977 case POINTER_TYPE:
7978 case REFERENCE_TYPE:
7979 return type_main_variant (root_type (TREE_TYPE (type)));
7980
7981 default:
7982 return type_main_variant (type);
7983 }
7984 }
7985
7986 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7987 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7988
7989 static inline int
7990 is_base_type (type)
7991 tree type;
7992 {
7993 switch (TREE_CODE (type))
7994 {
7995 case ERROR_MARK:
7996 case VOID_TYPE:
7997 case INTEGER_TYPE:
7998 case REAL_TYPE:
7999 case COMPLEX_TYPE:
8000 case BOOLEAN_TYPE:
8001 case CHAR_TYPE:
8002 return 1;
8003
8004 case SET_TYPE:
8005 case ARRAY_TYPE:
8006 case RECORD_TYPE:
8007 case UNION_TYPE:
8008 case QUAL_UNION_TYPE:
8009 case ENUMERAL_TYPE:
8010 case FUNCTION_TYPE:
8011 case METHOD_TYPE:
8012 case POINTER_TYPE:
8013 case REFERENCE_TYPE:
8014 case FILE_TYPE:
8015 case OFFSET_TYPE:
8016 case LANG_TYPE:
8017 case VECTOR_TYPE:
8018 return 0;
8019
8020 default:
8021 abort ();
8022 }
8023
8024 return 0;
8025 }
8026
8027 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8028 node, return the size in bits for the type if it is a constant, or else
8029 return the alignment for the type if the type's size is not constant, or
8030 else return BITS_PER_WORD if the type actually turns out to be an
8031 ERROR_MARK node. */
8032
8033 static inline unsigned HOST_WIDE_INT
8034 simple_type_size_in_bits (type)
8035 tree type;
8036 {
8037 if (TREE_CODE (type) == ERROR_MARK)
8038 return BITS_PER_WORD;
8039 else if (TYPE_SIZE (type) == NULL_TREE)
8040 return 0;
8041 else if (host_integerp (TYPE_SIZE (type), 1))
8042 return tree_low_cst (TYPE_SIZE (type), 1);
8043 else
8044 return TYPE_ALIGN (type);
8045 }
8046
8047 /* Return true if the debug information for the given type should be
8048 emitted as a subrange type. */
8049
8050 static inline bool
8051 is_ada_subrange_type (type)
8052 tree type;
8053 {
8054 /* We do this for INTEGER_TYPEs that have names, parent types, and when
8055 we are compiling Ada code. */
8056 return (TREE_CODE (type) == INTEGER_TYPE
8057 && TYPE_NAME (type) != 0 && TREE_TYPE (type) != 0
8058 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
8059 && TREE_UNSIGNED (TREE_TYPE (type)) && is_ada ());
8060 }
8061
8062 /* Given a pointer to a tree node for a subrange type, return a pointer
8063 to a DIE that describes the given type. */
8064
8065 static dw_die_ref
8066 subrange_type_die (type)
8067 tree type;
8068 {
8069 dw_die_ref subtype_die;
8070 dw_die_ref subrange_die;
8071 tree name = TYPE_NAME (type);
8072
8073 subtype_die = base_type_die (TREE_TYPE (type));
8074
8075 if (TREE_CODE (name) == TYPE_DECL)
8076 name = DECL_NAME (name);
8077
8078 subrange_die = new_die (DW_TAG_subrange_type, comp_unit_die, type);
8079 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
8080 if (TYPE_MIN_VALUE (type) != NULL)
8081 add_bound_info (subrange_die, DW_AT_lower_bound,
8082 TYPE_MIN_VALUE (type));
8083 if (TYPE_MAX_VALUE (type) != NULL)
8084 add_bound_info (subrange_die, DW_AT_upper_bound,
8085 TYPE_MAX_VALUE (type));
8086 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
8087
8088 return subrange_die;
8089 }
8090
8091 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8092 entry that chains various modifiers in front of the given type. */
8093
8094 static dw_die_ref
8095 modified_type_die (type, is_const_type, is_volatile_type, context_die)
8096 tree type;
8097 int is_const_type;
8098 int is_volatile_type;
8099 dw_die_ref context_die;
8100 {
8101 enum tree_code code = TREE_CODE (type);
8102 dw_die_ref mod_type_die = NULL;
8103 dw_die_ref sub_die = NULL;
8104 tree item_type = NULL;
8105
8106 if (code != ERROR_MARK)
8107 {
8108 tree qualified_type;
8109
8110 /* See if we already have the appropriately qualified variant of
8111 this type. */
8112 qualified_type
8113 = get_qualified_type (type,
8114 ((is_const_type ? TYPE_QUAL_CONST : 0)
8115 | (is_volatile_type
8116 ? TYPE_QUAL_VOLATILE : 0)));
8117
8118 /* If we do, then we can just use its DIE, if it exists. */
8119 if (qualified_type)
8120 {
8121 mod_type_die = lookup_type_die (qualified_type);
8122 if (mod_type_die)
8123 return mod_type_die;
8124 }
8125
8126 /* Handle C typedef types. */
8127 if (qualified_type && TYPE_NAME (qualified_type)
8128 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8129 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8130 {
8131 tree type_name = TYPE_NAME (qualified_type);
8132 tree dtype = TREE_TYPE (type_name);
8133
8134 if (qualified_type == dtype)
8135 {
8136 /* For a named type, use the typedef. */
8137 gen_type_die (qualified_type, context_die);
8138 mod_type_die = lookup_type_die (qualified_type);
8139 }
8140 else if (is_const_type < TYPE_READONLY (dtype)
8141 || is_volatile_type < TYPE_VOLATILE (dtype))
8142 /* cv-unqualified version of named type. Just use the unnamed
8143 type to which it refers. */
8144 mod_type_die
8145 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8146 is_const_type, is_volatile_type,
8147 context_die);
8148
8149 /* Else cv-qualified version of named type; fall through. */
8150 }
8151
8152 if (mod_type_die)
8153 /* OK. */
8154 ;
8155 else if (is_const_type)
8156 {
8157 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8158 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8159 }
8160 else if (is_volatile_type)
8161 {
8162 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8163 sub_die = modified_type_die (type, 0, 0, context_die);
8164 }
8165 else if (code == POINTER_TYPE)
8166 {
8167 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8168 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8169 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8170 #if 0
8171 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8172 #endif
8173 item_type = TREE_TYPE (type);
8174 }
8175 else if (code == REFERENCE_TYPE)
8176 {
8177 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8178 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8179 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8180 #if 0
8181 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8182 #endif
8183 item_type = TREE_TYPE (type);
8184 }
8185 else if (is_ada_subrange_type (type))
8186 mod_type_die = subrange_type_die (type);
8187 else if (is_base_type (type))
8188 mod_type_die = base_type_die (type);
8189 else
8190 {
8191 gen_type_die (type, context_die);
8192
8193 /* We have to get the type_main_variant here (and pass that to the
8194 `lookup_type_die' routine) because the ..._TYPE node we have
8195 might simply be a *copy* of some original type node (where the
8196 copy was created to help us keep track of typedef names) and
8197 that copy might have a different TYPE_UID from the original
8198 ..._TYPE node. */
8199 if (TREE_CODE (type) != VECTOR_TYPE)
8200 mod_type_die = lookup_type_die (type_main_variant (type));
8201 else
8202 /* Vectors have the debugging information in the type,
8203 not the main variant. */
8204 mod_type_die = lookup_type_die (type);
8205 if (mod_type_die == NULL)
8206 abort ();
8207 }
8208
8209 /* We want to equate the qualified type to the die below. */
8210 type = qualified_type;
8211 }
8212
8213 if (type)
8214 equate_type_number_to_die (type, mod_type_die);
8215 if (item_type)
8216 /* We must do this after the equate_type_number_to_die call, in case
8217 this is a recursive type. This ensures that the modified_type_die
8218 recursion will terminate even if the type is recursive. Recursive
8219 types are possible in Ada. */
8220 sub_die = modified_type_die (item_type,
8221 TYPE_READONLY (item_type),
8222 TYPE_VOLATILE (item_type),
8223 context_die);
8224
8225 if (sub_die != NULL)
8226 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8227
8228 return mod_type_die;
8229 }
8230
8231 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8232 an enumerated type. */
8233
8234 static inline int
8235 type_is_enum (type)
8236 tree type;
8237 {
8238 return TREE_CODE (type) == ENUMERAL_TYPE;
8239 }
8240
8241 /* Return the register number described by a given RTL node. */
8242
8243 static unsigned int
8244 reg_number (rtl)
8245 rtx rtl;
8246 {
8247 unsigned regno = REGNO (rtl);
8248
8249 if (regno >= FIRST_PSEUDO_REGISTER)
8250 abort ();
8251
8252 return DBX_REGISTER_NUMBER (regno);
8253 }
8254
8255 /* Return a location descriptor that designates a machine register or
8256 zero if there is none. */
8257
8258 static dw_loc_descr_ref
8259 reg_loc_descriptor (rtl)
8260 rtx rtl;
8261 {
8262 unsigned reg;
8263 rtx regs;
8264
8265 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8266 return 0;
8267
8268 reg = reg_number (rtl);
8269 regs = (*targetm.dwarf_register_span) (rtl);
8270
8271 if (HARD_REGNO_NREGS (reg, GET_MODE (rtl)) > 1
8272 || regs)
8273 return multiple_reg_loc_descriptor (rtl, regs);
8274 else
8275 return one_reg_loc_descriptor (reg);
8276 }
8277
8278 /* Return a location descriptor that designates a machine register for
8279 a given hard register number. */
8280
8281 static dw_loc_descr_ref
8282 one_reg_loc_descriptor (regno)
8283 unsigned int regno;
8284 {
8285 if (regno <= 31)
8286 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8287 else
8288 return new_loc_descr (DW_OP_regx, regno, 0);
8289 }
8290
8291 /* Given an RTL of a register, return a location descriptor that
8292 designates a value that spans more than one register. */
8293
8294 static dw_loc_descr_ref
8295 multiple_reg_loc_descriptor (rtl, regs)
8296 rtx rtl, regs;
8297 {
8298 int nregs, size, i;
8299 unsigned reg;
8300 dw_loc_descr_ref loc_result = NULL;
8301
8302 reg = reg_number (rtl);
8303 nregs = HARD_REGNO_NREGS (reg, GET_MODE (rtl));
8304
8305 /* Simple, contiguous registers. */
8306 if (regs == NULL_RTX)
8307 {
8308 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8309
8310 loc_result = NULL;
8311 while (nregs--)
8312 {
8313 dw_loc_descr_ref t;
8314
8315 t = one_reg_loc_descriptor (reg);
8316 add_loc_descr (&loc_result, t);
8317 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8318 ++reg;
8319 }
8320 return loc_result;
8321 }
8322
8323 /* Now onto stupid register sets in non contiguous locations. */
8324
8325 if (GET_CODE (regs) != PARALLEL)
8326 abort ();
8327
8328 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8329 loc_result = NULL;
8330
8331 for (i = 0; i < XVECLEN (regs, 0); ++i)
8332 {
8333 dw_loc_descr_ref t;
8334
8335 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8336 add_loc_descr (&loc_result, t);
8337 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8338 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8339 }
8340 return loc_result;
8341 }
8342
8343 /* Return a location descriptor that designates a constant. */
8344
8345 static dw_loc_descr_ref
8346 int_loc_descriptor (i)
8347 HOST_WIDE_INT i;
8348 {
8349 enum dwarf_location_atom op;
8350
8351 /* Pick the smallest representation of a constant, rather than just
8352 defaulting to the LEB encoding. */
8353 if (i >= 0)
8354 {
8355 if (i <= 31)
8356 op = DW_OP_lit0 + i;
8357 else if (i <= 0xff)
8358 op = DW_OP_const1u;
8359 else if (i <= 0xffff)
8360 op = DW_OP_const2u;
8361 else if (HOST_BITS_PER_WIDE_INT == 32
8362 || i <= 0xffffffff)
8363 op = DW_OP_const4u;
8364 else
8365 op = DW_OP_constu;
8366 }
8367 else
8368 {
8369 if (i >= -0x80)
8370 op = DW_OP_const1s;
8371 else if (i >= -0x8000)
8372 op = DW_OP_const2s;
8373 else if (HOST_BITS_PER_WIDE_INT == 32
8374 || i >= -0x80000000)
8375 op = DW_OP_const4s;
8376 else
8377 op = DW_OP_consts;
8378 }
8379
8380 return new_loc_descr (op, i, 0);
8381 }
8382
8383 /* Return a location descriptor that designates a base+offset location. */
8384
8385 static dw_loc_descr_ref
8386 based_loc_descr (reg, offset)
8387 unsigned reg;
8388 long int offset;
8389 {
8390 dw_loc_descr_ref loc_result;
8391 /* For the "frame base", we use the frame pointer or stack pointer
8392 registers, since the RTL for local variables is relative to one of
8393 them. */
8394 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8395 ? HARD_FRAME_POINTER_REGNUM
8396 : STACK_POINTER_REGNUM);
8397
8398 if (reg == fp_reg)
8399 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8400 else if (reg <= 31)
8401 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8402 else
8403 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8404
8405 return loc_result;
8406 }
8407
8408 /* Return true if this RTL expression describes a base+offset calculation. */
8409
8410 static inline int
8411 is_based_loc (rtl)
8412 rtx rtl;
8413 {
8414 return (GET_CODE (rtl) == PLUS
8415 && ((GET_CODE (XEXP (rtl, 0)) == REG
8416 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8417 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8418 }
8419
8420 /* The following routine converts the RTL for a variable or parameter
8421 (resident in memory) into an equivalent Dwarf representation of a
8422 mechanism for getting the address of that same variable onto the top of a
8423 hypothetical "address evaluation" stack.
8424
8425 When creating memory location descriptors, we are effectively transforming
8426 the RTL for a memory-resident object into its Dwarf postfix expression
8427 equivalent. This routine recursively descends an RTL tree, turning
8428 it into Dwarf postfix code as it goes.
8429
8430 MODE is the mode of the memory reference, needed to handle some
8431 autoincrement addressing modes.
8432
8433 Return 0 if we can't represent the location. */
8434
8435 static dw_loc_descr_ref
8436 mem_loc_descriptor (rtl, mode)
8437 rtx rtl;
8438 enum machine_mode mode;
8439 {
8440 dw_loc_descr_ref mem_loc_result = NULL;
8441
8442 /* Note that for a dynamically sized array, the location we will generate a
8443 description of here will be the lowest numbered location which is
8444 actually within the array. That's *not* necessarily the same as the
8445 zeroth element of the array. */
8446
8447 rtl = (*targetm.delegitimize_address) (rtl);
8448
8449 switch (GET_CODE (rtl))
8450 {
8451 case POST_INC:
8452 case POST_DEC:
8453 case POST_MODIFY:
8454 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8455 just fall into the SUBREG code. */
8456
8457 /* ... fall through ... */
8458
8459 case SUBREG:
8460 /* The case of a subreg may arise when we have a local (register)
8461 variable or a formal (register) parameter which doesn't quite fill
8462 up an entire register. For now, just assume that it is
8463 legitimate to make the Dwarf info refer to the whole register which
8464 contains the given subreg. */
8465 rtl = SUBREG_REG (rtl);
8466
8467 /* ... fall through ... */
8468
8469 case REG:
8470 /* Whenever a register number forms a part of the description of the
8471 method for calculating the (dynamic) address of a memory resident
8472 object, DWARF rules require the register number be referred to as
8473 a "base register". This distinction is not based in any way upon
8474 what category of register the hardware believes the given register
8475 belongs to. This is strictly DWARF terminology we're dealing with
8476 here. Note that in cases where the location of a memory-resident
8477 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8478 OP_CONST (0)) the actual DWARF location descriptor that we generate
8479 may just be OP_BASEREG (basereg). This may look deceptively like
8480 the object in question was allocated to a register (rather than in
8481 memory) so DWARF consumers need to be aware of the subtle
8482 distinction between OP_REG and OP_BASEREG. */
8483 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8484 mem_loc_result = based_loc_descr (reg_number (rtl), 0);
8485 break;
8486
8487 case MEM:
8488 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8489 if (mem_loc_result != 0)
8490 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8491 break;
8492
8493 case LO_SUM:
8494 rtl = XEXP (rtl, 1);
8495
8496 /* ... fall through ... */
8497
8498 case LABEL_REF:
8499 /* Some ports can transform a symbol ref into a label ref, because
8500 the symbol ref is too far away and has to be dumped into a constant
8501 pool. */
8502 case CONST:
8503 case SYMBOL_REF:
8504 /* Alternatively, the symbol in the constant pool might be referenced
8505 by a different symbol. */
8506 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8507 {
8508 bool marked;
8509 rtx tmp = get_pool_constant_mark (rtl, &marked);
8510
8511 if (GET_CODE (tmp) == SYMBOL_REF)
8512 {
8513 rtl = tmp;
8514 if (CONSTANT_POOL_ADDRESS_P (tmp))
8515 get_pool_constant_mark (tmp, &marked);
8516 else
8517 marked = true;
8518 }
8519
8520 /* If all references to this pool constant were optimized away,
8521 it was not output and thus we can't represent it.
8522 FIXME: might try to use DW_OP_const_value here, though
8523 DW_OP_piece complicates it. */
8524 if (!marked)
8525 return 0;
8526 }
8527
8528 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8529 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8530 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8531 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8532 break;
8533
8534 case PRE_MODIFY:
8535 /* Extract the PLUS expression nested inside and fall into
8536 PLUS code below. */
8537 rtl = XEXP (rtl, 1);
8538 goto plus;
8539
8540 case PRE_INC:
8541 case PRE_DEC:
8542 /* Turn these into a PLUS expression and fall into the PLUS code
8543 below. */
8544 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8545 GEN_INT (GET_CODE (rtl) == PRE_INC
8546 ? GET_MODE_UNIT_SIZE (mode)
8547 : -GET_MODE_UNIT_SIZE (mode)));
8548
8549 /* ... fall through ... */
8550
8551 case PLUS:
8552 plus:
8553 if (is_based_loc (rtl))
8554 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
8555 INTVAL (XEXP (rtl, 1)));
8556 else
8557 {
8558 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8559 if (mem_loc_result == 0)
8560 break;
8561
8562 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8563 && INTVAL (XEXP (rtl, 1)) >= 0)
8564 add_loc_descr (&mem_loc_result,
8565 new_loc_descr (DW_OP_plus_uconst,
8566 INTVAL (XEXP (rtl, 1)), 0));
8567 else
8568 {
8569 add_loc_descr (&mem_loc_result,
8570 mem_loc_descriptor (XEXP (rtl, 1), mode));
8571 add_loc_descr (&mem_loc_result,
8572 new_loc_descr (DW_OP_plus, 0, 0));
8573 }
8574 }
8575 break;
8576
8577 case MULT:
8578 {
8579 /* If a pseudo-reg is optimized away, it is possible for it to
8580 be replaced with a MEM containing a multiply. */
8581 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8582 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8583
8584 if (op0 == 0 || op1 == 0)
8585 break;
8586
8587 mem_loc_result = op0;
8588 add_loc_descr (&mem_loc_result, op1);
8589 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
8590 break;
8591 }
8592
8593 case CONST_INT:
8594 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8595 break;
8596
8597 case ADDRESSOF:
8598 /* If this is a MEM, return its address. Otherwise, we can't
8599 represent this. */
8600 if (GET_CODE (XEXP (rtl, 0)) == MEM)
8601 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode);
8602 else
8603 return 0;
8604
8605 default:
8606 abort ();
8607 }
8608
8609 return mem_loc_result;
8610 }
8611
8612 /* Return a descriptor that describes the concatenation of two locations.
8613 This is typically a complex variable. */
8614
8615 static dw_loc_descr_ref
8616 concat_loc_descriptor (x0, x1)
8617 rtx x0, x1;
8618 {
8619 dw_loc_descr_ref cc_loc_result = NULL;
8620 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8621 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8622
8623 if (x0_ref == 0 || x1_ref == 0)
8624 return 0;
8625
8626 cc_loc_result = x0_ref;
8627 add_loc_descr (&cc_loc_result,
8628 new_loc_descr (DW_OP_piece,
8629 GET_MODE_SIZE (GET_MODE (x0)), 0));
8630
8631 add_loc_descr (&cc_loc_result, x1_ref);
8632 add_loc_descr (&cc_loc_result,
8633 new_loc_descr (DW_OP_piece,
8634 GET_MODE_SIZE (GET_MODE (x1)), 0));
8635
8636 return cc_loc_result;
8637 }
8638
8639 /* Output a proper Dwarf location descriptor for a variable or parameter
8640 which is either allocated in a register or in a memory location. For a
8641 register, we just generate an OP_REG and the register number. For a
8642 memory location we provide a Dwarf postfix expression describing how to
8643 generate the (dynamic) address of the object onto the address stack.
8644
8645 If we don't know how to describe it, return 0. */
8646
8647 static dw_loc_descr_ref
8648 loc_descriptor (rtl)
8649 rtx rtl;
8650 {
8651 dw_loc_descr_ref loc_result = NULL;
8652
8653 switch (GET_CODE (rtl))
8654 {
8655 case SUBREG:
8656 /* The case of a subreg may arise when we have a local (register)
8657 variable or a formal (register) parameter which doesn't quite fill
8658 up an entire register. For now, just assume that it is
8659 legitimate to make the Dwarf info refer to the whole register which
8660 contains the given subreg. */
8661 rtl = SUBREG_REG (rtl);
8662
8663 /* ... fall through ... */
8664
8665 case REG:
8666 loc_result = reg_loc_descriptor (rtl);
8667 break;
8668
8669 case MEM:
8670 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8671 break;
8672
8673 case CONCAT:
8674 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8675 break;
8676
8677 default:
8678 abort ();
8679 }
8680
8681 return loc_result;
8682 }
8683
8684 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8685 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8686 looking for an address. Otherwise, we return a value. If we can't make a
8687 descriptor, return 0. */
8688
8689 static dw_loc_descr_ref
8690 loc_descriptor_from_tree (loc, addressp)
8691 tree loc;
8692 int addressp;
8693 {
8694 dw_loc_descr_ref ret, ret1;
8695 int indirect_p = 0;
8696 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8697 enum dwarf_location_atom op;
8698
8699 /* ??? Most of the time we do not take proper care for sign/zero
8700 extending the values properly. Hopefully this won't be a real
8701 problem... */
8702
8703 switch (TREE_CODE (loc))
8704 {
8705 case ERROR_MARK:
8706 return 0;
8707
8708 case WITH_RECORD_EXPR:
8709 case PLACEHOLDER_EXPR:
8710 /* This case involves extracting fields from an object to determine the
8711 position of other fields. We don't try to encode this here. The
8712 only user of this is Ada, which encodes the needed information using
8713 the names of types. */
8714 return 0;
8715
8716 case CALL_EXPR:
8717 return 0;
8718
8719 case ADDR_EXPR:
8720 /* We can support this only if we can look through conversions and
8721 find an INDIRECT_EXPR. */
8722 for (loc = TREE_OPERAND (loc, 0);
8723 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8724 || TREE_CODE (loc) == NON_LVALUE_EXPR
8725 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8726 || TREE_CODE (loc) == SAVE_EXPR;
8727 loc = TREE_OPERAND (loc, 0))
8728 ;
8729
8730 return (TREE_CODE (loc) == INDIRECT_REF
8731 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8732 : 0);
8733
8734 case VAR_DECL:
8735 if (DECL_THREAD_LOCAL (loc))
8736 {
8737 rtx rtl;
8738
8739 #ifndef ASM_OUTPUT_DWARF_DTPREL
8740 /* If this is not defined, we have no way to emit the data. */
8741 return 0;
8742 #endif
8743
8744 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8745 look up addresses of objects in the current module. */
8746 if (DECL_EXTERNAL (loc))
8747 return 0;
8748
8749 rtl = rtl_for_decl_location (loc);
8750 if (rtl == NULL_RTX)
8751 return 0;
8752
8753 if (GET_CODE (rtl) != MEM)
8754 return 0;
8755 rtl = XEXP (rtl, 0);
8756 if (! CONSTANT_P (rtl))
8757 return 0;
8758
8759 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8760 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8761 ret->dw_loc_oprnd1.v.val_addr = rtl;
8762
8763 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8764 add_loc_descr (&ret, ret1);
8765
8766 indirect_p = 1;
8767 break;
8768 }
8769 /* FALLTHRU */
8770
8771 case PARM_DECL:
8772 {
8773 rtx rtl = rtl_for_decl_location (loc);
8774
8775 if (rtl == NULL_RTX)
8776 return 0;
8777 else if (CONSTANT_P (rtl))
8778 {
8779 ret = new_loc_descr (DW_OP_addr, 0, 0);
8780 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8781 ret->dw_loc_oprnd1.v.val_addr = rtl;
8782 indirect_p = 1;
8783 }
8784 else
8785 {
8786 enum machine_mode mode = GET_MODE (rtl);
8787
8788 if (GET_CODE (rtl) == MEM)
8789 {
8790 indirect_p = 1;
8791 rtl = XEXP (rtl, 0);
8792 }
8793
8794 ret = mem_loc_descriptor (rtl, mode);
8795 }
8796 }
8797 break;
8798
8799 case INDIRECT_REF:
8800 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8801 indirect_p = 1;
8802 break;
8803
8804 case COMPOUND_EXPR:
8805 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8806
8807 case NOP_EXPR:
8808 case CONVERT_EXPR:
8809 case NON_LVALUE_EXPR:
8810 case VIEW_CONVERT_EXPR:
8811 case SAVE_EXPR:
8812 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8813
8814 case COMPONENT_REF:
8815 case BIT_FIELD_REF:
8816 case ARRAY_REF:
8817 case ARRAY_RANGE_REF:
8818 {
8819 tree obj, offset;
8820 HOST_WIDE_INT bitsize, bitpos, bytepos;
8821 enum machine_mode mode;
8822 int volatilep;
8823
8824 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8825 &unsignedp, &volatilep);
8826
8827 if (obj == loc)
8828 return 0;
8829
8830 ret = loc_descriptor_from_tree (obj, 1);
8831 if (ret == 0
8832 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8833 return 0;
8834
8835 if (offset != NULL_TREE)
8836 {
8837 /* Variable offset. */
8838 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8839 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8840 }
8841
8842 if (!addressp)
8843 indirect_p = 1;
8844
8845 bytepos = bitpos / BITS_PER_UNIT;
8846 if (bytepos > 0)
8847 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8848 else if (bytepos < 0)
8849 {
8850 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8851 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8852 }
8853 break;
8854 }
8855
8856 case INTEGER_CST:
8857 if (host_integerp (loc, 0))
8858 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8859 else
8860 return 0;
8861 break;
8862
8863 case TRUTH_AND_EXPR:
8864 case TRUTH_ANDIF_EXPR:
8865 case BIT_AND_EXPR:
8866 op = DW_OP_and;
8867 goto do_binop;
8868
8869 case TRUTH_XOR_EXPR:
8870 case BIT_XOR_EXPR:
8871 op = DW_OP_xor;
8872 goto do_binop;
8873
8874 case TRUTH_OR_EXPR:
8875 case TRUTH_ORIF_EXPR:
8876 case BIT_IOR_EXPR:
8877 op = DW_OP_or;
8878 goto do_binop;
8879
8880 case FLOOR_DIV_EXPR:
8881 case CEIL_DIV_EXPR:
8882 case ROUND_DIV_EXPR:
8883 case TRUNC_DIV_EXPR:
8884 op = DW_OP_div;
8885 goto do_binop;
8886
8887 case MINUS_EXPR:
8888 op = DW_OP_minus;
8889 goto do_binop;
8890
8891 case FLOOR_MOD_EXPR:
8892 case CEIL_MOD_EXPR:
8893 case ROUND_MOD_EXPR:
8894 case TRUNC_MOD_EXPR:
8895 op = DW_OP_mod;
8896 goto do_binop;
8897
8898 case MULT_EXPR:
8899 op = DW_OP_mul;
8900 goto do_binop;
8901
8902 case LSHIFT_EXPR:
8903 op = DW_OP_shl;
8904 goto do_binop;
8905
8906 case RSHIFT_EXPR:
8907 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8908 goto do_binop;
8909
8910 case PLUS_EXPR:
8911 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8912 && host_integerp (TREE_OPERAND (loc, 1), 0))
8913 {
8914 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8915 if (ret == 0)
8916 return 0;
8917
8918 add_loc_descr (&ret,
8919 new_loc_descr (DW_OP_plus_uconst,
8920 tree_low_cst (TREE_OPERAND (loc, 1),
8921 0),
8922 0));
8923 break;
8924 }
8925
8926 op = DW_OP_plus;
8927 goto do_binop;
8928
8929 case LE_EXPR:
8930 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8931 return 0;
8932
8933 op = DW_OP_le;
8934 goto do_binop;
8935
8936 case GE_EXPR:
8937 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8938 return 0;
8939
8940 op = DW_OP_ge;
8941 goto do_binop;
8942
8943 case LT_EXPR:
8944 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8945 return 0;
8946
8947 op = DW_OP_lt;
8948 goto do_binop;
8949
8950 case GT_EXPR:
8951 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8952 return 0;
8953
8954 op = DW_OP_gt;
8955 goto do_binop;
8956
8957 case EQ_EXPR:
8958 op = DW_OP_eq;
8959 goto do_binop;
8960
8961 case NE_EXPR:
8962 op = DW_OP_ne;
8963 goto do_binop;
8964
8965 do_binop:
8966 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8967 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8968 if (ret == 0 || ret1 == 0)
8969 return 0;
8970
8971 add_loc_descr (&ret, ret1);
8972 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8973 break;
8974
8975 case TRUTH_NOT_EXPR:
8976 case BIT_NOT_EXPR:
8977 op = DW_OP_not;
8978 goto do_unop;
8979
8980 case ABS_EXPR:
8981 op = DW_OP_abs;
8982 goto do_unop;
8983
8984 case NEGATE_EXPR:
8985 op = DW_OP_neg;
8986 goto do_unop;
8987
8988 do_unop:
8989 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8990 if (ret == 0)
8991 return 0;
8992
8993 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8994 break;
8995
8996 case MAX_EXPR:
8997 loc = build (COND_EXPR, TREE_TYPE (loc),
8998 build (LT_EXPR, integer_type_node,
8999 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9000 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9001
9002 /* ... fall through ... */
9003
9004 case COND_EXPR:
9005 {
9006 dw_loc_descr_ref lhs
9007 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
9008 dw_loc_descr_ref rhs
9009 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
9010 dw_loc_descr_ref bra_node, jump_node, tmp;
9011
9012 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
9013 if (ret == 0 || lhs == 0 || rhs == 0)
9014 return 0;
9015
9016 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9017 add_loc_descr (&ret, bra_node);
9018
9019 add_loc_descr (&ret, rhs);
9020 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9021 add_loc_descr (&ret, jump_node);
9022
9023 add_loc_descr (&ret, lhs);
9024 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9025 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9026
9027 /* ??? Need a node to point the skip at. Use a nop. */
9028 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9029 add_loc_descr (&ret, tmp);
9030 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9031 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9032 }
9033 break;
9034
9035 default:
9036 abort ();
9037 }
9038
9039 /* Show if we can't fill the request for an address. */
9040 if (addressp && indirect_p == 0)
9041 return 0;
9042
9043 /* If we've got an address and don't want one, dereference. */
9044 if (!addressp && indirect_p > 0)
9045 {
9046 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9047
9048 if (size > DWARF2_ADDR_SIZE || size == -1)
9049 return 0;
9050 else if (size == DWARF2_ADDR_SIZE)
9051 op = DW_OP_deref;
9052 else
9053 op = DW_OP_deref_size;
9054
9055 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9056 }
9057
9058 return ret;
9059 }
9060
9061 /* Given a value, round it up to the lowest multiple of `boundary'
9062 which is not less than the value itself. */
9063
9064 static inline HOST_WIDE_INT
9065 ceiling (value, boundary)
9066 HOST_WIDE_INT value;
9067 unsigned int boundary;
9068 {
9069 return (((value + boundary - 1) / boundary) * boundary);
9070 }
9071
9072 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9073 pointer to the declared type for the relevant field variable, or return
9074 `integer_type_node' if the given node turns out to be an
9075 ERROR_MARK node. */
9076
9077 static inline tree
9078 field_type (decl)
9079 tree decl;
9080 {
9081 tree type;
9082
9083 if (TREE_CODE (decl) == ERROR_MARK)
9084 return integer_type_node;
9085
9086 type = DECL_BIT_FIELD_TYPE (decl);
9087 if (type == NULL_TREE)
9088 type = TREE_TYPE (decl);
9089
9090 return type;
9091 }
9092
9093 /* Given a pointer to a tree node, return the alignment in bits for
9094 it, or else return BITS_PER_WORD if the node actually turns out to
9095 be an ERROR_MARK node. */
9096
9097 static inline unsigned
9098 simple_type_align_in_bits (type)
9099 tree type;
9100 {
9101 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9102 }
9103
9104 static inline unsigned
9105 simple_decl_align_in_bits (decl)
9106 tree decl;
9107 {
9108 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9109 }
9110
9111 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9112 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9113 or return 0 if we are unable to determine what that offset is, either
9114 because the argument turns out to be a pointer to an ERROR_MARK node, or
9115 because the offset is actually variable. (We can't handle the latter case
9116 just yet). */
9117
9118 static HOST_WIDE_INT
9119 field_byte_offset (decl)
9120 tree decl;
9121 {
9122 unsigned int type_align_in_bits;
9123 unsigned int decl_align_in_bits;
9124 unsigned HOST_WIDE_INT type_size_in_bits;
9125 HOST_WIDE_INT object_offset_in_bits;
9126 tree type;
9127 tree field_size_tree;
9128 HOST_WIDE_INT bitpos_int;
9129 HOST_WIDE_INT deepest_bitpos;
9130 unsigned HOST_WIDE_INT field_size_in_bits;
9131
9132 if (TREE_CODE (decl) == ERROR_MARK)
9133 return 0;
9134 else if (TREE_CODE (decl) != FIELD_DECL)
9135 abort ();
9136
9137 type = field_type (decl);
9138 field_size_tree = DECL_SIZE (decl);
9139
9140 /* The size could be unspecified if there was an error, or for
9141 a flexible array member. */
9142 if (! field_size_tree)
9143 field_size_tree = bitsize_zero_node;
9144
9145 /* We cannot yet cope with fields whose positions are variable, so
9146 for now, when we see such things, we simply return 0. Someday, we may
9147 be able to handle such cases, but it will be damn difficult. */
9148 if (! host_integerp (bit_position (decl), 0))
9149 return 0;
9150
9151 bitpos_int = int_bit_position (decl);
9152
9153 /* If we don't know the size of the field, pretend it's a full word. */
9154 if (host_integerp (field_size_tree, 1))
9155 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9156 else
9157 field_size_in_bits = BITS_PER_WORD;
9158
9159 type_size_in_bits = simple_type_size_in_bits (type);
9160 type_align_in_bits = simple_type_align_in_bits (type);
9161 decl_align_in_bits = simple_decl_align_in_bits (decl);
9162
9163 /* The GCC front-end doesn't make any attempt to keep track of the starting
9164 bit offset (relative to the start of the containing structure type) of the
9165 hypothetical "containing object" for a bit-field. Thus, when computing
9166 the byte offset value for the start of the "containing object" of a
9167 bit-field, we must deduce this information on our own. This can be rather
9168 tricky to do in some cases. For example, handling the following structure
9169 type definition when compiling for an i386/i486 target (which only aligns
9170 long long's to 32-bit boundaries) can be very tricky:
9171
9172 struct S { int field1; long long field2:31; };
9173
9174 Fortunately, there is a simple rule-of-thumb which can be used in such
9175 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9176 structure shown above. It decides to do this based upon one simple rule
9177 for bit-field allocation. GCC allocates each "containing object" for each
9178 bit-field at the first (i.e. lowest addressed) legitimate alignment
9179 boundary (based upon the required minimum alignment for the declared type
9180 of the field) which it can possibly use, subject to the condition that
9181 there is still enough available space remaining in the containing object
9182 (when allocated at the selected point) to fully accommodate all of the
9183 bits of the bit-field itself.
9184
9185 This simple rule makes it obvious why GCC allocates 8 bytes for each
9186 object of the structure type shown above. When looking for a place to
9187 allocate the "containing object" for `field2', the compiler simply tries
9188 to allocate a 64-bit "containing object" at each successive 32-bit
9189 boundary (starting at zero) until it finds a place to allocate that 64-
9190 bit field such that at least 31 contiguous (and previously unallocated)
9191 bits remain within that selected 64 bit field. (As it turns out, for the
9192 example above, the compiler finds it is OK to allocate the "containing
9193 object" 64-bit field at bit-offset zero within the structure type.)
9194
9195 Here we attempt to work backwards from the limited set of facts we're
9196 given, and we try to deduce from those facts, where GCC must have believed
9197 that the containing object started (within the structure type). The value
9198 we deduce is then used (by the callers of this routine) to generate
9199 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9200 and, in the case of DW_AT_location, regular fields as well). */
9201
9202 /* Figure out the bit-distance from the start of the structure to the
9203 "deepest" bit of the bit-field. */
9204 deepest_bitpos = bitpos_int + field_size_in_bits;
9205
9206 /* This is the tricky part. Use some fancy footwork to deduce where the
9207 lowest addressed bit of the containing object must be. */
9208 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9209
9210 /* Round up to type_align by default. This works best for bitfields. */
9211 object_offset_in_bits += type_align_in_bits - 1;
9212 object_offset_in_bits /= type_align_in_bits;
9213 object_offset_in_bits *= type_align_in_bits;
9214
9215 if (object_offset_in_bits > bitpos_int)
9216 {
9217 /* Sigh, the decl must be packed. */
9218 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9219
9220 /* Round up to decl_align instead. */
9221 object_offset_in_bits += decl_align_in_bits - 1;
9222 object_offset_in_bits /= decl_align_in_bits;
9223 object_offset_in_bits *= decl_align_in_bits;
9224 }
9225
9226 return object_offset_in_bits / BITS_PER_UNIT;
9227 }
9228 \f
9229 /* The following routines define various Dwarf attributes and any data
9230 associated with them. */
9231
9232 /* Add a location description attribute value to a DIE.
9233
9234 This emits location attributes suitable for whole variables and
9235 whole parameters. Note that the location attributes for struct fields are
9236 generated by the routine `data_member_location_attribute' below. */
9237
9238 static inline void
9239 add_AT_location_description (die, attr_kind, descr)
9240 dw_die_ref die;
9241 enum dwarf_attribute attr_kind;
9242 dw_loc_descr_ref descr;
9243 {
9244 if (descr != 0)
9245 add_AT_loc (die, attr_kind, descr);
9246 }
9247
9248 /* Attach the specialized form of location attribute used for data members of
9249 struct and union types. In the special case of a FIELD_DECL node which
9250 represents a bit-field, the "offset" part of this special location
9251 descriptor must indicate the distance in bytes from the lowest-addressed
9252 byte of the containing struct or union type to the lowest-addressed byte of
9253 the "containing object" for the bit-field. (See the `field_byte_offset'
9254 function above).
9255
9256 For any given bit-field, the "containing object" is a hypothetical object
9257 (of some integral or enum type) within which the given bit-field lives. The
9258 type of this hypothetical "containing object" is always the same as the
9259 declared type of the individual bit-field itself (for GCC anyway... the
9260 DWARF spec doesn't actually mandate this). Note that it is the size (in
9261 bytes) of the hypothetical "containing object" which will be given in the
9262 DW_AT_byte_size attribute for this bit-field. (See the
9263 `byte_size_attribute' function below.) It is also used when calculating the
9264 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9265 function below.) */
9266
9267 static void
9268 add_data_member_location_attribute (die, decl)
9269 dw_die_ref die;
9270 tree decl;
9271 {
9272 long offset;
9273 dw_loc_descr_ref loc_descr = 0;
9274
9275 if (TREE_CODE (decl) == TREE_VEC)
9276 {
9277 /* We're working on the TAG_inheritance for a base class. */
9278 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
9279 {
9280 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9281 aren't at a fixed offset from all (sub)objects of the same
9282 type. We need to extract the appropriate offset from our
9283 vtable. The following dwarf expression means
9284
9285 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9286
9287 This is specific to the V3 ABI, of course. */
9288
9289 dw_loc_descr_ref tmp;
9290
9291 /* Make a copy of the object address. */
9292 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9293 add_loc_descr (&loc_descr, tmp);
9294
9295 /* Extract the vtable address. */
9296 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9297 add_loc_descr (&loc_descr, tmp);
9298
9299 /* Calculate the address of the offset. */
9300 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9301 if (offset >= 0)
9302 abort ();
9303
9304 tmp = int_loc_descriptor (-offset);
9305 add_loc_descr (&loc_descr, tmp);
9306 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9307 add_loc_descr (&loc_descr, tmp);
9308
9309 /* Extract the offset. */
9310 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9311 add_loc_descr (&loc_descr, tmp);
9312
9313 /* Add it to the object address. */
9314 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9315 add_loc_descr (&loc_descr, tmp);
9316 }
9317 else
9318 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9319 }
9320 else
9321 offset = field_byte_offset (decl);
9322
9323 if (! loc_descr)
9324 {
9325 enum dwarf_location_atom op;
9326
9327 /* The DWARF2 standard says that we should assume that the structure
9328 address is already on the stack, so we can specify a structure field
9329 address by using DW_OP_plus_uconst. */
9330
9331 #ifdef MIPS_DEBUGGING_INFO
9332 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9333 operator correctly. It works only if we leave the offset on the
9334 stack. */
9335 op = DW_OP_constu;
9336 #else
9337 op = DW_OP_plus_uconst;
9338 #endif
9339
9340 loc_descr = new_loc_descr (op, offset, 0);
9341 }
9342
9343 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9344 }
9345
9346 /* Attach an DW_AT_const_value attribute for a variable or a parameter which
9347 does not have a "location" either in memory or in a register. These
9348 things can arise in GNU C when a constant is passed as an actual parameter
9349 to an inlined function. They can also arise in C++ where declared
9350 constants do not necessarily get memory "homes". */
9351
9352 static void
9353 add_const_value_attribute (die, rtl)
9354 dw_die_ref die;
9355 rtx rtl;
9356 {
9357 switch (GET_CODE (rtl))
9358 {
9359 case CONST_INT:
9360 /* Note that a CONST_INT rtx could represent either an integer
9361 or a floating-point constant. A CONST_INT is used whenever
9362 the constant will fit into a single word. In all such
9363 cases, the original mode of the constant value is wiped
9364 out, and the CONST_INT rtx is assigned VOIDmode. */
9365 {
9366 HOST_WIDE_INT val = INTVAL (rtl);
9367
9368 /* ??? We really should be using HOST_WIDE_INT throughout. */
9369 if (val < 0 && (long) val == val)
9370 add_AT_int (die, DW_AT_const_value, (long) val);
9371 else if ((unsigned long) val == (unsigned HOST_WIDE_INT) val)
9372 add_AT_unsigned (die, DW_AT_const_value, (unsigned long) val);
9373 else
9374 {
9375 #if HOST_BITS_PER_LONG * 2 == HOST_BITS_PER_WIDE_INT
9376 add_AT_long_long (die, DW_AT_const_value,
9377 val >> HOST_BITS_PER_LONG, val);
9378 #else
9379 abort ();
9380 #endif
9381 }
9382 }
9383 break;
9384
9385 case CONST_DOUBLE:
9386 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9387 floating-point constant. A CONST_DOUBLE is used whenever the
9388 constant requires more than one word in order to be adequately
9389 represented. We output CONST_DOUBLEs as blocks. */
9390 {
9391 enum machine_mode mode = GET_MODE (rtl);
9392
9393 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9394 {
9395 unsigned length = GET_MODE_SIZE (mode) / 4;
9396 long *array = (long *) ggc_alloc (sizeof (long) * length);
9397 REAL_VALUE_TYPE rv;
9398
9399 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9400 switch (mode)
9401 {
9402 case SFmode:
9403 REAL_VALUE_TO_TARGET_SINGLE (rv, array[0]);
9404 break;
9405
9406 case DFmode:
9407 REAL_VALUE_TO_TARGET_DOUBLE (rv, array);
9408 break;
9409
9410 case XFmode:
9411 case TFmode:
9412 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, array);
9413 break;
9414
9415 default:
9416 abort ();
9417 }
9418
9419 add_AT_float (die, DW_AT_const_value, length, array);
9420 }
9421 else
9422 {
9423 /* ??? We really should be using HOST_WIDE_INT throughout. */
9424 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9425 abort ();
9426
9427 add_AT_long_long (die, DW_AT_const_value,
9428 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9429 }
9430 }
9431 break;
9432
9433 case CONST_STRING:
9434 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9435 break;
9436
9437 case SYMBOL_REF:
9438 case LABEL_REF:
9439 case CONST:
9440 add_AT_addr (die, DW_AT_const_value, rtl);
9441 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9442 break;
9443
9444 case PLUS:
9445 /* In cases where an inlined instance of an inline function is passed
9446 the address of an `auto' variable (which is local to the caller) we
9447 can get a situation where the DECL_RTL of the artificial local
9448 variable (for the inlining) which acts as a stand-in for the
9449 corresponding formal parameter (of the inline function) will look
9450 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9451 exactly a compile-time constant expression, but it isn't the address
9452 of the (artificial) local variable either. Rather, it represents the
9453 *value* which the artificial local variable always has during its
9454 lifetime. We currently have no way to represent such quasi-constant
9455 values in Dwarf, so for now we just punt and generate nothing. */
9456 break;
9457
9458 default:
9459 /* No other kinds of rtx should be possible here. */
9460 abort ();
9461 }
9462
9463 }
9464
9465 static rtx
9466 rtl_for_decl_location (decl)
9467 tree decl;
9468 {
9469 rtx rtl;
9470
9471 /* Here we have to decide where we are going to say the parameter "lives"
9472 (as far as the debugger is concerned). We only have a couple of
9473 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9474
9475 DECL_RTL normally indicates where the parameter lives during most of the
9476 activation of the function. If optimization is enabled however, this
9477 could be either NULL or else a pseudo-reg. Both of those cases indicate
9478 that the parameter doesn't really live anywhere (as far as the code
9479 generation parts of GCC are concerned) during most of the function's
9480 activation. That will happen (for example) if the parameter is never
9481 referenced within the function.
9482
9483 We could just generate a location descriptor here for all non-NULL
9484 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9485 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9486 where DECL_RTL is NULL or is a pseudo-reg.
9487
9488 Note however that we can only get away with using DECL_INCOMING_RTL as
9489 a backup substitute for DECL_RTL in certain limited cases. In cases
9490 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9491 we can be sure that the parameter was passed using the same type as it is
9492 declared to have within the function, and that its DECL_INCOMING_RTL
9493 points us to a place where a value of that type is passed.
9494
9495 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9496 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9497 because in these cases DECL_INCOMING_RTL points us to a value of some
9498 type which is *different* from the type of the parameter itself. Thus,
9499 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9500 such cases, the debugger would end up (for example) trying to fetch a
9501 `float' from a place which actually contains the first part of a
9502 `double'. That would lead to really incorrect and confusing
9503 output at debug-time.
9504
9505 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9506 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9507 are a couple of exceptions however. On little-endian machines we can
9508 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9509 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9510 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9511 when (on a little-endian machine) a non-prototyped function has a
9512 parameter declared to be of type `short' or `char'. In such cases,
9513 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9514 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9515 passed `int' value. If the debugger then uses that address to fetch
9516 a `short' or a `char' (on a little-endian machine) the result will be
9517 the correct data, so we allow for such exceptional cases below.
9518
9519 Note that our goal here is to describe the place where the given formal
9520 parameter lives during most of the function's activation (i.e. between the
9521 end of the prologue and the start of the epilogue). We'll do that as best
9522 as we can. Note however that if the given formal parameter is modified
9523 sometime during the execution of the function, then a stack backtrace (at
9524 debug-time) will show the function as having been called with the *new*
9525 value rather than the value which was originally passed in. This happens
9526 rarely enough that it is not a major problem, but it *is* a problem, and
9527 I'd like to fix it.
9528
9529 A future version of dwarf2out.c may generate two additional attributes for
9530 any given DW_TAG_formal_parameter DIE which will describe the "passed
9531 type" and the "passed location" for the given formal parameter in addition
9532 to the attributes we now generate to indicate the "declared type" and the
9533 "active location" for each parameter. This additional set of attributes
9534 could be used by debuggers for stack backtraces. Separately, note that
9535 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9536 This happens (for example) for inlined-instances of inline function formal
9537 parameters which are never referenced. This really shouldn't be
9538 happening. All PARM_DECL nodes should get valid non-NULL
9539 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9540 values for inlined instances of inline function parameters, so when we see
9541 such cases, we are just out-of-luck for the time being (until integrate.c
9542 gets fixed). */
9543
9544 /* Use DECL_RTL as the "location" unless we find something better. */
9545 rtl = DECL_RTL_IF_SET (decl);
9546
9547 /* When generating abstract instances, ignore everything except
9548 constants, symbols living in memory, and symbols living in
9549 fixed registers. */
9550 if (! reload_completed)
9551 {
9552 if (rtl
9553 && (CONSTANT_P (rtl)
9554 || (GET_CODE (rtl) == MEM
9555 && CONSTANT_P (XEXP (rtl, 0)))
9556 || (GET_CODE (rtl) == REG
9557 && TREE_CODE (decl) == VAR_DECL
9558 && TREE_STATIC (decl))))
9559 {
9560 rtl = (*targetm.delegitimize_address) (rtl);
9561 return rtl;
9562 }
9563 rtl = NULL_RTX;
9564 }
9565 else if (TREE_CODE (decl) == PARM_DECL)
9566 {
9567 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9568 {
9569 tree declared_type = type_main_variant (TREE_TYPE (decl));
9570 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9571
9572 /* This decl represents a formal parameter which was optimized out.
9573 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9574 all cases where (rtl == NULL_RTX) just below. */
9575 if (declared_type == passed_type)
9576 rtl = DECL_INCOMING_RTL (decl);
9577 else if (! BYTES_BIG_ENDIAN
9578 && TREE_CODE (declared_type) == INTEGER_TYPE
9579 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9580 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9581 rtl = DECL_INCOMING_RTL (decl);
9582 }
9583
9584 /* If the parm was passed in registers, but lives on the stack, then
9585 make a big endian correction if the mode of the type of the
9586 parameter is not the same as the mode of the rtl. */
9587 /* ??? This is the same series of checks that are made in dbxout.c before
9588 we reach the big endian correction code there. It isn't clear if all
9589 of these checks are necessary here, but keeping them all is the safe
9590 thing to do. */
9591 else if (GET_CODE (rtl) == MEM
9592 && XEXP (rtl, 0) != const0_rtx
9593 && ! CONSTANT_P (XEXP (rtl, 0))
9594 /* Not passed in memory. */
9595 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
9596 /* Not passed by invisible reference. */
9597 && (GET_CODE (XEXP (rtl, 0)) != REG
9598 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9599 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9600 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9601 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9602 #endif
9603 )
9604 /* Big endian correction check. */
9605 && BYTES_BIG_ENDIAN
9606 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9607 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9608 < UNITS_PER_WORD))
9609 {
9610 int offset = (UNITS_PER_WORD
9611 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9612
9613 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9614 plus_constant (XEXP (rtl, 0), offset));
9615 }
9616 }
9617
9618 if (rtl != NULL_RTX)
9619 {
9620 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9621 #ifdef LEAF_REG_REMAP
9622 if (current_function_uses_only_leaf_regs)
9623 leaf_renumber_regs_insn (rtl);
9624 #endif
9625 }
9626
9627 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9628 and will have been substituted directly into all expressions that use it.
9629 C does not have such a concept, but C++ and other languages do. */
9630 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9631 {
9632 /* If a variable is initialized with a string constant without embedded
9633 zeros, build CONST_STRING. */
9634 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9635 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9636 {
9637 tree arrtype = TREE_TYPE (decl);
9638 tree enttype = TREE_TYPE (arrtype);
9639 tree domain = TYPE_DOMAIN (arrtype);
9640 tree init = DECL_INITIAL (decl);
9641 enum machine_mode mode = TYPE_MODE (enttype);
9642
9643 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9644 && domain
9645 && integer_zerop (TYPE_MIN_VALUE (domain))
9646 && compare_tree_int (TYPE_MAX_VALUE (domain),
9647 TREE_STRING_LENGTH (init) - 1) == 0
9648 && ((size_t) TREE_STRING_LENGTH (init)
9649 == strlen (TREE_STRING_POINTER (init)) + 1))
9650 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9651 }
9652 /* If the initializer is something that we know will expand into an
9653 immediate RTL constant, expand it now. Expanding anything else
9654 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9655 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9656 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9657 {
9658 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9659 EXPAND_INITIALIZER);
9660 /* If expand_expr returns a MEM, it wasn't immediate. */
9661 if (rtl && GET_CODE (rtl) == MEM)
9662 abort ();
9663 }
9664 }
9665
9666 if (rtl)
9667 rtl = (*targetm.delegitimize_address) (rtl);
9668
9669 /* If we don't look past the constant pool, we risk emitting a
9670 reference to a constant pool entry that isn't referenced from
9671 code, and thus is not emitted. */
9672 if (rtl)
9673 rtl = avoid_constant_pool_reference (rtl);
9674
9675 return rtl;
9676 }
9677
9678 /* Generate *either* an DW_AT_location attribute or else an DW_AT_const_value
9679 data attribute for a variable or a parameter. We generate the
9680 DW_AT_const_value attribute only in those cases where the given variable
9681 or parameter does not have a true "location" either in memory or in a
9682 register. This can happen (for example) when a constant is passed as an
9683 actual argument in a call to an inline function. (It's possible that
9684 these things can crop up in other ways also.) Note that one type of
9685 constant value which can be passed into an inlined function is a constant
9686 pointer. This can happen for example if an actual argument in an inlined
9687 function call evaluates to a compile-time constant address. */
9688
9689 static void
9690 add_location_or_const_value_attribute (die, decl)
9691 dw_die_ref die;
9692 tree decl;
9693 {
9694 rtx rtl;
9695 dw_loc_descr_ref descr;
9696
9697 if (TREE_CODE (decl) == ERROR_MARK)
9698 return;
9699 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
9700 abort ();
9701
9702 rtl = rtl_for_decl_location (decl);
9703 if (rtl == NULL_RTX)
9704 return;
9705
9706 switch (GET_CODE (rtl))
9707 {
9708 case ADDRESSOF:
9709 /* The address of a variable that was optimized away;
9710 don't emit anything. */
9711 break;
9712
9713 case CONST_INT:
9714 case CONST_DOUBLE:
9715 case CONST_STRING:
9716 case SYMBOL_REF:
9717 case LABEL_REF:
9718 case CONST:
9719 case PLUS:
9720 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9721 add_const_value_attribute (die, rtl);
9722 break;
9723
9724 case MEM:
9725 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
9726 {
9727 /* Need loc_descriptor_from_tree since that's where we know
9728 how to handle TLS variables. Want the object's address
9729 since the top-level DW_AT_location assumes such. See
9730 the confusion in loc_descriptor for reference. */
9731 descr = loc_descriptor_from_tree (decl, 1);
9732 }
9733 else
9734 {
9735 case REG:
9736 case SUBREG:
9737 case CONCAT:
9738 descr = loc_descriptor (rtl);
9739 }
9740 add_AT_location_description (die, DW_AT_location, descr);
9741 break;
9742
9743 default:
9744 abort ();
9745 }
9746 }
9747
9748 /* If we don't have a copy of this variable in memory for some reason (such
9749 as a C++ member constant that doesn't have an out-of-line definition),
9750 we should tell the debugger about the constant value. */
9751
9752 static void
9753 tree_add_const_value_attribute (var_die, decl)
9754 dw_die_ref var_die;
9755 tree decl;
9756 {
9757 tree init = DECL_INITIAL (decl);
9758 tree type = TREE_TYPE (decl);
9759
9760 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9761 && initializer_constant_valid_p (init, type) == null_pointer_node)
9762 /* OK */;
9763 else
9764 return;
9765
9766 switch (TREE_CODE (type))
9767 {
9768 case INTEGER_TYPE:
9769 if (host_integerp (init, 0))
9770 add_AT_unsigned (var_die, DW_AT_const_value,
9771 tree_low_cst (init, 0));
9772 else
9773 add_AT_long_long (var_die, DW_AT_const_value,
9774 TREE_INT_CST_HIGH (init),
9775 TREE_INT_CST_LOW (init));
9776 break;
9777
9778 default:;
9779 }
9780 }
9781
9782 /* Generate an DW_AT_name attribute given some string value to be included as
9783 the value of the attribute. */
9784
9785 static void
9786 add_name_attribute (die, name_string)
9787 dw_die_ref die;
9788 const char *name_string;
9789 {
9790 if (name_string != NULL && *name_string != 0)
9791 {
9792 if (demangle_name_func)
9793 name_string = (*demangle_name_func) (name_string);
9794
9795 add_AT_string (die, DW_AT_name, name_string);
9796 }
9797 }
9798
9799 /* Generate an DW_AT_comp_dir attribute for DIE. */
9800
9801 static void
9802 add_comp_dir_attribute (die)
9803 dw_die_ref die;
9804 {
9805 const char *wd = getpwd ();
9806 if (wd != NULL)
9807 add_AT_string (die, DW_AT_comp_dir, wd);
9808 }
9809
9810 /* Given a tree node describing an array bound (either lower or upper) output
9811 a representation for that bound. */
9812
9813 static void
9814 add_bound_info (subrange_die, bound_attr, bound)
9815 dw_die_ref subrange_die;
9816 enum dwarf_attribute bound_attr;
9817 tree bound;
9818 {
9819 switch (TREE_CODE (bound))
9820 {
9821 case ERROR_MARK:
9822 return;
9823
9824 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9825 case INTEGER_CST:
9826 if (! host_integerp (bound, 0)
9827 || (bound_attr == DW_AT_lower_bound
9828 && (((is_c_family () || is_java ()) && integer_zerop (bound))
9829 || (is_fortran () && integer_onep (bound)))))
9830 /* use the default */
9831 ;
9832 else
9833 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
9834 break;
9835
9836 case CONVERT_EXPR:
9837 case NOP_EXPR:
9838 case NON_LVALUE_EXPR:
9839 case VIEW_CONVERT_EXPR:
9840 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9841 break;
9842
9843 case SAVE_EXPR:
9844 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9845 access the upper bound values may be bogus. If they refer to a
9846 register, they may only describe how to get at these values at the
9847 points in the generated code right after they have just been
9848 computed. Worse yet, in the typical case, the upper bound values
9849 will not even *be* computed in the optimized code (though the
9850 number of elements will), so these SAVE_EXPRs are entirely
9851 bogus. In order to compensate for this fact, we check here to see
9852 if optimization is enabled, and if so, we don't add an attribute
9853 for the (unknown and unknowable) upper bound. This should not
9854 cause too much trouble for existing (stupid?) debuggers because
9855 they have to deal with empty upper bounds location descriptions
9856 anyway in order to be able to deal with incomplete array types.
9857 Of course an intelligent debugger (GDB?) should be able to
9858 comprehend that a missing upper bound specification in an array
9859 type used for a storage class `auto' local array variable
9860 indicates that the upper bound is both unknown (at compile- time)
9861 and unknowable (at run-time) due to optimization.
9862
9863 We assume that a MEM rtx is safe because gcc wouldn't put the
9864 value there unless it was going to be used repeatedly in the
9865 function, i.e. for cleanups. */
9866 if (SAVE_EXPR_RTL (bound)
9867 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
9868 {
9869 dw_die_ref ctx = lookup_decl_die (current_function_decl);
9870 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
9871 rtx loc = SAVE_EXPR_RTL (bound);
9872
9873 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9874 it references an outer function's frame. */
9875 if (GET_CODE (loc) == MEM)
9876 {
9877 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9878
9879 if (XEXP (loc, 0) != new_addr)
9880 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
9881 }
9882
9883 add_AT_flag (decl_die, DW_AT_artificial, 1);
9884 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9885 add_AT_location_description (decl_die, DW_AT_location,
9886 loc_descriptor (loc));
9887 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9888 }
9889
9890 /* Else leave out the attribute. */
9891 break;
9892
9893 case VAR_DECL:
9894 case PARM_DECL:
9895 {
9896 dw_die_ref decl_die = lookup_decl_die (bound);
9897
9898 /* ??? Can this happen, or should the variable have been bound
9899 first? Probably it can, since I imagine that we try to create
9900 the types of parameters in the order in which they exist in
9901 the list, and won't have created a forward reference to a
9902 later parameter. */
9903 if (decl_die != NULL)
9904 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9905 break;
9906 }
9907
9908 default:
9909 {
9910 /* Otherwise try to create a stack operation procedure to
9911 evaluate the value of the array bound. */
9912
9913 dw_die_ref ctx, decl_die;
9914 dw_loc_descr_ref loc;
9915
9916 loc = loc_descriptor_from_tree (bound, 0);
9917 if (loc == NULL)
9918 break;
9919
9920 if (current_function_decl == 0)
9921 ctx = comp_unit_die;
9922 else
9923 ctx = lookup_decl_die (current_function_decl);
9924
9925 /* If we weren't able to find a context, it's most likely the case
9926 that we are processing the return type of the function. So
9927 make a SAVE_EXPR to point to it and have the limbo DIE code
9928 find the proper die. The save_expr function doesn't always
9929 make a SAVE_EXPR, so do it ourselves. */
9930 if (ctx == 0)
9931 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9932 current_function_decl, NULL_TREE);
9933
9934 decl_die = new_die (DW_TAG_variable, ctx, bound);
9935 add_AT_flag (decl_die, DW_AT_artificial, 1);
9936 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9937 add_AT_loc (decl_die, DW_AT_location, loc);
9938
9939 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9940 break;
9941 }
9942 }
9943 }
9944
9945 /* Note that the block of subscript information for an array type also
9946 includes information about the element type of type given array type. */
9947
9948 static void
9949 add_subscript_info (type_die, type)
9950 dw_die_ref type_die;
9951 tree type;
9952 {
9953 #ifndef MIPS_DEBUGGING_INFO
9954 unsigned dimension_number;
9955 #endif
9956 tree lower, upper;
9957 dw_die_ref subrange_die;
9958
9959 /* The GNU compilers represent multidimensional array types as sequences of
9960 one dimensional array types whose element types are themselves array
9961 types. Here we squish that down, so that each multidimensional array
9962 type gets only one array_type DIE in the Dwarf debugging info. The draft
9963 Dwarf specification say that we are allowed to do this kind of
9964 compression in C (because there is no difference between an array or
9965 arrays and a multidimensional array in C) but for other source languages
9966 (e.g. Ada) we probably shouldn't do this. */
9967
9968 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9969 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9970 We work around this by disabling this feature. See also
9971 gen_array_type_die. */
9972 #ifndef MIPS_DEBUGGING_INFO
9973 for (dimension_number = 0;
9974 TREE_CODE (type) == ARRAY_TYPE;
9975 type = TREE_TYPE (type), dimension_number++)
9976 #endif
9977 {
9978 tree domain = TYPE_DOMAIN (type);
9979
9980 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
9981 and (in GNU C only) variable bounds. Handle all three forms
9982 here. */
9983 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
9984 if (domain)
9985 {
9986 /* We have an array type with specified bounds. */
9987 lower = TYPE_MIN_VALUE (domain);
9988 upper = TYPE_MAX_VALUE (domain);
9989
9990 /* define the index type. */
9991 if (TREE_TYPE (domain))
9992 {
9993 /* ??? This is probably an Ada unnamed subrange type. Ignore the
9994 TREE_TYPE field. We can't emit debug info for this
9995 because it is an unnamed integral type. */
9996 if (TREE_CODE (domain) == INTEGER_TYPE
9997 && TYPE_NAME (domain) == NULL_TREE
9998 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
9999 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10000 ;
10001 else
10002 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10003 type_die);
10004 }
10005
10006 /* ??? If upper is NULL, the array has unspecified length,
10007 but it does have a lower bound. This happens with Fortran
10008 dimension arr(N:*)
10009 Since the debugger is definitely going to need to know N
10010 to produce useful results, go ahead and output the lower
10011 bound solo, and hope the debugger can cope. */
10012
10013 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10014 if (upper)
10015 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10016 }
10017
10018 /* Otherwise we have an array type with an unspecified length. The
10019 DWARF-2 spec does not say how to handle this; let's just leave out the
10020 bounds. */
10021 }
10022 }
10023
10024 static void
10025 add_byte_size_attribute (die, tree_node)
10026 dw_die_ref die;
10027 tree tree_node;
10028 {
10029 unsigned size;
10030
10031 switch (TREE_CODE (tree_node))
10032 {
10033 case ERROR_MARK:
10034 size = 0;
10035 break;
10036 case ENUMERAL_TYPE:
10037 case RECORD_TYPE:
10038 case UNION_TYPE:
10039 case QUAL_UNION_TYPE:
10040 size = int_size_in_bytes (tree_node);
10041 break;
10042 case FIELD_DECL:
10043 /* For a data member of a struct or union, the DW_AT_byte_size is
10044 generally given as the number of bytes normally allocated for an
10045 object of the *declared* type of the member itself. This is true
10046 even for bit-fields. */
10047 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10048 break;
10049 default:
10050 abort ();
10051 }
10052
10053 /* Note that `size' might be -1 when we get to this point. If it is, that
10054 indicates that the byte size of the entity in question is variable. We
10055 have no good way of expressing this fact in Dwarf at the present time,
10056 so just let the -1 pass on through. */
10057 add_AT_unsigned (die, DW_AT_byte_size, size);
10058 }
10059
10060 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10061 which specifies the distance in bits from the highest order bit of the
10062 "containing object" for the bit-field to the highest order bit of the
10063 bit-field itself.
10064
10065 For any given bit-field, the "containing object" is a hypothetical object
10066 (of some integral or enum type) within which the given bit-field lives. The
10067 type of this hypothetical "containing object" is always the same as the
10068 declared type of the individual bit-field itself. The determination of the
10069 exact location of the "containing object" for a bit-field is rather
10070 complicated. It's handled by the `field_byte_offset' function (above).
10071
10072 Note that it is the size (in bytes) of the hypothetical "containing object"
10073 which will be given in the DW_AT_byte_size attribute for this bit-field.
10074 (See `byte_size_attribute' above). */
10075
10076 static inline void
10077 add_bit_offset_attribute (die, decl)
10078 dw_die_ref die;
10079 tree decl;
10080 {
10081 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10082 tree type = DECL_BIT_FIELD_TYPE (decl);
10083 HOST_WIDE_INT bitpos_int;
10084 HOST_WIDE_INT highest_order_object_bit_offset;
10085 HOST_WIDE_INT highest_order_field_bit_offset;
10086 HOST_WIDE_INT unsigned bit_offset;
10087
10088 /* Must be a field and a bit field. */
10089 if (!type
10090 || TREE_CODE (decl) != FIELD_DECL)
10091 abort ();
10092
10093 /* We can't yet handle bit-fields whose offsets are variable, so if we
10094 encounter such things, just return without generating any attribute
10095 whatsoever. Likewise for variable or too large size. */
10096 if (! host_integerp (bit_position (decl), 0)
10097 || ! host_integerp (DECL_SIZE (decl), 1))
10098 return;
10099
10100 bitpos_int = int_bit_position (decl);
10101
10102 /* Note that the bit offset is always the distance (in bits) from the
10103 highest-order bit of the "containing object" to the highest-order bit of
10104 the bit-field itself. Since the "high-order end" of any object or field
10105 is different on big-endian and little-endian machines, the computation
10106 below must take account of these differences. */
10107 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10108 highest_order_field_bit_offset = bitpos_int;
10109
10110 if (! BYTES_BIG_ENDIAN)
10111 {
10112 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10113 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10114 }
10115
10116 bit_offset
10117 = (! BYTES_BIG_ENDIAN
10118 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10119 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10120
10121 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10122 }
10123
10124 /* For a FIELD_DECL node which represents a bit field, output an attribute
10125 which specifies the length in bits of the given field. */
10126
10127 static inline void
10128 add_bit_size_attribute (die, decl)
10129 dw_die_ref die;
10130 tree decl;
10131 {
10132 /* Must be a field and a bit field. */
10133 if (TREE_CODE (decl) != FIELD_DECL
10134 || ! DECL_BIT_FIELD_TYPE (decl))
10135 abort ();
10136
10137 if (host_integerp (DECL_SIZE (decl), 1))
10138 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10139 }
10140
10141 /* If the compiled language is ANSI C, then add a 'prototyped'
10142 attribute, if arg types are given for the parameters of a function. */
10143
10144 static inline void
10145 add_prototyped_attribute (die, func_type)
10146 dw_die_ref die;
10147 tree func_type;
10148 {
10149 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10150 && TYPE_ARG_TYPES (func_type) != NULL)
10151 add_AT_flag (die, DW_AT_prototyped, 1);
10152 }
10153
10154 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10155 by looking in either the type declaration or object declaration
10156 equate table. */
10157
10158 static inline void
10159 add_abstract_origin_attribute (die, origin)
10160 dw_die_ref die;
10161 tree origin;
10162 {
10163 dw_die_ref origin_die = NULL;
10164
10165 if (TREE_CODE (origin) != FUNCTION_DECL)
10166 {
10167 /* We may have gotten separated from the block for the inlined
10168 function, if we're in an exception handler or some such; make
10169 sure that the abstract function has been written out.
10170
10171 Doing this for nested functions is wrong, however; functions are
10172 distinct units, and our context might not even be inline. */
10173 tree fn = origin;
10174
10175 if (TYPE_P (fn))
10176 fn = TYPE_STUB_DECL (fn);
10177
10178 fn = decl_function_context (fn);
10179 if (fn)
10180 dwarf2out_abstract_function (fn);
10181 }
10182
10183 if (DECL_P (origin))
10184 origin_die = lookup_decl_die (origin);
10185 else if (TYPE_P (origin))
10186 origin_die = lookup_type_die (origin);
10187
10188 if (origin_die == NULL)
10189 abort ();
10190
10191 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10192 }
10193
10194 /* We do not currently support the pure_virtual attribute. */
10195
10196 static inline void
10197 add_pure_or_virtual_attribute (die, func_decl)
10198 dw_die_ref die;
10199 tree func_decl;
10200 {
10201 if (DECL_VINDEX (func_decl))
10202 {
10203 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10204
10205 if (host_integerp (DECL_VINDEX (func_decl), 0))
10206 add_AT_loc (die, DW_AT_vtable_elem_location,
10207 new_loc_descr (DW_OP_constu,
10208 tree_low_cst (DECL_VINDEX (func_decl), 0),
10209 0));
10210
10211 /* GNU extension: Record what type this method came from originally. */
10212 if (debug_info_level > DINFO_LEVEL_TERSE)
10213 add_AT_die_ref (die, DW_AT_containing_type,
10214 lookup_type_die (DECL_CONTEXT (func_decl)));
10215 }
10216 }
10217 \f
10218 /* Add source coordinate attributes for the given decl. */
10219
10220 static void
10221 add_src_coords_attributes (die, decl)
10222 dw_die_ref die;
10223 tree decl;
10224 {
10225 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10226
10227 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10228 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10229 }
10230
10231 /* Add an DW_AT_name attribute and source coordinate attribute for the
10232 given decl, but only if it actually has a name. */
10233
10234 static void
10235 add_name_and_src_coords_attributes (die, decl)
10236 dw_die_ref die;
10237 tree decl;
10238 {
10239 tree decl_name;
10240
10241 decl_name = DECL_NAME (decl);
10242 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10243 {
10244 add_name_attribute (die, dwarf2_name (decl, 0));
10245 if (! DECL_ARTIFICIAL (decl))
10246 add_src_coords_attributes (die, decl);
10247
10248 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10249 && TREE_PUBLIC (decl)
10250 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10251 && !DECL_ABSTRACT (decl))
10252 add_AT_string (die, DW_AT_MIPS_linkage_name,
10253 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10254 }
10255
10256 #ifdef VMS_DEBUGGING_INFO
10257 /* Get the function's name, as described by its RTL. This may be different
10258 from the DECL_NAME name used in the source file. */
10259 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10260 {
10261 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10262 XEXP (DECL_RTL (decl), 0));
10263 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10264 }
10265 #endif
10266 }
10267
10268 /* Push a new declaration scope. */
10269
10270 static void
10271 push_decl_scope (scope)
10272 tree scope;
10273 {
10274 VARRAY_PUSH_TREE (decl_scope_table, scope);
10275 }
10276
10277 /* Pop a declaration scope. */
10278
10279 static inline void
10280 pop_decl_scope ()
10281 {
10282 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
10283 abort ();
10284
10285 VARRAY_POP (decl_scope_table);
10286 }
10287
10288 /* Return the DIE for the scope that immediately contains this type.
10289 Non-named types get global scope. Named types nested in other
10290 types get their containing scope if it's open, or global scope
10291 otherwise. All other types (i.e. function-local named types) get
10292 the current active scope. */
10293
10294 static dw_die_ref
10295 scope_die_for (t, context_die)
10296 tree t;
10297 dw_die_ref context_die;
10298 {
10299 dw_die_ref scope_die = NULL;
10300 tree containing_scope;
10301 int i;
10302
10303 /* Non-types always go in the current scope. */
10304 if (! TYPE_P (t))
10305 abort ();
10306
10307 containing_scope = TYPE_CONTEXT (t);
10308
10309 /* Ignore namespaces for the moment. */
10310 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10311 containing_scope = NULL_TREE;
10312
10313 /* Ignore function type "scopes" from the C frontend. They mean that
10314 a tagged type is local to a parmlist of a function declarator, but
10315 that isn't useful to DWARF. */
10316 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10317 containing_scope = NULL_TREE;
10318
10319 if (containing_scope == NULL_TREE)
10320 scope_die = comp_unit_die;
10321 else if (TYPE_P (containing_scope))
10322 {
10323 /* For types, we can just look up the appropriate DIE. But
10324 first we check to see if we're in the middle of emitting it
10325 so we know where the new DIE should go. */
10326 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10327 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10328 break;
10329
10330 if (i < 0)
10331 {
10332 if (debug_info_level > DINFO_LEVEL_TERSE
10333 && !TREE_ASM_WRITTEN (containing_scope))
10334 abort ();
10335
10336 /* If none of the current dies are suitable, we get file scope. */
10337 scope_die = comp_unit_die;
10338 }
10339 else
10340 scope_die = lookup_type_die (containing_scope);
10341 }
10342 else
10343 scope_die = context_die;
10344
10345 return scope_die;
10346 }
10347
10348 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10349
10350 static inline int
10351 local_scope_p (context_die)
10352 dw_die_ref context_die;
10353 {
10354 for (; context_die; context_die = context_die->die_parent)
10355 if (context_die->die_tag == DW_TAG_inlined_subroutine
10356 || context_die->die_tag == DW_TAG_subprogram)
10357 return 1;
10358
10359 return 0;
10360 }
10361
10362 /* Returns nonzero if CONTEXT_DIE is a class. */
10363
10364 static inline int
10365 class_scope_p (context_die)
10366 dw_die_ref context_die;
10367 {
10368 return (context_die
10369 && (context_die->die_tag == DW_TAG_structure_type
10370 || context_die->die_tag == DW_TAG_union_type));
10371 }
10372
10373 /* Many forms of DIEs require a "type description" attribute. This
10374 routine locates the proper "type descriptor" die for the type given
10375 by 'type', and adds an DW_AT_type attribute below the given die. */
10376
10377 static void
10378 add_type_attribute (object_die, type, decl_const, decl_volatile, context_die)
10379 dw_die_ref object_die;
10380 tree type;
10381 int decl_const;
10382 int decl_volatile;
10383 dw_die_ref context_die;
10384 {
10385 enum tree_code code = TREE_CODE (type);
10386 dw_die_ref type_die = NULL;
10387
10388 /* ??? If this type is an unnamed subrange type of an integral or
10389 floating-point type, use the inner type. This is because we have no
10390 support for unnamed types in base_type_die. This can happen if this is
10391 an Ada subrange type. Correct solution is emit a subrange type die. */
10392 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10393 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10394 type = TREE_TYPE (type), code = TREE_CODE (type);
10395
10396 if (code == ERROR_MARK
10397 /* Handle a special case. For functions whose return type is void, we
10398 generate *no* type attribute. (Note that no object may have type
10399 `void', so this only applies to function return types). */
10400 || code == VOID_TYPE)
10401 return;
10402
10403 type_die = modified_type_die (type,
10404 decl_const || TYPE_READONLY (type),
10405 decl_volatile || TYPE_VOLATILE (type),
10406 context_die);
10407
10408 if (type_die != NULL)
10409 add_AT_die_ref (object_die, DW_AT_type, type_die);
10410 }
10411
10412 /* Given a tree pointer to a struct, class, union, or enum type node, return
10413 a pointer to the (string) tag name for the given type, or zero if the type
10414 was declared without a tag. */
10415
10416 static const char *
10417 type_tag (type)
10418 tree type;
10419 {
10420 const char *name = 0;
10421
10422 if (TYPE_NAME (type) != 0)
10423 {
10424 tree t = 0;
10425
10426 /* Find the IDENTIFIER_NODE for the type name. */
10427 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10428 t = TYPE_NAME (type);
10429
10430 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10431 a TYPE_DECL node, regardless of whether or not a `typedef' was
10432 involved. */
10433 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10434 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10435 t = DECL_NAME (TYPE_NAME (type));
10436
10437 /* Now get the name as a string, or invent one. */
10438 if (t != 0)
10439 name = IDENTIFIER_POINTER (t);
10440 }
10441
10442 return (name == 0 || *name == '\0') ? 0 : name;
10443 }
10444
10445 /* Return the type associated with a data member, make a special check
10446 for bit field types. */
10447
10448 static inline tree
10449 member_declared_type (member)
10450 tree member;
10451 {
10452 return (DECL_BIT_FIELD_TYPE (member)
10453 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10454 }
10455
10456 /* Get the decl's label, as described by its RTL. This may be different
10457 from the DECL_NAME name used in the source file. */
10458
10459 #if 0
10460 static const char *
10461 decl_start_label (decl)
10462 tree decl;
10463 {
10464 rtx x;
10465 const char *fnname;
10466
10467 x = DECL_RTL (decl);
10468 if (GET_CODE (x) != MEM)
10469 abort ();
10470
10471 x = XEXP (x, 0);
10472 if (GET_CODE (x) != SYMBOL_REF)
10473 abort ();
10474
10475 fnname = XSTR (x, 0);
10476 return fnname;
10477 }
10478 #endif
10479 \f
10480 /* These routines generate the internal representation of the DIE's for
10481 the compilation unit. Debugging information is collected by walking
10482 the declaration trees passed in from dwarf2out_decl(). */
10483
10484 static void
10485 gen_array_type_die (type, context_die)
10486 tree type;
10487 dw_die_ref context_die;
10488 {
10489 dw_die_ref scope_die = scope_die_for (type, context_die);
10490 dw_die_ref array_die;
10491 tree element_type;
10492
10493 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10494 the inner array type comes before the outer array type. Thus we must
10495 call gen_type_die before we call new_die. See below also. */
10496 #ifdef MIPS_DEBUGGING_INFO
10497 gen_type_die (TREE_TYPE (type), context_die);
10498 #endif
10499
10500 array_die = new_die (DW_TAG_array_type, scope_die, type);
10501 add_name_attribute (array_die, type_tag (type));
10502 equate_type_number_to_die (type, array_die);
10503
10504 if (TREE_CODE (type) == VECTOR_TYPE)
10505 {
10506 /* The frontend feeds us a representation for the vector as a struct
10507 containing an array. Pull out the array type. */
10508 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10509 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10510 }
10511
10512 #if 0
10513 /* We default the array ordering. SDB will probably do
10514 the right things even if DW_AT_ordering is not present. It's not even
10515 an issue until we start to get into multidimensional arrays anyway. If
10516 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10517 then we'll have to put the DW_AT_ordering attribute back in. (But if
10518 and when we find out that we need to put these in, we will only do so
10519 for multidimensional arrays. */
10520 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10521 #endif
10522
10523 #ifdef MIPS_DEBUGGING_INFO
10524 /* The SGI compilers handle arrays of unknown bound by setting
10525 AT_declaration and not emitting any subrange DIEs. */
10526 if (! TYPE_DOMAIN (type))
10527 add_AT_unsigned (array_die, DW_AT_declaration, 1);
10528 else
10529 #endif
10530 add_subscript_info (array_die, type);
10531
10532 /* Add representation of the type of the elements of this array type. */
10533 element_type = TREE_TYPE (type);
10534
10535 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10536 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10537 We work around this by disabling this feature. See also
10538 add_subscript_info. */
10539 #ifndef MIPS_DEBUGGING_INFO
10540 while (TREE_CODE (element_type) == ARRAY_TYPE)
10541 element_type = TREE_TYPE (element_type);
10542
10543 gen_type_die (element_type, context_die);
10544 #endif
10545
10546 add_type_attribute (array_die, element_type, 0, 0, context_die);
10547 }
10548
10549 static void
10550 gen_set_type_die (type, context_die)
10551 tree type;
10552 dw_die_ref context_die;
10553 {
10554 dw_die_ref type_die
10555 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10556
10557 equate_type_number_to_die (type, type_die);
10558 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10559 }
10560
10561 #if 0
10562 static void
10563 gen_entry_point_die (decl, context_die)
10564 tree decl;
10565 dw_die_ref context_die;
10566 {
10567 tree origin = decl_ultimate_origin (decl);
10568 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10569
10570 if (origin != NULL)
10571 add_abstract_origin_attribute (decl_die, origin);
10572 else
10573 {
10574 add_name_and_src_coords_attributes (decl_die, decl);
10575 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10576 0, 0, context_die);
10577 }
10578
10579 if (DECL_ABSTRACT (decl))
10580 equate_decl_number_to_die (decl, decl_die);
10581 else
10582 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10583 }
10584 #endif
10585
10586 /* Walk through the list of incomplete types again, trying once more to
10587 emit full debugging info for them. */
10588
10589 static void
10590 retry_incomplete_types ()
10591 {
10592 int i;
10593
10594 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10595 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10596 }
10597
10598 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10599
10600 static void
10601 gen_inlined_enumeration_type_die (type, context_die)
10602 tree type;
10603 dw_die_ref context_die;
10604 {
10605 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10606
10607 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10608 be incomplete and such types are not marked. */
10609 add_abstract_origin_attribute (type_die, type);
10610 }
10611
10612 /* Generate a DIE to represent an inlined instance of a structure type. */
10613
10614 static void
10615 gen_inlined_structure_type_die (type, context_die)
10616 tree type;
10617 dw_die_ref context_die;
10618 {
10619 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10620
10621 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10622 be incomplete and such types are not marked. */
10623 add_abstract_origin_attribute (type_die, type);
10624 }
10625
10626 /* Generate a DIE to represent an inlined instance of a union type. */
10627
10628 static void
10629 gen_inlined_union_type_die (type, context_die)
10630 tree type;
10631 dw_die_ref context_die;
10632 {
10633 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10634
10635 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10636 be incomplete and such types are not marked. */
10637 add_abstract_origin_attribute (type_die, type);
10638 }
10639
10640 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10641 include all of the information about the enumeration values also. Each
10642 enumerated type name/value is listed as a child of the enumerated type
10643 DIE. */
10644
10645 static void
10646 gen_enumeration_type_die (type, context_die)
10647 tree type;
10648 dw_die_ref context_die;
10649 {
10650 dw_die_ref type_die = lookup_type_die (type);
10651
10652 if (type_die == NULL)
10653 {
10654 type_die = new_die (DW_TAG_enumeration_type,
10655 scope_die_for (type, context_die), type);
10656 equate_type_number_to_die (type, type_die);
10657 add_name_attribute (type_die, type_tag (type));
10658 }
10659 else if (! TYPE_SIZE (type))
10660 return;
10661 else
10662 remove_AT (type_die, DW_AT_declaration);
10663
10664 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10665 given enum type is incomplete, do not generate the DW_AT_byte_size
10666 attribute or the DW_AT_element_list attribute. */
10667 if (TYPE_SIZE (type))
10668 {
10669 tree link;
10670
10671 TREE_ASM_WRITTEN (type) = 1;
10672 add_byte_size_attribute (type_die, type);
10673 if (TYPE_STUB_DECL (type) != NULL_TREE)
10674 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10675
10676 /* If the first reference to this type was as the return type of an
10677 inline function, then it may not have a parent. Fix this now. */
10678 if (type_die->die_parent == NULL)
10679 add_child_die (scope_die_for (type, context_die), type_die);
10680
10681 for (link = TYPE_FIELDS (type);
10682 link != NULL; link = TREE_CHAIN (link))
10683 {
10684 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10685
10686 add_name_attribute (enum_die,
10687 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10688
10689 if (host_integerp (TREE_VALUE (link), 0))
10690 {
10691 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
10692 add_AT_int (enum_die, DW_AT_const_value,
10693 tree_low_cst (TREE_VALUE (link), 0));
10694 else
10695 add_AT_unsigned (enum_die, DW_AT_const_value,
10696 tree_low_cst (TREE_VALUE (link), 0));
10697 }
10698 }
10699 }
10700 else
10701 add_AT_flag (type_die, DW_AT_declaration, 1);
10702 }
10703
10704 /* Generate a DIE to represent either a real live formal parameter decl or to
10705 represent just the type of some formal parameter position in some function
10706 type.
10707
10708 Note that this routine is a bit unusual because its argument may be a
10709 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10710 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10711 node. If it's the former then this function is being called to output a
10712 DIE to represent a formal parameter object (or some inlining thereof). If
10713 it's the latter, then this function is only being called to output a
10714 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10715 argument type of some subprogram type. */
10716
10717 static dw_die_ref
10718 gen_formal_parameter_die (node, context_die)
10719 tree node;
10720 dw_die_ref context_die;
10721 {
10722 dw_die_ref parm_die
10723 = new_die (DW_TAG_formal_parameter, context_die, node);
10724 tree origin;
10725
10726 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10727 {
10728 case 'd':
10729 origin = decl_ultimate_origin (node);
10730 if (origin != NULL)
10731 add_abstract_origin_attribute (parm_die, origin);
10732 else
10733 {
10734 add_name_and_src_coords_attributes (parm_die, node);
10735 add_type_attribute (parm_die, TREE_TYPE (node),
10736 TREE_READONLY (node),
10737 TREE_THIS_VOLATILE (node),
10738 context_die);
10739 if (DECL_ARTIFICIAL (node))
10740 add_AT_flag (parm_die, DW_AT_artificial, 1);
10741 }
10742
10743 equate_decl_number_to_die (node, parm_die);
10744 if (! DECL_ABSTRACT (node))
10745 add_location_or_const_value_attribute (parm_die, node);
10746
10747 break;
10748
10749 case 't':
10750 /* We were called with some kind of a ..._TYPE node. */
10751 add_type_attribute (parm_die, node, 0, 0, context_die);
10752 break;
10753
10754 default:
10755 abort ();
10756 }
10757
10758 return parm_die;
10759 }
10760
10761 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10762 at the end of an (ANSI prototyped) formal parameters list. */
10763
10764 static void
10765 gen_unspecified_parameters_die (decl_or_type, context_die)
10766 tree decl_or_type;
10767 dw_die_ref context_die;
10768 {
10769 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10770 }
10771
10772 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10773 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10774 parameters as specified in some function type specification (except for
10775 those which appear as part of a function *definition*). */
10776
10777 static void
10778 gen_formal_types_die (function_or_method_type, context_die)
10779 tree function_or_method_type;
10780 dw_die_ref context_die;
10781 {
10782 tree link;
10783 tree formal_type = NULL;
10784 tree first_parm_type;
10785 tree arg;
10786
10787 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10788 {
10789 arg = DECL_ARGUMENTS (function_or_method_type);
10790 function_or_method_type = TREE_TYPE (function_or_method_type);
10791 }
10792 else
10793 arg = NULL_TREE;
10794
10795 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10796
10797 /* Make our first pass over the list of formal parameter types and output a
10798 DW_TAG_formal_parameter DIE for each one. */
10799 for (link = first_parm_type; link; )
10800 {
10801 dw_die_ref parm_die;
10802
10803 formal_type = TREE_VALUE (link);
10804 if (formal_type == void_type_node)
10805 break;
10806
10807 /* Output a (nameless) DIE to represent the formal parameter itself. */
10808 parm_die = gen_formal_parameter_die (formal_type, context_die);
10809 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10810 && link == first_parm_type)
10811 || (arg && DECL_ARTIFICIAL (arg)))
10812 add_AT_flag (parm_die, DW_AT_artificial, 1);
10813
10814 link = TREE_CHAIN (link);
10815 if (arg)
10816 arg = TREE_CHAIN (arg);
10817 }
10818
10819 /* If this function type has an ellipsis, add a
10820 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10821 if (formal_type != void_type_node)
10822 gen_unspecified_parameters_die (function_or_method_type, context_die);
10823
10824 /* Make our second (and final) pass over the list of formal parameter types
10825 and output DIEs to represent those types (as necessary). */
10826 for (link = TYPE_ARG_TYPES (function_or_method_type);
10827 link && TREE_VALUE (link);
10828 link = TREE_CHAIN (link))
10829 gen_type_die (TREE_VALUE (link), context_die);
10830 }
10831
10832 /* We want to generate the DIE for TYPE so that we can generate the
10833 die for MEMBER, which has been defined; we will need to refer back
10834 to the member declaration nested within TYPE. If we're trying to
10835 generate minimal debug info for TYPE, processing TYPE won't do the
10836 trick; we need to attach the member declaration by hand. */
10837
10838 static void
10839 gen_type_die_for_member (type, member, context_die)
10840 tree type, member;
10841 dw_die_ref context_die;
10842 {
10843 gen_type_die (type, context_die);
10844
10845 /* If we're trying to avoid duplicate debug info, we may not have
10846 emitted the member decl for this function. Emit it now. */
10847 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10848 && ! lookup_decl_die (member))
10849 {
10850 if (decl_ultimate_origin (member))
10851 abort ();
10852
10853 push_decl_scope (type);
10854 if (TREE_CODE (member) == FUNCTION_DECL)
10855 gen_subprogram_die (member, lookup_type_die (type));
10856 else
10857 gen_variable_die (member, lookup_type_die (type));
10858
10859 pop_decl_scope ();
10860 }
10861 }
10862
10863 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10864 may later generate inlined and/or out-of-line instances of. */
10865
10866 static void
10867 dwarf2out_abstract_function (decl)
10868 tree decl;
10869 {
10870 dw_die_ref old_die;
10871 tree save_fn;
10872 tree context;
10873 int was_abstract = DECL_ABSTRACT (decl);
10874
10875 /* Make sure we have the actual abstract inline, not a clone. */
10876 decl = DECL_ORIGIN (decl);
10877
10878 old_die = lookup_decl_die (decl);
10879 if (old_die && get_AT_unsigned (old_die, DW_AT_inline))
10880 /* We've already generated the abstract instance. */
10881 return;
10882
10883 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10884 we don't get confused by DECL_ABSTRACT. */
10885 if (debug_info_level > DINFO_LEVEL_TERSE)
10886 {
10887 context = decl_class_context (decl);
10888 if (context)
10889 gen_type_die_for_member
10890 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10891 }
10892
10893 /* Pretend we've just finished compiling this function. */
10894 save_fn = current_function_decl;
10895 current_function_decl = decl;
10896
10897 set_decl_abstract_flags (decl, 1);
10898 dwarf2out_decl (decl);
10899 if (! was_abstract)
10900 set_decl_abstract_flags (decl, 0);
10901
10902 current_function_decl = save_fn;
10903 }
10904
10905 /* Generate a DIE to represent a declared function (either file-scope or
10906 block-local). */
10907
10908 static void
10909 gen_subprogram_die (decl, context_die)
10910 tree decl;
10911 dw_die_ref context_die;
10912 {
10913 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10914 tree origin = decl_ultimate_origin (decl);
10915 dw_die_ref subr_die;
10916 rtx fp_reg;
10917 tree fn_arg_types;
10918 tree outer_scope;
10919 dw_die_ref old_die = lookup_decl_die (decl);
10920 int declaration = (current_function_decl != decl
10921 || class_scope_p (context_die));
10922
10923 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10924 started to generate the abstract instance of an inline, decided to output
10925 its containing class, and proceeded to emit the declaration of the inline
10926 from the member list for the class. If so, DECLARATION takes priority;
10927 we'll get back to the abstract instance when done with the class. */
10928
10929 /* The class-scope declaration DIE must be the primary DIE. */
10930 if (origin && declaration && class_scope_p (context_die))
10931 {
10932 origin = NULL;
10933 if (old_die)
10934 abort ();
10935 }
10936
10937 if (origin != NULL)
10938 {
10939 if (declaration && ! local_scope_p (context_die))
10940 abort ();
10941
10942 /* Fixup die_parent for the abstract instance of a nested
10943 inline function. */
10944 if (old_die && old_die->die_parent == NULL)
10945 add_child_die (context_die, old_die);
10946
10947 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10948 add_abstract_origin_attribute (subr_die, origin);
10949 }
10950 else if (old_die)
10951 {
10952 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10953
10954 if (!get_AT_flag (old_die, DW_AT_declaration)
10955 /* We can have a normal definition following an inline one in the
10956 case of redefinition of GNU C extern inlines.
10957 It seems reasonable to use AT_specification in this case. */
10958 && !get_AT_unsigned (old_die, DW_AT_inline))
10959 {
10960 /* ??? This can happen if there is a bug in the program, for
10961 instance, if it has duplicate function definitions. Ideally,
10962 we should detect this case and ignore it. For now, if we have
10963 already reported an error, any error at all, then assume that
10964 we got here because of an input error, not a dwarf2 bug. */
10965 if (errorcount)
10966 return;
10967 abort ();
10968 }
10969
10970 /* If the definition comes from the same place as the declaration,
10971 maybe use the old DIE. We always want the DIE for this function
10972 that has the *_pc attributes to be under comp_unit_die so the
10973 debugger can find it. We also need to do this for abstract
10974 instances of inlines, since the spec requires the out-of-line copy
10975 to have the same parent. For local class methods, this doesn't
10976 apply; we just use the old DIE. */
10977 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
10978 && (DECL_ARTIFICIAL (decl)
10979 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10980 && (get_AT_unsigned (old_die, DW_AT_decl_line)
10981 == (unsigned) DECL_SOURCE_LINE (decl)))))
10982 {
10983 subr_die = old_die;
10984
10985 /* Clear out the declaration attribute and the parm types. */
10986 remove_AT (subr_die, DW_AT_declaration);
10987 remove_children (subr_die);
10988 }
10989 else
10990 {
10991 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10992 add_AT_die_ref (subr_die, DW_AT_specification, old_die);
10993 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10994 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
10995 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10996 != (unsigned) DECL_SOURCE_LINE (decl))
10997 add_AT_unsigned
10998 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10999 }
11000 }
11001 else
11002 {
11003 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11004
11005 if (TREE_PUBLIC (decl))
11006 add_AT_flag (subr_die, DW_AT_external, 1);
11007
11008 add_name_and_src_coords_attributes (subr_die, decl);
11009 if (debug_info_level > DINFO_LEVEL_TERSE)
11010 {
11011 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11012 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11013 0, 0, context_die);
11014 }
11015
11016 add_pure_or_virtual_attribute (subr_die, decl);
11017 if (DECL_ARTIFICIAL (decl))
11018 add_AT_flag (subr_die, DW_AT_artificial, 1);
11019
11020 if (TREE_PROTECTED (decl))
11021 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11022 else if (TREE_PRIVATE (decl))
11023 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11024 }
11025
11026 if (declaration)
11027 {
11028 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
11029 {
11030 add_AT_flag (subr_die, DW_AT_declaration, 1);
11031
11032 /* The first time we see a member function, it is in the context of
11033 the class to which it belongs. We make sure of this by emitting
11034 the class first. The next time is the definition, which is
11035 handled above. The two may come from the same source text. */
11036 if (DECL_CONTEXT (decl) || DECL_ABSTRACT (decl))
11037 equate_decl_number_to_die (decl, subr_die);
11038 }
11039 }
11040 else if (DECL_ABSTRACT (decl))
11041 {
11042 if (DECL_INLINE (decl) && !flag_no_inline)
11043 {
11044 /* ??? Checking DECL_DEFER_OUTPUT is correct for static
11045 inline functions, but not for extern inline functions.
11046 We can't get this completely correct because information
11047 about whether the function was declared inline is not
11048 saved anywhere. */
11049 if (DECL_DEFER_OUTPUT (decl))
11050 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11051 else
11052 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11053 }
11054 else
11055 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11056
11057 equate_decl_number_to_die (decl, subr_die);
11058 }
11059 else if (!DECL_EXTERNAL (decl))
11060 {
11061 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
11062 equate_decl_number_to_die (decl, subr_die);
11063
11064 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11065 current_function_funcdef_no);
11066 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11067 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11068 current_function_funcdef_no);
11069 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11070
11071 add_pubname (decl, subr_die);
11072 add_arange (decl, subr_die);
11073
11074 #ifdef MIPS_DEBUGGING_INFO
11075 /* Add a reference to the FDE for this routine. */
11076 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11077 #endif
11078
11079 /* Define the "frame base" location for this routine. We use the
11080 frame pointer or stack pointer registers, since the RTL for local
11081 variables is relative to one of them. */
11082 fp_reg
11083 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11084 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11085
11086 #if 0
11087 /* ??? This fails for nested inline functions, because context_display
11088 is not part of the state saved/restored for inline functions. */
11089 if (current_function_needs_context)
11090 add_AT_location_description (subr_die, DW_AT_static_link,
11091 loc_descriptor (lookup_static_chain (decl)));
11092 #endif
11093 }
11094
11095 /* Now output descriptions of the arguments for this function. This gets
11096 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11097 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11098 `...' at the end of the formal parameter list. In order to find out if
11099 there was a trailing ellipsis or not, we must instead look at the type
11100 associated with the FUNCTION_DECL. This will be a node of type
11101 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11102 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11103 an ellipsis at the end. */
11104
11105 /* In the case where we are describing a mere function declaration, all we
11106 need to do here (and all we *can* do here) is to describe the *types* of
11107 its formal parameters. */
11108 if (debug_info_level <= DINFO_LEVEL_TERSE)
11109 ;
11110 else if (declaration)
11111 gen_formal_types_die (decl, subr_die);
11112 else
11113 {
11114 /* Generate DIEs to represent all known formal parameters */
11115 tree arg_decls = DECL_ARGUMENTS (decl);
11116 tree parm;
11117
11118 /* When generating DIEs, generate the unspecified_parameters DIE
11119 instead if we come across the arg "__builtin_va_alist" */
11120 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11121 if (TREE_CODE (parm) == PARM_DECL)
11122 {
11123 if (DECL_NAME (parm)
11124 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11125 "__builtin_va_alist"))
11126 gen_unspecified_parameters_die (parm, subr_die);
11127 else
11128 gen_decl_die (parm, subr_die);
11129 }
11130
11131 /* Decide whether we need an unspecified_parameters DIE at the end.
11132 There are 2 more cases to do this for: 1) the ansi ... declaration -
11133 this is detectable when the end of the arg list is not a
11134 void_type_node 2) an unprototyped function declaration (not a
11135 definition). This just means that we have no info about the
11136 parameters at all. */
11137 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11138 if (fn_arg_types != NULL)
11139 {
11140 /* this is the prototyped case, check for ... */
11141 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11142 gen_unspecified_parameters_die (decl, subr_die);
11143 }
11144 else if (DECL_INITIAL (decl) == NULL_TREE)
11145 gen_unspecified_parameters_die (decl, subr_die);
11146 }
11147
11148 /* Output Dwarf info for all of the stuff within the body of the function
11149 (if it has one - it may be just a declaration). */
11150 outer_scope = DECL_INITIAL (decl);
11151
11152 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11153 a function. This BLOCK actually represents the outermost binding contour
11154 for the function, i.e. the contour in which the function's formal
11155 parameters and labels get declared. Curiously, it appears that the front
11156 end doesn't actually put the PARM_DECL nodes for the current function onto
11157 the BLOCK_VARS list for this outer scope, but are strung off of the
11158 DECL_ARGUMENTS list for the function instead.
11159
11160 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11161 the LABEL_DECL nodes for the function however, and we output DWARF info
11162 for those in decls_for_scope. Just within the `outer_scope' there will be
11163 a BLOCK node representing the function's outermost pair of curly braces,
11164 and any blocks used for the base and member initializers of a C++
11165 constructor function. */
11166 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11167 {
11168 current_function_has_inlines = 0;
11169 decls_for_scope (outer_scope, subr_die, 0);
11170
11171 #if 0 && defined (MIPS_DEBUGGING_INFO)
11172 if (current_function_has_inlines)
11173 {
11174 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11175 if (! comp_unit_has_inlines)
11176 {
11177 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11178 comp_unit_has_inlines = 1;
11179 }
11180 }
11181 #endif
11182 }
11183 }
11184
11185 /* Generate a DIE to represent a declared data object. */
11186
11187 static void
11188 gen_variable_die (decl, context_die)
11189 tree decl;
11190 dw_die_ref context_die;
11191 {
11192 tree origin = decl_ultimate_origin (decl);
11193 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11194
11195 dw_die_ref old_die = lookup_decl_die (decl);
11196 int declaration = (DECL_EXTERNAL (decl)
11197 || class_scope_p (context_die));
11198
11199 if (origin != NULL)
11200 add_abstract_origin_attribute (var_die, origin);
11201
11202 /* Loop unrolling can create multiple blocks that refer to the same
11203 static variable, so we must test for the DW_AT_declaration flag.
11204
11205 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11206 copy decls and set the DECL_ABSTRACT flag on them instead of
11207 sharing them.
11208
11209 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11210 else if (old_die && TREE_STATIC (decl)
11211 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11212 {
11213 /* This is a definition of a C++ class level static. */
11214 add_AT_die_ref (var_die, DW_AT_specification, old_die);
11215 if (DECL_NAME (decl))
11216 {
11217 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
11218
11219 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11220 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11221
11222 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11223 != (unsigned) DECL_SOURCE_LINE (decl))
11224
11225 add_AT_unsigned (var_die, DW_AT_decl_line,
11226 DECL_SOURCE_LINE (decl));
11227 }
11228 }
11229 else
11230 {
11231 add_name_and_src_coords_attributes (var_die, decl);
11232 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11233 TREE_THIS_VOLATILE (decl), context_die);
11234
11235 if (TREE_PUBLIC (decl))
11236 add_AT_flag (var_die, DW_AT_external, 1);
11237
11238 if (DECL_ARTIFICIAL (decl))
11239 add_AT_flag (var_die, DW_AT_artificial, 1);
11240
11241 if (TREE_PROTECTED (decl))
11242 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11243 else if (TREE_PRIVATE (decl))
11244 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11245 }
11246
11247 if (declaration)
11248 add_AT_flag (var_die, DW_AT_declaration, 1);
11249
11250 if (class_scope_p (context_die) || DECL_ABSTRACT (decl))
11251 equate_decl_number_to_die (decl, var_die);
11252
11253 if (! declaration && ! DECL_ABSTRACT (decl))
11254 {
11255 add_location_or_const_value_attribute (var_die, decl);
11256 add_pubname (decl, var_die);
11257 }
11258 else
11259 tree_add_const_value_attribute (var_die, decl);
11260 }
11261
11262 /* Generate a DIE to represent a label identifier. */
11263
11264 static void
11265 gen_label_die (decl, context_die)
11266 tree decl;
11267 dw_die_ref context_die;
11268 {
11269 tree origin = decl_ultimate_origin (decl);
11270 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11271 rtx insn;
11272 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11273
11274 if (origin != NULL)
11275 add_abstract_origin_attribute (lbl_die, origin);
11276 else
11277 add_name_and_src_coords_attributes (lbl_die, decl);
11278
11279 if (DECL_ABSTRACT (decl))
11280 equate_decl_number_to_die (decl, lbl_die);
11281 else
11282 {
11283 insn = DECL_RTL (decl);
11284
11285 /* Deleted labels are programmer specified labels which have been
11286 eliminated because of various optimisations. We still emit them
11287 here so that it is possible to put breakpoints on them. */
11288 if (GET_CODE (insn) == CODE_LABEL
11289 || ((GET_CODE (insn) == NOTE
11290 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
11291 {
11292 /* When optimization is enabled (via -O) some parts of the compiler
11293 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11294 represent source-level labels which were explicitly declared by
11295 the user. This really shouldn't be happening though, so catch
11296 it if it ever does happen. */
11297 if (INSN_DELETED_P (insn))
11298 abort ();
11299
11300 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11301 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11302 }
11303 }
11304 }
11305
11306 /* Generate a DIE for a lexical block. */
11307
11308 static void
11309 gen_lexical_block_die (stmt, context_die, depth)
11310 tree stmt;
11311 dw_die_ref context_die;
11312 int depth;
11313 {
11314 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11315 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11316
11317 if (! BLOCK_ABSTRACT (stmt))
11318 {
11319 if (BLOCK_FRAGMENT_CHAIN (stmt))
11320 {
11321 tree chain;
11322
11323 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11324
11325 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11326 do
11327 {
11328 add_ranges (chain);
11329 chain = BLOCK_FRAGMENT_CHAIN (chain);
11330 }
11331 while (chain);
11332 add_ranges (NULL);
11333 }
11334 else
11335 {
11336 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11337 BLOCK_NUMBER (stmt));
11338 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11339 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11340 BLOCK_NUMBER (stmt));
11341 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11342 }
11343 }
11344
11345 decls_for_scope (stmt, stmt_die, depth);
11346 }
11347
11348 /* Generate a DIE for an inlined subprogram. */
11349
11350 static void
11351 gen_inlined_subroutine_die (stmt, context_die, depth)
11352 tree stmt;
11353 dw_die_ref context_die;
11354 int depth;
11355 {
11356 if (! BLOCK_ABSTRACT (stmt))
11357 {
11358 dw_die_ref subr_die
11359 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11360 tree decl = block_ultimate_origin (stmt);
11361 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11362
11363 /* Emit info for the abstract instance first, if we haven't yet. */
11364 dwarf2out_abstract_function (decl);
11365
11366 add_abstract_origin_attribute (subr_die, decl);
11367 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11368 BLOCK_NUMBER (stmt));
11369 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11370 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11371 BLOCK_NUMBER (stmt));
11372 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11373 decls_for_scope (stmt, subr_die, depth);
11374 current_function_has_inlines = 1;
11375 }
11376 else
11377 /* We may get here if we're the outer block of function A that was
11378 inlined into function B that was inlined into function C. When
11379 generating debugging info for C, dwarf2out_abstract_function(B)
11380 would mark all inlined blocks as abstract, including this one.
11381 So, we wouldn't (and shouldn't) expect labels to be generated
11382 for this one. Instead, just emit debugging info for
11383 declarations within the block. This is particularly important
11384 in the case of initializers of arguments passed from B to us:
11385 if they're statement expressions containing declarations, we
11386 wouldn't generate dies for their abstract variables, and then,
11387 when generating dies for the real variables, we'd die (pun
11388 intended :-) */
11389 gen_lexical_block_die (stmt, context_die, depth);
11390 }
11391
11392 /* Generate a DIE for a field in a record, or structure. */
11393
11394 static void
11395 gen_field_die (decl, context_die)
11396 tree decl;
11397 dw_die_ref context_die;
11398 {
11399 dw_die_ref decl_die = new_die (DW_TAG_member, context_die, decl);
11400
11401 add_name_and_src_coords_attributes (decl_die, decl);
11402 add_type_attribute (decl_die, member_declared_type (decl),
11403 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11404 context_die);
11405
11406 if (DECL_BIT_FIELD_TYPE (decl))
11407 {
11408 add_byte_size_attribute (decl_die, decl);
11409 add_bit_size_attribute (decl_die, decl);
11410 add_bit_offset_attribute (decl_die, decl);
11411 }
11412
11413 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11414 add_data_member_location_attribute (decl_die, decl);
11415
11416 if (DECL_ARTIFICIAL (decl))
11417 add_AT_flag (decl_die, DW_AT_artificial, 1);
11418
11419 if (TREE_PROTECTED (decl))
11420 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11421 else if (TREE_PRIVATE (decl))
11422 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11423 }
11424
11425 #if 0
11426 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11427 Use modified_type_die instead.
11428 We keep this code here just in case these types of DIEs may be needed to
11429 represent certain things in other languages (e.g. Pascal) someday. */
11430
11431 static void
11432 gen_pointer_type_die (type, context_die)
11433 tree type;
11434 dw_die_ref context_die;
11435 {
11436 dw_die_ref ptr_die
11437 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11438
11439 equate_type_number_to_die (type, ptr_die);
11440 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11441 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11442 }
11443
11444 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11445 Use modified_type_die instead.
11446 We keep this code here just in case these types of DIEs may be needed to
11447 represent certain things in other languages (e.g. Pascal) someday. */
11448
11449 static void
11450 gen_reference_type_die (type, context_die)
11451 tree type;
11452 dw_die_ref context_die;
11453 {
11454 dw_die_ref ref_die
11455 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11456
11457 equate_type_number_to_die (type, ref_die);
11458 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11459 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11460 }
11461 #endif
11462
11463 /* Generate a DIE for a pointer to a member type. */
11464
11465 static void
11466 gen_ptr_to_mbr_type_die (type, context_die)
11467 tree type;
11468 dw_die_ref context_die;
11469 {
11470 dw_die_ref ptr_die
11471 = new_die (DW_TAG_ptr_to_member_type,
11472 scope_die_for (type, context_die), type);
11473
11474 equate_type_number_to_die (type, ptr_die);
11475 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11476 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11477 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11478 }
11479
11480 /* Generate the DIE for the compilation unit. */
11481
11482 static dw_die_ref
11483 gen_compile_unit_die (filename)
11484 const char *filename;
11485 {
11486 dw_die_ref die;
11487 char producer[250];
11488 const char *language_string = lang_hooks.name;
11489 int language;
11490
11491 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11492
11493 if (filename)
11494 {
11495 add_name_attribute (die, filename);
11496 /* Don't add cwd for <built-in>. */
11497 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11498 add_comp_dir_attribute (die);
11499 }
11500
11501 sprintf (producer, "%s %s", language_string, version_string);
11502
11503 #ifdef MIPS_DEBUGGING_INFO
11504 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11505 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11506 not appear in the producer string, the debugger reaches the conclusion
11507 that the object file is stripped and has no debugging information.
11508 To get the MIPS/SGI debugger to believe that there is debugging
11509 information in the object file, we add a -g to the producer string. */
11510 if (debug_info_level > DINFO_LEVEL_TERSE)
11511 strcat (producer, " -g");
11512 #endif
11513
11514 add_AT_string (die, DW_AT_producer, producer);
11515
11516 if (strcmp (language_string, "GNU C++") == 0)
11517 language = DW_LANG_C_plus_plus;
11518 else if (strcmp (language_string, "GNU Ada") == 0)
11519 language = DW_LANG_Ada95;
11520 else if (strcmp (language_string, "GNU F77") == 0)
11521 language = DW_LANG_Fortran77;
11522 else if (strcmp (language_string, "GNU Pascal") == 0)
11523 language = DW_LANG_Pascal83;
11524 else if (strcmp (language_string, "GNU Java") == 0)
11525 language = DW_LANG_Java;
11526 else
11527 language = DW_LANG_C89;
11528
11529 add_AT_unsigned (die, DW_AT_language, language);
11530 return die;
11531 }
11532
11533 /* Generate a DIE for a string type. */
11534
11535 static void
11536 gen_string_type_die (type, context_die)
11537 tree type;
11538 dw_die_ref context_die;
11539 {
11540 dw_die_ref type_die
11541 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11542
11543 equate_type_number_to_die (type, type_die);
11544
11545 /* ??? Fudge the string length attribute for now.
11546 TODO: add string length info. */
11547 #if 0
11548 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11549 bound_representation (upper_bound, 0, 'u');
11550 #endif
11551 }
11552
11553 /* Generate the DIE for a base class. */
11554
11555 static void
11556 gen_inheritance_die (binfo, access, context_die)
11557 tree binfo, access;
11558 dw_die_ref context_die;
11559 {
11560 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11561
11562 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11563 add_data_member_location_attribute (die, binfo);
11564
11565 if (TREE_VIA_VIRTUAL (binfo))
11566 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11567
11568 if (access == access_public_node)
11569 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11570 else if (access == access_protected_node)
11571 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11572 }
11573
11574 /* Generate a DIE for a class member. */
11575
11576 static void
11577 gen_member_die (type, context_die)
11578 tree type;
11579 dw_die_ref context_die;
11580 {
11581 tree member;
11582 tree binfo = TYPE_BINFO (type);
11583 dw_die_ref child;
11584
11585 /* If this is not an incomplete type, output descriptions of each of its
11586 members. Note that as we output the DIEs necessary to represent the
11587 members of this record or union type, we will also be trying to output
11588 DIEs to represent the *types* of those members. However the `type'
11589 function (above) will specifically avoid generating type DIEs for member
11590 types *within* the list of member DIEs for this (containing) type except
11591 for those types (of members) which are explicitly marked as also being
11592 members of this (containing) type themselves. The g++ front- end can
11593 force any given type to be treated as a member of some other (containing)
11594 type by setting the TYPE_CONTEXT of the given (member) type to point to
11595 the TREE node representing the appropriate (containing) type. */
11596
11597 /* First output info about the base classes. */
11598 if (binfo && BINFO_BASETYPES (binfo))
11599 {
11600 tree bases = BINFO_BASETYPES (binfo);
11601 tree accesses = BINFO_BASEACCESSES (binfo);
11602 int n_bases = TREE_VEC_LENGTH (bases);
11603 int i;
11604
11605 for (i = 0; i < n_bases; i++)
11606 gen_inheritance_die (TREE_VEC_ELT (bases, i),
11607 (accesses ? TREE_VEC_ELT (accesses, i)
11608 : access_public_node), context_die);
11609 }
11610
11611 /* Now output info about the data members and type members. */
11612 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11613 {
11614 /* If we thought we were generating minimal debug info for TYPE
11615 and then changed our minds, some of the member declarations
11616 may have already been defined. Don't define them again, but
11617 do put them in the right order. */
11618
11619 child = lookup_decl_die (member);
11620 if (child)
11621 splice_child_die (context_die, child);
11622 else
11623 gen_decl_die (member, context_die);
11624 }
11625
11626 /* Now output info about the function members (if any). */
11627 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11628 {
11629 /* Don't include clones in the member list. */
11630 if (DECL_ABSTRACT_ORIGIN (member))
11631 continue;
11632
11633 child = lookup_decl_die (member);
11634 if (child)
11635 splice_child_die (context_die, child);
11636 else
11637 gen_decl_die (member, context_die);
11638 }
11639 }
11640
11641 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11642 is set, we pretend that the type was never defined, so we only get the
11643 member DIEs needed by later specification DIEs. */
11644
11645 static void
11646 gen_struct_or_union_type_die (type, context_die)
11647 tree type;
11648 dw_die_ref context_die;
11649 {
11650 dw_die_ref type_die = lookup_type_die (type);
11651 dw_die_ref scope_die = 0;
11652 int nested = 0;
11653 int complete = (TYPE_SIZE (type)
11654 && (! TYPE_STUB_DECL (type)
11655 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11656
11657 if (type_die && ! complete)
11658 return;
11659
11660 if (TYPE_CONTEXT (type) != NULL_TREE
11661 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type)))
11662 nested = 1;
11663
11664 scope_die = scope_die_for (type, context_die);
11665
11666 if (! type_die || (nested && scope_die == comp_unit_die))
11667 /* First occurrence of type or toplevel definition of nested class. */
11668 {
11669 dw_die_ref old_die = type_die;
11670
11671 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11672 ? DW_TAG_structure_type : DW_TAG_union_type,
11673 scope_die, type);
11674 equate_type_number_to_die (type, type_die);
11675 if (old_die)
11676 add_AT_die_ref (type_die, DW_AT_specification, old_die);
11677 else
11678 add_name_attribute (type_die, type_tag (type));
11679 }
11680 else
11681 remove_AT (type_die, DW_AT_declaration);
11682
11683 /* If this type has been completed, then give it a byte_size attribute and
11684 then give a list of members. */
11685 if (complete)
11686 {
11687 /* Prevent infinite recursion in cases where the type of some member of
11688 this type is expressed in terms of this type itself. */
11689 TREE_ASM_WRITTEN (type) = 1;
11690 add_byte_size_attribute (type_die, type);
11691 if (TYPE_STUB_DECL (type) != NULL_TREE)
11692 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11693
11694 /* If the first reference to this type was as the return type of an
11695 inline function, then it may not have a parent. Fix this now. */
11696 if (type_die->die_parent == NULL)
11697 add_child_die (scope_die, type_die);
11698
11699 push_decl_scope (type);
11700 gen_member_die (type, type_die);
11701 pop_decl_scope ();
11702
11703 /* GNU extension: Record what type our vtable lives in. */
11704 if (TYPE_VFIELD (type))
11705 {
11706 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11707
11708 gen_type_die (vtype, context_die);
11709 add_AT_die_ref (type_die, DW_AT_containing_type,
11710 lookup_type_die (vtype));
11711 }
11712 }
11713 else
11714 {
11715 add_AT_flag (type_die, DW_AT_declaration, 1);
11716
11717 /* We don't need to do this for function-local types. */
11718 if (TYPE_STUB_DECL (type)
11719 && ! decl_function_context (TYPE_STUB_DECL (type)))
11720 VARRAY_PUSH_TREE (incomplete_types, type);
11721 }
11722 }
11723
11724 /* Generate a DIE for a subroutine _type_. */
11725
11726 static void
11727 gen_subroutine_type_die (type, context_die)
11728 tree type;
11729 dw_die_ref context_die;
11730 {
11731 tree return_type = TREE_TYPE (type);
11732 dw_die_ref subr_die
11733 = new_die (DW_TAG_subroutine_type,
11734 scope_die_for (type, context_die), type);
11735
11736 equate_type_number_to_die (type, subr_die);
11737 add_prototyped_attribute (subr_die, type);
11738 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11739 gen_formal_types_die (type, subr_die);
11740 }
11741
11742 /* Generate a DIE for a type definition */
11743
11744 static void
11745 gen_typedef_die (decl, context_die)
11746 tree decl;
11747 dw_die_ref context_die;
11748 {
11749 dw_die_ref type_die;
11750 tree origin;
11751
11752 if (TREE_ASM_WRITTEN (decl))
11753 return;
11754
11755 TREE_ASM_WRITTEN (decl) = 1;
11756 type_die = new_die (DW_TAG_typedef, context_die, decl);
11757 origin = decl_ultimate_origin (decl);
11758 if (origin != NULL)
11759 add_abstract_origin_attribute (type_die, origin);
11760 else
11761 {
11762 tree type;
11763
11764 add_name_and_src_coords_attributes (type_die, decl);
11765 if (DECL_ORIGINAL_TYPE (decl))
11766 {
11767 type = DECL_ORIGINAL_TYPE (decl);
11768
11769 if (type == TREE_TYPE (decl))
11770 abort ();
11771 else
11772 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11773 }
11774 else
11775 type = TREE_TYPE (decl);
11776
11777 add_type_attribute (type_die, type, TREE_READONLY (decl),
11778 TREE_THIS_VOLATILE (decl), context_die);
11779 }
11780
11781 if (DECL_ABSTRACT (decl))
11782 equate_decl_number_to_die (decl, type_die);
11783 }
11784
11785 /* Generate a type description DIE. */
11786
11787 static void
11788 gen_type_die (type, context_die)
11789 tree type;
11790 dw_die_ref context_die;
11791 {
11792 int need_pop;
11793
11794 if (type == NULL_TREE || type == error_mark_node)
11795 return;
11796
11797 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11798 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11799 {
11800 if (TREE_ASM_WRITTEN (type))
11801 return;
11802
11803 /* Prevent broken recursion; we can't hand off to the same type. */
11804 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
11805 abort ();
11806
11807 TREE_ASM_WRITTEN (type) = 1;
11808 gen_decl_die (TYPE_NAME (type), context_die);
11809 return;
11810 }
11811
11812 /* We are going to output a DIE to represent the unqualified version
11813 of this type (i.e. without any const or volatile qualifiers) so
11814 get the main variant (i.e. the unqualified version) of this type
11815 now. (Vectors are special because the debugging info is in the
11816 cloned type itself). */
11817 if (TREE_CODE (type) != VECTOR_TYPE)
11818 type = type_main_variant (type);
11819
11820 if (TREE_ASM_WRITTEN (type))
11821 return;
11822
11823 switch (TREE_CODE (type))
11824 {
11825 case ERROR_MARK:
11826 break;
11827
11828 case POINTER_TYPE:
11829 case REFERENCE_TYPE:
11830 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11831 ensures that the gen_type_die recursion will terminate even if the
11832 type is recursive. Recursive types are possible in Ada. */
11833 /* ??? We could perhaps do this for all types before the switch
11834 statement. */
11835 TREE_ASM_WRITTEN (type) = 1;
11836
11837 /* For these types, all that is required is that we output a DIE (or a
11838 set of DIEs) to represent the "basis" type. */
11839 gen_type_die (TREE_TYPE (type), context_die);
11840 break;
11841
11842 case OFFSET_TYPE:
11843 /* This code is used for C++ pointer-to-data-member types.
11844 Output a description of the relevant class type. */
11845 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
11846
11847 /* Output a description of the type of the object pointed to. */
11848 gen_type_die (TREE_TYPE (type), context_die);
11849
11850 /* Now output a DIE to represent this pointer-to-data-member type
11851 itself. */
11852 gen_ptr_to_mbr_type_die (type, context_die);
11853 break;
11854
11855 case SET_TYPE:
11856 gen_type_die (TYPE_DOMAIN (type), context_die);
11857 gen_set_type_die (type, context_die);
11858 break;
11859
11860 case FILE_TYPE:
11861 gen_type_die (TREE_TYPE (type), context_die);
11862 abort (); /* No way to represent these in Dwarf yet! */
11863 break;
11864
11865 case FUNCTION_TYPE:
11866 /* Force out return type (in case it wasn't forced out already). */
11867 gen_type_die (TREE_TYPE (type), context_die);
11868 gen_subroutine_type_die (type, context_die);
11869 break;
11870
11871 case METHOD_TYPE:
11872 /* Force out return type (in case it wasn't forced out already). */
11873 gen_type_die (TREE_TYPE (type), context_die);
11874 gen_subroutine_type_die (type, context_die);
11875 break;
11876
11877 case ARRAY_TYPE:
11878 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11879 {
11880 gen_type_die (TREE_TYPE (type), context_die);
11881 gen_string_type_die (type, context_die);
11882 }
11883 else
11884 gen_array_type_die (type, context_die);
11885 break;
11886
11887 case VECTOR_TYPE:
11888 gen_array_type_die (type, context_die);
11889 break;
11890
11891 case ENUMERAL_TYPE:
11892 case RECORD_TYPE:
11893 case UNION_TYPE:
11894 case QUAL_UNION_TYPE:
11895 /* If this is a nested type whose containing class hasn't been written
11896 out yet, writing it out will cover this one, too. This does not apply
11897 to instantiations of member class templates; they need to be added to
11898 the containing class as they are generated. FIXME: This hurts the
11899 idea of combining type decls from multiple TUs, since we can't predict
11900 what set of template instantiations we'll get. */
11901 if (TYPE_CONTEXT (type)
11902 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11903 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
11904 {
11905 gen_type_die (TYPE_CONTEXT (type), context_die);
11906
11907 if (TREE_ASM_WRITTEN (type))
11908 return;
11909
11910 /* If that failed, attach ourselves to the stub. */
11911 push_decl_scope (TYPE_CONTEXT (type));
11912 context_die = lookup_type_die (TYPE_CONTEXT (type));
11913 need_pop = 1;
11914 }
11915 else
11916 need_pop = 0;
11917
11918 if (TREE_CODE (type) == ENUMERAL_TYPE)
11919 gen_enumeration_type_die (type, context_die);
11920 else
11921 gen_struct_or_union_type_die (type, context_die);
11922
11923 if (need_pop)
11924 pop_decl_scope ();
11925
11926 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11927 it up if it is ever completed. gen_*_type_die will set it for us
11928 when appropriate. */
11929 return;
11930
11931 case VOID_TYPE:
11932 case INTEGER_TYPE:
11933 case REAL_TYPE:
11934 case COMPLEX_TYPE:
11935 case BOOLEAN_TYPE:
11936 case CHAR_TYPE:
11937 /* No DIEs needed for fundamental types. */
11938 break;
11939
11940 case LANG_TYPE:
11941 /* No Dwarf representation currently defined. */
11942 break;
11943
11944 default:
11945 abort ();
11946 }
11947
11948 TREE_ASM_WRITTEN (type) = 1;
11949 }
11950
11951 /* Generate a DIE for a tagged type instantiation. */
11952
11953 static void
11954 gen_tagged_type_instantiation_die (type, context_die)
11955 tree type;
11956 dw_die_ref context_die;
11957 {
11958 if (type == NULL_TREE || type == error_mark_node)
11959 return;
11960
11961 /* We are going to output a DIE to represent the unqualified version of
11962 this type (i.e. without any const or volatile qualifiers) so make sure
11963 that we have the main variant (i.e. the unqualified version) of this
11964 type now. */
11965 if (type != type_main_variant (type))
11966 abort ();
11967
11968 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11969 an instance of an unresolved type. */
11970
11971 switch (TREE_CODE (type))
11972 {
11973 case ERROR_MARK:
11974 break;
11975
11976 case ENUMERAL_TYPE:
11977 gen_inlined_enumeration_type_die (type, context_die);
11978 break;
11979
11980 case RECORD_TYPE:
11981 gen_inlined_structure_type_die (type, context_die);
11982 break;
11983
11984 case UNION_TYPE:
11985 case QUAL_UNION_TYPE:
11986 gen_inlined_union_type_die (type, context_die);
11987 break;
11988
11989 default:
11990 abort ();
11991 }
11992 }
11993
11994 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11995 things which are local to the given block. */
11996
11997 static void
11998 gen_block_die (stmt, context_die, depth)
11999 tree stmt;
12000 dw_die_ref context_die;
12001 int depth;
12002 {
12003 int must_output_die = 0;
12004 tree origin;
12005 tree decl;
12006 enum tree_code origin_code;
12007
12008 /* Ignore blocks never really used to make RTL. */
12009 if (stmt == NULL_TREE || !TREE_USED (stmt)
12010 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
12011 return;
12012
12013 /* If the block is one fragment of a non-contiguous block, do not
12014 process the variables, since they will have been done by the
12015 origin block. Do process subblocks. */
12016 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12017 {
12018 tree sub;
12019
12020 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12021 gen_block_die (sub, context_die, depth + 1);
12022
12023 return;
12024 }
12025
12026 /* Determine the "ultimate origin" of this block. This block may be an
12027 inlined instance of an inlined instance of inline function, so we have
12028 to trace all of the way back through the origin chain to find out what
12029 sort of node actually served as the original seed for the creation of
12030 the current block. */
12031 origin = block_ultimate_origin (stmt);
12032 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12033
12034 /* Determine if we need to output any Dwarf DIEs at all to represent this
12035 block. */
12036 if (origin_code == FUNCTION_DECL)
12037 /* The outer scopes for inlinings *must* always be represented. We
12038 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12039 must_output_die = 1;
12040 else
12041 {
12042 /* In the case where the current block represents an inlining of the
12043 "body block" of an inline function, we must *NOT* output any DIE for
12044 this block because we have already output a DIE to represent the whole
12045 inlined function scope and the "body block" of any function doesn't
12046 really represent a different scope according to ANSI C rules. So we
12047 check here to make sure that this block does not represent a "body
12048 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12049 if (! is_body_block (origin ? origin : stmt))
12050 {
12051 /* Determine if this block directly contains any "significant"
12052 local declarations which we will need to output DIEs for. */
12053 if (debug_info_level > DINFO_LEVEL_TERSE)
12054 /* We are not in terse mode so *any* local declaration counts
12055 as being a "significant" one. */
12056 must_output_die = (BLOCK_VARS (stmt) != NULL);
12057 else
12058 /* We are in terse mode, so only local (nested) function
12059 definitions count as "significant" local declarations. */
12060 for (decl = BLOCK_VARS (stmt);
12061 decl != NULL; decl = TREE_CHAIN (decl))
12062 if (TREE_CODE (decl) == FUNCTION_DECL
12063 && DECL_INITIAL (decl))
12064 {
12065 must_output_die = 1;
12066 break;
12067 }
12068 }
12069 }
12070
12071 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12072 DIE for any block which contains no significant local declarations at
12073 all. Rather, in such cases we just call `decls_for_scope' so that any
12074 needed Dwarf info for any sub-blocks will get properly generated. Note
12075 that in terse mode, our definition of what constitutes a "significant"
12076 local declaration gets restricted to include only inlined function
12077 instances and local (nested) function definitions. */
12078 if (must_output_die)
12079 {
12080 if (origin_code == FUNCTION_DECL)
12081 gen_inlined_subroutine_die (stmt, context_die, depth);
12082 else
12083 gen_lexical_block_die (stmt, context_die, depth);
12084 }
12085 else
12086 decls_for_scope (stmt, context_die, depth);
12087 }
12088
12089 /* Generate all of the decls declared within a given scope and (recursively)
12090 all of its sub-blocks. */
12091
12092 static void
12093 decls_for_scope (stmt, context_die, depth)
12094 tree stmt;
12095 dw_die_ref context_die;
12096 int depth;
12097 {
12098 tree decl;
12099 tree subblocks;
12100
12101 /* Ignore blocks never really used to make RTL. */
12102 if (stmt == NULL_TREE || ! TREE_USED (stmt))
12103 return;
12104
12105 /* Output the DIEs to represent all of the data objects and typedefs
12106 declared directly within this block but not within any nested
12107 sub-blocks. Also, nested function and tag DIEs have been
12108 generated with a parent of NULL; fix that up now. */
12109 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12110 {
12111 dw_die_ref die;
12112
12113 if (TREE_CODE (decl) == FUNCTION_DECL)
12114 die = lookup_decl_die (decl);
12115 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12116 die = lookup_type_die (TREE_TYPE (decl));
12117 else
12118 die = NULL;
12119
12120 if (die != NULL && die->die_parent == NULL)
12121 add_child_die (context_die, die);
12122 else
12123 gen_decl_die (decl, context_die);
12124 }
12125
12126 /* If we're at -g1, we're not interested in subblocks. */
12127 if (debug_info_level <= DINFO_LEVEL_TERSE)
12128 return;
12129
12130 /* Output the DIEs to represent all sub-blocks (and the items declared
12131 therein) of this block. */
12132 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12133 subblocks != NULL;
12134 subblocks = BLOCK_CHAIN (subblocks))
12135 gen_block_die (subblocks, context_die, depth + 1);
12136 }
12137
12138 /* Is this a typedef we can avoid emitting? */
12139
12140 static inline int
12141 is_redundant_typedef (decl)
12142 tree decl;
12143 {
12144 if (TYPE_DECL_IS_STUB (decl))
12145 return 1;
12146
12147 if (DECL_ARTIFICIAL (decl)
12148 && DECL_CONTEXT (decl)
12149 && is_tagged_type (DECL_CONTEXT (decl))
12150 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12151 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12152 /* Also ignore the artificial member typedef for the class name. */
12153 return 1;
12154
12155 return 0;
12156 }
12157
12158 /* Generate Dwarf debug information for a decl described by DECL. */
12159
12160 static void
12161 gen_decl_die (decl, context_die)
12162 tree decl;
12163 dw_die_ref context_die;
12164 {
12165 tree origin;
12166
12167 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12168 return;
12169
12170 switch (TREE_CODE (decl))
12171 {
12172 case ERROR_MARK:
12173 break;
12174
12175 case CONST_DECL:
12176 /* The individual enumerators of an enum type get output when we output
12177 the Dwarf representation of the relevant enum type itself. */
12178 break;
12179
12180 case FUNCTION_DECL:
12181 /* Don't output any DIEs to represent mere function declarations,
12182 unless they are class members or explicit block externs. */
12183 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12184 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12185 break;
12186
12187 /* If we're emitting a clone, emit info for the abstract instance. */
12188 if (DECL_ORIGIN (decl) != decl)
12189 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12190
12191 /* If we're emitting an out-of-line copy of an inline function,
12192 emit info for the abstract instance and set up to refer to it. */
12193 else if (DECL_INLINE (decl) && ! DECL_ABSTRACT (decl)
12194 && ! class_scope_p (context_die)
12195 /* dwarf2out_abstract_function won't emit a die if this is just
12196 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12197 that case, because that works only if we have a die. */
12198 && DECL_INITIAL (decl) != NULL_TREE)
12199 {
12200 dwarf2out_abstract_function (decl);
12201 set_decl_origin_self (decl);
12202 }
12203
12204 /* Otherwise we're emitting the primary DIE for this decl. */
12205 else if (debug_info_level > DINFO_LEVEL_TERSE)
12206 {
12207 /* Before we describe the FUNCTION_DECL itself, make sure that we
12208 have described its return type. */
12209 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12210
12211 /* And its virtual context. */
12212 if (DECL_VINDEX (decl) != NULL_TREE)
12213 gen_type_die (DECL_CONTEXT (decl), context_die);
12214
12215 /* And its containing type. */
12216 origin = decl_class_context (decl);
12217 if (origin != NULL_TREE)
12218 gen_type_die_for_member (origin, decl, context_die);
12219 }
12220
12221 /* Now output a DIE to represent the function itself. */
12222 gen_subprogram_die (decl, context_die);
12223 break;
12224
12225 case TYPE_DECL:
12226 /* If we are in terse mode, don't generate any DIEs to represent any
12227 actual typedefs. */
12228 if (debug_info_level <= DINFO_LEVEL_TERSE)
12229 break;
12230
12231 /* In the special case of a TYPE_DECL node representing the declaration
12232 of some type tag, if the given TYPE_DECL is marked as having been
12233 instantiated from some other (original) TYPE_DECL node (e.g. one which
12234 was generated within the original definition of an inline function) we
12235 have to generate a special (abbreviated) DW_TAG_structure_type,
12236 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12237 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12238 {
12239 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12240 break;
12241 }
12242
12243 if (is_redundant_typedef (decl))
12244 gen_type_die (TREE_TYPE (decl), context_die);
12245 else
12246 /* Output a DIE to represent the typedef itself. */
12247 gen_typedef_die (decl, context_die);
12248 break;
12249
12250 case LABEL_DECL:
12251 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12252 gen_label_die (decl, context_die);
12253 break;
12254
12255 case VAR_DECL:
12256 /* If we are in terse mode, don't generate any DIEs to represent any
12257 variable declarations or definitions. */
12258 if (debug_info_level <= DINFO_LEVEL_TERSE)
12259 break;
12260
12261 /* Output any DIEs that are needed to specify the type of this data
12262 object. */
12263 gen_type_die (TREE_TYPE (decl), context_die);
12264
12265 /* And its containing type. */
12266 origin = decl_class_context (decl);
12267 if (origin != NULL_TREE)
12268 gen_type_die_for_member (origin, decl, context_die);
12269
12270 /* Now output the DIE to represent the data object itself. This gets
12271 complicated because of the possibility that the VAR_DECL really
12272 represents an inlined instance of a formal parameter for an inline
12273 function. */
12274 origin = decl_ultimate_origin (decl);
12275 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12276 gen_formal_parameter_die (decl, context_die);
12277 else
12278 gen_variable_die (decl, context_die);
12279 break;
12280
12281 case FIELD_DECL:
12282 /* Ignore the nameless fields that are used to skip bits but handle C++
12283 anonymous unions. */
12284 if (DECL_NAME (decl) != NULL_TREE
12285 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
12286 {
12287 gen_type_die (member_declared_type (decl), context_die);
12288 gen_field_die (decl, context_die);
12289 }
12290 break;
12291
12292 case PARM_DECL:
12293 gen_type_die (TREE_TYPE (decl), context_die);
12294 gen_formal_parameter_die (decl, context_die);
12295 break;
12296
12297 case NAMESPACE_DECL:
12298 /* Ignore for now. */
12299 break;
12300
12301 default:
12302 if ((int)TREE_CODE (decl) > NUM_TREE_CODES)
12303 /* Probably some frontend-internal decl. Assume we don't care. */
12304 break;
12305 abort ();
12306 }
12307 }
12308 \f
12309 /* Add Ada "use" clause information for SGI Workshop debugger. */
12310
12311 void
12312 dwarf2out_add_library_unit_info (filename, context_list)
12313 const char *filename;
12314 const char *context_list;
12315 {
12316 unsigned int file_index;
12317
12318 if (filename != NULL)
12319 {
12320 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12321 tree context_list_decl
12322 = build_decl (LABEL_DECL, get_identifier (context_list),
12323 void_type_node);
12324
12325 TREE_PUBLIC (context_list_decl) = TRUE;
12326 add_name_attribute (unit_die, context_list);
12327 file_index = lookup_filename (filename);
12328 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12329 add_pubname (context_list_decl, unit_die);
12330 }
12331 }
12332
12333 /* Output debug information for global decl DECL. Called from toplev.c after
12334 compilation proper has finished. */
12335
12336 static void
12337 dwarf2out_global_decl (decl)
12338 tree decl;
12339 {
12340 /* Output DWARF2 information for file-scope tentative data object
12341 declarations, file-scope (extern) function declarations (which had no
12342 corresponding body) and file-scope tagged type declarations and
12343 definitions which have not yet been forced out. */
12344 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12345 dwarf2out_decl (decl);
12346 }
12347
12348 /* Write the debugging output for DECL. */
12349
12350 void
12351 dwarf2out_decl (decl)
12352 tree decl;
12353 {
12354 dw_die_ref context_die = comp_unit_die;
12355
12356 switch (TREE_CODE (decl))
12357 {
12358 case ERROR_MARK:
12359 return;
12360
12361 case FUNCTION_DECL:
12362 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
12363 builtin function. Explicit programmer-supplied declarations of
12364 these same functions should NOT be ignored however. */
12365 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
12366 return;
12367
12368 /* What we would really like to do here is to filter out all mere
12369 file-scope declarations of file-scope functions which are never
12370 referenced later within this translation unit (and keep all of ones
12371 that *are* referenced later on) but we aren't clairvoyant, so we have
12372 no idea which functions will be referenced in the future (i.e. later
12373 on within the current translation unit). So here we just ignore all
12374 file-scope function declarations which are not also definitions. If
12375 and when the debugger needs to know something about these functions,
12376 it will have to hunt around and find the DWARF information associated
12377 with the definition of the function.
12378
12379 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12380 nodes represent definitions and which ones represent mere
12381 declarations. We have to check DECL_INITIAL instead. That's because
12382 the C front-end supports some weird semantics for "extern inline"
12383 function definitions. These can get inlined within the current
12384 translation unit (an thus, we need to generate Dwarf info for their
12385 abstract instances so that the Dwarf info for the concrete inlined
12386 instances can have something to refer to) but the compiler never
12387 generates any out-of-lines instances of such things (despite the fact
12388 that they *are* definitions).
12389
12390 The important point is that the C front-end marks these "extern
12391 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12392 them anyway. Note that the C++ front-end also plays some similar games
12393 for inline function definitions appearing within include files which
12394 also contain `#pragma interface' pragmas. */
12395 if (DECL_INITIAL (decl) == NULL_TREE)
12396 return;
12397
12398 /* If we're a nested function, initially use a parent of NULL; if we're
12399 a plain function, this will be fixed up in decls_for_scope. If
12400 we're a method, it will be ignored, since we already have a DIE. */
12401 if (decl_function_context (decl)
12402 /* But if we're in terse mode, we don't care about scope. */
12403 && debug_info_level > DINFO_LEVEL_TERSE)
12404 context_die = NULL;
12405 break;
12406
12407 case VAR_DECL:
12408 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12409 declaration and if the declaration was never even referenced from
12410 within this entire compilation unit. We suppress these DIEs in
12411 order to save space in the .debug section (by eliminating entries
12412 which are probably useless). Note that we must not suppress
12413 block-local extern declarations (whether used or not) because that
12414 would screw-up the debugger's name lookup mechanism and cause it to
12415 miss things which really ought to be in scope at a given point. */
12416 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12417 return;
12418
12419 /* If we are in terse mode, don't generate any DIEs to represent any
12420 variable declarations or definitions. */
12421 if (debug_info_level <= DINFO_LEVEL_TERSE)
12422 return;
12423 break;
12424
12425 case TYPE_DECL:
12426 /* Don't emit stubs for types unless they are needed by other DIEs. */
12427 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12428 return;
12429
12430 /* Don't bother trying to generate any DIEs to represent any of the
12431 normal built-in types for the language we are compiling. */
12432 if (DECL_SOURCE_LINE (decl) == 0)
12433 {
12434 /* OK, we need to generate one for `bool' so GDB knows what type
12435 comparisons have. */
12436 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12437 == DW_LANG_C_plus_plus)
12438 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12439 && ! DECL_IGNORED_P (decl))
12440 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12441
12442 return;
12443 }
12444
12445 /* If we are in terse mode, don't generate any DIEs for types. */
12446 if (debug_info_level <= DINFO_LEVEL_TERSE)
12447 return;
12448
12449 /* If we're a function-scope tag, initially use a parent of NULL;
12450 this will be fixed up in decls_for_scope. */
12451 if (decl_function_context (decl))
12452 context_die = NULL;
12453
12454 break;
12455
12456 default:
12457 return;
12458 }
12459
12460 gen_decl_die (decl, context_die);
12461 }
12462
12463 /* Output a marker (i.e. a label) for the beginning of the generated code for
12464 a lexical block. */
12465
12466 static void
12467 dwarf2out_begin_block (line, blocknum)
12468 unsigned int line ATTRIBUTE_UNUSED;
12469 unsigned int blocknum;
12470 {
12471 function_section (current_function_decl);
12472 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12473 }
12474
12475 /* Output a marker (i.e. a label) for the end of the generated code for a
12476 lexical block. */
12477
12478 static void
12479 dwarf2out_end_block (line, blocknum)
12480 unsigned int line ATTRIBUTE_UNUSED;
12481 unsigned int blocknum;
12482 {
12483 function_section (current_function_decl);
12484 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12485 }
12486
12487 /* Returns nonzero if it is appropriate not to emit any debugging
12488 information for BLOCK, because it doesn't contain any instructions.
12489
12490 Don't allow this for blocks with nested functions or local classes
12491 as we would end up with orphans, and in the presence of scheduling
12492 we may end up calling them anyway. */
12493
12494 static bool
12495 dwarf2out_ignore_block (block)
12496 tree block;
12497 {
12498 tree decl;
12499
12500 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12501 if (TREE_CODE (decl) == FUNCTION_DECL
12502 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12503 return 0;
12504
12505 return 1;
12506 }
12507
12508 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12509 dwarf2out.c) and return its "index". The index of each (known) filename is
12510 just a unique number which is associated with only that one filename. We
12511 need such numbers for the sake of generating labels (in the .debug_sfnames
12512 section) and references to those files numbers (in the .debug_srcinfo
12513 and.debug_macinfo sections). If the filename given as an argument is not
12514 found in our current list, add it to the list and assign it the next
12515 available unique index number. In order to speed up searches, we remember
12516 the index of the filename was looked up last. This handles the majority of
12517 all searches. */
12518
12519 static unsigned
12520 lookup_filename (file_name)
12521 const char *file_name;
12522 {
12523 size_t i, n;
12524 char *save_file_name;
12525
12526 /* Check to see if the file name that was searched on the previous
12527 call matches this file name. If so, return the index. */
12528 if (file_table_last_lookup_index != 0)
12529 {
12530 const char *last
12531 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12532 if (strcmp (file_name, last) == 0)
12533 return file_table_last_lookup_index;
12534 }
12535
12536 /* Didn't match the previous lookup, search the table */
12537 n = VARRAY_ACTIVE_SIZE (file_table);
12538 for (i = 1; i < n; i++)
12539 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12540 {
12541 file_table_last_lookup_index = i;
12542 return i;
12543 }
12544
12545 /* Add the new entry to the end of the filename table. */
12546 file_table_last_lookup_index = n;
12547 save_file_name = (char *) ggc_strdup (file_name);
12548 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12549 VARRAY_PUSH_UINT (file_table_emitted, 0);
12550
12551 return i;
12552 }
12553
12554 static int
12555 maybe_emit_file (fileno)
12556 int fileno;
12557 {
12558 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12559 {
12560 if (!VARRAY_UINT (file_table_emitted, fileno))
12561 {
12562 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12563 fprintf (asm_out_file, "\t.file %u ",
12564 VARRAY_UINT (file_table_emitted, fileno));
12565 output_quoted_string (asm_out_file,
12566 VARRAY_CHAR_PTR (file_table, fileno));
12567 fputc ('\n', asm_out_file);
12568 }
12569 return VARRAY_UINT (file_table_emitted, fileno);
12570 }
12571 else
12572 return fileno;
12573 }
12574
12575 static void
12576 init_file_table ()
12577 {
12578 /* Allocate the initial hunk of the file_table. */
12579 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
12580 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
12581
12582 /* Skip the first entry - file numbers begin at 1. */
12583 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
12584 VARRAY_PUSH_UINT (file_table_emitted, 0);
12585 file_table_last_lookup_index = 0;
12586 }
12587
12588 /* Output a label to mark the beginning of a source code line entry
12589 and record information relating to this source line, in
12590 'line_info_table' for later output of the .debug_line section. */
12591
12592 static void
12593 dwarf2out_source_line (line, filename)
12594 unsigned int line;
12595 const char *filename;
12596 {
12597 if (debug_info_level >= DINFO_LEVEL_NORMAL
12598 && line != 0)
12599 {
12600 function_section (current_function_decl);
12601
12602 /* If requested, emit something human-readable. */
12603 if (flag_debug_asm)
12604 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
12605 filename, line);
12606
12607 if (DWARF2_ASM_LINE_DEBUG_INFO)
12608 {
12609 unsigned file_num = lookup_filename (filename);
12610
12611 file_num = maybe_emit_file (file_num);
12612
12613 /* Emit the .loc directive understood by GNU as. */
12614 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
12615
12616 /* Indicate that line number info exists. */
12617 line_info_table_in_use++;
12618
12619 /* Indicate that multiple line number tables exist. */
12620 if (DECL_SECTION_NAME (current_function_decl))
12621 separate_line_info_table_in_use++;
12622 }
12623 else if (DECL_SECTION_NAME (current_function_decl))
12624 {
12625 dw_separate_line_info_ref line_info;
12626 (*targetm.asm_out.internal_label) (asm_out_file, SEPARATE_LINE_CODE_LABEL,
12627 separate_line_info_table_in_use);
12628
12629 /* expand the line info table if necessary */
12630 if (separate_line_info_table_in_use
12631 == separate_line_info_table_allocated)
12632 {
12633 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12634 separate_line_info_table
12635 = (dw_separate_line_info_ref)
12636 ggc_realloc (separate_line_info_table,
12637 separate_line_info_table_allocated
12638 * sizeof (dw_separate_line_info_entry));
12639 memset ((separate_line_info_table
12640 + separate_line_info_table_in_use),
12641 0,
12642 (LINE_INFO_TABLE_INCREMENT
12643 * sizeof (dw_separate_line_info_entry)));
12644 }
12645
12646 /* Add the new entry at the end of the line_info_table. */
12647 line_info
12648 = &separate_line_info_table[separate_line_info_table_in_use++];
12649 line_info->dw_file_num = lookup_filename (filename);
12650 line_info->dw_line_num = line;
12651 line_info->function = current_function_funcdef_no;
12652 }
12653 else
12654 {
12655 dw_line_info_ref line_info;
12656
12657 (*targetm.asm_out.internal_label) (asm_out_file, LINE_CODE_LABEL,
12658 line_info_table_in_use);
12659
12660 /* Expand the line info table if necessary. */
12661 if (line_info_table_in_use == line_info_table_allocated)
12662 {
12663 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12664 line_info_table
12665 = ggc_realloc (line_info_table,
12666 (line_info_table_allocated
12667 * sizeof (dw_line_info_entry)));
12668 memset (line_info_table + line_info_table_in_use, 0,
12669 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
12670 }
12671
12672 /* Add the new entry at the end of the line_info_table. */
12673 line_info = &line_info_table[line_info_table_in_use++];
12674 line_info->dw_file_num = lookup_filename (filename);
12675 line_info->dw_line_num = line;
12676 }
12677 }
12678 }
12679
12680 /* Record the beginning of a new source file. */
12681
12682 static void
12683 dwarf2out_start_source_file (lineno, filename)
12684 unsigned int lineno;
12685 const char *filename;
12686 {
12687 if (flag_eliminate_dwarf2_dups && !is_main_source)
12688 {
12689 /* Record the beginning of the file for break_out_includes. */
12690 dw_die_ref bincl_die;
12691
12692 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
12693 add_AT_string (bincl_die, DW_AT_name, filename);
12694 }
12695
12696 is_main_source = 0;
12697
12698 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12699 {
12700 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12701 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
12702 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
12703 lineno);
12704 maybe_emit_file (lookup_filename (filename));
12705 dw2_asm_output_data_uleb128 (lookup_filename (filename),
12706 "Filename we just started");
12707 }
12708 }
12709
12710 /* Record the end of a source file. */
12711
12712 static void
12713 dwarf2out_end_source_file (lineno)
12714 unsigned int lineno ATTRIBUTE_UNUSED;
12715 {
12716 if (flag_eliminate_dwarf2_dups)
12717 /* Record the end of the file for break_out_includes. */
12718 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
12719
12720 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12721 {
12722 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12723 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12724 }
12725 }
12726
12727 /* Called from debug_define in toplev.c. The `buffer' parameter contains
12728 the tail part of the directive line, i.e. the part which is past the
12729 initial whitespace, #, whitespace, directive-name, whitespace part. */
12730
12731 static void
12732 dwarf2out_define (lineno, buffer)
12733 unsigned lineno ATTRIBUTE_UNUSED;
12734 const char *buffer ATTRIBUTE_UNUSED;
12735 {
12736 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12737 {
12738 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12739 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
12740 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12741 dw2_asm_output_nstring (buffer, -1, "The macro");
12742 }
12743 }
12744
12745 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
12746 the tail part of the directive line, i.e. the part which is past the
12747 initial whitespace, #, whitespace, directive-name, whitespace part. */
12748
12749 static void
12750 dwarf2out_undef (lineno, buffer)
12751 unsigned lineno ATTRIBUTE_UNUSED;
12752 const char *buffer ATTRIBUTE_UNUSED;
12753 {
12754 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12755 {
12756 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12757 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
12758 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12759 dw2_asm_output_nstring (buffer, -1, "The macro");
12760 }
12761 }
12762
12763 /* Set up for Dwarf output at the start of compilation. */
12764
12765 static void
12766 dwarf2out_init (filename)
12767 const char *filename ATTRIBUTE_UNUSED;
12768 {
12769 init_file_table ();
12770
12771 /* Allocate the initial hunk of the decl_die_table. */
12772 decl_die_table = ggc_alloc_cleared (DECL_DIE_TABLE_INCREMENT
12773 * sizeof (dw_die_ref));
12774 decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
12775 decl_die_table_in_use = 0;
12776
12777 /* Allocate the initial hunk of the decl_scope_table. */
12778 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
12779
12780 /* Allocate the initial hunk of the abbrev_die_table. */
12781 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
12782 * sizeof (dw_die_ref));
12783 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
12784 /* Zero-th entry is allocated, but unused */
12785 abbrev_die_table_in_use = 1;
12786
12787 /* Allocate the initial hunk of the line_info_table. */
12788 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
12789 * sizeof (dw_line_info_entry));
12790 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
12791
12792 /* Zero-th entry is allocated, but unused */
12793 line_info_table_in_use = 1;
12794
12795 /* Generate the initial DIE for the .debug section. Note that the (string)
12796 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
12797 will (typically) be a relative pathname and that this pathname should be
12798 taken as being relative to the directory from which the compiler was
12799 invoked when the given (base) source file was compiled. We will fill
12800 in this value in dwarf2out_finish. */
12801 comp_unit_die = gen_compile_unit_die (NULL);
12802 is_main_source = 1;
12803
12804 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
12805
12806 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
12807
12808 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
12809 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
12810 DEBUG_ABBREV_SECTION_LABEL, 0);
12811 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12812 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
12813 else
12814 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
12815
12816 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
12817 DEBUG_INFO_SECTION_LABEL, 0);
12818 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
12819 DEBUG_LINE_SECTION_LABEL, 0);
12820 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
12821 DEBUG_RANGES_SECTION_LABEL, 0);
12822 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12823 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
12824 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
12825 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
12826 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12827 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
12828
12829 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12830 {
12831 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12832 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
12833 DEBUG_MACINFO_SECTION_LABEL, 0);
12834 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
12835 }
12836
12837 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12838 {
12839 text_section ();
12840 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
12841 }
12842 }
12843
12844 /* A helper function for dwarf2out_finish called through
12845 ht_forall. Emit one queued .debug_str string. */
12846
12847 static int
12848 output_indirect_string (h, v)
12849 void **h;
12850 void *v ATTRIBUTE_UNUSED;
12851 {
12852 struct indirect_string_node *node = (struct indirect_string_node *) *h;
12853
12854 if (node->form == DW_FORM_strp)
12855 {
12856 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
12857 ASM_OUTPUT_LABEL (asm_out_file, node->label);
12858 assemble_string (node->str, strlen (node->str) + 1);
12859 }
12860
12861 return 1;
12862 }
12863
12864
12865
12866 /* Clear the marks for a die and its children.
12867 Be cool if the mark isn't set. */
12868
12869 static void
12870 prune_unmark_dies (die)
12871 dw_die_ref die;
12872 {
12873 dw_die_ref c;
12874 die->die_mark = 0;
12875 for (c = die->die_child; c; c = c->die_sib)
12876 prune_unmark_dies (c);
12877 }
12878
12879
12880 /* Given DIE that we're marking as used, find any other dies
12881 it references as attributes and mark them as used. */
12882
12883 static void
12884 prune_unused_types_walk_attribs (die)
12885 dw_die_ref die;
12886 {
12887 dw_attr_ref a;
12888
12889 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
12890 {
12891 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
12892 {
12893 /* A reference to another DIE.
12894 Make sure that it will get emitted. */
12895 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
12896 }
12897 else if (a->dw_attr == DW_AT_decl_file)
12898 {
12899 /* A reference to a file. Make sure the file name is emitted. */
12900 a->dw_attr_val.v.val_unsigned =
12901 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
12902 }
12903 }
12904 }
12905
12906
12907 /* Mark DIE as being used. If DOKIDS is true, then walk down
12908 to DIE's children. */
12909
12910 static void
12911 prune_unused_types_mark (die, dokids)
12912 dw_die_ref die;
12913 int dokids;
12914 {
12915 dw_die_ref c;
12916
12917 if (die->die_mark == 0)
12918 {
12919 /* We haven't done this node yet. Mark it as used. */
12920 die->die_mark = 1;
12921
12922 /* We also have to mark its parents as used.
12923 (But we don't want to mark our parents' kids due to this.) */
12924 if (die->die_parent)
12925 prune_unused_types_mark (die->die_parent, 0);
12926
12927 /* Mark any referenced nodes. */
12928 prune_unused_types_walk_attribs (die);
12929 }
12930
12931 if (dokids && die->die_mark != 2)
12932 {
12933 /* We need to walk the children, but haven't done so yet.
12934 Remember that we've walked the kids. */
12935 die->die_mark = 2;
12936
12937 /* Walk them. */
12938 for (c = die->die_child; c; c = c->die_sib)
12939 {
12940 /* If this is an array type, we need to make sure our
12941 kids get marked, even if they're types. */
12942 if (die->die_tag == DW_TAG_array_type)
12943 prune_unused_types_mark (c, 1);
12944 else
12945 prune_unused_types_walk (c);
12946 }
12947 }
12948 }
12949
12950
12951 /* Walk the tree DIE and mark types that we actually use. */
12952
12953 static void
12954 prune_unused_types_walk (die)
12955 dw_die_ref die;
12956 {
12957 dw_die_ref c;
12958
12959 /* Don't do anything if this node is already marked. */
12960 if (die->die_mark)
12961 return;
12962
12963 switch (die->die_tag) {
12964 case DW_TAG_const_type:
12965 case DW_TAG_packed_type:
12966 case DW_TAG_pointer_type:
12967 case DW_TAG_reference_type:
12968 case DW_TAG_volatile_type:
12969 case DW_TAG_typedef:
12970 case DW_TAG_array_type:
12971 case DW_TAG_structure_type:
12972 case DW_TAG_union_type:
12973 case DW_TAG_class_type:
12974 case DW_TAG_friend:
12975 case DW_TAG_variant_part:
12976 case DW_TAG_enumeration_type:
12977 case DW_TAG_subroutine_type:
12978 case DW_TAG_string_type:
12979 case DW_TAG_set_type:
12980 case DW_TAG_subrange_type:
12981 case DW_TAG_ptr_to_member_type:
12982 case DW_TAG_file_type:
12983 /* It's a type node --- don't mark it. */
12984 return;
12985
12986 default:
12987 /* Mark everything else. */
12988 break;
12989 }
12990
12991 die->die_mark = 1;
12992
12993 /* Now, mark any dies referenced from here. */
12994 prune_unused_types_walk_attribs (die);
12995
12996 /* Mark children. */
12997 for (c = die->die_child; c; c = c->die_sib)
12998 prune_unused_types_walk (c);
12999 }
13000
13001
13002 /* Remove from the tree DIE any dies that aren't marked. */
13003
13004 static void
13005 prune_unused_types_prune (die)
13006 dw_die_ref die;
13007 {
13008 dw_die_ref c, p, n;
13009 if (!die->die_mark)
13010 abort();
13011
13012 p = NULL;
13013 for (c = die->die_child; c; c = n)
13014 {
13015 n = c->die_sib;
13016 if (c->die_mark)
13017 {
13018 prune_unused_types_prune (c);
13019 p = c;
13020 }
13021 else
13022 {
13023 if (p)
13024 p->die_sib = n;
13025 else
13026 die->die_child = n;
13027 free_die (c);
13028 }
13029 }
13030 }
13031
13032
13033 /* Remove dies representing declarations that we never use. */
13034
13035 static void
13036 prune_unused_types ()
13037 {
13038 unsigned int i;
13039 limbo_die_node *node;
13040
13041 /* Clear all the marks. */
13042 prune_unmark_dies (comp_unit_die);
13043 for (node = limbo_die_list; node; node = node->next)
13044 prune_unmark_dies (node->die);
13045
13046 /* Set the mark on nodes that are actually used. */
13047 prune_unused_types_walk (comp_unit_die);
13048 for (node = limbo_die_list; node; node = node->next)
13049 prune_unused_types_walk (node->die);
13050
13051 /* Also set the mark on nodes referenced from the
13052 pubname_table or arange_table. */
13053 for (i = 0; i < pubname_table_in_use; i++)
13054 prune_unused_types_mark (pubname_table[i].die, 1);
13055 for (i = 0; i < arange_table_in_use; i++)
13056 prune_unused_types_mark (arange_table[i], 1);
13057
13058 /* Get rid of nodes that aren't marked. */
13059 prune_unused_types_prune (comp_unit_die);
13060 for (node = limbo_die_list; node; node = node->next)
13061 prune_unused_types_prune (node->die);
13062
13063 /* Leave the marks clear. */
13064 prune_unmark_dies (comp_unit_die);
13065 for (node = limbo_die_list; node; node = node->next)
13066 prune_unmark_dies (node->die);
13067 }
13068
13069 /* Output stuff that dwarf requires at the end of every file,
13070 and generate the DWARF-2 debugging info. */
13071
13072 static void
13073 dwarf2out_finish (filename)
13074 const char *filename;
13075 {
13076 limbo_die_node *node, *next_node;
13077 dw_die_ref die = 0;
13078
13079 /* Add the name for the main input file now. We delayed this from
13080 dwarf2out_init to avoid complications with PCH. */
13081 add_name_attribute (comp_unit_die, filename);
13082 if (filename[0] != DIR_SEPARATOR)
13083 add_comp_dir_attribute (comp_unit_die);
13084 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13085 {
13086 size_t i;
13087 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13088 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
13089 /* Don't add cwd for <built-in>. */
13090 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
13091 {
13092 add_comp_dir_attribute (comp_unit_die);
13093 break;
13094 }
13095 }
13096
13097 /* Traverse the limbo die list, and add parent/child links. The only
13098 dies without parents that should be here are concrete instances of
13099 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13100 For concrete instances, we can get the parent die from the abstract
13101 instance. */
13102 for (node = limbo_die_list; node; node = next_node)
13103 {
13104 next_node = node->next;
13105 die = node->die;
13106
13107 if (die->die_parent == NULL)
13108 {
13109 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13110 tree context;
13111
13112 if (origin)
13113 add_child_die (origin->die_parent, die);
13114 else if (die == comp_unit_die)
13115 ;
13116 /* If this was an expression for a bound involved in a function
13117 return type, it may be a SAVE_EXPR for which we weren't able
13118 to find a DIE previously. So try now. */
13119 else if (node->created_for
13120 && TREE_CODE (node->created_for) == SAVE_EXPR
13121 && 0 != (origin = (lookup_decl_die
13122 (SAVE_EXPR_CONTEXT
13123 (node->created_for)))))
13124 add_child_die (origin, die);
13125 else if (errorcount > 0 || sorrycount > 0)
13126 /* It's OK to be confused by errors in the input. */
13127 add_child_die (comp_unit_die, die);
13128 else if (node->created_for
13129 && ((DECL_P (node->created_for)
13130 && (context = DECL_CONTEXT (node->created_for)))
13131 || (TYPE_P (node->created_for)
13132 && (context = TYPE_CONTEXT (node->created_for))))
13133 && TREE_CODE (context) == FUNCTION_DECL)
13134 {
13135 /* In certain situations, the lexical block containing a
13136 nested function can be optimized away, which results
13137 in the nested function die being orphaned. Likewise
13138 with the return type of that nested function. Force
13139 this to be a child of the containing function. */
13140 origin = lookup_decl_die (context);
13141 if (! origin)
13142 abort ();
13143 add_child_die (origin, die);
13144 }
13145 else
13146 abort ();
13147 }
13148 }
13149
13150 limbo_die_list = NULL;
13151
13152 /* Walk through the list of incomplete types again, trying once more to
13153 emit full debugging info for them. */
13154 retry_incomplete_types ();
13155
13156 /* We need to reverse all the dies before break_out_includes, or
13157 we'll see the end of an include file before the beginning. */
13158 reverse_all_dies (comp_unit_die);
13159
13160 if (flag_eliminate_unused_debug_types)
13161 prune_unused_types ();
13162
13163 /* Generate separate CUs for each of the include files we've seen.
13164 They will go into limbo_die_list. */
13165 if (flag_eliminate_dwarf2_dups)
13166 break_out_includes (comp_unit_die);
13167
13168 /* Traverse the DIE's and add add sibling attributes to those DIE's
13169 that have children. */
13170 add_sibling_attributes (comp_unit_die);
13171 for (node = limbo_die_list; node; node = node->next)
13172 add_sibling_attributes (node->die);
13173
13174 /* Output a terminator label for the .text section. */
13175 text_section ();
13176 (*targetm.asm_out.internal_label) (asm_out_file, TEXT_END_LABEL, 0);
13177
13178 /* Output the source line correspondence table. We must do this
13179 even if there is no line information. Otherwise, on an empty
13180 translation unit, we will generate a present, but empty,
13181 .debug_info section. IRIX 6.5 `nm' will then complain when
13182 examining the file. */
13183 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13184 {
13185 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13186 output_line_info ();
13187 }
13188
13189 /* Output location list section if necessary. */
13190 if (have_location_lists)
13191 {
13192 /* Output the location lists info. */
13193 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13194 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13195 DEBUG_LOC_SECTION_LABEL, 0);
13196 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13197 output_location_lists (die);
13198 have_location_lists = 0;
13199 }
13200
13201 /* We can only use the low/high_pc attributes if all of the code was
13202 in .text. */
13203 if (separate_line_info_table_in_use == 0)
13204 {
13205 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13206 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13207 }
13208
13209 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13210 "base address". Use zero so that these addresses become absolute. */
13211 else if (have_location_lists || ranges_table_in_use)
13212 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13213
13214 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13215 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13216 debug_line_section_label);
13217
13218 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13219 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13220
13221 /* Output all of the compilation units. We put the main one last so that
13222 the offsets are available to output_pubnames. */
13223 for (node = limbo_die_list; node; node = node->next)
13224 output_comp_unit (node->die, 0);
13225
13226 output_comp_unit (comp_unit_die, 0);
13227
13228 /* Output the abbreviation table. */
13229 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13230 output_abbrev_section ();
13231
13232 /* Output public names table if necessary. */
13233 if (pubname_table_in_use)
13234 {
13235 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13236 output_pubnames ();
13237 }
13238
13239 /* Output the address range information. We only put functions in the arange
13240 table, so don't write it out if we don't have any. */
13241 if (fde_table_in_use)
13242 {
13243 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13244 output_aranges ();
13245 }
13246
13247 /* Output ranges section if necessary. */
13248 if (ranges_table_in_use)
13249 {
13250 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13251 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13252 output_ranges ();
13253 }
13254
13255 /* Have to end the primary source file. */
13256 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13257 {
13258 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13259 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13260 dw2_asm_output_data (1, 0, "End compilation unit");
13261 }
13262
13263 /* If we emitted any DW_FORM_strp form attribute, output the string
13264 table too. */
13265 if (debug_str_hash)
13266 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13267 }
13268 #else
13269
13270 /* This should never be used, but its address is needed for comparisons. */
13271 const struct gcc_debug_hooks dwarf2_debug_hooks;
13272
13273 #endif /* DWARF2_DEBUGGING_INFO */
13274
13275 #include "gt-dwarf2out.h"